xref: /openbmc/linux/mm/memcontrol.c (revision 81d67439)
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  */
23 
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/mutex.h>
37 #include <linux/rbtree.h>
38 #include <linux/shmem_fs.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swapops.h>
42 #include <linux/spinlock.h>
43 #include <linux/eventfd.h>
44 #include <linux/sort.h>
45 #include <linux/fs.h>
46 #include <linux/seq_file.h>
47 #include <linux/vmalloc.h>
48 #include <linux/mm_inline.h>
49 #include <linux/page_cgroup.h>
50 #include <linux/cpu.h>
51 #include <linux/oom.h>
52 #include "internal.h"
53 
54 #include <asm/uaccess.h>
55 
56 #include <trace/events/vmscan.h>
57 
58 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
59 #define MEM_CGROUP_RECLAIM_RETRIES	5
60 struct mem_cgroup *root_mem_cgroup __read_mostly;
61 
62 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
63 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
64 int do_swap_account __read_mostly;
65 
66 /* for remember boot option*/
67 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
68 static int really_do_swap_account __initdata = 1;
69 #else
70 static int really_do_swap_account __initdata = 0;
71 #endif
72 
73 #else
74 #define do_swap_account		(0)
75 #endif
76 
77 
78 /*
79  * Statistics for memory cgroup.
80  */
81 enum mem_cgroup_stat_index {
82 	/*
83 	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
84 	 */
85 	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
86 	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
87 	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
88 	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
89 	MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
90 	MEM_CGROUP_ON_MOVE,	/* someone is moving account between groups */
91 	MEM_CGROUP_STAT_NSTATS,
92 };
93 
94 enum mem_cgroup_events_index {
95 	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
96 	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
97 	MEM_CGROUP_EVENTS_COUNT,	/* # of pages paged in/out */
98 	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
99 	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
100 	MEM_CGROUP_EVENTS_NSTATS,
101 };
102 /*
103  * Per memcg event counter is incremented at every pagein/pageout. With THP,
104  * it will be incremated by the number of pages. This counter is used for
105  * for trigger some periodic events. This is straightforward and better
106  * than using jiffies etc. to handle periodic memcg event.
107  */
108 enum mem_cgroup_events_target {
109 	MEM_CGROUP_TARGET_THRESH,
110 	MEM_CGROUP_TARGET_SOFTLIMIT,
111 	MEM_CGROUP_TARGET_NUMAINFO,
112 	MEM_CGROUP_NTARGETS,
113 };
114 #define THRESHOLDS_EVENTS_TARGET (128)
115 #define SOFTLIMIT_EVENTS_TARGET (1024)
116 #define NUMAINFO_EVENTS_TARGET	(1024)
117 
118 struct mem_cgroup_stat_cpu {
119 	long count[MEM_CGROUP_STAT_NSTATS];
120 	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
121 	unsigned long targets[MEM_CGROUP_NTARGETS];
122 };
123 
124 /*
125  * per-zone information in memory controller.
126  */
127 struct mem_cgroup_per_zone {
128 	/*
129 	 * spin_lock to protect the per cgroup LRU
130 	 */
131 	struct list_head	lists[NR_LRU_LISTS];
132 	unsigned long		count[NR_LRU_LISTS];
133 
134 	struct zone_reclaim_stat reclaim_stat;
135 	struct rb_node		tree_node;	/* RB tree node */
136 	unsigned long long	usage_in_excess;/* Set to the value by which */
137 						/* the soft limit is exceeded*/
138 	bool			on_tree;
139 	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
140 						/* use container_of	   */
141 };
142 /* Macro for accessing counter */
143 #define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])
144 
145 struct mem_cgroup_per_node {
146 	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
147 };
148 
149 struct mem_cgroup_lru_info {
150 	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
151 };
152 
153 /*
154  * Cgroups above their limits are maintained in a RB-Tree, independent of
155  * their hierarchy representation
156  */
157 
158 struct mem_cgroup_tree_per_zone {
159 	struct rb_root rb_root;
160 	spinlock_t lock;
161 };
162 
163 struct mem_cgroup_tree_per_node {
164 	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
165 };
166 
167 struct mem_cgroup_tree {
168 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
169 };
170 
171 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
172 
173 struct mem_cgroup_threshold {
174 	struct eventfd_ctx *eventfd;
175 	u64 threshold;
176 };
177 
178 /* For threshold */
179 struct mem_cgroup_threshold_ary {
180 	/* An array index points to threshold just below usage. */
181 	int current_threshold;
182 	/* Size of entries[] */
183 	unsigned int size;
184 	/* Array of thresholds */
185 	struct mem_cgroup_threshold entries[0];
186 };
187 
188 struct mem_cgroup_thresholds {
189 	/* Primary thresholds array */
190 	struct mem_cgroup_threshold_ary *primary;
191 	/*
192 	 * Spare threshold array.
193 	 * This is needed to make mem_cgroup_unregister_event() "never fail".
194 	 * It must be able to store at least primary->size - 1 entries.
195 	 */
196 	struct mem_cgroup_threshold_ary *spare;
197 };
198 
199 /* for OOM */
200 struct mem_cgroup_eventfd_list {
201 	struct list_head list;
202 	struct eventfd_ctx *eventfd;
203 };
204 
205 static void mem_cgroup_threshold(struct mem_cgroup *mem);
206 static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
207 
208 /*
209  * The memory controller data structure. The memory controller controls both
210  * page cache and RSS per cgroup. We would eventually like to provide
211  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
212  * to help the administrator determine what knobs to tune.
213  *
214  * TODO: Add a water mark for the memory controller. Reclaim will begin when
215  * we hit the water mark. May be even add a low water mark, such that
216  * no reclaim occurs from a cgroup at it's low water mark, this is
217  * a feature that will be implemented much later in the future.
218  */
219 struct mem_cgroup {
220 	struct cgroup_subsys_state css;
221 	/*
222 	 * the counter to account for memory usage
223 	 */
224 	struct res_counter res;
225 	/*
226 	 * the counter to account for mem+swap usage.
227 	 */
228 	struct res_counter memsw;
229 	/*
230 	 * Per cgroup active and inactive list, similar to the
231 	 * per zone LRU lists.
232 	 */
233 	struct mem_cgroup_lru_info info;
234 	/*
235 	 * While reclaiming in a hierarchy, we cache the last child we
236 	 * reclaimed from.
237 	 */
238 	int last_scanned_child;
239 	int last_scanned_node;
240 #if MAX_NUMNODES > 1
241 	nodemask_t	scan_nodes;
242 	atomic_t	numainfo_events;
243 	atomic_t	numainfo_updating;
244 #endif
245 	/*
246 	 * Should the accounting and control be hierarchical, per subtree?
247 	 */
248 	bool use_hierarchy;
249 	atomic_t	oom_lock;
250 	atomic_t	refcnt;
251 
252 	unsigned int	swappiness;
253 	/* OOM-Killer disable */
254 	int		oom_kill_disable;
255 
256 	/* set when res.limit == memsw.limit */
257 	bool		memsw_is_minimum;
258 
259 	/* protect arrays of thresholds */
260 	struct mutex thresholds_lock;
261 
262 	/* thresholds for memory usage. RCU-protected */
263 	struct mem_cgroup_thresholds thresholds;
264 
265 	/* thresholds for mem+swap usage. RCU-protected */
266 	struct mem_cgroup_thresholds memsw_thresholds;
267 
268 	/* For oom notifier event fd */
269 	struct list_head oom_notify;
270 
271 	/*
272 	 * Should we move charges of a task when a task is moved into this
273 	 * mem_cgroup ? And what type of charges should we move ?
274 	 */
275 	unsigned long 	move_charge_at_immigrate;
276 	/*
277 	 * percpu counter.
278 	 */
279 	struct mem_cgroup_stat_cpu *stat;
280 	/*
281 	 * used when a cpu is offlined or other synchronizations
282 	 * See mem_cgroup_read_stat().
283 	 */
284 	struct mem_cgroup_stat_cpu nocpu_base;
285 	spinlock_t pcp_counter_lock;
286 };
287 
288 /* Stuffs for move charges at task migration. */
289 /*
290  * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
291  * left-shifted bitmap of these types.
292  */
293 enum move_type {
294 	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
295 	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
296 	NR_MOVE_TYPE,
297 };
298 
299 /* "mc" and its members are protected by cgroup_mutex */
300 static struct move_charge_struct {
301 	spinlock_t	  lock; /* for from, to */
302 	struct mem_cgroup *from;
303 	struct mem_cgroup *to;
304 	unsigned long precharge;
305 	unsigned long moved_charge;
306 	unsigned long moved_swap;
307 	struct task_struct *moving_task;	/* a task moving charges */
308 	wait_queue_head_t waitq;		/* a waitq for other context */
309 } mc = {
310 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
311 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
312 };
313 
314 static bool move_anon(void)
315 {
316 	return test_bit(MOVE_CHARGE_TYPE_ANON,
317 					&mc.to->move_charge_at_immigrate);
318 }
319 
320 static bool move_file(void)
321 {
322 	return test_bit(MOVE_CHARGE_TYPE_FILE,
323 					&mc.to->move_charge_at_immigrate);
324 }
325 
326 /*
327  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
328  * limit reclaim to prevent infinite loops, if they ever occur.
329  */
330 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
331 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)
332 
333 enum charge_type {
334 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
335 	MEM_CGROUP_CHARGE_TYPE_MAPPED,
336 	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
337 	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
338 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
339 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
340 	NR_CHARGE_TYPE,
341 };
342 
343 /* for encoding cft->private value on file */
344 #define _MEM			(0)
345 #define _MEMSWAP		(1)
346 #define _OOM_TYPE		(2)
347 #define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
348 #define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
349 #define MEMFILE_ATTR(val)	((val) & 0xffff)
350 /* Used for OOM nofiier */
351 #define OOM_CONTROL		(0)
352 
353 /*
354  * Reclaim flags for mem_cgroup_hierarchical_reclaim
355  */
356 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
357 #define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
358 #define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
359 #define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
360 #define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2
361 #define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
362 
363 static void mem_cgroup_get(struct mem_cgroup *mem);
364 static void mem_cgroup_put(struct mem_cgroup *mem);
365 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
366 static void drain_all_stock_async(struct mem_cgroup *mem);
367 
368 static struct mem_cgroup_per_zone *
369 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
370 {
371 	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
372 }
373 
374 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
375 {
376 	return &mem->css;
377 }
378 
379 static struct mem_cgroup_per_zone *
380 page_cgroup_zoneinfo(struct mem_cgroup *mem, struct page *page)
381 {
382 	int nid = page_to_nid(page);
383 	int zid = page_zonenum(page);
384 
385 	return mem_cgroup_zoneinfo(mem, nid, zid);
386 }
387 
388 static struct mem_cgroup_tree_per_zone *
389 soft_limit_tree_node_zone(int nid, int zid)
390 {
391 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
392 }
393 
394 static struct mem_cgroup_tree_per_zone *
395 soft_limit_tree_from_page(struct page *page)
396 {
397 	int nid = page_to_nid(page);
398 	int zid = page_zonenum(page);
399 
400 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
401 }
402 
403 static void
404 __mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
405 				struct mem_cgroup_per_zone *mz,
406 				struct mem_cgroup_tree_per_zone *mctz,
407 				unsigned long long new_usage_in_excess)
408 {
409 	struct rb_node **p = &mctz->rb_root.rb_node;
410 	struct rb_node *parent = NULL;
411 	struct mem_cgroup_per_zone *mz_node;
412 
413 	if (mz->on_tree)
414 		return;
415 
416 	mz->usage_in_excess = new_usage_in_excess;
417 	if (!mz->usage_in_excess)
418 		return;
419 	while (*p) {
420 		parent = *p;
421 		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
422 					tree_node);
423 		if (mz->usage_in_excess < mz_node->usage_in_excess)
424 			p = &(*p)->rb_left;
425 		/*
426 		 * We can't avoid mem cgroups that are over their soft
427 		 * limit by the same amount
428 		 */
429 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
430 			p = &(*p)->rb_right;
431 	}
432 	rb_link_node(&mz->tree_node, parent, p);
433 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
434 	mz->on_tree = true;
435 }
436 
437 static void
438 __mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
439 				struct mem_cgroup_per_zone *mz,
440 				struct mem_cgroup_tree_per_zone *mctz)
441 {
442 	if (!mz->on_tree)
443 		return;
444 	rb_erase(&mz->tree_node, &mctz->rb_root);
445 	mz->on_tree = false;
446 }
447 
448 static void
449 mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
450 				struct mem_cgroup_per_zone *mz,
451 				struct mem_cgroup_tree_per_zone *mctz)
452 {
453 	spin_lock(&mctz->lock);
454 	__mem_cgroup_remove_exceeded(mem, mz, mctz);
455 	spin_unlock(&mctz->lock);
456 }
457 
458 
459 static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
460 {
461 	unsigned long long excess;
462 	struct mem_cgroup_per_zone *mz;
463 	struct mem_cgroup_tree_per_zone *mctz;
464 	int nid = page_to_nid(page);
465 	int zid = page_zonenum(page);
466 	mctz = soft_limit_tree_from_page(page);
467 
468 	/*
469 	 * Necessary to update all ancestors when hierarchy is used.
470 	 * because their event counter is not touched.
471 	 */
472 	for (; mem; mem = parent_mem_cgroup(mem)) {
473 		mz = mem_cgroup_zoneinfo(mem, nid, zid);
474 		excess = res_counter_soft_limit_excess(&mem->res);
475 		/*
476 		 * We have to update the tree if mz is on RB-tree or
477 		 * mem is over its softlimit.
478 		 */
479 		if (excess || mz->on_tree) {
480 			spin_lock(&mctz->lock);
481 			/* if on-tree, remove it */
482 			if (mz->on_tree)
483 				__mem_cgroup_remove_exceeded(mem, mz, mctz);
484 			/*
485 			 * Insert again. mz->usage_in_excess will be updated.
486 			 * If excess is 0, no tree ops.
487 			 */
488 			__mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
489 			spin_unlock(&mctz->lock);
490 		}
491 	}
492 }
493 
494 static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
495 {
496 	int node, zone;
497 	struct mem_cgroup_per_zone *mz;
498 	struct mem_cgroup_tree_per_zone *mctz;
499 
500 	for_each_node_state(node, N_POSSIBLE) {
501 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
502 			mz = mem_cgroup_zoneinfo(mem, node, zone);
503 			mctz = soft_limit_tree_node_zone(node, zone);
504 			mem_cgroup_remove_exceeded(mem, mz, mctz);
505 		}
506 	}
507 }
508 
509 static struct mem_cgroup_per_zone *
510 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
511 {
512 	struct rb_node *rightmost = NULL;
513 	struct mem_cgroup_per_zone *mz;
514 
515 retry:
516 	mz = NULL;
517 	rightmost = rb_last(&mctz->rb_root);
518 	if (!rightmost)
519 		goto done;		/* Nothing to reclaim from */
520 
521 	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
522 	/*
523 	 * Remove the node now but someone else can add it back,
524 	 * we will to add it back at the end of reclaim to its correct
525 	 * position in the tree.
526 	 */
527 	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
528 	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
529 		!css_tryget(&mz->mem->css))
530 		goto retry;
531 done:
532 	return mz;
533 }
534 
535 static struct mem_cgroup_per_zone *
536 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
537 {
538 	struct mem_cgroup_per_zone *mz;
539 
540 	spin_lock(&mctz->lock);
541 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
542 	spin_unlock(&mctz->lock);
543 	return mz;
544 }
545 
546 /*
547  * Implementation Note: reading percpu statistics for memcg.
548  *
549  * Both of vmstat[] and percpu_counter has threshold and do periodic
550  * synchronization to implement "quick" read. There are trade-off between
551  * reading cost and precision of value. Then, we may have a chance to implement
552  * a periodic synchronizion of counter in memcg's counter.
553  *
554  * But this _read() function is used for user interface now. The user accounts
555  * memory usage by memory cgroup and he _always_ requires exact value because
556  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
557  * have to visit all online cpus and make sum. So, for now, unnecessary
558  * synchronization is not implemented. (just implemented for cpu hotplug)
559  *
560  * If there are kernel internal actions which can make use of some not-exact
561  * value, and reading all cpu value can be performance bottleneck in some
562  * common workload, threashold and synchonization as vmstat[] should be
563  * implemented.
564  */
565 static long mem_cgroup_read_stat(struct mem_cgroup *mem,
566 				 enum mem_cgroup_stat_index idx)
567 {
568 	long val = 0;
569 	int cpu;
570 
571 	get_online_cpus();
572 	for_each_online_cpu(cpu)
573 		val += per_cpu(mem->stat->count[idx], cpu);
574 #ifdef CONFIG_HOTPLUG_CPU
575 	spin_lock(&mem->pcp_counter_lock);
576 	val += mem->nocpu_base.count[idx];
577 	spin_unlock(&mem->pcp_counter_lock);
578 #endif
579 	put_online_cpus();
580 	return val;
581 }
582 
583 static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
584 					 bool charge)
585 {
586 	int val = (charge) ? 1 : -1;
587 	this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
588 }
589 
590 void mem_cgroup_pgfault(struct mem_cgroup *mem, int val)
591 {
592 	this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_PGFAULT], val);
593 }
594 
595 void mem_cgroup_pgmajfault(struct mem_cgroup *mem, int val)
596 {
597 	this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT], val);
598 }
599 
600 static unsigned long mem_cgroup_read_events(struct mem_cgroup *mem,
601 					    enum mem_cgroup_events_index idx)
602 {
603 	unsigned long val = 0;
604 	int cpu;
605 
606 	for_each_online_cpu(cpu)
607 		val += per_cpu(mem->stat->events[idx], cpu);
608 #ifdef CONFIG_HOTPLUG_CPU
609 	spin_lock(&mem->pcp_counter_lock);
610 	val += mem->nocpu_base.events[idx];
611 	spin_unlock(&mem->pcp_counter_lock);
612 #endif
613 	return val;
614 }
615 
616 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
617 					 bool file, int nr_pages)
618 {
619 	preempt_disable();
620 
621 	if (file)
622 		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages);
623 	else
624 		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages);
625 
626 	/* pagein of a big page is an event. So, ignore page size */
627 	if (nr_pages > 0)
628 		__this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
629 	else {
630 		__this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
631 		nr_pages = -nr_pages; /* for event */
632 	}
633 
634 	__this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
635 
636 	preempt_enable();
637 }
638 
639 static unsigned long
640 mem_cgroup_get_zonestat_node(struct mem_cgroup *mem, int nid, enum lru_list idx)
641 {
642 	struct mem_cgroup_per_zone *mz;
643 	u64 total = 0;
644 	int zid;
645 
646 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
647 		mz = mem_cgroup_zoneinfo(mem, nid, zid);
648 		total += MEM_CGROUP_ZSTAT(mz, idx);
649 	}
650 	return total;
651 }
652 static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
653 					enum lru_list idx)
654 {
655 	int nid;
656 	u64 total = 0;
657 
658 	for_each_online_node(nid)
659 		total += mem_cgroup_get_zonestat_node(mem, nid, idx);
660 	return total;
661 }
662 
663 static bool __memcg_event_check(struct mem_cgroup *mem, int target)
664 {
665 	unsigned long val, next;
666 
667 	val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
668 	next = this_cpu_read(mem->stat->targets[target]);
669 	/* from time_after() in jiffies.h */
670 	return ((long)next - (long)val < 0);
671 }
672 
673 static void __mem_cgroup_target_update(struct mem_cgroup *mem, int target)
674 {
675 	unsigned long val, next;
676 
677 	val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
678 
679 	switch (target) {
680 	case MEM_CGROUP_TARGET_THRESH:
681 		next = val + THRESHOLDS_EVENTS_TARGET;
682 		break;
683 	case MEM_CGROUP_TARGET_SOFTLIMIT:
684 		next = val + SOFTLIMIT_EVENTS_TARGET;
685 		break;
686 	case MEM_CGROUP_TARGET_NUMAINFO:
687 		next = val + NUMAINFO_EVENTS_TARGET;
688 		break;
689 	default:
690 		return;
691 	}
692 
693 	this_cpu_write(mem->stat->targets[target], next);
694 }
695 
696 /*
697  * Check events in order.
698  *
699  */
700 static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
701 {
702 	/* threshold event is triggered in finer grain than soft limit */
703 	if (unlikely(__memcg_event_check(mem, MEM_CGROUP_TARGET_THRESH))) {
704 		mem_cgroup_threshold(mem);
705 		__mem_cgroup_target_update(mem, MEM_CGROUP_TARGET_THRESH);
706 		if (unlikely(__memcg_event_check(mem,
707 			     MEM_CGROUP_TARGET_SOFTLIMIT))) {
708 			mem_cgroup_update_tree(mem, page);
709 			__mem_cgroup_target_update(mem,
710 						   MEM_CGROUP_TARGET_SOFTLIMIT);
711 		}
712 #if MAX_NUMNODES > 1
713 		if (unlikely(__memcg_event_check(mem,
714 			MEM_CGROUP_TARGET_NUMAINFO))) {
715 			atomic_inc(&mem->numainfo_events);
716 			__mem_cgroup_target_update(mem,
717 				MEM_CGROUP_TARGET_NUMAINFO);
718 		}
719 #endif
720 	}
721 }
722 
723 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
724 {
725 	return container_of(cgroup_subsys_state(cont,
726 				mem_cgroup_subsys_id), struct mem_cgroup,
727 				css);
728 }
729 
730 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
731 {
732 	/*
733 	 * mm_update_next_owner() may clear mm->owner to NULL
734 	 * if it races with swapoff, page migration, etc.
735 	 * So this can be called with p == NULL.
736 	 */
737 	if (unlikely(!p))
738 		return NULL;
739 
740 	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
741 				struct mem_cgroup, css);
742 }
743 
744 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
745 {
746 	struct mem_cgroup *mem = NULL;
747 
748 	if (!mm)
749 		return NULL;
750 	/*
751 	 * Because we have no locks, mm->owner's may be being moved to other
752 	 * cgroup. We use css_tryget() here even if this looks
753 	 * pessimistic (rather than adding locks here).
754 	 */
755 	rcu_read_lock();
756 	do {
757 		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
758 		if (unlikely(!mem))
759 			break;
760 	} while (!css_tryget(&mem->css));
761 	rcu_read_unlock();
762 	return mem;
763 }
764 
765 /* The caller has to guarantee "mem" exists before calling this */
766 static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
767 {
768 	struct cgroup_subsys_state *css;
769 	int found;
770 
771 	if (!mem) /* ROOT cgroup has the smallest ID */
772 		return root_mem_cgroup; /*css_put/get against root is ignored*/
773 	if (!mem->use_hierarchy) {
774 		if (css_tryget(&mem->css))
775 			return mem;
776 		return NULL;
777 	}
778 	rcu_read_lock();
779 	/*
780 	 * searching a memory cgroup which has the smallest ID under given
781 	 * ROOT cgroup. (ID >= 1)
782 	 */
783 	css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
784 	if (css && css_tryget(css))
785 		mem = container_of(css, struct mem_cgroup, css);
786 	else
787 		mem = NULL;
788 	rcu_read_unlock();
789 	return mem;
790 }
791 
792 static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
793 					struct mem_cgroup *root,
794 					bool cond)
795 {
796 	int nextid = css_id(&iter->css) + 1;
797 	int found;
798 	int hierarchy_used;
799 	struct cgroup_subsys_state *css;
800 
801 	hierarchy_used = iter->use_hierarchy;
802 
803 	css_put(&iter->css);
804 	/* If no ROOT, walk all, ignore hierarchy */
805 	if (!cond || (root && !hierarchy_used))
806 		return NULL;
807 
808 	if (!root)
809 		root = root_mem_cgroup;
810 
811 	do {
812 		iter = NULL;
813 		rcu_read_lock();
814 
815 		css = css_get_next(&mem_cgroup_subsys, nextid,
816 				&root->css, &found);
817 		if (css && css_tryget(css))
818 			iter = container_of(css, struct mem_cgroup, css);
819 		rcu_read_unlock();
820 		/* If css is NULL, no more cgroups will be found */
821 		nextid = found + 1;
822 	} while (css && !iter);
823 
824 	return iter;
825 }
826 /*
827  * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
828  * be careful that "break" loop is not allowed. We have reference count.
829  * Instead of that modify "cond" to be false and "continue" to exit the loop.
830  */
831 #define for_each_mem_cgroup_tree_cond(iter, root, cond)	\
832 	for (iter = mem_cgroup_start_loop(root);\
833 	     iter != NULL;\
834 	     iter = mem_cgroup_get_next(iter, root, cond))
835 
836 #define for_each_mem_cgroup_tree(iter, root) \
837 	for_each_mem_cgroup_tree_cond(iter, root, true)
838 
839 #define for_each_mem_cgroup_all(iter) \
840 	for_each_mem_cgroup_tree_cond(iter, NULL, true)
841 
842 
843 static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
844 {
845 	return (mem == root_mem_cgroup);
846 }
847 
848 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
849 {
850 	struct mem_cgroup *mem;
851 
852 	if (!mm)
853 		return;
854 
855 	rcu_read_lock();
856 	mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
857 	if (unlikely(!mem))
858 		goto out;
859 
860 	switch (idx) {
861 	case PGMAJFAULT:
862 		mem_cgroup_pgmajfault(mem, 1);
863 		break;
864 	case PGFAULT:
865 		mem_cgroup_pgfault(mem, 1);
866 		break;
867 	default:
868 		BUG();
869 	}
870 out:
871 	rcu_read_unlock();
872 }
873 EXPORT_SYMBOL(mem_cgroup_count_vm_event);
874 
875 /*
876  * Following LRU functions are allowed to be used without PCG_LOCK.
877  * Operations are called by routine of global LRU independently from memcg.
878  * What we have to take care of here is validness of pc->mem_cgroup.
879  *
880  * Changes to pc->mem_cgroup happens when
881  * 1. charge
882  * 2. moving account
883  * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
884  * It is added to LRU before charge.
885  * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
886  * When moving account, the page is not on LRU. It's isolated.
887  */
888 
889 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
890 {
891 	struct page_cgroup *pc;
892 	struct mem_cgroup_per_zone *mz;
893 
894 	if (mem_cgroup_disabled())
895 		return;
896 	pc = lookup_page_cgroup(page);
897 	/* can happen while we handle swapcache. */
898 	if (!TestClearPageCgroupAcctLRU(pc))
899 		return;
900 	VM_BUG_ON(!pc->mem_cgroup);
901 	/*
902 	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
903 	 * removed from global LRU.
904 	 */
905 	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
906 	/* huge page split is done under lru_lock. so, we have no races. */
907 	MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
908 	if (mem_cgroup_is_root(pc->mem_cgroup))
909 		return;
910 	VM_BUG_ON(list_empty(&pc->lru));
911 	list_del_init(&pc->lru);
912 }
913 
914 void mem_cgroup_del_lru(struct page *page)
915 {
916 	mem_cgroup_del_lru_list(page, page_lru(page));
917 }
918 
919 /*
920  * Writeback is about to end against a page which has been marked for immediate
921  * reclaim.  If it still appears to be reclaimable, move it to the tail of the
922  * inactive list.
923  */
924 void mem_cgroup_rotate_reclaimable_page(struct page *page)
925 {
926 	struct mem_cgroup_per_zone *mz;
927 	struct page_cgroup *pc;
928 	enum lru_list lru = page_lru(page);
929 
930 	if (mem_cgroup_disabled())
931 		return;
932 
933 	pc = lookup_page_cgroup(page);
934 	/* unused or root page is not rotated. */
935 	if (!PageCgroupUsed(pc))
936 		return;
937 	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
938 	smp_rmb();
939 	if (mem_cgroup_is_root(pc->mem_cgroup))
940 		return;
941 	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
942 	list_move_tail(&pc->lru, &mz->lists[lru]);
943 }
944 
945 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
946 {
947 	struct mem_cgroup_per_zone *mz;
948 	struct page_cgroup *pc;
949 
950 	if (mem_cgroup_disabled())
951 		return;
952 
953 	pc = lookup_page_cgroup(page);
954 	/* unused or root page is not rotated. */
955 	if (!PageCgroupUsed(pc))
956 		return;
957 	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
958 	smp_rmb();
959 	if (mem_cgroup_is_root(pc->mem_cgroup))
960 		return;
961 	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
962 	list_move(&pc->lru, &mz->lists[lru]);
963 }
964 
965 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
966 {
967 	struct page_cgroup *pc;
968 	struct mem_cgroup_per_zone *mz;
969 
970 	if (mem_cgroup_disabled())
971 		return;
972 	pc = lookup_page_cgroup(page);
973 	VM_BUG_ON(PageCgroupAcctLRU(pc));
974 	if (!PageCgroupUsed(pc))
975 		return;
976 	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
977 	smp_rmb();
978 	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
979 	/* huge page split is done under lru_lock. so, we have no races. */
980 	MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
981 	SetPageCgroupAcctLRU(pc);
982 	if (mem_cgroup_is_root(pc->mem_cgroup))
983 		return;
984 	list_add(&pc->lru, &mz->lists[lru]);
985 }
986 
987 /*
988  * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed
989  * while it's linked to lru because the page may be reused after it's fully
990  * uncharged. To handle that, unlink page_cgroup from LRU when charge it again.
991  * It's done under lock_page and expected that zone->lru_lock isnever held.
992  */
993 static void mem_cgroup_lru_del_before_commit(struct page *page)
994 {
995 	unsigned long flags;
996 	struct zone *zone = page_zone(page);
997 	struct page_cgroup *pc = lookup_page_cgroup(page);
998 
999 	/*
1000 	 * Doing this check without taking ->lru_lock seems wrong but this
1001 	 * is safe. Because if page_cgroup's USED bit is unset, the page
1002 	 * will not be added to any memcg's LRU. If page_cgroup's USED bit is
1003 	 * set, the commit after this will fail, anyway.
1004 	 * This all charge/uncharge is done under some mutual execustion.
1005 	 * So, we don't need to taking care of changes in USED bit.
1006 	 */
1007 	if (likely(!PageLRU(page)))
1008 		return;
1009 
1010 	spin_lock_irqsave(&zone->lru_lock, flags);
1011 	/*
1012 	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
1013 	 * is guarded by lock_page() because the page is SwapCache.
1014 	 */
1015 	if (!PageCgroupUsed(pc))
1016 		mem_cgroup_del_lru_list(page, page_lru(page));
1017 	spin_unlock_irqrestore(&zone->lru_lock, flags);
1018 }
1019 
1020 static void mem_cgroup_lru_add_after_commit(struct page *page)
1021 {
1022 	unsigned long flags;
1023 	struct zone *zone = page_zone(page);
1024 	struct page_cgroup *pc = lookup_page_cgroup(page);
1025 
1026 	/* taking care of that the page is added to LRU while we commit it */
1027 	if (likely(!PageLRU(page)))
1028 		return;
1029 	spin_lock_irqsave(&zone->lru_lock, flags);
1030 	/* link when the page is linked to LRU but page_cgroup isn't */
1031 	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
1032 		mem_cgroup_add_lru_list(page, page_lru(page));
1033 	spin_unlock_irqrestore(&zone->lru_lock, flags);
1034 }
1035 
1036 
1037 void mem_cgroup_move_lists(struct page *page,
1038 			   enum lru_list from, enum lru_list to)
1039 {
1040 	if (mem_cgroup_disabled())
1041 		return;
1042 	mem_cgroup_del_lru_list(page, from);
1043 	mem_cgroup_add_lru_list(page, to);
1044 }
1045 
1046 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
1047 {
1048 	int ret;
1049 	struct mem_cgroup *curr = NULL;
1050 	struct task_struct *p;
1051 
1052 	p = find_lock_task_mm(task);
1053 	if (!p)
1054 		return 0;
1055 	curr = try_get_mem_cgroup_from_mm(p->mm);
1056 	task_unlock(p);
1057 	if (!curr)
1058 		return 0;
1059 	/*
1060 	 * We should check use_hierarchy of "mem" not "curr". Because checking
1061 	 * use_hierarchy of "curr" here make this function true if hierarchy is
1062 	 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
1063 	 * hierarchy(even if use_hierarchy is disabled in "mem").
1064 	 */
1065 	if (mem->use_hierarchy)
1066 		ret = css_is_ancestor(&curr->css, &mem->css);
1067 	else
1068 		ret = (curr == mem);
1069 	css_put(&curr->css);
1070 	return ret;
1071 }
1072 
1073 static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
1074 {
1075 	unsigned long active;
1076 	unsigned long inactive;
1077 	unsigned long gb;
1078 	unsigned long inactive_ratio;
1079 
1080 	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
1081 	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
1082 
1083 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
1084 	if (gb)
1085 		inactive_ratio = int_sqrt(10 * gb);
1086 	else
1087 		inactive_ratio = 1;
1088 
1089 	if (present_pages) {
1090 		present_pages[0] = inactive;
1091 		present_pages[1] = active;
1092 	}
1093 
1094 	return inactive_ratio;
1095 }
1096 
1097 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
1098 {
1099 	unsigned long active;
1100 	unsigned long inactive;
1101 	unsigned long present_pages[2];
1102 	unsigned long inactive_ratio;
1103 
1104 	inactive_ratio = calc_inactive_ratio(memcg, present_pages);
1105 
1106 	inactive = present_pages[0];
1107 	active = present_pages[1];
1108 
1109 	if (inactive * inactive_ratio < active)
1110 		return 1;
1111 
1112 	return 0;
1113 }
1114 
1115 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
1116 {
1117 	unsigned long active;
1118 	unsigned long inactive;
1119 
1120 	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
1121 	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
1122 
1123 	return (active > inactive);
1124 }
1125 
1126 unsigned long mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg,
1127 						struct zone *zone,
1128 						enum lru_list lru)
1129 {
1130 	int nid = zone_to_nid(zone);
1131 	int zid = zone_idx(zone);
1132 	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1133 
1134 	return MEM_CGROUP_ZSTAT(mz, lru);
1135 }
1136 
1137 static unsigned long mem_cgroup_node_nr_file_lru_pages(struct mem_cgroup *memcg,
1138 							int nid)
1139 {
1140 	unsigned long ret;
1141 
1142 	ret = mem_cgroup_get_zonestat_node(memcg, nid, LRU_INACTIVE_FILE) +
1143 		mem_cgroup_get_zonestat_node(memcg, nid, LRU_ACTIVE_FILE);
1144 
1145 	return ret;
1146 }
1147 
1148 static unsigned long mem_cgroup_node_nr_anon_lru_pages(struct mem_cgroup *memcg,
1149 							int nid)
1150 {
1151 	unsigned long ret;
1152 
1153 	ret = mem_cgroup_get_zonestat_node(memcg, nid, LRU_INACTIVE_ANON) +
1154 		mem_cgroup_get_zonestat_node(memcg, nid, LRU_ACTIVE_ANON);
1155 	return ret;
1156 }
1157 
1158 #if MAX_NUMNODES > 1
1159 static unsigned long mem_cgroup_nr_file_lru_pages(struct mem_cgroup *memcg)
1160 {
1161 	u64 total = 0;
1162 	int nid;
1163 
1164 	for_each_node_state(nid, N_HIGH_MEMORY)
1165 		total += mem_cgroup_node_nr_file_lru_pages(memcg, nid);
1166 
1167 	return total;
1168 }
1169 
1170 static unsigned long mem_cgroup_nr_anon_lru_pages(struct mem_cgroup *memcg)
1171 {
1172 	u64 total = 0;
1173 	int nid;
1174 
1175 	for_each_node_state(nid, N_HIGH_MEMORY)
1176 		total += mem_cgroup_node_nr_anon_lru_pages(memcg, nid);
1177 
1178 	return total;
1179 }
1180 
1181 static unsigned long
1182 mem_cgroup_node_nr_unevictable_lru_pages(struct mem_cgroup *memcg, int nid)
1183 {
1184 	return mem_cgroup_get_zonestat_node(memcg, nid, LRU_UNEVICTABLE);
1185 }
1186 
1187 static unsigned long
1188 mem_cgroup_nr_unevictable_lru_pages(struct mem_cgroup *memcg)
1189 {
1190 	u64 total = 0;
1191 	int nid;
1192 
1193 	for_each_node_state(nid, N_HIGH_MEMORY)
1194 		total += mem_cgroup_node_nr_unevictable_lru_pages(memcg, nid);
1195 
1196 	return total;
1197 }
1198 
1199 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
1200 							int nid)
1201 {
1202 	enum lru_list l;
1203 	u64 total = 0;
1204 
1205 	for_each_lru(l)
1206 		total += mem_cgroup_get_zonestat_node(memcg, nid, l);
1207 
1208 	return total;
1209 }
1210 
1211 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg)
1212 {
1213 	u64 total = 0;
1214 	int nid;
1215 
1216 	for_each_node_state(nid, N_HIGH_MEMORY)
1217 		total += mem_cgroup_node_nr_lru_pages(memcg, nid);
1218 
1219 	return total;
1220 }
1221 #endif /* CONFIG_NUMA */
1222 
1223 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1224 						      struct zone *zone)
1225 {
1226 	int nid = zone_to_nid(zone);
1227 	int zid = zone_idx(zone);
1228 	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1229 
1230 	return &mz->reclaim_stat;
1231 }
1232 
1233 struct zone_reclaim_stat *
1234 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1235 {
1236 	struct page_cgroup *pc;
1237 	struct mem_cgroup_per_zone *mz;
1238 
1239 	if (mem_cgroup_disabled())
1240 		return NULL;
1241 
1242 	pc = lookup_page_cgroup(page);
1243 	if (!PageCgroupUsed(pc))
1244 		return NULL;
1245 	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1246 	smp_rmb();
1247 	mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1248 	return &mz->reclaim_stat;
1249 }
1250 
1251 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1252 					struct list_head *dst,
1253 					unsigned long *scanned, int order,
1254 					int mode, struct zone *z,
1255 					struct mem_cgroup *mem_cont,
1256 					int active, int file)
1257 {
1258 	unsigned long nr_taken = 0;
1259 	struct page *page;
1260 	unsigned long scan;
1261 	LIST_HEAD(pc_list);
1262 	struct list_head *src;
1263 	struct page_cgroup *pc, *tmp;
1264 	int nid = zone_to_nid(z);
1265 	int zid = zone_idx(z);
1266 	struct mem_cgroup_per_zone *mz;
1267 	int lru = LRU_FILE * file + active;
1268 	int ret;
1269 
1270 	BUG_ON(!mem_cont);
1271 	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1272 	src = &mz->lists[lru];
1273 
1274 	scan = 0;
1275 	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
1276 		if (scan >= nr_to_scan)
1277 			break;
1278 
1279 		if (unlikely(!PageCgroupUsed(pc)))
1280 			continue;
1281 
1282 		page = lookup_cgroup_page(pc);
1283 
1284 		if (unlikely(!PageLRU(page)))
1285 			continue;
1286 
1287 		scan++;
1288 		ret = __isolate_lru_page(page, mode, file);
1289 		switch (ret) {
1290 		case 0:
1291 			list_move(&page->lru, dst);
1292 			mem_cgroup_del_lru(page);
1293 			nr_taken += hpage_nr_pages(page);
1294 			break;
1295 		case -EBUSY:
1296 			/* we don't affect global LRU but rotate in our LRU */
1297 			mem_cgroup_rotate_lru_list(page, page_lru(page));
1298 			break;
1299 		default:
1300 			break;
1301 		}
1302 	}
1303 
1304 	*scanned = scan;
1305 
1306 	trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1307 				      0, 0, 0, mode);
1308 
1309 	return nr_taken;
1310 }
1311 
1312 #define mem_cgroup_from_res_counter(counter, member)	\
1313 	container_of(counter, struct mem_cgroup, member)
1314 
1315 /**
1316  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1317  * @mem: the memory cgroup
1318  *
1319  * Returns the maximum amount of memory @mem can be charged with, in
1320  * pages.
1321  */
1322 static unsigned long mem_cgroup_margin(struct mem_cgroup *mem)
1323 {
1324 	unsigned long long margin;
1325 
1326 	margin = res_counter_margin(&mem->res);
1327 	if (do_swap_account)
1328 		margin = min(margin, res_counter_margin(&mem->memsw));
1329 	return margin >> PAGE_SHIFT;
1330 }
1331 
1332 static unsigned int get_swappiness(struct mem_cgroup *memcg)
1333 {
1334 	struct cgroup *cgrp = memcg->css.cgroup;
1335 
1336 	/* root ? */
1337 	if (cgrp->parent == NULL)
1338 		return vm_swappiness;
1339 
1340 	return memcg->swappiness;
1341 }
1342 
1343 static void mem_cgroup_start_move(struct mem_cgroup *mem)
1344 {
1345 	int cpu;
1346 
1347 	get_online_cpus();
1348 	spin_lock(&mem->pcp_counter_lock);
1349 	for_each_online_cpu(cpu)
1350 		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1351 	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1352 	spin_unlock(&mem->pcp_counter_lock);
1353 	put_online_cpus();
1354 
1355 	synchronize_rcu();
1356 }
1357 
1358 static void mem_cgroup_end_move(struct mem_cgroup *mem)
1359 {
1360 	int cpu;
1361 
1362 	if (!mem)
1363 		return;
1364 	get_online_cpus();
1365 	spin_lock(&mem->pcp_counter_lock);
1366 	for_each_online_cpu(cpu)
1367 		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1368 	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1369 	spin_unlock(&mem->pcp_counter_lock);
1370 	put_online_cpus();
1371 }
1372 /*
1373  * 2 routines for checking "mem" is under move_account() or not.
1374  *
1375  * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1376  *			  for avoiding race in accounting. If true,
1377  *			  pc->mem_cgroup may be overwritten.
1378  *
1379  * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1380  *			  under hierarchy of moving cgroups. This is for
1381  *			  waiting at hith-memory prressure caused by "move".
1382  */
1383 
1384 static bool mem_cgroup_stealed(struct mem_cgroup *mem)
1385 {
1386 	VM_BUG_ON(!rcu_read_lock_held());
1387 	return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1388 }
1389 
1390 static bool mem_cgroup_under_move(struct mem_cgroup *mem)
1391 {
1392 	struct mem_cgroup *from;
1393 	struct mem_cgroup *to;
1394 	bool ret = false;
1395 	/*
1396 	 * Unlike task_move routines, we access mc.to, mc.from not under
1397 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1398 	 */
1399 	spin_lock(&mc.lock);
1400 	from = mc.from;
1401 	to = mc.to;
1402 	if (!from)
1403 		goto unlock;
1404 	if (from == mem || to == mem
1405 	    || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
1406 	    || (mem->use_hierarchy && css_is_ancestor(&to->css,	&mem->css)))
1407 		ret = true;
1408 unlock:
1409 	spin_unlock(&mc.lock);
1410 	return ret;
1411 }
1412 
1413 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
1414 {
1415 	if (mc.moving_task && current != mc.moving_task) {
1416 		if (mem_cgroup_under_move(mem)) {
1417 			DEFINE_WAIT(wait);
1418 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1419 			/* moving charge context might have finished. */
1420 			if (mc.moving_task)
1421 				schedule();
1422 			finish_wait(&mc.waitq, &wait);
1423 			return true;
1424 		}
1425 	}
1426 	return false;
1427 }
1428 
1429 /**
1430  * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1431  * @memcg: The memory cgroup that went over limit
1432  * @p: Task that is going to be killed
1433  *
1434  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1435  * enabled
1436  */
1437 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1438 {
1439 	struct cgroup *task_cgrp;
1440 	struct cgroup *mem_cgrp;
1441 	/*
1442 	 * Need a buffer in BSS, can't rely on allocations. The code relies
1443 	 * on the assumption that OOM is serialized for memory controller.
1444 	 * If this assumption is broken, revisit this code.
1445 	 */
1446 	static char memcg_name[PATH_MAX];
1447 	int ret;
1448 
1449 	if (!memcg || !p)
1450 		return;
1451 
1452 
1453 	rcu_read_lock();
1454 
1455 	mem_cgrp = memcg->css.cgroup;
1456 	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1457 
1458 	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1459 	if (ret < 0) {
1460 		/*
1461 		 * Unfortunately, we are unable to convert to a useful name
1462 		 * But we'll still print out the usage information
1463 		 */
1464 		rcu_read_unlock();
1465 		goto done;
1466 	}
1467 	rcu_read_unlock();
1468 
1469 	printk(KERN_INFO "Task in %s killed", memcg_name);
1470 
1471 	rcu_read_lock();
1472 	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1473 	if (ret < 0) {
1474 		rcu_read_unlock();
1475 		goto done;
1476 	}
1477 	rcu_read_unlock();
1478 
1479 	/*
1480 	 * Continues from above, so we don't need an KERN_ level
1481 	 */
1482 	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1483 done:
1484 
1485 	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1486 		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1487 		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1488 		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1489 	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1490 		"failcnt %llu\n",
1491 		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1492 		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1493 		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1494 }
1495 
1496 /*
1497  * This function returns the number of memcg under hierarchy tree. Returns
1498  * 1(self count) if no children.
1499  */
1500 static int mem_cgroup_count_children(struct mem_cgroup *mem)
1501 {
1502 	int num = 0;
1503 	struct mem_cgroup *iter;
1504 
1505 	for_each_mem_cgroup_tree(iter, mem)
1506 		num++;
1507 	return num;
1508 }
1509 
1510 /*
1511  * Return the memory (and swap, if configured) limit for a memcg.
1512  */
1513 u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1514 {
1515 	u64 limit;
1516 	u64 memsw;
1517 
1518 	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1519 	limit += total_swap_pages << PAGE_SHIFT;
1520 
1521 	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1522 	/*
1523 	 * If memsw is finite and limits the amount of swap space available
1524 	 * to this memcg, return that limit.
1525 	 */
1526 	return min(limit, memsw);
1527 }
1528 
1529 /*
1530  * Visit the first child (need not be the first child as per the ordering
1531  * of the cgroup list, since we track last_scanned_child) of @mem and use
1532  * that to reclaim free pages from.
1533  */
1534 static struct mem_cgroup *
1535 mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1536 {
1537 	struct mem_cgroup *ret = NULL;
1538 	struct cgroup_subsys_state *css;
1539 	int nextid, found;
1540 
1541 	if (!root_mem->use_hierarchy) {
1542 		css_get(&root_mem->css);
1543 		ret = root_mem;
1544 	}
1545 
1546 	while (!ret) {
1547 		rcu_read_lock();
1548 		nextid = root_mem->last_scanned_child + 1;
1549 		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1550 				   &found);
1551 		if (css && css_tryget(css))
1552 			ret = container_of(css, struct mem_cgroup, css);
1553 
1554 		rcu_read_unlock();
1555 		/* Updates scanning parameter */
1556 		if (!css) {
1557 			/* this means start scan from ID:1 */
1558 			root_mem->last_scanned_child = 0;
1559 		} else
1560 			root_mem->last_scanned_child = found;
1561 	}
1562 
1563 	return ret;
1564 }
1565 
1566 /**
1567  * test_mem_cgroup_node_reclaimable
1568  * @mem: the target memcg
1569  * @nid: the node ID to be checked.
1570  * @noswap : specify true here if the user wants flle only information.
1571  *
1572  * This function returns whether the specified memcg contains any
1573  * reclaimable pages on a node. Returns true if there are any reclaimable
1574  * pages in the node.
1575  */
1576 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *mem,
1577 		int nid, bool noswap)
1578 {
1579 	if (mem_cgroup_node_nr_file_lru_pages(mem, nid))
1580 		return true;
1581 	if (noswap || !total_swap_pages)
1582 		return false;
1583 	if (mem_cgroup_node_nr_anon_lru_pages(mem, nid))
1584 		return true;
1585 	return false;
1586 
1587 }
1588 #if MAX_NUMNODES > 1
1589 
1590 /*
1591  * Always updating the nodemask is not very good - even if we have an empty
1592  * list or the wrong list here, we can start from some node and traverse all
1593  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1594  *
1595  */
1596 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *mem)
1597 {
1598 	int nid;
1599 	/*
1600 	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1601 	 * pagein/pageout changes since the last update.
1602 	 */
1603 	if (!atomic_read(&mem->numainfo_events))
1604 		return;
1605 	if (atomic_inc_return(&mem->numainfo_updating) > 1)
1606 		return;
1607 
1608 	/* make a nodemask where this memcg uses memory from */
1609 	mem->scan_nodes = node_states[N_HIGH_MEMORY];
1610 
1611 	for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1612 
1613 		if (!test_mem_cgroup_node_reclaimable(mem, nid, false))
1614 			node_clear(nid, mem->scan_nodes);
1615 	}
1616 
1617 	atomic_set(&mem->numainfo_events, 0);
1618 	atomic_set(&mem->numainfo_updating, 0);
1619 }
1620 
1621 /*
1622  * Selecting a node where we start reclaim from. Because what we need is just
1623  * reducing usage counter, start from anywhere is O,K. Considering
1624  * memory reclaim from current node, there are pros. and cons.
1625  *
1626  * Freeing memory from current node means freeing memory from a node which
1627  * we'll use or we've used. So, it may make LRU bad. And if several threads
1628  * hit limits, it will see a contention on a node. But freeing from remote
1629  * node means more costs for memory reclaim because of memory latency.
1630  *
1631  * Now, we use round-robin. Better algorithm is welcomed.
1632  */
1633 int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
1634 {
1635 	int node;
1636 
1637 	mem_cgroup_may_update_nodemask(mem);
1638 	node = mem->last_scanned_node;
1639 
1640 	node = next_node(node, mem->scan_nodes);
1641 	if (node == MAX_NUMNODES)
1642 		node = first_node(mem->scan_nodes);
1643 	/*
1644 	 * We call this when we hit limit, not when pages are added to LRU.
1645 	 * No LRU may hold pages because all pages are UNEVICTABLE or
1646 	 * memcg is too small and all pages are not on LRU. In that case,
1647 	 * we use curret node.
1648 	 */
1649 	if (unlikely(node == MAX_NUMNODES))
1650 		node = numa_node_id();
1651 
1652 	mem->last_scanned_node = node;
1653 	return node;
1654 }
1655 
1656 /*
1657  * Check all nodes whether it contains reclaimable pages or not.
1658  * For quick scan, we make use of scan_nodes. This will allow us to skip
1659  * unused nodes. But scan_nodes is lazily updated and may not cotain
1660  * enough new information. We need to do double check.
1661  */
1662 bool mem_cgroup_reclaimable(struct mem_cgroup *mem, bool noswap)
1663 {
1664 	int nid;
1665 
1666 	/*
1667 	 * quick check...making use of scan_node.
1668 	 * We can skip unused nodes.
1669 	 */
1670 	if (!nodes_empty(mem->scan_nodes)) {
1671 		for (nid = first_node(mem->scan_nodes);
1672 		     nid < MAX_NUMNODES;
1673 		     nid = next_node(nid, mem->scan_nodes)) {
1674 
1675 			if (test_mem_cgroup_node_reclaimable(mem, nid, noswap))
1676 				return true;
1677 		}
1678 	}
1679 	/*
1680 	 * Check rest of nodes.
1681 	 */
1682 	for_each_node_state(nid, N_HIGH_MEMORY) {
1683 		if (node_isset(nid, mem->scan_nodes))
1684 			continue;
1685 		if (test_mem_cgroup_node_reclaimable(mem, nid, noswap))
1686 			return true;
1687 	}
1688 	return false;
1689 }
1690 
1691 #else
1692 int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
1693 {
1694 	return 0;
1695 }
1696 
1697 bool mem_cgroup_reclaimable(struct mem_cgroup *mem, bool noswap)
1698 {
1699 	return test_mem_cgroup_node_reclaimable(mem, 0, noswap);
1700 }
1701 #endif
1702 
1703 /*
1704  * Scan the hierarchy if needed to reclaim memory. We remember the last child
1705  * we reclaimed from, so that we don't end up penalizing one child extensively
1706  * based on its position in the children list.
1707  *
1708  * root_mem is the original ancestor that we've been reclaim from.
1709  *
1710  * We give up and return to the caller when we visit root_mem twice.
1711  * (other groups can be removed while we're walking....)
1712  *
1713  * If shrink==true, for avoiding to free too much, this returns immedieately.
1714  */
1715 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1716 						struct zone *zone,
1717 						gfp_t gfp_mask,
1718 						unsigned long reclaim_options,
1719 						unsigned long *total_scanned)
1720 {
1721 	struct mem_cgroup *victim;
1722 	int ret, total = 0;
1723 	int loop = 0;
1724 	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1725 	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1726 	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1727 	unsigned long excess;
1728 	unsigned long nr_scanned;
1729 
1730 	excess = res_counter_soft_limit_excess(&root_mem->res) >> PAGE_SHIFT;
1731 
1732 	/* If memsw_is_minimum==1, swap-out is of-no-use. */
1733 	if (!check_soft && root_mem->memsw_is_minimum)
1734 		noswap = true;
1735 
1736 	while (1) {
1737 		victim = mem_cgroup_select_victim(root_mem);
1738 		if (victim == root_mem) {
1739 			loop++;
1740 			/*
1741 			 * We are not draining per cpu cached charges during
1742 			 * soft limit reclaim  because global reclaim doesn't
1743 			 * care about charges. It tries to free some memory and
1744 			 * charges will not give any.
1745 			 */
1746 			if (!check_soft && loop >= 1)
1747 				drain_all_stock_async(root_mem);
1748 			if (loop >= 2) {
1749 				/*
1750 				 * If we have not been able to reclaim
1751 				 * anything, it might because there are
1752 				 * no reclaimable pages under this hierarchy
1753 				 */
1754 				if (!check_soft || !total) {
1755 					css_put(&victim->css);
1756 					break;
1757 				}
1758 				/*
1759 				 * We want to do more targeted reclaim.
1760 				 * excess >> 2 is not to excessive so as to
1761 				 * reclaim too much, nor too less that we keep
1762 				 * coming back to reclaim from this cgroup
1763 				 */
1764 				if (total >= (excess >> 2) ||
1765 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1766 					css_put(&victim->css);
1767 					break;
1768 				}
1769 			}
1770 		}
1771 		if (!mem_cgroup_reclaimable(victim, noswap)) {
1772 			/* this cgroup's local usage == 0 */
1773 			css_put(&victim->css);
1774 			continue;
1775 		}
1776 		/* we use swappiness of local cgroup */
1777 		if (check_soft) {
1778 			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1779 				noswap, get_swappiness(victim), zone,
1780 				&nr_scanned);
1781 			*total_scanned += nr_scanned;
1782 		} else
1783 			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1784 						noswap, get_swappiness(victim));
1785 		css_put(&victim->css);
1786 		/*
1787 		 * At shrinking usage, we can't check we should stop here or
1788 		 * reclaim more. It's depends on callers. last_scanned_child
1789 		 * will work enough for keeping fairness under tree.
1790 		 */
1791 		if (shrink)
1792 			return ret;
1793 		total += ret;
1794 		if (check_soft) {
1795 			if (!res_counter_soft_limit_excess(&root_mem->res))
1796 				return total;
1797 		} else if (mem_cgroup_margin(root_mem))
1798 			return total;
1799 	}
1800 	return total;
1801 }
1802 
1803 /*
1804  * Check OOM-Killer is already running under our hierarchy.
1805  * If someone is running, return false.
1806  */
1807 static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1808 {
1809 	int x, lock_count = 0;
1810 	struct mem_cgroup *iter;
1811 
1812 	for_each_mem_cgroup_tree(iter, mem) {
1813 		x = atomic_inc_return(&iter->oom_lock);
1814 		lock_count = max(x, lock_count);
1815 	}
1816 
1817 	if (lock_count == 1)
1818 		return true;
1819 	return false;
1820 }
1821 
1822 static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1823 {
1824 	struct mem_cgroup *iter;
1825 
1826 	/*
1827 	 * When a new child is created while the hierarchy is under oom,
1828 	 * mem_cgroup_oom_lock() may not be called. We have to use
1829 	 * atomic_add_unless() here.
1830 	 */
1831 	for_each_mem_cgroup_tree(iter, mem)
1832 		atomic_add_unless(&iter->oom_lock, -1, 0);
1833 	return 0;
1834 }
1835 
1836 
1837 static DEFINE_MUTEX(memcg_oom_mutex);
1838 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1839 
1840 struct oom_wait_info {
1841 	struct mem_cgroup *mem;
1842 	wait_queue_t	wait;
1843 };
1844 
1845 static int memcg_oom_wake_function(wait_queue_t *wait,
1846 	unsigned mode, int sync, void *arg)
1847 {
1848 	struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
1849 	struct oom_wait_info *oom_wait_info;
1850 
1851 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1852 
1853 	if (oom_wait_info->mem == wake_mem)
1854 		goto wakeup;
1855 	/* if no hierarchy, no match */
1856 	if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
1857 		return 0;
1858 	/*
1859 	 * Both of oom_wait_info->mem and wake_mem are stable under us.
1860 	 * Then we can use css_is_ancestor without taking care of RCU.
1861 	 */
1862 	if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
1863 	    !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
1864 		return 0;
1865 
1866 wakeup:
1867 	return autoremove_wake_function(wait, mode, sync, arg);
1868 }
1869 
1870 static void memcg_wakeup_oom(struct mem_cgroup *mem)
1871 {
1872 	/* for filtering, pass "mem" as argument. */
1873 	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
1874 }
1875 
1876 static void memcg_oom_recover(struct mem_cgroup *mem)
1877 {
1878 	if (mem && atomic_read(&mem->oom_lock))
1879 		memcg_wakeup_oom(mem);
1880 }
1881 
1882 /*
1883  * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1884  */
1885 bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1886 {
1887 	struct oom_wait_info owait;
1888 	bool locked, need_to_kill;
1889 
1890 	owait.mem = mem;
1891 	owait.wait.flags = 0;
1892 	owait.wait.func = memcg_oom_wake_function;
1893 	owait.wait.private = current;
1894 	INIT_LIST_HEAD(&owait.wait.task_list);
1895 	need_to_kill = true;
1896 	/* At first, try to OOM lock hierarchy under mem.*/
1897 	mutex_lock(&memcg_oom_mutex);
1898 	locked = mem_cgroup_oom_lock(mem);
1899 	/*
1900 	 * Even if signal_pending(), we can't quit charge() loop without
1901 	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1902 	 * under OOM is always welcomed, use TASK_KILLABLE here.
1903 	 */
1904 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1905 	if (!locked || mem->oom_kill_disable)
1906 		need_to_kill = false;
1907 	if (locked)
1908 		mem_cgroup_oom_notify(mem);
1909 	mutex_unlock(&memcg_oom_mutex);
1910 
1911 	if (need_to_kill) {
1912 		finish_wait(&memcg_oom_waitq, &owait.wait);
1913 		mem_cgroup_out_of_memory(mem, mask);
1914 	} else {
1915 		schedule();
1916 		finish_wait(&memcg_oom_waitq, &owait.wait);
1917 	}
1918 	mutex_lock(&memcg_oom_mutex);
1919 	mem_cgroup_oom_unlock(mem);
1920 	memcg_wakeup_oom(mem);
1921 	mutex_unlock(&memcg_oom_mutex);
1922 
1923 	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1924 		return false;
1925 	/* Give chance to dying process */
1926 	schedule_timeout(1);
1927 	return true;
1928 }
1929 
1930 /*
1931  * Currently used to update mapped file statistics, but the routine can be
1932  * generalized to update other statistics as well.
1933  *
1934  * Notes: Race condition
1935  *
1936  * We usually use page_cgroup_lock() for accessing page_cgroup member but
1937  * it tends to be costly. But considering some conditions, we doesn't need
1938  * to do so _always_.
1939  *
1940  * Considering "charge", lock_page_cgroup() is not required because all
1941  * file-stat operations happen after a page is attached to radix-tree. There
1942  * are no race with "charge".
1943  *
1944  * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1945  * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1946  * if there are race with "uncharge". Statistics itself is properly handled
1947  * by flags.
1948  *
1949  * Considering "move", this is an only case we see a race. To make the race
1950  * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1951  * possibility of race condition. If there is, we take a lock.
1952  */
1953 
1954 void mem_cgroup_update_page_stat(struct page *page,
1955 				 enum mem_cgroup_page_stat_item idx, int val)
1956 {
1957 	struct mem_cgroup *mem;
1958 	struct page_cgroup *pc = lookup_page_cgroup(page);
1959 	bool need_unlock = false;
1960 	unsigned long uninitialized_var(flags);
1961 
1962 	if (unlikely(!pc))
1963 		return;
1964 
1965 	rcu_read_lock();
1966 	mem = pc->mem_cgroup;
1967 	if (unlikely(!mem || !PageCgroupUsed(pc)))
1968 		goto out;
1969 	/* pc->mem_cgroup is unstable ? */
1970 	if (unlikely(mem_cgroup_stealed(mem)) || PageTransHuge(page)) {
1971 		/* take a lock against to access pc->mem_cgroup */
1972 		move_lock_page_cgroup(pc, &flags);
1973 		need_unlock = true;
1974 		mem = pc->mem_cgroup;
1975 		if (!mem || !PageCgroupUsed(pc))
1976 			goto out;
1977 	}
1978 
1979 	switch (idx) {
1980 	case MEMCG_NR_FILE_MAPPED:
1981 		if (val > 0)
1982 			SetPageCgroupFileMapped(pc);
1983 		else if (!page_mapped(page))
1984 			ClearPageCgroupFileMapped(pc);
1985 		idx = MEM_CGROUP_STAT_FILE_MAPPED;
1986 		break;
1987 	default:
1988 		BUG();
1989 	}
1990 
1991 	this_cpu_add(mem->stat->count[idx], val);
1992 
1993 out:
1994 	if (unlikely(need_unlock))
1995 		move_unlock_page_cgroup(pc, &flags);
1996 	rcu_read_unlock();
1997 	return;
1998 }
1999 EXPORT_SYMBOL(mem_cgroup_update_page_stat);
2000 
2001 /*
2002  * size of first charge trial. "32" comes from vmscan.c's magic value.
2003  * TODO: maybe necessary to use big numbers in big irons.
2004  */
2005 #define CHARGE_BATCH	32U
2006 struct memcg_stock_pcp {
2007 	struct mem_cgroup *cached; /* this never be root cgroup */
2008 	unsigned int nr_pages;
2009 	struct work_struct work;
2010 	unsigned long flags;
2011 #define FLUSHING_CACHED_CHARGE	(0)
2012 };
2013 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2014 static DEFINE_MUTEX(percpu_charge_mutex);
2015 
2016 /*
2017  * Try to consume stocked charge on this cpu. If success, one page is consumed
2018  * from local stock and true is returned. If the stock is 0 or charges from a
2019  * cgroup which is not current target, returns false. This stock will be
2020  * refilled.
2021  */
2022 static bool consume_stock(struct mem_cgroup *mem)
2023 {
2024 	struct memcg_stock_pcp *stock;
2025 	bool ret = true;
2026 
2027 	stock = &get_cpu_var(memcg_stock);
2028 	if (mem == stock->cached && stock->nr_pages)
2029 		stock->nr_pages--;
2030 	else /* need to call res_counter_charge */
2031 		ret = false;
2032 	put_cpu_var(memcg_stock);
2033 	return ret;
2034 }
2035 
2036 /*
2037  * Returns stocks cached in percpu to res_counter and reset cached information.
2038  */
2039 static void drain_stock(struct memcg_stock_pcp *stock)
2040 {
2041 	struct mem_cgroup *old = stock->cached;
2042 
2043 	if (stock->nr_pages) {
2044 		unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2045 
2046 		res_counter_uncharge(&old->res, bytes);
2047 		if (do_swap_account)
2048 			res_counter_uncharge(&old->memsw, bytes);
2049 		stock->nr_pages = 0;
2050 	}
2051 	stock->cached = NULL;
2052 }
2053 
2054 /*
2055  * This must be called under preempt disabled or must be called by
2056  * a thread which is pinned to local cpu.
2057  */
2058 static void drain_local_stock(struct work_struct *dummy)
2059 {
2060 	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2061 	drain_stock(stock);
2062 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2063 }
2064 
2065 /*
2066  * Cache charges(val) which is from res_counter, to local per_cpu area.
2067  * This will be consumed by consume_stock() function, later.
2068  */
2069 static void refill_stock(struct mem_cgroup *mem, unsigned int nr_pages)
2070 {
2071 	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2072 
2073 	if (stock->cached != mem) { /* reset if necessary */
2074 		drain_stock(stock);
2075 		stock->cached = mem;
2076 	}
2077 	stock->nr_pages += nr_pages;
2078 	put_cpu_var(memcg_stock);
2079 }
2080 
2081 /*
2082  * Tries to drain stocked charges in other cpus. This function is asynchronous
2083  * and just put a work per cpu for draining localy on each cpu. Caller can
2084  * expects some charges will be back to res_counter later but cannot wait for
2085  * it.
2086  */
2087 static void drain_all_stock_async(struct mem_cgroup *root_mem)
2088 {
2089 	int cpu, curcpu;
2090 	/*
2091 	 * If someone calls draining, avoid adding more kworker runs.
2092 	 */
2093 	if (!mutex_trylock(&percpu_charge_mutex))
2094 		return;
2095 	/* Notify other cpus that system-wide "drain" is running */
2096 	get_online_cpus();
2097 	/*
2098 	 * Get a hint for avoiding draining charges on the current cpu,
2099 	 * which must be exhausted by our charging.  It is not required that
2100 	 * this be a precise check, so we use raw_smp_processor_id() instead of
2101 	 * getcpu()/putcpu().
2102 	 */
2103 	curcpu = raw_smp_processor_id();
2104 	for_each_online_cpu(cpu) {
2105 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2106 		struct mem_cgroup *mem;
2107 
2108 		if (cpu == curcpu)
2109 			continue;
2110 
2111 		mem = stock->cached;
2112 		if (!mem)
2113 			continue;
2114 		if (mem != root_mem) {
2115 			if (!root_mem->use_hierarchy)
2116 				continue;
2117 			/* check whether "mem" is under tree of "root_mem" */
2118 			if (!css_is_ancestor(&mem->css, &root_mem->css))
2119 				continue;
2120 		}
2121 		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2122 			schedule_work_on(cpu, &stock->work);
2123 	}
2124  	put_online_cpus();
2125 	mutex_unlock(&percpu_charge_mutex);
2126 	/* We don't wait for flush_work */
2127 }
2128 
2129 /* This is a synchronous drain interface. */
2130 static void drain_all_stock_sync(void)
2131 {
2132 	/* called when force_empty is called */
2133 	mutex_lock(&percpu_charge_mutex);
2134 	schedule_on_each_cpu(drain_local_stock);
2135 	mutex_unlock(&percpu_charge_mutex);
2136 }
2137 
2138 /*
2139  * This function drains percpu counter value from DEAD cpu and
2140  * move it to local cpu. Note that this function can be preempted.
2141  */
2142 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
2143 {
2144 	int i;
2145 
2146 	spin_lock(&mem->pcp_counter_lock);
2147 	for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2148 		long x = per_cpu(mem->stat->count[i], cpu);
2149 
2150 		per_cpu(mem->stat->count[i], cpu) = 0;
2151 		mem->nocpu_base.count[i] += x;
2152 	}
2153 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2154 		unsigned long x = per_cpu(mem->stat->events[i], cpu);
2155 
2156 		per_cpu(mem->stat->events[i], cpu) = 0;
2157 		mem->nocpu_base.events[i] += x;
2158 	}
2159 	/* need to clear ON_MOVE value, works as a kind of lock. */
2160 	per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
2161 	spin_unlock(&mem->pcp_counter_lock);
2162 }
2163 
2164 static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
2165 {
2166 	int idx = MEM_CGROUP_ON_MOVE;
2167 
2168 	spin_lock(&mem->pcp_counter_lock);
2169 	per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
2170 	spin_unlock(&mem->pcp_counter_lock);
2171 }
2172 
2173 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2174 					unsigned long action,
2175 					void *hcpu)
2176 {
2177 	int cpu = (unsigned long)hcpu;
2178 	struct memcg_stock_pcp *stock;
2179 	struct mem_cgroup *iter;
2180 
2181 	if ((action == CPU_ONLINE)) {
2182 		for_each_mem_cgroup_all(iter)
2183 			synchronize_mem_cgroup_on_move(iter, cpu);
2184 		return NOTIFY_OK;
2185 	}
2186 
2187 	if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
2188 		return NOTIFY_OK;
2189 
2190 	for_each_mem_cgroup_all(iter)
2191 		mem_cgroup_drain_pcp_counter(iter, cpu);
2192 
2193 	stock = &per_cpu(memcg_stock, cpu);
2194 	drain_stock(stock);
2195 	return NOTIFY_OK;
2196 }
2197 
2198 
2199 /* See __mem_cgroup_try_charge() for details */
2200 enum {
2201 	CHARGE_OK,		/* success */
2202 	CHARGE_RETRY,		/* need to retry but retry is not bad */
2203 	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
2204 	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
2205 	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
2206 };
2207 
2208 static int mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
2209 				unsigned int nr_pages, bool oom_check)
2210 {
2211 	unsigned long csize = nr_pages * PAGE_SIZE;
2212 	struct mem_cgroup *mem_over_limit;
2213 	struct res_counter *fail_res;
2214 	unsigned long flags = 0;
2215 	int ret;
2216 
2217 	ret = res_counter_charge(&mem->res, csize, &fail_res);
2218 
2219 	if (likely(!ret)) {
2220 		if (!do_swap_account)
2221 			return CHARGE_OK;
2222 		ret = res_counter_charge(&mem->memsw, csize, &fail_res);
2223 		if (likely(!ret))
2224 			return CHARGE_OK;
2225 
2226 		res_counter_uncharge(&mem->res, csize);
2227 		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2228 		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2229 	} else
2230 		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2231 	/*
2232 	 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2233 	 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2234 	 *
2235 	 * Never reclaim on behalf of optional batching, retry with a
2236 	 * single page instead.
2237 	 */
2238 	if (nr_pages == CHARGE_BATCH)
2239 		return CHARGE_RETRY;
2240 
2241 	if (!(gfp_mask & __GFP_WAIT))
2242 		return CHARGE_WOULDBLOCK;
2243 
2244 	ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
2245 					      gfp_mask, flags, NULL);
2246 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2247 		return CHARGE_RETRY;
2248 	/*
2249 	 * Even though the limit is exceeded at this point, reclaim
2250 	 * may have been able to free some pages.  Retry the charge
2251 	 * before killing the task.
2252 	 *
2253 	 * Only for regular pages, though: huge pages are rather
2254 	 * unlikely to succeed so close to the limit, and we fall back
2255 	 * to regular pages anyway in case of failure.
2256 	 */
2257 	if (nr_pages == 1 && ret)
2258 		return CHARGE_RETRY;
2259 
2260 	/*
2261 	 * At task move, charge accounts can be doubly counted. So, it's
2262 	 * better to wait until the end of task_move if something is going on.
2263 	 */
2264 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2265 		return CHARGE_RETRY;
2266 
2267 	/* If we don't need to call oom-killer at el, return immediately */
2268 	if (!oom_check)
2269 		return CHARGE_NOMEM;
2270 	/* check OOM */
2271 	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
2272 		return CHARGE_OOM_DIE;
2273 
2274 	return CHARGE_RETRY;
2275 }
2276 
2277 /*
2278  * Unlike exported interface, "oom" parameter is added. if oom==true,
2279  * oom-killer can be invoked.
2280  */
2281 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2282 				   gfp_t gfp_mask,
2283 				   unsigned int nr_pages,
2284 				   struct mem_cgroup **memcg,
2285 				   bool oom)
2286 {
2287 	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2288 	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2289 	struct mem_cgroup *mem = NULL;
2290 	int ret;
2291 
2292 	/*
2293 	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2294 	 * in system level. So, allow to go ahead dying process in addition to
2295 	 * MEMDIE process.
2296 	 */
2297 	if (unlikely(test_thread_flag(TIF_MEMDIE)
2298 		     || fatal_signal_pending(current)))
2299 		goto bypass;
2300 
2301 	/*
2302 	 * We always charge the cgroup the mm_struct belongs to.
2303 	 * The mm_struct's mem_cgroup changes on task migration if the
2304 	 * thread group leader migrates. It's possible that mm is not
2305 	 * set, if so charge the init_mm (happens for pagecache usage).
2306 	 */
2307 	if (!*memcg && !mm)
2308 		goto bypass;
2309 again:
2310 	if (*memcg) { /* css should be a valid one */
2311 		mem = *memcg;
2312 		VM_BUG_ON(css_is_removed(&mem->css));
2313 		if (mem_cgroup_is_root(mem))
2314 			goto done;
2315 		if (nr_pages == 1 && consume_stock(mem))
2316 			goto done;
2317 		css_get(&mem->css);
2318 	} else {
2319 		struct task_struct *p;
2320 
2321 		rcu_read_lock();
2322 		p = rcu_dereference(mm->owner);
2323 		/*
2324 		 * Because we don't have task_lock(), "p" can exit.
2325 		 * In that case, "mem" can point to root or p can be NULL with
2326 		 * race with swapoff. Then, we have small risk of mis-accouning.
2327 		 * But such kind of mis-account by race always happens because
2328 		 * we don't have cgroup_mutex(). It's overkill and we allo that
2329 		 * small race, here.
2330 		 * (*) swapoff at el will charge against mm-struct not against
2331 		 * task-struct. So, mm->owner can be NULL.
2332 		 */
2333 		mem = mem_cgroup_from_task(p);
2334 		if (!mem || mem_cgroup_is_root(mem)) {
2335 			rcu_read_unlock();
2336 			goto done;
2337 		}
2338 		if (nr_pages == 1 && consume_stock(mem)) {
2339 			/*
2340 			 * It seems dagerous to access memcg without css_get().
2341 			 * But considering how consume_stok works, it's not
2342 			 * necessary. If consume_stock success, some charges
2343 			 * from this memcg are cached on this cpu. So, we
2344 			 * don't need to call css_get()/css_tryget() before
2345 			 * calling consume_stock().
2346 			 */
2347 			rcu_read_unlock();
2348 			goto done;
2349 		}
2350 		/* after here, we may be blocked. we need to get refcnt */
2351 		if (!css_tryget(&mem->css)) {
2352 			rcu_read_unlock();
2353 			goto again;
2354 		}
2355 		rcu_read_unlock();
2356 	}
2357 
2358 	do {
2359 		bool oom_check;
2360 
2361 		/* If killed, bypass charge */
2362 		if (fatal_signal_pending(current)) {
2363 			css_put(&mem->css);
2364 			goto bypass;
2365 		}
2366 
2367 		oom_check = false;
2368 		if (oom && !nr_oom_retries) {
2369 			oom_check = true;
2370 			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2371 		}
2372 
2373 		ret = mem_cgroup_do_charge(mem, gfp_mask, batch, oom_check);
2374 		switch (ret) {
2375 		case CHARGE_OK:
2376 			break;
2377 		case CHARGE_RETRY: /* not in OOM situation but retry */
2378 			batch = nr_pages;
2379 			css_put(&mem->css);
2380 			mem = NULL;
2381 			goto again;
2382 		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2383 			css_put(&mem->css);
2384 			goto nomem;
2385 		case CHARGE_NOMEM: /* OOM routine works */
2386 			if (!oom) {
2387 				css_put(&mem->css);
2388 				goto nomem;
2389 			}
2390 			/* If oom, we never return -ENOMEM */
2391 			nr_oom_retries--;
2392 			break;
2393 		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2394 			css_put(&mem->css);
2395 			goto bypass;
2396 		}
2397 	} while (ret != CHARGE_OK);
2398 
2399 	if (batch > nr_pages)
2400 		refill_stock(mem, batch - nr_pages);
2401 	css_put(&mem->css);
2402 done:
2403 	*memcg = mem;
2404 	return 0;
2405 nomem:
2406 	*memcg = NULL;
2407 	return -ENOMEM;
2408 bypass:
2409 	*memcg = NULL;
2410 	return 0;
2411 }
2412 
2413 /*
2414  * Somemtimes we have to undo a charge we got by try_charge().
2415  * This function is for that and do uncharge, put css's refcnt.
2416  * gotten by try_charge().
2417  */
2418 static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2419 				       unsigned int nr_pages)
2420 {
2421 	if (!mem_cgroup_is_root(mem)) {
2422 		unsigned long bytes = nr_pages * PAGE_SIZE;
2423 
2424 		res_counter_uncharge(&mem->res, bytes);
2425 		if (do_swap_account)
2426 			res_counter_uncharge(&mem->memsw, bytes);
2427 	}
2428 }
2429 
2430 /*
2431  * A helper function to get mem_cgroup from ID. must be called under
2432  * rcu_read_lock(). The caller must check css_is_removed() or some if
2433  * it's concern. (dropping refcnt from swap can be called against removed
2434  * memcg.)
2435  */
2436 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2437 {
2438 	struct cgroup_subsys_state *css;
2439 
2440 	/* ID 0 is unused ID */
2441 	if (!id)
2442 		return NULL;
2443 	css = css_lookup(&mem_cgroup_subsys, id);
2444 	if (!css)
2445 		return NULL;
2446 	return container_of(css, struct mem_cgroup, css);
2447 }
2448 
2449 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2450 {
2451 	struct mem_cgroup *mem = NULL;
2452 	struct page_cgroup *pc;
2453 	unsigned short id;
2454 	swp_entry_t ent;
2455 
2456 	VM_BUG_ON(!PageLocked(page));
2457 
2458 	pc = lookup_page_cgroup(page);
2459 	lock_page_cgroup(pc);
2460 	if (PageCgroupUsed(pc)) {
2461 		mem = pc->mem_cgroup;
2462 		if (mem && !css_tryget(&mem->css))
2463 			mem = NULL;
2464 	} else if (PageSwapCache(page)) {
2465 		ent.val = page_private(page);
2466 		id = lookup_swap_cgroup(ent);
2467 		rcu_read_lock();
2468 		mem = mem_cgroup_lookup(id);
2469 		if (mem && !css_tryget(&mem->css))
2470 			mem = NULL;
2471 		rcu_read_unlock();
2472 	}
2473 	unlock_page_cgroup(pc);
2474 	return mem;
2475 }
2476 
2477 static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
2478 				       struct page *page,
2479 				       unsigned int nr_pages,
2480 				       struct page_cgroup *pc,
2481 				       enum charge_type ctype)
2482 {
2483 	lock_page_cgroup(pc);
2484 	if (unlikely(PageCgroupUsed(pc))) {
2485 		unlock_page_cgroup(pc);
2486 		__mem_cgroup_cancel_charge(mem, nr_pages);
2487 		return;
2488 	}
2489 	/*
2490 	 * we don't need page_cgroup_lock about tail pages, becase they are not
2491 	 * accessed by any other context at this point.
2492 	 */
2493 	pc->mem_cgroup = mem;
2494 	/*
2495 	 * We access a page_cgroup asynchronously without lock_page_cgroup().
2496 	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2497 	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2498 	 * before USED bit, we need memory barrier here.
2499 	 * See mem_cgroup_add_lru_list(), etc.
2500  	 */
2501 	smp_wmb();
2502 	switch (ctype) {
2503 	case MEM_CGROUP_CHARGE_TYPE_CACHE:
2504 	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2505 		SetPageCgroupCache(pc);
2506 		SetPageCgroupUsed(pc);
2507 		break;
2508 	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2509 		ClearPageCgroupCache(pc);
2510 		SetPageCgroupUsed(pc);
2511 		break;
2512 	default:
2513 		break;
2514 	}
2515 
2516 	mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), nr_pages);
2517 	unlock_page_cgroup(pc);
2518 	/*
2519 	 * "charge_statistics" updated event counter. Then, check it.
2520 	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2521 	 * if they exceeds softlimit.
2522 	 */
2523 	memcg_check_events(mem, page);
2524 }
2525 
2526 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2527 
2528 #define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2529 			(1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2530 /*
2531  * Because tail pages are not marked as "used", set it. We're under
2532  * zone->lru_lock, 'splitting on pmd' and compund_lock.
2533  */
2534 void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
2535 {
2536 	struct page_cgroup *head_pc = lookup_page_cgroup(head);
2537 	struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
2538 	unsigned long flags;
2539 
2540 	if (mem_cgroup_disabled())
2541 		return;
2542 	/*
2543 	 * We have no races with charge/uncharge but will have races with
2544 	 * page state accounting.
2545 	 */
2546 	move_lock_page_cgroup(head_pc, &flags);
2547 
2548 	tail_pc->mem_cgroup = head_pc->mem_cgroup;
2549 	smp_wmb(); /* see __commit_charge() */
2550 	if (PageCgroupAcctLRU(head_pc)) {
2551 		enum lru_list lru;
2552 		struct mem_cgroup_per_zone *mz;
2553 
2554 		/*
2555 		 * LRU flags cannot be copied because we need to add tail
2556 		 *.page to LRU by generic call and our hook will be called.
2557 		 * We hold lru_lock, then, reduce counter directly.
2558 		 */
2559 		lru = page_lru(head);
2560 		mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
2561 		MEM_CGROUP_ZSTAT(mz, lru) -= 1;
2562 	}
2563 	tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2564 	move_unlock_page_cgroup(head_pc, &flags);
2565 }
2566 #endif
2567 
2568 /**
2569  * mem_cgroup_move_account - move account of the page
2570  * @page: the page
2571  * @nr_pages: number of regular pages (>1 for huge pages)
2572  * @pc:	page_cgroup of the page.
2573  * @from: mem_cgroup which the page is moved from.
2574  * @to:	mem_cgroup which the page is moved to. @from != @to.
2575  * @uncharge: whether we should call uncharge and css_put against @from.
2576  *
2577  * The caller must confirm following.
2578  * - page is not on LRU (isolate_page() is useful.)
2579  * - compound_lock is held when nr_pages > 1
2580  *
2581  * This function doesn't do "charge" nor css_get to new cgroup. It should be
2582  * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2583  * true, this function does "uncharge" from old cgroup, but it doesn't if
2584  * @uncharge is false, so a caller should do "uncharge".
2585  */
2586 static int mem_cgroup_move_account(struct page *page,
2587 				   unsigned int nr_pages,
2588 				   struct page_cgroup *pc,
2589 				   struct mem_cgroup *from,
2590 				   struct mem_cgroup *to,
2591 				   bool uncharge)
2592 {
2593 	unsigned long flags;
2594 	int ret;
2595 
2596 	VM_BUG_ON(from == to);
2597 	VM_BUG_ON(PageLRU(page));
2598 	/*
2599 	 * The page is isolated from LRU. So, collapse function
2600 	 * will not handle this page. But page splitting can happen.
2601 	 * Do this check under compound_page_lock(). The caller should
2602 	 * hold it.
2603 	 */
2604 	ret = -EBUSY;
2605 	if (nr_pages > 1 && !PageTransHuge(page))
2606 		goto out;
2607 
2608 	lock_page_cgroup(pc);
2609 
2610 	ret = -EINVAL;
2611 	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2612 		goto unlock;
2613 
2614 	move_lock_page_cgroup(pc, &flags);
2615 
2616 	if (PageCgroupFileMapped(pc)) {
2617 		/* Update mapped_file data for mem_cgroup */
2618 		preempt_disable();
2619 		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2620 		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2621 		preempt_enable();
2622 	}
2623 	mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2624 	if (uncharge)
2625 		/* This is not "cancel", but cancel_charge does all we need. */
2626 		__mem_cgroup_cancel_charge(from, nr_pages);
2627 
2628 	/* caller should have done css_get */
2629 	pc->mem_cgroup = to;
2630 	mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2631 	/*
2632 	 * We charges against "to" which may not have any tasks. Then, "to"
2633 	 * can be under rmdir(). But in current implementation, caller of
2634 	 * this function is just force_empty() and move charge, so it's
2635 	 * guaranteed that "to" is never removed. So, we don't check rmdir
2636 	 * status here.
2637 	 */
2638 	move_unlock_page_cgroup(pc, &flags);
2639 	ret = 0;
2640 unlock:
2641 	unlock_page_cgroup(pc);
2642 	/*
2643 	 * check events
2644 	 */
2645 	memcg_check_events(to, page);
2646 	memcg_check_events(from, page);
2647 out:
2648 	return ret;
2649 }
2650 
2651 /*
2652  * move charges to its parent.
2653  */
2654 
2655 static int mem_cgroup_move_parent(struct page *page,
2656 				  struct page_cgroup *pc,
2657 				  struct mem_cgroup *child,
2658 				  gfp_t gfp_mask)
2659 {
2660 	struct cgroup *cg = child->css.cgroup;
2661 	struct cgroup *pcg = cg->parent;
2662 	struct mem_cgroup *parent;
2663 	unsigned int nr_pages;
2664 	unsigned long uninitialized_var(flags);
2665 	int ret;
2666 
2667 	/* Is ROOT ? */
2668 	if (!pcg)
2669 		return -EINVAL;
2670 
2671 	ret = -EBUSY;
2672 	if (!get_page_unless_zero(page))
2673 		goto out;
2674 	if (isolate_lru_page(page))
2675 		goto put;
2676 
2677 	nr_pages = hpage_nr_pages(page);
2678 
2679 	parent = mem_cgroup_from_cont(pcg);
2680 	ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2681 	if (ret || !parent)
2682 		goto put_back;
2683 
2684 	if (nr_pages > 1)
2685 		flags = compound_lock_irqsave(page);
2686 
2687 	ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2688 	if (ret)
2689 		__mem_cgroup_cancel_charge(parent, nr_pages);
2690 
2691 	if (nr_pages > 1)
2692 		compound_unlock_irqrestore(page, flags);
2693 put_back:
2694 	putback_lru_page(page);
2695 put:
2696 	put_page(page);
2697 out:
2698 	return ret;
2699 }
2700 
2701 /*
2702  * Charge the memory controller for page usage.
2703  * Return
2704  * 0 if the charge was successful
2705  * < 0 if the cgroup is over its limit
2706  */
2707 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2708 				gfp_t gfp_mask, enum charge_type ctype)
2709 {
2710 	struct mem_cgroup *mem = NULL;
2711 	unsigned int nr_pages = 1;
2712 	struct page_cgroup *pc;
2713 	bool oom = true;
2714 	int ret;
2715 
2716 	if (PageTransHuge(page)) {
2717 		nr_pages <<= compound_order(page);
2718 		VM_BUG_ON(!PageTransHuge(page));
2719 		/*
2720 		 * Never OOM-kill a process for a huge page.  The
2721 		 * fault handler will fall back to regular pages.
2722 		 */
2723 		oom = false;
2724 	}
2725 
2726 	pc = lookup_page_cgroup(page);
2727 	BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
2728 
2729 	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &mem, oom);
2730 	if (ret || !mem)
2731 		return ret;
2732 
2733 	__mem_cgroup_commit_charge(mem, page, nr_pages, pc, ctype);
2734 	return 0;
2735 }
2736 
2737 int mem_cgroup_newpage_charge(struct page *page,
2738 			      struct mm_struct *mm, gfp_t gfp_mask)
2739 {
2740 	if (mem_cgroup_disabled())
2741 		return 0;
2742 	/*
2743 	 * If already mapped, we don't have to account.
2744 	 * If page cache, page->mapping has address_space.
2745 	 * But page->mapping may have out-of-use anon_vma pointer,
2746 	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2747 	 * is NULL.
2748   	 */
2749 	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2750 		return 0;
2751 	if (unlikely(!mm))
2752 		mm = &init_mm;
2753 	return mem_cgroup_charge_common(page, mm, gfp_mask,
2754 				MEM_CGROUP_CHARGE_TYPE_MAPPED);
2755 }
2756 
2757 static void
2758 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2759 					enum charge_type ctype);
2760 
2761 static void
2762 __mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *mem,
2763 					enum charge_type ctype)
2764 {
2765 	struct page_cgroup *pc = lookup_page_cgroup(page);
2766 	/*
2767 	 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
2768 	 * is already on LRU. It means the page may on some other page_cgroup's
2769 	 * LRU. Take care of it.
2770 	 */
2771 	mem_cgroup_lru_del_before_commit(page);
2772 	__mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
2773 	mem_cgroup_lru_add_after_commit(page);
2774 	return;
2775 }
2776 
2777 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2778 				gfp_t gfp_mask)
2779 {
2780 	struct mem_cgroup *mem = NULL;
2781 	int ret;
2782 
2783 	if (mem_cgroup_disabled())
2784 		return 0;
2785 	if (PageCompound(page))
2786 		return 0;
2787 	/*
2788 	 * Corner case handling. This is called from add_to_page_cache()
2789 	 * in usual. But some FS (shmem) precharges this page before calling it
2790 	 * and call add_to_page_cache() with GFP_NOWAIT.
2791 	 *
2792 	 * For GFP_NOWAIT case, the page may be pre-charged before calling
2793 	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
2794 	 * charge twice. (It works but has to pay a bit larger cost.)
2795 	 * And when the page is SwapCache, it should take swap information
2796 	 * into account. This is under lock_page() now.
2797 	 */
2798 	if (!(gfp_mask & __GFP_WAIT)) {
2799 		struct page_cgroup *pc;
2800 
2801 		pc = lookup_page_cgroup(page);
2802 		if (!pc)
2803 			return 0;
2804 		lock_page_cgroup(pc);
2805 		if (PageCgroupUsed(pc)) {
2806 			unlock_page_cgroup(pc);
2807 			return 0;
2808 		}
2809 		unlock_page_cgroup(pc);
2810 	}
2811 
2812 	if (unlikely(!mm))
2813 		mm = &init_mm;
2814 
2815 	if (page_is_file_cache(page)) {
2816 		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, &mem, true);
2817 		if (ret || !mem)
2818 			return ret;
2819 
2820 		/*
2821 		 * FUSE reuses pages without going through the final
2822 		 * put that would remove them from the LRU list, make
2823 		 * sure that they get relinked properly.
2824 		 */
2825 		__mem_cgroup_commit_charge_lrucare(page, mem,
2826 					MEM_CGROUP_CHARGE_TYPE_CACHE);
2827 		return ret;
2828 	}
2829 	/* shmem */
2830 	if (PageSwapCache(page)) {
2831 		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2832 		if (!ret)
2833 			__mem_cgroup_commit_charge_swapin(page, mem,
2834 					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2835 	} else
2836 		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2837 					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2838 
2839 	return ret;
2840 }
2841 
2842 /*
2843  * While swap-in, try_charge -> commit or cancel, the page is locked.
2844  * And when try_charge() successfully returns, one refcnt to memcg without
2845  * struct page_cgroup is acquired. This refcnt will be consumed by
2846  * "commit()" or removed by "cancel()"
2847  */
2848 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2849 				 struct page *page,
2850 				 gfp_t mask, struct mem_cgroup **ptr)
2851 {
2852 	struct mem_cgroup *mem;
2853 	int ret;
2854 
2855 	*ptr = NULL;
2856 
2857 	if (mem_cgroup_disabled())
2858 		return 0;
2859 
2860 	if (!do_swap_account)
2861 		goto charge_cur_mm;
2862 	/*
2863 	 * A racing thread's fault, or swapoff, may have already updated
2864 	 * the pte, and even removed page from swap cache: in those cases
2865 	 * do_swap_page()'s pte_same() test will fail; but there's also a
2866 	 * KSM case which does need to charge the page.
2867 	 */
2868 	if (!PageSwapCache(page))
2869 		goto charge_cur_mm;
2870 	mem = try_get_mem_cgroup_from_page(page);
2871 	if (!mem)
2872 		goto charge_cur_mm;
2873 	*ptr = mem;
2874 	ret = __mem_cgroup_try_charge(NULL, mask, 1, ptr, true);
2875 	css_put(&mem->css);
2876 	return ret;
2877 charge_cur_mm:
2878 	if (unlikely(!mm))
2879 		mm = &init_mm;
2880 	return __mem_cgroup_try_charge(mm, mask, 1, ptr, true);
2881 }
2882 
2883 static void
2884 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2885 					enum charge_type ctype)
2886 {
2887 	if (mem_cgroup_disabled())
2888 		return;
2889 	if (!ptr)
2890 		return;
2891 	cgroup_exclude_rmdir(&ptr->css);
2892 
2893 	__mem_cgroup_commit_charge_lrucare(page, ptr, ctype);
2894 	/*
2895 	 * Now swap is on-memory. This means this page may be
2896 	 * counted both as mem and swap....double count.
2897 	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2898 	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2899 	 * may call delete_from_swap_cache() before reach here.
2900 	 */
2901 	if (do_swap_account && PageSwapCache(page)) {
2902 		swp_entry_t ent = {.val = page_private(page)};
2903 		unsigned short id;
2904 		struct mem_cgroup *memcg;
2905 
2906 		id = swap_cgroup_record(ent, 0);
2907 		rcu_read_lock();
2908 		memcg = mem_cgroup_lookup(id);
2909 		if (memcg) {
2910 			/*
2911 			 * This recorded memcg can be obsolete one. So, avoid
2912 			 * calling css_tryget
2913 			 */
2914 			if (!mem_cgroup_is_root(memcg))
2915 				res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2916 			mem_cgroup_swap_statistics(memcg, false);
2917 			mem_cgroup_put(memcg);
2918 		}
2919 		rcu_read_unlock();
2920 	}
2921 	/*
2922 	 * At swapin, we may charge account against cgroup which has no tasks.
2923 	 * So, rmdir()->pre_destroy() can be called while we do this charge.
2924 	 * In that case, we need to call pre_destroy() again. check it here.
2925 	 */
2926 	cgroup_release_and_wakeup_rmdir(&ptr->css);
2927 }
2928 
2929 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2930 {
2931 	__mem_cgroup_commit_charge_swapin(page, ptr,
2932 					MEM_CGROUP_CHARGE_TYPE_MAPPED);
2933 }
2934 
2935 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
2936 {
2937 	if (mem_cgroup_disabled())
2938 		return;
2939 	if (!mem)
2940 		return;
2941 	__mem_cgroup_cancel_charge(mem, 1);
2942 }
2943 
2944 static void mem_cgroup_do_uncharge(struct mem_cgroup *mem,
2945 				   unsigned int nr_pages,
2946 				   const enum charge_type ctype)
2947 {
2948 	struct memcg_batch_info *batch = NULL;
2949 	bool uncharge_memsw = true;
2950 
2951 	/* If swapout, usage of swap doesn't decrease */
2952 	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2953 		uncharge_memsw = false;
2954 
2955 	batch = &current->memcg_batch;
2956 	/*
2957 	 * In usual, we do css_get() when we remember memcg pointer.
2958 	 * But in this case, we keep res->usage until end of a series of
2959 	 * uncharges. Then, it's ok to ignore memcg's refcnt.
2960 	 */
2961 	if (!batch->memcg)
2962 		batch->memcg = mem;
2963 	/*
2964 	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2965 	 * In those cases, all pages freed continuously can be expected to be in
2966 	 * the same cgroup and we have chance to coalesce uncharges.
2967 	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2968 	 * because we want to do uncharge as soon as possible.
2969 	 */
2970 
2971 	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2972 		goto direct_uncharge;
2973 
2974 	if (nr_pages > 1)
2975 		goto direct_uncharge;
2976 
2977 	/*
2978 	 * In typical case, batch->memcg == mem. This means we can
2979 	 * merge a series of uncharges to an uncharge of res_counter.
2980 	 * If not, we uncharge res_counter ony by one.
2981 	 */
2982 	if (batch->memcg != mem)
2983 		goto direct_uncharge;
2984 	/* remember freed charge and uncharge it later */
2985 	batch->nr_pages++;
2986 	if (uncharge_memsw)
2987 		batch->memsw_nr_pages++;
2988 	return;
2989 direct_uncharge:
2990 	res_counter_uncharge(&mem->res, nr_pages * PAGE_SIZE);
2991 	if (uncharge_memsw)
2992 		res_counter_uncharge(&mem->memsw, nr_pages * PAGE_SIZE);
2993 	if (unlikely(batch->memcg != mem))
2994 		memcg_oom_recover(mem);
2995 	return;
2996 }
2997 
2998 /*
2999  * uncharge if !page_mapped(page)
3000  */
3001 static struct mem_cgroup *
3002 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
3003 {
3004 	struct mem_cgroup *mem = NULL;
3005 	unsigned int nr_pages = 1;
3006 	struct page_cgroup *pc;
3007 
3008 	if (mem_cgroup_disabled())
3009 		return NULL;
3010 
3011 	if (PageSwapCache(page))
3012 		return NULL;
3013 
3014 	if (PageTransHuge(page)) {
3015 		nr_pages <<= compound_order(page);
3016 		VM_BUG_ON(!PageTransHuge(page));
3017 	}
3018 	/*
3019 	 * Check if our page_cgroup is valid
3020 	 */
3021 	pc = lookup_page_cgroup(page);
3022 	if (unlikely(!pc || !PageCgroupUsed(pc)))
3023 		return NULL;
3024 
3025 	lock_page_cgroup(pc);
3026 
3027 	mem = pc->mem_cgroup;
3028 
3029 	if (!PageCgroupUsed(pc))
3030 		goto unlock_out;
3031 
3032 	switch (ctype) {
3033 	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
3034 	case MEM_CGROUP_CHARGE_TYPE_DROP:
3035 		/* See mem_cgroup_prepare_migration() */
3036 		if (page_mapped(page) || PageCgroupMigration(pc))
3037 			goto unlock_out;
3038 		break;
3039 	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
3040 		if (!PageAnon(page)) {	/* Shared memory */
3041 			if (page->mapping && !page_is_file_cache(page))
3042 				goto unlock_out;
3043 		} else if (page_mapped(page)) /* Anon */
3044 				goto unlock_out;
3045 		break;
3046 	default:
3047 		break;
3048 	}
3049 
3050 	mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -nr_pages);
3051 
3052 	ClearPageCgroupUsed(pc);
3053 	/*
3054 	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3055 	 * freed from LRU. This is safe because uncharged page is expected not
3056 	 * to be reused (freed soon). Exception is SwapCache, it's handled by
3057 	 * special functions.
3058 	 */
3059 
3060 	unlock_page_cgroup(pc);
3061 	/*
3062 	 * even after unlock, we have mem->res.usage here and this memcg
3063 	 * will never be freed.
3064 	 */
3065 	memcg_check_events(mem, page);
3066 	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3067 		mem_cgroup_swap_statistics(mem, true);
3068 		mem_cgroup_get(mem);
3069 	}
3070 	if (!mem_cgroup_is_root(mem))
3071 		mem_cgroup_do_uncharge(mem, nr_pages, ctype);
3072 
3073 	return mem;
3074 
3075 unlock_out:
3076 	unlock_page_cgroup(pc);
3077 	return NULL;
3078 }
3079 
3080 void mem_cgroup_uncharge_page(struct page *page)
3081 {
3082 	/* early check. */
3083 	if (page_mapped(page))
3084 		return;
3085 	if (page->mapping && !PageAnon(page))
3086 		return;
3087 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
3088 }
3089 
3090 void mem_cgroup_uncharge_cache_page(struct page *page)
3091 {
3092 	VM_BUG_ON(page_mapped(page));
3093 	VM_BUG_ON(page->mapping);
3094 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
3095 }
3096 
3097 /*
3098  * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3099  * In that cases, pages are freed continuously and we can expect pages
3100  * are in the same memcg. All these calls itself limits the number of
3101  * pages freed at once, then uncharge_start/end() is called properly.
3102  * This may be called prural(2) times in a context,
3103  */
3104 
3105 void mem_cgroup_uncharge_start(void)
3106 {
3107 	current->memcg_batch.do_batch++;
3108 	/* We can do nest. */
3109 	if (current->memcg_batch.do_batch == 1) {
3110 		current->memcg_batch.memcg = NULL;
3111 		current->memcg_batch.nr_pages = 0;
3112 		current->memcg_batch.memsw_nr_pages = 0;
3113 	}
3114 }
3115 
3116 void mem_cgroup_uncharge_end(void)
3117 {
3118 	struct memcg_batch_info *batch = &current->memcg_batch;
3119 
3120 	if (!batch->do_batch)
3121 		return;
3122 
3123 	batch->do_batch--;
3124 	if (batch->do_batch) /* If stacked, do nothing. */
3125 		return;
3126 
3127 	if (!batch->memcg)
3128 		return;
3129 	/*
3130 	 * This "batch->memcg" is valid without any css_get/put etc...
3131 	 * bacause we hide charges behind us.
3132 	 */
3133 	if (batch->nr_pages)
3134 		res_counter_uncharge(&batch->memcg->res,
3135 				     batch->nr_pages * PAGE_SIZE);
3136 	if (batch->memsw_nr_pages)
3137 		res_counter_uncharge(&batch->memcg->memsw,
3138 				     batch->memsw_nr_pages * PAGE_SIZE);
3139 	memcg_oom_recover(batch->memcg);
3140 	/* forget this pointer (for sanity check) */
3141 	batch->memcg = NULL;
3142 }
3143 
3144 #ifdef CONFIG_SWAP
3145 /*
3146  * called after __delete_from_swap_cache() and drop "page" account.
3147  * memcg information is recorded to swap_cgroup of "ent"
3148  */
3149 void
3150 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3151 {
3152 	struct mem_cgroup *memcg;
3153 	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3154 
3155 	if (!swapout) /* this was a swap cache but the swap is unused ! */
3156 		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3157 
3158 	memcg = __mem_cgroup_uncharge_common(page, ctype);
3159 
3160 	/*
3161 	 * record memcg information,  if swapout && memcg != NULL,
3162 	 * mem_cgroup_get() was called in uncharge().
3163 	 */
3164 	if (do_swap_account && swapout && memcg)
3165 		swap_cgroup_record(ent, css_id(&memcg->css));
3166 }
3167 #endif
3168 
3169 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3170 /*
3171  * called from swap_entry_free(). remove record in swap_cgroup and
3172  * uncharge "memsw" account.
3173  */
3174 void mem_cgroup_uncharge_swap(swp_entry_t ent)
3175 {
3176 	struct mem_cgroup *memcg;
3177 	unsigned short id;
3178 
3179 	if (!do_swap_account)
3180 		return;
3181 
3182 	id = swap_cgroup_record(ent, 0);
3183 	rcu_read_lock();
3184 	memcg = mem_cgroup_lookup(id);
3185 	if (memcg) {
3186 		/*
3187 		 * We uncharge this because swap is freed.
3188 		 * This memcg can be obsolete one. We avoid calling css_tryget
3189 		 */
3190 		if (!mem_cgroup_is_root(memcg))
3191 			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3192 		mem_cgroup_swap_statistics(memcg, false);
3193 		mem_cgroup_put(memcg);
3194 	}
3195 	rcu_read_unlock();
3196 }
3197 
3198 /**
3199  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3200  * @entry: swap entry to be moved
3201  * @from:  mem_cgroup which the entry is moved from
3202  * @to:  mem_cgroup which the entry is moved to
3203  * @need_fixup: whether we should fixup res_counters and refcounts.
3204  *
3205  * It succeeds only when the swap_cgroup's record for this entry is the same
3206  * as the mem_cgroup's id of @from.
3207  *
3208  * Returns 0 on success, -EINVAL on failure.
3209  *
3210  * The caller must have charged to @to, IOW, called res_counter_charge() about
3211  * both res and memsw, and called css_get().
3212  */
3213 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3214 		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3215 {
3216 	unsigned short old_id, new_id;
3217 
3218 	old_id = css_id(&from->css);
3219 	new_id = css_id(&to->css);
3220 
3221 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3222 		mem_cgroup_swap_statistics(from, false);
3223 		mem_cgroup_swap_statistics(to, true);
3224 		/*
3225 		 * This function is only called from task migration context now.
3226 		 * It postpones res_counter and refcount handling till the end
3227 		 * of task migration(mem_cgroup_clear_mc()) for performance
3228 		 * improvement. But we cannot postpone mem_cgroup_get(to)
3229 		 * because if the process that has been moved to @to does
3230 		 * swap-in, the refcount of @to might be decreased to 0.
3231 		 */
3232 		mem_cgroup_get(to);
3233 		if (need_fixup) {
3234 			if (!mem_cgroup_is_root(from))
3235 				res_counter_uncharge(&from->memsw, PAGE_SIZE);
3236 			mem_cgroup_put(from);
3237 			/*
3238 			 * we charged both to->res and to->memsw, so we should
3239 			 * uncharge to->res.
3240 			 */
3241 			if (!mem_cgroup_is_root(to))
3242 				res_counter_uncharge(&to->res, PAGE_SIZE);
3243 		}
3244 		return 0;
3245 	}
3246 	return -EINVAL;
3247 }
3248 #else
3249 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3250 		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3251 {
3252 	return -EINVAL;
3253 }
3254 #endif
3255 
3256 /*
3257  * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3258  * page belongs to.
3259  */
3260 int mem_cgroup_prepare_migration(struct page *page,
3261 	struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
3262 {
3263 	struct mem_cgroup *mem = NULL;
3264 	struct page_cgroup *pc;
3265 	enum charge_type ctype;
3266 	int ret = 0;
3267 
3268 	*ptr = NULL;
3269 
3270 	VM_BUG_ON(PageTransHuge(page));
3271 	if (mem_cgroup_disabled())
3272 		return 0;
3273 
3274 	pc = lookup_page_cgroup(page);
3275 	lock_page_cgroup(pc);
3276 	if (PageCgroupUsed(pc)) {
3277 		mem = pc->mem_cgroup;
3278 		css_get(&mem->css);
3279 		/*
3280 		 * At migrating an anonymous page, its mapcount goes down
3281 		 * to 0 and uncharge() will be called. But, even if it's fully
3282 		 * unmapped, migration may fail and this page has to be
3283 		 * charged again. We set MIGRATION flag here and delay uncharge
3284 		 * until end_migration() is called
3285 		 *
3286 		 * Corner Case Thinking
3287 		 * A)
3288 		 * When the old page was mapped as Anon and it's unmap-and-freed
3289 		 * while migration was ongoing.
3290 		 * If unmap finds the old page, uncharge() of it will be delayed
3291 		 * until end_migration(). If unmap finds a new page, it's
3292 		 * uncharged when it make mapcount to be 1->0. If unmap code
3293 		 * finds swap_migration_entry, the new page will not be mapped
3294 		 * and end_migration() will find it(mapcount==0).
3295 		 *
3296 		 * B)
3297 		 * When the old page was mapped but migraion fails, the kernel
3298 		 * remaps it. A charge for it is kept by MIGRATION flag even
3299 		 * if mapcount goes down to 0. We can do remap successfully
3300 		 * without charging it again.
3301 		 *
3302 		 * C)
3303 		 * The "old" page is under lock_page() until the end of
3304 		 * migration, so, the old page itself will not be swapped-out.
3305 		 * If the new page is swapped out before end_migraton, our
3306 		 * hook to usual swap-out path will catch the event.
3307 		 */
3308 		if (PageAnon(page))
3309 			SetPageCgroupMigration(pc);
3310 	}
3311 	unlock_page_cgroup(pc);
3312 	/*
3313 	 * If the page is not charged at this point,
3314 	 * we return here.
3315 	 */
3316 	if (!mem)
3317 		return 0;
3318 
3319 	*ptr = mem;
3320 	ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, ptr, false);
3321 	css_put(&mem->css);/* drop extra refcnt */
3322 	if (ret || *ptr == NULL) {
3323 		if (PageAnon(page)) {
3324 			lock_page_cgroup(pc);
3325 			ClearPageCgroupMigration(pc);
3326 			unlock_page_cgroup(pc);
3327 			/*
3328 			 * The old page may be fully unmapped while we kept it.
3329 			 */
3330 			mem_cgroup_uncharge_page(page);
3331 		}
3332 		return -ENOMEM;
3333 	}
3334 	/*
3335 	 * We charge new page before it's used/mapped. So, even if unlock_page()
3336 	 * is called before end_migration, we can catch all events on this new
3337 	 * page. In the case new page is migrated but not remapped, new page's
3338 	 * mapcount will be finally 0 and we call uncharge in end_migration().
3339 	 */
3340 	pc = lookup_page_cgroup(newpage);
3341 	if (PageAnon(page))
3342 		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3343 	else if (page_is_file_cache(page))
3344 		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3345 	else
3346 		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3347 	__mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
3348 	return ret;
3349 }
3350 
3351 /* remove redundant charge if migration failed*/
3352 void mem_cgroup_end_migration(struct mem_cgroup *mem,
3353 	struct page *oldpage, struct page *newpage, bool migration_ok)
3354 {
3355 	struct page *used, *unused;
3356 	struct page_cgroup *pc;
3357 
3358 	if (!mem)
3359 		return;
3360 	/* blocks rmdir() */
3361 	cgroup_exclude_rmdir(&mem->css);
3362 	if (!migration_ok) {
3363 		used = oldpage;
3364 		unused = newpage;
3365 	} else {
3366 		used = newpage;
3367 		unused = oldpage;
3368 	}
3369 	/*
3370 	 * We disallowed uncharge of pages under migration because mapcount
3371 	 * of the page goes down to zero, temporarly.
3372 	 * Clear the flag and check the page should be charged.
3373 	 */
3374 	pc = lookup_page_cgroup(oldpage);
3375 	lock_page_cgroup(pc);
3376 	ClearPageCgroupMigration(pc);
3377 	unlock_page_cgroup(pc);
3378 
3379 	__mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
3380 
3381 	/*
3382 	 * If a page is a file cache, radix-tree replacement is very atomic
3383 	 * and we can skip this check. When it was an Anon page, its mapcount
3384 	 * goes down to 0. But because we added MIGRATION flage, it's not
3385 	 * uncharged yet. There are several case but page->mapcount check
3386 	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3387 	 * check. (see prepare_charge() also)
3388 	 */
3389 	if (PageAnon(used))
3390 		mem_cgroup_uncharge_page(used);
3391 	/*
3392 	 * At migration, we may charge account against cgroup which has no
3393 	 * tasks.
3394 	 * So, rmdir()->pre_destroy() can be called while we do this charge.
3395 	 * In that case, we need to call pre_destroy() again. check it here.
3396 	 */
3397 	cgroup_release_and_wakeup_rmdir(&mem->css);
3398 }
3399 
3400 /*
3401  * A call to try to shrink memory usage on charge failure at shmem's swapin.
3402  * Calling hierarchical_reclaim is not enough because we should update
3403  * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
3404  * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
3405  * not from the memcg which this page would be charged to.
3406  * try_charge_swapin does all of these works properly.
3407  */
3408 int mem_cgroup_shmem_charge_fallback(struct page *page,
3409 			    struct mm_struct *mm,
3410 			    gfp_t gfp_mask)
3411 {
3412 	struct mem_cgroup *mem;
3413 	int ret;
3414 
3415 	if (mem_cgroup_disabled())
3416 		return 0;
3417 
3418 	ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
3419 	if (!ret)
3420 		mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
3421 
3422 	return ret;
3423 }
3424 
3425 #ifdef CONFIG_DEBUG_VM
3426 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3427 {
3428 	struct page_cgroup *pc;
3429 
3430 	pc = lookup_page_cgroup(page);
3431 	if (likely(pc) && PageCgroupUsed(pc))
3432 		return pc;
3433 	return NULL;
3434 }
3435 
3436 bool mem_cgroup_bad_page_check(struct page *page)
3437 {
3438 	if (mem_cgroup_disabled())
3439 		return false;
3440 
3441 	return lookup_page_cgroup_used(page) != NULL;
3442 }
3443 
3444 void mem_cgroup_print_bad_page(struct page *page)
3445 {
3446 	struct page_cgroup *pc;
3447 
3448 	pc = lookup_page_cgroup_used(page);
3449 	if (pc) {
3450 		int ret = -1;
3451 		char *path;
3452 
3453 		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
3454 		       pc, pc->flags, pc->mem_cgroup);
3455 
3456 		path = kmalloc(PATH_MAX, GFP_KERNEL);
3457 		if (path) {
3458 			rcu_read_lock();
3459 			ret = cgroup_path(pc->mem_cgroup->css.cgroup,
3460 							path, PATH_MAX);
3461 			rcu_read_unlock();
3462 		}
3463 
3464 		printk(KERN_CONT "(%s)\n",
3465 				(ret < 0) ? "cannot get the path" : path);
3466 		kfree(path);
3467 	}
3468 }
3469 #endif
3470 
3471 static DEFINE_MUTEX(set_limit_mutex);
3472 
3473 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3474 				unsigned long long val)
3475 {
3476 	int retry_count;
3477 	u64 memswlimit, memlimit;
3478 	int ret = 0;
3479 	int children = mem_cgroup_count_children(memcg);
3480 	u64 curusage, oldusage;
3481 	int enlarge;
3482 
3483 	/*
3484 	 * For keeping hierarchical_reclaim simple, how long we should retry
3485 	 * is depends on callers. We set our retry-count to be function
3486 	 * of # of children which we should visit in this loop.
3487 	 */
3488 	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3489 
3490 	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3491 
3492 	enlarge = 0;
3493 	while (retry_count) {
3494 		if (signal_pending(current)) {
3495 			ret = -EINTR;
3496 			break;
3497 		}
3498 		/*
3499 		 * Rather than hide all in some function, I do this in
3500 		 * open coded manner. You see what this really does.
3501 		 * We have to guarantee mem->res.limit < mem->memsw.limit.
3502 		 */
3503 		mutex_lock(&set_limit_mutex);
3504 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3505 		if (memswlimit < val) {
3506 			ret = -EINVAL;
3507 			mutex_unlock(&set_limit_mutex);
3508 			break;
3509 		}
3510 
3511 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3512 		if (memlimit < val)
3513 			enlarge = 1;
3514 
3515 		ret = res_counter_set_limit(&memcg->res, val);
3516 		if (!ret) {
3517 			if (memswlimit == val)
3518 				memcg->memsw_is_minimum = true;
3519 			else
3520 				memcg->memsw_is_minimum = false;
3521 		}
3522 		mutex_unlock(&set_limit_mutex);
3523 
3524 		if (!ret)
3525 			break;
3526 
3527 		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3528 						MEM_CGROUP_RECLAIM_SHRINK,
3529 						NULL);
3530 		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3531 		/* Usage is reduced ? */
3532   		if (curusage >= oldusage)
3533 			retry_count--;
3534 		else
3535 			oldusage = curusage;
3536 	}
3537 	if (!ret && enlarge)
3538 		memcg_oom_recover(memcg);
3539 
3540 	return ret;
3541 }
3542 
3543 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3544 					unsigned long long val)
3545 {
3546 	int retry_count;
3547 	u64 memlimit, memswlimit, oldusage, curusage;
3548 	int children = mem_cgroup_count_children(memcg);
3549 	int ret = -EBUSY;
3550 	int enlarge = 0;
3551 
3552 	/* see mem_cgroup_resize_res_limit */
3553  	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3554 	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3555 	while (retry_count) {
3556 		if (signal_pending(current)) {
3557 			ret = -EINTR;
3558 			break;
3559 		}
3560 		/*
3561 		 * Rather than hide all in some function, I do this in
3562 		 * open coded manner. You see what this really does.
3563 		 * We have to guarantee mem->res.limit < mem->memsw.limit.
3564 		 */
3565 		mutex_lock(&set_limit_mutex);
3566 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3567 		if (memlimit > val) {
3568 			ret = -EINVAL;
3569 			mutex_unlock(&set_limit_mutex);
3570 			break;
3571 		}
3572 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3573 		if (memswlimit < val)
3574 			enlarge = 1;
3575 		ret = res_counter_set_limit(&memcg->memsw, val);
3576 		if (!ret) {
3577 			if (memlimit == val)
3578 				memcg->memsw_is_minimum = true;
3579 			else
3580 				memcg->memsw_is_minimum = false;
3581 		}
3582 		mutex_unlock(&set_limit_mutex);
3583 
3584 		if (!ret)
3585 			break;
3586 
3587 		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3588 						MEM_CGROUP_RECLAIM_NOSWAP |
3589 						MEM_CGROUP_RECLAIM_SHRINK,
3590 						NULL);
3591 		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3592 		/* Usage is reduced ? */
3593 		if (curusage >= oldusage)
3594 			retry_count--;
3595 		else
3596 			oldusage = curusage;
3597 	}
3598 	if (!ret && enlarge)
3599 		memcg_oom_recover(memcg);
3600 	return ret;
3601 }
3602 
3603 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3604 					    gfp_t gfp_mask,
3605 					    unsigned long *total_scanned)
3606 {
3607 	unsigned long nr_reclaimed = 0;
3608 	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3609 	unsigned long reclaimed;
3610 	int loop = 0;
3611 	struct mem_cgroup_tree_per_zone *mctz;
3612 	unsigned long long excess;
3613 	unsigned long nr_scanned;
3614 
3615 	if (order > 0)
3616 		return 0;
3617 
3618 	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3619 	/*
3620 	 * This loop can run a while, specially if mem_cgroup's continuously
3621 	 * keep exceeding their soft limit and putting the system under
3622 	 * pressure
3623 	 */
3624 	do {
3625 		if (next_mz)
3626 			mz = next_mz;
3627 		else
3628 			mz = mem_cgroup_largest_soft_limit_node(mctz);
3629 		if (!mz)
3630 			break;
3631 
3632 		nr_scanned = 0;
3633 		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
3634 						gfp_mask,
3635 						MEM_CGROUP_RECLAIM_SOFT,
3636 						&nr_scanned);
3637 		nr_reclaimed += reclaimed;
3638 		*total_scanned += nr_scanned;
3639 		spin_lock(&mctz->lock);
3640 
3641 		/*
3642 		 * If we failed to reclaim anything from this memory cgroup
3643 		 * it is time to move on to the next cgroup
3644 		 */
3645 		next_mz = NULL;
3646 		if (!reclaimed) {
3647 			do {
3648 				/*
3649 				 * Loop until we find yet another one.
3650 				 *
3651 				 * By the time we get the soft_limit lock
3652 				 * again, someone might have aded the
3653 				 * group back on the RB tree. Iterate to
3654 				 * make sure we get a different mem.
3655 				 * mem_cgroup_largest_soft_limit_node returns
3656 				 * NULL if no other cgroup is present on
3657 				 * the tree
3658 				 */
3659 				next_mz =
3660 				__mem_cgroup_largest_soft_limit_node(mctz);
3661 				if (next_mz == mz)
3662 					css_put(&next_mz->mem->css);
3663 				else /* next_mz == NULL or other memcg */
3664 					break;
3665 			} while (1);
3666 		}
3667 		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3668 		excess = res_counter_soft_limit_excess(&mz->mem->res);
3669 		/*
3670 		 * One school of thought says that we should not add
3671 		 * back the node to the tree if reclaim returns 0.
3672 		 * But our reclaim could return 0, simply because due
3673 		 * to priority we are exposing a smaller subset of
3674 		 * memory to reclaim from. Consider this as a longer
3675 		 * term TODO.
3676 		 */
3677 		/* If excess == 0, no tree ops */
3678 		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3679 		spin_unlock(&mctz->lock);
3680 		css_put(&mz->mem->css);
3681 		loop++;
3682 		/*
3683 		 * Could not reclaim anything and there are no more
3684 		 * mem cgroups to try or we seem to be looping without
3685 		 * reclaiming anything.
3686 		 */
3687 		if (!nr_reclaimed &&
3688 			(next_mz == NULL ||
3689 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3690 			break;
3691 	} while (!nr_reclaimed);
3692 	if (next_mz)
3693 		css_put(&next_mz->mem->css);
3694 	return nr_reclaimed;
3695 }
3696 
3697 /*
3698  * This routine traverse page_cgroup in given list and drop them all.
3699  * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3700  */
3701 static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
3702 				int node, int zid, enum lru_list lru)
3703 {
3704 	struct zone *zone;
3705 	struct mem_cgroup_per_zone *mz;
3706 	struct page_cgroup *pc, *busy;
3707 	unsigned long flags, loop;
3708 	struct list_head *list;
3709 	int ret = 0;
3710 
3711 	zone = &NODE_DATA(node)->node_zones[zid];
3712 	mz = mem_cgroup_zoneinfo(mem, node, zid);
3713 	list = &mz->lists[lru];
3714 
3715 	loop = MEM_CGROUP_ZSTAT(mz, lru);
3716 	/* give some margin against EBUSY etc...*/
3717 	loop += 256;
3718 	busy = NULL;
3719 	while (loop--) {
3720 		struct page *page;
3721 
3722 		ret = 0;
3723 		spin_lock_irqsave(&zone->lru_lock, flags);
3724 		if (list_empty(list)) {
3725 			spin_unlock_irqrestore(&zone->lru_lock, flags);
3726 			break;
3727 		}
3728 		pc = list_entry(list->prev, struct page_cgroup, lru);
3729 		if (busy == pc) {
3730 			list_move(&pc->lru, list);
3731 			busy = NULL;
3732 			spin_unlock_irqrestore(&zone->lru_lock, flags);
3733 			continue;
3734 		}
3735 		spin_unlock_irqrestore(&zone->lru_lock, flags);
3736 
3737 		page = lookup_cgroup_page(pc);
3738 
3739 		ret = mem_cgroup_move_parent(page, pc, mem, GFP_KERNEL);
3740 		if (ret == -ENOMEM)
3741 			break;
3742 
3743 		if (ret == -EBUSY || ret == -EINVAL) {
3744 			/* found lock contention or "pc" is obsolete. */
3745 			busy = pc;
3746 			cond_resched();
3747 		} else
3748 			busy = NULL;
3749 	}
3750 
3751 	if (!ret && !list_empty(list))
3752 		return -EBUSY;
3753 	return ret;
3754 }
3755 
3756 /*
3757  * make mem_cgroup's charge to be 0 if there is no task.
3758  * This enables deleting this mem_cgroup.
3759  */
3760 static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3761 {
3762 	int ret;
3763 	int node, zid, shrink;
3764 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3765 	struct cgroup *cgrp = mem->css.cgroup;
3766 
3767 	css_get(&mem->css);
3768 
3769 	shrink = 0;
3770 	/* should free all ? */
3771 	if (free_all)
3772 		goto try_to_free;
3773 move_account:
3774 	do {
3775 		ret = -EBUSY;
3776 		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3777 			goto out;
3778 		ret = -EINTR;
3779 		if (signal_pending(current))
3780 			goto out;
3781 		/* This is for making all *used* pages to be on LRU. */
3782 		lru_add_drain_all();
3783 		drain_all_stock_sync();
3784 		ret = 0;
3785 		mem_cgroup_start_move(mem);
3786 		for_each_node_state(node, N_HIGH_MEMORY) {
3787 			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3788 				enum lru_list l;
3789 				for_each_lru(l) {
3790 					ret = mem_cgroup_force_empty_list(mem,
3791 							node, zid, l);
3792 					if (ret)
3793 						break;
3794 				}
3795 			}
3796 			if (ret)
3797 				break;
3798 		}
3799 		mem_cgroup_end_move(mem);
3800 		memcg_oom_recover(mem);
3801 		/* it seems parent cgroup doesn't have enough mem */
3802 		if (ret == -ENOMEM)
3803 			goto try_to_free;
3804 		cond_resched();
3805 	/* "ret" should also be checked to ensure all lists are empty. */
3806 	} while (mem->res.usage > 0 || ret);
3807 out:
3808 	css_put(&mem->css);
3809 	return ret;
3810 
3811 try_to_free:
3812 	/* returns EBUSY if there is a task or if we come here twice. */
3813 	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3814 		ret = -EBUSY;
3815 		goto out;
3816 	}
3817 	/* we call try-to-free pages for make this cgroup empty */
3818 	lru_add_drain_all();
3819 	/* try to free all pages in this cgroup */
3820 	shrink = 1;
3821 	while (nr_retries && mem->res.usage > 0) {
3822 		int progress;
3823 
3824 		if (signal_pending(current)) {
3825 			ret = -EINTR;
3826 			goto out;
3827 		}
3828 		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
3829 						false, get_swappiness(mem));
3830 		if (!progress) {
3831 			nr_retries--;
3832 			/* maybe some writeback is necessary */
3833 			congestion_wait(BLK_RW_ASYNC, HZ/10);
3834 		}
3835 
3836 	}
3837 	lru_add_drain();
3838 	/* try move_account...there may be some *locked* pages. */
3839 	goto move_account;
3840 }
3841 
3842 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3843 {
3844 	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3845 }
3846 
3847 
3848 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3849 {
3850 	return mem_cgroup_from_cont(cont)->use_hierarchy;
3851 }
3852 
3853 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3854 					u64 val)
3855 {
3856 	int retval = 0;
3857 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3858 	struct cgroup *parent = cont->parent;
3859 	struct mem_cgroup *parent_mem = NULL;
3860 
3861 	if (parent)
3862 		parent_mem = mem_cgroup_from_cont(parent);
3863 
3864 	cgroup_lock();
3865 	/*
3866 	 * If parent's use_hierarchy is set, we can't make any modifications
3867 	 * in the child subtrees. If it is unset, then the change can
3868 	 * occur, provided the current cgroup has no children.
3869 	 *
3870 	 * For the root cgroup, parent_mem is NULL, we allow value to be
3871 	 * set if there are no children.
3872 	 */
3873 	if ((!parent_mem || !parent_mem->use_hierarchy) &&
3874 				(val == 1 || val == 0)) {
3875 		if (list_empty(&cont->children))
3876 			mem->use_hierarchy = val;
3877 		else
3878 			retval = -EBUSY;
3879 	} else
3880 		retval = -EINVAL;
3881 	cgroup_unlock();
3882 
3883 	return retval;
3884 }
3885 
3886 
3887 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *mem,
3888 					       enum mem_cgroup_stat_index idx)
3889 {
3890 	struct mem_cgroup *iter;
3891 	long val = 0;
3892 
3893 	/* Per-cpu values can be negative, use a signed accumulator */
3894 	for_each_mem_cgroup_tree(iter, mem)
3895 		val += mem_cgroup_read_stat(iter, idx);
3896 
3897 	if (val < 0) /* race ? */
3898 		val = 0;
3899 	return val;
3900 }
3901 
3902 static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
3903 {
3904 	u64 val;
3905 
3906 	if (!mem_cgroup_is_root(mem)) {
3907 		if (!swap)
3908 			return res_counter_read_u64(&mem->res, RES_USAGE);
3909 		else
3910 			return res_counter_read_u64(&mem->memsw, RES_USAGE);
3911 	}
3912 
3913 	val = mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_CACHE);
3914 	val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_RSS);
3915 
3916 	if (swap)
3917 		val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3918 
3919 	return val << PAGE_SHIFT;
3920 }
3921 
3922 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3923 {
3924 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3925 	u64 val;
3926 	int type, name;
3927 
3928 	type = MEMFILE_TYPE(cft->private);
3929 	name = MEMFILE_ATTR(cft->private);
3930 	switch (type) {
3931 	case _MEM:
3932 		if (name == RES_USAGE)
3933 			val = mem_cgroup_usage(mem, false);
3934 		else
3935 			val = res_counter_read_u64(&mem->res, name);
3936 		break;
3937 	case _MEMSWAP:
3938 		if (name == RES_USAGE)
3939 			val = mem_cgroup_usage(mem, true);
3940 		else
3941 			val = res_counter_read_u64(&mem->memsw, name);
3942 		break;
3943 	default:
3944 		BUG();
3945 		break;
3946 	}
3947 	return val;
3948 }
3949 /*
3950  * The user of this function is...
3951  * RES_LIMIT.
3952  */
3953 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3954 			    const char *buffer)
3955 {
3956 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3957 	int type, name;
3958 	unsigned long long val;
3959 	int ret;
3960 
3961 	type = MEMFILE_TYPE(cft->private);
3962 	name = MEMFILE_ATTR(cft->private);
3963 	switch (name) {
3964 	case RES_LIMIT:
3965 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3966 			ret = -EINVAL;
3967 			break;
3968 		}
3969 		/* This function does all necessary parse...reuse it */
3970 		ret = res_counter_memparse_write_strategy(buffer, &val);
3971 		if (ret)
3972 			break;
3973 		if (type == _MEM)
3974 			ret = mem_cgroup_resize_limit(memcg, val);
3975 		else
3976 			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3977 		break;
3978 	case RES_SOFT_LIMIT:
3979 		ret = res_counter_memparse_write_strategy(buffer, &val);
3980 		if (ret)
3981 			break;
3982 		/*
3983 		 * For memsw, soft limits are hard to implement in terms
3984 		 * of semantics, for now, we support soft limits for
3985 		 * control without swap
3986 		 */
3987 		if (type == _MEM)
3988 			ret = res_counter_set_soft_limit(&memcg->res, val);
3989 		else
3990 			ret = -EINVAL;
3991 		break;
3992 	default:
3993 		ret = -EINVAL; /* should be BUG() ? */
3994 		break;
3995 	}
3996 	return ret;
3997 }
3998 
3999 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
4000 		unsigned long long *mem_limit, unsigned long long *memsw_limit)
4001 {
4002 	struct cgroup *cgroup;
4003 	unsigned long long min_limit, min_memsw_limit, tmp;
4004 
4005 	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4006 	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4007 	cgroup = memcg->css.cgroup;
4008 	if (!memcg->use_hierarchy)
4009 		goto out;
4010 
4011 	while (cgroup->parent) {
4012 		cgroup = cgroup->parent;
4013 		memcg = mem_cgroup_from_cont(cgroup);
4014 		if (!memcg->use_hierarchy)
4015 			break;
4016 		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
4017 		min_limit = min(min_limit, tmp);
4018 		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4019 		min_memsw_limit = min(min_memsw_limit, tmp);
4020 	}
4021 out:
4022 	*mem_limit = min_limit;
4023 	*memsw_limit = min_memsw_limit;
4024 	return;
4025 }
4026 
4027 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
4028 {
4029 	struct mem_cgroup *mem;
4030 	int type, name;
4031 
4032 	mem = mem_cgroup_from_cont(cont);
4033 	type = MEMFILE_TYPE(event);
4034 	name = MEMFILE_ATTR(event);
4035 	switch (name) {
4036 	case RES_MAX_USAGE:
4037 		if (type == _MEM)
4038 			res_counter_reset_max(&mem->res);
4039 		else
4040 			res_counter_reset_max(&mem->memsw);
4041 		break;
4042 	case RES_FAILCNT:
4043 		if (type == _MEM)
4044 			res_counter_reset_failcnt(&mem->res);
4045 		else
4046 			res_counter_reset_failcnt(&mem->memsw);
4047 		break;
4048 	}
4049 
4050 	return 0;
4051 }
4052 
4053 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
4054 					struct cftype *cft)
4055 {
4056 	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
4057 }
4058 
4059 #ifdef CONFIG_MMU
4060 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4061 					struct cftype *cft, u64 val)
4062 {
4063 	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4064 
4065 	if (val >= (1 << NR_MOVE_TYPE))
4066 		return -EINVAL;
4067 	/*
4068 	 * We check this value several times in both in can_attach() and
4069 	 * attach(), so we need cgroup lock to prevent this value from being
4070 	 * inconsistent.
4071 	 */
4072 	cgroup_lock();
4073 	mem->move_charge_at_immigrate = val;
4074 	cgroup_unlock();
4075 
4076 	return 0;
4077 }
4078 #else
4079 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4080 					struct cftype *cft, u64 val)
4081 {
4082 	return -ENOSYS;
4083 }
4084 #endif
4085 
4086 
4087 /* For read statistics */
4088 enum {
4089 	MCS_CACHE,
4090 	MCS_RSS,
4091 	MCS_FILE_MAPPED,
4092 	MCS_PGPGIN,
4093 	MCS_PGPGOUT,
4094 	MCS_SWAP,
4095 	MCS_PGFAULT,
4096 	MCS_PGMAJFAULT,
4097 	MCS_INACTIVE_ANON,
4098 	MCS_ACTIVE_ANON,
4099 	MCS_INACTIVE_FILE,
4100 	MCS_ACTIVE_FILE,
4101 	MCS_UNEVICTABLE,
4102 	NR_MCS_STAT,
4103 };
4104 
4105 struct mcs_total_stat {
4106 	s64 stat[NR_MCS_STAT];
4107 };
4108 
4109 struct {
4110 	char *local_name;
4111 	char *total_name;
4112 } memcg_stat_strings[NR_MCS_STAT] = {
4113 	{"cache", "total_cache"},
4114 	{"rss", "total_rss"},
4115 	{"mapped_file", "total_mapped_file"},
4116 	{"pgpgin", "total_pgpgin"},
4117 	{"pgpgout", "total_pgpgout"},
4118 	{"swap", "total_swap"},
4119 	{"pgfault", "total_pgfault"},
4120 	{"pgmajfault", "total_pgmajfault"},
4121 	{"inactive_anon", "total_inactive_anon"},
4122 	{"active_anon", "total_active_anon"},
4123 	{"inactive_file", "total_inactive_file"},
4124 	{"active_file", "total_active_file"},
4125 	{"unevictable", "total_unevictable"}
4126 };
4127 
4128 
4129 static void
4130 mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
4131 {
4132 	s64 val;
4133 
4134 	/* per cpu stat */
4135 	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
4136 	s->stat[MCS_CACHE] += val * PAGE_SIZE;
4137 	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
4138 	s->stat[MCS_RSS] += val * PAGE_SIZE;
4139 	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
4140 	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4141 	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGIN);
4142 	s->stat[MCS_PGPGIN] += val;
4143 	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGOUT);
4144 	s->stat[MCS_PGPGOUT] += val;
4145 	if (do_swap_account) {
4146 		val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
4147 		s->stat[MCS_SWAP] += val * PAGE_SIZE;
4148 	}
4149 	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGFAULT);
4150 	s->stat[MCS_PGFAULT] += val;
4151 	val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGMAJFAULT);
4152 	s->stat[MCS_PGMAJFAULT] += val;
4153 
4154 	/* per zone stat */
4155 	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
4156 	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4157 	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
4158 	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4159 	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
4160 	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4161 	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
4162 	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4163 	val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
4164 	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
4165 }
4166 
4167 static void
4168 mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
4169 {
4170 	struct mem_cgroup *iter;
4171 
4172 	for_each_mem_cgroup_tree(iter, mem)
4173 		mem_cgroup_get_local_stat(iter, s);
4174 }
4175 
4176 #ifdef CONFIG_NUMA
4177 static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
4178 {
4179 	int nid;
4180 	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4181 	unsigned long node_nr;
4182 	struct cgroup *cont = m->private;
4183 	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4184 
4185 	total_nr = mem_cgroup_nr_lru_pages(mem_cont);
4186 	seq_printf(m, "total=%lu", total_nr);
4187 	for_each_node_state(nid, N_HIGH_MEMORY) {
4188 		node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid);
4189 		seq_printf(m, " N%d=%lu", nid, node_nr);
4190 	}
4191 	seq_putc(m, '\n');
4192 
4193 	file_nr = mem_cgroup_nr_file_lru_pages(mem_cont);
4194 	seq_printf(m, "file=%lu", file_nr);
4195 	for_each_node_state(nid, N_HIGH_MEMORY) {
4196 		node_nr = mem_cgroup_node_nr_file_lru_pages(mem_cont, nid);
4197 		seq_printf(m, " N%d=%lu", nid, node_nr);
4198 	}
4199 	seq_putc(m, '\n');
4200 
4201 	anon_nr = mem_cgroup_nr_anon_lru_pages(mem_cont);
4202 	seq_printf(m, "anon=%lu", anon_nr);
4203 	for_each_node_state(nid, N_HIGH_MEMORY) {
4204 		node_nr = mem_cgroup_node_nr_anon_lru_pages(mem_cont, nid);
4205 		seq_printf(m, " N%d=%lu", nid, node_nr);
4206 	}
4207 	seq_putc(m, '\n');
4208 
4209 	unevictable_nr = mem_cgroup_nr_unevictable_lru_pages(mem_cont);
4210 	seq_printf(m, "unevictable=%lu", unevictable_nr);
4211 	for_each_node_state(nid, N_HIGH_MEMORY) {
4212 		node_nr = mem_cgroup_node_nr_unevictable_lru_pages(mem_cont,
4213 									nid);
4214 		seq_printf(m, " N%d=%lu", nid, node_nr);
4215 	}
4216 	seq_putc(m, '\n');
4217 	return 0;
4218 }
4219 #endif /* CONFIG_NUMA */
4220 
4221 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4222 				 struct cgroup_map_cb *cb)
4223 {
4224 	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4225 	struct mcs_total_stat mystat;
4226 	int i;
4227 
4228 	memset(&mystat, 0, sizeof(mystat));
4229 	mem_cgroup_get_local_stat(mem_cont, &mystat);
4230 
4231 
4232 	for (i = 0; i < NR_MCS_STAT; i++) {
4233 		if (i == MCS_SWAP && !do_swap_account)
4234 			continue;
4235 		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4236 	}
4237 
4238 	/* Hierarchical information */
4239 	{
4240 		unsigned long long limit, memsw_limit;
4241 		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
4242 		cb->fill(cb, "hierarchical_memory_limit", limit);
4243 		if (do_swap_account)
4244 			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
4245 	}
4246 
4247 	memset(&mystat, 0, sizeof(mystat));
4248 	mem_cgroup_get_total_stat(mem_cont, &mystat);
4249 	for (i = 0; i < NR_MCS_STAT; i++) {
4250 		if (i == MCS_SWAP && !do_swap_account)
4251 			continue;
4252 		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4253 	}
4254 
4255 #ifdef CONFIG_DEBUG_VM
4256 	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
4257 
4258 	{
4259 		int nid, zid;
4260 		struct mem_cgroup_per_zone *mz;
4261 		unsigned long recent_rotated[2] = {0, 0};
4262 		unsigned long recent_scanned[2] = {0, 0};
4263 
4264 		for_each_online_node(nid)
4265 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4266 				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
4267 
4268 				recent_rotated[0] +=
4269 					mz->reclaim_stat.recent_rotated[0];
4270 				recent_rotated[1] +=
4271 					mz->reclaim_stat.recent_rotated[1];
4272 				recent_scanned[0] +=
4273 					mz->reclaim_stat.recent_scanned[0];
4274 				recent_scanned[1] +=
4275 					mz->reclaim_stat.recent_scanned[1];
4276 			}
4277 		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
4278 		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
4279 		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
4280 		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
4281 	}
4282 #endif
4283 
4284 	return 0;
4285 }
4286 
4287 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4288 {
4289 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4290 
4291 	return get_swappiness(memcg);
4292 }
4293 
4294 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4295 				       u64 val)
4296 {
4297 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4298 	struct mem_cgroup *parent;
4299 
4300 	if (val > 100)
4301 		return -EINVAL;
4302 
4303 	if (cgrp->parent == NULL)
4304 		return -EINVAL;
4305 
4306 	parent = mem_cgroup_from_cont(cgrp->parent);
4307 
4308 	cgroup_lock();
4309 
4310 	/* If under hierarchy, only empty-root can set this value */
4311 	if ((parent->use_hierarchy) ||
4312 	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4313 		cgroup_unlock();
4314 		return -EINVAL;
4315 	}
4316 
4317 	memcg->swappiness = val;
4318 
4319 	cgroup_unlock();
4320 
4321 	return 0;
4322 }
4323 
4324 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4325 {
4326 	struct mem_cgroup_threshold_ary *t;
4327 	u64 usage;
4328 	int i;
4329 
4330 	rcu_read_lock();
4331 	if (!swap)
4332 		t = rcu_dereference(memcg->thresholds.primary);
4333 	else
4334 		t = rcu_dereference(memcg->memsw_thresholds.primary);
4335 
4336 	if (!t)
4337 		goto unlock;
4338 
4339 	usage = mem_cgroup_usage(memcg, swap);
4340 
4341 	/*
4342 	 * current_threshold points to threshold just below usage.
4343 	 * If it's not true, a threshold was crossed after last
4344 	 * call of __mem_cgroup_threshold().
4345 	 */
4346 	i = t->current_threshold;
4347 
4348 	/*
4349 	 * Iterate backward over array of thresholds starting from
4350 	 * current_threshold and check if a threshold is crossed.
4351 	 * If none of thresholds below usage is crossed, we read
4352 	 * only one element of the array here.
4353 	 */
4354 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4355 		eventfd_signal(t->entries[i].eventfd, 1);
4356 
4357 	/* i = current_threshold + 1 */
4358 	i++;
4359 
4360 	/*
4361 	 * Iterate forward over array of thresholds starting from
4362 	 * current_threshold+1 and check if a threshold is crossed.
4363 	 * If none of thresholds above usage is crossed, we read
4364 	 * only one element of the array here.
4365 	 */
4366 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4367 		eventfd_signal(t->entries[i].eventfd, 1);
4368 
4369 	/* Update current_threshold */
4370 	t->current_threshold = i - 1;
4371 unlock:
4372 	rcu_read_unlock();
4373 }
4374 
4375 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4376 {
4377 	while (memcg) {
4378 		__mem_cgroup_threshold(memcg, false);
4379 		if (do_swap_account)
4380 			__mem_cgroup_threshold(memcg, true);
4381 
4382 		memcg = parent_mem_cgroup(memcg);
4383 	}
4384 }
4385 
4386 static int compare_thresholds(const void *a, const void *b)
4387 {
4388 	const struct mem_cgroup_threshold *_a = a;
4389 	const struct mem_cgroup_threshold *_b = b;
4390 
4391 	return _a->threshold - _b->threshold;
4392 }
4393 
4394 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
4395 {
4396 	struct mem_cgroup_eventfd_list *ev;
4397 
4398 	list_for_each_entry(ev, &mem->oom_notify, list)
4399 		eventfd_signal(ev->eventfd, 1);
4400 	return 0;
4401 }
4402 
4403 static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
4404 {
4405 	struct mem_cgroup *iter;
4406 
4407 	for_each_mem_cgroup_tree(iter, mem)
4408 		mem_cgroup_oom_notify_cb(iter);
4409 }
4410 
4411 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4412 	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4413 {
4414 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4415 	struct mem_cgroup_thresholds *thresholds;
4416 	struct mem_cgroup_threshold_ary *new;
4417 	int type = MEMFILE_TYPE(cft->private);
4418 	u64 threshold, usage;
4419 	int i, size, ret;
4420 
4421 	ret = res_counter_memparse_write_strategy(args, &threshold);
4422 	if (ret)
4423 		return ret;
4424 
4425 	mutex_lock(&memcg->thresholds_lock);
4426 
4427 	if (type == _MEM)
4428 		thresholds = &memcg->thresholds;
4429 	else if (type == _MEMSWAP)
4430 		thresholds = &memcg->memsw_thresholds;
4431 	else
4432 		BUG();
4433 
4434 	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4435 
4436 	/* Check if a threshold crossed before adding a new one */
4437 	if (thresholds->primary)
4438 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4439 
4440 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4441 
4442 	/* Allocate memory for new array of thresholds */
4443 	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4444 			GFP_KERNEL);
4445 	if (!new) {
4446 		ret = -ENOMEM;
4447 		goto unlock;
4448 	}
4449 	new->size = size;
4450 
4451 	/* Copy thresholds (if any) to new array */
4452 	if (thresholds->primary) {
4453 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4454 				sizeof(struct mem_cgroup_threshold));
4455 	}
4456 
4457 	/* Add new threshold */
4458 	new->entries[size - 1].eventfd = eventfd;
4459 	new->entries[size - 1].threshold = threshold;
4460 
4461 	/* Sort thresholds. Registering of new threshold isn't time-critical */
4462 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4463 			compare_thresholds, NULL);
4464 
4465 	/* Find current threshold */
4466 	new->current_threshold = -1;
4467 	for (i = 0; i < size; i++) {
4468 		if (new->entries[i].threshold < usage) {
4469 			/*
4470 			 * new->current_threshold will not be used until
4471 			 * rcu_assign_pointer(), so it's safe to increment
4472 			 * it here.
4473 			 */
4474 			++new->current_threshold;
4475 		}
4476 	}
4477 
4478 	/* Free old spare buffer and save old primary buffer as spare */
4479 	kfree(thresholds->spare);
4480 	thresholds->spare = thresholds->primary;
4481 
4482 	rcu_assign_pointer(thresholds->primary, new);
4483 
4484 	/* To be sure that nobody uses thresholds */
4485 	synchronize_rcu();
4486 
4487 unlock:
4488 	mutex_unlock(&memcg->thresholds_lock);
4489 
4490 	return ret;
4491 }
4492 
4493 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4494 	struct cftype *cft, struct eventfd_ctx *eventfd)
4495 {
4496 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4497 	struct mem_cgroup_thresholds *thresholds;
4498 	struct mem_cgroup_threshold_ary *new;
4499 	int type = MEMFILE_TYPE(cft->private);
4500 	u64 usage;
4501 	int i, j, size;
4502 
4503 	mutex_lock(&memcg->thresholds_lock);
4504 	if (type == _MEM)
4505 		thresholds = &memcg->thresholds;
4506 	else if (type == _MEMSWAP)
4507 		thresholds = &memcg->memsw_thresholds;
4508 	else
4509 		BUG();
4510 
4511 	/*
4512 	 * Something went wrong if we trying to unregister a threshold
4513 	 * if we don't have thresholds
4514 	 */
4515 	BUG_ON(!thresholds);
4516 
4517 	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4518 
4519 	/* Check if a threshold crossed before removing */
4520 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4521 
4522 	/* Calculate new number of threshold */
4523 	size = 0;
4524 	for (i = 0; i < thresholds->primary->size; i++) {
4525 		if (thresholds->primary->entries[i].eventfd != eventfd)
4526 			size++;
4527 	}
4528 
4529 	new = thresholds->spare;
4530 
4531 	/* Set thresholds array to NULL if we don't have thresholds */
4532 	if (!size) {
4533 		kfree(new);
4534 		new = NULL;
4535 		goto swap_buffers;
4536 	}
4537 
4538 	new->size = size;
4539 
4540 	/* Copy thresholds and find current threshold */
4541 	new->current_threshold = -1;
4542 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4543 		if (thresholds->primary->entries[i].eventfd == eventfd)
4544 			continue;
4545 
4546 		new->entries[j] = thresholds->primary->entries[i];
4547 		if (new->entries[j].threshold < usage) {
4548 			/*
4549 			 * new->current_threshold will not be used
4550 			 * until rcu_assign_pointer(), so it's safe to increment
4551 			 * it here.
4552 			 */
4553 			++new->current_threshold;
4554 		}
4555 		j++;
4556 	}
4557 
4558 swap_buffers:
4559 	/* Swap primary and spare array */
4560 	thresholds->spare = thresholds->primary;
4561 	rcu_assign_pointer(thresholds->primary, new);
4562 
4563 	/* To be sure that nobody uses thresholds */
4564 	synchronize_rcu();
4565 
4566 	mutex_unlock(&memcg->thresholds_lock);
4567 }
4568 
4569 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4570 	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4571 {
4572 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4573 	struct mem_cgroup_eventfd_list *event;
4574 	int type = MEMFILE_TYPE(cft->private);
4575 
4576 	BUG_ON(type != _OOM_TYPE);
4577 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4578 	if (!event)
4579 		return -ENOMEM;
4580 
4581 	mutex_lock(&memcg_oom_mutex);
4582 
4583 	event->eventfd = eventfd;
4584 	list_add(&event->list, &memcg->oom_notify);
4585 
4586 	/* already in OOM ? */
4587 	if (atomic_read(&memcg->oom_lock))
4588 		eventfd_signal(eventfd, 1);
4589 	mutex_unlock(&memcg_oom_mutex);
4590 
4591 	return 0;
4592 }
4593 
4594 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4595 	struct cftype *cft, struct eventfd_ctx *eventfd)
4596 {
4597 	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4598 	struct mem_cgroup_eventfd_list *ev, *tmp;
4599 	int type = MEMFILE_TYPE(cft->private);
4600 
4601 	BUG_ON(type != _OOM_TYPE);
4602 
4603 	mutex_lock(&memcg_oom_mutex);
4604 
4605 	list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
4606 		if (ev->eventfd == eventfd) {
4607 			list_del(&ev->list);
4608 			kfree(ev);
4609 		}
4610 	}
4611 
4612 	mutex_unlock(&memcg_oom_mutex);
4613 }
4614 
4615 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4616 	struct cftype *cft,  struct cgroup_map_cb *cb)
4617 {
4618 	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4619 
4620 	cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
4621 
4622 	if (atomic_read(&mem->oom_lock))
4623 		cb->fill(cb, "under_oom", 1);
4624 	else
4625 		cb->fill(cb, "under_oom", 0);
4626 	return 0;
4627 }
4628 
4629 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4630 	struct cftype *cft, u64 val)
4631 {
4632 	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4633 	struct mem_cgroup *parent;
4634 
4635 	/* cannot set to root cgroup and only 0 and 1 are allowed */
4636 	if (!cgrp->parent || !((val == 0) || (val == 1)))
4637 		return -EINVAL;
4638 
4639 	parent = mem_cgroup_from_cont(cgrp->parent);
4640 
4641 	cgroup_lock();
4642 	/* oom-kill-disable is a flag for subhierarchy. */
4643 	if ((parent->use_hierarchy) ||
4644 	    (mem->use_hierarchy && !list_empty(&cgrp->children))) {
4645 		cgroup_unlock();
4646 		return -EINVAL;
4647 	}
4648 	mem->oom_kill_disable = val;
4649 	if (!val)
4650 		memcg_oom_recover(mem);
4651 	cgroup_unlock();
4652 	return 0;
4653 }
4654 
4655 #ifdef CONFIG_NUMA
4656 static const struct file_operations mem_control_numa_stat_file_operations = {
4657 	.read = seq_read,
4658 	.llseek = seq_lseek,
4659 	.release = single_release,
4660 };
4661 
4662 static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
4663 {
4664 	struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
4665 
4666 	file->f_op = &mem_control_numa_stat_file_operations;
4667 	return single_open(file, mem_control_numa_stat_show, cont);
4668 }
4669 #endif /* CONFIG_NUMA */
4670 
4671 static struct cftype mem_cgroup_files[] = {
4672 	{
4673 		.name = "usage_in_bytes",
4674 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4675 		.read_u64 = mem_cgroup_read,
4676 		.register_event = mem_cgroup_usage_register_event,
4677 		.unregister_event = mem_cgroup_usage_unregister_event,
4678 	},
4679 	{
4680 		.name = "max_usage_in_bytes",
4681 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4682 		.trigger = mem_cgroup_reset,
4683 		.read_u64 = mem_cgroup_read,
4684 	},
4685 	{
4686 		.name = "limit_in_bytes",
4687 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4688 		.write_string = mem_cgroup_write,
4689 		.read_u64 = mem_cgroup_read,
4690 	},
4691 	{
4692 		.name = "soft_limit_in_bytes",
4693 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4694 		.write_string = mem_cgroup_write,
4695 		.read_u64 = mem_cgroup_read,
4696 	},
4697 	{
4698 		.name = "failcnt",
4699 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4700 		.trigger = mem_cgroup_reset,
4701 		.read_u64 = mem_cgroup_read,
4702 	},
4703 	{
4704 		.name = "stat",
4705 		.read_map = mem_control_stat_show,
4706 	},
4707 	{
4708 		.name = "force_empty",
4709 		.trigger = mem_cgroup_force_empty_write,
4710 	},
4711 	{
4712 		.name = "use_hierarchy",
4713 		.write_u64 = mem_cgroup_hierarchy_write,
4714 		.read_u64 = mem_cgroup_hierarchy_read,
4715 	},
4716 	{
4717 		.name = "swappiness",
4718 		.read_u64 = mem_cgroup_swappiness_read,
4719 		.write_u64 = mem_cgroup_swappiness_write,
4720 	},
4721 	{
4722 		.name = "move_charge_at_immigrate",
4723 		.read_u64 = mem_cgroup_move_charge_read,
4724 		.write_u64 = mem_cgroup_move_charge_write,
4725 	},
4726 	{
4727 		.name = "oom_control",
4728 		.read_map = mem_cgroup_oom_control_read,
4729 		.write_u64 = mem_cgroup_oom_control_write,
4730 		.register_event = mem_cgroup_oom_register_event,
4731 		.unregister_event = mem_cgroup_oom_unregister_event,
4732 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4733 	},
4734 #ifdef CONFIG_NUMA
4735 	{
4736 		.name = "numa_stat",
4737 		.open = mem_control_numa_stat_open,
4738 		.mode = S_IRUGO,
4739 	},
4740 #endif
4741 };
4742 
4743 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4744 static struct cftype memsw_cgroup_files[] = {
4745 	{
4746 		.name = "memsw.usage_in_bytes",
4747 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4748 		.read_u64 = mem_cgroup_read,
4749 		.register_event = mem_cgroup_usage_register_event,
4750 		.unregister_event = mem_cgroup_usage_unregister_event,
4751 	},
4752 	{
4753 		.name = "memsw.max_usage_in_bytes",
4754 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4755 		.trigger = mem_cgroup_reset,
4756 		.read_u64 = mem_cgroup_read,
4757 	},
4758 	{
4759 		.name = "memsw.limit_in_bytes",
4760 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4761 		.write_string = mem_cgroup_write,
4762 		.read_u64 = mem_cgroup_read,
4763 	},
4764 	{
4765 		.name = "memsw.failcnt",
4766 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4767 		.trigger = mem_cgroup_reset,
4768 		.read_u64 = mem_cgroup_read,
4769 	},
4770 };
4771 
4772 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4773 {
4774 	if (!do_swap_account)
4775 		return 0;
4776 	return cgroup_add_files(cont, ss, memsw_cgroup_files,
4777 				ARRAY_SIZE(memsw_cgroup_files));
4778 };
4779 #else
4780 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4781 {
4782 	return 0;
4783 }
4784 #endif
4785 
4786 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4787 {
4788 	struct mem_cgroup_per_node *pn;
4789 	struct mem_cgroup_per_zone *mz;
4790 	enum lru_list l;
4791 	int zone, tmp = node;
4792 	/*
4793 	 * This routine is called against possible nodes.
4794 	 * But it's BUG to call kmalloc() against offline node.
4795 	 *
4796 	 * TODO: this routine can waste much memory for nodes which will
4797 	 *       never be onlined. It's better to use memory hotplug callback
4798 	 *       function.
4799 	 */
4800 	if (!node_state(node, N_NORMAL_MEMORY))
4801 		tmp = -1;
4802 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4803 	if (!pn)
4804 		return 1;
4805 
4806 	mem->info.nodeinfo[node] = pn;
4807 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4808 		mz = &pn->zoneinfo[zone];
4809 		for_each_lru(l)
4810 			INIT_LIST_HEAD(&mz->lists[l]);
4811 		mz->usage_in_excess = 0;
4812 		mz->on_tree = false;
4813 		mz->mem = mem;
4814 	}
4815 	return 0;
4816 }
4817 
4818 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4819 {
4820 	kfree(mem->info.nodeinfo[node]);
4821 }
4822 
4823 static struct mem_cgroup *mem_cgroup_alloc(void)
4824 {
4825 	struct mem_cgroup *mem;
4826 	int size = sizeof(struct mem_cgroup);
4827 
4828 	/* Can be very big if MAX_NUMNODES is very big */
4829 	if (size < PAGE_SIZE)
4830 		mem = kzalloc(size, GFP_KERNEL);
4831 	else
4832 		mem = vzalloc(size);
4833 
4834 	if (!mem)
4835 		return NULL;
4836 
4837 	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4838 	if (!mem->stat)
4839 		goto out_free;
4840 	spin_lock_init(&mem->pcp_counter_lock);
4841 	return mem;
4842 
4843 out_free:
4844 	if (size < PAGE_SIZE)
4845 		kfree(mem);
4846 	else
4847 		vfree(mem);
4848 	return NULL;
4849 }
4850 
4851 /*
4852  * At destroying mem_cgroup, references from swap_cgroup can remain.
4853  * (scanning all at force_empty is too costly...)
4854  *
4855  * Instead of clearing all references at force_empty, we remember
4856  * the number of reference from swap_cgroup and free mem_cgroup when
4857  * it goes down to 0.
4858  *
4859  * Removal of cgroup itself succeeds regardless of refs from swap.
4860  */
4861 
4862 static void __mem_cgroup_free(struct mem_cgroup *mem)
4863 {
4864 	int node;
4865 
4866 	mem_cgroup_remove_from_trees(mem);
4867 	free_css_id(&mem_cgroup_subsys, &mem->css);
4868 
4869 	for_each_node_state(node, N_POSSIBLE)
4870 		free_mem_cgroup_per_zone_info(mem, node);
4871 
4872 	free_percpu(mem->stat);
4873 	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4874 		kfree(mem);
4875 	else
4876 		vfree(mem);
4877 }
4878 
4879 static void mem_cgroup_get(struct mem_cgroup *mem)
4880 {
4881 	atomic_inc(&mem->refcnt);
4882 }
4883 
4884 static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
4885 {
4886 	if (atomic_sub_and_test(count, &mem->refcnt)) {
4887 		struct mem_cgroup *parent = parent_mem_cgroup(mem);
4888 		__mem_cgroup_free(mem);
4889 		if (parent)
4890 			mem_cgroup_put(parent);
4891 	}
4892 }
4893 
4894 static void mem_cgroup_put(struct mem_cgroup *mem)
4895 {
4896 	__mem_cgroup_put(mem, 1);
4897 }
4898 
4899 /*
4900  * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4901  */
4902 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
4903 {
4904 	if (!mem->res.parent)
4905 		return NULL;
4906 	return mem_cgroup_from_res_counter(mem->res.parent, res);
4907 }
4908 
4909 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4910 static void __init enable_swap_cgroup(void)
4911 {
4912 	if (!mem_cgroup_disabled() && really_do_swap_account)
4913 		do_swap_account = 1;
4914 }
4915 #else
4916 static void __init enable_swap_cgroup(void)
4917 {
4918 }
4919 #endif
4920 
4921 static int mem_cgroup_soft_limit_tree_init(void)
4922 {
4923 	struct mem_cgroup_tree_per_node *rtpn;
4924 	struct mem_cgroup_tree_per_zone *rtpz;
4925 	int tmp, node, zone;
4926 
4927 	for_each_node_state(node, N_POSSIBLE) {
4928 		tmp = node;
4929 		if (!node_state(node, N_NORMAL_MEMORY))
4930 			tmp = -1;
4931 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4932 		if (!rtpn)
4933 			return 1;
4934 
4935 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
4936 
4937 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4938 			rtpz = &rtpn->rb_tree_per_zone[zone];
4939 			rtpz->rb_root = RB_ROOT;
4940 			spin_lock_init(&rtpz->lock);
4941 		}
4942 	}
4943 	return 0;
4944 }
4945 
4946 static struct cgroup_subsys_state * __ref
4947 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4948 {
4949 	struct mem_cgroup *mem, *parent;
4950 	long error = -ENOMEM;
4951 	int node;
4952 
4953 	mem = mem_cgroup_alloc();
4954 	if (!mem)
4955 		return ERR_PTR(error);
4956 
4957 	for_each_node_state(node, N_POSSIBLE)
4958 		if (alloc_mem_cgroup_per_zone_info(mem, node))
4959 			goto free_out;
4960 
4961 	/* root ? */
4962 	if (cont->parent == NULL) {
4963 		int cpu;
4964 		enable_swap_cgroup();
4965 		parent = NULL;
4966 		root_mem_cgroup = mem;
4967 		if (mem_cgroup_soft_limit_tree_init())
4968 			goto free_out;
4969 		for_each_possible_cpu(cpu) {
4970 			struct memcg_stock_pcp *stock =
4971 						&per_cpu(memcg_stock, cpu);
4972 			INIT_WORK(&stock->work, drain_local_stock);
4973 		}
4974 		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4975 	} else {
4976 		parent = mem_cgroup_from_cont(cont->parent);
4977 		mem->use_hierarchy = parent->use_hierarchy;
4978 		mem->oom_kill_disable = parent->oom_kill_disable;
4979 	}
4980 
4981 	if (parent && parent->use_hierarchy) {
4982 		res_counter_init(&mem->res, &parent->res);
4983 		res_counter_init(&mem->memsw, &parent->memsw);
4984 		/*
4985 		 * We increment refcnt of the parent to ensure that we can
4986 		 * safely access it on res_counter_charge/uncharge.
4987 		 * This refcnt will be decremented when freeing this
4988 		 * mem_cgroup(see mem_cgroup_put).
4989 		 */
4990 		mem_cgroup_get(parent);
4991 	} else {
4992 		res_counter_init(&mem->res, NULL);
4993 		res_counter_init(&mem->memsw, NULL);
4994 	}
4995 	mem->last_scanned_child = 0;
4996 	mem->last_scanned_node = MAX_NUMNODES;
4997 	INIT_LIST_HEAD(&mem->oom_notify);
4998 
4999 	if (parent)
5000 		mem->swappiness = get_swappiness(parent);
5001 	atomic_set(&mem->refcnt, 1);
5002 	mem->move_charge_at_immigrate = 0;
5003 	mutex_init(&mem->thresholds_lock);
5004 	return &mem->css;
5005 free_out:
5006 	__mem_cgroup_free(mem);
5007 	root_mem_cgroup = NULL;
5008 	return ERR_PTR(error);
5009 }
5010 
5011 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
5012 					struct cgroup *cont)
5013 {
5014 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
5015 
5016 	return mem_cgroup_force_empty(mem, false);
5017 }
5018 
5019 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
5020 				struct cgroup *cont)
5021 {
5022 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
5023 
5024 	mem_cgroup_put(mem);
5025 }
5026 
5027 static int mem_cgroup_populate(struct cgroup_subsys *ss,
5028 				struct cgroup *cont)
5029 {
5030 	int ret;
5031 
5032 	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
5033 				ARRAY_SIZE(mem_cgroup_files));
5034 
5035 	if (!ret)
5036 		ret = register_memsw_files(cont, ss);
5037 	return ret;
5038 }
5039 
5040 #ifdef CONFIG_MMU
5041 /* Handlers for move charge at task migration. */
5042 #define PRECHARGE_COUNT_AT_ONCE	256
5043 static int mem_cgroup_do_precharge(unsigned long count)
5044 {
5045 	int ret = 0;
5046 	int batch_count = PRECHARGE_COUNT_AT_ONCE;
5047 	struct mem_cgroup *mem = mc.to;
5048 
5049 	if (mem_cgroup_is_root(mem)) {
5050 		mc.precharge += count;
5051 		/* we don't need css_get for root */
5052 		return ret;
5053 	}
5054 	/* try to charge at once */
5055 	if (count > 1) {
5056 		struct res_counter *dummy;
5057 		/*
5058 		 * "mem" cannot be under rmdir() because we've already checked
5059 		 * by cgroup_lock_live_cgroup() that it is not removed and we
5060 		 * are still under the same cgroup_mutex. So we can postpone
5061 		 * css_get().
5062 		 */
5063 		if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
5064 			goto one_by_one;
5065 		if (do_swap_account && res_counter_charge(&mem->memsw,
5066 						PAGE_SIZE * count, &dummy)) {
5067 			res_counter_uncharge(&mem->res, PAGE_SIZE * count);
5068 			goto one_by_one;
5069 		}
5070 		mc.precharge += count;
5071 		return ret;
5072 	}
5073 one_by_one:
5074 	/* fall back to one by one charge */
5075 	while (count--) {
5076 		if (signal_pending(current)) {
5077 			ret = -EINTR;
5078 			break;
5079 		}
5080 		if (!batch_count--) {
5081 			batch_count = PRECHARGE_COUNT_AT_ONCE;
5082 			cond_resched();
5083 		}
5084 		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, 1, &mem, false);
5085 		if (ret || !mem)
5086 			/* mem_cgroup_clear_mc() will do uncharge later */
5087 			return -ENOMEM;
5088 		mc.precharge++;
5089 	}
5090 	return ret;
5091 }
5092 
5093 /**
5094  * is_target_pte_for_mc - check a pte whether it is valid for move charge
5095  * @vma: the vma the pte to be checked belongs
5096  * @addr: the address corresponding to the pte to be checked
5097  * @ptent: the pte to be checked
5098  * @target: the pointer the target page or swap ent will be stored(can be NULL)
5099  *
5100  * Returns
5101  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5102  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5103  *     move charge. if @target is not NULL, the page is stored in target->page
5104  *     with extra refcnt got(Callers should handle it).
5105  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5106  *     target for charge migration. if @target is not NULL, the entry is stored
5107  *     in target->ent.
5108  *
5109  * Called with pte lock held.
5110  */
5111 union mc_target {
5112 	struct page	*page;
5113 	swp_entry_t	ent;
5114 };
5115 
5116 enum mc_target_type {
5117 	MC_TARGET_NONE,	/* not used */
5118 	MC_TARGET_PAGE,
5119 	MC_TARGET_SWAP,
5120 };
5121 
5122 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5123 						unsigned long addr, pte_t ptent)
5124 {
5125 	struct page *page = vm_normal_page(vma, addr, ptent);
5126 
5127 	if (!page || !page_mapped(page))
5128 		return NULL;
5129 	if (PageAnon(page)) {
5130 		/* we don't move shared anon */
5131 		if (!move_anon() || page_mapcount(page) > 2)
5132 			return NULL;
5133 	} else if (!move_file())
5134 		/* we ignore mapcount for file pages */
5135 		return NULL;
5136 	if (!get_page_unless_zero(page))
5137 		return NULL;
5138 
5139 	return page;
5140 }
5141 
5142 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5143 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5144 {
5145 	int usage_count;
5146 	struct page *page = NULL;
5147 	swp_entry_t ent = pte_to_swp_entry(ptent);
5148 
5149 	if (!move_anon() || non_swap_entry(ent))
5150 		return NULL;
5151 	usage_count = mem_cgroup_count_swap_user(ent, &page);
5152 	if (usage_count > 1) { /* we don't move shared anon */
5153 		if (page)
5154 			put_page(page);
5155 		return NULL;
5156 	}
5157 	if (do_swap_account)
5158 		entry->val = ent.val;
5159 
5160 	return page;
5161 }
5162 
5163 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5164 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5165 {
5166 	struct page *page = NULL;
5167 	struct inode *inode;
5168 	struct address_space *mapping;
5169 	pgoff_t pgoff;
5170 
5171 	if (!vma->vm_file) /* anonymous vma */
5172 		return NULL;
5173 	if (!move_file())
5174 		return NULL;
5175 
5176 	inode = vma->vm_file->f_path.dentry->d_inode;
5177 	mapping = vma->vm_file->f_mapping;
5178 	if (pte_none(ptent))
5179 		pgoff = linear_page_index(vma, addr);
5180 	else /* pte_file(ptent) is true */
5181 		pgoff = pte_to_pgoff(ptent);
5182 
5183 	/* page is moved even if it's not RSS of this task(page-faulted). */
5184 	if (!mapping_cap_swap_backed(mapping)) { /* normal file */
5185 		page = find_get_page(mapping, pgoff);
5186 	} else { /* shmem/tmpfs file. we should take account of swap too. */
5187 		swp_entry_t ent;
5188 		mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
5189 		if (do_swap_account)
5190 			entry->val = ent.val;
5191 	}
5192 
5193 	return page;
5194 }
5195 
5196 static int is_target_pte_for_mc(struct vm_area_struct *vma,
5197 		unsigned long addr, pte_t ptent, union mc_target *target)
5198 {
5199 	struct page *page = NULL;
5200 	struct page_cgroup *pc;
5201 	int ret = 0;
5202 	swp_entry_t ent = { .val = 0 };
5203 
5204 	if (pte_present(ptent))
5205 		page = mc_handle_present_pte(vma, addr, ptent);
5206 	else if (is_swap_pte(ptent))
5207 		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5208 	else if (pte_none(ptent) || pte_file(ptent))
5209 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
5210 
5211 	if (!page && !ent.val)
5212 		return 0;
5213 	if (page) {
5214 		pc = lookup_page_cgroup(page);
5215 		/*
5216 		 * Do only loose check w/o page_cgroup lock.
5217 		 * mem_cgroup_move_account() checks the pc is valid or not under
5218 		 * the lock.
5219 		 */
5220 		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5221 			ret = MC_TARGET_PAGE;
5222 			if (target)
5223 				target->page = page;
5224 		}
5225 		if (!ret || !target)
5226 			put_page(page);
5227 	}
5228 	/* There is a swap entry and a page doesn't exist or isn't charged */
5229 	if (ent.val && !ret &&
5230 			css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
5231 		ret = MC_TARGET_SWAP;
5232 		if (target)
5233 			target->ent = ent;
5234 	}
5235 	return ret;
5236 }
5237 
5238 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5239 					unsigned long addr, unsigned long end,
5240 					struct mm_walk *walk)
5241 {
5242 	struct vm_area_struct *vma = walk->private;
5243 	pte_t *pte;
5244 	spinlock_t *ptl;
5245 
5246 	split_huge_page_pmd(walk->mm, pmd);
5247 
5248 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5249 	for (; addr != end; pte++, addr += PAGE_SIZE)
5250 		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
5251 			mc.precharge++;	/* increment precharge temporarily */
5252 	pte_unmap_unlock(pte - 1, ptl);
5253 	cond_resched();
5254 
5255 	return 0;
5256 }
5257 
5258 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5259 {
5260 	unsigned long precharge;
5261 	struct vm_area_struct *vma;
5262 
5263 	down_read(&mm->mmap_sem);
5264 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
5265 		struct mm_walk mem_cgroup_count_precharge_walk = {
5266 			.pmd_entry = mem_cgroup_count_precharge_pte_range,
5267 			.mm = mm,
5268 			.private = vma,
5269 		};
5270 		if (is_vm_hugetlb_page(vma))
5271 			continue;
5272 		walk_page_range(vma->vm_start, vma->vm_end,
5273 					&mem_cgroup_count_precharge_walk);
5274 	}
5275 	up_read(&mm->mmap_sem);
5276 
5277 	precharge = mc.precharge;
5278 	mc.precharge = 0;
5279 
5280 	return precharge;
5281 }
5282 
5283 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5284 {
5285 	unsigned long precharge = mem_cgroup_count_precharge(mm);
5286 
5287 	VM_BUG_ON(mc.moving_task);
5288 	mc.moving_task = current;
5289 	return mem_cgroup_do_precharge(precharge);
5290 }
5291 
5292 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5293 static void __mem_cgroup_clear_mc(void)
5294 {
5295 	struct mem_cgroup *from = mc.from;
5296 	struct mem_cgroup *to = mc.to;
5297 
5298 	/* we must uncharge all the leftover precharges from mc.to */
5299 	if (mc.precharge) {
5300 		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
5301 		mc.precharge = 0;
5302 	}
5303 	/*
5304 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5305 	 * we must uncharge here.
5306 	 */
5307 	if (mc.moved_charge) {
5308 		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5309 		mc.moved_charge = 0;
5310 	}
5311 	/* we must fixup refcnts and charges */
5312 	if (mc.moved_swap) {
5313 		/* uncharge swap account from the old cgroup */
5314 		if (!mem_cgroup_is_root(mc.from))
5315 			res_counter_uncharge(&mc.from->memsw,
5316 						PAGE_SIZE * mc.moved_swap);
5317 		__mem_cgroup_put(mc.from, mc.moved_swap);
5318 
5319 		if (!mem_cgroup_is_root(mc.to)) {
5320 			/*
5321 			 * we charged both to->res and to->memsw, so we should
5322 			 * uncharge to->res.
5323 			 */
5324 			res_counter_uncharge(&mc.to->res,
5325 						PAGE_SIZE * mc.moved_swap);
5326 		}
5327 		/* we've already done mem_cgroup_get(mc.to) */
5328 		mc.moved_swap = 0;
5329 	}
5330 	memcg_oom_recover(from);
5331 	memcg_oom_recover(to);
5332 	wake_up_all(&mc.waitq);
5333 }
5334 
5335 static void mem_cgroup_clear_mc(void)
5336 {
5337 	struct mem_cgroup *from = mc.from;
5338 
5339 	/*
5340 	 * we must clear moving_task before waking up waiters at the end of
5341 	 * task migration.
5342 	 */
5343 	mc.moving_task = NULL;
5344 	__mem_cgroup_clear_mc();
5345 	spin_lock(&mc.lock);
5346 	mc.from = NULL;
5347 	mc.to = NULL;
5348 	spin_unlock(&mc.lock);
5349 	mem_cgroup_end_move(from);
5350 }
5351 
5352 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5353 				struct cgroup *cgroup,
5354 				struct task_struct *p)
5355 {
5356 	int ret = 0;
5357 	struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
5358 
5359 	if (mem->move_charge_at_immigrate) {
5360 		struct mm_struct *mm;
5361 		struct mem_cgroup *from = mem_cgroup_from_task(p);
5362 
5363 		VM_BUG_ON(from == mem);
5364 
5365 		mm = get_task_mm(p);
5366 		if (!mm)
5367 			return 0;
5368 		/* We move charges only when we move a owner of the mm */
5369 		if (mm->owner == p) {
5370 			VM_BUG_ON(mc.from);
5371 			VM_BUG_ON(mc.to);
5372 			VM_BUG_ON(mc.precharge);
5373 			VM_BUG_ON(mc.moved_charge);
5374 			VM_BUG_ON(mc.moved_swap);
5375 			mem_cgroup_start_move(from);
5376 			spin_lock(&mc.lock);
5377 			mc.from = from;
5378 			mc.to = mem;
5379 			spin_unlock(&mc.lock);
5380 			/* We set mc.moving_task later */
5381 
5382 			ret = mem_cgroup_precharge_mc(mm);
5383 			if (ret)
5384 				mem_cgroup_clear_mc();
5385 		}
5386 		mmput(mm);
5387 	}
5388 	return ret;
5389 }
5390 
5391 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5392 				struct cgroup *cgroup,
5393 				struct task_struct *p)
5394 {
5395 	mem_cgroup_clear_mc();
5396 }
5397 
5398 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5399 				unsigned long addr, unsigned long end,
5400 				struct mm_walk *walk)
5401 {
5402 	int ret = 0;
5403 	struct vm_area_struct *vma = walk->private;
5404 	pte_t *pte;
5405 	spinlock_t *ptl;
5406 
5407 	split_huge_page_pmd(walk->mm, pmd);
5408 retry:
5409 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5410 	for (; addr != end; addr += PAGE_SIZE) {
5411 		pte_t ptent = *(pte++);
5412 		union mc_target target;
5413 		int type;
5414 		struct page *page;
5415 		struct page_cgroup *pc;
5416 		swp_entry_t ent;
5417 
5418 		if (!mc.precharge)
5419 			break;
5420 
5421 		type = is_target_pte_for_mc(vma, addr, ptent, &target);
5422 		switch (type) {
5423 		case MC_TARGET_PAGE:
5424 			page = target.page;
5425 			if (isolate_lru_page(page))
5426 				goto put;
5427 			pc = lookup_page_cgroup(page);
5428 			if (!mem_cgroup_move_account(page, 1, pc,
5429 						     mc.from, mc.to, false)) {
5430 				mc.precharge--;
5431 				/* we uncharge from mc.from later. */
5432 				mc.moved_charge++;
5433 			}
5434 			putback_lru_page(page);
5435 put:			/* is_target_pte_for_mc() gets the page */
5436 			put_page(page);
5437 			break;
5438 		case MC_TARGET_SWAP:
5439 			ent = target.ent;
5440 			if (!mem_cgroup_move_swap_account(ent,
5441 						mc.from, mc.to, false)) {
5442 				mc.precharge--;
5443 				/* we fixup refcnts and charges later. */
5444 				mc.moved_swap++;
5445 			}
5446 			break;
5447 		default:
5448 			break;
5449 		}
5450 	}
5451 	pte_unmap_unlock(pte - 1, ptl);
5452 	cond_resched();
5453 
5454 	if (addr != end) {
5455 		/*
5456 		 * We have consumed all precharges we got in can_attach().
5457 		 * We try charge one by one, but don't do any additional
5458 		 * charges to mc.to if we have failed in charge once in attach()
5459 		 * phase.
5460 		 */
5461 		ret = mem_cgroup_do_precharge(1);
5462 		if (!ret)
5463 			goto retry;
5464 	}
5465 
5466 	return ret;
5467 }
5468 
5469 static void mem_cgroup_move_charge(struct mm_struct *mm)
5470 {
5471 	struct vm_area_struct *vma;
5472 
5473 	lru_add_drain_all();
5474 retry:
5475 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5476 		/*
5477 		 * Someone who are holding the mmap_sem might be waiting in
5478 		 * waitq. So we cancel all extra charges, wake up all waiters,
5479 		 * and retry. Because we cancel precharges, we might not be able
5480 		 * to move enough charges, but moving charge is a best-effort
5481 		 * feature anyway, so it wouldn't be a big problem.
5482 		 */
5483 		__mem_cgroup_clear_mc();
5484 		cond_resched();
5485 		goto retry;
5486 	}
5487 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
5488 		int ret;
5489 		struct mm_walk mem_cgroup_move_charge_walk = {
5490 			.pmd_entry = mem_cgroup_move_charge_pte_range,
5491 			.mm = mm,
5492 			.private = vma,
5493 		};
5494 		if (is_vm_hugetlb_page(vma))
5495 			continue;
5496 		ret = walk_page_range(vma->vm_start, vma->vm_end,
5497 						&mem_cgroup_move_charge_walk);
5498 		if (ret)
5499 			/*
5500 			 * means we have consumed all precharges and failed in
5501 			 * doing additional charge. Just abandon here.
5502 			 */
5503 			break;
5504 	}
5505 	up_read(&mm->mmap_sem);
5506 }
5507 
5508 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5509 				struct cgroup *cont,
5510 				struct cgroup *old_cont,
5511 				struct task_struct *p)
5512 {
5513 	struct mm_struct *mm = get_task_mm(p);
5514 
5515 	if (mm) {
5516 		if (mc.to)
5517 			mem_cgroup_move_charge(mm);
5518 		put_swap_token(mm);
5519 		mmput(mm);
5520 	}
5521 	if (mc.to)
5522 		mem_cgroup_clear_mc();
5523 }
5524 #else	/* !CONFIG_MMU */
5525 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5526 				struct cgroup *cgroup,
5527 				struct task_struct *p)
5528 {
5529 	return 0;
5530 }
5531 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5532 				struct cgroup *cgroup,
5533 				struct task_struct *p)
5534 {
5535 }
5536 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5537 				struct cgroup *cont,
5538 				struct cgroup *old_cont,
5539 				struct task_struct *p)
5540 {
5541 }
5542 #endif
5543 
5544 struct cgroup_subsys mem_cgroup_subsys = {
5545 	.name = "memory",
5546 	.subsys_id = mem_cgroup_subsys_id,
5547 	.create = mem_cgroup_create,
5548 	.pre_destroy = mem_cgroup_pre_destroy,
5549 	.destroy = mem_cgroup_destroy,
5550 	.populate = mem_cgroup_populate,
5551 	.can_attach = mem_cgroup_can_attach,
5552 	.cancel_attach = mem_cgroup_cancel_attach,
5553 	.attach = mem_cgroup_move_task,
5554 	.early_init = 0,
5555 	.use_id = 1,
5556 };
5557 
5558 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5559 static int __init enable_swap_account(char *s)
5560 {
5561 	/* consider enabled if no parameter or 1 is given */
5562 	if (!strcmp(s, "1"))
5563 		really_do_swap_account = 1;
5564 	else if (!strcmp(s, "0"))
5565 		really_do_swap_account = 0;
5566 	return 1;
5567 }
5568 __setup("swapaccount=", enable_swap_account);
5569 
5570 #endif
5571