xref: /openbmc/linux/mm/memcontrol.c (revision 79a93295)
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * Kernel Memory Controller
14  * Copyright (C) 2012 Parallels Inc. and Google Inc.
15  * Authors: Glauber Costa and Suleiman Souhlal
16  *
17  * Native page reclaim
18  * Charge lifetime sanitation
19  * Lockless page tracking & accounting
20  * Unified hierarchy configuration model
21  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22  *
23  * This program is free software; you can redistribute it and/or modify
24  * it under the terms of the GNU General Public License as published by
25  * the Free Software Foundation; either version 2 of the License, or
26  * (at your option) any later version.
27  *
28  * This program is distributed in the hope that it will be useful,
29  * but WITHOUT ANY WARRANTY; without even the implied warranty of
30  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
31  * GNU General Public License for more details.
32  */
33 
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/hugetlb.h>
39 #include <linux/pagemap.h>
40 #include <linux/smp.h>
41 #include <linux/page-flags.h>
42 #include <linux/backing-dev.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/limits.h>
46 #include <linux/export.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/spinlock.h>
53 #include <linux/eventfd.h>
54 #include <linux/poll.h>
55 #include <linux/sort.h>
56 #include <linux/fs.h>
57 #include <linux/seq_file.h>
58 #include <linux/vmpressure.h>
59 #include <linux/mm_inline.h>
60 #include <linux/swap_cgroup.h>
61 #include <linux/cpu.h>
62 #include <linux/oom.h>
63 #include <linux/lockdep.h>
64 #include <linux/file.h>
65 #include <linux/tracehook.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include "slab.h"
70 
71 #include <linux/uaccess.h>
72 
73 #include <trace/events/vmscan.h>
74 
75 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76 EXPORT_SYMBOL(memory_cgrp_subsys);
77 
78 struct mem_cgroup *root_mem_cgroup __read_mostly;
79 
80 #define MEM_CGROUP_RECLAIM_RETRIES	5
81 
82 /* Socket memory accounting disabled? */
83 static bool cgroup_memory_nosocket;
84 
85 /* Kernel memory accounting disabled? */
86 static bool cgroup_memory_nokmem;
87 
88 /* Whether the swap controller is active */
89 #ifdef CONFIG_MEMCG_SWAP
90 int do_swap_account __read_mostly;
91 #else
92 #define do_swap_account		0
93 #endif
94 
95 /* Whether legacy memory+swap accounting is active */
96 static bool do_memsw_account(void)
97 {
98 	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99 }
100 
101 static const char * const mem_cgroup_stat_names[] = {
102 	"cache",
103 	"rss",
104 	"rss_huge",
105 	"mapped_file",
106 	"dirty",
107 	"writeback",
108 	"swap",
109 };
110 
111 static const char * const mem_cgroup_events_names[] = {
112 	"pgpgin",
113 	"pgpgout",
114 	"pgfault",
115 	"pgmajfault",
116 };
117 
118 static const char * const mem_cgroup_lru_names[] = {
119 	"inactive_anon",
120 	"active_anon",
121 	"inactive_file",
122 	"active_file",
123 	"unevictable",
124 };
125 
126 #define THRESHOLDS_EVENTS_TARGET 128
127 #define SOFTLIMIT_EVENTS_TARGET 1024
128 #define NUMAINFO_EVENTS_TARGET	1024
129 
130 /*
131  * Cgroups above their limits are maintained in a RB-Tree, independent of
132  * their hierarchy representation
133  */
134 
135 struct mem_cgroup_tree_per_node {
136 	struct rb_root rb_root;
137 	spinlock_t lock;
138 };
139 
140 struct mem_cgroup_tree {
141 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
142 };
143 
144 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
145 
146 /* for OOM */
147 struct mem_cgroup_eventfd_list {
148 	struct list_head list;
149 	struct eventfd_ctx *eventfd;
150 };
151 
152 /*
153  * cgroup_event represents events which userspace want to receive.
154  */
155 struct mem_cgroup_event {
156 	/*
157 	 * memcg which the event belongs to.
158 	 */
159 	struct mem_cgroup *memcg;
160 	/*
161 	 * eventfd to signal userspace about the event.
162 	 */
163 	struct eventfd_ctx *eventfd;
164 	/*
165 	 * Each of these stored in a list by the cgroup.
166 	 */
167 	struct list_head list;
168 	/*
169 	 * register_event() callback will be used to add new userspace
170 	 * waiter for changes related to this event.  Use eventfd_signal()
171 	 * on eventfd to send notification to userspace.
172 	 */
173 	int (*register_event)(struct mem_cgroup *memcg,
174 			      struct eventfd_ctx *eventfd, const char *args);
175 	/*
176 	 * unregister_event() callback will be called when userspace closes
177 	 * the eventfd or on cgroup removing.  This callback must be set,
178 	 * if you want provide notification functionality.
179 	 */
180 	void (*unregister_event)(struct mem_cgroup *memcg,
181 				 struct eventfd_ctx *eventfd);
182 	/*
183 	 * All fields below needed to unregister event when
184 	 * userspace closes eventfd.
185 	 */
186 	poll_table pt;
187 	wait_queue_head_t *wqh;
188 	wait_queue_t wait;
189 	struct work_struct remove;
190 };
191 
192 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
193 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
194 
195 /* Stuffs for move charges at task migration. */
196 /*
197  * Types of charges to be moved.
198  */
199 #define MOVE_ANON	0x1U
200 #define MOVE_FILE	0x2U
201 #define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
202 
203 /* "mc" and its members are protected by cgroup_mutex */
204 static struct move_charge_struct {
205 	spinlock_t	  lock; /* for from, to */
206 	struct mm_struct  *mm;
207 	struct mem_cgroup *from;
208 	struct mem_cgroup *to;
209 	unsigned long flags;
210 	unsigned long precharge;
211 	unsigned long moved_charge;
212 	unsigned long moved_swap;
213 	struct task_struct *moving_task;	/* a task moving charges */
214 	wait_queue_head_t waitq;		/* a waitq for other context */
215 } mc = {
216 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
217 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
218 };
219 
220 /*
221  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
222  * limit reclaim to prevent infinite loops, if they ever occur.
223  */
224 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
225 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
226 
227 enum charge_type {
228 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
229 	MEM_CGROUP_CHARGE_TYPE_ANON,
230 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
231 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
232 	NR_CHARGE_TYPE,
233 };
234 
235 /* for encoding cft->private value on file */
236 enum res_type {
237 	_MEM,
238 	_MEMSWAP,
239 	_OOM_TYPE,
240 	_KMEM,
241 	_TCP,
242 };
243 
244 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
245 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
246 #define MEMFILE_ATTR(val)	((val) & 0xffff)
247 /* Used for OOM nofiier */
248 #define OOM_CONTROL		(0)
249 
250 /* Some nice accessors for the vmpressure. */
251 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
252 {
253 	if (!memcg)
254 		memcg = root_mem_cgroup;
255 	return &memcg->vmpressure;
256 }
257 
258 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
259 {
260 	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
261 }
262 
263 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
264 {
265 	return (memcg == root_mem_cgroup);
266 }
267 
268 #ifndef CONFIG_SLOB
269 /*
270  * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
271  * The main reason for not using cgroup id for this:
272  *  this works better in sparse environments, where we have a lot of memcgs,
273  *  but only a few kmem-limited. Or also, if we have, for instance, 200
274  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
275  *  200 entry array for that.
276  *
277  * The current size of the caches array is stored in memcg_nr_cache_ids. It
278  * will double each time we have to increase it.
279  */
280 static DEFINE_IDA(memcg_cache_ida);
281 int memcg_nr_cache_ids;
282 
283 /* Protects memcg_nr_cache_ids */
284 static DECLARE_RWSEM(memcg_cache_ids_sem);
285 
286 void memcg_get_cache_ids(void)
287 {
288 	down_read(&memcg_cache_ids_sem);
289 }
290 
291 void memcg_put_cache_ids(void)
292 {
293 	up_read(&memcg_cache_ids_sem);
294 }
295 
296 /*
297  * MIN_SIZE is different than 1, because we would like to avoid going through
298  * the alloc/free process all the time. In a small machine, 4 kmem-limited
299  * cgroups is a reasonable guess. In the future, it could be a parameter or
300  * tunable, but that is strictly not necessary.
301  *
302  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
303  * this constant directly from cgroup, but it is understandable that this is
304  * better kept as an internal representation in cgroup.c. In any case, the
305  * cgrp_id space is not getting any smaller, and we don't have to necessarily
306  * increase ours as well if it increases.
307  */
308 #define MEMCG_CACHES_MIN_SIZE 4
309 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
310 
311 /*
312  * A lot of the calls to the cache allocation functions are expected to be
313  * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
314  * conditional to this static branch, we'll have to allow modules that does
315  * kmem_cache_alloc and the such to see this symbol as well
316  */
317 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
318 EXPORT_SYMBOL(memcg_kmem_enabled_key);
319 
320 #endif /* !CONFIG_SLOB */
321 
322 /**
323  * mem_cgroup_css_from_page - css of the memcg associated with a page
324  * @page: page of interest
325  *
326  * If memcg is bound to the default hierarchy, css of the memcg associated
327  * with @page is returned.  The returned css remains associated with @page
328  * until it is released.
329  *
330  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
331  * is returned.
332  */
333 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
334 {
335 	struct mem_cgroup *memcg;
336 
337 	memcg = page->mem_cgroup;
338 
339 	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
340 		memcg = root_mem_cgroup;
341 
342 	return &memcg->css;
343 }
344 
345 /**
346  * page_cgroup_ino - return inode number of the memcg a page is charged to
347  * @page: the page
348  *
349  * Look up the closest online ancestor of the memory cgroup @page is charged to
350  * and return its inode number or 0 if @page is not charged to any cgroup. It
351  * is safe to call this function without holding a reference to @page.
352  *
353  * Note, this function is inherently racy, because there is nothing to prevent
354  * the cgroup inode from getting torn down and potentially reallocated a moment
355  * after page_cgroup_ino() returns, so it only should be used by callers that
356  * do not care (such as procfs interfaces).
357  */
358 ino_t page_cgroup_ino(struct page *page)
359 {
360 	struct mem_cgroup *memcg;
361 	unsigned long ino = 0;
362 
363 	rcu_read_lock();
364 	memcg = READ_ONCE(page->mem_cgroup);
365 	while (memcg && !(memcg->css.flags & CSS_ONLINE))
366 		memcg = parent_mem_cgroup(memcg);
367 	if (memcg)
368 		ino = cgroup_ino(memcg->css.cgroup);
369 	rcu_read_unlock();
370 	return ino;
371 }
372 
373 static struct mem_cgroup_per_node *
374 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
375 {
376 	int nid = page_to_nid(page);
377 
378 	return memcg->nodeinfo[nid];
379 }
380 
381 static struct mem_cgroup_tree_per_node *
382 soft_limit_tree_node(int nid)
383 {
384 	return soft_limit_tree.rb_tree_per_node[nid];
385 }
386 
387 static struct mem_cgroup_tree_per_node *
388 soft_limit_tree_from_page(struct page *page)
389 {
390 	int nid = page_to_nid(page);
391 
392 	return soft_limit_tree.rb_tree_per_node[nid];
393 }
394 
395 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
396 					 struct mem_cgroup_tree_per_node *mctz,
397 					 unsigned long new_usage_in_excess)
398 {
399 	struct rb_node **p = &mctz->rb_root.rb_node;
400 	struct rb_node *parent = NULL;
401 	struct mem_cgroup_per_node *mz_node;
402 
403 	if (mz->on_tree)
404 		return;
405 
406 	mz->usage_in_excess = new_usage_in_excess;
407 	if (!mz->usage_in_excess)
408 		return;
409 	while (*p) {
410 		parent = *p;
411 		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
412 					tree_node);
413 		if (mz->usage_in_excess < mz_node->usage_in_excess)
414 			p = &(*p)->rb_left;
415 		/*
416 		 * We can't avoid mem cgroups that are over their soft
417 		 * limit by the same amount
418 		 */
419 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
420 			p = &(*p)->rb_right;
421 	}
422 	rb_link_node(&mz->tree_node, parent, p);
423 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
424 	mz->on_tree = true;
425 }
426 
427 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
428 					 struct mem_cgroup_tree_per_node *mctz)
429 {
430 	if (!mz->on_tree)
431 		return;
432 	rb_erase(&mz->tree_node, &mctz->rb_root);
433 	mz->on_tree = false;
434 }
435 
436 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
437 				       struct mem_cgroup_tree_per_node *mctz)
438 {
439 	unsigned long flags;
440 
441 	spin_lock_irqsave(&mctz->lock, flags);
442 	__mem_cgroup_remove_exceeded(mz, mctz);
443 	spin_unlock_irqrestore(&mctz->lock, flags);
444 }
445 
446 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
447 {
448 	unsigned long nr_pages = page_counter_read(&memcg->memory);
449 	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
450 	unsigned long excess = 0;
451 
452 	if (nr_pages > soft_limit)
453 		excess = nr_pages - soft_limit;
454 
455 	return excess;
456 }
457 
458 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
459 {
460 	unsigned long excess;
461 	struct mem_cgroup_per_node *mz;
462 	struct mem_cgroup_tree_per_node *mctz;
463 
464 	mctz = soft_limit_tree_from_page(page);
465 	/*
466 	 * Necessary to update all ancestors when hierarchy is used.
467 	 * because their event counter is not touched.
468 	 */
469 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
470 		mz = mem_cgroup_page_nodeinfo(memcg, page);
471 		excess = soft_limit_excess(memcg);
472 		/*
473 		 * We have to update the tree if mz is on RB-tree or
474 		 * mem is over its softlimit.
475 		 */
476 		if (excess || mz->on_tree) {
477 			unsigned long flags;
478 
479 			spin_lock_irqsave(&mctz->lock, flags);
480 			/* if on-tree, remove it */
481 			if (mz->on_tree)
482 				__mem_cgroup_remove_exceeded(mz, mctz);
483 			/*
484 			 * Insert again. mz->usage_in_excess will be updated.
485 			 * If excess is 0, no tree ops.
486 			 */
487 			__mem_cgroup_insert_exceeded(mz, mctz, excess);
488 			spin_unlock_irqrestore(&mctz->lock, flags);
489 		}
490 	}
491 }
492 
493 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
494 {
495 	struct mem_cgroup_tree_per_node *mctz;
496 	struct mem_cgroup_per_node *mz;
497 	int nid;
498 
499 	for_each_node(nid) {
500 		mz = mem_cgroup_nodeinfo(memcg, nid);
501 		mctz = soft_limit_tree_node(nid);
502 		mem_cgroup_remove_exceeded(mz, mctz);
503 	}
504 }
505 
506 static struct mem_cgroup_per_node *
507 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
508 {
509 	struct rb_node *rightmost = NULL;
510 	struct mem_cgroup_per_node *mz;
511 
512 retry:
513 	mz = NULL;
514 	rightmost = rb_last(&mctz->rb_root);
515 	if (!rightmost)
516 		goto done;		/* Nothing to reclaim from */
517 
518 	mz = rb_entry(rightmost, struct mem_cgroup_per_node, tree_node);
519 	/*
520 	 * Remove the node now but someone else can add it back,
521 	 * we will to add it back at the end of reclaim to its correct
522 	 * position in the tree.
523 	 */
524 	__mem_cgroup_remove_exceeded(mz, mctz);
525 	if (!soft_limit_excess(mz->memcg) ||
526 	    !css_tryget_online(&mz->memcg->css))
527 		goto retry;
528 done:
529 	return mz;
530 }
531 
532 static struct mem_cgroup_per_node *
533 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
534 {
535 	struct mem_cgroup_per_node *mz;
536 
537 	spin_lock_irq(&mctz->lock);
538 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
539 	spin_unlock_irq(&mctz->lock);
540 	return mz;
541 }
542 
543 /*
544  * Return page count for single (non recursive) @memcg.
545  *
546  * Implementation Note: reading percpu statistics for memcg.
547  *
548  * Both of vmstat[] and percpu_counter has threshold and do periodic
549  * synchronization to implement "quick" read. There are trade-off between
550  * reading cost and precision of value. Then, we may have a chance to implement
551  * a periodic synchronization of counter in memcg's counter.
552  *
553  * But this _read() function is used for user interface now. The user accounts
554  * memory usage by memory cgroup and he _always_ requires exact value because
555  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
556  * have to visit all online cpus and make sum. So, for now, unnecessary
557  * synchronization is not implemented. (just implemented for cpu hotplug)
558  *
559  * If there are kernel internal actions which can make use of some not-exact
560  * value, and reading all cpu value can be performance bottleneck in some
561  * common workload, threshold and synchronization as vmstat[] should be
562  * implemented.
563  */
564 static unsigned long
565 mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
566 {
567 	long val = 0;
568 	int cpu;
569 
570 	/* Per-cpu values can be negative, use a signed accumulator */
571 	for_each_possible_cpu(cpu)
572 		val += per_cpu(memcg->stat->count[idx], cpu);
573 	/*
574 	 * Summing races with updates, so val may be negative.  Avoid exposing
575 	 * transient negative values.
576 	 */
577 	if (val < 0)
578 		val = 0;
579 	return val;
580 }
581 
582 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
583 					    enum mem_cgroup_events_index idx)
584 {
585 	unsigned long val = 0;
586 	int cpu;
587 
588 	for_each_possible_cpu(cpu)
589 		val += per_cpu(memcg->stat->events[idx], cpu);
590 	return val;
591 }
592 
593 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
594 					 struct page *page,
595 					 bool compound, int nr_pages)
596 {
597 	/*
598 	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
599 	 * counted as CACHE even if it's on ANON LRU.
600 	 */
601 	if (PageAnon(page))
602 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
603 				nr_pages);
604 	else
605 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
606 				nr_pages);
607 
608 	if (compound) {
609 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
610 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
611 				nr_pages);
612 	}
613 
614 	/* pagein of a big page is an event. So, ignore page size */
615 	if (nr_pages > 0)
616 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
617 	else {
618 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
619 		nr_pages = -nr_pages; /* for event */
620 	}
621 
622 	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
623 }
624 
625 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
626 					   int nid, unsigned int lru_mask)
627 {
628 	unsigned long nr = 0;
629 	struct mem_cgroup_per_node *mz;
630 	enum lru_list lru;
631 
632 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
633 
634 	for_each_lru(lru) {
635 		if (!(BIT(lru) & lru_mask))
636 			continue;
637 		mz = mem_cgroup_nodeinfo(memcg, nid);
638 		nr += mz->lru_size[lru];
639 	}
640 	return nr;
641 }
642 
643 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
644 			unsigned int lru_mask)
645 {
646 	unsigned long nr = 0;
647 	int nid;
648 
649 	for_each_node_state(nid, N_MEMORY)
650 		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
651 	return nr;
652 }
653 
654 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
655 				       enum mem_cgroup_events_target target)
656 {
657 	unsigned long val, next;
658 
659 	val = __this_cpu_read(memcg->stat->nr_page_events);
660 	next = __this_cpu_read(memcg->stat->targets[target]);
661 	/* from time_after() in jiffies.h */
662 	if ((long)next - (long)val < 0) {
663 		switch (target) {
664 		case MEM_CGROUP_TARGET_THRESH:
665 			next = val + THRESHOLDS_EVENTS_TARGET;
666 			break;
667 		case MEM_CGROUP_TARGET_SOFTLIMIT:
668 			next = val + SOFTLIMIT_EVENTS_TARGET;
669 			break;
670 		case MEM_CGROUP_TARGET_NUMAINFO:
671 			next = val + NUMAINFO_EVENTS_TARGET;
672 			break;
673 		default:
674 			break;
675 		}
676 		__this_cpu_write(memcg->stat->targets[target], next);
677 		return true;
678 	}
679 	return false;
680 }
681 
682 /*
683  * Check events in order.
684  *
685  */
686 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
687 {
688 	/* threshold event is triggered in finer grain than soft limit */
689 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
690 						MEM_CGROUP_TARGET_THRESH))) {
691 		bool do_softlimit;
692 		bool do_numainfo __maybe_unused;
693 
694 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
695 						MEM_CGROUP_TARGET_SOFTLIMIT);
696 #if MAX_NUMNODES > 1
697 		do_numainfo = mem_cgroup_event_ratelimit(memcg,
698 						MEM_CGROUP_TARGET_NUMAINFO);
699 #endif
700 		mem_cgroup_threshold(memcg);
701 		if (unlikely(do_softlimit))
702 			mem_cgroup_update_tree(memcg, page);
703 #if MAX_NUMNODES > 1
704 		if (unlikely(do_numainfo))
705 			atomic_inc(&memcg->numainfo_events);
706 #endif
707 	}
708 }
709 
710 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
711 {
712 	/*
713 	 * mm_update_next_owner() may clear mm->owner to NULL
714 	 * if it races with swapoff, page migration, etc.
715 	 * So this can be called with p == NULL.
716 	 */
717 	if (unlikely(!p))
718 		return NULL;
719 
720 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
721 }
722 EXPORT_SYMBOL(mem_cgroup_from_task);
723 
724 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
725 {
726 	struct mem_cgroup *memcg = NULL;
727 
728 	rcu_read_lock();
729 	do {
730 		/*
731 		 * Page cache insertions can happen withou an
732 		 * actual mm context, e.g. during disk probing
733 		 * on boot, loopback IO, acct() writes etc.
734 		 */
735 		if (unlikely(!mm))
736 			memcg = root_mem_cgroup;
737 		else {
738 			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
739 			if (unlikely(!memcg))
740 				memcg = root_mem_cgroup;
741 		}
742 	} while (!css_tryget_online(&memcg->css));
743 	rcu_read_unlock();
744 	return memcg;
745 }
746 
747 /**
748  * mem_cgroup_iter - iterate over memory cgroup hierarchy
749  * @root: hierarchy root
750  * @prev: previously returned memcg, NULL on first invocation
751  * @reclaim: cookie for shared reclaim walks, NULL for full walks
752  *
753  * Returns references to children of the hierarchy below @root, or
754  * @root itself, or %NULL after a full round-trip.
755  *
756  * Caller must pass the return value in @prev on subsequent
757  * invocations for reference counting, or use mem_cgroup_iter_break()
758  * to cancel a hierarchy walk before the round-trip is complete.
759  *
760  * Reclaimers can specify a zone and a priority level in @reclaim to
761  * divide up the memcgs in the hierarchy among all concurrent
762  * reclaimers operating on the same zone and priority.
763  */
764 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
765 				   struct mem_cgroup *prev,
766 				   struct mem_cgroup_reclaim_cookie *reclaim)
767 {
768 	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
769 	struct cgroup_subsys_state *css = NULL;
770 	struct mem_cgroup *memcg = NULL;
771 	struct mem_cgroup *pos = NULL;
772 
773 	if (mem_cgroup_disabled())
774 		return NULL;
775 
776 	if (!root)
777 		root = root_mem_cgroup;
778 
779 	if (prev && !reclaim)
780 		pos = prev;
781 
782 	if (!root->use_hierarchy && root != root_mem_cgroup) {
783 		if (prev)
784 			goto out;
785 		return root;
786 	}
787 
788 	rcu_read_lock();
789 
790 	if (reclaim) {
791 		struct mem_cgroup_per_node *mz;
792 
793 		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
794 		iter = &mz->iter[reclaim->priority];
795 
796 		if (prev && reclaim->generation != iter->generation)
797 			goto out_unlock;
798 
799 		while (1) {
800 			pos = READ_ONCE(iter->position);
801 			if (!pos || css_tryget(&pos->css))
802 				break;
803 			/*
804 			 * css reference reached zero, so iter->position will
805 			 * be cleared by ->css_released. However, we should not
806 			 * rely on this happening soon, because ->css_released
807 			 * is called from a work queue, and by busy-waiting we
808 			 * might block it. So we clear iter->position right
809 			 * away.
810 			 */
811 			(void)cmpxchg(&iter->position, pos, NULL);
812 		}
813 	}
814 
815 	if (pos)
816 		css = &pos->css;
817 
818 	for (;;) {
819 		css = css_next_descendant_pre(css, &root->css);
820 		if (!css) {
821 			/*
822 			 * Reclaimers share the hierarchy walk, and a
823 			 * new one might jump in right at the end of
824 			 * the hierarchy - make sure they see at least
825 			 * one group and restart from the beginning.
826 			 */
827 			if (!prev)
828 				continue;
829 			break;
830 		}
831 
832 		/*
833 		 * Verify the css and acquire a reference.  The root
834 		 * is provided by the caller, so we know it's alive
835 		 * and kicking, and don't take an extra reference.
836 		 */
837 		memcg = mem_cgroup_from_css(css);
838 
839 		if (css == &root->css)
840 			break;
841 
842 		if (css_tryget(css))
843 			break;
844 
845 		memcg = NULL;
846 	}
847 
848 	if (reclaim) {
849 		/*
850 		 * The position could have already been updated by a competing
851 		 * thread, so check that the value hasn't changed since we read
852 		 * it to avoid reclaiming from the same cgroup twice.
853 		 */
854 		(void)cmpxchg(&iter->position, pos, memcg);
855 
856 		if (pos)
857 			css_put(&pos->css);
858 
859 		if (!memcg)
860 			iter->generation++;
861 		else if (!prev)
862 			reclaim->generation = iter->generation;
863 	}
864 
865 out_unlock:
866 	rcu_read_unlock();
867 out:
868 	if (prev && prev != root)
869 		css_put(&prev->css);
870 
871 	return memcg;
872 }
873 
874 /**
875  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
876  * @root: hierarchy root
877  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
878  */
879 void mem_cgroup_iter_break(struct mem_cgroup *root,
880 			   struct mem_cgroup *prev)
881 {
882 	if (!root)
883 		root = root_mem_cgroup;
884 	if (prev && prev != root)
885 		css_put(&prev->css);
886 }
887 
888 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
889 {
890 	struct mem_cgroup *memcg = dead_memcg;
891 	struct mem_cgroup_reclaim_iter *iter;
892 	struct mem_cgroup_per_node *mz;
893 	int nid;
894 	int i;
895 
896 	while ((memcg = parent_mem_cgroup(memcg))) {
897 		for_each_node(nid) {
898 			mz = mem_cgroup_nodeinfo(memcg, nid);
899 			for (i = 0; i <= DEF_PRIORITY; i++) {
900 				iter = &mz->iter[i];
901 				cmpxchg(&iter->position,
902 					dead_memcg, NULL);
903 			}
904 		}
905 	}
906 }
907 
908 /*
909  * Iteration constructs for visiting all cgroups (under a tree).  If
910  * loops are exited prematurely (break), mem_cgroup_iter_break() must
911  * be used for reference counting.
912  */
913 #define for_each_mem_cgroup_tree(iter, root)		\
914 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
915 	     iter != NULL;				\
916 	     iter = mem_cgroup_iter(root, iter, NULL))
917 
918 #define for_each_mem_cgroup(iter)			\
919 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
920 	     iter != NULL;				\
921 	     iter = mem_cgroup_iter(NULL, iter, NULL))
922 
923 /**
924  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
925  * @memcg: hierarchy root
926  * @fn: function to call for each task
927  * @arg: argument passed to @fn
928  *
929  * This function iterates over tasks attached to @memcg or to any of its
930  * descendants and calls @fn for each task. If @fn returns a non-zero
931  * value, the function breaks the iteration loop and returns the value.
932  * Otherwise, it will iterate over all tasks and return 0.
933  *
934  * This function must not be called for the root memory cgroup.
935  */
936 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
937 			  int (*fn)(struct task_struct *, void *), void *arg)
938 {
939 	struct mem_cgroup *iter;
940 	int ret = 0;
941 
942 	BUG_ON(memcg == root_mem_cgroup);
943 
944 	for_each_mem_cgroup_tree(iter, memcg) {
945 		struct css_task_iter it;
946 		struct task_struct *task;
947 
948 		css_task_iter_start(&iter->css, &it);
949 		while (!ret && (task = css_task_iter_next(&it)))
950 			ret = fn(task, arg);
951 		css_task_iter_end(&it);
952 		if (ret) {
953 			mem_cgroup_iter_break(memcg, iter);
954 			break;
955 		}
956 	}
957 	return ret;
958 }
959 
960 /**
961  * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
962  * @page: the page
963  * @zone: zone of the page
964  *
965  * This function is only safe when following the LRU page isolation
966  * and putback protocol: the LRU lock must be held, and the page must
967  * either be PageLRU() or the caller must have isolated/allocated it.
968  */
969 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
970 {
971 	struct mem_cgroup_per_node *mz;
972 	struct mem_cgroup *memcg;
973 	struct lruvec *lruvec;
974 
975 	if (mem_cgroup_disabled()) {
976 		lruvec = &pgdat->lruvec;
977 		goto out;
978 	}
979 
980 	memcg = page->mem_cgroup;
981 	/*
982 	 * Swapcache readahead pages are added to the LRU - and
983 	 * possibly migrated - before they are charged.
984 	 */
985 	if (!memcg)
986 		memcg = root_mem_cgroup;
987 
988 	mz = mem_cgroup_page_nodeinfo(memcg, page);
989 	lruvec = &mz->lruvec;
990 out:
991 	/*
992 	 * Since a node can be onlined after the mem_cgroup was created,
993 	 * we have to be prepared to initialize lruvec->zone here;
994 	 * and if offlined then reonlined, we need to reinitialize it.
995 	 */
996 	if (unlikely(lruvec->pgdat != pgdat))
997 		lruvec->pgdat = pgdat;
998 	return lruvec;
999 }
1000 
1001 /**
1002  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1003  * @lruvec: mem_cgroup per zone lru vector
1004  * @lru: index of lru list the page is sitting on
1005  * @nr_pages: positive when adding or negative when removing
1006  *
1007  * This function must be called under lru_lock, just before a page is added
1008  * to or just after a page is removed from an lru list (that ordering being
1009  * so as to allow it to check that lru_size 0 is consistent with list_empty).
1010  */
1011 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1012 				int nr_pages)
1013 {
1014 	struct mem_cgroup_per_node *mz;
1015 	unsigned long *lru_size;
1016 	long size;
1017 	bool empty;
1018 
1019 	if (mem_cgroup_disabled())
1020 		return;
1021 
1022 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1023 	lru_size = mz->lru_size + lru;
1024 	empty = list_empty(lruvec->lists + lru);
1025 
1026 	if (nr_pages < 0)
1027 		*lru_size += nr_pages;
1028 
1029 	size = *lru_size;
1030 	if (WARN_ONCE(size < 0 || empty != !size,
1031 		"%s(%p, %d, %d): lru_size %ld but %sempty\n",
1032 		__func__, lruvec, lru, nr_pages, size, empty ? "" : "not ")) {
1033 		VM_BUG_ON(1);
1034 		*lru_size = 0;
1035 	}
1036 
1037 	if (nr_pages > 0)
1038 		*lru_size += nr_pages;
1039 }
1040 
1041 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1042 {
1043 	struct mem_cgroup *task_memcg;
1044 	struct task_struct *p;
1045 	bool ret;
1046 
1047 	p = find_lock_task_mm(task);
1048 	if (p) {
1049 		task_memcg = get_mem_cgroup_from_mm(p->mm);
1050 		task_unlock(p);
1051 	} else {
1052 		/*
1053 		 * All threads may have already detached their mm's, but the oom
1054 		 * killer still needs to detect if they have already been oom
1055 		 * killed to prevent needlessly killing additional tasks.
1056 		 */
1057 		rcu_read_lock();
1058 		task_memcg = mem_cgroup_from_task(task);
1059 		css_get(&task_memcg->css);
1060 		rcu_read_unlock();
1061 	}
1062 	ret = mem_cgroup_is_descendant(task_memcg, memcg);
1063 	css_put(&task_memcg->css);
1064 	return ret;
1065 }
1066 
1067 /**
1068  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1069  * @memcg: the memory cgroup
1070  *
1071  * Returns the maximum amount of memory @mem can be charged with, in
1072  * pages.
1073  */
1074 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1075 {
1076 	unsigned long margin = 0;
1077 	unsigned long count;
1078 	unsigned long limit;
1079 
1080 	count = page_counter_read(&memcg->memory);
1081 	limit = READ_ONCE(memcg->memory.limit);
1082 	if (count < limit)
1083 		margin = limit - count;
1084 
1085 	if (do_memsw_account()) {
1086 		count = page_counter_read(&memcg->memsw);
1087 		limit = READ_ONCE(memcg->memsw.limit);
1088 		if (count <= limit)
1089 			margin = min(margin, limit - count);
1090 		else
1091 			margin = 0;
1092 	}
1093 
1094 	return margin;
1095 }
1096 
1097 /*
1098  * A routine for checking "mem" is under move_account() or not.
1099  *
1100  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1101  * moving cgroups. This is for waiting at high-memory pressure
1102  * caused by "move".
1103  */
1104 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1105 {
1106 	struct mem_cgroup *from;
1107 	struct mem_cgroup *to;
1108 	bool ret = false;
1109 	/*
1110 	 * Unlike task_move routines, we access mc.to, mc.from not under
1111 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1112 	 */
1113 	spin_lock(&mc.lock);
1114 	from = mc.from;
1115 	to = mc.to;
1116 	if (!from)
1117 		goto unlock;
1118 
1119 	ret = mem_cgroup_is_descendant(from, memcg) ||
1120 		mem_cgroup_is_descendant(to, memcg);
1121 unlock:
1122 	spin_unlock(&mc.lock);
1123 	return ret;
1124 }
1125 
1126 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1127 {
1128 	if (mc.moving_task && current != mc.moving_task) {
1129 		if (mem_cgroup_under_move(memcg)) {
1130 			DEFINE_WAIT(wait);
1131 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1132 			/* moving charge context might have finished. */
1133 			if (mc.moving_task)
1134 				schedule();
1135 			finish_wait(&mc.waitq, &wait);
1136 			return true;
1137 		}
1138 	}
1139 	return false;
1140 }
1141 
1142 #define K(x) ((x) << (PAGE_SHIFT-10))
1143 /**
1144  * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1145  * @memcg: The memory cgroup that went over limit
1146  * @p: Task that is going to be killed
1147  *
1148  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1149  * enabled
1150  */
1151 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1152 {
1153 	struct mem_cgroup *iter;
1154 	unsigned int i;
1155 
1156 	rcu_read_lock();
1157 
1158 	if (p) {
1159 		pr_info("Task in ");
1160 		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1161 		pr_cont(" killed as a result of limit of ");
1162 	} else {
1163 		pr_info("Memory limit reached of cgroup ");
1164 	}
1165 
1166 	pr_cont_cgroup_path(memcg->css.cgroup);
1167 	pr_cont("\n");
1168 
1169 	rcu_read_unlock();
1170 
1171 	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1172 		K((u64)page_counter_read(&memcg->memory)),
1173 		K((u64)memcg->memory.limit), memcg->memory.failcnt);
1174 	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1175 		K((u64)page_counter_read(&memcg->memsw)),
1176 		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1177 	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1178 		K((u64)page_counter_read(&memcg->kmem)),
1179 		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1180 
1181 	for_each_mem_cgroup_tree(iter, memcg) {
1182 		pr_info("Memory cgroup stats for ");
1183 		pr_cont_cgroup_path(iter->css.cgroup);
1184 		pr_cont(":");
1185 
1186 		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1187 			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1188 				continue;
1189 			pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1190 				K(mem_cgroup_read_stat(iter, i)));
1191 		}
1192 
1193 		for (i = 0; i < NR_LRU_LISTS; i++)
1194 			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1195 				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1196 
1197 		pr_cont("\n");
1198 	}
1199 }
1200 
1201 /*
1202  * This function returns the number of memcg under hierarchy tree. Returns
1203  * 1(self count) if no children.
1204  */
1205 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1206 {
1207 	int num = 0;
1208 	struct mem_cgroup *iter;
1209 
1210 	for_each_mem_cgroup_tree(iter, memcg)
1211 		num++;
1212 	return num;
1213 }
1214 
1215 /*
1216  * Return the memory (and swap, if configured) limit for a memcg.
1217  */
1218 unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1219 {
1220 	unsigned long limit;
1221 
1222 	limit = memcg->memory.limit;
1223 	if (mem_cgroup_swappiness(memcg)) {
1224 		unsigned long memsw_limit;
1225 		unsigned long swap_limit;
1226 
1227 		memsw_limit = memcg->memsw.limit;
1228 		swap_limit = memcg->swap.limit;
1229 		swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1230 		limit = min(limit + swap_limit, memsw_limit);
1231 	}
1232 	return limit;
1233 }
1234 
1235 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1236 				     int order)
1237 {
1238 	struct oom_control oc = {
1239 		.zonelist = NULL,
1240 		.nodemask = NULL,
1241 		.memcg = memcg,
1242 		.gfp_mask = gfp_mask,
1243 		.order = order,
1244 	};
1245 	bool ret;
1246 
1247 	mutex_lock(&oom_lock);
1248 	ret = out_of_memory(&oc);
1249 	mutex_unlock(&oom_lock);
1250 	return ret;
1251 }
1252 
1253 #if MAX_NUMNODES > 1
1254 
1255 /**
1256  * test_mem_cgroup_node_reclaimable
1257  * @memcg: the target memcg
1258  * @nid: the node ID to be checked.
1259  * @noswap : specify true here if the user wants flle only information.
1260  *
1261  * This function returns whether the specified memcg contains any
1262  * reclaimable pages on a node. Returns true if there are any reclaimable
1263  * pages in the node.
1264  */
1265 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1266 		int nid, bool noswap)
1267 {
1268 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1269 		return true;
1270 	if (noswap || !total_swap_pages)
1271 		return false;
1272 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1273 		return true;
1274 	return false;
1275 
1276 }
1277 
1278 /*
1279  * Always updating the nodemask is not very good - even if we have an empty
1280  * list or the wrong list here, we can start from some node and traverse all
1281  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1282  *
1283  */
1284 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1285 {
1286 	int nid;
1287 	/*
1288 	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1289 	 * pagein/pageout changes since the last update.
1290 	 */
1291 	if (!atomic_read(&memcg->numainfo_events))
1292 		return;
1293 	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1294 		return;
1295 
1296 	/* make a nodemask where this memcg uses memory from */
1297 	memcg->scan_nodes = node_states[N_MEMORY];
1298 
1299 	for_each_node_mask(nid, node_states[N_MEMORY]) {
1300 
1301 		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1302 			node_clear(nid, memcg->scan_nodes);
1303 	}
1304 
1305 	atomic_set(&memcg->numainfo_events, 0);
1306 	atomic_set(&memcg->numainfo_updating, 0);
1307 }
1308 
1309 /*
1310  * Selecting a node where we start reclaim from. Because what we need is just
1311  * reducing usage counter, start from anywhere is O,K. Considering
1312  * memory reclaim from current node, there are pros. and cons.
1313  *
1314  * Freeing memory from current node means freeing memory from a node which
1315  * we'll use or we've used. So, it may make LRU bad. And if several threads
1316  * hit limits, it will see a contention on a node. But freeing from remote
1317  * node means more costs for memory reclaim because of memory latency.
1318  *
1319  * Now, we use round-robin. Better algorithm is welcomed.
1320  */
1321 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1322 {
1323 	int node;
1324 
1325 	mem_cgroup_may_update_nodemask(memcg);
1326 	node = memcg->last_scanned_node;
1327 
1328 	node = next_node_in(node, memcg->scan_nodes);
1329 	/*
1330 	 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1331 	 * last time it really checked all the LRUs due to rate limiting.
1332 	 * Fallback to the current node in that case for simplicity.
1333 	 */
1334 	if (unlikely(node == MAX_NUMNODES))
1335 		node = numa_node_id();
1336 
1337 	memcg->last_scanned_node = node;
1338 	return node;
1339 }
1340 #else
1341 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1342 {
1343 	return 0;
1344 }
1345 #endif
1346 
1347 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1348 				   pg_data_t *pgdat,
1349 				   gfp_t gfp_mask,
1350 				   unsigned long *total_scanned)
1351 {
1352 	struct mem_cgroup *victim = NULL;
1353 	int total = 0;
1354 	int loop = 0;
1355 	unsigned long excess;
1356 	unsigned long nr_scanned;
1357 	struct mem_cgroup_reclaim_cookie reclaim = {
1358 		.pgdat = pgdat,
1359 		.priority = 0,
1360 	};
1361 
1362 	excess = soft_limit_excess(root_memcg);
1363 
1364 	while (1) {
1365 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1366 		if (!victim) {
1367 			loop++;
1368 			if (loop >= 2) {
1369 				/*
1370 				 * If we have not been able to reclaim
1371 				 * anything, it might because there are
1372 				 * no reclaimable pages under this hierarchy
1373 				 */
1374 				if (!total)
1375 					break;
1376 				/*
1377 				 * We want to do more targeted reclaim.
1378 				 * excess >> 2 is not to excessive so as to
1379 				 * reclaim too much, nor too less that we keep
1380 				 * coming back to reclaim from this cgroup
1381 				 */
1382 				if (total >= (excess >> 2) ||
1383 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1384 					break;
1385 			}
1386 			continue;
1387 		}
1388 		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1389 					pgdat, &nr_scanned);
1390 		*total_scanned += nr_scanned;
1391 		if (!soft_limit_excess(root_memcg))
1392 			break;
1393 	}
1394 	mem_cgroup_iter_break(root_memcg, victim);
1395 	return total;
1396 }
1397 
1398 #ifdef CONFIG_LOCKDEP
1399 static struct lockdep_map memcg_oom_lock_dep_map = {
1400 	.name = "memcg_oom_lock",
1401 };
1402 #endif
1403 
1404 static DEFINE_SPINLOCK(memcg_oom_lock);
1405 
1406 /*
1407  * Check OOM-Killer is already running under our hierarchy.
1408  * If someone is running, return false.
1409  */
1410 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1411 {
1412 	struct mem_cgroup *iter, *failed = NULL;
1413 
1414 	spin_lock(&memcg_oom_lock);
1415 
1416 	for_each_mem_cgroup_tree(iter, memcg) {
1417 		if (iter->oom_lock) {
1418 			/*
1419 			 * this subtree of our hierarchy is already locked
1420 			 * so we cannot give a lock.
1421 			 */
1422 			failed = iter;
1423 			mem_cgroup_iter_break(memcg, iter);
1424 			break;
1425 		} else
1426 			iter->oom_lock = true;
1427 	}
1428 
1429 	if (failed) {
1430 		/*
1431 		 * OK, we failed to lock the whole subtree so we have
1432 		 * to clean up what we set up to the failing subtree
1433 		 */
1434 		for_each_mem_cgroup_tree(iter, memcg) {
1435 			if (iter == failed) {
1436 				mem_cgroup_iter_break(memcg, iter);
1437 				break;
1438 			}
1439 			iter->oom_lock = false;
1440 		}
1441 	} else
1442 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1443 
1444 	spin_unlock(&memcg_oom_lock);
1445 
1446 	return !failed;
1447 }
1448 
1449 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1450 {
1451 	struct mem_cgroup *iter;
1452 
1453 	spin_lock(&memcg_oom_lock);
1454 	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1455 	for_each_mem_cgroup_tree(iter, memcg)
1456 		iter->oom_lock = false;
1457 	spin_unlock(&memcg_oom_lock);
1458 }
1459 
1460 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1461 {
1462 	struct mem_cgroup *iter;
1463 
1464 	spin_lock(&memcg_oom_lock);
1465 	for_each_mem_cgroup_tree(iter, memcg)
1466 		iter->under_oom++;
1467 	spin_unlock(&memcg_oom_lock);
1468 }
1469 
1470 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1471 {
1472 	struct mem_cgroup *iter;
1473 
1474 	/*
1475 	 * When a new child is created while the hierarchy is under oom,
1476 	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1477 	 */
1478 	spin_lock(&memcg_oom_lock);
1479 	for_each_mem_cgroup_tree(iter, memcg)
1480 		if (iter->under_oom > 0)
1481 			iter->under_oom--;
1482 	spin_unlock(&memcg_oom_lock);
1483 }
1484 
1485 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1486 
1487 struct oom_wait_info {
1488 	struct mem_cgroup *memcg;
1489 	wait_queue_t	wait;
1490 };
1491 
1492 static int memcg_oom_wake_function(wait_queue_t *wait,
1493 	unsigned mode, int sync, void *arg)
1494 {
1495 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1496 	struct mem_cgroup *oom_wait_memcg;
1497 	struct oom_wait_info *oom_wait_info;
1498 
1499 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1500 	oom_wait_memcg = oom_wait_info->memcg;
1501 
1502 	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1503 	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1504 		return 0;
1505 	return autoremove_wake_function(wait, mode, sync, arg);
1506 }
1507 
1508 static void memcg_oom_recover(struct mem_cgroup *memcg)
1509 {
1510 	/*
1511 	 * For the following lockless ->under_oom test, the only required
1512 	 * guarantee is that it must see the state asserted by an OOM when
1513 	 * this function is called as a result of userland actions
1514 	 * triggered by the notification of the OOM.  This is trivially
1515 	 * achieved by invoking mem_cgroup_mark_under_oom() before
1516 	 * triggering notification.
1517 	 */
1518 	if (memcg && memcg->under_oom)
1519 		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1520 }
1521 
1522 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1523 {
1524 	if (!current->memcg_may_oom)
1525 		return;
1526 	/*
1527 	 * We are in the middle of the charge context here, so we
1528 	 * don't want to block when potentially sitting on a callstack
1529 	 * that holds all kinds of filesystem and mm locks.
1530 	 *
1531 	 * Also, the caller may handle a failed allocation gracefully
1532 	 * (like optional page cache readahead) and so an OOM killer
1533 	 * invocation might not even be necessary.
1534 	 *
1535 	 * That's why we don't do anything here except remember the
1536 	 * OOM context and then deal with it at the end of the page
1537 	 * fault when the stack is unwound, the locks are released,
1538 	 * and when we know whether the fault was overall successful.
1539 	 */
1540 	css_get(&memcg->css);
1541 	current->memcg_in_oom = memcg;
1542 	current->memcg_oom_gfp_mask = mask;
1543 	current->memcg_oom_order = order;
1544 }
1545 
1546 /**
1547  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1548  * @handle: actually kill/wait or just clean up the OOM state
1549  *
1550  * This has to be called at the end of a page fault if the memcg OOM
1551  * handler was enabled.
1552  *
1553  * Memcg supports userspace OOM handling where failed allocations must
1554  * sleep on a waitqueue until the userspace task resolves the
1555  * situation.  Sleeping directly in the charge context with all kinds
1556  * of locks held is not a good idea, instead we remember an OOM state
1557  * in the task and mem_cgroup_oom_synchronize() has to be called at
1558  * the end of the page fault to complete the OOM handling.
1559  *
1560  * Returns %true if an ongoing memcg OOM situation was detected and
1561  * completed, %false otherwise.
1562  */
1563 bool mem_cgroup_oom_synchronize(bool handle)
1564 {
1565 	struct mem_cgroup *memcg = current->memcg_in_oom;
1566 	struct oom_wait_info owait;
1567 	bool locked;
1568 
1569 	/* OOM is global, do not handle */
1570 	if (!memcg)
1571 		return false;
1572 
1573 	if (!handle)
1574 		goto cleanup;
1575 
1576 	owait.memcg = memcg;
1577 	owait.wait.flags = 0;
1578 	owait.wait.func = memcg_oom_wake_function;
1579 	owait.wait.private = current;
1580 	INIT_LIST_HEAD(&owait.wait.task_list);
1581 
1582 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1583 	mem_cgroup_mark_under_oom(memcg);
1584 
1585 	locked = mem_cgroup_oom_trylock(memcg);
1586 
1587 	if (locked)
1588 		mem_cgroup_oom_notify(memcg);
1589 
1590 	if (locked && !memcg->oom_kill_disable) {
1591 		mem_cgroup_unmark_under_oom(memcg);
1592 		finish_wait(&memcg_oom_waitq, &owait.wait);
1593 		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1594 					 current->memcg_oom_order);
1595 	} else {
1596 		schedule();
1597 		mem_cgroup_unmark_under_oom(memcg);
1598 		finish_wait(&memcg_oom_waitq, &owait.wait);
1599 	}
1600 
1601 	if (locked) {
1602 		mem_cgroup_oom_unlock(memcg);
1603 		/*
1604 		 * There is no guarantee that an OOM-lock contender
1605 		 * sees the wakeups triggered by the OOM kill
1606 		 * uncharges.  Wake any sleepers explicitely.
1607 		 */
1608 		memcg_oom_recover(memcg);
1609 	}
1610 cleanup:
1611 	current->memcg_in_oom = NULL;
1612 	css_put(&memcg->css);
1613 	return true;
1614 }
1615 
1616 /**
1617  * lock_page_memcg - lock a page->mem_cgroup binding
1618  * @page: the page
1619  *
1620  * This function protects unlocked LRU pages from being moved to
1621  * another cgroup and stabilizes their page->mem_cgroup binding.
1622  */
1623 void lock_page_memcg(struct page *page)
1624 {
1625 	struct mem_cgroup *memcg;
1626 	unsigned long flags;
1627 
1628 	/*
1629 	 * The RCU lock is held throughout the transaction.  The fast
1630 	 * path can get away without acquiring the memcg->move_lock
1631 	 * because page moving starts with an RCU grace period.
1632 	 */
1633 	rcu_read_lock();
1634 
1635 	if (mem_cgroup_disabled())
1636 		return;
1637 again:
1638 	memcg = page->mem_cgroup;
1639 	if (unlikely(!memcg))
1640 		return;
1641 
1642 	if (atomic_read(&memcg->moving_account) <= 0)
1643 		return;
1644 
1645 	spin_lock_irqsave(&memcg->move_lock, flags);
1646 	if (memcg != page->mem_cgroup) {
1647 		spin_unlock_irqrestore(&memcg->move_lock, flags);
1648 		goto again;
1649 	}
1650 
1651 	/*
1652 	 * When charge migration first begins, we can have locked and
1653 	 * unlocked page stat updates happening concurrently.  Track
1654 	 * the task who has the lock for unlock_page_memcg().
1655 	 */
1656 	memcg->move_lock_task = current;
1657 	memcg->move_lock_flags = flags;
1658 
1659 	return;
1660 }
1661 EXPORT_SYMBOL(lock_page_memcg);
1662 
1663 /**
1664  * unlock_page_memcg - unlock a page->mem_cgroup binding
1665  * @page: the page
1666  */
1667 void unlock_page_memcg(struct page *page)
1668 {
1669 	struct mem_cgroup *memcg = page->mem_cgroup;
1670 
1671 	if (memcg && memcg->move_lock_task == current) {
1672 		unsigned long flags = memcg->move_lock_flags;
1673 
1674 		memcg->move_lock_task = NULL;
1675 		memcg->move_lock_flags = 0;
1676 
1677 		spin_unlock_irqrestore(&memcg->move_lock, flags);
1678 	}
1679 
1680 	rcu_read_unlock();
1681 }
1682 EXPORT_SYMBOL(unlock_page_memcg);
1683 
1684 /*
1685  * size of first charge trial. "32" comes from vmscan.c's magic value.
1686  * TODO: maybe necessary to use big numbers in big irons.
1687  */
1688 #define CHARGE_BATCH	32U
1689 struct memcg_stock_pcp {
1690 	struct mem_cgroup *cached; /* this never be root cgroup */
1691 	unsigned int nr_pages;
1692 	struct work_struct work;
1693 	unsigned long flags;
1694 #define FLUSHING_CACHED_CHARGE	0
1695 };
1696 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1697 static DEFINE_MUTEX(percpu_charge_mutex);
1698 
1699 /**
1700  * consume_stock: Try to consume stocked charge on this cpu.
1701  * @memcg: memcg to consume from.
1702  * @nr_pages: how many pages to charge.
1703  *
1704  * The charges will only happen if @memcg matches the current cpu's memcg
1705  * stock, and at least @nr_pages are available in that stock.  Failure to
1706  * service an allocation will refill the stock.
1707  *
1708  * returns true if successful, false otherwise.
1709  */
1710 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1711 {
1712 	struct memcg_stock_pcp *stock;
1713 	unsigned long flags;
1714 	bool ret = false;
1715 
1716 	if (nr_pages > CHARGE_BATCH)
1717 		return ret;
1718 
1719 	local_irq_save(flags);
1720 
1721 	stock = this_cpu_ptr(&memcg_stock);
1722 	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1723 		stock->nr_pages -= nr_pages;
1724 		ret = true;
1725 	}
1726 
1727 	local_irq_restore(flags);
1728 
1729 	return ret;
1730 }
1731 
1732 /*
1733  * Returns stocks cached in percpu and reset cached information.
1734  */
1735 static void drain_stock(struct memcg_stock_pcp *stock)
1736 {
1737 	struct mem_cgroup *old = stock->cached;
1738 
1739 	if (stock->nr_pages) {
1740 		page_counter_uncharge(&old->memory, stock->nr_pages);
1741 		if (do_memsw_account())
1742 			page_counter_uncharge(&old->memsw, stock->nr_pages);
1743 		css_put_many(&old->css, stock->nr_pages);
1744 		stock->nr_pages = 0;
1745 	}
1746 	stock->cached = NULL;
1747 }
1748 
1749 static void drain_local_stock(struct work_struct *dummy)
1750 {
1751 	struct memcg_stock_pcp *stock;
1752 	unsigned long flags;
1753 
1754 	local_irq_save(flags);
1755 
1756 	stock = this_cpu_ptr(&memcg_stock);
1757 	drain_stock(stock);
1758 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1759 
1760 	local_irq_restore(flags);
1761 }
1762 
1763 /*
1764  * Cache charges(val) to local per_cpu area.
1765  * This will be consumed by consume_stock() function, later.
1766  */
1767 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1768 {
1769 	struct memcg_stock_pcp *stock;
1770 	unsigned long flags;
1771 
1772 	local_irq_save(flags);
1773 
1774 	stock = this_cpu_ptr(&memcg_stock);
1775 	if (stock->cached != memcg) { /* reset if necessary */
1776 		drain_stock(stock);
1777 		stock->cached = memcg;
1778 	}
1779 	stock->nr_pages += nr_pages;
1780 
1781 	local_irq_restore(flags);
1782 }
1783 
1784 /*
1785  * Drains all per-CPU charge caches for given root_memcg resp. subtree
1786  * of the hierarchy under it.
1787  */
1788 static void drain_all_stock(struct mem_cgroup *root_memcg)
1789 {
1790 	int cpu, curcpu;
1791 
1792 	/* If someone's already draining, avoid adding running more workers. */
1793 	if (!mutex_trylock(&percpu_charge_mutex))
1794 		return;
1795 	/* Notify other cpus that system-wide "drain" is running */
1796 	get_online_cpus();
1797 	curcpu = get_cpu();
1798 	for_each_online_cpu(cpu) {
1799 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1800 		struct mem_cgroup *memcg;
1801 
1802 		memcg = stock->cached;
1803 		if (!memcg || !stock->nr_pages)
1804 			continue;
1805 		if (!mem_cgroup_is_descendant(memcg, root_memcg))
1806 			continue;
1807 		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1808 			if (cpu == curcpu)
1809 				drain_local_stock(&stock->work);
1810 			else
1811 				schedule_work_on(cpu, &stock->work);
1812 		}
1813 	}
1814 	put_cpu();
1815 	put_online_cpus();
1816 	mutex_unlock(&percpu_charge_mutex);
1817 }
1818 
1819 static int memcg_hotplug_cpu_dead(unsigned int cpu)
1820 {
1821 	struct memcg_stock_pcp *stock;
1822 
1823 	stock = &per_cpu(memcg_stock, cpu);
1824 	drain_stock(stock);
1825 	return 0;
1826 }
1827 
1828 static void reclaim_high(struct mem_cgroup *memcg,
1829 			 unsigned int nr_pages,
1830 			 gfp_t gfp_mask)
1831 {
1832 	do {
1833 		if (page_counter_read(&memcg->memory) <= memcg->high)
1834 			continue;
1835 		mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1836 		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1837 	} while ((memcg = parent_mem_cgroup(memcg)));
1838 }
1839 
1840 static void high_work_func(struct work_struct *work)
1841 {
1842 	struct mem_cgroup *memcg;
1843 
1844 	memcg = container_of(work, struct mem_cgroup, high_work);
1845 	reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1846 }
1847 
1848 /*
1849  * Scheduled by try_charge() to be executed from the userland return path
1850  * and reclaims memory over the high limit.
1851  */
1852 void mem_cgroup_handle_over_high(void)
1853 {
1854 	unsigned int nr_pages = current->memcg_nr_pages_over_high;
1855 	struct mem_cgroup *memcg;
1856 
1857 	if (likely(!nr_pages))
1858 		return;
1859 
1860 	memcg = get_mem_cgroup_from_mm(current->mm);
1861 	reclaim_high(memcg, nr_pages, GFP_KERNEL);
1862 	css_put(&memcg->css);
1863 	current->memcg_nr_pages_over_high = 0;
1864 }
1865 
1866 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1867 		      unsigned int nr_pages)
1868 {
1869 	unsigned int batch = max(CHARGE_BATCH, nr_pages);
1870 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1871 	struct mem_cgroup *mem_over_limit;
1872 	struct page_counter *counter;
1873 	unsigned long nr_reclaimed;
1874 	bool may_swap = true;
1875 	bool drained = false;
1876 
1877 	if (mem_cgroup_is_root(memcg))
1878 		return 0;
1879 retry:
1880 	if (consume_stock(memcg, nr_pages))
1881 		return 0;
1882 
1883 	if (!do_memsw_account() ||
1884 	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1885 		if (page_counter_try_charge(&memcg->memory, batch, &counter))
1886 			goto done_restock;
1887 		if (do_memsw_account())
1888 			page_counter_uncharge(&memcg->memsw, batch);
1889 		mem_over_limit = mem_cgroup_from_counter(counter, memory);
1890 	} else {
1891 		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1892 		may_swap = false;
1893 	}
1894 
1895 	if (batch > nr_pages) {
1896 		batch = nr_pages;
1897 		goto retry;
1898 	}
1899 
1900 	/*
1901 	 * Unlike in global OOM situations, memcg is not in a physical
1902 	 * memory shortage.  Allow dying and OOM-killed tasks to
1903 	 * bypass the last charges so that they can exit quickly and
1904 	 * free their memory.
1905 	 */
1906 	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1907 		     fatal_signal_pending(current) ||
1908 		     current->flags & PF_EXITING))
1909 		goto force;
1910 
1911 	/*
1912 	 * Prevent unbounded recursion when reclaim operations need to
1913 	 * allocate memory. This might exceed the limits temporarily,
1914 	 * but we prefer facilitating memory reclaim and getting back
1915 	 * under the limit over triggering OOM kills in these cases.
1916 	 */
1917 	if (unlikely(current->flags & PF_MEMALLOC))
1918 		goto force;
1919 
1920 	if (unlikely(task_in_memcg_oom(current)))
1921 		goto nomem;
1922 
1923 	if (!gfpflags_allow_blocking(gfp_mask))
1924 		goto nomem;
1925 
1926 	mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
1927 
1928 	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1929 						    gfp_mask, may_swap);
1930 
1931 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1932 		goto retry;
1933 
1934 	if (!drained) {
1935 		drain_all_stock(mem_over_limit);
1936 		drained = true;
1937 		goto retry;
1938 	}
1939 
1940 	if (gfp_mask & __GFP_NORETRY)
1941 		goto nomem;
1942 	/*
1943 	 * Even though the limit is exceeded at this point, reclaim
1944 	 * may have been able to free some pages.  Retry the charge
1945 	 * before killing the task.
1946 	 *
1947 	 * Only for regular pages, though: huge pages are rather
1948 	 * unlikely to succeed so close to the limit, and we fall back
1949 	 * to regular pages anyway in case of failure.
1950 	 */
1951 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
1952 		goto retry;
1953 	/*
1954 	 * At task move, charge accounts can be doubly counted. So, it's
1955 	 * better to wait until the end of task_move if something is going on.
1956 	 */
1957 	if (mem_cgroup_wait_acct_move(mem_over_limit))
1958 		goto retry;
1959 
1960 	if (nr_retries--)
1961 		goto retry;
1962 
1963 	if (gfp_mask & __GFP_NOFAIL)
1964 		goto force;
1965 
1966 	if (fatal_signal_pending(current))
1967 		goto force;
1968 
1969 	mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
1970 
1971 	mem_cgroup_oom(mem_over_limit, gfp_mask,
1972 		       get_order(nr_pages * PAGE_SIZE));
1973 nomem:
1974 	if (!(gfp_mask & __GFP_NOFAIL))
1975 		return -ENOMEM;
1976 force:
1977 	/*
1978 	 * The allocation either can't fail or will lead to more memory
1979 	 * being freed very soon.  Allow memory usage go over the limit
1980 	 * temporarily by force charging it.
1981 	 */
1982 	page_counter_charge(&memcg->memory, nr_pages);
1983 	if (do_memsw_account())
1984 		page_counter_charge(&memcg->memsw, nr_pages);
1985 	css_get_many(&memcg->css, nr_pages);
1986 
1987 	return 0;
1988 
1989 done_restock:
1990 	css_get_many(&memcg->css, batch);
1991 	if (batch > nr_pages)
1992 		refill_stock(memcg, batch - nr_pages);
1993 
1994 	/*
1995 	 * If the hierarchy is above the normal consumption range, schedule
1996 	 * reclaim on returning to userland.  We can perform reclaim here
1997 	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
1998 	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
1999 	 * not recorded as it most likely matches current's and won't
2000 	 * change in the meantime.  As high limit is checked again before
2001 	 * reclaim, the cost of mismatch is negligible.
2002 	 */
2003 	do {
2004 		if (page_counter_read(&memcg->memory) > memcg->high) {
2005 			/* Don't bother a random interrupted task */
2006 			if (in_interrupt()) {
2007 				schedule_work(&memcg->high_work);
2008 				break;
2009 			}
2010 			current->memcg_nr_pages_over_high += batch;
2011 			set_notify_resume(current);
2012 			break;
2013 		}
2014 	} while ((memcg = parent_mem_cgroup(memcg)));
2015 
2016 	return 0;
2017 }
2018 
2019 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2020 {
2021 	if (mem_cgroup_is_root(memcg))
2022 		return;
2023 
2024 	page_counter_uncharge(&memcg->memory, nr_pages);
2025 	if (do_memsw_account())
2026 		page_counter_uncharge(&memcg->memsw, nr_pages);
2027 
2028 	css_put_many(&memcg->css, nr_pages);
2029 }
2030 
2031 static void lock_page_lru(struct page *page, int *isolated)
2032 {
2033 	struct zone *zone = page_zone(page);
2034 
2035 	spin_lock_irq(zone_lru_lock(zone));
2036 	if (PageLRU(page)) {
2037 		struct lruvec *lruvec;
2038 
2039 		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2040 		ClearPageLRU(page);
2041 		del_page_from_lru_list(page, lruvec, page_lru(page));
2042 		*isolated = 1;
2043 	} else
2044 		*isolated = 0;
2045 }
2046 
2047 static void unlock_page_lru(struct page *page, int isolated)
2048 {
2049 	struct zone *zone = page_zone(page);
2050 
2051 	if (isolated) {
2052 		struct lruvec *lruvec;
2053 
2054 		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2055 		VM_BUG_ON_PAGE(PageLRU(page), page);
2056 		SetPageLRU(page);
2057 		add_page_to_lru_list(page, lruvec, page_lru(page));
2058 	}
2059 	spin_unlock_irq(zone_lru_lock(zone));
2060 }
2061 
2062 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2063 			  bool lrucare)
2064 {
2065 	int isolated;
2066 
2067 	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2068 
2069 	/*
2070 	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2071 	 * may already be on some other mem_cgroup's LRU.  Take care of it.
2072 	 */
2073 	if (lrucare)
2074 		lock_page_lru(page, &isolated);
2075 
2076 	/*
2077 	 * Nobody should be changing or seriously looking at
2078 	 * page->mem_cgroup at this point:
2079 	 *
2080 	 * - the page is uncharged
2081 	 *
2082 	 * - the page is off-LRU
2083 	 *
2084 	 * - an anonymous fault has exclusive page access, except for
2085 	 *   a locked page table
2086 	 *
2087 	 * - a page cache insertion, a swapin fault, or a migration
2088 	 *   have the page locked
2089 	 */
2090 	page->mem_cgroup = memcg;
2091 
2092 	if (lrucare)
2093 		unlock_page_lru(page, isolated);
2094 }
2095 
2096 #ifndef CONFIG_SLOB
2097 static int memcg_alloc_cache_id(void)
2098 {
2099 	int id, size;
2100 	int err;
2101 
2102 	id = ida_simple_get(&memcg_cache_ida,
2103 			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2104 	if (id < 0)
2105 		return id;
2106 
2107 	if (id < memcg_nr_cache_ids)
2108 		return id;
2109 
2110 	/*
2111 	 * There's no space for the new id in memcg_caches arrays,
2112 	 * so we have to grow them.
2113 	 */
2114 	down_write(&memcg_cache_ids_sem);
2115 
2116 	size = 2 * (id + 1);
2117 	if (size < MEMCG_CACHES_MIN_SIZE)
2118 		size = MEMCG_CACHES_MIN_SIZE;
2119 	else if (size > MEMCG_CACHES_MAX_SIZE)
2120 		size = MEMCG_CACHES_MAX_SIZE;
2121 
2122 	err = memcg_update_all_caches(size);
2123 	if (!err)
2124 		err = memcg_update_all_list_lrus(size);
2125 	if (!err)
2126 		memcg_nr_cache_ids = size;
2127 
2128 	up_write(&memcg_cache_ids_sem);
2129 
2130 	if (err) {
2131 		ida_simple_remove(&memcg_cache_ida, id);
2132 		return err;
2133 	}
2134 	return id;
2135 }
2136 
2137 static void memcg_free_cache_id(int id)
2138 {
2139 	ida_simple_remove(&memcg_cache_ida, id);
2140 }
2141 
2142 struct memcg_kmem_cache_create_work {
2143 	struct mem_cgroup *memcg;
2144 	struct kmem_cache *cachep;
2145 	struct work_struct work;
2146 };
2147 
2148 static struct workqueue_struct *memcg_kmem_cache_create_wq;
2149 
2150 static void memcg_kmem_cache_create_func(struct work_struct *w)
2151 {
2152 	struct memcg_kmem_cache_create_work *cw =
2153 		container_of(w, struct memcg_kmem_cache_create_work, work);
2154 	struct mem_cgroup *memcg = cw->memcg;
2155 	struct kmem_cache *cachep = cw->cachep;
2156 
2157 	memcg_create_kmem_cache(memcg, cachep);
2158 
2159 	css_put(&memcg->css);
2160 	kfree(cw);
2161 }
2162 
2163 /*
2164  * Enqueue the creation of a per-memcg kmem_cache.
2165  */
2166 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2167 					       struct kmem_cache *cachep)
2168 {
2169 	struct memcg_kmem_cache_create_work *cw;
2170 
2171 	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2172 	if (!cw)
2173 		return;
2174 
2175 	css_get(&memcg->css);
2176 
2177 	cw->memcg = memcg;
2178 	cw->cachep = cachep;
2179 	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2180 
2181 	queue_work(memcg_kmem_cache_create_wq, &cw->work);
2182 }
2183 
2184 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2185 					     struct kmem_cache *cachep)
2186 {
2187 	/*
2188 	 * We need to stop accounting when we kmalloc, because if the
2189 	 * corresponding kmalloc cache is not yet created, the first allocation
2190 	 * in __memcg_schedule_kmem_cache_create will recurse.
2191 	 *
2192 	 * However, it is better to enclose the whole function. Depending on
2193 	 * the debugging options enabled, INIT_WORK(), for instance, can
2194 	 * trigger an allocation. This too, will make us recurse. Because at
2195 	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2196 	 * the safest choice is to do it like this, wrapping the whole function.
2197 	 */
2198 	current->memcg_kmem_skip_account = 1;
2199 	__memcg_schedule_kmem_cache_create(memcg, cachep);
2200 	current->memcg_kmem_skip_account = 0;
2201 }
2202 
2203 static inline bool memcg_kmem_bypass(void)
2204 {
2205 	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2206 		return true;
2207 	return false;
2208 }
2209 
2210 /**
2211  * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2212  * @cachep: the original global kmem cache
2213  *
2214  * Return the kmem_cache we're supposed to use for a slab allocation.
2215  * We try to use the current memcg's version of the cache.
2216  *
2217  * If the cache does not exist yet, if we are the first user of it, we
2218  * create it asynchronously in a workqueue and let the current allocation
2219  * go through with the original cache.
2220  *
2221  * This function takes a reference to the cache it returns to assure it
2222  * won't get destroyed while we are working with it. Once the caller is
2223  * done with it, memcg_kmem_put_cache() must be called to release the
2224  * reference.
2225  */
2226 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2227 {
2228 	struct mem_cgroup *memcg;
2229 	struct kmem_cache *memcg_cachep;
2230 	int kmemcg_id;
2231 
2232 	VM_BUG_ON(!is_root_cache(cachep));
2233 
2234 	if (memcg_kmem_bypass())
2235 		return cachep;
2236 
2237 	if (current->memcg_kmem_skip_account)
2238 		return cachep;
2239 
2240 	memcg = get_mem_cgroup_from_mm(current->mm);
2241 	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2242 	if (kmemcg_id < 0)
2243 		goto out;
2244 
2245 	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2246 	if (likely(memcg_cachep))
2247 		return memcg_cachep;
2248 
2249 	/*
2250 	 * If we are in a safe context (can wait, and not in interrupt
2251 	 * context), we could be be predictable and return right away.
2252 	 * This would guarantee that the allocation being performed
2253 	 * already belongs in the new cache.
2254 	 *
2255 	 * However, there are some clashes that can arrive from locking.
2256 	 * For instance, because we acquire the slab_mutex while doing
2257 	 * memcg_create_kmem_cache, this means no further allocation
2258 	 * could happen with the slab_mutex held. So it's better to
2259 	 * defer everything.
2260 	 */
2261 	memcg_schedule_kmem_cache_create(memcg, cachep);
2262 out:
2263 	css_put(&memcg->css);
2264 	return cachep;
2265 }
2266 
2267 /**
2268  * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2269  * @cachep: the cache returned by memcg_kmem_get_cache
2270  */
2271 void memcg_kmem_put_cache(struct kmem_cache *cachep)
2272 {
2273 	if (!is_root_cache(cachep))
2274 		css_put(&cachep->memcg_params.memcg->css);
2275 }
2276 
2277 /**
2278  * memcg_kmem_charge: charge a kmem page
2279  * @page: page to charge
2280  * @gfp: reclaim mode
2281  * @order: allocation order
2282  * @memcg: memory cgroup to charge
2283  *
2284  * Returns 0 on success, an error code on failure.
2285  */
2286 int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2287 			    struct mem_cgroup *memcg)
2288 {
2289 	unsigned int nr_pages = 1 << order;
2290 	struct page_counter *counter;
2291 	int ret;
2292 
2293 	ret = try_charge(memcg, gfp, nr_pages);
2294 	if (ret)
2295 		return ret;
2296 
2297 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2298 	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2299 		cancel_charge(memcg, nr_pages);
2300 		return -ENOMEM;
2301 	}
2302 
2303 	page->mem_cgroup = memcg;
2304 
2305 	return 0;
2306 }
2307 
2308 /**
2309  * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2310  * @page: page to charge
2311  * @gfp: reclaim mode
2312  * @order: allocation order
2313  *
2314  * Returns 0 on success, an error code on failure.
2315  */
2316 int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2317 {
2318 	struct mem_cgroup *memcg;
2319 	int ret = 0;
2320 
2321 	if (memcg_kmem_bypass())
2322 		return 0;
2323 
2324 	memcg = get_mem_cgroup_from_mm(current->mm);
2325 	if (!mem_cgroup_is_root(memcg)) {
2326 		ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
2327 		if (!ret)
2328 			__SetPageKmemcg(page);
2329 	}
2330 	css_put(&memcg->css);
2331 	return ret;
2332 }
2333 /**
2334  * memcg_kmem_uncharge: uncharge a kmem page
2335  * @page: page to uncharge
2336  * @order: allocation order
2337  */
2338 void memcg_kmem_uncharge(struct page *page, int order)
2339 {
2340 	struct mem_cgroup *memcg = page->mem_cgroup;
2341 	unsigned int nr_pages = 1 << order;
2342 
2343 	if (!memcg)
2344 		return;
2345 
2346 	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2347 
2348 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2349 		page_counter_uncharge(&memcg->kmem, nr_pages);
2350 
2351 	page_counter_uncharge(&memcg->memory, nr_pages);
2352 	if (do_memsw_account())
2353 		page_counter_uncharge(&memcg->memsw, nr_pages);
2354 
2355 	page->mem_cgroup = NULL;
2356 
2357 	/* slab pages do not have PageKmemcg flag set */
2358 	if (PageKmemcg(page))
2359 		__ClearPageKmemcg(page);
2360 
2361 	css_put_many(&memcg->css, nr_pages);
2362 }
2363 #endif /* !CONFIG_SLOB */
2364 
2365 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2366 
2367 /*
2368  * Because tail pages are not marked as "used", set it. We're under
2369  * zone_lru_lock and migration entries setup in all page mappings.
2370  */
2371 void mem_cgroup_split_huge_fixup(struct page *head)
2372 {
2373 	int i;
2374 
2375 	if (mem_cgroup_disabled())
2376 		return;
2377 
2378 	for (i = 1; i < HPAGE_PMD_NR; i++)
2379 		head[i].mem_cgroup = head->mem_cgroup;
2380 
2381 	__this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2382 		       HPAGE_PMD_NR);
2383 }
2384 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2385 
2386 #ifdef CONFIG_MEMCG_SWAP
2387 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2388 					 bool charge)
2389 {
2390 	int val = (charge) ? 1 : -1;
2391 	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2392 }
2393 
2394 /**
2395  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2396  * @entry: swap entry to be moved
2397  * @from:  mem_cgroup which the entry is moved from
2398  * @to:  mem_cgroup which the entry is moved to
2399  *
2400  * It succeeds only when the swap_cgroup's record for this entry is the same
2401  * as the mem_cgroup's id of @from.
2402  *
2403  * Returns 0 on success, -EINVAL on failure.
2404  *
2405  * The caller must have charged to @to, IOW, called page_counter_charge() about
2406  * both res and memsw, and called css_get().
2407  */
2408 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2409 				struct mem_cgroup *from, struct mem_cgroup *to)
2410 {
2411 	unsigned short old_id, new_id;
2412 
2413 	old_id = mem_cgroup_id(from);
2414 	new_id = mem_cgroup_id(to);
2415 
2416 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2417 		mem_cgroup_swap_statistics(from, false);
2418 		mem_cgroup_swap_statistics(to, true);
2419 		return 0;
2420 	}
2421 	return -EINVAL;
2422 }
2423 #else
2424 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2425 				struct mem_cgroup *from, struct mem_cgroup *to)
2426 {
2427 	return -EINVAL;
2428 }
2429 #endif
2430 
2431 static DEFINE_MUTEX(memcg_limit_mutex);
2432 
2433 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2434 				   unsigned long limit)
2435 {
2436 	unsigned long curusage;
2437 	unsigned long oldusage;
2438 	bool enlarge = false;
2439 	int retry_count;
2440 	int ret;
2441 
2442 	/*
2443 	 * For keeping hierarchical_reclaim simple, how long we should retry
2444 	 * is depends on callers. We set our retry-count to be function
2445 	 * of # of children which we should visit in this loop.
2446 	 */
2447 	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2448 		      mem_cgroup_count_children(memcg);
2449 
2450 	oldusage = page_counter_read(&memcg->memory);
2451 
2452 	do {
2453 		if (signal_pending(current)) {
2454 			ret = -EINTR;
2455 			break;
2456 		}
2457 
2458 		mutex_lock(&memcg_limit_mutex);
2459 		if (limit > memcg->memsw.limit) {
2460 			mutex_unlock(&memcg_limit_mutex);
2461 			ret = -EINVAL;
2462 			break;
2463 		}
2464 		if (limit > memcg->memory.limit)
2465 			enlarge = true;
2466 		ret = page_counter_limit(&memcg->memory, limit);
2467 		mutex_unlock(&memcg_limit_mutex);
2468 
2469 		if (!ret)
2470 			break;
2471 
2472 		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2473 
2474 		curusage = page_counter_read(&memcg->memory);
2475 		/* Usage is reduced ? */
2476 		if (curusage >= oldusage)
2477 			retry_count--;
2478 		else
2479 			oldusage = curusage;
2480 	} while (retry_count);
2481 
2482 	if (!ret && enlarge)
2483 		memcg_oom_recover(memcg);
2484 
2485 	return ret;
2486 }
2487 
2488 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2489 					 unsigned long limit)
2490 {
2491 	unsigned long curusage;
2492 	unsigned long oldusage;
2493 	bool enlarge = false;
2494 	int retry_count;
2495 	int ret;
2496 
2497 	/* see mem_cgroup_resize_res_limit */
2498 	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2499 		      mem_cgroup_count_children(memcg);
2500 
2501 	oldusage = page_counter_read(&memcg->memsw);
2502 
2503 	do {
2504 		if (signal_pending(current)) {
2505 			ret = -EINTR;
2506 			break;
2507 		}
2508 
2509 		mutex_lock(&memcg_limit_mutex);
2510 		if (limit < memcg->memory.limit) {
2511 			mutex_unlock(&memcg_limit_mutex);
2512 			ret = -EINVAL;
2513 			break;
2514 		}
2515 		if (limit > memcg->memsw.limit)
2516 			enlarge = true;
2517 		ret = page_counter_limit(&memcg->memsw, limit);
2518 		mutex_unlock(&memcg_limit_mutex);
2519 
2520 		if (!ret)
2521 			break;
2522 
2523 		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2524 
2525 		curusage = page_counter_read(&memcg->memsw);
2526 		/* Usage is reduced ? */
2527 		if (curusage >= oldusage)
2528 			retry_count--;
2529 		else
2530 			oldusage = curusage;
2531 	} while (retry_count);
2532 
2533 	if (!ret && enlarge)
2534 		memcg_oom_recover(memcg);
2535 
2536 	return ret;
2537 }
2538 
2539 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2540 					    gfp_t gfp_mask,
2541 					    unsigned long *total_scanned)
2542 {
2543 	unsigned long nr_reclaimed = 0;
2544 	struct mem_cgroup_per_node *mz, *next_mz = NULL;
2545 	unsigned long reclaimed;
2546 	int loop = 0;
2547 	struct mem_cgroup_tree_per_node *mctz;
2548 	unsigned long excess;
2549 	unsigned long nr_scanned;
2550 
2551 	if (order > 0)
2552 		return 0;
2553 
2554 	mctz = soft_limit_tree_node(pgdat->node_id);
2555 
2556 	/*
2557 	 * Do not even bother to check the largest node if the root
2558 	 * is empty. Do it lockless to prevent lock bouncing. Races
2559 	 * are acceptable as soft limit is best effort anyway.
2560 	 */
2561 	if (RB_EMPTY_ROOT(&mctz->rb_root))
2562 		return 0;
2563 
2564 	/*
2565 	 * This loop can run a while, specially if mem_cgroup's continuously
2566 	 * keep exceeding their soft limit and putting the system under
2567 	 * pressure
2568 	 */
2569 	do {
2570 		if (next_mz)
2571 			mz = next_mz;
2572 		else
2573 			mz = mem_cgroup_largest_soft_limit_node(mctz);
2574 		if (!mz)
2575 			break;
2576 
2577 		nr_scanned = 0;
2578 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
2579 						    gfp_mask, &nr_scanned);
2580 		nr_reclaimed += reclaimed;
2581 		*total_scanned += nr_scanned;
2582 		spin_lock_irq(&mctz->lock);
2583 		__mem_cgroup_remove_exceeded(mz, mctz);
2584 
2585 		/*
2586 		 * If we failed to reclaim anything from this memory cgroup
2587 		 * it is time to move on to the next cgroup
2588 		 */
2589 		next_mz = NULL;
2590 		if (!reclaimed)
2591 			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2592 
2593 		excess = soft_limit_excess(mz->memcg);
2594 		/*
2595 		 * One school of thought says that we should not add
2596 		 * back the node to the tree if reclaim returns 0.
2597 		 * But our reclaim could return 0, simply because due
2598 		 * to priority we are exposing a smaller subset of
2599 		 * memory to reclaim from. Consider this as a longer
2600 		 * term TODO.
2601 		 */
2602 		/* If excess == 0, no tree ops */
2603 		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2604 		spin_unlock_irq(&mctz->lock);
2605 		css_put(&mz->memcg->css);
2606 		loop++;
2607 		/*
2608 		 * Could not reclaim anything and there are no more
2609 		 * mem cgroups to try or we seem to be looping without
2610 		 * reclaiming anything.
2611 		 */
2612 		if (!nr_reclaimed &&
2613 			(next_mz == NULL ||
2614 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2615 			break;
2616 	} while (!nr_reclaimed);
2617 	if (next_mz)
2618 		css_put(&next_mz->memcg->css);
2619 	return nr_reclaimed;
2620 }
2621 
2622 /*
2623  * Test whether @memcg has children, dead or alive.  Note that this
2624  * function doesn't care whether @memcg has use_hierarchy enabled and
2625  * returns %true if there are child csses according to the cgroup
2626  * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
2627  */
2628 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2629 {
2630 	bool ret;
2631 
2632 	rcu_read_lock();
2633 	ret = css_next_child(NULL, &memcg->css);
2634 	rcu_read_unlock();
2635 	return ret;
2636 }
2637 
2638 /*
2639  * Reclaims as many pages from the given memcg as possible.
2640  *
2641  * Caller is responsible for holding css reference for memcg.
2642  */
2643 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2644 {
2645 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2646 
2647 	/* we call try-to-free pages for make this cgroup empty */
2648 	lru_add_drain_all();
2649 	/* try to free all pages in this cgroup */
2650 	while (nr_retries && page_counter_read(&memcg->memory)) {
2651 		int progress;
2652 
2653 		if (signal_pending(current))
2654 			return -EINTR;
2655 
2656 		progress = try_to_free_mem_cgroup_pages(memcg, 1,
2657 							GFP_KERNEL, true);
2658 		if (!progress) {
2659 			nr_retries--;
2660 			/* maybe some writeback is necessary */
2661 			congestion_wait(BLK_RW_ASYNC, HZ/10);
2662 		}
2663 
2664 	}
2665 
2666 	return 0;
2667 }
2668 
2669 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2670 					    char *buf, size_t nbytes,
2671 					    loff_t off)
2672 {
2673 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2674 
2675 	if (mem_cgroup_is_root(memcg))
2676 		return -EINVAL;
2677 	return mem_cgroup_force_empty(memcg) ?: nbytes;
2678 }
2679 
2680 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2681 				     struct cftype *cft)
2682 {
2683 	return mem_cgroup_from_css(css)->use_hierarchy;
2684 }
2685 
2686 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2687 				      struct cftype *cft, u64 val)
2688 {
2689 	int retval = 0;
2690 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2691 	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2692 
2693 	if (memcg->use_hierarchy == val)
2694 		return 0;
2695 
2696 	/*
2697 	 * If parent's use_hierarchy is set, we can't make any modifications
2698 	 * in the child subtrees. If it is unset, then the change can
2699 	 * occur, provided the current cgroup has no children.
2700 	 *
2701 	 * For the root cgroup, parent_mem is NULL, we allow value to be
2702 	 * set if there are no children.
2703 	 */
2704 	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2705 				(val == 1 || val == 0)) {
2706 		if (!memcg_has_children(memcg))
2707 			memcg->use_hierarchy = val;
2708 		else
2709 			retval = -EBUSY;
2710 	} else
2711 		retval = -EINVAL;
2712 
2713 	return retval;
2714 }
2715 
2716 static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2717 {
2718 	struct mem_cgroup *iter;
2719 	int i;
2720 
2721 	memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2722 
2723 	for_each_mem_cgroup_tree(iter, memcg) {
2724 		for (i = 0; i < MEMCG_NR_STAT; i++)
2725 			stat[i] += mem_cgroup_read_stat(iter, i);
2726 	}
2727 }
2728 
2729 static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2730 {
2731 	struct mem_cgroup *iter;
2732 	int i;
2733 
2734 	memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2735 
2736 	for_each_mem_cgroup_tree(iter, memcg) {
2737 		for (i = 0; i < MEMCG_NR_EVENTS; i++)
2738 			events[i] += mem_cgroup_read_events(iter, i);
2739 	}
2740 }
2741 
2742 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2743 {
2744 	unsigned long val = 0;
2745 
2746 	if (mem_cgroup_is_root(memcg)) {
2747 		struct mem_cgroup *iter;
2748 
2749 		for_each_mem_cgroup_tree(iter, memcg) {
2750 			val += mem_cgroup_read_stat(iter,
2751 					MEM_CGROUP_STAT_CACHE);
2752 			val += mem_cgroup_read_stat(iter,
2753 					MEM_CGROUP_STAT_RSS);
2754 			if (swap)
2755 				val += mem_cgroup_read_stat(iter,
2756 						MEM_CGROUP_STAT_SWAP);
2757 		}
2758 	} else {
2759 		if (!swap)
2760 			val = page_counter_read(&memcg->memory);
2761 		else
2762 			val = page_counter_read(&memcg->memsw);
2763 	}
2764 	return val;
2765 }
2766 
2767 enum {
2768 	RES_USAGE,
2769 	RES_LIMIT,
2770 	RES_MAX_USAGE,
2771 	RES_FAILCNT,
2772 	RES_SOFT_LIMIT,
2773 };
2774 
2775 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2776 			       struct cftype *cft)
2777 {
2778 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2779 	struct page_counter *counter;
2780 
2781 	switch (MEMFILE_TYPE(cft->private)) {
2782 	case _MEM:
2783 		counter = &memcg->memory;
2784 		break;
2785 	case _MEMSWAP:
2786 		counter = &memcg->memsw;
2787 		break;
2788 	case _KMEM:
2789 		counter = &memcg->kmem;
2790 		break;
2791 	case _TCP:
2792 		counter = &memcg->tcpmem;
2793 		break;
2794 	default:
2795 		BUG();
2796 	}
2797 
2798 	switch (MEMFILE_ATTR(cft->private)) {
2799 	case RES_USAGE:
2800 		if (counter == &memcg->memory)
2801 			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2802 		if (counter == &memcg->memsw)
2803 			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2804 		return (u64)page_counter_read(counter) * PAGE_SIZE;
2805 	case RES_LIMIT:
2806 		return (u64)counter->limit * PAGE_SIZE;
2807 	case RES_MAX_USAGE:
2808 		return (u64)counter->watermark * PAGE_SIZE;
2809 	case RES_FAILCNT:
2810 		return counter->failcnt;
2811 	case RES_SOFT_LIMIT:
2812 		return (u64)memcg->soft_limit * PAGE_SIZE;
2813 	default:
2814 		BUG();
2815 	}
2816 }
2817 
2818 #ifndef CONFIG_SLOB
2819 static int memcg_online_kmem(struct mem_cgroup *memcg)
2820 {
2821 	int memcg_id;
2822 
2823 	if (cgroup_memory_nokmem)
2824 		return 0;
2825 
2826 	BUG_ON(memcg->kmemcg_id >= 0);
2827 	BUG_ON(memcg->kmem_state);
2828 
2829 	memcg_id = memcg_alloc_cache_id();
2830 	if (memcg_id < 0)
2831 		return memcg_id;
2832 
2833 	static_branch_inc(&memcg_kmem_enabled_key);
2834 	/*
2835 	 * A memory cgroup is considered kmem-online as soon as it gets
2836 	 * kmemcg_id. Setting the id after enabling static branching will
2837 	 * guarantee no one starts accounting before all call sites are
2838 	 * patched.
2839 	 */
2840 	memcg->kmemcg_id = memcg_id;
2841 	memcg->kmem_state = KMEM_ONLINE;
2842 
2843 	return 0;
2844 }
2845 
2846 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2847 {
2848 	struct cgroup_subsys_state *css;
2849 	struct mem_cgroup *parent, *child;
2850 	int kmemcg_id;
2851 
2852 	if (memcg->kmem_state != KMEM_ONLINE)
2853 		return;
2854 	/*
2855 	 * Clear the online state before clearing memcg_caches array
2856 	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2857 	 * guarantees that no cache will be created for this cgroup
2858 	 * after we are done (see memcg_create_kmem_cache()).
2859 	 */
2860 	memcg->kmem_state = KMEM_ALLOCATED;
2861 
2862 	memcg_deactivate_kmem_caches(memcg);
2863 
2864 	kmemcg_id = memcg->kmemcg_id;
2865 	BUG_ON(kmemcg_id < 0);
2866 
2867 	parent = parent_mem_cgroup(memcg);
2868 	if (!parent)
2869 		parent = root_mem_cgroup;
2870 
2871 	/*
2872 	 * Change kmemcg_id of this cgroup and all its descendants to the
2873 	 * parent's id, and then move all entries from this cgroup's list_lrus
2874 	 * to ones of the parent. After we have finished, all list_lrus
2875 	 * corresponding to this cgroup are guaranteed to remain empty. The
2876 	 * ordering is imposed by list_lru_node->lock taken by
2877 	 * memcg_drain_all_list_lrus().
2878 	 */
2879 	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
2880 	css_for_each_descendant_pre(css, &memcg->css) {
2881 		child = mem_cgroup_from_css(css);
2882 		BUG_ON(child->kmemcg_id != kmemcg_id);
2883 		child->kmemcg_id = parent->kmemcg_id;
2884 		if (!memcg->use_hierarchy)
2885 			break;
2886 	}
2887 	rcu_read_unlock();
2888 
2889 	memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2890 
2891 	memcg_free_cache_id(kmemcg_id);
2892 }
2893 
2894 static void memcg_free_kmem(struct mem_cgroup *memcg)
2895 {
2896 	/* css_alloc() failed, offlining didn't happen */
2897 	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2898 		memcg_offline_kmem(memcg);
2899 
2900 	if (memcg->kmem_state == KMEM_ALLOCATED) {
2901 		memcg_destroy_kmem_caches(memcg);
2902 		static_branch_dec(&memcg_kmem_enabled_key);
2903 		WARN_ON(page_counter_read(&memcg->kmem));
2904 	}
2905 }
2906 #else
2907 static int memcg_online_kmem(struct mem_cgroup *memcg)
2908 {
2909 	return 0;
2910 }
2911 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2912 {
2913 }
2914 static void memcg_free_kmem(struct mem_cgroup *memcg)
2915 {
2916 }
2917 #endif /* !CONFIG_SLOB */
2918 
2919 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2920 				   unsigned long limit)
2921 {
2922 	int ret;
2923 
2924 	mutex_lock(&memcg_limit_mutex);
2925 	ret = page_counter_limit(&memcg->kmem, limit);
2926 	mutex_unlock(&memcg_limit_mutex);
2927 	return ret;
2928 }
2929 
2930 static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2931 {
2932 	int ret;
2933 
2934 	mutex_lock(&memcg_limit_mutex);
2935 
2936 	ret = page_counter_limit(&memcg->tcpmem, limit);
2937 	if (ret)
2938 		goto out;
2939 
2940 	if (!memcg->tcpmem_active) {
2941 		/*
2942 		 * The active flag needs to be written after the static_key
2943 		 * update. This is what guarantees that the socket activation
2944 		 * function is the last one to run. See mem_cgroup_sk_alloc()
2945 		 * for details, and note that we don't mark any socket as
2946 		 * belonging to this memcg until that flag is up.
2947 		 *
2948 		 * We need to do this, because static_keys will span multiple
2949 		 * sites, but we can't control their order. If we mark a socket
2950 		 * as accounted, but the accounting functions are not patched in
2951 		 * yet, we'll lose accounting.
2952 		 *
2953 		 * We never race with the readers in mem_cgroup_sk_alloc(),
2954 		 * because when this value change, the code to process it is not
2955 		 * patched in yet.
2956 		 */
2957 		static_branch_inc(&memcg_sockets_enabled_key);
2958 		memcg->tcpmem_active = true;
2959 	}
2960 out:
2961 	mutex_unlock(&memcg_limit_mutex);
2962 	return ret;
2963 }
2964 
2965 /*
2966  * The user of this function is...
2967  * RES_LIMIT.
2968  */
2969 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2970 				char *buf, size_t nbytes, loff_t off)
2971 {
2972 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2973 	unsigned long nr_pages;
2974 	int ret;
2975 
2976 	buf = strstrip(buf);
2977 	ret = page_counter_memparse(buf, "-1", &nr_pages);
2978 	if (ret)
2979 		return ret;
2980 
2981 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
2982 	case RES_LIMIT:
2983 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2984 			ret = -EINVAL;
2985 			break;
2986 		}
2987 		switch (MEMFILE_TYPE(of_cft(of)->private)) {
2988 		case _MEM:
2989 			ret = mem_cgroup_resize_limit(memcg, nr_pages);
2990 			break;
2991 		case _MEMSWAP:
2992 			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
2993 			break;
2994 		case _KMEM:
2995 			ret = memcg_update_kmem_limit(memcg, nr_pages);
2996 			break;
2997 		case _TCP:
2998 			ret = memcg_update_tcp_limit(memcg, nr_pages);
2999 			break;
3000 		}
3001 		break;
3002 	case RES_SOFT_LIMIT:
3003 		memcg->soft_limit = nr_pages;
3004 		ret = 0;
3005 		break;
3006 	}
3007 	return ret ?: nbytes;
3008 }
3009 
3010 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3011 				size_t nbytes, loff_t off)
3012 {
3013 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3014 	struct page_counter *counter;
3015 
3016 	switch (MEMFILE_TYPE(of_cft(of)->private)) {
3017 	case _MEM:
3018 		counter = &memcg->memory;
3019 		break;
3020 	case _MEMSWAP:
3021 		counter = &memcg->memsw;
3022 		break;
3023 	case _KMEM:
3024 		counter = &memcg->kmem;
3025 		break;
3026 	case _TCP:
3027 		counter = &memcg->tcpmem;
3028 		break;
3029 	default:
3030 		BUG();
3031 	}
3032 
3033 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3034 	case RES_MAX_USAGE:
3035 		page_counter_reset_watermark(counter);
3036 		break;
3037 	case RES_FAILCNT:
3038 		counter->failcnt = 0;
3039 		break;
3040 	default:
3041 		BUG();
3042 	}
3043 
3044 	return nbytes;
3045 }
3046 
3047 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3048 					struct cftype *cft)
3049 {
3050 	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3051 }
3052 
3053 #ifdef CONFIG_MMU
3054 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3055 					struct cftype *cft, u64 val)
3056 {
3057 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3058 
3059 	if (val & ~MOVE_MASK)
3060 		return -EINVAL;
3061 
3062 	/*
3063 	 * No kind of locking is needed in here, because ->can_attach() will
3064 	 * check this value once in the beginning of the process, and then carry
3065 	 * on with stale data. This means that changes to this value will only
3066 	 * affect task migrations starting after the change.
3067 	 */
3068 	memcg->move_charge_at_immigrate = val;
3069 	return 0;
3070 }
3071 #else
3072 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3073 					struct cftype *cft, u64 val)
3074 {
3075 	return -ENOSYS;
3076 }
3077 #endif
3078 
3079 #ifdef CONFIG_NUMA
3080 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3081 {
3082 	struct numa_stat {
3083 		const char *name;
3084 		unsigned int lru_mask;
3085 	};
3086 
3087 	static const struct numa_stat stats[] = {
3088 		{ "total", LRU_ALL },
3089 		{ "file", LRU_ALL_FILE },
3090 		{ "anon", LRU_ALL_ANON },
3091 		{ "unevictable", BIT(LRU_UNEVICTABLE) },
3092 	};
3093 	const struct numa_stat *stat;
3094 	int nid;
3095 	unsigned long nr;
3096 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3097 
3098 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3099 		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3100 		seq_printf(m, "%s=%lu", stat->name, nr);
3101 		for_each_node_state(nid, N_MEMORY) {
3102 			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3103 							  stat->lru_mask);
3104 			seq_printf(m, " N%d=%lu", nid, nr);
3105 		}
3106 		seq_putc(m, '\n');
3107 	}
3108 
3109 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3110 		struct mem_cgroup *iter;
3111 
3112 		nr = 0;
3113 		for_each_mem_cgroup_tree(iter, memcg)
3114 			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3115 		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3116 		for_each_node_state(nid, N_MEMORY) {
3117 			nr = 0;
3118 			for_each_mem_cgroup_tree(iter, memcg)
3119 				nr += mem_cgroup_node_nr_lru_pages(
3120 					iter, nid, stat->lru_mask);
3121 			seq_printf(m, " N%d=%lu", nid, nr);
3122 		}
3123 		seq_putc(m, '\n');
3124 	}
3125 
3126 	return 0;
3127 }
3128 #endif /* CONFIG_NUMA */
3129 
3130 static int memcg_stat_show(struct seq_file *m, void *v)
3131 {
3132 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3133 	unsigned long memory, memsw;
3134 	struct mem_cgroup *mi;
3135 	unsigned int i;
3136 
3137 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3138 		     MEM_CGROUP_STAT_NSTATS);
3139 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3140 		     MEM_CGROUP_EVENTS_NSTATS);
3141 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3142 
3143 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3144 		if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3145 			continue;
3146 		seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3147 			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3148 	}
3149 
3150 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3151 		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3152 			   mem_cgroup_read_events(memcg, i));
3153 
3154 	for (i = 0; i < NR_LRU_LISTS; i++)
3155 		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3156 			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3157 
3158 	/* Hierarchical information */
3159 	memory = memsw = PAGE_COUNTER_MAX;
3160 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3161 		memory = min(memory, mi->memory.limit);
3162 		memsw = min(memsw, mi->memsw.limit);
3163 	}
3164 	seq_printf(m, "hierarchical_memory_limit %llu\n",
3165 		   (u64)memory * PAGE_SIZE);
3166 	if (do_memsw_account())
3167 		seq_printf(m, "hierarchical_memsw_limit %llu\n",
3168 			   (u64)memsw * PAGE_SIZE);
3169 
3170 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3171 		unsigned long long val = 0;
3172 
3173 		if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3174 			continue;
3175 		for_each_mem_cgroup_tree(mi, memcg)
3176 			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3177 		seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3178 	}
3179 
3180 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3181 		unsigned long long val = 0;
3182 
3183 		for_each_mem_cgroup_tree(mi, memcg)
3184 			val += mem_cgroup_read_events(mi, i);
3185 		seq_printf(m, "total_%s %llu\n",
3186 			   mem_cgroup_events_names[i], val);
3187 	}
3188 
3189 	for (i = 0; i < NR_LRU_LISTS; i++) {
3190 		unsigned long long val = 0;
3191 
3192 		for_each_mem_cgroup_tree(mi, memcg)
3193 			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3194 		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3195 	}
3196 
3197 #ifdef CONFIG_DEBUG_VM
3198 	{
3199 		pg_data_t *pgdat;
3200 		struct mem_cgroup_per_node *mz;
3201 		struct zone_reclaim_stat *rstat;
3202 		unsigned long recent_rotated[2] = {0, 0};
3203 		unsigned long recent_scanned[2] = {0, 0};
3204 
3205 		for_each_online_pgdat(pgdat) {
3206 			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3207 			rstat = &mz->lruvec.reclaim_stat;
3208 
3209 			recent_rotated[0] += rstat->recent_rotated[0];
3210 			recent_rotated[1] += rstat->recent_rotated[1];
3211 			recent_scanned[0] += rstat->recent_scanned[0];
3212 			recent_scanned[1] += rstat->recent_scanned[1];
3213 		}
3214 		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3215 		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3216 		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3217 		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3218 	}
3219 #endif
3220 
3221 	return 0;
3222 }
3223 
3224 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3225 				      struct cftype *cft)
3226 {
3227 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3228 
3229 	return mem_cgroup_swappiness(memcg);
3230 }
3231 
3232 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3233 				       struct cftype *cft, u64 val)
3234 {
3235 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3236 
3237 	if (val > 100)
3238 		return -EINVAL;
3239 
3240 	if (css->parent)
3241 		memcg->swappiness = val;
3242 	else
3243 		vm_swappiness = val;
3244 
3245 	return 0;
3246 }
3247 
3248 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3249 {
3250 	struct mem_cgroup_threshold_ary *t;
3251 	unsigned long usage;
3252 	int i;
3253 
3254 	rcu_read_lock();
3255 	if (!swap)
3256 		t = rcu_dereference(memcg->thresholds.primary);
3257 	else
3258 		t = rcu_dereference(memcg->memsw_thresholds.primary);
3259 
3260 	if (!t)
3261 		goto unlock;
3262 
3263 	usage = mem_cgroup_usage(memcg, swap);
3264 
3265 	/*
3266 	 * current_threshold points to threshold just below or equal to usage.
3267 	 * If it's not true, a threshold was crossed after last
3268 	 * call of __mem_cgroup_threshold().
3269 	 */
3270 	i = t->current_threshold;
3271 
3272 	/*
3273 	 * Iterate backward over array of thresholds starting from
3274 	 * current_threshold and check if a threshold is crossed.
3275 	 * If none of thresholds below usage is crossed, we read
3276 	 * only one element of the array here.
3277 	 */
3278 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3279 		eventfd_signal(t->entries[i].eventfd, 1);
3280 
3281 	/* i = current_threshold + 1 */
3282 	i++;
3283 
3284 	/*
3285 	 * Iterate forward over array of thresholds starting from
3286 	 * current_threshold+1 and check if a threshold is crossed.
3287 	 * If none of thresholds above usage is crossed, we read
3288 	 * only one element of the array here.
3289 	 */
3290 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3291 		eventfd_signal(t->entries[i].eventfd, 1);
3292 
3293 	/* Update current_threshold */
3294 	t->current_threshold = i - 1;
3295 unlock:
3296 	rcu_read_unlock();
3297 }
3298 
3299 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3300 {
3301 	while (memcg) {
3302 		__mem_cgroup_threshold(memcg, false);
3303 		if (do_memsw_account())
3304 			__mem_cgroup_threshold(memcg, true);
3305 
3306 		memcg = parent_mem_cgroup(memcg);
3307 	}
3308 }
3309 
3310 static int compare_thresholds(const void *a, const void *b)
3311 {
3312 	const struct mem_cgroup_threshold *_a = a;
3313 	const struct mem_cgroup_threshold *_b = b;
3314 
3315 	if (_a->threshold > _b->threshold)
3316 		return 1;
3317 
3318 	if (_a->threshold < _b->threshold)
3319 		return -1;
3320 
3321 	return 0;
3322 }
3323 
3324 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3325 {
3326 	struct mem_cgroup_eventfd_list *ev;
3327 
3328 	spin_lock(&memcg_oom_lock);
3329 
3330 	list_for_each_entry(ev, &memcg->oom_notify, list)
3331 		eventfd_signal(ev->eventfd, 1);
3332 
3333 	spin_unlock(&memcg_oom_lock);
3334 	return 0;
3335 }
3336 
3337 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3338 {
3339 	struct mem_cgroup *iter;
3340 
3341 	for_each_mem_cgroup_tree(iter, memcg)
3342 		mem_cgroup_oom_notify_cb(iter);
3343 }
3344 
3345 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3346 	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3347 {
3348 	struct mem_cgroup_thresholds *thresholds;
3349 	struct mem_cgroup_threshold_ary *new;
3350 	unsigned long threshold;
3351 	unsigned long usage;
3352 	int i, size, ret;
3353 
3354 	ret = page_counter_memparse(args, "-1", &threshold);
3355 	if (ret)
3356 		return ret;
3357 
3358 	mutex_lock(&memcg->thresholds_lock);
3359 
3360 	if (type == _MEM) {
3361 		thresholds = &memcg->thresholds;
3362 		usage = mem_cgroup_usage(memcg, false);
3363 	} else if (type == _MEMSWAP) {
3364 		thresholds = &memcg->memsw_thresholds;
3365 		usage = mem_cgroup_usage(memcg, true);
3366 	} else
3367 		BUG();
3368 
3369 	/* Check if a threshold crossed before adding a new one */
3370 	if (thresholds->primary)
3371 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3372 
3373 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3374 
3375 	/* Allocate memory for new array of thresholds */
3376 	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3377 			GFP_KERNEL);
3378 	if (!new) {
3379 		ret = -ENOMEM;
3380 		goto unlock;
3381 	}
3382 	new->size = size;
3383 
3384 	/* Copy thresholds (if any) to new array */
3385 	if (thresholds->primary) {
3386 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3387 				sizeof(struct mem_cgroup_threshold));
3388 	}
3389 
3390 	/* Add new threshold */
3391 	new->entries[size - 1].eventfd = eventfd;
3392 	new->entries[size - 1].threshold = threshold;
3393 
3394 	/* Sort thresholds. Registering of new threshold isn't time-critical */
3395 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3396 			compare_thresholds, NULL);
3397 
3398 	/* Find current threshold */
3399 	new->current_threshold = -1;
3400 	for (i = 0; i < size; i++) {
3401 		if (new->entries[i].threshold <= usage) {
3402 			/*
3403 			 * new->current_threshold will not be used until
3404 			 * rcu_assign_pointer(), so it's safe to increment
3405 			 * it here.
3406 			 */
3407 			++new->current_threshold;
3408 		} else
3409 			break;
3410 	}
3411 
3412 	/* Free old spare buffer and save old primary buffer as spare */
3413 	kfree(thresholds->spare);
3414 	thresholds->spare = thresholds->primary;
3415 
3416 	rcu_assign_pointer(thresholds->primary, new);
3417 
3418 	/* To be sure that nobody uses thresholds */
3419 	synchronize_rcu();
3420 
3421 unlock:
3422 	mutex_unlock(&memcg->thresholds_lock);
3423 
3424 	return ret;
3425 }
3426 
3427 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3428 	struct eventfd_ctx *eventfd, const char *args)
3429 {
3430 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3431 }
3432 
3433 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3434 	struct eventfd_ctx *eventfd, const char *args)
3435 {
3436 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3437 }
3438 
3439 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3440 	struct eventfd_ctx *eventfd, enum res_type type)
3441 {
3442 	struct mem_cgroup_thresholds *thresholds;
3443 	struct mem_cgroup_threshold_ary *new;
3444 	unsigned long usage;
3445 	int i, j, size;
3446 
3447 	mutex_lock(&memcg->thresholds_lock);
3448 
3449 	if (type == _MEM) {
3450 		thresholds = &memcg->thresholds;
3451 		usage = mem_cgroup_usage(memcg, false);
3452 	} else if (type == _MEMSWAP) {
3453 		thresholds = &memcg->memsw_thresholds;
3454 		usage = mem_cgroup_usage(memcg, true);
3455 	} else
3456 		BUG();
3457 
3458 	if (!thresholds->primary)
3459 		goto unlock;
3460 
3461 	/* Check if a threshold crossed before removing */
3462 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3463 
3464 	/* Calculate new number of threshold */
3465 	size = 0;
3466 	for (i = 0; i < thresholds->primary->size; i++) {
3467 		if (thresholds->primary->entries[i].eventfd != eventfd)
3468 			size++;
3469 	}
3470 
3471 	new = thresholds->spare;
3472 
3473 	/* Set thresholds array to NULL if we don't have thresholds */
3474 	if (!size) {
3475 		kfree(new);
3476 		new = NULL;
3477 		goto swap_buffers;
3478 	}
3479 
3480 	new->size = size;
3481 
3482 	/* Copy thresholds and find current threshold */
3483 	new->current_threshold = -1;
3484 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3485 		if (thresholds->primary->entries[i].eventfd == eventfd)
3486 			continue;
3487 
3488 		new->entries[j] = thresholds->primary->entries[i];
3489 		if (new->entries[j].threshold <= usage) {
3490 			/*
3491 			 * new->current_threshold will not be used
3492 			 * until rcu_assign_pointer(), so it's safe to increment
3493 			 * it here.
3494 			 */
3495 			++new->current_threshold;
3496 		}
3497 		j++;
3498 	}
3499 
3500 swap_buffers:
3501 	/* Swap primary and spare array */
3502 	thresholds->spare = thresholds->primary;
3503 
3504 	rcu_assign_pointer(thresholds->primary, new);
3505 
3506 	/* To be sure that nobody uses thresholds */
3507 	synchronize_rcu();
3508 
3509 	/* If all events are unregistered, free the spare array */
3510 	if (!new) {
3511 		kfree(thresholds->spare);
3512 		thresholds->spare = NULL;
3513 	}
3514 unlock:
3515 	mutex_unlock(&memcg->thresholds_lock);
3516 }
3517 
3518 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3519 	struct eventfd_ctx *eventfd)
3520 {
3521 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3522 }
3523 
3524 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3525 	struct eventfd_ctx *eventfd)
3526 {
3527 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3528 }
3529 
3530 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3531 	struct eventfd_ctx *eventfd, const char *args)
3532 {
3533 	struct mem_cgroup_eventfd_list *event;
3534 
3535 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
3536 	if (!event)
3537 		return -ENOMEM;
3538 
3539 	spin_lock(&memcg_oom_lock);
3540 
3541 	event->eventfd = eventfd;
3542 	list_add(&event->list, &memcg->oom_notify);
3543 
3544 	/* already in OOM ? */
3545 	if (memcg->under_oom)
3546 		eventfd_signal(eventfd, 1);
3547 	spin_unlock(&memcg_oom_lock);
3548 
3549 	return 0;
3550 }
3551 
3552 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3553 	struct eventfd_ctx *eventfd)
3554 {
3555 	struct mem_cgroup_eventfd_list *ev, *tmp;
3556 
3557 	spin_lock(&memcg_oom_lock);
3558 
3559 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3560 		if (ev->eventfd == eventfd) {
3561 			list_del(&ev->list);
3562 			kfree(ev);
3563 		}
3564 	}
3565 
3566 	spin_unlock(&memcg_oom_lock);
3567 }
3568 
3569 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3570 {
3571 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3572 
3573 	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3574 	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3575 	return 0;
3576 }
3577 
3578 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3579 	struct cftype *cft, u64 val)
3580 {
3581 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3582 
3583 	/* cannot set to root cgroup and only 0 and 1 are allowed */
3584 	if (!css->parent || !((val == 0) || (val == 1)))
3585 		return -EINVAL;
3586 
3587 	memcg->oom_kill_disable = val;
3588 	if (!val)
3589 		memcg_oom_recover(memcg);
3590 
3591 	return 0;
3592 }
3593 
3594 #ifdef CONFIG_CGROUP_WRITEBACK
3595 
3596 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3597 {
3598 	return &memcg->cgwb_list;
3599 }
3600 
3601 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3602 {
3603 	return wb_domain_init(&memcg->cgwb_domain, gfp);
3604 }
3605 
3606 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3607 {
3608 	wb_domain_exit(&memcg->cgwb_domain);
3609 }
3610 
3611 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3612 {
3613 	wb_domain_size_changed(&memcg->cgwb_domain);
3614 }
3615 
3616 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3617 {
3618 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3619 
3620 	if (!memcg->css.parent)
3621 		return NULL;
3622 
3623 	return &memcg->cgwb_domain;
3624 }
3625 
3626 /**
3627  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3628  * @wb: bdi_writeback in question
3629  * @pfilepages: out parameter for number of file pages
3630  * @pheadroom: out parameter for number of allocatable pages according to memcg
3631  * @pdirty: out parameter for number of dirty pages
3632  * @pwriteback: out parameter for number of pages under writeback
3633  *
3634  * Determine the numbers of file, headroom, dirty, and writeback pages in
3635  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
3636  * is a bit more involved.
3637  *
3638  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
3639  * headroom is calculated as the lowest headroom of itself and the
3640  * ancestors.  Note that this doesn't consider the actual amount of
3641  * available memory in the system.  The caller should further cap
3642  * *@pheadroom accordingly.
3643  */
3644 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3645 			 unsigned long *pheadroom, unsigned long *pdirty,
3646 			 unsigned long *pwriteback)
3647 {
3648 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3649 	struct mem_cgroup *parent;
3650 
3651 	*pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3652 
3653 	/* this should eventually include NR_UNSTABLE_NFS */
3654 	*pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3655 	*pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3656 						     (1 << LRU_ACTIVE_FILE));
3657 	*pheadroom = PAGE_COUNTER_MAX;
3658 
3659 	while ((parent = parent_mem_cgroup(memcg))) {
3660 		unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3661 		unsigned long used = page_counter_read(&memcg->memory);
3662 
3663 		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3664 		memcg = parent;
3665 	}
3666 }
3667 
3668 #else	/* CONFIG_CGROUP_WRITEBACK */
3669 
3670 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3671 {
3672 	return 0;
3673 }
3674 
3675 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3676 {
3677 }
3678 
3679 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3680 {
3681 }
3682 
3683 #endif	/* CONFIG_CGROUP_WRITEBACK */
3684 
3685 /*
3686  * DO NOT USE IN NEW FILES.
3687  *
3688  * "cgroup.event_control" implementation.
3689  *
3690  * This is way over-engineered.  It tries to support fully configurable
3691  * events for each user.  Such level of flexibility is completely
3692  * unnecessary especially in the light of the planned unified hierarchy.
3693  *
3694  * Please deprecate this and replace with something simpler if at all
3695  * possible.
3696  */
3697 
3698 /*
3699  * Unregister event and free resources.
3700  *
3701  * Gets called from workqueue.
3702  */
3703 static void memcg_event_remove(struct work_struct *work)
3704 {
3705 	struct mem_cgroup_event *event =
3706 		container_of(work, struct mem_cgroup_event, remove);
3707 	struct mem_cgroup *memcg = event->memcg;
3708 
3709 	remove_wait_queue(event->wqh, &event->wait);
3710 
3711 	event->unregister_event(memcg, event->eventfd);
3712 
3713 	/* Notify userspace the event is going away. */
3714 	eventfd_signal(event->eventfd, 1);
3715 
3716 	eventfd_ctx_put(event->eventfd);
3717 	kfree(event);
3718 	css_put(&memcg->css);
3719 }
3720 
3721 /*
3722  * Gets called on POLLHUP on eventfd when user closes it.
3723  *
3724  * Called with wqh->lock held and interrupts disabled.
3725  */
3726 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3727 			    int sync, void *key)
3728 {
3729 	struct mem_cgroup_event *event =
3730 		container_of(wait, struct mem_cgroup_event, wait);
3731 	struct mem_cgroup *memcg = event->memcg;
3732 	unsigned long flags = (unsigned long)key;
3733 
3734 	if (flags & POLLHUP) {
3735 		/*
3736 		 * If the event has been detached at cgroup removal, we
3737 		 * can simply return knowing the other side will cleanup
3738 		 * for us.
3739 		 *
3740 		 * We can't race against event freeing since the other
3741 		 * side will require wqh->lock via remove_wait_queue(),
3742 		 * which we hold.
3743 		 */
3744 		spin_lock(&memcg->event_list_lock);
3745 		if (!list_empty(&event->list)) {
3746 			list_del_init(&event->list);
3747 			/*
3748 			 * We are in atomic context, but cgroup_event_remove()
3749 			 * may sleep, so we have to call it in workqueue.
3750 			 */
3751 			schedule_work(&event->remove);
3752 		}
3753 		spin_unlock(&memcg->event_list_lock);
3754 	}
3755 
3756 	return 0;
3757 }
3758 
3759 static void memcg_event_ptable_queue_proc(struct file *file,
3760 		wait_queue_head_t *wqh, poll_table *pt)
3761 {
3762 	struct mem_cgroup_event *event =
3763 		container_of(pt, struct mem_cgroup_event, pt);
3764 
3765 	event->wqh = wqh;
3766 	add_wait_queue(wqh, &event->wait);
3767 }
3768 
3769 /*
3770  * DO NOT USE IN NEW FILES.
3771  *
3772  * Parse input and register new cgroup event handler.
3773  *
3774  * Input must be in format '<event_fd> <control_fd> <args>'.
3775  * Interpretation of args is defined by control file implementation.
3776  */
3777 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3778 					 char *buf, size_t nbytes, loff_t off)
3779 {
3780 	struct cgroup_subsys_state *css = of_css(of);
3781 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3782 	struct mem_cgroup_event *event;
3783 	struct cgroup_subsys_state *cfile_css;
3784 	unsigned int efd, cfd;
3785 	struct fd efile;
3786 	struct fd cfile;
3787 	const char *name;
3788 	char *endp;
3789 	int ret;
3790 
3791 	buf = strstrip(buf);
3792 
3793 	efd = simple_strtoul(buf, &endp, 10);
3794 	if (*endp != ' ')
3795 		return -EINVAL;
3796 	buf = endp + 1;
3797 
3798 	cfd = simple_strtoul(buf, &endp, 10);
3799 	if ((*endp != ' ') && (*endp != '\0'))
3800 		return -EINVAL;
3801 	buf = endp + 1;
3802 
3803 	event = kzalloc(sizeof(*event), GFP_KERNEL);
3804 	if (!event)
3805 		return -ENOMEM;
3806 
3807 	event->memcg = memcg;
3808 	INIT_LIST_HEAD(&event->list);
3809 	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3810 	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3811 	INIT_WORK(&event->remove, memcg_event_remove);
3812 
3813 	efile = fdget(efd);
3814 	if (!efile.file) {
3815 		ret = -EBADF;
3816 		goto out_kfree;
3817 	}
3818 
3819 	event->eventfd = eventfd_ctx_fileget(efile.file);
3820 	if (IS_ERR(event->eventfd)) {
3821 		ret = PTR_ERR(event->eventfd);
3822 		goto out_put_efile;
3823 	}
3824 
3825 	cfile = fdget(cfd);
3826 	if (!cfile.file) {
3827 		ret = -EBADF;
3828 		goto out_put_eventfd;
3829 	}
3830 
3831 	/* the process need read permission on control file */
3832 	/* AV: shouldn't we check that it's been opened for read instead? */
3833 	ret = inode_permission(file_inode(cfile.file), MAY_READ);
3834 	if (ret < 0)
3835 		goto out_put_cfile;
3836 
3837 	/*
3838 	 * Determine the event callbacks and set them in @event.  This used
3839 	 * to be done via struct cftype but cgroup core no longer knows
3840 	 * about these events.  The following is crude but the whole thing
3841 	 * is for compatibility anyway.
3842 	 *
3843 	 * DO NOT ADD NEW FILES.
3844 	 */
3845 	name = cfile.file->f_path.dentry->d_name.name;
3846 
3847 	if (!strcmp(name, "memory.usage_in_bytes")) {
3848 		event->register_event = mem_cgroup_usage_register_event;
3849 		event->unregister_event = mem_cgroup_usage_unregister_event;
3850 	} else if (!strcmp(name, "memory.oom_control")) {
3851 		event->register_event = mem_cgroup_oom_register_event;
3852 		event->unregister_event = mem_cgroup_oom_unregister_event;
3853 	} else if (!strcmp(name, "memory.pressure_level")) {
3854 		event->register_event = vmpressure_register_event;
3855 		event->unregister_event = vmpressure_unregister_event;
3856 	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3857 		event->register_event = memsw_cgroup_usage_register_event;
3858 		event->unregister_event = memsw_cgroup_usage_unregister_event;
3859 	} else {
3860 		ret = -EINVAL;
3861 		goto out_put_cfile;
3862 	}
3863 
3864 	/*
3865 	 * Verify @cfile should belong to @css.  Also, remaining events are
3866 	 * automatically removed on cgroup destruction but the removal is
3867 	 * asynchronous, so take an extra ref on @css.
3868 	 */
3869 	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3870 					       &memory_cgrp_subsys);
3871 	ret = -EINVAL;
3872 	if (IS_ERR(cfile_css))
3873 		goto out_put_cfile;
3874 	if (cfile_css != css) {
3875 		css_put(cfile_css);
3876 		goto out_put_cfile;
3877 	}
3878 
3879 	ret = event->register_event(memcg, event->eventfd, buf);
3880 	if (ret)
3881 		goto out_put_css;
3882 
3883 	efile.file->f_op->poll(efile.file, &event->pt);
3884 
3885 	spin_lock(&memcg->event_list_lock);
3886 	list_add(&event->list, &memcg->event_list);
3887 	spin_unlock(&memcg->event_list_lock);
3888 
3889 	fdput(cfile);
3890 	fdput(efile);
3891 
3892 	return nbytes;
3893 
3894 out_put_css:
3895 	css_put(css);
3896 out_put_cfile:
3897 	fdput(cfile);
3898 out_put_eventfd:
3899 	eventfd_ctx_put(event->eventfd);
3900 out_put_efile:
3901 	fdput(efile);
3902 out_kfree:
3903 	kfree(event);
3904 
3905 	return ret;
3906 }
3907 
3908 static struct cftype mem_cgroup_legacy_files[] = {
3909 	{
3910 		.name = "usage_in_bytes",
3911 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3912 		.read_u64 = mem_cgroup_read_u64,
3913 	},
3914 	{
3915 		.name = "max_usage_in_bytes",
3916 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3917 		.write = mem_cgroup_reset,
3918 		.read_u64 = mem_cgroup_read_u64,
3919 	},
3920 	{
3921 		.name = "limit_in_bytes",
3922 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3923 		.write = mem_cgroup_write,
3924 		.read_u64 = mem_cgroup_read_u64,
3925 	},
3926 	{
3927 		.name = "soft_limit_in_bytes",
3928 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3929 		.write = mem_cgroup_write,
3930 		.read_u64 = mem_cgroup_read_u64,
3931 	},
3932 	{
3933 		.name = "failcnt",
3934 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3935 		.write = mem_cgroup_reset,
3936 		.read_u64 = mem_cgroup_read_u64,
3937 	},
3938 	{
3939 		.name = "stat",
3940 		.seq_show = memcg_stat_show,
3941 	},
3942 	{
3943 		.name = "force_empty",
3944 		.write = mem_cgroup_force_empty_write,
3945 	},
3946 	{
3947 		.name = "use_hierarchy",
3948 		.write_u64 = mem_cgroup_hierarchy_write,
3949 		.read_u64 = mem_cgroup_hierarchy_read,
3950 	},
3951 	{
3952 		.name = "cgroup.event_control",		/* XXX: for compat */
3953 		.write = memcg_write_event_control,
3954 		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3955 	},
3956 	{
3957 		.name = "swappiness",
3958 		.read_u64 = mem_cgroup_swappiness_read,
3959 		.write_u64 = mem_cgroup_swappiness_write,
3960 	},
3961 	{
3962 		.name = "move_charge_at_immigrate",
3963 		.read_u64 = mem_cgroup_move_charge_read,
3964 		.write_u64 = mem_cgroup_move_charge_write,
3965 	},
3966 	{
3967 		.name = "oom_control",
3968 		.seq_show = mem_cgroup_oom_control_read,
3969 		.write_u64 = mem_cgroup_oom_control_write,
3970 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3971 	},
3972 	{
3973 		.name = "pressure_level",
3974 	},
3975 #ifdef CONFIG_NUMA
3976 	{
3977 		.name = "numa_stat",
3978 		.seq_show = memcg_numa_stat_show,
3979 	},
3980 #endif
3981 	{
3982 		.name = "kmem.limit_in_bytes",
3983 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
3984 		.write = mem_cgroup_write,
3985 		.read_u64 = mem_cgroup_read_u64,
3986 	},
3987 	{
3988 		.name = "kmem.usage_in_bytes",
3989 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
3990 		.read_u64 = mem_cgroup_read_u64,
3991 	},
3992 	{
3993 		.name = "kmem.failcnt",
3994 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
3995 		.write = mem_cgroup_reset,
3996 		.read_u64 = mem_cgroup_read_u64,
3997 	},
3998 	{
3999 		.name = "kmem.max_usage_in_bytes",
4000 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4001 		.write = mem_cgroup_reset,
4002 		.read_u64 = mem_cgroup_read_u64,
4003 	},
4004 #ifdef CONFIG_SLABINFO
4005 	{
4006 		.name = "kmem.slabinfo",
4007 		.seq_start = slab_start,
4008 		.seq_next = slab_next,
4009 		.seq_stop = slab_stop,
4010 		.seq_show = memcg_slab_show,
4011 	},
4012 #endif
4013 	{
4014 		.name = "kmem.tcp.limit_in_bytes",
4015 		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4016 		.write = mem_cgroup_write,
4017 		.read_u64 = mem_cgroup_read_u64,
4018 	},
4019 	{
4020 		.name = "kmem.tcp.usage_in_bytes",
4021 		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4022 		.read_u64 = mem_cgroup_read_u64,
4023 	},
4024 	{
4025 		.name = "kmem.tcp.failcnt",
4026 		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4027 		.write = mem_cgroup_reset,
4028 		.read_u64 = mem_cgroup_read_u64,
4029 	},
4030 	{
4031 		.name = "kmem.tcp.max_usage_in_bytes",
4032 		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4033 		.write = mem_cgroup_reset,
4034 		.read_u64 = mem_cgroup_read_u64,
4035 	},
4036 	{ },	/* terminate */
4037 };
4038 
4039 /*
4040  * Private memory cgroup IDR
4041  *
4042  * Swap-out records and page cache shadow entries need to store memcg
4043  * references in constrained space, so we maintain an ID space that is
4044  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4045  * memory-controlled cgroups to 64k.
4046  *
4047  * However, there usually are many references to the oflline CSS after
4048  * the cgroup has been destroyed, such as page cache or reclaimable
4049  * slab objects, that don't need to hang on to the ID. We want to keep
4050  * those dead CSS from occupying IDs, or we might quickly exhaust the
4051  * relatively small ID space and prevent the creation of new cgroups
4052  * even when there are much fewer than 64k cgroups - possibly none.
4053  *
4054  * Maintain a private 16-bit ID space for memcg, and allow the ID to
4055  * be freed and recycled when it's no longer needed, which is usually
4056  * when the CSS is offlined.
4057  *
4058  * The only exception to that are records of swapped out tmpfs/shmem
4059  * pages that need to be attributed to live ancestors on swapin. But
4060  * those references are manageable from userspace.
4061  */
4062 
4063 static DEFINE_IDR(mem_cgroup_idr);
4064 
4065 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4066 {
4067 	VM_BUG_ON(atomic_read(&memcg->id.ref) <= 0);
4068 	atomic_add(n, &memcg->id.ref);
4069 }
4070 
4071 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4072 {
4073 	VM_BUG_ON(atomic_read(&memcg->id.ref) < n);
4074 	if (atomic_sub_and_test(n, &memcg->id.ref)) {
4075 		idr_remove(&mem_cgroup_idr, memcg->id.id);
4076 		memcg->id.id = 0;
4077 
4078 		/* Memcg ID pins CSS */
4079 		css_put(&memcg->css);
4080 	}
4081 }
4082 
4083 static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4084 {
4085 	mem_cgroup_id_get_many(memcg, 1);
4086 }
4087 
4088 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4089 {
4090 	mem_cgroup_id_put_many(memcg, 1);
4091 }
4092 
4093 /**
4094  * mem_cgroup_from_id - look up a memcg from a memcg id
4095  * @id: the memcg id to look up
4096  *
4097  * Caller must hold rcu_read_lock().
4098  */
4099 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4100 {
4101 	WARN_ON_ONCE(!rcu_read_lock_held());
4102 	return idr_find(&mem_cgroup_idr, id);
4103 }
4104 
4105 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4106 {
4107 	struct mem_cgroup_per_node *pn;
4108 	int tmp = node;
4109 	/*
4110 	 * This routine is called against possible nodes.
4111 	 * But it's BUG to call kmalloc() against offline node.
4112 	 *
4113 	 * TODO: this routine can waste much memory for nodes which will
4114 	 *       never be onlined. It's better to use memory hotplug callback
4115 	 *       function.
4116 	 */
4117 	if (!node_state(node, N_NORMAL_MEMORY))
4118 		tmp = -1;
4119 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4120 	if (!pn)
4121 		return 1;
4122 
4123 	lruvec_init(&pn->lruvec);
4124 	pn->usage_in_excess = 0;
4125 	pn->on_tree = false;
4126 	pn->memcg = memcg;
4127 
4128 	memcg->nodeinfo[node] = pn;
4129 	return 0;
4130 }
4131 
4132 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4133 {
4134 	kfree(memcg->nodeinfo[node]);
4135 }
4136 
4137 static void mem_cgroup_free(struct mem_cgroup *memcg)
4138 {
4139 	int node;
4140 
4141 	memcg_wb_domain_exit(memcg);
4142 	for_each_node(node)
4143 		free_mem_cgroup_per_node_info(memcg, node);
4144 	free_percpu(memcg->stat);
4145 	kfree(memcg);
4146 }
4147 
4148 static struct mem_cgroup *mem_cgroup_alloc(void)
4149 {
4150 	struct mem_cgroup *memcg;
4151 	size_t size;
4152 	int node;
4153 
4154 	size = sizeof(struct mem_cgroup);
4155 	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4156 
4157 	memcg = kzalloc(size, GFP_KERNEL);
4158 	if (!memcg)
4159 		return NULL;
4160 
4161 	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4162 				 1, MEM_CGROUP_ID_MAX,
4163 				 GFP_KERNEL);
4164 	if (memcg->id.id < 0)
4165 		goto fail;
4166 
4167 	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4168 	if (!memcg->stat)
4169 		goto fail;
4170 
4171 	for_each_node(node)
4172 		if (alloc_mem_cgroup_per_node_info(memcg, node))
4173 			goto fail;
4174 
4175 	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4176 		goto fail;
4177 
4178 	INIT_WORK(&memcg->high_work, high_work_func);
4179 	memcg->last_scanned_node = MAX_NUMNODES;
4180 	INIT_LIST_HEAD(&memcg->oom_notify);
4181 	mutex_init(&memcg->thresholds_lock);
4182 	spin_lock_init(&memcg->move_lock);
4183 	vmpressure_init(&memcg->vmpressure);
4184 	INIT_LIST_HEAD(&memcg->event_list);
4185 	spin_lock_init(&memcg->event_list_lock);
4186 	memcg->socket_pressure = jiffies;
4187 #ifndef CONFIG_SLOB
4188 	memcg->kmemcg_id = -1;
4189 #endif
4190 #ifdef CONFIG_CGROUP_WRITEBACK
4191 	INIT_LIST_HEAD(&memcg->cgwb_list);
4192 #endif
4193 	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4194 	return memcg;
4195 fail:
4196 	if (memcg->id.id > 0)
4197 		idr_remove(&mem_cgroup_idr, memcg->id.id);
4198 	mem_cgroup_free(memcg);
4199 	return NULL;
4200 }
4201 
4202 static struct cgroup_subsys_state * __ref
4203 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4204 {
4205 	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4206 	struct mem_cgroup *memcg;
4207 	long error = -ENOMEM;
4208 
4209 	memcg = mem_cgroup_alloc();
4210 	if (!memcg)
4211 		return ERR_PTR(error);
4212 
4213 	memcg->high = PAGE_COUNTER_MAX;
4214 	memcg->soft_limit = PAGE_COUNTER_MAX;
4215 	if (parent) {
4216 		memcg->swappiness = mem_cgroup_swappiness(parent);
4217 		memcg->oom_kill_disable = parent->oom_kill_disable;
4218 	}
4219 	if (parent && parent->use_hierarchy) {
4220 		memcg->use_hierarchy = true;
4221 		page_counter_init(&memcg->memory, &parent->memory);
4222 		page_counter_init(&memcg->swap, &parent->swap);
4223 		page_counter_init(&memcg->memsw, &parent->memsw);
4224 		page_counter_init(&memcg->kmem, &parent->kmem);
4225 		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4226 	} else {
4227 		page_counter_init(&memcg->memory, NULL);
4228 		page_counter_init(&memcg->swap, NULL);
4229 		page_counter_init(&memcg->memsw, NULL);
4230 		page_counter_init(&memcg->kmem, NULL);
4231 		page_counter_init(&memcg->tcpmem, NULL);
4232 		/*
4233 		 * Deeper hierachy with use_hierarchy == false doesn't make
4234 		 * much sense so let cgroup subsystem know about this
4235 		 * unfortunate state in our controller.
4236 		 */
4237 		if (parent != root_mem_cgroup)
4238 			memory_cgrp_subsys.broken_hierarchy = true;
4239 	}
4240 
4241 	/* The following stuff does not apply to the root */
4242 	if (!parent) {
4243 		root_mem_cgroup = memcg;
4244 		return &memcg->css;
4245 	}
4246 
4247 	error = memcg_online_kmem(memcg);
4248 	if (error)
4249 		goto fail;
4250 
4251 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4252 		static_branch_inc(&memcg_sockets_enabled_key);
4253 
4254 	return &memcg->css;
4255 fail:
4256 	mem_cgroup_free(memcg);
4257 	return ERR_PTR(-ENOMEM);
4258 }
4259 
4260 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4261 {
4262 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4263 
4264 	/* Online state pins memcg ID, memcg ID pins CSS */
4265 	atomic_set(&memcg->id.ref, 1);
4266 	css_get(css);
4267 	return 0;
4268 }
4269 
4270 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4271 {
4272 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4273 	struct mem_cgroup_event *event, *tmp;
4274 
4275 	/*
4276 	 * Unregister events and notify userspace.
4277 	 * Notify userspace about cgroup removing only after rmdir of cgroup
4278 	 * directory to avoid race between userspace and kernelspace.
4279 	 */
4280 	spin_lock(&memcg->event_list_lock);
4281 	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4282 		list_del_init(&event->list);
4283 		schedule_work(&event->remove);
4284 	}
4285 	spin_unlock(&memcg->event_list_lock);
4286 
4287 	memcg_offline_kmem(memcg);
4288 	wb_memcg_offline(memcg);
4289 
4290 	mem_cgroup_id_put(memcg);
4291 }
4292 
4293 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4294 {
4295 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4296 
4297 	invalidate_reclaim_iterators(memcg);
4298 }
4299 
4300 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4301 {
4302 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4303 
4304 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4305 		static_branch_dec(&memcg_sockets_enabled_key);
4306 
4307 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4308 		static_branch_dec(&memcg_sockets_enabled_key);
4309 
4310 	vmpressure_cleanup(&memcg->vmpressure);
4311 	cancel_work_sync(&memcg->high_work);
4312 	mem_cgroup_remove_from_trees(memcg);
4313 	memcg_free_kmem(memcg);
4314 	mem_cgroup_free(memcg);
4315 }
4316 
4317 /**
4318  * mem_cgroup_css_reset - reset the states of a mem_cgroup
4319  * @css: the target css
4320  *
4321  * Reset the states of the mem_cgroup associated with @css.  This is
4322  * invoked when the userland requests disabling on the default hierarchy
4323  * but the memcg is pinned through dependency.  The memcg should stop
4324  * applying policies and should revert to the vanilla state as it may be
4325  * made visible again.
4326  *
4327  * The current implementation only resets the essential configurations.
4328  * This needs to be expanded to cover all the visible parts.
4329  */
4330 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4331 {
4332 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4333 
4334 	page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4335 	page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4336 	page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4337 	page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4338 	page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4339 	memcg->low = 0;
4340 	memcg->high = PAGE_COUNTER_MAX;
4341 	memcg->soft_limit = PAGE_COUNTER_MAX;
4342 	memcg_wb_domain_size_changed(memcg);
4343 }
4344 
4345 #ifdef CONFIG_MMU
4346 /* Handlers for move charge at task migration. */
4347 static int mem_cgroup_do_precharge(unsigned long count)
4348 {
4349 	int ret;
4350 
4351 	/* Try a single bulk charge without reclaim first, kswapd may wake */
4352 	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4353 	if (!ret) {
4354 		mc.precharge += count;
4355 		return ret;
4356 	}
4357 
4358 	/* Try charges one by one with reclaim */
4359 	while (count--) {
4360 		ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4361 		if (ret)
4362 			return ret;
4363 		mc.precharge++;
4364 		cond_resched();
4365 	}
4366 	return 0;
4367 }
4368 
4369 union mc_target {
4370 	struct page	*page;
4371 	swp_entry_t	ent;
4372 };
4373 
4374 enum mc_target_type {
4375 	MC_TARGET_NONE = 0,
4376 	MC_TARGET_PAGE,
4377 	MC_TARGET_SWAP,
4378 };
4379 
4380 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4381 						unsigned long addr, pte_t ptent)
4382 {
4383 	struct page *page = vm_normal_page(vma, addr, ptent);
4384 
4385 	if (!page || !page_mapped(page))
4386 		return NULL;
4387 	if (PageAnon(page)) {
4388 		if (!(mc.flags & MOVE_ANON))
4389 			return NULL;
4390 	} else {
4391 		if (!(mc.flags & MOVE_FILE))
4392 			return NULL;
4393 	}
4394 	if (!get_page_unless_zero(page))
4395 		return NULL;
4396 
4397 	return page;
4398 }
4399 
4400 #ifdef CONFIG_SWAP
4401 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4402 			pte_t ptent, swp_entry_t *entry)
4403 {
4404 	struct page *page = NULL;
4405 	swp_entry_t ent = pte_to_swp_entry(ptent);
4406 
4407 	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4408 		return NULL;
4409 	/*
4410 	 * Because lookup_swap_cache() updates some statistics counter,
4411 	 * we call find_get_page() with swapper_space directly.
4412 	 */
4413 	page = find_get_page(swap_address_space(ent), swp_offset(ent));
4414 	if (do_memsw_account())
4415 		entry->val = ent.val;
4416 
4417 	return page;
4418 }
4419 #else
4420 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4421 			pte_t ptent, swp_entry_t *entry)
4422 {
4423 	return NULL;
4424 }
4425 #endif
4426 
4427 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4428 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4429 {
4430 	struct page *page = NULL;
4431 	struct address_space *mapping;
4432 	pgoff_t pgoff;
4433 
4434 	if (!vma->vm_file) /* anonymous vma */
4435 		return NULL;
4436 	if (!(mc.flags & MOVE_FILE))
4437 		return NULL;
4438 
4439 	mapping = vma->vm_file->f_mapping;
4440 	pgoff = linear_page_index(vma, addr);
4441 
4442 	/* page is moved even if it's not RSS of this task(page-faulted). */
4443 #ifdef CONFIG_SWAP
4444 	/* shmem/tmpfs may report page out on swap: account for that too. */
4445 	if (shmem_mapping(mapping)) {
4446 		page = find_get_entry(mapping, pgoff);
4447 		if (radix_tree_exceptional_entry(page)) {
4448 			swp_entry_t swp = radix_to_swp_entry(page);
4449 			if (do_memsw_account())
4450 				*entry = swp;
4451 			page = find_get_page(swap_address_space(swp),
4452 					     swp_offset(swp));
4453 		}
4454 	} else
4455 		page = find_get_page(mapping, pgoff);
4456 #else
4457 	page = find_get_page(mapping, pgoff);
4458 #endif
4459 	return page;
4460 }
4461 
4462 /**
4463  * mem_cgroup_move_account - move account of the page
4464  * @page: the page
4465  * @compound: charge the page as compound or small page
4466  * @from: mem_cgroup which the page is moved from.
4467  * @to:	mem_cgroup which the page is moved to. @from != @to.
4468  *
4469  * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4470  *
4471  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4472  * from old cgroup.
4473  */
4474 static int mem_cgroup_move_account(struct page *page,
4475 				   bool compound,
4476 				   struct mem_cgroup *from,
4477 				   struct mem_cgroup *to)
4478 {
4479 	unsigned long flags;
4480 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4481 	int ret;
4482 	bool anon;
4483 
4484 	VM_BUG_ON(from == to);
4485 	VM_BUG_ON_PAGE(PageLRU(page), page);
4486 	VM_BUG_ON(compound && !PageTransHuge(page));
4487 
4488 	/*
4489 	 * Prevent mem_cgroup_migrate() from looking at
4490 	 * page->mem_cgroup of its source page while we change it.
4491 	 */
4492 	ret = -EBUSY;
4493 	if (!trylock_page(page))
4494 		goto out;
4495 
4496 	ret = -EINVAL;
4497 	if (page->mem_cgroup != from)
4498 		goto out_unlock;
4499 
4500 	anon = PageAnon(page);
4501 
4502 	spin_lock_irqsave(&from->move_lock, flags);
4503 
4504 	if (!anon && page_mapped(page)) {
4505 		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4506 			       nr_pages);
4507 		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4508 			       nr_pages);
4509 	}
4510 
4511 	/*
4512 	 * move_lock grabbed above and caller set from->moving_account, so
4513 	 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4514 	 * So mapping should be stable for dirty pages.
4515 	 */
4516 	if (!anon && PageDirty(page)) {
4517 		struct address_space *mapping = page_mapping(page);
4518 
4519 		if (mapping_cap_account_dirty(mapping)) {
4520 			__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4521 				       nr_pages);
4522 			__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4523 				       nr_pages);
4524 		}
4525 	}
4526 
4527 	if (PageWriteback(page)) {
4528 		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4529 			       nr_pages);
4530 		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4531 			       nr_pages);
4532 	}
4533 
4534 	/*
4535 	 * It is safe to change page->mem_cgroup here because the page
4536 	 * is referenced, charged, and isolated - we can't race with
4537 	 * uncharging, charging, migration, or LRU putback.
4538 	 */
4539 
4540 	/* caller should have done css_get */
4541 	page->mem_cgroup = to;
4542 	spin_unlock_irqrestore(&from->move_lock, flags);
4543 
4544 	ret = 0;
4545 
4546 	local_irq_disable();
4547 	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4548 	memcg_check_events(to, page);
4549 	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4550 	memcg_check_events(from, page);
4551 	local_irq_enable();
4552 out_unlock:
4553 	unlock_page(page);
4554 out:
4555 	return ret;
4556 }
4557 
4558 /**
4559  * get_mctgt_type - get target type of moving charge
4560  * @vma: the vma the pte to be checked belongs
4561  * @addr: the address corresponding to the pte to be checked
4562  * @ptent: the pte to be checked
4563  * @target: the pointer the target page or swap ent will be stored(can be NULL)
4564  *
4565  * Returns
4566  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
4567  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4568  *     move charge. if @target is not NULL, the page is stored in target->page
4569  *     with extra refcnt got(Callers should handle it).
4570  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4571  *     target for charge migration. if @target is not NULL, the entry is stored
4572  *     in target->ent.
4573  *
4574  * Called with pte lock held.
4575  */
4576 
4577 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4578 		unsigned long addr, pte_t ptent, union mc_target *target)
4579 {
4580 	struct page *page = NULL;
4581 	enum mc_target_type ret = MC_TARGET_NONE;
4582 	swp_entry_t ent = { .val = 0 };
4583 
4584 	if (pte_present(ptent))
4585 		page = mc_handle_present_pte(vma, addr, ptent);
4586 	else if (is_swap_pte(ptent))
4587 		page = mc_handle_swap_pte(vma, ptent, &ent);
4588 	else if (pte_none(ptent))
4589 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
4590 
4591 	if (!page && !ent.val)
4592 		return ret;
4593 	if (page) {
4594 		/*
4595 		 * Do only loose check w/o serialization.
4596 		 * mem_cgroup_move_account() checks the page is valid or
4597 		 * not under LRU exclusion.
4598 		 */
4599 		if (page->mem_cgroup == mc.from) {
4600 			ret = MC_TARGET_PAGE;
4601 			if (target)
4602 				target->page = page;
4603 		}
4604 		if (!ret || !target)
4605 			put_page(page);
4606 	}
4607 	/* There is a swap entry and a page doesn't exist or isn't charged */
4608 	if (ent.val && !ret &&
4609 	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4610 		ret = MC_TARGET_SWAP;
4611 		if (target)
4612 			target->ent = ent;
4613 	}
4614 	return ret;
4615 }
4616 
4617 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4618 /*
4619  * We don't consider swapping or file mapped pages because THP does not
4620  * support them for now.
4621  * Caller should make sure that pmd_trans_huge(pmd) is true.
4622  */
4623 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4624 		unsigned long addr, pmd_t pmd, union mc_target *target)
4625 {
4626 	struct page *page = NULL;
4627 	enum mc_target_type ret = MC_TARGET_NONE;
4628 
4629 	page = pmd_page(pmd);
4630 	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4631 	if (!(mc.flags & MOVE_ANON))
4632 		return ret;
4633 	if (page->mem_cgroup == mc.from) {
4634 		ret = MC_TARGET_PAGE;
4635 		if (target) {
4636 			get_page(page);
4637 			target->page = page;
4638 		}
4639 	}
4640 	return ret;
4641 }
4642 #else
4643 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4644 		unsigned long addr, pmd_t pmd, union mc_target *target)
4645 {
4646 	return MC_TARGET_NONE;
4647 }
4648 #endif
4649 
4650 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4651 					unsigned long addr, unsigned long end,
4652 					struct mm_walk *walk)
4653 {
4654 	struct vm_area_struct *vma = walk->vma;
4655 	pte_t *pte;
4656 	spinlock_t *ptl;
4657 
4658 	ptl = pmd_trans_huge_lock(pmd, vma);
4659 	if (ptl) {
4660 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4661 			mc.precharge += HPAGE_PMD_NR;
4662 		spin_unlock(ptl);
4663 		return 0;
4664 	}
4665 
4666 	if (pmd_trans_unstable(pmd))
4667 		return 0;
4668 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4669 	for (; addr != end; pte++, addr += PAGE_SIZE)
4670 		if (get_mctgt_type(vma, addr, *pte, NULL))
4671 			mc.precharge++;	/* increment precharge temporarily */
4672 	pte_unmap_unlock(pte - 1, ptl);
4673 	cond_resched();
4674 
4675 	return 0;
4676 }
4677 
4678 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4679 {
4680 	unsigned long precharge;
4681 
4682 	struct mm_walk mem_cgroup_count_precharge_walk = {
4683 		.pmd_entry = mem_cgroup_count_precharge_pte_range,
4684 		.mm = mm,
4685 	};
4686 	down_read(&mm->mmap_sem);
4687 	walk_page_range(0, mm->highest_vm_end,
4688 			&mem_cgroup_count_precharge_walk);
4689 	up_read(&mm->mmap_sem);
4690 
4691 	precharge = mc.precharge;
4692 	mc.precharge = 0;
4693 
4694 	return precharge;
4695 }
4696 
4697 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4698 {
4699 	unsigned long precharge = mem_cgroup_count_precharge(mm);
4700 
4701 	VM_BUG_ON(mc.moving_task);
4702 	mc.moving_task = current;
4703 	return mem_cgroup_do_precharge(precharge);
4704 }
4705 
4706 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4707 static void __mem_cgroup_clear_mc(void)
4708 {
4709 	struct mem_cgroup *from = mc.from;
4710 	struct mem_cgroup *to = mc.to;
4711 
4712 	/* we must uncharge all the leftover precharges from mc.to */
4713 	if (mc.precharge) {
4714 		cancel_charge(mc.to, mc.precharge);
4715 		mc.precharge = 0;
4716 	}
4717 	/*
4718 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4719 	 * we must uncharge here.
4720 	 */
4721 	if (mc.moved_charge) {
4722 		cancel_charge(mc.from, mc.moved_charge);
4723 		mc.moved_charge = 0;
4724 	}
4725 	/* we must fixup refcnts and charges */
4726 	if (mc.moved_swap) {
4727 		/* uncharge swap account from the old cgroup */
4728 		if (!mem_cgroup_is_root(mc.from))
4729 			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4730 
4731 		mem_cgroup_id_put_many(mc.from, mc.moved_swap);
4732 
4733 		/*
4734 		 * we charged both to->memory and to->memsw, so we
4735 		 * should uncharge to->memory.
4736 		 */
4737 		if (!mem_cgroup_is_root(mc.to))
4738 			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4739 
4740 		mem_cgroup_id_get_many(mc.to, mc.moved_swap);
4741 		css_put_many(&mc.to->css, mc.moved_swap);
4742 
4743 		mc.moved_swap = 0;
4744 	}
4745 	memcg_oom_recover(from);
4746 	memcg_oom_recover(to);
4747 	wake_up_all(&mc.waitq);
4748 }
4749 
4750 static void mem_cgroup_clear_mc(void)
4751 {
4752 	struct mm_struct *mm = mc.mm;
4753 
4754 	/*
4755 	 * we must clear moving_task before waking up waiters at the end of
4756 	 * task migration.
4757 	 */
4758 	mc.moving_task = NULL;
4759 	__mem_cgroup_clear_mc();
4760 	spin_lock(&mc.lock);
4761 	mc.from = NULL;
4762 	mc.to = NULL;
4763 	mc.mm = NULL;
4764 	spin_unlock(&mc.lock);
4765 
4766 	mmput(mm);
4767 }
4768 
4769 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4770 {
4771 	struct cgroup_subsys_state *css;
4772 	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4773 	struct mem_cgroup *from;
4774 	struct task_struct *leader, *p;
4775 	struct mm_struct *mm;
4776 	unsigned long move_flags;
4777 	int ret = 0;
4778 
4779 	/* charge immigration isn't supported on the default hierarchy */
4780 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4781 		return 0;
4782 
4783 	/*
4784 	 * Multi-process migrations only happen on the default hierarchy
4785 	 * where charge immigration is not used.  Perform charge
4786 	 * immigration if @tset contains a leader and whine if there are
4787 	 * multiple.
4788 	 */
4789 	p = NULL;
4790 	cgroup_taskset_for_each_leader(leader, css, tset) {
4791 		WARN_ON_ONCE(p);
4792 		p = leader;
4793 		memcg = mem_cgroup_from_css(css);
4794 	}
4795 	if (!p)
4796 		return 0;
4797 
4798 	/*
4799 	 * We are now commited to this value whatever it is. Changes in this
4800 	 * tunable will only affect upcoming migrations, not the current one.
4801 	 * So we need to save it, and keep it going.
4802 	 */
4803 	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4804 	if (!move_flags)
4805 		return 0;
4806 
4807 	from = mem_cgroup_from_task(p);
4808 
4809 	VM_BUG_ON(from == memcg);
4810 
4811 	mm = get_task_mm(p);
4812 	if (!mm)
4813 		return 0;
4814 	/* We move charges only when we move a owner of the mm */
4815 	if (mm->owner == p) {
4816 		VM_BUG_ON(mc.from);
4817 		VM_BUG_ON(mc.to);
4818 		VM_BUG_ON(mc.precharge);
4819 		VM_BUG_ON(mc.moved_charge);
4820 		VM_BUG_ON(mc.moved_swap);
4821 
4822 		spin_lock(&mc.lock);
4823 		mc.mm = mm;
4824 		mc.from = from;
4825 		mc.to = memcg;
4826 		mc.flags = move_flags;
4827 		spin_unlock(&mc.lock);
4828 		/* We set mc.moving_task later */
4829 
4830 		ret = mem_cgroup_precharge_mc(mm);
4831 		if (ret)
4832 			mem_cgroup_clear_mc();
4833 	} else {
4834 		mmput(mm);
4835 	}
4836 	return ret;
4837 }
4838 
4839 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4840 {
4841 	if (mc.to)
4842 		mem_cgroup_clear_mc();
4843 }
4844 
4845 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4846 				unsigned long addr, unsigned long end,
4847 				struct mm_walk *walk)
4848 {
4849 	int ret = 0;
4850 	struct vm_area_struct *vma = walk->vma;
4851 	pte_t *pte;
4852 	spinlock_t *ptl;
4853 	enum mc_target_type target_type;
4854 	union mc_target target;
4855 	struct page *page;
4856 
4857 	ptl = pmd_trans_huge_lock(pmd, vma);
4858 	if (ptl) {
4859 		if (mc.precharge < HPAGE_PMD_NR) {
4860 			spin_unlock(ptl);
4861 			return 0;
4862 		}
4863 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4864 		if (target_type == MC_TARGET_PAGE) {
4865 			page = target.page;
4866 			if (!isolate_lru_page(page)) {
4867 				if (!mem_cgroup_move_account(page, true,
4868 							     mc.from, mc.to)) {
4869 					mc.precharge -= HPAGE_PMD_NR;
4870 					mc.moved_charge += HPAGE_PMD_NR;
4871 				}
4872 				putback_lru_page(page);
4873 			}
4874 			put_page(page);
4875 		}
4876 		spin_unlock(ptl);
4877 		return 0;
4878 	}
4879 
4880 	if (pmd_trans_unstable(pmd))
4881 		return 0;
4882 retry:
4883 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4884 	for (; addr != end; addr += PAGE_SIZE) {
4885 		pte_t ptent = *(pte++);
4886 		swp_entry_t ent;
4887 
4888 		if (!mc.precharge)
4889 			break;
4890 
4891 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
4892 		case MC_TARGET_PAGE:
4893 			page = target.page;
4894 			/*
4895 			 * We can have a part of the split pmd here. Moving it
4896 			 * can be done but it would be too convoluted so simply
4897 			 * ignore such a partial THP and keep it in original
4898 			 * memcg. There should be somebody mapping the head.
4899 			 */
4900 			if (PageTransCompound(page))
4901 				goto put;
4902 			if (isolate_lru_page(page))
4903 				goto put;
4904 			if (!mem_cgroup_move_account(page, false,
4905 						mc.from, mc.to)) {
4906 				mc.precharge--;
4907 				/* we uncharge from mc.from later. */
4908 				mc.moved_charge++;
4909 			}
4910 			putback_lru_page(page);
4911 put:			/* get_mctgt_type() gets the page */
4912 			put_page(page);
4913 			break;
4914 		case MC_TARGET_SWAP:
4915 			ent = target.ent;
4916 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4917 				mc.precharge--;
4918 				/* we fixup refcnts and charges later. */
4919 				mc.moved_swap++;
4920 			}
4921 			break;
4922 		default:
4923 			break;
4924 		}
4925 	}
4926 	pte_unmap_unlock(pte - 1, ptl);
4927 	cond_resched();
4928 
4929 	if (addr != end) {
4930 		/*
4931 		 * We have consumed all precharges we got in can_attach().
4932 		 * We try charge one by one, but don't do any additional
4933 		 * charges to mc.to if we have failed in charge once in attach()
4934 		 * phase.
4935 		 */
4936 		ret = mem_cgroup_do_precharge(1);
4937 		if (!ret)
4938 			goto retry;
4939 	}
4940 
4941 	return ret;
4942 }
4943 
4944 static void mem_cgroup_move_charge(void)
4945 {
4946 	struct mm_walk mem_cgroup_move_charge_walk = {
4947 		.pmd_entry = mem_cgroup_move_charge_pte_range,
4948 		.mm = mc.mm,
4949 	};
4950 
4951 	lru_add_drain_all();
4952 	/*
4953 	 * Signal lock_page_memcg() to take the memcg's move_lock
4954 	 * while we're moving its pages to another memcg. Then wait
4955 	 * for already started RCU-only updates to finish.
4956 	 */
4957 	atomic_inc(&mc.from->moving_account);
4958 	synchronize_rcu();
4959 retry:
4960 	if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
4961 		/*
4962 		 * Someone who are holding the mmap_sem might be waiting in
4963 		 * waitq. So we cancel all extra charges, wake up all waiters,
4964 		 * and retry. Because we cancel precharges, we might not be able
4965 		 * to move enough charges, but moving charge is a best-effort
4966 		 * feature anyway, so it wouldn't be a big problem.
4967 		 */
4968 		__mem_cgroup_clear_mc();
4969 		cond_resched();
4970 		goto retry;
4971 	}
4972 	/*
4973 	 * When we have consumed all precharges and failed in doing
4974 	 * additional charge, the page walk just aborts.
4975 	 */
4976 	walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
4977 
4978 	up_read(&mc.mm->mmap_sem);
4979 	atomic_dec(&mc.from->moving_account);
4980 }
4981 
4982 static void mem_cgroup_move_task(void)
4983 {
4984 	if (mc.to) {
4985 		mem_cgroup_move_charge();
4986 		mem_cgroup_clear_mc();
4987 	}
4988 }
4989 #else	/* !CONFIG_MMU */
4990 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4991 {
4992 	return 0;
4993 }
4994 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4995 {
4996 }
4997 static void mem_cgroup_move_task(void)
4998 {
4999 }
5000 #endif
5001 
5002 /*
5003  * Cgroup retains root cgroups across [un]mount cycles making it necessary
5004  * to verify whether we're attached to the default hierarchy on each mount
5005  * attempt.
5006  */
5007 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5008 {
5009 	/*
5010 	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5011 	 * guarantees that @root doesn't have any children, so turning it
5012 	 * on for the root memcg is enough.
5013 	 */
5014 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5015 		root_mem_cgroup->use_hierarchy = true;
5016 	else
5017 		root_mem_cgroup->use_hierarchy = false;
5018 }
5019 
5020 static u64 memory_current_read(struct cgroup_subsys_state *css,
5021 			       struct cftype *cft)
5022 {
5023 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5024 
5025 	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5026 }
5027 
5028 static int memory_low_show(struct seq_file *m, void *v)
5029 {
5030 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5031 	unsigned long low = READ_ONCE(memcg->low);
5032 
5033 	if (low == PAGE_COUNTER_MAX)
5034 		seq_puts(m, "max\n");
5035 	else
5036 		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5037 
5038 	return 0;
5039 }
5040 
5041 static ssize_t memory_low_write(struct kernfs_open_file *of,
5042 				char *buf, size_t nbytes, loff_t off)
5043 {
5044 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5045 	unsigned long low;
5046 	int err;
5047 
5048 	buf = strstrip(buf);
5049 	err = page_counter_memparse(buf, "max", &low);
5050 	if (err)
5051 		return err;
5052 
5053 	memcg->low = low;
5054 
5055 	return nbytes;
5056 }
5057 
5058 static int memory_high_show(struct seq_file *m, void *v)
5059 {
5060 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5061 	unsigned long high = READ_ONCE(memcg->high);
5062 
5063 	if (high == PAGE_COUNTER_MAX)
5064 		seq_puts(m, "max\n");
5065 	else
5066 		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5067 
5068 	return 0;
5069 }
5070 
5071 static ssize_t memory_high_write(struct kernfs_open_file *of,
5072 				 char *buf, size_t nbytes, loff_t off)
5073 {
5074 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5075 	unsigned long nr_pages;
5076 	unsigned long high;
5077 	int err;
5078 
5079 	buf = strstrip(buf);
5080 	err = page_counter_memparse(buf, "max", &high);
5081 	if (err)
5082 		return err;
5083 
5084 	memcg->high = high;
5085 
5086 	nr_pages = page_counter_read(&memcg->memory);
5087 	if (nr_pages > high)
5088 		try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5089 					     GFP_KERNEL, true);
5090 
5091 	memcg_wb_domain_size_changed(memcg);
5092 	return nbytes;
5093 }
5094 
5095 static int memory_max_show(struct seq_file *m, void *v)
5096 {
5097 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5098 	unsigned long max = READ_ONCE(memcg->memory.limit);
5099 
5100 	if (max == PAGE_COUNTER_MAX)
5101 		seq_puts(m, "max\n");
5102 	else
5103 		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5104 
5105 	return 0;
5106 }
5107 
5108 static ssize_t memory_max_write(struct kernfs_open_file *of,
5109 				char *buf, size_t nbytes, loff_t off)
5110 {
5111 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5112 	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5113 	bool drained = false;
5114 	unsigned long max;
5115 	int err;
5116 
5117 	buf = strstrip(buf);
5118 	err = page_counter_memparse(buf, "max", &max);
5119 	if (err)
5120 		return err;
5121 
5122 	xchg(&memcg->memory.limit, max);
5123 
5124 	for (;;) {
5125 		unsigned long nr_pages = page_counter_read(&memcg->memory);
5126 
5127 		if (nr_pages <= max)
5128 			break;
5129 
5130 		if (signal_pending(current)) {
5131 			err = -EINTR;
5132 			break;
5133 		}
5134 
5135 		if (!drained) {
5136 			drain_all_stock(memcg);
5137 			drained = true;
5138 			continue;
5139 		}
5140 
5141 		if (nr_reclaims) {
5142 			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5143 							  GFP_KERNEL, true))
5144 				nr_reclaims--;
5145 			continue;
5146 		}
5147 
5148 		mem_cgroup_events(memcg, MEMCG_OOM, 1);
5149 		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5150 			break;
5151 	}
5152 
5153 	memcg_wb_domain_size_changed(memcg);
5154 	return nbytes;
5155 }
5156 
5157 static int memory_events_show(struct seq_file *m, void *v)
5158 {
5159 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5160 
5161 	seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5162 	seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5163 	seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5164 	seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5165 
5166 	return 0;
5167 }
5168 
5169 static int memory_stat_show(struct seq_file *m, void *v)
5170 {
5171 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5172 	unsigned long stat[MEMCG_NR_STAT];
5173 	unsigned long events[MEMCG_NR_EVENTS];
5174 	int i;
5175 
5176 	/*
5177 	 * Provide statistics on the state of the memory subsystem as
5178 	 * well as cumulative event counters that show past behavior.
5179 	 *
5180 	 * This list is ordered following a combination of these gradients:
5181 	 * 1) generic big picture -> specifics and details
5182 	 * 2) reflecting userspace activity -> reflecting kernel heuristics
5183 	 *
5184 	 * Current memory state:
5185 	 */
5186 
5187 	tree_stat(memcg, stat);
5188 	tree_events(memcg, events);
5189 
5190 	seq_printf(m, "anon %llu\n",
5191 		   (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
5192 	seq_printf(m, "file %llu\n",
5193 		   (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
5194 	seq_printf(m, "kernel_stack %llu\n",
5195 		   (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024);
5196 	seq_printf(m, "slab %llu\n",
5197 		   (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
5198 			 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5199 	seq_printf(m, "sock %llu\n",
5200 		   (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5201 
5202 	seq_printf(m, "file_mapped %llu\n",
5203 		   (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
5204 	seq_printf(m, "file_dirty %llu\n",
5205 		   (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
5206 	seq_printf(m, "file_writeback %llu\n",
5207 		   (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
5208 
5209 	for (i = 0; i < NR_LRU_LISTS; i++) {
5210 		struct mem_cgroup *mi;
5211 		unsigned long val = 0;
5212 
5213 		for_each_mem_cgroup_tree(mi, memcg)
5214 			val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5215 		seq_printf(m, "%s %llu\n",
5216 			   mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5217 	}
5218 
5219 	seq_printf(m, "slab_reclaimable %llu\n",
5220 		   (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
5221 	seq_printf(m, "slab_unreclaimable %llu\n",
5222 		   (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5223 
5224 	/* Accumulated memory events */
5225 
5226 	seq_printf(m, "pgfault %lu\n",
5227 		   events[MEM_CGROUP_EVENTS_PGFAULT]);
5228 	seq_printf(m, "pgmajfault %lu\n",
5229 		   events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
5230 
5231 	return 0;
5232 }
5233 
5234 static struct cftype memory_files[] = {
5235 	{
5236 		.name = "current",
5237 		.flags = CFTYPE_NOT_ON_ROOT,
5238 		.read_u64 = memory_current_read,
5239 	},
5240 	{
5241 		.name = "low",
5242 		.flags = CFTYPE_NOT_ON_ROOT,
5243 		.seq_show = memory_low_show,
5244 		.write = memory_low_write,
5245 	},
5246 	{
5247 		.name = "high",
5248 		.flags = CFTYPE_NOT_ON_ROOT,
5249 		.seq_show = memory_high_show,
5250 		.write = memory_high_write,
5251 	},
5252 	{
5253 		.name = "max",
5254 		.flags = CFTYPE_NOT_ON_ROOT,
5255 		.seq_show = memory_max_show,
5256 		.write = memory_max_write,
5257 	},
5258 	{
5259 		.name = "events",
5260 		.flags = CFTYPE_NOT_ON_ROOT,
5261 		.file_offset = offsetof(struct mem_cgroup, events_file),
5262 		.seq_show = memory_events_show,
5263 	},
5264 	{
5265 		.name = "stat",
5266 		.flags = CFTYPE_NOT_ON_ROOT,
5267 		.seq_show = memory_stat_show,
5268 	},
5269 	{ }	/* terminate */
5270 };
5271 
5272 struct cgroup_subsys memory_cgrp_subsys = {
5273 	.css_alloc = mem_cgroup_css_alloc,
5274 	.css_online = mem_cgroup_css_online,
5275 	.css_offline = mem_cgroup_css_offline,
5276 	.css_released = mem_cgroup_css_released,
5277 	.css_free = mem_cgroup_css_free,
5278 	.css_reset = mem_cgroup_css_reset,
5279 	.can_attach = mem_cgroup_can_attach,
5280 	.cancel_attach = mem_cgroup_cancel_attach,
5281 	.post_attach = mem_cgroup_move_task,
5282 	.bind = mem_cgroup_bind,
5283 	.dfl_cftypes = memory_files,
5284 	.legacy_cftypes = mem_cgroup_legacy_files,
5285 	.early_init = 0,
5286 };
5287 
5288 /**
5289  * mem_cgroup_low - check if memory consumption is below the normal range
5290  * @root: the highest ancestor to consider
5291  * @memcg: the memory cgroup to check
5292  *
5293  * Returns %true if memory consumption of @memcg, and that of all
5294  * configurable ancestors up to @root, is below the normal range.
5295  */
5296 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5297 {
5298 	if (mem_cgroup_disabled())
5299 		return false;
5300 
5301 	/*
5302 	 * The toplevel group doesn't have a configurable range, so
5303 	 * it's never low when looked at directly, and it is not
5304 	 * considered an ancestor when assessing the hierarchy.
5305 	 */
5306 
5307 	if (memcg == root_mem_cgroup)
5308 		return false;
5309 
5310 	if (page_counter_read(&memcg->memory) >= memcg->low)
5311 		return false;
5312 
5313 	while (memcg != root) {
5314 		memcg = parent_mem_cgroup(memcg);
5315 
5316 		if (memcg == root_mem_cgroup)
5317 			break;
5318 
5319 		if (page_counter_read(&memcg->memory) >= memcg->low)
5320 			return false;
5321 	}
5322 	return true;
5323 }
5324 
5325 /**
5326  * mem_cgroup_try_charge - try charging a page
5327  * @page: page to charge
5328  * @mm: mm context of the victim
5329  * @gfp_mask: reclaim mode
5330  * @memcgp: charged memcg return
5331  * @compound: charge the page as compound or small page
5332  *
5333  * Try to charge @page to the memcg that @mm belongs to, reclaiming
5334  * pages according to @gfp_mask if necessary.
5335  *
5336  * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5337  * Otherwise, an error code is returned.
5338  *
5339  * After page->mapping has been set up, the caller must finalize the
5340  * charge with mem_cgroup_commit_charge().  Or abort the transaction
5341  * with mem_cgroup_cancel_charge() in case page instantiation fails.
5342  */
5343 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5344 			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
5345 			  bool compound)
5346 {
5347 	struct mem_cgroup *memcg = NULL;
5348 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5349 	int ret = 0;
5350 
5351 	if (mem_cgroup_disabled())
5352 		goto out;
5353 
5354 	if (PageSwapCache(page)) {
5355 		/*
5356 		 * Every swap fault against a single page tries to charge the
5357 		 * page, bail as early as possible.  shmem_unuse() encounters
5358 		 * already charged pages, too.  The USED bit is protected by
5359 		 * the page lock, which serializes swap cache removal, which
5360 		 * in turn serializes uncharging.
5361 		 */
5362 		VM_BUG_ON_PAGE(!PageLocked(page), page);
5363 		if (page->mem_cgroup)
5364 			goto out;
5365 
5366 		if (do_swap_account) {
5367 			swp_entry_t ent = { .val = page_private(page), };
5368 			unsigned short id = lookup_swap_cgroup_id(ent);
5369 
5370 			rcu_read_lock();
5371 			memcg = mem_cgroup_from_id(id);
5372 			if (memcg && !css_tryget_online(&memcg->css))
5373 				memcg = NULL;
5374 			rcu_read_unlock();
5375 		}
5376 	}
5377 
5378 	if (!memcg)
5379 		memcg = get_mem_cgroup_from_mm(mm);
5380 
5381 	ret = try_charge(memcg, gfp_mask, nr_pages);
5382 
5383 	css_put(&memcg->css);
5384 out:
5385 	*memcgp = memcg;
5386 	return ret;
5387 }
5388 
5389 /**
5390  * mem_cgroup_commit_charge - commit a page charge
5391  * @page: page to charge
5392  * @memcg: memcg to charge the page to
5393  * @lrucare: page might be on LRU already
5394  * @compound: charge the page as compound or small page
5395  *
5396  * Finalize a charge transaction started by mem_cgroup_try_charge(),
5397  * after page->mapping has been set up.  This must happen atomically
5398  * as part of the page instantiation, i.e. under the page table lock
5399  * for anonymous pages, under the page lock for page and swap cache.
5400  *
5401  * In addition, the page must not be on the LRU during the commit, to
5402  * prevent racing with task migration.  If it might be, use @lrucare.
5403  *
5404  * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5405  */
5406 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5407 			      bool lrucare, bool compound)
5408 {
5409 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5410 
5411 	VM_BUG_ON_PAGE(!page->mapping, page);
5412 	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5413 
5414 	if (mem_cgroup_disabled())
5415 		return;
5416 	/*
5417 	 * Swap faults will attempt to charge the same page multiple
5418 	 * times.  But reuse_swap_page() might have removed the page
5419 	 * from swapcache already, so we can't check PageSwapCache().
5420 	 */
5421 	if (!memcg)
5422 		return;
5423 
5424 	commit_charge(page, memcg, lrucare);
5425 
5426 	local_irq_disable();
5427 	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5428 	memcg_check_events(memcg, page);
5429 	local_irq_enable();
5430 
5431 	if (do_memsw_account() && PageSwapCache(page)) {
5432 		swp_entry_t entry = { .val = page_private(page) };
5433 		/*
5434 		 * The swap entry might not get freed for a long time,
5435 		 * let's not wait for it.  The page already received a
5436 		 * memory+swap charge, drop the swap entry duplicate.
5437 		 */
5438 		mem_cgroup_uncharge_swap(entry);
5439 	}
5440 }
5441 
5442 /**
5443  * mem_cgroup_cancel_charge - cancel a page charge
5444  * @page: page to charge
5445  * @memcg: memcg to charge the page to
5446  * @compound: charge the page as compound or small page
5447  *
5448  * Cancel a charge transaction started by mem_cgroup_try_charge().
5449  */
5450 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5451 		bool compound)
5452 {
5453 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5454 
5455 	if (mem_cgroup_disabled())
5456 		return;
5457 	/*
5458 	 * Swap faults will attempt to charge the same page multiple
5459 	 * times.  But reuse_swap_page() might have removed the page
5460 	 * from swapcache already, so we can't check PageSwapCache().
5461 	 */
5462 	if (!memcg)
5463 		return;
5464 
5465 	cancel_charge(memcg, nr_pages);
5466 }
5467 
5468 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5469 			   unsigned long nr_anon, unsigned long nr_file,
5470 			   unsigned long nr_huge, unsigned long nr_kmem,
5471 			   struct page *dummy_page)
5472 {
5473 	unsigned long nr_pages = nr_anon + nr_file + nr_kmem;
5474 	unsigned long flags;
5475 
5476 	if (!mem_cgroup_is_root(memcg)) {
5477 		page_counter_uncharge(&memcg->memory, nr_pages);
5478 		if (do_memsw_account())
5479 			page_counter_uncharge(&memcg->memsw, nr_pages);
5480 		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && nr_kmem)
5481 			page_counter_uncharge(&memcg->kmem, nr_kmem);
5482 		memcg_oom_recover(memcg);
5483 	}
5484 
5485 	local_irq_save(flags);
5486 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5487 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5488 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5489 	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5490 	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5491 	memcg_check_events(memcg, dummy_page);
5492 	local_irq_restore(flags);
5493 
5494 	if (!mem_cgroup_is_root(memcg))
5495 		css_put_many(&memcg->css, nr_pages);
5496 }
5497 
5498 static void uncharge_list(struct list_head *page_list)
5499 {
5500 	struct mem_cgroup *memcg = NULL;
5501 	unsigned long nr_anon = 0;
5502 	unsigned long nr_file = 0;
5503 	unsigned long nr_huge = 0;
5504 	unsigned long nr_kmem = 0;
5505 	unsigned long pgpgout = 0;
5506 	struct list_head *next;
5507 	struct page *page;
5508 
5509 	/*
5510 	 * Note that the list can be a single page->lru; hence the
5511 	 * do-while loop instead of a simple list_for_each_entry().
5512 	 */
5513 	next = page_list->next;
5514 	do {
5515 		page = list_entry(next, struct page, lru);
5516 		next = page->lru.next;
5517 
5518 		VM_BUG_ON_PAGE(PageLRU(page), page);
5519 		VM_BUG_ON_PAGE(page_count(page), page);
5520 
5521 		if (!page->mem_cgroup)
5522 			continue;
5523 
5524 		/*
5525 		 * Nobody should be changing or seriously looking at
5526 		 * page->mem_cgroup at this point, we have fully
5527 		 * exclusive access to the page.
5528 		 */
5529 
5530 		if (memcg != page->mem_cgroup) {
5531 			if (memcg) {
5532 				uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5533 					       nr_huge, nr_kmem, page);
5534 				pgpgout = nr_anon = nr_file =
5535 					nr_huge = nr_kmem = 0;
5536 			}
5537 			memcg = page->mem_cgroup;
5538 		}
5539 
5540 		if (!PageKmemcg(page)) {
5541 			unsigned int nr_pages = 1;
5542 
5543 			if (PageTransHuge(page)) {
5544 				nr_pages <<= compound_order(page);
5545 				nr_huge += nr_pages;
5546 			}
5547 			if (PageAnon(page))
5548 				nr_anon += nr_pages;
5549 			else
5550 				nr_file += nr_pages;
5551 			pgpgout++;
5552 		} else {
5553 			nr_kmem += 1 << compound_order(page);
5554 			__ClearPageKmemcg(page);
5555 		}
5556 
5557 		page->mem_cgroup = NULL;
5558 	} while (next != page_list);
5559 
5560 	if (memcg)
5561 		uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5562 			       nr_huge, nr_kmem, page);
5563 }
5564 
5565 /**
5566  * mem_cgroup_uncharge - uncharge a page
5567  * @page: page to uncharge
5568  *
5569  * Uncharge a page previously charged with mem_cgroup_try_charge() and
5570  * mem_cgroup_commit_charge().
5571  */
5572 void mem_cgroup_uncharge(struct page *page)
5573 {
5574 	if (mem_cgroup_disabled())
5575 		return;
5576 
5577 	/* Don't touch page->lru of any random page, pre-check: */
5578 	if (!page->mem_cgroup)
5579 		return;
5580 
5581 	INIT_LIST_HEAD(&page->lru);
5582 	uncharge_list(&page->lru);
5583 }
5584 
5585 /**
5586  * mem_cgroup_uncharge_list - uncharge a list of page
5587  * @page_list: list of pages to uncharge
5588  *
5589  * Uncharge a list of pages previously charged with
5590  * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5591  */
5592 void mem_cgroup_uncharge_list(struct list_head *page_list)
5593 {
5594 	if (mem_cgroup_disabled())
5595 		return;
5596 
5597 	if (!list_empty(page_list))
5598 		uncharge_list(page_list);
5599 }
5600 
5601 /**
5602  * mem_cgroup_migrate - charge a page's replacement
5603  * @oldpage: currently circulating page
5604  * @newpage: replacement page
5605  *
5606  * Charge @newpage as a replacement page for @oldpage. @oldpage will
5607  * be uncharged upon free.
5608  *
5609  * Both pages must be locked, @newpage->mapping must be set up.
5610  */
5611 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5612 {
5613 	struct mem_cgroup *memcg;
5614 	unsigned int nr_pages;
5615 	bool compound;
5616 	unsigned long flags;
5617 
5618 	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5619 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5620 	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5621 	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5622 		       newpage);
5623 
5624 	if (mem_cgroup_disabled())
5625 		return;
5626 
5627 	/* Page cache replacement: new page already charged? */
5628 	if (newpage->mem_cgroup)
5629 		return;
5630 
5631 	/* Swapcache readahead pages can get replaced before being charged */
5632 	memcg = oldpage->mem_cgroup;
5633 	if (!memcg)
5634 		return;
5635 
5636 	/* Force-charge the new page. The old one will be freed soon */
5637 	compound = PageTransHuge(newpage);
5638 	nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5639 
5640 	page_counter_charge(&memcg->memory, nr_pages);
5641 	if (do_memsw_account())
5642 		page_counter_charge(&memcg->memsw, nr_pages);
5643 	css_get_many(&memcg->css, nr_pages);
5644 
5645 	commit_charge(newpage, memcg, false);
5646 
5647 	local_irq_save(flags);
5648 	mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5649 	memcg_check_events(memcg, newpage);
5650 	local_irq_restore(flags);
5651 }
5652 
5653 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5654 EXPORT_SYMBOL(memcg_sockets_enabled_key);
5655 
5656 void mem_cgroup_sk_alloc(struct sock *sk)
5657 {
5658 	struct mem_cgroup *memcg;
5659 
5660 	if (!mem_cgroup_sockets_enabled)
5661 		return;
5662 
5663 	/*
5664 	 * Socket cloning can throw us here with sk_memcg already
5665 	 * filled. It won't however, necessarily happen from
5666 	 * process context. So the test for root memcg given
5667 	 * the current task's memcg won't help us in this case.
5668 	 *
5669 	 * Respecting the original socket's memcg is a better
5670 	 * decision in this case.
5671 	 */
5672 	if (sk->sk_memcg) {
5673 		BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5674 		css_get(&sk->sk_memcg->css);
5675 		return;
5676 	}
5677 
5678 	rcu_read_lock();
5679 	memcg = mem_cgroup_from_task(current);
5680 	if (memcg == root_mem_cgroup)
5681 		goto out;
5682 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5683 		goto out;
5684 	if (css_tryget_online(&memcg->css))
5685 		sk->sk_memcg = memcg;
5686 out:
5687 	rcu_read_unlock();
5688 }
5689 
5690 void mem_cgroup_sk_free(struct sock *sk)
5691 {
5692 	if (sk->sk_memcg)
5693 		css_put(&sk->sk_memcg->css);
5694 }
5695 
5696 /**
5697  * mem_cgroup_charge_skmem - charge socket memory
5698  * @memcg: memcg to charge
5699  * @nr_pages: number of pages to charge
5700  *
5701  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5702  * @memcg's configured limit, %false if the charge had to be forced.
5703  */
5704 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5705 {
5706 	gfp_t gfp_mask = GFP_KERNEL;
5707 
5708 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5709 		struct page_counter *fail;
5710 
5711 		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5712 			memcg->tcpmem_pressure = 0;
5713 			return true;
5714 		}
5715 		page_counter_charge(&memcg->tcpmem, nr_pages);
5716 		memcg->tcpmem_pressure = 1;
5717 		return false;
5718 	}
5719 
5720 	/* Don't block in the packet receive path */
5721 	if (in_softirq())
5722 		gfp_mask = GFP_NOWAIT;
5723 
5724 	this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5725 
5726 	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5727 		return true;
5728 
5729 	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5730 	return false;
5731 }
5732 
5733 /**
5734  * mem_cgroup_uncharge_skmem - uncharge socket memory
5735  * @memcg - memcg to uncharge
5736  * @nr_pages - number of pages to uncharge
5737  */
5738 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5739 {
5740 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5741 		page_counter_uncharge(&memcg->tcpmem, nr_pages);
5742 		return;
5743 	}
5744 
5745 	this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5746 
5747 	page_counter_uncharge(&memcg->memory, nr_pages);
5748 	css_put_many(&memcg->css, nr_pages);
5749 }
5750 
5751 static int __init cgroup_memory(char *s)
5752 {
5753 	char *token;
5754 
5755 	while ((token = strsep(&s, ",")) != NULL) {
5756 		if (!*token)
5757 			continue;
5758 		if (!strcmp(token, "nosocket"))
5759 			cgroup_memory_nosocket = true;
5760 		if (!strcmp(token, "nokmem"))
5761 			cgroup_memory_nokmem = true;
5762 	}
5763 	return 0;
5764 }
5765 __setup("cgroup.memory=", cgroup_memory);
5766 
5767 /*
5768  * subsys_initcall() for memory controller.
5769  *
5770  * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
5771  * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
5772  * basically everything that doesn't depend on a specific mem_cgroup structure
5773  * should be initialized from here.
5774  */
5775 static int __init mem_cgroup_init(void)
5776 {
5777 	int cpu, node;
5778 
5779 #ifndef CONFIG_SLOB
5780 	/*
5781 	 * Kmem cache creation is mostly done with the slab_mutex held,
5782 	 * so use a special workqueue to avoid stalling all worker
5783 	 * threads in case lots of cgroups are created simultaneously.
5784 	 */
5785 	memcg_kmem_cache_create_wq =
5786 		alloc_ordered_workqueue("memcg_kmem_cache_create", 0);
5787 	BUG_ON(!memcg_kmem_cache_create_wq);
5788 #endif
5789 
5790 	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
5791 				  memcg_hotplug_cpu_dead);
5792 
5793 	for_each_possible_cpu(cpu)
5794 		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5795 			  drain_local_stock);
5796 
5797 	for_each_node(node) {
5798 		struct mem_cgroup_tree_per_node *rtpn;
5799 
5800 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5801 				    node_online(node) ? node : NUMA_NO_NODE);
5802 
5803 		rtpn->rb_root = RB_ROOT;
5804 		spin_lock_init(&rtpn->lock);
5805 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
5806 	}
5807 
5808 	return 0;
5809 }
5810 subsys_initcall(mem_cgroup_init);
5811 
5812 #ifdef CONFIG_MEMCG_SWAP
5813 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
5814 {
5815 	while (!atomic_inc_not_zero(&memcg->id.ref)) {
5816 		/*
5817 		 * The root cgroup cannot be destroyed, so it's refcount must
5818 		 * always be >= 1.
5819 		 */
5820 		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
5821 			VM_BUG_ON(1);
5822 			break;
5823 		}
5824 		memcg = parent_mem_cgroup(memcg);
5825 		if (!memcg)
5826 			memcg = root_mem_cgroup;
5827 	}
5828 	return memcg;
5829 }
5830 
5831 /**
5832  * mem_cgroup_swapout - transfer a memsw charge to swap
5833  * @page: page whose memsw charge to transfer
5834  * @entry: swap entry to move the charge to
5835  *
5836  * Transfer the memsw charge of @page to @entry.
5837  */
5838 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5839 {
5840 	struct mem_cgroup *memcg, *swap_memcg;
5841 	unsigned short oldid;
5842 
5843 	VM_BUG_ON_PAGE(PageLRU(page), page);
5844 	VM_BUG_ON_PAGE(page_count(page), page);
5845 
5846 	if (!do_memsw_account())
5847 		return;
5848 
5849 	memcg = page->mem_cgroup;
5850 
5851 	/* Readahead page, never charged */
5852 	if (!memcg)
5853 		return;
5854 
5855 	/*
5856 	 * In case the memcg owning these pages has been offlined and doesn't
5857 	 * have an ID allocated to it anymore, charge the closest online
5858 	 * ancestor for the swap instead and transfer the memory+swap charge.
5859 	 */
5860 	swap_memcg = mem_cgroup_id_get_online(memcg);
5861 	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg));
5862 	VM_BUG_ON_PAGE(oldid, page);
5863 	mem_cgroup_swap_statistics(swap_memcg, true);
5864 
5865 	page->mem_cgroup = NULL;
5866 
5867 	if (!mem_cgroup_is_root(memcg))
5868 		page_counter_uncharge(&memcg->memory, 1);
5869 
5870 	if (memcg != swap_memcg) {
5871 		if (!mem_cgroup_is_root(swap_memcg))
5872 			page_counter_charge(&swap_memcg->memsw, 1);
5873 		page_counter_uncharge(&memcg->memsw, 1);
5874 	}
5875 
5876 	/*
5877 	 * Interrupts should be disabled here because the caller holds the
5878 	 * mapping->tree_lock lock which is taken with interrupts-off. It is
5879 	 * important here to have the interrupts disabled because it is the
5880 	 * only synchronisation we have for udpating the per-CPU variables.
5881 	 */
5882 	VM_BUG_ON(!irqs_disabled());
5883 	mem_cgroup_charge_statistics(memcg, page, false, -1);
5884 	memcg_check_events(memcg, page);
5885 
5886 	if (!mem_cgroup_is_root(memcg))
5887 		css_put(&memcg->css);
5888 }
5889 
5890 /*
5891  * mem_cgroup_try_charge_swap - try charging a swap entry
5892  * @page: page being added to swap
5893  * @entry: swap entry to charge
5894  *
5895  * Try to charge @entry to the memcg that @page belongs to.
5896  *
5897  * Returns 0 on success, -ENOMEM on failure.
5898  */
5899 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5900 {
5901 	struct mem_cgroup *memcg;
5902 	struct page_counter *counter;
5903 	unsigned short oldid;
5904 
5905 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5906 		return 0;
5907 
5908 	memcg = page->mem_cgroup;
5909 
5910 	/* Readahead page, never charged */
5911 	if (!memcg)
5912 		return 0;
5913 
5914 	memcg = mem_cgroup_id_get_online(memcg);
5915 
5916 	if (!mem_cgroup_is_root(memcg) &&
5917 	    !page_counter_try_charge(&memcg->swap, 1, &counter)) {
5918 		mem_cgroup_id_put(memcg);
5919 		return -ENOMEM;
5920 	}
5921 
5922 	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5923 	VM_BUG_ON_PAGE(oldid, page);
5924 	mem_cgroup_swap_statistics(memcg, true);
5925 
5926 	return 0;
5927 }
5928 
5929 /**
5930  * mem_cgroup_uncharge_swap - uncharge a swap entry
5931  * @entry: swap entry to uncharge
5932  *
5933  * Drop the swap charge associated with @entry.
5934  */
5935 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5936 {
5937 	struct mem_cgroup *memcg;
5938 	unsigned short id;
5939 
5940 	if (!do_swap_account)
5941 		return;
5942 
5943 	id = swap_cgroup_record(entry, 0);
5944 	rcu_read_lock();
5945 	memcg = mem_cgroup_from_id(id);
5946 	if (memcg) {
5947 		if (!mem_cgroup_is_root(memcg)) {
5948 			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5949 				page_counter_uncharge(&memcg->swap, 1);
5950 			else
5951 				page_counter_uncharge(&memcg->memsw, 1);
5952 		}
5953 		mem_cgroup_swap_statistics(memcg, false);
5954 		mem_cgroup_id_put(memcg);
5955 	}
5956 	rcu_read_unlock();
5957 }
5958 
5959 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5960 {
5961 	long nr_swap_pages = get_nr_swap_pages();
5962 
5963 	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5964 		return nr_swap_pages;
5965 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5966 		nr_swap_pages = min_t(long, nr_swap_pages,
5967 				      READ_ONCE(memcg->swap.limit) -
5968 				      page_counter_read(&memcg->swap));
5969 	return nr_swap_pages;
5970 }
5971 
5972 bool mem_cgroup_swap_full(struct page *page)
5973 {
5974 	struct mem_cgroup *memcg;
5975 
5976 	VM_BUG_ON_PAGE(!PageLocked(page), page);
5977 
5978 	if (vm_swap_full())
5979 		return true;
5980 	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5981 		return false;
5982 
5983 	memcg = page->mem_cgroup;
5984 	if (!memcg)
5985 		return false;
5986 
5987 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5988 		if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
5989 			return true;
5990 
5991 	return false;
5992 }
5993 
5994 /* for remember boot option*/
5995 #ifdef CONFIG_MEMCG_SWAP_ENABLED
5996 static int really_do_swap_account __initdata = 1;
5997 #else
5998 static int really_do_swap_account __initdata;
5999 #endif
6000 
6001 static int __init enable_swap_account(char *s)
6002 {
6003 	if (!strcmp(s, "1"))
6004 		really_do_swap_account = 1;
6005 	else if (!strcmp(s, "0"))
6006 		really_do_swap_account = 0;
6007 	return 1;
6008 }
6009 __setup("swapaccount=", enable_swap_account);
6010 
6011 static u64 swap_current_read(struct cgroup_subsys_state *css,
6012 			     struct cftype *cft)
6013 {
6014 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6015 
6016 	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6017 }
6018 
6019 static int swap_max_show(struct seq_file *m, void *v)
6020 {
6021 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
6022 	unsigned long max = READ_ONCE(memcg->swap.limit);
6023 
6024 	if (max == PAGE_COUNTER_MAX)
6025 		seq_puts(m, "max\n");
6026 	else
6027 		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
6028 
6029 	return 0;
6030 }
6031 
6032 static ssize_t swap_max_write(struct kernfs_open_file *of,
6033 			      char *buf, size_t nbytes, loff_t off)
6034 {
6035 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6036 	unsigned long max;
6037 	int err;
6038 
6039 	buf = strstrip(buf);
6040 	err = page_counter_memparse(buf, "max", &max);
6041 	if (err)
6042 		return err;
6043 
6044 	mutex_lock(&memcg_limit_mutex);
6045 	err = page_counter_limit(&memcg->swap, max);
6046 	mutex_unlock(&memcg_limit_mutex);
6047 	if (err)
6048 		return err;
6049 
6050 	return nbytes;
6051 }
6052 
6053 static struct cftype swap_files[] = {
6054 	{
6055 		.name = "swap.current",
6056 		.flags = CFTYPE_NOT_ON_ROOT,
6057 		.read_u64 = swap_current_read,
6058 	},
6059 	{
6060 		.name = "swap.max",
6061 		.flags = CFTYPE_NOT_ON_ROOT,
6062 		.seq_show = swap_max_show,
6063 		.write = swap_max_write,
6064 	},
6065 	{ }	/* terminate */
6066 };
6067 
6068 static struct cftype memsw_cgroup_files[] = {
6069 	{
6070 		.name = "memsw.usage_in_bytes",
6071 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6072 		.read_u64 = mem_cgroup_read_u64,
6073 	},
6074 	{
6075 		.name = "memsw.max_usage_in_bytes",
6076 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6077 		.write = mem_cgroup_reset,
6078 		.read_u64 = mem_cgroup_read_u64,
6079 	},
6080 	{
6081 		.name = "memsw.limit_in_bytes",
6082 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6083 		.write = mem_cgroup_write,
6084 		.read_u64 = mem_cgroup_read_u64,
6085 	},
6086 	{
6087 		.name = "memsw.failcnt",
6088 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6089 		.write = mem_cgroup_reset,
6090 		.read_u64 = mem_cgroup_read_u64,
6091 	},
6092 	{ },	/* terminate */
6093 };
6094 
6095 static int __init mem_cgroup_swap_init(void)
6096 {
6097 	if (!mem_cgroup_disabled() && really_do_swap_account) {
6098 		do_swap_account = 1;
6099 		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6100 					       swap_files));
6101 		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6102 						  memsw_cgroup_files));
6103 	}
6104 	return 0;
6105 }
6106 subsys_initcall(mem_cgroup_swap_init);
6107 
6108 #endif /* CONFIG_MEMCG_SWAP */
6109