1 /* memcontrol.c - Memory Controller 2 * 3 * Copyright IBM Corporation, 2007 4 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 5 * 6 * Copyright 2007 OpenVZ SWsoft Inc 7 * Author: Pavel Emelianov <xemul@openvz.org> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 */ 19 20 #include <linux/res_counter.h> 21 #include <linux/memcontrol.h> 22 #include <linux/cgroup.h> 23 #include <linux/mm.h> 24 #include <linux/pagemap.h> 25 #include <linux/smp.h> 26 #include <linux/page-flags.h> 27 #include <linux/backing-dev.h> 28 #include <linux/bit_spinlock.h> 29 #include <linux/rcupdate.h> 30 #include <linux/limits.h> 31 #include <linux/mutex.h> 32 #include <linux/slab.h> 33 #include <linux/swap.h> 34 #include <linux/spinlock.h> 35 #include <linux/fs.h> 36 #include <linux/seq_file.h> 37 #include <linux/vmalloc.h> 38 #include <linux/mm_inline.h> 39 #include <linux/page_cgroup.h> 40 #include "internal.h" 41 42 #include <asm/uaccess.h> 43 44 struct cgroup_subsys mem_cgroup_subsys __read_mostly; 45 #define MEM_CGROUP_RECLAIM_RETRIES 5 46 47 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP 48 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 0 */ 49 int do_swap_account __read_mostly; 50 static int really_do_swap_account __initdata = 1; /* for remember boot option*/ 51 #else 52 #define do_swap_account (0) 53 #endif 54 55 static DEFINE_MUTEX(memcg_tasklist); /* can be hold under cgroup_mutex */ 56 57 /* 58 * Statistics for memory cgroup. 59 */ 60 enum mem_cgroup_stat_index { 61 /* 62 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss. 63 */ 64 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */ 65 MEM_CGROUP_STAT_RSS, /* # of pages charged as rss */ 66 MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */ 67 MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */ 68 69 MEM_CGROUP_STAT_NSTATS, 70 }; 71 72 struct mem_cgroup_stat_cpu { 73 s64 count[MEM_CGROUP_STAT_NSTATS]; 74 } ____cacheline_aligned_in_smp; 75 76 struct mem_cgroup_stat { 77 struct mem_cgroup_stat_cpu cpustat[0]; 78 }; 79 80 /* 81 * For accounting under irq disable, no need for increment preempt count. 82 */ 83 static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat, 84 enum mem_cgroup_stat_index idx, int val) 85 { 86 stat->count[idx] += val; 87 } 88 89 static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat, 90 enum mem_cgroup_stat_index idx) 91 { 92 int cpu; 93 s64 ret = 0; 94 for_each_possible_cpu(cpu) 95 ret += stat->cpustat[cpu].count[idx]; 96 return ret; 97 } 98 99 static s64 mem_cgroup_local_usage(struct mem_cgroup_stat *stat) 100 { 101 s64 ret; 102 103 ret = mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_CACHE); 104 ret += mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_RSS); 105 return ret; 106 } 107 108 /* 109 * per-zone information in memory controller. 110 */ 111 struct mem_cgroup_per_zone { 112 /* 113 * spin_lock to protect the per cgroup LRU 114 */ 115 struct list_head lists[NR_LRU_LISTS]; 116 unsigned long count[NR_LRU_LISTS]; 117 118 struct zone_reclaim_stat reclaim_stat; 119 }; 120 /* Macro for accessing counter */ 121 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)]) 122 123 struct mem_cgroup_per_node { 124 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES]; 125 }; 126 127 struct mem_cgroup_lru_info { 128 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES]; 129 }; 130 131 /* 132 * The memory controller data structure. The memory controller controls both 133 * page cache and RSS per cgroup. We would eventually like to provide 134 * statistics based on the statistics developed by Rik Van Riel for clock-pro, 135 * to help the administrator determine what knobs to tune. 136 * 137 * TODO: Add a water mark for the memory controller. Reclaim will begin when 138 * we hit the water mark. May be even add a low water mark, such that 139 * no reclaim occurs from a cgroup at it's low water mark, this is 140 * a feature that will be implemented much later in the future. 141 */ 142 struct mem_cgroup { 143 struct cgroup_subsys_state css; 144 /* 145 * the counter to account for memory usage 146 */ 147 struct res_counter res; 148 /* 149 * the counter to account for mem+swap usage. 150 */ 151 struct res_counter memsw; 152 /* 153 * Per cgroup active and inactive list, similar to the 154 * per zone LRU lists. 155 */ 156 struct mem_cgroup_lru_info info; 157 158 /* 159 protect against reclaim related member. 160 */ 161 spinlock_t reclaim_param_lock; 162 163 int prev_priority; /* for recording reclaim priority */ 164 165 /* 166 * While reclaiming in a hiearchy, we cache the last child we 167 * reclaimed from. 168 */ 169 int last_scanned_child; 170 /* 171 * Should the accounting and control be hierarchical, per subtree? 172 */ 173 bool use_hierarchy; 174 unsigned long last_oom_jiffies; 175 atomic_t refcnt; 176 177 unsigned int swappiness; 178 179 /* 180 * statistics. This must be placed at the end of memcg. 181 */ 182 struct mem_cgroup_stat stat; 183 }; 184 185 enum charge_type { 186 MEM_CGROUP_CHARGE_TYPE_CACHE = 0, 187 MEM_CGROUP_CHARGE_TYPE_MAPPED, 188 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */ 189 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */ 190 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */ 191 NR_CHARGE_TYPE, 192 }; 193 194 /* only for here (for easy reading.) */ 195 #define PCGF_CACHE (1UL << PCG_CACHE) 196 #define PCGF_USED (1UL << PCG_USED) 197 #define PCGF_LOCK (1UL << PCG_LOCK) 198 static const unsigned long 199 pcg_default_flags[NR_CHARGE_TYPE] = { 200 PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* File Cache */ 201 PCGF_USED | PCGF_LOCK, /* Anon */ 202 PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* Shmem */ 203 0, /* FORCE */ 204 }; 205 206 /* for encoding cft->private value on file */ 207 #define _MEM (0) 208 #define _MEMSWAP (1) 209 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val)) 210 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff) 211 #define MEMFILE_ATTR(val) ((val) & 0xffff) 212 213 static void mem_cgroup_get(struct mem_cgroup *mem); 214 static void mem_cgroup_put(struct mem_cgroup *mem); 215 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem); 216 217 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem, 218 struct page_cgroup *pc, 219 bool charge) 220 { 221 int val = (charge)? 1 : -1; 222 struct mem_cgroup_stat *stat = &mem->stat; 223 struct mem_cgroup_stat_cpu *cpustat; 224 int cpu = get_cpu(); 225 226 cpustat = &stat->cpustat[cpu]; 227 if (PageCgroupCache(pc)) 228 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val); 229 else 230 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val); 231 232 if (charge) 233 __mem_cgroup_stat_add_safe(cpustat, 234 MEM_CGROUP_STAT_PGPGIN_COUNT, 1); 235 else 236 __mem_cgroup_stat_add_safe(cpustat, 237 MEM_CGROUP_STAT_PGPGOUT_COUNT, 1); 238 put_cpu(); 239 } 240 241 static struct mem_cgroup_per_zone * 242 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid) 243 { 244 return &mem->info.nodeinfo[nid]->zoneinfo[zid]; 245 } 246 247 static struct mem_cgroup_per_zone * 248 page_cgroup_zoneinfo(struct page_cgroup *pc) 249 { 250 struct mem_cgroup *mem = pc->mem_cgroup; 251 int nid = page_cgroup_nid(pc); 252 int zid = page_cgroup_zid(pc); 253 254 if (!mem) 255 return NULL; 256 257 return mem_cgroup_zoneinfo(mem, nid, zid); 258 } 259 260 static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem, 261 enum lru_list idx) 262 { 263 int nid, zid; 264 struct mem_cgroup_per_zone *mz; 265 u64 total = 0; 266 267 for_each_online_node(nid) 268 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 269 mz = mem_cgroup_zoneinfo(mem, nid, zid); 270 total += MEM_CGROUP_ZSTAT(mz, idx); 271 } 272 return total; 273 } 274 275 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont) 276 { 277 return container_of(cgroup_subsys_state(cont, 278 mem_cgroup_subsys_id), struct mem_cgroup, 279 css); 280 } 281 282 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 283 { 284 /* 285 * mm_update_next_owner() may clear mm->owner to NULL 286 * if it races with swapoff, page migration, etc. 287 * So this can be called with p == NULL. 288 */ 289 if (unlikely(!p)) 290 return NULL; 291 292 return container_of(task_subsys_state(p, mem_cgroup_subsys_id), 293 struct mem_cgroup, css); 294 } 295 296 static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm) 297 { 298 struct mem_cgroup *mem = NULL; 299 300 if (!mm) 301 return NULL; 302 /* 303 * Because we have no locks, mm->owner's may be being moved to other 304 * cgroup. We use css_tryget() here even if this looks 305 * pessimistic (rather than adding locks here). 306 */ 307 rcu_read_lock(); 308 do { 309 mem = mem_cgroup_from_task(rcu_dereference(mm->owner)); 310 if (unlikely(!mem)) 311 break; 312 } while (!css_tryget(&mem->css)); 313 rcu_read_unlock(); 314 return mem; 315 } 316 317 /* 318 * Call callback function against all cgroup under hierarchy tree. 319 */ 320 static int mem_cgroup_walk_tree(struct mem_cgroup *root, void *data, 321 int (*func)(struct mem_cgroup *, void *)) 322 { 323 int found, ret, nextid; 324 struct cgroup_subsys_state *css; 325 struct mem_cgroup *mem; 326 327 if (!root->use_hierarchy) 328 return (*func)(root, data); 329 330 nextid = 1; 331 do { 332 ret = 0; 333 mem = NULL; 334 335 rcu_read_lock(); 336 css = css_get_next(&mem_cgroup_subsys, nextid, &root->css, 337 &found); 338 if (css && css_tryget(css)) 339 mem = container_of(css, struct mem_cgroup, css); 340 rcu_read_unlock(); 341 342 if (mem) { 343 ret = (*func)(mem, data); 344 css_put(&mem->css); 345 } 346 nextid = found + 1; 347 } while (!ret && css); 348 349 return ret; 350 } 351 352 /* 353 * Following LRU functions are allowed to be used without PCG_LOCK. 354 * Operations are called by routine of global LRU independently from memcg. 355 * What we have to take care of here is validness of pc->mem_cgroup. 356 * 357 * Changes to pc->mem_cgroup happens when 358 * 1. charge 359 * 2. moving account 360 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache. 361 * It is added to LRU before charge. 362 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU. 363 * When moving account, the page is not on LRU. It's isolated. 364 */ 365 366 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru) 367 { 368 struct page_cgroup *pc; 369 struct mem_cgroup *mem; 370 struct mem_cgroup_per_zone *mz; 371 372 if (mem_cgroup_disabled()) 373 return; 374 pc = lookup_page_cgroup(page); 375 /* can happen while we handle swapcache. */ 376 if (list_empty(&pc->lru) || !pc->mem_cgroup) 377 return; 378 /* 379 * We don't check PCG_USED bit. It's cleared when the "page" is finally 380 * removed from global LRU. 381 */ 382 mz = page_cgroup_zoneinfo(pc); 383 mem = pc->mem_cgroup; 384 MEM_CGROUP_ZSTAT(mz, lru) -= 1; 385 list_del_init(&pc->lru); 386 return; 387 } 388 389 void mem_cgroup_del_lru(struct page *page) 390 { 391 mem_cgroup_del_lru_list(page, page_lru(page)); 392 } 393 394 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru) 395 { 396 struct mem_cgroup_per_zone *mz; 397 struct page_cgroup *pc; 398 399 if (mem_cgroup_disabled()) 400 return; 401 402 pc = lookup_page_cgroup(page); 403 /* 404 * Used bit is set without atomic ops but after smp_wmb(). 405 * For making pc->mem_cgroup visible, insert smp_rmb() here. 406 */ 407 smp_rmb(); 408 /* unused page is not rotated. */ 409 if (!PageCgroupUsed(pc)) 410 return; 411 mz = page_cgroup_zoneinfo(pc); 412 list_move(&pc->lru, &mz->lists[lru]); 413 } 414 415 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru) 416 { 417 struct page_cgroup *pc; 418 struct mem_cgroup_per_zone *mz; 419 420 if (mem_cgroup_disabled()) 421 return; 422 pc = lookup_page_cgroup(page); 423 /* 424 * Used bit is set without atomic ops but after smp_wmb(). 425 * For making pc->mem_cgroup visible, insert smp_rmb() here. 426 */ 427 smp_rmb(); 428 if (!PageCgroupUsed(pc)) 429 return; 430 431 mz = page_cgroup_zoneinfo(pc); 432 MEM_CGROUP_ZSTAT(mz, lru) += 1; 433 list_add(&pc->lru, &mz->lists[lru]); 434 } 435 436 /* 437 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to 438 * lru because the page may.be reused after it's fully uncharged (because of 439 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge 440 * it again. This function is only used to charge SwapCache. It's done under 441 * lock_page and expected that zone->lru_lock is never held. 442 */ 443 static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page) 444 { 445 unsigned long flags; 446 struct zone *zone = page_zone(page); 447 struct page_cgroup *pc = lookup_page_cgroup(page); 448 449 spin_lock_irqsave(&zone->lru_lock, flags); 450 /* 451 * Forget old LRU when this page_cgroup is *not* used. This Used bit 452 * is guarded by lock_page() because the page is SwapCache. 453 */ 454 if (!PageCgroupUsed(pc)) 455 mem_cgroup_del_lru_list(page, page_lru(page)); 456 spin_unlock_irqrestore(&zone->lru_lock, flags); 457 } 458 459 static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page) 460 { 461 unsigned long flags; 462 struct zone *zone = page_zone(page); 463 struct page_cgroup *pc = lookup_page_cgroup(page); 464 465 spin_lock_irqsave(&zone->lru_lock, flags); 466 /* link when the page is linked to LRU but page_cgroup isn't */ 467 if (PageLRU(page) && list_empty(&pc->lru)) 468 mem_cgroup_add_lru_list(page, page_lru(page)); 469 spin_unlock_irqrestore(&zone->lru_lock, flags); 470 } 471 472 473 void mem_cgroup_move_lists(struct page *page, 474 enum lru_list from, enum lru_list to) 475 { 476 if (mem_cgroup_disabled()) 477 return; 478 mem_cgroup_del_lru_list(page, from); 479 mem_cgroup_add_lru_list(page, to); 480 } 481 482 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem) 483 { 484 int ret; 485 struct mem_cgroup *curr = NULL; 486 487 task_lock(task); 488 rcu_read_lock(); 489 curr = try_get_mem_cgroup_from_mm(task->mm); 490 rcu_read_unlock(); 491 task_unlock(task); 492 if (!curr) 493 return 0; 494 if (curr->use_hierarchy) 495 ret = css_is_ancestor(&curr->css, &mem->css); 496 else 497 ret = (curr == mem); 498 css_put(&curr->css); 499 return ret; 500 } 501 502 /* 503 * prev_priority control...this will be used in memory reclaim path. 504 */ 505 int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem) 506 { 507 int prev_priority; 508 509 spin_lock(&mem->reclaim_param_lock); 510 prev_priority = mem->prev_priority; 511 spin_unlock(&mem->reclaim_param_lock); 512 513 return prev_priority; 514 } 515 516 void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority) 517 { 518 spin_lock(&mem->reclaim_param_lock); 519 if (priority < mem->prev_priority) 520 mem->prev_priority = priority; 521 spin_unlock(&mem->reclaim_param_lock); 522 } 523 524 void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority) 525 { 526 spin_lock(&mem->reclaim_param_lock); 527 mem->prev_priority = priority; 528 spin_unlock(&mem->reclaim_param_lock); 529 } 530 531 static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages) 532 { 533 unsigned long active; 534 unsigned long inactive; 535 unsigned long gb; 536 unsigned long inactive_ratio; 537 538 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON); 539 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON); 540 541 gb = (inactive + active) >> (30 - PAGE_SHIFT); 542 if (gb) 543 inactive_ratio = int_sqrt(10 * gb); 544 else 545 inactive_ratio = 1; 546 547 if (present_pages) { 548 present_pages[0] = inactive; 549 present_pages[1] = active; 550 } 551 552 return inactive_ratio; 553 } 554 555 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg) 556 { 557 unsigned long active; 558 unsigned long inactive; 559 unsigned long present_pages[2]; 560 unsigned long inactive_ratio; 561 562 inactive_ratio = calc_inactive_ratio(memcg, present_pages); 563 564 inactive = present_pages[0]; 565 active = present_pages[1]; 566 567 if (inactive * inactive_ratio < active) 568 return 1; 569 570 return 0; 571 } 572 573 unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg, 574 struct zone *zone, 575 enum lru_list lru) 576 { 577 int nid = zone->zone_pgdat->node_id; 578 int zid = zone_idx(zone); 579 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid); 580 581 return MEM_CGROUP_ZSTAT(mz, lru); 582 } 583 584 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg, 585 struct zone *zone) 586 { 587 int nid = zone->zone_pgdat->node_id; 588 int zid = zone_idx(zone); 589 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid); 590 591 return &mz->reclaim_stat; 592 } 593 594 struct zone_reclaim_stat * 595 mem_cgroup_get_reclaim_stat_from_page(struct page *page) 596 { 597 struct page_cgroup *pc; 598 struct mem_cgroup_per_zone *mz; 599 600 if (mem_cgroup_disabled()) 601 return NULL; 602 603 pc = lookup_page_cgroup(page); 604 /* 605 * Used bit is set without atomic ops but after smp_wmb(). 606 * For making pc->mem_cgroup visible, insert smp_rmb() here. 607 */ 608 smp_rmb(); 609 if (!PageCgroupUsed(pc)) 610 return NULL; 611 612 mz = page_cgroup_zoneinfo(pc); 613 if (!mz) 614 return NULL; 615 616 return &mz->reclaim_stat; 617 } 618 619 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan, 620 struct list_head *dst, 621 unsigned long *scanned, int order, 622 int mode, struct zone *z, 623 struct mem_cgroup *mem_cont, 624 int active, int file) 625 { 626 unsigned long nr_taken = 0; 627 struct page *page; 628 unsigned long scan; 629 LIST_HEAD(pc_list); 630 struct list_head *src; 631 struct page_cgroup *pc, *tmp; 632 int nid = z->zone_pgdat->node_id; 633 int zid = zone_idx(z); 634 struct mem_cgroup_per_zone *mz; 635 int lru = LRU_FILE * !!file + !!active; 636 637 BUG_ON(!mem_cont); 638 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid); 639 src = &mz->lists[lru]; 640 641 scan = 0; 642 list_for_each_entry_safe_reverse(pc, tmp, src, lru) { 643 if (scan >= nr_to_scan) 644 break; 645 646 page = pc->page; 647 if (unlikely(!PageCgroupUsed(pc))) 648 continue; 649 if (unlikely(!PageLRU(page))) 650 continue; 651 652 scan++; 653 if (__isolate_lru_page(page, mode, file) == 0) { 654 list_move(&page->lru, dst); 655 nr_taken++; 656 } 657 } 658 659 *scanned = scan; 660 return nr_taken; 661 } 662 663 #define mem_cgroup_from_res_counter(counter, member) \ 664 container_of(counter, struct mem_cgroup, member) 665 666 static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem) 667 { 668 if (do_swap_account) { 669 if (res_counter_check_under_limit(&mem->res) && 670 res_counter_check_under_limit(&mem->memsw)) 671 return true; 672 } else 673 if (res_counter_check_under_limit(&mem->res)) 674 return true; 675 return false; 676 } 677 678 static unsigned int get_swappiness(struct mem_cgroup *memcg) 679 { 680 struct cgroup *cgrp = memcg->css.cgroup; 681 unsigned int swappiness; 682 683 /* root ? */ 684 if (cgrp->parent == NULL) 685 return vm_swappiness; 686 687 spin_lock(&memcg->reclaim_param_lock); 688 swappiness = memcg->swappiness; 689 spin_unlock(&memcg->reclaim_param_lock); 690 691 return swappiness; 692 } 693 694 static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data) 695 { 696 int *val = data; 697 (*val)++; 698 return 0; 699 } 700 701 /** 702 * mem_cgroup_print_mem_info: Called from OOM with tasklist_lock held in read mode. 703 * @memcg: The memory cgroup that went over limit 704 * @p: Task that is going to be killed 705 * 706 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 707 * enabled 708 */ 709 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) 710 { 711 struct cgroup *task_cgrp; 712 struct cgroup *mem_cgrp; 713 /* 714 * Need a buffer in BSS, can't rely on allocations. The code relies 715 * on the assumption that OOM is serialized for memory controller. 716 * If this assumption is broken, revisit this code. 717 */ 718 static char memcg_name[PATH_MAX]; 719 int ret; 720 721 if (!memcg) 722 return; 723 724 725 rcu_read_lock(); 726 727 mem_cgrp = memcg->css.cgroup; 728 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id); 729 730 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX); 731 if (ret < 0) { 732 /* 733 * Unfortunately, we are unable to convert to a useful name 734 * But we'll still print out the usage information 735 */ 736 rcu_read_unlock(); 737 goto done; 738 } 739 rcu_read_unlock(); 740 741 printk(KERN_INFO "Task in %s killed", memcg_name); 742 743 rcu_read_lock(); 744 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX); 745 if (ret < 0) { 746 rcu_read_unlock(); 747 goto done; 748 } 749 rcu_read_unlock(); 750 751 /* 752 * Continues from above, so we don't need an KERN_ level 753 */ 754 printk(KERN_CONT " as a result of limit of %s\n", memcg_name); 755 done: 756 757 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n", 758 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10, 759 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10, 760 res_counter_read_u64(&memcg->res, RES_FAILCNT)); 761 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, " 762 "failcnt %llu\n", 763 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10, 764 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10, 765 res_counter_read_u64(&memcg->memsw, RES_FAILCNT)); 766 } 767 768 /* 769 * This function returns the number of memcg under hierarchy tree. Returns 770 * 1(self count) if no children. 771 */ 772 static int mem_cgroup_count_children(struct mem_cgroup *mem) 773 { 774 int num = 0; 775 mem_cgroup_walk_tree(mem, &num, mem_cgroup_count_children_cb); 776 return num; 777 } 778 779 /* 780 * Visit the first child (need not be the first child as per the ordering 781 * of the cgroup list, since we track last_scanned_child) of @mem and use 782 * that to reclaim free pages from. 783 */ 784 static struct mem_cgroup * 785 mem_cgroup_select_victim(struct mem_cgroup *root_mem) 786 { 787 struct mem_cgroup *ret = NULL; 788 struct cgroup_subsys_state *css; 789 int nextid, found; 790 791 if (!root_mem->use_hierarchy) { 792 css_get(&root_mem->css); 793 ret = root_mem; 794 } 795 796 while (!ret) { 797 rcu_read_lock(); 798 nextid = root_mem->last_scanned_child + 1; 799 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css, 800 &found); 801 if (css && css_tryget(css)) 802 ret = container_of(css, struct mem_cgroup, css); 803 804 rcu_read_unlock(); 805 /* Updates scanning parameter */ 806 spin_lock(&root_mem->reclaim_param_lock); 807 if (!css) { 808 /* this means start scan from ID:1 */ 809 root_mem->last_scanned_child = 0; 810 } else 811 root_mem->last_scanned_child = found; 812 spin_unlock(&root_mem->reclaim_param_lock); 813 } 814 815 return ret; 816 } 817 818 /* 819 * Scan the hierarchy if needed to reclaim memory. We remember the last child 820 * we reclaimed from, so that we don't end up penalizing one child extensively 821 * based on its position in the children list. 822 * 823 * root_mem is the original ancestor that we've been reclaim from. 824 * 825 * We give up and return to the caller when we visit root_mem twice. 826 * (other groups can be removed while we're walking....) 827 * 828 * If shrink==true, for avoiding to free too much, this returns immedieately. 829 */ 830 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem, 831 gfp_t gfp_mask, bool noswap, bool shrink) 832 { 833 struct mem_cgroup *victim; 834 int ret, total = 0; 835 int loop = 0; 836 837 while (loop < 2) { 838 victim = mem_cgroup_select_victim(root_mem); 839 if (victim == root_mem) 840 loop++; 841 if (!mem_cgroup_local_usage(&victim->stat)) { 842 /* this cgroup's local usage == 0 */ 843 css_put(&victim->css); 844 continue; 845 } 846 /* we use swappiness of local cgroup */ 847 ret = try_to_free_mem_cgroup_pages(victim, gfp_mask, noswap, 848 get_swappiness(victim)); 849 css_put(&victim->css); 850 /* 851 * At shrinking usage, we can't check we should stop here or 852 * reclaim more. It's depends on callers. last_scanned_child 853 * will work enough for keeping fairness under tree. 854 */ 855 if (shrink) 856 return ret; 857 total += ret; 858 if (mem_cgroup_check_under_limit(root_mem)) 859 return 1 + total; 860 } 861 return total; 862 } 863 864 bool mem_cgroup_oom_called(struct task_struct *task) 865 { 866 bool ret = false; 867 struct mem_cgroup *mem; 868 struct mm_struct *mm; 869 870 rcu_read_lock(); 871 mm = task->mm; 872 if (!mm) 873 mm = &init_mm; 874 mem = mem_cgroup_from_task(rcu_dereference(mm->owner)); 875 if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10)) 876 ret = true; 877 rcu_read_unlock(); 878 return ret; 879 } 880 881 static int record_last_oom_cb(struct mem_cgroup *mem, void *data) 882 { 883 mem->last_oom_jiffies = jiffies; 884 return 0; 885 } 886 887 static void record_last_oom(struct mem_cgroup *mem) 888 { 889 mem_cgroup_walk_tree(mem, NULL, record_last_oom_cb); 890 } 891 892 893 /* 894 * Unlike exported interface, "oom" parameter is added. if oom==true, 895 * oom-killer can be invoked. 896 */ 897 static int __mem_cgroup_try_charge(struct mm_struct *mm, 898 gfp_t gfp_mask, struct mem_cgroup **memcg, 899 bool oom) 900 { 901 struct mem_cgroup *mem, *mem_over_limit; 902 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 903 struct res_counter *fail_res; 904 905 if (unlikely(test_thread_flag(TIF_MEMDIE))) { 906 /* Don't account this! */ 907 *memcg = NULL; 908 return 0; 909 } 910 911 /* 912 * We always charge the cgroup the mm_struct belongs to. 913 * The mm_struct's mem_cgroup changes on task migration if the 914 * thread group leader migrates. It's possible that mm is not 915 * set, if so charge the init_mm (happens for pagecache usage). 916 */ 917 mem = *memcg; 918 if (likely(!mem)) { 919 mem = try_get_mem_cgroup_from_mm(mm); 920 *memcg = mem; 921 } else { 922 css_get(&mem->css); 923 } 924 if (unlikely(!mem)) 925 return 0; 926 927 VM_BUG_ON(css_is_removed(&mem->css)); 928 929 while (1) { 930 int ret; 931 bool noswap = false; 932 933 ret = res_counter_charge(&mem->res, PAGE_SIZE, &fail_res); 934 if (likely(!ret)) { 935 if (!do_swap_account) 936 break; 937 ret = res_counter_charge(&mem->memsw, PAGE_SIZE, 938 &fail_res); 939 if (likely(!ret)) 940 break; 941 /* mem+swap counter fails */ 942 res_counter_uncharge(&mem->res, PAGE_SIZE); 943 noswap = true; 944 mem_over_limit = mem_cgroup_from_res_counter(fail_res, 945 memsw); 946 } else 947 /* mem counter fails */ 948 mem_over_limit = mem_cgroup_from_res_counter(fail_res, 949 res); 950 951 if (!(gfp_mask & __GFP_WAIT)) 952 goto nomem; 953 954 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, gfp_mask, 955 noswap, false); 956 if (ret) 957 continue; 958 959 /* 960 * try_to_free_mem_cgroup_pages() might not give us a full 961 * picture of reclaim. Some pages are reclaimed and might be 962 * moved to swap cache or just unmapped from the cgroup. 963 * Check the limit again to see if the reclaim reduced the 964 * current usage of the cgroup before giving up 965 * 966 */ 967 if (mem_cgroup_check_under_limit(mem_over_limit)) 968 continue; 969 970 if (!nr_retries--) { 971 if (oom) { 972 mutex_lock(&memcg_tasklist); 973 mem_cgroup_out_of_memory(mem_over_limit, gfp_mask); 974 mutex_unlock(&memcg_tasklist); 975 record_last_oom(mem_over_limit); 976 } 977 goto nomem; 978 } 979 } 980 return 0; 981 nomem: 982 css_put(&mem->css); 983 return -ENOMEM; 984 } 985 986 987 /* 988 * A helper function to get mem_cgroup from ID. must be called under 989 * rcu_read_lock(). The caller must check css_is_removed() or some if 990 * it's concern. (dropping refcnt from swap can be called against removed 991 * memcg.) 992 */ 993 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id) 994 { 995 struct cgroup_subsys_state *css; 996 997 /* ID 0 is unused ID */ 998 if (!id) 999 return NULL; 1000 css = css_lookup(&mem_cgroup_subsys, id); 1001 if (!css) 1002 return NULL; 1003 return container_of(css, struct mem_cgroup, css); 1004 } 1005 1006 static struct mem_cgroup *try_get_mem_cgroup_from_swapcache(struct page *page) 1007 { 1008 struct mem_cgroup *mem; 1009 struct page_cgroup *pc; 1010 unsigned short id; 1011 swp_entry_t ent; 1012 1013 VM_BUG_ON(!PageLocked(page)); 1014 1015 if (!PageSwapCache(page)) 1016 return NULL; 1017 1018 pc = lookup_page_cgroup(page); 1019 lock_page_cgroup(pc); 1020 if (PageCgroupUsed(pc)) { 1021 mem = pc->mem_cgroup; 1022 if (mem && !css_tryget(&mem->css)) 1023 mem = NULL; 1024 } else { 1025 ent.val = page_private(page); 1026 id = lookup_swap_cgroup(ent); 1027 rcu_read_lock(); 1028 mem = mem_cgroup_lookup(id); 1029 if (mem && !css_tryget(&mem->css)) 1030 mem = NULL; 1031 rcu_read_unlock(); 1032 } 1033 unlock_page_cgroup(pc); 1034 return mem; 1035 } 1036 1037 /* 1038 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be 1039 * USED state. If already USED, uncharge and return. 1040 */ 1041 1042 static void __mem_cgroup_commit_charge(struct mem_cgroup *mem, 1043 struct page_cgroup *pc, 1044 enum charge_type ctype) 1045 { 1046 /* try_charge() can return NULL to *memcg, taking care of it. */ 1047 if (!mem) 1048 return; 1049 1050 lock_page_cgroup(pc); 1051 if (unlikely(PageCgroupUsed(pc))) { 1052 unlock_page_cgroup(pc); 1053 res_counter_uncharge(&mem->res, PAGE_SIZE); 1054 if (do_swap_account) 1055 res_counter_uncharge(&mem->memsw, PAGE_SIZE); 1056 css_put(&mem->css); 1057 return; 1058 } 1059 pc->mem_cgroup = mem; 1060 smp_wmb(); 1061 pc->flags = pcg_default_flags[ctype]; 1062 1063 mem_cgroup_charge_statistics(mem, pc, true); 1064 1065 unlock_page_cgroup(pc); 1066 } 1067 1068 /** 1069 * mem_cgroup_move_account - move account of the page 1070 * @pc: page_cgroup of the page. 1071 * @from: mem_cgroup which the page is moved from. 1072 * @to: mem_cgroup which the page is moved to. @from != @to. 1073 * 1074 * The caller must confirm following. 1075 * - page is not on LRU (isolate_page() is useful.) 1076 * 1077 * returns 0 at success, 1078 * returns -EBUSY when lock is busy or "pc" is unstable. 1079 * 1080 * This function does "uncharge" from old cgroup but doesn't do "charge" to 1081 * new cgroup. It should be done by a caller. 1082 */ 1083 1084 static int mem_cgroup_move_account(struct page_cgroup *pc, 1085 struct mem_cgroup *from, struct mem_cgroup *to) 1086 { 1087 struct mem_cgroup_per_zone *from_mz, *to_mz; 1088 int nid, zid; 1089 int ret = -EBUSY; 1090 1091 VM_BUG_ON(from == to); 1092 VM_BUG_ON(PageLRU(pc->page)); 1093 1094 nid = page_cgroup_nid(pc); 1095 zid = page_cgroup_zid(pc); 1096 from_mz = mem_cgroup_zoneinfo(from, nid, zid); 1097 to_mz = mem_cgroup_zoneinfo(to, nid, zid); 1098 1099 if (!trylock_page_cgroup(pc)) 1100 return ret; 1101 1102 if (!PageCgroupUsed(pc)) 1103 goto out; 1104 1105 if (pc->mem_cgroup != from) 1106 goto out; 1107 1108 res_counter_uncharge(&from->res, PAGE_SIZE); 1109 mem_cgroup_charge_statistics(from, pc, false); 1110 if (do_swap_account) 1111 res_counter_uncharge(&from->memsw, PAGE_SIZE); 1112 css_put(&from->css); 1113 1114 css_get(&to->css); 1115 pc->mem_cgroup = to; 1116 mem_cgroup_charge_statistics(to, pc, true); 1117 ret = 0; 1118 out: 1119 unlock_page_cgroup(pc); 1120 return ret; 1121 } 1122 1123 /* 1124 * move charges to its parent. 1125 */ 1126 1127 static int mem_cgroup_move_parent(struct page_cgroup *pc, 1128 struct mem_cgroup *child, 1129 gfp_t gfp_mask) 1130 { 1131 struct page *page = pc->page; 1132 struct cgroup *cg = child->css.cgroup; 1133 struct cgroup *pcg = cg->parent; 1134 struct mem_cgroup *parent; 1135 int ret; 1136 1137 /* Is ROOT ? */ 1138 if (!pcg) 1139 return -EINVAL; 1140 1141 1142 parent = mem_cgroup_from_cont(pcg); 1143 1144 1145 ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false); 1146 if (ret || !parent) 1147 return ret; 1148 1149 if (!get_page_unless_zero(page)) { 1150 ret = -EBUSY; 1151 goto uncharge; 1152 } 1153 1154 ret = isolate_lru_page(page); 1155 1156 if (ret) 1157 goto cancel; 1158 1159 ret = mem_cgroup_move_account(pc, child, parent); 1160 1161 putback_lru_page(page); 1162 if (!ret) { 1163 put_page(page); 1164 /* drop extra refcnt by try_charge() */ 1165 css_put(&parent->css); 1166 return 0; 1167 } 1168 1169 cancel: 1170 put_page(page); 1171 uncharge: 1172 /* drop extra refcnt by try_charge() */ 1173 css_put(&parent->css); 1174 /* uncharge if move fails */ 1175 res_counter_uncharge(&parent->res, PAGE_SIZE); 1176 if (do_swap_account) 1177 res_counter_uncharge(&parent->memsw, PAGE_SIZE); 1178 return ret; 1179 } 1180 1181 /* 1182 * Charge the memory controller for page usage. 1183 * Return 1184 * 0 if the charge was successful 1185 * < 0 if the cgroup is over its limit 1186 */ 1187 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm, 1188 gfp_t gfp_mask, enum charge_type ctype, 1189 struct mem_cgroup *memcg) 1190 { 1191 struct mem_cgroup *mem; 1192 struct page_cgroup *pc; 1193 int ret; 1194 1195 pc = lookup_page_cgroup(page); 1196 /* can happen at boot */ 1197 if (unlikely(!pc)) 1198 return 0; 1199 prefetchw(pc); 1200 1201 mem = memcg; 1202 ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true); 1203 if (ret || !mem) 1204 return ret; 1205 1206 __mem_cgroup_commit_charge(mem, pc, ctype); 1207 return 0; 1208 } 1209 1210 int mem_cgroup_newpage_charge(struct page *page, 1211 struct mm_struct *mm, gfp_t gfp_mask) 1212 { 1213 if (mem_cgroup_disabled()) 1214 return 0; 1215 if (PageCompound(page)) 1216 return 0; 1217 /* 1218 * If already mapped, we don't have to account. 1219 * If page cache, page->mapping has address_space. 1220 * But page->mapping may have out-of-use anon_vma pointer, 1221 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping 1222 * is NULL. 1223 */ 1224 if (page_mapped(page) || (page->mapping && !PageAnon(page))) 1225 return 0; 1226 if (unlikely(!mm)) 1227 mm = &init_mm; 1228 return mem_cgroup_charge_common(page, mm, gfp_mask, 1229 MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL); 1230 } 1231 1232 static void 1233 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr, 1234 enum charge_type ctype); 1235 1236 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm, 1237 gfp_t gfp_mask) 1238 { 1239 struct mem_cgroup *mem = NULL; 1240 int ret; 1241 1242 if (mem_cgroup_disabled()) 1243 return 0; 1244 if (PageCompound(page)) 1245 return 0; 1246 /* 1247 * Corner case handling. This is called from add_to_page_cache() 1248 * in usual. But some FS (shmem) precharges this page before calling it 1249 * and call add_to_page_cache() with GFP_NOWAIT. 1250 * 1251 * For GFP_NOWAIT case, the page may be pre-charged before calling 1252 * add_to_page_cache(). (See shmem.c) check it here and avoid to call 1253 * charge twice. (It works but has to pay a bit larger cost.) 1254 * And when the page is SwapCache, it should take swap information 1255 * into account. This is under lock_page() now. 1256 */ 1257 if (!(gfp_mask & __GFP_WAIT)) { 1258 struct page_cgroup *pc; 1259 1260 1261 pc = lookup_page_cgroup(page); 1262 if (!pc) 1263 return 0; 1264 lock_page_cgroup(pc); 1265 if (PageCgroupUsed(pc)) { 1266 unlock_page_cgroup(pc); 1267 return 0; 1268 } 1269 unlock_page_cgroup(pc); 1270 } 1271 1272 if (unlikely(!mm && !mem)) 1273 mm = &init_mm; 1274 1275 if (page_is_file_cache(page)) 1276 return mem_cgroup_charge_common(page, mm, gfp_mask, 1277 MEM_CGROUP_CHARGE_TYPE_CACHE, NULL); 1278 1279 /* shmem */ 1280 if (PageSwapCache(page)) { 1281 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem); 1282 if (!ret) 1283 __mem_cgroup_commit_charge_swapin(page, mem, 1284 MEM_CGROUP_CHARGE_TYPE_SHMEM); 1285 } else 1286 ret = mem_cgroup_charge_common(page, mm, gfp_mask, 1287 MEM_CGROUP_CHARGE_TYPE_SHMEM, mem); 1288 1289 return ret; 1290 } 1291 1292 /* 1293 * While swap-in, try_charge -> commit or cancel, the page is locked. 1294 * And when try_charge() successfully returns, one refcnt to memcg without 1295 * struct page_cgroup is aquired. This refcnt will be cumsumed by 1296 * "commit()" or removed by "cancel()" 1297 */ 1298 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, 1299 struct page *page, 1300 gfp_t mask, struct mem_cgroup **ptr) 1301 { 1302 struct mem_cgroup *mem; 1303 int ret; 1304 1305 if (mem_cgroup_disabled()) 1306 return 0; 1307 1308 if (!do_swap_account) 1309 goto charge_cur_mm; 1310 /* 1311 * A racing thread's fault, or swapoff, may have already updated 1312 * the pte, and even removed page from swap cache: return success 1313 * to go on to do_swap_page()'s pte_same() test, which should fail. 1314 */ 1315 if (!PageSwapCache(page)) 1316 return 0; 1317 mem = try_get_mem_cgroup_from_swapcache(page); 1318 if (!mem) 1319 goto charge_cur_mm; 1320 *ptr = mem; 1321 ret = __mem_cgroup_try_charge(NULL, mask, ptr, true); 1322 /* drop extra refcnt from tryget */ 1323 css_put(&mem->css); 1324 return ret; 1325 charge_cur_mm: 1326 if (unlikely(!mm)) 1327 mm = &init_mm; 1328 return __mem_cgroup_try_charge(mm, mask, ptr, true); 1329 } 1330 1331 static void 1332 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr, 1333 enum charge_type ctype) 1334 { 1335 struct page_cgroup *pc; 1336 1337 if (mem_cgroup_disabled()) 1338 return; 1339 if (!ptr) 1340 return; 1341 pc = lookup_page_cgroup(page); 1342 mem_cgroup_lru_del_before_commit_swapcache(page); 1343 __mem_cgroup_commit_charge(ptr, pc, ctype); 1344 mem_cgroup_lru_add_after_commit_swapcache(page); 1345 /* 1346 * Now swap is on-memory. This means this page may be 1347 * counted both as mem and swap....double count. 1348 * Fix it by uncharging from memsw. Basically, this SwapCache is stable 1349 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page() 1350 * may call delete_from_swap_cache() before reach here. 1351 */ 1352 if (do_swap_account && PageSwapCache(page)) { 1353 swp_entry_t ent = {.val = page_private(page)}; 1354 unsigned short id; 1355 struct mem_cgroup *memcg; 1356 1357 id = swap_cgroup_record(ent, 0); 1358 rcu_read_lock(); 1359 memcg = mem_cgroup_lookup(id); 1360 if (memcg) { 1361 /* 1362 * This recorded memcg can be obsolete one. So, avoid 1363 * calling css_tryget 1364 */ 1365 res_counter_uncharge(&memcg->memsw, PAGE_SIZE); 1366 mem_cgroup_put(memcg); 1367 } 1368 rcu_read_unlock(); 1369 } 1370 /* add this page(page_cgroup) to the LRU we want. */ 1371 1372 } 1373 1374 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr) 1375 { 1376 __mem_cgroup_commit_charge_swapin(page, ptr, 1377 MEM_CGROUP_CHARGE_TYPE_MAPPED); 1378 } 1379 1380 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem) 1381 { 1382 if (mem_cgroup_disabled()) 1383 return; 1384 if (!mem) 1385 return; 1386 res_counter_uncharge(&mem->res, PAGE_SIZE); 1387 if (do_swap_account) 1388 res_counter_uncharge(&mem->memsw, PAGE_SIZE); 1389 css_put(&mem->css); 1390 } 1391 1392 1393 /* 1394 * uncharge if !page_mapped(page) 1395 */ 1396 static struct mem_cgroup * 1397 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype) 1398 { 1399 struct page_cgroup *pc; 1400 struct mem_cgroup *mem = NULL; 1401 struct mem_cgroup_per_zone *mz; 1402 1403 if (mem_cgroup_disabled()) 1404 return NULL; 1405 1406 if (PageSwapCache(page)) 1407 return NULL; 1408 1409 /* 1410 * Check if our page_cgroup is valid 1411 */ 1412 pc = lookup_page_cgroup(page); 1413 if (unlikely(!pc || !PageCgroupUsed(pc))) 1414 return NULL; 1415 1416 lock_page_cgroup(pc); 1417 1418 mem = pc->mem_cgroup; 1419 1420 if (!PageCgroupUsed(pc)) 1421 goto unlock_out; 1422 1423 switch (ctype) { 1424 case MEM_CGROUP_CHARGE_TYPE_MAPPED: 1425 if (page_mapped(page)) 1426 goto unlock_out; 1427 break; 1428 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT: 1429 if (!PageAnon(page)) { /* Shared memory */ 1430 if (page->mapping && !page_is_file_cache(page)) 1431 goto unlock_out; 1432 } else if (page_mapped(page)) /* Anon */ 1433 goto unlock_out; 1434 break; 1435 default: 1436 break; 1437 } 1438 1439 res_counter_uncharge(&mem->res, PAGE_SIZE); 1440 if (do_swap_account && (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)) 1441 res_counter_uncharge(&mem->memsw, PAGE_SIZE); 1442 mem_cgroup_charge_statistics(mem, pc, false); 1443 1444 ClearPageCgroupUsed(pc); 1445 /* 1446 * pc->mem_cgroup is not cleared here. It will be accessed when it's 1447 * freed from LRU. This is safe because uncharged page is expected not 1448 * to be reused (freed soon). Exception is SwapCache, it's handled by 1449 * special functions. 1450 */ 1451 1452 mz = page_cgroup_zoneinfo(pc); 1453 unlock_page_cgroup(pc); 1454 1455 /* at swapout, this memcg will be accessed to record to swap */ 1456 if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT) 1457 css_put(&mem->css); 1458 1459 return mem; 1460 1461 unlock_out: 1462 unlock_page_cgroup(pc); 1463 return NULL; 1464 } 1465 1466 void mem_cgroup_uncharge_page(struct page *page) 1467 { 1468 /* early check. */ 1469 if (page_mapped(page)) 1470 return; 1471 if (page->mapping && !PageAnon(page)) 1472 return; 1473 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED); 1474 } 1475 1476 void mem_cgroup_uncharge_cache_page(struct page *page) 1477 { 1478 VM_BUG_ON(page_mapped(page)); 1479 VM_BUG_ON(page->mapping); 1480 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE); 1481 } 1482 1483 #ifdef CONFIG_SWAP 1484 /* 1485 * called after __delete_from_swap_cache() and drop "page" account. 1486 * memcg information is recorded to swap_cgroup of "ent" 1487 */ 1488 void mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent) 1489 { 1490 struct mem_cgroup *memcg; 1491 1492 memcg = __mem_cgroup_uncharge_common(page, 1493 MEM_CGROUP_CHARGE_TYPE_SWAPOUT); 1494 /* record memcg information */ 1495 if (do_swap_account && memcg) { 1496 swap_cgroup_record(ent, css_id(&memcg->css)); 1497 mem_cgroup_get(memcg); 1498 } 1499 if (memcg) 1500 css_put(&memcg->css); 1501 } 1502 #endif 1503 1504 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP 1505 /* 1506 * called from swap_entry_free(). remove record in swap_cgroup and 1507 * uncharge "memsw" account. 1508 */ 1509 void mem_cgroup_uncharge_swap(swp_entry_t ent) 1510 { 1511 struct mem_cgroup *memcg; 1512 unsigned short id; 1513 1514 if (!do_swap_account) 1515 return; 1516 1517 id = swap_cgroup_record(ent, 0); 1518 rcu_read_lock(); 1519 memcg = mem_cgroup_lookup(id); 1520 if (memcg) { 1521 /* 1522 * We uncharge this because swap is freed. 1523 * This memcg can be obsolete one. We avoid calling css_tryget 1524 */ 1525 res_counter_uncharge(&memcg->memsw, PAGE_SIZE); 1526 mem_cgroup_put(memcg); 1527 } 1528 rcu_read_unlock(); 1529 } 1530 #endif 1531 1532 /* 1533 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old 1534 * page belongs to. 1535 */ 1536 int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr) 1537 { 1538 struct page_cgroup *pc; 1539 struct mem_cgroup *mem = NULL; 1540 int ret = 0; 1541 1542 if (mem_cgroup_disabled()) 1543 return 0; 1544 1545 pc = lookup_page_cgroup(page); 1546 lock_page_cgroup(pc); 1547 if (PageCgroupUsed(pc)) { 1548 mem = pc->mem_cgroup; 1549 css_get(&mem->css); 1550 } 1551 unlock_page_cgroup(pc); 1552 1553 if (mem) { 1554 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false); 1555 css_put(&mem->css); 1556 } 1557 *ptr = mem; 1558 return ret; 1559 } 1560 1561 /* remove redundant charge if migration failed*/ 1562 void mem_cgroup_end_migration(struct mem_cgroup *mem, 1563 struct page *oldpage, struct page *newpage) 1564 { 1565 struct page *target, *unused; 1566 struct page_cgroup *pc; 1567 enum charge_type ctype; 1568 1569 if (!mem) 1570 return; 1571 1572 /* at migration success, oldpage->mapping is NULL. */ 1573 if (oldpage->mapping) { 1574 target = oldpage; 1575 unused = NULL; 1576 } else { 1577 target = newpage; 1578 unused = oldpage; 1579 } 1580 1581 if (PageAnon(target)) 1582 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED; 1583 else if (page_is_file_cache(target)) 1584 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE; 1585 else 1586 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM; 1587 1588 /* unused page is not on radix-tree now. */ 1589 if (unused) 1590 __mem_cgroup_uncharge_common(unused, ctype); 1591 1592 pc = lookup_page_cgroup(target); 1593 /* 1594 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup. 1595 * So, double-counting is effectively avoided. 1596 */ 1597 __mem_cgroup_commit_charge(mem, pc, ctype); 1598 1599 /* 1600 * Both of oldpage and newpage are still under lock_page(). 1601 * Then, we don't have to care about race in radix-tree. 1602 * But we have to be careful that this page is unmapped or not. 1603 * 1604 * There is a case for !page_mapped(). At the start of 1605 * migration, oldpage was mapped. But now, it's zapped. 1606 * But we know *target* page is not freed/reused under us. 1607 * mem_cgroup_uncharge_page() does all necessary checks. 1608 */ 1609 if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED) 1610 mem_cgroup_uncharge_page(target); 1611 } 1612 1613 /* 1614 * A call to try to shrink memory usage on charge failure at shmem's swapin. 1615 * Calling hierarchical_reclaim is not enough because we should update 1616 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM. 1617 * Moreover considering hierarchy, we should reclaim from the mem_over_limit, 1618 * not from the memcg which this page would be charged to. 1619 * try_charge_swapin does all of these works properly. 1620 */ 1621 int mem_cgroup_shmem_charge_fallback(struct page *page, 1622 struct mm_struct *mm, 1623 gfp_t gfp_mask) 1624 { 1625 struct mem_cgroup *mem = NULL; 1626 int ret; 1627 1628 if (mem_cgroup_disabled()) 1629 return 0; 1630 1631 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem); 1632 if (!ret) 1633 mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */ 1634 1635 return ret; 1636 } 1637 1638 static DEFINE_MUTEX(set_limit_mutex); 1639 1640 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg, 1641 unsigned long long val) 1642 { 1643 int retry_count; 1644 int progress; 1645 u64 memswlimit; 1646 int ret = 0; 1647 int children = mem_cgroup_count_children(memcg); 1648 u64 curusage, oldusage; 1649 1650 /* 1651 * For keeping hierarchical_reclaim simple, how long we should retry 1652 * is depends on callers. We set our retry-count to be function 1653 * of # of children which we should visit in this loop. 1654 */ 1655 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children; 1656 1657 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE); 1658 1659 while (retry_count) { 1660 if (signal_pending(current)) { 1661 ret = -EINTR; 1662 break; 1663 } 1664 /* 1665 * Rather than hide all in some function, I do this in 1666 * open coded manner. You see what this really does. 1667 * We have to guarantee mem->res.limit < mem->memsw.limit. 1668 */ 1669 mutex_lock(&set_limit_mutex); 1670 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 1671 if (memswlimit < val) { 1672 ret = -EINVAL; 1673 mutex_unlock(&set_limit_mutex); 1674 break; 1675 } 1676 ret = res_counter_set_limit(&memcg->res, val); 1677 mutex_unlock(&set_limit_mutex); 1678 1679 if (!ret) 1680 break; 1681 1682 progress = mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL, 1683 false, true); 1684 curusage = res_counter_read_u64(&memcg->res, RES_USAGE); 1685 /* Usage is reduced ? */ 1686 if (curusage >= oldusage) 1687 retry_count--; 1688 else 1689 oldusage = curusage; 1690 } 1691 1692 return ret; 1693 } 1694 1695 int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg, 1696 unsigned long long val) 1697 { 1698 int retry_count; 1699 u64 memlimit, oldusage, curusage; 1700 int children = mem_cgroup_count_children(memcg); 1701 int ret = -EBUSY; 1702 1703 if (!do_swap_account) 1704 return -EINVAL; 1705 /* see mem_cgroup_resize_res_limit */ 1706 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES; 1707 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); 1708 while (retry_count) { 1709 if (signal_pending(current)) { 1710 ret = -EINTR; 1711 break; 1712 } 1713 /* 1714 * Rather than hide all in some function, I do this in 1715 * open coded manner. You see what this really does. 1716 * We have to guarantee mem->res.limit < mem->memsw.limit. 1717 */ 1718 mutex_lock(&set_limit_mutex); 1719 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT); 1720 if (memlimit > val) { 1721 ret = -EINVAL; 1722 mutex_unlock(&set_limit_mutex); 1723 break; 1724 } 1725 ret = res_counter_set_limit(&memcg->memsw, val); 1726 mutex_unlock(&set_limit_mutex); 1727 1728 if (!ret) 1729 break; 1730 1731 mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL, true, true); 1732 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); 1733 /* Usage is reduced ? */ 1734 if (curusage >= oldusage) 1735 retry_count--; 1736 else 1737 oldusage = curusage; 1738 } 1739 return ret; 1740 } 1741 1742 /* 1743 * This routine traverse page_cgroup in given list and drop them all. 1744 * *And* this routine doesn't reclaim page itself, just removes page_cgroup. 1745 */ 1746 static int mem_cgroup_force_empty_list(struct mem_cgroup *mem, 1747 int node, int zid, enum lru_list lru) 1748 { 1749 struct zone *zone; 1750 struct mem_cgroup_per_zone *mz; 1751 struct page_cgroup *pc, *busy; 1752 unsigned long flags, loop; 1753 struct list_head *list; 1754 int ret = 0; 1755 1756 zone = &NODE_DATA(node)->node_zones[zid]; 1757 mz = mem_cgroup_zoneinfo(mem, node, zid); 1758 list = &mz->lists[lru]; 1759 1760 loop = MEM_CGROUP_ZSTAT(mz, lru); 1761 /* give some margin against EBUSY etc...*/ 1762 loop += 256; 1763 busy = NULL; 1764 while (loop--) { 1765 ret = 0; 1766 spin_lock_irqsave(&zone->lru_lock, flags); 1767 if (list_empty(list)) { 1768 spin_unlock_irqrestore(&zone->lru_lock, flags); 1769 break; 1770 } 1771 pc = list_entry(list->prev, struct page_cgroup, lru); 1772 if (busy == pc) { 1773 list_move(&pc->lru, list); 1774 busy = 0; 1775 spin_unlock_irqrestore(&zone->lru_lock, flags); 1776 continue; 1777 } 1778 spin_unlock_irqrestore(&zone->lru_lock, flags); 1779 1780 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL); 1781 if (ret == -ENOMEM) 1782 break; 1783 1784 if (ret == -EBUSY || ret == -EINVAL) { 1785 /* found lock contention or "pc" is obsolete. */ 1786 busy = pc; 1787 cond_resched(); 1788 } else 1789 busy = NULL; 1790 } 1791 1792 if (!ret && !list_empty(list)) 1793 return -EBUSY; 1794 return ret; 1795 } 1796 1797 /* 1798 * make mem_cgroup's charge to be 0 if there is no task. 1799 * This enables deleting this mem_cgroup. 1800 */ 1801 static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all) 1802 { 1803 int ret; 1804 int node, zid, shrink; 1805 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 1806 struct cgroup *cgrp = mem->css.cgroup; 1807 1808 css_get(&mem->css); 1809 1810 shrink = 0; 1811 /* should free all ? */ 1812 if (free_all) 1813 goto try_to_free; 1814 move_account: 1815 while (mem->res.usage > 0) { 1816 ret = -EBUSY; 1817 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children)) 1818 goto out; 1819 ret = -EINTR; 1820 if (signal_pending(current)) 1821 goto out; 1822 /* This is for making all *used* pages to be on LRU. */ 1823 lru_add_drain_all(); 1824 ret = 0; 1825 for_each_node_state(node, N_HIGH_MEMORY) { 1826 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) { 1827 enum lru_list l; 1828 for_each_lru(l) { 1829 ret = mem_cgroup_force_empty_list(mem, 1830 node, zid, l); 1831 if (ret) 1832 break; 1833 } 1834 } 1835 if (ret) 1836 break; 1837 } 1838 /* it seems parent cgroup doesn't have enough mem */ 1839 if (ret == -ENOMEM) 1840 goto try_to_free; 1841 cond_resched(); 1842 } 1843 ret = 0; 1844 out: 1845 css_put(&mem->css); 1846 return ret; 1847 1848 try_to_free: 1849 /* returns EBUSY if there is a task or if we come here twice. */ 1850 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) { 1851 ret = -EBUSY; 1852 goto out; 1853 } 1854 /* we call try-to-free pages for make this cgroup empty */ 1855 lru_add_drain_all(); 1856 /* try to free all pages in this cgroup */ 1857 shrink = 1; 1858 while (nr_retries && mem->res.usage > 0) { 1859 int progress; 1860 1861 if (signal_pending(current)) { 1862 ret = -EINTR; 1863 goto out; 1864 } 1865 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL, 1866 false, get_swappiness(mem)); 1867 if (!progress) { 1868 nr_retries--; 1869 /* maybe some writeback is necessary */ 1870 congestion_wait(WRITE, HZ/10); 1871 } 1872 1873 } 1874 lru_add_drain(); 1875 /* try move_account...there may be some *locked* pages. */ 1876 if (mem->res.usage) 1877 goto move_account; 1878 ret = 0; 1879 goto out; 1880 } 1881 1882 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event) 1883 { 1884 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true); 1885 } 1886 1887 1888 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft) 1889 { 1890 return mem_cgroup_from_cont(cont)->use_hierarchy; 1891 } 1892 1893 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft, 1894 u64 val) 1895 { 1896 int retval = 0; 1897 struct mem_cgroup *mem = mem_cgroup_from_cont(cont); 1898 struct cgroup *parent = cont->parent; 1899 struct mem_cgroup *parent_mem = NULL; 1900 1901 if (parent) 1902 parent_mem = mem_cgroup_from_cont(parent); 1903 1904 cgroup_lock(); 1905 /* 1906 * If parent's use_hiearchy is set, we can't make any modifications 1907 * in the child subtrees. If it is unset, then the change can 1908 * occur, provided the current cgroup has no children. 1909 * 1910 * For the root cgroup, parent_mem is NULL, we allow value to be 1911 * set if there are no children. 1912 */ 1913 if ((!parent_mem || !parent_mem->use_hierarchy) && 1914 (val == 1 || val == 0)) { 1915 if (list_empty(&cont->children)) 1916 mem->use_hierarchy = val; 1917 else 1918 retval = -EBUSY; 1919 } else 1920 retval = -EINVAL; 1921 cgroup_unlock(); 1922 1923 return retval; 1924 } 1925 1926 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft) 1927 { 1928 struct mem_cgroup *mem = mem_cgroup_from_cont(cont); 1929 u64 val = 0; 1930 int type, name; 1931 1932 type = MEMFILE_TYPE(cft->private); 1933 name = MEMFILE_ATTR(cft->private); 1934 switch (type) { 1935 case _MEM: 1936 val = res_counter_read_u64(&mem->res, name); 1937 break; 1938 case _MEMSWAP: 1939 if (do_swap_account) 1940 val = res_counter_read_u64(&mem->memsw, name); 1941 break; 1942 default: 1943 BUG(); 1944 break; 1945 } 1946 return val; 1947 } 1948 /* 1949 * The user of this function is... 1950 * RES_LIMIT. 1951 */ 1952 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft, 1953 const char *buffer) 1954 { 1955 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 1956 int type, name; 1957 unsigned long long val; 1958 int ret; 1959 1960 type = MEMFILE_TYPE(cft->private); 1961 name = MEMFILE_ATTR(cft->private); 1962 switch (name) { 1963 case RES_LIMIT: 1964 /* This function does all necessary parse...reuse it */ 1965 ret = res_counter_memparse_write_strategy(buffer, &val); 1966 if (ret) 1967 break; 1968 if (type == _MEM) 1969 ret = mem_cgroup_resize_limit(memcg, val); 1970 else 1971 ret = mem_cgroup_resize_memsw_limit(memcg, val); 1972 break; 1973 default: 1974 ret = -EINVAL; /* should be BUG() ? */ 1975 break; 1976 } 1977 return ret; 1978 } 1979 1980 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg, 1981 unsigned long long *mem_limit, unsigned long long *memsw_limit) 1982 { 1983 struct cgroup *cgroup; 1984 unsigned long long min_limit, min_memsw_limit, tmp; 1985 1986 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT); 1987 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 1988 cgroup = memcg->css.cgroup; 1989 if (!memcg->use_hierarchy) 1990 goto out; 1991 1992 while (cgroup->parent) { 1993 cgroup = cgroup->parent; 1994 memcg = mem_cgroup_from_cont(cgroup); 1995 if (!memcg->use_hierarchy) 1996 break; 1997 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT); 1998 min_limit = min(min_limit, tmp); 1999 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 2000 min_memsw_limit = min(min_memsw_limit, tmp); 2001 } 2002 out: 2003 *mem_limit = min_limit; 2004 *memsw_limit = min_memsw_limit; 2005 return; 2006 } 2007 2008 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event) 2009 { 2010 struct mem_cgroup *mem; 2011 int type, name; 2012 2013 mem = mem_cgroup_from_cont(cont); 2014 type = MEMFILE_TYPE(event); 2015 name = MEMFILE_ATTR(event); 2016 switch (name) { 2017 case RES_MAX_USAGE: 2018 if (type == _MEM) 2019 res_counter_reset_max(&mem->res); 2020 else 2021 res_counter_reset_max(&mem->memsw); 2022 break; 2023 case RES_FAILCNT: 2024 if (type == _MEM) 2025 res_counter_reset_failcnt(&mem->res); 2026 else 2027 res_counter_reset_failcnt(&mem->memsw); 2028 break; 2029 } 2030 return 0; 2031 } 2032 2033 2034 /* For read statistics */ 2035 enum { 2036 MCS_CACHE, 2037 MCS_RSS, 2038 MCS_PGPGIN, 2039 MCS_PGPGOUT, 2040 MCS_INACTIVE_ANON, 2041 MCS_ACTIVE_ANON, 2042 MCS_INACTIVE_FILE, 2043 MCS_ACTIVE_FILE, 2044 MCS_UNEVICTABLE, 2045 NR_MCS_STAT, 2046 }; 2047 2048 struct mcs_total_stat { 2049 s64 stat[NR_MCS_STAT]; 2050 }; 2051 2052 struct { 2053 char *local_name; 2054 char *total_name; 2055 } memcg_stat_strings[NR_MCS_STAT] = { 2056 {"cache", "total_cache"}, 2057 {"rss", "total_rss"}, 2058 {"pgpgin", "total_pgpgin"}, 2059 {"pgpgout", "total_pgpgout"}, 2060 {"inactive_anon", "total_inactive_anon"}, 2061 {"active_anon", "total_active_anon"}, 2062 {"inactive_file", "total_inactive_file"}, 2063 {"active_file", "total_active_file"}, 2064 {"unevictable", "total_unevictable"} 2065 }; 2066 2067 2068 static int mem_cgroup_get_local_stat(struct mem_cgroup *mem, void *data) 2069 { 2070 struct mcs_total_stat *s = data; 2071 s64 val; 2072 2073 /* per cpu stat */ 2074 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_CACHE); 2075 s->stat[MCS_CACHE] += val * PAGE_SIZE; 2076 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS); 2077 s->stat[MCS_RSS] += val * PAGE_SIZE; 2078 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGIN_COUNT); 2079 s->stat[MCS_PGPGIN] += val; 2080 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGOUT_COUNT); 2081 s->stat[MCS_PGPGOUT] += val; 2082 2083 /* per zone stat */ 2084 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON); 2085 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE; 2086 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON); 2087 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE; 2088 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE); 2089 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE; 2090 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE); 2091 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE; 2092 val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE); 2093 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE; 2094 return 0; 2095 } 2096 2097 static void 2098 mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s) 2099 { 2100 mem_cgroup_walk_tree(mem, s, mem_cgroup_get_local_stat); 2101 } 2102 2103 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft, 2104 struct cgroup_map_cb *cb) 2105 { 2106 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont); 2107 struct mcs_total_stat mystat; 2108 int i; 2109 2110 memset(&mystat, 0, sizeof(mystat)); 2111 mem_cgroup_get_local_stat(mem_cont, &mystat); 2112 2113 for (i = 0; i < NR_MCS_STAT; i++) 2114 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]); 2115 2116 /* Hierarchical information */ 2117 { 2118 unsigned long long limit, memsw_limit; 2119 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit); 2120 cb->fill(cb, "hierarchical_memory_limit", limit); 2121 if (do_swap_account) 2122 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit); 2123 } 2124 2125 memset(&mystat, 0, sizeof(mystat)); 2126 mem_cgroup_get_total_stat(mem_cont, &mystat); 2127 for (i = 0; i < NR_MCS_STAT; i++) 2128 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]); 2129 2130 2131 #ifdef CONFIG_DEBUG_VM 2132 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL)); 2133 2134 { 2135 int nid, zid; 2136 struct mem_cgroup_per_zone *mz; 2137 unsigned long recent_rotated[2] = {0, 0}; 2138 unsigned long recent_scanned[2] = {0, 0}; 2139 2140 for_each_online_node(nid) 2141 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 2142 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid); 2143 2144 recent_rotated[0] += 2145 mz->reclaim_stat.recent_rotated[0]; 2146 recent_rotated[1] += 2147 mz->reclaim_stat.recent_rotated[1]; 2148 recent_scanned[0] += 2149 mz->reclaim_stat.recent_scanned[0]; 2150 recent_scanned[1] += 2151 mz->reclaim_stat.recent_scanned[1]; 2152 } 2153 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]); 2154 cb->fill(cb, "recent_rotated_file", recent_rotated[1]); 2155 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]); 2156 cb->fill(cb, "recent_scanned_file", recent_scanned[1]); 2157 } 2158 #endif 2159 2160 return 0; 2161 } 2162 2163 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft) 2164 { 2165 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 2166 2167 return get_swappiness(memcg); 2168 } 2169 2170 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft, 2171 u64 val) 2172 { 2173 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 2174 struct mem_cgroup *parent; 2175 2176 if (val > 100) 2177 return -EINVAL; 2178 2179 if (cgrp->parent == NULL) 2180 return -EINVAL; 2181 2182 parent = mem_cgroup_from_cont(cgrp->parent); 2183 2184 cgroup_lock(); 2185 2186 /* If under hierarchy, only empty-root can set this value */ 2187 if ((parent->use_hierarchy) || 2188 (memcg->use_hierarchy && !list_empty(&cgrp->children))) { 2189 cgroup_unlock(); 2190 return -EINVAL; 2191 } 2192 2193 spin_lock(&memcg->reclaim_param_lock); 2194 memcg->swappiness = val; 2195 spin_unlock(&memcg->reclaim_param_lock); 2196 2197 cgroup_unlock(); 2198 2199 return 0; 2200 } 2201 2202 2203 static struct cftype mem_cgroup_files[] = { 2204 { 2205 .name = "usage_in_bytes", 2206 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 2207 .read_u64 = mem_cgroup_read, 2208 }, 2209 { 2210 .name = "max_usage_in_bytes", 2211 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 2212 .trigger = mem_cgroup_reset, 2213 .read_u64 = mem_cgroup_read, 2214 }, 2215 { 2216 .name = "limit_in_bytes", 2217 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 2218 .write_string = mem_cgroup_write, 2219 .read_u64 = mem_cgroup_read, 2220 }, 2221 { 2222 .name = "failcnt", 2223 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 2224 .trigger = mem_cgroup_reset, 2225 .read_u64 = mem_cgroup_read, 2226 }, 2227 { 2228 .name = "stat", 2229 .read_map = mem_control_stat_show, 2230 }, 2231 { 2232 .name = "force_empty", 2233 .trigger = mem_cgroup_force_empty_write, 2234 }, 2235 { 2236 .name = "use_hierarchy", 2237 .write_u64 = mem_cgroup_hierarchy_write, 2238 .read_u64 = mem_cgroup_hierarchy_read, 2239 }, 2240 { 2241 .name = "swappiness", 2242 .read_u64 = mem_cgroup_swappiness_read, 2243 .write_u64 = mem_cgroup_swappiness_write, 2244 }, 2245 }; 2246 2247 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP 2248 static struct cftype memsw_cgroup_files[] = { 2249 { 2250 .name = "memsw.usage_in_bytes", 2251 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 2252 .read_u64 = mem_cgroup_read, 2253 }, 2254 { 2255 .name = "memsw.max_usage_in_bytes", 2256 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 2257 .trigger = mem_cgroup_reset, 2258 .read_u64 = mem_cgroup_read, 2259 }, 2260 { 2261 .name = "memsw.limit_in_bytes", 2262 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 2263 .write_string = mem_cgroup_write, 2264 .read_u64 = mem_cgroup_read, 2265 }, 2266 { 2267 .name = "memsw.failcnt", 2268 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 2269 .trigger = mem_cgroup_reset, 2270 .read_u64 = mem_cgroup_read, 2271 }, 2272 }; 2273 2274 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss) 2275 { 2276 if (!do_swap_account) 2277 return 0; 2278 return cgroup_add_files(cont, ss, memsw_cgroup_files, 2279 ARRAY_SIZE(memsw_cgroup_files)); 2280 }; 2281 #else 2282 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss) 2283 { 2284 return 0; 2285 } 2286 #endif 2287 2288 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node) 2289 { 2290 struct mem_cgroup_per_node *pn; 2291 struct mem_cgroup_per_zone *mz; 2292 enum lru_list l; 2293 int zone, tmp = node; 2294 /* 2295 * This routine is called against possible nodes. 2296 * But it's BUG to call kmalloc() against offline node. 2297 * 2298 * TODO: this routine can waste much memory for nodes which will 2299 * never be onlined. It's better to use memory hotplug callback 2300 * function. 2301 */ 2302 if (!node_state(node, N_NORMAL_MEMORY)) 2303 tmp = -1; 2304 pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp); 2305 if (!pn) 2306 return 1; 2307 2308 mem->info.nodeinfo[node] = pn; 2309 memset(pn, 0, sizeof(*pn)); 2310 2311 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 2312 mz = &pn->zoneinfo[zone]; 2313 for_each_lru(l) 2314 INIT_LIST_HEAD(&mz->lists[l]); 2315 } 2316 return 0; 2317 } 2318 2319 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node) 2320 { 2321 kfree(mem->info.nodeinfo[node]); 2322 } 2323 2324 static int mem_cgroup_size(void) 2325 { 2326 int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu); 2327 return sizeof(struct mem_cgroup) + cpustat_size; 2328 } 2329 2330 static struct mem_cgroup *mem_cgroup_alloc(void) 2331 { 2332 struct mem_cgroup *mem; 2333 int size = mem_cgroup_size(); 2334 2335 if (size < PAGE_SIZE) 2336 mem = kmalloc(size, GFP_KERNEL); 2337 else 2338 mem = vmalloc(size); 2339 2340 if (mem) 2341 memset(mem, 0, size); 2342 return mem; 2343 } 2344 2345 /* 2346 * At destroying mem_cgroup, references from swap_cgroup can remain. 2347 * (scanning all at force_empty is too costly...) 2348 * 2349 * Instead of clearing all references at force_empty, we remember 2350 * the number of reference from swap_cgroup and free mem_cgroup when 2351 * it goes down to 0. 2352 * 2353 * Removal of cgroup itself succeeds regardless of refs from swap. 2354 */ 2355 2356 static void __mem_cgroup_free(struct mem_cgroup *mem) 2357 { 2358 int node; 2359 2360 free_css_id(&mem_cgroup_subsys, &mem->css); 2361 2362 for_each_node_state(node, N_POSSIBLE) 2363 free_mem_cgroup_per_zone_info(mem, node); 2364 2365 if (mem_cgroup_size() < PAGE_SIZE) 2366 kfree(mem); 2367 else 2368 vfree(mem); 2369 } 2370 2371 static void mem_cgroup_get(struct mem_cgroup *mem) 2372 { 2373 atomic_inc(&mem->refcnt); 2374 } 2375 2376 static void mem_cgroup_put(struct mem_cgroup *mem) 2377 { 2378 if (atomic_dec_and_test(&mem->refcnt)) { 2379 struct mem_cgroup *parent = parent_mem_cgroup(mem); 2380 __mem_cgroup_free(mem); 2381 if (parent) 2382 mem_cgroup_put(parent); 2383 } 2384 } 2385 2386 /* 2387 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled. 2388 */ 2389 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem) 2390 { 2391 if (!mem->res.parent) 2392 return NULL; 2393 return mem_cgroup_from_res_counter(mem->res.parent, res); 2394 } 2395 2396 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP 2397 static void __init enable_swap_cgroup(void) 2398 { 2399 if (!mem_cgroup_disabled() && really_do_swap_account) 2400 do_swap_account = 1; 2401 } 2402 #else 2403 static void __init enable_swap_cgroup(void) 2404 { 2405 } 2406 #endif 2407 2408 static struct cgroup_subsys_state * __ref 2409 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont) 2410 { 2411 struct mem_cgroup *mem, *parent; 2412 long error = -ENOMEM; 2413 int node; 2414 2415 mem = mem_cgroup_alloc(); 2416 if (!mem) 2417 return ERR_PTR(error); 2418 2419 for_each_node_state(node, N_POSSIBLE) 2420 if (alloc_mem_cgroup_per_zone_info(mem, node)) 2421 goto free_out; 2422 /* root ? */ 2423 if (cont->parent == NULL) { 2424 enable_swap_cgroup(); 2425 parent = NULL; 2426 } else { 2427 parent = mem_cgroup_from_cont(cont->parent); 2428 mem->use_hierarchy = parent->use_hierarchy; 2429 } 2430 2431 if (parent && parent->use_hierarchy) { 2432 res_counter_init(&mem->res, &parent->res); 2433 res_counter_init(&mem->memsw, &parent->memsw); 2434 /* 2435 * We increment refcnt of the parent to ensure that we can 2436 * safely access it on res_counter_charge/uncharge. 2437 * This refcnt will be decremented when freeing this 2438 * mem_cgroup(see mem_cgroup_put). 2439 */ 2440 mem_cgroup_get(parent); 2441 } else { 2442 res_counter_init(&mem->res, NULL); 2443 res_counter_init(&mem->memsw, NULL); 2444 } 2445 mem->last_scanned_child = 0; 2446 spin_lock_init(&mem->reclaim_param_lock); 2447 2448 if (parent) 2449 mem->swappiness = get_swappiness(parent); 2450 atomic_set(&mem->refcnt, 1); 2451 return &mem->css; 2452 free_out: 2453 __mem_cgroup_free(mem); 2454 return ERR_PTR(error); 2455 } 2456 2457 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss, 2458 struct cgroup *cont) 2459 { 2460 struct mem_cgroup *mem = mem_cgroup_from_cont(cont); 2461 2462 return mem_cgroup_force_empty(mem, false); 2463 } 2464 2465 static void mem_cgroup_destroy(struct cgroup_subsys *ss, 2466 struct cgroup *cont) 2467 { 2468 struct mem_cgroup *mem = mem_cgroup_from_cont(cont); 2469 2470 mem_cgroup_put(mem); 2471 } 2472 2473 static int mem_cgroup_populate(struct cgroup_subsys *ss, 2474 struct cgroup *cont) 2475 { 2476 int ret; 2477 2478 ret = cgroup_add_files(cont, ss, mem_cgroup_files, 2479 ARRAY_SIZE(mem_cgroup_files)); 2480 2481 if (!ret) 2482 ret = register_memsw_files(cont, ss); 2483 return ret; 2484 } 2485 2486 static void mem_cgroup_move_task(struct cgroup_subsys *ss, 2487 struct cgroup *cont, 2488 struct cgroup *old_cont, 2489 struct task_struct *p) 2490 { 2491 mutex_lock(&memcg_tasklist); 2492 /* 2493 * FIXME: It's better to move charges of this process from old 2494 * memcg to new memcg. But it's just on TODO-List now. 2495 */ 2496 mutex_unlock(&memcg_tasklist); 2497 } 2498 2499 struct cgroup_subsys mem_cgroup_subsys = { 2500 .name = "memory", 2501 .subsys_id = mem_cgroup_subsys_id, 2502 .create = mem_cgroup_create, 2503 .pre_destroy = mem_cgroup_pre_destroy, 2504 .destroy = mem_cgroup_destroy, 2505 .populate = mem_cgroup_populate, 2506 .attach = mem_cgroup_move_task, 2507 .early_init = 0, 2508 .use_id = 1, 2509 }; 2510 2511 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP 2512 2513 static int __init disable_swap_account(char *s) 2514 { 2515 really_do_swap_account = 0; 2516 return 1; 2517 } 2518 __setup("noswapaccount", disable_swap_account); 2519 #endif 2520