1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* memcontrol.c - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <xemul@openvz.org> 9 * 10 * Memory thresholds 11 * Copyright (C) 2009 Nokia Corporation 12 * Author: Kirill A. Shutemov 13 * 14 * Kernel Memory Controller 15 * Copyright (C) 2012 Parallels Inc. and Google Inc. 16 * Authors: Glauber Costa and Suleiman Souhlal 17 * 18 * Native page reclaim 19 * Charge lifetime sanitation 20 * Lockless page tracking & accounting 21 * Unified hierarchy configuration model 22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner 23 * 24 * Per memcg lru locking 25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi 26 */ 27 28 #include <linux/page_counter.h> 29 #include <linux/memcontrol.h> 30 #include <linux/cgroup.h> 31 #include <linux/pagewalk.h> 32 #include <linux/sched/mm.h> 33 #include <linux/shmem_fs.h> 34 #include <linux/hugetlb.h> 35 #include <linux/pagemap.h> 36 #include <linux/vm_event_item.h> 37 #include <linux/smp.h> 38 #include <linux/page-flags.h> 39 #include <linux/backing-dev.h> 40 #include <linux/bit_spinlock.h> 41 #include <linux/rcupdate.h> 42 #include <linux/limits.h> 43 #include <linux/export.h> 44 #include <linux/mutex.h> 45 #include <linux/rbtree.h> 46 #include <linux/slab.h> 47 #include <linux/swap.h> 48 #include <linux/swapops.h> 49 #include <linux/spinlock.h> 50 #include <linux/eventfd.h> 51 #include <linux/poll.h> 52 #include <linux/sort.h> 53 #include <linux/fs.h> 54 #include <linux/seq_file.h> 55 #include <linux/vmpressure.h> 56 #include <linux/mm_inline.h> 57 #include <linux/swap_cgroup.h> 58 #include <linux/cpu.h> 59 #include <linux/oom.h> 60 #include <linux/lockdep.h> 61 #include <linux/file.h> 62 #include <linux/tracehook.h> 63 #include <linux/psi.h> 64 #include <linux/seq_buf.h> 65 #include "internal.h" 66 #include <net/sock.h> 67 #include <net/ip.h> 68 #include "slab.h" 69 70 #include <linux/uaccess.h> 71 72 #include <trace/events/vmscan.h> 73 74 struct cgroup_subsys memory_cgrp_subsys __read_mostly; 75 EXPORT_SYMBOL(memory_cgrp_subsys); 76 77 struct mem_cgroup *root_mem_cgroup __read_mostly; 78 79 /* Active memory cgroup to use from an interrupt context */ 80 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg); 81 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg); 82 83 /* Socket memory accounting disabled? */ 84 static bool cgroup_memory_nosocket __ro_after_init; 85 86 /* Kernel memory accounting disabled? */ 87 bool cgroup_memory_nokmem __ro_after_init; 88 89 /* Whether the swap controller is active */ 90 #ifdef CONFIG_MEMCG_SWAP 91 bool cgroup_memory_noswap __ro_after_init; 92 #else 93 #define cgroup_memory_noswap 1 94 #endif 95 96 #ifdef CONFIG_CGROUP_WRITEBACK 97 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq); 98 #endif 99 100 /* Whether legacy memory+swap accounting is active */ 101 static bool do_memsw_account(void) 102 { 103 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap; 104 } 105 106 /* memcg and lruvec stats flushing */ 107 static void flush_memcg_stats_dwork(struct work_struct *w); 108 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork); 109 static void flush_memcg_stats_work(struct work_struct *w); 110 static DECLARE_WORK(stats_flush_work, flush_memcg_stats_work); 111 static DEFINE_PER_CPU(unsigned int, stats_flush_threshold); 112 static DEFINE_SPINLOCK(stats_flush_lock); 113 114 #define THRESHOLDS_EVENTS_TARGET 128 115 #define SOFTLIMIT_EVENTS_TARGET 1024 116 117 /* 118 * Cgroups above their limits are maintained in a RB-Tree, independent of 119 * their hierarchy representation 120 */ 121 122 struct mem_cgroup_tree_per_node { 123 struct rb_root rb_root; 124 struct rb_node *rb_rightmost; 125 spinlock_t lock; 126 }; 127 128 struct mem_cgroup_tree { 129 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 130 }; 131 132 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 133 134 /* for OOM */ 135 struct mem_cgroup_eventfd_list { 136 struct list_head list; 137 struct eventfd_ctx *eventfd; 138 }; 139 140 /* 141 * cgroup_event represents events which userspace want to receive. 142 */ 143 struct mem_cgroup_event { 144 /* 145 * memcg which the event belongs to. 146 */ 147 struct mem_cgroup *memcg; 148 /* 149 * eventfd to signal userspace about the event. 150 */ 151 struct eventfd_ctx *eventfd; 152 /* 153 * Each of these stored in a list by the cgroup. 154 */ 155 struct list_head list; 156 /* 157 * register_event() callback will be used to add new userspace 158 * waiter for changes related to this event. Use eventfd_signal() 159 * on eventfd to send notification to userspace. 160 */ 161 int (*register_event)(struct mem_cgroup *memcg, 162 struct eventfd_ctx *eventfd, const char *args); 163 /* 164 * unregister_event() callback will be called when userspace closes 165 * the eventfd or on cgroup removing. This callback must be set, 166 * if you want provide notification functionality. 167 */ 168 void (*unregister_event)(struct mem_cgroup *memcg, 169 struct eventfd_ctx *eventfd); 170 /* 171 * All fields below needed to unregister event when 172 * userspace closes eventfd. 173 */ 174 poll_table pt; 175 wait_queue_head_t *wqh; 176 wait_queue_entry_t wait; 177 struct work_struct remove; 178 }; 179 180 static void mem_cgroup_threshold(struct mem_cgroup *memcg); 181 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); 182 183 /* Stuffs for move charges at task migration. */ 184 /* 185 * Types of charges to be moved. 186 */ 187 #define MOVE_ANON 0x1U 188 #define MOVE_FILE 0x2U 189 #define MOVE_MASK (MOVE_ANON | MOVE_FILE) 190 191 /* "mc" and its members are protected by cgroup_mutex */ 192 static struct move_charge_struct { 193 spinlock_t lock; /* for from, to */ 194 struct mm_struct *mm; 195 struct mem_cgroup *from; 196 struct mem_cgroup *to; 197 unsigned long flags; 198 unsigned long precharge; 199 unsigned long moved_charge; 200 unsigned long moved_swap; 201 struct task_struct *moving_task; /* a task moving charges */ 202 wait_queue_head_t waitq; /* a waitq for other context */ 203 } mc = { 204 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 205 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 206 }; 207 208 /* 209 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft 210 * limit reclaim to prevent infinite loops, if they ever occur. 211 */ 212 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 213 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 214 215 /* for encoding cft->private value on file */ 216 enum res_type { 217 _MEM, 218 _MEMSWAP, 219 _OOM_TYPE, 220 _KMEM, 221 _TCP, 222 }; 223 224 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) 225 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) 226 #define MEMFILE_ATTR(val) ((val) & 0xffff) 227 /* Used for OOM notifier */ 228 #define OOM_CONTROL (0) 229 230 /* 231 * Iteration constructs for visiting all cgroups (under a tree). If 232 * loops are exited prematurely (break), mem_cgroup_iter_break() must 233 * be used for reference counting. 234 */ 235 #define for_each_mem_cgroup_tree(iter, root) \ 236 for (iter = mem_cgroup_iter(root, NULL, NULL); \ 237 iter != NULL; \ 238 iter = mem_cgroup_iter(root, iter, NULL)) 239 240 #define for_each_mem_cgroup(iter) \ 241 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ 242 iter != NULL; \ 243 iter = mem_cgroup_iter(NULL, iter, NULL)) 244 245 static inline bool should_force_charge(void) 246 { 247 return tsk_is_oom_victim(current) || fatal_signal_pending(current) || 248 (current->flags & PF_EXITING); 249 } 250 251 /* Some nice accessors for the vmpressure. */ 252 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 253 { 254 if (!memcg) 255 memcg = root_mem_cgroup; 256 return &memcg->vmpressure; 257 } 258 259 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr) 260 { 261 return container_of(vmpr, struct mem_cgroup, vmpressure); 262 } 263 264 #ifdef CONFIG_MEMCG_KMEM 265 extern spinlock_t css_set_lock; 266 267 bool mem_cgroup_kmem_disabled(void) 268 { 269 return cgroup_memory_nokmem; 270 } 271 272 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg, 273 unsigned int nr_pages); 274 275 static void obj_cgroup_release(struct percpu_ref *ref) 276 { 277 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt); 278 unsigned int nr_bytes; 279 unsigned int nr_pages; 280 unsigned long flags; 281 282 /* 283 * At this point all allocated objects are freed, and 284 * objcg->nr_charged_bytes can't have an arbitrary byte value. 285 * However, it can be PAGE_SIZE or (x * PAGE_SIZE). 286 * 287 * The following sequence can lead to it: 288 * 1) CPU0: objcg == stock->cached_objcg 289 * 2) CPU1: we do a small allocation (e.g. 92 bytes), 290 * PAGE_SIZE bytes are charged 291 * 3) CPU1: a process from another memcg is allocating something, 292 * the stock if flushed, 293 * objcg->nr_charged_bytes = PAGE_SIZE - 92 294 * 5) CPU0: we do release this object, 295 * 92 bytes are added to stock->nr_bytes 296 * 6) CPU0: stock is flushed, 297 * 92 bytes are added to objcg->nr_charged_bytes 298 * 299 * In the result, nr_charged_bytes == PAGE_SIZE. 300 * This page will be uncharged in obj_cgroup_release(). 301 */ 302 nr_bytes = atomic_read(&objcg->nr_charged_bytes); 303 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1)); 304 nr_pages = nr_bytes >> PAGE_SHIFT; 305 306 if (nr_pages) 307 obj_cgroup_uncharge_pages(objcg, nr_pages); 308 309 spin_lock_irqsave(&css_set_lock, flags); 310 list_del(&objcg->list); 311 spin_unlock_irqrestore(&css_set_lock, flags); 312 313 percpu_ref_exit(ref); 314 kfree_rcu(objcg, rcu); 315 } 316 317 static struct obj_cgroup *obj_cgroup_alloc(void) 318 { 319 struct obj_cgroup *objcg; 320 int ret; 321 322 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL); 323 if (!objcg) 324 return NULL; 325 326 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0, 327 GFP_KERNEL); 328 if (ret) { 329 kfree(objcg); 330 return NULL; 331 } 332 INIT_LIST_HEAD(&objcg->list); 333 return objcg; 334 } 335 336 static void memcg_reparent_objcgs(struct mem_cgroup *memcg, 337 struct mem_cgroup *parent) 338 { 339 struct obj_cgroup *objcg, *iter; 340 341 objcg = rcu_replace_pointer(memcg->objcg, NULL, true); 342 343 spin_lock_irq(&css_set_lock); 344 345 /* 1) Ready to reparent active objcg. */ 346 list_add(&objcg->list, &memcg->objcg_list); 347 /* 2) Reparent active objcg and already reparented objcgs to parent. */ 348 list_for_each_entry(iter, &memcg->objcg_list, list) 349 WRITE_ONCE(iter->memcg, parent); 350 /* 3) Move already reparented objcgs to the parent's list */ 351 list_splice(&memcg->objcg_list, &parent->objcg_list); 352 353 spin_unlock_irq(&css_set_lock); 354 355 percpu_ref_kill(&objcg->refcnt); 356 } 357 358 /* 359 * This will be used as a shrinker list's index. 360 * The main reason for not using cgroup id for this: 361 * this works better in sparse environments, where we have a lot of memcgs, 362 * but only a few kmem-limited. Or also, if we have, for instance, 200 363 * memcgs, and none but the 200th is kmem-limited, we'd have to have a 364 * 200 entry array for that. 365 * 366 * The current size of the caches array is stored in memcg_nr_cache_ids. It 367 * will double each time we have to increase it. 368 */ 369 static DEFINE_IDA(memcg_cache_ida); 370 int memcg_nr_cache_ids; 371 372 /* Protects memcg_nr_cache_ids */ 373 static DECLARE_RWSEM(memcg_cache_ids_sem); 374 375 void memcg_get_cache_ids(void) 376 { 377 down_read(&memcg_cache_ids_sem); 378 } 379 380 void memcg_put_cache_ids(void) 381 { 382 up_read(&memcg_cache_ids_sem); 383 } 384 385 /* 386 * MIN_SIZE is different than 1, because we would like to avoid going through 387 * the alloc/free process all the time. In a small machine, 4 kmem-limited 388 * cgroups is a reasonable guess. In the future, it could be a parameter or 389 * tunable, but that is strictly not necessary. 390 * 391 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get 392 * this constant directly from cgroup, but it is understandable that this is 393 * better kept as an internal representation in cgroup.c. In any case, the 394 * cgrp_id space is not getting any smaller, and we don't have to necessarily 395 * increase ours as well if it increases. 396 */ 397 #define MEMCG_CACHES_MIN_SIZE 4 398 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX 399 400 /* 401 * A lot of the calls to the cache allocation functions are expected to be 402 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are 403 * conditional to this static branch, we'll have to allow modules that does 404 * kmem_cache_alloc and the such to see this symbol as well 405 */ 406 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key); 407 EXPORT_SYMBOL(memcg_kmem_enabled_key); 408 #endif 409 410 /** 411 * mem_cgroup_css_from_page - css of the memcg associated with a page 412 * @page: page of interest 413 * 414 * If memcg is bound to the default hierarchy, css of the memcg associated 415 * with @page is returned. The returned css remains associated with @page 416 * until it is released. 417 * 418 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup 419 * is returned. 420 */ 421 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page) 422 { 423 struct mem_cgroup *memcg; 424 425 memcg = page_memcg(page); 426 427 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 428 memcg = root_mem_cgroup; 429 430 return &memcg->css; 431 } 432 433 /** 434 * page_cgroup_ino - return inode number of the memcg a page is charged to 435 * @page: the page 436 * 437 * Look up the closest online ancestor of the memory cgroup @page is charged to 438 * and return its inode number or 0 if @page is not charged to any cgroup. It 439 * is safe to call this function without holding a reference to @page. 440 * 441 * Note, this function is inherently racy, because there is nothing to prevent 442 * the cgroup inode from getting torn down and potentially reallocated a moment 443 * after page_cgroup_ino() returns, so it only should be used by callers that 444 * do not care (such as procfs interfaces). 445 */ 446 ino_t page_cgroup_ino(struct page *page) 447 { 448 struct mem_cgroup *memcg; 449 unsigned long ino = 0; 450 451 rcu_read_lock(); 452 memcg = page_memcg_check(page); 453 454 while (memcg && !(memcg->css.flags & CSS_ONLINE)) 455 memcg = parent_mem_cgroup(memcg); 456 if (memcg) 457 ino = cgroup_ino(memcg->css.cgroup); 458 rcu_read_unlock(); 459 return ino; 460 } 461 462 static struct mem_cgroup_per_node * 463 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page) 464 { 465 int nid = page_to_nid(page); 466 467 return memcg->nodeinfo[nid]; 468 } 469 470 static struct mem_cgroup_tree_per_node * 471 soft_limit_tree_node(int nid) 472 { 473 return soft_limit_tree.rb_tree_per_node[nid]; 474 } 475 476 static struct mem_cgroup_tree_per_node * 477 soft_limit_tree_from_page(struct page *page) 478 { 479 int nid = page_to_nid(page); 480 481 return soft_limit_tree.rb_tree_per_node[nid]; 482 } 483 484 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz, 485 struct mem_cgroup_tree_per_node *mctz, 486 unsigned long new_usage_in_excess) 487 { 488 struct rb_node **p = &mctz->rb_root.rb_node; 489 struct rb_node *parent = NULL; 490 struct mem_cgroup_per_node *mz_node; 491 bool rightmost = true; 492 493 if (mz->on_tree) 494 return; 495 496 mz->usage_in_excess = new_usage_in_excess; 497 if (!mz->usage_in_excess) 498 return; 499 while (*p) { 500 parent = *p; 501 mz_node = rb_entry(parent, struct mem_cgroup_per_node, 502 tree_node); 503 if (mz->usage_in_excess < mz_node->usage_in_excess) { 504 p = &(*p)->rb_left; 505 rightmost = false; 506 } else { 507 p = &(*p)->rb_right; 508 } 509 } 510 511 if (rightmost) 512 mctz->rb_rightmost = &mz->tree_node; 513 514 rb_link_node(&mz->tree_node, parent, p); 515 rb_insert_color(&mz->tree_node, &mctz->rb_root); 516 mz->on_tree = true; 517 } 518 519 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 520 struct mem_cgroup_tree_per_node *mctz) 521 { 522 if (!mz->on_tree) 523 return; 524 525 if (&mz->tree_node == mctz->rb_rightmost) 526 mctz->rb_rightmost = rb_prev(&mz->tree_node); 527 528 rb_erase(&mz->tree_node, &mctz->rb_root); 529 mz->on_tree = false; 530 } 531 532 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 533 struct mem_cgroup_tree_per_node *mctz) 534 { 535 unsigned long flags; 536 537 spin_lock_irqsave(&mctz->lock, flags); 538 __mem_cgroup_remove_exceeded(mz, mctz); 539 spin_unlock_irqrestore(&mctz->lock, flags); 540 } 541 542 static unsigned long soft_limit_excess(struct mem_cgroup *memcg) 543 { 544 unsigned long nr_pages = page_counter_read(&memcg->memory); 545 unsigned long soft_limit = READ_ONCE(memcg->soft_limit); 546 unsigned long excess = 0; 547 548 if (nr_pages > soft_limit) 549 excess = nr_pages - soft_limit; 550 551 return excess; 552 } 553 554 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page) 555 { 556 unsigned long excess; 557 struct mem_cgroup_per_node *mz; 558 struct mem_cgroup_tree_per_node *mctz; 559 560 mctz = soft_limit_tree_from_page(page); 561 if (!mctz) 562 return; 563 /* 564 * Necessary to update all ancestors when hierarchy is used. 565 * because their event counter is not touched. 566 */ 567 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 568 mz = mem_cgroup_page_nodeinfo(memcg, page); 569 excess = soft_limit_excess(memcg); 570 /* 571 * We have to update the tree if mz is on RB-tree or 572 * mem is over its softlimit. 573 */ 574 if (excess || mz->on_tree) { 575 unsigned long flags; 576 577 spin_lock_irqsave(&mctz->lock, flags); 578 /* if on-tree, remove it */ 579 if (mz->on_tree) 580 __mem_cgroup_remove_exceeded(mz, mctz); 581 /* 582 * Insert again. mz->usage_in_excess will be updated. 583 * If excess is 0, no tree ops. 584 */ 585 __mem_cgroup_insert_exceeded(mz, mctz, excess); 586 spin_unlock_irqrestore(&mctz->lock, flags); 587 } 588 } 589 } 590 591 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) 592 { 593 struct mem_cgroup_tree_per_node *mctz; 594 struct mem_cgroup_per_node *mz; 595 int nid; 596 597 for_each_node(nid) { 598 mz = memcg->nodeinfo[nid]; 599 mctz = soft_limit_tree_node(nid); 600 if (mctz) 601 mem_cgroup_remove_exceeded(mz, mctz); 602 } 603 } 604 605 static struct mem_cgroup_per_node * 606 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 607 { 608 struct mem_cgroup_per_node *mz; 609 610 retry: 611 mz = NULL; 612 if (!mctz->rb_rightmost) 613 goto done; /* Nothing to reclaim from */ 614 615 mz = rb_entry(mctz->rb_rightmost, 616 struct mem_cgroup_per_node, tree_node); 617 /* 618 * Remove the node now but someone else can add it back, 619 * we will to add it back at the end of reclaim to its correct 620 * position in the tree. 621 */ 622 __mem_cgroup_remove_exceeded(mz, mctz); 623 if (!soft_limit_excess(mz->memcg) || 624 !css_tryget(&mz->memcg->css)) 625 goto retry; 626 done: 627 return mz; 628 } 629 630 static struct mem_cgroup_per_node * 631 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 632 { 633 struct mem_cgroup_per_node *mz; 634 635 spin_lock_irq(&mctz->lock); 636 mz = __mem_cgroup_largest_soft_limit_node(mctz); 637 spin_unlock_irq(&mctz->lock); 638 return mz; 639 } 640 641 /** 642 * __mod_memcg_state - update cgroup memory statistics 643 * @memcg: the memory cgroup 644 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item 645 * @val: delta to add to the counter, can be negative 646 */ 647 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val) 648 { 649 if (mem_cgroup_disabled()) 650 return; 651 652 __this_cpu_add(memcg->vmstats_percpu->state[idx], val); 653 cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id()); 654 } 655 656 /* idx can be of type enum memcg_stat_item or node_stat_item. */ 657 static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx) 658 { 659 long x = 0; 660 int cpu; 661 662 for_each_possible_cpu(cpu) 663 x += per_cpu(memcg->vmstats_percpu->state[idx], cpu); 664 #ifdef CONFIG_SMP 665 if (x < 0) 666 x = 0; 667 #endif 668 return x; 669 } 670 671 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 672 int val) 673 { 674 struct mem_cgroup_per_node *pn; 675 struct mem_cgroup *memcg; 676 677 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 678 memcg = pn->memcg; 679 680 /* Update memcg */ 681 __mod_memcg_state(memcg, idx, val); 682 683 /* Update lruvec */ 684 __this_cpu_add(pn->lruvec_stats_percpu->state[idx], val); 685 if (!(__this_cpu_inc_return(stats_flush_threshold) % MEMCG_CHARGE_BATCH)) 686 queue_work(system_unbound_wq, &stats_flush_work); 687 } 688 689 /** 690 * __mod_lruvec_state - update lruvec memory statistics 691 * @lruvec: the lruvec 692 * @idx: the stat item 693 * @val: delta to add to the counter, can be negative 694 * 695 * The lruvec is the intersection of the NUMA node and a cgroup. This 696 * function updates the all three counters that are affected by a 697 * change of state at this level: per-node, per-cgroup, per-lruvec. 698 */ 699 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 700 int val) 701 { 702 /* Update node */ 703 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 704 705 /* Update memcg and lruvec */ 706 if (!mem_cgroup_disabled()) 707 __mod_memcg_lruvec_state(lruvec, idx, val); 708 } 709 710 void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx, 711 int val) 712 { 713 struct page *head = compound_head(page); /* rmap on tail pages */ 714 struct mem_cgroup *memcg; 715 pg_data_t *pgdat = page_pgdat(page); 716 struct lruvec *lruvec; 717 718 rcu_read_lock(); 719 memcg = page_memcg(head); 720 /* Untracked pages have no memcg, no lruvec. Update only the node */ 721 if (!memcg) { 722 rcu_read_unlock(); 723 __mod_node_page_state(pgdat, idx, val); 724 return; 725 } 726 727 lruvec = mem_cgroup_lruvec(memcg, pgdat); 728 __mod_lruvec_state(lruvec, idx, val); 729 rcu_read_unlock(); 730 } 731 EXPORT_SYMBOL(__mod_lruvec_page_state); 732 733 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val) 734 { 735 pg_data_t *pgdat = page_pgdat(virt_to_page(p)); 736 struct mem_cgroup *memcg; 737 struct lruvec *lruvec; 738 739 rcu_read_lock(); 740 memcg = mem_cgroup_from_obj(p); 741 742 /* 743 * Untracked pages have no memcg, no lruvec. Update only the 744 * node. If we reparent the slab objects to the root memcg, 745 * when we free the slab object, we need to update the per-memcg 746 * vmstats to keep it correct for the root memcg. 747 */ 748 if (!memcg) { 749 __mod_node_page_state(pgdat, idx, val); 750 } else { 751 lruvec = mem_cgroup_lruvec(memcg, pgdat); 752 __mod_lruvec_state(lruvec, idx, val); 753 } 754 rcu_read_unlock(); 755 } 756 757 /* 758 * mod_objcg_mlstate() may be called with irq enabled, so 759 * mod_memcg_lruvec_state() should be used. 760 */ 761 static inline void mod_objcg_mlstate(struct obj_cgroup *objcg, 762 struct pglist_data *pgdat, 763 enum node_stat_item idx, int nr) 764 { 765 struct mem_cgroup *memcg; 766 struct lruvec *lruvec; 767 768 rcu_read_lock(); 769 memcg = obj_cgroup_memcg(objcg); 770 lruvec = mem_cgroup_lruvec(memcg, pgdat); 771 mod_memcg_lruvec_state(lruvec, idx, nr); 772 rcu_read_unlock(); 773 } 774 775 /** 776 * __count_memcg_events - account VM events in a cgroup 777 * @memcg: the memory cgroup 778 * @idx: the event item 779 * @count: the number of events that occurred 780 */ 781 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 782 unsigned long count) 783 { 784 if (mem_cgroup_disabled()) 785 return; 786 787 __this_cpu_add(memcg->vmstats_percpu->events[idx], count); 788 cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id()); 789 } 790 791 static unsigned long memcg_events(struct mem_cgroup *memcg, int event) 792 { 793 return READ_ONCE(memcg->vmstats.events[event]); 794 } 795 796 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event) 797 { 798 long x = 0; 799 int cpu; 800 801 for_each_possible_cpu(cpu) 802 x += per_cpu(memcg->vmstats_percpu->events[event], cpu); 803 return x; 804 } 805 806 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, 807 struct page *page, 808 int nr_pages) 809 { 810 /* pagein of a big page is an event. So, ignore page size */ 811 if (nr_pages > 0) 812 __count_memcg_events(memcg, PGPGIN, 1); 813 else { 814 __count_memcg_events(memcg, PGPGOUT, 1); 815 nr_pages = -nr_pages; /* for event */ 816 } 817 818 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages); 819 } 820 821 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, 822 enum mem_cgroup_events_target target) 823 { 824 unsigned long val, next; 825 826 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events); 827 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]); 828 /* from time_after() in jiffies.h */ 829 if ((long)(next - val) < 0) { 830 switch (target) { 831 case MEM_CGROUP_TARGET_THRESH: 832 next = val + THRESHOLDS_EVENTS_TARGET; 833 break; 834 case MEM_CGROUP_TARGET_SOFTLIMIT: 835 next = val + SOFTLIMIT_EVENTS_TARGET; 836 break; 837 default: 838 break; 839 } 840 __this_cpu_write(memcg->vmstats_percpu->targets[target], next); 841 return true; 842 } 843 return false; 844 } 845 846 /* 847 * Check events in order. 848 * 849 */ 850 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) 851 { 852 /* threshold event is triggered in finer grain than soft limit */ 853 if (unlikely(mem_cgroup_event_ratelimit(memcg, 854 MEM_CGROUP_TARGET_THRESH))) { 855 bool do_softlimit; 856 857 do_softlimit = mem_cgroup_event_ratelimit(memcg, 858 MEM_CGROUP_TARGET_SOFTLIMIT); 859 mem_cgroup_threshold(memcg); 860 if (unlikely(do_softlimit)) 861 mem_cgroup_update_tree(memcg, page); 862 } 863 } 864 865 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 866 { 867 /* 868 * mm_update_next_owner() may clear mm->owner to NULL 869 * if it races with swapoff, page migration, etc. 870 * So this can be called with p == NULL. 871 */ 872 if (unlikely(!p)) 873 return NULL; 874 875 return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); 876 } 877 EXPORT_SYMBOL(mem_cgroup_from_task); 878 879 static __always_inline struct mem_cgroup *active_memcg(void) 880 { 881 if (!in_task()) 882 return this_cpu_read(int_active_memcg); 883 else 884 return current->active_memcg; 885 } 886 887 /** 888 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg. 889 * @mm: mm from which memcg should be extracted. It can be NULL. 890 * 891 * Obtain a reference on mm->memcg and returns it if successful. If mm 892 * is NULL, then the memcg is chosen as follows: 893 * 1) The active memcg, if set. 894 * 2) current->mm->memcg, if available 895 * 3) root memcg 896 * If mem_cgroup is disabled, NULL is returned. 897 */ 898 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 899 { 900 struct mem_cgroup *memcg; 901 902 if (mem_cgroup_disabled()) 903 return NULL; 904 905 /* 906 * Page cache insertions can happen without an 907 * actual mm context, e.g. during disk probing 908 * on boot, loopback IO, acct() writes etc. 909 * 910 * No need to css_get on root memcg as the reference 911 * counting is disabled on the root level in the 912 * cgroup core. See CSS_NO_REF. 913 */ 914 if (unlikely(!mm)) { 915 memcg = active_memcg(); 916 if (unlikely(memcg)) { 917 /* remote memcg must hold a ref */ 918 css_get(&memcg->css); 919 return memcg; 920 } 921 mm = current->mm; 922 if (unlikely(!mm)) 923 return root_mem_cgroup; 924 } 925 926 rcu_read_lock(); 927 do { 928 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 929 if (unlikely(!memcg)) 930 memcg = root_mem_cgroup; 931 } while (!css_tryget(&memcg->css)); 932 rcu_read_unlock(); 933 return memcg; 934 } 935 EXPORT_SYMBOL(get_mem_cgroup_from_mm); 936 937 static __always_inline bool memcg_kmem_bypass(void) 938 { 939 /* Allow remote memcg charging from any context. */ 940 if (unlikely(active_memcg())) 941 return false; 942 943 /* Memcg to charge can't be determined. */ 944 if (!in_task() || !current->mm || (current->flags & PF_KTHREAD)) 945 return true; 946 947 return false; 948 } 949 950 /** 951 * mem_cgroup_iter - iterate over memory cgroup hierarchy 952 * @root: hierarchy root 953 * @prev: previously returned memcg, NULL on first invocation 954 * @reclaim: cookie for shared reclaim walks, NULL for full walks 955 * 956 * Returns references to children of the hierarchy below @root, or 957 * @root itself, or %NULL after a full round-trip. 958 * 959 * Caller must pass the return value in @prev on subsequent 960 * invocations for reference counting, or use mem_cgroup_iter_break() 961 * to cancel a hierarchy walk before the round-trip is complete. 962 * 963 * Reclaimers can specify a node in @reclaim to divide up the memcgs 964 * in the hierarchy among all concurrent reclaimers operating on the 965 * same node. 966 */ 967 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 968 struct mem_cgroup *prev, 969 struct mem_cgroup_reclaim_cookie *reclaim) 970 { 971 struct mem_cgroup_reclaim_iter *iter; 972 struct cgroup_subsys_state *css = NULL; 973 struct mem_cgroup *memcg = NULL; 974 struct mem_cgroup *pos = NULL; 975 976 if (mem_cgroup_disabled()) 977 return NULL; 978 979 if (!root) 980 root = root_mem_cgroup; 981 982 if (prev && !reclaim) 983 pos = prev; 984 985 rcu_read_lock(); 986 987 if (reclaim) { 988 struct mem_cgroup_per_node *mz; 989 990 mz = root->nodeinfo[reclaim->pgdat->node_id]; 991 iter = &mz->iter; 992 993 if (prev && reclaim->generation != iter->generation) 994 goto out_unlock; 995 996 while (1) { 997 pos = READ_ONCE(iter->position); 998 if (!pos || css_tryget(&pos->css)) 999 break; 1000 /* 1001 * css reference reached zero, so iter->position will 1002 * be cleared by ->css_released. However, we should not 1003 * rely on this happening soon, because ->css_released 1004 * is called from a work queue, and by busy-waiting we 1005 * might block it. So we clear iter->position right 1006 * away. 1007 */ 1008 (void)cmpxchg(&iter->position, pos, NULL); 1009 } 1010 } 1011 1012 if (pos) 1013 css = &pos->css; 1014 1015 for (;;) { 1016 css = css_next_descendant_pre(css, &root->css); 1017 if (!css) { 1018 /* 1019 * Reclaimers share the hierarchy walk, and a 1020 * new one might jump in right at the end of 1021 * the hierarchy - make sure they see at least 1022 * one group and restart from the beginning. 1023 */ 1024 if (!prev) 1025 continue; 1026 break; 1027 } 1028 1029 /* 1030 * Verify the css and acquire a reference. The root 1031 * is provided by the caller, so we know it's alive 1032 * and kicking, and don't take an extra reference. 1033 */ 1034 memcg = mem_cgroup_from_css(css); 1035 1036 if (css == &root->css) 1037 break; 1038 1039 if (css_tryget(css)) 1040 break; 1041 1042 memcg = NULL; 1043 } 1044 1045 if (reclaim) { 1046 /* 1047 * The position could have already been updated by a competing 1048 * thread, so check that the value hasn't changed since we read 1049 * it to avoid reclaiming from the same cgroup twice. 1050 */ 1051 (void)cmpxchg(&iter->position, pos, memcg); 1052 1053 if (pos) 1054 css_put(&pos->css); 1055 1056 if (!memcg) 1057 iter->generation++; 1058 else if (!prev) 1059 reclaim->generation = iter->generation; 1060 } 1061 1062 out_unlock: 1063 rcu_read_unlock(); 1064 if (prev && prev != root) 1065 css_put(&prev->css); 1066 1067 return memcg; 1068 } 1069 1070 /** 1071 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 1072 * @root: hierarchy root 1073 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 1074 */ 1075 void mem_cgroup_iter_break(struct mem_cgroup *root, 1076 struct mem_cgroup *prev) 1077 { 1078 if (!root) 1079 root = root_mem_cgroup; 1080 if (prev && prev != root) 1081 css_put(&prev->css); 1082 } 1083 1084 static void __invalidate_reclaim_iterators(struct mem_cgroup *from, 1085 struct mem_cgroup *dead_memcg) 1086 { 1087 struct mem_cgroup_reclaim_iter *iter; 1088 struct mem_cgroup_per_node *mz; 1089 int nid; 1090 1091 for_each_node(nid) { 1092 mz = from->nodeinfo[nid]; 1093 iter = &mz->iter; 1094 cmpxchg(&iter->position, dead_memcg, NULL); 1095 } 1096 } 1097 1098 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) 1099 { 1100 struct mem_cgroup *memcg = dead_memcg; 1101 struct mem_cgroup *last; 1102 1103 do { 1104 __invalidate_reclaim_iterators(memcg, dead_memcg); 1105 last = memcg; 1106 } while ((memcg = parent_mem_cgroup(memcg))); 1107 1108 /* 1109 * When cgruop1 non-hierarchy mode is used, 1110 * parent_mem_cgroup() does not walk all the way up to the 1111 * cgroup root (root_mem_cgroup). So we have to handle 1112 * dead_memcg from cgroup root separately. 1113 */ 1114 if (last != root_mem_cgroup) 1115 __invalidate_reclaim_iterators(root_mem_cgroup, 1116 dead_memcg); 1117 } 1118 1119 /** 1120 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy 1121 * @memcg: hierarchy root 1122 * @fn: function to call for each task 1123 * @arg: argument passed to @fn 1124 * 1125 * This function iterates over tasks attached to @memcg or to any of its 1126 * descendants and calls @fn for each task. If @fn returns a non-zero 1127 * value, the function breaks the iteration loop and returns the value. 1128 * Otherwise, it will iterate over all tasks and return 0. 1129 * 1130 * This function must not be called for the root memory cgroup. 1131 */ 1132 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1133 int (*fn)(struct task_struct *, void *), void *arg) 1134 { 1135 struct mem_cgroup *iter; 1136 int ret = 0; 1137 1138 BUG_ON(memcg == root_mem_cgroup); 1139 1140 for_each_mem_cgroup_tree(iter, memcg) { 1141 struct css_task_iter it; 1142 struct task_struct *task; 1143 1144 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it); 1145 while (!ret && (task = css_task_iter_next(&it))) 1146 ret = fn(task, arg); 1147 css_task_iter_end(&it); 1148 if (ret) { 1149 mem_cgroup_iter_break(memcg, iter); 1150 break; 1151 } 1152 } 1153 return ret; 1154 } 1155 1156 #ifdef CONFIG_DEBUG_VM 1157 void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page) 1158 { 1159 struct mem_cgroup *memcg; 1160 1161 if (mem_cgroup_disabled()) 1162 return; 1163 1164 memcg = page_memcg(page); 1165 1166 if (!memcg) 1167 VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != root_mem_cgroup, page); 1168 else 1169 VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != memcg, page); 1170 } 1171 #endif 1172 1173 /** 1174 * lock_page_lruvec - lock and return lruvec for a given page. 1175 * @page: the page 1176 * 1177 * These functions are safe to use under any of the following conditions: 1178 * - page locked 1179 * - PageLRU cleared 1180 * - lock_page_memcg() 1181 * - page->_refcount is zero 1182 */ 1183 struct lruvec *lock_page_lruvec(struct page *page) 1184 { 1185 struct lruvec *lruvec; 1186 1187 lruvec = mem_cgroup_page_lruvec(page); 1188 spin_lock(&lruvec->lru_lock); 1189 1190 lruvec_memcg_debug(lruvec, page); 1191 1192 return lruvec; 1193 } 1194 1195 struct lruvec *lock_page_lruvec_irq(struct page *page) 1196 { 1197 struct lruvec *lruvec; 1198 1199 lruvec = mem_cgroup_page_lruvec(page); 1200 spin_lock_irq(&lruvec->lru_lock); 1201 1202 lruvec_memcg_debug(lruvec, page); 1203 1204 return lruvec; 1205 } 1206 1207 struct lruvec *lock_page_lruvec_irqsave(struct page *page, unsigned long *flags) 1208 { 1209 struct lruvec *lruvec; 1210 1211 lruvec = mem_cgroup_page_lruvec(page); 1212 spin_lock_irqsave(&lruvec->lru_lock, *flags); 1213 1214 lruvec_memcg_debug(lruvec, page); 1215 1216 return lruvec; 1217 } 1218 1219 /** 1220 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1221 * @lruvec: mem_cgroup per zone lru vector 1222 * @lru: index of lru list the page is sitting on 1223 * @zid: zone id of the accounted pages 1224 * @nr_pages: positive when adding or negative when removing 1225 * 1226 * This function must be called under lru_lock, just before a page is added 1227 * to or just after a page is removed from an lru list (that ordering being 1228 * so as to allow it to check that lru_size 0 is consistent with list_empty). 1229 */ 1230 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1231 int zid, int nr_pages) 1232 { 1233 struct mem_cgroup_per_node *mz; 1234 unsigned long *lru_size; 1235 long size; 1236 1237 if (mem_cgroup_disabled()) 1238 return; 1239 1240 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 1241 lru_size = &mz->lru_zone_size[zid][lru]; 1242 1243 if (nr_pages < 0) 1244 *lru_size += nr_pages; 1245 1246 size = *lru_size; 1247 if (WARN_ONCE(size < 0, 1248 "%s(%p, %d, %d): lru_size %ld\n", 1249 __func__, lruvec, lru, nr_pages, size)) { 1250 VM_BUG_ON(1); 1251 *lru_size = 0; 1252 } 1253 1254 if (nr_pages > 0) 1255 *lru_size += nr_pages; 1256 } 1257 1258 /** 1259 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1260 * @memcg: the memory cgroup 1261 * 1262 * Returns the maximum amount of memory @mem can be charged with, in 1263 * pages. 1264 */ 1265 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1266 { 1267 unsigned long margin = 0; 1268 unsigned long count; 1269 unsigned long limit; 1270 1271 count = page_counter_read(&memcg->memory); 1272 limit = READ_ONCE(memcg->memory.max); 1273 if (count < limit) 1274 margin = limit - count; 1275 1276 if (do_memsw_account()) { 1277 count = page_counter_read(&memcg->memsw); 1278 limit = READ_ONCE(memcg->memsw.max); 1279 if (count < limit) 1280 margin = min(margin, limit - count); 1281 else 1282 margin = 0; 1283 } 1284 1285 return margin; 1286 } 1287 1288 /* 1289 * A routine for checking "mem" is under move_account() or not. 1290 * 1291 * Checking a cgroup is mc.from or mc.to or under hierarchy of 1292 * moving cgroups. This is for waiting at high-memory pressure 1293 * caused by "move". 1294 */ 1295 static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 1296 { 1297 struct mem_cgroup *from; 1298 struct mem_cgroup *to; 1299 bool ret = false; 1300 /* 1301 * Unlike task_move routines, we access mc.to, mc.from not under 1302 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1303 */ 1304 spin_lock(&mc.lock); 1305 from = mc.from; 1306 to = mc.to; 1307 if (!from) 1308 goto unlock; 1309 1310 ret = mem_cgroup_is_descendant(from, memcg) || 1311 mem_cgroup_is_descendant(to, memcg); 1312 unlock: 1313 spin_unlock(&mc.lock); 1314 return ret; 1315 } 1316 1317 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) 1318 { 1319 if (mc.moving_task && current != mc.moving_task) { 1320 if (mem_cgroup_under_move(memcg)) { 1321 DEFINE_WAIT(wait); 1322 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1323 /* moving charge context might have finished. */ 1324 if (mc.moving_task) 1325 schedule(); 1326 finish_wait(&mc.waitq, &wait); 1327 return true; 1328 } 1329 } 1330 return false; 1331 } 1332 1333 struct memory_stat { 1334 const char *name; 1335 unsigned int idx; 1336 }; 1337 1338 static const struct memory_stat memory_stats[] = { 1339 { "anon", NR_ANON_MAPPED }, 1340 { "file", NR_FILE_PAGES }, 1341 { "kernel_stack", NR_KERNEL_STACK_KB }, 1342 { "pagetables", NR_PAGETABLE }, 1343 { "percpu", MEMCG_PERCPU_B }, 1344 { "sock", MEMCG_SOCK }, 1345 { "shmem", NR_SHMEM }, 1346 { "file_mapped", NR_FILE_MAPPED }, 1347 { "file_dirty", NR_FILE_DIRTY }, 1348 { "file_writeback", NR_WRITEBACK }, 1349 #ifdef CONFIG_SWAP 1350 { "swapcached", NR_SWAPCACHE }, 1351 #endif 1352 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1353 { "anon_thp", NR_ANON_THPS }, 1354 { "file_thp", NR_FILE_THPS }, 1355 { "shmem_thp", NR_SHMEM_THPS }, 1356 #endif 1357 { "inactive_anon", NR_INACTIVE_ANON }, 1358 { "active_anon", NR_ACTIVE_ANON }, 1359 { "inactive_file", NR_INACTIVE_FILE }, 1360 { "active_file", NR_ACTIVE_FILE }, 1361 { "unevictable", NR_UNEVICTABLE }, 1362 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B }, 1363 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B }, 1364 1365 /* The memory events */ 1366 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON }, 1367 { "workingset_refault_file", WORKINGSET_REFAULT_FILE }, 1368 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON }, 1369 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE }, 1370 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON }, 1371 { "workingset_restore_file", WORKINGSET_RESTORE_FILE }, 1372 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM }, 1373 }; 1374 1375 /* Translate stat items to the correct unit for memory.stat output */ 1376 static int memcg_page_state_unit(int item) 1377 { 1378 switch (item) { 1379 case MEMCG_PERCPU_B: 1380 case NR_SLAB_RECLAIMABLE_B: 1381 case NR_SLAB_UNRECLAIMABLE_B: 1382 case WORKINGSET_REFAULT_ANON: 1383 case WORKINGSET_REFAULT_FILE: 1384 case WORKINGSET_ACTIVATE_ANON: 1385 case WORKINGSET_ACTIVATE_FILE: 1386 case WORKINGSET_RESTORE_ANON: 1387 case WORKINGSET_RESTORE_FILE: 1388 case WORKINGSET_NODERECLAIM: 1389 return 1; 1390 case NR_KERNEL_STACK_KB: 1391 return SZ_1K; 1392 default: 1393 return PAGE_SIZE; 1394 } 1395 } 1396 1397 static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg, 1398 int item) 1399 { 1400 return memcg_page_state(memcg, item) * memcg_page_state_unit(item); 1401 } 1402 1403 static char *memory_stat_format(struct mem_cgroup *memcg) 1404 { 1405 struct seq_buf s; 1406 int i; 1407 1408 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE); 1409 if (!s.buffer) 1410 return NULL; 1411 1412 /* 1413 * Provide statistics on the state of the memory subsystem as 1414 * well as cumulative event counters that show past behavior. 1415 * 1416 * This list is ordered following a combination of these gradients: 1417 * 1) generic big picture -> specifics and details 1418 * 2) reflecting userspace activity -> reflecting kernel heuristics 1419 * 1420 * Current memory state: 1421 */ 1422 cgroup_rstat_flush(memcg->css.cgroup); 1423 1424 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 1425 u64 size; 1426 1427 size = memcg_page_state_output(memcg, memory_stats[i].idx); 1428 seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size); 1429 1430 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) { 1431 size += memcg_page_state_output(memcg, 1432 NR_SLAB_RECLAIMABLE_B); 1433 seq_buf_printf(&s, "slab %llu\n", size); 1434 } 1435 } 1436 1437 /* Accumulated memory events */ 1438 1439 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT), 1440 memcg_events(memcg, PGFAULT)); 1441 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT), 1442 memcg_events(memcg, PGMAJFAULT)); 1443 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL), 1444 memcg_events(memcg, PGREFILL)); 1445 seq_buf_printf(&s, "pgscan %lu\n", 1446 memcg_events(memcg, PGSCAN_KSWAPD) + 1447 memcg_events(memcg, PGSCAN_DIRECT)); 1448 seq_buf_printf(&s, "pgsteal %lu\n", 1449 memcg_events(memcg, PGSTEAL_KSWAPD) + 1450 memcg_events(memcg, PGSTEAL_DIRECT)); 1451 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE), 1452 memcg_events(memcg, PGACTIVATE)); 1453 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE), 1454 memcg_events(memcg, PGDEACTIVATE)); 1455 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE), 1456 memcg_events(memcg, PGLAZYFREE)); 1457 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED), 1458 memcg_events(memcg, PGLAZYFREED)); 1459 1460 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1461 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC), 1462 memcg_events(memcg, THP_FAULT_ALLOC)); 1463 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC), 1464 memcg_events(memcg, THP_COLLAPSE_ALLOC)); 1465 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1466 1467 /* The above should easily fit into one page */ 1468 WARN_ON_ONCE(seq_buf_has_overflowed(&s)); 1469 1470 return s.buffer; 1471 } 1472 1473 #define K(x) ((x) << (PAGE_SHIFT-10)) 1474 /** 1475 * mem_cgroup_print_oom_context: Print OOM information relevant to 1476 * memory controller. 1477 * @memcg: The memory cgroup that went over limit 1478 * @p: Task that is going to be killed 1479 * 1480 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1481 * enabled 1482 */ 1483 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1484 { 1485 rcu_read_lock(); 1486 1487 if (memcg) { 1488 pr_cont(",oom_memcg="); 1489 pr_cont_cgroup_path(memcg->css.cgroup); 1490 } else 1491 pr_cont(",global_oom"); 1492 if (p) { 1493 pr_cont(",task_memcg="); 1494 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); 1495 } 1496 rcu_read_unlock(); 1497 } 1498 1499 /** 1500 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to 1501 * memory controller. 1502 * @memcg: The memory cgroup that went over limit 1503 */ 1504 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1505 { 1506 char *buf; 1507 1508 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", 1509 K((u64)page_counter_read(&memcg->memory)), 1510 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt); 1511 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1512 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n", 1513 K((u64)page_counter_read(&memcg->swap)), 1514 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt); 1515 else { 1516 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", 1517 K((u64)page_counter_read(&memcg->memsw)), 1518 K((u64)memcg->memsw.max), memcg->memsw.failcnt); 1519 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", 1520 K((u64)page_counter_read(&memcg->kmem)), 1521 K((u64)memcg->kmem.max), memcg->kmem.failcnt); 1522 } 1523 1524 pr_info("Memory cgroup stats for "); 1525 pr_cont_cgroup_path(memcg->css.cgroup); 1526 pr_cont(":"); 1527 buf = memory_stat_format(memcg); 1528 if (!buf) 1529 return; 1530 pr_info("%s", buf); 1531 kfree(buf); 1532 } 1533 1534 /* 1535 * Return the memory (and swap, if configured) limit for a memcg. 1536 */ 1537 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1538 { 1539 unsigned long max = READ_ONCE(memcg->memory.max); 1540 1541 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 1542 if (mem_cgroup_swappiness(memcg)) 1543 max += min(READ_ONCE(memcg->swap.max), 1544 (unsigned long)total_swap_pages); 1545 } else { /* v1 */ 1546 if (mem_cgroup_swappiness(memcg)) { 1547 /* Calculate swap excess capacity from memsw limit */ 1548 unsigned long swap = READ_ONCE(memcg->memsw.max) - max; 1549 1550 max += min(swap, (unsigned long)total_swap_pages); 1551 } 1552 } 1553 return max; 1554 } 1555 1556 unsigned long mem_cgroup_size(struct mem_cgroup *memcg) 1557 { 1558 return page_counter_read(&memcg->memory); 1559 } 1560 1561 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1562 int order) 1563 { 1564 struct oom_control oc = { 1565 .zonelist = NULL, 1566 .nodemask = NULL, 1567 .memcg = memcg, 1568 .gfp_mask = gfp_mask, 1569 .order = order, 1570 }; 1571 bool ret = true; 1572 1573 if (mutex_lock_killable(&oom_lock)) 1574 return true; 1575 1576 if (mem_cgroup_margin(memcg) >= (1 << order)) 1577 goto unlock; 1578 1579 /* 1580 * A few threads which were not waiting at mutex_lock_killable() can 1581 * fail to bail out. Therefore, check again after holding oom_lock. 1582 */ 1583 ret = should_force_charge() || out_of_memory(&oc); 1584 1585 unlock: 1586 mutex_unlock(&oom_lock); 1587 return ret; 1588 } 1589 1590 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, 1591 pg_data_t *pgdat, 1592 gfp_t gfp_mask, 1593 unsigned long *total_scanned) 1594 { 1595 struct mem_cgroup *victim = NULL; 1596 int total = 0; 1597 int loop = 0; 1598 unsigned long excess; 1599 unsigned long nr_scanned; 1600 struct mem_cgroup_reclaim_cookie reclaim = { 1601 .pgdat = pgdat, 1602 }; 1603 1604 excess = soft_limit_excess(root_memcg); 1605 1606 while (1) { 1607 victim = mem_cgroup_iter(root_memcg, victim, &reclaim); 1608 if (!victim) { 1609 loop++; 1610 if (loop >= 2) { 1611 /* 1612 * If we have not been able to reclaim 1613 * anything, it might because there are 1614 * no reclaimable pages under this hierarchy 1615 */ 1616 if (!total) 1617 break; 1618 /* 1619 * We want to do more targeted reclaim. 1620 * excess >> 2 is not to excessive so as to 1621 * reclaim too much, nor too less that we keep 1622 * coming back to reclaim from this cgroup 1623 */ 1624 if (total >= (excess >> 2) || 1625 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) 1626 break; 1627 } 1628 continue; 1629 } 1630 total += mem_cgroup_shrink_node(victim, gfp_mask, false, 1631 pgdat, &nr_scanned); 1632 *total_scanned += nr_scanned; 1633 if (!soft_limit_excess(root_memcg)) 1634 break; 1635 } 1636 mem_cgroup_iter_break(root_memcg, victim); 1637 return total; 1638 } 1639 1640 #ifdef CONFIG_LOCKDEP 1641 static struct lockdep_map memcg_oom_lock_dep_map = { 1642 .name = "memcg_oom_lock", 1643 }; 1644 #endif 1645 1646 static DEFINE_SPINLOCK(memcg_oom_lock); 1647 1648 /* 1649 * Check OOM-Killer is already running under our hierarchy. 1650 * If someone is running, return false. 1651 */ 1652 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) 1653 { 1654 struct mem_cgroup *iter, *failed = NULL; 1655 1656 spin_lock(&memcg_oom_lock); 1657 1658 for_each_mem_cgroup_tree(iter, memcg) { 1659 if (iter->oom_lock) { 1660 /* 1661 * this subtree of our hierarchy is already locked 1662 * so we cannot give a lock. 1663 */ 1664 failed = iter; 1665 mem_cgroup_iter_break(memcg, iter); 1666 break; 1667 } else 1668 iter->oom_lock = true; 1669 } 1670 1671 if (failed) { 1672 /* 1673 * OK, we failed to lock the whole subtree so we have 1674 * to clean up what we set up to the failing subtree 1675 */ 1676 for_each_mem_cgroup_tree(iter, memcg) { 1677 if (iter == failed) { 1678 mem_cgroup_iter_break(memcg, iter); 1679 break; 1680 } 1681 iter->oom_lock = false; 1682 } 1683 } else 1684 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); 1685 1686 spin_unlock(&memcg_oom_lock); 1687 1688 return !failed; 1689 } 1690 1691 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 1692 { 1693 struct mem_cgroup *iter; 1694 1695 spin_lock(&memcg_oom_lock); 1696 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_); 1697 for_each_mem_cgroup_tree(iter, memcg) 1698 iter->oom_lock = false; 1699 spin_unlock(&memcg_oom_lock); 1700 } 1701 1702 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 1703 { 1704 struct mem_cgroup *iter; 1705 1706 spin_lock(&memcg_oom_lock); 1707 for_each_mem_cgroup_tree(iter, memcg) 1708 iter->under_oom++; 1709 spin_unlock(&memcg_oom_lock); 1710 } 1711 1712 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 1713 { 1714 struct mem_cgroup *iter; 1715 1716 /* 1717 * Be careful about under_oom underflows because a child memcg 1718 * could have been added after mem_cgroup_mark_under_oom. 1719 */ 1720 spin_lock(&memcg_oom_lock); 1721 for_each_mem_cgroup_tree(iter, memcg) 1722 if (iter->under_oom > 0) 1723 iter->under_oom--; 1724 spin_unlock(&memcg_oom_lock); 1725 } 1726 1727 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 1728 1729 struct oom_wait_info { 1730 struct mem_cgroup *memcg; 1731 wait_queue_entry_t wait; 1732 }; 1733 1734 static int memcg_oom_wake_function(wait_queue_entry_t *wait, 1735 unsigned mode, int sync, void *arg) 1736 { 1737 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; 1738 struct mem_cgroup *oom_wait_memcg; 1739 struct oom_wait_info *oom_wait_info; 1740 1741 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 1742 oom_wait_memcg = oom_wait_info->memcg; 1743 1744 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) && 1745 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg)) 1746 return 0; 1747 return autoremove_wake_function(wait, mode, sync, arg); 1748 } 1749 1750 static void memcg_oom_recover(struct mem_cgroup *memcg) 1751 { 1752 /* 1753 * For the following lockless ->under_oom test, the only required 1754 * guarantee is that it must see the state asserted by an OOM when 1755 * this function is called as a result of userland actions 1756 * triggered by the notification of the OOM. This is trivially 1757 * achieved by invoking mem_cgroup_mark_under_oom() before 1758 * triggering notification. 1759 */ 1760 if (memcg && memcg->under_oom) 1761 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 1762 } 1763 1764 enum oom_status { 1765 OOM_SUCCESS, 1766 OOM_FAILED, 1767 OOM_ASYNC, 1768 OOM_SKIPPED 1769 }; 1770 1771 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 1772 { 1773 enum oom_status ret; 1774 bool locked; 1775 1776 if (order > PAGE_ALLOC_COSTLY_ORDER) 1777 return OOM_SKIPPED; 1778 1779 memcg_memory_event(memcg, MEMCG_OOM); 1780 1781 /* 1782 * We are in the middle of the charge context here, so we 1783 * don't want to block when potentially sitting on a callstack 1784 * that holds all kinds of filesystem and mm locks. 1785 * 1786 * cgroup1 allows disabling the OOM killer and waiting for outside 1787 * handling until the charge can succeed; remember the context and put 1788 * the task to sleep at the end of the page fault when all locks are 1789 * released. 1790 * 1791 * On the other hand, in-kernel OOM killer allows for an async victim 1792 * memory reclaim (oom_reaper) and that means that we are not solely 1793 * relying on the oom victim to make a forward progress and we can 1794 * invoke the oom killer here. 1795 * 1796 * Please note that mem_cgroup_out_of_memory might fail to find a 1797 * victim and then we have to bail out from the charge path. 1798 */ 1799 if (memcg->oom_kill_disable) { 1800 if (!current->in_user_fault) 1801 return OOM_SKIPPED; 1802 css_get(&memcg->css); 1803 current->memcg_in_oom = memcg; 1804 current->memcg_oom_gfp_mask = mask; 1805 current->memcg_oom_order = order; 1806 1807 return OOM_ASYNC; 1808 } 1809 1810 mem_cgroup_mark_under_oom(memcg); 1811 1812 locked = mem_cgroup_oom_trylock(memcg); 1813 1814 if (locked) 1815 mem_cgroup_oom_notify(memcg); 1816 1817 mem_cgroup_unmark_under_oom(memcg); 1818 if (mem_cgroup_out_of_memory(memcg, mask, order)) 1819 ret = OOM_SUCCESS; 1820 else 1821 ret = OOM_FAILED; 1822 1823 if (locked) 1824 mem_cgroup_oom_unlock(memcg); 1825 1826 return ret; 1827 } 1828 1829 /** 1830 * mem_cgroup_oom_synchronize - complete memcg OOM handling 1831 * @handle: actually kill/wait or just clean up the OOM state 1832 * 1833 * This has to be called at the end of a page fault if the memcg OOM 1834 * handler was enabled. 1835 * 1836 * Memcg supports userspace OOM handling where failed allocations must 1837 * sleep on a waitqueue until the userspace task resolves the 1838 * situation. Sleeping directly in the charge context with all kinds 1839 * of locks held is not a good idea, instead we remember an OOM state 1840 * in the task and mem_cgroup_oom_synchronize() has to be called at 1841 * the end of the page fault to complete the OOM handling. 1842 * 1843 * Returns %true if an ongoing memcg OOM situation was detected and 1844 * completed, %false otherwise. 1845 */ 1846 bool mem_cgroup_oom_synchronize(bool handle) 1847 { 1848 struct mem_cgroup *memcg = current->memcg_in_oom; 1849 struct oom_wait_info owait; 1850 bool locked; 1851 1852 /* OOM is global, do not handle */ 1853 if (!memcg) 1854 return false; 1855 1856 if (!handle) 1857 goto cleanup; 1858 1859 owait.memcg = memcg; 1860 owait.wait.flags = 0; 1861 owait.wait.func = memcg_oom_wake_function; 1862 owait.wait.private = current; 1863 INIT_LIST_HEAD(&owait.wait.entry); 1864 1865 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 1866 mem_cgroup_mark_under_oom(memcg); 1867 1868 locked = mem_cgroup_oom_trylock(memcg); 1869 1870 if (locked) 1871 mem_cgroup_oom_notify(memcg); 1872 1873 if (locked && !memcg->oom_kill_disable) { 1874 mem_cgroup_unmark_under_oom(memcg); 1875 finish_wait(&memcg_oom_waitq, &owait.wait); 1876 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask, 1877 current->memcg_oom_order); 1878 } else { 1879 schedule(); 1880 mem_cgroup_unmark_under_oom(memcg); 1881 finish_wait(&memcg_oom_waitq, &owait.wait); 1882 } 1883 1884 if (locked) { 1885 mem_cgroup_oom_unlock(memcg); 1886 /* 1887 * There is no guarantee that an OOM-lock contender 1888 * sees the wakeups triggered by the OOM kill 1889 * uncharges. Wake any sleepers explicitly. 1890 */ 1891 memcg_oom_recover(memcg); 1892 } 1893 cleanup: 1894 current->memcg_in_oom = NULL; 1895 css_put(&memcg->css); 1896 return true; 1897 } 1898 1899 /** 1900 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM 1901 * @victim: task to be killed by the OOM killer 1902 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM 1903 * 1904 * Returns a pointer to a memory cgroup, which has to be cleaned up 1905 * by killing all belonging OOM-killable tasks. 1906 * 1907 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg. 1908 */ 1909 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 1910 struct mem_cgroup *oom_domain) 1911 { 1912 struct mem_cgroup *oom_group = NULL; 1913 struct mem_cgroup *memcg; 1914 1915 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1916 return NULL; 1917 1918 if (!oom_domain) 1919 oom_domain = root_mem_cgroup; 1920 1921 rcu_read_lock(); 1922 1923 memcg = mem_cgroup_from_task(victim); 1924 if (memcg == root_mem_cgroup) 1925 goto out; 1926 1927 /* 1928 * If the victim task has been asynchronously moved to a different 1929 * memory cgroup, we might end up killing tasks outside oom_domain. 1930 * In this case it's better to ignore memory.group.oom. 1931 */ 1932 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain))) 1933 goto out; 1934 1935 /* 1936 * Traverse the memory cgroup hierarchy from the victim task's 1937 * cgroup up to the OOMing cgroup (or root) to find the 1938 * highest-level memory cgroup with oom.group set. 1939 */ 1940 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 1941 if (memcg->oom_group) 1942 oom_group = memcg; 1943 1944 if (memcg == oom_domain) 1945 break; 1946 } 1947 1948 if (oom_group) 1949 css_get(&oom_group->css); 1950 out: 1951 rcu_read_unlock(); 1952 1953 return oom_group; 1954 } 1955 1956 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 1957 { 1958 pr_info("Tasks in "); 1959 pr_cont_cgroup_path(memcg->css.cgroup); 1960 pr_cont(" are going to be killed due to memory.oom.group set\n"); 1961 } 1962 1963 /** 1964 * lock_page_memcg - lock a page and memcg binding 1965 * @page: the page 1966 * 1967 * This function protects unlocked LRU pages from being moved to 1968 * another cgroup. 1969 * 1970 * It ensures lifetime of the locked memcg. Caller is responsible 1971 * for the lifetime of the page. 1972 */ 1973 void lock_page_memcg(struct page *page) 1974 { 1975 struct page *head = compound_head(page); /* rmap on tail pages */ 1976 struct mem_cgroup *memcg; 1977 unsigned long flags; 1978 1979 /* 1980 * The RCU lock is held throughout the transaction. The fast 1981 * path can get away without acquiring the memcg->move_lock 1982 * because page moving starts with an RCU grace period. 1983 */ 1984 rcu_read_lock(); 1985 1986 if (mem_cgroup_disabled()) 1987 return; 1988 again: 1989 memcg = page_memcg(head); 1990 if (unlikely(!memcg)) 1991 return; 1992 1993 #ifdef CONFIG_PROVE_LOCKING 1994 local_irq_save(flags); 1995 might_lock(&memcg->move_lock); 1996 local_irq_restore(flags); 1997 #endif 1998 1999 if (atomic_read(&memcg->moving_account) <= 0) 2000 return; 2001 2002 spin_lock_irqsave(&memcg->move_lock, flags); 2003 if (memcg != page_memcg(head)) { 2004 spin_unlock_irqrestore(&memcg->move_lock, flags); 2005 goto again; 2006 } 2007 2008 /* 2009 * When charge migration first begins, we can have multiple 2010 * critical sections holding the fast-path RCU lock and one 2011 * holding the slowpath move_lock. Track the task who has the 2012 * move_lock for unlock_page_memcg(). 2013 */ 2014 memcg->move_lock_task = current; 2015 memcg->move_lock_flags = flags; 2016 } 2017 EXPORT_SYMBOL(lock_page_memcg); 2018 2019 static void __unlock_page_memcg(struct mem_cgroup *memcg) 2020 { 2021 if (memcg && memcg->move_lock_task == current) { 2022 unsigned long flags = memcg->move_lock_flags; 2023 2024 memcg->move_lock_task = NULL; 2025 memcg->move_lock_flags = 0; 2026 2027 spin_unlock_irqrestore(&memcg->move_lock, flags); 2028 } 2029 2030 rcu_read_unlock(); 2031 } 2032 2033 /** 2034 * unlock_page_memcg - unlock a page and memcg binding 2035 * @page: the page 2036 */ 2037 void unlock_page_memcg(struct page *page) 2038 { 2039 struct page *head = compound_head(page); 2040 2041 __unlock_page_memcg(page_memcg(head)); 2042 } 2043 EXPORT_SYMBOL(unlock_page_memcg); 2044 2045 struct obj_stock { 2046 #ifdef CONFIG_MEMCG_KMEM 2047 struct obj_cgroup *cached_objcg; 2048 struct pglist_data *cached_pgdat; 2049 unsigned int nr_bytes; 2050 int nr_slab_reclaimable_b; 2051 int nr_slab_unreclaimable_b; 2052 #else 2053 int dummy[0]; 2054 #endif 2055 }; 2056 2057 struct memcg_stock_pcp { 2058 struct mem_cgroup *cached; /* this never be root cgroup */ 2059 unsigned int nr_pages; 2060 struct obj_stock task_obj; 2061 struct obj_stock irq_obj; 2062 2063 struct work_struct work; 2064 unsigned long flags; 2065 #define FLUSHING_CACHED_CHARGE 0 2066 }; 2067 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); 2068 static DEFINE_MUTEX(percpu_charge_mutex); 2069 2070 #ifdef CONFIG_MEMCG_KMEM 2071 static void drain_obj_stock(struct obj_stock *stock); 2072 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 2073 struct mem_cgroup *root_memcg); 2074 2075 #else 2076 static inline void drain_obj_stock(struct obj_stock *stock) 2077 { 2078 } 2079 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 2080 struct mem_cgroup *root_memcg) 2081 { 2082 return false; 2083 } 2084 #endif 2085 2086 /* 2087 * Most kmem_cache_alloc() calls are from user context. The irq disable/enable 2088 * sequence used in this case to access content from object stock is slow. 2089 * To optimize for user context access, there are now two object stocks for 2090 * task context and interrupt context access respectively. 2091 * 2092 * The task context object stock can be accessed by disabling preemption only 2093 * which is cheap in non-preempt kernel. The interrupt context object stock 2094 * can only be accessed after disabling interrupt. User context code can 2095 * access interrupt object stock, but not vice versa. 2096 */ 2097 static inline struct obj_stock *get_obj_stock(unsigned long *pflags) 2098 { 2099 struct memcg_stock_pcp *stock; 2100 2101 if (likely(in_task())) { 2102 *pflags = 0UL; 2103 preempt_disable(); 2104 stock = this_cpu_ptr(&memcg_stock); 2105 return &stock->task_obj; 2106 } 2107 2108 local_irq_save(*pflags); 2109 stock = this_cpu_ptr(&memcg_stock); 2110 return &stock->irq_obj; 2111 } 2112 2113 static inline void put_obj_stock(unsigned long flags) 2114 { 2115 if (likely(in_task())) 2116 preempt_enable(); 2117 else 2118 local_irq_restore(flags); 2119 } 2120 2121 /** 2122 * consume_stock: Try to consume stocked charge on this cpu. 2123 * @memcg: memcg to consume from. 2124 * @nr_pages: how many pages to charge. 2125 * 2126 * The charges will only happen if @memcg matches the current cpu's memcg 2127 * stock, and at least @nr_pages are available in that stock. Failure to 2128 * service an allocation will refill the stock. 2129 * 2130 * returns true if successful, false otherwise. 2131 */ 2132 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2133 { 2134 struct memcg_stock_pcp *stock; 2135 unsigned long flags; 2136 bool ret = false; 2137 2138 if (nr_pages > MEMCG_CHARGE_BATCH) 2139 return ret; 2140 2141 local_irq_save(flags); 2142 2143 stock = this_cpu_ptr(&memcg_stock); 2144 if (memcg == stock->cached && stock->nr_pages >= nr_pages) { 2145 stock->nr_pages -= nr_pages; 2146 ret = true; 2147 } 2148 2149 local_irq_restore(flags); 2150 2151 return ret; 2152 } 2153 2154 /* 2155 * Returns stocks cached in percpu and reset cached information. 2156 */ 2157 static void drain_stock(struct memcg_stock_pcp *stock) 2158 { 2159 struct mem_cgroup *old = stock->cached; 2160 2161 if (!old) 2162 return; 2163 2164 if (stock->nr_pages) { 2165 page_counter_uncharge(&old->memory, stock->nr_pages); 2166 if (do_memsw_account()) 2167 page_counter_uncharge(&old->memsw, stock->nr_pages); 2168 stock->nr_pages = 0; 2169 } 2170 2171 css_put(&old->css); 2172 stock->cached = NULL; 2173 } 2174 2175 static void drain_local_stock(struct work_struct *dummy) 2176 { 2177 struct memcg_stock_pcp *stock; 2178 unsigned long flags; 2179 2180 /* 2181 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs. 2182 * drain_stock races is that we always operate on local CPU stock 2183 * here with IRQ disabled 2184 */ 2185 local_irq_save(flags); 2186 2187 stock = this_cpu_ptr(&memcg_stock); 2188 drain_obj_stock(&stock->irq_obj); 2189 if (in_task()) 2190 drain_obj_stock(&stock->task_obj); 2191 drain_stock(stock); 2192 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 2193 2194 local_irq_restore(flags); 2195 } 2196 2197 /* 2198 * Cache charges(val) to local per_cpu area. 2199 * This will be consumed by consume_stock() function, later. 2200 */ 2201 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2202 { 2203 struct memcg_stock_pcp *stock; 2204 unsigned long flags; 2205 2206 local_irq_save(flags); 2207 2208 stock = this_cpu_ptr(&memcg_stock); 2209 if (stock->cached != memcg) { /* reset if necessary */ 2210 drain_stock(stock); 2211 css_get(&memcg->css); 2212 stock->cached = memcg; 2213 } 2214 stock->nr_pages += nr_pages; 2215 2216 if (stock->nr_pages > MEMCG_CHARGE_BATCH) 2217 drain_stock(stock); 2218 2219 local_irq_restore(flags); 2220 } 2221 2222 /* 2223 * Drains all per-CPU charge caches for given root_memcg resp. subtree 2224 * of the hierarchy under it. 2225 */ 2226 static void drain_all_stock(struct mem_cgroup *root_memcg) 2227 { 2228 int cpu, curcpu; 2229 2230 /* If someone's already draining, avoid adding running more workers. */ 2231 if (!mutex_trylock(&percpu_charge_mutex)) 2232 return; 2233 /* 2234 * Notify other cpus that system-wide "drain" is running 2235 * We do not care about races with the cpu hotplug because cpu down 2236 * as well as workers from this path always operate on the local 2237 * per-cpu data. CPU up doesn't touch memcg_stock at all. 2238 */ 2239 curcpu = get_cpu(); 2240 for_each_online_cpu(cpu) { 2241 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2242 struct mem_cgroup *memcg; 2243 bool flush = false; 2244 2245 rcu_read_lock(); 2246 memcg = stock->cached; 2247 if (memcg && stock->nr_pages && 2248 mem_cgroup_is_descendant(memcg, root_memcg)) 2249 flush = true; 2250 else if (obj_stock_flush_required(stock, root_memcg)) 2251 flush = true; 2252 rcu_read_unlock(); 2253 2254 if (flush && 2255 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 2256 if (cpu == curcpu) 2257 drain_local_stock(&stock->work); 2258 else 2259 schedule_work_on(cpu, &stock->work); 2260 } 2261 } 2262 put_cpu(); 2263 mutex_unlock(&percpu_charge_mutex); 2264 } 2265 2266 static int memcg_hotplug_cpu_dead(unsigned int cpu) 2267 { 2268 struct memcg_stock_pcp *stock; 2269 2270 stock = &per_cpu(memcg_stock, cpu); 2271 drain_stock(stock); 2272 2273 return 0; 2274 } 2275 2276 static unsigned long reclaim_high(struct mem_cgroup *memcg, 2277 unsigned int nr_pages, 2278 gfp_t gfp_mask) 2279 { 2280 unsigned long nr_reclaimed = 0; 2281 2282 do { 2283 unsigned long pflags; 2284 2285 if (page_counter_read(&memcg->memory) <= 2286 READ_ONCE(memcg->memory.high)) 2287 continue; 2288 2289 memcg_memory_event(memcg, MEMCG_HIGH); 2290 2291 psi_memstall_enter(&pflags); 2292 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages, 2293 gfp_mask, true); 2294 psi_memstall_leave(&pflags); 2295 } while ((memcg = parent_mem_cgroup(memcg)) && 2296 !mem_cgroup_is_root(memcg)); 2297 2298 return nr_reclaimed; 2299 } 2300 2301 static void high_work_func(struct work_struct *work) 2302 { 2303 struct mem_cgroup *memcg; 2304 2305 memcg = container_of(work, struct mem_cgroup, high_work); 2306 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL); 2307 } 2308 2309 /* 2310 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is 2311 * enough to still cause a significant slowdown in most cases, while still 2312 * allowing diagnostics and tracing to proceed without becoming stuck. 2313 */ 2314 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ) 2315 2316 /* 2317 * When calculating the delay, we use these either side of the exponentiation to 2318 * maintain precision and scale to a reasonable number of jiffies (see the table 2319 * below. 2320 * 2321 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the 2322 * overage ratio to a delay. 2323 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the 2324 * proposed penalty in order to reduce to a reasonable number of jiffies, and 2325 * to produce a reasonable delay curve. 2326 * 2327 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a 2328 * reasonable delay curve compared to precision-adjusted overage, not 2329 * penalising heavily at first, but still making sure that growth beyond the 2330 * limit penalises misbehaviour cgroups by slowing them down exponentially. For 2331 * example, with a high of 100 megabytes: 2332 * 2333 * +-------+------------------------+ 2334 * | usage | time to allocate in ms | 2335 * +-------+------------------------+ 2336 * | 100M | 0 | 2337 * | 101M | 6 | 2338 * | 102M | 25 | 2339 * | 103M | 57 | 2340 * | 104M | 102 | 2341 * | 105M | 159 | 2342 * | 106M | 230 | 2343 * | 107M | 313 | 2344 * | 108M | 409 | 2345 * | 109M | 518 | 2346 * | 110M | 639 | 2347 * | 111M | 774 | 2348 * | 112M | 921 | 2349 * | 113M | 1081 | 2350 * | 114M | 1254 | 2351 * | 115M | 1439 | 2352 * | 116M | 1638 | 2353 * | 117M | 1849 | 2354 * | 118M | 2000 | 2355 * | 119M | 2000 | 2356 * | 120M | 2000 | 2357 * +-------+------------------------+ 2358 */ 2359 #define MEMCG_DELAY_PRECISION_SHIFT 20 2360 #define MEMCG_DELAY_SCALING_SHIFT 14 2361 2362 static u64 calculate_overage(unsigned long usage, unsigned long high) 2363 { 2364 u64 overage; 2365 2366 if (usage <= high) 2367 return 0; 2368 2369 /* 2370 * Prevent division by 0 in overage calculation by acting as if 2371 * it was a threshold of 1 page 2372 */ 2373 high = max(high, 1UL); 2374 2375 overage = usage - high; 2376 overage <<= MEMCG_DELAY_PRECISION_SHIFT; 2377 return div64_u64(overage, high); 2378 } 2379 2380 static u64 mem_find_max_overage(struct mem_cgroup *memcg) 2381 { 2382 u64 overage, max_overage = 0; 2383 2384 do { 2385 overage = calculate_overage(page_counter_read(&memcg->memory), 2386 READ_ONCE(memcg->memory.high)); 2387 max_overage = max(overage, max_overage); 2388 } while ((memcg = parent_mem_cgroup(memcg)) && 2389 !mem_cgroup_is_root(memcg)); 2390 2391 return max_overage; 2392 } 2393 2394 static u64 swap_find_max_overage(struct mem_cgroup *memcg) 2395 { 2396 u64 overage, max_overage = 0; 2397 2398 do { 2399 overage = calculate_overage(page_counter_read(&memcg->swap), 2400 READ_ONCE(memcg->swap.high)); 2401 if (overage) 2402 memcg_memory_event(memcg, MEMCG_SWAP_HIGH); 2403 max_overage = max(overage, max_overage); 2404 } while ((memcg = parent_mem_cgroup(memcg)) && 2405 !mem_cgroup_is_root(memcg)); 2406 2407 return max_overage; 2408 } 2409 2410 /* 2411 * Get the number of jiffies that we should penalise a mischievous cgroup which 2412 * is exceeding its memory.high by checking both it and its ancestors. 2413 */ 2414 static unsigned long calculate_high_delay(struct mem_cgroup *memcg, 2415 unsigned int nr_pages, 2416 u64 max_overage) 2417 { 2418 unsigned long penalty_jiffies; 2419 2420 if (!max_overage) 2421 return 0; 2422 2423 /* 2424 * We use overage compared to memory.high to calculate the number of 2425 * jiffies to sleep (penalty_jiffies). Ideally this value should be 2426 * fairly lenient on small overages, and increasingly harsh when the 2427 * memcg in question makes it clear that it has no intention of stopping 2428 * its crazy behaviour, so we exponentially increase the delay based on 2429 * overage amount. 2430 */ 2431 penalty_jiffies = max_overage * max_overage * HZ; 2432 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT; 2433 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT; 2434 2435 /* 2436 * Factor in the task's own contribution to the overage, such that four 2437 * N-sized allocations are throttled approximately the same as one 2438 * 4N-sized allocation. 2439 * 2440 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or 2441 * larger the current charge patch is than that. 2442 */ 2443 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH; 2444 } 2445 2446 /* 2447 * Scheduled by try_charge() to be executed from the userland return path 2448 * and reclaims memory over the high limit. 2449 */ 2450 void mem_cgroup_handle_over_high(void) 2451 { 2452 unsigned long penalty_jiffies; 2453 unsigned long pflags; 2454 unsigned long nr_reclaimed; 2455 unsigned int nr_pages = current->memcg_nr_pages_over_high; 2456 int nr_retries = MAX_RECLAIM_RETRIES; 2457 struct mem_cgroup *memcg; 2458 bool in_retry = false; 2459 2460 if (likely(!nr_pages)) 2461 return; 2462 2463 memcg = get_mem_cgroup_from_mm(current->mm); 2464 current->memcg_nr_pages_over_high = 0; 2465 2466 retry_reclaim: 2467 /* 2468 * The allocating task should reclaim at least the batch size, but for 2469 * subsequent retries we only want to do what's necessary to prevent oom 2470 * or breaching resource isolation. 2471 * 2472 * This is distinct from memory.max or page allocator behaviour because 2473 * memory.high is currently batched, whereas memory.max and the page 2474 * allocator run every time an allocation is made. 2475 */ 2476 nr_reclaimed = reclaim_high(memcg, 2477 in_retry ? SWAP_CLUSTER_MAX : nr_pages, 2478 GFP_KERNEL); 2479 2480 /* 2481 * memory.high is breached and reclaim is unable to keep up. Throttle 2482 * allocators proactively to slow down excessive growth. 2483 */ 2484 penalty_jiffies = calculate_high_delay(memcg, nr_pages, 2485 mem_find_max_overage(memcg)); 2486 2487 penalty_jiffies += calculate_high_delay(memcg, nr_pages, 2488 swap_find_max_overage(memcg)); 2489 2490 /* 2491 * Clamp the max delay per usermode return so as to still keep the 2492 * application moving forwards and also permit diagnostics, albeit 2493 * extremely slowly. 2494 */ 2495 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES); 2496 2497 /* 2498 * Don't sleep if the amount of jiffies this memcg owes us is so low 2499 * that it's not even worth doing, in an attempt to be nice to those who 2500 * go only a small amount over their memory.high value and maybe haven't 2501 * been aggressively reclaimed enough yet. 2502 */ 2503 if (penalty_jiffies <= HZ / 100) 2504 goto out; 2505 2506 /* 2507 * If reclaim is making forward progress but we're still over 2508 * memory.high, we want to encourage that rather than doing allocator 2509 * throttling. 2510 */ 2511 if (nr_reclaimed || nr_retries--) { 2512 in_retry = true; 2513 goto retry_reclaim; 2514 } 2515 2516 /* 2517 * If we exit early, we're guaranteed to die (since 2518 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't 2519 * need to account for any ill-begotten jiffies to pay them off later. 2520 */ 2521 psi_memstall_enter(&pflags); 2522 schedule_timeout_killable(penalty_jiffies); 2523 psi_memstall_leave(&pflags); 2524 2525 out: 2526 css_put(&memcg->css); 2527 } 2528 2529 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask, 2530 unsigned int nr_pages) 2531 { 2532 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages); 2533 int nr_retries = MAX_RECLAIM_RETRIES; 2534 struct mem_cgroup *mem_over_limit; 2535 struct page_counter *counter; 2536 enum oom_status oom_status; 2537 unsigned long nr_reclaimed; 2538 bool may_swap = true; 2539 bool drained = false; 2540 unsigned long pflags; 2541 2542 retry: 2543 if (consume_stock(memcg, nr_pages)) 2544 return 0; 2545 2546 if (!do_memsw_account() || 2547 page_counter_try_charge(&memcg->memsw, batch, &counter)) { 2548 if (page_counter_try_charge(&memcg->memory, batch, &counter)) 2549 goto done_restock; 2550 if (do_memsw_account()) 2551 page_counter_uncharge(&memcg->memsw, batch); 2552 mem_over_limit = mem_cgroup_from_counter(counter, memory); 2553 } else { 2554 mem_over_limit = mem_cgroup_from_counter(counter, memsw); 2555 may_swap = false; 2556 } 2557 2558 if (batch > nr_pages) { 2559 batch = nr_pages; 2560 goto retry; 2561 } 2562 2563 /* 2564 * Memcg doesn't have a dedicated reserve for atomic 2565 * allocations. But like the global atomic pool, we need to 2566 * put the burden of reclaim on regular allocation requests 2567 * and let these go through as privileged allocations. 2568 */ 2569 if (gfp_mask & __GFP_ATOMIC) 2570 goto force; 2571 2572 /* 2573 * Unlike in global OOM situations, memcg is not in a physical 2574 * memory shortage. Allow dying and OOM-killed tasks to 2575 * bypass the last charges so that they can exit quickly and 2576 * free their memory. 2577 */ 2578 if (unlikely(should_force_charge())) 2579 goto force; 2580 2581 /* 2582 * Prevent unbounded recursion when reclaim operations need to 2583 * allocate memory. This might exceed the limits temporarily, 2584 * but we prefer facilitating memory reclaim and getting back 2585 * under the limit over triggering OOM kills in these cases. 2586 */ 2587 if (unlikely(current->flags & PF_MEMALLOC)) 2588 goto force; 2589 2590 if (unlikely(task_in_memcg_oom(current))) 2591 goto nomem; 2592 2593 if (!gfpflags_allow_blocking(gfp_mask)) 2594 goto nomem; 2595 2596 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2597 2598 psi_memstall_enter(&pflags); 2599 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, 2600 gfp_mask, may_swap); 2601 psi_memstall_leave(&pflags); 2602 2603 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2604 goto retry; 2605 2606 if (!drained) { 2607 drain_all_stock(mem_over_limit); 2608 drained = true; 2609 goto retry; 2610 } 2611 2612 if (gfp_mask & __GFP_NORETRY) 2613 goto nomem; 2614 /* 2615 * Even though the limit is exceeded at this point, reclaim 2616 * may have been able to free some pages. Retry the charge 2617 * before killing the task. 2618 * 2619 * Only for regular pages, though: huge pages are rather 2620 * unlikely to succeed so close to the limit, and we fall back 2621 * to regular pages anyway in case of failure. 2622 */ 2623 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) 2624 goto retry; 2625 /* 2626 * At task move, charge accounts can be doubly counted. So, it's 2627 * better to wait until the end of task_move if something is going on. 2628 */ 2629 if (mem_cgroup_wait_acct_move(mem_over_limit)) 2630 goto retry; 2631 2632 if (nr_retries--) 2633 goto retry; 2634 2635 if (gfp_mask & __GFP_RETRY_MAYFAIL) 2636 goto nomem; 2637 2638 if (fatal_signal_pending(current)) 2639 goto force; 2640 2641 /* 2642 * keep retrying as long as the memcg oom killer is able to make 2643 * a forward progress or bypass the charge if the oom killer 2644 * couldn't make any progress. 2645 */ 2646 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask, 2647 get_order(nr_pages * PAGE_SIZE)); 2648 switch (oom_status) { 2649 case OOM_SUCCESS: 2650 nr_retries = MAX_RECLAIM_RETRIES; 2651 goto retry; 2652 case OOM_FAILED: 2653 goto force; 2654 default: 2655 goto nomem; 2656 } 2657 nomem: 2658 if (!(gfp_mask & __GFP_NOFAIL)) 2659 return -ENOMEM; 2660 force: 2661 /* 2662 * The allocation either can't fail or will lead to more memory 2663 * being freed very soon. Allow memory usage go over the limit 2664 * temporarily by force charging it. 2665 */ 2666 page_counter_charge(&memcg->memory, nr_pages); 2667 if (do_memsw_account()) 2668 page_counter_charge(&memcg->memsw, nr_pages); 2669 2670 return 0; 2671 2672 done_restock: 2673 if (batch > nr_pages) 2674 refill_stock(memcg, batch - nr_pages); 2675 2676 /* 2677 * If the hierarchy is above the normal consumption range, schedule 2678 * reclaim on returning to userland. We can perform reclaim here 2679 * if __GFP_RECLAIM but let's always punt for simplicity and so that 2680 * GFP_KERNEL can consistently be used during reclaim. @memcg is 2681 * not recorded as it most likely matches current's and won't 2682 * change in the meantime. As high limit is checked again before 2683 * reclaim, the cost of mismatch is negligible. 2684 */ 2685 do { 2686 bool mem_high, swap_high; 2687 2688 mem_high = page_counter_read(&memcg->memory) > 2689 READ_ONCE(memcg->memory.high); 2690 swap_high = page_counter_read(&memcg->swap) > 2691 READ_ONCE(memcg->swap.high); 2692 2693 /* Don't bother a random interrupted task */ 2694 if (in_interrupt()) { 2695 if (mem_high) { 2696 schedule_work(&memcg->high_work); 2697 break; 2698 } 2699 continue; 2700 } 2701 2702 if (mem_high || swap_high) { 2703 /* 2704 * The allocating tasks in this cgroup will need to do 2705 * reclaim or be throttled to prevent further growth 2706 * of the memory or swap footprints. 2707 * 2708 * Target some best-effort fairness between the tasks, 2709 * and distribute reclaim work and delay penalties 2710 * based on how much each task is actually allocating. 2711 */ 2712 current->memcg_nr_pages_over_high += batch; 2713 set_notify_resume(current); 2714 break; 2715 } 2716 } while ((memcg = parent_mem_cgroup(memcg))); 2717 2718 return 0; 2719 } 2720 2721 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 2722 unsigned int nr_pages) 2723 { 2724 if (mem_cgroup_is_root(memcg)) 2725 return 0; 2726 2727 return try_charge_memcg(memcg, gfp_mask, nr_pages); 2728 } 2729 2730 #if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU) 2731 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages) 2732 { 2733 if (mem_cgroup_is_root(memcg)) 2734 return; 2735 2736 page_counter_uncharge(&memcg->memory, nr_pages); 2737 if (do_memsw_account()) 2738 page_counter_uncharge(&memcg->memsw, nr_pages); 2739 } 2740 #endif 2741 2742 static void commit_charge(struct page *page, struct mem_cgroup *memcg) 2743 { 2744 VM_BUG_ON_PAGE(page_memcg(page), page); 2745 /* 2746 * Any of the following ensures page's memcg stability: 2747 * 2748 * - the page lock 2749 * - LRU isolation 2750 * - lock_page_memcg() 2751 * - exclusive reference 2752 */ 2753 page->memcg_data = (unsigned long)memcg; 2754 } 2755 2756 static struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg) 2757 { 2758 struct mem_cgroup *memcg; 2759 2760 rcu_read_lock(); 2761 retry: 2762 memcg = obj_cgroup_memcg(objcg); 2763 if (unlikely(!css_tryget(&memcg->css))) 2764 goto retry; 2765 rcu_read_unlock(); 2766 2767 return memcg; 2768 } 2769 2770 #ifdef CONFIG_MEMCG_KMEM 2771 /* 2772 * The allocated objcg pointers array is not accounted directly. 2773 * Moreover, it should not come from DMA buffer and is not readily 2774 * reclaimable. So those GFP bits should be masked off. 2775 */ 2776 #define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT) 2777 2778 int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s, 2779 gfp_t gfp, bool new_page) 2780 { 2781 unsigned int objects = objs_per_slab_page(s, page); 2782 unsigned long memcg_data; 2783 void *vec; 2784 2785 gfp &= ~OBJCGS_CLEAR_MASK; 2786 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp, 2787 page_to_nid(page)); 2788 if (!vec) 2789 return -ENOMEM; 2790 2791 memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS; 2792 if (new_page) { 2793 /* 2794 * If the slab page is brand new and nobody can yet access 2795 * it's memcg_data, no synchronization is required and 2796 * memcg_data can be simply assigned. 2797 */ 2798 page->memcg_data = memcg_data; 2799 } else if (cmpxchg(&page->memcg_data, 0, memcg_data)) { 2800 /* 2801 * If the slab page is already in use, somebody can allocate 2802 * and assign obj_cgroups in parallel. In this case the existing 2803 * objcg vector should be reused. 2804 */ 2805 kfree(vec); 2806 return 0; 2807 } 2808 2809 kmemleak_not_leak(vec); 2810 return 0; 2811 } 2812 2813 /* 2814 * Returns a pointer to the memory cgroup to which the kernel object is charged. 2815 * 2816 * A passed kernel object can be a slab object or a generic kernel page, so 2817 * different mechanisms for getting the memory cgroup pointer should be used. 2818 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller 2819 * can not know for sure how the kernel object is implemented. 2820 * mem_cgroup_from_obj() can be safely used in such cases. 2821 * 2822 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(), 2823 * cgroup_mutex, etc. 2824 */ 2825 struct mem_cgroup *mem_cgroup_from_obj(void *p) 2826 { 2827 struct page *page; 2828 2829 if (mem_cgroup_disabled()) 2830 return NULL; 2831 2832 page = virt_to_head_page(p); 2833 2834 /* 2835 * Slab objects are accounted individually, not per-page. 2836 * Memcg membership data for each individual object is saved in 2837 * the page->obj_cgroups. 2838 */ 2839 if (page_objcgs_check(page)) { 2840 struct obj_cgroup *objcg; 2841 unsigned int off; 2842 2843 off = obj_to_index(page->slab_cache, page, p); 2844 objcg = page_objcgs(page)[off]; 2845 if (objcg) 2846 return obj_cgroup_memcg(objcg); 2847 2848 return NULL; 2849 } 2850 2851 /* 2852 * page_memcg_check() is used here, because page_has_obj_cgroups() 2853 * check above could fail because the object cgroups vector wasn't set 2854 * at that moment, but it can be set concurrently. 2855 * page_memcg_check(page) will guarantee that a proper memory 2856 * cgroup pointer or NULL will be returned. 2857 */ 2858 return page_memcg_check(page); 2859 } 2860 2861 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void) 2862 { 2863 struct obj_cgroup *objcg = NULL; 2864 struct mem_cgroup *memcg; 2865 2866 if (memcg_kmem_bypass()) 2867 return NULL; 2868 2869 rcu_read_lock(); 2870 if (unlikely(active_memcg())) 2871 memcg = active_memcg(); 2872 else 2873 memcg = mem_cgroup_from_task(current); 2874 2875 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) { 2876 objcg = rcu_dereference(memcg->objcg); 2877 if (objcg && obj_cgroup_tryget(objcg)) 2878 break; 2879 objcg = NULL; 2880 } 2881 rcu_read_unlock(); 2882 2883 return objcg; 2884 } 2885 2886 static int memcg_alloc_cache_id(void) 2887 { 2888 int id, size; 2889 int err; 2890 2891 id = ida_simple_get(&memcg_cache_ida, 2892 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL); 2893 if (id < 0) 2894 return id; 2895 2896 if (id < memcg_nr_cache_ids) 2897 return id; 2898 2899 /* 2900 * There's no space for the new id in memcg_caches arrays, 2901 * so we have to grow them. 2902 */ 2903 down_write(&memcg_cache_ids_sem); 2904 2905 size = 2 * (id + 1); 2906 if (size < MEMCG_CACHES_MIN_SIZE) 2907 size = MEMCG_CACHES_MIN_SIZE; 2908 else if (size > MEMCG_CACHES_MAX_SIZE) 2909 size = MEMCG_CACHES_MAX_SIZE; 2910 2911 err = memcg_update_all_list_lrus(size); 2912 if (!err) 2913 memcg_nr_cache_ids = size; 2914 2915 up_write(&memcg_cache_ids_sem); 2916 2917 if (err) { 2918 ida_simple_remove(&memcg_cache_ida, id); 2919 return err; 2920 } 2921 return id; 2922 } 2923 2924 static void memcg_free_cache_id(int id) 2925 { 2926 ida_simple_remove(&memcg_cache_ida, id); 2927 } 2928 2929 /* 2930 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg 2931 * @objcg: object cgroup to uncharge 2932 * @nr_pages: number of pages to uncharge 2933 */ 2934 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg, 2935 unsigned int nr_pages) 2936 { 2937 struct mem_cgroup *memcg; 2938 2939 memcg = get_mem_cgroup_from_objcg(objcg); 2940 2941 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 2942 page_counter_uncharge(&memcg->kmem, nr_pages); 2943 refill_stock(memcg, nr_pages); 2944 2945 css_put(&memcg->css); 2946 } 2947 2948 /* 2949 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg 2950 * @objcg: object cgroup to charge 2951 * @gfp: reclaim mode 2952 * @nr_pages: number of pages to charge 2953 * 2954 * Returns 0 on success, an error code on failure. 2955 */ 2956 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp, 2957 unsigned int nr_pages) 2958 { 2959 struct page_counter *counter; 2960 struct mem_cgroup *memcg; 2961 int ret; 2962 2963 memcg = get_mem_cgroup_from_objcg(objcg); 2964 2965 ret = try_charge_memcg(memcg, gfp, nr_pages); 2966 if (ret) 2967 goto out; 2968 2969 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && 2970 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) { 2971 2972 /* 2973 * Enforce __GFP_NOFAIL allocation because callers are not 2974 * prepared to see failures and likely do not have any failure 2975 * handling code. 2976 */ 2977 if (gfp & __GFP_NOFAIL) { 2978 page_counter_charge(&memcg->kmem, nr_pages); 2979 goto out; 2980 } 2981 cancel_charge(memcg, nr_pages); 2982 ret = -ENOMEM; 2983 } 2984 out: 2985 css_put(&memcg->css); 2986 2987 return ret; 2988 } 2989 2990 /** 2991 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup 2992 * @page: page to charge 2993 * @gfp: reclaim mode 2994 * @order: allocation order 2995 * 2996 * Returns 0 on success, an error code on failure. 2997 */ 2998 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order) 2999 { 3000 struct obj_cgroup *objcg; 3001 int ret = 0; 3002 3003 objcg = get_obj_cgroup_from_current(); 3004 if (objcg) { 3005 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order); 3006 if (!ret) { 3007 page->memcg_data = (unsigned long)objcg | 3008 MEMCG_DATA_KMEM; 3009 return 0; 3010 } 3011 obj_cgroup_put(objcg); 3012 } 3013 return ret; 3014 } 3015 3016 /** 3017 * __memcg_kmem_uncharge_page: uncharge a kmem page 3018 * @page: page to uncharge 3019 * @order: allocation order 3020 */ 3021 void __memcg_kmem_uncharge_page(struct page *page, int order) 3022 { 3023 struct obj_cgroup *objcg; 3024 unsigned int nr_pages = 1 << order; 3025 3026 if (!PageMemcgKmem(page)) 3027 return; 3028 3029 objcg = __page_objcg(page); 3030 obj_cgroup_uncharge_pages(objcg, nr_pages); 3031 page->memcg_data = 0; 3032 obj_cgroup_put(objcg); 3033 } 3034 3035 void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat, 3036 enum node_stat_item idx, int nr) 3037 { 3038 unsigned long flags; 3039 struct obj_stock *stock = get_obj_stock(&flags); 3040 int *bytes; 3041 3042 /* 3043 * Save vmstat data in stock and skip vmstat array update unless 3044 * accumulating over a page of vmstat data or when pgdat or idx 3045 * changes. 3046 */ 3047 if (stock->cached_objcg != objcg) { 3048 drain_obj_stock(stock); 3049 obj_cgroup_get(objcg); 3050 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes) 3051 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0; 3052 stock->cached_objcg = objcg; 3053 stock->cached_pgdat = pgdat; 3054 } else if (stock->cached_pgdat != pgdat) { 3055 /* Flush the existing cached vmstat data */ 3056 struct pglist_data *oldpg = stock->cached_pgdat; 3057 3058 if (stock->nr_slab_reclaimable_b) { 3059 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B, 3060 stock->nr_slab_reclaimable_b); 3061 stock->nr_slab_reclaimable_b = 0; 3062 } 3063 if (stock->nr_slab_unreclaimable_b) { 3064 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B, 3065 stock->nr_slab_unreclaimable_b); 3066 stock->nr_slab_unreclaimable_b = 0; 3067 } 3068 stock->cached_pgdat = pgdat; 3069 } 3070 3071 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b 3072 : &stock->nr_slab_unreclaimable_b; 3073 /* 3074 * Even for large object >= PAGE_SIZE, the vmstat data will still be 3075 * cached locally at least once before pushing it out. 3076 */ 3077 if (!*bytes) { 3078 *bytes = nr; 3079 nr = 0; 3080 } else { 3081 *bytes += nr; 3082 if (abs(*bytes) > PAGE_SIZE) { 3083 nr = *bytes; 3084 *bytes = 0; 3085 } else { 3086 nr = 0; 3087 } 3088 } 3089 if (nr) 3090 mod_objcg_mlstate(objcg, pgdat, idx, nr); 3091 3092 put_obj_stock(flags); 3093 } 3094 3095 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes) 3096 { 3097 unsigned long flags; 3098 struct obj_stock *stock = get_obj_stock(&flags); 3099 bool ret = false; 3100 3101 if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) { 3102 stock->nr_bytes -= nr_bytes; 3103 ret = true; 3104 } 3105 3106 put_obj_stock(flags); 3107 3108 return ret; 3109 } 3110 3111 static void drain_obj_stock(struct obj_stock *stock) 3112 { 3113 struct obj_cgroup *old = stock->cached_objcg; 3114 3115 if (!old) 3116 return; 3117 3118 if (stock->nr_bytes) { 3119 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT; 3120 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1); 3121 3122 if (nr_pages) 3123 obj_cgroup_uncharge_pages(old, nr_pages); 3124 3125 /* 3126 * The leftover is flushed to the centralized per-memcg value. 3127 * On the next attempt to refill obj stock it will be moved 3128 * to a per-cpu stock (probably, on an other CPU), see 3129 * refill_obj_stock(). 3130 * 3131 * How often it's flushed is a trade-off between the memory 3132 * limit enforcement accuracy and potential CPU contention, 3133 * so it might be changed in the future. 3134 */ 3135 atomic_add(nr_bytes, &old->nr_charged_bytes); 3136 stock->nr_bytes = 0; 3137 } 3138 3139 /* 3140 * Flush the vmstat data in current stock 3141 */ 3142 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) { 3143 if (stock->nr_slab_reclaimable_b) { 3144 mod_objcg_mlstate(old, stock->cached_pgdat, 3145 NR_SLAB_RECLAIMABLE_B, 3146 stock->nr_slab_reclaimable_b); 3147 stock->nr_slab_reclaimable_b = 0; 3148 } 3149 if (stock->nr_slab_unreclaimable_b) { 3150 mod_objcg_mlstate(old, stock->cached_pgdat, 3151 NR_SLAB_UNRECLAIMABLE_B, 3152 stock->nr_slab_unreclaimable_b); 3153 stock->nr_slab_unreclaimable_b = 0; 3154 } 3155 stock->cached_pgdat = NULL; 3156 } 3157 3158 obj_cgroup_put(old); 3159 stock->cached_objcg = NULL; 3160 } 3161 3162 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 3163 struct mem_cgroup *root_memcg) 3164 { 3165 struct mem_cgroup *memcg; 3166 3167 if (in_task() && stock->task_obj.cached_objcg) { 3168 memcg = obj_cgroup_memcg(stock->task_obj.cached_objcg); 3169 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg)) 3170 return true; 3171 } 3172 if (stock->irq_obj.cached_objcg) { 3173 memcg = obj_cgroup_memcg(stock->irq_obj.cached_objcg); 3174 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg)) 3175 return true; 3176 } 3177 3178 return false; 3179 } 3180 3181 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes, 3182 bool allow_uncharge) 3183 { 3184 unsigned long flags; 3185 struct obj_stock *stock = get_obj_stock(&flags); 3186 unsigned int nr_pages = 0; 3187 3188 if (stock->cached_objcg != objcg) { /* reset if necessary */ 3189 drain_obj_stock(stock); 3190 obj_cgroup_get(objcg); 3191 stock->cached_objcg = objcg; 3192 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes) 3193 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0; 3194 allow_uncharge = true; /* Allow uncharge when objcg changes */ 3195 } 3196 stock->nr_bytes += nr_bytes; 3197 3198 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) { 3199 nr_pages = stock->nr_bytes >> PAGE_SHIFT; 3200 stock->nr_bytes &= (PAGE_SIZE - 1); 3201 } 3202 3203 put_obj_stock(flags); 3204 3205 if (nr_pages) 3206 obj_cgroup_uncharge_pages(objcg, nr_pages); 3207 } 3208 3209 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size) 3210 { 3211 unsigned int nr_pages, nr_bytes; 3212 int ret; 3213 3214 if (consume_obj_stock(objcg, size)) 3215 return 0; 3216 3217 /* 3218 * In theory, objcg->nr_charged_bytes can have enough 3219 * pre-charged bytes to satisfy the allocation. However, 3220 * flushing objcg->nr_charged_bytes requires two atomic 3221 * operations, and objcg->nr_charged_bytes can't be big. 3222 * The shared objcg->nr_charged_bytes can also become a 3223 * performance bottleneck if all tasks of the same memcg are 3224 * trying to update it. So it's better to ignore it and try 3225 * grab some new pages. The stock's nr_bytes will be flushed to 3226 * objcg->nr_charged_bytes later on when objcg changes. 3227 * 3228 * The stock's nr_bytes may contain enough pre-charged bytes 3229 * to allow one less page from being charged, but we can't rely 3230 * on the pre-charged bytes not being changed outside of 3231 * consume_obj_stock() or refill_obj_stock(). So ignore those 3232 * pre-charged bytes as well when charging pages. To avoid a 3233 * page uncharge right after a page charge, we set the 3234 * allow_uncharge flag to false when calling refill_obj_stock() 3235 * to temporarily allow the pre-charged bytes to exceed the page 3236 * size limit. The maximum reachable value of the pre-charged 3237 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data 3238 * race. 3239 */ 3240 nr_pages = size >> PAGE_SHIFT; 3241 nr_bytes = size & (PAGE_SIZE - 1); 3242 3243 if (nr_bytes) 3244 nr_pages += 1; 3245 3246 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages); 3247 if (!ret && nr_bytes) 3248 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false); 3249 3250 return ret; 3251 } 3252 3253 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size) 3254 { 3255 refill_obj_stock(objcg, size, true); 3256 } 3257 3258 #endif /* CONFIG_MEMCG_KMEM */ 3259 3260 /* 3261 * Because page_memcg(head) is not set on tails, set it now. 3262 */ 3263 void split_page_memcg(struct page *head, unsigned int nr) 3264 { 3265 struct mem_cgroup *memcg = page_memcg(head); 3266 int i; 3267 3268 if (mem_cgroup_disabled() || !memcg) 3269 return; 3270 3271 for (i = 1; i < nr; i++) 3272 head[i].memcg_data = head->memcg_data; 3273 3274 if (PageMemcgKmem(head)) 3275 obj_cgroup_get_many(__page_objcg(head), nr - 1); 3276 else 3277 css_get_many(&memcg->css, nr - 1); 3278 } 3279 3280 #ifdef CONFIG_MEMCG_SWAP 3281 /** 3282 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 3283 * @entry: swap entry to be moved 3284 * @from: mem_cgroup which the entry is moved from 3285 * @to: mem_cgroup which the entry is moved to 3286 * 3287 * It succeeds only when the swap_cgroup's record for this entry is the same 3288 * as the mem_cgroup's id of @from. 3289 * 3290 * Returns 0 on success, -EINVAL on failure. 3291 * 3292 * The caller must have charged to @to, IOW, called page_counter_charge() about 3293 * both res and memsw, and called css_get(). 3294 */ 3295 static int mem_cgroup_move_swap_account(swp_entry_t entry, 3296 struct mem_cgroup *from, struct mem_cgroup *to) 3297 { 3298 unsigned short old_id, new_id; 3299 3300 old_id = mem_cgroup_id(from); 3301 new_id = mem_cgroup_id(to); 3302 3303 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 3304 mod_memcg_state(from, MEMCG_SWAP, -1); 3305 mod_memcg_state(to, MEMCG_SWAP, 1); 3306 return 0; 3307 } 3308 return -EINVAL; 3309 } 3310 #else 3311 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 3312 struct mem_cgroup *from, struct mem_cgroup *to) 3313 { 3314 return -EINVAL; 3315 } 3316 #endif 3317 3318 static DEFINE_MUTEX(memcg_max_mutex); 3319 3320 static int mem_cgroup_resize_max(struct mem_cgroup *memcg, 3321 unsigned long max, bool memsw) 3322 { 3323 bool enlarge = false; 3324 bool drained = false; 3325 int ret; 3326 bool limits_invariant; 3327 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory; 3328 3329 do { 3330 if (signal_pending(current)) { 3331 ret = -EINTR; 3332 break; 3333 } 3334 3335 mutex_lock(&memcg_max_mutex); 3336 /* 3337 * Make sure that the new limit (memsw or memory limit) doesn't 3338 * break our basic invariant rule memory.max <= memsw.max. 3339 */ 3340 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) : 3341 max <= memcg->memsw.max; 3342 if (!limits_invariant) { 3343 mutex_unlock(&memcg_max_mutex); 3344 ret = -EINVAL; 3345 break; 3346 } 3347 if (max > counter->max) 3348 enlarge = true; 3349 ret = page_counter_set_max(counter, max); 3350 mutex_unlock(&memcg_max_mutex); 3351 3352 if (!ret) 3353 break; 3354 3355 if (!drained) { 3356 drain_all_stock(memcg); 3357 drained = true; 3358 continue; 3359 } 3360 3361 if (!try_to_free_mem_cgroup_pages(memcg, 1, 3362 GFP_KERNEL, !memsw)) { 3363 ret = -EBUSY; 3364 break; 3365 } 3366 } while (true); 3367 3368 if (!ret && enlarge) 3369 memcg_oom_recover(memcg); 3370 3371 return ret; 3372 } 3373 3374 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 3375 gfp_t gfp_mask, 3376 unsigned long *total_scanned) 3377 { 3378 unsigned long nr_reclaimed = 0; 3379 struct mem_cgroup_per_node *mz, *next_mz = NULL; 3380 unsigned long reclaimed; 3381 int loop = 0; 3382 struct mem_cgroup_tree_per_node *mctz; 3383 unsigned long excess; 3384 unsigned long nr_scanned; 3385 3386 if (order > 0) 3387 return 0; 3388 3389 mctz = soft_limit_tree_node(pgdat->node_id); 3390 3391 /* 3392 * Do not even bother to check the largest node if the root 3393 * is empty. Do it lockless to prevent lock bouncing. Races 3394 * are acceptable as soft limit is best effort anyway. 3395 */ 3396 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root)) 3397 return 0; 3398 3399 /* 3400 * This loop can run a while, specially if mem_cgroup's continuously 3401 * keep exceeding their soft limit and putting the system under 3402 * pressure 3403 */ 3404 do { 3405 if (next_mz) 3406 mz = next_mz; 3407 else 3408 mz = mem_cgroup_largest_soft_limit_node(mctz); 3409 if (!mz) 3410 break; 3411 3412 nr_scanned = 0; 3413 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat, 3414 gfp_mask, &nr_scanned); 3415 nr_reclaimed += reclaimed; 3416 *total_scanned += nr_scanned; 3417 spin_lock_irq(&mctz->lock); 3418 __mem_cgroup_remove_exceeded(mz, mctz); 3419 3420 /* 3421 * If we failed to reclaim anything from this memory cgroup 3422 * it is time to move on to the next cgroup 3423 */ 3424 next_mz = NULL; 3425 if (!reclaimed) 3426 next_mz = __mem_cgroup_largest_soft_limit_node(mctz); 3427 3428 excess = soft_limit_excess(mz->memcg); 3429 /* 3430 * One school of thought says that we should not add 3431 * back the node to the tree if reclaim returns 0. 3432 * But our reclaim could return 0, simply because due 3433 * to priority we are exposing a smaller subset of 3434 * memory to reclaim from. Consider this as a longer 3435 * term TODO. 3436 */ 3437 /* If excess == 0, no tree ops */ 3438 __mem_cgroup_insert_exceeded(mz, mctz, excess); 3439 spin_unlock_irq(&mctz->lock); 3440 css_put(&mz->memcg->css); 3441 loop++; 3442 /* 3443 * Could not reclaim anything and there are no more 3444 * mem cgroups to try or we seem to be looping without 3445 * reclaiming anything. 3446 */ 3447 if (!nr_reclaimed && 3448 (next_mz == NULL || 3449 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 3450 break; 3451 } while (!nr_reclaimed); 3452 if (next_mz) 3453 css_put(&next_mz->memcg->css); 3454 return nr_reclaimed; 3455 } 3456 3457 /* 3458 * Reclaims as many pages from the given memcg as possible. 3459 * 3460 * Caller is responsible for holding css reference for memcg. 3461 */ 3462 static int mem_cgroup_force_empty(struct mem_cgroup *memcg) 3463 { 3464 int nr_retries = MAX_RECLAIM_RETRIES; 3465 3466 /* we call try-to-free pages for make this cgroup empty */ 3467 lru_add_drain_all(); 3468 3469 drain_all_stock(memcg); 3470 3471 /* try to free all pages in this cgroup */ 3472 while (nr_retries && page_counter_read(&memcg->memory)) { 3473 int progress; 3474 3475 if (signal_pending(current)) 3476 return -EINTR; 3477 3478 progress = try_to_free_mem_cgroup_pages(memcg, 1, 3479 GFP_KERNEL, true); 3480 if (!progress) { 3481 nr_retries--; 3482 /* maybe some writeback is necessary */ 3483 congestion_wait(BLK_RW_ASYNC, HZ/10); 3484 } 3485 3486 } 3487 3488 return 0; 3489 } 3490 3491 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of, 3492 char *buf, size_t nbytes, 3493 loff_t off) 3494 { 3495 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3496 3497 if (mem_cgroup_is_root(memcg)) 3498 return -EINVAL; 3499 return mem_cgroup_force_empty(memcg) ?: nbytes; 3500 } 3501 3502 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, 3503 struct cftype *cft) 3504 { 3505 return 1; 3506 } 3507 3508 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, 3509 struct cftype *cft, u64 val) 3510 { 3511 if (val == 1) 3512 return 0; 3513 3514 pr_warn_once("Non-hierarchical mode is deprecated. " 3515 "Please report your usecase to linux-mm@kvack.org if you " 3516 "depend on this functionality.\n"); 3517 3518 return -EINVAL; 3519 } 3520 3521 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 3522 { 3523 unsigned long val; 3524 3525 if (mem_cgroup_is_root(memcg)) { 3526 /* mem_cgroup_threshold() calls here from irqsafe context */ 3527 cgroup_rstat_flush_irqsafe(memcg->css.cgroup); 3528 val = memcg_page_state(memcg, NR_FILE_PAGES) + 3529 memcg_page_state(memcg, NR_ANON_MAPPED); 3530 if (swap) 3531 val += memcg_page_state(memcg, MEMCG_SWAP); 3532 } else { 3533 if (!swap) 3534 val = page_counter_read(&memcg->memory); 3535 else 3536 val = page_counter_read(&memcg->memsw); 3537 } 3538 return val; 3539 } 3540 3541 enum { 3542 RES_USAGE, 3543 RES_LIMIT, 3544 RES_MAX_USAGE, 3545 RES_FAILCNT, 3546 RES_SOFT_LIMIT, 3547 }; 3548 3549 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css, 3550 struct cftype *cft) 3551 { 3552 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3553 struct page_counter *counter; 3554 3555 switch (MEMFILE_TYPE(cft->private)) { 3556 case _MEM: 3557 counter = &memcg->memory; 3558 break; 3559 case _MEMSWAP: 3560 counter = &memcg->memsw; 3561 break; 3562 case _KMEM: 3563 counter = &memcg->kmem; 3564 break; 3565 case _TCP: 3566 counter = &memcg->tcpmem; 3567 break; 3568 default: 3569 BUG(); 3570 } 3571 3572 switch (MEMFILE_ATTR(cft->private)) { 3573 case RES_USAGE: 3574 if (counter == &memcg->memory) 3575 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE; 3576 if (counter == &memcg->memsw) 3577 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE; 3578 return (u64)page_counter_read(counter) * PAGE_SIZE; 3579 case RES_LIMIT: 3580 return (u64)counter->max * PAGE_SIZE; 3581 case RES_MAX_USAGE: 3582 return (u64)counter->watermark * PAGE_SIZE; 3583 case RES_FAILCNT: 3584 return counter->failcnt; 3585 case RES_SOFT_LIMIT: 3586 return (u64)memcg->soft_limit * PAGE_SIZE; 3587 default: 3588 BUG(); 3589 } 3590 } 3591 3592 #ifdef CONFIG_MEMCG_KMEM 3593 static int memcg_online_kmem(struct mem_cgroup *memcg) 3594 { 3595 struct obj_cgroup *objcg; 3596 int memcg_id; 3597 3598 if (cgroup_memory_nokmem) 3599 return 0; 3600 3601 BUG_ON(memcg->kmemcg_id >= 0); 3602 BUG_ON(memcg->kmem_state); 3603 3604 memcg_id = memcg_alloc_cache_id(); 3605 if (memcg_id < 0) 3606 return memcg_id; 3607 3608 objcg = obj_cgroup_alloc(); 3609 if (!objcg) { 3610 memcg_free_cache_id(memcg_id); 3611 return -ENOMEM; 3612 } 3613 objcg->memcg = memcg; 3614 rcu_assign_pointer(memcg->objcg, objcg); 3615 3616 static_branch_enable(&memcg_kmem_enabled_key); 3617 3618 memcg->kmemcg_id = memcg_id; 3619 memcg->kmem_state = KMEM_ONLINE; 3620 3621 return 0; 3622 } 3623 3624 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3625 { 3626 struct cgroup_subsys_state *css; 3627 struct mem_cgroup *parent, *child; 3628 int kmemcg_id; 3629 3630 if (memcg->kmem_state != KMEM_ONLINE) 3631 return; 3632 3633 memcg->kmem_state = KMEM_ALLOCATED; 3634 3635 parent = parent_mem_cgroup(memcg); 3636 if (!parent) 3637 parent = root_mem_cgroup; 3638 3639 memcg_reparent_objcgs(memcg, parent); 3640 3641 kmemcg_id = memcg->kmemcg_id; 3642 BUG_ON(kmemcg_id < 0); 3643 3644 /* 3645 * Change kmemcg_id of this cgroup and all its descendants to the 3646 * parent's id, and then move all entries from this cgroup's list_lrus 3647 * to ones of the parent. After we have finished, all list_lrus 3648 * corresponding to this cgroup are guaranteed to remain empty. The 3649 * ordering is imposed by list_lru_node->lock taken by 3650 * memcg_drain_all_list_lrus(). 3651 */ 3652 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */ 3653 css_for_each_descendant_pre(css, &memcg->css) { 3654 child = mem_cgroup_from_css(css); 3655 BUG_ON(child->kmemcg_id != kmemcg_id); 3656 child->kmemcg_id = parent->kmemcg_id; 3657 } 3658 rcu_read_unlock(); 3659 3660 memcg_drain_all_list_lrus(kmemcg_id, parent); 3661 3662 memcg_free_cache_id(kmemcg_id); 3663 } 3664 3665 static void memcg_free_kmem(struct mem_cgroup *memcg) 3666 { 3667 /* css_alloc() failed, offlining didn't happen */ 3668 if (unlikely(memcg->kmem_state == KMEM_ONLINE)) 3669 memcg_offline_kmem(memcg); 3670 } 3671 #else 3672 static int memcg_online_kmem(struct mem_cgroup *memcg) 3673 { 3674 return 0; 3675 } 3676 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3677 { 3678 } 3679 static void memcg_free_kmem(struct mem_cgroup *memcg) 3680 { 3681 } 3682 #endif /* CONFIG_MEMCG_KMEM */ 3683 3684 static int memcg_update_kmem_max(struct mem_cgroup *memcg, 3685 unsigned long max) 3686 { 3687 int ret; 3688 3689 mutex_lock(&memcg_max_mutex); 3690 ret = page_counter_set_max(&memcg->kmem, max); 3691 mutex_unlock(&memcg_max_mutex); 3692 return ret; 3693 } 3694 3695 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max) 3696 { 3697 int ret; 3698 3699 mutex_lock(&memcg_max_mutex); 3700 3701 ret = page_counter_set_max(&memcg->tcpmem, max); 3702 if (ret) 3703 goto out; 3704 3705 if (!memcg->tcpmem_active) { 3706 /* 3707 * The active flag needs to be written after the static_key 3708 * update. This is what guarantees that the socket activation 3709 * function is the last one to run. See mem_cgroup_sk_alloc() 3710 * for details, and note that we don't mark any socket as 3711 * belonging to this memcg until that flag is up. 3712 * 3713 * We need to do this, because static_keys will span multiple 3714 * sites, but we can't control their order. If we mark a socket 3715 * as accounted, but the accounting functions are not patched in 3716 * yet, we'll lose accounting. 3717 * 3718 * We never race with the readers in mem_cgroup_sk_alloc(), 3719 * because when this value change, the code to process it is not 3720 * patched in yet. 3721 */ 3722 static_branch_inc(&memcg_sockets_enabled_key); 3723 memcg->tcpmem_active = true; 3724 } 3725 out: 3726 mutex_unlock(&memcg_max_mutex); 3727 return ret; 3728 } 3729 3730 /* 3731 * The user of this function is... 3732 * RES_LIMIT. 3733 */ 3734 static ssize_t mem_cgroup_write(struct kernfs_open_file *of, 3735 char *buf, size_t nbytes, loff_t off) 3736 { 3737 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3738 unsigned long nr_pages; 3739 int ret; 3740 3741 buf = strstrip(buf); 3742 ret = page_counter_memparse(buf, "-1", &nr_pages); 3743 if (ret) 3744 return ret; 3745 3746 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3747 case RES_LIMIT: 3748 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 3749 ret = -EINVAL; 3750 break; 3751 } 3752 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3753 case _MEM: 3754 ret = mem_cgroup_resize_max(memcg, nr_pages, false); 3755 break; 3756 case _MEMSWAP: 3757 ret = mem_cgroup_resize_max(memcg, nr_pages, true); 3758 break; 3759 case _KMEM: 3760 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. " 3761 "Please report your usecase to linux-mm@kvack.org if you " 3762 "depend on this functionality.\n"); 3763 ret = memcg_update_kmem_max(memcg, nr_pages); 3764 break; 3765 case _TCP: 3766 ret = memcg_update_tcp_max(memcg, nr_pages); 3767 break; 3768 } 3769 break; 3770 case RES_SOFT_LIMIT: 3771 memcg->soft_limit = nr_pages; 3772 ret = 0; 3773 break; 3774 } 3775 return ret ?: nbytes; 3776 } 3777 3778 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf, 3779 size_t nbytes, loff_t off) 3780 { 3781 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3782 struct page_counter *counter; 3783 3784 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3785 case _MEM: 3786 counter = &memcg->memory; 3787 break; 3788 case _MEMSWAP: 3789 counter = &memcg->memsw; 3790 break; 3791 case _KMEM: 3792 counter = &memcg->kmem; 3793 break; 3794 case _TCP: 3795 counter = &memcg->tcpmem; 3796 break; 3797 default: 3798 BUG(); 3799 } 3800 3801 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3802 case RES_MAX_USAGE: 3803 page_counter_reset_watermark(counter); 3804 break; 3805 case RES_FAILCNT: 3806 counter->failcnt = 0; 3807 break; 3808 default: 3809 BUG(); 3810 } 3811 3812 return nbytes; 3813 } 3814 3815 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, 3816 struct cftype *cft) 3817 { 3818 return mem_cgroup_from_css(css)->move_charge_at_immigrate; 3819 } 3820 3821 #ifdef CONFIG_MMU 3822 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3823 struct cftype *cft, u64 val) 3824 { 3825 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3826 3827 if (val & ~MOVE_MASK) 3828 return -EINVAL; 3829 3830 /* 3831 * No kind of locking is needed in here, because ->can_attach() will 3832 * check this value once in the beginning of the process, and then carry 3833 * on with stale data. This means that changes to this value will only 3834 * affect task migrations starting after the change. 3835 */ 3836 memcg->move_charge_at_immigrate = val; 3837 return 0; 3838 } 3839 #else 3840 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3841 struct cftype *cft, u64 val) 3842 { 3843 return -ENOSYS; 3844 } 3845 #endif 3846 3847 #ifdef CONFIG_NUMA 3848 3849 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE)) 3850 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON)) 3851 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1) 3852 3853 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 3854 int nid, unsigned int lru_mask, bool tree) 3855 { 3856 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); 3857 unsigned long nr = 0; 3858 enum lru_list lru; 3859 3860 VM_BUG_ON((unsigned)nid >= nr_node_ids); 3861 3862 for_each_lru(lru) { 3863 if (!(BIT(lru) & lru_mask)) 3864 continue; 3865 if (tree) 3866 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru); 3867 else 3868 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru); 3869 } 3870 return nr; 3871 } 3872 3873 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 3874 unsigned int lru_mask, 3875 bool tree) 3876 { 3877 unsigned long nr = 0; 3878 enum lru_list lru; 3879 3880 for_each_lru(lru) { 3881 if (!(BIT(lru) & lru_mask)) 3882 continue; 3883 if (tree) 3884 nr += memcg_page_state(memcg, NR_LRU_BASE + lru); 3885 else 3886 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru); 3887 } 3888 return nr; 3889 } 3890 3891 static int memcg_numa_stat_show(struct seq_file *m, void *v) 3892 { 3893 struct numa_stat { 3894 const char *name; 3895 unsigned int lru_mask; 3896 }; 3897 3898 static const struct numa_stat stats[] = { 3899 { "total", LRU_ALL }, 3900 { "file", LRU_ALL_FILE }, 3901 { "anon", LRU_ALL_ANON }, 3902 { "unevictable", BIT(LRU_UNEVICTABLE) }, 3903 }; 3904 const struct numa_stat *stat; 3905 int nid; 3906 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 3907 3908 cgroup_rstat_flush(memcg->css.cgroup); 3909 3910 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3911 seq_printf(m, "%s=%lu", stat->name, 3912 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask, 3913 false)); 3914 for_each_node_state(nid, N_MEMORY) 3915 seq_printf(m, " N%d=%lu", nid, 3916 mem_cgroup_node_nr_lru_pages(memcg, nid, 3917 stat->lru_mask, false)); 3918 seq_putc(m, '\n'); 3919 } 3920 3921 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3922 3923 seq_printf(m, "hierarchical_%s=%lu", stat->name, 3924 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask, 3925 true)); 3926 for_each_node_state(nid, N_MEMORY) 3927 seq_printf(m, " N%d=%lu", nid, 3928 mem_cgroup_node_nr_lru_pages(memcg, nid, 3929 stat->lru_mask, true)); 3930 seq_putc(m, '\n'); 3931 } 3932 3933 return 0; 3934 } 3935 #endif /* CONFIG_NUMA */ 3936 3937 static const unsigned int memcg1_stats[] = { 3938 NR_FILE_PAGES, 3939 NR_ANON_MAPPED, 3940 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3941 NR_ANON_THPS, 3942 #endif 3943 NR_SHMEM, 3944 NR_FILE_MAPPED, 3945 NR_FILE_DIRTY, 3946 NR_WRITEBACK, 3947 MEMCG_SWAP, 3948 }; 3949 3950 static const char *const memcg1_stat_names[] = { 3951 "cache", 3952 "rss", 3953 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3954 "rss_huge", 3955 #endif 3956 "shmem", 3957 "mapped_file", 3958 "dirty", 3959 "writeback", 3960 "swap", 3961 }; 3962 3963 /* Universal VM events cgroup1 shows, original sort order */ 3964 static const unsigned int memcg1_events[] = { 3965 PGPGIN, 3966 PGPGOUT, 3967 PGFAULT, 3968 PGMAJFAULT, 3969 }; 3970 3971 static int memcg_stat_show(struct seq_file *m, void *v) 3972 { 3973 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 3974 unsigned long memory, memsw; 3975 struct mem_cgroup *mi; 3976 unsigned int i; 3977 3978 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats)); 3979 3980 cgroup_rstat_flush(memcg->css.cgroup); 3981 3982 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 3983 unsigned long nr; 3984 3985 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 3986 continue; 3987 nr = memcg_page_state_local(memcg, memcg1_stats[i]); 3988 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE); 3989 } 3990 3991 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 3992 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]), 3993 memcg_events_local(memcg, memcg1_events[i])); 3994 3995 for (i = 0; i < NR_LRU_LISTS; i++) 3996 seq_printf(m, "%s %lu\n", lru_list_name(i), 3997 memcg_page_state_local(memcg, NR_LRU_BASE + i) * 3998 PAGE_SIZE); 3999 4000 /* Hierarchical information */ 4001 memory = memsw = PAGE_COUNTER_MAX; 4002 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) { 4003 memory = min(memory, READ_ONCE(mi->memory.max)); 4004 memsw = min(memsw, READ_ONCE(mi->memsw.max)); 4005 } 4006 seq_printf(m, "hierarchical_memory_limit %llu\n", 4007 (u64)memory * PAGE_SIZE); 4008 if (do_memsw_account()) 4009 seq_printf(m, "hierarchical_memsw_limit %llu\n", 4010 (u64)memsw * PAGE_SIZE); 4011 4012 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 4013 unsigned long nr; 4014 4015 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 4016 continue; 4017 nr = memcg_page_state(memcg, memcg1_stats[i]); 4018 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], 4019 (u64)nr * PAGE_SIZE); 4020 } 4021 4022 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 4023 seq_printf(m, "total_%s %llu\n", 4024 vm_event_name(memcg1_events[i]), 4025 (u64)memcg_events(memcg, memcg1_events[i])); 4026 4027 for (i = 0; i < NR_LRU_LISTS; i++) 4028 seq_printf(m, "total_%s %llu\n", lru_list_name(i), 4029 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) * 4030 PAGE_SIZE); 4031 4032 #ifdef CONFIG_DEBUG_VM 4033 { 4034 pg_data_t *pgdat; 4035 struct mem_cgroup_per_node *mz; 4036 unsigned long anon_cost = 0; 4037 unsigned long file_cost = 0; 4038 4039 for_each_online_pgdat(pgdat) { 4040 mz = memcg->nodeinfo[pgdat->node_id]; 4041 4042 anon_cost += mz->lruvec.anon_cost; 4043 file_cost += mz->lruvec.file_cost; 4044 } 4045 seq_printf(m, "anon_cost %lu\n", anon_cost); 4046 seq_printf(m, "file_cost %lu\n", file_cost); 4047 } 4048 #endif 4049 4050 return 0; 4051 } 4052 4053 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, 4054 struct cftype *cft) 4055 { 4056 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4057 4058 return mem_cgroup_swappiness(memcg); 4059 } 4060 4061 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, 4062 struct cftype *cft, u64 val) 4063 { 4064 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4065 4066 if (val > 200) 4067 return -EINVAL; 4068 4069 if (!mem_cgroup_is_root(memcg)) 4070 memcg->swappiness = val; 4071 else 4072 vm_swappiness = val; 4073 4074 return 0; 4075 } 4076 4077 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 4078 { 4079 struct mem_cgroup_threshold_ary *t; 4080 unsigned long usage; 4081 int i; 4082 4083 rcu_read_lock(); 4084 if (!swap) 4085 t = rcu_dereference(memcg->thresholds.primary); 4086 else 4087 t = rcu_dereference(memcg->memsw_thresholds.primary); 4088 4089 if (!t) 4090 goto unlock; 4091 4092 usage = mem_cgroup_usage(memcg, swap); 4093 4094 /* 4095 * current_threshold points to threshold just below or equal to usage. 4096 * If it's not true, a threshold was crossed after last 4097 * call of __mem_cgroup_threshold(). 4098 */ 4099 i = t->current_threshold; 4100 4101 /* 4102 * Iterate backward over array of thresholds starting from 4103 * current_threshold and check if a threshold is crossed. 4104 * If none of thresholds below usage is crossed, we read 4105 * only one element of the array here. 4106 */ 4107 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 4108 eventfd_signal(t->entries[i].eventfd, 1); 4109 4110 /* i = current_threshold + 1 */ 4111 i++; 4112 4113 /* 4114 * Iterate forward over array of thresholds starting from 4115 * current_threshold+1 and check if a threshold is crossed. 4116 * If none of thresholds above usage is crossed, we read 4117 * only one element of the array here. 4118 */ 4119 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 4120 eventfd_signal(t->entries[i].eventfd, 1); 4121 4122 /* Update current_threshold */ 4123 t->current_threshold = i - 1; 4124 unlock: 4125 rcu_read_unlock(); 4126 } 4127 4128 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 4129 { 4130 while (memcg) { 4131 __mem_cgroup_threshold(memcg, false); 4132 if (do_memsw_account()) 4133 __mem_cgroup_threshold(memcg, true); 4134 4135 memcg = parent_mem_cgroup(memcg); 4136 } 4137 } 4138 4139 static int compare_thresholds(const void *a, const void *b) 4140 { 4141 const struct mem_cgroup_threshold *_a = a; 4142 const struct mem_cgroup_threshold *_b = b; 4143 4144 if (_a->threshold > _b->threshold) 4145 return 1; 4146 4147 if (_a->threshold < _b->threshold) 4148 return -1; 4149 4150 return 0; 4151 } 4152 4153 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 4154 { 4155 struct mem_cgroup_eventfd_list *ev; 4156 4157 spin_lock(&memcg_oom_lock); 4158 4159 list_for_each_entry(ev, &memcg->oom_notify, list) 4160 eventfd_signal(ev->eventfd, 1); 4161 4162 spin_unlock(&memcg_oom_lock); 4163 return 0; 4164 } 4165 4166 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 4167 { 4168 struct mem_cgroup *iter; 4169 4170 for_each_mem_cgroup_tree(iter, memcg) 4171 mem_cgroup_oom_notify_cb(iter); 4172 } 4173 4174 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 4175 struct eventfd_ctx *eventfd, const char *args, enum res_type type) 4176 { 4177 struct mem_cgroup_thresholds *thresholds; 4178 struct mem_cgroup_threshold_ary *new; 4179 unsigned long threshold; 4180 unsigned long usage; 4181 int i, size, ret; 4182 4183 ret = page_counter_memparse(args, "-1", &threshold); 4184 if (ret) 4185 return ret; 4186 4187 mutex_lock(&memcg->thresholds_lock); 4188 4189 if (type == _MEM) { 4190 thresholds = &memcg->thresholds; 4191 usage = mem_cgroup_usage(memcg, false); 4192 } else if (type == _MEMSWAP) { 4193 thresholds = &memcg->memsw_thresholds; 4194 usage = mem_cgroup_usage(memcg, true); 4195 } else 4196 BUG(); 4197 4198 /* Check if a threshold crossed before adding a new one */ 4199 if (thresholds->primary) 4200 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4201 4202 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 4203 4204 /* Allocate memory for new array of thresholds */ 4205 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL); 4206 if (!new) { 4207 ret = -ENOMEM; 4208 goto unlock; 4209 } 4210 new->size = size; 4211 4212 /* Copy thresholds (if any) to new array */ 4213 if (thresholds->primary) 4214 memcpy(new->entries, thresholds->primary->entries, 4215 flex_array_size(new, entries, size - 1)); 4216 4217 /* Add new threshold */ 4218 new->entries[size - 1].eventfd = eventfd; 4219 new->entries[size - 1].threshold = threshold; 4220 4221 /* Sort thresholds. Registering of new threshold isn't time-critical */ 4222 sort(new->entries, size, sizeof(*new->entries), 4223 compare_thresholds, NULL); 4224 4225 /* Find current threshold */ 4226 new->current_threshold = -1; 4227 for (i = 0; i < size; i++) { 4228 if (new->entries[i].threshold <= usage) { 4229 /* 4230 * new->current_threshold will not be used until 4231 * rcu_assign_pointer(), so it's safe to increment 4232 * it here. 4233 */ 4234 ++new->current_threshold; 4235 } else 4236 break; 4237 } 4238 4239 /* Free old spare buffer and save old primary buffer as spare */ 4240 kfree(thresholds->spare); 4241 thresholds->spare = thresholds->primary; 4242 4243 rcu_assign_pointer(thresholds->primary, new); 4244 4245 /* To be sure that nobody uses thresholds */ 4246 synchronize_rcu(); 4247 4248 unlock: 4249 mutex_unlock(&memcg->thresholds_lock); 4250 4251 return ret; 4252 } 4253 4254 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 4255 struct eventfd_ctx *eventfd, const char *args) 4256 { 4257 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM); 4258 } 4259 4260 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg, 4261 struct eventfd_ctx *eventfd, const char *args) 4262 { 4263 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP); 4264 } 4265 4266 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4267 struct eventfd_ctx *eventfd, enum res_type type) 4268 { 4269 struct mem_cgroup_thresholds *thresholds; 4270 struct mem_cgroup_threshold_ary *new; 4271 unsigned long usage; 4272 int i, j, size, entries; 4273 4274 mutex_lock(&memcg->thresholds_lock); 4275 4276 if (type == _MEM) { 4277 thresholds = &memcg->thresholds; 4278 usage = mem_cgroup_usage(memcg, false); 4279 } else if (type == _MEMSWAP) { 4280 thresholds = &memcg->memsw_thresholds; 4281 usage = mem_cgroup_usage(memcg, true); 4282 } else 4283 BUG(); 4284 4285 if (!thresholds->primary) 4286 goto unlock; 4287 4288 /* Check if a threshold crossed before removing */ 4289 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4290 4291 /* Calculate new number of threshold */ 4292 size = entries = 0; 4293 for (i = 0; i < thresholds->primary->size; i++) { 4294 if (thresholds->primary->entries[i].eventfd != eventfd) 4295 size++; 4296 else 4297 entries++; 4298 } 4299 4300 new = thresholds->spare; 4301 4302 /* If no items related to eventfd have been cleared, nothing to do */ 4303 if (!entries) 4304 goto unlock; 4305 4306 /* Set thresholds array to NULL if we don't have thresholds */ 4307 if (!size) { 4308 kfree(new); 4309 new = NULL; 4310 goto swap_buffers; 4311 } 4312 4313 new->size = size; 4314 4315 /* Copy thresholds and find current threshold */ 4316 new->current_threshold = -1; 4317 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 4318 if (thresholds->primary->entries[i].eventfd == eventfd) 4319 continue; 4320 4321 new->entries[j] = thresholds->primary->entries[i]; 4322 if (new->entries[j].threshold <= usage) { 4323 /* 4324 * new->current_threshold will not be used 4325 * until rcu_assign_pointer(), so it's safe to increment 4326 * it here. 4327 */ 4328 ++new->current_threshold; 4329 } 4330 j++; 4331 } 4332 4333 swap_buffers: 4334 /* Swap primary and spare array */ 4335 thresholds->spare = thresholds->primary; 4336 4337 rcu_assign_pointer(thresholds->primary, new); 4338 4339 /* To be sure that nobody uses thresholds */ 4340 synchronize_rcu(); 4341 4342 /* If all events are unregistered, free the spare array */ 4343 if (!new) { 4344 kfree(thresholds->spare); 4345 thresholds->spare = NULL; 4346 } 4347 unlock: 4348 mutex_unlock(&memcg->thresholds_lock); 4349 } 4350 4351 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4352 struct eventfd_ctx *eventfd) 4353 { 4354 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM); 4355 } 4356 4357 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4358 struct eventfd_ctx *eventfd) 4359 { 4360 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP); 4361 } 4362 4363 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg, 4364 struct eventfd_ctx *eventfd, const char *args) 4365 { 4366 struct mem_cgroup_eventfd_list *event; 4367 4368 event = kmalloc(sizeof(*event), GFP_KERNEL); 4369 if (!event) 4370 return -ENOMEM; 4371 4372 spin_lock(&memcg_oom_lock); 4373 4374 event->eventfd = eventfd; 4375 list_add(&event->list, &memcg->oom_notify); 4376 4377 /* already in OOM ? */ 4378 if (memcg->under_oom) 4379 eventfd_signal(eventfd, 1); 4380 spin_unlock(&memcg_oom_lock); 4381 4382 return 0; 4383 } 4384 4385 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg, 4386 struct eventfd_ctx *eventfd) 4387 { 4388 struct mem_cgroup_eventfd_list *ev, *tmp; 4389 4390 spin_lock(&memcg_oom_lock); 4391 4392 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 4393 if (ev->eventfd == eventfd) { 4394 list_del(&ev->list); 4395 kfree(ev); 4396 } 4397 } 4398 4399 spin_unlock(&memcg_oom_lock); 4400 } 4401 4402 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v) 4403 { 4404 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf); 4405 4406 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable); 4407 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom); 4408 seq_printf(sf, "oom_kill %lu\n", 4409 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL])); 4410 return 0; 4411 } 4412 4413 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, 4414 struct cftype *cft, u64 val) 4415 { 4416 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4417 4418 /* cannot set to root cgroup and only 0 and 1 are allowed */ 4419 if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1))) 4420 return -EINVAL; 4421 4422 memcg->oom_kill_disable = val; 4423 if (!val) 4424 memcg_oom_recover(memcg); 4425 4426 return 0; 4427 } 4428 4429 #ifdef CONFIG_CGROUP_WRITEBACK 4430 4431 #include <trace/events/writeback.h> 4432 4433 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 4434 { 4435 return wb_domain_init(&memcg->cgwb_domain, gfp); 4436 } 4437 4438 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 4439 { 4440 wb_domain_exit(&memcg->cgwb_domain); 4441 } 4442 4443 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 4444 { 4445 wb_domain_size_changed(&memcg->cgwb_domain); 4446 } 4447 4448 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 4449 { 4450 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4451 4452 if (!memcg->css.parent) 4453 return NULL; 4454 4455 return &memcg->cgwb_domain; 4456 } 4457 4458 /** 4459 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg 4460 * @wb: bdi_writeback in question 4461 * @pfilepages: out parameter for number of file pages 4462 * @pheadroom: out parameter for number of allocatable pages according to memcg 4463 * @pdirty: out parameter for number of dirty pages 4464 * @pwriteback: out parameter for number of pages under writeback 4465 * 4466 * Determine the numbers of file, headroom, dirty, and writeback pages in 4467 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom 4468 * is a bit more involved. 4469 * 4470 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the 4471 * headroom is calculated as the lowest headroom of itself and the 4472 * ancestors. Note that this doesn't consider the actual amount of 4473 * available memory in the system. The caller should further cap 4474 * *@pheadroom accordingly. 4475 */ 4476 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 4477 unsigned long *pheadroom, unsigned long *pdirty, 4478 unsigned long *pwriteback) 4479 { 4480 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4481 struct mem_cgroup *parent; 4482 4483 cgroup_rstat_flush_irqsafe(memcg->css.cgroup); 4484 4485 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY); 4486 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK); 4487 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) + 4488 memcg_page_state(memcg, NR_ACTIVE_FILE); 4489 4490 *pheadroom = PAGE_COUNTER_MAX; 4491 while ((parent = parent_mem_cgroup(memcg))) { 4492 unsigned long ceiling = min(READ_ONCE(memcg->memory.max), 4493 READ_ONCE(memcg->memory.high)); 4494 unsigned long used = page_counter_read(&memcg->memory); 4495 4496 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); 4497 memcg = parent; 4498 } 4499 } 4500 4501 /* 4502 * Foreign dirty flushing 4503 * 4504 * There's an inherent mismatch between memcg and writeback. The former 4505 * tracks ownership per-page while the latter per-inode. This was a 4506 * deliberate design decision because honoring per-page ownership in the 4507 * writeback path is complicated, may lead to higher CPU and IO overheads 4508 * and deemed unnecessary given that write-sharing an inode across 4509 * different cgroups isn't a common use-case. 4510 * 4511 * Combined with inode majority-writer ownership switching, this works well 4512 * enough in most cases but there are some pathological cases. For 4513 * example, let's say there are two cgroups A and B which keep writing to 4514 * different but confined parts of the same inode. B owns the inode and 4515 * A's memory is limited far below B's. A's dirty ratio can rise enough to 4516 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid 4517 * triggering background writeback. A will be slowed down without a way to 4518 * make writeback of the dirty pages happen. 4519 * 4520 * Conditions like the above can lead to a cgroup getting repeatedly and 4521 * severely throttled after making some progress after each 4522 * dirty_expire_interval while the underlying IO device is almost 4523 * completely idle. 4524 * 4525 * Solving this problem completely requires matching the ownership tracking 4526 * granularities between memcg and writeback in either direction. However, 4527 * the more egregious behaviors can be avoided by simply remembering the 4528 * most recent foreign dirtying events and initiating remote flushes on 4529 * them when local writeback isn't enough to keep the memory clean enough. 4530 * 4531 * The following two functions implement such mechanism. When a foreign 4532 * page - a page whose memcg and writeback ownerships don't match - is 4533 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning 4534 * bdi_writeback on the page owning memcg. When balance_dirty_pages() 4535 * decides that the memcg needs to sleep due to high dirty ratio, it calls 4536 * mem_cgroup_flush_foreign() which queues writeback on the recorded 4537 * foreign bdi_writebacks which haven't expired. Both the numbers of 4538 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are 4539 * limited to MEMCG_CGWB_FRN_CNT. 4540 * 4541 * The mechanism only remembers IDs and doesn't hold any object references. 4542 * As being wrong occasionally doesn't matter, updates and accesses to the 4543 * records are lockless and racy. 4544 */ 4545 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page, 4546 struct bdi_writeback *wb) 4547 { 4548 struct mem_cgroup *memcg = page_memcg(page); 4549 struct memcg_cgwb_frn *frn; 4550 u64 now = get_jiffies_64(); 4551 u64 oldest_at = now; 4552 int oldest = -1; 4553 int i; 4554 4555 trace_track_foreign_dirty(page, wb); 4556 4557 /* 4558 * Pick the slot to use. If there is already a slot for @wb, keep 4559 * using it. If not replace the oldest one which isn't being 4560 * written out. 4561 */ 4562 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 4563 frn = &memcg->cgwb_frn[i]; 4564 if (frn->bdi_id == wb->bdi->id && 4565 frn->memcg_id == wb->memcg_css->id) 4566 break; 4567 if (time_before64(frn->at, oldest_at) && 4568 atomic_read(&frn->done.cnt) == 1) { 4569 oldest = i; 4570 oldest_at = frn->at; 4571 } 4572 } 4573 4574 if (i < MEMCG_CGWB_FRN_CNT) { 4575 /* 4576 * Re-using an existing one. Update timestamp lazily to 4577 * avoid making the cacheline hot. We want them to be 4578 * reasonably up-to-date and significantly shorter than 4579 * dirty_expire_interval as that's what expires the record. 4580 * Use the shorter of 1s and dirty_expire_interval / 8. 4581 */ 4582 unsigned long update_intv = 4583 min_t(unsigned long, HZ, 4584 msecs_to_jiffies(dirty_expire_interval * 10) / 8); 4585 4586 if (time_before64(frn->at, now - update_intv)) 4587 frn->at = now; 4588 } else if (oldest >= 0) { 4589 /* replace the oldest free one */ 4590 frn = &memcg->cgwb_frn[oldest]; 4591 frn->bdi_id = wb->bdi->id; 4592 frn->memcg_id = wb->memcg_css->id; 4593 frn->at = now; 4594 } 4595 } 4596 4597 /* issue foreign writeback flushes for recorded foreign dirtying events */ 4598 void mem_cgroup_flush_foreign(struct bdi_writeback *wb) 4599 { 4600 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4601 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10); 4602 u64 now = jiffies_64; 4603 int i; 4604 4605 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 4606 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i]; 4607 4608 /* 4609 * If the record is older than dirty_expire_interval, 4610 * writeback on it has already started. No need to kick it 4611 * off again. Also, don't start a new one if there's 4612 * already one in flight. 4613 */ 4614 if (time_after64(frn->at, now - intv) && 4615 atomic_read(&frn->done.cnt) == 1) { 4616 frn->at = 0; 4617 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id); 4618 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 4619 WB_REASON_FOREIGN_FLUSH, 4620 &frn->done); 4621 } 4622 } 4623 } 4624 4625 #else /* CONFIG_CGROUP_WRITEBACK */ 4626 4627 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 4628 { 4629 return 0; 4630 } 4631 4632 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 4633 { 4634 } 4635 4636 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 4637 { 4638 } 4639 4640 #endif /* CONFIG_CGROUP_WRITEBACK */ 4641 4642 /* 4643 * DO NOT USE IN NEW FILES. 4644 * 4645 * "cgroup.event_control" implementation. 4646 * 4647 * This is way over-engineered. It tries to support fully configurable 4648 * events for each user. Such level of flexibility is completely 4649 * unnecessary especially in the light of the planned unified hierarchy. 4650 * 4651 * Please deprecate this and replace with something simpler if at all 4652 * possible. 4653 */ 4654 4655 /* 4656 * Unregister event and free resources. 4657 * 4658 * Gets called from workqueue. 4659 */ 4660 static void memcg_event_remove(struct work_struct *work) 4661 { 4662 struct mem_cgroup_event *event = 4663 container_of(work, struct mem_cgroup_event, remove); 4664 struct mem_cgroup *memcg = event->memcg; 4665 4666 remove_wait_queue(event->wqh, &event->wait); 4667 4668 event->unregister_event(memcg, event->eventfd); 4669 4670 /* Notify userspace the event is going away. */ 4671 eventfd_signal(event->eventfd, 1); 4672 4673 eventfd_ctx_put(event->eventfd); 4674 kfree(event); 4675 css_put(&memcg->css); 4676 } 4677 4678 /* 4679 * Gets called on EPOLLHUP on eventfd when user closes it. 4680 * 4681 * Called with wqh->lock held and interrupts disabled. 4682 */ 4683 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode, 4684 int sync, void *key) 4685 { 4686 struct mem_cgroup_event *event = 4687 container_of(wait, struct mem_cgroup_event, wait); 4688 struct mem_cgroup *memcg = event->memcg; 4689 __poll_t flags = key_to_poll(key); 4690 4691 if (flags & EPOLLHUP) { 4692 /* 4693 * If the event has been detached at cgroup removal, we 4694 * can simply return knowing the other side will cleanup 4695 * for us. 4696 * 4697 * We can't race against event freeing since the other 4698 * side will require wqh->lock via remove_wait_queue(), 4699 * which we hold. 4700 */ 4701 spin_lock(&memcg->event_list_lock); 4702 if (!list_empty(&event->list)) { 4703 list_del_init(&event->list); 4704 /* 4705 * We are in atomic context, but cgroup_event_remove() 4706 * may sleep, so we have to call it in workqueue. 4707 */ 4708 schedule_work(&event->remove); 4709 } 4710 spin_unlock(&memcg->event_list_lock); 4711 } 4712 4713 return 0; 4714 } 4715 4716 static void memcg_event_ptable_queue_proc(struct file *file, 4717 wait_queue_head_t *wqh, poll_table *pt) 4718 { 4719 struct mem_cgroup_event *event = 4720 container_of(pt, struct mem_cgroup_event, pt); 4721 4722 event->wqh = wqh; 4723 add_wait_queue(wqh, &event->wait); 4724 } 4725 4726 /* 4727 * DO NOT USE IN NEW FILES. 4728 * 4729 * Parse input and register new cgroup event handler. 4730 * 4731 * Input must be in format '<event_fd> <control_fd> <args>'. 4732 * Interpretation of args is defined by control file implementation. 4733 */ 4734 static ssize_t memcg_write_event_control(struct kernfs_open_file *of, 4735 char *buf, size_t nbytes, loff_t off) 4736 { 4737 struct cgroup_subsys_state *css = of_css(of); 4738 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4739 struct mem_cgroup_event *event; 4740 struct cgroup_subsys_state *cfile_css; 4741 unsigned int efd, cfd; 4742 struct fd efile; 4743 struct fd cfile; 4744 const char *name; 4745 char *endp; 4746 int ret; 4747 4748 buf = strstrip(buf); 4749 4750 efd = simple_strtoul(buf, &endp, 10); 4751 if (*endp != ' ') 4752 return -EINVAL; 4753 buf = endp + 1; 4754 4755 cfd = simple_strtoul(buf, &endp, 10); 4756 if ((*endp != ' ') && (*endp != '\0')) 4757 return -EINVAL; 4758 buf = endp + 1; 4759 4760 event = kzalloc(sizeof(*event), GFP_KERNEL); 4761 if (!event) 4762 return -ENOMEM; 4763 4764 event->memcg = memcg; 4765 INIT_LIST_HEAD(&event->list); 4766 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc); 4767 init_waitqueue_func_entry(&event->wait, memcg_event_wake); 4768 INIT_WORK(&event->remove, memcg_event_remove); 4769 4770 efile = fdget(efd); 4771 if (!efile.file) { 4772 ret = -EBADF; 4773 goto out_kfree; 4774 } 4775 4776 event->eventfd = eventfd_ctx_fileget(efile.file); 4777 if (IS_ERR(event->eventfd)) { 4778 ret = PTR_ERR(event->eventfd); 4779 goto out_put_efile; 4780 } 4781 4782 cfile = fdget(cfd); 4783 if (!cfile.file) { 4784 ret = -EBADF; 4785 goto out_put_eventfd; 4786 } 4787 4788 /* the process need read permission on control file */ 4789 /* AV: shouldn't we check that it's been opened for read instead? */ 4790 ret = file_permission(cfile.file, MAY_READ); 4791 if (ret < 0) 4792 goto out_put_cfile; 4793 4794 /* 4795 * Determine the event callbacks and set them in @event. This used 4796 * to be done via struct cftype but cgroup core no longer knows 4797 * about these events. The following is crude but the whole thing 4798 * is for compatibility anyway. 4799 * 4800 * DO NOT ADD NEW FILES. 4801 */ 4802 name = cfile.file->f_path.dentry->d_name.name; 4803 4804 if (!strcmp(name, "memory.usage_in_bytes")) { 4805 event->register_event = mem_cgroup_usage_register_event; 4806 event->unregister_event = mem_cgroup_usage_unregister_event; 4807 } else if (!strcmp(name, "memory.oom_control")) { 4808 event->register_event = mem_cgroup_oom_register_event; 4809 event->unregister_event = mem_cgroup_oom_unregister_event; 4810 } else if (!strcmp(name, "memory.pressure_level")) { 4811 event->register_event = vmpressure_register_event; 4812 event->unregister_event = vmpressure_unregister_event; 4813 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) { 4814 event->register_event = memsw_cgroup_usage_register_event; 4815 event->unregister_event = memsw_cgroup_usage_unregister_event; 4816 } else { 4817 ret = -EINVAL; 4818 goto out_put_cfile; 4819 } 4820 4821 /* 4822 * Verify @cfile should belong to @css. Also, remaining events are 4823 * automatically removed on cgroup destruction but the removal is 4824 * asynchronous, so take an extra ref on @css. 4825 */ 4826 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent, 4827 &memory_cgrp_subsys); 4828 ret = -EINVAL; 4829 if (IS_ERR(cfile_css)) 4830 goto out_put_cfile; 4831 if (cfile_css != css) { 4832 css_put(cfile_css); 4833 goto out_put_cfile; 4834 } 4835 4836 ret = event->register_event(memcg, event->eventfd, buf); 4837 if (ret) 4838 goto out_put_css; 4839 4840 vfs_poll(efile.file, &event->pt); 4841 4842 spin_lock_irq(&memcg->event_list_lock); 4843 list_add(&event->list, &memcg->event_list); 4844 spin_unlock_irq(&memcg->event_list_lock); 4845 4846 fdput(cfile); 4847 fdput(efile); 4848 4849 return nbytes; 4850 4851 out_put_css: 4852 css_put(css); 4853 out_put_cfile: 4854 fdput(cfile); 4855 out_put_eventfd: 4856 eventfd_ctx_put(event->eventfd); 4857 out_put_efile: 4858 fdput(efile); 4859 out_kfree: 4860 kfree(event); 4861 4862 return ret; 4863 } 4864 4865 static struct cftype mem_cgroup_legacy_files[] = { 4866 { 4867 .name = "usage_in_bytes", 4868 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 4869 .read_u64 = mem_cgroup_read_u64, 4870 }, 4871 { 4872 .name = "max_usage_in_bytes", 4873 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 4874 .write = mem_cgroup_reset, 4875 .read_u64 = mem_cgroup_read_u64, 4876 }, 4877 { 4878 .name = "limit_in_bytes", 4879 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 4880 .write = mem_cgroup_write, 4881 .read_u64 = mem_cgroup_read_u64, 4882 }, 4883 { 4884 .name = "soft_limit_in_bytes", 4885 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 4886 .write = mem_cgroup_write, 4887 .read_u64 = mem_cgroup_read_u64, 4888 }, 4889 { 4890 .name = "failcnt", 4891 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 4892 .write = mem_cgroup_reset, 4893 .read_u64 = mem_cgroup_read_u64, 4894 }, 4895 { 4896 .name = "stat", 4897 .seq_show = memcg_stat_show, 4898 }, 4899 { 4900 .name = "force_empty", 4901 .write = mem_cgroup_force_empty_write, 4902 }, 4903 { 4904 .name = "use_hierarchy", 4905 .write_u64 = mem_cgroup_hierarchy_write, 4906 .read_u64 = mem_cgroup_hierarchy_read, 4907 }, 4908 { 4909 .name = "cgroup.event_control", /* XXX: for compat */ 4910 .write = memcg_write_event_control, 4911 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE, 4912 }, 4913 { 4914 .name = "swappiness", 4915 .read_u64 = mem_cgroup_swappiness_read, 4916 .write_u64 = mem_cgroup_swappiness_write, 4917 }, 4918 { 4919 .name = "move_charge_at_immigrate", 4920 .read_u64 = mem_cgroup_move_charge_read, 4921 .write_u64 = mem_cgroup_move_charge_write, 4922 }, 4923 { 4924 .name = "oom_control", 4925 .seq_show = mem_cgroup_oom_control_read, 4926 .write_u64 = mem_cgroup_oom_control_write, 4927 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), 4928 }, 4929 { 4930 .name = "pressure_level", 4931 }, 4932 #ifdef CONFIG_NUMA 4933 { 4934 .name = "numa_stat", 4935 .seq_show = memcg_numa_stat_show, 4936 }, 4937 #endif 4938 { 4939 .name = "kmem.limit_in_bytes", 4940 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), 4941 .write = mem_cgroup_write, 4942 .read_u64 = mem_cgroup_read_u64, 4943 }, 4944 { 4945 .name = "kmem.usage_in_bytes", 4946 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), 4947 .read_u64 = mem_cgroup_read_u64, 4948 }, 4949 { 4950 .name = "kmem.failcnt", 4951 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), 4952 .write = mem_cgroup_reset, 4953 .read_u64 = mem_cgroup_read_u64, 4954 }, 4955 { 4956 .name = "kmem.max_usage_in_bytes", 4957 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), 4958 .write = mem_cgroup_reset, 4959 .read_u64 = mem_cgroup_read_u64, 4960 }, 4961 #if defined(CONFIG_MEMCG_KMEM) && \ 4962 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)) 4963 { 4964 .name = "kmem.slabinfo", 4965 .seq_show = memcg_slab_show, 4966 }, 4967 #endif 4968 { 4969 .name = "kmem.tcp.limit_in_bytes", 4970 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT), 4971 .write = mem_cgroup_write, 4972 .read_u64 = mem_cgroup_read_u64, 4973 }, 4974 { 4975 .name = "kmem.tcp.usage_in_bytes", 4976 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE), 4977 .read_u64 = mem_cgroup_read_u64, 4978 }, 4979 { 4980 .name = "kmem.tcp.failcnt", 4981 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT), 4982 .write = mem_cgroup_reset, 4983 .read_u64 = mem_cgroup_read_u64, 4984 }, 4985 { 4986 .name = "kmem.tcp.max_usage_in_bytes", 4987 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE), 4988 .write = mem_cgroup_reset, 4989 .read_u64 = mem_cgroup_read_u64, 4990 }, 4991 { }, /* terminate */ 4992 }; 4993 4994 /* 4995 * Private memory cgroup IDR 4996 * 4997 * Swap-out records and page cache shadow entries need to store memcg 4998 * references in constrained space, so we maintain an ID space that is 4999 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of 5000 * memory-controlled cgroups to 64k. 5001 * 5002 * However, there usually are many references to the offline CSS after 5003 * the cgroup has been destroyed, such as page cache or reclaimable 5004 * slab objects, that don't need to hang on to the ID. We want to keep 5005 * those dead CSS from occupying IDs, or we might quickly exhaust the 5006 * relatively small ID space and prevent the creation of new cgroups 5007 * even when there are much fewer than 64k cgroups - possibly none. 5008 * 5009 * Maintain a private 16-bit ID space for memcg, and allow the ID to 5010 * be freed and recycled when it's no longer needed, which is usually 5011 * when the CSS is offlined. 5012 * 5013 * The only exception to that are records of swapped out tmpfs/shmem 5014 * pages that need to be attributed to live ancestors on swapin. But 5015 * those references are manageable from userspace. 5016 */ 5017 5018 static DEFINE_IDR(mem_cgroup_idr); 5019 5020 static void mem_cgroup_id_remove(struct mem_cgroup *memcg) 5021 { 5022 if (memcg->id.id > 0) { 5023 idr_remove(&mem_cgroup_idr, memcg->id.id); 5024 memcg->id.id = 0; 5025 } 5026 } 5027 5028 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg, 5029 unsigned int n) 5030 { 5031 refcount_add(n, &memcg->id.ref); 5032 } 5033 5034 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n) 5035 { 5036 if (refcount_sub_and_test(n, &memcg->id.ref)) { 5037 mem_cgroup_id_remove(memcg); 5038 5039 /* Memcg ID pins CSS */ 5040 css_put(&memcg->css); 5041 } 5042 } 5043 5044 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg) 5045 { 5046 mem_cgroup_id_put_many(memcg, 1); 5047 } 5048 5049 /** 5050 * mem_cgroup_from_id - look up a memcg from a memcg id 5051 * @id: the memcg id to look up 5052 * 5053 * Caller must hold rcu_read_lock(). 5054 */ 5055 struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 5056 { 5057 WARN_ON_ONCE(!rcu_read_lock_held()); 5058 return idr_find(&mem_cgroup_idr, id); 5059 } 5060 5061 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 5062 { 5063 struct mem_cgroup_per_node *pn; 5064 int tmp = node; 5065 /* 5066 * This routine is called against possible nodes. 5067 * But it's BUG to call kmalloc() against offline node. 5068 * 5069 * TODO: this routine can waste much memory for nodes which will 5070 * never be onlined. It's better to use memory hotplug callback 5071 * function. 5072 */ 5073 if (!node_state(node, N_NORMAL_MEMORY)) 5074 tmp = -1; 5075 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); 5076 if (!pn) 5077 return 1; 5078 5079 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu, 5080 GFP_KERNEL_ACCOUNT); 5081 if (!pn->lruvec_stats_percpu) { 5082 kfree(pn); 5083 return 1; 5084 } 5085 5086 lruvec_init(&pn->lruvec); 5087 pn->usage_in_excess = 0; 5088 pn->on_tree = false; 5089 pn->memcg = memcg; 5090 5091 memcg->nodeinfo[node] = pn; 5092 return 0; 5093 } 5094 5095 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 5096 { 5097 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node]; 5098 5099 if (!pn) 5100 return; 5101 5102 free_percpu(pn->lruvec_stats_percpu); 5103 kfree(pn); 5104 } 5105 5106 static void __mem_cgroup_free(struct mem_cgroup *memcg) 5107 { 5108 int node; 5109 5110 for_each_node(node) 5111 free_mem_cgroup_per_node_info(memcg, node); 5112 free_percpu(memcg->vmstats_percpu); 5113 kfree(memcg); 5114 } 5115 5116 static void mem_cgroup_free(struct mem_cgroup *memcg) 5117 { 5118 memcg_wb_domain_exit(memcg); 5119 __mem_cgroup_free(memcg); 5120 } 5121 5122 static struct mem_cgroup *mem_cgroup_alloc(void) 5123 { 5124 struct mem_cgroup *memcg; 5125 unsigned int size; 5126 int node; 5127 int __maybe_unused i; 5128 long error = -ENOMEM; 5129 5130 size = sizeof(struct mem_cgroup); 5131 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *); 5132 5133 memcg = kzalloc(size, GFP_KERNEL); 5134 if (!memcg) 5135 return ERR_PTR(error); 5136 5137 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL, 5138 1, MEM_CGROUP_ID_MAX, 5139 GFP_KERNEL); 5140 if (memcg->id.id < 0) { 5141 error = memcg->id.id; 5142 goto fail; 5143 } 5144 5145 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu, 5146 GFP_KERNEL_ACCOUNT); 5147 if (!memcg->vmstats_percpu) 5148 goto fail; 5149 5150 for_each_node(node) 5151 if (alloc_mem_cgroup_per_node_info(memcg, node)) 5152 goto fail; 5153 5154 if (memcg_wb_domain_init(memcg, GFP_KERNEL)) 5155 goto fail; 5156 5157 INIT_WORK(&memcg->high_work, high_work_func); 5158 INIT_LIST_HEAD(&memcg->oom_notify); 5159 mutex_init(&memcg->thresholds_lock); 5160 spin_lock_init(&memcg->move_lock); 5161 vmpressure_init(&memcg->vmpressure); 5162 INIT_LIST_HEAD(&memcg->event_list); 5163 spin_lock_init(&memcg->event_list_lock); 5164 memcg->socket_pressure = jiffies; 5165 #ifdef CONFIG_MEMCG_KMEM 5166 memcg->kmemcg_id = -1; 5167 INIT_LIST_HEAD(&memcg->objcg_list); 5168 #endif 5169 #ifdef CONFIG_CGROUP_WRITEBACK 5170 INIT_LIST_HEAD(&memcg->cgwb_list); 5171 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 5172 memcg->cgwb_frn[i].done = 5173 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq); 5174 #endif 5175 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5176 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock); 5177 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue); 5178 memcg->deferred_split_queue.split_queue_len = 0; 5179 #endif 5180 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id); 5181 return memcg; 5182 fail: 5183 mem_cgroup_id_remove(memcg); 5184 __mem_cgroup_free(memcg); 5185 return ERR_PTR(error); 5186 } 5187 5188 static struct cgroup_subsys_state * __ref 5189 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 5190 { 5191 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); 5192 struct mem_cgroup *memcg, *old_memcg; 5193 long error = -ENOMEM; 5194 5195 old_memcg = set_active_memcg(parent); 5196 memcg = mem_cgroup_alloc(); 5197 set_active_memcg(old_memcg); 5198 if (IS_ERR(memcg)) 5199 return ERR_CAST(memcg); 5200 5201 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 5202 memcg->soft_limit = PAGE_COUNTER_MAX; 5203 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 5204 if (parent) { 5205 memcg->swappiness = mem_cgroup_swappiness(parent); 5206 memcg->oom_kill_disable = parent->oom_kill_disable; 5207 5208 page_counter_init(&memcg->memory, &parent->memory); 5209 page_counter_init(&memcg->swap, &parent->swap); 5210 page_counter_init(&memcg->kmem, &parent->kmem); 5211 page_counter_init(&memcg->tcpmem, &parent->tcpmem); 5212 } else { 5213 page_counter_init(&memcg->memory, NULL); 5214 page_counter_init(&memcg->swap, NULL); 5215 page_counter_init(&memcg->kmem, NULL); 5216 page_counter_init(&memcg->tcpmem, NULL); 5217 5218 root_mem_cgroup = memcg; 5219 return &memcg->css; 5220 } 5221 5222 /* The following stuff does not apply to the root */ 5223 error = memcg_online_kmem(memcg); 5224 if (error) 5225 goto fail; 5226 5227 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 5228 static_branch_inc(&memcg_sockets_enabled_key); 5229 5230 return &memcg->css; 5231 fail: 5232 mem_cgroup_id_remove(memcg); 5233 mem_cgroup_free(memcg); 5234 return ERR_PTR(error); 5235 } 5236 5237 static int mem_cgroup_css_online(struct cgroup_subsys_state *css) 5238 { 5239 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5240 5241 /* 5242 * A memcg must be visible for expand_shrinker_info() 5243 * by the time the maps are allocated. So, we allocate maps 5244 * here, when for_each_mem_cgroup() can't skip it. 5245 */ 5246 if (alloc_shrinker_info(memcg)) { 5247 mem_cgroup_id_remove(memcg); 5248 return -ENOMEM; 5249 } 5250 5251 /* Online state pins memcg ID, memcg ID pins CSS */ 5252 refcount_set(&memcg->id.ref, 1); 5253 css_get(css); 5254 5255 if (unlikely(mem_cgroup_is_root(memcg))) 5256 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, 5257 2UL*HZ); 5258 return 0; 5259 } 5260 5261 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 5262 { 5263 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5264 struct mem_cgroup_event *event, *tmp; 5265 5266 /* 5267 * Unregister events and notify userspace. 5268 * Notify userspace about cgroup removing only after rmdir of cgroup 5269 * directory to avoid race between userspace and kernelspace. 5270 */ 5271 spin_lock_irq(&memcg->event_list_lock); 5272 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) { 5273 list_del_init(&event->list); 5274 schedule_work(&event->remove); 5275 } 5276 spin_unlock_irq(&memcg->event_list_lock); 5277 5278 page_counter_set_min(&memcg->memory, 0); 5279 page_counter_set_low(&memcg->memory, 0); 5280 5281 memcg_offline_kmem(memcg); 5282 reparent_shrinker_deferred(memcg); 5283 wb_memcg_offline(memcg); 5284 5285 drain_all_stock(memcg); 5286 5287 mem_cgroup_id_put(memcg); 5288 } 5289 5290 static void mem_cgroup_css_released(struct cgroup_subsys_state *css) 5291 { 5292 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5293 5294 invalidate_reclaim_iterators(memcg); 5295 } 5296 5297 static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 5298 { 5299 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5300 int __maybe_unused i; 5301 5302 #ifdef CONFIG_CGROUP_WRITEBACK 5303 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 5304 wb_wait_for_completion(&memcg->cgwb_frn[i].done); 5305 #endif 5306 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 5307 static_branch_dec(&memcg_sockets_enabled_key); 5308 5309 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active) 5310 static_branch_dec(&memcg_sockets_enabled_key); 5311 5312 vmpressure_cleanup(&memcg->vmpressure); 5313 cancel_work_sync(&memcg->high_work); 5314 mem_cgroup_remove_from_trees(memcg); 5315 free_shrinker_info(memcg); 5316 memcg_free_kmem(memcg); 5317 mem_cgroup_free(memcg); 5318 } 5319 5320 /** 5321 * mem_cgroup_css_reset - reset the states of a mem_cgroup 5322 * @css: the target css 5323 * 5324 * Reset the states of the mem_cgroup associated with @css. This is 5325 * invoked when the userland requests disabling on the default hierarchy 5326 * but the memcg is pinned through dependency. The memcg should stop 5327 * applying policies and should revert to the vanilla state as it may be 5328 * made visible again. 5329 * 5330 * The current implementation only resets the essential configurations. 5331 * This needs to be expanded to cover all the visible parts. 5332 */ 5333 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) 5334 { 5335 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5336 5337 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX); 5338 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX); 5339 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX); 5340 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX); 5341 page_counter_set_min(&memcg->memory, 0); 5342 page_counter_set_low(&memcg->memory, 0); 5343 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 5344 memcg->soft_limit = PAGE_COUNTER_MAX; 5345 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 5346 memcg_wb_domain_size_changed(memcg); 5347 } 5348 5349 void mem_cgroup_flush_stats(void) 5350 { 5351 if (!spin_trylock(&stats_flush_lock)) 5352 return; 5353 5354 cgroup_rstat_flush_irqsafe(root_mem_cgroup->css.cgroup); 5355 spin_unlock(&stats_flush_lock); 5356 } 5357 5358 static void flush_memcg_stats_dwork(struct work_struct *w) 5359 { 5360 mem_cgroup_flush_stats(); 5361 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, 2UL*HZ); 5362 } 5363 5364 static void flush_memcg_stats_work(struct work_struct *w) 5365 { 5366 mem_cgroup_flush_stats(); 5367 } 5368 5369 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu) 5370 { 5371 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5372 struct mem_cgroup *parent = parent_mem_cgroup(memcg); 5373 struct memcg_vmstats_percpu *statc; 5374 long delta, v; 5375 int i, nid; 5376 5377 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu); 5378 5379 for (i = 0; i < MEMCG_NR_STAT; i++) { 5380 /* 5381 * Collect the aggregated propagation counts of groups 5382 * below us. We're in a per-cpu loop here and this is 5383 * a global counter, so the first cycle will get them. 5384 */ 5385 delta = memcg->vmstats.state_pending[i]; 5386 if (delta) 5387 memcg->vmstats.state_pending[i] = 0; 5388 5389 /* Add CPU changes on this level since the last flush */ 5390 v = READ_ONCE(statc->state[i]); 5391 if (v != statc->state_prev[i]) { 5392 delta += v - statc->state_prev[i]; 5393 statc->state_prev[i] = v; 5394 } 5395 5396 if (!delta) 5397 continue; 5398 5399 /* Aggregate counts on this level and propagate upwards */ 5400 memcg->vmstats.state[i] += delta; 5401 if (parent) 5402 parent->vmstats.state_pending[i] += delta; 5403 } 5404 5405 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) { 5406 delta = memcg->vmstats.events_pending[i]; 5407 if (delta) 5408 memcg->vmstats.events_pending[i] = 0; 5409 5410 v = READ_ONCE(statc->events[i]); 5411 if (v != statc->events_prev[i]) { 5412 delta += v - statc->events_prev[i]; 5413 statc->events_prev[i] = v; 5414 } 5415 5416 if (!delta) 5417 continue; 5418 5419 memcg->vmstats.events[i] += delta; 5420 if (parent) 5421 parent->vmstats.events_pending[i] += delta; 5422 } 5423 5424 for_each_node_state(nid, N_MEMORY) { 5425 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid]; 5426 struct mem_cgroup_per_node *ppn = NULL; 5427 struct lruvec_stats_percpu *lstatc; 5428 5429 if (parent) 5430 ppn = parent->nodeinfo[nid]; 5431 5432 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu); 5433 5434 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) { 5435 delta = pn->lruvec_stats.state_pending[i]; 5436 if (delta) 5437 pn->lruvec_stats.state_pending[i] = 0; 5438 5439 v = READ_ONCE(lstatc->state[i]); 5440 if (v != lstatc->state_prev[i]) { 5441 delta += v - lstatc->state_prev[i]; 5442 lstatc->state_prev[i] = v; 5443 } 5444 5445 if (!delta) 5446 continue; 5447 5448 pn->lruvec_stats.state[i] += delta; 5449 if (ppn) 5450 ppn->lruvec_stats.state_pending[i] += delta; 5451 } 5452 } 5453 } 5454 5455 #ifdef CONFIG_MMU 5456 /* Handlers for move charge at task migration. */ 5457 static int mem_cgroup_do_precharge(unsigned long count) 5458 { 5459 int ret; 5460 5461 /* Try a single bulk charge without reclaim first, kswapd may wake */ 5462 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count); 5463 if (!ret) { 5464 mc.precharge += count; 5465 return ret; 5466 } 5467 5468 /* Try charges one by one with reclaim, but do not retry */ 5469 while (count--) { 5470 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1); 5471 if (ret) 5472 return ret; 5473 mc.precharge++; 5474 cond_resched(); 5475 } 5476 return 0; 5477 } 5478 5479 union mc_target { 5480 struct page *page; 5481 swp_entry_t ent; 5482 }; 5483 5484 enum mc_target_type { 5485 MC_TARGET_NONE = 0, 5486 MC_TARGET_PAGE, 5487 MC_TARGET_SWAP, 5488 MC_TARGET_DEVICE, 5489 }; 5490 5491 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 5492 unsigned long addr, pte_t ptent) 5493 { 5494 struct page *page = vm_normal_page(vma, addr, ptent); 5495 5496 if (!page || !page_mapped(page)) 5497 return NULL; 5498 if (PageAnon(page)) { 5499 if (!(mc.flags & MOVE_ANON)) 5500 return NULL; 5501 } else { 5502 if (!(mc.flags & MOVE_FILE)) 5503 return NULL; 5504 } 5505 if (!get_page_unless_zero(page)) 5506 return NULL; 5507 5508 return page; 5509 } 5510 5511 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE) 5512 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5513 pte_t ptent, swp_entry_t *entry) 5514 { 5515 struct page *page = NULL; 5516 swp_entry_t ent = pte_to_swp_entry(ptent); 5517 5518 if (!(mc.flags & MOVE_ANON)) 5519 return NULL; 5520 5521 /* 5522 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to 5523 * a device and because they are not accessible by CPU they are store 5524 * as special swap entry in the CPU page table. 5525 */ 5526 if (is_device_private_entry(ent)) { 5527 page = pfn_swap_entry_to_page(ent); 5528 /* 5529 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have 5530 * a refcount of 1 when free (unlike normal page) 5531 */ 5532 if (!page_ref_add_unless(page, 1, 1)) 5533 return NULL; 5534 return page; 5535 } 5536 5537 if (non_swap_entry(ent)) 5538 return NULL; 5539 5540 /* 5541 * Because lookup_swap_cache() updates some statistics counter, 5542 * we call find_get_page() with swapper_space directly. 5543 */ 5544 page = find_get_page(swap_address_space(ent), swp_offset(ent)); 5545 entry->val = ent.val; 5546 5547 return page; 5548 } 5549 #else 5550 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5551 pte_t ptent, swp_entry_t *entry) 5552 { 5553 return NULL; 5554 } 5555 #endif 5556 5557 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 5558 unsigned long addr, pte_t ptent, swp_entry_t *entry) 5559 { 5560 if (!vma->vm_file) /* anonymous vma */ 5561 return NULL; 5562 if (!(mc.flags & MOVE_FILE)) 5563 return NULL; 5564 5565 /* page is moved even if it's not RSS of this task(page-faulted). */ 5566 /* shmem/tmpfs may report page out on swap: account for that too. */ 5567 return find_get_incore_page(vma->vm_file->f_mapping, 5568 linear_page_index(vma, addr)); 5569 } 5570 5571 /** 5572 * mem_cgroup_move_account - move account of the page 5573 * @page: the page 5574 * @compound: charge the page as compound or small page 5575 * @from: mem_cgroup which the page is moved from. 5576 * @to: mem_cgroup which the page is moved to. @from != @to. 5577 * 5578 * The caller must make sure the page is not on LRU (isolate_page() is useful.) 5579 * 5580 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" 5581 * from old cgroup. 5582 */ 5583 static int mem_cgroup_move_account(struct page *page, 5584 bool compound, 5585 struct mem_cgroup *from, 5586 struct mem_cgroup *to) 5587 { 5588 struct lruvec *from_vec, *to_vec; 5589 struct pglist_data *pgdat; 5590 unsigned int nr_pages = compound ? thp_nr_pages(page) : 1; 5591 int ret; 5592 5593 VM_BUG_ON(from == to); 5594 VM_BUG_ON_PAGE(PageLRU(page), page); 5595 VM_BUG_ON(compound && !PageTransHuge(page)); 5596 5597 /* 5598 * Prevent mem_cgroup_migrate() from looking at 5599 * page's memory cgroup of its source page while we change it. 5600 */ 5601 ret = -EBUSY; 5602 if (!trylock_page(page)) 5603 goto out; 5604 5605 ret = -EINVAL; 5606 if (page_memcg(page) != from) 5607 goto out_unlock; 5608 5609 pgdat = page_pgdat(page); 5610 from_vec = mem_cgroup_lruvec(from, pgdat); 5611 to_vec = mem_cgroup_lruvec(to, pgdat); 5612 5613 lock_page_memcg(page); 5614 5615 if (PageAnon(page)) { 5616 if (page_mapped(page)) { 5617 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages); 5618 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages); 5619 if (PageTransHuge(page)) { 5620 __mod_lruvec_state(from_vec, NR_ANON_THPS, 5621 -nr_pages); 5622 __mod_lruvec_state(to_vec, NR_ANON_THPS, 5623 nr_pages); 5624 } 5625 } 5626 } else { 5627 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages); 5628 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages); 5629 5630 if (PageSwapBacked(page)) { 5631 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages); 5632 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages); 5633 } 5634 5635 if (page_mapped(page)) { 5636 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages); 5637 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages); 5638 } 5639 5640 if (PageDirty(page)) { 5641 struct address_space *mapping = page_mapping(page); 5642 5643 if (mapping_can_writeback(mapping)) { 5644 __mod_lruvec_state(from_vec, NR_FILE_DIRTY, 5645 -nr_pages); 5646 __mod_lruvec_state(to_vec, NR_FILE_DIRTY, 5647 nr_pages); 5648 } 5649 } 5650 } 5651 5652 if (PageWriteback(page)) { 5653 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages); 5654 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages); 5655 } 5656 5657 /* 5658 * All state has been migrated, let's switch to the new memcg. 5659 * 5660 * It is safe to change page's memcg here because the page 5661 * is referenced, charged, isolated, and locked: we can't race 5662 * with (un)charging, migration, LRU putback, or anything else 5663 * that would rely on a stable page's memory cgroup. 5664 * 5665 * Note that lock_page_memcg is a memcg lock, not a page lock, 5666 * to save space. As soon as we switch page's memory cgroup to a 5667 * new memcg that isn't locked, the above state can change 5668 * concurrently again. Make sure we're truly done with it. 5669 */ 5670 smp_mb(); 5671 5672 css_get(&to->css); 5673 css_put(&from->css); 5674 5675 page->memcg_data = (unsigned long)to; 5676 5677 __unlock_page_memcg(from); 5678 5679 ret = 0; 5680 5681 local_irq_disable(); 5682 mem_cgroup_charge_statistics(to, page, nr_pages); 5683 memcg_check_events(to, page); 5684 mem_cgroup_charge_statistics(from, page, -nr_pages); 5685 memcg_check_events(from, page); 5686 local_irq_enable(); 5687 out_unlock: 5688 unlock_page(page); 5689 out: 5690 return ret; 5691 } 5692 5693 /** 5694 * get_mctgt_type - get target type of moving charge 5695 * @vma: the vma the pte to be checked belongs 5696 * @addr: the address corresponding to the pte to be checked 5697 * @ptent: the pte to be checked 5698 * @target: the pointer the target page or swap ent will be stored(can be NULL) 5699 * 5700 * Returns 5701 * 0(MC_TARGET_NONE): if the pte is not a target for move charge. 5702 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for 5703 * move charge. if @target is not NULL, the page is stored in target->page 5704 * with extra refcnt got(Callers should handle it). 5705 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a 5706 * target for charge migration. if @target is not NULL, the entry is stored 5707 * in target->ent. 5708 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE 5709 * (so ZONE_DEVICE page and thus not on the lru). 5710 * For now we such page is charge like a regular page would be as for all 5711 * intent and purposes it is just special memory taking the place of a 5712 * regular page. 5713 * 5714 * See Documentations/vm/hmm.txt and include/linux/hmm.h 5715 * 5716 * Called with pte lock held. 5717 */ 5718 5719 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, 5720 unsigned long addr, pte_t ptent, union mc_target *target) 5721 { 5722 struct page *page = NULL; 5723 enum mc_target_type ret = MC_TARGET_NONE; 5724 swp_entry_t ent = { .val = 0 }; 5725 5726 if (pte_present(ptent)) 5727 page = mc_handle_present_pte(vma, addr, ptent); 5728 else if (is_swap_pte(ptent)) 5729 page = mc_handle_swap_pte(vma, ptent, &ent); 5730 else if (pte_none(ptent)) 5731 page = mc_handle_file_pte(vma, addr, ptent, &ent); 5732 5733 if (!page && !ent.val) 5734 return ret; 5735 if (page) { 5736 /* 5737 * Do only loose check w/o serialization. 5738 * mem_cgroup_move_account() checks the page is valid or 5739 * not under LRU exclusion. 5740 */ 5741 if (page_memcg(page) == mc.from) { 5742 ret = MC_TARGET_PAGE; 5743 if (is_device_private_page(page)) 5744 ret = MC_TARGET_DEVICE; 5745 if (target) 5746 target->page = page; 5747 } 5748 if (!ret || !target) 5749 put_page(page); 5750 } 5751 /* 5752 * There is a swap entry and a page doesn't exist or isn't charged. 5753 * But we cannot move a tail-page in a THP. 5754 */ 5755 if (ent.val && !ret && (!page || !PageTransCompound(page)) && 5756 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) { 5757 ret = MC_TARGET_SWAP; 5758 if (target) 5759 target->ent = ent; 5760 } 5761 return ret; 5762 } 5763 5764 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5765 /* 5766 * We don't consider PMD mapped swapping or file mapped pages because THP does 5767 * not support them for now. 5768 * Caller should make sure that pmd_trans_huge(pmd) is true. 5769 */ 5770 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5771 unsigned long addr, pmd_t pmd, union mc_target *target) 5772 { 5773 struct page *page = NULL; 5774 enum mc_target_type ret = MC_TARGET_NONE; 5775 5776 if (unlikely(is_swap_pmd(pmd))) { 5777 VM_BUG_ON(thp_migration_supported() && 5778 !is_pmd_migration_entry(pmd)); 5779 return ret; 5780 } 5781 page = pmd_page(pmd); 5782 VM_BUG_ON_PAGE(!page || !PageHead(page), page); 5783 if (!(mc.flags & MOVE_ANON)) 5784 return ret; 5785 if (page_memcg(page) == mc.from) { 5786 ret = MC_TARGET_PAGE; 5787 if (target) { 5788 get_page(page); 5789 target->page = page; 5790 } 5791 } 5792 return ret; 5793 } 5794 #else 5795 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5796 unsigned long addr, pmd_t pmd, union mc_target *target) 5797 { 5798 return MC_TARGET_NONE; 5799 } 5800 #endif 5801 5802 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 5803 unsigned long addr, unsigned long end, 5804 struct mm_walk *walk) 5805 { 5806 struct vm_area_struct *vma = walk->vma; 5807 pte_t *pte; 5808 spinlock_t *ptl; 5809 5810 ptl = pmd_trans_huge_lock(pmd, vma); 5811 if (ptl) { 5812 /* 5813 * Note their can not be MC_TARGET_DEVICE for now as we do not 5814 * support transparent huge page with MEMORY_DEVICE_PRIVATE but 5815 * this might change. 5816 */ 5817 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) 5818 mc.precharge += HPAGE_PMD_NR; 5819 spin_unlock(ptl); 5820 return 0; 5821 } 5822 5823 if (pmd_trans_unstable(pmd)) 5824 return 0; 5825 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 5826 for (; addr != end; pte++, addr += PAGE_SIZE) 5827 if (get_mctgt_type(vma, addr, *pte, NULL)) 5828 mc.precharge++; /* increment precharge temporarily */ 5829 pte_unmap_unlock(pte - 1, ptl); 5830 cond_resched(); 5831 5832 return 0; 5833 } 5834 5835 static const struct mm_walk_ops precharge_walk_ops = { 5836 .pmd_entry = mem_cgroup_count_precharge_pte_range, 5837 }; 5838 5839 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 5840 { 5841 unsigned long precharge; 5842 5843 mmap_read_lock(mm); 5844 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL); 5845 mmap_read_unlock(mm); 5846 5847 precharge = mc.precharge; 5848 mc.precharge = 0; 5849 5850 return precharge; 5851 } 5852 5853 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 5854 { 5855 unsigned long precharge = mem_cgroup_count_precharge(mm); 5856 5857 VM_BUG_ON(mc.moving_task); 5858 mc.moving_task = current; 5859 return mem_cgroup_do_precharge(precharge); 5860 } 5861 5862 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 5863 static void __mem_cgroup_clear_mc(void) 5864 { 5865 struct mem_cgroup *from = mc.from; 5866 struct mem_cgroup *to = mc.to; 5867 5868 /* we must uncharge all the leftover precharges from mc.to */ 5869 if (mc.precharge) { 5870 cancel_charge(mc.to, mc.precharge); 5871 mc.precharge = 0; 5872 } 5873 /* 5874 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 5875 * we must uncharge here. 5876 */ 5877 if (mc.moved_charge) { 5878 cancel_charge(mc.from, mc.moved_charge); 5879 mc.moved_charge = 0; 5880 } 5881 /* we must fixup refcnts and charges */ 5882 if (mc.moved_swap) { 5883 /* uncharge swap account from the old cgroup */ 5884 if (!mem_cgroup_is_root(mc.from)) 5885 page_counter_uncharge(&mc.from->memsw, mc.moved_swap); 5886 5887 mem_cgroup_id_put_many(mc.from, mc.moved_swap); 5888 5889 /* 5890 * we charged both to->memory and to->memsw, so we 5891 * should uncharge to->memory. 5892 */ 5893 if (!mem_cgroup_is_root(mc.to)) 5894 page_counter_uncharge(&mc.to->memory, mc.moved_swap); 5895 5896 mc.moved_swap = 0; 5897 } 5898 memcg_oom_recover(from); 5899 memcg_oom_recover(to); 5900 wake_up_all(&mc.waitq); 5901 } 5902 5903 static void mem_cgroup_clear_mc(void) 5904 { 5905 struct mm_struct *mm = mc.mm; 5906 5907 /* 5908 * we must clear moving_task before waking up waiters at the end of 5909 * task migration. 5910 */ 5911 mc.moving_task = NULL; 5912 __mem_cgroup_clear_mc(); 5913 spin_lock(&mc.lock); 5914 mc.from = NULL; 5915 mc.to = NULL; 5916 mc.mm = NULL; 5917 spin_unlock(&mc.lock); 5918 5919 mmput(mm); 5920 } 5921 5922 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 5923 { 5924 struct cgroup_subsys_state *css; 5925 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */ 5926 struct mem_cgroup *from; 5927 struct task_struct *leader, *p; 5928 struct mm_struct *mm; 5929 unsigned long move_flags; 5930 int ret = 0; 5931 5932 /* charge immigration isn't supported on the default hierarchy */ 5933 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5934 return 0; 5935 5936 /* 5937 * Multi-process migrations only happen on the default hierarchy 5938 * where charge immigration is not used. Perform charge 5939 * immigration if @tset contains a leader and whine if there are 5940 * multiple. 5941 */ 5942 p = NULL; 5943 cgroup_taskset_for_each_leader(leader, css, tset) { 5944 WARN_ON_ONCE(p); 5945 p = leader; 5946 memcg = mem_cgroup_from_css(css); 5947 } 5948 if (!p) 5949 return 0; 5950 5951 /* 5952 * We are now committed to this value whatever it is. Changes in this 5953 * tunable will only affect upcoming migrations, not the current one. 5954 * So we need to save it, and keep it going. 5955 */ 5956 move_flags = READ_ONCE(memcg->move_charge_at_immigrate); 5957 if (!move_flags) 5958 return 0; 5959 5960 from = mem_cgroup_from_task(p); 5961 5962 VM_BUG_ON(from == memcg); 5963 5964 mm = get_task_mm(p); 5965 if (!mm) 5966 return 0; 5967 /* We move charges only when we move a owner of the mm */ 5968 if (mm->owner == p) { 5969 VM_BUG_ON(mc.from); 5970 VM_BUG_ON(mc.to); 5971 VM_BUG_ON(mc.precharge); 5972 VM_BUG_ON(mc.moved_charge); 5973 VM_BUG_ON(mc.moved_swap); 5974 5975 spin_lock(&mc.lock); 5976 mc.mm = mm; 5977 mc.from = from; 5978 mc.to = memcg; 5979 mc.flags = move_flags; 5980 spin_unlock(&mc.lock); 5981 /* We set mc.moving_task later */ 5982 5983 ret = mem_cgroup_precharge_mc(mm); 5984 if (ret) 5985 mem_cgroup_clear_mc(); 5986 } else { 5987 mmput(mm); 5988 } 5989 return ret; 5990 } 5991 5992 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 5993 { 5994 if (mc.to) 5995 mem_cgroup_clear_mc(); 5996 } 5997 5998 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 5999 unsigned long addr, unsigned long end, 6000 struct mm_walk *walk) 6001 { 6002 int ret = 0; 6003 struct vm_area_struct *vma = walk->vma; 6004 pte_t *pte; 6005 spinlock_t *ptl; 6006 enum mc_target_type target_type; 6007 union mc_target target; 6008 struct page *page; 6009 6010 ptl = pmd_trans_huge_lock(pmd, vma); 6011 if (ptl) { 6012 if (mc.precharge < HPAGE_PMD_NR) { 6013 spin_unlock(ptl); 6014 return 0; 6015 } 6016 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); 6017 if (target_type == MC_TARGET_PAGE) { 6018 page = target.page; 6019 if (!isolate_lru_page(page)) { 6020 if (!mem_cgroup_move_account(page, true, 6021 mc.from, mc.to)) { 6022 mc.precharge -= HPAGE_PMD_NR; 6023 mc.moved_charge += HPAGE_PMD_NR; 6024 } 6025 putback_lru_page(page); 6026 } 6027 put_page(page); 6028 } else if (target_type == MC_TARGET_DEVICE) { 6029 page = target.page; 6030 if (!mem_cgroup_move_account(page, true, 6031 mc.from, mc.to)) { 6032 mc.precharge -= HPAGE_PMD_NR; 6033 mc.moved_charge += HPAGE_PMD_NR; 6034 } 6035 put_page(page); 6036 } 6037 spin_unlock(ptl); 6038 return 0; 6039 } 6040 6041 if (pmd_trans_unstable(pmd)) 6042 return 0; 6043 retry: 6044 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 6045 for (; addr != end; addr += PAGE_SIZE) { 6046 pte_t ptent = *(pte++); 6047 bool device = false; 6048 swp_entry_t ent; 6049 6050 if (!mc.precharge) 6051 break; 6052 6053 switch (get_mctgt_type(vma, addr, ptent, &target)) { 6054 case MC_TARGET_DEVICE: 6055 device = true; 6056 fallthrough; 6057 case MC_TARGET_PAGE: 6058 page = target.page; 6059 /* 6060 * We can have a part of the split pmd here. Moving it 6061 * can be done but it would be too convoluted so simply 6062 * ignore such a partial THP and keep it in original 6063 * memcg. There should be somebody mapping the head. 6064 */ 6065 if (PageTransCompound(page)) 6066 goto put; 6067 if (!device && isolate_lru_page(page)) 6068 goto put; 6069 if (!mem_cgroup_move_account(page, false, 6070 mc.from, mc.to)) { 6071 mc.precharge--; 6072 /* we uncharge from mc.from later. */ 6073 mc.moved_charge++; 6074 } 6075 if (!device) 6076 putback_lru_page(page); 6077 put: /* get_mctgt_type() gets the page */ 6078 put_page(page); 6079 break; 6080 case MC_TARGET_SWAP: 6081 ent = target.ent; 6082 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { 6083 mc.precharge--; 6084 mem_cgroup_id_get_many(mc.to, 1); 6085 /* we fixup other refcnts and charges later. */ 6086 mc.moved_swap++; 6087 } 6088 break; 6089 default: 6090 break; 6091 } 6092 } 6093 pte_unmap_unlock(pte - 1, ptl); 6094 cond_resched(); 6095 6096 if (addr != end) { 6097 /* 6098 * We have consumed all precharges we got in can_attach(). 6099 * We try charge one by one, but don't do any additional 6100 * charges to mc.to if we have failed in charge once in attach() 6101 * phase. 6102 */ 6103 ret = mem_cgroup_do_precharge(1); 6104 if (!ret) 6105 goto retry; 6106 } 6107 6108 return ret; 6109 } 6110 6111 static const struct mm_walk_ops charge_walk_ops = { 6112 .pmd_entry = mem_cgroup_move_charge_pte_range, 6113 }; 6114 6115 static void mem_cgroup_move_charge(void) 6116 { 6117 lru_add_drain_all(); 6118 /* 6119 * Signal lock_page_memcg() to take the memcg's move_lock 6120 * while we're moving its pages to another memcg. Then wait 6121 * for already started RCU-only updates to finish. 6122 */ 6123 atomic_inc(&mc.from->moving_account); 6124 synchronize_rcu(); 6125 retry: 6126 if (unlikely(!mmap_read_trylock(mc.mm))) { 6127 /* 6128 * Someone who are holding the mmap_lock might be waiting in 6129 * waitq. So we cancel all extra charges, wake up all waiters, 6130 * and retry. Because we cancel precharges, we might not be able 6131 * to move enough charges, but moving charge is a best-effort 6132 * feature anyway, so it wouldn't be a big problem. 6133 */ 6134 __mem_cgroup_clear_mc(); 6135 cond_resched(); 6136 goto retry; 6137 } 6138 /* 6139 * When we have consumed all precharges and failed in doing 6140 * additional charge, the page walk just aborts. 6141 */ 6142 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops, 6143 NULL); 6144 6145 mmap_read_unlock(mc.mm); 6146 atomic_dec(&mc.from->moving_account); 6147 } 6148 6149 static void mem_cgroup_move_task(void) 6150 { 6151 if (mc.to) { 6152 mem_cgroup_move_charge(); 6153 mem_cgroup_clear_mc(); 6154 } 6155 } 6156 #else /* !CONFIG_MMU */ 6157 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 6158 { 6159 return 0; 6160 } 6161 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 6162 { 6163 } 6164 static void mem_cgroup_move_task(void) 6165 { 6166 } 6167 #endif 6168 6169 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value) 6170 { 6171 if (value == PAGE_COUNTER_MAX) 6172 seq_puts(m, "max\n"); 6173 else 6174 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE); 6175 6176 return 0; 6177 } 6178 6179 static u64 memory_current_read(struct cgroup_subsys_state *css, 6180 struct cftype *cft) 6181 { 6182 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6183 6184 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; 6185 } 6186 6187 static int memory_min_show(struct seq_file *m, void *v) 6188 { 6189 return seq_puts_memcg_tunable(m, 6190 READ_ONCE(mem_cgroup_from_seq(m)->memory.min)); 6191 } 6192 6193 static ssize_t memory_min_write(struct kernfs_open_file *of, 6194 char *buf, size_t nbytes, loff_t off) 6195 { 6196 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6197 unsigned long min; 6198 int err; 6199 6200 buf = strstrip(buf); 6201 err = page_counter_memparse(buf, "max", &min); 6202 if (err) 6203 return err; 6204 6205 page_counter_set_min(&memcg->memory, min); 6206 6207 return nbytes; 6208 } 6209 6210 static int memory_low_show(struct seq_file *m, void *v) 6211 { 6212 return seq_puts_memcg_tunable(m, 6213 READ_ONCE(mem_cgroup_from_seq(m)->memory.low)); 6214 } 6215 6216 static ssize_t memory_low_write(struct kernfs_open_file *of, 6217 char *buf, size_t nbytes, loff_t off) 6218 { 6219 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6220 unsigned long low; 6221 int err; 6222 6223 buf = strstrip(buf); 6224 err = page_counter_memparse(buf, "max", &low); 6225 if (err) 6226 return err; 6227 6228 page_counter_set_low(&memcg->memory, low); 6229 6230 return nbytes; 6231 } 6232 6233 static int memory_high_show(struct seq_file *m, void *v) 6234 { 6235 return seq_puts_memcg_tunable(m, 6236 READ_ONCE(mem_cgroup_from_seq(m)->memory.high)); 6237 } 6238 6239 static ssize_t memory_high_write(struct kernfs_open_file *of, 6240 char *buf, size_t nbytes, loff_t off) 6241 { 6242 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6243 unsigned int nr_retries = MAX_RECLAIM_RETRIES; 6244 bool drained = false; 6245 unsigned long high; 6246 int err; 6247 6248 buf = strstrip(buf); 6249 err = page_counter_memparse(buf, "max", &high); 6250 if (err) 6251 return err; 6252 6253 page_counter_set_high(&memcg->memory, high); 6254 6255 for (;;) { 6256 unsigned long nr_pages = page_counter_read(&memcg->memory); 6257 unsigned long reclaimed; 6258 6259 if (nr_pages <= high) 6260 break; 6261 6262 if (signal_pending(current)) 6263 break; 6264 6265 if (!drained) { 6266 drain_all_stock(memcg); 6267 drained = true; 6268 continue; 6269 } 6270 6271 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high, 6272 GFP_KERNEL, true); 6273 6274 if (!reclaimed && !nr_retries--) 6275 break; 6276 } 6277 6278 memcg_wb_domain_size_changed(memcg); 6279 return nbytes; 6280 } 6281 6282 static int memory_max_show(struct seq_file *m, void *v) 6283 { 6284 return seq_puts_memcg_tunable(m, 6285 READ_ONCE(mem_cgroup_from_seq(m)->memory.max)); 6286 } 6287 6288 static ssize_t memory_max_write(struct kernfs_open_file *of, 6289 char *buf, size_t nbytes, loff_t off) 6290 { 6291 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6292 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES; 6293 bool drained = false; 6294 unsigned long max; 6295 int err; 6296 6297 buf = strstrip(buf); 6298 err = page_counter_memparse(buf, "max", &max); 6299 if (err) 6300 return err; 6301 6302 xchg(&memcg->memory.max, max); 6303 6304 for (;;) { 6305 unsigned long nr_pages = page_counter_read(&memcg->memory); 6306 6307 if (nr_pages <= max) 6308 break; 6309 6310 if (signal_pending(current)) 6311 break; 6312 6313 if (!drained) { 6314 drain_all_stock(memcg); 6315 drained = true; 6316 continue; 6317 } 6318 6319 if (nr_reclaims) { 6320 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max, 6321 GFP_KERNEL, true)) 6322 nr_reclaims--; 6323 continue; 6324 } 6325 6326 memcg_memory_event(memcg, MEMCG_OOM); 6327 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0)) 6328 break; 6329 } 6330 6331 memcg_wb_domain_size_changed(memcg); 6332 return nbytes; 6333 } 6334 6335 static void __memory_events_show(struct seq_file *m, atomic_long_t *events) 6336 { 6337 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW])); 6338 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH])); 6339 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX])); 6340 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM])); 6341 seq_printf(m, "oom_kill %lu\n", 6342 atomic_long_read(&events[MEMCG_OOM_KILL])); 6343 } 6344 6345 static int memory_events_show(struct seq_file *m, void *v) 6346 { 6347 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6348 6349 __memory_events_show(m, memcg->memory_events); 6350 return 0; 6351 } 6352 6353 static int memory_events_local_show(struct seq_file *m, void *v) 6354 { 6355 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6356 6357 __memory_events_show(m, memcg->memory_events_local); 6358 return 0; 6359 } 6360 6361 static int memory_stat_show(struct seq_file *m, void *v) 6362 { 6363 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6364 char *buf; 6365 6366 buf = memory_stat_format(memcg); 6367 if (!buf) 6368 return -ENOMEM; 6369 seq_puts(m, buf); 6370 kfree(buf); 6371 return 0; 6372 } 6373 6374 #ifdef CONFIG_NUMA 6375 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec, 6376 int item) 6377 { 6378 return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item); 6379 } 6380 6381 static int memory_numa_stat_show(struct seq_file *m, void *v) 6382 { 6383 int i; 6384 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6385 6386 cgroup_rstat_flush(memcg->css.cgroup); 6387 6388 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 6389 int nid; 6390 6391 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS) 6392 continue; 6393 6394 seq_printf(m, "%s", memory_stats[i].name); 6395 for_each_node_state(nid, N_MEMORY) { 6396 u64 size; 6397 struct lruvec *lruvec; 6398 6399 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); 6400 size = lruvec_page_state_output(lruvec, 6401 memory_stats[i].idx); 6402 seq_printf(m, " N%d=%llu", nid, size); 6403 } 6404 seq_putc(m, '\n'); 6405 } 6406 6407 return 0; 6408 } 6409 #endif 6410 6411 static int memory_oom_group_show(struct seq_file *m, void *v) 6412 { 6413 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6414 6415 seq_printf(m, "%d\n", memcg->oom_group); 6416 6417 return 0; 6418 } 6419 6420 static ssize_t memory_oom_group_write(struct kernfs_open_file *of, 6421 char *buf, size_t nbytes, loff_t off) 6422 { 6423 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6424 int ret, oom_group; 6425 6426 buf = strstrip(buf); 6427 if (!buf) 6428 return -EINVAL; 6429 6430 ret = kstrtoint(buf, 0, &oom_group); 6431 if (ret) 6432 return ret; 6433 6434 if (oom_group != 0 && oom_group != 1) 6435 return -EINVAL; 6436 6437 memcg->oom_group = oom_group; 6438 6439 return nbytes; 6440 } 6441 6442 static struct cftype memory_files[] = { 6443 { 6444 .name = "current", 6445 .flags = CFTYPE_NOT_ON_ROOT, 6446 .read_u64 = memory_current_read, 6447 }, 6448 { 6449 .name = "min", 6450 .flags = CFTYPE_NOT_ON_ROOT, 6451 .seq_show = memory_min_show, 6452 .write = memory_min_write, 6453 }, 6454 { 6455 .name = "low", 6456 .flags = CFTYPE_NOT_ON_ROOT, 6457 .seq_show = memory_low_show, 6458 .write = memory_low_write, 6459 }, 6460 { 6461 .name = "high", 6462 .flags = CFTYPE_NOT_ON_ROOT, 6463 .seq_show = memory_high_show, 6464 .write = memory_high_write, 6465 }, 6466 { 6467 .name = "max", 6468 .flags = CFTYPE_NOT_ON_ROOT, 6469 .seq_show = memory_max_show, 6470 .write = memory_max_write, 6471 }, 6472 { 6473 .name = "events", 6474 .flags = CFTYPE_NOT_ON_ROOT, 6475 .file_offset = offsetof(struct mem_cgroup, events_file), 6476 .seq_show = memory_events_show, 6477 }, 6478 { 6479 .name = "events.local", 6480 .flags = CFTYPE_NOT_ON_ROOT, 6481 .file_offset = offsetof(struct mem_cgroup, events_local_file), 6482 .seq_show = memory_events_local_show, 6483 }, 6484 { 6485 .name = "stat", 6486 .seq_show = memory_stat_show, 6487 }, 6488 #ifdef CONFIG_NUMA 6489 { 6490 .name = "numa_stat", 6491 .seq_show = memory_numa_stat_show, 6492 }, 6493 #endif 6494 { 6495 .name = "oom.group", 6496 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE, 6497 .seq_show = memory_oom_group_show, 6498 .write = memory_oom_group_write, 6499 }, 6500 { } /* terminate */ 6501 }; 6502 6503 struct cgroup_subsys memory_cgrp_subsys = { 6504 .css_alloc = mem_cgroup_css_alloc, 6505 .css_online = mem_cgroup_css_online, 6506 .css_offline = mem_cgroup_css_offline, 6507 .css_released = mem_cgroup_css_released, 6508 .css_free = mem_cgroup_css_free, 6509 .css_reset = mem_cgroup_css_reset, 6510 .css_rstat_flush = mem_cgroup_css_rstat_flush, 6511 .can_attach = mem_cgroup_can_attach, 6512 .cancel_attach = mem_cgroup_cancel_attach, 6513 .post_attach = mem_cgroup_move_task, 6514 .dfl_cftypes = memory_files, 6515 .legacy_cftypes = mem_cgroup_legacy_files, 6516 .early_init = 0, 6517 }; 6518 6519 /* 6520 * This function calculates an individual cgroup's effective 6521 * protection which is derived from its own memory.min/low, its 6522 * parent's and siblings' settings, as well as the actual memory 6523 * distribution in the tree. 6524 * 6525 * The following rules apply to the effective protection values: 6526 * 6527 * 1. At the first level of reclaim, effective protection is equal to 6528 * the declared protection in memory.min and memory.low. 6529 * 6530 * 2. To enable safe delegation of the protection configuration, at 6531 * subsequent levels the effective protection is capped to the 6532 * parent's effective protection. 6533 * 6534 * 3. To make complex and dynamic subtrees easier to configure, the 6535 * user is allowed to overcommit the declared protection at a given 6536 * level. If that is the case, the parent's effective protection is 6537 * distributed to the children in proportion to how much protection 6538 * they have declared and how much of it they are utilizing. 6539 * 6540 * This makes distribution proportional, but also work-conserving: 6541 * if one cgroup claims much more protection than it uses memory, 6542 * the unused remainder is available to its siblings. 6543 * 6544 * 4. Conversely, when the declared protection is undercommitted at a 6545 * given level, the distribution of the larger parental protection 6546 * budget is NOT proportional. A cgroup's protection from a sibling 6547 * is capped to its own memory.min/low setting. 6548 * 6549 * 5. However, to allow protecting recursive subtrees from each other 6550 * without having to declare each individual cgroup's fixed share 6551 * of the ancestor's claim to protection, any unutilized - 6552 * "floating" - protection from up the tree is distributed in 6553 * proportion to each cgroup's *usage*. This makes the protection 6554 * neutral wrt sibling cgroups and lets them compete freely over 6555 * the shared parental protection budget, but it protects the 6556 * subtree as a whole from neighboring subtrees. 6557 * 6558 * Note that 4. and 5. are not in conflict: 4. is about protecting 6559 * against immediate siblings whereas 5. is about protecting against 6560 * neighboring subtrees. 6561 */ 6562 static unsigned long effective_protection(unsigned long usage, 6563 unsigned long parent_usage, 6564 unsigned long setting, 6565 unsigned long parent_effective, 6566 unsigned long siblings_protected) 6567 { 6568 unsigned long protected; 6569 unsigned long ep; 6570 6571 protected = min(usage, setting); 6572 /* 6573 * If all cgroups at this level combined claim and use more 6574 * protection then what the parent affords them, distribute 6575 * shares in proportion to utilization. 6576 * 6577 * We are using actual utilization rather than the statically 6578 * claimed protection in order to be work-conserving: claimed 6579 * but unused protection is available to siblings that would 6580 * otherwise get a smaller chunk than what they claimed. 6581 */ 6582 if (siblings_protected > parent_effective) 6583 return protected * parent_effective / siblings_protected; 6584 6585 /* 6586 * Ok, utilized protection of all children is within what the 6587 * parent affords them, so we know whatever this child claims 6588 * and utilizes is effectively protected. 6589 * 6590 * If there is unprotected usage beyond this value, reclaim 6591 * will apply pressure in proportion to that amount. 6592 * 6593 * If there is unutilized protection, the cgroup will be fully 6594 * shielded from reclaim, but we do return a smaller value for 6595 * protection than what the group could enjoy in theory. This 6596 * is okay. With the overcommit distribution above, effective 6597 * protection is always dependent on how memory is actually 6598 * consumed among the siblings anyway. 6599 */ 6600 ep = protected; 6601 6602 /* 6603 * If the children aren't claiming (all of) the protection 6604 * afforded to them by the parent, distribute the remainder in 6605 * proportion to the (unprotected) memory of each cgroup. That 6606 * way, cgroups that aren't explicitly prioritized wrt each 6607 * other compete freely over the allowance, but they are 6608 * collectively protected from neighboring trees. 6609 * 6610 * We're using unprotected memory for the weight so that if 6611 * some cgroups DO claim explicit protection, we don't protect 6612 * the same bytes twice. 6613 * 6614 * Check both usage and parent_usage against the respective 6615 * protected values. One should imply the other, but they 6616 * aren't read atomically - make sure the division is sane. 6617 */ 6618 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)) 6619 return ep; 6620 if (parent_effective > siblings_protected && 6621 parent_usage > siblings_protected && 6622 usage > protected) { 6623 unsigned long unclaimed; 6624 6625 unclaimed = parent_effective - siblings_protected; 6626 unclaimed *= usage - protected; 6627 unclaimed /= parent_usage - siblings_protected; 6628 6629 ep += unclaimed; 6630 } 6631 6632 return ep; 6633 } 6634 6635 /** 6636 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range 6637 * @root: the top ancestor of the sub-tree being checked 6638 * @memcg: the memory cgroup to check 6639 * 6640 * WARNING: This function is not stateless! It can only be used as part 6641 * of a top-down tree iteration, not for isolated queries. 6642 */ 6643 void mem_cgroup_calculate_protection(struct mem_cgroup *root, 6644 struct mem_cgroup *memcg) 6645 { 6646 unsigned long usage, parent_usage; 6647 struct mem_cgroup *parent; 6648 6649 if (mem_cgroup_disabled()) 6650 return; 6651 6652 if (!root) 6653 root = root_mem_cgroup; 6654 6655 /* 6656 * Effective values of the reclaim targets are ignored so they 6657 * can be stale. Have a look at mem_cgroup_protection for more 6658 * details. 6659 * TODO: calculation should be more robust so that we do not need 6660 * that special casing. 6661 */ 6662 if (memcg == root) 6663 return; 6664 6665 usage = page_counter_read(&memcg->memory); 6666 if (!usage) 6667 return; 6668 6669 parent = parent_mem_cgroup(memcg); 6670 /* No parent means a non-hierarchical mode on v1 memcg */ 6671 if (!parent) 6672 return; 6673 6674 if (parent == root) { 6675 memcg->memory.emin = READ_ONCE(memcg->memory.min); 6676 memcg->memory.elow = READ_ONCE(memcg->memory.low); 6677 return; 6678 } 6679 6680 parent_usage = page_counter_read(&parent->memory); 6681 6682 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage, 6683 READ_ONCE(memcg->memory.min), 6684 READ_ONCE(parent->memory.emin), 6685 atomic_long_read(&parent->memory.children_min_usage))); 6686 6687 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage, 6688 READ_ONCE(memcg->memory.low), 6689 READ_ONCE(parent->memory.elow), 6690 atomic_long_read(&parent->memory.children_low_usage))); 6691 } 6692 6693 static int charge_memcg(struct page *page, struct mem_cgroup *memcg, gfp_t gfp) 6694 { 6695 unsigned int nr_pages = thp_nr_pages(page); 6696 int ret; 6697 6698 ret = try_charge(memcg, gfp, nr_pages); 6699 if (ret) 6700 goto out; 6701 6702 css_get(&memcg->css); 6703 commit_charge(page, memcg); 6704 6705 local_irq_disable(); 6706 mem_cgroup_charge_statistics(memcg, page, nr_pages); 6707 memcg_check_events(memcg, page); 6708 local_irq_enable(); 6709 out: 6710 return ret; 6711 } 6712 6713 /** 6714 * __mem_cgroup_charge - charge a newly allocated page to a cgroup 6715 * @page: page to charge 6716 * @mm: mm context of the victim 6717 * @gfp_mask: reclaim mode 6718 * 6719 * Try to charge @page to the memcg that @mm belongs to, reclaiming 6720 * pages according to @gfp_mask if necessary. if @mm is NULL, try to 6721 * charge to the active memcg. 6722 * 6723 * Do not use this for pages allocated for swapin. 6724 * 6725 * Returns 0 on success. Otherwise, an error code is returned. 6726 */ 6727 int __mem_cgroup_charge(struct page *page, struct mm_struct *mm, 6728 gfp_t gfp_mask) 6729 { 6730 struct mem_cgroup *memcg; 6731 int ret; 6732 6733 memcg = get_mem_cgroup_from_mm(mm); 6734 ret = charge_memcg(page, memcg, gfp_mask); 6735 css_put(&memcg->css); 6736 6737 return ret; 6738 } 6739 6740 /** 6741 * mem_cgroup_swapin_charge_page - charge a newly allocated page for swapin 6742 * @page: page to charge 6743 * @mm: mm context of the victim 6744 * @gfp: reclaim mode 6745 * @entry: swap entry for which the page is allocated 6746 * 6747 * This function charges a page allocated for swapin. Please call this before 6748 * adding the page to the swapcache. 6749 * 6750 * Returns 0 on success. Otherwise, an error code is returned. 6751 */ 6752 int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm, 6753 gfp_t gfp, swp_entry_t entry) 6754 { 6755 struct mem_cgroup *memcg; 6756 unsigned short id; 6757 int ret; 6758 6759 if (mem_cgroup_disabled()) 6760 return 0; 6761 6762 id = lookup_swap_cgroup_id(entry); 6763 rcu_read_lock(); 6764 memcg = mem_cgroup_from_id(id); 6765 if (!memcg || !css_tryget_online(&memcg->css)) 6766 memcg = get_mem_cgroup_from_mm(mm); 6767 rcu_read_unlock(); 6768 6769 ret = charge_memcg(page, memcg, gfp); 6770 6771 css_put(&memcg->css); 6772 return ret; 6773 } 6774 6775 /* 6776 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot 6777 * @entry: swap entry for which the page is charged 6778 * 6779 * Call this function after successfully adding the charged page to swapcache. 6780 * 6781 * Note: This function assumes the page for which swap slot is being uncharged 6782 * is order 0 page. 6783 */ 6784 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry) 6785 { 6786 /* 6787 * Cgroup1's unified memory+swap counter has been charged with the 6788 * new swapcache page, finish the transfer by uncharging the swap 6789 * slot. The swap slot would also get uncharged when it dies, but 6790 * it can stick around indefinitely and we'd count the page twice 6791 * the entire time. 6792 * 6793 * Cgroup2 has separate resource counters for memory and swap, 6794 * so this is a non-issue here. Memory and swap charge lifetimes 6795 * correspond 1:1 to page and swap slot lifetimes: we charge the 6796 * page to memory here, and uncharge swap when the slot is freed. 6797 */ 6798 if (!mem_cgroup_disabled() && do_memsw_account()) { 6799 /* 6800 * The swap entry might not get freed for a long time, 6801 * let's not wait for it. The page already received a 6802 * memory+swap charge, drop the swap entry duplicate. 6803 */ 6804 mem_cgroup_uncharge_swap(entry, 1); 6805 } 6806 } 6807 6808 struct uncharge_gather { 6809 struct mem_cgroup *memcg; 6810 unsigned long nr_memory; 6811 unsigned long pgpgout; 6812 unsigned long nr_kmem; 6813 struct page *dummy_page; 6814 }; 6815 6816 static inline void uncharge_gather_clear(struct uncharge_gather *ug) 6817 { 6818 memset(ug, 0, sizeof(*ug)); 6819 } 6820 6821 static void uncharge_batch(const struct uncharge_gather *ug) 6822 { 6823 unsigned long flags; 6824 6825 if (ug->nr_memory) { 6826 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory); 6827 if (do_memsw_account()) 6828 page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory); 6829 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem) 6830 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem); 6831 memcg_oom_recover(ug->memcg); 6832 } 6833 6834 local_irq_save(flags); 6835 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout); 6836 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory); 6837 memcg_check_events(ug->memcg, ug->dummy_page); 6838 local_irq_restore(flags); 6839 6840 /* drop reference from uncharge_page */ 6841 css_put(&ug->memcg->css); 6842 } 6843 6844 static void uncharge_page(struct page *page, struct uncharge_gather *ug) 6845 { 6846 unsigned long nr_pages; 6847 struct mem_cgroup *memcg; 6848 struct obj_cgroup *objcg; 6849 bool use_objcg = PageMemcgKmem(page); 6850 6851 VM_BUG_ON_PAGE(PageLRU(page), page); 6852 6853 /* 6854 * Nobody should be changing or seriously looking at 6855 * page memcg or objcg at this point, we have fully 6856 * exclusive access to the page. 6857 */ 6858 if (use_objcg) { 6859 objcg = __page_objcg(page); 6860 /* 6861 * This get matches the put at the end of the function and 6862 * kmem pages do not hold memcg references anymore. 6863 */ 6864 memcg = get_mem_cgroup_from_objcg(objcg); 6865 } else { 6866 memcg = __page_memcg(page); 6867 } 6868 6869 if (!memcg) 6870 return; 6871 6872 if (ug->memcg != memcg) { 6873 if (ug->memcg) { 6874 uncharge_batch(ug); 6875 uncharge_gather_clear(ug); 6876 } 6877 ug->memcg = memcg; 6878 ug->dummy_page = page; 6879 6880 /* pairs with css_put in uncharge_batch */ 6881 css_get(&memcg->css); 6882 } 6883 6884 nr_pages = compound_nr(page); 6885 6886 if (use_objcg) { 6887 ug->nr_memory += nr_pages; 6888 ug->nr_kmem += nr_pages; 6889 6890 page->memcg_data = 0; 6891 obj_cgroup_put(objcg); 6892 } else { 6893 /* LRU pages aren't accounted at the root level */ 6894 if (!mem_cgroup_is_root(memcg)) 6895 ug->nr_memory += nr_pages; 6896 ug->pgpgout++; 6897 6898 page->memcg_data = 0; 6899 } 6900 6901 css_put(&memcg->css); 6902 } 6903 6904 /** 6905 * __mem_cgroup_uncharge - uncharge a page 6906 * @page: page to uncharge 6907 * 6908 * Uncharge a page previously charged with __mem_cgroup_charge(). 6909 */ 6910 void __mem_cgroup_uncharge(struct page *page) 6911 { 6912 struct uncharge_gather ug; 6913 6914 /* Don't touch page->lru of any random page, pre-check: */ 6915 if (!page_memcg(page)) 6916 return; 6917 6918 uncharge_gather_clear(&ug); 6919 uncharge_page(page, &ug); 6920 uncharge_batch(&ug); 6921 } 6922 6923 /** 6924 * __mem_cgroup_uncharge_list - uncharge a list of page 6925 * @page_list: list of pages to uncharge 6926 * 6927 * Uncharge a list of pages previously charged with 6928 * __mem_cgroup_charge(). 6929 */ 6930 void __mem_cgroup_uncharge_list(struct list_head *page_list) 6931 { 6932 struct uncharge_gather ug; 6933 struct page *page; 6934 6935 uncharge_gather_clear(&ug); 6936 list_for_each_entry(page, page_list, lru) 6937 uncharge_page(page, &ug); 6938 if (ug.memcg) 6939 uncharge_batch(&ug); 6940 } 6941 6942 /** 6943 * mem_cgroup_migrate - charge a page's replacement 6944 * @oldpage: currently circulating page 6945 * @newpage: replacement page 6946 * 6947 * Charge @newpage as a replacement page for @oldpage. @oldpage will 6948 * be uncharged upon free. 6949 * 6950 * Both pages must be locked, @newpage->mapping must be set up. 6951 */ 6952 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage) 6953 { 6954 struct mem_cgroup *memcg; 6955 unsigned int nr_pages; 6956 unsigned long flags; 6957 6958 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage); 6959 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 6960 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage); 6961 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage), 6962 newpage); 6963 6964 if (mem_cgroup_disabled()) 6965 return; 6966 6967 /* Page cache replacement: new page already charged? */ 6968 if (page_memcg(newpage)) 6969 return; 6970 6971 memcg = page_memcg(oldpage); 6972 VM_WARN_ON_ONCE_PAGE(!memcg, oldpage); 6973 if (!memcg) 6974 return; 6975 6976 /* Force-charge the new page. The old one will be freed soon */ 6977 nr_pages = thp_nr_pages(newpage); 6978 6979 if (!mem_cgroup_is_root(memcg)) { 6980 page_counter_charge(&memcg->memory, nr_pages); 6981 if (do_memsw_account()) 6982 page_counter_charge(&memcg->memsw, nr_pages); 6983 } 6984 6985 css_get(&memcg->css); 6986 commit_charge(newpage, memcg); 6987 6988 local_irq_save(flags); 6989 mem_cgroup_charge_statistics(memcg, newpage, nr_pages); 6990 memcg_check_events(memcg, newpage); 6991 local_irq_restore(flags); 6992 } 6993 6994 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); 6995 EXPORT_SYMBOL(memcg_sockets_enabled_key); 6996 6997 void mem_cgroup_sk_alloc(struct sock *sk) 6998 { 6999 struct mem_cgroup *memcg; 7000 7001 if (!mem_cgroup_sockets_enabled) 7002 return; 7003 7004 /* Do not associate the sock with unrelated interrupted task's memcg. */ 7005 if (in_interrupt()) 7006 return; 7007 7008 rcu_read_lock(); 7009 memcg = mem_cgroup_from_task(current); 7010 if (memcg == root_mem_cgroup) 7011 goto out; 7012 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active) 7013 goto out; 7014 if (css_tryget(&memcg->css)) 7015 sk->sk_memcg = memcg; 7016 out: 7017 rcu_read_unlock(); 7018 } 7019 7020 void mem_cgroup_sk_free(struct sock *sk) 7021 { 7022 if (sk->sk_memcg) 7023 css_put(&sk->sk_memcg->css); 7024 } 7025 7026 /** 7027 * mem_cgroup_charge_skmem - charge socket memory 7028 * @memcg: memcg to charge 7029 * @nr_pages: number of pages to charge 7030 * @gfp_mask: reclaim mode 7031 * 7032 * Charges @nr_pages to @memcg. Returns %true if the charge fit within 7033 * @memcg's configured limit, %false if it doesn't. 7034 */ 7035 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages, 7036 gfp_t gfp_mask) 7037 { 7038 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 7039 struct page_counter *fail; 7040 7041 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) { 7042 memcg->tcpmem_pressure = 0; 7043 return true; 7044 } 7045 memcg->tcpmem_pressure = 1; 7046 if (gfp_mask & __GFP_NOFAIL) { 7047 page_counter_charge(&memcg->tcpmem, nr_pages); 7048 return true; 7049 } 7050 return false; 7051 } 7052 7053 if (try_charge(memcg, gfp_mask, nr_pages) == 0) { 7054 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages); 7055 return true; 7056 } 7057 7058 return false; 7059 } 7060 7061 /** 7062 * mem_cgroup_uncharge_skmem - uncharge socket memory 7063 * @memcg: memcg to uncharge 7064 * @nr_pages: number of pages to uncharge 7065 */ 7066 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 7067 { 7068 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 7069 page_counter_uncharge(&memcg->tcpmem, nr_pages); 7070 return; 7071 } 7072 7073 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages); 7074 7075 refill_stock(memcg, nr_pages); 7076 } 7077 7078 static int __init cgroup_memory(char *s) 7079 { 7080 char *token; 7081 7082 while ((token = strsep(&s, ",")) != NULL) { 7083 if (!*token) 7084 continue; 7085 if (!strcmp(token, "nosocket")) 7086 cgroup_memory_nosocket = true; 7087 if (!strcmp(token, "nokmem")) 7088 cgroup_memory_nokmem = true; 7089 } 7090 return 0; 7091 } 7092 __setup("cgroup.memory=", cgroup_memory); 7093 7094 /* 7095 * subsys_initcall() for memory controller. 7096 * 7097 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this 7098 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but 7099 * basically everything that doesn't depend on a specific mem_cgroup structure 7100 * should be initialized from here. 7101 */ 7102 static int __init mem_cgroup_init(void) 7103 { 7104 int cpu, node; 7105 7106 /* 7107 * Currently s32 type (can refer to struct batched_lruvec_stat) is 7108 * used for per-memcg-per-cpu caching of per-node statistics. In order 7109 * to work fine, we should make sure that the overfill threshold can't 7110 * exceed S32_MAX / PAGE_SIZE. 7111 */ 7112 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE); 7113 7114 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL, 7115 memcg_hotplug_cpu_dead); 7116 7117 for_each_possible_cpu(cpu) 7118 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, 7119 drain_local_stock); 7120 7121 for_each_node(node) { 7122 struct mem_cgroup_tree_per_node *rtpn; 7123 7124 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, 7125 node_online(node) ? node : NUMA_NO_NODE); 7126 7127 rtpn->rb_root = RB_ROOT; 7128 rtpn->rb_rightmost = NULL; 7129 spin_lock_init(&rtpn->lock); 7130 soft_limit_tree.rb_tree_per_node[node] = rtpn; 7131 } 7132 7133 return 0; 7134 } 7135 subsys_initcall(mem_cgroup_init); 7136 7137 #ifdef CONFIG_MEMCG_SWAP 7138 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg) 7139 { 7140 while (!refcount_inc_not_zero(&memcg->id.ref)) { 7141 /* 7142 * The root cgroup cannot be destroyed, so it's refcount must 7143 * always be >= 1. 7144 */ 7145 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) { 7146 VM_BUG_ON(1); 7147 break; 7148 } 7149 memcg = parent_mem_cgroup(memcg); 7150 if (!memcg) 7151 memcg = root_mem_cgroup; 7152 } 7153 return memcg; 7154 } 7155 7156 /** 7157 * mem_cgroup_swapout - transfer a memsw charge to swap 7158 * @page: page whose memsw charge to transfer 7159 * @entry: swap entry to move the charge to 7160 * 7161 * Transfer the memsw charge of @page to @entry. 7162 */ 7163 void mem_cgroup_swapout(struct page *page, swp_entry_t entry) 7164 { 7165 struct mem_cgroup *memcg, *swap_memcg; 7166 unsigned int nr_entries; 7167 unsigned short oldid; 7168 7169 VM_BUG_ON_PAGE(PageLRU(page), page); 7170 VM_BUG_ON_PAGE(page_count(page), page); 7171 7172 if (mem_cgroup_disabled()) 7173 return; 7174 7175 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7176 return; 7177 7178 memcg = page_memcg(page); 7179 7180 VM_WARN_ON_ONCE_PAGE(!memcg, page); 7181 if (!memcg) 7182 return; 7183 7184 /* 7185 * In case the memcg owning these pages has been offlined and doesn't 7186 * have an ID allocated to it anymore, charge the closest online 7187 * ancestor for the swap instead and transfer the memory+swap charge. 7188 */ 7189 swap_memcg = mem_cgroup_id_get_online(memcg); 7190 nr_entries = thp_nr_pages(page); 7191 /* Get references for the tail pages, too */ 7192 if (nr_entries > 1) 7193 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1); 7194 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg), 7195 nr_entries); 7196 VM_BUG_ON_PAGE(oldid, page); 7197 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries); 7198 7199 page->memcg_data = 0; 7200 7201 if (!mem_cgroup_is_root(memcg)) 7202 page_counter_uncharge(&memcg->memory, nr_entries); 7203 7204 if (!cgroup_memory_noswap && memcg != swap_memcg) { 7205 if (!mem_cgroup_is_root(swap_memcg)) 7206 page_counter_charge(&swap_memcg->memsw, nr_entries); 7207 page_counter_uncharge(&memcg->memsw, nr_entries); 7208 } 7209 7210 /* 7211 * Interrupts should be disabled here because the caller holds the 7212 * i_pages lock which is taken with interrupts-off. It is 7213 * important here to have the interrupts disabled because it is the 7214 * only synchronisation we have for updating the per-CPU variables. 7215 */ 7216 VM_BUG_ON(!irqs_disabled()); 7217 mem_cgroup_charge_statistics(memcg, page, -nr_entries); 7218 memcg_check_events(memcg, page); 7219 7220 css_put(&memcg->css); 7221 } 7222 7223 /** 7224 * __mem_cgroup_try_charge_swap - try charging swap space for a page 7225 * @page: page being added to swap 7226 * @entry: swap entry to charge 7227 * 7228 * Try to charge @page's memcg for the swap space at @entry. 7229 * 7230 * Returns 0 on success, -ENOMEM on failure. 7231 */ 7232 int __mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry) 7233 { 7234 unsigned int nr_pages = thp_nr_pages(page); 7235 struct page_counter *counter; 7236 struct mem_cgroup *memcg; 7237 unsigned short oldid; 7238 7239 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7240 return 0; 7241 7242 memcg = page_memcg(page); 7243 7244 VM_WARN_ON_ONCE_PAGE(!memcg, page); 7245 if (!memcg) 7246 return 0; 7247 7248 if (!entry.val) { 7249 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 7250 return 0; 7251 } 7252 7253 memcg = mem_cgroup_id_get_online(memcg); 7254 7255 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) && 7256 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) { 7257 memcg_memory_event(memcg, MEMCG_SWAP_MAX); 7258 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 7259 mem_cgroup_id_put(memcg); 7260 return -ENOMEM; 7261 } 7262 7263 /* Get references for the tail pages, too */ 7264 if (nr_pages > 1) 7265 mem_cgroup_id_get_many(memcg, nr_pages - 1); 7266 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages); 7267 VM_BUG_ON_PAGE(oldid, page); 7268 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages); 7269 7270 return 0; 7271 } 7272 7273 /** 7274 * __mem_cgroup_uncharge_swap - uncharge swap space 7275 * @entry: swap entry to uncharge 7276 * @nr_pages: the amount of swap space to uncharge 7277 */ 7278 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages) 7279 { 7280 struct mem_cgroup *memcg; 7281 unsigned short id; 7282 7283 id = swap_cgroup_record(entry, 0, nr_pages); 7284 rcu_read_lock(); 7285 memcg = mem_cgroup_from_id(id); 7286 if (memcg) { 7287 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) { 7288 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7289 page_counter_uncharge(&memcg->swap, nr_pages); 7290 else 7291 page_counter_uncharge(&memcg->memsw, nr_pages); 7292 } 7293 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages); 7294 mem_cgroup_id_put_many(memcg, nr_pages); 7295 } 7296 rcu_read_unlock(); 7297 } 7298 7299 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) 7300 { 7301 long nr_swap_pages = get_nr_swap_pages(); 7302 7303 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7304 return nr_swap_pages; 7305 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) 7306 nr_swap_pages = min_t(long, nr_swap_pages, 7307 READ_ONCE(memcg->swap.max) - 7308 page_counter_read(&memcg->swap)); 7309 return nr_swap_pages; 7310 } 7311 7312 bool mem_cgroup_swap_full(struct page *page) 7313 { 7314 struct mem_cgroup *memcg; 7315 7316 VM_BUG_ON_PAGE(!PageLocked(page), page); 7317 7318 if (vm_swap_full()) 7319 return true; 7320 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7321 return false; 7322 7323 memcg = page_memcg(page); 7324 if (!memcg) 7325 return false; 7326 7327 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) { 7328 unsigned long usage = page_counter_read(&memcg->swap); 7329 7330 if (usage * 2 >= READ_ONCE(memcg->swap.high) || 7331 usage * 2 >= READ_ONCE(memcg->swap.max)) 7332 return true; 7333 } 7334 7335 return false; 7336 } 7337 7338 static int __init setup_swap_account(char *s) 7339 { 7340 if (!strcmp(s, "1")) 7341 cgroup_memory_noswap = false; 7342 else if (!strcmp(s, "0")) 7343 cgroup_memory_noswap = true; 7344 return 1; 7345 } 7346 __setup("swapaccount=", setup_swap_account); 7347 7348 static u64 swap_current_read(struct cgroup_subsys_state *css, 7349 struct cftype *cft) 7350 { 7351 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 7352 7353 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; 7354 } 7355 7356 static int swap_high_show(struct seq_file *m, void *v) 7357 { 7358 return seq_puts_memcg_tunable(m, 7359 READ_ONCE(mem_cgroup_from_seq(m)->swap.high)); 7360 } 7361 7362 static ssize_t swap_high_write(struct kernfs_open_file *of, 7363 char *buf, size_t nbytes, loff_t off) 7364 { 7365 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 7366 unsigned long high; 7367 int err; 7368 7369 buf = strstrip(buf); 7370 err = page_counter_memparse(buf, "max", &high); 7371 if (err) 7372 return err; 7373 7374 page_counter_set_high(&memcg->swap, high); 7375 7376 return nbytes; 7377 } 7378 7379 static int swap_max_show(struct seq_file *m, void *v) 7380 { 7381 return seq_puts_memcg_tunable(m, 7382 READ_ONCE(mem_cgroup_from_seq(m)->swap.max)); 7383 } 7384 7385 static ssize_t swap_max_write(struct kernfs_open_file *of, 7386 char *buf, size_t nbytes, loff_t off) 7387 { 7388 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 7389 unsigned long max; 7390 int err; 7391 7392 buf = strstrip(buf); 7393 err = page_counter_memparse(buf, "max", &max); 7394 if (err) 7395 return err; 7396 7397 xchg(&memcg->swap.max, max); 7398 7399 return nbytes; 7400 } 7401 7402 static int swap_events_show(struct seq_file *m, void *v) 7403 { 7404 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 7405 7406 seq_printf(m, "high %lu\n", 7407 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH])); 7408 seq_printf(m, "max %lu\n", 7409 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX])); 7410 seq_printf(m, "fail %lu\n", 7411 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL])); 7412 7413 return 0; 7414 } 7415 7416 static struct cftype swap_files[] = { 7417 { 7418 .name = "swap.current", 7419 .flags = CFTYPE_NOT_ON_ROOT, 7420 .read_u64 = swap_current_read, 7421 }, 7422 { 7423 .name = "swap.high", 7424 .flags = CFTYPE_NOT_ON_ROOT, 7425 .seq_show = swap_high_show, 7426 .write = swap_high_write, 7427 }, 7428 { 7429 .name = "swap.max", 7430 .flags = CFTYPE_NOT_ON_ROOT, 7431 .seq_show = swap_max_show, 7432 .write = swap_max_write, 7433 }, 7434 { 7435 .name = "swap.events", 7436 .flags = CFTYPE_NOT_ON_ROOT, 7437 .file_offset = offsetof(struct mem_cgroup, swap_events_file), 7438 .seq_show = swap_events_show, 7439 }, 7440 { } /* terminate */ 7441 }; 7442 7443 static struct cftype memsw_files[] = { 7444 { 7445 .name = "memsw.usage_in_bytes", 7446 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 7447 .read_u64 = mem_cgroup_read_u64, 7448 }, 7449 { 7450 .name = "memsw.max_usage_in_bytes", 7451 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 7452 .write = mem_cgroup_reset, 7453 .read_u64 = mem_cgroup_read_u64, 7454 }, 7455 { 7456 .name = "memsw.limit_in_bytes", 7457 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 7458 .write = mem_cgroup_write, 7459 .read_u64 = mem_cgroup_read_u64, 7460 }, 7461 { 7462 .name = "memsw.failcnt", 7463 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 7464 .write = mem_cgroup_reset, 7465 .read_u64 = mem_cgroup_read_u64, 7466 }, 7467 { }, /* terminate */ 7468 }; 7469 7470 /* 7471 * If mem_cgroup_swap_init() is implemented as a subsys_initcall() 7472 * instead of a core_initcall(), this could mean cgroup_memory_noswap still 7473 * remains set to false even when memcg is disabled via "cgroup_disable=memory" 7474 * boot parameter. This may result in premature OOPS inside 7475 * mem_cgroup_get_nr_swap_pages() function in corner cases. 7476 */ 7477 static int __init mem_cgroup_swap_init(void) 7478 { 7479 /* No memory control -> no swap control */ 7480 if (mem_cgroup_disabled()) 7481 cgroup_memory_noswap = true; 7482 7483 if (cgroup_memory_noswap) 7484 return 0; 7485 7486 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files)); 7487 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files)); 7488 7489 return 0; 7490 } 7491 core_initcall(mem_cgroup_swap_init); 7492 7493 #endif /* CONFIG_MEMCG_SWAP */ 7494