xref: /openbmc/linux/mm/memcontrol.c (revision 7507f099)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <xemul@openvz.org>
9  *
10  * Memory thresholds
11  * Copyright (C) 2009 Nokia Corporation
12  * Author: Kirill A. Shutemov
13  *
14  * Kernel Memory Controller
15  * Copyright (C) 2012 Parallels Inc. and Google Inc.
16  * Authors: Glauber Costa and Suleiman Souhlal
17  *
18  * Native page reclaim
19  * Charge lifetime sanitation
20  * Lockless page tracking & accounting
21  * Unified hierarchy configuration model
22  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23  *
24  * Per memcg lru locking
25  * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26  */
27 
28 #include <linux/page_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/pagewalk.h>
32 #include <linux/sched/mm.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/hugetlb.h>
35 #include <linux/pagemap.h>
36 #include <linux/vm_event_item.h>
37 #include <linux/smp.h>
38 #include <linux/page-flags.h>
39 #include <linux/backing-dev.h>
40 #include <linux/bit_spinlock.h>
41 #include <linux/rcupdate.h>
42 #include <linux/limits.h>
43 #include <linux/export.h>
44 #include <linux/mutex.h>
45 #include <linux/rbtree.h>
46 #include <linux/slab.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/spinlock.h>
50 #include <linux/eventfd.h>
51 #include <linux/poll.h>
52 #include <linux/sort.h>
53 #include <linux/fs.h>
54 #include <linux/seq_file.h>
55 #include <linux/vmpressure.h>
56 #include <linux/memremap.h>
57 #include <linux/mm_inline.h>
58 #include <linux/swap_cgroup.h>
59 #include <linux/cpu.h>
60 #include <linux/oom.h>
61 #include <linux/lockdep.h>
62 #include <linux/file.h>
63 #include <linux/resume_user_mode.h>
64 #include <linux/psi.h>
65 #include <linux/seq_buf.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include "slab.h"
70 #include "swap.h"
71 
72 #include <linux/uaccess.h>
73 
74 #include <trace/events/vmscan.h>
75 
76 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
77 EXPORT_SYMBOL(memory_cgrp_subsys);
78 
79 struct mem_cgroup *root_mem_cgroup __read_mostly;
80 
81 /* Active memory cgroup to use from an interrupt context */
82 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
83 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
84 
85 /* Socket memory accounting disabled? */
86 static bool cgroup_memory_nosocket __ro_after_init;
87 
88 /* Kernel memory accounting disabled? */
89 static bool cgroup_memory_nokmem __ro_after_init;
90 
91 /* Whether the swap controller is active */
92 #ifdef CONFIG_MEMCG_SWAP
93 static bool cgroup_memory_noswap __ro_after_init;
94 #else
95 #define cgroup_memory_noswap		1
96 #endif
97 
98 #ifdef CONFIG_CGROUP_WRITEBACK
99 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
100 #endif
101 
102 /* Whether legacy memory+swap accounting is active */
103 static bool do_memsw_account(void)
104 {
105 	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
106 }
107 
108 #define THRESHOLDS_EVENTS_TARGET 128
109 #define SOFTLIMIT_EVENTS_TARGET 1024
110 
111 /*
112  * Cgroups above their limits are maintained in a RB-Tree, independent of
113  * their hierarchy representation
114  */
115 
116 struct mem_cgroup_tree_per_node {
117 	struct rb_root rb_root;
118 	struct rb_node *rb_rightmost;
119 	spinlock_t lock;
120 };
121 
122 struct mem_cgroup_tree {
123 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
124 };
125 
126 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
127 
128 /* for OOM */
129 struct mem_cgroup_eventfd_list {
130 	struct list_head list;
131 	struct eventfd_ctx *eventfd;
132 };
133 
134 /*
135  * cgroup_event represents events which userspace want to receive.
136  */
137 struct mem_cgroup_event {
138 	/*
139 	 * memcg which the event belongs to.
140 	 */
141 	struct mem_cgroup *memcg;
142 	/*
143 	 * eventfd to signal userspace about the event.
144 	 */
145 	struct eventfd_ctx *eventfd;
146 	/*
147 	 * Each of these stored in a list by the cgroup.
148 	 */
149 	struct list_head list;
150 	/*
151 	 * register_event() callback will be used to add new userspace
152 	 * waiter for changes related to this event.  Use eventfd_signal()
153 	 * on eventfd to send notification to userspace.
154 	 */
155 	int (*register_event)(struct mem_cgroup *memcg,
156 			      struct eventfd_ctx *eventfd, const char *args);
157 	/*
158 	 * unregister_event() callback will be called when userspace closes
159 	 * the eventfd or on cgroup removing.  This callback must be set,
160 	 * if you want provide notification functionality.
161 	 */
162 	void (*unregister_event)(struct mem_cgroup *memcg,
163 				 struct eventfd_ctx *eventfd);
164 	/*
165 	 * All fields below needed to unregister event when
166 	 * userspace closes eventfd.
167 	 */
168 	poll_table pt;
169 	wait_queue_head_t *wqh;
170 	wait_queue_entry_t wait;
171 	struct work_struct remove;
172 };
173 
174 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
175 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
176 
177 /* Stuffs for move charges at task migration. */
178 /*
179  * Types of charges to be moved.
180  */
181 #define MOVE_ANON	0x1U
182 #define MOVE_FILE	0x2U
183 #define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
184 
185 /* "mc" and its members are protected by cgroup_mutex */
186 static struct move_charge_struct {
187 	spinlock_t	  lock; /* for from, to */
188 	struct mm_struct  *mm;
189 	struct mem_cgroup *from;
190 	struct mem_cgroup *to;
191 	unsigned long flags;
192 	unsigned long precharge;
193 	unsigned long moved_charge;
194 	unsigned long moved_swap;
195 	struct task_struct *moving_task;	/* a task moving charges */
196 	wait_queue_head_t waitq;		/* a waitq for other context */
197 } mc = {
198 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
199 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
200 };
201 
202 /*
203  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
204  * limit reclaim to prevent infinite loops, if they ever occur.
205  */
206 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
207 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
208 
209 /* for encoding cft->private value on file */
210 enum res_type {
211 	_MEM,
212 	_MEMSWAP,
213 	_KMEM,
214 	_TCP,
215 };
216 
217 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
218 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
219 #define MEMFILE_ATTR(val)	((val) & 0xffff)
220 
221 /*
222  * Iteration constructs for visiting all cgroups (under a tree).  If
223  * loops are exited prematurely (break), mem_cgroup_iter_break() must
224  * be used for reference counting.
225  */
226 #define for_each_mem_cgroup_tree(iter, root)		\
227 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
228 	     iter != NULL;				\
229 	     iter = mem_cgroup_iter(root, iter, NULL))
230 
231 #define for_each_mem_cgroup(iter)			\
232 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
233 	     iter != NULL;				\
234 	     iter = mem_cgroup_iter(NULL, iter, NULL))
235 
236 static inline bool task_is_dying(void)
237 {
238 	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
239 		(current->flags & PF_EXITING);
240 }
241 
242 /* Some nice accessors for the vmpressure. */
243 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
244 {
245 	if (!memcg)
246 		memcg = root_mem_cgroup;
247 	return &memcg->vmpressure;
248 }
249 
250 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
251 {
252 	return container_of(vmpr, struct mem_cgroup, vmpressure);
253 }
254 
255 #ifdef CONFIG_MEMCG_KMEM
256 static DEFINE_SPINLOCK(objcg_lock);
257 
258 bool mem_cgroup_kmem_disabled(void)
259 {
260 	return cgroup_memory_nokmem;
261 }
262 
263 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
264 				      unsigned int nr_pages);
265 
266 static void obj_cgroup_release(struct percpu_ref *ref)
267 {
268 	struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
269 	unsigned int nr_bytes;
270 	unsigned int nr_pages;
271 	unsigned long flags;
272 
273 	/*
274 	 * At this point all allocated objects are freed, and
275 	 * objcg->nr_charged_bytes can't have an arbitrary byte value.
276 	 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
277 	 *
278 	 * The following sequence can lead to it:
279 	 * 1) CPU0: objcg == stock->cached_objcg
280 	 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
281 	 *          PAGE_SIZE bytes are charged
282 	 * 3) CPU1: a process from another memcg is allocating something,
283 	 *          the stock if flushed,
284 	 *          objcg->nr_charged_bytes = PAGE_SIZE - 92
285 	 * 5) CPU0: we do release this object,
286 	 *          92 bytes are added to stock->nr_bytes
287 	 * 6) CPU0: stock is flushed,
288 	 *          92 bytes are added to objcg->nr_charged_bytes
289 	 *
290 	 * In the result, nr_charged_bytes == PAGE_SIZE.
291 	 * This page will be uncharged in obj_cgroup_release().
292 	 */
293 	nr_bytes = atomic_read(&objcg->nr_charged_bytes);
294 	WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
295 	nr_pages = nr_bytes >> PAGE_SHIFT;
296 
297 	if (nr_pages)
298 		obj_cgroup_uncharge_pages(objcg, nr_pages);
299 
300 	spin_lock_irqsave(&objcg_lock, flags);
301 	list_del(&objcg->list);
302 	spin_unlock_irqrestore(&objcg_lock, flags);
303 
304 	percpu_ref_exit(ref);
305 	kfree_rcu(objcg, rcu);
306 }
307 
308 static struct obj_cgroup *obj_cgroup_alloc(void)
309 {
310 	struct obj_cgroup *objcg;
311 	int ret;
312 
313 	objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
314 	if (!objcg)
315 		return NULL;
316 
317 	ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
318 			      GFP_KERNEL);
319 	if (ret) {
320 		kfree(objcg);
321 		return NULL;
322 	}
323 	INIT_LIST_HEAD(&objcg->list);
324 	return objcg;
325 }
326 
327 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
328 				  struct mem_cgroup *parent)
329 {
330 	struct obj_cgroup *objcg, *iter;
331 
332 	objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
333 
334 	spin_lock_irq(&objcg_lock);
335 
336 	/* 1) Ready to reparent active objcg. */
337 	list_add(&objcg->list, &memcg->objcg_list);
338 	/* 2) Reparent active objcg and already reparented objcgs to parent. */
339 	list_for_each_entry(iter, &memcg->objcg_list, list)
340 		WRITE_ONCE(iter->memcg, parent);
341 	/* 3) Move already reparented objcgs to the parent's list */
342 	list_splice(&memcg->objcg_list, &parent->objcg_list);
343 
344 	spin_unlock_irq(&objcg_lock);
345 
346 	percpu_ref_kill(&objcg->refcnt);
347 }
348 
349 /*
350  * A lot of the calls to the cache allocation functions are expected to be
351  * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
352  * conditional to this static branch, we'll have to allow modules that does
353  * kmem_cache_alloc and the such to see this symbol as well
354  */
355 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
356 EXPORT_SYMBOL(memcg_kmem_enabled_key);
357 #endif
358 
359 /**
360  * mem_cgroup_css_from_page - css of the memcg associated with a page
361  * @page: page of interest
362  *
363  * If memcg is bound to the default hierarchy, css of the memcg associated
364  * with @page is returned.  The returned css remains associated with @page
365  * until it is released.
366  *
367  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
368  * is returned.
369  */
370 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
371 {
372 	struct mem_cgroup *memcg;
373 
374 	memcg = page_memcg(page);
375 
376 	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
377 		memcg = root_mem_cgroup;
378 
379 	return &memcg->css;
380 }
381 
382 /**
383  * page_cgroup_ino - return inode number of the memcg a page is charged to
384  * @page: the page
385  *
386  * Look up the closest online ancestor of the memory cgroup @page is charged to
387  * and return its inode number or 0 if @page is not charged to any cgroup. It
388  * is safe to call this function without holding a reference to @page.
389  *
390  * Note, this function is inherently racy, because there is nothing to prevent
391  * the cgroup inode from getting torn down and potentially reallocated a moment
392  * after page_cgroup_ino() returns, so it only should be used by callers that
393  * do not care (such as procfs interfaces).
394  */
395 ino_t page_cgroup_ino(struct page *page)
396 {
397 	struct mem_cgroup *memcg;
398 	unsigned long ino = 0;
399 
400 	rcu_read_lock();
401 	memcg = page_memcg_check(page);
402 
403 	while (memcg && !(memcg->css.flags & CSS_ONLINE))
404 		memcg = parent_mem_cgroup(memcg);
405 	if (memcg)
406 		ino = cgroup_ino(memcg->css.cgroup);
407 	rcu_read_unlock();
408 	return ino;
409 }
410 
411 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
412 					 struct mem_cgroup_tree_per_node *mctz,
413 					 unsigned long new_usage_in_excess)
414 {
415 	struct rb_node **p = &mctz->rb_root.rb_node;
416 	struct rb_node *parent = NULL;
417 	struct mem_cgroup_per_node *mz_node;
418 	bool rightmost = true;
419 
420 	if (mz->on_tree)
421 		return;
422 
423 	mz->usage_in_excess = new_usage_in_excess;
424 	if (!mz->usage_in_excess)
425 		return;
426 	while (*p) {
427 		parent = *p;
428 		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
429 					tree_node);
430 		if (mz->usage_in_excess < mz_node->usage_in_excess) {
431 			p = &(*p)->rb_left;
432 			rightmost = false;
433 		} else {
434 			p = &(*p)->rb_right;
435 		}
436 	}
437 
438 	if (rightmost)
439 		mctz->rb_rightmost = &mz->tree_node;
440 
441 	rb_link_node(&mz->tree_node, parent, p);
442 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
443 	mz->on_tree = true;
444 }
445 
446 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
447 					 struct mem_cgroup_tree_per_node *mctz)
448 {
449 	if (!mz->on_tree)
450 		return;
451 
452 	if (&mz->tree_node == mctz->rb_rightmost)
453 		mctz->rb_rightmost = rb_prev(&mz->tree_node);
454 
455 	rb_erase(&mz->tree_node, &mctz->rb_root);
456 	mz->on_tree = false;
457 }
458 
459 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
460 				       struct mem_cgroup_tree_per_node *mctz)
461 {
462 	unsigned long flags;
463 
464 	spin_lock_irqsave(&mctz->lock, flags);
465 	__mem_cgroup_remove_exceeded(mz, mctz);
466 	spin_unlock_irqrestore(&mctz->lock, flags);
467 }
468 
469 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
470 {
471 	unsigned long nr_pages = page_counter_read(&memcg->memory);
472 	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
473 	unsigned long excess = 0;
474 
475 	if (nr_pages > soft_limit)
476 		excess = nr_pages - soft_limit;
477 
478 	return excess;
479 }
480 
481 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid)
482 {
483 	unsigned long excess;
484 	struct mem_cgroup_per_node *mz;
485 	struct mem_cgroup_tree_per_node *mctz;
486 
487 	mctz = soft_limit_tree.rb_tree_per_node[nid];
488 	if (!mctz)
489 		return;
490 	/*
491 	 * Necessary to update all ancestors when hierarchy is used.
492 	 * because their event counter is not touched.
493 	 */
494 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
495 		mz = memcg->nodeinfo[nid];
496 		excess = soft_limit_excess(memcg);
497 		/*
498 		 * We have to update the tree if mz is on RB-tree or
499 		 * mem is over its softlimit.
500 		 */
501 		if (excess || mz->on_tree) {
502 			unsigned long flags;
503 
504 			spin_lock_irqsave(&mctz->lock, flags);
505 			/* if on-tree, remove it */
506 			if (mz->on_tree)
507 				__mem_cgroup_remove_exceeded(mz, mctz);
508 			/*
509 			 * Insert again. mz->usage_in_excess will be updated.
510 			 * If excess is 0, no tree ops.
511 			 */
512 			__mem_cgroup_insert_exceeded(mz, mctz, excess);
513 			spin_unlock_irqrestore(&mctz->lock, flags);
514 		}
515 	}
516 }
517 
518 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
519 {
520 	struct mem_cgroup_tree_per_node *mctz;
521 	struct mem_cgroup_per_node *mz;
522 	int nid;
523 
524 	for_each_node(nid) {
525 		mz = memcg->nodeinfo[nid];
526 		mctz = soft_limit_tree.rb_tree_per_node[nid];
527 		if (mctz)
528 			mem_cgroup_remove_exceeded(mz, mctz);
529 	}
530 }
531 
532 static struct mem_cgroup_per_node *
533 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
534 {
535 	struct mem_cgroup_per_node *mz;
536 
537 retry:
538 	mz = NULL;
539 	if (!mctz->rb_rightmost)
540 		goto done;		/* Nothing to reclaim from */
541 
542 	mz = rb_entry(mctz->rb_rightmost,
543 		      struct mem_cgroup_per_node, tree_node);
544 	/*
545 	 * Remove the node now but someone else can add it back,
546 	 * we will to add it back at the end of reclaim to its correct
547 	 * position in the tree.
548 	 */
549 	__mem_cgroup_remove_exceeded(mz, mctz);
550 	if (!soft_limit_excess(mz->memcg) ||
551 	    !css_tryget(&mz->memcg->css))
552 		goto retry;
553 done:
554 	return mz;
555 }
556 
557 static struct mem_cgroup_per_node *
558 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
559 {
560 	struct mem_cgroup_per_node *mz;
561 
562 	spin_lock_irq(&mctz->lock);
563 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
564 	spin_unlock_irq(&mctz->lock);
565 	return mz;
566 }
567 
568 /*
569  * memcg and lruvec stats flushing
570  *
571  * Many codepaths leading to stats update or read are performance sensitive and
572  * adding stats flushing in such codepaths is not desirable. So, to optimize the
573  * flushing the kernel does:
574  *
575  * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
576  *    rstat update tree grow unbounded.
577  *
578  * 2) Flush the stats synchronously on reader side only when there are more than
579  *    (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
580  *    will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
581  *    only for 2 seconds due to (1).
582  */
583 static void flush_memcg_stats_dwork(struct work_struct *w);
584 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
585 static DEFINE_SPINLOCK(stats_flush_lock);
586 static DEFINE_PER_CPU(unsigned int, stats_updates);
587 static atomic_t stats_flush_threshold = ATOMIC_INIT(0);
588 static u64 flush_next_time;
589 
590 #define FLUSH_TIME (2UL*HZ)
591 
592 /*
593  * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can
594  * not rely on this as part of an acquired spinlock_t lock. These functions are
595  * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion
596  * is sufficient.
597  */
598 static void memcg_stats_lock(void)
599 {
600 #ifdef CONFIG_PREEMPT_RT
601       preempt_disable();
602 #else
603       VM_BUG_ON(!irqs_disabled());
604 #endif
605 }
606 
607 static void __memcg_stats_lock(void)
608 {
609 #ifdef CONFIG_PREEMPT_RT
610       preempt_disable();
611 #endif
612 }
613 
614 static void memcg_stats_unlock(void)
615 {
616 #ifdef CONFIG_PREEMPT_RT
617       preempt_enable();
618 #endif
619 }
620 
621 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val)
622 {
623 	unsigned int x;
624 
625 	cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
626 
627 	x = __this_cpu_add_return(stats_updates, abs(val));
628 	if (x > MEMCG_CHARGE_BATCH) {
629 		atomic_add(x / MEMCG_CHARGE_BATCH, &stats_flush_threshold);
630 		__this_cpu_write(stats_updates, 0);
631 	}
632 }
633 
634 static void __mem_cgroup_flush_stats(void)
635 {
636 	unsigned long flag;
637 
638 	if (!spin_trylock_irqsave(&stats_flush_lock, flag))
639 		return;
640 
641 	flush_next_time = jiffies_64 + 2*FLUSH_TIME;
642 	cgroup_rstat_flush_irqsafe(root_mem_cgroup->css.cgroup);
643 	atomic_set(&stats_flush_threshold, 0);
644 	spin_unlock_irqrestore(&stats_flush_lock, flag);
645 }
646 
647 void mem_cgroup_flush_stats(void)
648 {
649 	if (atomic_read(&stats_flush_threshold) > num_online_cpus())
650 		__mem_cgroup_flush_stats();
651 }
652 
653 void mem_cgroup_flush_stats_delayed(void)
654 {
655 	if (time_after64(jiffies_64, flush_next_time))
656 		mem_cgroup_flush_stats();
657 }
658 
659 static void flush_memcg_stats_dwork(struct work_struct *w)
660 {
661 	__mem_cgroup_flush_stats();
662 	queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME);
663 }
664 
665 /**
666  * __mod_memcg_state - update cgroup memory statistics
667  * @memcg: the memory cgroup
668  * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
669  * @val: delta to add to the counter, can be negative
670  */
671 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
672 {
673 	if (mem_cgroup_disabled())
674 		return;
675 
676 	__this_cpu_add(memcg->vmstats_percpu->state[idx], val);
677 	memcg_rstat_updated(memcg, val);
678 }
679 
680 /* idx can be of type enum memcg_stat_item or node_stat_item. */
681 static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
682 {
683 	long x = 0;
684 	int cpu;
685 
686 	for_each_possible_cpu(cpu)
687 		x += per_cpu(memcg->vmstats_percpu->state[idx], cpu);
688 #ifdef CONFIG_SMP
689 	if (x < 0)
690 		x = 0;
691 #endif
692 	return x;
693 }
694 
695 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
696 			      int val)
697 {
698 	struct mem_cgroup_per_node *pn;
699 	struct mem_cgroup *memcg;
700 
701 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
702 	memcg = pn->memcg;
703 
704 	/*
705 	 * The caller from rmap relay on disabled preemption becase they never
706 	 * update their counter from in-interrupt context. For these two
707 	 * counters we check that the update is never performed from an
708 	 * interrupt context while other caller need to have disabled interrupt.
709 	 */
710 	__memcg_stats_lock();
711 	if (IS_ENABLED(CONFIG_DEBUG_VM) && !IS_ENABLED(CONFIG_PREEMPT_RT)) {
712 		switch (idx) {
713 		case NR_ANON_MAPPED:
714 		case NR_FILE_MAPPED:
715 		case NR_ANON_THPS:
716 		case NR_SHMEM_PMDMAPPED:
717 		case NR_FILE_PMDMAPPED:
718 			WARN_ON_ONCE(!in_task());
719 			break;
720 		default:
721 			WARN_ON_ONCE(!irqs_disabled());
722 		}
723 	}
724 
725 	/* Update memcg */
726 	__this_cpu_add(memcg->vmstats_percpu->state[idx], val);
727 
728 	/* Update lruvec */
729 	__this_cpu_add(pn->lruvec_stats_percpu->state[idx], val);
730 
731 	memcg_rstat_updated(memcg, val);
732 	memcg_stats_unlock();
733 }
734 
735 /**
736  * __mod_lruvec_state - update lruvec memory statistics
737  * @lruvec: the lruvec
738  * @idx: the stat item
739  * @val: delta to add to the counter, can be negative
740  *
741  * The lruvec is the intersection of the NUMA node and a cgroup. This
742  * function updates the all three counters that are affected by a
743  * change of state at this level: per-node, per-cgroup, per-lruvec.
744  */
745 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
746 			int val)
747 {
748 	/* Update node */
749 	__mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
750 
751 	/* Update memcg and lruvec */
752 	if (!mem_cgroup_disabled())
753 		__mod_memcg_lruvec_state(lruvec, idx, val);
754 }
755 
756 void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
757 			     int val)
758 {
759 	struct page *head = compound_head(page); /* rmap on tail pages */
760 	struct mem_cgroup *memcg;
761 	pg_data_t *pgdat = page_pgdat(page);
762 	struct lruvec *lruvec;
763 
764 	rcu_read_lock();
765 	memcg = page_memcg(head);
766 	/* Untracked pages have no memcg, no lruvec. Update only the node */
767 	if (!memcg) {
768 		rcu_read_unlock();
769 		__mod_node_page_state(pgdat, idx, val);
770 		return;
771 	}
772 
773 	lruvec = mem_cgroup_lruvec(memcg, pgdat);
774 	__mod_lruvec_state(lruvec, idx, val);
775 	rcu_read_unlock();
776 }
777 EXPORT_SYMBOL(__mod_lruvec_page_state);
778 
779 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
780 {
781 	pg_data_t *pgdat = page_pgdat(virt_to_page(p));
782 	struct mem_cgroup *memcg;
783 	struct lruvec *lruvec;
784 
785 	rcu_read_lock();
786 	memcg = mem_cgroup_from_slab_obj(p);
787 
788 	/*
789 	 * Untracked pages have no memcg, no lruvec. Update only the
790 	 * node. If we reparent the slab objects to the root memcg,
791 	 * when we free the slab object, we need to update the per-memcg
792 	 * vmstats to keep it correct for the root memcg.
793 	 */
794 	if (!memcg) {
795 		__mod_node_page_state(pgdat, idx, val);
796 	} else {
797 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
798 		__mod_lruvec_state(lruvec, idx, val);
799 	}
800 	rcu_read_unlock();
801 }
802 
803 /**
804  * __count_memcg_events - account VM events in a cgroup
805  * @memcg: the memory cgroup
806  * @idx: the event item
807  * @count: the number of events that occurred
808  */
809 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
810 			  unsigned long count)
811 {
812 	if (mem_cgroup_disabled())
813 		return;
814 
815 	memcg_stats_lock();
816 	__this_cpu_add(memcg->vmstats_percpu->events[idx], count);
817 	memcg_rstat_updated(memcg, count);
818 	memcg_stats_unlock();
819 }
820 
821 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
822 {
823 	return READ_ONCE(memcg->vmstats.events[event]);
824 }
825 
826 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
827 {
828 	long x = 0;
829 	int cpu;
830 
831 	for_each_possible_cpu(cpu)
832 		x += per_cpu(memcg->vmstats_percpu->events[event], cpu);
833 	return x;
834 }
835 
836 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
837 					 int nr_pages)
838 {
839 	/* pagein of a big page is an event. So, ignore page size */
840 	if (nr_pages > 0)
841 		__count_memcg_events(memcg, PGPGIN, 1);
842 	else {
843 		__count_memcg_events(memcg, PGPGOUT, 1);
844 		nr_pages = -nr_pages; /* for event */
845 	}
846 
847 	__this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
848 }
849 
850 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
851 				       enum mem_cgroup_events_target target)
852 {
853 	unsigned long val, next;
854 
855 	val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
856 	next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
857 	/* from time_after() in jiffies.h */
858 	if ((long)(next - val) < 0) {
859 		switch (target) {
860 		case MEM_CGROUP_TARGET_THRESH:
861 			next = val + THRESHOLDS_EVENTS_TARGET;
862 			break;
863 		case MEM_CGROUP_TARGET_SOFTLIMIT:
864 			next = val + SOFTLIMIT_EVENTS_TARGET;
865 			break;
866 		default:
867 			break;
868 		}
869 		__this_cpu_write(memcg->vmstats_percpu->targets[target], next);
870 		return true;
871 	}
872 	return false;
873 }
874 
875 /*
876  * Check events in order.
877  *
878  */
879 static void memcg_check_events(struct mem_cgroup *memcg, int nid)
880 {
881 	if (IS_ENABLED(CONFIG_PREEMPT_RT))
882 		return;
883 
884 	/* threshold event is triggered in finer grain than soft limit */
885 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
886 						MEM_CGROUP_TARGET_THRESH))) {
887 		bool do_softlimit;
888 
889 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
890 						MEM_CGROUP_TARGET_SOFTLIMIT);
891 		mem_cgroup_threshold(memcg);
892 		if (unlikely(do_softlimit))
893 			mem_cgroup_update_tree(memcg, nid);
894 	}
895 }
896 
897 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
898 {
899 	/*
900 	 * mm_update_next_owner() may clear mm->owner to NULL
901 	 * if it races with swapoff, page migration, etc.
902 	 * So this can be called with p == NULL.
903 	 */
904 	if (unlikely(!p))
905 		return NULL;
906 
907 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
908 }
909 EXPORT_SYMBOL(mem_cgroup_from_task);
910 
911 static __always_inline struct mem_cgroup *active_memcg(void)
912 {
913 	if (!in_task())
914 		return this_cpu_read(int_active_memcg);
915 	else
916 		return current->active_memcg;
917 }
918 
919 /**
920  * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
921  * @mm: mm from which memcg should be extracted. It can be NULL.
922  *
923  * Obtain a reference on mm->memcg and returns it if successful. If mm
924  * is NULL, then the memcg is chosen as follows:
925  * 1) The active memcg, if set.
926  * 2) current->mm->memcg, if available
927  * 3) root memcg
928  * If mem_cgroup is disabled, NULL is returned.
929  */
930 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
931 {
932 	struct mem_cgroup *memcg;
933 
934 	if (mem_cgroup_disabled())
935 		return NULL;
936 
937 	/*
938 	 * Page cache insertions can happen without an
939 	 * actual mm context, e.g. during disk probing
940 	 * on boot, loopback IO, acct() writes etc.
941 	 *
942 	 * No need to css_get on root memcg as the reference
943 	 * counting is disabled on the root level in the
944 	 * cgroup core. See CSS_NO_REF.
945 	 */
946 	if (unlikely(!mm)) {
947 		memcg = active_memcg();
948 		if (unlikely(memcg)) {
949 			/* remote memcg must hold a ref */
950 			css_get(&memcg->css);
951 			return memcg;
952 		}
953 		mm = current->mm;
954 		if (unlikely(!mm))
955 			return root_mem_cgroup;
956 	}
957 
958 	rcu_read_lock();
959 	do {
960 		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
961 		if (unlikely(!memcg))
962 			memcg = root_mem_cgroup;
963 	} while (!css_tryget(&memcg->css));
964 	rcu_read_unlock();
965 	return memcg;
966 }
967 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
968 
969 static __always_inline bool memcg_kmem_bypass(void)
970 {
971 	/* Allow remote memcg charging from any context. */
972 	if (unlikely(active_memcg()))
973 		return false;
974 
975 	/* Memcg to charge can't be determined. */
976 	if (!in_task() || !current->mm || (current->flags & PF_KTHREAD))
977 		return true;
978 
979 	return false;
980 }
981 
982 /**
983  * mem_cgroup_iter - iterate over memory cgroup hierarchy
984  * @root: hierarchy root
985  * @prev: previously returned memcg, NULL on first invocation
986  * @reclaim: cookie for shared reclaim walks, NULL for full walks
987  *
988  * Returns references to children of the hierarchy below @root, or
989  * @root itself, or %NULL after a full round-trip.
990  *
991  * Caller must pass the return value in @prev on subsequent
992  * invocations for reference counting, or use mem_cgroup_iter_break()
993  * to cancel a hierarchy walk before the round-trip is complete.
994  *
995  * Reclaimers can specify a node in @reclaim to divide up the memcgs
996  * in the hierarchy among all concurrent reclaimers operating on the
997  * same node.
998  */
999 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1000 				   struct mem_cgroup *prev,
1001 				   struct mem_cgroup_reclaim_cookie *reclaim)
1002 {
1003 	struct mem_cgroup_reclaim_iter *iter;
1004 	struct cgroup_subsys_state *css = NULL;
1005 	struct mem_cgroup *memcg = NULL;
1006 	struct mem_cgroup *pos = NULL;
1007 
1008 	if (mem_cgroup_disabled())
1009 		return NULL;
1010 
1011 	if (!root)
1012 		root = root_mem_cgroup;
1013 
1014 	rcu_read_lock();
1015 
1016 	if (reclaim) {
1017 		struct mem_cgroup_per_node *mz;
1018 
1019 		mz = root->nodeinfo[reclaim->pgdat->node_id];
1020 		iter = &mz->iter;
1021 
1022 		/*
1023 		 * On start, join the current reclaim iteration cycle.
1024 		 * Exit when a concurrent walker completes it.
1025 		 */
1026 		if (!prev)
1027 			reclaim->generation = iter->generation;
1028 		else if (reclaim->generation != iter->generation)
1029 			goto out_unlock;
1030 
1031 		while (1) {
1032 			pos = READ_ONCE(iter->position);
1033 			if (!pos || css_tryget(&pos->css))
1034 				break;
1035 			/*
1036 			 * css reference reached zero, so iter->position will
1037 			 * be cleared by ->css_released. However, we should not
1038 			 * rely on this happening soon, because ->css_released
1039 			 * is called from a work queue, and by busy-waiting we
1040 			 * might block it. So we clear iter->position right
1041 			 * away.
1042 			 */
1043 			(void)cmpxchg(&iter->position, pos, NULL);
1044 		}
1045 	} else if (prev) {
1046 		pos = prev;
1047 	}
1048 
1049 	if (pos)
1050 		css = &pos->css;
1051 
1052 	for (;;) {
1053 		css = css_next_descendant_pre(css, &root->css);
1054 		if (!css) {
1055 			/*
1056 			 * Reclaimers share the hierarchy walk, and a
1057 			 * new one might jump in right at the end of
1058 			 * the hierarchy - make sure they see at least
1059 			 * one group and restart from the beginning.
1060 			 */
1061 			if (!prev)
1062 				continue;
1063 			break;
1064 		}
1065 
1066 		/*
1067 		 * Verify the css and acquire a reference.  The root
1068 		 * is provided by the caller, so we know it's alive
1069 		 * and kicking, and don't take an extra reference.
1070 		 */
1071 		if (css == &root->css || css_tryget(css)) {
1072 			memcg = mem_cgroup_from_css(css);
1073 			break;
1074 		}
1075 	}
1076 
1077 	if (reclaim) {
1078 		/*
1079 		 * The position could have already been updated by a competing
1080 		 * thread, so check that the value hasn't changed since we read
1081 		 * it to avoid reclaiming from the same cgroup twice.
1082 		 */
1083 		(void)cmpxchg(&iter->position, pos, memcg);
1084 
1085 		if (pos)
1086 			css_put(&pos->css);
1087 
1088 		if (!memcg)
1089 			iter->generation++;
1090 	}
1091 
1092 out_unlock:
1093 	rcu_read_unlock();
1094 	if (prev && prev != root)
1095 		css_put(&prev->css);
1096 
1097 	return memcg;
1098 }
1099 
1100 /**
1101  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1102  * @root: hierarchy root
1103  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1104  */
1105 void mem_cgroup_iter_break(struct mem_cgroup *root,
1106 			   struct mem_cgroup *prev)
1107 {
1108 	if (!root)
1109 		root = root_mem_cgroup;
1110 	if (prev && prev != root)
1111 		css_put(&prev->css);
1112 }
1113 
1114 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1115 					struct mem_cgroup *dead_memcg)
1116 {
1117 	struct mem_cgroup_reclaim_iter *iter;
1118 	struct mem_cgroup_per_node *mz;
1119 	int nid;
1120 
1121 	for_each_node(nid) {
1122 		mz = from->nodeinfo[nid];
1123 		iter = &mz->iter;
1124 		cmpxchg(&iter->position, dead_memcg, NULL);
1125 	}
1126 }
1127 
1128 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1129 {
1130 	struct mem_cgroup *memcg = dead_memcg;
1131 	struct mem_cgroup *last;
1132 
1133 	do {
1134 		__invalidate_reclaim_iterators(memcg, dead_memcg);
1135 		last = memcg;
1136 	} while ((memcg = parent_mem_cgroup(memcg)));
1137 
1138 	/*
1139 	 * When cgruop1 non-hierarchy mode is used,
1140 	 * parent_mem_cgroup() does not walk all the way up to the
1141 	 * cgroup root (root_mem_cgroup). So we have to handle
1142 	 * dead_memcg from cgroup root separately.
1143 	 */
1144 	if (last != root_mem_cgroup)
1145 		__invalidate_reclaim_iterators(root_mem_cgroup,
1146 						dead_memcg);
1147 }
1148 
1149 /**
1150  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1151  * @memcg: hierarchy root
1152  * @fn: function to call for each task
1153  * @arg: argument passed to @fn
1154  *
1155  * This function iterates over tasks attached to @memcg or to any of its
1156  * descendants and calls @fn for each task. If @fn returns a non-zero
1157  * value, the function breaks the iteration loop and returns the value.
1158  * Otherwise, it will iterate over all tasks and return 0.
1159  *
1160  * This function must not be called for the root memory cgroup.
1161  */
1162 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1163 			  int (*fn)(struct task_struct *, void *), void *arg)
1164 {
1165 	struct mem_cgroup *iter;
1166 	int ret = 0;
1167 
1168 	BUG_ON(memcg == root_mem_cgroup);
1169 
1170 	for_each_mem_cgroup_tree(iter, memcg) {
1171 		struct css_task_iter it;
1172 		struct task_struct *task;
1173 
1174 		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1175 		while (!ret && (task = css_task_iter_next(&it)))
1176 			ret = fn(task, arg);
1177 		css_task_iter_end(&it);
1178 		if (ret) {
1179 			mem_cgroup_iter_break(memcg, iter);
1180 			break;
1181 		}
1182 	}
1183 	return ret;
1184 }
1185 
1186 #ifdef CONFIG_DEBUG_VM
1187 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1188 {
1189 	struct mem_cgroup *memcg;
1190 
1191 	if (mem_cgroup_disabled())
1192 		return;
1193 
1194 	memcg = folio_memcg(folio);
1195 
1196 	if (!memcg)
1197 		VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != root_mem_cgroup, folio);
1198 	else
1199 		VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
1200 }
1201 #endif
1202 
1203 /**
1204  * folio_lruvec_lock - Lock the lruvec for a folio.
1205  * @folio: Pointer to the folio.
1206  *
1207  * These functions are safe to use under any of the following conditions:
1208  * - folio locked
1209  * - folio_test_lru false
1210  * - folio_memcg_lock()
1211  * - folio frozen (refcount of 0)
1212  *
1213  * Return: The lruvec this folio is on with its lock held.
1214  */
1215 struct lruvec *folio_lruvec_lock(struct folio *folio)
1216 {
1217 	struct lruvec *lruvec = folio_lruvec(folio);
1218 
1219 	spin_lock(&lruvec->lru_lock);
1220 	lruvec_memcg_debug(lruvec, folio);
1221 
1222 	return lruvec;
1223 }
1224 
1225 /**
1226  * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1227  * @folio: Pointer to the folio.
1228  *
1229  * These functions are safe to use under any of the following conditions:
1230  * - folio locked
1231  * - folio_test_lru false
1232  * - folio_memcg_lock()
1233  * - folio frozen (refcount of 0)
1234  *
1235  * Return: The lruvec this folio is on with its lock held and interrupts
1236  * disabled.
1237  */
1238 struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1239 {
1240 	struct lruvec *lruvec = folio_lruvec(folio);
1241 
1242 	spin_lock_irq(&lruvec->lru_lock);
1243 	lruvec_memcg_debug(lruvec, folio);
1244 
1245 	return lruvec;
1246 }
1247 
1248 /**
1249  * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1250  * @folio: Pointer to the folio.
1251  * @flags: Pointer to irqsave flags.
1252  *
1253  * These functions are safe to use under any of the following conditions:
1254  * - folio locked
1255  * - folio_test_lru false
1256  * - folio_memcg_lock()
1257  * - folio frozen (refcount of 0)
1258  *
1259  * Return: The lruvec this folio is on with its lock held and interrupts
1260  * disabled.
1261  */
1262 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1263 		unsigned long *flags)
1264 {
1265 	struct lruvec *lruvec = folio_lruvec(folio);
1266 
1267 	spin_lock_irqsave(&lruvec->lru_lock, *flags);
1268 	lruvec_memcg_debug(lruvec, folio);
1269 
1270 	return lruvec;
1271 }
1272 
1273 /**
1274  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1275  * @lruvec: mem_cgroup per zone lru vector
1276  * @lru: index of lru list the page is sitting on
1277  * @zid: zone id of the accounted pages
1278  * @nr_pages: positive when adding or negative when removing
1279  *
1280  * This function must be called under lru_lock, just before a page is added
1281  * to or just after a page is removed from an lru list.
1282  */
1283 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1284 				int zid, int nr_pages)
1285 {
1286 	struct mem_cgroup_per_node *mz;
1287 	unsigned long *lru_size;
1288 	long size;
1289 
1290 	if (mem_cgroup_disabled())
1291 		return;
1292 
1293 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1294 	lru_size = &mz->lru_zone_size[zid][lru];
1295 
1296 	if (nr_pages < 0)
1297 		*lru_size += nr_pages;
1298 
1299 	size = *lru_size;
1300 	if (WARN_ONCE(size < 0,
1301 		"%s(%p, %d, %d): lru_size %ld\n",
1302 		__func__, lruvec, lru, nr_pages, size)) {
1303 		VM_BUG_ON(1);
1304 		*lru_size = 0;
1305 	}
1306 
1307 	if (nr_pages > 0)
1308 		*lru_size += nr_pages;
1309 }
1310 
1311 /**
1312  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1313  * @memcg: the memory cgroup
1314  *
1315  * Returns the maximum amount of memory @mem can be charged with, in
1316  * pages.
1317  */
1318 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1319 {
1320 	unsigned long margin = 0;
1321 	unsigned long count;
1322 	unsigned long limit;
1323 
1324 	count = page_counter_read(&memcg->memory);
1325 	limit = READ_ONCE(memcg->memory.max);
1326 	if (count < limit)
1327 		margin = limit - count;
1328 
1329 	if (do_memsw_account()) {
1330 		count = page_counter_read(&memcg->memsw);
1331 		limit = READ_ONCE(memcg->memsw.max);
1332 		if (count < limit)
1333 			margin = min(margin, limit - count);
1334 		else
1335 			margin = 0;
1336 	}
1337 
1338 	return margin;
1339 }
1340 
1341 /*
1342  * A routine for checking "mem" is under move_account() or not.
1343  *
1344  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1345  * moving cgroups. This is for waiting at high-memory pressure
1346  * caused by "move".
1347  */
1348 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1349 {
1350 	struct mem_cgroup *from;
1351 	struct mem_cgroup *to;
1352 	bool ret = false;
1353 	/*
1354 	 * Unlike task_move routines, we access mc.to, mc.from not under
1355 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1356 	 */
1357 	spin_lock(&mc.lock);
1358 	from = mc.from;
1359 	to = mc.to;
1360 	if (!from)
1361 		goto unlock;
1362 
1363 	ret = mem_cgroup_is_descendant(from, memcg) ||
1364 		mem_cgroup_is_descendant(to, memcg);
1365 unlock:
1366 	spin_unlock(&mc.lock);
1367 	return ret;
1368 }
1369 
1370 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1371 {
1372 	if (mc.moving_task && current != mc.moving_task) {
1373 		if (mem_cgroup_under_move(memcg)) {
1374 			DEFINE_WAIT(wait);
1375 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1376 			/* moving charge context might have finished. */
1377 			if (mc.moving_task)
1378 				schedule();
1379 			finish_wait(&mc.waitq, &wait);
1380 			return true;
1381 		}
1382 	}
1383 	return false;
1384 }
1385 
1386 struct memory_stat {
1387 	const char *name;
1388 	unsigned int idx;
1389 };
1390 
1391 static const struct memory_stat memory_stats[] = {
1392 	{ "anon",			NR_ANON_MAPPED			},
1393 	{ "file",			NR_FILE_PAGES			},
1394 	{ "kernel",			MEMCG_KMEM			},
1395 	{ "kernel_stack",		NR_KERNEL_STACK_KB		},
1396 	{ "pagetables",			NR_PAGETABLE			},
1397 	{ "percpu",			MEMCG_PERCPU_B			},
1398 	{ "sock",			MEMCG_SOCK			},
1399 	{ "vmalloc",			MEMCG_VMALLOC			},
1400 	{ "shmem",			NR_SHMEM			},
1401 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1402 	{ "zswap",			MEMCG_ZSWAP_B			},
1403 	{ "zswapped",			MEMCG_ZSWAPPED			},
1404 #endif
1405 	{ "file_mapped",		NR_FILE_MAPPED			},
1406 	{ "file_dirty",			NR_FILE_DIRTY			},
1407 	{ "file_writeback",		NR_WRITEBACK			},
1408 #ifdef CONFIG_SWAP
1409 	{ "swapcached",			NR_SWAPCACHE			},
1410 #endif
1411 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1412 	{ "anon_thp",			NR_ANON_THPS			},
1413 	{ "file_thp",			NR_FILE_THPS			},
1414 	{ "shmem_thp",			NR_SHMEM_THPS			},
1415 #endif
1416 	{ "inactive_anon",		NR_INACTIVE_ANON		},
1417 	{ "active_anon",		NR_ACTIVE_ANON			},
1418 	{ "inactive_file",		NR_INACTIVE_FILE		},
1419 	{ "active_file",		NR_ACTIVE_FILE			},
1420 	{ "unevictable",		NR_UNEVICTABLE			},
1421 	{ "slab_reclaimable",		NR_SLAB_RECLAIMABLE_B		},
1422 	{ "slab_unreclaimable",		NR_SLAB_UNRECLAIMABLE_B		},
1423 
1424 	/* The memory events */
1425 	{ "workingset_refault_anon",	WORKINGSET_REFAULT_ANON		},
1426 	{ "workingset_refault_file",	WORKINGSET_REFAULT_FILE		},
1427 	{ "workingset_activate_anon",	WORKINGSET_ACTIVATE_ANON	},
1428 	{ "workingset_activate_file",	WORKINGSET_ACTIVATE_FILE	},
1429 	{ "workingset_restore_anon",	WORKINGSET_RESTORE_ANON		},
1430 	{ "workingset_restore_file",	WORKINGSET_RESTORE_FILE		},
1431 	{ "workingset_nodereclaim",	WORKINGSET_NODERECLAIM		},
1432 };
1433 
1434 /* Translate stat items to the correct unit for memory.stat output */
1435 static int memcg_page_state_unit(int item)
1436 {
1437 	switch (item) {
1438 	case MEMCG_PERCPU_B:
1439 	case MEMCG_ZSWAP_B:
1440 	case NR_SLAB_RECLAIMABLE_B:
1441 	case NR_SLAB_UNRECLAIMABLE_B:
1442 	case WORKINGSET_REFAULT_ANON:
1443 	case WORKINGSET_REFAULT_FILE:
1444 	case WORKINGSET_ACTIVATE_ANON:
1445 	case WORKINGSET_ACTIVATE_FILE:
1446 	case WORKINGSET_RESTORE_ANON:
1447 	case WORKINGSET_RESTORE_FILE:
1448 	case WORKINGSET_NODERECLAIM:
1449 		return 1;
1450 	case NR_KERNEL_STACK_KB:
1451 		return SZ_1K;
1452 	default:
1453 		return PAGE_SIZE;
1454 	}
1455 }
1456 
1457 static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1458 						    int item)
1459 {
1460 	return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1461 }
1462 
1463 /* Subset of vm_event_item to report for memcg event stats */
1464 static const unsigned int memcg_vm_event_stat[] = {
1465 	PGSCAN_KSWAPD,
1466 	PGSCAN_DIRECT,
1467 	PGSTEAL_KSWAPD,
1468 	PGSTEAL_DIRECT,
1469 	PGFAULT,
1470 	PGMAJFAULT,
1471 	PGREFILL,
1472 	PGACTIVATE,
1473 	PGDEACTIVATE,
1474 	PGLAZYFREE,
1475 	PGLAZYFREED,
1476 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1477 	ZSWPIN,
1478 	ZSWPOUT,
1479 #endif
1480 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1481 	THP_FAULT_ALLOC,
1482 	THP_COLLAPSE_ALLOC,
1483 #endif
1484 };
1485 
1486 static char *memory_stat_format(struct mem_cgroup *memcg)
1487 {
1488 	struct seq_buf s;
1489 	int i;
1490 
1491 	seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1492 	if (!s.buffer)
1493 		return NULL;
1494 
1495 	/*
1496 	 * Provide statistics on the state of the memory subsystem as
1497 	 * well as cumulative event counters that show past behavior.
1498 	 *
1499 	 * This list is ordered following a combination of these gradients:
1500 	 * 1) generic big picture -> specifics and details
1501 	 * 2) reflecting userspace activity -> reflecting kernel heuristics
1502 	 *
1503 	 * Current memory state:
1504 	 */
1505 	mem_cgroup_flush_stats();
1506 
1507 	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1508 		u64 size;
1509 
1510 		size = memcg_page_state_output(memcg, memory_stats[i].idx);
1511 		seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
1512 
1513 		if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1514 			size += memcg_page_state_output(memcg,
1515 							NR_SLAB_RECLAIMABLE_B);
1516 			seq_buf_printf(&s, "slab %llu\n", size);
1517 		}
1518 	}
1519 
1520 	/* Accumulated memory events */
1521 	seq_buf_printf(&s, "pgscan %lu\n",
1522 		       memcg_events(memcg, PGSCAN_KSWAPD) +
1523 		       memcg_events(memcg, PGSCAN_DIRECT));
1524 	seq_buf_printf(&s, "pgsteal %lu\n",
1525 		       memcg_events(memcg, PGSTEAL_KSWAPD) +
1526 		       memcg_events(memcg, PGSTEAL_DIRECT));
1527 
1528 	for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++)
1529 		seq_buf_printf(&s, "%s %lu\n",
1530 			       vm_event_name(memcg_vm_event_stat[i]),
1531 			       memcg_events(memcg, memcg_vm_event_stat[i]));
1532 
1533 	/* The above should easily fit into one page */
1534 	WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1535 
1536 	return s.buffer;
1537 }
1538 
1539 #define K(x) ((x) << (PAGE_SHIFT-10))
1540 /**
1541  * mem_cgroup_print_oom_context: Print OOM information relevant to
1542  * memory controller.
1543  * @memcg: The memory cgroup that went over limit
1544  * @p: Task that is going to be killed
1545  *
1546  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1547  * enabled
1548  */
1549 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1550 {
1551 	rcu_read_lock();
1552 
1553 	if (memcg) {
1554 		pr_cont(",oom_memcg=");
1555 		pr_cont_cgroup_path(memcg->css.cgroup);
1556 	} else
1557 		pr_cont(",global_oom");
1558 	if (p) {
1559 		pr_cont(",task_memcg=");
1560 		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1561 	}
1562 	rcu_read_unlock();
1563 }
1564 
1565 /**
1566  * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1567  * memory controller.
1568  * @memcg: The memory cgroup that went over limit
1569  */
1570 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1571 {
1572 	char *buf;
1573 
1574 	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1575 		K((u64)page_counter_read(&memcg->memory)),
1576 		K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1577 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1578 		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1579 			K((u64)page_counter_read(&memcg->swap)),
1580 			K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1581 	else {
1582 		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1583 			K((u64)page_counter_read(&memcg->memsw)),
1584 			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1585 		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1586 			K((u64)page_counter_read(&memcg->kmem)),
1587 			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1588 	}
1589 
1590 	pr_info("Memory cgroup stats for ");
1591 	pr_cont_cgroup_path(memcg->css.cgroup);
1592 	pr_cont(":");
1593 	buf = memory_stat_format(memcg);
1594 	if (!buf)
1595 		return;
1596 	pr_info("%s", buf);
1597 	kfree(buf);
1598 }
1599 
1600 /*
1601  * Return the memory (and swap, if configured) limit for a memcg.
1602  */
1603 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1604 {
1605 	unsigned long max = READ_ONCE(memcg->memory.max);
1606 
1607 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
1608 		if (mem_cgroup_swappiness(memcg))
1609 			max += min(READ_ONCE(memcg->swap.max),
1610 				   (unsigned long)total_swap_pages);
1611 	} else { /* v1 */
1612 		if (mem_cgroup_swappiness(memcg)) {
1613 			/* Calculate swap excess capacity from memsw limit */
1614 			unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1615 
1616 			max += min(swap, (unsigned long)total_swap_pages);
1617 		}
1618 	}
1619 	return max;
1620 }
1621 
1622 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1623 {
1624 	return page_counter_read(&memcg->memory);
1625 }
1626 
1627 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1628 				     int order)
1629 {
1630 	struct oom_control oc = {
1631 		.zonelist = NULL,
1632 		.nodemask = NULL,
1633 		.memcg = memcg,
1634 		.gfp_mask = gfp_mask,
1635 		.order = order,
1636 	};
1637 	bool ret = true;
1638 
1639 	if (mutex_lock_killable(&oom_lock))
1640 		return true;
1641 
1642 	if (mem_cgroup_margin(memcg) >= (1 << order))
1643 		goto unlock;
1644 
1645 	/*
1646 	 * A few threads which were not waiting at mutex_lock_killable() can
1647 	 * fail to bail out. Therefore, check again after holding oom_lock.
1648 	 */
1649 	ret = task_is_dying() || out_of_memory(&oc);
1650 
1651 unlock:
1652 	mutex_unlock(&oom_lock);
1653 	return ret;
1654 }
1655 
1656 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1657 				   pg_data_t *pgdat,
1658 				   gfp_t gfp_mask,
1659 				   unsigned long *total_scanned)
1660 {
1661 	struct mem_cgroup *victim = NULL;
1662 	int total = 0;
1663 	int loop = 0;
1664 	unsigned long excess;
1665 	unsigned long nr_scanned;
1666 	struct mem_cgroup_reclaim_cookie reclaim = {
1667 		.pgdat = pgdat,
1668 	};
1669 
1670 	excess = soft_limit_excess(root_memcg);
1671 
1672 	while (1) {
1673 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1674 		if (!victim) {
1675 			loop++;
1676 			if (loop >= 2) {
1677 				/*
1678 				 * If we have not been able to reclaim
1679 				 * anything, it might because there are
1680 				 * no reclaimable pages under this hierarchy
1681 				 */
1682 				if (!total)
1683 					break;
1684 				/*
1685 				 * We want to do more targeted reclaim.
1686 				 * excess >> 2 is not to excessive so as to
1687 				 * reclaim too much, nor too less that we keep
1688 				 * coming back to reclaim from this cgroup
1689 				 */
1690 				if (total >= (excess >> 2) ||
1691 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1692 					break;
1693 			}
1694 			continue;
1695 		}
1696 		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1697 					pgdat, &nr_scanned);
1698 		*total_scanned += nr_scanned;
1699 		if (!soft_limit_excess(root_memcg))
1700 			break;
1701 	}
1702 	mem_cgroup_iter_break(root_memcg, victim);
1703 	return total;
1704 }
1705 
1706 #ifdef CONFIG_LOCKDEP
1707 static struct lockdep_map memcg_oom_lock_dep_map = {
1708 	.name = "memcg_oom_lock",
1709 };
1710 #endif
1711 
1712 static DEFINE_SPINLOCK(memcg_oom_lock);
1713 
1714 /*
1715  * Check OOM-Killer is already running under our hierarchy.
1716  * If someone is running, return false.
1717  */
1718 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1719 {
1720 	struct mem_cgroup *iter, *failed = NULL;
1721 
1722 	spin_lock(&memcg_oom_lock);
1723 
1724 	for_each_mem_cgroup_tree(iter, memcg) {
1725 		if (iter->oom_lock) {
1726 			/*
1727 			 * this subtree of our hierarchy is already locked
1728 			 * so we cannot give a lock.
1729 			 */
1730 			failed = iter;
1731 			mem_cgroup_iter_break(memcg, iter);
1732 			break;
1733 		} else
1734 			iter->oom_lock = true;
1735 	}
1736 
1737 	if (failed) {
1738 		/*
1739 		 * OK, we failed to lock the whole subtree so we have
1740 		 * to clean up what we set up to the failing subtree
1741 		 */
1742 		for_each_mem_cgroup_tree(iter, memcg) {
1743 			if (iter == failed) {
1744 				mem_cgroup_iter_break(memcg, iter);
1745 				break;
1746 			}
1747 			iter->oom_lock = false;
1748 		}
1749 	} else
1750 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1751 
1752 	spin_unlock(&memcg_oom_lock);
1753 
1754 	return !failed;
1755 }
1756 
1757 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1758 {
1759 	struct mem_cgroup *iter;
1760 
1761 	spin_lock(&memcg_oom_lock);
1762 	mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1763 	for_each_mem_cgroup_tree(iter, memcg)
1764 		iter->oom_lock = false;
1765 	spin_unlock(&memcg_oom_lock);
1766 }
1767 
1768 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1769 {
1770 	struct mem_cgroup *iter;
1771 
1772 	spin_lock(&memcg_oom_lock);
1773 	for_each_mem_cgroup_tree(iter, memcg)
1774 		iter->under_oom++;
1775 	spin_unlock(&memcg_oom_lock);
1776 }
1777 
1778 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1779 {
1780 	struct mem_cgroup *iter;
1781 
1782 	/*
1783 	 * Be careful about under_oom underflows because a child memcg
1784 	 * could have been added after mem_cgroup_mark_under_oom.
1785 	 */
1786 	spin_lock(&memcg_oom_lock);
1787 	for_each_mem_cgroup_tree(iter, memcg)
1788 		if (iter->under_oom > 0)
1789 			iter->under_oom--;
1790 	spin_unlock(&memcg_oom_lock);
1791 }
1792 
1793 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1794 
1795 struct oom_wait_info {
1796 	struct mem_cgroup *memcg;
1797 	wait_queue_entry_t	wait;
1798 };
1799 
1800 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1801 	unsigned mode, int sync, void *arg)
1802 {
1803 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1804 	struct mem_cgroup *oom_wait_memcg;
1805 	struct oom_wait_info *oom_wait_info;
1806 
1807 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1808 	oom_wait_memcg = oom_wait_info->memcg;
1809 
1810 	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1811 	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1812 		return 0;
1813 	return autoremove_wake_function(wait, mode, sync, arg);
1814 }
1815 
1816 static void memcg_oom_recover(struct mem_cgroup *memcg)
1817 {
1818 	/*
1819 	 * For the following lockless ->under_oom test, the only required
1820 	 * guarantee is that it must see the state asserted by an OOM when
1821 	 * this function is called as a result of userland actions
1822 	 * triggered by the notification of the OOM.  This is trivially
1823 	 * achieved by invoking mem_cgroup_mark_under_oom() before
1824 	 * triggering notification.
1825 	 */
1826 	if (memcg && memcg->under_oom)
1827 		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1828 }
1829 
1830 /*
1831  * Returns true if successfully killed one or more processes. Though in some
1832  * corner cases it can return true even without killing any process.
1833  */
1834 static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1835 {
1836 	bool locked, ret;
1837 
1838 	if (order > PAGE_ALLOC_COSTLY_ORDER)
1839 		return false;
1840 
1841 	memcg_memory_event(memcg, MEMCG_OOM);
1842 
1843 	/*
1844 	 * We are in the middle of the charge context here, so we
1845 	 * don't want to block when potentially sitting on a callstack
1846 	 * that holds all kinds of filesystem and mm locks.
1847 	 *
1848 	 * cgroup1 allows disabling the OOM killer and waiting for outside
1849 	 * handling until the charge can succeed; remember the context and put
1850 	 * the task to sleep at the end of the page fault when all locks are
1851 	 * released.
1852 	 *
1853 	 * On the other hand, in-kernel OOM killer allows for an async victim
1854 	 * memory reclaim (oom_reaper) and that means that we are not solely
1855 	 * relying on the oom victim to make a forward progress and we can
1856 	 * invoke the oom killer here.
1857 	 *
1858 	 * Please note that mem_cgroup_out_of_memory might fail to find a
1859 	 * victim and then we have to bail out from the charge path.
1860 	 */
1861 	if (memcg->oom_kill_disable) {
1862 		if (current->in_user_fault) {
1863 			css_get(&memcg->css);
1864 			current->memcg_in_oom = memcg;
1865 			current->memcg_oom_gfp_mask = mask;
1866 			current->memcg_oom_order = order;
1867 		}
1868 		return false;
1869 	}
1870 
1871 	mem_cgroup_mark_under_oom(memcg);
1872 
1873 	locked = mem_cgroup_oom_trylock(memcg);
1874 
1875 	if (locked)
1876 		mem_cgroup_oom_notify(memcg);
1877 
1878 	mem_cgroup_unmark_under_oom(memcg);
1879 	ret = mem_cgroup_out_of_memory(memcg, mask, order);
1880 
1881 	if (locked)
1882 		mem_cgroup_oom_unlock(memcg);
1883 
1884 	return ret;
1885 }
1886 
1887 /**
1888  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1889  * @handle: actually kill/wait or just clean up the OOM state
1890  *
1891  * This has to be called at the end of a page fault if the memcg OOM
1892  * handler was enabled.
1893  *
1894  * Memcg supports userspace OOM handling where failed allocations must
1895  * sleep on a waitqueue until the userspace task resolves the
1896  * situation.  Sleeping directly in the charge context with all kinds
1897  * of locks held is not a good idea, instead we remember an OOM state
1898  * in the task and mem_cgroup_oom_synchronize() has to be called at
1899  * the end of the page fault to complete the OOM handling.
1900  *
1901  * Returns %true if an ongoing memcg OOM situation was detected and
1902  * completed, %false otherwise.
1903  */
1904 bool mem_cgroup_oom_synchronize(bool handle)
1905 {
1906 	struct mem_cgroup *memcg = current->memcg_in_oom;
1907 	struct oom_wait_info owait;
1908 	bool locked;
1909 
1910 	/* OOM is global, do not handle */
1911 	if (!memcg)
1912 		return false;
1913 
1914 	if (!handle)
1915 		goto cleanup;
1916 
1917 	owait.memcg = memcg;
1918 	owait.wait.flags = 0;
1919 	owait.wait.func = memcg_oom_wake_function;
1920 	owait.wait.private = current;
1921 	INIT_LIST_HEAD(&owait.wait.entry);
1922 
1923 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1924 	mem_cgroup_mark_under_oom(memcg);
1925 
1926 	locked = mem_cgroup_oom_trylock(memcg);
1927 
1928 	if (locked)
1929 		mem_cgroup_oom_notify(memcg);
1930 
1931 	if (locked && !memcg->oom_kill_disable) {
1932 		mem_cgroup_unmark_under_oom(memcg);
1933 		finish_wait(&memcg_oom_waitq, &owait.wait);
1934 		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1935 					 current->memcg_oom_order);
1936 	} else {
1937 		schedule();
1938 		mem_cgroup_unmark_under_oom(memcg);
1939 		finish_wait(&memcg_oom_waitq, &owait.wait);
1940 	}
1941 
1942 	if (locked) {
1943 		mem_cgroup_oom_unlock(memcg);
1944 		/*
1945 		 * There is no guarantee that an OOM-lock contender
1946 		 * sees the wakeups triggered by the OOM kill
1947 		 * uncharges.  Wake any sleepers explicitly.
1948 		 */
1949 		memcg_oom_recover(memcg);
1950 	}
1951 cleanup:
1952 	current->memcg_in_oom = NULL;
1953 	css_put(&memcg->css);
1954 	return true;
1955 }
1956 
1957 /**
1958  * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1959  * @victim: task to be killed by the OOM killer
1960  * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1961  *
1962  * Returns a pointer to a memory cgroup, which has to be cleaned up
1963  * by killing all belonging OOM-killable tasks.
1964  *
1965  * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1966  */
1967 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1968 					    struct mem_cgroup *oom_domain)
1969 {
1970 	struct mem_cgroup *oom_group = NULL;
1971 	struct mem_cgroup *memcg;
1972 
1973 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1974 		return NULL;
1975 
1976 	if (!oom_domain)
1977 		oom_domain = root_mem_cgroup;
1978 
1979 	rcu_read_lock();
1980 
1981 	memcg = mem_cgroup_from_task(victim);
1982 	if (memcg == root_mem_cgroup)
1983 		goto out;
1984 
1985 	/*
1986 	 * If the victim task has been asynchronously moved to a different
1987 	 * memory cgroup, we might end up killing tasks outside oom_domain.
1988 	 * In this case it's better to ignore memory.group.oom.
1989 	 */
1990 	if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
1991 		goto out;
1992 
1993 	/*
1994 	 * Traverse the memory cgroup hierarchy from the victim task's
1995 	 * cgroup up to the OOMing cgroup (or root) to find the
1996 	 * highest-level memory cgroup with oom.group set.
1997 	 */
1998 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1999 		if (memcg->oom_group)
2000 			oom_group = memcg;
2001 
2002 		if (memcg == oom_domain)
2003 			break;
2004 	}
2005 
2006 	if (oom_group)
2007 		css_get(&oom_group->css);
2008 out:
2009 	rcu_read_unlock();
2010 
2011 	return oom_group;
2012 }
2013 
2014 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2015 {
2016 	pr_info("Tasks in ");
2017 	pr_cont_cgroup_path(memcg->css.cgroup);
2018 	pr_cont(" are going to be killed due to memory.oom.group set\n");
2019 }
2020 
2021 /**
2022  * folio_memcg_lock - Bind a folio to its memcg.
2023  * @folio: The folio.
2024  *
2025  * This function prevents unlocked LRU folios from being moved to
2026  * another cgroup.
2027  *
2028  * It ensures lifetime of the bound memcg.  The caller is responsible
2029  * for the lifetime of the folio.
2030  */
2031 void folio_memcg_lock(struct folio *folio)
2032 {
2033 	struct mem_cgroup *memcg;
2034 	unsigned long flags;
2035 
2036 	/*
2037 	 * The RCU lock is held throughout the transaction.  The fast
2038 	 * path can get away without acquiring the memcg->move_lock
2039 	 * because page moving starts with an RCU grace period.
2040          */
2041 	rcu_read_lock();
2042 
2043 	if (mem_cgroup_disabled())
2044 		return;
2045 again:
2046 	memcg = folio_memcg(folio);
2047 	if (unlikely(!memcg))
2048 		return;
2049 
2050 #ifdef CONFIG_PROVE_LOCKING
2051 	local_irq_save(flags);
2052 	might_lock(&memcg->move_lock);
2053 	local_irq_restore(flags);
2054 #endif
2055 
2056 	if (atomic_read(&memcg->moving_account) <= 0)
2057 		return;
2058 
2059 	spin_lock_irqsave(&memcg->move_lock, flags);
2060 	if (memcg != folio_memcg(folio)) {
2061 		spin_unlock_irqrestore(&memcg->move_lock, flags);
2062 		goto again;
2063 	}
2064 
2065 	/*
2066 	 * When charge migration first begins, we can have multiple
2067 	 * critical sections holding the fast-path RCU lock and one
2068 	 * holding the slowpath move_lock. Track the task who has the
2069 	 * move_lock for unlock_page_memcg().
2070 	 */
2071 	memcg->move_lock_task = current;
2072 	memcg->move_lock_flags = flags;
2073 }
2074 
2075 void lock_page_memcg(struct page *page)
2076 {
2077 	folio_memcg_lock(page_folio(page));
2078 }
2079 
2080 static void __folio_memcg_unlock(struct mem_cgroup *memcg)
2081 {
2082 	if (memcg && memcg->move_lock_task == current) {
2083 		unsigned long flags = memcg->move_lock_flags;
2084 
2085 		memcg->move_lock_task = NULL;
2086 		memcg->move_lock_flags = 0;
2087 
2088 		spin_unlock_irqrestore(&memcg->move_lock, flags);
2089 	}
2090 
2091 	rcu_read_unlock();
2092 }
2093 
2094 /**
2095  * folio_memcg_unlock - Release the binding between a folio and its memcg.
2096  * @folio: The folio.
2097  *
2098  * This releases the binding created by folio_memcg_lock().  This does
2099  * not change the accounting of this folio to its memcg, but it does
2100  * permit others to change it.
2101  */
2102 void folio_memcg_unlock(struct folio *folio)
2103 {
2104 	__folio_memcg_unlock(folio_memcg(folio));
2105 }
2106 
2107 void unlock_page_memcg(struct page *page)
2108 {
2109 	folio_memcg_unlock(page_folio(page));
2110 }
2111 
2112 struct memcg_stock_pcp {
2113 	local_lock_t stock_lock;
2114 	struct mem_cgroup *cached; /* this never be root cgroup */
2115 	unsigned int nr_pages;
2116 
2117 #ifdef CONFIG_MEMCG_KMEM
2118 	struct obj_cgroup *cached_objcg;
2119 	struct pglist_data *cached_pgdat;
2120 	unsigned int nr_bytes;
2121 	int nr_slab_reclaimable_b;
2122 	int nr_slab_unreclaimable_b;
2123 #endif
2124 
2125 	struct work_struct work;
2126 	unsigned long flags;
2127 #define FLUSHING_CACHED_CHARGE	0
2128 };
2129 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = {
2130 	.stock_lock = INIT_LOCAL_LOCK(stock_lock),
2131 };
2132 static DEFINE_MUTEX(percpu_charge_mutex);
2133 
2134 #ifdef CONFIG_MEMCG_KMEM
2135 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock);
2136 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2137 				     struct mem_cgroup *root_memcg);
2138 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages);
2139 
2140 #else
2141 static inline struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
2142 {
2143 	return NULL;
2144 }
2145 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2146 				     struct mem_cgroup *root_memcg)
2147 {
2148 	return false;
2149 }
2150 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
2151 {
2152 }
2153 #endif
2154 
2155 /**
2156  * consume_stock: Try to consume stocked charge on this cpu.
2157  * @memcg: memcg to consume from.
2158  * @nr_pages: how many pages to charge.
2159  *
2160  * The charges will only happen if @memcg matches the current cpu's memcg
2161  * stock, and at least @nr_pages are available in that stock.  Failure to
2162  * service an allocation will refill the stock.
2163  *
2164  * returns true if successful, false otherwise.
2165  */
2166 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2167 {
2168 	struct memcg_stock_pcp *stock;
2169 	unsigned long flags;
2170 	bool ret = false;
2171 
2172 	if (nr_pages > MEMCG_CHARGE_BATCH)
2173 		return ret;
2174 
2175 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
2176 
2177 	stock = this_cpu_ptr(&memcg_stock);
2178 	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2179 		stock->nr_pages -= nr_pages;
2180 		ret = true;
2181 	}
2182 
2183 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2184 
2185 	return ret;
2186 }
2187 
2188 /*
2189  * Returns stocks cached in percpu and reset cached information.
2190  */
2191 static void drain_stock(struct memcg_stock_pcp *stock)
2192 {
2193 	struct mem_cgroup *old = stock->cached;
2194 
2195 	if (!old)
2196 		return;
2197 
2198 	if (stock->nr_pages) {
2199 		page_counter_uncharge(&old->memory, stock->nr_pages);
2200 		if (do_memsw_account())
2201 			page_counter_uncharge(&old->memsw, stock->nr_pages);
2202 		stock->nr_pages = 0;
2203 	}
2204 
2205 	css_put(&old->css);
2206 	stock->cached = NULL;
2207 }
2208 
2209 static void drain_local_stock(struct work_struct *dummy)
2210 {
2211 	struct memcg_stock_pcp *stock;
2212 	struct obj_cgroup *old = NULL;
2213 	unsigned long flags;
2214 
2215 	/*
2216 	 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
2217 	 * drain_stock races is that we always operate on local CPU stock
2218 	 * here with IRQ disabled
2219 	 */
2220 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
2221 
2222 	stock = this_cpu_ptr(&memcg_stock);
2223 	old = drain_obj_stock(stock);
2224 	drain_stock(stock);
2225 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2226 
2227 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2228 	if (old)
2229 		obj_cgroup_put(old);
2230 }
2231 
2232 /*
2233  * Cache charges(val) to local per_cpu area.
2234  * This will be consumed by consume_stock() function, later.
2235  */
2236 static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2237 {
2238 	struct memcg_stock_pcp *stock;
2239 
2240 	stock = this_cpu_ptr(&memcg_stock);
2241 	if (stock->cached != memcg) { /* reset if necessary */
2242 		drain_stock(stock);
2243 		css_get(&memcg->css);
2244 		stock->cached = memcg;
2245 	}
2246 	stock->nr_pages += nr_pages;
2247 
2248 	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2249 		drain_stock(stock);
2250 }
2251 
2252 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2253 {
2254 	unsigned long flags;
2255 
2256 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
2257 	__refill_stock(memcg, nr_pages);
2258 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2259 }
2260 
2261 /*
2262  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2263  * of the hierarchy under it.
2264  */
2265 static void drain_all_stock(struct mem_cgroup *root_memcg)
2266 {
2267 	int cpu, curcpu;
2268 
2269 	/* If someone's already draining, avoid adding running more workers. */
2270 	if (!mutex_trylock(&percpu_charge_mutex))
2271 		return;
2272 	/*
2273 	 * Notify other cpus that system-wide "drain" is running
2274 	 * We do not care about races with the cpu hotplug because cpu down
2275 	 * as well as workers from this path always operate on the local
2276 	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2277 	 */
2278 	migrate_disable();
2279 	curcpu = smp_processor_id();
2280 	for_each_online_cpu(cpu) {
2281 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2282 		struct mem_cgroup *memcg;
2283 		bool flush = false;
2284 
2285 		rcu_read_lock();
2286 		memcg = stock->cached;
2287 		if (memcg && stock->nr_pages &&
2288 		    mem_cgroup_is_descendant(memcg, root_memcg))
2289 			flush = true;
2290 		else if (obj_stock_flush_required(stock, root_memcg))
2291 			flush = true;
2292 		rcu_read_unlock();
2293 
2294 		if (flush &&
2295 		    !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2296 			if (cpu == curcpu)
2297 				drain_local_stock(&stock->work);
2298 			else
2299 				schedule_work_on(cpu, &stock->work);
2300 		}
2301 	}
2302 	migrate_enable();
2303 	mutex_unlock(&percpu_charge_mutex);
2304 }
2305 
2306 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2307 {
2308 	struct memcg_stock_pcp *stock;
2309 
2310 	stock = &per_cpu(memcg_stock, cpu);
2311 	drain_stock(stock);
2312 
2313 	return 0;
2314 }
2315 
2316 static unsigned long reclaim_high(struct mem_cgroup *memcg,
2317 				  unsigned int nr_pages,
2318 				  gfp_t gfp_mask)
2319 {
2320 	unsigned long nr_reclaimed = 0;
2321 
2322 	do {
2323 		unsigned long pflags;
2324 
2325 		if (page_counter_read(&memcg->memory) <=
2326 		    READ_ONCE(memcg->memory.high))
2327 			continue;
2328 
2329 		memcg_memory_event(memcg, MEMCG_HIGH);
2330 
2331 		psi_memstall_enter(&pflags);
2332 		nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2333 							     gfp_mask, true);
2334 		psi_memstall_leave(&pflags);
2335 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2336 		 !mem_cgroup_is_root(memcg));
2337 
2338 	return nr_reclaimed;
2339 }
2340 
2341 static void high_work_func(struct work_struct *work)
2342 {
2343 	struct mem_cgroup *memcg;
2344 
2345 	memcg = container_of(work, struct mem_cgroup, high_work);
2346 	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2347 }
2348 
2349 /*
2350  * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2351  * enough to still cause a significant slowdown in most cases, while still
2352  * allowing diagnostics and tracing to proceed without becoming stuck.
2353  */
2354 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2355 
2356 /*
2357  * When calculating the delay, we use these either side of the exponentiation to
2358  * maintain precision and scale to a reasonable number of jiffies (see the table
2359  * below.
2360  *
2361  * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2362  *   overage ratio to a delay.
2363  * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2364  *   proposed penalty in order to reduce to a reasonable number of jiffies, and
2365  *   to produce a reasonable delay curve.
2366  *
2367  * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2368  * reasonable delay curve compared to precision-adjusted overage, not
2369  * penalising heavily at first, but still making sure that growth beyond the
2370  * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2371  * example, with a high of 100 megabytes:
2372  *
2373  *  +-------+------------------------+
2374  *  | usage | time to allocate in ms |
2375  *  +-------+------------------------+
2376  *  | 100M  |                      0 |
2377  *  | 101M  |                      6 |
2378  *  | 102M  |                     25 |
2379  *  | 103M  |                     57 |
2380  *  | 104M  |                    102 |
2381  *  | 105M  |                    159 |
2382  *  | 106M  |                    230 |
2383  *  | 107M  |                    313 |
2384  *  | 108M  |                    409 |
2385  *  | 109M  |                    518 |
2386  *  | 110M  |                    639 |
2387  *  | 111M  |                    774 |
2388  *  | 112M  |                    921 |
2389  *  | 113M  |                   1081 |
2390  *  | 114M  |                   1254 |
2391  *  | 115M  |                   1439 |
2392  *  | 116M  |                   1638 |
2393  *  | 117M  |                   1849 |
2394  *  | 118M  |                   2000 |
2395  *  | 119M  |                   2000 |
2396  *  | 120M  |                   2000 |
2397  *  +-------+------------------------+
2398  */
2399  #define MEMCG_DELAY_PRECISION_SHIFT 20
2400  #define MEMCG_DELAY_SCALING_SHIFT 14
2401 
2402 static u64 calculate_overage(unsigned long usage, unsigned long high)
2403 {
2404 	u64 overage;
2405 
2406 	if (usage <= high)
2407 		return 0;
2408 
2409 	/*
2410 	 * Prevent division by 0 in overage calculation by acting as if
2411 	 * it was a threshold of 1 page
2412 	 */
2413 	high = max(high, 1UL);
2414 
2415 	overage = usage - high;
2416 	overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2417 	return div64_u64(overage, high);
2418 }
2419 
2420 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2421 {
2422 	u64 overage, max_overage = 0;
2423 
2424 	do {
2425 		overage = calculate_overage(page_counter_read(&memcg->memory),
2426 					    READ_ONCE(memcg->memory.high));
2427 		max_overage = max(overage, max_overage);
2428 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2429 		 !mem_cgroup_is_root(memcg));
2430 
2431 	return max_overage;
2432 }
2433 
2434 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2435 {
2436 	u64 overage, max_overage = 0;
2437 
2438 	do {
2439 		overage = calculate_overage(page_counter_read(&memcg->swap),
2440 					    READ_ONCE(memcg->swap.high));
2441 		if (overage)
2442 			memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2443 		max_overage = max(overage, max_overage);
2444 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2445 		 !mem_cgroup_is_root(memcg));
2446 
2447 	return max_overage;
2448 }
2449 
2450 /*
2451  * Get the number of jiffies that we should penalise a mischievous cgroup which
2452  * is exceeding its memory.high by checking both it and its ancestors.
2453  */
2454 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2455 					  unsigned int nr_pages,
2456 					  u64 max_overage)
2457 {
2458 	unsigned long penalty_jiffies;
2459 
2460 	if (!max_overage)
2461 		return 0;
2462 
2463 	/*
2464 	 * We use overage compared to memory.high to calculate the number of
2465 	 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2466 	 * fairly lenient on small overages, and increasingly harsh when the
2467 	 * memcg in question makes it clear that it has no intention of stopping
2468 	 * its crazy behaviour, so we exponentially increase the delay based on
2469 	 * overage amount.
2470 	 */
2471 	penalty_jiffies = max_overage * max_overage * HZ;
2472 	penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2473 	penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2474 
2475 	/*
2476 	 * Factor in the task's own contribution to the overage, such that four
2477 	 * N-sized allocations are throttled approximately the same as one
2478 	 * 4N-sized allocation.
2479 	 *
2480 	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2481 	 * larger the current charge patch is than that.
2482 	 */
2483 	return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2484 }
2485 
2486 /*
2487  * Scheduled by try_charge() to be executed from the userland return path
2488  * and reclaims memory over the high limit.
2489  */
2490 void mem_cgroup_handle_over_high(void)
2491 {
2492 	unsigned long penalty_jiffies;
2493 	unsigned long pflags;
2494 	unsigned long nr_reclaimed;
2495 	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2496 	int nr_retries = MAX_RECLAIM_RETRIES;
2497 	struct mem_cgroup *memcg;
2498 	bool in_retry = false;
2499 
2500 	if (likely(!nr_pages))
2501 		return;
2502 
2503 	memcg = get_mem_cgroup_from_mm(current->mm);
2504 	current->memcg_nr_pages_over_high = 0;
2505 
2506 retry_reclaim:
2507 	/*
2508 	 * The allocating task should reclaim at least the batch size, but for
2509 	 * subsequent retries we only want to do what's necessary to prevent oom
2510 	 * or breaching resource isolation.
2511 	 *
2512 	 * This is distinct from memory.max or page allocator behaviour because
2513 	 * memory.high is currently batched, whereas memory.max and the page
2514 	 * allocator run every time an allocation is made.
2515 	 */
2516 	nr_reclaimed = reclaim_high(memcg,
2517 				    in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2518 				    GFP_KERNEL);
2519 
2520 	/*
2521 	 * memory.high is breached and reclaim is unable to keep up. Throttle
2522 	 * allocators proactively to slow down excessive growth.
2523 	 */
2524 	penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2525 					       mem_find_max_overage(memcg));
2526 
2527 	penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2528 						swap_find_max_overage(memcg));
2529 
2530 	/*
2531 	 * Clamp the max delay per usermode return so as to still keep the
2532 	 * application moving forwards and also permit diagnostics, albeit
2533 	 * extremely slowly.
2534 	 */
2535 	penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2536 
2537 	/*
2538 	 * Don't sleep if the amount of jiffies this memcg owes us is so low
2539 	 * that it's not even worth doing, in an attempt to be nice to those who
2540 	 * go only a small amount over their memory.high value and maybe haven't
2541 	 * been aggressively reclaimed enough yet.
2542 	 */
2543 	if (penalty_jiffies <= HZ / 100)
2544 		goto out;
2545 
2546 	/*
2547 	 * If reclaim is making forward progress but we're still over
2548 	 * memory.high, we want to encourage that rather than doing allocator
2549 	 * throttling.
2550 	 */
2551 	if (nr_reclaimed || nr_retries--) {
2552 		in_retry = true;
2553 		goto retry_reclaim;
2554 	}
2555 
2556 	/*
2557 	 * If we exit early, we're guaranteed to die (since
2558 	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2559 	 * need to account for any ill-begotten jiffies to pay them off later.
2560 	 */
2561 	psi_memstall_enter(&pflags);
2562 	schedule_timeout_killable(penalty_jiffies);
2563 	psi_memstall_leave(&pflags);
2564 
2565 out:
2566 	css_put(&memcg->css);
2567 }
2568 
2569 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2570 			unsigned int nr_pages)
2571 {
2572 	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2573 	int nr_retries = MAX_RECLAIM_RETRIES;
2574 	struct mem_cgroup *mem_over_limit;
2575 	struct page_counter *counter;
2576 	unsigned long nr_reclaimed;
2577 	bool passed_oom = false;
2578 	bool may_swap = true;
2579 	bool drained = false;
2580 	unsigned long pflags;
2581 
2582 retry:
2583 	if (consume_stock(memcg, nr_pages))
2584 		return 0;
2585 
2586 	if (!do_memsw_account() ||
2587 	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2588 		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2589 			goto done_restock;
2590 		if (do_memsw_account())
2591 			page_counter_uncharge(&memcg->memsw, batch);
2592 		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2593 	} else {
2594 		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2595 		may_swap = false;
2596 	}
2597 
2598 	if (batch > nr_pages) {
2599 		batch = nr_pages;
2600 		goto retry;
2601 	}
2602 
2603 	/*
2604 	 * Prevent unbounded recursion when reclaim operations need to
2605 	 * allocate memory. This might exceed the limits temporarily,
2606 	 * but we prefer facilitating memory reclaim and getting back
2607 	 * under the limit over triggering OOM kills in these cases.
2608 	 */
2609 	if (unlikely(current->flags & PF_MEMALLOC))
2610 		goto force;
2611 
2612 	if (unlikely(task_in_memcg_oom(current)))
2613 		goto nomem;
2614 
2615 	if (!gfpflags_allow_blocking(gfp_mask))
2616 		goto nomem;
2617 
2618 	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2619 
2620 	psi_memstall_enter(&pflags);
2621 	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2622 						    gfp_mask, may_swap);
2623 	psi_memstall_leave(&pflags);
2624 
2625 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2626 		goto retry;
2627 
2628 	if (!drained) {
2629 		drain_all_stock(mem_over_limit);
2630 		drained = true;
2631 		goto retry;
2632 	}
2633 
2634 	if (gfp_mask & __GFP_NORETRY)
2635 		goto nomem;
2636 	/*
2637 	 * Even though the limit is exceeded at this point, reclaim
2638 	 * may have been able to free some pages.  Retry the charge
2639 	 * before killing the task.
2640 	 *
2641 	 * Only for regular pages, though: huge pages are rather
2642 	 * unlikely to succeed so close to the limit, and we fall back
2643 	 * to regular pages anyway in case of failure.
2644 	 */
2645 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2646 		goto retry;
2647 	/*
2648 	 * At task move, charge accounts can be doubly counted. So, it's
2649 	 * better to wait until the end of task_move if something is going on.
2650 	 */
2651 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2652 		goto retry;
2653 
2654 	if (nr_retries--)
2655 		goto retry;
2656 
2657 	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2658 		goto nomem;
2659 
2660 	/* Avoid endless loop for tasks bypassed by the oom killer */
2661 	if (passed_oom && task_is_dying())
2662 		goto nomem;
2663 
2664 	/*
2665 	 * keep retrying as long as the memcg oom killer is able to make
2666 	 * a forward progress or bypass the charge if the oom killer
2667 	 * couldn't make any progress.
2668 	 */
2669 	if (mem_cgroup_oom(mem_over_limit, gfp_mask,
2670 			   get_order(nr_pages * PAGE_SIZE))) {
2671 		passed_oom = true;
2672 		nr_retries = MAX_RECLAIM_RETRIES;
2673 		goto retry;
2674 	}
2675 nomem:
2676 	/*
2677 	 * Memcg doesn't have a dedicated reserve for atomic
2678 	 * allocations. But like the global atomic pool, we need to
2679 	 * put the burden of reclaim on regular allocation requests
2680 	 * and let these go through as privileged allocations.
2681 	 */
2682 	if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH)))
2683 		return -ENOMEM;
2684 force:
2685 	/*
2686 	 * The allocation either can't fail or will lead to more memory
2687 	 * being freed very soon.  Allow memory usage go over the limit
2688 	 * temporarily by force charging it.
2689 	 */
2690 	page_counter_charge(&memcg->memory, nr_pages);
2691 	if (do_memsw_account())
2692 		page_counter_charge(&memcg->memsw, nr_pages);
2693 
2694 	return 0;
2695 
2696 done_restock:
2697 	if (batch > nr_pages)
2698 		refill_stock(memcg, batch - nr_pages);
2699 
2700 	/*
2701 	 * If the hierarchy is above the normal consumption range, schedule
2702 	 * reclaim on returning to userland.  We can perform reclaim here
2703 	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2704 	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2705 	 * not recorded as it most likely matches current's and won't
2706 	 * change in the meantime.  As high limit is checked again before
2707 	 * reclaim, the cost of mismatch is negligible.
2708 	 */
2709 	do {
2710 		bool mem_high, swap_high;
2711 
2712 		mem_high = page_counter_read(&memcg->memory) >
2713 			READ_ONCE(memcg->memory.high);
2714 		swap_high = page_counter_read(&memcg->swap) >
2715 			READ_ONCE(memcg->swap.high);
2716 
2717 		/* Don't bother a random interrupted task */
2718 		if (!in_task()) {
2719 			if (mem_high) {
2720 				schedule_work(&memcg->high_work);
2721 				break;
2722 			}
2723 			continue;
2724 		}
2725 
2726 		if (mem_high || swap_high) {
2727 			/*
2728 			 * The allocating tasks in this cgroup will need to do
2729 			 * reclaim or be throttled to prevent further growth
2730 			 * of the memory or swap footprints.
2731 			 *
2732 			 * Target some best-effort fairness between the tasks,
2733 			 * and distribute reclaim work and delay penalties
2734 			 * based on how much each task is actually allocating.
2735 			 */
2736 			current->memcg_nr_pages_over_high += batch;
2737 			set_notify_resume(current);
2738 			break;
2739 		}
2740 	} while ((memcg = parent_mem_cgroup(memcg)));
2741 
2742 	if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
2743 	    !(current->flags & PF_MEMALLOC) &&
2744 	    gfpflags_allow_blocking(gfp_mask)) {
2745 		mem_cgroup_handle_over_high();
2746 	}
2747 	return 0;
2748 }
2749 
2750 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2751 			     unsigned int nr_pages)
2752 {
2753 	if (mem_cgroup_is_root(memcg))
2754 		return 0;
2755 
2756 	return try_charge_memcg(memcg, gfp_mask, nr_pages);
2757 }
2758 
2759 static inline void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2760 {
2761 	if (mem_cgroup_is_root(memcg))
2762 		return;
2763 
2764 	page_counter_uncharge(&memcg->memory, nr_pages);
2765 	if (do_memsw_account())
2766 		page_counter_uncharge(&memcg->memsw, nr_pages);
2767 }
2768 
2769 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2770 {
2771 	VM_BUG_ON_FOLIO(folio_memcg(folio), folio);
2772 	/*
2773 	 * Any of the following ensures page's memcg stability:
2774 	 *
2775 	 * - the page lock
2776 	 * - LRU isolation
2777 	 * - lock_page_memcg()
2778 	 * - exclusive reference
2779 	 */
2780 	folio->memcg_data = (unsigned long)memcg;
2781 }
2782 
2783 #ifdef CONFIG_MEMCG_KMEM
2784 /*
2785  * The allocated objcg pointers array is not accounted directly.
2786  * Moreover, it should not come from DMA buffer and is not readily
2787  * reclaimable. So those GFP bits should be masked off.
2788  */
2789 #define OBJCGS_CLEAR_MASK	(__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT)
2790 
2791 /*
2792  * mod_objcg_mlstate() may be called with irq enabled, so
2793  * mod_memcg_lruvec_state() should be used.
2794  */
2795 static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
2796 				     struct pglist_data *pgdat,
2797 				     enum node_stat_item idx, int nr)
2798 {
2799 	struct mem_cgroup *memcg;
2800 	struct lruvec *lruvec;
2801 
2802 	rcu_read_lock();
2803 	memcg = obj_cgroup_memcg(objcg);
2804 	lruvec = mem_cgroup_lruvec(memcg, pgdat);
2805 	mod_memcg_lruvec_state(lruvec, idx, nr);
2806 	rcu_read_unlock();
2807 }
2808 
2809 int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s,
2810 				 gfp_t gfp, bool new_slab)
2811 {
2812 	unsigned int objects = objs_per_slab(s, slab);
2813 	unsigned long memcg_data;
2814 	void *vec;
2815 
2816 	gfp &= ~OBJCGS_CLEAR_MASK;
2817 	vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2818 			   slab_nid(slab));
2819 	if (!vec)
2820 		return -ENOMEM;
2821 
2822 	memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
2823 	if (new_slab) {
2824 		/*
2825 		 * If the slab is brand new and nobody can yet access its
2826 		 * memcg_data, no synchronization is required and memcg_data can
2827 		 * be simply assigned.
2828 		 */
2829 		slab->memcg_data = memcg_data;
2830 	} else if (cmpxchg(&slab->memcg_data, 0, memcg_data)) {
2831 		/*
2832 		 * If the slab is already in use, somebody can allocate and
2833 		 * assign obj_cgroups in parallel. In this case the existing
2834 		 * objcg vector should be reused.
2835 		 */
2836 		kfree(vec);
2837 		return 0;
2838 	}
2839 
2840 	kmemleak_not_leak(vec);
2841 	return 0;
2842 }
2843 
2844 static __always_inline
2845 struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p)
2846 {
2847 	/*
2848 	 * Slab objects are accounted individually, not per-page.
2849 	 * Memcg membership data for each individual object is saved in
2850 	 * slab->memcg_data.
2851 	 */
2852 	if (folio_test_slab(folio)) {
2853 		struct obj_cgroup **objcgs;
2854 		struct slab *slab;
2855 		unsigned int off;
2856 
2857 		slab = folio_slab(folio);
2858 		objcgs = slab_objcgs(slab);
2859 		if (!objcgs)
2860 			return NULL;
2861 
2862 		off = obj_to_index(slab->slab_cache, slab, p);
2863 		if (objcgs[off])
2864 			return obj_cgroup_memcg(objcgs[off]);
2865 
2866 		return NULL;
2867 	}
2868 
2869 	/*
2870 	 * page_memcg_check() is used here, because in theory we can encounter
2871 	 * a folio where the slab flag has been cleared already, but
2872 	 * slab->memcg_data has not been freed yet
2873 	 * page_memcg_check(page) will guarantee that a proper memory
2874 	 * cgroup pointer or NULL will be returned.
2875 	 */
2876 	return page_memcg_check(folio_page(folio, 0));
2877 }
2878 
2879 /*
2880  * Returns a pointer to the memory cgroup to which the kernel object is charged.
2881  *
2882  * A passed kernel object can be a slab object, vmalloc object or a generic
2883  * kernel page, so different mechanisms for getting the memory cgroup pointer
2884  * should be used.
2885  *
2886  * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2887  * can not know for sure how the kernel object is implemented.
2888  * mem_cgroup_from_obj() can be safely used in such cases.
2889  *
2890  * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2891  * cgroup_mutex, etc.
2892  */
2893 struct mem_cgroup *mem_cgroup_from_obj(void *p)
2894 {
2895 	struct folio *folio;
2896 
2897 	if (mem_cgroup_disabled())
2898 		return NULL;
2899 
2900 	if (unlikely(is_vmalloc_addr(p)))
2901 		folio = page_folio(vmalloc_to_page(p));
2902 	else
2903 		folio = virt_to_folio(p);
2904 
2905 	return mem_cgroup_from_obj_folio(folio, p);
2906 }
2907 
2908 /*
2909  * Returns a pointer to the memory cgroup to which the kernel object is charged.
2910  * Similar to mem_cgroup_from_obj(), but faster and not suitable for objects,
2911  * allocated using vmalloc().
2912  *
2913  * A passed kernel object must be a slab object or a generic kernel page.
2914  *
2915  * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2916  * cgroup_mutex, etc.
2917  */
2918 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
2919 {
2920 	if (mem_cgroup_disabled())
2921 		return NULL;
2922 
2923 	return mem_cgroup_from_obj_folio(virt_to_folio(p), p);
2924 }
2925 
2926 static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg)
2927 {
2928 	struct obj_cgroup *objcg = NULL;
2929 
2930 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
2931 		objcg = rcu_dereference(memcg->objcg);
2932 		if (objcg && obj_cgroup_tryget(objcg))
2933 			break;
2934 		objcg = NULL;
2935 	}
2936 	return objcg;
2937 }
2938 
2939 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
2940 {
2941 	struct obj_cgroup *objcg = NULL;
2942 	struct mem_cgroup *memcg;
2943 
2944 	if (memcg_kmem_bypass())
2945 		return NULL;
2946 
2947 	rcu_read_lock();
2948 	if (unlikely(active_memcg()))
2949 		memcg = active_memcg();
2950 	else
2951 		memcg = mem_cgroup_from_task(current);
2952 	objcg = __get_obj_cgroup_from_memcg(memcg);
2953 	rcu_read_unlock();
2954 	return objcg;
2955 }
2956 
2957 struct obj_cgroup *get_obj_cgroup_from_page(struct page *page)
2958 {
2959 	struct obj_cgroup *objcg;
2960 
2961 	if (!memcg_kmem_enabled() || memcg_kmem_bypass())
2962 		return NULL;
2963 
2964 	if (PageMemcgKmem(page)) {
2965 		objcg = __folio_objcg(page_folio(page));
2966 		obj_cgroup_get(objcg);
2967 	} else {
2968 		struct mem_cgroup *memcg;
2969 
2970 		rcu_read_lock();
2971 		memcg = __folio_memcg(page_folio(page));
2972 		if (memcg)
2973 			objcg = __get_obj_cgroup_from_memcg(memcg);
2974 		else
2975 			objcg = NULL;
2976 		rcu_read_unlock();
2977 	}
2978 	return objcg;
2979 }
2980 
2981 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
2982 {
2983 	mod_memcg_state(memcg, MEMCG_KMEM, nr_pages);
2984 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
2985 		if (nr_pages > 0)
2986 			page_counter_charge(&memcg->kmem, nr_pages);
2987 		else
2988 			page_counter_uncharge(&memcg->kmem, -nr_pages);
2989 	}
2990 }
2991 
2992 
2993 /*
2994  * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
2995  * @objcg: object cgroup to uncharge
2996  * @nr_pages: number of pages to uncharge
2997  */
2998 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
2999 				      unsigned int nr_pages)
3000 {
3001 	struct mem_cgroup *memcg;
3002 
3003 	memcg = get_mem_cgroup_from_objcg(objcg);
3004 
3005 	memcg_account_kmem(memcg, -nr_pages);
3006 	refill_stock(memcg, nr_pages);
3007 
3008 	css_put(&memcg->css);
3009 }
3010 
3011 /*
3012  * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
3013  * @objcg: object cgroup to charge
3014  * @gfp: reclaim mode
3015  * @nr_pages: number of pages to charge
3016  *
3017  * Returns 0 on success, an error code on failure.
3018  */
3019 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
3020 				   unsigned int nr_pages)
3021 {
3022 	struct mem_cgroup *memcg;
3023 	int ret;
3024 
3025 	memcg = get_mem_cgroup_from_objcg(objcg);
3026 
3027 	ret = try_charge_memcg(memcg, gfp, nr_pages);
3028 	if (ret)
3029 		goto out;
3030 
3031 	memcg_account_kmem(memcg, nr_pages);
3032 out:
3033 	css_put(&memcg->css);
3034 
3035 	return ret;
3036 }
3037 
3038 /**
3039  * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3040  * @page: page to charge
3041  * @gfp: reclaim mode
3042  * @order: allocation order
3043  *
3044  * Returns 0 on success, an error code on failure.
3045  */
3046 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3047 {
3048 	struct obj_cgroup *objcg;
3049 	int ret = 0;
3050 
3051 	objcg = get_obj_cgroup_from_current();
3052 	if (objcg) {
3053 		ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
3054 		if (!ret) {
3055 			page->memcg_data = (unsigned long)objcg |
3056 				MEMCG_DATA_KMEM;
3057 			return 0;
3058 		}
3059 		obj_cgroup_put(objcg);
3060 	}
3061 	return ret;
3062 }
3063 
3064 /**
3065  * __memcg_kmem_uncharge_page: uncharge a kmem page
3066  * @page: page to uncharge
3067  * @order: allocation order
3068  */
3069 void __memcg_kmem_uncharge_page(struct page *page, int order)
3070 {
3071 	struct folio *folio = page_folio(page);
3072 	struct obj_cgroup *objcg;
3073 	unsigned int nr_pages = 1 << order;
3074 
3075 	if (!folio_memcg_kmem(folio))
3076 		return;
3077 
3078 	objcg = __folio_objcg(folio);
3079 	obj_cgroup_uncharge_pages(objcg, nr_pages);
3080 	folio->memcg_data = 0;
3081 	obj_cgroup_put(objcg);
3082 }
3083 
3084 void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3085 		     enum node_stat_item idx, int nr)
3086 {
3087 	struct memcg_stock_pcp *stock;
3088 	struct obj_cgroup *old = NULL;
3089 	unsigned long flags;
3090 	int *bytes;
3091 
3092 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
3093 	stock = this_cpu_ptr(&memcg_stock);
3094 
3095 	/*
3096 	 * Save vmstat data in stock and skip vmstat array update unless
3097 	 * accumulating over a page of vmstat data or when pgdat or idx
3098 	 * changes.
3099 	 */
3100 	if (stock->cached_objcg != objcg) {
3101 		old = drain_obj_stock(stock);
3102 		obj_cgroup_get(objcg);
3103 		stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3104 				? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3105 		stock->cached_objcg = objcg;
3106 		stock->cached_pgdat = pgdat;
3107 	} else if (stock->cached_pgdat != pgdat) {
3108 		/* Flush the existing cached vmstat data */
3109 		struct pglist_data *oldpg = stock->cached_pgdat;
3110 
3111 		if (stock->nr_slab_reclaimable_b) {
3112 			mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
3113 					  stock->nr_slab_reclaimable_b);
3114 			stock->nr_slab_reclaimable_b = 0;
3115 		}
3116 		if (stock->nr_slab_unreclaimable_b) {
3117 			mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
3118 					  stock->nr_slab_unreclaimable_b);
3119 			stock->nr_slab_unreclaimable_b = 0;
3120 		}
3121 		stock->cached_pgdat = pgdat;
3122 	}
3123 
3124 	bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3125 					       : &stock->nr_slab_unreclaimable_b;
3126 	/*
3127 	 * Even for large object >= PAGE_SIZE, the vmstat data will still be
3128 	 * cached locally at least once before pushing it out.
3129 	 */
3130 	if (!*bytes) {
3131 		*bytes = nr;
3132 		nr = 0;
3133 	} else {
3134 		*bytes += nr;
3135 		if (abs(*bytes) > PAGE_SIZE) {
3136 			nr = *bytes;
3137 			*bytes = 0;
3138 		} else {
3139 			nr = 0;
3140 		}
3141 	}
3142 	if (nr)
3143 		mod_objcg_mlstate(objcg, pgdat, idx, nr);
3144 
3145 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3146 	if (old)
3147 		obj_cgroup_put(old);
3148 }
3149 
3150 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3151 {
3152 	struct memcg_stock_pcp *stock;
3153 	unsigned long flags;
3154 	bool ret = false;
3155 
3156 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
3157 
3158 	stock = this_cpu_ptr(&memcg_stock);
3159 	if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3160 		stock->nr_bytes -= nr_bytes;
3161 		ret = true;
3162 	}
3163 
3164 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3165 
3166 	return ret;
3167 }
3168 
3169 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
3170 {
3171 	struct obj_cgroup *old = stock->cached_objcg;
3172 
3173 	if (!old)
3174 		return NULL;
3175 
3176 	if (stock->nr_bytes) {
3177 		unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3178 		unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3179 
3180 		if (nr_pages) {
3181 			struct mem_cgroup *memcg;
3182 
3183 			memcg = get_mem_cgroup_from_objcg(old);
3184 
3185 			memcg_account_kmem(memcg, -nr_pages);
3186 			__refill_stock(memcg, nr_pages);
3187 
3188 			css_put(&memcg->css);
3189 		}
3190 
3191 		/*
3192 		 * The leftover is flushed to the centralized per-memcg value.
3193 		 * On the next attempt to refill obj stock it will be moved
3194 		 * to a per-cpu stock (probably, on an other CPU), see
3195 		 * refill_obj_stock().
3196 		 *
3197 		 * How often it's flushed is a trade-off between the memory
3198 		 * limit enforcement accuracy and potential CPU contention,
3199 		 * so it might be changed in the future.
3200 		 */
3201 		atomic_add(nr_bytes, &old->nr_charged_bytes);
3202 		stock->nr_bytes = 0;
3203 	}
3204 
3205 	/*
3206 	 * Flush the vmstat data in current stock
3207 	 */
3208 	if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3209 		if (stock->nr_slab_reclaimable_b) {
3210 			mod_objcg_mlstate(old, stock->cached_pgdat,
3211 					  NR_SLAB_RECLAIMABLE_B,
3212 					  stock->nr_slab_reclaimable_b);
3213 			stock->nr_slab_reclaimable_b = 0;
3214 		}
3215 		if (stock->nr_slab_unreclaimable_b) {
3216 			mod_objcg_mlstate(old, stock->cached_pgdat,
3217 					  NR_SLAB_UNRECLAIMABLE_B,
3218 					  stock->nr_slab_unreclaimable_b);
3219 			stock->nr_slab_unreclaimable_b = 0;
3220 		}
3221 		stock->cached_pgdat = NULL;
3222 	}
3223 
3224 	stock->cached_objcg = NULL;
3225 	/*
3226 	 * The `old' objects needs to be released by the caller via
3227 	 * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock.
3228 	 */
3229 	return old;
3230 }
3231 
3232 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3233 				     struct mem_cgroup *root_memcg)
3234 {
3235 	struct mem_cgroup *memcg;
3236 
3237 	if (stock->cached_objcg) {
3238 		memcg = obj_cgroup_memcg(stock->cached_objcg);
3239 		if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3240 			return true;
3241 	}
3242 
3243 	return false;
3244 }
3245 
3246 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3247 			     bool allow_uncharge)
3248 {
3249 	struct memcg_stock_pcp *stock;
3250 	struct obj_cgroup *old = NULL;
3251 	unsigned long flags;
3252 	unsigned int nr_pages = 0;
3253 
3254 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
3255 
3256 	stock = this_cpu_ptr(&memcg_stock);
3257 	if (stock->cached_objcg != objcg) { /* reset if necessary */
3258 		old = drain_obj_stock(stock);
3259 		obj_cgroup_get(objcg);
3260 		stock->cached_objcg = objcg;
3261 		stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3262 				? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3263 		allow_uncharge = true;	/* Allow uncharge when objcg changes */
3264 	}
3265 	stock->nr_bytes += nr_bytes;
3266 
3267 	if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3268 		nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3269 		stock->nr_bytes &= (PAGE_SIZE - 1);
3270 	}
3271 
3272 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3273 	if (old)
3274 		obj_cgroup_put(old);
3275 
3276 	if (nr_pages)
3277 		obj_cgroup_uncharge_pages(objcg, nr_pages);
3278 }
3279 
3280 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3281 {
3282 	unsigned int nr_pages, nr_bytes;
3283 	int ret;
3284 
3285 	if (consume_obj_stock(objcg, size))
3286 		return 0;
3287 
3288 	/*
3289 	 * In theory, objcg->nr_charged_bytes can have enough
3290 	 * pre-charged bytes to satisfy the allocation. However,
3291 	 * flushing objcg->nr_charged_bytes requires two atomic
3292 	 * operations, and objcg->nr_charged_bytes can't be big.
3293 	 * The shared objcg->nr_charged_bytes can also become a
3294 	 * performance bottleneck if all tasks of the same memcg are
3295 	 * trying to update it. So it's better to ignore it and try
3296 	 * grab some new pages. The stock's nr_bytes will be flushed to
3297 	 * objcg->nr_charged_bytes later on when objcg changes.
3298 	 *
3299 	 * The stock's nr_bytes may contain enough pre-charged bytes
3300 	 * to allow one less page from being charged, but we can't rely
3301 	 * on the pre-charged bytes not being changed outside of
3302 	 * consume_obj_stock() or refill_obj_stock(). So ignore those
3303 	 * pre-charged bytes as well when charging pages. To avoid a
3304 	 * page uncharge right after a page charge, we set the
3305 	 * allow_uncharge flag to false when calling refill_obj_stock()
3306 	 * to temporarily allow the pre-charged bytes to exceed the page
3307 	 * size limit. The maximum reachable value of the pre-charged
3308 	 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3309 	 * race.
3310 	 */
3311 	nr_pages = size >> PAGE_SHIFT;
3312 	nr_bytes = size & (PAGE_SIZE - 1);
3313 
3314 	if (nr_bytes)
3315 		nr_pages += 1;
3316 
3317 	ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3318 	if (!ret && nr_bytes)
3319 		refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
3320 
3321 	return ret;
3322 }
3323 
3324 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3325 {
3326 	refill_obj_stock(objcg, size, true);
3327 }
3328 
3329 #endif /* CONFIG_MEMCG_KMEM */
3330 
3331 /*
3332  * Because page_memcg(head) is not set on tails, set it now.
3333  */
3334 void split_page_memcg(struct page *head, unsigned int nr)
3335 {
3336 	struct folio *folio = page_folio(head);
3337 	struct mem_cgroup *memcg = folio_memcg(folio);
3338 	int i;
3339 
3340 	if (mem_cgroup_disabled() || !memcg)
3341 		return;
3342 
3343 	for (i = 1; i < nr; i++)
3344 		folio_page(folio, i)->memcg_data = folio->memcg_data;
3345 
3346 	if (folio_memcg_kmem(folio))
3347 		obj_cgroup_get_many(__folio_objcg(folio), nr - 1);
3348 	else
3349 		css_get_many(&memcg->css, nr - 1);
3350 }
3351 
3352 #ifdef CONFIG_MEMCG_SWAP
3353 /**
3354  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3355  * @entry: swap entry to be moved
3356  * @from:  mem_cgroup which the entry is moved from
3357  * @to:  mem_cgroup which the entry is moved to
3358  *
3359  * It succeeds only when the swap_cgroup's record for this entry is the same
3360  * as the mem_cgroup's id of @from.
3361  *
3362  * Returns 0 on success, -EINVAL on failure.
3363  *
3364  * The caller must have charged to @to, IOW, called page_counter_charge() about
3365  * both res and memsw, and called css_get().
3366  */
3367 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3368 				struct mem_cgroup *from, struct mem_cgroup *to)
3369 {
3370 	unsigned short old_id, new_id;
3371 
3372 	old_id = mem_cgroup_id(from);
3373 	new_id = mem_cgroup_id(to);
3374 
3375 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3376 		mod_memcg_state(from, MEMCG_SWAP, -1);
3377 		mod_memcg_state(to, MEMCG_SWAP, 1);
3378 		return 0;
3379 	}
3380 	return -EINVAL;
3381 }
3382 #else
3383 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3384 				struct mem_cgroup *from, struct mem_cgroup *to)
3385 {
3386 	return -EINVAL;
3387 }
3388 #endif
3389 
3390 static DEFINE_MUTEX(memcg_max_mutex);
3391 
3392 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3393 				 unsigned long max, bool memsw)
3394 {
3395 	bool enlarge = false;
3396 	bool drained = false;
3397 	int ret;
3398 	bool limits_invariant;
3399 	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3400 
3401 	do {
3402 		if (signal_pending(current)) {
3403 			ret = -EINTR;
3404 			break;
3405 		}
3406 
3407 		mutex_lock(&memcg_max_mutex);
3408 		/*
3409 		 * Make sure that the new limit (memsw or memory limit) doesn't
3410 		 * break our basic invariant rule memory.max <= memsw.max.
3411 		 */
3412 		limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3413 					   max <= memcg->memsw.max;
3414 		if (!limits_invariant) {
3415 			mutex_unlock(&memcg_max_mutex);
3416 			ret = -EINVAL;
3417 			break;
3418 		}
3419 		if (max > counter->max)
3420 			enlarge = true;
3421 		ret = page_counter_set_max(counter, max);
3422 		mutex_unlock(&memcg_max_mutex);
3423 
3424 		if (!ret)
3425 			break;
3426 
3427 		if (!drained) {
3428 			drain_all_stock(memcg);
3429 			drained = true;
3430 			continue;
3431 		}
3432 
3433 		if (!try_to_free_mem_cgroup_pages(memcg, 1,
3434 					GFP_KERNEL, !memsw)) {
3435 			ret = -EBUSY;
3436 			break;
3437 		}
3438 	} while (true);
3439 
3440 	if (!ret && enlarge)
3441 		memcg_oom_recover(memcg);
3442 
3443 	return ret;
3444 }
3445 
3446 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3447 					    gfp_t gfp_mask,
3448 					    unsigned long *total_scanned)
3449 {
3450 	unsigned long nr_reclaimed = 0;
3451 	struct mem_cgroup_per_node *mz, *next_mz = NULL;
3452 	unsigned long reclaimed;
3453 	int loop = 0;
3454 	struct mem_cgroup_tree_per_node *mctz;
3455 	unsigned long excess;
3456 
3457 	if (order > 0)
3458 		return 0;
3459 
3460 	mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];
3461 
3462 	/*
3463 	 * Do not even bother to check the largest node if the root
3464 	 * is empty. Do it lockless to prevent lock bouncing. Races
3465 	 * are acceptable as soft limit is best effort anyway.
3466 	 */
3467 	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3468 		return 0;
3469 
3470 	/*
3471 	 * This loop can run a while, specially if mem_cgroup's continuously
3472 	 * keep exceeding their soft limit and putting the system under
3473 	 * pressure
3474 	 */
3475 	do {
3476 		if (next_mz)
3477 			mz = next_mz;
3478 		else
3479 			mz = mem_cgroup_largest_soft_limit_node(mctz);
3480 		if (!mz)
3481 			break;
3482 
3483 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3484 						    gfp_mask, total_scanned);
3485 		nr_reclaimed += reclaimed;
3486 		spin_lock_irq(&mctz->lock);
3487 
3488 		/*
3489 		 * If we failed to reclaim anything from this memory cgroup
3490 		 * it is time to move on to the next cgroup
3491 		 */
3492 		next_mz = NULL;
3493 		if (!reclaimed)
3494 			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3495 
3496 		excess = soft_limit_excess(mz->memcg);
3497 		/*
3498 		 * One school of thought says that we should not add
3499 		 * back the node to the tree if reclaim returns 0.
3500 		 * But our reclaim could return 0, simply because due
3501 		 * to priority we are exposing a smaller subset of
3502 		 * memory to reclaim from. Consider this as a longer
3503 		 * term TODO.
3504 		 */
3505 		/* If excess == 0, no tree ops */
3506 		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3507 		spin_unlock_irq(&mctz->lock);
3508 		css_put(&mz->memcg->css);
3509 		loop++;
3510 		/*
3511 		 * Could not reclaim anything and there are no more
3512 		 * mem cgroups to try or we seem to be looping without
3513 		 * reclaiming anything.
3514 		 */
3515 		if (!nr_reclaimed &&
3516 			(next_mz == NULL ||
3517 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3518 			break;
3519 	} while (!nr_reclaimed);
3520 	if (next_mz)
3521 		css_put(&next_mz->memcg->css);
3522 	return nr_reclaimed;
3523 }
3524 
3525 /*
3526  * Reclaims as many pages from the given memcg as possible.
3527  *
3528  * Caller is responsible for holding css reference for memcg.
3529  */
3530 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3531 {
3532 	int nr_retries = MAX_RECLAIM_RETRIES;
3533 
3534 	/* we call try-to-free pages for make this cgroup empty */
3535 	lru_add_drain_all();
3536 
3537 	drain_all_stock(memcg);
3538 
3539 	/* try to free all pages in this cgroup */
3540 	while (nr_retries && page_counter_read(&memcg->memory)) {
3541 		if (signal_pending(current))
3542 			return -EINTR;
3543 
3544 		if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true))
3545 			nr_retries--;
3546 	}
3547 
3548 	return 0;
3549 }
3550 
3551 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3552 					    char *buf, size_t nbytes,
3553 					    loff_t off)
3554 {
3555 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3556 
3557 	if (mem_cgroup_is_root(memcg))
3558 		return -EINVAL;
3559 	return mem_cgroup_force_empty(memcg) ?: nbytes;
3560 }
3561 
3562 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3563 				     struct cftype *cft)
3564 {
3565 	return 1;
3566 }
3567 
3568 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3569 				      struct cftype *cft, u64 val)
3570 {
3571 	if (val == 1)
3572 		return 0;
3573 
3574 	pr_warn_once("Non-hierarchical mode is deprecated. "
3575 		     "Please report your usecase to linux-mm@kvack.org if you "
3576 		     "depend on this functionality.\n");
3577 
3578 	return -EINVAL;
3579 }
3580 
3581 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3582 {
3583 	unsigned long val;
3584 
3585 	if (mem_cgroup_is_root(memcg)) {
3586 		mem_cgroup_flush_stats();
3587 		val = memcg_page_state(memcg, NR_FILE_PAGES) +
3588 			memcg_page_state(memcg, NR_ANON_MAPPED);
3589 		if (swap)
3590 			val += memcg_page_state(memcg, MEMCG_SWAP);
3591 	} else {
3592 		if (!swap)
3593 			val = page_counter_read(&memcg->memory);
3594 		else
3595 			val = page_counter_read(&memcg->memsw);
3596 	}
3597 	return val;
3598 }
3599 
3600 enum {
3601 	RES_USAGE,
3602 	RES_LIMIT,
3603 	RES_MAX_USAGE,
3604 	RES_FAILCNT,
3605 	RES_SOFT_LIMIT,
3606 };
3607 
3608 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3609 			       struct cftype *cft)
3610 {
3611 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3612 	struct page_counter *counter;
3613 
3614 	switch (MEMFILE_TYPE(cft->private)) {
3615 	case _MEM:
3616 		counter = &memcg->memory;
3617 		break;
3618 	case _MEMSWAP:
3619 		counter = &memcg->memsw;
3620 		break;
3621 	case _KMEM:
3622 		counter = &memcg->kmem;
3623 		break;
3624 	case _TCP:
3625 		counter = &memcg->tcpmem;
3626 		break;
3627 	default:
3628 		BUG();
3629 	}
3630 
3631 	switch (MEMFILE_ATTR(cft->private)) {
3632 	case RES_USAGE:
3633 		if (counter == &memcg->memory)
3634 			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3635 		if (counter == &memcg->memsw)
3636 			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3637 		return (u64)page_counter_read(counter) * PAGE_SIZE;
3638 	case RES_LIMIT:
3639 		return (u64)counter->max * PAGE_SIZE;
3640 	case RES_MAX_USAGE:
3641 		return (u64)counter->watermark * PAGE_SIZE;
3642 	case RES_FAILCNT:
3643 		return counter->failcnt;
3644 	case RES_SOFT_LIMIT:
3645 		return (u64)memcg->soft_limit * PAGE_SIZE;
3646 	default:
3647 		BUG();
3648 	}
3649 }
3650 
3651 #ifdef CONFIG_MEMCG_KMEM
3652 static int memcg_online_kmem(struct mem_cgroup *memcg)
3653 {
3654 	struct obj_cgroup *objcg;
3655 
3656 	if (cgroup_memory_nokmem)
3657 		return 0;
3658 
3659 	if (unlikely(mem_cgroup_is_root(memcg)))
3660 		return 0;
3661 
3662 	objcg = obj_cgroup_alloc();
3663 	if (!objcg)
3664 		return -ENOMEM;
3665 
3666 	objcg->memcg = memcg;
3667 	rcu_assign_pointer(memcg->objcg, objcg);
3668 
3669 	static_branch_enable(&memcg_kmem_enabled_key);
3670 
3671 	memcg->kmemcg_id = memcg->id.id;
3672 
3673 	return 0;
3674 }
3675 
3676 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3677 {
3678 	struct mem_cgroup *parent;
3679 
3680 	if (cgroup_memory_nokmem)
3681 		return;
3682 
3683 	if (unlikely(mem_cgroup_is_root(memcg)))
3684 		return;
3685 
3686 	parent = parent_mem_cgroup(memcg);
3687 	if (!parent)
3688 		parent = root_mem_cgroup;
3689 
3690 	memcg_reparent_objcgs(memcg, parent);
3691 
3692 	/*
3693 	 * After we have finished memcg_reparent_objcgs(), all list_lrus
3694 	 * corresponding to this cgroup are guaranteed to remain empty.
3695 	 * The ordering is imposed by list_lru_node->lock taken by
3696 	 * memcg_reparent_list_lrus().
3697 	 */
3698 	memcg_reparent_list_lrus(memcg, parent);
3699 }
3700 #else
3701 static int memcg_online_kmem(struct mem_cgroup *memcg)
3702 {
3703 	return 0;
3704 }
3705 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3706 {
3707 }
3708 #endif /* CONFIG_MEMCG_KMEM */
3709 
3710 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3711 {
3712 	int ret;
3713 
3714 	mutex_lock(&memcg_max_mutex);
3715 
3716 	ret = page_counter_set_max(&memcg->tcpmem, max);
3717 	if (ret)
3718 		goto out;
3719 
3720 	if (!memcg->tcpmem_active) {
3721 		/*
3722 		 * The active flag needs to be written after the static_key
3723 		 * update. This is what guarantees that the socket activation
3724 		 * function is the last one to run. See mem_cgroup_sk_alloc()
3725 		 * for details, and note that we don't mark any socket as
3726 		 * belonging to this memcg until that flag is up.
3727 		 *
3728 		 * We need to do this, because static_keys will span multiple
3729 		 * sites, but we can't control their order. If we mark a socket
3730 		 * as accounted, but the accounting functions are not patched in
3731 		 * yet, we'll lose accounting.
3732 		 *
3733 		 * We never race with the readers in mem_cgroup_sk_alloc(),
3734 		 * because when this value change, the code to process it is not
3735 		 * patched in yet.
3736 		 */
3737 		static_branch_inc(&memcg_sockets_enabled_key);
3738 		memcg->tcpmem_active = true;
3739 	}
3740 out:
3741 	mutex_unlock(&memcg_max_mutex);
3742 	return ret;
3743 }
3744 
3745 /*
3746  * The user of this function is...
3747  * RES_LIMIT.
3748  */
3749 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3750 				char *buf, size_t nbytes, loff_t off)
3751 {
3752 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3753 	unsigned long nr_pages;
3754 	int ret;
3755 
3756 	buf = strstrip(buf);
3757 	ret = page_counter_memparse(buf, "-1", &nr_pages);
3758 	if (ret)
3759 		return ret;
3760 
3761 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3762 	case RES_LIMIT:
3763 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3764 			ret = -EINVAL;
3765 			break;
3766 		}
3767 		switch (MEMFILE_TYPE(of_cft(of)->private)) {
3768 		case _MEM:
3769 			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3770 			break;
3771 		case _MEMSWAP:
3772 			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3773 			break;
3774 		case _KMEM:
3775 			/* kmem.limit_in_bytes is deprecated. */
3776 			ret = -EOPNOTSUPP;
3777 			break;
3778 		case _TCP:
3779 			ret = memcg_update_tcp_max(memcg, nr_pages);
3780 			break;
3781 		}
3782 		break;
3783 	case RES_SOFT_LIMIT:
3784 		if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
3785 			ret = -EOPNOTSUPP;
3786 		} else {
3787 			memcg->soft_limit = nr_pages;
3788 			ret = 0;
3789 		}
3790 		break;
3791 	}
3792 	return ret ?: nbytes;
3793 }
3794 
3795 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3796 				size_t nbytes, loff_t off)
3797 {
3798 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3799 	struct page_counter *counter;
3800 
3801 	switch (MEMFILE_TYPE(of_cft(of)->private)) {
3802 	case _MEM:
3803 		counter = &memcg->memory;
3804 		break;
3805 	case _MEMSWAP:
3806 		counter = &memcg->memsw;
3807 		break;
3808 	case _KMEM:
3809 		counter = &memcg->kmem;
3810 		break;
3811 	case _TCP:
3812 		counter = &memcg->tcpmem;
3813 		break;
3814 	default:
3815 		BUG();
3816 	}
3817 
3818 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3819 	case RES_MAX_USAGE:
3820 		page_counter_reset_watermark(counter);
3821 		break;
3822 	case RES_FAILCNT:
3823 		counter->failcnt = 0;
3824 		break;
3825 	default:
3826 		BUG();
3827 	}
3828 
3829 	return nbytes;
3830 }
3831 
3832 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3833 					struct cftype *cft)
3834 {
3835 	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3836 }
3837 
3838 #ifdef CONFIG_MMU
3839 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3840 					struct cftype *cft, u64 val)
3841 {
3842 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3843 
3844 	if (val & ~MOVE_MASK)
3845 		return -EINVAL;
3846 
3847 	/*
3848 	 * No kind of locking is needed in here, because ->can_attach() will
3849 	 * check this value once in the beginning of the process, and then carry
3850 	 * on with stale data. This means that changes to this value will only
3851 	 * affect task migrations starting after the change.
3852 	 */
3853 	memcg->move_charge_at_immigrate = val;
3854 	return 0;
3855 }
3856 #else
3857 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3858 					struct cftype *cft, u64 val)
3859 {
3860 	return -ENOSYS;
3861 }
3862 #endif
3863 
3864 #ifdef CONFIG_NUMA
3865 
3866 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3867 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3868 #define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)
3869 
3870 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3871 				int nid, unsigned int lru_mask, bool tree)
3872 {
3873 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3874 	unsigned long nr = 0;
3875 	enum lru_list lru;
3876 
3877 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
3878 
3879 	for_each_lru(lru) {
3880 		if (!(BIT(lru) & lru_mask))
3881 			continue;
3882 		if (tree)
3883 			nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3884 		else
3885 			nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3886 	}
3887 	return nr;
3888 }
3889 
3890 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3891 					     unsigned int lru_mask,
3892 					     bool tree)
3893 {
3894 	unsigned long nr = 0;
3895 	enum lru_list lru;
3896 
3897 	for_each_lru(lru) {
3898 		if (!(BIT(lru) & lru_mask))
3899 			continue;
3900 		if (tree)
3901 			nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3902 		else
3903 			nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3904 	}
3905 	return nr;
3906 }
3907 
3908 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3909 {
3910 	struct numa_stat {
3911 		const char *name;
3912 		unsigned int lru_mask;
3913 	};
3914 
3915 	static const struct numa_stat stats[] = {
3916 		{ "total", LRU_ALL },
3917 		{ "file", LRU_ALL_FILE },
3918 		{ "anon", LRU_ALL_ANON },
3919 		{ "unevictable", BIT(LRU_UNEVICTABLE) },
3920 	};
3921 	const struct numa_stat *stat;
3922 	int nid;
3923 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3924 
3925 	mem_cgroup_flush_stats();
3926 
3927 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3928 		seq_printf(m, "%s=%lu", stat->name,
3929 			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3930 						   false));
3931 		for_each_node_state(nid, N_MEMORY)
3932 			seq_printf(m, " N%d=%lu", nid,
3933 				   mem_cgroup_node_nr_lru_pages(memcg, nid,
3934 							stat->lru_mask, false));
3935 		seq_putc(m, '\n');
3936 	}
3937 
3938 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3939 
3940 		seq_printf(m, "hierarchical_%s=%lu", stat->name,
3941 			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3942 						   true));
3943 		for_each_node_state(nid, N_MEMORY)
3944 			seq_printf(m, " N%d=%lu", nid,
3945 				   mem_cgroup_node_nr_lru_pages(memcg, nid,
3946 							stat->lru_mask, true));
3947 		seq_putc(m, '\n');
3948 	}
3949 
3950 	return 0;
3951 }
3952 #endif /* CONFIG_NUMA */
3953 
3954 static const unsigned int memcg1_stats[] = {
3955 	NR_FILE_PAGES,
3956 	NR_ANON_MAPPED,
3957 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3958 	NR_ANON_THPS,
3959 #endif
3960 	NR_SHMEM,
3961 	NR_FILE_MAPPED,
3962 	NR_FILE_DIRTY,
3963 	NR_WRITEBACK,
3964 	MEMCG_SWAP,
3965 };
3966 
3967 static const char *const memcg1_stat_names[] = {
3968 	"cache",
3969 	"rss",
3970 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3971 	"rss_huge",
3972 #endif
3973 	"shmem",
3974 	"mapped_file",
3975 	"dirty",
3976 	"writeback",
3977 	"swap",
3978 };
3979 
3980 /* Universal VM events cgroup1 shows, original sort order */
3981 static const unsigned int memcg1_events[] = {
3982 	PGPGIN,
3983 	PGPGOUT,
3984 	PGFAULT,
3985 	PGMAJFAULT,
3986 };
3987 
3988 static int memcg_stat_show(struct seq_file *m, void *v)
3989 {
3990 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3991 	unsigned long memory, memsw;
3992 	struct mem_cgroup *mi;
3993 	unsigned int i;
3994 
3995 	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3996 
3997 	mem_cgroup_flush_stats();
3998 
3999 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4000 		unsigned long nr;
4001 
4002 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4003 			continue;
4004 		nr = memcg_page_state_local(memcg, memcg1_stats[i]);
4005 		seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
4006 	}
4007 
4008 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4009 		seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
4010 			   memcg_events_local(memcg, memcg1_events[i]));
4011 
4012 	for (i = 0; i < NR_LRU_LISTS; i++)
4013 		seq_printf(m, "%s %lu\n", lru_list_name(i),
4014 			   memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4015 			   PAGE_SIZE);
4016 
4017 	/* Hierarchical information */
4018 	memory = memsw = PAGE_COUNTER_MAX;
4019 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4020 		memory = min(memory, READ_ONCE(mi->memory.max));
4021 		memsw = min(memsw, READ_ONCE(mi->memsw.max));
4022 	}
4023 	seq_printf(m, "hierarchical_memory_limit %llu\n",
4024 		   (u64)memory * PAGE_SIZE);
4025 	if (do_memsw_account())
4026 		seq_printf(m, "hierarchical_memsw_limit %llu\n",
4027 			   (u64)memsw * PAGE_SIZE);
4028 
4029 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4030 		unsigned long nr;
4031 
4032 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4033 			continue;
4034 		nr = memcg_page_state(memcg, memcg1_stats[i]);
4035 		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4036 						(u64)nr * PAGE_SIZE);
4037 	}
4038 
4039 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4040 		seq_printf(m, "total_%s %llu\n",
4041 			   vm_event_name(memcg1_events[i]),
4042 			   (u64)memcg_events(memcg, memcg1_events[i]));
4043 
4044 	for (i = 0; i < NR_LRU_LISTS; i++)
4045 		seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4046 			   (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4047 			   PAGE_SIZE);
4048 
4049 #ifdef CONFIG_DEBUG_VM
4050 	{
4051 		pg_data_t *pgdat;
4052 		struct mem_cgroup_per_node *mz;
4053 		unsigned long anon_cost = 0;
4054 		unsigned long file_cost = 0;
4055 
4056 		for_each_online_pgdat(pgdat) {
4057 			mz = memcg->nodeinfo[pgdat->node_id];
4058 
4059 			anon_cost += mz->lruvec.anon_cost;
4060 			file_cost += mz->lruvec.file_cost;
4061 		}
4062 		seq_printf(m, "anon_cost %lu\n", anon_cost);
4063 		seq_printf(m, "file_cost %lu\n", file_cost);
4064 	}
4065 #endif
4066 
4067 	return 0;
4068 }
4069 
4070 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4071 				      struct cftype *cft)
4072 {
4073 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4074 
4075 	return mem_cgroup_swappiness(memcg);
4076 }
4077 
4078 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4079 				       struct cftype *cft, u64 val)
4080 {
4081 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4082 
4083 	if (val > 200)
4084 		return -EINVAL;
4085 
4086 	if (!mem_cgroup_is_root(memcg))
4087 		memcg->swappiness = val;
4088 	else
4089 		vm_swappiness = val;
4090 
4091 	return 0;
4092 }
4093 
4094 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4095 {
4096 	struct mem_cgroup_threshold_ary *t;
4097 	unsigned long usage;
4098 	int i;
4099 
4100 	rcu_read_lock();
4101 	if (!swap)
4102 		t = rcu_dereference(memcg->thresholds.primary);
4103 	else
4104 		t = rcu_dereference(memcg->memsw_thresholds.primary);
4105 
4106 	if (!t)
4107 		goto unlock;
4108 
4109 	usage = mem_cgroup_usage(memcg, swap);
4110 
4111 	/*
4112 	 * current_threshold points to threshold just below or equal to usage.
4113 	 * If it's not true, a threshold was crossed after last
4114 	 * call of __mem_cgroup_threshold().
4115 	 */
4116 	i = t->current_threshold;
4117 
4118 	/*
4119 	 * Iterate backward over array of thresholds starting from
4120 	 * current_threshold and check if a threshold is crossed.
4121 	 * If none of thresholds below usage is crossed, we read
4122 	 * only one element of the array here.
4123 	 */
4124 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4125 		eventfd_signal(t->entries[i].eventfd, 1);
4126 
4127 	/* i = current_threshold + 1 */
4128 	i++;
4129 
4130 	/*
4131 	 * Iterate forward over array of thresholds starting from
4132 	 * current_threshold+1 and check if a threshold is crossed.
4133 	 * If none of thresholds above usage is crossed, we read
4134 	 * only one element of the array here.
4135 	 */
4136 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4137 		eventfd_signal(t->entries[i].eventfd, 1);
4138 
4139 	/* Update current_threshold */
4140 	t->current_threshold = i - 1;
4141 unlock:
4142 	rcu_read_unlock();
4143 }
4144 
4145 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4146 {
4147 	while (memcg) {
4148 		__mem_cgroup_threshold(memcg, false);
4149 		if (do_memsw_account())
4150 			__mem_cgroup_threshold(memcg, true);
4151 
4152 		memcg = parent_mem_cgroup(memcg);
4153 	}
4154 }
4155 
4156 static int compare_thresholds(const void *a, const void *b)
4157 {
4158 	const struct mem_cgroup_threshold *_a = a;
4159 	const struct mem_cgroup_threshold *_b = b;
4160 
4161 	if (_a->threshold > _b->threshold)
4162 		return 1;
4163 
4164 	if (_a->threshold < _b->threshold)
4165 		return -1;
4166 
4167 	return 0;
4168 }
4169 
4170 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4171 {
4172 	struct mem_cgroup_eventfd_list *ev;
4173 
4174 	spin_lock(&memcg_oom_lock);
4175 
4176 	list_for_each_entry(ev, &memcg->oom_notify, list)
4177 		eventfd_signal(ev->eventfd, 1);
4178 
4179 	spin_unlock(&memcg_oom_lock);
4180 	return 0;
4181 }
4182 
4183 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4184 {
4185 	struct mem_cgroup *iter;
4186 
4187 	for_each_mem_cgroup_tree(iter, memcg)
4188 		mem_cgroup_oom_notify_cb(iter);
4189 }
4190 
4191 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4192 	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4193 {
4194 	struct mem_cgroup_thresholds *thresholds;
4195 	struct mem_cgroup_threshold_ary *new;
4196 	unsigned long threshold;
4197 	unsigned long usage;
4198 	int i, size, ret;
4199 
4200 	ret = page_counter_memparse(args, "-1", &threshold);
4201 	if (ret)
4202 		return ret;
4203 
4204 	mutex_lock(&memcg->thresholds_lock);
4205 
4206 	if (type == _MEM) {
4207 		thresholds = &memcg->thresholds;
4208 		usage = mem_cgroup_usage(memcg, false);
4209 	} else if (type == _MEMSWAP) {
4210 		thresholds = &memcg->memsw_thresholds;
4211 		usage = mem_cgroup_usage(memcg, true);
4212 	} else
4213 		BUG();
4214 
4215 	/* Check if a threshold crossed before adding a new one */
4216 	if (thresholds->primary)
4217 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4218 
4219 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4220 
4221 	/* Allocate memory for new array of thresholds */
4222 	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4223 	if (!new) {
4224 		ret = -ENOMEM;
4225 		goto unlock;
4226 	}
4227 	new->size = size;
4228 
4229 	/* Copy thresholds (if any) to new array */
4230 	if (thresholds->primary)
4231 		memcpy(new->entries, thresholds->primary->entries,
4232 		       flex_array_size(new, entries, size - 1));
4233 
4234 	/* Add new threshold */
4235 	new->entries[size - 1].eventfd = eventfd;
4236 	new->entries[size - 1].threshold = threshold;
4237 
4238 	/* Sort thresholds. Registering of new threshold isn't time-critical */
4239 	sort(new->entries, size, sizeof(*new->entries),
4240 			compare_thresholds, NULL);
4241 
4242 	/* Find current threshold */
4243 	new->current_threshold = -1;
4244 	for (i = 0; i < size; i++) {
4245 		if (new->entries[i].threshold <= usage) {
4246 			/*
4247 			 * new->current_threshold will not be used until
4248 			 * rcu_assign_pointer(), so it's safe to increment
4249 			 * it here.
4250 			 */
4251 			++new->current_threshold;
4252 		} else
4253 			break;
4254 	}
4255 
4256 	/* Free old spare buffer and save old primary buffer as spare */
4257 	kfree(thresholds->spare);
4258 	thresholds->spare = thresholds->primary;
4259 
4260 	rcu_assign_pointer(thresholds->primary, new);
4261 
4262 	/* To be sure that nobody uses thresholds */
4263 	synchronize_rcu();
4264 
4265 unlock:
4266 	mutex_unlock(&memcg->thresholds_lock);
4267 
4268 	return ret;
4269 }
4270 
4271 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4272 	struct eventfd_ctx *eventfd, const char *args)
4273 {
4274 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4275 }
4276 
4277 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4278 	struct eventfd_ctx *eventfd, const char *args)
4279 {
4280 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4281 }
4282 
4283 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4284 	struct eventfd_ctx *eventfd, enum res_type type)
4285 {
4286 	struct mem_cgroup_thresholds *thresholds;
4287 	struct mem_cgroup_threshold_ary *new;
4288 	unsigned long usage;
4289 	int i, j, size, entries;
4290 
4291 	mutex_lock(&memcg->thresholds_lock);
4292 
4293 	if (type == _MEM) {
4294 		thresholds = &memcg->thresholds;
4295 		usage = mem_cgroup_usage(memcg, false);
4296 	} else if (type == _MEMSWAP) {
4297 		thresholds = &memcg->memsw_thresholds;
4298 		usage = mem_cgroup_usage(memcg, true);
4299 	} else
4300 		BUG();
4301 
4302 	if (!thresholds->primary)
4303 		goto unlock;
4304 
4305 	/* Check if a threshold crossed before removing */
4306 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4307 
4308 	/* Calculate new number of threshold */
4309 	size = entries = 0;
4310 	for (i = 0; i < thresholds->primary->size; i++) {
4311 		if (thresholds->primary->entries[i].eventfd != eventfd)
4312 			size++;
4313 		else
4314 			entries++;
4315 	}
4316 
4317 	new = thresholds->spare;
4318 
4319 	/* If no items related to eventfd have been cleared, nothing to do */
4320 	if (!entries)
4321 		goto unlock;
4322 
4323 	/* Set thresholds array to NULL if we don't have thresholds */
4324 	if (!size) {
4325 		kfree(new);
4326 		new = NULL;
4327 		goto swap_buffers;
4328 	}
4329 
4330 	new->size = size;
4331 
4332 	/* Copy thresholds and find current threshold */
4333 	new->current_threshold = -1;
4334 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4335 		if (thresholds->primary->entries[i].eventfd == eventfd)
4336 			continue;
4337 
4338 		new->entries[j] = thresholds->primary->entries[i];
4339 		if (new->entries[j].threshold <= usage) {
4340 			/*
4341 			 * new->current_threshold will not be used
4342 			 * until rcu_assign_pointer(), so it's safe to increment
4343 			 * it here.
4344 			 */
4345 			++new->current_threshold;
4346 		}
4347 		j++;
4348 	}
4349 
4350 swap_buffers:
4351 	/* Swap primary and spare array */
4352 	thresholds->spare = thresholds->primary;
4353 
4354 	rcu_assign_pointer(thresholds->primary, new);
4355 
4356 	/* To be sure that nobody uses thresholds */
4357 	synchronize_rcu();
4358 
4359 	/* If all events are unregistered, free the spare array */
4360 	if (!new) {
4361 		kfree(thresholds->spare);
4362 		thresholds->spare = NULL;
4363 	}
4364 unlock:
4365 	mutex_unlock(&memcg->thresholds_lock);
4366 }
4367 
4368 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4369 	struct eventfd_ctx *eventfd)
4370 {
4371 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4372 }
4373 
4374 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4375 	struct eventfd_ctx *eventfd)
4376 {
4377 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4378 }
4379 
4380 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4381 	struct eventfd_ctx *eventfd, const char *args)
4382 {
4383 	struct mem_cgroup_eventfd_list *event;
4384 
4385 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4386 	if (!event)
4387 		return -ENOMEM;
4388 
4389 	spin_lock(&memcg_oom_lock);
4390 
4391 	event->eventfd = eventfd;
4392 	list_add(&event->list, &memcg->oom_notify);
4393 
4394 	/* already in OOM ? */
4395 	if (memcg->under_oom)
4396 		eventfd_signal(eventfd, 1);
4397 	spin_unlock(&memcg_oom_lock);
4398 
4399 	return 0;
4400 }
4401 
4402 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4403 	struct eventfd_ctx *eventfd)
4404 {
4405 	struct mem_cgroup_eventfd_list *ev, *tmp;
4406 
4407 	spin_lock(&memcg_oom_lock);
4408 
4409 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4410 		if (ev->eventfd == eventfd) {
4411 			list_del(&ev->list);
4412 			kfree(ev);
4413 		}
4414 	}
4415 
4416 	spin_unlock(&memcg_oom_lock);
4417 }
4418 
4419 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4420 {
4421 	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4422 
4423 	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4424 	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4425 	seq_printf(sf, "oom_kill %lu\n",
4426 		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4427 	return 0;
4428 }
4429 
4430 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4431 	struct cftype *cft, u64 val)
4432 {
4433 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4434 
4435 	/* cannot set to root cgroup and only 0 and 1 are allowed */
4436 	if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
4437 		return -EINVAL;
4438 
4439 	memcg->oom_kill_disable = val;
4440 	if (!val)
4441 		memcg_oom_recover(memcg);
4442 
4443 	return 0;
4444 }
4445 
4446 #ifdef CONFIG_CGROUP_WRITEBACK
4447 
4448 #include <trace/events/writeback.h>
4449 
4450 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4451 {
4452 	return wb_domain_init(&memcg->cgwb_domain, gfp);
4453 }
4454 
4455 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4456 {
4457 	wb_domain_exit(&memcg->cgwb_domain);
4458 }
4459 
4460 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4461 {
4462 	wb_domain_size_changed(&memcg->cgwb_domain);
4463 }
4464 
4465 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4466 {
4467 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4468 
4469 	if (!memcg->css.parent)
4470 		return NULL;
4471 
4472 	return &memcg->cgwb_domain;
4473 }
4474 
4475 /**
4476  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4477  * @wb: bdi_writeback in question
4478  * @pfilepages: out parameter for number of file pages
4479  * @pheadroom: out parameter for number of allocatable pages according to memcg
4480  * @pdirty: out parameter for number of dirty pages
4481  * @pwriteback: out parameter for number of pages under writeback
4482  *
4483  * Determine the numbers of file, headroom, dirty, and writeback pages in
4484  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
4485  * is a bit more involved.
4486  *
4487  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
4488  * headroom is calculated as the lowest headroom of itself and the
4489  * ancestors.  Note that this doesn't consider the actual amount of
4490  * available memory in the system.  The caller should further cap
4491  * *@pheadroom accordingly.
4492  */
4493 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4494 			 unsigned long *pheadroom, unsigned long *pdirty,
4495 			 unsigned long *pwriteback)
4496 {
4497 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4498 	struct mem_cgroup *parent;
4499 
4500 	mem_cgroup_flush_stats();
4501 
4502 	*pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4503 	*pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4504 	*pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4505 			memcg_page_state(memcg, NR_ACTIVE_FILE);
4506 
4507 	*pheadroom = PAGE_COUNTER_MAX;
4508 	while ((parent = parent_mem_cgroup(memcg))) {
4509 		unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4510 					    READ_ONCE(memcg->memory.high));
4511 		unsigned long used = page_counter_read(&memcg->memory);
4512 
4513 		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4514 		memcg = parent;
4515 	}
4516 }
4517 
4518 /*
4519  * Foreign dirty flushing
4520  *
4521  * There's an inherent mismatch between memcg and writeback.  The former
4522  * tracks ownership per-page while the latter per-inode.  This was a
4523  * deliberate design decision because honoring per-page ownership in the
4524  * writeback path is complicated, may lead to higher CPU and IO overheads
4525  * and deemed unnecessary given that write-sharing an inode across
4526  * different cgroups isn't a common use-case.
4527  *
4528  * Combined with inode majority-writer ownership switching, this works well
4529  * enough in most cases but there are some pathological cases.  For
4530  * example, let's say there are two cgroups A and B which keep writing to
4531  * different but confined parts of the same inode.  B owns the inode and
4532  * A's memory is limited far below B's.  A's dirty ratio can rise enough to
4533  * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4534  * triggering background writeback.  A will be slowed down without a way to
4535  * make writeback of the dirty pages happen.
4536  *
4537  * Conditions like the above can lead to a cgroup getting repeatedly and
4538  * severely throttled after making some progress after each
4539  * dirty_expire_interval while the underlying IO device is almost
4540  * completely idle.
4541  *
4542  * Solving this problem completely requires matching the ownership tracking
4543  * granularities between memcg and writeback in either direction.  However,
4544  * the more egregious behaviors can be avoided by simply remembering the
4545  * most recent foreign dirtying events and initiating remote flushes on
4546  * them when local writeback isn't enough to keep the memory clean enough.
4547  *
4548  * The following two functions implement such mechanism.  When a foreign
4549  * page - a page whose memcg and writeback ownerships don't match - is
4550  * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4551  * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
4552  * decides that the memcg needs to sleep due to high dirty ratio, it calls
4553  * mem_cgroup_flush_foreign() which queues writeback on the recorded
4554  * foreign bdi_writebacks which haven't expired.  Both the numbers of
4555  * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4556  * limited to MEMCG_CGWB_FRN_CNT.
4557  *
4558  * The mechanism only remembers IDs and doesn't hold any object references.
4559  * As being wrong occasionally doesn't matter, updates and accesses to the
4560  * records are lockless and racy.
4561  */
4562 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
4563 					     struct bdi_writeback *wb)
4564 {
4565 	struct mem_cgroup *memcg = folio_memcg(folio);
4566 	struct memcg_cgwb_frn *frn;
4567 	u64 now = get_jiffies_64();
4568 	u64 oldest_at = now;
4569 	int oldest = -1;
4570 	int i;
4571 
4572 	trace_track_foreign_dirty(folio, wb);
4573 
4574 	/*
4575 	 * Pick the slot to use.  If there is already a slot for @wb, keep
4576 	 * using it.  If not replace the oldest one which isn't being
4577 	 * written out.
4578 	 */
4579 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4580 		frn = &memcg->cgwb_frn[i];
4581 		if (frn->bdi_id == wb->bdi->id &&
4582 		    frn->memcg_id == wb->memcg_css->id)
4583 			break;
4584 		if (time_before64(frn->at, oldest_at) &&
4585 		    atomic_read(&frn->done.cnt) == 1) {
4586 			oldest = i;
4587 			oldest_at = frn->at;
4588 		}
4589 	}
4590 
4591 	if (i < MEMCG_CGWB_FRN_CNT) {
4592 		/*
4593 		 * Re-using an existing one.  Update timestamp lazily to
4594 		 * avoid making the cacheline hot.  We want them to be
4595 		 * reasonably up-to-date and significantly shorter than
4596 		 * dirty_expire_interval as that's what expires the record.
4597 		 * Use the shorter of 1s and dirty_expire_interval / 8.
4598 		 */
4599 		unsigned long update_intv =
4600 			min_t(unsigned long, HZ,
4601 			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4602 
4603 		if (time_before64(frn->at, now - update_intv))
4604 			frn->at = now;
4605 	} else if (oldest >= 0) {
4606 		/* replace the oldest free one */
4607 		frn = &memcg->cgwb_frn[oldest];
4608 		frn->bdi_id = wb->bdi->id;
4609 		frn->memcg_id = wb->memcg_css->id;
4610 		frn->at = now;
4611 	}
4612 }
4613 
4614 /* issue foreign writeback flushes for recorded foreign dirtying events */
4615 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4616 {
4617 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4618 	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4619 	u64 now = jiffies_64;
4620 	int i;
4621 
4622 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4623 		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4624 
4625 		/*
4626 		 * If the record is older than dirty_expire_interval,
4627 		 * writeback on it has already started.  No need to kick it
4628 		 * off again.  Also, don't start a new one if there's
4629 		 * already one in flight.
4630 		 */
4631 		if (time_after64(frn->at, now - intv) &&
4632 		    atomic_read(&frn->done.cnt) == 1) {
4633 			frn->at = 0;
4634 			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4635 			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
4636 					       WB_REASON_FOREIGN_FLUSH,
4637 					       &frn->done);
4638 		}
4639 	}
4640 }
4641 
4642 #else	/* CONFIG_CGROUP_WRITEBACK */
4643 
4644 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4645 {
4646 	return 0;
4647 }
4648 
4649 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4650 {
4651 }
4652 
4653 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4654 {
4655 }
4656 
4657 #endif	/* CONFIG_CGROUP_WRITEBACK */
4658 
4659 /*
4660  * DO NOT USE IN NEW FILES.
4661  *
4662  * "cgroup.event_control" implementation.
4663  *
4664  * This is way over-engineered.  It tries to support fully configurable
4665  * events for each user.  Such level of flexibility is completely
4666  * unnecessary especially in the light of the planned unified hierarchy.
4667  *
4668  * Please deprecate this and replace with something simpler if at all
4669  * possible.
4670  */
4671 
4672 /*
4673  * Unregister event and free resources.
4674  *
4675  * Gets called from workqueue.
4676  */
4677 static void memcg_event_remove(struct work_struct *work)
4678 {
4679 	struct mem_cgroup_event *event =
4680 		container_of(work, struct mem_cgroup_event, remove);
4681 	struct mem_cgroup *memcg = event->memcg;
4682 
4683 	remove_wait_queue(event->wqh, &event->wait);
4684 
4685 	event->unregister_event(memcg, event->eventfd);
4686 
4687 	/* Notify userspace the event is going away. */
4688 	eventfd_signal(event->eventfd, 1);
4689 
4690 	eventfd_ctx_put(event->eventfd);
4691 	kfree(event);
4692 	css_put(&memcg->css);
4693 }
4694 
4695 /*
4696  * Gets called on EPOLLHUP on eventfd when user closes it.
4697  *
4698  * Called with wqh->lock held and interrupts disabled.
4699  */
4700 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4701 			    int sync, void *key)
4702 {
4703 	struct mem_cgroup_event *event =
4704 		container_of(wait, struct mem_cgroup_event, wait);
4705 	struct mem_cgroup *memcg = event->memcg;
4706 	__poll_t flags = key_to_poll(key);
4707 
4708 	if (flags & EPOLLHUP) {
4709 		/*
4710 		 * If the event has been detached at cgroup removal, we
4711 		 * can simply return knowing the other side will cleanup
4712 		 * for us.
4713 		 *
4714 		 * We can't race against event freeing since the other
4715 		 * side will require wqh->lock via remove_wait_queue(),
4716 		 * which we hold.
4717 		 */
4718 		spin_lock(&memcg->event_list_lock);
4719 		if (!list_empty(&event->list)) {
4720 			list_del_init(&event->list);
4721 			/*
4722 			 * We are in atomic context, but cgroup_event_remove()
4723 			 * may sleep, so we have to call it in workqueue.
4724 			 */
4725 			schedule_work(&event->remove);
4726 		}
4727 		spin_unlock(&memcg->event_list_lock);
4728 	}
4729 
4730 	return 0;
4731 }
4732 
4733 static void memcg_event_ptable_queue_proc(struct file *file,
4734 		wait_queue_head_t *wqh, poll_table *pt)
4735 {
4736 	struct mem_cgroup_event *event =
4737 		container_of(pt, struct mem_cgroup_event, pt);
4738 
4739 	event->wqh = wqh;
4740 	add_wait_queue(wqh, &event->wait);
4741 }
4742 
4743 /*
4744  * DO NOT USE IN NEW FILES.
4745  *
4746  * Parse input and register new cgroup event handler.
4747  *
4748  * Input must be in format '<event_fd> <control_fd> <args>'.
4749  * Interpretation of args is defined by control file implementation.
4750  */
4751 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4752 					 char *buf, size_t nbytes, loff_t off)
4753 {
4754 	struct cgroup_subsys_state *css = of_css(of);
4755 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4756 	struct mem_cgroup_event *event;
4757 	struct cgroup_subsys_state *cfile_css;
4758 	unsigned int efd, cfd;
4759 	struct fd efile;
4760 	struct fd cfile;
4761 	const char *name;
4762 	char *endp;
4763 	int ret;
4764 
4765 	if (IS_ENABLED(CONFIG_PREEMPT_RT))
4766 		return -EOPNOTSUPP;
4767 
4768 	buf = strstrip(buf);
4769 
4770 	efd = simple_strtoul(buf, &endp, 10);
4771 	if (*endp != ' ')
4772 		return -EINVAL;
4773 	buf = endp + 1;
4774 
4775 	cfd = simple_strtoul(buf, &endp, 10);
4776 	if ((*endp != ' ') && (*endp != '\0'))
4777 		return -EINVAL;
4778 	buf = endp + 1;
4779 
4780 	event = kzalloc(sizeof(*event), GFP_KERNEL);
4781 	if (!event)
4782 		return -ENOMEM;
4783 
4784 	event->memcg = memcg;
4785 	INIT_LIST_HEAD(&event->list);
4786 	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4787 	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4788 	INIT_WORK(&event->remove, memcg_event_remove);
4789 
4790 	efile = fdget(efd);
4791 	if (!efile.file) {
4792 		ret = -EBADF;
4793 		goto out_kfree;
4794 	}
4795 
4796 	event->eventfd = eventfd_ctx_fileget(efile.file);
4797 	if (IS_ERR(event->eventfd)) {
4798 		ret = PTR_ERR(event->eventfd);
4799 		goto out_put_efile;
4800 	}
4801 
4802 	cfile = fdget(cfd);
4803 	if (!cfile.file) {
4804 		ret = -EBADF;
4805 		goto out_put_eventfd;
4806 	}
4807 
4808 	/* the process need read permission on control file */
4809 	/* AV: shouldn't we check that it's been opened for read instead? */
4810 	ret = file_permission(cfile.file, MAY_READ);
4811 	if (ret < 0)
4812 		goto out_put_cfile;
4813 
4814 	/*
4815 	 * Determine the event callbacks and set them in @event.  This used
4816 	 * to be done via struct cftype but cgroup core no longer knows
4817 	 * about these events.  The following is crude but the whole thing
4818 	 * is for compatibility anyway.
4819 	 *
4820 	 * DO NOT ADD NEW FILES.
4821 	 */
4822 	name = cfile.file->f_path.dentry->d_name.name;
4823 
4824 	if (!strcmp(name, "memory.usage_in_bytes")) {
4825 		event->register_event = mem_cgroup_usage_register_event;
4826 		event->unregister_event = mem_cgroup_usage_unregister_event;
4827 	} else if (!strcmp(name, "memory.oom_control")) {
4828 		event->register_event = mem_cgroup_oom_register_event;
4829 		event->unregister_event = mem_cgroup_oom_unregister_event;
4830 	} else if (!strcmp(name, "memory.pressure_level")) {
4831 		event->register_event = vmpressure_register_event;
4832 		event->unregister_event = vmpressure_unregister_event;
4833 	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4834 		event->register_event = memsw_cgroup_usage_register_event;
4835 		event->unregister_event = memsw_cgroup_usage_unregister_event;
4836 	} else {
4837 		ret = -EINVAL;
4838 		goto out_put_cfile;
4839 	}
4840 
4841 	/*
4842 	 * Verify @cfile should belong to @css.  Also, remaining events are
4843 	 * automatically removed on cgroup destruction but the removal is
4844 	 * asynchronous, so take an extra ref on @css.
4845 	 */
4846 	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4847 					       &memory_cgrp_subsys);
4848 	ret = -EINVAL;
4849 	if (IS_ERR(cfile_css))
4850 		goto out_put_cfile;
4851 	if (cfile_css != css) {
4852 		css_put(cfile_css);
4853 		goto out_put_cfile;
4854 	}
4855 
4856 	ret = event->register_event(memcg, event->eventfd, buf);
4857 	if (ret)
4858 		goto out_put_css;
4859 
4860 	vfs_poll(efile.file, &event->pt);
4861 
4862 	spin_lock_irq(&memcg->event_list_lock);
4863 	list_add(&event->list, &memcg->event_list);
4864 	spin_unlock_irq(&memcg->event_list_lock);
4865 
4866 	fdput(cfile);
4867 	fdput(efile);
4868 
4869 	return nbytes;
4870 
4871 out_put_css:
4872 	css_put(css);
4873 out_put_cfile:
4874 	fdput(cfile);
4875 out_put_eventfd:
4876 	eventfd_ctx_put(event->eventfd);
4877 out_put_efile:
4878 	fdput(efile);
4879 out_kfree:
4880 	kfree(event);
4881 
4882 	return ret;
4883 }
4884 
4885 #if defined(CONFIG_MEMCG_KMEM) && (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
4886 static int mem_cgroup_slab_show(struct seq_file *m, void *p)
4887 {
4888 	/*
4889 	 * Deprecated.
4890 	 * Please, take a look at tools/cgroup/memcg_slabinfo.py .
4891 	 */
4892 	return 0;
4893 }
4894 #endif
4895 
4896 static struct cftype mem_cgroup_legacy_files[] = {
4897 	{
4898 		.name = "usage_in_bytes",
4899 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4900 		.read_u64 = mem_cgroup_read_u64,
4901 	},
4902 	{
4903 		.name = "max_usage_in_bytes",
4904 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4905 		.write = mem_cgroup_reset,
4906 		.read_u64 = mem_cgroup_read_u64,
4907 	},
4908 	{
4909 		.name = "limit_in_bytes",
4910 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4911 		.write = mem_cgroup_write,
4912 		.read_u64 = mem_cgroup_read_u64,
4913 	},
4914 	{
4915 		.name = "soft_limit_in_bytes",
4916 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4917 		.write = mem_cgroup_write,
4918 		.read_u64 = mem_cgroup_read_u64,
4919 	},
4920 	{
4921 		.name = "failcnt",
4922 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4923 		.write = mem_cgroup_reset,
4924 		.read_u64 = mem_cgroup_read_u64,
4925 	},
4926 	{
4927 		.name = "stat",
4928 		.seq_show = memcg_stat_show,
4929 	},
4930 	{
4931 		.name = "force_empty",
4932 		.write = mem_cgroup_force_empty_write,
4933 	},
4934 	{
4935 		.name = "use_hierarchy",
4936 		.write_u64 = mem_cgroup_hierarchy_write,
4937 		.read_u64 = mem_cgroup_hierarchy_read,
4938 	},
4939 	{
4940 		.name = "cgroup.event_control",		/* XXX: for compat */
4941 		.write = memcg_write_event_control,
4942 		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4943 	},
4944 	{
4945 		.name = "swappiness",
4946 		.read_u64 = mem_cgroup_swappiness_read,
4947 		.write_u64 = mem_cgroup_swappiness_write,
4948 	},
4949 	{
4950 		.name = "move_charge_at_immigrate",
4951 		.read_u64 = mem_cgroup_move_charge_read,
4952 		.write_u64 = mem_cgroup_move_charge_write,
4953 	},
4954 	{
4955 		.name = "oom_control",
4956 		.seq_show = mem_cgroup_oom_control_read,
4957 		.write_u64 = mem_cgroup_oom_control_write,
4958 	},
4959 	{
4960 		.name = "pressure_level",
4961 	},
4962 #ifdef CONFIG_NUMA
4963 	{
4964 		.name = "numa_stat",
4965 		.seq_show = memcg_numa_stat_show,
4966 	},
4967 #endif
4968 	{
4969 		.name = "kmem.limit_in_bytes",
4970 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4971 		.write = mem_cgroup_write,
4972 		.read_u64 = mem_cgroup_read_u64,
4973 	},
4974 	{
4975 		.name = "kmem.usage_in_bytes",
4976 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4977 		.read_u64 = mem_cgroup_read_u64,
4978 	},
4979 	{
4980 		.name = "kmem.failcnt",
4981 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4982 		.write = mem_cgroup_reset,
4983 		.read_u64 = mem_cgroup_read_u64,
4984 	},
4985 	{
4986 		.name = "kmem.max_usage_in_bytes",
4987 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4988 		.write = mem_cgroup_reset,
4989 		.read_u64 = mem_cgroup_read_u64,
4990 	},
4991 #if defined(CONFIG_MEMCG_KMEM) && \
4992 	(defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
4993 	{
4994 		.name = "kmem.slabinfo",
4995 		.seq_show = mem_cgroup_slab_show,
4996 	},
4997 #endif
4998 	{
4999 		.name = "kmem.tcp.limit_in_bytes",
5000 		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5001 		.write = mem_cgroup_write,
5002 		.read_u64 = mem_cgroup_read_u64,
5003 	},
5004 	{
5005 		.name = "kmem.tcp.usage_in_bytes",
5006 		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5007 		.read_u64 = mem_cgroup_read_u64,
5008 	},
5009 	{
5010 		.name = "kmem.tcp.failcnt",
5011 		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5012 		.write = mem_cgroup_reset,
5013 		.read_u64 = mem_cgroup_read_u64,
5014 	},
5015 	{
5016 		.name = "kmem.tcp.max_usage_in_bytes",
5017 		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5018 		.write = mem_cgroup_reset,
5019 		.read_u64 = mem_cgroup_read_u64,
5020 	},
5021 	{ },	/* terminate */
5022 };
5023 
5024 /*
5025  * Private memory cgroup IDR
5026  *
5027  * Swap-out records and page cache shadow entries need to store memcg
5028  * references in constrained space, so we maintain an ID space that is
5029  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5030  * memory-controlled cgroups to 64k.
5031  *
5032  * However, there usually are many references to the offline CSS after
5033  * the cgroup has been destroyed, such as page cache or reclaimable
5034  * slab objects, that don't need to hang on to the ID. We want to keep
5035  * those dead CSS from occupying IDs, or we might quickly exhaust the
5036  * relatively small ID space and prevent the creation of new cgroups
5037  * even when there are much fewer than 64k cgroups - possibly none.
5038  *
5039  * Maintain a private 16-bit ID space for memcg, and allow the ID to
5040  * be freed and recycled when it's no longer needed, which is usually
5041  * when the CSS is offlined.
5042  *
5043  * The only exception to that are records of swapped out tmpfs/shmem
5044  * pages that need to be attributed to live ancestors on swapin. But
5045  * those references are manageable from userspace.
5046  */
5047 
5048 static DEFINE_IDR(mem_cgroup_idr);
5049 
5050 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5051 {
5052 	if (memcg->id.id > 0) {
5053 		idr_remove(&mem_cgroup_idr, memcg->id.id);
5054 		memcg->id.id = 0;
5055 	}
5056 }
5057 
5058 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5059 						  unsigned int n)
5060 {
5061 	refcount_add(n, &memcg->id.ref);
5062 }
5063 
5064 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5065 {
5066 	if (refcount_sub_and_test(n, &memcg->id.ref)) {
5067 		mem_cgroup_id_remove(memcg);
5068 
5069 		/* Memcg ID pins CSS */
5070 		css_put(&memcg->css);
5071 	}
5072 }
5073 
5074 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5075 {
5076 	mem_cgroup_id_put_many(memcg, 1);
5077 }
5078 
5079 /**
5080  * mem_cgroup_from_id - look up a memcg from a memcg id
5081  * @id: the memcg id to look up
5082  *
5083  * Caller must hold rcu_read_lock().
5084  */
5085 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5086 {
5087 	WARN_ON_ONCE(!rcu_read_lock_held());
5088 	return idr_find(&mem_cgroup_idr, id);
5089 }
5090 
5091 #ifdef CONFIG_SHRINKER_DEBUG
5092 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
5093 {
5094 	struct cgroup *cgrp;
5095 	struct cgroup_subsys_state *css;
5096 	struct mem_cgroup *memcg;
5097 
5098 	cgrp = cgroup_get_from_id(ino);
5099 	if (!cgrp)
5100 		return ERR_PTR(-ENOENT);
5101 
5102 	css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys);
5103 	if (css)
5104 		memcg = container_of(css, struct mem_cgroup, css);
5105 	else
5106 		memcg = ERR_PTR(-ENOENT);
5107 
5108 	cgroup_put(cgrp);
5109 
5110 	return memcg;
5111 }
5112 #endif
5113 
5114 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5115 {
5116 	struct mem_cgroup_per_node *pn;
5117 
5118 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node);
5119 	if (!pn)
5120 		return 1;
5121 
5122 	pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
5123 						   GFP_KERNEL_ACCOUNT);
5124 	if (!pn->lruvec_stats_percpu) {
5125 		kfree(pn);
5126 		return 1;
5127 	}
5128 
5129 	lruvec_init(&pn->lruvec);
5130 	pn->memcg = memcg;
5131 
5132 	memcg->nodeinfo[node] = pn;
5133 	return 0;
5134 }
5135 
5136 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5137 {
5138 	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5139 
5140 	if (!pn)
5141 		return;
5142 
5143 	free_percpu(pn->lruvec_stats_percpu);
5144 	kfree(pn);
5145 }
5146 
5147 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5148 {
5149 	int node;
5150 
5151 	for_each_node(node)
5152 		free_mem_cgroup_per_node_info(memcg, node);
5153 	free_percpu(memcg->vmstats_percpu);
5154 	kfree(memcg);
5155 }
5156 
5157 static void mem_cgroup_free(struct mem_cgroup *memcg)
5158 {
5159 	memcg_wb_domain_exit(memcg);
5160 	__mem_cgroup_free(memcg);
5161 }
5162 
5163 static struct mem_cgroup *mem_cgroup_alloc(void)
5164 {
5165 	struct mem_cgroup *memcg;
5166 	int node;
5167 	int __maybe_unused i;
5168 	long error = -ENOMEM;
5169 
5170 	memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL);
5171 	if (!memcg)
5172 		return ERR_PTR(error);
5173 
5174 	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5175 				 1, MEM_CGROUP_ID_MAX + 1, GFP_KERNEL);
5176 	if (memcg->id.id < 0) {
5177 		error = memcg->id.id;
5178 		goto fail;
5179 	}
5180 
5181 	memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5182 						 GFP_KERNEL_ACCOUNT);
5183 	if (!memcg->vmstats_percpu)
5184 		goto fail;
5185 
5186 	for_each_node(node)
5187 		if (alloc_mem_cgroup_per_node_info(memcg, node))
5188 			goto fail;
5189 
5190 	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5191 		goto fail;
5192 
5193 	INIT_WORK(&memcg->high_work, high_work_func);
5194 	INIT_LIST_HEAD(&memcg->oom_notify);
5195 	mutex_init(&memcg->thresholds_lock);
5196 	spin_lock_init(&memcg->move_lock);
5197 	vmpressure_init(&memcg->vmpressure);
5198 	INIT_LIST_HEAD(&memcg->event_list);
5199 	spin_lock_init(&memcg->event_list_lock);
5200 	memcg->socket_pressure = jiffies;
5201 #ifdef CONFIG_MEMCG_KMEM
5202 	memcg->kmemcg_id = -1;
5203 	INIT_LIST_HEAD(&memcg->objcg_list);
5204 #endif
5205 #ifdef CONFIG_CGROUP_WRITEBACK
5206 	INIT_LIST_HEAD(&memcg->cgwb_list);
5207 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5208 		memcg->cgwb_frn[i].done =
5209 			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5210 #endif
5211 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5212 	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5213 	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5214 	memcg->deferred_split_queue.split_queue_len = 0;
5215 #endif
5216 	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5217 	return memcg;
5218 fail:
5219 	mem_cgroup_id_remove(memcg);
5220 	__mem_cgroup_free(memcg);
5221 	return ERR_PTR(error);
5222 }
5223 
5224 static struct cgroup_subsys_state * __ref
5225 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5226 {
5227 	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5228 	struct mem_cgroup *memcg, *old_memcg;
5229 
5230 	old_memcg = set_active_memcg(parent);
5231 	memcg = mem_cgroup_alloc();
5232 	set_active_memcg(old_memcg);
5233 	if (IS_ERR(memcg))
5234 		return ERR_CAST(memcg);
5235 
5236 	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5237 	memcg->soft_limit = PAGE_COUNTER_MAX;
5238 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
5239 	memcg->zswap_max = PAGE_COUNTER_MAX;
5240 #endif
5241 	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5242 	if (parent) {
5243 		memcg->swappiness = mem_cgroup_swappiness(parent);
5244 		memcg->oom_kill_disable = parent->oom_kill_disable;
5245 
5246 		page_counter_init(&memcg->memory, &parent->memory);
5247 		page_counter_init(&memcg->swap, &parent->swap);
5248 		page_counter_init(&memcg->kmem, &parent->kmem);
5249 		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5250 	} else {
5251 		page_counter_init(&memcg->memory, NULL);
5252 		page_counter_init(&memcg->swap, NULL);
5253 		page_counter_init(&memcg->kmem, NULL);
5254 		page_counter_init(&memcg->tcpmem, NULL);
5255 
5256 		root_mem_cgroup = memcg;
5257 		return &memcg->css;
5258 	}
5259 
5260 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5261 		static_branch_inc(&memcg_sockets_enabled_key);
5262 
5263 	return &memcg->css;
5264 }
5265 
5266 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5267 {
5268 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5269 
5270 	if (memcg_online_kmem(memcg))
5271 		goto remove_id;
5272 
5273 	/*
5274 	 * A memcg must be visible for expand_shrinker_info()
5275 	 * by the time the maps are allocated. So, we allocate maps
5276 	 * here, when for_each_mem_cgroup() can't skip it.
5277 	 */
5278 	if (alloc_shrinker_info(memcg))
5279 		goto offline_kmem;
5280 
5281 	/* Online state pins memcg ID, memcg ID pins CSS */
5282 	refcount_set(&memcg->id.ref, 1);
5283 	css_get(css);
5284 
5285 	if (unlikely(mem_cgroup_is_root(memcg)))
5286 		queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
5287 				   2UL*HZ);
5288 	return 0;
5289 offline_kmem:
5290 	memcg_offline_kmem(memcg);
5291 remove_id:
5292 	mem_cgroup_id_remove(memcg);
5293 	return -ENOMEM;
5294 }
5295 
5296 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5297 {
5298 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5299 	struct mem_cgroup_event *event, *tmp;
5300 
5301 	/*
5302 	 * Unregister events and notify userspace.
5303 	 * Notify userspace about cgroup removing only after rmdir of cgroup
5304 	 * directory to avoid race between userspace and kernelspace.
5305 	 */
5306 	spin_lock_irq(&memcg->event_list_lock);
5307 	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5308 		list_del_init(&event->list);
5309 		schedule_work(&event->remove);
5310 	}
5311 	spin_unlock_irq(&memcg->event_list_lock);
5312 
5313 	page_counter_set_min(&memcg->memory, 0);
5314 	page_counter_set_low(&memcg->memory, 0);
5315 
5316 	memcg_offline_kmem(memcg);
5317 	reparent_shrinker_deferred(memcg);
5318 	wb_memcg_offline(memcg);
5319 
5320 	drain_all_stock(memcg);
5321 
5322 	mem_cgroup_id_put(memcg);
5323 }
5324 
5325 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5326 {
5327 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5328 
5329 	invalidate_reclaim_iterators(memcg);
5330 }
5331 
5332 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5333 {
5334 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5335 	int __maybe_unused i;
5336 
5337 #ifdef CONFIG_CGROUP_WRITEBACK
5338 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5339 		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5340 #endif
5341 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5342 		static_branch_dec(&memcg_sockets_enabled_key);
5343 
5344 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5345 		static_branch_dec(&memcg_sockets_enabled_key);
5346 
5347 	vmpressure_cleanup(&memcg->vmpressure);
5348 	cancel_work_sync(&memcg->high_work);
5349 	mem_cgroup_remove_from_trees(memcg);
5350 	free_shrinker_info(memcg);
5351 	mem_cgroup_free(memcg);
5352 }
5353 
5354 /**
5355  * mem_cgroup_css_reset - reset the states of a mem_cgroup
5356  * @css: the target css
5357  *
5358  * Reset the states of the mem_cgroup associated with @css.  This is
5359  * invoked when the userland requests disabling on the default hierarchy
5360  * but the memcg is pinned through dependency.  The memcg should stop
5361  * applying policies and should revert to the vanilla state as it may be
5362  * made visible again.
5363  *
5364  * The current implementation only resets the essential configurations.
5365  * This needs to be expanded to cover all the visible parts.
5366  */
5367 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5368 {
5369 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5370 
5371 	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5372 	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5373 	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5374 	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5375 	page_counter_set_min(&memcg->memory, 0);
5376 	page_counter_set_low(&memcg->memory, 0);
5377 	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5378 	memcg->soft_limit = PAGE_COUNTER_MAX;
5379 	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5380 	memcg_wb_domain_size_changed(memcg);
5381 }
5382 
5383 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5384 {
5385 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5386 	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5387 	struct memcg_vmstats_percpu *statc;
5388 	long delta, v;
5389 	int i, nid;
5390 
5391 	statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5392 
5393 	for (i = 0; i < MEMCG_NR_STAT; i++) {
5394 		/*
5395 		 * Collect the aggregated propagation counts of groups
5396 		 * below us. We're in a per-cpu loop here and this is
5397 		 * a global counter, so the first cycle will get them.
5398 		 */
5399 		delta = memcg->vmstats.state_pending[i];
5400 		if (delta)
5401 			memcg->vmstats.state_pending[i] = 0;
5402 
5403 		/* Add CPU changes on this level since the last flush */
5404 		v = READ_ONCE(statc->state[i]);
5405 		if (v != statc->state_prev[i]) {
5406 			delta += v - statc->state_prev[i];
5407 			statc->state_prev[i] = v;
5408 		}
5409 
5410 		if (!delta)
5411 			continue;
5412 
5413 		/* Aggregate counts on this level and propagate upwards */
5414 		memcg->vmstats.state[i] += delta;
5415 		if (parent)
5416 			parent->vmstats.state_pending[i] += delta;
5417 	}
5418 
5419 	for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
5420 		delta = memcg->vmstats.events_pending[i];
5421 		if (delta)
5422 			memcg->vmstats.events_pending[i] = 0;
5423 
5424 		v = READ_ONCE(statc->events[i]);
5425 		if (v != statc->events_prev[i]) {
5426 			delta += v - statc->events_prev[i];
5427 			statc->events_prev[i] = v;
5428 		}
5429 
5430 		if (!delta)
5431 			continue;
5432 
5433 		memcg->vmstats.events[i] += delta;
5434 		if (parent)
5435 			parent->vmstats.events_pending[i] += delta;
5436 	}
5437 
5438 	for_each_node_state(nid, N_MEMORY) {
5439 		struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
5440 		struct mem_cgroup_per_node *ppn = NULL;
5441 		struct lruvec_stats_percpu *lstatc;
5442 
5443 		if (parent)
5444 			ppn = parent->nodeinfo[nid];
5445 
5446 		lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
5447 
5448 		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
5449 			delta = pn->lruvec_stats.state_pending[i];
5450 			if (delta)
5451 				pn->lruvec_stats.state_pending[i] = 0;
5452 
5453 			v = READ_ONCE(lstatc->state[i]);
5454 			if (v != lstatc->state_prev[i]) {
5455 				delta += v - lstatc->state_prev[i];
5456 				lstatc->state_prev[i] = v;
5457 			}
5458 
5459 			if (!delta)
5460 				continue;
5461 
5462 			pn->lruvec_stats.state[i] += delta;
5463 			if (ppn)
5464 				ppn->lruvec_stats.state_pending[i] += delta;
5465 		}
5466 	}
5467 }
5468 
5469 #ifdef CONFIG_MMU
5470 /* Handlers for move charge at task migration. */
5471 static int mem_cgroup_do_precharge(unsigned long count)
5472 {
5473 	int ret;
5474 
5475 	/* Try a single bulk charge without reclaim first, kswapd may wake */
5476 	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5477 	if (!ret) {
5478 		mc.precharge += count;
5479 		return ret;
5480 	}
5481 
5482 	/* Try charges one by one with reclaim, but do not retry */
5483 	while (count--) {
5484 		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5485 		if (ret)
5486 			return ret;
5487 		mc.precharge++;
5488 		cond_resched();
5489 	}
5490 	return 0;
5491 }
5492 
5493 union mc_target {
5494 	struct page	*page;
5495 	swp_entry_t	ent;
5496 };
5497 
5498 enum mc_target_type {
5499 	MC_TARGET_NONE = 0,
5500 	MC_TARGET_PAGE,
5501 	MC_TARGET_SWAP,
5502 	MC_TARGET_DEVICE,
5503 };
5504 
5505 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5506 						unsigned long addr, pte_t ptent)
5507 {
5508 	struct page *page = vm_normal_page(vma, addr, ptent);
5509 
5510 	if (!page || !page_mapped(page))
5511 		return NULL;
5512 	if (PageAnon(page)) {
5513 		if (!(mc.flags & MOVE_ANON))
5514 			return NULL;
5515 	} else {
5516 		if (!(mc.flags & MOVE_FILE))
5517 			return NULL;
5518 	}
5519 	if (!get_page_unless_zero(page))
5520 		return NULL;
5521 
5522 	return page;
5523 }
5524 
5525 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5526 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5527 			pte_t ptent, swp_entry_t *entry)
5528 {
5529 	struct page *page = NULL;
5530 	swp_entry_t ent = pte_to_swp_entry(ptent);
5531 
5532 	if (!(mc.flags & MOVE_ANON))
5533 		return NULL;
5534 
5535 	/*
5536 	 * Handle device private pages that are not accessible by the CPU, but
5537 	 * stored as special swap entries in the page table.
5538 	 */
5539 	if (is_device_private_entry(ent)) {
5540 		page = pfn_swap_entry_to_page(ent);
5541 		if (!get_page_unless_zero(page))
5542 			return NULL;
5543 		return page;
5544 	}
5545 
5546 	if (non_swap_entry(ent))
5547 		return NULL;
5548 
5549 	/*
5550 	 * Because lookup_swap_cache() updates some statistics counter,
5551 	 * we call find_get_page() with swapper_space directly.
5552 	 */
5553 	page = find_get_page(swap_address_space(ent), swp_offset(ent));
5554 	entry->val = ent.val;
5555 
5556 	return page;
5557 }
5558 #else
5559 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5560 			pte_t ptent, swp_entry_t *entry)
5561 {
5562 	return NULL;
5563 }
5564 #endif
5565 
5566 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5567 			unsigned long addr, pte_t ptent)
5568 {
5569 	if (!vma->vm_file) /* anonymous vma */
5570 		return NULL;
5571 	if (!(mc.flags & MOVE_FILE))
5572 		return NULL;
5573 
5574 	/* page is moved even if it's not RSS of this task(page-faulted). */
5575 	/* shmem/tmpfs may report page out on swap: account for that too. */
5576 	return find_get_incore_page(vma->vm_file->f_mapping,
5577 			linear_page_index(vma, addr));
5578 }
5579 
5580 /**
5581  * mem_cgroup_move_account - move account of the page
5582  * @page: the page
5583  * @compound: charge the page as compound or small page
5584  * @from: mem_cgroup which the page is moved from.
5585  * @to:	mem_cgroup which the page is moved to. @from != @to.
5586  *
5587  * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5588  *
5589  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5590  * from old cgroup.
5591  */
5592 static int mem_cgroup_move_account(struct page *page,
5593 				   bool compound,
5594 				   struct mem_cgroup *from,
5595 				   struct mem_cgroup *to)
5596 {
5597 	struct folio *folio = page_folio(page);
5598 	struct lruvec *from_vec, *to_vec;
5599 	struct pglist_data *pgdat;
5600 	unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1;
5601 	int nid, ret;
5602 
5603 	VM_BUG_ON(from == to);
5604 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
5605 	VM_BUG_ON(compound && !folio_test_large(folio));
5606 
5607 	/*
5608 	 * Prevent mem_cgroup_migrate() from looking at
5609 	 * page's memory cgroup of its source page while we change it.
5610 	 */
5611 	ret = -EBUSY;
5612 	if (!folio_trylock(folio))
5613 		goto out;
5614 
5615 	ret = -EINVAL;
5616 	if (folio_memcg(folio) != from)
5617 		goto out_unlock;
5618 
5619 	pgdat = folio_pgdat(folio);
5620 	from_vec = mem_cgroup_lruvec(from, pgdat);
5621 	to_vec = mem_cgroup_lruvec(to, pgdat);
5622 
5623 	folio_memcg_lock(folio);
5624 
5625 	if (folio_test_anon(folio)) {
5626 		if (folio_mapped(folio)) {
5627 			__mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5628 			__mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5629 			if (folio_test_transhuge(folio)) {
5630 				__mod_lruvec_state(from_vec, NR_ANON_THPS,
5631 						   -nr_pages);
5632 				__mod_lruvec_state(to_vec, NR_ANON_THPS,
5633 						   nr_pages);
5634 			}
5635 		}
5636 	} else {
5637 		__mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5638 		__mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5639 
5640 		if (folio_test_swapbacked(folio)) {
5641 			__mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5642 			__mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5643 		}
5644 
5645 		if (folio_mapped(folio)) {
5646 			__mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5647 			__mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5648 		}
5649 
5650 		if (folio_test_dirty(folio)) {
5651 			struct address_space *mapping = folio_mapping(folio);
5652 
5653 			if (mapping_can_writeback(mapping)) {
5654 				__mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5655 						   -nr_pages);
5656 				__mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5657 						   nr_pages);
5658 			}
5659 		}
5660 	}
5661 
5662 	if (folio_test_writeback(folio)) {
5663 		__mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5664 		__mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5665 	}
5666 
5667 	/*
5668 	 * All state has been migrated, let's switch to the new memcg.
5669 	 *
5670 	 * It is safe to change page's memcg here because the page
5671 	 * is referenced, charged, isolated, and locked: we can't race
5672 	 * with (un)charging, migration, LRU putback, or anything else
5673 	 * that would rely on a stable page's memory cgroup.
5674 	 *
5675 	 * Note that lock_page_memcg is a memcg lock, not a page lock,
5676 	 * to save space. As soon as we switch page's memory cgroup to a
5677 	 * new memcg that isn't locked, the above state can change
5678 	 * concurrently again. Make sure we're truly done with it.
5679 	 */
5680 	smp_mb();
5681 
5682 	css_get(&to->css);
5683 	css_put(&from->css);
5684 
5685 	folio->memcg_data = (unsigned long)to;
5686 
5687 	__folio_memcg_unlock(from);
5688 
5689 	ret = 0;
5690 	nid = folio_nid(folio);
5691 
5692 	local_irq_disable();
5693 	mem_cgroup_charge_statistics(to, nr_pages);
5694 	memcg_check_events(to, nid);
5695 	mem_cgroup_charge_statistics(from, -nr_pages);
5696 	memcg_check_events(from, nid);
5697 	local_irq_enable();
5698 out_unlock:
5699 	folio_unlock(folio);
5700 out:
5701 	return ret;
5702 }
5703 
5704 /**
5705  * get_mctgt_type - get target type of moving charge
5706  * @vma: the vma the pte to be checked belongs
5707  * @addr: the address corresponding to the pte to be checked
5708  * @ptent: the pte to be checked
5709  * @target: the pointer the target page or swap ent will be stored(can be NULL)
5710  *
5711  * Returns
5712  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5713  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5714  *     move charge. if @target is not NULL, the page is stored in target->page
5715  *     with extra refcnt got(Callers should handle it).
5716  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5717  *     target for charge migration. if @target is not NULL, the entry is stored
5718  *     in target->ent.
5719  *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PRIVATE
5720  *     (so ZONE_DEVICE page and thus not on the lru).
5721  *     For now we such page is charge like a regular page would be as for all
5722  *     intent and purposes it is just special memory taking the place of a
5723  *     regular page.
5724  *
5725  *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5726  *
5727  * Called with pte lock held.
5728  */
5729 
5730 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5731 		unsigned long addr, pte_t ptent, union mc_target *target)
5732 {
5733 	struct page *page = NULL;
5734 	enum mc_target_type ret = MC_TARGET_NONE;
5735 	swp_entry_t ent = { .val = 0 };
5736 
5737 	if (pte_present(ptent))
5738 		page = mc_handle_present_pte(vma, addr, ptent);
5739 	else if (pte_none_mostly(ptent))
5740 		/*
5741 		 * PTE markers should be treated as a none pte here, separated
5742 		 * from other swap handling below.
5743 		 */
5744 		page = mc_handle_file_pte(vma, addr, ptent);
5745 	else if (is_swap_pte(ptent))
5746 		page = mc_handle_swap_pte(vma, ptent, &ent);
5747 
5748 	if (!page && !ent.val)
5749 		return ret;
5750 	if (page) {
5751 		/*
5752 		 * Do only loose check w/o serialization.
5753 		 * mem_cgroup_move_account() checks the page is valid or
5754 		 * not under LRU exclusion.
5755 		 */
5756 		if (page_memcg(page) == mc.from) {
5757 			ret = MC_TARGET_PAGE;
5758 			if (is_device_private_page(page))
5759 				ret = MC_TARGET_DEVICE;
5760 			if (target)
5761 				target->page = page;
5762 		}
5763 		if (!ret || !target)
5764 			put_page(page);
5765 	}
5766 	/*
5767 	 * There is a swap entry and a page doesn't exist or isn't charged.
5768 	 * But we cannot move a tail-page in a THP.
5769 	 */
5770 	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5771 	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5772 		ret = MC_TARGET_SWAP;
5773 		if (target)
5774 			target->ent = ent;
5775 	}
5776 	return ret;
5777 }
5778 
5779 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5780 /*
5781  * We don't consider PMD mapped swapping or file mapped pages because THP does
5782  * not support them for now.
5783  * Caller should make sure that pmd_trans_huge(pmd) is true.
5784  */
5785 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5786 		unsigned long addr, pmd_t pmd, union mc_target *target)
5787 {
5788 	struct page *page = NULL;
5789 	enum mc_target_type ret = MC_TARGET_NONE;
5790 
5791 	if (unlikely(is_swap_pmd(pmd))) {
5792 		VM_BUG_ON(thp_migration_supported() &&
5793 				  !is_pmd_migration_entry(pmd));
5794 		return ret;
5795 	}
5796 	page = pmd_page(pmd);
5797 	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5798 	if (!(mc.flags & MOVE_ANON))
5799 		return ret;
5800 	if (page_memcg(page) == mc.from) {
5801 		ret = MC_TARGET_PAGE;
5802 		if (target) {
5803 			get_page(page);
5804 			target->page = page;
5805 		}
5806 	}
5807 	return ret;
5808 }
5809 #else
5810 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5811 		unsigned long addr, pmd_t pmd, union mc_target *target)
5812 {
5813 	return MC_TARGET_NONE;
5814 }
5815 #endif
5816 
5817 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5818 					unsigned long addr, unsigned long end,
5819 					struct mm_walk *walk)
5820 {
5821 	struct vm_area_struct *vma = walk->vma;
5822 	pte_t *pte;
5823 	spinlock_t *ptl;
5824 
5825 	ptl = pmd_trans_huge_lock(pmd, vma);
5826 	if (ptl) {
5827 		/*
5828 		 * Note their can not be MC_TARGET_DEVICE for now as we do not
5829 		 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5830 		 * this might change.
5831 		 */
5832 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5833 			mc.precharge += HPAGE_PMD_NR;
5834 		spin_unlock(ptl);
5835 		return 0;
5836 	}
5837 
5838 	if (pmd_trans_unstable(pmd))
5839 		return 0;
5840 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5841 	for (; addr != end; pte++, addr += PAGE_SIZE)
5842 		if (get_mctgt_type(vma, addr, *pte, NULL))
5843 			mc.precharge++;	/* increment precharge temporarily */
5844 	pte_unmap_unlock(pte - 1, ptl);
5845 	cond_resched();
5846 
5847 	return 0;
5848 }
5849 
5850 static const struct mm_walk_ops precharge_walk_ops = {
5851 	.pmd_entry	= mem_cgroup_count_precharge_pte_range,
5852 };
5853 
5854 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5855 {
5856 	unsigned long precharge;
5857 
5858 	mmap_read_lock(mm);
5859 	walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5860 	mmap_read_unlock(mm);
5861 
5862 	precharge = mc.precharge;
5863 	mc.precharge = 0;
5864 
5865 	return precharge;
5866 }
5867 
5868 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5869 {
5870 	unsigned long precharge = mem_cgroup_count_precharge(mm);
5871 
5872 	VM_BUG_ON(mc.moving_task);
5873 	mc.moving_task = current;
5874 	return mem_cgroup_do_precharge(precharge);
5875 }
5876 
5877 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5878 static void __mem_cgroup_clear_mc(void)
5879 {
5880 	struct mem_cgroup *from = mc.from;
5881 	struct mem_cgroup *to = mc.to;
5882 
5883 	/* we must uncharge all the leftover precharges from mc.to */
5884 	if (mc.precharge) {
5885 		cancel_charge(mc.to, mc.precharge);
5886 		mc.precharge = 0;
5887 	}
5888 	/*
5889 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5890 	 * we must uncharge here.
5891 	 */
5892 	if (mc.moved_charge) {
5893 		cancel_charge(mc.from, mc.moved_charge);
5894 		mc.moved_charge = 0;
5895 	}
5896 	/* we must fixup refcnts and charges */
5897 	if (mc.moved_swap) {
5898 		/* uncharge swap account from the old cgroup */
5899 		if (!mem_cgroup_is_root(mc.from))
5900 			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5901 
5902 		mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5903 
5904 		/*
5905 		 * we charged both to->memory and to->memsw, so we
5906 		 * should uncharge to->memory.
5907 		 */
5908 		if (!mem_cgroup_is_root(mc.to))
5909 			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5910 
5911 		mc.moved_swap = 0;
5912 	}
5913 	memcg_oom_recover(from);
5914 	memcg_oom_recover(to);
5915 	wake_up_all(&mc.waitq);
5916 }
5917 
5918 static void mem_cgroup_clear_mc(void)
5919 {
5920 	struct mm_struct *mm = mc.mm;
5921 
5922 	/*
5923 	 * we must clear moving_task before waking up waiters at the end of
5924 	 * task migration.
5925 	 */
5926 	mc.moving_task = NULL;
5927 	__mem_cgroup_clear_mc();
5928 	spin_lock(&mc.lock);
5929 	mc.from = NULL;
5930 	mc.to = NULL;
5931 	mc.mm = NULL;
5932 	spin_unlock(&mc.lock);
5933 
5934 	mmput(mm);
5935 }
5936 
5937 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5938 {
5939 	struct cgroup_subsys_state *css;
5940 	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5941 	struct mem_cgroup *from;
5942 	struct task_struct *leader, *p;
5943 	struct mm_struct *mm;
5944 	unsigned long move_flags;
5945 	int ret = 0;
5946 
5947 	/* charge immigration isn't supported on the default hierarchy */
5948 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5949 		return 0;
5950 
5951 	/*
5952 	 * Multi-process migrations only happen on the default hierarchy
5953 	 * where charge immigration is not used.  Perform charge
5954 	 * immigration if @tset contains a leader and whine if there are
5955 	 * multiple.
5956 	 */
5957 	p = NULL;
5958 	cgroup_taskset_for_each_leader(leader, css, tset) {
5959 		WARN_ON_ONCE(p);
5960 		p = leader;
5961 		memcg = mem_cgroup_from_css(css);
5962 	}
5963 	if (!p)
5964 		return 0;
5965 
5966 	/*
5967 	 * We are now committed to this value whatever it is. Changes in this
5968 	 * tunable will only affect upcoming migrations, not the current one.
5969 	 * So we need to save it, and keep it going.
5970 	 */
5971 	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5972 	if (!move_flags)
5973 		return 0;
5974 
5975 	from = mem_cgroup_from_task(p);
5976 
5977 	VM_BUG_ON(from == memcg);
5978 
5979 	mm = get_task_mm(p);
5980 	if (!mm)
5981 		return 0;
5982 	/* We move charges only when we move a owner of the mm */
5983 	if (mm->owner == p) {
5984 		VM_BUG_ON(mc.from);
5985 		VM_BUG_ON(mc.to);
5986 		VM_BUG_ON(mc.precharge);
5987 		VM_BUG_ON(mc.moved_charge);
5988 		VM_BUG_ON(mc.moved_swap);
5989 
5990 		spin_lock(&mc.lock);
5991 		mc.mm = mm;
5992 		mc.from = from;
5993 		mc.to = memcg;
5994 		mc.flags = move_flags;
5995 		spin_unlock(&mc.lock);
5996 		/* We set mc.moving_task later */
5997 
5998 		ret = mem_cgroup_precharge_mc(mm);
5999 		if (ret)
6000 			mem_cgroup_clear_mc();
6001 	} else {
6002 		mmput(mm);
6003 	}
6004 	return ret;
6005 }
6006 
6007 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6008 {
6009 	if (mc.to)
6010 		mem_cgroup_clear_mc();
6011 }
6012 
6013 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6014 				unsigned long addr, unsigned long end,
6015 				struct mm_walk *walk)
6016 {
6017 	int ret = 0;
6018 	struct vm_area_struct *vma = walk->vma;
6019 	pte_t *pte;
6020 	spinlock_t *ptl;
6021 	enum mc_target_type target_type;
6022 	union mc_target target;
6023 	struct page *page;
6024 
6025 	ptl = pmd_trans_huge_lock(pmd, vma);
6026 	if (ptl) {
6027 		if (mc.precharge < HPAGE_PMD_NR) {
6028 			spin_unlock(ptl);
6029 			return 0;
6030 		}
6031 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6032 		if (target_type == MC_TARGET_PAGE) {
6033 			page = target.page;
6034 			if (!isolate_lru_page(page)) {
6035 				if (!mem_cgroup_move_account(page, true,
6036 							     mc.from, mc.to)) {
6037 					mc.precharge -= HPAGE_PMD_NR;
6038 					mc.moved_charge += HPAGE_PMD_NR;
6039 				}
6040 				putback_lru_page(page);
6041 			}
6042 			put_page(page);
6043 		} else if (target_type == MC_TARGET_DEVICE) {
6044 			page = target.page;
6045 			if (!mem_cgroup_move_account(page, true,
6046 						     mc.from, mc.to)) {
6047 				mc.precharge -= HPAGE_PMD_NR;
6048 				mc.moved_charge += HPAGE_PMD_NR;
6049 			}
6050 			put_page(page);
6051 		}
6052 		spin_unlock(ptl);
6053 		return 0;
6054 	}
6055 
6056 	if (pmd_trans_unstable(pmd))
6057 		return 0;
6058 retry:
6059 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6060 	for (; addr != end; addr += PAGE_SIZE) {
6061 		pte_t ptent = *(pte++);
6062 		bool device = false;
6063 		swp_entry_t ent;
6064 
6065 		if (!mc.precharge)
6066 			break;
6067 
6068 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6069 		case MC_TARGET_DEVICE:
6070 			device = true;
6071 			fallthrough;
6072 		case MC_TARGET_PAGE:
6073 			page = target.page;
6074 			/*
6075 			 * We can have a part of the split pmd here. Moving it
6076 			 * can be done but it would be too convoluted so simply
6077 			 * ignore such a partial THP and keep it in original
6078 			 * memcg. There should be somebody mapping the head.
6079 			 */
6080 			if (PageTransCompound(page))
6081 				goto put;
6082 			if (!device && isolate_lru_page(page))
6083 				goto put;
6084 			if (!mem_cgroup_move_account(page, false,
6085 						mc.from, mc.to)) {
6086 				mc.precharge--;
6087 				/* we uncharge from mc.from later. */
6088 				mc.moved_charge++;
6089 			}
6090 			if (!device)
6091 				putback_lru_page(page);
6092 put:			/* get_mctgt_type() gets the page */
6093 			put_page(page);
6094 			break;
6095 		case MC_TARGET_SWAP:
6096 			ent = target.ent;
6097 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6098 				mc.precharge--;
6099 				mem_cgroup_id_get_many(mc.to, 1);
6100 				/* we fixup other refcnts and charges later. */
6101 				mc.moved_swap++;
6102 			}
6103 			break;
6104 		default:
6105 			break;
6106 		}
6107 	}
6108 	pte_unmap_unlock(pte - 1, ptl);
6109 	cond_resched();
6110 
6111 	if (addr != end) {
6112 		/*
6113 		 * We have consumed all precharges we got in can_attach().
6114 		 * We try charge one by one, but don't do any additional
6115 		 * charges to mc.to if we have failed in charge once in attach()
6116 		 * phase.
6117 		 */
6118 		ret = mem_cgroup_do_precharge(1);
6119 		if (!ret)
6120 			goto retry;
6121 	}
6122 
6123 	return ret;
6124 }
6125 
6126 static const struct mm_walk_ops charge_walk_ops = {
6127 	.pmd_entry	= mem_cgroup_move_charge_pte_range,
6128 };
6129 
6130 static void mem_cgroup_move_charge(void)
6131 {
6132 	lru_add_drain_all();
6133 	/*
6134 	 * Signal lock_page_memcg() to take the memcg's move_lock
6135 	 * while we're moving its pages to another memcg. Then wait
6136 	 * for already started RCU-only updates to finish.
6137 	 */
6138 	atomic_inc(&mc.from->moving_account);
6139 	synchronize_rcu();
6140 retry:
6141 	if (unlikely(!mmap_read_trylock(mc.mm))) {
6142 		/*
6143 		 * Someone who are holding the mmap_lock might be waiting in
6144 		 * waitq. So we cancel all extra charges, wake up all waiters,
6145 		 * and retry. Because we cancel precharges, we might not be able
6146 		 * to move enough charges, but moving charge is a best-effort
6147 		 * feature anyway, so it wouldn't be a big problem.
6148 		 */
6149 		__mem_cgroup_clear_mc();
6150 		cond_resched();
6151 		goto retry;
6152 	}
6153 	/*
6154 	 * When we have consumed all precharges and failed in doing
6155 	 * additional charge, the page walk just aborts.
6156 	 */
6157 	walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6158 			NULL);
6159 
6160 	mmap_read_unlock(mc.mm);
6161 	atomic_dec(&mc.from->moving_account);
6162 }
6163 
6164 static void mem_cgroup_move_task(void)
6165 {
6166 	if (mc.to) {
6167 		mem_cgroup_move_charge();
6168 		mem_cgroup_clear_mc();
6169 	}
6170 }
6171 #else	/* !CONFIG_MMU */
6172 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6173 {
6174 	return 0;
6175 }
6176 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6177 {
6178 }
6179 static void mem_cgroup_move_task(void)
6180 {
6181 }
6182 #endif
6183 
6184 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6185 {
6186 	if (value == PAGE_COUNTER_MAX)
6187 		seq_puts(m, "max\n");
6188 	else
6189 		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6190 
6191 	return 0;
6192 }
6193 
6194 static u64 memory_current_read(struct cgroup_subsys_state *css,
6195 			       struct cftype *cft)
6196 {
6197 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6198 
6199 	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6200 }
6201 
6202 static u64 memory_peak_read(struct cgroup_subsys_state *css,
6203 			    struct cftype *cft)
6204 {
6205 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6206 
6207 	return (u64)memcg->memory.watermark * PAGE_SIZE;
6208 }
6209 
6210 static int memory_min_show(struct seq_file *m, void *v)
6211 {
6212 	return seq_puts_memcg_tunable(m,
6213 		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6214 }
6215 
6216 static ssize_t memory_min_write(struct kernfs_open_file *of,
6217 				char *buf, size_t nbytes, loff_t off)
6218 {
6219 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6220 	unsigned long min;
6221 	int err;
6222 
6223 	buf = strstrip(buf);
6224 	err = page_counter_memparse(buf, "max", &min);
6225 	if (err)
6226 		return err;
6227 
6228 	page_counter_set_min(&memcg->memory, min);
6229 
6230 	return nbytes;
6231 }
6232 
6233 static int memory_low_show(struct seq_file *m, void *v)
6234 {
6235 	return seq_puts_memcg_tunable(m,
6236 		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6237 }
6238 
6239 static ssize_t memory_low_write(struct kernfs_open_file *of,
6240 				char *buf, size_t nbytes, loff_t off)
6241 {
6242 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6243 	unsigned long low;
6244 	int err;
6245 
6246 	buf = strstrip(buf);
6247 	err = page_counter_memparse(buf, "max", &low);
6248 	if (err)
6249 		return err;
6250 
6251 	page_counter_set_low(&memcg->memory, low);
6252 
6253 	return nbytes;
6254 }
6255 
6256 static int memory_high_show(struct seq_file *m, void *v)
6257 {
6258 	return seq_puts_memcg_tunable(m,
6259 		READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6260 }
6261 
6262 static ssize_t memory_high_write(struct kernfs_open_file *of,
6263 				 char *buf, size_t nbytes, loff_t off)
6264 {
6265 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6266 	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6267 	bool drained = false;
6268 	unsigned long high;
6269 	int err;
6270 
6271 	buf = strstrip(buf);
6272 	err = page_counter_memparse(buf, "max", &high);
6273 	if (err)
6274 		return err;
6275 
6276 	page_counter_set_high(&memcg->memory, high);
6277 
6278 	for (;;) {
6279 		unsigned long nr_pages = page_counter_read(&memcg->memory);
6280 		unsigned long reclaimed;
6281 
6282 		if (nr_pages <= high)
6283 			break;
6284 
6285 		if (signal_pending(current))
6286 			break;
6287 
6288 		if (!drained) {
6289 			drain_all_stock(memcg);
6290 			drained = true;
6291 			continue;
6292 		}
6293 
6294 		reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6295 							 GFP_KERNEL, true);
6296 
6297 		if (!reclaimed && !nr_retries--)
6298 			break;
6299 	}
6300 
6301 	memcg_wb_domain_size_changed(memcg);
6302 	return nbytes;
6303 }
6304 
6305 static int memory_max_show(struct seq_file *m, void *v)
6306 {
6307 	return seq_puts_memcg_tunable(m,
6308 		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6309 }
6310 
6311 static ssize_t memory_max_write(struct kernfs_open_file *of,
6312 				char *buf, size_t nbytes, loff_t off)
6313 {
6314 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6315 	unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6316 	bool drained = false;
6317 	unsigned long max;
6318 	int err;
6319 
6320 	buf = strstrip(buf);
6321 	err = page_counter_memparse(buf, "max", &max);
6322 	if (err)
6323 		return err;
6324 
6325 	xchg(&memcg->memory.max, max);
6326 
6327 	for (;;) {
6328 		unsigned long nr_pages = page_counter_read(&memcg->memory);
6329 
6330 		if (nr_pages <= max)
6331 			break;
6332 
6333 		if (signal_pending(current))
6334 			break;
6335 
6336 		if (!drained) {
6337 			drain_all_stock(memcg);
6338 			drained = true;
6339 			continue;
6340 		}
6341 
6342 		if (nr_reclaims) {
6343 			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6344 							  GFP_KERNEL, true))
6345 				nr_reclaims--;
6346 			continue;
6347 		}
6348 
6349 		memcg_memory_event(memcg, MEMCG_OOM);
6350 		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6351 			break;
6352 	}
6353 
6354 	memcg_wb_domain_size_changed(memcg);
6355 	return nbytes;
6356 }
6357 
6358 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6359 {
6360 	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6361 	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6362 	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6363 	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6364 	seq_printf(m, "oom_kill %lu\n",
6365 		   atomic_long_read(&events[MEMCG_OOM_KILL]));
6366 	seq_printf(m, "oom_group_kill %lu\n",
6367 		   atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
6368 }
6369 
6370 static int memory_events_show(struct seq_file *m, void *v)
6371 {
6372 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6373 
6374 	__memory_events_show(m, memcg->memory_events);
6375 	return 0;
6376 }
6377 
6378 static int memory_events_local_show(struct seq_file *m, void *v)
6379 {
6380 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6381 
6382 	__memory_events_show(m, memcg->memory_events_local);
6383 	return 0;
6384 }
6385 
6386 static int memory_stat_show(struct seq_file *m, void *v)
6387 {
6388 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6389 	char *buf;
6390 
6391 	buf = memory_stat_format(memcg);
6392 	if (!buf)
6393 		return -ENOMEM;
6394 	seq_puts(m, buf);
6395 	kfree(buf);
6396 	return 0;
6397 }
6398 
6399 #ifdef CONFIG_NUMA
6400 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6401 						     int item)
6402 {
6403 	return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6404 }
6405 
6406 static int memory_numa_stat_show(struct seq_file *m, void *v)
6407 {
6408 	int i;
6409 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6410 
6411 	mem_cgroup_flush_stats();
6412 
6413 	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6414 		int nid;
6415 
6416 		if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6417 			continue;
6418 
6419 		seq_printf(m, "%s", memory_stats[i].name);
6420 		for_each_node_state(nid, N_MEMORY) {
6421 			u64 size;
6422 			struct lruvec *lruvec;
6423 
6424 			lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6425 			size = lruvec_page_state_output(lruvec,
6426 							memory_stats[i].idx);
6427 			seq_printf(m, " N%d=%llu", nid, size);
6428 		}
6429 		seq_putc(m, '\n');
6430 	}
6431 
6432 	return 0;
6433 }
6434 #endif
6435 
6436 static int memory_oom_group_show(struct seq_file *m, void *v)
6437 {
6438 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6439 
6440 	seq_printf(m, "%d\n", memcg->oom_group);
6441 
6442 	return 0;
6443 }
6444 
6445 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6446 				      char *buf, size_t nbytes, loff_t off)
6447 {
6448 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6449 	int ret, oom_group;
6450 
6451 	buf = strstrip(buf);
6452 	if (!buf)
6453 		return -EINVAL;
6454 
6455 	ret = kstrtoint(buf, 0, &oom_group);
6456 	if (ret)
6457 		return ret;
6458 
6459 	if (oom_group != 0 && oom_group != 1)
6460 		return -EINVAL;
6461 
6462 	memcg->oom_group = oom_group;
6463 
6464 	return nbytes;
6465 }
6466 
6467 static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf,
6468 			      size_t nbytes, loff_t off)
6469 {
6470 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6471 	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6472 	unsigned long nr_to_reclaim, nr_reclaimed = 0;
6473 	int err;
6474 
6475 	buf = strstrip(buf);
6476 	err = page_counter_memparse(buf, "", &nr_to_reclaim);
6477 	if (err)
6478 		return err;
6479 
6480 	while (nr_reclaimed < nr_to_reclaim) {
6481 		unsigned long reclaimed;
6482 
6483 		if (signal_pending(current))
6484 			return -EINTR;
6485 
6486 		/*
6487 		 * This is the final attempt, drain percpu lru caches in the
6488 		 * hope of introducing more evictable pages for
6489 		 * try_to_free_mem_cgroup_pages().
6490 		 */
6491 		if (!nr_retries)
6492 			lru_add_drain_all();
6493 
6494 		reclaimed = try_to_free_mem_cgroup_pages(memcg,
6495 						nr_to_reclaim - nr_reclaimed,
6496 						GFP_KERNEL, true);
6497 
6498 		if (!reclaimed && !nr_retries--)
6499 			return -EAGAIN;
6500 
6501 		nr_reclaimed += reclaimed;
6502 	}
6503 
6504 	return nbytes;
6505 }
6506 
6507 static struct cftype memory_files[] = {
6508 	{
6509 		.name = "current",
6510 		.flags = CFTYPE_NOT_ON_ROOT,
6511 		.read_u64 = memory_current_read,
6512 	},
6513 	{
6514 		.name = "peak",
6515 		.flags = CFTYPE_NOT_ON_ROOT,
6516 		.read_u64 = memory_peak_read,
6517 	},
6518 	{
6519 		.name = "min",
6520 		.flags = CFTYPE_NOT_ON_ROOT,
6521 		.seq_show = memory_min_show,
6522 		.write = memory_min_write,
6523 	},
6524 	{
6525 		.name = "low",
6526 		.flags = CFTYPE_NOT_ON_ROOT,
6527 		.seq_show = memory_low_show,
6528 		.write = memory_low_write,
6529 	},
6530 	{
6531 		.name = "high",
6532 		.flags = CFTYPE_NOT_ON_ROOT,
6533 		.seq_show = memory_high_show,
6534 		.write = memory_high_write,
6535 	},
6536 	{
6537 		.name = "max",
6538 		.flags = CFTYPE_NOT_ON_ROOT,
6539 		.seq_show = memory_max_show,
6540 		.write = memory_max_write,
6541 	},
6542 	{
6543 		.name = "events",
6544 		.flags = CFTYPE_NOT_ON_ROOT,
6545 		.file_offset = offsetof(struct mem_cgroup, events_file),
6546 		.seq_show = memory_events_show,
6547 	},
6548 	{
6549 		.name = "events.local",
6550 		.flags = CFTYPE_NOT_ON_ROOT,
6551 		.file_offset = offsetof(struct mem_cgroup, events_local_file),
6552 		.seq_show = memory_events_local_show,
6553 	},
6554 	{
6555 		.name = "stat",
6556 		.seq_show = memory_stat_show,
6557 	},
6558 #ifdef CONFIG_NUMA
6559 	{
6560 		.name = "numa_stat",
6561 		.seq_show = memory_numa_stat_show,
6562 	},
6563 #endif
6564 	{
6565 		.name = "oom.group",
6566 		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6567 		.seq_show = memory_oom_group_show,
6568 		.write = memory_oom_group_write,
6569 	},
6570 	{
6571 		.name = "reclaim",
6572 		.flags = CFTYPE_NS_DELEGATABLE,
6573 		.write = memory_reclaim,
6574 	},
6575 	{ }	/* terminate */
6576 };
6577 
6578 struct cgroup_subsys memory_cgrp_subsys = {
6579 	.css_alloc = mem_cgroup_css_alloc,
6580 	.css_online = mem_cgroup_css_online,
6581 	.css_offline = mem_cgroup_css_offline,
6582 	.css_released = mem_cgroup_css_released,
6583 	.css_free = mem_cgroup_css_free,
6584 	.css_reset = mem_cgroup_css_reset,
6585 	.css_rstat_flush = mem_cgroup_css_rstat_flush,
6586 	.can_attach = mem_cgroup_can_attach,
6587 	.cancel_attach = mem_cgroup_cancel_attach,
6588 	.post_attach = mem_cgroup_move_task,
6589 	.dfl_cftypes = memory_files,
6590 	.legacy_cftypes = mem_cgroup_legacy_files,
6591 	.early_init = 0,
6592 };
6593 
6594 /*
6595  * This function calculates an individual cgroup's effective
6596  * protection which is derived from its own memory.min/low, its
6597  * parent's and siblings' settings, as well as the actual memory
6598  * distribution in the tree.
6599  *
6600  * The following rules apply to the effective protection values:
6601  *
6602  * 1. At the first level of reclaim, effective protection is equal to
6603  *    the declared protection in memory.min and memory.low.
6604  *
6605  * 2. To enable safe delegation of the protection configuration, at
6606  *    subsequent levels the effective protection is capped to the
6607  *    parent's effective protection.
6608  *
6609  * 3. To make complex and dynamic subtrees easier to configure, the
6610  *    user is allowed to overcommit the declared protection at a given
6611  *    level. If that is the case, the parent's effective protection is
6612  *    distributed to the children in proportion to how much protection
6613  *    they have declared and how much of it they are utilizing.
6614  *
6615  *    This makes distribution proportional, but also work-conserving:
6616  *    if one cgroup claims much more protection than it uses memory,
6617  *    the unused remainder is available to its siblings.
6618  *
6619  * 4. Conversely, when the declared protection is undercommitted at a
6620  *    given level, the distribution of the larger parental protection
6621  *    budget is NOT proportional. A cgroup's protection from a sibling
6622  *    is capped to its own memory.min/low setting.
6623  *
6624  * 5. However, to allow protecting recursive subtrees from each other
6625  *    without having to declare each individual cgroup's fixed share
6626  *    of the ancestor's claim to protection, any unutilized -
6627  *    "floating" - protection from up the tree is distributed in
6628  *    proportion to each cgroup's *usage*. This makes the protection
6629  *    neutral wrt sibling cgroups and lets them compete freely over
6630  *    the shared parental protection budget, but it protects the
6631  *    subtree as a whole from neighboring subtrees.
6632  *
6633  * Note that 4. and 5. are not in conflict: 4. is about protecting
6634  * against immediate siblings whereas 5. is about protecting against
6635  * neighboring subtrees.
6636  */
6637 static unsigned long effective_protection(unsigned long usage,
6638 					  unsigned long parent_usage,
6639 					  unsigned long setting,
6640 					  unsigned long parent_effective,
6641 					  unsigned long siblings_protected)
6642 {
6643 	unsigned long protected;
6644 	unsigned long ep;
6645 
6646 	protected = min(usage, setting);
6647 	/*
6648 	 * If all cgroups at this level combined claim and use more
6649 	 * protection then what the parent affords them, distribute
6650 	 * shares in proportion to utilization.
6651 	 *
6652 	 * We are using actual utilization rather than the statically
6653 	 * claimed protection in order to be work-conserving: claimed
6654 	 * but unused protection is available to siblings that would
6655 	 * otherwise get a smaller chunk than what they claimed.
6656 	 */
6657 	if (siblings_protected > parent_effective)
6658 		return protected * parent_effective / siblings_protected;
6659 
6660 	/*
6661 	 * Ok, utilized protection of all children is within what the
6662 	 * parent affords them, so we know whatever this child claims
6663 	 * and utilizes is effectively protected.
6664 	 *
6665 	 * If there is unprotected usage beyond this value, reclaim
6666 	 * will apply pressure in proportion to that amount.
6667 	 *
6668 	 * If there is unutilized protection, the cgroup will be fully
6669 	 * shielded from reclaim, but we do return a smaller value for
6670 	 * protection than what the group could enjoy in theory. This
6671 	 * is okay. With the overcommit distribution above, effective
6672 	 * protection is always dependent on how memory is actually
6673 	 * consumed among the siblings anyway.
6674 	 */
6675 	ep = protected;
6676 
6677 	/*
6678 	 * If the children aren't claiming (all of) the protection
6679 	 * afforded to them by the parent, distribute the remainder in
6680 	 * proportion to the (unprotected) memory of each cgroup. That
6681 	 * way, cgroups that aren't explicitly prioritized wrt each
6682 	 * other compete freely over the allowance, but they are
6683 	 * collectively protected from neighboring trees.
6684 	 *
6685 	 * We're using unprotected memory for the weight so that if
6686 	 * some cgroups DO claim explicit protection, we don't protect
6687 	 * the same bytes twice.
6688 	 *
6689 	 * Check both usage and parent_usage against the respective
6690 	 * protected values. One should imply the other, but they
6691 	 * aren't read atomically - make sure the division is sane.
6692 	 */
6693 	if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6694 		return ep;
6695 	if (parent_effective > siblings_protected &&
6696 	    parent_usage > siblings_protected &&
6697 	    usage > protected) {
6698 		unsigned long unclaimed;
6699 
6700 		unclaimed = parent_effective - siblings_protected;
6701 		unclaimed *= usage - protected;
6702 		unclaimed /= parent_usage - siblings_protected;
6703 
6704 		ep += unclaimed;
6705 	}
6706 
6707 	return ep;
6708 }
6709 
6710 /**
6711  * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
6712  * @root: the top ancestor of the sub-tree being checked
6713  * @memcg: the memory cgroup to check
6714  *
6715  * WARNING: This function is not stateless! It can only be used as part
6716  *          of a top-down tree iteration, not for isolated queries.
6717  */
6718 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6719 				     struct mem_cgroup *memcg)
6720 {
6721 	unsigned long usage, parent_usage;
6722 	struct mem_cgroup *parent;
6723 
6724 	if (mem_cgroup_disabled())
6725 		return;
6726 
6727 	if (!root)
6728 		root = root_mem_cgroup;
6729 
6730 	/*
6731 	 * Effective values of the reclaim targets are ignored so they
6732 	 * can be stale. Have a look at mem_cgroup_protection for more
6733 	 * details.
6734 	 * TODO: calculation should be more robust so that we do not need
6735 	 * that special casing.
6736 	 */
6737 	if (memcg == root)
6738 		return;
6739 
6740 	usage = page_counter_read(&memcg->memory);
6741 	if (!usage)
6742 		return;
6743 
6744 	parent = parent_mem_cgroup(memcg);
6745 
6746 	if (parent == root) {
6747 		memcg->memory.emin = READ_ONCE(memcg->memory.min);
6748 		memcg->memory.elow = READ_ONCE(memcg->memory.low);
6749 		return;
6750 	}
6751 
6752 	parent_usage = page_counter_read(&parent->memory);
6753 
6754 	WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6755 			READ_ONCE(memcg->memory.min),
6756 			READ_ONCE(parent->memory.emin),
6757 			atomic_long_read(&parent->memory.children_min_usage)));
6758 
6759 	WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6760 			READ_ONCE(memcg->memory.low),
6761 			READ_ONCE(parent->memory.elow),
6762 			atomic_long_read(&parent->memory.children_low_usage)));
6763 }
6764 
6765 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
6766 			gfp_t gfp)
6767 {
6768 	long nr_pages = folio_nr_pages(folio);
6769 	int ret;
6770 
6771 	ret = try_charge(memcg, gfp, nr_pages);
6772 	if (ret)
6773 		goto out;
6774 
6775 	css_get(&memcg->css);
6776 	commit_charge(folio, memcg);
6777 
6778 	local_irq_disable();
6779 	mem_cgroup_charge_statistics(memcg, nr_pages);
6780 	memcg_check_events(memcg, folio_nid(folio));
6781 	local_irq_enable();
6782 out:
6783 	return ret;
6784 }
6785 
6786 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
6787 {
6788 	struct mem_cgroup *memcg;
6789 	int ret;
6790 
6791 	memcg = get_mem_cgroup_from_mm(mm);
6792 	ret = charge_memcg(folio, memcg, gfp);
6793 	css_put(&memcg->css);
6794 
6795 	return ret;
6796 }
6797 
6798 /**
6799  * mem_cgroup_swapin_charge_page - charge a newly allocated page for swapin
6800  * @page: page to charge
6801  * @mm: mm context of the victim
6802  * @gfp: reclaim mode
6803  * @entry: swap entry for which the page is allocated
6804  *
6805  * This function charges a page allocated for swapin. Please call this before
6806  * adding the page to the swapcache.
6807  *
6808  * Returns 0 on success. Otherwise, an error code is returned.
6809  */
6810 int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm,
6811 				  gfp_t gfp, swp_entry_t entry)
6812 {
6813 	struct folio *folio = page_folio(page);
6814 	struct mem_cgroup *memcg;
6815 	unsigned short id;
6816 	int ret;
6817 
6818 	if (mem_cgroup_disabled())
6819 		return 0;
6820 
6821 	id = lookup_swap_cgroup_id(entry);
6822 	rcu_read_lock();
6823 	memcg = mem_cgroup_from_id(id);
6824 	if (!memcg || !css_tryget_online(&memcg->css))
6825 		memcg = get_mem_cgroup_from_mm(mm);
6826 	rcu_read_unlock();
6827 
6828 	ret = charge_memcg(folio, memcg, gfp);
6829 
6830 	css_put(&memcg->css);
6831 	return ret;
6832 }
6833 
6834 /*
6835  * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
6836  * @entry: swap entry for which the page is charged
6837  *
6838  * Call this function after successfully adding the charged page to swapcache.
6839  *
6840  * Note: This function assumes the page for which swap slot is being uncharged
6841  * is order 0 page.
6842  */
6843 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
6844 {
6845 	/*
6846 	 * Cgroup1's unified memory+swap counter has been charged with the
6847 	 * new swapcache page, finish the transfer by uncharging the swap
6848 	 * slot. The swap slot would also get uncharged when it dies, but
6849 	 * it can stick around indefinitely and we'd count the page twice
6850 	 * the entire time.
6851 	 *
6852 	 * Cgroup2 has separate resource counters for memory and swap,
6853 	 * so this is a non-issue here. Memory and swap charge lifetimes
6854 	 * correspond 1:1 to page and swap slot lifetimes: we charge the
6855 	 * page to memory here, and uncharge swap when the slot is freed.
6856 	 */
6857 	if (!mem_cgroup_disabled() && do_memsw_account()) {
6858 		/*
6859 		 * The swap entry might not get freed for a long time,
6860 		 * let's not wait for it.  The page already received a
6861 		 * memory+swap charge, drop the swap entry duplicate.
6862 		 */
6863 		mem_cgroup_uncharge_swap(entry, 1);
6864 	}
6865 }
6866 
6867 struct uncharge_gather {
6868 	struct mem_cgroup *memcg;
6869 	unsigned long nr_memory;
6870 	unsigned long pgpgout;
6871 	unsigned long nr_kmem;
6872 	int nid;
6873 };
6874 
6875 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6876 {
6877 	memset(ug, 0, sizeof(*ug));
6878 }
6879 
6880 static void uncharge_batch(const struct uncharge_gather *ug)
6881 {
6882 	unsigned long flags;
6883 
6884 	if (ug->nr_memory) {
6885 		page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
6886 		if (do_memsw_account())
6887 			page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
6888 		if (ug->nr_kmem)
6889 			memcg_account_kmem(ug->memcg, -ug->nr_kmem);
6890 		memcg_oom_recover(ug->memcg);
6891 	}
6892 
6893 	local_irq_save(flags);
6894 	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6895 	__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
6896 	memcg_check_events(ug->memcg, ug->nid);
6897 	local_irq_restore(flags);
6898 
6899 	/* drop reference from uncharge_folio */
6900 	css_put(&ug->memcg->css);
6901 }
6902 
6903 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
6904 {
6905 	long nr_pages;
6906 	struct mem_cgroup *memcg;
6907 	struct obj_cgroup *objcg;
6908 
6909 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
6910 
6911 	/*
6912 	 * Nobody should be changing or seriously looking at
6913 	 * folio memcg or objcg at this point, we have fully
6914 	 * exclusive access to the folio.
6915 	 */
6916 	if (folio_memcg_kmem(folio)) {
6917 		objcg = __folio_objcg(folio);
6918 		/*
6919 		 * This get matches the put at the end of the function and
6920 		 * kmem pages do not hold memcg references anymore.
6921 		 */
6922 		memcg = get_mem_cgroup_from_objcg(objcg);
6923 	} else {
6924 		memcg = __folio_memcg(folio);
6925 	}
6926 
6927 	if (!memcg)
6928 		return;
6929 
6930 	if (ug->memcg != memcg) {
6931 		if (ug->memcg) {
6932 			uncharge_batch(ug);
6933 			uncharge_gather_clear(ug);
6934 		}
6935 		ug->memcg = memcg;
6936 		ug->nid = folio_nid(folio);
6937 
6938 		/* pairs with css_put in uncharge_batch */
6939 		css_get(&memcg->css);
6940 	}
6941 
6942 	nr_pages = folio_nr_pages(folio);
6943 
6944 	if (folio_memcg_kmem(folio)) {
6945 		ug->nr_memory += nr_pages;
6946 		ug->nr_kmem += nr_pages;
6947 
6948 		folio->memcg_data = 0;
6949 		obj_cgroup_put(objcg);
6950 	} else {
6951 		/* LRU pages aren't accounted at the root level */
6952 		if (!mem_cgroup_is_root(memcg))
6953 			ug->nr_memory += nr_pages;
6954 		ug->pgpgout++;
6955 
6956 		folio->memcg_data = 0;
6957 	}
6958 
6959 	css_put(&memcg->css);
6960 }
6961 
6962 void __mem_cgroup_uncharge(struct folio *folio)
6963 {
6964 	struct uncharge_gather ug;
6965 
6966 	/* Don't touch folio->lru of any random page, pre-check: */
6967 	if (!folio_memcg(folio))
6968 		return;
6969 
6970 	uncharge_gather_clear(&ug);
6971 	uncharge_folio(folio, &ug);
6972 	uncharge_batch(&ug);
6973 }
6974 
6975 /**
6976  * __mem_cgroup_uncharge_list - uncharge a list of page
6977  * @page_list: list of pages to uncharge
6978  *
6979  * Uncharge a list of pages previously charged with
6980  * __mem_cgroup_charge().
6981  */
6982 void __mem_cgroup_uncharge_list(struct list_head *page_list)
6983 {
6984 	struct uncharge_gather ug;
6985 	struct folio *folio;
6986 
6987 	uncharge_gather_clear(&ug);
6988 	list_for_each_entry(folio, page_list, lru)
6989 		uncharge_folio(folio, &ug);
6990 	if (ug.memcg)
6991 		uncharge_batch(&ug);
6992 }
6993 
6994 /**
6995  * mem_cgroup_migrate - Charge a folio's replacement.
6996  * @old: Currently circulating folio.
6997  * @new: Replacement folio.
6998  *
6999  * Charge @new as a replacement folio for @old. @old will
7000  * be uncharged upon free.
7001  *
7002  * Both folios must be locked, @new->mapping must be set up.
7003  */
7004 void mem_cgroup_migrate(struct folio *old, struct folio *new)
7005 {
7006 	struct mem_cgroup *memcg;
7007 	long nr_pages = folio_nr_pages(new);
7008 	unsigned long flags;
7009 
7010 	VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
7011 	VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
7012 	VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
7013 	VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
7014 
7015 	if (mem_cgroup_disabled())
7016 		return;
7017 
7018 	/* Page cache replacement: new folio already charged? */
7019 	if (folio_memcg(new))
7020 		return;
7021 
7022 	memcg = folio_memcg(old);
7023 	VM_WARN_ON_ONCE_FOLIO(!memcg, old);
7024 	if (!memcg)
7025 		return;
7026 
7027 	/* Force-charge the new page. The old one will be freed soon */
7028 	if (!mem_cgroup_is_root(memcg)) {
7029 		page_counter_charge(&memcg->memory, nr_pages);
7030 		if (do_memsw_account())
7031 			page_counter_charge(&memcg->memsw, nr_pages);
7032 	}
7033 
7034 	css_get(&memcg->css);
7035 	commit_charge(new, memcg);
7036 
7037 	local_irq_save(flags);
7038 	mem_cgroup_charge_statistics(memcg, nr_pages);
7039 	memcg_check_events(memcg, folio_nid(new));
7040 	local_irq_restore(flags);
7041 }
7042 
7043 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
7044 EXPORT_SYMBOL(memcg_sockets_enabled_key);
7045 
7046 void mem_cgroup_sk_alloc(struct sock *sk)
7047 {
7048 	struct mem_cgroup *memcg;
7049 
7050 	if (!mem_cgroup_sockets_enabled)
7051 		return;
7052 
7053 	/* Do not associate the sock with unrelated interrupted task's memcg. */
7054 	if (!in_task())
7055 		return;
7056 
7057 	rcu_read_lock();
7058 	memcg = mem_cgroup_from_task(current);
7059 	if (memcg == root_mem_cgroup)
7060 		goto out;
7061 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
7062 		goto out;
7063 	if (css_tryget(&memcg->css))
7064 		sk->sk_memcg = memcg;
7065 out:
7066 	rcu_read_unlock();
7067 }
7068 
7069 void mem_cgroup_sk_free(struct sock *sk)
7070 {
7071 	if (sk->sk_memcg)
7072 		css_put(&sk->sk_memcg->css);
7073 }
7074 
7075 /**
7076  * mem_cgroup_charge_skmem - charge socket memory
7077  * @memcg: memcg to charge
7078  * @nr_pages: number of pages to charge
7079  * @gfp_mask: reclaim mode
7080  *
7081  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7082  * @memcg's configured limit, %false if it doesn't.
7083  */
7084 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
7085 			     gfp_t gfp_mask)
7086 {
7087 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7088 		struct page_counter *fail;
7089 
7090 		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7091 			memcg->tcpmem_pressure = 0;
7092 			return true;
7093 		}
7094 		memcg->tcpmem_pressure = 1;
7095 		if (gfp_mask & __GFP_NOFAIL) {
7096 			page_counter_charge(&memcg->tcpmem, nr_pages);
7097 			return true;
7098 		}
7099 		return false;
7100 	}
7101 
7102 	if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
7103 		mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7104 		return true;
7105 	}
7106 
7107 	return false;
7108 }
7109 
7110 /**
7111  * mem_cgroup_uncharge_skmem - uncharge socket memory
7112  * @memcg: memcg to uncharge
7113  * @nr_pages: number of pages to uncharge
7114  */
7115 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7116 {
7117 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7118 		page_counter_uncharge(&memcg->tcpmem, nr_pages);
7119 		return;
7120 	}
7121 
7122 	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7123 
7124 	refill_stock(memcg, nr_pages);
7125 }
7126 
7127 static int __init cgroup_memory(char *s)
7128 {
7129 	char *token;
7130 
7131 	while ((token = strsep(&s, ",")) != NULL) {
7132 		if (!*token)
7133 			continue;
7134 		if (!strcmp(token, "nosocket"))
7135 			cgroup_memory_nosocket = true;
7136 		if (!strcmp(token, "nokmem"))
7137 			cgroup_memory_nokmem = true;
7138 	}
7139 	return 1;
7140 }
7141 __setup("cgroup.memory=", cgroup_memory);
7142 
7143 /*
7144  * subsys_initcall() for memory controller.
7145  *
7146  * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7147  * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7148  * basically everything that doesn't depend on a specific mem_cgroup structure
7149  * should be initialized from here.
7150  */
7151 static int __init mem_cgroup_init(void)
7152 {
7153 	int cpu, node;
7154 
7155 	/*
7156 	 * Currently s32 type (can refer to struct batched_lruvec_stat) is
7157 	 * used for per-memcg-per-cpu caching of per-node statistics. In order
7158 	 * to work fine, we should make sure that the overfill threshold can't
7159 	 * exceed S32_MAX / PAGE_SIZE.
7160 	 */
7161 	BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7162 
7163 	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7164 				  memcg_hotplug_cpu_dead);
7165 
7166 	for_each_possible_cpu(cpu)
7167 		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7168 			  drain_local_stock);
7169 
7170 	for_each_node(node) {
7171 		struct mem_cgroup_tree_per_node *rtpn;
7172 
7173 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7174 				    node_online(node) ? node : NUMA_NO_NODE);
7175 
7176 		rtpn->rb_root = RB_ROOT;
7177 		rtpn->rb_rightmost = NULL;
7178 		spin_lock_init(&rtpn->lock);
7179 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
7180 	}
7181 
7182 	return 0;
7183 }
7184 subsys_initcall(mem_cgroup_init);
7185 
7186 #ifdef CONFIG_MEMCG_SWAP
7187 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7188 {
7189 	while (!refcount_inc_not_zero(&memcg->id.ref)) {
7190 		/*
7191 		 * The root cgroup cannot be destroyed, so it's refcount must
7192 		 * always be >= 1.
7193 		 */
7194 		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7195 			VM_BUG_ON(1);
7196 			break;
7197 		}
7198 		memcg = parent_mem_cgroup(memcg);
7199 		if (!memcg)
7200 			memcg = root_mem_cgroup;
7201 	}
7202 	return memcg;
7203 }
7204 
7205 /**
7206  * mem_cgroup_swapout - transfer a memsw charge to swap
7207  * @folio: folio whose memsw charge to transfer
7208  * @entry: swap entry to move the charge to
7209  *
7210  * Transfer the memsw charge of @folio to @entry.
7211  */
7212 void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry)
7213 {
7214 	struct mem_cgroup *memcg, *swap_memcg;
7215 	unsigned int nr_entries;
7216 	unsigned short oldid;
7217 
7218 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7219 	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
7220 
7221 	if (mem_cgroup_disabled())
7222 		return;
7223 
7224 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7225 		return;
7226 
7227 	memcg = folio_memcg(folio);
7228 
7229 	VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7230 	if (!memcg)
7231 		return;
7232 
7233 	/*
7234 	 * In case the memcg owning these pages has been offlined and doesn't
7235 	 * have an ID allocated to it anymore, charge the closest online
7236 	 * ancestor for the swap instead and transfer the memory+swap charge.
7237 	 */
7238 	swap_memcg = mem_cgroup_id_get_online(memcg);
7239 	nr_entries = folio_nr_pages(folio);
7240 	/* Get references for the tail pages, too */
7241 	if (nr_entries > 1)
7242 		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7243 	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7244 				   nr_entries);
7245 	VM_BUG_ON_FOLIO(oldid, folio);
7246 	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7247 
7248 	folio->memcg_data = 0;
7249 
7250 	if (!mem_cgroup_is_root(memcg))
7251 		page_counter_uncharge(&memcg->memory, nr_entries);
7252 
7253 	if (!cgroup_memory_noswap && memcg != swap_memcg) {
7254 		if (!mem_cgroup_is_root(swap_memcg))
7255 			page_counter_charge(&swap_memcg->memsw, nr_entries);
7256 		page_counter_uncharge(&memcg->memsw, nr_entries);
7257 	}
7258 
7259 	/*
7260 	 * Interrupts should be disabled here because the caller holds the
7261 	 * i_pages lock which is taken with interrupts-off. It is
7262 	 * important here to have the interrupts disabled because it is the
7263 	 * only synchronisation we have for updating the per-CPU variables.
7264 	 */
7265 	memcg_stats_lock();
7266 	mem_cgroup_charge_statistics(memcg, -nr_entries);
7267 	memcg_stats_unlock();
7268 	memcg_check_events(memcg, folio_nid(folio));
7269 
7270 	css_put(&memcg->css);
7271 }
7272 
7273 /**
7274  * __mem_cgroup_try_charge_swap - try charging swap space for a folio
7275  * @folio: folio being added to swap
7276  * @entry: swap entry to charge
7277  *
7278  * Try to charge @folio's memcg for the swap space at @entry.
7279  *
7280  * Returns 0 on success, -ENOMEM on failure.
7281  */
7282 int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry)
7283 {
7284 	unsigned int nr_pages = folio_nr_pages(folio);
7285 	struct page_counter *counter;
7286 	struct mem_cgroup *memcg;
7287 	unsigned short oldid;
7288 
7289 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7290 		return 0;
7291 
7292 	memcg = folio_memcg(folio);
7293 
7294 	VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7295 	if (!memcg)
7296 		return 0;
7297 
7298 	if (!entry.val) {
7299 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7300 		return 0;
7301 	}
7302 
7303 	memcg = mem_cgroup_id_get_online(memcg);
7304 
7305 	if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7306 	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7307 		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7308 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7309 		mem_cgroup_id_put(memcg);
7310 		return -ENOMEM;
7311 	}
7312 
7313 	/* Get references for the tail pages, too */
7314 	if (nr_pages > 1)
7315 		mem_cgroup_id_get_many(memcg, nr_pages - 1);
7316 	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7317 	VM_BUG_ON_FOLIO(oldid, folio);
7318 	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7319 
7320 	return 0;
7321 }
7322 
7323 /**
7324  * __mem_cgroup_uncharge_swap - uncharge swap space
7325  * @entry: swap entry to uncharge
7326  * @nr_pages: the amount of swap space to uncharge
7327  */
7328 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7329 {
7330 	struct mem_cgroup *memcg;
7331 	unsigned short id;
7332 
7333 	id = swap_cgroup_record(entry, 0, nr_pages);
7334 	rcu_read_lock();
7335 	memcg = mem_cgroup_from_id(id);
7336 	if (memcg) {
7337 		if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7338 			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7339 				page_counter_uncharge(&memcg->swap, nr_pages);
7340 			else
7341 				page_counter_uncharge(&memcg->memsw, nr_pages);
7342 		}
7343 		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7344 		mem_cgroup_id_put_many(memcg, nr_pages);
7345 	}
7346 	rcu_read_unlock();
7347 }
7348 
7349 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7350 {
7351 	long nr_swap_pages = get_nr_swap_pages();
7352 
7353 	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7354 		return nr_swap_pages;
7355 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7356 		nr_swap_pages = min_t(long, nr_swap_pages,
7357 				      READ_ONCE(memcg->swap.max) -
7358 				      page_counter_read(&memcg->swap));
7359 	return nr_swap_pages;
7360 }
7361 
7362 bool mem_cgroup_swap_full(struct page *page)
7363 {
7364 	struct mem_cgroup *memcg;
7365 
7366 	VM_BUG_ON_PAGE(!PageLocked(page), page);
7367 
7368 	if (vm_swap_full())
7369 		return true;
7370 	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7371 		return false;
7372 
7373 	memcg = page_memcg(page);
7374 	if (!memcg)
7375 		return false;
7376 
7377 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7378 		unsigned long usage = page_counter_read(&memcg->swap);
7379 
7380 		if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7381 		    usage * 2 >= READ_ONCE(memcg->swap.max))
7382 			return true;
7383 	}
7384 
7385 	return false;
7386 }
7387 
7388 static int __init setup_swap_account(char *s)
7389 {
7390 	if (!strcmp(s, "1"))
7391 		cgroup_memory_noswap = false;
7392 	else if (!strcmp(s, "0"))
7393 		cgroup_memory_noswap = true;
7394 	return 1;
7395 }
7396 __setup("swapaccount=", setup_swap_account);
7397 
7398 static u64 swap_current_read(struct cgroup_subsys_state *css,
7399 			     struct cftype *cft)
7400 {
7401 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7402 
7403 	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7404 }
7405 
7406 static int swap_high_show(struct seq_file *m, void *v)
7407 {
7408 	return seq_puts_memcg_tunable(m,
7409 		READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7410 }
7411 
7412 static ssize_t swap_high_write(struct kernfs_open_file *of,
7413 			       char *buf, size_t nbytes, loff_t off)
7414 {
7415 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7416 	unsigned long high;
7417 	int err;
7418 
7419 	buf = strstrip(buf);
7420 	err = page_counter_memparse(buf, "max", &high);
7421 	if (err)
7422 		return err;
7423 
7424 	page_counter_set_high(&memcg->swap, high);
7425 
7426 	return nbytes;
7427 }
7428 
7429 static int swap_max_show(struct seq_file *m, void *v)
7430 {
7431 	return seq_puts_memcg_tunable(m,
7432 		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7433 }
7434 
7435 static ssize_t swap_max_write(struct kernfs_open_file *of,
7436 			      char *buf, size_t nbytes, loff_t off)
7437 {
7438 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7439 	unsigned long max;
7440 	int err;
7441 
7442 	buf = strstrip(buf);
7443 	err = page_counter_memparse(buf, "max", &max);
7444 	if (err)
7445 		return err;
7446 
7447 	xchg(&memcg->swap.max, max);
7448 
7449 	return nbytes;
7450 }
7451 
7452 static int swap_events_show(struct seq_file *m, void *v)
7453 {
7454 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7455 
7456 	seq_printf(m, "high %lu\n",
7457 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7458 	seq_printf(m, "max %lu\n",
7459 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7460 	seq_printf(m, "fail %lu\n",
7461 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7462 
7463 	return 0;
7464 }
7465 
7466 static struct cftype swap_files[] = {
7467 	{
7468 		.name = "swap.current",
7469 		.flags = CFTYPE_NOT_ON_ROOT,
7470 		.read_u64 = swap_current_read,
7471 	},
7472 	{
7473 		.name = "swap.high",
7474 		.flags = CFTYPE_NOT_ON_ROOT,
7475 		.seq_show = swap_high_show,
7476 		.write = swap_high_write,
7477 	},
7478 	{
7479 		.name = "swap.max",
7480 		.flags = CFTYPE_NOT_ON_ROOT,
7481 		.seq_show = swap_max_show,
7482 		.write = swap_max_write,
7483 	},
7484 	{
7485 		.name = "swap.events",
7486 		.flags = CFTYPE_NOT_ON_ROOT,
7487 		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
7488 		.seq_show = swap_events_show,
7489 	},
7490 	{ }	/* terminate */
7491 };
7492 
7493 static struct cftype memsw_files[] = {
7494 	{
7495 		.name = "memsw.usage_in_bytes",
7496 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7497 		.read_u64 = mem_cgroup_read_u64,
7498 	},
7499 	{
7500 		.name = "memsw.max_usage_in_bytes",
7501 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7502 		.write = mem_cgroup_reset,
7503 		.read_u64 = mem_cgroup_read_u64,
7504 	},
7505 	{
7506 		.name = "memsw.limit_in_bytes",
7507 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7508 		.write = mem_cgroup_write,
7509 		.read_u64 = mem_cgroup_read_u64,
7510 	},
7511 	{
7512 		.name = "memsw.failcnt",
7513 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7514 		.write = mem_cgroup_reset,
7515 		.read_u64 = mem_cgroup_read_u64,
7516 	},
7517 	{ },	/* terminate */
7518 };
7519 
7520 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
7521 /**
7522  * obj_cgroup_may_zswap - check if this cgroup can zswap
7523  * @objcg: the object cgroup
7524  *
7525  * Check if the hierarchical zswap limit has been reached.
7526  *
7527  * This doesn't check for specific headroom, and it is not atomic
7528  * either. But with zswap, the size of the allocation is only known
7529  * once compression has occured, and this optimistic pre-check avoids
7530  * spending cycles on compression when there is already no room left
7531  * or zswap is disabled altogether somewhere in the hierarchy.
7532  */
7533 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
7534 {
7535 	struct mem_cgroup *memcg, *original_memcg;
7536 	bool ret = true;
7537 
7538 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7539 		return true;
7540 
7541 	original_memcg = get_mem_cgroup_from_objcg(objcg);
7542 	for (memcg = original_memcg; memcg != root_mem_cgroup;
7543 	     memcg = parent_mem_cgroup(memcg)) {
7544 		unsigned long max = READ_ONCE(memcg->zswap_max);
7545 		unsigned long pages;
7546 
7547 		if (max == PAGE_COUNTER_MAX)
7548 			continue;
7549 		if (max == 0) {
7550 			ret = false;
7551 			break;
7552 		}
7553 
7554 		cgroup_rstat_flush(memcg->css.cgroup);
7555 		pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE;
7556 		if (pages < max)
7557 			continue;
7558 		ret = false;
7559 		break;
7560 	}
7561 	mem_cgroup_put(original_memcg);
7562 	return ret;
7563 }
7564 
7565 /**
7566  * obj_cgroup_charge_zswap - charge compression backend memory
7567  * @objcg: the object cgroup
7568  * @size: size of compressed object
7569  *
7570  * This forces the charge after obj_cgroup_may_swap() allowed
7571  * compression and storage in zwap for this cgroup to go ahead.
7572  */
7573 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size)
7574 {
7575 	struct mem_cgroup *memcg;
7576 
7577 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7578 		return;
7579 
7580 	VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC));
7581 
7582 	/* PF_MEMALLOC context, charging must succeed */
7583 	if (obj_cgroup_charge(objcg, GFP_KERNEL, size))
7584 		VM_WARN_ON_ONCE(1);
7585 
7586 	rcu_read_lock();
7587 	memcg = obj_cgroup_memcg(objcg);
7588 	mod_memcg_state(memcg, MEMCG_ZSWAP_B, size);
7589 	mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1);
7590 	rcu_read_unlock();
7591 }
7592 
7593 /**
7594  * obj_cgroup_uncharge_zswap - uncharge compression backend memory
7595  * @objcg: the object cgroup
7596  * @size: size of compressed object
7597  *
7598  * Uncharges zswap memory on page in.
7599  */
7600 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size)
7601 {
7602 	struct mem_cgroup *memcg;
7603 
7604 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7605 		return;
7606 
7607 	obj_cgroup_uncharge(objcg, size);
7608 
7609 	rcu_read_lock();
7610 	memcg = obj_cgroup_memcg(objcg);
7611 	mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size);
7612 	mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1);
7613 	rcu_read_unlock();
7614 }
7615 
7616 static u64 zswap_current_read(struct cgroup_subsys_state *css,
7617 			      struct cftype *cft)
7618 {
7619 	cgroup_rstat_flush(css->cgroup);
7620 	return memcg_page_state(mem_cgroup_from_css(css), MEMCG_ZSWAP_B);
7621 }
7622 
7623 static int zswap_max_show(struct seq_file *m, void *v)
7624 {
7625 	return seq_puts_memcg_tunable(m,
7626 		READ_ONCE(mem_cgroup_from_seq(m)->zswap_max));
7627 }
7628 
7629 static ssize_t zswap_max_write(struct kernfs_open_file *of,
7630 			       char *buf, size_t nbytes, loff_t off)
7631 {
7632 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7633 	unsigned long max;
7634 	int err;
7635 
7636 	buf = strstrip(buf);
7637 	err = page_counter_memparse(buf, "max", &max);
7638 	if (err)
7639 		return err;
7640 
7641 	xchg(&memcg->zswap_max, max);
7642 
7643 	return nbytes;
7644 }
7645 
7646 static struct cftype zswap_files[] = {
7647 	{
7648 		.name = "zswap.current",
7649 		.flags = CFTYPE_NOT_ON_ROOT,
7650 		.read_u64 = zswap_current_read,
7651 	},
7652 	{
7653 		.name = "zswap.max",
7654 		.flags = CFTYPE_NOT_ON_ROOT,
7655 		.seq_show = zswap_max_show,
7656 		.write = zswap_max_write,
7657 	},
7658 	{ }	/* terminate */
7659 };
7660 #endif /* CONFIG_MEMCG_KMEM && CONFIG_ZSWAP */
7661 
7662 /*
7663  * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7664  * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7665  * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7666  * boot parameter. This may result in premature OOPS inside
7667  * mem_cgroup_get_nr_swap_pages() function in corner cases.
7668  */
7669 static int __init mem_cgroup_swap_init(void)
7670 {
7671 	/* No memory control -> no swap control */
7672 	if (mem_cgroup_disabled())
7673 		cgroup_memory_noswap = true;
7674 
7675 	if (cgroup_memory_noswap)
7676 		return 0;
7677 
7678 	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7679 	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7680 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
7681 	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files));
7682 #endif
7683 	return 0;
7684 }
7685 core_initcall(mem_cgroup_swap_init);
7686 
7687 #endif /* CONFIG_MEMCG_SWAP */
7688