xref: /openbmc/linux/mm/memcontrol.c (revision 7b6d864b)
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * Kernel Memory Controller
14  * Copyright (C) 2012 Parallels Inc. and Google Inc.
15  * Authors: Glauber Costa and Suleiman Souhlal
16  *
17  * This program is free software; you can redistribute it and/or modify
18  * it under the terms of the GNU General Public License as published by
19  * the Free Software Foundation; either version 2 of the License, or
20  * (at your option) any later version.
21  *
22  * This program is distributed in the hope that it will be useful,
23  * but WITHOUT ANY WARRANTY; without even the implied warranty of
24  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
25  * GNU General Public License for more details.
26  */
27 
28 #include <linux/res_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/mm.h>
32 #include <linux/hugetlb.h>
33 #include <linux/pagemap.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/sort.h>
49 #include <linux/fs.h>
50 #include <linux/seq_file.h>
51 #include <linux/vmalloc.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/page_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include "internal.h"
58 #include <net/sock.h>
59 #include <net/ip.h>
60 #include <net/tcp_memcontrol.h>
61 
62 #include <asm/uaccess.h>
63 
64 #include <trace/events/vmscan.h>
65 
66 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
67 EXPORT_SYMBOL(mem_cgroup_subsys);
68 
69 #define MEM_CGROUP_RECLAIM_RETRIES	5
70 static struct mem_cgroup *root_mem_cgroup __read_mostly;
71 
72 #ifdef CONFIG_MEMCG_SWAP
73 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
74 int do_swap_account __read_mostly;
75 
76 /* for remember boot option*/
77 #ifdef CONFIG_MEMCG_SWAP_ENABLED
78 static int really_do_swap_account __initdata = 1;
79 #else
80 static int really_do_swap_account __initdata = 0;
81 #endif
82 
83 #else
84 #define do_swap_account		0
85 #endif
86 
87 
88 /*
89  * Statistics for memory cgroup.
90  */
91 enum mem_cgroup_stat_index {
92 	/*
93 	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
94 	 */
95 	MEM_CGROUP_STAT_CACHE,		/* # of pages charged as cache */
96 	MEM_CGROUP_STAT_RSS,		/* # of pages charged as anon rss */
97 	MEM_CGROUP_STAT_RSS_HUGE,	/* # of pages charged as anon huge */
98 	MEM_CGROUP_STAT_FILE_MAPPED,	/* # of pages charged as file rss */
99 	MEM_CGROUP_STAT_SWAP,		/* # of pages, swapped out */
100 	MEM_CGROUP_STAT_NSTATS,
101 };
102 
103 static const char * const mem_cgroup_stat_names[] = {
104 	"cache",
105 	"rss",
106 	"rss_huge",
107 	"mapped_file",
108 	"swap",
109 };
110 
111 enum mem_cgroup_events_index {
112 	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
113 	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
114 	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
115 	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
116 	MEM_CGROUP_EVENTS_NSTATS,
117 };
118 
119 static const char * const mem_cgroup_events_names[] = {
120 	"pgpgin",
121 	"pgpgout",
122 	"pgfault",
123 	"pgmajfault",
124 };
125 
126 static const char * const mem_cgroup_lru_names[] = {
127 	"inactive_anon",
128 	"active_anon",
129 	"inactive_file",
130 	"active_file",
131 	"unevictable",
132 };
133 
134 /*
135  * Per memcg event counter is incremented at every pagein/pageout. With THP,
136  * it will be incremated by the number of pages. This counter is used for
137  * for trigger some periodic events. This is straightforward and better
138  * than using jiffies etc. to handle periodic memcg event.
139  */
140 enum mem_cgroup_events_target {
141 	MEM_CGROUP_TARGET_THRESH,
142 	MEM_CGROUP_TARGET_SOFTLIMIT,
143 	MEM_CGROUP_TARGET_NUMAINFO,
144 	MEM_CGROUP_NTARGETS,
145 };
146 #define THRESHOLDS_EVENTS_TARGET 128
147 #define SOFTLIMIT_EVENTS_TARGET 1024
148 #define NUMAINFO_EVENTS_TARGET	1024
149 
150 struct mem_cgroup_stat_cpu {
151 	long count[MEM_CGROUP_STAT_NSTATS];
152 	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
153 	unsigned long nr_page_events;
154 	unsigned long targets[MEM_CGROUP_NTARGETS];
155 };
156 
157 struct mem_cgroup_reclaim_iter {
158 	/*
159 	 * last scanned hierarchy member. Valid only if last_dead_count
160 	 * matches memcg->dead_count of the hierarchy root group.
161 	 */
162 	struct mem_cgroup *last_visited;
163 	unsigned long last_dead_count;
164 
165 	/* scan generation, increased every round-trip */
166 	unsigned int generation;
167 };
168 
169 /*
170  * per-zone information in memory controller.
171  */
172 struct mem_cgroup_per_zone {
173 	struct lruvec		lruvec;
174 	unsigned long		lru_size[NR_LRU_LISTS];
175 
176 	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
177 
178 	struct rb_node		tree_node;	/* RB tree node */
179 	unsigned long long	usage_in_excess;/* Set to the value by which */
180 						/* the soft limit is exceeded*/
181 	bool			on_tree;
182 	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
183 						/* use container_of	   */
184 };
185 
186 struct mem_cgroup_per_node {
187 	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
188 };
189 
190 /*
191  * Cgroups above their limits are maintained in a RB-Tree, independent of
192  * their hierarchy representation
193  */
194 
195 struct mem_cgroup_tree_per_zone {
196 	struct rb_root rb_root;
197 	spinlock_t lock;
198 };
199 
200 struct mem_cgroup_tree_per_node {
201 	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
202 };
203 
204 struct mem_cgroup_tree {
205 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
206 };
207 
208 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
209 
210 struct mem_cgroup_threshold {
211 	struct eventfd_ctx *eventfd;
212 	u64 threshold;
213 };
214 
215 /* For threshold */
216 struct mem_cgroup_threshold_ary {
217 	/* An array index points to threshold just below or equal to usage. */
218 	int current_threshold;
219 	/* Size of entries[] */
220 	unsigned int size;
221 	/* Array of thresholds */
222 	struct mem_cgroup_threshold entries[0];
223 };
224 
225 struct mem_cgroup_thresholds {
226 	/* Primary thresholds array */
227 	struct mem_cgroup_threshold_ary *primary;
228 	/*
229 	 * Spare threshold array.
230 	 * This is needed to make mem_cgroup_unregister_event() "never fail".
231 	 * It must be able to store at least primary->size - 1 entries.
232 	 */
233 	struct mem_cgroup_threshold_ary *spare;
234 };
235 
236 /* for OOM */
237 struct mem_cgroup_eventfd_list {
238 	struct list_head list;
239 	struct eventfd_ctx *eventfd;
240 };
241 
242 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
243 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
244 
245 /*
246  * The memory controller data structure. The memory controller controls both
247  * page cache and RSS per cgroup. We would eventually like to provide
248  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
249  * to help the administrator determine what knobs to tune.
250  *
251  * TODO: Add a water mark for the memory controller. Reclaim will begin when
252  * we hit the water mark. May be even add a low water mark, such that
253  * no reclaim occurs from a cgroup at it's low water mark, this is
254  * a feature that will be implemented much later in the future.
255  */
256 struct mem_cgroup {
257 	struct cgroup_subsys_state css;
258 	/*
259 	 * the counter to account for memory usage
260 	 */
261 	struct res_counter res;
262 
263 	/* vmpressure notifications */
264 	struct vmpressure vmpressure;
265 
266 	/*
267 	 * the counter to account for mem+swap usage.
268 	 */
269 	struct res_counter memsw;
270 
271 	/*
272 	 * the counter to account for kernel memory usage.
273 	 */
274 	struct res_counter kmem;
275 	/*
276 	 * Should the accounting and control be hierarchical, per subtree?
277 	 */
278 	bool use_hierarchy;
279 	unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
280 
281 	bool		oom_lock;
282 	atomic_t	under_oom;
283 
284 	int	swappiness;
285 	/* OOM-Killer disable */
286 	int		oom_kill_disable;
287 
288 	/* set when res.limit == memsw.limit */
289 	bool		memsw_is_minimum;
290 
291 	/* protect arrays of thresholds */
292 	struct mutex thresholds_lock;
293 
294 	/* thresholds for memory usage. RCU-protected */
295 	struct mem_cgroup_thresholds thresholds;
296 
297 	/* thresholds for mem+swap usage. RCU-protected */
298 	struct mem_cgroup_thresholds memsw_thresholds;
299 
300 	/* For oom notifier event fd */
301 	struct list_head oom_notify;
302 
303 	/*
304 	 * Should we move charges of a task when a task is moved into this
305 	 * mem_cgroup ? And what type of charges should we move ?
306 	 */
307 	unsigned long 	move_charge_at_immigrate;
308 	/*
309 	 * set > 0 if pages under this cgroup are moving to other cgroup.
310 	 */
311 	atomic_t	moving_account;
312 	/* taken only while moving_account > 0 */
313 	spinlock_t	move_lock;
314 	/*
315 	 * percpu counter.
316 	 */
317 	struct mem_cgroup_stat_cpu __percpu *stat;
318 	/*
319 	 * used when a cpu is offlined or other synchronizations
320 	 * See mem_cgroup_read_stat().
321 	 */
322 	struct mem_cgroup_stat_cpu nocpu_base;
323 	spinlock_t pcp_counter_lock;
324 
325 	atomic_t	dead_count;
326 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
327 	struct tcp_memcontrol tcp_mem;
328 #endif
329 #if defined(CONFIG_MEMCG_KMEM)
330 	/* analogous to slab_common's slab_caches list. per-memcg */
331 	struct list_head memcg_slab_caches;
332 	/* Not a spinlock, we can take a lot of time walking the list */
333 	struct mutex slab_caches_mutex;
334         /* Index in the kmem_cache->memcg_params->memcg_caches array */
335 	int kmemcg_id;
336 #endif
337 
338 	int last_scanned_node;
339 #if MAX_NUMNODES > 1
340 	nodemask_t	scan_nodes;
341 	atomic_t	numainfo_events;
342 	atomic_t	numainfo_updating;
343 #endif
344 
345 	struct mem_cgroup_per_node *nodeinfo[0];
346 	/* WARNING: nodeinfo must be the last member here */
347 };
348 
349 static size_t memcg_size(void)
350 {
351 	return sizeof(struct mem_cgroup) +
352 		nr_node_ids * sizeof(struct mem_cgroup_per_node);
353 }
354 
355 /* internal only representation about the status of kmem accounting. */
356 enum {
357 	KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
358 	KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
359 	KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
360 };
361 
362 /* We account when limit is on, but only after call sites are patched */
363 #define KMEM_ACCOUNTED_MASK \
364 		((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
365 
366 #ifdef CONFIG_MEMCG_KMEM
367 static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
368 {
369 	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
370 }
371 
372 static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
373 {
374 	return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
375 }
376 
377 static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
378 {
379 	set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
380 }
381 
382 static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
383 {
384 	clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
385 }
386 
387 static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
388 {
389 	/*
390 	 * Our caller must use css_get() first, because memcg_uncharge_kmem()
391 	 * will call css_put() if it sees the memcg is dead.
392 	 */
393 	smp_wmb();
394 	if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
395 		set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
396 }
397 
398 static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
399 {
400 	return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
401 				  &memcg->kmem_account_flags);
402 }
403 #endif
404 
405 /* Stuffs for move charges at task migration. */
406 /*
407  * Types of charges to be moved. "move_charge_at_immitgrate" and
408  * "immigrate_flags" are treated as a left-shifted bitmap of these types.
409  */
410 enum move_type {
411 	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
412 	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
413 	NR_MOVE_TYPE,
414 };
415 
416 /* "mc" and its members are protected by cgroup_mutex */
417 static struct move_charge_struct {
418 	spinlock_t	  lock; /* for from, to */
419 	struct mem_cgroup *from;
420 	struct mem_cgroup *to;
421 	unsigned long immigrate_flags;
422 	unsigned long precharge;
423 	unsigned long moved_charge;
424 	unsigned long moved_swap;
425 	struct task_struct *moving_task;	/* a task moving charges */
426 	wait_queue_head_t waitq;		/* a waitq for other context */
427 } mc = {
428 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
429 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
430 };
431 
432 static bool move_anon(void)
433 {
434 	return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
435 }
436 
437 static bool move_file(void)
438 {
439 	return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
440 }
441 
442 /*
443  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
444  * limit reclaim to prevent infinite loops, if they ever occur.
445  */
446 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
447 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
448 
449 enum charge_type {
450 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
451 	MEM_CGROUP_CHARGE_TYPE_ANON,
452 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
453 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
454 	NR_CHARGE_TYPE,
455 };
456 
457 /* for encoding cft->private value on file */
458 enum res_type {
459 	_MEM,
460 	_MEMSWAP,
461 	_OOM_TYPE,
462 	_KMEM,
463 };
464 
465 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
466 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
467 #define MEMFILE_ATTR(val)	((val) & 0xffff)
468 /* Used for OOM nofiier */
469 #define OOM_CONTROL		(0)
470 
471 /*
472  * Reclaim flags for mem_cgroup_hierarchical_reclaim
473  */
474 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
475 #define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
476 #define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
477 #define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
478 
479 /*
480  * The memcg_create_mutex will be held whenever a new cgroup is created.
481  * As a consequence, any change that needs to protect against new child cgroups
482  * appearing has to hold it as well.
483  */
484 static DEFINE_MUTEX(memcg_create_mutex);
485 
486 static inline
487 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
488 {
489 	return container_of(s, struct mem_cgroup, css);
490 }
491 
492 /* Some nice accessors for the vmpressure. */
493 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
494 {
495 	if (!memcg)
496 		memcg = root_mem_cgroup;
497 	return &memcg->vmpressure;
498 }
499 
500 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
501 {
502 	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
503 }
504 
505 struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css)
506 {
507 	return &mem_cgroup_from_css(css)->vmpressure;
508 }
509 
510 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
511 {
512 	return (memcg == root_mem_cgroup);
513 }
514 
515 /* Writing them here to avoid exposing memcg's inner layout */
516 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
517 
518 void sock_update_memcg(struct sock *sk)
519 {
520 	if (mem_cgroup_sockets_enabled) {
521 		struct mem_cgroup *memcg;
522 		struct cg_proto *cg_proto;
523 
524 		BUG_ON(!sk->sk_prot->proto_cgroup);
525 
526 		/* Socket cloning can throw us here with sk_cgrp already
527 		 * filled. It won't however, necessarily happen from
528 		 * process context. So the test for root memcg given
529 		 * the current task's memcg won't help us in this case.
530 		 *
531 		 * Respecting the original socket's memcg is a better
532 		 * decision in this case.
533 		 */
534 		if (sk->sk_cgrp) {
535 			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
536 			css_get(&sk->sk_cgrp->memcg->css);
537 			return;
538 		}
539 
540 		rcu_read_lock();
541 		memcg = mem_cgroup_from_task(current);
542 		cg_proto = sk->sk_prot->proto_cgroup(memcg);
543 		if (!mem_cgroup_is_root(memcg) &&
544 		    memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
545 			sk->sk_cgrp = cg_proto;
546 		}
547 		rcu_read_unlock();
548 	}
549 }
550 EXPORT_SYMBOL(sock_update_memcg);
551 
552 void sock_release_memcg(struct sock *sk)
553 {
554 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
555 		struct mem_cgroup *memcg;
556 		WARN_ON(!sk->sk_cgrp->memcg);
557 		memcg = sk->sk_cgrp->memcg;
558 		css_put(&sk->sk_cgrp->memcg->css);
559 	}
560 }
561 
562 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
563 {
564 	if (!memcg || mem_cgroup_is_root(memcg))
565 		return NULL;
566 
567 	return &memcg->tcp_mem.cg_proto;
568 }
569 EXPORT_SYMBOL(tcp_proto_cgroup);
570 
571 static void disarm_sock_keys(struct mem_cgroup *memcg)
572 {
573 	if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
574 		return;
575 	static_key_slow_dec(&memcg_socket_limit_enabled);
576 }
577 #else
578 static void disarm_sock_keys(struct mem_cgroup *memcg)
579 {
580 }
581 #endif
582 
583 #ifdef CONFIG_MEMCG_KMEM
584 /*
585  * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
586  * There are two main reasons for not using the css_id for this:
587  *  1) this works better in sparse environments, where we have a lot of memcgs,
588  *     but only a few kmem-limited. Or also, if we have, for instance, 200
589  *     memcgs, and none but the 200th is kmem-limited, we'd have to have a
590  *     200 entry array for that.
591  *
592  *  2) In order not to violate the cgroup API, we would like to do all memory
593  *     allocation in ->create(). At that point, we haven't yet allocated the
594  *     css_id. Having a separate index prevents us from messing with the cgroup
595  *     core for this
596  *
597  * The current size of the caches array is stored in
598  * memcg_limited_groups_array_size.  It will double each time we have to
599  * increase it.
600  */
601 static DEFINE_IDA(kmem_limited_groups);
602 int memcg_limited_groups_array_size;
603 
604 /*
605  * MIN_SIZE is different than 1, because we would like to avoid going through
606  * the alloc/free process all the time. In a small machine, 4 kmem-limited
607  * cgroups is a reasonable guess. In the future, it could be a parameter or
608  * tunable, but that is strictly not necessary.
609  *
610  * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
611  * this constant directly from cgroup, but it is understandable that this is
612  * better kept as an internal representation in cgroup.c. In any case, the
613  * css_id space is not getting any smaller, and we don't have to necessarily
614  * increase ours as well if it increases.
615  */
616 #define MEMCG_CACHES_MIN_SIZE 4
617 #define MEMCG_CACHES_MAX_SIZE 65535
618 
619 /*
620  * A lot of the calls to the cache allocation functions are expected to be
621  * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
622  * conditional to this static branch, we'll have to allow modules that does
623  * kmem_cache_alloc and the such to see this symbol as well
624  */
625 struct static_key memcg_kmem_enabled_key;
626 EXPORT_SYMBOL(memcg_kmem_enabled_key);
627 
628 static void disarm_kmem_keys(struct mem_cgroup *memcg)
629 {
630 	if (memcg_kmem_is_active(memcg)) {
631 		static_key_slow_dec(&memcg_kmem_enabled_key);
632 		ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
633 	}
634 	/*
635 	 * This check can't live in kmem destruction function,
636 	 * since the charges will outlive the cgroup
637 	 */
638 	WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
639 }
640 #else
641 static void disarm_kmem_keys(struct mem_cgroup *memcg)
642 {
643 }
644 #endif /* CONFIG_MEMCG_KMEM */
645 
646 static void disarm_static_keys(struct mem_cgroup *memcg)
647 {
648 	disarm_sock_keys(memcg);
649 	disarm_kmem_keys(memcg);
650 }
651 
652 static void drain_all_stock_async(struct mem_cgroup *memcg);
653 
654 static struct mem_cgroup_per_zone *
655 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
656 {
657 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
658 	return &memcg->nodeinfo[nid]->zoneinfo[zid];
659 }
660 
661 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
662 {
663 	return &memcg->css;
664 }
665 
666 static struct mem_cgroup_per_zone *
667 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
668 {
669 	int nid = page_to_nid(page);
670 	int zid = page_zonenum(page);
671 
672 	return mem_cgroup_zoneinfo(memcg, nid, zid);
673 }
674 
675 static struct mem_cgroup_tree_per_zone *
676 soft_limit_tree_node_zone(int nid, int zid)
677 {
678 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
679 }
680 
681 static struct mem_cgroup_tree_per_zone *
682 soft_limit_tree_from_page(struct page *page)
683 {
684 	int nid = page_to_nid(page);
685 	int zid = page_zonenum(page);
686 
687 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
688 }
689 
690 static void
691 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
692 				struct mem_cgroup_per_zone *mz,
693 				struct mem_cgroup_tree_per_zone *mctz,
694 				unsigned long long new_usage_in_excess)
695 {
696 	struct rb_node **p = &mctz->rb_root.rb_node;
697 	struct rb_node *parent = NULL;
698 	struct mem_cgroup_per_zone *mz_node;
699 
700 	if (mz->on_tree)
701 		return;
702 
703 	mz->usage_in_excess = new_usage_in_excess;
704 	if (!mz->usage_in_excess)
705 		return;
706 	while (*p) {
707 		parent = *p;
708 		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
709 					tree_node);
710 		if (mz->usage_in_excess < mz_node->usage_in_excess)
711 			p = &(*p)->rb_left;
712 		/*
713 		 * We can't avoid mem cgroups that are over their soft
714 		 * limit by the same amount
715 		 */
716 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
717 			p = &(*p)->rb_right;
718 	}
719 	rb_link_node(&mz->tree_node, parent, p);
720 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
721 	mz->on_tree = true;
722 }
723 
724 static void
725 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
726 				struct mem_cgroup_per_zone *mz,
727 				struct mem_cgroup_tree_per_zone *mctz)
728 {
729 	if (!mz->on_tree)
730 		return;
731 	rb_erase(&mz->tree_node, &mctz->rb_root);
732 	mz->on_tree = false;
733 }
734 
735 static void
736 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
737 				struct mem_cgroup_per_zone *mz,
738 				struct mem_cgroup_tree_per_zone *mctz)
739 {
740 	spin_lock(&mctz->lock);
741 	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
742 	spin_unlock(&mctz->lock);
743 }
744 
745 
746 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
747 {
748 	unsigned long long excess;
749 	struct mem_cgroup_per_zone *mz;
750 	struct mem_cgroup_tree_per_zone *mctz;
751 	int nid = page_to_nid(page);
752 	int zid = page_zonenum(page);
753 	mctz = soft_limit_tree_from_page(page);
754 
755 	/*
756 	 * Necessary to update all ancestors when hierarchy is used.
757 	 * because their event counter is not touched.
758 	 */
759 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
760 		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
761 		excess = res_counter_soft_limit_excess(&memcg->res);
762 		/*
763 		 * We have to update the tree if mz is on RB-tree or
764 		 * mem is over its softlimit.
765 		 */
766 		if (excess || mz->on_tree) {
767 			spin_lock(&mctz->lock);
768 			/* if on-tree, remove it */
769 			if (mz->on_tree)
770 				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
771 			/*
772 			 * Insert again. mz->usage_in_excess will be updated.
773 			 * If excess is 0, no tree ops.
774 			 */
775 			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
776 			spin_unlock(&mctz->lock);
777 		}
778 	}
779 }
780 
781 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
782 {
783 	int node, zone;
784 	struct mem_cgroup_per_zone *mz;
785 	struct mem_cgroup_tree_per_zone *mctz;
786 
787 	for_each_node(node) {
788 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
789 			mz = mem_cgroup_zoneinfo(memcg, node, zone);
790 			mctz = soft_limit_tree_node_zone(node, zone);
791 			mem_cgroup_remove_exceeded(memcg, mz, mctz);
792 		}
793 	}
794 }
795 
796 static struct mem_cgroup_per_zone *
797 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
798 {
799 	struct rb_node *rightmost = NULL;
800 	struct mem_cgroup_per_zone *mz;
801 
802 retry:
803 	mz = NULL;
804 	rightmost = rb_last(&mctz->rb_root);
805 	if (!rightmost)
806 		goto done;		/* Nothing to reclaim from */
807 
808 	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
809 	/*
810 	 * Remove the node now but someone else can add it back,
811 	 * we will to add it back at the end of reclaim to its correct
812 	 * position in the tree.
813 	 */
814 	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
815 	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
816 		!css_tryget(&mz->memcg->css))
817 		goto retry;
818 done:
819 	return mz;
820 }
821 
822 static struct mem_cgroup_per_zone *
823 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
824 {
825 	struct mem_cgroup_per_zone *mz;
826 
827 	spin_lock(&mctz->lock);
828 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
829 	spin_unlock(&mctz->lock);
830 	return mz;
831 }
832 
833 /*
834  * Implementation Note: reading percpu statistics for memcg.
835  *
836  * Both of vmstat[] and percpu_counter has threshold and do periodic
837  * synchronization to implement "quick" read. There are trade-off between
838  * reading cost and precision of value. Then, we may have a chance to implement
839  * a periodic synchronizion of counter in memcg's counter.
840  *
841  * But this _read() function is used for user interface now. The user accounts
842  * memory usage by memory cgroup and he _always_ requires exact value because
843  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
844  * have to visit all online cpus and make sum. So, for now, unnecessary
845  * synchronization is not implemented. (just implemented for cpu hotplug)
846  *
847  * If there are kernel internal actions which can make use of some not-exact
848  * value, and reading all cpu value can be performance bottleneck in some
849  * common workload, threashold and synchonization as vmstat[] should be
850  * implemented.
851  */
852 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
853 				 enum mem_cgroup_stat_index idx)
854 {
855 	long val = 0;
856 	int cpu;
857 
858 	get_online_cpus();
859 	for_each_online_cpu(cpu)
860 		val += per_cpu(memcg->stat->count[idx], cpu);
861 #ifdef CONFIG_HOTPLUG_CPU
862 	spin_lock(&memcg->pcp_counter_lock);
863 	val += memcg->nocpu_base.count[idx];
864 	spin_unlock(&memcg->pcp_counter_lock);
865 #endif
866 	put_online_cpus();
867 	return val;
868 }
869 
870 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
871 					 bool charge)
872 {
873 	int val = (charge) ? 1 : -1;
874 	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
875 }
876 
877 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
878 					    enum mem_cgroup_events_index idx)
879 {
880 	unsigned long val = 0;
881 	int cpu;
882 
883 	for_each_online_cpu(cpu)
884 		val += per_cpu(memcg->stat->events[idx], cpu);
885 #ifdef CONFIG_HOTPLUG_CPU
886 	spin_lock(&memcg->pcp_counter_lock);
887 	val += memcg->nocpu_base.events[idx];
888 	spin_unlock(&memcg->pcp_counter_lock);
889 #endif
890 	return val;
891 }
892 
893 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
894 					 struct page *page,
895 					 bool anon, int nr_pages)
896 {
897 	preempt_disable();
898 
899 	/*
900 	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
901 	 * counted as CACHE even if it's on ANON LRU.
902 	 */
903 	if (anon)
904 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
905 				nr_pages);
906 	else
907 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
908 				nr_pages);
909 
910 	if (PageTransHuge(page))
911 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
912 				nr_pages);
913 
914 	/* pagein of a big page is an event. So, ignore page size */
915 	if (nr_pages > 0)
916 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
917 	else {
918 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
919 		nr_pages = -nr_pages; /* for event */
920 	}
921 
922 	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
923 
924 	preempt_enable();
925 }
926 
927 unsigned long
928 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
929 {
930 	struct mem_cgroup_per_zone *mz;
931 
932 	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
933 	return mz->lru_size[lru];
934 }
935 
936 static unsigned long
937 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
938 			unsigned int lru_mask)
939 {
940 	struct mem_cgroup_per_zone *mz;
941 	enum lru_list lru;
942 	unsigned long ret = 0;
943 
944 	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
945 
946 	for_each_lru(lru) {
947 		if (BIT(lru) & lru_mask)
948 			ret += mz->lru_size[lru];
949 	}
950 	return ret;
951 }
952 
953 static unsigned long
954 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
955 			int nid, unsigned int lru_mask)
956 {
957 	u64 total = 0;
958 	int zid;
959 
960 	for (zid = 0; zid < MAX_NR_ZONES; zid++)
961 		total += mem_cgroup_zone_nr_lru_pages(memcg,
962 						nid, zid, lru_mask);
963 
964 	return total;
965 }
966 
967 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
968 			unsigned int lru_mask)
969 {
970 	int nid;
971 	u64 total = 0;
972 
973 	for_each_node_state(nid, N_MEMORY)
974 		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
975 	return total;
976 }
977 
978 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
979 				       enum mem_cgroup_events_target target)
980 {
981 	unsigned long val, next;
982 
983 	val = __this_cpu_read(memcg->stat->nr_page_events);
984 	next = __this_cpu_read(memcg->stat->targets[target]);
985 	/* from time_after() in jiffies.h */
986 	if ((long)next - (long)val < 0) {
987 		switch (target) {
988 		case MEM_CGROUP_TARGET_THRESH:
989 			next = val + THRESHOLDS_EVENTS_TARGET;
990 			break;
991 		case MEM_CGROUP_TARGET_SOFTLIMIT:
992 			next = val + SOFTLIMIT_EVENTS_TARGET;
993 			break;
994 		case MEM_CGROUP_TARGET_NUMAINFO:
995 			next = val + NUMAINFO_EVENTS_TARGET;
996 			break;
997 		default:
998 			break;
999 		}
1000 		__this_cpu_write(memcg->stat->targets[target], next);
1001 		return true;
1002 	}
1003 	return false;
1004 }
1005 
1006 /*
1007  * Check events in order.
1008  *
1009  */
1010 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1011 {
1012 	preempt_disable();
1013 	/* threshold event is triggered in finer grain than soft limit */
1014 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
1015 						MEM_CGROUP_TARGET_THRESH))) {
1016 		bool do_softlimit;
1017 		bool do_numainfo __maybe_unused;
1018 
1019 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
1020 						MEM_CGROUP_TARGET_SOFTLIMIT);
1021 #if MAX_NUMNODES > 1
1022 		do_numainfo = mem_cgroup_event_ratelimit(memcg,
1023 						MEM_CGROUP_TARGET_NUMAINFO);
1024 #endif
1025 		preempt_enable();
1026 
1027 		mem_cgroup_threshold(memcg);
1028 		if (unlikely(do_softlimit))
1029 			mem_cgroup_update_tree(memcg, page);
1030 #if MAX_NUMNODES > 1
1031 		if (unlikely(do_numainfo))
1032 			atomic_inc(&memcg->numainfo_events);
1033 #endif
1034 	} else
1035 		preempt_enable();
1036 }
1037 
1038 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
1039 {
1040 	return mem_cgroup_from_css(
1041 		cgroup_subsys_state(cont, mem_cgroup_subsys_id));
1042 }
1043 
1044 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1045 {
1046 	/*
1047 	 * mm_update_next_owner() may clear mm->owner to NULL
1048 	 * if it races with swapoff, page migration, etc.
1049 	 * So this can be called with p == NULL.
1050 	 */
1051 	if (unlikely(!p))
1052 		return NULL;
1053 
1054 	return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id));
1055 }
1056 
1057 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
1058 {
1059 	struct mem_cgroup *memcg = NULL;
1060 
1061 	if (!mm)
1062 		return NULL;
1063 	/*
1064 	 * Because we have no locks, mm->owner's may be being moved to other
1065 	 * cgroup. We use css_tryget() here even if this looks
1066 	 * pessimistic (rather than adding locks here).
1067 	 */
1068 	rcu_read_lock();
1069 	do {
1070 		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1071 		if (unlikely(!memcg))
1072 			break;
1073 	} while (!css_tryget(&memcg->css));
1074 	rcu_read_unlock();
1075 	return memcg;
1076 }
1077 
1078 /*
1079  * Returns a next (in a pre-order walk) alive memcg (with elevated css
1080  * ref. count) or NULL if the whole root's subtree has been visited.
1081  *
1082  * helper function to be used by mem_cgroup_iter
1083  */
1084 static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1085 		struct mem_cgroup *last_visited)
1086 {
1087 	struct cgroup *prev_cgroup, *next_cgroup;
1088 
1089 	/*
1090 	 * Root is not visited by cgroup iterators so it needs an
1091 	 * explicit visit.
1092 	 */
1093 	if (!last_visited)
1094 		return root;
1095 
1096 	prev_cgroup = (last_visited == root) ? NULL
1097 		: last_visited->css.cgroup;
1098 skip_node:
1099 	next_cgroup = cgroup_next_descendant_pre(
1100 			prev_cgroup, root->css.cgroup);
1101 
1102 	/*
1103 	 * Even if we found a group we have to make sure it is
1104 	 * alive. css && !memcg means that the groups should be
1105 	 * skipped and we should continue the tree walk.
1106 	 * last_visited css is safe to use because it is
1107 	 * protected by css_get and the tree walk is rcu safe.
1108 	 */
1109 	if (next_cgroup) {
1110 		struct mem_cgroup *mem = mem_cgroup_from_cont(
1111 				next_cgroup);
1112 		if (css_tryget(&mem->css))
1113 			return mem;
1114 		else {
1115 			prev_cgroup = next_cgroup;
1116 			goto skip_node;
1117 		}
1118 	}
1119 
1120 	return NULL;
1121 }
1122 
1123 static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1124 {
1125 	/*
1126 	 * When a group in the hierarchy below root is destroyed, the
1127 	 * hierarchy iterator can no longer be trusted since it might
1128 	 * have pointed to the destroyed group.  Invalidate it.
1129 	 */
1130 	atomic_inc(&root->dead_count);
1131 }
1132 
1133 static struct mem_cgroup *
1134 mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1135 		     struct mem_cgroup *root,
1136 		     int *sequence)
1137 {
1138 	struct mem_cgroup *position = NULL;
1139 	/*
1140 	 * A cgroup destruction happens in two stages: offlining and
1141 	 * release.  They are separated by a RCU grace period.
1142 	 *
1143 	 * If the iterator is valid, we may still race with an
1144 	 * offlining.  The RCU lock ensures the object won't be
1145 	 * released, tryget will fail if we lost the race.
1146 	 */
1147 	*sequence = atomic_read(&root->dead_count);
1148 	if (iter->last_dead_count == *sequence) {
1149 		smp_rmb();
1150 		position = iter->last_visited;
1151 		if (position && !css_tryget(&position->css))
1152 			position = NULL;
1153 	}
1154 	return position;
1155 }
1156 
1157 static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1158 				   struct mem_cgroup *last_visited,
1159 				   struct mem_cgroup *new_position,
1160 				   int sequence)
1161 {
1162 	if (last_visited)
1163 		css_put(&last_visited->css);
1164 	/*
1165 	 * We store the sequence count from the time @last_visited was
1166 	 * loaded successfully instead of rereading it here so that we
1167 	 * don't lose destruction events in between.  We could have
1168 	 * raced with the destruction of @new_position after all.
1169 	 */
1170 	iter->last_visited = new_position;
1171 	smp_wmb();
1172 	iter->last_dead_count = sequence;
1173 }
1174 
1175 /**
1176  * mem_cgroup_iter - iterate over memory cgroup hierarchy
1177  * @root: hierarchy root
1178  * @prev: previously returned memcg, NULL on first invocation
1179  * @reclaim: cookie for shared reclaim walks, NULL for full walks
1180  *
1181  * Returns references to children of the hierarchy below @root, or
1182  * @root itself, or %NULL after a full round-trip.
1183  *
1184  * Caller must pass the return value in @prev on subsequent
1185  * invocations for reference counting, or use mem_cgroup_iter_break()
1186  * to cancel a hierarchy walk before the round-trip is complete.
1187  *
1188  * Reclaimers can specify a zone and a priority level in @reclaim to
1189  * divide up the memcgs in the hierarchy among all concurrent
1190  * reclaimers operating on the same zone and priority.
1191  */
1192 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1193 				   struct mem_cgroup *prev,
1194 				   struct mem_cgroup_reclaim_cookie *reclaim)
1195 {
1196 	struct mem_cgroup *memcg = NULL;
1197 	struct mem_cgroup *last_visited = NULL;
1198 
1199 	if (mem_cgroup_disabled())
1200 		return NULL;
1201 
1202 	if (!root)
1203 		root = root_mem_cgroup;
1204 
1205 	if (prev && !reclaim)
1206 		last_visited = prev;
1207 
1208 	if (!root->use_hierarchy && root != root_mem_cgroup) {
1209 		if (prev)
1210 			goto out_css_put;
1211 		return root;
1212 	}
1213 
1214 	rcu_read_lock();
1215 	while (!memcg) {
1216 		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1217 		int uninitialized_var(seq);
1218 
1219 		if (reclaim) {
1220 			int nid = zone_to_nid(reclaim->zone);
1221 			int zid = zone_idx(reclaim->zone);
1222 			struct mem_cgroup_per_zone *mz;
1223 
1224 			mz = mem_cgroup_zoneinfo(root, nid, zid);
1225 			iter = &mz->reclaim_iter[reclaim->priority];
1226 			if (prev && reclaim->generation != iter->generation) {
1227 				iter->last_visited = NULL;
1228 				goto out_unlock;
1229 			}
1230 
1231 			last_visited = mem_cgroup_iter_load(iter, root, &seq);
1232 		}
1233 
1234 		memcg = __mem_cgroup_iter_next(root, last_visited);
1235 
1236 		if (reclaim) {
1237 			mem_cgroup_iter_update(iter, last_visited, memcg, seq);
1238 
1239 			if (!memcg)
1240 				iter->generation++;
1241 			else if (!prev && memcg)
1242 				reclaim->generation = iter->generation;
1243 		}
1244 
1245 		if (prev && !memcg)
1246 			goto out_unlock;
1247 	}
1248 out_unlock:
1249 	rcu_read_unlock();
1250 out_css_put:
1251 	if (prev && prev != root)
1252 		css_put(&prev->css);
1253 
1254 	return memcg;
1255 }
1256 
1257 /**
1258  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1259  * @root: hierarchy root
1260  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1261  */
1262 void mem_cgroup_iter_break(struct mem_cgroup *root,
1263 			   struct mem_cgroup *prev)
1264 {
1265 	if (!root)
1266 		root = root_mem_cgroup;
1267 	if (prev && prev != root)
1268 		css_put(&prev->css);
1269 }
1270 
1271 /*
1272  * Iteration constructs for visiting all cgroups (under a tree).  If
1273  * loops are exited prematurely (break), mem_cgroup_iter_break() must
1274  * be used for reference counting.
1275  */
1276 #define for_each_mem_cgroup_tree(iter, root)		\
1277 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1278 	     iter != NULL;				\
1279 	     iter = mem_cgroup_iter(root, iter, NULL))
1280 
1281 #define for_each_mem_cgroup(iter)			\
1282 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1283 	     iter != NULL;				\
1284 	     iter = mem_cgroup_iter(NULL, iter, NULL))
1285 
1286 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1287 {
1288 	struct mem_cgroup *memcg;
1289 
1290 	rcu_read_lock();
1291 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1292 	if (unlikely(!memcg))
1293 		goto out;
1294 
1295 	switch (idx) {
1296 	case PGFAULT:
1297 		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1298 		break;
1299 	case PGMAJFAULT:
1300 		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1301 		break;
1302 	default:
1303 		BUG();
1304 	}
1305 out:
1306 	rcu_read_unlock();
1307 }
1308 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1309 
1310 /**
1311  * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1312  * @zone: zone of the wanted lruvec
1313  * @memcg: memcg of the wanted lruvec
1314  *
1315  * Returns the lru list vector holding pages for the given @zone and
1316  * @mem.  This can be the global zone lruvec, if the memory controller
1317  * is disabled.
1318  */
1319 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1320 				      struct mem_cgroup *memcg)
1321 {
1322 	struct mem_cgroup_per_zone *mz;
1323 	struct lruvec *lruvec;
1324 
1325 	if (mem_cgroup_disabled()) {
1326 		lruvec = &zone->lruvec;
1327 		goto out;
1328 	}
1329 
1330 	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1331 	lruvec = &mz->lruvec;
1332 out:
1333 	/*
1334 	 * Since a node can be onlined after the mem_cgroup was created,
1335 	 * we have to be prepared to initialize lruvec->zone here;
1336 	 * and if offlined then reonlined, we need to reinitialize it.
1337 	 */
1338 	if (unlikely(lruvec->zone != zone))
1339 		lruvec->zone = zone;
1340 	return lruvec;
1341 }
1342 
1343 /*
1344  * Following LRU functions are allowed to be used without PCG_LOCK.
1345  * Operations are called by routine of global LRU independently from memcg.
1346  * What we have to take care of here is validness of pc->mem_cgroup.
1347  *
1348  * Changes to pc->mem_cgroup happens when
1349  * 1. charge
1350  * 2. moving account
1351  * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1352  * It is added to LRU before charge.
1353  * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1354  * When moving account, the page is not on LRU. It's isolated.
1355  */
1356 
1357 /**
1358  * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1359  * @page: the page
1360  * @zone: zone of the page
1361  */
1362 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1363 {
1364 	struct mem_cgroup_per_zone *mz;
1365 	struct mem_cgroup *memcg;
1366 	struct page_cgroup *pc;
1367 	struct lruvec *lruvec;
1368 
1369 	if (mem_cgroup_disabled()) {
1370 		lruvec = &zone->lruvec;
1371 		goto out;
1372 	}
1373 
1374 	pc = lookup_page_cgroup(page);
1375 	memcg = pc->mem_cgroup;
1376 
1377 	/*
1378 	 * Surreptitiously switch any uncharged offlist page to root:
1379 	 * an uncharged page off lru does nothing to secure
1380 	 * its former mem_cgroup from sudden removal.
1381 	 *
1382 	 * Our caller holds lru_lock, and PageCgroupUsed is updated
1383 	 * under page_cgroup lock: between them, they make all uses
1384 	 * of pc->mem_cgroup safe.
1385 	 */
1386 	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1387 		pc->mem_cgroup = memcg = root_mem_cgroup;
1388 
1389 	mz = page_cgroup_zoneinfo(memcg, page);
1390 	lruvec = &mz->lruvec;
1391 out:
1392 	/*
1393 	 * Since a node can be onlined after the mem_cgroup was created,
1394 	 * we have to be prepared to initialize lruvec->zone here;
1395 	 * and if offlined then reonlined, we need to reinitialize it.
1396 	 */
1397 	if (unlikely(lruvec->zone != zone))
1398 		lruvec->zone = zone;
1399 	return lruvec;
1400 }
1401 
1402 /**
1403  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1404  * @lruvec: mem_cgroup per zone lru vector
1405  * @lru: index of lru list the page is sitting on
1406  * @nr_pages: positive when adding or negative when removing
1407  *
1408  * This function must be called when a page is added to or removed from an
1409  * lru list.
1410  */
1411 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1412 				int nr_pages)
1413 {
1414 	struct mem_cgroup_per_zone *mz;
1415 	unsigned long *lru_size;
1416 
1417 	if (mem_cgroup_disabled())
1418 		return;
1419 
1420 	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1421 	lru_size = mz->lru_size + lru;
1422 	*lru_size += nr_pages;
1423 	VM_BUG_ON((long)(*lru_size) < 0);
1424 }
1425 
1426 /*
1427  * Checks whether given mem is same or in the root_mem_cgroup's
1428  * hierarchy subtree
1429  */
1430 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1431 				  struct mem_cgroup *memcg)
1432 {
1433 	if (root_memcg == memcg)
1434 		return true;
1435 	if (!root_memcg->use_hierarchy || !memcg)
1436 		return false;
1437 	return css_is_ancestor(&memcg->css, &root_memcg->css);
1438 }
1439 
1440 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1441 				       struct mem_cgroup *memcg)
1442 {
1443 	bool ret;
1444 
1445 	rcu_read_lock();
1446 	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1447 	rcu_read_unlock();
1448 	return ret;
1449 }
1450 
1451 bool task_in_mem_cgroup(struct task_struct *task,
1452 			const struct mem_cgroup *memcg)
1453 {
1454 	struct mem_cgroup *curr = NULL;
1455 	struct task_struct *p;
1456 	bool ret;
1457 
1458 	p = find_lock_task_mm(task);
1459 	if (p) {
1460 		curr = try_get_mem_cgroup_from_mm(p->mm);
1461 		task_unlock(p);
1462 	} else {
1463 		/*
1464 		 * All threads may have already detached their mm's, but the oom
1465 		 * killer still needs to detect if they have already been oom
1466 		 * killed to prevent needlessly killing additional tasks.
1467 		 */
1468 		rcu_read_lock();
1469 		curr = mem_cgroup_from_task(task);
1470 		if (curr)
1471 			css_get(&curr->css);
1472 		rcu_read_unlock();
1473 	}
1474 	if (!curr)
1475 		return false;
1476 	/*
1477 	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1478 	 * use_hierarchy of "curr" here make this function true if hierarchy is
1479 	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1480 	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1481 	 */
1482 	ret = mem_cgroup_same_or_subtree(memcg, curr);
1483 	css_put(&curr->css);
1484 	return ret;
1485 }
1486 
1487 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1488 {
1489 	unsigned long inactive_ratio;
1490 	unsigned long inactive;
1491 	unsigned long active;
1492 	unsigned long gb;
1493 
1494 	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1495 	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1496 
1497 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
1498 	if (gb)
1499 		inactive_ratio = int_sqrt(10 * gb);
1500 	else
1501 		inactive_ratio = 1;
1502 
1503 	return inactive * inactive_ratio < active;
1504 }
1505 
1506 #define mem_cgroup_from_res_counter(counter, member)	\
1507 	container_of(counter, struct mem_cgroup, member)
1508 
1509 /**
1510  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1511  * @memcg: the memory cgroup
1512  *
1513  * Returns the maximum amount of memory @mem can be charged with, in
1514  * pages.
1515  */
1516 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1517 {
1518 	unsigned long long margin;
1519 
1520 	margin = res_counter_margin(&memcg->res);
1521 	if (do_swap_account)
1522 		margin = min(margin, res_counter_margin(&memcg->memsw));
1523 	return margin >> PAGE_SHIFT;
1524 }
1525 
1526 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1527 {
1528 	struct cgroup *cgrp = memcg->css.cgroup;
1529 
1530 	/* root ? */
1531 	if (cgrp->parent == NULL)
1532 		return vm_swappiness;
1533 
1534 	return memcg->swappiness;
1535 }
1536 
1537 /*
1538  * memcg->moving_account is used for checking possibility that some thread is
1539  * calling move_account(). When a thread on CPU-A starts moving pages under
1540  * a memcg, other threads should check memcg->moving_account under
1541  * rcu_read_lock(), like this:
1542  *
1543  *         CPU-A                                    CPU-B
1544  *                                              rcu_read_lock()
1545  *         memcg->moving_account+1              if (memcg->mocing_account)
1546  *                                                   take heavy locks.
1547  *         synchronize_rcu()                    update something.
1548  *                                              rcu_read_unlock()
1549  *         start move here.
1550  */
1551 
1552 /* for quick checking without looking up memcg */
1553 atomic_t memcg_moving __read_mostly;
1554 
1555 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1556 {
1557 	atomic_inc(&memcg_moving);
1558 	atomic_inc(&memcg->moving_account);
1559 	synchronize_rcu();
1560 }
1561 
1562 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1563 {
1564 	/*
1565 	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1566 	 * We check NULL in callee rather than caller.
1567 	 */
1568 	if (memcg) {
1569 		atomic_dec(&memcg_moving);
1570 		atomic_dec(&memcg->moving_account);
1571 	}
1572 }
1573 
1574 /*
1575  * 2 routines for checking "mem" is under move_account() or not.
1576  *
1577  * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
1578  *			  is used for avoiding races in accounting.  If true,
1579  *			  pc->mem_cgroup may be overwritten.
1580  *
1581  * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1582  *			  under hierarchy of moving cgroups. This is for
1583  *			  waiting at hith-memory prressure caused by "move".
1584  */
1585 
1586 static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1587 {
1588 	VM_BUG_ON(!rcu_read_lock_held());
1589 	return atomic_read(&memcg->moving_account) > 0;
1590 }
1591 
1592 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1593 {
1594 	struct mem_cgroup *from;
1595 	struct mem_cgroup *to;
1596 	bool ret = false;
1597 	/*
1598 	 * Unlike task_move routines, we access mc.to, mc.from not under
1599 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1600 	 */
1601 	spin_lock(&mc.lock);
1602 	from = mc.from;
1603 	to = mc.to;
1604 	if (!from)
1605 		goto unlock;
1606 
1607 	ret = mem_cgroup_same_or_subtree(memcg, from)
1608 		|| mem_cgroup_same_or_subtree(memcg, to);
1609 unlock:
1610 	spin_unlock(&mc.lock);
1611 	return ret;
1612 }
1613 
1614 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1615 {
1616 	if (mc.moving_task && current != mc.moving_task) {
1617 		if (mem_cgroup_under_move(memcg)) {
1618 			DEFINE_WAIT(wait);
1619 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1620 			/* moving charge context might have finished. */
1621 			if (mc.moving_task)
1622 				schedule();
1623 			finish_wait(&mc.waitq, &wait);
1624 			return true;
1625 		}
1626 	}
1627 	return false;
1628 }
1629 
1630 /*
1631  * Take this lock when
1632  * - a code tries to modify page's memcg while it's USED.
1633  * - a code tries to modify page state accounting in a memcg.
1634  * see mem_cgroup_stolen(), too.
1635  */
1636 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1637 				  unsigned long *flags)
1638 {
1639 	spin_lock_irqsave(&memcg->move_lock, *flags);
1640 }
1641 
1642 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1643 				unsigned long *flags)
1644 {
1645 	spin_unlock_irqrestore(&memcg->move_lock, *flags);
1646 }
1647 
1648 #define K(x) ((x) << (PAGE_SHIFT-10))
1649 /**
1650  * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1651  * @memcg: The memory cgroup that went over limit
1652  * @p: Task that is going to be killed
1653  *
1654  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1655  * enabled
1656  */
1657 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1658 {
1659 	struct cgroup *task_cgrp;
1660 	struct cgroup *mem_cgrp;
1661 	/*
1662 	 * Need a buffer in BSS, can't rely on allocations. The code relies
1663 	 * on the assumption that OOM is serialized for memory controller.
1664 	 * If this assumption is broken, revisit this code.
1665 	 */
1666 	static char memcg_name[PATH_MAX];
1667 	int ret;
1668 	struct mem_cgroup *iter;
1669 	unsigned int i;
1670 
1671 	if (!p)
1672 		return;
1673 
1674 	rcu_read_lock();
1675 
1676 	mem_cgrp = memcg->css.cgroup;
1677 	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1678 
1679 	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1680 	if (ret < 0) {
1681 		/*
1682 		 * Unfortunately, we are unable to convert to a useful name
1683 		 * But we'll still print out the usage information
1684 		 */
1685 		rcu_read_unlock();
1686 		goto done;
1687 	}
1688 	rcu_read_unlock();
1689 
1690 	pr_info("Task in %s killed", memcg_name);
1691 
1692 	rcu_read_lock();
1693 	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1694 	if (ret < 0) {
1695 		rcu_read_unlock();
1696 		goto done;
1697 	}
1698 	rcu_read_unlock();
1699 
1700 	/*
1701 	 * Continues from above, so we don't need an KERN_ level
1702 	 */
1703 	pr_cont(" as a result of limit of %s\n", memcg_name);
1704 done:
1705 
1706 	pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1707 		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1708 		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1709 		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1710 	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1711 		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1712 		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1713 		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1714 	pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1715 		res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1716 		res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1717 		res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1718 
1719 	for_each_mem_cgroup_tree(iter, memcg) {
1720 		pr_info("Memory cgroup stats");
1721 
1722 		rcu_read_lock();
1723 		ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
1724 		if (!ret)
1725 			pr_cont(" for %s", memcg_name);
1726 		rcu_read_unlock();
1727 		pr_cont(":");
1728 
1729 		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1730 			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1731 				continue;
1732 			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1733 				K(mem_cgroup_read_stat(iter, i)));
1734 		}
1735 
1736 		for (i = 0; i < NR_LRU_LISTS; i++)
1737 			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1738 				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1739 
1740 		pr_cont("\n");
1741 	}
1742 }
1743 
1744 /*
1745  * This function returns the number of memcg under hierarchy tree. Returns
1746  * 1(self count) if no children.
1747  */
1748 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1749 {
1750 	int num = 0;
1751 	struct mem_cgroup *iter;
1752 
1753 	for_each_mem_cgroup_tree(iter, memcg)
1754 		num++;
1755 	return num;
1756 }
1757 
1758 /*
1759  * Return the memory (and swap, if configured) limit for a memcg.
1760  */
1761 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1762 {
1763 	u64 limit;
1764 
1765 	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1766 
1767 	/*
1768 	 * Do not consider swap space if we cannot swap due to swappiness
1769 	 */
1770 	if (mem_cgroup_swappiness(memcg)) {
1771 		u64 memsw;
1772 
1773 		limit += total_swap_pages << PAGE_SHIFT;
1774 		memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1775 
1776 		/*
1777 		 * If memsw is finite and limits the amount of swap space
1778 		 * available to this memcg, return that limit.
1779 		 */
1780 		limit = min(limit, memsw);
1781 	}
1782 
1783 	return limit;
1784 }
1785 
1786 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1787 				     int order)
1788 {
1789 	struct mem_cgroup *iter;
1790 	unsigned long chosen_points = 0;
1791 	unsigned long totalpages;
1792 	unsigned int points = 0;
1793 	struct task_struct *chosen = NULL;
1794 
1795 	/*
1796 	 * If current has a pending SIGKILL or is exiting, then automatically
1797 	 * select it.  The goal is to allow it to allocate so that it may
1798 	 * quickly exit and free its memory.
1799 	 */
1800 	if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1801 		set_thread_flag(TIF_MEMDIE);
1802 		return;
1803 	}
1804 
1805 	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1806 	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1807 	for_each_mem_cgroup_tree(iter, memcg) {
1808 		struct cgroup *cgroup = iter->css.cgroup;
1809 		struct cgroup_iter it;
1810 		struct task_struct *task;
1811 
1812 		cgroup_iter_start(cgroup, &it);
1813 		while ((task = cgroup_iter_next(cgroup, &it))) {
1814 			switch (oom_scan_process_thread(task, totalpages, NULL,
1815 							false)) {
1816 			case OOM_SCAN_SELECT:
1817 				if (chosen)
1818 					put_task_struct(chosen);
1819 				chosen = task;
1820 				chosen_points = ULONG_MAX;
1821 				get_task_struct(chosen);
1822 				/* fall through */
1823 			case OOM_SCAN_CONTINUE:
1824 				continue;
1825 			case OOM_SCAN_ABORT:
1826 				cgroup_iter_end(cgroup, &it);
1827 				mem_cgroup_iter_break(memcg, iter);
1828 				if (chosen)
1829 					put_task_struct(chosen);
1830 				return;
1831 			case OOM_SCAN_OK:
1832 				break;
1833 			};
1834 			points = oom_badness(task, memcg, NULL, totalpages);
1835 			if (points > chosen_points) {
1836 				if (chosen)
1837 					put_task_struct(chosen);
1838 				chosen = task;
1839 				chosen_points = points;
1840 				get_task_struct(chosen);
1841 			}
1842 		}
1843 		cgroup_iter_end(cgroup, &it);
1844 	}
1845 
1846 	if (!chosen)
1847 		return;
1848 	points = chosen_points * 1000 / totalpages;
1849 	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1850 			 NULL, "Memory cgroup out of memory");
1851 }
1852 
1853 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1854 					gfp_t gfp_mask,
1855 					unsigned long flags)
1856 {
1857 	unsigned long total = 0;
1858 	bool noswap = false;
1859 	int loop;
1860 
1861 	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1862 		noswap = true;
1863 	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1864 		noswap = true;
1865 
1866 	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1867 		if (loop)
1868 			drain_all_stock_async(memcg);
1869 		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1870 		/*
1871 		 * Allow limit shrinkers, which are triggered directly
1872 		 * by userspace, to catch signals and stop reclaim
1873 		 * after minimal progress, regardless of the margin.
1874 		 */
1875 		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1876 			break;
1877 		if (mem_cgroup_margin(memcg))
1878 			break;
1879 		/*
1880 		 * If nothing was reclaimed after two attempts, there
1881 		 * may be no reclaimable pages in this hierarchy.
1882 		 */
1883 		if (loop && !total)
1884 			break;
1885 	}
1886 	return total;
1887 }
1888 
1889 /**
1890  * test_mem_cgroup_node_reclaimable
1891  * @memcg: the target memcg
1892  * @nid: the node ID to be checked.
1893  * @noswap : specify true here if the user wants flle only information.
1894  *
1895  * This function returns whether the specified memcg contains any
1896  * reclaimable pages on a node. Returns true if there are any reclaimable
1897  * pages in the node.
1898  */
1899 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1900 		int nid, bool noswap)
1901 {
1902 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1903 		return true;
1904 	if (noswap || !total_swap_pages)
1905 		return false;
1906 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1907 		return true;
1908 	return false;
1909 
1910 }
1911 #if MAX_NUMNODES > 1
1912 
1913 /*
1914  * Always updating the nodemask is not very good - even if we have an empty
1915  * list or the wrong list here, we can start from some node and traverse all
1916  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1917  *
1918  */
1919 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1920 {
1921 	int nid;
1922 	/*
1923 	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1924 	 * pagein/pageout changes since the last update.
1925 	 */
1926 	if (!atomic_read(&memcg->numainfo_events))
1927 		return;
1928 	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1929 		return;
1930 
1931 	/* make a nodemask where this memcg uses memory from */
1932 	memcg->scan_nodes = node_states[N_MEMORY];
1933 
1934 	for_each_node_mask(nid, node_states[N_MEMORY]) {
1935 
1936 		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1937 			node_clear(nid, memcg->scan_nodes);
1938 	}
1939 
1940 	atomic_set(&memcg->numainfo_events, 0);
1941 	atomic_set(&memcg->numainfo_updating, 0);
1942 }
1943 
1944 /*
1945  * Selecting a node where we start reclaim from. Because what we need is just
1946  * reducing usage counter, start from anywhere is O,K. Considering
1947  * memory reclaim from current node, there are pros. and cons.
1948  *
1949  * Freeing memory from current node means freeing memory from a node which
1950  * we'll use or we've used. So, it may make LRU bad. And if several threads
1951  * hit limits, it will see a contention on a node. But freeing from remote
1952  * node means more costs for memory reclaim because of memory latency.
1953  *
1954  * Now, we use round-robin. Better algorithm is welcomed.
1955  */
1956 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1957 {
1958 	int node;
1959 
1960 	mem_cgroup_may_update_nodemask(memcg);
1961 	node = memcg->last_scanned_node;
1962 
1963 	node = next_node(node, memcg->scan_nodes);
1964 	if (node == MAX_NUMNODES)
1965 		node = first_node(memcg->scan_nodes);
1966 	/*
1967 	 * We call this when we hit limit, not when pages are added to LRU.
1968 	 * No LRU may hold pages because all pages are UNEVICTABLE or
1969 	 * memcg is too small and all pages are not on LRU. In that case,
1970 	 * we use curret node.
1971 	 */
1972 	if (unlikely(node == MAX_NUMNODES))
1973 		node = numa_node_id();
1974 
1975 	memcg->last_scanned_node = node;
1976 	return node;
1977 }
1978 
1979 /*
1980  * Check all nodes whether it contains reclaimable pages or not.
1981  * For quick scan, we make use of scan_nodes. This will allow us to skip
1982  * unused nodes. But scan_nodes is lazily updated and may not cotain
1983  * enough new information. We need to do double check.
1984  */
1985 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1986 {
1987 	int nid;
1988 
1989 	/*
1990 	 * quick check...making use of scan_node.
1991 	 * We can skip unused nodes.
1992 	 */
1993 	if (!nodes_empty(memcg->scan_nodes)) {
1994 		for (nid = first_node(memcg->scan_nodes);
1995 		     nid < MAX_NUMNODES;
1996 		     nid = next_node(nid, memcg->scan_nodes)) {
1997 
1998 			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1999 				return true;
2000 		}
2001 	}
2002 	/*
2003 	 * Check rest of nodes.
2004 	 */
2005 	for_each_node_state(nid, N_MEMORY) {
2006 		if (node_isset(nid, memcg->scan_nodes))
2007 			continue;
2008 		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
2009 			return true;
2010 	}
2011 	return false;
2012 }
2013 
2014 #else
2015 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
2016 {
2017 	return 0;
2018 }
2019 
2020 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
2021 {
2022 	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
2023 }
2024 #endif
2025 
2026 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
2027 				   struct zone *zone,
2028 				   gfp_t gfp_mask,
2029 				   unsigned long *total_scanned)
2030 {
2031 	struct mem_cgroup *victim = NULL;
2032 	int total = 0;
2033 	int loop = 0;
2034 	unsigned long excess;
2035 	unsigned long nr_scanned;
2036 	struct mem_cgroup_reclaim_cookie reclaim = {
2037 		.zone = zone,
2038 		.priority = 0,
2039 	};
2040 
2041 	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
2042 
2043 	while (1) {
2044 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2045 		if (!victim) {
2046 			loop++;
2047 			if (loop >= 2) {
2048 				/*
2049 				 * If we have not been able to reclaim
2050 				 * anything, it might because there are
2051 				 * no reclaimable pages under this hierarchy
2052 				 */
2053 				if (!total)
2054 					break;
2055 				/*
2056 				 * We want to do more targeted reclaim.
2057 				 * excess >> 2 is not to excessive so as to
2058 				 * reclaim too much, nor too less that we keep
2059 				 * coming back to reclaim from this cgroup
2060 				 */
2061 				if (total >= (excess >> 2) ||
2062 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2063 					break;
2064 			}
2065 			continue;
2066 		}
2067 		if (!mem_cgroup_reclaimable(victim, false))
2068 			continue;
2069 		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2070 						     zone, &nr_scanned);
2071 		*total_scanned += nr_scanned;
2072 		if (!res_counter_soft_limit_excess(&root_memcg->res))
2073 			break;
2074 	}
2075 	mem_cgroup_iter_break(root_memcg, victim);
2076 	return total;
2077 }
2078 
2079 /*
2080  * Check OOM-Killer is already running under our hierarchy.
2081  * If someone is running, return false.
2082  * Has to be called with memcg_oom_lock
2083  */
2084 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
2085 {
2086 	struct mem_cgroup *iter, *failed = NULL;
2087 
2088 	for_each_mem_cgroup_tree(iter, memcg) {
2089 		if (iter->oom_lock) {
2090 			/*
2091 			 * this subtree of our hierarchy is already locked
2092 			 * so we cannot give a lock.
2093 			 */
2094 			failed = iter;
2095 			mem_cgroup_iter_break(memcg, iter);
2096 			break;
2097 		} else
2098 			iter->oom_lock = true;
2099 	}
2100 
2101 	if (!failed)
2102 		return true;
2103 
2104 	/*
2105 	 * OK, we failed to lock the whole subtree so we have to clean up
2106 	 * what we set up to the failing subtree
2107 	 */
2108 	for_each_mem_cgroup_tree(iter, memcg) {
2109 		if (iter == failed) {
2110 			mem_cgroup_iter_break(memcg, iter);
2111 			break;
2112 		}
2113 		iter->oom_lock = false;
2114 	}
2115 	return false;
2116 }
2117 
2118 /*
2119  * Has to be called with memcg_oom_lock
2120  */
2121 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2122 {
2123 	struct mem_cgroup *iter;
2124 
2125 	for_each_mem_cgroup_tree(iter, memcg)
2126 		iter->oom_lock = false;
2127 	return 0;
2128 }
2129 
2130 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2131 {
2132 	struct mem_cgroup *iter;
2133 
2134 	for_each_mem_cgroup_tree(iter, memcg)
2135 		atomic_inc(&iter->under_oom);
2136 }
2137 
2138 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2139 {
2140 	struct mem_cgroup *iter;
2141 
2142 	/*
2143 	 * When a new child is created while the hierarchy is under oom,
2144 	 * mem_cgroup_oom_lock() may not be called. We have to use
2145 	 * atomic_add_unless() here.
2146 	 */
2147 	for_each_mem_cgroup_tree(iter, memcg)
2148 		atomic_add_unless(&iter->under_oom, -1, 0);
2149 }
2150 
2151 static DEFINE_SPINLOCK(memcg_oom_lock);
2152 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2153 
2154 struct oom_wait_info {
2155 	struct mem_cgroup *memcg;
2156 	wait_queue_t	wait;
2157 };
2158 
2159 static int memcg_oom_wake_function(wait_queue_t *wait,
2160 	unsigned mode, int sync, void *arg)
2161 {
2162 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2163 	struct mem_cgroup *oom_wait_memcg;
2164 	struct oom_wait_info *oom_wait_info;
2165 
2166 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2167 	oom_wait_memcg = oom_wait_info->memcg;
2168 
2169 	/*
2170 	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
2171 	 * Then we can use css_is_ancestor without taking care of RCU.
2172 	 */
2173 	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2174 		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
2175 		return 0;
2176 	return autoremove_wake_function(wait, mode, sync, arg);
2177 }
2178 
2179 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
2180 {
2181 	/* for filtering, pass "memcg" as argument. */
2182 	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
2183 }
2184 
2185 static void memcg_oom_recover(struct mem_cgroup *memcg)
2186 {
2187 	if (memcg && atomic_read(&memcg->under_oom))
2188 		memcg_wakeup_oom(memcg);
2189 }
2190 
2191 /*
2192  * try to call OOM killer. returns false if we should exit memory-reclaim loop.
2193  */
2194 static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
2195 				  int order)
2196 {
2197 	struct oom_wait_info owait;
2198 	bool locked, need_to_kill;
2199 
2200 	owait.memcg = memcg;
2201 	owait.wait.flags = 0;
2202 	owait.wait.func = memcg_oom_wake_function;
2203 	owait.wait.private = current;
2204 	INIT_LIST_HEAD(&owait.wait.task_list);
2205 	need_to_kill = true;
2206 	mem_cgroup_mark_under_oom(memcg);
2207 
2208 	/* At first, try to OOM lock hierarchy under memcg.*/
2209 	spin_lock(&memcg_oom_lock);
2210 	locked = mem_cgroup_oom_lock(memcg);
2211 	/*
2212 	 * Even if signal_pending(), we can't quit charge() loop without
2213 	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
2214 	 * under OOM is always welcomed, use TASK_KILLABLE here.
2215 	 */
2216 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2217 	if (!locked || memcg->oom_kill_disable)
2218 		need_to_kill = false;
2219 	if (locked)
2220 		mem_cgroup_oom_notify(memcg);
2221 	spin_unlock(&memcg_oom_lock);
2222 
2223 	if (need_to_kill) {
2224 		finish_wait(&memcg_oom_waitq, &owait.wait);
2225 		mem_cgroup_out_of_memory(memcg, mask, order);
2226 	} else {
2227 		schedule();
2228 		finish_wait(&memcg_oom_waitq, &owait.wait);
2229 	}
2230 	spin_lock(&memcg_oom_lock);
2231 	if (locked)
2232 		mem_cgroup_oom_unlock(memcg);
2233 	memcg_wakeup_oom(memcg);
2234 	spin_unlock(&memcg_oom_lock);
2235 
2236 	mem_cgroup_unmark_under_oom(memcg);
2237 
2238 	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
2239 		return false;
2240 	/* Give chance to dying process */
2241 	schedule_timeout_uninterruptible(1);
2242 	return true;
2243 }
2244 
2245 /*
2246  * Currently used to update mapped file statistics, but the routine can be
2247  * generalized to update other statistics as well.
2248  *
2249  * Notes: Race condition
2250  *
2251  * We usually use page_cgroup_lock() for accessing page_cgroup member but
2252  * it tends to be costly. But considering some conditions, we doesn't need
2253  * to do so _always_.
2254  *
2255  * Considering "charge", lock_page_cgroup() is not required because all
2256  * file-stat operations happen after a page is attached to radix-tree. There
2257  * are no race with "charge".
2258  *
2259  * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2260  * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2261  * if there are race with "uncharge". Statistics itself is properly handled
2262  * by flags.
2263  *
2264  * Considering "move", this is an only case we see a race. To make the race
2265  * small, we check mm->moving_account and detect there are possibility of race
2266  * If there is, we take a lock.
2267  */
2268 
2269 void __mem_cgroup_begin_update_page_stat(struct page *page,
2270 				bool *locked, unsigned long *flags)
2271 {
2272 	struct mem_cgroup *memcg;
2273 	struct page_cgroup *pc;
2274 
2275 	pc = lookup_page_cgroup(page);
2276 again:
2277 	memcg = pc->mem_cgroup;
2278 	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2279 		return;
2280 	/*
2281 	 * If this memory cgroup is not under account moving, we don't
2282 	 * need to take move_lock_mem_cgroup(). Because we already hold
2283 	 * rcu_read_lock(), any calls to move_account will be delayed until
2284 	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2285 	 */
2286 	if (!mem_cgroup_stolen(memcg))
2287 		return;
2288 
2289 	move_lock_mem_cgroup(memcg, flags);
2290 	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2291 		move_unlock_mem_cgroup(memcg, flags);
2292 		goto again;
2293 	}
2294 	*locked = true;
2295 }
2296 
2297 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2298 {
2299 	struct page_cgroup *pc = lookup_page_cgroup(page);
2300 
2301 	/*
2302 	 * It's guaranteed that pc->mem_cgroup never changes while
2303 	 * lock is held because a routine modifies pc->mem_cgroup
2304 	 * should take move_lock_mem_cgroup().
2305 	 */
2306 	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2307 }
2308 
2309 void mem_cgroup_update_page_stat(struct page *page,
2310 				 enum mem_cgroup_page_stat_item idx, int val)
2311 {
2312 	struct mem_cgroup *memcg;
2313 	struct page_cgroup *pc = lookup_page_cgroup(page);
2314 	unsigned long uninitialized_var(flags);
2315 
2316 	if (mem_cgroup_disabled())
2317 		return;
2318 
2319 	memcg = pc->mem_cgroup;
2320 	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2321 		return;
2322 
2323 	switch (idx) {
2324 	case MEMCG_NR_FILE_MAPPED:
2325 		idx = MEM_CGROUP_STAT_FILE_MAPPED;
2326 		break;
2327 	default:
2328 		BUG();
2329 	}
2330 
2331 	this_cpu_add(memcg->stat->count[idx], val);
2332 }
2333 
2334 /*
2335  * size of first charge trial. "32" comes from vmscan.c's magic value.
2336  * TODO: maybe necessary to use big numbers in big irons.
2337  */
2338 #define CHARGE_BATCH	32U
2339 struct memcg_stock_pcp {
2340 	struct mem_cgroup *cached; /* this never be root cgroup */
2341 	unsigned int nr_pages;
2342 	struct work_struct work;
2343 	unsigned long flags;
2344 #define FLUSHING_CACHED_CHARGE	0
2345 };
2346 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2347 static DEFINE_MUTEX(percpu_charge_mutex);
2348 
2349 /**
2350  * consume_stock: Try to consume stocked charge on this cpu.
2351  * @memcg: memcg to consume from.
2352  * @nr_pages: how many pages to charge.
2353  *
2354  * The charges will only happen if @memcg matches the current cpu's memcg
2355  * stock, and at least @nr_pages are available in that stock.  Failure to
2356  * service an allocation will refill the stock.
2357  *
2358  * returns true if successful, false otherwise.
2359  */
2360 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2361 {
2362 	struct memcg_stock_pcp *stock;
2363 	bool ret = true;
2364 
2365 	if (nr_pages > CHARGE_BATCH)
2366 		return false;
2367 
2368 	stock = &get_cpu_var(memcg_stock);
2369 	if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2370 		stock->nr_pages -= nr_pages;
2371 	else /* need to call res_counter_charge */
2372 		ret = false;
2373 	put_cpu_var(memcg_stock);
2374 	return ret;
2375 }
2376 
2377 /*
2378  * Returns stocks cached in percpu to res_counter and reset cached information.
2379  */
2380 static void drain_stock(struct memcg_stock_pcp *stock)
2381 {
2382 	struct mem_cgroup *old = stock->cached;
2383 
2384 	if (stock->nr_pages) {
2385 		unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2386 
2387 		res_counter_uncharge(&old->res, bytes);
2388 		if (do_swap_account)
2389 			res_counter_uncharge(&old->memsw, bytes);
2390 		stock->nr_pages = 0;
2391 	}
2392 	stock->cached = NULL;
2393 }
2394 
2395 /*
2396  * This must be called under preempt disabled or must be called by
2397  * a thread which is pinned to local cpu.
2398  */
2399 static void drain_local_stock(struct work_struct *dummy)
2400 {
2401 	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2402 	drain_stock(stock);
2403 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2404 }
2405 
2406 static void __init memcg_stock_init(void)
2407 {
2408 	int cpu;
2409 
2410 	for_each_possible_cpu(cpu) {
2411 		struct memcg_stock_pcp *stock =
2412 					&per_cpu(memcg_stock, cpu);
2413 		INIT_WORK(&stock->work, drain_local_stock);
2414 	}
2415 }
2416 
2417 /*
2418  * Cache charges(val) which is from res_counter, to local per_cpu area.
2419  * This will be consumed by consume_stock() function, later.
2420  */
2421 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2422 {
2423 	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2424 
2425 	if (stock->cached != memcg) { /* reset if necessary */
2426 		drain_stock(stock);
2427 		stock->cached = memcg;
2428 	}
2429 	stock->nr_pages += nr_pages;
2430 	put_cpu_var(memcg_stock);
2431 }
2432 
2433 /*
2434  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2435  * of the hierarchy under it. sync flag says whether we should block
2436  * until the work is done.
2437  */
2438 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2439 {
2440 	int cpu, curcpu;
2441 
2442 	/* Notify other cpus that system-wide "drain" is running */
2443 	get_online_cpus();
2444 	curcpu = get_cpu();
2445 	for_each_online_cpu(cpu) {
2446 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2447 		struct mem_cgroup *memcg;
2448 
2449 		memcg = stock->cached;
2450 		if (!memcg || !stock->nr_pages)
2451 			continue;
2452 		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2453 			continue;
2454 		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2455 			if (cpu == curcpu)
2456 				drain_local_stock(&stock->work);
2457 			else
2458 				schedule_work_on(cpu, &stock->work);
2459 		}
2460 	}
2461 	put_cpu();
2462 
2463 	if (!sync)
2464 		goto out;
2465 
2466 	for_each_online_cpu(cpu) {
2467 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2468 		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2469 			flush_work(&stock->work);
2470 	}
2471 out:
2472  	put_online_cpus();
2473 }
2474 
2475 /*
2476  * Tries to drain stocked charges in other cpus. This function is asynchronous
2477  * and just put a work per cpu for draining localy on each cpu. Caller can
2478  * expects some charges will be back to res_counter later but cannot wait for
2479  * it.
2480  */
2481 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2482 {
2483 	/*
2484 	 * If someone calls draining, avoid adding more kworker runs.
2485 	 */
2486 	if (!mutex_trylock(&percpu_charge_mutex))
2487 		return;
2488 	drain_all_stock(root_memcg, false);
2489 	mutex_unlock(&percpu_charge_mutex);
2490 }
2491 
2492 /* This is a synchronous drain interface. */
2493 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2494 {
2495 	/* called when force_empty is called */
2496 	mutex_lock(&percpu_charge_mutex);
2497 	drain_all_stock(root_memcg, true);
2498 	mutex_unlock(&percpu_charge_mutex);
2499 }
2500 
2501 /*
2502  * This function drains percpu counter value from DEAD cpu and
2503  * move it to local cpu. Note that this function can be preempted.
2504  */
2505 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2506 {
2507 	int i;
2508 
2509 	spin_lock(&memcg->pcp_counter_lock);
2510 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2511 		long x = per_cpu(memcg->stat->count[i], cpu);
2512 
2513 		per_cpu(memcg->stat->count[i], cpu) = 0;
2514 		memcg->nocpu_base.count[i] += x;
2515 	}
2516 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2517 		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2518 
2519 		per_cpu(memcg->stat->events[i], cpu) = 0;
2520 		memcg->nocpu_base.events[i] += x;
2521 	}
2522 	spin_unlock(&memcg->pcp_counter_lock);
2523 }
2524 
2525 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2526 					unsigned long action,
2527 					void *hcpu)
2528 {
2529 	int cpu = (unsigned long)hcpu;
2530 	struct memcg_stock_pcp *stock;
2531 	struct mem_cgroup *iter;
2532 
2533 	if (action == CPU_ONLINE)
2534 		return NOTIFY_OK;
2535 
2536 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2537 		return NOTIFY_OK;
2538 
2539 	for_each_mem_cgroup(iter)
2540 		mem_cgroup_drain_pcp_counter(iter, cpu);
2541 
2542 	stock = &per_cpu(memcg_stock, cpu);
2543 	drain_stock(stock);
2544 	return NOTIFY_OK;
2545 }
2546 
2547 
2548 /* See __mem_cgroup_try_charge() for details */
2549 enum {
2550 	CHARGE_OK,		/* success */
2551 	CHARGE_RETRY,		/* need to retry but retry is not bad */
2552 	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
2553 	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
2554 	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
2555 };
2556 
2557 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2558 				unsigned int nr_pages, unsigned int min_pages,
2559 				bool oom_check)
2560 {
2561 	unsigned long csize = nr_pages * PAGE_SIZE;
2562 	struct mem_cgroup *mem_over_limit;
2563 	struct res_counter *fail_res;
2564 	unsigned long flags = 0;
2565 	int ret;
2566 
2567 	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2568 
2569 	if (likely(!ret)) {
2570 		if (!do_swap_account)
2571 			return CHARGE_OK;
2572 		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2573 		if (likely(!ret))
2574 			return CHARGE_OK;
2575 
2576 		res_counter_uncharge(&memcg->res, csize);
2577 		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2578 		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2579 	} else
2580 		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2581 	/*
2582 	 * Never reclaim on behalf of optional batching, retry with a
2583 	 * single page instead.
2584 	 */
2585 	if (nr_pages > min_pages)
2586 		return CHARGE_RETRY;
2587 
2588 	if (!(gfp_mask & __GFP_WAIT))
2589 		return CHARGE_WOULDBLOCK;
2590 
2591 	if (gfp_mask & __GFP_NORETRY)
2592 		return CHARGE_NOMEM;
2593 
2594 	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2595 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2596 		return CHARGE_RETRY;
2597 	/*
2598 	 * Even though the limit is exceeded at this point, reclaim
2599 	 * may have been able to free some pages.  Retry the charge
2600 	 * before killing the task.
2601 	 *
2602 	 * Only for regular pages, though: huge pages are rather
2603 	 * unlikely to succeed so close to the limit, and we fall back
2604 	 * to regular pages anyway in case of failure.
2605 	 */
2606 	if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2607 		return CHARGE_RETRY;
2608 
2609 	/*
2610 	 * At task move, charge accounts can be doubly counted. So, it's
2611 	 * better to wait until the end of task_move if something is going on.
2612 	 */
2613 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2614 		return CHARGE_RETRY;
2615 
2616 	/* If we don't need to call oom-killer at el, return immediately */
2617 	if (!oom_check)
2618 		return CHARGE_NOMEM;
2619 	/* check OOM */
2620 	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2621 		return CHARGE_OOM_DIE;
2622 
2623 	return CHARGE_RETRY;
2624 }
2625 
2626 /*
2627  * __mem_cgroup_try_charge() does
2628  * 1. detect memcg to be charged against from passed *mm and *ptr,
2629  * 2. update res_counter
2630  * 3. call memory reclaim if necessary.
2631  *
2632  * In some special case, if the task is fatal, fatal_signal_pending() or
2633  * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2634  * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2635  * as possible without any hazards. 2: all pages should have a valid
2636  * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2637  * pointer, that is treated as a charge to root_mem_cgroup.
2638  *
2639  * So __mem_cgroup_try_charge() will return
2640  *  0       ...  on success, filling *ptr with a valid memcg pointer.
2641  *  -ENOMEM ...  charge failure because of resource limits.
2642  *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
2643  *
2644  * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2645  * the oom-killer can be invoked.
2646  */
2647 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2648 				   gfp_t gfp_mask,
2649 				   unsigned int nr_pages,
2650 				   struct mem_cgroup **ptr,
2651 				   bool oom)
2652 {
2653 	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2654 	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2655 	struct mem_cgroup *memcg = NULL;
2656 	int ret;
2657 
2658 	/*
2659 	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2660 	 * in system level. So, allow to go ahead dying process in addition to
2661 	 * MEMDIE process.
2662 	 */
2663 	if (unlikely(test_thread_flag(TIF_MEMDIE)
2664 		     || fatal_signal_pending(current)))
2665 		goto bypass;
2666 
2667 	/*
2668 	 * We always charge the cgroup the mm_struct belongs to.
2669 	 * The mm_struct's mem_cgroup changes on task migration if the
2670 	 * thread group leader migrates. It's possible that mm is not
2671 	 * set, if so charge the root memcg (happens for pagecache usage).
2672 	 */
2673 	if (!*ptr && !mm)
2674 		*ptr = root_mem_cgroup;
2675 again:
2676 	if (*ptr) { /* css should be a valid one */
2677 		memcg = *ptr;
2678 		if (mem_cgroup_is_root(memcg))
2679 			goto done;
2680 		if (consume_stock(memcg, nr_pages))
2681 			goto done;
2682 		css_get(&memcg->css);
2683 	} else {
2684 		struct task_struct *p;
2685 
2686 		rcu_read_lock();
2687 		p = rcu_dereference(mm->owner);
2688 		/*
2689 		 * Because we don't have task_lock(), "p" can exit.
2690 		 * In that case, "memcg" can point to root or p can be NULL with
2691 		 * race with swapoff. Then, we have small risk of mis-accouning.
2692 		 * But such kind of mis-account by race always happens because
2693 		 * we don't have cgroup_mutex(). It's overkill and we allo that
2694 		 * small race, here.
2695 		 * (*) swapoff at el will charge against mm-struct not against
2696 		 * task-struct. So, mm->owner can be NULL.
2697 		 */
2698 		memcg = mem_cgroup_from_task(p);
2699 		if (!memcg)
2700 			memcg = root_mem_cgroup;
2701 		if (mem_cgroup_is_root(memcg)) {
2702 			rcu_read_unlock();
2703 			goto done;
2704 		}
2705 		if (consume_stock(memcg, nr_pages)) {
2706 			/*
2707 			 * It seems dagerous to access memcg without css_get().
2708 			 * But considering how consume_stok works, it's not
2709 			 * necessary. If consume_stock success, some charges
2710 			 * from this memcg are cached on this cpu. So, we
2711 			 * don't need to call css_get()/css_tryget() before
2712 			 * calling consume_stock().
2713 			 */
2714 			rcu_read_unlock();
2715 			goto done;
2716 		}
2717 		/* after here, we may be blocked. we need to get refcnt */
2718 		if (!css_tryget(&memcg->css)) {
2719 			rcu_read_unlock();
2720 			goto again;
2721 		}
2722 		rcu_read_unlock();
2723 	}
2724 
2725 	do {
2726 		bool oom_check;
2727 
2728 		/* If killed, bypass charge */
2729 		if (fatal_signal_pending(current)) {
2730 			css_put(&memcg->css);
2731 			goto bypass;
2732 		}
2733 
2734 		oom_check = false;
2735 		if (oom && !nr_oom_retries) {
2736 			oom_check = true;
2737 			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2738 		}
2739 
2740 		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages,
2741 		    oom_check);
2742 		switch (ret) {
2743 		case CHARGE_OK:
2744 			break;
2745 		case CHARGE_RETRY: /* not in OOM situation but retry */
2746 			batch = nr_pages;
2747 			css_put(&memcg->css);
2748 			memcg = NULL;
2749 			goto again;
2750 		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2751 			css_put(&memcg->css);
2752 			goto nomem;
2753 		case CHARGE_NOMEM: /* OOM routine works */
2754 			if (!oom) {
2755 				css_put(&memcg->css);
2756 				goto nomem;
2757 			}
2758 			/* If oom, we never return -ENOMEM */
2759 			nr_oom_retries--;
2760 			break;
2761 		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2762 			css_put(&memcg->css);
2763 			goto bypass;
2764 		}
2765 	} while (ret != CHARGE_OK);
2766 
2767 	if (batch > nr_pages)
2768 		refill_stock(memcg, batch - nr_pages);
2769 	css_put(&memcg->css);
2770 done:
2771 	*ptr = memcg;
2772 	return 0;
2773 nomem:
2774 	*ptr = NULL;
2775 	return -ENOMEM;
2776 bypass:
2777 	*ptr = root_mem_cgroup;
2778 	return -EINTR;
2779 }
2780 
2781 /*
2782  * Somemtimes we have to undo a charge we got by try_charge().
2783  * This function is for that and do uncharge, put css's refcnt.
2784  * gotten by try_charge().
2785  */
2786 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2787 				       unsigned int nr_pages)
2788 {
2789 	if (!mem_cgroup_is_root(memcg)) {
2790 		unsigned long bytes = nr_pages * PAGE_SIZE;
2791 
2792 		res_counter_uncharge(&memcg->res, bytes);
2793 		if (do_swap_account)
2794 			res_counter_uncharge(&memcg->memsw, bytes);
2795 	}
2796 }
2797 
2798 /*
2799  * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2800  * This is useful when moving usage to parent cgroup.
2801  */
2802 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2803 					unsigned int nr_pages)
2804 {
2805 	unsigned long bytes = nr_pages * PAGE_SIZE;
2806 
2807 	if (mem_cgroup_is_root(memcg))
2808 		return;
2809 
2810 	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2811 	if (do_swap_account)
2812 		res_counter_uncharge_until(&memcg->memsw,
2813 						memcg->memsw.parent, bytes);
2814 }
2815 
2816 /*
2817  * A helper function to get mem_cgroup from ID. must be called under
2818  * rcu_read_lock().  The caller is responsible for calling css_tryget if
2819  * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2820  * called against removed memcg.)
2821  */
2822 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2823 {
2824 	struct cgroup_subsys_state *css;
2825 
2826 	/* ID 0 is unused ID */
2827 	if (!id)
2828 		return NULL;
2829 	css = css_lookup(&mem_cgroup_subsys, id);
2830 	if (!css)
2831 		return NULL;
2832 	return mem_cgroup_from_css(css);
2833 }
2834 
2835 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2836 {
2837 	struct mem_cgroup *memcg = NULL;
2838 	struct page_cgroup *pc;
2839 	unsigned short id;
2840 	swp_entry_t ent;
2841 
2842 	VM_BUG_ON(!PageLocked(page));
2843 
2844 	pc = lookup_page_cgroup(page);
2845 	lock_page_cgroup(pc);
2846 	if (PageCgroupUsed(pc)) {
2847 		memcg = pc->mem_cgroup;
2848 		if (memcg && !css_tryget(&memcg->css))
2849 			memcg = NULL;
2850 	} else if (PageSwapCache(page)) {
2851 		ent.val = page_private(page);
2852 		id = lookup_swap_cgroup_id(ent);
2853 		rcu_read_lock();
2854 		memcg = mem_cgroup_lookup(id);
2855 		if (memcg && !css_tryget(&memcg->css))
2856 			memcg = NULL;
2857 		rcu_read_unlock();
2858 	}
2859 	unlock_page_cgroup(pc);
2860 	return memcg;
2861 }
2862 
2863 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2864 				       struct page *page,
2865 				       unsigned int nr_pages,
2866 				       enum charge_type ctype,
2867 				       bool lrucare)
2868 {
2869 	struct page_cgroup *pc = lookup_page_cgroup(page);
2870 	struct zone *uninitialized_var(zone);
2871 	struct lruvec *lruvec;
2872 	bool was_on_lru = false;
2873 	bool anon;
2874 
2875 	lock_page_cgroup(pc);
2876 	VM_BUG_ON(PageCgroupUsed(pc));
2877 	/*
2878 	 * we don't need page_cgroup_lock about tail pages, becase they are not
2879 	 * accessed by any other context at this point.
2880 	 */
2881 
2882 	/*
2883 	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2884 	 * may already be on some other mem_cgroup's LRU.  Take care of it.
2885 	 */
2886 	if (lrucare) {
2887 		zone = page_zone(page);
2888 		spin_lock_irq(&zone->lru_lock);
2889 		if (PageLRU(page)) {
2890 			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2891 			ClearPageLRU(page);
2892 			del_page_from_lru_list(page, lruvec, page_lru(page));
2893 			was_on_lru = true;
2894 		}
2895 	}
2896 
2897 	pc->mem_cgroup = memcg;
2898 	/*
2899 	 * We access a page_cgroup asynchronously without lock_page_cgroup().
2900 	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2901 	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2902 	 * before USED bit, we need memory barrier here.
2903 	 * See mem_cgroup_add_lru_list(), etc.
2904  	 */
2905 	smp_wmb();
2906 	SetPageCgroupUsed(pc);
2907 
2908 	if (lrucare) {
2909 		if (was_on_lru) {
2910 			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2911 			VM_BUG_ON(PageLRU(page));
2912 			SetPageLRU(page);
2913 			add_page_to_lru_list(page, lruvec, page_lru(page));
2914 		}
2915 		spin_unlock_irq(&zone->lru_lock);
2916 	}
2917 
2918 	if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2919 		anon = true;
2920 	else
2921 		anon = false;
2922 
2923 	mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2924 	unlock_page_cgroup(pc);
2925 
2926 	/*
2927 	 * "charge_statistics" updated event counter. Then, check it.
2928 	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2929 	 * if they exceeds softlimit.
2930 	 */
2931 	memcg_check_events(memcg, page);
2932 }
2933 
2934 static DEFINE_MUTEX(set_limit_mutex);
2935 
2936 #ifdef CONFIG_MEMCG_KMEM
2937 static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2938 {
2939 	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2940 		(memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
2941 }
2942 
2943 /*
2944  * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2945  * in the memcg_cache_params struct.
2946  */
2947 static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2948 {
2949 	struct kmem_cache *cachep;
2950 
2951 	VM_BUG_ON(p->is_root_cache);
2952 	cachep = p->root_cache;
2953 	return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
2954 }
2955 
2956 #ifdef CONFIG_SLABINFO
2957 static int mem_cgroup_slabinfo_read(struct cgroup *cont, struct cftype *cft,
2958 					struct seq_file *m)
2959 {
2960 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
2961 	struct memcg_cache_params *params;
2962 
2963 	if (!memcg_can_account_kmem(memcg))
2964 		return -EIO;
2965 
2966 	print_slabinfo_header(m);
2967 
2968 	mutex_lock(&memcg->slab_caches_mutex);
2969 	list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2970 		cache_show(memcg_params_to_cache(params), m);
2971 	mutex_unlock(&memcg->slab_caches_mutex);
2972 
2973 	return 0;
2974 }
2975 #endif
2976 
2977 static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
2978 {
2979 	struct res_counter *fail_res;
2980 	struct mem_cgroup *_memcg;
2981 	int ret = 0;
2982 	bool may_oom;
2983 
2984 	ret = res_counter_charge(&memcg->kmem, size, &fail_res);
2985 	if (ret)
2986 		return ret;
2987 
2988 	/*
2989 	 * Conditions under which we can wait for the oom_killer. Those are
2990 	 * the same conditions tested by the core page allocator
2991 	 */
2992 	may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);
2993 
2994 	_memcg = memcg;
2995 	ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
2996 				      &_memcg, may_oom);
2997 
2998 	if (ret == -EINTR)  {
2999 		/*
3000 		 * __mem_cgroup_try_charge() chosed to bypass to root due to
3001 		 * OOM kill or fatal signal.  Since our only options are to
3002 		 * either fail the allocation or charge it to this cgroup, do
3003 		 * it as a temporary condition. But we can't fail. From a
3004 		 * kmem/slab perspective, the cache has already been selected,
3005 		 * by mem_cgroup_kmem_get_cache(), so it is too late to change
3006 		 * our minds.
3007 		 *
3008 		 * This condition will only trigger if the task entered
3009 		 * memcg_charge_kmem in a sane state, but was OOM-killed during
3010 		 * __mem_cgroup_try_charge() above. Tasks that were already
3011 		 * dying when the allocation triggers should have been already
3012 		 * directed to the root cgroup in memcontrol.h
3013 		 */
3014 		res_counter_charge_nofail(&memcg->res, size, &fail_res);
3015 		if (do_swap_account)
3016 			res_counter_charge_nofail(&memcg->memsw, size,
3017 						  &fail_res);
3018 		ret = 0;
3019 	} else if (ret)
3020 		res_counter_uncharge(&memcg->kmem, size);
3021 
3022 	return ret;
3023 }
3024 
3025 static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
3026 {
3027 	res_counter_uncharge(&memcg->res, size);
3028 	if (do_swap_account)
3029 		res_counter_uncharge(&memcg->memsw, size);
3030 
3031 	/* Not down to 0 */
3032 	if (res_counter_uncharge(&memcg->kmem, size))
3033 		return;
3034 
3035 	/*
3036 	 * Releases a reference taken in kmem_cgroup_css_offline in case
3037 	 * this last uncharge is racing with the offlining code or it is
3038 	 * outliving the memcg existence.
3039 	 *
3040 	 * The memory barrier imposed by test&clear is paired with the
3041 	 * explicit one in memcg_kmem_mark_dead().
3042 	 */
3043 	if (memcg_kmem_test_and_clear_dead(memcg))
3044 		css_put(&memcg->css);
3045 }
3046 
3047 void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
3048 {
3049 	if (!memcg)
3050 		return;
3051 
3052 	mutex_lock(&memcg->slab_caches_mutex);
3053 	list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
3054 	mutex_unlock(&memcg->slab_caches_mutex);
3055 }
3056 
3057 /*
3058  * helper for acessing a memcg's index. It will be used as an index in the
3059  * child cache array in kmem_cache, and also to derive its name. This function
3060  * will return -1 when this is not a kmem-limited memcg.
3061  */
3062 int memcg_cache_id(struct mem_cgroup *memcg)
3063 {
3064 	return memcg ? memcg->kmemcg_id : -1;
3065 }
3066 
3067 /*
3068  * This ends up being protected by the set_limit mutex, during normal
3069  * operation, because that is its main call site.
3070  *
3071  * But when we create a new cache, we can call this as well if its parent
3072  * is kmem-limited. That will have to hold set_limit_mutex as well.
3073  */
3074 int memcg_update_cache_sizes(struct mem_cgroup *memcg)
3075 {
3076 	int num, ret;
3077 
3078 	num = ida_simple_get(&kmem_limited_groups,
3079 				0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
3080 	if (num < 0)
3081 		return num;
3082 	/*
3083 	 * After this point, kmem_accounted (that we test atomically in
3084 	 * the beginning of this conditional), is no longer 0. This
3085 	 * guarantees only one process will set the following boolean
3086 	 * to true. We don't need test_and_set because we're protected
3087 	 * by the set_limit_mutex anyway.
3088 	 */
3089 	memcg_kmem_set_activated(memcg);
3090 
3091 	ret = memcg_update_all_caches(num+1);
3092 	if (ret) {
3093 		ida_simple_remove(&kmem_limited_groups, num);
3094 		memcg_kmem_clear_activated(memcg);
3095 		return ret;
3096 	}
3097 
3098 	memcg->kmemcg_id = num;
3099 	INIT_LIST_HEAD(&memcg->memcg_slab_caches);
3100 	mutex_init(&memcg->slab_caches_mutex);
3101 	return 0;
3102 }
3103 
3104 static size_t memcg_caches_array_size(int num_groups)
3105 {
3106 	ssize_t size;
3107 	if (num_groups <= 0)
3108 		return 0;
3109 
3110 	size = 2 * num_groups;
3111 	if (size < MEMCG_CACHES_MIN_SIZE)
3112 		size = MEMCG_CACHES_MIN_SIZE;
3113 	else if (size > MEMCG_CACHES_MAX_SIZE)
3114 		size = MEMCG_CACHES_MAX_SIZE;
3115 
3116 	return size;
3117 }
3118 
3119 /*
3120  * We should update the current array size iff all caches updates succeed. This
3121  * can only be done from the slab side. The slab mutex needs to be held when
3122  * calling this.
3123  */
3124 void memcg_update_array_size(int num)
3125 {
3126 	if (num > memcg_limited_groups_array_size)
3127 		memcg_limited_groups_array_size = memcg_caches_array_size(num);
3128 }
3129 
3130 static void kmem_cache_destroy_work_func(struct work_struct *w);
3131 
3132 int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3133 {
3134 	struct memcg_cache_params *cur_params = s->memcg_params;
3135 
3136 	VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);
3137 
3138 	if (num_groups > memcg_limited_groups_array_size) {
3139 		int i;
3140 		ssize_t size = memcg_caches_array_size(num_groups);
3141 
3142 		size *= sizeof(void *);
3143 		size += sizeof(struct memcg_cache_params);
3144 
3145 		s->memcg_params = kzalloc(size, GFP_KERNEL);
3146 		if (!s->memcg_params) {
3147 			s->memcg_params = cur_params;
3148 			return -ENOMEM;
3149 		}
3150 
3151 		s->memcg_params->is_root_cache = true;
3152 
3153 		/*
3154 		 * There is the chance it will be bigger than
3155 		 * memcg_limited_groups_array_size, if we failed an allocation
3156 		 * in a cache, in which case all caches updated before it, will
3157 		 * have a bigger array.
3158 		 *
3159 		 * But if that is the case, the data after
3160 		 * memcg_limited_groups_array_size is certainly unused
3161 		 */
3162 		for (i = 0; i < memcg_limited_groups_array_size; i++) {
3163 			if (!cur_params->memcg_caches[i])
3164 				continue;
3165 			s->memcg_params->memcg_caches[i] =
3166 						cur_params->memcg_caches[i];
3167 		}
3168 
3169 		/*
3170 		 * Ideally, we would wait until all caches succeed, and only
3171 		 * then free the old one. But this is not worth the extra
3172 		 * pointer per-cache we'd have to have for this.
3173 		 *
3174 		 * It is not a big deal if some caches are left with a size
3175 		 * bigger than the others. And all updates will reset this
3176 		 * anyway.
3177 		 */
3178 		kfree(cur_params);
3179 	}
3180 	return 0;
3181 }
3182 
3183 int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
3184 			 struct kmem_cache *root_cache)
3185 {
3186 	size_t size = sizeof(struct memcg_cache_params);
3187 
3188 	if (!memcg_kmem_enabled())
3189 		return 0;
3190 
3191 	if (!memcg)
3192 		size += memcg_limited_groups_array_size * sizeof(void *);
3193 
3194 	s->memcg_params = kzalloc(size, GFP_KERNEL);
3195 	if (!s->memcg_params)
3196 		return -ENOMEM;
3197 
3198 	INIT_WORK(&s->memcg_params->destroy,
3199 			kmem_cache_destroy_work_func);
3200 	if (memcg) {
3201 		s->memcg_params->memcg = memcg;
3202 		s->memcg_params->root_cache = root_cache;
3203 	} else
3204 		s->memcg_params->is_root_cache = true;
3205 
3206 	return 0;
3207 }
3208 
3209 void memcg_release_cache(struct kmem_cache *s)
3210 {
3211 	struct kmem_cache *root;
3212 	struct mem_cgroup *memcg;
3213 	int id;
3214 
3215 	/*
3216 	 * This happens, for instance, when a root cache goes away before we
3217 	 * add any memcg.
3218 	 */
3219 	if (!s->memcg_params)
3220 		return;
3221 
3222 	if (s->memcg_params->is_root_cache)
3223 		goto out;
3224 
3225 	memcg = s->memcg_params->memcg;
3226 	id  = memcg_cache_id(memcg);
3227 
3228 	root = s->memcg_params->root_cache;
3229 	root->memcg_params->memcg_caches[id] = NULL;
3230 
3231 	mutex_lock(&memcg->slab_caches_mutex);
3232 	list_del(&s->memcg_params->list);
3233 	mutex_unlock(&memcg->slab_caches_mutex);
3234 
3235 	css_put(&memcg->css);
3236 out:
3237 	kfree(s->memcg_params);
3238 }
3239 
3240 /*
3241  * During the creation a new cache, we need to disable our accounting mechanism
3242  * altogether. This is true even if we are not creating, but rather just
3243  * enqueing new caches to be created.
3244  *
3245  * This is because that process will trigger allocations; some visible, like
3246  * explicit kmallocs to auxiliary data structures, name strings and internal
3247  * cache structures; some well concealed, like INIT_WORK() that can allocate
3248  * objects during debug.
3249  *
3250  * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3251  * to it. This may not be a bounded recursion: since the first cache creation
3252  * failed to complete (waiting on the allocation), we'll just try to create the
3253  * cache again, failing at the same point.
3254  *
3255  * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3256  * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3257  * inside the following two functions.
3258  */
3259 static inline void memcg_stop_kmem_account(void)
3260 {
3261 	VM_BUG_ON(!current->mm);
3262 	current->memcg_kmem_skip_account++;
3263 }
3264 
3265 static inline void memcg_resume_kmem_account(void)
3266 {
3267 	VM_BUG_ON(!current->mm);
3268 	current->memcg_kmem_skip_account--;
3269 }
3270 
3271 static void kmem_cache_destroy_work_func(struct work_struct *w)
3272 {
3273 	struct kmem_cache *cachep;
3274 	struct memcg_cache_params *p;
3275 
3276 	p = container_of(w, struct memcg_cache_params, destroy);
3277 
3278 	cachep = memcg_params_to_cache(p);
3279 
3280 	/*
3281 	 * If we get down to 0 after shrink, we could delete right away.
3282 	 * However, memcg_release_pages() already puts us back in the workqueue
3283 	 * in that case. If we proceed deleting, we'll get a dangling
3284 	 * reference, and removing the object from the workqueue in that case
3285 	 * is unnecessary complication. We are not a fast path.
3286 	 *
3287 	 * Note that this case is fundamentally different from racing with
3288 	 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3289 	 * kmem_cache_shrink, not only we would be reinserting a dead cache
3290 	 * into the queue, but doing so from inside the worker racing to
3291 	 * destroy it.
3292 	 *
3293 	 * So if we aren't down to zero, we'll just schedule a worker and try
3294 	 * again
3295 	 */
3296 	if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
3297 		kmem_cache_shrink(cachep);
3298 		if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3299 			return;
3300 	} else
3301 		kmem_cache_destroy(cachep);
3302 }
3303 
3304 void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3305 {
3306 	if (!cachep->memcg_params->dead)
3307 		return;
3308 
3309 	/*
3310 	 * There are many ways in which we can get here.
3311 	 *
3312 	 * We can get to a memory-pressure situation while the delayed work is
3313 	 * still pending to run. The vmscan shrinkers can then release all
3314 	 * cache memory and get us to destruction. If this is the case, we'll
3315 	 * be executed twice, which is a bug (the second time will execute over
3316 	 * bogus data). In this case, cancelling the work should be fine.
3317 	 *
3318 	 * But we can also get here from the worker itself, if
3319 	 * kmem_cache_shrink is enough to shake all the remaining objects and
3320 	 * get the page count to 0. In this case, we'll deadlock if we try to
3321 	 * cancel the work (the worker runs with an internal lock held, which
3322 	 * is the same lock we would hold for cancel_work_sync().)
3323 	 *
3324 	 * Since we can't possibly know who got us here, just refrain from
3325 	 * running if there is already work pending
3326 	 */
3327 	if (work_pending(&cachep->memcg_params->destroy))
3328 		return;
3329 	/*
3330 	 * We have to defer the actual destroying to a workqueue, because
3331 	 * we might currently be in a context that cannot sleep.
3332 	 */
3333 	schedule_work(&cachep->memcg_params->destroy);
3334 }
3335 
3336 /*
3337  * This lock protects updaters, not readers. We want readers to be as fast as
3338  * they can, and they will either see NULL or a valid cache value. Our model
3339  * allow them to see NULL, in which case the root memcg will be selected.
3340  *
3341  * We need this lock because multiple allocations to the same cache from a non
3342  * will span more than one worker. Only one of them can create the cache.
3343  */
3344 static DEFINE_MUTEX(memcg_cache_mutex);
3345 
3346 /*
3347  * Called with memcg_cache_mutex held
3348  */
3349 static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
3350 					 struct kmem_cache *s)
3351 {
3352 	struct kmem_cache *new;
3353 	static char *tmp_name = NULL;
3354 
3355 	lockdep_assert_held(&memcg_cache_mutex);
3356 
3357 	/*
3358 	 * kmem_cache_create_memcg duplicates the given name and
3359 	 * cgroup_name for this name requires RCU context.
3360 	 * This static temporary buffer is used to prevent from
3361 	 * pointless shortliving allocation.
3362 	 */
3363 	if (!tmp_name) {
3364 		tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
3365 		if (!tmp_name)
3366 			return NULL;
3367 	}
3368 
3369 	rcu_read_lock();
3370 	snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
3371 			 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
3372 	rcu_read_unlock();
3373 
3374 	new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
3375 				      (s->flags & ~SLAB_PANIC), s->ctor, s);
3376 
3377 	if (new)
3378 		new->allocflags |= __GFP_KMEMCG;
3379 
3380 	return new;
3381 }
3382 
3383 static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
3384 						  struct kmem_cache *cachep)
3385 {
3386 	struct kmem_cache *new_cachep;
3387 	int idx;
3388 
3389 	BUG_ON(!memcg_can_account_kmem(memcg));
3390 
3391 	idx = memcg_cache_id(memcg);
3392 
3393 	mutex_lock(&memcg_cache_mutex);
3394 	new_cachep = cachep->memcg_params->memcg_caches[idx];
3395 	if (new_cachep) {
3396 		css_put(&memcg->css);
3397 		goto out;
3398 	}
3399 
3400 	new_cachep = kmem_cache_dup(memcg, cachep);
3401 	if (new_cachep == NULL) {
3402 		new_cachep = cachep;
3403 		css_put(&memcg->css);
3404 		goto out;
3405 	}
3406 
3407 	atomic_set(&new_cachep->memcg_params->nr_pages , 0);
3408 
3409 	cachep->memcg_params->memcg_caches[idx] = new_cachep;
3410 	/*
3411 	 * the readers won't lock, make sure everybody sees the updated value,
3412 	 * so they won't put stuff in the queue again for no reason
3413 	 */
3414 	wmb();
3415 out:
3416 	mutex_unlock(&memcg_cache_mutex);
3417 	return new_cachep;
3418 }
3419 
3420 void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3421 {
3422 	struct kmem_cache *c;
3423 	int i;
3424 
3425 	if (!s->memcg_params)
3426 		return;
3427 	if (!s->memcg_params->is_root_cache)
3428 		return;
3429 
3430 	/*
3431 	 * If the cache is being destroyed, we trust that there is no one else
3432 	 * requesting objects from it. Even if there are, the sanity checks in
3433 	 * kmem_cache_destroy should caught this ill-case.
3434 	 *
3435 	 * Still, we don't want anyone else freeing memcg_caches under our
3436 	 * noses, which can happen if a new memcg comes to life. As usual,
3437 	 * we'll take the set_limit_mutex to protect ourselves against this.
3438 	 */
3439 	mutex_lock(&set_limit_mutex);
3440 	for (i = 0; i < memcg_limited_groups_array_size; i++) {
3441 		c = s->memcg_params->memcg_caches[i];
3442 		if (!c)
3443 			continue;
3444 
3445 		/*
3446 		 * We will now manually delete the caches, so to avoid races
3447 		 * we need to cancel all pending destruction workers and
3448 		 * proceed with destruction ourselves.
3449 		 *
3450 		 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3451 		 * and that could spawn the workers again: it is likely that
3452 		 * the cache still have active pages until this very moment.
3453 		 * This would lead us back to mem_cgroup_destroy_cache.
3454 		 *
3455 		 * But that will not execute at all if the "dead" flag is not
3456 		 * set, so flip it down to guarantee we are in control.
3457 		 */
3458 		c->memcg_params->dead = false;
3459 		cancel_work_sync(&c->memcg_params->destroy);
3460 		kmem_cache_destroy(c);
3461 	}
3462 	mutex_unlock(&set_limit_mutex);
3463 }
3464 
3465 struct create_work {
3466 	struct mem_cgroup *memcg;
3467 	struct kmem_cache *cachep;
3468 	struct work_struct work;
3469 };
3470 
3471 static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3472 {
3473 	struct kmem_cache *cachep;
3474 	struct memcg_cache_params *params;
3475 
3476 	if (!memcg_kmem_is_active(memcg))
3477 		return;
3478 
3479 	mutex_lock(&memcg->slab_caches_mutex);
3480 	list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3481 		cachep = memcg_params_to_cache(params);
3482 		cachep->memcg_params->dead = true;
3483 		schedule_work(&cachep->memcg_params->destroy);
3484 	}
3485 	mutex_unlock(&memcg->slab_caches_mutex);
3486 }
3487 
3488 static void memcg_create_cache_work_func(struct work_struct *w)
3489 {
3490 	struct create_work *cw;
3491 
3492 	cw = container_of(w, struct create_work, work);
3493 	memcg_create_kmem_cache(cw->memcg, cw->cachep);
3494 	kfree(cw);
3495 }
3496 
3497 /*
3498  * Enqueue the creation of a per-memcg kmem_cache.
3499  */
3500 static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3501 					 struct kmem_cache *cachep)
3502 {
3503 	struct create_work *cw;
3504 
3505 	cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3506 	if (cw == NULL) {
3507 		css_put(&memcg->css);
3508 		return;
3509 	}
3510 
3511 	cw->memcg = memcg;
3512 	cw->cachep = cachep;
3513 
3514 	INIT_WORK(&cw->work, memcg_create_cache_work_func);
3515 	schedule_work(&cw->work);
3516 }
3517 
3518 static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3519 				       struct kmem_cache *cachep)
3520 {
3521 	/*
3522 	 * We need to stop accounting when we kmalloc, because if the
3523 	 * corresponding kmalloc cache is not yet created, the first allocation
3524 	 * in __memcg_create_cache_enqueue will recurse.
3525 	 *
3526 	 * However, it is better to enclose the whole function. Depending on
3527 	 * the debugging options enabled, INIT_WORK(), for instance, can
3528 	 * trigger an allocation. This too, will make us recurse. Because at
3529 	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3530 	 * the safest choice is to do it like this, wrapping the whole function.
3531 	 */
3532 	memcg_stop_kmem_account();
3533 	__memcg_create_cache_enqueue(memcg, cachep);
3534 	memcg_resume_kmem_account();
3535 }
3536 /*
3537  * Return the kmem_cache we're supposed to use for a slab allocation.
3538  * We try to use the current memcg's version of the cache.
3539  *
3540  * If the cache does not exist yet, if we are the first user of it,
3541  * we either create it immediately, if possible, or create it asynchronously
3542  * in a workqueue.
3543  * In the latter case, we will let the current allocation go through with
3544  * the original cache.
3545  *
3546  * Can't be called in interrupt context or from kernel threads.
3547  * This function needs to be called with rcu_read_lock() held.
3548  */
3549 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3550 					  gfp_t gfp)
3551 {
3552 	struct mem_cgroup *memcg;
3553 	int idx;
3554 
3555 	VM_BUG_ON(!cachep->memcg_params);
3556 	VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3557 
3558 	if (!current->mm || current->memcg_kmem_skip_account)
3559 		return cachep;
3560 
3561 	rcu_read_lock();
3562 	memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
3563 
3564 	if (!memcg_can_account_kmem(memcg))
3565 		goto out;
3566 
3567 	idx = memcg_cache_id(memcg);
3568 
3569 	/*
3570 	 * barrier to mare sure we're always seeing the up to date value.  The
3571 	 * code updating memcg_caches will issue a write barrier to match this.
3572 	 */
3573 	read_barrier_depends();
3574 	if (likely(cachep->memcg_params->memcg_caches[idx])) {
3575 		cachep = cachep->memcg_params->memcg_caches[idx];
3576 		goto out;
3577 	}
3578 
3579 	/* The corresponding put will be done in the workqueue. */
3580 	if (!css_tryget(&memcg->css))
3581 		goto out;
3582 	rcu_read_unlock();
3583 
3584 	/*
3585 	 * If we are in a safe context (can wait, and not in interrupt
3586 	 * context), we could be be predictable and return right away.
3587 	 * This would guarantee that the allocation being performed
3588 	 * already belongs in the new cache.
3589 	 *
3590 	 * However, there are some clashes that can arrive from locking.
3591 	 * For instance, because we acquire the slab_mutex while doing
3592 	 * kmem_cache_dup, this means no further allocation could happen
3593 	 * with the slab_mutex held.
3594 	 *
3595 	 * Also, because cache creation issue get_online_cpus(), this
3596 	 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3597 	 * that ends up reversed during cpu hotplug. (cpuset allocates
3598 	 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3599 	 * better to defer everything.
3600 	 */
3601 	memcg_create_cache_enqueue(memcg, cachep);
3602 	return cachep;
3603 out:
3604 	rcu_read_unlock();
3605 	return cachep;
3606 }
3607 EXPORT_SYMBOL(__memcg_kmem_get_cache);
3608 
3609 /*
3610  * We need to verify if the allocation against current->mm->owner's memcg is
3611  * possible for the given order. But the page is not allocated yet, so we'll
3612  * need a further commit step to do the final arrangements.
3613  *
3614  * It is possible for the task to switch cgroups in this mean time, so at
3615  * commit time, we can't rely on task conversion any longer.  We'll then use
3616  * the handle argument to return to the caller which cgroup we should commit
3617  * against. We could also return the memcg directly and avoid the pointer
3618  * passing, but a boolean return value gives better semantics considering
3619  * the compiled-out case as well.
3620  *
3621  * Returning true means the allocation is possible.
3622  */
3623 bool
3624 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3625 {
3626 	struct mem_cgroup *memcg;
3627 	int ret;
3628 
3629 	*_memcg = NULL;
3630 
3631 	/*
3632 	 * Disabling accounting is only relevant for some specific memcg
3633 	 * internal allocations. Therefore we would initially not have such
3634 	 * check here, since direct calls to the page allocator that are marked
3635 	 * with GFP_KMEMCG only happen outside memcg core. We are mostly
3636 	 * concerned with cache allocations, and by having this test at
3637 	 * memcg_kmem_get_cache, we are already able to relay the allocation to
3638 	 * the root cache and bypass the memcg cache altogether.
3639 	 *
3640 	 * There is one exception, though: the SLUB allocator does not create
3641 	 * large order caches, but rather service large kmallocs directly from
3642 	 * the page allocator. Therefore, the following sequence when backed by
3643 	 * the SLUB allocator:
3644 	 *
3645 	 * 	memcg_stop_kmem_account();
3646 	 * 	kmalloc(<large_number>)
3647 	 * 	memcg_resume_kmem_account();
3648 	 *
3649 	 * would effectively ignore the fact that we should skip accounting,
3650 	 * since it will drive us directly to this function without passing
3651 	 * through the cache selector memcg_kmem_get_cache. Such large
3652 	 * allocations are extremely rare but can happen, for instance, for the
3653 	 * cache arrays. We bring this test here.
3654 	 */
3655 	if (!current->mm || current->memcg_kmem_skip_account)
3656 		return true;
3657 
3658 	memcg = try_get_mem_cgroup_from_mm(current->mm);
3659 
3660 	/*
3661 	 * very rare case described in mem_cgroup_from_task. Unfortunately there
3662 	 * isn't much we can do without complicating this too much, and it would
3663 	 * be gfp-dependent anyway. Just let it go
3664 	 */
3665 	if (unlikely(!memcg))
3666 		return true;
3667 
3668 	if (!memcg_can_account_kmem(memcg)) {
3669 		css_put(&memcg->css);
3670 		return true;
3671 	}
3672 
3673 	ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3674 	if (!ret)
3675 		*_memcg = memcg;
3676 
3677 	css_put(&memcg->css);
3678 	return (ret == 0);
3679 }
3680 
3681 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3682 			      int order)
3683 {
3684 	struct page_cgroup *pc;
3685 
3686 	VM_BUG_ON(mem_cgroup_is_root(memcg));
3687 
3688 	/* The page allocation failed. Revert */
3689 	if (!page) {
3690 		memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3691 		return;
3692 	}
3693 
3694 	pc = lookup_page_cgroup(page);
3695 	lock_page_cgroup(pc);
3696 	pc->mem_cgroup = memcg;
3697 	SetPageCgroupUsed(pc);
3698 	unlock_page_cgroup(pc);
3699 }
3700 
3701 void __memcg_kmem_uncharge_pages(struct page *page, int order)
3702 {
3703 	struct mem_cgroup *memcg = NULL;
3704 	struct page_cgroup *pc;
3705 
3706 
3707 	pc = lookup_page_cgroup(page);
3708 	/*
3709 	 * Fast unlocked return. Theoretically might have changed, have to
3710 	 * check again after locking.
3711 	 */
3712 	if (!PageCgroupUsed(pc))
3713 		return;
3714 
3715 	lock_page_cgroup(pc);
3716 	if (PageCgroupUsed(pc)) {
3717 		memcg = pc->mem_cgroup;
3718 		ClearPageCgroupUsed(pc);
3719 	}
3720 	unlock_page_cgroup(pc);
3721 
3722 	/*
3723 	 * We trust that only if there is a memcg associated with the page, it
3724 	 * is a valid allocation
3725 	 */
3726 	if (!memcg)
3727 		return;
3728 
3729 	VM_BUG_ON(mem_cgroup_is_root(memcg));
3730 	memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3731 }
3732 #else
3733 static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3734 {
3735 }
3736 #endif /* CONFIG_MEMCG_KMEM */
3737 
3738 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3739 
3740 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3741 /*
3742  * Because tail pages are not marked as "used", set it. We're under
3743  * zone->lru_lock, 'splitting on pmd' and compound_lock.
3744  * charge/uncharge will be never happen and move_account() is done under
3745  * compound_lock(), so we don't have to take care of races.
3746  */
3747 void mem_cgroup_split_huge_fixup(struct page *head)
3748 {
3749 	struct page_cgroup *head_pc = lookup_page_cgroup(head);
3750 	struct page_cgroup *pc;
3751 	struct mem_cgroup *memcg;
3752 	int i;
3753 
3754 	if (mem_cgroup_disabled())
3755 		return;
3756 
3757 	memcg = head_pc->mem_cgroup;
3758 	for (i = 1; i < HPAGE_PMD_NR; i++) {
3759 		pc = head_pc + i;
3760 		pc->mem_cgroup = memcg;
3761 		smp_wmb();/* see __commit_charge() */
3762 		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3763 	}
3764 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3765 		       HPAGE_PMD_NR);
3766 }
3767 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3768 
3769 /**
3770  * mem_cgroup_move_account - move account of the page
3771  * @page: the page
3772  * @nr_pages: number of regular pages (>1 for huge pages)
3773  * @pc:	page_cgroup of the page.
3774  * @from: mem_cgroup which the page is moved from.
3775  * @to:	mem_cgroup which the page is moved to. @from != @to.
3776  *
3777  * The caller must confirm following.
3778  * - page is not on LRU (isolate_page() is useful.)
3779  * - compound_lock is held when nr_pages > 1
3780  *
3781  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3782  * from old cgroup.
3783  */
3784 static int mem_cgroup_move_account(struct page *page,
3785 				   unsigned int nr_pages,
3786 				   struct page_cgroup *pc,
3787 				   struct mem_cgroup *from,
3788 				   struct mem_cgroup *to)
3789 {
3790 	unsigned long flags;
3791 	int ret;
3792 	bool anon = PageAnon(page);
3793 
3794 	VM_BUG_ON(from == to);
3795 	VM_BUG_ON(PageLRU(page));
3796 	/*
3797 	 * The page is isolated from LRU. So, collapse function
3798 	 * will not handle this page. But page splitting can happen.
3799 	 * Do this check under compound_page_lock(). The caller should
3800 	 * hold it.
3801 	 */
3802 	ret = -EBUSY;
3803 	if (nr_pages > 1 && !PageTransHuge(page))
3804 		goto out;
3805 
3806 	lock_page_cgroup(pc);
3807 
3808 	ret = -EINVAL;
3809 	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3810 		goto unlock;
3811 
3812 	move_lock_mem_cgroup(from, &flags);
3813 
3814 	if (!anon && page_mapped(page)) {
3815 		/* Update mapped_file data for mem_cgroup */
3816 		preempt_disable();
3817 		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
3818 		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
3819 		preempt_enable();
3820 	}
3821 	mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3822 
3823 	/* caller should have done css_get */
3824 	pc->mem_cgroup = to;
3825 	mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3826 	move_unlock_mem_cgroup(from, &flags);
3827 	ret = 0;
3828 unlock:
3829 	unlock_page_cgroup(pc);
3830 	/*
3831 	 * check events
3832 	 */
3833 	memcg_check_events(to, page);
3834 	memcg_check_events(from, page);
3835 out:
3836 	return ret;
3837 }
3838 
3839 /**
3840  * mem_cgroup_move_parent - moves page to the parent group
3841  * @page: the page to move
3842  * @pc: page_cgroup of the page
3843  * @child: page's cgroup
3844  *
3845  * move charges to its parent or the root cgroup if the group has no
3846  * parent (aka use_hierarchy==0).
3847  * Although this might fail (get_page_unless_zero, isolate_lru_page or
3848  * mem_cgroup_move_account fails) the failure is always temporary and
3849  * it signals a race with a page removal/uncharge or migration. In the
3850  * first case the page is on the way out and it will vanish from the LRU
3851  * on the next attempt and the call should be retried later.
3852  * Isolation from the LRU fails only if page has been isolated from
3853  * the LRU since we looked at it and that usually means either global
3854  * reclaim or migration going on. The page will either get back to the
3855  * LRU or vanish.
3856  * Finaly mem_cgroup_move_account fails only if the page got uncharged
3857  * (!PageCgroupUsed) or moved to a different group. The page will
3858  * disappear in the next attempt.
3859  */
3860 static int mem_cgroup_move_parent(struct page *page,
3861 				  struct page_cgroup *pc,
3862 				  struct mem_cgroup *child)
3863 {
3864 	struct mem_cgroup *parent;
3865 	unsigned int nr_pages;
3866 	unsigned long uninitialized_var(flags);
3867 	int ret;
3868 
3869 	VM_BUG_ON(mem_cgroup_is_root(child));
3870 
3871 	ret = -EBUSY;
3872 	if (!get_page_unless_zero(page))
3873 		goto out;
3874 	if (isolate_lru_page(page))
3875 		goto put;
3876 
3877 	nr_pages = hpage_nr_pages(page);
3878 
3879 	parent = parent_mem_cgroup(child);
3880 	/*
3881 	 * If no parent, move charges to root cgroup.
3882 	 */
3883 	if (!parent)
3884 		parent = root_mem_cgroup;
3885 
3886 	if (nr_pages > 1) {
3887 		VM_BUG_ON(!PageTransHuge(page));
3888 		flags = compound_lock_irqsave(page);
3889 	}
3890 
3891 	ret = mem_cgroup_move_account(page, nr_pages,
3892 				pc, child, parent);
3893 	if (!ret)
3894 		__mem_cgroup_cancel_local_charge(child, nr_pages);
3895 
3896 	if (nr_pages > 1)
3897 		compound_unlock_irqrestore(page, flags);
3898 	putback_lru_page(page);
3899 put:
3900 	put_page(page);
3901 out:
3902 	return ret;
3903 }
3904 
3905 /*
3906  * Charge the memory controller for page usage.
3907  * Return
3908  * 0 if the charge was successful
3909  * < 0 if the cgroup is over its limit
3910  */
3911 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3912 				gfp_t gfp_mask, enum charge_type ctype)
3913 {
3914 	struct mem_cgroup *memcg = NULL;
3915 	unsigned int nr_pages = 1;
3916 	bool oom = true;
3917 	int ret;
3918 
3919 	if (PageTransHuge(page)) {
3920 		nr_pages <<= compound_order(page);
3921 		VM_BUG_ON(!PageTransHuge(page));
3922 		/*
3923 		 * Never OOM-kill a process for a huge page.  The
3924 		 * fault handler will fall back to regular pages.
3925 		 */
3926 		oom = false;
3927 	}
3928 
3929 	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3930 	if (ret == -ENOMEM)
3931 		return ret;
3932 	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3933 	return 0;
3934 }
3935 
3936 int mem_cgroup_newpage_charge(struct page *page,
3937 			      struct mm_struct *mm, gfp_t gfp_mask)
3938 {
3939 	if (mem_cgroup_disabled())
3940 		return 0;
3941 	VM_BUG_ON(page_mapped(page));
3942 	VM_BUG_ON(page->mapping && !PageAnon(page));
3943 	VM_BUG_ON(!mm);
3944 	return mem_cgroup_charge_common(page, mm, gfp_mask,
3945 					MEM_CGROUP_CHARGE_TYPE_ANON);
3946 }
3947 
3948 /*
3949  * While swap-in, try_charge -> commit or cancel, the page is locked.
3950  * And when try_charge() successfully returns, one refcnt to memcg without
3951  * struct page_cgroup is acquired. This refcnt will be consumed by
3952  * "commit()" or removed by "cancel()"
3953  */
3954 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
3955 					  struct page *page,
3956 					  gfp_t mask,
3957 					  struct mem_cgroup **memcgp)
3958 {
3959 	struct mem_cgroup *memcg;
3960 	struct page_cgroup *pc;
3961 	int ret;
3962 
3963 	pc = lookup_page_cgroup(page);
3964 	/*
3965 	 * Every swap fault against a single page tries to charge the
3966 	 * page, bail as early as possible.  shmem_unuse() encounters
3967 	 * already charged pages, too.  The USED bit is protected by
3968 	 * the page lock, which serializes swap cache removal, which
3969 	 * in turn serializes uncharging.
3970 	 */
3971 	if (PageCgroupUsed(pc))
3972 		return 0;
3973 	if (!do_swap_account)
3974 		goto charge_cur_mm;
3975 	memcg = try_get_mem_cgroup_from_page(page);
3976 	if (!memcg)
3977 		goto charge_cur_mm;
3978 	*memcgp = memcg;
3979 	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
3980 	css_put(&memcg->css);
3981 	if (ret == -EINTR)
3982 		ret = 0;
3983 	return ret;
3984 charge_cur_mm:
3985 	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
3986 	if (ret == -EINTR)
3987 		ret = 0;
3988 	return ret;
3989 }
3990 
3991 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
3992 				 gfp_t gfp_mask, struct mem_cgroup **memcgp)
3993 {
3994 	*memcgp = NULL;
3995 	if (mem_cgroup_disabled())
3996 		return 0;
3997 	/*
3998 	 * A racing thread's fault, or swapoff, may have already
3999 	 * updated the pte, and even removed page from swap cache: in
4000 	 * those cases unuse_pte()'s pte_same() test will fail; but
4001 	 * there's also a KSM case which does need to charge the page.
4002 	 */
4003 	if (!PageSwapCache(page)) {
4004 		int ret;
4005 
4006 		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
4007 		if (ret == -EINTR)
4008 			ret = 0;
4009 		return ret;
4010 	}
4011 	return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
4012 }
4013 
4014 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
4015 {
4016 	if (mem_cgroup_disabled())
4017 		return;
4018 	if (!memcg)
4019 		return;
4020 	__mem_cgroup_cancel_charge(memcg, 1);
4021 }
4022 
4023 static void
4024 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
4025 					enum charge_type ctype)
4026 {
4027 	if (mem_cgroup_disabled())
4028 		return;
4029 	if (!memcg)
4030 		return;
4031 
4032 	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
4033 	/*
4034 	 * Now swap is on-memory. This means this page may be
4035 	 * counted both as mem and swap....double count.
4036 	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
4037 	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
4038 	 * may call delete_from_swap_cache() before reach here.
4039 	 */
4040 	if (do_swap_account && PageSwapCache(page)) {
4041 		swp_entry_t ent = {.val = page_private(page)};
4042 		mem_cgroup_uncharge_swap(ent);
4043 	}
4044 }
4045 
4046 void mem_cgroup_commit_charge_swapin(struct page *page,
4047 				     struct mem_cgroup *memcg)
4048 {
4049 	__mem_cgroup_commit_charge_swapin(page, memcg,
4050 					  MEM_CGROUP_CHARGE_TYPE_ANON);
4051 }
4052 
4053 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
4054 				gfp_t gfp_mask)
4055 {
4056 	struct mem_cgroup *memcg = NULL;
4057 	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4058 	int ret;
4059 
4060 	if (mem_cgroup_disabled())
4061 		return 0;
4062 	if (PageCompound(page))
4063 		return 0;
4064 
4065 	if (!PageSwapCache(page))
4066 		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
4067 	else { /* page is swapcache/shmem */
4068 		ret = __mem_cgroup_try_charge_swapin(mm, page,
4069 						     gfp_mask, &memcg);
4070 		if (!ret)
4071 			__mem_cgroup_commit_charge_swapin(page, memcg, type);
4072 	}
4073 	return ret;
4074 }
4075 
4076 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
4077 				   unsigned int nr_pages,
4078 				   const enum charge_type ctype)
4079 {
4080 	struct memcg_batch_info *batch = NULL;
4081 	bool uncharge_memsw = true;
4082 
4083 	/* If swapout, usage of swap doesn't decrease */
4084 	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
4085 		uncharge_memsw = false;
4086 
4087 	batch = &current->memcg_batch;
4088 	/*
4089 	 * In usual, we do css_get() when we remember memcg pointer.
4090 	 * But in this case, we keep res->usage until end of a series of
4091 	 * uncharges. Then, it's ok to ignore memcg's refcnt.
4092 	 */
4093 	if (!batch->memcg)
4094 		batch->memcg = memcg;
4095 	/*
4096 	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
4097 	 * In those cases, all pages freed continuously can be expected to be in
4098 	 * the same cgroup and we have chance to coalesce uncharges.
4099 	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
4100 	 * because we want to do uncharge as soon as possible.
4101 	 */
4102 
4103 	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
4104 		goto direct_uncharge;
4105 
4106 	if (nr_pages > 1)
4107 		goto direct_uncharge;
4108 
4109 	/*
4110 	 * In typical case, batch->memcg == mem. This means we can
4111 	 * merge a series of uncharges to an uncharge of res_counter.
4112 	 * If not, we uncharge res_counter ony by one.
4113 	 */
4114 	if (batch->memcg != memcg)
4115 		goto direct_uncharge;
4116 	/* remember freed charge and uncharge it later */
4117 	batch->nr_pages++;
4118 	if (uncharge_memsw)
4119 		batch->memsw_nr_pages++;
4120 	return;
4121 direct_uncharge:
4122 	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
4123 	if (uncharge_memsw)
4124 		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
4125 	if (unlikely(batch->memcg != memcg))
4126 		memcg_oom_recover(memcg);
4127 }
4128 
4129 /*
4130  * uncharge if !page_mapped(page)
4131  */
4132 static struct mem_cgroup *
4133 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
4134 			     bool end_migration)
4135 {
4136 	struct mem_cgroup *memcg = NULL;
4137 	unsigned int nr_pages = 1;
4138 	struct page_cgroup *pc;
4139 	bool anon;
4140 
4141 	if (mem_cgroup_disabled())
4142 		return NULL;
4143 
4144 	if (PageTransHuge(page)) {
4145 		nr_pages <<= compound_order(page);
4146 		VM_BUG_ON(!PageTransHuge(page));
4147 	}
4148 	/*
4149 	 * Check if our page_cgroup is valid
4150 	 */
4151 	pc = lookup_page_cgroup(page);
4152 	if (unlikely(!PageCgroupUsed(pc)))
4153 		return NULL;
4154 
4155 	lock_page_cgroup(pc);
4156 
4157 	memcg = pc->mem_cgroup;
4158 
4159 	if (!PageCgroupUsed(pc))
4160 		goto unlock_out;
4161 
4162 	anon = PageAnon(page);
4163 
4164 	switch (ctype) {
4165 	case MEM_CGROUP_CHARGE_TYPE_ANON:
4166 		/*
4167 		 * Generally PageAnon tells if it's the anon statistics to be
4168 		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4169 		 * used before page reached the stage of being marked PageAnon.
4170 		 */
4171 		anon = true;
4172 		/* fallthrough */
4173 	case MEM_CGROUP_CHARGE_TYPE_DROP:
4174 		/* See mem_cgroup_prepare_migration() */
4175 		if (page_mapped(page))
4176 			goto unlock_out;
4177 		/*
4178 		 * Pages under migration may not be uncharged.  But
4179 		 * end_migration() /must/ be the one uncharging the
4180 		 * unused post-migration page and so it has to call
4181 		 * here with the migration bit still set.  See the
4182 		 * res_counter handling below.
4183 		 */
4184 		if (!end_migration && PageCgroupMigration(pc))
4185 			goto unlock_out;
4186 		break;
4187 	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
4188 		if (!PageAnon(page)) {	/* Shared memory */
4189 			if (page->mapping && !page_is_file_cache(page))
4190 				goto unlock_out;
4191 		} else if (page_mapped(page)) /* Anon */
4192 				goto unlock_out;
4193 		break;
4194 	default:
4195 		break;
4196 	}
4197 
4198 	mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
4199 
4200 	ClearPageCgroupUsed(pc);
4201 	/*
4202 	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4203 	 * freed from LRU. This is safe because uncharged page is expected not
4204 	 * to be reused (freed soon). Exception is SwapCache, it's handled by
4205 	 * special functions.
4206 	 */
4207 
4208 	unlock_page_cgroup(pc);
4209 	/*
4210 	 * even after unlock, we have memcg->res.usage here and this memcg
4211 	 * will never be freed, so it's safe to call css_get().
4212 	 */
4213 	memcg_check_events(memcg, page);
4214 	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4215 		mem_cgroup_swap_statistics(memcg, true);
4216 		css_get(&memcg->css);
4217 	}
4218 	/*
4219 	 * Migration does not charge the res_counter for the
4220 	 * replacement page, so leave it alone when phasing out the
4221 	 * page that is unused after the migration.
4222 	 */
4223 	if (!end_migration && !mem_cgroup_is_root(memcg))
4224 		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4225 
4226 	return memcg;
4227 
4228 unlock_out:
4229 	unlock_page_cgroup(pc);
4230 	return NULL;
4231 }
4232 
4233 void mem_cgroup_uncharge_page(struct page *page)
4234 {
4235 	/* early check. */
4236 	if (page_mapped(page))
4237 		return;
4238 	VM_BUG_ON(page->mapping && !PageAnon(page));
4239 	/*
4240 	 * If the page is in swap cache, uncharge should be deferred
4241 	 * to the swap path, which also properly accounts swap usage
4242 	 * and handles memcg lifetime.
4243 	 *
4244 	 * Note that this check is not stable and reclaim may add the
4245 	 * page to swap cache at any time after this.  However, if the
4246 	 * page is not in swap cache by the time page->mapcount hits
4247 	 * 0, there won't be any page table references to the swap
4248 	 * slot, and reclaim will free it and not actually write the
4249 	 * page to disk.
4250 	 */
4251 	if (PageSwapCache(page))
4252 		return;
4253 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4254 }
4255 
4256 void mem_cgroup_uncharge_cache_page(struct page *page)
4257 {
4258 	VM_BUG_ON(page_mapped(page));
4259 	VM_BUG_ON(page->mapping);
4260 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4261 }
4262 
4263 /*
4264  * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4265  * In that cases, pages are freed continuously and we can expect pages
4266  * are in the same memcg. All these calls itself limits the number of
4267  * pages freed at once, then uncharge_start/end() is called properly.
4268  * This may be called prural(2) times in a context,
4269  */
4270 
4271 void mem_cgroup_uncharge_start(void)
4272 {
4273 	current->memcg_batch.do_batch++;
4274 	/* We can do nest. */
4275 	if (current->memcg_batch.do_batch == 1) {
4276 		current->memcg_batch.memcg = NULL;
4277 		current->memcg_batch.nr_pages = 0;
4278 		current->memcg_batch.memsw_nr_pages = 0;
4279 	}
4280 }
4281 
4282 void mem_cgroup_uncharge_end(void)
4283 {
4284 	struct memcg_batch_info *batch = &current->memcg_batch;
4285 
4286 	if (!batch->do_batch)
4287 		return;
4288 
4289 	batch->do_batch--;
4290 	if (batch->do_batch) /* If stacked, do nothing. */
4291 		return;
4292 
4293 	if (!batch->memcg)
4294 		return;
4295 	/*
4296 	 * This "batch->memcg" is valid without any css_get/put etc...
4297 	 * bacause we hide charges behind us.
4298 	 */
4299 	if (batch->nr_pages)
4300 		res_counter_uncharge(&batch->memcg->res,
4301 				     batch->nr_pages * PAGE_SIZE);
4302 	if (batch->memsw_nr_pages)
4303 		res_counter_uncharge(&batch->memcg->memsw,
4304 				     batch->memsw_nr_pages * PAGE_SIZE);
4305 	memcg_oom_recover(batch->memcg);
4306 	/* forget this pointer (for sanity check) */
4307 	batch->memcg = NULL;
4308 }
4309 
4310 #ifdef CONFIG_SWAP
4311 /*
4312  * called after __delete_from_swap_cache() and drop "page" account.
4313  * memcg information is recorded to swap_cgroup of "ent"
4314  */
4315 void
4316 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4317 {
4318 	struct mem_cgroup *memcg;
4319 	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4320 
4321 	if (!swapout) /* this was a swap cache but the swap is unused ! */
4322 		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4323 
4324 	memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4325 
4326 	/*
4327 	 * record memcg information,  if swapout && memcg != NULL,
4328 	 * css_get() was called in uncharge().
4329 	 */
4330 	if (do_swap_account && swapout && memcg)
4331 		swap_cgroup_record(ent, css_id(&memcg->css));
4332 }
4333 #endif
4334 
4335 #ifdef CONFIG_MEMCG_SWAP
4336 /*
4337  * called from swap_entry_free(). remove record in swap_cgroup and
4338  * uncharge "memsw" account.
4339  */
4340 void mem_cgroup_uncharge_swap(swp_entry_t ent)
4341 {
4342 	struct mem_cgroup *memcg;
4343 	unsigned short id;
4344 
4345 	if (!do_swap_account)
4346 		return;
4347 
4348 	id = swap_cgroup_record(ent, 0);
4349 	rcu_read_lock();
4350 	memcg = mem_cgroup_lookup(id);
4351 	if (memcg) {
4352 		/*
4353 		 * We uncharge this because swap is freed.
4354 		 * This memcg can be obsolete one. We avoid calling css_tryget
4355 		 */
4356 		if (!mem_cgroup_is_root(memcg))
4357 			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4358 		mem_cgroup_swap_statistics(memcg, false);
4359 		css_put(&memcg->css);
4360 	}
4361 	rcu_read_unlock();
4362 }
4363 
4364 /**
4365  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4366  * @entry: swap entry to be moved
4367  * @from:  mem_cgroup which the entry is moved from
4368  * @to:  mem_cgroup which the entry is moved to
4369  *
4370  * It succeeds only when the swap_cgroup's record for this entry is the same
4371  * as the mem_cgroup's id of @from.
4372  *
4373  * Returns 0 on success, -EINVAL on failure.
4374  *
4375  * The caller must have charged to @to, IOW, called res_counter_charge() about
4376  * both res and memsw, and called css_get().
4377  */
4378 static int mem_cgroup_move_swap_account(swp_entry_t entry,
4379 				struct mem_cgroup *from, struct mem_cgroup *to)
4380 {
4381 	unsigned short old_id, new_id;
4382 
4383 	old_id = css_id(&from->css);
4384 	new_id = css_id(&to->css);
4385 
4386 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
4387 		mem_cgroup_swap_statistics(from, false);
4388 		mem_cgroup_swap_statistics(to, true);
4389 		/*
4390 		 * This function is only called from task migration context now.
4391 		 * It postpones res_counter and refcount handling till the end
4392 		 * of task migration(mem_cgroup_clear_mc()) for performance
4393 		 * improvement. But we cannot postpone css_get(to)  because if
4394 		 * the process that has been moved to @to does swap-in, the
4395 		 * refcount of @to might be decreased to 0.
4396 		 *
4397 		 * We are in attach() phase, so the cgroup is guaranteed to be
4398 		 * alive, so we can just call css_get().
4399 		 */
4400 		css_get(&to->css);
4401 		return 0;
4402 	}
4403 	return -EINVAL;
4404 }
4405 #else
4406 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4407 				struct mem_cgroup *from, struct mem_cgroup *to)
4408 {
4409 	return -EINVAL;
4410 }
4411 #endif
4412 
4413 /*
4414  * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4415  * page belongs to.
4416  */
4417 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4418 				  struct mem_cgroup **memcgp)
4419 {
4420 	struct mem_cgroup *memcg = NULL;
4421 	unsigned int nr_pages = 1;
4422 	struct page_cgroup *pc;
4423 	enum charge_type ctype;
4424 
4425 	*memcgp = NULL;
4426 
4427 	if (mem_cgroup_disabled())
4428 		return;
4429 
4430 	if (PageTransHuge(page))
4431 		nr_pages <<= compound_order(page);
4432 
4433 	pc = lookup_page_cgroup(page);
4434 	lock_page_cgroup(pc);
4435 	if (PageCgroupUsed(pc)) {
4436 		memcg = pc->mem_cgroup;
4437 		css_get(&memcg->css);
4438 		/*
4439 		 * At migrating an anonymous page, its mapcount goes down
4440 		 * to 0 and uncharge() will be called. But, even if it's fully
4441 		 * unmapped, migration may fail and this page has to be
4442 		 * charged again. We set MIGRATION flag here and delay uncharge
4443 		 * until end_migration() is called
4444 		 *
4445 		 * Corner Case Thinking
4446 		 * A)
4447 		 * When the old page was mapped as Anon and it's unmap-and-freed
4448 		 * while migration was ongoing.
4449 		 * If unmap finds the old page, uncharge() of it will be delayed
4450 		 * until end_migration(). If unmap finds a new page, it's
4451 		 * uncharged when it make mapcount to be 1->0. If unmap code
4452 		 * finds swap_migration_entry, the new page will not be mapped
4453 		 * and end_migration() will find it(mapcount==0).
4454 		 *
4455 		 * B)
4456 		 * When the old page was mapped but migraion fails, the kernel
4457 		 * remaps it. A charge for it is kept by MIGRATION flag even
4458 		 * if mapcount goes down to 0. We can do remap successfully
4459 		 * without charging it again.
4460 		 *
4461 		 * C)
4462 		 * The "old" page is under lock_page() until the end of
4463 		 * migration, so, the old page itself will not be swapped-out.
4464 		 * If the new page is swapped out before end_migraton, our
4465 		 * hook to usual swap-out path will catch the event.
4466 		 */
4467 		if (PageAnon(page))
4468 			SetPageCgroupMigration(pc);
4469 	}
4470 	unlock_page_cgroup(pc);
4471 	/*
4472 	 * If the page is not charged at this point,
4473 	 * we return here.
4474 	 */
4475 	if (!memcg)
4476 		return;
4477 
4478 	*memcgp = memcg;
4479 	/*
4480 	 * We charge new page before it's used/mapped. So, even if unlock_page()
4481 	 * is called before end_migration, we can catch all events on this new
4482 	 * page. In the case new page is migrated but not remapped, new page's
4483 	 * mapcount will be finally 0 and we call uncharge in end_migration().
4484 	 */
4485 	if (PageAnon(page))
4486 		ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4487 	else
4488 		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4489 	/*
4490 	 * The page is committed to the memcg, but it's not actually
4491 	 * charged to the res_counter since we plan on replacing the
4492 	 * old one and only one page is going to be left afterwards.
4493 	 */
4494 	__mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4495 }
4496 
4497 /* remove redundant charge if migration failed*/
4498 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4499 	struct page *oldpage, struct page *newpage, bool migration_ok)
4500 {
4501 	struct page *used, *unused;
4502 	struct page_cgroup *pc;
4503 	bool anon;
4504 
4505 	if (!memcg)
4506 		return;
4507 
4508 	if (!migration_ok) {
4509 		used = oldpage;
4510 		unused = newpage;
4511 	} else {
4512 		used = newpage;
4513 		unused = oldpage;
4514 	}
4515 	anon = PageAnon(used);
4516 	__mem_cgroup_uncharge_common(unused,
4517 				     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4518 				     : MEM_CGROUP_CHARGE_TYPE_CACHE,
4519 				     true);
4520 	css_put(&memcg->css);
4521 	/*
4522 	 * We disallowed uncharge of pages under migration because mapcount
4523 	 * of the page goes down to zero, temporarly.
4524 	 * Clear the flag and check the page should be charged.
4525 	 */
4526 	pc = lookup_page_cgroup(oldpage);
4527 	lock_page_cgroup(pc);
4528 	ClearPageCgroupMigration(pc);
4529 	unlock_page_cgroup(pc);
4530 
4531 	/*
4532 	 * If a page is a file cache, radix-tree replacement is very atomic
4533 	 * and we can skip this check. When it was an Anon page, its mapcount
4534 	 * goes down to 0. But because we added MIGRATION flage, it's not
4535 	 * uncharged yet. There are several case but page->mapcount check
4536 	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4537 	 * check. (see prepare_charge() also)
4538 	 */
4539 	if (anon)
4540 		mem_cgroup_uncharge_page(used);
4541 }
4542 
4543 /*
4544  * At replace page cache, newpage is not under any memcg but it's on
4545  * LRU. So, this function doesn't touch res_counter but handles LRU
4546  * in correct way. Both pages are locked so we cannot race with uncharge.
4547  */
4548 void mem_cgroup_replace_page_cache(struct page *oldpage,
4549 				  struct page *newpage)
4550 {
4551 	struct mem_cgroup *memcg = NULL;
4552 	struct page_cgroup *pc;
4553 	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4554 
4555 	if (mem_cgroup_disabled())
4556 		return;
4557 
4558 	pc = lookup_page_cgroup(oldpage);
4559 	/* fix accounting on old pages */
4560 	lock_page_cgroup(pc);
4561 	if (PageCgroupUsed(pc)) {
4562 		memcg = pc->mem_cgroup;
4563 		mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4564 		ClearPageCgroupUsed(pc);
4565 	}
4566 	unlock_page_cgroup(pc);
4567 
4568 	/*
4569 	 * When called from shmem_replace_page(), in some cases the
4570 	 * oldpage has already been charged, and in some cases not.
4571 	 */
4572 	if (!memcg)
4573 		return;
4574 	/*
4575 	 * Even if newpage->mapping was NULL before starting replacement,
4576 	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4577 	 * LRU while we overwrite pc->mem_cgroup.
4578 	 */
4579 	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4580 }
4581 
4582 #ifdef CONFIG_DEBUG_VM
4583 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4584 {
4585 	struct page_cgroup *pc;
4586 
4587 	pc = lookup_page_cgroup(page);
4588 	/*
4589 	 * Can be NULL while feeding pages into the page allocator for
4590 	 * the first time, i.e. during boot or memory hotplug;
4591 	 * or when mem_cgroup_disabled().
4592 	 */
4593 	if (likely(pc) && PageCgroupUsed(pc))
4594 		return pc;
4595 	return NULL;
4596 }
4597 
4598 bool mem_cgroup_bad_page_check(struct page *page)
4599 {
4600 	if (mem_cgroup_disabled())
4601 		return false;
4602 
4603 	return lookup_page_cgroup_used(page) != NULL;
4604 }
4605 
4606 void mem_cgroup_print_bad_page(struct page *page)
4607 {
4608 	struct page_cgroup *pc;
4609 
4610 	pc = lookup_page_cgroup_used(page);
4611 	if (pc) {
4612 		pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4613 			 pc, pc->flags, pc->mem_cgroup);
4614 	}
4615 }
4616 #endif
4617 
4618 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4619 				unsigned long long val)
4620 {
4621 	int retry_count;
4622 	u64 memswlimit, memlimit;
4623 	int ret = 0;
4624 	int children = mem_cgroup_count_children(memcg);
4625 	u64 curusage, oldusage;
4626 	int enlarge;
4627 
4628 	/*
4629 	 * For keeping hierarchical_reclaim simple, how long we should retry
4630 	 * is depends on callers. We set our retry-count to be function
4631 	 * of # of children which we should visit in this loop.
4632 	 */
4633 	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4634 
4635 	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4636 
4637 	enlarge = 0;
4638 	while (retry_count) {
4639 		if (signal_pending(current)) {
4640 			ret = -EINTR;
4641 			break;
4642 		}
4643 		/*
4644 		 * Rather than hide all in some function, I do this in
4645 		 * open coded manner. You see what this really does.
4646 		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4647 		 */
4648 		mutex_lock(&set_limit_mutex);
4649 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4650 		if (memswlimit < val) {
4651 			ret = -EINVAL;
4652 			mutex_unlock(&set_limit_mutex);
4653 			break;
4654 		}
4655 
4656 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4657 		if (memlimit < val)
4658 			enlarge = 1;
4659 
4660 		ret = res_counter_set_limit(&memcg->res, val);
4661 		if (!ret) {
4662 			if (memswlimit == val)
4663 				memcg->memsw_is_minimum = true;
4664 			else
4665 				memcg->memsw_is_minimum = false;
4666 		}
4667 		mutex_unlock(&set_limit_mutex);
4668 
4669 		if (!ret)
4670 			break;
4671 
4672 		mem_cgroup_reclaim(memcg, GFP_KERNEL,
4673 				   MEM_CGROUP_RECLAIM_SHRINK);
4674 		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4675 		/* Usage is reduced ? */
4676   		if (curusage >= oldusage)
4677 			retry_count--;
4678 		else
4679 			oldusage = curusage;
4680 	}
4681 	if (!ret && enlarge)
4682 		memcg_oom_recover(memcg);
4683 
4684 	return ret;
4685 }
4686 
4687 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4688 					unsigned long long val)
4689 {
4690 	int retry_count;
4691 	u64 memlimit, memswlimit, oldusage, curusage;
4692 	int children = mem_cgroup_count_children(memcg);
4693 	int ret = -EBUSY;
4694 	int enlarge = 0;
4695 
4696 	/* see mem_cgroup_resize_res_limit */
4697  	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4698 	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4699 	while (retry_count) {
4700 		if (signal_pending(current)) {
4701 			ret = -EINTR;
4702 			break;
4703 		}
4704 		/*
4705 		 * Rather than hide all in some function, I do this in
4706 		 * open coded manner. You see what this really does.
4707 		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4708 		 */
4709 		mutex_lock(&set_limit_mutex);
4710 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4711 		if (memlimit > val) {
4712 			ret = -EINVAL;
4713 			mutex_unlock(&set_limit_mutex);
4714 			break;
4715 		}
4716 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4717 		if (memswlimit < val)
4718 			enlarge = 1;
4719 		ret = res_counter_set_limit(&memcg->memsw, val);
4720 		if (!ret) {
4721 			if (memlimit == val)
4722 				memcg->memsw_is_minimum = true;
4723 			else
4724 				memcg->memsw_is_minimum = false;
4725 		}
4726 		mutex_unlock(&set_limit_mutex);
4727 
4728 		if (!ret)
4729 			break;
4730 
4731 		mem_cgroup_reclaim(memcg, GFP_KERNEL,
4732 				   MEM_CGROUP_RECLAIM_NOSWAP |
4733 				   MEM_CGROUP_RECLAIM_SHRINK);
4734 		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4735 		/* Usage is reduced ? */
4736 		if (curusage >= oldusage)
4737 			retry_count--;
4738 		else
4739 			oldusage = curusage;
4740 	}
4741 	if (!ret && enlarge)
4742 		memcg_oom_recover(memcg);
4743 	return ret;
4744 }
4745 
4746 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4747 					    gfp_t gfp_mask,
4748 					    unsigned long *total_scanned)
4749 {
4750 	unsigned long nr_reclaimed = 0;
4751 	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4752 	unsigned long reclaimed;
4753 	int loop = 0;
4754 	struct mem_cgroup_tree_per_zone *mctz;
4755 	unsigned long long excess;
4756 	unsigned long nr_scanned;
4757 
4758 	if (order > 0)
4759 		return 0;
4760 
4761 	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4762 	/*
4763 	 * This loop can run a while, specially if mem_cgroup's continuously
4764 	 * keep exceeding their soft limit and putting the system under
4765 	 * pressure
4766 	 */
4767 	do {
4768 		if (next_mz)
4769 			mz = next_mz;
4770 		else
4771 			mz = mem_cgroup_largest_soft_limit_node(mctz);
4772 		if (!mz)
4773 			break;
4774 
4775 		nr_scanned = 0;
4776 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4777 						    gfp_mask, &nr_scanned);
4778 		nr_reclaimed += reclaimed;
4779 		*total_scanned += nr_scanned;
4780 		spin_lock(&mctz->lock);
4781 
4782 		/*
4783 		 * If we failed to reclaim anything from this memory cgroup
4784 		 * it is time to move on to the next cgroup
4785 		 */
4786 		next_mz = NULL;
4787 		if (!reclaimed) {
4788 			do {
4789 				/*
4790 				 * Loop until we find yet another one.
4791 				 *
4792 				 * By the time we get the soft_limit lock
4793 				 * again, someone might have aded the
4794 				 * group back on the RB tree. Iterate to
4795 				 * make sure we get a different mem.
4796 				 * mem_cgroup_largest_soft_limit_node returns
4797 				 * NULL if no other cgroup is present on
4798 				 * the tree
4799 				 */
4800 				next_mz =
4801 				__mem_cgroup_largest_soft_limit_node(mctz);
4802 				if (next_mz == mz)
4803 					css_put(&next_mz->memcg->css);
4804 				else /* next_mz == NULL or other memcg */
4805 					break;
4806 			} while (1);
4807 		}
4808 		__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
4809 		excess = res_counter_soft_limit_excess(&mz->memcg->res);
4810 		/*
4811 		 * One school of thought says that we should not add
4812 		 * back the node to the tree if reclaim returns 0.
4813 		 * But our reclaim could return 0, simply because due
4814 		 * to priority we are exposing a smaller subset of
4815 		 * memory to reclaim from. Consider this as a longer
4816 		 * term TODO.
4817 		 */
4818 		/* If excess == 0, no tree ops */
4819 		__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4820 		spin_unlock(&mctz->lock);
4821 		css_put(&mz->memcg->css);
4822 		loop++;
4823 		/*
4824 		 * Could not reclaim anything and there are no more
4825 		 * mem cgroups to try or we seem to be looping without
4826 		 * reclaiming anything.
4827 		 */
4828 		if (!nr_reclaimed &&
4829 			(next_mz == NULL ||
4830 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4831 			break;
4832 	} while (!nr_reclaimed);
4833 	if (next_mz)
4834 		css_put(&next_mz->memcg->css);
4835 	return nr_reclaimed;
4836 }
4837 
4838 /**
4839  * mem_cgroup_force_empty_list - clears LRU of a group
4840  * @memcg: group to clear
4841  * @node: NUMA node
4842  * @zid: zone id
4843  * @lru: lru to to clear
4844  *
4845  * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
4846  * reclaim the pages page themselves - pages are moved to the parent (or root)
4847  * group.
4848  */
4849 static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
4850 				int node, int zid, enum lru_list lru)
4851 {
4852 	struct lruvec *lruvec;
4853 	unsigned long flags;
4854 	struct list_head *list;
4855 	struct page *busy;
4856 	struct zone *zone;
4857 
4858 	zone = &NODE_DATA(node)->node_zones[zid];
4859 	lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4860 	list = &lruvec->lists[lru];
4861 
4862 	busy = NULL;
4863 	do {
4864 		struct page_cgroup *pc;
4865 		struct page *page;
4866 
4867 		spin_lock_irqsave(&zone->lru_lock, flags);
4868 		if (list_empty(list)) {
4869 			spin_unlock_irqrestore(&zone->lru_lock, flags);
4870 			break;
4871 		}
4872 		page = list_entry(list->prev, struct page, lru);
4873 		if (busy == page) {
4874 			list_move(&page->lru, list);
4875 			busy = NULL;
4876 			spin_unlock_irqrestore(&zone->lru_lock, flags);
4877 			continue;
4878 		}
4879 		spin_unlock_irqrestore(&zone->lru_lock, flags);
4880 
4881 		pc = lookup_page_cgroup(page);
4882 
4883 		if (mem_cgroup_move_parent(page, pc, memcg)) {
4884 			/* found lock contention or "pc" is obsolete. */
4885 			busy = page;
4886 			cond_resched();
4887 		} else
4888 			busy = NULL;
4889 	} while (!list_empty(list));
4890 }
4891 
4892 /*
4893  * make mem_cgroup's charge to be 0 if there is no task by moving
4894  * all the charges and pages to the parent.
4895  * This enables deleting this mem_cgroup.
4896  *
4897  * Caller is responsible for holding css reference on the memcg.
4898  */
4899 static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4900 {
4901 	int node, zid;
4902 	u64 usage;
4903 
4904 	do {
4905 		/* This is for making all *used* pages to be on LRU. */
4906 		lru_add_drain_all();
4907 		drain_all_stock_sync(memcg);
4908 		mem_cgroup_start_move(memcg);
4909 		for_each_node_state(node, N_MEMORY) {
4910 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4911 				enum lru_list lru;
4912 				for_each_lru(lru) {
4913 					mem_cgroup_force_empty_list(memcg,
4914 							node, zid, lru);
4915 				}
4916 			}
4917 		}
4918 		mem_cgroup_end_move(memcg);
4919 		memcg_oom_recover(memcg);
4920 		cond_resched();
4921 
4922 		/*
4923 		 * Kernel memory may not necessarily be trackable to a specific
4924 		 * process. So they are not migrated, and therefore we can't
4925 		 * expect their value to drop to 0 here.
4926 		 * Having res filled up with kmem only is enough.
4927 		 *
4928 		 * This is a safety check because mem_cgroup_force_empty_list
4929 		 * could have raced with mem_cgroup_replace_page_cache callers
4930 		 * so the lru seemed empty but the page could have been added
4931 		 * right after the check. RES_USAGE should be safe as we always
4932 		 * charge before adding to the LRU.
4933 		 */
4934 		usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4935 			res_counter_read_u64(&memcg->kmem, RES_USAGE);
4936 	} while (usage > 0);
4937 }
4938 
4939 /*
4940  * This mainly exists for tests during the setting of set of use_hierarchy.
4941  * Since this is the very setting we are changing, the current hierarchy value
4942  * is meaningless
4943  */
4944 static inline bool __memcg_has_children(struct mem_cgroup *memcg)
4945 {
4946 	struct cgroup *pos;
4947 
4948 	/* bounce at first found */
4949 	cgroup_for_each_child(pos, memcg->css.cgroup)
4950 		return true;
4951 	return false;
4952 }
4953 
4954 /*
4955  * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed
4956  * to be already dead (as in mem_cgroup_force_empty, for instance).  This is
4957  * from mem_cgroup_count_children(), in the sense that we don't really care how
4958  * many children we have; we only need to know if we have any.  It also counts
4959  * any memcg without hierarchy as infertile.
4960  */
4961 static inline bool memcg_has_children(struct mem_cgroup *memcg)
4962 {
4963 	return memcg->use_hierarchy && __memcg_has_children(memcg);
4964 }
4965 
4966 /*
4967  * Reclaims as many pages from the given memcg as possible and moves
4968  * the rest to the parent.
4969  *
4970  * Caller is responsible for holding css reference for memcg.
4971  */
4972 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4973 {
4974 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4975 	struct cgroup *cgrp = memcg->css.cgroup;
4976 
4977 	/* returns EBUSY if there is a task or if we come here twice. */
4978 	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
4979 		return -EBUSY;
4980 
4981 	/* we call try-to-free pages for make this cgroup empty */
4982 	lru_add_drain_all();
4983 	/* try to free all pages in this cgroup */
4984 	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4985 		int progress;
4986 
4987 		if (signal_pending(current))
4988 			return -EINTR;
4989 
4990 		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4991 						false);
4992 		if (!progress) {
4993 			nr_retries--;
4994 			/* maybe some writeback is necessary */
4995 			congestion_wait(BLK_RW_ASYNC, HZ/10);
4996 		}
4997 
4998 	}
4999 	lru_add_drain();
5000 	mem_cgroup_reparent_charges(memcg);
5001 
5002 	return 0;
5003 }
5004 
5005 static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
5006 {
5007 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5008 	int ret;
5009 
5010 	if (mem_cgroup_is_root(memcg))
5011 		return -EINVAL;
5012 	css_get(&memcg->css);
5013 	ret = mem_cgroup_force_empty(memcg);
5014 	css_put(&memcg->css);
5015 
5016 	return ret;
5017 }
5018 
5019 
5020 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
5021 {
5022 	return mem_cgroup_from_cont(cont)->use_hierarchy;
5023 }
5024 
5025 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
5026 					u64 val)
5027 {
5028 	int retval = 0;
5029 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5030 	struct cgroup *parent = cont->parent;
5031 	struct mem_cgroup *parent_memcg = NULL;
5032 
5033 	if (parent)
5034 		parent_memcg = mem_cgroup_from_cont(parent);
5035 
5036 	mutex_lock(&memcg_create_mutex);
5037 
5038 	if (memcg->use_hierarchy == val)
5039 		goto out;
5040 
5041 	/*
5042 	 * If parent's use_hierarchy is set, we can't make any modifications
5043 	 * in the child subtrees. If it is unset, then the change can
5044 	 * occur, provided the current cgroup has no children.
5045 	 *
5046 	 * For the root cgroup, parent_mem is NULL, we allow value to be
5047 	 * set if there are no children.
5048 	 */
5049 	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
5050 				(val == 1 || val == 0)) {
5051 		if (!__memcg_has_children(memcg))
5052 			memcg->use_hierarchy = val;
5053 		else
5054 			retval = -EBUSY;
5055 	} else
5056 		retval = -EINVAL;
5057 
5058 out:
5059 	mutex_unlock(&memcg_create_mutex);
5060 
5061 	return retval;
5062 }
5063 
5064 
5065 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
5066 					       enum mem_cgroup_stat_index idx)
5067 {
5068 	struct mem_cgroup *iter;
5069 	long val = 0;
5070 
5071 	/* Per-cpu values can be negative, use a signed accumulator */
5072 	for_each_mem_cgroup_tree(iter, memcg)
5073 		val += mem_cgroup_read_stat(iter, idx);
5074 
5075 	if (val < 0) /* race ? */
5076 		val = 0;
5077 	return val;
5078 }
5079 
5080 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
5081 {
5082 	u64 val;
5083 
5084 	if (!mem_cgroup_is_root(memcg)) {
5085 		if (!swap)
5086 			return res_counter_read_u64(&memcg->res, RES_USAGE);
5087 		else
5088 			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
5089 	}
5090 
5091 	/*
5092 	 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
5093 	 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
5094 	 */
5095 	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
5096 	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
5097 
5098 	if (swap)
5099 		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
5100 
5101 	return val << PAGE_SHIFT;
5102 }
5103 
5104 static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
5105 			       struct file *file, char __user *buf,
5106 			       size_t nbytes, loff_t *ppos)
5107 {
5108 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5109 	char str[64];
5110 	u64 val;
5111 	int name, len;
5112 	enum res_type type;
5113 
5114 	type = MEMFILE_TYPE(cft->private);
5115 	name = MEMFILE_ATTR(cft->private);
5116 
5117 	switch (type) {
5118 	case _MEM:
5119 		if (name == RES_USAGE)
5120 			val = mem_cgroup_usage(memcg, false);
5121 		else
5122 			val = res_counter_read_u64(&memcg->res, name);
5123 		break;
5124 	case _MEMSWAP:
5125 		if (name == RES_USAGE)
5126 			val = mem_cgroup_usage(memcg, true);
5127 		else
5128 			val = res_counter_read_u64(&memcg->memsw, name);
5129 		break;
5130 	case _KMEM:
5131 		val = res_counter_read_u64(&memcg->kmem, name);
5132 		break;
5133 	default:
5134 		BUG();
5135 	}
5136 
5137 	len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
5138 	return simple_read_from_buffer(buf, nbytes, ppos, str, len);
5139 }
5140 
5141 static int memcg_update_kmem_limit(struct cgroup *cont, u64 val)
5142 {
5143 	int ret = -EINVAL;
5144 #ifdef CONFIG_MEMCG_KMEM
5145 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5146 	/*
5147 	 * For simplicity, we won't allow this to be disabled.  It also can't
5148 	 * be changed if the cgroup has children already, or if tasks had
5149 	 * already joined.
5150 	 *
5151 	 * If tasks join before we set the limit, a person looking at
5152 	 * kmem.usage_in_bytes will have no way to determine when it took
5153 	 * place, which makes the value quite meaningless.
5154 	 *
5155 	 * After it first became limited, changes in the value of the limit are
5156 	 * of course permitted.
5157 	 */
5158 	mutex_lock(&memcg_create_mutex);
5159 	mutex_lock(&set_limit_mutex);
5160 	if (!memcg->kmem_account_flags && val != RESOURCE_MAX) {
5161 		if (cgroup_task_count(cont) || memcg_has_children(memcg)) {
5162 			ret = -EBUSY;
5163 			goto out;
5164 		}
5165 		ret = res_counter_set_limit(&memcg->kmem, val);
5166 		VM_BUG_ON(ret);
5167 
5168 		ret = memcg_update_cache_sizes(memcg);
5169 		if (ret) {
5170 			res_counter_set_limit(&memcg->kmem, RESOURCE_MAX);
5171 			goto out;
5172 		}
5173 		static_key_slow_inc(&memcg_kmem_enabled_key);
5174 		/*
5175 		 * setting the active bit after the inc will guarantee no one
5176 		 * starts accounting before all call sites are patched
5177 		 */
5178 		memcg_kmem_set_active(memcg);
5179 	} else
5180 		ret = res_counter_set_limit(&memcg->kmem, val);
5181 out:
5182 	mutex_unlock(&set_limit_mutex);
5183 	mutex_unlock(&memcg_create_mutex);
5184 #endif
5185 	return ret;
5186 }
5187 
5188 #ifdef CONFIG_MEMCG_KMEM
5189 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5190 {
5191 	int ret = 0;
5192 	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5193 	if (!parent)
5194 		goto out;
5195 
5196 	memcg->kmem_account_flags = parent->kmem_account_flags;
5197 	/*
5198 	 * When that happen, we need to disable the static branch only on those
5199 	 * memcgs that enabled it. To achieve this, we would be forced to
5200 	 * complicate the code by keeping track of which memcgs were the ones
5201 	 * that actually enabled limits, and which ones got it from its
5202 	 * parents.
5203 	 *
5204 	 * It is a lot simpler just to do static_key_slow_inc() on every child
5205 	 * that is accounted.
5206 	 */
5207 	if (!memcg_kmem_is_active(memcg))
5208 		goto out;
5209 
5210 	/*
5211 	 * __mem_cgroup_free() will issue static_key_slow_dec() because this
5212 	 * memcg is active already. If the later initialization fails then the
5213 	 * cgroup core triggers the cleanup so we do not have to do it here.
5214 	 */
5215 	static_key_slow_inc(&memcg_kmem_enabled_key);
5216 
5217 	mutex_lock(&set_limit_mutex);
5218 	memcg_stop_kmem_account();
5219 	ret = memcg_update_cache_sizes(memcg);
5220 	memcg_resume_kmem_account();
5221 	mutex_unlock(&set_limit_mutex);
5222 out:
5223 	return ret;
5224 }
5225 #endif /* CONFIG_MEMCG_KMEM */
5226 
5227 /*
5228  * The user of this function is...
5229  * RES_LIMIT.
5230  */
5231 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
5232 			    const char *buffer)
5233 {
5234 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5235 	enum res_type type;
5236 	int name;
5237 	unsigned long long val;
5238 	int ret;
5239 
5240 	type = MEMFILE_TYPE(cft->private);
5241 	name = MEMFILE_ATTR(cft->private);
5242 
5243 	switch (name) {
5244 	case RES_LIMIT:
5245 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5246 			ret = -EINVAL;
5247 			break;
5248 		}
5249 		/* This function does all necessary parse...reuse it */
5250 		ret = res_counter_memparse_write_strategy(buffer, &val);
5251 		if (ret)
5252 			break;
5253 		if (type == _MEM)
5254 			ret = mem_cgroup_resize_limit(memcg, val);
5255 		else if (type == _MEMSWAP)
5256 			ret = mem_cgroup_resize_memsw_limit(memcg, val);
5257 		else if (type == _KMEM)
5258 			ret = memcg_update_kmem_limit(cont, val);
5259 		else
5260 			return -EINVAL;
5261 		break;
5262 	case RES_SOFT_LIMIT:
5263 		ret = res_counter_memparse_write_strategy(buffer, &val);
5264 		if (ret)
5265 			break;
5266 		/*
5267 		 * For memsw, soft limits are hard to implement in terms
5268 		 * of semantics, for now, we support soft limits for
5269 		 * control without swap
5270 		 */
5271 		if (type == _MEM)
5272 			ret = res_counter_set_soft_limit(&memcg->res, val);
5273 		else
5274 			ret = -EINVAL;
5275 		break;
5276 	default:
5277 		ret = -EINVAL; /* should be BUG() ? */
5278 		break;
5279 	}
5280 	return ret;
5281 }
5282 
5283 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5284 		unsigned long long *mem_limit, unsigned long long *memsw_limit)
5285 {
5286 	struct cgroup *cgroup;
5287 	unsigned long long min_limit, min_memsw_limit, tmp;
5288 
5289 	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5290 	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5291 	cgroup = memcg->css.cgroup;
5292 	if (!memcg->use_hierarchy)
5293 		goto out;
5294 
5295 	while (cgroup->parent) {
5296 		cgroup = cgroup->parent;
5297 		memcg = mem_cgroup_from_cont(cgroup);
5298 		if (!memcg->use_hierarchy)
5299 			break;
5300 		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5301 		min_limit = min(min_limit, tmp);
5302 		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5303 		min_memsw_limit = min(min_memsw_limit, tmp);
5304 	}
5305 out:
5306 	*mem_limit = min_limit;
5307 	*memsw_limit = min_memsw_limit;
5308 }
5309 
5310 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
5311 {
5312 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5313 	int name;
5314 	enum res_type type;
5315 
5316 	type = MEMFILE_TYPE(event);
5317 	name = MEMFILE_ATTR(event);
5318 
5319 	switch (name) {
5320 	case RES_MAX_USAGE:
5321 		if (type == _MEM)
5322 			res_counter_reset_max(&memcg->res);
5323 		else if (type == _MEMSWAP)
5324 			res_counter_reset_max(&memcg->memsw);
5325 		else if (type == _KMEM)
5326 			res_counter_reset_max(&memcg->kmem);
5327 		else
5328 			return -EINVAL;
5329 		break;
5330 	case RES_FAILCNT:
5331 		if (type == _MEM)
5332 			res_counter_reset_failcnt(&memcg->res);
5333 		else if (type == _MEMSWAP)
5334 			res_counter_reset_failcnt(&memcg->memsw);
5335 		else if (type == _KMEM)
5336 			res_counter_reset_failcnt(&memcg->kmem);
5337 		else
5338 			return -EINVAL;
5339 		break;
5340 	}
5341 
5342 	return 0;
5343 }
5344 
5345 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
5346 					struct cftype *cft)
5347 {
5348 	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
5349 }
5350 
5351 #ifdef CONFIG_MMU
5352 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
5353 					struct cftype *cft, u64 val)
5354 {
5355 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5356 
5357 	if (val >= (1 << NR_MOVE_TYPE))
5358 		return -EINVAL;
5359 
5360 	/*
5361 	 * No kind of locking is needed in here, because ->can_attach() will
5362 	 * check this value once in the beginning of the process, and then carry
5363 	 * on with stale data. This means that changes to this value will only
5364 	 * affect task migrations starting after the change.
5365 	 */
5366 	memcg->move_charge_at_immigrate = val;
5367 	return 0;
5368 }
5369 #else
5370 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
5371 					struct cftype *cft, u64 val)
5372 {
5373 	return -ENOSYS;
5374 }
5375 #endif
5376 
5377 #ifdef CONFIG_NUMA
5378 static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
5379 				      struct seq_file *m)
5380 {
5381 	int nid;
5382 	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
5383 	unsigned long node_nr;
5384 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5385 
5386 	total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
5387 	seq_printf(m, "total=%lu", total_nr);
5388 	for_each_node_state(nid, N_MEMORY) {
5389 		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
5390 		seq_printf(m, " N%d=%lu", nid, node_nr);
5391 	}
5392 	seq_putc(m, '\n');
5393 
5394 	file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
5395 	seq_printf(m, "file=%lu", file_nr);
5396 	for_each_node_state(nid, N_MEMORY) {
5397 		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5398 				LRU_ALL_FILE);
5399 		seq_printf(m, " N%d=%lu", nid, node_nr);
5400 	}
5401 	seq_putc(m, '\n');
5402 
5403 	anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
5404 	seq_printf(m, "anon=%lu", anon_nr);
5405 	for_each_node_state(nid, N_MEMORY) {
5406 		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5407 				LRU_ALL_ANON);
5408 		seq_printf(m, " N%d=%lu", nid, node_nr);
5409 	}
5410 	seq_putc(m, '\n');
5411 
5412 	unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
5413 	seq_printf(m, "unevictable=%lu", unevictable_nr);
5414 	for_each_node_state(nid, N_MEMORY) {
5415 		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5416 				BIT(LRU_UNEVICTABLE));
5417 		seq_printf(m, " N%d=%lu", nid, node_nr);
5418 	}
5419 	seq_putc(m, '\n');
5420 	return 0;
5421 }
5422 #endif /* CONFIG_NUMA */
5423 
5424 static inline void mem_cgroup_lru_names_not_uptodate(void)
5425 {
5426 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5427 }
5428 
5429 static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
5430 				 struct seq_file *m)
5431 {
5432 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5433 	struct mem_cgroup *mi;
5434 	unsigned int i;
5435 
5436 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5437 		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5438 			continue;
5439 		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5440 			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5441 	}
5442 
5443 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5444 		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5445 			   mem_cgroup_read_events(memcg, i));
5446 
5447 	for (i = 0; i < NR_LRU_LISTS; i++)
5448 		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5449 			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5450 
5451 	/* Hierarchical information */
5452 	{
5453 		unsigned long long limit, memsw_limit;
5454 		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5455 		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5456 		if (do_swap_account)
5457 			seq_printf(m, "hierarchical_memsw_limit %llu\n",
5458 				   memsw_limit);
5459 	}
5460 
5461 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5462 		long long val = 0;
5463 
5464 		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5465 			continue;
5466 		for_each_mem_cgroup_tree(mi, memcg)
5467 			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5468 		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5469 	}
5470 
5471 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5472 		unsigned long long val = 0;
5473 
5474 		for_each_mem_cgroup_tree(mi, memcg)
5475 			val += mem_cgroup_read_events(mi, i);
5476 		seq_printf(m, "total_%s %llu\n",
5477 			   mem_cgroup_events_names[i], val);
5478 	}
5479 
5480 	for (i = 0; i < NR_LRU_LISTS; i++) {
5481 		unsigned long long val = 0;
5482 
5483 		for_each_mem_cgroup_tree(mi, memcg)
5484 			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5485 		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5486 	}
5487 
5488 #ifdef CONFIG_DEBUG_VM
5489 	{
5490 		int nid, zid;
5491 		struct mem_cgroup_per_zone *mz;
5492 		struct zone_reclaim_stat *rstat;
5493 		unsigned long recent_rotated[2] = {0, 0};
5494 		unsigned long recent_scanned[2] = {0, 0};
5495 
5496 		for_each_online_node(nid)
5497 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5498 				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5499 				rstat = &mz->lruvec.reclaim_stat;
5500 
5501 				recent_rotated[0] += rstat->recent_rotated[0];
5502 				recent_rotated[1] += rstat->recent_rotated[1];
5503 				recent_scanned[0] += rstat->recent_scanned[0];
5504 				recent_scanned[1] += rstat->recent_scanned[1];
5505 			}
5506 		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5507 		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5508 		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5509 		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
5510 	}
5511 #endif
5512 
5513 	return 0;
5514 }
5515 
5516 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
5517 {
5518 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5519 
5520 	return mem_cgroup_swappiness(memcg);
5521 }
5522 
5523 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
5524 				       u64 val)
5525 {
5526 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5527 	struct mem_cgroup *parent;
5528 
5529 	if (val > 100)
5530 		return -EINVAL;
5531 
5532 	if (cgrp->parent == NULL)
5533 		return -EINVAL;
5534 
5535 	parent = mem_cgroup_from_cont(cgrp->parent);
5536 
5537 	mutex_lock(&memcg_create_mutex);
5538 
5539 	/* If under hierarchy, only empty-root can set this value */
5540 	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5541 		mutex_unlock(&memcg_create_mutex);
5542 		return -EINVAL;
5543 	}
5544 
5545 	memcg->swappiness = val;
5546 
5547 	mutex_unlock(&memcg_create_mutex);
5548 
5549 	return 0;
5550 }
5551 
5552 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5553 {
5554 	struct mem_cgroup_threshold_ary *t;
5555 	u64 usage;
5556 	int i;
5557 
5558 	rcu_read_lock();
5559 	if (!swap)
5560 		t = rcu_dereference(memcg->thresholds.primary);
5561 	else
5562 		t = rcu_dereference(memcg->memsw_thresholds.primary);
5563 
5564 	if (!t)
5565 		goto unlock;
5566 
5567 	usage = mem_cgroup_usage(memcg, swap);
5568 
5569 	/*
5570 	 * current_threshold points to threshold just below or equal to usage.
5571 	 * If it's not true, a threshold was crossed after last
5572 	 * call of __mem_cgroup_threshold().
5573 	 */
5574 	i = t->current_threshold;
5575 
5576 	/*
5577 	 * Iterate backward over array of thresholds starting from
5578 	 * current_threshold and check if a threshold is crossed.
5579 	 * If none of thresholds below usage is crossed, we read
5580 	 * only one element of the array here.
5581 	 */
5582 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5583 		eventfd_signal(t->entries[i].eventfd, 1);
5584 
5585 	/* i = current_threshold + 1 */
5586 	i++;
5587 
5588 	/*
5589 	 * Iterate forward over array of thresholds starting from
5590 	 * current_threshold+1 and check if a threshold is crossed.
5591 	 * If none of thresholds above usage is crossed, we read
5592 	 * only one element of the array here.
5593 	 */
5594 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5595 		eventfd_signal(t->entries[i].eventfd, 1);
5596 
5597 	/* Update current_threshold */
5598 	t->current_threshold = i - 1;
5599 unlock:
5600 	rcu_read_unlock();
5601 }
5602 
5603 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5604 {
5605 	while (memcg) {
5606 		__mem_cgroup_threshold(memcg, false);
5607 		if (do_swap_account)
5608 			__mem_cgroup_threshold(memcg, true);
5609 
5610 		memcg = parent_mem_cgroup(memcg);
5611 	}
5612 }
5613 
5614 static int compare_thresholds(const void *a, const void *b)
5615 {
5616 	const struct mem_cgroup_threshold *_a = a;
5617 	const struct mem_cgroup_threshold *_b = b;
5618 
5619 	return _a->threshold - _b->threshold;
5620 }
5621 
5622 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
5623 {
5624 	struct mem_cgroup_eventfd_list *ev;
5625 
5626 	list_for_each_entry(ev, &memcg->oom_notify, list)
5627 		eventfd_signal(ev->eventfd, 1);
5628 	return 0;
5629 }
5630 
5631 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
5632 {
5633 	struct mem_cgroup *iter;
5634 
5635 	for_each_mem_cgroup_tree(iter, memcg)
5636 		mem_cgroup_oom_notify_cb(iter);
5637 }
5638 
5639 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
5640 	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5641 {
5642 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5643 	struct mem_cgroup_thresholds *thresholds;
5644 	struct mem_cgroup_threshold_ary *new;
5645 	enum res_type type = MEMFILE_TYPE(cft->private);
5646 	u64 threshold, usage;
5647 	int i, size, ret;
5648 
5649 	ret = res_counter_memparse_write_strategy(args, &threshold);
5650 	if (ret)
5651 		return ret;
5652 
5653 	mutex_lock(&memcg->thresholds_lock);
5654 
5655 	if (type == _MEM)
5656 		thresholds = &memcg->thresholds;
5657 	else if (type == _MEMSWAP)
5658 		thresholds = &memcg->memsw_thresholds;
5659 	else
5660 		BUG();
5661 
5662 	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5663 
5664 	/* Check if a threshold crossed before adding a new one */
5665 	if (thresholds->primary)
5666 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
5667 
5668 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5669 
5670 	/* Allocate memory for new array of thresholds */
5671 	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5672 			GFP_KERNEL);
5673 	if (!new) {
5674 		ret = -ENOMEM;
5675 		goto unlock;
5676 	}
5677 	new->size = size;
5678 
5679 	/* Copy thresholds (if any) to new array */
5680 	if (thresholds->primary) {
5681 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5682 				sizeof(struct mem_cgroup_threshold));
5683 	}
5684 
5685 	/* Add new threshold */
5686 	new->entries[size - 1].eventfd = eventfd;
5687 	new->entries[size - 1].threshold = threshold;
5688 
5689 	/* Sort thresholds. Registering of new threshold isn't time-critical */
5690 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5691 			compare_thresholds, NULL);
5692 
5693 	/* Find current threshold */
5694 	new->current_threshold = -1;
5695 	for (i = 0; i < size; i++) {
5696 		if (new->entries[i].threshold <= usage) {
5697 			/*
5698 			 * new->current_threshold will not be used until
5699 			 * rcu_assign_pointer(), so it's safe to increment
5700 			 * it here.
5701 			 */
5702 			++new->current_threshold;
5703 		} else
5704 			break;
5705 	}
5706 
5707 	/* Free old spare buffer and save old primary buffer as spare */
5708 	kfree(thresholds->spare);
5709 	thresholds->spare = thresholds->primary;
5710 
5711 	rcu_assign_pointer(thresholds->primary, new);
5712 
5713 	/* To be sure that nobody uses thresholds */
5714 	synchronize_rcu();
5715 
5716 unlock:
5717 	mutex_unlock(&memcg->thresholds_lock);
5718 
5719 	return ret;
5720 }
5721 
5722 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
5723 	struct cftype *cft, struct eventfd_ctx *eventfd)
5724 {
5725 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5726 	struct mem_cgroup_thresholds *thresholds;
5727 	struct mem_cgroup_threshold_ary *new;
5728 	enum res_type type = MEMFILE_TYPE(cft->private);
5729 	u64 usage;
5730 	int i, j, size;
5731 
5732 	mutex_lock(&memcg->thresholds_lock);
5733 	if (type == _MEM)
5734 		thresholds = &memcg->thresholds;
5735 	else if (type == _MEMSWAP)
5736 		thresholds = &memcg->memsw_thresholds;
5737 	else
5738 		BUG();
5739 
5740 	if (!thresholds->primary)
5741 		goto unlock;
5742 
5743 	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5744 
5745 	/* Check if a threshold crossed before removing */
5746 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
5747 
5748 	/* Calculate new number of threshold */
5749 	size = 0;
5750 	for (i = 0; i < thresholds->primary->size; i++) {
5751 		if (thresholds->primary->entries[i].eventfd != eventfd)
5752 			size++;
5753 	}
5754 
5755 	new = thresholds->spare;
5756 
5757 	/* Set thresholds array to NULL if we don't have thresholds */
5758 	if (!size) {
5759 		kfree(new);
5760 		new = NULL;
5761 		goto swap_buffers;
5762 	}
5763 
5764 	new->size = size;
5765 
5766 	/* Copy thresholds and find current threshold */
5767 	new->current_threshold = -1;
5768 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5769 		if (thresholds->primary->entries[i].eventfd == eventfd)
5770 			continue;
5771 
5772 		new->entries[j] = thresholds->primary->entries[i];
5773 		if (new->entries[j].threshold <= usage) {
5774 			/*
5775 			 * new->current_threshold will not be used
5776 			 * until rcu_assign_pointer(), so it's safe to increment
5777 			 * it here.
5778 			 */
5779 			++new->current_threshold;
5780 		}
5781 		j++;
5782 	}
5783 
5784 swap_buffers:
5785 	/* Swap primary and spare array */
5786 	thresholds->spare = thresholds->primary;
5787 	/* If all events are unregistered, free the spare array */
5788 	if (!new) {
5789 		kfree(thresholds->spare);
5790 		thresholds->spare = NULL;
5791 	}
5792 
5793 	rcu_assign_pointer(thresholds->primary, new);
5794 
5795 	/* To be sure that nobody uses thresholds */
5796 	synchronize_rcu();
5797 unlock:
5798 	mutex_unlock(&memcg->thresholds_lock);
5799 }
5800 
5801 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
5802 	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5803 {
5804 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5805 	struct mem_cgroup_eventfd_list *event;
5806 	enum res_type type = MEMFILE_TYPE(cft->private);
5807 
5808 	BUG_ON(type != _OOM_TYPE);
5809 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
5810 	if (!event)
5811 		return -ENOMEM;
5812 
5813 	spin_lock(&memcg_oom_lock);
5814 
5815 	event->eventfd = eventfd;
5816 	list_add(&event->list, &memcg->oom_notify);
5817 
5818 	/* already in OOM ? */
5819 	if (atomic_read(&memcg->under_oom))
5820 		eventfd_signal(eventfd, 1);
5821 	spin_unlock(&memcg_oom_lock);
5822 
5823 	return 0;
5824 }
5825 
5826 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
5827 	struct cftype *cft, struct eventfd_ctx *eventfd)
5828 {
5829 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5830 	struct mem_cgroup_eventfd_list *ev, *tmp;
5831 	enum res_type type = MEMFILE_TYPE(cft->private);
5832 
5833 	BUG_ON(type != _OOM_TYPE);
5834 
5835 	spin_lock(&memcg_oom_lock);
5836 
5837 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
5838 		if (ev->eventfd == eventfd) {
5839 			list_del(&ev->list);
5840 			kfree(ev);
5841 		}
5842 	}
5843 
5844 	spin_unlock(&memcg_oom_lock);
5845 }
5846 
5847 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
5848 	struct cftype *cft,  struct cgroup_map_cb *cb)
5849 {
5850 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5851 
5852 	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
5853 
5854 	if (atomic_read(&memcg->under_oom))
5855 		cb->fill(cb, "under_oom", 1);
5856 	else
5857 		cb->fill(cb, "under_oom", 0);
5858 	return 0;
5859 }
5860 
5861 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
5862 	struct cftype *cft, u64 val)
5863 {
5864 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5865 	struct mem_cgroup *parent;
5866 
5867 	/* cannot set to root cgroup and only 0 and 1 are allowed */
5868 	if (!cgrp->parent || !((val == 0) || (val == 1)))
5869 		return -EINVAL;
5870 
5871 	parent = mem_cgroup_from_cont(cgrp->parent);
5872 
5873 	mutex_lock(&memcg_create_mutex);
5874 	/* oom-kill-disable is a flag for subhierarchy. */
5875 	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5876 		mutex_unlock(&memcg_create_mutex);
5877 		return -EINVAL;
5878 	}
5879 	memcg->oom_kill_disable = val;
5880 	if (!val)
5881 		memcg_oom_recover(memcg);
5882 	mutex_unlock(&memcg_create_mutex);
5883 	return 0;
5884 }
5885 
5886 #ifdef CONFIG_MEMCG_KMEM
5887 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5888 {
5889 	int ret;
5890 
5891 	memcg->kmemcg_id = -1;
5892 	ret = memcg_propagate_kmem(memcg);
5893 	if (ret)
5894 		return ret;
5895 
5896 	return mem_cgroup_sockets_init(memcg, ss);
5897 }
5898 
5899 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5900 {
5901 	mem_cgroup_sockets_destroy(memcg);
5902 }
5903 
5904 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5905 {
5906 	if (!memcg_kmem_is_active(memcg))
5907 		return;
5908 
5909 	/*
5910 	 * kmem charges can outlive the cgroup. In the case of slab
5911 	 * pages, for instance, a page contain objects from various
5912 	 * processes. As we prevent from taking a reference for every
5913 	 * such allocation we have to be careful when doing uncharge
5914 	 * (see memcg_uncharge_kmem) and here during offlining.
5915 	 *
5916 	 * The idea is that that only the _last_ uncharge which sees
5917 	 * the dead memcg will drop the last reference. An additional
5918 	 * reference is taken here before the group is marked dead
5919 	 * which is then paired with css_put during uncharge resp. here.
5920 	 *
5921 	 * Although this might sound strange as this path is called from
5922 	 * css_offline() when the referencemight have dropped down to 0
5923 	 * and shouldn't be incremented anymore (css_tryget would fail)
5924 	 * we do not have other options because of the kmem allocations
5925 	 * lifetime.
5926 	 */
5927 	css_get(&memcg->css);
5928 
5929 	memcg_kmem_mark_dead(memcg);
5930 
5931 	if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5932 		return;
5933 
5934 	if (memcg_kmem_test_and_clear_dead(memcg))
5935 		css_put(&memcg->css);
5936 }
5937 #else
5938 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5939 {
5940 	return 0;
5941 }
5942 
5943 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5944 {
5945 }
5946 
5947 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5948 {
5949 }
5950 #endif
5951 
5952 static struct cftype mem_cgroup_files[] = {
5953 	{
5954 		.name = "usage_in_bytes",
5955 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5956 		.read = mem_cgroup_read,
5957 		.register_event = mem_cgroup_usage_register_event,
5958 		.unregister_event = mem_cgroup_usage_unregister_event,
5959 	},
5960 	{
5961 		.name = "max_usage_in_bytes",
5962 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5963 		.trigger = mem_cgroup_reset,
5964 		.read = mem_cgroup_read,
5965 	},
5966 	{
5967 		.name = "limit_in_bytes",
5968 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5969 		.write_string = mem_cgroup_write,
5970 		.read = mem_cgroup_read,
5971 	},
5972 	{
5973 		.name = "soft_limit_in_bytes",
5974 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5975 		.write_string = mem_cgroup_write,
5976 		.read = mem_cgroup_read,
5977 	},
5978 	{
5979 		.name = "failcnt",
5980 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5981 		.trigger = mem_cgroup_reset,
5982 		.read = mem_cgroup_read,
5983 	},
5984 	{
5985 		.name = "stat",
5986 		.read_seq_string = memcg_stat_show,
5987 	},
5988 	{
5989 		.name = "force_empty",
5990 		.trigger = mem_cgroup_force_empty_write,
5991 	},
5992 	{
5993 		.name = "use_hierarchy",
5994 		.flags = CFTYPE_INSANE,
5995 		.write_u64 = mem_cgroup_hierarchy_write,
5996 		.read_u64 = mem_cgroup_hierarchy_read,
5997 	},
5998 	{
5999 		.name = "swappiness",
6000 		.read_u64 = mem_cgroup_swappiness_read,
6001 		.write_u64 = mem_cgroup_swappiness_write,
6002 	},
6003 	{
6004 		.name = "move_charge_at_immigrate",
6005 		.read_u64 = mem_cgroup_move_charge_read,
6006 		.write_u64 = mem_cgroup_move_charge_write,
6007 	},
6008 	{
6009 		.name = "oom_control",
6010 		.read_map = mem_cgroup_oom_control_read,
6011 		.write_u64 = mem_cgroup_oom_control_write,
6012 		.register_event = mem_cgroup_oom_register_event,
6013 		.unregister_event = mem_cgroup_oom_unregister_event,
6014 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
6015 	},
6016 	{
6017 		.name = "pressure_level",
6018 		.register_event = vmpressure_register_event,
6019 		.unregister_event = vmpressure_unregister_event,
6020 	},
6021 #ifdef CONFIG_NUMA
6022 	{
6023 		.name = "numa_stat",
6024 		.read_seq_string = memcg_numa_stat_show,
6025 	},
6026 #endif
6027 #ifdef CONFIG_MEMCG_KMEM
6028 	{
6029 		.name = "kmem.limit_in_bytes",
6030 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
6031 		.write_string = mem_cgroup_write,
6032 		.read = mem_cgroup_read,
6033 	},
6034 	{
6035 		.name = "kmem.usage_in_bytes",
6036 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
6037 		.read = mem_cgroup_read,
6038 	},
6039 	{
6040 		.name = "kmem.failcnt",
6041 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6042 		.trigger = mem_cgroup_reset,
6043 		.read = mem_cgroup_read,
6044 	},
6045 	{
6046 		.name = "kmem.max_usage_in_bytes",
6047 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6048 		.trigger = mem_cgroup_reset,
6049 		.read = mem_cgroup_read,
6050 	},
6051 #ifdef CONFIG_SLABINFO
6052 	{
6053 		.name = "kmem.slabinfo",
6054 		.read_seq_string = mem_cgroup_slabinfo_read,
6055 	},
6056 #endif
6057 #endif
6058 	{ },	/* terminate */
6059 };
6060 
6061 #ifdef CONFIG_MEMCG_SWAP
6062 static struct cftype memsw_cgroup_files[] = {
6063 	{
6064 		.name = "memsw.usage_in_bytes",
6065 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6066 		.read = mem_cgroup_read,
6067 		.register_event = mem_cgroup_usage_register_event,
6068 		.unregister_event = mem_cgroup_usage_unregister_event,
6069 	},
6070 	{
6071 		.name = "memsw.max_usage_in_bytes",
6072 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6073 		.trigger = mem_cgroup_reset,
6074 		.read = mem_cgroup_read,
6075 	},
6076 	{
6077 		.name = "memsw.limit_in_bytes",
6078 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6079 		.write_string = mem_cgroup_write,
6080 		.read = mem_cgroup_read,
6081 	},
6082 	{
6083 		.name = "memsw.failcnt",
6084 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6085 		.trigger = mem_cgroup_reset,
6086 		.read = mem_cgroup_read,
6087 	},
6088 	{ },	/* terminate */
6089 };
6090 #endif
6091 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6092 {
6093 	struct mem_cgroup_per_node *pn;
6094 	struct mem_cgroup_per_zone *mz;
6095 	int zone, tmp = node;
6096 	/*
6097 	 * This routine is called against possible nodes.
6098 	 * But it's BUG to call kmalloc() against offline node.
6099 	 *
6100 	 * TODO: this routine can waste much memory for nodes which will
6101 	 *       never be onlined. It's better to use memory hotplug callback
6102 	 *       function.
6103 	 */
6104 	if (!node_state(node, N_NORMAL_MEMORY))
6105 		tmp = -1;
6106 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6107 	if (!pn)
6108 		return 1;
6109 
6110 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6111 		mz = &pn->zoneinfo[zone];
6112 		lruvec_init(&mz->lruvec);
6113 		mz->usage_in_excess = 0;
6114 		mz->on_tree = false;
6115 		mz->memcg = memcg;
6116 	}
6117 	memcg->nodeinfo[node] = pn;
6118 	return 0;
6119 }
6120 
6121 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6122 {
6123 	kfree(memcg->nodeinfo[node]);
6124 }
6125 
6126 static struct mem_cgroup *mem_cgroup_alloc(void)
6127 {
6128 	struct mem_cgroup *memcg;
6129 	size_t size = memcg_size();
6130 
6131 	/* Can be very big if nr_node_ids is very big */
6132 	if (size < PAGE_SIZE)
6133 		memcg = kzalloc(size, GFP_KERNEL);
6134 	else
6135 		memcg = vzalloc(size);
6136 
6137 	if (!memcg)
6138 		return NULL;
6139 
6140 	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
6141 	if (!memcg->stat)
6142 		goto out_free;
6143 	spin_lock_init(&memcg->pcp_counter_lock);
6144 	return memcg;
6145 
6146 out_free:
6147 	if (size < PAGE_SIZE)
6148 		kfree(memcg);
6149 	else
6150 		vfree(memcg);
6151 	return NULL;
6152 }
6153 
6154 /*
6155  * At destroying mem_cgroup, references from swap_cgroup can remain.
6156  * (scanning all at force_empty is too costly...)
6157  *
6158  * Instead of clearing all references at force_empty, we remember
6159  * the number of reference from swap_cgroup and free mem_cgroup when
6160  * it goes down to 0.
6161  *
6162  * Removal of cgroup itself succeeds regardless of refs from swap.
6163  */
6164 
6165 static void __mem_cgroup_free(struct mem_cgroup *memcg)
6166 {
6167 	int node;
6168 	size_t size = memcg_size();
6169 
6170 	mem_cgroup_remove_from_trees(memcg);
6171 	free_css_id(&mem_cgroup_subsys, &memcg->css);
6172 
6173 	for_each_node(node)
6174 		free_mem_cgroup_per_zone_info(memcg, node);
6175 
6176 	free_percpu(memcg->stat);
6177 
6178 	/*
6179 	 * We need to make sure that (at least for now), the jump label
6180 	 * destruction code runs outside of the cgroup lock. This is because
6181 	 * get_online_cpus(), which is called from the static_branch update,
6182 	 * can't be called inside the cgroup_lock. cpusets are the ones
6183 	 * enforcing this dependency, so if they ever change, we might as well.
6184 	 *
6185 	 * schedule_work() will guarantee this happens. Be careful if you need
6186 	 * to move this code around, and make sure it is outside
6187 	 * the cgroup_lock.
6188 	 */
6189 	disarm_static_keys(memcg);
6190 	if (size < PAGE_SIZE)
6191 		kfree(memcg);
6192 	else
6193 		vfree(memcg);
6194 }
6195 
6196 /*
6197  * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6198  */
6199 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6200 {
6201 	if (!memcg->res.parent)
6202 		return NULL;
6203 	return mem_cgroup_from_res_counter(memcg->res.parent, res);
6204 }
6205 EXPORT_SYMBOL(parent_mem_cgroup);
6206 
6207 static void __init mem_cgroup_soft_limit_tree_init(void)
6208 {
6209 	struct mem_cgroup_tree_per_node *rtpn;
6210 	struct mem_cgroup_tree_per_zone *rtpz;
6211 	int tmp, node, zone;
6212 
6213 	for_each_node(node) {
6214 		tmp = node;
6215 		if (!node_state(node, N_NORMAL_MEMORY))
6216 			tmp = -1;
6217 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6218 		BUG_ON(!rtpn);
6219 
6220 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
6221 
6222 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6223 			rtpz = &rtpn->rb_tree_per_zone[zone];
6224 			rtpz->rb_root = RB_ROOT;
6225 			spin_lock_init(&rtpz->lock);
6226 		}
6227 	}
6228 }
6229 
6230 static struct cgroup_subsys_state * __ref
6231 mem_cgroup_css_alloc(struct cgroup *cont)
6232 {
6233 	struct mem_cgroup *memcg;
6234 	long error = -ENOMEM;
6235 	int node;
6236 
6237 	memcg = mem_cgroup_alloc();
6238 	if (!memcg)
6239 		return ERR_PTR(error);
6240 
6241 	for_each_node(node)
6242 		if (alloc_mem_cgroup_per_zone_info(memcg, node))
6243 			goto free_out;
6244 
6245 	/* root ? */
6246 	if (cont->parent == NULL) {
6247 		root_mem_cgroup = memcg;
6248 		res_counter_init(&memcg->res, NULL);
6249 		res_counter_init(&memcg->memsw, NULL);
6250 		res_counter_init(&memcg->kmem, NULL);
6251 	}
6252 
6253 	memcg->last_scanned_node = MAX_NUMNODES;
6254 	INIT_LIST_HEAD(&memcg->oom_notify);
6255 	memcg->move_charge_at_immigrate = 0;
6256 	mutex_init(&memcg->thresholds_lock);
6257 	spin_lock_init(&memcg->move_lock);
6258 	vmpressure_init(&memcg->vmpressure);
6259 
6260 	return &memcg->css;
6261 
6262 free_out:
6263 	__mem_cgroup_free(memcg);
6264 	return ERR_PTR(error);
6265 }
6266 
6267 static int
6268 mem_cgroup_css_online(struct cgroup *cont)
6269 {
6270 	struct mem_cgroup *memcg, *parent;
6271 	int error = 0;
6272 
6273 	if (!cont->parent)
6274 		return 0;
6275 
6276 	mutex_lock(&memcg_create_mutex);
6277 	memcg = mem_cgroup_from_cont(cont);
6278 	parent = mem_cgroup_from_cont(cont->parent);
6279 
6280 	memcg->use_hierarchy = parent->use_hierarchy;
6281 	memcg->oom_kill_disable = parent->oom_kill_disable;
6282 	memcg->swappiness = mem_cgroup_swappiness(parent);
6283 
6284 	if (parent->use_hierarchy) {
6285 		res_counter_init(&memcg->res, &parent->res);
6286 		res_counter_init(&memcg->memsw, &parent->memsw);
6287 		res_counter_init(&memcg->kmem, &parent->kmem);
6288 
6289 		/*
6290 		 * No need to take a reference to the parent because cgroup
6291 		 * core guarantees its existence.
6292 		 */
6293 	} else {
6294 		res_counter_init(&memcg->res, NULL);
6295 		res_counter_init(&memcg->memsw, NULL);
6296 		res_counter_init(&memcg->kmem, NULL);
6297 		/*
6298 		 * Deeper hierachy with use_hierarchy == false doesn't make
6299 		 * much sense so let cgroup subsystem know about this
6300 		 * unfortunate state in our controller.
6301 		 */
6302 		if (parent != root_mem_cgroup)
6303 			mem_cgroup_subsys.broken_hierarchy = true;
6304 	}
6305 
6306 	error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
6307 	mutex_unlock(&memcg_create_mutex);
6308 	return error;
6309 }
6310 
6311 /*
6312  * Announce all parents that a group from their hierarchy is gone.
6313  */
6314 static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6315 {
6316 	struct mem_cgroup *parent = memcg;
6317 
6318 	while ((parent = parent_mem_cgroup(parent)))
6319 		mem_cgroup_iter_invalidate(parent);
6320 
6321 	/*
6322 	 * if the root memcg is not hierarchical we have to check it
6323 	 * explicitely.
6324 	 */
6325 	if (!root_mem_cgroup->use_hierarchy)
6326 		mem_cgroup_iter_invalidate(root_mem_cgroup);
6327 }
6328 
6329 static void mem_cgroup_css_offline(struct cgroup *cont)
6330 {
6331 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
6332 
6333 	kmem_cgroup_css_offline(memcg);
6334 
6335 	mem_cgroup_invalidate_reclaim_iterators(memcg);
6336 	mem_cgroup_reparent_charges(memcg);
6337 	mem_cgroup_destroy_all_caches(memcg);
6338 }
6339 
6340 static void mem_cgroup_css_free(struct cgroup *cont)
6341 {
6342 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
6343 
6344 	memcg_destroy_kmem(memcg);
6345 	__mem_cgroup_free(memcg);
6346 }
6347 
6348 #ifdef CONFIG_MMU
6349 /* Handlers for move charge at task migration. */
6350 #define PRECHARGE_COUNT_AT_ONCE	256
6351 static int mem_cgroup_do_precharge(unsigned long count)
6352 {
6353 	int ret = 0;
6354 	int batch_count = PRECHARGE_COUNT_AT_ONCE;
6355 	struct mem_cgroup *memcg = mc.to;
6356 
6357 	if (mem_cgroup_is_root(memcg)) {
6358 		mc.precharge += count;
6359 		/* we don't need css_get for root */
6360 		return ret;
6361 	}
6362 	/* try to charge at once */
6363 	if (count > 1) {
6364 		struct res_counter *dummy;
6365 		/*
6366 		 * "memcg" cannot be under rmdir() because we've already checked
6367 		 * by cgroup_lock_live_cgroup() that it is not removed and we
6368 		 * are still under the same cgroup_mutex. So we can postpone
6369 		 * css_get().
6370 		 */
6371 		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6372 			goto one_by_one;
6373 		if (do_swap_account && res_counter_charge(&memcg->memsw,
6374 						PAGE_SIZE * count, &dummy)) {
6375 			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6376 			goto one_by_one;
6377 		}
6378 		mc.precharge += count;
6379 		return ret;
6380 	}
6381 one_by_one:
6382 	/* fall back to one by one charge */
6383 	while (count--) {
6384 		if (signal_pending(current)) {
6385 			ret = -EINTR;
6386 			break;
6387 		}
6388 		if (!batch_count--) {
6389 			batch_count = PRECHARGE_COUNT_AT_ONCE;
6390 			cond_resched();
6391 		}
6392 		ret = __mem_cgroup_try_charge(NULL,
6393 					GFP_KERNEL, 1, &memcg, false);
6394 		if (ret)
6395 			/* mem_cgroup_clear_mc() will do uncharge later */
6396 			return ret;
6397 		mc.precharge++;
6398 	}
6399 	return ret;
6400 }
6401 
6402 /**
6403  * get_mctgt_type - get target type of moving charge
6404  * @vma: the vma the pte to be checked belongs
6405  * @addr: the address corresponding to the pte to be checked
6406  * @ptent: the pte to be checked
6407  * @target: the pointer the target page or swap ent will be stored(can be NULL)
6408  *
6409  * Returns
6410  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
6411  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6412  *     move charge. if @target is not NULL, the page is stored in target->page
6413  *     with extra refcnt got(Callers should handle it).
6414  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6415  *     target for charge migration. if @target is not NULL, the entry is stored
6416  *     in target->ent.
6417  *
6418  * Called with pte lock held.
6419  */
6420 union mc_target {
6421 	struct page	*page;
6422 	swp_entry_t	ent;
6423 };
6424 
6425 enum mc_target_type {
6426 	MC_TARGET_NONE = 0,
6427 	MC_TARGET_PAGE,
6428 	MC_TARGET_SWAP,
6429 };
6430 
6431 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6432 						unsigned long addr, pte_t ptent)
6433 {
6434 	struct page *page = vm_normal_page(vma, addr, ptent);
6435 
6436 	if (!page || !page_mapped(page))
6437 		return NULL;
6438 	if (PageAnon(page)) {
6439 		/* we don't move shared anon */
6440 		if (!move_anon())
6441 			return NULL;
6442 	} else if (!move_file())
6443 		/* we ignore mapcount for file pages */
6444 		return NULL;
6445 	if (!get_page_unless_zero(page))
6446 		return NULL;
6447 
6448 	return page;
6449 }
6450 
6451 #ifdef CONFIG_SWAP
6452 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6453 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
6454 {
6455 	struct page *page = NULL;
6456 	swp_entry_t ent = pte_to_swp_entry(ptent);
6457 
6458 	if (!move_anon() || non_swap_entry(ent))
6459 		return NULL;
6460 	/*
6461 	 * Because lookup_swap_cache() updates some statistics counter,
6462 	 * we call find_get_page() with swapper_space directly.
6463 	 */
6464 	page = find_get_page(swap_address_space(ent), ent.val);
6465 	if (do_swap_account)
6466 		entry->val = ent.val;
6467 
6468 	return page;
6469 }
6470 #else
6471 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6472 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
6473 {
6474 	return NULL;
6475 }
6476 #endif
6477 
6478 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6479 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
6480 {
6481 	struct page *page = NULL;
6482 	struct address_space *mapping;
6483 	pgoff_t pgoff;
6484 
6485 	if (!vma->vm_file) /* anonymous vma */
6486 		return NULL;
6487 	if (!move_file())
6488 		return NULL;
6489 
6490 	mapping = vma->vm_file->f_mapping;
6491 	if (pte_none(ptent))
6492 		pgoff = linear_page_index(vma, addr);
6493 	else /* pte_file(ptent) is true */
6494 		pgoff = pte_to_pgoff(ptent);
6495 
6496 	/* page is moved even if it's not RSS of this task(page-faulted). */
6497 	page = find_get_page(mapping, pgoff);
6498 
6499 #ifdef CONFIG_SWAP
6500 	/* shmem/tmpfs may report page out on swap: account for that too. */
6501 	if (radix_tree_exceptional_entry(page)) {
6502 		swp_entry_t swap = radix_to_swp_entry(page);
6503 		if (do_swap_account)
6504 			*entry = swap;
6505 		page = find_get_page(swap_address_space(swap), swap.val);
6506 	}
6507 #endif
6508 	return page;
6509 }
6510 
6511 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
6512 		unsigned long addr, pte_t ptent, union mc_target *target)
6513 {
6514 	struct page *page = NULL;
6515 	struct page_cgroup *pc;
6516 	enum mc_target_type ret = MC_TARGET_NONE;
6517 	swp_entry_t ent = { .val = 0 };
6518 
6519 	if (pte_present(ptent))
6520 		page = mc_handle_present_pte(vma, addr, ptent);
6521 	else if (is_swap_pte(ptent))
6522 		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6523 	else if (pte_none(ptent) || pte_file(ptent))
6524 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
6525 
6526 	if (!page && !ent.val)
6527 		return ret;
6528 	if (page) {
6529 		pc = lookup_page_cgroup(page);
6530 		/*
6531 		 * Do only loose check w/o page_cgroup lock.
6532 		 * mem_cgroup_move_account() checks the pc is valid or not under
6533 		 * the lock.
6534 		 */
6535 		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6536 			ret = MC_TARGET_PAGE;
6537 			if (target)
6538 				target->page = page;
6539 		}
6540 		if (!ret || !target)
6541 			put_page(page);
6542 	}
6543 	/* There is a swap entry and a page doesn't exist or isn't charged */
6544 	if (ent.val && !ret &&
6545 			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
6546 		ret = MC_TARGET_SWAP;
6547 		if (target)
6548 			target->ent = ent;
6549 	}
6550 	return ret;
6551 }
6552 
6553 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6554 /*
6555  * We don't consider swapping or file mapped pages because THP does not
6556  * support them for now.
6557  * Caller should make sure that pmd_trans_huge(pmd) is true.
6558  */
6559 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6560 		unsigned long addr, pmd_t pmd, union mc_target *target)
6561 {
6562 	struct page *page = NULL;
6563 	struct page_cgroup *pc;
6564 	enum mc_target_type ret = MC_TARGET_NONE;
6565 
6566 	page = pmd_page(pmd);
6567 	VM_BUG_ON(!page || !PageHead(page));
6568 	if (!move_anon())
6569 		return ret;
6570 	pc = lookup_page_cgroup(page);
6571 	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6572 		ret = MC_TARGET_PAGE;
6573 		if (target) {
6574 			get_page(page);
6575 			target->page = page;
6576 		}
6577 	}
6578 	return ret;
6579 }
6580 #else
6581 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6582 		unsigned long addr, pmd_t pmd, union mc_target *target)
6583 {
6584 	return MC_TARGET_NONE;
6585 }
6586 #endif
6587 
6588 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6589 					unsigned long addr, unsigned long end,
6590 					struct mm_walk *walk)
6591 {
6592 	struct vm_area_struct *vma = walk->private;
6593 	pte_t *pte;
6594 	spinlock_t *ptl;
6595 
6596 	if (pmd_trans_huge_lock(pmd, vma) == 1) {
6597 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6598 			mc.precharge += HPAGE_PMD_NR;
6599 		spin_unlock(&vma->vm_mm->page_table_lock);
6600 		return 0;
6601 	}
6602 
6603 	if (pmd_trans_unstable(pmd))
6604 		return 0;
6605 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6606 	for (; addr != end; pte++, addr += PAGE_SIZE)
6607 		if (get_mctgt_type(vma, addr, *pte, NULL))
6608 			mc.precharge++;	/* increment precharge temporarily */
6609 	pte_unmap_unlock(pte - 1, ptl);
6610 	cond_resched();
6611 
6612 	return 0;
6613 }
6614 
6615 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6616 {
6617 	unsigned long precharge;
6618 	struct vm_area_struct *vma;
6619 
6620 	down_read(&mm->mmap_sem);
6621 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
6622 		struct mm_walk mem_cgroup_count_precharge_walk = {
6623 			.pmd_entry = mem_cgroup_count_precharge_pte_range,
6624 			.mm = mm,
6625 			.private = vma,
6626 		};
6627 		if (is_vm_hugetlb_page(vma))
6628 			continue;
6629 		walk_page_range(vma->vm_start, vma->vm_end,
6630 					&mem_cgroup_count_precharge_walk);
6631 	}
6632 	up_read(&mm->mmap_sem);
6633 
6634 	precharge = mc.precharge;
6635 	mc.precharge = 0;
6636 
6637 	return precharge;
6638 }
6639 
6640 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6641 {
6642 	unsigned long precharge = mem_cgroup_count_precharge(mm);
6643 
6644 	VM_BUG_ON(mc.moving_task);
6645 	mc.moving_task = current;
6646 	return mem_cgroup_do_precharge(precharge);
6647 }
6648 
6649 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6650 static void __mem_cgroup_clear_mc(void)
6651 {
6652 	struct mem_cgroup *from = mc.from;
6653 	struct mem_cgroup *to = mc.to;
6654 	int i;
6655 
6656 	/* we must uncharge all the leftover precharges from mc.to */
6657 	if (mc.precharge) {
6658 		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
6659 		mc.precharge = 0;
6660 	}
6661 	/*
6662 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6663 	 * we must uncharge here.
6664 	 */
6665 	if (mc.moved_charge) {
6666 		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6667 		mc.moved_charge = 0;
6668 	}
6669 	/* we must fixup refcnts and charges */
6670 	if (mc.moved_swap) {
6671 		/* uncharge swap account from the old cgroup */
6672 		if (!mem_cgroup_is_root(mc.from))
6673 			res_counter_uncharge(&mc.from->memsw,
6674 						PAGE_SIZE * mc.moved_swap);
6675 
6676 		for (i = 0; i < mc.moved_swap; i++)
6677 			css_put(&mc.from->css);
6678 
6679 		if (!mem_cgroup_is_root(mc.to)) {
6680 			/*
6681 			 * we charged both to->res and to->memsw, so we should
6682 			 * uncharge to->res.
6683 			 */
6684 			res_counter_uncharge(&mc.to->res,
6685 						PAGE_SIZE * mc.moved_swap);
6686 		}
6687 		/* we've already done css_get(mc.to) */
6688 		mc.moved_swap = 0;
6689 	}
6690 	memcg_oom_recover(from);
6691 	memcg_oom_recover(to);
6692 	wake_up_all(&mc.waitq);
6693 }
6694 
6695 static void mem_cgroup_clear_mc(void)
6696 {
6697 	struct mem_cgroup *from = mc.from;
6698 
6699 	/*
6700 	 * we must clear moving_task before waking up waiters at the end of
6701 	 * task migration.
6702 	 */
6703 	mc.moving_task = NULL;
6704 	__mem_cgroup_clear_mc();
6705 	spin_lock(&mc.lock);
6706 	mc.from = NULL;
6707 	mc.to = NULL;
6708 	spin_unlock(&mc.lock);
6709 	mem_cgroup_end_move(from);
6710 }
6711 
6712 static int mem_cgroup_can_attach(struct cgroup *cgroup,
6713 				 struct cgroup_taskset *tset)
6714 {
6715 	struct task_struct *p = cgroup_taskset_first(tset);
6716 	int ret = 0;
6717 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
6718 	unsigned long move_charge_at_immigrate;
6719 
6720 	/*
6721 	 * We are now commited to this value whatever it is. Changes in this
6722 	 * tunable will only affect upcoming migrations, not the current one.
6723 	 * So we need to save it, and keep it going.
6724 	 */
6725 	move_charge_at_immigrate  = memcg->move_charge_at_immigrate;
6726 	if (move_charge_at_immigrate) {
6727 		struct mm_struct *mm;
6728 		struct mem_cgroup *from = mem_cgroup_from_task(p);
6729 
6730 		VM_BUG_ON(from == memcg);
6731 
6732 		mm = get_task_mm(p);
6733 		if (!mm)
6734 			return 0;
6735 		/* We move charges only when we move a owner of the mm */
6736 		if (mm->owner == p) {
6737 			VM_BUG_ON(mc.from);
6738 			VM_BUG_ON(mc.to);
6739 			VM_BUG_ON(mc.precharge);
6740 			VM_BUG_ON(mc.moved_charge);
6741 			VM_BUG_ON(mc.moved_swap);
6742 			mem_cgroup_start_move(from);
6743 			spin_lock(&mc.lock);
6744 			mc.from = from;
6745 			mc.to = memcg;
6746 			mc.immigrate_flags = move_charge_at_immigrate;
6747 			spin_unlock(&mc.lock);
6748 			/* We set mc.moving_task later */
6749 
6750 			ret = mem_cgroup_precharge_mc(mm);
6751 			if (ret)
6752 				mem_cgroup_clear_mc();
6753 		}
6754 		mmput(mm);
6755 	}
6756 	return ret;
6757 }
6758 
6759 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
6760 				     struct cgroup_taskset *tset)
6761 {
6762 	mem_cgroup_clear_mc();
6763 }
6764 
6765 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6766 				unsigned long addr, unsigned long end,
6767 				struct mm_walk *walk)
6768 {
6769 	int ret = 0;
6770 	struct vm_area_struct *vma = walk->private;
6771 	pte_t *pte;
6772 	spinlock_t *ptl;
6773 	enum mc_target_type target_type;
6774 	union mc_target target;
6775 	struct page *page;
6776 	struct page_cgroup *pc;
6777 
6778 	/*
6779 	 * We don't take compound_lock() here but no race with splitting thp
6780 	 * happens because:
6781 	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6782 	 *    under splitting, which means there's no concurrent thp split,
6783 	 *  - if another thread runs into split_huge_page() just after we
6784 	 *    entered this if-block, the thread must wait for page table lock
6785 	 *    to be unlocked in __split_huge_page_splitting(), where the main
6786 	 *    part of thp split is not executed yet.
6787 	 */
6788 	if (pmd_trans_huge_lock(pmd, vma) == 1) {
6789 		if (mc.precharge < HPAGE_PMD_NR) {
6790 			spin_unlock(&vma->vm_mm->page_table_lock);
6791 			return 0;
6792 		}
6793 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6794 		if (target_type == MC_TARGET_PAGE) {
6795 			page = target.page;
6796 			if (!isolate_lru_page(page)) {
6797 				pc = lookup_page_cgroup(page);
6798 				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6799 							pc, mc.from, mc.to)) {
6800 					mc.precharge -= HPAGE_PMD_NR;
6801 					mc.moved_charge += HPAGE_PMD_NR;
6802 				}
6803 				putback_lru_page(page);
6804 			}
6805 			put_page(page);
6806 		}
6807 		spin_unlock(&vma->vm_mm->page_table_lock);
6808 		return 0;
6809 	}
6810 
6811 	if (pmd_trans_unstable(pmd))
6812 		return 0;
6813 retry:
6814 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6815 	for (; addr != end; addr += PAGE_SIZE) {
6816 		pte_t ptent = *(pte++);
6817 		swp_entry_t ent;
6818 
6819 		if (!mc.precharge)
6820 			break;
6821 
6822 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6823 		case MC_TARGET_PAGE:
6824 			page = target.page;
6825 			if (isolate_lru_page(page))
6826 				goto put;
6827 			pc = lookup_page_cgroup(page);
6828 			if (!mem_cgroup_move_account(page, 1, pc,
6829 						     mc.from, mc.to)) {
6830 				mc.precharge--;
6831 				/* we uncharge from mc.from later. */
6832 				mc.moved_charge++;
6833 			}
6834 			putback_lru_page(page);
6835 put:			/* get_mctgt_type() gets the page */
6836 			put_page(page);
6837 			break;
6838 		case MC_TARGET_SWAP:
6839 			ent = target.ent;
6840 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6841 				mc.precharge--;
6842 				/* we fixup refcnts and charges later. */
6843 				mc.moved_swap++;
6844 			}
6845 			break;
6846 		default:
6847 			break;
6848 		}
6849 	}
6850 	pte_unmap_unlock(pte - 1, ptl);
6851 	cond_resched();
6852 
6853 	if (addr != end) {
6854 		/*
6855 		 * We have consumed all precharges we got in can_attach().
6856 		 * We try charge one by one, but don't do any additional
6857 		 * charges to mc.to if we have failed in charge once in attach()
6858 		 * phase.
6859 		 */
6860 		ret = mem_cgroup_do_precharge(1);
6861 		if (!ret)
6862 			goto retry;
6863 	}
6864 
6865 	return ret;
6866 }
6867 
6868 static void mem_cgroup_move_charge(struct mm_struct *mm)
6869 {
6870 	struct vm_area_struct *vma;
6871 
6872 	lru_add_drain_all();
6873 retry:
6874 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
6875 		/*
6876 		 * Someone who are holding the mmap_sem might be waiting in
6877 		 * waitq. So we cancel all extra charges, wake up all waiters,
6878 		 * and retry. Because we cancel precharges, we might not be able
6879 		 * to move enough charges, but moving charge is a best-effort
6880 		 * feature anyway, so it wouldn't be a big problem.
6881 		 */
6882 		__mem_cgroup_clear_mc();
6883 		cond_resched();
6884 		goto retry;
6885 	}
6886 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
6887 		int ret;
6888 		struct mm_walk mem_cgroup_move_charge_walk = {
6889 			.pmd_entry = mem_cgroup_move_charge_pte_range,
6890 			.mm = mm,
6891 			.private = vma,
6892 		};
6893 		if (is_vm_hugetlb_page(vma))
6894 			continue;
6895 		ret = walk_page_range(vma->vm_start, vma->vm_end,
6896 						&mem_cgroup_move_charge_walk);
6897 		if (ret)
6898 			/*
6899 			 * means we have consumed all precharges and failed in
6900 			 * doing additional charge. Just abandon here.
6901 			 */
6902 			break;
6903 	}
6904 	up_read(&mm->mmap_sem);
6905 }
6906 
6907 static void mem_cgroup_move_task(struct cgroup *cont,
6908 				 struct cgroup_taskset *tset)
6909 {
6910 	struct task_struct *p = cgroup_taskset_first(tset);
6911 	struct mm_struct *mm = get_task_mm(p);
6912 
6913 	if (mm) {
6914 		if (mc.to)
6915 			mem_cgroup_move_charge(mm);
6916 		mmput(mm);
6917 	}
6918 	if (mc.to)
6919 		mem_cgroup_clear_mc();
6920 }
6921 #else	/* !CONFIG_MMU */
6922 static int mem_cgroup_can_attach(struct cgroup *cgroup,
6923 				 struct cgroup_taskset *tset)
6924 {
6925 	return 0;
6926 }
6927 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
6928 				     struct cgroup_taskset *tset)
6929 {
6930 }
6931 static void mem_cgroup_move_task(struct cgroup *cont,
6932 				 struct cgroup_taskset *tset)
6933 {
6934 }
6935 #endif
6936 
6937 /*
6938  * Cgroup retains root cgroups across [un]mount cycles making it necessary
6939  * to verify sane_behavior flag on each mount attempt.
6940  */
6941 static void mem_cgroup_bind(struct cgroup *root)
6942 {
6943 	/*
6944 	 * use_hierarchy is forced with sane_behavior.  cgroup core
6945 	 * guarantees that @root doesn't have any children, so turning it
6946 	 * on for the root memcg is enough.
6947 	 */
6948 	if (cgroup_sane_behavior(root))
6949 		mem_cgroup_from_cont(root)->use_hierarchy = true;
6950 }
6951 
6952 struct cgroup_subsys mem_cgroup_subsys = {
6953 	.name = "memory",
6954 	.subsys_id = mem_cgroup_subsys_id,
6955 	.css_alloc = mem_cgroup_css_alloc,
6956 	.css_online = mem_cgroup_css_online,
6957 	.css_offline = mem_cgroup_css_offline,
6958 	.css_free = mem_cgroup_css_free,
6959 	.can_attach = mem_cgroup_can_attach,
6960 	.cancel_attach = mem_cgroup_cancel_attach,
6961 	.attach = mem_cgroup_move_task,
6962 	.bind = mem_cgroup_bind,
6963 	.base_cftypes = mem_cgroup_files,
6964 	.early_init = 0,
6965 	.use_id = 1,
6966 };
6967 
6968 #ifdef CONFIG_MEMCG_SWAP
6969 static int __init enable_swap_account(char *s)
6970 {
6971 	/* consider enabled if no parameter or 1 is given */
6972 	if (!strcmp(s, "1"))
6973 		really_do_swap_account = 1;
6974 	else if (!strcmp(s, "0"))
6975 		really_do_swap_account = 0;
6976 	return 1;
6977 }
6978 __setup("swapaccount=", enable_swap_account);
6979 
6980 static void __init memsw_file_init(void)
6981 {
6982 	WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
6983 }
6984 
6985 static void __init enable_swap_cgroup(void)
6986 {
6987 	if (!mem_cgroup_disabled() && really_do_swap_account) {
6988 		do_swap_account = 1;
6989 		memsw_file_init();
6990 	}
6991 }
6992 
6993 #else
6994 static void __init enable_swap_cgroup(void)
6995 {
6996 }
6997 #endif
6998 
6999 /*
7000  * subsys_initcall() for memory controller.
7001  *
7002  * Some parts like hotcpu_notifier() have to be initialized from this context
7003  * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
7004  * everything that doesn't depend on a specific mem_cgroup structure should
7005  * be initialized from here.
7006  */
7007 static int __init mem_cgroup_init(void)
7008 {
7009 	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
7010 	enable_swap_cgroup();
7011 	mem_cgroup_soft_limit_tree_init();
7012 	memcg_stock_init();
7013 	return 0;
7014 }
7015 subsys_initcall(mem_cgroup_init);
7016