1 /* memcontrol.c - Memory Controller 2 * 3 * Copyright IBM Corporation, 2007 4 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 5 * 6 * Copyright 2007 OpenVZ SWsoft Inc 7 * Author: Pavel Emelianov <xemul@openvz.org> 8 * 9 * Memory thresholds 10 * Copyright (C) 2009 Nokia Corporation 11 * Author: Kirill A. Shutemov 12 * 13 * Kernel Memory Controller 14 * Copyright (C) 2012 Parallels Inc. and Google Inc. 15 * Authors: Glauber Costa and Suleiman Souhlal 16 * 17 * Native page reclaim 18 * Charge lifetime sanitation 19 * Lockless page tracking & accounting 20 * Unified hierarchy configuration model 21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner 22 * 23 * This program is free software; you can redistribute it and/or modify 24 * it under the terms of the GNU General Public License as published by 25 * the Free Software Foundation; either version 2 of the License, or 26 * (at your option) any later version. 27 * 28 * This program is distributed in the hope that it will be useful, 29 * but WITHOUT ANY WARRANTY; without even the implied warranty of 30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 31 * GNU General Public License for more details. 32 */ 33 34 #include <linux/page_counter.h> 35 #include <linux/memcontrol.h> 36 #include <linux/cgroup.h> 37 #include <linux/mm.h> 38 #include <linux/shmem_fs.h> 39 #include <linux/hugetlb.h> 40 #include <linux/pagemap.h> 41 #include <linux/smp.h> 42 #include <linux/page-flags.h> 43 #include <linux/backing-dev.h> 44 #include <linux/bit_spinlock.h> 45 #include <linux/rcupdate.h> 46 #include <linux/limits.h> 47 #include <linux/export.h> 48 #include <linux/mutex.h> 49 #include <linux/rbtree.h> 50 #include <linux/slab.h> 51 #include <linux/swap.h> 52 #include <linux/swapops.h> 53 #include <linux/spinlock.h> 54 #include <linux/eventfd.h> 55 #include <linux/poll.h> 56 #include <linux/sort.h> 57 #include <linux/fs.h> 58 #include <linux/seq_file.h> 59 #include <linux/vmpressure.h> 60 #include <linux/mm_inline.h> 61 #include <linux/swap_cgroup.h> 62 #include <linux/cpu.h> 63 #include <linux/oom.h> 64 #include <linux/lockdep.h> 65 #include <linux/file.h> 66 #include <linux/tracehook.h> 67 #include "internal.h" 68 #include <net/sock.h> 69 #include <net/ip.h> 70 #include "slab.h" 71 72 #include <linux/uaccess.h> 73 74 #include <trace/events/vmscan.h> 75 76 struct cgroup_subsys memory_cgrp_subsys __read_mostly; 77 EXPORT_SYMBOL(memory_cgrp_subsys); 78 79 struct mem_cgroup *root_mem_cgroup __read_mostly; 80 81 #define MEM_CGROUP_RECLAIM_RETRIES 5 82 83 /* Socket memory accounting disabled? */ 84 static bool cgroup_memory_nosocket; 85 86 /* Kernel memory accounting disabled? */ 87 static bool cgroup_memory_nokmem; 88 89 /* Whether the swap controller is active */ 90 #ifdef CONFIG_MEMCG_SWAP 91 int do_swap_account __read_mostly; 92 #else 93 #define do_swap_account 0 94 #endif 95 96 /* Whether legacy memory+swap accounting is active */ 97 static bool do_memsw_account(void) 98 { 99 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account; 100 } 101 102 static const char * const mem_cgroup_stat_names[] = { 103 "cache", 104 "rss", 105 "rss_huge", 106 "mapped_file", 107 "dirty", 108 "writeback", 109 "swap", 110 }; 111 112 static const char * const mem_cgroup_events_names[] = { 113 "pgpgin", 114 "pgpgout", 115 "pgfault", 116 "pgmajfault", 117 }; 118 119 static const char * const mem_cgroup_lru_names[] = { 120 "inactive_anon", 121 "active_anon", 122 "inactive_file", 123 "active_file", 124 "unevictable", 125 }; 126 127 #define THRESHOLDS_EVENTS_TARGET 128 128 #define SOFTLIMIT_EVENTS_TARGET 1024 129 #define NUMAINFO_EVENTS_TARGET 1024 130 131 /* 132 * Cgroups above their limits are maintained in a RB-Tree, independent of 133 * their hierarchy representation 134 */ 135 136 struct mem_cgroup_tree_per_node { 137 struct rb_root rb_root; 138 spinlock_t lock; 139 }; 140 141 struct mem_cgroup_tree { 142 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 143 }; 144 145 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 146 147 /* for OOM */ 148 struct mem_cgroup_eventfd_list { 149 struct list_head list; 150 struct eventfd_ctx *eventfd; 151 }; 152 153 /* 154 * cgroup_event represents events which userspace want to receive. 155 */ 156 struct mem_cgroup_event { 157 /* 158 * memcg which the event belongs to. 159 */ 160 struct mem_cgroup *memcg; 161 /* 162 * eventfd to signal userspace about the event. 163 */ 164 struct eventfd_ctx *eventfd; 165 /* 166 * Each of these stored in a list by the cgroup. 167 */ 168 struct list_head list; 169 /* 170 * register_event() callback will be used to add new userspace 171 * waiter for changes related to this event. Use eventfd_signal() 172 * on eventfd to send notification to userspace. 173 */ 174 int (*register_event)(struct mem_cgroup *memcg, 175 struct eventfd_ctx *eventfd, const char *args); 176 /* 177 * unregister_event() callback will be called when userspace closes 178 * the eventfd or on cgroup removing. This callback must be set, 179 * if you want provide notification functionality. 180 */ 181 void (*unregister_event)(struct mem_cgroup *memcg, 182 struct eventfd_ctx *eventfd); 183 /* 184 * All fields below needed to unregister event when 185 * userspace closes eventfd. 186 */ 187 poll_table pt; 188 wait_queue_head_t *wqh; 189 wait_queue_t wait; 190 struct work_struct remove; 191 }; 192 193 static void mem_cgroup_threshold(struct mem_cgroup *memcg); 194 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); 195 196 /* Stuffs for move charges at task migration. */ 197 /* 198 * Types of charges to be moved. 199 */ 200 #define MOVE_ANON 0x1U 201 #define MOVE_FILE 0x2U 202 #define MOVE_MASK (MOVE_ANON | MOVE_FILE) 203 204 /* "mc" and its members are protected by cgroup_mutex */ 205 static struct move_charge_struct { 206 spinlock_t lock; /* for from, to */ 207 struct mm_struct *mm; 208 struct mem_cgroup *from; 209 struct mem_cgroup *to; 210 unsigned long flags; 211 unsigned long precharge; 212 unsigned long moved_charge; 213 unsigned long moved_swap; 214 struct task_struct *moving_task; /* a task moving charges */ 215 wait_queue_head_t waitq; /* a waitq for other context */ 216 } mc = { 217 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 218 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 219 }; 220 221 /* 222 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft 223 * limit reclaim to prevent infinite loops, if they ever occur. 224 */ 225 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 226 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 227 228 enum charge_type { 229 MEM_CGROUP_CHARGE_TYPE_CACHE = 0, 230 MEM_CGROUP_CHARGE_TYPE_ANON, 231 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */ 232 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */ 233 NR_CHARGE_TYPE, 234 }; 235 236 /* for encoding cft->private value on file */ 237 enum res_type { 238 _MEM, 239 _MEMSWAP, 240 _OOM_TYPE, 241 _KMEM, 242 _TCP, 243 }; 244 245 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) 246 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) 247 #define MEMFILE_ATTR(val) ((val) & 0xffff) 248 /* Used for OOM nofiier */ 249 #define OOM_CONTROL (0) 250 251 /* Some nice accessors for the vmpressure. */ 252 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 253 { 254 if (!memcg) 255 memcg = root_mem_cgroup; 256 return &memcg->vmpressure; 257 } 258 259 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr) 260 { 261 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css; 262 } 263 264 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 265 { 266 return (memcg == root_mem_cgroup); 267 } 268 269 #ifndef CONFIG_SLOB 270 /* 271 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches. 272 * The main reason for not using cgroup id for this: 273 * this works better in sparse environments, where we have a lot of memcgs, 274 * but only a few kmem-limited. Or also, if we have, for instance, 200 275 * memcgs, and none but the 200th is kmem-limited, we'd have to have a 276 * 200 entry array for that. 277 * 278 * The current size of the caches array is stored in memcg_nr_cache_ids. It 279 * will double each time we have to increase it. 280 */ 281 static DEFINE_IDA(memcg_cache_ida); 282 int memcg_nr_cache_ids; 283 284 /* Protects memcg_nr_cache_ids */ 285 static DECLARE_RWSEM(memcg_cache_ids_sem); 286 287 void memcg_get_cache_ids(void) 288 { 289 down_read(&memcg_cache_ids_sem); 290 } 291 292 void memcg_put_cache_ids(void) 293 { 294 up_read(&memcg_cache_ids_sem); 295 } 296 297 /* 298 * MIN_SIZE is different than 1, because we would like to avoid going through 299 * the alloc/free process all the time. In a small machine, 4 kmem-limited 300 * cgroups is a reasonable guess. In the future, it could be a parameter or 301 * tunable, but that is strictly not necessary. 302 * 303 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get 304 * this constant directly from cgroup, but it is understandable that this is 305 * better kept as an internal representation in cgroup.c. In any case, the 306 * cgrp_id space is not getting any smaller, and we don't have to necessarily 307 * increase ours as well if it increases. 308 */ 309 #define MEMCG_CACHES_MIN_SIZE 4 310 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX 311 312 /* 313 * A lot of the calls to the cache allocation functions are expected to be 314 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are 315 * conditional to this static branch, we'll have to allow modules that does 316 * kmem_cache_alloc and the such to see this symbol as well 317 */ 318 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key); 319 EXPORT_SYMBOL(memcg_kmem_enabled_key); 320 321 struct workqueue_struct *memcg_kmem_cache_wq; 322 323 #endif /* !CONFIG_SLOB */ 324 325 /** 326 * mem_cgroup_css_from_page - css of the memcg associated with a page 327 * @page: page of interest 328 * 329 * If memcg is bound to the default hierarchy, css of the memcg associated 330 * with @page is returned. The returned css remains associated with @page 331 * until it is released. 332 * 333 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup 334 * is returned. 335 */ 336 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page) 337 { 338 struct mem_cgroup *memcg; 339 340 memcg = page->mem_cgroup; 341 342 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 343 memcg = root_mem_cgroup; 344 345 return &memcg->css; 346 } 347 348 /** 349 * page_cgroup_ino - return inode number of the memcg a page is charged to 350 * @page: the page 351 * 352 * Look up the closest online ancestor of the memory cgroup @page is charged to 353 * and return its inode number or 0 if @page is not charged to any cgroup. It 354 * is safe to call this function without holding a reference to @page. 355 * 356 * Note, this function is inherently racy, because there is nothing to prevent 357 * the cgroup inode from getting torn down and potentially reallocated a moment 358 * after page_cgroup_ino() returns, so it only should be used by callers that 359 * do not care (such as procfs interfaces). 360 */ 361 ino_t page_cgroup_ino(struct page *page) 362 { 363 struct mem_cgroup *memcg; 364 unsigned long ino = 0; 365 366 rcu_read_lock(); 367 memcg = READ_ONCE(page->mem_cgroup); 368 while (memcg && !(memcg->css.flags & CSS_ONLINE)) 369 memcg = parent_mem_cgroup(memcg); 370 if (memcg) 371 ino = cgroup_ino(memcg->css.cgroup); 372 rcu_read_unlock(); 373 return ino; 374 } 375 376 static struct mem_cgroup_per_node * 377 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page) 378 { 379 int nid = page_to_nid(page); 380 381 return memcg->nodeinfo[nid]; 382 } 383 384 static struct mem_cgroup_tree_per_node * 385 soft_limit_tree_node(int nid) 386 { 387 return soft_limit_tree.rb_tree_per_node[nid]; 388 } 389 390 static struct mem_cgroup_tree_per_node * 391 soft_limit_tree_from_page(struct page *page) 392 { 393 int nid = page_to_nid(page); 394 395 return soft_limit_tree.rb_tree_per_node[nid]; 396 } 397 398 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz, 399 struct mem_cgroup_tree_per_node *mctz, 400 unsigned long new_usage_in_excess) 401 { 402 struct rb_node **p = &mctz->rb_root.rb_node; 403 struct rb_node *parent = NULL; 404 struct mem_cgroup_per_node *mz_node; 405 406 if (mz->on_tree) 407 return; 408 409 mz->usage_in_excess = new_usage_in_excess; 410 if (!mz->usage_in_excess) 411 return; 412 while (*p) { 413 parent = *p; 414 mz_node = rb_entry(parent, struct mem_cgroup_per_node, 415 tree_node); 416 if (mz->usage_in_excess < mz_node->usage_in_excess) 417 p = &(*p)->rb_left; 418 /* 419 * We can't avoid mem cgroups that are over their soft 420 * limit by the same amount 421 */ 422 else if (mz->usage_in_excess >= mz_node->usage_in_excess) 423 p = &(*p)->rb_right; 424 } 425 rb_link_node(&mz->tree_node, parent, p); 426 rb_insert_color(&mz->tree_node, &mctz->rb_root); 427 mz->on_tree = true; 428 } 429 430 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 431 struct mem_cgroup_tree_per_node *mctz) 432 { 433 if (!mz->on_tree) 434 return; 435 rb_erase(&mz->tree_node, &mctz->rb_root); 436 mz->on_tree = false; 437 } 438 439 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 440 struct mem_cgroup_tree_per_node *mctz) 441 { 442 unsigned long flags; 443 444 spin_lock_irqsave(&mctz->lock, flags); 445 __mem_cgroup_remove_exceeded(mz, mctz); 446 spin_unlock_irqrestore(&mctz->lock, flags); 447 } 448 449 static unsigned long soft_limit_excess(struct mem_cgroup *memcg) 450 { 451 unsigned long nr_pages = page_counter_read(&memcg->memory); 452 unsigned long soft_limit = READ_ONCE(memcg->soft_limit); 453 unsigned long excess = 0; 454 455 if (nr_pages > soft_limit) 456 excess = nr_pages - soft_limit; 457 458 return excess; 459 } 460 461 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page) 462 { 463 unsigned long excess; 464 struct mem_cgroup_per_node *mz; 465 struct mem_cgroup_tree_per_node *mctz; 466 467 mctz = soft_limit_tree_from_page(page); 468 /* 469 * Necessary to update all ancestors when hierarchy is used. 470 * because their event counter is not touched. 471 */ 472 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 473 mz = mem_cgroup_page_nodeinfo(memcg, page); 474 excess = soft_limit_excess(memcg); 475 /* 476 * We have to update the tree if mz is on RB-tree or 477 * mem is over its softlimit. 478 */ 479 if (excess || mz->on_tree) { 480 unsigned long flags; 481 482 spin_lock_irqsave(&mctz->lock, flags); 483 /* if on-tree, remove it */ 484 if (mz->on_tree) 485 __mem_cgroup_remove_exceeded(mz, mctz); 486 /* 487 * Insert again. mz->usage_in_excess will be updated. 488 * If excess is 0, no tree ops. 489 */ 490 __mem_cgroup_insert_exceeded(mz, mctz, excess); 491 spin_unlock_irqrestore(&mctz->lock, flags); 492 } 493 } 494 } 495 496 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) 497 { 498 struct mem_cgroup_tree_per_node *mctz; 499 struct mem_cgroup_per_node *mz; 500 int nid; 501 502 for_each_node(nid) { 503 mz = mem_cgroup_nodeinfo(memcg, nid); 504 mctz = soft_limit_tree_node(nid); 505 mem_cgroup_remove_exceeded(mz, mctz); 506 } 507 } 508 509 static struct mem_cgroup_per_node * 510 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 511 { 512 struct rb_node *rightmost = NULL; 513 struct mem_cgroup_per_node *mz; 514 515 retry: 516 mz = NULL; 517 rightmost = rb_last(&mctz->rb_root); 518 if (!rightmost) 519 goto done; /* Nothing to reclaim from */ 520 521 mz = rb_entry(rightmost, struct mem_cgroup_per_node, tree_node); 522 /* 523 * Remove the node now but someone else can add it back, 524 * we will to add it back at the end of reclaim to its correct 525 * position in the tree. 526 */ 527 __mem_cgroup_remove_exceeded(mz, mctz); 528 if (!soft_limit_excess(mz->memcg) || 529 !css_tryget_online(&mz->memcg->css)) 530 goto retry; 531 done: 532 return mz; 533 } 534 535 static struct mem_cgroup_per_node * 536 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 537 { 538 struct mem_cgroup_per_node *mz; 539 540 spin_lock_irq(&mctz->lock); 541 mz = __mem_cgroup_largest_soft_limit_node(mctz); 542 spin_unlock_irq(&mctz->lock); 543 return mz; 544 } 545 546 /* 547 * Return page count for single (non recursive) @memcg. 548 * 549 * Implementation Note: reading percpu statistics for memcg. 550 * 551 * Both of vmstat[] and percpu_counter has threshold and do periodic 552 * synchronization to implement "quick" read. There are trade-off between 553 * reading cost and precision of value. Then, we may have a chance to implement 554 * a periodic synchronization of counter in memcg's counter. 555 * 556 * But this _read() function is used for user interface now. The user accounts 557 * memory usage by memory cgroup and he _always_ requires exact value because 558 * he accounts memory. Even if we provide quick-and-fuzzy read, we always 559 * have to visit all online cpus and make sum. So, for now, unnecessary 560 * synchronization is not implemented. (just implemented for cpu hotplug) 561 * 562 * If there are kernel internal actions which can make use of some not-exact 563 * value, and reading all cpu value can be performance bottleneck in some 564 * common workload, threshold and synchronization as vmstat[] should be 565 * implemented. 566 */ 567 static unsigned long 568 mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx) 569 { 570 long val = 0; 571 int cpu; 572 573 /* Per-cpu values can be negative, use a signed accumulator */ 574 for_each_possible_cpu(cpu) 575 val += per_cpu(memcg->stat->count[idx], cpu); 576 /* 577 * Summing races with updates, so val may be negative. Avoid exposing 578 * transient negative values. 579 */ 580 if (val < 0) 581 val = 0; 582 return val; 583 } 584 585 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg, 586 enum mem_cgroup_events_index idx) 587 { 588 unsigned long val = 0; 589 int cpu; 590 591 for_each_possible_cpu(cpu) 592 val += per_cpu(memcg->stat->events[idx], cpu); 593 return val; 594 } 595 596 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, 597 struct page *page, 598 bool compound, int nr_pages) 599 { 600 /* 601 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is 602 * counted as CACHE even if it's on ANON LRU. 603 */ 604 if (PageAnon(page)) 605 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS], 606 nr_pages); 607 else 608 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE], 609 nr_pages); 610 611 if (compound) { 612 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 613 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], 614 nr_pages); 615 } 616 617 /* pagein of a big page is an event. So, ignore page size */ 618 if (nr_pages > 0) 619 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]); 620 else { 621 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]); 622 nr_pages = -nr_pages; /* for event */ 623 } 624 625 __this_cpu_add(memcg->stat->nr_page_events, nr_pages); 626 } 627 628 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 629 int nid, unsigned int lru_mask) 630 { 631 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg); 632 unsigned long nr = 0; 633 enum lru_list lru; 634 635 VM_BUG_ON((unsigned)nid >= nr_node_ids); 636 637 for_each_lru(lru) { 638 if (!(BIT(lru) & lru_mask)) 639 continue; 640 nr += mem_cgroup_get_lru_size(lruvec, lru); 641 } 642 return nr; 643 } 644 645 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 646 unsigned int lru_mask) 647 { 648 unsigned long nr = 0; 649 int nid; 650 651 for_each_node_state(nid, N_MEMORY) 652 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask); 653 return nr; 654 } 655 656 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, 657 enum mem_cgroup_events_target target) 658 { 659 unsigned long val, next; 660 661 val = __this_cpu_read(memcg->stat->nr_page_events); 662 next = __this_cpu_read(memcg->stat->targets[target]); 663 /* from time_after() in jiffies.h */ 664 if ((long)next - (long)val < 0) { 665 switch (target) { 666 case MEM_CGROUP_TARGET_THRESH: 667 next = val + THRESHOLDS_EVENTS_TARGET; 668 break; 669 case MEM_CGROUP_TARGET_SOFTLIMIT: 670 next = val + SOFTLIMIT_EVENTS_TARGET; 671 break; 672 case MEM_CGROUP_TARGET_NUMAINFO: 673 next = val + NUMAINFO_EVENTS_TARGET; 674 break; 675 default: 676 break; 677 } 678 __this_cpu_write(memcg->stat->targets[target], next); 679 return true; 680 } 681 return false; 682 } 683 684 /* 685 * Check events in order. 686 * 687 */ 688 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) 689 { 690 /* threshold event is triggered in finer grain than soft limit */ 691 if (unlikely(mem_cgroup_event_ratelimit(memcg, 692 MEM_CGROUP_TARGET_THRESH))) { 693 bool do_softlimit; 694 bool do_numainfo __maybe_unused; 695 696 do_softlimit = mem_cgroup_event_ratelimit(memcg, 697 MEM_CGROUP_TARGET_SOFTLIMIT); 698 #if MAX_NUMNODES > 1 699 do_numainfo = mem_cgroup_event_ratelimit(memcg, 700 MEM_CGROUP_TARGET_NUMAINFO); 701 #endif 702 mem_cgroup_threshold(memcg); 703 if (unlikely(do_softlimit)) 704 mem_cgroup_update_tree(memcg, page); 705 #if MAX_NUMNODES > 1 706 if (unlikely(do_numainfo)) 707 atomic_inc(&memcg->numainfo_events); 708 #endif 709 } 710 } 711 712 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 713 { 714 /* 715 * mm_update_next_owner() may clear mm->owner to NULL 716 * if it races with swapoff, page migration, etc. 717 * So this can be called with p == NULL. 718 */ 719 if (unlikely(!p)) 720 return NULL; 721 722 return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); 723 } 724 EXPORT_SYMBOL(mem_cgroup_from_task); 725 726 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 727 { 728 struct mem_cgroup *memcg = NULL; 729 730 rcu_read_lock(); 731 do { 732 /* 733 * Page cache insertions can happen withou an 734 * actual mm context, e.g. during disk probing 735 * on boot, loopback IO, acct() writes etc. 736 */ 737 if (unlikely(!mm)) 738 memcg = root_mem_cgroup; 739 else { 740 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 741 if (unlikely(!memcg)) 742 memcg = root_mem_cgroup; 743 } 744 } while (!css_tryget_online(&memcg->css)); 745 rcu_read_unlock(); 746 return memcg; 747 } 748 749 /** 750 * mem_cgroup_iter - iterate over memory cgroup hierarchy 751 * @root: hierarchy root 752 * @prev: previously returned memcg, NULL on first invocation 753 * @reclaim: cookie for shared reclaim walks, NULL for full walks 754 * 755 * Returns references to children of the hierarchy below @root, or 756 * @root itself, or %NULL after a full round-trip. 757 * 758 * Caller must pass the return value in @prev on subsequent 759 * invocations for reference counting, or use mem_cgroup_iter_break() 760 * to cancel a hierarchy walk before the round-trip is complete. 761 * 762 * Reclaimers can specify a zone and a priority level in @reclaim to 763 * divide up the memcgs in the hierarchy among all concurrent 764 * reclaimers operating on the same zone and priority. 765 */ 766 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 767 struct mem_cgroup *prev, 768 struct mem_cgroup_reclaim_cookie *reclaim) 769 { 770 struct mem_cgroup_reclaim_iter *uninitialized_var(iter); 771 struct cgroup_subsys_state *css = NULL; 772 struct mem_cgroup *memcg = NULL; 773 struct mem_cgroup *pos = NULL; 774 775 if (mem_cgroup_disabled()) 776 return NULL; 777 778 if (!root) 779 root = root_mem_cgroup; 780 781 if (prev && !reclaim) 782 pos = prev; 783 784 if (!root->use_hierarchy && root != root_mem_cgroup) { 785 if (prev) 786 goto out; 787 return root; 788 } 789 790 rcu_read_lock(); 791 792 if (reclaim) { 793 struct mem_cgroup_per_node *mz; 794 795 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id); 796 iter = &mz->iter[reclaim->priority]; 797 798 if (prev && reclaim->generation != iter->generation) 799 goto out_unlock; 800 801 while (1) { 802 pos = READ_ONCE(iter->position); 803 if (!pos || css_tryget(&pos->css)) 804 break; 805 /* 806 * css reference reached zero, so iter->position will 807 * be cleared by ->css_released. However, we should not 808 * rely on this happening soon, because ->css_released 809 * is called from a work queue, and by busy-waiting we 810 * might block it. So we clear iter->position right 811 * away. 812 */ 813 (void)cmpxchg(&iter->position, pos, NULL); 814 } 815 } 816 817 if (pos) 818 css = &pos->css; 819 820 for (;;) { 821 css = css_next_descendant_pre(css, &root->css); 822 if (!css) { 823 /* 824 * Reclaimers share the hierarchy walk, and a 825 * new one might jump in right at the end of 826 * the hierarchy - make sure they see at least 827 * one group and restart from the beginning. 828 */ 829 if (!prev) 830 continue; 831 break; 832 } 833 834 /* 835 * Verify the css and acquire a reference. The root 836 * is provided by the caller, so we know it's alive 837 * and kicking, and don't take an extra reference. 838 */ 839 memcg = mem_cgroup_from_css(css); 840 841 if (css == &root->css) 842 break; 843 844 if (css_tryget(css)) 845 break; 846 847 memcg = NULL; 848 } 849 850 if (reclaim) { 851 /* 852 * The position could have already been updated by a competing 853 * thread, so check that the value hasn't changed since we read 854 * it to avoid reclaiming from the same cgroup twice. 855 */ 856 (void)cmpxchg(&iter->position, pos, memcg); 857 858 if (pos) 859 css_put(&pos->css); 860 861 if (!memcg) 862 iter->generation++; 863 else if (!prev) 864 reclaim->generation = iter->generation; 865 } 866 867 out_unlock: 868 rcu_read_unlock(); 869 out: 870 if (prev && prev != root) 871 css_put(&prev->css); 872 873 return memcg; 874 } 875 876 /** 877 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 878 * @root: hierarchy root 879 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 880 */ 881 void mem_cgroup_iter_break(struct mem_cgroup *root, 882 struct mem_cgroup *prev) 883 { 884 if (!root) 885 root = root_mem_cgroup; 886 if (prev && prev != root) 887 css_put(&prev->css); 888 } 889 890 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) 891 { 892 struct mem_cgroup *memcg = dead_memcg; 893 struct mem_cgroup_reclaim_iter *iter; 894 struct mem_cgroup_per_node *mz; 895 int nid; 896 int i; 897 898 while ((memcg = parent_mem_cgroup(memcg))) { 899 for_each_node(nid) { 900 mz = mem_cgroup_nodeinfo(memcg, nid); 901 for (i = 0; i <= DEF_PRIORITY; i++) { 902 iter = &mz->iter[i]; 903 cmpxchg(&iter->position, 904 dead_memcg, NULL); 905 } 906 } 907 } 908 } 909 910 /* 911 * Iteration constructs for visiting all cgroups (under a tree). If 912 * loops are exited prematurely (break), mem_cgroup_iter_break() must 913 * be used for reference counting. 914 */ 915 #define for_each_mem_cgroup_tree(iter, root) \ 916 for (iter = mem_cgroup_iter(root, NULL, NULL); \ 917 iter != NULL; \ 918 iter = mem_cgroup_iter(root, iter, NULL)) 919 920 #define for_each_mem_cgroup(iter) \ 921 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ 922 iter != NULL; \ 923 iter = mem_cgroup_iter(NULL, iter, NULL)) 924 925 /** 926 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy 927 * @memcg: hierarchy root 928 * @fn: function to call for each task 929 * @arg: argument passed to @fn 930 * 931 * This function iterates over tasks attached to @memcg or to any of its 932 * descendants and calls @fn for each task. If @fn returns a non-zero 933 * value, the function breaks the iteration loop and returns the value. 934 * Otherwise, it will iterate over all tasks and return 0. 935 * 936 * This function must not be called for the root memory cgroup. 937 */ 938 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 939 int (*fn)(struct task_struct *, void *), void *arg) 940 { 941 struct mem_cgroup *iter; 942 int ret = 0; 943 944 BUG_ON(memcg == root_mem_cgroup); 945 946 for_each_mem_cgroup_tree(iter, memcg) { 947 struct css_task_iter it; 948 struct task_struct *task; 949 950 css_task_iter_start(&iter->css, &it); 951 while (!ret && (task = css_task_iter_next(&it))) 952 ret = fn(task, arg); 953 css_task_iter_end(&it); 954 if (ret) { 955 mem_cgroup_iter_break(memcg, iter); 956 break; 957 } 958 } 959 return ret; 960 } 961 962 /** 963 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page 964 * @page: the page 965 * @zone: zone of the page 966 * 967 * This function is only safe when following the LRU page isolation 968 * and putback protocol: the LRU lock must be held, and the page must 969 * either be PageLRU() or the caller must have isolated/allocated it. 970 */ 971 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat) 972 { 973 struct mem_cgroup_per_node *mz; 974 struct mem_cgroup *memcg; 975 struct lruvec *lruvec; 976 977 if (mem_cgroup_disabled()) { 978 lruvec = &pgdat->lruvec; 979 goto out; 980 } 981 982 memcg = page->mem_cgroup; 983 /* 984 * Swapcache readahead pages are added to the LRU - and 985 * possibly migrated - before they are charged. 986 */ 987 if (!memcg) 988 memcg = root_mem_cgroup; 989 990 mz = mem_cgroup_page_nodeinfo(memcg, page); 991 lruvec = &mz->lruvec; 992 out: 993 /* 994 * Since a node can be onlined after the mem_cgroup was created, 995 * we have to be prepared to initialize lruvec->zone here; 996 * and if offlined then reonlined, we need to reinitialize it. 997 */ 998 if (unlikely(lruvec->pgdat != pgdat)) 999 lruvec->pgdat = pgdat; 1000 return lruvec; 1001 } 1002 1003 /** 1004 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1005 * @lruvec: mem_cgroup per zone lru vector 1006 * @lru: index of lru list the page is sitting on 1007 * @zid: zone id of the accounted pages 1008 * @nr_pages: positive when adding or negative when removing 1009 * 1010 * This function must be called under lru_lock, just before a page is added 1011 * to or just after a page is removed from an lru list (that ordering being 1012 * so as to allow it to check that lru_size 0 is consistent with list_empty). 1013 */ 1014 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1015 int zid, int nr_pages) 1016 { 1017 struct mem_cgroup_per_node *mz; 1018 unsigned long *lru_size; 1019 long size; 1020 1021 if (mem_cgroup_disabled()) 1022 return; 1023 1024 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 1025 lru_size = &mz->lru_zone_size[zid][lru]; 1026 1027 if (nr_pages < 0) 1028 *lru_size += nr_pages; 1029 1030 size = *lru_size; 1031 if (WARN_ONCE(size < 0, 1032 "%s(%p, %d, %d): lru_size %ld\n", 1033 __func__, lruvec, lru, nr_pages, size)) { 1034 VM_BUG_ON(1); 1035 *lru_size = 0; 1036 } 1037 1038 if (nr_pages > 0) 1039 *lru_size += nr_pages; 1040 } 1041 1042 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg) 1043 { 1044 struct mem_cgroup *task_memcg; 1045 struct task_struct *p; 1046 bool ret; 1047 1048 p = find_lock_task_mm(task); 1049 if (p) { 1050 task_memcg = get_mem_cgroup_from_mm(p->mm); 1051 task_unlock(p); 1052 } else { 1053 /* 1054 * All threads may have already detached their mm's, but the oom 1055 * killer still needs to detect if they have already been oom 1056 * killed to prevent needlessly killing additional tasks. 1057 */ 1058 rcu_read_lock(); 1059 task_memcg = mem_cgroup_from_task(task); 1060 css_get(&task_memcg->css); 1061 rcu_read_unlock(); 1062 } 1063 ret = mem_cgroup_is_descendant(task_memcg, memcg); 1064 css_put(&task_memcg->css); 1065 return ret; 1066 } 1067 1068 /** 1069 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1070 * @memcg: the memory cgroup 1071 * 1072 * Returns the maximum amount of memory @mem can be charged with, in 1073 * pages. 1074 */ 1075 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1076 { 1077 unsigned long margin = 0; 1078 unsigned long count; 1079 unsigned long limit; 1080 1081 count = page_counter_read(&memcg->memory); 1082 limit = READ_ONCE(memcg->memory.limit); 1083 if (count < limit) 1084 margin = limit - count; 1085 1086 if (do_memsw_account()) { 1087 count = page_counter_read(&memcg->memsw); 1088 limit = READ_ONCE(memcg->memsw.limit); 1089 if (count <= limit) 1090 margin = min(margin, limit - count); 1091 else 1092 margin = 0; 1093 } 1094 1095 return margin; 1096 } 1097 1098 /* 1099 * A routine for checking "mem" is under move_account() or not. 1100 * 1101 * Checking a cgroup is mc.from or mc.to or under hierarchy of 1102 * moving cgroups. This is for waiting at high-memory pressure 1103 * caused by "move". 1104 */ 1105 static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 1106 { 1107 struct mem_cgroup *from; 1108 struct mem_cgroup *to; 1109 bool ret = false; 1110 /* 1111 * Unlike task_move routines, we access mc.to, mc.from not under 1112 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1113 */ 1114 spin_lock(&mc.lock); 1115 from = mc.from; 1116 to = mc.to; 1117 if (!from) 1118 goto unlock; 1119 1120 ret = mem_cgroup_is_descendant(from, memcg) || 1121 mem_cgroup_is_descendant(to, memcg); 1122 unlock: 1123 spin_unlock(&mc.lock); 1124 return ret; 1125 } 1126 1127 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) 1128 { 1129 if (mc.moving_task && current != mc.moving_task) { 1130 if (mem_cgroup_under_move(memcg)) { 1131 DEFINE_WAIT(wait); 1132 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1133 /* moving charge context might have finished. */ 1134 if (mc.moving_task) 1135 schedule(); 1136 finish_wait(&mc.waitq, &wait); 1137 return true; 1138 } 1139 } 1140 return false; 1141 } 1142 1143 #define K(x) ((x) << (PAGE_SHIFT-10)) 1144 /** 1145 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller. 1146 * @memcg: The memory cgroup that went over limit 1147 * @p: Task that is going to be killed 1148 * 1149 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1150 * enabled 1151 */ 1152 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) 1153 { 1154 struct mem_cgroup *iter; 1155 unsigned int i; 1156 1157 rcu_read_lock(); 1158 1159 if (p) { 1160 pr_info("Task in "); 1161 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); 1162 pr_cont(" killed as a result of limit of "); 1163 } else { 1164 pr_info("Memory limit reached of cgroup "); 1165 } 1166 1167 pr_cont_cgroup_path(memcg->css.cgroup); 1168 pr_cont("\n"); 1169 1170 rcu_read_unlock(); 1171 1172 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", 1173 K((u64)page_counter_read(&memcg->memory)), 1174 K((u64)memcg->memory.limit), memcg->memory.failcnt); 1175 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", 1176 K((u64)page_counter_read(&memcg->memsw)), 1177 K((u64)memcg->memsw.limit), memcg->memsw.failcnt); 1178 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", 1179 K((u64)page_counter_read(&memcg->kmem)), 1180 K((u64)memcg->kmem.limit), memcg->kmem.failcnt); 1181 1182 for_each_mem_cgroup_tree(iter, memcg) { 1183 pr_info("Memory cgroup stats for "); 1184 pr_cont_cgroup_path(iter->css.cgroup); 1185 pr_cont(":"); 1186 1187 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 1188 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) 1189 continue; 1190 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i], 1191 K(mem_cgroup_read_stat(iter, i))); 1192 } 1193 1194 for (i = 0; i < NR_LRU_LISTS; i++) 1195 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i], 1196 K(mem_cgroup_nr_lru_pages(iter, BIT(i)))); 1197 1198 pr_cont("\n"); 1199 } 1200 } 1201 1202 /* 1203 * This function returns the number of memcg under hierarchy tree. Returns 1204 * 1(self count) if no children. 1205 */ 1206 static int mem_cgroup_count_children(struct mem_cgroup *memcg) 1207 { 1208 int num = 0; 1209 struct mem_cgroup *iter; 1210 1211 for_each_mem_cgroup_tree(iter, memcg) 1212 num++; 1213 return num; 1214 } 1215 1216 /* 1217 * Return the memory (and swap, if configured) limit for a memcg. 1218 */ 1219 unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg) 1220 { 1221 unsigned long limit; 1222 1223 limit = memcg->memory.limit; 1224 if (mem_cgroup_swappiness(memcg)) { 1225 unsigned long memsw_limit; 1226 unsigned long swap_limit; 1227 1228 memsw_limit = memcg->memsw.limit; 1229 swap_limit = memcg->swap.limit; 1230 swap_limit = min(swap_limit, (unsigned long)total_swap_pages); 1231 limit = min(limit + swap_limit, memsw_limit); 1232 } 1233 return limit; 1234 } 1235 1236 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1237 int order) 1238 { 1239 struct oom_control oc = { 1240 .zonelist = NULL, 1241 .nodemask = NULL, 1242 .memcg = memcg, 1243 .gfp_mask = gfp_mask, 1244 .order = order, 1245 }; 1246 bool ret; 1247 1248 mutex_lock(&oom_lock); 1249 ret = out_of_memory(&oc); 1250 mutex_unlock(&oom_lock); 1251 return ret; 1252 } 1253 1254 #if MAX_NUMNODES > 1 1255 1256 /** 1257 * test_mem_cgroup_node_reclaimable 1258 * @memcg: the target memcg 1259 * @nid: the node ID to be checked. 1260 * @noswap : specify true here if the user wants flle only information. 1261 * 1262 * This function returns whether the specified memcg contains any 1263 * reclaimable pages on a node. Returns true if there are any reclaimable 1264 * pages in the node. 1265 */ 1266 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg, 1267 int nid, bool noswap) 1268 { 1269 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE)) 1270 return true; 1271 if (noswap || !total_swap_pages) 1272 return false; 1273 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON)) 1274 return true; 1275 return false; 1276 1277 } 1278 1279 /* 1280 * Always updating the nodemask is not very good - even if we have an empty 1281 * list or the wrong list here, we can start from some node and traverse all 1282 * nodes based on the zonelist. So update the list loosely once per 10 secs. 1283 * 1284 */ 1285 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg) 1286 { 1287 int nid; 1288 /* 1289 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET 1290 * pagein/pageout changes since the last update. 1291 */ 1292 if (!atomic_read(&memcg->numainfo_events)) 1293 return; 1294 if (atomic_inc_return(&memcg->numainfo_updating) > 1) 1295 return; 1296 1297 /* make a nodemask where this memcg uses memory from */ 1298 memcg->scan_nodes = node_states[N_MEMORY]; 1299 1300 for_each_node_mask(nid, node_states[N_MEMORY]) { 1301 1302 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false)) 1303 node_clear(nid, memcg->scan_nodes); 1304 } 1305 1306 atomic_set(&memcg->numainfo_events, 0); 1307 atomic_set(&memcg->numainfo_updating, 0); 1308 } 1309 1310 /* 1311 * Selecting a node where we start reclaim from. Because what we need is just 1312 * reducing usage counter, start from anywhere is O,K. Considering 1313 * memory reclaim from current node, there are pros. and cons. 1314 * 1315 * Freeing memory from current node means freeing memory from a node which 1316 * we'll use or we've used. So, it may make LRU bad. And if several threads 1317 * hit limits, it will see a contention on a node. But freeing from remote 1318 * node means more costs for memory reclaim because of memory latency. 1319 * 1320 * Now, we use round-robin. Better algorithm is welcomed. 1321 */ 1322 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1323 { 1324 int node; 1325 1326 mem_cgroup_may_update_nodemask(memcg); 1327 node = memcg->last_scanned_node; 1328 1329 node = next_node_in(node, memcg->scan_nodes); 1330 /* 1331 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages 1332 * last time it really checked all the LRUs due to rate limiting. 1333 * Fallback to the current node in that case for simplicity. 1334 */ 1335 if (unlikely(node == MAX_NUMNODES)) 1336 node = numa_node_id(); 1337 1338 memcg->last_scanned_node = node; 1339 return node; 1340 } 1341 #else 1342 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1343 { 1344 return 0; 1345 } 1346 #endif 1347 1348 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, 1349 pg_data_t *pgdat, 1350 gfp_t gfp_mask, 1351 unsigned long *total_scanned) 1352 { 1353 struct mem_cgroup *victim = NULL; 1354 int total = 0; 1355 int loop = 0; 1356 unsigned long excess; 1357 unsigned long nr_scanned; 1358 struct mem_cgroup_reclaim_cookie reclaim = { 1359 .pgdat = pgdat, 1360 .priority = 0, 1361 }; 1362 1363 excess = soft_limit_excess(root_memcg); 1364 1365 while (1) { 1366 victim = mem_cgroup_iter(root_memcg, victim, &reclaim); 1367 if (!victim) { 1368 loop++; 1369 if (loop >= 2) { 1370 /* 1371 * If we have not been able to reclaim 1372 * anything, it might because there are 1373 * no reclaimable pages under this hierarchy 1374 */ 1375 if (!total) 1376 break; 1377 /* 1378 * We want to do more targeted reclaim. 1379 * excess >> 2 is not to excessive so as to 1380 * reclaim too much, nor too less that we keep 1381 * coming back to reclaim from this cgroup 1382 */ 1383 if (total >= (excess >> 2) || 1384 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) 1385 break; 1386 } 1387 continue; 1388 } 1389 total += mem_cgroup_shrink_node(victim, gfp_mask, false, 1390 pgdat, &nr_scanned); 1391 *total_scanned += nr_scanned; 1392 if (!soft_limit_excess(root_memcg)) 1393 break; 1394 } 1395 mem_cgroup_iter_break(root_memcg, victim); 1396 return total; 1397 } 1398 1399 #ifdef CONFIG_LOCKDEP 1400 static struct lockdep_map memcg_oom_lock_dep_map = { 1401 .name = "memcg_oom_lock", 1402 }; 1403 #endif 1404 1405 static DEFINE_SPINLOCK(memcg_oom_lock); 1406 1407 /* 1408 * Check OOM-Killer is already running under our hierarchy. 1409 * If someone is running, return false. 1410 */ 1411 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) 1412 { 1413 struct mem_cgroup *iter, *failed = NULL; 1414 1415 spin_lock(&memcg_oom_lock); 1416 1417 for_each_mem_cgroup_tree(iter, memcg) { 1418 if (iter->oom_lock) { 1419 /* 1420 * this subtree of our hierarchy is already locked 1421 * so we cannot give a lock. 1422 */ 1423 failed = iter; 1424 mem_cgroup_iter_break(memcg, iter); 1425 break; 1426 } else 1427 iter->oom_lock = true; 1428 } 1429 1430 if (failed) { 1431 /* 1432 * OK, we failed to lock the whole subtree so we have 1433 * to clean up what we set up to the failing subtree 1434 */ 1435 for_each_mem_cgroup_tree(iter, memcg) { 1436 if (iter == failed) { 1437 mem_cgroup_iter_break(memcg, iter); 1438 break; 1439 } 1440 iter->oom_lock = false; 1441 } 1442 } else 1443 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); 1444 1445 spin_unlock(&memcg_oom_lock); 1446 1447 return !failed; 1448 } 1449 1450 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 1451 { 1452 struct mem_cgroup *iter; 1453 1454 spin_lock(&memcg_oom_lock); 1455 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_); 1456 for_each_mem_cgroup_tree(iter, memcg) 1457 iter->oom_lock = false; 1458 spin_unlock(&memcg_oom_lock); 1459 } 1460 1461 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 1462 { 1463 struct mem_cgroup *iter; 1464 1465 spin_lock(&memcg_oom_lock); 1466 for_each_mem_cgroup_tree(iter, memcg) 1467 iter->under_oom++; 1468 spin_unlock(&memcg_oom_lock); 1469 } 1470 1471 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 1472 { 1473 struct mem_cgroup *iter; 1474 1475 /* 1476 * When a new child is created while the hierarchy is under oom, 1477 * mem_cgroup_oom_lock() may not be called. Watch for underflow. 1478 */ 1479 spin_lock(&memcg_oom_lock); 1480 for_each_mem_cgroup_tree(iter, memcg) 1481 if (iter->under_oom > 0) 1482 iter->under_oom--; 1483 spin_unlock(&memcg_oom_lock); 1484 } 1485 1486 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 1487 1488 struct oom_wait_info { 1489 struct mem_cgroup *memcg; 1490 wait_queue_t wait; 1491 }; 1492 1493 static int memcg_oom_wake_function(wait_queue_t *wait, 1494 unsigned mode, int sync, void *arg) 1495 { 1496 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; 1497 struct mem_cgroup *oom_wait_memcg; 1498 struct oom_wait_info *oom_wait_info; 1499 1500 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 1501 oom_wait_memcg = oom_wait_info->memcg; 1502 1503 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) && 1504 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg)) 1505 return 0; 1506 return autoremove_wake_function(wait, mode, sync, arg); 1507 } 1508 1509 static void memcg_oom_recover(struct mem_cgroup *memcg) 1510 { 1511 /* 1512 * For the following lockless ->under_oom test, the only required 1513 * guarantee is that it must see the state asserted by an OOM when 1514 * this function is called as a result of userland actions 1515 * triggered by the notification of the OOM. This is trivially 1516 * achieved by invoking mem_cgroup_mark_under_oom() before 1517 * triggering notification. 1518 */ 1519 if (memcg && memcg->under_oom) 1520 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 1521 } 1522 1523 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 1524 { 1525 if (!current->memcg_may_oom) 1526 return; 1527 /* 1528 * We are in the middle of the charge context here, so we 1529 * don't want to block when potentially sitting on a callstack 1530 * that holds all kinds of filesystem and mm locks. 1531 * 1532 * Also, the caller may handle a failed allocation gracefully 1533 * (like optional page cache readahead) and so an OOM killer 1534 * invocation might not even be necessary. 1535 * 1536 * That's why we don't do anything here except remember the 1537 * OOM context and then deal with it at the end of the page 1538 * fault when the stack is unwound, the locks are released, 1539 * and when we know whether the fault was overall successful. 1540 */ 1541 css_get(&memcg->css); 1542 current->memcg_in_oom = memcg; 1543 current->memcg_oom_gfp_mask = mask; 1544 current->memcg_oom_order = order; 1545 } 1546 1547 /** 1548 * mem_cgroup_oom_synchronize - complete memcg OOM handling 1549 * @handle: actually kill/wait or just clean up the OOM state 1550 * 1551 * This has to be called at the end of a page fault if the memcg OOM 1552 * handler was enabled. 1553 * 1554 * Memcg supports userspace OOM handling where failed allocations must 1555 * sleep on a waitqueue until the userspace task resolves the 1556 * situation. Sleeping directly in the charge context with all kinds 1557 * of locks held is not a good idea, instead we remember an OOM state 1558 * in the task and mem_cgroup_oom_synchronize() has to be called at 1559 * the end of the page fault to complete the OOM handling. 1560 * 1561 * Returns %true if an ongoing memcg OOM situation was detected and 1562 * completed, %false otherwise. 1563 */ 1564 bool mem_cgroup_oom_synchronize(bool handle) 1565 { 1566 struct mem_cgroup *memcg = current->memcg_in_oom; 1567 struct oom_wait_info owait; 1568 bool locked; 1569 1570 /* OOM is global, do not handle */ 1571 if (!memcg) 1572 return false; 1573 1574 if (!handle) 1575 goto cleanup; 1576 1577 owait.memcg = memcg; 1578 owait.wait.flags = 0; 1579 owait.wait.func = memcg_oom_wake_function; 1580 owait.wait.private = current; 1581 INIT_LIST_HEAD(&owait.wait.task_list); 1582 1583 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 1584 mem_cgroup_mark_under_oom(memcg); 1585 1586 locked = mem_cgroup_oom_trylock(memcg); 1587 1588 if (locked) 1589 mem_cgroup_oom_notify(memcg); 1590 1591 if (locked && !memcg->oom_kill_disable) { 1592 mem_cgroup_unmark_under_oom(memcg); 1593 finish_wait(&memcg_oom_waitq, &owait.wait); 1594 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask, 1595 current->memcg_oom_order); 1596 } else { 1597 schedule(); 1598 mem_cgroup_unmark_under_oom(memcg); 1599 finish_wait(&memcg_oom_waitq, &owait.wait); 1600 } 1601 1602 if (locked) { 1603 mem_cgroup_oom_unlock(memcg); 1604 /* 1605 * There is no guarantee that an OOM-lock contender 1606 * sees the wakeups triggered by the OOM kill 1607 * uncharges. Wake any sleepers explicitely. 1608 */ 1609 memcg_oom_recover(memcg); 1610 } 1611 cleanup: 1612 current->memcg_in_oom = NULL; 1613 css_put(&memcg->css); 1614 return true; 1615 } 1616 1617 /** 1618 * lock_page_memcg - lock a page->mem_cgroup binding 1619 * @page: the page 1620 * 1621 * This function protects unlocked LRU pages from being moved to 1622 * another cgroup and stabilizes their page->mem_cgroup binding. 1623 */ 1624 void lock_page_memcg(struct page *page) 1625 { 1626 struct mem_cgroup *memcg; 1627 unsigned long flags; 1628 1629 /* 1630 * The RCU lock is held throughout the transaction. The fast 1631 * path can get away without acquiring the memcg->move_lock 1632 * because page moving starts with an RCU grace period. 1633 */ 1634 rcu_read_lock(); 1635 1636 if (mem_cgroup_disabled()) 1637 return; 1638 again: 1639 memcg = page->mem_cgroup; 1640 if (unlikely(!memcg)) 1641 return; 1642 1643 if (atomic_read(&memcg->moving_account) <= 0) 1644 return; 1645 1646 spin_lock_irqsave(&memcg->move_lock, flags); 1647 if (memcg != page->mem_cgroup) { 1648 spin_unlock_irqrestore(&memcg->move_lock, flags); 1649 goto again; 1650 } 1651 1652 /* 1653 * When charge migration first begins, we can have locked and 1654 * unlocked page stat updates happening concurrently. Track 1655 * the task who has the lock for unlock_page_memcg(). 1656 */ 1657 memcg->move_lock_task = current; 1658 memcg->move_lock_flags = flags; 1659 1660 return; 1661 } 1662 EXPORT_SYMBOL(lock_page_memcg); 1663 1664 /** 1665 * unlock_page_memcg - unlock a page->mem_cgroup binding 1666 * @page: the page 1667 */ 1668 void unlock_page_memcg(struct page *page) 1669 { 1670 struct mem_cgroup *memcg = page->mem_cgroup; 1671 1672 if (memcg && memcg->move_lock_task == current) { 1673 unsigned long flags = memcg->move_lock_flags; 1674 1675 memcg->move_lock_task = NULL; 1676 memcg->move_lock_flags = 0; 1677 1678 spin_unlock_irqrestore(&memcg->move_lock, flags); 1679 } 1680 1681 rcu_read_unlock(); 1682 } 1683 EXPORT_SYMBOL(unlock_page_memcg); 1684 1685 /* 1686 * size of first charge trial. "32" comes from vmscan.c's magic value. 1687 * TODO: maybe necessary to use big numbers in big irons. 1688 */ 1689 #define CHARGE_BATCH 32U 1690 struct memcg_stock_pcp { 1691 struct mem_cgroup *cached; /* this never be root cgroup */ 1692 unsigned int nr_pages; 1693 struct work_struct work; 1694 unsigned long flags; 1695 #define FLUSHING_CACHED_CHARGE 0 1696 }; 1697 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); 1698 static DEFINE_MUTEX(percpu_charge_mutex); 1699 1700 /** 1701 * consume_stock: Try to consume stocked charge on this cpu. 1702 * @memcg: memcg to consume from. 1703 * @nr_pages: how many pages to charge. 1704 * 1705 * The charges will only happen if @memcg matches the current cpu's memcg 1706 * stock, and at least @nr_pages are available in that stock. Failure to 1707 * service an allocation will refill the stock. 1708 * 1709 * returns true if successful, false otherwise. 1710 */ 1711 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 1712 { 1713 struct memcg_stock_pcp *stock; 1714 unsigned long flags; 1715 bool ret = false; 1716 1717 if (nr_pages > CHARGE_BATCH) 1718 return ret; 1719 1720 local_irq_save(flags); 1721 1722 stock = this_cpu_ptr(&memcg_stock); 1723 if (memcg == stock->cached && stock->nr_pages >= nr_pages) { 1724 stock->nr_pages -= nr_pages; 1725 ret = true; 1726 } 1727 1728 local_irq_restore(flags); 1729 1730 return ret; 1731 } 1732 1733 /* 1734 * Returns stocks cached in percpu and reset cached information. 1735 */ 1736 static void drain_stock(struct memcg_stock_pcp *stock) 1737 { 1738 struct mem_cgroup *old = stock->cached; 1739 1740 if (stock->nr_pages) { 1741 page_counter_uncharge(&old->memory, stock->nr_pages); 1742 if (do_memsw_account()) 1743 page_counter_uncharge(&old->memsw, stock->nr_pages); 1744 css_put_many(&old->css, stock->nr_pages); 1745 stock->nr_pages = 0; 1746 } 1747 stock->cached = NULL; 1748 } 1749 1750 static void drain_local_stock(struct work_struct *dummy) 1751 { 1752 struct memcg_stock_pcp *stock; 1753 unsigned long flags; 1754 1755 local_irq_save(flags); 1756 1757 stock = this_cpu_ptr(&memcg_stock); 1758 drain_stock(stock); 1759 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 1760 1761 local_irq_restore(flags); 1762 } 1763 1764 /* 1765 * Cache charges(val) to local per_cpu area. 1766 * This will be consumed by consume_stock() function, later. 1767 */ 1768 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 1769 { 1770 struct memcg_stock_pcp *stock; 1771 unsigned long flags; 1772 1773 local_irq_save(flags); 1774 1775 stock = this_cpu_ptr(&memcg_stock); 1776 if (stock->cached != memcg) { /* reset if necessary */ 1777 drain_stock(stock); 1778 stock->cached = memcg; 1779 } 1780 stock->nr_pages += nr_pages; 1781 1782 local_irq_restore(flags); 1783 } 1784 1785 /* 1786 * Drains all per-CPU charge caches for given root_memcg resp. subtree 1787 * of the hierarchy under it. 1788 */ 1789 static void drain_all_stock(struct mem_cgroup *root_memcg) 1790 { 1791 int cpu, curcpu; 1792 1793 /* If someone's already draining, avoid adding running more workers. */ 1794 if (!mutex_trylock(&percpu_charge_mutex)) 1795 return; 1796 /* Notify other cpus that system-wide "drain" is running */ 1797 get_online_cpus(); 1798 curcpu = get_cpu(); 1799 for_each_online_cpu(cpu) { 1800 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 1801 struct mem_cgroup *memcg; 1802 1803 memcg = stock->cached; 1804 if (!memcg || !stock->nr_pages) 1805 continue; 1806 if (!mem_cgroup_is_descendant(memcg, root_memcg)) 1807 continue; 1808 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 1809 if (cpu == curcpu) 1810 drain_local_stock(&stock->work); 1811 else 1812 schedule_work_on(cpu, &stock->work); 1813 } 1814 } 1815 put_cpu(); 1816 put_online_cpus(); 1817 mutex_unlock(&percpu_charge_mutex); 1818 } 1819 1820 static int memcg_hotplug_cpu_dead(unsigned int cpu) 1821 { 1822 struct memcg_stock_pcp *stock; 1823 1824 stock = &per_cpu(memcg_stock, cpu); 1825 drain_stock(stock); 1826 return 0; 1827 } 1828 1829 static void reclaim_high(struct mem_cgroup *memcg, 1830 unsigned int nr_pages, 1831 gfp_t gfp_mask) 1832 { 1833 do { 1834 if (page_counter_read(&memcg->memory) <= memcg->high) 1835 continue; 1836 mem_cgroup_events(memcg, MEMCG_HIGH, 1); 1837 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true); 1838 } while ((memcg = parent_mem_cgroup(memcg))); 1839 } 1840 1841 static void high_work_func(struct work_struct *work) 1842 { 1843 struct mem_cgroup *memcg; 1844 1845 memcg = container_of(work, struct mem_cgroup, high_work); 1846 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL); 1847 } 1848 1849 /* 1850 * Scheduled by try_charge() to be executed from the userland return path 1851 * and reclaims memory over the high limit. 1852 */ 1853 void mem_cgroup_handle_over_high(void) 1854 { 1855 unsigned int nr_pages = current->memcg_nr_pages_over_high; 1856 struct mem_cgroup *memcg; 1857 1858 if (likely(!nr_pages)) 1859 return; 1860 1861 memcg = get_mem_cgroup_from_mm(current->mm); 1862 reclaim_high(memcg, nr_pages, GFP_KERNEL); 1863 css_put(&memcg->css); 1864 current->memcg_nr_pages_over_high = 0; 1865 } 1866 1867 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 1868 unsigned int nr_pages) 1869 { 1870 unsigned int batch = max(CHARGE_BATCH, nr_pages); 1871 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 1872 struct mem_cgroup *mem_over_limit; 1873 struct page_counter *counter; 1874 unsigned long nr_reclaimed; 1875 bool may_swap = true; 1876 bool drained = false; 1877 1878 if (mem_cgroup_is_root(memcg)) 1879 return 0; 1880 retry: 1881 if (consume_stock(memcg, nr_pages)) 1882 return 0; 1883 1884 if (!do_memsw_account() || 1885 page_counter_try_charge(&memcg->memsw, batch, &counter)) { 1886 if (page_counter_try_charge(&memcg->memory, batch, &counter)) 1887 goto done_restock; 1888 if (do_memsw_account()) 1889 page_counter_uncharge(&memcg->memsw, batch); 1890 mem_over_limit = mem_cgroup_from_counter(counter, memory); 1891 } else { 1892 mem_over_limit = mem_cgroup_from_counter(counter, memsw); 1893 may_swap = false; 1894 } 1895 1896 if (batch > nr_pages) { 1897 batch = nr_pages; 1898 goto retry; 1899 } 1900 1901 /* 1902 * Unlike in global OOM situations, memcg is not in a physical 1903 * memory shortage. Allow dying and OOM-killed tasks to 1904 * bypass the last charges so that they can exit quickly and 1905 * free their memory. 1906 */ 1907 if (unlikely(test_thread_flag(TIF_MEMDIE) || 1908 fatal_signal_pending(current) || 1909 current->flags & PF_EXITING)) 1910 goto force; 1911 1912 /* 1913 * Prevent unbounded recursion when reclaim operations need to 1914 * allocate memory. This might exceed the limits temporarily, 1915 * but we prefer facilitating memory reclaim and getting back 1916 * under the limit over triggering OOM kills in these cases. 1917 */ 1918 if (unlikely(current->flags & PF_MEMALLOC)) 1919 goto force; 1920 1921 if (unlikely(task_in_memcg_oom(current))) 1922 goto nomem; 1923 1924 if (!gfpflags_allow_blocking(gfp_mask)) 1925 goto nomem; 1926 1927 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1); 1928 1929 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, 1930 gfp_mask, may_swap); 1931 1932 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 1933 goto retry; 1934 1935 if (!drained) { 1936 drain_all_stock(mem_over_limit); 1937 drained = true; 1938 goto retry; 1939 } 1940 1941 if (gfp_mask & __GFP_NORETRY) 1942 goto nomem; 1943 /* 1944 * Even though the limit is exceeded at this point, reclaim 1945 * may have been able to free some pages. Retry the charge 1946 * before killing the task. 1947 * 1948 * Only for regular pages, though: huge pages are rather 1949 * unlikely to succeed so close to the limit, and we fall back 1950 * to regular pages anyway in case of failure. 1951 */ 1952 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) 1953 goto retry; 1954 /* 1955 * At task move, charge accounts can be doubly counted. So, it's 1956 * better to wait until the end of task_move if something is going on. 1957 */ 1958 if (mem_cgroup_wait_acct_move(mem_over_limit)) 1959 goto retry; 1960 1961 if (nr_retries--) 1962 goto retry; 1963 1964 if (gfp_mask & __GFP_NOFAIL) 1965 goto force; 1966 1967 if (fatal_signal_pending(current)) 1968 goto force; 1969 1970 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1); 1971 1972 mem_cgroup_oom(mem_over_limit, gfp_mask, 1973 get_order(nr_pages * PAGE_SIZE)); 1974 nomem: 1975 if (!(gfp_mask & __GFP_NOFAIL)) 1976 return -ENOMEM; 1977 force: 1978 /* 1979 * The allocation either can't fail or will lead to more memory 1980 * being freed very soon. Allow memory usage go over the limit 1981 * temporarily by force charging it. 1982 */ 1983 page_counter_charge(&memcg->memory, nr_pages); 1984 if (do_memsw_account()) 1985 page_counter_charge(&memcg->memsw, nr_pages); 1986 css_get_many(&memcg->css, nr_pages); 1987 1988 return 0; 1989 1990 done_restock: 1991 css_get_many(&memcg->css, batch); 1992 if (batch > nr_pages) 1993 refill_stock(memcg, batch - nr_pages); 1994 1995 /* 1996 * If the hierarchy is above the normal consumption range, schedule 1997 * reclaim on returning to userland. We can perform reclaim here 1998 * if __GFP_RECLAIM but let's always punt for simplicity and so that 1999 * GFP_KERNEL can consistently be used during reclaim. @memcg is 2000 * not recorded as it most likely matches current's and won't 2001 * change in the meantime. As high limit is checked again before 2002 * reclaim, the cost of mismatch is negligible. 2003 */ 2004 do { 2005 if (page_counter_read(&memcg->memory) > memcg->high) { 2006 /* Don't bother a random interrupted task */ 2007 if (in_interrupt()) { 2008 schedule_work(&memcg->high_work); 2009 break; 2010 } 2011 current->memcg_nr_pages_over_high += batch; 2012 set_notify_resume(current); 2013 break; 2014 } 2015 } while ((memcg = parent_mem_cgroup(memcg))); 2016 2017 return 0; 2018 } 2019 2020 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages) 2021 { 2022 if (mem_cgroup_is_root(memcg)) 2023 return; 2024 2025 page_counter_uncharge(&memcg->memory, nr_pages); 2026 if (do_memsw_account()) 2027 page_counter_uncharge(&memcg->memsw, nr_pages); 2028 2029 css_put_many(&memcg->css, nr_pages); 2030 } 2031 2032 static void lock_page_lru(struct page *page, int *isolated) 2033 { 2034 struct zone *zone = page_zone(page); 2035 2036 spin_lock_irq(zone_lru_lock(zone)); 2037 if (PageLRU(page)) { 2038 struct lruvec *lruvec; 2039 2040 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat); 2041 ClearPageLRU(page); 2042 del_page_from_lru_list(page, lruvec, page_lru(page)); 2043 *isolated = 1; 2044 } else 2045 *isolated = 0; 2046 } 2047 2048 static void unlock_page_lru(struct page *page, int isolated) 2049 { 2050 struct zone *zone = page_zone(page); 2051 2052 if (isolated) { 2053 struct lruvec *lruvec; 2054 2055 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat); 2056 VM_BUG_ON_PAGE(PageLRU(page), page); 2057 SetPageLRU(page); 2058 add_page_to_lru_list(page, lruvec, page_lru(page)); 2059 } 2060 spin_unlock_irq(zone_lru_lock(zone)); 2061 } 2062 2063 static void commit_charge(struct page *page, struct mem_cgroup *memcg, 2064 bool lrucare) 2065 { 2066 int isolated; 2067 2068 VM_BUG_ON_PAGE(page->mem_cgroup, page); 2069 2070 /* 2071 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page 2072 * may already be on some other mem_cgroup's LRU. Take care of it. 2073 */ 2074 if (lrucare) 2075 lock_page_lru(page, &isolated); 2076 2077 /* 2078 * Nobody should be changing or seriously looking at 2079 * page->mem_cgroup at this point: 2080 * 2081 * - the page is uncharged 2082 * 2083 * - the page is off-LRU 2084 * 2085 * - an anonymous fault has exclusive page access, except for 2086 * a locked page table 2087 * 2088 * - a page cache insertion, a swapin fault, or a migration 2089 * have the page locked 2090 */ 2091 page->mem_cgroup = memcg; 2092 2093 if (lrucare) 2094 unlock_page_lru(page, isolated); 2095 } 2096 2097 #ifndef CONFIG_SLOB 2098 static int memcg_alloc_cache_id(void) 2099 { 2100 int id, size; 2101 int err; 2102 2103 id = ida_simple_get(&memcg_cache_ida, 2104 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL); 2105 if (id < 0) 2106 return id; 2107 2108 if (id < memcg_nr_cache_ids) 2109 return id; 2110 2111 /* 2112 * There's no space for the new id in memcg_caches arrays, 2113 * so we have to grow them. 2114 */ 2115 down_write(&memcg_cache_ids_sem); 2116 2117 size = 2 * (id + 1); 2118 if (size < MEMCG_CACHES_MIN_SIZE) 2119 size = MEMCG_CACHES_MIN_SIZE; 2120 else if (size > MEMCG_CACHES_MAX_SIZE) 2121 size = MEMCG_CACHES_MAX_SIZE; 2122 2123 err = memcg_update_all_caches(size); 2124 if (!err) 2125 err = memcg_update_all_list_lrus(size); 2126 if (!err) 2127 memcg_nr_cache_ids = size; 2128 2129 up_write(&memcg_cache_ids_sem); 2130 2131 if (err) { 2132 ida_simple_remove(&memcg_cache_ida, id); 2133 return err; 2134 } 2135 return id; 2136 } 2137 2138 static void memcg_free_cache_id(int id) 2139 { 2140 ida_simple_remove(&memcg_cache_ida, id); 2141 } 2142 2143 struct memcg_kmem_cache_create_work { 2144 struct mem_cgroup *memcg; 2145 struct kmem_cache *cachep; 2146 struct work_struct work; 2147 }; 2148 2149 static void memcg_kmem_cache_create_func(struct work_struct *w) 2150 { 2151 struct memcg_kmem_cache_create_work *cw = 2152 container_of(w, struct memcg_kmem_cache_create_work, work); 2153 struct mem_cgroup *memcg = cw->memcg; 2154 struct kmem_cache *cachep = cw->cachep; 2155 2156 memcg_create_kmem_cache(memcg, cachep); 2157 2158 css_put(&memcg->css); 2159 kfree(cw); 2160 } 2161 2162 /* 2163 * Enqueue the creation of a per-memcg kmem_cache. 2164 */ 2165 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg, 2166 struct kmem_cache *cachep) 2167 { 2168 struct memcg_kmem_cache_create_work *cw; 2169 2170 cw = kmalloc(sizeof(*cw), GFP_NOWAIT); 2171 if (!cw) 2172 return; 2173 2174 css_get(&memcg->css); 2175 2176 cw->memcg = memcg; 2177 cw->cachep = cachep; 2178 INIT_WORK(&cw->work, memcg_kmem_cache_create_func); 2179 2180 queue_work(memcg_kmem_cache_wq, &cw->work); 2181 } 2182 2183 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg, 2184 struct kmem_cache *cachep) 2185 { 2186 /* 2187 * We need to stop accounting when we kmalloc, because if the 2188 * corresponding kmalloc cache is not yet created, the first allocation 2189 * in __memcg_schedule_kmem_cache_create will recurse. 2190 * 2191 * However, it is better to enclose the whole function. Depending on 2192 * the debugging options enabled, INIT_WORK(), for instance, can 2193 * trigger an allocation. This too, will make us recurse. Because at 2194 * this point we can't allow ourselves back into memcg_kmem_get_cache, 2195 * the safest choice is to do it like this, wrapping the whole function. 2196 */ 2197 current->memcg_kmem_skip_account = 1; 2198 __memcg_schedule_kmem_cache_create(memcg, cachep); 2199 current->memcg_kmem_skip_account = 0; 2200 } 2201 2202 static inline bool memcg_kmem_bypass(void) 2203 { 2204 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD)) 2205 return true; 2206 return false; 2207 } 2208 2209 /** 2210 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation 2211 * @cachep: the original global kmem cache 2212 * 2213 * Return the kmem_cache we're supposed to use for a slab allocation. 2214 * We try to use the current memcg's version of the cache. 2215 * 2216 * If the cache does not exist yet, if we are the first user of it, we 2217 * create it asynchronously in a workqueue and let the current allocation 2218 * go through with the original cache. 2219 * 2220 * This function takes a reference to the cache it returns to assure it 2221 * won't get destroyed while we are working with it. Once the caller is 2222 * done with it, memcg_kmem_put_cache() must be called to release the 2223 * reference. 2224 */ 2225 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep) 2226 { 2227 struct mem_cgroup *memcg; 2228 struct kmem_cache *memcg_cachep; 2229 int kmemcg_id; 2230 2231 VM_BUG_ON(!is_root_cache(cachep)); 2232 2233 if (memcg_kmem_bypass()) 2234 return cachep; 2235 2236 if (current->memcg_kmem_skip_account) 2237 return cachep; 2238 2239 memcg = get_mem_cgroup_from_mm(current->mm); 2240 kmemcg_id = READ_ONCE(memcg->kmemcg_id); 2241 if (kmemcg_id < 0) 2242 goto out; 2243 2244 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id); 2245 if (likely(memcg_cachep)) 2246 return memcg_cachep; 2247 2248 /* 2249 * If we are in a safe context (can wait, and not in interrupt 2250 * context), we could be be predictable and return right away. 2251 * This would guarantee that the allocation being performed 2252 * already belongs in the new cache. 2253 * 2254 * However, there are some clashes that can arrive from locking. 2255 * For instance, because we acquire the slab_mutex while doing 2256 * memcg_create_kmem_cache, this means no further allocation 2257 * could happen with the slab_mutex held. So it's better to 2258 * defer everything. 2259 */ 2260 memcg_schedule_kmem_cache_create(memcg, cachep); 2261 out: 2262 css_put(&memcg->css); 2263 return cachep; 2264 } 2265 2266 /** 2267 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache 2268 * @cachep: the cache returned by memcg_kmem_get_cache 2269 */ 2270 void memcg_kmem_put_cache(struct kmem_cache *cachep) 2271 { 2272 if (!is_root_cache(cachep)) 2273 css_put(&cachep->memcg_params.memcg->css); 2274 } 2275 2276 /** 2277 * memcg_kmem_charge: charge a kmem page 2278 * @page: page to charge 2279 * @gfp: reclaim mode 2280 * @order: allocation order 2281 * @memcg: memory cgroup to charge 2282 * 2283 * Returns 0 on success, an error code on failure. 2284 */ 2285 int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order, 2286 struct mem_cgroup *memcg) 2287 { 2288 unsigned int nr_pages = 1 << order; 2289 struct page_counter *counter; 2290 int ret; 2291 2292 ret = try_charge(memcg, gfp, nr_pages); 2293 if (ret) 2294 return ret; 2295 2296 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && 2297 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) { 2298 cancel_charge(memcg, nr_pages); 2299 return -ENOMEM; 2300 } 2301 2302 page->mem_cgroup = memcg; 2303 2304 return 0; 2305 } 2306 2307 /** 2308 * memcg_kmem_charge: charge a kmem page to the current memory cgroup 2309 * @page: page to charge 2310 * @gfp: reclaim mode 2311 * @order: allocation order 2312 * 2313 * Returns 0 on success, an error code on failure. 2314 */ 2315 int memcg_kmem_charge(struct page *page, gfp_t gfp, int order) 2316 { 2317 struct mem_cgroup *memcg; 2318 int ret = 0; 2319 2320 if (memcg_kmem_bypass()) 2321 return 0; 2322 2323 memcg = get_mem_cgroup_from_mm(current->mm); 2324 if (!mem_cgroup_is_root(memcg)) { 2325 ret = memcg_kmem_charge_memcg(page, gfp, order, memcg); 2326 if (!ret) 2327 __SetPageKmemcg(page); 2328 } 2329 css_put(&memcg->css); 2330 return ret; 2331 } 2332 /** 2333 * memcg_kmem_uncharge: uncharge a kmem page 2334 * @page: page to uncharge 2335 * @order: allocation order 2336 */ 2337 void memcg_kmem_uncharge(struct page *page, int order) 2338 { 2339 struct mem_cgroup *memcg = page->mem_cgroup; 2340 unsigned int nr_pages = 1 << order; 2341 2342 if (!memcg) 2343 return; 2344 2345 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page); 2346 2347 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 2348 page_counter_uncharge(&memcg->kmem, nr_pages); 2349 2350 page_counter_uncharge(&memcg->memory, nr_pages); 2351 if (do_memsw_account()) 2352 page_counter_uncharge(&memcg->memsw, nr_pages); 2353 2354 page->mem_cgroup = NULL; 2355 2356 /* slab pages do not have PageKmemcg flag set */ 2357 if (PageKmemcg(page)) 2358 __ClearPageKmemcg(page); 2359 2360 css_put_many(&memcg->css, nr_pages); 2361 } 2362 #endif /* !CONFIG_SLOB */ 2363 2364 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2365 2366 /* 2367 * Because tail pages are not marked as "used", set it. We're under 2368 * zone_lru_lock and migration entries setup in all page mappings. 2369 */ 2370 void mem_cgroup_split_huge_fixup(struct page *head) 2371 { 2372 int i; 2373 2374 if (mem_cgroup_disabled()) 2375 return; 2376 2377 for (i = 1; i < HPAGE_PMD_NR; i++) 2378 head[i].mem_cgroup = head->mem_cgroup; 2379 2380 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE], 2381 HPAGE_PMD_NR); 2382 } 2383 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 2384 2385 #ifdef CONFIG_MEMCG_SWAP 2386 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg, 2387 bool charge) 2388 { 2389 int val = (charge) ? 1 : -1; 2390 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val); 2391 } 2392 2393 /** 2394 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 2395 * @entry: swap entry to be moved 2396 * @from: mem_cgroup which the entry is moved from 2397 * @to: mem_cgroup which the entry is moved to 2398 * 2399 * It succeeds only when the swap_cgroup's record for this entry is the same 2400 * as the mem_cgroup's id of @from. 2401 * 2402 * Returns 0 on success, -EINVAL on failure. 2403 * 2404 * The caller must have charged to @to, IOW, called page_counter_charge() about 2405 * both res and memsw, and called css_get(). 2406 */ 2407 static int mem_cgroup_move_swap_account(swp_entry_t entry, 2408 struct mem_cgroup *from, struct mem_cgroup *to) 2409 { 2410 unsigned short old_id, new_id; 2411 2412 old_id = mem_cgroup_id(from); 2413 new_id = mem_cgroup_id(to); 2414 2415 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 2416 mem_cgroup_swap_statistics(from, false); 2417 mem_cgroup_swap_statistics(to, true); 2418 return 0; 2419 } 2420 return -EINVAL; 2421 } 2422 #else 2423 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 2424 struct mem_cgroup *from, struct mem_cgroup *to) 2425 { 2426 return -EINVAL; 2427 } 2428 #endif 2429 2430 static DEFINE_MUTEX(memcg_limit_mutex); 2431 2432 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg, 2433 unsigned long limit) 2434 { 2435 unsigned long curusage; 2436 unsigned long oldusage; 2437 bool enlarge = false; 2438 int retry_count; 2439 int ret; 2440 2441 /* 2442 * For keeping hierarchical_reclaim simple, how long we should retry 2443 * is depends on callers. We set our retry-count to be function 2444 * of # of children which we should visit in this loop. 2445 */ 2446 retry_count = MEM_CGROUP_RECLAIM_RETRIES * 2447 mem_cgroup_count_children(memcg); 2448 2449 oldusage = page_counter_read(&memcg->memory); 2450 2451 do { 2452 if (signal_pending(current)) { 2453 ret = -EINTR; 2454 break; 2455 } 2456 2457 mutex_lock(&memcg_limit_mutex); 2458 if (limit > memcg->memsw.limit) { 2459 mutex_unlock(&memcg_limit_mutex); 2460 ret = -EINVAL; 2461 break; 2462 } 2463 if (limit > memcg->memory.limit) 2464 enlarge = true; 2465 ret = page_counter_limit(&memcg->memory, limit); 2466 mutex_unlock(&memcg_limit_mutex); 2467 2468 if (!ret) 2469 break; 2470 2471 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true); 2472 2473 curusage = page_counter_read(&memcg->memory); 2474 /* Usage is reduced ? */ 2475 if (curusage >= oldusage) 2476 retry_count--; 2477 else 2478 oldusage = curusage; 2479 } while (retry_count); 2480 2481 if (!ret && enlarge) 2482 memcg_oom_recover(memcg); 2483 2484 return ret; 2485 } 2486 2487 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg, 2488 unsigned long limit) 2489 { 2490 unsigned long curusage; 2491 unsigned long oldusage; 2492 bool enlarge = false; 2493 int retry_count; 2494 int ret; 2495 2496 /* see mem_cgroup_resize_res_limit */ 2497 retry_count = MEM_CGROUP_RECLAIM_RETRIES * 2498 mem_cgroup_count_children(memcg); 2499 2500 oldusage = page_counter_read(&memcg->memsw); 2501 2502 do { 2503 if (signal_pending(current)) { 2504 ret = -EINTR; 2505 break; 2506 } 2507 2508 mutex_lock(&memcg_limit_mutex); 2509 if (limit < memcg->memory.limit) { 2510 mutex_unlock(&memcg_limit_mutex); 2511 ret = -EINVAL; 2512 break; 2513 } 2514 if (limit > memcg->memsw.limit) 2515 enlarge = true; 2516 ret = page_counter_limit(&memcg->memsw, limit); 2517 mutex_unlock(&memcg_limit_mutex); 2518 2519 if (!ret) 2520 break; 2521 2522 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false); 2523 2524 curusage = page_counter_read(&memcg->memsw); 2525 /* Usage is reduced ? */ 2526 if (curusage >= oldusage) 2527 retry_count--; 2528 else 2529 oldusage = curusage; 2530 } while (retry_count); 2531 2532 if (!ret && enlarge) 2533 memcg_oom_recover(memcg); 2534 2535 return ret; 2536 } 2537 2538 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 2539 gfp_t gfp_mask, 2540 unsigned long *total_scanned) 2541 { 2542 unsigned long nr_reclaimed = 0; 2543 struct mem_cgroup_per_node *mz, *next_mz = NULL; 2544 unsigned long reclaimed; 2545 int loop = 0; 2546 struct mem_cgroup_tree_per_node *mctz; 2547 unsigned long excess; 2548 unsigned long nr_scanned; 2549 2550 if (order > 0) 2551 return 0; 2552 2553 mctz = soft_limit_tree_node(pgdat->node_id); 2554 2555 /* 2556 * Do not even bother to check the largest node if the root 2557 * is empty. Do it lockless to prevent lock bouncing. Races 2558 * are acceptable as soft limit is best effort anyway. 2559 */ 2560 if (RB_EMPTY_ROOT(&mctz->rb_root)) 2561 return 0; 2562 2563 /* 2564 * This loop can run a while, specially if mem_cgroup's continuously 2565 * keep exceeding their soft limit and putting the system under 2566 * pressure 2567 */ 2568 do { 2569 if (next_mz) 2570 mz = next_mz; 2571 else 2572 mz = mem_cgroup_largest_soft_limit_node(mctz); 2573 if (!mz) 2574 break; 2575 2576 nr_scanned = 0; 2577 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat, 2578 gfp_mask, &nr_scanned); 2579 nr_reclaimed += reclaimed; 2580 *total_scanned += nr_scanned; 2581 spin_lock_irq(&mctz->lock); 2582 __mem_cgroup_remove_exceeded(mz, mctz); 2583 2584 /* 2585 * If we failed to reclaim anything from this memory cgroup 2586 * it is time to move on to the next cgroup 2587 */ 2588 next_mz = NULL; 2589 if (!reclaimed) 2590 next_mz = __mem_cgroup_largest_soft_limit_node(mctz); 2591 2592 excess = soft_limit_excess(mz->memcg); 2593 /* 2594 * One school of thought says that we should not add 2595 * back the node to the tree if reclaim returns 0. 2596 * But our reclaim could return 0, simply because due 2597 * to priority we are exposing a smaller subset of 2598 * memory to reclaim from. Consider this as a longer 2599 * term TODO. 2600 */ 2601 /* If excess == 0, no tree ops */ 2602 __mem_cgroup_insert_exceeded(mz, mctz, excess); 2603 spin_unlock_irq(&mctz->lock); 2604 css_put(&mz->memcg->css); 2605 loop++; 2606 /* 2607 * Could not reclaim anything and there are no more 2608 * mem cgroups to try or we seem to be looping without 2609 * reclaiming anything. 2610 */ 2611 if (!nr_reclaimed && 2612 (next_mz == NULL || 2613 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 2614 break; 2615 } while (!nr_reclaimed); 2616 if (next_mz) 2617 css_put(&next_mz->memcg->css); 2618 return nr_reclaimed; 2619 } 2620 2621 /* 2622 * Test whether @memcg has children, dead or alive. Note that this 2623 * function doesn't care whether @memcg has use_hierarchy enabled and 2624 * returns %true if there are child csses according to the cgroup 2625 * hierarchy. Testing use_hierarchy is the caller's responsiblity. 2626 */ 2627 static inline bool memcg_has_children(struct mem_cgroup *memcg) 2628 { 2629 bool ret; 2630 2631 rcu_read_lock(); 2632 ret = css_next_child(NULL, &memcg->css); 2633 rcu_read_unlock(); 2634 return ret; 2635 } 2636 2637 /* 2638 * Reclaims as many pages from the given memcg as possible. 2639 * 2640 * Caller is responsible for holding css reference for memcg. 2641 */ 2642 static int mem_cgroup_force_empty(struct mem_cgroup *memcg) 2643 { 2644 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 2645 2646 /* we call try-to-free pages for make this cgroup empty */ 2647 lru_add_drain_all(); 2648 /* try to free all pages in this cgroup */ 2649 while (nr_retries && page_counter_read(&memcg->memory)) { 2650 int progress; 2651 2652 if (signal_pending(current)) 2653 return -EINTR; 2654 2655 progress = try_to_free_mem_cgroup_pages(memcg, 1, 2656 GFP_KERNEL, true); 2657 if (!progress) { 2658 nr_retries--; 2659 /* maybe some writeback is necessary */ 2660 congestion_wait(BLK_RW_ASYNC, HZ/10); 2661 } 2662 2663 } 2664 2665 return 0; 2666 } 2667 2668 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of, 2669 char *buf, size_t nbytes, 2670 loff_t off) 2671 { 2672 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 2673 2674 if (mem_cgroup_is_root(memcg)) 2675 return -EINVAL; 2676 return mem_cgroup_force_empty(memcg) ?: nbytes; 2677 } 2678 2679 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, 2680 struct cftype *cft) 2681 { 2682 return mem_cgroup_from_css(css)->use_hierarchy; 2683 } 2684 2685 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, 2686 struct cftype *cft, u64 val) 2687 { 2688 int retval = 0; 2689 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 2690 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent); 2691 2692 if (memcg->use_hierarchy == val) 2693 return 0; 2694 2695 /* 2696 * If parent's use_hierarchy is set, we can't make any modifications 2697 * in the child subtrees. If it is unset, then the change can 2698 * occur, provided the current cgroup has no children. 2699 * 2700 * For the root cgroup, parent_mem is NULL, we allow value to be 2701 * set if there are no children. 2702 */ 2703 if ((!parent_memcg || !parent_memcg->use_hierarchy) && 2704 (val == 1 || val == 0)) { 2705 if (!memcg_has_children(memcg)) 2706 memcg->use_hierarchy = val; 2707 else 2708 retval = -EBUSY; 2709 } else 2710 retval = -EINVAL; 2711 2712 return retval; 2713 } 2714 2715 static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat) 2716 { 2717 struct mem_cgroup *iter; 2718 int i; 2719 2720 memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT); 2721 2722 for_each_mem_cgroup_tree(iter, memcg) { 2723 for (i = 0; i < MEMCG_NR_STAT; i++) 2724 stat[i] += mem_cgroup_read_stat(iter, i); 2725 } 2726 } 2727 2728 static void tree_events(struct mem_cgroup *memcg, unsigned long *events) 2729 { 2730 struct mem_cgroup *iter; 2731 int i; 2732 2733 memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS); 2734 2735 for_each_mem_cgroup_tree(iter, memcg) { 2736 for (i = 0; i < MEMCG_NR_EVENTS; i++) 2737 events[i] += mem_cgroup_read_events(iter, i); 2738 } 2739 } 2740 2741 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 2742 { 2743 unsigned long val = 0; 2744 2745 if (mem_cgroup_is_root(memcg)) { 2746 struct mem_cgroup *iter; 2747 2748 for_each_mem_cgroup_tree(iter, memcg) { 2749 val += mem_cgroup_read_stat(iter, 2750 MEM_CGROUP_STAT_CACHE); 2751 val += mem_cgroup_read_stat(iter, 2752 MEM_CGROUP_STAT_RSS); 2753 if (swap) 2754 val += mem_cgroup_read_stat(iter, 2755 MEM_CGROUP_STAT_SWAP); 2756 } 2757 } else { 2758 if (!swap) 2759 val = page_counter_read(&memcg->memory); 2760 else 2761 val = page_counter_read(&memcg->memsw); 2762 } 2763 return val; 2764 } 2765 2766 enum { 2767 RES_USAGE, 2768 RES_LIMIT, 2769 RES_MAX_USAGE, 2770 RES_FAILCNT, 2771 RES_SOFT_LIMIT, 2772 }; 2773 2774 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css, 2775 struct cftype *cft) 2776 { 2777 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 2778 struct page_counter *counter; 2779 2780 switch (MEMFILE_TYPE(cft->private)) { 2781 case _MEM: 2782 counter = &memcg->memory; 2783 break; 2784 case _MEMSWAP: 2785 counter = &memcg->memsw; 2786 break; 2787 case _KMEM: 2788 counter = &memcg->kmem; 2789 break; 2790 case _TCP: 2791 counter = &memcg->tcpmem; 2792 break; 2793 default: 2794 BUG(); 2795 } 2796 2797 switch (MEMFILE_ATTR(cft->private)) { 2798 case RES_USAGE: 2799 if (counter == &memcg->memory) 2800 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE; 2801 if (counter == &memcg->memsw) 2802 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE; 2803 return (u64)page_counter_read(counter) * PAGE_SIZE; 2804 case RES_LIMIT: 2805 return (u64)counter->limit * PAGE_SIZE; 2806 case RES_MAX_USAGE: 2807 return (u64)counter->watermark * PAGE_SIZE; 2808 case RES_FAILCNT: 2809 return counter->failcnt; 2810 case RES_SOFT_LIMIT: 2811 return (u64)memcg->soft_limit * PAGE_SIZE; 2812 default: 2813 BUG(); 2814 } 2815 } 2816 2817 #ifndef CONFIG_SLOB 2818 static int memcg_online_kmem(struct mem_cgroup *memcg) 2819 { 2820 int memcg_id; 2821 2822 if (cgroup_memory_nokmem) 2823 return 0; 2824 2825 BUG_ON(memcg->kmemcg_id >= 0); 2826 BUG_ON(memcg->kmem_state); 2827 2828 memcg_id = memcg_alloc_cache_id(); 2829 if (memcg_id < 0) 2830 return memcg_id; 2831 2832 static_branch_inc(&memcg_kmem_enabled_key); 2833 /* 2834 * A memory cgroup is considered kmem-online as soon as it gets 2835 * kmemcg_id. Setting the id after enabling static branching will 2836 * guarantee no one starts accounting before all call sites are 2837 * patched. 2838 */ 2839 memcg->kmemcg_id = memcg_id; 2840 memcg->kmem_state = KMEM_ONLINE; 2841 INIT_LIST_HEAD(&memcg->kmem_caches); 2842 2843 return 0; 2844 } 2845 2846 static void memcg_offline_kmem(struct mem_cgroup *memcg) 2847 { 2848 struct cgroup_subsys_state *css; 2849 struct mem_cgroup *parent, *child; 2850 int kmemcg_id; 2851 2852 if (memcg->kmem_state != KMEM_ONLINE) 2853 return; 2854 /* 2855 * Clear the online state before clearing memcg_caches array 2856 * entries. The slab_mutex in memcg_deactivate_kmem_caches() 2857 * guarantees that no cache will be created for this cgroup 2858 * after we are done (see memcg_create_kmem_cache()). 2859 */ 2860 memcg->kmem_state = KMEM_ALLOCATED; 2861 2862 memcg_deactivate_kmem_caches(memcg); 2863 2864 kmemcg_id = memcg->kmemcg_id; 2865 BUG_ON(kmemcg_id < 0); 2866 2867 parent = parent_mem_cgroup(memcg); 2868 if (!parent) 2869 parent = root_mem_cgroup; 2870 2871 /* 2872 * Change kmemcg_id of this cgroup and all its descendants to the 2873 * parent's id, and then move all entries from this cgroup's list_lrus 2874 * to ones of the parent. After we have finished, all list_lrus 2875 * corresponding to this cgroup are guaranteed to remain empty. The 2876 * ordering is imposed by list_lru_node->lock taken by 2877 * memcg_drain_all_list_lrus(). 2878 */ 2879 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */ 2880 css_for_each_descendant_pre(css, &memcg->css) { 2881 child = mem_cgroup_from_css(css); 2882 BUG_ON(child->kmemcg_id != kmemcg_id); 2883 child->kmemcg_id = parent->kmemcg_id; 2884 if (!memcg->use_hierarchy) 2885 break; 2886 } 2887 rcu_read_unlock(); 2888 2889 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id); 2890 2891 memcg_free_cache_id(kmemcg_id); 2892 } 2893 2894 static void memcg_free_kmem(struct mem_cgroup *memcg) 2895 { 2896 /* css_alloc() failed, offlining didn't happen */ 2897 if (unlikely(memcg->kmem_state == KMEM_ONLINE)) 2898 memcg_offline_kmem(memcg); 2899 2900 if (memcg->kmem_state == KMEM_ALLOCATED) { 2901 memcg_destroy_kmem_caches(memcg); 2902 static_branch_dec(&memcg_kmem_enabled_key); 2903 WARN_ON(page_counter_read(&memcg->kmem)); 2904 } 2905 } 2906 #else 2907 static int memcg_online_kmem(struct mem_cgroup *memcg) 2908 { 2909 return 0; 2910 } 2911 static void memcg_offline_kmem(struct mem_cgroup *memcg) 2912 { 2913 } 2914 static void memcg_free_kmem(struct mem_cgroup *memcg) 2915 { 2916 } 2917 #endif /* !CONFIG_SLOB */ 2918 2919 static int memcg_update_kmem_limit(struct mem_cgroup *memcg, 2920 unsigned long limit) 2921 { 2922 int ret; 2923 2924 mutex_lock(&memcg_limit_mutex); 2925 ret = page_counter_limit(&memcg->kmem, limit); 2926 mutex_unlock(&memcg_limit_mutex); 2927 return ret; 2928 } 2929 2930 static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit) 2931 { 2932 int ret; 2933 2934 mutex_lock(&memcg_limit_mutex); 2935 2936 ret = page_counter_limit(&memcg->tcpmem, limit); 2937 if (ret) 2938 goto out; 2939 2940 if (!memcg->tcpmem_active) { 2941 /* 2942 * The active flag needs to be written after the static_key 2943 * update. This is what guarantees that the socket activation 2944 * function is the last one to run. See mem_cgroup_sk_alloc() 2945 * for details, and note that we don't mark any socket as 2946 * belonging to this memcg until that flag is up. 2947 * 2948 * We need to do this, because static_keys will span multiple 2949 * sites, but we can't control their order. If we mark a socket 2950 * as accounted, but the accounting functions are not patched in 2951 * yet, we'll lose accounting. 2952 * 2953 * We never race with the readers in mem_cgroup_sk_alloc(), 2954 * because when this value change, the code to process it is not 2955 * patched in yet. 2956 */ 2957 static_branch_inc(&memcg_sockets_enabled_key); 2958 memcg->tcpmem_active = true; 2959 } 2960 out: 2961 mutex_unlock(&memcg_limit_mutex); 2962 return ret; 2963 } 2964 2965 /* 2966 * The user of this function is... 2967 * RES_LIMIT. 2968 */ 2969 static ssize_t mem_cgroup_write(struct kernfs_open_file *of, 2970 char *buf, size_t nbytes, loff_t off) 2971 { 2972 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 2973 unsigned long nr_pages; 2974 int ret; 2975 2976 buf = strstrip(buf); 2977 ret = page_counter_memparse(buf, "-1", &nr_pages); 2978 if (ret) 2979 return ret; 2980 2981 switch (MEMFILE_ATTR(of_cft(of)->private)) { 2982 case RES_LIMIT: 2983 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 2984 ret = -EINVAL; 2985 break; 2986 } 2987 switch (MEMFILE_TYPE(of_cft(of)->private)) { 2988 case _MEM: 2989 ret = mem_cgroup_resize_limit(memcg, nr_pages); 2990 break; 2991 case _MEMSWAP: 2992 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages); 2993 break; 2994 case _KMEM: 2995 ret = memcg_update_kmem_limit(memcg, nr_pages); 2996 break; 2997 case _TCP: 2998 ret = memcg_update_tcp_limit(memcg, nr_pages); 2999 break; 3000 } 3001 break; 3002 case RES_SOFT_LIMIT: 3003 memcg->soft_limit = nr_pages; 3004 ret = 0; 3005 break; 3006 } 3007 return ret ?: nbytes; 3008 } 3009 3010 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf, 3011 size_t nbytes, loff_t off) 3012 { 3013 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3014 struct page_counter *counter; 3015 3016 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3017 case _MEM: 3018 counter = &memcg->memory; 3019 break; 3020 case _MEMSWAP: 3021 counter = &memcg->memsw; 3022 break; 3023 case _KMEM: 3024 counter = &memcg->kmem; 3025 break; 3026 case _TCP: 3027 counter = &memcg->tcpmem; 3028 break; 3029 default: 3030 BUG(); 3031 } 3032 3033 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3034 case RES_MAX_USAGE: 3035 page_counter_reset_watermark(counter); 3036 break; 3037 case RES_FAILCNT: 3038 counter->failcnt = 0; 3039 break; 3040 default: 3041 BUG(); 3042 } 3043 3044 return nbytes; 3045 } 3046 3047 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, 3048 struct cftype *cft) 3049 { 3050 return mem_cgroup_from_css(css)->move_charge_at_immigrate; 3051 } 3052 3053 #ifdef CONFIG_MMU 3054 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3055 struct cftype *cft, u64 val) 3056 { 3057 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3058 3059 if (val & ~MOVE_MASK) 3060 return -EINVAL; 3061 3062 /* 3063 * No kind of locking is needed in here, because ->can_attach() will 3064 * check this value once in the beginning of the process, and then carry 3065 * on with stale data. This means that changes to this value will only 3066 * affect task migrations starting after the change. 3067 */ 3068 memcg->move_charge_at_immigrate = val; 3069 return 0; 3070 } 3071 #else 3072 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3073 struct cftype *cft, u64 val) 3074 { 3075 return -ENOSYS; 3076 } 3077 #endif 3078 3079 #ifdef CONFIG_NUMA 3080 static int memcg_numa_stat_show(struct seq_file *m, void *v) 3081 { 3082 struct numa_stat { 3083 const char *name; 3084 unsigned int lru_mask; 3085 }; 3086 3087 static const struct numa_stat stats[] = { 3088 { "total", LRU_ALL }, 3089 { "file", LRU_ALL_FILE }, 3090 { "anon", LRU_ALL_ANON }, 3091 { "unevictable", BIT(LRU_UNEVICTABLE) }, 3092 }; 3093 const struct numa_stat *stat; 3094 int nid; 3095 unsigned long nr; 3096 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 3097 3098 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3099 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask); 3100 seq_printf(m, "%s=%lu", stat->name, nr); 3101 for_each_node_state(nid, N_MEMORY) { 3102 nr = mem_cgroup_node_nr_lru_pages(memcg, nid, 3103 stat->lru_mask); 3104 seq_printf(m, " N%d=%lu", nid, nr); 3105 } 3106 seq_putc(m, '\n'); 3107 } 3108 3109 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3110 struct mem_cgroup *iter; 3111 3112 nr = 0; 3113 for_each_mem_cgroup_tree(iter, memcg) 3114 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask); 3115 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr); 3116 for_each_node_state(nid, N_MEMORY) { 3117 nr = 0; 3118 for_each_mem_cgroup_tree(iter, memcg) 3119 nr += mem_cgroup_node_nr_lru_pages( 3120 iter, nid, stat->lru_mask); 3121 seq_printf(m, " N%d=%lu", nid, nr); 3122 } 3123 seq_putc(m, '\n'); 3124 } 3125 3126 return 0; 3127 } 3128 #endif /* CONFIG_NUMA */ 3129 3130 static int memcg_stat_show(struct seq_file *m, void *v) 3131 { 3132 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 3133 unsigned long memory, memsw; 3134 struct mem_cgroup *mi; 3135 unsigned int i; 3136 3137 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) != 3138 MEM_CGROUP_STAT_NSTATS); 3139 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) != 3140 MEM_CGROUP_EVENTS_NSTATS); 3141 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS); 3142 3143 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 3144 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account()) 3145 continue; 3146 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i], 3147 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE); 3148 } 3149 3150 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) 3151 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i], 3152 mem_cgroup_read_events(memcg, i)); 3153 3154 for (i = 0; i < NR_LRU_LISTS; i++) 3155 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i], 3156 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE); 3157 3158 /* Hierarchical information */ 3159 memory = memsw = PAGE_COUNTER_MAX; 3160 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) { 3161 memory = min(memory, mi->memory.limit); 3162 memsw = min(memsw, mi->memsw.limit); 3163 } 3164 seq_printf(m, "hierarchical_memory_limit %llu\n", 3165 (u64)memory * PAGE_SIZE); 3166 if (do_memsw_account()) 3167 seq_printf(m, "hierarchical_memsw_limit %llu\n", 3168 (u64)memsw * PAGE_SIZE); 3169 3170 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 3171 unsigned long long val = 0; 3172 3173 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account()) 3174 continue; 3175 for_each_mem_cgroup_tree(mi, memcg) 3176 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE; 3177 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val); 3178 } 3179 3180 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) { 3181 unsigned long long val = 0; 3182 3183 for_each_mem_cgroup_tree(mi, memcg) 3184 val += mem_cgroup_read_events(mi, i); 3185 seq_printf(m, "total_%s %llu\n", 3186 mem_cgroup_events_names[i], val); 3187 } 3188 3189 for (i = 0; i < NR_LRU_LISTS; i++) { 3190 unsigned long long val = 0; 3191 3192 for_each_mem_cgroup_tree(mi, memcg) 3193 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE; 3194 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val); 3195 } 3196 3197 #ifdef CONFIG_DEBUG_VM 3198 { 3199 pg_data_t *pgdat; 3200 struct mem_cgroup_per_node *mz; 3201 struct zone_reclaim_stat *rstat; 3202 unsigned long recent_rotated[2] = {0, 0}; 3203 unsigned long recent_scanned[2] = {0, 0}; 3204 3205 for_each_online_pgdat(pgdat) { 3206 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 3207 rstat = &mz->lruvec.reclaim_stat; 3208 3209 recent_rotated[0] += rstat->recent_rotated[0]; 3210 recent_rotated[1] += rstat->recent_rotated[1]; 3211 recent_scanned[0] += rstat->recent_scanned[0]; 3212 recent_scanned[1] += rstat->recent_scanned[1]; 3213 } 3214 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]); 3215 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]); 3216 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]); 3217 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]); 3218 } 3219 #endif 3220 3221 return 0; 3222 } 3223 3224 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, 3225 struct cftype *cft) 3226 { 3227 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3228 3229 return mem_cgroup_swappiness(memcg); 3230 } 3231 3232 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, 3233 struct cftype *cft, u64 val) 3234 { 3235 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3236 3237 if (val > 100) 3238 return -EINVAL; 3239 3240 if (css->parent) 3241 memcg->swappiness = val; 3242 else 3243 vm_swappiness = val; 3244 3245 return 0; 3246 } 3247 3248 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 3249 { 3250 struct mem_cgroup_threshold_ary *t; 3251 unsigned long usage; 3252 int i; 3253 3254 rcu_read_lock(); 3255 if (!swap) 3256 t = rcu_dereference(memcg->thresholds.primary); 3257 else 3258 t = rcu_dereference(memcg->memsw_thresholds.primary); 3259 3260 if (!t) 3261 goto unlock; 3262 3263 usage = mem_cgroup_usage(memcg, swap); 3264 3265 /* 3266 * current_threshold points to threshold just below or equal to usage. 3267 * If it's not true, a threshold was crossed after last 3268 * call of __mem_cgroup_threshold(). 3269 */ 3270 i = t->current_threshold; 3271 3272 /* 3273 * Iterate backward over array of thresholds starting from 3274 * current_threshold and check if a threshold is crossed. 3275 * If none of thresholds below usage is crossed, we read 3276 * only one element of the array here. 3277 */ 3278 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 3279 eventfd_signal(t->entries[i].eventfd, 1); 3280 3281 /* i = current_threshold + 1 */ 3282 i++; 3283 3284 /* 3285 * Iterate forward over array of thresholds starting from 3286 * current_threshold+1 and check if a threshold is crossed. 3287 * If none of thresholds above usage is crossed, we read 3288 * only one element of the array here. 3289 */ 3290 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 3291 eventfd_signal(t->entries[i].eventfd, 1); 3292 3293 /* Update current_threshold */ 3294 t->current_threshold = i - 1; 3295 unlock: 3296 rcu_read_unlock(); 3297 } 3298 3299 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 3300 { 3301 while (memcg) { 3302 __mem_cgroup_threshold(memcg, false); 3303 if (do_memsw_account()) 3304 __mem_cgroup_threshold(memcg, true); 3305 3306 memcg = parent_mem_cgroup(memcg); 3307 } 3308 } 3309 3310 static int compare_thresholds(const void *a, const void *b) 3311 { 3312 const struct mem_cgroup_threshold *_a = a; 3313 const struct mem_cgroup_threshold *_b = b; 3314 3315 if (_a->threshold > _b->threshold) 3316 return 1; 3317 3318 if (_a->threshold < _b->threshold) 3319 return -1; 3320 3321 return 0; 3322 } 3323 3324 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 3325 { 3326 struct mem_cgroup_eventfd_list *ev; 3327 3328 spin_lock(&memcg_oom_lock); 3329 3330 list_for_each_entry(ev, &memcg->oom_notify, list) 3331 eventfd_signal(ev->eventfd, 1); 3332 3333 spin_unlock(&memcg_oom_lock); 3334 return 0; 3335 } 3336 3337 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 3338 { 3339 struct mem_cgroup *iter; 3340 3341 for_each_mem_cgroup_tree(iter, memcg) 3342 mem_cgroup_oom_notify_cb(iter); 3343 } 3344 3345 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 3346 struct eventfd_ctx *eventfd, const char *args, enum res_type type) 3347 { 3348 struct mem_cgroup_thresholds *thresholds; 3349 struct mem_cgroup_threshold_ary *new; 3350 unsigned long threshold; 3351 unsigned long usage; 3352 int i, size, ret; 3353 3354 ret = page_counter_memparse(args, "-1", &threshold); 3355 if (ret) 3356 return ret; 3357 3358 mutex_lock(&memcg->thresholds_lock); 3359 3360 if (type == _MEM) { 3361 thresholds = &memcg->thresholds; 3362 usage = mem_cgroup_usage(memcg, false); 3363 } else if (type == _MEMSWAP) { 3364 thresholds = &memcg->memsw_thresholds; 3365 usage = mem_cgroup_usage(memcg, true); 3366 } else 3367 BUG(); 3368 3369 /* Check if a threshold crossed before adding a new one */ 3370 if (thresholds->primary) 3371 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 3372 3373 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 3374 3375 /* Allocate memory for new array of thresholds */ 3376 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold), 3377 GFP_KERNEL); 3378 if (!new) { 3379 ret = -ENOMEM; 3380 goto unlock; 3381 } 3382 new->size = size; 3383 3384 /* Copy thresholds (if any) to new array */ 3385 if (thresholds->primary) { 3386 memcpy(new->entries, thresholds->primary->entries, (size - 1) * 3387 sizeof(struct mem_cgroup_threshold)); 3388 } 3389 3390 /* Add new threshold */ 3391 new->entries[size - 1].eventfd = eventfd; 3392 new->entries[size - 1].threshold = threshold; 3393 3394 /* Sort thresholds. Registering of new threshold isn't time-critical */ 3395 sort(new->entries, size, sizeof(struct mem_cgroup_threshold), 3396 compare_thresholds, NULL); 3397 3398 /* Find current threshold */ 3399 new->current_threshold = -1; 3400 for (i = 0; i < size; i++) { 3401 if (new->entries[i].threshold <= usage) { 3402 /* 3403 * new->current_threshold will not be used until 3404 * rcu_assign_pointer(), so it's safe to increment 3405 * it here. 3406 */ 3407 ++new->current_threshold; 3408 } else 3409 break; 3410 } 3411 3412 /* Free old spare buffer and save old primary buffer as spare */ 3413 kfree(thresholds->spare); 3414 thresholds->spare = thresholds->primary; 3415 3416 rcu_assign_pointer(thresholds->primary, new); 3417 3418 /* To be sure that nobody uses thresholds */ 3419 synchronize_rcu(); 3420 3421 unlock: 3422 mutex_unlock(&memcg->thresholds_lock); 3423 3424 return ret; 3425 } 3426 3427 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 3428 struct eventfd_ctx *eventfd, const char *args) 3429 { 3430 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM); 3431 } 3432 3433 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg, 3434 struct eventfd_ctx *eventfd, const char *args) 3435 { 3436 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP); 3437 } 3438 3439 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 3440 struct eventfd_ctx *eventfd, enum res_type type) 3441 { 3442 struct mem_cgroup_thresholds *thresholds; 3443 struct mem_cgroup_threshold_ary *new; 3444 unsigned long usage; 3445 int i, j, size; 3446 3447 mutex_lock(&memcg->thresholds_lock); 3448 3449 if (type == _MEM) { 3450 thresholds = &memcg->thresholds; 3451 usage = mem_cgroup_usage(memcg, false); 3452 } else if (type == _MEMSWAP) { 3453 thresholds = &memcg->memsw_thresholds; 3454 usage = mem_cgroup_usage(memcg, true); 3455 } else 3456 BUG(); 3457 3458 if (!thresholds->primary) 3459 goto unlock; 3460 3461 /* Check if a threshold crossed before removing */ 3462 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 3463 3464 /* Calculate new number of threshold */ 3465 size = 0; 3466 for (i = 0; i < thresholds->primary->size; i++) { 3467 if (thresholds->primary->entries[i].eventfd != eventfd) 3468 size++; 3469 } 3470 3471 new = thresholds->spare; 3472 3473 /* Set thresholds array to NULL if we don't have thresholds */ 3474 if (!size) { 3475 kfree(new); 3476 new = NULL; 3477 goto swap_buffers; 3478 } 3479 3480 new->size = size; 3481 3482 /* Copy thresholds and find current threshold */ 3483 new->current_threshold = -1; 3484 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 3485 if (thresholds->primary->entries[i].eventfd == eventfd) 3486 continue; 3487 3488 new->entries[j] = thresholds->primary->entries[i]; 3489 if (new->entries[j].threshold <= usage) { 3490 /* 3491 * new->current_threshold will not be used 3492 * until rcu_assign_pointer(), so it's safe to increment 3493 * it here. 3494 */ 3495 ++new->current_threshold; 3496 } 3497 j++; 3498 } 3499 3500 swap_buffers: 3501 /* Swap primary and spare array */ 3502 thresholds->spare = thresholds->primary; 3503 3504 rcu_assign_pointer(thresholds->primary, new); 3505 3506 /* To be sure that nobody uses thresholds */ 3507 synchronize_rcu(); 3508 3509 /* If all events are unregistered, free the spare array */ 3510 if (!new) { 3511 kfree(thresholds->spare); 3512 thresholds->spare = NULL; 3513 } 3514 unlock: 3515 mutex_unlock(&memcg->thresholds_lock); 3516 } 3517 3518 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 3519 struct eventfd_ctx *eventfd) 3520 { 3521 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM); 3522 } 3523 3524 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 3525 struct eventfd_ctx *eventfd) 3526 { 3527 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP); 3528 } 3529 3530 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg, 3531 struct eventfd_ctx *eventfd, const char *args) 3532 { 3533 struct mem_cgroup_eventfd_list *event; 3534 3535 event = kmalloc(sizeof(*event), GFP_KERNEL); 3536 if (!event) 3537 return -ENOMEM; 3538 3539 spin_lock(&memcg_oom_lock); 3540 3541 event->eventfd = eventfd; 3542 list_add(&event->list, &memcg->oom_notify); 3543 3544 /* already in OOM ? */ 3545 if (memcg->under_oom) 3546 eventfd_signal(eventfd, 1); 3547 spin_unlock(&memcg_oom_lock); 3548 3549 return 0; 3550 } 3551 3552 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg, 3553 struct eventfd_ctx *eventfd) 3554 { 3555 struct mem_cgroup_eventfd_list *ev, *tmp; 3556 3557 spin_lock(&memcg_oom_lock); 3558 3559 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 3560 if (ev->eventfd == eventfd) { 3561 list_del(&ev->list); 3562 kfree(ev); 3563 } 3564 } 3565 3566 spin_unlock(&memcg_oom_lock); 3567 } 3568 3569 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v) 3570 { 3571 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf)); 3572 3573 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable); 3574 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom); 3575 return 0; 3576 } 3577 3578 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, 3579 struct cftype *cft, u64 val) 3580 { 3581 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3582 3583 /* cannot set to root cgroup and only 0 and 1 are allowed */ 3584 if (!css->parent || !((val == 0) || (val == 1))) 3585 return -EINVAL; 3586 3587 memcg->oom_kill_disable = val; 3588 if (!val) 3589 memcg_oom_recover(memcg); 3590 3591 return 0; 3592 } 3593 3594 #ifdef CONFIG_CGROUP_WRITEBACK 3595 3596 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg) 3597 { 3598 return &memcg->cgwb_list; 3599 } 3600 3601 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 3602 { 3603 return wb_domain_init(&memcg->cgwb_domain, gfp); 3604 } 3605 3606 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 3607 { 3608 wb_domain_exit(&memcg->cgwb_domain); 3609 } 3610 3611 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 3612 { 3613 wb_domain_size_changed(&memcg->cgwb_domain); 3614 } 3615 3616 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 3617 { 3618 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3619 3620 if (!memcg->css.parent) 3621 return NULL; 3622 3623 return &memcg->cgwb_domain; 3624 } 3625 3626 /** 3627 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg 3628 * @wb: bdi_writeback in question 3629 * @pfilepages: out parameter for number of file pages 3630 * @pheadroom: out parameter for number of allocatable pages according to memcg 3631 * @pdirty: out parameter for number of dirty pages 3632 * @pwriteback: out parameter for number of pages under writeback 3633 * 3634 * Determine the numbers of file, headroom, dirty, and writeback pages in 3635 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom 3636 * is a bit more involved. 3637 * 3638 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the 3639 * headroom is calculated as the lowest headroom of itself and the 3640 * ancestors. Note that this doesn't consider the actual amount of 3641 * available memory in the system. The caller should further cap 3642 * *@pheadroom accordingly. 3643 */ 3644 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 3645 unsigned long *pheadroom, unsigned long *pdirty, 3646 unsigned long *pwriteback) 3647 { 3648 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3649 struct mem_cgroup *parent; 3650 3651 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY); 3652 3653 /* this should eventually include NR_UNSTABLE_NFS */ 3654 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK); 3655 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) | 3656 (1 << LRU_ACTIVE_FILE)); 3657 *pheadroom = PAGE_COUNTER_MAX; 3658 3659 while ((parent = parent_mem_cgroup(memcg))) { 3660 unsigned long ceiling = min(memcg->memory.limit, memcg->high); 3661 unsigned long used = page_counter_read(&memcg->memory); 3662 3663 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); 3664 memcg = parent; 3665 } 3666 } 3667 3668 #else /* CONFIG_CGROUP_WRITEBACK */ 3669 3670 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 3671 { 3672 return 0; 3673 } 3674 3675 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 3676 { 3677 } 3678 3679 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 3680 { 3681 } 3682 3683 #endif /* CONFIG_CGROUP_WRITEBACK */ 3684 3685 /* 3686 * DO NOT USE IN NEW FILES. 3687 * 3688 * "cgroup.event_control" implementation. 3689 * 3690 * This is way over-engineered. It tries to support fully configurable 3691 * events for each user. Such level of flexibility is completely 3692 * unnecessary especially in the light of the planned unified hierarchy. 3693 * 3694 * Please deprecate this and replace with something simpler if at all 3695 * possible. 3696 */ 3697 3698 /* 3699 * Unregister event and free resources. 3700 * 3701 * Gets called from workqueue. 3702 */ 3703 static void memcg_event_remove(struct work_struct *work) 3704 { 3705 struct mem_cgroup_event *event = 3706 container_of(work, struct mem_cgroup_event, remove); 3707 struct mem_cgroup *memcg = event->memcg; 3708 3709 remove_wait_queue(event->wqh, &event->wait); 3710 3711 event->unregister_event(memcg, event->eventfd); 3712 3713 /* Notify userspace the event is going away. */ 3714 eventfd_signal(event->eventfd, 1); 3715 3716 eventfd_ctx_put(event->eventfd); 3717 kfree(event); 3718 css_put(&memcg->css); 3719 } 3720 3721 /* 3722 * Gets called on POLLHUP on eventfd when user closes it. 3723 * 3724 * Called with wqh->lock held and interrupts disabled. 3725 */ 3726 static int memcg_event_wake(wait_queue_t *wait, unsigned mode, 3727 int sync, void *key) 3728 { 3729 struct mem_cgroup_event *event = 3730 container_of(wait, struct mem_cgroup_event, wait); 3731 struct mem_cgroup *memcg = event->memcg; 3732 unsigned long flags = (unsigned long)key; 3733 3734 if (flags & POLLHUP) { 3735 /* 3736 * If the event has been detached at cgroup removal, we 3737 * can simply return knowing the other side will cleanup 3738 * for us. 3739 * 3740 * We can't race against event freeing since the other 3741 * side will require wqh->lock via remove_wait_queue(), 3742 * which we hold. 3743 */ 3744 spin_lock(&memcg->event_list_lock); 3745 if (!list_empty(&event->list)) { 3746 list_del_init(&event->list); 3747 /* 3748 * We are in atomic context, but cgroup_event_remove() 3749 * may sleep, so we have to call it in workqueue. 3750 */ 3751 schedule_work(&event->remove); 3752 } 3753 spin_unlock(&memcg->event_list_lock); 3754 } 3755 3756 return 0; 3757 } 3758 3759 static void memcg_event_ptable_queue_proc(struct file *file, 3760 wait_queue_head_t *wqh, poll_table *pt) 3761 { 3762 struct mem_cgroup_event *event = 3763 container_of(pt, struct mem_cgroup_event, pt); 3764 3765 event->wqh = wqh; 3766 add_wait_queue(wqh, &event->wait); 3767 } 3768 3769 /* 3770 * DO NOT USE IN NEW FILES. 3771 * 3772 * Parse input and register new cgroup event handler. 3773 * 3774 * Input must be in format '<event_fd> <control_fd> <args>'. 3775 * Interpretation of args is defined by control file implementation. 3776 */ 3777 static ssize_t memcg_write_event_control(struct kernfs_open_file *of, 3778 char *buf, size_t nbytes, loff_t off) 3779 { 3780 struct cgroup_subsys_state *css = of_css(of); 3781 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3782 struct mem_cgroup_event *event; 3783 struct cgroup_subsys_state *cfile_css; 3784 unsigned int efd, cfd; 3785 struct fd efile; 3786 struct fd cfile; 3787 const char *name; 3788 char *endp; 3789 int ret; 3790 3791 buf = strstrip(buf); 3792 3793 efd = simple_strtoul(buf, &endp, 10); 3794 if (*endp != ' ') 3795 return -EINVAL; 3796 buf = endp + 1; 3797 3798 cfd = simple_strtoul(buf, &endp, 10); 3799 if ((*endp != ' ') && (*endp != '\0')) 3800 return -EINVAL; 3801 buf = endp + 1; 3802 3803 event = kzalloc(sizeof(*event), GFP_KERNEL); 3804 if (!event) 3805 return -ENOMEM; 3806 3807 event->memcg = memcg; 3808 INIT_LIST_HEAD(&event->list); 3809 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc); 3810 init_waitqueue_func_entry(&event->wait, memcg_event_wake); 3811 INIT_WORK(&event->remove, memcg_event_remove); 3812 3813 efile = fdget(efd); 3814 if (!efile.file) { 3815 ret = -EBADF; 3816 goto out_kfree; 3817 } 3818 3819 event->eventfd = eventfd_ctx_fileget(efile.file); 3820 if (IS_ERR(event->eventfd)) { 3821 ret = PTR_ERR(event->eventfd); 3822 goto out_put_efile; 3823 } 3824 3825 cfile = fdget(cfd); 3826 if (!cfile.file) { 3827 ret = -EBADF; 3828 goto out_put_eventfd; 3829 } 3830 3831 /* the process need read permission on control file */ 3832 /* AV: shouldn't we check that it's been opened for read instead? */ 3833 ret = inode_permission(file_inode(cfile.file), MAY_READ); 3834 if (ret < 0) 3835 goto out_put_cfile; 3836 3837 /* 3838 * Determine the event callbacks and set them in @event. This used 3839 * to be done via struct cftype but cgroup core no longer knows 3840 * about these events. The following is crude but the whole thing 3841 * is for compatibility anyway. 3842 * 3843 * DO NOT ADD NEW FILES. 3844 */ 3845 name = cfile.file->f_path.dentry->d_name.name; 3846 3847 if (!strcmp(name, "memory.usage_in_bytes")) { 3848 event->register_event = mem_cgroup_usage_register_event; 3849 event->unregister_event = mem_cgroup_usage_unregister_event; 3850 } else if (!strcmp(name, "memory.oom_control")) { 3851 event->register_event = mem_cgroup_oom_register_event; 3852 event->unregister_event = mem_cgroup_oom_unregister_event; 3853 } else if (!strcmp(name, "memory.pressure_level")) { 3854 event->register_event = vmpressure_register_event; 3855 event->unregister_event = vmpressure_unregister_event; 3856 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) { 3857 event->register_event = memsw_cgroup_usage_register_event; 3858 event->unregister_event = memsw_cgroup_usage_unregister_event; 3859 } else { 3860 ret = -EINVAL; 3861 goto out_put_cfile; 3862 } 3863 3864 /* 3865 * Verify @cfile should belong to @css. Also, remaining events are 3866 * automatically removed on cgroup destruction but the removal is 3867 * asynchronous, so take an extra ref on @css. 3868 */ 3869 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent, 3870 &memory_cgrp_subsys); 3871 ret = -EINVAL; 3872 if (IS_ERR(cfile_css)) 3873 goto out_put_cfile; 3874 if (cfile_css != css) { 3875 css_put(cfile_css); 3876 goto out_put_cfile; 3877 } 3878 3879 ret = event->register_event(memcg, event->eventfd, buf); 3880 if (ret) 3881 goto out_put_css; 3882 3883 efile.file->f_op->poll(efile.file, &event->pt); 3884 3885 spin_lock(&memcg->event_list_lock); 3886 list_add(&event->list, &memcg->event_list); 3887 spin_unlock(&memcg->event_list_lock); 3888 3889 fdput(cfile); 3890 fdput(efile); 3891 3892 return nbytes; 3893 3894 out_put_css: 3895 css_put(css); 3896 out_put_cfile: 3897 fdput(cfile); 3898 out_put_eventfd: 3899 eventfd_ctx_put(event->eventfd); 3900 out_put_efile: 3901 fdput(efile); 3902 out_kfree: 3903 kfree(event); 3904 3905 return ret; 3906 } 3907 3908 static struct cftype mem_cgroup_legacy_files[] = { 3909 { 3910 .name = "usage_in_bytes", 3911 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 3912 .read_u64 = mem_cgroup_read_u64, 3913 }, 3914 { 3915 .name = "max_usage_in_bytes", 3916 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 3917 .write = mem_cgroup_reset, 3918 .read_u64 = mem_cgroup_read_u64, 3919 }, 3920 { 3921 .name = "limit_in_bytes", 3922 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 3923 .write = mem_cgroup_write, 3924 .read_u64 = mem_cgroup_read_u64, 3925 }, 3926 { 3927 .name = "soft_limit_in_bytes", 3928 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 3929 .write = mem_cgroup_write, 3930 .read_u64 = mem_cgroup_read_u64, 3931 }, 3932 { 3933 .name = "failcnt", 3934 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 3935 .write = mem_cgroup_reset, 3936 .read_u64 = mem_cgroup_read_u64, 3937 }, 3938 { 3939 .name = "stat", 3940 .seq_show = memcg_stat_show, 3941 }, 3942 { 3943 .name = "force_empty", 3944 .write = mem_cgroup_force_empty_write, 3945 }, 3946 { 3947 .name = "use_hierarchy", 3948 .write_u64 = mem_cgroup_hierarchy_write, 3949 .read_u64 = mem_cgroup_hierarchy_read, 3950 }, 3951 { 3952 .name = "cgroup.event_control", /* XXX: for compat */ 3953 .write = memcg_write_event_control, 3954 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE, 3955 }, 3956 { 3957 .name = "swappiness", 3958 .read_u64 = mem_cgroup_swappiness_read, 3959 .write_u64 = mem_cgroup_swappiness_write, 3960 }, 3961 { 3962 .name = "move_charge_at_immigrate", 3963 .read_u64 = mem_cgroup_move_charge_read, 3964 .write_u64 = mem_cgroup_move_charge_write, 3965 }, 3966 { 3967 .name = "oom_control", 3968 .seq_show = mem_cgroup_oom_control_read, 3969 .write_u64 = mem_cgroup_oom_control_write, 3970 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), 3971 }, 3972 { 3973 .name = "pressure_level", 3974 }, 3975 #ifdef CONFIG_NUMA 3976 { 3977 .name = "numa_stat", 3978 .seq_show = memcg_numa_stat_show, 3979 }, 3980 #endif 3981 { 3982 .name = "kmem.limit_in_bytes", 3983 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), 3984 .write = mem_cgroup_write, 3985 .read_u64 = mem_cgroup_read_u64, 3986 }, 3987 { 3988 .name = "kmem.usage_in_bytes", 3989 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), 3990 .read_u64 = mem_cgroup_read_u64, 3991 }, 3992 { 3993 .name = "kmem.failcnt", 3994 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), 3995 .write = mem_cgroup_reset, 3996 .read_u64 = mem_cgroup_read_u64, 3997 }, 3998 { 3999 .name = "kmem.max_usage_in_bytes", 4000 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), 4001 .write = mem_cgroup_reset, 4002 .read_u64 = mem_cgroup_read_u64, 4003 }, 4004 #ifdef CONFIG_SLABINFO 4005 { 4006 .name = "kmem.slabinfo", 4007 .seq_start = memcg_slab_start, 4008 .seq_next = memcg_slab_next, 4009 .seq_stop = memcg_slab_stop, 4010 .seq_show = memcg_slab_show, 4011 }, 4012 #endif 4013 { 4014 .name = "kmem.tcp.limit_in_bytes", 4015 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT), 4016 .write = mem_cgroup_write, 4017 .read_u64 = mem_cgroup_read_u64, 4018 }, 4019 { 4020 .name = "kmem.tcp.usage_in_bytes", 4021 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE), 4022 .read_u64 = mem_cgroup_read_u64, 4023 }, 4024 { 4025 .name = "kmem.tcp.failcnt", 4026 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT), 4027 .write = mem_cgroup_reset, 4028 .read_u64 = mem_cgroup_read_u64, 4029 }, 4030 { 4031 .name = "kmem.tcp.max_usage_in_bytes", 4032 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE), 4033 .write = mem_cgroup_reset, 4034 .read_u64 = mem_cgroup_read_u64, 4035 }, 4036 { }, /* terminate */ 4037 }; 4038 4039 /* 4040 * Private memory cgroup IDR 4041 * 4042 * Swap-out records and page cache shadow entries need to store memcg 4043 * references in constrained space, so we maintain an ID space that is 4044 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of 4045 * memory-controlled cgroups to 64k. 4046 * 4047 * However, there usually are many references to the oflline CSS after 4048 * the cgroup has been destroyed, such as page cache or reclaimable 4049 * slab objects, that don't need to hang on to the ID. We want to keep 4050 * those dead CSS from occupying IDs, or we might quickly exhaust the 4051 * relatively small ID space and prevent the creation of new cgroups 4052 * even when there are much fewer than 64k cgroups - possibly none. 4053 * 4054 * Maintain a private 16-bit ID space for memcg, and allow the ID to 4055 * be freed and recycled when it's no longer needed, which is usually 4056 * when the CSS is offlined. 4057 * 4058 * The only exception to that are records of swapped out tmpfs/shmem 4059 * pages that need to be attributed to live ancestors on swapin. But 4060 * those references are manageable from userspace. 4061 */ 4062 4063 static DEFINE_IDR(mem_cgroup_idr); 4064 4065 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n) 4066 { 4067 VM_BUG_ON(atomic_read(&memcg->id.ref) <= 0); 4068 atomic_add(n, &memcg->id.ref); 4069 } 4070 4071 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n) 4072 { 4073 VM_BUG_ON(atomic_read(&memcg->id.ref) < n); 4074 if (atomic_sub_and_test(n, &memcg->id.ref)) { 4075 idr_remove(&mem_cgroup_idr, memcg->id.id); 4076 memcg->id.id = 0; 4077 4078 /* Memcg ID pins CSS */ 4079 css_put(&memcg->css); 4080 } 4081 } 4082 4083 static inline void mem_cgroup_id_get(struct mem_cgroup *memcg) 4084 { 4085 mem_cgroup_id_get_many(memcg, 1); 4086 } 4087 4088 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg) 4089 { 4090 mem_cgroup_id_put_many(memcg, 1); 4091 } 4092 4093 /** 4094 * mem_cgroup_from_id - look up a memcg from a memcg id 4095 * @id: the memcg id to look up 4096 * 4097 * Caller must hold rcu_read_lock(). 4098 */ 4099 struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 4100 { 4101 WARN_ON_ONCE(!rcu_read_lock_held()); 4102 return idr_find(&mem_cgroup_idr, id); 4103 } 4104 4105 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 4106 { 4107 struct mem_cgroup_per_node *pn; 4108 int tmp = node; 4109 /* 4110 * This routine is called against possible nodes. 4111 * But it's BUG to call kmalloc() against offline node. 4112 * 4113 * TODO: this routine can waste much memory for nodes which will 4114 * never be onlined. It's better to use memory hotplug callback 4115 * function. 4116 */ 4117 if (!node_state(node, N_NORMAL_MEMORY)) 4118 tmp = -1; 4119 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); 4120 if (!pn) 4121 return 1; 4122 4123 lruvec_init(&pn->lruvec); 4124 pn->usage_in_excess = 0; 4125 pn->on_tree = false; 4126 pn->memcg = memcg; 4127 4128 memcg->nodeinfo[node] = pn; 4129 return 0; 4130 } 4131 4132 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 4133 { 4134 kfree(memcg->nodeinfo[node]); 4135 } 4136 4137 static void mem_cgroup_free(struct mem_cgroup *memcg) 4138 { 4139 int node; 4140 4141 memcg_wb_domain_exit(memcg); 4142 for_each_node(node) 4143 free_mem_cgroup_per_node_info(memcg, node); 4144 free_percpu(memcg->stat); 4145 kfree(memcg); 4146 } 4147 4148 static struct mem_cgroup *mem_cgroup_alloc(void) 4149 { 4150 struct mem_cgroup *memcg; 4151 size_t size; 4152 int node; 4153 4154 size = sizeof(struct mem_cgroup); 4155 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *); 4156 4157 memcg = kzalloc(size, GFP_KERNEL); 4158 if (!memcg) 4159 return NULL; 4160 4161 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL, 4162 1, MEM_CGROUP_ID_MAX, 4163 GFP_KERNEL); 4164 if (memcg->id.id < 0) 4165 goto fail; 4166 4167 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu); 4168 if (!memcg->stat) 4169 goto fail; 4170 4171 for_each_node(node) 4172 if (alloc_mem_cgroup_per_node_info(memcg, node)) 4173 goto fail; 4174 4175 if (memcg_wb_domain_init(memcg, GFP_KERNEL)) 4176 goto fail; 4177 4178 INIT_WORK(&memcg->high_work, high_work_func); 4179 memcg->last_scanned_node = MAX_NUMNODES; 4180 INIT_LIST_HEAD(&memcg->oom_notify); 4181 mutex_init(&memcg->thresholds_lock); 4182 spin_lock_init(&memcg->move_lock); 4183 vmpressure_init(&memcg->vmpressure); 4184 INIT_LIST_HEAD(&memcg->event_list); 4185 spin_lock_init(&memcg->event_list_lock); 4186 memcg->socket_pressure = jiffies; 4187 #ifndef CONFIG_SLOB 4188 memcg->kmemcg_id = -1; 4189 #endif 4190 #ifdef CONFIG_CGROUP_WRITEBACK 4191 INIT_LIST_HEAD(&memcg->cgwb_list); 4192 #endif 4193 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id); 4194 return memcg; 4195 fail: 4196 if (memcg->id.id > 0) 4197 idr_remove(&mem_cgroup_idr, memcg->id.id); 4198 mem_cgroup_free(memcg); 4199 return NULL; 4200 } 4201 4202 static struct cgroup_subsys_state * __ref 4203 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 4204 { 4205 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); 4206 struct mem_cgroup *memcg; 4207 long error = -ENOMEM; 4208 4209 memcg = mem_cgroup_alloc(); 4210 if (!memcg) 4211 return ERR_PTR(error); 4212 4213 memcg->high = PAGE_COUNTER_MAX; 4214 memcg->soft_limit = PAGE_COUNTER_MAX; 4215 if (parent) { 4216 memcg->swappiness = mem_cgroup_swappiness(parent); 4217 memcg->oom_kill_disable = parent->oom_kill_disable; 4218 } 4219 if (parent && parent->use_hierarchy) { 4220 memcg->use_hierarchy = true; 4221 page_counter_init(&memcg->memory, &parent->memory); 4222 page_counter_init(&memcg->swap, &parent->swap); 4223 page_counter_init(&memcg->memsw, &parent->memsw); 4224 page_counter_init(&memcg->kmem, &parent->kmem); 4225 page_counter_init(&memcg->tcpmem, &parent->tcpmem); 4226 } else { 4227 page_counter_init(&memcg->memory, NULL); 4228 page_counter_init(&memcg->swap, NULL); 4229 page_counter_init(&memcg->memsw, NULL); 4230 page_counter_init(&memcg->kmem, NULL); 4231 page_counter_init(&memcg->tcpmem, NULL); 4232 /* 4233 * Deeper hierachy with use_hierarchy == false doesn't make 4234 * much sense so let cgroup subsystem know about this 4235 * unfortunate state in our controller. 4236 */ 4237 if (parent != root_mem_cgroup) 4238 memory_cgrp_subsys.broken_hierarchy = true; 4239 } 4240 4241 /* The following stuff does not apply to the root */ 4242 if (!parent) { 4243 root_mem_cgroup = memcg; 4244 return &memcg->css; 4245 } 4246 4247 error = memcg_online_kmem(memcg); 4248 if (error) 4249 goto fail; 4250 4251 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 4252 static_branch_inc(&memcg_sockets_enabled_key); 4253 4254 return &memcg->css; 4255 fail: 4256 mem_cgroup_free(memcg); 4257 return ERR_PTR(-ENOMEM); 4258 } 4259 4260 static int mem_cgroup_css_online(struct cgroup_subsys_state *css) 4261 { 4262 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4263 4264 /* Online state pins memcg ID, memcg ID pins CSS */ 4265 atomic_set(&memcg->id.ref, 1); 4266 css_get(css); 4267 return 0; 4268 } 4269 4270 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 4271 { 4272 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4273 struct mem_cgroup_event *event, *tmp; 4274 4275 /* 4276 * Unregister events and notify userspace. 4277 * Notify userspace about cgroup removing only after rmdir of cgroup 4278 * directory to avoid race between userspace and kernelspace. 4279 */ 4280 spin_lock(&memcg->event_list_lock); 4281 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) { 4282 list_del_init(&event->list); 4283 schedule_work(&event->remove); 4284 } 4285 spin_unlock(&memcg->event_list_lock); 4286 4287 memcg_offline_kmem(memcg); 4288 wb_memcg_offline(memcg); 4289 4290 mem_cgroup_id_put(memcg); 4291 } 4292 4293 static void mem_cgroup_css_released(struct cgroup_subsys_state *css) 4294 { 4295 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4296 4297 invalidate_reclaim_iterators(memcg); 4298 } 4299 4300 static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 4301 { 4302 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4303 4304 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 4305 static_branch_dec(&memcg_sockets_enabled_key); 4306 4307 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active) 4308 static_branch_dec(&memcg_sockets_enabled_key); 4309 4310 vmpressure_cleanup(&memcg->vmpressure); 4311 cancel_work_sync(&memcg->high_work); 4312 mem_cgroup_remove_from_trees(memcg); 4313 memcg_free_kmem(memcg); 4314 mem_cgroup_free(memcg); 4315 } 4316 4317 /** 4318 * mem_cgroup_css_reset - reset the states of a mem_cgroup 4319 * @css: the target css 4320 * 4321 * Reset the states of the mem_cgroup associated with @css. This is 4322 * invoked when the userland requests disabling on the default hierarchy 4323 * but the memcg is pinned through dependency. The memcg should stop 4324 * applying policies and should revert to the vanilla state as it may be 4325 * made visible again. 4326 * 4327 * The current implementation only resets the essential configurations. 4328 * This needs to be expanded to cover all the visible parts. 4329 */ 4330 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) 4331 { 4332 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4333 4334 page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX); 4335 page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX); 4336 page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX); 4337 page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX); 4338 page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX); 4339 memcg->low = 0; 4340 memcg->high = PAGE_COUNTER_MAX; 4341 memcg->soft_limit = PAGE_COUNTER_MAX; 4342 memcg_wb_domain_size_changed(memcg); 4343 } 4344 4345 #ifdef CONFIG_MMU 4346 /* Handlers for move charge at task migration. */ 4347 static int mem_cgroup_do_precharge(unsigned long count) 4348 { 4349 int ret; 4350 4351 /* Try a single bulk charge without reclaim first, kswapd may wake */ 4352 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count); 4353 if (!ret) { 4354 mc.precharge += count; 4355 return ret; 4356 } 4357 4358 /* Try charges one by one with reclaim, but do not retry */ 4359 while (count--) { 4360 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1); 4361 if (ret) 4362 return ret; 4363 mc.precharge++; 4364 cond_resched(); 4365 } 4366 return 0; 4367 } 4368 4369 union mc_target { 4370 struct page *page; 4371 swp_entry_t ent; 4372 }; 4373 4374 enum mc_target_type { 4375 MC_TARGET_NONE = 0, 4376 MC_TARGET_PAGE, 4377 MC_TARGET_SWAP, 4378 }; 4379 4380 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 4381 unsigned long addr, pte_t ptent) 4382 { 4383 struct page *page = vm_normal_page(vma, addr, ptent); 4384 4385 if (!page || !page_mapped(page)) 4386 return NULL; 4387 if (PageAnon(page)) { 4388 if (!(mc.flags & MOVE_ANON)) 4389 return NULL; 4390 } else { 4391 if (!(mc.flags & MOVE_FILE)) 4392 return NULL; 4393 } 4394 if (!get_page_unless_zero(page)) 4395 return NULL; 4396 4397 return page; 4398 } 4399 4400 #ifdef CONFIG_SWAP 4401 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 4402 pte_t ptent, swp_entry_t *entry) 4403 { 4404 struct page *page = NULL; 4405 swp_entry_t ent = pte_to_swp_entry(ptent); 4406 4407 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent)) 4408 return NULL; 4409 /* 4410 * Because lookup_swap_cache() updates some statistics counter, 4411 * we call find_get_page() with swapper_space directly. 4412 */ 4413 page = find_get_page(swap_address_space(ent), swp_offset(ent)); 4414 if (do_memsw_account()) 4415 entry->val = ent.val; 4416 4417 return page; 4418 } 4419 #else 4420 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 4421 pte_t ptent, swp_entry_t *entry) 4422 { 4423 return NULL; 4424 } 4425 #endif 4426 4427 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 4428 unsigned long addr, pte_t ptent, swp_entry_t *entry) 4429 { 4430 struct page *page = NULL; 4431 struct address_space *mapping; 4432 pgoff_t pgoff; 4433 4434 if (!vma->vm_file) /* anonymous vma */ 4435 return NULL; 4436 if (!(mc.flags & MOVE_FILE)) 4437 return NULL; 4438 4439 mapping = vma->vm_file->f_mapping; 4440 pgoff = linear_page_index(vma, addr); 4441 4442 /* page is moved even if it's not RSS of this task(page-faulted). */ 4443 #ifdef CONFIG_SWAP 4444 /* shmem/tmpfs may report page out on swap: account for that too. */ 4445 if (shmem_mapping(mapping)) { 4446 page = find_get_entry(mapping, pgoff); 4447 if (radix_tree_exceptional_entry(page)) { 4448 swp_entry_t swp = radix_to_swp_entry(page); 4449 if (do_memsw_account()) 4450 *entry = swp; 4451 page = find_get_page(swap_address_space(swp), 4452 swp_offset(swp)); 4453 } 4454 } else 4455 page = find_get_page(mapping, pgoff); 4456 #else 4457 page = find_get_page(mapping, pgoff); 4458 #endif 4459 return page; 4460 } 4461 4462 /** 4463 * mem_cgroup_move_account - move account of the page 4464 * @page: the page 4465 * @compound: charge the page as compound or small page 4466 * @from: mem_cgroup which the page is moved from. 4467 * @to: mem_cgroup which the page is moved to. @from != @to. 4468 * 4469 * The caller must make sure the page is not on LRU (isolate_page() is useful.) 4470 * 4471 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" 4472 * from old cgroup. 4473 */ 4474 static int mem_cgroup_move_account(struct page *page, 4475 bool compound, 4476 struct mem_cgroup *from, 4477 struct mem_cgroup *to) 4478 { 4479 unsigned long flags; 4480 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 4481 int ret; 4482 bool anon; 4483 4484 VM_BUG_ON(from == to); 4485 VM_BUG_ON_PAGE(PageLRU(page), page); 4486 VM_BUG_ON(compound && !PageTransHuge(page)); 4487 4488 /* 4489 * Prevent mem_cgroup_migrate() from looking at 4490 * page->mem_cgroup of its source page while we change it. 4491 */ 4492 ret = -EBUSY; 4493 if (!trylock_page(page)) 4494 goto out; 4495 4496 ret = -EINVAL; 4497 if (page->mem_cgroup != from) 4498 goto out_unlock; 4499 4500 anon = PageAnon(page); 4501 4502 spin_lock_irqsave(&from->move_lock, flags); 4503 4504 if (!anon && page_mapped(page)) { 4505 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED], 4506 nr_pages); 4507 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED], 4508 nr_pages); 4509 } 4510 4511 /* 4512 * move_lock grabbed above and caller set from->moving_account, so 4513 * mem_cgroup_update_page_stat() will serialize updates to PageDirty. 4514 * So mapping should be stable for dirty pages. 4515 */ 4516 if (!anon && PageDirty(page)) { 4517 struct address_space *mapping = page_mapping(page); 4518 4519 if (mapping_cap_account_dirty(mapping)) { 4520 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY], 4521 nr_pages); 4522 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY], 4523 nr_pages); 4524 } 4525 } 4526 4527 if (PageWriteback(page)) { 4528 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK], 4529 nr_pages); 4530 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK], 4531 nr_pages); 4532 } 4533 4534 /* 4535 * It is safe to change page->mem_cgroup here because the page 4536 * is referenced, charged, and isolated - we can't race with 4537 * uncharging, charging, migration, or LRU putback. 4538 */ 4539 4540 /* caller should have done css_get */ 4541 page->mem_cgroup = to; 4542 spin_unlock_irqrestore(&from->move_lock, flags); 4543 4544 ret = 0; 4545 4546 local_irq_disable(); 4547 mem_cgroup_charge_statistics(to, page, compound, nr_pages); 4548 memcg_check_events(to, page); 4549 mem_cgroup_charge_statistics(from, page, compound, -nr_pages); 4550 memcg_check_events(from, page); 4551 local_irq_enable(); 4552 out_unlock: 4553 unlock_page(page); 4554 out: 4555 return ret; 4556 } 4557 4558 /** 4559 * get_mctgt_type - get target type of moving charge 4560 * @vma: the vma the pte to be checked belongs 4561 * @addr: the address corresponding to the pte to be checked 4562 * @ptent: the pte to be checked 4563 * @target: the pointer the target page or swap ent will be stored(can be NULL) 4564 * 4565 * Returns 4566 * 0(MC_TARGET_NONE): if the pte is not a target for move charge. 4567 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for 4568 * move charge. if @target is not NULL, the page is stored in target->page 4569 * with extra refcnt got(Callers should handle it). 4570 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a 4571 * target for charge migration. if @target is not NULL, the entry is stored 4572 * in target->ent. 4573 * 4574 * Called with pte lock held. 4575 */ 4576 4577 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, 4578 unsigned long addr, pte_t ptent, union mc_target *target) 4579 { 4580 struct page *page = NULL; 4581 enum mc_target_type ret = MC_TARGET_NONE; 4582 swp_entry_t ent = { .val = 0 }; 4583 4584 if (pte_present(ptent)) 4585 page = mc_handle_present_pte(vma, addr, ptent); 4586 else if (is_swap_pte(ptent)) 4587 page = mc_handle_swap_pte(vma, ptent, &ent); 4588 else if (pte_none(ptent)) 4589 page = mc_handle_file_pte(vma, addr, ptent, &ent); 4590 4591 if (!page && !ent.val) 4592 return ret; 4593 if (page) { 4594 /* 4595 * Do only loose check w/o serialization. 4596 * mem_cgroup_move_account() checks the page is valid or 4597 * not under LRU exclusion. 4598 */ 4599 if (page->mem_cgroup == mc.from) { 4600 ret = MC_TARGET_PAGE; 4601 if (target) 4602 target->page = page; 4603 } 4604 if (!ret || !target) 4605 put_page(page); 4606 } 4607 /* There is a swap entry and a page doesn't exist or isn't charged */ 4608 if (ent.val && !ret && 4609 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) { 4610 ret = MC_TARGET_SWAP; 4611 if (target) 4612 target->ent = ent; 4613 } 4614 return ret; 4615 } 4616 4617 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4618 /* 4619 * We don't consider swapping or file mapped pages because THP does not 4620 * support them for now. 4621 * Caller should make sure that pmd_trans_huge(pmd) is true. 4622 */ 4623 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 4624 unsigned long addr, pmd_t pmd, union mc_target *target) 4625 { 4626 struct page *page = NULL; 4627 enum mc_target_type ret = MC_TARGET_NONE; 4628 4629 page = pmd_page(pmd); 4630 VM_BUG_ON_PAGE(!page || !PageHead(page), page); 4631 if (!(mc.flags & MOVE_ANON)) 4632 return ret; 4633 if (page->mem_cgroup == mc.from) { 4634 ret = MC_TARGET_PAGE; 4635 if (target) { 4636 get_page(page); 4637 target->page = page; 4638 } 4639 } 4640 return ret; 4641 } 4642 #else 4643 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 4644 unsigned long addr, pmd_t pmd, union mc_target *target) 4645 { 4646 return MC_TARGET_NONE; 4647 } 4648 #endif 4649 4650 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 4651 unsigned long addr, unsigned long end, 4652 struct mm_walk *walk) 4653 { 4654 struct vm_area_struct *vma = walk->vma; 4655 pte_t *pte; 4656 spinlock_t *ptl; 4657 4658 ptl = pmd_trans_huge_lock(pmd, vma); 4659 if (ptl) { 4660 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) 4661 mc.precharge += HPAGE_PMD_NR; 4662 spin_unlock(ptl); 4663 return 0; 4664 } 4665 4666 if (pmd_trans_unstable(pmd)) 4667 return 0; 4668 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 4669 for (; addr != end; pte++, addr += PAGE_SIZE) 4670 if (get_mctgt_type(vma, addr, *pte, NULL)) 4671 mc.precharge++; /* increment precharge temporarily */ 4672 pte_unmap_unlock(pte - 1, ptl); 4673 cond_resched(); 4674 4675 return 0; 4676 } 4677 4678 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 4679 { 4680 unsigned long precharge; 4681 4682 struct mm_walk mem_cgroup_count_precharge_walk = { 4683 .pmd_entry = mem_cgroup_count_precharge_pte_range, 4684 .mm = mm, 4685 }; 4686 down_read(&mm->mmap_sem); 4687 walk_page_range(0, mm->highest_vm_end, 4688 &mem_cgroup_count_precharge_walk); 4689 up_read(&mm->mmap_sem); 4690 4691 precharge = mc.precharge; 4692 mc.precharge = 0; 4693 4694 return precharge; 4695 } 4696 4697 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 4698 { 4699 unsigned long precharge = mem_cgroup_count_precharge(mm); 4700 4701 VM_BUG_ON(mc.moving_task); 4702 mc.moving_task = current; 4703 return mem_cgroup_do_precharge(precharge); 4704 } 4705 4706 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 4707 static void __mem_cgroup_clear_mc(void) 4708 { 4709 struct mem_cgroup *from = mc.from; 4710 struct mem_cgroup *to = mc.to; 4711 4712 /* we must uncharge all the leftover precharges from mc.to */ 4713 if (mc.precharge) { 4714 cancel_charge(mc.to, mc.precharge); 4715 mc.precharge = 0; 4716 } 4717 /* 4718 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 4719 * we must uncharge here. 4720 */ 4721 if (mc.moved_charge) { 4722 cancel_charge(mc.from, mc.moved_charge); 4723 mc.moved_charge = 0; 4724 } 4725 /* we must fixup refcnts and charges */ 4726 if (mc.moved_swap) { 4727 /* uncharge swap account from the old cgroup */ 4728 if (!mem_cgroup_is_root(mc.from)) 4729 page_counter_uncharge(&mc.from->memsw, mc.moved_swap); 4730 4731 mem_cgroup_id_put_many(mc.from, mc.moved_swap); 4732 4733 /* 4734 * we charged both to->memory and to->memsw, so we 4735 * should uncharge to->memory. 4736 */ 4737 if (!mem_cgroup_is_root(mc.to)) 4738 page_counter_uncharge(&mc.to->memory, mc.moved_swap); 4739 4740 mem_cgroup_id_get_many(mc.to, mc.moved_swap); 4741 css_put_many(&mc.to->css, mc.moved_swap); 4742 4743 mc.moved_swap = 0; 4744 } 4745 memcg_oom_recover(from); 4746 memcg_oom_recover(to); 4747 wake_up_all(&mc.waitq); 4748 } 4749 4750 static void mem_cgroup_clear_mc(void) 4751 { 4752 struct mm_struct *mm = mc.mm; 4753 4754 /* 4755 * we must clear moving_task before waking up waiters at the end of 4756 * task migration. 4757 */ 4758 mc.moving_task = NULL; 4759 __mem_cgroup_clear_mc(); 4760 spin_lock(&mc.lock); 4761 mc.from = NULL; 4762 mc.to = NULL; 4763 mc.mm = NULL; 4764 spin_unlock(&mc.lock); 4765 4766 mmput(mm); 4767 } 4768 4769 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 4770 { 4771 struct cgroup_subsys_state *css; 4772 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */ 4773 struct mem_cgroup *from; 4774 struct task_struct *leader, *p; 4775 struct mm_struct *mm; 4776 unsigned long move_flags; 4777 int ret = 0; 4778 4779 /* charge immigration isn't supported on the default hierarchy */ 4780 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 4781 return 0; 4782 4783 /* 4784 * Multi-process migrations only happen on the default hierarchy 4785 * where charge immigration is not used. Perform charge 4786 * immigration if @tset contains a leader and whine if there are 4787 * multiple. 4788 */ 4789 p = NULL; 4790 cgroup_taskset_for_each_leader(leader, css, tset) { 4791 WARN_ON_ONCE(p); 4792 p = leader; 4793 memcg = mem_cgroup_from_css(css); 4794 } 4795 if (!p) 4796 return 0; 4797 4798 /* 4799 * We are now commited to this value whatever it is. Changes in this 4800 * tunable will only affect upcoming migrations, not the current one. 4801 * So we need to save it, and keep it going. 4802 */ 4803 move_flags = READ_ONCE(memcg->move_charge_at_immigrate); 4804 if (!move_flags) 4805 return 0; 4806 4807 from = mem_cgroup_from_task(p); 4808 4809 VM_BUG_ON(from == memcg); 4810 4811 mm = get_task_mm(p); 4812 if (!mm) 4813 return 0; 4814 /* We move charges only when we move a owner of the mm */ 4815 if (mm->owner == p) { 4816 VM_BUG_ON(mc.from); 4817 VM_BUG_ON(mc.to); 4818 VM_BUG_ON(mc.precharge); 4819 VM_BUG_ON(mc.moved_charge); 4820 VM_BUG_ON(mc.moved_swap); 4821 4822 spin_lock(&mc.lock); 4823 mc.mm = mm; 4824 mc.from = from; 4825 mc.to = memcg; 4826 mc.flags = move_flags; 4827 spin_unlock(&mc.lock); 4828 /* We set mc.moving_task later */ 4829 4830 ret = mem_cgroup_precharge_mc(mm); 4831 if (ret) 4832 mem_cgroup_clear_mc(); 4833 } else { 4834 mmput(mm); 4835 } 4836 return ret; 4837 } 4838 4839 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 4840 { 4841 if (mc.to) 4842 mem_cgroup_clear_mc(); 4843 } 4844 4845 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 4846 unsigned long addr, unsigned long end, 4847 struct mm_walk *walk) 4848 { 4849 int ret = 0; 4850 struct vm_area_struct *vma = walk->vma; 4851 pte_t *pte; 4852 spinlock_t *ptl; 4853 enum mc_target_type target_type; 4854 union mc_target target; 4855 struct page *page; 4856 4857 ptl = pmd_trans_huge_lock(pmd, vma); 4858 if (ptl) { 4859 if (mc.precharge < HPAGE_PMD_NR) { 4860 spin_unlock(ptl); 4861 return 0; 4862 } 4863 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); 4864 if (target_type == MC_TARGET_PAGE) { 4865 page = target.page; 4866 if (!isolate_lru_page(page)) { 4867 if (!mem_cgroup_move_account(page, true, 4868 mc.from, mc.to)) { 4869 mc.precharge -= HPAGE_PMD_NR; 4870 mc.moved_charge += HPAGE_PMD_NR; 4871 } 4872 putback_lru_page(page); 4873 } 4874 put_page(page); 4875 } 4876 spin_unlock(ptl); 4877 return 0; 4878 } 4879 4880 if (pmd_trans_unstable(pmd)) 4881 return 0; 4882 retry: 4883 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 4884 for (; addr != end; addr += PAGE_SIZE) { 4885 pte_t ptent = *(pte++); 4886 swp_entry_t ent; 4887 4888 if (!mc.precharge) 4889 break; 4890 4891 switch (get_mctgt_type(vma, addr, ptent, &target)) { 4892 case MC_TARGET_PAGE: 4893 page = target.page; 4894 /* 4895 * We can have a part of the split pmd here. Moving it 4896 * can be done but it would be too convoluted so simply 4897 * ignore such a partial THP and keep it in original 4898 * memcg. There should be somebody mapping the head. 4899 */ 4900 if (PageTransCompound(page)) 4901 goto put; 4902 if (isolate_lru_page(page)) 4903 goto put; 4904 if (!mem_cgroup_move_account(page, false, 4905 mc.from, mc.to)) { 4906 mc.precharge--; 4907 /* we uncharge from mc.from later. */ 4908 mc.moved_charge++; 4909 } 4910 putback_lru_page(page); 4911 put: /* get_mctgt_type() gets the page */ 4912 put_page(page); 4913 break; 4914 case MC_TARGET_SWAP: 4915 ent = target.ent; 4916 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { 4917 mc.precharge--; 4918 /* we fixup refcnts and charges later. */ 4919 mc.moved_swap++; 4920 } 4921 break; 4922 default: 4923 break; 4924 } 4925 } 4926 pte_unmap_unlock(pte - 1, ptl); 4927 cond_resched(); 4928 4929 if (addr != end) { 4930 /* 4931 * We have consumed all precharges we got in can_attach(). 4932 * We try charge one by one, but don't do any additional 4933 * charges to mc.to if we have failed in charge once in attach() 4934 * phase. 4935 */ 4936 ret = mem_cgroup_do_precharge(1); 4937 if (!ret) 4938 goto retry; 4939 } 4940 4941 return ret; 4942 } 4943 4944 static void mem_cgroup_move_charge(void) 4945 { 4946 struct mm_walk mem_cgroup_move_charge_walk = { 4947 .pmd_entry = mem_cgroup_move_charge_pte_range, 4948 .mm = mc.mm, 4949 }; 4950 4951 lru_add_drain_all(); 4952 /* 4953 * Signal lock_page_memcg() to take the memcg's move_lock 4954 * while we're moving its pages to another memcg. Then wait 4955 * for already started RCU-only updates to finish. 4956 */ 4957 atomic_inc(&mc.from->moving_account); 4958 synchronize_rcu(); 4959 retry: 4960 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) { 4961 /* 4962 * Someone who are holding the mmap_sem might be waiting in 4963 * waitq. So we cancel all extra charges, wake up all waiters, 4964 * and retry. Because we cancel precharges, we might not be able 4965 * to move enough charges, but moving charge is a best-effort 4966 * feature anyway, so it wouldn't be a big problem. 4967 */ 4968 __mem_cgroup_clear_mc(); 4969 cond_resched(); 4970 goto retry; 4971 } 4972 /* 4973 * When we have consumed all precharges and failed in doing 4974 * additional charge, the page walk just aborts. 4975 */ 4976 walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk); 4977 4978 up_read(&mc.mm->mmap_sem); 4979 atomic_dec(&mc.from->moving_account); 4980 } 4981 4982 static void mem_cgroup_move_task(void) 4983 { 4984 if (mc.to) { 4985 mem_cgroup_move_charge(); 4986 mem_cgroup_clear_mc(); 4987 } 4988 } 4989 #else /* !CONFIG_MMU */ 4990 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 4991 { 4992 return 0; 4993 } 4994 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 4995 { 4996 } 4997 static void mem_cgroup_move_task(void) 4998 { 4999 } 5000 #endif 5001 5002 /* 5003 * Cgroup retains root cgroups across [un]mount cycles making it necessary 5004 * to verify whether we're attached to the default hierarchy on each mount 5005 * attempt. 5006 */ 5007 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css) 5008 { 5009 /* 5010 * use_hierarchy is forced on the default hierarchy. cgroup core 5011 * guarantees that @root doesn't have any children, so turning it 5012 * on for the root memcg is enough. 5013 */ 5014 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5015 root_mem_cgroup->use_hierarchy = true; 5016 else 5017 root_mem_cgroup->use_hierarchy = false; 5018 } 5019 5020 static u64 memory_current_read(struct cgroup_subsys_state *css, 5021 struct cftype *cft) 5022 { 5023 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5024 5025 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; 5026 } 5027 5028 static int memory_low_show(struct seq_file *m, void *v) 5029 { 5030 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5031 unsigned long low = READ_ONCE(memcg->low); 5032 5033 if (low == PAGE_COUNTER_MAX) 5034 seq_puts(m, "max\n"); 5035 else 5036 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE); 5037 5038 return 0; 5039 } 5040 5041 static ssize_t memory_low_write(struct kernfs_open_file *of, 5042 char *buf, size_t nbytes, loff_t off) 5043 { 5044 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5045 unsigned long low; 5046 int err; 5047 5048 buf = strstrip(buf); 5049 err = page_counter_memparse(buf, "max", &low); 5050 if (err) 5051 return err; 5052 5053 memcg->low = low; 5054 5055 return nbytes; 5056 } 5057 5058 static int memory_high_show(struct seq_file *m, void *v) 5059 { 5060 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5061 unsigned long high = READ_ONCE(memcg->high); 5062 5063 if (high == PAGE_COUNTER_MAX) 5064 seq_puts(m, "max\n"); 5065 else 5066 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE); 5067 5068 return 0; 5069 } 5070 5071 static ssize_t memory_high_write(struct kernfs_open_file *of, 5072 char *buf, size_t nbytes, loff_t off) 5073 { 5074 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5075 unsigned long nr_pages; 5076 unsigned long high; 5077 int err; 5078 5079 buf = strstrip(buf); 5080 err = page_counter_memparse(buf, "max", &high); 5081 if (err) 5082 return err; 5083 5084 memcg->high = high; 5085 5086 nr_pages = page_counter_read(&memcg->memory); 5087 if (nr_pages > high) 5088 try_to_free_mem_cgroup_pages(memcg, nr_pages - high, 5089 GFP_KERNEL, true); 5090 5091 memcg_wb_domain_size_changed(memcg); 5092 return nbytes; 5093 } 5094 5095 static int memory_max_show(struct seq_file *m, void *v) 5096 { 5097 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5098 unsigned long max = READ_ONCE(memcg->memory.limit); 5099 5100 if (max == PAGE_COUNTER_MAX) 5101 seq_puts(m, "max\n"); 5102 else 5103 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE); 5104 5105 return 0; 5106 } 5107 5108 static ssize_t memory_max_write(struct kernfs_open_file *of, 5109 char *buf, size_t nbytes, loff_t off) 5110 { 5111 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5112 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES; 5113 bool drained = false; 5114 unsigned long max; 5115 int err; 5116 5117 buf = strstrip(buf); 5118 err = page_counter_memparse(buf, "max", &max); 5119 if (err) 5120 return err; 5121 5122 xchg(&memcg->memory.limit, max); 5123 5124 for (;;) { 5125 unsigned long nr_pages = page_counter_read(&memcg->memory); 5126 5127 if (nr_pages <= max) 5128 break; 5129 5130 if (signal_pending(current)) { 5131 err = -EINTR; 5132 break; 5133 } 5134 5135 if (!drained) { 5136 drain_all_stock(memcg); 5137 drained = true; 5138 continue; 5139 } 5140 5141 if (nr_reclaims) { 5142 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max, 5143 GFP_KERNEL, true)) 5144 nr_reclaims--; 5145 continue; 5146 } 5147 5148 mem_cgroup_events(memcg, MEMCG_OOM, 1); 5149 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0)) 5150 break; 5151 } 5152 5153 memcg_wb_domain_size_changed(memcg); 5154 return nbytes; 5155 } 5156 5157 static int memory_events_show(struct seq_file *m, void *v) 5158 { 5159 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5160 5161 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW)); 5162 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH)); 5163 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX)); 5164 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM)); 5165 5166 return 0; 5167 } 5168 5169 static int memory_stat_show(struct seq_file *m, void *v) 5170 { 5171 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5172 unsigned long stat[MEMCG_NR_STAT]; 5173 unsigned long events[MEMCG_NR_EVENTS]; 5174 int i; 5175 5176 /* 5177 * Provide statistics on the state of the memory subsystem as 5178 * well as cumulative event counters that show past behavior. 5179 * 5180 * This list is ordered following a combination of these gradients: 5181 * 1) generic big picture -> specifics and details 5182 * 2) reflecting userspace activity -> reflecting kernel heuristics 5183 * 5184 * Current memory state: 5185 */ 5186 5187 tree_stat(memcg, stat); 5188 tree_events(memcg, events); 5189 5190 seq_printf(m, "anon %llu\n", 5191 (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE); 5192 seq_printf(m, "file %llu\n", 5193 (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE); 5194 seq_printf(m, "kernel_stack %llu\n", 5195 (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024); 5196 seq_printf(m, "slab %llu\n", 5197 (u64)(stat[MEMCG_SLAB_RECLAIMABLE] + 5198 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE); 5199 seq_printf(m, "sock %llu\n", 5200 (u64)stat[MEMCG_SOCK] * PAGE_SIZE); 5201 5202 seq_printf(m, "file_mapped %llu\n", 5203 (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE); 5204 seq_printf(m, "file_dirty %llu\n", 5205 (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE); 5206 seq_printf(m, "file_writeback %llu\n", 5207 (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE); 5208 5209 for (i = 0; i < NR_LRU_LISTS; i++) { 5210 struct mem_cgroup *mi; 5211 unsigned long val = 0; 5212 5213 for_each_mem_cgroup_tree(mi, memcg) 5214 val += mem_cgroup_nr_lru_pages(mi, BIT(i)); 5215 seq_printf(m, "%s %llu\n", 5216 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE); 5217 } 5218 5219 seq_printf(m, "slab_reclaimable %llu\n", 5220 (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE); 5221 seq_printf(m, "slab_unreclaimable %llu\n", 5222 (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE); 5223 5224 /* Accumulated memory events */ 5225 5226 seq_printf(m, "pgfault %lu\n", 5227 events[MEM_CGROUP_EVENTS_PGFAULT]); 5228 seq_printf(m, "pgmajfault %lu\n", 5229 events[MEM_CGROUP_EVENTS_PGMAJFAULT]); 5230 5231 return 0; 5232 } 5233 5234 static struct cftype memory_files[] = { 5235 { 5236 .name = "current", 5237 .flags = CFTYPE_NOT_ON_ROOT, 5238 .read_u64 = memory_current_read, 5239 }, 5240 { 5241 .name = "low", 5242 .flags = CFTYPE_NOT_ON_ROOT, 5243 .seq_show = memory_low_show, 5244 .write = memory_low_write, 5245 }, 5246 { 5247 .name = "high", 5248 .flags = CFTYPE_NOT_ON_ROOT, 5249 .seq_show = memory_high_show, 5250 .write = memory_high_write, 5251 }, 5252 { 5253 .name = "max", 5254 .flags = CFTYPE_NOT_ON_ROOT, 5255 .seq_show = memory_max_show, 5256 .write = memory_max_write, 5257 }, 5258 { 5259 .name = "events", 5260 .flags = CFTYPE_NOT_ON_ROOT, 5261 .file_offset = offsetof(struct mem_cgroup, events_file), 5262 .seq_show = memory_events_show, 5263 }, 5264 { 5265 .name = "stat", 5266 .flags = CFTYPE_NOT_ON_ROOT, 5267 .seq_show = memory_stat_show, 5268 }, 5269 { } /* terminate */ 5270 }; 5271 5272 struct cgroup_subsys memory_cgrp_subsys = { 5273 .css_alloc = mem_cgroup_css_alloc, 5274 .css_online = mem_cgroup_css_online, 5275 .css_offline = mem_cgroup_css_offline, 5276 .css_released = mem_cgroup_css_released, 5277 .css_free = mem_cgroup_css_free, 5278 .css_reset = mem_cgroup_css_reset, 5279 .can_attach = mem_cgroup_can_attach, 5280 .cancel_attach = mem_cgroup_cancel_attach, 5281 .post_attach = mem_cgroup_move_task, 5282 .bind = mem_cgroup_bind, 5283 .dfl_cftypes = memory_files, 5284 .legacy_cftypes = mem_cgroup_legacy_files, 5285 .early_init = 0, 5286 }; 5287 5288 /** 5289 * mem_cgroup_low - check if memory consumption is below the normal range 5290 * @root: the highest ancestor to consider 5291 * @memcg: the memory cgroup to check 5292 * 5293 * Returns %true if memory consumption of @memcg, and that of all 5294 * configurable ancestors up to @root, is below the normal range. 5295 */ 5296 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg) 5297 { 5298 if (mem_cgroup_disabled()) 5299 return false; 5300 5301 /* 5302 * The toplevel group doesn't have a configurable range, so 5303 * it's never low when looked at directly, and it is not 5304 * considered an ancestor when assessing the hierarchy. 5305 */ 5306 5307 if (memcg == root_mem_cgroup) 5308 return false; 5309 5310 if (page_counter_read(&memcg->memory) >= memcg->low) 5311 return false; 5312 5313 while (memcg != root) { 5314 memcg = parent_mem_cgroup(memcg); 5315 5316 if (memcg == root_mem_cgroup) 5317 break; 5318 5319 if (page_counter_read(&memcg->memory) >= memcg->low) 5320 return false; 5321 } 5322 return true; 5323 } 5324 5325 /** 5326 * mem_cgroup_try_charge - try charging a page 5327 * @page: page to charge 5328 * @mm: mm context of the victim 5329 * @gfp_mask: reclaim mode 5330 * @memcgp: charged memcg return 5331 * @compound: charge the page as compound or small page 5332 * 5333 * Try to charge @page to the memcg that @mm belongs to, reclaiming 5334 * pages according to @gfp_mask if necessary. 5335 * 5336 * Returns 0 on success, with *@memcgp pointing to the charged memcg. 5337 * Otherwise, an error code is returned. 5338 * 5339 * After page->mapping has been set up, the caller must finalize the 5340 * charge with mem_cgroup_commit_charge(). Or abort the transaction 5341 * with mem_cgroup_cancel_charge() in case page instantiation fails. 5342 */ 5343 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, 5344 gfp_t gfp_mask, struct mem_cgroup **memcgp, 5345 bool compound) 5346 { 5347 struct mem_cgroup *memcg = NULL; 5348 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 5349 int ret = 0; 5350 5351 if (mem_cgroup_disabled()) 5352 goto out; 5353 5354 if (PageSwapCache(page)) { 5355 /* 5356 * Every swap fault against a single page tries to charge the 5357 * page, bail as early as possible. shmem_unuse() encounters 5358 * already charged pages, too. The USED bit is protected by 5359 * the page lock, which serializes swap cache removal, which 5360 * in turn serializes uncharging. 5361 */ 5362 VM_BUG_ON_PAGE(!PageLocked(page), page); 5363 if (page->mem_cgroup) 5364 goto out; 5365 5366 if (do_swap_account) { 5367 swp_entry_t ent = { .val = page_private(page), }; 5368 unsigned short id = lookup_swap_cgroup_id(ent); 5369 5370 rcu_read_lock(); 5371 memcg = mem_cgroup_from_id(id); 5372 if (memcg && !css_tryget_online(&memcg->css)) 5373 memcg = NULL; 5374 rcu_read_unlock(); 5375 } 5376 } 5377 5378 if (!memcg) 5379 memcg = get_mem_cgroup_from_mm(mm); 5380 5381 ret = try_charge(memcg, gfp_mask, nr_pages); 5382 5383 css_put(&memcg->css); 5384 out: 5385 *memcgp = memcg; 5386 return ret; 5387 } 5388 5389 /** 5390 * mem_cgroup_commit_charge - commit a page charge 5391 * @page: page to charge 5392 * @memcg: memcg to charge the page to 5393 * @lrucare: page might be on LRU already 5394 * @compound: charge the page as compound or small page 5395 * 5396 * Finalize a charge transaction started by mem_cgroup_try_charge(), 5397 * after page->mapping has been set up. This must happen atomically 5398 * as part of the page instantiation, i.e. under the page table lock 5399 * for anonymous pages, under the page lock for page and swap cache. 5400 * 5401 * In addition, the page must not be on the LRU during the commit, to 5402 * prevent racing with task migration. If it might be, use @lrucare. 5403 * 5404 * Use mem_cgroup_cancel_charge() to cancel the transaction instead. 5405 */ 5406 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg, 5407 bool lrucare, bool compound) 5408 { 5409 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 5410 5411 VM_BUG_ON_PAGE(!page->mapping, page); 5412 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page); 5413 5414 if (mem_cgroup_disabled()) 5415 return; 5416 /* 5417 * Swap faults will attempt to charge the same page multiple 5418 * times. But reuse_swap_page() might have removed the page 5419 * from swapcache already, so we can't check PageSwapCache(). 5420 */ 5421 if (!memcg) 5422 return; 5423 5424 commit_charge(page, memcg, lrucare); 5425 5426 local_irq_disable(); 5427 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages); 5428 memcg_check_events(memcg, page); 5429 local_irq_enable(); 5430 5431 if (do_memsw_account() && PageSwapCache(page)) { 5432 swp_entry_t entry = { .val = page_private(page) }; 5433 /* 5434 * The swap entry might not get freed for a long time, 5435 * let's not wait for it. The page already received a 5436 * memory+swap charge, drop the swap entry duplicate. 5437 */ 5438 mem_cgroup_uncharge_swap(entry); 5439 } 5440 } 5441 5442 /** 5443 * mem_cgroup_cancel_charge - cancel a page charge 5444 * @page: page to charge 5445 * @memcg: memcg to charge the page to 5446 * @compound: charge the page as compound or small page 5447 * 5448 * Cancel a charge transaction started by mem_cgroup_try_charge(). 5449 */ 5450 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg, 5451 bool compound) 5452 { 5453 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 5454 5455 if (mem_cgroup_disabled()) 5456 return; 5457 /* 5458 * Swap faults will attempt to charge the same page multiple 5459 * times. But reuse_swap_page() might have removed the page 5460 * from swapcache already, so we can't check PageSwapCache(). 5461 */ 5462 if (!memcg) 5463 return; 5464 5465 cancel_charge(memcg, nr_pages); 5466 } 5467 5468 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout, 5469 unsigned long nr_anon, unsigned long nr_file, 5470 unsigned long nr_huge, unsigned long nr_kmem, 5471 struct page *dummy_page) 5472 { 5473 unsigned long nr_pages = nr_anon + nr_file + nr_kmem; 5474 unsigned long flags; 5475 5476 if (!mem_cgroup_is_root(memcg)) { 5477 page_counter_uncharge(&memcg->memory, nr_pages); 5478 if (do_memsw_account()) 5479 page_counter_uncharge(&memcg->memsw, nr_pages); 5480 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && nr_kmem) 5481 page_counter_uncharge(&memcg->kmem, nr_kmem); 5482 memcg_oom_recover(memcg); 5483 } 5484 5485 local_irq_save(flags); 5486 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon); 5487 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file); 5488 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge); 5489 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout); 5490 __this_cpu_add(memcg->stat->nr_page_events, nr_pages); 5491 memcg_check_events(memcg, dummy_page); 5492 local_irq_restore(flags); 5493 5494 if (!mem_cgroup_is_root(memcg)) 5495 css_put_many(&memcg->css, nr_pages); 5496 } 5497 5498 static void uncharge_list(struct list_head *page_list) 5499 { 5500 struct mem_cgroup *memcg = NULL; 5501 unsigned long nr_anon = 0; 5502 unsigned long nr_file = 0; 5503 unsigned long nr_huge = 0; 5504 unsigned long nr_kmem = 0; 5505 unsigned long pgpgout = 0; 5506 struct list_head *next; 5507 struct page *page; 5508 5509 /* 5510 * Note that the list can be a single page->lru; hence the 5511 * do-while loop instead of a simple list_for_each_entry(). 5512 */ 5513 next = page_list->next; 5514 do { 5515 page = list_entry(next, struct page, lru); 5516 next = page->lru.next; 5517 5518 VM_BUG_ON_PAGE(PageLRU(page), page); 5519 VM_BUG_ON_PAGE(page_count(page), page); 5520 5521 if (!page->mem_cgroup) 5522 continue; 5523 5524 /* 5525 * Nobody should be changing or seriously looking at 5526 * page->mem_cgroup at this point, we have fully 5527 * exclusive access to the page. 5528 */ 5529 5530 if (memcg != page->mem_cgroup) { 5531 if (memcg) { 5532 uncharge_batch(memcg, pgpgout, nr_anon, nr_file, 5533 nr_huge, nr_kmem, page); 5534 pgpgout = nr_anon = nr_file = 5535 nr_huge = nr_kmem = 0; 5536 } 5537 memcg = page->mem_cgroup; 5538 } 5539 5540 if (!PageKmemcg(page)) { 5541 unsigned int nr_pages = 1; 5542 5543 if (PageTransHuge(page)) { 5544 nr_pages <<= compound_order(page); 5545 nr_huge += nr_pages; 5546 } 5547 if (PageAnon(page)) 5548 nr_anon += nr_pages; 5549 else 5550 nr_file += nr_pages; 5551 pgpgout++; 5552 } else { 5553 nr_kmem += 1 << compound_order(page); 5554 __ClearPageKmemcg(page); 5555 } 5556 5557 page->mem_cgroup = NULL; 5558 } while (next != page_list); 5559 5560 if (memcg) 5561 uncharge_batch(memcg, pgpgout, nr_anon, nr_file, 5562 nr_huge, nr_kmem, page); 5563 } 5564 5565 /** 5566 * mem_cgroup_uncharge - uncharge a page 5567 * @page: page to uncharge 5568 * 5569 * Uncharge a page previously charged with mem_cgroup_try_charge() and 5570 * mem_cgroup_commit_charge(). 5571 */ 5572 void mem_cgroup_uncharge(struct page *page) 5573 { 5574 if (mem_cgroup_disabled()) 5575 return; 5576 5577 /* Don't touch page->lru of any random page, pre-check: */ 5578 if (!page->mem_cgroup) 5579 return; 5580 5581 INIT_LIST_HEAD(&page->lru); 5582 uncharge_list(&page->lru); 5583 } 5584 5585 /** 5586 * mem_cgroup_uncharge_list - uncharge a list of page 5587 * @page_list: list of pages to uncharge 5588 * 5589 * Uncharge a list of pages previously charged with 5590 * mem_cgroup_try_charge() and mem_cgroup_commit_charge(). 5591 */ 5592 void mem_cgroup_uncharge_list(struct list_head *page_list) 5593 { 5594 if (mem_cgroup_disabled()) 5595 return; 5596 5597 if (!list_empty(page_list)) 5598 uncharge_list(page_list); 5599 } 5600 5601 /** 5602 * mem_cgroup_migrate - charge a page's replacement 5603 * @oldpage: currently circulating page 5604 * @newpage: replacement page 5605 * 5606 * Charge @newpage as a replacement page for @oldpage. @oldpage will 5607 * be uncharged upon free. 5608 * 5609 * Both pages must be locked, @newpage->mapping must be set up. 5610 */ 5611 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage) 5612 { 5613 struct mem_cgroup *memcg; 5614 unsigned int nr_pages; 5615 bool compound; 5616 unsigned long flags; 5617 5618 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage); 5619 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 5620 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage); 5621 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage), 5622 newpage); 5623 5624 if (mem_cgroup_disabled()) 5625 return; 5626 5627 /* Page cache replacement: new page already charged? */ 5628 if (newpage->mem_cgroup) 5629 return; 5630 5631 /* Swapcache readahead pages can get replaced before being charged */ 5632 memcg = oldpage->mem_cgroup; 5633 if (!memcg) 5634 return; 5635 5636 /* Force-charge the new page. The old one will be freed soon */ 5637 compound = PageTransHuge(newpage); 5638 nr_pages = compound ? hpage_nr_pages(newpage) : 1; 5639 5640 page_counter_charge(&memcg->memory, nr_pages); 5641 if (do_memsw_account()) 5642 page_counter_charge(&memcg->memsw, nr_pages); 5643 css_get_many(&memcg->css, nr_pages); 5644 5645 commit_charge(newpage, memcg, false); 5646 5647 local_irq_save(flags); 5648 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages); 5649 memcg_check_events(memcg, newpage); 5650 local_irq_restore(flags); 5651 } 5652 5653 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); 5654 EXPORT_SYMBOL(memcg_sockets_enabled_key); 5655 5656 void mem_cgroup_sk_alloc(struct sock *sk) 5657 { 5658 struct mem_cgroup *memcg; 5659 5660 if (!mem_cgroup_sockets_enabled) 5661 return; 5662 5663 /* 5664 * Socket cloning can throw us here with sk_memcg already 5665 * filled. It won't however, necessarily happen from 5666 * process context. So the test for root memcg given 5667 * the current task's memcg won't help us in this case. 5668 * 5669 * Respecting the original socket's memcg is a better 5670 * decision in this case. 5671 */ 5672 if (sk->sk_memcg) { 5673 BUG_ON(mem_cgroup_is_root(sk->sk_memcg)); 5674 css_get(&sk->sk_memcg->css); 5675 return; 5676 } 5677 5678 rcu_read_lock(); 5679 memcg = mem_cgroup_from_task(current); 5680 if (memcg == root_mem_cgroup) 5681 goto out; 5682 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active) 5683 goto out; 5684 if (css_tryget_online(&memcg->css)) 5685 sk->sk_memcg = memcg; 5686 out: 5687 rcu_read_unlock(); 5688 } 5689 5690 void mem_cgroup_sk_free(struct sock *sk) 5691 { 5692 if (sk->sk_memcg) 5693 css_put(&sk->sk_memcg->css); 5694 } 5695 5696 /** 5697 * mem_cgroup_charge_skmem - charge socket memory 5698 * @memcg: memcg to charge 5699 * @nr_pages: number of pages to charge 5700 * 5701 * Charges @nr_pages to @memcg. Returns %true if the charge fit within 5702 * @memcg's configured limit, %false if the charge had to be forced. 5703 */ 5704 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 5705 { 5706 gfp_t gfp_mask = GFP_KERNEL; 5707 5708 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 5709 struct page_counter *fail; 5710 5711 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) { 5712 memcg->tcpmem_pressure = 0; 5713 return true; 5714 } 5715 page_counter_charge(&memcg->tcpmem, nr_pages); 5716 memcg->tcpmem_pressure = 1; 5717 return false; 5718 } 5719 5720 /* Don't block in the packet receive path */ 5721 if (in_softirq()) 5722 gfp_mask = GFP_NOWAIT; 5723 5724 this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages); 5725 5726 if (try_charge(memcg, gfp_mask, nr_pages) == 0) 5727 return true; 5728 5729 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages); 5730 return false; 5731 } 5732 5733 /** 5734 * mem_cgroup_uncharge_skmem - uncharge socket memory 5735 * @memcg - memcg to uncharge 5736 * @nr_pages - number of pages to uncharge 5737 */ 5738 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 5739 { 5740 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 5741 page_counter_uncharge(&memcg->tcpmem, nr_pages); 5742 return; 5743 } 5744 5745 this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages); 5746 5747 page_counter_uncharge(&memcg->memory, nr_pages); 5748 css_put_many(&memcg->css, nr_pages); 5749 } 5750 5751 static int __init cgroup_memory(char *s) 5752 { 5753 char *token; 5754 5755 while ((token = strsep(&s, ",")) != NULL) { 5756 if (!*token) 5757 continue; 5758 if (!strcmp(token, "nosocket")) 5759 cgroup_memory_nosocket = true; 5760 if (!strcmp(token, "nokmem")) 5761 cgroup_memory_nokmem = true; 5762 } 5763 return 0; 5764 } 5765 __setup("cgroup.memory=", cgroup_memory); 5766 5767 /* 5768 * subsys_initcall() for memory controller. 5769 * 5770 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this 5771 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but 5772 * basically everything that doesn't depend on a specific mem_cgroup structure 5773 * should be initialized from here. 5774 */ 5775 static int __init mem_cgroup_init(void) 5776 { 5777 int cpu, node; 5778 5779 #ifndef CONFIG_SLOB 5780 /* 5781 * Kmem cache creation is mostly done with the slab_mutex held, 5782 * so use a workqueue with limited concurrency to avoid stalling 5783 * all worker threads in case lots of cgroups are created and 5784 * destroyed simultaneously. 5785 */ 5786 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1); 5787 BUG_ON(!memcg_kmem_cache_wq); 5788 #endif 5789 5790 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL, 5791 memcg_hotplug_cpu_dead); 5792 5793 for_each_possible_cpu(cpu) 5794 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, 5795 drain_local_stock); 5796 5797 for_each_node(node) { 5798 struct mem_cgroup_tree_per_node *rtpn; 5799 5800 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, 5801 node_online(node) ? node : NUMA_NO_NODE); 5802 5803 rtpn->rb_root = RB_ROOT; 5804 spin_lock_init(&rtpn->lock); 5805 soft_limit_tree.rb_tree_per_node[node] = rtpn; 5806 } 5807 5808 return 0; 5809 } 5810 subsys_initcall(mem_cgroup_init); 5811 5812 #ifdef CONFIG_MEMCG_SWAP 5813 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg) 5814 { 5815 while (!atomic_inc_not_zero(&memcg->id.ref)) { 5816 /* 5817 * The root cgroup cannot be destroyed, so it's refcount must 5818 * always be >= 1. 5819 */ 5820 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) { 5821 VM_BUG_ON(1); 5822 break; 5823 } 5824 memcg = parent_mem_cgroup(memcg); 5825 if (!memcg) 5826 memcg = root_mem_cgroup; 5827 } 5828 return memcg; 5829 } 5830 5831 /** 5832 * mem_cgroup_swapout - transfer a memsw charge to swap 5833 * @page: page whose memsw charge to transfer 5834 * @entry: swap entry to move the charge to 5835 * 5836 * Transfer the memsw charge of @page to @entry. 5837 */ 5838 void mem_cgroup_swapout(struct page *page, swp_entry_t entry) 5839 { 5840 struct mem_cgroup *memcg, *swap_memcg; 5841 unsigned short oldid; 5842 5843 VM_BUG_ON_PAGE(PageLRU(page), page); 5844 VM_BUG_ON_PAGE(page_count(page), page); 5845 5846 if (!do_memsw_account()) 5847 return; 5848 5849 memcg = page->mem_cgroup; 5850 5851 /* Readahead page, never charged */ 5852 if (!memcg) 5853 return; 5854 5855 /* 5856 * In case the memcg owning these pages has been offlined and doesn't 5857 * have an ID allocated to it anymore, charge the closest online 5858 * ancestor for the swap instead and transfer the memory+swap charge. 5859 */ 5860 swap_memcg = mem_cgroup_id_get_online(memcg); 5861 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg)); 5862 VM_BUG_ON_PAGE(oldid, page); 5863 mem_cgroup_swap_statistics(swap_memcg, true); 5864 5865 page->mem_cgroup = NULL; 5866 5867 if (!mem_cgroup_is_root(memcg)) 5868 page_counter_uncharge(&memcg->memory, 1); 5869 5870 if (memcg != swap_memcg) { 5871 if (!mem_cgroup_is_root(swap_memcg)) 5872 page_counter_charge(&swap_memcg->memsw, 1); 5873 page_counter_uncharge(&memcg->memsw, 1); 5874 } 5875 5876 /* 5877 * Interrupts should be disabled here because the caller holds the 5878 * mapping->tree_lock lock which is taken with interrupts-off. It is 5879 * important here to have the interrupts disabled because it is the 5880 * only synchronisation we have for udpating the per-CPU variables. 5881 */ 5882 VM_BUG_ON(!irqs_disabled()); 5883 mem_cgroup_charge_statistics(memcg, page, false, -1); 5884 memcg_check_events(memcg, page); 5885 5886 if (!mem_cgroup_is_root(memcg)) 5887 css_put(&memcg->css); 5888 } 5889 5890 /* 5891 * mem_cgroup_try_charge_swap - try charging a swap entry 5892 * @page: page being added to swap 5893 * @entry: swap entry to charge 5894 * 5895 * Try to charge @entry to the memcg that @page belongs to. 5896 * 5897 * Returns 0 on success, -ENOMEM on failure. 5898 */ 5899 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry) 5900 { 5901 struct mem_cgroup *memcg; 5902 struct page_counter *counter; 5903 unsigned short oldid; 5904 5905 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account) 5906 return 0; 5907 5908 memcg = page->mem_cgroup; 5909 5910 /* Readahead page, never charged */ 5911 if (!memcg) 5912 return 0; 5913 5914 memcg = mem_cgroup_id_get_online(memcg); 5915 5916 if (!mem_cgroup_is_root(memcg) && 5917 !page_counter_try_charge(&memcg->swap, 1, &counter)) { 5918 mem_cgroup_id_put(memcg); 5919 return -ENOMEM; 5920 } 5921 5922 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg)); 5923 VM_BUG_ON_PAGE(oldid, page); 5924 mem_cgroup_swap_statistics(memcg, true); 5925 5926 return 0; 5927 } 5928 5929 /** 5930 * mem_cgroup_uncharge_swap - uncharge a swap entry 5931 * @entry: swap entry to uncharge 5932 * 5933 * Drop the swap charge associated with @entry. 5934 */ 5935 void mem_cgroup_uncharge_swap(swp_entry_t entry) 5936 { 5937 struct mem_cgroup *memcg; 5938 unsigned short id; 5939 5940 if (!do_swap_account) 5941 return; 5942 5943 id = swap_cgroup_record(entry, 0); 5944 rcu_read_lock(); 5945 memcg = mem_cgroup_from_id(id); 5946 if (memcg) { 5947 if (!mem_cgroup_is_root(memcg)) { 5948 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5949 page_counter_uncharge(&memcg->swap, 1); 5950 else 5951 page_counter_uncharge(&memcg->memsw, 1); 5952 } 5953 mem_cgroup_swap_statistics(memcg, false); 5954 mem_cgroup_id_put(memcg); 5955 } 5956 rcu_read_unlock(); 5957 } 5958 5959 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) 5960 { 5961 long nr_swap_pages = get_nr_swap_pages(); 5962 5963 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5964 return nr_swap_pages; 5965 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) 5966 nr_swap_pages = min_t(long, nr_swap_pages, 5967 READ_ONCE(memcg->swap.limit) - 5968 page_counter_read(&memcg->swap)); 5969 return nr_swap_pages; 5970 } 5971 5972 bool mem_cgroup_swap_full(struct page *page) 5973 { 5974 struct mem_cgroup *memcg; 5975 5976 VM_BUG_ON_PAGE(!PageLocked(page), page); 5977 5978 if (vm_swap_full()) 5979 return true; 5980 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5981 return false; 5982 5983 memcg = page->mem_cgroup; 5984 if (!memcg) 5985 return false; 5986 5987 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) 5988 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit) 5989 return true; 5990 5991 return false; 5992 } 5993 5994 /* for remember boot option*/ 5995 #ifdef CONFIG_MEMCG_SWAP_ENABLED 5996 static int really_do_swap_account __initdata = 1; 5997 #else 5998 static int really_do_swap_account __initdata; 5999 #endif 6000 6001 static int __init enable_swap_account(char *s) 6002 { 6003 if (!strcmp(s, "1")) 6004 really_do_swap_account = 1; 6005 else if (!strcmp(s, "0")) 6006 really_do_swap_account = 0; 6007 return 1; 6008 } 6009 __setup("swapaccount=", enable_swap_account); 6010 6011 static u64 swap_current_read(struct cgroup_subsys_state *css, 6012 struct cftype *cft) 6013 { 6014 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6015 6016 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; 6017 } 6018 6019 static int swap_max_show(struct seq_file *m, void *v) 6020 { 6021 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 6022 unsigned long max = READ_ONCE(memcg->swap.limit); 6023 6024 if (max == PAGE_COUNTER_MAX) 6025 seq_puts(m, "max\n"); 6026 else 6027 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE); 6028 6029 return 0; 6030 } 6031 6032 static ssize_t swap_max_write(struct kernfs_open_file *of, 6033 char *buf, size_t nbytes, loff_t off) 6034 { 6035 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6036 unsigned long max; 6037 int err; 6038 6039 buf = strstrip(buf); 6040 err = page_counter_memparse(buf, "max", &max); 6041 if (err) 6042 return err; 6043 6044 mutex_lock(&memcg_limit_mutex); 6045 err = page_counter_limit(&memcg->swap, max); 6046 mutex_unlock(&memcg_limit_mutex); 6047 if (err) 6048 return err; 6049 6050 return nbytes; 6051 } 6052 6053 static struct cftype swap_files[] = { 6054 { 6055 .name = "swap.current", 6056 .flags = CFTYPE_NOT_ON_ROOT, 6057 .read_u64 = swap_current_read, 6058 }, 6059 { 6060 .name = "swap.max", 6061 .flags = CFTYPE_NOT_ON_ROOT, 6062 .seq_show = swap_max_show, 6063 .write = swap_max_write, 6064 }, 6065 { } /* terminate */ 6066 }; 6067 6068 static struct cftype memsw_cgroup_files[] = { 6069 { 6070 .name = "memsw.usage_in_bytes", 6071 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 6072 .read_u64 = mem_cgroup_read_u64, 6073 }, 6074 { 6075 .name = "memsw.max_usage_in_bytes", 6076 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 6077 .write = mem_cgroup_reset, 6078 .read_u64 = mem_cgroup_read_u64, 6079 }, 6080 { 6081 .name = "memsw.limit_in_bytes", 6082 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 6083 .write = mem_cgroup_write, 6084 .read_u64 = mem_cgroup_read_u64, 6085 }, 6086 { 6087 .name = "memsw.failcnt", 6088 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 6089 .write = mem_cgroup_reset, 6090 .read_u64 = mem_cgroup_read_u64, 6091 }, 6092 { }, /* terminate */ 6093 }; 6094 6095 static int __init mem_cgroup_swap_init(void) 6096 { 6097 if (!mem_cgroup_disabled() && really_do_swap_account) { 6098 do_swap_account = 1; 6099 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, 6100 swap_files)); 6101 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, 6102 memsw_cgroup_files)); 6103 } 6104 return 0; 6105 } 6106 subsys_initcall(mem_cgroup_swap_init); 6107 6108 #endif /* CONFIG_MEMCG_SWAP */ 6109