1 /* memcontrol.c - Memory Controller 2 * 3 * Copyright IBM Corporation, 2007 4 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 5 * 6 * Copyright 2007 OpenVZ SWsoft Inc 7 * Author: Pavel Emelianov <xemul@openvz.org> 8 * 9 * Memory thresholds 10 * Copyright (C) 2009 Nokia Corporation 11 * Author: Kirill A. Shutemov 12 * 13 * This program is free software; you can redistribute it and/or modify 14 * it under the terms of the GNU General Public License as published by 15 * the Free Software Foundation; either version 2 of the License, or 16 * (at your option) any later version. 17 * 18 * This program is distributed in the hope that it will be useful, 19 * but WITHOUT ANY WARRANTY; without even the implied warranty of 20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 21 * GNU General Public License for more details. 22 */ 23 24 #include <linux/res_counter.h> 25 #include <linux/memcontrol.h> 26 #include <linux/cgroup.h> 27 #include <linux/mm.h> 28 #include <linux/hugetlb.h> 29 #include <linux/pagemap.h> 30 #include <linux/smp.h> 31 #include <linux/page-flags.h> 32 #include <linux/backing-dev.h> 33 #include <linux/bit_spinlock.h> 34 #include <linux/rcupdate.h> 35 #include <linux/limits.h> 36 #include <linux/mutex.h> 37 #include <linux/rbtree.h> 38 #include <linux/shmem_fs.h> 39 #include <linux/slab.h> 40 #include <linux/swap.h> 41 #include <linux/swapops.h> 42 #include <linux/spinlock.h> 43 #include <linux/eventfd.h> 44 #include <linux/sort.h> 45 #include <linux/fs.h> 46 #include <linux/seq_file.h> 47 #include <linux/vmalloc.h> 48 #include <linux/mm_inline.h> 49 #include <linux/page_cgroup.h> 50 #include <linux/cpu.h> 51 #include <linux/oom.h> 52 #include "internal.h" 53 54 #include <asm/uaccess.h> 55 56 #include <trace/events/vmscan.h> 57 58 struct cgroup_subsys mem_cgroup_subsys __read_mostly; 59 #define MEM_CGROUP_RECLAIM_RETRIES 5 60 struct mem_cgroup *root_mem_cgroup __read_mostly; 61 62 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP 63 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */ 64 int do_swap_account __read_mostly; 65 66 /* for remember boot option*/ 67 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED 68 static int really_do_swap_account __initdata = 1; 69 #else 70 static int really_do_swap_account __initdata = 0; 71 #endif 72 73 #else 74 #define do_swap_account (0) 75 #endif 76 77 78 /* 79 * Statistics for memory cgroup. 80 */ 81 enum mem_cgroup_stat_index { 82 /* 83 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss. 84 */ 85 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */ 86 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */ 87 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */ 88 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */ 89 MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */ 90 MEM_CGROUP_ON_MOVE, /* someone is moving account between groups */ 91 MEM_CGROUP_STAT_NSTATS, 92 }; 93 94 enum mem_cgroup_events_index { 95 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */ 96 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */ 97 MEM_CGROUP_EVENTS_COUNT, /* # of pages paged in/out */ 98 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */ 99 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */ 100 MEM_CGROUP_EVENTS_NSTATS, 101 }; 102 /* 103 * Per memcg event counter is incremented at every pagein/pageout. With THP, 104 * it will be incremated by the number of pages. This counter is used for 105 * for trigger some periodic events. This is straightforward and better 106 * than using jiffies etc. to handle periodic memcg event. 107 */ 108 enum mem_cgroup_events_target { 109 MEM_CGROUP_TARGET_THRESH, 110 MEM_CGROUP_TARGET_SOFTLIMIT, 111 MEM_CGROUP_TARGET_NUMAINFO, 112 MEM_CGROUP_NTARGETS, 113 }; 114 #define THRESHOLDS_EVENTS_TARGET (128) 115 #define SOFTLIMIT_EVENTS_TARGET (1024) 116 #define NUMAINFO_EVENTS_TARGET (1024) 117 118 struct mem_cgroup_stat_cpu { 119 long count[MEM_CGROUP_STAT_NSTATS]; 120 unsigned long events[MEM_CGROUP_EVENTS_NSTATS]; 121 unsigned long targets[MEM_CGROUP_NTARGETS]; 122 }; 123 124 /* 125 * per-zone information in memory controller. 126 */ 127 struct mem_cgroup_per_zone { 128 /* 129 * spin_lock to protect the per cgroup LRU 130 */ 131 struct list_head lists[NR_LRU_LISTS]; 132 unsigned long count[NR_LRU_LISTS]; 133 134 struct zone_reclaim_stat reclaim_stat; 135 struct rb_node tree_node; /* RB tree node */ 136 unsigned long long usage_in_excess;/* Set to the value by which */ 137 /* the soft limit is exceeded*/ 138 bool on_tree; 139 struct mem_cgroup *mem; /* Back pointer, we cannot */ 140 /* use container_of */ 141 }; 142 /* Macro for accessing counter */ 143 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)]) 144 145 struct mem_cgroup_per_node { 146 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES]; 147 }; 148 149 struct mem_cgroup_lru_info { 150 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES]; 151 }; 152 153 /* 154 * Cgroups above their limits are maintained in a RB-Tree, independent of 155 * their hierarchy representation 156 */ 157 158 struct mem_cgroup_tree_per_zone { 159 struct rb_root rb_root; 160 spinlock_t lock; 161 }; 162 163 struct mem_cgroup_tree_per_node { 164 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES]; 165 }; 166 167 struct mem_cgroup_tree { 168 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 169 }; 170 171 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 172 173 struct mem_cgroup_threshold { 174 struct eventfd_ctx *eventfd; 175 u64 threshold; 176 }; 177 178 /* For threshold */ 179 struct mem_cgroup_threshold_ary { 180 /* An array index points to threshold just below usage. */ 181 int current_threshold; 182 /* Size of entries[] */ 183 unsigned int size; 184 /* Array of thresholds */ 185 struct mem_cgroup_threshold entries[0]; 186 }; 187 188 struct mem_cgroup_thresholds { 189 /* Primary thresholds array */ 190 struct mem_cgroup_threshold_ary *primary; 191 /* 192 * Spare threshold array. 193 * This is needed to make mem_cgroup_unregister_event() "never fail". 194 * It must be able to store at least primary->size - 1 entries. 195 */ 196 struct mem_cgroup_threshold_ary *spare; 197 }; 198 199 /* for OOM */ 200 struct mem_cgroup_eventfd_list { 201 struct list_head list; 202 struct eventfd_ctx *eventfd; 203 }; 204 205 static void mem_cgroup_threshold(struct mem_cgroup *mem); 206 static void mem_cgroup_oom_notify(struct mem_cgroup *mem); 207 208 /* 209 * The memory controller data structure. The memory controller controls both 210 * page cache and RSS per cgroup. We would eventually like to provide 211 * statistics based on the statistics developed by Rik Van Riel for clock-pro, 212 * to help the administrator determine what knobs to tune. 213 * 214 * TODO: Add a water mark for the memory controller. Reclaim will begin when 215 * we hit the water mark. May be even add a low water mark, such that 216 * no reclaim occurs from a cgroup at it's low water mark, this is 217 * a feature that will be implemented much later in the future. 218 */ 219 struct mem_cgroup { 220 struct cgroup_subsys_state css; 221 /* 222 * the counter to account for memory usage 223 */ 224 struct res_counter res; 225 /* 226 * the counter to account for mem+swap usage. 227 */ 228 struct res_counter memsw; 229 /* 230 * Per cgroup active and inactive list, similar to the 231 * per zone LRU lists. 232 */ 233 struct mem_cgroup_lru_info info; 234 /* 235 * While reclaiming in a hierarchy, we cache the last child we 236 * reclaimed from. 237 */ 238 int last_scanned_child; 239 int last_scanned_node; 240 #if MAX_NUMNODES > 1 241 nodemask_t scan_nodes; 242 atomic_t numainfo_events; 243 atomic_t numainfo_updating; 244 #endif 245 /* 246 * Should the accounting and control be hierarchical, per subtree? 247 */ 248 bool use_hierarchy; 249 atomic_t oom_lock; 250 atomic_t refcnt; 251 252 unsigned int swappiness; 253 /* OOM-Killer disable */ 254 int oom_kill_disable; 255 256 /* set when res.limit == memsw.limit */ 257 bool memsw_is_minimum; 258 259 /* protect arrays of thresholds */ 260 struct mutex thresholds_lock; 261 262 /* thresholds for memory usage. RCU-protected */ 263 struct mem_cgroup_thresholds thresholds; 264 265 /* thresholds for mem+swap usage. RCU-protected */ 266 struct mem_cgroup_thresholds memsw_thresholds; 267 268 /* For oom notifier event fd */ 269 struct list_head oom_notify; 270 271 /* 272 * Should we move charges of a task when a task is moved into this 273 * mem_cgroup ? And what type of charges should we move ? 274 */ 275 unsigned long move_charge_at_immigrate; 276 /* 277 * percpu counter. 278 */ 279 struct mem_cgroup_stat_cpu *stat; 280 /* 281 * used when a cpu is offlined or other synchronizations 282 * See mem_cgroup_read_stat(). 283 */ 284 struct mem_cgroup_stat_cpu nocpu_base; 285 spinlock_t pcp_counter_lock; 286 }; 287 288 /* Stuffs for move charges at task migration. */ 289 /* 290 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a 291 * left-shifted bitmap of these types. 292 */ 293 enum move_type { 294 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */ 295 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */ 296 NR_MOVE_TYPE, 297 }; 298 299 /* "mc" and its members are protected by cgroup_mutex */ 300 static struct move_charge_struct { 301 spinlock_t lock; /* for from, to */ 302 struct mem_cgroup *from; 303 struct mem_cgroup *to; 304 unsigned long precharge; 305 unsigned long moved_charge; 306 unsigned long moved_swap; 307 struct task_struct *moving_task; /* a task moving charges */ 308 wait_queue_head_t waitq; /* a waitq for other context */ 309 } mc = { 310 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 311 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 312 }; 313 314 static bool move_anon(void) 315 { 316 return test_bit(MOVE_CHARGE_TYPE_ANON, 317 &mc.to->move_charge_at_immigrate); 318 } 319 320 static bool move_file(void) 321 { 322 return test_bit(MOVE_CHARGE_TYPE_FILE, 323 &mc.to->move_charge_at_immigrate); 324 } 325 326 /* 327 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft 328 * limit reclaim to prevent infinite loops, if they ever occur. 329 */ 330 #define MEM_CGROUP_MAX_RECLAIM_LOOPS (100) 331 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2) 332 333 enum charge_type { 334 MEM_CGROUP_CHARGE_TYPE_CACHE = 0, 335 MEM_CGROUP_CHARGE_TYPE_MAPPED, 336 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */ 337 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */ 338 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */ 339 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */ 340 NR_CHARGE_TYPE, 341 }; 342 343 /* for encoding cft->private value on file */ 344 #define _MEM (0) 345 #define _MEMSWAP (1) 346 #define _OOM_TYPE (2) 347 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val)) 348 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff) 349 #define MEMFILE_ATTR(val) ((val) & 0xffff) 350 /* Used for OOM nofiier */ 351 #define OOM_CONTROL (0) 352 353 /* 354 * Reclaim flags for mem_cgroup_hierarchical_reclaim 355 */ 356 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0 357 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT) 358 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1 359 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT) 360 #define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2 361 #define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT) 362 363 static void mem_cgroup_get(struct mem_cgroup *mem); 364 static void mem_cgroup_put(struct mem_cgroup *mem); 365 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem); 366 static void drain_all_stock_async(struct mem_cgroup *mem); 367 368 static struct mem_cgroup_per_zone * 369 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid) 370 { 371 return &mem->info.nodeinfo[nid]->zoneinfo[zid]; 372 } 373 374 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem) 375 { 376 return &mem->css; 377 } 378 379 static struct mem_cgroup_per_zone * 380 page_cgroup_zoneinfo(struct mem_cgroup *mem, struct page *page) 381 { 382 int nid = page_to_nid(page); 383 int zid = page_zonenum(page); 384 385 return mem_cgroup_zoneinfo(mem, nid, zid); 386 } 387 388 static struct mem_cgroup_tree_per_zone * 389 soft_limit_tree_node_zone(int nid, int zid) 390 { 391 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; 392 } 393 394 static struct mem_cgroup_tree_per_zone * 395 soft_limit_tree_from_page(struct page *page) 396 { 397 int nid = page_to_nid(page); 398 int zid = page_zonenum(page); 399 400 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; 401 } 402 403 static void 404 __mem_cgroup_insert_exceeded(struct mem_cgroup *mem, 405 struct mem_cgroup_per_zone *mz, 406 struct mem_cgroup_tree_per_zone *mctz, 407 unsigned long long new_usage_in_excess) 408 { 409 struct rb_node **p = &mctz->rb_root.rb_node; 410 struct rb_node *parent = NULL; 411 struct mem_cgroup_per_zone *mz_node; 412 413 if (mz->on_tree) 414 return; 415 416 mz->usage_in_excess = new_usage_in_excess; 417 if (!mz->usage_in_excess) 418 return; 419 while (*p) { 420 parent = *p; 421 mz_node = rb_entry(parent, struct mem_cgroup_per_zone, 422 tree_node); 423 if (mz->usage_in_excess < mz_node->usage_in_excess) 424 p = &(*p)->rb_left; 425 /* 426 * We can't avoid mem cgroups that are over their soft 427 * limit by the same amount 428 */ 429 else if (mz->usage_in_excess >= mz_node->usage_in_excess) 430 p = &(*p)->rb_right; 431 } 432 rb_link_node(&mz->tree_node, parent, p); 433 rb_insert_color(&mz->tree_node, &mctz->rb_root); 434 mz->on_tree = true; 435 } 436 437 static void 438 __mem_cgroup_remove_exceeded(struct mem_cgroup *mem, 439 struct mem_cgroup_per_zone *mz, 440 struct mem_cgroup_tree_per_zone *mctz) 441 { 442 if (!mz->on_tree) 443 return; 444 rb_erase(&mz->tree_node, &mctz->rb_root); 445 mz->on_tree = false; 446 } 447 448 static void 449 mem_cgroup_remove_exceeded(struct mem_cgroup *mem, 450 struct mem_cgroup_per_zone *mz, 451 struct mem_cgroup_tree_per_zone *mctz) 452 { 453 spin_lock(&mctz->lock); 454 __mem_cgroup_remove_exceeded(mem, mz, mctz); 455 spin_unlock(&mctz->lock); 456 } 457 458 459 static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page) 460 { 461 unsigned long long excess; 462 struct mem_cgroup_per_zone *mz; 463 struct mem_cgroup_tree_per_zone *mctz; 464 int nid = page_to_nid(page); 465 int zid = page_zonenum(page); 466 mctz = soft_limit_tree_from_page(page); 467 468 /* 469 * Necessary to update all ancestors when hierarchy is used. 470 * because their event counter is not touched. 471 */ 472 for (; mem; mem = parent_mem_cgroup(mem)) { 473 mz = mem_cgroup_zoneinfo(mem, nid, zid); 474 excess = res_counter_soft_limit_excess(&mem->res); 475 /* 476 * We have to update the tree if mz is on RB-tree or 477 * mem is over its softlimit. 478 */ 479 if (excess || mz->on_tree) { 480 spin_lock(&mctz->lock); 481 /* if on-tree, remove it */ 482 if (mz->on_tree) 483 __mem_cgroup_remove_exceeded(mem, mz, mctz); 484 /* 485 * Insert again. mz->usage_in_excess will be updated. 486 * If excess is 0, no tree ops. 487 */ 488 __mem_cgroup_insert_exceeded(mem, mz, mctz, excess); 489 spin_unlock(&mctz->lock); 490 } 491 } 492 } 493 494 static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem) 495 { 496 int node, zone; 497 struct mem_cgroup_per_zone *mz; 498 struct mem_cgroup_tree_per_zone *mctz; 499 500 for_each_node_state(node, N_POSSIBLE) { 501 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 502 mz = mem_cgroup_zoneinfo(mem, node, zone); 503 mctz = soft_limit_tree_node_zone(node, zone); 504 mem_cgroup_remove_exceeded(mem, mz, mctz); 505 } 506 } 507 } 508 509 static struct mem_cgroup_per_zone * 510 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) 511 { 512 struct rb_node *rightmost = NULL; 513 struct mem_cgroup_per_zone *mz; 514 515 retry: 516 mz = NULL; 517 rightmost = rb_last(&mctz->rb_root); 518 if (!rightmost) 519 goto done; /* Nothing to reclaim from */ 520 521 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node); 522 /* 523 * Remove the node now but someone else can add it back, 524 * we will to add it back at the end of reclaim to its correct 525 * position in the tree. 526 */ 527 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz); 528 if (!res_counter_soft_limit_excess(&mz->mem->res) || 529 !css_tryget(&mz->mem->css)) 530 goto retry; 531 done: 532 return mz; 533 } 534 535 static struct mem_cgroup_per_zone * 536 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) 537 { 538 struct mem_cgroup_per_zone *mz; 539 540 spin_lock(&mctz->lock); 541 mz = __mem_cgroup_largest_soft_limit_node(mctz); 542 spin_unlock(&mctz->lock); 543 return mz; 544 } 545 546 /* 547 * Implementation Note: reading percpu statistics for memcg. 548 * 549 * Both of vmstat[] and percpu_counter has threshold and do periodic 550 * synchronization to implement "quick" read. There are trade-off between 551 * reading cost and precision of value. Then, we may have a chance to implement 552 * a periodic synchronizion of counter in memcg's counter. 553 * 554 * But this _read() function is used for user interface now. The user accounts 555 * memory usage by memory cgroup and he _always_ requires exact value because 556 * he accounts memory. Even if we provide quick-and-fuzzy read, we always 557 * have to visit all online cpus and make sum. So, for now, unnecessary 558 * synchronization is not implemented. (just implemented for cpu hotplug) 559 * 560 * If there are kernel internal actions which can make use of some not-exact 561 * value, and reading all cpu value can be performance bottleneck in some 562 * common workload, threashold and synchonization as vmstat[] should be 563 * implemented. 564 */ 565 static long mem_cgroup_read_stat(struct mem_cgroup *mem, 566 enum mem_cgroup_stat_index idx) 567 { 568 long val = 0; 569 int cpu; 570 571 get_online_cpus(); 572 for_each_online_cpu(cpu) 573 val += per_cpu(mem->stat->count[idx], cpu); 574 #ifdef CONFIG_HOTPLUG_CPU 575 spin_lock(&mem->pcp_counter_lock); 576 val += mem->nocpu_base.count[idx]; 577 spin_unlock(&mem->pcp_counter_lock); 578 #endif 579 put_online_cpus(); 580 return val; 581 } 582 583 static void mem_cgroup_swap_statistics(struct mem_cgroup *mem, 584 bool charge) 585 { 586 int val = (charge) ? 1 : -1; 587 this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val); 588 } 589 590 void mem_cgroup_pgfault(struct mem_cgroup *mem, int val) 591 { 592 this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_PGFAULT], val); 593 } 594 595 void mem_cgroup_pgmajfault(struct mem_cgroup *mem, int val) 596 { 597 this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT], val); 598 } 599 600 static unsigned long mem_cgroup_read_events(struct mem_cgroup *mem, 601 enum mem_cgroup_events_index idx) 602 { 603 unsigned long val = 0; 604 int cpu; 605 606 for_each_online_cpu(cpu) 607 val += per_cpu(mem->stat->events[idx], cpu); 608 #ifdef CONFIG_HOTPLUG_CPU 609 spin_lock(&mem->pcp_counter_lock); 610 val += mem->nocpu_base.events[idx]; 611 spin_unlock(&mem->pcp_counter_lock); 612 #endif 613 return val; 614 } 615 616 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem, 617 bool file, int nr_pages) 618 { 619 preempt_disable(); 620 621 if (file) 622 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages); 623 else 624 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages); 625 626 /* pagein of a big page is an event. So, ignore page size */ 627 if (nr_pages > 0) 628 __this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGIN]); 629 else { 630 __this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]); 631 nr_pages = -nr_pages; /* for event */ 632 } 633 634 __this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages); 635 636 preempt_enable(); 637 } 638 639 static unsigned long 640 mem_cgroup_get_zonestat_node(struct mem_cgroup *mem, int nid, enum lru_list idx) 641 { 642 struct mem_cgroup_per_zone *mz; 643 u64 total = 0; 644 int zid; 645 646 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 647 mz = mem_cgroup_zoneinfo(mem, nid, zid); 648 total += MEM_CGROUP_ZSTAT(mz, idx); 649 } 650 return total; 651 } 652 static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem, 653 enum lru_list idx) 654 { 655 int nid; 656 u64 total = 0; 657 658 for_each_online_node(nid) 659 total += mem_cgroup_get_zonestat_node(mem, nid, idx); 660 return total; 661 } 662 663 static bool __memcg_event_check(struct mem_cgroup *mem, int target) 664 { 665 unsigned long val, next; 666 667 val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]); 668 next = this_cpu_read(mem->stat->targets[target]); 669 /* from time_after() in jiffies.h */ 670 return ((long)next - (long)val < 0); 671 } 672 673 static void __mem_cgroup_target_update(struct mem_cgroup *mem, int target) 674 { 675 unsigned long val, next; 676 677 val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]); 678 679 switch (target) { 680 case MEM_CGROUP_TARGET_THRESH: 681 next = val + THRESHOLDS_EVENTS_TARGET; 682 break; 683 case MEM_CGROUP_TARGET_SOFTLIMIT: 684 next = val + SOFTLIMIT_EVENTS_TARGET; 685 break; 686 case MEM_CGROUP_TARGET_NUMAINFO: 687 next = val + NUMAINFO_EVENTS_TARGET; 688 break; 689 default: 690 return; 691 } 692 693 this_cpu_write(mem->stat->targets[target], next); 694 } 695 696 /* 697 * Check events in order. 698 * 699 */ 700 static void memcg_check_events(struct mem_cgroup *mem, struct page *page) 701 { 702 /* threshold event is triggered in finer grain than soft limit */ 703 if (unlikely(__memcg_event_check(mem, MEM_CGROUP_TARGET_THRESH))) { 704 mem_cgroup_threshold(mem); 705 __mem_cgroup_target_update(mem, MEM_CGROUP_TARGET_THRESH); 706 if (unlikely(__memcg_event_check(mem, 707 MEM_CGROUP_TARGET_SOFTLIMIT))) { 708 mem_cgroup_update_tree(mem, page); 709 __mem_cgroup_target_update(mem, 710 MEM_CGROUP_TARGET_SOFTLIMIT); 711 } 712 #if MAX_NUMNODES > 1 713 if (unlikely(__memcg_event_check(mem, 714 MEM_CGROUP_TARGET_NUMAINFO))) { 715 atomic_inc(&mem->numainfo_events); 716 __mem_cgroup_target_update(mem, 717 MEM_CGROUP_TARGET_NUMAINFO); 718 } 719 #endif 720 } 721 } 722 723 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont) 724 { 725 return container_of(cgroup_subsys_state(cont, 726 mem_cgroup_subsys_id), struct mem_cgroup, 727 css); 728 } 729 730 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 731 { 732 /* 733 * mm_update_next_owner() may clear mm->owner to NULL 734 * if it races with swapoff, page migration, etc. 735 * So this can be called with p == NULL. 736 */ 737 if (unlikely(!p)) 738 return NULL; 739 740 return container_of(task_subsys_state(p, mem_cgroup_subsys_id), 741 struct mem_cgroup, css); 742 } 743 744 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm) 745 { 746 struct mem_cgroup *mem = NULL; 747 748 if (!mm) 749 return NULL; 750 /* 751 * Because we have no locks, mm->owner's may be being moved to other 752 * cgroup. We use css_tryget() here even if this looks 753 * pessimistic (rather than adding locks here). 754 */ 755 rcu_read_lock(); 756 do { 757 mem = mem_cgroup_from_task(rcu_dereference(mm->owner)); 758 if (unlikely(!mem)) 759 break; 760 } while (!css_tryget(&mem->css)); 761 rcu_read_unlock(); 762 return mem; 763 } 764 765 /* The caller has to guarantee "mem" exists before calling this */ 766 static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem) 767 { 768 struct cgroup_subsys_state *css; 769 int found; 770 771 if (!mem) /* ROOT cgroup has the smallest ID */ 772 return root_mem_cgroup; /*css_put/get against root is ignored*/ 773 if (!mem->use_hierarchy) { 774 if (css_tryget(&mem->css)) 775 return mem; 776 return NULL; 777 } 778 rcu_read_lock(); 779 /* 780 * searching a memory cgroup which has the smallest ID under given 781 * ROOT cgroup. (ID >= 1) 782 */ 783 css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found); 784 if (css && css_tryget(css)) 785 mem = container_of(css, struct mem_cgroup, css); 786 else 787 mem = NULL; 788 rcu_read_unlock(); 789 return mem; 790 } 791 792 static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter, 793 struct mem_cgroup *root, 794 bool cond) 795 { 796 int nextid = css_id(&iter->css) + 1; 797 int found; 798 int hierarchy_used; 799 struct cgroup_subsys_state *css; 800 801 hierarchy_used = iter->use_hierarchy; 802 803 css_put(&iter->css); 804 /* If no ROOT, walk all, ignore hierarchy */ 805 if (!cond || (root && !hierarchy_used)) 806 return NULL; 807 808 if (!root) 809 root = root_mem_cgroup; 810 811 do { 812 iter = NULL; 813 rcu_read_lock(); 814 815 css = css_get_next(&mem_cgroup_subsys, nextid, 816 &root->css, &found); 817 if (css && css_tryget(css)) 818 iter = container_of(css, struct mem_cgroup, css); 819 rcu_read_unlock(); 820 /* If css is NULL, no more cgroups will be found */ 821 nextid = found + 1; 822 } while (css && !iter); 823 824 return iter; 825 } 826 /* 827 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please 828 * be careful that "break" loop is not allowed. We have reference count. 829 * Instead of that modify "cond" to be false and "continue" to exit the loop. 830 */ 831 #define for_each_mem_cgroup_tree_cond(iter, root, cond) \ 832 for (iter = mem_cgroup_start_loop(root);\ 833 iter != NULL;\ 834 iter = mem_cgroup_get_next(iter, root, cond)) 835 836 #define for_each_mem_cgroup_tree(iter, root) \ 837 for_each_mem_cgroup_tree_cond(iter, root, true) 838 839 #define for_each_mem_cgroup_all(iter) \ 840 for_each_mem_cgroup_tree_cond(iter, NULL, true) 841 842 843 static inline bool mem_cgroup_is_root(struct mem_cgroup *mem) 844 { 845 return (mem == root_mem_cgroup); 846 } 847 848 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx) 849 { 850 struct mem_cgroup *mem; 851 852 if (!mm) 853 return; 854 855 rcu_read_lock(); 856 mem = mem_cgroup_from_task(rcu_dereference(mm->owner)); 857 if (unlikely(!mem)) 858 goto out; 859 860 switch (idx) { 861 case PGMAJFAULT: 862 mem_cgroup_pgmajfault(mem, 1); 863 break; 864 case PGFAULT: 865 mem_cgroup_pgfault(mem, 1); 866 break; 867 default: 868 BUG(); 869 } 870 out: 871 rcu_read_unlock(); 872 } 873 EXPORT_SYMBOL(mem_cgroup_count_vm_event); 874 875 /* 876 * Following LRU functions are allowed to be used without PCG_LOCK. 877 * Operations are called by routine of global LRU independently from memcg. 878 * What we have to take care of here is validness of pc->mem_cgroup. 879 * 880 * Changes to pc->mem_cgroup happens when 881 * 1. charge 882 * 2. moving account 883 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache. 884 * It is added to LRU before charge. 885 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU. 886 * When moving account, the page is not on LRU. It's isolated. 887 */ 888 889 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru) 890 { 891 struct page_cgroup *pc; 892 struct mem_cgroup_per_zone *mz; 893 894 if (mem_cgroup_disabled()) 895 return; 896 pc = lookup_page_cgroup(page); 897 /* can happen while we handle swapcache. */ 898 if (!TestClearPageCgroupAcctLRU(pc)) 899 return; 900 VM_BUG_ON(!pc->mem_cgroup); 901 /* 902 * We don't check PCG_USED bit. It's cleared when the "page" is finally 903 * removed from global LRU. 904 */ 905 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page); 906 /* huge page split is done under lru_lock. so, we have no races. */ 907 MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page); 908 if (mem_cgroup_is_root(pc->mem_cgroup)) 909 return; 910 VM_BUG_ON(list_empty(&pc->lru)); 911 list_del_init(&pc->lru); 912 } 913 914 void mem_cgroup_del_lru(struct page *page) 915 { 916 mem_cgroup_del_lru_list(page, page_lru(page)); 917 } 918 919 /* 920 * Writeback is about to end against a page which has been marked for immediate 921 * reclaim. If it still appears to be reclaimable, move it to the tail of the 922 * inactive list. 923 */ 924 void mem_cgroup_rotate_reclaimable_page(struct page *page) 925 { 926 struct mem_cgroup_per_zone *mz; 927 struct page_cgroup *pc; 928 enum lru_list lru = page_lru(page); 929 930 if (mem_cgroup_disabled()) 931 return; 932 933 pc = lookup_page_cgroup(page); 934 /* unused or root page is not rotated. */ 935 if (!PageCgroupUsed(pc)) 936 return; 937 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */ 938 smp_rmb(); 939 if (mem_cgroup_is_root(pc->mem_cgroup)) 940 return; 941 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page); 942 list_move_tail(&pc->lru, &mz->lists[lru]); 943 } 944 945 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru) 946 { 947 struct mem_cgroup_per_zone *mz; 948 struct page_cgroup *pc; 949 950 if (mem_cgroup_disabled()) 951 return; 952 953 pc = lookup_page_cgroup(page); 954 /* unused or root page is not rotated. */ 955 if (!PageCgroupUsed(pc)) 956 return; 957 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */ 958 smp_rmb(); 959 if (mem_cgroup_is_root(pc->mem_cgroup)) 960 return; 961 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page); 962 list_move(&pc->lru, &mz->lists[lru]); 963 } 964 965 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru) 966 { 967 struct page_cgroup *pc; 968 struct mem_cgroup_per_zone *mz; 969 970 if (mem_cgroup_disabled()) 971 return; 972 pc = lookup_page_cgroup(page); 973 VM_BUG_ON(PageCgroupAcctLRU(pc)); 974 if (!PageCgroupUsed(pc)) 975 return; 976 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */ 977 smp_rmb(); 978 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page); 979 /* huge page split is done under lru_lock. so, we have no races. */ 980 MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page); 981 SetPageCgroupAcctLRU(pc); 982 if (mem_cgroup_is_root(pc->mem_cgroup)) 983 return; 984 list_add(&pc->lru, &mz->lists[lru]); 985 } 986 987 /* 988 * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed 989 * while it's linked to lru because the page may be reused after it's fully 990 * uncharged. To handle that, unlink page_cgroup from LRU when charge it again. 991 * It's done under lock_page and expected that zone->lru_lock isnever held. 992 */ 993 static void mem_cgroup_lru_del_before_commit(struct page *page) 994 { 995 unsigned long flags; 996 struct zone *zone = page_zone(page); 997 struct page_cgroup *pc = lookup_page_cgroup(page); 998 999 /* 1000 * Doing this check without taking ->lru_lock seems wrong but this 1001 * is safe. Because if page_cgroup's USED bit is unset, the page 1002 * will not be added to any memcg's LRU. If page_cgroup's USED bit is 1003 * set, the commit after this will fail, anyway. 1004 * This all charge/uncharge is done under some mutual execustion. 1005 * So, we don't need to taking care of changes in USED bit. 1006 */ 1007 if (likely(!PageLRU(page))) 1008 return; 1009 1010 spin_lock_irqsave(&zone->lru_lock, flags); 1011 /* 1012 * Forget old LRU when this page_cgroup is *not* used. This Used bit 1013 * is guarded by lock_page() because the page is SwapCache. 1014 */ 1015 if (!PageCgroupUsed(pc)) 1016 mem_cgroup_del_lru_list(page, page_lru(page)); 1017 spin_unlock_irqrestore(&zone->lru_lock, flags); 1018 } 1019 1020 static void mem_cgroup_lru_add_after_commit(struct page *page) 1021 { 1022 unsigned long flags; 1023 struct zone *zone = page_zone(page); 1024 struct page_cgroup *pc = lookup_page_cgroup(page); 1025 1026 /* taking care of that the page is added to LRU while we commit it */ 1027 if (likely(!PageLRU(page))) 1028 return; 1029 spin_lock_irqsave(&zone->lru_lock, flags); 1030 /* link when the page is linked to LRU but page_cgroup isn't */ 1031 if (PageLRU(page) && !PageCgroupAcctLRU(pc)) 1032 mem_cgroup_add_lru_list(page, page_lru(page)); 1033 spin_unlock_irqrestore(&zone->lru_lock, flags); 1034 } 1035 1036 1037 void mem_cgroup_move_lists(struct page *page, 1038 enum lru_list from, enum lru_list to) 1039 { 1040 if (mem_cgroup_disabled()) 1041 return; 1042 mem_cgroup_del_lru_list(page, from); 1043 mem_cgroup_add_lru_list(page, to); 1044 } 1045 1046 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem) 1047 { 1048 int ret; 1049 struct mem_cgroup *curr = NULL; 1050 struct task_struct *p; 1051 1052 p = find_lock_task_mm(task); 1053 if (!p) 1054 return 0; 1055 curr = try_get_mem_cgroup_from_mm(p->mm); 1056 task_unlock(p); 1057 if (!curr) 1058 return 0; 1059 /* 1060 * We should check use_hierarchy of "mem" not "curr". Because checking 1061 * use_hierarchy of "curr" here make this function true if hierarchy is 1062 * enabled in "curr" and "curr" is a child of "mem" in *cgroup* 1063 * hierarchy(even if use_hierarchy is disabled in "mem"). 1064 */ 1065 if (mem->use_hierarchy) 1066 ret = css_is_ancestor(&curr->css, &mem->css); 1067 else 1068 ret = (curr == mem); 1069 css_put(&curr->css); 1070 return ret; 1071 } 1072 1073 static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages) 1074 { 1075 unsigned long active; 1076 unsigned long inactive; 1077 unsigned long gb; 1078 unsigned long inactive_ratio; 1079 1080 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON); 1081 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON); 1082 1083 gb = (inactive + active) >> (30 - PAGE_SHIFT); 1084 if (gb) 1085 inactive_ratio = int_sqrt(10 * gb); 1086 else 1087 inactive_ratio = 1; 1088 1089 if (present_pages) { 1090 present_pages[0] = inactive; 1091 present_pages[1] = active; 1092 } 1093 1094 return inactive_ratio; 1095 } 1096 1097 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg) 1098 { 1099 unsigned long active; 1100 unsigned long inactive; 1101 unsigned long present_pages[2]; 1102 unsigned long inactive_ratio; 1103 1104 inactive_ratio = calc_inactive_ratio(memcg, present_pages); 1105 1106 inactive = present_pages[0]; 1107 active = present_pages[1]; 1108 1109 if (inactive * inactive_ratio < active) 1110 return 1; 1111 1112 return 0; 1113 } 1114 1115 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg) 1116 { 1117 unsigned long active; 1118 unsigned long inactive; 1119 1120 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE); 1121 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE); 1122 1123 return (active > inactive); 1124 } 1125 1126 unsigned long mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, 1127 struct zone *zone, 1128 enum lru_list lru) 1129 { 1130 int nid = zone_to_nid(zone); 1131 int zid = zone_idx(zone); 1132 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid); 1133 1134 return MEM_CGROUP_ZSTAT(mz, lru); 1135 } 1136 1137 static unsigned long mem_cgroup_node_nr_file_lru_pages(struct mem_cgroup *memcg, 1138 int nid) 1139 { 1140 unsigned long ret; 1141 1142 ret = mem_cgroup_get_zonestat_node(memcg, nid, LRU_INACTIVE_FILE) + 1143 mem_cgroup_get_zonestat_node(memcg, nid, LRU_ACTIVE_FILE); 1144 1145 return ret; 1146 } 1147 1148 static unsigned long mem_cgroup_node_nr_anon_lru_pages(struct mem_cgroup *memcg, 1149 int nid) 1150 { 1151 unsigned long ret; 1152 1153 ret = mem_cgroup_get_zonestat_node(memcg, nid, LRU_INACTIVE_ANON) + 1154 mem_cgroup_get_zonestat_node(memcg, nid, LRU_ACTIVE_ANON); 1155 return ret; 1156 } 1157 1158 #if MAX_NUMNODES > 1 1159 static unsigned long mem_cgroup_nr_file_lru_pages(struct mem_cgroup *memcg) 1160 { 1161 u64 total = 0; 1162 int nid; 1163 1164 for_each_node_state(nid, N_HIGH_MEMORY) 1165 total += mem_cgroup_node_nr_file_lru_pages(memcg, nid); 1166 1167 return total; 1168 } 1169 1170 static unsigned long mem_cgroup_nr_anon_lru_pages(struct mem_cgroup *memcg) 1171 { 1172 u64 total = 0; 1173 int nid; 1174 1175 for_each_node_state(nid, N_HIGH_MEMORY) 1176 total += mem_cgroup_node_nr_anon_lru_pages(memcg, nid); 1177 1178 return total; 1179 } 1180 1181 static unsigned long 1182 mem_cgroup_node_nr_unevictable_lru_pages(struct mem_cgroup *memcg, int nid) 1183 { 1184 return mem_cgroup_get_zonestat_node(memcg, nid, LRU_UNEVICTABLE); 1185 } 1186 1187 static unsigned long 1188 mem_cgroup_nr_unevictable_lru_pages(struct mem_cgroup *memcg) 1189 { 1190 u64 total = 0; 1191 int nid; 1192 1193 for_each_node_state(nid, N_HIGH_MEMORY) 1194 total += mem_cgroup_node_nr_unevictable_lru_pages(memcg, nid); 1195 1196 return total; 1197 } 1198 1199 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 1200 int nid) 1201 { 1202 enum lru_list l; 1203 u64 total = 0; 1204 1205 for_each_lru(l) 1206 total += mem_cgroup_get_zonestat_node(memcg, nid, l); 1207 1208 return total; 1209 } 1210 1211 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg) 1212 { 1213 u64 total = 0; 1214 int nid; 1215 1216 for_each_node_state(nid, N_HIGH_MEMORY) 1217 total += mem_cgroup_node_nr_lru_pages(memcg, nid); 1218 1219 return total; 1220 } 1221 #endif /* CONFIG_NUMA */ 1222 1223 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg, 1224 struct zone *zone) 1225 { 1226 int nid = zone_to_nid(zone); 1227 int zid = zone_idx(zone); 1228 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid); 1229 1230 return &mz->reclaim_stat; 1231 } 1232 1233 struct zone_reclaim_stat * 1234 mem_cgroup_get_reclaim_stat_from_page(struct page *page) 1235 { 1236 struct page_cgroup *pc; 1237 struct mem_cgroup_per_zone *mz; 1238 1239 if (mem_cgroup_disabled()) 1240 return NULL; 1241 1242 pc = lookup_page_cgroup(page); 1243 if (!PageCgroupUsed(pc)) 1244 return NULL; 1245 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */ 1246 smp_rmb(); 1247 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page); 1248 return &mz->reclaim_stat; 1249 } 1250 1251 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan, 1252 struct list_head *dst, 1253 unsigned long *scanned, int order, 1254 int mode, struct zone *z, 1255 struct mem_cgroup *mem_cont, 1256 int active, int file) 1257 { 1258 unsigned long nr_taken = 0; 1259 struct page *page; 1260 unsigned long scan; 1261 LIST_HEAD(pc_list); 1262 struct list_head *src; 1263 struct page_cgroup *pc, *tmp; 1264 int nid = zone_to_nid(z); 1265 int zid = zone_idx(z); 1266 struct mem_cgroup_per_zone *mz; 1267 int lru = LRU_FILE * file + active; 1268 int ret; 1269 1270 BUG_ON(!mem_cont); 1271 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid); 1272 src = &mz->lists[lru]; 1273 1274 scan = 0; 1275 list_for_each_entry_safe_reverse(pc, tmp, src, lru) { 1276 if (scan >= nr_to_scan) 1277 break; 1278 1279 if (unlikely(!PageCgroupUsed(pc))) 1280 continue; 1281 1282 page = lookup_cgroup_page(pc); 1283 1284 if (unlikely(!PageLRU(page))) 1285 continue; 1286 1287 scan++; 1288 ret = __isolate_lru_page(page, mode, file); 1289 switch (ret) { 1290 case 0: 1291 list_move(&page->lru, dst); 1292 mem_cgroup_del_lru(page); 1293 nr_taken += hpage_nr_pages(page); 1294 break; 1295 case -EBUSY: 1296 /* we don't affect global LRU but rotate in our LRU */ 1297 mem_cgroup_rotate_lru_list(page, page_lru(page)); 1298 break; 1299 default: 1300 break; 1301 } 1302 } 1303 1304 *scanned = scan; 1305 1306 trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken, 1307 0, 0, 0, mode); 1308 1309 return nr_taken; 1310 } 1311 1312 #define mem_cgroup_from_res_counter(counter, member) \ 1313 container_of(counter, struct mem_cgroup, member) 1314 1315 /** 1316 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1317 * @mem: the memory cgroup 1318 * 1319 * Returns the maximum amount of memory @mem can be charged with, in 1320 * pages. 1321 */ 1322 static unsigned long mem_cgroup_margin(struct mem_cgroup *mem) 1323 { 1324 unsigned long long margin; 1325 1326 margin = res_counter_margin(&mem->res); 1327 if (do_swap_account) 1328 margin = min(margin, res_counter_margin(&mem->memsw)); 1329 return margin >> PAGE_SHIFT; 1330 } 1331 1332 static unsigned int get_swappiness(struct mem_cgroup *memcg) 1333 { 1334 struct cgroup *cgrp = memcg->css.cgroup; 1335 1336 /* root ? */ 1337 if (cgrp->parent == NULL) 1338 return vm_swappiness; 1339 1340 return memcg->swappiness; 1341 } 1342 1343 static void mem_cgroup_start_move(struct mem_cgroup *mem) 1344 { 1345 int cpu; 1346 1347 get_online_cpus(); 1348 spin_lock(&mem->pcp_counter_lock); 1349 for_each_online_cpu(cpu) 1350 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1; 1351 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1; 1352 spin_unlock(&mem->pcp_counter_lock); 1353 put_online_cpus(); 1354 1355 synchronize_rcu(); 1356 } 1357 1358 static void mem_cgroup_end_move(struct mem_cgroup *mem) 1359 { 1360 int cpu; 1361 1362 if (!mem) 1363 return; 1364 get_online_cpus(); 1365 spin_lock(&mem->pcp_counter_lock); 1366 for_each_online_cpu(cpu) 1367 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1; 1368 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1; 1369 spin_unlock(&mem->pcp_counter_lock); 1370 put_online_cpus(); 1371 } 1372 /* 1373 * 2 routines for checking "mem" is under move_account() or not. 1374 * 1375 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used 1376 * for avoiding race in accounting. If true, 1377 * pc->mem_cgroup may be overwritten. 1378 * 1379 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or 1380 * under hierarchy of moving cgroups. This is for 1381 * waiting at hith-memory prressure caused by "move". 1382 */ 1383 1384 static bool mem_cgroup_stealed(struct mem_cgroup *mem) 1385 { 1386 VM_BUG_ON(!rcu_read_lock_held()); 1387 return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0; 1388 } 1389 1390 static bool mem_cgroup_under_move(struct mem_cgroup *mem) 1391 { 1392 struct mem_cgroup *from; 1393 struct mem_cgroup *to; 1394 bool ret = false; 1395 /* 1396 * Unlike task_move routines, we access mc.to, mc.from not under 1397 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1398 */ 1399 spin_lock(&mc.lock); 1400 from = mc.from; 1401 to = mc.to; 1402 if (!from) 1403 goto unlock; 1404 if (from == mem || to == mem 1405 || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css)) 1406 || (mem->use_hierarchy && css_is_ancestor(&to->css, &mem->css))) 1407 ret = true; 1408 unlock: 1409 spin_unlock(&mc.lock); 1410 return ret; 1411 } 1412 1413 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem) 1414 { 1415 if (mc.moving_task && current != mc.moving_task) { 1416 if (mem_cgroup_under_move(mem)) { 1417 DEFINE_WAIT(wait); 1418 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1419 /* moving charge context might have finished. */ 1420 if (mc.moving_task) 1421 schedule(); 1422 finish_wait(&mc.waitq, &wait); 1423 return true; 1424 } 1425 } 1426 return false; 1427 } 1428 1429 /** 1430 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode. 1431 * @memcg: The memory cgroup that went over limit 1432 * @p: Task that is going to be killed 1433 * 1434 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1435 * enabled 1436 */ 1437 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) 1438 { 1439 struct cgroup *task_cgrp; 1440 struct cgroup *mem_cgrp; 1441 /* 1442 * Need a buffer in BSS, can't rely on allocations. The code relies 1443 * on the assumption that OOM is serialized for memory controller. 1444 * If this assumption is broken, revisit this code. 1445 */ 1446 static char memcg_name[PATH_MAX]; 1447 int ret; 1448 1449 if (!memcg || !p) 1450 return; 1451 1452 1453 rcu_read_lock(); 1454 1455 mem_cgrp = memcg->css.cgroup; 1456 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id); 1457 1458 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX); 1459 if (ret < 0) { 1460 /* 1461 * Unfortunately, we are unable to convert to a useful name 1462 * But we'll still print out the usage information 1463 */ 1464 rcu_read_unlock(); 1465 goto done; 1466 } 1467 rcu_read_unlock(); 1468 1469 printk(KERN_INFO "Task in %s killed", memcg_name); 1470 1471 rcu_read_lock(); 1472 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX); 1473 if (ret < 0) { 1474 rcu_read_unlock(); 1475 goto done; 1476 } 1477 rcu_read_unlock(); 1478 1479 /* 1480 * Continues from above, so we don't need an KERN_ level 1481 */ 1482 printk(KERN_CONT " as a result of limit of %s\n", memcg_name); 1483 done: 1484 1485 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n", 1486 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10, 1487 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10, 1488 res_counter_read_u64(&memcg->res, RES_FAILCNT)); 1489 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, " 1490 "failcnt %llu\n", 1491 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10, 1492 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10, 1493 res_counter_read_u64(&memcg->memsw, RES_FAILCNT)); 1494 } 1495 1496 /* 1497 * This function returns the number of memcg under hierarchy tree. Returns 1498 * 1(self count) if no children. 1499 */ 1500 static int mem_cgroup_count_children(struct mem_cgroup *mem) 1501 { 1502 int num = 0; 1503 struct mem_cgroup *iter; 1504 1505 for_each_mem_cgroup_tree(iter, mem) 1506 num++; 1507 return num; 1508 } 1509 1510 /* 1511 * Return the memory (and swap, if configured) limit for a memcg. 1512 */ 1513 u64 mem_cgroup_get_limit(struct mem_cgroup *memcg) 1514 { 1515 u64 limit; 1516 u64 memsw; 1517 1518 limit = res_counter_read_u64(&memcg->res, RES_LIMIT); 1519 limit += total_swap_pages << PAGE_SHIFT; 1520 1521 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 1522 /* 1523 * If memsw is finite and limits the amount of swap space available 1524 * to this memcg, return that limit. 1525 */ 1526 return min(limit, memsw); 1527 } 1528 1529 /* 1530 * Visit the first child (need not be the first child as per the ordering 1531 * of the cgroup list, since we track last_scanned_child) of @mem and use 1532 * that to reclaim free pages from. 1533 */ 1534 static struct mem_cgroup * 1535 mem_cgroup_select_victim(struct mem_cgroup *root_mem) 1536 { 1537 struct mem_cgroup *ret = NULL; 1538 struct cgroup_subsys_state *css; 1539 int nextid, found; 1540 1541 if (!root_mem->use_hierarchy) { 1542 css_get(&root_mem->css); 1543 ret = root_mem; 1544 } 1545 1546 while (!ret) { 1547 rcu_read_lock(); 1548 nextid = root_mem->last_scanned_child + 1; 1549 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css, 1550 &found); 1551 if (css && css_tryget(css)) 1552 ret = container_of(css, struct mem_cgroup, css); 1553 1554 rcu_read_unlock(); 1555 /* Updates scanning parameter */ 1556 if (!css) { 1557 /* this means start scan from ID:1 */ 1558 root_mem->last_scanned_child = 0; 1559 } else 1560 root_mem->last_scanned_child = found; 1561 } 1562 1563 return ret; 1564 } 1565 1566 /** 1567 * test_mem_cgroup_node_reclaimable 1568 * @mem: the target memcg 1569 * @nid: the node ID to be checked. 1570 * @noswap : specify true here if the user wants flle only information. 1571 * 1572 * This function returns whether the specified memcg contains any 1573 * reclaimable pages on a node. Returns true if there are any reclaimable 1574 * pages in the node. 1575 */ 1576 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *mem, 1577 int nid, bool noswap) 1578 { 1579 if (mem_cgroup_node_nr_file_lru_pages(mem, nid)) 1580 return true; 1581 if (noswap || !total_swap_pages) 1582 return false; 1583 if (mem_cgroup_node_nr_anon_lru_pages(mem, nid)) 1584 return true; 1585 return false; 1586 1587 } 1588 #if MAX_NUMNODES > 1 1589 1590 /* 1591 * Always updating the nodemask is not very good - even if we have an empty 1592 * list or the wrong list here, we can start from some node and traverse all 1593 * nodes based on the zonelist. So update the list loosely once per 10 secs. 1594 * 1595 */ 1596 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *mem) 1597 { 1598 int nid; 1599 /* 1600 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET 1601 * pagein/pageout changes since the last update. 1602 */ 1603 if (!atomic_read(&mem->numainfo_events)) 1604 return; 1605 if (atomic_inc_return(&mem->numainfo_updating) > 1) 1606 return; 1607 1608 /* make a nodemask where this memcg uses memory from */ 1609 mem->scan_nodes = node_states[N_HIGH_MEMORY]; 1610 1611 for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) { 1612 1613 if (!test_mem_cgroup_node_reclaimable(mem, nid, false)) 1614 node_clear(nid, mem->scan_nodes); 1615 } 1616 1617 atomic_set(&mem->numainfo_events, 0); 1618 atomic_set(&mem->numainfo_updating, 0); 1619 } 1620 1621 /* 1622 * Selecting a node where we start reclaim from. Because what we need is just 1623 * reducing usage counter, start from anywhere is O,K. Considering 1624 * memory reclaim from current node, there are pros. and cons. 1625 * 1626 * Freeing memory from current node means freeing memory from a node which 1627 * we'll use or we've used. So, it may make LRU bad. And if several threads 1628 * hit limits, it will see a contention on a node. But freeing from remote 1629 * node means more costs for memory reclaim because of memory latency. 1630 * 1631 * Now, we use round-robin. Better algorithm is welcomed. 1632 */ 1633 int mem_cgroup_select_victim_node(struct mem_cgroup *mem) 1634 { 1635 int node; 1636 1637 mem_cgroup_may_update_nodemask(mem); 1638 node = mem->last_scanned_node; 1639 1640 node = next_node(node, mem->scan_nodes); 1641 if (node == MAX_NUMNODES) 1642 node = first_node(mem->scan_nodes); 1643 /* 1644 * We call this when we hit limit, not when pages are added to LRU. 1645 * No LRU may hold pages because all pages are UNEVICTABLE or 1646 * memcg is too small and all pages are not on LRU. In that case, 1647 * we use curret node. 1648 */ 1649 if (unlikely(node == MAX_NUMNODES)) 1650 node = numa_node_id(); 1651 1652 mem->last_scanned_node = node; 1653 return node; 1654 } 1655 1656 /* 1657 * Check all nodes whether it contains reclaimable pages or not. 1658 * For quick scan, we make use of scan_nodes. This will allow us to skip 1659 * unused nodes. But scan_nodes is lazily updated and may not cotain 1660 * enough new information. We need to do double check. 1661 */ 1662 bool mem_cgroup_reclaimable(struct mem_cgroup *mem, bool noswap) 1663 { 1664 int nid; 1665 1666 /* 1667 * quick check...making use of scan_node. 1668 * We can skip unused nodes. 1669 */ 1670 if (!nodes_empty(mem->scan_nodes)) { 1671 for (nid = first_node(mem->scan_nodes); 1672 nid < MAX_NUMNODES; 1673 nid = next_node(nid, mem->scan_nodes)) { 1674 1675 if (test_mem_cgroup_node_reclaimable(mem, nid, noswap)) 1676 return true; 1677 } 1678 } 1679 /* 1680 * Check rest of nodes. 1681 */ 1682 for_each_node_state(nid, N_HIGH_MEMORY) { 1683 if (node_isset(nid, mem->scan_nodes)) 1684 continue; 1685 if (test_mem_cgroup_node_reclaimable(mem, nid, noswap)) 1686 return true; 1687 } 1688 return false; 1689 } 1690 1691 #else 1692 int mem_cgroup_select_victim_node(struct mem_cgroup *mem) 1693 { 1694 return 0; 1695 } 1696 1697 bool mem_cgroup_reclaimable(struct mem_cgroup *mem, bool noswap) 1698 { 1699 return test_mem_cgroup_node_reclaimable(mem, 0, noswap); 1700 } 1701 #endif 1702 1703 /* 1704 * Scan the hierarchy if needed to reclaim memory. We remember the last child 1705 * we reclaimed from, so that we don't end up penalizing one child extensively 1706 * based on its position in the children list. 1707 * 1708 * root_mem is the original ancestor that we've been reclaim from. 1709 * 1710 * We give up and return to the caller when we visit root_mem twice. 1711 * (other groups can be removed while we're walking....) 1712 * 1713 * If shrink==true, for avoiding to free too much, this returns immedieately. 1714 */ 1715 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem, 1716 struct zone *zone, 1717 gfp_t gfp_mask, 1718 unsigned long reclaim_options, 1719 unsigned long *total_scanned) 1720 { 1721 struct mem_cgroup *victim; 1722 int ret, total = 0; 1723 int loop = 0; 1724 bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP; 1725 bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK; 1726 bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT; 1727 unsigned long excess; 1728 unsigned long nr_scanned; 1729 1730 excess = res_counter_soft_limit_excess(&root_mem->res) >> PAGE_SHIFT; 1731 1732 /* If memsw_is_minimum==1, swap-out is of-no-use. */ 1733 if (!check_soft && root_mem->memsw_is_minimum) 1734 noswap = true; 1735 1736 while (1) { 1737 victim = mem_cgroup_select_victim(root_mem); 1738 if (victim == root_mem) { 1739 loop++; 1740 /* 1741 * We are not draining per cpu cached charges during 1742 * soft limit reclaim because global reclaim doesn't 1743 * care about charges. It tries to free some memory and 1744 * charges will not give any. 1745 */ 1746 if (!check_soft && loop >= 1) 1747 drain_all_stock_async(root_mem); 1748 if (loop >= 2) { 1749 /* 1750 * If we have not been able to reclaim 1751 * anything, it might because there are 1752 * no reclaimable pages under this hierarchy 1753 */ 1754 if (!check_soft || !total) { 1755 css_put(&victim->css); 1756 break; 1757 } 1758 /* 1759 * We want to do more targeted reclaim. 1760 * excess >> 2 is not to excessive so as to 1761 * reclaim too much, nor too less that we keep 1762 * coming back to reclaim from this cgroup 1763 */ 1764 if (total >= (excess >> 2) || 1765 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) { 1766 css_put(&victim->css); 1767 break; 1768 } 1769 } 1770 } 1771 if (!mem_cgroup_reclaimable(victim, noswap)) { 1772 /* this cgroup's local usage == 0 */ 1773 css_put(&victim->css); 1774 continue; 1775 } 1776 /* we use swappiness of local cgroup */ 1777 if (check_soft) { 1778 ret = mem_cgroup_shrink_node_zone(victim, gfp_mask, 1779 noswap, get_swappiness(victim), zone, 1780 &nr_scanned); 1781 *total_scanned += nr_scanned; 1782 } else 1783 ret = try_to_free_mem_cgroup_pages(victim, gfp_mask, 1784 noswap, get_swappiness(victim)); 1785 css_put(&victim->css); 1786 /* 1787 * At shrinking usage, we can't check we should stop here or 1788 * reclaim more. It's depends on callers. last_scanned_child 1789 * will work enough for keeping fairness under tree. 1790 */ 1791 if (shrink) 1792 return ret; 1793 total += ret; 1794 if (check_soft) { 1795 if (!res_counter_soft_limit_excess(&root_mem->res)) 1796 return total; 1797 } else if (mem_cgroup_margin(root_mem)) 1798 return total; 1799 } 1800 return total; 1801 } 1802 1803 /* 1804 * Check OOM-Killer is already running under our hierarchy. 1805 * If someone is running, return false. 1806 */ 1807 static bool mem_cgroup_oom_lock(struct mem_cgroup *mem) 1808 { 1809 int x, lock_count = 0; 1810 struct mem_cgroup *iter; 1811 1812 for_each_mem_cgroup_tree(iter, mem) { 1813 x = atomic_inc_return(&iter->oom_lock); 1814 lock_count = max(x, lock_count); 1815 } 1816 1817 if (lock_count == 1) 1818 return true; 1819 return false; 1820 } 1821 1822 static int mem_cgroup_oom_unlock(struct mem_cgroup *mem) 1823 { 1824 struct mem_cgroup *iter; 1825 1826 /* 1827 * When a new child is created while the hierarchy is under oom, 1828 * mem_cgroup_oom_lock() may not be called. We have to use 1829 * atomic_add_unless() here. 1830 */ 1831 for_each_mem_cgroup_tree(iter, mem) 1832 atomic_add_unless(&iter->oom_lock, -1, 0); 1833 return 0; 1834 } 1835 1836 1837 static DEFINE_MUTEX(memcg_oom_mutex); 1838 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 1839 1840 struct oom_wait_info { 1841 struct mem_cgroup *mem; 1842 wait_queue_t wait; 1843 }; 1844 1845 static int memcg_oom_wake_function(wait_queue_t *wait, 1846 unsigned mode, int sync, void *arg) 1847 { 1848 struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg; 1849 struct oom_wait_info *oom_wait_info; 1850 1851 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 1852 1853 if (oom_wait_info->mem == wake_mem) 1854 goto wakeup; 1855 /* if no hierarchy, no match */ 1856 if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy) 1857 return 0; 1858 /* 1859 * Both of oom_wait_info->mem and wake_mem are stable under us. 1860 * Then we can use css_is_ancestor without taking care of RCU. 1861 */ 1862 if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) && 1863 !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css)) 1864 return 0; 1865 1866 wakeup: 1867 return autoremove_wake_function(wait, mode, sync, arg); 1868 } 1869 1870 static void memcg_wakeup_oom(struct mem_cgroup *mem) 1871 { 1872 /* for filtering, pass "mem" as argument. */ 1873 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem); 1874 } 1875 1876 static void memcg_oom_recover(struct mem_cgroup *mem) 1877 { 1878 if (mem && atomic_read(&mem->oom_lock)) 1879 memcg_wakeup_oom(mem); 1880 } 1881 1882 /* 1883 * try to call OOM killer. returns false if we should exit memory-reclaim loop. 1884 */ 1885 bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask) 1886 { 1887 struct oom_wait_info owait; 1888 bool locked, need_to_kill; 1889 1890 owait.mem = mem; 1891 owait.wait.flags = 0; 1892 owait.wait.func = memcg_oom_wake_function; 1893 owait.wait.private = current; 1894 INIT_LIST_HEAD(&owait.wait.task_list); 1895 need_to_kill = true; 1896 /* At first, try to OOM lock hierarchy under mem.*/ 1897 mutex_lock(&memcg_oom_mutex); 1898 locked = mem_cgroup_oom_lock(mem); 1899 /* 1900 * Even if signal_pending(), we can't quit charge() loop without 1901 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL 1902 * under OOM is always welcomed, use TASK_KILLABLE here. 1903 */ 1904 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 1905 if (!locked || mem->oom_kill_disable) 1906 need_to_kill = false; 1907 if (locked) 1908 mem_cgroup_oom_notify(mem); 1909 mutex_unlock(&memcg_oom_mutex); 1910 1911 if (need_to_kill) { 1912 finish_wait(&memcg_oom_waitq, &owait.wait); 1913 mem_cgroup_out_of_memory(mem, mask); 1914 } else { 1915 schedule(); 1916 finish_wait(&memcg_oom_waitq, &owait.wait); 1917 } 1918 mutex_lock(&memcg_oom_mutex); 1919 mem_cgroup_oom_unlock(mem); 1920 memcg_wakeup_oom(mem); 1921 mutex_unlock(&memcg_oom_mutex); 1922 1923 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current)) 1924 return false; 1925 /* Give chance to dying process */ 1926 schedule_timeout(1); 1927 return true; 1928 } 1929 1930 /* 1931 * Currently used to update mapped file statistics, but the routine can be 1932 * generalized to update other statistics as well. 1933 * 1934 * Notes: Race condition 1935 * 1936 * We usually use page_cgroup_lock() for accessing page_cgroup member but 1937 * it tends to be costly. But considering some conditions, we doesn't need 1938 * to do so _always_. 1939 * 1940 * Considering "charge", lock_page_cgroup() is not required because all 1941 * file-stat operations happen after a page is attached to radix-tree. There 1942 * are no race with "charge". 1943 * 1944 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup 1945 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even 1946 * if there are race with "uncharge". Statistics itself is properly handled 1947 * by flags. 1948 * 1949 * Considering "move", this is an only case we see a race. To make the race 1950 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are 1951 * possibility of race condition. If there is, we take a lock. 1952 */ 1953 1954 void mem_cgroup_update_page_stat(struct page *page, 1955 enum mem_cgroup_page_stat_item idx, int val) 1956 { 1957 struct mem_cgroup *mem; 1958 struct page_cgroup *pc = lookup_page_cgroup(page); 1959 bool need_unlock = false; 1960 unsigned long uninitialized_var(flags); 1961 1962 if (unlikely(!pc)) 1963 return; 1964 1965 rcu_read_lock(); 1966 mem = pc->mem_cgroup; 1967 if (unlikely(!mem || !PageCgroupUsed(pc))) 1968 goto out; 1969 /* pc->mem_cgroup is unstable ? */ 1970 if (unlikely(mem_cgroup_stealed(mem)) || PageTransHuge(page)) { 1971 /* take a lock against to access pc->mem_cgroup */ 1972 move_lock_page_cgroup(pc, &flags); 1973 need_unlock = true; 1974 mem = pc->mem_cgroup; 1975 if (!mem || !PageCgroupUsed(pc)) 1976 goto out; 1977 } 1978 1979 switch (idx) { 1980 case MEMCG_NR_FILE_MAPPED: 1981 if (val > 0) 1982 SetPageCgroupFileMapped(pc); 1983 else if (!page_mapped(page)) 1984 ClearPageCgroupFileMapped(pc); 1985 idx = MEM_CGROUP_STAT_FILE_MAPPED; 1986 break; 1987 default: 1988 BUG(); 1989 } 1990 1991 this_cpu_add(mem->stat->count[idx], val); 1992 1993 out: 1994 if (unlikely(need_unlock)) 1995 move_unlock_page_cgroup(pc, &flags); 1996 rcu_read_unlock(); 1997 return; 1998 } 1999 EXPORT_SYMBOL(mem_cgroup_update_page_stat); 2000 2001 /* 2002 * size of first charge trial. "32" comes from vmscan.c's magic value. 2003 * TODO: maybe necessary to use big numbers in big irons. 2004 */ 2005 #define CHARGE_BATCH 32U 2006 struct memcg_stock_pcp { 2007 struct mem_cgroup *cached; /* this never be root cgroup */ 2008 unsigned int nr_pages; 2009 struct work_struct work; 2010 unsigned long flags; 2011 #define FLUSHING_CACHED_CHARGE (0) 2012 }; 2013 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); 2014 static DEFINE_MUTEX(percpu_charge_mutex); 2015 2016 /* 2017 * Try to consume stocked charge on this cpu. If success, one page is consumed 2018 * from local stock and true is returned. If the stock is 0 or charges from a 2019 * cgroup which is not current target, returns false. This stock will be 2020 * refilled. 2021 */ 2022 static bool consume_stock(struct mem_cgroup *mem) 2023 { 2024 struct memcg_stock_pcp *stock; 2025 bool ret = true; 2026 2027 stock = &get_cpu_var(memcg_stock); 2028 if (mem == stock->cached && stock->nr_pages) 2029 stock->nr_pages--; 2030 else /* need to call res_counter_charge */ 2031 ret = false; 2032 put_cpu_var(memcg_stock); 2033 return ret; 2034 } 2035 2036 /* 2037 * Returns stocks cached in percpu to res_counter and reset cached information. 2038 */ 2039 static void drain_stock(struct memcg_stock_pcp *stock) 2040 { 2041 struct mem_cgroup *old = stock->cached; 2042 2043 if (stock->nr_pages) { 2044 unsigned long bytes = stock->nr_pages * PAGE_SIZE; 2045 2046 res_counter_uncharge(&old->res, bytes); 2047 if (do_swap_account) 2048 res_counter_uncharge(&old->memsw, bytes); 2049 stock->nr_pages = 0; 2050 } 2051 stock->cached = NULL; 2052 } 2053 2054 /* 2055 * This must be called under preempt disabled or must be called by 2056 * a thread which is pinned to local cpu. 2057 */ 2058 static void drain_local_stock(struct work_struct *dummy) 2059 { 2060 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock); 2061 drain_stock(stock); 2062 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 2063 } 2064 2065 /* 2066 * Cache charges(val) which is from res_counter, to local per_cpu area. 2067 * This will be consumed by consume_stock() function, later. 2068 */ 2069 static void refill_stock(struct mem_cgroup *mem, unsigned int nr_pages) 2070 { 2071 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock); 2072 2073 if (stock->cached != mem) { /* reset if necessary */ 2074 drain_stock(stock); 2075 stock->cached = mem; 2076 } 2077 stock->nr_pages += nr_pages; 2078 put_cpu_var(memcg_stock); 2079 } 2080 2081 /* 2082 * Tries to drain stocked charges in other cpus. This function is asynchronous 2083 * and just put a work per cpu for draining localy on each cpu. Caller can 2084 * expects some charges will be back to res_counter later but cannot wait for 2085 * it. 2086 */ 2087 static void drain_all_stock_async(struct mem_cgroup *root_mem) 2088 { 2089 int cpu, curcpu; 2090 /* 2091 * If someone calls draining, avoid adding more kworker runs. 2092 */ 2093 if (!mutex_trylock(&percpu_charge_mutex)) 2094 return; 2095 /* Notify other cpus that system-wide "drain" is running */ 2096 get_online_cpus(); 2097 /* 2098 * Get a hint for avoiding draining charges on the current cpu, 2099 * which must be exhausted by our charging. It is not required that 2100 * this be a precise check, so we use raw_smp_processor_id() instead of 2101 * getcpu()/putcpu(). 2102 */ 2103 curcpu = raw_smp_processor_id(); 2104 for_each_online_cpu(cpu) { 2105 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2106 struct mem_cgroup *mem; 2107 2108 if (cpu == curcpu) 2109 continue; 2110 2111 mem = stock->cached; 2112 if (!mem) 2113 continue; 2114 if (mem != root_mem) { 2115 if (!root_mem->use_hierarchy) 2116 continue; 2117 /* check whether "mem" is under tree of "root_mem" */ 2118 if (!css_is_ancestor(&mem->css, &root_mem->css)) 2119 continue; 2120 } 2121 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) 2122 schedule_work_on(cpu, &stock->work); 2123 } 2124 put_online_cpus(); 2125 mutex_unlock(&percpu_charge_mutex); 2126 /* We don't wait for flush_work */ 2127 } 2128 2129 /* This is a synchronous drain interface. */ 2130 static void drain_all_stock_sync(void) 2131 { 2132 /* called when force_empty is called */ 2133 mutex_lock(&percpu_charge_mutex); 2134 schedule_on_each_cpu(drain_local_stock); 2135 mutex_unlock(&percpu_charge_mutex); 2136 } 2137 2138 /* 2139 * This function drains percpu counter value from DEAD cpu and 2140 * move it to local cpu. Note that this function can be preempted. 2141 */ 2142 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu) 2143 { 2144 int i; 2145 2146 spin_lock(&mem->pcp_counter_lock); 2147 for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) { 2148 long x = per_cpu(mem->stat->count[i], cpu); 2149 2150 per_cpu(mem->stat->count[i], cpu) = 0; 2151 mem->nocpu_base.count[i] += x; 2152 } 2153 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) { 2154 unsigned long x = per_cpu(mem->stat->events[i], cpu); 2155 2156 per_cpu(mem->stat->events[i], cpu) = 0; 2157 mem->nocpu_base.events[i] += x; 2158 } 2159 /* need to clear ON_MOVE value, works as a kind of lock. */ 2160 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0; 2161 spin_unlock(&mem->pcp_counter_lock); 2162 } 2163 2164 static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu) 2165 { 2166 int idx = MEM_CGROUP_ON_MOVE; 2167 2168 spin_lock(&mem->pcp_counter_lock); 2169 per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx]; 2170 spin_unlock(&mem->pcp_counter_lock); 2171 } 2172 2173 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb, 2174 unsigned long action, 2175 void *hcpu) 2176 { 2177 int cpu = (unsigned long)hcpu; 2178 struct memcg_stock_pcp *stock; 2179 struct mem_cgroup *iter; 2180 2181 if ((action == CPU_ONLINE)) { 2182 for_each_mem_cgroup_all(iter) 2183 synchronize_mem_cgroup_on_move(iter, cpu); 2184 return NOTIFY_OK; 2185 } 2186 2187 if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN) 2188 return NOTIFY_OK; 2189 2190 for_each_mem_cgroup_all(iter) 2191 mem_cgroup_drain_pcp_counter(iter, cpu); 2192 2193 stock = &per_cpu(memcg_stock, cpu); 2194 drain_stock(stock); 2195 return NOTIFY_OK; 2196 } 2197 2198 2199 /* See __mem_cgroup_try_charge() for details */ 2200 enum { 2201 CHARGE_OK, /* success */ 2202 CHARGE_RETRY, /* need to retry but retry is not bad */ 2203 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */ 2204 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */ 2205 CHARGE_OOM_DIE, /* the current is killed because of OOM */ 2206 }; 2207 2208 static int mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask, 2209 unsigned int nr_pages, bool oom_check) 2210 { 2211 unsigned long csize = nr_pages * PAGE_SIZE; 2212 struct mem_cgroup *mem_over_limit; 2213 struct res_counter *fail_res; 2214 unsigned long flags = 0; 2215 int ret; 2216 2217 ret = res_counter_charge(&mem->res, csize, &fail_res); 2218 2219 if (likely(!ret)) { 2220 if (!do_swap_account) 2221 return CHARGE_OK; 2222 ret = res_counter_charge(&mem->memsw, csize, &fail_res); 2223 if (likely(!ret)) 2224 return CHARGE_OK; 2225 2226 res_counter_uncharge(&mem->res, csize); 2227 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw); 2228 flags |= MEM_CGROUP_RECLAIM_NOSWAP; 2229 } else 2230 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res); 2231 /* 2232 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch 2233 * of regular pages (CHARGE_BATCH), or a single regular page (1). 2234 * 2235 * Never reclaim on behalf of optional batching, retry with a 2236 * single page instead. 2237 */ 2238 if (nr_pages == CHARGE_BATCH) 2239 return CHARGE_RETRY; 2240 2241 if (!(gfp_mask & __GFP_WAIT)) 2242 return CHARGE_WOULDBLOCK; 2243 2244 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL, 2245 gfp_mask, flags, NULL); 2246 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2247 return CHARGE_RETRY; 2248 /* 2249 * Even though the limit is exceeded at this point, reclaim 2250 * may have been able to free some pages. Retry the charge 2251 * before killing the task. 2252 * 2253 * Only for regular pages, though: huge pages are rather 2254 * unlikely to succeed so close to the limit, and we fall back 2255 * to regular pages anyway in case of failure. 2256 */ 2257 if (nr_pages == 1 && ret) 2258 return CHARGE_RETRY; 2259 2260 /* 2261 * At task move, charge accounts can be doubly counted. So, it's 2262 * better to wait until the end of task_move if something is going on. 2263 */ 2264 if (mem_cgroup_wait_acct_move(mem_over_limit)) 2265 return CHARGE_RETRY; 2266 2267 /* If we don't need to call oom-killer at el, return immediately */ 2268 if (!oom_check) 2269 return CHARGE_NOMEM; 2270 /* check OOM */ 2271 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask)) 2272 return CHARGE_OOM_DIE; 2273 2274 return CHARGE_RETRY; 2275 } 2276 2277 /* 2278 * Unlike exported interface, "oom" parameter is added. if oom==true, 2279 * oom-killer can be invoked. 2280 */ 2281 static int __mem_cgroup_try_charge(struct mm_struct *mm, 2282 gfp_t gfp_mask, 2283 unsigned int nr_pages, 2284 struct mem_cgroup **memcg, 2285 bool oom) 2286 { 2287 unsigned int batch = max(CHARGE_BATCH, nr_pages); 2288 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES; 2289 struct mem_cgroup *mem = NULL; 2290 int ret; 2291 2292 /* 2293 * Unlike gloval-vm's OOM-kill, we're not in memory shortage 2294 * in system level. So, allow to go ahead dying process in addition to 2295 * MEMDIE process. 2296 */ 2297 if (unlikely(test_thread_flag(TIF_MEMDIE) 2298 || fatal_signal_pending(current))) 2299 goto bypass; 2300 2301 /* 2302 * We always charge the cgroup the mm_struct belongs to. 2303 * The mm_struct's mem_cgroup changes on task migration if the 2304 * thread group leader migrates. It's possible that mm is not 2305 * set, if so charge the init_mm (happens for pagecache usage). 2306 */ 2307 if (!*memcg && !mm) 2308 goto bypass; 2309 again: 2310 if (*memcg) { /* css should be a valid one */ 2311 mem = *memcg; 2312 VM_BUG_ON(css_is_removed(&mem->css)); 2313 if (mem_cgroup_is_root(mem)) 2314 goto done; 2315 if (nr_pages == 1 && consume_stock(mem)) 2316 goto done; 2317 css_get(&mem->css); 2318 } else { 2319 struct task_struct *p; 2320 2321 rcu_read_lock(); 2322 p = rcu_dereference(mm->owner); 2323 /* 2324 * Because we don't have task_lock(), "p" can exit. 2325 * In that case, "mem" can point to root or p can be NULL with 2326 * race with swapoff. Then, we have small risk of mis-accouning. 2327 * But such kind of mis-account by race always happens because 2328 * we don't have cgroup_mutex(). It's overkill and we allo that 2329 * small race, here. 2330 * (*) swapoff at el will charge against mm-struct not against 2331 * task-struct. So, mm->owner can be NULL. 2332 */ 2333 mem = mem_cgroup_from_task(p); 2334 if (!mem || mem_cgroup_is_root(mem)) { 2335 rcu_read_unlock(); 2336 goto done; 2337 } 2338 if (nr_pages == 1 && consume_stock(mem)) { 2339 /* 2340 * It seems dagerous to access memcg without css_get(). 2341 * But considering how consume_stok works, it's not 2342 * necessary. If consume_stock success, some charges 2343 * from this memcg are cached on this cpu. So, we 2344 * don't need to call css_get()/css_tryget() before 2345 * calling consume_stock(). 2346 */ 2347 rcu_read_unlock(); 2348 goto done; 2349 } 2350 /* after here, we may be blocked. we need to get refcnt */ 2351 if (!css_tryget(&mem->css)) { 2352 rcu_read_unlock(); 2353 goto again; 2354 } 2355 rcu_read_unlock(); 2356 } 2357 2358 do { 2359 bool oom_check; 2360 2361 /* If killed, bypass charge */ 2362 if (fatal_signal_pending(current)) { 2363 css_put(&mem->css); 2364 goto bypass; 2365 } 2366 2367 oom_check = false; 2368 if (oom && !nr_oom_retries) { 2369 oom_check = true; 2370 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES; 2371 } 2372 2373 ret = mem_cgroup_do_charge(mem, gfp_mask, batch, oom_check); 2374 switch (ret) { 2375 case CHARGE_OK: 2376 break; 2377 case CHARGE_RETRY: /* not in OOM situation but retry */ 2378 batch = nr_pages; 2379 css_put(&mem->css); 2380 mem = NULL; 2381 goto again; 2382 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */ 2383 css_put(&mem->css); 2384 goto nomem; 2385 case CHARGE_NOMEM: /* OOM routine works */ 2386 if (!oom) { 2387 css_put(&mem->css); 2388 goto nomem; 2389 } 2390 /* If oom, we never return -ENOMEM */ 2391 nr_oom_retries--; 2392 break; 2393 case CHARGE_OOM_DIE: /* Killed by OOM Killer */ 2394 css_put(&mem->css); 2395 goto bypass; 2396 } 2397 } while (ret != CHARGE_OK); 2398 2399 if (batch > nr_pages) 2400 refill_stock(mem, batch - nr_pages); 2401 css_put(&mem->css); 2402 done: 2403 *memcg = mem; 2404 return 0; 2405 nomem: 2406 *memcg = NULL; 2407 return -ENOMEM; 2408 bypass: 2409 *memcg = NULL; 2410 return 0; 2411 } 2412 2413 /* 2414 * Somemtimes we have to undo a charge we got by try_charge(). 2415 * This function is for that and do uncharge, put css's refcnt. 2416 * gotten by try_charge(). 2417 */ 2418 static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem, 2419 unsigned int nr_pages) 2420 { 2421 if (!mem_cgroup_is_root(mem)) { 2422 unsigned long bytes = nr_pages * PAGE_SIZE; 2423 2424 res_counter_uncharge(&mem->res, bytes); 2425 if (do_swap_account) 2426 res_counter_uncharge(&mem->memsw, bytes); 2427 } 2428 } 2429 2430 /* 2431 * A helper function to get mem_cgroup from ID. must be called under 2432 * rcu_read_lock(). The caller must check css_is_removed() or some if 2433 * it's concern. (dropping refcnt from swap can be called against removed 2434 * memcg.) 2435 */ 2436 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id) 2437 { 2438 struct cgroup_subsys_state *css; 2439 2440 /* ID 0 is unused ID */ 2441 if (!id) 2442 return NULL; 2443 css = css_lookup(&mem_cgroup_subsys, id); 2444 if (!css) 2445 return NULL; 2446 return container_of(css, struct mem_cgroup, css); 2447 } 2448 2449 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page) 2450 { 2451 struct mem_cgroup *mem = NULL; 2452 struct page_cgroup *pc; 2453 unsigned short id; 2454 swp_entry_t ent; 2455 2456 VM_BUG_ON(!PageLocked(page)); 2457 2458 pc = lookup_page_cgroup(page); 2459 lock_page_cgroup(pc); 2460 if (PageCgroupUsed(pc)) { 2461 mem = pc->mem_cgroup; 2462 if (mem && !css_tryget(&mem->css)) 2463 mem = NULL; 2464 } else if (PageSwapCache(page)) { 2465 ent.val = page_private(page); 2466 id = lookup_swap_cgroup(ent); 2467 rcu_read_lock(); 2468 mem = mem_cgroup_lookup(id); 2469 if (mem && !css_tryget(&mem->css)) 2470 mem = NULL; 2471 rcu_read_unlock(); 2472 } 2473 unlock_page_cgroup(pc); 2474 return mem; 2475 } 2476 2477 static void __mem_cgroup_commit_charge(struct mem_cgroup *mem, 2478 struct page *page, 2479 unsigned int nr_pages, 2480 struct page_cgroup *pc, 2481 enum charge_type ctype) 2482 { 2483 lock_page_cgroup(pc); 2484 if (unlikely(PageCgroupUsed(pc))) { 2485 unlock_page_cgroup(pc); 2486 __mem_cgroup_cancel_charge(mem, nr_pages); 2487 return; 2488 } 2489 /* 2490 * we don't need page_cgroup_lock about tail pages, becase they are not 2491 * accessed by any other context at this point. 2492 */ 2493 pc->mem_cgroup = mem; 2494 /* 2495 * We access a page_cgroup asynchronously without lock_page_cgroup(). 2496 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup 2497 * is accessed after testing USED bit. To make pc->mem_cgroup visible 2498 * before USED bit, we need memory barrier here. 2499 * See mem_cgroup_add_lru_list(), etc. 2500 */ 2501 smp_wmb(); 2502 switch (ctype) { 2503 case MEM_CGROUP_CHARGE_TYPE_CACHE: 2504 case MEM_CGROUP_CHARGE_TYPE_SHMEM: 2505 SetPageCgroupCache(pc); 2506 SetPageCgroupUsed(pc); 2507 break; 2508 case MEM_CGROUP_CHARGE_TYPE_MAPPED: 2509 ClearPageCgroupCache(pc); 2510 SetPageCgroupUsed(pc); 2511 break; 2512 default: 2513 break; 2514 } 2515 2516 mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), nr_pages); 2517 unlock_page_cgroup(pc); 2518 /* 2519 * "charge_statistics" updated event counter. Then, check it. 2520 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree. 2521 * if they exceeds softlimit. 2522 */ 2523 memcg_check_events(mem, page); 2524 } 2525 2526 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2527 2528 #define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\ 2529 (1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION)) 2530 /* 2531 * Because tail pages are not marked as "used", set it. We're under 2532 * zone->lru_lock, 'splitting on pmd' and compund_lock. 2533 */ 2534 void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail) 2535 { 2536 struct page_cgroup *head_pc = lookup_page_cgroup(head); 2537 struct page_cgroup *tail_pc = lookup_page_cgroup(tail); 2538 unsigned long flags; 2539 2540 if (mem_cgroup_disabled()) 2541 return; 2542 /* 2543 * We have no races with charge/uncharge but will have races with 2544 * page state accounting. 2545 */ 2546 move_lock_page_cgroup(head_pc, &flags); 2547 2548 tail_pc->mem_cgroup = head_pc->mem_cgroup; 2549 smp_wmb(); /* see __commit_charge() */ 2550 if (PageCgroupAcctLRU(head_pc)) { 2551 enum lru_list lru; 2552 struct mem_cgroup_per_zone *mz; 2553 2554 /* 2555 * LRU flags cannot be copied because we need to add tail 2556 *.page to LRU by generic call and our hook will be called. 2557 * We hold lru_lock, then, reduce counter directly. 2558 */ 2559 lru = page_lru(head); 2560 mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head); 2561 MEM_CGROUP_ZSTAT(mz, lru) -= 1; 2562 } 2563 tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT; 2564 move_unlock_page_cgroup(head_pc, &flags); 2565 } 2566 #endif 2567 2568 /** 2569 * mem_cgroup_move_account - move account of the page 2570 * @page: the page 2571 * @nr_pages: number of regular pages (>1 for huge pages) 2572 * @pc: page_cgroup of the page. 2573 * @from: mem_cgroup which the page is moved from. 2574 * @to: mem_cgroup which the page is moved to. @from != @to. 2575 * @uncharge: whether we should call uncharge and css_put against @from. 2576 * 2577 * The caller must confirm following. 2578 * - page is not on LRU (isolate_page() is useful.) 2579 * - compound_lock is held when nr_pages > 1 2580 * 2581 * This function doesn't do "charge" nor css_get to new cgroup. It should be 2582 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is 2583 * true, this function does "uncharge" from old cgroup, but it doesn't if 2584 * @uncharge is false, so a caller should do "uncharge". 2585 */ 2586 static int mem_cgroup_move_account(struct page *page, 2587 unsigned int nr_pages, 2588 struct page_cgroup *pc, 2589 struct mem_cgroup *from, 2590 struct mem_cgroup *to, 2591 bool uncharge) 2592 { 2593 unsigned long flags; 2594 int ret; 2595 2596 VM_BUG_ON(from == to); 2597 VM_BUG_ON(PageLRU(page)); 2598 /* 2599 * The page is isolated from LRU. So, collapse function 2600 * will not handle this page. But page splitting can happen. 2601 * Do this check under compound_page_lock(). The caller should 2602 * hold it. 2603 */ 2604 ret = -EBUSY; 2605 if (nr_pages > 1 && !PageTransHuge(page)) 2606 goto out; 2607 2608 lock_page_cgroup(pc); 2609 2610 ret = -EINVAL; 2611 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from) 2612 goto unlock; 2613 2614 move_lock_page_cgroup(pc, &flags); 2615 2616 if (PageCgroupFileMapped(pc)) { 2617 /* Update mapped_file data for mem_cgroup */ 2618 preempt_disable(); 2619 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]); 2620 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]); 2621 preempt_enable(); 2622 } 2623 mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages); 2624 if (uncharge) 2625 /* This is not "cancel", but cancel_charge does all we need. */ 2626 __mem_cgroup_cancel_charge(from, nr_pages); 2627 2628 /* caller should have done css_get */ 2629 pc->mem_cgroup = to; 2630 mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages); 2631 /* 2632 * We charges against "to" which may not have any tasks. Then, "to" 2633 * can be under rmdir(). But in current implementation, caller of 2634 * this function is just force_empty() and move charge, so it's 2635 * guaranteed that "to" is never removed. So, we don't check rmdir 2636 * status here. 2637 */ 2638 move_unlock_page_cgroup(pc, &flags); 2639 ret = 0; 2640 unlock: 2641 unlock_page_cgroup(pc); 2642 /* 2643 * check events 2644 */ 2645 memcg_check_events(to, page); 2646 memcg_check_events(from, page); 2647 out: 2648 return ret; 2649 } 2650 2651 /* 2652 * move charges to its parent. 2653 */ 2654 2655 static int mem_cgroup_move_parent(struct page *page, 2656 struct page_cgroup *pc, 2657 struct mem_cgroup *child, 2658 gfp_t gfp_mask) 2659 { 2660 struct cgroup *cg = child->css.cgroup; 2661 struct cgroup *pcg = cg->parent; 2662 struct mem_cgroup *parent; 2663 unsigned int nr_pages; 2664 unsigned long uninitialized_var(flags); 2665 int ret; 2666 2667 /* Is ROOT ? */ 2668 if (!pcg) 2669 return -EINVAL; 2670 2671 ret = -EBUSY; 2672 if (!get_page_unless_zero(page)) 2673 goto out; 2674 if (isolate_lru_page(page)) 2675 goto put; 2676 2677 nr_pages = hpage_nr_pages(page); 2678 2679 parent = mem_cgroup_from_cont(pcg); 2680 ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false); 2681 if (ret || !parent) 2682 goto put_back; 2683 2684 if (nr_pages > 1) 2685 flags = compound_lock_irqsave(page); 2686 2687 ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true); 2688 if (ret) 2689 __mem_cgroup_cancel_charge(parent, nr_pages); 2690 2691 if (nr_pages > 1) 2692 compound_unlock_irqrestore(page, flags); 2693 put_back: 2694 putback_lru_page(page); 2695 put: 2696 put_page(page); 2697 out: 2698 return ret; 2699 } 2700 2701 /* 2702 * Charge the memory controller for page usage. 2703 * Return 2704 * 0 if the charge was successful 2705 * < 0 if the cgroup is over its limit 2706 */ 2707 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm, 2708 gfp_t gfp_mask, enum charge_type ctype) 2709 { 2710 struct mem_cgroup *mem = NULL; 2711 unsigned int nr_pages = 1; 2712 struct page_cgroup *pc; 2713 bool oom = true; 2714 int ret; 2715 2716 if (PageTransHuge(page)) { 2717 nr_pages <<= compound_order(page); 2718 VM_BUG_ON(!PageTransHuge(page)); 2719 /* 2720 * Never OOM-kill a process for a huge page. The 2721 * fault handler will fall back to regular pages. 2722 */ 2723 oom = false; 2724 } 2725 2726 pc = lookup_page_cgroup(page); 2727 BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */ 2728 2729 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &mem, oom); 2730 if (ret || !mem) 2731 return ret; 2732 2733 __mem_cgroup_commit_charge(mem, page, nr_pages, pc, ctype); 2734 return 0; 2735 } 2736 2737 int mem_cgroup_newpage_charge(struct page *page, 2738 struct mm_struct *mm, gfp_t gfp_mask) 2739 { 2740 if (mem_cgroup_disabled()) 2741 return 0; 2742 /* 2743 * If already mapped, we don't have to account. 2744 * If page cache, page->mapping has address_space. 2745 * But page->mapping may have out-of-use anon_vma pointer, 2746 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping 2747 * is NULL. 2748 */ 2749 if (page_mapped(page) || (page->mapping && !PageAnon(page))) 2750 return 0; 2751 if (unlikely(!mm)) 2752 mm = &init_mm; 2753 return mem_cgroup_charge_common(page, mm, gfp_mask, 2754 MEM_CGROUP_CHARGE_TYPE_MAPPED); 2755 } 2756 2757 static void 2758 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr, 2759 enum charge_type ctype); 2760 2761 static void 2762 __mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *mem, 2763 enum charge_type ctype) 2764 { 2765 struct page_cgroup *pc = lookup_page_cgroup(page); 2766 /* 2767 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page 2768 * is already on LRU. It means the page may on some other page_cgroup's 2769 * LRU. Take care of it. 2770 */ 2771 mem_cgroup_lru_del_before_commit(page); 2772 __mem_cgroup_commit_charge(mem, page, 1, pc, ctype); 2773 mem_cgroup_lru_add_after_commit(page); 2774 return; 2775 } 2776 2777 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm, 2778 gfp_t gfp_mask) 2779 { 2780 struct mem_cgroup *mem = NULL; 2781 int ret; 2782 2783 if (mem_cgroup_disabled()) 2784 return 0; 2785 if (PageCompound(page)) 2786 return 0; 2787 /* 2788 * Corner case handling. This is called from add_to_page_cache() 2789 * in usual. But some FS (shmem) precharges this page before calling it 2790 * and call add_to_page_cache() with GFP_NOWAIT. 2791 * 2792 * For GFP_NOWAIT case, the page may be pre-charged before calling 2793 * add_to_page_cache(). (See shmem.c) check it here and avoid to call 2794 * charge twice. (It works but has to pay a bit larger cost.) 2795 * And when the page is SwapCache, it should take swap information 2796 * into account. This is under lock_page() now. 2797 */ 2798 if (!(gfp_mask & __GFP_WAIT)) { 2799 struct page_cgroup *pc; 2800 2801 pc = lookup_page_cgroup(page); 2802 if (!pc) 2803 return 0; 2804 lock_page_cgroup(pc); 2805 if (PageCgroupUsed(pc)) { 2806 unlock_page_cgroup(pc); 2807 return 0; 2808 } 2809 unlock_page_cgroup(pc); 2810 } 2811 2812 if (unlikely(!mm)) 2813 mm = &init_mm; 2814 2815 if (page_is_file_cache(page)) { 2816 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, &mem, true); 2817 if (ret || !mem) 2818 return ret; 2819 2820 /* 2821 * FUSE reuses pages without going through the final 2822 * put that would remove them from the LRU list, make 2823 * sure that they get relinked properly. 2824 */ 2825 __mem_cgroup_commit_charge_lrucare(page, mem, 2826 MEM_CGROUP_CHARGE_TYPE_CACHE); 2827 return ret; 2828 } 2829 /* shmem */ 2830 if (PageSwapCache(page)) { 2831 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem); 2832 if (!ret) 2833 __mem_cgroup_commit_charge_swapin(page, mem, 2834 MEM_CGROUP_CHARGE_TYPE_SHMEM); 2835 } else 2836 ret = mem_cgroup_charge_common(page, mm, gfp_mask, 2837 MEM_CGROUP_CHARGE_TYPE_SHMEM); 2838 2839 return ret; 2840 } 2841 2842 /* 2843 * While swap-in, try_charge -> commit or cancel, the page is locked. 2844 * And when try_charge() successfully returns, one refcnt to memcg without 2845 * struct page_cgroup is acquired. This refcnt will be consumed by 2846 * "commit()" or removed by "cancel()" 2847 */ 2848 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, 2849 struct page *page, 2850 gfp_t mask, struct mem_cgroup **ptr) 2851 { 2852 struct mem_cgroup *mem; 2853 int ret; 2854 2855 *ptr = NULL; 2856 2857 if (mem_cgroup_disabled()) 2858 return 0; 2859 2860 if (!do_swap_account) 2861 goto charge_cur_mm; 2862 /* 2863 * A racing thread's fault, or swapoff, may have already updated 2864 * the pte, and even removed page from swap cache: in those cases 2865 * do_swap_page()'s pte_same() test will fail; but there's also a 2866 * KSM case which does need to charge the page. 2867 */ 2868 if (!PageSwapCache(page)) 2869 goto charge_cur_mm; 2870 mem = try_get_mem_cgroup_from_page(page); 2871 if (!mem) 2872 goto charge_cur_mm; 2873 *ptr = mem; 2874 ret = __mem_cgroup_try_charge(NULL, mask, 1, ptr, true); 2875 css_put(&mem->css); 2876 return ret; 2877 charge_cur_mm: 2878 if (unlikely(!mm)) 2879 mm = &init_mm; 2880 return __mem_cgroup_try_charge(mm, mask, 1, ptr, true); 2881 } 2882 2883 static void 2884 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr, 2885 enum charge_type ctype) 2886 { 2887 if (mem_cgroup_disabled()) 2888 return; 2889 if (!ptr) 2890 return; 2891 cgroup_exclude_rmdir(&ptr->css); 2892 2893 __mem_cgroup_commit_charge_lrucare(page, ptr, ctype); 2894 /* 2895 * Now swap is on-memory. This means this page may be 2896 * counted both as mem and swap....double count. 2897 * Fix it by uncharging from memsw. Basically, this SwapCache is stable 2898 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page() 2899 * may call delete_from_swap_cache() before reach here. 2900 */ 2901 if (do_swap_account && PageSwapCache(page)) { 2902 swp_entry_t ent = {.val = page_private(page)}; 2903 unsigned short id; 2904 struct mem_cgroup *memcg; 2905 2906 id = swap_cgroup_record(ent, 0); 2907 rcu_read_lock(); 2908 memcg = mem_cgroup_lookup(id); 2909 if (memcg) { 2910 /* 2911 * This recorded memcg can be obsolete one. So, avoid 2912 * calling css_tryget 2913 */ 2914 if (!mem_cgroup_is_root(memcg)) 2915 res_counter_uncharge(&memcg->memsw, PAGE_SIZE); 2916 mem_cgroup_swap_statistics(memcg, false); 2917 mem_cgroup_put(memcg); 2918 } 2919 rcu_read_unlock(); 2920 } 2921 /* 2922 * At swapin, we may charge account against cgroup which has no tasks. 2923 * So, rmdir()->pre_destroy() can be called while we do this charge. 2924 * In that case, we need to call pre_destroy() again. check it here. 2925 */ 2926 cgroup_release_and_wakeup_rmdir(&ptr->css); 2927 } 2928 2929 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr) 2930 { 2931 __mem_cgroup_commit_charge_swapin(page, ptr, 2932 MEM_CGROUP_CHARGE_TYPE_MAPPED); 2933 } 2934 2935 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem) 2936 { 2937 if (mem_cgroup_disabled()) 2938 return; 2939 if (!mem) 2940 return; 2941 __mem_cgroup_cancel_charge(mem, 1); 2942 } 2943 2944 static void mem_cgroup_do_uncharge(struct mem_cgroup *mem, 2945 unsigned int nr_pages, 2946 const enum charge_type ctype) 2947 { 2948 struct memcg_batch_info *batch = NULL; 2949 bool uncharge_memsw = true; 2950 2951 /* If swapout, usage of swap doesn't decrease */ 2952 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) 2953 uncharge_memsw = false; 2954 2955 batch = ¤t->memcg_batch; 2956 /* 2957 * In usual, we do css_get() when we remember memcg pointer. 2958 * But in this case, we keep res->usage until end of a series of 2959 * uncharges. Then, it's ok to ignore memcg's refcnt. 2960 */ 2961 if (!batch->memcg) 2962 batch->memcg = mem; 2963 /* 2964 * do_batch > 0 when unmapping pages or inode invalidate/truncate. 2965 * In those cases, all pages freed continuously can be expected to be in 2966 * the same cgroup and we have chance to coalesce uncharges. 2967 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE) 2968 * because we want to do uncharge as soon as possible. 2969 */ 2970 2971 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE)) 2972 goto direct_uncharge; 2973 2974 if (nr_pages > 1) 2975 goto direct_uncharge; 2976 2977 /* 2978 * In typical case, batch->memcg == mem. This means we can 2979 * merge a series of uncharges to an uncharge of res_counter. 2980 * If not, we uncharge res_counter ony by one. 2981 */ 2982 if (batch->memcg != mem) 2983 goto direct_uncharge; 2984 /* remember freed charge and uncharge it later */ 2985 batch->nr_pages++; 2986 if (uncharge_memsw) 2987 batch->memsw_nr_pages++; 2988 return; 2989 direct_uncharge: 2990 res_counter_uncharge(&mem->res, nr_pages * PAGE_SIZE); 2991 if (uncharge_memsw) 2992 res_counter_uncharge(&mem->memsw, nr_pages * PAGE_SIZE); 2993 if (unlikely(batch->memcg != mem)) 2994 memcg_oom_recover(mem); 2995 return; 2996 } 2997 2998 /* 2999 * uncharge if !page_mapped(page) 3000 */ 3001 static struct mem_cgroup * 3002 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype) 3003 { 3004 struct mem_cgroup *mem = NULL; 3005 unsigned int nr_pages = 1; 3006 struct page_cgroup *pc; 3007 3008 if (mem_cgroup_disabled()) 3009 return NULL; 3010 3011 if (PageSwapCache(page)) 3012 return NULL; 3013 3014 if (PageTransHuge(page)) { 3015 nr_pages <<= compound_order(page); 3016 VM_BUG_ON(!PageTransHuge(page)); 3017 } 3018 /* 3019 * Check if our page_cgroup is valid 3020 */ 3021 pc = lookup_page_cgroup(page); 3022 if (unlikely(!pc || !PageCgroupUsed(pc))) 3023 return NULL; 3024 3025 lock_page_cgroup(pc); 3026 3027 mem = pc->mem_cgroup; 3028 3029 if (!PageCgroupUsed(pc)) 3030 goto unlock_out; 3031 3032 switch (ctype) { 3033 case MEM_CGROUP_CHARGE_TYPE_MAPPED: 3034 case MEM_CGROUP_CHARGE_TYPE_DROP: 3035 /* See mem_cgroup_prepare_migration() */ 3036 if (page_mapped(page) || PageCgroupMigration(pc)) 3037 goto unlock_out; 3038 break; 3039 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT: 3040 if (!PageAnon(page)) { /* Shared memory */ 3041 if (page->mapping && !page_is_file_cache(page)) 3042 goto unlock_out; 3043 } else if (page_mapped(page)) /* Anon */ 3044 goto unlock_out; 3045 break; 3046 default: 3047 break; 3048 } 3049 3050 mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -nr_pages); 3051 3052 ClearPageCgroupUsed(pc); 3053 /* 3054 * pc->mem_cgroup is not cleared here. It will be accessed when it's 3055 * freed from LRU. This is safe because uncharged page is expected not 3056 * to be reused (freed soon). Exception is SwapCache, it's handled by 3057 * special functions. 3058 */ 3059 3060 unlock_page_cgroup(pc); 3061 /* 3062 * even after unlock, we have mem->res.usage here and this memcg 3063 * will never be freed. 3064 */ 3065 memcg_check_events(mem, page); 3066 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) { 3067 mem_cgroup_swap_statistics(mem, true); 3068 mem_cgroup_get(mem); 3069 } 3070 if (!mem_cgroup_is_root(mem)) 3071 mem_cgroup_do_uncharge(mem, nr_pages, ctype); 3072 3073 return mem; 3074 3075 unlock_out: 3076 unlock_page_cgroup(pc); 3077 return NULL; 3078 } 3079 3080 void mem_cgroup_uncharge_page(struct page *page) 3081 { 3082 /* early check. */ 3083 if (page_mapped(page)) 3084 return; 3085 if (page->mapping && !PageAnon(page)) 3086 return; 3087 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED); 3088 } 3089 3090 void mem_cgroup_uncharge_cache_page(struct page *page) 3091 { 3092 VM_BUG_ON(page_mapped(page)); 3093 VM_BUG_ON(page->mapping); 3094 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE); 3095 } 3096 3097 /* 3098 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate. 3099 * In that cases, pages are freed continuously and we can expect pages 3100 * are in the same memcg. All these calls itself limits the number of 3101 * pages freed at once, then uncharge_start/end() is called properly. 3102 * This may be called prural(2) times in a context, 3103 */ 3104 3105 void mem_cgroup_uncharge_start(void) 3106 { 3107 current->memcg_batch.do_batch++; 3108 /* We can do nest. */ 3109 if (current->memcg_batch.do_batch == 1) { 3110 current->memcg_batch.memcg = NULL; 3111 current->memcg_batch.nr_pages = 0; 3112 current->memcg_batch.memsw_nr_pages = 0; 3113 } 3114 } 3115 3116 void mem_cgroup_uncharge_end(void) 3117 { 3118 struct memcg_batch_info *batch = ¤t->memcg_batch; 3119 3120 if (!batch->do_batch) 3121 return; 3122 3123 batch->do_batch--; 3124 if (batch->do_batch) /* If stacked, do nothing. */ 3125 return; 3126 3127 if (!batch->memcg) 3128 return; 3129 /* 3130 * This "batch->memcg" is valid without any css_get/put etc... 3131 * bacause we hide charges behind us. 3132 */ 3133 if (batch->nr_pages) 3134 res_counter_uncharge(&batch->memcg->res, 3135 batch->nr_pages * PAGE_SIZE); 3136 if (batch->memsw_nr_pages) 3137 res_counter_uncharge(&batch->memcg->memsw, 3138 batch->memsw_nr_pages * PAGE_SIZE); 3139 memcg_oom_recover(batch->memcg); 3140 /* forget this pointer (for sanity check) */ 3141 batch->memcg = NULL; 3142 } 3143 3144 #ifdef CONFIG_SWAP 3145 /* 3146 * called after __delete_from_swap_cache() and drop "page" account. 3147 * memcg information is recorded to swap_cgroup of "ent" 3148 */ 3149 void 3150 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout) 3151 { 3152 struct mem_cgroup *memcg; 3153 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT; 3154 3155 if (!swapout) /* this was a swap cache but the swap is unused ! */ 3156 ctype = MEM_CGROUP_CHARGE_TYPE_DROP; 3157 3158 memcg = __mem_cgroup_uncharge_common(page, ctype); 3159 3160 /* 3161 * record memcg information, if swapout && memcg != NULL, 3162 * mem_cgroup_get() was called in uncharge(). 3163 */ 3164 if (do_swap_account && swapout && memcg) 3165 swap_cgroup_record(ent, css_id(&memcg->css)); 3166 } 3167 #endif 3168 3169 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP 3170 /* 3171 * called from swap_entry_free(). remove record in swap_cgroup and 3172 * uncharge "memsw" account. 3173 */ 3174 void mem_cgroup_uncharge_swap(swp_entry_t ent) 3175 { 3176 struct mem_cgroup *memcg; 3177 unsigned short id; 3178 3179 if (!do_swap_account) 3180 return; 3181 3182 id = swap_cgroup_record(ent, 0); 3183 rcu_read_lock(); 3184 memcg = mem_cgroup_lookup(id); 3185 if (memcg) { 3186 /* 3187 * We uncharge this because swap is freed. 3188 * This memcg can be obsolete one. We avoid calling css_tryget 3189 */ 3190 if (!mem_cgroup_is_root(memcg)) 3191 res_counter_uncharge(&memcg->memsw, PAGE_SIZE); 3192 mem_cgroup_swap_statistics(memcg, false); 3193 mem_cgroup_put(memcg); 3194 } 3195 rcu_read_unlock(); 3196 } 3197 3198 /** 3199 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 3200 * @entry: swap entry to be moved 3201 * @from: mem_cgroup which the entry is moved from 3202 * @to: mem_cgroup which the entry is moved to 3203 * @need_fixup: whether we should fixup res_counters and refcounts. 3204 * 3205 * It succeeds only when the swap_cgroup's record for this entry is the same 3206 * as the mem_cgroup's id of @from. 3207 * 3208 * Returns 0 on success, -EINVAL on failure. 3209 * 3210 * The caller must have charged to @to, IOW, called res_counter_charge() about 3211 * both res and memsw, and called css_get(). 3212 */ 3213 static int mem_cgroup_move_swap_account(swp_entry_t entry, 3214 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup) 3215 { 3216 unsigned short old_id, new_id; 3217 3218 old_id = css_id(&from->css); 3219 new_id = css_id(&to->css); 3220 3221 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 3222 mem_cgroup_swap_statistics(from, false); 3223 mem_cgroup_swap_statistics(to, true); 3224 /* 3225 * This function is only called from task migration context now. 3226 * It postpones res_counter and refcount handling till the end 3227 * of task migration(mem_cgroup_clear_mc()) for performance 3228 * improvement. But we cannot postpone mem_cgroup_get(to) 3229 * because if the process that has been moved to @to does 3230 * swap-in, the refcount of @to might be decreased to 0. 3231 */ 3232 mem_cgroup_get(to); 3233 if (need_fixup) { 3234 if (!mem_cgroup_is_root(from)) 3235 res_counter_uncharge(&from->memsw, PAGE_SIZE); 3236 mem_cgroup_put(from); 3237 /* 3238 * we charged both to->res and to->memsw, so we should 3239 * uncharge to->res. 3240 */ 3241 if (!mem_cgroup_is_root(to)) 3242 res_counter_uncharge(&to->res, PAGE_SIZE); 3243 } 3244 return 0; 3245 } 3246 return -EINVAL; 3247 } 3248 #else 3249 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 3250 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup) 3251 { 3252 return -EINVAL; 3253 } 3254 #endif 3255 3256 /* 3257 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old 3258 * page belongs to. 3259 */ 3260 int mem_cgroup_prepare_migration(struct page *page, 3261 struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask) 3262 { 3263 struct mem_cgroup *mem = NULL; 3264 struct page_cgroup *pc; 3265 enum charge_type ctype; 3266 int ret = 0; 3267 3268 *ptr = NULL; 3269 3270 VM_BUG_ON(PageTransHuge(page)); 3271 if (mem_cgroup_disabled()) 3272 return 0; 3273 3274 pc = lookup_page_cgroup(page); 3275 lock_page_cgroup(pc); 3276 if (PageCgroupUsed(pc)) { 3277 mem = pc->mem_cgroup; 3278 css_get(&mem->css); 3279 /* 3280 * At migrating an anonymous page, its mapcount goes down 3281 * to 0 and uncharge() will be called. But, even if it's fully 3282 * unmapped, migration may fail and this page has to be 3283 * charged again. We set MIGRATION flag here and delay uncharge 3284 * until end_migration() is called 3285 * 3286 * Corner Case Thinking 3287 * A) 3288 * When the old page was mapped as Anon and it's unmap-and-freed 3289 * while migration was ongoing. 3290 * If unmap finds the old page, uncharge() of it will be delayed 3291 * until end_migration(). If unmap finds a new page, it's 3292 * uncharged when it make mapcount to be 1->0. If unmap code 3293 * finds swap_migration_entry, the new page will not be mapped 3294 * and end_migration() will find it(mapcount==0). 3295 * 3296 * B) 3297 * When the old page was mapped but migraion fails, the kernel 3298 * remaps it. A charge for it is kept by MIGRATION flag even 3299 * if mapcount goes down to 0. We can do remap successfully 3300 * without charging it again. 3301 * 3302 * C) 3303 * The "old" page is under lock_page() until the end of 3304 * migration, so, the old page itself will not be swapped-out. 3305 * If the new page is swapped out before end_migraton, our 3306 * hook to usual swap-out path will catch the event. 3307 */ 3308 if (PageAnon(page)) 3309 SetPageCgroupMigration(pc); 3310 } 3311 unlock_page_cgroup(pc); 3312 /* 3313 * If the page is not charged at this point, 3314 * we return here. 3315 */ 3316 if (!mem) 3317 return 0; 3318 3319 *ptr = mem; 3320 ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, ptr, false); 3321 css_put(&mem->css);/* drop extra refcnt */ 3322 if (ret || *ptr == NULL) { 3323 if (PageAnon(page)) { 3324 lock_page_cgroup(pc); 3325 ClearPageCgroupMigration(pc); 3326 unlock_page_cgroup(pc); 3327 /* 3328 * The old page may be fully unmapped while we kept it. 3329 */ 3330 mem_cgroup_uncharge_page(page); 3331 } 3332 return -ENOMEM; 3333 } 3334 /* 3335 * We charge new page before it's used/mapped. So, even if unlock_page() 3336 * is called before end_migration, we can catch all events on this new 3337 * page. In the case new page is migrated but not remapped, new page's 3338 * mapcount will be finally 0 and we call uncharge in end_migration(). 3339 */ 3340 pc = lookup_page_cgroup(newpage); 3341 if (PageAnon(page)) 3342 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED; 3343 else if (page_is_file_cache(page)) 3344 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE; 3345 else 3346 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM; 3347 __mem_cgroup_commit_charge(mem, page, 1, pc, ctype); 3348 return ret; 3349 } 3350 3351 /* remove redundant charge if migration failed*/ 3352 void mem_cgroup_end_migration(struct mem_cgroup *mem, 3353 struct page *oldpage, struct page *newpage, bool migration_ok) 3354 { 3355 struct page *used, *unused; 3356 struct page_cgroup *pc; 3357 3358 if (!mem) 3359 return; 3360 /* blocks rmdir() */ 3361 cgroup_exclude_rmdir(&mem->css); 3362 if (!migration_ok) { 3363 used = oldpage; 3364 unused = newpage; 3365 } else { 3366 used = newpage; 3367 unused = oldpage; 3368 } 3369 /* 3370 * We disallowed uncharge of pages under migration because mapcount 3371 * of the page goes down to zero, temporarly. 3372 * Clear the flag and check the page should be charged. 3373 */ 3374 pc = lookup_page_cgroup(oldpage); 3375 lock_page_cgroup(pc); 3376 ClearPageCgroupMigration(pc); 3377 unlock_page_cgroup(pc); 3378 3379 __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE); 3380 3381 /* 3382 * If a page is a file cache, radix-tree replacement is very atomic 3383 * and we can skip this check. When it was an Anon page, its mapcount 3384 * goes down to 0. But because we added MIGRATION flage, it's not 3385 * uncharged yet. There are several case but page->mapcount check 3386 * and USED bit check in mem_cgroup_uncharge_page() will do enough 3387 * check. (see prepare_charge() also) 3388 */ 3389 if (PageAnon(used)) 3390 mem_cgroup_uncharge_page(used); 3391 /* 3392 * At migration, we may charge account against cgroup which has no 3393 * tasks. 3394 * So, rmdir()->pre_destroy() can be called while we do this charge. 3395 * In that case, we need to call pre_destroy() again. check it here. 3396 */ 3397 cgroup_release_and_wakeup_rmdir(&mem->css); 3398 } 3399 3400 /* 3401 * A call to try to shrink memory usage on charge failure at shmem's swapin. 3402 * Calling hierarchical_reclaim is not enough because we should update 3403 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM. 3404 * Moreover considering hierarchy, we should reclaim from the mem_over_limit, 3405 * not from the memcg which this page would be charged to. 3406 * try_charge_swapin does all of these works properly. 3407 */ 3408 int mem_cgroup_shmem_charge_fallback(struct page *page, 3409 struct mm_struct *mm, 3410 gfp_t gfp_mask) 3411 { 3412 struct mem_cgroup *mem; 3413 int ret; 3414 3415 if (mem_cgroup_disabled()) 3416 return 0; 3417 3418 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem); 3419 if (!ret) 3420 mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */ 3421 3422 return ret; 3423 } 3424 3425 #ifdef CONFIG_DEBUG_VM 3426 static struct page_cgroup *lookup_page_cgroup_used(struct page *page) 3427 { 3428 struct page_cgroup *pc; 3429 3430 pc = lookup_page_cgroup(page); 3431 if (likely(pc) && PageCgroupUsed(pc)) 3432 return pc; 3433 return NULL; 3434 } 3435 3436 bool mem_cgroup_bad_page_check(struct page *page) 3437 { 3438 if (mem_cgroup_disabled()) 3439 return false; 3440 3441 return lookup_page_cgroup_used(page) != NULL; 3442 } 3443 3444 void mem_cgroup_print_bad_page(struct page *page) 3445 { 3446 struct page_cgroup *pc; 3447 3448 pc = lookup_page_cgroup_used(page); 3449 if (pc) { 3450 int ret = -1; 3451 char *path; 3452 3453 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p", 3454 pc, pc->flags, pc->mem_cgroup); 3455 3456 path = kmalloc(PATH_MAX, GFP_KERNEL); 3457 if (path) { 3458 rcu_read_lock(); 3459 ret = cgroup_path(pc->mem_cgroup->css.cgroup, 3460 path, PATH_MAX); 3461 rcu_read_unlock(); 3462 } 3463 3464 printk(KERN_CONT "(%s)\n", 3465 (ret < 0) ? "cannot get the path" : path); 3466 kfree(path); 3467 } 3468 } 3469 #endif 3470 3471 static DEFINE_MUTEX(set_limit_mutex); 3472 3473 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg, 3474 unsigned long long val) 3475 { 3476 int retry_count; 3477 u64 memswlimit, memlimit; 3478 int ret = 0; 3479 int children = mem_cgroup_count_children(memcg); 3480 u64 curusage, oldusage; 3481 int enlarge; 3482 3483 /* 3484 * For keeping hierarchical_reclaim simple, how long we should retry 3485 * is depends on callers. We set our retry-count to be function 3486 * of # of children which we should visit in this loop. 3487 */ 3488 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children; 3489 3490 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE); 3491 3492 enlarge = 0; 3493 while (retry_count) { 3494 if (signal_pending(current)) { 3495 ret = -EINTR; 3496 break; 3497 } 3498 /* 3499 * Rather than hide all in some function, I do this in 3500 * open coded manner. You see what this really does. 3501 * We have to guarantee mem->res.limit < mem->memsw.limit. 3502 */ 3503 mutex_lock(&set_limit_mutex); 3504 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 3505 if (memswlimit < val) { 3506 ret = -EINVAL; 3507 mutex_unlock(&set_limit_mutex); 3508 break; 3509 } 3510 3511 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT); 3512 if (memlimit < val) 3513 enlarge = 1; 3514 3515 ret = res_counter_set_limit(&memcg->res, val); 3516 if (!ret) { 3517 if (memswlimit == val) 3518 memcg->memsw_is_minimum = true; 3519 else 3520 memcg->memsw_is_minimum = false; 3521 } 3522 mutex_unlock(&set_limit_mutex); 3523 3524 if (!ret) 3525 break; 3526 3527 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL, 3528 MEM_CGROUP_RECLAIM_SHRINK, 3529 NULL); 3530 curusage = res_counter_read_u64(&memcg->res, RES_USAGE); 3531 /* Usage is reduced ? */ 3532 if (curusage >= oldusage) 3533 retry_count--; 3534 else 3535 oldusage = curusage; 3536 } 3537 if (!ret && enlarge) 3538 memcg_oom_recover(memcg); 3539 3540 return ret; 3541 } 3542 3543 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg, 3544 unsigned long long val) 3545 { 3546 int retry_count; 3547 u64 memlimit, memswlimit, oldusage, curusage; 3548 int children = mem_cgroup_count_children(memcg); 3549 int ret = -EBUSY; 3550 int enlarge = 0; 3551 3552 /* see mem_cgroup_resize_res_limit */ 3553 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES; 3554 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); 3555 while (retry_count) { 3556 if (signal_pending(current)) { 3557 ret = -EINTR; 3558 break; 3559 } 3560 /* 3561 * Rather than hide all in some function, I do this in 3562 * open coded manner. You see what this really does. 3563 * We have to guarantee mem->res.limit < mem->memsw.limit. 3564 */ 3565 mutex_lock(&set_limit_mutex); 3566 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT); 3567 if (memlimit > val) { 3568 ret = -EINVAL; 3569 mutex_unlock(&set_limit_mutex); 3570 break; 3571 } 3572 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 3573 if (memswlimit < val) 3574 enlarge = 1; 3575 ret = res_counter_set_limit(&memcg->memsw, val); 3576 if (!ret) { 3577 if (memlimit == val) 3578 memcg->memsw_is_minimum = true; 3579 else 3580 memcg->memsw_is_minimum = false; 3581 } 3582 mutex_unlock(&set_limit_mutex); 3583 3584 if (!ret) 3585 break; 3586 3587 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL, 3588 MEM_CGROUP_RECLAIM_NOSWAP | 3589 MEM_CGROUP_RECLAIM_SHRINK, 3590 NULL); 3591 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); 3592 /* Usage is reduced ? */ 3593 if (curusage >= oldusage) 3594 retry_count--; 3595 else 3596 oldusage = curusage; 3597 } 3598 if (!ret && enlarge) 3599 memcg_oom_recover(memcg); 3600 return ret; 3601 } 3602 3603 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, 3604 gfp_t gfp_mask, 3605 unsigned long *total_scanned) 3606 { 3607 unsigned long nr_reclaimed = 0; 3608 struct mem_cgroup_per_zone *mz, *next_mz = NULL; 3609 unsigned long reclaimed; 3610 int loop = 0; 3611 struct mem_cgroup_tree_per_zone *mctz; 3612 unsigned long long excess; 3613 unsigned long nr_scanned; 3614 3615 if (order > 0) 3616 return 0; 3617 3618 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone)); 3619 /* 3620 * This loop can run a while, specially if mem_cgroup's continuously 3621 * keep exceeding their soft limit and putting the system under 3622 * pressure 3623 */ 3624 do { 3625 if (next_mz) 3626 mz = next_mz; 3627 else 3628 mz = mem_cgroup_largest_soft_limit_node(mctz); 3629 if (!mz) 3630 break; 3631 3632 nr_scanned = 0; 3633 reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone, 3634 gfp_mask, 3635 MEM_CGROUP_RECLAIM_SOFT, 3636 &nr_scanned); 3637 nr_reclaimed += reclaimed; 3638 *total_scanned += nr_scanned; 3639 spin_lock(&mctz->lock); 3640 3641 /* 3642 * If we failed to reclaim anything from this memory cgroup 3643 * it is time to move on to the next cgroup 3644 */ 3645 next_mz = NULL; 3646 if (!reclaimed) { 3647 do { 3648 /* 3649 * Loop until we find yet another one. 3650 * 3651 * By the time we get the soft_limit lock 3652 * again, someone might have aded the 3653 * group back on the RB tree. Iterate to 3654 * make sure we get a different mem. 3655 * mem_cgroup_largest_soft_limit_node returns 3656 * NULL if no other cgroup is present on 3657 * the tree 3658 */ 3659 next_mz = 3660 __mem_cgroup_largest_soft_limit_node(mctz); 3661 if (next_mz == mz) 3662 css_put(&next_mz->mem->css); 3663 else /* next_mz == NULL or other memcg */ 3664 break; 3665 } while (1); 3666 } 3667 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz); 3668 excess = res_counter_soft_limit_excess(&mz->mem->res); 3669 /* 3670 * One school of thought says that we should not add 3671 * back the node to the tree if reclaim returns 0. 3672 * But our reclaim could return 0, simply because due 3673 * to priority we are exposing a smaller subset of 3674 * memory to reclaim from. Consider this as a longer 3675 * term TODO. 3676 */ 3677 /* If excess == 0, no tree ops */ 3678 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess); 3679 spin_unlock(&mctz->lock); 3680 css_put(&mz->mem->css); 3681 loop++; 3682 /* 3683 * Could not reclaim anything and there are no more 3684 * mem cgroups to try or we seem to be looping without 3685 * reclaiming anything. 3686 */ 3687 if (!nr_reclaimed && 3688 (next_mz == NULL || 3689 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 3690 break; 3691 } while (!nr_reclaimed); 3692 if (next_mz) 3693 css_put(&next_mz->mem->css); 3694 return nr_reclaimed; 3695 } 3696 3697 /* 3698 * This routine traverse page_cgroup in given list and drop them all. 3699 * *And* this routine doesn't reclaim page itself, just removes page_cgroup. 3700 */ 3701 static int mem_cgroup_force_empty_list(struct mem_cgroup *mem, 3702 int node, int zid, enum lru_list lru) 3703 { 3704 struct zone *zone; 3705 struct mem_cgroup_per_zone *mz; 3706 struct page_cgroup *pc, *busy; 3707 unsigned long flags, loop; 3708 struct list_head *list; 3709 int ret = 0; 3710 3711 zone = &NODE_DATA(node)->node_zones[zid]; 3712 mz = mem_cgroup_zoneinfo(mem, node, zid); 3713 list = &mz->lists[lru]; 3714 3715 loop = MEM_CGROUP_ZSTAT(mz, lru); 3716 /* give some margin against EBUSY etc...*/ 3717 loop += 256; 3718 busy = NULL; 3719 while (loop--) { 3720 struct page *page; 3721 3722 ret = 0; 3723 spin_lock_irqsave(&zone->lru_lock, flags); 3724 if (list_empty(list)) { 3725 spin_unlock_irqrestore(&zone->lru_lock, flags); 3726 break; 3727 } 3728 pc = list_entry(list->prev, struct page_cgroup, lru); 3729 if (busy == pc) { 3730 list_move(&pc->lru, list); 3731 busy = NULL; 3732 spin_unlock_irqrestore(&zone->lru_lock, flags); 3733 continue; 3734 } 3735 spin_unlock_irqrestore(&zone->lru_lock, flags); 3736 3737 page = lookup_cgroup_page(pc); 3738 3739 ret = mem_cgroup_move_parent(page, pc, mem, GFP_KERNEL); 3740 if (ret == -ENOMEM) 3741 break; 3742 3743 if (ret == -EBUSY || ret == -EINVAL) { 3744 /* found lock contention or "pc" is obsolete. */ 3745 busy = pc; 3746 cond_resched(); 3747 } else 3748 busy = NULL; 3749 } 3750 3751 if (!ret && !list_empty(list)) 3752 return -EBUSY; 3753 return ret; 3754 } 3755 3756 /* 3757 * make mem_cgroup's charge to be 0 if there is no task. 3758 * This enables deleting this mem_cgroup. 3759 */ 3760 static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all) 3761 { 3762 int ret; 3763 int node, zid, shrink; 3764 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 3765 struct cgroup *cgrp = mem->css.cgroup; 3766 3767 css_get(&mem->css); 3768 3769 shrink = 0; 3770 /* should free all ? */ 3771 if (free_all) 3772 goto try_to_free; 3773 move_account: 3774 do { 3775 ret = -EBUSY; 3776 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children)) 3777 goto out; 3778 ret = -EINTR; 3779 if (signal_pending(current)) 3780 goto out; 3781 /* This is for making all *used* pages to be on LRU. */ 3782 lru_add_drain_all(); 3783 drain_all_stock_sync(); 3784 ret = 0; 3785 mem_cgroup_start_move(mem); 3786 for_each_node_state(node, N_HIGH_MEMORY) { 3787 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) { 3788 enum lru_list l; 3789 for_each_lru(l) { 3790 ret = mem_cgroup_force_empty_list(mem, 3791 node, zid, l); 3792 if (ret) 3793 break; 3794 } 3795 } 3796 if (ret) 3797 break; 3798 } 3799 mem_cgroup_end_move(mem); 3800 memcg_oom_recover(mem); 3801 /* it seems parent cgroup doesn't have enough mem */ 3802 if (ret == -ENOMEM) 3803 goto try_to_free; 3804 cond_resched(); 3805 /* "ret" should also be checked to ensure all lists are empty. */ 3806 } while (mem->res.usage > 0 || ret); 3807 out: 3808 css_put(&mem->css); 3809 return ret; 3810 3811 try_to_free: 3812 /* returns EBUSY if there is a task or if we come here twice. */ 3813 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) { 3814 ret = -EBUSY; 3815 goto out; 3816 } 3817 /* we call try-to-free pages for make this cgroup empty */ 3818 lru_add_drain_all(); 3819 /* try to free all pages in this cgroup */ 3820 shrink = 1; 3821 while (nr_retries && mem->res.usage > 0) { 3822 int progress; 3823 3824 if (signal_pending(current)) { 3825 ret = -EINTR; 3826 goto out; 3827 } 3828 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL, 3829 false, get_swappiness(mem)); 3830 if (!progress) { 3831 nr_retries--; 3832 /* maybe some writeback is necessary */ 3833 congestion_wait(BLK_RW_ASYNC, HZ/10); 3834 } 3835 3836 } 3837 lru_add_drain(); 3838 /* try move_account...there may be some *locked* pages. */ 3839 goto move_account; 3840 } 3841 3842 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event) 3843 { 3844 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true); 3845 } 3846 3847 3848 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft) 3849 { 3850 return mem_cgroup_from_cont(cont)->use_hierarchy; 3851 } 3852 3853 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft, 3854 u64 val) 3855 { 3856 int retval = 0; 3857 struct mem_cgroup *mem = mem_cgroup_from_cont(cont); 3858 struct cgroup *parent = cont->parent; 3859 struct mem_cgroup *parent_mem = NULL; 3860 3861 if (parent) 3862 parent_mem = mem_cgroup_from_cont(parent); 3863 3864 cgroup_lock(); 3865 /* 3866 * If parent's use_hierarchy is set, we can't make any modifications 3867 * in the child subtrees. If it is unset, then the change can 3868 * occur, provided the current cgroup has no children. 3869 * 3870 * For the root cgroup, parent_mem is NULL, we allow value to be 3871 * set if there are no children. 3872 */ 3873 if ((!parent_mem || !parent_mem->use_hierarchy) && 3874 (val == 1 || val == 0)) { 3875 if (list_empty(&cont->children)) 3876 mem->use_hierarchy = val; 3877 else 3878 retval = -EBUSY; 3879 } else 3880 retval = -EINVAL; 3881 cgroup_unlock(); 3882 3883 return retval; 3884 } 3885 3886 3887 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *mem, 3888 enum mem_cgroup_stat_index idx) 3889 { 3890 struct mem_cgroup *iter; 3891 long val = 0; 3892 3893 /* Per-cpu values can be negative, use a signed accumulator */ 3894 for_each_mem_cgroup_tree(iter, mem) 3895 val += mem_cgroup_read_stat(iter, idx); 3896 3897 if (val < 0) /* race ? */ 3898 val = 0; 3899 return val; 3900 } 3901 3902 static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap) 3903 { 3904 u64 val; 3905 3906 if (!mem_cgroup_is_root(mem)) { 3907 if (!swap) 3908 return res_counter_read_u64(&mem->res, RES_USAGE); 3909 else 3910 return res_counter_read_u64(&mem->memsw, RES_USAGE); 3911 } 3912 3913 val = mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_CACHE); 3914 val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_RSS); 3915 3916 if (swap) 3917 val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_SWAPOUT); 3918 3919 return val << PAGE_SHIFT; 3920 } 3921 3922 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft) 3923 { 3924 struct mem_cgroup *mem = mem_cgroup_from_cont(cont); 3925 u64 val; 3926 int type, name; 3927 3928 type = MEMFILE_TYPE(cft->private); 3929 name = MEMFILE_ATTR(cft->private); 3930 switch (type) { 3931 case _MEM: 3932 if (name == RES_USAGE) 3933 val = mem_cgroup_usage(mem, false); 3934 else 3935 val = res_counter_read_u64(&mem->res, name); 3936 break; 3937 case _MEMSWAP: 3938 if (name == RES_USAGE) 3939 val = mem_cgroup_usage(mem, true); 3940 else 3941 val = res_counter_read_u64(&mem->memsw, name); 3942 break; 3943 default: 3944 BUG(); 3945 break; 3946 } 3947 return val; 3948 } 3949 /* 3950 * The user of this function is... 3951 * RES_LIMIT. 3952 */ 3953 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft, 3954 const char *buffer) 3955 { 3956 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 3957 int type, name; 3958 unsigned long long val; 3959 int ret; 3960 3961 type = MEMFILE_TYPE(cft->private); 3962 name = MEMFILE_ATTR(cft->private); 3963 switch (name) { 3964 case RES_LIMIT: 3965 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 3966 ret = -EINVAL; 3967 break; 3968 } 3969 /* This function does all necessary parse...reuse it */ 3970 ret = res_counter_memparse_write_strategy(buffer, &val); 3971 if (ret) 3972 break; 3973 if (type == _MEM) 3974 ret = mem_cgroup_resize_limit(memcg, val); 3975 else 3976 ret = mem_cgroup_resize_memsw_limit(memcg, val); 3977 break; 3978 case RES_SOFT_LIMIT: 3979 ret = res_counter_memparse_write_strategy(buffer, &val); 3980 if (ret) 3981 break; 3982 /* 3983 * For memsw, soft limits are hard to implement in terms 3984 * of semantics, for now, we support soft limits for 3985 * control without swap 3986 */ 3987 if (type == _MEM) 3988 ret = res_counter_set_soft_limit(&memcg->res, val); 3989 else 3990 ret = -EINVAL; 3991 break; 3992 default: 3993 ret = -EINVAL; /* should be BUG() ? */ 3994 break; 3995 } 3996 return ret; 3997 } 3998 3999 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg, 4000 unsigned long long *mem_limit, unsigned long long *memsw_limit) 4001 { 4002 struct cgroup *cgroup; 4003 unsigned long long min_limit, min_memsw_limit, tmp; 4004 4005 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT); 4006 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 4007 cgroup = memcg->css.cgroup; 4008 if (!memcg->use_hierarchy) 4009 goto out; 4010 4011 while (cgroup->parent) { 4012 cgroup = cgroup->parent; 4013 memcg = mem_cgroup_from_cont(cgroup); 4014 if (!memcg->use_hierarchy) 4015 break; 4016 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT); 4017 min_limit = min(min_limit, tmp); 4018 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 4019 min_memsw_limit = min(min_memsw_limit, tmp); 4020 } 4021 out: 4022 *mem_limit = min_limit; 4023 *memsw_limit = min_memsw_limit; 4024 return; 4025 } 4026 4027 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event) 4028 { 4029 struct mem_cgroup *mem; 4030 int type, name; 4031 4032 mem = mem_cgroup_from_cont(cont); 4033 type = MEMFILE_TYPE(event); 4034 name = MEMFILE_ATTR(event); 4035 switch (name) { 4036 case RES_MAX_USAGE: 4037 if (type == _MEM) 4038 res_counter_reset_max(&mem->res); 4039 else 4040 res_counter_reset_max(&mem->memsw); 4041 break; 4042 case RES_FAILCNT: 4043 if (type == _MEM) 4044 res_counter_reset_failcnt(&mem->res); 4045 else 4046 res_counter_reset_failcnt(&mem->memsw); 4047 break; 4048 } 4049 4050 return 0; 4051 } 4052 4053 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp, 4054 struct cftype *cft) 4055 { 4056 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate; 4057 } 4058 4059 #ifdef CONFIG_MMU 4060 static int mem_cgroup_move_charge_write(struct cgroup *cgrp, 4061 struct cftype *cft, u64 val) 4062 { 4063 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp); 4064 4065 if (val >= (1 << NR_MOVE_TYPE)) 4066 return -EINVAL; 4067 /* 4068 * We check this value several times in both in can_attach() and 4069 * attach(), so we need cgroup lock to prevent this value from being 4070 * inconsistent. 4071 */ 4072 cgroup_lock(); 4073 mem->move_charge_at_immigrate = val; 4074 cgroup_unlock(); 4075 4076 return 0; 4077 } 4078 #else 4079 static int mem_cgroup_move_charge_write(struct cgroup *cgrp, 4080 struct cftype *cft, u64 val) 4081 { 4082 return -ENOSYS; 4083 } 4084 #endif 4085 4086 4087 /* For read statistics */ 4088 enum { 4089 MCS_CACHE, 4090 MCS_RSS, 4091 MCS_FILE_MAPPED, 4092 MCS_PGPGIN, 4093 MCS_PGPGOUT, 4094 MCS_SWAP, 4095 MCS_PGFAULT, 4096 MCS_PGMAJFAULT, 4097 MCS_INACTIVE_ANON, 4098 MCS_ACTIVE_ANON, 4099 MCS_INACTIVE_FILE, 4100 MCS_ACTIVE_FILE, 4101 MCS_UNEVICTABLE, 4102 NR_MCS_STAT, 4103 }; 4104 4105 struct mcs_total_stat { 4106 s64 stat[NR_MCS_STAT]; 4107 }; 4108 4109 struct { 4110 char *local_name; 4111 char *total_name; 4112 } memcg_stat_strings[NR_MCS_STAT] = { 4113 {"cache", "total_cache"}, 4114 {"rss", "total_rss"}, 4115 {"mapped_file", "total_mapped_file"}, 4116 {"pgpgin", "total_pgpgin"}, 4117 {"pgpgout", "total_pgpgout"}, 4118 {"swap", "total_swap"}, 4119 {"pgfault", "total_pgfault"}, 4120 {"pgmajfault", "total_pgmajfault"}, 4121 {"inactive_anon", "total_inactive_anon"}, 4122 {"active_anon", "total_active_anon"}, 4123 {"inactive_file", "total_inactive_file"}, 4124 {"active_file", "total_active_file"}, 4125 {"unevictable", "total_unevictable"} 4126 }; 4127 4128 4129 static void 4130 mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s) 4131 { 4132 s64 val; 4133 4134 /* per cpu stat */ 4135 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE); 4136 s->stat[MCS_CACHE] += val * PAGE_SIZE; 4137 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS); 4138 s->stat[MCS_RSS] += val * PAGE_SIZE; 4139 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED); 4140 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE; 4141 val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGIN); 4142 s->stat[MCS_PGPGIN] += val; 4143 val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGOUT); 4144 s->stat[MCS_PGPGOUT] += val; 4145 if (do_swap_account) { 4146 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT); 4147 s->stat[MCS_SWAP] += val * PAGE_SIZE; 4148 } 4149 val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGFAULT); 4150 s->stat[MCS_PGFAULT] += val; 4151 val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGMAJFAULT); 4152 s->stat[MCS_PGMAJFAULT] += val; 4153 4154 /* per zone stat */ 4155 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON); 4156 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE; 4157 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON); 4158 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE; 4159 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE); 4160 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE; 4161 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE); 4162 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE; 4163 val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE); 4164 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE; 4165 } 4166 4167 static void 4168 mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s) 4169 { 4170 struct mem_cgroup *iter; 4171 4172 for_each_mem_cgroup_tree(iter, mem) 4173 mem_cgroup_get_local_stat(iter, s); 4174 } 4175 4176 #ifdef CONFIG_NUMA 4177 static int mem_control_numa_stat_show(struct seq_file *m, void *arg) 4178 { 4179 int nid; 4180 unsigned long total_nr, file_nr, anon_nr, unevictable_nr; 4181 unsigned long node_nr; 4182 struct cgroup *cont = m->private; 4183 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont); 4184 4185 total_nr = mem_cgroup_nr_lru_pages(mem_cont); 4186 seq_printf(m, "total=%lu", total_nr); 4187 for_each_node_state(nid, N_HIGH_MEMORY) { 4188 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid); 4189 seq_printf(m, " N%d=%lu", nid, node_nr); 4190 } 4191 seq_putc(m, '\n'); 4192 4193 file_nr = mem_cgroup_nr_file_lru_pages(mem_cont); 4194 seq_printf(m, "file=%lu", file_nr); 4195 for_each_node_state(nid, N_HIGH_MEMORY) { 4196 node_nr = mem_cgroup_node_nr_file_lru_pages(mem_cont, nid); 4197 seq_printf(m, " N%d=%lu", nid, node_nr); 4198 } 4199 seq_putc(m, '\n'); 4200 4201 anon_nr = mem_cgroup_nr_anon_lru_pages(mem_cont); 4202 seq_printf(m, "anon=%lu", anon_nr); 4203 for_each_node_state(nid, N_HIGH_MEMORY) { 4204 node_nr = mem_cgroup_node_nr_anon_lru_pages(mem_cont, nid); 4205 seq_printf(m, " N%d=%lu", nid, node_nr); 4206 } 4207 seq_putc(m, '\n'); 4208 4209 unevictable_nr = mem_cgroup_nr_unevictable_lru_pages(mem_cont); 4210 seq_printf(m, "unevictable=%lu", unevictable_nr); 4211 for_each_node_state(nid, N_HIGH_MEMORY) { 4212 node_nr = mem_cgroup_node_nr_unevictable_lru_pages(mem_cont, 4213 nid); 4214 seq_printf(m, " N%d=%lu", nid, node_nr); 4215 } 4216 seq_putc(m, '\n'); 4217 return 0; 4218 } 4219 #endif /* CONFIG_NUMA */ 4220 4221 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft, 4222 struct cgroup_map_cb *cb) 4223 { 4224 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont); 4225 struct mcs_total_stat mystat; 4226 int i; 4227 4228 memset(&mystat, 0, sizeof(mystat)); 4229 mem_cgroup_get_local_stat(mem_cont, &mystat); 4230 4231 4232 for (i = 0; i < NR_MCS_STAT; i++) { 4233 if (i == MCS_SWAP && !do_swap_account) 4234 continue; 4235 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]); 4236 } 4237 4238 /* Hierarchical information */ 4239 { 4240 unsigned long long limit, memsw_limit; 4241 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit); 4242 cb->fill(cb, "hierarchical_memory_limit", limit); 4243 if (do_swap_account) 4244 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit); 4245 } 4246 4247 memset(&mystat, 0, sizeof(mystat)); 4248 mem_cgroup_get_total_stat(mem_cont, &mystat); 4249 for (i = 0; i < NR_MCS_STAT; i++) { 4250 if (i == MCS_SWAP && !do_swap_account) 4251 continue; 4252 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]); 4253 } 4254 4255 #ifdef CONFIG_DEBUG_VM 4256 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL)); 4257 4258 { 4259 int nid, zid; 4260 struct mem_cgroup_per_zone *mz; 4261 unsigned long recent_rotated[2] = {0, 0}; 4262 unsigned long recent_scanned[2] = {0, 0}; 4263 4264 for_each_online_node(nid) 4265 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 4266 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid); 4267 4268 recent_rotated[0] += 4269 mz->reclaim_stat.recent_rotated[0]; 4270 recent_rotated[1] += 4271 mz->reclaim_stat.recent_rotated[1]; 4272 recent_scanned[0] += 4273 mz->reclaim_stat.recent_scanned[0]; 4274 recent_scanned[1] += 4275 mz->reclaim_stat.recent_scanned[1]; 4276 } 4277 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]); 4278 cb->fill(cb, "recent_rotated_file", recent_rotated[1]); 4279 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]); 4280 cb->fill(cb, "recent_scanned_file", recent_scanned[1]); 4281 } 4282 #endif 4283 4284 return 0; 4285 } 4286 4287 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft) 4288 { 4289 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 4290 4291 return get_swappiness(memcg); 4292 } 4293 4294 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft, 4295 u64 val) 4296 { 4297 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 4298 struct mem_cgroup *parent; 4299 4300 if (val > 100) 4301 return -EINVAL; 4302 4303 if (cgrp->parent == NULL) 4304 return -EINVAL; 4305 4306 parent = mem_cgroup_from_cont(cgrp->parent); 4307 4308 cgroup_lock(); 4309 4310 /* If under hierarchy, only empty-root can set this value */ 4311 if ((parent->use_hierarchy) || 4312 (memcg->use_hierarchy && !list_empty(&cgrp->children))) { 4313 cgroup_unlock(); 4314 return -EINVAL; 4315 } 4316 4317 memcg->swappiness = val; 4318 4319 cgroup_unlock(); 4320 4321 return 0; 4322 } 4323 4324 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 4325 { 4326 struct mem_cgroup_threshold_ary *t; 4327 u64 usage; 4328 int i; 4329 4330 rcu_read_lock(); 4331 if (!swap) 4332 t = rcu_dereference(memcg->thresholds.primary); 4333 else 4334 t = rcu_dereference(memcg->memsw_thresholds.primary); 4335 4336 if (!t) 4337 goto unlock; 4338 4339 usage = mem_cgroup_usage(memcg, swap); 4340 4341 /* 4342 * current_threshold points to threshold just below usage. 4343 * If it's not true, a threshold was crossed after last 4344 * call of __mem_cgroup_threshold(). 4345 */ 4346 i = t->current_threshold; 4347 4348 /* 4349 * Iterate backward over array of thresholds starting from 4350 * current_threshold and check if a threshold is crossed. 4351 * If none of thresholds below usage is crossed, we read 4352 * only one element of the array here. 4353 */ 4354 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 4355 eventfd_signal(t->entries[i].eventfd, 1); 4356 4357 /* i = current_threshold + 1 */ 4358 i++; 4359 4360 /* 4361 * Iterate forward over array of thresholds starting from 4362 * current_threshold+1 and check if a threshold is crossed. 4363 * If none of thresholds above usage is crossed, we read 4364 * only one element of the array here. 4365 */ 4366 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 4367 eventfd_signal(t->entries[i].eventfd, 1); 4368 4369 /* Update current_threshold */ 4370 t->current_threshold = i - 1; 4371 unlock: 4372 rcu_read_unlock(); 4373 } 4374 4375 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 4376 { 4377 while (memcg) { 4378 __mem_cgroup_threshold(memcg, false); 4379 if (do_swap_account) 4380 __mem_cgroup_threshold(memcg, true); 4381 4382 memcg = parent_mem_cgroup(memcg); 4383 } 4384 } 4385 4386 static int compare_thresholds(const void *a, const void *b) 4387 { 4388 const struct mem_cgroup_threshold *_a = a; 4389 const struct mem_cgroup_threshold *_b = b; 4390 4391 return _a->threshold - _b->threshold; 4392 } 4393 4394 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem) 4395 { 4396 struct mem_cgroup_eventfd_list *ev; 4397 4398 list_for_each_entry(ev, &mem->oom_notify, list) 4399 eventfd_signal(ev->eventfd, 1); 4400 return 0; 4401 } 4402 4403 static void mem_cgroup_oom_notify(struct mem_cgroup *mem) 4404 { 4405 struct mem_cgroup *iter; 4406 4407 for_each_mem_cgroup_tree(iter, mem) 4408 mem_cgroup_oom_notify_cb(iter); 4409 } 4410 4411 static int mem_cgroup_usage_register_event(struct cgroup *cgrp, 4412 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args) 4413 { 4414 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 4415 struct mem_cgroup_thresholds *thresholds; 4416 struct mem_cgroup_threshold_ary *new; 4417 int type = MEMFILE_TYPE(cft->private); 4418 u64 threshold, usage; 4419 int i, size, ret; 4420 4421 ret = res_counter_memparse_write_strategy(args, &threshold); 4422 if (ret) 4423 return ret; 4424 4425 mutex_lock(&memcg->thresholds_lock); 4426 4427 if (type == _MEM) 4428 thresholds = &memcg->thresholds; 4429 else if (type == _MEMSWAP) 4430 thresholds = &memcg->memsw_thresholds; 4431 else 4432 BUG(); 4433 4434 usage = mem_cgroup_usage(memcg, type == _MEMSWAP); 4435 4436 /* Check if a threshold crossed before adding a new one */ 4437 if (thresholds->primary) 4438 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4439 4440 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 4441 4442 /* Allocate memory for new array of thresholds */ 4443 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold), 4444 GFP_KERNEL); 4445 if (!new) { 4446 ret = -ENOMEM; 4447 goto unlock; 4448 } 4449 new->size = size; 4450 4451 /* Copy thresholds (if any) to new array */ 4452 if (thresholds->primary) { 4453 memcpy(new->entries, thresholds->primary->entries, (size - 1) * 4454 sizeof(struct mem_cgroup_threshold)); 4455 } 4456 4457 /* Add new threshold */ 4458 new->entries[size - 1].eventfd = eventfd; 4459 new->entries[size - 1].threshold = threshold; 4460 4461 /* Sort thresholds. Registering of new threshold isn't time-critical */ 4462 sort(new->entries, size, sizeof(struct mem_cgroup_threshold), 4463 compare_thresholds, NULL); 4464 4465 /* Find current threshold */ 4466 new->current_threshold = -1; 4467 for (i = 0; i < size; i++) { 4468 if (new->entries[i].threshold < usage) { 4469 /* 4470 * new->current_threshold will not be used until 4471 * rcu_assign_pointer(), so it's safe to increment 4472 * it here. 4473 */ 4474 ++new->current_threshold; 4475 } 4476 } 4477 4478 /* Free old spare buffer and save old primary buffer as spare */ 4479 kfree(thresholds->spare); 4480 thresholds->spare = thresholds->primary; 4481 4482 rcu_assign_pointer(thresholds->primary, new); 4483 4484 /* To be sure that nobody uses thresholds */ 4485 synchronize_rcu(); 4486 4487 unlock: 4488 mutex_unlock(&memcg->thresholds_lock); 4489 4490 return ret; 4491 } 4492 4493 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp, 4494 struct cftype *cft, struct eventfd_ctx *eventfd) 4495 { 4496 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 4497 struct mem_cgroup_thresholds *thresholds; 4498 struct mem_cgroup_threshold_ary *new; 4499 int type = MEMFILE_TYPE(cft->private); 4500 u64 usage; 4501 int i, j, size; 4502 4503 mutex_lock(&memcg->thresholds_lock); 4504 if (type == _MEM) 4505 thresholds = &memcg->thresholds; 4506 else if (type == _MEMSWAP) 4507 thresholds = &memcg->memsw_thresholds; 4508 else 4509 BUG(); 4510 4511 /* 4512 * Something went wrong if we trying to unregister a threshold 4513 * if we don't have thresholds 4514 */ 4515 BUG_ON(!thresholds); 4516 4517 usage = mem_cgroup_usage(memcg, type == _MEMSWAP); 4518 4519 /* Check if a threshold crossed before removing */ 4520 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4521 4522 /* Calculate new number of threshold */ 4523 size = 0; 4524 for (i = 0; i < thresholds->primary->size; i++) { 4525 if (thresholds->primary->entries[i].eventfd != eventfd) 4526 size++; 4527 } 4528 4529 new = thresholds->spare; 4530 4531 /* Set thresholds array to NULL if we don't have thresholds */ 4532 if (!size) { 4533 kfree(new); 4534 new = NULL; 4535 goto swap_buffers; 4536 } 4537 4538 new->size = size; 4539 4540 /* Copy thresholds and find current threshold */ 4541 new->current_threshold = -1; 4542 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 4543 if (thresholds->primary->entries[i].eventfd == eventfd) 4544 continue; 4545 4546 new->entries[j] = thresholds->primary->entries[i]; 4547 if (new->entries[j].threshold < usage) { 4548 /* 4549 * new->current_threshold will not be used 4550 * until rcu_assign_pointer(), so it's safe to increment 4551 * it here. 4552 */ 4553 ++new->current_threshold; 4554 } 4555 j++; 4556 } 4557 4558 swap_buffers: 4559 /* Swap primary and spare array */ 4560 thresholds->spare = thresholds->primary; 4561 rcu_assign_pointer(thresholds->primary, new); 4562 4563 /* To be sure that nobody uses thresholds */ 4564 synchronize_rcu(); 4565 4566 mutex_unlock(&memcg->thresholds_lock); 4567 } 4568 4569 static int mem_cgroup_oom_register_event(struct cgroup *cgrp, 4570 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args) 4571 { 4572 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 4573 struct mem_cgroup_eventfd_list *event; 4574 int type = MEMFILE_TYPE(cft->private); 4575 4576 BUG_ON(type != _OOM_TYPE); 4577 event = kmalloc(sizeof(*event), GFP_KERNEL); 4578 if (!event) 4579 return -ENOMEM; 4580 4581 mutex_lock(&memcg_oom_mutex); 4582 4583 event->eventfd = eventfd; 4584 list_add(&event->list, &memcg->oom_notify); 4585 4586 /* already in OOM ? */ 4587 if (atomic_read(&memcg->oom_lock)) 4588 eventfd_signal(eventfd, 1); 4589 mutex_unlock(&memcg_oom_mutex); 4590 4591 return 0; 4592 } 4593 4594 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp, 4595 struct cftype *cft, struct eventfd_ctx *eventfd) 4596 { 4597 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp); 4598 struct mem_cgroup_eventfd_list *ev, *tmp; 4599 int type = MEMFILE_TYPE(cft->private); 4600 4601 BUG_ON(type != _OOM_TYPE); 4602 4603 mutex_lock(&memcg_oom_mutex); 4604 4605 list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) { 4606 if (ev->eventfd == eventfd) { 4607 list_del(&ev->list); 4608 kfree(ev); 4609 } 4610 } 4611 4612 mutex_unlock(&memcg_oom_mutex); 4613 } 4614 4615 static int mem_cgroup_oom_control_read(struct cgroup *cgrp, 4616 struct cftype *cft, struct cgroup_map_cb *cb) 4617 { 4618 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp); 4619 4620 cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable); 4621 4622 if (atomic_read(&mem->oom_lock)) 4623 cb->fill(cb, "under_oom", 1); 4624 else 4625 cb->fill(cb, "under_oom", 0); 4626 return 0; 4627 } 4628 4629 static int mem_cgroup_oom_control_write(struct cgroup *cgrp, 4630 struct cftype *cft, u64 val) 4631 { 4632 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp); 4633 struct mem_cgroup *parent; 4634 4635 /* cannot set to root cgroup and only 0 and 1 are allowed */ 4636 if (!cgrp->parent || !((val == 0) || (val == 1))) 4637 return -EINVAL; 4638 4639 parent = mem_cgroup_from_cont(cgrp->parent); 4640 4641 cgroup_lock(); 4642 /* oom-kill-disable is a flag for subhierarchy. */ 4643 if ((parent->use_hierarchy) || 4644 (mem->use_hierarchy && !list_empty(&cgrp->children))) { 4645 cgroup_unlock(); 4646 return -EINVAL; 4647 } 4648 mem->oom_kill_disable = val; 4649 if (!val) 4650 memcg_oom_recover(mem); 4651 cgroup_unlock(); 4652 return 0; 4653 } 4654 4655 #ifdef CONFIG_NUMA 4656 static const struct file_operations mem_control_numa_stat_file_operations = { 4657 .read = seq_read, 4658 .llseek = seq_lseek, 4659 .release = single_release, 4660 }; 4661 4662 static int mem_control_numa_stat_open(struct inode *unused, struct file *file) 4663 { 4664 struct cgroup *cont = file->f_dentry->d_parent->d_fsdata; 4665 4666 file->f_op = &mem_control_numa_stat_file_operations; 4667 return single_open(file, mem_control_numa_stat_show, cont); 4668 } 4669 #endif /* CONFIG_NUMA */ 4670 4671 static struct cftype mem_cgroup_files[] = { 4672 { 4673 .name = "usage_in_bytes", 4674 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 4675 .read_u64 = mem_cgroup_read, 4676 .register_event = mem_cgroup_usage_register_event, 4677 .unregister_event = mem_cgroup_usage_unregister_event, 4678 }, 4679 { 4680 .name = "max_usage_in_bytes", 4681 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 4682 .trigger = mem_cgroup_reset, 4683 .read_u64 = mem_cgroup_read, 4684 }, 4685 { 4686 .name = "limit_in_bytes", 4687 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 4688 .write_string = mem_cgroup_write, 4689 .read_u64 = mem_cgroup_read, 4690 }, 4691 { 4692 .name = "soft_limit_in_bytes", 4693 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 4694 .write_string = mem_cgroup_write, 4695 .read_u64 = mem_cgroup_read, 4696 }, 4697 { 4698 .name = "failcnt", 4699 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 4700 .trigger = mem_cgroup_reset, 4701 .read_u64 = mem_cgroup_read, 4702 }, 4703 { 4704 .name = "stat", 4705 .read_map = mem_control_stat_show, 4706 }, 4707 { 4708 .name = "force_empty", 4709 .trigger = mem_cgroup_force_empty_write, 4710 }, 4711 { 4712 .name = "use_hierarchy", 4713 .write_u64 = mem_cgroup_hierarchy_write, 4714 .read_u64 = mem_cgroup_hierarchy_read, 4715 }, 4716 { 4717 .name = "swappiness", 4718 .read_u64 = mem_cgroup_swappiness_read, 4719 .write_u64 = mem_cgroup_swappiness_write, 4720 }, 4721 { 4722 .name = "move_charge_at_immigrate", 4723 .read_u64 = mem_cgroup_move_charge_read, 4724 .write_u64 = mem_cgroup_move_charge_write, 4725 }, 4726 { 4727 .name = "oom_control", 4728 .read_map = mem_cgroup_oom_control_read, 4729 .write_u64 = mem_cgroup_oom_control_write, 4730 .register_event = mem_cgroup_oom_register_event, 4731 .unregister_event = mem_cgroup_oom_unregister_event, 4732 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), 4733 }, 4734 #ifdef CONFIG_NUMA 4735 { 4736 .name = "numa_stat", 4737 .open = mem_control_numa_stat_open, 4738 .mode = S_IRUGO, 4739 }, 4740 #endif 4741 }; 4742 4743 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP 4744 static struct cftype memsw_cgroup_files[] = { 4745 { 4746 .name = "memsw.usage_in_bytes", 4747 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 4748 .read_u64 = mem_cgroup_read, 4749 .register_event = mem_cgroup_usage_register_event, 4750 .unregister_event = mem_cgroup_usage_unregister_event, 4751 }, 4752 { 4753 .name = "memsw.max_usage_in_bytes", 4754 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 4755 .trigger = mem_cgroup_reset, 4756 .read_u64 = mem_cgroup_read, 4757 }, 4758 { 4759 .name = "memsw.limit_in_bytes", 4760 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 4761 .write_string = mem_cgroup_write, 4762 .read_u64 = mem_cgroup_read, 4763 }, 4764 { 4765 .name = "memsw.failcnt", 4766 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 4767 .trigger = mem_cgroup_reset, 4768 .read_u64 = mem_cgroup_read, 4769 }, 4770 }; 4771 4772 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss) 4773 { 4774 if (!do_swap_account) 4775 return 0; 4776 return cgroup_add_files(cont, ss, memsw_cgroup_files, 4777 ARRAY_SIZE(memsw_cgroup_files)); 4778 }; 4779 #else 4780 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss) 4781 { 4782 return 0; 4783 } 4784 #endif 4785 4786 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node) 4787 { 4788 struct mem_cgroup_per_node *pn; 4789 struct mem_cgroup_per_zone *mz; 4790 enum lru_list l; 4791 int zone, tmp = node; 4792 /* 4793 * This routine is called against possible nodes. 4794 * But it's BUG to call kmalloc() against offline node. 4795 * 4796 * TODO: this routine can waste much memory for nodes which will 4797 * never be onlined. It's better to use memory hotplug callback 4798 * function. 4799 */ 4800 if (!node_state(node, N_NORMAL_MEMORY)) 4801 tmp = -1; 4802 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); 4803 if (!pn) 4804 return 1; 4805 4806 mem->info.nodeinfo[node] = pn; 4807 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 4808 mz = &pn->zoneinfo[zone]; 4809 for_each_lru(l) 4810 INIT_LIST_HEAD(&mz->lists[l]); 4811 mz->usage_in_excess = 0; 4812 mz->on_tree = false; 4813 mz->mem = mem; 4814 } 4815 return 0; 4816 } 4817 4818 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node) 4819 { 4820 kfree(mem->info.nodeinfo[node]); 4821 } 4822 4823 static struct mem_cgroup *mem_cgroup_alloc(void) 4824 { 4825 struct mem_cgroup *mem; 4826 int size = sizeof(struct mem_cgroup); 4827 4828 /* Can be very big if MAX_NUMNODES is very big */ 4829 if (size < PAGE_SIZE) 4830 mem = kzalloc(size, GFP_KERNEL); 4831 else 4832 mem = vzalloc(size); 4833 4834 if (!mem) 4835 return NULL; 4836 4837 mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu); 4838 if (!mem->stat) 4839 goto out_free; 4840 spin_lock_init(&mem->pcp_counter_lock); 4841 return mem; 4842 4843 out_free: 4844 if (size < PAGE_SIZE) 4845 kfree(mem); 4846 else 4847 vfree(mem); 4848 return NULL; 4849 } 4850 4851 /* 4852 * At destroying mem_cgroup, references from swap_cgroup can remain. 4853 * (scanning all at force_empty is too costly...) 4854 * 4855 * Instead of clearing all references at force_empty, we remember 4856 * the number of reference from swap_cgroup and free mem_cgroup when 4857 * it goes down to 0. 4858 * 4859 * Removal of cgroup itself succeeds regardless of refs from swap. 4860 */ 4861 4862 static void __mem_cgroup_free(struct mem_cgroup *mem) 4863 { 4864 int node; 4865 4866 mem_cgroup_remove_from_trees(mem); 4867 free_css_id(&mem_cgroup_subsys, &mem->css); 4868 4869 for_each_node_state(node, N_POSSIBLE) 4870 free_mem_cgroup_per_zone_info(mem, node); 4871 4872 free_percpu(mem->stat); 4873 if (sizeof(struct mem_cgroup) < PAGE_SIZE) 4874 kfree(mem); 4875 else 4876 vfree(mem); 4877 } 4878 4879 static void mem_cgroup_get(struct mem_cgroup *mem) 4880 { 4881 atomic_inc(&mem->refcnt); 4882 } 4883 4884 static void __mem_cgroup_put(struct mem_cgroup *mem, int count) 4885 { 4886 if (atomic_sub_and_test(count, &mem->refcnt)) { 4887 struct mem_cgroup *parent = parent_mem_cgroup(mem); 4888 __mem_cgroup_free(mem); 4889 if (parent) 4890 mem_cgroup_put(parent); 4891 } 4892 } 4893 4894 static void mem_cgroup_put(struct mem_cgroup *mem) 4895 { 4896 __mem_cgroup_put(mem, 1); 4897 } 4898 4899 /* 4900 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled. 4901 */ 4902 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem) 4903 { 4904 if (!mem->res.parent) 4905 return NULL; 4906 return mem_cgroup_from_res_counter(mem->res.parent, res); 4907 } 4908 4909 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP 4910 static void __init enable_swap_cgroup(void) 4911 { 4912 if (!mem_cgroup_disabled() && really_do_swap_account) 4913 do_swap_account = 1; 4914 } 4915 #else 4916 static void __init enable_swap_cgroup(void) 4917 { 4918 } 4919 #endif 4920 4921 static int mem_cgroup_soft_limit_tree_init(void) 4922 { 4923 struct mem_cgroup_tree_per_node *rtpn; 4924 struct mem_cgroup_tree_per_zone *rtpz; 4925 int tmp, node, zone; 4926 4927 for_each_node_state(node, N_POSSIBLE) { 4928 tmp = node; 4929 if (!node_state(node, N_NORMAL_MEMORY)) 4930 tmp = -1; 4931 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp); 4932 if (!rtpn) 4933 return 1; 4934 4935 soft_limit_tree.rb_tree_per_node[node] = rtpn; 4936 4937 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 4938 rtpz = &rtpn->rb_tree_per_zone[zone]; 4939 rtpz->rb_root = RB_ROOT; 4940 spin_lock_init(&rtpz->lock); 4941 } 4942 } 4943 return 0; 4944 } 4945 4946 static struct cgroup_subsys_state * __ref 4947 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont) 4948 { 4949 struct mem_cgroup *mem, *parent; 4950 long error = -ENOMEM; 4951 int node; 4952 4953 mem = mem_cgroup_alloc(); 4954 if (!mem) 4955 return ERR_PTR(error); 4956 4957 for_each_node_state(node, N_POSSIBLE) 4958 if (alloc_mem_cgroup_per_zone_info(mem, node)) 4959 goto free_out; 4960 4961 /* root ? */ 4962 if (cont->parent == NULL) { 4963 int cpu; 4964 enable_swap_cgroup(); 4965 parent = NULL; 4966 root_mem_cgroup = mem; 4967 if (mem_cgroup_soft_limit_tree_init()) 4968 goto free_out; 4969 for_each_possible_cpu(cpu) { 4970 struct memcg_stock_pcp *stock = 4971 &per_cpu(memcg_stock, cpu); 4972 INIT_WORK(&stock->work, drain_local_stock); 4973 } 4974 hotcpu_notifier(memcg_cpu_hotplug_callback, 0); 4975 } else { 4976 parent = mem_cgroup_from_cont(cont->parent); 4977 mem->use_hierarchy = parent->use_hierarchy; 4978 mem->oom_kill_disable = parent->oom_kill_disable; 4979 } 4980 4981 if (parent && parent->use_hierarchy) { 4982 res_counter_init(&mem->res, &parent->res); 4983 res_counter_init(&mem->memsw, &parent->memsw); 4984 /* 4985 * We increment refcnt of the parent to ensure that we can 4986 * safely access it on res_counter_charge/uncharge. 4987 * This refcnt will be decremented when freeing this 4988 * mem_cgroup(see mem_cgroup_put). 4989 */ 4990 mem_cgroup_get(parent); 4991 } else { 4992 res_counter_init(&mem->res, NULL); 4993 res_counter_init(&mem->memsw, NULL); 4994 } 4995 mem->last_scanned_child = 0; 4996 mem->last_scanned_node = MAX_NUMNODES; 4997 INIT_LIST_HEAD(&mem->oom_notify); 4998 4999 if (parent) 5000 mem->swappiness = get_swappiness(parent); 5001 atomic_set(&mem->refcnt, 1); 5002 mem->move_charge_at_immigrate = 0; 5003 mutex_init(&mem->thresholds_lock); 5004 return &mem->css; 5005 free_out: 5006 __mem_cgroup_free(mem); 5007 root_mem_cgroup = NULL; 5008 return ERR_PTR(error); 5009 } 5010 5011 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss, 5012 struct cgroup *cont) 5013 { 5014 struct mem_cgroup *mem = mem_cgroup_from_cont(cont); 5015 5016 return mem_cgroup_force_empty(mem, false); 5017 } 5018 5019 static void mem_cgroup_destroy(struct cgroup_subsys *ss, 5020 struct cgroup *cont) 5021 { 5022 struct mem_cgroup *mem = mem_cgroup_from_cont(cont); 5023 5024 mem_cgroup_put(mem); 5025 } 5026 5027 static int mem_cgroup_populate(struct cgroup_subsys *ss, 5028 struct cgroup *cont) 5029 { 5030 int ret; 5031 5032 ret = cgroup_add_files(cont, ss, mem_cgroup_files, 5033 ARRAY_SIZE(mem_cgroup_files)); 5034 5035 if (!ret) 5036 ret = register_memsw_files(cont, ss); 5037 return ret; 5038 } 5039 5040 #ifdef CONFIG_MMU 5041 /* Handlers for move charge at task migration. */ 5042 #define PRECHARGE_COUNT_AT_ONCE 256 5043 static int mem_cgroup_do_precharge(unsigned long count) 5044 { 5045 int ret = 0; 5046 int batch_count = PRECHARGE_COUNT_AT_ONCE; 5047 struct mem_cgroup *mem = mc.to; 5048 5049 if (mem_cgroup_is_root(mem)) { 5050 mc.precharge += count; 5051 /* we don't need css_get for root */ 5052 return ret; 5053 } 5054 /* try to charge at once */ 5055 if (count > 1) { 5056 struct res_counter *dummy; 5057 /* 5058 * "mem" cannot be under rmdir() because we've already checked 5059 * by cgroup_lock_live_cgroup() that it is not removed and we 5060 * are still under the same cgroup_mutex. So we can postpone 5061 * css_get(). 5062 */ 5063 if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy)) 5064 goto one_by_one; 5065 if (do_swap_account && res_counter_charge(&mem->memsw, 5066 PAGE_SIZE * count, &dummy)) { 5067 res_counter_uncharge(&mem->res, PAGE_SIZE * count); 5068 goto one_by_one; 5069 } 5070 mc.precharge += count; 5071 return ret; 5072 } 5073 one_by_one: 5074 /* fall back to one by one charge */ 5075 while (count--) { 5076 if (signal_pending(current)) { 5077 ret = -EINTR; 5078 break; 5079 } 5080 if (!batch_count--) { 5081 batch_count = PRECHARGE_COUNT_AT_ONCE; 5082 cond_resched(); 5083 } 5084 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, 1, &mem, false); 5085 if (ret || !mem) 5086 /* mem_cgroup_clear_mc() will do uncharge later */ 5087 return -ENOMEM; 5088 mc.precharge++; 5089 } 5090 return ret; 5091 } 5092 5093 /** 5094 * is_target_pte_for_mc - check a pte whether it is valid for move charge 5095 * @vma: the vma the pte to be checked belongs 5096 * @addr: the address corresponding to the pte to be checked 5097 * @ptent: the pte to be checked 5098 * @target: the pointer the target page or swap ent will be stored(can be NULL) 5099 * 5100 * Returns 5101 * 0(MC_TARGET_NONE): if the pte is not a target for move charge. 5102 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for 5103 * move charge. if @target is not NULL, the page is stored in target->page 5104 * with extra refcnt got(Callers should handle it). 5105 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a 5106 * target for charge migration. if @target is not NULL, the entry is stored 5107 * in target->ent. 5108 * 5109 * Called with pte lock held. 5110 */ 5111 union mc_target { 5112 struct page *page; 5113 swp_entry_t ent; 5114 }; 5115 5116 enum mc_target_type { 5117 MC_TARGET_NONE, /* not used */ 5118 MC_TARGET_PAGE, 5119 MC_TARGET_SWAP, 5120 }; 5121 5122 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 5123 unsigned long addr, pte_t ptent) 5124 { 5125 struct page *page = vm_normal_page(vma, addr, ptent); 5126 5127 if (!page || !page_mapped(page)) 5128 return NULL; 5129 if (PageAnon(page)) { 5130 /* we don't move shared anon */ 5131 if (!move_anon() || page_mapcount(page) > 2) 5132 return NULL; 5133 } else if (!move_file()) 5134 /* we ignore mapcount for file pages */ 5135 return NULL; 5136 if (!get_page_unless_zero(page)) 5137 return NULL; 5138 5139 return page; 5140 } 5141 5142 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5143 unsigned long addr, pte_t ptent, swp_entry_t *entry) 5144 { 5145 int usage_count; 5146 struct page *page = NULL; 5147 swp_entry_t ent = pte_to_swp_entry(ptent); 5148 5149 if (!move_anon() || non_swap_entry(ent)) 5150 return NULL; 5151 usage_count = mem_cgroup_count_swap_user(ent, &page); 5152 if (usage_count > 1) { /* we don't move shared anon */ 5153 if (page) 5154 put_page(page); 5155 return NULL; 5156 } 5157 if (do_swap_account) 5158 entry->val = ent.val; 5159 5160 return page; 5161 } 5162 5163 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 5164 unsigned long addr, pte_t ptent, swp_entry_t *entry) 5165 { 5166 struct page *page = NULL; 5167 struct inode *inode; 5168 struct address_space *mapping; 5169 pgoff_t pgoff; 5170 5171 if (!vma->vm_file) /* anonymous vma */ 5172 return NULL; 5173 if (!move_file()) 5174 return NULL; 5175 5176 inode = vma->vm_file->f_path.dentry->d_inode; 5177 mapping = vma->vm_file->f_mapping; 5178 if (pte_none(ptent)) 5179 pgoff = linear_page_index(vma, addr); 5180 else /* pte_file(ptent) is true */ 5181 pgoff = pte_to_pgoff(ptent); 5182 5183 /* page is moved even if it's not RSS of this task(page-faulted). */ 5184 if (!mapping_cap_swap_backed(mapping)) { /* normal file */ 5185 page = find_get_page(mapping, pgoff); 5186 } else { /* shmem/tmpfs file. we should take account of swap too. */ 5187 swp_entry_t ent; 5188 mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent); 5189 if (do_swap_account) 5190 entry->val = ent.val; 5191 } 5192 5193 return page; 5194 } 5195 5196 static int is_target_pte_for_mc(struct vm_area_struct *vma, 5197 unsigned long addr, pte_t ptent, union mc_target *target) 5198 { 5199 struct page *page = NULL; 5200 struct page_cgroup *pc; 5201 int ret = 0; 5202 swp_entry_t ent = { .val = 0 }; 5203 5204 if (pte_present(ptent)) 5205 page = mc_handle_present_pte(vma, addr, ptent); 5206 else if (is_swap_pte(ptent)) 5207 page = mc_handle_swap_pte(vma, addr, ptent, &ent); 5208 else if (pte_none(ptent) || pte_file(ptent)) 5209 page = mc_handle_file_pte(vma, addr, ptent, &ent); 5210 5211 if (!page && !ent.val) 5212 return 0; 5213 if (page) { 5214 pc = lookup_page_cgroup(page); 5215 /* 5216 * Do only loose check w/o page_cgroup lock. 5217 * mem_cgroup_move_account() checks the pc is valid or not under 5218 * the lock. 5219 */ 5220 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) { 5221 ret = MC_TARGET_PAGE; 5222 if (target) 5223 target->page = page; 5224 } 5225 if (!ret || !target) 5226 put_page(page); 5227 } 5228 /* There is a swap entry and a page doesn't exist or isn't charged */ 5229 if (ent.val && !ret && 5230 css_id(&mc.from->css) == lookup_swap_cgroup(ent)) { 5231 ret = MC_TARGET_SWAP; 5232 if (target) 5233 target->ent = ent; 5234 } 5235 return ret; 5236 } 5237 5238 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 5239 unsigned long addr, unsigned long end, 5240 struct mm_walk *walk) 5241 { 5242 struct vm_area_struct *vma = walk->private; 5243 pte_t *pte; 5244 spinlock_t *ptl; 5245 5246 split_huge_page_pmd(walk->mm, pmd); 5247 5248 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 5249 for (; addr != end; pte++, addr += PAGE_SIZE) 5250 if (is_target_pte_for_mc(vma, addr, *pte, NULL)) 5251 mc.precharge++; /* increment precharge temporarily */ 5252 pte_unmap_unlock(pte - 1, ptl); 5253 cond_resched(); 5254 5255 return 0; 5256 } 5257 5258 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 5259 { 5260 unsigned long precharge; 5261 struct vm_area_struct *vma; 5262 5263 down_read(&mm->mmap_sem); 5264 for (vma = mm->mmap; vma; vma = vma->vm_next) { 5265 struct mm_walk mem_cgroup_count_precharge_walk = { 5266 .pmd_entry = mem_cgroup_count_precharge_pte_range, 5267 .mm = mm, 5268 .private = vma, 5269 }; 5270 if (is_vm_hugetlb_page(vma)) 5271 continue; 5272 walk_page_range(vma->vm_start, vma->vm_end, 5273 &mem_cgroup_count_precharge_walk); 5274 } 5275 up_read(&mm->mmap_sem); 5276 5277 precharge = mc.precharge; 5278 mc.precharge = 0; 5279 5280 return precharge; 5281 } 5282 5283 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 5284 { 5285 unsigned long precharge = mem_cgroup_count_precharge(mm); 5286 5287 VM_BUG_ON(mc.moving_task); 5288 mc.moving_task = current; 5289 return mem_cgroup_do_precharge(precharge); 5290 } 5291 5292 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 5293 static void __mem_cgroup_clear_mc(void) 5294 { 5295 struct mem_cgroup *from = mc.from; 5296 struct mem_cgroup *to = mc.to; 5297 5298 /* we must uncharge all the leftover precharges from mc.to */ 5299 if (mc.precharge) { 5300 __mem_cgroup_cancel_charge(mc.to, mc.precharge); 5301 mc.precharge = 0; 5302 } 5303 /* 5304 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 5305 * we must uncharge here. 5306 */ 5307 if (mc.moved_charge) { 5308 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge); 5309 mc.moved_charge = 0; 5310 } 5311 /* we must fixup refcnts and charges */ 5312 if (mc.moved_swap) { 5313 /* uncharge swap account from the old cgroup */ 5314 if (!mem_cgroup_is_root(mc.from)) 5315 res_counter_uncharge(&mc.from->memsw, 5316 PAGE_SIZE * mc.moved_swap); 5317 __mem_cgroup_put(mc.from, mc.moved_swap); 5318 5319 if (!mem_cgroup_is_root(mc.to)) { 5320 /* 5321 * we charged both to->res and to->memsw, so we should 5322 * uncharge to->res. 5323 */ 5324 res_counter_uncharge(&mc.to->res, 5325 PAGE_SIZE * mc.moved_swap); 5326 } 5327 /* we've already done mem_cgroup_get(mc.to) */ 5328 mc.moved_swap = 0; 5329 } 5330 memcg_oom_recover(from); 5331 memcg_oom_recover(to); 5332 wake_up_all(&mc.waitq); 5333 } 5334 5335 static void mem_cgroup_clear_mc(void) 5336 { 5337 struct mem_cgroup *from = mc.from; 5338 5339 /* 5340 * we must clear moving_task before waking up waiters at the end of 5341 * task migration. 5342 */ 5343 mc.moving_task = NULL; 5344 __mem_cgroup_clear_mc(); 5345 spin_lock(&mc.lock); 5346 mc.from = NULL; 5347 mc.to = NULL; 5348 spin_unlock(&mc.lock); 5349 mem_cgroup_end_move(from); 5350 } 5351 5352 static int mem_cgroup_can_attach(struct cgroup_subsys *ss, 5353 struct cgroup *cgroup, 5354 struct task_struct *p) 5355 { 5356 int ret = 0; 5357 struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup); 5358 5359 if (mem->move_charge_at_immigrate) { 5360 struct mm_struct *mm; 5361 struct mem_cgroup *from = mem_cgroup_from_task(p); 5362 5363 VM_BUG_ON(from == mem); 5364 5365 mm = get_task_mm(p); 5366 if (!mm) 5367 return 0; 5368 /* We move charges only when we move a owner of the mm */ 5369 if (mm->owner == p) { 5370 VM_BUG_ON(mc.from); 5371 VM_BUG_ON(mc.to); 5372 VM_BUG_ON(mc.precharge); 5373 VM_BUG_ON(mc.moved_charge); 5374 VM_BUG_ON(mc.moved_swap); 5375 mem_cgroup_start_move(from); 5376 spin_lock(&mc.lock); 5377 mc.from = from; 5378 mc.to = mem; 5379 spin_unlock(&mc.lock); 5380 /* We set mc.moving_task later */ 5381 5382 ret = mem_cgroup_precharge_mc(mm); 5383 if (ret) 5384 mem_cgroup_clear_mc(); 5385 } 5386 mmput(mm); 5387 } 5388 return ret; 5389 } 5390 5391 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss, 5392 struct cgroup *cgroup, 5393 struct task_struct *p) 5394 { 5395 mem_cgroup_clear_mc(); 5396 } 5397 5398 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 5399 unsigned long addr, unsigned long end, 5400 struct mm_walk *walk) 5401 { 5402 int ret = 0; 5403 struct vm_area_struct *vma = walk->private; 5404 pte_t *pte; 5405 spinlock_t *ptl; 5406 5407 split_huge_page_pmd(walk->mm, pmd); 5408 retry: 5409 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 5410 for (; addr != end; addr += PAGE_SIZE) { 5411 pte_t ptent = *(pte++); 5412 union mc_target target; 5413 int type; 5414 struct page *page; 5415 struct page_cgroup *pc; 5416 swp_entry_t ent; 5417 5418 if (!mc.precharge) 5419 break; 5420 5421 type = is_target_pte_for_mc(vma, addr, ptent, &target); 5422 switch (type) { 5423 case MC_TARGET_PAGE: 5424 page = target.page; 5425 if (isolate_lru_page(page)) 5426 goto put; 5427 pc = lookup_page_cgroup(page); 5428 if (!mem_cgroup_move_account(page, 1, pc, 5429 mc.from, mc.to, false)) { 5430 mc.precharge--; 5431 /* we uncharge from mc.from later. */ 5432 mc.moved_charge++; 5433 } 5434 putback_lru_page(page); 5435 put: /* is_target_pte_for_mc() gets the page */ 5436 put_page(page); 5437 break; 5438 case MC_TARGET_SWAP: 5439 ent = target.ent; 5440 if (!mem_cgroup_move_swap_account(ent, 5441 mc.from, mc.to, false)) { 5442 mc.precharge--; 5443 /* we fixup refcnts and charges later. */ 5444 mc.moved_swap++; 5445 } 5446 break; 5447 default: 5448 break; 5449 } 5450 } 5451 pte_unmap_unlock(pte - 1, ptl); 5452 cond_resched(); 5453 5454 if (addr != end) { 5455 /* 5456 * We have consumed all precharges we got in can_attach(). 5457 * We try charge one by one, but don't do any additional 5458 * charges to mc.to if we have failed in charge once in attach() 5459 * phase. 5460 */ 5461 ret = mem_cgroup_do_precharge(1); 5462 if (!ret) 5463 goto retry; 5464 } 5465 5466 return ret; 5467 } 5468 5469 static void mem_cgroup_move_charge(struct mm_struct *mm) 5470 { 5471 struct vm_area_struct *vma; 5472 5473 lru_add_drain_all(); 5474 retry: 5475 if (unlikely(!down_read_trylock(&mm->mmap_sem))) { 5476 /* 5477 * Someone who are holding the mmap_sem might be waiting in 5478 * waitq. So we cancel all extra charges, wake up all waiters, 5479 * and retry. Because we cancel precharges, we might not be able 5480 * to move enough charges, but moving charge is a best-effort 5481 * feature anyway, so it wouldn't be a big problem. 5482 */ 5483 __mem_cgroup_clear_mc(); 5484 cond_resched(); 5485 goto retry; 5486 } 5487 for (vma = mm->mmap; vma; vma = vma->vm_next) { 5488 int ret; 5489 struct mm_walk mem_cgroup_move_charge_walk = { 5490 .pmd_entry = mem_cgroup_move_charge_pte_range, 5491 .mm = mm, 5492 .private = vma, 5493 }; 5494 if (is_vm_hugetlb_page(vma)) 5495 continue; 5496 ret = walk_page_range(vma->vm_start, vma->vm_end, 5497 &mem_cgroup_move_charge_walk); 5498 if (ret) 5499 /* 5500 * means we have consumed all precharges and failed in 5501 * doing additional charge. Just abandon here. 5502 */ 5503 break; 5504 } 5505 up_read(&mm->mmap_sem); 5506 } 5507 5508 static void mem_cgroup_move_task(struct cgroup_subsys *ss, 5509 struct cgroup *cont, 5510 struct cgroup *old_cont, 5511 struct task_struct *p) 5512 { 5513 struct mm_struct *mm = get_task_mm(p); 5514 5515 if (mm) { 5516 if (mc.to) 5517 mem_cgroup_move_charge(mm); 5518 put_swap_token(mm); 5519 mmput(mm); 5520 } 5521 if (mc.to) 5522 mem_cgroup_clear_mc(); 5523 } 5524 #else /* !CONFIG_MMU */ 5525 static int mem_cgroup_can_attach(struct cgroup_subsys *ss, 5526 struct cgroup *cgroup, 5527 struct task_struct *p) 5528 { 5529 return 0; 5530 } 5531 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss, 5532 struct cgroup *cgroup, 5533 struct task_struct *p) 5534 { 5535 } 5536 static void mem_cgroup_move_task(struct cgroup_subsys *ss, 5537 struct cgroup *cont, 5538 struct cgroup *old_cont, 5539 struct task_struct *p) 5540 { 5541 } 5542 #endif 5543 5544 struct cgroup_subsys mem_cgroup_subsys = { 5545 .name = "memory", 5546 .subsys_id = mem_cgroup_subsys_id, 5547 .create = mem_cgroup_create, 5548 .pre_destroy = mem_cgroup_pre_destroy, 5549 .destroy = mem_cgroup_destroy, 5550 .populate = mem_cgroup_populate, 5551 .can_attach = mem_cgroup_can_attach, 5552 .cancel_attach = mem_cgroup_cancel_attach, 5553 .attach = mem_cgroup_move_task, 5554 .early_init = 0, 5555 .use_id = 1, 5556 }; 5557 5558 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP 5559 static int __init enable_swap_account(char *s) 5560 { 5561 /* consider enabled if no parameter or 1 is given */ 5562 if (!strcmp(s, "1")) 5563 really_do_swap_account = 1; 5564 else if (!strcmp(s, "0")) 5565 really_do_swap_account = 0; 5566 return 1; 5567 } 5568 __setup("swapaccount=", enable_swap_account); 5569 5570 #endif 5571