1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* memcontrol.c - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <xemul@openvz.org> 9 * 10 * Memory thresholds 11 * Copyright (C) 2009 Nokia Corporation 12 * Author: Kirill A. Shutemov 13 * 14 * Kernel Memory Controller 15 * Copyright (C) 2012 Parallels Inc. and Google Inc. 16 * Authors: Glauber Costa and Suleiman Souhlal 17 * 18 * Native page reclaim 19 * Charge lifetime sanitation 20 * Lockless page tracking & accounting 21 * Unified hierarchy configuration model 22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner 23 */ 24 25 #include <linux/page_counter.h> 26 #include <linux/memcontrol.h> 27 #include <linux/cgroup.h> 28 #include <linux/pagewalk.h> 29 #include <linux/sched/mm.h> 30 #include <linux/shmem_fs.h> 31 #include <linux/hugetlb.h> 32 #include <linux/pagemap.h> 33 #include <linux/vm_event_item.h> 34 #include <linux/smp.h> 35 #include <linux/page-flags.h> 36 #include <linux/backing-dev.h> 37 #include <linux/bit_spinlock.h> 38 #include <linux/rcupdate.h> 39 #include <linux/limits.h> 40 #include <linux/export.h> 41 #include <linux/mutex.h> 42 #include <linux/rbtree.h> 43 #include <linux/slab.h> 44 #include <linux/swap.h> 45 #include <linux/swapops.h> 46 #include <linux/spinlock.h> 47 #include <linux/eventfd.h> 48 #include <linux/poll.h> 49 #include <linux/sort.h> 50 #include <linux/fs.h> 51 #include <linux/seq_file.h> 52 #include <linux/vmpressure.h> 53 #include <linux/mm_inline.h> 54 #include <linux/swap_cgroup.h> 55 #include <linux/cpu.h> 56 #include <linux/oom.h> 57 #include <linux/lockdep.h> 58 #include <linux/file.h> 59 #include <linux/tracehook.h> 60 #include <linux/psi.h> 61 #include <linux/seq_buf.h> 62 #include "internal.h" 63 #include <net/sock.h> 64 #include <net/ip.h> 65 #include "slab.h" 66 67 #include <linux/uaccess.h> 68 69 #include <trace/events/vmscan.h> 70 71 struct cgroup_subsys memory_cgrp_subsys __read_mostly; 72 EXPORT_SYMBOL(memory_cgrp_subsys); 73 74 struct mem_cgroup *root_mem_cgroup __read_mostly; 75 76 #define MEM_CGROUP_RECLAIM_RETRIES 5 77 78 /* Socket memory accounting disabled? */ 79 static bool cgroup_memory_nosocket; 80 81 /* Kernel memory accounting disabled? */ 82 static bool cgroup_memory_nokmem; 83 84 /* Whether the swap controller is active */ 85 #ifdef CONFIG_MEMCG_SWAP 86 bool cgroup_memory_noswap __read_mostly; 87 #else 88 #define cgroup_memory_noswap 1 89 #endif 90 91 #ifdef CONFIG_CGROUP_WRITEBACK 92 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq); 93 #endif 94 95 /* Whether legacy memory+swap accounting is active */ 96 static bool do_memsw_account(void) 97 { 98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap; 99 } 100 101 #define THRESHOLDS_EVENTS_TARGET 128 102 #define SOFTLIMIT_EVENTS_TARGET 1024 103 104 /* 105 * Cgroups above their limits are maintained in a RB-Tree, independent of 106 * their hierarchy representation 107 */ 108 109 struct mem_cgroup_tree_per_node { 110 struct rb_root rb_root; 111 struct rb_node *rb_rightmost; 112 spinlock_t lock; 113 }; 114 115 struct mem_cgroup_tree { 116 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 117 }; 118 119 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 120 121 /* for OOM */ 122 struct mem_cgroup_eventfd_list { 123 struct list_head list; 124 struct eventfd_ctx *eventfd; 125 }; 126 127 /* 128 * cgroup_event represents events which userspace want to receive. 129 */ 130 struct mem_cgroup_event { 131 /* 132 * memcg which the event belongs to. 133 */ 134 struct mem_cgroup *memcg; 135 /* 136 * eventfd to signal userspace about the event. 137 */ 138 struct eventfd_ctx *eventfd; 139 /* 140 * Each of these stored in a list by the cgroup. 141 */ 142 struct list_head list; 143 /* 144 * register_event() callback will be used to add new userspace 145 * waiter for changes related to this event. Use eventfd_signal() 146 * on eventfd to send notification to userspace. 147 */ 148 int (*register_event)(struct mem_cgroup *memcg, 149 struct eventfd_ctx *eventfd, const char *args); 150 /* 151 * unregister_event() callback will be called when userspace closes 152 * the eventfd or on cgroup removing. This callback must be set, 153 * if you want provide notification functionality. 154 */ 155 void (*unregister_event)(struct mem_cgroup *memcg, 156 struct eventfd_ctx *eventfd); 157 /* 158 * All fields below needed to unregister event when 159 * userspace closes eventfd. 160 */ 161 poll_table pt; 162 wait_queue_head_t *wqh; 163 wait_queue_entry_t wait; 164 struct work_struct remove; 165 }; 166 167 static void mem_cgroup_threshold(struct mem_cgroup *memcg); 168 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); 169 170 /* Stuffs for move charges at task migration. */ 171 /* 172 * Types of charges to be moved. 173 */ 174 #define MOVE_ANON 0x1U 175 #define MOVE_FILE 0x2U 176 #define MOVE_MASK (MOVE_ANON | MOVE_FILE) 177 178 /* "mc" and its members are protected by cgroup_mutex */ 179 static struct move_charge_struct { 180 spinlock_t lock; /* for from, to */ 181 struct mm_struct *mm; 182 struct mem_cgroup *from; 183 struct mem_cgroup *to; 184 unsigned long flags; 185 unsigned long precharge; 186 unsigned long moved_charge; 187 unsigned long moved_swap; 188 struct task_struct *moving_task; /* a task moving charges */ 189 wait_queue_head_t waitq; /* a waitq for other context */ 190 } mc = { 191 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 192 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 193 }; 194 195 /* 196 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft 197 * limit reclaim to prevent infinite loops, if they ever occur. 198 */ 199 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 200 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 201 202 enum charge_type { 203 MEM_CGROUP_CHARGE_TYPE_CACHE = 0, 204 MEM_CGROUP_CHARGE_TYPE_ANON, 205 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */ 206 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */ 207 NR_CHARGE_TYPE, 208 }; 209 210 /* for encoding cft->private value on file */ 211 enum res_type { 212 _MEM, 213 _MEMSWAP, 214 _OOM_TYPE, 215 _KMEM, 216 _TCP, 217 }; 218 219 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) 220 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) 221 #define MEMFILE_ATTR(val) ((val) & 0xffff) 222 /* Used for OOM nofiier */ 223 #define OOM_CONTROL (0) 224 225 /* 226 * Iteration constructs for visiting all cgroups (under a tree). If 227 * loops are exited prematurely (break), mem_cgroup_iter_break() must 228 * be used for reference counting. 229 */ 230 #define for_each_mem_cgroup_tree(iter, root) \ 231 for (iter = mem_cgroup_iter(root, NULL, NULL); \ 232 iter != NULL; \ 233 iter = mem_cgroup_iter(root, iter, NULL)) 234 235 #define for_each_mem_cgroup(iter) \ 236 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ 237 iter != NULL; \ 238 iter = mem_cgroup_iter(NULL, iter, NULL)) 239 240 static inline bool should_force_charge(void) 241 { 242 return tsk_is_oom_victim(current) || fatal_signal_pending(current) || 243 (current->flags & PF_EXITING); 244 } 245 246 /* Some nice accessors for the vmpressure. */ 247 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 248 { 249 if (!memcg) 250 memcg = root_mem_cgroup; 251 return &memcg->vmpressure; 252 } 253 254 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr) 255 { 256 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css; 257 } 258 259 #ifdef CONFIG_MEMCG_KMEM 260 /* 261 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches. 262 * The main reason for not using cgroup id for this: 263 * this works better in sparse environments, where we have a lot of memcgs, 264 * but only a few kmem-limited. Or also, if we have, for instance, 200 265 * memcgs, and none but the 200th is kmem-limited, we'd have to have a 266 * 200 entry array for that. 267 * 268 * The current size of the caches array is stored in memcg_nr_cache_ids. It 269 * will double each time we have to increase it. 270 */ 271 static DEFINE_IDA(memcg_cache_ida); 272 int memcg_nr_cache_ids; 273 274 /* Protects memcg_nr_cache_ids */ 275 static DECLARE_RWSEM(memcg_cache_ids_sem); 276 277 void memcg_get_cache_ids(void) 278 { 279 down_read(&memcg_cache_ids_sem); 280 } 281 282 void memcg_put_cache_ids(void) 283 { 284 up_read(&memcg_cache_ids_sem); 285 } 286 287 /* 288 * MIN_SIZE is different than 1, because we would like to avoid going through 289 * the alloc/free process all the time. In a small machine, 4 kmem-limited 290 * cgroups is a reasonable guess. In the future, it could be a parameter or 291 * tunable, but that is strictly not necessary. 292 * 293 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get 294 * this constant directly from cgroup, but it is understandable that this is 295 * better kept as an internal representation in cgroup.c. In any case, the 296 * cgrp_id space is not getting any smaller, and we don't have to necessarily 297 * increase ours as well if it increases. 298 */ 299 #define MEMCG_CACHES_MIN_SIZE 4 300 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX 301 302 /* 303 * A lot of the calls to the cache allocation functions are expected to be 304 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are 305 * conditional to this static branch, we'll have to allow modules that does 306 * kmem_cache_alloc and the such to see this symbol as well 307 */ 308 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key); 309 EXPORT_SYMBOL(memcg_kmem_enabled_key); 310 311 struct workqueue_struct *memcg_kmem_cache_wq; 312 #endif 313 314 static int memcg_shrinker_map_size; 315 static DEFINE_MUTEX(memcg_shrinker_map_mutex); 316 317 static void memcg_free_shrinker_map_rcu(struct rcu_head *head) 318 { 319 kvfree(container_of(head, struct memcg_shrinker_map, rcu)); 320 } 321 322 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg, 323 int size, int old_size) 324 { 325 struct memcg_shrinker_map *new, *old; 326 int nid; 327 328 lockdep_assert_held(&memcg_shrinker_map_mutex); 329 330 for_each_node(nid) { 331 old = rcu_dereference_protected( 332 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true); 333 /* Not yet online memcg */ 334 if (!old) 335 return 0; 336 337 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid); 338 if (!new) 339 return -ENOMEM; 340 341 /* Set all old bits, clear all new bits */ 342 memset(new->map, (int)0xff, old_size); 343 memset((void *)new->map + old_size, 0, size - old_size); 344 345 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new); 346 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu); 347 } 348 349 return 0; 350 } 351 352 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) 353 { 354 struct mem_cgroup_per_node *pn; 355 struct memcg_shrinker_map *map; 356 int nid; 357 358 if (mem_cgroup_is_root(memcg)) 359 return; 360 361 for_each_node(nid) { 362 pn = mem_cgroup_nodeinfo(memcg, nid); 363 map = rcu_dereference_protected(pn->shrinker_map, true); 364 if (map) 365 kvfree(map); 366 rcu_assign_pointer(pn->shrinker_map, NULL); 367 } 368 } 369 370 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg) 371 { 372 struct memcg_shrinker_map *map; 373 int nid, size, ret = 0; 374 375 if (mem_cgroup_is_root(memcg)) 376 return 0; 377 378 mutex_lock(&memcg_shrinker_map_mutex); 379 size = memcg_shrinker_map_size; 380 for_each_node(nid) { 381 map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid); 382 if (!map) { 383 memcg_free_shrinker_maps(memcg); 384 ret = -ENOMEM; 385 break; 386 } 387 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map); 388 } 389 mutex_unlock(&memcg_shrinker_map_mutex); 390 391 return ret; 392 } 393 394 int memcg_expand_shrinker_maps(int new_id) 395 { 396 int size, old_size, ret = 0; 397 struct mem_cgroup *memcg; 398 399 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long); 400 old_size = memcg_shrinker_map_size; 401 if (size <= old_size) 402 return 0; 403 404 mutex_lock(&memcg_shrinker_map_mutex); 405 if (!root_mem_cgroup) 406 goto unlock; 407 408 for_each_mem_cgroup(memcg) { 409 if (mem_cgroup_is_root(memcg)) 410 continue; 411 ret = memcg_expand_one_shrinker_map(memcg, size, old_size); 412 if (ret) { 413 mem_cgroup_iter_break(NULL, memcg); 414 goto unlock; 415 } 416 } 417 unlock: 418 if (!ret) 419 memcg_shrinker_map_size = size; 420 mutex_unlock(&memcg_shrinker_map_mutex); 421 return ret; 422 } 423 424 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id) 425 { 426 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) { 427 struct memcg_shrinker_map *map; 428 429 rcu_read_lock(); 430 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map); 431 /* Pairs with smp mb in shrink_slab() */ 432 smp_mb__before_atomic(); 433 set_bit(shrinker_id, map->map); 434 rcu_read_unlock(); 435 } 436 } 437 438 /** 439 * mem_cgroup_css_from_page - css of the memcg associated with a page 440 * @page: page of interest 441 * 442 * If memcg is bound to the default hierarchy, css of the memcg associated 443 * with @page is returned. The returned css remains associated with @page 444 * until it is released. 445 * 446 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup 447 * is returned. 448 */ 449 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page) 450 { 451 struct mem_cgroup *memcg; 452 453 memcg = page->mem_cgroup; 454 455 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 456 memcg = root_mem_cgroup; 457 458 return &memcg->css; 459 } 460 461 /** 462 * page_cgroup_ino - return inode number of the memcg a page is charged to 463 * @page: the page 464 * 465 * Look up the closest online ancestor of the memory cgroup @page is charged to 466 * and return its inode number or 0 if @page is not charged to any cgroup. It 467 * is safe to call this function without holding a reference to @page. 468 * 469 * Note, this function is inherently racy, because there is nothing to prevent 470 * the cgroup inode from getting torn down and potentially reallocated a moment 471 * after page_cgroup_ino() returns, so it only should be used by callers that 472 * do not care (such as procfs interfaces). 473 */ 474 ino_t page_cgroup_ino(struct page *page) 475 { 476 struct mem_cgroup *memcg; 477 unsigned long ino = 0; 478 479 rcu_read_lock(); 480 if (PageSlab(page) && !PageTail(page)) 481 memcg = memcg_from_slab_page(page); 482 else 483 memcg = READ_ONCE(page->mem_cgroup); 484 while (memcg && !(memcg->css.flags & CSS_ONLINE)) 485 memcg = parent_mem_cgroup(memcg); 486 if (memcg) 487 ino = cgroup_ino(memcg->css.cgroup); 488 rcu_read_unlock(); 489 return ino; 490 } 491 492 static struct mem_cgroup_per_node * 493 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page) 494 { 495 int nid = page_to_nid(page); 496 497 return memcg->nodeinfo[nid]; 498 } 499 500 static struct mem_cgroup_tree_per_node * 501 soft_limit_tree_node(int nid) 502 { 503 return soft_limit_tree.rb_tree_per_node[nid]; 504 } 505 506 static struct mem_cgroup_tree_per_node * 507 soft_limit_tree_from_page(struct page *page) 508 { 509 int nid = page_to_nid(page); 510 511 return soft_limit_tree.rb_tree_per_node[nid]; 512 } 513 514 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz, 515 struct mem_cgroup_tree_per_node *mctz, 516 unsigned long new_usage_in_excess) 517 { 518 struct rb_node **p = &mctz->rb_root.rb_node; 519 struct rb_node *parent = NULL; 520 struct mem_cgroup_per_node *mz_node; 521 bool rightmost = true; 522 523 if (mz->on_tree) 524 return; 525 526 mz->usage_in_excess = new_usage_in_excess; 527 if (!mz->usage_in_excess) 528 return; 529 while (*p) { 530 parent = *p; 531 mz_node = rb_entry(parent, struct mem_cgroup_per_node, 532 tree_node); 533 if (mz->usage_in_excess < mz_node->usage_in_excess) { 534 p = &(*p)->rb_left; 535 rightmost = false; 536 } 537 538 /* 539 * We can't avoid mem cgroups that are over their soft 540 * limit by the same amount 541 */ 542 else if (mz->usage_in_excess >= mz_node->usage_in_excess) 543 p = &(*p)->rb_right; 544 } 545 546 if (rightmost) 547 mctz->rb_rightmost = &mz->tree_node; 548 549 rb_link_node(&mz->tree_node, parent, p); 550 rb_insert_color(&mz->tree_node, &mctz->rb_root); 551 mz->on_tree = true; 552 } 553 554 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 555 struct mem_cgroup_tree_per_node *mctz) 556 { 557 if (!mz->on_tree) 558 return; 559 560 if (&mz->tree_node == mctz->rb_rightmost) 561 mctz->rb_rightmost = rb_prev(&mz->tree_node); 562 563 rb_erase(&mz->tree_node, &mctz->rb_root); 564 mz->on_tree = false; 565 } 566 567 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 568 struct mem_cgroup_tree_per_node *mctz) 569 { 570 unsigned long flags; 571 572 spin_lock_irqsave(&mctz->lock, flags); 573 __mem_cgroup_remove_exceeded(mz, mctz); 574 spin_unlock_irqrestore(&mctz->lock, flags); 575 } 576 577 static unsigned long soft_limit_excess(struct mem_cgroup *memcg) 578 { 579 unsigned long nr_pages = page_counter_read(&memcg->memory); 580 unsigned long soft_limit = READ_ONCE(memcg->soft_limit); 581 unsigned long excess = 0; 582 583 if (nr_pages > soft_limit) 584 excess = nr_pages - soft_limit; 585 586 return excess; 587 } 588 589 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page) 590 { 591 unsigned long excess; 592 struct mem_cgroup_per_node *mz; 593 struct mem_cgroup_tree_per_node *mctz; 594 595 mctz = soft_limit_tree_from_page(page); 596 if (!mctz) 597 return; 598 /* 599 * Necessary to update all ancestors when hierarchy is used. 600 * because their event counter is not touched. 601 */ 602 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 603 mz = mem_cgroup_page_nodeinfo(memcg, page); 604 excess = soft_limit_excess(memcg); 605 /* 606 * We have to update the tree if mz is on RB-tree or 607 * mem is over its softlimit. 608 */ 609 if (excess || mz->on_tree) { 610 unsigned long flags; 611 612 spin_lock_irqsave(&mctz->lock, flags); 613 /* if on-tree, remove it */ 614 if (mz->on_tree) 615 __mem_cgroup_remove_exceeded(mz, mctz); 616 /* 617 * Insert again. mz->usage_in_excess will be updated. 618 * If excess is 0, no tree ops. 619 */ 620 __mem_cgroup_insert_exceeded(mz, mctz, excess); 621 spin_unlock_irqrestore(&mctz->lock, flags); 622 } 623 } 624 } 625 626 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) 627 { 628 struct mem_cgroup_tree_per_node *mctz; 629 struct mem_cgroup_per_node *mz; 630 int nid; 631 632 for_each_node(nid) { 633 mz = mem_cgroup_nodeinfo(memcg, nid); 634 mctz = soft_limit_tree_node(nid); 635 if (mctz) 636 mem_cgroup_remove_exceeded(mz, mctz); 637 } 638 } 639 640 static struct mem_cgroup_per_node * 641 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 642 { 643 struct mem_cgroup_per_node *mz; 644 645 retry: 646 mz = NULL; 647 if (!mctz->rb_rightmost) 648 goto done; /* Nothing to reclaim from */ 649 650 mz = rb_entry(mctz->rb_rightmost, 651 struct mem_cgroup_per_node, tree_node); 652 /* 653 * Remove the node now but someone else can add it back, 654 * we will to add it back at the end of reclaim to its correct 655 * position in the tree. 656 */ 657 __mem_cgroup_remove_exceeded(mz, mctz); 658 if (!soft_limit_excess(mz->memcg) || 659 !css_tryget(&mz->memcg->css)) 660 goto retry; 661 done: 662 return mz; 663 } 664 665 static struct mem_cgroup_per_node * 666 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 667 { 668 struct mem_cgroup_per_node *mz; 669 670 spin_lock_irq(&mctz->lock); 671 mz = __mem_cgroup_largest_soft_limit_node(mctz); 672 spin_unlock_irq(&mctz->lock); 673 return mz; 674 } 675 676 /** 677 * __mod_memcg_state - update cgroup memory statistics 678 * @memcg: the memory cgroup 679 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item 680 * @val: delta to add to the counter, can be negative 681 */ 682 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val) 683 { 684 long x; 685 686 if (mem_cgroup_disabled()) 687 return; 688 689 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]); 690 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) { 691 struct mem_cgroup *mi; 692 693 /* 694 * Batch local counters to keep them in sync with 695 * the hierarchical ones. 696 */ 697 __this_cpu_add(memcg->vmstats_local->stat[idx], x); 698 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 699 atomic_long_add(x, &mi->vmstats[idx]); 700 x = 0; 701 } 702 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x); 703 } 704 705 static struct mem_cgroup_per_node * 706 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid) 707 { 708 struct mem_cgroup *parent; 709 710 parent = parent_mem_cgroup(pn->memcg); 711 if (!parent) 712 return NULL; 713 return mem_cgroup_nodeinfo(parent, nid); 714 } 715 716 /** 717 * __mod_lruvec_state - update lruvec memory statistics 718 * @lruvec: the lruvec 719 * @idx: the stat item 720 * @val: delta to add to the counter, can be negative 721 * 722 * The lruvec is the intersection of the NUMA node and a cgroup. This 723 * function updates the all three counters that are affected by a 724 * change of state at this level: per-node, per-cgroup, per-lruvec. 725 */ 726 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 727 int val) 728 { 729 pg_data_t *pgdat = lruvec_pgdat(lruvec); 730 struct mem_cgroup_per_node *pn; 731 struct mem_cgroup *memcg; 732 long x; 733 734 /* Update node */ 735 __mod_node_page_state(pgdat, idx, val); 736 737 if (mem_cgroup_disabled()) 738 return; 739 740 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 741 memcg = pn->memcg; 742 743 /* Update memcg */ 744 __mod_memcg_state(memcg, idx, val); 745 746 /* Update lruvec */ 747 __this_cpu_add(pn->lruvec_stat_local->count[idx], val); 748 749 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]); 750 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) { 751 struct mem_cgroup_per_node *pi; 752 753 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id)) 754 atomic_long_add(x, &pi->lruvec_stat[idx]); 755 x = 0; 756 } 757 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x); 758 } 759 760 void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val) 761 { 762 pg_data_t *pgdat = page_pgdat(virt_to_page(p)); 763 struct mem_cgroup *memcg; 764 struct lruvec *lruvec; 765 766 rcu_read_lock(); 767 memcg = mem_cgroup_from_obj(p); 768 769 /* Untracked pages have no memcg, no lruvec. Update only the node */ 770 if (!memcg || memcg == root_mem_cgroup) { 771 __mod_node_page_state(pgdat, idx, val); 772 } else { 773 lruvec = mem_cgroup_lruvec(memcg, pgdat); 774 __mod_lruvec_state(lruvec, idx, val); 775 } 776 rcu_read_unlock(); 777 } 778 779 void mod_memcg_obj_state(void *p, int idx, int val) 780 { 781 struct mem_cgroup *memcg; 782 783 rcu_read_lock(); 784 memcg = mem_cgroup_from_obj(p); 785 if (memcg) 786 mod_memcg_state(memcg, idx, val); 787 rcu_read_unlock(); 788 } 789 790 /** 791 * __count_memcg_events - account VM events in a cgroup 792 * @memcg: the memory cgroup 793 * @idx: the event item 794 * @count: the number of events that occured 795 */ 796 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 797 unsigned long count) 798 { 799 unsigned long x; 800 801 if (mem_cgroup_disabled()) 802 return; 803 804 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]); 805 if (unlikely(x > MEMCG_CHARGE_BATCH)) { 806 struct mem_cgroup *mi; 807 808 /* 809 * Batch local counters to keep them in sync with 810 * the hierarchical ones. 811 */ 812 __this_cpu_add(memcg->vmstats_local->events[idx], x); 813 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 814 atomic_long_add(x, &mi->vmevents[idx]); 815 x = 0; 816 } 817 __this_cpu_write(memcg->vmstats_percpu->events[idx], x); 818 } 819 820 static unsigned long memcg_events(struct mem_cgroup *memcg, int event) 821 { 822 return atomic_long_read(&memcg->vmevents[event]); 823 } 824 825 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event) 826 { 827 long x = 0; 828 int cpu; 829 830 for_each_possible_cpu(cpu) 831 x += per_cpu(memcg->vmstats_local->events[event], cpu); 832 return x; 833 } 834 835 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, 836 struct page *page, 837 int nr_pages) 838 { 839 /* pagein of a big page is an event. So, ignore page size */ 840 if (nr_pages > 0) 841 __count_memcg_events(memcg, PGPGIN, 1); 842 else { 843 __count_memcg_events(memcg, PGPGOUT, 1); 844 nr_pages = -nr_pages; /* for event */ 845 } 846 847 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages); 848 } 849 850 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, 851 enum mem_cgroup_events_target target) 852 { 853 unsigned long val, next; 854 855 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events); 856 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]); 857 /* from time_after() in jiffies.h */ 858 if ((long)(next - val) < 0) { 859 switch (target) { 860 case MEM_CGROUP_TARGET_THRESH: 861 next = val + THRESHOLDS_EVENTS_TARGET; 862 break; 863 case MEM_CGROUP_TARGET_SOFTLIMIT: 864 next = val + SOFTLIMIT_EVENTS_TARGET; 865 break; 866 default: 867 break; 868 } 869 __this_cpu_write(memcg->vmstats_percpu->targets[target], next); 870 return true; 871 } 872 return false; 873 } 874 875 /* 876 * Check events in order. 877 * 878 */ 879 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) 880 { 881 /* threshold event is triggered in finer grain than soft limit */ 882 if (unlikely(mem_cgroup_event_ratelimit(memcg, 883 MEM_CGROUP_TARGET_THRESH))) { 884 bool do_softlimit; 885 886 do_softlimit = mem_cgroup_event_ratelimit(memcg, 887 MEM_CGROUP_TARGET_SOFTLIMIT); 888 mem_cgroup_threshold(memcg); 889 if (unlikely(do_softlimit)) 890 mem_cgroup_update_tree(memcg, page); 891 } 892 } 893 894 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 895 { 896 /* 897 * mm_update_next_owner() may clear mm->owner to NULL 898 * if it races with swapoff, page migration, etc. 899 * So this can be called with p == NULL. 900 */ 901 if (unlikely(!p)) 902 return NULL; 903 904 return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); 905 } 906 EXPORT_SYMBOL(mem_cgroup_from_task); 907 908 /** 909 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg. 910 * @mm: mm from which memcg should be extracted. It can be NULL. 911 * 912 * Obtain a reference on mm->memcg and returns it if successful. Otherwise 913 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is 914 * returned. 915 */ 916 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 917 { 918 struct mem_cgroup *memcg; 919 920 if (mem_cgroup_disabled()) 921 return NULL; 922 923 rcu_read_lock(); 924 do { 925 /* 926 * Page cache insertions can happen withou an 927 * actual mm context, e.g. during disk probing 928 * on boot, loopback IO, acct() writes etc. 929 */ 930 if (unlikely(!mm)) 931 memcg = root_mem_cgroup; 932 else { 933 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 934 if (unlikely(!memcg)) 935 memcg = root_mem_cgroup; 936 } 937 } while (!css_tryget(&memcg->css)); 938 rcu_read_unlock(); 939 return memcg; 940 } 941 EXPORT_SYMBOL(get_mem_cgroup_from_mm); 942 943 /** 944 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg. 945 * @page: page from which memcg should be extracted. 946 * 947 * Obtain a reference on page->memcg and returns it if successful. Otherwise 948 * root_mem_cgroup is returned. 949 */ 950 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page) 951 { 952 struct mem_cgroup *memcg = page->mem_cgroup; 953 954 if (mem_cgroup_disabled()) 955 return NULL; 956 957 rcu_read_lock(); 958 /* Page should not get uncharged and freed memcg under us. */ 959 if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css))) 960 memcg = root_mem_cgroup; 961 rcu_read_unlock(); 962 return memcg; 963 } 964 EXPORT_SYMBOL(get_mem_cgroup_from_page); 965 966 /** 967 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg. 968 */ 969 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void) 970 { 971 if (unlikely(current->active_memcg)) { 972 struct mem_cgroup *memcg; 973 974 rcu_read_lock(); 975 /* current->active_memcg must hold a ref. */ 976 if (WARN_ON_ONCE(!css_tryget(¤t->active_memcg->css))) 977 memcg = root_mem_cgroup; 978 else 979 memcg = current->active_memcg; 980 rcu_read_unlock(); 981 return memcg; 982 } 983 return get_mem_cgroup_from_mm(current->mm); 984 } 985 986 /** 987 * mem_cgroup_iter - iterate over memory cgroup hierarchy 988 * @root: hierarchy root 989 * @prev: previously returned memcg, NULL on first invocation 990 * @reclaim: cookie for shared reclaim walks, NULL for full walks 991 * 992 * Returns references to children of the hierarchy below @root, or 993 * @root itself, or %NULL after a full round-trip. 994 * 995 * Caller must pass the return value in @prev on subsequent 996 * invocations for reference counting, or use mem_cgroup_iter_break() 997 * to cancel a hierarchy walk before the round-trip is complete. 998 * 999 * Reclaimers can specify a node and a priority level in @reclaim to 1000 * divide up the memcgs in the hierarchy among all concurrent 1001 * reclaimers operating on the same node and priority. 1002 */ 1003 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 1004 struct mem_cgroup *prev, 1005 struct mem_cgroup_reclaim_cookie *reclaim) 1006 { 1007 struct mem_cgroup_reclaim_iter *uninitialized_var(iter); 1008 struct cgroup_subsys_state *css = NULL; 1009 struct mem_cgroup *memcg = NULL; 1010 struct mem_cgroup *pos = NULL; 1011 1012 if (mem_cgroup_disabled()) 1013 return NULL; 1014 1015 if (!root) 1016 root = root_mem_cgroup; 1017 1018 if (prev && !reclaim) 1019 pos = prev; 1020 1021 if (!root->use_hierarchy && root != root_mem_cgroup) { 1022 if (prev) 1023 goto out; 1024 return root; 1025 } 1026 1027 rcu_read_lock(); 1028 1029 if (reclaim) { 1030 struct mem_cgroup_per_node *mz; 1031 1032 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id); 1033 iter = &mz->iter; 1034 1035 if (prev && reclaim->generation != iter->generation) 1036 goto out_unlock; 1037 1038 while (1) { 1039 pos = READ_ONCE(iter->position); 1040 if (!pos || css_tryget(&pos->css)) 1041 break; 1042 /* 1043 * css reference reached zero, so iter->position will 1044 * be cleared by ->css_released. However, we should not 1045 * rely on this happening soon, because ->css_released 1046 * is called from a work queue, and by busy-waiting we 1047 * might block it. So we clear iter->position right 1048 * away. 1049 */ 1050 (void)cmpxchg(&iter->position, pos, NULL); 1051 } 1052 } 1053 1054 if (pos) 1055 css = &pos->css; 1056 1057 for (;;) { 1058 css = css_next_descendant_pre(css, &root->css); 1059 if (!css) { 1060 /* 1061 * Reclaimers share the hierarchy walk, and a 1062 * new one might jump in right at the end of 1063 * the hierarchy - make sure they see at least 1064 * one group and restart from the beginning. 1065 */ 1066 if (!prev) 1067 continue; 1068 break; 1069 } 1070 1071 /* 1072 * Verify the css and acquire a reference. The root 1073 * is provided by the caller, so we know it's alive 1074 * and kicking, and don't take an extra reference. 1075 */ 1076 memcg = mem_cgroup_from_css(css); 1077 1078 if (css == &root->css) 1079 break; 1080 1081 if (css_tryget(css)) 1082 break; 1083 1084 memcg = NULL; 1085 } 1086 1087 if (reclaim) { 1088 /* 1089 * The position could have already been updated by a competing 1090 * thread, so check that the value hasn't changed since we read 1091 * it to avoid reclaiming from the same cgroup twice. 1092 */ 1093 (void)cmpxchg(&iter->position, pos, memcg); 1094 1095 if (pos) 1096 css_put(&pos->css); 1097 1098 if (!memcg) 1099 iter->generation++; 1100 else if (!prev) 1101 reclaim->generation = iter->generation; 1102 } 1103 1104 out_unlock: 1105 rcu_read_unlock(); 1106 out: 1107 if (prev && prev != root) 1108 css_put(&prev->css); 1109 1110 return memcg; 1111 } 1112 1113 /** 1114 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 1115 * @root: hierarchy root 1116 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 1117 */ 1118 void mem_cgroup_iter_break(struct mem_cgroup *root, 1119 struct mem_cgroup *prev) 1120 { 1121 if (!root) 1122 root = root_mem_cgroup; 1123 if (prev && prev != root) 1124 css_put(&prev->css); 1125 } 1126 1127 static void __invalidate_reclaim_iterators(struct mem_cgroup *from, 1128 struct mem_cgroup *dead_memcg) 1129 { 1130 struct mem_cgroup_reclaim_iter *iter; 1131 struct mem_cgroup_per_node *mz; 1132 int nid; 1133 1134 for_each_node(nid) { 1135 mz = mem_cgroup_nodeinfo(from, nid); 1136 iter = &mz->iter; 1137 cmpxchg(&iter->position, dead_memcg, NULL); 1138 } 1139 } 1140 1141 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) 1142 { 1143 struct mem_cgroup *memcg = dead_memcg; 1144 struct mem_cgroup *last; 1145 1146 do { 1147 __invalidate_reclaim_iterators(memcg, dead_memcg); 1148 last = memcg; 1149 } while ((memcg = parent_mem_cgroup(memcg))); 1150 1151 /* 1152 * When cgruop1 non-hierarchy mode is used, 1153 * parent_mem_cgroup() does not walk all the way up to the 1154 * cgroup root (root_mem_cgroup). So we have to handle 1155 * dead_memcg from cgroup root separately. 1156 */ 1157 if (last != root_mem_cgroup) 1158 __invalidate_reclaim_iterators(root_mem_cgroup, 1159 dead_memcg); 1160 } 1161 1162 /** 1163 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy 1164 * @memcg: hierarchy root 1165 * @fn: function to call for each task 1166 * @arg: argument passed to @fn 1167 * 1168 * This function iterates over tasks attached to @memcg or to any of its 1169 * descendants and calls @fn for each task. If @fn returns a non-zero 1170 * value, the function breaks the iteration loop and returns the value. 1171 * Otherwise, it will iterate over all tasks and return 0. 1172 * 1173 * This function must not be called for the root memory cgroup. 1174 */ 1175 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1176 int (*fn)(struct task_struct *, void *), void *arg) 1177 { 1178 struct mem_cgroup *iter; 1179 int ret = 0; 1180 1181 BUG_ON(memcg == root_mem_cgroup); 1182 1183 for_each_mem_cgroup_tree(iter, memcg) { 1184 struct css_task_iter it; 1185 struct task_struct *task; 1186 1187 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it); 1188 while (!ret && (task = css_task_iter_next(&it))) 1189 ret = fn(task, arg); 1190 css_task_iter_end(&it); 1191 if (ret) { 1192 mem_cgroup_iter_break(memcg, iter); 1193 break; 1194 } 1195 } 1196 return ret; 1197 } 1198 1199 /** 1200 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page 1201 * @page: the page 1202 * @pgdat: pgdat of the page 1203 * 1204 * This function relies on page->mem_cgroup being stable - see the 1205 * access rules in commit_charge(). 1206 */ 1207 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat) 1208 { 1209 struct mem_cgroup_per_node *mz; 1210 struct mem_cgroup *memcg; 1211 struct lruvec *lruvec; 1212 1213 if (mem_cgroup_disabled()) { 1214 lruvec = &pgdat->__lruvec; 1215 goto out; 1216 } 1217 1218 memcg = page->mem_cgroup; 1219 /* 1220 * Swapcache readahead pages are added to the LRU - and 1221 * possibly migrated - before they are charged. 1222 */ 1223 if (!memcg) 1224 memcg = root_mem_cgroup; 1225 1226 mz = mem_cgroup_page_nodeinfo(memcg, page); 1227 lruvec = &mz->lruvec; 1228 out: 1229 /* 1230 * Since a node can be onlined after the mem_cgroup was created, 1231 * we have to be prepared to initialize lruvec->zone here; 1232 * and if offlined then reonlined, we need to reinitialize it. 1233 */ 1234 if (unlikely(lruvec->pgdat != pgdat)) 1235 lruvec->pgdat = pgdat; 1236 return lruvec; 1237 } 1238 1239 /** 1240 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1241 * @lruvec: mem_cgroup per zone lru vector 1242 * @lru: index of lru list the page is sitting on 1243 * @zid: zone id of the accounted pages 1244 * @nr_pages: positive when adding or negative when removing 1245 * 1246 * This function must be called under lru_lock, just before a page is added 1247 * to or just after a page is removed from an lru list (that ordering being 1248 * so as to allow it to check that lru_size 0 is consistent with list_empty). 1249 */ 1250 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1251 int zid, int nr_pages) 1252 { 1253 struct mem_cgroup_per_node *mz; 1254 unsigned long *lru_size; 1255 long size; 1256 1257 if (mem_cgroup_disabled()) 1258 return; 1259 1260 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 1261 lru_size = &mz->lru_zone_size[zid][lru]; 1262 1263 if (nr_pages < 0) 1264 *lru_size += nr_pages; 1265 1266 size = *lru_size; 1267 if (WARN_ONCE(size < 0, 1268 "%s(%p, %d, %d): lru_size %ld\n", 1269 __func__, lruvec, lru, nr_pages, size)) { 1270 VM_BUG_ON(1); 1271 *lru_size = 0; 1272 } 1273 1274 if (nr_pages > 0) 1275 *lru_size += nr_pages; 1276 } 1277 1278 /** 1279 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1280 * @memcg: the memory cgroup 1281 * 1282 * Returns the maximum amount of memory @mem can be charged with, in 1283 * pages. 1284 */ 1285 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1286 { 1287 unsigned long margin = 0; 1288 unsigned long count; 1289 unsigned long limit; 1290 1291 count = page_counter_read(&memcg->memory); 1292 limit = READ_ONCE(memcg->memory.max); 1293 if (count < limit) 1294 margin = limit - count; 1295 1296 if (do_memsw_account()) { 1297 count = page_counter_read(&memcg->memsw); 1298 limit = READ_ONCE(memcg->memsw.max); 1299 if (count < limit) 1300 margin = min(margin, limit - count); 1301 else 1302 margin = 0; 1303 } 1304 1305 return margin; 1306 } 1307 1308 /* 1309 * A routine for checking "mem" is under move_account() or not. 1310 * 1311 * Checking a cgroup is mc.from or mc.to or under hierarchy of 1312 * moving cgroups. This is for waiting at high-memory pressure 1313 * caused by "move". 1314 */ 1315 static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 1316 { 1317 struct mem_cgroup *from; 1318 struct mem_cgroup *to; 1319 bool ret = false; 1320 /* 1321 * Unlike task_move routines, we access mc.to, mc.from not under 1322 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1323 */ 1324 spin_lock(&mc.lock); 1325 from = mc.from; 1326 to = mc.to; 1327 if (!from) 1328 goto unlock; 1329 1330 ret = mem_cgroup_is_descendant(from, memcg) || 1331 mem_cgroup_is_descendant(to, memcg); 1332 unlock: 1333 spin_unlock(&mc.lock); 1334 return ret; 1335 } 1336 1337 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) 1338 { 1339 if (mc.moving_task && current != mc.moving_task) { 1340 if (mem_cgroup_under_move(memcg)) { 1341 DEFINE_WAIT(wait); 1342 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1343 /* moving charge context might have finished. */ 1344 if (mc.moving_task) 1345 schedule(); 1346 finish_wait(&mc.waitq, &wait); 1347 return true; 1348 } 1349 } 1350 return false; 1351 } 1352 1353 static char *memory_stat_format(struct mem_cgroup *memcg) 1354 { 1355 struct seq_buf s; 1356 int i; 1357 1358 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE); 1359 if (!s.buffer) 1360 return NULL; 1361 1362 /* 1363 * Provide statistics on the state of the memory subsystem as 1364 * well as cumulative event counters that show past behavior. 1365 * 1366 * This list is ordered following a combination of these gradients: 1367 * 1) generic big picture -> specifics and details 1368 * 2) reflecting userspace activity -> reflecting kernel heuristics 1369 * 1370 * Current memory state: 1371 */ 1372 1373 seq_buf_printf(&s, "anon %llu\n", 1374 (u64)memcg_page_state(memcg, NR_ANON_MAPPED) * 1375 PAGE_SIZE); 1376 seq_buf_printf(&s, "file %llu\n", 1377 (u64)memcg_page_state(memcg, NR_FILE_PAGES) * 1378 PAGE_SIZE); 1379 seq_buf_printf(&s, "kernel_stack %llu\n", 1380 (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) * 1381 1024); 1382 seq_buf_printf(&s, "slab %llu\n", 1383 (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) + 1384 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) * 1385 PAGE_SIZE); 1386 seq_buf_printf(&s, "sock %llu\n", 1387 (u64)memcg_page_state(memcg, MEMCG_SOCK) * 1388 PAGE_SIZE); 1389 1390 seq_buf_printf(&s, "shmem %llu\n", 1391 (u64)memcg_page_state(memcg, NR_SHMEM) * 1392 PAGE_SIZE); 1393 seq_buf_printf(&s, "file_mapped %llu\n", 1394 (u64)memcg_page_state(memcg, NR_FILE_MAPPED) * 1395 PAGE_SIZE); 1396 seq_buf_printf(&s, "file_dirty %llu\n", 1397 (u64)memcg_page_state(memcg, NR_FILE_DIRTY) * 1398 PAGE_SIZE); 1399 seq_buf_printf(&s, "file_writeback %llu\n", 1400 (u64)memcg_page_state(memcg, NR_WRITEBACK) * 1401 PAGE_SIZE); 1402 1403 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1404 seq_buf_printf(&s, "anon_thp %llu\n", 1405 (u64)memcg_page_state(memcg, NR_ANON_THPS) * 1406 HPAGE_PMD_SIZE); 1407 #endif 1408 1409 for (i = 0; i < NR_LRU_LISTS; i++) 1410 seq_buf_printf(&s, "%s %llu\n", lru_list_name(i), 1411 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) * 1412 PAGE_SIZE); 1413 1414 seq_buf_printf(&s, "slab_reclaimable %llu\n", 1415 (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) * 1416 PAGE_SIZE); 1417 seq_buf_printf(&s, "slab_unreclaimable %llu\n", 1418 (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) * 1419 PAGE_SIZE); 1420 1421 /* Accumulated memory events */ 1422 1423 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT), 1424 memcg_events(memcg, PGFAULT)); 1425 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT), 1426 memcg_events(memcg, PGMAJFAULT)); 1427 1428 seq_buf_printf(&s, "workingset_refault %lu\n", 1429 memcg_page_state(memcg, WORKINGSET_REFAULT)); 1430 seq_buf_printf(&s, "workingset_activate %lu\n", 1431 memcg_page_state(memcg, WORKINGSET_ACTIVATE)); 1432 seq_buf_printf(&s, "workingset_restore %lu\n", 1433 memcg_page_state(memcg, WORKINGSET_RESTORE)); 1434 seq_buf_printf(&s, "workingset_nodereclaim %lu\n", 1435 memcg_page_state(memcg, WORKINGSET_NODERECLAIM)); 1436 1437 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL), 1438 memcg_events(memcg, PGREFILL)); 1439 seq_buf_printf(&s, "pgscan %lu\n", 1440 memcg_events(memcg, PGSCAN_KSWAPD) + 1441 memcg_events(memcg, PGSCAN_DIRECT)); 1442 seq_buf_printf(&s, "pgsteal %lu\n", 1443 memcg_events(memcg, PGSTEAL_KSWAPD) + 1444 memcg_events(memcg, PGSTEAL_DIRECT)); 1445 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE), 1446 memcg_events(memcg, PGACTIVATE)); 1447 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE), 1448 memcg_events(memcg, PGDEACTIVATE)); 1449 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE), 1450 memcg_events(memcg, PGLAZYFREE)); 1451 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED), 1452 memcg_events(memcg, PGLAZYFREED)); 1453 1454 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1455 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC), 1456 memcg_events(memcg, THP_FAULT_ALLOC)); 1457 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC), 1458 memcg_events(memcg, THP_COLLAPSE_ALLOC)); 1459 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1460 1461 /* The above should easily fit into one page */ 1462 WARN_ON_ONCE(seq_buf_has_overflowed(&s)); 1463 1464 return s.buffer; 1465 } 1466 1467 #define K(x) ((x) << (PAGE_SHIFT-10)) 1468 /** 1469 * mem_cgroup_print_oom_context: Print OOM information relevant to 1470 * memory controller. 1471 * @memcg: The memory cgroup that went over limit 1472 * @p: Task that is going to be killed 1473 * 1474 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1475 * enabled 1476 */ 1477 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1478 { 1479 rcu_read_lock(); 1480 1481 if (memcg) { 1482 pr_cont(",oom_memcg="); 1483 pr_cont_cgroup_path(memcg->css.cgroup); 1484 } else 1485 pr_cont(",global_oom"); 1486 if (p) { 1487 pr_cont(",task_memcg="); 1488 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); 1489 } 1490 rcu_read_unlock(); 1491 } 1492 1493 /** 1494 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to 1495 * memory controller. 1496 * @memcg: The memory cgroup that went over limit 1497 */ 1498 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1499 { 1500 char *buf; 1501 1502 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", 1503 K((u64)page_counter_read(&memcg->memory)), 1504 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt); 1505 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1506 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n", 1507 K((u64)page_counter_read(&memcg->swap)), 1508 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt); 1509 else { 1510 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", 1511 K((u64)page_counter_read(&memcg->memsw)), 1512 K((u64)memcg->memsw.max), memcg->memsw.failcnt); 1513 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", 1514 K((u64)page_counter_read(&memcg->kmem)), 1515 K((u64)memcg->kmem.max), memcg->kmem.failcnt); 1516 } 1517 1518 pr_info("Memory cgroup stats for "); 1519 pr_cont_cgroup_path(memcg->css.cgroup); 1520 pr_cont(":"); 1521 buf = memory_stat_format(memcg); 1522 if (!buf) 1523 return; 1524 pr_info("%s", buf); 1525 kfree(buf); 1526 } 1527 1528 /* 1529 * Return the memory (and swap, if configured) limit for a memcg. 1530 */ 1531 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1532 { 1533 unsigned long max; 1534 1535 max = READ_ONCE(memcg->memory.max); 1536 if (mem_cgroup_swappiness(memcg)) { 1537 unsigned long memsw_max; 1538 unsigned long swap_max; 1539 1540 memsw_max = memcg->memsw.max; 1541 swap_max = READ_ONCE(memcg->swap.max); 1542 swap_max = min(swap_max, (unsigned long)total_swap_pages); 1543 max = min(max + swap_max, memsw_max); 1544 } 1545 return max; 1546 } 1547 1548 unsigned long mem_cgroup_size(struct mem_cgroup *memcg) 1549 { 1550 return page_counter_read(&memcg->memory); 1551 } 1552 1553 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1554 int order) 1555 { 1556 struct oom_control oc = { 1557 .zonelist = NULL, 1558 .nodemask = NULL, 1559 .memcg = memcg, 1560 .gfp_mask = gfp_mask, 1561 .order = order, 1562 }; 1563 bool ret; 1564 1565 if (mutex_lock_killable(&oom_lock)) 1566 return true; 1567 /* 1568 * A few threads which were not waiting at mutex_lock_killable() can 1569 * fail to bail out. Therefore, check again after holding oom_lock. 1570 */ 1571 ret = should_force_charge() || out_of_memory(&oc); 1572 mutex_unlock(&oom_lock); 1573 return ret; 1574 } 1575 1576 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, 1577 pg_data_t *pgdat, 1578 gfp_t gfp_mask, 1579 unsigned long *total_scanned) 1580 { 1581 struct mem_cgroup *victim = NULL; 1582 int total = 0; 1583 int loop = 0; 1584 unsigned long excess; 1585 unsigned long nr_scanned; 1586 struct mem_cgroup_reclaim_cookie reclaim = { 1587 .pgdat = pgdat, 1588 }; 1589 1590 excess = soft_limit_excess(root_memcg); 1591 1592 while (1) { 1593 victim = mem_cgroup_iter(root_memcg, victim, &reclaim); 1594 if (!victim) { 1595 loop++; 1596 if (loop >= 2) { 1597 /* 1598 * If we have not been able to reclaim 1599 * anything, it might because there are 1600 * no reclaimable pages under this hierarchy 1601 */ 1602 if (!total) 1603 break; 1604 /* 1605 * We want to do more targeted reclaim. 1606 * excess >> 2 is not to excessive so as to 1607 * reclaim too much, nor too less that we keep 1608 * coming back to reclaim from this cgroup 1609 */ 1610 if (total >= (excess >> 2) || 1611 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) 1612 break; 1613 } 1614 continue; 1615 } 1616 total += mem_cgroup_shrink_node(victim, gfp_mask, false, 1617 pgdat, &nr_scanned); 1618 *total_scanned += nr_scanned; 1619 if (!soft_limit_excess(root_memcg)) 1620 break; 1621 } 1622 mem_cgroup_iter_break(root_memcg, victim); 1623 return total; 1624 } 1625 1626 #ifdef CONFIG_LOCKDEP 1627 static struct lockdep_map memcg_oom_lock_dep_map = { 1628 .name = "memcg_oom_lock", 1629 }; 1630 #endif 1631 1632 static DEFINE_SPINLOCK(memcg_oom_lock); 1633 1634 /* 1635 * Check OOM-Killer is already running under our hierarchy. 1636 * If someone is running, return false. 1637 */ 1638 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) 1639 { 1640 struct mem_cgroup *iter, *failed = NULL; 1641 1642 spin_lock(&memcg_oom_lock); 1643 1644 for_each_mem_cgroup_tree(iter, memcg) { 1645 if (iter->oom_lock) { 1646 /* 1647 * this subtree of our hierarchy is already locked 1648 * so we cannot give a lock. 1649 */ 1650 failed = iter; 1651 mem_cgroup_iter_break(memcg, iter); 1652 break; 1653 } else 1654 iter->oom_lock = true; 1655 } 1656 1657 if (failed) { 1658 /* 1659 * OK, we failed to lock the whole subtree so we have 1660 * to clean up what we set up to the failing subtree 1661 */ 1662 for_each_mem_cgroup_tree(iter, memcg) { 1663 if (iter == failed) { 1664 mem_cgroup_iter_break(memcg, iter); 1665 break; 1666 } 1667 iter->oom_lock = false; 1668 } 1669 } else 1670 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); 1671 1672 spin_unlock(&memcg_oom_lock); 1673 1674 return !failed; 1675 } 1676 1677 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 1678 { 1679 struct mem_cgroup *iter; 1680 1681 spin_lock(&memcg_oom_lock); 1682 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_); 1683 for_each_mem_cgroup_tree(iter, memcg) 1684 iter->oom_lock = false; 1685 spin_unlock(&memcg_oom_lock); 1686 } 1687 1688 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 1689 { 1690 struct mem_cgroup *iter; 1691 1692 spin_lock(&memcg_oom_lock); 1693 for_each_mem_cgroup_tree(iter, memcg) 1694 iter->under_oom++; 1695 spin_unlock(&memcg_oom_lock); 1696 } 1697 1698 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 1699 { 1700 struct mem_cgroup *iter; 1701 1702 /* 1703 * When a new child is created while the hierarchy is under oom, 1704 * mem_cgroup_oom_lock() may not be called. Watch for underflow. 1705 */ 1706 spin_lock(&memcg_oom_lock); 1707 for_each_mem_cgroup_tree(iter, memcg) 1708 if (iter->under_oom > 0) 1709 iter->under_oom--; 1710 spin_unlock(&memcg_oom_lock); 1711 } 1712 1713 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 1714 1715 struct oom_wait_info { 1716 struct mem_cgroup *memcg; 1717 wait_queue_entry_t wait; 1718 }; 1719 1720 static int memcg_oom_wake_function(wait_queue_entry_t *wait, 1721 unsigned mode, int sync, void *arg) 1722 { 1723 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; 1724 struct mem_cgroup *oom_wait_memcg; 1725 struct oom_wait_info *oom_wait_info; 1726 1727 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 1728 oom_wait_memcg = oom_wait_info->memcg; 1729 1730 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) && 1731 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg)) 1732 return 0; 1733 return autoremove_wake_function(wait, mode, sync, arg); 1734 } 1735 1736 static void memcg_oom_recover(struct mem_cgroup *memcg) 1737 { 1738 /* 1739 * For the following lockless ->under_oom test, the only required 1740 * guarantee is that it must see the state asserted by an OOM when 1741 * this function is called as a result of userland actions 1742 * triggered by the notification of the OOM. This is trivially 1743 * achieved by invoking mem_cgroup_mark_under_oom() before 1744 * triggering notification. 1745 */ 1746 if (memcg && memcg->under_oom) 1747 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 1748 } 1749 1750 enum oom_status { 1751 OOM_SUCCESS, 1752 OOM_FAILED, 1753 OOM_ASYNC, 1754 OOM_SKIPPED 1755 }; 1756 1757 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 1758 { 1759 enum oom_status ret; 1760 bool locked; 1761 1762 if (order > PAGE_ALLOC_COSTLY_ORDER) 1763 return OOM_SKIPPED; 1764 1765 memcg_memory_event(memcg, MEMCG_OOM); 1766 1767 /* 1768 * We are in the middle of the charge context here, so we 1769 * don't want to block when potentially sitting on a callstack 1770 * that holds all kinds of filesystem and mm locks. 1771 * 1772 * cgroup1 allows disabling the OOM killer and waiting for outside 1773 * handling until the charge can succeed; remember the context and put 1774 * the task to sleep at the end of the page fault when all locks are 1775 * released. 1776 * 1777 * On the other hand, in-kernel OOM killer allows for an async victim 1778 * memory reclaim (oom_reaper) and that means that we are not solely 1779 * relying on the oom victim to make a forward progress and we can 1780 * invoke the oom killer here. 1781 * 1782 * Please note that mem_cgroup_out_of_memory might fail to find a 1783 * victim and then we have to bail out from the charge path. 1784 */ 1785 if (memcg->oom_kill_disable) { 1786 if (!current->in_user_fault) 1787 return OOM_SKIPPED; 1788 css_get(&memcg->css); 1789 current->memcg_in_oom = memcg; 1790 current->memcg_oom_gfp_mask = mask; 1791 current->memcg_oom_order = order; 1792 1793 return OOM_ASYNC; 1794 } 1795 1796 mem_cgroup_mark_under_oom(memcg); 1797 1798 locked = mem_cgroup_oom_trylock(memcg); 1799 1800 if (locked) 1801 mem_cgroup_oom_notify(memcg); 1802 1803 mem_cgroup_unmark_under_oom(memcg); 1804 if (mem_cgroup_out_of_memory(memcg, mask, order)) 1805 ret = OOM_SUCCESS; 1806 else 1807 ret = OOM_FAILED; 1808 1809 if (locked) 1810 mem_cgroup_oom_unlock(memcg); 1811 1812 return ret; 1813 } 1814 1815 /** 1816 * mem_cgroup_oom_synchronize - complete memcg OOM handling 1817 * @handle: actually kill/wait or just clean up the OOM state 1818 * 1819 * This has to be called at the end of a page fault if the memcg OOM 1820 * handler was enabled. 1821 * 1822 * Memcg supports userspace OOM handling where failed allocations must 1823 * sleep on a waitqueue until the userspace task resolves the 1824 * situation. Sleeping directly in the charge context with all kinds 1825 * of locks held is not a good idea, instead we remember an OOM state 1826 * in the task and mem_cgroup_oom_synchronize() has to be called at 1827 * the end of the page fault to complete the OOM handling. 1828 * 1829 * Returns %true if an ongoing memcg OOM situation was detected and 1830 * completed, %false otherwise. 1831 */ 1832 bool mem_cgroup_oom_synchronize(bool handle) 1833 { 1834 struct mem_cgroup *memcg = current->memcg_in_oom; 1835 struct oom_wait_info owait; 1836 bool locked; 1837 1838 /* OOM is global, do not handle */ 1839 if (!memcg) 1840 return false; 1841 1842 if (!handle) 1843 goto cleanup; 1844 1845 owait.memcg = memcg; 1846 owait.wait.flags = 0; 1847 owait.wait.func = memcg_oom_wake_function; 1848 owait.wait.private = current; 1849 INIT_LIST_HEAD(&owait.wait.entry); 1850 1851 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 1852 mem_cgroup_mark_under_oom(memcg); 1853 1854 locked = mem_cgroup_oom_trylock(memcg); 1855 1856 if (locked) 1857 mem_cgroup_oom_notify(memcg); 1858 1859 if (locked && !memcg->oom_kill_disable) { 1860 mem_cgroup_unmark_under_oom(memcg); 1861 finish_wait(&memcg_oom_waitq, &owait.wait); 1862 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask, 1863 current->memcg_oom_order); 1864 } else { 1865 schedule(); 1866 mem_cgroup_unmark_under_oom(memcg); 1867 finish_wait(&memcg_oom_waitq, &owait.wait); 1868 } 1869 1870 if (locked) { 1871 mem_cgroup_oom_unlock(memcg); 1872 /* 1873 * There is no guarantee that an OOM-lock contender 1874 * sees the wakeups triggered by the OOM kill 1875 * uncharges. Wake any sleepers explicitely. 1876 */ 1877 memcg_oom_recover(memcg); 1878 } 1879 cleanup: 1880 current->memcg_in_oom = NULL; 1881 css_put(&memcg->css); 1882 return true; 1883 } 1884 1885 /** 1886 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM 1887 * @victim: task to be killed by the OOM killer 1888 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM 1889 * 1890 * Returns a pointer to a memory cgroup, which has to be cleaned up 1891 * by killing all belonging OOM-killable tasks. 1892 * 1893 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg. 1894 */ 1895 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 1896 struct mem_cgroup *oom_domain) 1897 { 1898 struct mem_cgroup *oom_group = NULL; 1899 struct mem_cgroup *memcg; 1900 1901 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1902 return NULL; 1903 1904 if (!oom_domain) 1905 oom_domain = root_mem_cgroup; 1906 1907 rcu_read_lock(); 1908 1909 memcg = mem_cgroup_from_task(victim); 1910 if (memcg == root_mem_cgroup) 1911 goto out; 1912 1913 /* 1914 * If the victim task has been asynchronously moved to a different 1915 * memory cgroup, we might end up killing tasks outside oom_domain. 1916 * In this case it's better to ignore memory.group.oom. 1917 */ 1918 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain))) 1919 goto out; 1920 1921 /* 1922 * Traverse the memory cgroup hierarchy from the victim task's 1923 * cgroup up to the OOMing cgroup (or root) to find the 1924 * highest-level memory cgroup with oom.group set. 1925 */ 1926 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 1927 if (memcg->oom_group) 1928 oom_group = memcg; 1929 1930 if (memcg == oom_domain) 1931 break; 1932 } 1933 1934 if (oom_group) 1935 css_get(&oom_group->css); 1936 out: 1937 rcu_read_unlock(); 1938 1939 return oom_group; 1940 } 1941 1942 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 1943 { 1944 pr_info("Tasks in "); 1945 pr_cont_cgroup_path(memcg->css.cgroup); 1946 pr_cont(" are going to be killed due to memory.oom.group set\n"); 1947 } 1948 1949 /** 1950 * lock_page_memcg - lock a page->mem_cgroup binding 1951 * @page: the page 1952 * 1953 * This function protects unlocked LRU pages from being moved to 1954 * another cgroup. 1955 * 1956 * It ensures lifetime of the returned memcg. Caller is responsible 1957 * for the lifetime of the page; __unlock_page_memcg() is available 1958 * when @page might get freed inside the locked section. 1959 */ 1960 struct mem_cgroup *lock_page_memcg(struct page *page) 1961 { 1962 struct page *head = compound_head(page); /* rmap on tail pages */ 1963 struct mem_cgroup *memcg; 1964 unsigned long flags; 1965 1966 /* 1967 * The RCU lock is held throughout the transaction. The fast 1968 * path can get away without acquiring the memcg->move_lock 1969 * because page moving starts with an RCU grace period. 1970 * 1971 * The RCU lock also protects the memcg from being freed when 1972 * the page state that is going to change is the only thing 1973 * preventing the page itself from being freed. E.g. writeback 1974 * doesn't hold a page reference and relies on PG_writeback to 1975 * keep off truncation, migration and so forth. 1976 */ 1977 rcu_read_lock(); 1978 1979 if (mem_cgroup_disabled()) 1980 return NULL; 1981 again: 1982 memcg = head->mem_cgroup; 1983 if (unlikely(!memcg)) 1984 return NULL; 1985 1986 if (atomic_read(&memcg->moving_account) <= 0) 1987 return memcg; 1988 1989 spin_lock_irqsave(&memcg->move_lock, flags); 1990 if (memcg != head->mem_cgroup) { 1991 spin_unlock_irqrestore(&memcg->move_lock, flags); 1992 goto again; 1993 } 1994 1995 /* 1996 * When charge migration first begins, we can have locked and 1997 * unlocked page stat updates happening concurrently. Track 1998 * the task who has the lock for unlock_page_memcg(). 1999 */ 2000 memcg->move_lock_task = current; 2001 memcg->move_lock_flags = flags; 2002 2003 return memcg; 2004 } 2005 EXPORT_SYMBOL(lock_page_memcg); 2006 2007 /** 2008 * __unlock_page_memcg - unlock and unpin a memcg 2009 * @memcg: the memcg 2010 * 2011 * Unlock and unpin a memcg returned by lock_page_memcg(). 2012 */ 2013 void __unlock_page_memcg(struct mem_cgroup *memcg) 2014 { 2015 if (memcg && memcg->move_lock_task == current) { 2016 unsigned long flags = memcg->move_lock_flags; 2017 2018 memcg->move_lock_task = NULL; 2019 memcg->move_lock_flags = 0; 2020 2021 spin_unlock_irqrestore(&memcg->move_lock, flags); 2022 } 2023 2024 rcu_read_unlock(); 2025 } 2026 2027 /** 2028 * unlock_page_memcg - unlock a page->mem_cgroup binding 2029 * @page: the page 2030 */ 2031 void unlock_page_memcg(struct page *page) 2032 { 2033 struct page *head = compound_head(page); 2034 2035 __unlock_page_memcg(head->mem_cgroup); 2036 } 2037 EXPORT_SYMBOL(unlock_page_memcg); 2038 2039 struct memcg_stock_pcp { 2040 struct mem_cgroup *cached; /* this never be root cgroup */ 2041 unsigned int nr_pages; 2042 struct work_struct work; 2043 unsigned long flags; 2044 #define FLUSHING_CACHED_CHARGE 0 2045 }; 2046 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); 2047 static DEFINE_MUTEX(percpu_charge_mutex); 2048 2049 /** 2050 * consume_stock: Try to consume stocked charge on this cpu. 2051 * @memcg: memcg to consume from. 2052 * @nr_pages: how many pages to charge. 2053 * 2054 * The charges will only happen if @memcg matches the current cpu's memcg 2055 * stock, and at least @nr_pages are available in that stock. Failure to 2056 * service an allocation will refill the stock. 2057 * 2058 * returns true if successful, false otherwise. 2059 */ 2060 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2061 { 2062 struct memcg_stock_pcp *stock; 2063 unsigned long flags; 2064 bool ret = false; 2065 2066 if (nr_pages > MEMCG_CHARGE_BATCH) 2067 return ret; 2068 2069 local_irq_save(flags); 2070 2071 stock = this_cpu_ptr(&memcg_stock); 2072 if (memcg == stock->cached && stock->nr_pages >= nr_pages) { 2073 stock->nr_pages -= nr_pages; 2074 ret = true; 2075 } 2076 2077 local_irq_restore(flags); 2078 2079 return ret; 2080 } 2081 2082 /* 2083 * Returns stocks cached in percpu and reset cached information. 2084 */ 2085 static void drain_stock(struct memcg_stock_pcp *stock) 2086 { 2087 struct mem_cgroup *old = stock->cached; 2088 2089 if (stock->nr_pages) { 2090 page_counter_uncharge(&old->memory, stock->nr_pages); 2091 if (do_memsw_account()) 2092 page_counter_uncharge(&old->memsw, stock->nr_pages); 2093 css_put_many(&old->css, stock->nr_pages); 2094 stock->nr_pages = 0; 2095 } 2096 stock->cached = NULL; 2097 } 2098 2099 static void drain_local_stock(struct work_struct *dummy) 2100 { 2101 struct memcg_stock_pcp *stock; 2102 unsigned long flags; 2103 2104 /* 2105 * The only protection from memory hotplug vs. drain_stock races is 2106 * that we always operate on local CPU stock here with IRQ disabled 2107 */ 2108 local_irq_save(flags); 2109 2110 stock = this_cpu_ptr(&memcg_stock); 2111 drain_stock(stock); 2112 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 2113 2114 local_irq_restore(flags); 2115 } 2116 2117 /* 2118 * Cache charges(val) to local per_cpu area. 2119 * This will be consumed by consume_stock() function, later. 2120 */ 2121 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2122 { 2123 struct memcg_stock_pcp *stock; 2124 unsigned long flags; 2125 2126 local_irq_save(flags); 2127 2128 stock = this_cpu_ptr(&memcg_stock); 2129 if (stock->cached != memcg) { /* reset if necessary */ 2130 drain_stock(stock); 2131 stock->cached = memcg; 2132 } 2133 stock->nr_pages += nr_pages; 2134 2135 if (stock->nr_pages > MEMCG_CHARGE_BATCH) 2136 drain_stock(stock); 2137 2138 local_irq_restore(flags); 2139 } 2140 2141 /* 2142 * Drains all per-CPU charge caches for given root_memcg resp. subtree 2143 * of the hierarchy under it. 2144 */ 2145 static void drain_all_stock(struct mem_cgroup *root_memcg) 2146 { 2147 int cpu, curcpu; 2148 2149 /* If someone's already draining, avoid adding running more workers. */ 2150 if (!mutex_trylock(&percpu_charge_mutex)) 2151 return; 2152 /* 2153 * Notify other cpus that system-wide "drain" is running 2154 * We do not care about races with the cpu hotplug because cpu down 2155 * as well as workers from this path always operate on the local 2156 * per-cpu data. CPU up doesn't touch memcg_stock at all. 2157 */ 2158 curcpu = get_cpu(); 2159 for_each_online_cpu(cpu) { 2160 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2161 struct mem_cgroup *memcg; 2162 bool flush = false; 2163 2164 rcu_read_lock(); 2165 memcg = stock->cached; 2166 if (memcg && stock->nr_pages && 2167 mem_cgroup_is_descendant(memcg, root_memcg)) 2168 flush = true; 2169 rcu_read_unlock(); 2170 2171 if (flush && 2172 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 2173 if (cpu == curcpu) 2174 drain_local_stock(&stock->work); 2175 else 2176 schedule_work_on(cpu, &stock->work); 2177 } 2178 } 2179 put_cpu(); 2180 mutex_unlock(&percpu_charge_mutex); 2181 } 2182 2183 static int memcg_hotplug_cpu_dead(unsigned int cpu) 2184 { 2185 struct memcg_stock_pcp *stock; 2186 struct mem_cgroup *memcg, *mi; 2187 2188 stock = &per_cpu(memcg_stock, cpu); 2189 drain_stock(stock); 2190 2191 for_each_mem_cgroup(memcg) { 2192 int i; 2193 2194 for (i = 0; i < MEMCG_NR_STAT; i++) { 2195 int nid; 2196 long x; 2197 2198 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0); 2199 if (x) 2200 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 2201 atomic_long_add(x, &memcg->vmstats[i]); 2202 2203 if (i >= NR_VM_NODE_STAT_ITEMS) 2204 continue; 2205 2206 for_each_node(nid) { 2207 struct mem_cgroup_per_node *pn; 2208 2209 pn = mem_cgroup_nodeinfo(memcg, nid); 2210 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0); 2211 if (x) 2212 do { 2213 atomic_long_add(x, &pn->lruvec_stat[i]); 2214 } while ((pn = parent_nodeinfo(pn, nid))); 2215 } 2216 } 2217 2218 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) { 2219 long x; 2220 2221 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0); 2222 if (x) 2223 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 2224 atomic_long_add(x, &memcg->vmevents[i]); 2225 } 2226 } 2227 2228 return 0; 2229 } 2230 2231 static void reclaim_high(struct mem_cgroup *memcg, 2232 unsigned int nr_pages, 2233 gfp_t gfp_mask) 2234 { 2235 do { 2236 if (page_counter_read(&memcg->memory) <= 2237 READ_ONCE(memcg->memory.high)) 2238 continue; 2239 memcg_memory_event(memcg, MEMCG_HIGH); 2240 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true); 2241 } while ((memcg = parent_mem_cgroup(memcg)) && 2242 !mem_cgroup_is_root(memcg)); 2243 } 2244 2245 static void high_work_func(struct work_struct *work) 2246 { 2247 struct mem_cgroup *memcg; 2248 2249 memcg = container_of(work, struct mem_cgroup, high_work); 2250 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL); 2251 } 2252 2253 /* 2254 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is 2255 * enough to still cause a significant slowdown in most cases, while still 2256 * allowing diagnostics and tracing to proceed without becoming stuck. 2257 */ 2258 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ) 2259 2260 /* 2261 * When calculating the delay, we use these either side of the exponentiation to 2262 * maintain precision and scale to a reasonable number of jiffies (see the table 2263 * below. 2264 * 2265 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the 2266 * overage ratio to a delay. 2267 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down down the 2268 * proposed penalty in order to reduce to a reasonable number of jiffies, and 2269 * to produce a reasonable delay curve. 2270 * 2271 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a 2272 * reasonable delay curve compared to precision-adjusted overage, not 2273 * penalising heavily at first, but still making sure that growth beyond the 2274 * limit penalises misbehaviour cgroups by slowing them down exponentially. For 2275 * example, with a high of 100 megabytes: 2276 * 2277 * +-------+------------------------+ 2278 * | usage | time to allocate in ms | 2279 * +-------+------------------------+ 2280 * | 100M | 0 | 2281 * | 101M | 6 | 2282 * | 102M | 25 | 2283 * | 103M | 57 | 2284 * | 104M | 102 | 2285 * | 105M | 159 | 2286 * | 106M | 230 | 2287 * | 107M | 313 | 2288 * | 108M | 409 | 2289 * | 109M | 518 | 2290 * | 110M | 639 | 2291 * | 111M | 774 | 2292 * | 112M | 921 | 2293 * | 113M | 1081 | 2294 * | 114M | 1254 | 2295 * | 115M | 1439 | 2296 * | 116M | 1638 | 2297 * | 117M | 1849 | 2298 * | 118M | 2000 | 2299 * | 119M | 2000 | 2300 * | 120M | 2000 | 2301 * +-------+------------------------+ 2302 */ 2303 #define MEMCG_DELAY_PRECISION_SHIFT 20 2304 #define MEMCG_DELAY_SCALING_SHIFT 14 2305 2306 static u64 calculate_overage(unsigned long usage, unsigned long high) 2307 { 2308 u64 overage; 2309 2310 if (usage <= high) 2311 return 0; 2312 2313 /* 2314 * Prevent division by 0 in overage calculation by acting as if 2315 * it was a threshold of 1 page 2316 */ 2317 high = max(high, 1UL); 2318 2319 overage = usage - high; 2320 overage <<= MEMCG_DELAY_PRECISION_SHIFT; 2321 return div64_u64(overage, high); 2322 } 2323 2324 static u64 mem_find_max_overage(struct mem_cgroup *memcg) 2325 { 2326 u64 overage, max_overage = 0; 2327 2328 do { 2329 overage = calculate_overage(page_counter_read(&memcg->memory), 2330 READ_ONCE(memcg->memory.high)); 2331 max_overage = max(overage, max_overage); 2332 } while ((memcg = parent_mem_cgroup(memcg)) && 2333 !mem_cgroup_is_root(memcg)); 2334 2335 return max_overage; 2336 } 2337 2338 static u64 swap_find_max_overage(struct mem_cgroup *memcg) 2339 { 2340 u64 overage, max_overage = 0; 2341 2342 do { 2343 overage = calculate_overage(page_counter_read(&memcg->swap), 2344 READ_ONCE(memcg->swap.high)); 2345 if (overage) 2346 memcg_memory_event(memcg, MEMCG_SWAP_HIGH); 2347 max_overage = max(overage, max_overage); 2348 } while ((memcg = parent_mem_cgroup(memcg)) && 2349 !mem_cgroup_is_root(memcg)); 2350 2351 return max_overage; 2352 } 2353 2354 /* 2355 * Get the number of jiffies that we should penalise a mischievous cgroup which 2356 * is exceeding its memory.high by checking both it and its ancestors. 2357 */ 2358 static unsigned long calculate_high_delay(struct mem_cgroup *memcg, 2359 unsigned int nr_pages, 2360 u64 max_overage) 2361 { 2362 unsigned long penalty_jiffies; 2363 2364 if (!max_overage) 2365 return 0; 2366 2367 /* 2368 * We use overage compared to memory.high to calculate the number of 2369 * jiffies to sleep (penalty_jiffies). Ideally this value should be 2370 * fairly lenient on small overages, and increasingly harsh when the 2371 * memcg in question makes it clear that it has no intention of stopping 2372 * its crazy behaviour, so we exponentially increase the delay based on 2373 * overage amount. 2374 */ 2375 penalty_jiffies = max_overage * max_overage * HZ; 2376 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT; 2377 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT; 2378 2379 /* 2380 * Factor in the task's own contribution to the overage, such that four 2381 * N-sized allocations are throttled approximately the same as one 2382 * 4N-sized allocation. 2383 * 2384 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or 2385 * larger the current charge patch is than that. 2386 */ 2387 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH; 2388 } 2389 2390 /* 2391 * Scheduled by try_charge() to be executed from the userland return path 2392 * and reclaims memory over the high limit. 2393 */ 2394 void mem_cgroup_handle_over_high(void) 2395 { 2396 unsigned long penalty_jiffies; 2397 unsigned long pflags; 2398 unsigned int nr_pages = current->memcg_nr_pages_over_high; 2399 struct mem_cgroup *memcg; 2400 2401 if (likely(!nr_pages)) 2402 return; 2403 2404 memcg = get_mem_cgroup_from_mm(current->mm); 2405 reclaim_high(memcg, nr_pages, GFP_KERNEL); 2406 current->memcg_nr_pages_over_high = 0; 2407 2408 /* 2409 * memory.high is breached and reclaim is unable to keep up. Throttle 2410 * allocators proactively to slow down excessive growth. 2411 */ 2412 penalty_jiffies = calculate_high_delay(memcg, nr_pages, 2413 mem_find_max_overage(memcg)); 2414 2415 penalty_jiffies += calculate_high_delay(memcg, nr_pages, 2416 swap_find_max_overage(memcg)); 2417 2418 /* 2419 * Clamp the max delay per usermode return so as to still keep the 2420 * application moving forwards and also permit diagnostics, albeit 2421 * extremely slowly. 2422 */ 2423 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES); 2424 2425 /* 2426 * Don't sleep if the amount of jiffies this memcg owes us is so low 2427 * that it's not even worth doing, in an attempt to be nice to those who 2428 * go only a small amount over their memory.high value and maybe haven't 2429 * been aggressively reclaimed enough yet. 2430 */ 2431 if (penalty_jiffies <= HZ / 100) 2432 goto out; 2433 2434 /* 2435 * If we exit early, we're guaranteed to die (since 2436 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't 2437 * need to account for any ill-begotten jiffies to pay them off later. 2438 */ 2439 psi_memstall_enter(&pflags); 2440 schedule_timeout_killable(penalty_jiffies); 2441 psi_memstall_leave(&pflags); 2442 2443 out: 2444 css_put(&memcg->css); 2445 } 2446 2447 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 2448 unsigned int nr_pages) 2449 { 2450 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages); 2451 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 2452 struct mem_cgroup *mem_over_limit; 2453 struct page_counter *counter; 2454 unsigned long nr_reclaimed; 2455 bool may_swap = true; 2456 bool drained = false; 2457 enum oom_status oom_status; 2458 2459 if (mem_cgroup_is_root(memcg)) 2460 return 0; 2461 retry: 2462 if (consume_stock(memcg, nr_pages)) 2463 return 0; 2464 2465 if (!do_memsw_account() || 2466 page_counter_try_charge(&memcg->memsw, batch, &counter)) { 2467 if (page_counter_try_charge(&memcg->memory, batch, &counter)) 2468 goto done_restock; 2469 if (do_memsw_account()) 2470 page_counter_uncharge(&memcg->memsw, batch); 2471 mem_over_limit = mem_cgroup_from_counter(counter, memory); 2472 } else { 2473 mem_over_limit = mem_cgroup_from_counter(counter, memsw); 2474 may_swap = false; 2475 } 2476 2477 if (batch > nr_pages) { 2478 batch = nr_pages; 2479 goto retry; 2480 } 2481 2482 /* 2483 * Memcg doesn't have a dedicated reserve for atomic 2484 * allocations. But like the global atomic pool, we need to 2485 * put the burden of reclaim on regular allocation requests 2486 * and let these go through as privileged allocations. 2487 */ 2488 if (gfp_mask & __GFP_ATOMIC) 2489 goto force; 2490 2491 /* 2492 * Unlike in global OOM situations, memcg is not in a physical 2493 * memory shortage. Allow dying and OOM-killed tasks to 2494 * bypass the last charges so that they can exit quickly and 2495 * free their memory. 2496 */ 2497 if (unlikely(should_force_charge())) 2498 goto force; 2499 2500 /* 2501 * Prevent unbounded recursion when reclaim operations need to 2502 * allocate memory. This might exceed the limits temporarily, 2503 * but we prefer facilitating memory reclaim and getting back 2504 * under the limit over triggering OOM kills in these cases. 2505 */ 2506 if (unlikely(current->flags & PF_MEMALLOC)) 2507 goto force; 2508 2509 if (unlikely(task_in_memcg_oom(current))) 2510 goto nomem; 2511 2512 if (!gfpflags_allow_blocking(gfp_mask)) 2513 goto nomem; 2514 2515 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2516 2517 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, 2518 gfp_mask, may_swap); 2519 2520 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2521 goto retry; 2522 2523 if (!drained) { 2524 drain_all_stock(mem_over_limit); 2525 drained = true; 2526 goto retry; 2527 } 2528 2529 if (gfp_mask & __GFP_NORETRY) 2530 goto nomem; 2531 /* 2532 * Even though the limit is exceeded at this point, reclaim 2533 * may have been able to free some pages. Retry the charge 2534 * before killing the task. 2535 * 2536 * Only for regular pages, though: huge pages are rather 2537 * unlikely to succeed so close to the limit, and we fall back 2538 * to regular pages anyway in case of failure. 2539 */ 2540 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) 2541 goto retry; 2542 /* 2543 * At task move, charge accounts can be doubly counted. So, it's 2544 * better to wait until the end of task_move if something is going on. 2545 */ 2546 if (mem_cgroup_wait_acct_move(mem_over_limit)) 2547 goto retry; 2548 2549 if (nr_retries--) 2550 goto retry; 2551 2552 if (gfp_mask & __GFP_RETRY_MAYFAIL) 2553 goto nomem; 2554 2555 if (gfp_mask & __GFP_NOFAIL) 2556 goto force; 2557 2558 if (fatal_signal_pending(current)) 2559 goto force; 2560 2561 /* 2562 * keep retrying as long as the memcg oom killer is able to make 2563 * a forward progress or bypass the charge if the oom killer 2564 * couldn't make any progress. 2565 */ 2566 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask, 2567 get_order(nr_pages * PAGE_SIZE)); 2568 switch (oom_status) { 2569 case OOM_SUCCESS: 2570 nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 2571 goto retry; 2572 case OOM_FAILED: 2573 goto force; 2574 default: 2575 goto nomem; 2576 } 2577 nomem: 2578 if (!(gfp_mask & __GFP_NOFAIL)) 2579 return -ENOMEM; 2580 force: 2581 /* 2582 * The allocation either can't fail or will lead to more memory 2583 * being freed very soon. Allow memory usage go over the limit 2584 * temporarily by force charging it. 2585 */ 2586 page_counter_charge(&memcg->memory, nr_pages); 2587 if (do_memsw_account()) 2588 page_counter_charge(&memcg->memsw, nr_pages); 2589 css_get_many(&memcg->css, nr_pages); 2590 2591 return 0; 2592 2593 done_restock: 2594 css_get_many(&memcg->css, batch); 2595 if (batch > nr_pages) 2596 refill_stock(memcg, batch - nr_pages); 2597 2598 /* 2599 * If the hierarchy is above the normal consumption range, schedule 2600 * reclaim on returning to userland. We can perform reclaim here 2601 * if __GFP_RECLAIM but let's always punt for simplicity and so that 2602 * GFP_KERNEL can consistently be used during reclaim. @memcg is 2603 * not recorded as it most likely matches current's and won't 2604 * change in the meantime. As high limit is checked again before 2605 * reclaim, the cost of mismatch is negligible. 2606 */ 2607 do { 2608 bool mem_high, swap_high; 2609 2610 mem_high = page_counter_read(&memcg->memory) > 2611 READ_ONCE(memcg->memory.high); 2612 swap_high = page_counter_read(&memcg->swap) > 2613 READ_ONCE(memcg->swap.high); 2614 2615 /* Don't bother a random interrupted task */ 2616 if (in_interrupt()) { 2617 if (mem_high) { 2618 schedule_work(&memcg->high_work); 2619 break; 2620 } 2621 continue; 2622 } 2623 2624 if (mem_high || swap_high) { 2625 /* 2626 * The allocating tasks in this cgroup will need to do 2627 * reclaim or be throttled to prevent further growth 2628 * of the memory or swap footprints. 2629 * 2630 * Target some best-effort fairness between the tasks, 2631 * and distribute reclaim work and delay penalties 2632 * based on how much each task is actually allocating. 2633 */ 2634 current->memcg_nr_pages_over_high += batch; 2635 set_notify_resume(current); 2636 break; 2637 } 2638 } while ((memcg = parent_mem_cgroup(memcg))); 2639 2640 return 0; 2641 } 2642 2643 #if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU) 2644 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages) 2645 { 2646 if (mem_cgroup_is_root(memcg)) 2647 return; 2648 2649 page_counter_uncharge(&memcg->memory, nr_pages); 2650 if (do_memsw_account()) 2651 page_counter_uncharge(&memcg->memsw, nr_pages); 2652 2653 css_put_many(&memcg->css, nr_pages); 2654 } 2655 #endif 2656 2657 static void commit_charge(struct page *page, struct mem_cgroup *memcg) 2658 { 2659 VM_BUG_ON_PAGE(page->mem_cgroup, page); 2660 /* 2661 * Any of the following ensures page->mem_cgroup stability: 2662 * 2663 * - the page lock 2664 * - LRU isolation 2665 * - lock_page_memcg() 2666 * - exclusive reference 2667 */ 2668 page->mem_cgroup = memcg; 2669 } 2670 2671 #ifdef CONFIG_MEMCG_KMEM 2672 /* 2673 * Returns a pointer to the memory cgroup to which the kernel object is charged. 2674 * 2675 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(), 2676 * cgroup_mutex, etc. 2677 */ 2678 struct mem_cgroup *mem_cgroup_from_obj(void *p) 2679 { 2680 struct page *page; 2681 2682 if (mem_cgroup_disabled()) 2683 return NULL; 2684 2685 page = virt_to_head_page(p); 2686 2687 /* 2688 * Slab pages don't have page->mem_cgroup set because corresponding 2689 * kmem caches can be reparented during the lifetime. That's why 2690 * memcg_from_slab_page() should be used instead. 2691 */ 2692 if (PageSlab(page)) 2693 return memcg_from_slab_page(page); 2694 2695 /* All other pages use page->mem_cgroup */ 2696 return page->mem_cgroup; 2697 } 2698 2699 static int memcg_alloc_cache_id(void) 2700 { 2701 int id, size; 2702 int err; 2703 2704 id = ida_simple_get(&memcg_cache_ida, 2705 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL); 2706 if (id < 0) 2707 return id; 2708 2709 if (id < memcg_nr_cache_ids) 2710 return id; 2711 2712 /* 2713 * There's no space for the new id in memcg_caches arrays, 2714 * so we have to grow them. 2715 */ 2716 down_write(&memcg_cache_ids_sem); 2717 2718 size = 2 * (id + 1); 2719 if (size < MEMCG_CACHES_MIN_SIZE) 2720 size = MEMCG_CACHES_MIN_SIZE; 2721 else if (size > MEMCG_CACHES_MAX_SIZE) 2722 size = MEMCG_CACHES_MAX_SIZE; 2723 2724 err = memcg_update_all_caches(size); 2725 if (!err) 2726 err = memcg_update_all_list_lrus(size); 2727 if (!err) 2728 memcg_nr_cache_ids = size; 2729 2730 up_write(&memcg_cache_ids_sem); 2731 2732 if (err) { 2733 ida_simple_remove(&memcg_cache_ida, id); 2734 return err; 2735 } 2736 return id; 2737 } 2738 2739 static void memcg_free_cache_id(int id) 2740 { 2741 ida_simple_remove(&memcg_cache_ida, id); 2742 } 2743 2744 struct memcg_kmem_cache_create_work { 2745 struct mem_cgroup *memcg; 2746 struct kmem_cache *cachep; 2747 struct work_struct work; 2748 }; 2749 2750 static void memcg_kmem_cache_create_func(struct work_struct *w) 2751 { 2752 struct memcg_kmem_cache_create_work *cw = 2753 container_of(w, struct memcg_kmem_cache_create_work, work); 2754 struct mem_cgroup *memcg = cw->memcg; 2755 struct kmem_cache *cachep = cw->cachep; 2756 2757 memcg_create_kmem_cache(memcg, cachep); 2758 2759 css_put(&memcg->css); 2760 kfree(cw); 2761 } 2762 2763 /* 2764 * Enqueue the creation of a per-memcg kmem_cache. 2765 */ 2766 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg, 2767 struct kmem_cache *cachep) 2768 { 2769 struct memcg_kmem_cache_create_work *cw; 2770 2771 if (!css_tryget_online(&memcg->css)) 2772 return; 2773 2774 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN); 2775 if (!cw) { 2776 css_put(&memcg->css); 2777 return; 2778 } 2779 2780 cw->memcg = memcg; 2781 cw->cachep = cachep; 2782 INIT_WORK(&cw->work, memcg_kmem_cache_create_func); 2783 2784 queue_work(memcg_kmem_cache_wq, &cw->work); 2785 } 2786 2787 static inline bool memcg_kmem_bypass(void) 2788 { 2789 if (in_interrupt()) 2790 return true; 2791 2792 /* Allow remote memcg charging in kthread contexts. */ 2793 if ((!current->mm || (current->flags & PF_KTHREAD)) && 2794 !current->active_memcg) 2795 return true; 2796 return false; 2797 } 2798 2799 /** 2800 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation 2801 * @cachep: the original global kmem cache 2802 * 2803 * Return the kmem_cache we're supposed to use for a slab allocation. 2804 * We try to use the current memcg's version of the cache. 2805 * 2806 * If the cache does not exist yet, if we are the first user of it, we 2807 * create it asynchronously in a workqueue and let the current allocation 2808 * go through with the original cache. 2809 * 2810 * This function takes a reference to the cache it returns to assure it 2811 * won't get destroyed while we are working with it. Once the caller is 2812 * done with it, memcg_kmem_put_cache() must be called to release the 2813 * reference. 2814 */ 2815 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep) 2816 { 2817 struct mem_cgroup *memcg; 2818 struct kmem_cache *memcg_cachep; 2819 struct memcg_cache_array *arr; 2820 int kmemcg_id; 2821 2822 VM_BUG_ON(!is_root_cache(cachep)); 2823 2824 if (memcg_kmem_bypass()) 2825 return cachep; 2826 2827 rcu_read_lock(); 2828 2829 if (unlikely(current->active_memcg)) 2830 memcg = current->active_memcg; 2831 else 2832 memcg = mem_cgroup_from_task(current); 2833 2834 if (!memcg || memcg == root_mem_cgroup) 2835 goto out_unlock; 2836 2837 kmemcg_id = READ_ONCE(memcg->kmemcg_id); 2838 if (kmemcg_id < 0) 2839 goto out_unlock; 2840 2841 arr = rcu_dereference(cachep->memcg_params.memcg_caches); 2842 2843 /* 2844 * Make sure we will access the up-to-date value. The code updating 2845 * memcg_caches issues a write barrier to match the data dependency 2846 * barrier inside READ_ONCE() (see memcg_create_kmem_cache()). 2847 */ 2848 memcg_cachep = READ_ONCE(arr->entries[kmemcg_id]); 2849 2850 /* 2851 * If we are in a safe context (can wait, and not in interrupt 2852 * context), we could be be predictable and return right away. 2853 * This would guarantee that the allocation being performed 2854 * already belongs in the new cache. 2855 * 2856 * However, there are some clashes that can arrive from locking. 2857 * For instance, because we acquire the slab_mutex while doing 2858 * memcg_create_kmem_cache, this means no further allocation 2859 * could happen with the slab_mutex held. So it's better to 2860 * defer everything. 2861 * 2862 * If the memcg is dying or memcg_cache is about to be released, 2863 * don't bother creating new kmem_caches. Because memcg_cachep 2864 * is ZEROed as the fist step of kmem offlining, we don't need 2865 * percpu_ref_tryget_live() here. css_tryget_online() check in 2866 * memcg_schedule_kmem_cache_create() will prevent us from 2867 * creation of a new kmem_cache. 2868 */ 2869 if (unlikely(!memcg_cachep)) 2870 memcg_schedule_kmem_cache_create(memcg, cachep); 2871 else if (percpu_ref_tryget(&memcg_cachep->memcg_params.refcnt)) 2872 cachep = memcg_cachep; 2873 out_unlock: 2874 rcu_read_unlock(); 2875 return cachep; 2876 } 2877 2878 /** 2879 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache 2880 * @cachep: the cache returned by memcg_kmem_get_cache 2881 */ 2882 void memcg_kmem_put_cache(struct kmem_cache *cachep) 2883 { 2884 if (!is_root_cache(cachep)) 2885 percpu_ref_put(&cachep->memcg_params.refcnt); 2886 } 2887 2888 /** 2889 * __memcg_kmem_charge: charge a number of kernel pages to a memcg 2890 * @memcg: memory cgroup to charge 2891 * @gfp: reclaim mode 2892 * @nr_pages: number of pages to charge 2893 * 2894 * Returns 0 on success, an error code on failure. 2895 */ 2896 int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp, 2897 unsigned int nr_pages) 2898 { 2899 struct page_counter *counter; 2900 int ret; 2901 2902 ret = try_charge(memcg, gfp, nr_pages); 2903 if (ret) 2904 return ret; 2905 2906 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && 2907 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) { 2908 2909 /* 2910 * Enforce __GFP_NOFAIL allocation because callers are not 2911 * prepared to see failures and likely do not have any failure 2912 * handling code. 2913 */ 2914 if (gfp & __GFP_NOFAIL) { 2915 page_counter_charge(&memcg->kmem, nr_pages); 2916 return 0; 2917 } 2918 cancel_charge(memcg, nr_pages); 2919 return -ENOMEM; 2920 } 2921 return 0; 2922 } 2923 2924 /** 2925 * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg 2926 * @memcg: memcg to uncharge 2927 * @nr_pages: number of pages to uncharge 2928 */ 2929 void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages) 2930 { 2931 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 2932 page_counter_uncharge(&memcg->kmem, nr_pages); 2933 2934 page_counter_uncharge(&memcg->memory, nr_pages); 2935 if (do_memsw_account()) 2936 page_counter_uncharge(&memcg->memsw, nr_pages); 2937 } 2938 2939 /** 2940 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup 2941 * @page: page to charge 2942 * @gfp: reclaim mode 2943 * @order: allocation order 2944 * 2945 * Returns 0 on success, an error code on failure. 2946 */ 2947 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order) 2948 { 2949 struct mem_cgroup *memcg; 2950 int ret = 0; 2951 2952 if (memcg_kmem_bypass()) 2953 return 0; 2954 2955 memcg = get_mem_cgroup_from_current(); 2956 if (!mem_cgroup_is_root(memcg)) { 2957 ret = __memcg_kmem_charge(memcg, gfp, 1 << order); 2958 if (!ret) { 2959 page->mem_cgroup = memcg; 2960 __SetPageKmemcg(page); 2961 } 2962 } 2963 css_put(&memcg->css); 2964 return ret; 2965 } 2966 2967 /** 2968 * __memcg_kmem_uncharge_page: uncharge a kmem page 2969 * @page: page to uncharge 2970 * @order: allocation order 2971 */ 2972 void __memcg_kmem_uncharge_page(struct page *page, int order) 2973 { 2974 struct mem_cgroup *memcg = page->mem_cgroup; 2975 unsigned int nr_pages = 1 << order; 2976 2977 if (!memcg) 2978 return; 2979 2980 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page); 2981 __memcg_kmem_uncharge(memcg, nr_pages); 2982 page->mem_cgroup = NULL; 2983 2984 /* slab pages do not have PageKmemcg flag set */ 2985 if (PageKmemcg(page)) 2986 __ClearPageKmemcg(page); 2987 2988 css_put_many(&memcg->css, nr_pages); 2989 } 2990 #endif /* CONFIG_MEMCG_KMEM */ 2991 2992 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2993 2994 /* 2995 * Because tail pages are not marked as "used", set it. We're under 2996 * pgdat->lru_lock and migration entries setup in all page mappings. 2997 */ 2998 void mem_cgroup_split_huge_fixup(struct page *head) 2999 { 3000 int i; 3001 3002 if (mem_cgroup_disabled()) 3003 return; 3004 3005 for (i = 1; i < HPAGE_PMD_NR; i++) 3006 head[i].mem_cgroup = head->mem_cgroup; 3007 } 3008 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 3009 3010 #ifdef CONFIG_MEMCG_SWAP 3011 /** 3012 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 3013 * @entry: swap entry to be moved 3014 * @from: mem_cgroup which the entry is moved from 3015 * @to: mem_cgroup which the entry is moved to 3016 * 3017 * It succeeds only when the swap_cgroup's record for this entry is the same 3018 * as the mem_cgroup's id of @from. 3019 * 3020 * Returns 0 on success, -EINVAL on failure. 3021 * 3022 * The caller must have charged to @to, IOW, called page_counter_charge() about 3023 * both res and memsw, and called css_get(). 3024 */ 3025 static int mem_cgroup_move_swap_account(swp_entry_t entry, 3026 struct mem_cgroup *from, struct mem_cgroup *to) 3027 { 3028 unsigned short old_id, new_id; 3029 3030 old_id = mem_cgroup_id(from); 3031 new_id = mem_cgroup_id(to); 3032 3033 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 3034 mod_memcg_state(from, MEMCG_SWAP, -1); 3035 mod_memcg_state(to, MEMCG_SWAP, 1); 3036 return 0; 3037 } 3038 return -EINVAL; 3039 } 3040 #else 3041 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 3042 struct mem_cgroup *from, struct mem_cgroup *to) 3043 { 3044 return -EINVAL; 3045 } 3046 #endif 3047 3048 static DEFINE_MUTEX(memcg_max_mutex); 3049 3050 static int mem_cgroup_resize_max(struct mem_cgroup *memcg, 3051 unsigned long max, bool memsw) 3052 { 3053 bool enlarge = false; 3054 bool drained = false; 3055 int ret; 3056 bool limits_invariant; 3057 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory; 3058 3059 do { 3060 if (signal_pending(current)) { 3061 ret = -EINTR; 3062 break; 3063 } 3064 3065 mutex_lock(&memcg_max_mutex); 3066 /* 3067 * Make sure that the new limit (memsw or memory limit) doesn't 3068 * break our basic invariant rule memory.max <= memsw.max. 3069 */ 3070 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) : 3071 max <= memcg->memsw.max; 3072 if (!limits_invariant) { 3073 mutex_unlock(&memcg_max_mutex); 3074 ret = -EINVAL; 3075 break; 3076 } 3077 if (max > counter->max) 3078 enlarge = true; 3079 ret = page_counter_set_max(counter, max); 3080 mutex_unlock(&memcg_max_mutex); 3081 3082 if (!ret) 3083 break; 3084 3085 if (!drained) { 3086 drain_all_stock(memcg); 3087 drained = true; 3088 continue; 3089 } 3090 3091 if (!try_to_free_mem_cgroup_pages(memcg, 1, 3092 GFP_KERNEL, !memsw)) { 3093 ret = -EBUSY; 3094 break; 3095 } 3096 } while (true); 3097 3098 if (!ret && enlarge) 3099 memcg_oom_recover(memcg); 3100 3101 return ret; 3102 } 3103 3104 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 3105 gfp_t gfp_mask, 3106 unsigned long *total_scanned) 3107 { 3108 unsigned long nr_reclaimed = 0; 3109 struct mem_cgroup_per_node *mz, *next_mz = NULL; 3110 unsigned long reclaimed; 3111 int loop = 0; 3112 struct mem_cgroup_tree_per_node *mctz; 3113 unsigned long excess; 3114 unsigned long nr_scanned; 3115 3116 if (order > 0) 3117 return 0; 3118 3119 mctz = soft_limit_tree_node(pgdat->node_id); 3120 3121 /* 3122 * Do not even bother to check the largest node if the root 3123 * is empty. Do it lockless to prevent lock bouncing. Races 3124 * are acceptable as soft limit is best effort anyway. 3125 */ 3126 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root)) 3127 return 0; 3128 3129 /* 3130 * This loop can run a while, specially if mem_cgroup's continuously 3131 * keep exceeding their soft limit and putting the system under 3132 * pressure 3133 */ 3134 do { 3135 if (next_mz) 3136 mz = next_mz; 3137 else 3138 mz = mem_cgroup_largest_soft_limit_node(mctz); 3139 if (!mz) 3140 break; 3141 3142 nr_scanned = 0; 3143 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat, 3144 gfp_mask, &nr_scanned); 3145 nr_reclaimed += reclaimed; 3146 *total_scanned += nr_scanned; 3147 spin_lock_irq(&mctz->lock); 3148 __mem_cgroup_remove_exceeded(mz, mctz); 3149 3150 /* 3151 * If we failed to reclaim anything from this memory cgroup 3152 * it is time to move on to the next cgroup 3153 */ 3154 next_mz = NULL; 3155 if (!reclaimed) 3156 next_mz = __mem_cgroup_largest_soft_limit_node(mctz); 3157 3158 excess = soft_limit_excess(mz->memcg); 3159 /* 3160 * One school of thought says that we should not add 3161 * back the node to the tree if reclaim returns 0. 3162 * But our reclaim could return 0, simply because due 3163 * to priority we are exposing a smaller subset of 3164 * memory to reclaim from. Consider this as a longer 3165 * term TODO. 3166 */ 3167 /* If excess == 0, no tree ops */ 3168 __mem_cgroup_insert_exceeded(mz, mctz, excess); 3169 spin_unlock_irq(&mctz->lock); 3170 css_put(&mz->memcg->css); 3171 loop++; 3172 /* 3173 * Could not reclaim anything and there are no more 3174 * mem cgroups to try or we seem to be looping without 3175 * reclaiming anything. 3176 */ 3177 if (!nr_reclaimed && 3178 (next_mz == NULL || 3179 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 3180 break; 3181 } while (!nr_reclaimed); 3182 if (next_mz) 3183 css_put(&next_mz->memcg->css); 3184 return nr_reclaimed; 3185 } 3186 3187 /* 3188 * Test whether @memcg has children, dead or alive. Note that this 3189 * function doesn't care whether @memcg has use_hierarchy enabled and 3190 * returns %true if there are child csses according to the cgroup 3191 * hierarchy. Testing use_hierarchy is the caller's responsibility. 3192 */ 3193 static inline bool memcg_has_children(struct mem_cgroup *memcg) 3194 { 3195 bool ret; 3196 3197 rcu_read_lock(); 3198 ret = css_next_child(NULL, &memcg->css); 3199 rcu_read_unlock(); 3200 return ret; 3201 } 3202 3203 /* 3204 * Reclaims as many pages from the given memcg as possible. 3205 * 3206 * Caller is responsible for holding css reference for memcg. 3207 */ 3208 static int mem_cgroup_force_empty(struct mem_cgroup *memcg) 3209 { 3210 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 3211 3212 /* we call try-to-free pages for make this cgroup empty */ 3213 lru_add_drain_all(); 3214 3215 drain_all_stock(memcg); 3216 3217 /* try to free all pages in this cgroup */ 3218 while (nr_retries && page_counter_read(&memcg->memory)) { 3219 int progress; 3220 3221 if (signal_pending(current)) 3222 return -EINTR; 3223 3224 progress = try_to_free_mem_cgroup_pages(memcg, 1, 3225 GFP_KERNEL, true); 3226 if (!progress) { 3227 nr_retries--; 3228 /* maybe some writeback is necessary */ 3229 congestion_wait(BLK_RW_ASYNC, HZ/10); 3230 } 3231 3232 } 3233 3234 return 0; 3235 } 3236 3237 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of, 3238 char *buf, size_t nbytes, 3239 loff_t off) 3240 { 3241 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3242 3243 if (mem_cgroup_is_root(memcg)) 3244 return -EINVAL; 3245 return mem_cgroup_force_empty(memcg) ?: nbytes; 3246 } 3247 3248 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, 3249 struct cftype *cft) 3250 { 3251 return mem_cgroup_from_css(css)->use_hierarchy; 3252 } 3253 3254 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, 3255 struct cftype *cft, u64 val) 3256 { 3257 int retval = 0; 3258 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3259 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent); 3260 3261 if (memcg->use_hierarchy == val) 3262 return 0; 3263 3264 /* 3265 * If parent's use_hierarchy is set, we can't make any modifications 3266 * in the child subtrees. If it is unset, then the change can 3267 * occur, provided the current cgroup has no children. 3268 * 3269 * For the root cgroup, parent_mem is NULL, we allow value to be 3270 * set if there are no children. 3271 */ 3272 if ((!parent_memcg || !parent_memcg->use_hierarchy) && 3273 (val == 1 || val == 0)) { 3274 if (!memcg_has_children(memcg)) 3275 memcg->use_hierarchy = val; 3276 else 3277 retval = -EBUSY; 3278 } else 3279 retval = -EINVAL; 3280 3281 return retval; 3282 } 3283 3284 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 3285 { 3286 unsigned long val; 3287 3288 if (mem_cgroup_is_root(memcg)) { 3289 val = memcg_page_state(memcg, NR_FILE_PAGES) + 3290 memcg_page_state(memcg, NR_ANON_MAPPED); 3291 if (swap) 3292 val += memcg_page_state(memcg, MEMCG_SWAP); 3293 } else { 3294 if (!swap) 3295 val = page_counter_read(&memcg->memory); 3296 else 3297 val = page_counter_read(&memcg->memsw); 3298 } 3299 return val; 3300 } 3301 3302 enum { 3303 RES_USAGE, 3304 RES_LIMIT, 3305 RES_MAX_USAGE, 3306 RES_FAILCNT, 3307 RES_SOFT_LIMIT, 3308 }; 3309 3310 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css, 3311 struct cftype *cft) 3312 { 3313 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3314 struct page_counter *counter; 3315 3316 switch (MEMFILE_TYPE(cft->private)) { 3317 case _MEM: 3318 counter = &memcg->memory; 3319 break; 3320 case _MEMSWAP: 3321 counter = &memcg->memsw; 3322 break; 3323 case _KMEM: 3324 counter = &memcg->kmem; 3325 break; 3326 case _TCP: 3327 counter = &memcg->tcpmem; 3328 break; 3329 default: 3330 BUG(); 3331 } 3332 3333 switch (MEMFILE_ATTR(cft->private)) { 3334 case RES_USAGE: 3335 if (counter == &memcg->memory) 3336 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE; 3337 if (counter == &memcg->memsw) 3338 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE; 3339 return (u64)page_counter_read(counter) * PAGE_SIZE; 3340 case RES_LIMIT: 3341 return (u64)counter->max * PAGE_SIZE; 3342 case RES_MAX_USAGE: 3343 return (u64)counter->watermark * PAGE_SIZE; 3344 case RES_FAILCNT: 3345 return counter->failcnt; 3346 case RES_SOFT_LIMIT: 3347 return (u64)memcg->soft_limit * PAGE_SIZE; 3348 default: 3349 BUG(); 3350 } 3351 } 3352 3353 static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg) 3354 { 3355 unsigned long stat[MEMCG_NR_STAT] = {0}; 3356 struct mem_cgroup *mi; 3357 int node, cpu, i; 3358 3359 for_each_online_cpu(cpu) 3360 for (i = 0; i < MEMCG_NR_STAT; i++) 3361 stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu); 3362 3363 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 3364 for (i = 0; i < MEMCG_NR_STAT; i++) 3365 atomic_long_add(stat[i], &mi->vmstats[i]); 3366 3367 for_each_node(node) { 3368 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node]; 3369 struct mem_cgroup_per_node *pi; 3370 3371 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) 3372 stat[i] = 0; 3373 3374 for_each_online_cpu(cpu) 3375 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) 3376 stat[i] += per_cpu( 3377 pn->lruvec_stat_cpu->count[i], cpu); 3378 3379 for (pi = pn; pi; pi = parent_nodeinfo(pi, node)) 3380 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) 3381 atomic_long_add(stat[i], &pi->lruvec_stat[i]); 3382 } 3383 } 3384 3385 static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg) 3386 { 3387 unsigned long events[NR_VM_EVENT_ITEMS]; 3388 struct mem_cgroup *mi; 3389 int cpu, i; 3390 3391 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) 3392 events[i] = 0; 3393 3394 for_each_online_cpu(cpu) 3395 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) 3396 events[i] += per_cpu(memcg->vmstats_percpu->events[i], 3397 cpu); 3398 3399 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 3400 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) 3401 atomic_long_add(events[i], &mi->vmevents[i]); 3402 } 3403 3404 #ifdef CONFIG_MEMCG_KMEM 3405 static int memcg_online_kmem(struct mem_cgroup *memcg) 3406 { 3407 int memcg_id; 3408 3409 if (cgroup_memory_nokmem) 3410 return 0; 3411 3412 BUG_ON(memcg->kmemcg_id >= 0); 3413 BUG_ON(memcg->kmem_state); 3414 3415 memcg_id = memcg_alloc_cache_id(); 3416 if (memcg_id < 0) 3417 return memcg_id; 3418 3419 static_branch_inc(&memcg_kmem_enabled_key); 3420 /* 3421 * A memory cgroup is considered kmem-online as soon as it gets 3422 * kmemcg_id. Setting the id after enabling static branching will 3423 * guarantee no one starts accounting before all call sites are 3424 * patched. 3425 */ 3426 memcg->kmemcg_id = memcg_id; 3427 memcg->kmem_state = KMEM_ONLINE; 3428 INIT_LIST_HEAD(&memcg->kmem_caches); 3429 3430 return 0; 3431 } 3432 3433 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3434 { 3435 struct cgroup_subsys_state *css; 3436 struct mem_cgroup *parent, *child; 3437 int kmemcg_id; 3438 3439 if (memcg->kmem_state != KMEM_ONLINE) 3440 return; 3441 /* 3442 * Clear the online state before clearing memcg_caches array 3443 * entries. The slab_mutex in memcg_deactivate_kmem_caches() 3444 * guarantees that no cache will be created for this cgroup 3445 * after we are done (see memcg_create_kmem_cache()). 3446 */ 3447 memcg->kmem_state = KMEM_ALLOCATED; 3448 3449 parent = parent_mem_cgroup(memcg); 3450 if (!parent) 3451 parent = root_mem_cgroup; 3452 3453 /* 3454 * Deactivate and reparent kmem_caches. 3455 */ 3456 memcg_deactivate_kmem_caches(memcg, parent); 3457 3458 kmemcg_id = memcg->kmemcg_id; 3459 BUG_ON(kmemcg_id < 0); 3460 3461 /* 3462 * Change kmemcg_id of this cgroup and all its descendants to the 3463 * parent's id, and then move all entries from this cgroup's list_lrus 3464 * to ones of the parent. After we have finished, all list_lrus 3465 * corresponding to this cgroup are guaranteed to remain empty. The 3466 * ordering is imposed by list_lru_node->lock taken by 3467 * memcg_drain_all_list_lrus(). 3468 */ 3469 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */ 3470 css_for_each_descendant_pre(css, &memcg->css) { 3471 child = mem_cgroup_from_css(css); 3472 BUG_ON(child->kmemcg_id != kmemcg_id); 3473 child->kmemcg_id = parent->kmemcg_id; 3474 if (!memcg->use_hierarchy) 3475 break; 3476 } 3477 rcu_read_unlock(); 3478 3479 memcg_drain_all_list_lrus(kmemcg_id, parent); 3480 3481 memcg_free_cache_id(kmemcg_id); 3482 } 3483 3484 static void memcg_free_kmem(struct mem_cgroup *memcg) 3485 { 3486 /* css_alloc() failed, offlining didn't happen */ 3487 if (unlikely(memcg->kmem_state == KMEM_ONLINE)) 3488 memcg_offline_kmem(memcg); 3489 3490 if (memcg->kmem_state == KMEM_ALLOCATED) { 3491 WARN_ON(!list_empty(&memcg->kmem_caches)); 3492 static_branch_dec(&memcg_kmem_enabled_key); 3493 } 3494 } 3495 #else 3496 static int memcg_online_kmem(struct mem_cgroup *memcg) 3497 { 3498 return 0; 3499 } 3500 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3501 { 3502 } 3503 static void memcg_free_kmem(struct mem_cgroup *memcg) 3504 { 3505 } 3506 #endif /* CONFIG_MEMCG_KMEM */ 3507 3508 static int memcg_update_kmem_max(struct mem_cgroup *memcg, 3509 unsigned long max) 3510 { 3511 int ret; 3512 3513 mutex_lock(&memcg_max_mutex); 3514 ret = page_counter_set_max(&memcg->kmem, max); 3515 mutex_unlock(&memcg_max_mutex); 3516 return ret; 3517 } 3518 3519 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max) 3520 { 3521 int ret; 3522 3523 mutex_lock(&memcg_max_mutex); 3524 3525 ret = page_counter_set_max(&memcg->tcpmem, max); 3526 if (ret) 3527 goto out; 3528 3529 if (!memcg->tcpmem_active) { 3530 /* 3531 * The active flag needs to be written after the static_key 3532 * update. This is what guarantees that the socket activation 3533 * function is the last one to run. See mem_cgroup_sk_alloc() 3534 * for details, and note that we don't mark any socket as 3535 * belonging to this memcg until that flag is up. 3536 * 3537 * We need to do this, because static_keys will span multiple 3538 * sites, but we can't control their order. If we mark a socket 3539 * as accounted, but the accounting functions are not patched in 3540 * yet, we'll lose accounting. 3541 * 3542 * We never race with the readers in mem_cgroup_sk_alloc(), 3543 * because when this value change, the code to process it is not 3544 * patched in yet. 3545 */ 3546 static_branch_inc(&memcg_sockets_enabled_key); 3547 memcg->tcpmem_active = true; 3548 } 3549 out: 3550 mutex_unlock(&memcg_max_mutex); 3551 return ret; 3552 } 3553 3554 /* 3555 * The user of this function is... 3556 * RES_LIMIT. 3557 */ 3558 static ssize_t mem_cgroup_write(struct kernfs_open_file *of, 3559 char *buf, size_t nbytes, loff_t off) 3560 { 3561 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3562 unsigned long nr_pages; 3563 int ret; 3564 3565 buf = strstrip(buf); 3566 ret = page_counter_memparse(buf, "-1", &nr_pages); 3567 if (ret) 3568 return ret; 3569 3570 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3571 case RES_LIMIT: 3572 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 3573 ret = -EINVAL; 3574 break; 3575 } 3576 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3577 case _MEM: 3578 ret = mem_cgroup_resize_max(memcg, nr_pages, false); 3579 break; 3580 case _MEMSWAP: 3581 ret = mem_cgroup_resize_max(memcg, nr_pages, true); 3582 break; 3583 case _KMEM: 3584 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. " 3585 "Please report your usecase to linux-mm@kvack.org if you " 3586 "depend on this functionality.\n"); 3587 ret = memcg_update_kmem_max(memcg, nr_pages); 3588 break; 3589 case _TCP: 3590 ret = memcg_update_tcp_max(memcg, nr_pages); 3591 break; 3592 } 3593 break; 3594 case RES_SOFT_LIMIT: 3595 memcg->soft_limit = nr_pages; 3596 ret = 0; 3597 break; 3598 } 3599 return ret ?: nbytes; 3600 } 3601 3602 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf, 3603 size_t nbytes, loff_t off) 3604 { 3605 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3606 struct page_counter *counter; 3607 3608 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3609 case _MEM: 3610 counter = &memcg->memory; 3611 break; 3612 case _MEMSWAP: 3613 counter = &memcg->memsw; 3614 break; 3615 case _KMEM: 3616 counter = &memcg->kmem; 3617 break; 3618 case _TCP: 3619 counter = &memcg->tcpmem; 3620 break; 3621 default: 3622 BUG(); 3623 } 3624 3625 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3626 case RES_MAX_USAGE: 3627 page_counter_reset_watermark(counter); 3628 break; 3629 case RES_FAILCNT: 3630 counter->failcnt = 0; 3631 break; 3632 default: 3633 BUG(); 3634 } 3635 3636 return nbytes; 3637 } 3638 3639 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, 3640 struct cftype *cft) 3641 { 3642 return mem_cgroup_from_css(css)->move_charge_at_immigrate; 3643 } 3644 3645 #ifdef CONFIG_MMU 3646 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3647 struct cftype *cft, u64 val) 3648 { 3649 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3650 3651 if (val & ~MOVE_MASK) 3652 return -EINVAL; 3653 3654 /* 3655 * No kind of locking is needed in here, because ->can_attach() will 3656 * check this value once in the beginning of the process, and then carry 3657 * on with stale data. This means that changes to this value will only 3658 * affect task migrations starting after the change. 3659 */ 3660 memcg->move_charge_at_immigrate = val; 3661 return 0; 3662 } 3663 #else 3664 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3665 struct cftype *cft, u64 val) 3666 { 3667 return -ENOSYS; 3668 } 3669 #endif 3670 3671 #ifdef CONFIG_NUMA 3672 3673 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE)) 3674 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON)) 3675 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1) 3676 3677 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 3678 int nid, unsigned int lru_mask, bool tree) 3679 { 3680 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); 3681 unsigned long nr = 0; 3682 enum lru_list lru; 3683 3684 VM_BUG_ON((unsigned)nid >= nr_node_ids); 3685 3686 for_each_lru(lru) { 3687 if (!(BIT(lru) & lru_mask)) 3688 continue; 3689 if (tree) 3690 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru); 3691 else 3692 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru); 3693 } 3694 return nr; 3695 } 3696 3697 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 3698 unsigned int lru_mask, 3699 bool tree) 3700 { 3701 unsigned long nr = 0; 3702 enum lru_list lru; 3703 3704 for_each_lru(lru) { 3705 if (!(BIT(lru) & lru_mask)) 3706 continue; 3707 if (tree) 3708 nr += memcg_page_state(memcg, NR_LRU_BASE + lru); 3709 else 3710 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru); 3711 } 3712 return nr; 3713 } 3714 3715 static int memcg_numa_stat_show(struct seq_file *m, void *v) 3716 { 3717 struct numa_stat { 3718 const char *name; 3719 unsigned int lru_mask; 3720 }; 3721 3722 static const struct numa_stat stats[] = { 3723 { "total", LRU_ALL }, 3724 { "file", LRU_ALL_FILE }, 3725 { "anon", LRU_ALL_ANON }, 3726 { "unevictable", BIT(LRU_UNEVICTABLE) }, 3727 }; 3728 const struct numa_stat *stat; 3729 int nid; 3730 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 3731 3732 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3733 seq_printf(m, "%s=%lu", stat->name, 3734 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask, 3735 false)); 3736 for_each_node_state(nid, N_MEMORY) 3737 seq_printf(m, " N%d=%lu", nid, 3738 mem_cgroup_node_nr_lru_pages(memcg, nid, 3739 stat->lru_mask, false)); 3740 seq_putc(m, '\n'); 3741 } 3742 3743 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3744 3745 seq_printf(m, "hierarchical_%s=%lu", stat->name, 3746 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask, 3747 true)); 3748 for_each_node_state(nid, N_MEMORY) 3749 seq_printf(m, " N%d=%lu", nid, 3750 mem_cgroup_node_nr_lru_pages(memcg, nid, 3751 stat->lru_mask, true)); 3752 seq_putc(m, '\n'); 3753 } 3754 3755 return 0; 3756 } 3757 #endif /* CONFIG_NUMA */ 3758 3759 static const unsigned int memcg1_stats[] = { 3760 NR_FILE_PAGES, 3761 NR_ANON_MAPPED, 3762 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3763 NR_ANON_THPS, 3764 #endif 3765 NR_SHMEM, 3766 NR_FILE_MAPPED, 3767 NR_FILE_DIRTY, 3768 NR_WRITEBACK, 3769 MEMCG_SWAP, 3770 }; 3771 3772 static const char *const memcg1_stat_names[] = { 3773 "cache", 3774 "rss", 3775 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3776 "rss_huge", 3777 #endif 3778 "shmem", 3779 "mapped_file", 3780 "dirty", 3781 "writeback", 3782 "swap", 3783 }; 3784 3785 /* Universal VM events cgroup1 shows, original sort order */ 3786 static const unsigned int memcg1_events[] = { 3787 PGPGIN, 3788 PGPGOUT, 3789 PGFAULT, 3790 PGMAJFAULT, 3791 }; 3792 3793 static int memcg_stat_show(struct seq_file *m, void *v) 3794 { 3795 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 3796 unsigned long memory, memsw; 3797 struct mem_cgroup *mi; 3798 unsigned int i; 3799 3800 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats)); 3801 3802 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 3803 unsigned long nr; 3804 3805 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 3806 continue; 3807 nr = memcg_page_state_local(memcg, memcg1_stats[i]); 3808 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3809 if (memcg1_stats[i] == NR_ANON_THPS) 3810 nr *= HPAGE_PMD_NR; 3811 #endif 3812 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE); 3813 } 3814 3815 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 3816 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]), 3817 memcg_events_local(memcg, memcg1_events[i])); 3818 3819 for (i = 0; i < NR_LRU_LISTS; i++) 3820 seq_printf(m, "%s %lu\n", lru_list_name(i), 3821 memcg_page_state_local(memcg, NR_LRU_BASE + i) * 3822 PAGE_SIZE); 3823 3824 /* Hierarchical information */ 3825 memory = memsw = PAGE_COUNTER_MAX; 3826 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) { 3827 memory = min(memory, READ_ONCE(mi->memory.max)); 3828 memsw = min(memsw, READ_ONCE(mi->memsw.max)); 3829 } 3830 seq_printf(m, "hierarchical_memory_limit %llu\n", 3831 (u64)memory * PAGE_SIZE); 3832 if (do_memsw_account()) 3833 seq_printf(m, "hierarchical_memsw_limit %llu\n", 3834 (u64)memsw * PAGE_SIZE); 3835 3836 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 3837 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 3838 continue; 3839 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], 3840 (u64)memcg_page_state(memcg, memcg1_stats[i]) * 3841 PAGE_SIZE); 3842 } 3843 3844 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 3845 seq_printf(m, "total_%s %llu\n", 3846 vm_event_name(memcg1_events[i]), 3847 (u64)memcg_events(memcg, memcg1_events[i])); 3848 3849 for (i = 0; i < NR_LRU_LISTS; i++) 3850 seq_printf(m, "total_%s %llu\n", lru_list_name(i), 3851 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) * 3852 PAGE_SIZE); 3853 3854 #ifdef CONFIG_DEBUG_VM 3855 { 3856 pg_data_t *pgdat; 3857 struct mem_cgroup_per_node *mz; 3858 unsigned long anon_cost = 0; 3859 unsigned long file_cost = 0; 3860 3861 for_each_online_pgdat(pgdat) { 3862 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 3863 3864 anon_cost += mz->lruvec.anon_cost; 3865 file_cost += mz->lruvec.file_cost; 3866 } 3867 seq_printf(m, "anon_cost %lu\n", anon_cost); 3868 seq_printf(m, "file_cost %lu\n", file_cost); 3869 } 3870 #endif 3871 3872 return 0; 3873 } 3874 3875 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, 3876 struct cftype *cft) 3877 { 3878 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3879 3880 return mem_cgroup_swappiness(memcg); 3881 } 3882 3883 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, 3884 struct cftype *cft, u64 val) 3885 { 3886 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3887 3888 if (val > 100) 3889 return -EINVAL; 3890 3891 if (css->parent) 3892 memcg->swappiness = val; 3893 else 3894 vm_swappiness = val; 3895 3896 return 0; 3897 } 3898 3899 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 3900 { 3901 struct mem_cgroup_threshold_ary *t; 3902 unsigned long usage; 3903 int i; 3904 3905 rcu_read_lock(); 3906 if (!swap) 3907 t = rcu_dereference(memcg->thresholds.primary); 3908 else 3909 t = rcu_dereference(memcg->memsw_thresholds.primary); 3910 3911 if (!t) 3912 goto unlock; 3913 3914 usage = mem_cgroup_usage(memcg, swap); 3915 3916 /* 3917 * current_threshold points to threshold just below or equal to usage. 3918 * If it's not true, a threshold was crossed after last 3919 * call of __mem_cgroup_threshold(). 3920 */ 3921 i = t->current_threshold; 3922 3923 /* 3924 * Iterate backward over array of thresholds starting from 3925 * current_threshold and check if a threshold is crossed. 3926 * If none of thresholds below usage is crossed, we read 3927 * only one element of the array here. 3928 */ 3929 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 3930 eventfd_signal(t->entries[i].eventfd, 1); 3931 3932 /* i = current_threshold + 1 */ 3933 i++; 3934 3935 /* 3936 * Iterate forward over array of thresholds starting from 3937 * current_threshold+1 and check if a threshold is crossed. 3938 * If none of thresholds above usage is crossed, we read 3939 * only one element of the array here. 3940 */ 3941 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 3942 eventfd_signal(t->entries[i].eventfd, 1); 3943 3944 /* Update current_threshold */ 3945 t->current_threshold = i - 1; 3946 unlock: 3947 rcu_read_unlock(); 3948 } 3949 3950 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 3951 { 3952 while (memcg) { 3953 __mem_cgroup_threshold(memcg, false); 3954 if (do_memsw_account()) 3955 __mem_cgroup_threshold(memcg, true); 3956 3957 memcg = parent_mem_cgroup(memcg); 3958 } 3959 } 3960 3961 static int compare_thresholds(const void *a, const void *b) 3962 { 3963 const struct mem_cgroup_threshold *_a = a; 3964 const struct mem_cgroup_threshold *_b = b; 3965 3966 if (_a->threshold > _b->threshold) 3967 return 1; 3968 3969 if (_a->threshold < _b->threshold) 3970 return -1; 3971 3972 return 0; 3973 } 3974 3975 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 3976 { 3977 struct mem_cgroup_eventfd_list *ev; 3978 3979 spin_lock(&memcg_oom_lock); 3980 3981 list_for_each_entry(ev, &memcg->oom_notify, list) 3982 eventfd_signal(ev->eventfd, 1); 3983 3984 spin_unlock(&memcg_oom_lock); 3985 return 0; 3986 } 3987 3988 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 3989 { 3990 struct mem_cgroup *iter; 3991 3992 for_each_mem_cgroup_tree(iter, memcg) 3993 mem_cgroup_oom_notify_cb(iter); 3994 } 3995 3996 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 3997 struct eventfd_ctx *eventfd, const char *args, enum res_type type) 3998 { 3999 struct mem_cgroup_thresholds *thresholds; 4000 struct mem_cgroup_threshold_ary *new; 4001 unsigned long threshold; 4002 unsigned long usage; 4003 int i, size, ret; 4004 4005 ret = page_counter_memparse(args, "-1", &threshold); 4006 if (ret) 4007 return ret; 4008 4009 mutex_lock(&memcg->thresholds_lock); 4010 4011 if (type == _MEM) { 4012 thresholds = &memcg->thresholds; 4013 usage = mem_cgroup_usage(memcg, false); 4014 } else if (type == _MEMSWAP) { 4015 thresholds = &memcg->memsw_thresholds; 4016 usage = mem_cgroup_usage(memcg, true); 4017 } else 4018 BUG(); 4019 4020 /* Check if a threshold crossed before adding a new one */ 4021 if (thresholds->primary) 4022 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4023 4024 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 4025 4026 /* Allocate memory for new array of thresholds */ 4027 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL); 4028 if (!new) { 4029 ret = -ENOMEM; 4030 goto unlock; 4031 } 4032 new->size = size; 4033 4034 /* Copy thresholds (if any) to new array */ 4035 if (thresholds->primary) { 4036 memcpy(new->entries, thresholds->primary->entries, (size - 1) * 4037 sizeof(struct mem_cgroup_threshold)); 4038 } 4039 4040 /* Add new threshold */ 4041 new->entries[size - 1].eventfd = eventfd; 4042 new->entries[size - 1].threshold = threshold; 4043 4044 /* Sort thresholds. Registering of new threshold isn't time-critical */ 4045 sort(new->entries, size, sizeof(struct mem_cgroup_threshold), 4046 compare_thresholds, NULL); 4047 4048 /* Find current threshold */ 4049 new->current_threshold = -1; 4050 for (i = 0; i < size; i++) { 4051 if (new->entries[i].threshold <= usage) { 4052 /* 4053 * new->current_threshold will not be used until 4054 * rcu_assign_pointer(), so it's safe to increment 4055 * it here. 4056 */ 4057 ++new->current_threshold; 4058 } else 4059 break; 4060 } 4061 4062 /* Free old spare buffer and save old primary buffer as spare */ 4063 kfree(thresholds->spare); 4064 thresholds->spare = thresholds->primary; 4065 4066 rcu_assign_pointer(thresholds->primary, new); 4067 4068 /* To be sure that nobody uses thresholds */ 4069 synchronize_rcu(); 4070 4071 unlock: 4072 mutex_unlock(&memcg->thresholds_lock); 4073 4074 return ret; 4075 } 4076 4077 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 4078 struct eventfd_ctx *eventfd, const char *args) 4079 { 4080 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM); 4081 } 4082 4083 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg, 4084 struct eventfd_ctx *eventfd, const char *args) 4085 { 4086 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP); 4087 } 4088 4089 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4090 struct eventfd_ctx *eventfd, enum res_type type) 4091 { 4092 struct mem_cgroup_thresholds *thresholds; 4093 struct mem_cgroup_threshold_ary *new; 4094 unsigned long usage; 4095 int i, j, size, entries; 4096 4097 mutex_lock(&memcg->thresholds_lock); 4098 4099 if (type == _MEM) { 4100 thresholds = &memcg->thresholds; 4101 usage = mem_cgroup_usage(memcg, false); 4102 } else if (type == _MEMSWAP) { 4103 thresholds = &memcg->memsw_thresholds; 4104 usage = mem_cgroup_usage(memcg, true); 4105 } else 4106 BUG(); 4107 4108 if (!thresholds->primary) 4109 goto unlock; 4110 4111 /* Check if a threshold crossed before removing */ 4112 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4113 4114 /* Calculate new number of threshold */ 4115 size = entries = 0; 4116 for (i = 0; i < thresholds->primary->size; i++) { 4117 if (thresholds->primary->entries[i].eventfd != eventfd) 4118 size++; 4119 else 4120 entries++; 4121 } 4122 4123 new = thresholds->spare; 4124 4125 /* If no items related to eventfd have been cleared, nothing to do */ 4126 if (!entries) 4127 goto unlock; 4128 4129 /* Set thresholds array to NULL if we don't have thresholds */ 4130 if (!size) { 4131 kfree(new); 4132 new = NULL; 4133 goto swap_buffers; 4134 } 4135 4136 new->size = size; 4137 4138 /* Copy thresholds and find current threshold */ 4139 new->current_threshold = -1; 4140 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 4141 if (thresholds->primary->entries[i].eventfd == eventfd) 4142 continue; 4143 4144 new->entries[j] = thresholds->primary->entries[i]; 4145 if (new->entries[j].threshold <= usage) { 4146 /* 4147 * new->current_threshold will not be used 4148 * until rcu_assign_pointer(), so it's safe to increment 4149 * it here. 4150 */ 4151 ++new->current_threshold; 4152 } 4153 j++; 4154 } 4155 4156 swap_buffers: 4157 /* Swap primary and spare array */ 4158 thresholds->spare = thresholds->primary; 4159 4160 rcu_assign_pointer(thresholds->primary, new); 4161 4162 /* To be sure that nobody uses thresholds */ 4163 synchronize_rcu(); 4164 4165 /* If all events are unregistered, free the spare array */ 4166 if (!new) { 4167 kfree(thresholds->spare); 4168 thresholds->spare = NULL; 4169 } 4170 unlock: 4171 mutex_unlock(&memcg->thresholds_lock); 4172 } 4173 4174 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4175 struct eventfd_ctx *eventfd) 4176 { 4177 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM); 4178 } 4179 4180 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4181 struct eventfd_ctx *eventfd) 4182 { 4183 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP); 4184 } 4185 4186 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg, 4187 struct eventfd_ctx *eventfd, const char *args) 4188 { 4189 struct mem_cgroup_eventfd_list *event; 4190 4191 event = kmalloc(sizeof(*event), GFP_KERNEL); 4192 if (!event) 4193 return -ENOMEM; 4194 4195 spin_lock(&memcg_oom_lock); 4196 4197 event->eventfd = eventfd; 4198 list_add(&event->list, &memcg->oom_notify); 4199 4200 /* already in OOM ? */ 4201 if (memcg->under_oom) 4202 eventfd_signal(eventfd, 1); 4203 spin_unlock(&memcg_oom_lock); 4204 4205 return 0; 4206 } 4207 4208 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg, 4209 struct eventfd_ctx *eventfd) 4210 { 4211 struct mem_cgroup_eventfd_list *ev, *tmp; 4212 4213 spin_lock(&memcg_oom_lock); 4214 4215 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 4216 if (ev->eventfd == eventfd) { 4217 list_del(&ev->list); 4218 kfree(ev); 4219 } 4220 } 4221 4222 spin_unlock(&memcg_oom_lock); 4223 } 4224 4225 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v) 4226 { 4227 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf); 4228 4229 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable); 4230 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom); 4231 seq_printf(sf, "oom_kill %lu\n", 4232 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL])); 4233 return 0; 4234 } 4235 4236 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, 4237 struct cftype *cft, u64 val) 4238 { 4239 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4240 4241 /* cannot set to root cgroup and only 0 and 1 are allowed */ 4242 if (!css->parent || !((val == 0) || (val == 1))) 4243 return -EINVAL; 4244 4245 memcg->oom_kill_disable = val; 4246 if (!val) 4247 memcg_oom_recover(memcg); 4248 4249 return 0; 4250 } 4251 4252 #ifdef CONFIG_CGROUP_WRITEBACK 4253 4254 #include <trace/events/writeback.h> 4255 4256 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 4257 { 4258 return wb_domain_init(&memcg->cgwb_domain, gfp); 4259 } 4260 4261 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 4262 { 4263 wb_domain_exit(&memcg->cgwb_domain); 4264 } 4265 4266 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 4267 { 4268 wb_domain_size_changed(&memcg->cgwb_domain); 4269 } 4270 4271 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 4272 { 4273 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4274 4275 if (!memcg->css.parent) 4276 return NULL; 4277 4278 return &memcg->cgwb_domain; 4279 } 4280 4281 /* 4282 * idx can be of type enum memcg_stat_item or node_stat_item. 4283 * Keep in sync with memcg_exact_page(). 4284 */ 4285 static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx) 4286 { 4287 long x = atomic_long_read(&memcg->vmstats[idx]); 4288 int cpu; 4289 4290 for_each_online_cpu(cpu) 4291 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx]; 4292 if (x < 0) 4293 x = 0; 4294 return x; 4295 } 4296 4297 /** 4298 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg 4299 * @wb: bdi_writeback in question 4300 * @pfilepages: out parameter for number of file pages 4301 * @pheadroom: out parameter for number of allocatable pages according to memcg 4302 * @pdirty: out parameter for number of dirty pages 4303 * @pwriteback: out parameter for number of pages under writeback 4304 * 4305 * Determine the numbers of file, headroom, dirty, and writeback pages in 4306 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom 4307 * is a bit more involved. 4308 * 4309 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the 4310 * headroom is calculated as the lowest headroom of itself and the 4311 * ancestors. Note that this doesn't consider the actual amount of 4312 * available memory in the system. The caller should further cap 4313 * *@pheadroom accordingly. 4314 */ 4315 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 4316 unsigned long *pheadroom, unsigned long *pdirty, 4317 unsigned long *pwriteback) 4318 { 4319 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4320 struct mem_cgroup *parent; 4321 4322 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY); 4323 4324 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK); 4325 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) + 4326 memcg_exact_page_state(memcg, NR_ACTIVE_FILE); 4327 *pheadroom = PAGE_COUNTER_MAX; 4328 4329 while ((parent = parent_mem_cgroup(memcg))) { 4330 unsigned long ceiling = min(READ_ONCE(memcg->memory.max), 4331 READ_ONCE(memcg->memory.high)); 4332 unsigned long used = page_counter_read(&memcg->memory); 4333 4334 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); 4335 memcg = parent; 4336 } 4337 } 4338 4339 /* 4340 * Foreign dirty flushing 4341 * 4342 * There's an inherent mismatch between memcg and writeback. The former 4343 * trackes ownership per-page while the latter per-inode. This was a 4344 * deliberate design decision because honoring per-page ownership in the 4345 * writeback path is complicated, may lead to higher CPU and IO overheads 4346 * and deemed unnecessary given that write-sharing an inode across 4347 * different cgroups isn't a common use-case. 4348 * 4349 * Combined with inode majority-writer ownership switching, this works well 4350 * enough in most cases but there are some pathological cases. For 4351 * example, let's say there are two cgroups A and B which keep writing to 4352 * different but confined parts of the same inode. B owns the inode and 4353 * A's memory is limited far below B's. A's dirty ratio can rise enough to 4354 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid 4355 * triggering background writeback. A will be slowed down without a way to 4356 * make writeback of the dirty pages happen. 4357 * 4358 * Conditions like the above can lead to a cgroup getting repatedly and 4359 * severely throttled after making some progress after each 4360 * dirty_expire_interval while the underyling IO device is almost 4361 * completely idle. 4362 * 4363 * Solving this problem completely requires matching the ownership tracking 4364 * granularities between memcg and writeback in either direction. However, 4365 * the more egregious behaviors can be avoided by simply remembering the 4366 * most recent foreign dirtying events and initiating remote flushes on 4367 * them when local writeback isn't enough to keep the memory clean enough. 4368 * 4369 * The following two functions implement such mechanism. When a foreign 4370 * page - a page whose memcg and writeback ownerships don't match - is 4371 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning 4372 * bdi_writeback on the page owning memcg. When balance_dirty_pages() 4373 * decides that the memcg needs to sleep due to high dirty ratio, it calls 4374 * mem_cgroup_flush_foreign() which queues writeback on the recorded 4375 * foreign bdi_writebacks which haven't expired. Both the numbers of 4376 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are 4377 * limited to MEMCG_CGWB_FRN_CNT. 4378 * 4379 * The mechanism only remembers IDs and doesn't hold any object references. 4380 * As being wrong occasionally doesn't matter, updates and accesses to the 4381 * records are lockless and racy. 4382 */ 4383 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page, 4384 struct bdi_writeback *wb) 4385 { 4386 struct mem_cgroup *memcg = page->mem_cgroup; 4387 struct memcg_cgwb_frn *frn; 4388 u64 now = get_jiffies_64(); 4389 u64 oldest_at = now; 4390 int oldest = -1; 4391 int i; 4392 4393 trace_track_foreign_dirty(page, wb); 4394 4395 /* 4396 * Pick the slot to use. If there is already a slot for @wb, keep 4397 * using it. If not replace the oldest one which isn't being 4398 * written out. 4399 */ 4400 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 4401 frn = &memcg->cgwb_frn[i]; 4402 if (frn->bdi_id == wb->bdi->id && 4403 frn->memcg_id == wb->memcg_css->id) 4404 break; 4405 if (time_before64(frn->at, oldest_at) && 4406 atomic_read(&frn->done.cnt) == 1) { 4407 oldest = i; 4408 oldest_at = frn->at; 4409 } 4410 } 4411 4412 if (i < MEMCG_CGWB_FRN_CNT) { 4413 /* 4414 * Re-using an existing one. Update timestamp lazily to 4415 * avoid making the cacheline hot. We want them to be 4416 * reasonably up-to-date and significantly shorter than 4417 * dirty_expire_interval as that's what expires the record. 4418 * Use the shorter of 1s and dirty_expire_interval / 8. 4419 */ 4420 unsigned long update_intv = 4421 min_t(unsigned long, HZ, 4422 msecs_to_jiffies(dirty_expire_interval * 10) / 8); 4423 4424 if (time_before64(frn->at, now - update_intv)) 4425 frn->at = now; 4426 } else if (oldest >= 0) { 4427 /* replace the oldest free one */ 4428 frn = &memcg->cgwb_frn[oldest]; 4429 frn->bdi_id = wb->bdi->id; 4430 frn->memcg_id = wb->memcg_css->id; 4431 frn->at = now; 4432 } 4433 } 4434 4435 /* issue foreign writeback flushes for recorded foreign dirtying events */ 4436 void mem_cgroup_flush_foreign(struct bdi_writeback *wb) 4437 { 4438 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4439 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10); 4440 u64 now = jiffies_64; 4441 int i; 4442 4443 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 4444 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i]; 4445 4446 /* 4447 * If the record is older than dirty_expire_interval, 4448 * writeback on it has already started. No need to kick it 4449 * off again. Also, don't start a new one if there's 4450 * already one in flight. 4451 */ 4452 if (time_after64(frn->at, now - intv) && 4453 atomic_read(&frn->done.cnt) == 1) { 4454 frn->at = 0; 4455 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id); 4456 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0, 4457 WB_REASON_FOREIGN_FLUSH, 4458 &frn->done); 4459 } 4460 } 4461 } 4462 4463 #else /* CONFIG_CGROUP_WRITEBACK */ 4464 4465 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 4466 { 4467 return 0; 4468 } 4469 4470 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 4471 { 4472 } 4473 4474 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 4475 { 4476 } 4477 4478 #endif /* CONFIG_CGROUP_WRITEBACK */ 4479 4480 /* 4481 * DO NOT USE IN NEW FILES. 4482 * 4483 * "cgroup.event_control" implementation. 4484 * 4485 * This is way over-engineered. It tries to support fully configurable 4486 * events for each user. Such level of flexibility is completely 4487 * unnecessary especially in the light of the planned unified hierarchy. 4488 * 4489 * Please deprecate this and replace with something simpler if at all 4490 * possible. 4491 */ 4492 4493 /* 4494 * Unregister event and free resources. 4495 * 4496 * Gets called from workqueue. 4497 */ 4498 static void memcg_event_remove(struct work_struct *work) 4499 { 4500 struct mem_cgroup_event *event = 4501 container_of(work, struct mem_cgroup_event, remove); 4502 struct mem_cgroup *memcg = event->memcg; 4503 4504 remove_wait_queue(event->wqh, &event->wait); 4505 4506 event->unregister_event(memcg, event->eventfd); 4507 4508 /* Notify userspace the event is going away. */ 4509 eventfd_signal(event->eventfd, 1); 4510 4511 eventfd_ctx_put(event->eventfd); 4512 kfree(event); 4513 css_put(&memcg->css); 4514 } 4515 4516 /* 4517 * Gets called on EPOLLHUP on eventfd when user closes it. 4518 * 4519 * Called with wqh->lock held and interrupts disabled. 4520 */ 4521 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode, 4522 int sync, void *key) 4523 { 4524 struct mem_cgroup_event *event = 4525 container_of(wait, struct mem_cgroup_event, wait); 4526 struct mem_cgroup *memcg = event->memcg; 4527 __poll_t flags = key_to_poll(key); 4528 4529 if (flags & EPOLLHUP) { 4530 /* 4531 * If the event has been detached at cgroup removal, we 4532 * can simply return knowing the other side will cleanup 4533 * for us. 4534 * 4535 * We can't race against event freeing since the other 4536 * side will require wqh->lock via remove_wait_queue(), 4537 * which we hold. 4538 */ 4539 spin_lock(&memcg->event_list_lock); 4540 if (!list_empty(&event->list)) { 4541 list_del_init(&event->list); 4542 /* 4543 * We are in atomic context, but cgroup_event_remove() 4544 * may sleep, so we have to call it in workqueue. 4545 */ 4546 schedule_work(&event->remove); 4547 } 4548 spin_unlock(&memcg->event_list_lock); 4549 } 4550 4551 return 0; 4552 } 4553 4554 static void memcg_event_ptable_queue_proc(struct file *file, 4555 wait_queue_head_t *wqh, poll_table *pt) 4556 { 4557 struct mem_cgroup_event *event = 4558 container_of(pt, struct mem_cgroup_event, pt); 4559 4560 event->wqh = wqh; 4561 add_wait_queue(wqh, &event->wait); 4562 } 4563 4564 /* 4565 * DO NOT USE IN NEW FILES. 4566 * 4567 * Parse input and register new cgroup event handler. 4568 * 4569 * Input must be in format '<event_fd> <control_fd> <args>'. 4570 * Interpretation of args is defined by control file implementation. 4571 */ 4572 static ssize_t memcg_write_event_control(struct kernfs_open_file *of, 4573 char *buf, size_t nbytes, loff_t off) 4574 { 4575 struct cgroup_subsys_state *css = of_css(of); 4576 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4577 struct mem_cgroup_event *event; 4578 struct cgroup_subsys_state *cfile_css; 4579 unsigned int efd, cfd; 4580 struct fd efile; 4581 struct fd cfile; 4582 const char *name; 4583 char *endp; 4584 int ret; 4585 4586 buf = strstrip(buf); 4587 4588 efd = simple_strtoul(buf, &endp, 10); 4589 if (*endp != ' ') 4590 return -EINVAL; 4591 buf = endp + 1; 4592 4593 cfd = simple_strtoul(buf, &endp, 10); 4594 if ((*endp != ' ') && (*endp != '\0')) 4595 return -EINVAL; 4596 buf = endp + 1; 4597 4598 event = kzalloc(sizeof(*event), GFP_KERNEL); 4599 if (!event) 4600 return -ENOMEM; 4601 4602 event->memcg = memcg; 4603 INIT_LIST_HEAD(&event->list); 4604 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc); 4605 init_waitqueue_func_entry(&event->wait, memcg_event_wake); 4606 INIT_WORK(&event->remove, memcg_event_remove); 4607 4608 efile = fdget(efd); 4609 if (!efile.file) { 4610 ret = -EBADF; 4611 goto out_kfree; 4612 } 4613 4614 event->eventfd = eventfd_ctx_fileget(efile.file); 4615 if (IS_ERR(event->eventfd)) { 4616 ret = PTR_ERR(event->eventfd); 4617 goto out_put_efile; 4618 } 4619 4620 cfile = fdget(cfd); 4621 if (!cfile.file) { 4622 ret = -EBADF; 4623 goto out_put_eventfd; 4624 } 4625 4626 /* the process need read permission on control file */ 4627 /* AV: shouldn't we check that it's been opened for read instead? */ 4628 ret = inode_permission(file_inode(cfile.file), MAY_READ); 4629 if (ret < 0) 4630 goto out_put_cfile; 4631 4632 /* 4633 * Determine the event callbacks and set them in @event. This used 4634 * to be done via struct cftype but cgroup core no longer knows 4635 * about these events. The following is crude but the whole thing 4636 * is for compatibility anyway. 4637 * 4638 * DO NOT ADD NEW FILES. 4639 */ 4640 name = cfile.file->f_path.dentry->d_name.name; 4641 4642 if (!strcmp(name, "memory.usage_in_bytes")) { 4643 event->register_event = mem_cgroup_usage_register_event; 4644 event->unregister_event = mem_cgroup_usage_unregister_event; 4645 } else if (!strcmp(name, "memory.oom_control")) { 4646 event->register_event = mem_cgroup_oom_register_event; 4647 event->unregister_event = mem_cgroup_oom_unregister_event; 4648 } else if (!strcmp(name, "memory.pressure_level")) { 4649 event->register_event = vmpressure_register_event; 4650 event->unregister_event = vmpressure_unregister_event; 4651 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) { 4652 event->register_event = memsw_cgroup_usage_register_event; 4653 event->unregister_event = memsw_cgroup_usage_unregister_event; 4654 } else { 4655 ret = -EINVAL; 4656 goto out_put_cfile; 4657 } 4658 4659 /* 4660 * Verify @cfile should belong to @css. Also, remaining events are 4661 * automatically removed on cgroup destruction but the removal is 4662 * asynchronous, so take an extra ref on @css. 4663 */ 4664 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent, 4665 &memory_cgrp_subsys); 4666 ret = -EINVAL; 4667 if (IS_ERR(cfile_css)) 4668 goto out_put_cfile; 4669 if (cfile_css != css) { 4670 css_put(cfile_css); 4671 goto out_put_cfile; 4672 } 4673 4674 ret = event->register_event(memcg, event->eventfd, buf); 4675 if (ret) 4676 goto out_put_css; 4677 4678 vfs_poll(efile.file, &event->pt); 4679 4680 spin_lock(&memcg->event_list_lock); 4681 list_add(&event->list, &memcg->event_list); 4682 spin_unlock(&memcg->event_list_lock); 4683 4684 fdput(cfile); 4685 fdput(efile); 4686 4687 return nbytes; 4688 4689 out_put_css: 4690 css_put(css); 4691 out_put_cfile: 4692 fdput(cfile); 4693 out_put_eventfd: 4694 eventfd_ctx_put(event->eventfd); 4695 out_put_efile: 4696 fdput(efile); 4697 out_kfree: 4698 kfree(event); 4699 4700 return ret; 4701 } 4702 4703 static struct cftype mem_cgroup_legacy_files[] = { 4704 { 4705 .name = "usage_in_bytes", 4706 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 4707 .read_u64 = mem_cgroup_read_u64, 4708 }, 4709 { 4710 .name = "max_usage_in_bytes", 4711 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 4712 .write = mem_cgroup_reset, 4713 .read_u64 = mem_cgroup_read_u64, 4714 }, 4715 { 4716 .name = "limit_in_bytes", 4717 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 4718 .write = mem_cgroup_write, 4719 .read_u64 = mem_cgroup_read_u64, 4720 }, 4721 { 4722 .name = "soft_limit_in_bytes", 4723 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 4724 .write = mem_cgroup_write, 4725 .read_u64 = mem_cgroup_read_u64, 4726 }, 4727 { 4728 .name = "failcnt", 4729 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 4730 .write = mem_cgroup_reset, 4731 .read_u64 = mem_cgroup_read_u64, 4732 }, 4733 { 4734 .name = "stat", 4735 .seq_show = memcg_stat_show, 4736 }, 4737 { 4738 .name = "force_empty", 4739 .write = mem_cgroup_force_empty_write, 4740 }, 4741 { 4742 .name = "use_hierarchy", 4743 .write_u64 = mem_cgroup_hierarchy_write, 4744 .read_u64 = mem_cgroup_hierarchy_read, 4745 }, 4746 { 4747 .name = "cgroup.event_control", /* XXX: for compat */ 4748 .write = memcg_write_event_control, 4749 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE, 4750 }, 4751 { 4752 .name = "swappiness", 4753 .read_u64 = mem_cgroup_swappiness_read, 4754 .write_u64 = mem_cgroup_swappiness_write, 4755 }, 4756 { 4757 .name = "move_charge_at_immigrate", 4758 .read_u64 = mem_cgroup_move_charge_read, 4759 .write_u64 = mem_cgroup_move_charge_write, 4760 }, 4761 { 4762 .name = "oom_control", 4763 .seq_show = mem_cgroup_oom_control_read, 4764 .write_u64 = mem_cgroup_oom_control_write, 4765 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), 4766 }, 4767 { 4768 .name = "pressure_level", 4769 }, 4770 #ifdef CONFIG_NUMA 4771 { 4772 .name = "numa_stat", 4773 .seq_show = memcg_numa_stat_show, 4774 }, 4775 #endif 4776 { 4777 .name = "kmem.limit_in_bytes", 4778 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), 4779 .write = mem_cgroup_write, 4780 .read_u64 = mem_cgroup_read_u64, 4781 }, 4782 { 4783 .name = "kmem.usage_in_bytes", 4784 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), 4785 .read_u64 = mem_cgroup_read_u64, 4786 }, 4787 { 4788 .name = "kmem.failcnt", 4789 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), 4790 .write = mem_cgroup_reset, 4791 .read_u64 = mem_cgroup_read_u64, 4792 }, 4793 { 4794 .name = "kmem.max_usage_in_bytes", 4795 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), 4796 .write = mem_cgroup_reset, 4797 .read_u64 = mem_cgroup_read_u64, 4798 }, 4799 #if defined(CONFIG_MEMCG_KMEM) && \ 4800 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)) 4801 { 4802 .name = "kmem.slabinfo", 4803 .seq_start = memcg_slab_start, 4804 .seq_next = memcg_slab_next, 4805 .seq_stop = memcg_slab_stop, 4806 .seq_show = memcg_slab_show, 4807 }, 4808 #endif 4809 { 4810 .name = "kmem.tcp.limit_in_bytes", 4811 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT), 4812 .write = mem_cgroup_write, 4813 .read_u64 = mem_cgroup_read_u64, 4814 }, 4815 { 4816 .name = "kmem.tcp.usage_in_bytes", 4817 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE), 4818 .read_u64 = mem_cgroup_read_u64, 4819 }, 4820 { 4821 .name = "kmem.tcp.failcnt", 4822 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT), 4823 .write = mem_cgroup_reset, 4824 .read_u64 = mem_cgroup_read_u64, 4825 }, 4826 { 4827 .name = "kmem.tcp.max_usage_in_bytes", 4828 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE), 4829 .write = mem_cgroup_reset, 4830 .read_u64 = mem_cgroup_read_u64, 4831 }, 4832 { }, /* terminate */ 4833 }; 4834 4835 /* 4836 * Private memory cgroup IDR 4837 * 4838 * Swap-out records and page cache shadow entries need to store memcg 4839 * references in constrained space, so we maintain an ID space that is 4840 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of 4841 * memory-controlled cgroups to 64k. 4842 * 4843 * However, there usually are many references to the offline CSS after 4844 * the cgroup has been destroyed, such as page cache or reclaimable 4845 * slab objects, that don't need to hang on to the ID. We want to keep 4846 * those dead CSS from occupying IDs, or we might quickly exhaust the 4847 * relatively small ID space and prevent the creation of new cgroups 4848 * even when there are much fewer than 64k cgroups - possibly none. 4849 * 4850 * Maintain a private 16-bit ID space for memcg, and allow the ID to 4851 * be freed and recycled when it's no longer needed, which is usually 4852 * when the CSS is offlined. 4853 * 4854 * The only exception to that are records of swapped out tmpfs/shmem 4855 * pages that need to be attributed to live ancestors on swapin. But 4856 * those references are manageable from userspace. 4857 */ 4858 4859 static DEFINE_IDR(mem_cgroup_idr); 4860 4861 static void mem_cgroup_id_remove(struct mem_cgroup *memcg) 4862 { 4863 if (memcg->id.id > 0) { 4864 idr_remove(&mem_cgroup_idr, memcg->id.id); 4865 memcg->id.id = 0; 4866 } 4867 } 4868 4869 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg, 4870 unsigned int n) 4871 { 4872 refcount_add(n, &memcg->id.ref); 4873 } 4874 4875 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n) 4876 { 4877 if (refcount_sub_and_test(n, &memcg->id.ref)) { 4878 mem_cgroup_id_remove(memcg); 4879 4880 /* Memcg ID pins CSS */ 4881 css_put(&memcg->css); 4882 } 4883 } 4884 4885 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg) 4886 { 4887 mem_cgroup_id_put_many(memcg, 1); 4888 } 4889 4890 /** 4891 * mem_cgroup_from_id - look up a memcg from a memcg id 4892 * @id: the memcg id to look up 4893 * 4894 * Caller must hold rcu_read_lock(). 4895 */ 4896 struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 4897 { 4898 WARN_ON_ONCE(!rcu_read_lock_held()); 4899 return idr_find(&mem_cgroup_idr, id); 4900 } 4901 4902 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 4903 { 4904 struct mem_cgroup_per_node *pn; 4905 int tmp = node; 4906 /* 4907 * This routine is called against possible nodes. 4908 * But it's BUG to call kmalloc() against offline node. 4909 * 4910 * TODO: this routine can waste much memory for nodes which will 4911 * never be onlined. It's better to use memory hotplug callback 4912 * function. 4913 */ 4914 if (!node_state(node, N_NORMAL_MEMORY)) 4915 tmp = -1; 4916 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); 4917 if (!pn) 4918 return 1; 4919 4920 pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat); 4921 if (!pn->lruvec_stat_local) { 4922 kfree(pn); 4923 return 1; 4924 } 4925 4926 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat); 4927 if (!pn->lruvec_stat_cpu) { 4928 free_percpu(pn->lruvec_stat_local); 4929 kfree(pn); 4930 return 1; 4931 } 4932 4933 lruvec_init(&pn->lruvec); 4934 pn->usage_in_excess = 0; 4935 pn->on_tree = false; 4936 pn->memcg = memcg; 4937 4938 memcg->nodeinfo[node] = pn; 4939 return 0; 4940 } 4941 4942 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 4943 { 4944 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node]; 4945 4946 if (!pn) 4947 return; 4948 4949 free_percpu(pn->lruvec_stat_cpu); 4950 free_percpu(pn->lruvec_stat_local); 4951 kfree(pn); 4952 } 4953 4954 static void __mem_cgroup_free(struct mem_cgroup *memcg) 4955 { 4956 int node; 4957 4958 for_each_node(node) 4959 free_mem_cgroup_per_node_info(memcg, node); 4960 free_percpu(memcg->vmstats_percpu); 4961 free_percpu(memcg->vmstats_local); 4962 kfree(memcg); 4963 } 4964 4965 static void mem_cgroup_free(struct mem_cgroup *memcg) 4966 { 4967 memcg_wb_domain_exit(memcg); 4968 /* 4969 * Flush percpu vmstats and vmevents to guarantee the value correctness 4970 * on parent's and all ancestor levels. 4971 */ 4972 memcg_flush_percpu_vmstats(memcg); 4973 memcg_flush_percpu_vmevents(memcg); 4974 __mem_cgroup_free(memcg); 4975 } 4976 4977 static struct mem_cgroup *mem_cgroup_alloc(void) 4978 { 4979 struct mem_cgroup *memcg; 4980 unsigned int size; 4981 int node; 4982 int __maybe_unused i; 4983 long error = -ENOMEM; 4984 4985 size = sizeof(struct mem_cgroup); 4986 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *); 4987 4988 memcg = kzalloc(size, GFP_KERNEL); 4989 if (!memcg) 4990 return ERR_PTR(error); 4991 4992 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL, 4993 1, MEM_CGROUP_ID_MAX, 4994 GFP_KERNEL); 4995 if (memcg->id.id < 0) { 4996 error = memcg->id.id; 4997 goto fail; 4998 } 4999 5000 memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu); 5001 if (!memcg->vmstats_local) 5002 goto fail; 5003 5004 memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu); 5005 if (!memcg->vmstats_percpu) 5006 goto fail; 5007 5008 for_each_node(node) 5009 if (alloc_mem_cgroup_per_node_info(memcg, node)) 5010 goto fail; 5011 5012 if (memcg_wb_domain_init(memcg, GFP_KERNEL)) 5013 goto fail; 5014 5015 INIT_WORK(&memcg->high_work, high_work_func); 5016 INIT_LIST_HEAD(&memcg->oom_notify); 5017 mutex_init(&memcg->thresholds_lock); 5018 spin_lock_init(&memcg->move_lock); 5019 vmpressure_init(&memcg->vmpressure); 5020 INIT_LIST_HEAD(&memcg->event_list); 5021 spin_lock_init(&memcg->event_list_lock); 5022 memcg->socket_pressure = jiffies; 5023 #ifdef CONFIG_MEMCG_KMEM 5024 memcg->kmemcg_id = -1; 5025 #endif 5026 #ifdef CONFIG_CGROUP_WRITEBACK 5027 INIT_LIST_HEAD(&memcg->cgwb_list); 5028 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 5029 memcg->cgwb_frn[i].done = 5030 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq); 5031 #endif 5032 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5033 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock); 5034 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue); 5035 memcg->deferred_split_queue.split_queue_len = 0; 5036 #endif 5037 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id); 5038 return memcg; 5039 fail: 5040 mem_cgroup_id_remove(memcg); 5041 __mem_cgroup_free(memcg); 5042 return ERR_PTR(error); 5043 } 5044 5045 static struct cgroup_subsys_state * __ref 5046 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 5047 { 5048 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); 5049 struct mem_cgroup *memcg; 5050 long error = -ENOMEM; 5051 5052 memcg = mem_cgroup_alloc(); 5053 if (IS_ERR(memcg)) 5054 return ERR_CAST(memcg); 5055 5056 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 5057 memcg->soft_limit = PAGE_COUNTER_MAX; 5058 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 5059 if (parent) { 5060 memcg->swappiness = mem_cgroup_swappiness(parent); 5061 memcg->oom_kill_disable = parent->oom_kill_disable; 5062 } 5063 if (parent && parent->use_hierarchy) { 5064 memcg->use_hierarchy = true; 5065 page_counter_init(&memcg->memory, &parent->memory); 5066 page_counter_init(&memcg->swap, &parent->swap); 5067 page_counter_init(&memcg->memsw, &parent->memsw); 5068 page_counter_init(&memcg->kmem, &parent->kmem); 5069 page_counter_init(&memcg->tcpmem, &parent->tcpmem); 5070 } else { 5071 page_counter_init(&memcg->memory, NULL); 5072 page_counter_init(&memcg->swap, NULL); 5073 page_counter_init(&memcg->memsw, NULL); 5074 page_counter_init(&memcg->kmem, NULL); 5075 page_counter_init(&memcg->tcpmem, NULL); 5076 /* 5077 * Deeper hierachy with use_hierarchy == false doesn't make 5078 * much sense so let cgroup subsystem know about this 5079 * unfortunate state in our controller. 5080 */ 5081 if (parent != root_mem_cgroup) 5082 memory_cgrp_subsys.broken_hierarchy = true; 5083 } 5084 5085 /* The following stuff does not apply to the root */ 5086 if (!parent) { 5087 #ifdef CONFIG_MEMCG_KMEM 5088 INIT_LIST_HEAD(&memcg->kmem_caches); 5089 #endif 5090 root_mem_cgroup = memcg; 5091 return &memcg->css; 5092 } 5093 5094 error = memcg_online_kmem(memcg); 5095 if (error) 5096 goto fail; 5097 5098 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 5099 static_branch_inc(&memcg_sockets_enabled_key); 5100 5101 return &memcg->css; 5102 fail: 5103 mem_cgroup_id_remove(memcg); 5104 mem_cgroup_free(memcg); 5105 return ERR_PTR(error); 5106 } 5107 5108 static int mem_cgroup_css_online(struct cgroup_subsys_state *css) 5109 { 5110 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5111 5112 /* 5113 * A memcg must be visible for memcg_expand_shrinker_maps() 5114 * by the time the maps are allocated. So, we allocate maps 5115 * here, when for_each_mem_cgroup() can't skip it. 5116 */ 5117 if (memcg_alloc_shrinker_maps(memcg)) { 5118 mem_cgroup_id_remove(memcg); 5119 return -ENOMEM; 5120 } 5121 5122 /* Online state pins memcg ID, memcg ID pins CSS */ 5123 refcount_set(&memcg->id.ref, 1); 5124 css_get(css); 5125 return 0; 5126 } 5127 5128 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 5129 { 5130 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5131 struct mem_cgroup_event *event, *tmp; 5132 5133 /* 5134 * Unregister events and notify userspace. 5135 * Notify userspace about cgroup removing only after rmdir of cgroup 5136 * directory to avoid race between userspace and kernelspace. 5137 */ 5138 spin_lock(&memcg->event_list_lock); 5139 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) { 5140 list_del_init(&event->list); 5141 schedule_work(&event->remove); 5142 } 5143 spin_unlock(&memcg->event_list_lock); 5144 5145 page_counter_set_min(&memcg->memory, 0); 5146 page_counter_set_low(&memcg->memory, 0); 5147 5148 memcg_offline_kmem(memcg); 5149 wb_memcg_offline(memcg); 5150 5151 drain_all_stock(memcg); 5152 5153 mem_cgroup_id_put(memcg); 5154 } 5155 5156 static void mem_cgroup_css_released(struct cgroup_subsys_state *css) 5157 { 5158 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5159 5160 invalidate_reclaim_iterators(memcg); 5161 } 5162 5163 static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 5164 { 5165 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5166 int __maybe_unused i; 5167 5168 #ifdef CONFIG_CGROUP_WRITEBACK 5169 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 5170 wb_wait_for_completion(&memcg->cgwb_frn[i].done); 5171 #endif 5172 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 5173 static_branch_dec(&memcg_sockets_enabled_key); 5174 5175 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active) 5176 static_branch_dec(&memcg_sockets_enabled_key); 5177 5178 vmpressure_cleanup(&memcg->vmpressure); 5179 cancel_work_sync(&memcg->high_work); 5180 mem_cgroup_remove_from_trees(memcg); 5181 memcg_free_shrinker_maps(memcg); 5182 memcg_free_kmem(memcg); 5183 mem_cgroup_free(memcg); 5184 } 5185 5186 /** 5187 * mem_cgroup_css_reset - reset the states of a mem_cgroup 5188 * @css: the target css 5189 * 5190 * Reset the states of the mem_cgroup associated with @css. This is 5191 * invoked when the userland requests disabling on the default hierarchy 5192 * but the memcg is pinned through dependency. The memcg should stop 5193 * applying policies and should revert to the vanilla state as it may be 5194 * made visible again. 5195 * 5196 * The current implementation only resets the essential configurations. 5197 * This needs to be expanded to cover all the visible parts. 5198 */ 5199 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) 5200 { 5201 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5202 5203 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX); 5204 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX); 5205 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX); 5206 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX); 5207 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX); 5208 page_counter_set_min(&memcg->memory, 0); 5209 page_counter_set_low(&memcg->memory, 0); 5210 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 5211 memcg->soft_limit = PAGE_COUNTER_MAX; 5212 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 5213 memcg_wb_domain_size_changed(memcg); 5214 } 5215 5216 #ifdef CONFIG_MMU 5217 /* Handlers for move charge at task migration. */ 5218 static int mem_cgroup_do_precharge(unsigned long count) 5219 { 5220 int ret; 5221 5222 /* Try a single bulk charge without reclaim first, kswapd may wake */ 5223 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count); 5224 if (!ret) { 5225 mc.precharge += count; 5226 return ret; 5227 } 5228 5229 /* Try charges one by one with reclaim, but do not retry */ 5230 while (count--) { 5231 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1); 5232 if (ret) 5233 return ret; 5234 mc.precharge++; 5235 cond_resched(); 5236 } 5237 return 0; 5238 } 5239 5240 union mc_target { 5241 struct page *page; 5242 swp_entry_t ent; 5243 }; 5244 5245 enum mc_target_type { 5246 MC_TARGET_NONE = 0, 5247 MC_TARGET_PAGE, 5248 MC_TARGET_SWAP, 5249 MC_TARGET_DEVICE, 5250 }; 5251 5252 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 5253 unsigned long addr, pte_t ptent) 5254 { 5255 struct page *page = vm_normal_page(vma, addr, ptent); 5256 5257 if (!page || !page_mapped(page)) 5258 return NULL; 5259 if (PageAnon(page)) { 5260 if (!(mc.flags & MOVE_ANON)) 5261 return NULL; 5262 } else { 5263 if (!(mc.flags & MOVE_FILE)) 5264 return NULL; 5265 } 5266 if (!get_page_unless_zero(page)) 5267 return NULL; 5268 5269 return page; 5270 } 5271 5272 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE) 5273 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5274 pte_t ptent, swp_entry_t *entry) 5275 { 5276 struct page *page = NULL; 5277 swp_entry_t ent = pte_to_swp_entry(ptent); 5278 5279 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent)) 5280 return NULL; 5281 5282 /* 5283 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to 5284 * a device and because they are not accessible by CPU they are store 5285 * as special swap entry in the CPU page table. 5286 */ 5287 if (is_device_private_entry(ent)) { 5288 page = device_private_entry_to_page(ent); 5289 /* 5290 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have 5291 * a refcount of 1 when free (unlike normal page) 5292 */ 5293 if (!page_ref_add_unless(page, 1, 1)) 5294 return NULL; 5295 return page; 5296 } 5297 5298 /* 5299 * Because lookup_swap_cache() updates some statistics counter, 5300 * we call find_get_page() with swapper_space directly. 5301 */ 5302 page = find_get_page(swap_address_space(ent), swp_offset(ent)); 5303 entry->val = ent.val; 5304 5305 return page; 5306 } 5307 #else 5308 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5309 pte_t ptent, swp_entry_t *entry) 5310 { 5311 return NULL; 5312 } 5313 #endif 5314 5315 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 5316 unsigned long addr, pte_t ptent, swp_entry_t *entry) 5317 { 5318 struct page *page = NULL; 5319 struct address_space *mapping; 5320 pgoff_t pgoff; 5321 5322 if (!vma->vm_file) /* anonymous vma */ 5323 return NULL; 5324 if (!(mc.flags & MOVE_FILE)) 5325 return NULL; 5326 5327 mapping = vma->vm_file->f_mapping; 5328 pgoff = linear_page_index(vma, addr); 5329 5330 /* page is moved even if it's not RSS of this task(page-faulted). */ 5331 #ifdef CONFIG_SWAP 5332 /* shmem/tmpfs may report page out on swap: account for that too. */ 5333 if (shmem_mapping(mapping)) { 5334 page = find_get_entry(mapping, pgoff); 5335 if (xa_is_value(page)) { 5336 swp_entry_t swp = radix_to_swp_entry(page); 5337 *entry = swp; 5338 page = find_get_page(swap_address_space(swp), 5339 swp_offset(swp)); 5340 } 5341 } else 5342 page = find_get_page(mapping, pgoff); 5343 #else 5344 page = find_get_page(mapping, pgoff); 5345 #endif 5346 return page; 5347 } 5348 5349 /** 5350 * mem_cgroup_move_account - move account of the page 5351 * @page: the page 5352 * @compound: charge the page as compound or small page 5353 * @from: mem_cgroup which the page is moved from. 5354 * @to: mem_cgroup which the page is moved to. @from != @to. 5355 * 5356 * The caller must make sure the page is not on LRU (isolate_page() is useful.) 5357 * 5358 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" 5359 * from old cgroup. 5360 */ 5361 static int mem_cgroup_move_account(struct page *page, 5362 bool compound, 5363 struct mem_cgroup *from, 5364 struct mem_cgroup *to) 5365 { 5366 struct lruvec *from_vec, *to_vec; 5367 struct pglist_data *pgdat; 5368 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 5369 int ret; 5370 5371 VM_BUG_ON(from == to); 5372 VM_BUG_ON_PAGE(PageLRU(page), page); 5373 VM_BUG_ON(compound && !PageTransHuge(page)); 5374 5375 /* 5376 * Prevent mem_cgroup_migrate() from looking at 5377 * page->mem_cgroup of its source page while we change it. 5378 */ 5379 ret = -EBUSY; 5380 if (!trylock_page(page)) 5381 goto out; 5382 5383 ret = -EINVAL; 5384 if (page->mem_cgroup != from) 5385 goto out_unlock; 5386 5387 pgdat = page_pgdat(page); 5388 from_vec = mem_cgroup_lruvec(from, pgdat); 5389 to_vec = mem_cgroup_lruvec(to, pgdat); 5390 5391 lock_page_memcg(page); 5392 5393 if (PageAnon(page)) { 5394 if (page_mapped(page)) { 5395 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages); 5396 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages); 5397 if (PageTransHuge(page)) { 5398 __mod_lruvec_state(from_vec, NR_ANON_THPS, 5399 -nr_pages); 5400 __mod_lruvec_state(to_vec, NR_ANON_THPS, 5401 nr_pages); 5402 } 5403 5404 } 5405 } else { 5406 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages); 5407 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages); 5408 5409 if (PageSwapBacked(page)) { 5410 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages); 5411 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages); 5412 } 5413 5414 if (page_mapped(page)) { 5415 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages); 5416 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages); 5417 } 5418 5419 if (PageDirty(page)) { 5420 struct address_space *mapping = page_mapping(page); 5421 5422 if (mapping_cap_account_dirty(mapping)) { 5423 __mod_lruvec_state(from_vec, NR_FILE_DIRTY, 5424 -nr_pages); 5425 __mod_lruvec_state(to_vec, NR_FILE_DIRTY, 5426 nr_pages); 5427 } 5428 } 5429 } 5430 5431 if (PageWriteback(page)) { 5432 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages); 5433 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages); 5434 } 5435 5436 /* 5437 * All state has been migrated, let's switch to the new memcg. 5438 * 5439 * It is safe to change page->mem_cgroup here because the page 5440 * is referenced, charged, isolated, and locked: we can't race 5441 * with (un)charging, migration, LRU putback, or anything else 5442 * that would rely on a stable page->mem_cgroup. 5443 * 5444 * Note that lock_page_memcg is a memcg lock, not a page lock, 5445 * to save space. As soon as we switch page->mem_cgroup to a 5446 * new memcg that isn't locked, the above state can change 5447 * concurrently again. Make sure we're truly done with it. 5448 */ 5449 smp_mb(); 5450 5451 page->mem_cgroup = to; /* caller should have done css_get */ 5452 5453 __unlock_page_memcg(from); 5454 5455 ret = 0; 5456 5457 local_irq_disable(); 5458 mem_cgroup_charge_statistics(to, page, nr_pages); 5459 memcg_check_events(to, page); 5460 mem_cgroup_charge_statistics(from, page, -nr_pages); 5461 memcg_check_events(from, page); 5462 local_irq_enable(); 5463 out_unlock: 5464 unlock_page(page); 5465 out: 5466 return ret; 5467 } 5468 5469 /** 5470 * get_mctgt_type - get target type of moving charge 5471 * @vma: the vma the pte to be checked belongs 5472 * @addr: the address corresponding to the pte to be checked 5473 * @ptent: the pte to be checked 5474 * @target: the pointer the target page or swap ent will be stored(can be NULL) 5475 * 5476 * Returns 5477 * 0(MC_TARGET_NONE): if the pte is not a target for move charge. 5478 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for 5479 * move charge. if @target is not NULL, the page is stored in target->page 5480 * with extra refcnt got(Callers should handle it). 5481 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a 5482 * target for charge migration. if @target is not NULL, the entry is stored 5483 * in target->ent. 5484 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE 5485 * (so ZONE_DEVICE page and thus not on the lru). 5486 * For now we such page is charge like a regular page would be as for all 5487 * intent and purposes it is just special memory taking the place of a 5488 * regular page. 5489 * 5490 * See Documentations/vm/hmm.txt and include/linux/hmm.h 5491 * 5492 * Called with pte lock held. 5493 */ 5494 5495 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, 5496 unsigned long addr, pte_t ptent, union mc_target *target) 5497 { 5498 struct page *page = NULL; 5499 enum mc_target_type ret = MC_TARGET_NONE; 5500 swp_entry_t ent = { .val = 0 }; 5501 5502 if (pte_present(ptent)) 5503 page = mc_handle_present_pte(vma, addr, ptent); 5504 else if (is_swap_pte(ptent)) 5505 page = mc_handle_swap_pte(vma, ptent, &ent); 5506 else if (pte_none(ptent)) 5507 page = mc_handle_file_pte(vma, addr, ptent, &ent); 5508 5509 if (!page && !ent.val) 5510 return ret; 5511 if (page) { 5512 /* 5513 * Do only loose check w/o serialization. 5514 * mem_cgroup_move_account() checks the page is valid or 5515 * not under LRU exclusion. 5516 */ 5517 if (page->mem_cgroup == mc.from) { 5518 ret = MC_TARGET_PAGE; 5519 if (is_device_private_page(page)) 5520 ret = MC_TARGET_DEVICE; 5521 if (target) 5522 target->page = page; 5523 } 5524 if (!ret || !target) 5525 put_page(page); 5526 } 5527 /* 5528 * There is a swap entry and a page doesn't exist or isn't charged. 5529 * But we cannot move a tail-page in a THP. 5530 */ 5531 if (ent.val && !ret && (!page || !PageTransCompound(page)) && 5532 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) { 5533 ret = MC_TARGET_SWAP; 5534 if (target) 5535 target->ent = ent; 5536 } 5537 return ret; 5538 } 5539 5540 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5541 /* 5542 * We don't consider PMD mapped swapping or file mapped pages because THP does 5543 * not support them for now. 5544 * Caller should make sure that pmd_trans_huge(pmd) is true. 5545 */ 5546 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5547 unsigned long addr, pmd_t pmd, union mc_target *target) 5548 { 5549 struct page *page = NULL; 5550 enum mc_target_type ret = MC_TARGET_NONE; 5551 5552 if (unlikely(is_swap_pmd(pmd))) { 5553 VM_BUG_ON(thp_migration_supported() && 5554 !is_pmd_migration_entry(pmd)); 5555 return ret; 5556 } 5557 page = pmd_page(pmd); 5558 VM_BUG_ON_PAGE(!page || !PageHead(page), page); 5559 if (!(mc.flags & MOVE_ANON)) 5560 return ret; 5561 if (page->mem_cgroup == mc.from) { 5562 ret = MC_TARGET_PAGE; 5563 if (target) { 5564 get_page(page); 5565 target->page = page; 5566 } 5567 } 5568 return ret; 5569 } 5570 #else 5571 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5572 unsigned long addr, pmd_t pmd, union mc_target *target) 5573 { 5574 return MC_TARGET_NONE; 5575 } 5576 #endif 5577 5578 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 5579 unsigned long addr, unsigned long end, 5580 struct mm_walk *walk) 5581 { 5582 struct vm_area_struct *vma = walk->vma; 5583 pte_t *pte; 5584 spinlock_t *ptl; 5585 5586 ptl = pmd_trans_huge_lock(pmd, vma); 5587 if (ptl) { 5588 /* 5589 * Note their can not be MC_TARGET_DEVICE for now as we do not 5590 * support transparent huge page with MEMORY_DEVICE_PRIVATE but 5591 * this might change. 5592 */ 5593 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) 5594 mc.precharge += HPAGE_PMD_NR; 5595 spin_unlock(ptl); 5596 return 0; 5597 } 5598 5599 if (pmd_trans_unstable(pmd)) 5600 return 0; 5601 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 5602 for (; addr != end; pte++, addr += PAGE_SIZE) 5603 if (get_mctgt_type(vma, addr, *pte, NULL)) 5604 mc.precharge++; /* increment precharge temporarily */ 5605 pte_unmap_unlock(pte - 1, ptl); 5606 cond_resched(); 5607 5608 return 0; 5609 } 5610 5611 static const struct mm_walk_ops precharge_walk_ops = { 5612 .pmd_entry = mem_cgroup_count_precharge_pte_range, 5613 }; 5614 5615 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 5616 { 5617 unsigned long precharge; 5618 5619 mmap_read_lock(mm); 5620 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL); 5621 mmap_read_unlock(mm); 5622 5623 precharge = mc.precharge; 5624 mc.precharge = 0; 5625 5626 return precharge; 5627 } 5628 5629 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 5630 { 5631 unsigned long precharge = mem_cgroup_count_precharge(mm); 5632 5633 VM_BUG_ON(mc.moving_task); 5634 mc.moving_task = current; 5635 return mem_cgroup_do_precharge(precharge); 5636 } 5637 5638 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 5639 static void __mem_cgroup_clear_mc(void) 5640 { 5641 struct mem_cgroup *from = mc.from; 5642 struct mem_cgroup *to = mc.to; 5643 5644 /* we must uncharge all the leftover precharges from mc.to */ 5645 if (mc.precharge) { 5646 cancel_charge(mc.to, mc.precharge); 5647 mc.precharge = 0; 5648 } 5649 /* 5650 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 5651 * we must uncharge here. 5652 */ 5653 if (mc.moved_charge) { 5654 cancel_charge(mc.from, mc.moved_charge); 5655 mc.moved_charge = 0; 5656 } 5657 /* we must fixup refcnts and charges */ 5658 if (mc.moved_swap) { 5659 /* uncharge swap account from the old cgroup */ 5660 if (!mem_cgroup_is_root(mc.from)) 5661 page_counter_uncharge(&mc.from->memsw, mc.moved_swap); 5662 5663 mem_cgroup_id_put_many(mc.from, mc.moved_swap); 5664 5665 /* 5666 * we charged both to->memory and to->memsw, so we 5667 * should uncharge to->memory. 5668 */ 5669 if (!mem_cgroup_is_root(mc.to)) 5670 page_counter_uncharge(&mc.to->memory, mc.moved_swap); 5671 5672 mem_cgroup_id_get_many(mc.to, mc.moved_swap); 5673 css_put_many(&mc.to->css, mc.moved_swap); 5674 5675 mc.moved_swap = 0; 5676 } 5677 memcg_oom_recover(from); 5678 memcg_oom_recover(to); 5679 wake_up_all(&mc.waitq); 5680 } 5681 5682 static void mem_cgroup_clear_mc(void) 5683 { 5684 struct mm_struct *mm = mc.mm; 5685 5686 /* 5687 * we must clear moving_task before waking up waiters at the end of 5688 * task migration. 5689 */ 5690 mc.moving_task = NULL; 5691 __mem_cgroup_clear_mc(); 5692 spin_lock(&mc.lock); 5693 mc.from = NULL; 5694 mc.to = NULL; 5695 mc.mm = NULL; 5696 spin_unlock(&mc.lock); 5697 5698 mmput(mm); 5699 } 5700 5701 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 5702 { 5703 struct cgroup_subsys_state *css; 5704 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */ 5705 struct mem_cgroup *from; 5706 struct task_struct *leader, *p; 5707 struct mm_struct *mm; 5708 unsigned long move_flags; 5709 int ret = 0; 5710 5711 /* charge immigration isn't supported on the default hierarchy */ 5712 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5713 return 0; 5714 5715 /* 5716 * Multi-process migrations only happen on the default hierarchy 5717 * where charge immigration is not used. Perform charge 5718 * immigration if @tset contains a leader and whine if there are 5719 * multiple. 5720 */ 5721 p = NULL; 5722 cgroup_taskset_for_each_leader(leader, css, tset) { 5723 WARN_ON_ONCE(p); 5724 p = leader; 5725 memcg = mem_cgroup_from_css(css); 5726 } 5727 if (!p) 5728 return 0; 5729 5730 /* 5731 * We are now commited to this value whatever it is. Changes in this 5732 * tunable will only affect upcoming migrations, not the current one. 5733 * So we need to save it, and keep it going. 5734 */ 5735 move_flags = READ_ONCE(memcg->move_charge_at_immigrate); 5736 if (!move_flags) 5737 return 0; 5738 5739 from = mem_cgroup_from_task(p); 5740 5741 VM_BUG_ON(from == memcg); 5742 5743 mm = get_task_mm(p); 5744 if (!mm) 5745 return 0; 5746 /* We move charges only when we move a owner of the mm */ 5747 if (mm->owner == p) { 5748 VM_BUG_ON(mc.from); 5749 VM_BUG_ON(mc.to); 5750 VM_BUG_ON(mc.precharge); 5751 VM_BUG_ON(mc.moved_charge); 5752 VM_BUG_ON(mc.moved_swap); 5753 5754 spin_lock(&mc.lock); 5755 mc.mm = mm; 5756 mc.from = from; 5757 mc.to = memcg; 5758 mc.flags = move_flags; 5759 spin_unlock(&mc.lock); 5760 /* We set mc.moving_task later */ 5761 5762 ret = mem_cgroup_precharge_mc(mm); 5763 if (ret) 5764 mem_cgroup_clear_mc(); 5765 } else { 5766 mmput(mm); 5767 } 5768 return ret; 5769 } 5770 5771 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 5772 { 5773 if (mc.to) 5774 mem_cgroup_clear_mc(); 5775 } 5776 5777 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 5778 unsigned long addr, unsigned long end, 5779 struct mm_walk *walk) 5780 { 5781 int ret = 0; 5782 struct vm_area_struct *vma = walk->vma; 5783 pte_t *pte; 5784 spinlock_t *ptl; 5785 enum mc_target_type target_type; 5786 union mc_target target; 5787 struct page *page; 5788 5789 ptl = pmd_trans_huge_lock(pmd, vma); 5790 if (ptl) { 5791 if (mc.precharge < HPAGE_PMD_NR) { 5792 spin_unlock(ptl); 5793 return 0; 5794 } 5795 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); 5796 if (target_type == MC_TARGET_PAGE) { 5797 page = target.page; 5798 if (!isolate_lru_page(page)) { 5799 if (!mem_cgroup_move_account(page, true, 5800 mc.from, mc.to)) { 5801 mc.precharge -= HPAGE_PMD_NR; 5802 mc.moved_charge += HPAGE_PMD_NR; 5803 } 5804 putback_lru_page(page); 5805 } 5806 put_page(page); 5807 } else if (target_type == MC_TARGET_DEVICE) { 5808 page = target.page; 5809 if (!mem_cgroup_move_account(page, true, 5810 mc.from, mc.to)) { 5811 mc.precharge -= HPAGE_PMD_NR; 5812 mc.moved_charge += HPAGE_PMD_NR; 5813 } 5814 put_page(page); 5815 } 5816 spin_unlock(ptl); 5817 return 0; 5818 } 5819 5820 if (pmd_trans_unstable(pmd)) 5821 return 0; 5822 retry: 5823 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 5824 for (; addr != end; addr += PAGE_SIZE) { 5825 pte_t ptent = *(pte++); 5826 bool device = false; 5827 swp_entry_t ent; 5828 5829 if (!mc.precharge) 5830 break; 5831 5832 switch (get_mctgt_type(vma, addr, ptent, &target)) { 5833 case MC_TARGET_DEVICE: 5834 device = true; 5835 fallthrough; 5836 case MC_TARGET_PAGE: 5837 page = target.page; 5838 /* 5839 * We can have a part of the split pmd here. Moving it 5840 * can be done but it would be too convoluted so simply 5841 * ignore such a partial THP and keep it in original 5842 * memcg. There should be somebody mapping the head. 5843 */ 5844 if (PageTransCompound(page)) 5845 goto put; 5846 if (!device && isolate_lru_page(page)) 5847 goto put; 5848 if (!mem_cgroup_move_account(page, false, 5849 mc.from, mc.to)) { 5850 mc.precharge--; 5851 /* we uncharge from mc.from later. */ 5852 mc.moved_charge++; 5853 } 5854 if (!device) 5855 putback_lru_page(page); 5856 put: /* get_mctgt_type() gets the page */ 5857 put_page(page); 5858 break; 5859 case MC_TARGET_SWAP: 5860 ent = target.ent; 5861 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { 5862 mc.precharge--; 5863 /* we fixup refcnts and charges later. */ 5864 mc.moved_swap++; 5865 } 5866 break; 5867 default: 5868 break; 5869 } 5870 } 5871 pte_unmap_unlock(pte - 1, ptl); 5872 cond_resched(); 5873 5874 if (addr != end) { 5875 /* 5876 * We have consumed all precharges we got in can_attach(). 5877 * We try charge one by one, but don't do any additional 5878 * charges to mc.to if we have failed in charge once in attach() 5879 * phase. 5880 */ 5881 ret = mem_cgroup_do_precharge(1); 5882 if (!ret) 5883 goto retry; 5884 } 5885 5886 return ret; 5887 } 5888 5889 static const struct mm_walk_ops charge_walk_ops = { 5890 .pmd_entry = mem_cgroup_move_charge_pte_range, 5891 }; 5892 5893 static void mem_cgroup_move_charge(void) 5894 { 5895 lru_add_drain_all(); 5896 /* 5897 * Signal lock_page_memcg() to take the memcg's move_lock 5898 * while we're moving its pages to another memcg. Then wait 5899 * for already started RCU-only updates to finish. 5900 */ 5901 atomic_inc(&mc.from->moving_account); 5902 synchronize_rcu(); 5903 retry: 5904 if (unlikely(!mmap_read_trylock(mc.mm))) { 5905 /* 5906 * Someone who are holding the mmap_lock might be waiting in 5907 * waitq. So we cancel all extra charges, wake up all waiters, 5908 * and retry. Because we cancel precharges, we might not be able 5909 * to move enough charges, but moving charge is a best-effort 5910 * feature anyway, so it wouldn't be a big problem. 5911 */ 5912 __mem_cgroup_clear_mc(); 5913 cond_resched(); 5914 goto retry; 5915 } 5916 /* 5917 * When we have consumed all precharges and failed in doing 5918 * additional charge, the page walk just aborts. 5919 */ 5920 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops, 5921 NULL); 5922 5923 mmap_read_unlock(mc.mm); 5924 atomic_dec(&mc.from->moving_account); 5925 } 5926 5927 static void mem_cgroup_move_task(void) 5928 { 5929 if (mc.to) { 5930 mem_cgroup_move_charge(); 5931 mem_cgroup_clear_mc(); 5932 } 5933 } 5934 #else /* !CONFIG_MMU */ 5935 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 5936 { 5937 return 0; 5938 } 5939 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 5940 { 5941 } 5942 static void mem_cgroup_move_task(void) 5943 { 5944 } 5945 #endif 5946 5947 /* 5948 * Cgroup retains root cgroups across [un]mount cycles making it necessary 5949 * to verify whether we're attached to the default hierarchy on each mount 5950 * attempt. 5951 */ 5952 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css) 5953 { 5954 /* 5955 * use_hierarchy is forced on the default hierarchy. cgroup core 5956 * guarantees that @root doesn't have any children, so turning it 5957 * on for the root memcg is enough. 5958 */ 5959 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5960 root_mem_cgroup->use_hierarchy = true; 5961 else 5962 root_mem_cgroup->use_hierarchy = false; 5963 } 5964 5965 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value) 5966 { 5967 if (value == PAGE_COUNTER_MAX) 5968 seq_puts(m, "max\n"); 5969 else 5970 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE); 5971 5972 return 0; 5973 } 5974 5975 static u64 memory_current_read(struct cgroup_subsys_state *css, 5976 struct cftype *cft) 5977 { 5978 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5979 5980 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; 5981 } 5982 5983 static int memory_min_show(struct seq_file *m, void *v) 5984 { 5985 return seq_puts_memcg_tunable(m, 5986 READ_ONCE(mem_cgroup_from_seq(m)->memory.min)); 5987 } 5988 5989 static ssize_t memory_min_write(struct kernfs_open_file *of, 5990 char *buf, size_t nbytes, loff_t off) 5991 { 5992 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5993 unsigned long min; 5994 int err; 5995 5996 buf = strstrip(buf); 5997 err = page_counter_memparse(buf, "max", &min); 5998 if (err) 5999 return err; 6000 6001 page_counter_set_min(&memcg->memory, min); 6002 6003 return nbytes; 6004 } 6005 6006 static int memory_low_show(struct seq_file *m, void *v) 6007 { 6008 return seq_puts_memcg_tunable(m, 6009 READ_ONCE(mem_cgroup_from_seq(m)->memory.low)); 6010 } 6011 6012 static ssize_t memory_low_write(struct kernfs_open_file *of, 6013 char *buf, size_t nbytes, loff_t off) 6014 { 6015 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6016 unsigned long low; 6017 int err; 6018 6019 buf = strstrip(buf); 6020 err = page_counter_memparse(buf, "max", &low); 6021 if (err) 6022 return err; 6023 6024 page_counter_set_low(&memcg->memory, low); 6025 6026 return nbytes; 6027 } 6028 6029 static int memory_high_show(struct seq_file *m, void *v) 6030 { 6031 return seq_puts_memcg_tunable(m, 6032 READ_ONCE(mem_cgroup_from_seq(m)->memory.high)); 6033 } 6034 6035 static ssize_t memory_high_write(struct kernfs_open_file *of, 6036 char *buf, size_t nbytes, loff_t off) 6037 { 6038 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6039 unsigned int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 6040 bool drained = false; 6041 unsigned long high; 6042 int err; 6043 6044 buf = strstrip(buf); 6045 err = page_counter_memparse(buf, "max", &high); 6046 if (err) 6047 return err; 6048 6049 page_counter_set_high(&memcg->memory, high); 6050 6051 for (;;) { 6052 unsigned long nr_pages = page_counter_read(&memcg->memory); 6053 unsigned long reclaimed; 6054 6055 if (nr_pages <= high) 6056 break; 6057 6058 if (signal_pending(current)) 6059 break; 6060 6061 if (!drained) { 6062 drain_all_stock(memcg); 6063 drained = true; 6064 continue; 6065 } 6066 6067 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high, 6068 GFP_KERNEL, true); 6069 6070 if (!reclaimed && !nr_retries--) 6071 break; 6072 } 6073 6074 return nbytes; 6075 } 6076 6077 static int memory_max_show(struct seq_file *m, void *v) 6078 { 6079 return seq_puts_memcg_tunable(m, 6080 READ_ONCE(mem_cgroup_from_seq(m)->memory.max)); 6081 } 6082 6083 static ssize_t memory_max_write(struct kernfs_open_file *of, 6084 char *buf, size_t nbytes, loff_t off) 6085 { 6086 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6087 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES; 6088 bool drained = false; 6089 unsigned long max; 6090 int err; 6091 6092 buf = strstrip(buf); 6093 err = page_counter_memparse(buf, "max", &max); 6094 if (err) 6095 return err; 6096 6097 xchg(&memcg->memory.max, max); 6098 6099 for (;;) { 6100 unsigned long nr_pages = page_counter_read(&memcg->memory); 6101 6102 if (nr_pages <= max) 6103 break; 6104 6105 if (signal_pending(current)) 6106 break; 6107 6108 if (!drained) { 6109 drain_all_stock(memcg); 6110 drained = true; 6111 continue; 6112 } 6113 6114 if (nr_reclaims) { 6115 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max, 6116 GFP_KERNEL, true)) 6117 nr_reclaims--; 6118 continue; 6119 } 6120 6121 memcg_memory_event(memcg, MEMCG_OOM); 6122 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0)) 6123 break; 6124 } 6125 6126 memcg_wb_domain_size_changed(memcg); 6127 return nbytes; 6128 } 6129 6130 static void __memory_events_show(struct seq_file *m, atomic_long_t *events) 6131 { 6132 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW])); 6133 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH])); 6134 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX])); 6135 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM])); 6136 seq_printf(m, "oom_kill %lu\n", 6137 atomic_long_read(&events[MEMCG_OOM_KILL])); 6138 } 6139 6140 static int memory_events_show(struct seq_file *m, void *v) 6141 { 6142 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6143 6144 __memory_events_show(m, memcg->memory_events); 6145 return 0; 6146 } 6147 6148 static int memory_events_local_show(struct seq_file *m, void *v) 6149 { 6150 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6151 6152 __memory_events_show(m, memcg->memory_events_local); 6153 return 0; 6154 } 6155 6156 static int memory_stat_show(struct seq_file *m, void *v) 6157 { 6158 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6159 char *buf; 6160 6161 buf = memory_stat_format(memcg); 6162 if (!buf) 6163 return -ENOMEM; 6164 seq_puts(m, buf); 6165 kfree(buf); 6166 return 0; 6167 } 6168 6169 static int memory_oom_group_show(struct seq_file *m, void *v) 6170 { 6171 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6172 6173 seq_printf(m, "%d\n", memcg->oom_group); 6174 6175 return 0; 6176 } 6177 6178 static ssize_t memory_oom_group_write(struct kernfs_open_file *of, 6179 char *buf, size_t nbytes, loff_t off) 6180 { 6181 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6182 int ret, oom_group; 6183 6184 buf = strstrip(buf); 6185 if (!buf) 6186 return -EINVAL; 6187 6188 ret = kstrtoint(buf, 0, &oom_group); 6189 if (ret) 6190 return ret; 6191 6192 if (oom_group != 0 && oom_group != 1) 6193 return -EINVAL; 6194 6195 memcg->oom_group = oom_group; 6196 6197 return nbytes; 6198 } 6199 6200 static struct cftype memory_files[] = { 6201 { 6202 .name = "current", 6203 .flags = CFTYPE_NOT_ON_ROOT, 6204 .read_u64 = memory_current_read, 6205 }, 6206 { 6207 .name = "min", 6208 .flags = CFTYPE_NOT_ON_ROOT, 6209 .seq_show = memory_min_show, 6210 .write = memory_min_write, 6211 }, 6212 { 6213 .name = "low", 6214 .flags = CFTYPE_NOT_ON_ROOT, 6215 .seq_show = memory_low_show, 6216 .write = memory_low_write, 6217 }, 6218 { 6219 .name = "high", 6220 .flags = CFTYPE_NOT_ON_ROOT, 6221 .seq_show = memory_high_show, 6222 .write = memory_high_write, 6223 }, 6224 { 6225 .name = "max", 6226 .flags = CFTYPE_NOT_ON_ROOT, 6227 .seq_show = memory_max_show, 6228 .write = memory_max_write, 6229 }, 6230 { 6231 .name = "events", 6232 .flags = CFTYPE_NOT_ON_ROOT, 6233 .file_offset = offsetof(struct mem_cgroup, events_file), 6234 .seq_show = memory_events_show, 6235 }, 6236 { 6237 .name = "events.local", 6238 .flags = CFTYPE_NOT_ON_ROOT, 6239 .file_offset = offsetof(struct mem_cgroup, events_local_file), 6240 .seq_show = memory_events_local_show, 6241 }, 6242 { 6243 .name = "stat", 6244 .seq_show = memory_stat_show, 6245 }, 6246 { 6247 .name = "oom.group", 6248 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE, 6249 .seq_show = memory_oom_group_show, 6250 .write = memory_oom_group_write, 6251 }, 6252 { } /* terminate */ 6253 }; 6254 6255 struct cgroup_subsys memory_cgrp_subsys = { 6256 .css_alloc = mem_cgroup_css_alloc, 6257 .css_online = mem_cgroup_css_online, 6258 .css_offline = mem_cgroup_css_offline, 6259 .css_released = mem_cgroup_css_released, 6260 .css_free = mem_cgroup_css_free, 6261 .css_reset = mem_cgroup_css_reset, 6262 .can_attach = mem_cgroup_can_attach, 6263 .cancel_attach = mem_cgroup_cancel_attach, 6264 .post_attach = mem_cgroup_move_task, 6265 .bind = mem_cgroup_bind, 6266 .dfl_cftypes = memory_files, 6267 .legacy_cftypes = mem_cgroup_legacy_files, 6268 .early_init = 0, 6269 }; 6270 6271 /* 6272 * This function calculates an individual cgroup's effective 6273 * protection which is derived from its own memory.min/low, its 6274 * parent's and siblings' settings, as well as the actual memory 6275 * distribution in the tree. 6276 * 6277 * The following rules apply to the effective protection values: 6278 * 6279 * 1. At the first level of reclaim, effective protection is equal to 6280 * the declared protection in memory.min and memory.low. 6281 * 6282 * 2. To enable safe delegation of the protection configuration, at 6283 * subsequent levels the effective protection is capped to the 6284 * parent's effective protection. 6285 * 6286 * 3. To make complex and dynamic subtrees easier to configure, the 6287 * user is allowed to overcommit the declared protection at a given 6288 * level. If that is the case, the parent's effective protection is 6289 * distributed to the children in proportion to how much protection 6290 * they have declared and how much of it they are utilizing. 6291 * 6292 * This makes distribution proportional, but also work-conserving: 6293 * if one cgroup claims much more protection than it uses memory, 6294 * the unused remainder is available to its siblings. 6295 * 6296 * 4. Conversely, when the declared protection is undercommitted at a 6297 * given level, the distribution of the larger parental protection 6298 * budget is NOT proportional. A cgroup's protection from a sibling 6299 * is capped to its own memory.min/low setting. 6300 * 6301 * 5. However, to allow protecting recursive subtrees from each other 6302 * without having to declare each individual cgroup's fixed share 6303 * of the ancestor's claim to protection, any unutilized - 6304 * "floating" - protection from up the tree is distributed in 6305 * proportion to each cgroup's *usage*. This makes the protection 6306 * neutral wrt sibling cgroups and lets them compete freely over 6307 * the shared parental protection budget, but it protects the 6308 * subtree as a whole from neighboring subtrees. 6309 * 6310 * Note that 4. and 5. are not in conflict: 4. is about protecting 6311 * against immediate siblings whereas 5. is about protecting against 6312 * neighboring subtrees. 6313 */ 6314 static unsigned long effective_protection(unsigned long usage, 6315 unsigned long parent_usage, 6316 unsigned long setting, 6317 unsigned long parent_effective, 6318 unsigned long siblings_protected) 6319 { 6320 unsigned long protected; 6321 unsigned long ep; 6322 6323 protected = min(usage, setting); 6324 /* 6325 * If all cgroups at this level combined claim and use more 6326 * protection then what the parent affords them, distribute 6327 * shares in proportion to utilization. 6328 * 6329 * We are using actual utilization rather than the statically 6330 * claimed protection in order to be work-conserving: claimed 6331 * but unused protection is available to siblings that would 6332 * otherwise get a smaller chunk than what they claimed. 6333 */ 6334 if (siblings_protected > parent_effective) 6335 return protected * parent_effective / siblings_protected; 6336 6337 /* 6338 * Ok, utilized protection of all children is within what the 6339 * parent affords them, so we know whatever this child claims 6340 * and utilizes is effectively protected. 6341 * 6342 * If there is unprotected usage beyond this value, reclaim 6343 * will apply pressure in proportion to that amount. 6344 * 6345 * If there is unutilized protection, the cgroup will be fully 6346 * shielded from reclaim, but we do return a smaller value for 6347 * protection than what the group could enjoy in theory. This 6348 * is okay. With the overcommit distribution above, effective 6349 * protection is always dependent on how memory is actually 6350 * consumed among the siblings anyway. 6351 */ 6352 ep = protected; 6353 6354 /* 6355 * If the children aren't claiming (all of) the protection 6356 * afforded to them by the parent, distribute the remainder in 6357 * proportion to the (unprotected) memory of each cgroup. That 6358 * way, cgroups that aren't explicitly prioritized wrt each 6359 * other compete freely over the allowance, but they are 6360 * collectively protected from neighboring trees. 6361 * 6362 * We're using unprotected memory for the weight so that if 6363 * some cgroups DO claim explicit protection, we don't protect 6364 * the same bytes twice. 6365 * 6366 * Check both usage and parent_usage against the respective 6367 * protected values. One should imply the other, but they 6368 * aren't read atomically - make sure the division is sane. 6369 */ 6370 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)) 6371 return ep; 6372 if (parent_effective > siblings_protected && 6373 parent_usage > siblings_protected && 6374 usage > protected) { 6375 unsigned long unclaimed; 6376 6377 unclaimed = parent_effective - siblings_protected; 6378 unclaimed *= usage - protected; 6379 unclaimed /= parent_usage - siblings_protected; 6380 6381 ep += unclaimed; 6382 } 6383 6384 return ep; 6385 } 6386 6387 /** 6388 * mem_cgroup_protected - check if memory consumption is in the normal range 6389 * @root: the top ancestor of the sub-tree being checked 6390 * @memcg: the memory cgroup to check 6391 * 6392 * WARNING: This function is not stateless! It can only be used as part 6393 * of a top-down tree iteration, not for isolated queries. 6394 * 6395 * Returns one of the following: 6396 * MEMCG_PROT_NONE: cgroup memory is not protected 6397 * MEMCG_PROT_LOW: cgroup memory is protected as long there is 6398 * an unprotected supply of reclaimable memory from other cgroups. 6399 * MEMCG_PROT_MIN: cgroup memory is protected 6400 */ 6401 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root, 6402 struct mem_cgroup *memcg) 6403 { 6404 unsigned long usage, parent_usage; 6405 struct mem_cgroup *parent; 6406 6407 if (mem_cgroup_disabled()) 6408 return MEMCG_PROT_NONE; 6409 6410 if (!root) 6411 root = root_mem_cgroup; 6412 if (memcg == root) 6413 return MEMCG_PROT_NONE; 6414 6415 usage = page_counter_read(&memcg->memory); 6416 if (!usage) 6417 return MEMCG_PROT_NONE; 6418 6419 parent = parent_mem_cgroup(memcg); 6420 /* No parent means a non-hierarchical mode on v1 memcg */ 6421 if (!parent) 6422 return MEMCG_PROT_NONE; 6423 6424 if (parent == root) { 6425 memcg->memory.emin = READ_ONCE(memcg->memory.min); 6426 memcg->memory.elow = READ_ONCE(memcg->memory.low); 6427 goto out; 6428 } 6429 6430 parent_usage = page_counter_read(&parent->memory); 6431 6432 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage, 6433 READ_ONCE(memcg->memory.min), 6434 READ_ONCE(parent->memory.emin), 6435 atomic_long_read(&parent->memory.children_min_usage))); 6436 6437 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage, 6438 READ_ONCE(memcg->memory.low), 6439 READ_ONCE(parent->memory.elow), 6440 atomic_long_read(&parent->memory.children_low_usage))); 6441 6442 out: 6443 if (usage <= memcg->memory.emin) 6444 return MEMCG_PROT_MIN; 6445 else if (usage <= memcg->memory.elow) 6446 return MEMCG_PROT_LOW; 6447 else 6448 return MEMCG_PROT_NONE; 6449 } 6450 6451 /** 6452 * mem_cgroup_charge - charge a newly allocated page to a cgroup 6453 * @page: page to charge 6454 * @mm: mm context of the victim 6455 * @gfp_mask: reclaim mode 6456 * 6457 * Try to charge @page to the memcg that @mm belongs to, reclaiming 6458 * pages according to @gfp_mask if necessary. 6459 * 6460 * Returns 0 on success. Otherwise, an error code is returned. 6461 */ 6462 int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask) 6463 { 6464 unsigned int nr_pages = hpage_nr_pages(page); 6465 struct mem_cgroup *memcg = NULL; 6466 int ret = 0; 6467 6468 if (mem_cgroup_disabled()) 6469 goto out; 6470 6471 if (PageSwapCache(page)) { 6472 swp_entry_t ent = { .val = page_private(page), }; 6473 unsigned short id; 6474 6475 /* 6476 * Every swap fault against a single page tries to charge the 6477 * page, bail as early as possible. shmem_unuse() encounters 6478 * already charged pages, too. page->mem_cgroup is protected 6479 * by the page lock, which serializes swap cache removal, which 6480 * in turn serializes uncharging. 6481 */ 6482 VM_BUG_ON_PAGE(!PageLocked(page), page); 6483 if (compound_head(page)->mem_cgroup) 6484 goto out; 6485 6486 id = lookup_swap_cgroup_id(ent); 6487 rcu_read_lock(); 6488 memcg = mem_cgroup_from_id(id); 6489 if (memcg && !css_tryget_online(&memcg->css)) 6490 memcg = NULL; 6491 rcu_read_unlock(); 6492 } 6493 6494 if (!memcg) 6495 memcg = get_mem_cgroup_from_mm(mm); 6496 6497 ret = try_charge(memcg, gfp_mask, nr_pages); 6498 if (ret) 6499 goto out_put; 6500 6501 commit_charge(page, memcg); 6502 6503 local_irq_disable(); 6504 mem_cgroup_charge_statistics(memcg, page, nr_pages); 6505 memcg_check_events(memcg, page); 6506 local_irq_enable(); 6507 6508 if (PageSwapCache(page)) { 6509 swp_entry_t entry = { .val = page_private(page) }; 6510 /* 6511 * The swap entry might not get freed for a long time, 6512 * let's not wait for it. The page already received a 6513 * memory+swap charge, drop the swap entry duplicate. 6514 */ 6515 mem_cgroup_uncharge_swap(entry, nr_pages); 6516 } 6517 6518 out_put: 6519 css_put(&memcg->css); 6520 out: 6521 return ret; 6522 } 6523 6524 struct uncharge_gather { 6525 struct mem_cgroup *memcg; 6526 unsigned long nr_pages; 6527 unsigned long pgpgout; 6528 unsigned long nr_kmem; 6529 struct page *dummy_page; 6530 }; 6531 6532 static inline void uncharge_gather_clear(struct uncharge_gather *ug) 6533 { 6534 memset(ug, 0, sizeof(*ug)); 6535 } 6536 6537 static void uncharge_batch(const struct uncharge_gather *ug) 6538 { 6539 unsigned long flags; 6540 6541 if (!mem_cgroup_is_root(ug->memcg)) { 6542 page_counter_uncharge(&ug->memcg->memory, ug->nr_pages); 6543 if (do_memsw_account()) 6544 page_counter_uncharge(&ug->memcg->memsw, ug->nr_pages); 6545 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem) 6546 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem); 6547 memcg_oom_recover(ug->memcg); 6548 } 6549 6550 local_irq_save(flags); 6551 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout); 6552 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_pages); 6553 memcg_check_events(ug->memcg, ug->dummy_page); 6554 local_irq_restore(flags); 6555 6556 if (!mem_cgroup_is_root(ug->memcg)) 6557 css_put_many(&ug->memcg->css, ug->nr_pages); 6558 } 6559 6560 static void uncharge_page(struct page *page, struct uncharge_gather *ug) 6561 { 6562 unsigned long nr_pages; 6563 6564 VM_BUG_ON_PAGE(PageLRU(page), page); 6565 6566 if (!page->mem_cgroup) 6567 return; 6568 6569 /* 6570 * Nobody should be changing or seriously looking at 6571 * page->mem_cgroup at this point, we have fully 6572 * exclusive access to the page. 6573 */ 6574 6575 if (ug->memcg != page->mem_cgroup) { 6576 if (ug->memcg) { 6577 uncharge_batch(ug); 6578 uncharge_gather_clear(ug); 6579 } 6580 ug->memcg = page->mem_cgroup; 6581 } 6582 6583 nr_pages = compound_nr(page); 6584 ug->nr_pages += nr_pages; 6585 6586 if (!PageKmemcg(page)) { 6587 ug->pgpgout++; 6588 } else { 6589 ug->nr_kmem += nr_pages; 6590 __ClearPageKmemcg(page); 6591 } 6592 6593 ug->dummy_page = page; 6594 page->mem_cgroup = NULL; 6595 } 6596 6597 static void uncharge_list(struct list_head *page_list) 6598 { 6599 struct uncharge_gather ug; 6600 struct list_head *next; 6601 6602 uncharge_gather_clear(&ug); 6603 6604 /* 6605 * Note that the list can be a single page->lru; hence the 6606 * do-while loop instead of a simple list_for_each_entry(). 6607 */ 6608 next = page_list->next; 6609 do { 6610 struct page *page; 6611 6612 page = list_entry(next, struct page, lru); 6613 next = page->lru.next; 6614 6615 uncharge_page(page, &ug); 6616 } while (next != page_list); 6617 6618 if (ug.memcg) 6619 uncharge_batch(&ug); 6620 } 6621 6622 /** 6623 * mem_cgroup_uncharge - uncharge a page 6624 * @page: page to uncharge 6625 * 6626 * Uncharge a page previously charged with mem_cgroup_charge(). 6627 */ 6628 void mem_cgroup_uncharge(struct page *page) 6629 { 6630 struct uncharge_gather ug; 6631 6632 if (mem_cgroup_disabled()) 6633 return; 6634 6635 /* Don't touch page->lru of any random page, pre-check: */ 6636 if (!page->mem_cgroup) 6637 return; 6638 6639 uncharge_gather_clear(&ug); 6640 uncharge_page(page, &ug); 6641 uncharge_batch(&ug); 6642 } 6643 6644 /** 6645 * mem_cgroup_uncharge_list - uncharge a list of page 6646 * @page_list: list of pages to uncharge 6647 * 6648 * Uncharge a list of pages previously charged with 6649 * mem_cgroup_charge(). 6650 */ 6651 void mem_cgroup_uncharge_list(struct list_head *page_list) 6652 { 6653 if (mem_cgroup_disabled()) 6654 return; 6655 6656 if (!list_empty(page_list)) 6657 uncharge_list(page_list); 6658 } 6659 6660 /** 6661 * mem_cgroup_migrate - charge a page's replacement 6662 * @oldpage: currently circulating page 6663 * @newpage: replacement page 6664 * 6665 * Charge @newpage as a replacement page for @oldpage. @oldpage will 6666 * be uncharged upon free. 6667 * 6668 * Both pages must be locked, @newpage->mapping must be set up. 6669 */ 6670 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage) 6671 { 6672 struct mem_cgroup *memcg; 6673 unsigned int nr_pages; 6674 unsigned long flags; 6675 6676 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage); 6677 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 6678 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage); 6679 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage), 6680 newpage); 6681 6682 if (mem_cgroup_disabled()) 6683 return; 6684 6685 /* Page cache replacement: new page already charged? */ 6686 if (newpage->mem_cgroup) 6687 return; 6688 6689 /* Swapcache readahead pages can get replaced before being charged */ 6690 memcg = oldpage->mem_cgroup; 6691 if (!memcg) 6692 return; 6693 6694 /* Force-charge the new page. The old one will be freed soon */ 6695 nr_pages = hpage_nr_pages(newpage); 6696 6697 page_counter_charge(&memcg->memory, nr_pages); 6698 if (do_memsw_account()) 6699 page_counter_charge(&memcg->memsw, nr_pages); 6700 css_get_many(&memcg->css, nr_pages); 6701 6702 commit_charge(newpage, memcg); 6703 6704 local_irq_save(flags); 6705 mem_cgroup_charge_statistics(memcg, newpage, nr_pages); 6706 memcg_check_events(memcg, newpage); 6707 local_irq_restore(flags); 6708 } 6709 6710 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); 6711 EXPORT_SYMBOL(memcg_sockets_enabled_key); 6712 6713 void mem_cgroup_sk_alloc(struct sock *sk) 6714 { 6715 struct mem_cgroup *memcg; 6716 6717 if (!mem_cgroup_sockets_enabled) 6718 return; 6719 6720 /* Do not associate the sock with unrelated interrupted task's memcg. */ 6721 if (in_interrupt()) 6722 return; 6723 6724 rcu_read_lock(); 6725 memcg = mem_cgroup_from_task(current); 6726 if (memcg == root_mem_cgroup) 6727 goto out; 6728 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active) 6729 goto out; 6730 if (css_tryget(&memcg->css)) 6731 sk->sk_memcg = memcg; 6732 out: 6733 rcu_read_unlock(); 6734 } 6735 6736 void mem_cgroup_sk_free(struct sock *sk) 6737 { 6738 if (sk->sk_memcg) 6739 css_put(&sk->sk_memcg->css); 6740 } 6741 6742 /** 6743 * mem_cgroup_charge_skmem - charge socket memory 6744 * @memcg: memcg to charge 6745 * @nr_pages: number of pages to charge 6746 * 6747 * Charges @nr_pages to @memcg. Returns %true if the charge fit within 6748 * @memcg's configured limit, %false if the charge had to be forced. 6749 */ 6750 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 6751 { 6752 gfp_t gfp_mask = GFP_KERNEL; 6753 6754 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 6755 struct page_counter *fail; 6756 6757 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) { 6758 memcg->tcpmem_pressure = 0; 6759 return true; 6760 } 6761 page_counter_charge(&memcg->tcpmem, nr_pages); 6762 memcg->tcpmem_pressure = 1; 6763 return false; 6764 } 6765 6766 /* Don't block in the packet receive path */ 6767 if (in_softirq()) 6768 gfp_mask = GFP_NOWAIT; 6769 6770 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages); 6771 6772 if (try_charge(memcg, gfp_mask, nr_pages) == 0) 6773 return true; 6774 6775 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages); 6776 return false; 6777 } 6778 6779 /** 6780 * mem_cgroup_uncharge_skmem - uncharge socket memory 6781 * @memcg: memcg to uncharge 6782 * @nr_pages: number of pages to uncharge 6783 */ 6784 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 6785 { 6786 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 6787 page_counter_uncharge(&memcg->tcpmem, nr_pages); 6788 return; 6789 } 6790 6791 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages); 6792 6793 refill_stock(memcg, nr_pages); 6794 } 6795 6796 static int __init cgroup_memory(char *s) 6797 { 6798 char *token; 6799 6800 while ((token = strsep(&s, ",")) != NULL) { 6801 if (!*token) 6802 continue; 6803 if (!strcmp(token, "nosocket")) 6804 cgroup_memory_nosocket = true; 6805 if (!strcmp(token, "nokmem")) 6806 cgroup_memory_nokmem = true; 6807 } 6808 return 0; 6809 } 6810 __setup("cgroup.memory=", cgroup_memory); 6811 6812 /* 6813 * subsys_initcall() for memory controller. 6814 * 6815 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this 6816 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but 6817 * basically everything that doesn't depend on a specific mem_cgroup structure 6818 * should be initialized from here. 6819 */ 6820 static int __init mem_cgroup_init(void) 6821 { 6822 int cpu, node; 6823 6824 #ifdef CONFIG_MEMCG_KMEM 6825 /* 6826 * Kmem cache creation is mostly done with the slab_mutex held, 6827 * so use a workqueue with limited concurrency to avoid stalling 6828 * all worker threads in case lots of cgroups are created and 6829 * destroyed simultaneously. 6830 */ 6831 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1); 6832 BUG_ON(!memcg_kmem_cache_wq); 6833 #endif 6834 6835 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL, 6836 memcg_hotplug_cpu_dead); 6837 6838 for_each_possible_cpu(cpu) 6839 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, 6840 drain_local_stock); 6841 6842 for_each_node(node) { 6843 struct mem_cgroup_tree_per_node *rtpn; 6844 6845 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, 6846 node_online(node) ? node : NUMA_NO_NODE); 6847 6848 rtpn->rb_root = RB_ROOT; 6849 rtpn->rb_rightmost = NULL; 6850 spin_lock_init(&rtpn->lock); 6851 soft_limit_tree.rb_tree_per_node[node] = rtpn; 6852 } 6853 6854 return 0; 6855 } 6856 subsys_initcall(mem_cgroup_init); 6857 6858 #ifdef CONFIG_MEMCG_SWAP 6859 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg) 6860 { 6861 while (!refcount_inc_not_zero(&memcg->id.ref)) { 6862 /* 6863 * The root cgroup cannot be destroyed, so it's refcount must 6864 * always be >= 1. 6865 */ 6866 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) { 6867 VM_BUG_ON(1); 6868 break; 6869 } 6870 memcg = parent_mem_cgroup(memcg); 6871 if (!memcg) 6872 memcg = root_mem_cgroup; 6873 } 6874 return memcg; 6875 } 6876 6877 /** 6878 * mem_cgroup_swapout - transfer a memsw charge to swap 6879 * @page: page whose memsw charge to transfer 6880 * @entry: swap entry to move the charge to 6881 * 6882 * Transfer the memsw charge of @page to @entry. 6883 */ 6884 void mem_cgroup_swapout(struct page *page, swp_entry_t entry) 6885 { 6886 struct mem_cgroup *memcg, *swap_memcg; 6887 unsigned int nr_entries; 6888 unsigned short oldid; 6889 6890 VM_BUG_ON_PAGE(PageLRU(page), page); 6891 VM_BUG_ON_PAGE(page_count(page), page); 6892 6893 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 6894 return; 6895 6896 memcg = page->mem_cgroup; 6897 6898 /* Readahead page, never charged */ 6899 if (!memcg) 6900 return; 6901 6902 /* 6903 * In case the memcg owning these pages has been offlined and doesn't 6904 * have an ID allocated to it anymore, charge the closest online 6905 * ancestor for the swap instead and transfer the memory+swap charge. 6906 */ 6907 swap_memcg = mem_cgroup_id_get_online(memcg); 6908 nr_entries = hpage_nr_pages(page); 6909 /* Get references for the tail pages, too */ 6910 if (nr_entries > 1) 6911 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1); 6912 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg), 6913 nr_entries); 6914 VM_BUG_ON_PAGE(oldid, page); 6915 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries); 6916 6917 page->mem_cgroup = NULL; 6918 6919 if (!mem_cgroup_is_root(memcg)) 6920 page_counter_uncharge(&memcg->memory, nr_entries); 6921 6922 if (!cgroup_memory_noswap && memcg != swap_memcg) { 6923 if (!mem_cgroup_is_root(swap_memcg)) 6924 page_counter_charge(&swap_memcg->memsw, nr_entries); 6925 page_counter_uncharge(&memcg->memsw, nr_entries); 6926 } 6927 6928 /* 6929 * Interrupts should be disabled here because the caller holds the 6930 * i_pages lock which is taken with interrupts-off. It is 6931 * important here to have the interrupts disabled because it is the 6932 * only synchronisation we have for updating the per-CPU variables. 6933 */ 6934 VM_BUG_ON(!irqs_disabled()); 6935 mem_cgroup_charge_statistics(memcg, page, -nr_entries); 6936 memcg_check_events(memcg, page); 6937 6938 if (!mem_cgroup_is_root(memcg)) 6939 css_put_many(&memcg->css, nr_entries); 6940 } 6941 6942 /** 6943 * mem_cgroup_try_charge_swap - try charging swap space for a page 6944 * @page: page being added to swap 6945 * @entry: swap entry to charge 6946 * 6947 * Try to charge @page's memcg for the swap space at @entry. 6948 * 6949 * Returns 0 on success, -ENOMEM on failure. 6950 */ 6951 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry) 6952 { 6953 unsigned int nr_pages = hpage_nr_pages(page); 6954 struct page_counter *counter; 6955 struct mem_cgroup *memcg; 6956 unsigned short oldid; 6957 6958 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 6959 return 0; 6960 6961 memcg = page->mem_cgroup; 6962 6963 /* Readahead page, never charged */ 6964 if (!memcg) 6965 return 0; 6966 6967 if (!entry.val) { 6968 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 6969 return 0; 6970 } 6971 6972 memcg = mem_cgroup_id_get_online(memcg); 6973 6974 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) && 6975 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) { 6976 memcg_memory_event(memcg, MEMCG_SWAP_MAX); 6977 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 6978 mem_cgroup_id_put(memcg); 6979 return -ENOMEM; 6980 } 6981 6982 /* Get references for the tail pages, too */ 6983 if (nr_pages > 1) 6984 mem_cgroup_id_get_many(memcg, nr_pages - 1); 6985 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages); 6986 VM_BUG_ON_PAGE(oldid, page); 6987 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages); 6988 6989 return 0; 6990 } 6991 6992 /** 6993 * mem_cgroup_uncharge_swap - uncharge swap space 6994 * @entry: swap entry to uncharge 6995 * @nr_pages: the amount of swap space to uncharge 6996 */ 6997 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages) 6998 { 6999 struct mem_cgroup *memcg; 7000 unsigned short id; 7001 7002 id = swap_cgroup_record(entry, 0, nr_pages); 7003 rcu_read_lock(); 7004 memcg = mem_cgroup_from_id(id); 7005 if (memcg) { 7006 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) { 7007 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7008 page_counter_uncharge(&memcg->swap, nr_pages); 7009 else 7010 page_counter_uncharge(&memcg->memsw, nr_pages); 7011 } 7012 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages); 7013 mem_cgroup_id_put_many(memcg, nr_pages); 7014 } 7015 rcu_read_unlock(); 7016 } 7017 7018 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) 7019 { 7020 long nr_swap_pages = get_nr_swap_pages(); 7021 7022 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7023 return nr_swap_pages; 7024 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) 7025 nr_swap_pages = min_t(long, nr_swap_pages, 7026 READ_ONCE(memcg->swap.max) - 7027 page_counter_read(&memcg->swap)); 7028 return nr_swap_pages; 7029 } 7030 7031 bool mem_cgroup_swap_full(struct page *page) 7032 { 7033 struct mem_cgroup *memcg; 7034 7035 VM_BUG_ON_PAGE(!PageLocked(page), page); 7036 7037 if (vm_swap_full()) 7038 return true; 7039 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7040 return false; 7041 7042 memcg = page->mem_cgroup; 7043 if (!memcg) 7044 return false; 7045 7046 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) { 7047 unsigned long usage = page_counter_read(&memcg->swap); 7048 7049 if (usage * 2 >= READ_ONCE(memcg->swap.high) || 7050 usage * 2 >= READ_ONCE(memcg->swap.max)) 7051 return true; 7052 } 7053 7054 return false; 7055 } 7056 7057 static int __init setup_swap_account(char *s) 7058 { 7059 if (!strcmp(s, "1")) 7060 cgroup_memory_noswap = 0; 7061 else if (!strcmp(s, "0")) 7062 cgroup_memory_noswap = 1; 7063 return 1; 7064 } 7065 __setup("swapaccount=", setup_swap_account); 7066 7067 static u64 swap_current_read(struct cgroup_subsys_state *css, 7068 struct cftype *cft) 7069 { 7070 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 7071 7072 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; 7073 } 7074 7075 static int swap_high_show(struct seq_file *m, void *v) 7076 { 7077 return seq_puts_memcg_tunable(m, 7078 READ_ONCE(mem_cgroup_from_seq(m)->swap.high)); 7079 } 7080 7081 static ssize_t swap_high_write(struct kernfs_open_file *of, 7082 char *buf, size_t nbytes, loff_t off) 7083 { 7084 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 7085 unsigned long high; 7086 int err; 7087 7088 buf = strstrip(buf); 7089 err = page_counter_memparse(buf, "max", &high); 7090 if (err) 7091 return err; 7092 7093 page_counter_set_high(&memcg->swap, high); 7094 7095 return nbytes; 7096 } 7097 7098 static int swap_max_show(struct seq_file *m, void *v) 7099 { 7100 return seq_puts_memcg_tunable(m, 7101 READ_ONCE(mem_cgroup_from_seq(m)->swap.max)); 7102 } 7103 7104 static ssize_t swap_max_write(struct kernfs_open_file *of, 7105 char *buf, size_t nbytes, loff_t off) 7106 { 7107 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 7108 unsigned long max; 7109 int err; 7110 7111 buf = strstrip(buf); 7112 err = page_counter_memparse(buf, "max", &max); 7113 if (err) 7114 return err; 7115 7116 xchg(&memcg->swap.max, max); 7117 7118 return nbytes; 7119 } 7120 7121 static int swap_events_show(struct seq_file *m, void *v) 7122 { 7123 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 7124 7125 seq_printf(m, "high %lu\n", 7126 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH])); 7127 seq_printf(m, "max %lu\n", 7128 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX])); 7129 seq_printf(m, "fail %lu\n", 7130 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL])); 7131 7132 return 0; 7133 } 7134 7135 static struct cftype swap_files[] = { 7136 { 7137 .name = "swap.current", 7138 .flags = CFTYPE_NOT_ON_ROOT, 7139 .read_u64 = swap_current_read, 7140 }, 7141 { 7142 .name = "swap.high", 7143 .flags = CFTYPE_NOT_ON_ROOT, 7144 .seq_show = swap_high_show, 7145 .write = swap_high_write, 7146 }, 7147 { 7148 .name = "swap.max", 7149 .flags = CFTYPE_NOT_ON_ROOT, 7150 .seq_show = swap_max_show, 7151 .write = swap_max_write, 7152 }, 7153 { 7154 .name = "swap.events", 7155 .flags = CFTYPE_NOT_ON_ROOT, 7156 .file_offset = offsetof(struct mem_cgroup, swap_events_file), 7157 .seq_show = swap_events_show, 7158 }, 7159 { } /* terminate */ 7160 }; 7161 7162 static struct cftype memsw_files[] = { 7163 { 7164 .name = "memsw.usage_in_bytes", 7165 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 7166 .read_u64 = mem_cgroup_read_u64, 7167 }, 7168 { 7169 .name = "memsw.max_usage_in_bytes", 7170 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 7171 .write = mem_cgroup_reset, 7172 .read_u64 = mem_cgroup_read_u64, 7173 }, 7174 { 7175 .name = "memsw.limit_in_bytes", 7176 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 7177 .write = mem_cgroup_write, 7178 .read_u64 = mem_cgroup_read_u64, 7179 }, 7180 { 7181 .name = "memsw.failcnt", 7182 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 7183 .write = mem_cgroup_reset, 7184 .read_u64 = mem_cgroup_read_u64, 7185 }, 7186 { }, /* terminate */ 7187 }; 7188 7189 static int __init mem_cgroup_swap_init(void) 7190 { 7191 /* No memory control -> no swap control */ 7192 if (mem_cgroup_disabled()) 7193 cgroup_memory_noswap = true; 7194 7195 if (cgroup_memory_noswap) 7196 return 0; 7197 7198 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files)); 7199 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files)); 7200 7201 return 0; 7202 } 7203 subsys_initcall(mem_cgroup_swap_init); 7204 7205 #endif /* CONFIG_MEMCG_SWAP */ 7206