1 /* memcontrol.c - Memory Controller 2 * 3 * Copyright IBM Corporation, 2007 4 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 5 * 6 * Copyright 2007 OpenVZ SWsoft Inc 7 * Author: Pavel Emelianov <xemul@openvz.org> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 */ 19 20 #include <linux/res_counter.h> 21 #include <linux/memcontrol.h> 22 #include <linux/cgroup.h> 23 #include <linux/mm.h> 24 #include <linux/pagemap.h> 25 #include <linux/smp.h> 26 #include <linux/page-flags.h> 27 #include <linux/backing-dev.h> 28 #include <linux/bit_spinlock.h> 29 #include <linux/rcupdate.h> 30 #include <linux/limits.h> 31 #include <linux/mutex.h> 32 #include <linux/rbtree.h> 33 #include <linux/slab.h> 34 #include <linux/swap.h> 35 #include <linux/spinlock.h> 36 #include <linux/fs.h> 37 #include <linux/seq_file.h> 38 #include <linux/vmalloc.h> 39 #include <linux/mm_inline.h> 40 #include <linux/page_cgroup.h> 41 #include <linux/cpu.h> 42 #include "internal.h" 43 44 #include <asm/uaccess.h> 45 46 struct cgroup_subsys mem_cgroup_subsys __read_mostly; 47 #define MEM_CGROUP_RECLAIM_RETRIES 5 48 struct mem_cgroup *root_mem_cgroup __read_mostly; 49 50 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP 51 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */ 52 int do_swap_account __read_mostly; 53 static int really_do_swap_account __initdata = 1; /* for remember boot option*/ 54 #else 55 #define do_swap_account (0) 56 #endif 57 58 #define SOFTLIMIT_EVENTS_THRESH (1000) 59 60 /* 61 * Statistics for memory cgroup. 62 */ 63 enum mem_cgroup_stat_index { 64 /* 65 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss. 66 */ 67 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */ 68 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */ 69 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */ 70 MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */ 71 MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */ 72 MEM_CGROUP_STAT_EVENTS, /* sum of pagein + pageout for internal use */ 73 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */ 74 75 MEM_CGROUP_STAT_NSTATS, 76 }; 77 78 struct mem_cgroup_stat_cpu { 79 s64 count[MEM_CGROUP_STAT_NSTATS]; 80 } ____cacheline_aligned_in_smp; 81 82 struct mem_cgroup_stat { 83 struct mem_cgroup_stat_cpu cpustat[0]; 84 }; 85 86 static inline void 87 __mem_cgroup_stat_reset_safe(struct mem_cgroup_stat_cpu *stat, 88 enum mem_cgroup_stat_index idx) 89 { 90 stat->count[idx] = 0; 91 } 92 93 static inline s64 94 __mem_cgroup_stat_read_local(struct mem_cgroup_stat_cpu *stat, 95 enum mem_cgroup_stat_index idx) 96 { 97 return stat->count[idx]; 98 } 99 100 /* 101 * For accounting under irq disable, no need for increment preempt count. 102 */ 103 static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat, 104 enum mem_cgroup_stat_index idx, int val) 105 { 106 stat->count[idx] += val; 107 } 108 109 static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat, 110 enum mem_cgroup_stat_index idx) 111 { 112 int cpu; 113 s64 ret = 0; 114 for_each_possible_cpu(cpu) 115 ret += stat->cpustat[cpu].count[idx]; 116 return ret; 117 } 118 119 static s64 mem_cgroup_local_usage(struct mem_cgroup_stat *stat) 120 { 121 s64 ret; 122 123 ret = mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_CACHE); 124 ret += mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_RSS); 125 return ret; 126 } 127 128 /* 129 * per-zone information in memory controller. 130 */ 131 struct mem_cgroup_per_zone { 132 /* 133 * spin_lock to protect the per cgroup LRU 134 */ 135 struct list_head lists[NR_LRU_LISTS]; 136 unsigned long count[NR_LRU_LISTS]; 137 138 struct zone_reclaim_stat reclaim_stat; 139 struct rb_node tree_node; /* RB tree node */ 140 unsigned long long usage_in_excess;/* Set to the value by which */ 141 /* the soft limit is exceeded*/ 142 bool on_tree; 143 struct mem_cgroup *mem; /* Back pointer, we cannot */ 144 /* use container_of */ 145 }; 146 /* Macro for accessing counter */ 147 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)]) 148 149 struct mem_cgroup_per_node { 150 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES]; 151 }; 152 153 struct mem_cgroup_lru_info { 154 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES]; 155 }; 156 157 /* 158 * Cgroups above their limits are maintained in a RB-Tree, independent of 159 * their hierarchy representation 160 */ 161 162 struct mem_cgroup_tree_per_zone { 163 struct rb_root rb_root; 164 spinlock_t lock; 165 }; 166 167 struct mem_cgroup_tree_per_node { 168 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES]; 169 }; 170 171 struct mem_cgroup_tree { 172 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 173 }; 174 175 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 176 177 /* 178 * The memory controller data structure. The memory controller controls both 179 * page cache and RSS per cgroup. We would eventually like to provide 180 * statistics based on the statistics developed by Rik Van Riel for clock-pro, 181 * to help the administrator determine what knobs to tune. 182 * 183 * TODO: Add a water mark for the memory controller. Reclaim will begin when 184 * we hit the water mark. May be even add a low water mark, such that 185 * no reclaim occurs from a cgroup at it's low water mark, this is 186 * a feature that will be implemented much later in the future. 187 */ 188 struct mem_cgroup { 189 struct cgroup_subsys_state css; 190 /* 191 * the counter to account for memory usage 192 */ 193 struct res_counter res; 194 /* 195 * the counter to account for mem+swap usage. 196 */ 197 struct res_counter memsw; 198 /* 199 * Per cgroup active and inactive list, similar to the 200 * per zone LRU lists. 201 */ 202 struct mem_cgroup_lru_info info; 203 204 /* 205 protect against reclaim related member. 206 */ 207 spinlock_t reclaim_param_lock; 208 209 int prev_priority; /* for recording reclaim priority */ 210 211 /* 212 * While reclaiming in a hierarchy, we cache the last child we 213 * reclaimed from. 214 */ 215 int last_scanned_child; 216 /* 217 * Should the accounting and control be hierarchical, per subtree? 218 */ 219 bool use_hierarchy; 220 unsigned long last_oom_jiffies; 221 atomic_t refcnt; 222 223 unsigned int swappiness; 224 225 /* set when res.limit == memsw.limit */ 226 bool memsw_is_minimum; 227 228 /* 229 * statistics. This must be placed at the end of memcg. 230 */ 231 struct mem_cgroup_stat stat; 232 }; 233 234 /* 235 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft 236 * limit reclaim to prevent infinite loops, if they ever occur. 237 */ 238 #define MEM_CGROUP_MAX_RECLAIM_LOOPS (100) 239 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2) 240 241 enum charge_type { 242 MEM_CGROUP_CHARGE_TYPE_CACHE = 0, 243 MEM_CGROUP_CHARGE_TYPE_MAPPED, 244 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */ 245 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */ 246 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */ 247 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */ 248 NR_CHARGE_TYPE, 249 }; 250 251 /* only for here (for easy reading.) */ 252 #define PCGF_CACHE (1UL << PCG_CACHE) 253 #define PCGF_USED (1UL << PCG_USED) 254 #define PCGF_LOCK (1UL << PCG_LOCK) 255 /* Not used, but added here for completeness */ 256 #define PCGF_ACCT (1UL << PCG_ACCT) 257 258 /* for encoding cft->private value on file */ 259 #define _MEM (0) 260 #define _MEMSWAP (1) 261 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val)) 262 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff) 263 #define MEMFILE_ATTR(val) ((val) & 0xffff) 264 265 /* 266 * Reclaim flags for mem_cgroup_hierarchical_reclaim 267 */ 268 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0 269 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT) 270 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1 271 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT) 272 #define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2 273 #define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT) 274 275 static void mem_cgroup_get(struct mem_cgroup *mem); 276 static void mem_cgroup_put(struct mem_cgroup *mem); 277 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem); 278 static void drain_all_stock_async(void); 279 280 static struct mem_cgroup_per_zone * 281 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid) 282 { 283 return &mem->info.nodeinfo[nid]->zoneinfo[zid]; 284 } 285 286 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem) 287 { 288 return &mem->css; 289 } 290 291 static struct mem_cgroup_per_zone * 292 page_cgroup_zoneinfo(struct page_cgroup *pc) 293 { 294 struct mem_cgroup *mem = pc->mem_cgroup; 295 int nid = page_cgroup_nid(pc); 296 int zid = page_cgroup_zid(pc); 297 298 if (!mem) 299 return NULL; 300 301 return mem_cgroup_zoneinfo(mem, nid, zid); 302 } 303 304 static struct mem_cgroup_tree_per_zone * 305 soft_limit_tree_node_zone(int nid, int zid) 306 { 307 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; 308 } 309 310 static struct mem_cgroup_tree_per_zone * 311 soft_limit_tree_from_page(struct page *page) 312 { 313 int nid = page_to_nid(page); 314 int zid = page_zonenum(page); 315 316 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; 317 } 318 319 static void 320 __mem_cgroup_insert_exceeded(struct mem_cgroup *mem, 321 struct mem_cgroup_per_zone *mz, 322 struct mem_cgroup_tree_per_zone *mctz, 323 unsigned long long new_usage_in_excess) 324 { 325 struct rb_node **p = &mctz->rb_root.rb_node; 326 struct rb_node *parent = NULL; 327 struct mem_cgroup_per_zone *mz_node; 328 329 if (mz->on_tree) 330 return; 331 332 mz->usage_in_excess = new_usage_in_excess; 333 if (!mz->usage_in_excess) 334 return; 335 while (*p) { 336 parent = *p; 337 mz_node = rb_entry(parent, struct mem_cgroup_per_zone, 338 tree_node); 339 if (mz->usage_in_excess < mz_node->usage_in_excess) 340 p = &(*p)->rb_left; 341 /* 342 * We can't avoid mem cgroups that are over their soft 343 * limit by the same amount 344 */ 345 else if (mz->usage_in_excess >= mz_node->usage_in_excess) 346 p = &(*p)->rb_right; 347 } 348 rb_link_node(&mz->tree_node, parent, p); 349 rb_insert_color(&mz->tree_node, &mctz->rb_root); 350 mz->on_tree = true; 351 } 352 353 static void 354 __mem_cgroup_remove_exceeded(struct mem_cgroup *mem, 355 struct mem_cgroup_per_zone *mz, 356 struct mem_cgroup_tree_per_zone *mctz) 357 { 358 if (!mz->on_tree) 359 return; 360 rb_erase(&mz->tree_node, &mctz->rb_root); 361 mz->on_tree = false; 362 } 363 364 static void 365 mem_cgroup_remove_exceeded(struct mem_cgroup *mem, 366 struct mem_cgroup_per_zone *mz, 367 struct mem_cgroup_tree_per_zone *mctz) 368 { 369 spin_lock(&mctz->lock); 370 __mem_cgroup_remove_exceeded(mem, mz, mctz); 371 spin_unlock(&mctz->lock); 372 } 373 374 static bool mem_cgroup_soft_limit_check(struct mem_cgroup *mem) 375 { 376 bool ret = false; 377 int cpu; 378 s64 val; 379 struct mem_cgroup_stat_cpu *cpustat; 380 381 cpu = get_cpu(); 382 cpustat = &mem->stat.cpustat[cpu]; 383 val = __mem_cgroup_stat_read_local(cpustat, MEM_CGROUP_STAT_EVENTS); 384 if (unlikely(val > SOFTLIMIT_EVENTS_THRESH)) { 385 __mem_cgroup_stat_reset_safe(cpustat, MEM_CGROUP_STAT_EVENTS); 386 ret = true; 387 } 388 put_cpu(); 389 return ret; 390 } 391 392 static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page) 393 { 394 unsigned long long excess; 395 struct mem_cgroup_per_zone *mz; 396 struct mem_cgroup_tree_per_zone *mctz; 397 int nid = page_to_nid(page); 398 int zid = page_zonenum(page); 399 mctz = soft_limit_tree_from_page(page); 400 401 /* 402 * Necessary to update all ancestors when hierarchy is used. 403 * because their event counter is not touched. 404 */ 405 for (; mem; mem = parent_mem_cgroup(mem)) { 406 mz = mem_cgroup_zoneinfo(mem, nid, zid); 407 excess = res_counter_soft_limit_excess(&mem->res); 408 /* 409 * We have to update the tree if mz is on RB-tree or 410 * mem is over its softlimit. 411 */ 412 if (excess || mz->on_tree) { 413 spin_lock(&mctz->lock); 414 /* if on-tree, remove it */ 415 if (mz->on_tree) 416 __mem_cgroup_remove_exceeded(mem, mz, mctz); 417 /* 418 * Insert again. mz->usage_in_excess will be updated. 419 * If excess is 0, no tree ops. 420 */ 421 __mem_cgroup_insert_exceeded(mem, mz, mctz, excess); 422 spin_unlock(&mctz->lock); 423 } 424 } 425 } 426 427 static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem) 428 { 429 int node, zone; 430 struct mem_cgroup_per_zone *mz; 431 struct mem_cgroup_tree_per_zone *mctz; 432 433 for_each_node_state(node, N_POSSIBLE) { 434 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 435 mz = mem_cgroup_zoneinfo(mem, node, zone); 436 mctz = soft_limit_tree_node_zone(node, zone); 437 mem_cgroup_remove_exceeded(mem, mz, mctz); 438 } 439 } 440 } 441 442 static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem) 443 { 444 return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT; 445 } 446 447 static struct mem_cgroup_per_zone * 448 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) 449 { 450 struct rb_node *rightmost = NULL; 451 struct mem_cgroup_per_zone *mz; 452 453 retry: 454 mz = NULL; 455 rightmost = rb_last(&mctz->rb_root); 456 if (!rightmost) 457 goto done; /* Nothing to reclaim from */ 458 459 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node); 460 /* 461 * Remove the node now but someone else can add it back, 462 * we will to add it back at the end of reclaim to its correct 463 * position in the tree. 464 */ 465 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz); 466 if (!res_counter_soft_limit_excess(&mz->mem->res) || 467 !css_tryget(&mz->mem->css)) 468 goto retry; 469 done: 470 return mz; 471 } 472 473 static struct mem_cgroup_per_zone * 474 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) 475 { 476 struct mem_cgroup_per_zone *mz; 477 478 spin_lock(&mctz->lock); 479 mz = __mem_cgroup_largest_soft_limit_node(mctz); 480 spin_unlock(&mctz->lock); 481 return mz; 482 } 483 484 static void mem_cgroup_swap_statistics(struct mem_cgroup *mem, 485 bool charge) 486 { 487 int val = (charge) ? 1 : -1; 488 struct mem_cgroup_stat *stat = &mem->stat; 489 struct mem_cgroup_stat_cpu *cpustat; 490 int cpu = get_cpu(); 491 492 cpustat = &stat->cpustat[cpu]; 493 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_SWAPOUT, val); 494 put_cpu(); 495 } 496 497 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem, 498 struct page_cgroup *pc, 499 bool charge) 500 { 501 int val = (charge) ? 1 : -1; 502 struct mem_cgroup_stat *stat = &mem->stat; 503 struct mem_cgroup_stat_cpu *cpustat; 504 int cpu = get_cpu(); 505 506 cpustat = &stat->cpustat[cpu]; 507 if (PageCgroupCache(pc)) 508 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val); 509 else 510 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val); 511 512 if (charge) 513 __mem_cgroup_stat_add_safe(cpustat, 514 MEM_CGROUP_STAT_PGPGIN_COUNT, 1); 515 else 516 __mem_cgroup_stat_add_safe(cpustat, 517 MEM_CGROUP_STAT_PGPGOUT_COUNT, 1); 518 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_EVENTS, 1); 519 put_cpu(); 520 } 521 522 static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem, 523 enum lru_list idx) 524 { 525 int nid, zid; 526 struct mem_cgroup_per_zone *mz; 527 u64 total = 0; 528 529 for_each_online_node(nid) 530 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 531 mz = mem_cgroup_zoneinfo(mem, nid, zid); 532 total += MEM_CGROUP_ZSTAT(mz, idx); 533 } 534 return total; 535 } 536 537 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont) 538 { 539 return container_of(cgroup_subsys_state(cont, 540 mem_cgroup_subsys_id), struct mem_cgroup, 541 css); 542 } 543 544 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 545 { 546 /* 547 * mm_update_next_owner() may clear mm->owner to NULL 548 * if it races with swapoff, page migration, etc. 549 * So this can be called with p == NULL. 550 */ 551 if (unlikely(!p)) 552 return NULL; 553 554 return container_of(task_subsys_state(p, mem_cgroup_subsys_id), 555 struct mem_cgroup, css); 556 } 557 558 static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm) 559 { 560 struct mem_cgroup *mem = NULL; 561 562 if (!mm) 563 return NULL; 564 /* 565 * Because we have no locks, mm->owner's may be being moved to other 566 * cgroup. We use css_tryget() here even if this looks 567 * pessimistic (rather than adding locks here). 568 */ 569 rcu_read_lock(); 570 do { 571 mem = mem_cgroup_from_task(rcu_dereference(mm->owner)); 572 if (unlikely(!mem)) 573 break; 574 } while (!css_tryget(&mem->css)); 575 rcu_read_unlock(); 576 return mem; 577 } 578 579 /* 580 * Call callback function against all cgroup under hierarchy tree. 581 */ 582 static int mem_cgroup_walk_tree(struct mem_cgroup *root, void *data, 583 int (*func)(struct mem_cgroup *, void *)) 584 { 585 int found, ret, nextid; 586 struct cgroup_subsys_state *css; 587 struct mem_cgroup *mem; 588 589 if (!root->use_hierarchy) 590 return (*func)(root, data); 591 592 nextid = 1; 593 do { 594 ret = 0; 595 mem = NULL; 596 597 rcu_read_lock(); 598 css = css_get_next(&mem_cgroup_subsys, nextid, &root->css, 599 &found); 600 if (css && css_tryget(css)) 601 mem = container_of(css, struct mem_cgroup, css); 602 rcu_read_unlock(); 603 604 if (mem) { 605 ret = (*func)(mem, data); 606 css_put(&mem->css); 607 } 608 nextid = found + 1; 609 } while (!ret && css); 610 611 return ret; 612 } 613 614 static inline bool mem_cgroup_is_root(struct mem_cgroup *mem) 615 { 616 return (mem == root_mem_cgroup); 617 } 618 619 /* 620 * Following LRU functions are allowed to be used without PCG_LOCK. 621 * Operations are called by routine of global LRU independently from memcg. 622 * What we have to take care of here is validness of pc->mem_cgroup. 623 * 624 * Changes to pc->mem_cgroup happens when 625 * 1. charge 626 * 2. moving account 627 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache. 628 * It is added to LRU before charge. 629 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU. 630 * When moving account, the page is not on LRU. It's isolated. 631 */ 632 633 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru) 634 { 635 struct page_cgroup *pc; 636 struct mem_cgroup_per_zone *mz; 637 638 if (mem_cgroup_disabled()) 639 return; 640 pc = lookup_page_cgroup(page); 641 /* can happen while we handle swapcache. */ 642 if (!TestClearPageCgroupAcctLRU(pc)) 643 return; 644 VM_BUG_ON(!pc->mem_cgroup); 645 /* 646 * We don't check PCG_USED bit. It's cleared when the "page" is finally 647 * removed from global LRU. 648 */ 649 mz = page_cgroup_zoneinfo(pc); 650 MEM_CGROUP_ZSTAT(mz, lru) -= 1; 651 if (mem_cgroup_is_root(pc->mem_cgroup)) 652 return; 653 VM_BUG_ON(list_empty(&pc->lru)); 654 list_del_init(&pc->lru); 655 return; 656 } 657 658 void mem_cgroup_del_lru(struct page *page) 659 { 660 mem_cgroup_del_lru_list(page, page_lru(page)); 661 } 662 663 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru) 664 { 665 struct mem_cgroup_per_zone *mz; 666 struct page_cgroup *pc; 667 668 if (mem_cgroup_disabled()) 669 return; 670 671 pc = lookup_page_cgroup(page); 672 /* 673 * Used bit is set without atomic ops but after smp_wmb(). 674 * For making pc->mem_cgroup visible, insert smp_rmb() here. 675 */ 676 smp_rmb(); 677 /* unused or root page is not rotated. */ 678 if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup)) 679 return; 680 mz = page_cgroup_zoneinfo(pc); 681 list_move(&pc->lru, &mz->lists[lru]); 682 } 683 684 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru) 685 { 686 struct page_cgroup *pc; 687 struct mem_cgroup_per_zone *mz; 688 689 if (mem_cgroup_disabled()) 690 return; 691 pc = lookup_page_cgroup(page); 692 VM_BUG_ON(PageCgroupAcctLRU(pc)); 693 /* 694 * Used bit is set without atomic ops but after smp_wmb(). 695 * For making pc->mem_cgroup visible, insert smp_rmb() here. 696 */ 697 smp_rmb(); 698 if (!PageCgroupUsed(pc)) 699 return; 700 701 mz = page_cgroup_zoneinfo(pc); 702 MEM_CGROUP_ZSTAT(mz, lru) += 1; 703 SetPageCgroupAcctLRU(pc); 704 if (mem_cgroup_is_root(pc->mem_cgroup)) 705 return; 706 list_add(&pc->lru, &mz->lists[lru]); 707 } 708 709 /* 710 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to 711 * lru because the page may.be reused after it's fully uncharged (because of 712 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge 713 * it again. This function is only used to charge SwapCache. It's done under 714 * lock_page and expected that zone->lru_lock is never held. 715 */ 716 static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page) 717 { 718 unsigned long flags; 719 struct zone *zone = page_zone(page); 720 struct page_cgroup *pc = lookup_page_cgroup(page); 721 722 spin_lock_irqsave(&zone->lru_lock, flags); 723 /* 724 * Forget old LRU when this page_cgroup is *not* used. This Used bit 725 * is guarded by lock_page() because the page is SwapCache. 726 */ 727 if (!PageCgroupUsed(pc)) 728 mem_cgroup_del_lru_list(page, page_lru(page)); 729 spin_unlock_irqrestore(&zone->lru_lock, flags); 730 } 731 732 static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page) 733 { 734 unsigned long flags; 735 struct zone *zone = page_zone(page); 736 struct page_cgroup *pc = lookup_page_cgroup(page); 737 738 spin_lock_irqsave(&zone->lru_lock, flags); 739 /* link when the page is linked to LRU but page_cgroup isn't */ 740 if (PageLRU(page) && !PageCgroupAcctLRU(pc)) 741 mem_cgroup_add_lru_list(page, page_lru(page)); 742 spin_unlock_irqrestore(&zone->lru_lock, flags); 743 } 744 745 746 void mem_cgroup_move_lists(struct page *page, 747 enum lru_list from, enum lru_list to) 748 { 749 if (mem_cgroup_disabled()) 750 return; 751 mem_cgroup_del_lru_list(page, from); 752 mem_cgroup_add_lru_list(page, to); 753 } 754 755 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem) 756 { 757 int ret; 758 struct mem_cgroup *curr = NULL; 759 760 task_lock(task); 761 rcu_read_lock(); 762 curr = try_get_mem_cgroup_from_mm(task->mm); 763 rcu_read_unlock(); 764 task_unlock(task); 765 if (!curr) 766 return 0; 767 /* 768 * We should check use_hierarchy of "mem" not "curr". Because checking 769 * use_hierarchy of "curr" here make this function true if hierarchy is 770 * enabled in "curr" and "curr" is a child of "mem" in *cgroup* 771 * hierarchy(even if use_hierarchy is disabled in "mem"). 772 */ 773 if (mem->use_hierarchy) 774 ret = css_is_ancestor(&curr->css, &mem->css); 775 else 776 ret = (curr == mem); 777 css_put(&curr->css); 778 return ret; 779 } 780 781 /* 782 * prev_priority control...this will be used in memory reclaim path. 783 */ 784 int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem) 785 { 786 int prev_priority; 787 788 spin_lock(&mem->reclaim_param_lock); 789 prev_priority = mem->prev_priority; 790 spin_unlock(&mem->reclaim_param_lock); 791 792 return prev_priority; 793 } 794 795 void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority) 796 { 797 spin_lock(&mem->reclaim_param_lock); 798 if (priority < mem->prev_priority) 799 mem->prev_priority = priority; 800 spin_unlock(&mem->reclaim_param_lock); 801 } 802 803 void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority) 804 { 805 spin_lock(&mem->reclaim_param_lock); 806 mem->prev_priority = priority; 807 spin_unlock(&mem->reclaim_param_lock); 808 } 809 810 static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages) 811 { 812 unsigned long active; 813 unsigned long inactive; 814 unsigned long gb; 815 unsigned long inactive_ratio; 816 817 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON); 818 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON); 819 820 gb = (inactive + active) >> (30 - PAGE_SHIFT); 821 if (gb) 822 inactive_ratio = int_sqrt(10 * gb); 823 else 824 inactive_ratio = 1; 825 826 if (present_pages) { 827 present_pages[0] = inactive; 828 present_pages[1] = active; 829 } 830 831 return inactive_ratio; 832 } 833 834 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg) 835 { 836 unsigned long active; 837 unsigned long inactive; 838 unsigned long present_pages[2]; 839 unsigned long inactive_ratio; 840 841 inactive_ratio = calc_inactive_ratio(memcg, present_pages); 842 843 inactive = present_pages[0]; 844 active = present_pages[1]; 845 846 if (inactive * inactive_ratio < active) 847 return 1; 848 849 return 0; 850 } 851 852 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg) 853 { 854 unsigned long active; 855 unsigned long inactive; 856 857 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE); 858 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE); 859 860 return (active > inactive); 861 } 862 863 unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg, 864 struct zone *zone, 865 enum lru_list lru) 866 { 867 int nid = zone->zone_pgdat->node_id; 868 int zid = zone_idx(zone); 869 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid); 870 871 return MEM_CGROUP_ZSTAT(mz, lru); 872 } 873 874 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg, 875 struct zone *zone) 876 { 877 int nid = zone->zone_pgdat->node_id; 878 int zid = zone_idx(zone); 879 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid); 880 881 return &mz->reclaim_stat; 882 } 883 884 struct zone_reclaim_stat * 885 mem_cgroup_get_reclaim_stat_from_page(struct page *page) 886 { 887 struct page_cgroup *pc; 888 struct mem_cgroup_per_zone *mz; 889 890 if (mem_cgroup_disabled()) 891 return NULL; 892 893 pc = lookup_page_cgroup(page); 894 /* 895 * Used bit is set without atomic ops but after smp_wmb(). 896 * For making pc->mem_cgroup visible, insert smp_rmb() here. 897 */ 898 smp_rmb(); 899 if (!PageCgroupUsed(pc)) 900 return NULL; 901 902 mz = page_cgroup_zoneinfo(pc); 903 if (!mz) 904 return NULL; 905 906 return &mz->reclaim_stat; 907 } 908 909 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan, 910 struct list_head *dst, 911 unsigned long *scanned, int order, 912 int mode, struct zone *z, 913 struct mem_cgroup *mem_cont, 914 int active, int file) 915 { 916 unsigned long nr_taken = 0; 917 struct page *page; 918 unsigned long scan; 919 LIST_HEAD(pc_list); 920 struct list_head *src; 921 struct page_cgroup *pc, *tmp; 922 int nid = z->zone_pgdat->node_id; 923 int zid = zone_idx(z); 924 struct mem_cgroup_per_zone *mz; 925 int lru = LRU_FILE * file + active; 926 int ret; 927 928 BUG_ON(!mem_cont); 929 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid); 930 src = &mz->lists[lru]; 931 932 scan = 0; 933 list_for_each_entry_safe_reverse(pc, tmp, src, lru) { 934 if (scan >= nr_to_scan) 935 break; 936 937 page = pc->page; 938 if (unlikely(!PageCgroupUsed(pc))) 939 continue; 940 if (unlikely(!PageLRU(page))) 941 continue; 942 943 scan++; 944 ret = __isolate_lru_page(page, mode, file); 945 switch (ret) { 946 case 0: 947 list_move(&page->lru, dst); 948 mem_cgroup_del_lru(page); 949 nr_taken++; 950 break; 951 case -EBUSY: 952 /* we don't affect global LRU but rotate in our LRU */ 953 mem_cgroup_rotate_lru_list(page, page_lru(page)); 954 break; 955 default: 956 break; 957 } 958 } 959 960 *scanned = scan; 961 return nr_taken; 962 } 963 964 #define mem_cgroup_from_res_counter(counter, member) \ 965 container_of(counter, struct mem_cgroup, member) 966 967 static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem) 968 { 969 if (do_swap_account) { 970 if (res_counter_check_under_limit(&mem->res) && 971 res_counter_check_under_limit(&mem->memsw)) 972 return true; 973 } else 974 if (res_counter_check_under_limit(&mem->res)) 975 return true; 976 return false; 977 } 978 979 static unsigned int get_swappiness(struct mem_cgroup *memcg) 980 { 981 struct cgroup *cgrp = memcg->css.cgroup; 982 unsigned int swappiness; 983 984 /* root ? */ 985 if (cgrp->parent == NULL) 986 return vm_swappiness; 987 988 spin_lock(&memcg->reclaim_param_lock); 989 swappiness = memcg->swappiness; 990 spin_unlock(&memcg->reclaim_param_lock); 991 992 return swappiness; 993 } 994 995 static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data) 996 { 997 int *val = data; 998 (*val)++; 999 return 0; 1000 } 1001 1002 /** 1003 * mem_cgroup_print_mem_info: Called from OOM with tasklist_lock held in read mode. 1004 * @memcg: The memory cgroup that went over limit 1005 * @p: Task that is going to be killed 1006 * 1007 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1008 * enabled 1009 */ 1010 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) 1011 { 1012 struct cgroup *task_cgrp; 1013 struct cgroup *mem_cgrp; 1014 /* 1015 * Need a buffer in BSS, can't rely on allocations. The code relies 1016 * on the assumption that OOM is serialized for memory controller. 1017 * If this assumption is broken, revisit this code. 1018 */ 1019 static char memcg_name[PATH_MAX]; 1020 int ret; 1021 1022 if (!memcg || !p) 1023 return; 1024 1025 1026 rcu_read_lock(); 1027 1028 mem_cgrp = memcg->css.cgroup; 1029 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id); 1030 1031 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX); 1032 if (ret < 0) { 1033 /* 1034 * Unfortunately, we are unable to convert to a useful name 1035 * But we'll still print out the usage information 1036 */ 1037 rcu_read_unlock(); 1038 goto done; 1039 } 1040 rcu_read_unlock(); 1041 1042 printk(KERN_INFO "Task in %s killed", memcg_name); 1043 1044 rcu_read_lock(); 1045 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX); 1046 if (ret < 0) { 1047 rcu_read_unlock(); 1048 goto done; 1049 } 1050 rcu_read_unlock(); 1051 1052 /* 1053 * Continues from above, so we don't need an KERN_ level 1054 */ 1055 printk(KERN_CONT " as a result of limit of %s\n", memcg_name); 1056 done: 1057 1058 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n", 1059 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10, 1060 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10, 1061 res_counter_read_u64(&memcg->res, RES_FAILCNT)); 1062 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, " 1063 "failcnt %llu\n", 1064 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10, 1065 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10, 1066 res_counter_read_u64(&memcg->memsw, RES_FAILCNT)); 1067 } 1068 1069 /* 1070 * This function returns the number of memcg under hierarchy tree. Returns 1071 * 1(self count) if no children. 1072 */ 1073 static int mem_cgroup_count_children(struct mem_cgroup *mem) 1074 { 1075 int num = 0; 1076 mem_cgroup_walk_tree(mem, &num, mem_cgroup_count_children_cb); 1077 return num; 1078 } 1079 1080 /* 1081 * Visit the first child (need not be the first child as per the ordering 1082 * of the cgroup list, since we track last_scanned_child) of @mem and use 1083 * that to reclaim free pages from. 1084 */ 1085 static struct mem_cgroup * 1086 mem_cgroup_select_victim(struct mem_cgroup *root_mem) 1087 { 1088 struct mem_cgroup *ret = NULL; 1089 struct cgroup_subsys_state *css; 1090 int nextid, found; 1091 1092 if (!root_mem->use_hierarchy) { 1093 css_get(&root_mem->css); 1094 ret = root_mem; 1095 } 1096 1097 while (!ret) { 1098 rcu_read_lock(); 1099 nextid = root_mem->last_scanned_child + 1; 1100 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css, 1101 &found); 1102 if (css && css_tryget(css)) 1103 ret = container_of(css, struct mem_cgroup, css); 1104 1105 rcu_read_unlock(); 1106 /* Updates scanning parameter */ 1107 spin_lock(&root_mem->reclaim_param_lock); 1108 if (!css) { 1109 /* this means start scan from ID:1 */ 1110 root_mem->last_scanned_child = 0; 1111 } else 1112 root_mem->last_scanned_child = found; 1113 spin_unlock(&root_mem->reclaim_param_lock); 1114 } 1115 1116 return ret; 1117 } 1118 1119 /* 1120 * Scan the hierarchy if needed to reclaim memory. We remember the last child 1121 * we reclaimed from, so that we don't end up penalizing one child extensively 1122 * based on its position in the children list. 1123 * 1124 * root_mem is the original ancestor that we've been reclaim from. 1125 * 1126 * We give up and return to the caller when we visit root_mem twice. 1127 * (other groups can be removed while we're walking....) 1128 * 1129 * If shrink==true, for avoiding to free too much, this returns immedieately. 1130 */ 1131 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem, 1132 struct zone *zone, 1133 gfp_t gfp_mask, 1134 unsigned long reclaim_options) 1135 { 1136 struct mem_cgroup *victim; 1137 int ret, total = 0; 1138 int loop = 0; 1139 bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP; 1140 bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK; 1141 bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT; 1142 unsigned long excess = mem_cgroup_get_excess(root_mem); 1143 1144 /* If memsw_is_minimum==1, swap-out is of-no-use. */ 1145 if (root_mem->memsw_is_minimum) 1146 noswap = true; 1147 1148 while (1) { 1149 victim = mem_cgroup_select_victim(root_mem); 1150 if (victim == root_mem) { 1151 loop++; 1152 if (loop >= 1) 1153 drain_all_stock_async(); 1154 if (loop >= 2) { 1155 /* 1156 * If we have not been able to reclaim 1157 * anything, it might because there are 1158 * no reclaimable pages under this hierarchy 1159 */ 1160 if (!check_soft || !total) { 1161 css_put(&victim->css); 1162 break; 1163 } 1164 /* 1165 * We want to do more targetted reclaim. 1166 * excess >> 2 is not to excessive so as to 1167 * reclaim too much, nor too less that we keep 1168 * coming back to reclaim from this cgroup 1169 */ 1170 if (total >= (excess >> 2) || 1171 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) { 1172 css_put(&victim->css); 1173 break; 1174 } 1175 } 1176 } 1177 if (!mem_cgroup_local_usage(&victim->stat)) { 1178 /* this cgroup's local usage == 0 */ 1179 css_put(&victim->css); 1180 continue; 1181 } 1182 /* we use swappiness of local cgroup */ 1183 if (check_soft) 1184 ret = mem_cgroup_shrink_node_zone(victim, gfp_mask, 1185 noswap, get_swappiness(victim), zone, 1186 zone->zone_pgdat->node_id); 1187 else 1188 ret = try_to_free_mem_cgroup_pages(victim, gfp_mask, 1189 noswap, get_swappiness(victim)); 1190 css_put(&victim->css); 1191 /* 1192 * At shrinking usage, we can't check we should stop here or 1193 * reclaim more. It's depends on callers. last_scanned_child 1194 * will work enough for keeping fairness under tree. 1195 */ 1196 if (shrink) 1197 return ret; 1198 total += ret; 1199 if (check_soft) { 1200 if (res_counter_check_under_soft_limit(&root_mem->res)) 1201 return total; 1202 } else if (mem_cgroup_check_under_limit(root_mem)) 1203 return 1 + total; 1204 } 1205 return total; 1206 } 1207 1208 bool mem_cgroup_oom_called(struct task_struct *task) 1209 { 1210 bool ret = false; 1211 struct mem_cgroup *mem; 1212 struct mm_struct *mm; 1213 1214 rcu_read_lock(); 1215 mm = task->mm; 1216 if (!mm) 1217 mm = &init_mm; 1218 mem = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1219 if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10)) 1220 ret = true; 1221 rcu_read_unlock(); 1222 return ret; 1223 } 1224 1225 static int record_last_oom_cb(struct mem_cgroup *mem, void *data) 1226 { 1227 mem->last_oom_jiffies = jiffies; 1228 return 0; 1229 } 1230 1231 static void record_last_oom(struct mem_cgroup *mem) 1232 { 1233 mem_cgroup_walk_tree(mem, NULL, record_last_oom_cb); 1234 } 1235 1236 /* 1237 * Currently used to update mapped file statistics, but the routine can be 1238 * generalized to update other statistics as well. 1239 */ 1240 void mem_cgroup_update_file_mapped(struct page *page, int val) 1241 { 1242 struct mem_cgroup *mem; 1243 struct mem_cgroup_stat *stat; 1244 struct mem_cgroup_stat_cpu *cpustat; 1245 int cpu; 1246 struct page_cgroup *pc; 1247 1248 pc = lookup_page_cgroup(page); 1249 if (unlikely(!pc)) 1250 return; 1251 1252 lock_page_cgroup(pc); 1253 mem = pc->mem_cgroup; 1254 if (!mem) 1255 goto done; 1256 1257 if (!PageCgroupUsed(pc)) 1258 goto done; 1259 1260 /* 1261 * Preemption is already disabled, we don't need get_cpu() 1262 */ 1263 cpu = smp_processor_id(); 1264 stat = &mem->stat; 1265 cpustat = &stat->cpustat[cpu]; 1266 1267 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_FILE_MAPPED, val); 1268 done: 1269 unlock_page_cgroup(pc); 1270 } 1271 1272 /* 1273 * size of first charge trial. "32" comes from vmscan.c's magic value. 1274 * TODO: maybe necessary to use big numbers in big irons. 1275 */ 1276 #define CHARGE_SIZE (32 * PAGE_SIZE) 1277 struct memcg_stock_pcp { 1278 struct mem_cgroup *cached; /* this never be root cgroup */ 1279 int charge; 1280 struct work_struct work; 1281 }; 1282 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); 1283 static atomic_t memcg_drain_count; 1284 1285 /* 1286 * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed 1287 * from local stock and true is returned. If the stock is 0 or charges from a 1288 * cgroup which is not current target, returns false. This stock will be 1289 * refilled. 1290 */ 1291 static bool consume_stock(struct mem_cgroup *mem) 1292 { 1293 struct memcg_stock_pcp *stock; 1294 bool ret = true; 1295 1296 stock = &get_cpu_var(memcg_stock); 1297 if (mem == stock->cached && stock->charge) 1298 stock->charge -= PAGE_SIZE; 1299 else /* need to call res_counter_charge */ 1300 ret = false; 1301 put_cpu_var(memcg_stock); 1302 return ret; 1303 } 1304 1305 /* 1306 * Returns stocks cached in percpu to res_counter and reset cached information. 1307 */ 1308 static void drain_stock(struct memcg_stock_pcp *stock) 1309 { 1310 struct mem_cgroup *old = stock->cached; 1311 1312 if (stock->charge) { 1313 res_counter_uncharge(&old->res, stock->charge); 1314 if (do_swap_account) 1315 res_counter_uncharge(&old->memsw, stock->charge); 1316 } 1317 stock->cached = NULL; 1318 stock->charge = 0; 1319 } 1320 1321 /* 1322 * This must be called under preempt disabled or must be called by 1323 * a thread which is pinned to local cpu. 1324 */ 1325 static void drain_local_stock(struct work_struct *dummy) 1326 { 1327 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock); 1328 drain_stock(stock); 1329 } 1330 1331 /* 1332 * Cache charges(val) which is from res_counter, to local per_cpu area. 1333 * This will be consumed by consumt_stock() function, later. 1334 */ 1335 static void refill_stock(struct mem_cgroup *mem, int val) 1336 { 1337 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock); 1338 1339 if (stock->cached != mem) { /* reset if necessary */ 1340 drain_stock(stock); 1341 stock->cached = mem; 1342 } 1343 stock->charge += val; 1344 put_cpu_var(memcg_stock); 1345 } 1346 1347 /* 1348 * Tries to drain stocked charges in other cpus. This function is asynchronous 1349 * and just put a work per cpu for draining localy on each cpu. Caller can 1350 * expects some charges will be back to res_counter later but cannot wait for 1351 * it. 1352 */ 1353 static void drain_all_stock_async(void) 1354 { 1355 int cpu; 1356 /* This function is for scheduling "drain" in asynchronous way. 1357 * The result of "drain" is not directly handled by callers. Then, 1358 * if someone is calling drain, we don't have to call drain more. 1359 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if 1360 * there is a race. We just do loose check here. 1361 */ 1362 if (atomic_read(&memcg_drain_count)) 1363 return; 1364 /* Notify other cpus that system-wide "drain" is running */ 1365 atomic_inc(&memcg_drain_count); 1366 get_online_cpus(); 1367 for_each_online_cpu(cpu) { 1368 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 1369 schedule_work_on(cpu, &stock->work); 1370 } 1371 put_online_cpus(); 1372 atomic_dec(&memcg_drain_count); 1373 /* We don't wait for flush_work */ 1374 } 1375 1376 /* This is a synchronous drain interface. */ 1377 static void drain_all_stock_sync(void) 1378 { 1379 /* called when force_empty is called */ 1380 atomic_inc(&memcg_drain_count); 1381 schedule_on_each_cpu(drain_local_stock); 1382 atomic_dec(&memcg_drain_count); 1383 } 1384 1385 static int __cpuinit memcg_stock_cpu_callback(struct notifier_block *nb, 1386 unsigned long action, 1387 void *hcpu) 1388 { 1389 int cpu = (unsigned long)hcpu; 1390 struct memcg_stock_pcp *stock; 1391 1392 if (action != CPU_DEAD) 1393 return NOTIFY_OK; 1394 stock = &per_cpu(memcg_stock, cpu); 1395 drain_stock(stock); 1396 return NOTIFY_OK; 1397 } 1398 1399 /* 1400 * Unlike exported interface, "oom" parameter is added. if oom==true, 1401 * oom-killer can be invoked. 1402 */ 1403 static int __mem_cgroup_try_charge(struct mm_struct *mm, 1404 gfp_t gfp_mask, struct mem_cgroup **memcg, 1405 bool oom, struct page *page) 1406 { 1407 struct mem_cgroup *mem, *mem_over_limit; 1408 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 1409 struct res_counter *fail_res; 1410 int csize = CHARGE_SIZE; 1411 1412 if (unlikely(test_thread_flag(TIF_MEMDIE))) { 1413 /* Don't account this! */ 1414 *memcg = NULL; 1415 return 0; 1416 } 1417 1418 /* 1419 * We always charge the cgroup the mm_struct belongs to. 1420 * The mm_struct's mem_cgroup changes on task migration if the 1421 * thread group leader migrates. It's possible that mm is not 1422 * set, if so charge the init_mm (happens for pagecache usage). 1423 */ 1424 mem = *memcg; 1425 if (likely(!mem)) { 1426 mem = try_get_mem_cgroup_from_mm(mm); 1427 *memcg = mem; 1428 } else { 1429 css_get(&mem->css); 1430 } 1431 if (unlikely(!mem)) 1432 return 0; 1433 1434 VM_BUG_ON(css_is_removed(&mem->css)); 1435 if (mem_cgroup_is_root(mem)) 1436 goto done; 1437 1438 while (1) { 1439 int ret = 0; 1440 unsigned long flags = 0; 1441 1442 if (consume_stock(mem)) 1443 goto charged; 1444 1445 ret = res_counter_charge(&mem->res, csize, &fail_res); 1446 if (likely(!ret)) { 1447 if (!do_swap_account) 1448 break; 1449 ret = res_counter_charge(&mem->memsw, csize, &fail_res); 1450 if (likely(!ret)) 1451 break; 1452 /* mem+swap counter fails */ 1453 res_counter_uncharge(&mem->res, csize); 1454 flags |= MEM_CGROUP_RECLAIM_NOSWAP; 1455 mem_over_limit = mem_cgroup_from_res_counter(fail_res, 1456 memsw); 1457 } else 1458 /* mem counter fails */ 1459 mem_over_limit = mem_cgroup_from_res_counter(fail_res, 1460 res); 1461 1462 /* reduce request size and retry */ 1463 if (csize > PAGE_SIZE) { 1464 csize = PAGE_SIZE; 1465 continue; 1466 } 1467 if (!(gfp_mask & __GFP_WAIT)) 1468 goto nomem; 1469 1470 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL, 1471 gfp_mask, flags); 1472 if (ret) 1473 continue; 1474 1475 /* 1476 * try_to_free_mem_cgroup_pages() might not give us a full 1477 * picture of reclaim. Some pages are reclaimed and might be 1478 * moved to swap cache or just unmapped from the cgroup. 1479 * Check the limit again to see if the reclaim reduced the 1480 * current usage of the cgroup before giving up 1481 * 1482 */ 1483 if (mem_cgroup_check_under_limit(mem_over_limit)) 1484 continue; 1485 1486 if (!nr_retries--) { 1487 if (oom) { 1488 mem_cgroup_out_of_memory(mem_over_limit, gfp_mask); 1489 record_last_oom(mem_over_limit); 1490 } 1491 goto nomem; 1492 } 1493 } 1494 if (csize > PAGE_SIZE) 1495 refill_stock(mem, csize - PAGE_SIZE); 1496 charged: 1497 /* 1498 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree. 1499 * if they exceeds softlimit. 1500 */ 1501 if (mem_cgroup_soft_limit_check(mem)) 1502 mem_cgroup_update_tree(mem, page); 1503 done: 1504 return 0; 1505 nomem: 1506 css_put(&mem->css); 1507 return -ENOMEM; 1508 } 1509 1510 /* 1511 * Somemtimes we have to undo a charge we got by try_charge(). 1512 * This function is for that and do uncharge, put css's refcnt. 1513 * gotten by try_charge(). 1514 */ 1515 static void mem_cgroup_cancel_charge(struct mem_cgroup *mem) 1516 { 1517 if (!mem_cgroup_is_root(mem)) { 1518 res_counter_uncharge(&mem->res, PAGE_SIZE); 1519 if (do_swap_account) 1520 res_counter_uncharge(&mem->memsw, PAGE_SIZE); 1521 } 1522 css_put(&mem->css); 1523 } 1524 1525 /* 1526 * A helper function to get mem_cgroup from ID. must be called under 1527 * rcu_read_lock(). The caller must check css_is_removed() or some if 1528 * it's concern. (dropping refcnt from swap can be called against removed 1529 * memcg.) 1530 */ 1531 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id) 1532 { 1533 struct cgroup_subsys_state *css; 1534 1535 /* ID 0 is unused ID */ 1536 if (!id) 1537 return NULL; 1538 css = css_lookup(&mem_cgroup_subsys, id); 1539 if (!css) 1540 return NULL; 1541 return container_of(css, struct mem_cgroup, css); 1542 } 1543 1544 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page) 1545 { 1546 struct mem_cgroup *mem = NULL; 1547 struct page_cgroup *pc; 1548 unsigned short id; 1549 swp_entry_t ent; 1550 1551 VM_BUG_ON(!PageLocked(page)); 1552 1553 pc = lookup_page_cgroup(page); 1554 lock_page_cgroup(pc); 1555 if (PageCgroupUsed(pc)) { 1556 mem = pc->mem_cgroup; 1557 if (mem && !css_tryget(&mem->css)) 1558 mem = NULL; 1559 } else if (PageSwapCache(page)) { 1560 ent.val = page_private(page); 1561 id = lookup_swap_cgroup(ent); 1562 rcu_read_lock(); 1563 mem = mem_cgroup_lookup(id); 1564 if (mem && !css_tryget(&mem->css)) 1565 mem = NULL; 1566 rcu_read_unlock(); 1567 } 1568 unlock_page_cgroup(pc); 1569 return mem; 1570 } 1571 1572 /* 1573 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be 1574 * USED state. If already USED, uncharge and return. 1575 */ 1576 1577 static void __mem_cgroup_commit_charge(struct mem_cgroup *mem, 1578 struct page_cgroup *pc, 1579 enum charge_type ctype) 1580 { 1581 /* try_charge() can return NULL to *memcg, taking care of it. */ 1582 if (!mem) 1583 return; 1584 1585 lock_page_cgroup(pc); 1586 if (unlikely(PageCgroupUsed(pc))) { 1587 unlock_page_cgroup(pc); 1588 mem_cgroup_cancel_charge(mem); 1589 return; 1590 } 1591 1592 pc->mem_cgroup = mem; 1593 /* 1594 * We access a page_cgroup asynchronously without lock_page_cgroup(). 1595 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup 1596 * is accessed after testing USED bit. To make pc->mem_cgroup visible 1597 * before USED bit, we need memory barrier here. 1598 * See mem_cgroup_add_lru_list(), etc. 1599 */ 1600 smp_wmb(); 1601 switch (ctype) { 1602 case MEM_CGROUP_CHARGE_TYPE_CACHE: 1603 case MEM_CGROUP_CHARGE_TYPE_SHMEM: 1604 SetPageCgroupCache(pc); 1605 SetPageCgroupUsed(pc); 1606 break; 1607 case MEM_CGROUP_CHARGE_TYPE_MAPPED: 1608 ClearPageCgroupCache(pc); 1609 SetPageCgroupUsed(pc); 1610 break; 1611 default: 1612 break; 1613 } 1614 1615 mem_cgroup_charge_statistics(mem, pc, true); 1616 1617 unlock_page_cgroup(pc); 1618 } 1619 1620 /** 1621 * __mem_cgroup_move_account - move account of the page 1622 * @pc: page_cgroup of the page. 1623 * @from: mem_cgroup which the page is moved from. 1624 * @to: mem_cgroup which the page is moved to. @from != @to. 1625 * 1626 * The caller must confirm following. 1627 * - page is not on LRU (isolate_page() is useful.) 1628 * - the pc is locked, used, and ->mem_cgroup points to @from. 1629 * 1630 * This function does "uncharge" from old cgroup but doesn't do "charge" to 1631 * new cgroup. It should be done by a caller. 1632 */ 1633 1634 static void __mem_cgroup_move_account(struct page_cgroup *pc, 1635 struct mem_cgroup *from, struct mem_cgroup *to) 1636 { 1637 struct page *page; 1638 int cpu; 1639 struct mem_cgroup_stat *stat; 1640 struct mem_cgroup_stat_cpu *cpustat; 1641 1642 VM_BUG_ON(from == to); 1643 VM_BUG_ON(PageLRU(pc->page)); 1644 VM_BUG_ON(!PageCgroupLocked(pc)); 1645 VM_BUG_ON(!PageCgroupUsed(pc)); 1646 VM_BUG_ON(pc->mem_cgroup != from); 1647 1648 if (!mem_cgroup_is_root(from)) 1649 res_counter_uncharge(&from->res, PAGE_SIZE); 1650 mem_cgroup_charge_statistics(from, pc, false); 1651 1652 page = pc->page; 1653 if (page_mapped(page) && !PageAnon(page)) { 1654 cpu = smp_processor_id(); 1655 /* Update mapped_file data for mem_cgroup "from" */ 1656 stat = &from->stat; 1657 cpustat = &stat->cpustat[cpu]; 1658 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_FILE_MAPPED, 1659 -1); 1660 1661 /* Update mapped_file data for mem_cgroup "to" */ 1662 stat = &to->stat; 1663 cpustat = &stat->cpustat[cpu]; 1664 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_FILE_MAPPED, 1665 1); 1666 } 1667 1668 if (do_swap_account && !mem_cgroup_is_root(from)) 1669 res_counter_uncharge(&from->memsw, PAGE_SIZE); 1670 css_put(&from->css); 1671 1672 css_get(&to->css); 1673 pc->mem_cgroup = to; 1674 mem_cgroup_charge_statistics(to, pc, true); 1675 /* 1676 * We charges against "to" which may not have any tasks. Then, "to" 1677 * can be under rmdir(). But in current implementation, caller of 1678 * this function is just force_empty() and it's garanteed that 1679 * "to" is never removed. So, we don't check rmdir status here. 1680 */ 1681 } 1682 1683 /* 1684 * check whether the @pc is valid for moving account and call 1685 * __mem_cgroup_move_account() 1686 */ 1687 static int mem_cgroup_move_account(struct page_cgroup *pc, 1688 struct mem_cgroup *from, struct mem_cgroup *to) 1689 { 1690 int ret = -EINVAL; 1691 lock_page_cgroup(pc); 1692 if (PageCgroupUsed(pc) && pc->mem_cgroup == from) { 1693 __mem_cgroup_move_account(pc, from, to); 1694 ret = 0; 1695 } 1696 unlock_page_cgroup(pc); 1697 return ret; 1698 } 1699 1700 /* 1701 * move charges to its parent. 1702 */ 1703 1704 static int mem_cgroup_move_parent(struct page_cgroup *pc, 1705 struct mem_cgroup *child, 1706 gfp_t gfp_mask) 1707 { 1708 struct page *page = pc->page; 1709 struct cgroup *cg = child->css.cgroup; 1710 struct cgroup *pcg = cg->parent; 1711 struct mem_cgroup *parent; 1712 int ret; 1713 1714 /* Is ROOT ? */ 1715 if (!pcg) 1716 return -EINVAL; 1717 1718 ret = -EBUSY; 1719 if (!get_page_unless_zero(page)) 1720 goto out; 1721 if (isolate_lru_page(page)) 1722 goto put; 1723 1724 parent = mem_cgroup_from_cont(pcg); 1725 ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false, page); 1726 if (ret || !parent) 1727 goto put_back; 1728 1729 ret = mem_cgroup_move_account(pc, child, parent); 1730 if (!ret) 1731 css_put(&parent->css); /* drop extra refcnt by try_charge() */ 1732 else 1733 mem_cgroup_cancel_charge(parent); /* does css_put */ 1734 put_back: 1735 putback_lru_page(page); 1736 put: 1737 put_page(page); 1738 out: 1739 return ret; 1740 } 1741 1742 /* 1743 * Charge the memory controller for page usage. 1744 * Return 1745 * 0 if the charge was successful 1746 * < 0 if the cgroup is over its limit 1747 */ 1748 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm, 1749 gfp_t gfp_mask, enum charge_type ctype, 1750 struct mem_cgroup *memcg) 1751 { 1752 struct mem_cgroup *mem; 1753 struct page_cgroup *pc; 1754 int ret; 1755 1756 pc = lookup_page_cgroup(page); 1757 /* can happen at boot */ 1758 if (unlikely(!pc)) 1759 return 0; 1760 prefetchw(pc); 1761 1762 mem = memcg; 1763 ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true, page); 1764 if (ret || !mem) 1765 return ret; 1766 1767 __mem_cgroup_commit_charge(mem, pc, ctype); 1768 return 0; 1769 } 1770 1771 int mem_cgroup_newpage_charge(struct page *page, 1772 struct mm_struct *mm, gfp_t gfp_mask) 1773 { 1774 if (mem_cgroup_disabled()) 1775 return 0; 1776 if (PageCompound(page)) 1777 return 0; 1778 /* 1779 * If already mapped, we don't have to account. 1780 * If page cache, page->mapping has address_space. 1781 * But page->mapping may have out-of-use anon_vma pointer, 1782 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping 1783 * is NULL. 1784 */ 1785 if (page_mapped(page) || (page->mapping && !PageAnon(page))) 1786 return 0; 1787 if (unlikely(!mm)) 1788 mm = &init_mm; 1789 return mem_cgroup_charge_common(page, mm, gfp_mask, 1790 MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL); 1791 } 1792 1793 static void 1794 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr, 1795 enum charge_type ctype); 1796 1797 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm, 1798 gfp_t gfp_mask) 1799 { 1800 struct mem_cgroup *mem = NULL; 1801 int ret; 1802 1803 if (mem_cgroup_disabled()) 1804 return 0; 1805 if (PageCompound(page)) 1806 return 0; 1807 /* 1808 * Corner case handling. This is called from add_to_page_cache() 1809 * in usual. But some FS (shmem) precharges this page before calling it 1810 * and call add_to_page_cache() with GFP_NOWAIT. 1811 * 1812 * For GFP_NOWAIT case, the page may be pre-charged before calling 1813 * add_to_page_cache(). (See shmem.c) check it here and avoid to call 1814 * charge twice. (It works but has to pay a bit larger cost.) 1815 * And when the page is SwapCache, it should take swap information 1816 * into account. This is under lock_page() now. 1817 */ 1818 if (!(gfp_mask & __GFP_WAIT)) { 1819 struct page_cgroup *pc; 1820 1821 1822 pc = lookup_page_cgroup(page); 1823 if (!pc) 1824 return 0; 1825 lock_page_cgroup(pc); 1826 if (PageCgroupUsed(pc)) { 1827 unlock_page_cgroup(pc); 1828 return 0; 1829 } 1830 unlock_page_cgroup(pc); 1831 } 1832 1833 if (unlikely(!mm && !mem)) 1834 mm = &init_mm; 1835 1836 if (page_is_file_cache(page)) 1837 return mem_cgroup_charge_common(page, mm, gfp_mask, 1838 MEM_CGROUP_CHARGE_TYPE_CACHE, NULL); 1839 1840 /* shmem */ 1841 if (PageSwapCache(page)) { 1842 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem); 1843 if (!ret) 1844 __mem_cgroup_commit_charge_swapin(page, mem, 1845 MEM_CGROUP_CHARGE_TYPE_SHMEM); 1846 } else 1847 ret = mem_cgroup_charge_common(page, mm, gfp_mask, 1848 MEM_CGROUP_CHARGE_TYPE_SHMEM, mem); 1849 1850 return ret; 1851 } 1852 1853 /* 1854 * While swap-in, try_charge -> commit or cancel, the page is locked. 1855 * And when try_charge() successfully returns, one refcnt to memcg without 1856 * struct page_cgroup is acquired. This refcnt will be consumed by 1857 * "commit()" or removed by "cancel()" 1858 */ 1859 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, 1860 struct page *page, 1861 gfp_t mask, struct mem_cgroup **ptr) 1862 { 1863 struct mem_cgroup *mem; 1864 int ret; 1865 1866 if (mem_cgroup_disabled()) 1867 return 0; 1868 1869 if (!do_swap_account) 1870 goto charge_cur_mm; 1871 /* 1872 * A racing thread's fault, or swapoff, may have already updated 1873 * the pte, and even removed page from swap cache: in those cases 1874 * do_swap_page()'s pte_same() test will fail; but there's also a 1875 * KSM case which does need to charge the page. 1876 */ 1877 if (!PageSwapCache(page)) 1878 goto charge_cur_mm; 1879 mem = try_get_mem_cgroup_from_page(page); 1880 if (!mem) 1881 goto charge_cur_mm; 1882 *ptr = mem; 1883 ret = __mem_cgroup_try_charge(NULL, mask, ptr, true, page); 1884 /* drop extra refcnt from tryget */ 1885 css_put(&mem->css); 1886 return ret; 1887 charge_cur_mm: 1888 if (unlikely(!mm)) 1889 mm = &init_mm; 1890 return __mem_cgroup_try_charge(mm, mask, ptr, true, page); 1891 } 1892 1893 static void 1894 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr, 1895 enum charge_type ctype) 1896 { 1897 struct page_cgroup *pc; 1898 1899 if (mem_cgroup_disabled()) 1900 return; 1901 if (!ptr) 1902 return; 1903 cgroup_exclude_rmdir(&ptr->css); 1904 pc = lookup_page_cgroup(page); 1905 mem_cgroup_lru_del_before_commit_swapcache(page); 1906 __mem_cgroup_commit_charge(ptr, pc, ctype); 1907 mem_cgroup_lru_add_after_commit_swapcache(page); 1908 /* 1909 * Now swap is on-memory. This means this page may be 1910 * counted both as mem and swap....double count. 1911 * Fix it by uncharging from memsw. Basically, this SwapCache is stable 1912 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page() 1913 * may call delete_from_swap_cache() before reach here. 1914 */ 1915 if (do_swap_account && PageSwapCache(page)) { 1916 swp_entry_t ent = {.val = page_private(page)}; 1917 unsigned short id; 1918 struct mem_cgroup *memcg; 1919 1920 id = swap_cgroup_record(ent, 0); 1921 rcu_read_lock(); 1922 memcg = mem_cgroup_lookup(id); 1923 if (memcg) { 1924 /* 1925 * This recorded memcg can be obsolete one. So, avoid 1926 * calling css_tryget 1927 */ 1928 if (!mem_cgroup_is_root(memcg)) 1929 res_counter_uncharge(&memcg->memsw, PAGE_SIZE); 1930 mem_cgroup_swap_statistics(memcg, false); 1931 mem_cgroup_put(memcg); 1932 } 1933 rcu_read_unlock(); 1934 } 1935 /* 1936 * At swapin, we may charge account against cgroup which has no tasks. 1937 * So, rmdir()->pre_destroy() can be called while we do this charge. 1938 * In that case, we need to call pre_destroy() again. check it here. 1939 */ 1940 cgroup_release_and_wakeup_rmdir(&ptr->css); 1941 } 1942 1943 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr) 1944 { 1945 __mem_cgroup_commit_charge_swapin(page, ptr, 1946 MEM_CGROUP_CHARGE_TYPE_MAPPED); 1947 } 1948 1949 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem) 1950 { 1951 if (mem_cgroup_disabled()) 1952 return; 1953 if (!mem) 1954 return; 1955 mem_cgroup_cancel_charge(mem); 1956 } 1957 1958 static void 1959 __do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype) 1960 { 1961 struct memcg_batch_info *batch = NULL; 1962 bool uncharge_memsw = true; 1963 /* If swapout, usage of swap doesn't decrease */ 1964 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) 1965 uncharge_memsw = false; 1966 /* 1967 * do_batch > 0 when unmapping pages or inode invalidate/truncate. 1968 * In those cases, all pages freed continously can be expected to be in 1969 * the same cgroup and we have chance to coalesce uncharges. 1970 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE) 1971 * because we want to do uncharge as soon as possible. 1972 */ 1973 if (!current->memcg_batch.do_batch || test_thread_flag(TIF_MEMDIE)) 1974 goto direct_uncharge; 1975 1976 batch = ¤t->memcg_batch; 1977 /* 1978 * In usual, we do css_get() when we remember memcg pointer. 1979 * But in this case, we keep res->usage until end of a series of 1980 * uncharges. Then, it's ok to ignore memcg's refcnt. 1981 */ 1982 if (!batch->memcg) 1983 batch->memcg = mem; 1984 /* 1985 * In typical case, batch->memcg == mem. This means we can 1986 * merge a series of uncharges to an uncharge of res_counter. 1987 * If not, we uncharge res_counter ony by one. 1988 */ 1989 if (batch->memcg != mem) 1990 goto direct_uncharge; 1991 /* remember freed charge and uncharge it later */ 1992 batch->bytes += PAGE_SIZE; 1993 if (uncharge_memsw) 1994 batch->memsw_bytes += PAGE_SIZE; 1995 return; 1996 direct_uncharge: 1997 res_counter_uncharge(&mem->res, PAGE_SIZE); 1998 if (uncharge_memsw) 1999 res_counter_uncharge(&mem->memsw, PAGE_SIZE); 2000 return; 2001 } 2002 2003 /* 2004 * uncharge if !page_mapped(page) 2005 */ 2006 static struct mem_cgroup * 2007 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype) 2008 { 2009 struct page_cgroup *pc; 2010 struct mem_cgroup *mem = NULL; 2011 struct mem_cgroup_per_zone *mz; 2012 2013 if (mem_cgroup_disabled()) 2014 return NULL; 2015 2016 if (PageSwapCache(page)) 2017 return NULL; 2018 2019 /* 2020 * Check if our page_cgroup is valid 2021 */ 2022 pc = lookup_page_cgroup(page); 2023 if (unlikely(!pc || !PageCgroupUsed(pc))) 2024 return NULL; 2025 2026 lock_page_cgroup(pc); 2027 2028 mem = pc->mem_cgroup; 2029 2030 if (!PageCgroupUsed(pc)) 2031 goto unlock_out; 2032 2033 switch (ctype) { 2034 case MEM_CGROUP_CHARGE_TYPE_MAPPED: 2035 case MEM_CGROUP_CHARGE_TYPE_DROP: 2036 if (page_mapped(page)) 2037 goto unlock_out; 2038 break; 2039 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT: 2040 if (!PageAnon(page)) { /* Shared memory */ 2041 if (page->mapping && !page_is_file_cache(page)) 2042 goto unlock_out; 2043 } else if (page_mapped(page)) /* Anon */ 2044 goto unlock_out; 2045 break; 2046 default: 2047 break; 2048 } 2049 2050 if (!mem_cgroup_is_root(mem)) 2051 __do_uncharge(mem, ctype); 2052 if (ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) 2053 mem_cgroup_swap_statistics(mem, true); 2054 mem_cgroup_charge_statistics(mem, pc, false); 2055 2056 ClearPageCgroupUsed(pc); 2057 /* 2058 * pc->mem_cgroup is not cleared here. It will be accessed when it's 2059 * freed from LRU. This is safe because uncharged page is expected not 2060 * to be reused (freed soon). Exception is SwapCache, it's handled by 2061 * special functions. 2062 */ 2063 2064 mz = page_cgroup_zoneinfo(pc); 2065 unlock_page_cgroup(pc); 2066 2067 if (mem_cgroup_soft_limit_check(mem)) 2068 mem_cgroup_update_tree(mem, page); 2069 /* at swapout, this memcg will be accessed to record to swap */ 2070 if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT) 2071 css_put(&mem->css); 2072 2073 return mem; 2074 2075 unlock_out: 2076 unlock_page_cgroup(pc); 2077 return NULL; 2078 } 2079 2080 void mem_cgroup_uncharge_page(struct page *page) 2081 { 2082 /* early check. */ 2083 if (page_mapped(page)) 2084 return; 2085 if (page->mapping && !PageAnon(page)) 2086 return; 2087 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED); 2088 } 2089 2090 void mem_cgroup_uncharge_cache_page(struct page *page) 2091 { 2092 VM_BUG_ON(page_mapped(page)); 2093 VM_BUG_ON(page->mapping); 2094 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE); 2095 } 2096 2097 /* 2098 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate. 2099 * In that cases, pages are freed continuously and we can expect pages 2100 * are in the same memcg. All these calls itself limits the number of 2101 * pages freed at once, then uncharge_start/end() is called properly. 2102 * This may be called prural(2) times in a context, 2103 */ 2104 2105 void mem_cgroup_uncharge_start(void) 2106 { 2107 current->memcg_batch.do_batch++; 2108 /* We can do nest. */ 2109 if (current->memcg_batch.do_batch == 1) { 2110 current->memcg_batch.memcg = NULL; 2111 current->memcg_batch.bytes = 0; 2112 current->memcg_batch.memsw_bytes = 0; 2113 } 2114 } 2115 2116 void mem_cgroup_uncharge_end(void) 2117 { 2118 struct memcg_batch_info *batch = ¤t->memcg_batch; 2119 2120 if (!batch->do_batch) 2121 return; 2122 2123 batch->do_batch--; 2124 if (batch->do_batch) /* If stacked, do nothing. */ 2125 return; 2126 2127 if (!batch->memcg) 2128 return; 2129 /* 2130 * This "batch->memcg" is valid without any css_get/put etc... 2131 * bacause we hide charges behind us. 2132 */ 2133 if (batch->bytes) 2134 res_counter_uncharge(&batch->memcg->res, batch->bytes); 2135 if (batch->memsw_bytes) 2136 res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes); 2137 /* forget this pointer (for sanity check) */ 2138 batch->memcg = NULL; 2139 } 2140 2141 #ifdef CONFIG_SWAP 2142 /* 2143 * called after __delete_from_swap_cache() and drop "page" account. 2144 * memcg information is recorded to swap_cgroup of "ent" 2145 */ 2146 void 2147 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout) 2148 { 2149 struct mem_cgroup *memcg; 2150 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT; 2151 2152 if (!swapout) /* this was a swap cache but the swap is unused ! */ 2153 ctype = MEM_CGROUP_CHARGE_TYPE_DROP; 2154 2155 memcg = __mem_cgroup_uncharge_common(page, ctype); 2156 2157 /* record memcg information */ 2158 if (do_swap_account && swapout && memcg) { 2159 swap_cgroup_record(ent, css_id(&memcg->css)); 2160 mem_cgroup_get(memcg); 2161 } 2162 if (swapout && memcg) 2163 css_put(&memcg->css); 2164 } 2165 #endif 2166 2167 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP 2168 /* 2169 * called from swap_entry_free(). remove record in swap_cgroup and 2170 * uncharge "memsw" account. 2171 */ 2172 void mem_cgroup_uncharge_swap(swp_entry_t ent) 2173 { 2174 struct mem_cgroup *memcg; 2175 unsigned short id; 2176 2177 if (!do_swap_account) 2178 return; 2179 2180 id = swap_cgroup_record(ent, 0); 2181 rcu_read_lock(); 2182 memcg = mem_cgroup_lookup(id); 2183 if (memcg) { 2184 /* 2185 * We uncharge this because swap is freed. 2186 * This memcg can be obsolete one. We avoid calling css_tryget 2187 */ 2188 if (!mem_cgroup_is_root(memcg)) 2189 res_counter_uncharge(&memcg->memsw, PAGE_SIZE); 2190 mem_cgroup_swap_statistics(memcg, false); 2191 mem_cgroup_put(memcg); 2192 } 2193 rcu_read_unlock(); 2194 } 2195 #endif 2196 2197 /* 2198 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old 2199 * page belongs to. 2200 */ 2201 int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr) 2202 { 2203 struct page_cgroup *pc; 2204 struct mem_cgroup *mem = NULL; 2205 int ret = 0; 2206 2207 if (mem_cgroup_disabled()) 2208 return 0; 2209 2210 pc = lookup_page_cgroup(page); 2211 lock_page_cgroup(pc); 2212 if (PageCgroupUsed(pc)) { 2213 mem = pc->mem_cgroup; 2214 css_get(&mem->css); 2215 } 2216 unlock_page_cgroup(pc); 2217 2218 if (mem) { 2219 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false, 2220 page); 2221 css_put(&mem->css); 2222 } 2223 *ptr = mem; 2224 return ret; 2225 } 2226 2227 /* remove redundant charge if migration failed*/ 2228 void mem_cgroup_end_migration(struct mem_cgroup *mem, 2229 struct page *oldpage, struct page *newpage) 2230 { 2231 struct page *target, *unused; 2232 struct page_cgroup *pc; 2233 enum charge_type ctype; 2234 2235 if (!mem) 2236 return; 2237 cgroup_exclude_rmdir(&mem->css); 2238 /* at migration success, oldpage->mapping is NULL. */ 2239 if (oldpage->mapping) { 2240 target = oldpage; 2241 unused = NULL; 2242 } else { 2243 target = newpage; 2244 unused = oldpage; 2245 } 2246 2247 if (PageAnon(target)) 2248 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED; 2249 else if (page_is_file_cache(target)) 2250 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE; 2251 else 2252 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM; 2253 2254 /* unused page is not on radix-tree now. */ 2255 if (unused) 2256 __mem_cgroup_uncharge_common(unused, ctype); 2257 2258 pc = lookup_page_cgroup(target); 2259 /* 2260 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup. 2261 * So, double-counting is effectively avoided. 2262 */ 2263 __mem_cgroup_commit_charge(mem, pc, ctype); 2264 2265 /* 2266 * Both of oldpage and newpage are still under lock_page(). 2267 * Then, we don't have to care about race in radix-tree. 2268 * But we have to be careful that this page is unmapped or not. 2269 * 2270 * There is a case for !page_mapped(). At the start of 2271 * migration, oldpage was mapped. But now, it's zapped. 2272 * But we know *target* page is not freed/reused under us. 2273 * mem_cgroup_uncharge_page() does all necessary checks. 2274 */ 2275 if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED) 2276 mem_cgroup_uncharge_page(target); 2277 /* 2278 * At migration, we may charge account against cgroup which has no tasks 2279 * So, rmdir()->pre_destroy() can be called while we do this charge. 2280 * In that case, we need to call pre_destroy() again. check it here. 2281 */ 2282 cgroup_release_and_wakeup_rmdir(&mem->css); 2283 } 2284 2285 /* 2286 * A call to try to shrink memory usage on charge failure at shmem's swapin. 2287 * Calling hierarchical_reclaim is not enough because we should update 2288 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM. 2289 * Moreover considering hierarchy, we should reclaim from the mem_over_limit, 2290 * not from the memcg which this page would be charged to. 2291 * try_charge_swapin does all of these works properly. 2292 */ 2293 int mem_cgroup_shmem_charge_fallback(struct page *page, 2294 struct mm_struct *mm, 2295 gfp_t gfp_mask) 2296 { 2297 struct mem_cgroup *mem = NULL; 2298 int ret; 2299 2300 if (mem_cgroup_disabled()) 2301 return 0; 2302 2303 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem); 2304 if (!ret) 2305 mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */ 2306 2307 return ret; 2308 } 2309 2310 static DEFINE_MUTEX(set_limit_mutex); 2311 2312 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg, 2313 unsigned long long val) 2314 { 2315 int retry_count; 2316 u64 memswlimit; 2317 int ret = 0; 2318 int children = mem_cgroup_count_children(memcg); 2319 u64 curusage, oldusage; 2320 2321 /* 2322 * For keeping hierarchical_reclaim simple, how long we should retry 2323 * is depends on callers. We set our retry-count to be function 2324 * of # of children which we should visit in this loop. 2325 */ 2326 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children; 2327 2328 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE); 2329 2330 while (retry_count) { 2331 if (signal_pending(current)) { 2332 ret = -EINTR; 2333 break; 2334 } 2335 /* 2336 * Rather than hide all in some function, I do this in 2337 * open coded manner. You see what this really does. 2338 * We have to guarantee mem->res.limit < mem->memsw.limit. 2339 */ 2340 mutex_lock(&set_limit_mutex); 2341 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 2342 if (memswlimit < val) { 2343 ret = -EINVAL; 2344 mutex_unlock(&set_limit_mutex); 2345 break; 2346 } 2347 ret = res_counter_set_limit(&memcg->res, val); 2348 if (!ret) { 2349 if (memswlimit == val) 2350 memcg->memsw_is_minimum = true; 2351 else 2352 memcg->memsw_is_minimum = false; 2353 } 2354 mutex_unlock(&set_limit_mutex); 2355 2356 if (!ret) 2357 break; 2358 2359 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL, 2360 MEM_CGROUP_RECLAIM_SHRINK); 2361 curusage = res_counter_read_u64(&memcg->res, RES_USAGE); 2362 /* Usage is reduced ? */ 2363 if (curusage >= oldusage) 2364 retry_count--; 2365 else 2366 oldusage = curusage; 2367 } 2368 2369 return ret; 2370 } 2371 2372 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg, 2373 unsigned long long val) 2374 { 2375 int retry_count; 2376 u64 memlimit, oldusage, curusage; 2377 int children = mem_cgroup_count_children(memcg); 2378 int ret = -EBUSY; 2379 2380 /* see mem_cgroup_resize_res_limit */ 2381 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES; 2382 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); 2383 while (retry_count) { 2384 if (signal_pending(current)) { 2385 ret = -EINTR; 2386 break; 2387 } 2388 /* 2389 * Rather than hide all in some function, I do this in 2390 * open coded manner. You see what this really does. 2391 * We have to guarantee mem->res.limit < mem->memsw.limit. 2392 */ 2393 mutex_lock(&set_limit_mutex); 2394 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT); 2395 if (memlimit > val) { 2396 ret = -EINVAL; 2397 mutex_unlock(&set_limit_mutex); 2398 break; 2399 } 2400 ret = res_counter_set_limit(&memcg->memsw, val); 2401 if (!ret) { 2402 if (memlimit == val) 2403 memcg->memsw_is_minimum = true; 2404 else 2405 memcg->memsw_is_minimum = false; 2406 } 2407 mutex_unlock(&set_limit_mutex); 2408 2409 if (!ret) 2410 break; 2411 2412 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL, 2413 MEM_CGROUP_RECLAIM_NOSWAP | 2414 MEM_CGROUP_RECLAIM_SHRINK); 2415 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); 2416 /* Usage is reduced ? */ 2417 if (curusage >= oldusage) 2418 retry_count--; 2419 else 2420 oldusage = curusage; 2421 } 2422 return ret; 2423 } 2424 2425 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, 2426 gfp_t gfp_mask, int nid, 2427 int zid) 2428 { 2429 unsigned long nr_reclaimed = 0; 2430 struct mem_cgroup_per_zone *mz, *next_mz = NULL; 2431 unsigned long reclaimed; 2432 int loop = 0; 2433 struct mem_cgroup_tree_per_zone *mctz; 2434 unsigned long long excess; 2435 2436 if (order > 0) 2437 return 0; 2438 2439 mctz = soft_limit_tree_node_zone(nid, zid); 2440 /* 2441 * This loop can run a while, specially if mem_cgroup's continuously 2442 * keep exceeding their soft limit and putting the system under 2443 * pressure 2444 */ 2445 do { 2446 if (next_mz) 2447 mz = next_mz; 2448 else 2449 mz = mem_cgroup_largest_soft_limit_node(mctz); 2450 if (!mz) 2451 break; 2452 2453 reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone, 2454 gfp_mask, 2455 MEM_CGROUP_RECLAIM_SOFT); 2456 nr_reclaimed += reclaimed; 2457 spin_lock(&mctz->lock); 2458 2459 /* 2460 * If we failed to reclaim anything from this memory cgroup 2461 * it is time to move on to the next cgroup 2462 */ 2463 next_mz = NULL; 2464 if (!reclaimed) { 2465 do { 2466 /* 2467 * Loop until we find yet another one. 2468 * 2469 * By the time we get the soft_limit lock 2470 * again, someone might have aded the 2471 * group back on the RB tree. Iterate to 2472 * make sure we get a different mem. 2473 * mem_cgroup_largest_soft_limit_node returns 2474 * NULL if no other cgroup is present on 2475 * the tree 2476 */ 2477 next_mz = 2478 __mem_cgroup_largest_soft_limit_node(mctz); 2479 if (next_mz == mz) { 2480 css_put(&next_mz->mem->css); 2481 next_mz = NULL; 2482 } else /* next_mz == NULL or other memcg */ 2483 break; 2484 } while (1); 2485 } 2486 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz); 2487 excess = res_counter_soft_limit_excess(&mz->mem->res); 2488 /* 2489 * One school of thought says that we should not add 2490 * back the node to the tree if reclaim returns 0. 2491 * But our reclaim could return 0, simply because due 2492 * to priority we are exposing a smaller subset of 2493 * memory to reclaim from. Consider this as a longer 2494 * term TODO. 2495 */ 2496 /* If excess == 0, no tree ops */ 2497 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess); 2498 spin_unlock(&mctz->lock); 2499 css_put(&mz->mem->css); 2500 loop++; 2501 /* 2502 * Could not reclaim anything and there are no more 2503 * mem cgroups to try or we seem to be looping without 2504 * reclaiming anything. 2505 */ 2506 if (!nr_reclaimed && 2507 (next_mz == NULL || 2508 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 2509 break; 2510 } while (!nr_reclaimed); 2511 if (next_mz) 2512 css_put(&next_mz->mem->css); 2513 return nr_reclaimed; 2514 } 2515 2516 /* 2517 * This routine traverse page_cgroup in given list and drop them all. 2518 * *And* this routine doesn't reclaim page itself, just removes page_cgroup. 2519 */ 2520 static int mem_cgroup_force_empty_list(struct mem_cgroup *mem, 2521 int node, int zid, enum lru_list lru) 2522 { 2523 struct zone *zone; 2524 struct mem_cgroup_per_zone *mz; 2525 struct page_cgroup *pc, *busy; 2526 unsigned long flags, loop; 2527 struct list_head *list; 2528 int ret = 0; 2529 2530 zone = &NODE_DATA(node)->node_zones[zid]; 2531 mz = mem_cgroup_zoneinfo(mem, node, zid); 2532 list = &mz->lists[lru]; 2533 2534 loop = MEM_CGROUP_ZSTAT(mz, lru); 2535 /* give some margin against EBUSY etc...*/ 2536 loop += 256; 2537 busy = NULL; 2538 while (loop--) { 2539 ret = 0; 2540 spin_lock_irqsave(&zone->lru_lock, flags); 2541 if (list_empty(list)) { 2542 spin_unlock_irqrestore(&zone->lru_lock, flags); 2543 break; 2544 } 2545 pc = list_entry(list->prev, struct page_cgroup, lru); 2546 if (busy == pc) { 2547 list_move(&pc->lru, list); 2548 busy = 0; 2549 spin_unlock_irqrestore(&zone->lru_lock, flags); 2550 continue; 2551 } 2552 spin_unlock_irqrestore(&zone->lru_lock, flags); 2553 2554 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL); 2555 if (ret == -ENOMEM) 2556 break; 2557 2558 if (ret == -EBUSY || ret == -EINVAL) { 2559 /* found lock contention or "pc" is obsolete. */ 2560 busy = pc; 2561 cond_resched(); 2562 } else 2563 busy = NULL; 2564 } 2565 2566 if (!ret && !list_empty(list)) 2567 return -EBUSY; 2568 return ret; 2569 } 2570 2571 /* 2572 * make mem_cgroup's charge to be 0 if there is no task. 2573 * This enables deleting this mem_cgroup. 2574 */ 2575 static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all) 2576 { 2577 int ret; 2578 int node, zid, shrink; 2579 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 2580 struct cgroup *cgrp = mem->css.cgroup; 2581 2582 css_get(&mem->css); 2583 2584 shrink = 0; 2585 /* should free all ? */ 2586 if (free_all) 2587 goto try_to_free; 2588 move_account: 2589 while (mem->res.usage > 0) { 2590 ret = -EBUSY; 2591 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children)) 2592 goto out; 2593 ret = -EINTR; 2594 if (signal_pending(current)) 2595 goto out; 2596 /* This is for making all *used* pages to be on LRU. */ 2597 lru_add_drain_all(); 2598 drain_all_stock_sync(); 2599 ret = 0; 2600 for_each_node_state(node, N_HIGH_MEMORY) { 2601 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) { 2602 enum lru_list l; 2603 for_each_lru(l) { 2604 ret = mem_cgroup_force_empty_list(mem, 2605 node, zid, l); 2606 if (ret) 2607 break; 2608 } 2609 } 2610 if (ret) 2611 break; 2612 } 2613 /* it seems parent cgroup doesn't have enough mem */ 2614 if (ret == -ENOMEM) 2615 goto try_to_free; 2616 cond_resched(); 2617 } 2618 ret = 0; 2619 out: 2620 css_put(&mem->css); 2621 return ret; 2622 2623 try_to_free: 2624 /* returns EBUSY if there is a task or if we come here twice. */ 2625 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) { 2626 ret = -EBUSY; 2627 goto out; 2628 } 2629 /* we call try-to-free pages for make this cgroup empty */ 2630 lru_add_drain_all(); 2631 /* try to free all pages in this cgroup */ 2632 shrink = 1; 2633 while (nr_retries && mem->res.usage > 0) { 2634 int progress; 2635 2636 if (signal_pending(current)) { 2637 ret = -EINTR; 2638 goto out; 2639 } 2640 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL, 2641 false, get_swappiness(mem)); 2642 if (!progress) { 2643 nr_retries--; 2644 /* maybe some writeback is necessary */ 2645 congestion_wait(BLK_RW_ASYNC, HZ/10); 2646 } 2647 2648 } 2649 lru_add_drain(); 2650 /* try move_account...there may be some *locked* pages. */ 2651 if (mem->res.usage) 2652 goto move_account; 2653 ret = 0; 2654 goto out; 2655 } 2656 2657 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event) 2658 { 2659 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true); 2660 } 2661 2662 2663 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft) 2664 { 2665 return mem_cgroup_from_cont(cont)->use_hierarchy; 2666 } 2667 2668 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft, 2669 u64 val) 2670 { 2671 int retval = 0; 2672 struct mem_cgroup *mem = mem_cgroup_from_cont(cont); 2673 struct cgroup *parent = cont->parent; 2674 struct mem_cgroup *parent_mem = NULL; 2675 2676 if (parent) 2677 parent_mem = mem_cgroup_from_cont(parent); 2678 2679 cgroup_lock(); 2680 /* 2681 * If parent's use_hierarchy is set, we can't make any modifications 2682 * in the child subtrees. If it is unset, then the change can 2683 * occur, provided the current cgroup has no children. 2684 * 2685 * For the root cgroup, parent_mem is NULL, we allow value to be 2686 * set if there are no children. 2687 */ 2688 if ((!parent_mem || !parent_mem->use_hierarchy) && 2689 (val == 1 || val == 0)) { 2690 if (list_empty(&cont->children)) 2691 mem->use_hierarchy = val; 2692 else 2693 retval = -EBUSY; 2694 } else 2695 retval = -EINVAL; 2696 cgroup_unlock(); 2697 2698 return retval; 2699 } 2700 2701 struct mem_cgroup_idx_data { 2702 s64 val; 2703 enum mem_cgroup_stat_index idx; 2704 }; 2705 2706 static int 2707 mem_cgroup_get_idx_stat(struct mem_cgroup *mem, void *data) 2708 { 2709 struct mem_cgroup_idx_data *d = data; 2710 d->val += mem_cgroup_read_stat(&mem->stat, d->idx); 2711 return 0; 2712 } 2713 2714 static void 2715 mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem, 2716 enum mem_cgroup_stat_index idx, s64 *val) 2717 { 2718 struct mem_cgroup_idx_data d; 2719 d.idx = idx; 2720 d.val = 0; 2721 mem_cgroup_walk_tree(mem, &d, mem_cgroup_get_idx_stat); 2722 *val = d.val; 2723 } 2724 2725 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft) 2726 { 2727 struct mem_cgroup *mem = mem_cgroup_from_cont(cont); 2728 u64 idx_val, val; 2729 int type, name; 2730 2731 type = MEMFILE_TYPE(cft->private); 2732 name = MEMFILE_ATTR(cft->private); 2733 switch (type) { 2734 case _MEM: 2735 if (name == RES_USAGE && mem_cgroup_is_root(mem)) { 2736 mem_cgroup_get_recursive_idx_stat(mem, 2737 MEM_CGROUP_STAT_CACHE, &idx_val); 2738 val = idx_val; 2739 mem_cgroup_get_recursive_idx_stat(mem, 2740 MEM_CGROUP_STAT_RSS, &idx_val); 2741 val += idx_val; 2742 val <<= PAGE_SHIFT; 2743 } else 2744 val = res_counter_read_u64(&mem->res, name); 2745 break; 2746 case _MEMSWAP: 2747 if (name == RES_USAGE && mem_cgroup_is_root(mem)) { 2748 mem_cgroup_get_recursive_idx_stat(mem, 2749 MEM_CGROUP_STAT_CACHE, &idx_val); 2750 val = idx_val; 2751 mem_cgroup_get_recursive_idx_stat(mem, 2752 MEM_CGROUP_STAT_RSS, &idx_val); 2753 val += idx_val; 2754 mem_cgroup_get_recursive_idx_stat(mem, 2755 MEM_CGROUP_STAT_SWAPOUT, &idx_val); 2756 val += idx_val; 2757 val <<= PAGE_SHIFT; 2758 } else 2759 val = res_counter_read_u64(&mem->memsw, name); 2760 break; 2761 default: 2762 BUG(); 2763 break; 2764 } 2765 return val; 2766 } 2767 /* 2768 * The user of this function is... 2769 * RES_LIMIT. 2770 */ 2771 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft, 2772 const char *buffer) 2773 { 2774 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 2775 int type, name; 2776 unsigned long long val; 2777 int ret; 2778 2779 type = MEMFILE_TYPE(cft->private); 2780 name = MEMFILE_ATTR(cft->private); 2781 switch (name) { 2782 case RES_LIMIT: 2783 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 2784 ret = -EINVAL; 2785 break; 2786 } 2787 /* This function does all necessary parse...reuse it */ 2788 ret = res_counter_memparse_write_strategy(buffer, &val); 2789 if (ret) 2790 break; 2791 if (type == _MEM) 2792 ret = mem_cgroup_resize_limit(memcg, val); 2793 else 2794 ret = mem_cgroup_resize_memsw_limit(memcg, val); 2795 break; 2796 case RES_SOFT_LIMIT: 2797 ret = res_counter_memparse_write_strategy(buffer, &val); 2798 if (ret) 2799 break; 2800 /* 2801 * For memsw, soft limits are hard to implement in terms 2802 * of semantics, for now, we support soft limits for 2803 * control without swap 2804 */ 2805 if (type == _MEM) 2806 ret = res_counter_set_soft_limit(&memcg->res, val); 2807 else 2808 ret = -EINVAL; 2809 break; 2810 default: 2811 ret = -EINVAL; /* should be BUG() ? */ 2812 break; 2813 } 2814 return ret; 2815 } 2816 2817 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg, 2818 unsigned long long *mem_limit, unsigned long long *memsw_limit) 2819 { 2820 struct cgroup *cgroup; 2821 unsigned long long min_limit, min_memsw_limit, tmp; 2822 2823 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT); 2824 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 2825 cgroup = memcg->css.cgroup; 2826 if (!memcg->use_hierarchy) 2827 goto out; 2828 2829 while (cgroup->parent) { 2830 cgroup = cgroup->parent; 2831 memcg = mem_cgroup_from_cont(cgroup); 2832 if (!memcg->use_hierarchy) 2833 break; 2834 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT); 2835 min_limit = min(min_limit, tmp); 2836 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 2837 min_memsw_limit = min(min_memsw_limit, tmp); 2838 } 2839 out: 2840 *mem_limit = min_limit; 2841 *memsw_limit = min_memsw_limit; 2842 return; 2843 } 2844 2845 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event) 2846 { 2847 struct mem_cgroup *mem; 2848 int type, name; 2849 2850 mem = mem_cgroup_from_cont(cont); 2851 type = MEMFILE_TYPE(event); 2852 name = MEMFILE_ATTR(event); 2853 switch (name) { 2854 case RES_MAX_USAGE: 2855 if (type == _MEM) 2856 res_counter_reset_max(&mem->res); 2857 else 2858 res_counter_reset_max(&mem->memsw); 2859 break; 2860 case RES_FAILCNT: 2861 if (type == _MEM) 2862 res_counter_reset_failcnt(&mem->res); 2863 else 2864 res_counter_reset_failcnt(&mem->memsw); 2865 break; 2866 } 2867 2868 return 0; 2869 } 2870 2871 2872 /* For read statistics */ 2873 enum { 2874 MCS_CACHE, 2875 MCS_RSS, 2876 MCS_FILE_MAPPED, 2877 MCS_PGPGIN, 2878 MCS_PGPGOUT, 2879 MCS_SWAP, 2880 MCS_INACTIVE_ANON, 2881 MCS_ACTIVE_ANON, 2882 MCS_INACTIVE_FILE, 2883 MCS_ACTIVE_FILE, 2884 MCS_UNEVICTABLE, 2885 NR_MCS_STAT, 2886 }; 2887 2888 struct mcs_total_stat { 2889 s64 stat[NR_MCS_STAT]; 2890 }; 2891 2892 struct { 2893 char *local_name; 2894 char *total_name; 2895 } memcg_stat_strings[NR_MCS_STAT] = { 2896 {"cache", "total_cache"}, 2897 {"rss", "total_rss"}, 2898 {"mapped_file", "total_mapped_file"}, 2899 {"pgpgin", "total_pgpgin"}, 2900 {"pgpgout", "total_pgpgout"}, 2901 {"swap", "total_swap"}, 2902 {"inactive_anon", "total_inactive_anon"}, 2903 {"active_anon", "total_active_anon"}, 2904 {"inactive_file", "total_inactive_file"}, 2905 {"active_file", "total_active_file"}, 2906 {"unevictable", "total_unevictable"} 2907 }; 2908 2909 2910 static int mem_cgroup_get_local_stat(struct mem_cgroup *mem, void *data) 2911 { 2912 struct mcs_total_stat *s = data; 2913 s64 val; 2914 2915 /* per cpu stat */ 2916 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_CACHE); 2917 s->stat[MCS_CACHE] += val * PAGE_SIZE; 2918 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS); 2919 s->stat[MCS_RSS] += val * PAGE_SIZE; 2920 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_FILE_MAPPED); 2921 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE; 2922 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGIN_COUNT); 2923 s->stat[MCS_PGPGIN] += val; 2924 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGOUT_COUNT); 2925 s->stat[MCS_PGPGOUT] += val; 2926 if (do_swap_account) { 2927 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_SWAPOUT); 2928 s->stat[MCS_SWAP] += val * PAGE_SIZE; 2929 } 2930 2931 /* per zone stat */ 2932 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON); 2933 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE; 2934 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON); 2935 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE; 2936 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE); 2937 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE; 2938 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE); 2939 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE; 2940 val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE); 2941 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE; 2942 return 0; 2943 } 2944 2945 static void 2946 mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s) 2947 { 2948 mem_cgroup_walk_tree(mem, s, mem_cgroup_get_local_stat); 2949 } 2950 2951 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft, 2952 struct cgroup_map_cb *cb) 2953 { 2954 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont); 2955 struct mcs_total_stat mystat; 2956 int i; 2957 2958 memset(&mystat, 0, sizeof(mystat)); 2959 mem_cgroup_get_local_stat(mem_cont, &mystat); 2960 2961 for (i = 0; i < NR_MCS_STAT; i++) { 2962 if (i == MCS_SWAP && !do_swap_account) 2963 continue; 2964 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]); 2965 } 2966 2967 /* Hierarchical information */ 2968 { 2969 unsigned long long limit, memsw_limit; 2970 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit); 2971 cb->fill(cb, "hierarchical_memory_limit", limit); 2972 if (do_swap_account) 2973 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit); 2974 } 2975 2976 memset(&mystat, 0, sizeof(mystat)); 2977 mem_cgroup_get_total_stat(mem_cont, &mystat); 2978 for (i = 0; i < NR_MCS_STAT; i++) { 2979 if (i == MCS_SWAP && !do_swap_account) 2980 continue; 2981 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]); 2982 } 2983 2984 #ifdef CONFIG_DEBUG_VM 2985 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL)); 2986 2987 { 2988 int nid, zid; 2989 struct mem_cgroup_per_zone *mz; 2990 unsigned long recent_rotated[2] = {0, 0}; 2991 unsigned long recent_scanned[2] = {0, 0}; 2992 2993 for_each_online_node(nid) 2994 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 2995 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid); 2996 2997 recent_rotated[0] += 2998 mz->reclaim_stat.recent_rotated[0]; 2999 recent_rotated[1] += 3000 mz->reclaim_stat.recent_rotated[1]; 3001 recent_scanned[0] += 3002 mz->reclaim_stat.recent_scanned[0]; 3003 recent_scanned[1] += 3004 mz->reclaim_stat.recent_scanned[1]; 3005 } 3006 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]); 3007 cb->fill(cb, "recent_rotated_file", recent_rotated[1]); 3008 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]); 3009 cb->fill(cb, "recent_scanned_file", recent_scanned[1]); 3010 } 3011 #endif 3012 3013 return 0; 3014 } 3015 3016 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft) 3017 { 3018 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 3019 3020 return get_swappiness(memcg); 3021 } 3022 3023 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft, 3024 u64 val) 3025 { 3026 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 3027 struct mem_cgroup *parent; 3028 3029 if (val > 100) 3030 return -EINVAL; 3031 3032 if (cgrp->parent == NULL) 3033 return -EINVAL; 3034 3035 parent = mem_cgroup_from_cont(cgrp->parent); 3036 3037 cgroup_lock(); 3038 3039 /* If under hierarchy, only empty-root can set this value */ 3040 if ((parent->use_hierarchy) || 3041 (memcg->use_hierarchy && !list_empty(&cgrp->children))) { 3042 cgroup_unlock(); 3043 return -EINVAL; 3044 } 3045 3046 spin_lock(&memcg->reclaim_param_lock); 3047 memcg->swappiness = val; 3048 spin_unlock(&memcg->reclaim_param_lock); 3049 3050 cgroup_unlock(); 3051 3052 return 0; 3053 } 3054 3055 3056 static struct cftype mem_cgroup_files[] = { 3057 { 3058 .name = "usage_in_bytes", 3059 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 3060 .read_u64 = mem_cgroup_read, 3061 }, 3062 { 3063 .name = "max_usage_in_bytes", 3064 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 3065 .trigger = mem_cgroup_reset, 3066 .read_u64 = mem_cgroup_read, 3067 }, 3068 { 3069 .name = "limit_in_bytes", 3070 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 3071 .write_string = mem_cgroup_write, 3072 .read_u64 = mem_cgroup_read, 3073 }, 3074 { 3075 .name = "soft_limit_in_bytes", 3076 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 3077 .write_string = mem_cgroup_write, 3078 .read_u64 = mem_cgroup_read, 3079 }, 3080 { 3081 .name = "failcnt", 3082 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 3083 .trigger = mem_cgroup_reset, 3084 .read_u64 = mem_cgroup_read, 3085 }, 3086 { 3087 .name = "stat", 3088 .read_map = mem_control_stat_show, 3089 }, 3090 { 3091 .name = "force_empty", 3092 .trigger = mem_cgroup_force_empty_write, 3093 }, 3094 { 3095 .name = "use_hierarchy", 3096 .write_u64 = mem_cgroup_hierarchy_write, 3097 .read_u64 = mem_cgroup_hierarchy_read, 3098 }, 3099 { 3100 .name = "swappiness", 3101 .read_u64 = mem_cgroup_swappiness_read, 3102 .write_u64 = mem_cgroup_swappiness_write, 3103 }, 3104 }; 3105 3106 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP 3107 static struct cftype memsw_cgroup_files[] = { 3108 { 3109 .name = "memsw.usage_in_bytes", 3110 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 3111 .read_u64 = mem_cgroup_read, 3112 }, 3113 { 3114 .name = "memsw.max_usage_in_bytes", 3115 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 3116 .trigger = mem_cgroup_reset, 3117 .read_u64 = mem_cgroup_read, 3118 }, 3119 { 3120 .name = "memsw.limit_in_bytes", 3121 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 3122 .write_string = mem_cgroup_write, 3123 .read_u64 = mem_cgroup_read, 3124 }, 3125 { 3126 .name = "memsw.failcnt", 3127 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 3128 .trigger = mem_cgroup_reset, 3129 .read_u64 = mem_cgroup_read, 3130 }, 3131 }; 3132 3133 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss) 3134 { 3135 if (!do_swap_account) 3136 return 0; 3137 return cgroup_add_files(cont, ss, memsw_cgroup_files, 3138 ARRAY_SIZE(memsw_cgroup_files)); 3139 }; 3140 #else 3141 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss) 3142 { 3143 return 0; 3144 } 3145 #endif 3146 3147 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node) 3148 { 3149 struct mem_cgroup_per_node *pn; 3150 struct mem_cgroup_per_zone *mz; 3151 enum lru_list l; 3152 int zone, tmp = node; 3153 /* 3154 * This routine is called against possible nodes. 3155 * But it's BUG to call kmalloc() against offline node. 3156 * 3157 * TODO: this routine can waste much memory for nodes which will 3158 * never be onlined. It's better to use memory hotplug callback 3159 * function. 3160 */ 3161 if (!node_state(node, N_NORMAL_MEMORY)) 3162 tmp = -1; 3163 pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp); 3164 if (!pn) 3165 return 1; 3166 3167 mem->info.nodeinfo[node] = pn; 3168 memset(pn, 0, sizeof(*pn)); 3169 3170 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 3171 mz = &pn->zoneinfo[zone]; 3172 for_each_lru(l) 3173 INIT_LIST_HEAD(&mz->lists[l]); 3174 mz->usage_in_excess = 0; 3175 mz->on_tree = false; 3176 mz->mem = mem; 3177 } 3178 return 0; 3179 } 3180 3181 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node) 3182 { 3183 kfree(mem->info.nodeinfo[node]); 3184 } 3185 3186 static int mem_cgroup_size(void) 3187 { 3188 int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu); 3189 return sizeof(struct mem_cgroup) + cpustat_size; 3190 } 3191 3192 static struct mem_cgroup *mem_cgroup_alloc(void) 3193 { 3194 struct mem_cgroup *mem; 3195 int size = mem_cgroup_size(); 3196 3197 if (size < PAGE_SIZE) 3198 mem = kmalloc(size, GFP_KERNEL); 3199 else 3200 mem = vmalloc(size); 3201 3202 if (mem) 3203 memset(mem, 0, size); 3204 return mem; 3205 } 3206 3207 /* 3208 * At destroying mem_cgroup, references from swap_cgroup can remain. 3209 * (scanning all at force_empty is too costly...) 3210 * 3211 * Instead of clearing all references at force_empty, we remember 3212 * the number of reference from swap_cgroup and free mem_cgroup when 3213 * it goes down to 0. 3214 * 3215 * Removal of cgroup itself succeeds regardless of refs from swap. 3216 */ 3217 3218 static void __mem_cgroup_free(struct mem_cgroup *mem) 3219 { 3220 int node; 3221 3222 mem_cgroup_remove_from_trees(mem); 3223 free_css_id(&mem_cgroup_subsys, &mem->css); 3224 3225 for_each_node_state(node, N_POSSIBLE) 3226 free_mem_cgroup_per_zone_info(mem, node); 3227 3228 if (mem_cgroup_size() < PAGE_SIZE) 3229 kfree(mem); 3230 else 3231 vfree(mem); 3232 } 3233 3234 static void mem_cgroup_get(struct mem_cgroup *mem) 3235 { 3236 atomic_inc(&mem->refcnt); 3237 } 3238 3239 static void mem_cgroup_put(struct mem_cgroup *mem) 3240 { 3241 if (atomic_dec_and_test(&mem->refcnt)) { 3242 struct mem_cgroup *parent = parent_mem_cgroup(mem); 3243 __mem_cgroup_free(mem); 3244 if (parent) 3245 mem_cgroup_put(parent); 3246 } 3247 } 3248 3249 /* 3250 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled. 3251 */ 3252 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem) 3253 { 3254 if (!mem->res.parent) 3255 return NULL; 3256 return mem_cgroup_from_res_counter(mem->res.parent, res); 3257 } 3258 3259 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP 3260 static void __init enable_swap_cgroup(void) 3261 { 3262 if (!mem_cgroup_disabled() && really_do_swap_account) 3263 do_swap_account = 1; 3264 } 3265 #else 3266 static void __init enable_swap_cgroup(void) 3267 { 3268 } 3269 #endif 3270 3271 static int mem_cgroup_soft_limit_tree_init(void) 3272 { 3273 struct mem_cgroup_tree_per_node *rtpn; 3274 struct mem_cgroup_tree_per_zone *rtpz; 3275 int tmp, node, zone; 3276 3277 for_each_node_state(node, N_POSSIBLE) { 3278 tmp = node; 3279 if (!node_state(node, N_NORMAL_MEMORY)) 3280 tmp = -1; 3281 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp); 3282 if (!rtpn) 3283 return 1; 3284 3285 soft_limit_tree.rb_tree_per_node[node] = rtpn; 3286 3287 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 3288 rtpz = &rtpn->rb_tree_per_zone[zone]; 3289 rtpz->rb_root = RB_ROOT; 3290 spin_lock_init(&rtpz->lock); 3291 } 3292 } 3293 return 0; 3294 } 3295 3296 static struct cgroup_subsys_state * __ref 3297 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont) 3298 { 3299 struct mem_cgroup *mem, *parent; 3300 long error = -ENOMEM; 3301 int node; 3302 3303 mem = mem_cgroup_alloc(); 3304 if (!mem) 3305 return ERR_PTR(error); 3306 3307 for_each_node_state(node, N_POSSIBLE) 3308 if (alloc_mem_cgroup_per_zone_info(mem, node)) 3309 goto free_out; 3310 3311 /* root ? */ 3312 if (cont->parent == NULL) { 3313 int cpu; 3314 enable_swap_cgroup(); 3315 parent = NULL; 3316 root_mem_cgroup = mem; 3317 if (mem_cgroup_soft_limit_tree_init()) 3318 goto free_out; 3319 for_each_possible_cpu(cpu) { 3320 struct memcg_stock_pcp *stock = 3321 &per_cpu(memcg_stock, cpu); 3322 INIT_WORK(&stock->work, drain_local_stock); 3323 } 3324 hotcpu_notifier(memcg_stock_cpu_callback, 0); 3325 3326 } else { 3327 parent = mem_cgroup_from_cont(cont->parent); 3328 mem->use_hierarchy = parent->use_hierarchy; 3329 } 3330 3331 if (parent && parent->use_hierarchy) { 3332 res_counter_init(&mem->res, &parent->res); 3333 res_counter_init(&mem->memsw, &parent->memsw); 3334 /* 3335 * We increment refcnt of the parent to ensure that we can 3336 * safely access it on res_counter_charge/uncharge. 3337 * This refcnt will be decremented when freeing this 3338 * mem_cgroup(see mem_cgroup_put). 3339 */ 3340 mem_cgroup_get(parent); 3341 } else { 3342 res_counter_init(&mem->res, NULL); 3343 res_counter_init(&mem->memsw, NULL); 3344 } 3345 mem->last_scanned_child = 0; 3346 spin_lock_init(&mem->reclaim_param_lock); 3347 3348 if (parent) 3349 mem->swappiness = get_swappiness(parent); 3350 atomic_set(&mem->refcnt, 1); 3351 return &mem->css; 3352 free_out: 3353 __mem_cgroup_free(mem); 3354 root_mem_cgroup = NULL; 3355 return ERR_PTR(error); 3356 } 3357 3358 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss, 3359 struct cgroup *cont) 3360 { 3361 struct mem_cgroup *mem = mem_cgroup_from_cont(cont); 3362 3363 return mem_cgroup_force_empty(mem, false); 3364 } 3365 3366 static void mem_cgroup_destroy(struct cgroup_subsys *ss, 3367 struct cgroup *cont) 3368 { 3369 struct mem_cgroup *mem = mem_cgroup_from_cont(cont); 3370 3371 mem_cgroup_put(mem); 3372 } 3373 3374 static int mem_cgroup_populate(struct cgroup_subsys *ss, 3375 struct cgroup *cont) 3376 { 3377 int ret; 3378 3379 ret = cgroup_add_files(cont, ss, mem_cgroup_files, 3380 ARRAY_SIZE(mem_cgroup_files)); 3381 3382 if (!ret) 3383 ret = register_memsw_files(cont, ss); 3384 return ret; 3385 } 3386 3387 static void mem_cgroup_move_task(struct cgroup_subsys *ss, 3388 struct cgroup *cont, 3389 struct cgroup *old_cont, 3390 struct task_struct *p, 3391 bool threadgroup) 3392 { 3393 /* 3394 * FIXME: It's better to move charges of this process from old 3395 * memcg to new memcg. But it's just on TODO-List now. 3396 */ 3397 } 3398 3399 struct cgroup_subsys mem_cgroup_subsys = { 3400 .name = "memory", 3401 .subsys_id = mem_cgroup_subsys_id, 3402 .create = mem_cgroup_create, 3403 .pre_destroy = mem_cgroup_pre_destroy, 3404 .destroy = mem_cgroup_destroy, 3405 .populate = mem_cgroup_populate, 3406 .attach = mem_cgroup_move_task, 3407 .early_init = 0, 3408 .use_id = 1, 3409 }; 3410 3411 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP 3412 3413 static int __init disable_swap_account(char *s) 3414 { 3415 really_do_swap_account = 0; 3416 return 1; 3417 } 3418 __setup("noswapaccount", disable_swap_account); 3419 #endif 3420