xref: /openbmc/linux/mm/memcontrol.c (revision 8db70d3d)
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  */
19 
20 #include <linux/res_counter.h>
21 #include <linux/memcontrol.h>
22 #include <linux/cgroup.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/smp.h>
26 #include <linux/page-flags.h>
27 #include <linux/backing-dev.h>
28 #include <linux/bit_spinlock.h>
29 #include <linux/rcupdate.h>
30 #include <linux/limits.h>
31 #include <linux/mutex.h>
32 #include <linux/slab.h>
33 #include <linux/swap.h>
34 #include <linux/spinlock.h>
35 #include <linux/fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/vmalloc.h>
38 #include <linux/mm_inline.h>
39 #include <linux/page_cgroup.h>
40 #include "internal.h"
41 
42 #include <asm/uaccess.h>
43 
44 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
45 #define MEM_CGROUP_RECLAIM_RETRIES	5
46 
47 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
48 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 0 */
49 int do_swap_account __read_mostly;
50 static int really_do_swap_account __initdata = 1; /* for remember boot option*/
51 #else
52 #define do_swap_account		(0)
53 #endif
54 
55 static DEFINE_MUTEX(memcg_tasklist);	/* can be hold under cgroup_mutex */
56 
57 /*
58  * Statistics for memory cgroup.
59  */
60 enum mem_cgroup_stat_index {
61 	/*
62 	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
63 	 */
64 	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
65 	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as rss */
66 	MEM_CGROUP_STAT_PGPGIN_COUNT,	/* # of pages paged in */
67 	MEM_CGROUP_STAT_PGPGOUT_COUNT,	/* # of pages paged out */
68 
69 	MEM_CGROUP_STAT_NSTATS,
70 };
71 
72 struct mem_cgroup_stat_cpu {
73 	s64 count[MEM_CGROUP_STAT_NSTATS];
74 } ____cacheline_aligned_in_smp;
75 
76 struct mem_cgroup_stat {
77 	struct mem_cgroup_stat_cpu cpustat[0];
78 };
79 
80 /*
81  * For accounting under irq disable, no need for increment preempt count.
82  */
83 static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat,
84 		enum mem_cgroup_stat_index idx, int val)
85 {
86 	stat->count[idx] += val;
87 }
88 
89 static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
90 		enum mem_cgroup_stat_index idx)
91 {
92 	int cpu;
93 	s64 ret = 0;
94 	for_each_possible_cpu(cpu)
95 		ret += stat->cpustat[cpu].count[idx];
96 	return ret;
97 }
98 
99 static s64 mem_cgroup_local_usage(struct mem_cgroup_stat *stat)
100 {
101 	s64 ret;
102 
103 	ret = mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_CACHE);
104 	ret += mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_RSS);
105 	return ret;
106 }
107 
108 /*
109  * per-zone information in memory controller.
110  */
111 struct mem_cgroup_per_zone {
112 	/*
113 	 * spin_lock to protect the per cgroup LRU
114 	 */
115 	struct list_head	lists[NR_LRU_LISTS];
116 	unsigned long		count[NR_LRU_LISTS];
117 
118 	struct zone_reclaim_stat reclaim_stat;
119 };
120 /* Macro for accessing counter */
121 #define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])
122 
123 struct mem_cgroup_per_node {
124 	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
125 };
126 
127 struct mem_cgroup_lru_info {
128 	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
129 };
130 
131 /*
132  * The memory controller data structure. The memory controller controls both
133  * page cache and RSS per cgroup. We would eventually like to provide
134  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
135  * to help the administrator determine what knobs to tune.
136  *
137  * TODO: Add a water mark for the memory controller. Reclaim will begin when
138  * we hit the water mark. May be even add a low water mark, such that
139  * no reclaim occurs from a cgroup at it's low water mark, this is
140  * a feature that will be implemented much later in the future.
141  */
142 struct mem_cgroup {
143 	struct cgroup_subsys_state css;
144 	/*
145 	 * the counter to account for memory usage
146 	 */
147 	struct res_counter res;
148 	/*
149 	 * the counter to account for mem+swap usage.
150 	 */
151 	struct res_counter memsw;
152 	/*
153 	 * Per cgroup active and inactive list, similar to the
154 	 * per zone LRU lists.
155 	 */
156 	struct mem_cgroup_lru_info info;
157 
158 	/*
159 	  protect against reclaim related member.
160 	*/
161 	spinlock_t reclaim_param_lock;
162 
163 	int	prev_priority;	/* for recording reclaim priority */
164 
165 	/*
166 	 * While reclaiming in a hiearchy, we cache the last child we
167 	 * reclaimed from.
168 	 */
169 	int last_scanned_child;
170 	/*
171 	 * Should the accounting and control be hierarchical, per subtree?
172 	 */
173 	bool use_hierarchy;
174 	unsigned long	last_oom_jiffies;
175 	atomic_t	refcnt;
176 
177 	unsigned int	swappiness;
178 
179 	/*
180 	 * statistics. This must be placed at the end of memcg.
181 	 */
182 	struct mem_cgroup_stat stat;
183 };
184 
185 enum charge_type {
186 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
187 	MEM_CGROUP_CHARGE_TYPE_MAPPED,
188 	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
189 	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
190 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
191 	NR_CHARGE_TYPE,
192 };
193 
194 /* only for here (for easy reading.) */
195 #define PCGF_CACHE	(1UL << PCG_CACHE)
196 #define PCGF_USED	(1UL << PCG_USED)
197 #define PCGF_LOCK	(1UL << PCG_LOCK)
198 static const unsigned long
199 pcg_default_flags[NR_CHARGE_TYPE] = {
200 	PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* File Cache */
201 	PCGF_USED | PCGF_LOCK, /* Anon */
202 	PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* Shmem */
203 	0, /* FORCE */
204 };
205 
206 /* for encoding cft->private value on file */
207 #define _MEM			(0)
208 #define _MEMSWAP		(1)
209 #define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
210 #define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
211 #define MEMFILE_ATTR(val)	((val) & 0xffff)
212 
213 static void mem_cgroup_get(struct mem_cgroup *mem);
214 static void mem_cgroup_put(struct mem_cgroup *mem);
215 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
216 
217 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
218 					 struct page_cgroup *pc,
219 					 bool charge)
220 {
221 	int val = (charge)? 1 : -1;
222 	struct mem_cgroup_stat *stat = &mem->stat;
223 	struct mem_cgroup_stat_cpu *cpustat;
224 	int cpu = get_cpu();
225 
226 	cpustat = &stat->cpustat[cpu];
227 	if (PageCgroupCache(pc))
228 		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
229 	else
230 		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val);
231 
232 	if (charge)
233 		__mem_cgroup_stat_add_safe(cpustat,
234 				MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
235 	else
236 		__mem_cgroup_stat_add_safe(cpustat,
237 				MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
238 	put_cpu();
239 }
240 
241 static struct mem_cgroup_per_zone *
242 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
243 {
244 	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
245 }
246 
247 static struct mem_cgroup_per_zone *
248 page_cgroup_zoneinfo(struct page_cgroup *pc)
249 {
250 	struct mem_cgroup *mem = pc->mem_cgroup;
251 	int nid = page_cgroup_nid(pc);
252 	int zid = page_cgroup_zid(pc);
253 
254 	if (!mem)
255 		return NULL;
256 
257 	return mem_cgroup_zoneinfo(mem, nid, zid);
258 }
259 
260 static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
261 					enum lru_list idx)
262 {
263 	int nid, zid;
264 	struct mem_cgroup_per_zone *mz;
265 	u64 total = 0;
266 
267 	for_each_online_node(nid)
268 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
269 			mz = mem_cgroup_zoneinfo(mem, nid, zid);
270 			total += MEM_CGROUP_ZSTAT(mz, idx);
271 		}
272 	return total;
273 }
274 
275 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
276 {
277 	return container_of(cgroup_subsys_state(cont,
278 				mem_cgroup_subsys_id), struct mem_cgroup,
279 				css);
280 }
281 
282 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
283 {
284 	/*
285 	 * mm_update_next_owner() may clear mm->owner to NULL
286 	 * if it races with swapoff, page migration, etc.
287 	 * So this can be called with p == NULL.
288 	 */
289 	if (unlikely(!p))
290 		return NULL;
291 
292 	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
293 				struct mem_cgroup, css);
294 }
295 
296 static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
297 {
298 	struct mem_cgroup *mem = NULL;
299 
300 	if (!mm)
301 		return NULL;
302 	/*
303 	 * Because we have no locks, mm->owner's may be being moved to other
304 	 * cgroup. We use css_tryget() here even if this looks
305 	 * pessimistic (rather than adding locks here).
306 	 */
307 	rcu_read_lock();
308 	do {
309 		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
310 		if (unlikely(!mem))
311 			break;
312 	} while (!css_tryget(&mem->css));
313 	rcu_read_unlock();
314 	return mem;
315 }
316 
317 static bool mem_cgroup_is_obsolete(struct mem_cgroup *mem)
318 {
319 	if (!mem)
320 		return true;
321 	return css_is_removed(&mem->css);
322 }
323 
324 
325 /*
326  * Call callback function against all cgroup under hierarchy tree.
327  */
328 static int mem_cgroup_walk_tree(struct mem_cgroup *root, void *data,
329 			  int (*func)(struct mem_cgroup *, void *))
330 {
331 	int found, ret, nextid;
332 	struct cgroup_subsys_state *css;
333 	struct mem_cgroup *mem;
334 
335 	if (!root->use_hierarchy)
336 		return (*func)(root, data);
337 
338 	nextid = 1;
339 	do {
340 		ret = 0;
341 		mem = NULL;
342 
343 		rcu_read_lock();
344 		css = css_get_next(&mem_cgroup_subsys, nextid, &root->css,
345 				   &found);
346 		if (css && css_tryget(css))
347 			mem = container_of(css, struct mem_cgroup, css);
348 		rcu_read_unlock();
349 
350 		if (mem) {
351 			ret = (*func)(mem, data);
352 			css_put(&mem->css);
353 		}
354 		nextid = found + 1;
355 	} while (!ret && css);
356 
357 	return ret;
358 }
359 
360 /*
361  * Following LRU functions are allowed to be used without PCG_LOCK.
362  * Operations are called by routine of global LRU independently from memcg.
363  * What we have to take care of here is validness of pc->mem_cgroup.
364  *
365  * Changes to pc->mem_cgroup happens when
366  * 1. charge
367  * 2. moving account
368  * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
369  * It is added to LRU before charge.
370  * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
371  * When moving account, the page is not on LRU. It's isolated.
372  */
373 
374 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
375 {
376 	struct page_cgroup *pc;
377 	struct mem_cgroup *mem;
378 	struct mem_cgroup_per_zone *mz;
379 
380 	if (mem_cgroup_disabled())
381 		return;
382 	pc = lookup_page_cgroup(page);
383 	/* can happen while we handle swapcache. */
384 	if (list_empty(&pc->lru) || !pc->mem_cgroup)
385 		return;
386 	/*
387 	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
388 	 * removed from global LRU.
389 	 */
390 	mz = page_cgroup_zoneinfo(pc);
391 	mem = pc->mem_cgroup;
392 	MEM_CGROUP_ZSTAT(mz, lru) -= 1;
393 	list_del_init(&pc->lru);
394 	return;
395 }
396 
397 void mem_cgroup_del_lru(struct page *page)
398 {
399 	mem_cgroup_del_lru_list(page, page_lru(page));
400 }
401 
402 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
403 {
404 	struct mem_cgroup_per_zone *mz;
405 	struct page_cgroup *pc;
406 
407 	if (mem_cgroup_disabled())
408 		return;
409 
410 	pc = lookup_page_cgroup(page);
411 	/*
412 	 * Used bit is set without atomic ops but after smp_wmb().
413 	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
414 	 */
415 	smp_rmb();
416 	/* unused page is not rotated. */
417 	if (!PageCgroupUsed(pc))
418 		return;
419 	mz = page_cgroup_zoneinfo(pc);
420 	list_move(&pc->lru, &mz->lists[lru]);
421 }
422 
423 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
424 {
425 	struct page_cgroup *pc;
426 	struct mem_cgroup_per_zone *mz;
427 
428 	if (mem_cgroup_disabled())
429 		return;
430 	pc = lookup_page_cgroup(page);
431 	/*
432 	 * Used bit is set without atomic ops but after smp_wmb().
433 	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
434 	 */
435 	smp_rmb();
436 	if (!PageCgroupUsed(pc))
437 		return;
438 
439 	mz = page_cgroup_zoneinfo(pc);
440 	MEM_CGROUP_ZSTAT(mz, lru) += 1;
441 	list_add(&pc->lru, &mz->lists[lru]);
442 }
443 
444 /*
445  * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
446  * lru because the page may.be reused after it's fully uncharged (because of
447  * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
448  * it again. This function is only used to charge SwapCache. It's done under
449  * lock_page and expected that zone->lru_lock is never held.
450  */
451 static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
452 {
453 	unsigned long flags;
454 	struct zone *zone = page_zone(page);
455 	struct page_cgroup *pc = lookup_page_cgroup(page);
456 
457 	spin_lock_irqsave(&zone->lru_lock, flags);
458 	/*
459 	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
460 	 * is guarded by lock_page() because the page is SwapCache.
461 	 */
462 	if (!PageCgroupUsed(pc))
463 		mem_cgroup_del_lru_list(page, page_lru(page));
464 	spin_unlock_irqrestore(&zone->lru_lock, flags);
465 }
466 
467 static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
468 {
469 	unsigned long flags;
470 	struct zone *zone = page_zone(page);
471 	struct page_cgroup *pc = lookup_page_cgroup(page);
472 
473 	spin_lock_irqsave(&zone->lru_lock, flags);
474 	/* link when the page is linked to LRU but page_cgroup isn't */
475 	if (PageLRU(page) && list_empty(&pc->lru))
476 		mem_cgroup_add_lru_list(page, page_lru(page));
477 	spin_unlock_irqrestore(&zone->lru_lock, flags);
478 }
479 
480 
481 void mem_cgroup_move_lists(struct page *page,
482 			   enum lru_list from, enum lru_list to)
483 {
484 	if (mem_cgroup_disabled())
485 		return;
486 	mem_cgroup_del_lru_list(page, from);
487 	mem_cgroup_add_lru_list(page, to);
488 }
489 
490 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
491 {
492 	int ret;
493 	struct mem_cgroup *curr = NULL;
494 
495 	task_lock(task);
496 	rcu_read_lock();
497 	curr = try_get_mem_cgroup_from_mm(task->mm);
498 	rcu_read_unlock();
499 	task_unlock(task);
500 	if (!curr)
501 		return 0;
502 	if (curr->use_hierarchy)
503 		ret = css_is_ancestor(&curr->css, &mem->css);
504 	else
505 		ret = (curr == mem);
506 	css_put(&curr->css);
507 	return ret;
508 }
509 
510 /*
511  * prev_priority control...this will be used in memory reclaim path.
512  */
513 int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
514 {
515 	int prev_priority;
516 
517 	spin_lock(&mem->reclaim_param_lock);
518 	prev_priority = mem->prev_priority;
519 	spin_unlock(&mem->reclaim_param_lock);
520 
521 	return prev_priority;
522 }
523 
524 void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
525 {
526 	spin_lock(&mem->reclaim_param_lock);
527 	if (priority < mem->prev_priority)
528 		mem->prev_priority = priority;
529 	spin_unlock(&mem->reclaim_param_lock);
530 }
531 
532 void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
533 {
534 	spin_lock(&mem->reclaim_param_lock);
535 	mem->prev_priority = priority;
536 	spin_unlock(&mem->reclaim_param_lock);
537 }
538 
539 static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
540 {
541 	unsigned long active;
542 	unsigned long inactive;
543 	unsigned long gb;
544 	unsigned long inactive_ratio;
545 
546 	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
547 	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
548 
549 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
550 	if (gb)
551 		inactive_ratio = int_sqrt(10 * gb);
552 	else
553 		inactive_ratio = 1;
554 
555 	if (present_pages) {
556 		present_pages[0] = inactive;
557 		present_pages[1] = active;
558 	}
559 
560 	return inactive_ratio;
561 }
562 
563 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
564 {
565 	unsigned long active;
566 	unsigned long inactive;
567 	unsigned long present_pages[2];
568 	unsigned long inactive_ratio;
569 
570 	inactive_ratio = calc_inactive_ratio(memcg, present_pages);
571 
572 	inactive = present_pages[0];
573 	active = present_pages[1];
574 
575 	if (inactive * inactive_ratio < active)
576 		return 1;
577 
578 	return 0;
579 }
580 
581 unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
582 				       struct zone *zone,
583 				       enum lru_list lru)
584 {
585 	int nid = zone->zone_pgdat->node_id;
586 	int zid = zone_idx(zone);
587 	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
588 
589 	return MEM_CGROUP_ZSTAT(mz, lru);
590 }
591 
592 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
593 						      struct zone *zone)
594 {
595 	int nid = zone->zone_pgdat->node_id;
596 	int zid = zone_idx(zone);
597 	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
598 
599 	return &mz->reclaim_stat;
600 }
601 
602 struct zone_reclaim_stat *
603 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
604 {
605 	struct page_cgroup *pc;
606 	struct mem_cgroup_per_zone *mz;
607 
608 	if (mem_cgroup_disabled())
609 		return NULL;
610 
611 	pc = lookup_page_cgroup(page);
612 	/*
613 	 * Used bit is set without atomic ops but after smp_wmb().
614 	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
615 	 */
616 	smp_rmb();
617 	if (!PageCgroupUsed(pc))
618 		return NULL;
619 
620 	mz = page_cgroup_zoneinfo(pc);
621 	if (!mz)
622 		return NULL;
623 
624 	return &mz->reclaim_stat;
625 }
626 
627 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
628 					struct list_head *dst,
629 					unsigned long *scanned, int order,
630 					int mode, struct zone *z,
631 					struct mem_cgroup *mem_cont,
632 					int active, int file)
633 {
634 	unsigned long nr_taken = 0;
635 	struct page *page;
636 	unsigned long scan;
637 	LIST_HEAD(pc_list);
638 	struct list_head *src;
639 	struct page_cgroup *pc, *tmp;
640 	int nid = z->zone_pgdat->node_id;
641 	int zid = zone_idx(z);
642 	struct mem_cgroup_per_zone *mz;
643 	int lru = LRU_FILE * !!file + !!active;
644 
645 	BUG_ON(!mem_cont);
646 	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
647 	src = &mz->lists[lru];
648 
649 	scan = 0;
650 	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
651 		if (scan >= nr_to_scan)
652 			break;
653 
654 		page = pc->page;
655 		if (unlikely(!PageCgroupUsed(pc)))
656 			continue;
657 		if (unlikely(!PageLRU(page)))
658 			continue;
659 
660 		scan++;
661 		if (__isolate_lru_page(page, mode, file) == 0) {
662 			list_move(&page->lru, dst);
663 			nr_taken++;
664 		}
665 	}
666 
667 	*scanned = scan;
668 	return nr_taken;
669 }
670 
671 #define mem_cgroup_from_res_counter(counter, member)	\
672 	container_of(counter, struct mem_cgroup, member)
673 
674 static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
675 {
676 	if (do_swap_account) {
677 		if (res_counter_check_under_limit(&mem->res) &&
678 			res_counter_check_under_limit(&mem->memsw))
679 			return true;
680 	} else
681 		if (res_counter_check_under_limit(&mem->res))
682 			return true;
683 	return false;
684 }
685 
686 static unsigned int get_swappiness(struct mem_cgroup *memcg)
687 {
688 	struct cgroup *cgrp = memcg->css.cgroup;
689 	unsigned int swappiness;
690 
691 	/* root ? */
692 	if (cgrp->parent == NULL)
693 		return vm_swappiness;
694 
695 	spin_lock(&memcg->reclaim_param_lock);
696 	swappiness = memcg->swappiness;
697 	spin_unlock(&memcg->reclaim_param_lock);
698 
699 	return swappiness;
700 }
701 
702 static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data)
703 {
704 	int *val = data;
705 	(*val)++;
706 	return 0;
707 }
708 
709 /**
710  * mem_cgroup_print_mem_info: Called from OOM with tasklist_lock held in read mode.
711  * @memcg: The memory cgroup that went over limit
712  * @p: Task that is going to be killed
713  *
714  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
715  * enabled
716  */
717 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
718 {
719 	struct cgroup *task_cgrp;
720 	struct cgroup *mem_cgrp;
721 	/*
722 	 * Need a buffer in BSS, can't rely on allocations. The code relies
723 	 * on the assumption that OOM is serialized for memory controller.
724 	 * If this assumption is broken, revisit this code.
725 	 */
726 	static char memcg_name[PATH_MAX];
727 	int ret;
728 
729 	if (!memcg)
730 		return;
731 
732 
733 	rcu_read_lock();
734 
735 	mem_cgrp = memcg->css.cgroup;
736 	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
737 
738 	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
739 	if (ret < 0) {
740 		/*
741 		 * Unfortunately, we are unable to convert to a useful name
742 		 * But we'll still print out the usage information
743 		 */
744 		rcu_read_unlock();
745 		goto done;
746 	}
747 	rcu_read_unlock();
748 
749 	printk(KERN_INFO "Task in %s killed", memcg_name);
750 
751 	rcu_read_lock();
752 	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
753 	if (ret < 0) {
754 		rcu_read_unlock();
755 		goto done;
756 	}
757 	rcu_read_unlock();
758 
759 	/*
760 	 * Continues from above, so we don't need an KERN_ level
761 	 */
762 	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
763 done:
764 
765 	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
766 		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
767 		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
768 		res_counter_read_u64(&memcg->res, RES_FAILCNT));
769 	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
770 		"failcnt %llu\n",
771 		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
772 		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
773 		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
774 }
775 
776 /*
777  * This function returns the number of memcg under hierarchy tree. Returns
778  * 1(self count) if no children.
779  */
780 static int mem_cgroup_count_children(struct mem_cgroup *mem)
781 {
782 	int num = 0;
783  	mem_cgroup_walk_tree(mem, &num, mem_cgroup_count_children_cb);
784 	return num;
785 }
786 
787 /*
788  * Visit the first child (need not be the first child as per the ordering
789  * of the cgroup list, since we track last_scanned_child) of @mem and use
790  * that to reclaim free pages from.
791  */
792 static struct mem_cgroup *
793 mem_cgroup_select_victim(struct mem_cgroup *root_mem)
794 {
795 	struct mem_cgroup *ret = NULL;
796 	struct cgroup_subsys_state *css;
797 	int nextid, found;
798 
799 	if (!root_mem->use_hierarchy) {
800 		css_get(&root_mem->css);
801 		ret = root_mem;
802 	}
803 
804 	while (!ret) {
805 		rcu_read_lock();
806 		nextid = root_mem->last_scanned_child + 1;
807 		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
808 				   &found);
809 		if (css && css_tryget(css))
810 			ret = container_of(css, struct mem_cgroup, css);
811 
812 		rcu_read_unlock();
813 		/* Updates scanning parameter */
814 		spin_lock(&root_mem->reclaim_param_lock);
815 		if (!css) {
816 			/* this means start scan from ID:1 */
817 			root_mem->last_scanned_child = 0;
818 		} else
819 			root_mem->last_scanned_child = found;
820 		spin_unlock(&root_mem->reclaim_param_lock);
821 	}
822 
823 	return ret;
824 }
825 
826 /*
827  * Scan the hierarchy if needed to reclaim memory. We remember the last child
828  * we reclaimed from, so that we don't end up penalizing one child extensively
829  * based on its position in the children list.
830  *
831  * root_mem is the original ancestor that we've been reclaim from.
832  *
833  * We give up and return to the caller when we visit root_mem twice.
834  * (other groups can be removed while we're walking....)
835  *
836  * If shrink==true, for avoiding to free too much, this returns immedieately.
837  */
838 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
839 				   gfp_t gfp_mask, bool noswap, bool shrink)
840 {
841 	struct mem_cgroup *victim;
842 	int ret, total = 0;
843 	int loop = 0;
844 
845 	while (loop < 2) {
846 		victim = mem_cgroup_select_victim(root_mem);
847 		if (victim == root_mem)
848 			loop++;
849 		if (!mem_cgroup_local_usage(&victim->stat)) {
850 			/* this cgroup's local usage == 0 */
851 			css_put(&victim->css);
852 			continue;
853 		}
854 		/* we use swappiness of local cgroup */
855 		ret = try_to_free_mem_cgroup_pages(victim, gfp_mask, noswap,
856 						   get_swappiness(victim));
857 		css_put(&victim->css);
858 		/*
859 		 * At shrinking usage, we can't check we should stop here or
860 		 * reclaim more. It's depends on callers. last_scanned_child
861 		 * will work enough for keeping fairness under tree.
862 		 */
863 		if (shrink)
864 			return ret;
865 		total += ret;
866 		if (mem_cgroup_check_under_limit(root_mem))
867 			return 1 + total;
868 	}
869 	return total;
870 }
871 
872 bool mem_cgroup_oom_called(struct task_struct *task)
873 {
874 	bool ret = false;
875 	struct mem_cgroup *mem;
876 	struct mm_struct *mm;
877 
878 	rcu_read_lock();
879 	mm = task->mm;
880 	if (!mm)
881 		mm = &init_mm;
882 	mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
883 	if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10))
884 		ret = true;
885 	rcu_read_unlock();
886 	return ret;
887 }
888 
889 static int record_last_oom_cb(struct mem_cgroup *mem, void *data)
890 {
891 	mem->last_oom_jiffies = jiffies;
892 	return 0;
893 }
894 
895 static void record_last_oom(struct mem_cgroup *mem)
896 {
897 	mem_cgroup_walk_tree(mem, NULL, record_last_oom_cb);
898 }
899 
900 
901 /*
902  * Unlike exported interface, "oom" parameter is added. if oom==true,
903  * oom-killer can be invoked.
904  */
905 static int __mem_cgroup_try_charge(struct mm_struct *mm,
906 			gfp_t gfp_mask, struct mem_cgroup **memcg,
907 			bool oom)
908 {
909 	struct mem_cgroup *mem, *mem_over_limit;
910 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
911 	struct res_counter *fail_res;
912 
913 	if (unlikely(test_thread_flag(TIF_MEMDIE))) {
914 		/* Don't account this! */
915 		*memcg = NULL;
916 		return 0;
917 	}
918 
919 	/*
920 	 * We always charge the cgroup the mm_struct belongs to.
921 	 * The mm_struct's mem_cgroup changes on task migration if the
922 	 * thread group leader migrates. It's possible that mm is not
923 	 * set, if so charge the init_mm (happens for pagecache usage).
924 	 */
925 	mem = *memcg;
926 	if (likely(!mem)) {
927 		mem = try_get_mem_cgroup_from_mm(mm);
928 		*memcg = mem;
929 	} else {
930 		css_get(&mem->css);
931 	}
932 	if (unlikely(!mem))
933 		return 0;
934 
935 	VM_BUG_ON(!mem || mem_cgroup_is_obsolete(mem));
936 
937 	while (1) {
938 		int ret;
939 		bool noswap = false;
940 
941 		ret = res_counter_charge(&mem->res, PAGE_SIZE, &fail_res);
942 		if (likely(!ret)) {
943 			if (!do_swap_account)
944 				break;
945 			ret = res_counter_charge(&mem->memsw, PAGE_SIZE,
946 							&fail_res);
947 			if (likely(!ret))
948 				break;
949 			/* mem+swap counter fails */
950 			res_counter_uncharge(&mem->res, PAGE_SIZE);
951 			noswap = true;
952 			mem_over_limit = mem_cgroup_from_res_counter(fail_res,
953 									memsw);
954 		} else
955 			/* mem counter fails */
956 			mem_over_limit = mem_cgroup_from_res_counter(fail_res,
957 									res);
958 
959 		if (!(gfp_mask & __GFP_WAIT))
960 			goto nomem;
961 
962 		ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, gfp_mask,
963 							noswap, false);
964 		if (ret)
965 			continue;
966 
967 		/*
968 		 * try_to_free_mem_cgroup_pages() might not give us a full
969 		 * picture of reclaim. Some pages are reclaimed and might be
970 		 * moved to swap cache or just unmapped from the cgroup.
971 		 * Check the limit again to see if the reclaim reduced the
972 		 * current usage of the cgroup before giving up
973 		 *
974 		 */
975 		if (mem_cgroup_check_under_limit(mem_over_limit))
976 			continue;
977 
978 		if (!nr_retries--) {
979 			if (oom) {
980 				mutex_lock(&memcg_tasklist);
981 				mem_cgroup_out_of_memory(mem_over_limit, gfp_mask);
982 				mutex_unlock(&memcg_tasklist);
983 				record_last_oom(mem_over_limit);
984 			}
985 			goto nomem;
986 		}
987 	}
988 	return 0;
989 nomem:
990 	css_put(&mem->css);
991 	return -ENOMEM;
992 }
993 
994 
995 /*
996  * A helper function to get mem_cgroup from ID. must be called under
997  * rcu_read_lock(). The caller must check css_is_removed() or some if
998  * it's concern. (dropping refcnt from swap can be called against removed
999  * memcg.)
1000  */
1001 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
1002 {
1003 	struct cgroup_subsys_state *css;
1004 
1005 	/* ID 0 is unused ID */
1006 	if (!id)
1007 		return NULL;
1008 	css = css_lookup(&mem_cgroup_subsys, id);
1009 	if (!css)
1010 		return NULL;
1011 	return container_of(css, struct mem_cgroup, css);
1012 }
1013 
1014 static struct mem_cgroup *try_get_mem_cgroup_from_swapcache(struct page *page)
1015 {
1016 	struct mem_cgroup *mem;
1017 	struct page_cgroup *pc;
1018 	unsigned short id;
1019 	swp_entry_t ent;
1020 
1021 	VM_BUG_ON(!PageLocked(page));
1022 
1023 	if (!PageSwapCache(page))
1024 		return NULL;
1025 
1026 	pc = lookup_page_cgroup(page);
1027 	/*
1028 	 * Used bit of swapcache is solid under page lock.
1029 	 */
1030 	if (PageCgroupUsed(pc)) {
1031 		mem = pc->mem_cgroup;
1032 		if (mem && !css_tryget(&mem->css))
1033 			mem = NULL;
1034 	} else {
1035 		ent.val = page_private(page);
1036 		id = lookup_swap_cgroup(ent);
1037 		rcu_read_lock();
1038 		mem = mem_cgroup_lookup(id);
1039 		if (mem && !css_tryget(&mem->css))
1040 			mem = NULL;
1041 		rcu_read_unlock();
1042 	}
1043 	return mem;
1044 }
1045 
1046 /*
1047  * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
1048  * USED state. If already USED, uncharge and return.
1049  */
1050 
1051 static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
1052 				     struct page_cgroup *pc,
1053 				     enum charge_type ctype)
1054 {
1055 	/* try_charge() can return NULL to *memcg, taking care of it. */
1056 	if (!mem)
1057 		return;
1058 
1059 	lock_page_cgroup(pc);
1060 	if (unlikely(PageCgroupUsed(pc))) {
1061 		unlock_page_cgroup(pc);
1062 		res_counter_uncharge(&mem->res, PAGE_SIZE);
1063 		if (do_swap_account)
1064 			res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1065 		css_put(&mem->css);
1066 		return;
1067 	}
1068 	pc->mem_cgroup = mem;
1069 	smp_wmb();
1070 	pc->flags = pcg_default_flags[ctype];
1071 
1072 	mem_cgroup_charge_statistics(mem, pc, true);
1073 
1074 	unlock_page_cgroup(pc);
1075 }
1076 
1077 /**
1078  * mem_cgroup_move_account - move account of the page
1079  * @pc:	page_cgroup of the page.
1080  * @from: mem_cgroup which the page is moved from.
1081  * @to:	mem_cgroup which the page is moved to. @from != @to.
1082  *
1083  * The caller must confirm following.
1084  * - page is not on LRU (isolate_page() is useful.)
1085  *
1086  * returns 0 at success,
1087  * returns -EBUSY when lock is busy or "pc" is unstable.
1088  *
1089  * This function does "uncharge" from old cgroup but doesn't do "charge" to
1090  * new cgroup. It should be done by a caller.
1091  */
1092 
1093 static int mem_cgroup_move_account(struct page_cgroup *pc,
1094 	struct mem_cgroup *from, struct mem_cgroup *to)
1095 {
1096 	struct mem_cgroup_per_zone *from_mz, *to_mz;
1097 	int nid, zid;
1098 	int ret = -EBUSY;
1099 
1100 	VM_BUG_ON(from == to);
1101 	VM_BUG_ON(PageLRU(pc->page));
1102 
1103 	nid = page_cgroup_nid(pc);
1104 	zid = page_cgroup_zid(pc);
1105 	from_mz =  mem_cgroup_zoneinfo(from, nid, zid);
1106 	to_mz =  mem_cgroup_zoneinfo(to, nid, zid);
1107 
1108 	if (!trylock_page_cgroup(pc))
1109 		return ret;
1110 
1111 	if (!PageCgroupUsed(pc))
1112 		goto out;
1113 
1114 	if (pc->mem_cgroup != from)
1115 		goto out;
1116 
1117 	res_counter_uncharge(&from->res, PAGE_SIZE);
1118 	mem_cgroup_charge_statistics(from, pc, false);
1119 	if (do_swap_account)
1120 		res_counter_uncharge(&from->memsw, PAGE_SIZE);
1121 	css_put(&from->css);
1122 
1123 	css_get(&to->css);
1124 	pc->mem_cgroup = to;
1125 	mem_cgroup_charge_statistics(to, pc, true);
1126 	ret = 0;
1127 out:
1128 	unlock_page_cgroup(pc);
1129 	return ret;
1130 }
1131 
1132 /*
1133  * move charges to its parent.
1134  */
1135 
1136 static int mem_cgroup_move_parent(struct page_cgroup *pc,
1137 				  struct mem_cgroup *child,
1138 				  gfp_t gfp_mask)
1139 {
1140 	struct page *page = pc->page;
1141 	struct cgroup *cg = child->css.cgroup;
1142 	struct cgroup *pcg = cg->parent;
1143 	struct mem_cgroup *parent;
1144 	int ret;
1145 
1146 	/* Is ROOT ? */
1147 	if (!pcg)
1148 		return -EINVAL;
1149 
1150 
1151 	parent = mem_cgroup_from_cont(pcg);
1152 
1153 
1154 	ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
1155 	if (ret || !parent)
1156 		return ret;
1157 
1158 	if (!get_page_unless_zero(page)) {
1159 		ret = -EBUSY;
1160 		goto uncharge;
1161 	}
1162 
1163 	ret = isolate_lru_page(page);
1164 
1165 	if (ret)
1166 		goto cancel;
1167 
1168 	ret = mem_cgroup_move_account(pc, child, parent);
1169 
1170 	putback_lru_page(page);
1171 	if (!ret) {
1172 		put_page(page);
1173 		/* drop extra refcnt by try_charge() */
1174 		css_put(&parent->css);
1175 		return 0;
1176 	}
1177 
1178 cancel:
1179 	put_page(page);
1180 uncharge:
1181 	/* drop extra refcnt by try_charge() */
1182 	css_put(&parent->css);
1183 	/* uncharge if move fails */
1184 	res_counter_uncharge(&parent->res, PAGE_SIZE);
1185 	if (do_swap_account)
1186 		res_counter_uncharge(&parent->memsw, PAGE_SIZE);
1187 	return ret;
1188 }
1189 
1190 /*
1191  * Charge the memory controller for page usage.
1192  * Return
1193  * 0 if the charge was successful
1194  * < 0 if the cgroup is over its limit
1195  */
1196 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
1197 				gfp_t gfp_mask, enum charge_type ctype,
1198 				struct mem_cgroup *memcg)
1199 {
1200 	struct mem_cgroup *mem;
1201 	struct page_cgroup *pc;
1202 	int ret;
1203 
1204 	pc = lookup_page_cgroup(page);
1205 	/* can happen at boot */
1206 	if (unlikely(!pc))
1207 		return 0;
1208 	prefetchw(pc);
1209 
1210 	mem = memcg;
1211 	ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
1212 	if (ret || !mem)
1213 		return ret;
1214 
1215 	__mem_cgroup_commit_charge(mem, pc, ctype);
1216 	return 0;
1217 }
1218 
1219 int mem_cgroup_newpage_charge(struct page *page,
1220 			      struct mm_struct *mm, gfp_t gfp_mask)
1221 {
1222 	if (mem_cgroup_disabled())
1223 		return 0;
1224 	if (PageCompound(page))
1225 		return 0;
1226 	/*
1227 	 * If already mapped, we don't have to account.
1228 	 * If page cache, page->mapping has address_space.
1229 	 * But page->mapping may have out-of-use anon_vma pointer,
1230 	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
1231 	 * is NULL.
1232   	 */
1233 	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
1234 		return 0;
1235 	if (unlikely(!mm))
1236 		mm = &init_mm;
1237 	return mem_cgroup_charge_common(page, mm, gfp_mask,
1238 				MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
1239 }
1240 
1241 static void
1242 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
1243 					enum charge_type ctype);
1244 
1245 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
1246 				gfp_t gfp_mask)
1247 {
1248 	struct mem_cgroup *mem = NULL;
1249 	int ret;
1250 
1251 	if (mem_cgroup_disabled())
1252 		return 0;
1253 	if (PageCompound(page))
1254 		return 0;
1255 	/*
1256 	 * Corner case handling. This is called from add_to_page_cache()
1257 	 * in usual. But some FS (shmem) precharges this page before calling it
1258 	 * and call add_to_page_cache() with GFP_NOWAIT.
1259 	 *
1260 	 * For GFP_NOWAIT case, the page may be pre-charged before calling
1261 	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
1262 	 * charge twice. (It works but has to pay a bit larger cost.)
1263 	 * And when the page is SwapCache, it should take swap information
1264 	 * into account. This is under lock_page() now.
1265 	 */
1266 	if (!(gfp_mask & __GFP_WAIT)) {
1267 		struct page_cgroup *pc;
1268 
1269 
1270 		pc = lookup_page_cgroup(page);
1271 		if (!pc)
1272 			return 0;
1273 		lock_page_cgroup(pc);
1274 		if (PageCgroupUsed(pc)) {
1275 			unlock_page_cgroup(pc);
1276 			return 0;
1277 		}
1278 		unlock_page_cgroup(pc);
1279 	}
1280 
1281 	if (unlikely(!mm && !mem))
1282 		mm = &init_mm;
1283 
1284 	if (page_is_file_cache(page))
1285 		return mem_cgroup_charge_common(page, mm, gfp_mask,
1286 				MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
1287 
1288 	/* shmem */
1289 	if (PageSwapCache(page)) {
1290 		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
1291 		if (!ret)
1292 			__mem_cgroup_commit_charge_swapin(page, mem,
1293 					MEM_CGROUP_CHARGE_TYPE_SHMEM);
1294 	} else
1295 		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
1296 					MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
1297 
1298 	return ret;
1299 }
1300 
1301 /*
1302  * While swap-in, try_charge -> commit or cancel, the page is locked.
1303  * And when try_charge() successfully returns, one refcnt to memcg without
1304  * struct page_cgroup is aquired. This refcnt will be cumsumed by
1305  * "commit()" or removed by "cancel()"
1306  */
1307 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
1308 				 struct page *page,
1309 				 gfp_t mask, struct mem_cgroup **ptr)
1310 {
1311 	struct mem_cgroup *mem;
1312 	int ret;
1313 
1314 	if (mem_cgroup_disabled())
1315 		return 0;
1316 
1317 	if (!do_swap_account)
1318 		goto charge_cur_mm;
1319 	/*
1320 	 * A racing thread's fault, or swapoff, may have already updated
1321 	 * the pte, and even removed page from swap cache: return success
1322 	 * to go on to do_swap_page()'s pte_same() test, which should fail.
1323 	 */
1324 	if (!PageSwapCache(page))
1325 		return 0;
1326 	mem = try_get_mem_cgroup_from_swapcache(page);
1327 	if (!mem)
1328 		goto charge_cur_mm;
1329 	*ptr = mem;
1330 	ret = __mem_cgroup_try_charge(NULL, mask, ptr, true);
1331 	/* drop extra refcnt from tryget */
1332 	css_put(&mem->css);
1333 	return ret;
1334 charge_cur_mm:
1335 	if (unlikely(!mm))
1336 		mm = &init_mm;
1337 	return __mem_cgroup_try_charge(mm, mask, ptr, true);
1338 }
1339 
1340 static void
1341 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
1342 					enum charge_type ctype)
1343 {
1344 	struct page_cgroup *pc;
1345 
1346 	if (mem_cgroup_disabled())
1347 		return;
1348 	if (!ptr)
1349 		return;
1350 	pc = lookup_page_cgroup(page);
1351 	mem_cgroup_lru_del_before_commit_swapcache(page);
1352 	__mem_cgroup_commit_charge(ptr, pc, ctype);
1353 	mem_cgroup_lru_add_after_commit_swapcache(page);
1354 	/*
1355 	 * Now swap is on-memory. This means this page may be
1356 	 * counted both as mem and swap....double count.
1357 	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
1358 	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
1359 	 * may call delete_from_swap_cache() before reach here.
1360 	 */
1361 	if (do_swap_account && PageSwapCache(page)) {
1362 		swp_entry_t ent = {.val = page_private(page)};
1363 		unsigned short id;
1364 		struct mem_cgroup *memcg;
1365 
1366 		id = swap_cgroup_record(ent, 0);
1367 		rcu_read_lock();
1368 		memcg = mem_cgroup_lookup(id);
1369 		if (memcg) {
1370 			/*
1371 			 * This recorded memcg can be obsolete one. So, avoid
1372 			 * calling css_tryget
1373 			 */
1374 			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1375 			mem_cgroup_put(memcg);
1376 		}
1377 		rcu_read_unlock();
1378 	}
1379 	/* add this page(page_cgroup) to the LRU we want. */
1380 
1381 }
1382 
1383 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
1384 {
1385 	__mem_cgroup_commit_charge_swapin(page, ptr,
1386 					MEM_CGROUP_CHARGE_TYPE_MAPPED);
1387 }
1388 
1389 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
1390 {
1391 	if (mem_cgroup_disabled())
1392 		return;
1393 	if (!mem)
1394 		return;
1395 	res_counter_uncharge(&mem->res, PAGE_SIZE);
1396 	if (do_swap_account)
1397 		res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1398 	css_put(&mem->css);
1399 }
1400 
1401 
1402 /*
1403  * uncharge if !page_mapped(page)
1404  */
1405 static struct mem_cgroup *
1406 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
1407 {
1408 	struct page_cgroup *pc;
1409 	struct mem_cgroup *mem = NULL;
1410 	struct mem_cgroup_per_zone *mz;
1411 
1412 	if (mem_cgroup_disabled())
1413 		return NULL;
1414 
1415 	if (PageSwapCache(page))
1416 		return NULL;
1417 
1418 	/*
1419 	 * Check if our page_cgroup is valid
1420 	 */
1421 	pc = lookup_page_cgroup(page);
1422 	if (unlikely(!pc || !PageCgroupUsed(pc)))
1423 		return NULL;
1424 
1425 	lock_page_cgroup(pc);
1426 
1427 	mem = pc->mem_cgroup;
1428 
1429 	if (!PageCgroupUsed(pc))
1430 		goto unlock_out;
1431 
1432 	switch (ctype) {
1433 	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
1434 		if (page_mapped(page))
1435 			goto unlock_out;
1436 		break;
1437 	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
1438 		if (!PageAnon(page)) {	/* Shared memory */
1439 			if (page->mapping && !page_is_file_cache(page))
1440 				goto unlock_out;
1441 		} else if (page_mapped(page)) /* Anon */
1442 				goto unlock_out;
1443 		break;
1444 	default:
1445 		break;
1446 	}
1447 
1448 	res_counter_uncharge(&mem->res, PAGE_SIZE);
1449 	if (do_swap_account && (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT))
1450 		res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1451 	mem_cgroup_charge_statistics(mem, pc, false);
1452 
1453 	ClearPageCgroupUsed(pc);
1454 	/*
1455 	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
1456 	 * freed from LRU. This is safe because uncharged page is expected not
1457 	 * to be reused (freed soon). Exception is SwapCache, it's handled by
1458 	 * special functions.
1459 	 */
1460 
1461 	mz = page_cgroup_zoneinfo(pc);
1462 	unlock_page_cgroup(pc);
1463 
1464 	/* at swapout, this memcg will be accessed to record to swap */
1465 	if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
1466 		css_put(&mem->css);
1467 
1468 	return mem;
1469 
1470 unlock_out:
1471 	unlock_page_cgroup(pc);
1472 	return NULL;
1473 }
1474 
1475 void mem_cgroup_uncharge_page(struct page *page)
1476 {
1477 	/* early check. */
1478 	if (page_mapped(page))
1479 		return;
1480 	if (page->mapping && !PageAnon(page))
1481 		return;
1482 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
1483 }
1484 
1485 void mem_cgroup_uncharge_cache_page(struct page *page)
1486 {
1487 	VM_BUG_ON(page_mapped(page));
1488 	VM_BUG_ON(page->mapping);
1489 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
1490 }
1491 
1492 /*
1493  * called from __delete_from_swap_cache() and drop "page" account.
1494  * memcg information is recorded to swap_cgroup of "ent"
1495  */
1496 void mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent)
1497 {
1498 	struct mem_cgroup *memcg;
1499 
1500 	memcg = __mem_cgroup_uncharge_common(page,
1501 					MEM_CGROUP_CHARGE_TYPE_SWAPOUT);
1502 	/* record memcg information */
1503 	if (do_swap_account && memcg) {
1504 		swap_cgroup_record(ent, css_id(&memcg->css));
1505 		mem_cgroup_get(memcg);
1506 	}
1507 	if (memcg)
1508 		css_put(&memcg->css);
1509 }
1510 
1511 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
1512 /*
1513  * called from swap_entry_free(). remove record in swap_cgroup and
1514  * uncharge "memsw" account.
1515  */
1516 void mem_cgroup_uncharge_swap(swp_entry_t ent)
1517 {
1518 	struct mem_cgroup *memcg;
1519 	unsigned short id;
1520 
1521 	if (!do_swap_account)
1522 		return;
1523 
1524 	id = swap_cgroup_record(ent, 0);
1525 	rcu_read_lock();
1526 	memcg = mem_cgroup_lookup(id);
1527 	if (memcg) {
1528 		/*
1529 		 * We uncharge this because swap is freed.
1530 		 * This memcg can be obsolete one. We avoid calling css_tryget
1531 		 */
1532 		res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1533 		mem_cgroup_put(memcg);
1534 	}
1535 	rcu_read_unlock();
1536 }
1537 #endif
1538 
1539 /*
1540  * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
1541  * page belongs to.
1542  */
1543 int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
1544 {
1545 	struct page_cgroup *pc;
1546 	struct mem_cgroup *mem = NULL;
1547 	int ret = 0;
1548 
1549 	if (mem_cgroup_disabled())
1550 		return 0;
1551 
1552 	pc = lookup_page_cgroup(page);
1553 	lock_page_cgroup(pc);
1554 	if (PageCgroupUsed(pc)) {
1555 		mem = pc->mem_cgroup;
1556 		css_get(&mem->css);
1557 	}
1558 	unlock_page_cgroup(pc);
1559 
1560 	if (mem) {
1561 		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false);
1562 		css_put(&mem->css);
1563 	}
1564 	*ptr = mem;
1565 	return ret;
1566 }
1567 
1568 /* remove redundant charge if migration failed*/
1569 void mem_cgroup_end_migration(struct mem_cgroup *mem,
1570 		struct page *oldpage, struct page *newpage)
1571 {
1572 	struct page *target, *unused;
1573 	struct page_cgroup *pc;
1574 	enum charge_type ctype;
1575 
1576 	if (!mem)
1577 		return;
1578 
1579 	/* at migration success, oldpage->mapping is NULL. */
1580 	if (oldpage->mapping) {
1581 		target = oldpage;
1582 		unused = NULL;
1583 	} else {
1584 		target = newpage;
1585 		unused = oldpage;
1586 	}
1587 
1588 	if (PageAnon(target))
1589 		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
1590 	else if (page_is_file_cache(target))
1591 		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
1592 	else
1593 		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
1594 
1595 	/* unused page is not on radix-tree now. */
1596 	if (unused)
1597 		__mem_cgroup_uncharge_common(unused, ctype);
1598 
1599 	pc = lookup_page_cgroup(target);
1600 	/*
1601 	 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
1602 	 * So, double-counting is effectively avoided.
1603 	 */
1604 	__mem_cgroup_commit_charge(mem, pc, ctype);
1605 
1606 	/*
1607 	 * Both of oldpage and newpage are still under lock_page().
1608 	 * Then, we don't have to care about race in radix-tree.
1609 	 * But we have to be careful that this page is unmapped or not.
1610 	 *
1611 	 * There is a case for !page_mapped(). At the start of
1612 	 * migration, oldpage was mapped. But now, it's zapped.
1613 	 * But we know *target* page is not freed/reused under us.
1614 	 * mem_cgroup_uncharge_page() does all necessary checks.
1615 	 */
1616 	if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
1617 		mem_cgroup_uncharge_page(target);
1618 }
1619 
1620 /*
1621  * A call to try to shrink memory usage under specified resource controller.
1622  * This is typically used for page reclaiming for shmem for reducing side
1623  * effect of page allocation from shmem, which is used by some mem_cgroup.
1624  */
1625 int mem_cgroup_shrink_usage(struct page *page,
1626 			    struct mm_struct *mm,
1627 			    gfp_t gfp_mask)
1628 {
1629 	struct mem_cgroup *mem = NULL;
1630 	int progress = 0;
1631 	int retry = MEM_CGROUP_RECLAIM_RETRIES;
1632 
1633 	if (mem_cgroup_disabled())
1634 		return 0;
1635 	if (page)
1636 		mem = try_get_mem_cgroup_from_swapcache(page);
1637 	if (!mem && mm)
1638 		mem = try_get_mem_cgroup_from_mm(mm);
1639 	if (unlikely(!mem))
1640 		return 0;
1641 
1642 	do {
1643 		progress = mem_cgroup_hierarchical_reclaim(mem,
1644 					gfp_mask, true, false);
1645 		progress += mem_cgroup_check_under_limit(mem);
1646 	} while (!progress && --retry);
1647 
1648 	css_put(&mem->css);
1649 	if (!retry)
1650 		return -ENOMEM;
1651 	return 0;
1652 }
1653 
1654 static DEFINE_MUTEX(set_limit_mutex);
1655 
1656 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
1657 				unsigned long long val)
1658 {
1659 	int retry_count;
1660 	int progress;
1661 	u64 memswlimit;
1662 	int ret = 0;
1663 	int children = mem_cgroup_count_children(memcg);
1664 	u64 curusage, oldusage;
1665 
1666 	/*
1667 	 * For keeping hierarchical_reclaim simple, how long we should retry
1668 	 * is depends on callers. We set our retry-count to be function
1669 	 * of # of children which we should visit in this loop.
1670 	 */
1671 	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
1672 
1673 	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
1674 
1675 	while (retry_count) {
1676 		if (signal_pending(current)) {
1677 			ret = -EINTR;
1678 			break;
1679 		}
1680 		/*
1681 		 * Rather than hide all in some function, I do this in
1682 		 * open coded manner. You see what this really does.
1683 		 * We have to guarantee mem->res.limit < mem->memsw.limit.
1684 		 */
1685 		mutex_lock(&set_limit_mutex);
1686 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1687 		if (memswlimit < val) {
1688 			ret = -EINVAL;
1689 			mutex_unlock(&set_limit_mutex);
1690 			break;
1691 		}
1692 		ret = res_counter_set_limit(&memcg->res, val);
1693 		mutex_unlock(&set_limit_mutex);
1694 
1695 		if (!ret)
1696 			break;
1697 
1698 		progress = mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL,
1699 						   false, true);
1700 		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
1701 		/* Usage is reduced ? */
1702   		if (curusage >= oldusage)
1703 			retry_count--;
1704 		else
1705 			oldusage = curusage;
1706 	}
1707 
1708 	return ret;
1709 }
1710 
1711 int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
1712 				unsigned long long val)
1713 {
1714 	int retry_count;
1715 	u64 memlimit, oldusage, curusage;
1716 	int children = mem_cgroup_count_children(memcg);
1717 	int ret = -EBUSY;
1718 
1719 	if (!do_swap_account)
1720 		return -EINVAL;
1721 	/* see mem_cgroup_resize_res_limit */
1722  	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
1723 	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
1724 	while (retry_count) {
1725 		if (signal_pending(current)) {
1726 			ret = -EINTR;
1727 			break;
1728 		}
1729 		/*
1730 		 * Rather than hide all in some function, I do this in
1731 		 * open coded manner. You see what this really does.
1732 		 * We have to guarantee mem->res.limit < mem->memsw.limit.
1733 		 */
1734 		mutex_lock(&set_limit_mutex);
1735 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1736 		if (memlimit > val) {
1737 			ret = -EINVAL;
1738 			mutex_unlock(&set_limit_mutex);
1739 			break;
1740 		}
1741 		ret = res_counter_set_limit(&memcg->memsw, val);
1742 		mutex_unlock(&set_limit_mutex);
1743 
1744 		if (!ret)
1745 			break;
1746 
1747 		mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL, true, true);
1748 		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
1749 		/* Usage is reduced ? */
1750 		if (curusage >= oldusage)
1751 			retry_count--;
1752 		else
1753 			oldusage = curusage;
1754 	}
1755 	return ret;
1756 }
1757 
1758 /*
1759  * This routine traverse page_cgroup in given list and drop them all.
1760  * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
1761  */
1762 static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
1763 				int node, int zid, enum lru_list lru)
1764 {
1765 	struct zone *zone;
1766 	struct mem_cgroup_per_zone *mz;
1767 	struct page_cgroup *pc, *busy;
1768 	unsigned long flags, loop;
1769 	struct list_head *list;
1770 	int ret = 0;
1771 
1772 	zone = &NODE_DATA(node)->node_zones[zid];
1773 	mz = mem_cgroup_zoneinfo(mem, node, zid);
1774 	list = &mz->lists[lru];
1775 
1776 	loop = MEM_CGROUP_ZSTAT(mz, lru);
1777 	/* give some margin against EBUSY etc...*/
1778 	loop += 256;
1779 	busy = NULL;
1780 	while (loop--) {
1781 		ret = 0;
1782 		spin_lock_irqsave(&zone->lru_lock, flags);
1783 		if (list_empty(list)) {
1784 			spin_unlock_irqrestore(&zone->lru_lock, flags);
1785 			break;
1786 		}
1787 		pc = list_entry(list->prev, struct page_cgroup, lru);
1788 		if (busy == pc) {
1789 			list_move(&pc->lru, list);
1790 			busy = 0;
1791 			spin_unlock_irqrestore(&zone->lru_lock, flags);
1792 			continue;
1793 		}
1794 		spin_unlock_irqrestore(&zone->lru_lock, flags);
1795 
1796 		ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
1797 		if (ret == -ENOMEM)
1798 			break;
1799 
1800 		if (ret == -EBUSY || ret == -EINVAL) {
1801 			/* found lock contention or "pc" is obsolete. */
1802 			busy = pc;
1803 			cond_resched();
1804 		} else
1805 			busy = NULL;
1806 	}
1807 
1808 	if (!ret && !list_empty(list))
1809 		return -EBUSY;
1810 	return ret;
1811 }
1812 
1813 /*
1814  * make mem_cgroup's charge to be 0 if there is no task.
1815  * This enables deleting this mem_cgroup.
1816  */
1817 static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
1818 {
1819 	int ret;
1820 	int node, zid, shrink;
1821 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1822 	struct cgroup *cgrp = mem->css.cgroup;
1823 
1824 	css_get(&mem->css);
1825 
1826 	shrink = 0;
1827 	/* should free all ? */
1828 	if (free_all)
1829 		goto try_to_free;
1830 move_account:
1831 	while (mem->res.usage > 0) {
1832 		ret = -EBUSY;
1833 		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
1834 			goto out;
1835 		ret = -EINTR;
1836 		if (signal_pending(current))
1837 			goto out;
1838 		/* This is for making all *used* pages to be on LRU. */
1839 		lru_add_drain_all();
1840 		ret = 0;
1841 		for_each_node_state(node, N_HIGH_MEMORY) {
1842 			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
1843 				enum lru_list l;
1844 				for_each_lru(l) {
1845 					ret = mem_cgroup_force_empty_list(mem,
1846 							node, zid, l);
1847 					if (ret)
1848 						break;
1849 				}
1850 			}
1851 			if (ret)
1852 				break;
1853 		}
1854 		/* it seems parent cgroup doesn't have enough mem */
1855 		if (ret == -ENOMEM)
1856 			goto try_to_free;
1857 		cond_resched();
1858 	}
1859 	ret = 0;
1860 out:
1861 	css_put(&mem->css);
1862 	return ret;
1863 
1864 try_to_free:
1865 	/* returns EBUSY if there is a task or if we come here twice. */
1866 	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
1867 		ret = -EBUSY;
1868 		goto out;
1869 	}
1870 	/* we call try-to-free pages for make this cgroup empty */
1871 	lru_add_drain_all();
1872 	/* try to free all pages in this cgroup */
1873 	shrink = 1;
1874 	while (nr_retries && mem->res.usage > 0) {
1875 		int progress;
1876 
1877 		if (signal_pending(current)) {
1878 			ret = -EINTR;
1879 			goto out;
1880 		}
1881 		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
1882 						false, get_swappiness(mem));
1883 		if (!progress) {
1884 			nr_retries--;
1885 			/* maybe some writeback is necessary */
1886 			congestion_wait(WRITE, HZ/10);
1887 		}
1888 
1889 	}
1890 	lru_add_drain();
1891 	/* try move_account...there may be some *locked* pages. */
1892 	if (mem->res.usage)
1893 		goto move_account;
1894 	ret = 0;
1895 	goto out;
1896 }
1897 
1898 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
1899 {
1900 	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
1901 }
1902 
1903 
1904 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
1905 {
1906 	return mem_cgroup_from_cont(cont)->use_hierarchy;
1907 }
1908 
1909 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
1910 					u64 val)
1911 {
1912 	int retval = 0;
1913 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1914 	struct cgroup *parent = cont->parent;
1915 	struct mem_cgroup *parent_mem = NULL;
1916 
1917 	if (parent)
1918 		parent_mem = mem_cgroup_from_cont(parent);
1919 
1920 	cgroup_lock();
1921 	/*
1922 	 * If parent's use_hiearchy is set, we can't make any modifications
1923 	 * in the child subtrees. If it is unset, then the change can
1924 	 * occur, provided the current cgroup has no children.
1925 	 *
1926 	 * For the root cgroup, parent_mem is NULL, we allow value to be
1927 	 * set if there are no children.
1928 	 */
1929 	if ((!parent_mem || !parent_mem->use_hierarchy) &&
1930 				(val == 1 || val == 0)) {
1931 		if (list_empty(&cont->children))
1932 			mem->use_hierarchy = val;
1933 		else
1934 			retval = -EBUSY;
1935 	} else
1936 		retval = -EINVAL;
1937 	cgroup_unlock();
1938 
1939 	return retval;
1940 }
1941 
1942 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
1943 {
1944 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1945 	u64 val = 0;
1946 	int type, name;
1947 
1948 	type = MEMFILE_TYPE(cft->private);
1949 	name = MEMFILE_ATTR(cft->private);
1950 	switch (type) {
1951 	case _MEM:
1952 		val = res_counter_read_u64(&mem->res, name);
1953 		break;
1954 	case _MEMSWAP:
1955 		if (do_swap_account)
1956 			val = res_counter_read_u64(&mem->memsw, name);
1957 		break;
1958 	default:
1959 		BUG();
1960 		break;
1961 	}
1962 	return val;
1963 }
1964 /*
1965  * The user of this function is...
1966  * RES_LIMIT.
1967  */
1968 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
1969 			    const char *buffer)
1970 {
1971 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
1972 	int type, name;
1973 	unsigned long long val;
1974 	int ret;
1975 
1976 	type = MEMFILE_TYPE(cft->private);
1977 	name = MEMFILE_ATTR(cft->private);
1978 	switch (name) {
1979 	case RES_LIMIT:
1980 		/* This function does all necessary parse...reuse it */
1981 		ret = res_counter_memparse_write_strategy(buffer, &val);
1982 		if (ret)
1983 			break;
1984 		if (type == _MEM)
1985 			ret = mem_cgroup_resize_limit(memcg, val);
1986 		else
1987 			ret = mem_cgroup_resize_memsw_limit(memcg, val);
1988 		break;
1989 	default:
1990 		ret = -EINVAL; /* should be BUG() ? */
1991 		break;
1992 	}
1993 	return ret;
1994 }
1995 
1996 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
1997 		unsigned long long *mem_limit, unsigned long long *memsw_limit)
1998 {
1999 	struct cgroup *cgroup;
2000 	unsigned long long min_limit, min_memsw_limit, tmp;
2001 
2002 	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
2003 	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2004 	cgroup = memcg->css.cgroup;
2005 	if (!memcg->use_hierarchy)
2006 		goto out;
2007 
2008 	while (cgroup->parent) {
2009 		cgroup = cgroup->parent;
2010 		memcg = mem_cgroup_from_cont(cgroup);
2011 		if (!memcg->use_hierarchy)
2012 			break;
2013 		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
2014 		min_limit = min(min_limit, tmp);
2015 		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2016 		min_memsw_limit = min(min_memsw_limit, tmp);
2017 	}
2018 out:
2019 	*mem_limit = min_limit;
2020 	*memsw_limit = min_memsw_limit;
2021 	return;
2022 }
2023 
2024 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
2025 {
2026 	struct mem_cgroup *mem;
2027 	int type, name;
2028 
2029 	mem = mem_cgroup_from_cont(cont);
2030 	type = MEMFILE_TYPE(event);
2031 	name = MEMFILE_ATTR(event);
2032 	switch (name) {
2033 	case RES_MAX_USAGE:
2034 		if (type == _MEM)
2035 			res_counter_reset_max(&mem->res);
2036 		else
2037 			res_counter_reset_max(&mem->memsw);
2038 		break;
2039 	case RES_FAILCNT:
2040 		if (type == _MEM)
2041 			res_counter_reset_failcnt(&mem->res);
2042 		else
2043 			res_counter_reset_failcnt(&mem->memsw);
2044 		break;
2045 	}
2046 	return 0;
2047 }
2048 
2049 
2050 /* For read statistics */
2051 enum {
2052 	MCS_CACHE,
2053 	MCS_RSS,
2054 	MCS_PGPGIN,
2055 	MCS_PGPGOUT,
2056 	MCS_INACTIVE_ANON,
2057 	MCS_ACTIVE_ANON,
2058 	MCS_INACTIVE_FILE,
2059 	MCS_ACTIVE_FILE,
2060 	MCS_UNEVICTABLE,
2061 	NR_MCS_STAT,
2062 };
2063 
2064 struct mcs_total_stat {
2065 	s64 stat[NR_MCS_STAT];
2066 };
2067 
2068 struct {
2069 	char *local_name;
2070 	char *total_name;
2071 } memcg_stat_strings[NR_MCS_STAT] = {
2072 	{"cache", "total_cache"},
2073 	{"rss", "total_rss"},
2074 	{"pgpgin", "total_pgpgin"},
2075 	{"pgpgout", "total_pgpgout"},
2076 	{"inactive_anon", "total_inactive_anon"},
2077 	{"active_anon", "total_active_anon"},
2078 	{"inactive_file", "total_inactive_file"},
2079 	{"active_file", "total_active_file"},
2080 	{"unevictable", "total_unevictable"}
2081 };
2082 
2083 
2084 static int mem_cgroup_get_local_stat(struct mem_cgroup *mem, void *data)
2085 {
2086 	struct mcs_total_stat *s = data;
2087 	s64 val;
2088 
2089 	/* per cpu stat */
2090 	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_CACHE);
2091 	s->stat[MCS_CACHE] += val * PAGE_SIZE;
2092 	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
2093 	s->stat[MCS_RSS] += val * PAGE_SIZE;
2094 	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGIN_COUNT);
2095 	s->stat[MCS_PGPGIN] += val;
2096 	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGOUT_COUNT);
2097 	s->stat[MCS_PGPGOUT] += val;
2098 
2099 	/* per zone stat */
2100 	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
2101 	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
2102 	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
2103 	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
2104 	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
2105 	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
2106 	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
2107 	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
2108 	val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
2109 	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
2110 	return 0;
2111 }
2112 
2113 static void
2114 mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
2115 {
2116 	mem_cgroup_walk_tree(mem, s, mem_cgroup_get_local_stat);
2117 }
2118 
2119 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
2120 				 struct cgroup_map_cb *cb)
2121 {
2122 	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
2123 	struct mcs_total_stat mystat;
2124 	int i;
2125 
2126 	memset(&mystat, 0, sizeof(mystat));
2127 	mem_cgroup_get_local_stat(mem_cont, &mystat);
2128 
2129 	for (i = 0; i < NR_MCS_STAT; i++)
2130 		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
2131 
2132 	/* Hierarchical information */
2133 	{
2134 		unsigned long long limit, memsw_limit;
2135 		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
2136 		cb->fill(cb, "hierarchical_memory_limit", limit);
2137 		if (do_swap_account)
2138 			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
2139 	}
2140 
2141 	memset(&mystat, 0, sizeof(mystat));
2142 	mem_cgroup_get_total_stat(mem_cont, &mystat);
2143 	for (i = 0; i < NR_MCS_STAT; i++)
2144 		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
2145 
2146 
2147 #ifdef CONFIG_DEBUG_VM
2148 	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
2149 
2150 	{
2151 		int nid, zid;
2152 		struct mem_cgroup_per_zone *mz;
2153 		unsigned long recent_rotated[2] = {0, 0};
2154 		unsigned long recent_scanned[2] = {0, 0};
2155 
2156 		for_each_online_node(nid)
2157 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2158 				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
2159 
2160 				recent_rotated[0] +=
2161 					mz->reclaim_stat.recent_rotated[0];
2162 				recent_rotated[1] +=
2163 					mz->reclaim_stat.recent_rotated[1];
2164 				recent_scanned[0] +=
2165 					mz->reclaim_stat.recent_scanned[0];
2166 				recent_scanned[1] +=
2167 					mz->reclaim_stat.recent_scanned[1];
2168 			}
2169 		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
2170 		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
2171 		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
2172 		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
2173 	}
2174 #endif
2175 
2176 	return 0;
2177 }
2178 
2179 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
2180 {
2181 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2182 
2183 	return get_swappiness(memcg);
2184 }
2185 
2186 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
2187 				       u64 val)
2188 {
2189 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2190 	struct mem_cgroup *parent;
2191 
2192 	if (val > 100)
2193 		return -EINVAL;
2194 
2195 	if (cgrp->parent == NULL)
2196 		return -EINVAL;
2197 
2198 	parent = mem_cgroup_from_cont(cgrp->parent);
2199 
2200 	cgroup_lock();
2201 
2202 	/* If under hierarchy, only empty-root can set this value */
2203 	if ((parent->use_hierarchy) ||
2204 	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
2205 		cgroup_unlock();
2206 		return -EINVAL;
2207 	}
2208 
2209 	spin_lock(&memcg->reclaim_param_lock);
2210 	memcg->swappiness = val;
2211 	spin_unlock(&memcg->reclaim_param_lock);
2212 
2213 	cgroup_unlock();
2214 
2215 	return 0;
2216 }
2217 
2218 
2219 static struct cftype mem_cgroup_files[] = {
2220 	{
2221 		.name = "usage_in_bytes",
2222 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2223 		.read_u64 = mem_cgroup_read,
2224 	},
2225 	{
2226 		.name = "max_usage_in_bytes",
2227 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
2228 		.trigger = mem_cgroup_reset,
2229 		.read_u64 = mem_cgroup_read,
2230 	},
2231 	{
2232 		.name = "limit_in_bytes",
2233 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
2234 		.write_string = mem_cgroup_write,
2235 		.read_u64 = mem_cgroup_read,
2236 	},
2237 	{
2238 		.name = "failcnt",
2239 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
2240 		.trigger = mem_cgroup_reset,
2241 		.read_u64 = mem_cgroup_read,
2242 	},
2243 	{
2244 		.name = "stat",
2245 		.read_map = mem_control_stat_show,
2246 	},
2247 	{
2248 		.name = "force_empty",
2249 		.trigger = mem_cgroup_force_empty_write,
2250 	},
2251 	{
2252 		.name = "use_hierarchy",
2253 		.write_u64 = mem_cgroup_hierarchy_write,
2254 		.read_u64 = mem_cgroup_hierarchy_read,
2255 	},
2256 	{
2257 		.name = "swappiness",
2258 		.read_u64 = mem_cgroup_swappiness_read,
2259 		.write_u64 = mem_cgroup_swappiness_write,
2260 	},
2261 };
2262 
2263 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2264 static struct cftype memsw_cgroup_files[] = {
2265 	{
2266 		.name = "memsw.usage_in_bytes",
2267 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
2268 		.read_u64 = mem_cgroup_read,
2269 	},
2270 	{
2271 		.name = "memsw.max_usage_in_bytes",
2272 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
2273 		.trigger = mem_cgroup_reset,
2274 		.read_u64 = mem_cgroup_read,
2275 	},
2276 	{
2277 		.name = "memsw.limit_in_bytes",
2278 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
2279 		.write_string = mem_cgroup_write,
2280 		.read_u64 = mem_cgroup_read,
2281 	},
2282 	{
2283 		.name = "memsw.failcnt",
2284 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
2285 		.trigger = mem_cgroup_reset,
2286 		.read_u64 = mem_cgroup_read,
2287 	},
2288 };
2289 
2290 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
2291 {
2292 	if (!do_swap_account)
2293 		return 0;
2294 	return cgroup_add_files(cont, ss, memsw_cgroup_files,
2295 				ARRAY_SIZE(memsw_cgroup_files));
2296 };
2297 #else
2298 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
2299 {
2300 	return 0;
2301 }
2302 #endif
2303 
2304 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
2305 {
2306 	struct mem_cgroup_per_node *pn;
2307 	struct mem_cgroup_per_zone *mz;
2308 	enum lru_list l;
2309 	int zone, tmp = node;
2310 	/*
2311 	 * This routine is called against possible nodes.
2312 	 * But it's BUG to call kmalloc() against offline node.
2313 	 *
2314 	 * TODO: this routine can waste much memory for nodes which will
2315 	 *       never be onlined. It's better to use memory hotplug callback
2316 	 *       function.
2317 	 */
2318 	if (!node_state(node, N_NORMAL_MEMORY))
2319 		tmp = -1;
2320 	pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
2321 	if (!pn)
2322 		return 1;
2323 
2324 	mem->info.nodeinfo[node] = pn;
2325 	memset(pn, 0, sizeof(*pn));
2326 
2327 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
2328 		mz = &pn->zoneinfo[zone];
2329 		for_each_lru(l)
2330 			INIT_LIST_HEAD(&mz->lists[l]);
2331 	}
2332 	return 0;
2333 }
2334 
2335 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
2336 {
2337 	kfree(mem->info.nodeinfo[node]);
2338 }
2339 
2340 static int mem_cgroup_size(void)
2341 {
2342 	int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu);
2343 	return sizeof(struct mem_cgroup) + cpustat_size;
2344 }
2345 
2346 static struct mem_cgroup *mem_cgroup_alloc(void)
2347 {
2348 	struct mem_cgroup *mem;
2349 	int size = mem_cgroup_size();
2350 
2351 	if (size < PAGE_SIZE)
2352 		mem = kmalloc(size, GFP_KERNEL);
2353 	else
2354 		mem = vmalloc(size);
2355 
2356 	if (mem)
2357 		memset(mem, 0, size);
2358 	return mem;
2359 }
2360 
2361 /*
2362  * At destroying mem_cgroup, references from swap_cgroup can remain.
2363  * (scanning all at force_empty is too costly...)
2364  *
2365  * Instead of clearing all references at force_empty, we remember
2366  * the number of reference from swap_cgroup and free mem_cgroup when
2367  * it goes down to 0.
2368  *
2369  * Removal of cgroup itself succeeds regardless of refs from swap.
2370  */
2371 
2372 static void __mem_cgroup_free(struct mem_cgroup *mem)
2373 {
2374 	int node;
2375 
2376 	free_css_id(&mem_cgroup_subsys, &mem->css);
2377 
2378 	for_each_node_state(node, N_POSSIBLE)
2379 		free_mem_cgroup_per_zone_info(mem, node);
2380 
2381 	if (mem_cgroup_size() < PAGE_SIZE)
2382 		kfree(mem);
2383 	else
2384 		vfree(mem);
2385 }
2386 
2387 static void mem_cgroup_get(struct mem_cgroup *mem)
2388 {
2389 	atomic_inc(&mem->refcnt);
2390 }
2391 
2392 static void mem_cgroup_put(struct mem_cgroup *mem)
2393 {
2394 	if (atomic_dec_and_test(&mem->refcnt)) {
2395 		struct mem_cgroup *parent = parent_mem_cgroup(mem);
2396 		__mem_cgroup_free(mem);
2397 		if (parent)
2398 			mem_cgroup_put(parent);
2399 	}
2400 }
2401 
2402 /*
2403  * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
2404  */
2405 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
2406 {
2407 	if (!mem->res.parent)
2408 		return NULL;
2409 	return mem_cgroup_from_res_counter(mem->res.parent, res);
2410 }
2411 
2412 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2413 static void __init enable_swap_cgroup(void)
2414 {
2415 	if (!mem_cgroup_disabled() && really_do_swap_account)
2416 		do_swap_account = 1;
2417 }
2418 #else
2419 static void __init enable_swap_cgroup(void)
2420 {
2421 }
2422 #endif
2423 
2424 static struct cgroup_subsys_state * __ref
2425 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
2426 {
2427 	struct mem_cgroup *mem, *parent;
2428 	long error = -ENOMEM;
2429 	int node;
2430 
2431 	mem = mem_cgroup_alloc();
2432 	if (!mem)
2433 		return ERR_PTR(error);
2434 
2435 	for_each_node_state(node, N_POSSIBLE)
2436 		if (alloc_mem_cgroup_per_zone_info(mem, node))
2437 			goto free_out;
2438 	/* root ? */
2439 	if (cont->parent == NULL) {
2440 		enable_swap_cgroup();
2441 		parent = NULL;
2442 	} else {
2443 		parent = mem_cgroup_from_cont(cont->parent);
2444 		mem->use_hierarchy = parent->use_hierarchy;
2445 	}
2446 
2447 	if (parent && parent->use_hierarchy) {
2448 		res_counter_init(&mem->res, &parent->res);
2449 		res_counter_init(&mem->memsw, &parent->memsw);
2450 		/*
2451 		 * We increment refcnt of the parent to ensure that we can
2452 		 * safely access it on res_counter_charge/uncharge.
2453 		 * This refcnt will be decremented when freeing this
2454 		 * mem_cgroup(see mem_cgroup_put).
2455 		 */
2456 		mem_cgroup_get(parent);
2457 	} else {
2458 		res_counter_init(&mem->res, NULL);
2459 		res_counter_init(&mem->memsw, NULL);
2460 	}
2461 	mem->last_scanned_child = 0;
2462 	spin_lock_init(&mem->reclaim_param_lock);
2463 
2464 	if (parent)
2465 		mem->swappiness = get_swappiness(parent);
2466 	atomic_set(&mem->refcnt, 1);
2467 	return &mem->css;
2468 free_out:
2469 	__mem_cgroup_free(mem);
2470 	return ERR_PTR(error);
2471 }
2472 
2473 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
2474 					struct cgroup *cont)
2475 {
2476 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2477 
2478 	return mem_cgroup_force_empty(mem, false);
2479 }
2480 
2481 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
2482 				struct cgroup *cont)
2483 {
2484 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2485 
2486 	mem_cgroup_put(mem);
2487 }
2488 
2489 static int mem_cgroup_populate(struct cgroup_subsys *ss,
2490 				struct cgroup *cont)
2491 {
2492 	int ret;
2493 
2494 	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
2495 				ARRAY_SIZE(mem_cgroup_files));
2496 
2497 	if (!ret)
2498 		ret = register_memsw_files(cont, ss);
2499 	return ret;
2500 }
2501 
2502 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
2503 				struct cgroup *cont,
2504 				struct cgroup *old_cont,
2505 				struct task_struct *p)
2506 {
2507 	mutex_lock(&memcg_tasklist);
2508 	/*
2509 	 * FIXME: It's better to move charges of this process from old
2510 	 * memcg to new memcg. But it's just on TODO-List now.
2511 	 */
2512 	mutex_unlock(&memcg_tasklist);
2513 }
2514 
2515 struct cgroup_subsys mem_cgroup_subsys = {
2516 	.name = "memory",
2517 	.subsys_id = mem_cgroup_subsys_id,
2518 	.create = mem_cgroup_create,
2519 	.pre_destroy = mem_cgroup_pre_destroy,
2520 	.destroy = mem_cgroup_destroy,
2521 	.populate = mem_cgroup_populate,
2522 	.attach = mem_cgroup_move_task,
2523 	.early_init = 0,
2524 	.use_id = 1,
2525 };
2526 
2527 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2528 
2529 static int __init disable_swap_account(char *s)
2530 {
2531 	really_do_swap_account = 0;
2532 	return 1;
2533 }
2534 __setup("noswapaccount", disable_swap_account);
2535 #endif
2536