1 /* memcontrol.c - Memory Controller 2 * 3 * Copyright IBM Corporation, 2007 4 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 5 * 6 * Copyright 2007 OpenVZ SWsoft Inc 7 * Author: Pavel Emelianov <xemul@openvz.org> 8 * 9 * Memory thresholds 10 * Copyright (C) 2009 Nokia Corporation 11 * Author: Kirill A. Shutemov 12 * 13 * Kernel Memory Controller 14 * Copyright (C) 2012 Parallels Inc. and Google Inc. 15 * Authors: Glauber Costa and Suleiman Souhlal 16 * 17 * Native page reclaim 18 * Charge lifetime sanitation 19 * Lockless page tracking & accounting 20 * Unified hierarchy configuration model 21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner 22 * 23 * This program is free software; you can redistribute it and/or modify 24 * it under the terms of the GNU General Public License as published by 25 * the Free Software Foundation; either version 2 of the License, or 26 * (at your option) any later version. 27 * 28 * This program is distributed in the hope that it will be useful, 29 * but WITHOUT ANY WARRANTY; without even the implied warranty of 30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 31 * GNU General Public License for more details. 32 */ 33 34 #include <linux/page_counter.h> 35 #include <linux/memcontrol.h> 36 #include <linux/cgroup.h> 37 #include <linux/mm.h> 38 #include <linux/hugetlb.h> 39 #include <linux/pagemap.h> 40 #include <linux/smp.h> 41 #include <linux/page-flags.h> 42 #include <linux/backing-dev.h> 43 #include <linux/bit_spinlock.h> 44 #include <linux/rcupdate.h> 45 #include <linux/limits.h> 46 #include <linux/export.h> 47 #include <linux/mutex.h> 48 #include <linux/rbtree.h> 49 #include <linux/slab.h> 50 #include <linux/swap.h> 51 #include <linux/swapops.h> 52 #include <linux/spinlock.h> 53 #include <linux/eventfd.h> 54 #include <linux/poll.h> 55 #include <linux/sort.h> 56 #include <linux/fs.h> 57 #include <linux/seq_file.h> 58 #include <linux/vmpressure.h> 59 #include <linux/mm_inline.h> 60 #include <linux/swap_cgroup.h> 61 #include <linux/cpu.h> 62 #include <linux/oom.h> 63 #include <linux/lockdep.h> 64 #include <linux/file.h> 65 #include <linux/tracehook.h> 66 #include "internal.h" 67 #include <net/sock.h> 68 #include <net/ip.h> 69 #include "slab.h" 70 71 #include <asm/uaccess.h> 72 73 #include <trace/events/vmscan.h> 74 75 struct cgroup_subsys memory_cgrp_subsys __read_mostly; 76 EXPORT_SYMBOL(memory_cgrp_subsys); 77 78 struct mem_cgroup *root_mem_cgroup __read_mostly; 79 80 #define MEM_CGROUP_RECLAIM_RETRIES 5 81 82 /* Socket memory accounting disabled? */ 83 static bool cgroup_memory_nosocket; 84 85 /* Kernel memory accounting disabled? */ 86 static bool cgroup_memory_nokmem; 87 88 /* Whether the swap controller is active */ 89 #ifdef CONFIG_MEMCG_SWAP 90 int do_swap_account __read_mostly; 91 #else 92 #define do_swap_account 0 93 #endif 94 95 /* Whether legacy memory+swap accounting is active */ 96 static bool do_memsw_account(void) 97 { 98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account; 99 } 100 101 static const char * const mem_cgroup_stat_names[] = { 102 "cache", 103 "rss", 104 "rss_huge", 105 "mapped_file", 106 "dirty", 107 "writeback", 108 "swap", 109 }; 110 111 static const char * const mem_cgroup_events_names[] = { 112 "pgpgin", 113 "pgpgout", 114 "pgfault", 115 "pgmajfault", 116 }; 117 118 static const char * const mem_cgroup_lru_names[] = { 119 "inactive_anon", 120 "active_anon", 121 "inactive_file", 122 "active_file", 123 "unevictable", 124 }; 125 126 #define THRESHOLDS_EVENTS_TARGET 128 127 #define SOFTLIMIT_EVENTS_TARGET 1024 128 #define NUMAINFO_EVENTS_TARGET 1024 129 130 /* 131 * Cgroups above their limits are maintained in a RB-Tree, independent of 132 * their hierarchy representation 133 */ 134 135 struct mem_cgroup_tree_per_node { 136 struct rb_root rb_root; 137 spinlock_t lock; 138 }; 139 140 struct mem_cgroup_tree { 141 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 142 }; 143 144 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 145 146 /* for OOM */ 147 struct mem_cgroup_eventfd_list { 148 struct list_head list; 149 struct eventfd_ctx *eventfd; 150 }; 151 152 /* 153 * cgroup_event represents events which userspace want to receive. 154 */ 155 struct mem_cgroup_event { 156 /* 157 * memcg which the event belongs to. 158 */ 159 struct mem_cgroup *memcg; 160 /* 161 * eventfd to signal userspace about the event. 162 */ 163 struct eventfd_ctx *eventfd; 164 /* 165 * Each of these stored in a list by the cgroup. 166 */ 167 struct list_head list; 168 /* 169 * register_event() callback will be used to add new userspace 170 * waiter for changes related to this event. Use eventfd_signal() 171 * on eventfd to send notification to userspace. 172 */ 173 int (*register_event)(struct mem_cgroup *memcg, 174 struct eventfd_ctx *eventfd, const char *args); 175 /* 176 * unregister_event() callback will be called when userspace closes 177 * the eventfd or on cgroup removing. This callback must be set, 178 * if you want provide notification functionality. 179 */ 180 void (*unregister_event)(struct mem_cgroup *memcg, 181 struct eventfd_ctx *eventfd); 182 /* 183 * All fields below needed to unregister event when 184 * userspace closes eventfd. 185 */ 186 poll_table pt; 187 wait_queue_head_t *wqh; 188 wait_queue_t wait; 189 struct work_struct remove; 190 }; 191 192 static void mem_cgroup_threshold(struct mem_cgroup *memcg); 193 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); 194 195 /* Stuffs for move charges at task migration. */ 196 /* 197 * Types of charges to be moved. 198 */ 199 #define MOVE_ANON 0x1U 200 #define MOVE_FILE 0x2U 201 #define MOVE_MASK (MOVE_ANON | MOVE_FILE) 202 203 /* "mc" and its members are protected by cgroup_mutex */ 204 static struct move_charge_struct { 205 spinlock_t lock; /* for from, to */ 206 struct mm_struct *mm; 207 struct mem_cgroup *from; 208 struct mem_cgroup *to; 209 unsigned long flags; 210 unsigned long precharge; 211 unsigned long moved_charge; 212 unsigned long moved_swap; 213 struct task_struct *moving_task; /* a task moving charges */ 214 wait_queue_head_t waitq; /* a waitq for other context */ 215 } mc = { 216 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 217 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 218 }; 219 220 /* 221 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft 222 * limit reclaim to prevent infinite loops, if they ever occur. 223 */ 224 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 225 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 226 227 enum charge_type { 228 MEM_CGROUP_CHARGE_TYPE_CACHE = 0, 229 MEM_CGROUP_CHARGE_TYPE_ANON, 230 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */ 231 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */ 232 NR_CHARGE_TYPE, 233 }; 234 235 /* for encoding cft->private value on file */ 236 enum res_type { 237 _MEM, 238 _MEMSWAP, 239 _OOM_TYPE, 240 _KMEM, 241 _TCP, 242 }; 243 244 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) 245 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) 246 #define MEMFILE_ATTR(val) ((val) & 0xffff) 247 /* Used for OOM nofiier */ 248 #define OOM_CONTROL (0) 249 250 /* Some nice accessors for the vmpressure. */ 251 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 252 { 253 if (!memcg) 254 memcg = root_mem_cgroup; 255 return &memcg->vmpressure; 256 } 257 258 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr) 259 { 260 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css; 261 } 262 263 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 264 { 265 return (memcg == root_mem_cgroup); 266 } 267 268 #ifndef CONFIG_SLOB 269 /* 270 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches. 271 * The main reason for not using cgroup id for this: 272 * this works better in sparse environments, where we have a lot of memcgs, 273 * but only a few kmem-limited. Or also, if we have, for instance, 200 274 * memcgs, and none but the 200th is kmem-limited, we'd have to have a 275 * 200 entry array for that. 276 * 277 * The current size of the caches array is stored in memcg_nr_cache_ids. It 278 * will double each time we have to increase it. 279 */ 280 static DEFINE_IDA(memcg_cache_ida); 281 int memcg_nr_cache_ids; 282 283 /* Protects memcg_nr_cache_ids */ 284 static DECLARE_RWSEM(memcg_cache_ids_sem); 285 286 void memcg_get_cache_ids(void) 287 { 288 down_read(&memcg_cache_ids_sem); 289 } 290 291 void memcg_put_cache_ids(void) 292 { 293 up_read(&memcg_cache_ids_sem); 294 } 295 296 /* 297 * MIN_SIZE is different than 1, because we would like to avoid going through 298 * the alloc/free process all the time. In a small machine, 4 kmem-limited 299 * cgroups is a reasonable guess. In the future, it could be a parameter or 300 * tunable, but that is strictly not necessary. 301 * 302 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get 303 * this constant directly from cgroup, but it is understandable that this is 304 * better kept as an internal representation in cgroup.c. In any case, the 305 * cgrp_id space is not getting any smaller, and we don't have to necessarily 306 * increase ours as well if it increases. 307 */ 308 #define MEMCG_CACHES_MIN_SIZE 4 309 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX 310 311 /* 312 * A lot of the calls to the cache allocation functions are expected to be 313 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are 314 * conditional to this static branch, we'll have to allow modules that does 315 * kmem_cache_alloc and the such to see this symbol as well 316 */ 317 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key); 318 EXPORT_SYMBOL(memcg_kmem_enabled_key); 319 320 #endif /* !CONFIG_SLOB */ 321 322 /** 323 * mem_cgroup_css_from_page - css of the memcg associated with a page 324 * @page: page of interest 325 * 326 * If memcg is bound to the default hierarchy, css of the memcg associated 327 * with @page is returned. The returned css remains associated with @page 328 * until it is released. 329 * 330 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup 331 * is returned. 332 */ 333 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page) 334 { 335 struct mem_cgroup *memcg; 336 337 memcg = page->mem_cgroup; 338 339 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 340 memcg = root_mem_cgroup; 341 342 return &memcg->css; 343 } 344 345 /** 346 * page_cgroup_ino - return inode number of the memcg a page is charged to 347 * @page: the page 348 * 349 * Look up the closest online ancestor of the memory cgroup @page is charged to 350 * and return its inode number or 0 if @page is not charged to any cgroup. It 351 * is safe to call this function without holding a reference to @page. 352 * 353 * Note, this function is inherently racy, because there is nothing to prevent 354 * the cgroup inode from getting torn down and potentially reallocated a moment 355 * after page_cgroup_ino() returns, so it only should be used by callers that 356 * do not care (such as procfs interfaces). 357 */ 358 ino_t page_cgroup_ino(struct page *page) 359 { 360 struct mem_cgroup *memcg; 361 unsigned long ino = 0; 362 363 rcu_read_lock(); 364 memcg = READ_ONCE(page->mem_cgroup); 365 while (memcg && !(memcg->css.flags & CSS_ONLINE)) 366 memcg = parent_mem_cgroup(memcg); 367 if (memcg) 368 ino = cgroup_ino(memcg->css.cgroup); 369 rcu_read_unlock(); 370 return ino; 371 } 372 373 static struct mem_cgroup_per_node * 374 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page) 375 { 376 int nid = page_to_nid(page); 377 378 return memcg->nodeinfo[nid]; 379 } 380 381 static struct mem_cgroup_tree_per_node * 382 soft_limit_tree_node(int nid) 383 { 384 return soft_limit_tree.rb_tree_per_node[nid]; 385 } 386 387 static struct mem_cgroup_tree_per_node * 388 soft_limit_tree_from_page(struct page *page) 389 { 390 int nid = page_to_nid(page); 391 392 return soft_limit_tree.rb_tree_per_node[nid]; 393 } 394 395 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz, 396 struct mem_cgroup_tree_per_node *mctz, 397 unsigned long new_usage_in_excess) 398 { 399 struct rb_node **p = &mctz->rb_root.rb_node; 400 struct rb_node *parent = NULL; 401 struct mem_cgroup_per_node *mz_node; 402 403 if (mz->on_tree) 404 return; 405 406 mz->usage_in_excess = new_usage_in_excess; 407 if (!mz->usage_in_excess) 408 return; 409 while (*p) { 410 parent = *p; 411 mz_node = rb_entry(parent, struct mem_cgroup_per_node, 412 tree_node); 413 if (mz->usage_in_excess < mz_node->usage_in_excess) 414 p = &(*p)->rb_left; 415 /* 416 * We can't avoid mem cgroups that are over their soft 417 * limit by the same amount 418 */ 419 else if (mz->usage_in_excess >= mz_node->usage_in_excess) 420 p = &(*p)->rb_right; 421 } 422 rb_link_node(&mz->tree_node, parent, p); 423 rb_insert_color(&mz->tree_node, &mctz->rb_root); 424 mz->on_tree = true; 425 } 426 427 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 428 struct mem_cgroup_tree_per_node *mctz) 429 { 430 if (!mz->on_tree) 431 return; 432 rb_erase(&mz->tree_node, &mctz->rb_root); 433 mz->on_tree = false; 434 } 435 436 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 437 struct mem_cgroup_tree_per_node *mctz) 438 { 439 unsigned long flags; 440 441 spin_lock_irqsave(&mctz->lock, flags); 442 __mem_cgroup_remove_exceeded(mz, mctz); 443 spin_unlock_irqrestore(&mctz->lock, flags); 444 } 445 446 static unsigned long soft_limit_excess(struct mem_cgroup *memcg) 447 { 448 unsigned long nr_pages = page_counter_read(&memcg->memory); 449 unsigned long soft_limit = READ_ONCE(memcg->soft_limit); 450 unsigned long excess = 0; 451 452 if (nr_pages > soft_limit) 453 excess = nr_pages - soft_limit; 454 455 return excess; 456 } 457 458 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page) 459 { 460 unsigned long excess; 461 struct mem_cgroup_per_node *mz; 462 struct mem_cgroup_tree_per_node *mctz; 463 464 mctz = soft_limit_tree_from_page(page); 465 /* 466 * Necessary to update all ancestors when hierarchy is used. 467 * because their event counter is not touched. 468 */ 469 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 470 mz = mem_cgroup_page_nodeinfo(memcg, page); 471 excess = soft_limit_excess(memcg); 472 /* 473 * We have to update the tree if mz is on RB-tree or 474 * mem is over its softlimit. 475 */ 476 if (excess || mz->on_tree) { 477 unsigned long flags; 478 479 spin_lock_irqsave(&mctz->lock, flags); 480 /* if on-tree, remove it */ 481 if (mz->on_tree) 482 __mem_cgroup_remove_exceeded(mz, mctz); 483 /* 484 * Insert again. mz->usage_in_excess will be updated. 485 * If excess is 0, no tree ops. 486 */ 487 __mem_cgroup_insert_exceeded(mz, mctz, excess); 488 spin_unlock_irqrestore(&mctz->lock, flags); 489 } 490 } 491 } 492 493 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) 494 { 495 struct mem_cgroup_tree_per_node *mctz; 496 struct mem_cgroup_per_node *mz; 497 int nid; 498 499 for_each_node(nid) { 500 mz = mem_cgroup_nodeinfo(memcg, nid); 501 mctz = soft_limit_tree_node(nid); 502 mem_cgroup_remove_exceeded(mz, mctz); 503 } 504 } 505 506 static struct mem_cgroup_per_node * 507 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 508 { 509 struct rb_node *rightmost = NULL; 510 struct mem_cgroup_per_node *mz; 511 512 retry: 513 mz = NULL; 514 rightmost = rb_last(&mctz->rb_root); 515 if (!rightmost) 516 goto done; /* Nothing to reclaim from */ 517 518 mz = rb_entry(rightmost, struct mem_cgroup_per_node, tree_node); 519 /* 520 * Remove the node now but someone else can add it back, 521 * we will to add it back at the end of reclaim to its correct 522 * position in the tree. 523 */ 524 __mem_cgroup_remove_exceeded(mz, mctz); 525 if (!soft_limit_excess(mz->memcg) || 526 !css_tryget_online(&mz->memcg->css)) 527 goto retry; 528 done: 529 return mz; 530 } 531 532 static struct mem_cgroup_per_node * 533 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 534 { 535 struct mem_cgroup_per_node *mz; 536 537 spin_lock_irq(&mctz->lock); 538 mz = __mem_cgroup_largest_soft_limit_node(mctz); 539 spin_unlock_irq(&mctz->lock); 540 return mz; 541 } 542 543 /* 544 * Return page count for single (non recursive) @memcg. 545 * 546 * Implementation Note: reading percpu statistics for memcg. 547 * 548 * Both of vmstat[] and percpu_counter has threshold and do periodic 549 * synchronization to implement "quick" read. There are trade-off between 550 * reading cost and precision of value. Then, we may have a chance to implement 551 * a periodic synchronization of counter in memcg's counter. 552 * 553 * But this _read() function is used for user interface now. The user accounts 554 * memory usage by memory cgroup and he _always_ requires exact value because 555 * he accounts memory. Even if we provide quick-and-fuzzy read, we always 556 * have to visit all online cpus and make sum. So, for now, unnecessary 557 * synchronization is not implemented. (just implemented for cpu hotplug) 558 * 559 * If there are kernel internal actions which can make use of some not-exact 560 * value, and reading all cpu value can be performance bottleneck in some 561 * common workload, threshold and synchronization as vmstat[] should be 562 * implemented. 563 */ 564 static unsigned long 565 mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx) 566 { 567 long val = 0; 568 int cpu; 569 570 /* Per-cpu values can be negative, use a signed accumulator */ 571 for_each_possible_cpu(cpu) 572 val += per_cpu(memcg->stat->count[idx], cpu); 573 /* 574 * Summing races with updates, so val may be negative. Avoid exposing 575 * transient negative values. 576 */ 577 if (val < 0) 578 val = 0; 579 return val; 580 } 581 582 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg, 583 enum mem_cgroup_events_index idx) 584 { 585 unsigned long val = 0; 586 int cpu; 587 588 for_each_possible_cpu(cpu) 589 val += per_cpu(memcg->stat->events[idx], cpu); 590 return val; 591 } 592 593 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, 594 struct page *page, 595 bool compound, int nr_pages) 596 { 597 /* 598 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is 599 * counted as CACHE even if it's on ANON LRU. 600 */ 601 if (PageAnon(page)) 602 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS], 603 nr_pages); 604 else 605 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE], 606 nr_pages); 607 608 if (compound) { 609 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 610 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], 611 nr_pages); 612 } 613 614 /* pagein of a big page is an event. So, ignore page size */ 615 if (nr_pages > 0) 616 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]); 617 else { 618 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]); 619 nr_pages = -nr_pages; /* for event */ 620 } 621 622 __this_cpu_add(memcg->stat->nr_page_events, nr_pages); 623 } 624 625 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 626 int nid, unsigned int lru_mask) 627 { 628 unsigned long nr = 0; 629 struct mem_cgroup_per_node *mz; 630 enum lru_list lru; 631 632 VM_BUG_ON((unsigned)nid >= nr_node_ids); 633 634 for_each_lru(lru) { 635 if (!(BIT(lru) & lru_mask)) 636 continue; 637 mz = mem_cgroup_nodeinfo(memcg, nid); 638 nr += mz->lru_size[lru]; 639 } 640 return nr; 641 } 642 643 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 644 unsigned int lru_mask) 645 { 646 unsigned long nr = 0; 647 int nid; 648 649 for_each_node_state(nid, N_MEMORY) 650 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask); 651 return nr; 652 } 653 654 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, 655 enum mem_cgroup_events_target target) 656 { 657 unsigned long val, next; 658 659 val = __this_cpu_read(memcg->stat->nr_page_events); 660 next = __this_cpu_read(memcg->stat->targets[target]); 661 /* from time_after() in jiffies.h */ 662 if ((long)next - (long)val < 0) { 663 switch (target) { 664 case MEM_CGROUP_TARGET_THRESH: 665 next = val + THRESHOLDS_EVENTS_TARGET; 666 break; 667 case MEM_CGROUP_TARGET_SOFTLIMIT: 668 next = val + SOFTLIMIT_EVENTS_TARGET; 669 break; 670 case MEM_CGROUP_TARGET_NUMAINFO: 671 next = val + NUMAINFO_EVENTS_TARGET; 672 break; 673 default: 674 break; 675 } 676 __this_cpu_write(memcg->stat->targets[target], next); 677 return true; 678 } 679 return false; 680 } 681 682 /* 683 * Check events in order. 684 * 685 */ 686 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) 687 { 688 /* threshold event is triggered in finer grain than soft limit */ 689 if (unlikely(mem_cgroup_event_ratelimit(memcg, 690 MEM_CGROUP_TARGET_THRESH))) { 691 bool do_softlimit; 692 bool do_numainfo __maybe_unused; 693 694 do_softlimit = mem_cgroup_event_ratelimit(memcg, 695 MEM_CGROUP_TARGET_SOFTLIMIT); 696 #if MAX_NUMNODES > 1 697 do_numainfo = mem_cgroup_event_ratelimit(memcg, 698 MEM_CGROUP_TARGET_NUMAINFO); 699 #endif 700 mem_cgroup_threshold(memcg); 701 if (unlikely(do_softlimit)) 702 mem_cgroup_update_tree(memcg, page); 703 #if MAX_NUMNODES > 1 704 if (unlikely(do_numainfo)) 705 atomic_inc(&memcg->numainfo_events); 706 #endif 707 } 708 } 709 710 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 711 { 712 /* 713 * mm_update_next_owner() may clear mm->owner to NULL 714 * if it races with swapoff, page migration, etc. 715 * So this can be called with p == NULL. 716 */ 717 if (unlikely(!p)) 718 return NULL; 719 720 return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); 721 } 722 EXPORT_SYMBOL(mem_cgroup_from_task); 723 724 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 725 { 726 struct mem_cgroup *memcg = NULL; 727 728 rcu_read_lock(); 729 do { 730 /* 731 * Page cache insertions can happen withou an 732 * actual mm context, e.g. during disk probing 733 * on boot, loopback IO, acct() writes etc. 734 */ 735 if (unlikely(!mm)) 736 memcg = root_mem_cgroup; 737 else { 738 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 739 if (unlikely(!memcg)) 740 memcg = root_mem_cgroup; 741 } 742 } while (!css_tryget_online(&memcg->css)); 743 rcu_read_unlock(); 744 return memcg; 745 } 746 747 /** 748 * mem_cgroup_iter - iterate over memory cgroup hierarchy 749 * @root: hierarchy root 750 * @prev: previously returned memcg, NULL on first invocation 751 * @reclaim: cookie for shared reclaim walks, NULL for full walks 752 * 753 * Returns references to children of the hierarchy below @root, or 754 * @root itself, or %NULL after a full round-trip. 755 * 756 * Caller must pass the return value in @prev on subsequent 757 * invocations for reference counting, or use mem_cgroup_iter_break() 758 * to cancel a hierarchy walk before the round-trip is complete. 759 * 760 * Reclaimers can specify a zone and a priority level in @reclaim to 761 * divide up the memcgs in the hierarchy among all concurrent 762 * reclaimers operating on the same zone and priority. 763 */ 764 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 765 struct mem_cgroup *prev, 766 struct mem_cgroup_reclaim_cookie *reclaim) 767 { 768 struct mem_cgroup_reclaim_iter *uninitialized_var(iter); 769 struct cgroup_subsys_state *css = NULL; 770 struct mem_cgroup *memcg = NULL; 771 struct mem_cgroup *pos = NULL; 772 773 if (mem_cgroup_disabled()) 774 return NULL; 775 776 if (!root) 777 root = root_mem_cgroup; 778 779 if (prev && !reclaim) 780 pos = prev; 781 782 if (!root->use_hierarchy && root != root_mem_cgroup) { 783 if (prev) 784 goto out; 785 return root; 786 } 787 788 rcu_read_lock(); 789 790 if (reclaim) { 791 struct mem_cgroup_per_node *mz; 792 793 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id); 794 iter = &mz->iter[reclaim->priority]; 795 796 if (prev && reclaim->generation != iter->generation) 797 goto out_unlock; 798 799 while (1) { 800 pos = READ_ONCE(iter->position); 801 if (!pos || css_tryget(&pos->css)) 802 break; 803 /* 804 * css reference reached zero, so iter->position will 805 * be cleared by ->css_released. However, we should not 806 * rely on this happening soon, because ->css_released 807 * is called from a work queue, and by busy-waiting we 808 * might block it. So we clear iter->position right 809 * away. 810 */ 811 (void)cmpxchg(&iter->position, pos, NULL); 812 } 813 } 814 815 if (pos) 816 css = &pos->css; 817 818 for (;;) { 819 css = css_next_descendant_pre(css, &root->css); 820 if (!css) { 821 /* 822 * Reclaimers share the hierarchy walk, and a 823 * new one might jump in right at the end of 824 * the hierarchy - make sure they see at least 825 * one group and restart from the beginning. 826 */ 827 if (!prev) 828 continue; 829 break; 830 } 831 832 /* 833 * Verify the css and acquire a reference. The root 834 * is provided by the caller, so we know it's alive 835 * and kicking, and don't take an extra reference. 836 */ 837 memcg = mem_cgroup_from_css(css); 838 839 if (css == &root->css) 840 break; 841 842 if (css_tryget(css)) 843 break; 844 845 memcg = NULL; 846 } 847 848 if (reclaim) { 849 /* 850 * The position could have already been updated by a competing 851 * thread, so check that the value hasn't changed since we read 852 * it to avoid reclaiming from the same cgroup twice. 853 */ 854 (void)cmpxchg(&iter->position, pos, memcg); 855 856 if (pos) 857 css_put(&pos->css); 858 859 if (!memcg) 860 iter->generation++; 861 else if (!prev) 862 reclaim->generation = iter->generation; 863 } 864 865 out_unlock: 866 rcu_read_unlock(); 867 out: 868 if (prev && prev != root) 869 css_put(&prev->css); 870 871 return memcg; 872 } 873 874 /** 875 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 876 * @root: hierarchy root 877 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 878 */ 879 void mem_cgroup_iter_break(struct mem_cgroup *root, 880 struct mem_cgroup *prev) 881 { 882 if (!root) 883 root = root_mem_cgroup; 884 if (prev && prev != root) 885 css_put(&prev->css); 886 } 887 888 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) 889 { 890 struct mem_cgroup *memcg = dead_memcg; 891 struct mem_cgroup_reclaim_iter *iter; 892 struct mem_cgroup_per_node *mz; 893 int nid; 894 int i; 895 896 while ((memcg = parent_mem_cgroup(memcg))) { 897 for_each_node(nid) { 898 mz = mem_cgroup_nodeinfo(memcg, nid); 899 for (i = 0; i <= DEF_PRIORITY; i++) { 900 iter = &mz->iter[i]; 901 cmpxchg(&iter->position, 902 dead_memcg, NULL); 903 } 904 } 905 } 906 } 907 908 /* 909 * Iteration constructs for visiting all cgroups (under a tree). If 910 * loops are exited prematurely (break), mem_cgroup_iter_break() must 911 * be used for reference counting. 912 */ 913 #define for_each_mem_cgroup_tree(iter, root) \ 914 for (iter = mem_cgroup_iter(root, NULL, NULL); \ 915 iter != NULL; \ 916 iter = mem_cgroup_iter(root, iter, NULL)) 917 918 #define for_each_mem_cgroup(iter) \ 919 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ 920 iter != NULL; \ 921 iter = mem_cgroup_iter(NULL, iter, NULL)) 922 923 /** 924 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page 925 * @page: the page 926 * @zone: zone of the page 927 * 928 * This function is only safe when following the LRU page isolation 929 * and putback protocol: the LRU lock must be held, and the page must 930 * either be PageLRU() or the caller must have isolated/allocated it. 931 */ 932 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat) 933 { 934 struct mem_cgroup_per_node *mz; 935 struct mem_cgroup *memcg; 936 struct lruvec *lruvec; 937 938 if (mem_cgroup_disabled()) { 939 lruvec = &pgdat->lruvec; 940 goto out; 941 } 942 943 memcg = page->mem_cgroup; 944 /* 945 * Swapcache readahead pages are added to the LRU - and 946 * possibly migrated - before they are charged. 947 */ 948 if (!memcg) 949 memcg = root_mem_cgroup; 950 951 mz = mem_cgroup_page_nodeinfo(memcg, page); 952 lruvec = &mz->lruvec; 953 out: 954 /* 955 * Since a node can be onlined after the mem_cgroup was created, 956 * we have to be prepared to initialize lruvec->zone here; 957 * and if offlined then reonlined, we need to reinitialize it. 958 */ 959 if (unlikely(lruvec->pgdat != pgdat)) 960 lruvec->pgdat = pgdat; 961 return lruvec; 962 } 963 964 /** 965 * mem_cgroup_update_lru_size - account for adding or removing an lru page 966 * @lruvec: mem_cgroup per zone lru vector 967 * @lru: index of lru list the page is sitting on 968 * @nr_pages: positive when adding or negative when removing 969 * 970 * This function must be called under lru_lock, just before a page is added 971 * to or just after a page is removed from an lru list (that ordering being 972 * so as to allow it to check that lru_size 0 is consistent with list_empty). 973 */ 974 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 975 int nr_pages) 976 { 977 struct mem_cgroup_per_node *mz; 978 unsigned long *lru_size; 979 long size; 980 bool empty; 981 982 if (mem_cgroup_disabled()) 983 return; 984 985 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 986 lru_size = mz->lru_size + lru; 987 empty = list_empty(lruvec->lists + lru); 988 989 if (nr_pages < 0) 990 *lru_size += nr_pages; 991 992 size = *lru_size; 993 if (WARN_ONCE(size < 0 || empty != !size, 994 "%s(%p, %d, %d): lru_size %ld but %sempty\n", 995 __func__, lruvec, lru, nr_pages, size, empty ? "" : "not ")) { 996 VM_BUG_ON(1); 997 *lru_size = 0; 998 } 999 1000 if (nr_pages > 0) 1001 *lru_size += nr_pages; 1002 } 1003 1004 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg) 1005 { 1006 struct mem_cgroup *task_memcg; 1007 struct task_struct *p; 1008 bool ret; 1009 1010 p = find_lock_task_mm(task); 1011 if (p) { 1012 task_memcg = get_mem_cgroup_from_mm(p->mm); 1013 task_unlock(p); 1014 } else { 1015 /* 1016 * All threads may have already detached their mm's, but the oom 1017 * killer still needs to detect if they have already been oom 1018 * killed to prevent needlessly killing additional tasks. 1019 */ 1020 rcu_read_lock(); 1021 task_memcg = mem_cgroup_from_task(task); 1022 css_get(&task_memcg->css); 1023 rcu_read_unlock(); 1024 } 1025 ret = mem_cgroup_is_descendant(task_memcg, memcg); 1026 css_put(&task_memcg->css); 1027 return ret; 1028 } 1029 1030 /** 1031 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1032 * @memcg: the memory cgroup 1033 * 1034 * Returns the maximum amount of memory @mem can be charged with, in 1035 * pages. 1036 */ 1037 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1038 { 1039 unsigned long margin = 0; 1040 unsigned long count; 1041 unsigned long limit; 1042 1043 count = page_counter_read(&memcg->memory); 1044 limit = READ_ONCE(memcg->memory.limit); 1045 if (count < limit) 1046 margin = limit - count; 1047 1048 if (do_memsw_account()) { 1049 count = page_counter_read(&memcg->memsw); 1050 limit = READ_ONCE(memcg->memsw.limit); 1051 if (count <= limit) 1052 margin = min(margin, limit - count); 1053 else 1054 margin = 0; 1055 } 1056 1057 return margin; 1058 } 1059 1060 /* 1061 * A routine for checking "mem" is under move_account() or not. 1062 * 1063 * Checking a cgroup is mc.from or mc.to or under hierarchy of 1064 * moving cgroups. This is for waiting at high-memory pressure 1065 * caused by "move". 1066 */ 1067 static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 1068 { 1069 struct mem_cgroup *from; 1070 struct mem_cgroup *to; 1071 bool ret = false; 1072 /* 1073 * Unlike task_move routines, we access mc.to, mc.from not under 1074 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1075 */ 1076 spin_lock(&mc.lock); 1077 from = mc.from; 1078 to = mc.to; 1079 if (!from) 1080 goto unlock; 1081 1082 ret = mem_cgroup_is_descendant(from, memcg) || 1083 mem_cgroup_is_descendant(to, memcg); 1084 unlock: 1085 spin_unlock(&mc.lock); 1086 return ret; 1087 } 1088 1089 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) 1090 { 1091 if (mc.moving_task && current != mc.moving_task) { 1092 if (mem_cgroup_under_move(memcg)) { 1093 DEFINE_WAIT(wait); 1094 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1095 /* moving charge context might have finished. */ 1096 if (mc.moving_task) 1097 schedule(); 1098 finish_wait(&mc.waitq, &wait); 1099 return true; 1100 } 1101 } 1102 return false; 1103 } 1104 1105 #define K(x) ((x) << (PAGE_SHIFT-10)) 1106 /** 1107 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller. 1108 * @memcg: The memory cgroup that went over limit 1109 * @p: Task that is going to be killed 1110 * 1111 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1112 * enabled 1113 */ 1114 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) 1115 { 1116 struct mem_cgroup *iter; 1117 unsigned int i; 1118 1119 rcu_read_lock(); 1120 1121 if (p) { 1122 pr_info("Task in "); 1123 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); 1124 pr_cont(" killed as a result of limit of "); 1125 } else { 1126 pr_info("Memory limit reached of cgroup "); 1127 } 1128 1129 pr_cont_cgroup_path(memcg->css.cgroup); 1130 pr_cont("\n"); 1131 1132 rcu_read_unlock(); 1133 1134 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", 1135 K((u64)page_counter_read(&memcg->memory)), 1136 K((u64)memcg->memory.limit), memcg->memory.failcnt); 1137 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", 1138 K((u64)page_counter_read(&memcg->memsw)), 1139 K((u64)memcg->memsw.limit), memcg->memsw.failcnt); 1140 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", 1141 K((u64)page_counter_read(&memcg->kmem)), 1142 K((u64)memcg->kmem.limit), memcg->kmem.failcnt); 1143 1144 for_each_mem_cgroup_tree(iter, memcg) { 1145 pr_info("Memory cgroup stats for "); 1146 pr_cont_cgroup_path(iter->css.cgroup); 1147 pr_cont(":"); 1148 1149 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 1150 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) 1151 continue; 1152 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i], 1153 K(mem_cgroup_read_stat(iter, i))); 1154 } 1155 1156 for (i = 0; i < NR_LRU_LISTS; i++) 1157 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i], 1158 K(mem_cgroup_nr_lru_pages(iter, BIT(i)))); 1159 1160 pr_cont("\n"); 1161 } 1162 } 1163 1164 /* 1165 * This function returns the number of memcg under hierarchy tree. Returns 1166 * 1(self count) if no children. 1167 */ 1168 static int mem_cgroup_count_children(struct mem_cgroup *memcg) 1169 { 1170 int num = 0; 1171 struct mem_cgroup *iter; 1172 1173 for_each_mem_cgroup_tree(iter, memcg) 1174 num++; 1175 return num; 1176 } 1177 1178 /* 1179 * Return the memory (and swap, if configured) limit for a memcg. 1180 */ 1181 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg) 1182 { 1183 unsigned long limit; 1184 1185 limit = memcg->memory.limit; 1186 if (mem_cgroup_swappiness(memcg)) { 1187 unsigned long memsw_limit; 1188 unsigned long swap_limit; 1189 1190 memsw_limit = memcg->memsw.limit; 1191 swap_limit = memcg->swap.limit; 1192 swap_limit = min(swap_limit, (unsigned long)total_swap_pages); 1193 limit = min(limit + swap_limit, memsw_limit); 1194 } 1195 return limit; 1196 } 1197 1198 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1199 int order) 1200 { 1201 struct oom_control oc = { 1202 .zonelist = NULL, 1203 .nodemask = NULL, 1204 .memcg = memcg, 1205 .gfp_mask = gfp_mask, 1206 .order = order, 1207 }; 1208 struct mem_cgroup *iter; 1209 unsigned long chosen_points = 0; 1210 unsigned long totalpages; 1211 unsigned int points = 0; 1212 struct task_struct *chosen = NULL; 1213 1214 mutex_lock(&oom_lock); 1215 1216 /* 1217 * If current has a pending SIGKILL or is exiting, then automatically 1218 * select it. The goal is to allow it to allocate so that it may 1219 * quickly exit and free its memory. 1220 */ 1221 if (task_will_free_mem(current)) { 1222 mark_oom_victim(current); 1223 wake_oom_reaper(current); 1224 goto unlock; 1225 } 1226 1227 check_panic_on_oom(&oc, CONSTRAINT_MEMCG); 1228 totalpages = mem_cgroup_get_limit(memcg) ? : 1; 1229 for_each_mem_cgroup_tree(iter, memcg) { 1230 struct css_task_iter it; 1231 struct task_struct *task; 1232 1233 css_task_iter_start(&iter->css, &it); 1234 while ((task = css_task_iter_next(&it))) { 1235 switch (oom_scan_process_thread(&oc, task)) { 1236 case OOM_SCAN_SELECT: 1237 if (chosen) 1238 put_task_struct(chosen); 1239 chosen = task; 1240 chosen_points = ULONG_MAX; 1241 get_task_struct(chosen); 1242 /* fall through */ 1243 case OOM_SCAN_CONTINUE: 1244 continue; 1245 case OOM_SCAN_ABORT: 1246 css_task_iter_end(&it); 1247 mem_cgroup_iter_break(memcg, iter); 1248 if (chosen) 1249 put_task_struct(chosen); 1250 /* Set a dummy value to return "true". */ 1251 chosen = (void *) 1; 1252 goto unlock; 1253 case OOM_SCAN_OK: 1254 break; 1255 }; 1256 points = oom_badness(task, memcg, NULL, totalpages); 1257 if (!points || points < chosen_points) 1258 continue; 1259 /* Prefer thread group leaders for display purposes */ 1260 if (points == chosen_points && 1261 thread_group_leader(chosen)) 1262 continue; 1263 1264 if (chosen) 1265 put_task_struct(chosen); 1266 chosen = task; 1267 chosen_points = points; 1268 get_task_struct(chosen); 1269 } 1270 css_task_iter_end(&it); 1271 } 1272 1273 if (chosen) { 1274 points = chosen_points * 1000 / totalpages; 1275 oom_kill_process(&oc, chosen, points, totalpages, 1276 "Memory cgroup out of memory"); 1277 } 1278 unlock: 1279 mutex_unlock(&oom_lock); 1280 return chosen; 1281 } 1282 1283 #if MAX_NUMNODES > 1 1284 1285 /** 1286 * test_mem_cgroup_node_reclaimable 1287 * @memcg: the target memcg 1288 * @nid: the node ID to be checked. 1289 * @noswap : specify true here if the user wants flle only information. 1290 * 1291 * This function returns whether the specified memcg contains any 1292 * reclaimable pages on a node. Returns true if there are any reclaimable 1293 * pages in the node. 1294 */ 1295 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg, 1296 int nid, bool noswap) 1297 { 1298 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE)) 1299 return true; 1300 if (noswap || !total_swap_pages) 1301 return false; 1302 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON)) 1303 return true; 1304 return false; 1305 1306 } 1307 1308 /* 1309 * Always updating the nodemask is not very good - even if we have an empty 1310 * list or the wrong list here, we can start from some node and traverse all 1311 * nodes based on the zonelist. So update the list loosely once per 10 secs. 1312 * 1313 */ 1314 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg) 1315 { 1316 int nid; 1317 /* 1318 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET 1319 * pagein/pageout changes since the last update. 1320 */ 1321 if (!atomic_read(&memcg->numainfo_events)) 1322 return; 1323 if (atomic_inc_return(&memcg->numainfo_updating) > 1) 1324 return; 1325 1326 /* make a nodemask where this memcg uses memory from */ 1327 memcg->scan_nodes = node_states[N_MEMORY]; 1328 1329 for_each_node_mask(nid, node_states[N_MEMORY]) { 1330 1331 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false)) 1332 node_clear(nid, memcg->scan_nodes); 1333 } 1334 1335 atomic_set(&memcg->numainfo_events, 0); 1336 atomic_set(&memcg->numainfo_updating, 0); 1337 } 1338 1339 /* 1340 * Selecting a node where we start reclaim from. Because what we need is just 1341 * reducing usage counter, start from anywhere is O,K. Considering 1342 * memory reclaim from current node, there are pros. and cons. 1343 * 1344 * Freeing memory from current node means freeing memory from a node which 1345 * we'll use or we've used. So, it may make LRU bad. And if several threads 1346 * hit limits, it will see a contention on a node. But freeing from remote 1347 * node means more costs for memory reclaim because of memory latency. 1348 * 1349 * Now, we use round-robin. Better algorithm is welcomed. 1350 */ 1351 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1352 { 1353 int node; 1354 1355 mem_cgroup_may_update_nodemask(memcg); 1356 node = memcg->last_scanned_node; 1357 1358 node = next_node_in(node, memcg->scan_nodes); 1359 /* 1360 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages 1361 * last time it really checked all the LRUs due to rate limiting. 1362 * Fallback to the current node in that case for simplicity. 1363 */ 1364 if (unlikely(node == MAX_NUMNODES)) 1365 node = numa_node_id(); 1366 1367 memcg->last_scanned_node = node; 1368 return node; 1369 } 1370 #else 1371 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1372 { 1373 return 0; 1374 } 1375 #endif 1376 1377 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, 1378 pg_data_t *pgdat, 1379 gfp_t gfp_mask, 1380 unsigned long *total_scanned) 1381 { 1382 struct mem_cgroup *victim = NULL; 1383 int total = 0; 1384 int loop = 0; 1385 unsigned long excess; 1386 unsigned long nr_scanned; 1387 struct mem_cgroup_reclaim_cookie reclaim = { 1388 .pgdat = pgdat, 1389 .priority = 0, 1390 }; 1391 1392 excess = soft_limit_excess(root_memcg); 1393 1394 while (1) { 1395 victim = mem_cgroup_iter(root_memcg, victim, &reclaim); 1396 if (!victim) { 1397 loop++; 1398 if (loop >= 2) { 1399 /* 1400 * If we have not been able to reclaim 1401 * anything, it might because there are 1402 * no reclaimable pages under this hierarchy 1403 */ 1404 if (!total) 1405 break; 1406 /* 1407 * We want to do more targeted reclaim. 1408 * excess >> 2 is not to excessive so as to 1409 * reclaim too much, nor too less that we keep 1410 * coming back to reclaim from this cgroup 1411 */ 1412 if (total >= (excess >> 2) || 1413 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) 1414 break; 1415 } 1416 continue; 1417 } 1418 total += mem_cgroup_shrink_node(victim, gfp_mask, false, 1419 pgdat, &nr_scanned); 1420 *total_scanned += nr_scanned; 1421 if (!soft_limit_excess(root_memcg)) 1422 break; 1423 } 1424 mem_cgroup_iter_break(root_memcg, victim); 1425 return total; 1426 } 1427 1428 #ifdef CONFIG_LOCKDEP 1429 static struct lockdep_map memcg_oom_lock_dep_map = { 1430 .name = "memcg_oom_lock", 1431 }; 1432 #endif 1433 1434 static DEFINE_SPINLOCK(memcg_oom_lock); 1435 1436 /* 1437 * Check OOM-Killer is already running under our hierarchy. 1438 * If someone is running, return false. 1439 */ 1440 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) 1441 { 1442 struct mem_cgroup *iter, *failed = NULL; 1443 1444 spin_lock(&memcg_oom_lock); 1445 1446 for_each_mem_cgroup_tree(iter, memcg) { 1447 if (iter->oom_lock) { 1448 /* 1449 * this subtree of our hierarchy is already locked 1450 * so we cannot give a lock. 1451 */ 1452 failed = iter; 1453 mem_cgroup_iter_break(memcg, iter); 1454 break; 1455 } else 1456 iter->oom_lock = true; 1457 } 1458 1459 if (failed) { 1460 /* 1461 * OK, we failed to lock the whole subtree so we have 1462 * to clean up what we set up to the failing subtree 1463 */ 1464 for_each_mem_cgroup_tree(iter, memcg) { 1465 if (iter == failed) { 1466 mem_cgroup_iter_break(memcg, iter); 1467 break; 1468 } 1469 iter->oom_lock = false; 1470 } 1471 } else 1472 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); 1473 1474 spin_unlock(&memcg_oom_lock); 1475 1476 return !failed; 1477 } 1478 1479 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 1480 { 1481 struct mem_cgroup *iter; 1482 1483 spin_lock(&memcg_oom_lock); 1484 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_); 1485 for_each_mem_cgroup_tree(iter, memcg) 1486 iter->oom_lock = false; 1487 spin_unlock(&memcg_oom_lock); 1488 } 1489 1490 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 1491 { 1492 struct mem_cgroup *iter; 1493 1494 spin_lock(&memcg_oom_lock); 1495 for_each_mem_cgroup_tree(iter, memcg) 1496 iter->under_oom++; 1497 spin_unlock(&memcg_oom_lock); 1498 } 1499 1500 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 1501 { 1502 struct mem_cgroup *iter; 1503 1504 /* 1505 * When a new child is created while the hierarchy is under oom, 1506 * mem_cgroup_oom_lock() may not be called. Watch for underflow. 1507 */ 1508 spin_lock(&memcg_oom_lock); 1509 for_each_mem_cgroup_tree(iter, memcg) 1510 if (iter->under_oom > 0) 1511 iter->under_oom--; 1512 spin_unlock(&memcg_oom_lock); 1513 } 1514 1515 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 1516 1517 struct oom_wait_info { 1518 struct mem_cgroup *memcg; 1519 wait_queue_t wait; 1520 }; 1521 1522 static int memcg_oom_wake_function(wait_queue_t *wait, 1523 unsigned mode, int sync, void *arg) 1524 { 1525 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; 1526 struct mem_cgroup *oom_wait_memcg; 1527 struct oom_wait_info *oom_wait_info; 1528 1529 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 1530 oom_wait_memcg = oom_wait_info->memcg; 1531 1532 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) && 1533 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg)) 1534 return 0; 1535 return autoremove_wake_function(wait, mode, sync, arg); 1536 } 1537 1538 static void memcg_oom_recover(struct mem_cgroup *memcg) 1539 { 1540 /* 1541 * For the following lockless ->under_oom test, the only required 1542 * guarantee is that it must see the state asserted by an OOM when 1543 * this function is called as a result of userland actions 1544 * triggered by the notification of the OOM. This is trivially 1545 * achieved by invoking mem_cgroup_mark_under_oom() before 1546 * triggering notification. 1547 */ 1548 if (memcg && memcg->under_oom) 1549 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 1550 } 1551 1552 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 1553 { 1554 if (!current->memcg_may_oom) 1555 return; 1556 /* 1557 * We are in the middle of the charge context here, so we 1558 * don't want to block when potentially sitting on a callstack 1559 * that holds all kinds of filesystem and mm locks. 1560 * 1561 * Also, the caller may handle a failed allocation gracefully 1562 * (like optional page cache readahead) and so an OOM killer 1563 * invocation might not even be necessary. 1564 * 1565 * That's why we don't do anything here except remember the 1566 * OOM context and then deal with it at the end of the page 1567 * fault when the stack is unwound, the locks are released, 1568 * and when we know whether the fault was overall successful. 1569 */ 1570 css_get(&memcg->css); 1571 current->memcg_in_oom = memcg; 1572 current->memcg_oom_gfp_mask = mask; 1573 current->memcg_oom_order = order; 1574 } 1575 1576 /** 1577 * mem_cgroup_oom_synchronize - complete memcg OOM handling 1578 * @handle: actually kill/wait or just clean up the OOM state 1579 * 1580 * This has to be called at the end of a page fault if the memcg OOM 1581 * handler was enabled. 1582 * 1583 * Memcg supports userspace OOM handling where failed allocations must 1584 * sleep on a waitqueue until the userspace task resolves the 1585 * situation. Sleeping directly in the charge context with all kinds 1586 * of locks held is not a good idea, instead we remember an OOM state 1587 * in the task and mem_cgroup_oom_synchronize() has to be called at 1588 * the end of the page fault to complete the OOM handling. 1589 * 1590 * Returns %true if an ongoing memcg OOM situation was detected and 1591 * completed, %false otherwise. 1592 */ 1593 bool mem_cgroup_oom_synchronize(bool handle) 1594 { 1595 struct mem_cgroup *memcg = current->memcg_in_oom; 1596 struct oom_wait_info owait; 1597 bool locked; 1598 1599 /* OOM is global, do not handle */ 1600 if (!memcg) 1601 return false; 1602 1603 if (!handle || oom_killer_disabled) 1604 goto cleanup; 1605 1606 owait.memcg = memcg; 1607 owait.wait.flags = 0; 1608 owait.wait.func = memcg_oom_wake_function; 1609 owait.wait.private = current; 1610 INIT_LIST_HEAD(&owait.wait.task_list); 1611 1612 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 1613 mem_cgroup_mark_under_oom(memcg); 1614 1615 locked = mem_cgroup_oom_trylock(memcg); 1616 1617 if (locked) 1618 mem_cgroup_oom_notify(memcg); 1619 1620 if (locked && !memcg->oom_kill_disable) { 1621 mem_cgroup_unmark_under_oom(memcg); 1622 finish_wait(&memcg_oom_waitq, &owait.wait); 1623 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask, 1624 current->memcg_oom_order); 1625 } else { 1626 schedule(); 1627 mem_cgroup_unmark_under_oom(memcg); 1628 finish_wait(&memcg_oom_waitq, &owait.wait); 1629 } 1630 1631 if (locked) { 1632 mem_cgroup_oom_unlock(memcg); 1633 /* 1634 * There is no guarantee that an OOM-lock contender 1635 * sees the wakeups triggered by the OOM kill 1636 * uncharges. Wake any sleepers explicitely. 1637 */ 1638 memcg_oom_recover(memcg); 1639 } 1640 cleanup: 1641 current->memcg_in_oom = NULL; 1642 css_put(&memcg->css); 1643 return true; 1644 } 1645 1646 /** 1647 * lock_page_memcg - lock a page->mem_cgroup binding 1648 * @page: the page 1649 * 1650 * This function protects unlocked LRU pages from being moved to 1651 * another cgroup and stabilizes their page->mem_cgroup binding. 1652 */ 1653 void lock_page_memcg(struct page *page) 1654 { 1655 struct mem_cgroup *memcg; 1656 unsigned long flags; 1657 1658 /* 1659 * The RCU lock is held throughout the transaction. The fast 1660 * path can get away without acquiring the memcg->move_lock 1661 * because page moving starts with an RCU grace period. 1662 */ 1663 rcu_read_lock(); 1664 1665 if (mem_cgroup_disabled()) 1666 return; 1667 again: 1668 memcg = page->mem_cgroup; 1669 if (unlikely(!memcg)) 1670 return; 1671 1672 if (atomic_read(&memcg->moving_account) <= 0) 1673 return; 1674 1675 spin_lock_irqsave(&memcg->move_lock, flags); 1676 if (memcg != page->mem_cgroup) { 1677 spin_unlock_irqrestore(&memcg->move_lock, flags); 1678 goto again; 1679 } 1680 1681 /* 1682 * When charge migration first begins, we can have locked and 1683 * unlocked page stat updates happening concurrently. Track 1684 * the task who has the lock for unlock_page_memcg(). 1685 */ 1686 memcg->move_lock_task = current; 1687 memcg->move_lock_flags = flags; 1688 1689 return; 1690 } 1691 EXPORT_SYMBOL(lock_page_memcg); 1692 1693 /** 1694 * unlock_page_memcg - unlock a page->mem_cgroup binding 1695 * @page: the page 1696 */ 1697 void unlock_page_memcg(struct page *page) 1698 { 1699 struct mem_cgroup *memcg = page->mem_cgroup; 1700 1701 if (memcg && memcg->move_lock_task == current) { 1702 unsigned long flags = memcg->move_lock_flags; 1703 1704 memcg->move_lock_task = NULL; 1705 memcg->move_lock_flags = 0; 1706 1707 spin_unlock_irqrestore(&memcg->move_lock, flags); 1708 } 1709 1710 rcu_read_unlock(); 1711 } 1712 EXPORT_SYMBOL(unlock_page_memcg); 1713 1714 /* 1715 * size of first charge trial. "32" comes from vmscan.c's magic value. 1716 * TODO: maybe necessary to use big numbers in big irons. 1717 */ 1718 #define CHARGE_BATCH 32U 1719 struct memcg_stock_pcp { 1720 struct mem_cgroup *cached; /* this never be root cgroup */ 1721 unsigned int nr_pages; 1722 struct work_struct work; 1723 unsigned long flags; 1724 #define FLUSHING_CACHED_CHARGE 0 1725 }; 1726 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); 1727 static DEFINE_MUTEX(percpu_charge_mutex); 1728 1729 /** 1730 * consume_stock: Try to consume stocked charge on this cpu. 1731 * @memcg: memcg to consume from. 1732 * @nr_pages: how many pages to charge. 1733 * 1734 * The charges will only happen if @memcg matches the current cpu's memcg 1735 * stock, and at least @nr_pages are available in that stock. Failure to 1736 * service an allocation will refill the stock. 1737 * 1738 * returns true if successful, false otherwise. 1739 */ 1740 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 1741 { 1742 struct memcg_stock_pcp *stock; 1743 bool ret = false; 1744 1745 if (nr_pages > CHARGE_BATCH) 1746 return ret; 1747 1748 stock = &get_cpu_var(memcg_stock); 1749 if (memcg == stock->cached && stock->nr_pages >= nr_pages) { 1750 stock->nr_pages -= nr_pages; 1751 ret = true; 1752 } 1753 put_cpu_var(memcg_stock); 1754 return ret; 1755 } 1756 1757 /* 1758 * Returns stocks cached in percpu and reset cached information. 1759 */ 1760 static void drain_stock(struct memcg_stock_pcp *stock) 1761 { 1762 struct mem_cgroup *old = stock->cached; 1763 1764 if (stock->nr_pages) { 1765 page_counter_uncharge(&old->memory, stock->nr_pages); 1766 if (do_memsw_account()) 1767 page_counter_uncharge(&old->memsw, stock->nr_pages); 1768 css_put_many(&old->css, stock->nr_pages); 1769 stock->nr_pages = 0; 1770 } 1771 stock->cached = NULL; 1772 } 1773 1774 /* 1775 * This must be called under preempt disabled or must be called by 1776 * a thread which is pinned to local cpu. 1777 */ 1778 static void drain_local_stock(struct work_struct *dummy) 1779 { 1780 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock); 1781 drain_stock(stock); 1782 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 1783 } 1784 1785 /* 1786 * Cache charges(val) to local per_cpu area. 1787 * This will be consumed by consume_stock() function, later. 1788 */ 1789 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 1790 { 1791 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock); 1792 1793 if (stock->cached != memcg) { /* reset if necessary */ 1794 drain_stock(stock); 1795 stock->cached = memcg; 1796 } 1797 stock->nr_pages += nr_pages; 1798 put_cpu_var(memcg_stock); 1799 } 1800 1801 /* 1802 * Drains all per-CPU charge caches for given root_memcg resp. subtree 1803 * of the hierarchy under it. 1804 */ 1805 static void drain_all_stock(struct mem_cgroup *root_memcg) 1806 { 1807 int cpu, curcpu; 1808 1809 /* If someone's already draining, avoid adding running more workers. */ 1810 if (!mutex_trylock(&percpu_charge_mutex)) 1811 return; 1812 /* Notify other cpus that system-wide "drain" is running */ 1813 get_online_cpus(); 1814 curcpu = get_cpu(); 1815 for_each_online_cpu(cpu) { 1816 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 1817 struct mem_cgroup *memcg; 1818 1819 memcg = stock->cached; 1820 if (!memcg || !stock->nr_pages) 1821 continue; 1822 if (!mem_cgroup_is_descendant(memcg, root_memcg)) 1823 continue; 1824 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 1825 if (cpu == curcpu) 1826 drain_local_stock(&stock->work); 1827 else 1828 schedule_work_on(cpu, &stock->work); 1829 } 1830 } 1831 put_cpu(); 1832 put_online_cpus(); 1833 mutex_unlock(&percpu_charge_mutex); 1834 } 1835 1836 static int memcg_cpu_hotplug_callback(struct notifier_block *nb, 1837 unsigned long action, 1838 void *hcpu) 1839 { 1840 int cpu = (unsigned long)hcpu; 1841 struct memcg_stock_pcp *stock; 1842 1843 if (action == CPU_ONLINE) 1844 return NOTIFY_OK; 1845 1846 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 1847 return NOTIFY_OK; 1848 1849 stock = &per_cpu(memcg_stock, cpu); 1850 drain_stock(stock); 1851 return NOTIFY_OK; 1852 } 1853 1854 static void reclaim_high(struct mem_cgroup *memcg, 1855 unsigned int nr_pages, 1856 gfp_t gfp_mask) 1857 { 1858 do { 1859 if (page_counter_read(&memcg->memory) <= memcg->high) 1860 continue; 1861 mem_cgroup_events(memcg, MEMCG_HIGH, 1); 1862 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true); 1863 } while ((memcg = parent_mem_cgroup(memcg))); 1864 } 1865 1866 static void high_work_func(struct work_struct *work) 1867 { 1868 struct mem_cgroup *memcg; 1869 1870 memcg = container_of(work, struct mem_cgroup, high_work); 1871 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL); 1872 } 1873 1874 /* 1875 * Scheduled by try_charge() to be executed from the userland return path 1876 * and reclaims memory over the high limit. 1877 */ 1878 void mem_cgroup_handle_over_high(void) 1879 { 1880 unsigned int nr_pages = current->memcg_nr_pages_over_high; 1881 struct mem_cgroup *memcg; 1882 1883 if (likely(!nr_pages)) 1884 return; 1885 1886 memcg = get_mem_cgroup_from_mm(current->mm); 1887 reclaim_high(memcg, nr_pages, GFP_KERNEL); 1888 css_put(&memcg->css); 1889 current->memcg_nr_pages_over_high = 0; 1890 } 1891 1892 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 1893 unsigned int nr_pages) 1894 { 1895 unsigned int batch = max(CHARGE_BATCH, nr_pages); 1896 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 1897 struct mem_cgroup *mem_over_limit; 1898 struct page_counter *counter; 1899 unsigned long nr_reclaimed; 1900 bool may_swap = true; 1901 bool drained = false; 1902 1903 if (mem_cgroup_is_root(memcg)) 1904 return 0; 1905 retry: 1906 if (consume_stock(memcg, nr_pages)) 1907 return 0; 1908 1909 if (!do_memsw_account() || 1910 page_counter_try_charge(&memcg->memsw, batch, &counter)) { 1911 if (page_counter_try_charge(&memcg->memory, batch, &counter)) 1912 goto done_restock; 1913 if (do_memsw_account()) 1914 page_counter_uncharge(&memcg->memsw, batch); 1915 mem_over_limit = mem_cgroup_from_counter(counter, memory); 1916 } else { 1917 mem_over_limit = mem_cgroup_from_counter(counter, memsw); 1918 may_swap = false; 1919 } 1920 1921 if (batch > nr_pages) { 1922 batch = nr_pages; 1923 goto retry; 1924 } 1925 1926 /* 1927 * Unlike in global OOM situations, memcg is not in a physical 1928 * memory shortage. Allow dying and OOM-killed tasks to 1929 * bypass the last charges so that they can exit quickly and 1930 * free their memory. 1931 */ 1932 if (unlikely(test_thread_flag(TIF_MEMDIE) || 1933 fatal_signal_pending(current) || 1934 current->flags & PF_EXITING)) 1935 goto force; 1936 1937 if (unlikely(task_in_memcg_oom(current))) 1938 goto nomem; 1939 1940 if (!gfpflags_allow_blocking(gfp_mask)) 1941 goto nomem; 1942 1943 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1); 1944 1945 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, 1946 gfp_mask, may_swap); 1947 1948 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 1949 goto retry; 1950 1951 if (!drained) { 1952 drain_all_stock(mem_over_limit); 1953 drained = true; 1954 goto retry; 1955 } 1956 1957 if (gfp_mask & __GFP_NORETRY) 1958 goto nomem; 1959 /* 1960 * Even though the limit is exceeded at this point, reclaim 1961 * may have been able to free some pages. Retry the charge 1962 * before killing the task. 1963 * 1964 * Only for regular pages, though: huge pages are rather 1965 * unlikely to succeed so close to the limit, and we fall back 1966 * to regular pages anyway in case of failure. 1967 */ 1968 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) 1969 goto retry; 1970 /* 1971 * At task move, charge accounts can be doubly counted. So, it's 1972 * better to wait until the end of task_move if something is going on. 1973 */ 1974 if (mem_cgroup_wait_acct_move(mem_over_limit)) 1975 goto retry; 1976 1977 if (nr_retries--) 1978 goto retry; 1979 1980 if (gfp_mask & __GFP_NOFAIL) 1981 goto force; 1982 1983 if (fatal_signal_pending(current)) 1984 goto force; 1985 1986 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1); 1987 1988 mem_cgroup_oom(mem_over_limit, gfp_mask, 1989 get_order(nr_pages * PAGE_SIZE)); 1990 nomem: 1991 if (!(gfp_mask & __GFP_NOFAIL)) 1992 return -ENOMEM; 1993 force: 1994 /* 1995 * The allocation either can't fail or will lead to more memory 1996 * being freed very soon. Allow memory usage go over the limit 1997 * temporarily by force charging it. 1998 */ 1999 page_counter_charge(&memcg->memory, nr_pages); 2000 if (do_memsw_account()) 2001 page_counter_charge(&memcg->memsw, nr_pages); 2002 css_get_many(&memcg->css, nr_pages); 2003 2004 return 0; 2005 2006 done_restock: 2007 css_get_many(&memcg->css, batch); 2008 if (batch > nr_pages) 2009 refill_stock(memcg, batch - nr_pages); 2010 2011 /* 2012 * If the hierarchy is above the normal consumption range, schedule 2013 * reclaim on returning to userland. We can perform reclaim here 2014 * if __GFP_RECLAIM but let's always punt for simplicity and so that 2015 * GFP_KERNEL can consistently be used during reclaim. @memcg is 2016 * not recorded as it most likely matches current's and won't 2017 * change in the meantime. As high limit is checked again before 2018 * reclaim, the cost of mismatch is negligible. 2019 */ 2020 do { 2021 if (page_counter_read(&memcg->memory) > memcg->high) { 2022 /* Don't bother a random interrupted task */ 2023 if (in_interrupt()) { 2024 schedule_work(&memcg->high_work); 2025 break; 2026 } 2027 current->memcg_nr_pages_over_high += batch; 2028 set_notify_resume(current); 2029 break; 2030 } 2031 } while ((memcg = parent_mem_cgroup(memcg))); 2032 2033 return 0; 2034 } 2035 2036 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages) 2037 { 2038 if (mem_cgroup_is_root(memcg)) 2039 return; 2040 2041 page_counter_uncharge(&memcg->memory, nr_pages); 2042 if (do_memsw_account()) 2043 page_counter_uncharge(&memcg->memsw, nr_pages); 2044 2045 css_put_many(&memcg->css, nr_pages); 2046 } 2047 2048 static void lock_page_lru(struct page *page, int *isolated) 2049 { 2050 struct zone *zone = page_zone(page); 2051 2052 spin_lock_irq(zone_lru_lock(zone)); 2053 if (PageLRU(page)) { 2054 struct lruvec *lruvec; 2055 2056 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat); 2057 ClearPageLRU(page); 2058 del_page_from_lru_list(page, lruvec, page_lru(page)); 2059 *isolated = 1; 2060 } else 2061 *isolated = 0; 2062 } 2063 2064 static void unlock_page_lru(struct page *page, int isolated) 2065 { 2066 struct zone *zone = page_zone(page); 2067 2068 if (isolated) { 2069 struct lruvec *lruvec; 2070 2071 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat); 2072 VM_BUG_ON_PAGE(PageLRU(page), page); 2073 SetPageLRU(page); 2074 add_page_to_lru_list(page, lruvec, page_lru(page)); 2075 } 2076 spin_unlock_irq(zone_lru_lock(zone)); 2077 } 2078 2079 static void commit_charge(struct page *page, struct mem_cgroup *memcg, 2080 bool lrucare) 2081 { 2082 int isolated; 2083 2084 VM_BUG_ON_PAGE(page->mem_cgroup, page); 2085 2086 /* 2087 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page 2088 * may already be on some other mem_cgroup's LRU. Take care of it. 2089 */ 2090 if (lrucare) 2091 lock_page_lru(page, &isolated); 2092 2093 /* 2094 * Nobody should be changing or seriously looking at 2095 * page->mem_cgroup at this point: 2096 * 2097 * - the page is uncharged 2098 * 2099 * - the page is off-LRU 2100 * 2101 * - an anonymous fault has exclusive page access, except for 2102 * a locked page table 2103 * 2104 * - a page cache insertion, a swapin fault, or a migration 2105 * have the page locked 2106 */ 2107 page->mem_cgroup = memcg; 2108 2109 if (lrucare) 2110 unlock_page_lru(page, isolated); 2111 } 2112 2113 #ifndef CONFIG_SLOB 2114 static int memcg_alloc_cache_id(void) 2115 { 2116 int id, size; 2117 int err; 2118 2119 id = ida_simple_get(&memcg_cache_ida, 2120 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL); 2121 if (id < 0) 2122 return id; 2123 2124 if (id < memcg_nr_cache_ids) 2125 return id; 2126 2127 /* 2128 * There's no space for the new id in memcg_caches arrays, 2129 * so we have to grow them. 2130 */ 2131 down_write(&memcg_cache_ids_sem); 2132 2133 size = 2 * (id + 1); 2134 if (size < MEMCG_CACHES_MIN_SIZE) 2135 size = MEMCG_CACHES_MIN_SIZE; 2136 else if (size > MEMCG_CACHES_MAX_SIZE) 2137 size = MEMCG_CACHES_MAX_SIZE; 2138 2139 err = memcg_update_all_caches(size); 2140 if (!err) 2141 err = memcg_update_all_list_lrus(size); 2142 if (!err) 2143 memcg_nr_cache_ids = size; 2144 2145 up_write(&memcg_cache_ids_sem); 2146 2147 if (err) { 2148 ida_simple_remove(&memcg_cache_ida, id); 2149 return err; 2150 } 2151 return id; 2152 } 2153 2154 static void memcg_free_cache_id(int id) 2155 { 2156 ida_simple_remove(&memcg_cache_ida, id); 2157 } 2158 2159 struct memcg_kmem_cache_create_work { 2160 struct mem_cgroup *memcg; 2161 struct kmem_cache *cachep; 2162 struct work_struct work; 2163 }; 2164 2165 static void memcg_kmem_cache_create_func(struct work_struct *w) 2166 { 2167 struct memcg_kmem_cache_create_work *cw = 2168 container_of(w, struct memcg_kmem_cache_create_work, work); 2169 struct mem_cgroup *memcg = cw->memcg; 2170 struct kmem_cache *cachep = cw->cachep; 2171 2172 memcg_create_kmem_cache(memcg, cachep); 2173 2174 css_put(&memcg->css); 2175 kfree(cw); 2176 } 2177 2178 /* 2179 * Enqueue the creation of a per-memcg kmem_cache. 2180 */ 2181 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg, 2182 struct kmem_cache *cachep) 2183 { 2184 struct memcg_kmem_cache_create_work *cw; 2185 2186 cw = kmalloc(sizeof(*cw), GFP_NOWAIT); 2187 if (!cw) 2188 return; 2189 2190 css_get(&memcg->css); 2191 2192 cw->memcg = memcg; 2193 cw->cachep = cachep; 2194 INIT_WORK(&cw->work, memcg_kmem_cache_create_func); 2195 2196 schedule_work(&cw->work); 2197 } 2198 2199 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg, 2200 struct kmem_cache *cachep) 2201 { 2202 /* 2203 * We need to stop accounting when we kmalloc, because if the 2204 * corresponding kmalloc cache is not yet created, the first allocation 2205 * in __memcg_schedule_kmem_cache_create will recurse. 2206 * 2207 * However, it is better to enclose the whole function. Depending on 2208 * the debugging options enabled, INIT_WORK(), for instance, can 2209 * trigger an allocation. This too, will make us recurse. Because at 2210 * this point we can't allow ourselves back into memcg_kmem_get_cache, 2211 * the safest choice is to do it like this, wrapping the whole function. 2212 */ 2213 current->memcg_kmem_skip_account = 1; 2214 __memcg_schedule_kmem_cache_create(memcg, cachep); 2215 current->memcg_kmem_skip_account = 0; 2216 } 2217 2218 static inline bool memcg_kmem_bypass(void) 2219 { 2220 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD)) 2221 return true; 2222 return false; 2223 } 2224 2225 /** 2226 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation 2227 * @cachep: the original global kmem cache 2228 * 2229 * Return the kmem_cache we're supposed to use for a slab allocation. 2230 * We try to use the current memcg's version of the cache. 2231 * 2232 * If the cache does not exist yet, if we are the first user of it, we 2233 * create it asynchronously in a workqueue and let the current allocation 2234 * go through with the original cache. 2235 * 2236 * This function takes a reference to the cache it returns to assure it 2237 * won't get destroyed while we are working with it. Once the caller is 2238 * done with it, memcg_kmem_put_cache() must be called to release the 2239 * reference. 2240 */ 2241 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep) 2242 { 2243 struct mem_cgroup *memcg; 2244 struct kmem_cache *memcg_cachep; 2245 int kmemcg_id; 2246 2247 VM_BUG_ON(!is_root_cache(cachep)); 2248 2249 if (memcg_kmem_bypass()) 2250 return cachep; 2251 2252 if (current->memcg_kmem_skip_account) 2253 return cachep; 2254 2255 memcg = get_mem_cgroup_from_mm(current->mm); 2256 kmemcg_id = READ_ONCE(memcg->kmemcg_id); 2257 if (kmemcg_id < 0) 2258 goto out; 2259 2260 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id); 2261 if (likely(memcg_cachep)) 2262 return memcg_cachep; 2263 2264 /* 2265 * If we are in a safe context (can wait, and not in interrupt 2266 * context), we could be be predictable and return right away. 2267 * This would guarantee that the allocation being performed 2268 * already belongs in the new cache. 2269 * 2270 * However, there are some clashes that can arrive from locking. 2271 * For instance, because we acquire the slab_mutex while doing 2272 * memcg_create_kmem_cache, this means no further allocation 2273 * could happen with the slab_mutex held. So it's better to 2274 * defer everything. 2275 */ 2276 memcg_schedule_kmem_cache_create(memcg, cachep); 2277 out: 2278 css_put(&memcg->css); 2279 return cachep; 2280 } 2281 2282 /** 2283 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache 2284 * @cachep: the cache returned by memcg_kmem_get_cache 2285 */ 2286 void memcg_kmem_put_cache(struct kmem_cache *cachep) 2287 { 2288 if (!is_root_cache(cachep)) 2289 css_put(&cachep->memcg_params.memcg->css); 2290 } 2291 2292 /** 2293 * memcg_kmem_charge: charge a kmem page 2294 * @page: page to charge 2295 * @gfp: reclaim mode 2296 * @order: allocation order 2297 * @memcg: memory cgroup to charge 2298 * 2299 * Returns 0 on success, an error code on failure. 2300 */ 2301 int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order, 2302 struct mem_cgroup *memcg) 2303 { 2304 unsigned int nr_pages = 1 << order; 2305 struct page_counter *counter; 2306 int ret; 2307 2308 ret = try_charge(memcg, gfp, nr_pages); 2309 if (ret) 2310 return ret; 2311 2312 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && 2313 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) { 2314 cancel_charge(memcg, nr_pages); 2315 return -ENOMEM; 2316 } 2317 2318 page->mem_cgroup = memcg; 2319 2320 return 0; 2321 } 2322 2323 /** 2324 * memcg_kmem_charge: charge a kmem page to the current memory cgroup 2325 * @page: page to charge 2326 * @gfp: reclaim mode 2327 * @order: allocation order 2328 * 2329 * Returns 0 on success, an error code on failure. 2330 */ 2331 int memcg_kmem_charge(struct page *page, gfp_t gfp, int order) 2332 { 2333 struct mem_cgroup *memcg; 2334 int ret = 0; 2335 2336 if (memcg_kmem_bypass()) 2337 return 0; 2338 2339 memcg = get_mem_cgroup_from_mm(current->mm); 2340 if (!mem_cgroup_is_root(memcg)) 2341 ret = memcg_kmem_charge_memcg(page, gfp, order, memcg); 2342 css_put(&memcg->css); 2343 return ret; 2344 } 2345 /** 2346 * memcg_kmem_uncharge: uncharge a kmem page 2347 * @page: page to uncharge 2348 * @order: allocation order 2349 */ 2350 void memcg_kmem_uncharge(struct page *page, int order) 2351 { 2352 struct mem_cgroup *memcg = page->mem_cgroup; 2353 unsigned int nr_pages = 1 << order; 2354 2355 if (!memcg) 2356 return; 2357 2358 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page); 2359 2360 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 2361 page_counter_uncharge(&memcg->kmem, nr_pages); 2362 2363 page_counter_uncharge(&memcg->memory, nr_pages); 2364 if (do_memsw_account()) 2365 page_counter_uncharge(&memcg->memsw, nr_pages); 2366 2367 page->mem_cgroup = NULL; 2368 css_put_many(&memcg->css, nr_pages); 2369 } 2370 #endif /* !CONFIG_SLOB */ 2371 2372 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2373 2374 /* 2375 * Because tail pages are not marked as "used", set it. We're under 2376 * zone_lru_lock and migration entries setup in all page mappings. 2377 */ 2378 void mem_cgroup_split_huge_fixup(struct page *head) 2379 { 2380 int i; 2381 2382 if (mem_cgroup_disabled()) 2383 return; 2384 2385 for (i = 1; i < HPAGE_PMD_NR; i++) 2386 head[i].mem_cgroup = head->mem_cgroup; 2387 2388 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE], 2389 HPAGE_PMD_NR); 2390 } 2391 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 2392 2393 #ifdef CONFIG_MEMCG_SWAP 2394 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg, 2395 bool charge) 2396 { 2397 int val = (charge) ? 1 : -1; 2398 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val); 2399 } 2400 2401 /** 2402 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 2403 * @entry: swap entry to be moved 2404 * @from: mem_cgroup which the entry is moved from 2405 * @to: mem_cgroup which the entry is moved to 2406 * 2407 * It succeeds only when the swap_cgroup's record for this entry is the same 2408 * as the mem_cgroup's id of @from. 2409 * 2410 * Returns 0 on success, -EINVAL on failure. 2411 * 2412 * The caller must have charged to @to, IOW, called page_counter_charge() about 2413 * both res and memsw, and called css_get(). 2414 */ 2415 static int mem_cgroup_move_swap_account(swp_entry_t entry, 2416 struct mem_cgroup *from, struct mem_cgroup *to) 2417 { 2418 unsigned short old_id, new_id; 2419 2420 old_id = mem_cgroup_id(from); 2421 new_id = mem_cgroup_id(to); 2422 2423 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 2424 mem_cgroup_swap_statistics(from, false); 2425 mem_cgroup_swap_statistics(to, true); 2426 return 0; 2427 } 2428 return -EINVAL; 2429 } 2430 #else 2431 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 2432 struct mem_cgroup *from, struct mem_cgroup *to) 2433 { 2434 return -EINVAL; 2435 } 2436 #endif 2437 2438 static DEFINE_MUTEX(memcg_limit_mutex); 2439 2440 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg, 2441 unsigned long limit) 2442 { 2443 unsigned long curusage; 2444 unsigned long oldusage; 2445 bool enlarge = false; 2446 int retry_count; 2447 int ret; 2448 2449 /* 2450 * For keeping hierarchical_reclaim simple, how long we should retry 2451 * is depends on callers. We set our retry-count to be function 2452 * of # of children which we should visit in this loop. 2453 */ 2454 retry_count = MEM_CGROUP_RECLAIM_RETRIES * 2455 mem_cgroup_count_children(memcg); 2456 2457 oldusage = page_counter_read(&memcg->memory); 2458 2459 do { 2460 if (signal_pending(current)) { 2461 ret = -EINTR; 2462 break; 2463 } 2464 2465 mutex_lock(&memcg_limit_mutex); 2466 if (limit > memcg->memsw.limit) { 2467 mutex_unlock(&memcg_limit_mutex); 2468 ret = -EINVAL; 2469 break; 2470 } 2471 if (limit > memcg->memory.limit) 2472 enlarge = true; 2473 ret = page_counter_limit(&memcg->memory, limit); 2474 mutex_unlock(&memcg_limit_mutex); 2475 2476 if (!ret) 2477 break; 2478 2479 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true); 2480 2481 curusage = page_counter_read(&memcg->memory); 2482 /* Usage is reduced ? */ 2483 if (curusage >= oldusage) 2484 retry_count--; 2485 else 2486 oldusage = curusage; 2487 } while (retry_count); 2488 2489 if (!ret && enlarge) 2490 memcg_oom_recover(memcg); 2491 2492 return ret; 2493 } 2494 2495 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg, 2496 unsigned long limit) 2497 { 2498 unsigned long curusage; 2499 unsigned long oldusage; 2500 bool enlarge = false; 2501 int retry_count; 2502 int ret; 2503 2504 /* see mem_cgroup_resize_res_limit */ 2505 retry_count = MEM_CGROUP_RECLAIM_RETRIES * 2506 mem_cgroup_count_children(memcg); 2507 2508 oldusage = page_counter_read(&memcg->memsw); 2509 2510 do { 2511 if (signal_pending(current)) { 2512 ret = -EINTR; 2513 break; 2514 } 2515 2516 mutex_lock(&memcg_limit_mutex); 2517 if (limit < memcg->memory.limit) { 2518 mutex_unlock(&memcg_limit_mutex); 2519 ret = -EINVAL; 2520 break; 2521 } 2522 if (limit > memcg->memsw.limit) 2523 enlarge = true; 2524 ret = page_counter_limit(&memcg->memsw, limit); 2525 mutex_unlock(&memcg_limit_mutex); 2526 2527 if (!ret) 2528 break; 2529 2530 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false); 2531 2532 curusage = page_counter_read(&memcg->memsw); 2533 /* Usage is reduced ? */ 2534 if (curusage >= oldusage) 2535 retry_count--; 2536 else 2537 oldusage = curusage; 2538 } while (retry_count); 2539 2540 if (!ret && enlarge) 2541 memcg_oom_recover(memcg); 2542 2543 return ret; 2544 } 2545 2546 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 2547 gfp_t gfp_mask, 2548 unsigned long *total_scanned) 2549 { 2550 unsigned long nr_reclaimed = 0; 2551 struct mem_cgroup_per_node *mz, *next_mz = NULL; 2552 unsigned long reclaimed; 2553 int loop = 0; 2554 struct mem_cgroup_tree_per_node *mctz; 2555 unsigned long excess; 2556 unsigned long nr_scanned; 2557 2558 if (order > 0) 2559 return 0; 2560 2561 mctz = soft_limit_tree_node(pgdat->node_id); 2562 /* 2563 * This loop can run a while, specially if mem_cgroup's continuously 2564 * keep exceeding their soft limit and putting the system under 2565 * pressure 2566 */ 2567 do { 2568 if (next_mz) 2569 mz = next_mz; 2570 else 2571 mz = mem_cgroup_largest_soft_limit_node(mctz); 2572 if (!mz) 2573 break; 2574 2575 nr_scanned = 0; 2576 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat, 2577 gfp_mask, &nr_scanned); 2578 nr_reclaimed += reclaimed; 2579 *total_scanned += nr_scanned; 2580 spin_lock_irq(&mctz->lock); 2581 __mem_cgroup_remove_exceeded(mz, mctz); 2582 2583 /* 2584 * If we failed to reclaim anything from this memory cgroup 2585 * it is time to move on to the next cgroup 2586 */ 2587 next_mz = NULL; 2588 if (!reclaimed) 2589 next_mz = __mem_cgroup_largest_soft_limit_node(mctz); 2590 2591 excess = soft_limit_excess(mz->memcg); 2592 /* 2593 * One school of thought says that we should not add 2594 * back the node to the tree if reclaim returns 0. 2595 * But our reclaim could return 0, simply because due 2596 * to priority we are exposing a smaller subset of 2597 * memory to reclaim from. Consider this as a longer 2598 * term TODO. 2599 */ 2600 /* If excess == 0, no tree ops */ 2601 __mem_cgroup_insert_exceeded(mz, mctz, excess); 2602 spin_unlock_irq(&mctz->lock); 2603 css_put(&mz->memcg->css); 2604 loop++; 2605 /* 2606 * Could not reclaim anything and there are no more 2607 * mem cgroups to try or we seem to be looping without 2608 * reclaiming anything. 2609 */ 2610 if (!nr_reclaimed && 2611 (next_mz == NULL || 2612 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 2613 break; 2614 } while (!nr_reclaimed); 2615 if (next_mz) 2616 css_put(&next_mz->memcg->css); 2617 return nr_reclaimed; 2618 } 2619 2620 /* 2621 * Test whether @memcg has children, dead or alive. Note that this 2622 * function doesn't care whether @memcg has use_hierarchy enabled and 2623 * returns %true if there are child csses according to the cgroup 2624 * hierarchy. Testing use_hierarchy is the caller's responsiblity. 2625 */ 2626 static inline bool memcg_has_children(struct mem_cgroup *memcg) 2627 { 2628 bool ret; 2629 2630 rcu_read_lock(); 2631 ret = css_next_child(NULL, &memcg->css); 2632 rcu_read_unlock(); 2633 return ret; 2634 } 2635 2636 /* 2637 * Reclaims as many pages from the given memcg as possible. 2638 * 2639 * Caller is responsible for holding css reference for memcg. 2640 */ 2641 static int mem_cgroup_force_empty(struct mem_cgroup *memcg) 2642 { 2643 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 2644 2645 /* we call try-to-free pages for make this cgroup empty */ 2646 lru_add_drain_all(); 2647 /* try to free all pages in this cgroup */ 2648 while (nr_retries && page_counter_read(&memcg->memory)) { 2649 int progress; 2650 2651 if (signal_pending(current)) 2652 return -EINTR; 2653 2654 progress = try_to_free_mem_cgroup_pages(memcg, 1, 2655 GFP_KERNEL, true); 2656 if (!progress) { 2657 nr_retries--; 2658 /* maybe some writeback is necessary */ 2659 congestion_wait(BLK_RW_ASYNC, HZ/10); 2660 } 2661 2662 } 2663 2664 return 0; 2665 } 2666 2667 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of, 2668 char *buf, size_t nbytes, 2669 loff_t off) 2670 { 2671 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 2672 2673 if (mem_cgroup_is_root(memcg)) 2674 return -EINVAL; 2675 return mem_cgroup_force_empty(memcg) ?: nbytes; 2676 } 2677 2678 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, 2679 struct cftype *cft) 2680 { 2681 return mem_cgroup_from_css(css)->use_hierarchy; 2682 } 2683 2684 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, 2685 struct cftype *cft, u64 val) 2686 { 2687 int retval = 0; 2688 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 2689 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent); 2690 2691 if (memcg->use_hierarchy == val) 2692 return 0; 2693 2694 /* 2695 * If parent's use_hierarchy is set, we can't make any modifications 2696 * in the child subtrees. If it is unset, then the change can 2697 * occur, provided the current cgroup has no children. 2698 * 2699 * For the root cgroup, parent_mem is NULL, we allow value to be 2700 * set if there are no children. 2701 */ 2702 if ((!parent_memcg || !parent_memcg->use_hierarchy) && 2703 (val == 1 || val == 0)) { 2704 if (!memcg_has_children(memcg)) 2705 memcg->use_hierarchy = val; 2706 else 2707 retval = -EBUSY; 2708 } else 2709 retval = -EINVAL; 2710 2711 return retval; 2712 } 2713 2714 static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat) 2715 { 2716 struct mem_cgroup *iter; 2717 int i; 2718 2719 memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT); 2720 2721 for_each_mem_cgroup_tree(iter, memcg) { 2722 for (i = 0; i < MEMCG_NR_STAT; i++) 2723 stat[i] += mem_cgroup_read_stat(iter, i); 2724 } 2725 } 2726 2727 static void tree_events(struct mem_cgroup *memcg, unsigned long *events) 2728 { 2729 struct mem_cgroup *iter; 2730 int i; 2731 2732 memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS); 2733 2734 for_each_mem_cgroup_tree(iter, memcg) { 2735 for (i = 0; i < MEMCG_NR_EVENTS; i++) 2736 events[i] += mem_cgroup_read_events(iter, i); 2737 } 2738 } 2739 2740 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 2741 { 2742 unsigned long val = 0; 2743 2744 if (mem_cgroup_is_root(memcg)) { 2745 struct mem_cgroup *iter; 2746 2747 for_each_mem_cgroup_tree(iter, memcg) { 2748 val += mem_cgroup_read_stat(iter, 2749 MEM_CGROUP_STAT_CACHE); 2750 val += mem_cgroup_read_stat(iter, 2751 MEM_CGROUP_STAT_RSS); 2752 if (swap) 2753 val += mem_cgroup_read_stat(iter, 2754 MEM_CGROUP_STAT_SWAP); 2755 } 2756 } else { 2757 if (!swap) 2758 val = page_counter_read(&memcg->memory); 2759 else 2760 val = page_counter_read(&memcg->memsw); 2761 } 2762 return val; 2763 } 2764 2765 enum { 2766 RES_USAGE, 2767 RES_LIMIT, 2768 RES_MAX_USAGE, 2769 RES_FAILCNT, 2770 RES_SOFT_LIMIT, 2771 }; 2772 2773 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css, 2774 struct cftype *cft) 2775 { 2776 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 2777 struct page_counter *counter; 2778 2779 switch (MEMFILE_TYPE(cft->private)) { 2780 case _MEM: 2781 counter = &memcg->memory; 2782 break; 2783 case _MEMSWAP: 2784 counter = &memcg->memsw; 2785 break; 2786 case _KMEM: 2787 counter = &memcg->kmem; 2788 break; 2789 case _TCP: 2790 counter = &memcg->tcpmem; 2791 break; 2792 default: 2793 BUG(); 2794 } 2795 2796 switch (MEMFILE_ATTR(cft->private)) { 2797 case RES_USAGE: 2798 if (counter == &memcg->memory) 2799 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE; 2800 if (counter == &memcg->memsw) 2801 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE; 2802 return (u64)page_counter_read(counter) * PAGE_SIZE; 2803 case RES_LIMIT: 2804 return (u64)counter->limit * PAGE_SIZE; 2805 case RES_MAX_USAGE: 2806 return (u64)counter->watermark * PAGE_SIZE; 2807 case RES_FAILCNT: 2808 return counter->failcnt; 2809 case RES_SOFT_LIMIT: 2810 return (u64)memcg->soft_limit * PAGE_SIZE; 2811 default: 2812 BUG(); 2813 } 2814 } 2815 2816 #ifndef CONFIG_SLOB 2817 static int memcg_online_kmem(struct mem_cgroup *memcg) 2818 { 2819 int memcg_id; 2820 2821 if (cgroup_memory_nokmem) 2822 return 0; 2823 2824 BUG_ON(memcg->kmemcg_id >= 0); 2825 BUG_ON(memcg->kmem_state); 2826 2827 memcg_id = memcg_alloc_cache_id(); 2828 if (memcg_id < 0) 2829 return memcg_id; 2830 2831 static_branch_inc(&memcg_kmem_enabled_key); 2832 /* 2833 * A memory cgroup is considered kmem-online as soon as it gets 2834 * kmemcg_id. Setting the id after enabling static branching will 2835 * guarantee no one starts accounting before all call sites are 2836 * patched. 2837 */ 2838 memcg->kmemcg_id = memcg_id; 2839 memcg->kmem_state = KMEM_ONLINE; 2840 2841 return 0; 2842 } 2843 2844 static void memcg_offline_kmem(struct mem_cgroup *memcg) 2845 { 2846 struct cgroup_subsys_state *css; 2847 struct mem_cgroup *parent, *child; 2848 int kmemcg_id; 2849 2850 if (memcg->kmem_state != KMEM_ONLINE) 2851 return; 2852 /* 2853 * Clear the online state before clearing memcg_caches array 2854 * entries. The slab_mutex in memcg_deactivate_kmem_caches() 2855 * guarantees that no cache will be created for this cgroup 2856 * after we are done (see memcg_create_kmem_cache()). 2857 */ 2858 memcg->kmem_state = KMEM_ALLOCATED; 2859 2860 memcg_deactivate_kmem_caches(memcg); 2861 2862 kmemcg_id = memcg->kmemcg_id; 2863 BUG_ON(kmemcg_id < 0); 2864 2865 parent = parent_mem_cgroup(memcg); 2866 if (!parent) 2867 parent = root_mem_cgroup; 2868 2869 /* 2870 * Change kmemcg_id of this cgroup and all its descendants to the 2871 * parent's id, and then move all entries from this cgroup's list_lrus 2872 * to ones of the parent. After we have finished, all list_lrus 2873 * corresponding to this cgroup are guaranteed to remain empty. The 2874 * ordering is imposed by list_lru_node->lock taken by 2875 * memcg_drain_all_list_lrus(). 2876 */ 2877 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */ 2878 css_for_each_descendant_pre(css, &memcg->css) { 2879 child = mem_cgroup_from_css(css); 2880 BUG_ON(child->kmemcg_id != kmemcg_id); 2881 child->kmemcg_id = parent->kmemcg_id; 2882 if (!memcg->use_hierarchy) 2883 break; 2884 } 2885 rcu_read_unlock(); 2886 2887 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id); 2888 2889 memcg_free_cache_id(kmemcg_id); 2890 } 2891 2892 static void memcg_free_kmem(struct mem_cgroup *memcg) 2893 { 2894 /* css_alloc() failed, offlining didn't happen */ 2895 if (unlikely(memcg->kmem_state == KMEM_ONLINE)) 2896 memcg_offline_kmem(memcg); 2897 2898 if (memcg->kmem_state == KMEM_ALLOCATED) { 2899 memcg_destroy_kmem_caches(memcg); 2900 static_branch_dec(&memcg_kmem_enabled_key); 2901 WARN_ON(page_counter_read(&memcg->kmem)); 2902 } 2903 } 2904 #else 2905 static int memcg_online_kmem(struct mem_cgroup *memcg) 2906 { 2907 return 0; 2908 } 2909 static void memcg_offline_kmem(struct mem_cgroup *memcg) 2910 { 2911 } 2912 static void memcg_free_kmem(struct mem_cgroup *memcg) 2913 { 2914 } 2915 #endif /* !CONFIG_SLOB */ 2916 2917 static int memcg_update_kmem_limit(struct mem_cgroup *memcg, 2918 unsigned long limit) 2919 { 2920 int ret; 2921 2922 mutex_lock(&memcg_limit_mutex); 2923 ret = page_counter_limit(&memcg->kmem, limit); 2924 mutex_unlock(&memcg_limit_mutex); 2925 return ret; 2926 } 2927 2928 static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit) 2929 { 2930 int ret; 2931 2932 mutex_lock(&memcg_limit_mutex); 2933 2934 ret = page_counter_limit(&memcg->tcpmem, limit); 2935 if (ret) 2936 goto out; 2937 2938 if (!memcg->tcpmem_active) { 2939 /* 2940 * The active flag needs to be written after the static_key 2941 * update. This is what guarantees that the socket activation 2942 * function is the last one to run. See sock_update_memcg() for 2943 * details, and note that we don't mark any socket as belonging 2944 * to this memcg until that flag is up. 2945 * 2946 * We need to do this, because static_keys will span multiple 2947 * sites, but we can't control their order. If we mark a socket 2948 * as accounted, but the accounting functions are not patched in 2949 * yet, we'll lose accounting. 2950 * 2951 * We never race with the readers in sock_update_memcg(), 2952 * because when this value change, the code to process it is not 2953 * patched in yet. 2954 */ 2955 static_branch_inc(&memcg_sockets_enabled_key); 2956 memcg->tcpmem_active = true; 2957 } 2958 out: 2959 mutex_unlock(&memcg_limit_mutex); 2960 return ret; 2961 } 2962 2963 /* 2964 * The user of this function is... 2965 * RES_LIMIT. 2966 */ 2967 static ssize_t mem_cgroup_write(struct kernfs_open_file *of, 2968 char *buf, size_t nbytes, loff_t off) 2969 { 2970 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 2971 unsigned long nr_pages; 2972 int ret; 2973 2974 buf = strstrip(buf); 2975 ret = page_counter_memparse(buf, "-1", &nr_pages); 2976 if (ret) 2977 return ret; 2978 2979 switch (MEMFILE_ATTR(of_cft(of)->private)) { 2980 case RES_LIMIT: 2981 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 2982 ret = -EINVAL; 2983 break; 2984 } 2985 switch (MEMFILE_TYPE(of_cft(of)->private)) { 2986 case _MEM: 2987 ret = mem_cgroup_resize_limit(memcg, nr_pages); 2988 break; 2989 case _MEMSWAP: 2990 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages); 2991 break; 2992 case _KMEM: 2993 ret = memcg_update_kmem_limit(memcg, nr_pages); 2994 break; 2995 case _TCP: 2996 ret = memcg_update_tcp_limit(memcg, nr_pages); 2997 break; 2998 } 2999 break; 3000 case RES_SOFT_LIMIT: 3001 memcg->soft_limit = nr_pages; 3002 ret = 0; 3003 break; 3004 } 3005 return ret ?: nbytes; 3006 } 3007 3008 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf, 3009 size_t nbytes, loff_t off) 3010 { 3011 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3012 struct page_counter *counter; 3013 3014 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3015 case _MEM: 3016 counter = &memcg->memory; 3017 break; 3018 case _MEMSWAP: 3019 counter = &memcg->memsw; 3020 break; 3021 case _KMEM: 3022 counter = &memcg->kmem; 3023 break; 3024 case _TCP: 3025 counter = &memcg->tcpmem; 3026 break; 3027 default: 3028 BUG(); 3029 } 3030 3031 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3032 case RES_MAX_USAGE: 3033 page_counter_reset_watermark(counter); 3034 break; 3035 case RES_FAILCNT: 3036 counter->failcnt = 0; 3037 break; 3038 default: 3039 BUG(); 3040 } 3041 3042 return nbytes; 3043 } 3044 3045 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, 3046 struct cftype *cft) 3047 { 3048 return mem_cgroup_from_css(css)->move_charge_at_immigrate; 3049 } 3050 3051 #ifdef CONFIG_MMU 3052 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3053 struct cftype *cft, u64 val) 3054 { 3055 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3056 3057 if (val & ~MOVE_MASK) 3058 return -EINVAL; 3059 3060 /* 3061 * No kind of locking is needed in here, because ->can_attach() will 3062 * check this value once in the beginning of the process, and then carry 3063 * on with stale data. This means that changes to this value will only 3064 * affect task migrations starting after the change. 3065 */ 3066 memcg->move_charge_at_immigrate = val; 3067 return 0; 3068 } 3069 #else 3070 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3071 struct cftype *cft, u64 val) 3072 { 3073 return -ENOSYS; 3074 } 3075 #endif 3076 3077 #ifdef CONFIG_NUMA 3078 static int memcg_numa_stat_show(struct seq_file *m, void *v) 3079 { 3080 struct numa_stat { 3081 const char *name; 3082 unsigned int lru_mask; 3083 }; 3084 3085 static const struct numa_stat stats[] = { 3086 { "total", LRU_ALL }, 3087 { "file", LRU_ALL_FILE }, 3088 { "anon", LRU_ALL_ANON }, 3089 { "unevictable", BIT(LRU_UNEVICTABLE) }, 3090 }; 3091 const struct numa_stat *stat; 3092 int nid; 3093 unsigned long nr; 3094 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 3095 3096 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3097 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask); 3098 seq_printf(m, "%s=%lu", stat->name, nr); 3099 for_each_node_state(nid, N_MEMORY) { 3100 nr = mem_cgroup_node_nr_lru_pages(memcg, nid, 3101 stat->lru_mask); 3102 seq_printf(m, " N%d=%lu", nid, nr); 3103 } 3104 seq_putc(m, '\n'); 3105 } 3106 3107 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3108 struct mem_cgroup *iter; 3109 3110 nr = 0; 3111 for_each_mem_cgroup_tree(iter, memcg) 3112 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask); 3113 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr); 3114 for_each_node_state(nid, N_MEMORY) { 3115 nr = 0; 3116 for_each_mem_cgroup_tree(iter, memcg) 3117 nr += mem_cgroup_node_nr_lru_pages( 3118 iter, nid, stat->lru_mask); 3119 seq_printf(m, " N%d=%lu", nid, nr); 3120 } 3121 seq_putc(m, '\n'); 3122 } 3123 3124 return 0; 3125 } 3126 #endif /* CONFIG_NUMA */ 3127 3128 static int memcg_stat_show(struct seq_file *m, void *v) 3129 { 3130 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 3131 unsigned long memory, memsw; 3132 struct mem_cgroup *mi; 3133 unsigned int i; 3134 3135 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) != 3136 MEM_CGROUP_STAT_NSTATS); 3137 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) != 3138 MEM_CGROUP_EVENTS_NSTATS); 3139 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS); 3140 3141 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 3142 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account()) 3143 continue; 3144 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i], 3145 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE); 3146 } 3147 3148 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) 3149 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i], 3150 mem_cgroup_read_events(memcg, i)); 3151 3152 for (i = 0; i < NR_LRU_LISTS; i++) 3153 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i], 3154 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE); 3155 3156 /* Hierarchical information */ 3157 memory = memsw = PAGE_COUNTER_MAX; 3158 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) { 3159 memory = min(memory, mi->memory.limit); 3160 memsw = min(memsw, mi->memsw.limit); 3161 } 3162 seq_printf(m, "hierarchical_memory_limit %llu\n", 3163 (u64)memory * PAGE_SIZE); 3164 if (do_memsw_account()) 3165 seq_printf(m, "hierarchical_memsw_limit %llu\n", 3166 (u64)memsw * PAGE_SIZE); 3167 3168 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 3169 unsigned long long val = 0; 3170 3171 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account()) 3172 continue; 3173 for_each_mem_cgroup_tree(mi, memcg) 3174 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE; 3175 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val); 3176 } 3177 3178 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) { 3179 unsigned long long val = 0; 3180 3181 for_each_mem_cgroup_tree(mi, memcg) 3182 val += mem_cgroup_read_events(mi, i); 3183 seq_printf(m, "total_%s %llu\n", 3184 mem_cgroup_events_names[i], val); 3185 } 3186 3187 for (i = 0; i < NR_LRU_LISTS; i++) { 3188 unsigned long long val = 0; 3189 3190 for_each_mem_cgroup_tree(mi, memcg) 3191 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE; 3192 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val); 3193 } 3194 3195 #ifdef CONFIG_DEBUG_VM 3196 { 3197 pg_data_t *pgdat; 3198 struct mem_cgroup_per_node *mz; 3199 struct zone_reclaim_stat *rstat; 3200 unsigned long recent_rotated[2] = {0, 0}; 3201 unsigned long recent_scanned[2] = {0, 0}; 3202 3203 for_each_online_pgdat(pgdat) { 3204 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 3205 rstat = &mz->lruvec.reclaim_stat; 3206 3207 recent_rotated[0] += rstat->recent_rotated[0]; 3208 recent_rotated[1] += rstat->recent_rotated[1]; 3209 recent_scanned[0] += rstat->recent_scanned[0]; 3210 recent_scanned[1] += rstat->recent_scanned[1]; 3211 } 3212 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]); 3213 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]); 3214 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]); 3215 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]); 3216 } 3217 #endif 3218 3219 return 0; 3220 } 3221 3222 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, 3223 struct cftype *cft) 3224 { 3225 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3226 3227 return mem_cgroup_swappiness(memcg); 3228 } 3229 3230 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, 3231 struct cftype *cft, u64 val) 3232 { 3233 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3234 3235 if (val > 100) 3236 return -EINVAL; 3237 3238 if (css->parent) 3239 memcg->swappiness = val; 3240 else 3241 vm_swappiness = val; 3242 3243 return 0; 3244 } 3245 3246 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 3247 { 3248 struct mem_cgroup_threshold_ary *t; 3249 unsigned long usage; 3250 int i; 3251 3252 rcu_read_lock(); 3253 if (!swap) 3254 t = rcu_dereference(memcg->thresholds.primary); 3255 else 3256 t = rcu_dereference(memcg->memsw_thresholds.primary); 3257 3258 if (!t) 3259 goto unlock; 3260 3261 usage = mem_cgroup_usage(memcg, swap); 3262 3263 /* 3264 * current_threshold points to threshold just below or equal to usage. 3265 * If it's not true, a threshold was crossed after last 3266 * call of __mem_cgroup_threshold(). 3267 */ 3268 i = t->current_threshold; 3269 3270 /* 3271 * Iterate backward over array of thresholds starting from 3272 * current_threshold and check if a threshold is crossed. 3273 * If none of thresholds below usage is crossed, we read 3274 * only one element of the array here. 3275 */ 3276 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 3277 eventfd_signal(t->entries[i].eventfd, 1); 3278 3279 /* i = current_threshold + 1 */ 3280 i++; 3281 3282 /* 3283 * Iterate forward over array of thresholds starting from 3284 * current_threshold+1 and check if a threshold is crossed. 3285 * If none of thresholds above usage is crossed, we read 3286 * only one element of the array here. 3287 */ 3288 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 3289 eventfd_signal(t->entries[i].eventfd, 1); 3290 3291 /* Update current_threshold */ 3292 t->current_threshold = i - 1; 3293 unlock: 3294 rcu_read_unlock(); 3295 } 3296 3297 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 3298 { 3299 while (memcg) { 3300 __mem_cgroup_threshold(memcg, false); 3301 if (do_memsw_account()) 3302 __mem_cgroup_threshold(memcg, true); 3303 3304 memcg = parent_mem_cgroup(memcg); 3305 } 3306 } 3307 3308 static int compare_thresholds(const void *a, const void *b) 3309 { 3310 const struct mem_cgroup_threshold *_a = a; 3311 const struct mem_cgroup_threshold *_b = b; 3312 3313 if (_a->threshold > _b->threshold) 3314 return 1; 3315 3316 if (_a->threshold < _b->threshold) 3317 return -1; 3318 3319 return 0; 3320 } 3321 3322 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 3323 { 3324 struct mem_cgroup_eventfd_list *ev; 3325 3326 spin_lock(&memcg_oom_lock); 3327 3328 list_for_each_entry(ev, &memcg->oom_notify, list) 3329 eventfd_signal(ev->eventfd, 1); 3330 3331 spin_unlock(&memcg_oom_lock); 3332 return 0; 3333 } 3334 3335 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 3336 { 3337 struct mem_cgroup *iter; 3338 3339 for_each_mem_cgroup_tree(iter, memcg) 3340 mem_cgroup_oom_notify_cb(iter); 3341 } 3342 3343 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 3344 struct eventfd_ctx *eventfd, const char *args, enum res_type type) 3345 { 3346 struct mem_cgroup_thresholds *thresholds; 3347 struct mem_cgroup_threshold_ary *new; 3348 unsigned long threshold; 3349 unsigned long usage; 3350 int i, size, ret; 3351 3352 ret = page_counter_memparse(args, "-1", &threshold); 3353 if (ret) 3354 return ret; 3355 3356 mutex_lock(&memcg->thresholds_lock); 3357 3358 if (type == _MEM) { 3359 thresholds = &memcg->thresholds; 3360 usage = mem_cgroup_usage(memcg, false); 3361 } else if (type == _MEMSWAP) { 3362 thresholds = &memcg->memsw_thresholds; 3363 usage = mem_cgroup_usage(memcg, true); 3364 } else 3365 BUG(); 3366 3367 /* Check if a threshold crossed before adding a new one */ 3368 if (thresholds->primary) 3369 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 3370 3371 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 3372 3373 /* Allocate memory for new array of thresholds */ 3374 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold), 3375 GFP_KERNEL); 3376 if (!new) { 3377 ret = -ENOMEM; 3378 goto unlock; 3379 } 3380 new->size = size; 3381 3382 /* Copy thresholds (if any) to new array */ 3383 if (thresholds->primary) { 3384 memcpy(new->entries, thresholds->primary->entries, (size - 1) * 3385 sizeof(struct mem_cgroup_threshold)); 3386 } 3387 3388 /* Add new threshold */ 3389 new->entries[size - 1].eventfd = eventfd; 3390 new->entries[size - 1].threshold = threshold; 3391 3392 /* Sort thresholds. Registering of new threshold isn't time-critical */ 3393 sort(new->entries, size, sizeof(struct mem_cgroup_threshold), 3394 compare_thresholds, NULL); 3395 3396 /* Find current threshold */ 3397 new->current_threshold = -1; 3398 for (i = 0; i < size; i++) { 3399 if (new->entries[i].threshold <= usage) { 3400 /* 3401 * new->current_threshold will not be used until 3402 * rcu_assign_pointer(), so it's safe to increment 3403 * it here. 3404 */ 3405 ++new->current_threshold; 3406 } else 3407 break; 3408 } 3409 3410 /* Free old spare buffer and save old primary buffer as spare */ 3411 kfree(thresholds->spare); 3412 thresholds->spare = thresholds->primary; 3413 3414 rcu_assign_pointer(thresholds->primary, new); 3415 3416 /* To be sure that nobody uses thresholds */ 3417 synchronize_rcu(); 3418 3419 unlock: 3420 mutex_unlock(&memcg->thresholds_lock); 3421 3422 return ret; 3423 } 3424 3425 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 3426 struct eventfd_ctx *eventfd, const char *args) 3427 { 3428 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM); 3429 } 3430 3431 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg, 3432 struct eventfd_ctx *eventfd, const char *args) 3433 { 3434 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP); 3435 } 3436 3437 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 3438 struct eventfd_ctx *eventfd, enum res_type type) 3439 { 3440 struct mem_cgroup_thresholds *thresholds; 3441 struct mem_cgroup_threshold_ary *new; 3442 unsigned long usage; 3443 int i, j, size; 3444 3445 mutex_lock(&memcg->thresholds_lock); 3446 3447 if (type == _MEM) { 3448 thresholds = &memcg->thresholds; 3449 usage = mem_cgroup_usage(memcg, false); 3450 } else if (type == _MEMSWAP) { 3451 thresholds = &memcg->memsw_thresholds; 3452 usage = mem_cgroup_usage(memcg, true); 3453 } else 3454 BUG(); 3455 3456 if (!thresholds->primary) 3457 goto unlock; 3458 3459 /* Check if a threshold crossed before removing */ 3460 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 3461 3462 /* Calculate new number of threshold */ 3463 size = 0; 3464 for (i = 0; i < thresholds->primary->size; i++) { 3465 if (thresholds->primary->entries[i].eventfd != eventfd) 3466 size++; 3467 } 3468 3469 new = thresholds->spare; 3470 3471 /* Set thresholds array to NULL if we don't have thresholds */ 3472 if (!size) { 3473 kfree(new); 3474 new = NULL; 3475 goto swap_buffers; 3476 } 3477 3478 new->size = size; 3479 3480 /* Copy thresholds and find current threshold */ 3481 new->current_threshold = -1; 3482 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 3483 if (thresholds->primary->entries[i].eventfd == eventfd) 3484 continue; 3485 3486 new->entries[j] = thresholds->primary->entries[i]; 3487 if (new->entries[j].threshold <= usage) { 3488 /* 3489 * new->current_threshold will not be used 3490 * until rcu_assign_pointer(), so it's safe to increment 3491 * it here. 3492 */ 3493 ++new->current_threshold; 3494 } 3495 j++; 3496 } 3497 3498 swap_buffers: 3499 /* Swap primary and spare array */ 3500 thresholds->spare = thresholds->primary; 3501 3502 rcu_assign_pointer(thresholds->primary, new); 3503 3504 /* To be sure that nobody uses thresholds */ 3505 synchronize_rcu(); 3506 3507 /* If all events are unregistered, free the spare array */ 3508 if (!new) { 3509 kfree(thresholds->spare); 3510 thresholds->spare = NULL; 3511 } 3512 unlock: 3513 mutex_unlock(&memcg->thresholds_lock); 3514 } 3515 3516 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 3517 struct eventfd_ctx *eventfd) 3518 { 3519 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM); 3520 } 3521 3522 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 3523 struct eventfd_ctx *eventfd) 3524 { 3525 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP); 3526 } 3527 3528 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg, 3529 struct eventfd_ctx *eventfd, const char *args) 3530 { 3531 struct mem_cgroup_eventfd_list *event; 3532 3533 event = kmalloc(sizeof(*event), GFP_KERNEL); 3534 if (!event) 3535 return -ENOMEM; 3536 3537 spin_lock(&memcg_oom_lock); 3538 3539 event->eventfd = eventfd; 3540 list_add(&event->list, &memcg->oom_notify); 3541 3542 /* already in OOM ? */ 3543 if (memcg->under_oom) 3544 eventfd_signal(eventfd, 1); 3545 spin_unlock(&memcg_oom_lock); 3546 3547 return 0; 3548 } 3549 3550 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg, 3551 struct eventfd_ctx *eventfd) 3552 { 3553 struct mem_cgroup_eventfd_list *ev, *tmp; 3554 3555 spin_lock(&memcg_oom_lock); 3556 3557 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 3558 if (ev->eventfd == eventfd) { 3559 list_del(&ev->list); 3560 kfree(ev); 3561 } 3562 } 3563 3564 spin_unlock(&memcg_oom_lock); 3565 } 3566 3567 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v) 3568 { 3569 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf)); 3570 3571 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable); 3572 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom); 3573 return 0; 3574 } 3575 3576 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, 3577 struct cftype *cft, u64 val) 3578 { 3579 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3580 3581 /* cannot set to root cgroup and only 0 and 1 are allowed */ 3582 if (!css->parent || !((val == 0) || (val == 1))) 3583 return -EINVAL; 3584 3585 memcg->oom_kill_disable = val; 3586 if (!val) 3587 memcg_oom_recover(memcg); 3588 3589 return 0; 3590 } 3591 3592 #ifdef CONFIG_CGROUP_WRITEBACK 3593 3594 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg) 3595 { 3596 return &memcg->cgwb_list; 3597 } 3598 3599 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 3600 { 3601 return wb_domain_init(&memcg->cgwb_domain, gfp); 3602 } 3603 3604 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 3605 { 3606 wb_domain_exit(&memcg->cgwb_domain); 3607 } 3608 3609 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 3610 { 3611 wb_domain_size_changed(&memcg->cgwb_domain); 3612 } 3613 3614 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 3615 { 3616 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3617 3618 if (!memcg->css.parent) 3619 return NULL; 3620 3621 return &memcg->cgwb_domain; 3622 } 3623 3624 /** 3625 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg 3626 * @wb: bdi_writeback in question 3627 * @pfilepages: out parameter for number of file pages 3628 * @pheadroom: out parameter for number of allocatable pages according to memcg 3629 * @pdirty: out parameter for number of dirty pages 3630 * @pwriteback: out parameter for number of pages under writeback 3631 * 3632 * Determine the numbers of file, headroom, dirty, and writeback pages in 3633 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom 3634 * is a bit more involved. 3635 * 3636 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the 3637 * headroom is calculated as the lowest headroom of itself and the 3638 * ancestors. Note that this doesn't consider the actual amount of 3639 * available memory in the system. The caller should further cap 3640 * *@pheadroom accordingly. 3641 */ 3642 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 3643 unsigned long *pheadroom, unsigned long *pdirty, 3644 unsigned long *pwriteback) 3645 { 3646 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3647 struct mem_cgroup *parent; 3648 3649 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY); 3650 3651 /* this should eventually include NR_UNSTABLE_NFS */ 3652 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK); 3653 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) | 3654 (1 << LRU_ACTIVE_FILE)); 3655 *pheadroom = PAGE_COUNTER_MAX; 3656 3657 while ((parent = parent_mem_cgroup(memcg))) { 3658 unsigned long ceiling = min(memcg->memory.limit, memcg->high); 3659 unsigned long used = page_counter_read(&memcg->memory); 3660 3661 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); 3662 memcg = parent; 3663 } 3664 } 3665 3666 #else /* CONFIG_CGROUP_WRITEBACK */ 3667 3668 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 3669 { 3670 return 0; 3671 } 3672 3673 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 3674 { 3675 } 3676 3677 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 3678 { 3679 } 3680 3681 #endif /* CONFIG_CGROUP_WRITEBACK */ 3682 3683 /* 3684 * DO NOT USE IN NEW FILES. 3685 * 3686 * "cgroup.event_control" implementation. 3687 * 3688 * This is way over-engineered. It tries to support fully configurable 3689 * events for each user. Such level of flexibility is completely 3690 * unnecessary especially in the light of the planned unified hierarchy. 3691 * 3692 * Please deprecate this and replace with something simpler if at all 3693 * possible. 3694 */ 3695 3696 /* 3697 * Unregister event and free resources. 3698 * 3699 * Gets called from workqueue. 3700 */ 3701 static void memcg_event_remove(struct work_struct *work) 3702 { 3703 struct mem_cgroup_event *event = 3704 container_of(work, struct mem_cgroup_event, remove); 3705 struct mem_cgroup *memcg = event->memcg; 3706 3707 remove_wait_queue(event->wqh, &event->wait); 3708 3709 event->unregister_event(memcg, event->eventfd); 3710 3711 /* Notify userspace the event is going away. */ 3712 eventfd_signal(event->eventfd, 1); 3713 3714 eventfd_ctx_put(event->eventfd); 3715 kfree(event); 3716 css_put(&memcg->css); 3717 } 3718 3719 /* 3720 * Gets called on POLLHUP on eventfd when user closes it. 3721 * 3722 * Called with wqh->lock held and interrupts disabled. 3723 */ 3724 static int memcg_event_wake(wait_queue_t *wait, unsigned mode, 3725 int sync, void *key) 3726 { 3727 struct mem_cgroup_event *event = 3728 container_of(wait, struct mem_cgroup_event, wait); 3729 struct mem_cgroup *memcg = event->memcg; 3730 unsigned long flags = (unsigned long)key; 3731 3732 if (flags & POLLHUP) { 3733 /* 3734 * If the event has been detached at cgroup removal, we 3735 * can simply return knowing the other side will cleanup 3736 * for us. 3737 * 3738 * We can't race against event freeing since the other 3739 * side will require wqh->lock via remove_wait_queue(), 3740 * which we hold. 3741 */ 3742 spin_lock(&memcg->event_list_lock); 3743 if (!list_empty(&event->list)) { 3744 list_del_init(&event->list); 3745 /* 3746 * We are in atomic context, but cgroup_event_remove() 3747 * may sleep, so we have to call it in workqueue. 3748 */ 3749 schedule_work(&event->remove); 3750 } 3751 spin_unlock(&memcg->event_list_lock); 3752 } 3753 3754 return 0; 3755 } 3756 3757 static void memcg_event_ptable_queue_proc(struct file *file, 3758 wait_queue_head_t *wqh, poll_table *pt) 3759 { 3760 struct mem_cgroup_event *event = 3761 container_of(pt, struct mem_cgroup_event, pt); 3762 3763 event->wqh = wqh; 3764 add_wait_queue(wqh, &event->wait); 3765 } 3766 3767 /* 3768 * DO NOT USE IN NEW FILES. 3769 * 3770 * Parse input and register new cgroup event handler. 3771 * 3772 * Input must be in format '<event_fd> <control_fd> <args>'. 3773 * Interpretation of args is defined by control file implementation. 3774 */ 3775 static ssize_t memcg_write_event_control(struct kernfs_open_file *of, 3776 char *buf, size_t nbytes, loff_t off) 3777 { 3778 struct cgroup_subsys_state *css = of_css(of); 3779 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3780 struct mem_cgroup_event *event; 3781 struct cgroup_subsys_state *cfile_css; 3782 unsigned int efd, cfd; 3783 struct fd efile; 3784 struct fd cfile; 3785 const char *name; 3786 char *endp; 3787 int ret; 3788 3789 buf = strstrip(buf); 3790 3791 efd = simple_strtoul(buf, &endp, 10); 3792 if (*endp != ' ') 3793 return -EINVAL; 3794 buf = endp + 1; 3795 3796 cfd = simple_strtoul(buf, &endp, 10); 3797 if ((*endp != ' ') && (*endp != '\0')) 3798 return -EINVAL; 3799 buf = endp + 1; 3800 3801 event = kzalloc(sizeof(*event), GFP_KERNEL); 3802 if (!event) 3803 return -ENOMEM; 3804 3805 event->memcg = memcg; 3806 INIT_LIST_HEAD(&event->list); 3807 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc); 3808 init_waitqueue_func_entry(&event->wait, memcg_event_wake); 3809 INIT_WORK(&event->remove, memcg_event_remove); 3810 3811 efile = fdget(efd); 3812 if (!efile.file) { 3813 ret = -EBADF; 3814 goto out_kfree; 3815 } 3816 3817 event->eventfd = eventfd_ctx_fileget(efile.file); 3818 if (IS_ERR(event->eventfd)) { 3819 ret = PTR_ERR(event->eventfd); 3820 goto out_put_efile; 3821 } 3822 3823 cfile = fdget(cfd); 3824 if (!cfile.file) { 3825 ret = -EBADF; 3826 goto out_put_eventfd; 3827 } 3828 3829 /* the process need read permission on control file */ 3830 /* AV: shouldn't we check that it's been opened for read instead? */ 3831 ret = inode_permission(file_inode(cfile.file), MAY_READ); 3832 if (ret < 0) 3833 goto out_put_cfile; 3834 3835 /* 3836 * Determine the event callbacks and set them in @event. This used 3837 * to be done via struct cftype but cgroup core no longer knows 3838 * about these events. The following is crude but the whole thing 3839 * is for compatibility anyway. 3840 * 3841 * DO NOT ADD NEW FILES. 3842 */ 3843 name = cfile.file->f_path.dentry->d_name.name; 3844 3845 if (!strcmp(name, "memory.usage_in_bytes")) { 3846 event->register_event = mem_cgroup_usage_register_event; 3847 event->unregister_event = mem_cgroup_usage_unregister_event; 3848 } else if (!strcmp(name, "memory.oom_control")) { 3849 event->register_event = mem_cgroup_oom_register_event; 3850 event->unregister_event = mem_cgroup_oom_unregister_event; 3851 } else if (!strcmp(name, "memory.pressure_level")) { 3852 event->register_event = vmpressure_register_event; 3853 event->unregister_event = vmpressure_unregister_event; 3854 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) { 3855 event->register_event = memsw_cgroup_usage_register_event; 3856 event->unregister_event = memsw_cgroup_usage_unregister_event; 3857 } else { 3858 ret = -EINVAL; 3859 goto out_put_cfile; 3860 } 3861 3862 /* 3863 * Verify @cfile should belong to @css. Also, remaining events are 3864 * automatically removed on cgroup destruction but the removal is 3865 * asynchronous, so take an extra ref on @css. 3866 */ 3867 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent, 3868 &memory_cgrp_subsys); 3869 ret = -EINVAL; 3870 if (IS_ERR(cfile_css)) 3871 goto out_put_cfile; 3872 if (cfile_css != css) { 3873 css_put(cfile_css); 3874 goto out_put_cfile; 3875 } 3876 3877 ret = event->register_event(memcg, event->eventfd, buf); 3878 if (ret) 3879 goto out_put_css; 3880 3881 efile.file->f_op->poll(efile.file, &event->pt); 3882 3883 spin_lock(&memcg->event_list_lock); 3884 list_add(&event->list, &memcg->event_list); 3885 spin_unlock(&memcg->event_list_lock); 3886 3887 fdput(cfile); 3888 fdput(efile); 3889 3890 return nbytes; 3891 3892 out_put_css: 3893 css_put(css); 3894 out_put_cfile: 3895 fdput(cfile); 3896 out_put_eventfd: 3897 eventfd_ctx_put(event->eventfd); 3898 out_put_efile: 3899 fdput(efile); 3900 out_kfree: 3901 kfree(event); 3902 3903 return ret; 3904 } 3905 3906 static struct cftype mem_cgroup_legacy_files[] = { 3907 { 3908 .name = "usage_in_bytes", 3909 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 3910 .read_u64 = mem_cgroup_read_u64, 3911 }, 3912 { 3913 .name = "max_usage_in_bytes", 3914 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 3915 .write = mem_cgroup_reset, 3916 .read_u64 = mem_cgroup_read_u64, 3917 }, 3918 { 3919 .name = "limit_in_bytes", 3920 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 3921 .write = mem_cgroup_write, 3922 .read_u64 = mem_cgroup_read_u64, 3923 }, 3924 { 3925 .name = "soft_limit_in_bytes", 3926 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 3927 .write = mem_cgroup_write, 3928 .read_u64 = mem_cgroup_read_u64, 3929 }, 3930 { 3931 .name = "failcnt", 3932 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 3933 .write = mem_cgroup_reset, 3934 .read_u64 = mem_cgroup_read_u64, 3935 }, 3936 { 3937 .name = "stat", 3938 .seq_show = memcg_stat_show, 3939 }, 3940 { 3941 .name = "force_empty", 3942 .write = mem_cgroup_force_empty_write, 3943 }, 3944 { 3945 .name = "use_hierarchy", 3946 .write_u64 = mem_cgroup_hierarchy_write, 3947 .read_u64 = mem_cgroup_hierarchy_read, 3948 }, 3949 { 3950 .name = "cgroup.event_control", /* XXX: for compat */ 3951 .write = memcg_write_event_control, 3952 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE, 3953 }, 3954 { 3955 .name = "swappiness", 3956 .read_u64 = mem_cgroup_swappiness_read, 3957 .write_u64 = mem_cgroup_swappiness_write, 3958 }, 3959 { 3960 .name = "move_charge_at_immigrate", 3961 .read_u64 = mem_cgroup_move_charge_read, 3962 .write_u64 = mem_cgroup_move_charge_write, 3963 }, 3964 { 3965 .name = "oom_control", 3966 .seq_show = mem_cgroup_oom_control_read, 3967 .write_u64 = mem_cgroup_oom_control_write, 3968 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), 3969 }, 3970 { 3971 .name = "pressure_level", 3972 }, 3973 #ifdef CONFIG_NUMA 3974 { 3975 .name = "numa_stat", 3976 .seq_show = memcg_numa_stat_show, 3977 }, 3978 #endif 3979 { 3980 .name = "kmem.limit_in_bytes", 3981 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), 3982 .write = mem_cgroup_write, 3983 .read_u64 = mem_cgroup_read_u64, 3984 }, 3985 { 3986 .name = "kmem.usage_in_bytes", 3987 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), 3988 .read_u64 = mem_cgroup_read_u64, 3989 }, 3990 { 3991 .name = "kmem.failcnt", 3992 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), 3993 .write = mem_cgroup_reset, 3994 .read_u64 = mem_cgroup_read_u64, 3995 }, 3996 { 3997 .name = "kmem.max_usage_in_bytes", 3998 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), 3999 .write = mem_cgroup_reset, 4000 .read_u64 = mem_cgroup_read_u64, 4001 }, 4002 #ifdef CONFIG_SLABINFO 4003 { 4004 .name = "kmem.slabinfo", 4005 .seq_start = slab_start, 4006 .seq_next = slab_next, 4007 .seq_stop = slab_stop, 4008 .seq_show = memcg_slab_show, 4009 }, 4010 #endif 4011 { 4012 .name = "kmem.tcp.limit_in_bytes", 4013 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT), 4014 .write = mem_cgroup_write, 4015 .read_u64 = mem_cgroup_read_u64, 4016 }, 4017 { 4018 .name = "kmem.tcp.usage_in_bytes", 4019 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE), 4020 .read_u64 = mem_cgroup_read_u64, 4021 }, 4022 { 4023 .name = "kmem.tcp.failcnt", 4024 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT), 4025 .write = mem_cgroup_reset, 4026 .read_u64 = mem_cgroup_read_u64, 4027 }, 4028 { 4029 .name = "kmem.tcp.max_usage_in_bytes", 4030 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE), 4031 .write = mem_cgroup_reset, 4032 .read_u64 = mem_cgroup_read_u64, 4033 }, 4034 { }, /* terminate */ 4035 }; 4036 4037 /* 4038 * Private memory cgroup IDR 4039 * 4040 * Swap-out records and page cache shadow entries need to store memcg 4041 * references in constrained space, so we maintain an ID space that is 4042 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of 4043 * memory-controlled cgroups to 64k. 4044 * 4045 * However, there usually are many references to the oflline CSS after 4046 * the cgroup has been destroyed, such as page cache or reclaimable 4047 * slab objects, that don't need to hang on to the ID. We want to keep 4048 * those dead CSS from occupying IDs, or we might quickly exhaust the 4049 * relatively small ID space and prevent the creation of new cgroups 4050 * even when there are much fewer than 64k cgroups - possibly none. 4051 * 4052 * Maintain a private 16-bit ID space for memcg, and allow the ID to 4053 * be freed and recycled when it's no longer needed, which is usually 4054 * when the CSS is offlined. 4055 * 4056 * The only exception to that are records of swapped out tmpfs/shmem 4057 * pages that need to be attributed to live ancestors on swapin. But 4058 * those references are manageable from userspace. 4059 */ 4060 4061 static DEFINE_IDR(mem_cgroup_idr); 4062 4063 static void mem_cgroup_id_get(struct mem_cgroup *memcg) 4064 { 4065 atomic_inc(&memcg->id.ref); 4066 } 4067 4068 static void mem_cgroup_id_put(struct mem_cgroup *memcg) 4069 { 4070 if (atomic_dec_and_test(&memcg->id.ref)) { 4071 idr_remove(&mem_cgroup_idr, memcg->id.id); 4072 memcg->id.id = 0; 4073 4074 /* Memcg ID pins CSS */ 4075 css_put(&memcg->css); 4076 } 4077 } 4078 4079 /** 4080 * mem_cgroup_from_id - look up a memcg from a memcg id 4081 * @id: the memcg id to look up 4082 * 4083 * Caller must hold rcu_read_lock(). 4084 */ 4085 struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 4086 { 4087 WARN_ON_ONCE(!rcu_read_lock_held()); 4088 return idr_find(&mem_cgroup_idr, id); 4089 } 4090 4091 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 4092 { 4093 struct mem_cgroup_per_node *pn; 4094 int tmp = node; 4095 /* 4096 * This routine is called against possible nodes. 4097 * But it's BUG to call kmalloc() against offline node. 4098 * 4099 * TODO: this routine can waste much memory for nodes which will 4100 * never be onlined. It's better to use memory hotplug callback 4101 * function. 4102 */ 4103 if (!node_state(node, N_NORMAL_MEMORY)) 4104 tmp = -1; 4105 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); 4106 if (!pn) 4107 return 1; 4108 4109 lruvec_init(&pn->lruvec); 4110 pn->usage_in_excess = 0; 4111 pn->on_tree = false; 4112 pn->memcg = memcg; 4113 4114 memcg->nodeinfo[node] = pn; 4115 return 0; 4116 } 4117 4118 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 4119 { 4120 kfree(memcg->nodeinfo[node]); 4121 } 4122 4123 static void mem_cgroup_free(struct mem_cgroup *memcg) 4124 { 4125 int node; 4126 4127 memcg_wb_domain_exit(memcg); 4128 for_each_node(node) 4129 free_mem_cgroup_per_node_info(memcg, node); 4130 free_percpu(memcg->stat); 4131 kfree(memcg); 4132 } 4133 4134 static struct mem_cgroup *mem_cgroup_alloc(void) 4135 { 4136 struct mem_cgroup *memcg; 4137 size_t size; 4138 int node; 4139 4140 size = sizeof(struct mem_cgroup); 4141 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *); 4142 4143 memcg = kzalloc(size, GFP_KERNEL); 4144 if (!memcg) 4145 return NULL; 4146 4147 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL, 4148 1, MEM_CGROUP_ID_MAX, 4149 GFP_KERNEL); 4150 if (memcg->id.id < 0) 4151 goto fail; 4152 4153 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu); 4154 if (!memcg->stat) 4155 goto fail; 4156 4157 for_each_node(node) 4158 if (alloc_mem_cgroup_per_node_info(memcg, node)) 4159 goto fail; 4160 4161 if (memcg_wb_domain_init(memcg, GFP_KERNEL)) 4162 goto fail; 4163 4164 INIT_WORK(&memcg->high_work, high_work_func); 4165 memcg->last_scanned_node = MAX_NUMNODES; 4166 INIT_LIST_HEAD(&memcg->oom_notify); 4167 mutex_init(&memcg->thresholds_lock); 4168 spin_lock_init(&memcg->move_lock); 4169 vmpressure_init(&memcg->vmpressure); 4170 INIT_LIST_HEAD(&memcg->event_list); 4171 spin_lock_init(&memcg->event_list_lock); 4172 memcg->socket_pressure = jiffies; 4173 #ifndef CONFIG_SLOB 4174 memcg->kmemcg_id = -1; 4175 #endif 4176 #ifdef CONFIG_CGROUP_WRITEBACK 4177 INIT_LIST_HEAD(&memcg->cgwb_list); 4178 #endif 4179 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id); 4180 return memcg; 4181 fail: 4182 if (memcg->id.id > 0) 4183 idr_remove(&mem_cgroup_idr, memcg->id.id); 4184 mem_cgroup_free(memcg); 4185 return NULL; 4186 } 4187 4188 static struct cgroup_subsys_state * __ref 4189 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 4190 { 4191 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); 4192 struct mem_cgroup *memcg; 4193 long error = -ENOMEM; 4194 4195 memcg = mem_cgroup_alloc(); 4196 if (!memcg) 4197 return ERR_PTR(error); 4198 4199 memcg->high = PAGE_COUNTER_MAX; 4200 memcg->soft_limit = PAGE_COUNTER_MAX; 4201 if (parent) { 4202 memcg->swappiness = mem_cgroup_swappiness(parent); 4203 memcg->oom_kill_disable = parent->oom_kill_disable; 4204 } 4205 if (parent && parent->use_hierarchy) { 4206 memcg->use_hierarchy = true; 4207 page_counter_init(&memcg->memory, &parent->memory); 4208 page_counter_init(&memcg->swap, &parent->swap); 4209 page_counter_init(&memcg->memsw, &parent->memsw); 4210 page_counter_init(&memcg->kmem, &parent->kmem); 4211 page_counter_init(&memcg->tcpmem, &parent->tcpmem); 4212 } else { 4213 page_counter_init(&memcg->memory, NULL); 4214 page_counter_init(&memcg->swap, NULL); 4215 page_counter_init(&memcg->memsw, NULL); 4216 page_counter_init(&memcg->kmem, NULL); 4217 page_counter_init(&memcg->tcpmem, NULL); 4218 /* 4219 * Deeper hierachy with use_hierarchy == false doesn't make 4220 * much sense so let cgroup subsystem know about this 4221 * unfortunate state in our controller. 4222 */ 4223 if (parent != root_mem_cgroup) 4224 memory_cgrp_subsys.broken_hierarchy = true; 4225 } 4226 4227 /* The following stuff does not apply to the root */ 4228 if (!parent) { 4229 root_mem_cgroup = memcg; 4230 return &memcg->css; 4231 } 4232 4233 error = memcg_online_kmem(memcg); 4234 if (error) 4235 goto fail; 4236 4237 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 4238 static_branch_inc(&memcg_sockets_enabled_key); 4239 4240 return &memcg->css; 4241 fail: 4242 mem_cgroup_free(memcg); 4243 return ERR_PTR(-ENOMEM); 4244 } 4245 4246 static int mem_cgroup_css_online(struct cgroup_subsys_state *css) 4247 { 4248 /* Online state pins memcg ID, memcg ID pins CSS */ 4249 mem_cgroup_id_get(mem_cgroup_from_css(css)); 4250 css_get(css); 4251 return 0; 4252 } 4253 4254 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 4255 { 4256 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4257 struct mem_cgroup_event *event, *tmp; 4258 4259 /* 4260 * Unregister events and notify userspace. 4261 * Notify userspace about cgroup removing only after rmdir of cgroup 4262 * directory to avoid race between userspace and kernelspace. 4263 */ 4264 spin_lock(&memcg->event_list_lock); 4265 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) { 4266 list_del_init(&event->list); 4267 schedule_work(&event->remove); 4268 } 4269 spin_unlock(&memcg->event_list_lock); 4270 4271 memcg_offline_kmem(memcg); 4272 wb_memcg_offline(memcg); 4273 4274 mem_cgroup_id_put(memcg); 4275 } 4276 4277 static void mem_cgroup_css_released(struct cgroup_subsys_state *css) 4278 { 4279 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4280 4281 invalidate_reclaim_iterators(memcg); 4282 } 4283 4284 static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 4285 { 4286 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4287 4288 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 4289 static_branch_dec(&memcg_sockets_enabled_key); 4290 4291 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active) 4292 static_branch_dec(&memcg_sockets_enabled_key); 4293 4294 vmpressure_cleanup(&memcg->vmpressure); 4295 cancel_work_sync(&memcg->high_work); 4296 mem_cgroup_remove_from_trees(memcg); 4297 memcg_free_kmem(memcg); 4298 mem_cgroup_free(memcg); 4299 } 4300 4301 /** 4302 * mem_cgroup_css_reset - reset the states of a mem_cgroup 4303 * @css: the target css 4304 * 4305 * Reset the states of the mem_cgroup associated with @css. This is 4306 * invoked when the userland requests disabling on the default hierarchy 4307 * but the memcg is pinned through dependency. The memcg should stop 4308 * applying policies and should revert to the vanilla state as it may be 4309 * made visible again. 4310 * 4311 * The current implementation only resets the essential configurations. 4312 * This needs to be expanded to cover all the visible parts. 4313 */ 4314 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) 4315 { 4316 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4317 4318 page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX); 4319 page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX); 4320 page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX); 4321 page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX); 4322 page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX); 4323 memcg->low = 0; 4324 memcg->high = PAGE_COUNTER_MAX; 4325 memcg->soft_limit = PAGE_COUNTER_MAX; 4326 memcg_wb_domain_size_changed(memcg); 4327 } 4328 4329 #ifdef CONFIG_MMU 4330 /* Handlers for move charge at task migration. */ 4331 static int mem_cgroup_do_precharge(unsigned long count) 4332 { 4333 int ret; 4334 4335 /* Try a single bulk charge without reclaim first, kswapd may wake */ 4336 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count); 4337 if (!ret) { 4338 mc.precharge += count; 4339 return ret; 4340 } 4341 4342 /* Try charges one by one with reclaim */ 4343 while (count--) { 4344 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1); 4345 if (ret) 4346 return ret; 4347 mc.precharge++; 4348 cond_resched(); 4349 } 4350 return 0; 4351 } 4352 4353 union mc_target { 4354 struct page *page; 4355 swp_entry_t ent; 4356 }; 4357 4358 enum mc_target_type { 4359 MC_TARGET_NONE = 0, 4360 MC_TARGET_PAGE, 4361 MC_TARGET_SWAP, 4362 }; 4363 4364 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 4365 unsigned long addr, pte_t ptent) 4366 { 4367 struct page *page = vm_normal_page(vma, addr, ptent); 4368 4369 if (!page || !page_mapped(page)) 4370 return NULL; 4371 if (PageAnon(page)) { 4372 if (!(mc.flags & MOVE_ANON)) 4373 return NULL; 4374 } else { 4375 if (!(mc.flags & MOVE_FILE)) 4376 return NULL; 4377 } 4378 if (!get_page_unless_zero(page)) 4379 return NULL; 4380 4381 return page; 4382 } 4383 4384 #ifdef CONFIG_SWAP 4385 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 4386 pte_t ptent, swp_entry_t *entry) 4387 { 4388 struct page *page = NULL; 4389 swp_entry_t ent = pte_to_swp_entry(ptent); 4390 4391 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent)) 4392 return NULL; 4393 /* 4394 * Because lookup_swap_cache() updates some statistics counter, 4395 * we call find_get_page() with swapper_space directly. 4396 */ 4397 page = find_get_page(swap_address_space(ent), ent.val); 4398 if (do_memsw_account()) 4399 entry->val = ent.val; 4400 4401 return page; 4402 } 4403 #else 4404 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 4405 pte_t ptent, swp_entry_t *entry) 4406 { 4407 return NULL; 4408 } 4409 #endif 4410 4411 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 4412 unsigned long addr, pte_t ptent, swp_entry_t *entry) 4413 { 4414 struct page *page = NULL; 4415 struct address_space *mapping; 4416 pgoff_t pgoff; 4417 4418 if (!vma->vm_file) /* anonymous vma */ 4419 return NULL; 4420 if (!(mc.flags & MOVE_FILE)) 4421 return NULL; 4422 4423 mapping = vma->vm_file->f_mapping; 4424 pgoff = linear_page_index(vma, addr); 4425 4426 /* page is moved even if it's not RSS of this task(page-faulted). */ 4427 #ifdef CONFIG_SWAP 4428 /* shmem/tmpfs may report page out on swap: account for that too. */ 4429 if (shmem_mapping(mapping)) { 4430 page = find_get_entry(mapping, pgoff); 4431 if (radix_tree_exceptional_entry(page)) { 4432 swp_entry_t swp = radix_to_swp_entry(page); 4433 if (do_memsw_account()) 4434 *entry = swp; 4435 page = find_get_page(swap_address_space(swp), swp.val); 4436 } 4437 } else 4438 page = find_get_page(mapping, pgoff); 4439 #else 4440 page = find_get_page(mapping, pgoff); 4441 #endif 4442 return page; 4443 } 4444 4445 /** 4446 * mem_cgroup_move_account - move account of the page 4447 * @page: the page 4448 * @compound: charge the page as compound or small page 4449 * @from: mem_cgroup which the page is moved from. 4450 * @to: mem_cgroup which the page is moved to. @from != @to. 4451 * 4452 * The caller must make sure the page is not on LRU (isolate_page() is useful.) 4453 * 4454 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" 4455 * from old cgroup. 4456 */ 4457 static int mem_cgroup_move_account(struct page *page, 4458 bool compound, 4459 struct mem_cgroup *from, 4460 struct mem_cgroup *to) 4461 { 4462 unsigned long flags; 4463 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 4464 int ret; 4465 bool anon; 4466 4467 VM_BUG_ON(from == to); 4468 VM_BUG_ON_PAGE(PageLRU(page), page); 4469 VM_BUG_ON(compound && !PageTransHuge(page)); 4470 4471 /* 4472 * Prevent mem_cgroup_migrate() from looking at 4473 * page->mem_cgroup of its source page while we change it. 4474 */ 4475 ret = -EBUSY; 4476 if (!trylock_page(page)) 4477 goto out; 4478 4479 ret = -EINVAL; 4480 if (page->mem_cgroup != from) 4481 goto out_unlock; 4482 4483 anon = PageAnon(page); 4484 4485 spin_lock_irqsave(&from->move_lock, flags); 4486 4487 if (!anon && page_mapped(page)) { 4488 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED], 4489 nr_pages); 4490 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED], 4491 nr_pages); 4492 } 4493 4494 /* 4495 * move_lock grabbed above and caller set from->moving_account, so 4496 * mem_cgroup_update_page_stat() will serialize updates to PageDirty. 4497 * So mapping should be stable for dirty pages. 4498 */ 4499 if (!anon && PageDirty(page)) { 4500 struct address_space *mapping = page_mapping(page); 4501 4502 if (mapping_cap_account_dirty(mapping)) { 4503 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY], 4504 nr_pages); 4505 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY], 4506 nr_pages); 4507 } 4508 } 4509 4510 if (PageWriteback(page)) { 4511 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK], 4512 nr_pages); 4513 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK], 4514 nr_pages); 4515 } 4516 4517 /* 4518 * It is safe to change page->mem_cgroup here because the page 4519 * is referenced, charged, and isolated - we can't race with 4520 * uncharging, charging, migration, or LRU putback. 4521 */ 4522 4523 /* caller should have done css_get */ 4524 page->mem_cgroup = to; 4525 spin_unlock_irqrestore(&from->move_lock, flags); 4526 4527 ret = 0; 4528 4529 local_irq_disable(); 4530 mem_cgroup_charge_statistics(to, page, compound, nr_pages); 4531 memcg_check_events(to, page); 4532 mem_cgroup_charge_statistics(from, page, compound, -nr_pages); 4533 memcg_check_events(from, page); 4534 local_irq_enable(); 4535 out_unlock: 4536 unlock_page(page); 4537 out: 4538 return ret; 4539 } 4540 4541 /** 4542 * get_mctgt_type - get target type of moving charge 4543 * @vma: the vma the pte to be checked belongs 4544 * @addr: the address corresponding to the pte to be checked 4545 * @ptent: the pte to be checked 4546 * @target: the pointer the target page or swap ent will be stored(can be NULL) 4547 * 4548 * Returns 4549 * 0(MC_TARGET_NONE): if the pte is not a target for move charge. 4550 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for 4551 * move charge. if @target is not NULL, the page is stored in target->page 4552 * with extra refcnt got(Callers should handle it). 4553 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a 4554 * target for charge migration. if @target is not NULL, the entry is stored 4555 * in target->ent. 4556 * 4557 * Called with pte lock held. 4558 */ 4559 4560 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, 4561 unsigned long addr, pte_t ptent, union mc_target *target) 4562 { 4563 struct page *page = NULL; 4564 enum mc_target_type ret = MC_TARGET_NONE; 4565 swp_entry_t ent = { .val = 0 }; 4566 4567 if (pte_present(ptent)) 4568 page = mc_handle_present_pte(vma, addr, ptent); 4569 else if (is_swap_pte(ptent)) 4570 page = mc_handle_swap_pte(vma, ptent, &ent); 4571 else if (pte_none(ptent)) 4572 page = mc_handle_file_pte(vma, addr, ptent, &ent); 4573 4574 if (!page && !ent.val) 4575 return ret; 4576 if (page) { 4577 /* 4578 * Do only loose check w/o serialization. 4579 * mem_cgroup_move_account() checks the page is valid or 4580 * not under LRU exclusion. 4581 */ 4582 if (page->mem_cgroup == mc.from) { 4583 ret = MC_TARGET_PAGE; 4584 if (target) 4585 target->page = page; 4586 } 4587 if (!ret || !target) 4588 put_page(page); 4589 } 4590 /* There is a swap entry and a page doesn't exist or isn't charged */ 4591 if (ent.val && !ret && 4592 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) { 4593 ret = MC_TARGET_SWAP; 4594 if (target) 4595 target->ent = ent; 4596 } 4597 return ret; 4598 } 4599 4600 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4601 /* 4602 * We don't consider swapping or file mapped pages because THP does not 4603 * support them for now. 4604 * Caller should make sure that pmd_trans_huge(pmd) is true. 4605 */ 4606 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 4607 unsigned long addr, pmd_t pmd, union mc_target *target) 4608 { 4609 struct page *page = NULL; 4610 enum mc_target_type ret = MC_TARGET_NONE; 4611 4612 page = pmd_page(pmd); 4613 VM_BUG_ON_PAGE(!page || !PageHead(page), page); 4614 if (!(mc.flags & MOVE_ANON)) 4615 return ret; 4616 if (page->mem_cgroup == mc.from) { 4617 ret = MC_TARGET_PAGE; 4618 if (target) { 4619 get_page(page); 4620 target->page = page; 4621 } 4622 } 4623 return ret; 4624 } 4625 #else 4626 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 4627 unsigned long addr, pmd_t pmd, union mc_target *target) 4628 { 4629 return MC_TARGET_NONE; 4630 } 4631 #endif 4632 4633 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 4634 unsigned long addr, unsigned long end, 4635 struct mm_walk *walk) 4636 { 4637 struct vm_area_struct *vma = walk->vma; 4638 pte_t *pte; 4639 spinlock_t *ptl; 4640 4641 ptl = pmd_trans_huge_lock(pmd, vma); 4642 if (ptl) { 4643 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) 4644 mc.precharge += HPAGE_PMD_NR; 4645 spin_unlock(ptl); 4646 return 0; 4647 } 4648 4649 if (pmd_trans_unstable(pmd)) 4650 return 0; 4651 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 4652 for (; addr != end; pte++, addr += PAGE_SIZE) 4653 if (get_mctgt_type(vma, addr, *pte, NULL)) 4654 mc.precharge++; /* increment precharge temporarily */ 4655 pte_unmap_unlock(pte - 1, ptl); 4656 cond_resched(); 4657 4658 return 0; 4659 } 4660 4661 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 4662 { 4663 unsigned long precharge; 4664 4665 struct mm_walk mem_cgroup_count_precharge_walk = { 4666 .pmd_entry = mem_cgroup_count_precharge_pte_range, 4667 .mm = mm, 4668 }; 4669 down_read(&mm->mmap_sem); 4670 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk); 4671 up_read(&mm->mmap_sem); 4672 4673 precharge = mc.precharge; 4674 mc.precharge = 0; 4675 4676 return precharge; 4677 } 4678 4679 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 4680 { 4681 unsigned long precharge = mem_cgroup_count_precharge(mm); 4682 4683 VM_BUG_ON(mc.moving_task); 4684 mc.moving_task = current; 4685 return mem_cgroup_do_precharge(precharge); 4686 } 4687 4688 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 4689 static void __mem_cgroup_clear_mc(void) 4690 { 4691 struct mem_cgroup *from = mc.from; 4692 struct mem_cgroup *to = mc.to; 4693 4694 /* we must uncharge all the leftover precharges from mc.to */ 4695 if (mc.precharge) { 4696 cancel_charge(mc.to, mc.precharge); 4697 mc.precharge = 0; 4698 } 4699 /* 4700 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 4701 * we must uncharge here. 4702 */ 4703 if (mc.moved_charge) { 4704 cancel_charge(mc.from, mc.moved_charge); 4705 mc.moved_charge = 0; 4706 } 4707 /* we must fixup refcnts and charges */ 4708 if (mc.moved_swap) { 4709 /* uncharge swap account from the old cgroup */ 4710 if (!mem_cgroup_is_root(mc.from)) 4711 page_counter_uncharge(&mc.from->memsw, mc.moved_swap); 4712 4713 /* 4714 * we charged both to->memory and to->memsw, so we 4715 * should uncharge to->memory. 4716 */ 4717 if (!mem_cgroup_is_root(mc.to)) 4718 page_counter_uncharge(&mc.to->memory, mc.moved_swap); 4719 4720 css_put_many(&mc.from->css, mc.moved_swap); 4721 4722 /* we've already done css_get(mc.to) */ 4723 mc.moved_swap = 0; 4724 } 4725 memcg_oom_recover(from); 4726 memcg_oom_recover(to); 4727 wake_up_all(&mc.waitq); 4728 } 4729 4730 static void mem_cgroup_clear_mc(void) 4731 { 4732 struct mm_struct *mm = mc.mm; 4733 4734 /* 4735 * we must clear moving_task before waking up waiters at the end of 4736 * task migration. 4737 */ 4738 mc.moving_task = NULL; 4739 __mem_cgroup_clear_mc(); 4740 spin_lock(&mc.lock); 4741 mc.from = NULL; 4742 mc.to = NULL; 4743 mc.mm = NULL; 4744 spin_unlock(&mc.lock); 4745 4746 mmput(mm); 4747 } 4748 4749 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 4750 { 4751 struct cgroup_subsys_state *css; 4752 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */ 4753 struct mem_cgroup *from; 4754 struct task_struct *leader, *p; 4755 struct mm_struct *mm; 4756 unsigned long move_flags; 4757 int ret = 0; 4758 4759 /* charge immigration isn't supported on the default hierarchy */ 4760 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 4761 return 0; 4762 4763 /* 4764 * Multi-process migrations only happen on the default hierarchy 4765 * where charge immigration is not used. Perform charge 4766 * immigration if @tset contains a leader and whine if there are 4767 * multiple. 4768 */ 4769 p = NULL; 4770 cgroup_taskset_for_each_leader(leader, css, tset) { 4771 WARN_ON_ONCE(p); 4772 p = leader; 4773 memcg = mem_cgroup_from_css(css); 4774 } 4775 if (!p) 4776 return 0; 4777 4778 /* 4779 * We are now commited to this value whatever it is. Changes in this 4780 * tunable will only affect upcoming migrations, not the current one. 4781 * So we need to save it, and keep it going. 4782 */ 4783 move_flags = READ_ONCE(memcg->move_charge_at_immigrate); 4784 if (!move_flags) 4785 return 0; 4786 4787 from = mem_cgroup_from_task(p); 4788 4789 VM_BUG_ON(from == memcg); 4790 4791 mm = get_task_mm(p); 4792 if (!mm) 4793 return 0; 4794 /* We move charges only when we move a owner of the mm */ 4795 if (mm->owner == p) { 4796 VM_BUG_ON(mc.from); 4797 VM_BUG_ON(mc.to); 4798 VM_BUG_ON(mc.precharge); 4799 VM_BUG_ON(mc.moved_charge); 4800 VM_BUG_ON(mc.moved_swap); 4801 4802 spin_lock(&mc.lock); 4803 mc.mm = mm; 4804 mc.from = from; 4805 mc.to = memcg; 4806 mc.flags = move_flags; 4807 spin_unlock(&mc.lock); 4808 /* We set mc.moving_task later */ 4809 4810 ret = mem_cgroup_precharge_mc(mm); 4811 if (ret) 4812 mem_cgroup_clear_mc(); 4813 } else { 4814 mmput(mm); 4815 } 4816 return ret; 4817 } 4818 4819 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 4820 { 4821 if (mc.to) 4822 mem_cgroup_clear_mc(); 4823 } 4824 4825 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 4826 unsigned long addr, unsigned long end, 4827 struct mm_walk *walk) 4828 { 4829 int ret = 0; 4830 struct vm_area_struct *vma = walk->vma; 4831 pte_t *pte; 4832 spinlock_t *ptl; 4833 enum mc_target_type target_type; 4834 union mc_target target; 4835 struct page *page; 4836 4837 ptl = pmd_trans_huge_lock(pmd, vma); 4838 if (ptl) { 4839 if (mc.precharge < HPAGE_PMD_NR) { 4840 spin_unlock(ptl); 4841 return 0; 4842 } 4843 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); 4844 if (target_type == MC_TARGET_PAGE) { 4845 page = target.page; 4846 if (!isolate_lru_page(page)) { 4847 if (!mem_cgroup_move_account(page, true, 4848 mc.from, mc.to)) { 4849 mc.precharge -= HPAGE_PMD_NR; 4850 mc.moved_charge += HPAGE_PMD_NR; 4851 } 4852 putback_lru_page(page); 4853 } 4854 put_page(page); 4855 } 4856 spin_unlock(ptl); 4857 return 0; 4858 } 4859 4860 if (pmd_trans_unstable(pmd)) 4861 return 0; 4862 retry: 4863 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 4864 for (; addr != end; addr += PAGE_SIZE) { 4865 pte_t ptent = *(pte++); 4866 swp_entry_t ent; 4867 4868 if (!mc.precharge) 4869 break; 4870 4871 switch (get_mctgt_type(vma, addr, ptent, &target)) { 4872 case MC_TARGET_PAGE: 4873 page = target.page; 4874 /* 4875 * We can have a part of the split pmd here. Moving it 4876 * can be done but it would be too convoluted so simply 4877 * ignore such a partial THP and keep it in original 4878 * memcg. There should be somebody mapping the head. 4879 */ 4880 if (PageTransCompound(page)) 4881 goto put; 4882 if (isolate_lru_page(page)) 4883 goto put; 4884 if (!mem_cgroup_move_account(page, false, 4885 mc.from, mc.to)) { 4886 mc.precharge--; 4887 /* we uncharge from mc.from later. */ 4888 mc.moved_charge++; 4889 } 4890 putback_lru_page(page); 4891 put: /* get_mctgt_type() gets the page */ 4892 put_page(page); 4893 break; 4894 case MC_TARGET_SWAP: 4895 ent = target.ent; 4896 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { 4897 mc.precharge--; 4898 /* we fixup refcnts and charges later. */ 4899 mc.moved_swap++; 4900 } 4901 break; 4902 default: 4903 break; 4904 } 4905 } 4906 pte_unmap_unlock(pte - 1, ptl); 4907 cond_resched(); 4908 4909 if (addr != end) { 4910 /* 4911 * We have consumed all precharges we got in can_attach(). 4912 * We try charge one by one, but don't do any additional 4913 * charges to mc.to if we have failed in charge once in attach() 4914 * phase. 4915 */ 4916 ret = mem_cgroup_do_precharge(1); 4917 if (!ret) 4918 goto retry; 4919 } 4920 4921 return ret; 4922 } 4923 4924 static void mem_cgroup_move_charge(void) 4925 { 4926 struct mm_walk mem_cgroup_move_charge_walk = { 4927 .pmd_entry = mem_cgroup_move_charge_pte_range, 4928 .mm = mc.mm, 4929 }; 4930 4931 lru_add_drain_all(); 4932 /* 4933 * Signal lock_page_memcg() to take the memcg's move_lock 4934 * while we're moving its pages to another memcg. Then wait 4935 * for already started RCU-only updates to finish. 4936 */ 4937 atomic_inc(&mc.from->moving_account); 4938 synchronize_rcu(); 4939 retry: 4940 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) { 4941 /* 4942 * Someone who are holding the mmap_sem might be waiting in 4943 * waitq. So we cancel all extra charges, wake up all waiters, 4944 * and retry. Because we cancel precharges, we might not be able 4945 * to move enough charges, but moving charge is a best-effort 4946 * feature anyway, so it wouldn't be a big problem. 4947 */ 4948 __mem_cgroup_clear_mc(); 4949 cond_resched(); 4950 goto retry; 4951 } 4952 /* 4953 * When we have consumed all precharges and failed in doing 4954 * additional charge, the page walk just aborts. 4955 */ 4956 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk); 4957 up_read(&mc.mm->mmap_sem); 4958 atomic_dec(&mc.from->moving_account); 4959 } 4960 4961 static void mem_cgroup_move_task(void) 4962 { 4963 if (mc.to) { 4964 mem_cgroup_move_charge(); 4965 mem_cgroup_clear_mc(); 4966 } 4967 } 4968 #else /* !CONFIG_MMU */ 4969 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 4970 { 4971 return 0; 4972 } 4973 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 4974 { 4975 } 4976 static void mem_cgroup_move_task(void) 4977 { 4978 } 4979 #endif 4980 4981 /* 4982 * Cgroup retains root cgroups across [un]mount cycles making it necessary 4983 * to verify whether we're attached to the default hierarchy on each mount 4984 * attempt. 4985 */ 4986 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css) 4987 { 4988 /* 4989 * use_hierarchy is forced on the default hierarchy. cgroup core 4990 * guarantees that @root doesn't have any children, so turning it 4991 * on for the root memcg is enough. 4992 */ 4993 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 4994 root_mem_cgroup->use_hierarchy = true; 4995 else 4996 root_mem_cgroup->use_hierarchy = false; 4997 } 4998 4999 static u64 memory_current_read(struct cgroup_subsys_state *css, 5000 struct cftype *cft) 5001 { 5002 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5003 5004 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; 5005 } 5006 5007 static int memory_low_show(struct seq_file *m, void *v) 5008 { 5009 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5010 unsigned long low = READ_ONCE(memcg->low); 5011 5012 if (low == PAGE_COUNTER_MAX) 5013 seq_puts(m, "max\n"); 5014 else 5015 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE); 5016 5017 return 0; 5018 } 5019 5020 static ssize_t memory_low_write(struct kernfs_open_file *of, 5021 char *buf, size_t nbytes, loff_t off) 5022 { 5023 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5024 unsigned long low; 5025 int err; 5026 5027 buf = strstrip(buf); 5028 err = page_counter_memparse(buf, "max", &low); 5029 if (err) 5030 return err; 5031 5032 memcg->low = low; 5033 5034 return nbytes; 5035 } 5036 5037 static int memory_high_show(struct seq_file *m, void *v) 5038 { 5039 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5040 unsigned long high = READ_ONCE(memcg->high); 5041 5042 if (high == PAGE_COUNTER_MAX) 5043 seq_puts(m, "max\n"); 5044 else 5045 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE); 5046 5047 return 0; 5048 } 5049 5050 static ssize_t memory_high_write(struct kernfs_open_file *of, 5051 char *buf, size_t nbytes, loff_t off) 5052 { 5053 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5054 unsigned long nr_pages; 5055 unsigned long high; 5056 int err; 5057 5058 buf = strstrip(buf); 5059 err = page_counter_memparse(buf, "max", &high); 5060 if (err) 5061 return err; 5062 5063 memcg->high = high; 5064 5065 nr_pages = page_counter_read(&memcg->memory); 5066 if (nr_pages > high) 5067 try_to_free_mem_cgroup_pages(memcg, nr_pages - high, 5068 GFP_KERNEL, true); 5069 5070 memcg_wb_domain_size_changed(memcg); 5071 return nbytes; 5072 } 5073 5074 static int memory_max_show(struct seq_file *m, void *v) 5075 { 5076 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5077 unsigned long max = READ_ONCE(memcg->memory.limit); 5078 5079 if (max == PAGE_COUNTER_MAX) 5080 seq_puts(m, "max\n"); 5081 else 5082 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE); 5083 5084 return 0; 5085 } 5086 5087 static ssize_t memory_max_write(struct kernfs_open_file *of, 5088 char *buf, size_t nbytes, loff_t off) 5089 { 5090 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5091 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES; 5092 bool drained = false; 5093 unsigned long max; 5094 int err; 5095 5096 buf = strstrip(buf); 5097 err = page_counter_memparse(buf, "max", &max); 5098 if (err) 5099 return err; 5100 5101 xchg(&memcg->memory.limit, max); 5102 5103 for (;;) { 5104 unsigned long nr_pages = page_counter_read(&memcg->memory); 5105 5106 if (nr_pages <= max) 5107 break; 5108 5109 if (signal_pending(current)) { 5110 err = -EINTR; 5111 break; 5112 } 5113 5114 if (!drained) { 5115 drain_all_stock(memcg); 5116 drained = true; 5117 continue; 5118 } 5119 5120 if (nr_reclaims) { 5121 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max, 5122 GFP_KERNEL, true)) 5123 nr_reclaims--; 5124 continue; 5125 } 5126 5127 mem_cgroup_events(memcg, MEMCG_OOM, 1); 5128 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0)) 5129 break; 5130 } 5131 5132 memcg_wb_domain_size_changed(memcg); 5133 return nbytes; 5134 } 5135 5136 static int memory_events_show(struct seq_file *m, void *v) 5137 { 5138 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5139 5140 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW)); 5141 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH)); 5142 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX)); 5143 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM)); 5144 5145 return 0; 5146 } 5147 5148 static int memory_stat_show(struct seq_file *m, void *v) 5149 { 5150 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5151 unsigned long stat[MEMCG_NR_STAT]; 5152 unsigned long events[MEMCG_NR_EVENTS]; 5153 int i; 5154 5155 /* 5156 * Provide statistics on the state of the memory subsystem as 5157 * well as cumulative event counters that show past behavior. 5158 * 5159 * This list is ordered following a combination of these gradients: 5160 * 1) generic big picture -> specifics and details 5161 * 2) reflecting userspace activity -> reflecting kernel heuristics 5162 * 5163 * Current memory state: 5164 */ 5165 5166 tree_stat(memcg, stat); 5167 tree_events(memcg, events); 5168 5169 seq_printf(m, "anon %llu\n", 5170 (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE); 5171 seq_printf(m, "file %llu\n", 5172 (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE); 5173 seq_printf(m, "kernel_stack %llu\n", 5174 (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024); 5175 seq_printf(m, "slab %llu\n", 5176 (u64)(stat[MEMCG_SLAB_RECLAIMABLE] + 5177 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE); 5178 seq_printf(m, "sock %llu\n", 5179 (u64)stat[MEMCG_SOCK] * PAGE_SIZE); 5180 5181 seq_printf(m, "file_mapped %llu\n", 5182 (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE); 5183 seq_printf(m, "file_dirty %llu\n", 5184 (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE); 5185 seq_printf(m, "file_writeback %llu\n", 5186 (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE); 5187 5188 for (i = 0; i < NR_LRU_LISTS; i++) { 5189 struct mem_cgroup *mi; 5190 unsigned long val = 0; 5191 5192 for_each_mem_cgroup_tree(mi, memcg) 5193 val += mem_cgroup_nr_lru_pages(mi, BIT(i)); 5194 seq_printf(m, "%s %llu\n", 5195 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE); 5196 } 5197 5198 seq_printf(m, "slab_reclaimable %llu\n", 5199 (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE); 5200 seq_printf(m, "slab_unreclaimable %llu\n", 5201 (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE); 5202 5203 /* Accumulated memory events */ 5204 5205 seq_printf(m, "pgfault %lu\n", 5206 events[MEM_CGROUP_EVENTS_PGFAULT]); 5207 seq_printf(m, "pgmajfault %lu\n", 5208 events[MEM_CGROUP_EVENTS_PGMAJFAULT]); 5209 5210 return 0; 5211 } 5212 5213 static struct cftype memory_files[] = { 5214 { 5215 .name = "current", 5216 .flags = CFTYPE_NOT_ON_ROOT, 5217 .read_u64 = memory_current_read, 5218 }, 5219 { 5220 .name = "low", 5221 .flags = CFTYPE_NOT_ON_ROOT, 5222 .seq_show = memory_low_show, 5223 .write = memory_low_write, 5224 }, 5225 { 5226 .name = "high", 5227 .flags = CFTYPE_NOT_ON_ROOT, 5228 .seq_show = memory_high_show, 5229 .write = memory_high_write, 5230 }, 5231 { 5232 .name = "max", 5233 .flags = CFTYPE_NOT_ON_ROOT, 5234 .seq_show = memory_max_show, 5235 .write = memory_max_write, 5236 }, 5237 { 5238 .name = "events", 5239 .flags = CFTYPE_NOT_ON_ROOT, 5240 .file_offset = offsetof(struct mem_cgroup, events_file), 5241 .seq_show = memory_events_show, 5242 }, 5243 { 5244 .name = "stat", 5245 .flags = CFTYPE_NOT_ON_ROOT, 5246 .seq_show = memory_stat_show, 5247 }, 5248 { } /* terminate */ 5249 }; 5250 5251 struct cgroup_subsys memory_cgrp_subsys = { 5252 .css_alloc = mem_cgroup_css_alloc, 5253 .css_online = mem_cgroup_css_online, 5254 .css_offline = mem_cgroup_css_offline, 5255 .css_released = mem_cgroup_css_released, 5256 .css_free = mem_cgroup_css_free, 5257 .css_reset = mem_cgroup_css_reset, 5258 .can_attach = mem_cgroup_can_attach, 5259 .cancel_attach = mem_cgroup_cancel_attach, 5260 .post_attach = mem_cgroup_move_task, 5261 .bind = mem_cgroup_bind, 5262 .dfl_cftypes = memory_files, 5263 .legacy_cftypes = mem_cgroup_legacy_files, 5264 .early_init = 0, 5265 }; 5266 5267 /** 5268 * mem_cgroup_low - check if memory consumption is below the normal range 5269 * @root: the highest ancestor to consider 5270 * @memcg: the memory cgroup to check 5271 * 5272 * Returns %true if memory consumption of @memcg, and that of all 5273 * configurable ancestors up to @root, is below the normal range. 5274 */ 5275 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg) 5276 { 5277 if (mem_cgroup_disabled()) 5278 return false; 5279 5280 /* 5281 * The toplevel group doesn't have a configurable range, so 5282 * it's never low when looked at directly, and it is not 5283 * considered an ancestor when assessing the hierarchy. 5284 */ 5285 5286 if (memcg == root_mem_cgroup) 5287 return false; 5288 5289 if (page_counter_read(&memcg->memory) >= memcg->low) 5290 return false; 5291 5292 while (memcg != root) { 5293 memcg = parent_mem_cgroup(memcg); 5294 5295 if (memcg == root_mem_cgroup) 5296 break; 5297 5298 if (page_counter_read(&memcg->memory) >= memcg->low) 5299 return false; 5300 } 5301 return true; 5302 } 5303 5304 /** 5305 * mem_cgroup_try_charge - try charging a page 5306 * @page: page to charge 5307 * @mm: mm context of the victim 5308 * @gfp_mask: reclaim mode 5309 * @memcgp: charged memcg return 5310 * @compound: charge the page as compound or small page 5311 * 5312 * Try to charge @page to the memcg that @mm belongs to, reclaiming 5313 * pages according to @gfp_mask if necessary. 5314 * 5315 * Returns 0 on success, with *@memcgp pointing to the charged memcg. 5316 * Otherwise, an error code is returned. 5317 * 5318 * After page->mapping has been set up, the caller must finalize the 5319 * charge with mem_cgroup_commit_charge(). Or abort the transaction 5320 * with mem_cgroup_cancel_charge() in case page instantiation fails. 5321 */ 5322 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, 5323 gfp_t gfp_mask, struct mem_cgroup **memcgp, 5324 bool compound) 5325 { 5326 struct mem_cgroup *memcg = NULL; 5327 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 5328 int ret = 0; 5329 5330 if (mem_cgroup_disabled()) 5331 goto out; 5332 5333 if (PageSwapCache(page)) { 5334 /* 5335 * Every swap fault against a single page tries to charge the 5336 * page, bail as early as possible. shmem_unuse() encounters 5337 * already charged pages, too. The USED bit is protected by 5338 * the page lock, which serializes swap cache removal, which 5339 * in turn serializes uncharging. 5340 */ 5341 VM_BUG_ON_PAGE(!PageLocked(page), page); 5342 if (page->mem_cgroup) 5343 goto out; 5344 5345 if (do_swap_account) { 5346 swp_entry_t ent = { .val = page_private(page), }; 5347 unsigned short id = lookup_swap_cgroup_id(ent); 5348 5349 rcu_read_lock(); 5350 memcg = mem_cgroup_from_id(id); 5351 if (memcg && !css_tryget_online(&memcg->css)) 5352 memcg = NULL; 5353 rcu_read_unlock(); 5354 } 5355 } 5356 5357 if (!memcg) 5358 memcg = get_mem_cgroup_from_mm(mm); 5359 5360 ret = try_charge(memcg, gfp_mask, nr_pages); 5361 5362 css_put(&memcg->css); 5363 out: 5364 *memcgp = memcg; 5365 return ret; 5366 } 5367 5368 /** 5369 * mem_cgroup_commit_charge - commit a page charge 5370 * @page: page to charge 5371 * @memcg: memcg to charge the page to 5372 * @lrucare: page might be on LRU already 5373 * @compound: charge the page as compound or small page 5374 * 5375 * Finalize a charge transaction started by mem_cgroup_try_charge(), 5376 * after page->mapping has been set up. This must happen atomically 5377 * as part of the page instantiation, i.e. under the page table lock 5378 * for anonymous pages, under the page lock for page and swap cache. 5379 * 5380 * In addition, the page must not be on the LRU during the commit, to 5381 * prevent racing with task migration. If it might be, use @lrucare. 5382 * 5383 * Use mem_cgroup_cancel_charge() to cancel the transaction instead. 5384 */ 5385 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg, 5386 bool lrucare, bool compound) 5387 { 5388 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 5389 5390 VM_BUG_ON_PAGE(!page->mapping, page); 5391 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page); 5392 5393 if (mem_cgroup_disabled()) 5394 return; 5395 /* 5396 * Swap faults will attempt to charge the same page multiple 5397 * times. But reuse_swap_page() might have removed the page 5398 * from swapcache already, so we can't check PageSwapCache(). 5399 */ 5400 if (!memcg) 5401 return; 5402 5403 commit_charge(page, memcg, lrucare); 5404 5405 local_irq_disable(); 5406 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages); 5407 memcg_check_events(memcg, page); 5408 local_irq_enable(); 5409 5410 if (do_memsw_account() && PageSwapCache(page)) { 5411 swp_entry_t entry = { .val = page_private(page) }; 5412 /* 5413 * The swap entry might not get freed for a long time, 5414 * let's not wait for it. The page already received a 5415 * memory+swap charge, drop the swap entry duplicate. 5416 */ 5417 mem_cgroup_uncharge_swap(entry); 5418 } 5419 } 5420 5421 /** 5422 * mem_cgroup_cancel_charge - cancel a page charge 5423 * @page: page to charge 5424 * @memcg: memcg to charge the page to 5425 * @compound: charge the page as compound or small page 5426 * 5427 * Cancel a charge transaction started by mem_cgroup_try_charge(). 5428 */ 5429 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg, 5430 bool compound) 5431 { 5432 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 5433 5434 if (mem_cgroup_disabled()) 5435 return; 5436 /* 5437 * Swap faults will attempt to charge the same page multiple 5438 * times. But reuse_swap_page() might have removed the page 5439 * from swapcache already, so we can't check PageSwapCache(). 5440 */ 5441 if (!memcg) 5442 return; 5443 5444 cancel_charge(memcg, nr_pages); 5445 } 5446 5447 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout, 5448 unsigned long nr_anon, unsigned long nr_file, 5449 unsigned long nr_huge, unsigned long nr_kmem, 5450 struct page *dummy_page) 5451 { 5452 unsigned long nr_pages = nr_anon + nr_file + nr_kmem; 5453 unsigned long flags; 5454 5455 if (!mem_cgroup_is_root(memcg)) { 5456 page_counter_uncharge(&memcg->memory, nr_pages); 5457 if (do_memsw_account()) 5458 page_counter_uncharge(&memcg->memsw, nr_pages); 5459 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && nr_kmem) 5460 page_counter_uncharge(&memcg->kmem, nr_kmem); 5461 memcg_oom_recover(memcg); 5462 } 5463 5464 local_irq_save(flags); 5465 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon); 5466 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file); 5467 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge); 5468 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout); 5469 __this_cpu_add(memcg->stat->nr_page_events, nr_pages); 5470 memcg_check_events(memcg, dummy_page); 5471 local_irq_restore(flags); 5472 5473 if (!mem_cgroup_is_root(memcg)) 5474 css_put_many(&memcg->css, nr_pages); 5475 } 5476 5477 static void uncharge_list(struct list_head *page_list) 5478 { 5479 struct mem_cgroup *memcg = NULL; 5480 unsigned long nr_anon = 0; 5481 unsigned long nr_file = 0; 5482 unsigned long nr_huge = 0; 5483 unsigned long nr_kmem = 0; 5484 unsigned long pgpgout = 0; 5485 struct list_head *next; 5486 struct page *page; 5487 5488 /* 5489 * Note that the list can be a single page->lru; hence the 5490 * do-while loop instead of a simple list_for_each_entry(). 5491 */ 5492 next = page_list->next; 5493 do { 5494 page = list_entry(next, struct page, lru); 5495 next = page->lru.next; 5496 5497 VM_BUG_ON_PAGE(PageLRU(page), page); 5498 VM_BUG_ON_PAGE(page_count(page), page); 5499 5500 if (!page->mem_cgroup) 5501 continue; 5502 5503 /* 5504 * Nobody should be changing or seriously looking at 5505 * page->mem_cgroup at this point, we have fully 5506 * exclusive access to the page. 5507 */ 5508 5509 if (memcg != page->mem_cgroup) { 5510 if (memcg) { 5511 uncharge_batch(memcg, pgpgout, nr_anon, nr_file, 5512 nr_huge, nr_kmem, page); 5513 pgpgout = nr_anon = nr_file = 5514 nr_huge = nr_kmem = 0; 5515 } 5516 memcg = page->mem_cgroup; 5517 } 5518 5519 if (!PageKmemcg(page)) { 5520 unsigned int nr_pages = 1; 5521 5522 if (PageTransHuge(page)) { 5523 nr_pages <<= compound_order(page); 5524 nr_huge += nr_pages; 5525 } 5526 if (PageAnon(page)) 5527 nr_anon += nr_pages; 5528 else 5529 nr_file += nr_pages; 5530 pgpgout++; 5531 } else 5532 nr_kmem += 1 << compound_order(page); 5533 5534 page->mem_cgroup = NULL; 5535 } while (next != page_list); 5536 5537 if (memcg) 5538 uncharge_batch(memcg, pgpgout, nr_anon, nr_file, 5539 nr_huge, nr_kmem, page); 5540 } 5541 5542 /** 5543 * mem_cgroup_uncharge - uncharge a page 5544 * @page: page to uncharge 5545 * 5546 * Uncharge a page previously charged with mem_cgroup_try_charge() and 5547 * mem_cgroup_commit_charge(). 5548 */ 5549 void mem_cgroup_uncharge(struct page *page) 5550 { 5551 if (mem_cgroup_disabled()) 5552 return; 5553 5554 /* Don't touch page->lru of any random page, pre-check: */ 5555 if (!page->mem_cgroup) 5556 return; 5557 5558 INIT_LIST_HEAD(&page->lru); 5559 uncharge_list(&page->lru); 5560 } 5561 5562 /** 5563 * mem_cgroup_uncharge_list - uncharge a list of page 5564 * @page_list: list of pages to uncharge 5565 * 5566 * Uncharge a list of pages previously charged with 5567 * mem_cgroup_try_charge() and mem_cgroup_commit_charge(). 5568 */ 5569 void mem_cgroup_uncharge_list(struct list_head *page_list) 5570 { 5571 if (mem_cgroup_disabled()) 5572 return; 5573 5574 if (!list_empty(page_list)) 5575 uncharge_list(page_list); 5576 } 5577 5578 /** 5579 * mem_cgroup_migrate - charge a page's replacement 5580 * @oldpage: currently circulating page 5581 * @newpage: replacement page 5582 * 5583 * Charge @newpage as a replacement page for @oldpage. @oldpage will 5584 * be uncharged upon free. 5585 * 5586 * Both pages must be locked, @newpage->mapping must be set up. 5587 */ 5588 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage) 5589 { 5590 struct mem_cgroup *memcg; 5591 unsigned int nr_pages; 5592 bool compound; 5593 unsigned long flags; 5594 5595 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage); 5596 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 5597 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage); 5598 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage), 5599 newpage); 5600 5601 if (mem_cgroup_disabled()) 5602 return; 5603 5604 /* Page cache replacement: new page already charged? */ 5605 if (newpage->mem_cgroup) 5606 return; 5607 5608 /* Swapcache readahead pages can get replaced before being charged */ 5609 memcg = oldpage->mem_cgroup; 5610 if (!memcg) 5611 return; 5612 5613 /* Force-charge the new page. The old one will be freed soon */ 5614 compound = PageTransHuge(newpage); 5615 nr_pages = compound ? hpage_nr_pages(newpage) : 1; 5616 5617 page_counter_charge(&memcg->memory, nr_pages); 5618 if (do_memsw_account()) 5619 page_counter_charge(&memcg->memsw, nr_pages); 5620 css_get_many(&memcg->css, nr_pages); 5621 5622 commit_charge(newpage, memcg, false); 5623 5624 local_irq_save(flags); 5625 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages); 5626 memcg_check_events(memcg, newpage); 5627 local_irq_restore(flags); 5628 } 5629 5630 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); 5631 EXPORT_SYMBOL(memcg_sockets_enabled_key); 5632 5633 void sock_update_memcg(struct sock *sk) 5634 { 5635 struct mem_cgroup *memcg; 5636 5637 /* Socket cloning can throw us here with sk_cgrp already 5638 * filled. It won't however, necessarily happen from 5639 * process context. So the test for root memcg given 5640 * the current task's memcg won't help us in this case. 5641 * 5642 * Respecting the original socket's memcg is a better 5643 * decision in this case. 5644 */ 5645 if (sk->sk_memcg) { 5646 BUG_ON(mem_cgroup_is_root(sk->sk_memcg)); 5647 css_get(&sk->sk_memcg->css); 5648 return; 5649 } 5650 5651 rcu_read_lock(); 5652 memcg = mem_cgroup_from_task(current); 5653 if (memcg == root_mem_cgroup) 5654 goto out; 5655 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active) 5656 goto out; 5657 if (css_tryget_online(&memcg->css)) 5658 sk->sk_memcg = memcg; 5659 out: 5660 rcu_read_unlock(); 5661 } 5662 EXPORT_SYMBOL(sock_update_memcg); 5663 5664 void sock_release_memcg(struct sock *sk) 5665 { 5666 WARN_ON(!sk->sk_memcg); 5667 css_put(&sk->sk_memcg->css); 5668 } 5669 5670 /** 5671 * mem_cgroup_charge_skmem - charge socket memory 5672 * @memcg: memcg to charge 5673 * @nr_pages: number of pages to charge 5674 * 5675 * Charges @nr_pages to @memcg. Returns %true if the charge fit within 5676 * @memcg's configured limit, %false if the charge had to be forced. 5677 */ 5678 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 5679 { 5680 gfp_t gfp_mask = GFP_KERNEL; 5681 5682 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 5683 struct page_counter *fail; 5684 5685 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) { 5686 memcg->tcpmem_pressure = 0; 5687 return true; 5688 } 5689 page_counter_charge(&memcg->tcpmem, nr_pages); 5690 memcg->tcpmem_pressure = 1; 5691 return false; 5692 } 5693 5694 /* Don't block in the packet receive path */ 5695 if (in_softirq()) 5696 gfp_mask = GFP_NOWAIT; 5697 5698 this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages); 5699 5700 if (try_charge(memcg, gfp_mask, nr_pages) == 0) 5701 return true; 5702 5703 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages); 5704 return false; 5705 } 5706 5707 /** 5708 * mem_cgroup_uncharge_skmem - uncharge socket memory 5709 * @memcg - memcg to uncharge 5710 * @nr_pages - number of pages to uncharge 5711 */ 5712 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 5713 { 5714 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 5715 page_counter_uncharge(&memcg->tcpmem, nr_pages); 5716 return; 5717 } 5718 5719 this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages); 5720 5721 page_counter_uncharge(&memcg->memory, nr_pages); 5722 css_put_many(&memcg->css, nr_pages); 5723 } 5724 5725 static int __init cgroup_memory(char *s) 5726 { 5727 char *token; 5728 5729 while ((token = strsep(&s, ",")) != NULL) { 5730 if (!*token) 5731 continue; 5732 if (!strcmp(token, "nosocket")) 5733 cgroup_memory_nosocket = true; 5734 if (!strcmp(token, "nokmem")) 5735 cgroup_memory_nokmem = true; 5736 } 5737 return 0; 5738 } 5739 __setup("cgroup.memory=", cgroup_memory); 5740 5741 /* 5742 * subsys_initcall() for memory controller. 5743 * 5744 * Some parts like hotcpu_notifier() have to be initialized from this context 5745 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically 5746 * everything that doesn't depend on a specific mem_cgroup structure should 5747 * be initialized from here. 5748 */ 5749 static int __init mem_cgroup_init(void) 5750 { 5751 int cpu, node; 5752 5753 hotcpu_notifier(memcg_cpu_hotplug_callback, 0); 5754 5755 for_each_possible_cpu(cpu) 5756 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, 5757 drain_local_stock); 5758 5759 for_each_node(node) { 5760 struct mem_cgroup_tree_per_node *rtpn; 5761 5762 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, 5763 node_online(node) ? node : NUMA_NO_NODE); 5764 5765 rtpn->rb_root = RB_ROOT; 5766 spin_lock_init(&rtpn->lock); 5767 soft_limit_tree.rb_tree_per_node[node] = rtpn; 5768 } 5769 5770 return 0; 5771 } 5772 subsys_initcall(mem_cgroup_init); 5773 5774 #ifdef CONFIG_MEMCG_SWAP 5775 /** 5776 * mem_cgroup_swapout - transfer a memsw charge to swap 5777 * @page: page whose memsw charge to transfer 5778 * @entry: swap entry to move the charge to 5779 * 5780 * Transfer the memsw charge of @page to @entry. 5781 */ 5782 void mem_cgroup_swapout(struct page *page, swp_entry_t entry) 5783 { 5784 struct mem_cgroup *memcg; 5785 unsigned short oldid; 5786 5787 VM_BUG_ON_PAGE(PageLRU(page), page); 5788 VM_BUG_ON_PAGE(page_count(page), page); 5789 5790 if (!do_memsw_account()) 5791 return; 5792 5793 memcg = page->mem_cgroup; 5794 5795 /* Readahead page, never charged */ 5796 if (!memcg) 5797 return; 5798 5799 mem_cgroup_id_get(memcg); 5800 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg)); 5801 VM_BUG_ON_PAGE(oldid, page); 5802 mem_cgroup_swap_statistics(memcg, true); 5803 5804 page->mem_cgroup = NULL; 5805 5806 if (!mem_cgroup_is_root(memcg)) 5807 page_counter_uncharge(&memcg->memory, 1); 5808 5809 /* 5810 * Interrupts should be disabled here because the caller holds the 5811 * mapping->tree_lock lock which is taken with interrupts-off. It is 5812 * important here to have the interrupts disabled because it is the 5813 * only synchronisation we have for udpating the per-CPU variables. 5814 */ 5815 VM_BUG_ON(!irqs_disabled()); 5816 mem_cgroup_charge_statistics(memcg, page, false, -1); 5817 memcg_check_events(memcg, page); 5818 5819 if (!mem_cgroup_is_root(memcg)) 5820 css_put(&memcg->css); 5821 } 5822 5823 /* 5824 * mem_cgroup_try_charge_swap - try charging a swap entry 5825 * @page: page being added to swap 5826 * @entry: swap entry to charge 5827 * 5828 * Try to charge @entry to the memcg that @page belongs to. 5829 * 5830 * Returns 0 on success, -ENOMEM on failure. 5831 */ 5832 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry) 5833 { 5834 struct mem_cgroup *memcg; 5835 struct page_counter *counter; 5836 unsigned short oldid; 5837 5838 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account) 5839 return 0; 5840 5841 memcg = page->mem_cgroup; 5842 5843 /* Readahead page, never charged */ 5844 if (!memcg) 5845 return 0; 5846 5847 if (!mem_cgroup_is_root(memcg) && 5848 !page_counter_try_charge(&memcg->swap, 1, &counter)) 5849 return -ENOMEM; 5850 5851 mem_cgroup_id_get(memcg); 5852 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg)); 5853 VM_BUG_ON_PAGE(oldid, page); 5854 mem_cgroup_swap_statistics(memcg, true); 5855 5856 return 0; 5857 } 5858 5859 /** 5860 * mem_cgroup_uncharge_swap - uncharge a swap entry 5861 * @entry: swap entry to uncharge 5862 * 5863 * Drop the swap charge associated with @entry. 5864 */ 5865 void mem_cgroup_uncharge_swap(swp_entry_t entry) 5866 { 5867 struct mem_cgroup *memcg; 5868 unsigned short id; 5869 5870 if (!do_swap_account) 5871 return; 5872 5873 id = swap_cgroup_record(entry, 0); 5874 rcu_read_lock(); 5875 memcg = mem_cgroup_from_id(id); 5876 if (memcg) { 5877 if (!mem_cgroup_is_root(memcg)) { 5878 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5879 page_counter_uncharge(&memcg->swap, 1); 5880 else 5881 page_counter_uncharge(&memcg->memsw, 1); 5882 } 5883 mem_cgroup_swap_statistics(memcg, false); 5884 mem_cgroup_id_put(memcg); 5885 } 5886 rcu_read_unlock(); 5887 } 5888 5889 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) 5890 { 5891 long nr_swap_pages = get_nr_swap_pages(); 5892 5893 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5894 return nr_swap_pages; 5895 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) 5896 nr_swap_pages = min_t(long, nr_swap_pages, 5897 READ_ONCE(memcg->swap.limit) - 5898 page_counter_read(&memcg->swap)); 5899 return nr_swap_pages; 5900 } 5901 5902 bool mem_cgroup_swap_full(struct page *page) 5903 { 5904 struct mem_cgroup *memcg; 5905 5906 VM_BUG_ON_PAGE(!PageLocked(page), page); 5907 5908 if (vm_swap_full()) 5909 return true; 5910 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5911 return false; 5912 5913 memcg = page->mem_cgroup; 5914 if (!memcg) 5915 return false; 5916 5917 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) 5918 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit) 5919 return true; 5920 5921 return false; 5922 } 5923 5924 /* for remember boot option*/ 5925 #ifdef CONFIG_MEMCG_SWAP_ENABLED 5926 static int really_do_swap_account __initdata = 1; 5927 #else 5928 static int really_do_swap_account __initdata; 5929 #endif 5930 5931 static int __init enable_swap_account(char *s) 5932 { 5933 if (!strcmp(s, "1")) 5934 really_do_swap_account = 1; 5935 else if (!strcmp(s, "0")) 5936 really_do_swap_account = 0; 5937 return 1; 5938 } 5939 __setup("swapaccount=", enable_swap_account); 5940 5941 static u64 swap_current_read(struct cgroup_subsys_state *css, 5942 struct cftype *cft) 5943 { 5944 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5945 5946 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; 5947 } 5948 5949 static int swap_max_show(struct seq_file *m, void *v) 5950 { 5951 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5952 unsigned long max = READ_ONCE(memcg->swap.limit); 5953 5954 if (max == PAGE_COUNTER_MAX) 5955 seq_puts(m, "max\n"); 5956 else 5957 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE); 5958 5959 return 0; 5960 } 5961 5962 static ssize_t swap_max_write(struct kernfs_open_file *of, 5963 char *buf, size_t nbytes, loff_t off) 5964 { 5965 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5966 unsigned long max; 5967 int err; 5968 5969 buf = strstrip(buf); 5970 err = page_counter_memparse(buf, "max", &max); 5971 if (err) 5972 return err; 5973 5974 mutex_lock(&memcg_limit_mutex); 5975 err = page_counter_limit(&memcg->swap, max); 5976 mutex_unlock(&memcg_limit_mutex); 5977 if (err) 5978 return err; 5979 5980 return nbytes; 5981 } 5982 5983 static struct cftype swap_files[] = { 5984 { 5985 .name = "swap.current", 5986 .flags = CFTYPE_NOT_ON_ROOT, 5987 .read_u64 = swap_current_read, 5988 }, 5989 { 5990 .name = "swap.max", 5991 .flags = CFTYPE_NOT_ON_ROOT, 5992 .seq_show = swap_max_show, 5993 .write = swap_max_write, 5994 }, 5995 { } /* terminate */ 5996 }; 5997 5998 static struct cftype memsw_cgroup_files[] = { 5999 { 6000 .name = "memsw.usage_in_bytes", 6001 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 6002 .read_u64 = mem_cgroup_read_u64, 6003 }, 6004 { 6005 .name = "memsw.max_usage_in_bytes", 6006 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 6007 .write = mem_cgroup_reset, 6008 .read_u64 = mem_cgroup_read_u64, 6009 }, 6010 { 6011 .name = "memsw.limit_in_bytes", 6012 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 6013 .write = mem_cgroup_write, 6014 .read_u64 = mem_cgroup_read_u64, 6015 }, 6016 { 6017 .name = "memsw.failcnt", 6018 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 6019 .write = mem_cgroup_reset, 6020 .read_u64 = mem_cgroup_read_u64, 6021 }, 6022 { }, /* terminate */ 6023 }; 6024 6025 static int __init mem_cgroup_swap_init(void) 6026 { 6027 if (!mem_cgroup_disabled() && really_do_swap_account) { 6028 do_swap_account = 1; 6029 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, 6030 swap_files)); 6031 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, 6032 memsw_cgroup_files)); 6033 } 6034 return 0; 6035 } 6036 subsys_initcall(mem_cgroup_swap_init); 6037 6038 #endif /* CONFIG_MEMCG_SWAP */ 6039