xref: /openbmc/linux/mm/memcontrol.c (revision 930beb5a)
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * Kernel Memory Controller
14  * Copyright (C) 2012 Parallels Inc. and Google Inc.
15  * Authors: Glauber Costa and Suleiman Souhlal
16  *
17  * This program is free software; you can redistribute it and/or modify
18  * it under the terms of the GNU General Public License as published by
19  * the Free Software Foundation; either version 2 of the License, or
20  * (at your option) any later version.
21  *
22  * This program is distributed in the hope that it will be useful,
23  * but WITHOUT ANY WARRANTY; without even the implied warranty of
24  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
25  * GNU General Public License for more details.
26  */
27 
28 #include <linux/res_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/mm.h>
32 #include <linux/hugetlb.h>
33 #include <linux/pagemap.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/sort.h>
49 #include <linux/fs.h>
50 #include <linux/seq_file.h>
51 #include <linux/vmalloc.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/page_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include "internal.h"
59 #include <net/sock.h>
60 #include <net/ip.h>
61 #include <net/tcp_memcontrol.h>
62 #include "slab.h"
63 
64 #include <asm/uaccess.h>
65 
66 #include <trace/events/vmscan.h>
67 
68 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
69 EXPORT_SYMBOL(mem_cgroup_subsys);
70 
71 #define MEM_CGROUP_RECLAIM_RETRIES	5
72 static struct mem_cgroup *root_mem_cgroup __read_mostly;
73 
74 #ifdef CONFIG_MEMCG_SWAP
75 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
76 int do_swap_account __read_mostly;
77 
78 /* for remember boot option*/
79 #ifdef CONFIG_MEMCG_SWAP_ENABLED
80 static int really_do_swap_account __initdata = 1;
81 #else
82 static int really_do_swap_account __initdata = 0;
83 #endif
84 
85 #else
86 #define do_swap_account		0
87 #endif
88 
89 
90 static const char * const mem_cgroup_stat_names[] = {
91 	"cache",
92 	"rss",
93 	"rss_huge",
94 	"mapped_file",
95 	"writeback",
96 	"swap",
97 };
98 
99 enum mem_cgroup_events_index {
100 	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
101 	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
102 	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
103 	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
104 	MEM_CGROUP_EVENTS_NSTATS,
105 };
106 
107 static const char * const mem_cgroup_events_names[] = {
108 	"pgpgin",
109 	"pgpgout",
110 	"pgfault",
111 	"pgmajfault",
112 };
113 
114 static const char * const mem_cgroup_lru_names[] = {
115 	"inactive_anon",
116 	"active_anon",
117 	"inactive_file",
118 	"active_file",
119 	"unevictable",
120 };
121 
122 /*
123  * Per memcg event counter is incremented at every pagein/pageout. With THP,
124  * it will be incremated by the number of pages. This counter is used for
125  * for trigger some periodic events. This is straightforward and better
126  * than using jiffies etc. to handle periodic memcg event.
127  */
128 enum mem_cgroup_events_target {
129 	MEM_CGROUP_TARGET_THRESH,
130 	MEM_CGROUP_TARGET_SOFTLIMIT,
131 	MEM_CGROUP_TARGET_NUMAINFO,
132 	MEM_CGROUP_NTARGETS,
133 };
134 #define THRESHOLDS_EVENTS_TARGET 128
135 #define SOFTLIMIT_EVENTS_TARGET 1024
136 #define NUMAINFO_EVENTS_TARGET	1024
137 
138 struct mem_cgroup_stat_cpu {
139 	long count[MEM_CGROUP_STAT_NSTATS];
140 	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
141 	unsigned long nr_page_events;
142 	unsigned long targets[MEM_CGROUP_NTARGETS];
143 };
144 
145 struct mem_cgroup_reclaim_iter {
146 	/*
147 	 * last scanned hierarchy member. Valid only if last_dead_count
148 	 * matches memcg->dead_count of the hierarchy root group.
149 	 */
150 	struct mem_cgroup *last_visited;
151 	unsigned long last_dead_count;
152 
153 	/* scan generation, increased every round-trip */
154 	unsigned int generation;
155 };
156 
157 /*
158  * per-zone information in memory controller.
159  */
160 struct mem_cgroup_per_zone {
161 	struct lruvec		lruvec;
162 	unsigned long		lru_size[NR_LRU_LISTS];
163 
164 	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
165 
166 	struct rb_node		tree_node;	/* RB tree node */
167 	unsigned long long	usage_in_excess;/* Set to the value by which */
168 						/* the soft limit is exceeded*/
169 	bool			on_tree;
170 	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
171 						/* use container_of	   */
172 };
173 
174 struct mem_cgroup_per_node {
175 	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
176 };
177 
178 /*
179  * Cgroups above their limits are maintained in a RB-Tree, independent of
180  * their hierarchy representation
181  */
182 
183 struct mem_cgroup_tree_per_zone {
184 	struct rb_root rb_root;
185 	spinlock_t lock;
186 };
187 
188 struct mem_cgroup_tree_per_node {
189 	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
190 };
191 
192 struct mem_cgroup_tree {
193 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
194 };
195 
196 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
197 
198 struct mem_cgroup_threshold {
199 	struct eventfd_ctx *eventfd;
200 	u64 threshold;
201 };
202 
203 /* For threshold */
204 struct mem_cgroup_threshold_ary {
205 	/* An array index points to threshold just below or equal to usage. */
206 	int current_threshold;
207 	/* Size of entries[] */
208 	unsigned int size;
209 	/* Array of thresholds */
210 	struct mem_cgroup_threshold entries[0];
211 };
212 
213 struct mem_cgroup_thresholds {
214 	/* Primary thresholds array */
215 	struct mem_cgroup_threshold_ary *primary;
216 	/*
217 	 * Spare threshold array.
218 	 * This is needed to make mem_cgroup_unregister_event() "never fail".
219 	 * It must be able to store at least primary->size - 1 entries.
220 	 */
221 	struct mem_cgroup_threshold_ary *spare;
222 };
223 
224 /* for OOM */
225 struct mem_cgroup_eventfd_list {
226 	struct list_head list;
227 	struct eventfd_ctx *eventfd;
228 };
229 
230 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
231 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
232 
233 /*
234  * The memory controller data structure. The memory controller controls both
235  * page cache and RSS per cgroup. We would eventually like to provide
236  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
237  * to help the administrator determine what knobs to tune.
238  *
239  * TODO: Add a water mark for the memory controller. Reclaim will begin when
240  * we hit the water mark. May be even add a low water mark, such that
241  * no reclaim occurs from a cgroup at it's low water mark, this is
242  * a feature that will be implemented much later in the future.
243  */
244 struct mem_cgroup {
245 	struct cgroup_subsys_state css;
246 	/*
247 	 * the counter to account for memory usage
248 	 */
249 	struct res_counter res;
250 
251 	/* vmpressure notifications */
252 	struct vmpressure vmpressure;
253 
254 	/*
255 	 * the counter to account for mem+swap usage.
256 	 */
257 	struct res_counter memsw;
258 
259 	/*
260 	 * the counter to account for kernel memory usage.
261 	 */
262 	struct res_counter kmem;
263 	/*
264 	 * Should the accounting and control be hierarchical, per subtree?
265 	 */
266 	bool use_hierarchy;
267 	unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
268 
269 	bool		oom_lock;
270 	atomic_t	under_oom;
271 	atomic_t	oom_wakeups;
272 
273 	int	swappiness;
274 	/* OOM-Killer disable */
275 	int		oom_kill_disable;
276 
277 	/* set when res.limit == memsw.limit */
278 	bool		memsw_is_minimum;
279 
280 	/* protect arrays of thresholds */
281 	struct mutex thresholds_lock;
282 
283 	/* thresholds for memory usage. RCU-protected */
284 	struct mem_cgroup_thresholds thresholds;
285 
286 	/* thresholds for mem+swap usage. RCU-protected */
287 	struct mem_cgroup_thresholds memsw_thresholds;
288 
289 	/* For oom notifier event fd */
290 	struct list_head oom_notify;
291 
292 	/*
293 	 * Should we move charges of a task when a task is moved into this
294 	 * mem_cgroup ? And what type of charges should we move ?
295 	 */
296 	unsigned long move_charge_at_immigrate;
297 	/*
298 	 * set > 0 if pages under this cgroup are moving to other cgroup.
299 	 */
300 	atomic_t	moving_account;
301 	/* taken only while moving_account > 0 */
302 	spinlock_t	move_lock;
303 	/*
304 	 * percpu counter.
305 	 */
306 	struct mem_cgroup_stat_cpu __percpu *stat;
307 	/*
308 	 * used when a cpu is offlined or other synchronizations
309 	 * See mem_cgroup_read_stat().
310 	 */
311 	struct mem_cgroup_stat_cpu nocpu_base;
312 	spinlock_t pcp_counter_lock;
313 
314 	atomic_t	dead_count;
315 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
316 	struct cg_proto tcp_mem;
317 #endif
318 #if defined(CONFIG_MEMCG_KMEM)
319 	/* analogous to slab_common's slab_caches list. per-memcg */
320 	struct list_head memcg_slab_caches;
321 	/* Not a spinlock, we can take a lot of time walking the list */
322 	struct mutex slab_caches_mutex;
323         /* Index in the kmem_cache->memcg_params->memcg_caches array */
324 	int kmemcg_id;
325 #endif
326 
327 	int last_scanned_node;
328 #if MAX_NUMNODES > 1
329 	nodemask_t	scan_nodes;
330 	atomic_t	numainfo_events;
331 	atomic_t	numainfo_updating;
332 #endif
333 
334 	struct mem_cgroup_per_node *nodeinfo[0];
335 	/* WARNING: nodeinfo must be the last member here */
336 };
337 
338 static size_t memcg_size(void)
339 {
340 	return sizeof(struct mem_cgroup) +
341 		nr_node_ids * sizeof(struct mem_cgroup_per_node *);
342 }
343 
344 /* internal only representation about the status of kmem accounting. */
345 enum {
346 	KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
347 	KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
348 	KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
349 };
350 
351 /* We account when limit is on, but only after call sites are patched */
352 #define KMEM_ACCOUNTED_MASK \
353 		((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
354 
355 #ifdef CONFIG_MEMCG_KMEM
356 static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
357 {
358 	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
359 }
360 
361 static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
362 {
363 	return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
364 }
365 
366 static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
367 {
368 	set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
369 }
370 
371 static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
372 {
373 	clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
374 }
375 
376 static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
377 {
378 	/*
379 	 * Our caller must use css_get() first, because memcg_uncharge_kmem()
380 	 * will call css_put() if it sees the memcg is dead.
381 	 */
382 	smp_wmb();
383 	if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
384 		set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
385 }
386 
387 static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
388 {
389 	return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
390 				  &memcg->kmem_account_flags);
391 }
392 #endif
393 
394 /* Stuffs for move charges at task migration. */
395 /*
396  * Types of charges to be moved. "move_charge_at_immitgrate" and
397  * "immigrate_flags" are treated as a left-shifted bitmap of these types.
398  */
399 enum move_type {
400 	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
401 	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
402 	NR_MOVE_TYPE,
403 };
404 
405 /* "mc" and its members are protected by cgroup_mutex */
406 static struct move_charge_struct {
407 	spinlock_t	  lock; /* for from, to */
408 	struct mem_cgroup *from;
409 	struct mem_cgroup *to;
410 	unsigned long immigrate_flags;
411 	unsigned long precharge;
412 	unsigned long moved_charge;
413 	unsigned long moved_swap;
414 	struct task_struct *moving_task;	/* a task moving charges */
415 	wait_queue_head_t waitq;		/* a waitq for other context */
416 } mc = {
417 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
418 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
419 };
420 
421 static bool move_anon(void)
422 {
423 	return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
424 }
425 
426 static bool move_file(void)
427 {
428 	return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
429 }
430 
431 /*
432  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
433  * limit reclaim to prevent infinite loops, if they ever occur.
434  */
435 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
436 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
437 
438 enum charge_type {
439 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
440 	MEM_CGROUP_CHARGE_TYPE_ANON,
441 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
442 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
443 	NR_CHARGE_TYPE,
444 };
445 
446 /* for encoding cft->private value on file */
447 enum res_type {
448 	_MEM,
449 	_MEMSWAP,
450 	_OOM_TYPE,
451 	_KMEM,
452 };
453 
454 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
455 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
456 #define MEMFILE_ATTR(val)	((val) & 0xffff)
457 /* Used for OOM nofiier */
458 #define OOM_CONTROL		(0)
459 
460 /*
461  * Reclaim flags for mem_cgroup_hierarchical_reclaim
462  */
463 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
464 #define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
465 #define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
466 #define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
467 
468 /*
469  * The memcg_create_mutex will be held whenever a new cgroup is created.
470  * As a consequence, any change that needs to protect against new child cgroups
471  * appearing has to hold it as well.
472  */
473 static DEFINE_MUTEX(memcg_create_mutex);
474 
475 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
476 {
477 	return s ? container_of(s, struct mem_cgroup, css) : NULL;
478 }
479 
480 /* Some nice accessors for the vmpressure. */
481 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
482 {
483 	if (!memcg)
484 		memcg = root_mem_cgroup;
485 	return &memcg->vmpressure;
486 }
487 
488 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
489 {
490 	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
491 }
492 
493 struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css)
494 {
495 	return &mem_cgroup_from_css(css)->vmpressure;
496 }
497 
498 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
499 {
500 	return (memcg == root_mem_cgroup);
501 }
502 
503 /*
504  * We restrict the id in the range of [1, 65535], so it can fit into
505  * an unsigned short.
506  */
507 #define MEM_CGROUP_ID_MAX	USHRT_MAX
508 
509 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
510 {
511 	/*
512 	 * The ID of the root cgroup is 0, but memcg treat 0 as an
513 	 * invalid ID, so we return (cgroup_id + 1).
514 	 */
515 	return memcg->css.cgroup->id + 1;
516 }
517 
518 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
519 {
520 	struct cgroup_subsys_state *css;
521 
522 	css = css_from_id(id - 1, &mem_cgroup_subsys);
523 	return mem_cgroup_from_css(css);
524 }
525 
526 /* Writing them here to avoid exposing memcg's inner layout */
527 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
528 
529 void sock_update_memcg(struct sock *sk)
530 {
531 	if (mem_cgroup_sockets_enabled) {
532 		struct mem_cgroup *memcg;
533 		struct cg_proto *cg_proto;
534 
535 		BUG_ON(!sk->sk_prot->proto_cgroup);
536 
537 		/* Socket cloning can throw us here with sk_cgrp already
538 		 * filled. It won't however, necessarily happen from
539 		 * process context. So the test for root memcg given
540 		 * the current task's memcg won't help us in this case.
541 		 *
542 		 * Respecting the original socket's memcg is a better
543 		 * decision in this case.
544 		 */
545 		if (sk->sk_cgrp) {
546 			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
547 			css_get(&sk->sk_cgrp->memcg->css);
548 			return;
549 		}
550 
551 		rcu_read_lock();
552 		memcg = mem_cgroup_from_task(current);
553 		cg_proto = sk->sk_prot->proto_cgroup(memcg);
554 		if (!mem_cgroup_is_root(memcg) &&
555 		    memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
556 			sk->sk_cgrp = cg_proto;
557 		}
558 		rcu_read_unlock();
559 	}
560 }
561 EXPORT_SYMBOL(sock_update_memcg);
562 
563 void sock_release_memcg(struct sock *sk)
564 {
565 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
566 		struct mem_cgroup *memcg;
567 		WARN_ON(!sk->sk_cgrp->memcg);
568 		memcg = sk->sk_cgrp->memcg;
569 		css_put(&sk->sk_cgrp->memcg->css);
570 	}
571 }
572 
573 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
574 {
575 	if (!memcg || mem_cgroup_is_root(memcg))
576 		return NULL;
577 
578 	return &memcg->tcp_mem;
579 }
580 EXPORT_SYMBOL(tcp_proto_cgroup);
581 
582 static void disarm_sock_keys(struct mem_cgroup *memcg)
583 {
584 	if (!memcg_proto_activated(&memcg->tcp_mem))
585 		return;
586 	static_key_slow_dec(&memcg_socket_limit_enabled);
587 }
588 #else
589 static void disarm_sock_keys(struct mem_cgroup *memcg)
590 {
591 }
592 #endif
593 
594 #ifdef CONFIG_MEMCG_KMEM
595 /*
596  * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
597  * The main reason for not using cgroup id for this:
598  *  this works better in sparse environments, where we have a lot of memcgs,
599  *  but only a few kmem-limited. Or also, if we have, for instance, 200
600  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
601  *  200 entry array for that.
602  *
603  * The current size of the caches array is stored in
604  * memcg_limited_groups_array_size.  It will double each time we have to
605  * increase it.
606  */
607 static DEFINE_IDA(kmem_limited_groups);
608 int memcg_limited_groups_array_size;
609 
610 /*
611  * MIN_SIZE is different than 1, because we would like to avoid going through
612  * the alloc/free process all the time. In a small machine, 4 kmem-limited
613  * cgroups is a reasonable guess. In the future, it could be a parameter or
614  * tunable, but that is strictly not necessary.
615  *
616  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
617  * this constant directly from cgroup, but it is understandable that this is
618  * better kept as an internal representation in cgroup.c. In any case, the
619  * cgrp_id space is not getting any smaller, and we don't have to necessarily
620  * increase ours as well if it increases.
621  */
622 #define MEMCG_CACHES_MIN_SIZE 4
623 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
624 
625 /*
626  * A lot of the calls to the cache allocation functions are expected to be
627  * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
628  * conditional to this static branch, we'll have to allow modules that does
629  * kmem_cache_alloc and the such to see this symbol as well
630  */
631 struct static_key memcg_kmem_enabled_key;
632 EXPORT_SYMBOL(memcg_kmem_enabled_key);
633 
634 static void disarm_kmem_keys(struct mem_cgroup *memcg)
635 {
636 	if (memcg_kmem_is_active(memcg)) {
637 		static_key_slow_dec(&memcg_kmem_enabled_key);
638 		ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
639 	}
640 	/*
641 	 * This check can't live in kmem destruction function,
642 	 * since the charges will outlive the cgroup
643 	 */
644 	WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
645 }
646 #else
647 static void disarm_kmem_keys(struct mem_cgroup *memcg)
648 {
649 }
650 #endif /* CONFIG_MEMCG_KMEM */
651 
652 static void disarm_static_keys(struct mem_cgroup *memcg)
653 {
654 	disarm_sock_keys(memcg);
655 	disarm_kmem_keys(memcg);
656 }
657 
658 static void drain_all_stock_async(struct mem_cgroup *memcg);
659 
660 static struct mem_cgroup_per_zone *
661 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
662 {
663 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
664 	return &memcg->nodeinfo[nid]->zoneinfo[zid];
665 }
666 
667 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
668 {
669 	return &memcg->css;
670 }
671 
672 static struct mem_cgroup_per_zone *
673 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
674 {
675 	int nid = page_to_nid(page);
676 	int zid = page_zonenum(page);
677 
678 	return mem_cgroup_zoneinfo(memcg, nid, zid);
679 }
680 
681 static struct mem_cgroup_tree_per_zone *
682 soft_limit_tree_node_zone(int nid, int zid)
683 {
684 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
685 }
686 
687 static struct mem_cgroup_tree_per_zone *
688 soft_limit_tree_from_page(struct page *page)
689 {
690 	int nid = page_to_nid(page);
691 	int zid = page_zonenum(page);
692 
693 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
694 }
695 
696 static void
697 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
698 				struct mem_cgroup_per_zone *mz,
699 				struct mem_cgroup_tree_per_zone *mctz,
700 				unsigned long long new_usage_in_excess)
701 {
702 	struct rb_node **p = &mctz->rb_root.rb_node;
703 	struct rb_node *parent = NULL;
704 	struct mem_cgroup_per_zone *mz_node;
705 
706 	if (mz->on_tree)
707 		return;
708 
709 	mz->usage_in_excess = new_usage_in_excess;
710 	if (!mz->usage_in_excess)
711 		return;
712 	while (*p) {
713 		parent = *p;
714 		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
715 					tree_node);
716 		if (mz->usage_in_excess < mz_node->usage_in_excess)
717 			p = &(*p)->rb_left;
718 		/*
719 		 * We can't avoid mem cgroups that are over their soft
720 		 * limit by the same amount
721 		 */
722 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
723 			p = &(*p)->rb_right;
724 	}
725 	rb_link_node(&mz->tree_node, parent, p);
726 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
727 	mz->on_tree = true;
728 }
729 
730 static void
731 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
732 				struct mem_cgroup_per_zone *mz,
733 				struct mem_cgroup_tree_per_zone *mctz)
734 {
735 	if (!mz->on_tree)
736 		return;
737 	rb_erase(&mz->tree_node, &mctz->rb_root);
738 	mz->on_tree = false;
739 }
740 
741 static void
742 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
743 				struct mem_cgroup_per_zone *mz,
744 				struct mem_cgroup_tree_per_zone *mctz)
745 {
746 	spin_lock(&mctz->lock);
747 	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
748 	spin_unlock(&mctz->lock);
749 }
750 
751 
752 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
753 {
754 	unsigned long long excess;
755 	struct mem_cgroup_per_zone *mz;
756 	struct mem_cgroup_tree_per_zone *mctz;
757 	int nid = page_to_nid(page);
758 	int zid = page_zonenum(page);
759 	mctz = soft_limit_tree_from_page(page);
760 
761 	/*
762 	 * Necessary to update all ancestors when hierarchy is used.
763 	 * because their event counter is not touched.
764 	 */
765 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
766 		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
767 		excess = res_counter_soft_limit_excess(&memcg->res);
768 		/*
769 		 * We have to update the tree if mz is on RB-tree or
770 		 * mem is over its softlimit.
771 		 */
772 		if (excess || mz->on_tree) {
773 			spin_lock(&mctz->lock);
774 			/* if on-tree, remove it */
775 			if (mz->on_tree)
776 				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
777 			/*
778 			 * Insert again. mz->usage_in_excess will be updated.
779 			 * If excess is 0, no tree ops.
780 			 */
781 			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
782 			spin_unlock(&mctz->lock);
783 		}
784 	}
785 }
786 
787 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
788 {
789 	int node, zone;
790 	struct mem_cgroup_per_zone *mz;
791 	struct mem_cgroup_tree_per_zone *mctz;
792 
793 	for_each_node(node) {
794 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
795 			mz = mem_cgroup_zoneinfo(memcg, node, zone);
796 			mctz = soft_limit_tree_node_zone(node, zone);
797 			mem_cgroup_remove_exceeded(memcg, mz, mctz);
798 		}
799 	}
800 }
801 
802 static struct mem_cgroup_per_zone *
803 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
804 {
805 	struct rb_node *rightmost = NULL;
806 	struct mem_cgroup_per_zone *mz;
807 
808 retry:
809 	mz = NULL;
810 	rightmost = rb_last(&mctz->rb_root);
811 	if (!rightmost)
812 		goto done;		/* Nothing to reclaim from */
813 
814 	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
815 	/*
816 	 * Remove the node now but someone else can add it back,
817 	 * we will to add it back at the end of reclaim to its correct
818 	 * position in the tree.
819 	 */
820 	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
821 	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
822 		!css_tryget(&mz->memcg->css))
823 		goto retry;
824 done:
825 	return mz;
826 }
827 
828 static struct mem_cgroup_per_zone *
829 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
830 {
831 	struct mem_cgroup_per_zone *mz;
832 
833 	spin_lock(&mctz->lock);
834 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
835 	spin_unlock(&mctz->lock);
836 	return mz;
837 }
838 
839 /*
840  * Implementation Note: reading percpu statistics for memcg.
841  *
842  * Both of vmstat[] and percpu_counter has threshold and do periodic
843  * synchronization to implement "quick" read. There are trade-off between
844  * reading cost and precision of value. Then, we may have a chance to implement
845  * a periodic synchronizion of counter in memcg's counter.
846  *
847  * But this _read() function is used for user interface now. The user accounts
848  * memory usage by memory cgroup and he _always_ requires exact value because
849  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
850  * have to visit all online cpus and make sum. So, for now, unnecessary
851  * synchronization is not implemented. (just implemented for cpu hotplug)
852  *
853  * If there are kernel internal actions which can make use of some not-exact
854  * value, and reading all cpu value can be performance bottleneck in some
855  * common workload, threashold and synchonization as vmstat[] should be
856  * implemented.
857  */
858 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
859 				 enum mem_cgroup_stat_index idx)
860 {
861 	long val = 0;
862 	int cpu;
863 
864 	get_online_cpus();
865 	for_each_online_cpu(cpu)
866 		val += per_cpu(memcg->stat->count[idx], cpu);
867 #ifdef CONFIG_HOTPLUG_CPU
868 	spin_lock(&memcg->pcp_counter_lock);
869 	val += memcg->nocpu_base.count[idx];
870 	spin_unlock(&memcg->pcp_counter_lock);
871 #endif
872 	put_online_cpus();
873 	return val;
874 }
875 
876 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
877 					 bool charge)
878 {
879 	int val = (charge) ? 1 : -1;
880 	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
881 }
882 
883 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
884 					    enum mem_cgroup_events_index idx)
885 {
886 	unsigned long val = 0;
887 	int cpu;
888 
889 	get_online_cpus();
890 	for_each_online_cpu(cpu)
891 		val += per_cpu(memcg->stat->events[idx], cpu);
892 #ifdef CONFIG_HOTPLUG_CPU
893 	spin_lock(&memcg->pcp_counter_lock);
894 	val += memcg->nocpu_base.events[idx];
895 	spin_unlock(&memcg->pcp_counter_lock);
896 #endif
897 	put_online_cpus();
898 	return val;
899 }
900 
901 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
902 					 struct page *page,
903 					 bool anon, int nr_pages)
904 {
905 	preempt_disable();
906 
907 	/*
908 	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
909 	 * counted as CACHE even if it's on ANON LRU.
910 	 */
911 	if (anon)
912 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
913 				nr_pages);
914 	else
915 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
916 				nr_pages);
917 
918 	if (PageTransHuge(page))
919 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
920 				nr_pages);
921 
922 	/* pagein of a big page is an event. So, ignore page size */
923 	if (nr_pages > 0)
924 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
925 	else {
926 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
927 		nr_pages = -nr_pages; /* for event */
928 	}
929 
930 	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
931 
932 	preempt_enable();
933 }
934 
935 unsigned long
936 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
937 {
938 	struct mem_cgroup_per_zone *mz;
939 
940 	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
941 	return mz->lru_size[lru];
942 }
943 
944 static unsigned long
945 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
946 			unsigned int lru_mask)
947 {
948 	struct mem_cgroup_per_zone *mz;
949 	enum lru_list lru;
950 	unsigned long ret = 0;
951 
952 	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
953 
954 	for_each_lru(lru) {
955 		if (BIT(lru) & lru_mask)
956 			ret += mz->lru_size[lru];
957 	}
958 	return ret;
959 }
960 
961 static unsigned long
962 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
963 			int nid, unsigned int lru_mask)
964 {
965 	u64 total = 0;
966 	int zid;
967 
968 	for (zid = 0; zid < MAX_NR_ZONES; zid++)
969 		total += mem_cgroup_zone_nr_lru_pages(memcg,
970 						nid, zid, lru_mask);
971 
972 	return total;
973 }
974 
975 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
976 			unsigned int lru_mask)
977 {
978 	int nid;
979 	u64 total = 0;
980 
981 	for_each_node_state(nid, N_MEMORY)
982 		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
983 	return total;
984 }
985 
986 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
987 				       enum mem_cgroup_events_target target)
988 {
989 	unsigned long val, next;
990 
991 	val = __this_cpu_read(memcg->stat->nr_page_events);
992 	next = __this_cpu_read(memcg->stat->targets[target]);
993 	/* from time_after() in jiffies.h */
994 	if ((long)next - (long)val < 0) {
995 		switch (target) {
996 		case MEM_CGROUP_TARGET_THRESH:
997 			next = val + THRESHOLDS_EVENTS_TARGET;
998 			break;
999 		case MEM_CGROUP_TARGET_SOFTLIMIT:
1000 			next = val + SOFTLIMIT_EVENTS_TARGET;
1001 			break;
1002 		case MEM_CGROUP_TARGET_NUMAINFO:
1003 			next = val + NUMAINFO_EVENTS_TARGET;
1004 			break;
1005 		default:
1006 			break;
1007 		}
1008 		__this_cpu_write(memcg->stat->targets[target], next);
1009 		return true;
1010 	}
1011 	return false;
1012 }
1013 
1014 /*
1015  * Check events in order.
1016  *
1017  */
1018 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1019 {
1020 	preempt_disable();
1021 	/* threshold event is triggered in finer grain than soft limit */
1022 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
1023 						MEM_CGROUP_TARGET_THRESH))) {
1024 		bool do_softlimit;
1025 		bool do_numainfo __maybe_unused;
1026 
1027 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
1028 						MEM_CGROUP_TARGET_SOFTLIMIT);
1029 #if MAX_NUMNODES > 1
1030 		do_numainfo = mem_cgroup_event_ratelimit(memcg,
1031 						MEM_CGROUP_TARGET_NUMAINFO);
1032 #endif
1033 		preempt_enable();
1034 
1035 		mem_cgroup_threshold(memcg);
1036 		if (unlikely(do_softlimit))
1037 			mem_cgroup_update_tree(memcg, page);
1038 #if MAX_NUMNODES > 1
1039 		if (unlikely(do_numainfo))
1040 			atomic_inc(&memcg->numainfo_events);
1041 #endif
1042 	} else
1043 		preempt_enable();
1044 }
1045 
1046 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1047 {
1048 	/*
1049 	 * mm_update_next_owner() may clear mm->owner to NULL
1050 	 * if it races with swapoff, page migration, etc.
1051 	 * So this can be called with p == NULL.
1052 	 */
1053 	if (unlikely(!p))
1054 		return NULL;
1055 
1056 	return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id));
1057 }
1058 
1059 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
1060 {
1061 	struct mem_cgroup *memcg = NULL;
1062 
1063 	if (!mm)
1064 		return NULL;
1065 	/*
1066 	 * Because we have no locks, mm->owner's may be being moved to other
1067 	 * cgroup. We use css_tryget() here even if this looks
1068 	 * pessimistic (rather than adding locks here).
1069 	 */
1070 	rcu_read_lock();
1071 	do {
1072 		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1073 		if (unlikely(!memcg))
1074 			break;
1075 	} while (!css_tryget(&memcg->css));
1076 	rcu_read_unlock();
1077 	return memcg;
1078 }
1079 
1080 /*
1081  * Returns a next (in a pre-order walk) alive memcg (with elevated css
1082  * ref. count) or NULL if the whole root's subtree has been visited.
1083  *
1084  * helper function to be used by mem_cgroup_iter
1085  */
1086 static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1087 		struct mem_cgroup *last_visited)
1088 {
1089 	struct cgroup_subsys_state *prev_css, *next_css;
1090 
1091 	prev_css = last_visited ? &last_visited->css : NULL;
1092 skip_node:
1093 	next_css = css_next_descendant_pre(prev_css, &root->css);
1094 
1095 	/*
1096 	 * Even if we found a group we have to make sure it is
1097 	 * alive. css && !memcg means that the groups should be
1098 	 * skipped and we should continue the tree walk.
1099 	 * last_visited css is safe to use because it is
1100 	 * protected by css_get and the tree walk is rcu safe.
1101 	 */
1102 	if (next_css) {
1103 		struct mem_cgroup *mem = mem_cgroup_from_css(next_css);
1104 
1105 		if (css_tryget(&mem->css))
1106 			return mem;
1107 		else {
1108 			prev_css = next_css;
1109 			goto skip_node;
1110 		}
1111 	}
1112 
1113 	return NULL;
1114 }
1115 
1116 static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1117 {
1118 	/*
1119 	 * When a group in the hierarchy below root is destroyed, the
1120 	 * hierarchy iterator can no longer be trusted since it might
1121 	 * have pointed to the destroyed group.  Invalidate it.
1122 	 */
1123 	atomic_inc(&root->dead_count);
1124 }
1125 
1126 static struct mem_cgroup *
1127 mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1128 		     struct mem_cgroup *root,
1129 		     int *sequence)
1130 {
1131 	struct mem_cgroup *position = NULL;
1132 	/*
1133 	 * A cgroup destruction happens in two stages: offlining and
1134 	 * release.  They are separated by a RCU grace period.
1135 	 *
1136 	 * If the iterator is valid, we may still race with an
1137 	 * offlining.  The RCU lock ensures the object won't be
1138 	 * released, tryget will fail if we lost the race.
1139 	 */
1140 	*sequence = atomic_read(&root->dead_count);
1141 	if (iter->last_dead_count == *sequence) {
1142 		smp_rmb();
1143 		position = iter->last_visited;
1144 		if (position && !css_tryget(&position->css))
1145 			position = NULL;
1146 	}
1147 	return position;
1148 }
1149 
1150 static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1151 				   struct mem_cgroup *last_visited,
1152 				   struct mem_cgroup *new_position,
1153 				   int sequence)
1154 {
1155 	if (last_visited)
1156 		css_put(&last_visited->css);
1157 	/*
1158 	 * We store the sequence count from the time @last_visited was
1159 	 * loaded successfully instead of rereading it here so that we
1160 	 * don't lose destruction events in between.  We could have
1161 	 * raced with the destruction of @new_position after all.
1162 	 */
1163 	iter->last_visited = new_position;
1164 	smp_wmb();
1165 	iter->last_dead_count = sequence;
1166 }
1167 
1168 /**
1169  * mem_cgroup_iter - iterate over memory cgroup hierarchy
1170  * @root: hierarchy root
1171  * @prev: previously returned memcg, NULL on first invocation
1172  * @reclaim: cookie for shared reclaim walks, NULL for full walks
1173  *
1174  * Returns references to children of the hierarchy below @root, or
1175  * @root itself, or %NULL after a full round-trip.
1176  *
1177  * Caller must pass the return value in @prev on subsequent
1178  * invocations for reference counting, or use mem_cgroup_iter_break()
1179  * to cancel a hierarchy walk before the round-trip is complete.
1180  *
1181  * Reclaimers can specify a zone and a priority level in @reclaim to
1182  * divide up the memcgs in the hierarchy among all concurrent
1183  * reclaimers operating on the same zone and priority.
1184  */
1185 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1186 				   struct mem_cgroup *prev,
1187 				   struct mem_cgroup_reclaim_cookie *reclaim)
1188 {
1189 	struct mem_cgroup *memcg = NULL;
1190 	struct mem_cgroup *last_visited = NULL;
1191 
1192 	if (mem_cgroup_disabled())
1193 		return NULL;
1194 
1195 	if (!root)
1196 		root = root_mem_cgroup;
1197 
1198 	if (prev && !reclaim)
1199 		last_visited = prev;
1200 
1201 	if (!root->use_hierarchy && root != root_mem_cgroup) {
1202 		if (prev)
1203 			goto out_css_put;
1204 		return root;
1205 	}
1206 
1207 	rcu_read_lock();
1208 	while (!memcg) {
1209 		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1210 		int uninitialized_var(seq);
1211 
1212 		if (reclaim) {
1213 			int nid = zone_to_nid(reclaim->zone);
1214 			int zid = zone_idx(reclaim->zone);
1215 			struct mem_cgroup_per_zone *mz;
1216 
1217 			mz = mem_cgroup_zoneinfo(root, nid, zid);
1218 			iter = &mz->reclaim_iter[reclaim->priority];
1219 			if (prev && reclaim->generation != iter->generation) {
1220 				iter->last_visited = NULL;
1221 				goto out_unlock;
1222 			}
1223 
1224 			last_visited = mem_cgroup_iter_load(iter, root, &seq);
1225 		}
1226 
1227 		memcg = __mem_cgroup_iter_next(root, last_visited);
1228 
1229 		if (reclaim) {
1230 			mem_cgroup_iter_update(iter, last_visited, memcg, seq);
1231 
1232 			if (!memcg)
1233 				iter->generation++;
1234 			else if (!prev && memcg)
1235 				reclaim->generation = iter->generation;
1236 		}
1237 
1238 		if (prev && !memcg)
1239 			goto out_unlock;
1240 	}
1241 out_unlock:
1242 	rcu_read_unlock();
1243 out_css_put:
1244 	if (prev && prev != root)
1245 		css_put(&prev->css);
1246 
1247 	return memcg;
1248 }
1249 
1250 /**
1251  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1252  * @root: hierarchy root
1253  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1254  */
1255 void mem_cgroup_iter_break(struct mem_cgroup *root,
1256 			   struct mem_cgroup *prev)
1257 {
1258 	if (!root)
1259 		root = root_mem_cgroup;
1260 	if (prev && prev != root)
1261 		css_put(&prev->css);
1262 }
1263 
1264 /*
1265  * Iteration constructs for visiting all cgroups (under a tree).  If
1266  * loops are exited prematurely (break), mem_cgroup_iter_break() must
1267  * be used for reference counting.
1268  */
1269 #define for_each_mem_cgroup_tree(iter, root)		\
1270 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1271 	     iter != NULL;				\
1272 	     iter = mem_cgroup_iter(root, iter, NULL))
1273 
1274 #define for_each_mem_cgroup(iter)			\
1275 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1276 	     iter != NULL;				\
1277 	     iter = mem_cgroup_iter(NULL, iter, NULL))
1278 
1279 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1280 {
1281 	struct mem_cgroup *memcg;
1282 
1283 	rcu_read_lock();
1284 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1285 	if (unlikely(!memcg))
1286 		goto out;
1287 
1288 	switch (idx) {
1289 	case PGFAULT:
1290 		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1291 		break;
1292 	case PGMAJFAULT:
1293 		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1294 		break;
1295 	default:
1296 		BUG();
1297 	}
1298 out:
1299 	rcu_read_unlock();
1300 }
1301 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1302 
1303 /**
1304  * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1305  * @zone: zone of the wanted lruvec
1306  * @memcg: memcg of the wanted lruvec
1307  *
1308  * Returns the lru list vector holding pages for the given @zone and
1309  * @mem.  This can be the global zone lruvec, if the memory controller
1310  * is disabled.
1311  */
1312 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1313 				      struct mem_cgroup *memcg)
1314 {
1315 	struct mem_cgroup_per_zone *mz;
1316 	struct lruvec *lruvec;
1317 
1318 	if (mem_cgroup_disabled()) {
1319 		lruvec = &zone->lruvec;
1320 		goto out;
1321 	}
1322 
1323 	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1324 	lruvec = &mz->lruvec;
1325 out:
1326 	/*
1327 	 * Since a node can be onlined after the mem_cgroup was created,
1328 	 * we have to be prepared to initialize lruvec->zone here;
1329 	 * and if offlined then reonlined, we need to reinitialize it.
1330 	 */
1331 	if (unlikely(lruvec->zone != zone))
1332 		lruvec->zone = zone;
1333 	return lruvec;
1334 }
1335 
1336 /*
1337  * Following LRU functions are allowed to be used without PCG_LOCK.
1338  * Operations are called by routine of global LRU independently from memcg.
1339  * What we have to take care of here is validness of pc->mem_cgroup.
1340  *
1341  * Changes to pc->mem_cgroup happens when
1342  * 1. charge
1343  * 2. moving account
1344  * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1345  * It is added to LRU before charge.
1346  * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1347  * When moving account, the page is not on LRU. It's isolated.
1348  */
1349 
1350 /**
1351  * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1352  * @page: the page
1353  * @zone: zone of the page
1354  */
1355 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1356 {
1357 	struct mem_cgroup_per_zone *mz;
1358 	struct mem_cgroup *memcg;
1359 	struct page_cgroup *pc;
1360 	struct lruvec *lruvec;
1361 
1362 	if (mem_cgroup_disabled()) {
1363 		lruvec = &zone->lruvec;
1364 		goto out;
1365 	}
1366 
1367 	pc = lookup_page_cgroup(page);
1368 	memcg = pc->mem_cgroup;
1369 
1370 	/*
1371 	 * Surreptitiously switch any uncharged offlist page to root:
1372 	 * an uncharged page off lru does nothing to secure
1373 	 * its former mem_cgroup from sudden removal.
1374 	 *
1375 	 * Our caller holds lru_lock, and PageCgroupUsed is updated
1376 	 * under page_cgroup lock: between them, they make all uses
1377 	 * of pc->mem_cgroup safe.
1378 	 */
1379 	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1380 		pc->mem_cgroup = memcg = root_mem_cgroup;
1381 
1382 	mz = page_cgroup_zoneinfo(memcg, page);
1383 	lruvec = &mz->lruvec;
1384 out:
1385 	/*
1386 	 * Since a node can be onlined after the mem_cgroup was created,
1387 	 * we have to be prepared to initialize lruvec->zone here;
1388 	 * and if offlined then reonlined, we need to reinitialize it.
1389 	 */
1390 	if (unlikely(lruvec->zone != zone))
1391 		lruvec->zone = zone;
1392 	return lruvec;
1393 }
1394 
1395 /**
1396  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1397  * @lruvec: mem_cgroup per zone lru vector
1398  * @lru: index of lru list the page is sitting on
1399  * @nr_pages: positive when adding or negative when removing
1400  *
1401  * This function must be called when a page is added to or removed from an
1402  * lru list.
1403  */
1404 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1405 				int nr_pages)
1406 {
1407 	struct mem_cgroup_per_zone *mz;
1408 	unsigned long *lru_size;
1409 
1410 	if (mem_cgroup_disabled())
1411 		return;
1412 
1413 	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1414 	lru_size = mz->lru_size + lru;
1415 	*lru_size += nr_pages;
1416 	VM_BUG_ON((long)(*lru_size) < 0);
1417 }
1418 
1419 /*
1420  * Checks whether given mem is same or in the root_mem_cgroup's
1421  * hierarchy subtree
1422  */
1423 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1424 				  struct mem_cgroup *memcg)
1425 {
1426 	if (root_memcg == memcg)
1427 		return true;
1428 	if (!root_memcg->use_hierarchy || !memcg)
1429 		return false;
1430 	return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
1431 }
1432 
1433 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1434 				       struct mem_cgroup *memcg)
1435 {
1436 	bool ret;
1437 
1438 	rcu_read_lock();
1439 	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1440 	rcu_read_unlock();
1441 	return ret;
1442 }
1443 
1444 bool task_in_mem_cgroup(struct task_struct *task,
1445 			const struct mem_cgroup *memcg)
1446 {
1447 	struct mem_cgroup *curr = NULL;
1448 	struct task_struct *p;
1449 	bool ret;
1450 
1451 	p = find_lock_task_mm(task);
1452 	if (p) {
1453 		curr = try_get_mem_cgroup_from_mm(p->mm);
1454 		task_unlock(p);
1455 	} else {
1456 		/*
1457 		 * All threads may have already detached their mm's, but the oom
1458 		 * killer still needs to detect if they have already been oom
1459 		 * killed to prevent needlessly killing additional tasks.
1460 		 */
1461 		rcu_read_lock();
1462 		curr = mem_cgroup_from_task(task);
1463 		if (curr)
1464 			css_get(&curr->css);
1465 		rcu_read_unlock();
1466 	}
1467 	if (!curr)
1468 		return false;
1469 	/*
1470 	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1471 	 * use_hierarchy of "curr" here make this function true if hierarchy is
1472 	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1473 	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1474 	 */
1475 	ret = mem_cgroup_same_or_subtree(memcg, curr);
1476 	css_put(&curr->css);
1477 	return ret;
1478 }
1479 
1480 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1481 {
1482 	unsigned long inactive_ratio;
1483 	unsigned long inactive;
1484 	unsigned long active;
1485 	unsigned long gb;
1486 
1487 	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1488 	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1489 
1490 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
1491 	if (gb)
1492 		inactive_ratio = int_sqrt(10 * gb);
1493 	else
1494 		inactive_ratio = 1;
1495 
1496 	return inactive * inactive_ratio < active;
1497 }
1498 
1499 #define mem_cgroup_from_res_counter(counter, member)	\
1500 	container_of(counter, struct mem_cgroup, member)
1501 
1502 /**
1503  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1504  * @memcg: the memory cgroup
1505  *
1506  * Returns the maximum amount of memory @mem can be charged with, in
1507  * pages.
1508  */
1509 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1510 {
1511 	unsigned long long margin;
1512 
1513 	margin = res_counter_margin(&memcg->res);
1514 	if (do_swap_account)
1515 		margin = min(margin, res_counter_margin(&memcg->memsw));
1516 	return margin >> PAGE_SHIFT;
1517 }
1518 
1519 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1520 {
1521 	/* root ? */
1522 	if (!css_parent(&memcg->css))
1523 		return vm_swappiness;
1524 
1525 	return memcg->swappiness;
1526 }
1527 
1528 /*
1529  * memcg->moving_account is used for checking possibility that some thread is
1530  * calling move_account(). When a thread on CPU-A starts moving pages under
1531  * a memcg, other threads should check memcg->moving_account under
1532  * rcu_read_lock(), like this:
1533  *
1534  *         CPU-A                                    CPU-B
1535  *                                              rcu_read_lock()
1536  *         memcg->moving_account+1              if (memcg->mocing_account)
1537  *                                                   take heavy locks.
1538  *         synchronize_rcu()                    update something.
1539  *                                              rcu_read_unlock()
1540  *         start move here.
1541  */
1542 
1543 /* for quick checking without looking up memcg */
1544 atomic_t memcg_moving __read_mostly;
1545 
1546 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1547 {
1548 	atomic_inc(&memcg_moving);
1549 	atomic_inc(&memcg->moving_account);
1550 	synchronize_rcu();
1551 }
1552 
1553 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1554 {
1555 	/*
1556 	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1557 	 * We check NULL in callee rather than caller.
1558 	 */
1559 	if (memcg) {
1560 		atomic_dec(&memcg_moving);
1561 		atomic_dec(&memcg->moving_account);
1562 	}
1563 }
1564 
1565 /*
1566  * 2 routines for checking "mem" is under move_account() or not.
1567  *
1568  * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
1569  *			  is used for avoiding races in accounting.  If true,
1570  *			  pc->mem_cgroup may be overwritten.
1571  *
1572  * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1573  *			  under hierarchy of moving cgroups. This is for
1574  *			  waiting at hith-memory prressure caused by "move".
1575  */
1576 
1577 static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1578 {
1579 	VM_BUG_ON(!rcu_read_lock_held());
1580 	return atomic_read(&memcg->moving_account) > 0;
1581 }
1582 
1583 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1584 {
1585 	struct mem_cgroup *from;
1586 	struct mem_cgroup *to;
1587 	bool ret = false;
1588 	/*
1589 	 * Unlike task_move routines, we access mc.to, mc.from not under
1590 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1591 	 */
1592 	spin_lock(&mc.lock);
1593 	from = mc.from;
1594 	to = mc.to;
1595 	if (!from)
1596 		goto unlock;
1597 
1598 	ret = mem_cgroup_same_or_subtree(memcg, from)
1599 		|| mem_cgroup_same_or_subtree(memcg, to);
1600 unlock:
1601 	spin_unlock(&mc.lock);
1602 	return ret;
1603 }
1604 
1605 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1606 {
1607 	if (mc.moving_task && current != mc.moving_task) {
1608 		if (mem_cgroup_under_move(memcg)) {
1609 			DEFINE_WAIT(wait);
1610 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1611 			/* moving charge context might have finished. */
1612 			if (mc.moving_task)
1613 				schedule();
1614 			finish_wait(&mc.waitq, &wait);
1615 			return true;
1616 		}
1617 	}
1618 	return false;
1619 }
1620 
1621 /*
1622  * Take this lock when
1623  * - a code tries to modify page's memcg while it's USED.
1624  * - a code tries to modify page state accounting in a memcg.
1625  * see mem_cgroup_stolen(), too.
1626  */
1627 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1628 				  unsigned long *flags)
1629 {
1630 	spin_lock_irqsave(&memcg->move_lock, *flags);
1631 }
1632 
1633 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1634 				unsigned long *flags)
1635 {
1636 	spin_unlock_irqrestore(&memcg->move_lock, *flags);
1637 }
1638 
1639 #define K(x) ((x) << (PAGE_SHIFT-10))
1640 /**
1641  * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1642  * @memcg: The memory cgroup that went over limit
1643  * @p: Task that is going to be killed
1644  *
1645  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1646  * enabled
1647  */
1648 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1649 {
1650 	struct cgroup *task_cgrp;
1651 	struct cgroup *mem_cgrp;
1652 	/*
1653 	 * Need a buffer in BSS, can't rely on allocations. The code relies
1654 	 * on the assumption that OOM is serialized for memory controller.
1655 	 * If this assumption is broken, revisit this code.
1656 	 */
1657 	static char memcg_name[PATH_MAX];
1658 	int ret;
1659 	struct mem_cgroup *iter;
1660 	unsigned int i;
1661 
1662 	if (!p)
1663 		return;
1664 
1665 	rcu_read_lock();
1666 
1667 	mem_cgrp = memcg->css.cgroup;
1668 	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1669 
1670 	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1671 	if (ret < 0) {
1672 		/*
1673 		 * Unfortunately, we are unable to convert to a useful name
1674 		 * But we'll still print out the usage information
1675 		 */
1676 		rcu_read_unlock();
1677 		goto done;
1678 	}
1679 	rcu_read_unlock();
1680 
1681 	pr_info("Task in %s killed", memcg_name);
1682 
1683 	rcu_read_lock();
1684 	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1685 	if (ret < 0) {
1686 		rcu_read_unlock();
1687 		goto done;
1688 	}
1689 	rcu_read_unlock();
1690 
1691 	/*
1692 	 * Continues from above, so we don't need an KERN_ level
1693 	 */
1694 	pr_cont(" as a result of limit of %s\n", memcg_name);
1695 done:
1696 
1697 	pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1698 		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1699 		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1700 		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1701 	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1702 		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1703 		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1704 		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1705 	pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1706 		res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1707 		res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1708 		res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1709 
1710 	for_each_mem_cgroup_tree(iter, memcg) {
1711 		pr_info("Memory cgroup stats");
1712 
1713 		rcu_read_lock();
1714 		ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
1715 		if (!ret)
1716 			pr_cont(" for %s", memcg_name);
1717 		rcu_read_unlock();
1718 		pr_cont(":");
1719 
1720 		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1721 			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1722 				continue;
1723 			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1724 				K(mem_cgroup_read_stat(iter, i)));
1725 		}
1726 
1727 		for (i = 0; i < NR_LRU_LISTS; i++)
1728 			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1729 				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1730 
1731 		pr_cont("\n");
1732 	}
1733 }
1734 
1735 /*
1736  * This function returns the number of memcg under hierarchy tree. Returns
1737  * 1(self count) if no children.
1738  */
1739 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1740 {
1741 	int num = 0;
1742 	struct mem_cgroup *iter;
1743 
1744 	for_each_mem_cgroup_tree(iter, memcg)
1745 		num++;
1746 	return num;
1747 }
1748 
1749 /*
1750  * Return the memory (and swap, if configured) limit for a memcg.
1751  */
1752 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1753 {
1754 	u64 limit;
1755 
1756 	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1757 
1758 	/*
1759 	 * Do not consider swap space if we cannot swap due to swappiness
1760 	 */
1761 	if (mem_cgroup_swappiness(memcg)) {
1762 		u64 memsw;
1763 
1764 		limit += total_swap_pages << PAGE_SHIFT;
1765 		memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1766 
1767 		/*
1768 		 * If memsw is finite and limits the amount of swap space
1769 		 * available to this memcg, return that limit.
1770 		 */
1771 		limit = min(limit, memsw);
1772 	}
1773 
1774 	return limit;
1775 }
1776 
1777 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1778 				     int order)
1779 {
1780 	struct mem_cgroup *iter;
1781 	unsigned long chosen_points = 0;
1782 	unsigned long totalpages;
1783 	unsigned int points = 0;
1784 	struct task_struct *chosen = NULL;
1785 
1786 	/*
1787 	 * If current has a pending SIGKILL or is exiting, then automatically
1788 	 * select it.  The goal is to allow it to allocate so that it may
1789 	 * quickly exit and free its memory.
1790 	 */
1791 	if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1792 		set_thread_flag(TIF_MEMDIE);
1793 		return;
1794 	}
1795 
1796 	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1797 	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1798 	for_each_mem_cgroup_tree(iter, memcg) {
1799 		struct css_task_iter it;
1800 		struct task_struct *task;
1801 
1802 		css_task_iter_start(&iter->css, &it);
1803 		while ((task = css_task_iter_next(&it))) {
1804 			switch (oom_scan_process_thread(task, totalpages, NULL,
1805 							false)) {
1806 			case OOM_SCAN_SELECT:
1807 				if (chosen)
1808 					put_task_struct(chosen);
1809 				chosen = task;
1810 				chosen_points = ULONG_MAX;
1811 				get_task_struct(chosen);
1812 				/* fall through */
1813 			case OOM_SCAN_CONTINUE:
1814 				continue;
1815 			case OOM_SCAN_ABORT:
1816 				css_task_iter_end(&it);
1817 				mem_cgroup_iter_break(memcg, iter);
1818 				if (chosen)
1819 					put_task_struct(chosen);
1820 				return;
1821 			case OOM_SCAN_OK:
1822 				break;
1823 			};
1824 			points = oom_badness(task, memcg, NULL, totalpages);
1825 			if (points > chosen_points) {
1826 				if (chosen)
1827 					put_task_struct(chosen);
1828 				chosen = task;
1829 				chosen_points = points;
1830 				get_task_struct(chosen);
1831 			}
1832 		}
1833 		css_task_iter_end(&it);
1834 	}
1835 
1836 	if (!chosen)
1837 		return;
1838 	points = chosen_points * 1000 / totalpages;
1839 	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1840 			 NULL, "Memory cgroup out of memory");
1841 }
1842 
1843 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1844 					gfp_t gfp_mask,
1845 					unsigned long flags)
1846 {
1847 	unsigned long total = 0;
1848 	bool noswap = false;
1849 	int loop;
1850 
1851 	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1852 		noswap = true;
1853 	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1854 		noswap = true;
1855 
1856 	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1857 		if (loop)
1858 			drain_all_stock_async(memcg);
1859 		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1860 		/*
1861 		 * Allow limit shrinkers, which are triggered directly
1862 		 * by userspace, to catch signals and stop reclaim
1863 		 * after minimal progress, regardless of the margin.
1864 		 */
1865 		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1866 			break;
1867 		if (mem_cgroup_margin(memcg))
1868 			break;
1869 		/*
1870 		 * If nothing was reclaimed after two attempts, there
1871 		 * may be no reclaimable pages in this hierarchy.
1872 		 */
1873 		if (loop && !total)
1874 			break;
1875 	}
1876 	return total;
1877 }
1878 
1879 /**
1880  * test_mem_cgroup_node_reclaimable
1881  * @memcg: the target memcg
1882  * @nid: the node ID to be checked.
1883  * @noswap : specify true here if the user wants flle only information.
1884  *
1885  * This function returns whether the specified memcg contains any
1886  * reclaimable pages on a node. Returns true if there are any reclaimable
1887  * pages in the node.
1888  */
1889 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1890 		int nid, bool noswap)
1891 {
1892 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1893 		return true;
1894 	if (noswap || !total_swap_pages)
1895 		return false;
1896 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1897 		return true;
1898 	return false;
1899 
1900 }
1901 #if MAX_NUMNODES > 1
1902 
1903 /*
1904  * Always updating the nodemask is not very good - even if we have an empty
1905  * list or the wrong list here, we can start from some node and traverse all
1906  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1907  *
1908  */
1909 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1910 {
1911 	int nid;
1912 	/*
1913 	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1914 	 * pagein/pageout changes since the last update.
1915 	 */
1916 	if (!atomic_read(&memcg->numainfo_events))
1917 		return;
1918 	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1919 		return;
1920 
1921 	/* make a nodemask where this memcg uses memory from */
1922 	memcg->scan_nodes = node_states[N_MEMORY];
1923 
1924 	for_each_node_mask(nid, node_states[N_MEMORY]) {
1925 
1926 		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1927 			node_clear(nid, memcg->scan_nodes);
1928 	}
1929 
1930 	atomic_set(&memcg->numainfo_events, 0);
1931 	atomic_set(&memcg->numainfo_updating, 0);
1932 }
1933 
1934 /*
1935  * Selecting a node where we start reclaim from. Because what we need is just
1936  * reducing usage counter, start from anywhere is O,K. Considering
1937  * memory reclaim from current node, there are pros. and cons.
1938  *
1939  * Freeing memory from current node means freeing memory from a node which
1940  * we'll use or we've used. So, it may make LRU bad. And if several threads
1941  * hit limits, it will see a contention on a node. But freeing from remote
1942  * node means more costs for memory reclaim because of memory latency.
1943  *
1944  * Now, we use round-robin. Better algorithm is welcomed.
1945  */
1946 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1947 {
1948 	int node;
1949 
1950 	mem_cgroup_may_update_nodemask(memcg);
1951 	node = memcg->last_scanned_node;
1952 
1953 	node = next_node(node, memcg->scan_nodes);
1954 	if (node == MAX_NUMNODES)
1955 		node = first_node(memcg->scan_nodes);
1956 	/*
1957 	 * We call this when we hit limit, not when pages are added to LRU.
1958 	 * No LRU may hold pages because all pages are UNEVICTABLE or
1959 	 * memcg is too small and all pages are not on LRU. In that case,
1960 	 * we use curret node.
1961 	 */
1962 	if (unlikely(node == MAX_NUMNODES))
1963 		node = numa_node_id();
1964 
1965 	memcg->last_scanned_node = node;
1966 	return node;
1967 }
1968 
1969 /*
1970  * Check all nodes whether it contains reclaimable pages or not.
1971  * For quick scan, we make use of scan_nodes. This will allow us to skip
1972  * unused nodes. But scan_nodes is lazily updated and may not cotain
1973  * enough new information. We need to do double check.
1974  */
1975 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1976 {
1977 	int nid;
1978 
1979 	/*
1980 	 * quick check...making use of scan_node.
1981 	 * We can skip unused nodes.
1982 	 */
1983 	if (!nodes_empty(memcg->scan_nodes)) {
1984 		for (nid = first_node(memcg->scan_nodes);
1985 		     nid < MAX_NUMNODES;
1986 		     nid = next_node(nid, memcg->scan_nodes)) {
1987 
1988 			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1989 				return true;
1990 		}
1991 	}
1992 	/*
1993 	 * Check rest of nodes.
1994 	 */
1995 	for_each_node_state(nid, N_MEMORY) {
1996 		if (node_isset(nid, memcg->scan_nodes))
1997 			continue;
1998 		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1999 			return true;
2000 	}
2001 	return false;
2002 }
2003 
2004 #else
2005 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
2006 {
2007 	return 0;
2008 }
2009 
2010 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
2011 {
2012 	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
2013 }
2014 #endif
2015 
2016 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
2017 				   struct zone *zone,
2018 				   gfp_t gfp_mask,
2019 				   unsigned long *total_scanned)
2020 {
2021 	struct mem_cgroup *victim = NULL;
2022 	int total = 0;
2023 	int loop = 0;
2024 	unsigned long excess;
2025 	unsigned long nr_scanned;
2026 	struct mem_cgroup_reclaim_cookie reclaim = {
2027 		.zone = zone,
2028 		.priority = 0,
2029 	};
2030 
2031 	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
2032 
2033 	while (1) {
2034 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2035 		if (!victim) {
2036 			loop++;
2037 			if (loop >= 2) {
2038 				/*
2039 				 * If we have not been able to reclaim
2040 				 * anything, it might because there are
2041 				 * no reclaimable pages under this hierarchy
2042 				 */
2043 				if (!total)
2044 					break;
2045 				/*
2046 				 * We want to do more targeted reclaim.
2047 				 * excess >> 2 is not to excessive so as to
2048 				 * reclaim too much, nor too less that we keep
2049 				 * coming back to reclaim from this cgroup
2050 				 */
2051 				if (total >= (excess >> 2) ||
2052 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2053 					break;
2054 			}
2055 			continue;
2056 		}
2057 		if (!mem_cgroup_reclaimable(victim, false))
2058 			continue;
2059 		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2060 						     zone, &nr_scanned);
2061 		*total_scanned += nr_scanned;
2062 		if (!res_counter_soft_limit_excess(&root_memcg->res))
2063 			break;
2064 	}
2065 	mem_cgroup_iter_break(root_memcg, victim);
2066 	return total;
2067 }
2068 
2069 #ifdef CONFIG_LOCKDEP
2070 static struct lockdep_map memcg_oom_lock_dep_map = {
2071 	.name = "memcg_oom_lock",
2072 };
2073 #endif
2074 
2075 static DEFINE_SPINLOCK(memcg_oom_lock);
2076 
2077 /*
2078  * Check OOM-Killer is already running under our hierarchy.
2079  * If someone is running, return false.
2080  */
2081 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
2082 {
2083 	struct mem_cgroup *iter, *failed = NULL;
2084 
2085 	spin_lock(&memcg_oom_lock);
2086 
2087 	for_each_mem_cgroup_tree(iter, memcg) {
2088 		if (iter->oom_lock) {
2089 			/*
2090 			 * this subtree of our hierarchy is already locked
2091 			 * so we cannot give a lock.
2092 			 */
2093 			failed = iter;
2094 			mem_cgroup_iter_break(memcg, iter);
2095 			break;
2096 		} else
2097 			iter->oom_lock = true;
2098 	}
2099 
2100 	if (failed) {
2101 		/*
2102 		 * OK, we failed to lock the whole subtree so we have
2103 		 * to clean up what we set up to the failing subtree
2104 		 */
2105 		for_each_mem_cgroup_tree(iter, memcg) {
2106 			if (iter == failed) {
2107 				mem_cgroup_iter_break(memcg, iter);
2108 				break;
2109 			}
2110 			iter->oom_lock = false;
2111 		}
2112 	} else
2113 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
2114 
2115 	spin_unlock(&memcg_oom_lock);
2116 
2117 	return !failed;
2118 }
2119 
2120 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2121 {
2122 	struct mem_cgroup *iter;
2123 
2124 	spin_lock(&memcg_oom_lock);
2125 	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
2126 	for_each_mem_cgroup_tree(iter, memcg)
2127 		iter->oom_lock = false;
2128 	spin_unlock(&memcg_oom_lock);
2129 }
2130 
2131 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2132 {
2133 	struct mem_cgroup *iter;
2134 
2135 	for_each_mem_cgroup_tree(iter, memcg)
2136 		atomic_inc(&iter->under_oom);
2137 }
2138 
2139 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2140 {
2141 	struct mem_cgroup *iter;
2142 
2143 	/*
2144 	 * When a new child is created while the hierarchy is under oom,
2145 	 * mem_cgroup_oom_lock() may not be called. We have to use
2146 	 * atomic_add_unless() here.
2147 	 */
2148 	for_each_mem_cgroup_tree(iter, memcg)
2149 		atomic_add_unless(&iter->under_oom, -1, 0);
2150 }
2151 
2152 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2153 
2154 struct oom_wait_info {
2155 	struct mem_cgroup *memcg;
2156 	wait_queue_t	wait;
2157 };
2158 
2159 static int memcg_oom_wake_function(wait_queue_t *wait,
2160 	unsigned mode, int sync, void *arg)
2161 {
2162 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2163 	struct mem_cgroup *oom_wait_memcg;
2164 	struct oom_wait_info *oom_wait_info;
2165 
2166 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2167 	oom_wait_memcg = oom_wait_info->memcg;
2168 
2169 	/*
2170 	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
2171 	 * Then we can use css_is_ancestor without taking care of RCU.
2172 	 */
2173 	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2174 		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
2175 		return 0;
2176 	return autoremove_wake_function(wait, mode, sync, arg);
2177 }
2178 
2179 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
2180 {
2181 	atomic_inc(&memcg->oom_wakeups);
2182 	/* for filtering, pass "memcg" as argument. */
2183 	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
2184 }
2185 
2186 static void memcg_oom_recover(struct mem_cgroup *memcg)
2187 {
2188 	if (memcg && atomic_read(&memcg->under_oom))
2189 		memcg_wakeup_oom(memcg);
2190 }
2191 
2192 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
2193 {
2194 	if (!current->memcg_oom.may_oom)
2195 		return;
2196 	/*
2197 	 * We are in the middle of the charge context here, so we
2198 	 * don't want to block when potentially sitting on a callstack
2199 	 * that holds all kinds of filesystem and mm locks.
2200 	 *
2201 	 * Also, the caller may handle a failed allocation gracefully
2202 	 * (like optional page cache readahead) and so an OOM killer
2203 	 * invocation might not even be necessary.
2204 	 *
2205 	 * That's why we don't do anything here except remember the
2206 	 * OOM context and then deal with it at the end of the page
2207 	 * fault when the stack is unwound, the locks are released,
2208 	 * and when we know whether the fault was overall successful.
2209 	 */
2210 	css_get(&memcg->css);
2211 	current->memcg_oom.memcg = memcg;
2212 	current->memcg_oom.gfp_mask = mask;
2213 	current->memcg_oom.order = order;
2214 }
2215 
2216 /**
2217  * mem_cgroup_oom_synchronize - complete memcg OOM handling
2218  * @handle: actually kill/wait or just clean up the OOM state
2219  *
2220  * This has to be called at the end of a page fault if the memcg OOM
2221  * handler was enabled.
2222  *
2223  * Memcg supports userspace OOM handling where failed allocations must
2224  * sleep on a waitqueue until the userspace task resolves the
2225  * situation.  Sleeping directly in the charge context with all kinds
2226  * of locks held is not a good idea, instead we remember an OOM state
2227  * in the task and mem_cgroup_oom_synchronize() has to be called at
2228  * the end of the page fault to complete the OOM handling.
2229  *
2230  * Returns %true if an ongoing memcg OOM situation was detected and
2231  * completed, %false otherwise.
2232  */
2233 bool mem_cgroup_oom_synchronize(bool handle)
2234 {
2235 	struct mem_cgroup *memcg = current->memcg_oom.memcg;
2236 	struct oom_wait_info owait;
2237 	bool locked;
2238 
2239 	/* OOM is global, do not handle */
2240 	if (!memcg)
2241 		return false;
2242 
2243 	if (!handle)
2244 		goto cleanup;
2245 
2246 	owait.memcg = memcg;
2247 	owait.wait.flags = 0;
2248 	owait.wait.func = memcg_oom_wake_function;
2249 	owait.wait.private = current;
2250 	INIT_LIST_HEAD(&owait.wait.task_list);
2251 
2252 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2253 	mem_cgroup_mark_under_oom(memcg);
2254 
2255 	locked = mem_cgroup_oom_trylock(memcg);
2256 
2257 	if (locked)
2258 		mem_cgroup_oom_notify(memcg);
2259 
2260 	if (locked && !memcg->oom_kill_disable) {
2261 		mem_cgroup_unmark_under_oom(memcg);
2262 		finish_wait(&memcg_oom_waitq, &owait.wait);
2263 		mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
2264 					 current->memcg_oom.order);
2265 	} else {
2266 		schedule();
2267 		mem_cgroup_unmark_under_oom(memcg);
2268 		finish_wait(&memcg_oom_waitq, &owait.wait);
2269 	}
2270 
2271 	if (locked) {
2272 		mem_cgroup_oom_unlock(memcg);
2273 		/*
2274 		 * There is no guarantee that an OOM-lock contender
2275 		 * sees the wakeups triggered by the OOM kill
2276 		 * uncharges.  Wake any sleepers explicitely.
2277 		 */
2278 		memcg_oom_recover(memcg);
2279 	}
2280 cleanup:
2281 	current->memcg_oom.memcg = NULL;
2282 	css_put(&memcg->css);
2283 	return true;
2284 }
2285 
2286 /*
2287  * Currently used to update mapped file statistics, but the routine can be
2288  * generalized to update other statistics as well.
2289  *
2290  * Notes: Race condition
2291  *
2292  * We usually use page_cgroup_lock() for accessing page_cgroup member but
2293  * it tends to be costly. But considering some conditions, we doesn't need
2294  * to do so _always_.
2295  *
2296  * Considering "charge", lock_page_cgroup() is not required because all
2297  * file-stat operations happen after a page is attached to radix-tree. There
2298  * are no race with "charge".
2299  *
2300  * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2301  * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2302  * if there are race with "uncharge". Statistics itself is properly handled
2303  * by flags.
2304  *
2305  * Considering "move", this is an only case we see a race. To make the race
2306  * small, we check mm->moving_account and detect there are possibility of race
2307  * If there is, we take a lock.
2308  */
2309 
2310 void __mem_cgroup_begin_update_page_stat(struct page *page,
2311 				bool *locked, unsigned long *flags)
2312 {
2313 	struct mem_cgroup *memcg;
2314 	struct page_cgroup *pc;
2315 
2316 	pc = lookup_page_cgroup(page);
2317 again:
2318 	memcg = pc->mem_cgroup;
2319 	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2320 		return;
2321 	/*
2322 	 * If this memory cgroup is not under account moving, we don't
2323 	 * need to take move_lock_mem_cgroup(). Because we already hold
2324 	 * rcu_read_lock(), any calls to move_account will be delayed until
2325 	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2326 	 */
2327 	if (!mem_cgroup_stolen(memcg))
2328 		return;
2329 
2330 	move_lock_mem_cgroup(memcg, flags);
2331 	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2332 		move_unlock_mem_cgroup(memcg, flags);
2333 		goto again;
2334 	}
2335 	*locked = true;
2336 }
2337 
2338 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2339 {
2340 	struct page_cgroup *pc = lookup_page_cgroup(page);
2341 
2342 	/*
2343 	 * It's guaranteed that pc->mem_cgroup never changes while
2344 	 * lock is held because a routine modifies pc->mem_cgroup
2345 	 * should take move_lock_mem_cgroup().
2346 	 */
2347 	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2348 }
2349 
2350 void mem_cgroup_update_page_stat(struct page *page,
2351 				 enum mem_cgroup_stat_index idx, int val)
2352 {
2353 	struct mem_cgroup *memcg;
2354 	struct page_cgroup *pc = lookup_page_cgroup(page);
2355 	unsigned long uninitialized_var(flags);
2356 
2357 	if (mem_cgroup_disabled())
2358 		return;
2359 
2360 	VM_BUG_ON(!rcu_read_lock_held());
2361 	memcg = pc->mem_cgroup;
2362 	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2363 		return;
2364 
2365 	this_cpu_add(memcg->stat->count[idx], val);
2366 }
2367 
2368 /*
2369  * size of first charge trial. "32" comes from vmscan.c's magic value.
2370  * TODO: maybe necessary to use big numbers in big irons.
2371  */
2372 #define CHARGE_BATCH	32U
2373 struct memcg_stock_pcp {
2374 	struct mem_cgroup *cached; /* this never be root cgroup */
2375 	unsigned int nr_pages;
2376 	struct work_struct work;
2377 	unsigned long flags;
2378 #define FLUSHING_CACHED_CHARGE	0
2379 };
2380 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2381 static DEFINE_MUTEX(percpu_charge_mutex);
2382 
2383 /**
2384  * consume_stock: Try to consume stocked charge on this cpu.
2385  * @memcg: memcg to consume from.
2386  * @nr_pages: how many pages to charge.
2387  *
2388  * The charges will only happen if @memcg matches the current cpu's memcg
2389  * stock, and at least @nr_pages are available in that stock.  Failure to
2390  * service an allocation will refill the stock.
2391  *
2392  * returns true if successful, false otherwise.
2393  */
2394 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2395 {
2396 	struct memcg_stock_pcp *stock;
2397 	bool ret = true;
2398 
2399 	if (nr_pages > CHARGE_BATCH)
2400 		return false;
2401 
2402 	stock = &get_cpu_var(memcg_stock);
2403 	if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2404 		stock->nr_pages -= nr_pages;
2405 	else /* need to call res_counter_charge */
2406 		ret = false;
2407 	put_cpu_var(memcg_stock);
2408 	return ret;
2409 }
2410 
2411 /*
2412  * Returns stocks cached in percpu to res_counter and reset cached information.
2413  */
2414 static void drain_stock(struct memcg_stock_pcp *stock)
2415 {
2416 	struct mem_cgroup *old = stock->cached;
2417 
2418 	if (stock->nr_pages) {
2419 		unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2420 
2421 		res_counter_uncharge(&old->res, bytes);
2422 		if (do_swap_account)
2423 			res_counter_uncharge(&old->memsw, bytes);
2424 		stock->nr_pages = 0;
2425 	}
2426 	stock->cached = NULL;
2427 }
2428 
2429 /*
2430  * This must be called under preempt disabled or must be called by
2431  * a thread which is pinned to local cpu.
2432  */
2433 static void drain_local_stock(struct work_struct *dummy)
2434 {
2435 	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2436 	drain_stock(stock);
2437 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2438 }
2439 
2440 static void __init memcg_stock_init(void)
2441 {
2442 	int cpu;
2443 
2444 	for_each_possible_cpu(cpu) {
2445 		struct memcg_stock_pcp *stock =
2446 					&per_cpu(memcg_stock, cpu);
2447 		INIT_WORK(&stock->work, drain_local_stock);
2448 	}
2449 }
2450 
2451 /*
2452  * Cache charges(val) which is from res_counter, to local per_cpu area.
2453  * This will be consumed by consume_stock() function, later.
2454  */
2455 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2456 {
2457 	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2458 
2459 	if (stock->cached != memcg) { /* reset if necessary */
2460 		drain_stock(stock);
2461 		stock->cached = memcg;
2462 	}
2463 	stock->nr_pages += nr_pages;
2464 	put_cpu_var(memcg_stock);
2465 }
2466 
2467 /*
2468  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2469  * of the hierarchy under it. sync flag says whether we should block
2470  * until the work is done.
2471  */
2472 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2473 {
2474 	int cpu, curcpu;
2475 
2476 	/* Notify other cpus that system-wide "drain" is running */
2477 	get_online_cpus();
2478 	curcpu = get_cpu();
2479 	for_each_online_cpu(cpu) {
2480 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2481 		struct mem_cgroup *memcg;
2482 
2483 		memcg = stock->cached;
2484 		if (!memcg || !stock->nr_pages)
2485 			continue;
2486 		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2487 			continue;
2488 		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2489 			if (cpu == curcpu)
2490 				drain_local_stock(&stock->work);
2491 			else
2492 				schedule_work_on(cpu, &stock->work);
2493 		}
2494 	}
2495 	put_cpu();
2496 
2497 	if (!sync)
2498 		goto out;
2499 
2500 	for_each_online_cpu(cpu) {
2501 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2502 		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2503 			flush_work(&stock->work);
2504 	}
2505 out:
2506 	put_online_cpus();
2507 }
2508 
2509 /*
2510  * Tries to drain stocked charges in other cpus. This function is asynchronous
2511  * and just put a work per cpu for draining localy on each cpu. Caller can
2512  * expects some charges will be back to res_counter later but cannot wait for
2513  * it.
2514  */
2515 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2516 {
2517 	/*
2518 	 * If someone calls draining, avoid adding more kworker runs.
2519 	 */
2520 	if (!mutex_trylock(&percpu_charge_mutex))
2521 		return;
2522 	drain_all_stock(root_memcg, false);
2523 	mutex_unlock(&percpu_charge_mutex);
2524 }
2525 
2526 /* This is a synchronous drain interface. */
2527 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2528 {
2529 	/* called when force_empty is called */
2530 	mutex_lock(&percpu_charge_mutex);
2531 	drain_all_stock(root_memcg, true);
2532 	mutex_unlock(&percpu_charge_mutex);
2533 }
2534 
2535 /*
2536  * This function drains percpu counter value from DEAD cpu and
2537  * move it to local cpu. Note that this function can be preempted.
2538  */
2539 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2540 {
2541 	int i;
2542 
2543 	spin_lock(&memcg->pcp_counter_lock);
2544 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2545 		long x = per_cpu(memcg->stat->count[i], cpu);
2546 
2547 		per_cpu(memcg->stat->count[i], cpu) = 0;
2548 		memcg->nocpu_base.count[i] += x;
2549 	}
2550 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2551 		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2552 
2553 		per_cpu(memcg->stat->events[i], cpu) = 0;
2554 		memcg->nocpu_base.events[i] += x;
2555 	}
2556 	spin_unlock(&memcg->pcp_counter_lock);
2557 }
2558 
2559 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2560 					unsigned long action,
2561 					void *hcpu)
2562 {
2563 	int cpu = (unsigned long)hcpu;
2564 	struct memcg_stock_pcp *stock;
2565 	struct mem_cgroup *iter;
2566 
2567 	if (action == CPU_ONLINE)
2568 		return NOTIFY_OK;
2569 
2570 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2571 		return NOTIFY_OK;
2572 
2573 	for_each_mem_cgroup(iter)
2574 		mem_cgroup_drain_pcp_counter(iter, cpu);
2575 
2576 	stock = &per_cpu(memcg_stock, cpu);
2577 	drain_stock(stock);
2578 	return NOTIFY_OK;
2579 }
2580 
2581 
2582 /* See __mem_cgroup_try_charge() for details */
2583 enum {
2584 	CHARGE_OK,		/* success */
2585 	CHARGE_RETRY,		/* need to retry but retry is not bad */
2586 	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
2587 	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
2588 };
2589 
2590 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2591 				unsigned int nr_pages, unsigned int min_pages,
2592 				bool invoke_oom)
2593 {
2594 	unsigned long csize = nr_pages * PAGE_SIZE;
2595 	struct mem_cgroup *mem_over_limit;
2596 	struct res_counter *fail_res;
2597 	unsigned long flags = 0;
2598 	int ret;
2599 
2600 	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2601 
2602 	if (likely(!ret)) {
2603 		if (!do_swap_account)
2604 			return CHARGE_OK;
2605 		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2606 		if (likely(!ret))
2607 			return CHARGE_OK;
2608 
2609 		res_counter_uncharge(&memcg->res, csize);
2610 		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2611 		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2612 	} else
2613 		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2614 	/*
2615 	 * Never reclaim on behalf of optional batching, retry with a
2616 	 * single page instead.
2617 	 */
2618 	if (nr_pages > min_pages)
2619 		return CHARGE_RETRY;
2620 
2621 	if (!(gfp_mask & __GFP_WAIT))
2622 		return CHARGE_WOULDBLOCK;
2623 
2624 	if (gfp_mask & __GFP_NORETRY)
2625 		return CHARGE_NOMEM;
2626 
2627 	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2628 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2629 		return CHARGE_RETRY;
2630 	/*
2631 	 * Even though the limit is exceeded at this point, reclaim
2632 	 * may have been able to free some pages.  Retry the charge
2633 	 * before killing the task.
2634 	 *
2635 	 * Only for regular pages, though: huge pages are rather
2636 	 * unlikely to succeed so close to the limit, and we fall back
2637 	 * to regular pages anyway in case of failure.
2638 	 */
2639 	if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2640 		return CHARGE_RETRY;
2641 
2642 	/*
2643 	 * At task move, charge accounts can be doubly counted. So, it's
2644 	 * better to wait until the end of task_move if something is going on.
2645 	 */
2646 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2647 		return CHARGE_RETRY;
2648 
2649 	if (invoke_oom)
2650 		mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize));
2651 
2652 	return CHARGE_NOMEM;
2653 }
2654 
2655 /*
2656  * __mem_cgroup_try_charge() does
2657  * 1. detect memcg to be charged against from passed *mm and *ptr,
2658  * 2. update res_counter
2659  * 3. call memory reclaim if necessary.
2660  *
2661  * In some special case, if the task is fatal, fatal_signal_pending() or
2662  * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2663  * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2664  * as possible without any hazards. 2: all pages should have a valid
2665  * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2666  * pointer, that is treated as a charge to root_mem_cgroup.
2667  *
2668  * So __mem_cgroup_try_charge() will return
2669  *  0       ...  on success, filling *ptr with a valid memcg pointer.
2670  *  -ENOMEM ...  charge failure because of resource limits.
2671  *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
2672  *
2673  * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2674  * the oom-killer can be invoked.
2675  */
2676 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2677 				   gfp_t gfp_mask,
2678 				   unsigned int nr_pages,
2679 				   struct mem_cgroup **ptr,
2680 				   bool oom)
2681 {
2682 	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2683 	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2684 	struct mem_cgroup *memcg = NULL;
2685 	int ret;
2686 
2687 	/*
2688 	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2689 	 * in system level. So, allow to go ahead dying process in addition to
2690 	 * MEMDIE process.
2691 	 */
2692 	if (unlikely(test_thread_flag(TIF_MEMDIE)
2693 		     || fatal_signal_pending(current)))
2694 		goto bypass;
2695 
2696 	if (unlikely(task_in_memcg_oom(current)))
2697 		goto nomem;
2698 
2699 	if (gfp_mask & __GFP_NOFAIL)
2700 		oom = false;
2701 
2702 	/*
2703 	 * We always charge the cgroup the mm_struct belongs to.
2704 	 * The mm_struct's mem_cgroup changes on task migration if the
2705 	 * thread group leader migrates. It's possible that mm is not
2706 	 * set, if so charge the root memcg (happens for pagecache usage).
2707 	 */
2708 	if (!*ptr && !mm)
2709 		*ptr = root_mem_cgroup;
2710 again:
2711 	if (*ptr) { /* css should be a valid one */
2712 		memcg = *ptr;
2713 		if (mem_cgroup_is_root(memcg))
2714 			goto done;
2715 		if (consume_stock(memcg, nr_pages))
2716 			goto done;
2717 		css_get(&memcg->css);
2718 	} else {
2719 		struct task_struct *p;
2720 
2721 		rcu_read_lock();
2722 		p = rcu_dereference(mm->owner);
2723 		/*
2724 		 * Because we don't have task_lock(), "p" can exit.
2725 		 * In that case, "memcg" can point to root or p can be NULL with
2726 		 * race with swapoff. Then, we have small risk of mis-accouning.
2727 		 * But such kind of mis-account by race always happens because
2728 		 * we don't have cgroup_mutex(). It's overkill and we allo that
2729 		 * small race, here.
2730 		 * (*) swapoff at el will charge against mm-struct not against
2731 		 * task-struct. So, mm->owner can be NULL.
2732 		 */
2733 		memcg = mem_cgroup_from_task(p);
2734 		if (!memcg)
2735 			memcg = root_mem_cgroup;
2736 		if (mem_cgroup_is_root(memcg)) {
2737 			rcu_read_unlock();
2738 			goto done;
2739 		}
2740 		if (consume_stock(memcg, nr_pages)) {
2741 			/*
2742 			 * It seems dagerous to access memcg without css_get().
2743 			 * But considering how consume_stok works, it's not
2744 			 * necessary. If consume_stock success, some charges
2745 			 * from this memcg are cached on this cpu. So, we
2746 			 * don't need to call css_get()/css_tryget() before
2747 			 * calling consume_stock().
2748 			 */
2749 			rcu_read_unlock();
2750 			goto done;
2751 		}
2752 		/* after here, we may be blocked. we need to get refcnt */
2753 		if (!css_tryget(&memcg->css)) {
2754 			rcu_read_unlock();
2755 			goto again;
2756 		}
2757 		rcu_read_unlock();
2758 	}
2759 
2760 	do {
2761 		bool invoke_oom = oom && !nr_oom_retries;
2762 
2763 		/* If killed, bypass charge */
2764 		if (fatal_signal_pending(current)) {
2765 			css_put(&memcg->css);
2766 			goto bypass;
2767 		}
2768 
2769 		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch,
2770 					   nr_pages, invoke_oom);
2771 		switch (ret) {
2772 		case CHARGE_OK:
2773 			break;
2774 		case CHARGE_RETRY: /* not in OOM situation but retry */
2775 			batch = nr_pages;
2776 			css_put(&memcg->css);
2777 			memcg = NULL;
2778 			goto again;
2779 		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2780 			css_put(&memcg->css);
2781 			goto nomem;
2782 		case CHARGE_NOMEM: /* OOM routine works */
2783 			if (!oom || invoke_oom) {
2784 				css_put(&memcg->css);
2785 				goto nomem;
2786 			}
2787 			nr_oom_retries--;
2788 			break;
2789 		}
2790 	} while (ret != CHARGE_OK);
2791 
2792 	if (batch > nr_pages)
2793 		refill_stock(memcg, batch - nr_pages);
2794 	css_put(&memcg->css);
2795 done:
2796 	*ptr = memcg;
2797 	return 0;
2798 nomem:
2799 	if (!(gfp_mask & __GFP_NOFAIL)) {
2800 		*ptr = NULL;
2801 		return -ENOMEM;
2802 	}
2803 bypass:
2804 	*ptr = root_mem_cgroup;
2805 	return -EINTR;
2806 }
2807 
2808 /*
2809  * Somemtimes we have to undo a charge we got by try_charge().
2810  * This function is for that and do uncharge, put css's refcnt.
2811  * gotten by try_charge().
2812  */
2813 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2814 				       unsigned int nr_pages)
2815 {
2816 	if (!mem_cgroup_is_root(memcg)) {
2817 		unsigned long bytes = nr_pages * PAGE_SIZE;
2818 
2819 		res_counter_uncharge(&memcg->res, bytes);
2820 		if (do_swap_account)
2821 			res_counter_uncharge(&memcg->memsw, bytes);
2822 	}
2823 }
2824 
2825 /*
2826  * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2827  * This is useful when moving usage to parent cgroup.
2828  */
2829 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2830 					unsigned int nr_pages)
2831 {
2832 	unsigned long bytes = nr_pages * PAGE_SIZE;
2833 
2834 	if (mem_cgroup_is_root(memcg))
2835 		return;
2836 
2837 	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2838 	if (do_swap_account)
2839 		res_counter_uncharge_until(&memcg->memsw,
2840 						memcg->memsw.parent, bytes);
2841 }
2842 
2843 /*
2844  * A helper function to get mem_cgroup from ID. must be called under
2845  * rcu_read_lock().  The caller is responsible for calling css_tryget if
2846  * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2847  * called against removed memcg.)
2848  */
2849 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2850 {
2851 	/* ID 0 is unused ID */
2852 	if (!id)
2853 		return NULL;
2854 	return mem_cgroup_from_id(id);
2855 }
2856 
2857 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2858 {
2859 	struct mem_cgroup *memcg = NULL;
2860 	struct page_cgroup *pc;
2861 	unsigned short id;
2862 	swp_entry_t ent;
2863 
2864 	VM_BUG_ON(!PageLocked(page));
2865 
2866 	pc = lookup_page_cgroup(page);
2867 	lock_page_cgroup(pc);
2868 	if (PageCgroupUsed(pc)) {
2869 		memcg = pc->mem_cgroup;
2870 		if (memcg && !css_tryget(&memcg->css))
2871 			memcg = NULL;
2872 	} else if (PageSwapCache(page)) {
2873 		ent.val = page_private(page);
2874 		id = lookup_swap_cgroup_id(ent);
2875 		rcu_read_lock();
2876 		memcg = mem_cgroup_lookup(id);
2877 		if (memcg && !css_tryget(&memcg->css))
2878 			memcg = NULL;
2879 		rcu_read_unlock();
2880 	}
2881 	unlock_page_cgroup(pc);
2882 	return memcg;
2883 }
2884 
2885 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2886 				       struct page *page,
2887 				       unsigned int nr_pages,
2888 				       enum charge_type ctype,
2889 				       bool lrucare)
2890 {
2891 	struct page_cgroup *pc = lookup_page_cgroup(page);
2892 	struct zone *uninitialized_var(zone);
2893 	struct lruvec *lruvec;
2894 	bool was_on_lru = false;
2895 	bool anon;
2896 
2897 	lock_page_cgroup(pc);
2898 	VM_BUG_ON(PageCgroupUsed(pc));
2899 	/*
2900 	 * we don't need page_cgroup_lock about tail pages, becase they are not
2901 	 * accessed by any other context at this point.
2902 	 */
2903 
2904 	/*
2905 	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2906 	 * may already be on some other mem_cgroup's LRU.  Take care of it.
2907 	 */
2908 	if (lrucare) {
2909 		zone = page_zone(page);
2910 		spin_lock_irq(&zone->lru_lock);
2911 		if (PageLRU(page)) {
2912 			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2913 			ClearPageLRU(page);
2914 			del_page_from_lru_list(page, lruvec, page_lru(page));
2915 			was_on_lru = true;
2916 		}
2917 	}
2918 
2919 	pc->mem_cgroup = memcg;
2920 	/*
2921 	 * We access a page_cgroup asynchronously without lock_page_cgroup().
2922 	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2923 	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2924 	 * before USED bit, we need memory barrier here.
2925 	 * See mem_cgroup_add_lru_list(), etc.
2926 	 */
2927 	smp_wmb();
2928 	SetPageCgroupUsed(pc);
2929 
2930 	if (lrucare) {
2931 		if (was_on_lru) {
2932 			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2933 			VM_BUG_ON(PageLRU(page));
2934 			SetPageLRU(page);
2935 			add_page_to_lru_list(page, lruvec, page_lru(page));
2936 		}
2937 		spin_unlock_irq(&zone->lru_lock);
2938 	}
2939 
2940 	if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2941 		anon = true;
2942 	else
2943 		anon = false;
2944 
2945 	mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2946 	unlock_page_cgroup(pc);
2947 
2948 	/*
2949 	 * "charge_statistics" updated event counter. Then, check it.
2950 	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2951 	 * if they exceeds softlimit.
2952 	 */
2953 	memcg_check_events(memcg, page);
2954 }
2955 
2956 static DEFINE_MUTEX(set_limit_mutex);
2957 
2958 #ifdef CONFIG_MEMCG_KMEM
2959 static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2960 {
2961 	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2962 		(memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
2963 }
2964 
2965 /*
2966  * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2967  * in the memcg_cache_params struct.
2968  */
2969 static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2970 {
2971 	struct kmem_cache *cachep;
2972 
2973 	VM_BUG_ON(p->is_root_cache);
2974 	cachep = p->root_cache;
2975 	return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
2976 }
2977 
2978 #ifdef CONFIG_SLABINFO
2979 static int mem_cgroup_slabinfo_read(struct cgroup_subsys_state *css,
2980 				    struct cftype *cft, struct seq_file *m)
2981 {
2982 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2983 	struct memcg_cache_params *params;
2984 
2985 	if (!memcg_can_account_kmem(memcg))
2986 		return -EIO;
2987 
2988 	print_slabinfo_header(m);
2989 
2990 	mutex_lock(&memcg->slab_caches_mutex);
2991 	list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2992 		cache_show(memcg_params_to_cache(params), m);
2993 	mutex_unlock(&memcg->slab_caches_mutex);
2994 
2995 	return 0;
2996 }
2997 #endif
2998 
2999 static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
3000 {
3001 	struct res_counter *fail_res;
3002 	struct mem_cgroup *_memcg;
3003 	int ret = 0;
3004 
3005 	ret = res_counter_charge(&memcg->kmem, size, &fail_res);
3006 	if (ret)
3007 		return ret;
3008 
3009 	_memcg = memcg;
3010 	ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
3011 				      &_memcg, oom_gfp_allowed(gfp));
3012 
3013 	if (ret == -EINTR)  {
3014 		/*
3015 		 * __mem_cgroup_try_charge() chosed to bypass to root due to
3016 		 * OOM kill or fatal signal.  Since our only options are to
3017 		 * either fail the allocation or charge it to this cgroup, do
3018 		 * it as a temporary condition. But we can't fail. From a
3019 		 * kmem/slab perspective, the cache has already been selected,
3020 		 * by mem_cgroup_kmem_get_cache(), so it is too late to change
3021 		 * our minds.
3022 		 *
3023 		 * This condition will only trigger if the task entered
3024 		 * memcg_charge_kmem in a sane state, but was OOM-killed during
3025 		 * __mem_cgroup_try_charge() above. Tasks that were already
3026 		 * dying when the allocation triggers should have been already
3027 		 * directed to the root cgroup in memcontrol.h
3028 		 */
3029 		res_counter_charge_nofail(&memcg->res, size, &fail_res);
3030 		if (do_swap_account)
3031 			res_counter_charge_nofail(&memcg->memsw, size,
3032 						  &fail_res);
3033 		ret = 0;
3034 	} else if (ret)
3035 		res_counter_uncharge(&memcg->kmem, size);
3036 
3037 	return ret;
3038 }
3039 
3040 static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
3041 {
3042 	res_counter_uncharge(&memcg->res, size);
3043 	if (do_swap_account)
3044 		res_counter_uncharge(&memcg->memsw, size);
3045 
3046 	/* Not down to 0 */
3047 	if (res_counter_uncharge(&memcg->kmem, size))
3048 		return;
3049 
3050 	/*
3051 	 * Releases a reference taken in kmem_cgroup_css_offline in case
3052 	 * this last uncharge is racing with the offlining code or it is
3053 	 * outliving the memcg existence.
3054 	 *
3055 	 * The memory barrier imposed by test&clear is paired with the
3056 	 * explicit one in memcg_kmem_mark_dead().
3057 	 */
3058 	if (memcg_kmem_test_and_clear_dead(memcg))
3059 		css_put(&memcg->css);
3060 }
3061 
3062 void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
3063 {
3064 	if (!memcg)
3065 		return;
3066 
3067 	mutex_lock(&memcg->slab_caches_mutex);
3068 	list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
3069 	mutex_unlock(&memcg->slab_caches_mutex);
3070 }
3071 
3072 /*
3073  * helper for acessing a memcg's index. It will be used as an index in the
3074  * child cache array in kmem_cache, and also to derive its name. This function
3075  * will return -1 when this is not a kmem-limited memcg.
3076  */
3077 int memcg_cache_id(struct mem_cgroup *memcg)
3078 {
3079 	return memcg ? memcg->kmemcg_id : -1;
3080 }
3081 
3082 /*
3083  * This ends up being protected by the set_limit mutex, during normal
3084  * operation, because that is its main call site.
3085  *
3086  * But when we create a new cache, we can call this as well if its parent
3087  * is kmem-limited. That will have to hold set_limit_mutex as well.
3088  */
3089 int memcg_update_cache_sizes(struct mem_cgroup *memcg)
3090 {
3091 	int num, ret;
3092 
3093 	num = ida_simple_get(&kmem_limited_groups,
3094 				0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
3095 	if (num < 0)
3096 		return num;
3097 	/*
3098 	 * After this point, kmem_accounted (that we test atomically in
3099 	 * the beginning of this conditional), is no longer 0. This
3100 	 * guarantees only one process will set the following boolean
3101 	 * to true. We don't need test_and_set because we're protected
3102 	 * by the set_limit_mutex anyway.
3103 	 */
3104 	memcg_kmem_set_activated(memcg);
3105 
3106 	ret = memcg_update_all_caches(num+1);
3107 	if (ret) {
3108 		ida_simple_remove(&kmem_limited_groups, num);
3109 		memcg_kmem_clear_activated(memcg);
3110 		return ret;
3111 	}
3112 
3113 	memcg->kmemcg_id = num;
3114 	INIT_LIST_HEAD(&memcg->memcg_slab_caches);
3115 	mutex_init(&memcg->slab_caches_mutex);
3116 	return 0;
3117 }
3118 
3119 static size_t memcg_caches_array_size(int num_groups)
3120 {
3121 	ssize_t size;
3122 	if (num_groups <= 0)
3123 		return 0;
3124 
3125 	size = 2 * num_groups;
3126 	if (size < MEMCG_CACHES_MIN_SIZE)
3127 		size = MEMCG_CACHES_MIN_SIZE;
3128 	else if (size > MEMCG_CACHES_MAX_SIZE)
3129 		size = MEMCG_CACHES_MAX_SIZE;
3130 
3131 	return size;
3132 }
3133 
3134 /*
3135  * We should update the current array size iff all caches updates succeed. This
3136  * can only be done from the slab side. The slab mutex needs to be held when
3137  * calling this.
3138  */
3139 void memcg_update_array_size(int num)
3140 {
3141 	if (num > memcg_limited_groups_array_size)
3142 		memcg_limited_groups_array_size = memcg_caches_array_size(num);
3143 }
3144 
3145 static void kmem_cache_destroy_work_func(struct work_struct *w);
3146 
3147 int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3148 {
3149 	struct memcg_cache_params *cur_params = s->memcg_params;
3150 
3151 	VM_BUG_ON(!is_root_cache(s));
3152 
3153 	if (num_groups > memcg_limited_groups_array_size) {
3154 		int i;
3155 		ssize_t size = memcg_caches_array_size(num_groups);
3156 
3157 		size *= sizeof(void *);
3158 		size += offsetof(struct memcg_cache_params, memcg_caches);
3159 
3160 		s->memcg_params = kzalloc(size, GFP_KERNEL);
3161 		if (!s->memcg_params) {
3162 			s->memcg_params = cur_params;
3163 			return -ENOMEM;
3164 		}
3165 
3166 		s->memcg_params->is_root_cache = true;
3167 
3168 		/*
3169 		 * There is the chance it will be bigger than
3170 		 * memcg_limited_groups_array_size, if we failed an allocation
3171 		 * in a cache, in which case all caches updated before it, will
3172 		 * have a bigger array.
3173 		 *
3174 		 * But if that is the case, the data after
3175 		 * memcg_limited_groups_array_size is certainly unused
3176 		 */
3177 		for (i = 0; i < memcg_limited_groups_array_size; i++) {
3178 			if (!cur_params->memcg_caches[i])
3179 				continue;
3180 			s->memcg_params->memcg_caches[i] =
3181 						cur_params->memcg_caches[i];
3182 		}
3183 
3184 		/*
3185 		 * Ideally, we would wait until all caches succeed, and only
3186 		 * then free the old one. But this is not worth the extra
3187 		 * pointer per-cache we'd have to have for this.
3188 		 *
3189 		 * It is not a big deal if some caches are left with a size
3190 		 * bigger than the others. And all updates will reset this
3191 		 * anyway.
3192 		 */
3193 		kfree(cur_params);
3194 	}
3195 	return 0;
3196 }
3197 
3198 int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
3199 			 struct kmem_cache *root_cache)
3200 {
3201 	size_t size;
3202 
3203 	if (!memcg_kmem_enabled())
3204 		return 0;
3205 
3206 	if (!memcg) {
3207 		size = offsetof(struct memcg_cache_params, memcg_caches);
3208 		size += memcg_limited_groups_array_size * sizeof(void *);
3209 	} else
3210 		size = sizeof(struct memcg_cache_params);
3211 
3212 	s->memcg_params = kzalloc(size, GFP_KERNEL);
3213 	if (!s->memcg_params)
3214 		return -ENOMEM;
3215 
3216 	if (memcg) {
3217 		s->memcg_params->memcg = memcg;
3218 		s->memcg_params->root_cache = root_cache;
3219 		INIT_WORK(&s->memcg_params->destroy,
3220 				kmem_cache_destroy_work_func);
3221 	} else
3222 		s->memcg_params->is_root_cache = true;
3223 
3224 	return 0;
3225 }
3226 
3227 void memcg_release_cache(struct kmem_cache *s)
3228 {
3229 	struct kmem_cache *root;
3230 	struct mem_cgroup *memcg;
3231 	int id;
3232 
3233 	/*
3234 	 * This happens, for instance, when a root cache goes away before we
3235 	 * add any memcg.
3236 	 */
3237 	if (!s->memcg_params)
3238 		return;
3239 
3240 	if (s->memcg_params->is_root_cache)
3241 		goto out;
3242 
3243 	memcg = s->memcg_params->memcg;
3244 	id  = memcg_cache_id(memcg);
3245 
3246 	root = s->memcg_params->root_cache;
3247 	root->memcg_params->memcg_caches[id] = NULL;
3248 
3249 	mutex_lock(&memcg->slab_caches_mutex);
3250 	list_del(&s->memcg_params->list);
3251 	mutex_unlock(&memcg->slab_caches_mutex);
3252 
3253 	css_put(&memcg->css);
3254 out:
3255 	kfree(s->memcg_params);
3256 }
3257 
3258 /*
3259  * During the creation a new cache, we need to disable our accounting mechanism
3260  * altogether. This is true even if we are not creating, but rather just
3261  * enqueing new caches to be created.
3262  *
3263  * This is because that process will trigger allocations; some visible, like
3264  * explicit kmallocs to auxiliary data structures, name strings and internal
3265  * cache structures; some well concealed, like INIT_WORK() that can allocate
3266  * objects during debug.
3267  *
3268  * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3269  * to it. This may not be a bounded recursion: since the first cache creation
3270  * failed to complete (waiting on the allocation), we'll just try to create the
3271  * cache again, failing at the same point.
3272  *
3273  * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3274  * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3275  * inside the following two functions.
3276  */
3277 static inline void memcg_stop_kmem_account(void)
3278 {
3279 	VM_BUG_ON(!current->mm);
3280 	current->memcg_kmem_skip_account++;
3281 }
3282 
3283 static inline void memcg_resume_kmem_account(void)
3284 {
3285 	VM_BUG_ON(!current->mm);
3286 	current->memcg_kmem_skip_account--;
3287 }
3288 
3289 static void kmem_cache_destroy_work_func(struct work_struct *w)
3290 {
3291 	struct kmem_cache *cachep;
3292 	struct memcg_cache_params *p;
3293 
3294 	p = container_of(w, struct memcg_cache_params, destroy);
3295 
3296 	cachep = memcg_params_to_cache(p);
3297 
3298 	/*
3299 	 * If we get down to 0 after shrink, we could delete right away.
3300 	 * However, memcg_release_pages() already puts us back in the workqueue
3301 	 * in that case. If we proceed deleting, we'll get a dangling
3302 	 * reference, and removing the object from the workqueue in that case
3303 	 * is unnecessary complication. We are not a fast path.
3304 	 *
3305 	 * Note that this case is fundamentally different from racing with
3306 	 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3307 	 * kmem_cache_shrink, not only we would be reinserting a dead cache
3308 	 * into the queue, but doing so from inside the worker racing to
3309 	 * destroy it.
3310 	 *
3311 	 * So if we aren't down to zero, we'll just schedule a worker and try
3312 	 * again
3313 	 */
3314 	if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
3315 		kmem_cache_shrink(cachep);
3316 		if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3317 			return;
3318 	} else
3319 		kmem_cache_destroy(cachep);
3320 }
3321 
3322 void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3323 {
3324 	if (!cachep->memcg_params->dead)
3325 		return;
3326 
3327 	/*
3328 	 * There are many ways in which we can get here.
3329 	 *
3330 	 * We can get to a memory-pressure situation while the delayed work is
3331 	 * still pending to run. The vmscan shrinkers can then release all
3332 	 * cache memory and get us to destruction. If this is the case, we'll
3333 	 * be executed twice, which is a bug (the second time will execute over
3334 	 * bogus data). In this case, cancelling the work should be fine.
3335 	 *
3336 	 * But we can also get here from the worker itself, if
3337 	 * kmem_cache_shrink is enough to shake all the remaining objects and
3338 	 * get the page count to 0. In this case, we'll deadlock if we try to
3339 	 * cancel the work (the worker runs with an internal lock held, which
3340 	 * is the same lock we would hold for cancel_work_sync().)
3341 	 *
3342 	 * Since we can't possibly know who got us here, just refrain from
3343 	 * running if there is already work pending
3344 	 */
3345 	if (work_pending(&cachep->memcg_params->destroy))
3346 		return;
3347 	/*
3348 	 * We have to defer the actual destroying to a workqueue, because
3349 	 * we might currently be in a context that cannot sleep.
3350 	 */
3351 	schedule_work(&cachep->memcg_params->destroy);
3352 }
3353 
3354 /*
3355  * This lock protects updaters, not readers. We want readers to be as fast as
3356  * they can, and they will either see NULL or a valid cache value. Our model
3357  * allow them to see NULL, in which case the root memcg will be selected.
3358  *
3359  * We need this lock because multiple allocations to the same cache from a non
3360  * will span more than one worker. Only one of them can create the cache.
3361  */
3362 static DEFINE_MUTEX(memcg_cache_mutex);
3363 
3364 /*
3365  * Called with memcg_cache_mutex held
3366  */
3367 static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
3368 					 struct kmem_cache *s)
3369 {
3370 	struct kmem_cache *new;
3371 	static char *tmp_name = NULL;
3372 
3373 	lockdep_assert_held(&memcg_cache_mutex);
3374 
3375 	/*
3376 	 * kmem_cache_create_memcg duplicates the given name and
3377 	 * cgroup_name for this name requires RCU context.
3378 	 * This static temporary buffer is used to prevent from
3379 	 * pointless shortliving allocation.
3380 	 */
3381 	if (!tmp_name) {
3382 		tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
3383 		if (!tmp_name)
3384 			return NULL;
3385 	}
3386 
3387 	rcu_read_lock();
3388 	snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
3389 			 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
3390 	rcu_read_unlock();
3391 
3392 	new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
3393 				      (s->flags & ~SLAB_PANIC), s->ctor, s);
3394 
3395 	if (new)
3396 		new->allocflags |= __GFP_KMEMCG;
3397 
3398 	return new;
3399 }
3400 
3401 static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
3402 						  struct kmem_cache *cachep)
3403 {
3404 	struct kmem_cache *new_cachep;
3405 	int idx;
3406 
3407 	BUG_ON(!memcg_can_account_kmem(memcg));
3408 
3409 	idx = memcg_cache_id(memcg);
3410 
3411 	mutex_lock(&memcg_cache_mutex);
3412 	new_cachep = cache_from_memcg_idx(cachep, idx);
3413 	if (new_cachep) {
3414 		css_put(&memcg->css);
3415 		goto out;
3416 	}
3417 
3418 	new_cachep = kmem_cache_dup(memcg, cachep);
3419 	if (new_cachep == NULL) {
3420 		new_cachep = cachep;
3421 		css_put(&memcg->css);
3422 		goto out;
3423 	}
3424 
3425 	atomic_set(&new_cachep->memcg_params->nr_pages , 0);
3426 
3427 	cachep->memcg_params->memcg_caches[idx] = new_cachep;
3428 	/*
3429 	 * the readers won't lock, make sure everybody sees the updated value,
3430 	 * so they won't put stuff in the queue again for no reason
3431 	 */
3432 	wmb();
3433 out:
3434 	mutex_unlock(&memcg_cache_mutex);
3435 	return new_cachep;
3436 }
3437 
3438 void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3439 {
3440 	struct kmem_cache *c;
3441 	int i;
3442 
3443 	if (!s->memcg_params)
3444 		return;
3445 	if (!s->memcg_params->is_root_cache)
3446 		return;
3447 
3448 	/*
3449 	 * If the cache is being destroyed, we trust that there is no one else
3450 	 * requesting objects from it. Even if there are, the sanity checks in
3451 	 * kmem_cache_destroy should caught this ill-case.
3452 	 *
3453 	 * Still, we don't want anyone else freeing memcg_caches under our
3454 	 * noses, which can happen if a new memcg comes to life. As usual,
3455 	 * we'll take the set_limit_mutex to protect ourselves against this.
3456 	 */
3457 	mutex_lock(&set_limit_mutex);
3458 	for_each_memcg_cache_index(i) {
3459 		c = cache_from_memcg_idx(s, i);
3460 		if (!c)
3461 			continue;
3462 
3463 		/*
3464 		 * We will now manually delete the caches, so to avoid races
3465 		 * we need to cancel all pending destruction workers and
3466 		 * proceed with destruction ourselves.
3467 		 *
3468 		 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3469 		 * and that could spawn the workers again: it is likely that
3470 		 * the cache still have active pages until this very moment.
3471 		 * This would lead us back to mem_cgroup_destroy_cache.
3472 		 *
3473 		 * But that will not execute at all if the "dead" flag is not
3474 		 * set, so flip it down to guarantee we are in control.
3475 		 */
3476 		c->memcg_params->dead = false;
3477 		cancel_work_sync(&c->memcg_params->destroy);
3478 		kmem_cache_destroy(c);
3479 	}
3480 	mutex_unlock(&set_limit_mutex);
3481 }
3482 
3483 struct create_work {
3484 	struct mem_cgroup *memcg;
3485 	struct kmem_cache *cachep;
3486 	struct work_struct work;
3487 };
3488 
3489 static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3490 {
3491 	struct kmem_cache *cachep;
3492 	struct memcg_cache_params *params;
3493 
3494 	if (!memcg_kmem_is_active(memcg))
3495 		return;
3496 
3497 	mutex_lock(&memcg->slab_caches_mutex);
3498 	list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3499 		cachep = memcg_params_to_cache(params);
3500 		cachep->memcg_params->dead = true;
3501 		schedule_work(&cachep->memcg_params->destroy);
3502 	}
3503 	mutex_unlock(&memcg->slab_caches_mutex);
3504 }
3505 
3506 static void memcg_create_cache_work_func(struct work_struct *w)
3507 {
3508 	struct create_work *cw;
3509 
3510 	cw = container_of(w, struct create_work, work);
3511 	memcg_create_kmem_cache(cw->memcg, cw->cachep);
3512 	kfree(cw);
3513 }
3514 
3515 /*
3516  * Enqueue the creation of a per-memcg kmem_cache.
3517  */
3518 static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3519 					 struct kmem_cache *cachep)
3520 {
3521 	struct create_work *cw;
3522 
3523 	cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3524 	if (cw == NULL) {
3525 		css_put(&memcg->css);
3526 		return;
3527 	}
3528 
3529 	cw->memcg = memcg;
3530 	cw->cachep = cachep;
3531 
3532 	INIT_WORK(&cw->work, memcg_create_cache_work_func);
3533 	schedule_work(&cw->work);
3534 }
3535 
3536 static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3537 				       struct kmem_cache *cachep)
3538 {
3539 	/*
3540 	 * We need to stop accounting when we kmalloc, because if the
3541 	 * corresponding kmalloc cache is not yet created, the first allocation
3542 	 * in __memcg_create_cache_enqueue will recurse.
3543 	 *
3544 	 * However, it is better to enclose the whole function. Depending on
3545 	 * the debugging options enabled, INIT_WORK(), for instance, can
3546 	 * trigger an allocation. This too, will make us recurse. Because at
3547 	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3548 	 * the safest choice is to do it like this, wrapping the whole function.
3549 	 */
3550 	memcg_stop_kmem_account();
3551 	__memcg_create_cache_enqueue(memcg, cachep);
3552 	memcg_resume_kmem_account();
3553 }
3554 /*
3555  * Return the kmem_cache we're supposed to use for a slab allocation.
3556  * We try to use the current memcg's version of the cache.
3557  *
3558  * If the cache does not exist yet, if we are the first user of it,
3559  * we either create it immediately, if possible, or create it asynchronously
3560  * in a workqueue.
3561  * In the latter case, we will let the current allocation go through with
3562  * the original cache.
3563  *
3564  * Can't be called in interrupt context or from kernel threads.
3565  * This function needs to be called with rcu_read_lock() held.
3566  */
3567 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3568 					  gfp_t gfp)
3569 {
3570 	struct mem_cgroup *memcg;
3571 	int idx;
3572 
3573 	VM_BUG_ON(!cachep->memcg_params);
3574 	VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3575 
3576 	if (!current->mm || current->memcg_kmem_skip_account)
3577 		return cachep;
3578 
3579 	rcu_read_lock();
3580 	memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
3581 
3582 	if (!memcg_can_account_kmem(memcg))
3583 		goto out;
3584 
3585 	idx = memcg_cache_id(memcg);
3586 
3587 	/*
3588 	 * barrier to mare sure we're always seeing the up to date value.  The
3589 	 * code updating memcg_caches will issue a write barrier to match this.
3590 	 */
3591 	read_barrier_depends();
3592 	if (likely(cache_from_memcg_idx(cachep, idx))) {
3593 		cachep = cache_from_memcg_idx(cachep, idx);
3594 		goto out;
3595 	}
3596 
3597 	/* The corresponding put will be done in the workqueue. */
3598 	if (!css_tryget(&memcg->css))
3599 		goto out;
3600 	rcu_read_unlock();
3601 
3602 	/*
3603 	 * If we are in a safe context (can wait, and not in interrupt
3604 	 * context), we could be be predictable and return right away.
3605 	 * This would guarantee that the allocation being performed
3606 	 * already belongs in the new cache.
3607 	 *
3608 	 * However, there are some clashes that can arrive from locking.
3609 	 * For instance, because we acquire the slab_mutex while doing
3610 	 * kmem_cache_dup, this means no further allocation could happen
3611 	 * with the slab_mutex held.
3612 	 *
3613 	 * Also, because cache creation issue get_online_cpus(), this
3614 	 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3615 	 * that ends up reversed during cpu hotplug. (cpuset allocates
3616 	 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3617 	 * better to defer everything.
3618 	 */
3619 	memcg_create_cache_enqueue(memcg, cachep);
3620 	return cachep;
3621 out:
3622 	rcu_read_unlock();
3623 	return cachep;
3624 }
3625 EXPORT_SYMBOL(__memcg_kmem_get_cache);
3626 
3627 /*
3628  * We need to verify if the allocation against current->mm->owner's memcg is
3629  * possible for the given order. But the page is not allocated yet, so we'll
3630  * need a further commit step to do the final arrangements.
3631  *
3632  * It is possible for the task to switch cgroups in this mean time, so at
3633  * commit time, we can't rely on task conversion any longer.  We'll then use
3634  * the handle argument to return to the caller which cgroup we should commit
3635  * against. We could also return the memcg directly and avoid the pointer
3636  * passing, but a boolean return value gives better semantics considering
3637  * the compiled-out case as well.
3638  *
3639  * Returning true means the allocation is possible.
3640  */
3641 bool
3642 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3643 {
3644 	struct mem_cgroup *memcg;
3645 	int ret;
3646 
3647 	*_memcg = NULL;
3648 
3649 	/*
3650 	 * Disabling accounting is only relevant for some specific memcg
3651 	 * internal allocations. Therefore we would initially not have such
3652 	 * check here, since direct calls to the page allocator that are marked
3653 	 * with GFP_KMEMCG only happen outside memcg core. We are mostly
3654 	 * concerned with cache allocations, and by having this test at
3655 	 * memcg_kmem_get_cache, we are already able to relay the allocation to
3656 	 * the root cache and bypass the memcg cache altogether.
3657 	 *
3658 	 * There is one exception, though: the SLUB allocator does not create
3659 	 * large order caches, but rather service large kmallocs directly from
3660 	 * the page allocator. Therefore, the following sequence when backed by
3661 	 * the SLUB allocator:
3662 	 *
3663 	 *	memcg_stop_kmem_account();
3664 	 *	kmalloc(<large_number>)
3665 	 *	memcg_resume_kmem_account();
3666 	 *
3667 	 * would effectively ignore the fact that we should skip accounting,
3668 	 * since it will drive us directly to this function without passing
3669 	 * through the cache selector memcg_kmem_get_cache. Such large
3670 	 * allocations are extremely rare but can happen, for instance, for the
3671 	 * cache arrays. We bring this test here.
3672 	 */
3673 	if (!current->mm || current->memcg_kmem_skip_account)
3674 		return true;
3675 
3676 	memcg = try_get_mem_cgroup_from_mm(current->mm);
3677 
3678 	/*
3679 	 * very rare case described in mem_cgroup_from_task. Unfortunately there
3680 	 * isn't much we can do without complicating this too much, and it would
3681 	 * be gfp-dependent anyway. Just let it go
3682 	 */
3683 	if (unlikely(!memcg))
3684 		return true;
3685 
3686 	if (!memcg_can_account_kmem(memcg)) {
3687 		css_put(&memcg->css);
3688 		return true;
3689 	}
3690 
3691 	ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3692 	if (!ret)
3693 		*_memcg = memcg;
3694 
3695 	css_put(&memcg->css);
3696 	return (ret == 0);
3697 }
3698 
3699 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3700 			      int order)
3701 {
3702 	struct page_cgroup *pc;
3703 
3704 	VM_BUG_ON(mem_cgroup_is_root(memcg));
3705 
3706 	/* The page allocation failed. Revert */
3707 	if (!page) {
3708 		memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3709 		return;
3710 	}
3711 
3712 	pc = lookup_page_cgroup(page);
3713 	lock_page_cgroup(pc);
3714 	pc->mem_cgroup = memcg;
3715 	SetPageCgroupUsed(pc);
3716 	unlock_page_cgroup(pc);
3717 }
3718 
3719 void __memcg_kmem_uncharge_pages(struct page *page, int order)
3720 {
3721 	struct mem_cgroup *memcg = NULL;
3722 	struct page_cgroup *pc;
3723 
3724 
3725 	pc = lookup_page_cgroup(page);
3726 	/*
3727 	 * Fast unlocked return. Theoretically might have changed, have to
3728 	 * check again after locking.
3729 	 */
3730 	if (!PageCgroupUsed(pc))
3731 		return;
3732 
3733 	lock_page_cgroup(pc);
3734 	if (PageCgroupUsed(pc)) {
3735 		memcg = pc->mem_cgroup;
3736 		ClearPageCgroupUsed(pc);
3737 	}
3738 	unlock_page_cgroup(pc);
3739 
3740 	/*
3741 	 * We trust that only if there is a memcg associated with the page, it
3742 	 * is a valid allocation
3743 	 */
3744 	if (!memcg)
3745 		return;
3746 
3747 	VM_BUG_ON(mem_cgroup_is_root(memcg));
3748 	memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3749 }
3750 #else
3751 static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3752 {
3753 }
3754 #endif /* CONFIG_MEMCG_KMEM */
3755 
3756 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3757 
3758 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3759 /*
3760  * Because tail pages are not marked as "used", set it. We're under
3761  * zone->lru_lock, 'splitting on pmd' and compound_lock.
3762  * charge/uncharge will be never happen and move_account() is done under
3763  * compound_lock(), so we don't have to take care of races.
3764  */
3765 void mem_cgroup_split_huge_fixup(struct page *head)
3766 {
3767 	struct page_cgroup *head_pc = lookup_page_cgroup(head);
3768 	struct page_cgroup *pc;
3769 	struct mem_cgroup *memcg;
3770 	int i;
3771 
3772 	if (mem_cgroup_disabled())
3773 		return;
3774 
3775 	memcg = head_pc->mem_cgroup;
3776 	for (i = 1; i < HPAGE_PMD_NR; i++) {
3777 		pc = head_pc + i;
3778 		pc->mem_cgroup = memcg;
3779 		smp_wmb();/* see __commit_charge() */
3780 		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3781 	}
3782 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3783 		       HPAGE_PMD_NR);
3784 }
3785 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3786 
3787 static inline
3788 void mem_cgroup_move_account_page_stat(struct mem_cgroup *from,
3789 					struct mem_cgroup *to,
3790 					unsigned int nr_pages,
3791 					enum mem_cgroup_stat_index idx)
3792 {
3793 	/* Update stat data for mem_cgroup */
3794 	preempt_disable();
3795 	__this_cpu_sub(from->stat->count[idx], nr_pages);
3796 	__this_cpu_add(to->stat->count[idx], nr_pages);
3797 	preempt_enable();
3798 }
3799 
3800 /**
3801  * mem_cgroup_move_account - move account of the page
3802  * @page: the page
3803  * @nr_pages: number of regular pages (>1 for huge pages)
3804  * @pc:	page_cgroup of the page.
3805  * @from: mem_cgroup which the page is moved from.
3806  * @to:	mem_cgroup which the page is moved to. @from != @to.
3807  *
3808  * The caller must confirm following.
3809  * - page is not on LRU (isolate_page() is useful.)
3810  * - compound_lock is held when nr_pages > 1
3811  *
3812  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3813  * from old cgroup.
3814  */
3815 static int mem_cgroup_move_account(struct page *page,
3816 				   unsigned int nr_pages,
3817 				   struct page_cgroup *pc,
3818 				   struct mem_cgroup *from,
3819 				   struct mem_cgroup *to)
3820 {
3821 	unsigned long flags;
3822 	int ret;
3823 	bool anon = PageAnon(page);
3824 
3825 	VM_BUG_ON(from == to);
3826 	VM_BUG_ON(PageLRU(page));
3827 	/*
3828 	 * The page is isolated from LRU. So, collapse function
3829 	 * will not handle this page. But page splitting can happen.
3830 	 * Do this check under compound_page_lock(). The caller should
3831 	 * hold it.
3832 	 */
3833 	ret = -EBUSY;
3834 	if (nr_pages > 1 && !PageTransHuge(page))
3835 		goto out;
3836 
3837 	lock_page_cgroup(pc);
3838 
3839 	ret = -EINVAL;
3840 	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3841 		goto unlock;
3842 
3843 	move_lock_mem_cgroup(from, &flags);
3844 
3845 	if (!anon && page_mapped(page))
3846 		mem_cgroup_move_account_page_stat(from, to, nr_pages,
3847 			MEM_CGROUP_STAT_FILE_MAPPED);
3848 
3849 	if (PageWriteback(page))
3850 		mem_cgroup_move_account_page_stat(from, to, nr_pages,
3851 			MEM_CGROUP_STAT_WRITEBACK);
3852 
3853 	mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3854 
3855 	/* caller should have done css_get */
3856 	pc->mem_cgroup = to;
3857 	mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3858 	move_unlock_mem_cgroup(from, &flags);
3859 	ret = 0;
3860 unlock:
3861 	unlock_page_cgroup(pc);
3862 	/*
3863 	 * check events
3864 	 */
3865 	memcg_check_events(to, page);
3866 	memcg_check_events(from, page);
3867 out:
3868 	return ret;
3869 }
3870 
3871 /**
3872  * mem_cgroup_move_parent - moves page to the parent group
3873  * @page: the page to move
3874  * @pc: page_cgroup of the page
3875  * @child: page's cgroup
3876  *
3877  * move charges to its parent or the root cgroup if the group has no
3878  * parent (aka use_hierarchy==0).
3879  * Although this might fail (get_page_unless_zero, isolate_lru_page or
3880  * mem_cgroup_move_account fails) the failure is always temporary and
3881  * it signals a race with a page removal/uncharge or migration. In the
3882  * first case the page is on the way out and it will vanish from the LRU
3883  * on the next attempt and the call should be retried later.
3884  * Isolation from the LRU fails only if page has been isolated from
3885  * the LRU since we looked at it and that usually means either global
3886  * reclaim or migration going on. The page will either get back to the
3887  * LRU or vanish.
3888  * Finaly mem_cgroup_move_account fails only if the page got uncharged
3889  * (!PageCgroupUsed) or moved to a different group. The page will
3890  * disappear in the next attempt.
3891  */
3892 static int mem_cgroup_move_parent(struct page *page,
3893 				  struct page_cgroup *pc,
3894 				  struct mem_cgroup *child)
3895 {
3896 	struct mem_cgroup *parent;
3897 	unsigned int nr_pages;
3898 	unsigned long uninitialized_var(flags);
3899 	int ret;
3900 
3901 	VM_BUG_ON(mem_cgroup_is_root(child));
3902 
3903 	ret = -EBUSY;
3904 	if (!get_page_unless_zero(page))
3905 		goto out;
3906 	if (isolate_lru_page(page))
3907 		goto put;
3908 
3909 	nr_pages = hpage_nr_pages(page);
3910 
3911 	parent = parent_mem_cgroup(child);
3912 	/*
3913 	 * If no parent, move charges to root cgroup.
3914 	 */
3915 	if (!parent)
3916 		parent = root_mem_cgroup;
3917 
3918 	if (nr_pages > 1) {
3919 		VM_BUG_ON(!PageTransHuge(page));
3920 		flags = compound_lock_irqsave(page);
3921 	}
3922 
3923 	ret = mem_cgroup_move_account(page, nr_pages,
3924 				pc, child, parent);
3925 	if (!ret)
3926 		__mem_cgroup_cancel_local_charge(child, nr_pages);
3927 
3928 	if (nr_pages > 1)
3929 		compound_unlock_irqrestore(page, flags);
3930 	putback_lru_page(page);
3931 put:
3932 	put_page(page);
3933 out:
3934 	return ret;
3935 }
3936 
3937 /*
3938  * Charge the memory controller for page usage.
3939  * Return
3940  * 0 if the charge was successful
3941  * < 0 if the cgroup is over its limit
3942  */
3943 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3944 				gfp_t gfp_mask, enum charge_type ctype)
3945 {
3946 	struct mem_cgroup *memcg = NULL;
3947 	unsigned int nr_pages = 1;
3948 	bool oom = true;
3949 	int ret;
3950 
3951 	if (PageTransHuge(page)) {
3952 		nr_pages <<= compound_order(page);
3953 		VM_BUG_ON(!PageTransHuge(page));
3954 		/*
3955 		 * Never OOM-kill a process for a huge page.  The
3956 		 * fault handler will fall back to regular pages.
3957 		 */
3958 		oom = false;
3959 	}
3960 
3961 	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3962 	if (ret == -ENOMEM)
3963 		return ret;
3964 	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3965 	return 0;
3966 }
3967 
3968 int mem_cgroup_newpage_charge(struct page *page,
3969 			      struct mm_struct *mm, gfp_t gfp_mask)
3970 {
3971 	if (mem_cgroup_disabled())
3972 		return 0;
3973 	VM_BUG_ON(page_mapped(page));
3974 	VM_BUG_ON(page->mapping && !PageAnon(page));
3975 	VM_BUG_ON(!mm);
3976 	return mem_cgroup_charge_common(page, mm, gfp_mask,
3977 					MEM_CGROUP_CHARGE_TYPE_ANON);
3978 }
3979 
3980 /*
3981  * While swap-in, try_charge -> commit or cancel, the page is locked.
3982  * And when try_charge() successfully returns, one refcnt to memcg without
3983  * struct page_cgroup is acquired. This refcnt will be consumed by
3984  * "commit()" or removed by "cancel()"
3985  */
3986 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
3987 					  struct page *page,
3988 					  gfp_t mask,
3989 					  struct mem_cgroup **memcgp)
3990 {
3991 	struct mem_cgroup *memcg;
3992 	struct page_cgroup *pc;
3993 	int ret;
3994 
3995 	pc = lookup_page_cgroup(page);
3996 	/*
3997 	 * Every swap fault against a single page tries to charge the
3998 	 * page, bail as early as possible.  shmem_unuse() encounters
3999 	 * already charged pages, too.  The USED bit is protected by
4000 	 * the page lock, which serializes swap cache removal, which
4001 	 * in turn serializes uncharging.
4002 	 */
4003 	if (PageCgroupUsed(pc))
4004 		return 0;
4005 	if (!do_swap_account)
4006 		goto charge_cur_mm;
4007 	memcg = try_get_mem_cgroup_from_page(page);
4008 	if (!memcg)
4009 		goto charge_cur_mm;
4010 	*memcgp = memcg;
4011 	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
4012 	css_put(&memcg->css);
4013 	if (ret == -EINTR)
4014 		ret = 0;
4015 	return ret;
4016 charge_cur_mm:
4017 	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
4018 	if (ret == -EINTR)
4019 		ret = 0;
4020 	return ret;
4021 }
4022 
4023 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
4024 				 gfp_t gfp_mask, struct mem_cgroup **memcgp)
4025 {
4026 	*memcgp = NULL;
4027 	if (mem_cgroup_disabled())
4028 		return 0;
4029 	/*
4030 	 * A racing thread's fault, or swapoff, may have already
4031 	 * updated the pte, and even removed page from swap cache: in
4032 	 * those cases unuse_pte()'s pte_same() test will fail; but
4033 	 * there's also a KSM case which does need to charge the page.
4034 	 */
4035 	if (!PageSwapCache(page)) {
4036 		int ret;
4037 
4038 		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
4039 		if (ret == -EINTR)
4040 			ret = 0;
4041 		return ret;
4042 	}
4043 	return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
4044 }
4045 
4046 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
4047 {
4048 	if (mem_cgroup_disabled())
4049 		return;
4050 	if (!memcg)
4051 		return;
4052 	__mem_cgroup_cancel_charge(memcg, 1);
4053 }
4054 
4055 static void
4056 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
4057 					enum charge_type ctype)
4058 {
4059 	if (mem_cgroup_disabled())
4060 		return;
4061 	if (!memcg)
4062 		return;
4063 
4064 	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
4065 	/*
4066 	 * Now swap is on-memory. This means this page may be
4067 	 * counted both as mem and swap....double count.
4068 	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
4069 	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
4070 	 * may call delete_from_swap_cache() before reach here.
4071 	 */
4072 	if (do_swap_account && PageSwapCache(page)) {
4073 		swp_entry_t ent = {.val = page_private(page)};
4074 		mem_cgroup_uncharge_swap(ent);
4075 	}
4076 }
4077 
4078 void mem_cgroup_commit_charge_swapin(struct page *page,
4079 				     struct mem_cgroup *memcg)
4080 {
4081 	__mem_cgroup_commit_charge_swapin(page, memcg,
4082 					  MEM_CGROUP_CHARGE_TYPE_ANON);
4083 }
4084 
4085 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
4086 				gfp_t gfp_mask)
4087 {
4088 	struct mem_cgroup *memcg = NULL;
4089 	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4090 	int ret;
4091 
4092 	if (mem_cgroup_disabled())
4093 		return 0;
4094 	if (PageCompound(page))
4095 		return 0;
4096 
4097 	if (!PageSwapCache(page))
4098 		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
4099 	else { /* page is swapcache/shmem */
4100 		ret = __mem_cgroup_try_charge_swapin(mm, page,
4101 						     gfp_mask, &memcg);
4102 		if (!ret)
4103 			__mem_cgroup_commit_charge_swapin(page, memcg, type);
4104 	}
4105 	return ret;
4106 }
4107 
4108 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
4109 				   unsigned int nr_pages,
4110 				   const enum charge_type ctype)
4111 {
4112 	struct memcg_batch_info *batch = NULL;
4113 	bool uncharge_memsw = true;
4114 
4115 	/* If swapout, usage of swap doesn't decrease */
4116 	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
4117 		uncharge_memsw = false;
4118 
4119 	batch = &current->memcg_batch;
4120 	/*
4121 	 * In usual, we do css_get() when we remember memcg pointer.
4122 	 * But in this case, we keep res->usage until end of a series of
4123 	 * uncharges. Then, it's ok to ignore memcg's refcnt.
4124 	 */
4125 	if (!batch->memcg)
4126 		batch->memcg = memcg;
4127 	/*
4128 	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
4129 	 * In those cases, all pages freed continuously can be expected to be in
4130 	 * the same cgroup and we have chance to coalesce uncharges.
4131 	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
4132 	 * because we want to do uncharge as soon as possible.
4133 	 */
4134 
4135 	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
4136 		goto direct_uncharge;
4137 
4138 	if (nr_pages > 1)
4139 		goto direct_uncharge;
4140 
4141 	/*
4142 	 * In typical case, batch->memcg == mem. This means we can
4143 	 * merge a series of uncharges to an uncharge of res_counter.
4144 	 * If not, we uncharge res_counter ony by one.
4145 	 */
4146 	if (batch->memcg != memcg)
4147 		goto direct_uncharge;
4148 	/* remember freed charge and uncharge it later */
4149 	batch->nr_pages++;
4150 	if (uncharge_memsw)
4151 		batch->memsw_nr_pages++;
4152 	return;
4153 direct_uncharge:
4154 	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
4155 	if (uncharge_memsw)
4156 		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
4157 	if (unlikely(batch->memcg != memcg))
4158 		memcg_oom_recover(memcg);
4159 }
4160 
4161 /*
4162  * uncharge if !page_mapped(page)
4163  */
4164 static struct mem_cgroup *
4165 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
4166 			     bool end_migration)
4167 {
4168 	struct mem_cgroup *memcg = NULL;
4169 	unsigned int nr_pages = 1;
4170 	struct page_cgroup *pc;
4171 	bool anon;
4172 
4173 	if (mem_cgroup_disabled())
4174 		return NULL;
4175 
4176 	if (PageTransHuge(page)) {
4177 		nr_pages <<= compound_order(page);
4178 		VM_BUG_ON(!PageTransHuge(page));
4179 	}
4180 	/*
4181 	 * Check if our page_cgroup is valid
4182 	 */
4183 	pc = lookup_page_cgroup(page);
4184 	if (unlikely(!PageCgroupUsed(pc)))
4185 		return NULL;
4186 
4187 	lock_page_cgroup(pc);
4188 
4189 	memcg = pc->mem_cgroup;
4190 
4191 	if (!PageCgroupUsed(pc))
4192 		goto unlock_out;
4193 
4194 	anon = PageAnon(page);
4195 
4196 	switch (ctype) {
4197 	case MEM_CGROUP_CHARGE_TYPE_ANON:
4198 		/*
4199 		 * Generally PageAnon tells if it's the anon statistics to be
4200 		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4201 		 * used before page reached the stage of being marked PageAnon.
4202 		 */
4203 		anon = true;
4204 		/* fallthrough */
4205 	case MEM_CGROUP_CHARGE_TYPE_DROP:
4206 		/* See mem_cgroup_prepare_migration() */
4207 		if (page_mapped(page))
4208 			goto unlock_out;
4209 		/*
4210 		 * Pages under migration may not be uncharged.  But
4211 		 * end_migration() /must/ be the one uncharging the
4212 		 * unused post-migration page and so it has to call
4213 		 * here with the migration bit still set.  See the
4214 		 * res_counter handling below.
4215 		 */
4216 		if (!end_migration && PageCgroupMigration(pc))
4217 			goto unlock_out;
4218 		break;
4219 	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
4220 		if (!PageAnon(page)) {	/* Shared memory */
4221 			if (page->mapping && !page_is_file_cache(page))
4222 				goto unlock_out;
4223 		} else if (page_mapped(page)) /* Anon */
4224 				goto unlock_out;
4225 		break;
4226 	default:
4227 		break;
4228 	}
4229 
4230 	mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
4231 
4232 	ClearPageCgroupUsed(pc);
4233 	/*
4234 	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4235 	 * freed from LRU. This is safe because uncharged page is expected not
4236 	 * to be reused (freed soon). Exception is SwapCache, it's handled by
4237 	 * special functions.
4238 	 */
4239 
4240 	unlock_page_cgroup(pc);
4241 	/*
4242 	 * even after unlock, we have memcg->res.usage here and this memcg
4243 	 * will never be freed, so it's safe to call css_get().
4244 	 */
4245 	memcg_check_events(memcg, page);
4246 	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4247 		mem_cgroup_swap_statistics(memcg, true);
4248 		css_get(&memcg->css);
4249 	}
4250 	/*
4251 	 * Migration does not charge the res_counter for the
4252 	 * replacement page, so leave it alone when phasing out the
4253 	 * page that is unused after the migration.
4254 	 */
4255 	if (!end_migration && !mem_cgroup_is_root(memcg))
4256 		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4257 
4258 	return memcg;
4259 
4260 unlock_out:
4261 	unlock_page_cgroup(pc);
4262 	return NULL;
4263 }
4264 
4265 void mem_cgroup_uncharge_page(struct page *page)
4266 {
4267 	/* early check. */
4268 	if (page_mapped(page))
4269 		return;
4270 	VM_BUG_ON(page->mapping && !PageAnon(page));
4271 	/*
4272 	 * If the page is in swap cache, uncharge should be deferred
4273 	 * to the swap path, which also properly accounts swap usage
4274 	 * and handles memcg lifetime.
4275 	 *
4276 	 * Note that this check is not stable and reclaim may add the
4277 	 * page to swap cache at any time after this.  However, if the
4278 	 * page is not in swap cache by the time page->mapcount hits
4279 	 * 0, there won't be any page table references to the swap
4280 	 * slot, and reclaim will free it and not actually write the
4281 	 * page to disk.
4282 	 */
4283 	if (PageSwapCache(page))
4284 		return;
4285 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4286 }
4287 
4288 void mem_cgroup_uncharge_cache_page(struct page *page)
4289 {
4290 	VM_BUG_ON(page_mapped(page));
4291 	VM_BUG_ON(page->mapping);
4292 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4293 }
4294 
4295 /*
4296  * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4297  * In that cases, pages are freed continuously and we can expect pages
4298  * are in the same memcg. All these calls itself limits the number of
4299  * pages freed at once, then uncharge_start/end() is called properly.
4300  * This may be called prural(2) times in a context,
4301  */
4302 
4303 void mem_cgroup_uncharge_start(void)
4304 {
4305 	current->memcg_batch.do_batch++;
4306 	/* We can do nest. */
4307 	if (current->memcg_batch.do_batch == 1) {
4308 		current->memcg_batch.memcg = NULL;
4309 		current->memcg_batch.nr_pages = 0;
4310 		current->memcg_batch.memsw_nr_pages = 0;
4311 	}
4312 }
4313 
4314 void mem_cgroup_uncharge_end(void)
4315 {
4316 	struct memcg_batch_info *batch = &current->memcg_batch;
4317 
4318 	if (!batch->do_batch)
4319 		return;
4320 
4321 	batch->do_batch--;
4322 	if (batch->do_batch) /* If stacked, do nothing. */
4323 		return;
4324 
4325 	if (!batch->memcg)
4326 		return;
4327 	/*
4328 	 * This "batch->memcg" is valid without any css_get/put etc...
4329 	 * bacause we hide charges behind us.
4330 	 */
4331 	if (batch->nr_pages)
4332 		res_counter_uncharge(&batch->memcg->res,
4333 				     batch->nr_pages * PAGE_SIZE);
4334 	if (batch->memsw_nr_pages)
4335 		res_counter_uncharge(&batch->memcg->memsw,
4336 				     batch->memsw_nr_pages * PAGE_SIZE);
4337 	memcg_oom_recover(batch->memcg);
4338 	/* forget this pointer (for sanity check) */
4339 	batch->memcg = NULL;
4340 }
4341 
4342 #ifdef CONFIG_SWAP
4343 /*
4344  * called after __delete_from_swap_cache() and drop "page" account.
4345  * memcg information is recorded to swap_cgroup of "ent"
4346  */
4347 void
4348 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4349 {
4350 	struct mem_cgroup *memcg;
4351 	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4352 
4353 	if (!swapout) /* this was a swap cache but the swap is unused ! */
4354 		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4355 
4356 	memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4357 
4358 	/*
4359 	 * record memcg information,  if swapout && memcg != NULL,
4360 	 * css_get() was called in uncharge().
4361 	 */
4362 	if (do_swap_account && swapout && memcg)
4363 		swap_cgroup_record(ent, mem_cgroup_id(memcg));
4364 }
4365 #endif
4366 
4367 #ifdef CONFIG_MEMCG_SWAP
4368 /*
4369  * called from swap_entry_free(). remove record in swap_cgroup and
4370  * uncharge "memsw" account.
4371  */
4372 void mem_cgroup_uncharge_swap(swp_entry_t ent)
4373 {
4374 	struct mem_cgroup *memcg;
4375 	unsigned short id;
4376 
4377 	if (!do_swap_account)
4378 		return;
4379 
4380 	id = swap_cgroup_record(ent, 0);
4381 	rcu_read_lock();
4382 	memcg = mem_cgroup_lookup(id);
4383 	if (memcg) {
4384 		/*
4385 		 * We uncharge this because swap is freed.
4386 		 * This memcg can be obsolete one. We avoid calling css_tryget
4387 		 */
4388 		if (!mem_cgroup_is_root(memcg))
4389 			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4390 		mem_cgroup_swap_statistics(memcg, false);
4391 		css_put(&memcg->css);
4392 	}
4393 	rcu_read_unlock();
4394 }
4395 
4396 /**
4397  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4398  * @entry: swap entry to be moved
4399  * @from:  mem_cgroup which the entry is moved from
4400  * @to:  mem_cgroup which the entry is moved to
4401  *
4402  * It succeeds only when the swap_cgroup's record for this entry is the same
4403  * as the mem_cgroup's id of @from.
4404  *
4405  * Returns 0 on success, -EINVAL on failure.
4406  *
4407  * The caller must have charged to @to, IOW, called res_counter_charge() about
4408  * both res and memsw, and called css_get().
4409  */
4410 static int mem_cgroup_move_swap_account(swp_entry_t entry,
4411 				struct mem_cgroup *from, struct mem_cgroup *to)
4412 {
4413 	unsigned short old_id, new_id;
4414 
4415 	old_id = mem_cgroup_id(from);
4416 	new_id = mem_cgroup_id(to);
4417 
4418 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
4419 		mem_cgroup_swap_statistics(from, false);
4420 		mem_cgroup_swap_statistics(to, true);
4421 		/*
4422 		 * This function is only called from task migration context now.
4423 		 * It postpones res_counter and refcount handling till the end
4424 		 * of task migration(mem_cgroup_clear_mc()) for performance
4425 		 * improvement. But we cannot postpone css_get(to)  because if
4426 		 * the process that has been moved to @to does swap-in, the
4427 		 * refcount of @to might be decreased to 0.
4428 		 *
4429 		 * We are in attach() phase, so the cgroup is guaranteed to be
4430 		 * alive, so we can just call css_get().
4431 		 */
4432 		css_get(&to->css);
4433 		return 0;
4434 	}
4435 	return -EINVAL;
4436 }
4437 #else
4438 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4439 				struct mem_cgroup *from, struct mem_cgroup *to)
4440 {
4441 	return -EINVAL;
4442 }
4443 #endif
4444 
4445 /*
4446  * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4447  * page belongs to.
4448  */
4449 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4450 				  struct mem_cgroup **memcgp)
4451 {
4452 	struct mem_cgroup *memcg = NULL;
4453 	unsigned int nr_pages = 1;
4454 	struct page_cgroup *pc;
4455 	enum charge_type ctype;
4456 
4457 	*memcgp = NULL;
4458 
4459 	if (mem_cgroup_disabled())
4460 		return;
4461 
4462 	if (PageTransHuge(page))
4463 		nr_pages <<= compound_order(page);
4464 
4465 	pc = lookup_page_cgroup(page);
4466 	lock_page_cgroup(pc);
4467 	if (PageCgroupUsed(pc)) {
4468 		memcg = pc->mem_cgroup;
4469 		css_get(&memcg->css);
4470 		/*
4471 		 * At migrating an anonymous page, its mapcount goes down
4472 		 * to 0 and uncharge() will be called. But, even if it's fully
4473 		 * unmapped, migration may fail and this page has to be
4474 		 * charged again. We set MIGRATION flag here and delay uncharge
4475 		 * until end_migration() is called
4476 		 *
4477 		 * Corner Case Thinking
4478 		 * A)
4479 		 * When the old page was mapped as Anon and it's unmap-and-freed
4480 		 * while migration was ongoing.
4481 		 * If unmap finds the old page, uncharge() of it will be delayed
4482 		 * until end_migration(). If unmap finds a new page, it's
4483 		 * uncharged when it make mapcount to be 1->0. If unmap code
4484 		 * finds swap_migration_entry, the new page will not be mapped
4485 		 * and end_migration() will find it(mapcount==0).
4486 		 *
4487 		 * B)
4488 		 * When the old page was mapped but migraion fails, the kernel
4489 		 * remaps it. A charge for it is kept by MIGRATION flag even
4490 		 * if mapcount goes down to 0. We can do remap successfully
4491 		 * without charging it again.
4492 		 *
4493 		 * C)
4494 		 * The "old" page is under lock_page() until the end of
4495 		 * migration, so, the old page itself will not be swapped-out.
4496 		 * If the new page is swapped out before end_migraton, our
4497 		 * hook to usual swap-out path will catch the event.
4498 		 */
4499 		if (PageAnon(page))
4500 			SetPageCgroupMigration(pc);
4501 	}
4502 	unlock_page_cgroup(pc);
4503 	/*
4504 	 * If the page is not charged at this point,
4505 	 * we return here.
4506 	 */
4507 	if (!memcg)
4508 		return;
4509 
4510 	*memcgp = memcg;
4511 	/*
4512 	 * We charge new page before it's used/mapped. So, even if unlock_page()
4513 	 * is called before end_migration, we can catch all events on this new
4514 	 * page. In the case new page is migrated but not remapped, new page's
4515 	 * mapcount will be finally 0 and we call uncharge in end_migration().
4516 	 */
4517 	if (PageAnon(page))
4518 		ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4519 	else
4520 		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4521 	/*
4522 	 * The page is committed to the memcg, but it's not actually
4523 	 * charged to the res_counter since we plan on replacing the
4524 	 * old one and only one page is going to be left afterwards.
4525 	 */
4526 	__mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4527 }
4528 
4529 /* remove redundant charge if migration failed*/
4530 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4531 	struct page *oldpage, struct page *newpage, bool migration_ok)
4532 {
4533 	struct page *used, *unused;
4534 	struct page_cgroup *pc;
4535 	bool anon;
4536 
4537 	if (!memcg)
4538 		return;
4539 
4540 	if (!migration_ok) {
4541 		used = oldpage;
4542 		unused = newpage;
4543 	} else {
4544 		used = newpage;
4545 		unused = oldpage;
4546 	}
4547 	anon = PageAnon(used);
4548 	__mem_cgroup_uncharge_common(unused,
4549 				     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4550 				     : MEM_CGROUP_CHARGE_TYPE_CACHE,
4551 				     true);
4552 	css_put(&memcg->css);
4553 	/*
4554 	 * We disallowed uncharge of pages under migration because mapcount
4555 	 * of the page goes down to zero, temporarly.
4556 	 * Clear the flag and check the page should be charged.
4557 	 */
4558 	pc = lookup_page_cgroup(oldpage);
4559 	lock_page_cgroup(pc);
4560 	ClearPageCgroupMigration(pc);
4561 	unlock_page_cgroup(pc);
4562 
4563 	/*
4564 	 * If a page is a file cache, radix-tree replacement is very atomic
4565 	 * and we can skip this check. When it was an Anon page, its mapcount
4566 	 * goes down to 0. But because we added MIGRATION flage, it's not
4567 	 * uncharged yet. There are several case but page->mapcount check
4568 	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4569 	 * check. (see prepare_charge() also)
4570 	 */
4571 	if (anon)
4572 		mem_cgroup_uncharge_page(used);
4573 }
4574 
4575 /*
4576  * At replace page cache, newpage is not under any memcg but it's on
4577  * LRU. So, this function doesn't touch res_counter but handles LRU
4578  * in correct way. Both pages are locked so we cannot race with uncharge.
4579  */
4580 void mem_cgroup_replace_page_cache(struct page *oldpage,
4581 				  struct page *newpage)
4582 {
4583 	struct mem_cgroup *memcg = NULL;
4584 	struct page_cgroup *pc;
4585 	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4586 
4587 	if (mem_cgroup_disabled())
4588 		return;
4589 
4590 	pc = lookup_page_cgroup(oldpage);
4591 	/* fix accounting on old pages */
4592 	lock_page_cgroup(pc);
4593 	if (PageCgroupUsed(pc)) {
4594 		memcg = pc->mem_cgroup;
4595 		mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4596 		ClearPageCgroupUsed(pc);
4597 	}
4598 	unlock_page_cgroup(pc);
4599 
4600 	/*
4601 	 * When called from shmem_replace_page(), in some cases the
4602 	 * oldpage has already been charged, and in some cases not.
4603 	 */
4604 	if (!memcg)
4605 		return;
4606 	/*
4607 	 * Even if newpage->mapping was NULL before starting replacement,
4608 	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4609 	 * LRU while we overwrite pc->mem_cgroup.
4610 	 */
4611 	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4612 }
4613 
4614 #ifdef CONFIG_DEBUG_VM
4615 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4616 {
4617 	struct page_cgroup *pc;
4618 
4619 	pc = lookup_page_cgroup(page);
4620 	/*
4621 	 * Can be NULL while feeding pages into the page allocator for
4622 	 * the first time, i.e. during boot or memory hotplug;
4623 	 * or when mem_cgroup_disabled().
4624 	 */
4625 	if (likely(pc) && PageCgroupUsed(pc))
4626 		return pc;
4627 	return NULL;
4628 }
4629 
4630 bool mem_cgroup_bad_page_check(struct page *page)
4631 {
4632 	if (mem_cgroup_disabled())
4633 		return false;
4634 
4635 	return lookup_page_cgroup_used(page) != NULL;
4636 }
4637 
4638 void mem_cgroup_print_bad_page(struct page *page)
4639 {
4640 	struct page_cgroup *pc;
4641 
4642 	pc = lookup_page_cgroup_used(page);
4643 	if (pc) {
4644 		pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4645 			 pc, pc->flags, pc->mem_cgroup);
4646 	}
4647 }
4648 #endif
4649 
4650 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4651 				unsigned long long val)
4652 {
4653 	int retry_count;
4654 	u64 memswlimit, memlimit;
4655 	int ret = 0;
4656 	int children = mem_cgroup_count_children(memcg);
4657 	u64 curusage, oldusage;
4658 	int enlarge;
4659 
4660 	/*
4661 	 * For keeping hierarchical_reclaim simple, how long we should retry
4662 	 * is depends on callers. We set our retry-count to be function
4663 	 * of # of children which we should visit in this loop.
4664 	 */
4665 	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4666 
4667 	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4668 
4669 	enlarge = 0;
4670 	while (retry_count) {
4671 		if (signal_pending(current)) {
4672 			ret = -EINTR;
4673 			break;
4674 		}
4675 		/*
4676 		 * Rather than hide all in some function, I do this in
4677 		 * open coded manner. You see what this really does.
4678 		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4679 		 */
4680 		mutex_lock(&set_limit_mutex);
4681 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4682 		if (memswlimit < val) {
4683 			ret = -EINVAL;
4684 			mutex_unlock(&set_limit_mutex);
4685 			break;
4686 		}
4687 
4688 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4689 		if (memlimit < val)
4690 			enlarge = 1;
4691 
4692 		ret = res_counter_set_limit(&memcg->res, val);
4693 		if (!ret) {
4694 			if (memswlimit == val)
4695 				memcg->memsw_is_minimum = true;
4696 			else
4697 				memcg->memsw_is_minimum = false;
4698 		}
4699 		mutex_unlock(&set_limit_mutex);
4700 
4701 		if (!ret)
4702 			break;
4703 
4704 		mem_cgroup_reclaim(memcg, GFP_KERNEL,
4705 				   MEM_CGROUP_RECLAIM_SHRINK);
4706 		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4707 		/* Usage is reduced ? */
4708 		if (curusage >= oldusage)
4709 			retry_count--;
4710 		else
4711 			oldusage = curusage;
4712 	}
4713 	if (!ret && enlarge)
4714 		memcg_oom_recover(memcg);
4715 
4716 	return ret;
4717 }
4718 
4719 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4720 					unsigned long long val)
4721 {
4722 	int retry_count;
4723 	u64 memlimit, memswlimit, oldusage, curusage;
4724 	int children = mem_cgroup_count_children(memcg);
4725 	int ret = -EBUSY;
4726 	int enlarge = 0;
4727 
4728 	/* see mem_cgroup_resize_res_limit */
4729 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4730 	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4731 	while (retry_count) {
4732 		if (signal_pending(current)) {
4733 			ret = -EINTR;
4734 			break;
4735 		}
4736 		/*
4737 		 * Rather than hide all in some function, I do this in
4738 		 * open coded manner. You see what this really does.
4739 		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4740 		 */
4741 		mutex_lock(&set_limit_mutex);
4742 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4743 		if (memlimit > val) {
4744 			ret = -EINVAL;
4745 			mutex_unlock(&set_limit_mutex);
4746 			break;
4747 		}
4748 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4749 		if (memswlimit < val)
4750 			enlarge = 1;
4751 		ret = res_counter_set_limit(&memcg->memsw, val);
4752 		if (!ret) {
4753 			if (memlimit == val)
4754 				memcg->memsw_is_minimum = true;
4755 			else
4756 				memcg->memsw_is_minimum = false;
4757 		}
4758 		mutex_unlock(&set_limit_mutex);
4759 
4760 		if (!ret)
4761 			break;
4762 
4763 		mem_cgroup_reclaim(memcg, GFP_KERNEL,
4764 				   MEM_CGROUP_RECLAIM_NOSWAP |
4765 				   MEM_CGROUP_RECLAIM_SHRINK);
4766 		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4767 		/* Usage is reduced ? */
4768 		if (curusage >= oldusage)
4769 			retry_count--;
4770 		else
4771 			oldusage = curusage;
4772 	}
4773 	if (!ret && enlarge)
4774 		memcg_oom_recover(memcg);
4775 	return ret;
4776 }
4777 
4778 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4779 					    gfp_t gfp_mask,
4780 					    unsigned long *total_scanned)
4781 {
4782 	unsigned long nr_reclaimed = 0;
4783 	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4784 	unsigned long reclaimed;
4785 	int loop = 0;
4786 	struct mem_cgroup_tree_per_zone *mctz;
4787 	unsigned long long excess;
4788 	unsigned long nr_scanned;
4789 
4790 	if (order > 0)
4791 		return 0;
4792 
4793 	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4794 	/*
4795 	 * This loop can run a while, specially if mem_cgroup's continuously
4796 	 * keep exceeding their soft limit and putting the system under
4797 	 * pressure
4798 	 */
4799 	do {
4800 		if (next_mz)
4801 			mz = next_mz;
4802 		else
4803 			mz = mem_cgroup_largest_soft_limit_node(mctz);
4804 		if (!mz)
4805 			break;
4806 
4807 		nr_scanned = 0;
4808 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4809 						    gfp_mask, &nr_scanned);
4810 		nr_reclaimed += reclaimed;
4811 		*total_scanned += nr_scanned;
4812 		spin_lock(&mctz->lock);
4813 
4814 		/*
4815 		 * If we failed to reclaim anything from this memory cgroup
4816 		 * it is time to move on to the next cgroup
4817 		 */
4818 		next_mz = NULL;
4819 		if (!reclaimed) {
4820 			do {
4821 				/*
4822 				 * Loop until we find yet another one.
4823 				 *
4824 				 * By the time we get the soft_limit lock
4825 				 * again, someone might have aded the
4826 				 * group back on the RB tree. Iterate to
4827 				 * make sure we get a different mem.
4828 				 * mem_cgroup_largest_soft_limit_node returns
4829 				 * NULL if no other cgroup is present on
4830 				 * the tree
4831 				 */
4832 				next_mz =
4833 				__mem_cgroup_largest_soft_limit_node(mctz);
4834 				if (next_mz == mz)
4835 					css_put(&next_mz->memcg->css);
4836 				else /* next_mz == NULL or other memcg */
4837 					break;
4838 			} while (1);
4839 		}
4840 		__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
4841 		excess = res_counter_soft_limit_excess(&mz->memcg->res);
4842 		/*
4843 		 * One school of thought says that we should not add
4844 		 * back the node to the tree if reclaim returns 0.
4845 		 * But our reclaim could return 0, simply because due
4846 		 * to priority we are exposing a smaller subset of
4847 		 * memory to reclaim from. Consider this as a longer
4848 		 * term TODO.
4849 		 */
4850 		/* If excess == 0, no tree ops */
4851 		__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4852 		spin_unlock(&mctz->lock);
4853 		css_put(&mz->memcg->css);
4854 		loop++;
4855 		/*
4856 		 * Could not reclaim anything and there are no more
4857 		 * mem cgroups to try or we seem to be looping without
4858 		 * reclaiming anything.
4859 		 */
4860 		if (!nr_reclaimed &&
4861 			(next_mz == NULL ||
4862 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4863 			break;
4864 	} while (!nr_reclaimed);
4865 	if (next_mz)
4866 		css_put(&next_mz->memcg->css);
4867 	return nr_reclaimed;
4868 }
4869 
4870 /**
4871  * mem_cgroup_force_empty_list - clears LRU of a group
4872  * @memcg: group to clear
4873  * @node: NUMA node
4874  * @zid: zone id
4875  * @lru: lru to to clear
4876  *
4877  * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
4878  * reclaim the pages page themselves - pages are moved to the parent (or root)
4879  * group.
4880  */
4881 static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
4882 				int node, int zid, enum lru_list lru)
4883 {
4884 	struct lruvec *lruvec;
4885 	unsigned long flags;
4886 	struct list_head *list;
4887 	struct page *busy;
4888 	struct zone *zone;
4889 
4890 	zone = &NODE_DATA(node)->node_zones[zid];
4891 	lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4892 	list = &lruvec->lists[lru];
4893 
4894 	busy = NULL;
4895 	do {
4896 		struct page_cgroup *pc;
4897 		struct page *page;
4898 
4899 		spin_lock_irqsave(&zone->lru_lock, flags);
4900 		if (list_empty(list)) {
4901 			spin_unlock_irqrestore(&zone->lru_lock, flags);
4902 			break;
4903 		}
4904 		page = list_entry(list->prev, struct page, lru);
4905 		if (busy == page) {
4906 			list_move(&page->lru, list);
4907 			busy = NULL;
4908 			spin_unlock_irqrestore(&zone->lru_lock, flags);
4909 			continue;
4910 		}
4911 		spin_unlock_irqrestore(&zone->lru_lock, flags);
4912 
4913 		pc = lookup_page_cgroup(page);
4914 
4915 		if (mem_cgroup_move_parent(page, pc, memcg)) {
4916 			/* found lock contention or "pc" is obsolete. */
4917 			busy = page;
4918 			cond_resched();
4919 		} else
4920 			busy = NULL;
4921 	} while (!list_empty(list));
4922 }
4923 
4924 /*
4925  * make mem_cgroup's charge to be 0 if there is no task by moving
4926  * all the charges and pages to the parent.
4927  * This enables deleting this mem_cgroup.
4928  *
4929  * Caller is responsible for holding css reference on the memcg.
4930  */
4931 static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4932 {
4933 	int node, zid;
4934 	u64 usage;
4935 
4936 	do {
4937 		/* This is for making all *used* pages to be on LRU. */
4938 		lru_add_drain_all();
4939 		drain_all_stock_sync(memcg);
4940 		mem_cgroup_start_move(memcg);
4941 		for_each_node_state(node, N_MEMORY) {
4942 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4943 				enum lru_list lru;
4944 				for_each_lru(lru) {
4945 					mem_cgroup_force_empty_list(memcg,
4946 							node, zid, lru);
4947 				}
4948 			}
4949 		}
4950 		mem_cgroup_end_move(memcg);
4951 		memcg_oom_recover(memcg);
4952 		cond_resched();
4953 
4954 		/*
4955 		 * Kernel memory may not necessarily be trackable to a specific
4956 		 * process. So they are not migrated, and therefore we can't
4957 		 * expect their value to drop to 0 here.
4958 		 * Having res filled up with kmem only is enough.
4959 		 *
4960 		 * This is a safety check because mem_cgroup_force_empty_list
4961 		 * could have raced with mem_cgroup_replace_page_cache callers
4962 		 * so the lru seemed empty but the page could have been added
4963 		 * right after the check. RES_USAGE should be safe as we always
4964 		 * charge before adding to the LRU.
4965 		 */
4966 		usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4967 			res_counter_read_u64(&memcg->kmem, RES_USAGE);
4968 	} while (usage > 0);
4969 }
4970 
4971 static inline bool memcg_has_children(struct mem_cgroup *memcg)
4972 {
4973 	lockdep_assert_held(&memcg_create_mutex);
4974 	/*
4975 	 * The lock does not prevent addition or deletion to the list
4976 	 * of children, but it prevents a new child from being
4977 	 * initialized based on this parent in css_online(), so it's
4978 	 * enough to decide whether hierarchically inherited
4979 	 * attributes can still be changed or not.
4980 	 */
4981 	return memcg->use_hierarchy &&
4982 		!list_empty(&memcg->css.cgroup->children);
4983 }
4984 
4985 /*
4986  * Reclaims as many pages from the given memcg as possible and moves
4987  * the rest to the parent.
4988  *
4989  * Caller is responsible for holding css reference for memcg.
4990  */
4991 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4992 {
4993 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4994 	struct cgroup *cgrp = memcg->css.cgroup;
4995 
4996 	/* returns EBUSY if there is a task or if we come here twice. */
4997 	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
4998 		return -EBUSY;
4999 
5000 	/* we call try-to-free pages for make this cgroup empty */
5001 	lru_add_drain_all();
5002 	/* try to free all pages in this cgroup */
5003 	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
5004 		int progress;
5005 
5006 		if (signal_pending(current))
5007 			return -EINTR;
5008 
5009 		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
5010 						false);
5011 		if (!progress) {
5012 			nr_retries--;
5013 			/* maybe some writeback is necessary */
5014 			congestion_wait(BLK_RW_ASYNC, HZ/10);
5015 		}
5016 
5017 	}
5018 	lru_add_drain();
5019 	mem_cgroup_reparent_charges(memcg);
5020 
5021 	return 0;
5022 }
5023 
5024 static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
5025 					unsigned int event)
5026 {
5027 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5028 
5029 	if (mem_cgroup_is_root(memcg))
5030 		return -EINVAL;
5031 	return mem_cgroup_force_empty(memcg);
5032 }
5033 
5034 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
5035 				     struct cftype *cft)
5036 {
5037 	return mem_cgroup_from_css(css)->use_hierarchy;
5038 }
5039 
5040 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
5041 				      struct cftype *cft, u64 val)
5042 {
5043 	int retval = 0;
5044 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5045 	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5046 
5047 	mutex_lock(&memcg_create_mutex);
5048 
5049 	if (memcg->use_hierarchy == val)
5050 		goto out;
5051 
5052 	/*
5053 	 * If parent's use_hierarchy is set, we can't make any modifications
5054 	 * in the child subtrees. If it is unset, then the change can
5055 	 * occur, provided the current cgroup has no children.
5056 	 *
5057 	 * For the root cgroup, parent_mem is NULL, we allow value to be
5058 	 * set if there are no children.
5059 	 */
5060 	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
5061 				(val == 1 || val == 0)) {
5062 		if (list_empty(&memcg->css.cgroup->children))
5063 			memcg->use_hierarchy = val;
5064 		else
5065 			retval = -EBUSY;
5066 	} else
5067 		retval = -EINVAL;
5068 
5069 out:
5070 	mutex_unlock(&memcg_create_mutex);
5071 
5072 	return retval;
5073 }
5074 
5075 
5076 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
5077 					       enum mem_cgroup_stat_index idx)
5078 {
5079 	struct mem_cgroup *iter;
5080 	long val = 0;
5081 
5082 	/* Per-cpu values can be negative, use a signed accumulator */
5083 	for_each_mem_cgroup_tree(iter, memcg)
5084 		val += mem_cgroup_read_stat(iter, idx);
5085 
5086 	if (val < 0) /* race ? */
5087 		val = 0;
5088 	return val;
5089 }
5090 
5091 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
5092 {
5093 	u64 val;
5094 
5095 	if (!mem_cgroup_is_root(memcg)) {
5096 		if (!swap)
5097 			return res_counter_read_u64(&memcg->res, RES_USAGE);
5098 		else
5099 			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
5100 	}
5101 
5102 	/*
5103 	 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
5104 	 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
5105 	 */
5106 	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
5107 	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
5108 
5109 	if (swap)
5110 		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
5111 
5112 	return val << PAGE_SHIFT;
5113 }
5114 
5115 static ssize_t mem_cgroup_read(struct cgroup_subsys_state *css,
5116 			       struct cftype *cft, struct file *file,
5117 			       char __user *buf, size_t nbytes, loff_t *ppos)
5118 {
5119 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5120 	char str[64];
5121 	u64 val;
5122 	int name, len;
5123 	enum res_type type;
5124 
5125 	type = MEMFILE_TYPE(cft->private);
5126 	name = MEMFILE_ATTR(cft->private);
5127 
5128 	switch (type) {
5129 	case _MEM:
5130 		if (name == RES_USAGE)
5131 			val = mem_cgroup_usage(memcg, false);
5132 		else
5133 			val = res_counter_read_u64(&memcg->res, name);
5134 		break;
5135 	case _MEMSWAP:
5136 		if (name == RES_USAGE)
5137 			val = mem_cgroup_usage(memcg, true);
5138 		else
5139 			val = res_counter_read_u64(&memcg->memsw, name);
5140 		break;
5141 	case _KMEM:
5142 		val = res_counter_read_u64(&memcg->kmem, name);
5143 		break;
5144 	default:
5145 		BUG();
5146 	}
5147 
5148 	len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
5149 	return simple_read_from_buffer(buf, nbytes, ppos, str, len);
5150 }
5151 
5152 static int memcg_update_kmem_limit(struct cgroup_subsys_state *css, u64 val)
5153 {
5154 	int ret = -EINVAL;
5155 #ifdef CONFIG_MEMCG_KMEM
5156 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5157 	/*
5158 	 * For simplicity, we won't allow this to be disabled.  It also can't
5159 	 * be changed if the cgroup has children already, or if tasks had
5160 	 * already joined.
5161 	 *
5162 	 * If tasks join before we set the limit, a person looking at
5163 	 * kmem.usage_in_bytes will have no way to determine when it took
5164 	 * place, which makes the value quite meaningless.
5165 	 *
5166 	 * After it first became limited, changes in the value of the limit are
5167 	 * of course permitted.
5168 	 */
5169 	mutex_lock(&memcg_create_mutex);
5170 	mutex_lock(&set_limit_mutex);
5171 	if (!memcg->kmem_account_flags && val != RES_COUNTER_MAX) {
5172 		if (cgroup_task_count(css->cgroup) || memcg_has_children(memcg)) {
5173 			ret = -EBUSY;
5174 			goto out;
5175 		}
5176 		ret = res_counter_set_limit(&memcg->kmem, val);
5177 		VM_BUG_ON(ret);
5178 
5179 		ret = memcg_update_cache_sizes(memcg);
5180 		if (ret) {
5181 			res_counter_set_limit(&memcg->kmem, RES_COUNTER_MAX);
5182 			goto out;
5183 		}
5184 		static_key_slow_inc(&memcg_kmem_enabled_key);
5185 		/*
5186 		 * setting the active bit after the inc will guarantee no one
5187 		 * starts accounting before all call sites are patched
5188 		 */
5189 		memcg_kmem_set_active(memcg);
5190 	} else
5191 		ret = res_counter_set_limit(&memcg->kmem, val);
5192 out:
5193 	mutex_unlock(&set_limit_mutex);
5194 	mutex_unlock(&memcg_create_mutex);
5195 #endif
5196 	return ret;
5197 }
5198 
5199 #ifdef CONFIG_MEMCG_KMEM
5200 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5201 {
5202 	int ret = 0;
5203 	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5204 	if (!parent)
5205 		goto out;
5206 
5207 	memcg->kmem_account_flags = parent->kmem_account_flags;
5208 	/*
5209 	 * When that happen, we need to disable the static branch only on those
5210 	 * memcgs that enabled it. To achieve this, we would be forced to
5211 	 * complicate the code by keeping track of which memcgs were the ones
5212 	 * that actually enabled limits, and which ones got it from its
5213 	 * parents.
5214 	 *
5215 	 * It is a lot simpler just to do static_key_slow_inc() on every child
5216 	 * that is accounted.
5217 	 */
5218 	if (!memcg_kmem_is_active(memcg))
5219 		goto out;
5220 
5221 	/*
5222 	 * __mem_cgroup_free() will issue static_key_slow_dec() because this
5223 	 * memcg is active already. If the later initialization fails then the
5224 	 * cgroup core triggers the cleanup so we do not have to do it here.
5225 	 */
5226 	static_key_slow_inc(&memcg_kmem_enabled_key);
5227 
5228 	mutex_lock(&set_limit_mutex);
5229 	memcg_stop_kmem_account();
5230 	ret = memcg_update_cache_sizes(memcg);
5231 	memcg_resume_kmem_account();
5232 	mutex_unlock(&set_limit_mutex);
5233 out:
5234 	return ret;
5235 }
5236 #endif /* CONFIG_MEMCG_KMEM */
5237 
5238 /*
5239  * The user of this function is...
5240  * RES_LIMIT.
5241  */
5242 static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
5243 			    const char *buffer)
5244 {
5245 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5246 	enum res_type type;
5247 	int name;
5248 	unsigned long long val;
5249 	int ret;
5250 
5251 	type = MEMFILE_TYPE(cft->private);
5252 	name = MEMFILE_ATTR(cft->private);
5253 
5254 	switch (name) {
5255 	case RES_LIMIT:
5256 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5257 			ret = -EINVAL;
5258 			break;
5259 		}
5260 		/* This function does all necessary parse...reuse it */
5261 		ret = res_counter_memparse_write_strategy(buffer, &val);
5262 		if (ret)
5263 			break;
5264 		if (type == _MEM)
5265 			ret = mem_cgroup_resize_limit(memcg, val);
5266 		else if (type == _MEMSWAP)
5267 			ret = mem_cgroup_resize_memsw_limit(memcg, val);
5268 		else if (type == _KMEM)
5269 			ret = memcg_update_kmem_limit(css, val);
5270 		else
5271 			return -EINVAL;
5272 		break;
5273 	case RES_SOFT_LIMIT:
5274 		ret = res_counter_memparse_write_strategy(buffer, &val);
5275 		if (ret)
5276 			break;
5277 		/*
5278 		 * For memsw, soft limits are hard to implement in terms
5279 		 * of semantics, for now, we support soft limits for
5280 		 * control without swap
5281 		 */
5282 		if (type == _MEM)
5283 			ret = res_counter_set_soft_limit(&memcg->res, val);
5284 		else
5285 			ret = -EINVAL;
5286 		break;
5287 	default:
5288 		ret = -EINVAL; /* should be BUG() ? */
5289 		break;
5290 	}
5291 	return ret;
5292 }
5293 
5294 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5295 		unsigned long long *mem_limit, unsigned long long *memsw_limit)
5296 {
5297 	unsigned long long min_limit, min_memsw_limit, tmp;
5298 
5299 	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5300 	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5301 	if (!memcg->use_hierarchy)
5302 		goto out;
5303 
5304 	while (css_parent(&memcg->css)) {
5305 		memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5306 		if (!memcg->use_hierarchy)
5307 			break;
5308 		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5309 		min_limit = min(min_limit, tmp);
5310 		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5311 		min_memsw_limit = min(min_memsw_limit, tmp);
5312 	}
5313 out:
5314 	*mem_limit = min_limit;
5315 	*memsw_limit = min_memsw_limit;
5316 }
5317 
5318 static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
5319 {
5320 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5321 	int name;
5322 	enum res_type type;
5323 
5324 	type = MEMFILE_TYPE(event);
5325 	name = MEMFILE_ATTR(event);
5326 
5327 	switch (name) {
5328 	case RES_MAX_USAGE:
5329 		if (type == _MEM)
5330 			res_counter_reset_max(&memcg->res);
5331 		else if (type == _MEMSWAP)
5332 			res_counter_reset_max(&memcg->memsw);
5333 		else if (type == _KMEM)
5334 			res_counter_reset_max(&memcg->kmem);
5335 		else
5336 			return -EINVAL;
5337 		break;
5338 	case RES_FAILCNT:
5339 		if (type == _MEM)
5340 			res_counter_reset_failcnt(&memcg->res);
5341 		else if (type == _MEMSWAP)
5342 			res_counter_reset_failcnt(&memcg->memsw);
5343 		else if (type == _KMEM)
5344 			res_counter_reset_failcnt(&memcg->kmem);
5345 		else
5346 			return -EINVAL;
5347 		break;
5348 	}
5349 
5350 	return 0;
5351 }
5352 
5353 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
5354 					struct cftype *cft)
5355 {
5356 	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
5357 }
5358 
5359 #ifdef CONFIG_MMU
5360 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5361 					struct cftype *cft, u64 val)
5362 {
5363 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5364 
5365 	if (val >= (1 << NR_MOVE_TYPE))
5366 		return -EINVAL;
5367 
5368 	/*
5369 	 * No kind of locking is needed in here, because ->can_attach() will
5370 	 * check this value once in the beginning of the process, and then carry
5371 	 * on with stale data. This means that changes to this value will only
5372 	 * affect task migrations starting after the change.
5373 	 */
5374 	memcg->move_charge_at_immigrate = val;
5375 	return 0;
5376 }
5377 #else
5378 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5379 					struct cftype *cft, u64 val)
5380 {
5381 	return -ENOSYS;
5382 }
5383 #endif
5384 
5385 #ifdef CONFIG_NUMA
5386 static int memcg_numa_stat_show(struct cgroup_subsys_state *css,
5387 				struct cftype *cft, struct seq_file *m)
5388 {
5389 	struct numa_stat {
5390 		const char *name;
5391 		unsigned int lru_mask;
5392 	};
5393 
5394 	static const struct numa_stat stats[] = {
5395 		{ "total", LRU_ALL },
5396 		{ "file", LRU_ALL_FILE },
5397 		{ "anon", LRU_ALL_ANON },
5398 		{ "unevictable", BIT(LRU_UNEVICTABLE) },
5399 	};
5400 	const struct numa_stat *stat;
5401 	int nid;
5402 	unsigned long nr;
5403 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5404 
5405 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
5406 		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
5407 		seq_printf(m, "%s=%lu", stat->name, nr);
5408 		for_each_node_state(nid, N_MEMORY) {
5409 			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5410 							  stat->lru_mask);
5411 			seq_printf(m, " N%d=%lu", nid, nr);
5412 		}
5413 		seq_putc(m, '\n');
5414 	}
5415 
5416 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
5417 		struct mem_cgroup *iter;
5418 
5419 		nr = 0;
5420 		for_each_mem_cgroup_tree(iter, memcg)
5421 			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
5422 		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
5423 		for_each_node_state(nid, N_MEMORY) {
5424 			nr = 0;
5425 			for_each_mem_cgroup_tree(iter, memcg)
5426 				nr += mem_cgroup_node_nr_lru_pages(
5427 					iter, nid, stat->lru_mask);
5428 			seq_printf(m, " N%d=%lu", nid, nr);
5429 		}
5430 		seq_putc(m, '\n');
5431 	}
5432 
5433 	return 0;
5434 }
5435 #endif /* CONFIG_NUMA */
5436 
5437 static inline void mem_cgroup_lru_names_not_uptodate(void)
5438 {
5439 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5440 }
5441 
5442 static int memcg_stat_show(struct cgroup_subsys_state *css, struct cftype *cft,
5443 				 struct seq_file *m)
5444 {
5445 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5446 	struct mem_cgroup *mi;
5447 	unsigned int i;
5448 
5449 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5450 		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5451 			continue;
5452 		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5453 			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5454 	}
5455 
5456 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5457 		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5458 			   mem_cgroup_read_events(memcg, i));
5459 
5460 	for (i = 0; i < NR_LRU_LISTS; i++)
5461 		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5462 			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5463 
5464 	/* Hierarchical information */
5465 	{
5466 		unsigned long long limit, memsw_limit;
5467 		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5468 		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5469 		if (do_swap_account)
5470 			seq_printf(m, "hierarchical_memsw_limit %llu\n",
5471 				   memsw_limit);
5472 	}
5473 
5474 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5475 		long long val = 0;
5476 
5477 		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5478 			continue;
5479 		for_each_mem_cgroup_tree(mi, memcg)
5480 			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5481 		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5482 	}
5483 
5484 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5485 		unsigned long long val = 0;
5486 
5487 		for_each_mem_cgroup_tree(mi, memcg)
5488 			val += mem_cgroup_read_events(mi, i);
5489 		seq_printf(m, "total_%s %llu\n",
5490 			   mem_cgroup_events_names[i], val);
5491 	}
5492 
5493 	for (i = 0; i < NR_LRU_LISTS; i++) {
5494 		unsigned long long val = 0;
5495 
5496 		for_each_mem_cgroup_tree(mi, memcg)
5497 			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5498 		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5499 	}
5500 
5501 #ifdef CONFIG_DEBUG_VM
5502 	{
5503 		int nid, zid;
5504 		struct mem_cgroup_per_zone *mz;
5505 		struct zone_reclaim_stat *rstat;
5506 		unsigned long recent_rotated[2] = {0, 0};
5507 		unsigned long recent_scanned[2] = {0, 0};
5508 
5509 		for_each_online_node(nid)
5510 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5511 				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5512 				rstat = &mz->lruvec.reclaim_stat;
5513 
5514 				recent_rotated[0] += rstat->recent_rotated[0];
5515 				recent_rotated[1] += rstat->recent_rotated[1];
5516 				recent_scanned[0] += rstat->recent_scanned[0];
5517 				recent_scanned[1] += rstat->recent_scanned[1];
5518 			}
5519 		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5520 		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5521 		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5522 		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
5523 	}
5524 #endif
5525 
5526 	return 0;
5527 }
5528 
5529 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
5530 				      struct cftype *cft)
5531 {
5532 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5533 
5534 	return mem_cgroup_swappiness(memcg);
5535 }
5536 
5537 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
5538 				       struct cftype *cft, u64 val)
5539 {
5540 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5541 	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5542 
5543 	if (val > 100 || !parent)
5544 		return -EINVAL;
5545 
5546 	mutex_lock(&memcg_create_mutex);
5547 
5548 	/* If under hierarchy, only empty-root can set this value */
5549 	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5550 		mutex_unlock(&memcg_create_mutex);
5551 		return -EINVAL;
5552 	}
5553 
5554 	memcg->swappiness = val;
5555 
5556 	mutex_unlock(&memcg_create_mutex);
5557 
5558 	return 0;
5559 }
5560 
5561 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5562 {
5563 	struct mem_cgroup_threshold_ary *t;
5564 	u64 usage;
5565 	int i;
5566 
5567 	rcu_read_lock();
5568 	if (!swap)
5569 		t = rcu_dereference(memcg->thresholds.primary);
5570 	else
5571 		t = rcu_dereference(memcg->memsw_thresholds.primary);
5572 
5573 	if (!t)
5574 		goto unlock;
5575 
5576 	usage = mem_cgroup_usage(memcg, swap);
5577 
5578 	/*
5579 	 * current_threshold points to threshold just below or equal to usage.
5580 	 * If it's not true, a threshold was crossed after last
5581 	 * call of __mem_cgroup_threshold().
5582 	 */
5583 	i = t->current_threshold;
5584 
5585 	/*
5586 	 * Iterate backward over array of thresholds starting from
5587 	 * current_threshold and check if a threshold is crossed.
5588 	 * If none of thresholds below usage is crossed, we read
5589 	 * only one element of the array here.
5590 	 */
5591 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5592 		eventfd_signal(t->entries[i].eventfd, 1);
5593 
5594 	/* i = current_threshold + 1 */
5595 	i++;
5596 
5597 	/*
5598 	 * Iterate forward over array of thresholds starting from
5599 	 * current_threshold+1 and check if a threshold is crossed.
5600 	 * If none of thresholds above usage is crossed, we read
5601 	 * only one element of the array here.
5602 	 */
5603 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5604 		eventfd_signal(t->entries[i].eventfd, 1);
5605 
5606 	/* Update current_threshold */
5607 	t->current_threshold = i - 1;
5608 unlock:
5609 	rcu_read_unlock();
5610 }
5611 
5612 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5613 {
5614 	while (memcg) {
5615 		__mem_cgroup_threshold(memcg, false);
5616 		if (do_swap_account)
5617 			__mem_cgroup_threshold(memcg, true);
5618 
5619 		memcg = parent_mem_cgroup(memcg);
5620 	}
5621 }
5622 
5623 static int compare_thresholds(const void *a, const void *b)
5624 {
5625 	const struct mem_cgroup_threshold *_a = a;
5626 	const struct mem_cgroup_threshold *_b = b;
5627 
5628 	if (_a->threshold > _b->threshold)
5629 		return 1;
5630 
5631 	if (_a->threshold < _b->threshold)
5632 		return -1;
5633 
5634 	return 0;
5635 }
5636 
5637 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
5638 {
5639 	struct mem_cgroup_eventfd_list *ev;
5640 
5641 	list_for_each_entry(ev, &memcg->oom_notify, list)
5642 		eventfd_signal(ev->eventfd, 1);
5643 	return 0;
5644 }
5645 
5646 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
5647 {
5648 	struct mem_cgroup *iter;
5649 
5650 	for_each_mem_cgroup_tree(iter, memcg)
5651 		mem_cgroup_oom_notify_cb(iter);
5652 }
5653 
5654 static int mem_cgroup_usage_register_event(struct cgroup_subsys_state *css,
5655 	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5656 {
5657 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5658 	struct mem_cgroup_thresholds *thresholds;
5659 	struct mem_cgroup_threshold_ary *new;
5660 	enum res_type type = MEMFILE_TYPE(cft->private);
5661 	u64 threshold, usage;
5662 	int i, size, ret;
5663 
5664 	ret = res_counter_memparse_write_strategy(args, &threshold);
5665 	if (ret)
5666 		return ret;
5667 
5668 	mutex_lock(&memcg->thresholds_lock);
5669 
5670 	if (type == _MEM)
5671 		thresholds = &memcg->thresholds;
5672 	else if (type == _MEMSWAP)
5673 		thresholds = &memcg->memsw_thresholds;
5674 	else
5675 		BUG();
5676 
5677 	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5678 
5679 	/* Check if a threshold crossed before adding a new one */
5680 	if (thresholds->primary)
5681 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
5682 
5683 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5684 
5685 	/* Allocate memory for new array of thresholds */
5686 	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5687 			GFP_KERNEL);
5688 	if (!new) {
5689 		ret = -ENOMEM;
5690 		goto unlock;
5691 	}
5692 	new->size = size;
5693 
5694 	/* Copy thresholds (if any) to new array */
5695 	if (thresholds->primary) {
5696 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5697 				sizeof(struct mem_cgroup_threshold));
5698 	}
5699 
5700 	/* Add new threshold */
5701 	new->entries[size - 1].eventfd = eventfd;
5702 	new->entries[size - 1].threshold = threshold;
5703 
5704 	/* Sort thresholds. Registering of new threshold isn't time-critical */
5705 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5706 			compare_thresholds, NULL);
5707 
5708 	/* Find current threshold */
5709 	new->current_threshold = -1;
5710 	for (i = 0; i < size; i++) {
5711 		if (new->entries[i].threshold <= usage) {
5712 			/*
5713 			 * new->current_threshold will not be used until
5714 			 * rcu_assign_pointer(), so it's safe to increment
5715 			 * it here.
5716 			 */
5717 			++new->current_threshold;
5718 		} else
5719 			break;
5720 	}
5721 
5722 	/* Free old spare buffer and save old primary buffer as spare */
5723 	kfree(thresholds->spare);
5724 	thresholds->spare = thresholds->primary;
5725 
5726 	rcu_assign_pointer(thresholds->primary, new);
5727 
5728 	/* To be sure that nobody uses thresholds */
5729 	synchronize_rcu();
5730 
5731 unlock:
5732 	mutex_unlock(&memcg->thresholds_lock);
5733 
5734 	return ret;
5735 }
5736 
5737 static void mem_cgroup_usage_unregister_event(struct cgroup_subsys_state *css,
5738 	struct cftype *cft, struct eventfd_ctx *eventfd)
5739 {
5740 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5741 	struct mem_cgroup_thresholds *thresholds;
5742 	struct mem_cgroup_threshold_ary *new;
5743 	enum res_type type = MEMFILE_TYPE(cft->private);
5744 	u64 usage;
5745 	int i, j, size;
5746 
5747 	mutex_lock(&memcg->thresholds_lock);
5748 	if (type == _MEM)
5749 		thresholds = &memcg->thresholds;
5750 	else if (type == _MEMSWAP)
5751 		thresholds = &memcg->memsw_thresholds;
5752 	else
5753 		BUG();
5754 
5755 	if (!thresholds->primary)
5756 		goto unlock;
5757 
5758 	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5759 
5760 	/* Check if a threshold crossed before removing */
5761 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
5762 
5763 	/* Calculate new number of threshold */
5764 	size = 0;
5765 	for (i = 0; i < thresholds->primary->size; i++) {
5766 		if (thresholds->primary->entries[i].eventfd != eventfd)
5767 			size++;
5768 	}
5769 
5770 	new = thresholds->spare;
5771 
5772 	/* Set thresholds array to NULL if we don't have thresholds */
5773 	if (!size) {
5774 		kfree(new);
5775 		new = NULL;
5776 		goto swap_buffers;
5777 	}
5778 
5779 	new->size = size;
5780 
5781 	/* Copy thresholds and find current threshold */
5782 	new->current_threshold = -1;
5783 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5784 		if (thresholds->primary->entries[i].eventfd == eventfd)
5785 			continue;
5786 
5787 		new->entries[j] = thresholds->primary->entries[i];
5788 		if (new->entries[j].threshold <= usage) {
5789 			/*
5790 			 * new->current_threshold will not be used
5791 			 * until rcu_assign_pointer(), so it's safe to increment
5792 			 * it here.
5793 			 */
5794 			++new->current_threshold;
5795 		}
5796 		j++;
5797 	}
5798 
5799 swap_buffers:
5800 	/* Swap primary and spare array */
5801 	thresholds->spare = thresholds->primary;
5802 	/* If all events are unregistered, free the spare array */
5803 	if (!new) {
5804 		kfree(thresholds->spare);
5805 		thresholds->spare = NULL;
5806 	}
5807 
5808 	rcu_assign_pointer(thresholds->primary, new);
5809 
5810 	/* To be sure that nobody uses thresholds */
5811 	synchronize_rcu();
5812 unlock:
5813 	mutex_unlock(&memcg->thresholds_lock);
5814 }
5815 
5816 static int mem_cgroup_oom_register_event(struct cgroup_subsys_state *css,
5817 	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5818 {
5819 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5820 	struct mem_cgroup_eventfd_list *event;
5821 	enum res_type type = MEMFILE_TYPE(cft->private);
5822 
5823 	BUG_ON(type != _OOM_TYPE);
5824 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
5825 	if (!event)
5826 		return -ENOMEM;
5827 
5828 	spin_lock(&memcg_oom_lock);
5829 
5830 	event->eventfd = eventfd;
5831 	list_add(&event->list, &memcg->oom_notify);
5832 
5833 	/* already in OOM ? */
5834 	if (atomic_read(&memcg->under_oom))
5835 		eventfd_signal(eventfd, 1);
5836 	spin_unlock(&memcg_oom_lock);
5837 
5838 	return 0;
5839 }
5840 
5841 static void mem_cgroup_oom_unregister_event(struct cgroup_subsys_state *css,
5842 	struct cftype *cft, struct eventfd_ctx *eventfd)
5843 {
5844 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5845 	struct mem_cgroup_eventfd_list *ev, *tmp;
5846 	enum res_type type = MEMFILE_TYPE(cft->private);
5847 
5848 	BUG_ON(type != _OOM_TYPE);
5849 
5850 	spin_lock(&memcg_oom_lock);
5851 
5852 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
5853 		if (ev->eventfd == eventfd) {
5854 			list_del(&ev->list);
5855 			kfree(ev);
5856 		}
5857 	}
5858 
5859 	spin_unlock(&memcg_oom_lock);
5860 }
5861 
5862 static int mem_cgroup_oom_control_read(struct cgroup_subsys_state *css,
5863 	struct cftype *cft,  struct cgroup_map_cb *cb)
5864 {
5865 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5866 
5867 	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
5868 
5869 	if (atomic_read(&memcg->under_oom))
5870 		cb->fill(cb, "under_oom", 1);
5871 	else
5872 		cb->fill(cb, "under_oom", 0);
5873 	return 0;
5874 }
5875 
5876 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
5877 	struct cftype *cft, u64 val)
5878 {
5879 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5880 	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5881 
5882 	/* cannot set to root cgroup and only 0 and 1 are allowed */
5883 	if (!parent || !((val == 0) || (val == 1)))
5884 		return -EINVAL;
5885 
5886 	mutex_lock(&memcg_create_mutex);
5887 	/* oom-kill-disable is a flag for subhierarchy. */
5888 	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5889 		mutex_unlock(&memcg_create_mutex);
5890 		return -EINVAL;
5891 	}
5892 	memcg->oom_kill_disable = val;
5893 	if (!val)
5894 		memcg_oom_recover(memcg);
5895 	mutex_unlock(&memcg_create_mutex);
5896 	return 0;
5897 }
5898 
5899 #ifdef CONFIG_MEMCG_KMEM
5900 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5901 {
5902 	int ret;
5903 
5904 	memcg->kmemcg_id = -1;
5905 	ret = memcg_propagate_kmem(memcg);
5906 	if (ret)
5907 		return ret;
5908 
5909 	return mem_cgroup_sockets_init(memcg, ss);
5910 }
5911 
5912 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5913 {
5914 	mem_cgroup_sockets_destroy(memcg);
5915 }
5916 
5917 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5918 {
5919 	if (!memcg_kmem_is_active(memcg))
5920 		return;
5921 
5922 	/*
5923 	 * kmem charges can outlive the cgroup. In the case of slab
5924 	 * pages, for instance, a page contain objects from various
5925 	 * processes. As we prevent from taking a reference for every
5926 	 * such allocation we have to be careful when doing uncharge
5927 	 * (see memcg_uncharge_kmem) and here during offlining.
5928 	 *
5929 	 * The idea is that that only the _last_ uncharge which sees
5930 	 * the dead memcg will drop the last reference. An additional
5931 	 * reference is taken here before the group is marked dead
5932 	 * which is then paired with css_put during uncharge resp. here.
5933 	 *
5934 	 * Although this might sound strange as this path is called from
5935 	 * css_offline() when the referencemight have dropped down to 0
5936 	 * and shouldn't be incremented anymore (css_tryget would fail)
5937 	 * we do not have other options because of the kmem allocations
5938 	 * lifetime.
5939 	 */
5940 	css_get(&memcg->css);
5941 
5942 	memcg_kmem_mark_dead(memcg);
5943 
5944 	if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5945 		return;
5946 
5947 	if (memcg_kmem_test_and_clear_dead(memcg))
5948 		css_put(&memcg->css);
5949 }
5950 #else
5951 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5952 {
5953 	return 0;
5954 }
5955 
5956 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5957 {
5958 }
5959 
5960 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5961 {
5962 }
5963 #endif
5964 
5965 static struct cftype mem_cgroup_files[] = {
5966 	{
5967 		.name = "usage_in_bytes",
5968 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5969 		.read = mem_cgroup_read,
5970 		.register_event = mem_cgroup_usage_register_event,
5971 		.unregister_event = mem_cgroup_usage_unregister_event,
5972 	},
5973 	{
5974 		.name = "max_usage_in_bytes",
5975 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5976 		.trigger = mem_cgroup_reset,
5977 		.read = mem_cgroup_read,
5978 	},
5979 	{
5980 		.name = "limit_in_bytes",
5981 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5982 		.write_string = mem_cgroup_write,
5983 		.read = mem_cgroup_read,
5984 	},
5985 	{
5986 		.name = "soft_limit_in_bytes",
5987 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5988 		.write_string = mem_cgroup_write,
5989 		.read = mem_cgroup_read,
5990 	},
5991 	{
5992 		.name = "failcnt",
5993 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5994 		.trigger = mem_cgroup_reset,
5995 		.read = mem_cgroup_read,
5996 	},
5997 	{
5998 		.name = "stat",
5999 		.read_seq_string = memcg_stat_show,
6000 	},
6001 	{
6002 		.name = "force_empty",
6003 		.trigger = mem_cgroup_force_empty_write,
6004 	},
6005 	{
6006 		.name = "use_hierarchy",
6007 		.flags = CFTYPE_INSANE,
6008 		.write_u64 = mem_cgroup_hierarchy_write,
6009 		.read_u64 = mem_cgroup_hierarchy_read,
6010 	},
6011 	{
6012 		.name = "swappiness",
6013 		.read_u64 = mem_cgroup_swappiness_read,
6014 		.write_u64 = mem_cgroup_swappiness_write,
6015 	},
6016 	{
6017 		.name = "move_charge_at_immigrate",
6018 		.read_u64 = mem_cgroup_move_charge_read,
6019 		.write_u64 = mem_cgroup_move_charge_write,
6020 	},
6021 	{
6022 		.name = "oom_control",
6023 		.read_map = mem_cgroup_oom_control_read,
6024 		.write_u64 = mem_cgroup_oom_control_write,
6025 		.register_event = mem_cgroup_oom_register_event,
6026 		.unregister_event = mem_cgroup_oom_unregister_event,
6027 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
6028 	},
6029 	{
6030 		.name = "pressure_level",
6031 		.register_event = vmpressure_register_event,
6032 		.unregister_event = vmpressure_unregister_event,
6033 	},
6034 #ifdef CONFIG_NUMA
6035 	{
6036 		.name = "numa_stat",
6037 		.read_seq_string = memcg_numa_stat_show,
6038 	},
6039 #endif
6040 #ifdef CONFIG_MEMCG_KMEM
6041 	{
6042 		.name = "kmem.limit_in_bytes",
6043 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
6044 		.write_string = mem_cgroup_write,
6045 		.read = mem_cgroup_read,
6046 	},
6047 	{
6048 		.name = "kmem.usage_in_bytes",
6049 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
6050 		.read = mem_cgroup_read,
6051 	},
6052 	{
6053 		.name = "kmem.failcnt",
6054 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6055 		.trigger = mem_cgroup_reset,
6056 		.read = mem_cgroup_read,
6057 	},
6058 	{
6059 		.name = "kmem.max_usage_in_bytes",
6060 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6061 		.trigger = mem_cgroup_reset,
6062 		.read = mem_cgroup_read,
6063 	},
6064 #ifdef CONFIG_SLABINFO
6065 	{
6066 		.name = "kmem.slabinfo",
6067 		.read_seq_string = mem_cgroup_slabinfo_read,
6068 	},
6069 #endif
6070 #endif
6071 	{ },	/* terminate */
6072 };
6073 
6074 #ifdef CONFIG_MEMCG_SWAP
6075 static struct cftype memsw_cgroup_files[] = {
6076 	{
6077 		.name = "memsw.usage_in_bytes",
6078 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6079 		.read = mem_cgroup_read,
6080 		.register_event = mem_cgroup_usage_register_event,
6081 		.unregister_event = mem_cgroup_usage_unregister_event,
6082 	},
6083 	{
6084 		.name = "memsw.max_usage_in_bytes",
6085 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6086 		.trigger = mem_cgroup_reset,
6087 		.read = mem_cgroup_read,
6088 	},
6089 	{
6090 		.name = "memsw.limit_in_bytes",
6091 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6092 		.write_string = mem_cgroup_write,
6093 		.read = mem_cgroup_read,
6094 	},
6095 	{
6096 		.name = "memsw.failcnt",
6097 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6098 		.trigger = mem_cgroup_reset,
6099 		.read = mem_cgroup_read,
6100 	},
6101 	{ },	/* terminate */
6102 };
6103 #endif
6104 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6105 {
6106 	struct mem_cgroup_per_node *pn;
6107 	struct mem_cgroup_per_zone *mz;
6108 	int zone, tmp = node;
6109 	/*
6110 	 * This routine is called against possible nodes.
6111 	 * But it's BUG to call kmalloc() against offline node.
6112 	 *
6113 	 * TODO: this routine can waste much memory for nodes which will
6114 	 *       never be onlined. It's better to use memory hotplug callback
6115 	 *       function.
6116 	 */
6117 	if (!node_state(node, N_NORMAL_MEMORY))
6118 		tmp = -1;
6119 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6120 	if (!pn)
6121 		return 1;
6122 
6123 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6124 		mz = &pn->zoneinfo[zone];
6125 		lruvec_init(&mz->lruvec);
6126 		mz->usage_in_excess = 0;
6127 		mz->on_tree = false;
6128 		mz->memcg = memcg;
6129 	}
6130 	memcg->nodeinfo[node] = pn;
6131 	return 0;
6132 }
6133 
6134 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6135 {
6136 	kfree(memcg->nodeinfo[node]);
6137 }
6138 
6139 static struct mem_cgroup *mem_cgroup_alloc(void)
6140 {
6141 	struct mem_cgroup *memcg;
6142 	size_t size = memcg_size();
6143 
6144 	/* Can be very big if nr_node_ids is very big */
6145 	if (size < PAGE_SIZE)
6146 		memcg = kzalloc(size, GFP_KERNEL);
6147 	else
6148 		memcg = vzalloc(size);
6149 
6150 	if (!memcg)
6151 		return NULL;
6152 
6153 	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
6154 	if (!memcg->stat)
6155 		goto out_free;
6156 	spin_lock_init(&memcg->pcp_counter_lock);
6157 	return memcg;
6158 
6159 out_free:
6160 	if (size < PAGE_SIZE)
6161 		kfree(memcg);
6162 	else
6163 		vfree(memcg);
6164 	return NULL;
6165 }
6166 
6167 /*
6168  * At destroying mem_cgroup, references from swap_cgroup can remain.
6169  * (scanning all at force_empty is too costly...)
6170  *
6171  * Instead of clearing all references at force_empty, we remember
6172  * the number of reference from swap_cgroup and free mem_cgroup when
6173  * it goes down to 0.
6174  *
6175  * Removal of cgroup itself succeeds regardless of refs from swap.
6176  */
6177 
6178 static void __mem_cgroup_free(struct mem_cgroup *memcg)
6179 {
6180 	int node;
6181 	size_t size = memcg_size();
6182 
6183 	mem_cgroup_remove_from_trees(memcg);
6184 
6185 	for_each_node(node)
6186 		free_mem_cgroup_per_zone_info(memcg, node);
6187 
6188 	free_percpu(memcg->stat);
6189 
6190 	/*
6191 	 * We need to make sure that (at least for now), the jump label
6192 	 * destruction code runs outside of the cgroup lock. This is because
6193 	 * get_online_cpus(), which is called from the static_branch update,
6194 	 * can't be called inside the cgroup_lock. cpusets are the ones
6195 	 * enforcing this dependency, so if they ever change, we might as well.
6196 	 *
6197 	 * schedule_work() will guarantee this happens. Be careful if you need
6198 	 * to move this code around, and make sure it is outside
6199 	 * the cgroup_lock.
6200 	 */
6201 	disarm_static_keys(memcg);
6202 	if (size < PAGE_SIZE)
6203 		kfree(memcg);
6204 	else
6205 		vfree(memcg);
6206 }
6207 
6208 /*
6209  * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6210  */
6211 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6212 {
6213 	if (!memcg->res.parent)
6214 		return NULL;
6215 	return mem_cgroup_from_res_counter(memcg->res.parent, res);
6216 }
6217 EXPORT_SYMBOL(parent_mem_cgroup);
6218 
6219 static void __init mem_cgroup_soft_limit_tree_init(void)
6220 {
6221 	struct mem_cgroup_tree_per_node *rtpn;
6222 	struct mem_cgroup_tree_per_zone *rtpz;
6223 	int tmp, node, zone;
6224 
6225 	for_each_node(node) {
6226 		tmp = node;
6227 		if (!node_state(node, N_NORMAL_MEMORY))
6228 			tmp = -1;
6229 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6230 		BUG_ON(!rtpn);
6231 
6232 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
6233 
6234 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6235 			rtpz = &rtpn->rb_tree_per_zone[zone];
6236 			rtpz->rb_root = RB_ROOT;
6237 			spin_lock_init(&rtpz->lock);
6238 		}
6239 	}
6240 }
6241 
6242 static struct cgroup_subsys_state * __ref
6243 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6244 {
6245 	struct mem_cgroup *memcg;
6246 	long error = -ENOMEM;
6247 	int node;
6248 
6249 	memcg = mem_cgroup_alloc();
6250 	if (!memcg)
6251 		return ERR_PTR(error);
6252 
6253 	for_each_node(node)
6254 		if (alloc_mem_cgroup_per_zone_info(memcg, node))
6255 			goto free_out;
6256 
6257 	/* root ? */
6258 	if (parent_css == NULL) {
6259 		root_mem_cgroup = memcg;
6260 		res_counter_init(&memcg->res, NULL);
6261 		res_counter_init(&memcg->memsw, NULL);
6262 		res_counter_init(&memcg->kmem, NULL);
6263 	}
6264 
6265 	memcg->last_scanned_node = MAX_NUMNODES;
6266 	INIT_LIST_HEAD(&memcg->oom_notify);
6267 	memcg->move_charge_at_immigrate = 0;
6268 	mutex_init(&memcg->thresholds_lock);
6269 	spin_lock_init(&memcg->move_lock);
6270 	vmpressure_init(&memcg->vmpressure);
6271 
6272 	return &memcg->css;
6273 
6274 free_out:
6275 	__mem_cgroup_free(memcg);
6276 	return ERR_PTR(error);
6277 }
6278 
6279 static int
6280 mem_cgroup_css_online(struct cgroup_subsys_state *css)
6281 {
6282 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6283 	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
6284 	int error = 0;
6285 
6286 	if (css->cgroup->id > MEM_CGROUP_ID_MAX)
6287 		return -ENOSPC;
6288 
6289 	if (!parent)
6290 		return 0;
6291 
6292 	mutex_lock(&memcg_create_mutex);
6293 
6294 	memcg->use_hierarchy = parent->use_hierarchy;
6295 	memcg->oom_kill_disable = parent->oom_kill_disable;
6296 	memcg->swappiness = mem_cgroup_swappiness(parent);
6297 
6298 	if (parent->use_hierarchy) {
6299 		res_counter_init(&memcg->res, &parent->res);
6300 		res_counter_init(&memcg->memsw, &parent->memsw);
6301 		res_counter_init(&memcg->kmem, &parent->kmem);
6302 
6303 		/*
6304 		 * No need to take a reference to the parent because cgroup
6305 		 * core guarantees its existence.
6306 		 */
6307 	} else {
6308 		res_counter_init(&memcg->res, NULL);
6309 		res_counter_init(&memcg->memsw, NULL);
6310 		res_counter_init(&memcg->kmem, NULL);
6311 		/*
6312 		 * Deeper hierachy with use_hierarchy == false doesn't make
6313 		 * much sense so let cgroup subsystem know about this
6314 		 * unfortunate state in our controller.
6315 		 */
6316 		if (parent != root_mem_cgroup)
6317 			mem_cgroup_subsys.broken_hierarchy = true;
6318 	}
6319 
6320 	error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
6321 	mutex_unlock(&memcg_create_mutex);
6322 	return error;
6323 }
6324 
6325 /*
6326  * Announce all parents that a group from their hierarchy is gone.
6327  */
6328 static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6329 {
6330 	struct mem_cgroup *parent = memcg;
6331 
6332 	while ((parent = parent_mem_cgroup(parent)))
6333 		mem_cgroup_iter_invalidate(parent);
6334 
6335 	/*
6336 	 * if the root memcg is not hierarchical we have to check it
6337 	 * explicitely.
6338 	 */
6339 	if (!root_mem_cgroup->use_hierarchy)
6340 		mem_cgroup_iter_invalidate(root_mem_cgroup);
6341 }
6342 
6343 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
6344 {
6345 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6346 
6347 	kmem_cgroup_css_offline(memcg);
6348 
6349 	mem_cgroup_invalidate_reclaim_iterators(memcg);
6350 	mem_cgroup_reparent_charges(memcg);
6351 	mem_cgroup_destroy_all_caches(memcg);
6352 	vmpressure_cleanup(&memcg->vmpressure);
6353 }
6354 
6355 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
6356 {
6357 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6358 	/*
6359 	 * XXX: css_offline() would be where we should reparent all
6360 	 * memory to prepare the cgroup for destruction.  However,
6361 	 * memcg does not do css_tryget() and res_counter charging
6362 	 * under the same RCU lock region, which means that charging
6363 	 * could race with offlining.  Offlining only happens to
6364 	 * cgroups with no tasks in them but charges can show up
6365 	 * without any tasks from the swapin path when the target
6366 	 * memcg is looked up from the swapout record and not from the
6367 	 * current task as it usually is.  A race like this can leak
6368 	 * charges and put pages with stale cgroup pointers into
6369 	 * circulation:
6370 	 *
6371 	 * #0                        #1
6372 	 *                           lookup_swap_cgroup_id()
6373 	 *                           rcu_read_lock()
6374 	 *                           mem_cgroup_lookup()
6375 	 *                           css_tryget()
6376 	 *                           rcu_read_unlock()
6377 	 * disable css_tryget()
6378 	 * call_rcu()
6379 	 *   offline_css()
6380 	 *     reparent_charges()
6381 	 *                           res_counter_charge()
6382 	 *                           css_put()
6383 	 *                             css_free()
6384 	 *                           pc->mem_cgroup = dead memcg
6385 	 *                           add page to lru
6386 	 *
6387 	 * The bulk of the charges are still moved in offline_css() to
6388 	 * avoid pinning a lot of pages in case a long-term reference
6389 	 * like a swapout record is deferring the css_free() to long
6390 	 * after offlining.  But this makes sure we catch any charges
6391 	 * made after offlining:
6392 	 */
6393 	mem_cgroup_reparent_charges(memcg);
6394 
6395 	memcg_destroy_kmem(memcg);
6396 	__mem_cgroup_free(memcg);
6397 }
6398 
6399 #ifdef CONFIG_MMU
6400 /* Handlers for move charge at task migration. */
6401 #define PRECHARGE_COUNT_AT_ONCE	256
6402 static int mem_cgroup_do_precharge(unsigned long count)
6403 {
6404 	int ret = 0;
6405 	int batch_count = PRECHARGE_COUNT_AT_ONCE;
6406 	struct mem_cgroup *memcg = mc.to;
6407 
6408 	if (mem_cgroup_is_root(memcg)) {
6409 		mc.precharge += count;
6410 		/* we don't need css_get for root */
6411 		return ret;
6412 	}
6413 	/* try to charge at once */
6414 	if (count > 1) {
6415 		struct res_counter *dummy;
6416 		/*
6417 		 * "memcg" cannot be under rmdir() because we've already checked
6418 		 * by cgroup_lock_live_cgroup() that it is not removed and we
6419 		 * are still under the same cgroup_mutex. So we can postpone
6420 		 * css_get().
6421 		 */
6422 		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6423 			goto one_by_one;
6424 		if (do_swap_account && res_counter_charge(&memcg->memsw,
6425 						PAGE_SIZE * count, &dummy)) {
6426 			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6427 			goto one_by_one;
6428 		}
6429 		mc.precharge += count;
6430 		return ret;
6431 	}
6432 one_by_one:
6433 	/* fall back to one by one charge */
6434 	while (count--) {
6435 		if (signal_pending(current)) {
6436 			ret = -EINTR;
6437 			break;
6438 		}
6439 		if (!batch_count--) {
6440 			batch_count = PRECHARGE_COUNT_AT_ONCE;
6441 			cond_resched();
6442 		}
6443 		ret = __mem_cgroup_try_charge(NULL,
6444 					GFP_KERNEL, 1, &memcg, false);
6445 		if (ret)
6446 			/* mem_cgroup_clear_mc() will do uncharge later */
6447 			return ret;
6448 		mc.precharge++;
6449 	}
6450 	return ret;
6451 }
6452 
6453 /**
6454  * get_mctgt_type - get target type of moving charge
6455  * @vma: the vma the pte to be checked belongs
6456  * @addr: the address corresponding to the pte to be checked
6457  * @ptent: the pte to be checked
6458  * @target: the pointer the target page or swap ent will be stored(can be NULL)
6459  *
6460  * Returns
6461  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
6462  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6463  *     move charge. if @target is not NULL, the page is stored in target->page
6464  *     with extra refcnt got(Callers should handle it).
6465  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6466  *     target for charge migration. if @target is not NULL, the entry is stored
6467  *     in target->ent.
6468  *
6469  * Called with pte lock held.
6470  */
6471 union mc_target {
6472 	struct page	*page;
6473 	swp_entry_t	ent;
6474 };
6475 
6476 enum mc_target_type {
6477 	MC_TARGET_NONE = 0,
6478 	MC_TARGET_PAGE,
6479 	MC_TARGET_SWAP,
6480 };
6481 
6482 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6483 						unsigned long addr, pte_t ptent)
6484 {
6485 	struct page *page = vm_normal_page(vma, addr, ptent);
6486 
6487 	if (!page || !page_mapped(page))
6488 		return NULL;
6489 	if (PageAnon(page)) {
6490 		/* we don't move shared anon */
6491 		if (!move_anon())
6492 			return NULL;
6493 	} else if (!move_file())
6494 		/* we ignore mapcount for file pages */
6495 		return NULL;
6496 	if (!get_page_unless_zero(page))
6497 		return NULL;
6498 
6499 	return page;
6500 }
6501 
6502 #ifdef CONFIG_SWAP
6503 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6504 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
6505 {
6506 	struct page *page = NULL;
6507 	swp_entry_t ent = pte_to_swp_entry(ptent);
6508 
6509 	if (!move_anon() || non_swap_entry(ent))
6510 		return NULL;
6511 	/*
6512 	 * Because lookup_swap_cache() updates some statistics counter,
6513 	 * we call find_get_page() with swapper_space directly.
6514 	 */
6515 	page = find_get_page(swap_address_space(ent), ent.val);
6516 	if (do_swap_account)
6517 		entry->val = ent.val;
6518 
6519 	return page;
6520 }
6521 #else
6522 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6523 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
6524 {
6525 	return NULL;
6526 }
6527 #endif
6528 
6529 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6530 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
6531 {
6532 	struct page *page = NULL;
6533 	struct address_space *mapping;
6534 	pgoff_t pgoff;
6535 
6536 	if (!vma->vm_file) /* anonymous vma */
6537 		return NULL;
6538 	if (!move_file())
6539 		return NULL;
6540 
6541 	mapping = vma->vm_file->f_mapping;
6542 	if (pte_none(ptent))
6543 		pgoff = linear_page_index(vma, addr);
6544 	else /* pte_file(ptent) is true */
6545 		pgoff = pte_to_pgoff(ptent);
6546 
6547 	/* page is moved even if it's not RSS of this task(page-faulted). */
6548 	page = find_get_page(mapping, pgoff);
6549 
6550 #ifdef CONFIG_SWAP
6551 	/* shmem/tmpfs may report page out on swap: account for that too. */
6552 	if (radix_tree_exceptional_entry(page)) {
6553 		swp_entry_t swap = radix_to_swp_entry(page);
6554 		if (do_swap_account)
6555 			*entry = swap;
6556 		page = find_get_page(swap_address_space(swap), swap.val);
6557 	}
6558 #endif
6559 	return page;
6560 }
6561 
6562 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
6563 		unsigned long addr, pte_t ptent, union mc_target *target)
6564 {
6565 	struct page *page = NULL;
6566 	struct page_cgroup *pc;
6567 	enum mc_target_type ret = MC_TARGET_NONE;
6568 	swp_entry_t ent = { .val = 0 };
6569 
6570 	if (pte_present(ptent))
6571 		page = mc_handle_present_pte(vma, addr, ptent);
6572 	else if (is_swap_pte(ptent))
6573 		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6574 	else if (pte_none(ptent) || pte_file(ptent))
6575 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
6576 
6577 	if (!page && !ent.val)
6578 		return ret;
6579 	if (page) {
6580 		pc = lookup_page_cgroup(page);
6581 		/*
6582 		 * Do only loose check w/o page_cgroup lock.
6583 		 * mem_cgroup_move_account() checks the pc is valid or not under
6584 		 * the lock.
6585 		 */
6586 		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6587 			ret = MC_TARGET_PAGE;
6588 			if (target)
6589 				target->page = page;
6590 		}
6591 		if (!ret || !target)
6592 			put_page(page);
6593 	}
6594 	/* There is a swap entry and a page doesn't exist or isn't charged */
6595 	if (ent.val && !ret &&
6596 	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
6597 		ret = MC_TARGET_SWAP;
6598 		if (target)
6599 			target->ent = ent;
6600 	}
6601 	return ret;
6602 }
6603 
6604 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6605 /*
6606  * We don't consider swapping or file mapped pages because THP does not
6607  * support them for now.
6608  * Caller should make sure that pmd_trans_huge(pmd) is true.
6609  */
6610 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6611 		unsigned long addr, pmd_t pmd, union mc_target *target)
6612 {
6613 	struct page *page = NULL;
6614 	struct page_cgroup *pc;
6615 	enum mc_target_type ret = MC_TARGET_NONE;
6616 
6617 	page = pmd_page(pmd);
6618 	VM_BUG_ON(!page || !PageHead(page));
6619 	if (!move_anon())
6620 		return ret;
6621 	pc = lookup_page_cgroup(page);
6622 	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6623 		ret = MC_TARGET_PAGE;
6624 		if (target) {
6625 			get_page(page);
6626 			target->page = page;
6627 		}
6628 	}
6629 	return ret;
6630 }
6631 #else
6632 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6633 		unsigned long addr, pmd_t pmd, union mc_target *target)
6634 {
6635 	return MC_TARGET_NONE;
6636 }
6637 #endif
6638 
6639 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6640 					unsigned long addr, unsigned long end,
6641 					struct mm_walk *walk)
6642 {
6643 	struct vm_area_struct *vma = walk->private;
6644 	pte_t *pte;
6645 	spinlock_t *ptl;
6646 
6647 	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
6648 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6649 			mc.precharge += HPAGE_PMD_NR;
6650 		spin_unlock(ptl);
6651 		return 0;
6652 	}
6653 
6654 	if (pmd_trans_unstable(pmd))
6655 		return 0;
6656 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6657 	for (; addr != end; pte++, addr += PAGE_SIZE)
6658 		if (get_mctgt_type(vma, addr, *pte, NULL))
6659 			mc.precharge++;	/* increment precharge temporarily */
6660 	pte_unmap_unlock(pte - 1, ptl);
6661 	cond_resched();
6662 
6663 	return 0;
6664 }
6665 
6666 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6667 {
6668 	unsigned long precharge;
6669 	struct vm_area_struct *vma;
6670 
6671 	down_read(&mm->mmap_sem);
6672 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
6673 		struct mm_walk mem_cgroup_count_precharge_walk = {
6674 			.pmd_entry = mem_cgroup_count_precharge_pte_range,
6675 			.mm = mm,
6676 			.private = vma,
6677 		};
6678 		if (is_vm_hugetlb_page(vma))
6679 			continue;
6680 		walk_page_range(vma->vm_start, vma->vm_end,
6681 					&mem_cgroup_count_precharge_walk);
6682 	}
6683 	up_read(&mm->mmap_sem);
6684 
6685 	precharge = mc.precharge;
6686 	mc.precharge = 0;
6687 
6688 	return precharge;
6689 }
6690 
6691 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6692 {
6693 	unsigned long precharge = mem_cgroup_count_precharge(mm);
6694 
6695 	VM_BUG_ON(mc.moving_task);
6696 	mc.moving_task = current;
6697 	return mem_cgroup_do_precharge(precharge);
6698 }
6699 
6700 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6701 static void __mem_cgroup_clear_mc(void)
6702 {
6703 	struct mem_cgroup *from = mc.from;
6704 	struct mem_cgroup *to = mc.to;
6705 	int i;
6706 
6707 	/* we must uncharge all the leftover precharges from mc.to */
6708 	if (mc.precharge) {
6709 		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
6710 		mc.precharge = 0;
6711 	}
6712 	/*
6713 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6714 	 * we must uncharge here.
6715 	 */
6716 	if (mc.moved_charge) {
6717 		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6718 		mc.moved_charge = 0;
6719 	}
6720 	/* we must fixup refcnts and charges */
6721 	if (mc.moved_swap) {
6722 		/* uncharge swap account from the old cgroup */
6723 		if (!mem_cgroup_is_root(mc.from))
6724 			res_counter_uncharge(&mc.from->memsw,
6725 						PAGE_SIZE * mc.moved_swap);
6726 
6727 		for (i = 0; i < mc.moved_swap; i++)
6728 			css_put(&mc.from->css);
6729 
6730 		if (!mem_cgroup_is_root(mc.to)) {
6731 			/*
6732 			 * we charged both to->res and to->memsw, so we should
6733 			 * uncharge to->res.
6734 			 */
6735 			res_counter_uncharge(&mc.to->res,
6736 						PAGE_SIZE * mc.moved_swap);
6737 		}
6738 		/* we've already done css_get(mc.to) */
6739 		mc.moved_swap = 0;
6740 	}
6741 	memcg_oom_recover(from);
6742 	memcg_oom_recover(to);
6743 	wake_up_all(&mc.waitq);
6744 }
6745 
6746 static void mem_cgroup_clear_mc(void)
6747 {
6748 	struct mem_cgroup *from = mc.from;
6749 
6750 	/*
6751 	 * we must clear moving_task before waking up waiters at the end of
6752 	 * task migration.
6753 	 */
6754 	mc.moving_task = NULL;
6755 	__mem_cgroup_clear_mc();
6756 	spin_lock(&mc.lock);
6757 	mc.from = NULL;
6758 	mc.to = NULL;
6759 	spin_unlock(&mc.lock);
6760 	mem_cgroup_end_move(from);
6761 }
6762 
6763 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6764 				 struct cgroup_taskset *tset)
6765 {
6766 	struct task_struct *p = cgroup_taskset_first(tset);
6767 	int ret = 0;
6768 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6769 	unsigned long move_charge_at_immigrate;
6770 
6771 	/*
6772 	 * We are now commited to this value whatever it is. Changes in this
6773 	 * tunable will only affect upcoming migrations, not the current one.
6774 	 * So we need to save it, and keep it going.
6775 	 */
6776 	move_charge_at_immigrate  = memcg->move_charge_at_immigrate;
6777 	if (move_charge_at_immigrate) {
6778 		struct mm_struct *mm;
6779 		struct mem_cgroup *from = mem_cgroup_from_task(p);
6780 
6781 		VM_BUG_ON(from == memcg);
6782 
6783 		mm = get_task_mm(p);
6784 		if (!mm)
6785 			return 0;
6786 		/* We move charges only when we move a owner of the mm */
6787 		if (mm->owner == p) {
6788 			VM_BUG_ON(mc.from);
6789 			VM_BUG_ON(mc.to);
6790 			VM_BUG_ON(mc.precharge);
6791 			VM_BUG_ON(mc.moved_charge);
6792 			VM_BUG_ON(mc.moved_swap);
6793 			mem_cgroup_start_move(from);
6794 			spin_lock(&mc.lock);
6795 			mc.from = from;
6796 			mc.to = memcg;
6797 			mc.immigrate_flags = move_charge_at_immigrate;
6798 			spin_unlock(&mc.lock);
6799 			/* We set mc.moving_task later */
6800 
6801 			ret = mem_cgroup_precharge_mc(mm);
6802 			if (ret)
6803 				mem_cgroup_clear_mc();
6804 		}
6805 		mmput(mm);
6806 	}
6807 	return ret;
6808 }
6809 
6810 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6811 				     struct cgroup_taskset *tset)
6812 {
6813 	mem_cgroup_clear_mc();
6814 }
6815 
6816 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6817 				unsigned long addr, unsigned long end,
6818 				struct mm_walk *walk)
6819 {
6820 	int ret = 0;
6821 	struct vm_area_struct *vma = walk->private;
6822 	pte_t *pte;
6823 	spinlock_t *ptl;
6824 	enum mc_target_type target_type;
6825 	union mc_target target;
6826 	struct page *page;
6827 	struct page_cgroup *pc;
6828 
6829 	/*
6830 	 * We don't take compound_lock() here but no race with splitting thp
6831 	 * happens because:
6832 	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6833 	 *    under splitting, which means there's no concurrent thp split,
6834 	 *  - if another thread runs into split_huge_page() just after we
6835 	 *    entered this if-block, the thread must wait for page table lock
6836 	 *    to be unlocked in __split_huge_page_splitting(), where the main
6837 	 *    part of thp split is not executed yet.
6838 	 */
6839 	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
6840 		if (mc.precharge < HPAGE_PMD_NR) {
6841 			spin_unlock(ptl);
6842 			return 0;
6843 		}
6844 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6845 		if (target_type == MC_TARGET_PAGE) {
6846 			page = target.page;
6847 			if (!isolate_lru_page(page)) {
6848 				pc = lookup_page_cgroup(page);
6849 				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6850 							pc, mc.from, mc.to)) {
6851 					mc.precharge -= HPAGE_PMD_NR;
6852 					mc.moved_charge += HPAGE_PMD_NR;
6853 				}
6854 				putback_lru_page(page);
6855 			}
6856 			put_page(page);
6857 		}
6858 		spin_unlock(ptl);
6859 		return 0;
6860 	}
6861 
6862 	if (pmd_trans_unstable(pmd))
6863 		return 0;
6864 retry:
6865 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6866 	for (; addr != end; addr += PAGE_SIZE) {
6867 		pte_t ptent = *(pte++);
6868 		swp_entry_t ent;
6869 
6870 		if (!mc.precharge)
6871 			break;
6872 
6873 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6874 		case MC_TARGET_PAGE:
6875 			page = target.page;
6876 			if (isolate_lru_page(page))
6877 				goto put;
6878 			pc = lookup_page_cgroup(page);
6879 			if (!mem_cgroup_move_account(page, 1, pc,
6880 						     mc.from, mc.to)) {
6881 				mc.precharge--;
6882 				/* we uncharge from mc.from later. */
6883 				mc.moved_charge++;
6884 			}
6885 			putback_lru_page(page);
6886 put:			/* get_mctgt_type() gets the page */
6887 			put_page(page);
6888 			break;
6889 		case MC_TARGET_SWAP:
6890 			ent = target.ent;
6891 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6892 				mc.precharge--;
6893 				/* we fixup refcnts and charges later. */
6894 				mc.moved_swap++;
6895 			}
6896 			break;
6897 		default:
6898 			break;
6899 		}
6900 	}
6901 	pte_unmap_unlock(pte - 1, ptl);
6902 	cond_resched();
6903 
6904 	if (addr != end) {
6905 		/*
6906 		 * We have consumed all precharges we got in can_attach().
6907 		 * We try charge one by one, but don't do any additional
6908 		 * charges to mc.to if we have failed in charge once in attach()
6909 		 * phase.
6910 		 */
6911 		ret = mem_cgroup_do_precharge(1);
6912 		if (!ret)
6913 			goto retry;
6914 	}
6915 
6916 	return ret;
6917 }
6918 
6919 static void mem_cgroup_move_charge(struct mm_struct *mm)
6920 {
6921 	struct vm_area_struct *vma;
6922 
6923 	lru_add_drain_all();
6924 retry:
6925 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
6926 		/*
6927 		 * Someone who are holding the mmap_sem might be waiting in
6928 		 * waitq. So we cancel all extra charges, wake up all waiters,
6929 		 * and retry. Because we cancel precharges, we might not be able
6930 		 * to move enough charges, but moving charge is a best-effort
6931 		 * feature anyway, so it wouldn't be a big problem.
6932 		 */
6933 		__mem_cgroup_clear_mc();
6934 		cond_resched();
6935 		goto retry;
6936 	}
6937 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
6938 		int ret;
6939 		struct mm_walk mem_cgroup_move_charge_walk = {
6940 			.pmd_entry = mem_cgroup_move_charge_pte_range,
6941 			.mm = mm,
6942 			.private = vma,
6943 		};
6944 		if (is_vm_hugetlb_page(vma))
6945 			continue;
6946 		ret = walk_page_range(vma->vm_start, vma->vm_end,
6947 						&mem_cgroup_move_charge_walk);
6948 		if (ret)
6949 			/*
6950 			 * means we have consumed all precharges and failed in
6951 			 * doing additional charge. Just abandon here.
6952 			 */
6953 			break;
6954 	}
6955 	up_read(&mm->mmap_sem);
6956 }
6957 
6958 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6959 				 struct cgroup_taskset *tset)
6960 {
6961 	struct task_struct *p = cgroup_taskset_first(tset);
6962 	struct mm_struct *mm = get_task_mm(p);
6963 
6964 	if (mm) {
6965 		if (mc.to)
6966 			mem_cgroup_move_charge(mm);
6967 		mmput(mm);
6968 	}
6969 	if (mc.to)
6970 		mem_cgroup_clear_mc();
6971 }
6972 #else	/* !CONFIG_MMU */
6973 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6974 				 struct cgroup_taskset *tset)
6975 {
6976 	return 0;
6977 }
6978 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6979 				     struct cgroup_taskset *tset)
6980 {
6981 }
6982 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6983 				 struct cgroup_taskset *tset)
6984 {
6985 }
6986 #endif
6987 
6988 /*
6989  * Cgroup retains root cgroups across [un]mount cycles making it necessary
6990  * to verify sane_behavior flag on each mount attempt.
6991  */
6992 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6993 {
6994 	/*
6995 	 * use_hierarchy is forced with sane_behavior.  cgroup core
6996 	 * guarantees that @root doesn't have any children, so turning it
6997 	 * on for the root memcg is enough.
6998 	 */
6999 	if (cgroup_sane_behavior(root_css->cgroup))
7000 		mem_cgroup_from_css(root_css)->use_hierarchy = true;
7001 }
7002 
7003 struct cgroup_subsys mem_cgroup_subsys = {
7004 	.name = "memory",
7005 	.subsys_id = mem_cgroup_subsys_id,
7006 	.css_alloc = mem_cgroup_css_alloc,
7007 	.css_online = mem_cgroup_css_online,
7008 	.css_offline = mem_cgroup_css_offline,
7009 	.css_free = mem_cgroup_css_free,
7010 	.can_attach = mem_cgroup_can_attach,
7011 	.cancel_attach = mem_cgroup_cancel_attach,
7012 	.attach = mem_cgroup_move_task,
7013 	.bind = mem_cgroup_bind,
7014 	.base_cftypes = mem_cgroup_files,
7015 	.early_init = 0,
7016 };
7017 
7018 #ifdef CONFIG_MEMCG_SWAP
7019 static int __init enable_swap_account(char *s)
7020 {
7021 	if (!strcmp(s, "1"))
7022 		really_do_swap_account = 1;
7023 	else if (!strcmp(s, "0"))
7024 		really_do_swap_account = 0;
7025 	return 1;
7026 }
7027 __setup("swapaccount=", enable_swap_account);
7028 
7029 static void __init memsw_file_init(void)
7030 {
7031 	WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
7032 }
7033 
7034 static void __init enable_swap_cgroup(void)
7035 {
7036 	if (!mem_cgroup_disabled() && really_do_swap_account) {
7037 		do_swap_account = 1;
7038 		memsw_file_init();
7039 	}
7040 }
7041 
7042 #else
7043 static void __init enable_swap_cgroup(void)
7044 {
7045 }
7046 #endif
7047 
7048 /*
7049  * subsys_initcall() for memory controller.
7050  *
7051  * Some parts like hotcpu_notifier() have to be initialized from this context
7052  * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
7053  * everything that doesn't depend on a specific mem_cgroup structure should
7054  * be initialized from here.
7055  */
7056 static int __init mem_cgroup_init(void)
7057 {
7058 	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
7059 	enable_swap_cgroup();
7060 	mem_cgroup_soft_limit_tree_init();
7061 	memcg_stock_init();
7062 	return 0;
7063 }
7064 subsys_initcall(mem_cgroup_init);
7065