xref: /openbmc/linux/mm/memcontrol.c (revision 9009b455811b0fa1f6b0adfa94db136984db5a38)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <xemul@openvz.org>
9  *
10  * Memory thresholds
11  * Copyright (C) 2009 Nokia Corporation
12  * Author: Kirill A. Shutemov
13  *
14  * Kernel Memory Controller
15  * Copyright (C) 2012 Parallels Inc. and Google Inc.
16  * Authors: Glauber Costa and Suleiman Souhlal
17  *
18  * Native page reclaim
19  * Charge lifetime sanitation
20  * Lockless page tracking & accounting
21  * Unified hierarchy configuration model
22  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23  *
24  * Per memcg lru locking
25  * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26  */
27 
28 #include <linux/page_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/pagewalk.h>
32 #include <linux/sched/mm.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/hugetlb.h>
35 #include <linux/pagemap.h>
36 #include <linux/vm_event_item.h>
37 #include <linux/smp.h>
38 #include <linux/page-flags.h>
39 #include <linux/backing-dev.h>
40 #include <linux/bit_spinlock.h>
41 #include <linux/rcupdate.h>
42 #include <linux/limits.h>
43 #include <linux/export.h>
44 #include <linux/mutex.h>
45 #include <linux/rbtree.h>
46 #include <linux/slab.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/spinlock.h>
50 #include <linux/eventfd.h>
51 #include <linux/poll.h>
52 #include <linux/sort.h>
53 #include <linux/fs.h>
54 #include <linux/seq_file.h>
55 #include <linux/vmpressure.h>
56 #include <linux/mm_inline.h>
57 #include <linux/swap_cgroup.h>
58 #include <linux/cpu.h>
59 #include <linux/oom.h>
60 #include <linux/lockdep.h>
61 #include <linux/file.h>
62 #include <linux/tracehook.h>
63 #include <linux/psi.h>
64 #include <linux/seq_buf.h>
65 #include "internal.h"
66 #include <net/sock.h>
67 #include <net/ip.h>
68 #include "slab.h"
69 
70 #include <linux/uaccess.h>
71 
72 #include <trace/events/vmscan.h>
73 
74 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
75 EXPORT_SYMBOL(memory_cgrp_subsys);
76 
77 struct mem_cgroup *root_mem_cgroup __read_mostly;
78 
79 /* Active memory cgroup to use from an interrupt context */
80 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
81 
82 /* Socket memory accounting disabled? */
83 static bool cgroup_memory_nosocket;
84 
85 /* Kernel memory accounting disabled? */
86 static bool cgroup_memory_nokmem;
87 
88 /* Whether the swap controller is active */
89 #ifdef CONFIG_MEMCG_SWAP
90 bool cgroup_memory_noswap __read_mostly;
91 #else
92 #define cgroup_memory_noswap		1
93 #endif
94 
95 #ifdef CONFIG_CGROUP_WRITEBACK
96 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
97 #endif
98 
99 /* Whether legacy memory+swap accounting is active */
100 static bool do_memsw_account(void)
101 {
102 	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
103 }
104 
105 #define THRESHOLDS_EVENTS_TARGET 128
106 #define SOFTLIMIT_EVENTS_TARGET 1024
107 
108 /*
109  * Cgroups above their limits are maintained in a RB-Tree, independent of
110  * their hierarchy representation
111  */
112 
113 struct mem_cgroup_tree_per_node {
114 	struct rb_root rb_root;
115 	struct rb_node *rb_rightmost;
116 	spinlock_t lock;
117 };
118 
119 struct mem_cgroup_tree {
120 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
121 };
122 
123 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
124 
125 /* for OOM */
126 struct mem_cgroup_eventfd_list {
127 	struct list_head list;
128 	struct eventfd_ctx *eventfd;
129 };
130 
131 /*
132  * cgroup_event represents events which userspace want to receive.
133  */
134 struct mem_cgroup_event {
135 	/*
136 	 * memcg which the event belongs to.
137 	 */
138 	struct mem_cgroup *memcg;
139 	/*
140 	 * eventfd to signal userspace about the event.
141 	 */
142 	struct eventfd_ctx *eventfd;
143 	/*
144 	 * Each of these stored in a list by the cgroup.
145 	 */
146 	struct list_head list;
147 	/*
148 	 * register_event() callback will be used to add new userspace
149 	 * waiter for changes related to this event.  Use eventfd_signal()
150 	 * on eventfd to send notification to userspace.
151 	 */
152 	int (*register_event)(struct mem_cgroup *memcg,
153 			      struct eventfd_ctx *eventfd, const char *args);
154 	/*
155 	 * unregister_event() callback will be called when userspace closes
156 	 * the eventfd or on cgroup removing.  This callback must be set,
157 	 * if you want provide notification functionality.
158 	 */
159 	void (*unregister_event)(struct mem_cgroup *memcg,
160 				 struct eventfd_ctx *eventfd);
161 	/*
162 	 * All fields below needed to unregister event when
163 	 * userspace closes eventfd.
164 	 */
165 	poll_table pt;
166 	wait_queue_head_t *wqh;
167 	wait_queue_entry_t wait;
168 	struct work_struct remove;
169 };
170 
171 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
172 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
173 
174 /* Stuffs for move charges at task migration. */
175 /*
176  * Types of charges to be moved.
177  */
178 #define MOVE_ANON	0x1U
179 #define MOVE_FILE	0x2U
180 #define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
181 
182 /* "mc" and its members are protected by cgroup_mutex */
183 static struct move_charge_struct {
184 	spinlock_t	  lock; /* for from, to */
185 	struct mm_struct  *mm;
186 	struct mem_cgroup *from;
187 	struct mem_cgroup *to;
188 	unsigned long flags;
189 	unsigned long precharge;
190 	unsigned long moved_charge;
191 	unsigned long moved_swap;
192 	struct task_struct *moving_task;	/* a task moving charges */
193 	wait_queue_head_t waitq;		/* a waitq for other context */
194 } mc = {
195 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
196 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
197 };
198 
199 /*
200  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
201  * limit reclaim to prevent infinite loops, if they ever occur.
202  */
203 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
204 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
205 
206 /* for encoding cft->private value on file */
207 enum res_type {
208 	_MEM,
209 	_MEMSWAP,
210 	_OOM_TYPE,
211 	_KMEM,
212 	_TCP,
213 };
214 
215 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
216 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
217 #define MEMFILE_ATTR(val)	((val) & 0xffff)
218 /* Used for OOM nofiier */
219 #define OOM_CONTROL		(0)
220 
221 /*
222  * Iteration constructs for visiting all cgroups (under a tree).  If
223  * loops are exited prematurely (break), mem_cgroup_iter_break() must
224  * be used for reference counting.
225  */
226 #define for_each_mem_cgroup_tree(iter, root)		\
227 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
228 	     iter != NULL;				\
229 	     iter = mem_cgroup_iter(root, iter, NULL))
230 
231 #define for_each_mem_cgroup(iter)			\
232 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
233 	     iter != NULL;				\
234 	     iter = mem_cgroup_iter(NULL, iter, NULL))
235 
236 static inline bool should_force_charge(void)
237 {
238 	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
239 		(current->flags & PF_EXITING);
240 }
241 
242 /* Some nice accessors for the vmpressure. */
243 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
244 {
245 	if (!memcg)
246 		memcg = root_mem_cgroup;
247 	return &memcg->vmpressure;
248 }
249 
250 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
251 {
252 	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
253 }
254 
255 #ifdef CONFIG_MEMCG_KMEM
256 extern spinlock_t css_set_lock;
257 
258 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
259 				      unsigned int nr_pages);
260 
261 static void obj_cgroup_release(struct percpu_ref *ref)
262 {
263 	struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
264 	struct mem_cgroup *memcg;
265 	unsigned int nr_bytes;
266 	unsigned int nr_pages;
267 	unsigned long flags;
268 
269 	/*
270 	 * At this point all allocated objects are freed, and
271 	 * objcg->nr_charged_bytes can't have an arbitrary byte value.
272 	 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
273 	 *
274 	 * The following sequence can lead to it:
275 	 * 1) CPU0: objcg == stock->cached_objcg
276 	 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
277 	 *          PAGE_SIZE bytes are charged
278 	 * 3) CPU1: a process from another memcg is allocating something,
279 	 *          the stock if flushed,
280 	 *          objcg->nr_charged_bytes = PAGE_SIZE - 92
281 	 * 5) CPU0: we do release this object,
282 	 *          92 bytes are added to stock->nr_bytes
283 	 * 6) CPU0: stock is flushed,
284 	 *          92 bytes are added to objcg->nr_charged_bytes
285 	 *
286 	 * In the result, nr_charged_bytes == PAGE_SIZE.
287 	 * This page will be uncharged in obj_cgroup_release().
288 	 */
289 	nr_bytes = atomic_read(&objcg->nr_charged_bytes);
290 	WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
291 	nr_pages = nr_bytes >> PAGE_SHIFT;
292 
293 	spin_lock_irqsave(&css_set_lock, flags);
294 	memcg = obj_cgroup_memcg(objcg);
295 	if (nr_pages)
296 		obj_cgroup_uncharge_pages(objcg, nr_pages);
297 	list_del(&objcg->list);
298 	mem_cgroup_put(memcg);
299 	spin_unlock_irqrestore(&css_set_lock, flags);
300 
301 	percpu_ref_exit(ref);
302 	kfree_rcu(objcg, rcu);
303 }
304 
305 static struct obj_cgroup *obj_cgroup_alloc(void)
306 {
307 	struct obj_cgroup *objcg;
308 	int ret;
309 
310 	objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
311 	if (!objcg)
312 		return NULL;
313 
314 	ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
315 			      GFP_KERNEL);
316 	if (ret) {
317 		kfree(objcg);
318 		return NULL;
319 	}
320 	INIT_LIST_HEAD(&objcg->list);
321 	return objcg;
322 }
323 
324 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
325 				  struct mem_cgroup *parent)
326 {
327 	struct obj_cgroup *objcg, *iter;
328 
329 	objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
330 
331 	spin_lock_irq(&css_set_lock);
332 
333 	/* Move active objcg to the parent's list */
334 	xchg(&objcg->memcg, parent);
335 	css_get(&parent->css);
336 	list_add(&objcg->list, &parent->objcg_list);
337 
338 	/* Move already reparented objcgs to the parent's list */
339 	list_for_each_entry(iter, &memcg->objcg_list, list) {
340 		css_get(&parent->css);
341 		xchg(&iter->memcg, parent);
342 		css_put(&memcg->css);
343 	}
344 	list_splice(&memcg->objcg_list, &parent->objcg_list);
345 
346 	spin_unlock_irq(&css_set_lock);
347 
348 	percpu_ref_kill(&objcg->refcnt);
349 }
350 
351 /*
352  * This will be used as a shrinker list's index.
353  * The main reason for not using cgroup id for this:
354  *  this works better in sparse environments, where we have a lot of memcgs,
355  *  but only a few kmem-limited. Or also, if we have, for instance, 200
356  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
357  *  200 entry array for that.
358  *
359  * The current size of the caches array is stored in memcg_nr_cache_ids. It
360  * will double each time we have to increase it.
361  */
362 static DEFINE_IDA(memcg_cache_ida);
363 int memcg_nr_cache_ids;
364 
365 /* Protects memcg_nr_cache_ids */
366 static DECLARE_RWSEM(memcg_cache_ids_sem);
367 
368 void memcg_get_cache_ids(void)
369 {
370 	down_read(&memcg_cache_ids_sem);
371 }
372 
373 void memcg_put_cache_ids(void)
374 {
375 	up_read(&memcg_cache_ids_sem);
376 }
377 
378 /*
379  * MIN_SIZE is different than 1, because we would like to avoid going through
380  * the alloc/free process all the time. In a small machine, 4 kmem-limited
381  * cgroups is a reasonable guess. In the future, it could be a parameter or
382  * tunable, but that is strictly not necessary.
383  *
384  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
385  * this constant directly from cgroup, but it is understandable that this is
386  * better kept as an internal representation in cgroup.c. In any case, the
387  * cgrp_id space is not getting any smaller, and we don't have to necessarily
388  * increase ours as well if it increases.
389  */
390 #define MEMCG_CACHES_MIN_SIZE 4
391 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
392 
393 /*
394  * A lot of the calls to the cache allocation functions are expected to be
395  * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
396  * conditional to this static branch, we'll have to allow modules that does
397  * kmem_cache_alloc and the such to see this symbol as well
398  */
399 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
400 EXPORT_SYMBOL(memcg_kmem_enabled_key);
401 #endif
402 
403 static int memcg_shrinker_map_size;
404 static DEFINE_MUTEX(memcg_shrinker_map_mutex);
405 
406 static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
407 {
408 	kvfree(container_of(head, struct memcg_shrinker_map, rcu));
409 }
410 
411 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
412 					 int size, int old_size)
413 {
414 	struct memcg_shrinker_map *new, *old;
415 	struct mem_cgroup_per_node *pn;
416 	int nid;
417 
418 	lockdep_assert_held(&memcg_shrinker_map_mutex);
419 
420 	for_each_node(nid) {
421 		pn = memcg->nodeinfo[nid];
422 		old = rcu_dereference_protected(pn->shrinker_map, true);
423 		/* Not yet online memcg */
424 		if (!old)
425 			return 0;
426 
427 		new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
428 		if (!new)
429 			return -ENOMEM;
430 
431 		/* Set all old bits, clear all new bits */
432 		memset(new->map, (int)0xff, old_size);
433 		memset((void *)new->map + old_size, 0, size - old_size);
434 
435 		rcu_assign_pointer(pn->shrinker_map, new);
436 		call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
437 	}
438 
439 	return 0;
440 }
441 
442 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
443 {
444 	struct mem_cgroup_per_node *pn;
445 	struct memcg_shrinker_map *map;
446 	int nid;
447 
448 	if (mem_cgroup_is_root(memcg))
449 		return;
450 
451 	for_each_node(nid) {
452 		pn = memcg->nodeinfo[nid];
453 		map = rcu_dereference_protected(pn->shrinker_map, true);
454 		kvfree(map);
455 		rcu_assign_pointer(pn->shrinker_map, NULL);
456 	}
457 }
458 
459 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
460 {
461 	struct memcg_shrinker_map *map;
462 	int nid, size, ret = 0;
463 
464 	if (mem_cgroup_is_root(memcg))
465 		return 0;
466 
467 	mutex_lock(&memcg_shrinker_map_mutex);
468 	size = memcg_shrinker_map_size;
469 	for_each_node(nid) {
470 		map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid);
471 		if (!map) {
472 			memcg_free_shrinker_maps(memcg);
473 			ret = -ENOMEM;
474 			break;
475 		}
476 		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
477 	}
478 	mutex_unlock(&memcg_shrinker_map_mutex);
479 
480 	return ret;
481 }
482 
483 int memcg_expand_shrinker_maps(int new_id)
484 {
485 	int size, old_size, ret = 0;
486 	struct mem_cgroup *memcg;
487 
488 	size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
489 	old_size = memcg_shrinker_map_size;
490 	if (size <= old_size)
491 		return 0;
492 
493 	mutex_lock(&memcg_shrinker_map_mutex);
494 	if (!root_mem_cgroup)
495 		goto unlock;
496 
497 	for_each_mem_cgroup(memcg) {
498 		if (mem_cgroup_is_root(memcg))
499 			continue;
500 		ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
501 		if (ret) {
502 			mem_cgroup_iter_break(NULL, memcg);
503 			goto unlock;
504 		}
505 	}
506 unlock:
507 	if (!ret)
508 		memcg_shrinker_map_size = size;
509 	mutex_unlock(&memcg_shrinker_map_mutex);
510 	return ret;
511 }
512 
513 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
514 {
515 	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
516 		struct memcg_shrinker_map *map;
517 
518 		rcu_read_lock();
519 		map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
520 		/* Pairs with smp mb in shrink_slab() */
521 		smp_mb__before_atomic();
522 		set_bit(shrinker_id, map->map);
523 		rcu_read_unlock();
524 	}
525 }
526 
527 /**
528  * mem_cgroup_css_from_page - css of the memcg associated with a page
529  * @page: page of interest
530  *
531  * If memcg is bound to the default hierarchy, css of the memcg associated
532  * with @page is returned.  The returned css remains associated with @page
533  * until it is released.
534  *
535  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
536  * is returned.
537  */
538 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
539 {
540 	struct mem_cgroup *memcg;
541 
542 	memcg = page_memcg(page);
543 
544 	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
545 		memcg = root_mem_cgroup;
546 
547 	return &memcg->css;
548 }
549 
550 /**
551  * page_cgroup_ino - return inode number of the memcg a page is charged to
552  * @page: the page
553  *
554  * Look up the closest online ancestor of the memory cgroup @page is charged to
555  * and return its inode number or 0 if @page is not charged to any cgroup. It
556  * is safe to call this function without holding a reference to @page.
557  *
558  * Note, this function is inherently racy, because there is nothing to prevent
559  * the cgroup inode from getting torn down and potentially reallocated a moment
560  * after page_cgroup_ino() returns, so it only should be used by callers that
561  * do not care (such as procfs interfaces).
562  */
563 ino_t page_cgroup_ino(struct page *page)
564 {
565 	struct mem_cgroup *memcg;
566 	unsigned long ino = 0;
567 
568 	rcu_read_lock();
569 	memcg = page_memcg_check(page);
570 
571 	while (memcg && !(memcg->css.flags & CSS_ONLINE))
572 		memcg = parent_mem_cgroup(memcg);
573 	if (memcg)
574 		ino = cgroup_ino(memcg->css.cgroup);
575 	rcu_read_unlock();
576 	return ino;
577 }
578 
579 static struct mem_cgroup_per_node *
580 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
581 {
582 	int nid = page_to_nid(page);
583 
584 	return memcg->nodeinfo[nid];
585 }
586 
587 static struct mem_cgroup_tree_per_node *
588 soft_limit_tree_node(int nid)
589 {
590 	return soft_limit_tree.rb_tree_per_node[nid];
591 }
592 
593 static struct mem_cgroup_tree_per_node *
594 soft_limit_tree_from_page(struct page *page)
595 {
596 	int nid = page_to_nid(page);
597 
598 	return soft_limit_tree.rb_tree_per_node[nid];
599 }
600 
601 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
602 					 struct mem_cgroup_tree_per_node *mctz,
603 					 unsigned long new_usage_in_excess)
604 {
605 	struct rb_node **p = &mctz->rb_root.rb_node;
606 	struct rb_node *parent = NULL;
607 	struct mem_cgroup_per_node *mz_node;
608 	bool rightmost = true;
609 
610 	if (mz->on_tree)
611 		return;
612 
613 	mz->usage_in_excess = new_usage_in_excess;
614 	if (!mz->usage_in_excess)
615 		return;
616 	while (*p) {
617 		parent = *p;
618 		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
619 					tree_node);
620 		if (mz->usage_in_excess < mz_node->usage_in_excess) {
621 			p = &(*p)->rb_left;
622 			rightmost = false;
623 		} else {
624 			p = &(*p)->rb_right;
625 		}
626 	}
627 
628 	if (rightmost)
629 		mctz->rb_rightmost = &mz->tree_node;
630 
631 	rb_link_node(&mz->tree_node, parent, p);
632 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
633 	mz->on_tree = true;
634 }
635 
636 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
637 					 struct mem_cgroup_tree_per_node *mctz)
638 {
639 	if (!mz->on_tree)
640 		return;
641 
642 	if (&mz->tree_node == mctz->rb_rightmost)
643 		mctz->rb_rightmost = rb_prev(&mz->tree_node);
644 
645 	rb_erase(&mz->tree_node, &mctz->rb_root);
646 	mz->on_tree = false;
647 }
648 
649 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
650 				       struct mem_cgroup_tree_per_node *mctz)
651 {
652 	unsigned long flags;
653 
654 	spin_lock_irqsave(&mctz->lock, flags);
655 	__mem_cgroup_remove_exceeded(mz, mctz);
656 	spin_unlock_irqrestore(&mctz->lock, flags);
657 }
658 
659 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
660 {
661 	unsigned long nr_pages = page_counter_read(&memcg->memory);
662 	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
663 	unsigned long excess = 0;
664 
665 	if (nr_pages > soft_limit)
666 		excess = nr_pages - soft_limit;
667 
668 	return excess;
669 }
670 
671 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
672 {
673 	unsigned long excess;
674 	struct mem_cgroup_per_node *mz;
675 	struct mem_cgroup_tree_per_node *mctz;
676 
677 	mctz = soft_limit_tree_from_page(page);
678 	if (!mctz)
679 		return;
680 	/*
681 	 * Necessary to update all ancestors when hierarchy is used.
682 	 * because their event counter is not touched.
683 	 */
684 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
685 		mz = mem_cgroup_page_nodeinfo(memcg, page);
686 		excess = soft_limit_excess(memcg);
687 		/*
688 		 * We have to update the tree if mz is on RB-tree or
689 		 * mem is over its softlimit.
690 		 */
691 		if (excess || mz->on_tree) {
692 			unsigned long flags;
693 
694 			spin_lock_irqsave(&mctz->lock, flags);
695 			/* if on-tree, remove it */
696 			if (mz->on_tree)
697 				__mem_cgroup_remove_exceeded(mz, mctz);
698 			/*
699 			 * Insert again. mz->usage_in_excess will be updated.
700 			 * If excess is 0, no tree ops.
701 			 */
702 			__mem_cgroup_insert_exceeded(mz, mctz, excess);
703 			spin_unlock_irqrestore(&mctz->lock, flags);
704 		}
705 	}
706 }
707 
708 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
709 {
710 	struct mem_cgroup_tree_per_node *mctz;
711 	struct mem_cgroup_per_node *mz;
712 	int nid;
713 
714 	for_each_node(nid) {
715 		mz = memcg->nodeinfo[nid];
716 		mctz = soft_limit_tree_node(nid);
717 		if (mctz)
718 			mem_cgroup_remove_exceeded(mz, mctz);
719 	}
720 }
721 
722 static struct mem_cgroup_per_node *
723 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
724 {
725 	struct mem_cgroup_per_node *mz;
726 
727 retry:
728 	mz = NULL;
729 	if (!mctz->rb_rightmost)
730 		goto done;		/* Nothing to reclaim from */
731 
732 	mz = rb_entry(mctz->rb_rightmost,
733 		      struct mem_cgroup_per_node, tree_node);
734 	/*
735 	 * Remove the node now but someone else can add it back,
736 	 * we will to add it back at the end of reclaim to its correct
737 	 * position in the tree.
738 	 */
739 	__mem_cgroup_remove_exceeded(mz, mctz);
740 	if (!soft_limit_excess(mz->memcg) ||
741 	    !css_tryget(&mz->memcg->css))
742 		goto retry;
743 done:
744 	return mz;
745 }
746 
747 static struct mem_cgroup_per_node *
748 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
749 {
750 	struct mem_cgroup_per_node *mz;
751 
752 	spin_lock_irq(&mctz->lock);
753 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
754 	spin_unlock_irq(&mctz->lock);
755 	return mz;
756 }
757 
758 /**
759  * __mod_memcg_state - update cgroup memory statistics
760  * @memcg: the memory cgroup
761  * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
762  * @val: delta to add to the counter, can be negative
763  */
764 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
765 {
766 	if (mem_cgroup_disabled())
767 		return;
768 
769 	__this_cpu_add(memcg->vmstats_percpu->state[idx], val);
770 	cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
771 }
772 
773 /* idx can be of type enum memcg_stat_item or node_stat_item. */
774 static unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
775 {
776 	long x = READ_ONCE(memcg->vmstats.state[idx]);
777 #ifdef CONFIG_SMP
778 	if (x < 0)
779 		x = 0;
780 #endif
781 	return x;
782 }
783 
784 /* idx can be of type enum memcg_stat_item or node_stat_item. */
785 static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
786 {
787 	long x = 0;
788 	int cpu;
789 
790 	for_each_possible_cpu(cpu)
791 		x += per_cpu(memcg->vmstats_percpu->state[idx], cpu);
792 #ifdef CONFIG_SMP
793 	if (x < 0)
794 		x = 0;
795 #endif
796 	return x;
797 }
798 
799 static struct mem_cgroup_per_node *
800 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
801 {
802 	struct mem_cgroup *parent;
803 
804 	parent = parent_mem_cgroup(pn->memcg);
805 	if (!parent)
806 		return NULL;
807 	return parent->nodeinfo[nid];
808 }
809 
810 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
811 			      int val)
812 {
813 	struct mem_cgroup_per_node *pn;
814 	struct mem_cgroup *memcg;
815 	long x, threshold = MEMCG_CHARGE_BATCH;
816 
817 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
818 	memcg = pn->memcg;
819 
820 	/* Update memcg */
821 	__mod_memcg_state(memcg, idx, val);
822 
823 	/* Update lruvec */
824 	__this_cpu_add(pn->lruvec_stat_local->count[idx], val);
825 
826 	if (vmstat_item_in_bytes(idx))
827 		threshold <<= PAGE_SHIFT;
828 
829 	x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
830 	if (unlikely(abs(x) > threshold)) {
831 		pg_data_t *pgdat = lruvec_pgdat(lruvec);
832 		struct mem_cgroup_per_node *pi;
833 
834 		for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
835 			atomic_long_add(x, &pi->lruvec_stat[idx]);
836 		x = 0;
837 	}
838 	__this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
839 }
840 
841 /**
842  * __mod_lruvec_state - update lruvec memory statistics
843  * @lruvec: the lruvec
844  * @idx: the stat item
845  * @val: delta to add to the counter, can be negative
846  *
847  * The lruvec is the intersection of the NUMA node and a cgroup. This
848  * function updates the all three counters that are affected by a
849  * change of state at this level: per-node, per-cgroup, per-lruvec.
850  */
851 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
852 			int val)
853 {
854 	/* Update node */
855 	__mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
856 
857 	/* Update memcg and lruvec */
858 	if (!mem_cgroup_disabled())
859 		__mod_memcg_lruvec_state(lruvec, idx, val);
860 }
861 
862 void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
863 			     int val)
864 {
865 	struct page *head = compound_head(page); /* rmap on tail pages */
866 	struct mem_cgroup *memcg;
867 	pg_data_t *pgdat = page_pgdat(page);
868 	struct lruvec *lruvec;
869 
870 	rcu_read_lock();
871 	memcg = page_memcg(head);
872 	/* Untracked pages have no memcg, no lruvec. Update only the node */
873 	if (!memcg) {
874 		rcu_read_unlock();
875 		__mod_node_page_state(pgdat, idx, val);
876 		return;
877 	}
878 
879 	lruvec = mem_cgroup_lruvec(memcg, pgdat);
880 	__mod_lruvec_state(lruvec, idx, val);
881 	rcu_read_unlock();
882 }
883 EXPORT_SYMBOL(__mod_lruvec_page_state);
884 
885 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
886 {
887 	pg_data_t *pgdat = page_pgdat(virt_to_page(p));
888 	struct mem_cgroup *memcg;
889 	struct lruvec *lruvec;
890 
891 	rcu_read_lock();
892 	memcg = mem_cgroup_from_obj(p);
893 
894 	/*
895 	 * Untracked pages have no memcg, no lruvec. Update only the
896 	 * node. If we reparent the slab objects to the root memcg,
897 	 * when we free the slab object, we need to update the per-memcg
898 	 * vmstats to keep it correct for the root memcg.
899 	 */
900 	if (!memcg) {
901 		__mod_node_page_state(pgdat, idx, val);
902 	} else {
903 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
904 		__mod_lruvec_state(lruvec, idx, val);
905 	}
906 	rcu_read_unlock();
907 }
908 
909 /**
910  * __count_memcg_events - account VM events in a cgroup
911  * @memcg: the memory cgroup
912  * @idx: the event item
913  * @count: the number of events that occured
914  */
915 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
916 			  unsigned long count)
917 {
918 	if (mem_cgroup_disabled())
919 		return;
920 
921 	__this_cpu_add(memcg->vmstats_percpu->events[idx], count);
922 	cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
923 }
924 
925 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
926 {
927 	return READ_ONCE(memcg->vmstats.events[event]);
928 }
929 
930 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
931 {
932 	long x = 0;
933 	int cpu;
934 
935 	for_each_possible_cpu(cpu)
936 		x += per_cpu(memcg->vmstats_percpu->events[event], cpu);
937 	return x;
938 }
939 
940 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
941 					 struct page *page,
942 					 int nr_pages)
943 {
944 	/* pagein of a big page is an event. So, ignore page size */
945 	if (nr_pages > 0)
946 		__count_memcg_events(memcg, PGPGIN, 1);
947 	else {
948 		__count_memcg_events(memcg, PGPGOUT, 1);
949 		nr_pages = -nr_pages; /* for event */
950 	}
951 
952 	__this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
953 }
954 
955 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
956 				       enum mem_cgroup_events_target target)
957 {
958 	unsigned long val, next;
959 
960 	val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
961 	next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
962 	/* from time_after() in jiffies.h */
963 	if ((long)(next - val) < 0) {
964 		switch (target) {
965 		case MEM_CGROUP_TARGET_THRESH:
966 			next = val + THRESHOLDS_EVENTS_TARGET;
967 			break;
968 		case MEM_CGROUP_TARGET_SOFTLIMIT:
969 			next = val + SOFTLIMIT_EVENTS_TARGET;
970 			break;
971 		default:
972 			break;
973 		}
974 		__this_cpu_write(memcg->vmstats_percpu->targets[target], next);
975 		return true;
976 	}
977 	return false;
978 }
979 
980 /*
981  * Check events in order.
982  *
983  */
984 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
985 {
986 	/* threshold event is triggered in finer grain than soft limit */
987 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
988 						MEM_CGROUP_TARGET_THRESH))) {
989 		bool do_softlimit;
990 
991 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
992 						MEM_CGROUP_TARGET_SOFTLIMIT);
993 		mem_cgroup_threshold(memcg);
994 		if (unlikely(do_softlimit))
995 			mem_cgroup_update_tree(memcg, page);
996 	}
997 }
998 
999 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1000 {
1001 	/*
1002 	 * mm_update_next_owner() may clear mm->owner to NULL
1003 	 * if it races with swapoff, page migration, etc.
1004 	 * So this can be called with p == NULL.
1005 	 */
1006 	if (unlikely(!p))
1007 		return NULL;
1008 
1009 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1010 }
1011 EXPORT_SYMBOL(mem_cgroup_from_task);
1012 
1013 /**
1014  * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1015  * @mm: mm from which memcg should be extracted. It can be NULL.
1016  *
1017  * Obtain a reference on mm->memcg and returns it if successful. Otherwise
1018  * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
1019  * returned.
1020  */
1021 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1022 {
1023 	struct mem_cgroup *memcg;
1024 
1025 	if (mem_cgroup_disabled())
1026 		return NULL;
1027 
1028 	rcu_read_lock();
1029 	do {
1030 		/*
1031 		 * Page cache insertions can happen withou an
1032 		 * actual mm context, e.g. during disk probing
1033 		 * on boot, loopback IO, acct() writes etc.
1034 		 */
1035 		if (unlikely(!mm))
1036 			memcg = root_mem_cgroup;
1037 		else {
1038 			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1039 			if (unlikely(!memcg))
1040 				memcg = root_mem_cgroup;
1041 		}
1042 	} while (!css_tryget(&memcg->css));
1043 	rcu_read_unlock();
1044 	return memcg;
1045 }
1046 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1047 
1048 static __always_inline struct mem_cgroup *active_memcg(void)
1049 {
1050 	if (in_interrupt())
1051 		return this_cpu_read(int_active_memcg);
1052 	else
1053 		return current->active_memcg;
1054 }
1055 
1056 static __always_inline bool memcg_kmem_bypass(void)
1057 {
1058 	/* Allow remote memcg charging from any context. */
1059 	if (unlikely(active_memcg()))
1060 		return false;
1061 
1062 	/* Memcg to charge can't be determined. */
1063 	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
1064 		return true;
1065 
1066 	return false;
1067 }
1068 
1069 /**
1070  * mem_cgroup_iter - iterate over memory cgroup hierarchy
1071  * @root: hierarchy root
1072  * @prev: previously returned memcg, NULL on first invocation
1073  * @reclaim: cookie for shared reclaim walks, NULL for full walks
1074  *
1075  * Returns references to children of the hierarchy below @root, or
1076  * @root itself, or %NULL after a full round-trip.
1077  *
1078  * Caller must pass the return value in @prev on subsequent
1079  * invocations for reference counting, or use mem_cgroup_iter_break()
1080  * to cancel a hierarchy walk before the round-trip is complete.
1081  *
1082  * Reclaimers can specify a node in @reclaim to divide up the memcgs
1083  * in the hierarchy among all concurrent reclaimers operating on the
1084  * same node.
1085  */
1086 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1087 				   struct mem_cgroup *prev,
1088 				   struct mem_cgroup_reclaim_cookie *reclaim)
1089 {
1090 	struct mem_cgroup_reclaim_iter *iter;
1091 	struct cgroup_subsys_state *css = NULL;
1092 	struct mem_cgroup *memcg = NULL;
1093 	struct mem_cgroup *pos = NULL;
1094 
1095 	if (mem_cgroup_disabled())
1096 		return NULL;
1097 
1098 	if (!root)
1099 		root = root_mem_cgroup;
1100 
1101 	if (prev && !reclaim)
1102 		pos = prev;
1103 
1104 	rcu_read_lock();
1105 
1106 	if (reclaim) {
1107 		struct mem_cgroup_per_node *mz;
1108 
1109 		mz = root->nodeinfo[reclaim->pgdat->node_id];
1110 		iter = &mz->iter;
1111 
1112 		if (prev && reclaim->generation != iter->generation)
1113 			goto out_unlock;
1114 
1115 		while (1) {
1116 			pos = READ_ONCE(iter->position);
1117 			if (!pos || css_tryget(&pos->css))
1118 				break;
1119 			/*
1120 			 * css reference reached zero, so iter->position will
1121 			 * be cleared by ->css_released. However, we should not
1122 			 * rely on this happening soon, because ->css_released
1123 			 * is called from a work queue, and by busy-waiting we
1124 			 * might block it. So we clear iter->position right
1125 			 * away.
1126 			 */
1127 			(void)cmpxchg(&iter->position, pos, NULL);
1128 		}
1129 	}
1130 
1131 	if (pos)
1132 		css = &pos->css;
1133 
1134 	for (;;) {
1135 		css = css_next_descendant_pre(css, &root->css);
1136 		if (!css) {
1137 			/*
1138 			 * Reclaimers share the hierarchy walk, and a
1139 			 * new one might jump in right at the end of
1140 			 * the hierarchy - make sure they see at least
1141 			 * one group and restart from the beginning.
1142 			 */
1143 			if (!prev)
1144 				continue;
1145 			break;
1146 		}
1147 
1148 		/*
1149 		 * Verify the css and acquire a reference.  The root
1150 		 * is provided by the caller, so we know it's alive
1151 		 * and kicking, and don't take an extra reference.
1152 		 */
1153 		memcg = mem_cgroup_from_css(css);
1154 
1155 		if (css == &root->css)
1156 			break;
1157 
1158 		if (css_tryget(css))
1159 			break;
1160 
1161 		memcg = NULL;
1162 	}
1163 
1164 	if (reclaim) {
1165 		/*
1166 		 * The position could have already been updated by a competing
1167 		 * thread, so check that the value hasn't changed since we read
1168 		 * it to avoid reclaiming from the same cgroup twice.
1169 		 */
1170 		(void)cmpxchg(&iter->position, pos, memcg);
1171 
1172 		if (pos)
1173 			css_put(&pos->css);
1174 
1175 		if (!memcg)
1176 			iter->generation++;
1177 		else if (!prev)
1178 			reclaim->generation = iter->generation;
1179 	}
1180 
1181 out_unlock:
1182 	rcu_read_unlock();
1183 	if (prev && prev != root)
1184 		css_put(&prev->css);
1185 
1186 	return memcg;
1187 }
1188 
1189 /**
1190  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1191  * @root: hierarchy root
1192  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1193  */
1194 void mem_cgroup_iter_break(struct mem_cgroup *root,
1195 			   struct mem_cgroup *prev)
1196 {
1197 	if (!root)
1198 		root = root_mem_cgroup;
1199 	if (prev && prev != root)
1200 		css_put(&prev->css);
1201 }
1202 
1203 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1204 					struct mem_cgroup *dead_memcg)
1205 {
1206 	struct mem_cgroup_reclaim_iter *iter;
1207 	struct mem_cgroup_per_node *mz;
1208 	int nid;
1209 
1210 	for_each_node(nid) {
1211 		mz = from->nodeinfo[nid];
1212 		iter = &mz->iter;
1213 		cmpxchg(&iter->position, dead_memcg, NULL);
1214 	}
1215 }
1216 
1217 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1218 {
1219 	struct mem_cgroup *memcg = dead_memcg;
1220 	struct mem_cgroup *last;
1221 
1222 	do {
1223 		__invalidate_reclaim_iterators(memcg, dead_memcg);
1224 		last = memcg;
1225 	} while ((memcg = parent_mem_cgroup(memcg)));
1226 
1227 	/*
1228 	 * When cgruop1 non-hierarchy mode is used,
1229 	 * parent_mem_cgroup() does not walk all the way up to the
1230 	 * cgroup root (root_mem_cgroup). So we have to handle
1231 	 * dead_memcg from cgroup root separately.
1232 	 */
1233 	if (last != root_mem_cgroup)
1234 		__invalidate_reclaim_iterators(root_mem_cgroup,
1235 						dead_memcg);
1236 }
1237 
1238 /**
1239  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1240  * @memcg: hierarchy root
1241  * @fn: function to call for each task
1242  * @arg: argument passed to @fn
1243  *
1244  * This function iterates over tasks attached to @memcg or to any of its
1245  * descendants and calls @fn for each task. If @fn returns a non-zero
1246  * value, the function breaks the iteration loop and returns the value.
1247  * Otherwise, it will iterate over all tasks and return 0.
1248  *
1249  * This function must not be called for the root memory cgroup.
1250  */
1251 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1252 			  int (*fn)(struct task_struct *, void *), void *arg)
1253 {
1254 	struct mem_cgroup *iter;
1255 	int ret = 0;
1256 
1257 	BUG_ON(memcg == root_mem_cgroup);
1258 
1259 	for_each_mem_cgroup_tree(iter, memcg) {
1260 		struct css_task_iter it;
1261 		struct task_struct *task;
1262 
1263 		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1264 		while (!ret && (task = css_task_iter_next(&it)))
1265 			ret = fn(task, arg);
1266 		css_task_iter_end(&it);
1267 		if (ret) {
1268 			mem_cgroup_iter_break(memcg, iter);
1269 			break;
1270 		}
1271 	}
1272 	return ret;
1273 }
1274 
1275 #ifdef CONFIG_DEBUG_VM
1276 void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page)
1277 {
1278 	struct mem_cgroup *memcg;
1279 
1280 	if (mem_cgroup_disabled())
1281 		return;
1282 
1283 	memcg = page_memcg(page);
1284 
1285 	if (!memcg)
1286 		VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != root_mem_cgroup, page);
1287 	else
1288 		VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != memcg, page);
1289 }
1290 #endif
1291 
1292 /**
1293  * lock_page_lruvec - lock and return lruvec for a given page.
1294  * @page: the page
1295  *
1296  * These functions are safe to use under any of the following conditions:
1297  * - page locked
1298  * - PageLRU cleared
1299  * - lock_page_memcg()
1300  * - page->_refcount is zero
1301  */
1302 struct lruvec *lock_page_lruvec(struct page *page)
1303 {
1304 	struct lruvec *lruvec;
1305 	struct pglist_data *pgdat = page_pgdat(page);
1306 
1307 	lruvec = mem_cgroup_page_lruvec(page, pgdat);
1308 	spin_lock(&lruvec->lru_lock);
1309 
1310 	lruvec_memcg_debug(lruvec, page);
1311 
1312 	return lruvec;
1313 }
1314 
1315 struct lruvec *lock_page_lruvec_irq(struct page *page)
1316 {
1317 	struct lruvec *lruvec;
1318 	struct pglist_data *pgdat = page_pgdat(page);
1319 
1320 	lruvec = mem_cgroup_page_lruvec(page, pgdat);
1321 	spin_lock_irq(&lruvec->lru_lock);
1322 
1323 	lruvec_memcg_debug(lruvec, page);
1324 
1325 	return lruvec;
1326 }
1327 
1328 struct lruvec *lock_page_lruvec_irqsave(struct page *page, unsigned long *flags)
1329 {
1330 	struct lruvec *lruvec;
1331 	struct pglist_data *pgdat = page_pgdat(page);
1332 
1333 	lruvec = mem_cgroup_page_lruvec(page, pgdat);
1334 	spin_lock_irqsave(&lruvec->lru_lock, *flags);
1335 
1336 	lruvec_memcg_debug(lruvec, page);
1337 
1338 	return lruvec;
1339 }
1340 
1341 /**
1342  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1343  * @lruvec: mem_cgroup per zone lru vector
1344  * @lru: index of lru list the page is sitting on
1345  * @zid: zone id of the accounted pages
1346  * @nr_pages: positive when adding or negative when removing
1347  *
1348  * This function must be called under lru_lock, just before a page is added
1349  * to or just after a page is removed from an lru list (that ordering being
1350  * so as to allow it to check that lru_size 0 is consistent with list_empty).
1351  */
1352 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1353 				int zid, int nr_pages)
1354 {
1355 	struct mem_cgroup_per_node *mz;
1356 	unsigned long *lru_size;
1357 	long size;
1358 
1359 	if (mem_cgroup_disabled())
1360 		return;
1361 
1362 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1363 	lru_size = &mz->lru_zone_size[zid][lru];
1364 
1365 	if (nr_pages < 0)
1366 		*lru_size += nr_pages;
1367 
1368 	size = *lru_size;
1369 	if (WARN_ONCE(size < 0,
1370 		"%s(%p, %d, %d): lru_size %ld\n",
1371 		__func__, lruvec, lru, nr_pages, size)) {
1372 		VM_BUG_ON(1);
1373 		*lru_size = 0;
1374 	}
1375 
1376 	if (nr_pages > 0)
1377 		*lru_size += nr_pages;
1378 }
1379 
1380 /**
1381  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1382  * @memcg: the memory cgroup
1383  *
1384  * Returns the maximum amount of memory @mem can be charged with, in
1385  * pages.
1386  */
1387 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1388 {
1389 	unsigned long margin = 0;
1390 	unsigned long count;
1391 	unsigned long limit;
1392 
1393 	count = page_counter_read(&memcg->memory);
1394 	limit = READ_ONCE(memcg->memory.max);
1395 	if (count < limit)
1396 		margin = limit - count;
1397 
1398 	if (do_memsw_account()) {
1399 		count = page_counter_read(&memcg->memsw);
1400 		limit = READ_ONCE(memcg->memsw.max);
1401 		if (count < limit)
1402 			margin = min(margin, limit - count);
1403 		else
1404 			margin = 0;
1405 	}
1406 
1407 	return margin;
1408 }
1409 
1410 /*
1411  * A routine for checking "mem" is under move_account() or not.
1412  *
1413  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1414  * moving cgroups. This is for waiting at high-memory pressure
1415  * caused by "move".
1416  */
1417 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1418 {
1419 	struct mem_cgroup *from;
1420 	struct mem_cgroup *to;
1421 	bool ret = false;
1422 	/*
1423 	 * Unlike task_move routines, we access mc.to, mc.from not under
1424 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1425 	 */
1426 	spin_lock(&mc.lock);
1427 	from = mc.from;
1428 	to = mc.to;
1429 	if (!from)
1430 		goto unlock;
1431 
1432 	ret = mem_cgroup_is_descendant(from, memcg) ||
1433 		mem_cgroup_is_descendant(to, memcg);
1434 unlock:
1435 	spin_unlock(&mc.lock);
1436 	return ret;
1437 }
1438 
1439 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1440 {
1441 	if (mc.moving_task && current != mc.moving_task) {
1442 		if (mem_cgroup_under_move(memcg)) {
1443 			DEFINE_WAIT(wait);
1444 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1445 			/* moving charge context might have finished. */
1446 			if (mc.moving_task)
1447 				schedule();
1448 			finish_wait(&mc.waitq, &wait);
1449 			return true;
1450 		}
1451 	}
1452 	return false;
1453 }
1454 
1455 struct memory_stat {
1456 	const char *name;
1457 	unsigned int idx;
1458 };
1459 
1460 static const struct memory_stat memory_stats[] = {
1461 	{ "anon",			NR_ANON_MAPPED			},
1462 	{ "file",			NR_FILE_PAGES			},
1463 	{ "kernel_stack",		NR_KERNEL_STACK_KB		},
1464 	{ "pagetables",			NR_PAGETABLE			},
1465 	{ "percpu",			MEMCG_PERCPU_B			},
1466 	{ "sock",			MEMCG_SOCK			},
1467 	{ "shmem",			NR_SHMEM			},
1468 	{ "file_mapped",		NR_FILE_MAPPED			},
1469 	{ "file_dirty",			NR_FILE_DIRTY			},
1470 	{ "file_writeback",		NR_WRITEBACK			},
1471 #ifdef CONFIG_SWAP
1472 	{ "swapcached",			NR_SWAPCACHE			},
1473 #endif
1474 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1475 	{ "anon_thp",			NR_ANON_THPS			},
1476 	{ "file_thp",			NR_FILE_THPS			},
1477 	{ "shmem_thp",			NR_SHMEM_THPS			},
1478 #endif
1479 	{ "inactive_anon",		NR_INACTIVE_ANON		},
1480 	{ "active_anon",		NR_ACTIVE_ANON			},
1481 	{ "inactive_file",		NR_INACTIVE_FILE		},
1482 	{ "active_file",		NR_ACTIVE_FILE			},
1483 	{ "unevictable",		NR_UNEVICTABLE			},
1484 	{ "slab_reclaimable",		NR_SLAB_RECLAIMABLE_B		},
1485 	{ "slab_unreclaimable",		NR_SLAB_UNRECLAIMABLE_B		},
1486 
1487 	/* The memory events */
1488 	{ "workingset_refault_anon",	WORKINGSET_REFAULT_ANON		},
1489 	{ "workingset_refault_file",	WORKINGSET_REFAULT_FILE		},
1490 	{ "workingset_activate_anon",	WORKINGSET_ACTIVATE_ANON	},
1491 	{ "workingset_activate_file",	WORKINGSET_ACTIVATE_FILE	},
1492 	{ "workingset_restore_anon",	WORKINGSET_RESTORE_ANON		},
1493 	{ "workingset_restore_file",	WORKINGSET_RESTORE_FILE		},
1494 	{ "workingset_nodereclaim",	WORKINGSET_NODERECLAIM		},
1495 };
1496 
1497 /* Translate stat items to the correct unit for memory.stat output */
1498 static int memcg_page_state_unit(int item)
1499 {
1500 	switch (item) {
1501 	case MEMCG_PERCPU_B:
1502 	case NR_SLAB_RECLAIMABLE_B:
1503 	case NR_SLAB_UNRECLAIMABLE_B:
1504 	case WORKINGSET_REFAULT_ANON:
1505 	case WORKINGSET_REFAULT_FILE:
1506 	case WORKINGSET_ACTIVATE_ANON:
1507 	case WORKINGSET_ACTIVATE_FILE:
1508 	case WORKINGSET_RESTORE_ANON:
1509 	case WORKINGSET_RESTORE_FILE:
1510 	case WORKINGSET_NODERECLAIM:
1511 		return 1;
1512 	case NR_KERNEL_STACK_KB:
1513 		return SZ_1K;
1514 	default:
1515 		return PAGE_SIZE;
1516 	}
1517 }
1518 
1519 static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1520 						    int item)
1521 {
1522 	return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1523 }
1524 
1525 static char *memory_stat_format(struct mem_cgroup *memcg)
1526 {
1527 	struct seq_buf s;
1528 	int i;
1529 
1530 	seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1531 	if (!s.buffer)
1532 		return NULL;
1533 
1534 	/*
1535 	 * Provide statistics on the state of the memory subsystem as
1536 	 * well as cumulative event counters that show past behavior.
1537 	 *
1538 	 * This list is ordered following a combination of these gradients:
1539 	 * 1) generic big picture -> specifics and details
1540 	 * 2) reflecting userspace activity -> reflecting kernel heuristics
1541 	 *
1542 	 * Current memory state:
1543 	 */
1544 	cgroup_rstat_flush(memcg->css.cgroup);
1545 
1546 	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1547 		u64 size;
1548 
1549 		size = memcg_page_state_output(memcg, memory_stats[i].idx);
1550 		seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
1551 
1552 		if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1553 			size += memcg_page_state_output(memcg,
1554 							NR_SLAB_RECLAIMABLE_B);
1555 			seq_buf_printf(&s, "slab %llu\n", size);
1556 		}
1557 	}
1558 
1559 	/* Accumulated memory events */
1560 
1561 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1562 		       memcg_events(memcg, PGFAULT));
1563 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1564 		       memcg_events(memcg, PGMAJFAULT));
1565 	seq_buf_printf(&s, "%s %lu\n",  vm_event_name(PGREFILL),
1566 		       memcg_events(memcg, PGREFILL));
1567 	seq_buf_printf(&s, "pgscan %lu\n",
1568 		       memcg_events(memcg, PGSCAN_KSWAPD) +
1569 		       memcg_events(memcg, PGSCAN_DIRECT));
1570 	seq_buf_printf(&s, "pgsteal %lu\n",
1571 		       memcg_events(memcg, PGSTEAL_KSWAPD) +
1572 		       memcg_events(memcg, PGSTEAL_DIRECT));
1573 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1574 		       memcg_events(memcg, PGACTIVATE));
1575 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1576 		       memcg_events(memcg, PGDEACTIVATE));
1577 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1578 		       memcg_events(memcg, PGLAZYFREE));
1579 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1580 		       memcg_events(memcg, PGLAZYFREED));
1581 
1582 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1583 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1584 		       memcg_events(memcg, THP_FAULT_ALLOC));
1585 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1586 		       memcg_events(memcg, THP_COLLAPSE_ALLOC));
1587 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1588 
1589 	/* The above should easily fit into one page */
1590 	WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1591 
1592 	return s.buffer;
1593 }
1594 
1595 #define K(x) ((x) << (PAGE_SHIFT-10))
1596 /**
1597  * mem_cgroup_print_oom_context: Print OOM information relevant to
1598  * memory controller.
1599  * @memcg: The memory cgroup that went over limit
1600  * @p: Task that is going to be killed
1601  *
1602  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1603  * enabled
1604  */
1605 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1606 {
1607 	rcu_read_lock();
1608 
1609 	if (memcg) {
1610 		pr_cont(",oom_memcg=");
1611 		pr_cont_cgroup_path(memcg->css.cgroup);
1612 	} else
1613 		pr_cont(",global_oom");
1614 	if (p) {
1615 		pr_cont(",task_memcg=");
1616 		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1617 	}
1618 	rcu_read_unlock();
1619 }
1620 
1621 /**
1622  * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1623  * memory controller.
1624  * @memcg: The memory cgroup that went over limit
1625  */
1626 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1627 {
1628 	char *buf;
1629 
1630 	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1631 		K((u64)page_counter_read(&memcg->memory)),
1632 		K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1633 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1634 		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1635 			K((u64)page_counter_read(&memcg->swap)),
1636 			K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1637 	else {
1638 		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1639 			K((u64)page_counter_read(&memcg->memsw)),
1640 			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1641 		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1642 			K((u64)page_counter_read(&memcg->kmem)),
1643 			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1644 	}
1645 
1646 	pr_info("Memory cgroup stats for ");
1647 	pr_cont_cgroup_path(memcg->css.cgroup);
1648 	pr_cont(":");
1649 	buf = memory_stat_format(memcg);
1650 	if (!buf)
1651 		return;
1652 	pr_info("%s", buf);
1653 	kfree(buf);
1654 }
1655 
1656 /*
1657  * Return the memory (and swap, if configured) limit for a memcg.
1658  */
1659 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1660 {
1661 	unsigned long max = READ_ONCE(memcg->memory.max);
1662 
1663 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
1664 		if (mem_cgroup_swappiness(memcg))
1665 			max += min(READ_ONCE(memcg->swap.max),
1666 				   (unsigned long)total_swap_pages);
1667 	} else { /* v1 */
1668 		if (mem_cgroup_swappiness(memcg)) {
1669 			/* Calculate swap excess capacity from memsw limit */
1670 			unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1671 
1672 			max += min(swap, (unsigned long)total_swap_pages);
1673 		}
1674 	}
1675 	return max;
1676 }
1677 
1678 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1679 {
1680 	return page_counter_read(&memcg->memory);
1681 }
1682 
1683 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1684 				     int order)
1685 {
1686 	struct oom_control oc = {
1687 		.zonelist = NULL,
1688 		.nodemask = NULL,
1689 		.memcg = memcg,
1690 		.gfp_mask = gfp_mask,
1691 		.order = order,
1692 	};
1693 	bool ret = true;
1694 
1695 	if (mutex_lock_killable(&oom_lock))
1696 		return true;
1697 
1698 	if (mem_cgroup_margin(memcg) >= (1 << order))
1699 		goto unlock;
1700 
1701 	/*
1702 	 * A few threads which were not waiting at mutex_lock_killable() can
1703 	 * fail to bail out. Therefore, check again after holding oom_lock.
1704 	 */
1705 	ret = should_force_charge() || out_of_memory(&oc);
1706 
1707 unlock:
1708 	mutex_unlock(&oom_lock);
1709 	return ret;
1710 }
1711 
1712 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1713 				   pg_data_t *pgdat,
1714 				   gfp_t gfp_mask,
1715 				   unsigned long *total_scanned)
1716 {
1717 	struct mem_cgroup *victim = NULL;
1718 	int total = 0;
1719 	int loop = 0;
1720 	unsigned long excess;
1721 	unsigned long nr_scanned;
1722 	struct mem_cgroup_reclaim_cookie reclaim = {
1723 		.pgdat = pgdat,
1724 	};
1725 
1726 	excess = soft_limit_excess(root_memcg);
1727 
1728 	while (1) {
1729 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1730 		if (!victim) {
1731 			loop++;
1732 			if (loop >= 2) {
1733 				/*
1734 				 * If we have not been able to reclaim
1735 				 * anything, it might because there are
1736 				 * no reclaimable pages under this hierarchy
1737 				 */
1738 				if (!total)
1739 					break;
1740 				/*
1741 				 * We want to do more targeted reclaim.
1742 				 * excess >> 2 is not to excessive so as to
1743 				 * reclaim too much, nor too less that we keep
1744 				 * coming back to reclaim from this cgroup
1745 				 */
1746 				if (total >= (excess >> 2) ||
1747 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1748 					break;
1749 			}
1750 			continue;
1751 		}
1752 		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1753 					pgdat, &nr_scanned);
1754 		*total_scanned += nr_scanned;
1755 		if (!soft_limit_excess(root_memcg))
1756 			break;
1757 	}
1758 	mem_cgroup_iter_break(root_memcg, victim);
1759 	return total;
1760 }
1761 
1762 #ifdef CONFIG_LOCKDEP
1763 static struct lockdep_map memcg_oom_lock_dep_map = {
1764 	.name = "memcg_oom_lock",
1765 };
1766 #endif
1767 
1768 static DEFINE_SPINLOCK(memcg_oom_lock);
1769 
1770 /*
1771  * Check OOM-Killer is already running under our hierarchy.
1772  * If someone is running, return false.
1773  */
1774 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1775 {
1776 	struct mem_cgroup *iter, *failed = NULL;
1777 
1778 	spin_lock(&memcg_oom_lock);
1779 
1780 	for_each_mem_cgroup_tree(iter, memcg) {
1781 		if (iter->oom_lock) {
1782 			/*
1783 			 * this subtree of our hierarchy is already locked
1784 			 * so we cannot give a lock.
1785 			 */
1786 			failed = iter;
1787 			mem_cgroup_iter_break(memcg, iter);
1788 			break;
1789 		} else
1790 			iter->oom_lock = true;
1791 	}
1792 
1793 	if (failed) {
1794 		/*
1795 		 * OK, we failed to lock the whole subtree so we have
1796 		 * to clean up what we set up to the failing subtree
1797 		 */
1798 		for_each_mem_cgroup_tree(iter, memcg) {
1799 			if (iter == failed) {
1800 				mem_cgroup_iter_break(memcg, iter);
1801 				break;
1802 			}
1803 			iter->oom_lock = false;
1804 		}
1805 	} else
1806 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1807 
1808 	spin_unlock(&memcg_oom_lock);
1809 
1810 	return !failed;
1811 }
1812 
1813 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1814 {
1815 	struct mem_cgroup *iter;
1816 
1817 	spin_lock(&memcg_oom_lock);
1818 	mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1819 	for_each_mem_cgroup_tree(iter, memcg)
1820 		iter->oom_lock = false;
1821 	spin_unlock(&memcg_oom_lock);
1822 }
1823 
1824 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1825 {
1826 	struct mem_cgroup *iter;
1827 
1828 	spin_lock(&memcg_oom_lock);
1829 	for_each_mem_cgroup_tree(iter, memcg)
1830 		iter->under_oom++;
1831 	spin_unlock(&memcg_oom_lock);
1832 }
1833 
1834 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1835 {
1836 	struct mem_cgroup *iter;
1837 
1838 	/*
1839 	 * Be careful about under_oom underflows becase a child memcg
1840 	 * could have been added after mem_cgroup_mark_under_oom.
1841 	 */
1842 	spin_lock(&memcg_oom_lock);
1843 	for_each_mem_cgroup_tree(iter, memcg)
1844 		if (iter->under_oom > 0)
1845 			iter->under_oom--;
1846 	spin_unlock(&memcg_oom_lock);
1847 }
1848 
1849 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1850 
1851 struct oom_wait_info {
1852 	struct mem_cgroup *memcg;
1853 	wait_queue_entry_t	wait;
1854 };
1855 
1856 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1857 	unsigned mode, int sync, void *arg)
1858 {
1859 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1860 	struct mem_cgroup *oom_wait_memcg;
1861 	struct oom_wait_info *oom_wait_info;
1862 
1863 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1864 	oom_wait_memcg = oom_wait_info->memcg;
1865 
1866 	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1867 	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1868 		return 0;
1869 	return autoremove_wake_function(wait, mode, sync, arg);
1870 }
1871 
1872 static void memcg_oom_recover(struct mem_cgroup *memcg)
1873 {
1874 	/*
1875 	 * For the following lockless ->under_oom test, the only required
1876 	 * guarantee is that it must see the state asserted by an OOM when
1877 	 * this function is called as a result of userland actions
1878 	 * triggered by the notification of the OOM.  This is trivially
1879 	 * achieved by invoking mem_cgroup_mark_under_oom() before
1880 	 * triggering notification.
1881 	 */
1882 	if (memcg && memcg->under_oom)
1883 		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1884 }
1885 
1886 enum oom_status {
1887 	OOM_SUCCESS,
1888 	OOM_FAILED,
1889 	OOM_ASYNC,
1890 	OOM_SKIPPED
1891 };
1892 
1893 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1894 {
1895 	enum oom_status ret;
1896 	bool locked;
1897 
1898 	if (order > PAGE_ALLOC_COSTLY_ORDER)
1899 		return OOM_SKIPPED;
1900 
1901 	memcg_memory_event(memcg, MEMCG_OOM);
1902 
1903 	/*
1904 	 * We are in the middle of the charge context here, so we
1905 	 * don't want to block when potentially sitting on a callstack
1906 	 * that holds all kinds of filesystem and mm locks.
1907 	 *
1908 	 * cgroup1 allows disabling the OOM killer and waiting for outside
1909 	 * handling until the charge can succeed; remember the context and put
1910 	 * the task to sleep at the end of the page fault when all locks are
1911 	 * released.
1912 	 *
1913 	 * On the other hand, in-kernel OOM killer allows for an async victim
1914 	 * memory reclaim (oom_reaper) and that means that we are not solely
1915 	 * relying on the oom victim to make a forward progress and we can
1916 	 * invoke the oom killer here.
1917 	 *
1918 	 * Please note that mem_cgroup_out_of_memory might fail to find a
1919 	 * victim and then we have to bail out from the charge path.
1920 	 */
1921 	if (memcg->oom_kill_disable) {
1922 		if (!current->in_user_fault)
1923 			return OOM_SKIPPED;
1924 		css_get(&memcg->css);
1925 		current->memcg_in_oom = memcg;
1926 		current->memcg_oom_gfp_mask = mask;
1927 		current->memcg_oom_order = order;
1928 
1929 		return OOM_ASYNC;
1930 	}
1931 
1932 	mem_cgroup_mark_under_oom(memcg);
1933 
1934 	locked = mem_cgroup_oom_trylock(memcg);
1935 
1936 	if (locked)
1937 		mem_cgroup_oom_notify(memcg);
1938 
1939 	mem_cgroup_unmark_under_oom(memcg);
1940 	if (mem_cgroup_out_of_memory(memcg, mask, order))
1941 		ret = OOM_SUCCESS;
1942 	else
1943 		ret = OOM_FAILED;
1944 
1945 	if (locked)
1946 		mem_cgroup_oom_unlock(memcg);
1947 
1948 	return ret;
1949 }
1950 
1951 /**
1952  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1953  * @handle: actually kill/wait or just clean up the OOM state
1954  *
1955  * This has to be called at the end of a page fault if the memcg OOM
1956  * handler was enabled.
1957  *
1958  * Memcg supports userspace OOM handling where failed allocations must
1959  * sleep on a waitqueue until the userspace task resolves the
1960  * situation.  Sleeping directly in the charge context with all kinds
1961  * of locks held is not a good idea, instead we remember an OOM state
1962  * in the task and mem_cgroup_oom_synchronize() has to be called at
1963  * the end of the page fault to complete the OOM handling.
1964  *
1965  * Returns %true if an ongoing memcg OOM situation was detected and
1966  * completed, %false otherwise.
1967  */
1968 bool mem_cgroup_oom_synchronize(bool handle)
1969 {
1970 	struct mem_cgroup *memcg = current->memcg_in_oom;
1971 	struct oom_wait_info owait;
1972 	bool locked;
1973 
1974 	/* OOM is global, do not handle */
1975 	if (!memcg)
1976 		return false;
1977 
1978 	if (!handle)
1979 		goto cleanup;
1980 
1981 	owait.memcg = memcg;
1982 	owait.wait.flags = 0;
1983 	owait.wait.func = memcg_oom_wake_function;
1984 	owait.wait.private = current;
1985 	INIT_LIST_HEAD(&owait.wait.entry);
1986 
1987 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1988 	mem_cgroup_mark_under_oom(memcg);
1989 
1990 	locked = mem_cgroup_oom_trylock(memcg);
1991 
1992 	if (locked)
1993 		mem_cgroup_oom_notify(memcg);
1994 
1995 	if (locked && !memcg->oom_kill_disable) {
1996 		mem_cgroup_unmark_under_oom(memcg);
1997 		finish_wait(&memcg_oom_waitq, &owait.wait);
1998 		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1999 					 current->memcg_oom_order);
2000 	} else {
2001 		schedule();
2002 		mem_cgroup_unmark_under_oom(memcg);
2003 		finish_wait(&memcg_oom_waitq, &owait.wait);
2004 	}
2005 
2006 	if (locked) {
2007 		mem_cgroup_oom_unlock(memcg);
2008 		/*
2009 		 * There is no guarantee that an OOM-lock contender
2010 		 * sees the wakeups triggered by the OOM kill
2011 		 * uncharges.  Wake any sleepers explicitely.
2012 		 */
2013 		memcg_oom_recover(memcg);
2014 	}
2015 cleanup:
2016 	current->memcg_in_oom = NULL;
2017 	css_put(&memcg->css);
2018 	return true;
2019 }
2020 
2021 /**
2022  * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2023  * @victim: task to be killed by the OOM killer
2024  * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2025  *
2026  * Returns a pointer to a memory cgroup, which has to be cleaned up
2027  * by killing all belonging OOM-killable tasks.
2028  *
2029  * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2030  */
2031 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2032 					    struct mem_cgroup *oom_domain)
2033 {
2034 	struct mem_cgroup *oom_group = NULL;
2035 	struct mem_cgroup *memcg;
2036 
2037 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2038 		return NULL;
2039 
2040 	if (!oom_domain)
2041 		oom_domain = root_mem_cgroup;
2042 
2043 	rcu_read_lock();
2044 
2045 	memcg = mem_cgroup_from_task(victim);
2046 	if (memcg == root_mem_cgroup)
2047 		goto out;
2048 
2049 	/*
2050 	 * If the victim task has been asynchronously moved to a different
2051 	 * memory cgroup, we might end up killing tasks outside oom_domain.
2052 	 * In this case it's better to ignore memory.group.oom.
2053 	 */
2054 	if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2055 		goto out;
2056 
2057 	/*
2058 	 * Traverse the memory cgroup hierarchy from the victim task's
2059 	 * cgroup up to the OOMing cgroup (or root) to find the
2060 	 * highest-level memory cgroup with oom.group set.
2061 	 */
2062 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2063 		if (memcg->oom_group)
2064 			oom_group = memcg;
2065 
2066 		if (memcg == oom_domain)
2067 			break;
2068 	}
2069 
2070 	if (oom_group)
2071 		css_get(&oom_group->css);
2072 out:
2073 	rcu_read_unlock();
2074 
2075 	return oom_group;
2076 }
2077 
2078 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2079 {
2080 	pr_info("Tasks in ");
2081 	pr_cont_cgroup_path(memcg->css.cgroup);
2082 	pr_cont(" are going to be killed due to memory.oom.group set\n");
2083 }
2084 
2085 /**
2086  * lock_page_memcg - lock a page and memcg binding
2087  * @page: the page
2088  *
2089  * This function protects unlocked LRU pages from being moved to
2090  * another cgroup.
2091  *
2092  * It ensures lifetime of the locked memcg. Caller is responsible
2093  * for the lifetime of the page.
2094  */
2095 void lock_page_memcg(struct page *page)
2096 {
2097 	struct page *head = compound_head(page); /* rmap on tail pages */
2098 	struct mem_cgroup *memcg;
2099 	unsigned long flags;
2100 
2101 	/*
2102 	 * The RCU lock is held throughout the transaction.  The fast
2103 	 * path can get away without acquiring the memcg->move_lock
2104 	 * because page moving starts with an RCU grace period.
2105          */
2106 	rcu_read_lock();
2107 
2108 	if (mem_cgroup_disabled())
2109 		return;
2110 again:
2111 	memcg = page_memcg(head);
2112 	if (unlikely(!memcg))
2113 		return;
2114 
2115 #ifdef CONFIG_PROVE_LOCKING
2116 	local_irq_save(flags);
2117 	might_lock(&memcg->move_lock);
2118 	local_irq_restore(flags);
2119 #endif
2120 
2121 	if (atomic_read(&memcg->moving_account) <= 0)
2122 		return;
2123 
2124 	spin_lock_irqsave(&memcg->move_lock, flags);
2125 	if (memcg != page_memcg(head)) {
2126 		spin_unlock_irqrestore(&memcg->move_lock, flags);
2127 		goto again;
2128 	}
2129 
2130 	/*
2131 	 * When charge migration first begins, we can have multiple
2132 	 * critical sections holding the fast-path RCU lock and one
2133 	 * holding the slowpath move_lock. Track the task who has the
2134 	 * move_lock for unlock_page_memcg().
2135 	 */
2136 	memcg->move_lock_task = current;
2137 	memcg->move_lock_flags = flags;
2138 }
2139 EXPORT_SYMBOL(lock_page_memcg);
2140 
2141 static void __unlock_page_memcg(struct mem_cgroup *memcg)
2142 {
2143 	if (memcg && memcg->move_lock_task == current) {
2144 		unsigned long flags = memcg->move_lock_flags;
2145 
2146 		memcg->move_lock_task = NULL;
2147 		memcg->move_lock_flags = 0;
2148 
2149 		spin_unlock_irqrestore(&memcg->move_lock, flags);
2150 	}
2151 
2152 	rcu_read_unlock();
2153 }
2154 
2155 /**
2156  * unlock_page_memcg - unlock a page and memcg binding
2157  * @page: the page
2158  */
2159 void unlock_page_memcg(struct page *page)
2160 {
2161 	struct page *head = compound_head(page);
2162 
2163 	__unlock_page_memcg(page_memcg(head));
2164 }
2165 EXPORT_SYMBOL(unlock_page_memcg);
2166 
2167 struct memcg_stock_pcp {
2168 	struct mem_cgroup *cached; /* this never be root cgroup */
2169 	unsigned int nr_pages;
2170 
2171 #ifdef CONFIG_MEMCG_KMEM
2172 	struct obj_cgroup *cached_objcg;
2173 	unsigned int nr_bytes;
2174 #endif
2175 
2176 	struct work_struct work;
2177 	unsigned long flags;
2178 #define FLUSHING_CACHED_CHARGE	0
2179 };
2180 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2181 static DEFINE_MUTEX(percpu_charge_mutex);
2182 
2183 #ifdef CONFIG_MEMCG_KMEM
2184 static void drain_obj_stock(struct memcg_stock_pcp *stock);
2185 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2186 				     struct mem_cgroup *root_memcg);
2187 
2188 #else
2189 static inline void drain_obj_stock(struct memcg_stock_pcp *stock)
2190 {
2191 }
2192 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2193 				     struct mem_cgroup *root_memcg)
2194 {
2195 	return false;
2196 }
2197 #endif
2198 
2199 /**
2200  * consume_stock: Try to consume stocked charge on this cpu.
2201  * @memcg: memcg to consume from.
2202  * @nr_pages: how many pages to charge.
2203  *
2204  * The charges will only happen if @memcg matches the current cpu's memcg
2205  * stock, and at least @nr_pages are available in that stock.  Failure to
2206  * service an allocation will refill the stock.
2207  *
2208  * returns true if successful, false otherwise.
2209  */
2210 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2211 {
2212 	struct memcg_stock_pcp *stock;
2213 	unsigned long flags;
2214 	bool ret = false;
2215 
2216 	if (nr_pages > MEMCG_CHARGE_BATCH)
2217 		return ret;
2218 
2219 	local_irq_save(flags);
2220 
2221 	stock = this_cpu_ptr(&memcg_stock);
2222 	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2223 		stock->nr_pages -= nr_pages;
2224 		ret = true;
2225 	}
2226 
2227 	local_irq_restore(flags);
2228 
2229 	return ret;
2230 }
2231 
2232 /*
2233  * Returns stocks cached in percpu and reset cached information.
2234  */
2235 static void drain_stock(struct memcg_stock_pcp *stock)
2236 {
2237 	struct mem_cgroup *old = stock->cached;
2238 
2239 	if (!old)
2240 		return;
2241 
2242 	if (stock->nr_pages) {
2243 		page_counter_uncharge(&old->memory, stock->nr_pages);
2244 		if (do_memsw_account())
2245 			page_counter_uncharge(&old->memsw, stock->nr_pages);
2246 		stock->nr_pages = 0;
2247 	}
2248 
2249 	css_put(&old->css);
2250 	stock->cached = NULL;
2251 }
2252 
2253 static void drain_local_stock(struct work_struct *dummy)
2254 {
2255 	struct memcg_stock_pcp *stock;
2256 	unsigned long flags;
2257 
2258 	/*
2259 	 * The only protection from memory hotplug vs. drain_stock races is
2260 	 * that we always operate on local CPU stock here with IRQ disabled
2261 	 */
2262 	local_irq_save(flags);
2263 
2264 	stock = this_cpu_ptr(&memcg_stock);
2265 	drain_obj_stock(stock);
2266 	drain_stock(stock);
2267 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2268 
2269 	local_irq_restore(flags);
2270 }
2271 
2272 /*
2273  * Cache charges(val) to local per_cpu area.
2274  * This will be consumed by consume_stock() function, later.
2275  */
2276 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2277 {
2278 	struct memcg_stock_pcp *stock;
2279 	unsigned long flags;
2280 
2281 	local_irq_save(flags);
2282 
2283 	stock = this_cpu_ptr(&memcg_stock);
2284 	if (stock->cached != memcg) { /* reset if necessary */
2285 		drain_stock(stock);
2286 		css_get(&memcg->css);
2287 		stock->cached = memcg;
2288 	}
2289 	stock->nr_pages += nr_pages;
2290 
2291 	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2292 		drain_stock(stock);
2293 
2294 	local_irq_restore(flags);
2295 }
2296 
2297 /*
2298  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2299  * of the hierarchy under it.
2300  */
2301 static void drain_all_stock(struct mem_cgroup *root_memcg)
2302 {
2303 	int cpu, curcpu;
2304 
2305 	/* If someone's already draining, avoid adding running more workers. */
2306 	if (!mutex_trylock(&percpu_charge_mutex))
2307 		return;
2308 	/*
2309 	 * Notify other cpus that system-wide "drain" is running
2310 	 * We do not care about races with the cpu hotplug because cpu down
2311 	 * as well as workers from this path always operate on the local
2312 	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2313 	 */
2314 	curcpu = get_cpu();
2315 	for_each_online_cpu(cpu) {
2316 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2317 		struct mem_cgroup *memcg;
2318 		bool flush = false;
2319 
2320 		rcu_read_lock();
2321 		memcg = stock->cached;
2322 		if (memcg && stock->nr_pages &&
2323 		    mem_cgroup_is_descendant(memcg, root_memcg))
2324 			flush = true;
2325 		if (obj_stock_flush_required(stock, root_memcg))
2326 			flush = true;
2327 		rcu_read_unlock();
2328 
2329 		if (flush &&
2330 		    !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2331 			if (cpu == curcpu)
2332 				drain_local_stock(&stock->work);
2333 			else
2334 				schedule_work_on(cpu, &stock->work);
2335 		}
2336 	}
2337 	put_cpu();
2338 	mutex_unlock(&percpu_charge_mutex);
2339 }
2340 
2341 static void memcg_flush_lruvec_page_state(struct mem_cgroup *memcg, int cpu)
2342 {
2343 	int nid;
2344 
2345 	for_each_node(nid) {
2346 		struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
2347 		unsigned long stat[NR_VM_NODE_STAT_ITEMS];
2348 		struct batched_lruvec_stat *lstatc;
2349 		int i;
2350 
2351 		lstatc = per_cpu_ptr(pn->lruvec_stat_cpu, cpu);
2352 		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
2353 			stat[i] = lstatc->count[i];
2354 			lstatc->count[i] = 0;
2355 		}
2356 
2357 		do {
2358 			for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
2359 				atomic_long_add(stat[i], &pn->lruvec_stat[i]);
2360 		} while ((pn = parent_nodeinfo(pn, nid)));
2361 	}
2362 }
2363 
2364 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2365 {
2366 	struct memcg_stock_pcp *stock;
2367 	struct mem_cgroup *memcg;
2368 
2369 	stock = &per_cpu(memcg_stock, cpu);
2370 	drain_stock(stock);
2371 
2372 	for_each_mem_cgroup(memcg)
2373 		memcg_flush_lruvec_page_state(memcg, cpu);
2374 
2375 	return 0;
2376 }
2377 
2378 static unsigned long reclaim_high(struct mem_cgroup *memcg,
2379 				  unsigned int nr_pages,
2380 				  gfp_t gfp_mask)
2381 {
2382 	unsigned long nr_reclaimed = 0;
2383 
2384 	do {
2385 		unsigned long pflags;
2386 
2387 		if (page_counter_read(&memcg->memory) <=
2388 		    READ_ONCE(memcg->memory.high))
2389 			continue;
2390 
2391 		memcg_memory_event(memcg, MEMCG_HIGH);
2392 
2393 		psi_memstall_enter(&pflags);
2394 		nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2395 							     gfp_mask, true);
2396 		psi_memstall_leave(&pflags);
2397 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2398 		 !mem_cgroup_is_root(memcg));
2399 
2400 	return nr_reclaimed;
2401 }
2402 
2403 static void high_work_func(struct work_struct *work)
2404 {
2405 	struct mem_cgroup *memcg;
2406 
2407 	memcg = container_of(work, struct mem_cgroup, high_work);
2408 	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2409 }
2410 
2411 /*
2412  * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2413  * enough to still cause a significant slowdown in most cases, while still
2414  * allowing diagnostics and tracing to proceed without becoming stuck.
2415  */
2416 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2417 
2418 /*
2419  * When calculating the delay, we use these either side of the exponentiation to
2420  * maintain precision and scale to a reasonable number of jiffies (see the table
2421  * below.
2422  *
2423  * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2424  *   overage ratio to a delay.
2425  * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2426  *   proposed penalty in order to reduce to a reasonable number of jiffies, and
2427  *   to produce a reasonable delay curve.
2428  *
2429  * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2430  * reasonable delay curve compared to precision-adjusted overage, not
2431  * penalising heavily at first, but still making sure that growth beyond the
2432  * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2433  * example, with a high of 100 megabytes:
2434  *
2435  *  +-------+------------------------+
2436  *  | usage | time to allocate in ms |
2437  *  +-------+------------------------+
2438  *  | 100M  |                      0 |
2439  *  | 101M  |                      6 |
2440  *  | 102M  |                     25 |
2441  *  | 103M  |                     57 |
2442  *  | 104M  |                    102 |
2443  *  | 105M  |                    159 |
2444  *  | 106M  |                    230 |
2445  *  | 107M  |                    313 |
2446  *  | 108M  |                    409 |
2447  *  | 109M  |                    518 |
2448  *  | 110M  |                    639 |
2449  *  | 111M  |                    774 |
2450  *  | 112M  |                    921 |
2451  *  | 113M  |                   1081 |
2452  *  | 114M  |                   1254 |
2453  *  | 115M  |                   1439 |
2454  *  | 116M  |                   1638 |
2455  *  | 117M  |                   1849 |
2456  *  | 118M  |                   2000 |
2457  *  | 119M  |                   2000 |
2458  *  | 120M  |                   2000 |
2459  *  +-------+------------------------+
2460  */
2461  #define MEMCG_DELAY_PRECISION_SHIFT 20
2462  #define MEMCG_DELAY_SCALING_SHIFT 14
2463 
2464 static u64 calculate_overage(unsigned long usage, unsigned long high)
2465 {
2466 	u64 overage;
2467 
2468 	if (usage <= high)
2469 		return 0;
2470 
2471 	/*
2472 	 * Prevent division by 0 in overage calculation by acting as if
2473 	 * it was a threshold of 1 page
2474 	 */
2475 	high = max(high, 1UL);
2476 
2477 	overage = usage - high;
2478 	overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2479 	return div64_u64(overage, high);
2480 }
2481 
2482 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2483 {
2484 	u64 overage, max_overage = 0;
2485 
2486 	do {
2487 		overage = calculate_overage(page_counter_read(&memcg->memory),
2488 					    READ_ONCE(memcg->memory.high));
2489 		max_overage = max(overage, max_overage);
2490 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2491 		 !mem_cgroup_is_root(memcg));
2492 
2493 	return max_overage;
2494 }
2495 
2496 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2497 {
2498 	u64 overage, max_overage = 0;
2499 
2500 	do {
2501 		overage = calculate_overage(page_counter_read(&memcg->swap),
2502 					    READ_ONCE(memcg->swap.high));
2503 		if (overage)
2504 			memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2505 		max_overage = max(overage, max_overage);
2506 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2507 		 !mem_cgroup_is_root(memcg));
2508 
2509 	return max_overage;
2510 }
2511 
2512 /*
2513  * Get the number of jiffies that we should penalise a mischievous cgroup which
2514  * is exceeding its memory.high by checking both it and its ancestors.
2515  */
2516 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2517 					  unsigned int nr_pages,
2518 					  u64 max_overage)
2519 {
2520 	unsigned long penalty_jiffies;
2521 
2522 	if (!max_overage)
2523 		return 0;
2524 
2525 	/*
2526 	 * We use overage compared to memory.high to calculate the number of
2527 	 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2528 	 * fairly lenient on small overages, and increasingly harsh when the
2529 	 * memcg in question makes it clear that it has no intention of stopping
2530 	 * its crazy behaviour, so we exponentially increase the delay based on
2531 	 * overage amount.
2532 	 */
2533 	penalty_jiffies = max_overage * max_overage * HZ;
2534 	penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2535 	penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2536 
2537 	/*
2538 	 * Factor in the task's own contribution to the overage, such that four
2539 	 * N-sized allocations are throttled approximately the same as one
2540 	 * 4N-sized allocation.
2541 	 *
2542 	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2543 	 * larger the current charge patch is than that.
2544 	 */
2545 	return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2546 }
2547 
2548 /*
2549  * Scheduled by try_charge() to be executed from the userland return path
2550  * and reclaims memory over the high limit.
2551  */
2552 void mem_cgroup_handle_over_high(void)
2553 {
2554 	unsigned long penalty_jiffies;
2555 	unsigned long pflags;
2556 	unsigned long nr_reclaimed;
2557 	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2558 	int nr_retries = MAX_RECLAIM_RETRIES;
2559 	struct mem_cgroup *memcg;
2560 	bool in_retry = false;
2561 
2562 	if (likely(!nr_pages))
2563 		return;
2564 
2565 	memcg = get_mem_cgroup_from_mm(current->mm);
2566 	current->memcg_nr_pages_over_high = 0;
2567 
2568 retry_reclaim:
2569 	/*
2570 	 * The allocating task should reclaim at least the batch size, but for
2571 	 * subsequent retries we only want to do what's necessary to prevent oom
2572 	 * or breaching resource isolation.
2573 	 *
2574 	 * This is distinct from memory.max or page allocator behaviour because
2575 	 * memory.high is currently batched, whereas memory.max and the page
2576 	 * allocator run every time an allocation is made.
2577 	 */
2578 	nr_reclaimed = reclaim_high(memcg,
2579 				    in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2580 				    GFP_KERNEL);
2581 
2582 	/*
2583 	 * memory.high is breached and reclaim is unable to keep up. Throttle
2584 	 * allocators proactively to slow down excessive growth.
2585 	 */
2586 	penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2587 					       mem_find_max_overage(memcg));
2588 
2589 	penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2590 						swap_find_max_overage(memcg));
2591 
2592 	/*
2593 	 * Clamp the max delay per usermode return so as to still keep the
2594 	 * application moving forwards and also permit diagnostics, albeit
2595 	 * extremely slowly.
2596 	 */
2597 	penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2598 
2599 	/*
2600 	 * Don't sleep if the amount of jiffies this memcg owes us is so low
2601 	 * that it's not even worth doing, in an attempt to be nice to those who
2602 	 * go only a small amount over their memory.high value and maybe haven't
2603 	 * been aggressively reclaimed enough yet.
2604 	 */
2605 	if (penalty_jiffies <= HZ / 100)
2606 		goto out;
2607 
2608 	/*
2609 	 * If reclaim is making forward progress but we're still over
2610 	 * memory.high, we want to encourage that rather than doing allocator
2611 	 * throttling.
2612 	 */
2613 	if (nr_reclaimed || nr_retries--) {
2614 		in_retry = true;
2615 		goto retry_reclaim;
2616 	}
2617 
2618 	/*
2619 	 * If we exit early, we're guaranteed to die (since
2620 	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2621 	 * need to account for any ill-begotten jiffies to pay them off later.
2622 	 */
2623 	psi_memstall_enter(&pflags);
2624 	schedule_timeout_killable(penalty_jiffies);
2625 	psi_memstall_leave(&pflags);
2626 
2627 out:
2628 	css_put(&memcg->css);
2629 }
2630 
2631 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2632 		      unsigned int nr_pages)
2633 {
2634 	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2635 	int nr_retries = MAX_RECLAIM_RETRIES;
2636 	struct mem_cgroup *mem_over_limit;
2637 	struct page_counter *counter;
2638 	enum oom_status oom_status;
2639 	unsigned long nr_reclaimed;
2640 	bool may_swap = true;
2641 	bool drained = false;
2642 	unsigned long pflags;
2643 
2644 	if (mem_cgroup_is_root(memcg))
2645 		return 0;
2646 retry:
2647 	if (consume_stock(memcg, nr_pages))
2648 		return 0;
2649 
2650 	if (!do_memsw_account() ||
2651 	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2652 		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2653 			goto done_restock;
2654 		if (do_memsw_account())
2655 			page_counter_uncharge(&memcg->memsw, batch);
2656 		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2657 	} else {
2658 		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2659 		may_swap = false;
2660 	}
2661 
2662 	if (batch > nr_pages) {
2663 		batch = nr_pages;
2664 		goto retry;
2665 	}
2666 
2667 	/*
2668 	 * Memcg doesn't have a dedicated reserve for atomic
2669 	 * allocations. But like the global atomic pool, we need to
2670 	 * put the burden of reclaim on regular allocation requests
2671 	 * and let these go through as privileged allocations.
2672 	 */
2673 	if (gfp_mask & __GFP_ATOMIC)
2674 		goto force;
2675 
2676 	/*
2677 	 * Unlike in global OOM situations, memcg is not in a physical
2678 	 * memory shortage.  Allow dying and OOM-killed tasks to
2679 	 * bypass the last charges so that they can exit quickly and
2680 	 * free their memory.
2681 	 */
2682 	if (unlikely(should_force_charge()))
2683 		goto force;
2684 
2685 	/*
2686 	 * Prevent unbounded recursion when reclaim operations need to
2687 	 * allocate memory. This might exceed the limits temporarily,
2688 	 * but we prefer facilitating memory reclaim and getting back
2689 	 * under the limit over triggering OOM kills in these cases.
2690 	 */
2691 	if (unlikely(current->flags & PF_MEMALLOC))
2692 		goto force;
2693 
2694 	if (unlikely(task_in_memcg_oom(current)))
2695 		goto nomem;
2696 
2697 	if (!gfpflags_allow_blocking(gfp_mask))
2698 		goto nomem;
2699 
2700 	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2701 
2702 	psi_memstall_enter(&pflags);
2703 	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2704 						    gfp_mask, may_swap);
2705 	psi_memstall_leave(&pflags);
2706 
2707 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2708 		goto retry;
2709 
2710 	if (!drained) {
2711 		drain_all_stock(mem_over_limit);
2712 		drained = true;
2713 		goto retry;
2714 	}
2715 
2716 	if (gfp_mask & __GFP_NORETRY)
2717 		goto nomem;
2718 	/*
2719 	 * Even though the limit is exceeded at this point, reclaim
2720 	 * may have been able to free some pages.  Retry the charge
2721 	 * before killing the task.
2722 	 *
2723 	 * Only for regular pages, though: huge pages are rather
2724 	 * unlikely to succeed so close to the limit, and we fall back
2725 	 * to regular pages anyway in case of failure.
2726 	 */
2727 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2728 		goto retry;
2729 	/*
2730 	 * At task move, charge accounts can be doubly counted. So, it's
2731 	 * better to wait until the end of task_move if something is going on.
2732 	 */
2733 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2734 		goto retry;
2735 
2736 	if (nr_retries--)
2737 		goto retry;
2738 
2739 	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2740 		goto nomem;
2741 
2742 	if (fatal_signal_pending(current))
2743 		goto force;
2744 
2745 	/*
2746 	 * keep retrying as long as the memcg oom killer is able to make
2747 	 * a forward progress or bypass the charge if the oom killer
2748 	 * couldn't make any progress.
2749 	 */
2750 	oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2751 		       get_order(nr_pages * PAGE_SIZE));
2752 	switch (oom_status) {
2753 	case OOM_SUCCESS:
2754 		nr_retries = MAX_RECLAIM_RETRIES;
2755 		goto retry;
2756 	case OOM_FAILED:
2757 		goto force;
2758 	default:
2759 		goto nomem;
2760 	}
2761 nomem:
2762 	if (!(gfp_mask & __GFP_NOFAIL))
2763 		return -ENOMEM;
2764 force:
2765 	/*
2766 	 * The allocation either can't fail or will lead to more memory
2767 	 * being freed very soon.  Allow memory usage go over the limit
2768 	 * temporarily by force charging it.
2769 	 */
2770 	page_counter_charge(&memcg->memory, nr_pages);
2771 	if (do_memsw_account())
2772 		page_counter_charge(&memcg->memsw, nr_pages);
2773 
2774 	return 0;
2775 
2776 done_restock:
2777 	if (batch > nr_pages)
2778 		refill_stock(memcg, batch - nr_pages);
2779 
2780 	/*
2781 	 * If the hierarchy is above the normal consumption range, schedule
2782 	 * reclaim on returning to userland.  We can perform reclaim here
2783 	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2784 	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2785 	 * not recorded as it most likely matches current's and won't
2786 	 * change in the meantime.  As high limit is checked again before
2787 	 * reclaim, the cost of mismatch is negligible.
2788 	 */
2789 	do {
2790 		bool mem_high, swap_high;
2791 
2792 		mem_high = page_counter_read(&memcg->memory) >
2793 			READ_ONCE(memcg->memory.high);
2794 		swap_high = page_counter_read(&memcg->swap) >
2795 			READ_ONCE(memcg->swap.high);
2796 
2797 		/* Don't bother a random interrupted task */
2798 		if (in_interrupt()) {
2799 			if (mem_high) {
2800 				schedule_work(&memcg->high_work);
2801 				break;
2802 			}
2803 			continue;
2804 		}
2805 
2806 		if (mem_high || swap_high) {
2807 			/*
2808 			 * The allocating tasks in this cgroup will need to do
2809 			 * reclaim or be throttled to prevent further growth
2810 			 * of the memory or swap footprints.
2811 			 *
2812 			 * Target some best-effort fairness between the tasks,
2813 			 * and distribute reclaim work and delay penalties
2814 			 * based on how much each task is actually allocating.
2815 			 */
2816 			current->memcg_nr_pages_over_high += batch;
2817 			set_notify_resume(current);
2818 			break;
2819 		}
2820 	} while ((memcg = parent_mem_cgroup(memcg)));
2821 
2822 	return 0;
2823 }
2824 
2825 #if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
2826 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2827 {
2828 	if (mem_cgroup_is_root(memcg))
2829 		return;
2830 
2831 	page_counter_uncharge(&memcg->memory, nr_pages);
2832 	if (do_memsw_account())
2833 		page_counter_uncharge(&memcg->memsw, nr_pages);
2834 }
2835 #endif
2836 
2837 static void commit_charge(struct page *page, struct mem_cgroup *memcg)
2838 {
2839 	VM_BUG_ON_PAGE(page_memcg(page), page);
2840 	/*
2841 	 * Any of the following ensures page's memcg stability:
2842 	 *
2843 	 * - the page lock
2844 	 * - LRU isolation
2845 	 * - lock_page_memcg()
2846 	 * - exclusive reference
2847 	 */
2848 	page->memcg_data = (unsigned long)memcg;
2849 }
2850 
2851 static struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
2852 {
2853 	struct mem_cgroup *memcg;
2854 
2855 	rcu_read_lock();
2856 retry:
2857 	memcg = obj_cgroup_memcg(objcg);
2858 	if (unlikely(!css_tryget(&memcg->css)))
2859 		goto retry;
2860 	rcu_read_unlock();
2861 
2862 	return memcg;
2863 }
2864 
2865 #ifdef CONFIG_MEMCG_KMEM
2866 int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
2867 				 gfp_t gfp, bool new_page)
2868 {
2869 	unsigned int objects = objs_per_slab_page(s, page);
2870 	unsigned long memcg_data;
2871 	void *vec;
2872 
2873 	vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2874 			   page_to_nid(page));
2875 	if (!vec)
2876 		return -ENOMEM;
2877 
2878 	memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
2879 	if (new_page) {
2880 		/*
2881 		 * If the slab page is brand new and nobody can yet access
2882 		 * it's memcg_data, no synchronization is required and
2883 		 * memcg_data can be simply assigned.
2884 		 */
2885 		page->memcg_data = memcg_data;
2886 	} else if (cmpxchg(&page->memcg_data, 0, memcg_data)) {
2887 		/*
2888 		 * If the slab page is already in use, somebody can allocate
2889 		 * and assign obj_cgroups in parallel. In this case the existing
2890 		 * objcg vector should be reused.
2891 		 */
2892 		kfree(vec);
2893 		return 0;
2894 	}
2895 
2896 	kmemleak_not_leak(vec);
2897 	return 0;
2898 }
2899 
2900 /*
2901  * Returns a pointer to the memory cgroup to which the kernel object is charged.
2902  *
2903  * A passed kernel object can be a slab object or a generic kernel page, so
2904  * different mechanisms for getting the memory cgroup pointer should be used.
2905  * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2906  * can not know for sure how the kernel object is implemented.
2907  * mem_cgroup_from_obj() can be safely used in such cases.
2908  *
2909  * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2910  * cgroup_mutex, etc.
2911  */
2912 struct mem_cgroup *mem_cgroup_from_obj(void *p)
2913 {
2914 	struct page *page;
2915 
2916 	if (mem_cgroup_disabled())
2917 		return NULL;
2918 
2919 	page = virt_to_head_page(p);
2920 
2921 	/*
2922 	 * Slab objects are accounted individually, not per-page.
2923 	 * Memcg membership data for each individual object is saved in
2924 	 * the page->obj_cgroups.
2925 	 */
2926 	if (page_objcgs_check(page)) {
2927 		struct obj_cgroup *objcg;
2928 		unsigned int off;
2929 
2930 		off = obj_to_index(page->slab_cache, page, p);
2931 		objcg = page_objcgs(page)[off];
2932 		if (objcg)
2933 			return obj_cgroup_memcg(objcg);
2934 
2935 		return NULL;
2936 	}
2937 
2938 	/*
2939 	 * page_memcg_check() is used here, because page_has_obj_cgroups()
2940 	 * check above could fail because the object cgroups vector wasn't set
2941 	 * at that moment, but it can be set concurrently.
2942 	 * page_memcg_check(page) will guarantee that a proper memory
2943 	 * cgroup pointer or NULL will be returned.
2944 	 */
2945 	return page_memcg_check(page);
2946 }
2947 
2948 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
2949 {
2950 	struct obj_cgroup *objcg = NULL;
2951 	struct mem_cgroup *memcg;
2952 
2953 	if (memcg_kmem_bypass())
2954 		return NULL;
2955 
2956 	rcu_read_lock();
2957 	if (unlikely(active_memcg()))
2958 		memcg = active_memcg();
2959 	else
2960 		memcg = mem_cgroup_from_task(current);
2961 
2962 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
2963 		objcg = rcu_dereference(memcg->objcg);
2964 		if (objcg && obj_cgroup_tryget(objcg))
2965 			break;
2966 		objcg = NULL;
2967 	}
2968 	rcu_read_unlock();
2969 
2970 	return objcg;
2971 }
2972 
2973 static int memcg_alloc_cache_id(void)
2974 {
2975 	int id, size;
2976 	int err;
2977 
2978 	id = ida_simple_get(&memcg_cache_ida,
2979 			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2980 	if (id < 0)
2981 		return id;
2982 
2983 	if (id < memcg_nr_cache_ids)
2984 		return id;
2985 
2986 	/*
2987 	 * There's no space for the new id in memcg_caches arrays,
2988 	 * so we have to grow them.
2989 	 */
2990 	down_write(&memcg_cache_ids_sem);
2991 
2992 	size = 2 * (id + 1);
2993 	if (size < MEMCG_CACHES_MIN_SIZE)
2994 		size = MEMCG_CACHES_MIN_SIZE;
2995 	else if (size > MEMCG_CACHES_MAX_SIZE)
2996 		size = MEMCG_CACHES_MAX_SIZE;
2997 
2998 	err = memcg_update_all_list_lrus(size);
2999 	if (!err)
3000 		memcg_nr_cache_ids = size;
3001 
3002 	up_write(&memcg_cache_ids_sem);
3003 
3004 	if (err) {
3005 		ida_simple_remove(&memcg_cache_ida, id);
3006 		return err;
3007 	}
3008 	return id;
3009 }
3010 
3011 static void memcg_free_cache_id(int id)
3012 {
3013 	ida_simple_remove(&memcg_cache_ida, id);
3014 }
3015 
3016 /*
3017  * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
3018  * @objcg: object cgroup to uncharge
3019  * @nr_pages: number of pages to uncharge
3020  */
3021 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
3022 				      unsigned int nr_pages)
3023 {
3024 	struct mem_cgroup *memcg;
3025 
3026 	memcg = get_mem_cgroup_from_objcg(objcg);
3027 
3028 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
3029 		page_counter_uncharge(&memcg->kmem, nr_pages);
3030 	refill_stock(memcg, nr_pages);
3031 
3032 	css_put(&memcg->css);
3033 }
3034 
3035 /*
3036  * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
3037  * @objcg: object cgroup to charge
3038  * @gfp: reclaim mode
3039  * @nr_pages: number of pages to charge
3040  *
3041  * Returns 0 on success, an error code on failure.
3042  */
3043 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
3044 				   unsigned int nr_pages)
3045 {
3046 	struct page_counter *counter;
3047 	struct mem_cgroup *memcg;
3048 	int ret;
3049 
3050 	memcg = get_mem_cgroup_from_objcg(objcg);
3051 
3052 	ret = try_charge(memcg, gfp, nr_pages);
3053 	if (ret)
3054 		goto out;
3055 
3056 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
3057 	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
3058 
3059 		/*
3060 		 * Enforce __GFP_NOFAIL allocation because callers are not
3061 		 * prepared to see failures and likely do not have any failure
3062 		 * handling code.
3063 		 */
3064 		if (gfp & __GFP_NOFAIL) {
3065 			page_counter_charge(&memcg->kmem, nr_pages);
3066 			goto out;
3067 		}
3068 		cancel_charge(memcg, nr_pages);
3069 		ret = -ENOMEM;
3070 	}
3071 out:
3072 	css_put(&memcg->css);
3073 
3074 	return ret;
3075 }
3076 
3077 /**
3078  * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3079  * @page: page to charge
3080  * @gfp: reclaim mode
3081  * @order: allocation order
3082  *
3083  * Returns 0 on success, an error code on failure.
3084  */
3085 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3086 {
3087 	struct obj_cgroup *objcg;
3088 	int ret = 0;
3089 
3090 	objcg = get_obj_cgroup_from_current();
3091 	if (objcg) {
3092 		ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
3093 		if (!ret) {
3094 			page->memcg_data = (unsigned long)objcg |
3095 				MEMCG_DATA_KMEM;
3096 			return 0;
3097 		}
3098 		obj_cgroup_put(objcg);
3099 	}
3100 	return ret;
3101 }
3102 
3103 /**
3104  * __memcg_kmem_uncharge_page: uncharge a kmem page
3105  * @page: page to uncharge
3106  * @order: allocation order
3107  */
3108 void __memcg_kmem_uncharge_page(struct page *page, int order)
3109 {
3110 	struct obj_cgroup *objcg;
3111 	unsigned int nr_pages = 1 << order;
3112 
3113 	if (!PageMemcgKmem(page))
3114 		return;
3115 
3116 	objcg = __page_objcg(page);
3117 	obj_cgroup_uncharge_pages(objcg, nr_pages);
3118 	page->memcg_data = 0;
3119 	obj_cgroup_put(objcg);
3120 }
3121 
3122 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3123 {
3124 	struct memcg_stock_pcp *stock;
3125 	unsigned long flags;
3126 	bool ret = false;
3127 
3128 	local_irq_save(flags);
3129 
3130 	stock = this_cpu_ptr(&memcg_stock);
3131 	if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3132 		stock->nr_bytes -= nr_bytes;
3133 		ret = true;
3134 	}
3135 
3136 	local_irq_restore(flags);
3137 
3138 	return ret;
3139 }
3140 
3141 static void drain_obj_stock(struct memcg_stock_pcp *stock)
3142 {
3143 	struct obj_cgroup *old = stock->cached_objcg;
3144 
3145 	if (!old)
3146 		return;
3147 
3148 	if (stock->nr_bytes) {
3149 		unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3150 		unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3151 
3152 		if (nr_pages)
3153 			obj_cgroup_uncharge_pages(old, nr_pages);
3154 
3155 		/*
3156 		 * The leftover is flushed to the centralized per-memcg value.
3157 		 * On the next attempt to refill obj stock it will be moved
3158 		 * to a per-cpu stock (probably, on an other CPU), see
3159 		 * refill_obj_stock().
3160 		 *
3161 		 * How often it's flushed is a trade-off between the memory
3162 		 * limit enforcement accuracy and potential CPU contention,
3163 		 * so it might be changed in the future.
3164 		 */
3165 		atomic_add(nr_bytes, &old->nr_charged_bytes);
3166 		stock->nr_bytes = 0;
3167 	}
3168 
3169 	obj_cgroup_put(old);
3170 	stock->cached_objcg = NULL;
3171 }
3172 
3173 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3174 				     struct mem_cgroup *root_memcg)
3175 {
3176 	struct mem_cgroup *memcg;
3177 
3178 	if (stock->cached_objcg) {
3179 		memcg = obj_cgroup_memcg(stock->cached_objcg);
3180 		if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3181 			return true;
3182 	}
3183 
3184 	return false;
3185 }
3186 
3187 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3188 {
3189 	struct memcg_stock_pcp *stock;
3190 	unsigned long flags;
3191 
3192 	local_irq_save(flags);
3193 
3194 	stock = this_cpu_ptr(&memcg_stock);
3195 	if (stock->cached_objcg != objcg) { /* reset if necessary */
3196 		drain_obj_stock(stock);
3197 		obj_cgroup_get(objcg);
3198 		stock->cached_objcg = objcg;
3199 		stock->nr_bytes = atomic_xchg(&objcg->nr_charged_bytes, 0);
3200 	}
3201 	stock->nr_bytes += nr_bytes;
3202 
3203 	if (stock->nr_bytes > PAGE_SIZE)
3204 		drain_obj_stock(stock);
3205 
3206 	local_irq_restore(flags);
3207 }
3208 
3209 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3210 {
3211 	unsigned int nr_pages, nr_bytes;
3212 	int ret;
3213 
3214 	if (consume_obj_stock(objcg, size))
3215 		return 0;
3216 
3217 	/*
3218 	 * In theory, memcg->nr_charged_bytes can have enough
3219 	 * pre-charged bytes to satisfy the allocation. However,
3220 	 * flushing memcg->nr_charged_bytes requires two atomic
3221 	 * operations, and memcg->nr_charged_bytes can't be big,
3222 	 * so it's better to ignore it and try grab some new pages.
3223 	 * memcg->nr_charged_bytes will be flushed in
3224 	 * refill_obj_stock(), called from this function or
3225 	 * independently later.
3226 	 */
3227 	nr_pages = size >> PAGE_SHIFT;
3228 	nr_bytes = size & (PAGE_SIZE - 1);
3229 
3230 	if (nr_bytes)
3231 		nr_pages += 1;
3232 
3233 	ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3234 	if (!ret && nr_bytes)
3235 		refill_obj_stock(objcg, PAGE_SIZE - nr_bytes);
3236 
3237 	return ret;
3238 }
3239 
3240 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3241 {
3242 	refill_obj_stock(objcg, size);
3243 }
3244 
3245 #endif /* CONFIG_MEMCG_KMEM */
3246 
3247 /*
3248  * Because page_memcg(head) is not set on tails, set it now.
3249  */
3250 void split_page_memcg(struct page *head, unsigned int nr)
3251 {
3252 	struct mem_cgroup *memcg = page_memcg(head);
3253 	int i;
3254 
3255 	if (mem_cgroup_disabled() || !memcg)
3256 		return;
3257 
3258 	for (i = 1; i < nr; i++)
3259 		head[i].memcg_data = head->memcg_data;
3260 
3261 	if (PageMemcgKmem(head))
3262 		obj_cgroup_get_many(__page_objcg(head), nr - 1);
3263 	else
3264 		css_get_many(&memcg->css, nr - 1);
3265 }
3266 
3267 #ifdef CONFIG_MEMCG_SWAP
3268 /**
3269  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3270  * @entry: swap entry to be moved
3271  * @from:  mem_cgroup which the entry is moved from
3272  * @to:  mem_cgroup which the entry is moved to
3273  *
3274  * It succeeds only when the swap_cgroup's record for this entry is the same
3275  * as the mem_cgroup's id of @from.
3276  *
3277  * Returns 0 on success, -EINVAL on failure.
3278  *
3279  * The caller must have charged to @to, IOW, called page_counter_charge() about
3280  * both res and memsw, and called css_get().
3281  */
3282 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3283 				struct mem_cgroup *from, struct mem_cgroup *to)
3284 {
3285 	unsigned short old_id, new_id;
3286 
3287 	old_id = mem_cgroup_id(from);
3288 	new_id = mem_cgroup_id(to);
3289 
3290 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3291 		mod_memcg_state(from, MEMCG_SWAP, -1);
3292 		mod_memcg_state(to, MEMCG_SWAP, 1);
3293 		return 0;
3294 	}
3295 	return -EINVAL;
3296 }
3297 #else
3298 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3299 				struct mem_cgroup *from, struct mem_cgroup *to)
3300 {
3301 	return -EINVAL;
3302 }
3303 #endif
3304 
3305 static DEFINE_MUTEX(memcg_max_mutex);
3306 
3307 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3308 				 unsigned long max, bool memsw)
3309 {
3310 	bool enlarge = false;
3311 	bool drained = false;
3312 	int ret;
3313 	bool limits_invariant;
3314 	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3315 
3316 	do {
3317 		if (signal_pending(current)) {
3318 			ret = -EINTR;
3319 			break;
3320 		}
3321 
3322 		mutex_lock(&memcg_max_mutex);
3323 		/*
3324 		 * Make sure that the new limit (memsw or memory limit) doesn't
3325 		 * break our basic invariant rule memory.max <= memsw.max.
3326 		 */
3327 		limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3328 					   max <= memcg->memsw.max;
3329 		if (!limits_invariant) {
3330 			mutex_unlock(&memcg_max_mutex);
3331 			ret = -EINVAL;
3332 			break;
3333 		}
3334 		if (max > counter->max)
3335 			enlarge = true;
3336 		ret = page_counter_set_max(counter, max);
3337 		mutex_unlock(&memcg_max_mutex);
3338 
3339 		if (!ret)
3340 			break;
3341 
3342 		if (!drained) {
3343 			drain_all_stock(memcg);
3344 			drained = true;
3345 			continue;
3346 		}
3347 
3348 		if (!try_to_free_mem_cgroup_pages(memcg, 1,
3349 					GFP_KERNEL, !memsw)) {
3350 			ret = -EBUSY;
3351 			break;
3352 		}
3353 	} while (true);
3354 
3355 	if (!ret && enlarge)
3356 		memcg_oom_recover(memcg);
3357 
3358 	return ret;
3359 }
3360 
3361 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3362 					    gfp_t gfp_mask,
3363 					    unsigned long *total_scanned)
3364 {
3365 	unsigned long nr_reclaimed = 0;
3366 	struct mem_cgroup_per_node *mz, *next_mz = NULL;
3367 	unsigned long reclaimed;
3368 	int loop = 0;
3369 	struct mem_cgroup_tree_per_node *mctz;
3370 	unsigned long excess;
3371 	unsigned long nr_scanned;
3372 
3373 	if (order > 0)
3374 		return 0;
3375 
3376 	mctz = soft_limit_tree_node(pgdat->node_id);
3377 
3378 	/*
3379 	 * Do not even bother to check the largest node if the root
3380 	 * is empty. Do it lockless to prevent lock bouncing. Races
3381 	 * are acceptable as soft limit is best effort anyway.
3382 	 */
3383 	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3384 		return 0;
3385 
3386 	/*
3387 	 * This loop can run a while, specially if mem_cgroup's continuously
3388 	 * keep exceeding their soft limit and putting the system under
3389 	 * pressure
3390 	 */
3391 	do {
3392 		if (next_mz)
3393 			mz = next_mz;
3394 		else
3395 			mz = mem_cgroup_largest_soft_limit_node(mctz);
3396 		if (!mz)
3397 			break;
3398 
3399 		nr_scanned = 0;
3400 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3401 						    gfp_mask, &nr_scanned);
3402 		nr_reclaimed += reclaimed;
3403 		*total_scanned += nr_scanned;
3404 		spin_lock_irq(&mctz->lock);
3405 		__mem_cgroup_remove_exceeded(mz, mctz);
3406 
3407 		/*
3408 		 * If we failed to reclaim anything from this memory cgroup
3409 		 * it is time to move on to the next cgroup
3410 		 */
3411 		next_mz = NULL;
3412 		if (!reclaimed)
3413 			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3414 
3415 		excess = soft_limit_excess(mz->memcg);
3416 		/*
3417 		 * One school of thought says that we should not add
3418 		 * back the node to the tree if reclaim returns 0.
3419 		 * But our reclaim could return 0, simply because due
3420 		 * to priority we are exposing a smaller subset of
3421 		 * memory to reclaim from. Consider this as a longer
3422 		 * term TODO.
3423 		 */
3424 		/* If excess == 0, no tree ops */
3425 		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3426 		spin_unlock_irq(&mctz->lock);
3427 		css_put(&mz->memcg->css);
3428 		loop++;
3429 		/*
3430 		 * Could not reclaim anything and there are no more
3431 		 * mem cgroups to try or we seem to be looping without
3432 		 * reclaiming anything.
3433 		 */
3434 		if (!nr_reclaimed &&
3435 			(next_mz == NULL ||
3436 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3437 			break;
3438 	} while (!nr_reclaimed);
3439 	if (next_mz)
3440 		css_put(&next_mz->memcg->css);
3441 	return nr_reclaimed;
3442 }
3443 
3444 /*
3445  * Reclaims as many pages from the given memcg as possible.
3446  *
3447  * Caller is responsible for holding css reference for memcg.
3448  */
3449 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3450 {
3451 	int nr_retries = MAX_RECLAIM_RETRIES;
3452 
3453 	/* we call try-to-free pages for make this cgroup empty */
3454 	lru_add_drain_all();
3455 
3456 	drain_all_stock(memcg);
3457 
3458 	/* try to free all pages in this cgroup */
3459 	while (nr_retries && page_counter_read(&memcg->memory)) {
3460 		int progress;
3461 
3462 		if (signal_pending(current))
3463 			return -EINTR;
3464 
3465 		progress = try_to_free_mem_cgroup_pages(memcg, 1,
3466 							GFP_KERNEL, true);
3467 		if (!progress) {
3468 			nr_retries--;
3469 			/* maybe some writeback is necessary */
3470 			congestion_wait(BLK_RW_ASYNC, HZ/10);
3471 		}
3472 
3473 	}
3474 
3475 	return 0;
3476 }
3477 
3478 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3479 					    char *buf, size_t nbytes,
3480 					    loff_t off)
3481 {
3482 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3483 
3484 	if (mem_cgroup_is_root(memcg))
3485 		return -EINVAL;
3486 	return mem_cgroup_force_empty(memcg) ?: nbytes;
3487 }
3488 
3489 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3490 				     struct cftype *cft)
3491 {
3492 	return 1;
3493 }
3494 
3495 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3496 				      struct cftype *cft, u64 val)
3497 {
3498 	if (val == 1)
3499 		return 0;
3500 
3501 	pr_warn_once("Non-hierarchical mode is deprecated. "
3502 		     "Please report your usecase to linux-mm@kvack.org if you "
3503 		     "depend on this functionality.\n");
3504 
3505 	return -EINVAL;
3506 }
3507 
3508 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3509 {
3510 	unsigned long val;
3511 
3512 	if (mem_cgroup_is_root(memcg)) {
3513 		cgroup_rstat_flush(memcg->css.cgroup);
3514 		val = memcg_page_state(memcg, NR_FILE_PAGES) +
3515 			memcg_page_state(memcg, NR_ANON_MAPPED);
3516 		if (swap)
3517 			val += memcg_page_state(memcg, MEMCG_SWAP);
3518 	} else {
3519 		if (!swap)
3520 			val = page_counter_read(&memcg->memory);
3521 		else
3522 			val = page_counter_read(&memcg->memsw);
3523 	}
3524 	return val;
3525 }
3526 
3527 enum {
3528 	RES_USAGE,
3529 	RES_LIMIT,
3530 	RES_MAX_USAGE,
3531 	RES_FAILCNT,
3532 	RES_SOFT_LIMIT,
3533 };
3534 
3535 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3536 			       struct cftype *cft)
3537 {
3538 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3539 	struct page_counter *counter;
3540 
3541 	switch (MEMFILE_TYPE(cft->private)) {
3542 	case _MEM:
3543 		counter = &memcg->memory;
3544 		break;
3545 	case _MEMSWAP:
3546 		counter = &memcg->memsw;
3547 		break;
3548 	case _KMEM:
3549 		counter = &memcg->kmem;
3550 		break;
3551 	case _TCP:
3552 		counter = &memcg->tcpmem;
3553 		break;
3554 	default:
3555 		BUG();
3556 	}
3557 
3558 	switch (MEMFILE_ATTR(cft->private)) {
3559 	case RES_USAGE:
3560 		if (counter == &memcg->memory)
3561 			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3562 		if (counter == &memcg->memsw)
3563 			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3564 		return (u64)page_counter_read(counter) * PAGE_SIZE;
3565 	case RES_LIMIT:
3566 		return (u64)counter->max * PAGE_SIZE;
3567 	case RES_MAX_USAGE:
3568 		return (u64)counter->watermark * PAGE_SIZE;
3569 	case RES_FAILCNT:
3570 		return counter->failcnt;
3571 	case RES_SOFT_LIMIT:
3572 		return (u64)memcg->soft_limit * PAGE_SIZE;
3573 	default:
3574 		BUG();
3575 	}
3576 }
3577 
3578 #ifdef CONFIG_MEMCG_KMEM
3579 static int memcg_online_kmem(struct mem_cgroup *memcg)
3580 {
3581 	struct obj_cgroup *objcg;
3582 	int memcg_id;
3583 
3584 	if (cgroup_memory_nokmem)
3585 		return 0;
3586 
3587 	BUG_ON(memcg->kmemcg_id >= 0);
3588 	BUG_ON(memcg->kmem_state);
3589 
3590 	memcg_id = memcg_alloc_cache_id();
3591 	if (memcg_id < 0)
3592 		return memcg_id;
3593 
3594 	objcg = obj_cgroup_alloc();
3595 	if (!objcg) {
3596 		memcg_free_cache_id(memcg_id);
3597 		return -ENOMEM;
3598 	}
3599 	objcg->memcg = memcg;
3600 	rcu_assign_pointer(memcg->objcg, objcg);
3601 
3602 	static_branch_enable(&memcg_kmem_enabled_key);
3603 
3604 	memcg->kmemcg_id = memcg_id;
3605 	memcg->kmem_state = KMEM_ONLINE;
3606 
3607 	return 0;
3608 }
3609 
3610 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3611 {
3612 	struct cgroup_subsys_state *css;
3613 	struct mem_cgroup *parent, *child;
3614 	int kmemcg_id;
3615 
3616 	if (memcg->kmem_state != KMEM_ONLINE)
3617 		return;
3618 
3619 	memcg->kmem_state = KMEM_ALLOCATED;
3620 
3621 	parent = parent_mem_cgroup(memcg);
3622 	if (!parent)
3623 		parent = root_mem_cgroup;
3624 
3625 	memcg_reparent_objcgs(memcg, parent);
3626 
3627 	kmemcg_id = memcg->kmemcg_id;
3628 	BUG_ON(kmemcg_id < 0);
3629 
3630 	/*
3631 	 * Change kmemcg_id of this cgroup and all its descendants to the
3632 	 * parent's id, and then move all entries from this cgroup's list_lrus
3633 	 * to ones of the parent. After we have finished, all list_lrus
3634 	 * corresponding to this cgroup are guaranteed to remain empty. The
3635 	 * ordering is imposed by list_lru_node->lock taken by
3636 	 * memcg_drain_all_list_lrus().
3637 	 */
3638 	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3639 	css_for_each_descendant_pre(css, &memcg->css) {
3640 		child = mem_cgroup_from_css(css);
3641 		BUG_ON(child->kmemcg_id != kmemcg_id);
3642 		child->kmemcg_id = parent->kmemcg_id;
3643 	}
3644 	rcu_read_unlock();
3645 
3646 	memcg_drain_all_list_lrus(kmemcg_id, parent);
3647 
3648 	memcg_free_cache_id(kmemcg_id);
3649 }
3650 
3651 static void memcg_free_kmem(struct mem_cgroup *memcg)
3652 {
3653 	/* css_alloc() failed, offlining didn't happen */
3654 	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3655 		memcg_offline_kmem(memcg);
3656 }
3657 #else
3658 static int memcg_online_kmem(struct mem_cgroup *memcg)
3659 {
3660 	return 0;
3661 }
3662 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3663 {
3664 }
3665 static void memcg_free_kmem(struct mem_cgroup *memcg)
3666 {
3667 }
3668 #endif /* CONFIG_MEMCG_KMEM */
3669 
3670 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3671 				 unsigned long max)
3672 {
3673 	int ret;
3674 
3675 	mutex_lock(&memcg_max_mutex);
3676 	ret = page_counter_set_max(&memcg->kmem, max);
3677 	mutex_unlock(&memcg_max_mutex);
3678 	return ret;
3679 }
3680 
3681 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3682 {
3683 	int ret;
3684 
3685 	mutex_lock(&memcg_max_mutex);
3686 
3687 	ret = page_counter_set_max(&memcg->tcpmem, max);
3688 	if (ret)
3689 		goto out;
3690 
3691 	if (!memcg->tcpmem_active) {
3692 		/*
3693 		 * The active flag needs to be written after the static_key
3694 		 * update. This is what guarantees that the socket activation
3695 		 * function is the last one to run. See mem_cgroup_sk_alloc()
3696 		 * for details, and note that we don't mark any socket as
3697 		 * belonging to this memcg until that flag is up.
3698 		 *
3699 		 * We need to do this, because static_keys will span multiple
3700 		 * sites, but we can't control their order. If we mark a socket
3701 		 * as accounted, but the accounting functions are not patched in
3702 		 * yet, we'll lose accounting.
3703 		 *
3704 		 * We never race with the readers in mem_cgroup_sk_alloc(),
3705 		 * because when this value change, the code to process it is not
3706 		 * patched in yet.
3707 		 */
3708 		static_branch_inc(&memcg_sockets_enabled_key);
3709 		memcg->tcpmem_active = true;
3710 	}
3711 out:
3712 	mutex_unlock(&memcg_max_mutex);
3713 	return ret;
3714 }
3715 
3716 /*
3717  * The user of this function is...
3718  * RES_LIMIT.
3719  */
3720 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3721 				char *buf, size_t nbytes, loff_t off)
3722 {
3723 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3724 	unsigned long nr_pages;
3725 	int ret;
3726 
3727 	buf = strstrip(buf);
3728 	ret = page_counter_memparse(buf, "-1", &nr_pages);
3729 	if (ret)
3730 		return ret;
3731 
3732 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3733 	case RES_LIMIT:
3734 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3735 			ret = -EINVAL;
3736 			break;
3737 		}
3738 		switch (MEMFILE_TYPE(of_cft(of)->private)) {
3739 		case _MEM:
3740 			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3741 			break;
3742 		case _MEMSWAP:
3743 			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3744 			break;
3745 		case _KMEM:
3746 			pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3747 				     "Please report your usecase to linux-mm@kvack.org if you "
3748 				     "depend on this functionality.\n");
3749 			ret = memcg_update_kmem_max(memcg, nr_pages);
3750 			break;
3751 		case _TCP:
3752 			ret = memcg_update_tcp_max(memcg, nr_pages);
3753 			break;
3754 		}
3755 		break;
3756 	case RES_SOFT_LIMIT:
3757 		memcg->soft_limit = nr_pages;
3758 		ret = 0;
3759 		break;
3760 	}
3761 	return ret ?: nbytes;
3762 }
3763 
3764 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3765 				size_t nbytes, loff_t off)
3766 {
3767 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3768 	struct page_counter *counter;
3769 
3770 	switch (MEMFILE_TYPE(of_cft(of)->private)) {
3771 	case _MEM:
3772 		counter = &memcg->memory;
3773 		break;
3774 	case _MEMSWAP:
3775 		counter = &memcg->memsw;
3776 		break;
3777 	case _KMEM:
3778 		counter = &memcg->kmem;
3779 		break;
3780 	case _TCP:
3781 		counter = &memcg->tcpmem;
3782 		break;
3783 	default:
3784 		BUG();
3785 	}
3786 
3787 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3788 	case RES_MAX_USAGE:
3789 		page_counter_reset_watermark(counter);
3790 		break;
3791 	case RES_FAILCNT:
3792 		counter->failcnt = 0;
3793 		break;
3794 	default:
3795 		BUG();
3796 	}
3797 
3798 	return nbytes;
3799 }
3800 
3801 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3802 					struct cftype *cft)
3803 {
3804 	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3805 }
3806 
3807 #ifdef CONFIG_MMU
3808 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3809 					struct cftype *cft, u64 val)
3810 {
3811 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3812 
3813 	if (val & ~MOVE_MASK)
3814 		return -EINVAL;
3815 
3816 	/*
3817 	 * No kind of locking is needed in here, because ->can_attach() will
3818 	 * check this value once in the beginning of the process, and then carry
3819 	 * on with stale data. This means that changes to this value will only
3820 	 * affect task migrations starting after the change.
3821 	 */
3822 	memcg->move_charge_at_immigrate = val;
3823 	return 0;
3824 }
3825 #else
3826 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3827 					struct cftype *cft, u64 val)
3828 {
3829 	return -ENOSYS;
3830 }
3831 #endif
3832 
3833 #ifdef CONFIG_NUMA
3834 
3835 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3836 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3837 #define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)
3838 
3839 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3840 				int nid, unsigned int lru_mask, bool tree)
3841 {
3842 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3843 	unsigned long nr = 0;
3844 	enum lru_list lru;
3845 
3846 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
3847 
3848 	for_each_lru(lru) {
3849 		if (!(BIT(lru) & lru_mask))
3850 			continue;
3851 		if (tree)
3852 			nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3853 		else
3854 			nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3855 	}
3856 	return nr;
3857 }
3858 
3859 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3860 					     unsigned int lru_mask,
3861 					     bool tree)
3862 {
3863 	unsigned long nr = 0;
3864 	enum lru_list lru;
3865 
3866 	for_each_lru(lru) {
3867 		if (!(BIT(lru) & lru_mask))
3868 			continue;
3869 		if (tree)
3870 			nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3871 		else
3872 			nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3873 	}
3874 	return nr;
3875 }
3876 
3877 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3878 {
3879 	struct numa_stat {
3880 		const char *name;
3881 		unsigned int lru_mask;
3882 	};
3883 
3884 	static const struct numa_stat stats[] = {
3885 		{ "total", LRU_ALL },
3886 		{ "file", LRU_ALL_FILE },
3887 		{ "anon", LRU_ALL_ANON },
3888 		{ "unevictable", BIT(LRU_UNEVICTABLE) },
3889 	};
3890 	const struct numa_stat *stat;
3891 	int nid;
3892 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3893 
3894 	cgroup_rstat_flush(memcg->css.cgroup);
3895 
3896 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3897 		seq_printf(m, "%s=%lu", stat->name,
3898 			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3899 						   false));
3900 		for_each_node_state(nid, N_MEMORY)
3901 			seq_printf(m, " N%d=%lu", nid,
3902 				   mem_cgroup_node_nr_lru_pages(memcg, nid,
3903 							stat->lru_mask, false));
3904 		seq_putc(m, '\n');
3905 	}
3906 
3907 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3908 
3909 		seq_printf(m, "hierarchical_%s=%lu", stat->name,
3910 			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3911 						   true));
3912 		for_each_node_state(nid, N_MEMORY)
3913 			seq_printf(m, " N%d=%lu", nid,
3914 				   mem_cgroup_node_nr_lru_pages(memcg, nid,
3915 							stat->lru_mask, true));
3916 		seq_putc(m, '\n');
3917 	}
3918 
3919 	return 0;
3920 }
3921 #endif /* CONFIG_NUMA */
3922 
3923 static const unsigned int memcg1_stats[] = {
3924 	NR_FILE_PAGES,
3925 	NR_ANON_MAPPED,
3926 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3927 	NR_ANON_THPS,
3928 #endif
3929 	NR_SHMEM,
3930 	NR_FILE_MAPPED,
3931 	NR_FILE_DIRTY,
3932 	NR_WRITEBACK,
3933 	MEMCG_SWAP,
3934 };
3935 
3936 static const char *const memcg1_stat_names[] = {
3937 	"cache",
3938 	"rss",
3939 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3940 	"rss_huge",
3941 #endif
3942 	"shmem",
3943 	"mapped_file",
3944 	"dirty",
3945 	"writeback",
3946 	"swap",
3947 };
3948 
3949 /* Universal VM events cgroup1 shows, original sort order */
3950 static const unsigned int memcg1_events[] = {
3951 	PGPGIN,
3952 	PGPGOUT,
3953 	PGFAULT,
3954 	PGMAJFAULT,
3955 };
3956 
3957 static int memcg_stat_show(struct seq_file *m, void *v)
3958 {
3959 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3960 	unsigned long memory, memsw;
3961 	struct mem_cgroup *mi;
3962 	unsigned int i;
3963 
3964 	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3965 
3966 	cgroup_rstat_flush(memcg->css.cgroup);
3967 
3968 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3969 		unsigned long nr;
3970 
3971 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3972 			continue;
3973 		nr = memcg_page_state_local(memcg, memcg1_stats[i]);
3974 		seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
3975 	}
3976 
3977 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3978 		seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
3979 			   memcg_events_local(memcg, memcg1_events[i]));
3980 
3981 	for (i = 0; i < NR_LRU_LISTS; i++)
3982 		seq_printf(m, "%s %lu\n", lru_list_name(i),
3983 			   memcg_page_state_local(memcg, NR_LRU_BASE + i) *
3984 			   PAGE_SIZE);
3985 
3986 	/* Hierarchical information */
3987 	memory = memsw = PAGE_COUNTER_MAX;
3988 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3989 		memory = min(memory, READ_ONCE(mi->memory.max));
3990 		memsw = min(memsw, READ_ONCE(mi->memsw.max));
3991 	}
3992 	seq_printf(m, "hierarchical_memory_limit %llu\n",
3993 		   (u64)memory * PAGE_SIZE);
3994 	if (do_memsw_account())
3995 		seq_printf(m, "hierarchical_memsw_limit %llu\n",
3996 			   (u64)memsw * PAGE_SIZE);
3997 
3998 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3999 		unsigned long nr;
4000 
4001 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4002 			continue;
4003 		nr = memcg_page_state(memcg, memcg1_stats[i]);
4004 		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4005 						(u64)nr * PAGE_SIZE);
4006 	}
4007 
4008 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4009 		seq_printf(m, "total_%s %llu\n",
4010 			   vm_event_name(memcg1_events[i]),
4011 			   (u64)memcg_events(memcg, memcg1_events[i]));
4012 
4013 	for (i = 0; i < NR_LRU_LISTS; i++)
4014 		seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4015 			   (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4016 			   PAGE_SIZE);
4017 
4018 #ifdef CONFIG_DEBUG_VM
4019 	{
4020 		pg_data_t *pgdat;
4021 		struct mem_cgroup_per_node *mz;
4022 		unsigned long anon_cost = 0;
4023 		unsigned long file_cost = 0;
4024 
4025 		for_each_online_pgdat(pgdat) {
4026 			mz = memcg->nodeinfo[pgdat->node_id];
4027 
4028 			anon_cost += mz->lruvec.anon_cost;
4029 			file_cost += mz->lruvec.file_cost;
4030 		}
4031 		seq_printf(m, "anon_cost %lu\n", anon_cost);
4032 		seq_printf(m, "file_cost %lu\n", file_cost);
4033 	}
4034 #endif
4035 
4036 	return 0;
4037 }
4038 
4039 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4040 				      struct cftype *cft)
4041 {
4042 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4043 
4044 	return mem_cgroup_swappiness(memcg);
4045 }
4046 
4047 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4048 				       struct cftype *cft, u64 val)
4049 {
4050 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4051 
4052 	if (val > 100)
4053 		return -EINVAL;
4054 
4055 	if (!mem_cgroup_is_root(memcg))
4056 		memcg->swappiness = val;
4057 	else
4058 		vm_swappiness = val;
4059 
4060 	return 0;
4061 }
4062 
4063 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4064 {
4065 	struct mem_cgroup_threshold_ary *t;
4066 	unsigned long usage;
4067 	int i;
4068 
4069 	rcu_read_lock();
4070 	if (!swap)
4071 		t = rcu_dereference(memcg->thresholds.primary);
4072 	else
4073 		t = rcu_dereference(memcg->memsw_thresholds.primary);
4074 
4075 	if (!t)
4076 		goto unlock;
4077 
4078 	usage = mem_cgroup_usage(memcg, swap);
4079 
4080 	/*
4081 	 * current_threshold points to threshold just below or equal to usage.
4082 	 * If it's not true, a threshold was crossed after last
4083 	 * call of __mem_cgroup_threshold().
4084 	 */
4085 	i = t->current_threshold;
4086 
4087 	/*
4088 	 * Iterate backward over array of thresholds starting from
4089 	 * current_threshold and check if a threshold is crossed.
4090 	 * If none of thresholds below usage is crossed, we read
4091 	 * only one element of the array here.
4092 	 */
4093 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4094 		eventfd_signal(t->entries[i].eventfd, 1);
4095 
4096 	/* i = current_threshold + 1 */
4097 	i++;
4098 
4099 	/*
4100 	 * Iterate forward over array of thresholds starting from
4101 	 * current_threshold+1 and check if a threshold is crossed.
4102 	 * If none of thresholds above usage is crossed, we read
4103 	 * only one element of the array here.
4104 	 */
4105 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4106 		eventfd_signal(t->entries[i].eventfd, 1);
4107 
4108 	/* Update current_threshold */
4109 	t->current_threshold = i - 1;
4110 unlock:
4111 	rcu_read_unlock();
4112 }
4113 
4114 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4115 {
4116 	while (memcg) {
4117 		__mem_cgroup_threshold(memcg, false);
4118 		if (do_memsw_account())
4119 			__mem_cgroup_threshold(memcg, true);
4120 
4121 		memcg = parent_mem_cgroup(memcg);
4122 	}
4123 }
4124 
4125 static int compare_thresholds(const void *a, const void *b)
4126 {
4127 	const struct mem_cgroup_threshold *_a = a;
4128 	const struct mem_cgroup_threshold *_b = b;
4129 
4130 	if (_a->threshold > _b->threshold)
4131 		return 1;
4132 
4133 	if (_a->threshold < _b->threshold)
4134 		return -1;
4135 
4136 	return 0;
4137 }
4138 
4139 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4140 {
4141 	struct mem_cgroup_eventfd_list *ev;
4142 
4143 	spin_lock(&memcg_oom_lock);
4144 
4145 	list_for_each_entry(ev, &memcg->oom_notify, list)
4146 		eventfd_signal(ev->eventfd, 1);
4147 
4148 	spin_unlock(&memcg_oom_lock);
4149 	return 0;
4150 }
4151 
4152 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4153 {
4154 	struct mem_cgroup *iter;
4155 
4156 	for_each_mem_cgroup_tree(iter, memcg)
4157 		mem_cgroup_oom_notify_cb(iter);
4158 }
4159 
4160 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4161 	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4162 {
4163 	struct mem_cgroup_thresholds *thresholds;
4164 	struct mem_cgroup_threshold_ary *new;
4165 	unsigned long threshold;
4166 	unsigned long usage;
4167 	int i, size, ret;
4168 
4169 	ret = page_counter_memparse(args, "-1", &threshold);
4170 	if (ret)
4171 		return ret;
4172 
4173 	mutex_lock(&memcg->thresholds_lock);
4174 
4175 	if (type == _MEM) {
4176 		thresholds = &memcg->thresholds;
4177 		usage = mem_cgroup_usage(memcg, false);
4178 	} else if (type == _MEMSWAP) {
4179 		thresholds = &memcg->memsw_thresholds;
4180 		usage = mem_cgroup_usage(memcg, true);
4181 	} else
4182 		BUG();
4183 
4184 	/* Check if a threshold crossed before adding a new one */
4185 	if (thresholds->primary)
4186 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4187 
4188 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4189 
4190 	/* Allocate memory for new array of thresholds */
4191 	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4192 	if (!new) {
4193 		ret = -ENOMEM;
4194 		goto unlock;
4195 	}
4196 	new->size = size;
4197 
4198 	/* Copy thresholds (if any) to new array */
4199 	if (thresholds->primary)
4200 		memcpy(new->entries, thresholds->primary->entries,
4201 		       flex_array_size(new, entries, size - 1));
4202 
4203 	/* Add new threshold */
4204 	new->entries[size - 1].eventfd = eventfd;
4205 	new->entries[size - 1].threshold = threshold;
4206 
4207 	/* Sort thresholds. Registering of new threshold isn't time-critical */
4208 	sort(new->entries, size, sizeof(*new->entries),
4209 			compare_thresholds, NULL);
4210 
4211 	/* Find current threshold */
4212 	new->current_threshold = -1;
4213 	for (i = 0; i < size; i++) {
4214 		if (new->entries[i].threshold <= usage) {
4215 			/*
4216 			 * new->current_threshold will not be used until
4217 			 * rcu_assign_pointer(), so it's safe to increment
4218 			 * it here.
4219 			 */
4220 			++new->current_threshold;
4221 		} else
4222 			break;
4223 	}
4224 
4225 	/* Free old spare buffer and save old primary buffer as spare */
4226 	kfree(thresholds->spare);
4227 	thresholds->spare = thresholds->primary;
4228 
4229 	rcu_assign_pointer(thresholds->primary, new);
4230 
4231 	/* To be sure that nobody uses thresholds */
4232 	synchronize_rcu();
4233 
4234 unlock:
4235 	mutex_unlock(&memcg->thresholds_lock);
4236 
4237 	return ret;
4238 }
4239 
4240 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4241 	struct eventfd_ctx *eventfd, const char *args)
4242 {
4243 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4244 }
4245 
4246 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4247 	struct eventfd_ctx *eventfd, const char *args)
4248 {
4249 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4250 }
4251 
4252 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4253 	struct eventfd_ctx *eventfd, enum res_type type)
4254 {
4255 	struct mem_cgroup_thresholds *thresholds;
4256 	struct mem_cgroup_threshold_ary *new;
4257 	unsigned long usage;
4258 	int i, j, size, entries;
4259 
4260 	mutex_lock(&memcg->thresholds_lock);
4261 
4262 	if (type == _MEM) {
4263 		thresholds = &memcg->thresholds;
4264 		usage = mem_cgroup_usage(memcg, false);
4265 	} else if (type == _MEMSWAP) {
4266 		thresholds = &memcg->memsw_thresholds;
4267 		usage = mem_cgroup_usage(memcg, true);
4268 	} else
4269 		BUG();
4270 
4271 	if (!thresholds->primary)
4272 		goto unlock;
4273 
4274 	/* Check if a threshold crossed before removing */
4275 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4276 
4277 	/* Calculate new number of threshold */
4278 	size = entries = 0;
4279 	for (i = 0; i < thresholds->primary->size; i++) {
4280 		if (thresholds->primary->entries[i].eventfd != eventfd)
4281 			size++;
4282 		else
4283 			entries++;
4284 	}
4285 
4286 	new = thresholds->spare;
4287 
4288 	/* If no items related to eventfd have been cleared, nothing to do */
4289 	if (!entries)
4290 		goto unlock;
4291 
4292 	/* Set thresholds array to NULL if we don't have thresholds */
4293 	if (!size) {
4294 		kfree(new);
4295 		new = NULL;
4296 		goto swap_buffers;
4297 	}
4298 
4299 	new->size = size;
4300 
4301 	/* Copy thresholds and find current threshold */
4302 	new->current_threshold = -1;
4303 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4304 		if (thresholds->primary->entries[i].eventfd == eventfd)
4305 			continue;
4306 
4307 		new->entries[j] = thresholds->primary->entries[i];
4308 		if (new->entries[j].threshold <= usage) {
4309 			/*
4310 			 * new->current_threshold will not be used
4311 			 * until rcu_assign_pointer(), so it's safe to increment
4312 			 * it here.
4313 			 */
4314 			++new->current_threshold;
4315 		}
4316 		j++;
4317 	}
4318 
4319 swap_buffers:
4320 	/* Swap primary and spare array */
4321 	thresholds->spare = thresholds->primary;
4322 
4323 	rcu_assign_pointer(thresholds->primary, new);
4324 
4325 	/* To be sure that nobody uses thresholds */
4326 	synchronize_rcu();
4327 
4328 	/* If all events are unregistered, free the spare array */
4329 	if (!new) {
4330 		kfree(thresholds->spare);
4331 		thresholds->spare = NULL;
4332 	}
4333 unlock:
4334 	mutex_unlock(&memcg->thresholds_lock);
4335 }
4336 
4337 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4338 	struct eventfd_ctx *eventfd)
4339 {
4340 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4341 }
4342 
4343 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4344 	struct eventfd_ctx *eventfd)
4345 {
4346 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4347 }
4348 
4349 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4350 	struct eventfd_ctx *eventfd, const char *args)
4351 {
4352 	struct mem_cgroup_eventfd_list *event;
4353 
4354 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4355 	if (!event)
4356 		return -ENOMEM;
4357 
4358 	spin_lock(&memcg_oom_lock);
4359 
4360 	event->eventfd = eventfd;
4361 	list_add(&event->list, &memcg->oom_notify);
4362 
4363 	/* already in OOM ? */
4364 	if (memcg->under_oom)
4365 		eventfd_signal(eventfd, 1);
4366 	spin_unlock(&memcg_oom_lock);
4367 
4368 	return 0;
4369 }
4370 
4371 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4372 	struct eventfd_ctx *eventfd)
4373 {
4374 	struct mem_cgroup_eventfd_list *ev, *tmp;
4375 
4376 	spin_lock(&memcg_oom_lock);
4377 
4378 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4379 		if (ev->eventfd == eventfd) {
4380 			list_del(&ev->list);
4381 			kfree(ev);
4382 		}
4383 	}
4384 
4385 	spin_unlock(&memcg_oom_lock);
4386 }
4387 
4388 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4389 {
4390 	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4391 
4392 	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4393 	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4394 	seq_printf(sf, "oom_kill %lu\n",
4395 		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4396 	return 0;
4397 }
4398 
4399 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4400 	struct cftype *cft, u64 val)
4401 {
4402 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4403 
4404 	/* cannot set to root cgroup and only 0 and 1 are allowed */
4405 	if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
4406 		return -EINVAL;
4407 
4408 	memcg->oom_kill_disable = val;
4409 	if (!val)
4410 		memcg_oom_recover(memcg);
4411 
4412 	return 0;
4413 }
4414 
4415 #ifdef CONFIG_CGROUP_WRITEBACK
4416 
4417 #include <trace/events/writeback.h>
4418 
4419 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4420 {
4421 	return wb_domain_init(&memcg->cgwb_domain, gfp);
4422 }
4423 
4424 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4425 {
4426 	wb_domain_exit(&memcg->cgwb_domain);
4427 }
4428 
4429 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4430 {
4431 	wb_domain_size_changed(&memcg->cgwb_domain);
4432 }
4433 
4434 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4435 {
4436 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4437 
4438 	if (!memcg->css.parent)
4439 		return NULL;
4440 
4441 	return &memcg->cgwb_domain;
4442 }
4443 
4444 /**
4445  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4446  * @wb: bdi_writeback in question
4447  * @pfilepages: out parameter for number of file pages
4448  * @pheadroom: out parameter for number of allocatable pages according to memcg
4449  * @pdirty: out parameter for number of dirty pages
4450  * @pwriteback: out parameter for number of pages under writeback
4451  *
4452  * Determine the numbers of file, headroom, dirty, and writeback pages in
4453  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
4454  * is a bit more involved.
4455  *
4456  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
4457  * headroom is calculated as the lowest headroom of itself and the
4458  * ancestors.  Note that this doesn't consider the actual amount of
4459  * available memory in the system.  The caller should further cap
4460  * *@pheadroom accordingly.
4461  */
4462 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4463 			 unsigned long *pheadroom, unsigned long *pdirty,
4464 			 unsigned long *pwriteback)
4465 {
4466 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4467 	struct mem_cgroup *parent;
4468 
4469 	cgroup_rstat_flush_irqsafe(memcg->css.cgroup);
4470 
4471 	*pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4472 	*pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4473 	*pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4474 			memcg_page_state(memcg, NR_ACTIVE_FILE);
4475 
4476 	*pheadroom = PAGE_COUNTER_MAX;
4477 	while ((parent = parent_mem_cgroup(memcg))) {
4478 		unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4479 					    READ_ONCE(memcg->memory.high));
4480 		unsigned long used = page_counter_read(&memcg->memory);
4481 
4482 		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4483 		memcg = parent;
4484 	}
4485 }
4486 
4487 /*
4488  * Foreign dirty flushing
4489  *
4490  * There's an inherent mismatch between memcg and writeback.  The former
4491  * trackes ownership per-page while the latter per-inode.  This was a
4492  * deliberate design decision because honoring per-page ownership in the
4493  * writeback path is complicated, may lead to higher CPU and IO overheads
4494  * and deemed unnecessary given that write-sharing an inode across
4495  * different cgroups isn't a common use-case.
4496  *
4497  * Combined with inode majority-writer ownership switching, this works well
4498  * enough in most cases but there are some pathological cases.  For
4499  * example, let's say there are two cgroups A and B which keep writing to
4500  * different but confined parts of the same inode.  B owns the inode and
4501  * A's memory is limited far below B's.  A's dirty ratio can rise enough to
4502  * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4503  * triggering background writeback.  A will be slowed down without a way to
4504  * make writeback of the dirty pages happen.
4505  *
4506  * Conditions like the above can lead to a cgroup getting repatedly and
4507  * severely throttled after making some progress after each
4508  * dirty_expire_interval while the underyling IO device is almost
4509  * completely idle.
4510  *
4511  * Solving this problem completely requires matching the ownership tracking
4512  * granularities between memcg and writeback in either direction.  However,
4513  * the more egregious behaviors can be avoided by simply remembering the
4514  * most recent foreign dirtying events and initiating remote flushes on
4515  * them when local writeback isn't enough to keep the memory clean enough.
4516  *
4517  * The following two functions implement such mechanism.  When a foreign
4518  * page - a page whose memcg and writeback ownerships don't match - is
4519  * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4520  * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
4521  * decides that the memcg needs to sleep due to high dirty ratio, it calls
4522  * mem_cgroup_flush_foreign() which queues writeback on the recorded
4523  * foreign bdi_writebacks which haven't expired.  Both the numbers of
4524  * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4525  * limited to MEMCG_CGWB_FRN_CNT.
4526  *
4527  * The mechanism only remembers IDs and doesn't hold any object references.
4528  * As being wrong occasionally doesn't matter, updates and accesses to the
4529  * records are lockless and racy.
4530  */
4531 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4532 					     struct bdi_writeback *wb)
4533 {
4534 	struct mem_cgroup *memcg = page_memcg(page);
4535 	struct memcg_cgwb_frn *frn;
4536 	u64 now = get_jiffies_64();
4537 	u64 oldest_at = now;
4538 	int oldest = -1;
4539 	int i;
4540 
4541 	trace_track_foreign_dirty(page, wb);
4542 
4543 	/*
4544 	 * Pick the slot to use.  If there is already a slot for @wb, keep
4545 	 * using it.  If not replace the oldest one which isn't being
4546 	 * written out.
4547 	 */
4548 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4549 		frn = &memcg->cgwb_frn[i];
4550 		if (frn->bdi_id == wb->bdi->id &&
4551 		    frn->memcg_id == wb->memcg_css->id)
4552 			break;
4553 		if (time_before64(frn->at, oldest_at) &&
4554 		    atomic_read(&frn->done.cnt) == 1) {
4555 			oldest = i;
4556 			oldest_at = frn->at;
4557 		}
4558 	}
4559 
4560 	if (i < MEMCG_CGWB_FRN_CNT) {
4561 		/*
4562 		 * Re-using an existing one.  Update timestamp lazily to
4563 		 * avoid making the cacheline hot.  We want them to be
4564 		 * reasonably up-to-date and significantly shorter than
4565 		 * dirty_expire_interval as that's what expires the record.
4566 		 * Use the shorter of 1s and dirty_expire_interval / 8.
4567 		 */
4568 		unsigned long update_intv =
4569 			min_t(unsigned long, HZ,
4570 			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4571 
4572 		if (time_before64(frn->at, now - update_intv))
4573 			frn->at = now;
4574 	} else if (oldest >= 0) {
4575 		/* replace the oldest free one */
4576 		frn = &memcg->cgwb_frn[oldest];
4577 		frn->bdi_id = wb->bdi->id;
4578 		frn->memcg_id = wb->memcg_css->id;
4579 		frn->at = now;
4580 	}
4581 }
4582 
4583 /* issue foreign writeback flushes for recorded foreign dirtying events */
4584 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4585 {
4586 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4587 	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4588 	u64 now = jiffies_64;
4589 	int i;
4590 
4591 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4592 		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4593 
4594 		/*
4595 		 * If the record is older than dirty_expire_interval,
4596 		 * writeback on it has already started.  No need to kick it
4597 		 * off again.  Also, don't start a new one if there's
4598 		 * already one in flight.
4599 		 */
4600 		if (time_after64(frn->at, now - intv) &&
4601 		    atomic_read(&frn->done.cnt) == 1) {
4602 			frn->at = 0;
4603 			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4604 			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4605 					       WB_REASON_FOREIGN_FLUSH,
4606 					       &frn->done);
4607 		}
4608 	}
4609 }
4610 
4611 #else	/* CONFIG_CGROUP_WRITEBACK */
4612 
4613 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4614 {
4615 	return 0;
4616 }
4617 
4618 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4619 {
4620 }
4621 
4622 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4623 {
4624 }
4625 
4626 #endif	/* CONFIG_CGROUP_WRITEBACK */
4627 
4628 /*
4629  * DO NOT USE IN NEW FILES.
4630  *
4631  * "cgroup.event_control" implementation.
4632  *
4633  * This is way over-engineered.  It tries to support fully configurable
4634  * events for each user.  Such level of flexibility is completely
4635  * unnecessary especially in the light of the planned unified hierarchy.
4636  *
4637  * Please deprecate this and replace with something simpler if at all
4638  * possible.
4639  */
4640 
4641 /*
4642  * Unregister event and free resources.
4643  *
4644  * Gets called from workqueue.
4645  */
4646 static void memcg_event_remove(struct work_struct *work)
4647 {
4648 	struct mem_cgroup_event *event =
4649 		container_of(work, struct mem_cgroup_event, remove);
4650 	struct mem_cgroup *memcg = event->memcg;
4651 
4652 	remove_wait_queue(event->wqh, &event->wait);
4653 
4654 	event->unregister_event(memcg, event->eventfd);
4655 
4656 	/* Notify userspace the event is going away. */
4657 	eventfd_signal(event->eventfd, 1);
4658 
4659 	eventfd_ctx_put(event->eventfd);
4660 	kfree(event);
4661 	css_put(&memcg->css);
4662 }
4663 
4664 /*
4665  * Gets called on EPOLLHUP on eventfd when user closes it.
4666  *
4667  * Called with wqh->lock held and interrupts disabled.
4668  */
4669 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4670 			    int sync, void *key)
4671 {
4672 	struct mem_cgroup_event *event =
4673 		container_of(wait, struct mem_cgroup_event, wait);
4674 	struct mem_cgroup *memcg = event->memcg;
4675 	__poll_t flags = key_to_poll(key);
4676 
4677 	if (flags & EPOLLHUP) {
4678 		/*
4679 		 * If the event has been detached at cgroup removal, we
4680 		 * can simply return knowing the other side will cleanup
4681 		 * for us.
4682 		 *
4683 		 * We can't race against event freeing since the other
4684 		 * side will require wqh->lock via remove_wait_queue(),
4685 		 * which we hold.
4686 		 */
4687 		spin_lock(&memcg->event_list_lock);
4688 		if (!list_empty(&event->list)) {
4689 			list_del_init(&event->list);
4690 			/*
4691 			 * We are in atomic context, but cgroup_event_remove()
4692 			 * may sleep, so we have to call it in workqueue.
4693 			 */
4694 			schedule_work(&event->remove);
4695 		}
4696 		spin_unlock(&memcg->event_list_lock);
4697 	}
4698 
4699 	return 0;
4700 }
4701 
4702 static void memcg_event_ptable_queue_proc(struct file *file,
4703 		wait_queue_head_t *wqh, poll_table *pt)
4704 {
4705 	struct mem_cgroup_event *event =
4706 		container_of(pt, struct mem_cgroup_event, pt);
4707 
4708 	event->wqh = wqh;
4709 	add_wait_queue(wqh, &event->wait);
4710 }
4711 
4712 /*
4713  * DO NOT USE IN NEW FILES.
4714  *
4715  * Parse input and register new cgroup event handler.
4716  *
4717  * Input must be in format '<event_fd> <control_fd> <args>'.
4718  * Interpretation of args is defined by control file implementation.
4719  */
4720 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4721 					 char *buf, size_t nbytes, loff_t off)
4722 {
4723 	struct cgroup_subsys_state *css = of_css(of);
4724 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4725 	struct mem_cgroup_event *event;
4726 	struct cgroup_subsys_state *cfile_css;
4727 	unsigned int efd, cfd;
4728 	struct fd efile;
4729 	struct fd cfile;
4730 	const char *name;
4731 	char *endp;
4732 	int ret;
4733 
4734 	buf = strstrip(buf);
4735 
4736 	efd = simple_strtoul(buf, &endp, 10);
4737 	if (*endp != ' ')
4738 		return -EINVAL;
4739 	buf = endp + 1;
4740 
4741 	cfd = simple_strtoul(buf, &endp, 10);
4742 	if ((*endp != ' ') && (*endp != '\0'))
4743 		return -EINVAL;
4744 	buf = endp + 1;
4745 
4746 	event = kzalloc(sizeof(*event), GFP_KERNEL);
4747 	if (!event)
4748 		return -ENOMEM;
4749 
4750 	event->memcg = memcg;
4751 	INIT_LIST_HEAD(&event->list);
4752 	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4753 	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4754 	INIT_WORK(&event->remove, memcg_event_remove);
4755 
4756 	efile = fdget(efd);
4757 	if (!efile.file) {
4758 		ret = -EBADF;
4759 		goto out_kfree;
4760 	}
4761 
4762 	event->eventfd = eventfd_ctx_fileget(efile.file);
4763 	if (IS_ERR(event->eventfd)) {
4764 		ret = PTR_ERR(event->eventfd);
4765 		goto out_put_efile;
4766 	}
4767 
4768 	cfile = fdget(cfd);
4769 	if (!cfile.file) {
4770 		ret = -EBADF;
4771 		goto out_put_eventfd;
4772 	}
4773 
4774 	/* the process need read permission on control file */
4775 	/* AV: shouldn't we check that it's been opened for read instead? */
4776 	ret = file_permission(cfile.file, MAY_READ);
4777 	if (ret < 0)
4778 		goto out_put_cfile;
4779 
4780 	/*
4781 	 * Determine the event callbacks and set them in @event.  This used
4782 	 * to be done via struct cftype but cgroup core no longer knows
4783 	 * about these events.  The following is crude but the whole thing
4784 	 * is for compatibility anyway.
4785 	 *
4786 	 * DO NOT ADD NEW FILES.
4787 	 */
4788 	name = cfile.file->f_path.dentry->d_name.name;
4789 
4790 	if (!strcmp(name, "memory.usage_in_bytes")) {
4791 		event->register_event = mem_cgroup_usage_register_event;
4792 		event->unregister_event = mem_cgroup_usage_unregister_event;
4793 	} else if (!strcmp(name, "memory.oom_control")) {
4794 		event->register_event = mem_cgroup_oom_register_event;
4795 		event->unregister_event = mem_cgroup_oom_unregister_event;
4796 	} else if (!strcmp(name, "memory.pressure_level")) {
4797 		event->register_event = vmpressure_register_event;
4798 		event->unregister_event = vmpressure_unregister_event;
4799 	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4800 		event->register_event = memsw_cgroup_usage_register_event;
4801 		event->unregister_event = memsw_cgroup_usage_unregister_event;
4802 	} else {
4803 		ret = -EINVAL;
4804 		goto out_put_cfile;
4805 	}
4806 
4807 	/*
4808 	 * Verify @cfile should belong to @css.  Also, remaining events are
4809 	 * automatically removed on cgroup destruction but the removal is
4810 	 * asynchronous, so take an extra ref on @css.
4811 	 */
4812 	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4813 					       &memory_cgrp_subsys);
4814 	ret = -EINVAL;
4815 	if (IS_ERR(cfile_css))
4816 		goto out_put_cfile;
4817 	if (cfile_css != css) {
4818 		css_put(cfile_css);
4819 		goto out_put_cfile;
4820 	}
4821 
4822 	ret = event->register_event(memcg, event->eventfd, buf);
4823 	if (ret)
4824 		goto out_put_css;
4825 
4826 	vfs_poll(efile.file, &event->pt);
4827 
4828 	spin_lock(&memcg->event_list_lock);
4829 	list_add(&event->list, &memcg->event_list);
4830 	spin_unlock(&memcg->event_list_lock);
4831 
4832 	fdput(cfile);
4833 	fdput(efile);
4834 
4835 	return nbytes;
4836 
4837 out_put_css:
4838 	css_put(css);
4839 out_put_cfile:
4840 	fdput(cfile);
4841 out_put_eventfd:
4842 	eventfd_ctx_put(event->eventfd);
4843 out_put_efile:
4844 	fdput(efile);
4845 out_kfree:
4846 	kfree(event);
4847 
4848 	return ret;
4849 }
4850 
4851 static struct cftype mem_cgroup_legacy_files[] = {
4852 	{
4853 		.name = "usage_in_bytes",
4854 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4855 		.read_u64 = mem_cgroup_read_u64,
4856 	},
4857 	{
4858 		.name = "max_usage_in_bytes",
4859 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4860 		.write = mem_cgroup_reset,
4861 		.read_u64 = mem_cgroup_read_u64,
4862 	},
4863 	{
4864 		.name = "limit_in_bytes",
4865 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4866 		.write = mem_cgroup_write,
4867 		.read_u64 = mem_cgroup_read_u64,
4868 	},
4869 	{
4870 		.name = "soft_limit_in_bytes",
4871 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4872 		.write = mem_cgroup_write,
4873 		.read_u64 = mem_cgroup_read_u64,
4874 	},
4875 	{
4876 		.name = "failcnt",
4877 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4878 		.write = mem_cgroup_reset,
4879 		.read_u64 = mem_cgroup_read_u64,
4880 	},
4881 	{
4882 		.name = "stat",
4883 		.seq_show = memcg_stat_show,
4884 	},
4885 	{
4886 		.name = "force_empty",
4887 		.write = mem_cgroup_force_empty_write,
4888 	},
4889 	{
4890 		.name = "use_hierarchy",
4891 		.write_u64 = mem_cgroup_hierarchy_write,
4892 		.read_u64 = mem_cgroup_hierarchy_read,
4893 	},
4894 	{
4895 		.name = "cgroup.event_control",		/* XXX: for compat */
4896 		.write = memcg_write_event_control,
4897 		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4898 	},
4899 	{
4900 		.name = "swappiness",
4901 		.read_u64 = mem_cgroup_swappiness_read,
4902 		.write_u64 = mem_cgroup_swappiness_write,
4903 	},
4904 	{
4905 		.name = "move_charge_at_immigrate",
4906 		.read_u64 = mem_cgroup_move_charge_read,
4907 		.write_u64 = mem_cgroup_move_charge_write,
4908 	},
4909 	{
4910 		.name = "oom_control",
4911 		.seq_show = mem_cgroup_oom_control_read,
4912 		.write_u64 = mem_cgroup_oom_control_write,
4913 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4914 	},
4915 	{
4916 		.name = "pressure_level",
4917 	},
4918 #ifdef CONFIG_NUMA
4919 	{
4920 		.name = "numa_stat",
4921 		.seq_show = memcg_numa_stat_show,
4922 	},
4923 #endif
4924 	{
4925 		.name = "kmem.limit_in_bytes",
4926 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4927 		.write = mem_cgroup_write,
4928 		.read_u64 = mem_cgroup_read_u64,
4929 	},
4930 	{
4931 		.name = "kmem.usage_in_bytes",
4932 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4933 		.read_u64 = mem_cgroup_read_u64,
4934 	},
4935 	{
4936 		.name = "kmem.failcnt",
4937 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4938 		.write = mem_cgroup_reset,
4939 		.read_u64 = mem_cgroup_read_u64,
4940 	},
4941 	{
4942 		.name = "kmem.max_usage_in_bytes",
4943 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4944 		.write = mem_cgroup_reset,
4945 		.read_u64 = mem_cgroup_read_u64,
4946 	},
4947 #if defined(CONFIG_MEMCG_KMEM) && \
4948 	(defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
4949 	{
4950 		.name = "kmem.slabinfo",
4951 		.seq_show = memcg_slab_show,
4952 	},
4953 #endif
4954 	{
4955 		.name = "kmem.tcp.limit_in_bytes",
4956 		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4957 		.write = mem_cgroup_write,
4958 		.read_u64 = mem_cgroup_read_u64,
4959 	},
4960 	{
4961 		.name = "kmem.tcp.usage_in_bytes",
4962 		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4963 		.read_u64 = mem_cgroup_read_u64,
4964 	},
4965 	{
4966 		.name = "kmem.tcp.failcnt",
4967 		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4968 		.write = mem_cgroup_reset,
4969 		.read_u64 = mem_cgroup_read_u64,
4970 	},
4971 	{
4972 		.name = "kmem.tcp.max_usage_in_bytes",
4973 		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4974 		.write = mem_cgroup_reset,
4975 		.read_u64 = mem_cgroup_read_u64,
4976 	},
4977 	{ },	/* terminate */
4978 };
4979 
4980 /*
4981  * Private memory cgroup IDR
4982  *
4983  * Swap-out records and page cache shadow entries need to store memcg
4984  * references in constrained space, so we maintain an ID space that is
4985  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4986  * memory-controlled cgroups to 64k.
4987  *
4988  * However, there usually are many references to the offline CSS after
4989  * the cgroup has been destroyed, such as page cache or reclaimable
4990  * slab objects, that don't need to hang on to the ID. We want to keep
4991  * those dead CSS from occupying IDs, or we might quickly exhaust the
4992  * relatively small ID space and prevent the creation of new cgroups
4993  * even when there are much fewer than 64k cgroups - possibly none.
4994  *
4995  * Maintain a private 16-bit ID space for memcg, and allow the ID to
4996  * be freed and recycled when it's no longer needed, which is usually
4997  * when the CSS is offlined.
4998  *
4999  * The only exception to that are records of swapped out tmpfs/shmem
5000  * pages that need to be attributed to live ancestors on swapin. But
5001  * those references are manageable from userspace.
5002  */
5003 
5004 static DEFINE_IDR(mem_cgroup_idr);
5005 
5006 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5007 {
5008 	if (memcg->id.id > 0) {
5009 		idr_remove(&mem_cgroup_idr, memcg->id.id);
5010 		memcg->id.id = 0;
5011 	}
5012 }
5013 
5014 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5015 						  unsigned int n)
5016 {
5017 	refcount_add(n, &memcg->id.ref);
5018 }
5019 
5020 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5021 {
5022 	if (refcount_sub_and_test(n, &memcg->id.ref)) {
5023 		mem_cgroup_id_remove(memcg);
5024 
5025 		/* Memcg ID pins CSS */
5026 		css_put(&memcg->css);
5027 	}
5028 }
5029 
5030 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5031 {
5032 	mem_cgroup_id_put_many(memcg, 1);
5033 }
5034 
5035 /**
5036  * mem_cgroup_from_id - look up a memcg from a memcg id
5037  * @id: the memcg id to look up
5038  *
5039  * Caller must hold rcu_read_lock().
5040  */
5041 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5042 {
5043 	WARN_ON_ONCE(!rcu_read_lock_held());
5044 	return idr_find(&mem_cgroup_idr, id);
5045 }
5046 
5047 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5048 {
5049 	struct mem_cgroup_per_node *pn;
5050 	int tmp = node;
5051 	/*
5052 	 * This routine is called against possible nodes.
5053 	 * But it's BUG to call kmalloc() against offline node.
5054 	 *
5055 	 * TODO: this routine can waste much memory for nodes which will
5056 	 *       never be onlined. It's better to use memory hotplug callback
5057 	 *       function.
5058 	 */
5059 	if (!node_state(node, N_NORMAL_MEMORY))
5060 		tmp = -1;
5061 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5062 	if (!pn)
5063 		return 1;
5064 
5065 	pn->lruvec_stat_local = alloc_percpu_gfp(struct lruvec_stat,
5066 						 GFP_KERNEL_ACCOUNT);
5067 	if (!pn->lruvec_stat_local) {
5068 		kfree(pn);
5069 		return 1;
5070 	}
5071 
5072 	pn->lruvec_stat_cpu = alloc_percpu_gfp(struct batched_lruvec_stat,
5073 					       GFP_KERNEL_ACCOUNT);
5074 	if (!pn->lruvec_stat_cpu) {
5075 		free_percpu(pn->lruvec_stat_local);
5076 		kfree(pn);
5077 		return 1;
5078 	}
5079 
5080 	lruvec_init(&pn->lruvec);
5081 	pn->usage_in_excess = 0;
5082 	pn->on_tree = false;
5083 	pn->memcg = memcg;
5084 
5085 	memcg->nodeinfo[node] = pn;
5086 	return 0;
5087 }
5088 
5089 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5090 {
5091 	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5092 
5093 	if (!pn)
5094 		return;
5095 
5096 	free_percpu(pn->lruvec_stat_cpu);
5097 	free_percpu(pn->lruvec_stat_local);
5098 	kfree(pn);
5099 }
5100 
5101 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5102 {
5103 	int node;
5104 
5105 	for_each_node(node)
5106 		free_mem_cgroup_per_node_info(memcg, node);
5107 	free_percpu(memcg->vmstats_percpu);
5108 	kfree(memcg);
5109 }
5110 
5111 static void mem_cgroup_free(struct mem_cgroup *memcg)
5112 {
5113 	int cpu;
5114 
5115 	memcg_wb_domain_exit(memcg);
5116 	/*
5117 	 * Flush percpu lruvec stats to guarantee the value
5118 	 * correctness on parent's and all ancestor levels.
5119 	 */
5120 	for_each_online_cpu(cpu)
5121 		memcg_flush_lruvec_page_state(memcg, cpu);
5122 	__mem_cgroup_free(memcg);
5123 }
5124 
5125 static struct mem_cgroup *mem_cgroup_alloc(void)
5126 {
5127 	struct mem_cgroup *memcg;
5128 	unsigned int size;
5129 	int node;
5130 	int __maybe_unused i;
5131 	long error = -ENOMEM;
5132 
5133 	size = sizeof(struct mem_cgroup);
5134 	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5135 
5136 	memcg = kzalloc(size, GFP_KERNEL);
5137 	if (!memcg)
5138 		return ERR_PTR(error);
5139 
5140 	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5141 				 1, MEM_CGROUP_ID_MAX,
5142 				 GFP_KERNEL);
5143 	if (memcg->id.id < 0) {
5144 		error = memcg->id.id;
5145 		goto fail;
5146 	}
5147 
5148 	memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5149 						 GFP_KERNEL_ACCOUNT);
5150 	if (!memcg->vmstats_percpu)
5151 		goto fail;
5152 
5153 	for_each_node(node)
5154 		if (alloc_mem_cgroup_per_node_info(memcg, node))
5155 			goto fail;
5156 
5157 	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5158 		goto fail;
5159 
5160 	INIT_WORK(&memcg->high_work, high_work_func);
5161 	INIT_LIST_HEAD(&memcg->oom_notify);
5162 	mutex_init(&memcg->thresholds_lock);
5163 	spin_lock_init(&memcg->move_lock);
5164 	vmpressure_init(&memcg->vmpressure);
5165 	INIT_LIST_HEAD(&memcg->event_list);
5166 	spin_lock_init(&memcg->event_list_lock);
5167 	memcg->socket_pressure = jiffies;
5168 #ifdef CONFIG_MEMCG_KMEM
5169 	memcg->kmemcg_id = -1;
5170 	INIT_LIST_HEAD(&memcg->objcg_list);
5171 #endif
5172 #ifdef CONFIG_CGROUP_WRITEBACK
5173 	INIT_LIST_HEAD(&memcg->cgwb_list);
5174 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5175 		memcg->cgwb_frn[i].done =
5176 			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5177 #endif
5178 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5179 	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5180 	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5181 	memcg->deferred_split_queue.split_queue_len = 0;
5182 #endif
5183 	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5184 	return memcg;
5185 fail:
5186 	mem_cgroup_id_remove(memcg);
5187 	__mem_cgroup_free(memcg);
5188 	return ERR_PTR(error);
5189 }
5190 
5191 static struct cgroup_subsys_state * __ref
5192 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5193 {
5194 	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5195 	struct mem_cgroup *memcg, *old_memcg;
5196 	long error = -ENOMEM;
5197 
5198 	old_memcg = set_active_memcg(parent);
5199 	memcg = mem_cgroup_alloc();
5200 	set_active_memcg(old_memcg);
5201 	if (IS_ERR(memcg))
5202 		return ERR_CAST(memcg);
5203 
5204 	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5205 	memcg->soft_limit = PAGE_COUNTER_MAX;
5206 	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5207 	if (parent) {
5208 		memcg->swappiness = mem_cgroup_swappiness(parent);
5209 		memcg->oom_kill_disable = parent->oom_kill_disable;
5210 
5211 		page_counter_init(&memcg->memory, &parent->memory);
5212 		page_counter_init(&memcg->swap, &parent->swap);
5213 		page_counter_init(&memcg->kmem, &parent->kmem);
5214 		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5215 	} else {
5216 		page_counter_init(&memcg->memory, NULL);
5217 		page_counter_init(&memcg->swap, NULL);
5218 		page_counter_init(&memcg->kmem, NULL);
5219 		page_counter_init(&memcg->tcpmem, NULL);
5220 
5221 		root_mem_cgroup = memcg;
5222 		return &memcg->css;
5223 	}
5224 
5225 	/* The following stuff does not apply to the root */
5226 	error = memcg_online_kmem(memcg);
5227 	if (error)
5228 		goto fail;
5229 
5230 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5231 		static_branch_inc(&memcg_sockets_enabled_key);
5232 
5233 	return &memcg->css;
5234 fail:
5235 	mem_cgroup_id_remove(memcg);
5236 	mem_cgroup_free(memcg);
5237 	return ERR_PTR(error);
5238 }
5239 
5240 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5241 {
5242 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5243 
5244 	/*
5245 	 * A memcg must be visible for memcg_expand_shrinker_maps()
5246 	 * by the time the maps are allocated. So, we allocate maps
5247 	 * here, when for_each_mem_cgroup() can't skip it.
5248 	 */
5249 	if (memcg_alloc_shrinker_maps(memcg)) {
5250 		mem_cgroup_id_remove(memcg);
5251 		return -ENOMEM;
5252 	}
5253 
5254 	/* Online state pins memcg ID, memcg ID pins CSS */
5255 	refcount_set(&memcg->id.ref, 1);
5256 	css_get(css);
5257 	return 0;
5258 }
5259 
5260 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5261 {
5262 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5263 	struct mem_cgroup_event *event, *tmp;
5264 
5265 	/*
5266 	 * Unregister events and notify userspace.
5267 	 * Notify userspace about cgroup removing only after rmdir of cgroup
5268 	 * directory to avoid race between userspace and kernelspace.
5269 	 */
5270 	spin_lock(&memcg->event_list_lock);
5271 	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5272 		list_del_init(&event->list);
5273 		schedule_work(&event->remove);
5274 	}
5275 	spin_unlock(&memcg->event_list_lock);
5276 
5277 	page_counter_set_min(&memcg->memory, 0);
5278 	page_counter_set_low(&memcg->memory, 0);
5279 
5280 	memcg_offline_kmem(memcg);
5281 	wb_memcg_offline(memcg);
5282 
5283 	drain_all_stock(memcg);
5284 
5285 	mem_cgroup_id_put(memcg);
5286 }
5287 
5288 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5289 {
5290 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5291 
5292 	invalidate_reclaim_iterators(memcg);
5293 }
5294 
5295 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5296 {
5297 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5298 	int __maybe_unused i;
5299 
5300 #ifdef CONFIG_CGROUP_WRITEBACK
5301 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5302 		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5303 #endif
5304 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5305 		static_branch_dec(&memcg_sockets_enabled_key);
5306 
5307 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5308 		static_branch_dec(&memcg_sockets_enabled_key);
5309 
5310 	vmpressure_cleanup(&memcg->vmpressure);
5311 	cancel_work_sync(&memcg->high_work);
5312 	mem_cgroup_remove_from_trees(memcg);
5313 	memcg_free_shrinker_maps(memcg);
5314 	memcg_free_kmem(memcg);
5315 	mem_cgroup_free(memcg);
5316 }
5317 
5318 /**
5319  * mem_cgroup_css_reset - reset the states of a mem_cgroup
5320  * @css: the target css
5321  *
5322  * Reset the states of the mem_cgroup associated with @css.  This is
5323  * invoked when the userland requests disabling on the default hierarchy
5324  * but the memcg is pinned through dependency.  The memcg should stop
5325  * applying policies and should revert to the vanilla state as it may be
5326  * made visible again.
5327  *
5328  * The current implementation only resets the essential configurations.
5329  * This needs to be expanded to cover all the visible parts.
5330  */
5331 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5332 {
5333 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5334 
5335 	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5336 	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5337 	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5338 	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5339 	page_counter_set_min(&memcg->memory, 0);
5340 	page_counter_set_low(&memcg->memory, 0);
5341 	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5342 	memcg->soft_limit = PAGE_COUNTER_MAX;
5343 	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5344 	memcg_wb_domain_size_changed(memcg);
5345 }
5346 
5347 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5348 {
5349 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5350 	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5351 	struct memcg_vmstats_percpu *statc;
5352 	long delta, v;
5353 	int i;
5354 
5355 	statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5356 
5357 	for (i = 0; i < MEMCG_NR_STAT; i++) {
5358 		/*
5359 		 * Collect the aggregated propagation counts of groups
5360 		 * below us. We're in a per-cpu loop here and this is
5361 		 * a global counter, so the first cycle will get them.
5362 		 */
5363 		delta = memcg->vmstats.state_pending[i];
5364 		if (delta)
5365 			memcg->vmstats.state_pending[i] = 0;
5366 
5367 		/* Add CPU changes on this level since the last flush */
5368 		v = READ_ONCE(statc->state[i]);
5369 		if (v != statc->state_prev[i]) {
5370 			delta += v - statc->state_prev[i];
5371 			statc->state_prev[i] = v;
5372 		}
5373 
5374 		if (!delta)
5375 			continue;
5376 
5377 		/* Aggregate counts on this level and propagate upwards */
5378 		memcg->vmstats.state[i] += delta;
5379 		if (parent)
5380 			parent->vmstats.state_pending[i] += delta;
5381 	}
5382 
5383 	for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
5384 		delta = memcg->vmstats.events_pending[i];
5385 		if (delta)
5386 			memcg->vmstats.events_pending[i] = 0;
5387 
5388 		v = READ_ONCE(statc->events[i]);
5389 		if (v != statc->events_prev[i]) {
5390 			delta += v - statc->events_prev[i];
5391 			statc->events_prev[i] = v;
5392 		}
5393 
5394 		if (!delta)
5395 			continue;
5396 
5397 		memcg->vmstats.events[i] += delta;
5398 		if (parent)
5399 			parent->vmstats.events_pending[i] += delta;
5400 	}
5401 }
5402 
5403 #ifdef CONFIG_MMU
5404 /* Handlers for move charge at task migration. */
5405 static int mem_cgroup_do_precharge(unsigned long count)
5406 {
5407 	int ret;
5408 
5409 	/* Try a single bulk charge without reclaim first, kswapd may wake */
5410 	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5411 	if (!ret) {
5412 		mc.precharge += count;
5413 		return ret;
5414 	}
5415 
5416 	/* Try charges one by one with reclaim, but do not retry */
5417 	while (count--) {
5418 		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5419 		if (ret)
5420 			return ret;
5421 		mc.precharge++;
5422 		cond_resched();
5423 	}
5424 	return 0;
5425 }
5426 
5427 union mc_target {
5428 	struct page	*page;
5429 	swp_entry_t	ent;
5430 };
5431 
5432 enum mc_target_type {
5433 	MC_TARGET_NONE = 0,
5434 	MC_TARGET_PAGE,
5435 	MC_TARGET_SWAP,
5436 	MC_TARGET_DEVICE,
5437 };
5438 
5439 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5440 						unsigned long addr, pte_t ptent)
5441 {
5442 	struct page *page = vm_normal_page(vma, addr, ptent);
5443 
5444 	if (!page || !page_mapped(page))
5445 		return NULL;
5446 	if (PageAnon(page)) {
5447 		if (!(mc.flags & MOVE_ANON))
5448 			return NULL;
5449 	} else {
5450 		if (!(mc.flags & MOVE_FILE))
5451 			return NULL;
5452 	}
5453 	if (!get_page_unless_zero(page))
5454 		return NULL;
5455 
5456 	return page;
5457 }
5458 
5459 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5460 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5461 			pte_t ptent, swp_entry_t *entry)
5462 {
5463 	struct page *page = NULL;
5464 	swp_entry_t ent = pte_to_swp_entry(ptent);
5465 
5466 	if (!(mc.flags & MOVE_ANON))
5467 		return NULL;
5468 
5469 	/*
5470 	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5471 	 * a device and because they are not accessible by CPU they are store
5472 	 * as special swap entry in the CPU page table.
5473 	 */
5474 	if (is_device_private_entry(ent)) {
5475 		page = device_private_entry_to_page(ent);
5476 		/*
5477 		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5478 		 * a refcount of 1 when free (unlike normal page)
5479 		 */
5480 		if (!page_ref_add_unless(page, 1, 1))
5481 			return NULL;
5482 		return page;
5483 	}
5484 
5485 	if (non_swap_entry(ent))
5486 		return NULL;
5487 
5488 	/*
5489 	 * Because lookup_swap_cache() updates some statistics counter,
5490 	 * we call find_get_page() with swapper_space directly.
5491 	 */
5492 	page = find_get_page(swap_address_space(ent), swp_offset(ent));
5493 	entry->val = ent.val;
5494 
5495 	return page;
5496 }
5497 #else
5498 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5499 			pte_t ptent, swp_entry_t *entry)
5500 {
5501 	return NULL;
5502 }
5503 #endif
5504 
5505 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5506 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5507 {
5508 	if (!vma->vm_file) /* anonymous vma */
5509 		return NULL;
5510 	if (!(mc.flags & MOVE_FILE))
5511 		return NULL;
5512 
5513 	/* page is moved even if it's not RSS of this task(page-faulted). */
5514 	/* shmem/tmpfs may report page out on swap: account for that too. */
5515 	return find_get_incore_page(vma->vm_file->f_mapping,
5516 			linear_page_index(vma, addr));
5517 }
5518 
5519 /**
5520  * mem_cgroup_move_account - move account of the page
5521  * @page: the page
5522  * @compound: charge the page as compound or small page
5523  * @from: mem_cgroup which the page is moved from.
5524  * @to:	mem_cgroup which the page is moved to. @from != @to.
5525  *
5526  * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5527  *
5528  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5529  * from old cgroup.
5530  */
5531 static int mem_cgroup_move_account(struct page *page,
5532 				   bool compound,
5533 				   struct mem_cgroup *from,
5534 				   struct mem_cgroup *to)
5535 {
5536 	struct lruvec *from_vec, *to_vec;
5537 	struct pglist_data *pgdat;
5538 	unsigned int nr_pages = compound ? thp_nr_pages(page) : 1;
5539 	int ret;
5540 
5541 	VM_BUG_ON(from == to);
5542 	VM_BUG_ON_PAGE(PageLRU(page), page);
5543 	VM_BUG_ON(compound && !PageTransHuge(page));
5544 
5545 	/*
5546 	 * Prevent mem_cgroup_migrate() from looking at
5547 	 * page's memory cgroup of its source page while we change it.
5548 	 */
5549 	ret = -EBUSY;
5550 	if (!trylock_page(page))
5551 		goto out;
5552 
5553 	ret = -EINVAL;
5554 	if (page_memcg(page) != from)
5555 		goto out_unlock;
5556 
5557 	pgdat = page_pgdat(page);
5558 	from_vec = mem_cgroup_lruvec(from, pgdat);
5559 	to_vec = mem_cgroup_lruvec(to, pgdat);
5560 
5561 	lock_page_memcg(page);
5562 
5563 	if (PageAnon(page)) {
5564 		if (page_mapped(page)) {
5565 			__mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5566 			__mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5567 			if (PageTransHuge(page)) {
5568 				__mod_lruvec_state(from_vec, NR_ANON_THPS,
5569 						   -nr_pages);
5570 				__mod_lruvec_state(to_vec, NR_ANON_THPS,
5571 						   nr_pages);
5572 			}
5573 		}
5574 	} else {
5575 		__mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5576 		__mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5577 
5578 		if (PageSwapBacked(page)) {
5579 			__mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5580 			__mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5581 		}
5582 
5583 		if (page_mapped(page)) {
5584 			__mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5585 			__mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5586 		}
5587 
5588 		if (PageDirty(page)) {
5589 			struct address_space *mapping = page_mapping(page);
5590 
5591 			if (mapping_can_writeback(mapping)) {
5592 				__mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5593 						   -nr_pages);
5594 				__mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5595 						   nr_pages);
5596 			}
5597 		}
5598 	}
5599 
5600 	if (PageWriteback(page)) {
5601 		__mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5602 		__mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5603 	}
5604 
5605 	/*
5606 	 * All state has been migrated, let's switch to the new memcg.
5607 	 *
5608 	 * It is safe to change page's memcg here because the page
5609 	 * is referenced, charged, isolated, and locked: we can't race
5610 	 * with (un)charging, migration, LRU putback, or anything else
5611 	 * that would rely on a stable page's memory cgroup.
5612 	 *
5613 	 * Note that lock_page_memcg is a memcg lock, not a page lock,
5614 	 * to save space. As soon as we switch page's memory cgroup to a
5615 	 * new memcg that isn't locked, the above state can change
5616 	 * concurrently again. Make sure we're truly done with it.
5617 	 */
5618 	smp_mb();
5619 
5620 	css_get(&to->css);
5621 	css_put(&from->css);
5622 
5623 	page->memcg_data = (unsigned long)to;
5624 
5625 	__unlock_page_memcg(from);
5626 
5627 	ret = 0;
5628 
5629 	local_irq_disable();
5630 	mem_cgroup_charge_statistics(to, page, nr_pages);
5631 	memcg_check_events(to, page);
5632 	mem_cgroup_charge_statistics(from, page, -nr_pages);
5633 	memcg_check_events(from, page);
5634 	local_irq_enable();
5635 out_unlock:
5636 	unlock_page(page);
5637 out:
5638 	return ret;
5639 }
5640 
5641 /**
5642  * get_mctgt_type - get target type of moving charge
5643  * @vma: the vma the pte to be checked belongs
5644  * @addr: the address corresponding to the pte to be checked
5645  * @ptent: the pte to be checked
5646  * @target: the pointer the target page or swap ent will be stored(can be NULL)
5647  *
5648  * Returns
5649  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5650  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5651  *     move charge. if @target is not NULL, the page is stored in target->page
5652  *     with extra refcnt got(Callers should handle it).
5653  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5654  *     target for charge migration. if @target is not NULL, the entry is stored
5655  *     in target->ent.
5656  *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PRIVATE
5657  *     (so ZONE_DEVICE page and thus not on the lru).
5658  *     For now we such page is charge like a regular page would be as for all
5659  *     intent and purposes it is just special memory taking the place of a
5660  *     regular page.
5661  *
5662  *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5663  *
5664  * Called with pte lock held.
5665  */
5666 
5667 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5668 		unsigned long addr, pte_t ptent, union mc_target *target)
5669 {
5670 	struct page *page = NULL;
5671 	enum mc_target_type ret = MC_TARGET_NONE;
5672 	swp_entry_t ent = { .val = 0 };
5673 
5674 	if (pte_present(ptent))
5675 		page = mc_handle_present_pte(vma, addr, ptent);
5676 	else if (is_swap_pte(ptent))
5677 		page = mc_handle_swap_pte(vma, ptent, &ent);
5678 	else if (pte_none(ptent))
5679 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
5680 
5681 	if (!page && !ent.val)
5682 		return ret;
5683 	if (page) {
5684 		/*
5685 		 * Do only loose check w/o serialization.
5686 		 * mem_cgroup_move_account() checks the page is valid or
5687 		 * not under LRU exclusion.
5688 		 */
5689 		if (page_memcg(page) == mc.from) {
5690 			ret = MC_TARGET_PAGE;
5691 			if (is_device_private_page(page))
5692 				ret = MC_TARGET_DEVICE;
5693 			if (target)
5694 				target->page = page;
5695 		}
5696 		if (!ret || !target)
5697 			put_page(page);
5698 	}
5699 	/*
5700 	 * There is a swap entry and a page doesn't exist or isn't charged.
5701 	 * But we cannot move a tail-page in a THP.
5702 	 */
5703 	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5704 	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5705 		ret = MC_TARGET_SWAP;
5706 		if (target)
5707 			target->ent = ent;
5708 	}
5709 	return ret;
5710 }
5711 
5712 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5713 /*
5714  * We don't consider PMD mapped swapping or file mapped pages because THP does
5715  * not support them for now.
5716  * Caller should make sure that pmd_trans_huge(pmd) is true.
5717  */
5718 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5719 		unsigned long addr, pmd_t pmd, union mc_target *target)
5720 {
5721 	struct page *page = NULL;
5722 	enum mc_target_type ret = MC_TARGET_NONE;
5723 
5724 	if (unlikely(is_swap_pmd(pmd))) {
5725 		VM_BUG_ON(thp_migration_supported() &&
5726 				  !is_pmd_migration_entry(pmd));
5727 		return ret;
5728 	}
5729 	page = pmd_page(pmd);
5730 	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5731 	if (!(mc.flags & MOVE_ANON))
5732 		return ret;
5733 	if (page_memcg(page) == mc.from) {
5734 		ret = MC_TARGET_PAGE;
5735 		if (target) {
5736 			get_page(page);
5737 			target->page = page;
5738 		}
5739 	}
5740 	return ret;
5741 }
5742 #else
5743 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5744 		unsigned long addr, pmd_t pmd, union mc_target *target)
5745 {
5746 	return MC_TARGET_NONE;
5747 }
5748 #endif
5749 
5750 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5751 					unsigned long addr, unsigned long end,
5752 					struct mm_walk *walk)
5753 {
5754 	struct vm_area_struct *vma = walk->vma;
5755 	pte_t *pte;
5756 	spinlock_t *ptl;
5757 
5758 	ptl = pmd_trans_huge_lock(pmd, vma);
5759 	if (ptl) {
5760 		/*
5761 		 * Note their can not be MC_TARGET_DEVICE for now as we do not
5762 		 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5763 		 * this might change.
5764 		 */
5765 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5766 			mc.precharge += HPAGE_PMD_NR;
5767 		spin_unlock(ptl);
5768 		return 0;
5769 	}
5770 
5771 	if (pmd_trans_unstable(pmd))
5772 		return 0;
5773 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5774 	for (; addr != end; pte++, addr += PAGE_SIZE)
5775 		if (get_mctgt_type(vma, addr, *pte, NULL))
5776 			mc.precharge++;	/* increment precharge temporarily */
5777 	pte_unmap_unlock(pte - 1, ptl);
5778 	cond_resched();
5779 
5780 	return 0;
5781 }
5782 
5783 static const struct mm_walk_ops precharge_walk_ops = {
5784 	.pmd_entry	= mem_cgroup_count_precharge_pte_range,
5785 };
5786 
5787 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5788 {
5789 	unsigned long precharge;
5790 
5791 	mmap_read_lock(mm);
5792 	walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5793 	mmap_read_unlock(mm);
5794 
5795 	precharge = mc.precharge;
5796 	mc.precharge = 0;
5797 
5798 	return precharge;
5799 }
5800 
5801 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5802 {
5803 	unsigned long precharge = mem_cgroup_count_precharge(mm);
5804 
5805 	VM_BUG_ON(mc.moving_task);
5806 	mc.moving_task = current;
5807 	return mem_cgroup_do_precharge(precharge);
5808 }
5809 
5810 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5811 static void __mem_cgroup_clear_mc(void)
5812 {
5813 	struct mem_cgroup *from = mc.from;
5814 	struct mem_cgroup *to = mc.to;
5815 
5816 	/* we must uncharge all the leftover precharges from mc.to */
5817 	if (mc.precharge) {
5818 		cancel_charge(mc.to, mc.precharge);
5819 		mc.precharge = 0;
5820 	}
5821 	/*
5822 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5823 	 * we must uncharge here.
5824 	 */
5825 	if (mc.moved_charge) {
5826 		cancel_charge(mc.from, mc.moved_charge);
5827 		mc.moved_charge = 0;
5828 	}
5829 	/* we must fixup refcnts and charges */
5830 	if (mc.moved_swap) {
5831 		/* uncharge swap account from the old cgroup */
5832 		if (!mem_cgroup_is_root(mc.from))
5833 			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5834 
5835 		mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5836 
5837 		/*
5838 		 * we charged both to->memory and to->memsw, so we
5839 		 * should uncharge to->memory.
5840 		 */
5841 		if (!mem_cgroup_is_root(mc.to))
5842 			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5843 
5844 		mc.moved_swap = 0;
5845 	}
5846 	memcg_oom_recover(from);
5847 	memcg_oom_recover(to);
5848 	wake_up_all(&mc.waitq);
5849 }
5850 
5851 static void mem_cgroup_clear_mc(void)
5852 {
5853 	struct mm_struct *mm = mc.mm;
5854 
5855 	/*
5856 	 * we must clear moving_task before waking up waiters at the end of
5857 	 * task migration.
5858 	 */
5859 	mc.moving_task = NULL;
5860 	__mem_cgroup_clear_mc();
5861 	spin_lock(&mc.lock);
5862 	mc.from = NULL;
5863 	mc.to = NULL;
5864 	mc.mm = NULL;
5865 	spin_unlock(&mc.lock);
5866 
5867 	mmput(mm);
5868 }
5869 
5870 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5871 {
5872 	struct cgroup_subsys_state *css;
5873 	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5874 	struct mem_cgroup *from;
5875 	struct task_struct *leader, *p;
5876 	struct mm_struct *mm;
5877 	unsigned long move_flags;
5878 	int ret = 0;
5879 
5880 	/* charge immigration isn't supported on the default hierarchy */
5881 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5882 		return 0;
5883 
5884 	/*
5885 	 * Multi-process migrations only happen on the default hierarchy
5886 	 * where charge immigration is not used.  Perform charge
5887 	 * immigration if @tset contains a leader and whine if there are
5888 	 * multiple.
5889 	 */
5890 	p = NULL;
5891 	cgroup_taskset_for_each_leader(leader, css, tset) {
5892 		WARN_ON_ONCE(p);
5893 		p = leader;
5894 		memcg = mem_cgroup_from_css(css);
5895 	}
5896 	if (!p)
5897 		return 0;
5898 
5899 	/*
5900 	 * We are now commited to this value whatever it is. Changes in this
5901 	 * tunable will only affect upcoming migrations, not the current one.
5902 	 * So we need to save it, and keep it going.
5903 	 */
5904 	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5905 	if (!move_flags)
5906 		return 0;
5907 
5908 	from = mem_cgroup_from_task(p);
5909 
5910 	VM_BUG_ON(from == memcg);
5911 
5912 	mm = get_task_mm(p);
5913 	if (!mm)
5914 		return 0;
5915 	/* We move charges only when we move a owner of the mm */
5916 	if (mm->owner == p) {
5917 		VM_BUG_ON(mc.from);
5918 		VM_BUG_ON(mc.to);
5919 		VM_BUG_ON(mc.precharge);
5920 		VM_BUG_ON(mc.moved_charge);
5921 		VM_BUG_ON(mc.moved_swap);
5922 
5923 		spin_lock(&mc.lock);
5924 		mc.mm = mm;
5925 		mc.from = from;
5926 		mc.to = memcg;
5927 		mc.flags = move_flags;
5928 		spin_unlock(&mc.lock);
5929 		/* We set mc.moving_task later */
5930 
5931 		ret = mem_cgroup_precharge_mc(mm);
5932 		if (ret)
5933 			mem_cgroup_clear_mc();
5934 	} else {
5935 		mmput(mm);
5936 	}
5937 	return ret;
5938 }
5939 
5940 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5941 {
5942 	if (mc.to)
5943 		mem_cgroup_clear_mc();
5944 }
5945 
5946 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5947 				unsigned long addr, unsigned long end,
5948 				struct mm_walk *walk)
5949 {
5950 	int ret = 0;
5951 	struct vm_area_struct *vma = walk->vma;
5952 	pte_t *pte;
5953 	spinlock_t *ptl;
5954 	enum mc_target_type target_type;
5955 	union mc_target target;
5956 	struct page *page;
5957 
5958 	ptl = pmd_trans_huge_lock(pmd, vma);
5959 	if (ptl) {
5960 		if (mc.precharge < HPAGE_PMD_NR) {
5961 			spin_unlock(ptl);
5962 			return 0;
5963 		}
5964 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5965 		if (target_type == MC_TARGET_PAGE) {
5966 			page = target.page;
5967 			if (!isolate_lru_page(page)) {
5968 				if (!mem_cgroup_move_account(page, true,
5969 							     mc.from, mc.to)) {
5970 					mc.precharge -= HPAGE_PMD_NR;
5971 					mc.moved_charge += HPAGE_PMD_NR;
5972 				}
5973 				putback_lru_page(page);
5974 			}
5975 			put_page(page);
5976 		} else if (target_type == MC_TARGET_DEVICE) {
5977 			page = target.page;
5978 			if (!mem_cgroup_move_account(page, true,
5979 						     mc.from, mc.to)) {
5980 				mc.precharge -= HPAGE_PMD_NR;
5981 				mc.moved_charge += HPAGE_PMD_NR;
5982 			}
5983 			put_page(page);
5984 		}
5985 		spin_unlock(ptl);
5986 		return 0;
5987 	}
5988 
5989 	if (pmd_trans_unstable(pmd))
5990 		return 0;
5991 retry:
5992 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5993 	for (; addr != end; addr += PAGE_SIZE) {
5994 		pte_t ptent = *(pte++);
5995 		bool device = false;
5996 		swp_entry_t ent;
5997 
5998 		if (!mc.precharge)
5999 			break;
6000 
6001 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6002 		case MC_TARGET_DEVICE:
6003 			device = true;
6004 			fallthrough;
6005 		case MC_TARGET_PAGE:
6006 			page = target.page;
6007 			/*
6008 			 * We can have a part of the split pmd here. Moving it
6009 			 * can be done but it would be too convoluted so simply
6010 			 * ignore such a partial THP and keep it in original
6011 			 * memcg. There should be somebody mapping the head.
6012 			 */
6013 			if (PageTransCompound(page))
6014 				goto put;
6015 			if (!device && isolate_lru_page(page))
6016 				goto put;
6017 			if (!mem_cgroup_move_account(page, false,
6018 						mc.from, mc.to)) {
6019 				mc.precharge--;
6020 				/* we uncharge from mc.from later. */
6021 				mc.moved_charge++;
6022 			}
6023 			if (!device)
6024 				putback_lru_page(page);
6025 put:			/* get_mctgt_type() gets the page */
6026 			put_page(page);
6027 			break;
6028 		case MC_TARGET_SWAP:
6029 			ent = target.ent;
6030 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6031 				mc.precharge--;
6032 				mem_cgroup_id_get_many(mc.to, 1);
6033 				/* we fixup other refcnts and charges later. */
6034 				mc.moved_swap++;
6035 			}
6036 			break;
6037 		default:
6038 			break;
6039 		}
6040 	}
6041 	pte_unmap_unlock(pte - 1, ptl);
6042 	cond_resched();
6043 
6044 	if (addr != end) {
6045 		/*
6046 		 * We have consumed all precharges we got in can_attach().
6047 		 * We try charge one by one, but don't do any additional
6048 		 * charges to mc.to if we have failed in charge once in attach()
6049 		 * phase.
6050 		 */
6051 		ret = mem_cgroup_do_precharge(1);
6052 		if (!ret)
6053 			goto retry;
6054 	}
6055 
6056 	return ret;
6057 }
6058 
6059 static const struct mm_walk_ops charge_walk_ops = {
6060 	.pmd_entry	= mem_cgroup_move_charge_pte_range,
6061 };
6062 
6063 static void mem_cgroup_move_charge(void)
6064 {
6065 	lru_add_drain_all();
6066 	/*
6067 	 * Signal lock_page_memcg() to take the memcg's move_lock
6068 	 * while we're moving its pages to another memcg. Then wait
6069 	 * for already started RCU-only updates to finish.
6070 	 */
6071 	atomic_inc(&mc.from->moving_account);
6072 	synchronize_rcu();
6073 retry:
6074 	if (unlikely(!mmap_read_trylock(mc.mm))) {
6075 		/*
6076 		 * Someone who are holding the mmap_lock might be waiting in
6077 		 * waitq. So we cancel all extra charges, wake up all waiters,
6078 		 * and retry. Because we cancel precharges, we might not be able
6079 		 * to move enough charges, but moving charge is a best-effort
6080 		 * feature anyway, so it wouldn't be a big problem.
6081 		 */
6082 		__mem_cgroup_clear_mc();
6083 		cond_resched();
6084 		goto retry;
6085 	}
6086 	/*
6087 	 * When we have consumed all precharges and failed in doing
6088 	 * additional charge, the page walk just aborts.
6089 	 */
6090 	walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6091 			NULL);
6092 
6093 	mmap_read_unlock(mc.mm);
6094 	atomic_dec(&mc.from->moving_account);
6095 }
6096 
6097 static void mem_cgroup_move_task(void)
6098 {
6099 	if (mc.to) {
6100 		mem_cgroup_move_charge();
6101 		mem_cgroup_clear_mc();
6102 	}
6103 }
6104 #else	/* !CONFIG_MMU */
6105 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6106 {
6107 	return 0;
6108 }
6109 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6110 {
6111 }
6112 static void mem_cgroup_move_task(void)
6113 {
6114 }
6115 #endif
6116 
6117 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6118 {
6119 	if (value == PAGE_COUNTER_MAX)
6120 		seq_puts(m, "max\n");
6121 	else
6122 		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6123 
6124 	return 0;
6125 }
6126 
6127 static u64 memory_current_read(struct cgroup_subsys_state *css,
6128 			       struct cftype *cft)
6129 {
6130 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6131 
6132 	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6133 }
6134 
6135 static int memory_min_show(struct seq_file *m, void *v)
6136 {
6137 	return seq_puts_memcg_tunable(m,
6138 		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6139 }
6140 
6141 static ssize_t memory_min_write(struct kernfs_open_file *of,
6142 				char *buf, size_t nbytes, loff_t off)
6143 {
6144 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6145 	unsigned long min;
6146 	int err;
6147 
6148 	buf = strstrip(buf);
6149 	err = page_counter_memparse(buf, "max", &min);
6150 	if (err)
6151 		return err;
6152 
6153 	page_counter_set_min(&memcg->memory, min);
6154 
6155 	return nbytes;
6156 }
6157 
6158 static int memory_low_show(struct seq_file *m, void *v)
6159 {
6160 	return seq_puts_memcg_tunable(m,
6161 		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6162 }
6163 
6164 static ssize_t memory_low_write(struct kernfs_open_file *of,
6165 				char *buf, size_t nbytes, loff_t off)
6166 {
6167 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6168 	unsigned long low;
6169 	int err;
6170 
6171 	buf = strstrip(buf);
6172 	err = page_counter_memparse(buf, "max", &low);
6173 	if (err)
6174 		return err;
6175 
6176 	page_counter_set_low(&memcg->memory, low);
6177 
6178 	return nbytes;
6179 }
6180 
6181 static int memory_high_show(struct seq_file *m, void *v)
6182 {
6183 	return seq_puts_memcg_tunable(m,
6184 		READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6185 }
6186 
6187 static ssize_t memory_high_write(struct kernfs_open_file *of,
6188 				 char *buf, size_t nbytes, loff_t off)
6189 {
6190 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6191 	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6192 	bool drained = false;
6193 	unsigned long high;
6194 	int err;
6195 
6196 	buf = strstrip(buf);
6197 	err = page_counter_memparse(buf, "max", &high);
6198 	if (err)
6199 		return err;
6200 
6201 	page_counter_set_high(&memcg->memory, high);
6202 
6203 	for (;;) {
6204 		unsigned long nr_pages = page_counter_read(&memcg->memory);
6205 		unsigned long reclaimed;
6206 
6207 		if (nr_pages <= high)
6208 			break;
6209 
6210 		if (signal_pending(current))
6211 			break;
6212 
6213 		if (!drained) {
6214 			drain_all_stock(memcg);
6215 			drained = true;
6216 			continue;
6217 		}
6218 
6219 		reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6220 							 GFP_KERNEL, true);
6221 
6222 		if (!reclaimed && !nr_retries--)
6223 			break;
6224 	}
6225 
6226 	memcg_wb_domain_size_changed(memcg);
6227 	return nbytes;
6228 }
6229 
6230 static int memory_max_show(struct seq_file *m, void *v)
6231 {
6232 	return seq_puts_memcg_tunable(m,
6233 		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6234 }
6235 
6236 static ssize_t memory_max_write(struct kernfs_open_file *of,
6237 				char *buf, size_t nbytes, loff_t off)
6238 {
6239 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6240 	unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6241 	bool drained = false;
6242 	unsigned long max;
6243 	int err;
6244 
6245 	buf = strstrip(buf);
6246 	err = page_counter_memparse(buf, "max", &max);
6247 	if (err)
6248 		return err;
6249 
6250 	xchg(&memcg->memory.max, max);
6251 
6252 	for (;;) {
6253 		unsigned long nr_pages = page_counter_read(&memcg->memory);
6254 
6255 		if (nr_pages <= max)
6256 			break;
6257 
6258 		if (signal_pending(current))
6259 			break;
6260 
6261 		if (!drained) {
6262 			drain_all_stock(memcg);
6263 			drained = true;
6264 			continue;
6265 		}
6266 
6267 		if (nr_reclaims) {
6268 			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6269 							  GFP_KERNEL, true))
6270 				nr_reclaims--;
6271 			continue;
6272 		}
6273 
6274 		memcg_memory_event(memcg, MEMCG_OOM);
6275 		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6276 			break;
6277 	}
6278 
6279 	memcg_wb_domain_size_changed(memcg);
6280 	return nbytes;
6281 }
6282 
6283 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6284 {
6285 	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6286 	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6287 	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6288 	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6289 	seq_printf(m, "oom_kill %lu\n",
6290 		   atomic_long_read(&events[MEMCG_OOM_KILL]));
6291 }
6292 
6293 static int memory_events_show(struct seq_file *m, void *v)
6294 {
6295 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6296 
6297 	__memory_events_show(m, memcg->memory_events);
6298 	return 0;
6299 }
6300 
6301 static int memory_events_local_show(struct seq_file *m, void *v)
6302 {
6303 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6304 
6305 	__memory_events_show(m, memcg->memory_events_local);
6306 	return 0;
6307 }
6308 
6309 static int memory_stat_show(struct seq_file *m, void *v)
6310 {
6311 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6312 	char *buf;
6313 
6314 	buf = memory_stat_format(memcg);
6315 	if (!buf)
6316 		return -ENOMEM;
6317 	seq_puts(m, buf);
6318 	kfree(buf);
6319 	return 0;
6320 }
6321 
6322 #ifdef CONFIG_NUMA
6323 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6324 						     int item)
6325 {
6326 	return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6327 }
6328 
6329 static int memory_numa_stat_show(struct seq_file *m, void *v)
6330 {
6331 	int i;
6332 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6333 
6334 	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6335 		int nid;
6336 
6337 		if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6338 			continue;
6339 
6340 		seq_printf(m, "%s", memory_stats[i].name);
6341 		for_each_node_state(nid, N_MEMORY) {
6342 			u64 size;
6343 			struct lruvec *lruvec;
6344 
6345 			lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6346 			size = lruvec_page_state_output(lruvec,
6347 							memory_stats[i].idx);
6348 			seq_printf(m, " N%d=%llu", nid, size);
6349 		}
6350 		seq_putc(m, '\n');
6351 	}
6352 
6353 	return 0;
6354 }
6355 #endif
6356 
6357 static int memory_oom_group_show(struct seq_file *m, void *v)
6358 {
6359 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6360 
6361 	seq_printf(m, "%d\n", memcg->oom_group);
6362 
6363 	return 0;
6364 }
6365 
6366 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6367 				      char *buf, size_t nbytes, loff_t off)
6368 {
6369 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6370 	int ret, oom_group;
6371 
6372 	buf = strstrip(buf);
6373 	if (!buf)
6374 		return -EINVAL;
6375 
6376 	ret = kstrtoint(buf, 0, &oom_group);
6377 	if (ret)
6378 		return ret;
6379 
6380 	if (oom_group != 0 && oom_group != 1)
6381 		return -EINVAL;
6382 
6383 	memcg->oom_group = oom_group;
6384 
6385 	return nbytes;
6386 }
6387 
6388 static struct cftype memory_files[] = {
6389 	{
6390 		.name = "current",
6391 		.flags = CFTYPE_NOT_ON_ROOT,
6392 		.read_u64 = memory_current_read,
6393 	},
6394 	{
6395 		.name = "min",
6396 		.flags = CFTYPE_NOT_ON_ROOT,
6397 		.seq_show = memory_min_show,
6398 		.write = memory_min_write,
6399 	},
6400 	{
6401 		.name = "low",
6402 		.flags = CFTYPE_NOT_ON_ROOT,
6403 		.seq_show = memory_low_show,
6404 		.write = memory_low_write,
6405 	},
6406 	{
6407 		.name = "high",
6408 		.flags = CFTYPE_NOT_ON_ROOT,
6409 		.seq_show = memory_high_show,
6410 		.write = memory_high_write,
6411 	},
6412 	{
6413 		.name = "max",
6414 		.flags = CFTYPE_NOT_ON_ROOT,
6415 		.seq_show = memory_max_show,
6416 		.write = memory_max_write,
6417 	},
6418 	{
6419 		.name = "events",
6420 		.flags = CFTYPE_NOT_ON_ROOT,
6421 		.file_offset = offsetof(struct mem_cgroup, events_file),
6422 		.seq_show = memory_events_show,
6423 	},
6424 	{
6425 		.name = "events.local",
6426 		.flags = CFTYPE_NOT_ON_ROOT,
6427 		.file_offset = offsetof(struct mem_cgroup, events_local_file),
6428 		.seq_show = memory_events_local_show,
6429 	},
6430 	{
6431 		.name = "stat",
6432 		.seq_show = memory_stat_show,
6433 	},
6434 #ifdef CONFIG_NUMA
6435 	{
6436 		.name = "numa_stat",
6437 		.seq_show = memory_numa_stat_show,
6438 	},
6439 #endif
6440 	{
6441 		.name = "oom.group",
6442 		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6443 		.seq_show = memory_oom_group_show,
6444 		.write = memory_oom_group_write,
6445 	},
6446 	{ }	/* terminate */
6447 };
6448 
6449 struct cgroup_subsys memory_cgrp_subsys = {
6450 	.css_alloc = mem_cgroup_css_alloc,
6451 	.css_online = mem_cgroup_css_online,
6452 	.css_offline = mem_cgroup_css_offline,
6453 	.css_released = mem_cgroup_css_released,
6454 	.css_free = mem_cgroup_css_free,
6455 	.css_reset = mem_cgroup_css_reset,
6456 	.css_rstat_flush = mem_cgroup_css_rstat_flush,
6457 	.can_attach = mem_cgroup_can_attach,
6458 	.cancel_attach = mem_cgroup_cancel_attach,
6459 	.post_attach = mem_cgroup_move_task,
6460 	.dfl_cftypes = memory_files,
6461 	.legacy_cftypes = mem_cgroup_legacy_files,
6462 	.early_init = 0,
6463 };
6464 
6465 /*
6466  * This function calculates an individual cgroup's effective
6467  * protection which is derived from its own memory.min/low, its
6468  * parent's and siblings' settings, as well as the actual memory
6469  * distribution in the tree.
6470  *
6471  * The following rules apply to the effective protection values:
6472  *
6473  * 1. At the first level of reclaim, effective protection is equal to
6474  *    the declared protection in memory.min and memory.low.
6475  *
6476  * 2. To enable safe delegation of the protection configuration, at
6477  *    subsequent levels the effective protection is capped to the
6478  *    parent's effective protection.
6479  *
6480  * 3. To make complex and dynamic subtrees easier to configure, the
6481  *    user is allowed to overcommit the declared protection at a given
6482  *    level. If that is the case, the parent's effective protection is
6483  *    distributed to the children in proportion to how much protection
6484  *    they have declared and how much of it they are utilizing.
6485  *
6486  *    This makes distribution proportional, but also work-conserving:
6487  *    if one cgroup claims much more protection than it uses memory,
6488  *    the unused remainder is available to its siblings.
6489  *
6490  * 4. Conversely, when the declared protection is undercommitted at a
6491  *    given level, the distribution of the larger parental protection
6492  *    budget is NOT proportional. A cgroup's protection from a sibling
6493  *    is capped to its own memory.min/low setting.
6494  *
6495  * 5. However, to allow protecting recursive subtrees from each other
6496  *    without having to declare each individual cgroup's fixed share
6497  *    of the ancestor's claim to protection, any unutilized -
6498  *    "floating" - protection from up the tree is distributed in
6499  *    proportion to each cgroup's *usage*. This makes the protection
6500  *    neutral wrt sibling cgroups and lets them compete freely over
6501  *    the shared parental protection budget, but it protects the
6502  *    subtree as a whole from neighboring subtrees.
6503  *
6504  * Note that 4. and 5. are not in conflict: 4. is about protecting
6505  * against immediate siblings whereas 5. is about protecting against
6506  * neighboring subtrees.
6507  */
6508 static unsigned long effective_protection(unsigned long usage,
6509 					  unsigned long parent_usage,
6510 					  unsigned long setting,
6511 					  unsigned long parent_effective,
6512 					  unsigned long siblings_protected)
6513 {
6514 	unsigned long protected;
6515 	unsigned long ep;
6516 
6517 	protected = min(usage, setting);
6518 	/*
6519 	 * If all cgroups at this level combined claim and use more
6520 	 * protection then what the parent affords them, distribute
6521 	 * shares in proportion to utilization.
6522 	 *
6523 	 * We are using actual utilization rather than the statically
6524 	 * claimed protection in order to be work-conserving: claimed
6525 	 * but unused protection is available to siblings that would
6526 	 * otherwise get a smaller chunk than what they claimed.
6527 	 */
6528 	if (siblings_protected > parent_effective)
6529 		return protected * parent_effective / siblings_protected;
6530 
6531 	/*
6532 	 * Ok, utilized protection of all children is within what the
6533 	 * parent affords them, so we know whatever this child claims
6534 	 * and utilizes is effectively protected.
6535 	 *
6536 	 * If there is unprotected usage beyond this value, reclaim
6537 	 * will apply pressure in proportion to that amount.
6538 	 *
6539 	 * If there is unutilized protection, the cgroup will be fully
6540 	 * shielded from reclaim, but we do return a smaller value for
6541 	 * protection than what the group could enjoy in theory. This
6542 	 * is okay. With the overcommit distribution above, effective
6543 	 * protection is always dependent on how memory is actually
6544 	 * consumed among the siblings anyway.
6545 	 */
6546 	ep = protected;
6547 
6548 	/*
6549 	 * If the children aren't claiming (all of) the protection
6550 	 * afforded to them by the parent, distribute the remainder in
6551 	 * proportion to the (unprotected) memory of each cgroup. That
6552 	 * way, cgroups that aren't explicitly prioritized wrt each
6553 	 * other compete freely over the allowance, but they are
6554 	 * collectively protected from neighboring trees.
6555 	 *
6556 	 * We're using unprotected memory for the weight so that if
6557 	 * some cgroups DO claim explicit protection, we don't protect
6558 	 * the same bytes twice.
6559 	 *
6560 	 * Check both usage and parent_usage against the respective
6561 	 * protected values. One should imply the other, but they
6562 	 * aren't read atomically - make sure the division is sane.
6563 	 */
6564 	if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6565 		return ep;
6566 	if (parent_effective > siblings_protected &&
6567 	    parent_usage > siblings_protected &&
6568 	    usage > protected) {
6569 		unsigned long unclaimed;
6570 
6571 		unclaimed = parent_effective - siblings_protected;
6572 		unclaimed *= usage - protected;
6573 		unclaimed /= parent_usage - siblings_protected;
6574 
6575 		ep += unclaimed;
6576 	}
6577 
6578 	return ep;
6579 }
6580 
6581 /**
6582  * mem_cgroup_protected - check if memory consumption is in the normal range
6583  * @root: the top ancestor of the sub-tree being checked
6584  * @memcg: the memory cgroup to check
6585  *
6586  * WARNING: This function is not stateless! It can only be used as part
6587  *          of a top-down tree iteration, not for isolated queries.
6588  */
6589 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6590 				     struct mem_cgroup *memcg)
6591 {
6592 	unsigned long usage, parent_usage;
6593 	struct mem_cgroup *parent;
6594 
6595 	if (mem_cgroup_disabled())
6596 		return;
6597 
6598 	if (!root)
6599 		root = root_mem_cgroup;
6600 
6601 	/*
6602 	 * Effective values of the reclaim targets are ignored so they
6603 	 * can be stale. Have a look at mem_cgroup_protection for more
6604 	 * details.
6605 	 * TODO: calculation should be more robust so that we do not need
6606 	 * that special casing.
6607 	 */
6608 	if (memcg == root)
6609 		return;
6610 
6611 	usage = page_counter_read(&memcg->memory);
6612 	if (!usage)
6613 		return;
6614 
6615 	parent = parent_mem_cgroup(memcg);
6616 	/* No parent means a non-hierarchical mode on v1 memcg */
6617 	if (!parent)
6618 		return;
6619 
6620 	if (parent == root) {
6621 		memcg->memory.emin = READ_ONCE(memcg->memory.min);
6622 		memcg->memory.elow = READ_ONCE(memcg->memory.low);
6623 		return;
6624 	}
6625 
6626 	parent_usage = page_counter_read(&parent->memory);
6627 
6628 	WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6629 			READ_ONCE(memcg->memory.min),
6630 			READ_ONCE(parent->memory.emin),
6631 			atomic_long_read(&parent->memory.children_min_usage)));
6632 
6633 	WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6634 			READ_ONCE(memcg->memory.low),
6635 			READ_ONCE(parent->memory.elow),
6636 			atomic_long_read(&parent->memory.children_low_usage)));
6637 }
6638 
6639 static int __mem_cgroup_charge(struct page *page, struct mem_cgroup *memcg,
6640 			       gfp_t gfp)
6641 {
6642 	unsigned int nr_pages = thp_nr_pages(page);
6643 	int ret;
6644 
6645 	ret = try_charge(memcg, gfp, nr_pages);
6646 	if (ret)
6647 		goto out;
6648 
6649 	css_get(&memcg->css);
6650 	commit_charge(page, memcg);
6651 
6652 	local_irq_disable();
6653 	mem_cgroup_charge_statistics(memcg, page, nr_pages);
6654 	memcg_check_events(memcg, page);
6655 	local_irq_enable();
6656 out:
6657 	return ret;
6658 }
6659 
6660 /**
6661  * mem_cgroup_charge - charge a newly allocated page to a cgroup
6662  * @page: page to charge
6663  * @mm: mm context of the victim
6664  * @gfp_mask: reclaim mode
6665  *
6666  * Try to charge @page to the memcg that @mm belongs to, reclaiming
6667  * pages according to @gfp_mask if necessary.
6668  *
6669  * Do not use this for pages allocated for swapin.
6670  *
6671  * Returns 0 on success. Otherwise, an error code is returned.
6672  */
6673 int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
6674 {
6675 	struct mem_cgroup *memcg;
6676 	int ret;
6677 
6678 	if (mem_cgroup_disabled())
6679 		return 0;
6680 
6681 	memcg = get_mem_cgroup_from_mm(mm);
6682 	ret = __mem_cgroup_charge(page, memcg, gfp_mask);
6683 	css_put(&memcg->css);
6684 
6685 	return ret;
6686 }
6687 
6688 /**
6689  * mem_cgroup_swapin_charge_page - charge a newly allocated page for swapin
6690  * @page: page to charge
6691  * @mm: mm context of the victim
6692  * @gfp: reclaim mode
6693  * @entry: swap entry for which the page is allocated
6694  *
6695  * This function charges a page allocated for swapin. Please call this before
6696  * adding the page to the swapcache.
6697  *
6698  * Returns 0 on success. Otherwise, an error code is returned.
6699  */
6700 int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm,
6701 				  gfp_t gfp, swp_entry_t entry)
6702 {
6703 	struct mem_cgroup *memcg;
6704 	unsigned short id;
6705 	int ret;
6706 
6707 	if (mem_cgroup_disabled())
6708 		return 0;
6709 
6710 	id = lookup_swap_cgroup_id(entry);
6711 	rcu_read_lock();
6712 	memcg = mem_cgroup_from_id(id);
6713 	if (!memcg || !css_tryget_online(&memcg->css))
6714 		memcg = get_mem_cgroup_from_mm(mm);
6715 	rcu_read_unlock();
6716 
6717 	ret = __mem_cgroup_charge(page, memcg, gfp);
6718 
6719 	css_put(&memcg->css);
6720 	return ret;
6721 }
6722 
6723 /*
6724  * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
6725  * @entry: swap entry for which the page is charged
6726  *
6727  * Call this function after successfully adding the charged page to swapcache.
6728  *
6729  * Note: This function assumes the page for which swap slot is being uncharged
6730  * is order 0 page.
6731  */
6732 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
6733 {
6734 	/*
6735 	 * Cgroup1's unified memory+swap counter has been charged with the
6736 	 * new swapcache page, finish the transfer by uncharging the swap
6737 	 * slot. The swap slot would also get uncharged when it dies, but
6738 	 * it can stick around indefinitely and we'd count the page twice
6739 	 * the entire time.
6740 	 *
6741 	 * Cgroup2 has separate resource counters for memory and swap,
6742 	 * so this is a non-issue here. Memory and swap charge lifetimes
6743 	 * correspond 1:1 to page and swap slot lifetimes: we charge the
6744 	 * page to memory here, and uncharge swap when the slot is freed.
6745 	 */
6746 	if (!mem_cgroup_disabled() && do_memsw_account()) {
6747 		/*
6748 		 * The swap entry might not get freed for a long time,
6749 		 * let's not wait for it.  The page already received a
6750 		 * memory+swap charge, drop the swap entry duplicate.
6751 		 */
6752 		mem_cgroup_uncharge_swap(entry, 1);
6753 	}
6754 }
6755 
6756 struct uncharge_gather {
6757 	struct mem_cgroup *memcg;
6758 	unsigned long nr_memory;
6759 	unsigned long pgpgout;
6760 	unsigned long nr_kmem;
6761 	struct page *dummy_page;
6762 };
6763 
6764 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6765 {
6766 	memset(ug, 0, sizeof(*ug));
6767 }
6768 
6769 static void uncharge_batch(const struct uncharge_gather *ug)
6770 {
6771 	unsigned long flags;
6772 
6773 	if (ug->nr_memory) {
6774 		page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
6775 		if (do_memsw_account())
6776 			page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
6777 		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6778 			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6779 		memcg_oom_recover(ug->memcg);
6780 	}
6781 
6782 	local_irq_save(flags);
6783 	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6784 	__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
6785 	memcg_check_events(ug->memcg, ug->dummy_page);
6786 	local_irq_restore(flags);
6787 
6788 	/* drop reference from uncharge_page */
6789 	css_put(&ug->memcg->css);
6790 }
6791 
6792 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6793 {
6794 	unsigned long nr_pages;
6795 	struct mem_cgroup *memcg;
6796 	struct obj_cgroup *objcg;
6797 
6798 	VM_BUG_ON_PAGE(PageLRU(page), page);
6799 
6800 	/*
6801 	 * Nobody should be changing or seriously looking at
6802 	 * page memcg or objcg at this point, we have fully
6803 	 * exclusive access to the page.
6804 	 */
6805 	if (PageMemcgKmem(page)) {
6806 		objcg = __page_objcg(page);
6807 		/*
6808 		 * This get matches the put at the end of the function and
6809 		 * kmem pages do not hold memcg references anymore.
6810 		 */
6811 		memcg = get_mem_cgroup_from_objcg(objcg);
6812 	} else {
6813 		memcg = __page_memcg(page);
6814 	}
6815 
6816 	if (!memcg)
6817 		return;
6818 
6819 	if (ug->memcg != memcg) {
6820 		if (ug->memcg) {
6821 			uncharge_batch(ug);
6822 			uncharge_gather_clear(ug);
6823 		}
6824 		ug->memcg = memcg;
6825 		ug->dummy_page = page;
6826 
6827 		/* pairs with css_put in uncharge_batch */
6828 		css_get(&memcg->css);
6829 	}
6830 
6831 	nr_pages = compound_nr(page);
6832 
6833 	if (PageMemcgKmem(page)) {
6834 		ug->nr_memory += nr_pages;
6835 		ug->nr_kmem += nr_pages;
6836 
6837 		page->memcg_data = 0;
6838 		obj_cgroup_put(objcg);
6839 	} else {
6840 		/* LRU pages aren't accounted at the root level */
6841 		if (!mem_cgroup_is_root(memcg))
6842 			ug->nr_memory += nr_pages;
6843 		ug->pgpgout++;
6844 
6845 		page->memcg_data = 0;
6846 	}
6847 
6848 	css_put(&memcg->css);
6849 }
6850 
6851 /**
6852  * mem_cgroup_uncharge - uncharge a page
6853  * @page: page to uncharge
6854  *
6855  * Uncharge a page previously charged with mem_cgroup_charge().
6856  */
6857 void mem_cgroup_uncharge(struct page *page)
6858 {
6859 	struct uncharge_gather ug;
6860 
6861 	if (mem_cgroup_disabled())
6862 		return;
6863 
6864 	/* Don't touch page->lru of any random page, pre-check: */
6865 	if (!page_memcg(page))
6866 		return;
6867 
6868 	uncharge_gather_clear(&ug);
6869 	uncharge_page(page, &ug);
6870 	uncharge_batch(&ug);
6871 }
6872 
6873 /**
6874  * mem_cgroup_uncharge_list - uncharge a list of page
6875  * @page_list: list of pages to uncharge
6876  *
6877  * Uncharge a list of pages previously charged with
6878  * mem_cgroup_charge().
6879  */
6880 void mem_cgroup_uncharge_list(struct list_head *page_list)
6881 {
6882 	struct uncharge_gather ug;
6883 	struct page *page;
6884 
6885 	if (mem_cgroup_disabled())
6886 		return;
6887 
6888 	uncharge_gather_clear(&ug);
6889 	list_for_each_entry(page, page_list, lru)
6890 		uncharge_page(page, &ug);
6891 	if (ug.memcg)
6892 		uncharge_batch(&ug);
6893 }
6894 
6895 /**
6896  * mem_cgroup_migrate - charge a page's replacement
6897  * @oldpage: currently circulating page
6898  * @newpage: replacement page
6899  *
6900  * Charge @newpage as a replacement page for @oldpage. @oldpage will
6901  * be uncharged upon free.
6902  *
6903  * Both pages must be locked, @newpage->mapping must be set up.
6904  */
6905 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6906 {
6907 	struct mem_cgroup *memcg;
6908 	unsigned int nr_pages;
6909 	unsigned long flags;
6910 
6911 	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6912 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6913 	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6914 	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6915 		       newpage);
6916 
6917 	if (mem_cgroup_disabled())
6918 		return;
6919 
6920 	/* Page cache replacement: new page already charged? */
6921 	if (page_memcg(newpage))
6922 		return;
6923 
6924 	memcg = page_memcg(oldpage);
6925 	VM_WARN_ON_ONCE_PAGE(!memcg, oldpage);
6926 	if (!memcg)
6927 		return;
6928 
6929 	/* Force-charge the new page. The old one will be freed soon */
6930 	nr_pages = thp_nr_pages(newpage);
6931 
6932 	page_counter_charge(&memcg->memory, nr_pages);
6933 	if (do_memsw_account())
6934 		page_counter_charge(&memcg->memsw, nr_pages);
6935 
6936 	css_get(&memcg->css);
6937 	commit_charge(newpage, memcg);
6938 
6939 	local_irq_save(flags);
6940 	mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
6941 	memcg_check_events(memcg, newpage);
6942 	local_irq_restore(flags);
6943 }
6944 
6945 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6946 EXPORT_SYMBOL(memcg_sockets_enabled_key);
6947 
6948 void mem_cgroup_sk_alloc(struct sock *sk)
6949 {
6950 	struct mem_cgroup *memcg;
6951 
6952 	if (!mem_cgroup_sockets_enabled)
6953 		return;
6954 
6955 	/* Do not associate the sock with unrelated interrupted task's memcg. */
6956 	if (in_interrupt())
6957 		return;
6958 
6959 	rcu_read_lock();
6960 	memcg = mem_cgroup_from_task(current);
6961 	if (memcg == root_mem_cgroup)
6962 		goto out;
6963 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6964 		goto out;
6965 	if (css_tryget(&memcg->css))
6966 		sk->sk_memcg = memcg;
6967 out:
6968 	rcu_read_unlock();
6969 }
6970 
6971 void mem_cgroup_sk_free(struct sock *sk)
6972 {
6973 	if (sk->sk_memcg)
6974 		css_put(&sk->sk_memcg->css);
6975 }
6976 
6977 /**
6978  * mem_cgroup_charge_skmem - charge socket memory
6979  * @memcg: memcg to charge
6980  * @nr_pages: number of pages to charge
6981  *
6982  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6983  * @memcg's configured limit, %false if the charge had to be forced.
6984  */
6985 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6986 {
6987 	gfp_t gfp_mask = GFP_KERNEL;
6988 
6989 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6990 		struct page_counter *fail;
6991 
6992 		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6993 			memcg->tcpmem_pressure = 0;
6994 			return true;
6995 		}
6996 		page_counter_charge(&memcg->tcpmem, nr_pages);
6997 		memcg->tcpmem_pressure = 1;
6998 		return false;
6999 	}
7000 
7001 	/* Don't block in the packet receive path */
7002 	if (in_softirq())
7003 		gfp_mask = GFP_NOWAIT;
7004 
7005 	mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7006 
7007 	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
7008 		return true;
7009 
7010 	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
7011 	return false;
7012 }
7013 
7014 /**
7015  * mem_cgroup_uncharge_skmem - uncharge socket memory
7016  * @memcg: memcg to uncharge
7017  * @nr_pages: number of pages to uncharge
7018  */
7019 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7020 {
7021 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7022 		page_counter_uncharge(&memcg->tcpmem, nr_pages);
7023 		return;
7024 	}
7025 
7026 	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7027 
7028 	refill_stock(memcg, nr_pages);
7029 }
7030 
7031 static int __init cgroup_memory(char *s)
7032 {
7033 	char *token;
7034 
7035 	while ((token = strsep(&s, ",")) != NULL) {
7036 		if (!*token)
7037 			continue;
7038 		if (!strcmp(token, "nosocket"))
7039 			cgroup_memory_nosocket = true;
7040 		if (!strcmp(token, "nokmem"))
7041 			cgroup_memory_nokmem = true;
7042 	}
7043 	return 0;
7044 }
7045 __setup("cgroup.memory=", cgroup_memory);
7046 
7047 /*
7048  * subsys_initcall() for memory controller.
7049  *
7050  * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7051  * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7052  * basically everything that doesn't depend on a specific mem_cgroup structure
7053  * should be initialized from here.
7054  */
7055 static int __init mem_cgroup_init(void)
7056 {
7057 	int cpu, node;
7058 
7059 	/*
7060 	 * Currently s32 type (can refer to struct batched_lruvec_stat) is
7061 	 * used for per-memcg-per-cpu caching of per-node statistics. In order
7062 	 * to work fine, we should make sure that the overfill threshold can't
7063 	 * exceed S32_MAX / PAGE_SIZE.
7064 	 */
7065 	BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7066 
7067 	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7068 				  memcg_hotplug_cpu_dead);
7069 
7070 	for_each_possible_cpu(cpu)
7071 		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7072 			  drain_local_stock);
7073 
7074 	for_each_node(node) {
7075 		struct mem_cgroup_tree_per_node *rtpn;
7076 
7077 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7078 				    node_online(node) ? node : NUMA_NO_NODE);
7079 
7080 		rtpn->rb_root = RB_ROOT;
7081 		rtpn->rb_rightmost = NULL;
7082 		spin_lock_init(&rtpn->lock);
7083 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
7084 	}
7085 
7086 	return 0;
7087 }
7088 subsys_initcall(mem_cgroup_init);
7089 
7090 #ifdef CONFIG_MEMCG_SWAP
7091 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7092 {
7093 	while (!refcount_inc_not_zero(&memcg->id.ref)) {
7094 		/*
7095 		 * The root cgroup cannot be destroyed, so it's refcount must
7096 		 * always be >= 1.
7097 		 */
7098 		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7099 			VM_BUG_ON(1);
7100 			break;
7101 		}
7102 		memcg = parent_mem_cgroup(memcg);
7103 		if (!memcg)
7104 			memcg = root_mem_cgroup;
7105 	}
7106 	return memcg;
7107 }
7108 
7109 /**
7110  * mem_cgroup_swapout - transfer a memsw charge to swap
7111  * @page: page whose memsw charge to transfer
7112  * @entry: swap entry to move the charge to
7113  *
7114  * Transfer the memsw charge of @page to @entry.
7115  */
7116 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
7117 {
7118 	struct mem_cgroup *memcg, *swap_memcg;
7119 	unsigned int nr_entries;
7120 	unsigned short oldid;
7121 
7122 	VM_BUG_ON_PAGE(PageLRU(page), page);
7123 	VM_BUG_ON_PAGE(page_count(page), page);
7124 
7125 	if (mem_cgroup_disabled())
7126 		return;
7127 
7128 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7129 		return;
7130 
7131 	memcg = page_memcg(page);
7132 
7133 	VM_WARN_ON_ONCE_PAGE(!memcg, page);
7134 	if (!memcg)
7135 		return;
7136 
7137 	/*
7138 	 * In case the memcg owning these pages has been offlined and doesn't
7139 	 * have an ID allocated to it anymore, charge the closest online
7140 	 * ancestor for the swap instead and transfer the memory+swap charge.
7141 	 */
7142 	swap_memcg = mem_cgroup_id_get_online(memcg);
7143 	nr_entries = thp_nr_pages(page);
7144 	/* Get references for the tail pages, too */
7145 	if (nr_entries > 1)
7146 		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7147 	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7148 				   nr_entries);
7149 	VM_BUG_ON_PAGE(oldid, page);
7150 	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7151 
7152 	page->memcg_data = 0;
7153 
7154 	if (!mem_cgroup_is_root(memcg))
7155 		page_counter_uncharge(&memcg->memory, nr_entries);
7156 
7157 	if (!cgroup_memory_noswap && memcg != swap_memcg) {
7158 		if (!mem_cgroup_is_root(swap_memcg))
7159 			page_counter_charge(&swap_memcg->memsw, nr_entries);
7160 		page_counter_uncharge(&memcg->memsw, nr_entries);
7161 	}
7162 
7163 	/*
7164 	 * Interrupts should be disabled here because the caller holds the
7165 	 * i_pages lock which is taken with interrupts-off. It is
7166 	 * important here to have the interrupts disabled because it is the
7167 	 * only synchronisation we have for updating the per-CPU variables.
7168 	 */
7169 	VM_BUG_ON(!irqs_disabled());
7170 	mem_cgroup_charge_statistics(memcg, page, -nr_entries);
7171 	memcg_check_events(memcg, page);
7172 
7173 	css_put(&memcg->css);
7174 }
7175 
7176 /**
7177  * mem_cgroup_try_charge_swap - try charging swap space for a page
7178  * @page: page being added to swap
7179  * @entry: swap entry to charge
7180  *
7181  * Try to charge @page's memcg for the swap space at @entry.
7182  *
7183  * Returns 0 on success, -ENOMEM on failure.
7184  */
7185 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7186 {
7187 	unsigned int nr_pages = thp_nr_pages(page);
7188 	struct page_counter *counter;
7189 	struct mem_cgroup *memcg;
7190 	unsigned short oldid;
7191 
7192 	if (mem_cgroup_disabled())
7193 		return 0;
7194 
7195 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7196 		return 0;
7197 
7198 	memcg = page_memcg(page);
7199 
7200 	VM_WARN_ON_ONCE_PAGE(!memcg, page);
7201 	if (!memcg)
7202 		return 0;
7203 
7204 	if (!entry.val) {
7205 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7206 		return 0;
7207 	}
7208 
7209 	memcg = mem_cgroup_id_get_online(memcg);
7210 
7211 	if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7212 	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7213 		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7214 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7215 		mem_cgroup_id_put(memcg);
7216 		return -ENOMEM;
7217 	}
7218 
7219 	/* Get references for the tail pages, too */
7220 	if (nr_pages > 1)
7221 		mem_cgroup_id_get_many(memcg, nr_pages - 1);
7222 	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7223 	VM_BUG_ON_PAGE(oldid, page);
7224 	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7225 
7226 	return 0;
7227 }
7228 
7229 /**
7230  * mem_cgroup_uncharge_swap - uncharge swap space
7231  * @entry: swap entry to uncharge
7232  * @nr_pages: the amount of swap space to uncharge
7233  */
7234 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7235 {
7236 	struct mem_cgroup *memcg;
7237 	unsigned short id;
7238 
7239 	id = swap_cgroup_record(entry, 0, nr_pages);
7240 	rcu_read_lock();
7241 	memcg = mem_cgroup_from_id(id);
7242 	if (memcg) {
7243 		if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7244 			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7245 				page_counter_uncharge(&memcg->swap, nr_pages);
7246 			else
7247 				page_counter_uncharge(&memcg->memsw, nr_pages);
7248 		}
7249 		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7250 		mem_cgroup_id_put_many(memcg, nr_pages);
7251 	}
7252 	rcu_read_unlock();
7253 }
7254 
7255 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7256 {
7257 	long nr_swap_pages = get_nr_swap_pages();
7258 
7259 	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7260 		return nr_swap_pages;
7261 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7262 		nr_swap_pages = min_t(long, nr_swap_pages,
7263 				      READ_ONCE(memcg->swap.max) -
7264 				      page_counter_read(&memcg->swap));
7265 	return nr_swap_pages;
7266 }
7267 
7268 bool mem_cgroup_swap_full(struct page *page)
7269 {
7270 	struct mem_cgroup *memcg;
7271 
7272 	VM_BUG_ON_PAGE(!PageLocked(page), page);
7273 
7274 	if (vm_swap_full())
7275 		return true;
7276 	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7277 		return false;
7278 
7279 	memcg = page_memcg(page);
7280 	if (!memcg)
7281 		return false;
7282 
7283 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7284 		unsigned long usage = page_counter_read(&memcg->swap);
7285 
7286 		if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7287 		    usage * 2 >= READ_ONCE(memcg->swap.max))
7288 			return true;
7289 	}
7290 
7291 	return false;
7292 }
7293 
7294 static int __init setup_swap_account(char *s)
7295 {
7296 	if (!strcmp(s, "1"))
7297 		cgroup_memory_noswap = false;
7298 	else if (!strcmp(s, "0"))
7299 		cgroup_memory_noswap = true;
7300 	return 1;
7301 }
7302 __setup("swapaccount=", setup_swap_account);
7303 
7304 static u64 swap_current_read(struct cgroup_subsys_state *css,
7305 			     struct cftype *cft)
7306 {
7307 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7308 
7309 	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7310 }
7311 
7312 static int swap_high_show(struct seq_file *m, void *v)
7313 {
7314 	return seq_puts_memcg_tunable(m,
7315 		READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7316 }
7317 
7318 static ssize_t swap_high_write(struct kernfs_open_file *of,
7319 			       char *buf, size_t nbytes, loff_t off)
7320 {
7321 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7322 	unsigned long high;
7323 	int err;
7324 
7325 	buf = strstrip(buf);
7326 	err = page_counter_memparse(buf, "max", &high);
7327 	if (err)
7328 		return err;
7329 
7330 	page_counter_set_high(&memcg->swap, high);
7331 
7332 	return nbytes;
7333 }
7334 
7335 static int swap_max_show(struct seq_file *m, void *v)
7336 {
7337 	return seq_puts_memcg_tunable(m,
7338 		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7339 }
7340 
7341 static ssize_t swap_max_write(struct kernfs_open_file *of,
7342 			      char *buf, size_t nbytes, loff_t off)
7343 {
7344 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7345 	unsigned long max;
7346 	int err;
7347 
7348 	buf = strstrip(buf);
7349 	err = page_counter_memparse(buf, "max", &max);
7350 	if (err)
7351 		return err;
7352 
7353 	xchg(&memcg->swap.max, max);
7354 
7355 	return nbytes;
7356 }
7357 
7358 static int swap_events_show(struct seq_file *m, void *v)
7359 {
7360 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7361 
7362 	seq_printf(m, "high %lu\n",
7363 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7364 	seq_printf(m, "max %lu\n",
7365 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7366 	seq_printf(m, "fail %lu\n",
7367 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7368 
7369 	return 0;
7370 }
7371 
7372 static struct cftype swap_files[] = {
7373 	{
7374 		.name = "swap.current",
7375 		.flags = CFTYPE_NOT_ON_ROOT,
7376 		.read_u64 = swap_current_read,
7377 	},
7378 	{
7379 		.name = "swap.high",
7380 		.flags = CFTYPE_NOT_ON_ROOT,
7381 		.seq_show = swap_high_show,
7382 		.write = swap_high_write,
7383 	},
7384 	{
7385 		.name = "swap.max",
7386 		.flags = CFTYPE_NOT_ON_ROOT,
7387 		.seq_show = swap_max_show,
7388 		.write = swap_max_write,
7389 	},
7390 	{
7391 		.name = "swap.events",
7392 		.flags = CFTYPE_NOT_ON_ROOT,
7393 		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
7394 		.seq_show = swap_events_show,
7395 	},
7396 	{ }	/* terminate */
7397 };
7398 
7399 static struct cftype memsw_files[] = {
7400 	{
7401 		.name = "memsw.usage_in_bytes",
7402 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7403 		.read_u64 = mem_cgroup_read_u64,
7404 	},
7405 	{
7406 		.name = "memsw.max_usage_in_bytes",
7407 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7408 		.write = mem_cgroup_reset,
7409 		.read_u64 = mem_cgroup_read_u64,
7410 	},
7411 	{
7412 		.name = "memsw.limit_in_bytes",
7413 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7414 		.write = mem_cgroup_write,
7415 		.read_u64 = mem_cgroup_read_u64,
7416 	},
7417 	{
7418 		.name = "memsw.failcnt",
7419 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7420 		.write = mem_cgroup_reset,
7421 		.read_u64 = mem_cgroup_read_u64,
7422 	},
7423 	{ },	/* terminate */
7424 };
7425 
7426 /*
7427  * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7428  * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7429  * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7430  * boot parameter. This may result in premature OOPS inside
7431  * mem_cgroup_get_nr_swap_pages() function in corner cases.
7432  */
7433 static int __init mem_cgroup_swap_init(void)
7434 {
7435 	/* No memory control -> no swap control */
7436 	if (mem_cgroup_disabled())
7437 		cgroup_memory_noswap = true;
7438 
7439 	if (cgroup_memory_noswap)
7440 		return 0;
7441 
7442 	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7443 	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7444 
7445 	return 0;
7446 }
7447 core_initcall(mem_cgroup_swap_init);
7448 
7449 #endif /* CONFIG_MEMCG_SWAP */
7450