xref: /openbmc/linux/mm/memcontrol.c (revision 78c99ba1)
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  */
19 
20 #include <linux/res_counter.h>
21 #include <linux/memcontrol.h>
22 #include <linux/cgroup.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/smp.h>
26 #include <linux/page-flags.h>
27 #include <linux/backing-dev.h>
28 #include <linux/bit_spinlock.h>
29 #include <linux/rcupdate.h>
30 #include <linux/limits.h>
31 #include <linux/mutex.h>
32 #include <linux/slab.h>
33 #include <linux/swap.h>
34 #include <linux/spinlock.h>
35 #include <linux/fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/vmalloc.h>
38 #include <linux/mm_inline.h>
39 #include <linux/page_cgroup.h>
40 #include "internal.h"
41 
42 #include <asm/uaccess.h>
43 
44 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
45 #define MEM_CGROUP_RECLAIM_RETRIES	5
46 
47 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
48 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 0 */
49 int do_swap_account __read_mostly;
50 static int really_do_swap_account __initdata = 1; /* for remember boot option*/
51 #else
52 #define do_swap_account		(0)
53 #endif
54 
55 static DEFINE_MUTEX(memcg_tasklist);	/* can be hold under cgroup_mutex */
56 
57 /*
58  * Statistics for memory cgroup.
59  */
60 enum mem_cgroup_stat_index {
61 	/*
62 	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
63 	 */
64 	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
65 	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as rss */
66 	MEM_CGROUP_STAT_PGPGIN_COUNT,	/* # of pages paged in */
67 	MEM_CGROUP_STAT_PGPGOUT_COUNT,	/* # of pages paged out */
68 
69 	MEM_CGROUP_STAT_NSTATS,
70 };
71 
72 struct mem_cgroup_stat_cpu {
73 	s64 count[MEM_CGROUP_STAT_NSTATS];
74 } ____cacheline_aligned_in_smp;
75 
76 struct mem_cgroup_stat {
77 	struct mem_cgroup_stat_cpu cpustat[0];
78 };
79 
80 /*
81  * For accounting under irq disable, no need for increment preempt count.
82  */
83 static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat,
84 		enum mem_cgroup_stat_index idx, int val)
85 {
86 	stat->count[idx] += val;
87 }
88 
89 static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
90 		enum mem_cgroup_stat_index idx)
91 {
92 	int cpu;
93 	s64 ret = 0;
94 	for_each_possible_cpu(cpu)
95 		ret += stat->cpustat[cpu].count[idx];
96 	return ret;
97 }
98 
99 static s64 mem_cgroup_local_usage(struct mem_cgroup_stat *stat)
100 {
101 	s64 ret;
102 
103 	ret = mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_CACHE);
104 	ret += mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_RSS);
105 	return ret;
106 }
107 
108 /*
109  * per-zone information in memory controller.
110  */
111 struct mem_cgroup_per_zone {
112 	/*
113 	 * spin_lock to protect the per cgroup LRU
114 	 */
115 	struct list_head	lists[NR_LRU_LISTS];
116 	unsigned long		count[NR_LRU_LISTS];
117 
118 	struct zone_reclaim_stat reclaim_stat;
119 };
120 /* Macro for accessing counter */
121 #define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])
122 
123 struct mem_cgroup_per_node {
124 	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
125 };
126 
127 struct mem_cgroup_lru_info {
128 	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
129 };
130 
131 /*
132  * The memory controller data structure. The memory controller controls both
133  * page cache and RSS per cgroup. We would eventually like to provide
134  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
135  * to help the administrator determine what knobs to tune.
136  *
137  * TODO: Add a water mark for the memory controller. Reclaim will begin when
138  * we hit the water mark. May be even add a low water mark, such that
139  * no reclaim occurs from a cgroup at it's low water mark, this is
140  * a feature that will be implemented much later in the future.
141  */
142 struct mem_cgroup {
143 	struct cgroup_subsys_state css;
144 	/*
145 	 * the counter to account for memory usage
146 	 */
147 	struct res_counter res;
148 	/*
149 	 * the counter to account for mem+swap usage.
150 	 */
151 	struct res_counter memsw;
152 	/*
153 	 * Per cgroup active and inactive list, similar to the
154 	 * per zone LRU lists.
155 	 */
156 	struct mem_cgroup_lru_info info;
157 
158 	/*
159 	  protect against reclaim related member.
160 	*/
161 	spinlock_t reclaim_param_lock;
162 
163 	int	prev_priority;	/* for recording reclaim priority */
164 
165 	/*
166 	 * While reclaiming in a hiearchy, we cache the last child we
167 	 * reclaimed from.
168 	 */
169 	int last_scanned_child;
170 	/*
171 	 * Should the accounting and control be hierarchical, per subtree?
172 	 */
173 	bool use_hierarchy;
174 	unsigned long	last_oom_jiffies;
175 	atomic_t	refcnt;
176 
177 	unsigned int	swappiness;
178 
179 	/*
180 	 * statistics. This must be placed at the end of memcg.
181 	 */
182 	struct mem_cgroup_stat stat;
183 };
184 
185 enum charge_type {
186 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
187 	MEM_CGROUP_CHARGE_TYPE_MAPPED,
188 	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
189 	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
190 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
191 	NR_CHARGE_TYPE,
192 };
193 
194 /* only for here (for easy reading.) */
195 #define PCGF_CACHE	(1UL << PCG_CACHE)
196 #define PCGF_USED	(1UL << PCG_USED)
197 #define PCGF_LOCK	(1UL << PCG_LOCK)
198 static const unsigned long
199 pcg_default_flags[NR_CHARGE_TYPE] = {
200 	PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* File Cache */
201 	PCGF_USED | PCGF_LOCK, /* Anon */
202 	PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* Shmem */
203 	0, /* FORCE */
204 };
205 
206 /* for encoding cft->private value on file */
207 #define _MEM			(0)
208 #define _MEMSWAP		(1)
209 #define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
210 #define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
211 #define MEMFILE_ATTR(val)	((val) & 0xffff)
212 
213 static void mem_cgroup_get(struct mem_cgroup *mem);
214 static void mem_cgroup_put(struct mem_cgroup *mem);
215 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
216 
217 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
218 					 struct page_cgroup *pc,
219 					 bool charge)
220 {
221 	int val = (charge)? 1 : -1;
222 	struct mem_cgroup_stat *stat = &mem->stat;
223 	struct mem_cgroup_stat_cpu *cpustat;
224 	int cpu = get_cpu();
225 
226 	cpustat = &stat->cpustat[cpu];
227 	if (PageCgroupCache(pc))
228 		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
229 	else
230 		__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val);
231 
232 	if (charge)
233 		__mem_cgroup_stat_add_safe(cpustat,
234 				MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
235 	else
236 		__mem_cgroup_stat_add_safe(cpustat,
237 				MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
238 	put_cpu();
239 }
240 
241 static struct mem_cgroup_per_zone *
242 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
243 {
244 	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
245 }
246 
247 static struct mem_cgroup_per_zone *
248 page_cgroup_zoneinfo(struct page_cgroup *pc)
249 {
250 	struct mem_cgroup *mem = pc->mem_cgroup;
251 	int nid = page_cgroup_nid(pc);
252 	int zid = page_cgroup_zid(pc);
253 
254 	if (!mem)
255 		return NULL;
256 
257 	return mem_cgroup_zoneinfo(mem, nid, zid);
258 }
259 
260 static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
261 					enum lru_list idx)
262 {
263 	int nid, zid;
264 	struct mem_cgroup_per_zone *mz;
265 	u64 total = 0;
266 
267 	for_each_online_node(nid)
268 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
269 			mz = mem_cgroup_zoneinfo(mem, nid, zid);
270 			total += MEM_CGROUP_ZSTAT(mz, idx);
271 		}
272 	return total;
273 }
274 
275 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
276 {
277 	return container_of(cgroup_subsys_state(cont,
278 				mem_cgroup_subsys_id), struct mem_cgroup,
279 				css);
280 }
281 
282 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
283 {
284 	/*
285 	 * mm_update_next_owner() may clear mm->owner to NULL
286 	 * if it races with swapoff, page migration, etc.
287 	 * So this can be called with p == NULL.
288 	 */
289 	if (unlikely(!p))
290 		return NULL;
291 
292 	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
293 				struct mem_cgroup, css);
294 }
295 
296 static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
297 {
298 	struct mem_cgroup *mem = NULL;
299 
300 	if (!mm)
301 		return NULL;
302 	/*
303 	 * Because we have no locks, mm->owner's may be being moved to other
304 	 * cgroup. We use css_tryget() here even if this looks
305 	 * pessimistic (rather than adding locks here).
306 	 */
307 	rcu_read_lock();
308 	do {
309 		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
310 		if (unlikely(!mem))
311 			break;
312 	} while (!css_tryget(&mem->css));
313 	rcu_read_unlock();
314 	return mem;
315 }
316 
317 /*
318  * Call callback function against all cgroup under hierarchy tree.
319  */
320 static int mem_cgroup_walk_tree(struct mem_cgroup *root, void *data,
321 			  int (*func)(struct mem_cgroup *, void *))
322 {
323 	int found, ret, nextid;
324 	struct cgroup_subsys_state *css;
325 	struct mem_cgroup *mem;
326 
327 	if (!root->use_hierarchy)
328 		return (*func)(root, data);
329 
330 	nextid = 1;
331 	do {
332 		ret = 0;
333 		mem = NULL;
334 
335 		rcu_read_lock();
336 		css = css_get_next(&mem_cgroup_subsys, nextid, &root->css,
337 				   &found);
338 		if (css && css_tryget(css))
339 			mem = container_of(css, struct mem_cgroup, css);
340 		rcu_read_unlock();
341 
342 		if (mem) {
343 			ret = (*func)(mem, data);
344 			css_put(&mem->css);
345 		}
346 		nextid = found + 1;
347 	} while (!ret && css);
348 
349 	return ret;
350 }
351 
352 /*
353  * Following LRU functions are allowed to be used without PCG_LOCK.
354  * Operations are called by routine of global LRU independently from memcg.
355  * What we have to take care of here is validness of pc->mem_cgroup.
356  *
357  * Changes to pc->mem_cgroup happens when
358  * 1. charge
359  * 2. moving account
360  * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
361  * It is added to LRU before charge.
362  * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
363  * When moving account, the page is not on LRU. It's isolated.
364  */
365 
366 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
367 {
368 	struct page_cgroup *pc;
369 	struct mem_cgroup *mem;
370 	struct mem_cgroup_per_zone *mz;
371 
372 	if (mem_cgroup_disabled())
373 		return;
374 	pc = lookup_page_cgroup(page);
375 	/* can happen while we handle swapcache. */
376 	if (list_empty(&pc->lru) || !pc->mem_cgroup)
377 		return;
378 	/*
379 	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
380 	 * removed from global LRU.
381 	 */
382 	mz = page_cgroup_zoneinfo(pc);
383 	mem = pc->mem_cgroup;
384 	MEM_CGROUP_ZSTAT(mz, lru) -= 1;
385 	list_del_init(&pc->lru);
386 	return;
387 }
388 
389 void mem_cgroup_del_lru(struct page *page)
390 {
391 	mem_cgroup_del_lru_list(page, page_lru(page));
392 }
393 
394 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
395 {
396 	struct mem_cgroup_per_zone *mz;
397 	struct page_cgroup *pc;
398 
399 	if (mem_cgroup_disabled())
400 		return;
401 
402 	pc = lookup_page_cgroup(page);
403 	/*
404 	 * Used bit is set without atomic ops but after smp_wmb().
405 	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
406 	 */
407 	smp_rmb();
408 	/* unused page is not rotated. */
409 	if (!PageCgroupUsed(pc))
410 		return;
411 	mz = page_cgroup_zoneinfo(pc);
412 	list_move(&pc->lru, &mz->lists[lru]);
413 }
414 
415 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
416 {
417 	struct page_cgroup *pc;
418 	struct mem_cgroup_per_zone *mz;
419 
420 	if (mem_cgroup_disabled())
421 		return;
422 	pc = lookup_page_cgroup(page);
423 	/*
424 	 * Used bit is set without atomic ops but after smp_wmb().
425 	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
426 	 */
427 	smp_rmb();
428 	if (!PageCgroupUsed(pc))
429 		return;
430 
431 	mz = page_cgroup_zoneinfo(pc);
432 	MEM_CGROUP_ZSTAT(mz, lru) += 1;
433 	list_add(&pc->lru, &mz->lists[lru]);
434 }
435 
436 /*
437  * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
438  * lru because the page may.be reused after it's fully uncharged (because of
439  * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
440  * it again. This function is only used to charge SwapCache. It's done under
441  * lock_page and expected that zone->lru_lock is never held.
442  */
443 static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
444 {
445 	unsigned long flags;
446 	struct zone *zone = page_zone(page);
447 	struct page_cgroup *pc = lookup_page_cgroup(page);
448 
449 	spin_lock_irqsave(&zone->lru_lock, flags);
450 	/*
451 	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
452 	 * is guarded by lock_page() because the page is SwapCache.
453 	 */
454 	if (!PageCgroupUsed(pc))
455 		mem_cgroup_del_lru_list(page, page_lru(page));
456 	spin_unlock_irqrestore(&zone->lru_lock, flags);
457 }
458 
459 static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
460 {
461 	unsigned long flags;
462 	struct zone *zone = page_zone(page);
463 	struct page_cgroup *pc = lookup_page_cgroup(page);
464 
465 	spin_lock_irqsave(&zone->lru_lock, flags);
466 	/* link when the page is linked to LRU but page_cgroup isn't */
467 	if (PageLRU(page) && list_empty(&pc->lru))
468 		mem_cgroup_add_lru_list(page, page_lru(page));
469 	spin_unlock_irqrestore(&zone->lru_lock, flags);
470 }
471 
472 
473 void mem_cgroup_move_lists(struct page *page,
474 			   enum lru_list from, enum lru_list to)
475 {
476 	if (mem_cgroup_disabled())
477 		return;
478 	mem_cgroup_del_lru_list(page, from);
479 	mem_cgroup_add_lru_list(page, to);
480 }
481 
482 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
483 {
484 	int ret;
485 	struct mem_cgroup *curr = NULL;
486 
487 	task_lock(task);
488 	rcu_read_lock();
489 	curr = try_get_mem_cgroup_from_mm(task->mm);
490 	rcu_read_unlock();
491 	task_unlock(task);
492 	if (!curr)
493 		return 0;
494 	if (curr->use_hierarchy)
495 		ret = css_is_ancestor(&curr->css, &mem->css);
496 	else
497 		ret = (curr == mem);
498 	css_put(&curr->css);
499 	return ret;
500 }
501 
502 /*
503  * prev_priority control...this will be used in memory reclaim path.
504  */
505 int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
506 {
507 	int prev_priority;
508 
509 	spin_lock(&mem->reclaim_param_lock);
510 	prev_priority = mem->prev_priority;
511 	spin_unlock(&mem->reclaim_param_lock);
512 
513 	return prev_priority;
514 }
515 
516 void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
517 {
518 	spin_lock(&mem->reclaim_param_lock);
519 	if (priority < mem->prev_priority)
520 		mem->prev_priority = priority;
521 	spin_unlock(&mem->reclaim_param_lock);
522 }
523 
524 void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
525 {
526 	spin_lock(&mem->reclaim_param_lock);
527 	mem->prev_priority = priority;
528 	spin_unlock(&mem->reclaim_param_lock);
529 }
530 
531 static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
532 {
533 	unsigned long active;
534 	unsigned long inactive;
535 	unsigned long gb;
536 	unsigned long inactive_ratio;
537 
538 	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
539 	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
540 
541 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
542 	if (gb)
543 		inactive_ratio = int_sqrt(10 * gb);
544 	else
545 		inactive_ratio = 1;
546 
547 	if (present_pages) {
548 		present_pages[0] = inactive;
549 		present_pages[1] = active;
550 	}
551 
552 	return inactive_ratio;
553 }
554 
555 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
556 {
557 	unsigned long active;
558 	unsigned long inactive;
559 	unsigned long present_pages[2];
560 	unsigned long inactive_ratio;
561 
562 	inactive_ratio = calc_inactive_ratio(memcg, present_pages);
563 
564 	inactive = present_pages[0];
565 	active = present_pages[1];
566 
567 	if (inactive * inactive_ratio < active)
568 		return 1;
569 
570 	return 0;
571 }
572 
573 unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
574 				       struct zone *zone,
575 				       enum lru_list lru)
576 {
577 	int nid = zone->zone_pgdat->node_id;
578 	int zid = zone_idx(zone);
579 	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
580 
581 	return MEM_CGROUP_ZSTAT(mz, lru);
582 }
583 
584 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
585 						      struct zone *zone)
586 {
587 	int nid = zone->zone_pgdat->node_id;
588 	int zid = zone_idx(zone);
589 	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
590 
591 	return &mz->reclaim_stat;
592 }
593 
594 struct zone_reclaim_stat *
595 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
596 {
597 	struct page_cgroup *pc;
598 	struct mem_cgroup_per_zone *mz;
599 
600 	if (mem_cgroup_disabled())
601 		return NULL;
602 
603 	pc = lookup_page_cgroup(page);
604 	/*
605 	 * Used bit is set without atomic ops but after smp_wmb().
606 	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
607 	 */
608 	smp_rmb();
609 	if (!PageCgroupUsed(pc))
610 		return NULL;
611 
612 	mz = page_cgroup_zoneinfo(pc);
613 	if (!mz)
614 		return NULL;
615 
616 	return &mz->reclaim_stat;
617 }
618 
619 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
620 					struct list_head *dst,
621 					unsigned long *scanned, int order,
622 					int mode, struct zone *z,
623 					struct mem_cgroup *mem_cont,
624 					int active, int file)
625 {
626 	unsigned long nr_taken = 0;
627 	struct page *page;
628 	unsigned long scan;
629 	LIST_HEAD(pc_list);
630 	struct list_head *src;
631 	struct page_cgroup *pc, *tmp;
632 	int nid = z->zone_pgdat->node_id;
633 	int zid = zone_idx(z);
634 	struct mem_cgroup_per_zone *mz;
635 	int lru = LRU_FILE * !!file + !!active;
636 
637 	BUG_ON(!mem_cont);
638 	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
639 	src = &mz->lists[lru];
640 
641 	scan = 0;
642 	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
643 		if (scan >= nr_to_scan)
644 			break;
645 
646 		page = pc->page;
647 		if (unlikely(!PageCgroupUsed(pc)))
648 			continue;
649 		if (unlikely(!PageLRU(page)))
650 			continue;
651 
652 		scan++;
653 		if (__isolate_lru_page(page, mode, file) == 0) {
654 			list_move(&page->lru, dst);
655 			nr_taken++;
656 		}
657 	}
658 
659 	*scanned = scan;
660 	return nr_taken;
661 }
662 
663 #define mem_cgroup_from_res_counter(counter, member)	\
664 	container_of(counter, struct mem_cgroup, member)
665 
666 static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
667 {
668 	if (do_swap_account) {
669 		if (res_counter_check_under_limit(&mem->res) &&
670 			res_counter_check_under_limit(&mem->memsw))
671 			return true;
672 	} else
673 		if (res_counter_check_under_limit(&mem->res))
674 			return true;
675 	return false;
676 }
677 
678 static unsigned int get_swappiness(struct mem_cgroup *memcg)
679 {
680 	struct cgroup *cgrp = memcg->css.cgroup;
681 	unsigned int swappiness;
682 
683 	/* root ? */
684 	if (cgrp->parent == NULL)
685 		return vm_swappiness;
686 
687 	spin_lock(&memcg->reclaim_param_lock);
688 	swappiness = memcg->swappiness;
689 	spin_unlock(&memcg->reclaim_param_lock);
690 
691 	return swappiness;
692 }
693 
694 static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data)
695 {
696 	int *val = data;
697 	(*val)++;
698 	return 0;
699 }
700 
701 /**
702  * mem_cgroup_print_mem_info: Called from OOM with tasklist_lock held in read mode.
703  * @memcg: The memory cgroup that went over limit
704  * @p: Task that is going to be killed
705  *
706  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
707  * enabled
708  */
709 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
710 {
711 	struct cgroup *task_cgrp;
712 	struct cgroup *mem_cgrp;
713 	/*
714 	 * Need a buffer in BSS, can't rely on allocations. The code relies
715 	 * on the assumption that OOM is serialized for memory controller.
716 	 * If this assumption is broken, revisit this code.
717 	 */
718 	static char memcg_name[PATH_MAX];
719 	int ret;
720 
721 	if (!memcg)
722 		return;
723 
724 
725 	rcu_read_lock();
726 
727 	mem_cgrp = memcg->css.cgroup;
728 	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
729 
730 	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
731 	if (ret < 0) {
732 		/*
733 		 * Unfortunately, we are unable to convert to a useful name
734 		 * But we'll still print out the usage information
735 		 */
736 		rcu_read_unlock();
737 		goto done;
738 	}
739 	rcu_read_unlock();
740 
741 	printk(KERN_INFO "Task in %s killed", memcg_name);
742 
743 	rcu_read_lock();
744 	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
745 	if (ret < 0) {
746 		rcu_read_unlock();
747 		goto done;
748 	}
749 	rcu_read_unlock();
750 
751 	/*
752 	 * Continues from above, so we don't need an KERN_ level
753 	 */
754 	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
755 done:
756 
757 	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
758 		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
759 		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
760 		res_counter_read_u64(&memcg->res, RES_FAILCNT));
761 	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
762 		"failcnt %llu\n",
763 		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
764 		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
765 		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
766 }
767 
768 /*
769  * This function returns the number of memcg under hierarchy tree. Returns
770  * 1(self count) if no children.
771  */
772 static int mem_cgroup_count_children(struct mem_cgroup *mem)
773 {
774 	int num = 0;
775  	mem_cgroup_walk_tree(mem, &num, mem_cgroup_count_children_cb);
776 	return num;
777 }
778 
779 /*
780  * Visit the first child (need not be the first child as per the ordering
781  * of the cgroup list, since we track last_scanned_child) of @mem and use
782  * that to reclaim free pages from.
783  */
784 static struct mem_cgroup *
785 mem_cgroup_select_victim(struct mem_cgroup *root_mem)
786 {
787 	struct mem_cgroup *ret = NULL;
788 	struct cgroup_subsys_state *css;
789 	int nextid, found;
790 
791 	if (!root_mem->use_hierarchy) {
792 		css_get(&root_mem->css);
793 		ret = root_mem;
794 	}
795 
796 	while (!ret) {
797 		rcu_read_lock();
798 		nextid = root_mem->last_scanned_child + 1;
799 		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
800 				   &found);
801 		if (css && css_tryget(css))
802 			ret = container_of(css, struct mem_cgroup, css);
803 
804 		rcu_read_unlock();
805 		/* Updates scanning parameter */
806 		spin_lock(&root_mem->reclaim_param_lock);
807 		if (!css) {
808 			/* this means start scan from ID:1 */
809 			root_mem->last_scanned_child = 0;
810 		} else
811 			root_mem->last_scanned_child = found;
812 		spin_unlock(&root_mem->reclaim_param_lock);
813 	}
814 
815 	return ret;
816 }
817 
818 /*
819  * Scan the hierarchy if needed to reclaim memory. We remember the last child
820  * we reclaimed from, so that we don't end up penalizing one child extensively
821  * based on its position in the children list.
822  *
823  * root_mem is the original ancestor that we've been reclaim from.
824  *
825  * We give up and return to the caller when we visit root_mem twice.
826  * (other groups can be removed while we're walking....)
827  *
828  * If shrink==true, for avoiding to free too much, this returns immedieately.
829  */
830 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
831 				   gfp_t gfp_mask, bool noswap, bool shrink)
832 {
833 	struct mem_cgroup *victim;
834 	int ret, total = 0;
835 	int loop = 0;
836 
837 	while (loop < 2) {
838 		victim = mem_cgroup_select_victim(root_mem);
839 		if (victim == root_mem)
840 			loop++;
841 		if (!mem_cgroup_local_usage(&victim->stat)) {
842 			/* this cgroup's local usage == 0 */
843 			css_put(&victim->css);
844 			continue;
845 		}
846 		/* we use swappiness of local cgroup */
847 		ret = try_to_free_mem_cgroup_pages(victim, gfp_mask, noswap,
848 						   get_swappiness(victim));
849 		css_put(&victim->css);
850 		/*
851 		 * At shrinking usage, we can't check we should stop here or
852 		 * reclaim more. It's depends on callers. last_scanned_child
853 		 * will work enough for keeping fairness under tree.
854 		 */
855 		if (shrink)
856 			return ret;
857 		total += ret;
858 		if (mem_cgroup_check_under_limit(root_mem))
859 			return 1 + total;
860 	}
861 	return total;
862 }
863 
864 bool mem_cgroup_oom_called(struct task_struct *task)
865 {
866 	bool ret = false;
867 	struct mem_cgroup *mem;
868 	struct mm_struct *mm;
869 
870 	rcu_read_lock();
871 	mm = task->mm;
872 	if (!mm)
873 		mm = &init_mm;
874 	mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
875 	if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10))
876 		ret = true;
877 	rcu_read_unlock();
878 	return ret;
879 }
880 
881 static int record_last_oom_cb(struct mem_cgroup *mem, void *data)
882 {
883 	mem->last_oom_jiffies = jiffies;
884 	return 0;
885 }
886 
887 static void record_last_oom(struct mem_cgroup *mem)
888 {
889 	mem_cgroup_walk_tree(mem, NULL, record_last_oom_cb);
890 }
891 
892 
893 /*
894  * Unlike exported interface, "oom" parameter is added. if oom==true,
895  * oom-killer can be invoked.
896  */
897 static int __mem_cgroup_try_charge(struct mm_struct *mm,
898 			gfp_t gfp_mask, struct mem_cgroup **memcg,
899 			bool oom)
900 {
901 	struct mem_cgroup *mem, *mem_over_limit;
902 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
903 	struct res_counter *fail_res;
904 
905 	if (unlikely(test_thread_flag(TIF_MEMDIE))) {
906 		/* Don't account this! */
907 		*memcg = NULL;
908 		return 0;
909 	}
910 
911 	/*
912 	 * We always charge the cgroup the mm_struct belongs to.
913 	 * The mm_struct's mem_cgroup changes on task migration if the
914 	 * thread group leader migrates. It's possible that mm is not
915 	 * set, if so charge the init_mm (happens for pagecache usage).
916 	 */
917 	mem = *memcg;
918 	if (likely(!mem)) {
919 		mem = try_get_mem_cgroup_from_mm(mm);
920 		*memcg = mem;
921 	} else {
922 		css_get(&mem->css);
923 	}
924 	if (unlikely(!mem))
925 		return 0;
926 
927 	VM_BUG_ON(css_is_removed(&mem->css));
928 
929 	while (1) {
930 		int ret;
931 		bool noswap = false;
932 
933 		ret = res_counter_charge(&mem->res, PAGE_SIZE, &fail_res);
934 		if (likely(!ret)) {
935 			if (!do_swap_account)
936 				break;
937 			ret = res_counter_charge(&mem->memsw, PAGE_SIZE,
938 							&fail_res);
939 			if (likely(!ret))
940 				break;
941 			/* mem+swap counter fails */
942 			res_counter_uncharge(&mem->res, PAGE_SIZE);
943 			noswap = true;
944 			mem_over_limit = mem_cgroup_from_res_counter(fail_res,
945 									memsw);
946 		} else
947 			/* mem counter fails */
948 			mem_over_limit = mem_cgroup_from_res_counter(fail_res,
949 									res);
950 
951 		if (!(gfp_mask & __GFP_WAIT))
952 			goto nomem;
953 
954 		ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, gfp_mask,
955 							noswap, false);
956 		if (ret)
957 			continue;
958 
959 		/*
960 		 * try_to_free_mem_cgroup_pages() might not give us a full
961 		 * picture of reclaim. Some pages are reclaimed and might be
962 		 * moved to swap cache or just unmapped from the cgroup.
963 		 * Check the limit again to see if the reclaim reduced the
964 		 * current usage of the cgroup before giving up
965 		 *
966 		 */
967 		if (mem_cgroup_check_under_limit(mem_over_limit))
968 			continue;
969 
970 		if (!nr_retries--) {
971 			if (oom) {
972 				mutex_lock(&memcg_tasklist);
973 				mem_cgroup_out_of_memory(mem_over_limit, gfp_mask);
974 				mutex_unlock(&memcg_tasklist);
975 				record_last_oom(mem_over_limit);
976 			}
977 			goto nomem;
978 		}
979 	}
980 	return 0;
981 nomem:
982 	css_put(&mem->css);
983 	return -ENOMEM;
984 }
985 
986 
987 /*
988  * A helper function to get mem_cgroup from ID. must be called under
989  * rcu_read_lock(). The caller must check css_is_removed() or some if
990  * it's concern. (dropping refcnt from swap can be called against removed
991  * memcg.)
992  */
993 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
994 {
995 	struct cgroup_subsys_state *css;
996 
997 	/* ID 0 is unused ID */
998 	if (!id)
999 		return NULL;
1000 	css = css_lookup(&mem_cgroup_subsys, id);
1001 	if (!css)
1002 		return NULL;
1003 	return container_of(css, struct mem_cgroup, css);
1004 }
1005 
1006 static struct mem_cgroup *try_get_mem_cgroup_from_swapcache(struct page *page)
1007 {
1008 	struct mem_cgroup *mem;
1009 	struct page_cgroup *pc;
1010 	unsigned short id;
1011 	swp_entry_t ent;
1012 
1013 	VM_BUG_ON(!PageLocked(page));
1014 
1015 	if (!PageSwapCache(page))
1016 		return NULL;
1017 
1018 	pc = lookup_page_cgroup(page);
1019 	lock_page_cgroup(pc);
1020 	if (PageCgroupUsed(pc)) {
1021 		mem = pc->mem_cgroup;
1022 		if (mem && !css_tryget(&mem->css))
1023 			mem = NULL;
1024 	} else {
1025 		ent.val = page_private(page);
1026 		id = lookup_swap_cgroup(ent);
1027 		rcu_read_lock();
1028 		mem = mem_cgroup_lookup(id);
1029 		if (mem && !css_tryget(&mem->css))
1030 			mem = NULL;
1031 		rcu_read_unlock();
1032 	}
1033 	unlock_page_cgroup(pc);
1034 	return mem;
1035 }
1036 
1037 /*
1038  * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
1039  * USED state. If already USED, uncharge and return.
1040  */
1041 
1042 static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
1043 				     struct page_cgroup *pc,
1044 				     enum charge_type ctype)
1045 {
1046 	/* try_charge() can return NULL to *memcg, taking care of it. */
1047 	if (!mem)
1048 		return;
1049 
1050 	lock_page_cgroup(pc);
1051 	if (unlikely(PageCgroupUsed(pc))) {
1052 		unlock_page_cgroup(pc);
1053 		res_counter_uncharge(&mem->res, PAGE_SIZE);
1054 		if (do_swap_account)
1055 			res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1056 		css_put(&mem->css);
1057 		return;
1058 	}
1059 	pc->mem_cgroup = mem;
1060 	smp_wmb();
1061 	pc->flags = pcg_default_flags[ctype];
1062 
1063 	mem_cgroup_charge_statistics(mem, pc, true);
1064 
1065 	unlock_page_cgroup(pc);
1066 }
1067 
1068 /**
1069  * mem_cgroup_move_account - move account of the page
1070  * @pc:	page_cgroup of the page.
1071  * @from: mem_cgroup which the page is moved from.
1072  * @to:	mem_cgroup which the page is moved to. @from != @to.
1073  *
1074  * The caller must confirm following.
1075  * - page is not on LRU (isolate_page() is useful.)
1076  *
1077  * returns 0 at success,
1078  * returns -EBUSY when lock is busy or "pc" is unstable.
1079  *
1080  * This function does "uncharge" from old cgroup but doesn't do "charge" to
1081  * new cgroup. It should be done by a caller.
1082  */
1083 
1084 static int mem_cgroup_move_account(struct page_cgroup *pc,
1085 	struct mem_cgroup *from, struct mem_cgroup *to)
1086 {
1087 	struct mem_cgroup_per_zone *from_mz, *to_mz;
1088 	int nid, zid;
1089 	int ret = -EBUSY;
1090 
1091 	VM_BUG_ON(from == to);
1092 	VM_BUG_ON(PageLRU(pc->page));
1093 
1094 	nid = page_cgroup_nid(pc);
1095 	zid = page_cgroup_zid(pc);
1096 	from_mz =  mem_cgroup_zoneinfo(from, nid, zid);
1097 	to_mz =  mem_cgroup_zoneinfo(to, nid, zid);
1098 
1099 	if (!trylock_page_cgroup(pc))
1100 		return ret;
1101 
1102 	if (!PageCgroupUsed(pc))
1103 		goto out;
1104 
1105 	if (pc->mem_cgroup != from)
1106 		goto out;
1107 
1108 	res_counter_uncharge(&from->res, PAGE_SIZE);
1109 	mem_cgroup_charge_statistics(from, pc, false);
1110 	if (do_swap_account)
1111 		res_counter_uncharge(&from->memsw, PAGE_SIZE);
1112 	css_put(&from->css);
1113 
1114 	css_get(&to->css);
1115 	pc->mem_cgroup = to;
1116 	mem_cgroup_charge_statistics(to, pc, true);
1117 	ret = 0;
1118 out:
1119 	unlock_page_cgroup(pc);
1120 	return ret;
1121 }
1122 
1123 /*
1124  * move charges to its parent.
1125  */
1126 
1127 static int mem_cgroup_move_parent(struct page_cgroup *pc,
1128 				  struct mem_cgroup *child,
1129 				  gfp_t gfp_mask)
1130 {
1131 	struct page *page = pc->page;
1132 	struct cgroup *cg = child->css.cgroup;
1133 	struct cgroup *pcg = cg->parent;
1134 	struct mem_cgroup *parent;
1135 	int ret;
1136 
1137 	/* Is ROOT ? */
1138 	if (!pcg)
1139 		return -EINVAL;
1140 
1141 
1142 	parent = mem_cgroup_from_cont(pcg);
1143 
1144 
1145 	ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
1146 	if (ret || !parent)
1147 		return ret;
1148 
1149 	if (!get_page_unless_zero(page)) {
1150 		ret = -EBUSY;
1151 		goto uncharge;
1152 	}
1153 
1154 	ret = isolate_lru_page(page);
1155 
1156 	if (ret)
1157 		goto cancel;
1158 
1159 	ret = mem_cgroup_move_account(pc, child, parent);
1160 
1161 	putback_lru_page(page);
1162 	if (!ret) {
1163 		put_page(page);
1164 		/* drop extra refcnt by try_charge() */
1165 		css_put(&parent->css);
1166 		return 0;
1167 	}
1168 
1169 cancel:
1170 	put_page(page);
1171 uncharge:
1172 	/* drop extra refcnt by try_charge() */
1173 	css_put(&parent->css);
1174 	/* uncharge if move fails */
1175 	res_counter_uncharge(&parent->res, PAGE_SIZE);
1176 	if (do_swap_account)
1177 		res_counter_uncharge(&parent->memsw, PAGE_SIZE);
1178 	return ret;
1179 }
1180 
1181 /*
1182  * Charge the memory controller for page usage.
1183  * Return
1184  * 0 if the charge was successful
1185  * < 0 if the cgroup is over its limit
1186  */
1187 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
1188 				gfp_t gfp_mask, enum charge_type ctype,
1189 				struct mem_cgroup *memcg)
1190 {
1191 	struct mem_cgroup *mem;
1192 	struct page_cgroup *pc;
1193 	int ret;
1194 
1195 	pc = lookup_page_cgroup(page);
1196 	/* can happen at boot */
1197 	if (unlikely(!pc))
1198 		return 0;
1199 	prefetchw(pc);
1200 
1201 	mem = memcg;
1202 	ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
1203 	if (ret || !mem)
1204 		return ret;
1205 
1206 	__mem_cgroup_commit_charge(mem, pc, ctype);
1207 	return 0;
1208 }
1209 
1210 int mem_cgroup_newpage_charge(struct page *page,
1211 			      struct mm_struct *mm, gfp_t gfp_mask)
1212 {
1213 	if (mem_cgroup_disabled())
1214 		return 0;
1215 	if (PageCompound(page))
1216 		return 0;
1217 	/*
1218 	 * If already mapped, we don't have to account.
1219 	 * If page cache, page->mapping has address_space.
1220 	 * But page->mapping may have out-of-use anon_vma pointer,
1221 	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
1222 	 * is NULL.
1223   	 */
1224 	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
1225 		return 0;
1226 	if (unlikely(!mm))
1227 		mm = &init_mm;
1228 	return mem_cgroup_charge_common(page, mm, gfp_mask,
1229 				MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
1230 }
1231 
1232 static void
1233 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
1234 					enum charge_type ctype);
1235 
1236 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
1237 				gfp_t gfp_mask)
1238 {
1239 	struct mem_cgroup *mem = NULL;
1240 	int ret;
1241 
1242 	if (mem_cgroup_disabled())
1243 		return 0;
1244 	if (PageCompound(page))
1245 		return 0;
1246 	/*
1247 	 * Corner case handling. This is called from add_to_page_cache()
1248 	 * in usual. But some FS (shmem) precharges this page before calling it
1249 	 * and call add_to_page_cache() with GFP_NOWAIT.
1250 	 *
1251 	 * For GFP_NOWAIT case, the page may be pre-charged before calling
1252 	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
1253 	 * charge twice. (It works but has to pay a bit larger cost.)
1254 	 * And when the page is SwapCache, it should take swap information
1255 	 * into account. This is under lock_page() now.
1256 	 */
1257 	if (!(gfp_mask & __GFP_WAIT)) {
1258 		struct page_cgroup *pc;
1259 
1260 
1261 		pc = lookup_page_cgroup(page);
1262 		if (!pc)
1263 			return 0;
1264 		lock_page_cgroup(pc);
1265 		if (PageCgroupUsed(pc)) {
1266 			unlock_page_cgroup(pc);
1267 			return 0;
1268 		}
1269 		unlock_page_cgroup(pc);
1270 	}
1271 
1272 	if (unlikely(!mm && !mem))
1273 		mm = &init_mm;
1274 
1275 	if (page_is_file_cache(page))
1276 		return mem_cgroup_charge_common(page, mm, gfp_mask,
1277 				MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
1278 
1279 	/* shmem */
1280 	if (PageSwapCache(page)) {
1281 		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
1282 		if (!ret)
1283 			__mem_cgroup_commit_charge_swapin(page, mem,
1284 					MEM_CGROUP_CHARGE_TYPE_SHMEM);
1285 	} else
1286 		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
1287 					MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
1288 
1289 	return ret;
1290 }
1291 
1292 /*
1293  * While swap-in, try_charge -> commit or cancel, the page is locked.
1294  * And when try_charge() successfully returns, one refcnt to memcg without
1295  * struct page_cgroup is aquired. This refcnt will be cumsumed by
1296  * "commit()" or removed by "cancel()"
1297  */
1298 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
1299 				 struct page *page,
1300 				 gfp_t mask, struct mem_cgroup **ptr)
1301 {
1302 	struct mem_cgroup *mem;
1303 	int ret;
1304 
1305 	if (mem_cgroup_disabled())
1306 		return 0;
1307 
1308 	if (!do_swap_account)
1309 		goto charge_cur_mm;
1310 	/*
1311 	 * A racing thread's fault, or swapoff, may have already updated
1312 	 * the pte, and even removed page from swap cache: return success
1313 	 * to go on to do_swap_page()'s pte_same() test, which should fail.
1314 	 */
1315 	if (!PageSwapCache(page))
1316 		return 0;
1317 	mem = try_get_mem_cgroup_from_swapcache(page);
1318 	if (!mem)
1319 		goto charge_cur_mm;
1320 	*ptr = mem;
1321 	ret = __mem_cgroup_try_charge(NULL, mask, ptr, true);
1322 	/* drop extra refcnt from tryget */
1323 	css_put(&mem->css);
1324 	return ret;
1325 charge_cur_mm:
1326 	if (unlikely(!mm))
1327 		mm = &init_mm;
1328 	return __mem_cgroup_try_charge(mm, mask, ptr, true);
1329 }
1330 
1331 static void
1332 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
1333 					enum charge_type ctype)
1334 {
1335 	struct page_cgroup *pc;
1336 
1337 	if (mem_cgroup_disabled())
1338 		return;
1339 	if (!ptr)
1340 		return;
1341 	pc = lookup_page_cgroup(page);
1342 	mem_cgroup_lru_del_before_commit_swapcache(page);
1343 	__mem_cgroup_commit_charge(ptr, pc, ctype);
1344 	mem_cgroup_lru_add_after_commit_swapcache(page);
1345 	/*
1346 	 * Now swap is on-memory. This means this page may be
1347 	 * counted both as mem and swap....double count.
1348 	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
1349 	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
1350 	 * may call delete_from_swap_cache() before reach here.
1351 	 */
1352 	if (do_swap_account && PageSwapCache(page)) {
1353 		swp_entry_t ent = {.val = page_private(page)};
1354 		unsigned short id;
1355 		struct mem_cgroup *memcg;
1356 
1357 		id = swap_cgroup_record(ent, 0);
1358 		rcu_read_lock();
1359 		memcg = mem_cgroup_lookup(id);
1360 		if (memcg) {
1361 			/*
1362 			 * This recorded memcg can be obsolete one. So, avoid
1363 			 * calling css_tryget
1364 			 */
1365 			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1366 			mem_cgroup_put(memcg);
1367 		}
1368 		rcu_read_unlock();
1369 	}
1370 	/* add this page(page_cgroup) to the LRU we want. */
1371 
1372 }
1373 
1374 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
1375 {
1376 	__mem_cgroup_commit_charge_swapin(page, ptr,
1377 					MEM_CGROUP_CHARGE_TYPE_MAPPED);
1378 }
1379 
1380 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
1381 {
1382 	if (mem_cgroup_disabled())
1383 		return;
1384 	if (!mem)
1385 		return;
1386 	res_counter_uncharge(&mem->res, PAGE_SIZE);
1387 	if (do_swap_account)
1388 		res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1389 	css_put(&mem->css);
1390 }
1391 
1392 
1393 /*
1394  * uncharge if !page_mapped(page)
1395  */
1396 static struct mem_cgroup *
1397 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
1398 {
1399 	struct page_cgroup *pc;
1400 	struct mem_cgroup *mem = NULL;
1401 	struct mem_cgroup_per_zone *mz;
1402 
1403 	if (mem_cgroup_disabled())
1404 		return NULL;
1405 
1406 	if (PageSwapCache(page))
1407 		return NULL;
1408 
1409 	/*
1410 	 * Check if our page_cgroup is valid
1411 	 */
1412 	pc = lookup_page_cgroup(page);
1413 	if (unlikely(!pc || !PageCgroupUsed(pc)))
1414 		return NULL;
1415 
1416 	lock_page_cgroup(pc);
1417 
1418 	mem = pc->mem_cgroup;
1419 
1420 	if (!PageCgroupUsed(pc))
1421 		goto unlock_out;
1422 
1423 	switch (ctype) {
1424 	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
1425 		if (page_mapped(page))
1426 			goto unlock_out;
1427 		break;
1428 	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
1429 		if (!PageAnon(page)) {	/* Shared memory */
1430 			if (page->mapping && !page_is_file_cache(page))
1431 				goto unlock_out;
1432 		} else if (page_mapped(page)) /* Anon */
1433 				goto unlock_out;
1434 		break;
1435 	default:
1436 		break;
1437 	}
1438 
1439 	res_counter_uncharge(&mem->res, PAGE_SIZE);
1440 	if (do_swap_account && (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT))
1441 		res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1442 	mem_cgroup_charge_statistics(mem, pc, false);
1443 
1444 	ClearPageCgroupUsed(pc);
1445 	/*
1446 	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
1447 	 * freed from LRU. This is safe because uncharged page is expected not
1448 	 * to be reused (freed soon). Exception is SwapCache, it's handled by
1449 	 * special functions.
1450 	 */
1451 
1452 	mz = page_cgroup_zoneinfo(pc);
1453 	unlock_page_cgroup(pc);
1454 
1455 	/* at swapout, this memcg will be accessed to record to swap */
1456 	if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
1457 		css_put(&mem->css);
1458 
1459 	return mem;
1460 
1461 unlock_out:
1462 	unlock_page_cgroup(pc);
1463 	return NULL;
1464 }
1465 
1466 void mem_cgroup_uncharge_page(struct page *page)
1467 {
1468 	/* early check. */
1469 	if (page_mapped(page))
1470 		return;
1471 	if (page->mapping && !PageAnon(page))
1472 		return;
1473 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
1474 }
1475 
1476 void mem_cgroup_uncharge_cache_page(struct page *page)
1477 {
1478 	VM_BUG_ON(page_mapped(page));
1479 	VM_BUG_ON(page->mapping);
1480 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
1481 }
1482 
1483 #ifdef CONFIG_SWAP
1484 /*
1485  * called after __delete_from_swap_cache() and drop "page" account.
1486  * memcg information is recorded to swap_cgroup of "ent"
1487  */
1488 void mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent)
1489 {
1490 	struct mem_cgroup *memcg;
1491 
1492 	memcg = __mem_cgroup_uncharge_common(page,
1493 					MEM_CGROUP_CHARGE_TYPE_SWAPOUT);
1494 	/* record memcg information */
1495 	if (do_swap_account && memcg) {
1496 		swap_cgroup_record(ent, css_id(&memcg->css));
1497 		mem_cgroup_get(memcg);
1498 	}
1499 	if (memcg)
1500 		css_put(&memcg->css);
1501 }
1502 #endif
1503 
1504 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
1505 /*
1506  * called from swap_entry_free(). remove record in swap_cgroup and
1507  * uncharge "memsw" account.
1508  */
1509 void mem_cgroup_uncharge_swap(swp_entry_t ent)
1510 {
1511 	struct mem_cgroup *memcg;
1512 	unsigned short id;
1513 
1514 	if (!do_swap_account)
1515 		return;
1516 
1517 	id = swap_cgroup_record(ent, 0);
1518 	rcu_read_lock();
1519 	memcg = mem_cgroup_lookup(id);
1520 	if (memcg) {
1521 		/*
1522 		 * We uncharge this because swap is freed.
1523 		 * This memcg can be obsolete one. We avoid calling css_tryget
1524 		 */
1525 		res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1526 		mem_cgroup_put(memcg);
1527 	}
1528 	rcu_read_unlock();
1529 }
1530 #endif
1531 
1532 /*
1533  * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
1534  * page belongs to.
1535  */
1536 int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
1537 {
1538 	struct page_cgroup *pc;
1539 	struct mem_cgroup *mem = NULL;
1540 	int ret = 0;
1541 
1542 	if (mem_cgroup_disabled())
1543 		return 0;
1544 
1545 	pc = lookup_page_cgroup(page);
1546 	lock_page_cgroup(pc);
1547 	if (PageCgroupUsed(pc)) {
1548 		mem = pc->mem_cgroup;
1549 		css_get(&mem->css);
1550 	}
1551 	unlock_page_cgroup(pc);
1552 
1553 	if (mem) {
1554 		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false);
1555 		css_put(&mem->css);
1556 	}
1557 	*ptr = mem;
1558 	return ret;
1559 }
1560 
1561 /* remove redundant charge if migration failed*/
1562 void mem_cgroup_end_migration(struct mem_cgroup *mem,
1563 		struct page *oldpage, struct page *newpage)
1564 {
1565 	struct page *target, *unused;
1566 	struct page_cgroup *pc;
1567 	enum charge_type ctype;
1568 
1569 	if (!mem)
1570 		return;
1571 
1572 	/* at migration success, oldpage->mapping is NULL. */
1573 	if (oldpage->mapping) {
1574 		target = oldpage;
1575 		unused = NULL;
1576 	} else {
1577 		target = newpage;
1578 		unused = oldpage;
1579 	}
1580 
1581 	if (PageAnon(target))
1582 		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
1583 	else if (page_is_file_cache(target))
1584 		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
1585 	else
1586 		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
1587 
1588 	/* unused page is not on radix-tree now. */
1589 	if (unused)
1590 		__mem_cgroup_uncharge_common(unused, ctype);
1591 
1592 	pc = lookup_page_cgroup(target);
1593 	/*
1594 	 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
1595 	 * So, double-counting is effectively avoided.
1596 	 */
1597 	__mem_cgroup_commit_charge(mem, pc, ctype);
1598 
1599 	/*
1600 	 * Both of oldpage and newpage are still under lock_page().
1601 	 * Then, we don't have to care about race in radix-tree.
1602 	 * But we have to be careful that this page is unmapped or not.
1603 	 *
1604 	 * There is a case for !page_mapped(). At the start of
1605 	 * migration, oldpage was mapped. But now, it's zapped.
1606 	 * But we know *target* page is not freed/reused under us.
1607 	 * mem_cgroup_uncharge_page() does all necessary checks.
1608 	 */
1609 	if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
1610 		mem_cgroup_uncharge_page(target);
1611 }
1612 
1613 /*
1614  * A call to try to shrink memory usage on charge failure at shmem's swapin.
1615  * Calling hierarchical_reclaim is not enough because we should update
1616  * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
1617  * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
1618  * not from the memcg which this page would be charged to.
1619  * try_charge_swapin does all of these works properly.
1620  */
1621 int mem_cgroup_shmem_charge_fallback(struct page *page,
1622 			    struct mm_struct *mm,
1623 			    gfp_t gfp_mask)
1624 {
1625 	struct mem_cgroup *mem = NULL;
1626 	int ret;
1627 
1628 	if (mem_cgroup_disabled())
1629 		return 0;
1630 
1631 	ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
1632 	if (!ret)
1633 		mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
1634 
1635 	return ret;
1636 }
1637 
1638 static DEFINE_MUTEX(set_limit_mutex);
1639 
1640 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
1641 				unsigned long long val)
1642 {
1643 	int retry_count;
1644 	int progress;
1645 	u64 memswlimit;
1646 	int ret = 0;
1647 	int children = mem_cgroup_count_children(memcg);
1648 	u64 curusage, oldusage;
1649 
1650 	/*
1651 	 * For keeping hierarchical_reclaim simple, how long we should retry
1652 	 * is depends on callers. We set our retry-count to be function
1653 	 * of # of children which we should visit in this loop.
1654 	 */
1655 	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
1656 
1657 	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
1658 
1659 	while (retry_count) {
1660 		if (signal_pending(current)) {
1661 			ret = -EINTR;
1662 			break;
1663 		}
1664 		/*
1665 		 * Rather than hide all in some function, I do this in
1666 		 * open coded manner. You see what this really does.
1667 		 * We have to guarantee mem->res.limit < mem->memsw.limit.
1668 		 */
1669 		mutex_lock(&set_limit_mutex);
1670 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1671 		if (memswlimit < val) {
1672 			ret = -EINVAL;
1673 			mutex_unlock(&set_limit_mutex);
1674 			break;
1675 		}
1676 		ret = res_counter_set_limit(&memcg->res, val);
1677 		mutex_unlock(&set_limit_mutex);
1678 
1679 		if (!ret)
1680 			break;
1681 
1682 		progress = mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL,
1683 						   false, true);
1684 		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
1685 		/* Usage is reduced ? */
1686   		if (curusage >= oldusage)
1687 			retry_count--;
1688 		else
1689 			oldusage = curusage;
1690 	}
1691 
1692 	return ret;
1693 }
1694 
1695 int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
1696 				unsigned long long val)
1697 {
1698 	int retry_count;
1699 	u64 memlimit, oldusage, curusage;
1700 	int children = mem_cgroup_count_children(memcg);
1701 	int ret = -EBUSY;
1702 
1703 	if (!do_swap_account)
1704 		return -EINVAL;
1705 	/* see mem_cgroup_resize_res_limit */
1706  	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
1707 	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
1708 	while (retry_count) {
1709 		if (signal_pending(current)) {
1710 			ret = -EINTR;
1711 			break;
1712 		}
1713 		/*
1714 		 * Rather than hide all in some function, I do this in
1715 		 * open coded manner. You see what this really does.
1716 		 * We have to guarantee mem->res.limit < mem->memsw.limit.
1717 		 */
1718 		mutex_lock(&set_limit_mutex);
1719 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1720 		if (memlimit > val) {
1721 			ret = -EINVAL;
1722 			mutex_unlock(&set_limit_mutex);
1723 			break;
1724 		}
1725 		ret = res_counter_set_limit(&memcg->memsw, val);
1726 		mutex_unlock(&set_limit_mutex);
1727 
1728 		if (!ret)
1729 			break;
1730 
1731 		mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL, true, true);
1732 		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
1733 		/* Usage is reduced ? */
1734 		if (curusage >= oldusage)
1735 			retry_count--;
1736 		else
1737 			oldusage = curusage;
1738 	}
1739 	return ret;
1740 }
1741 
1742 /*
1743  * This routine traverse page_cgroup in given list and drop them all.
1744  * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
1745  */
1746 static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
1747 				int node, int zid, enum lru_list lru)
1748 {
1749 	struct zone *zone;
1750 	struct mem_cgroup_per_zone *mz;
1751 	struct page_cgroup *pc, *busy;
1752 	unsigned long flags, loop;
1753 	struct list_head *list;
1754 	int ret = 0;
1755 
1756 	zone = &NODE_DATA(node)->node_zones[zid];
1757 	mz = mem_cgroup_zoneinfo(mem, node, zid);
1758 	list = &mz->lists[lru];
1759 
1760 	loop = MEM_CGROUP_ZSTAT(mz, lru);
1761 	/* give some margin against EBUSY etc...*/
1762 	loop += 256;
1763 	busy = NULL;
1764 	while (loop--) {
1765 		ret = 0;
1766 		spin_lock_irqsave(&zone->lru_lock, flags);
1767 		if (list_empty(list)) {
1768 			spin_unlock_irqrestore(&zone->lru_lock, flags);
1769 			break;
1770 		}
1771 		pc = list_entry(list->prev, struct page_cgroup, lru);
1772 		if (busy == pc) {
1773 			list_move(&pc->lru, list);
1774 			busy = 0;
1775 			spin_unlock_irqrestore(&zone->lru_lock, flags);
1776 			continue;
1777 		}
1778 		spin_unlock_irqrestore(&zone->lru_lock, flags);
1779 
1780 		ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
1781 		if (ret == -ENOMEM)
1782 			break;
1783 
1784 		if (ret == -EBUSY || ret == -EINVAL) {
1785 			/* found lock contention or "pc" is obsolete. */
1786 			busy = pc;
1787 			cond_resched();
1788 		} else
1789 			busy = NULL;
1790 	}
1791 
1792 	if (!ret && !list_empty(list))
1793 		return -EBUSY;
1794 	return ret;
1795 }
1796 
1797 /*
1798  * make mem_cgroup's charge to be 0 if there is no task.
1799  * This enables deleting this mem_cgroup.
1800  */
1801 static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
1802 {
1803 	int ret;
1804 	int node, zid, shrink;
1805 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1806 	struct cgroup *cgrp = mem->css.cgroup;
1807 
1808 	css_get(&mem->css);
1809 
1810 	shrink = 0;
1811 	/* should free all ? */
1812 	if (free_all)
1813 		goto try_to_free;
1814 move_account:
1815 	while (mem->res.usage > 0) {
1816 		ret = -EBUSY;
1817 		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
1818 			goto out;
1819 		ret = -EINTR;
1820 		if (signal_pending(current))
1821 			goto out;
1822 		/* This is for making all *used* pages to be on LRU. */
1823 		lru_add_drain_all();
1824 		ret = 0;
1825 		for_each_node_state(node, N_HIGH_MEMORY) {
1826 			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
1827 				enum lru_list l;
1828 				for_each_lru(l) {
1829 					ret = mem_cgroup_force_empty_list(mem,
1830 							node, zid, l);
1831 					if (ret)
1832 						break;
1833 				}
1834 			}
1835 			if (ret)
1836 				break;
1837 		}
1838 		/* it seems parent cgroup doesn't have enough mem */
1839 		if (ret == -ENOMEM)
1840 			goto try_to_free;
1841 		cond_resched();
1842 	}
1843 	ret = 0;
1844 out:
1845 	css_put(&mem->css);
1846 	return ret;
1847 
1848 try_to_free:
1849 	/* returns EBUSY if there is a task or if we come here twice. */
1850 	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
1851 		ret = -EBUSY;
1852 		goto out;
1853 	}
1854 	/* we call try-to-free pages for make this cgroup empty */
1855 	lru_add_drain_all();
1856 	/* try to free all pages in this cgroup */
1857 	shrink = 1;
1858 	while (nr_retries && mem->res.usage > 0) {
1859 		int progress;
1860 
1861 		if (signal_pending(current)) {
1862 			ret = -EINTR;
1863 			goto out;
1864 		}
1865 		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
1866 						false, get_swappiness(mem));
1867 		if (!progress) {
1868 			nr_retries--;
1869 			/* maybe some writeback is necessary */
1870 			congestion_wait(WRITE, HZ/10);
1871 		}
1872 
1873 	}
1874 	lru_add_drain();
1875 	/* try move_account...there may be some *locked* pages. */
1876 	if (mem->res.usage)
1877 		goto move_account;
1878 	ret = 0;
1879 	goto out;
1880 }
1881 
1882 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
1883 {
1884 	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
1885 }
1886 
1887 
1888 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
1889 {
1890 	return mem_cgroup_from_cont(cont)->use_hierarchy;
1891 }
1892 
1893 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
1894 					u64 val)
1895 {
1896 	int retval = 0;
1897 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1898 	struct cgroup *parent = cont->parent;
1899 	struct mem_cgroup *parent_mem = NULL;
1900 
1901 	if (parent)
1902 		parent_mem = mem_cgroup_from_cont(parent);
1903 
1904 	cgroup_lock();
1905 	/*
1906 	 * If parent's use_hiearchy is set, we can't make any modifications
1907 	 * in the child subtrees. If it is unset, then the change can
1908 	 * occur, provided the current cgroup has no children.
1909 	 *
1910 	 * For the root cgroup, parent_mem is NULL, we allow value to be
1911 	 * set if there are no children.
1912 	 */
1913 	if ((!parent_mem || !parent_mem->use_hierarchy) &&
1914 				(val == 1 || val == 0)) {
1915 		if (list_empty(&cont->children))
1916 			mem->use_hierarchy = val;
1917 		else
1918 			retval = -EBUSY;
1919 	} else
1920 		retval = -EINVAL;
1921 	cgroup_unlock();
1922 
1923 	return retval;
1924 }
1925 
1926 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
1927 {
1928 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1929 	u64 val = 0;
1930 	int type, name;
1931 
1932 	type = MEMFILE_TYPE(cft->private);
1933 	name = MEMFILE_ATTR(cft->private);
1934 	switch (type) {
1935 	case _MEM:
1936 		val = res_counter_read_u64(&mem->res, name);
1937 		break;
1938 	case _MEMSWAP:
1939 		if (do_swap_account)
1940 			val = res_counter_read_u64(&mem->memsw, name);
1941 		break;
1942 	default:
1943 		BUG();
1944 		break;
1945 	}
1946 	return val;
1947 }
1948 /*
1949  * The user of this function is...
1950  * RES_LIMIT.
1951  */
1952 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
1953 			    const char *buffer)
1954 {
1955 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
1956 	int type, name;
1957 	unsigned long long val;
1958 	int ret;
1959 
1960 	type = MEMFILE_TYPE(cft->private);
1961 	name = MEMFILE_ATTR(cft->private);
1962 	switch (name) {
1963 	case RES_LIMIT:
1964 		/* This function does all necessary parse...reuse it */
1965 		ret = res_counter_memparse_write_strategy(buffer, &val);
1966 		if (ret)
1967 			break;
1968 		if (type == _MEM)
1969 			ret = mem_cgroup_resize_limit(memcg, val);
1970 		else
1971 			ret = mem_cgroup_resize_memsw_limit(memcg, val);
1972 		break;
1973 	default:
1974 		ret = -EINVAL; /* should be BUG() ? */
1975 		break;
1976 	}
1977 	return ret;
1978 }
1979 
1980 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
1981 		unsigned long long *mem_limit, unsigned long long *memsw_limit)
1982 {
1983 	struct cgroup *cgroup;
1984 	unsigned long long min_limit, min_memsw_limit, tmp;
1985 
1986 	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1987 	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1988 	cgroup = memcg->css.cgroup;
1989 	if (!memcg->use_hierarchy)
1990 		goto out;
1991 
1992 	while (cgroup->parent) {
1993 		cgroup = cgroup->parent;
1994 		memcg = mem_cgroup_from_cont(cgroup);
1995 		if (!memcg->use_hierarchy)
1996 			break;
1997 		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
1998 		min_limit = min(min_limit, tmp);
1999 		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2000 		min_memsw_limit = min(min_memsw_limit, tmp);
2001 	}
2002 out:
2003 	*mem_limit = min_limit;
2004 	*memsw_limit = min_memsw_limit;
2005 	return;
2006 }
2007 
2008 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
2009 {
2010 	struct mem_cgroup *mem;
2011 	int type, name;
2012 
2013 	mem = mem_cgroup_from_cont(cont);
2014 	type = MEMFILE_TYPE(event);
2015 	name = MEMFILE_ATTR(event);
2016 	switch (name) {
2017 	case RES_MAX_USAGE:
2018 		if (type == _MEM)
2019 			res_counter_reset_max(&mem->res);
2020 		else
2021 			res_counter_reset_max(&mem->memsw);
2022 		break;
2023 	case RES_FAILCNT:
2024 		if (type == _MEM)
2025 			res_counter_reset_failcnt(&mem->res);
2026 		else
2027 			res_counter_reset_failcnt(&mem->memsw);
2028 		break;
2029 	}
2030 	return 0;
2031 }
2032 
2033 
2034 /* For read statistics */
2035 enum {
2036 	MCS_CACHE,
2037 	MCS_RSS,
2038 	MCS_PGPGIN,
2039 	MCS_PGPGOUT,
2040 	MCS_INACTIVE_ANON,
2041 	MCS_ACTIVE_ANON,
2042 	MCS_INACTIVE_FILE,
2043 	MCS_ACTIVE_FILE,
2044 	MCS_UNEVICTABLE,
2045 	NR_MCS_STAT,
2046 };
2047 
2048 struct mcs_total_stat {
2049 	s64 stat[NR_MCS_STAT];
2050 };
2051 
2052 struct {
2053 	char *local_name;
2054 	char *total_name;
2055 } memcg_stat_strings[NR_MCS_STAT] = {
2056 	{"cache", "total_cache"},
2057 	{"rss", "total_rss"},
2058 	{"pgpgin", "total_pgpgin"},
2059 	{"pgpgout", "total_pgpgout"},
2060 	{"inactive_anon", "total_inactive_anon"},
2061 	{"active_anon", "total_active_anon"},
2062 	{"inactive_file", "total_inactive_file"},
2063 	{"active_file", "total_active_file"},
2064 	{"unevictable", "total_unevictable"}
2065 };
2066 
2067 
2068 static int mem_cgroup_get_local_stat(struct mem_cgroup *mem, void *data)
2069 {
2070 	struct mcs_total_stat *s = data;
2071 	s64 val;
2072 
2073 	/* per cpu stat */
2074 	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_CACHE);
2075 	s->stat[MCS_CACHE] += val * PAGE_SIZE;
2076 	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
2077 	s->stat[MCS_RSS] += val * PAGE_SIZE;
2078 	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGIN_COUNT);
2079 	s->stat[MCS_PGPGIN] += val;
2080 	val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGOUT_COUNT);
2081 	s->stat[MCS_PGPGOUT] += val;
2082 
2083 	/* per zone stat */
2084 	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
2085 	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
2086 	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
2087 	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
2088 	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
2089 	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
2090 	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
2091 	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
2092 	val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
2093 	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
2094 	return 0;
2095 }
2096 
2097 static void
2098 mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
2099 {
2100 	mem_cgroup_walk_tree(mem, s, mem_cgroup_get_local_stat);
2101 }
2102 
2103 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
2104 				 struct cgroup_map_cb *cb)
2105 {
2106 	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
2107 	struct mcs_total_stat mystat;
2108 	int i;
2109 
2110 	memset(&mystat, 0, sizeof(mystat));
2111 	mem_cgroup_get_local_stat(mem_cont, &mystat);
2112 
2113 	for (i = 0; i < NR_MCS_STAT; i++)
2114 		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
2115 
2116 	/* Hierarchical information */
2117 	{
2118 		unsigned long long limit, memsw_limit;
2119 		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
2120 		cb->fill(cb, "hierarchical_memory_limit", limit);
2121 		if (do_swap_account)
2122 			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
2123 	}
2124 
2125 	memset(&mystat, 0, sizeof(mystat));
2126 	mem_cgroup_get_total_stat(mem_cont, &mystat);
2127 	for (i = 0; i < NR_MCS_STAT; i++)
2128 		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
2129 
2130 
2131 #ifdef CONFIG_DEBUG_VM
2132 	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
2133 
2134 	{
2135 		int nid, zid;
2136 		struct mem_cgroup_per_zone *mz;
2137 		unsigned long recent_rotated[2] = {0, 0};
2138 		unsigned long recent_scanned[2] = {0, 0};
2139 
2140 		for_each_online_node(nid)
2141 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2142 				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
2143 
2144 				recent_rotated[0] +=
2145 					mz->reclaim_stat.recent_rotated[0];
2146 				recent_rotated[1] +=
2147 					mz->reclaim_stat.recent_rotated[1];
2148 				recent_scanned[0] +=
2149 					mz->reclaim_stat.recent_scanned[0];
2150 				recent_scanned[1] +=
2151 					mz->reclaim_stat.recent_scanned[1];
2152 			}
2153 		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
2154 		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
2155 		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
2156 		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
2157 	}
2158 #endif
2159 
2160 	return 0;
2161 }
2162 
2163 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
2164 {
2165 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2166 
2167 	return get_swappiness(memcg);
2168 }
2169 
2170 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
2171 				       u64 val)
2172 {
2173 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2174 	struct mem_cgroup *parent;
2175 
2176 	if (val > 100)
2177 		return -EINVAL;
2178 
2179 	if (cgrp->parent == NULL)
2180 		return -EINVAL;
2181 
2182 	parent = mem_cgroup_from_cont(cgrp->parent);
2183 
2184 	cgroup_lock();
2185 
2186 	/* If under hierarchy, only empty-root can set this value */
2187 	if ((parent->use_hierarchy) ||
2188 	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
2189 		cgroup_unlock();
2190 		return -EINVAL;
2191 	}
2192 
2193 	spin_lock(&memcg->reclaim_param_lock);
2194 	memcg->swappiness = val;
2195 	spin_unlock(&memcg->reclaim_param_lock);
2196 
2197 	cgroup_unlock();
2198 
2199 	return 0;
2200 }
2201 
2202 
2203 static struct cftype mem_cgroup_files[] = {
2204 	{
2205 		.name = "usage_in_bytes",
2206 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2207 		.read_u64 = mem_cgroup_read,
2208 	},
2209 	{
2210 		.name = "max_usage_in_bytes",
2211 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
2212 		.trigger = mem_cgroup_reset,
2213 		.read_u64 = mem_cgroup_read,
2214 	},
2215 	{
2216 		.name = "limit_in_bytes",
2217 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
2218 		.write_string = mem_cgroup_write,
2219 		.read_u64 = mem_cgroup_read,
2220 	},
2221 	{
2222 		.name = "failcnt",
2223 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
2224 		.trigger = mem_cgroup_reset,
2225 		.read_u64 = mem_cgroup_read,
2226 	},
2227 	{
2228 		.name = "stat",
2229 		.read_map = mem_control_stat_show,
2230 	},
2231 	{
2232 		.name = "force_empty",
2233 		.trigger = mem_cgroup_force_empty_write,
2234 	},
2235 	{
2236 		.name = "use_hierarchy",
2237 		.write_u64 = mem_cgroup_hierarchy_write,
2238 		.read_u64 = mem_cgroup_hierarchy_read,
2239 	},
2240 	{
2241 		.name = "swappiness",
2242 		.read_u64 = mem_cgroup_swappiness_read,
2243 		.write_u64 = mem_cgroup_swappiness_write,
2244 	},
2245 };
2246 
2247 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2248 static struct cftype memsw_cgroup_files[] = {
2249 	{
2250 		.name = "memsw.usage_in_bytes",
2251 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
2252 		.read_u64 = mem_cgroup_read,
2253 	},
2254 	{
2255 		.name = "memsw.max_usage_in_bytes",
2256 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
2257 		.trigger = mem_cgroup_reset,
2258 		.read_u64 = mem_cgroup_read,
2259 	},
2260 	{
2261 		.name = "memsw.limit_in_bytes",
2262 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
2263 		.write_string = mem_cgroup_write,
2264 		.read_u64 = mem_cgroup_read,
2265 	},
2266 	{
2267 		.name = "memsw.failcnt",
2268 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
2269 		.trigger = mem_cgroup_reset,
2270 		.read_u64 = mem_cgroup_read,
2271 	},
2272 };
2273 
2274 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
2275 {
2276 	if (!do_swap_account)
2277 		return 0;
2278 	return cgroup_add_files(cont, ss, memsw_cgroup_files,
2279 				ARRAY_SIZE(memsw_cgroup_files));
2280 };
2281 #else
2282 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
2283 {
2284 	return 0;
2285 }
2286 #endif
2287 
2288 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
2289 {
2290 	struct mem_cgroup_per_node *pn;
2291 	struct mem_cgroup_per_zone *mz;
2292 	enum lru_list l;
2293 	int zone, tmp = node;
2294 	/*
2295 	 * This routine is called against possible nodes.
2296 	 * But it's BUG to call kmalloc() against offline node.
2297 	 *
2298 	 * TODO: this routine can waste much memory for nodes which will
2299 	 *       never be onlined. It's better to use memory hotplug callback
2300 	 *       function.
2301 	 */
2302 	if (!node_state(node, N_NORMAL_MEMORY))
2303 		tmp = -1;
2304 	pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
2305 	if (!pn)
2306 		return 1;
2307 
2308 	mem->info.nodeinfo[node] = pn;
2309 	memset(pn, 0, sizeof(*pn));
2310 
2311 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
2312 		mz = &pn->zoneinfo[zone];
2313 		for_each_lru(l)
2314 			INIT_LIST_HEAD(&mz->lists[l]);
2315 	}
2316 	return 0;
2317 }
2318 
2319 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
2320 {
2321 	kfree(mem->info.nodeinfo[node]);
2322 }
2323 
2324 static int mem_cgroup_size(void)
2325 {
2326 	int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu);
2327 	return sizeof(struct mem_cgroup) + cpustat_size;
2328 }
2329 
2330 static struct mem_cgroup *mem_cgroup_alloc(void)
2331 {
2332 	struct mem_cgroup *mem;
2333 	int size = mem_cgroup_size();
2334 
2335 	if (size < PAGE_SIZE)
2336 		mem = kmalloc(size, GFP_KERNEL);
2337 	else
2338 		mem = vmalloc(size);
2339 
2340 	if (mem)
2341 		memset(mem, 0, size);
2342 	return mem;
2343 }
2344 
2345 /*
2346  * At destroying mem_cgroup, references from swap_cgroup can remain.
2347  * (scanning all at force_empty is too costly...)
2348  *
2349  * Instead of clearing all references at force_empty, we remember
2350  * the number of reference from swap_cgroup and free mem_cgroup when
2351  * it goes down to 0.
2352  *
2353  * Removal of cgroup itself succeeds regardless of refs from swap.
2354  */
2355 
2356 static void __mem_cgroup_free(struct mem_cgroup *mem)
2357 {
2358 	int node;
2359 
2360 	free_css_id(&mem_cgroup_subsys, &mem->css);
2361 
2362 	for_each_node_state(node, N_POSSIBLE)
2363 		free_mem_cgroup_per_zone_info(mem, node);
2364 
2365 	if (mem_cgroup_size() < PAGE_SIZE)
2366 		kfree(mem);
2367 	else
2368 		vfree(mem);
2369 }
2370 
2371 static void mem_cgroup_get(struct mem_cgroup *mem)
2372 {
2373 	atomic_inc(&mem->refcnt);
2374 }
2375 
2376 static void mem_cgroup_put(struct mem_cgroup *mem)
2377 {
2378 	if (atomic_dec_and_test(&mem->refcnt)) {
2379 		struct mem_cgroup *parent = parent_mem_cgroup(mem);
2380 		__mem_cgroup_free(mem);
2381 		if (parent)
2382 			mem_cgroup_put(parent);
2383 	}
2384 }
2385 
2386 /*
2387  * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
2388  */
2389 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
2390 {
2391 	if (!mem->res.parent)
2392 		return NULL;
2393 	return mem_cgroup_from_res_counter(mem->res.parent, res);
2394 }
2395 
2396 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2397 static void __init enable_swap_cgroup(void)
2398 {
2399 	if (!mem_cgroup_disabled() && really_do_swap_account)
2400 		do_swap_account = 1;
2401 }
2402 #else
2403 static void __init enable_swap_cgroup(void)
2404 {
2405 }
2406 #endif
2407 
2408 static struct cgroup_subsys_state * __ref
2409 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
2410 {
2411 	struct mem_cgroup *mem, *parent;
2412 	long error = -ENOMEM;
2413 	int node;
2414 
2415 	mem = mem_cgroup_alloc();
2416 	if (!mem)
2417 		return ERR_PTR(error);
2418 
2419 	for_each_node_state(node, N_POSSIBLE)
2420 		if (alloc_mem_cgroup_per_zone_info(mem, node))
2421 			goto free_out;
2422 	/* root ? */
2423 	if (cont->parent == NULL) {
2424 		enable_swap_cgroup();
2425 		parent = NULL;
2426 	} else {
2427 		parent = mem_cgroup_from_cont(cont->parent);
2428 		mem->use_hierarchy = parent->use_hierarchy;
2429 	}
2430 
2431 	if (parent && parent->use_hierarchy) {
2432 		res_counter_init(&mem->res, &parent->res);
2433 		res_counter_init(&mem->memsw, &parent->memsw);
2434 		/*
2435 		 * We increment refcnt of the parent to ensure that we can
2436 		 * safely access it on res_counter_charge/uncharge.
2437 		 * This refcnt will be decremented when freeing this
2438 		 * mem_cgroup(see mem_cgroup_put).
2439 		 */
2440 		mem_cgroup_get(parent);
2441 	} else {
2442 		res_counter_init(&mem->res, NULL);
2443 		res_counter_init(&mem->memsw, NULL);
2444 	}
2445 	mem->last_scanned_child = 0;
2446 	spin_lock_init(&mem->reclaim_param_lock);
2447 
2448 	if (parent)
2449 		mem->swappiness = get_swappiness(parent);
2450 	atomic_set(&mem->refcnt, 1);
2451 	return &mem->css;
2452 free_out:
2453 	__mem_cgroup_free(mem);
2454 	return ERR_PTR(error);
2455 }
2456 
2457 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
2458 					struct cgroup *cont)
2459 {
2460 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2461 
2462 	return mem_cgroup_force_empty(mem, false);
2463 }
2464 
2465 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
2466 				struct cgroup *cont)
2467 {
2468 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2469 
2470 	mem_cgroup_put(mem);
2471 }
2472 
2473 static int mem_cgroup_populate(struct cgroup_subsys *ss,
2474 				struct cgroup *cont)
2475 {
2476 	int ret;
2477 
2478 	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
2479 				ARRAY_SIZE(mem_cgroup_files));
2480 
2481 	if (!ret)
2482 		ret = register_memsw_files(cont, ss);
2483 	return ret;
2484 }
2485 
2486 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
2487 				struct cgroup *cont,
2488 				struct cgroup *old_cont,
2489 				struct task_struct *p)
2490 {
2491 	mutex_lock(&memcg_tasklist);
2492 	/*
2493 	 * FIXME: It's better to move charges of this process from old
2494 	 * memcg to new memcg. But it's just on TODO-List now.
2495 	 */
2496 	mutex_unlock(&memcg_tasklist);
2497 }
2498 
2499 struct cgroup_subsys mem_cgroup_subsys = {
2500 	.name = "memory",
2501 	.subsys_id = mem_cgroup_subsys_id,
2502 	.create = mem_cgroup_create,
2503 	.pre_destroy = mem_cgroup_pre_destroy,
2504 	.destroy = mem_cgroup_destroy,
2505 	.populate = mem_cgroup_populate,
2506 	.attach = mem_cgroup_move_task,
2507 	.early_init = 0,
2508 	.use_id = 1,
2509 };
2510 
2511 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2512 
2513 static int __init disable_swap_account(char *s)
2514 {
2515 	really_do_swap_account = 0;
2516 	return 1;
2517 }
2518 __setup("noswapaccount", disable_swap_account);
2519 #endif
2520