1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* memcontrol.c - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <xemul@openvz.org> 9 * 10 * Memory thresholds 11 * Copyright (C) 2009 Nokia Corporation 12 * Author: Kirill A. Shutemov 13 * 14 * Kernel Memory Controller 15 * Copyright (C) 2012 Parallels Inc. and Google Inc. 16 * Authors: Glauber Costa and Suleiman Souhlal 17 * 18 * Native page reclaim 19 * Charge lifetime sanitation 20 * Lockless page tracking & accounting 21 * Unified hierarchy configuration model 22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner 23 * 24 * Per memcg lru locking 25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi 26 */ 27 28 #include <linux/page_counter.h> 29 #include <linux/memcontrol.h> 30 #include <linux/cgroup.h> 31 #include <linux/pagewalk.h> 32 #include <linux/sched/mm.h> 33 #include <linux/shmem_fs.h> 34 #include <linux/hugetlb.h> 35 #include <linux/pagemap.h> 36 #include <linux/vm_event_item.h> 37 #include <linux/smp.h> 38 #include <linux/page-flags.h> 39 #include <linux/backing-dev.h> 40 #include <linux/bit_spinlock.h> 41 #include <linux/rcupdate.h> 42 #include <linux/limits.h> 43 #include <linux/export.h> 44 #include <linux/mutex.h> 45 #include <linux/rbtree.h> 46 #include <linux/slab.h> 47 #include <linux/swap.h> 48 #include <linux/swapops.h> 49 #include <linux/spinlock.h> 50 #include <linux/eventfd.h> 51 #include <linux/poll.h> 52 #include <linux/sort.h> 53 #include <linux/fs.h> 54 #include <linux/seq_file.h> 55 #include <linux/vmpressure.h> 56 #include <linux/memremap.h> 57 #include <linux/mm_inline.h> 58 #include <linux/swap_cgroup.h> 59 #include <linux/cpu.h> 60 #include <linux/oom.h> 61 #include <linux/lockdep.h> 62 #include <linux/file.h> 63 #include <linux/resume_user_mode.h> 64 #include <linux/psi.h> 65 #include <linux/seq_buf.h> 66 #include "internal.h" 67 #include <net/sock.h> 68 #include <net/ip.h> 69 #include "slab.h" 70 #include "swap.h" 71 72 #include <linux/uaccess.h> 73 74 #include <trace/events/vmscan.h> 75 76 struct cgroup_subsys memory_cgrp_subsys __read_mostly; 77 EXPORT_SYMBOL(memory_cgrp_subsys); 78 79 struct mem_cgroup *root_mem_cgroup __read_mostly; 80 81 /* Active memory cgroup to use from an interrupt context */ 82 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg); 83 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg); 84 85 /* Socket memory accounting disabled? */ 86 static bool cgroup_memory_nosocket __ro_after_init; 87 88 /* Kernel memory accounting disabled? */ 89 static bool cgroup_memory_nokmem __ro_after_init; 90 91 /* Whether the swap controller is active */ 92 #ifdef CONFIG_MEMCG_SWAP 93 static bool cgroup_memory_noswap __ro_after_init; 94 #else 95 #define cgroup_memory_noswap 1 96 #endif 97 98 #ifdef CONFIG_CGROUP_WRITEBACK 99 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq); 100 #endif 101 102 /* Whether legacy memory+swap accounting is active */ 103 static bool do_memsw_account(void) 104 { 105 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap; 106 } 107 108 #define THRESHOLDS_EVENTS_TARGET 128 109 #define SOFTLIMIT_EVENTS_TARGET 1024 110 111 /* 112 * Cgroups above their limits are maintained in a RB-Tree, independent of 113 * their hierarchy representation 114 */ 115 116 struct mem_cgroup_tree_per_node { 117 struct rb_root rb_root; 118 struct rb_node *rb_rightmost; 119 spinlock_t lock; 120 }; 121 122 struct mem_cgroup_tree { 123 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 124 }; 125 126 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 127 128 /* for OOM */ 129 struct mem_cgroup_eventfd_list { 130 struct list_head list; 131 struct eventfd_ctx *eventfd; 132 }; 133 134 /* 135 * cgroup_event represents events which userspace want to receive. 136 */ 137 struct mem_cgroup_event { 138 /* 139 * memcg which the event belongs to. 140 */ 141 struct mem_cgroup *memcg; 142 /* 143 * eventfd to signal userspace about the event. 144 */ 145 struct eventfd_ctx *eventfd; 146 /* 147 * Each of these stored in a list by the cgroup. 148 */ 149 struct list_head list; 150 /* 151 * register_event() callback will be used to add new userspace 152 * waiter for changes related to this event. Use eventfd_signal() 153 * on eventfd to send notification to userspace. 154 */ 155 int (*register_event)(struct mem_cgroup *memcg, 156 struct eventfd_ctx *eventfd, const char *args); 157 /* 158 * unregister_event() callback will be called when userspace closes 159 * the eventfd or on cgroup removing. This callback must be set, 160 * if you want provide notification functionality. 161 */ 162 void (*unregister_event)(struct mem_cgroup *memcg, 163 struct eventfd_ctx *eventfd); 164 /* 165 * All fields below needed to unregister event when 166 * userspace closes eventfd. 167 */ 168 poll_table pt; 169 wait_queue_head_t *wqh; 170 wait_queue_entry_t wait; 171 struct work_struct remove; 172 }; 173 174 static void mem_cgroup_threshold(struct mem_cgroup *memcg); 175 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); 176 177 /* Stuffs for move charges at task migration. */ 178 /* 179 * Types of charges to be moved. 180 */ 181 #define MOVE_ANON 0x1U 182 #define MOVE_FILE 0x2U 183 #define MOVE_MASK (MOVE_ANON | MOVE_FILE) 184 185 /* "mc" and its members are protected by cgroup_mutex */ 186 static struct move_charge_struct { 187 spinlock_t lock; /* for from, to */ 188 struct mm_struct *mm; 189 struct mem_cgroup *from; 190 struct mem_cgroup *to; 191 unsigned long flags; 192 unsigned long precharge; 193 unsigned long moved_charge; 194 unsigned long moved_swap; 195 struct task_struct *moving_task; /* a task moving charges */ 196 wait_queue_head_t waitq; /* a waitq for other context */ 197 } mc = { 198 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 199 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 200 }; 201 202 /* 203 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft 204 * limit reclaim to prevent infinite loops, if they ever occur. 205 */ 206 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 207 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 208 209 /* for encoding cft->private value on file */ 210 enum res_type { 211 _MEM, 212 _MEMSWAP, 213 _KMEM, 214 _TCP, 215 }; 216 217 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) 218 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) 219 #define MEMFILE_ATTR(val) ((val) & 0xffff) 220 221 /* 222 * Iteration constructs for visiting all cgroups (under a tree). If 223 * loops are exited prematurely (break), mem_cgroup_iter_break() must 224 * be used for reference counting. 225 */ 226 #define for_each_mem_cgroup_tree(iter, root) \ 227 for (iter = mem_cgroup_iter(root, NULL, NULL); \ 228 iter != NULL; \ 229 iter = mem_cgroup_iter(root, iter, NULL)) 230 231 #define for_each_mem_cgroup(iter) \ 232 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ 233 iter != NULL; \ 234 iter = mem_cgroup_iter(NULL, iter, NULL)) 235 236 static inline bool task_is_dying(void) 237 { 238 return tsk_is_oom_victim(current) || fatal_signal_pending(current) || 239 (current->flags & PF_EXITING); 240 } 241 242 /* Some nice accessors for the vmpressure. */ 243 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 244 { 245 if (!memcg) 246 memcg = root_mem_cgroup; 247 return &memcg->vmpressure; 248 } 249 250 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr) 251 { 252 return container_of(vmpr, struct mem_cgroup, vmpressure); 253 } 254 255 #ifdef CONFIG_MEMCG_KMEM 256 static DEFINE_SPINLOCK(objcg_lock); 257 258 bool mem_cgroup_kmem_disabled(void) 259 { 260 return cgroup_memory_nokmem; 261 } 262 263 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg, 264 unsigned int nr_pages); 265 266 static void obj_cgroup_release(struct percpu_ref *ref) 267 { 268 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt); 269 unsigned int nr_bytes; 270 unsigned int nr_pages; 271 unsigned long flags; 272 273 /* 274 * At this point all allocated objects are freed, and 275 * objcg->nr_charged_bytes can't have an arbitrary byte value. 276 * However, it can be PAGE_SIZE or (x * PAGE_SIZE). 277 * 278 * The following sequence can lead to it: 279 * 1) CPU0: objcg == stock->cached_objcg 280 * 2) CPU1: we do a small allocation (e.g. 92 bytes), 281 * PAGE_SIZE bytes are charged 282 * 3) CPU1: a process from another memcg is allocating something, 283 * the stock if flushed, 284 * objcg->nr_charged_bytes = PAGE_SIZE - 92 285 * 5) CPU0: we do release this object, 286 * 92 bytes are added to stock->nr_bytes 287 * 6) CPU0: stock is flushed, 288 * 92 bytes are added to objcg->nr_charged_bytes 289 * 290 * In the result, nr_charged_bytes == PAGE_SIZE. 291 * This page will be uncharged in obj_cgroup_release(). 292 */ 293 nr_bytes = atomic_read(&objcg->nr_charged_bytes); 294 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1)); 295 nr_pages = nr_bytes >> PAGE_SHIFT; 296 297 if (nr_pages) 298 obj_cgroup_uncharge_pages(objcg, nr_pages); 299 300 spin_lock_irqsave(&objcg_lock, flags); 301 list_del(&objcg->list); 302 spin_unlock_irqrestore(&objcg_lock, flags); 303 304 percpu_ref_exit(ref); 305 kfree_rcu(objcg, rcu); 306 } 307 308 static struct obj_cgroup *obj_cgroup_alloc(void) 309 { 310 struct obj_cgroup *objcg; 311 int ret; 312 313 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL); 314 if (!objcg) 315 return NULL; 316 317 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0, 318 GFP_KERNEL); 319 if (ret) { 320 kfree(objcg); 321 return NULL; 322 } 323 INIT_LIST_HEAD(&objcg->list); 324 return objcg; 325 } 326 327 static void memcg_reparent_objcgs(struct mem_cgroup *memcg, 328 struct mem_cgroup *parent) 329 { 330 struct obj_cgroup *objcg, *iter; 331 332 objcg = rcu_replace_pointer(memcg->objcg, NULL, true); 333 334 spin_lock_irq(&objcg_lock); 335 336 /* 1) Ready to reparent active objcg. */ 337 list_add(&objcg->list, &memcg->objcg_list); 338 /* 2) Reparent active objcg and already reparented objcgs to parent. */ 339 list_for_each_entry(iter, &memcg->objcg_list, list) 340 WRITE_ONCE(iter->memcg, parent); 341 /* 3) Move already reparented objcgs to the parent's list */ 342 list_splice(&memcg->objcg_list, &parent->objcg_list); 343 344 spin_unlock_irq(&objcg_lock); 345 346 percpu_ref_kill(&objcg->refcnt); 347 } 348 349 /* 350 * A lot of the calls to the cache allocation functions are expected to be 351 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are 352 * conditional to this static branch, we'll have to allow modules that does 353 * kmem_cache_alloc and the such to see this symbol as well 354 */ 355 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key); 356 EXPORT_SYMBOL(memcg_kmem_enabled_key); 357 #endif 358 359 /** 360 * mem_cgroup_css_from_page - css of the memcg associated with a page 361 * @page: page of interest 362 * 363 * If memcg is bound to the default hierarchy, css of the memcg associated 364 * with @page is returned. The returned css remains associated with @page 365 * until it is released. 366 * 367 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup 368 * is returned. 369 */ 370 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page) 371 { 372 struct mem_cgroup *memcg; 373 374 memcg = page_memcg(page); 375 376 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 377 memcg = root_mem_cgroup; 378 379 return &memcg->css; 380 } 381 382 /** 383 * page_cgroup_ino - return inode number of the memcg a page is charged to 384 * @page: the page 385 * 386 * Look up the closest online ancestor of the memory cgroup @page is charged to 387 * and return its inode number or 0 if @page is not charged to any cgroup. It 388 * is safe to call this function without holding a reference to @page. 389 * 390 * Note, this function is inherently racy, because there is nothing to prevent 391 * the cgroup inode from getting torn down and potentially reallocated a moment 392 * after page_cgroup_ino() returns, so it only should be used by callers that 393 * do not care (such as procfs interfaces). 394 */ 395 ino_t page_cgroup_ino(struct page *page) 396 { 397 struct mem_cgroup *memcg; 398 unsigned long ino = 0; 399 400 rcu_read_lock(); 401 memcg = page_memcg_check(page); 402 403 while (memcg && !(memcg->css.flags & CSS_ONLINE)) 404 memcg = parent_mem_cgroup(memcg); 405 if (memcg) 406 ino = cgroup_ino(memcg->css.cgroup); 407 rcu_read_unlock(); 408 return ino; 409 } 410 411 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz, 412 struct mem_cgroup_tree_per_node *mctz, 413 unsigned long new_usage_in_excess) 414 { 415 struct rb_node **p = &mctz->rb_root.rb_node; 416 struct rb_node *parent = NULL; 417 struct mem_cgroup_per_node *mz_node; 418 bool rightmost = true; 419 420 if (mz->on_tree) 421 return; 422 423 mz->usage_in_excess = new_usage_in_excess; 424 if (!mz->usage_in_excess) 425 return; 426 while (*p) { 427 parent = *p; 428 mz_node = rb_entry(parent, struct mem_cgroup_per_node, 429 tree_node); 430 if (mz->usage_in_excess < mz_node->usage_in_excess) { 431 p = &(*p)->rb_left; 432 rightmost = false; 433 } else { 434 p = &(*p)->rb_right; 435 } 436 } 437 438 if (rightmost) 439 mctz->rb_rightmost = &mz->tree_node; 440 441 rb_link_node(&mz->tree_node, parent, p); 442 rb_insert_color(&mz->tree_node, &mctz->rb_root); 443 mz->on_tree = true; 444 } 445 446 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 447 struct mem_cgroup_tree_per_node *mctz) 448 { 449 if (!mz->on_tree) 450 return; 451 452 if (&mz->tree_node == mctz->rb_rightmost) 453 mctz->rb_rightmost = rb_prev(&mz->tree_node); 454 455 rb_erase(&mz->tree_node, &mctz->rb_root); 456 mz->on_tree = false; 457 } 458 459 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 460 struct mem_cgroup_tree_per_node *mctz) 461 { 462 unsigned long flags; 463 464 spin_lock_irqsave(&mctz->lock, flags); 465 __mem_cgroup_remove_exceeded(mz, mctz); 466 spin_unlock_irqrestore(&mctz->lock, flags); 467 } 468 469 static unsigned long soft_limit_excess(struct mem_cgroup *memcg) 470 { 471 unsigned long nr_pages = page_counter_read(&memcg->memory); 472 unsigned long soft_limit = READ_ONCE(memcg->soft_limit); 473 unsigned long excess = 0; 474 475 if (nr_pages > soft_limit) 476 excess = nr_pages - soft_limit; 477 478 return excess; 479 } 480 481 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid) 482 { 483 unsigned long excess; 484 struct mem_cgroup_per_node *mz; 485 struct mem_cgroup_tree_per_node *mctz; 486 487 mctz = soft_limit_tree.rb_tree_per_node[nid]; 488 if (!mctz) 489 return; 490 /* 491 * Necessary to update all ancestors when hierarchy is used. 492 * because their event counter is not touched. 493 */ 494 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 495 mz = memcg->nodeinfo[nid]; 496 excess = soft_limit_excess(memcg); 497 /* 498 * We have to update the tree if mz is on RB-tree or 499 * mem is over its softlimit. 500 */ 501 if (excess || mz->on_tree) { 502 unsigned long flags; 503 504 spin_lock_irqsave(&mctz->lock, flags); 505 /* if on-tree, remove it */ 506 if (mz->on_tree) 507 __mem_cgroup_remove_exceeded(mz, mctz); 508 /* 509 * Insert again. mz->usage_in_excess will be updated. 510 * If excess is 0, no tree ops. 511 */ 512 __mem_cgroup_insert_exceeded(mz, mctz, excess); 513 spin_unlock_irqrestore(&mctz->lock, flags); 514 } 515 } 516 } 517 518 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) 519 { 520 struct mem_cgroup_tree_per_node *mctz; 521 struct mem_cgroup_per_node *mz; 522 int nid; 523 524 for_each_node(nid) { 525 mz = memcg->nodeinfo[nid]; 526 mctz = soft_limit_tree.rb_tree_per_node[nid]; 527 if (mctz) 528 mem_cgroup_remove_exceeded(mz, mctz); 529 } 530 } 531 532 static struct mem_cgroup_per_node * 533 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 534 { 535 struct mem_cgroup_per_node *mz; 536 537 retry: 538 mz = NULL; 539 if (!mctz->rb_rightmost) 540 goto done; /* Nothing to reclaim from */ 541 542 mz = rb_entry(mctz->rb_rightmost, 543 struct mem_cgroup_per_node, tree_node); 544 /* 545 * Remove the node now but someone else can add it back, 546 * we will to add it back at the end of reclaim to its correct 547 * position in the tree. 548 */ 549 __mem_cgroup_remove_exceeded(mz, mctz); 550 if (!soft_limit_excess(mz->memcg) || 551 !css_tryget(&mz->memcg->css)) 552 goto retry; 553 done: 554 return mz; 555 } 556 557 static struct mem_cgroup_per_node * 558 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 559 { 560 struct mem_cgroup_per_node *mz; 561 562 spin_lock_irq(&mctz->lock); 563 mz = __mem_cgroup_largest_soft_limit_node(mctz); 564 spin_unlock_irq(&mctz->lock); 565 return mz; 566 } 567 568 /* 569 * memcg and lruvec stats flushing 570 * 571 * Many codepaths leading to stats update or read are performance sensitive and 572 * adding stats flushing in such codepaths is not desirable. So, to optimize the 573 * flushing the kernel does: 574 * 575 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let 576 * rstat update tree grow unbounded. 577 * 578 * 2) Flush the stats synchronously on reader side only when there are more than 579 * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization 580 * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but 581 * only for 2 seconds due to (1). 582 */ 583 static void flush_memcg_stats_dwork(struct work_struct *w); 584 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork); 585 static DEFINE_SPINLOCK(stats_flush_lock); 586 static DEFINE_PER_CPU(unsigned int, stats_updates); 587 static atomic_t stats_flush_threshold = ATOMIC_INIT(0); 588 static u64 flush_next_time; 589 590 #define FLUSH_TIME (2UL*HZ) 591 592 /* 593 * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can 594 * not rely on this as part of an acquired spinlock_t lock. These functions are 595 * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion 596 * is sufficient. 597 */ 598 static void memcg_stats_lock(void) 599 { 600 #ifdef CONFIG_PREEMPT_RT 601 preempt_disable(); 602 #else 603 VM_BUG_ON(!irqs_disabled()); 604 #endif 605 } 606 607 static void __memcg_stats_lock(void) 608 { 609 #ifdef CONFIG_PREEMPT_RT 610 preempt_disable(); 611 #endif 612 } 613 614 static void memcg_stats_unlock(void) 615 { 616 #ifdef CONFIG_PREEMPT_RT 617 preempt_enable(); 618 #endif 619 } 620 621 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val) 622 { 623 unsigned int x; 624 625 cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id()); 626 627 x = __this_cpu_add_return(stats_updates, abs(val)); 628 if (x > MEMCG_CHARGE_BATCH) { 629 atomic_add(x / MEMCG_CHARGE_BATCH, &stats_flush_threshold); 630 __this_cpu_write(stats_updates, 0); 631 } 632 } 633 634 static void __mem_cgroup_flush_stats(void) 635 { 636 unsigned long flag; 637 638 if (!spin_trylock_irqsave(&stats_flush_lock, flag)) 639 return; 640 641 flush_next_time = jiffies_64 + 2*FLUSH_TIME; 642 cgroup_rstat_flush_irqsafe(root_mem_cgroup->css.cgroup); 643 atomic_set(&stats_flush_threshold, 0); 644 spin_unlock_irqrestore(&stats_flush_lock, flag); 645 } 646 647 void mem_cgroup_flush_stats(void) 648 { 649 if (atomic_read(&stats_flush_threshold) > num_online_cpus()) 650 __mem_cgroup_flush_stats(); 651 } 652 653 void mem_cgroup_flush_stats_delayed(void) 654 { 655 if (time_after64(jiffies_64, flush_next_time)) 656 mem_cgroup_flush_stats(); 657 } 658 659 static void flush_memcg_stats_dwork(struct work_struct *w) 660 { 661 __mem_cgroup_flush_stats(); 662 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME); 663 } 664 665 /** 666 * __mod_memcg_state - update cgroup memory statistics 667 * @memcg: the memory cgroup 668 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item 669 * @val: delta to add to the counter, can be negative 670 */ 671 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val) 672 { 673 if (mem_cgroup_disabled()) 674 return; 675 676 __this_cpu_add(memcg->vmstats_percpu->state[idx], val); 677 memcg_rstat_updated(memcg, val); 678 } 679 680 /* idx can be of type enum memcg_stat_item or node_stat_item. */ 681 static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx) 682 { 683 long x = 0; 684 int cpu; 685 686 for_each_possible_cpu(cpu) 687 x += per_cpu(memcg->vmstats_percpu->state[idx], cpu); 688 #ifdef CONFIG_SMP 689 if (x < 0) 690 x = 0; 691 #endif 692 return x; 693 } 694 695 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 696 int val) 697 { 698 struct mem_cgroup_per_node *pn; 699 struct mem_cgroup *memcg; 700 701 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 702 memcg = pn->memcg; 703 704 /* 705 * The caller from rmap relay on disabled preemption becase they never 706 * update their counter from in-interrupt context. For these two 707 * counters we check that the update is never performed from an 708 * interrupt context while other caller need to have disabled interrupt. 709 */ 710 __memcg_stats_lock(); 711 if (IS_ENABLED(CONFIG_DEBUG_VM) && !IS_ENABLED(CONFIG_PREEMPT_RT)) { 712 switch (idx) { 713 case NR_ANON_MAPPED: 714 case NR_FILE_MAPPED: 715 case NR_ANON_THPS: 716 case NR_SHMEM_PMDMAPPED: 717 case NR_FILE_PMDMAPPED: 718 WARN_ON_ONCE(!in_task()); 719 break; 720 default: 721 WARN_ON_ONCE(!irqs_disabled()); 722 } 723 } 724 725 /* Update memcg */ 726 __this_cpu_add(memcg->vmstats_percpu->state[idx], val); 727 728 /* Update lruvec */ 729 __this_cpu_add(pn->lruvec_stats_percpu->state[idx], val); 730 731 memcg_rstat_updated(memcg, val); 732 memcg_stats_unlock(); 733 } 734 735 /** 736 * __mod_lruvec_state - update lruvec memory statistics 737 * @lruvec: the lruvec 738 * @idx: the stat item 739 * @val: delta to add to the counter, can be negative 740 * 741 * The lruvec is the intersection of the NUMA node and a cgroup. This 742 * function updates the all three counters that are affected by a 743 * change of state at this level: per-node, per-cgroup, per-lruvec. 744 */ 745 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 746 int val) 747 { 748 /* Update node */ 749 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 750 751 /* Update memcg and lruvec */ 752 if (!mem_cgroup_disabled()) 753 __mod_memcg_lruvec_state(lruvec, idx, val); 754 } 755 756 void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx, 757 int val) 758 { 759 struct page *head = compound_head(page); /* rmap on tail pages */ 760 struct mem_cgroup *memcg; 761 pg_data_t *pgdat = page_pgdat(page); 762 struct lruvec *lruvec; 763 764 rcu_read_lock(); 765 memcg = page_memcg(head); 766 /* Untracked pages have no memcg, no lruvec. Update only the node */ 767 if (!memcg) { 768 rcu_read_unlock(); 769 __mod_node_page_state(pgdat, idx, val); 770 return; 771 } 772 773 lruvec = mem_cgroup_lruvec(memcg, pgdat); 774 __mod_lruvec_state(lruvec, idx, val); 775 rcu_read_unlock(); 776 } 777 EXPORT_SYMBOL(__mod_lruvec_page_state); 778 779 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val) 780 { 781 pg_data_t *pgdat = page_pgdat(virt_to_page(p)); 782 struct mem_cgroup *memcg; 783 struct lruvec *lruvec; 784 785 rcu_read_lock(); 786 memcg = mem_cgroup_from_slab_obj(p); 787 788 /* 789 * Untracked pages have no memcg, no lruvec. Update only the 790 * node. If we reparent the slab objects to the root memcg, 791 * when we free the slab object, we need to update the per-memcg 792 * vmstats to keep it correct for the root memcg. 793 */ 794 if (!memcg) { 795 __mod_node_page_state(pgdat, idx, val); 796 } else { 797 lruvec = mem_cgroup_lruvec(memcg, pgdat); 798 __mod_lruvec_state(lruvec, idx, val); 799 } 800 rcu_read_unlock(); 801 } 802 803 /** 804 * __count_memcg_events - account VM events in a cgroup 805 * @memcg: the memory cgroup 806 * @idx: the event item 807 * @count: the number of events that occurred 808 */ 809 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 810 unsigned long count) 811 { 812 if (mem_cgroup_disabled()) 813 return; 814 815 memcg_stats_lock(); 816 __this_cpu_add(memcg->vmstats_percpu->events[idx], count); 817 memcg_rstat_updated(memcg, count); 818 memcg_stats_unlock(); 819 } 820 821 static unsigned long memcg_events(struct mem_cgroup *memcg, int event) 822 { 823 return READ_ONCE(memcg->vmstats.events[event]); 824 } 825 826 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event) 827 { 828 long x = 0; 829 int cpu; 830 831 for_each_possible_cpu(cpu) 832 x += per_cpu(memcg->vmstats_percpu->events[event], cpu); 833 return x; 834 } 835 836 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, 837 int nr_pages) 838 { 839 /* pagein of a big page is an event. So, ignore page size */ 840 if (nr_pages > 0) 841 __count_memcg_events(memcg, PGPGIN, 1); 842 else { 843 __count_memcg_events(memcg, PGPGOUT, 1); 844 nr_pages = -nr_pages; /* for event */ 845 } 846 847 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages); 848 } 849 850 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, 851 enum mem_cgroup_events_target target) 852 { 853 unsigned long val, next; 854 855 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events); 856 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]); 857 /* from time_after() in jiffies.h */ 858 if ((long)(next - val) < 0) { 859 switch (target) { 860 case MEM_CGROUP_TARGET_THRESH: 861 next = val + THRESHOLDS_EVENTS_TARGET; 862 break; 863 case MEM_CGROUP_TARGET_SOFTLIMIT: 864 next = val + SOFTLIMIT_EVENTS_TARGET; 865 break; 866 default: 867 break; 868 } 869 __this_cpu_write(memcg->vmstats_percpu->targets[target], next); 870 return true; 871 } 872 return false; 873 } 874 875 /* 876 * Check events in order. 877 * 878 */ 879 static void memcg_check_events(struct mem_cgroup *memcg, int nid) 880 { 881 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 882 return; 883 884 /* threshold event is triggered in finer grain than soft limit */ 885 if (unlikely(mem_cgroup_event_ratelimit(memcg, 886 MEM_CGROUP_TARGET_THRESH))) { 887 bool do_softlimit; 888 889 do_softlimit = mem_cgroup_event_ratelimit(memcg, 890 MEM_CGROUP_TARGET_SOFTLIMIT); 891 mem_cgroup_threshold(memcg); 892 if (unlikely(do_softlimit)) 893 mem_cgroup_update_tree(memcg, nid); 894 } 895 } 896 897 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 898 { 899 /* 900 * mm_update_next_owner() may clear mm->owner to NULL 901 * if it races with swapoff, page migration, etc. 902 * So this can be called with p == NULL. 903 */ 904 if (unlikely(!p)) 905 return NULL; 906 907 return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); 908 } 909 EXPORT_SYMBOL(mem_cgroup_from_task); 910 911 static __always_inline struct mem_cgroup *active_memcg(void) 912 { 913 if (!in_task()) 914 return this_cpu_read(int_active_memcg); 915 else 916 return current->active_memcg; 917 } 918 919 /** 920 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg. 921 * @mm: mm from which memcg should be extracted. It can be NULL. 922 * 923 * Obtain a reference on mm->memcg and returns it if successful. If mm 924 * is NULL, then the memcg is chosen as follows: 925 * 1) The active memcg, if set. 926 * 2) current->mm->memcg, if available 927 * 3) root memcg 928 * If mem_cgroup is disabled, NULL is returned. 929 */ 930 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 931 { 932 struct mem_cgroup *memcg; 933 934 if (mem_cgroup_disabled()) 935 return NULL; 936 937 /* 938 * Page cache insertions can happen without an 939 * actual mm context, e.g. during disk probing 940 * on boot, loopback IO, acct() writes etc. 941 * 942 * No need to css_get on root memcg as the reference 943 * counting is disabled on the root level in the 944 * cgroup core. See CSS_NO_REF. 945 */ 946 if (unlikely(!mm)) { 947 memcg = active_memcg(); 948 if (unlikely(memcg)) { 949 /* remote memcg must hold a ref */ 950 css_get(&memcg->css); 951 return memcg; 952 } 953 mm = current->mm; 954 if (unlikely(!mm)) 955 return root_mem_cgroup; 956 } 957 958 rcu_read_lock(); 959 do { 960 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 961 if (unlikely(!memcg)) 962 memcg = root_mem_cgroup; 963 } while (!css_tryget(&memcg->css)); 964 rcu_read_unlock(); 965 return memcg; 966 } 967 EXPORT_SYMBOL(get_mem_cgroup_from_mm); 968 969 static __always_inline bool memcg_kmem_bypass(void) 970 { 971 /* Allow remote memcg charging from any context. */ 972 if (unlikely(active_memcg())) 973 return false; 974 975 /* Memcg to charge can't be determined. */ 976 if (!in_task() || !current->mm || (current->flags & PF_KTHREAD)) 977 return true; 978 979 return false; 980 } 981 982 /** 983 * mem_cgroup_iter - iterate over memory cgroup hierarchy 984 * @root: hierarchy root 985 * @prev: previously returned memcg, NULL on first invocation 986 * @reclaim: cookie for shared reclaim walks, NULL for full walks 987 * 988 * Returns references to children of the hierarchy below @root, or 989 * @root itself, or %NULL after a full round-trip. 990 * 991 * Caller must pass the return value in @prev on subsequent 992 * invocations for reference counting, or use mem_cgroup_iter_break() 993 * to cancel a hierarchy walk before the round-trip is complete. 994 * 995 * Reclaimers can specify a node in @reclaim to divide up the memcgs 996 * in the hierarchy among all concurrent reclaimers operating on the 997 * same node. 998 */ 999 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 1000 struct mem_cgroup *prev, 1001 struct mem_cgroup_reclaim_cookie *reclaim) 1002 { 1003 struct mem_cgroup_reclaim_iter *iter; 1004 struct cgroup_subsys_state *css = NULL; 1005 struct mem_cgroup *memcg = NULL; 1006 struct mem_cgroup *pos = NULL; 1007 1008 if (mem_cgroup_disabled()) 1009 return NULL; 1010 1011 if (!root) 1012 root = root_mem_cgroup; 1013 1014 rcu_read_lock(); 1015 1016 if (reclaim) { 1017 struct mem_cgroup_per_node *mz; 1018 1019 mz = root->nodeinfo[reclaim->pgdat->node_id]; 1020 iter = &mz->iter; 1021 1022 /* 1023 * On start, join the current reclaim iteration cycle. 1024 * Exit when a concurrent walker completes it. 1025 */ 1026 if (!prev) 1027 reclaim->generation = iter->generation; 1028 else if (reclaim->generation != iter->generation) 1029 goto out_unlock; 1030 1031 while (1) { 1032 pos = READ_ONCE(iter->position); 1033 if (!pos || css_tryget(&pos->css)) 1034 break; 1035 /* 1036 * css reference reached zero, so iter->position will 1037 * be cleared by ->css_released. However, we should not 1038 * rely on this happening soon, because ->css_released 1039 * is called from a work queue, and by busy-waiting we 1040 * might block it. So we clear iter->position right 1041 * away. 1042 */ 1043 (void)cmpxchg(&iter->position, pos, NULL); 1044 } 1045 } else if (prev) { 1046 pos = prev; 1047 } 1048 1049 if (pos) 1050 css = &pos->css; 1051 1052 for (;;) { 1053 css = css_next_descendant_pre(css, &root->css); 1054 if (!css) { 1055 /* 1056 * Reclaimers share the hierarchy walk, and a 1057 * new one might jump in right at the end of 1058 * the hierarchy - make sure they see at least 1059 * one group and restart from the beginning. 1060 */ 1061 if (!prev) 1062 continue; 1063 break; 1064 } 1065 1066 /* 1067 * Verify the css and acquire a reference. The root 1068 * is provided by the caller, so we know it's alive 1069 * and kicking, and don't take an extra reference. 1070 */ 1071 if (css == &root->css || css_tryget(css)) { 1072 memcg = mem_cgroup_from_css(css); 1073 break; 1074 } 1075 } 1076 1077 if (reclaim) { 1078 /* 1079 * The position could have already been updated by a competing 1080 * thread, so check that the value hasn't changed since we read 1081 * it to avoid reclaiming from the same cgroup twice. 1082 */ 1083 (void)cmpxchg(&iter->position, pos, memcg); 1084 1085 if (pos) 1086 css_put(&pos->css); 1087 1088 if (!memcg) 1089 iter->generation++; 1090 } 1091 1092 out_unlock: 1093 rcu_read_unlock(); 1094 if (prev && prev != root) 1095 css_put(&prev->css); 1096 1097 return memcg; 1098 } 1099 1100 /** 1101 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 1102 * @root: hierarchy root 1103 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 1104 */ 1105 void mem_cgroup_iter_break(struct mem_cgroup *root, 1106 struct mem_cgroup *prev) 1107 { 1108 if (!root) 1109 root = root_mem_cgroup; 1110 if (prev && prev != root) 1111 css_put(&prev->css); 1112 } 1113 1114 static void __invalidate_reclaim_iterators(struct mem_cgroup *from, 1115 struct mem_cgroup *dead_memcg) 1116 { 1117 struct mem_cgroup_reclaim_iter *iter; 1118 struct mem_cgroup_per_node *mz; 1119 int nid; 1120 1121 for_each_node(nid) { 1122 mz = from->nodeinfo[nid]; 1123 iter = &mz->iter; 1124 cmpxchg(&iter->position, dead_memcg, NULL); 1125 } 1126 } 1127 1128 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) 1129 { 1130 struct mem_cgroup *memcg = dead_memcg; 1131 struct mem_cgroup *last; 1132 1133 do { 1134 __invalidate_reclaim_iterators(memcg, dead_memcg); 1135 last = memcg; 1136 } while ((memcg = parent_mem_cgroup(memcg))); 1137 1138 /* 1139 * When cgruop1 non-hierarchy mode is used, 1140 * parent_mem_cgroup() does not walk all the way up to the 1141 * cgroup root (root_mem_cgroup). So we have to handle 1142 * dead_memcg from cgroup root separately. 1143 */ 1144 if (last != root_mem_cgroup) 1145 __invalidate_reclaim_iterators(root_mem_cgroup, 1146 dead_memcg); 1147 } 1148 1149 /** 1150 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy 1151 * @memcg: hierarchy root 1152 * @fn: function to call for each task 1153 * @arg: argument passed to @fn 1154 * 1155 * This function iterates over tasks attached to @memcg or to any of its 1156 * descendants and calls @fn for each task. If @fn returns a non-zero 1157 * value, the function breaks the iteration loop and returns the value. 1158 * Otherwise, it will iterate over all tasks and return 0. 1159 * 1160 * This function must not be called for the root memory cgroup. 1161 */ 1162 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1163 int (*fn)(struct task_struct *, void *), void *arg) 1164 { 1165 struct mem_cgroup *iter; 1166 int ret = 0; 1167 1168 BUG_ON(memcg == root_mem_cgroup); 1169 1170 for_each_mem_cgroup_tree(iter, memcg) { 1171 struct css_task_iter it; 1172 struct task_struct *task; 1173 1174 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it); 1175 while (!ret && (task = css_task_iter_next(&it))) 1176 ret = fn(task, arg); 1177 css_task_iter_end(&it); 1178 if (ret) { 1179 mem_cgroup_iter_break(memcg, iter); 1180 break; 1181 } 1182 } 1183 return ret; 1184 } 1185 1186 #ifdef CONFIG_DEBUG_VM 1187 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio) 1188 { 1189 struct mem_cgroup *memcg; 1190 1191 if (mem_cgroup_disabled()) 1192 return; 1193 1194 memcg = folio_memcg(folio); 1195 1196 if (!memcg) 1197 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != root_mem_cgroup, folio); 1198 else 1199 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio); 1200 } 1201 #endif 1202 1203 /** 1204 * folio_lruvec_lock - Lock the lruvec for a folio. 1205 * @folio: Pointer to the folio. 1206 * 1207 * These functions are safe to use under any of the following conditions: 1208 * - folio locked 1209 * - folio_test_lru false 1210 * - folio_memcg_lock() 1211 * - folio frozen (refcount of 0) 1212 * 1213 * Return: The lruvec this folio is on with its lock held. 1214 */ 1215 struct lruvec *folio_lruvec_lock(struct folio *folio) 1216 { 1217 struct lruvec *lruvec = folio_lruvec(folio); 1218 1219 spin_lock(&lruvec->lru_lock); 1220 lruvec_memcg_debug(lruvec, folio); 1221 1222 return lruvec; 1223 } 1224 1225 /** 1226 * folio_lruvec_lock_irq - Lock the lruvec for a folio. 1227 * @folio: Pointer to the folio. 1228 * 1229 * These functions are safe to use under any of the following conditions: 1230 * - folio locked 1231 * - folio_test_lru false 1232 * - folio_memcg_lock() 1233 * - folio frozen (refcount of 0) 1234 * 1235 * Return: The lruvec this folio is on with its lock held and interrupts 1236 * disabled. 1237 */ 1238 struct lruvec *folio_lruvec_lock_irq(struct folio *folio) 1239 { 1240 struct lruvec *lruvec = folio_lruvec(folio); 1241 1242 spin_lock_irq(&lruvec->lru_lock); 1243 lruvec_memcg_debug(lruvec, folio); 1244 1245 return lruvec; 1246 } 1247 1248 /** 1249 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio. 1250 * @folio: Pointer to the folio. 1251 * @flags: Pointer to irqsave flags. 1252 * 1253 * These functions are safe to use under any of the following conditions: 1254 * - folio locked 1255 * - folio_test_lru false 1256 * - folio_memcg_lock() 1257 * - folio frozen (refcount of 0) 1258 * 1259 * Return: The lruvec this folio is on with its lock held and interrupts 1260 * disabled. 1261 */ 1262 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio, 1263 unsigned long *flags) 1264 { 1265 struct lruvec *lruvec = folio_lruvec(folio); 1266 1267 spin_lock_irqsave(&lruvec->lru_lock, *flags); 1268 lruvec_memcg_debug(lruvec, folio); 1269 1270 return lruvec; 1271 } 1272 1273 /** 1274 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1275 * @lruvec: mem_cgroup per zone lru vector 1276 * @lru: index of lru list the page is sitting on 1277 * @zid: zone id of the accounted pages 1278 * @nr_pages: positive when adding or negative when removing 1279 * 1280 * This function must be called under lru_lock, just before a page is added 1281 * to or just after a page is removed from an lru list. 1282 */ 1283 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1284 int zid, int nr_pages) 1285 { 1286 struct mem_cgroup_per_node *mz; 1287 unsigned long *lru_size; 1288 long size; 1289 1290 if (mem_cgroup_disabled()) 1291 return; 1292 1293 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 1294 lru_size = &mz->lru_zone_size[zid][lru]; 1295 1296 if (nr_pages < 0) 1297 *lru_size += nr_pages; 1298 1299 size = *lru_size; 1300 if (WARN_ONCE(size < 0, 1301 "%s(%p, %d, %d): lru_size %ld\n", 1302 __func__, lruvec, lru, nr_pages, size)) { 1303 VM_BUG_ON(1); 1304 *lru_size = 0; 1305 } 1306 1307 if (nr_pages > 0) 1308 *lru_size += nr_pages; 1309 } 1310 1311 /** 1312 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1313 * @memcg: the memory cgroup 1314 * 1315 * Returns the maximum amount of memory @mem can be charged with, in 1316 * pages. 1317 */ 1318 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1319 { 1320 unsigned long margin = 0; 1321 unsigned long count; 1322 unsigned long limit; 1323 1324 count = page_counter_read(&memcg->memory); 1325 limit = READ_ONCE(memcg->memory.max); 1326 if (count < limit) 1327 margin = limit - count; 1328 1329 if (do_memsw_account()) { 1330 count = page_counter_read(&memcg->memsw); 1331 limit = READ_ONCE(memcg->memsw.max); 1332 if (count < limit) 1333 margin = min(margin, limit - count); 1334 else 1335 margin = 0; 1336 } 1337 1338 return margin; 1339 } 1340 1341 /* 1342 * A routine for checking "mem" is under move_account() or not. 1343 * 1344 * Checking a cgroup is mc.from or mc.to or under hierarchy of 1345 * moving cgroups. This is for waiting at high-memory pressure 1346 * caused by "move". 1347 */ 1348 static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 1349 { 1350 struct mem_cgroup *from; 1351 struct mem_cgroup *to; 1352 bool ret = false; 1353 /* 1354 * Unlike task_move routines, we access mc.to, mc.from not under 1355 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1356 */ 1357 spin_lock(&mc.lock); 1358 from = mc.from; 1359 to = mc.to; 1360 if (!from) 1361 goto unlock; 1362 1363 ret = mem_cgroup_is_descendant(from, memcg) || 1364 mem_cgroup_is_descendant(to, memcg); 1365 unlock: 1366 spin_unlock(&mc.lock); 1367 return ret; 1368 } 1369 1370 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) 1371 { 1372 if (mc.moving_task && current != mc.moving_task) { 1373 if (mem_cgroup_under_move(memcg)) { 1374 DEFINE_WAIT(wait); 1375 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1376 /* moving charge context might have finished. */ 1377 if (mc.moving_task) 1378 schedule(); 1379 finish_wait(&mc.waitq, &wait); 1380 return true; 1381 } 1382 } 1383 return false; 1384 } 1385 1386 struct memory_stat { 1387 const char *name; 1388 unsigned int idx; 1389 }; 1390 1391 static const struct memory_stat memory_stats[] = { 1392 { "anon", NR_ANON_MAPPED }, 1393 { "file", NR_FILE_PAGES }, 1394 { "kernel", MEMCG_KMEM }, 1395 { "kernel_stack", NR_KERNEL_STACK_KB }, 1396 { "pagetables", NR_PAGETABLE }, 1397 { "percpu", MEMCG_PERCPU_B }, 1398 { "sock", MEMCG_SOCK }, 1399 { "vmalloc", MEMCG_VMALLOC }, 1400 { "shmem", NR_SHMEM }, 1401 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 1402 { "zswap", MEMCG_ZSWAP_B }, 1403 { "zswapped", MEMCG_ZSWAPPED }, 1404 #endif 1405 { "file_mapped", NR_FILE_MAPPED }, 1406 { "file_dirty", NR_FILE_DIRTY }, 1407 { "file_writeback", NR_WRITEBACK }, 1408 #ifdef CONFIG_SWAP 1409 { "swapcached", NR_SWAPCACHE }, 1410 #endif 1411 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1412 { "anon_thp", NR_ANON_THPS }, 1413 { "file_thp", NR_FILE_THPS }, 1414 { "shmem_thp", NR_SHMEM_THPS }, 1415 #endif 1416 { "inactive_anon", NR_INACTIVE_ANON }, 1417 { "active_anon", NR_ACTIVE_ANON }, 1418 { "inactive_file", NR_INACTIVE_FILE }, 1419 { "active_file", NR_ACTIVE_FILE }, 1420 { "unevictable", NR_UNEVICTABLE }, 1421 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B }, 1422 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B }, 1423 1424 /* The memory events */ 1425 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON }, 1426 { "workingset_refault_file", WORKINGSET_REFAULT_FILE }, 1427 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON }, 1428 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE }, 1429 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON }, 1430 { "workingset_restore_file", WORKINGSET_RESTORE_FILE }, 1431 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM }, 1432 }; 1433 1434 /* Translate stat items to the correct unit for memory.stat output */ 1435 static int memcg_page_state_unit(int item) 1436 { 1437 switch (item) { 1438 case MEMCG_PERCPU_B: 1439 case MEMCG_ZSWAP_B: 1440 case NR_SLAB_RECLAIMABLE_B: 1441 case NR_SLAB_UNRECLAIMABLE_B: 1442 case WORKINGSET_REFAULT_ANON: 1443 case WORKINGSET_REFAULT_FILE: 1444 case WORKINGSET_ACTIVATE_ANON: 1445 case WORKINGSET_ACTIVATE_FILE: 1446 case WORKINGSET_RESTORE_ANON: 1447 case WORKINGSET_RESTORE_FILE: 1448 case WORKINGSET_NODERECLAIM: 1449 return 1; 1450 case NR_KERNEL_STACK_KB: 1451 return SZ_1K; 1452 default: 1453 return PAGE_SIZE; 1454 } 1455 } 1456 1457 static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg, 1458 int item) 1459 { 1460 return memcg_page_state(memcg, item) * memcg_page_state_unit(item); 1461 } 1462 1463 /* Subset of vm_event_item to report for memcg event stats */ 1464 static const unsigned int memcg_vm_event_stat[] = { 1465 PGSCAN_KSWAPD, 1466 PGSCAN_DIRECT, 1467 PGSTEAL_KSWAPD, 1468 PGSTEAL_DIRECT, 1469 PGFAULT, 1470 PGMAJFAULT, 1471 PGREFILL, 1472 PGACTIVATE, 1473 PGDEACTIVATE, 1474 PGLAZYFREE, 1475 PGLAZYFREED, 1476 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 1477 ZSWPIN, 1478 ZSWPOUT, 1479 #endif 1480 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1481 THP_FAULT_ALLOC, 1482 THP_COLLAPSE_ALLOC, 1483 #endif 1484 }; 1485 1486 static char *memory_stat_format(struct mem_cgroup *memcg) 1487 { 1488 struct seq_buf s; 1489 int i; 1490 1491 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE); 1492 if (!s.buffer) 1493 return NULL; 1494 1495 /* 1496 * Provide statistics on the state of the memory subsystem as 1497 * well as cumulative event counters that show past behavior. 1498 * 1499 * This list is ordered following a combination of these gradients: 1500 * 1) generic big picture -> specifics and details 1501 * 2) reflecting userspace activity -> reflecting kernel heuristics 1502 * 1503 * Current memory state: 1504 */ 1505 mem_cgroup_flush_stats(); 1506 1507 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 1508 u64 size; 1509 1510 size = memcg_page_state_output(memcg, memory_stats[i].idx); 1511 seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size); 1512 1513 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) { 1514 size += memcg_page_state_output(memcg, 1515 NR_SLAB_RECLAIMABLE_B); 1516 seq_buf_printf(&s, "slab %llu\n", size); 1517 } 1518 } 1519 1520 /* Accumulated memory events */ 1521 seq_buf_printf(&s, "pgscan %lu\n", 1522 memcg_events(memcg, PGSCAN_KSWAPD) + 1523 memcg_events(memcg, PGSCAN_DIRECT)); 1524 seq_buf_printf(&s, "pgsteal %lu\n", 1525 memcg_events(memcg, PGSTEAL_KSWAPD) + 1526 memcg_events(memcg, PGSTEAL_DIRECT)); 1527 1528 for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) 1529 seq_buf_printf(&s, "%s %lu\n", 1530 vm_event_name(memcg_vm_event_stat[i]), 1531 memcg_events(memcg, memcg_vm_event_stat[i])); 1532 1533 /* The above should easily fit into one page */ 1534 WARN_ON_ONCE(seq_buf_has_overflowed(&s)); 1535 1536 return s.buffer; 1537 } 1538 1539 #define K(x) ((x) << (PAGE_SHIFT-10)) 1540 /** 1541 * mem_cgroup_print_oom_context: Print OOM information relevant to 1542 * memory controller. 1543 * @memcg: The memory cgroup that went over limit 1544 * @p: Task that is going to be killed 1545 * 1546 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1547 * enabled 1548 */ 1549 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1550 { 1551 rcu_read_lock(); 1552 1553 if (memcg) { 1554 pr_cont(",oom_memcg="); 1555 pr_cont_cgroup_path(memcg->css.cgroup); 1556 } else 1557 pr_cont(",global_oom"); 1558 if (p) { 1559 pr_cont(",task_memcg="); 1560 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); 1561 } 1562 rcu_read_unlock(); 1563 } 1564 1565 /** 1566 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to 1567 * memory controller. 1568 * @memcg: The memory cgroup that went over limit 1569 */ 1570 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1571 { 1572 char *buf; 1573 1574 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", 1575 K((u64)page_counter_read(&memcg->memory)), 1576 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt); 1577 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1578 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n", 1579 K((u64)page_counter_read(&memcg->swap)), 1580 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt); 1581 else { 1582 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", 1583 K((u64)page_counter_read(&memcg->memsw)), 1584 K((u64)memcg->memsw.max), memcg->memsw.failcnt); 1585 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", 1586 K((u64)page_counter_read(&memcg->kmem)), 1587 K((u64)memcg->kmem.max), memcg->kmem.failcnt); 1588 } 1589 1590 pr_info("Memory cgroup stats for "); 1591 pr_cont_cgroup_path(memcg->css.cgroup); 1592 pr_cont(":"); 1593 buf = memory_stat_format(memcg); 1594 if (!buf) 1595 return; 1596 pr_info("%s", buf); 1597 kfree(buf); 1598 } 1599 1600 /* 1601 * Return the memory (and swap, if configured) limit for a memcg. 1602 */ 1603 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1604 { 1605 unsigned long max = READ_ONCE(memcg->memory.max); 1606 1607 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 1608 if (mem_cgroup_swappiness(memcg)) 1609 max += min(READ_ONCE(memcg->swap.max), 1610 (unsigned long)total_swap_pages); 1611 } else { /* v1 */ 1612 if (mem_cgroup_swappiness(memcg)) { 1613 /* Calculate swap excess capacity from memsw limit */ 1614 unsigned long swap = READ_ONCE(memcg->memsw.max) - max; 1615 1616 max += min(swap, (unsigned long)total_swap_pages); 1617 } 1618 } 1619 return max; 1620 } 1621 1622 unsigned long mem_cgroup_size(struct mem_cgroup *memcg) 1623 { 1624 return page_counter_read(&memcg->memory); 1625 } 1626 1627 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1628 int order) 1629 { 1630 struct oom_control oc = { 1631 .zonelist = NULL, 1632 .nodemask = NULL, 1633 .memcg = memcg, 1634 .gfp_mask = gfp_mask, 1635 .order = order, 1636 }; 1637 bool ret = true; 1638 1639 if (mutex_lock_killable(&oom_lock)) 1640 return true; 1641 1642 if (mem_cgroup_margin(memcg) >= (1 << order)) 1643 goto unlock; 1644 1645 /* 1646 * A few threads which were not waiting at mutex_lock_killable() can 1647 * fail to bail out. Therefore, check again after holding oom_lock. 1648 */ 1649 ret = task_is_dying() || out_of_memory(&oc); 1650 1651 unlock: 1652 mutex_unlock(&oom_lock); 1653 return ret; 1654 } 1655 1656 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, 1657 pg_data_t *pgdat, 1658 gfp_t gfp_mask, 1659 unsigned long *total_scanned) 1660 { 1661 struct mem_cgroup *victim = NULL; 1662 int total = 0; 1663 int loop = 0; 1664 unsigned long excess; 1665 unsigned long nr_scanned; 1666 struct mem_cgroup_reclaim_cookie reclaim = { 1667 .pgdat = pgdat, 1668 }; 1669 1670 excess = soft_limit_excess(root_memcg); 1671 1672 while (1) { 1673 victim = mem_cgroup_iter(root_memcg, victim, &reclaim); 1674 if (!victim) { 1675 loop++; 1676 if (loop >= 2) { 1677 /* 1678 * If we have not been able to reclaim 1679 * anything, it might because there are 1680 * no reclaimable pages under this hierarchy 1681 */ 1682 if (!total) 1683 break; 1684 /* 1685 * We want to do more targeted reclaim. 1686 * excess >> 2 is not to excessive so as to 1687 * reclaim too much, nor too less that we keep 1688 * coming back to reclaim from this cgroup 1689 */ 1690 if (total >= (excess >> 2) || 1691 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) 1692 break; 1693 } 1694 continue; 1695 } 1696 total += mem_cgroup_shrink_node(victim, gfp_mask, false, 1697 pgdat, &nr_scanned); 1698 *total_scanned += nr_scanned; 1699 if (!soft_limit_excess(root_memcg)) 1700 break; 1701 } 1702 mem_cgroup_iter_break(root_memcg, victim); 1703 return total; 1704 } 1705 1706 #ifdef CONFIG_LOCKDEP 1707 static struct lockdep_map memcg_oom_lock_dep_map = { 1708 .name = "memcg_oom_lock", 1709 }; 1710 #endif 1711 1712 static DEFINE_SPINLOCK(memcg_oom_lock); 1713 1714 /* 1715 * Check OOM-Killer is already running under our hierarchy. 1716 * If someone is running, return false. 1717 */ 1718 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) 1719 { 1720 struct mem_cgroup *iter, *failed = NULL; 1721 1722 spin_lock(&memcg_oom_lock); 1723 1724 for_each_mem_cgroup_tree(iter, memcg) { 1725 if (iter->oom_lock) { 1726 /* 1727 * this subtree of our hierarchy is already locked 1728 * so we cannot give a lock. 1729 */ 1730 failed = iter; 1731 mem_cgroup_iter_break(memcg, iter); 1732 break; 1733 } else 1734 iter->oom_lock = true; 1735 } 1736 1737 if (failed) { 1738 /* 1739 * OK, we failed to lock the whole subtree so we have 1740 * to clean up what we set up to the failing subtree 1741 */ 1742 for_each_mem_cgroup_tree(iter, memcg) { 1743 if (iter == failed) { 1744 mem_cgroup_iter_break(memcg, iter); 1745 break; 1746 } 1747 iter->oom_lock = false; 1748 } 1749 } else 1750 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); 1751 1752 spin_unlock(&memcg_oom_lock); 1753 1754 return !failed; 1755 } 1756 1757 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 1758 { 1759 struct mem_cgroup *iter; 1760 1761 spin_lock(&memcg_oom_lock); 1762 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_); 1763 for_each_mem_cgroup_tree(iter, memcg) 1764 iter->oom_lock = false; 1765 spin_unlock(&memcg_oom_lock); 1766 } 1767 1768 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 1769 { 1770 struct mem_cgroup *iter; 1771 1772 spin_lock(&memcg_oom_lock); 1773 for_each_mem_cgroup_tree(iter, memcg) 1774 iter->under_oom++; 1775 spin_unlock(&memcg_oom_lock); 1776 } 1777 1778 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 1779 { 1780 struct mem_cgroup *iter; 1781 1782 /* 1783 * Be careful about under_oom underflows because a child memcg 1784 * could have been added after mem_cgroup_mark_under_oom. 1785 */ 1786 spin_lock(&memcg_oom_lock); 1787 for_each_mem_cgroup_tree(iter, memcg) 1788 if (iter->under_oom > 0) 1789 iter->under_oom--; 1790 spin_unlock(&memcg_oom_lock); 1791 } 1792 1793 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 1794 1795 struct oom_wait_info { 1796 struct mem_cgroup *memcg; 1797 wait_queue_entry_t wait; 1798 }; 1799 1800 static int memcg_oom_wake_function(wait_queue_entry_t *wait, 1801 unsigned mode, int sync, void *arg) 1802 { 1803 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; 1804 struct mem_cgroup *oom_wait_memcg; 1805 struct oom_wait_info *oom_wait_info; 1806 1807 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 1808 oom_wait_memcg = oom_wait_info->memcg; 1809 1810 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) && 1811 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg)) 1812 return 0; 1813 return autoremove_wake_function(wait, mode, sync, arg); 1814 } 1815 1816 static void memcg_oom_recover(struct mem_cgroup *memcg) 1817 { 1818 /* 1819 * For the following lockless ->under_oom test, the only required 1820 * guarantee is that it must see the state asserted by an OOM when 1821 * this function is called as a result of userland actions 1822 * triggered by the notification of the OOM. This is trivially 1823 * achieved by invoking mem_cgroup_mark_under_oom() before 1824 * triggering notification. 1825 */ 1826 if (memcg && memcg->under_oom) 1827 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 1828 } 1829 1830 /* 1831 * Returns true if successfully killed one or more processes. Though in some 1832 * corner cases it can return true even without killing any process. 1833 */ 1834 static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 1835 { 1836 bool locked, ret; 1837 1838 if (order > PAGE_ALLOC_COSTLY_ORDER) 1839 return false; 1840 1841 memcg_memory_event(memcg, MEMCG_OOM); 1842 1843 /* 1844 * We are in the middle of the charge context here, so we 1845 * don't want to block when potentially sitting on a callstack 1846 * that holds all kinds of filesystem and mm locks. 1847 * 1848 * cgroup1 allows disabling the OOM killer and waiting for outside 1849 * handling until the charge can succeed; remember the context and put 1850 * the task to sleep at the end of the page fault when all locks are 1851 * released. 1852 * 1853 * On the other hand, in-kernel OOM killer allows for an async victim 1854 * memory reclaim (oom_reaper) and that means that we are not solely 1855 * relying on the oom victim to make a forward progress and we can 1856 * invoke the oom killer here. 1857 * 1858 * Please note that mem_cgroup_out_of_memory might fail to find a 1859 * victim and then we have to bail out from the charge path. 1860 */ 1861 if (memcg->oom_kill_disable) { 1862 if (current->in_user_fault) { 1863 css_get(&memcg->css); 1864 current->memcg_in_oom = memcg; 1865 current->memcg_oom_gfp_mask = mask; 1866 current->memcg_oom_order = order; 1867 } 1868 return false; 1869 } 1870 1871 mem_cgroup_mark_under_oom(memcg); 1872 1873 locked = mem_cgroup_oom_trylock(memcg); 1874 1875 if (locked) 1876 mem_cgroup_oom_notify(memcg); 1877 1878 mem_cgroup_unmark_under_oom(memcg); 1879 ret = mem_cgroup_out_of_memory(memcg, mask, order); 1880 1881 if (locked) 1882 mem_cgroup_oom_unlock(memcg); 1883 1884 return ret; 1885 } 1886 1887 /** 1888 * mem_cgroup_oom_synchronize - complete memcg OOM handling 1889 * @handle: actually kill/wait or just clean up the OOM state 1890 * 1891 * This has to be called at the end of a page fault if the memcg OOM 1892 * handler was enabled. 1893 * 1894 * Memcg supports userspace OOM handling where failed allocations must 1895 * sleep on a waitqueue until the userspace task resolves the 1896 * situation. Sleeping directly in the charge context with all kinds 1897 * of locks held is not a good idea, instead we remember an OOM state 1898 * in the task and mem_cgroup_oom_synchronize() has to be called at 1899 * the end of the page fault to complete the OOM handling. 1900 * 1901 * Returns %true if an ongoing memcg OOM situation was detected and 1902 * completed, %false otherwise. 1903 */ 1904 bool mem_cgroup_oom_synchronize(bool handle) 1905 { 1906 struct mem_cgroup *memcg = current->memcg_in_oom; 1907 struct oom_wait_info owait; 1908 bool locked; 1909 1910 /* OOM is global, do not handle */ 1911 if (!memcg) 1912 return false; 1913 1914 if (!handle) 1915 goto cleanup; 1916 1917 owait.memcg = memcg; 1918 owait.wait.flags = 0; 1919 owait.wait.func = memcg_oom_wake_function; 1920 owait.wait.private = current; 1921 INIT_LIST_HEAD(&owait.wait.entry); 1922 1923 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 1924 mem_cgroup_mark_under_oom(memcg); 1925 1926 locked = mem_cgroup_oom_trylock(memcg); 1927 1928 if (locked) 1929 mem_cgroup_oom_notify(memcg); 1930 1931 if (locked && !memcg->oom_kill_disable) { 1932 mem_cgroup_unmark_under_oom(memcg); 1933 finish_wait(&memcg_oom_waitq, &owait.wait); 1934 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask, 1935 current->memcg_oom_order); 1936 } else { 1937 schedule(); 1938 mem_cgroup_unmark_under_oom(memcg); 1939 finish_wait(&memcg_oom_waitq, &owait.wait); 1940 } 1941 1942 if (locked) { 1943 mem_cgroup_oom_unlock(memcg); 1944 /* 1945 * There is no guarantee that an OOM-lock contender 1946 * sees the wakeups triggered by the OOM kill 1947 * uncharges. Wake any sleepers explicitly. 1948 */ 1949 memcg_oom_recover(memcg); 1950 } 1951 cleanup: 1952 current->memcg_in_oom = NULL; 1953 css_put(&memcg->css); 1954 return true; 1955 } 1956 1957 /** 1958 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM 1959 * @victim: task to be killed by the OOM killer 1960 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM 1961 * 1962 * Returns a pointer to a memory cgroup, which has to be cleaned up 1963 * by killing all belonging OOM-killable tasks. 1964 * 1965 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg. 1966 */ 1967 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 1968 struct mem_cgroup *oom_domain) 1969 { 1970 struct mem_cgroup *oom_group = NULL; 1971 struct mem_cgroup *memcg; 1972 1973 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1974 return NULL; 1975 1976 if (!oom_domain) 1977 oom_domain = root_mem_cgroup; 1978 1979 rcu_read_lock(); 1980 1981 memcg = mem_cgroup_from_task(victim); 1982 if (memcg == root_mem_cgroup) 1983 goto out; 1984 1985 /* 1986 * If the victim task has been asynchronously moved to a different 1987 * memory cgroup, we might end up killing tasks outside oom_domain. 1988 * In this case it's better to ignore memory.group.oom. 1989 */ 1990 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain))) 1991 goto out; 1992 1993 /* 1994 * Traverse the memory cgroup hierarchy from the victim task's 1995 * cgroup up to the OOMing cgroup (or root) to find the 1996 * highest-level memory cgroup with oom.group set. 1997 */ 1998 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 1999 if (memcg->oom_group) 2000 oom_group = memcg; 2001 2002 if (memcg == oom_domain) 2003 break; 2004 } 2005 2006 if (oom_group) 2007 css_get(&oom_group->css); 2008 out: 2009 rcu_read_unlock(); 2010 2011 return oom_group; 2012 } 2013 2014 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 2015 { 2016 pr_info("Tasks in "); 2017 pr_cont_cgroup_path(memcg->css.cgroup); 2018 pr_cont(" are going to be killed due to memory.oom.group set\n"); 2019 } 2020 2021 /** 2022 * folio_memcg_lock - Bind a folio to its memcg. 2023 * @folio: The folio. 2024 * 2025 * This function prevents unlocked LRU folios from being moved to 2026 * another cgroup. 2027 * 2028 * It ensures lifetime of the bound memcg. The caller is responsible 2029 * for the lifetime of the folio. 2030 */ 2031 void folio_memcg_lock(struct folio *folio) 2032 { 2033 struct mem_cgroup *memcg; 2034 unsigned long flags; 2035 2036 /* 2037 * The RCU lock is held throughout the transaction. The fast 2038 * path can get away without acquiring the memcg->move_lock 2039 * because page moving starts with an RCU grace period. 2040 */ 2041 rcu_read_lock(); 2042 2043 if (mem_cgroup_disabled()) 2044 return; 2045 again: 2046 memcg = folio_memcg(folio); 2047 if (unlikely(!memcg)) 2048 return; 2049 2050 #ifdef CONFIG_PROVE_LOCKING 2051 local_irq_save(flags); 2052 might_lock(&memcg->move_lock); 2053 local_irq_restore(flags); 2054 #endif 2055 2056 if (atomic_read(&memcg->moving_account) <= 0) 2057 return; 2058 2059 spin_lock_irqsave(&memcg->move_lock, flags); 2060 if (memcg != folio_memcg(folio)) { 2061 spin_unlock_irqrestore(&memcg->move_lock, flags); 2062 goto again; 2063 } 2064 2065 /* 2066 * When charge migration first begins, we can have multiple 2067 * critical sections holding the fast-path RCU lock and one 2068 * holding the slowpath move_lock. Track the task who has the 2069 * move_lock for unlock_page_memcg(). 2070 */ 2071 memcg->move_lock_task = current; 2072 memcg->move_lock_flags = flags; 2073 } 2074 2075 void lock_page_memcg(struct page *page) 2076 { 2077 folio_memcg_lock(page_folio(page)); 2078 } 2079 2080 static void __folio_memcg_unlock(struct mem_cgroup *memcg) 2081 { 2082 if (memcg && memcg->move_lock_task == current) { 2083 unsigned long flags = memcg->move_lock_flags; 2084 2085 memcg->move_lock_task = NULL; 2086 memcg->move_lock_flags = 0; 2087 2088 spin_unlock_irqrestore(&memcg->move_lock, flags); 2089 } 2090 2091 rcu_read_unlock(); 2092 } 2093 2094 /** 2095 * folio_memcg_unlock - Release the binding between a folio and its memcg. 2096 * @folio: The folio. 2097 * 2098 * This releases the binding created by folio_memcg_lock(). This does 2099 * not change the accounting of this folio to its memcg, but it does 2100 * permit others to change it. 2101 */ 2102 void folio_memcg_unlock(struct folio *folio) 2103 { 2104 __folio_memcg_unlock(folio_memcg(folio)); 2105 } 2106 2107 void unlock_page_memcg(struct page *page) 2108 { 2109 folio_memcg_unlock(page_folio(page)); 2110 } 2111 2112 struct memcg_stock_pcp { 2113 local_lock_t stock_lock; 2114 struct mem_cgroup *cached; /* this never be root cgroup */ 2115 unsigned int nr_pages; 2116 2117 #ifdef CONFIG_MEMCG_KMEM 2118 struct obj_cgroup *cached_objcg; 2119 struct pglist_data *cached_pgdat; 2120 unsigned int nr_bytes; 2121 int nr_slab_reclaimable_b; 2122 int nr_slab_unreclaimable_b; 2123 #endif 2124 2125 struct work_struct work; 2126 unsigned long flags; 2127 #define FLUSHING_CACHED_CHARGE 0 2128 }; 2129 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = { 2130 .stock_lock = INIT_LOCAL_LOCK(stock_lock), 2131 }; 2132 static DEFINE_MUTEX(percpu_charge_mutex); 2133 2134 #ifdef CONFIG_MEMCG_KMEM 2135 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock); 2136 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 2137 struct mem_cgroup *root_memcg); 2138 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages); 2139 2140 #else 2141 static inline struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock) 2142 { 2143 return NULL; 2144 } 2145 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 2146 struct mem_cgroup *root_memcg) 2147 { 2148 return false; 2149 } 2150 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages) 2151 { 2152 } 2153 #endif 2154 2155 /** 2156 * consume_stock: Try to consume stocked charge on this cpu. 2157 * @memcg: memcg to consume from. 2158 * @nr_pages: how many pages to charge. 2159 * 2160 * The charges will only happen if @memcg matches the current cpu's memcg 2161 * stock, and at least @nr_pages are available in that stock. Failure to 2162 * service an allocation will refill the stock. 2163 * 2164 * returns true if successful, false otherwise. 2165 */ 2166 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2167 { 2168 struct memcg_stock_pcp *stock; 2169 unsigned long flags; 2170 bool ret = false; 2171 2172 if (nr_pages > MEMCG_CHARGE_BATCH) 2173 return ret; 2174 2175 local_lock_irqsave(&memcg_stock.stock_lock, flags); 2176 2177 stock = this_cpu_ptr(&memcg_stock); 2178 if (memcg == stock->cached && stock->nr_pages >= nr_pages) { 2179 stock->nr_pages -= nr_pages; 2180 ret = true; 2181 } 2182 2183 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 2184 2185 return ret; 2186 } 2187 2188 /* 2189 * Returns stocks cached in percpu and reset cached information. 2190 */ 2191 static void drain_stock(struct memcg_stock_pcp *stock) 2192 { 2193 struct mem_cgroup *old = stock->cached; 2194 2195 if (!old) 2196 return; 2197 2198 if (stock->nr_pages) { 2199 page_counter_uncharge(&old->memory, stock->nr_pages); 2200 if (do_memsw_account()) 2201 page_counter_uncharge(&old->memsw, stock->nr_pages); 2202 stock->nr_pages = 0; 2203 } 2204 2205 css_put(&old->css); 2206 stock->cached = NULL; 2207 } 2208 2209 static void drain_local_stock(struct work_struct *dummy) 2210 { 2211 struct memcg_stock_pcp *stock; 2212 struct obj_cgroup *old = NULL; 2213 unsigned long flags; 2214 2215 /* 2216 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs. 2217 * drain_stock races is that we always operate on local CPU stock 2218 * here with IRQ disabled 2219 */ 2220 local_lock_irqsave(&memcg_stock.stock_lock, flags); 2221 2222 stock = this_cpu_ptr(&memcg_stock); 2223 old = drain_obj_stock(stock); 2224 drain_stock(stock); 2225 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 2226 2227 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 2228 if (old) 2229 obj_cgroup_put(old); 2230 } 2231 2232 /* 2233 * Cache charges(val) to local per_cpu area. 2234 * This will be consumed by consume_stock() function, later. 2235 */ 2236 static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2237 { 2238 struct memcg_stock_pcp *stock; 2239 2240 stock = this_cpu_ptr(&memcg_stock); 2241 if (stock->cached != memcg) { /* reset if necessary */ 2242 drain_stock(stock); 2243 css_get(&memcg->css); 2244 stock->cached = memcg; 2245 } 2246 stock->nr_pages += nr_pages; 2247 2248 if (stock->nr_pages > MEMCG_CHARGE_BATCH) 2249 drain_stock(stock); 2250 } 2251 2252 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2253 { 2254 unsigned long flags; 2255 2256 local_lock_irqsave(&memcg_stock.stock_lock, flags); 2257 __refill_stock(memcg, nr_pages); 2258 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 2259 } 2260 2261 /* 2262 * Drains all per-CPU charge caches for given root_memcg resp. subtree 2263 * of the hierarchy under it. 2264 */ 2265 static void drain_all_stock(struct mem_cgroup *root_memcg) 2266 { 2267 int cpu, curcpu; 2268 2269 /* If someone's already draining, avoid adding running more workers. */ 2270 if (!mutex_trylock(&percpu_charge_mutex)) 2271 return; 2272 /* 2273 * Notify other cpus that system-wide "drain" is running 2274 * We do not care about races with the cpu hotplug because cpu down 2275 * as well as workers from this path always operate on the local 2276 * per-cpu data. CPU up doesn't touch memcg_stock at all. 2277 */ 2278 migrate_disable(); 2279 curcpu = smp_processor_id(); 2280 for_each_online_cpu(cpu) { 2281 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2282 struct mem_cgroup *memcg; 2283 bool flush = false; 2284 2285 rcu_read_lock(); 2286 memcg = stock->cached; 2287 if (memcg && stock->nr_pages && 2288 mem_cgroup_is_descendant(memcg, root_memcg)) 2289 flush = true; 2290 else if (obj_stock_flush_required(stock, root_memcg)) 2291 flush = true; 2292 rcu_read_unlock(); 2293 2294 if (flush && 2295 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 2296 if (cpu == curcpu) 2297 drain_local_stock(&stock->work); 2298 else 2299 schedule_work_on(cpu, &stock->work); 2300 } 2301 } 2302 migrate_enable(); 2303 mutex_unlock(&percpu_charge_mutex); 2304 } 2305 2306 static int memcg_hotplug_cpu_dead(unsigned int cpu) 2307 { 2308 struct memcg_stock_pcp *stock; 2309 2310 stock = &per_cpu(memcg_stock, cpu); 2311 drain_stock(stock); 2312 2313 return 0; 2314 } 2315 2316 static unsigned long reclaim_high(struct mem_cgroup *memcg, 2317 unsigned int nr_pages, 2318 gfp_t gfp_mask) 2319 { 2320 unsigned long nr_reclaimed = 0; 2321 2322 do { 2323 unsigned long pflags; 2324 2325 if (page_counter_read(&memcg->memory) <= 2326 READ_ONCE(memcg->memory.high)) 2327 continue; 2328 2329 memcg_memory_event(memcg, MEMCG_HIGH); 2330 2331 psi_memstall_enter(&pflags); 2332 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages, 2333 gfp_mask, true); 2334 psi_memstall_leave(&pflags); 2335 } while ((memcg = parent_mem_cgroup(memcg)) && 2336 !mem_cgroup_is_root(memcg)); 2337 2338 return nr_reclaimed; 2339 } 2340 2341 static void high_work_func(struct work_struct *work) 2342 { 2343 struct mem_cgroup *memcg; 2344 2345 memcg = container_of(work, struct mem_cgroup, high_work); 2346 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL); 2347 } 2348 2349 /* 2350 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is 2351 * enough to still cause a significant slowdown in most cases, while still 2352 * allowing diagnostics and tracing to proceed without becoming stuck. 2353 */ 2354 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ) 2355 2356 /* 2357 * When calculating the delay, we use these either side of the exponentiation to 2358 * maintain precision and scale to a reasonable number of jiffies (see the table 2359 * below. 2360 * 2361 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the 2362 * overage ratio to a delay. 2363 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the 2364 * proposed penalty in order to reduce to a reasonable number of jiffies, and 2365 * to produce a reasonable delay curve. 2366 * 2367 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a 2368 * reasonable delay curve compared to precision-adjusted overage, not 2369 * penalising heavily at first, but still making sure that growth beyond the 2370 * limit penalises misbehaviour cgroups by slowing them down exponentially. For 2371 * example, with a high of 100 megabytes: 2372 * 2373 * +-------+------------------------+ 2374 * | usage | time to allocate in ms | 2375 * +-------+------------------------+ 2376 * | 100M | 0 | 2377 * | 101M | 6 | 2378 * | 102M | 25 | 2379 * | 103M | 57 | 2380 * | 104M | 102 | 2381 * | 105M | 159 | 2382 * | 106M | 230 | 2383 * | 107M | 313 | 2384 * | 108M | 409 | 2385 * | 109M | 518 | 2386 * | 110M | 639 | 2387 * | 111M | 774 | 2388 * | 112M | 921 | 2389 * | 113M | 1081 | 2390 * | 114M | 1254 | 2391 * | 115M | 1439 | 2392 * | 116M | 1638 | 2393 * | 117M | 1849 | 2394 * | 118M | 2000 | 2395 * | 119M | 2000 | 2396 * | 120M | 2000 | 2397 * +-------+------------------------+ 2398 */ 2399 #define MEMCG_DELAY_PRECISION_SHIFT 20 2400 #define MEMCG_DELAY_SCALING_SHIFT 14 2401 2402 static u64 calculate_overage(unsigned long usage, unsigned long high) 2403 { 2404 u64 overage; 2405 2406 if (usage <= high) 2407 return 0; 2408 2409 /* 2410 * Prevent division by 0 in overage calculation by acting as if 2411 * it was a threshold of 1 page 2412 */ 2413 high = max(high, 1UL); 2414 2415 overage = usage - high; 2416 overage <<= MEMCG_DELAY_PRECISION_SHIFT; 2417 return div64_u64(overage, high); 2418 } 2419 2420 static u64 mem_find_max_overage(struct mem_cgroup *memcg) 2421 { 2422 u64 overage, max_overage = 0; 2423 2424 do { 2425 overage = calculate_overage(page_counter_read(&memcg->memory), 2426 READ_ONCE(memcg->memory.high)); 2427 max_overage = max(overage, max_overage); 2428 } while ((memcg = parent_mem_cgroup(memcg)) && 2429 !mem_cgroup_is_root(memcg)); 2430 2431 return max_overage; 2432 } 2433 2434 static u64 swap_find_max_overage(struct mem_cgroup *memcg) 2435 { 2436 u64 overage, max_overage = 0; 2437 2438 do { 2439 overage = calculate_overage(page_counter_read(&memcg->swap), 2440 READ_ONCE(memcg->swap.high)); 2441 if (overage) 2442 memcg_memory_event(memcg, MEMCG_SWAP_HIGH); 2443 max_overage = max(overage, max_overage); 2444 } while ((memcg = parent_mem_cgroup(memcg)) && 2445 !mem_cgroup_is_root(memcg)); 2446 2447 return max_overage; 2448 } 2449 2450 /* 2451 * Get the number of jiffies that we should penalise a mischievous cgroup which 2452 * is exceeding its memory.high by checking both it and its ancestors. 2453 */ 2454 static unsigned long calculate_high_delay(struct mem_cgroup *memcg, 2455 unsigned int nr_pages, 2456 u64 max_overage) 2457 { 2458 unsigned long penalty_jiffies; 2459 2460 if (!max_overage) 2461 return 0; 2462 2463 /* 2464 * We use overage compared to memory.high to calculate the number of 2465 * jiffies to sleep (penalty_jiffies). Ideally this value should be 2466 * fairly lenient on small overages, and increasingly harsh when the 2467 * memcg in question makes it clear that it has no intention of stopping 2468 * its crazy behaviour, so we exponentially increase the delay based on 2469 * overage amount. 2470 */ 2471 penalty_jiffies = max_overage * max_overage * HZ; 2472 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT; 2473 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT; 2474 2475 /* 2476 * Factor in the task's own contribution to the overage, such that four 2477 * N-sized allocations are throttled approximately the same as one 2478 * 4N-sized allocation. 2479 * 2480 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or 2481 * larger the current charge patch is than that. 2482 */ 2483 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH; 2484 } 2485 2486 /* 2487 * Scheduled by try_charge() to be executed from the userland return path 2488 * and reclaims memory over the high limit. 2489 */ 2490 void mem_cgroup_handle_over_high(void) 2491 { 2492 unsigned long penalty_jiffies; 2493 unsigned long pflags; 2494 unsigned long nr_reclaimed; 2495 unsigned int nr_pages = current->memcg_nr_pages_over_high; 2496 int nr_retries = MAX_RECLAIM_RETRIES; 2497 struct mem_cgroup *memcg; 2498 bool in_retry = false; 2499 2500 if (likely(!nr_pages)) 2501 return; 2502 2503 memcg = get_mem_cgroup_from_mm(current->mm); 2504 current->memcg_nr_pages_over_high = 0; 2505 2506 retry_reclaim: 2507 /* 2508 * The allocating task should reclaim at least the batch size, but for 2509 * subsequent retries we only want to do what's necessary to prevent oom 2510 * or breaching resource isolation. 2511 * 2512 * This is distinct from memory.max or page allocator behaviour because 2513 * memory.high is currently batched, whereas memory.max and the page 2514 * allocator run every time an allocation is made. 2515 */ 2516 nr_reclaimed = reclaim_high(memcg, 2517 in_retry ? SWAP_CLUSTER_MAX : nr_pages, 2518 GFP_KERNEL); 2519 2520 /* 2521 * memory.high is breached and reclaim is unable to keep up. Throttle 2522 * allocators proactively to slow down excessive growth. 2523 */ 2524 penalty_jiffies = calculate_high_delay(memcg, nr_pages, 2525 mem_find_max_overage(memcg)); 2526 2527 penalty_jiffies += calculate_high_delay(memcg, nr_pages, 2528 swap_find_max_overage(memcg)); 2529 2530 /* 2531 * Clamp the max delay per usermode return so as to still keep the 2532 * application moving forwards and also permit diagnostics, albeit 2533 * extremely slowly. 2534 */ 2535 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES); 2536 2537 /* 2538 * Don't sleep if the amount of jiffies this memcg owes us is so low 2539 * that it's not even worth doing, in an attempt to be nice to those who 2540 * go only a small amount over their memory.high value and maybe haven't 2541 * been aggressively reclaimed enough yet. 2542 */ 2543 if (penalty_jiffies <= HZ / 100) 2544 goto out; 2545 2546 /* 2547 * If reclaim is making forward progress but we're still over 2548 * memory.high, we want to encourage that rather than doing allocator 2549 * throttling. 2550 */ 2551 if (nr_reclaimed || nr_retries--) { 2552 in_retry = true; 2553 goto retry_reclaim; 2554 } 2555 2556 /* 2557 * If we exit early, we're guaranteed to die (since 2558 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't 2559 * need to account for any ill-begotten jiffies to pay them off later. 2560 */ 2561 psi_memstall_enter(&pflags); 2562 schedule_timeout_killable(penalty_jiffies); 2563 psi_memstall_leave(&pflags); 2564 2565 out: 2566 css_put(&memcg->css); 2567 } 2568 2569 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask, 2570 unsigned int nr_pages) 2571 { 2572 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages); 2573 int nr_retries = MAX_RECLAIM_RETRIES; 2574 struct mem_cgroup *mem_over_limit; 2575 struct page_counter *counter; 2576 unsigned long nr_reclaimed; 2577 bool passed_oom = false; 2578 bool may_swap = true; 2579 bool drained = false; 2580 unsigned long pflags; 2581 2582 retry: 2583 if (consume_stock(memcg, nr_pages)) 2584 return 0; 2585 2586 if (!do_memsw_account() || 2587 page_counter_try_charge(&memcg->memsw, batch, &counter)) { 2588 if (page_counter_try_charge(&memcg->memory, batch, &counter)) 2589 goto done_restock; 2590 if (do_memsw_account()) 2591 page_counter_uncharge(&memcg->memsw, batch); 2592 mem_over_limit = mem_cgroup_from_counter(counter, memory); 2593 } else { 2594 mem_over_limit = mem_cgroup_from_counter(counter, memsw); 2595 may_swap = false; 2596 } 2597 2598 if (batch > nr_pages) { 2599 batch = nr_pages; 2600 goto retry; 2601 } 2602 2603 /* 2604 * Prevent unbounded recursion when reclaim operations need to 2605 * allocate memory. This might exceed the limits temporarily, 2606 * but we prefer facilitating memory reclaim and getting back 2607 * under the limit over triggering OOM kills in these cases. 2608 */ 2609 if (unlikely(current->flags & PF_MEMALLOC)) 2610 goto force; 2611 2612 if (unlikely(task_in_memcg_oom(current))) 2613 goto nomem; 2614 2615 if (!gfpflags_allow_blocking(gfp_mask)) 2616 goto nomem; 2617 2618 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2619 2620 psi_memstall_enter(&pflags); 2621 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, 2622 gfp_mask, may_swap); 2623 psi_memstall_leave(&pflags); 2624 2625 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2626 goto retry; 2627 2628 if (!drained) { 2629 drain_all_stock(mem_over_limit); 2630 drained = true; 2631 goto retry; 2632 } 2633 2634 if (gfp_mask & __GFP_NORETRY) 2635 goto nomem; 2636 /* 2637 * Even though the limit is exceeded at this point, reclaim 2638 * may have been able to free some pages. Retry the charge 2639 * before killing the task. 2640 * 2641 * Only for regular pages, though: huge pages are rather 2642 * unlikely to succeed so close to the limit, and we fall back 2643 * to regular pages anyway in case of failure. 2644 */ 2645 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) 2646 goto retry; 2647 /* 2648 * At task move, charge accounts can be doubly counted. So, it's 2649 * better to wait until the end of task_move if something is going on. 2650 */ 2651 if (mem_cgroup_wait_acct_move(mem_over_limit)) 2652 goto retry; 2653 2654 if (nr_retries--) 2655 goto retry; 2656 2657 if (gfp_mask & __GFP_RETRY_MAYFAIL) 2658 goto nomem; 2659 2660 /* Avoid endless loop for tasks bypassed by the oom killer */ 2661 if (passed_oom && task_is_dying()) 2662 goto nomem; 2663 2664 /* 2665 * keep retrying as long as the memcg oom killer is able to make 2666 * a forward progress or bypass the charge if the oom killer 2667 * couldn't make any progress. 2668 */ 2669 if (mem_cgroup_oom(mem_over_limit, gfp_mask, 2670 get_order(nr_pages * PAGE_SIZE))) { 2671 passed_oom = true; 2672 nr_retries = MAX_RECLAIM_RETRIES; 2673 goto retry; 2674 } 2675 nomem: 2676 /* 2677 * Memcg doesn't have a dedicated reserve for atomic 2678 * allocations. But like the global atomic pool, we need to 2679 * put the burden of reclaim on regular allocation requests 2680 * and let these go through as privileged allocations. 2681 */ 2682 if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH))) 2683 return -ENOMEM; 2684 force: 2685 /* 2686 * The allocation either can't fail or will lead to more memory 2687 * being freed very soon. Allow memory usage go over the limit 2688 * temporarily by force charging it. 2689 */ 2690 page_counter_charge(&memcg->memory, nr_pages); 2691 if (do_memsw_account()) 2692 page_counter_charge(&memcg->memsw, nr_pages); 2693 2694 return 0; 2695 2696 done_restock: 2697 if (batch > nr_pages) 2698 refill_stock(memcg, batch - nr_pages); 2699 2700 /* 2701 * If the hierarchy is above the normal consumption range, schedule 2702 * reclaim on returning to userland. We can perform reclaim here 2703 * if __GFP_RECLAIM but let's always punt for simplicity and so that 2704 * GFP_KERNEL can consistently be used during reclaim. @memcg is 2705 * not recorded as it most likely matches current's and won't 2706 * change in the meantime. As high limit is checked again before 2707 * reclaim, the cost of mismatch is negligible. 2708 */ 2709 do { 2710 bool mem_high, swap_high; 2711 2712 mem_high = page_counter_read(&memcg->memory) > 2713 READ_ONCE(memcg->memory.high); 2714 swap_high = page_counter_read(&memcg->swap) > 2715 READ_ONCE(memcg->swap.high); 2716 2717 /* Don't bother a random interrupted task */ 2718 if (!in_task()) { 2719 if (mem_high) { 2720 schedule_work(&memcg->high_work); 2721 break; 2722 } 2723 continue; 2724 } 2725 2726 if (mem_high || swap_high) { 2727 /* 2728 * The allocating tasks in this cgroup will need to do 2729 * reclaim or be throttled to prevent further growth 2730 * of the memory or swap footprints. 2731 * 2732 * Target some best-effort fairness between the tasks, 2733 * and distribute reclaim work and delay penalties 2734 * based on how much each task is actually allocating. 2735 */ 2736 current->memcg_nr_pages_over_high += batch; 2737 set_notify_resume(current); 2738 break; 2739 } 2740 } while ((memcg = parent_mem_cgroup(memcg))); 2741 2742 if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH && 2743 !(current->flags & PF_MEMALLOC) && 2744 gfpflags_allow_blocking(gfp_mask)) { 2745 mem_cgroup_handle_over_high(); 2746 } 2747 return 0; 2748 } 2749 2750 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 2751 unsigned int nr_pages) 2752 { 2753 if (mem_cgroup_is_root(memcg)) 2754 return 0; 2755 2756 return try_charge_memcg(memcg, gfp_mask, nr_pages); 2757 } 2758 2759 static inline void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages) 2760 { 2761 if (mem_cgroup_is_root(memcg)) 2762 return; 2763 2764 page_counter_uncharge(&memcg->memory, nr_pages); 2765 if (do_memsw_account()) 2766 page_counter_uncharge(&memcg->memsw, nr_pages); 2767 } 2768 2769 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg) 2770 { 2771 VM_BUG_ON_FOLIO(folio_memcg(folio), folio); 2772 /* 2773 * Any of the following ensures page's memcg stability: 2774 * 2775 * - the page lock 2776 * - LRU isolation 2777 * - lock_page_memcg() 2778 * - exclusive reference 2779 */ 2780 folio->memcg_data = (unsigned long)memcg; 2781 } 2782 2783 #ifdef CONFIG_MEMCG_KMEM 2784 /* 2785 * The allocated objcg pointers array is not accounted directly. 2786 * Moreover, it should not come from DMA buffer and is not readily 2787 * reclaimable. So those GFP bits should be masked off. 2788 */ 2789 #define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT) 2790 2791 /* 2792 * mod_objcg_mlstate() may be called with irq enabled, so 2793 * mod_memcg_lruvec_state() should be used. 2794 */ 2795 static inline void mod_objcg_mlstate(struct obj_cgroup *objcg, 2796 struct pglist_data *pgdat, 2797 enum node_stat_item idx, int nr) 2798 { 2799 struct mem_cgroup *memcg; 2800 struct lruvec *lruvec; 2801 2802 rcu_read_lock(); 2803 memcg = obj_cgroup_memcg(objcg); 2804 lruvec = mem_cgroup_lruvec(memcg, pgdat); 2805 mod_memcg_lruvec_state(lruvec, idx, nr); 2806 rcu_read_unlock(); 2807 } 2808 2809 int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s, 2810 gfp_t gfp, bool new_slab) 2811 { 2812 unsigned int objects = objs_per_slab(s, slab); 2813 unsigned long memcg_data; 2814 void *vec; 2815 2816 gfp &= ~OBJCGS_CLEAR_MASK; 2817 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp, 2818 slab_nid(slab)); 2819 if (!vec) 2820 return -ENOMEM; 2821 2822 memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS; 2823 if (new_slab) { 2824 /* 2825 * If the slab is brand new and nobody can yet access its 2826 * memcg_data, no synchronization is required and memcg_data can 2827 * be simply assigned. 2828 */ 2829 slab->memcg_data = memcg_data; 2830 } else if (cmpxchg(&slab->memcg_data, 0, memcg_data)) { 2831 /* 2832 * If the slab is already in use, somebody can allocate and 2833 * assign obj_cgroups in parallel. In this case the existing 2834 * objcg vector should be reused. 2835 */ 2836 kfree(vec); 2837 return 0; 2838 } 2839 2840 kmemleak_not_leak(vec); 2841 return 0; 2842 } 2843 2844 static __always_inline 2845 struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p) 2846 { 2847 /* 2848 * Slab objects are accounted individually, not per-page. 2849 * Memcg membership data for each individual object is saved in 2850 * slab->memcg_data. 2851 */ 2852 if (folio_test_slab(folio)) { 2853 struct obj_cgroup **objcgs; 2854 struct slab *slab; 2855 unsigned int off; 2856 2857 slab = folio_slab(folio); 2858 objcgs = slab_objcgs(slab); 2859 if (!objcgs) 2860 return NULL; 2861 2862 off = obj_to_index(slab->slab_cache, slab, p); 2863 if (objcgs[off]) 2864 return obj_cgroup_memcg(objcgs[off]); 2865 2866 return NULL; 2867 } 2868 2869 /* 2870 * page_memcg_check() is used here, because in theory we can encounter 2871 * a folio where the slab flag has been cleared already, but 2872 * slab->memcg_data has not been freed yet 2873 * page_memcg_check(page) will guarantee that a proper memory 2874 * cgroup pointer or NULL will be returned. 2875 */ 2876 return page_memcg_check(folio_page(folio, 0)); 2877 } 2878 2879 /* 2880 * Returns a pointer to the memory cgroup to which the kernel object is charged. 2881 * 2882 * A passed kernel object can be a slab object, vmalloc object or a generic 2883 * kernel page, so different mechanisms for getting the memory cgroup pointer 2884 * should be used. 2885 * 2886 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller 2887 * can not know for sure how the kernel object is implemented. 2888 * mem_cgroup_from_obj() can be safely used in such cases. 2889 * 2890 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(), 2891 * cgroup_mutex, etc. 2892 */ 2893 struct mem_cgroup *mem_cgroup_from_obj(void *p) 2894 { 2895 struct folio *folio; 2896 2897 if (mem_cgroup_disabled()) 2898 return NULL; 2899 2900 if (unlikely(is_vmalloc_addr(p))) 2901 folio = page_folio(vmalloc_to_page(p)); 2902 else 2903 folio = virt_to_folio(p); 2904 2905 return mem_cgroup_from_obj_folio(folio, p); 2906 } 2907 2908 /* 2909 * Returns a pointer to the memory cgroup to which the kernel object is charged. 2910 * Similar to mem_cgroup_from_obj(), but faster and not suitable for objects, 2911 * allocated using vmalloc(). 2912 * 2913 * A passed kernel object must be a slab object or a generic kernel page. 2914 * 2915 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(), 2916 * cgroup_mutex, etc. 2917 */ 2918 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p) 2919 { 2920 if (mem_cgroup_disabled()) 2921 return NULL; 2922 2923 return mem_cgroup_from_obj_folio(virt_to_folio(p), p); 2924 } 2925 2926 static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg) 2927 { 2928 struct obj_cgroup *objcg = NULL; 2929 2930 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) { 2931 objcg = rcu_dereference(memcg->objcg); 2932 if (objcg && obj_cgroup_tryget(objcg)) 2933 break; 2934 objcg = NULL; 2935 } 2936 return objcg; 2937 } 2938 2939 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void) 2940 { 2941 struct obj_cgroup *objcg = NULL; 2942 struct mem_cgroup *memcg; 2943 2944 if (memcg_kmem_bypass()) 2945 return NULL; 2946 2947 rcu_read_lock(); 2948 if (unlikely(active_memcg())) 2949 memcg = active_memcg(); 2950 else 2951 memcg = mem_cgroup_from_task(current); 2952 objcg = __get_obj_cgroup_from_memcg(memcg); 2953 rcu_read_unlock(); 2954 return objcg; 2955 } 2956 2957 struct obj_cgroup *get_obj_cgroup_from_page(struct page *page) 2958 { 2959 struct obj_cgroup *objcg; 2960 2961 if (!memcg_kmem_enabled() || memcg_kmem_bypass()) 2962 return NULL; 2963 2964 if (PageMemcgKmem(page)) { 2965 objcg = __folio_objcg(page_folio(page)); 2966 obj_cgroup_get(objcg); 2967 } else { 2968 struct mem_cgroup *memcg; 2969 2970 rcu_read_lock(); 2971 memcg = __folio_memcg(page_folio(page)); 2972 if (memcg) 2973 objcg = __get_obj_cgroup_from_memcg(memcg); 2974 else 2975 objcg = NULL; 2976 rcu_read_unlock(); 2977 } 2978 return objcg; 2979 } 2980 2981 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages) 2982 { 2983 mod_memcg_state(memcg, MEMCG_KMEM, nr_pages); 2984 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 2985 if (nr_pages > 0) 2986 page_counter_charge(&memcg->kmem, nr_pages); 2987 else 2988 page_counter_uncharge(&memcg->kmem, -nr_pages); 2989 } 2990 } 2991 2992 2993 /* 2994 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg 2995 * @objcg: object cgroup to uncharge 2996 * @nr_pages: number of pages to uncharge 2997 */ 2998 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg, 2999 unsigned int nr_pages) 3000 { 3001 struct mem_cgroup *memcg; 3002 3003 memcg = get_mem_cgroup_from_objcg(objcg); 3004 3005 memcg_account_kmem(memcg, -nr_pages); 3006 refill_stock(memcg, nr_pages); 3007 3008 css_put(&memcg->css); 3009 } 3010 3011 /* 3012 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg 3013 * @objcg: object cgroup to charge 3014 * @gfp: reclaim mode 3015 * @nr_pages: number of pages to charge 3016 * 3017 * Returns 0 on success, an error code on failure. 3018 */ 3019 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp, 3020 unsigned int nr_pages) 3021 { 3022 struct mem_cgroup *memcg; 3023 int ret; 3024 3025 memcg = get_mem_cgroup_from_objcg(objcg); 3026 3027 ret = try_charge_memcg(memcg, gfp, nr_pages); 3028 if (ret) 3029 goto out; 3030 3031 memcg_account_kmem(memcg, nr_pages); 3032 out: 3033 css_put(&memcg->css); 3034 3035 return ret; 3036 } 3037 3038 /** 3039 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup 3040 * @page: page to charge 3041 * @gfp: reclaim mode 3042 * @order: allocation order 3043 * 3044 * Returns 0 on success, an error code on failure. 3045 */ 3046 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order) 3047 { 3048 struct obj_cgroup *objcg; 3049 int ret = 0; 3050 3051 objcg = get_obj_cgroup_from_current(); 3052 if (objcg) { 3053 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order); 3054 if (!ret) { 3055 page->memcg_data = (unsigned long)objcg | 3056 MEMCG_DATA_KMEM; 3057 return 0; 3058 } 3059 obj_cgroup_put(objcg); 3060 } 3061 return ret; 3062 } 3063 3064 /** 3065 * __memcg_kmem_uncharge_page: uncharge a kmem page 3066 * @page: page to uncharge 3067 * @order: allocation order 3068 */ 3069 void __memcg_kmem_uncharge_page(struct page *page, int order) 3070 { 3071 struct folio *folio = page_folio(page); 3072 struct obj_cgroup *objcg; 3073 unsigned int nr_pages = 1 << order; 3074 3075 if (!folio_memcg_kmem(folio)) 3076 return; 3077 3078 objcg = __folio_objcg(folio); 3079 obj_cgroup_uncharge_pages(objcg, nr_pages); 3080 folio->memcg_data = 0; 3081 obj_cgroup_put(objcg); 3082 } 3083 3084 void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat, 3085 enum node_stat_item idx, int nr) 3086 { 3087 struct memcg_stock_pcp *stock; 3088 struct obj_cgroup *old = NULL; 3089 unsigned long flags; 3090 int *bytes; 3091 3092 local_lock_irqsave(&memcg_stock.stock_lock, flags); 3093 stock = this_cpu_ptr(&memcg_stock); 3094 3095 /* 3096 * Save vmstat data in stock and skip vmstat array update unless 3097 * accumulating over a page of vmstat data or when pgdat or idx 3098 * changes. 3099 */ 3100 if (stock->cached_objcg != objcg) { 3101 old = drain_obj_stock(stock); 3102 obj_cgroup_get(objcg); 3103 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes) 3104 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0; 3105 stock->cached_objcg = objcg; 3106 stock->cached_pgdat = pgdat; 3107 } else if (stock->cached_pgdat != pgdat) { 3108 /* Flush the existing cached vmstat data */ 3109 struct pglist_data *oldpg = stock->cached_pgdat; 3110 3111 if (stock->nr_slab_reclaimable_b) { 3112 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B, 3113 stock->nr_slab_reclaimable_b); 3114 stock->nr_slab_reclaimable_b = 0; 3115 } 3116 if (stock->nr_slab_unreclaimable_b) { 3117 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B, 3118 stock->nr_slab_unreclaimable_b); 3119 stock->nr_slab_unreclaimable_b = 0; 3120 } 3121 stock->cached_pgdat = pgdat; 3122 } 3123 3124 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b 3125 : &stock->nr_slab_unreclaimable_b; 3126 /* 3127 * Even for large object >= PAGE_SIZE, the vmstat data will still be 3128 * cached locally at least once before pushing it out. 3129 */ 3130 if (!*bytes) { 3131 *bytes = nr; 3132 nr = 0; 3133 } else { 3134 *bytes += nr; 3135 if (abs(*bytes) > PAGE_SIZE) { 3136 nr = *bytes; 3137 *bytes = 0; 3138 } else { 3139 nr = 0; 3140 } 3141 } 3142 if (nr) 3143 mod_objcg_mlstate(objcg, pgdat, idx, nr); 3144 3145 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 3146 if (old) 3147 obj_cgroup_put(old); 3148 } 3149 3150 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes) 3151 { 3152 struct memcg_stock_pcp *stock; 3153 unsigned long flags; 3154 bool ret = false; 3155 3156 local_lock_irqsave(&memcg_stock.stock_lock, flags); 3157 3158 stock = this_cpu_ptr(&memcg_stock); 3159 if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) { 3160 stock->nr_bytes -= nr_bytes; 3161 ret = true; 3162 } 3163 3164 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 3165 3166 return ret; 3167 } 3168 3169 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock) 3170 { 3171 struct obj_cgroup *old = stock->cached_objcg; 3172 3173 if (!old) 3174 return NULL; 3175 3176 if (stock->nr_bytes) { 3177 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT; 3178 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1); 3179 3180 if (nr_pages) { 3181 struct mem_cgroup *memcg; 3182 3183 memcg = get_mem_cgroup_from_objcg(old); 3184 3185 memcg_account_kmem(memcg, -nr_pages); 3186 __refill_stock(memcg, nr_pages); 3187 3188 css_put(&memcg->css); 3189 } 3190 3191 /* 3192 * The leftover is flushed to the centralized per-memcg value. 3193 * On the next attempt to refill obj stock it will be moved 3194 * to a per-cpu stock (probably, on an other CPU), see 3195 * refill_obj_stock(). 3196 * 3197 * How often it's flushed is a trade-off between the memory 3198 * limit enforcement accuracy and potential CPU contention, 3199 * so it might be changed in the future. 3200 */ 3201 atomic_add(nr_bytes, &old->nr_charged_bytes); 3202 stock->nr_bytes = 0; 3203 } 3204 3205 /* 3206 * Flush the vmstat data in current stock 3207 */ 3208 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) { 3209 if (stock->nr_slab_reclaimable_b) { 3210 mod_objcg_mlstate(old, stock->cached_pgdat, 3211 NR_SLAB_RECLAIMABLE_B, 3212 stock->nr_slab_reclaimable_b); 3213 stock->nr_slab_reclaimable_b = 0; 3214 } 3215 if (stock->nr_slab_unreclaimable_b) { 3216 mod_objcg_mlstate(old, stock->cached_pgdat, 3217 NR_SLAB_UNRECLAIMABLE_B, 3218 stock->nr_slab_unreclaimable_b); 3219 stock->nr_slab_unreclaimable_b = 0; 3220 } 3221 stock->cached_pgdat = NULL; 3222 } 3223 3224 stock->cached_objcg = NULL; 3225 /* 3226 * The `old' objects needs to be released by the caller via 3227 * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock. 3228 */ 3229 return old; 3230 } 3231 3232 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 3233 struct mem_cgroup *root_memcg) 3234 { 3235 struct mem_cgroup *memcg; 3236 3237 if (stock->cached_objcg) { 3238 memcg = obj_cgroup_memcg(stock->cached_objcg); 3239 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg)) 3240 return true; 3241 } 3242 3243 return false; 3244 } 3245 3246 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes, 3247 bool allow_uncharge) 3248 { 3249 struct memcg_stock_pcp *stock; 3250 struct obj_cgroup *old = NULL; 3251 unsigned long flags; 3252 unsigned int nr_pages = 0; 3253 3254 local_lock_irqsave(&memcg_stock.stock_lock, flags); 3255 3256 stock = this_cpu_ptr(&memcg_stock); 3257 if (stock->cached_objcg != objcg) { /* reset if necessary */ 3258 old = drain_obj_stock(stock); 3259 obj_cgroup_get(objcg); 3260 stock->cached_objcg = objcg; 3261 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes) 3262 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0; 3263 allow_uncharge = true; /* Allow uncharge when objcg changes */ 3264 } 3265 stock->nr_bytes += nr_bytes; 3266 3267 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) { 3268 nr_pages = stock->nr_bytes >> PAGE_SHIFT; 3269 stock->nr_bytes &= (PAGE_SIZE - 1); 3270 } 3271 3272 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 3273 if (old) 3274 obj_cgroup_put(old); 3275 3276 if (nr_pages) 3277 obj_cgroup_uncharge_pages(objcg, nr_pages); 3278 } 3279 3280 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size) 3281 { 3282 unsigned int nr_pages, nr_bytes; 3283 int ret; 3284 3285 if (consume_obj_stock(objcg, size)) 3286 return 0; 3287 3288 /* 3289 * In theory, objcg->nr_charged_bytes can have enough 3290 * pre-charged bytes to satisfy the allocation. However, 3291 * flushing objcg->nr_charged_bytes requires two atomic 3292 * operations, and objcg->nr_charged_bytes can't be big. 3293 * The shared objcg->nr_charged_bytes can also become a 3294 * performance bottleneck if all tasks of the same memcg are 3295 * trying to update it. So it's better to ignore it and try 3296 * grab some new pages. The stock's nr_bytes will be flushed to 3297 * objcg->nr_charged_bytes later on when objcg changes. 3298 * 3299 * The stock's nr_bytes may contain enough pre-charged bytes 3300 * to allow one less page from being charged, but we can't rely 3301 * on the pre-charged bytes not being changed outside of 3302 * consume_obj_stock() or refill_obj_stock(). So ignore those 3303 * pre-charged bytes as well when charging pages. To avoid a 3304 * page uncharge right after a page charge, we set the 3305 * allow_uncharge flag to false when calling refill_obj_stock() 3306 * to temporarily allow the pre-charged bytes to exceed the page 3307 * size limit. The maximum reachable value of the pre-charged 3308 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data 3309 * race. 3310 */ 3311 nr_pages = size >> PAGE_SHIFT; 3312 nr_bytes = size & (PAGE_SIZE - 1); 3313 3314 if (nr_bytes) 3315 nr_pages += 1; 3316 3317 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages); 3318 if (!ret && nr_bytes) 3319 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false); 3320 3321 return ret; 3322 } 3323 3324 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size) 3325 { 3326 refill_obj_stock(objcg, size, true); 3327 } 3328 3329 #endif /* CONFIG_MEMCG_KMEM */ 3330 3331 /* 3332 * Because page_memcg(head) is not set on tails, set it now. 3333 */ 3334 void split_page_memcg(struct page *head, unsigned int nr) 3335 { 3336 struct folio *folio = page_folio(head); 3337 struct mem_cgroup *memcg = folio_memcg(folio); 3338 int i; 3339 3340 if (mem_cgroup_disabled() || !memcg) 3341 return; 3342 3343 for (i = 1; i < nr; i++) 3344 folio_page(folio, i)->memcg_data = folio->memcg_data; 3345 3346 if (folio_memcg_kmem(folio)) 3347 obj_cgroup_get_many(__folio_objcg(folio), nr - 1); 3348 else 3349 css_get_many(&memcg->css, nr - 1); 3350 } 3351 3352 #ifdef CONFIG_MEMCG_SWAP 3353 /** 3354 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 3355 * @entry: swap entry to be moved 3356 * @from: mem_cgroup which the entry is moved from 3357 * @to: mem_cgroup which the entry is moved to 3358 * 3359 * It succeeds only when the swap_cgroup's record for this entry is the same 3360 * as the mem_cgroup's id of @from. 3361 * 3362 * Returns 0 on success, -EINVAL on failure. 3363 * 3364 * The caller must have charged to @to, IOW, called page_counter_charge() about 3365 * both res and memsw, and called css_get(). 3366 */ 3367 static int mem_cgroup_move_swap_account(swp_entry_t entry, 3368 struct mem_cgroup *from, struct mem_cgroup *to) 3369 { 3370 unsigned short old_id, new_id; 3371 3372 old_id = mem_cgroup_id(from); 3373 new_id = mem_cgroup_id(to); 3374 3375 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 3376 mod_memcg_state(from, MEMCG_SWAP, -1); 3377 mod_memcg_state(to, MEMCG_SWAP, 1); 3378 return 0; 3379 } 3380 return -EINVAL; 3381 } 3382 #else 3383 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 3384 struct mem_cgroup *from, struct mem_cgroup *to) 3385 { 3386 return -EINVAL; 3387 } 3388 #endif 3389 3390 static DEFINE_MUTEX(memcg_max_mutex); 3391 3392 static int mem_cgroup_resize_max(struct mem_cgroup *memcg, 3393 unsigned long max, bool memsw) 3394 { 3395 bool enlarge = false; 3396 bool drained = false; 3397 int ret; 3398 bool limits_invariant; 3399 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory; 3400 3401 do { 3402 if (signal_pending(current)) { 3403 ret = -EINTR; 3404 break; 3405 } 3406 3407 mutex_lock(&memcg_max_mutex); 3408 /* 3409 * Make sure that the new limit (memsw or memory limit) doesn't 3410 * break our basic invariant rule memory.max <= memsw.max. 3411 */ 3412 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) : 3413 max <= memcg->memsw.max; 3414 if (!limits_invariant) { 3415 mutex_unlock(&memcg_max_mutex); 3416 ret = -EINVAL; 3417 break; 3418 } 3419 if (max > counter->max) 3420 enlarge = true; 3421 ret = page_counter_set_max(counter, max); 3422 mutex_unlock(&memcg_max_mutex); 3423 3424 if (!ret) 3425 break; 3426 3427 if (!drained) { 3428 drain_all_stock(memcg); 3429 drained = true; 3430 continue; 3431 } 3432 3433 if (!try_to_free_mem_cgroup_pages(memcg, 1, 3434 GFP_KERNEL, !memsw)) { 3435 ret = -EBUSY; 3436 break; 3437 } 3438 } while (true); 3439 3440 if (!ret && enlarge) 3441 memcg_oom_recover(memcg); 3442 3443 return ret; 3444 } 3445 3446 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 3447 gfp_t gfp_mask, 3448 unsigned long *total_scanned) 3449 { 3450 unsigned long nr_reclaimed = 0; 3451 struct mem_cgroup_per_node *mz, *next_mz = NULL; 3452 unsigned long reclaimed; 3453 int loop = 0; 3454 struct mem_cgroup_tree_per_node *mctz; 3455 unsigned long excess; 3456 3457 if (order > 0) 3458 return 0; 3459 3460 mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id]; 3461 3462 /* 3463 * Do not even bother to check the largest node if the root 3464 * is empty. Do it lockless to prevent lock bouncing. Races 3465 * are acceptable as soft limit is best effort anyway. 3466 */ 3467 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root)) 3468 return 0; 3469 3470 /* 3471 * This loop can run a while, specially if mem_cgroup's continuously 3472 * keep exceeding their soft limit and putting the system under 3473 * pressure 3474 */ 3475 do { 3476 if (next_mz) 3477 mz = next_mz; 3478 else 3479 mz = mem_cgroup_largest_soft_limit_node(mctz); 3480 if (!mz) 3481 break; 3482 3483 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat, 3484 gfp_mask, total_scanned); 3485 nr_reclaimed += reclaimed; 3486 spin_lock_irq(&mctz->lock); 3487 3488 /* 3489 * If we failed to reclaim anything from this memory cgroup 3490 * it is time to move on to the next cgroup 3491 */ 3492 next_mz = NULL; 3493 if (!reclaimed) 3494 next_mz = __mem_cgroup_largest_soft_limit_node(mctz); 3495 3496 excess = soft_limit_excess(mz->memcg); 3497 /* 3498 * One school of thought says that we should not add 3499 * back the node to the tree if reclaim returns 0. 3500 * But our reclaim could return 0, simply because due 3501 * to priority we are exposing a smaller subset of 3502 * memory to reclaim from. Consider this as a longer 3503 * term TODO. 3504 */ 3505 /* If excess == 0, no tree ops */ 3506 __mem_cgroup_insert_exceeded(mz, mctz, excess); 3507 spin_unlock_irq(&mctz->lock); 3508 css_put(&mz->memcg->css); 3509 loop++; 3510 /* 3511 * Could not reclaim anything and there are no more 3512 * mem cgroups to try or we seem to be looping without 3513 * reclaiming anything. 3514 */ 3515 if (!nr_reclaimed && 3516 (next_mz == NULL || 3517 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 3518 break; 3519 } while (!nr_reclaimed); 3520 if (next_mz) 3521 css_put(&next_mz->memcg->css); 3522 return nr_reclaimed; 3523 } 3524 3525 /* 3526 * Reclaims as many pages from the given memcg as possible. 3527 * 3528 * Caller is responsible for holding css reference for memcg. 3529 */ 3530 static int mem_cgroup_force_empty(struct mem_cgroup *memcg) 3531 { 3532 int nr_retries = MAX_RECLAIM_RETRIES; 3533 3534 /* we call try-to-free pages for make this cgroup empty */ 3535 lru_add_drain_all(); 3536 3537 drain_all_stock(memcg); 3538 3539 /* try to free all pages in this cgroup */ 3540 while (nr_retries && page_counter_read(&memcg->memory)) { 3541 if (signal_pending(current)) 3542 return -EINTR; 3543 3544 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true)) 3545 nr_retries--; 3546 } 3547 3548 return 0; 3549 } 3550 3551 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of, 3552 char *buf, size_t nbytes, 3553 loff_t off) 3554 { 3555 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3556 3557 if (mem_cgroup_is_root(memcg)) 3558 return -EINVAL; 3559 return mem_cgroup_force_empty(memcg) ?: nbytes; 3560 } 3561 3562 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, 3563 struct cftype *cft) 3564 { 3565 return 1; 3566 } 3567 3568 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, 3569 struct cftype *cft, u64 val) 3570 { 3571 if (val == 1) 3572 return 0; 3573 3574 pr_warn_once("Non-hierarchical mode is deprecated. " 3575 "Please report your usecase to linux-mm@kvack.org if you " 3576 "depend on this functionality.\n"); 3577 3578 return -EINVAL; 3579 } 3580 3581 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 3582 { 3583 unsigned long val; 3584 3585 if (mem_cgroup_is_root(memcg)) { 3586 mem_cgroup_flush_stats(); 3587 val = memcg_page_state(memcg, NR_FILE_PAGES) + 3588 memcg_page_state(memcg, NR_ANON_MAPPED); 3589 if (swap) 3590 val += memcg_page_state(memcg, MEMCG_SWAP); 3591 } else { 3592 if (!swap) 3593 val = page_counter_read(&memcg->memory); 3594 else 3595 val = page_counter_read(&memcg->memsw); 3596 } 3597 return val; 3598 } 3599 3600 enum { 3601 RES_USAGE, 3602 RES_LIMIT, 3603 RES_MAX_USAGE, 3604 RES_FAILCNT, 3605 RES_SOFT_LIMIT, 3606 }; 3607 3608 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css, 3609 struct cftype *cft) 3610 { 3611 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3612 struct page_counter *counter; 3613 3614 switch (MEMFILE_TYPE(cft->private)) { 3615 case _MEM: 3616 counter = &memcg->memory; 3617 break; 3618 case _MEMSWAP: 3619 counter = &memcg->memsw; 3620 break; 3621 case _KMEM: 3622 counter = &memcg->kmem; 3623 break; 3624 case _TCP: 3625 counter = &memcg->tcpmem; 3626 break; 3627 default: 3628 BUG(); 3629 } 3630 3631 switch (MEMFILE_ATTR(cft->private)) { 3632 case RES_USAGE: 3633 if (counter == &memcg->memory) 3634 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE; 3635 if (counter == &memcg->memsw) 3636 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE; 3637 return (u64)page_counter_read(counter) * PAGE_SIZE; 3638 case RES_LIMIT: 3639 return (u64)counter->max * PAGE_SIZE; 3640 case RES_MAX_USAGE: 3641 return (u64)counter->watermark * PAGE_SIZE; 3642 case RES_FAILCNT: 3643 return counter->failcnt; 3644 case RES_SOFT_LIMIT: 3645 return (u64)memcg->soft_limit * PAGE_SIZE; 3646 default: 3647 BUG(); 3648 } 3649 } 3650 3651 #ifdef CONFIG_MEMCG_KMEM 3652 static int memcg_online_kmem(struct mem_cgroup *memcg) 3653 { 3654 struct obj_cgroup *objcg; 3655 3656 if (cgroup_memory_nokmem) 3657 return 0; 3658 3659 if (unlikely(mem_cgroup_is_root(memcg))) 3660 return 0; 3661 3662 objcg = obj_cgroup_alloc(); 3663 if (!objcg) 3664 return -ENOMEM; 3665 3666 objcg->memcg = memcg; 3667 rcu_assign_pointer(memcg->objcg, objcg); 3668 3669 static_branch_enable(&memcg_kmem_enabled_key); 3670 3671 memcg->kmemcg_id = memcg->id.id; 3672 3673 return 0; 3674 } 3675 3676 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3677 { 3678 struct mem_cgroup *parent; 3679 3680 if (cgroup_memory_nokmem) 3681 return; 3682 3683 if (unlikely(mem_cgroup_is_root(memcg))) 3684 return; 3685 3686 parent = parent_mem_cgroup(memcg); 3687 if (!parent) 3688 parent = root_mem_cgroup; 3689 3690 memcg_reparent_objcgs(memcg, parent); 3691 3692 /* 3693 * After we have finished memcg_reparent_objcgs(), all list_lrus 3694 * corresponding to this cgroup are guaranteed to remain empty. 3695 * The ordering is imposed by list_lru_node->lock taken by 3696 * memcg_reparent_list_lrus(). 3697 */ 3698 memcg_reparent_list_lrus(memcg, parent); 3699 } 3700 #else 3701 static int memcg_online_kmem(struct mem_cgroup *memcg) 3702 { 3703 return 0; 3704 } 3705 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3706 { 3707 } 3708 #endif /* CONFIG_MEMCG_KMEM */ 3709 3710 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max) 3711 { 3712 int ret; 3713 3714 mutex_lock(&memcg_max_mutex); 3715 3716 ret = page_counter_set_max(&memcg->tcpmem, max); 3717 if (ret) 3718 goto out; 3719 3720 if (!memcg->tcpmem_active) { 3721 /* 3722 * The active flag needs to be written after the static_key 3723 * update. This is what guarantees that the socket activation 3724 * function is the last one to run. See mem_cgroup_sk_alloc() 3725 * for details, and note that we don't mark any socket as 3726 * belonging to this memcg until that flag is up. 3727 * 3728 * We need to do this, because static_keys will span multiple 3729 * sites, but we can't control their order. If we mark a socket 3730 * as accounted, but the accounting functions are not patched in 3731 * yet, we'll lose accounting. 3732 * 3733 * We never race with the readers in mem_cgroup_sk_alloc(), 3734 * because when this value change, the code to process it is not 3735 * patched in yet. 3736 */ 3737 static_branch_inc(&memcg_sockets_enabled_key); 3738 memcg->tcpmem_active = true; 3739 } 3740 out: 3741 mutex_unlock(&memcg_max_mutex); 3742 return ret; 3743 } 3744 3745 /* 3746 * The user of this function is... 3747 * RES_LIMIT. 3748 */ 3749 static ssize_t mem_cgroup_write(struct kernfs_open_file *of, 3750 char *buf, size_t nbytes, loff_t off) 3751 { 3752 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3753 unsigned long nr_pages; 3754 int ret; 3755 3756 buf = strstrip(buf); 3757 ret = page_counter_memparse(buf, "-1", &nr_pages); 3758 if (ret) 3759 return ret; 3760 3761 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3762 case RES_LIMIT: 3763 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 3764 ret = -EINVAL; 3765 break; 3766 } 3767 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3768 case _MEM: 3769 ret = mem_cgroup_resize_max(memcg, nr_pages, false); 3770 break; 3771 case _MEMSWAP: 3772 ret = mem_cgroup_resize_max(memcg, nr_pages, true); 3773 break; 3774 case _KMEM: 3775 /* kmem.limit_in_bytes is deprecated. */ 3776 ret = -EOPNOTSUPP; 3777 break; 3778 case _TCP: 3779 ret = memcg_update_tcp_max(memcg, nr_pages); 3780 break; 3781 } 3782 break; 3783 case RES_SOFT_LIMIT: 3784 if (IS_ENABLED(CONFIG_PREEMPT_RT)) { 3785 ret = -EOPNOTSUPP; 3786 } else { 3787 memcg->soft_limit = nr_pages; 3788 ret = 0; 3789 } 3790 break; 3791 } 3792 return ret ?: nbytes; 3793 } 3794 3795 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf, 3796 size_t nbytes, loff_t off) 3797 { 3798 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3799 struct page_counter *counter; 3800 3801 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3802 case _MEM: 3803 counter = &memcg->memory; 3804 break; 3805 case _MEMSWAP: 3806 counter = &memcg->memsw; 3807 break; 3808 case _KMEM: 3809 counter = &memcg->kmem; 3810 break; 3811 case _TCP: 3812 counter = &memcg->tcpmem; 3813 break; 3814 default: 3815 BUG(); 3816 } 3817 3818 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3819 case RES_MAX_USAGE: 3820 page_counter_reset_watermark(counter); 3821 break; 3822 case RES_FAILCNT: 3823 counter->failcnt = 0; 3824 break; 3825 default: 3826 BUG(); 3827 } 3828 3829 return nbytes; 3830 } 3831 3832 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, 3833 struct cftype *cft) 3834 { 3835 return mem_cgroup_from_css(css)->move_charge_at_immigrate; 3836 } 3837 3838 #ifdef CONFIG_MMU 3839 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3840 struct cftype *cft, u64 val) 3841 { 3842 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3843 3844 if (val & ~MOVE_MASK) 3845 return -EINVAL; 3846 3847 /* 3848 * No kind of locking is needed in here, because ->can_attach() will 3849 * check this value once in the beginning of the process, and then carry 3850 * on with stale data. This means that changes to this value will only 3851 * affect task migrations starting after the change. 3852 */ 3853 memcg->move_charge_at_immigrate = val; 3854 return 0; 3855 } 3856 #else 3857 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3858 struct cftype *cft, u64 val) 3859 { 3860 return -ENOSYS; 3861 } 3862 #endif 3863 3864 #ifdef CONFIG_NUMA 3865 3866 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE)) 3867 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON)) 3868 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1) 3869 3870 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 3871 int nid, unsigned int lru_mask, bool tree) 3872 { 3873 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); 3874 unsigned long nr = 0; 3875 enum lru_list lru; 3876 3877 VM_BUG_ON((unsigned)nid >= nr_node_ids); 3878 3879 for_each_lru(lru) { 3880 if (!(BIT(lru) & lru_mask)) 3881 continue; 3882 if (tree) 3883 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru); 3884 else 3885 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru); 3886 } 3887 return nr; 3888 } 3889 3890 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 3891 unsigned int lru_mask, 3892 bool tree) 3893 { 3894 unsigned long nr = 0; 3895 enum lru_list lru; 3896 3897 for_each_lru(lru) { 3898 if (!(BIT(lru) & lru_mask)) 3899 continue; 3900 if (tree) 3901 nr += memcg_page_state(memcg, NR_LRU_BASE + lru); 3902 else 3903 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru); 3904 } 3905 return nr; 3906 } 3907 3908 static int memcg_numa_stat_show(struct seq_file *m, void *v) 3909 { 3910 struct numa_stat { 3911 const char *name; 3912 unsigned int lru_mask; 3913 }; 3914 3915 static const struct numa_stat stats[] = { 3916 { "total", LRU_ALL }, 3917 { "file", LRU_ALL_FILE }, 3918 { "anon", LRU_ALL_ANON }, 3919 { "unevictable", BIT(LRU_UNEVICTABLE) }, 3920 }; 3921 const struct numa_stat *stat; 3922 int nid; 3923 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 3924 3925 mem_cgroup_flush_stats(); 3926 3927 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3928 seq_printf(m, "%s=%lu", stat->name, 3929 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask, 3930 false)); 3931 for_each_node_state(nid, N_MEMORY) 3932 seq_printf(m, " N%d=%lu", nid, 3933 mem_cgroup_node_nr_lru_pages(memcg, nid, 3934 stat->lru_mask, false)); 3935 seq_putc(m, '\n'); 3936 } 3937 3938 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3939 3940 seq_printf(m, "hierarchical_%s=%lu", stat->name, 3941 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask, 3942 true)); 3943 for_each_node_state(nid, N_MEMORY) 3944 seq_printf(m, " N%d=%lu", nid, 3945 mem_cgroup_node_nr_lru_pages(memcg, nid, 3946 stat->lru_mask, true)); 3947 seq_putc(m, '\n'); 3948 } 3949 3950 return 0; 3951 } 3952 #endif /* CONFIG_NUMA */ 3953 3954 static const unsigned int memcg1_stats[] = { 3955 NR_FILE_PAGES, 3956 NR_ANON_MAPPED, 3957 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3958 NR_ANON_THPS, 3959 #endif 3960 NR_SHMEM, 3961 NR_FILE_MAPPED, 3962 NR_FILE_DIRTY, 3963 NR_WRITEBACK, 3964 MEMCG_SWAP, 3965 }; 3966 3967 static const char *const memcg1_stat_names[] = { 3968 "cache", 3969 "rss", 3970 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3971 "rss_huge", 3972 #endif 3973 "shmem", 3974 "mapped_file", 3975 "dirty", 3976 "writeback", 3977 "swap", 3978 }; 3979 3980 /* Universal VM events cgroup1 shows, original sort order */ 3981 static const unsigned int memcg1_events[] = { 3982 PGPGIN, 3983 PGPGOUT, 3984 PGFAULT, 3985 PGMAJFAULT, 3986 }; 3987 3988 static int memcg_stat_show(struct seq_file *m, void *v) 3989 { 3990 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 3991 unsigned long memory, memsw; 3992 struct mem_cgroup *mi; 3993 unsigned int i; 3994 3995 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats)); 3996 3997 mem_cgroup_flush_stats(); 3998 3999 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 4000 unsigned long nr; 4001 4002 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 4003 continue; 4004 nr = memcg_page_state_local(memcg, memcg1_stats[i]); 4005 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE); 4006 } 4007 4008 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 4009 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]), 4010 memcg_events_local(memcg, memcg1_events[i])); 4011 4012 for (i = 0; i < NR_LRU_LISTS; i++) 4013 seq_printf(m, "%s %lu\n", lru_list_name(i), 4014 memcg_page_state_local(memcg, NR_LRU_BASE + i) * 4015 PAGE_SIZE); 4016 4017 /* Hierarchical information */ 4018 memory = memsw = PAGE_COUNTER_MAX; 4019 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) { 4020 memory = min(memory, READ_ONCE(mi->memory.max)); 4021 memsw = min(memsw, READ_ONCE(mi->memsw.max)); 4022 } 4023 seq_printf(m, "hierarchical_memory_limit %llu\n", 4024 (u64)memory * PAGE_SIZE); 4025 if (do_memsw_account()) 4026 seq_printf(m, "hierarchical_memsw_limit %llu\n", 4027 (u64)memsw * PAGE_SIZE); 4028 4029 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 4030 unsigned long nr; 4031 4032 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 4033 continue; 4034 nr = memcg_page_state(memcg, memcg1_stats[i]); 4035 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], 4036 (u64)nr * PAGE_SIZE); 4037 } 4038 4039 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 4040 seq_printf(m, "total_%s %llu\n", 4041 vm_event_name(memcg1_events[i]), 4042 (u64)memcg_events(memcg, memcg1_events[i])); 4043 4044 for (i = 0; i < NR_LRU_LISTS; i++) 4045 seq_printf(m, "total_%s %llu\n", lru_list_name(i), 4046 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) * 4047 PAGE_SIZE); 4048 4049 #ifdef CONFIG_DEBUG_VM 4050 { 4051 pg_data_t *pgdat; 4052 struct mem_cgroup_per_node *mz; 4053 unsigned long anon_cost = 0; 4054 unsigned long file_cost = 0; 4055 4056 for_each_online_pgdat(pgdat) { 4057 mz = memcg->nodeinfo[pgdat->node_id]; 4058 4059 anon_cost += mz->lruvec.anon_cost; 4060 file_cost += mz->lruvec.file_cost; 4061 } 4062 seq_printf(m, "anon_cost %lu\n", anon_cost); 4063 seq_printf(m, "file_cost %lu\n", file_cost); 4064 } 4065 #endif 4066 4067 return 0; 4068 } 4069 4070 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, 4071 struct cftype *cft) 4072 { 4073 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4074 4075 return mem_cgroup_swappiness(memcg); 4076 } 4077 4078 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, 4079 struct cftype *cft, u64 val) 4080 { 4081 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4082 4083 if (val > 200) 4084 return -EINVAL; 4085 4086 if (!mem_cgroup_is_root(memcg)) 4087 memcg->swappiness = val; 4088 else 4089 vm_swappiness = val; 4090 4091 return 0; 4092 } 4093 4094 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 4095 { 4096 struct mem_cgroup_threshold_ary *t; 4097 unsigned long usage; 4098 int i; 4099 4100 rcu_read_lock(); 4101 if (!swap) 4102 t = rcu_dereference(memcg->thresholds.primary); 4103 else 4104 t = rcu_dereference(memcg->memsw_thresholds.primary); 4105 4106 if (!t) 4107 goto unlock; 4108 4109 usage = mem_cgroup_usage(memcg, swap); 4110 4111 /* 4112 * current_threshold points to threshold just below or equal to usage. 4113 * If it's not true, a threshold was crossed after last 4114 * call of __mem_cgroup_threshold(). 4115 */ 4116 i = t->current_threshold; 4117 4118 /* 4119 * Iterate backward over array of thresholds starting from 4120 * current_threshold and check if a threshold is crossed. 4121 * If none of thresholds below usage is crossed, we read 4122 * only one element of the array here. 4123 */ 4124 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 4125 eventfd_signal(t->entries[i].eventfd, 1); 4126 4127 /* i = current_threshold + 1 */ 4128 i++; 4129 4130 /* 4131 * Iterate forward over array of thresholds starting from 4132 * current_threshold+1 and check if a threshold is crossed. 4133 * If none of thresholds above usage is crossed, we read 4134 * only one element of the array here. 4135 */ 4136 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 4137 eventfd_signal(t->entries[i].eventfd, 1); 4138 4139 /* Update current_threshold */ 4140 t->current_threshold = i - 1; 4141 unlock: 4142 rcu_read_unlock(); 4143 } 4144 4145 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 4146 { 4147 while (memcg) { 4148 __mem_cgroup_threshold(memcg, false); 4149 if (do_memsw_account()) 4150 __mem_cgroup_threshold(memcg, true); 4151 4152 memcg = parent_mem_cgroup(memcg); 4153 } 4154 } 4155 4156 static int compare_thresholds(const void *a, const void *b) 4157 { 4158 const struct mem_cgroup_threshold *_a = a; 4159 const struct mem_cgroup_threshold *_b = b; 4160 4161 if (_a->threshold > _b->threshold) 4162 return 1; 4163 4164 if (_a->threshold < _b->threshold) 4165 return -1; 4166 4167 return 0; 4168 } 4169 4170 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 4171 { 4172 struct mem_cgroup_eventfd_list *ev; 4173 4174 spin_lock(&memcg_oom_lock); 4175 4176 list_for_each_entry(ev, &memcg->oom_notify, list) 4177 eventfd_signal(ev->eventfd, 1); 4178 4179 spin_unlock(&memcg_oom_lock); 4180 return 0; 4181 } 4182 4183 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 4184 { 4185 struct mem_cgroup *iter; 4186 4187 for_each_mem_cgroup_tree(iter, memcg) 4188 mem_cgroup_oom_notify_cb(iter); 4189 } 4190 4191 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 4192 struct eventfd_ctx *eventfd, const char *args, enum res_type type) 4193 { 4194 struct mem_cgroup_thresholds *thresholds; 4195 struct mem_cgroup_threshold_ary *new; 4196 unsigned long threshold; 4197 unsigned long usage; 4198 int i, size, ret; 4199 4200 ret = page_counter_memparse(args, "-1", &threshold); 4201 if (ret) 4202 return ret; 4203 4204 mutex_lock(&memcg->thresholds_lock); 4205 4206 if (type == _MEM) { 4207 thresholds = &memcg->thresholds; 4208 usage = mem_cgroup_usage(memcg, false); 4209 } else if (type == _MEMSWAP) { 4210 thresholds = &memcg->memsw_thresholds; 4211 usage = mem_cgroup_usage(memcg, true); 4212 } else 4213 BUG(); 4214 4215 /* Check if a threshold crossed before adding a new one */ 4216 if (thresholds->primary) 4217 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4218 4219 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 4220 4221 /* Allocate memory for new array of thresholds */ 4222 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL); 4223 if (!new) { 4224 ret = -ENOMEM; 4225 goto unlock; 4226 } 4227 new->size = size; 4228 4229 /* Copy thresholds (if any) to new array */ 4230 if (thresholds->primary) 4231 memcpy(new->entries, thresholds->primary->entries, 4232 flex_array_size(new, entries, size - 1)); 4233 4234 /* Add new threshold */ 4235 new->entries[size - 1].eventfd = eventfd; 4236 new->entries[size - 1].threshold = threshold; 4237 4238 /* Sort thresholds. Registering of new threshold isn't time-critical */ 4239 sort(new->entries, size, sizeof(*new->entries), 4240 compare_thresholds, NULL); 4241 4242 /* Find current threshold */ 4243 new->current_threshold = -1; 4244 for (i = 0; i < size; i++) { 4245 if (new->entries[i].threshold <= usage) { 4246 /* 4247 * new->current_threshold will not be used until 4248 * rcu_assign_pointer(), so it's safe to increment 4249 * it here. 4250 */ 4251 ++new->current_threshold; 4252 } else 4253 break; 4254 } 4255 4256 /* Free old spare buffer and save old primary buffer as spare */ 4257 kfree(thresholds->spare); 4258 thresholds->spare = thresholds->primary; 4259 4260 rcu_assign_pointer(thresholds->primary, new); 4261 4262 /* To be sure that nobody uses thresholds */ 4263 synchronize_rcu(); 4264 4265 unlock: 4266 mutex_unlock(&memcg->thresholds_lock); 4267 4268 return ret; 4269 } 4270 4271 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 4272 struct eventfd_ctx *eventfd, const char *args) 4273 { 4274 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM); 4275 } 4276 4277 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg, 4278 struct eventfd_ctx *eventfd, const char *args) 4279 { 4280 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP); 4281 } 4282 4283 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4284 struct eventfd_ctx *eventfd, enum res_type type) 4285 { 4286 struct mem_cgroup_thresholds *thresholds; 4287 struct mem_cgroup_threshold_ary *new; 4288 unsigned long usage; 4289 int i, j, size, entries; 4290 4291 mutex_lock(&memcg->thresholds_lock); 4292 4293 if (type == _MEM) { 4294 thresholds = &memcg->thresholds; 4295 usage = mem_cgroup_usage(memcg, false); 4296 } else if (type == _MEMSWAP) { 4297 thresholds = &memcg->memsw_thresholds; 4298 usage = mem_cgroup_usage(memcg, true); 4299 } else 4300 BUG(); 4301 4302 if (!thresholds->primary) 4303 goto unlock; 4304 4305 /* Check if a threshold crossed before removing */ 4306 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4307 4308 /* Calculate new number of threshold */ 4309 size = entries = 0; 4310 for (i = 0; i < thresholds->primary->size; i++) { 4311 if (thresholds->primary->entries[i].eventfd != eventfd) 4312 size++; 4313 else 4314 entries++; 4315 } 4316 4317 new = thresholds->spare; 4318 4319 /* If no items related to eventfd have been cleared, nothing to do */ 4320 if (!entries) 4321 goto unlock; 4322 4323 /* Set thresholds array to NULL if we don't have thresholds */ 4324 if (!size) { 4325 kfree(new); 4326 new = NULL; 4327 goto swap_buffers; 4328 } 4329 4330 new->size = size; 4331 4332 /* Copy thresholds and find current threshold */ 4333 new->current_threshold = -1; 4334 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 4335 if (thresholds->primary->entries[i].eventfd == eventfd) 4336 continue; 4337 4338 new->entries[j] = thresholds->primary->entries[i]; 4339 if (new->entries[j].threshold <= usage) { 4340 /* 4341 * new->current_threshold will not be used 4342 * until rcu_assign_pointer(), so it's safe to increment 4343 * it here. 4344 */ 4345 ++new->current_threshold; 4346 } 4347 j++; 4348 } 4349 4350 swap_buffers: 4351 /* Swap primary and spare array */ 4352 thresholds->spare = thresholds->primary; 4353 4354 rcu_assign_pointer(thresholds->primary, new); 4355 4356 /* To be sure that nobody uses thresholds */ 4357 synchronize_rcu(); 4358 4359 /* If all events are unregistered, free the spare array */ 4360 if (!new) { 4361 kfree(thresholds->spare); 4362 thresholds->spare = NULL; 4363 } 4364 unlock: 4365 mutex_unlock(&memcg->thresholds_lock); 4366 } 4367 4368 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4369 struct eventfd_ctx *eventfd) 4370 { 4371 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM); 4372 } 4373 4374 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4375 struct eventfd_ctx *eventfd) 4376 { 4377 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP); 4378 } 4379 4380 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg, 4381 struct eventfd_ctx *eventfd, const char *args) 4382 { 4383 struct mem_cgroup_eventfd_list *event; 4384 4385 event = kmalloc(sizeof(*event), GFP_KERNEL); 4386 if (!event) 4387 return -ENOMEM; 4388 4389 spin_lock(&memcg_oom_lock); 4390 4391 event->eventfd = eventfd; 4392 list_add(&event->list, &memcg->oom_notify); 4393 4394 /* already in OOM ? */ 4395 if (memcg->under_oom) 4396 eventfd_signal(eventfd, 1); 4397 spin_unlock(&memcg_oom_lock); 4398 4399 return 0; 4400 } 4401 4402 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg, 4403 struct eventfd_ctx *eventfd) 4404 { 4405 struct mem_cgroup_eventfd_list *ev, *tmp; 4406 4407 spin_lock(&memcg_oom_lock); 4408 4409 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 4410 if (ev->eventfd == eventfd) { 4411 list_del(&ev->list); 4412 kfree(ev); 4413 } 4414 } 4415 4416 spin_unlock(&memcg_oom_lock); 4417 } 4418 4419 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v) 4420 { 4421 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf); 4422 4423 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable); 4424 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom); 4425 seq_printf(sf, "oom_kill %lu\n", 4426 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL])); 4427 return 0; 4428 } 4429 4430 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, 4431 struct cftype *cft, u64 val) 4432 { 4433 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4434 4435 /* cannot set to root cgroup and only 0 and 1 are allowed */ 4436 if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1))) 4437 return -EINVAL; 4438 4439 memcg->oom_kill_disable = val; 4440 if (!val) 4441 memcg_oom_recover(memcg); 4442 4443 return 0; 4444 } 4445 4446 #ifdef CONFIG_CGROUP_WRITEBACK 4447 4448 #include <trace/events/writeback.h> 4449 4450 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 4451 { 4452 return wb_domain_init(&memcg->cgwb_domain, gfp); 4453 } 4454 4455 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 4456 { 4457 wb_domain_exit(&memcg->cgwb_domain); 4458 } 4459 4460 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 4461 { 4462 wb_domain_size_changed(&memcg->cgwb_domain); 4463 } 4464 4465 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 4466 { 4467 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4468 4469 if (!memcg->css.parent) 4470 return NULL; 4471 4472 return &memcg->cgwb_domain; 4473 } 4474 4475 /** 4476 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg 4477 * @wb: bdi_writeback in question 4478 * @pfilepages: out parameter for number of file pages 4479 * @pheadroom: out parameter for number of allocatable pages according to memcg 4480 * @pdirty: out parameter for number of dirty pages 4481 * @pwriteback: out parameter for number of pages under writeback 4482 * 4483 * Determine the numbers of file, headroom, dirty, and writeback pages in 4484 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom 4485 * is a bit more involved. 4486 * 4487 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the 4488 * headroom is calculated as the lowest headroom of itself and the 4489 * ancestors. Note that this doesn't consider the actual amount of 4490 * available memory in the system. The caller should further cap 4491 * *@pheadroom accordingly. 4492 */ 4493 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 4494 unsigned long *pheadroom, unsigned long *pdirty, 4495 unsigned long *pwriteback) 4496 { 4497 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4498 struct mem_cgroup *parent; 4499 4500 mem_cgroup_flush_stats(); 4501 4502 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY); 4503 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK); 4504 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) + 4505 memcg_page_state(memcg, NR_ACTIVE_FILE); 4506 4507 *pheadroom = PAGE_COUNTER_MAX; 4508 while ((parent = parent_mem_cgroup(memcg))) { 4509 unsigned long ceiling = min(READ_ONCE(memcg->memory.max), 4510 READ_ONCE(memcg->memory.high)); 4511 unsigned long used = page_counter_read(&memcg->memory); 4512 4513 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); 4514 memcg = parent; 4515 } 4516 } 4517 4518 /* 4519 * Foreign dirty flushing 4520 * 4521 * There's an inherent mismatch between memcg and writeback. The former 4522 * tracks ownership per-page while the latter per-inode. This was a 4523 * deliberate design decision because honoring per-page ownership in the 4524 * writeback path is complicated, may lead to higher CPU and IO overheads 4525 * and deemed unnecessary given that write-sharing an inode across 4526 * different cgroups isn't a common use-case. 4527 * 4528 * Combined with inode majority-writer ownership switching, this works well 4529 * enough in most cases but there are some pathological cases. For 4530 * example, let's say there are two cgroups A and B which keep writing to 4531 * different but confined parts of the same inode. B owns the inode and 4532 * A's memory is limited far below B's. A's dirty ratio can rise enough to 4533 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid 4534 * triggering background writeback. A will be slowed down without a way to 4535 * make writeback of the dirty pages happen. 4536 * 4537 * Conditions like the above can lead to a cgroup getting repeatedly and 4538 * severely throttled after making some progress after each 4539 * dirty_expire_interval while the underlying IO device is almost 4540 * completely idle. 4541 * 4542 * Solving this problem completely requires matching the ownership tracking 4543 * granularities between memcg and writeback in either direction. However, 4544 * the more egregious behaviors can be avoided by simply remembering the 4545 * most recent foreign dirtying events and initiating remote flushes on 4546 * them when local writeback isn't enough to keep the memory clean enough. 4547 * 4548 * The following two functions implement such mechanism. When a foreign 4549 * page - a page whose memcg and writeback ownerships don't match - is 4550 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning 4551 * bdi_writeback on the page owning memcg. When balance_dirty_pages() 4552 * decides that the memcg needs to sleep due to high dirty ratio, it calls 4553 * mem_cgroup_flush_foreign() which queues writeback on the recorded 4554 * foreign bdi_writebacks which haven't expired. Both the numbers of 4555 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are 4556 * limited to MEMCG_CGWB_FRN_CNT. 4557 * 4558 * The mechanism only remembers IDs and doesn't hold any object references. 4559 * As being wrong occasionally doesn't matter, updates and accesses to the 4560 * records are lockless and racy. 4561 */ 4562 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio, 4563 struct bdi_writeback *wb) 4564 { 4565 struct mem_cgroup *memcg = folio_memcg(folio); 4566 struct memcg_cgwb_frn *frn; 4567 u64 now = get_jiffies_64(); 4568 u64 oldest_at = now; 4569 int oldest = -1; 4570 int i; 4571 4572 trace_track_foreign_dirty(folio, wb); 4573 4574 /* 4575 * Pick the slot to use. If there is already a slot for @wb, keep 4576 * using it. If not replace the oldest one which isn't being 4577 * written out. 4578 */ 4579 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 4580 frn = &memcg->cgwb_frn[i]; 4581 if (frn->bdi_id == wb->bdi->id && 4582 frn->memcg_id == wb->memcg_css->id) 4583 break; 4584 if (time_before64(frn->at, oldest_at) && 4585 atomic_read(&frn->done.cnt) == 1) { 4586 oldest = i; 4587 oldest_at = frn->at; 4588 } 4589 } 4590 4591 if (i < MEMCG_CGWB_FRN_CNT) { 4592 /* 4593 * Re-using an existing one. Update timestamp lazily to 4594 * avoid making the cacheline hot. We want them to be 4595 * reasonably up-to-date and significantly shorter than 4596 * dirty_expire_interval as that's what expires the record. 4597 * Use the shorter of 1s and dirty_expire_interval / 8. 4598 */ 4599 unsigned long update_intv = 4600 min_t(unsigned long, HZ, 4601 msecs_to_jiffies(dirty_expire_interval * 10) / 8); 4602 4603 if (time_before64(frn->at, now - update_intv)) 4604 frn->at = now; 4605 } else if (oldest >= 0) { 4606 /* replace the oldest free one */ 4607 frn = &memcg->cgwb_frn[oldest]; 4608 frn->bdi_id = wb->bdi->id; 4609 frn->memcg_id = wb->memcg_css->id; 4610 frn->at = now; 4611 } 4612 } 4613 4614 /* issue foreign writeback flushes for recorded foreign dirtying events */ 4615 void mem_cgroup_flush_foreign(struct bdi_writeback *wb) 4616 { 4617 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4618 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10); 4619 u64 now = jiffies_64; 4620 int i; 4621 4622 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 4623 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i]; 4624 4625 /* 4626 * If the record is older than dirty_expire_interval, 4627 * writeback on it has already started. No need to kick it 4628 * off again. Also, don't start a new one if there's 4629 * already one in flight. 4630 */ 4631 if (time_after64(frn->at, now - intv) && 4632 atomic_read(&frn->done.cnt) == 1) { 4633 frn->at = 0; 4634 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id); 4635 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 4636 WB_REASON_FOREIGN_FLUSH, 4637 &frn->done); 4638 } 4639 } 4640 } 4641 4642 #else /* CONFIG_CGROUP_WRITEBACK */ 4643 4644 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 4645 { 4646 return 0; 4647 } 4648 4649 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 4650 { 4651 } 4652 4653 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 4654 { 4655 } 4656 4657 #endif /* CONFIG_CGROUP_WRITEBACK */ 4658 4659 /* 4660 * DO NOT USE IN NEW FILES. 4661 * 4662 * "cgroup.event_control" implementation. 4663 * 4664 * This is way over-engineered. It tries to support fully configurable 4665 * events for each user. Such level of flexibility is completely 4666 * unnecessary especially in the light of the planned unified hierarchy. 4667 * 4668 * Please deprecate this and replace with something simpler if at all 4669 * possible. 4670 */ 4671 4672 /* 4673 * Unregister event and free resources. 4674 * 4675 * Gets called from workqueue. 4676 */ 4677 static void memcg_event_remove(struct work_struct *work) 4678 { 4679 struct mem_cgroup_event *event = 4680 container_of(work, struct mem_cgroup_event, remove); 4681 struct mem_cgroup *memcg = event->memcg; 4682 4683 remove_wait_queue(event->wqh, &event->wait); 4684 4685 event->unregister_event(memcg, event->eventfd); 4686 4687 /* Notify userspace the event is going away. */ 4688 eventfd_signal(event->eventfd, 1); 4689 4690 eventfd_ctx_put(event->eventfd); 4691 kfree(event); 4692 css_put(&memcg->css); 4693 } 4694 4695 /* 4696 * Gets called on EPOLLHUP on eventfd when user closes it. 4697 * 4698 * Called with wqh->lock held and interrupts disabled. 4699 */ 4700 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode, 4701 int sync, void *key) 4702 { 4703 struct mem_cgroup_event *event = 4704 container_of(wait, struct mem_cgroup_event, wait); 4705 struct mem_cgroup *memcg = event->memcg; 4706 __poll_t flags = key_to_poll(key); 4707 4708 if (flags & EPOLLHUP) { 4709 /* 4710 * If the event has been detached at cgroup removal, we 4711 * can simply return knowing the other side will cleanup 4712 * for us. 4713 * 4714 * We can't race against event freeing since the other 4715 * side will require wqh->lock via remove_wait_queue(), 4716 * which we hold. 4717 */ 4718 spin_lock(&memcg->event_list_lock); 4719 if (!list_empty(&event->list)) { 4720 list_del_init(&event->list); 4721 /* 4722 * We are in atomic context, but cgroup_event_remove() 4723 * may sleep, so we have to call it in workqueue. 4724 */ 4725 schedule_work(&event->remove); 4726 } 4727 spin_unlock(&memcg->event_list_lock); 4728 } 4729 4730 return 0; 4731 } 4732 4733 static void memcg_event_ptable_queue_proc(struct file *file, 4734 wait_queue_head_t *wqh, poll_table *pt) 4735 { 4736 struct mem_cgroup_event *event = 4737 container_of(pt, struct mem_cgroup_event, pt); 4738 4739 event->wqh = wqh; 4740 add_wait_queue(wqh, &event->wait); 4741 } 4742 4743 /* 4744 * DO NOT USE IN NEW FILES. 4745 * 4746 * Parse input and register new cgroup event handler. 4747 * 4748 * Input must be in format '<event_fd> <control_fd> <args>'. 4749 * Interpretation of args is defined by control file implementation. 4750 */ 4751 static ssize_t memcg_write_event_control(struct kernfs_open_file *of, 4752 char *buf, size_t nbytes, loff_t off) 4753 { 4754 struct cgroup_subsys_state *css = of_css(of); 4755 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4756 struct mem_cgroup_event *event; 4757 struct cgroup_subsys_state *cfile_css; 4758 unsigned int efd, cfd; 4759 struct fd efile; 4760 struct fd cfile; 4761 const char *name; 4762 char *endp; 4763 int ret; 4764 4765 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 4766 return -EOPNOTSUPP; 4767 4768 buf = strstrip(buf); 4769 4770 efd = simple_strtoul(buf, &endp, 10); 4771 if (*endp != ' ') 4772 return -EINVAL; 4773 buf = endp + 1; 4774 4775 cfd = simple_strtoul(buf, &endp, 10); 4776 if ((*endp != ' ') && (*endp != '\0')) 4777 return -EINVAL; 4778 buf = endp + 1; 4779 4780 event = kzalloc(sizeof(*event), GFP_KERNEL); 4781 if (!event) 4782 return -ENOMEM; 4783 4784 event->memcg = memcg; 4785 INIT_LIST_HEAD(&event->list); 4786 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc); 4787 init_waitqueue_func_entry(&event->wait, memcg_event_wake); 4788 INIT_WORK(&event->remove, memcg_event_remove); 4789 4790 efile = fdget(efd); 4791 if (!efile.file) { 4792 ret = -EBADF; 4793 goto out_kfree; 4794 } 4795 4796 event->eventfd = eventfd_ctx_fileget(efile.file); 4797 if (IS_ERR(event->eventfd)) { 4798 ret = PTR_ERR(event->eventfd); 4799 goto out_put_efile; 4800 } 4801 4802 cfile = fdget(cfd); 4803 if (!cfile.file) { 4804 ret = -EBADF; 4805 goto out_put_eventfd; 4806 } 4807 4808 /* the process need read permission on control file */ 4809 /* AV: shouldn't we check that it's been opened for read instead? */ 4810 ret = file_permission(cfile.file, MAY_READ); 4811 if (ret < 0) 4812 goto out_put_cfile; 4813 4814 /* 4815 * Determine the event callbacks and set them in @event. This used 4816 * to be done via struct cftype but cgroup core no longer knows 4817 * about these events. The following is crude but the whole thing 4818 * is for compatibility anyway. 4819 * 4820 * DO NOT ADD NEW FILES. 4821 */ 4822 name = cfile.file->f_path.dentry->d_name.name; 4823 4824 if (!strcmp(name, "memory.usage_in_bytes")) { 4825 event->register_event = mem_cgroup_usage_register_event; 4826 event->unregister_event = mem_cgroup_usage_unregister_event; 4827 } else if (!strcmp(name, "memory.oom_control")) { 4828 event->register_event = mem_cgroup_oom_register_event; 4829 event->unregister_event = mem_cgroup_oom_unregister_event; 4830 } else if (!strcmp(name, "memory.pressure_level")) { 4831 event->register_event = vmpressure_register_event; 4832 event->unregister_event = vmpressure_unregister_event; 4833 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) { 4834 event->register_event = memsw_cgroup_usage_register_event; 4835 event->unregister_event = memsw_cgroup_usage_unregister_event; 4836 } else { 4837 ret = -EINVAL; 4838 goto out_put_cfile; 4839 } 4840 4841 /* 4842 * Verify @cfile should belong to @css. Also, remaining events are 4843 * automatically removed on cgroup destruction but the removal is 4844 * asynchronous, so take an extra ref on @css. 4845 */ 4846 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent, 4847 &memory_cgrp_subsys); 4848 ret = -EINVAL; 4849 if (IS_ERR(cfile_css)) 4850 goto out_put_cfile; 4851 if (cfile_css != css) { 4852 css_put(cfile_css); 4853 goto out_put_cfile; 4854 } 4855 4856 ret = event->register_event(memcg, event->eventfd, buf); 4857 if (ret) 4858 goto out_put_css; 4859 4860 vfs_poll(efile.file, &event->pt); 4861 4862 spin_lock_irq(&memcg->event_list_lock); 4863 list_add(&event->list, &memcg->event_list); 4864 spin_unlock_irq(&memcg->event_list_lock); 4865 4866 fdput(cfile); 4867 fdput(efile); 4868 4869 return nbytes; 4870 4871 out_put_css: 4872 css_put(css); 4873 out_put_cfile: 4874 fdput(cfile); 4875 out_put_eventfd: 4876 eventfd_ctx_put(event->eventfd); 4877 out_put_efile: 4878 fdput(efile); 4879 out_kfree: 4880 kfree(event); 4881 4882 return ret; 4883 } 4884 4885 #if defined(CONFIG_MEMCG_KMEM) && (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)) 4886 static int mem_cgroup_slab_show(struct seq_file *m, void *p) 4887 { 4888 /* 4889 * Deprecated. 4890 * Please, take a look at tools/cgroup/memcg_slabinfo.py . 4891 */ 4892 return 0; 4893 } 4894 #endif 4895 4896 static struct cftype mem_cgroup_legacy_files[] = { 4897 { 4898 .name = "usage_in_bytes", 4899 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 4900 .read_u64 = mem_cgroup_read_u64, 4901 }, 4902 { 4903 .name = "max_usage_in_bytes", 4904 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 4905 .write = mem_cgroup_reset, 4906 .read_u64 = mem_cgroup_read_u64, 4907 }, 4908 { 4909 .name = "limit_in_bytes", 4910 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 4911 .write = mem_cgroup_write, 4912 .read_u64 = mem_cgroup_read_u64, 4913 }, 4914 { 4915 .name = "soft_limit_in_bytes", 4916 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 4917 .write = mem_cgroup_write, 4918 .read_u64 = mem_cgroup_read_u64, 4919 }, 4920 { 4921 .name = "failcnt", 4922 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 4923 .write = mem_cgroup_reset, 4924 .read_u64 = mem_cgroup_read_u64, 4925 }, 4926 { 4927 .name = "stat", 4928 .seq_show = memcg_stat_show, 4929 }, 4930 { 4931 .name = "force_empty", 4932 .write = mem_cgroup_force_empty_write, 4933 }, 4934 { 4935 .name = "use_hierarchy", 4936 .write_u64 = mem_cgroup_hierarchy_write, 4937 .read_u64 = mem_cgroup_hierarchy_read, 4938 }, 4939 { 4940 .name = "cgroup.event_control", /* XXX: for compat */ 4941 .write = memcg_write_event_control, 4942 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE, 4943 }, 4944 { 4945 .name = "swappiness", 4946 .read_u64 = mem_cgroup_swappiness_read, 4947 .write_u64 = mem_cgroup_swappiness_write, 4948 }, 4949 { 4950 .name = "move_charge_at_immigrate", 4951 .read_u64 = mem_cgroup_move_charge_read, 4952 .write_u64 = mem_cgroup_move_charge_write, 4953 }, 4954 { 4955 .name = "oom_control", 4956 .seq_show = mem_cgroup_oom_control_read, 4957 .write_u64 = mem_cgroup_oom_control_write, 4958 }, 4959 { 4960 .name = "pressure_level", 4961 }, 4962 #ifdef CONFIG_NUMA 4963 { 4964 .name = "numa_stat", 4965 .seq_show = memcg_numa_stat_show, 4966 }, 4967 #endif 4968 { 4969 .name = "kmem.limit_in_bytes", 4970 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), 4971 .write = mem_cgroup_write, 4972 .read_u64 = mem_cgroup_read_u64, 4973 }, 4974 { 4975 .name = "kmem.usage_in_bytes", 4976 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), 4977 .read_u64 = mem_cgroup_read_u64, 4978 }, 4979 { 4980 .name = "kmem.failcnt", 4981 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), 4982 .write = mem_cgroup_reset, 4983 .read_u64 = mem_cgroup_read_u64, 4984 }, 4985 { 4986 .name = "kmem.max_usage_in_bytes", 4987 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), 4988 .write = mem_cgroup_reset, 4989 .read_u64 = mem_cgroup_read_u64, 4990 }, 4991 #if defined(CONFIG_MEMCG_KMEM) && \ 4992 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)) 4993 { 4994 .name = "kmem.slabinfo", 4995 .seq_show = mem_cgroup_slab_show, 4996 }, 4997 #endif 4998 { 4999 .name = "kmem.tcp.limit_in_bytes", 5000 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT), 5001 .write = mem_cgroup_write, 5002 .read_u64 = mem_cgroup_read_u64, 5003 }, 5004 { 5005 .name = "kmem.tcp.usage_in_bytes", 5006 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE), 5007 .read_u64 = mem_cgroup_read_u64, 5008 }, 5009 { 5010 .name = "kmem.tcp.failcnt", 5011 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT), 5012 .write = mem_cgroup_reset, 5013 .read_u64 = mem_cgroup_read_u64, 5014 }, 5015 { 5016 .name = "kmem.tcp.max_usage_in_bytes", 5017 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE), 5018 .write = mem_cgroup_reset, 5019 .read_u64 = mem_cgroup_read_u64, 5020 }, 5021 { }, /* terminate */ 5022 }; 5023 5024 /* 5025 * Private memory cgroup IDR 5026 * 5027 * Swap-out records and page cache shadow entries need to store memcg 5028 * references in constrained space, so we maintain an ID space that is 5029 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of 5030 * memory-controlled cgroups to 64k. 5031 * 5032 * However, there usually are many references to the offline CSS after 5033 * the cgroup has been destroyed, such as page cache or reclaimable 5034 * slab objects, that don't need to hang on to the ID. We want to keep 5035 * those dead CSS from occupying IDs, or we might quickly exhaust the 5036 * relatively small ID space and prevent the creation of new cgroups 5037 * even when there are much fewer than 64k cgroups - possibly none. 5038 * 5039 * Maintain a private 16-bit ID space for memcg, and allow the ID to 5040 * be freed and recycled when it's no longer needed, which is usually 5041 * when the CSS is offlined. 5042 * 5043 * The only exception to that are records of swapped out tmpfs/shmem 5044 * pages that need to be attributed to live ancestors on swapin. But 5045 * those references are manageable from userspace. 5046 */ 5047 5048 static DEFINE_IDR(mem_cgroup_idr); 5049 5050 static void mem_cgroup_id_remove(struct mem_cgroup *memcg) 5051 { 5052 if (memcg->id.id > 0) { 5053 idr_remove(&mem_cgroup_idr, memcg->id.id); 5054 memcg->id.id = 0; 5055 } 5056 } 5057 5058 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg, 5059 unsigned int n) 5060 { 5061 refcount_add(n, &memcg->id.ref); 5062 } 5063 5064 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n) 5065 { 5066 if (refcount_sub_and_test(n, &memcg->id.ref)) { 5067 mem_cgroup_id_remove(memcg); 5068 5069 /* Memcg ID pins CSS */ 5070 css_put(&memcg->css); 5071 } 5072 } 5073 5074 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg) 5075 { 5076 mem_cgroup_id_put_many(memcg, 1); 5077 } 5078 5079 /** 5080 * mem_cgroup_from_id - look up a memcg from a memcg id 5081 * @id: the memcg id to look up 5082 * 5083 * Caller must hold rcu_read_lock(). 5084 */ 5085 struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 5086 { 5087 WARN_ON_ONCE(!rcu_read_lock_held()); 5088 return idr_find(&mem_cgroup_idr, id); 5089 } 5090 5091 #ifdef CONFIG_SHRINKER_DEBUG 5092 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino) 5093 { 5094 struct cgroup *cgrp; 5095 struct cgroup_subsys_state *css; 5096 struct mem_cgroup *memcg; 5097 5098 cgrp = cgroup_get_from_id(ino); 5099 if (!cgrp) 5100 return ERR_PTR(-ENOENT); 5101 5102 css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys); 5103 if (css) 5104 memcg = container_of(css, struct mem_cgroup, css); 5105 else 5106 memcg = ERR_PTR(-ENOENT); 5107 5108 cgroup_put(cgrp); 5109 5110 return memcg; 5111 } 5112 #endif 5113 5114 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 5115 { 5116 struct mem_cgroup_per_node *pn; 5117 5118 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node); 5119 if (!pn) 5120 return 1; 5121 5122 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu, 5123 GFP_KERNEL_ACCOUNT); 5124 if (!pn->lruvec_stats_percpu) { 5125 kfree(pn); 5126 return 1; 5127 } 5128 5129 lruvec_init(&pn->lruvec); 5130 pn->memcg = memcg; 5131 5132 memcg->nodeinfo[node] = pn; 5133 return 0; 5134 } 5135 5136 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 5137 { 5138 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node]; 5139 5140 if (!pn) 5141 return; 5142 5143 free_percpu(pn->lruvec_stats_percpu); 5144 kfree(pn); 5145 } 5146 5147 static void __mem_cgroup_free(struct mem_cgroup *memcg) 5148 { 5149 int node; 5150 5151 for_each_node(node) 5152 free_mem_cgroup_per_node_info(memcg, node); 5153 free_percpu(memcg->vmstats_percpu); 5154 kfree(memcg); 5155 } 5156 5157 static void mem_cgroup_free(struct mem_cgroup *memcg) 5158 { 5159 memcg_wb_domain_exit(memcg); 5160 __mem_cgroup_free(memcg); 5161 } 5162 5163 static struct mem_cgroup *mem_cgroup_alloc(void) 5164 { 5165 struct mem_cgroup *memcg; 5166 int node; 5167 int __maybe_unused i; 5168 long error = -ENOMEM; 5169 5170 memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL); 5171 if (!memcg) 5172 return ERR_PTR(error); 5173 5174 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL, 5175 1, MEM_CGROUP_ID_MAX + 1, GFP_KERNEL); 5176 if (memcg->id.id < 0) { 5177 error = memcg->id.id; 5178 goto fail; 5179 } 5180 5181 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu, 5182 GFP_KERNEL_ACCOUNT); 5183 if (!memcg->vmstats_percpu) 5184 goto fail; 5185 5186 for_each_node(node) 5187 if (alloc_mem_cgroup_per_node_info(memcg, node)) 5188 goto fail; 5189 5190 if (memcg_wb_domain_init(memcg, GFP_KERNEL)) 5191 goto fail; 5192 5193 INIT_WORK(&memcg->high_work, high_work_func); 5194 INIT_LIST_HEAD(&memcg->oom_notify); 5195 mutex_init(&memcg->thresholds_lock); 5196 spin_lock_init(&memcg->move_lock); 5197 vmpressure_init(&memcg->vmpressure); 5198 INIT_LIST_HEAD(&memcg->event_list); 5199 spin_lock_init(&memcg->event_list_lock); 5200 memcg->socket_pressure = jiffies; 5201 #ifdef CONFIG_MEMCG_KMEM 5202 memcg->kmemcg_id = -1; 5203 INIT_LIST_HEAD(&memcg->objcg_list); 5204 #endif 5205 #ifdef CONFIG_CGROUP_WRITEBACK 5206 INIT_LIST_HEAD(&memcg->cgwb_list); 5207 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 5208 memcg->cgwb_frn[i].done = 5209 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq); 5210 #endif 5211 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5212 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock); 5213 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue); 5214 memcg->deferred_split_queue.split_queue_len = 0; 5215 #endif 5216 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id); 5217 return memcg; 5218 fail: 5219 mem_cgroup_id_remove(memcg); 5220 __mem_cgroup_free(memcg); 5221 return ERR_PTR(error); 5222 } 5223 5224 static struct cgroup_subsys_state * __ref 5225 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 5226 { 5227 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); 5228 struct mem_cgroup *memcg, *old_memcg; 5229 5230 old_memcg = set_active_memcg(parent); 5231 memcg = mem_cgroup_alloc(); 5232 set_active_memcg(old_memcg); 5233 if (IS_ERR(memcg)) 5234 return ERR_CAST(memcg); 5235 5236 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 5237 memcg->soft_limit = PAGE_COUNTER_MAX; 5238 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 5239 memcg->zswap_max = PAGE_COUNTER_MAX; 5240 #endif 5241 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 5242 if (parent) { 5243 memcg->swappiness = mem_cgroup_swappiness(parent); 5244 memcg->oom_kill_disable = parent->oom_kill_disable; 5245 5246 page_counter_init(&memcg->memory, &parent->memory); 5247 page_counter_init(&memcg->swap, &parent->swap); 5248 page_counter_init(&memcg->kmem, &parent->kmem); 5249 page_counter_init(&memcg->tcpmem, &parent->tcpmem); 5250 } else { 5251 page_counter_init(&memcg->memory, NULL); 5252 page_counter_init(&memcg->swap, NULL); 5253 page_counter_init(&memcg->kmem, NULL); 5254 page_counter_init(&memcg->tcpmem, NULL); 5255 5256 root_mem_cgroup = memcg; 5257 return &memcg->css; 5258 } 5259 5260 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 5261 static_branch_inc(&memcg_sockets_enabled_key); 5262 5263 return &memcg->css; 5264 } 5265 5266 static int mem_cgroup_css_online(struct cgroup_subsys_state *css) 5267 { 5268 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5269 5270 if (memcg_online_kmem(memcg)) 5271 goto remove_id; 5272 5273 /* 5274 * A memcg must be visible for expand_shrinker_info() 5275 * by the time the maps are allocated. So, we allocate maps 5276 * here, when for_each_mem_cgroup() can't skip it. 5277 */ 5278 if (alloc_shrinker_info(memcg)) 5279 goto offline_kmem; 5280 5281 /* Online state pins memcg ID, memcg ID pins CSS */ 5282 refcount_set(&memcg->id.ref, 1); 5283 css_get(css); 5284 5285 if (unlikely(mem_cgroup_is_root(memcg))) 5286 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, 5287 2UL*HZ); 5288 return 0; 5289 offline_kmem: 5290 memcg_offline_kmem(memcg); 5291 remove_id: 5292 mem_cgroup_id_remove(memcg); 5293 return -ENOMEM; 5294 } 5295 5296 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 5297 { 5298 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5299 struct mem_cgroup_event *event, *tmp; 5300 5301 /* 5302 * Unregister events and notify userspace. 5303 * Notify userspace about cgroup removing only after rmdir of cgroup 5304 * directory to avoid race between userspace and kernelspace. 5305 */ 5306 spin_lock_irq(&memcg->event_list_lock); 5307 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) { 5308 list_del_init(&event->list); 5309 schedule_work(&event->remove); 5310 } 5311 spin_unlock_irq(&memcg->event_list_lock); 5312 5313 page_counter_set_min(&memcg->memory, 0); 5314 page_counter_set_low(&memcg->memory, 0); 5315 5316 memcg_offline_kmem(memcg); 5317 reparent_shrinker_deferred(memcg); 5318 wb_memcg_offline(memcg); 5319 5320 drain_all_stock(memcg); 5321 5322 mem_cgroup_id_put(memcg); 5323 } 5324 5325 static void mem_cgroup_css_released(struct cgroup_subsys_state *css) 5326 { 5327 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5328 5329 invalidate_reclaim_iterators(memcg); 5330 } 5331 5332 static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 5333 { 5334 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5335 int __maybe_unused i; 5336 5337 #ifdef CONFIG_CGROUP_WRITEBACK 5338 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 5339 wb_wait_for_completion(&memcg->cgwb_frn[i].done); 5340 #endif 5341 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 5342 static_branch_dec(&memcg_sockets_enabled_key); 5343 5344 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active) 5345 static_branch_dec(&memcg_sockets_enabled_key); 5346 5347 vmpressure_cleanup(&memcg->vmpressure); 5348 cancel_work_sync(&memcg->high_work); 5349 mem_cgroup_remove_from_trees(memcg); 5350 free_shrinker_info(memcg); 5351 mem_cgroup_free(memcg); 5352 } 5353 5354 /** 5355 * mem_cgroup_css_reset - reset the states of a mem_cgroup 5356 * @css: the target css 5357 * 5358 * Reset the states of the mem_cgroup associated with @css. This is 5359 * invoked when the userland requests disabling on the default hierarchy 5360 * but the memcg is pinned through dependency. The memcg should stop 5361 * applying policies and should revert to the vanilla state as it may be 5362 * made visible again. 5363 * 5364 * The current implementation only resets the essential configurations. 5365 * This needs to be expanded to cover all the visible parts. 5366 */ 5367 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) 5368 { 5369 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5370 5371 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX); 5372 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX); 5373 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX); 5374 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX); 5375 page_counter_set_min(&memcg->memory, 0); 5376 page_counter_set_low(&memcg->memory, 0); 5377 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 5378 memcg->soft_limit = PAGE_COUNTER_MAX; 5379 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 5380 memcg_wb_domain_size_changed(memcg); 5381 } 5382 5383 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu) 5384 { 5385 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5386 struct mem_cgroup *parent = parent_mem_cgroup(memcg); 5387 struct memcg_vmstats_percpu *statc; 5388 long delta, v; 5389 int i, nid; 5390 5391 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu); 5392 5393 for (i = 0; i < MEMCG_NR_STAT; i++) { 5394 /* 5395 * Collect the aggregated propagation counts of groups 5396 * below us. We're in a per-cpu loop here and this is 5397 * a global counter, so the first cycle will get them. 5398 */ 5399 delta = memcg->vmstats.state_pending[i]; 5400 if (delta) 5401 memcg->vmstats.state_pending[i] = 0; 5402 5403 /* Add CPU changes on this level since the last flush */ 5404 v = READ_ONCE(statc->state[i]); 5405 if (v != statc->state_prev[i]) { 5406 delta += v - statc->state_prev[i]; 5407 statc->state_prev[i] = v; 5408 } 5409 5410 if (!delta) 5411 continue; 5412 5413 /* Aggregate counts on this level and propagate upwards */ 5414 memcg->vmstats.state[i] += delta; 5415 if (parent) 5416 parent->vmstats.state_pending[i] += delta; 5417 } 5418 5419 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) { 5420 delta = memcg->vmstats.events_pending[i]; 5421 if (delta) 5422 memcg->vmstats.events_pending[i] = 0; 5423 5424 v = READ_ONCE(statc->events[i]); 5425 if (v != statc->events_prev[i]) { 5426 delta += v - statc->events_prev[i]; 5427 statc->events_prev[i] = v; 5428 } 5429 5430 if (!delta) 5431 continue; 5432 5433 memcg->vmstats.events[i] += delta; 5434 if (parent) 5435 parent->vmstats.events_pending[i] += delta; 5436 } 5437 5438 for_each_node_state(nid, N_MEMORY) { 5439 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid]; 5440 struct mem_cgroup_per_node *ppn = NULL; 5441 struct lruvec_stats_percpu *lstatc; 5442 5443 if (parent) 5444 ppn = parent->nodeinfo[nid]; 5445 5446 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu); 5447 5448 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) { 5449 delta = pn->lruvec_stats.state_pending[i]; 5450 if (delta) 5451 pn->lruvec_stats.state_pending[i] = 0; 5452 5453 v = READ_ONCE(lstatc->state[i]); 5454 if (v != lstatc->state_prev[i]) { 5455 delta += v - lstatc->state_prev[i]; 5456 lstatc->state_prev[i] = v; 5457 } 5458 5459 if (!delta) 5460 continue; 5461 5462 pn->lruvec_stats.state[i] += delta; 5463 if (ppn) 5464 ppn->lruvec_stats.state_pending[i] += delta; 5465 } 5466 } 5467 } 5468 5469 #ifdef CONFIG_MMU 5470 /* Handlers for move charge at task migration. */ 5471 static int mem_cgroup_do_precharge(unsigned long count) 5472 { 5473 int ret; 5474 5475 /* Try a single bulk charge without reclaim first, kswapd may wake */ 5476 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count); 5477 if (!ret) { 5478 mc.precharge += count; 5479 return ret; 5480 } 5481 5482 /* Try charges one by one with reclaim, but do not retry */ 5483 while (count--) { 5484 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1); 5485 if (ret) 5486 return ret; 5487 mc.precharge++; 5488 cond_resched(); 5489 } 5490 return 0; 5491 } 5492 5493 union mc_target { 5494 struct page *page; 5495 swp_entry_t ent; 5496 }; 5497 5498 enum mc_target_type { 5499 MC_TARGET_NONE = 0, 5500 MC_TARGET_PAGE, 5501 MC_TARGET_SWAP, 5502 MC_TARGET_DEVICE, 5503 }; 5504 5505 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 5506 unsigned long addr, pte_t ptent) 5507 { 5508 struct page *page = vm_normal_page(vma, addr, ptent); 5509 5510 if (!page || !page_mapped(page)) 5511 return NULL; 5512 if (PageAnon(page)) { 5513 if (!(mc.flags & MOVE_ANON)) 5514 return NULL; 5515 } else { 5516 if (!(mc.flags & MOVE_FILE)) 5517 return NULL; 5518 } 5519 if (!get_page_unless_zero(page)) 5520 return NULL; 5521 5522 return page; 5523 } 5524 5525 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE) 5526 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5527 pte_t ptent, swp_entry_t *entry) 5528 { 5529 struct page *page = NULL; 5530 swp_entry_t ent = pte_to_swp_entry(ptent); 5531 5532 if (!(mc.flags & MOVE_ANON)) 5533 return NULL; 5534 5535 /* 5536 * Handle device private pages that are not accessible by the CPU, but 5537 * stored as special swap entries in the page table. 5538 */ 5539 if (is_device_private_entry(ent)) { 5540 page = pfn_swap_entry_to_page(ent); 5541 if (!get_page_unless_zero(page)) 5542 return NULL; 5543 return page; 5544 } 5545 5546 if (non_swap_entry(ent)) 5547 return NULL; 5548 5549 /* 5550 * Because lookup_swap_cache() updates some statistics counter, 5551 * we call find_get_page() with swapper_space directly. 5552 */ 5553 page = find_get_page(swap_address_space(ent), swp_offset(ent)); 5554 entry->val = ent.val; 5555 5556 return page; 5557 } 5558 #else 5559 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5560 pte_t ptent, swp_entry_t *entry) 5561 { 5562 return NULL; 5563 } 5564 #endif 5565 5566 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 5567 unsigned long addr, pte_t ptent) 5568 { 5569 if (!vma->vm_file) /* anonymous vma */ 5570 return NULL; 5571 if (!(mc.flags & MOVE_FILE)) 5572 return NULL; 5573 5574 /* page is moved even if it's not RSS of this task(page-faulted). */ 5575 /* shmem/tmpfs may report page out on swap: account for that too. */ 5576 return find_get_incore_page(vma->vm_file->f_mapping, 5577 linear_page_index(vma, addr)); 5578 } 5579 5580 /** 5581 * mem_cgroup_move_account - move account of the page 5582 * @page: the page 5583 * @compound: charge the page as compound or small page 5584 * @from: mem_cgroup which the page is moved from. 5585 * @to: mem_cgroup which the page is moved to. @from != @to. 5586 * 5587 * The caller must make sure the page is not on LRU (isolate_page() is useful.) 5588 * 5589 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" 5590 * from old cgroup. 5591 */ 5592 static int mem_cgroup_move_account(struct page *page, 5593 bool compound, 5594 struct mem_cgroup *from, 5595 struct mem_cgroup *to) 5596 { 5597 struct folio *folio = page_folio(page); 5598 struct lruvec *from_vec, *to_vec; 5599 struct pglist_data *pgdat; 5600 unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1; 5601 int nid, ret; 5602 5603 VM_BUG_ON(from == to); 5604 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 5605 VM_BUG_ON(compound && !folio_test_large(folio)); 5606 5607 /* 5608 * Prevent mem_cgroup_migrate() from looking at 5609 * page's memory cgroup of its source page while we change it. 5610 */ 5611 ret = -EBUSY; 5612 if (!folio_trylock(folio)) 5613 goto out; 5614 5615 ret = -EINVAL; 5616 if (folio_memcg(folio) != from) 5617 goto out_unlock; 5618 5619 pgdat = folio_pgdat(folio); 5620 from_vec = mem_cgroup_lruvec(from, pgdat); 5621 to_vec = mem_cgroup_lruvec(to, pgdat); 5622 5623 folio_memcg_lock(folio); 5624 5625 if (folio_test_anon(folio)) { 5626 if (folio_mapped(folio)) { 5627 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages); 5628 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages); 5629 if (folio_test_transhuge(folio)) { 5630 __mod_lruvec_state(from_vec, NR_ANON_THPS, 5631 -nr_pages); 5632 __mod_lruvec_state(to_vec, NR_ANON_THPS, 5633 nr_pages); 5634 } 5635 } 5636 } else { 5637 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages); 5638 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages); 5639 5640 if (folio_test_swapbacked(folio)) { 5641 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages); 5642 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages); 5643 } 5644 5645 if (folio_mapped(folio)) { 5646 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages); 5647 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages); 5648 } 5649 5650 if (folio_test_dirty(folio)) { 5651 struct address_space *mapping = folio_mapping(folio); 5652 5653 if (mapping_can_writeback(mapping)) { 5654 __mod_lruvec_state(from_vec, NR_FILE_DIRTY, 5655 -nr_pages); 5656 __mod_lruvec_state(to_vec, NR_FILE_DIRTY, 5657 nr_pages); 5658 } 5659 } 5660 } 5661 5662 if (folio_test_writeback(folio)) { 5663 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages); 5664 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages); 5665 } 5666 5667 /* 5668 * All state has been migrated, let's switch to the new memcg. 5669 * 5670 * It is safe to change page's memcg here because the page 5671 * is referenced, charged, isolated, and locked: we can't race 5672 * with (un)charging, migration, LRU putback, or anything else 5673 * that would rely on a stable page's memory cgroup. 5674 * 5675 * Note that lock_page_memcg is a memcg lock, not a page lock, 5676 * to save space. As soon as we switch page's memory cgroup to a 5677 * new memcg that isn't locked, the above state can change 5678 * concurrently again. Make sure we're truly done with it. 5679 */ 5680 smp_mb(); 5681 5682 css_get(&to->css); 5683 css_put(&from->css); 5684 5685 folio->memcg_data = (unsigned long)to; 5686 5687 __folio_memcg_unlock(from); 5688 5689 ret = 0; 5690 nid = folio_nid(folio); 5691 5692 local_irq_disable(); 5693 mem_cgroup_charge_statistics(to, nr_pages); 5694 memcg_check_events(to, nid); 5695 mem_cgroup_charge_statistics(from, -nr_pages); 5696 memcg_check_events(from, nid); 5697 local_irq_enable(); 5698 out_unlock: 5699 folio_unlock(folio); 5700 out: 5701 return ret; 5702 } 5703 5704 /** 5705 * get_mctgt_type - get target type of moving charge 5706 * @vma: the vma the pte to be checked belongs 5707 * @addr: the address corresponding to the pte to be checked 5708 * @ptent: the pte to be checked 5709 * @target: the pointer the target page or swap ent will be stored(can be NULL) 5710 * 5711 * Returns 5712 * 0(MC_TARGET_NONE): if the pte is not a target for move charge. 5713 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for 5714 * move charge. if @target is not NULL, the page is stored in target->page 5715 * with extra refcnt got(Callers should handle it). 5716 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a 5717 * target for charge migration. if @target is not NULL, the entry is stored 5718 * in target->ent. 5719 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE 5720 * (so ZONE_DEVICE page and thus not on the lru). 5721 * For now we such page is charge like a regular page would be as for all 5722 * intent and purposes it is just special memory taking the place of a 5723 * regular page. 5724 * 5725 * See Documentations/vm/hmm.txt and include/linux/hmm.h 5726 * 5727 * Called with pte lock held. 5728 */ 5729 5730 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, 5731 unsigned long addr, pte_t ptent, union mc_target *target) 5732 { 5733 struct page *page = NULL; 5734 enum mc_target_type ret = MC_TARGET_NONE; 5735 swp_entry_t ent = { .val = 0 }; 5736 5737 if (pte_present(ptent)) 5738 page = mc_handle_present_pte(vma, addr, ptent); 5739 else if (pte_none_mostly(ptent)) 5740 /* 5741 * PTE markers should be treated as a none pte here, separated 5742 * from other swap handling below. 5743 */ 5744 page = mc_handle_file_pte(vma, addr, ptent); 5745 else if (is_swap_pte(ptent)) 5746 page = mc_handle_swap_pte(vma, ptent, &ent); 5747 5748 if (!page && !ent.val) 5749 return ret; 5750 if (page) { 5751 /* 5752 * Do only loose check w/o serialization. 5753 * mem_cgroup_move_account() checks the page is valid or 5754 * not under LRU exclusion. 5755 */ 5756 if (page_memcg(page) == mc.from) { 5757 ret = MC_TARGET_PAGE; 5758 if (is_device_private_page(page)) 5759 ret = MC_TARGET_DEVICE; 5760 if (target) 5761 target->page = page; 5762 } 5763 if (!ret || !target) 5764 put_page(page); 5765 } 5766 /* 5767 * There is a swap entry and a page doesn't exist or isn't charged. 5768 * But we cannot move a tail-page in a THP. 5769 */ 5770 if (ent.val && !ret && (!page || !PageTransCompound(page)) && 5771 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) { 5772 ret = MC_TARGET_SWAP; 5773 if (target) 5774 target->ent = ent; 5775 } 5776 return ret; 5777 } 5778 5779 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5780 /* 5781 * We don't consider PMD mapped swapping or file mapped pages because THP does 5782 * not support them for now. 5783 * Caller should make sure that pmd_trans_huge(pmd) is true. 5784 */ 5785 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5786 unsigned long addr, pmd_t pmd, union mc_target *target) 5787 { 5788 struct page *page = NULL; 5789 enum mc_target_type ret = MC_TARGET_NONE; 5790 5791 if (unlikely(is_swap_pmd(pmd))) { 5792 VM_BUG_ON(thp_migration_supported() && 5793 !is_pmd_migration_entry(pmd)); 5794 return ret; 5795 } 5796 page = pmd_page(pmd); 5797 VM_BUG_ON_PAGE(!page || !PageHead(page), page); 5798 if (!(mc.flags & MOVE_ANON)) 5799 return ret; 5800 if (page_memcg(page) == mc.from) { 5801 ret = MC_TARGET_PAGE; 5802 if (target) { 5803 get_page(page); 5804 target->page = page; 5805 } 5806 } 5807 return ret; 5808 } 5809 #else 5810 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5811 unsigned long addr, pmd_t pmd, union mc_target *target) 5812 { 5813 return MC_TARGET_NONE; 5814 } 5815 #endif 5816 5817 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 5818 unsigned long addr, unsigned long end, 5819 struct mm_walk *walk) 5820 { 5821 struct vm_area_struct *vma = walk->vma; 5822 pte_t *pte; 5823 spinlock_t *ptl; 5824 5825 ptl = pmd_trans_huge_lock(pmd, vma); 5826 if (ptl) { 5827 /* 5828 * Note their can not be MC_TARGET_DEVICE for now as we do not 5829 * support transparent huge page with MEMORY_DEVICE_PRIVATE but 5830 * this might change. 5831 */ 5832 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) 5833 mc.precharge += HPAGE_PMD_NR; 5834 spin_unlock(ptl); 5835 return 0; 5836 } 5837 5838 if (pmd_trans_unstable(pmd)) 5839 return 0; 5840 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 5841 for (; addr != end; pte++, addr += PAGE_SIZE) 5842 if (get_mctgt_type(vma, addr, *pte, NULL)) 5843 mc.precharge++; /* increment precharge temporarily */ 5844 pte_unmap_unlock(pte - 1, ptl); 5845 cond_resched(); 5846 5847 return 0; 5848 } 5849 5850 static const struct mm_walk_ops precharge_walk_ops = { 5851 .pmd_entry = mem_cgroup_count_precharge_pte_range, 5852 }; 5853 5854 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 5855 { 5856 unsigned long precharge; 5857 5858 mmap_read_lock(mm); 5859 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL); 5860 mmap_read_unlock(mm); 5861 5862 precharge = mc.precharge; 5863 mc.precharge = 0; 5864 5865 return precharge; 5866 } 5867 5868 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 5869 { 5870 unsigned long precharge = mem_cgroup_count_precharge(mm); 5871 5872 VM_BUG_ON(mc.moving_task); 5873 mc.moving_task = current; 5874 return mem_cgroup_do_precharge(precharge); 5875 } 5876 5877 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 5878 static void __mem_cgroup_clear_mc(void) 5879 { 5880 struct mem_cgroup *from = mc.from; 5881 struct mem_cgroup *to = mc.to; 5882 5883 /* we must uncharge all the leftover precharges from mc.to */ 5884 if (mc.precharge) { 5885 cancel_charge(mc.to, mc.precharge); 5886 mc.precharge = 0; 5887 } 5888 /* 5889 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 5890 * we must uncharge here. 5891 */ 5892 if (mc.moved_charge) { 5893 cancel_charge(mc.from, mc.moved_charge); 5894 mc.moved_charge = 0; 5895 } 5896 /* we must fixup refcnts and charges */ 5897 if (mc.moved_swap) { 5898 /* uncharge swap account from the old cgroup */ 5899 if (!mem_cgroup_is_root(mc.from)) 5900 page_counter_uncharge(&mc.from->memsw, mc.moved_swap); 5901 5902 mem_cgroup_id_put_many(mc.from, mc.moved_swap); 5903 5904 /* 5905 * we charged both to->memory and to->memsw, so we 5906 * should uncharge to->memory. 5907 */ 5908 if (!mem_cgroup_is_root(mc.to)) 5909 page_counter_uncharge(&mc.to->memory, mc.moved_swap); 5910 5911 mc.moved_swap = 0; 5912 } 5913 memcg_oom_recover(from); 5914 memcg_oom_recover(to); 5915 wake_up_all(&mc.waitq); 5916 } 5917 5918 static void mem_cgroup_clear_mc(void) 5919 { 5920 struct mm_struct *mm = mc.mm; 5921 5922 /* 5923 * we must clear moving_task before waking up waiters at the end of 5924 * task migration. 5925 */ 5926 mc.moving_task = NULL; 5927 __mem_cgroup_clear_mc(); 5928 spin_lock(&mc.lock); 5929 mc.from = NULL; 5930 mc.to = NULL; 5931 mc.mm = NULL; 5932 spin_unlock(&mc.lock); 5933 5934 mmput(mm); 5935 } 5936 5937 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 5938 { 5939 struct cgroup_subsys_state *css; 5940 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */ 5941 struct mem_cgroup *from; 5942 struct task_struct *leader, *p; 5943 struct mm_struct *mm; 5944 unsigned long move_flags; 5945 int ret = 0; 5946 5947 /* charge immigration isn't supported on the default hierarchy */ 5948 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5949 return 0; 5950 5951 /* 5952 * Multi-process migrations only happen on the default hierarchy 5953 * where charge immigration is not used. Perform charge 5954 * immigration if @tset contains a leader and whine if there are 5955 * multiple. 5956 */ 5957 p = NULL; 5958 cgroup_taskset_for_each_leader(leader, css, tset) { 5959 WARN_ON_ONCE(p); 5960 p = leader; 5961 memcg = mem_cgroup_from_css(css); 5962 } 5963 if (!p) 5964 return 0; 5965 5966 /* 5967 * We are now committed to this value whatever it is. Changes in this 5968 * tunable will only affect upcoming migrations, not the current one. 5969 * So we need to save it, and keep it going. 5970 */ 5971 move_flags = READ_ONCE(memcg->move_charge_at_immigrate); 5972 if (!move_flags) 5973 return 0; 5974 5975 from = mem_cgroup_from_task(p); 5976 5977 VM_BUG_ON(from == memcg); 5978 5979 mm = get_task_mm(p); 5980 if (!mm) 5981 return 0; 5982 /* We move charges only when we move a owner of the mm */ 5983 if (mm->owner == p) { 5984 VM_BUG_ON(mc.from); 5985 VM_BUG_ON(mc.to); 5986 VM_BUG_ON(mc.precharge); 5987 VM_BUG_ON(mc.moved_charge); 5988 VM_BUG_ON(mc.moved_swap); 5989 5990 spin_lock(&mc.lock); 5991 mc.mm = mm; 5992 mc.from = from; 5993 mc.to = memcg; 5994 mc.flags = move_flags; 5995 spin_unlock(&mc.lock); 5996 /* We set mc.moving_task later */ 5997 5998 ret = mem_cgroup_precharge_mc(mm); 5999 if (ret) 6000 mem_cgroup_clear_mc(); 6001 } else { 6002 mmput(mm); 6003 } 6004 return ret; 6005 } 6006 6007 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 6008 { 6009 if (mc.to) 6010 mem_cgroup_clear_mc(); 6011 } 6012 6013 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 6014 unsigned long addr, unsigned long end, 6015 struct mm_walk *walk) 6016 { 6017 int ret = 0; 6018 struct vm_area_struct *vma = walk->vma; 6019 pte_t *pte; 6020 spinlock_t *ptl; 6021 enum mc_target_type target_type; 6022 union mc_target target; 6023 struct page *page; 6024 6025 ptl = pmd_trans_huge_lock(pmd, vma); 6026 if (ptl) { 6027 if (mc.precharge < HPAGE_PMD_NR) { 6028 spin_unlock(ptl); 6029 return 0; 6030 } 6031 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); 6032 if (target_type == MC_TARGET_PAGE) { 6033 page = target.page; 6034 if (!isolate_lru_page(page)) { 6035 if (!mem_cgroup_move_account(page, true, 6036 mc.from, mc.to)) { 6037 mc.precharge -= HPAGE_PMD_NR; 6038 mc.moved_charge += HPAGE_PMD_NR; 6039 } 6040 putback_lru_page(page); 6041 } 6042 put_page(page); 6043 } else if (target_type == MC_TARGET_DEVICE) { 6044 page = target.page; 6045 if (!mem_cgroup_move_account(page, true, 6046 mc.from, mc.to)) { 6047 mc.precharge -= HPAGE_PMD_NR; 6048 mc.moved_charge += HPAGE_PMD_NR; 6049 } 6050 put_page(page); 6051 } 6052 spin_unlock(ptl); 6053 return 0; 6054 } 6055 6056 if (pmd_trans_unstable(pmd)) 6057 return 0; 6058 retry: 6059 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 6060 for (; addr != end; addr += PAGE_SIZE) { 6061 pte_t ptent = *(pte++); 6062 bool device = false; 6063 swp_entry_t ent; 6064 6065 if (!mc.precharge) 6066 break; 6067 6068 switch (get_mctgt_type(vma, addr, ptent, &target)) { 6069 case MC_TARGET_DEVICE: 6070 device = true; 6071 fallthrough; 6072 case MC_TARGET_PAGE: 6073 page = target.page; 6074 /* 6075 * We can have a part of the split pmd here. Moving it 6076 * can be done but it would be too convoluted so simply 6077 * ignore such a partial THP and keep it in original 6078 * memcg. There should be somebody mapping the head. 6079 */ 6080 if (PageTransCompound(page)) 6081 goto put; 6082 if (!device && isolate_lru_page(page)) 6083 goto put; 6084 if (!mem_cgroup_move_account(page, false, 6085 mc.from, mc.to)) { 6086 mc.precharge--; 6087 /* we uncharge from mc.from later. */ 6088 mc.moved_charge++; 6089 } 6090 if (!device) 6091 putback_lru_page(page); 6092 put: /* get_mctgt_type() gets the page */ 6093 put_page(page); 6094 break; 6095 case MC_TARGET_SWAP: 6096 ent = target.ent; 6097 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { 6098 mc.precharge--; 6099 mem_cgroup_id_get_many(mc.to, 1); 6100 /* we fixup other refcnts and charges later. */ 6101 mc.moved_swap++; 6102 } 6103 break; 6104 default: 6105 break; 6106 } 6107 } 6108 pte_unmap_unlock(pte - 1, ptl); 6109 cond_resched(); 6110 6111 if (addr != end) { 6112 /* 6113 * We have consumed all precharges we got in can_attach(). 6114 * We try charge one by one, but don't do any additional 6115 * charges to mc.to if we have failed in charge once in attach() 6116 * phase. 6117 */ 6118 ret = mem_cgroup_do_precharge(1); 6119 if (!ret) 6120 goto retry; 6121 } 6122 6123 return ret; 6124 } 6125 6126 static const struct mm_walk_ops charge_walk_ops = { 6127 .pmd_entry = mem_cgroup_move_charge_pte_range, 6128 }; 6129 6130 static void mem_cgroup_move_charge(void) 6131 { 6132 lru_add_drain_all(); 6133 /* 6134 * Signal lock_page_memcg() to take the memcg's move_lock 6135 * while we're moving its pages to another memcg. Then wait 6136 * for already started RCU-only updates to finish. 6137 */ 6138 atomic_inc(&mc.from->moving_account); 6139 synchronize_rcu(); 6140 retry: 6141 if (unlikely(!mmap_read_trylock(mc.mm))) { 6142 /* 6143 * Someone who are holding the mmap_lock might be waiting in 6144 * waitq. So we cancel all extra charges, wake up all waiters, 6145 * and retry. Because we cancel precharges, we might not be able 6146 * to move enough charges, but moving charge is a best-effort 6147 * feature anyway, so it wouldn't be a big problem. 6148 */ 6149 __mem_cgroup_clear_mc(); 6150 cond_resched(); 6151 goto retry; 6152 } 6153 /* 6154 * When we have consumed all precharges and failed in doing 6155 * additional charge, the page walk just aborts. 6156 */ 6157 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops, 6158 NULL); 6159 6160 mmap_read_unlock(mc.mm); 6161 atomic_dec(&mc.from->moving_account); 6162 } 6163 6164 static void mem_cgroup_move_task(void) 6165 { 6166 if (mc.to) { 6167 mem_cgroup_move_charge(); 6168 mem_cgroup_clear_mc(); 6169 } 6170 } 6171 #else /* !CONFIG_MMU */ 6172 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 6173 { 6174 return 0; 6175 } 6176 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 6177 { 6178 } 6179 static void mem_cgroup_move_task(void) 6180 { 6181 } 6182 #endif 6183 6184 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value) 6185 { 6186 if (value == PAGE_COUNTER_MAX) 6187 seq_puts(m, "max\n"); 6188 else 6189 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE); 6190 6191 return 0; 6192 } 6193 6194 static u64 memory_current_read(struct cgroup_subsys_state *css, 6195 struct cftype *cft) 6196 { 6197 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6198 6199 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; 6200 } 6201 6202 static u64 memory_peak_read(struct cgroup_subsys_state *css, 6203 struct cftype *cft) 6204 { 6205 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6206 6207 return (u64)memcg->memory.watermark * PAGE_SIZE; 6208 } 6209 6210 static int memory_min_show(struct seq_file *m, void *v) 6211 { 6212 return seq_puts_memcg_tunable(m, 6213 READ_ONCE(mem_cgroup_from_seq(m)->memory.min)); 6214 } 6215 6216 static ssize_t memory_min_write(struct kernfs_open_file *of, 6217 char *buf, size_t nbytes, loff_t off) 6218 { 6219 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6220 unsigned long min; 6221 int err; 6222 6223 buf = strstrip(buf); 6224 err = page_counter_memparse(buf, "max", &min); 6225 if (err) 6226 return err; 6227 6228 page_counter_set_min(&memcg->memory, min); 6229 6230 return nbytes; 6231 } 6232 6233 static int memory_low_show(struct seq_file *m, void *v) 6234 { 6235 return seq_puts_memcg_tunable(m, 6236 READ_ONCE(mem_cgroup_from_seq(m)->memory.low)); 6237 } 6238 6239 static ssize_t memory_low_write(struct kernfs_open_file *of, 6240 char *buf, size_t nbytes, loff_t off) 6241 { 6242 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6243 unsigned long low; 6244 int err; 6245 6246 buf = strstrip(buf); 6247 err = page_counter_memparse(buf, "max", &low); 6248 if (err) 6249 return err; 6250 6251 page_counter_set_low(&memcg->memory, low); 6252 6253 return nbytes; 6254 } 6255 6256 static int memory_high_show(struct seq_file *m, void *v) 6257 { 6258 return seq_puts_memcg_tunable(m, 6259 READ_ONCE(mem_cgroup_from_seq(m)->memory.high)); 6260 } 6261 6262 static ssize_t memory_high_write(struct kernfs_open_file *of, 6263 char *buf, size_t nbytes, loff_t off) 6264 { 6265 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6266 unsigned int nr_retries = MAX_RECLAIM_RETRIES; 6267 bool drained = false; 6268 unsigned long high; 6269 int err; 6270 6271 buf = strstrip(buf); 6272 err = page_counter_memparse(buf, "max", &high); 6273 if (err) 6274 return err; 6275 6276 page_counter_set_high(&memcg->memory, high); 6277 6278 for (;;) { 6279 unsigned long nr_pages = page_counter_read(&memcg->memory); 6280 unsigned long reclaimed; 6281 6282 if (nr_pages <= high) 6283 break; 6284 6285 if (signal_pending(current)) 6286 break; 6287 6288 if (!drained) { 6289 drain_all_stock(memcg); 6290 drained = true; 6291 continue; 6292 } 6293 6294 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high, 6295 GFP_KERNEL, true); 6296 6297 if (!reclaimed && !nr_retries--) 6298 break; 6299 } 6300 6301 memcg_wb_domain_size_changed(memcg); 6302 return nbytes; 6303 } 6304 6305 static int memory_max_show(struct seq_file *m, void *v) 6306 { 6307 return seq_puts_memcg_tunable(m, 6308 READ_ONCE(mem_cgroup_from_seq(m)->memory.max)); 6309 } 6310 6311 static ssize_t memory_max_write(struct kernfs_open_file *of, 6312 char *buf, size_t nbytes, loff_t off) 6313 { 6314 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6315 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES; 6316 bool drained = false; 6317 unsigned long max; 6318 int err; 6319 6320 buf = strstrip(buf); 6321 err = page_counter_memparse(buf, "max", &max); 6322 if (err) 6323 return err; 6324 6325 xchg(&memcg->memory.max, max); 6326 6327 for (;;) { 6328 unsigned long nr_pages = page_counter_read(&memcg->memory); 6329 6330 if (nr_pages <= max) 6331 break; 6332 6333 if (signal_pending(current)) 6334 break; 6335 6336 if (!drained) { 6337 drain_all_stock(memcg); 6338 drained = true; 6339 continue; 6340 } 6341 6342 if (nr_reclaims) { 6343 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max, 6344 GFP_KERNEL, true)) 6345 nr_reclaims--; 6346 continue; 6347 } 6348 6349 memcg_memory_event(memcg, MEMCG_OOM); 6350 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0)) 6351 break; 6352 } 6353 6354 memcg_wb_domain_size_changed(memcg); 6355 return nbytes; 6356 } 6357 6358 static void __memory_events_show(struct seq_file *m, atomic_long_t *events) 6359 { 6360 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW])); 6361 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH])); 6362 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX])); 6363 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM])); 6364 seq_printf(m, "oom_kill %lu\n", 6365 atomic_long_read(&events[MEMCG_OOM_KILL])); 6366 seq_printf(m, "oom_group_kill %lu\n", 6367 atomic_long_read(&events[MEMCG_OOM_GROUP_KILL])); 6368 } 6369 6370 static int memory_events_show(struct seq_file *m, void *v) 6371 { 6372 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6373 6374 __memory_events_show(m, memcg->memory_events); 6375 return 0; 6376 } 6377 6378 static int memory_events_local_show(struct seq_file *m, void *v) 6379 { 6380 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6381 6382 __memory_events_show(m, memcg->memory_events_local); 6383 return 0; 6384 } 6385 6386 static int memory_stat_show(struct seq_file *m, void *v) 6387 { 6388 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6389 char *buf; 6390 6391 buf = memory_stat_format(memcg); 6392 if (!buf) 6393 return -ENOMEM; 6394 seq_puts(m, buf); 6395 kfree(buf); 6396 return 0; 6397 } 6398 6399 #ifdef CONFIG_NUMA 6400 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec, 6401 int item) 6402 { 6403 return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item); 6404 } 6405 6406 static int memory_numa_stat_show(struct seq_file *m, void *v) 6407 { 6408 int i; 6409 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6410 6411 mem_cgroup_flush_stats(); 6412 6413 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 6414 int nid; 6415 6416 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS) 6417 continue; 6418 6419 seq_printf(m, "%s", memory_stats[i].name); 6420 for_each_node_state(nid, N_MEMORY) { 6421 u64 size; 6422 struct lruvec *lruvec; 6423 6424 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); 6425 size = lruvec_page_state_output(lruvec, 6426 memory_stats[i].idx); 6427 seq_printf(m, " N%d=%llu", nid, size); 6428 } 6429 seq_putc(m, '\n'); 6430 } 6431 6432 return 0; 6433 } 6434 #endif 6435 6436 static int memory_oom_group_show(struct seq_file *m, void *v) 6437 { 6438 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6439 6440 seq_printf(m, "%d\n", memcg->oom_group); 6441 6442 return 0; 6443 } 6444 6445 static ssize_t memory_oom_group_write(struct kernfs_open_file *of, 6446 char *buf, size_t nbytes, loff_t off) 6447 { 6448 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6449 int ret, oom_group; 6450 6451 buf = strstrip(buf); 6452 if (!buf) 6453 return -EINVAL; 6454 6455 ret = kstrtoint(buf, 0, &oom_group); 6456 if (ret) 6457 return ret; 6458 6459 if (oom_group != 0 && oom_group != 1) 6460 return -EINVAL; 6461 6462 memcg->oom_group = oom_group; 6463 6464 return nbytes; 6465 } 6466 6467 static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf, 6468 size_t nbytes, loff_t off) 6469 { 6470 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6471 unsigned int nr_retries = MAX_RECLAIM_RETRIES; 6472 unsigned long nr_to_reclaim, nr_reclaimed = 0; 6473 int err; 6474 6475 buf = strstrip(buf); 6476 err = page_counter_memparse(buf, "", &nr_to_reclaim); 6477 if (err) 6478 return err; 6479 6480 while (nr_reclaimed < nr_to_reclaim) { 6481 unsigned long reclaimed; 6482 6483 if (signal_pending(current)) 6484 return -EINTR; 6485 6486 /* 6487 * This is the final attempt, drain percpu lru caches in the 6488 * hope of introducing more evictable pages for 6489 * try_to_free_mem_cgroup_pages(). 6490 */ 6491 if (!nr_retries) 6492 lru_add_drain_all(); 6493 6494 reclaimed = try_to_free_mem_cgroup_pages(memcg, 6495 nr_to_reclaim - nr_reclaimed, 6496 GFP_KERNEL, true); 6497 6498 if (!reclaimed && !nr_retries--) 6499 return -EAGAIN; 6500 6501 nr_reclaimed += reclaimed; 6502 } 6503 6504 return nbytes; 6505 } 6506 6507 static struct cftype memory_files[] = { 6508 { 6509 .name = "current", 6510 .flags = CFTYPE_NOT_ON_ROOT, 6511 .read_u64 = memory_current_read, 6512 }, 6513 { 6514 .name = "peak", 6515 .flags = CFTYPE_NOT_ON_ROOT, 6516 .read_u64 = memory_peak_read, 6517 }, 6518 { 6519 .name = "min", 6520 .flags = CFTYPE_NOT_ON_ROOT, 6521 .seq_show = memory_min_show, 6522 .write = memory_min_write, 6523 }, 6524 { 6525 .name = "low", 6526 .flags = CFTYPE_NOT_ON_ROOT, 6527 .seq_show = memory_low_show, 6528 .write = memory_low_write, 6529 }, 6530 { 6531 .name = "high", 6532 .flags = CFTYPE_NOT_ON_ROOT, 6533 .seq_show = memory_high_show, 6534 .write = memory_high_write, 6535 }, 6536 { 6537 .name = "max", 6538 .flags = CFTYPE_NOT_ON_ROOT, 6539 .seq_show = memory_max_show, 6540 .write = memory_max_write, 6541 }, 6542 { 6543 .name = "events", 6544 .flags = CFTYPE_NOT_ON_ROOT, 6545 .file_offset = offsetof(struct mem_cgroup, events_file), 6546 .seq_show = memory_events_show, 6547 }, 6548 { 6549 .name = "events.local", 6550 .flags = CFTYPE_NOT_ON_ROOT, 6551 .file_offset = offsetof(struct mem_cgroup, events_local_file), 6552 .seq_show = memory_events_local_show, 6553 }, 6554 { 6555 .name = "stat", 6556 .seq_show = memory_stat_show, 6557 }, 6558 #ifdef CONFIG_NUMA 6559 { 6560 .name = "numa_stat", 6561 .seq_show = memory_numa_stat_show, 6562 }, 6563 #endif 6564 { 6565 .name = "oom.group", 6566 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE, 6567 .seq_show = memory_oom_group_show, 6568 .write = memory_oom_group_write, 6569 }, 6570 { 6571 .name = "reclaim", 6572 .flags = CFTYPE_NS_DELEGATABLE, 6573 .write = memory_reclaim, 6574 }, 6575 { } /* terminate */ 6576 }; 6577 6578 struct cgroup_subsys memory_cgrp_subsys = { 6579 .css_alloc = mem_cgroup_css_alloc, 6580 .css_online = mem_cgroup_css_online, 6581 .css_offline = mem_cgroup_css_offline, 6582 .css_released = mem_cgroup_css_released, 6583 .css_free = mem_cgroup_css_free, 6584 .css_reset = mem_cgroup_css_reset, 6585 .css_rstat_flush = mem_cgroup_css_rstat_flush, 6586 .can_attach = mem_cgroup_can_attach, 6587 .cancel_attach = mem_cgroup_cancel_attach, 6588 .post_attach = mem_cgroup_move_task, 6589 .dfl_cftypes = memory_files, 6590 .legacy_cftypes = mem_cgroup_legacy_files, 6591 .early_init = 0, 6592 }; 6593 6594 /* 6595 * This function calculates an individual cgroup's effective 6596 * protection which is derived from its own memory.min/low, its 6597 * parent's and siblings' settings, as well as the actual memory 6598 * distribution in the tree. 6599 * 6600 * The following rules apply to the effective protection values: 6601 * 6602 * 1. At the first level of reclaim, effective protection is equal to 6603 * the declared protection in memory.min and memory.low. 6604 * 6605 * 2. To enable safe delegation of the protection configuration, at 6606 * subsequent levels the effective protection is capped to the 6607 * parent's effective protection. 6608 * 6609 * 3. To make complex and dynamic subtrees easier to configure, the 6610 * user is allowed to overcommit the declared protection at a given 6611 * level. If that is the case, the parent's effective protection is 6612 * distributed to the children in proportion to how much protection 6613 * they have declared and how much of it they are utilizing. 6614 * 6615 * This makes distribution proportional, but also work-conserving: 6616 * if one cgroup claims much more protection than it uses memory, 6617 * the unused remainder is available to its siblings. 6618 * 6619 * 4. Conversely, when the declared protection is undercommitted at a 6620 * given level, the distribution of the larger parental protection 6621 * budget is NOT proportional. A cgroup's protection from a sibling 6622 * is capped to its own memory.min/low setting. 6623 * 6624 * 5. However, to allow protecting recursive subtrees from each other 6625 * without having to declare each individual cgroup's fixed share 6626 * of the ancestor's claim to protection, any unutilized - 6627 * "floating" - protection from up the tree is distributed in 6628 * proportion to each cgroup's *usage*. This makes the protection 6629 * neutral wrt sibling cgroups and lets them compete freely over 6630 * the shared parental protection budget, but it protects the 6631 * subtree as a whole from neighboring subtrees. 6632 * 6633 * Note that 4. and 5. are not in conflict: 4. is about protecting 6634 * against immediate siblings whereas 5. is about protecting against 6635 * neighboring subtrees. 6636 */ 6637 static unsigned long effective_protection(unsigned long usage, 6638 unsigned long parent_usage, 6639 unsigned long setting, 6640 unsigned long parent_effective, 6641 unsigned long siblings_protected) 6642 { 6643 unsigned long protected; 6644 unsigned long ep; 6645 6646 protected = min(usage, setting); 6647 /* 6648 * If all cgroups at this level combined claim and use more 6649 * protection then what the parent affords them, distribute 6650 * shares in proportion to utilization. 6651 * 6652 * We are using actual utilization rather than the statically 6653 * claimed protection in order to be work-conserving: claimed 6654 * but unused protection is available to siblings that would 6655 * otherwise get a smaller chunk than what they claimed. 6656 */ 6657 if (siblings_protected > parent_effective) 6658 return protected * parent_effective / siblings_protected; 6659 6660 /* 6661 * Ok, utilized protection of all children is within what the 6662 * parent affords them, so we know whatever this child claims 6663 * and utilizes is effectively protected. 6664 * 6665 * If there is unprotected usage beyond this value, reclaim 6666 * will apply pressure in proportion to that amount. 6667 * 6668 * If there is unutilized protection, the cgroup will be fully 6669 * shielded from reclaim, but we do return a smaller value for 6670 * protection than what the group could enjoy in theory. This 6671 * is okay. With the overcommit distribution above, effective 6672 * protection is always dependent on how memory is actually 6673 * consumed among the siblings anyway. 6674 */ 6675 ep = protected; 6676 6677 /* 6678 * If the children aren't claiming (all of) the protection 6679 * afforded to them by the parent, distribute the remainder in 6680 * proportion to the (unprotected) memory of each cgroup. That 6681 * way, cgroups that aren't explicitly prioritized wrt each 6682 * other compete freely over the allowance, but they are 6683 * collectively protected from neighboring trees. 6684 * 6685 * We're using unprotected memory for the weight so that if 6686 * some cgroups DO claim explicit protection, we don't protect 6687 * the same bytes twice. 6688 * 6689 * Check both usage and parent_usage against the respective 6690 * protected values. One should imply the other, but they 6691 * aren't read atomically - make sure the division is sane. 6692 */ 6693 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)) 6694 return ep; 6695 if (parent_effective > siblings_protected && 6696 parent_usage > siblings_protected && 6697 usage > protected) { 6698 unsigned long unclaimed; 6699 6700 unclaimed = parent_effective - siblings_protected; 6701 unclaimed *= usage - protected; 6702 unclaimed /= parent_usage - siblings_protected; 6703 6704 ep += unclaimed; 6705 } 6706 6707 return ep; 6708 } 6709 6710 /** 6711 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range 6712 * @root: the top ancestor of the sub-tree being checked 6713 * @memcg: the memory cgroup to check 6714 * 6715 * WARNING: This function is not stateless! It can only be used as part 6716 * of a top-down tree iteration, not for isolated queries. 6717 */ 6718 void mem_cgroup_calculate_protection(struct mem_cgroup *root, 6719 struct mem_cgroup *memcg) 6720 { 6721 unsigned long usage, parent_usage; 6722 struct mem_cgroup *parent; 6723 6724 if (mem_cgroup_disabled()) 6725 return; 6726 6727 if (!root) 6728 root = root_mem_cgroup; 6729 6730 /* 6731 * Effective values of the reclaim targets are ignored so they 6732 * can be stale. Have a look at mem_cgroup_protection for more 6733 * details. 6734 * TODO: calculation should be more robust so that we do not need 6735 * that special casing. 6736 */ 6737 if (memcg == root) 6738 return; 6739 6740 usage = page_counter_read(&memcg->memory); 6741 if (!usage) 6742 return; 6743 6744 parent = parent_mem_cgroup(memcg); 6745 6746 if (parent == root) { 6747 memcg->memory.emin = READ_ONCE(memcg->memory.min); 6748 memcg->memory.elow = READ_ONCE(memcg->memory.low); 6749 return; 6750 } 6751 6752 parent_usage = page_counter_read(&parent->memory); 6753 6754 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage, 6755 READ_ONCE(memcg->memory.min), 6756 READ_ONCE(parent->memory.emin), 6757 atomic_long_read(&parent->memory.children_min_usage))); 6758 6759 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage, 6760 READ_ONCE(memcg->memory.low), 6761 READ_ONCE(parent->memory.elow), 6762 atomic_long_read(&parent->memory.children_low_usage))); 6763 } 6764 6765 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg, 6766 gfp_t gfp) 6767 { 6768 long nr_pages = folio_nr_pages(folio); 6769 int ret; 6770 6771 ret = try_charge(memcg, gfp, nr_pages); 6772 if (ret) 6773 goto out; 6774 6775 css_get(&memcg->css); 6776 commit_charge(folio, memcg); 6777 6778 local_irq_disable(); 6779 mem_cgroup_charge_statistics(memcg, nr_pages); 6780 memcg_check_events(memcg, folio_nid(folio)); 6781 local_irq_enable(); 6782 out: 6783 return ret; 6784 } 6785 6786 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp) 6787 { 6788 struct mem_cgroup *memcg; 6789 int ret; 6790 6791 memcg = get_mem_cgroup_from_mm(mm); 6792 ret = charge_memcg(folio, memcg, gfp); 6793 css_put(&memcg->css); 6794 6795 return ret; 6796 } 6797 6798 /** 6799 * mem_cgroup_swapin_charge_page - charge a newly allocated page for swapin 6800 * @page: page to charge 6801 * @mm: mm context of the victim 6802 * @gfp: reclaim mode 6803 * @entry: swap entry for which the page is allocated 6804 * 6805 * This function charges a page allocated for swapin. Please call this before 6806 * adding the page to the swapcache. 6807 * 6808 * Returns 0 on success. Otherwise, an error code is returned. 6809 */ 6810 int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm, 6811 gfp_t gfp, swp_entry_t entry) 6812 { 6813 struct folio *folio = page_folio(page); 6814 struct mem_cgroup *memcg; 6815 unsigned short id; 6816 int ret; 6817 6818 if (mem_cgroup_disabled()) 6819 return 0; 6820 6821 id = lookup_swap_cgroup_id(entry); 6822 rcu_read_lock(); 6823 memcg = mem_cgroup_from_id(id); 6824 if (!memcg || !css_tryget_online(&memcg->css)) 6825 memcg = get_mem_cgroup_from_mm(mm); 6826 rcu_read_unlock(); 6827 6828 ret = charge_memcg(folio, memcg, gfp); 6829 6830 css_put(&memcg->css); 6831 return ret; 6832 } 6833 6834 /* 6835 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot 6836 * @entry: swap entry for which the page is charged 6837 * 6838 * Call this function after successfully adding the charged page to swapcache. 6839 * 6840 * Note: This function assumes the page for which swap slot is being uncharged 6841 * is order 0 page. 6842 */ 6843 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry) 6844 { 6845 /* 6846 * Cgroup1's unified memory+swap counter has been charged with the 6847 * new swapcache page, finish the transfer by uncharging the swap 6848 * slot. The swap slot would also get uncharged when it dies, but 6849 * it can stick around indefinitely and we'd count the page twice 6850 * the entire time. 6851 * 6852 * Cgroup2 has separate resource counters for memory and swap, 6853 * so this is a non-issue here. Memory and swap charge lifetimes 6854 * correspond 1:1 to page and swap slot lifetimes: we charge the 6855 * page to memory here, and uncharge swap when the slot is freed. 6856 */ 6857 if (!mem_cgroup_disabled() && do_memsw_account()) { 6858 /* 6859 * The swap entry might not get freed for a long time, 6860 * let's not wait for it. The page already received a 6861 * memory+swap charge, drop the swap entry duplicate. 6862 */ 6863 mem_cgroup_uncharge_swap(entry, 1); 6864 } 6865 } 6866 6867 struct uncharge_gather { 6868 struct mem_cgroup *memcg; 6869 unsigned long nr_memory; 6870 unsigned long pgpgout; 6871 unsigned long nr_kmem; 6872 int nid; 6873 }; 6874 6875 static inline void uncharge_gather_clear(struct uncharge_gather *ug) 6876 { 6877 memset(ug, 0, sizeof(*ug)); 6878 } 6879 6880 static void uncharge_batch(const struct uncharge_gather *ug) 6881 { 6882 unsigned long flags; 6883 6884 if (ug->nr_memory) { 6885 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory); 6886 if (do_memsw_account()) 6887 page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory); 6888 if (ug->nr_kmem) 6889 memcg_account_kmem(ug->memcg, -ug->nr_kmem); 6890 memcg_oom_recover(ug->memcg); 6891 } 6892 6893 local_irq_save(flags); 6894 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout); 6895 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory); 6896 memcg_check_events(ug->memcg, ug->nid); 6897 local_irq_restore(flags); 6898 6899 /* drop reference from uncharge_folio */ 6900 css_put(&ug->memcg->css); 6901 } 6902 6903 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug) 6904 { 6905 long nr_pages; 6906 struct mem_cgroup *memcg; 6907 struct obj_cgroup *objcg; 6908 6909 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 6910 6911 /* 6912 * Nobody should be changing or seriously looking at 6913 * folio memcg or objcg at this point, we have fully 6914 * exclusive access to the folio. 6915 */ 6916 if (folio_memcg_kmem(folio)) { 6917 objcg = __folio_objcg(folio); 6918 /* 6919 * This get matches the put at the end of the function and 6920 * kmem pages do not hold memcg references anymore. 6921 */ 6922 memcg = get_mem_cgroup_from_objcg(objcg); 6923 } else { 6924 memcg = __folio_memcg(folio); 6925 } 6926 6927 if (!memcg) 6928 return; 6929 6930 if (ug->memcg != memcg) { 6931 if (ug->memcg) { 6932 uncharge_batch(ug); 6933 uncharge_gather_clear(ug); 6934 } 6935 ug->memcg = memcg; 6936 ug->nid = folio_nid(folio); 6937 6938 /* pairs with css_put in uncharge_batch */ 6939 css_get(&memcg->css); 6940 } 6941 6942 nr_pages = folio_nr_pages(folio); 6943 6944 if (folio_memcg_kmem(folio)) { 6945 ug->nr_memory += nr_pages; 6946 ug->nr_kmem += nr_pages; 6947 6948 folio->memcg_data = 0; 6949 obj_cgroup_put(objcg); 6950 } else { 6951 /* LRU pages aren't accounted at the root level */ 6952 if (!mem_cgroup_is_root(memcg)) 6953 ug->nr_memory += nr_pages; 6954 ug->pgpgout++; 6955 6956 folio->memcg_data = 0; 6957 } 6958 6959 css_put(&memcg->css); 6960 } 6961 6962 void __mem_cgroup_uncharge(struct folio *folio) 6963 { 6964 struct uncharge_gather ug; 6965 6966 /* Don't touch folio->lru of any random page, pre-check: */ 6967 if (!folio_memcg(folio)) 6968 return; 6969 6970 uncharge_gather_clear(&ug); 6971 uncharge_folio(folio, &ug); 6972 uncharge_batch(&ug); 6973 } 6974 6975 /** 6976 * __mem_cgroup_uncharge_list - uncharge a list of page 6977 * @page_list: list of pages to uncharge 6978 * 6979 * Uncharge a list of pages previously charged with 6980 * __mem_cgroup_charge(). 6981 */ 6982 void __mem_cgroup_uncharge_list(struct list_head *page_list) 6983 { 6984 struct uncharge_gather ug; 6985 struct folio *folio; 6986 6987 uncharge_gather_clear(&ug); 6988 list_for_each_entry(folio, page_list, lru) 6989 uncharge_folio(folio, &ug); 6990 if (ug.memcg) 6991 uncharge_batch(&ug); 6992 } 6993 6994 /** 6995 * mem_cgroup_migrate - Charge a folio's replacement. 6996 * @old: Currently circulating folio. 6997 * @new: Replacement folio. 6998 * 6999 * Charge @new as a replacement folio for @old. @old will 7000 * be uncharged upon free. 7001 * 7002 * Both folios must be locked, @new->mapping must be set up. 7003 */ 7004 void mem_cgroup_migrate(struct folio *old, struct folio *new) 7005 { 7006 struct mem_cgroup *memcg; 7007 long nr_pages = folio_nr_pages(new); 7008 unsigned long flags; 7009 7010 VM_BUG_ON_FOLIO(!folio_test_locked(old), old); 7011 VM_BUG_ON_FOLIO(!folio_test_locked(new), new); 7012 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new); 7013 VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new); 7014 7015 if (mem_cgroup_disabled()) 7016 return; 7017 7018 /* Page cache replacement: new folio already charged? */ 7019 if (folio_memcg(new)) 7020 return; 7021 7022 memcg = folio_memcg(old); 7023 VM_WARN_ON_ONCE_FOLIO(!memcg, old); 7024 if (!memcg) 7025 return; 7026 7027 /* Force-charge the new page. The old one will be freed soon */ 7028 if (!mem_cgroup_is_root(memcg)) { 7029 page_counter_charge(&memcg->memory, nr_pages); 7030 if (do_memsw_account()) 7031 page_counter_charge(&memcg->memsw, nr_pages); 7032 } 7033 7034 css_get(&memcg->css); 7035 commit_charge(new, memcg); 7036 7037 local_irq_save(flags); 7038 mem_cgroup_charge_statistics(memcg, nr_pages); 7039 memcg_check_events(memcg, folio_nid(new)); 7040 local_irq_restore(flags); 7041 } 7042 7043 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); 7044 EXPORT_SYMBOL(memcg_sockets_enabled_key); 7045 7046 void mem_cgroup_sk_alloc(struct sock *sk) 7047 { 7048 struct mem_cgroup *memcg; 7049 7050 if (!mem_cgroup_sockets_enabled) 7051 return; 7052 7053 /* Do not associate the sock with unrelated interrupted task's memcg. */ 7054 if (!in_task()) 7055 return; 7056 7057 rcu_read_lock(); 7058 memcg = mem_cgroup_from_task(current); 7059 if (memcg == root_mem_cgroup) 7060 goto out; 7061 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active) 7062 goto out; 7063 if (css_tryget(&memcg->css)) 7064 sk->sk_memcg = memcg; 7065 out: 7066 rcu_read_unlock(); 7067 } 7068 7069 void mem_cgroup_sk_free(struct sock *sk) 7070 { 7071 if (sk->sk_memcg) 7072 css_put(&sk->sk_memcg->css); 7073 } 7074 7075 /** 7076 * mem_cgroup_charge_skmem - charge socket memory 7077 * @memcg: memcg to charge 7078 * @nr_pages: number of pages to charge 7079 * @gfp_mask: reclaim mode 7080 * 7081 * Charges @nr_pages to @memcg. Returns %true if the charge fit within 7082 * @memcg's configured limit, %false if it doesn't. 7083 */ 7084 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages, 7085 gfp_t gfp_mask) 7086 { 7087 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 7088 struct page_counter *fail; 7089 7090 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) { 7091 memcg->tcpmem_pressure = 0; 7092 return true; 7093 } 7094 memcg->tcpmem_pressure = 1; 7095 if (gfp_mask & __GFP_NOFAIL) { 7096 page_counter_charge(&memcg->tcpmem, nr_pages); 7097 return true; 7098 } 7099 return false; 7100 } 7101 7102 if (try_charge(memcg, gfp_mask, nr_pages) == 0) { 7103 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages); 7104 return true; 7105 } 7106 7107 return false; 7108 } 7109 7110 /** 7111 * mem_cgroup_uncharge_skmem - uncharge socket memory 7112 * @memcg: memcg to uncharge 7113 * @nr_pages: number of pages to uncharge 7114 */ 7115 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 7116 { 7117 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 7118 page_counter_uncharge(&memcg->tcpmem, nr_pages); 7119 return; 7120 } 7121 7122 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages); 7123 7124 refill_stock(memcg, nr_pages); 7125 } 7126 7127 static int __init cgroup_memory(char *s) 7128 { 7129 char *token; 7130 7131 while ((token = strsep(&s, ",")) != NULL) { 7132 if (!*token) 7133 continue; 7134 if (!strcmp(token, "nosocket")) 7135 cgroup_memory_nosocket = true; 7136 if (!strcmp(token, "nokmem")) 7137 cgroup_memory_nokmem = true; 7138 } 7139 return 1; 7140 } 7141 __setup("cgroup.memory=", cgroup_memory); 7142 7143 /* 7144 * subsys_initcall() for memory controller. 7145 * 7146 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this 7147 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but 7148 * basically everything that doesn't depend on a specific mem_cgroup structure 7149 * should be initialized from here. 7150 */ 7151 static int __init mem_cgroup_init(void) 7152 { 7153 int cpu, node; 7154 7155 /* 7156 * Currently s32 type (can refer to struct batched_lruvec_stat) is 7157 * used for per-memcg-per-cpu caching of per-node statistics. In order 7158 * to work fine, we should make sure that the overfill threshold can't 7159 * exceed S32_MAX / PAGE_SIZE. 7160 */ 7161 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE); 7162 7163 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL, 7164 memcg_hotplug_cpu_dead); 7165 7166 for_each_possible_cpu(cpu) 7167 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, 7168 drain_local_stock); 7169 7170 for_each_node(node) { 7171 struct mem_cgroup_tree_per_node *rtpn; 7172 7173 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, 7174 node_online(node) ? node : NUMA_NO_NODE); 7175 7176 rtpn->rb_root = RB_ROOT; 7177 rtpn->rb_rightmost = NULL; 7178 spin_lock_init(&rtpn->lock); 7179 soft_limit_tree.rb_tree_per_node[node] = rtpn; 7180 } 7181 7182 return 0; 7183 } 7184 subsys_initcall(mem_cgroup_init); 7185 7186 #ifdef CONFIG_MEMCG_SWAP 7187 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg) 7188 { 7189 while (!refcount_inc_not_zero(&memcg->id.ref)) { 7190 /* 7191 * The root cgroup cannot be destroyed, so it's refcount must 7192 * always be >= 1. 7193 */ 7194 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) { 7195 VM_BUG_ON(1); 7196 break; 7197 } 7198 memcg = parent_mem_cgroup(memcg); 7199 if (!memcg) 7200 memcg = root_mem_cgroup; 7201 } 7202 return memcg; 7203 } 7204 7205 /** 7206 * mem_cgroup_swapout - transfer a memsw charge to swap 7207 * @folio: folio whose memsw charge to transfer 7208 * @entry: swap entry to move the charge to 7209 * 7210 * Transfer the memsw charge of @folio to @entry. 7211 */ 7212 void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry) 7213 { 7214 struct mem_cgroup *memcg, *swap_memcg; 7215 unsigned int nr_entries; 7216 unsigned short oldid; 7217 7218 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 7219 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); 7220 7221 if (mem_cgroup_disabled()) 7222 return; 7223 7224 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7225 return; 7226 7227 memcg = folio_memcg(folio); 7228 7229 VM_WARN_ON_ONCE_FOLIO(!memcg, folio); 7230 if (!memcg) 7231 return; 7232 7233 /* 7234 * In case the memcg owning these pages has been offlined and doesn't 7235 * have an ID allocated to it anymore, charge the closest online 7236 * ancestor for the swap instead and transfer the memory+swap charge. 7237 */ 7238 swap_memcg = mem_cgroup_id_get_online(memcg); 7239 nr_entries = folio_nr_pages(folio); 7240 /* Get references for the tail pages, too */ 7241 if (nr_entries > 1) 7242 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1); 7243 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg), 7244 nr_entries); 7245 VM_BUG_ON_FOLIO(oldid, folio); 7246 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries); 7247 7248 folio->memcg_data = 0; 7249 7250 if (!mem_cgroup_is_root(memcg)) 7251 page_counter_uncharge(&memcg->memory, nr_entries); 7252 7253 if (!cgroup_memory_noswap && memcg != swap_memcg) { 7254 if (!mem_cgroup_is_root(swap_memcg)) 7255 page_counter_charge(&swap_memcg->memsw, nr_entries); 7256 page_counter_uncharge(&memcg->memsw, nr_entries); 7257 } 7258 7259 /* 7260 * Interrupts should be disabled here because the caller holds the 7261 * i_pages lock which is taken with interrupts-off. It is 7262 * important here to have the interrupts disabled because it is the 7263 * only synchronisation we have for updating the per-CPU variables. 7264 */ 7265 memcg_stats_lock(); 7266 mem_cgroup_charge_statistics(memcg, -nr_entries); 7267 memcg_stats_unlock(); 7268 memcg_check_events(memcg, folio_nid(folio)); 7269 7270 css_put(&memcg->css); 7271 } 7272 7273 /** 7274 * __mem_cgroup_try_charge_swap - try charging swap space for a folio 7275 * @folio: folio being added to swap 7276 * @entry: swap entry to charge 7277 * 7278 * Try to charge @folio's memcg for the swap space at @entry. 7279 * 7280 * Returns 0 on success, -ENOMEM on failure. 7281 */ 7282 int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry) 7283 { 7284 unsigned int nr_pages = folio_nr_pages(folio); 7285 struct page_counter *counter; 7286 struct mem_cgroup *memcg; 7287 unsigned short oldid; 7288 7289 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7290 return 0; 7291 7292 memcg = folio_memcg(folio); 7293 7294 VM_WARN_ON_ONCE_FOLIO(!memcg, folio); 7295 if (!memcg) 7296 return 0; 7297 7298 if (!entry.val) { 7299 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 7300 return 0; 7301 } 7302 7303 memcg = mem_cgroup_id_get_online(memcg); 7304 7305 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) && 7306 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) { 7307 memcg_memory_event(memcg, MEMCG_SWAP_MAX); 7308 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 7309 mem_cgroup_id_put(memcg); 7310 return -ENOMEM; 7311 } 7312 7313 /* Get references for the tail pages, too */ 7314 if (nr_pages > 1) 7315 mem_cgroup_id_get_many(memcg, nr_pages - 1); 7316 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages); 7317 VM_BUG_ON_FOLIO(oldid, folio); 7318 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages); 7319 7320 return 0; 7321 } 7322 7323 /** 7324 * __mem_cgroup_uncharge_swap - uncharge swap space 7325 * @entry: swap entry to uncharge 7326 * @nr_pages: the amount of swap space to uncharge 7327 */ 7328 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages) 7329 { 7330 struct mem_cgroup *memcg; 7331 unsigned short id; 7332 7333 id = swap_cgroup_record(entry, 0, nr_pages); 7334 rcu_read_lock(); 7335 memcg = mem_cgroup_from_id(id); 7336 if (memcg) { 7337 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) { 7338 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7339 page_counter_uncharge(&memcg->swap, nr_pages); 7340 else 7341 page_counter_uncharge(&memcg->memsw, nr_pages); 7342 } 7343 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages); 7344 mem_cgroup_id_put_many(memcg, nr_pages); 7345 } 7346 rcu_read_unlock(); 7347 } 7348 7349 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) 7350 { 7351 long nr_swap_pages = get_nr_swap_pages(); 7352 7353 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7354 return nr_swap_pages; 7355 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) 7356 nr_swap_pages = min_t(long, nr_swap_pages, 7357 READ_ONCE(memcg->swap.max) - 7358 page_counter_read(&memcg->swap)); 7359 return nr_swap_pages; 7360 } 7361 7362 bool mem_cgroup_swap_full(struct page *page) 7363 { 7364 struct mem_cgroup *memcg; 7365 7366 VM_BUG_ON_PAGE(!PageLocked(page), page); 7367 7368 if (vm_swap_full()) 7369 return true; 7370 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7371 return false; 7372 7373 memcg = page_memcg(page); 7374 if (!memcg) 7375 return false; 7376 7377 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) { 7378 unsigned long usage = page_counter_read(&memcg->swap); 7379 7380 if (usage * 2 >= READ_ONCE(memcg->swap.high) || 7381 usage * 2 >= READ_ONCE(memcg->swap.max)) 7382 return true; 7383 } 7384 7385 return false; 7386 } 7387 7388 static int __init setup_swap_account(char *s) 7389 { 7390 if (!strcmp(s, "1")) 7391 cgroup_memory_noswap = false; 7392 else if (!strcmp(s, "0")) 7393 cgroup_memory_noswap = true; 7394 return 1; 7395 } 7396 __setup("swapaccount=", setup_swap_account); 7397 7398 static u64 swap_current_read(struct cgroup_subsys_state *css, 7399 struct cftype *cft) 7400 { 7401 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 7402 7403 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; 7404 } 7405 7406 static int swap_high_show(struct seq_file *m, void *v) 7407 { 7408 return seq_puts_memcg_tunable(m, 7409 READ_ONCE(mem_cgroup_from_seq(m)->swap.high)); 7410 } 7411 7412 static ssize_t swap_high_write(struct kernfs_open_file *of, 7413 char *buf, size_t nbytes, loff_t off) 7414 { 7415 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 7416 unsigned long high; 7417 int err; 7418 7419 buf = strstrip(buf); 7420 err = page_counter_memparse(buf, "max", &high); 7421 if (err) 7422 return err; 7423 7424 page_counter_set_high(&memcg->swap, high); 7425 7426 return nbytes; 7427 } 7428 7429 static int swap_max_show(struct seq_file *m, void *v) 7430 { 7431 return seq_puts_memcg_tunable(m, 7432 READ_ONCE(mem_cgroup_from_seq(m)->swap.max)); 7433 } 7434 7435 static ssize_t swap_max_write(struct kernfs_open_file *of, 7436 char *buf, size_t nbytes, loff_t off) 7437 { 7438 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 7439 unsigned long max; 7440 int err; 7441 7442 buf = strstrip(buf); 7443 err = page_counter_memparse(buf, "max", &max); 7444 if (err) 7445 return err; 7446 7447 xchg(&memcg->swap.max, max); 7448 7449 return nbytes; 7450 } 7451 7452 static int swap_events_show(struct seq_file *m, void *v) 7453 { 7454 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 7455 7456 seq_printf(m, "high %lu\n", 7457 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH])); 7458 seq_printf(m, "max %lu\n", 7459 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX])); 7460 seq_printf(m, "fail %lu\n", 7461 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL])); 7462 7463 return 0; 7464 } 7465 7466 static struct cftype swap_files[] = { 7467 { 7468 .name = "swap.current", 7469 .flags = CFTYPE_NOT_ON_ROOT, 7470 .read_u64 = swap_current_read, 7471 }, 7472 { 7473 .name = "swap.high", 7474 .flags = CFTYPE_NOT_ON_ROOT, 7475 .seq_show = swap_high_show, 7476 .write = swap_high_write, 7477 }, 7478 { 7479 .name = "swap.max", 7480 .flags = CFTYPE_NOT_ON_ROOT, 7481 .seq_show = swap_max_show, 7482 .write = swap_max_write, 7483 }, 7484 { 7485 .name = "swap.events", 7486 .flags = CFTYPE_NOT_ON_ROOT, 7487 .file_offset = offsetof(struct mem_cgroup, swap_events_file), 7488 .seq_show = swap_events_show, 7489 }, 7490 { } /* terminate */ 7491 }; 7492 7493 static struct cftype memsw_files[] = { 7494 { 7495 .name = "memsw.usage_in_bytes", 7496 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 7497 .read_u64 = mem_cgroup_read_u64, 7498 }, 7499 { 7500 .name = "memsw.max_usage_in_bytes", 7501 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 7502 .write = mem_cgroup_reset, 7503 .read_u64 = mem_cgroup_read_u64, 7504 }, 7505 { 7506 .name = "memsw.limit_in_bytes", 7507 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 7508 .write = mem_cgroup_write, 7509 .read_u64 = mem_cgroup_read_u64, 7510 }, 7511 { 7512 .name = "memsw.failcnt", 7513 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 7514 .write = mem_cgroup_reset, 7515 .read_u64 = mem_cgroup_read_u64, 7516 }, 7517 { }, /* terminate */ 7518 }; 7519 7520 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 7521 /** 7522 * obj_cgroup_may_zswap - check if this cgroup can zswap 7523 * @objcg: the object cgroup 7524 * 7525 * Check if the hierarchical zswap limit has been reached. 7526 * 7527 * This doesn't check for specific headroom, and it is not atomic 7528 * either. But with zswap, the size of the allocation is only known 7529 * once compression has occured, and this optimistic pre-check avoids 7530 * spending cycles on compression when there is already no room left 7531 * or zswap is disabled altogether somewhere in the hierarchy. 7532 */ 7533 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg) 7534 { 7535 struct mem_cgroup *memcg, *original_memcg; 7536 bool ret = true; 7537 7538 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7539 return true; 7540 7541 original_memcg = get_mem_cgroup_from_objcg(objcg); 7542 for (memcg = original_memcg; memcg != root_mem_cgroup; 7543 memcg = parent_mem_cgroup(memcg)) { 7544 unsigned long max = READ_ONCE(memcg->zswap_max); 7545 unsigned long pages; 7546 7547 if (max == PAGE_COUNTER_MAX) 7548 continue; 7549 if (max == 0) { 7550 ret = false; 7551 break; 7552 } 7553 7554 cgroup_rstat_flush(memcg->css.cgroup); 7555 pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE; 7556 if (pages < max) 7557 continue; 7558 ret = false; 7559 break; 7560 } 7561 mem_cgroup_put(original_memcg); 7562 return ret; 7563 } 7564 7565 /** 7566 * obj_cgroup_charge_zswap - charge compression backend memory 7567 * @objcg: the object cgroup 7568 * @size: size of compressed object 7569 * 7570 * This forces the charge after obj_cgroup_may_swap() allowed 7571 * compression and storage in zwap for this cgroup to go ahead. 7572 */ 7573 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size) 7574 { 7575 struct mem_cgroup *memcg; 7576 7577 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7578 return; 7579 7580 VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC)); 7581 7582 /* PF_MEMALLOC context, charging must succeed */ 7583 if (obj_cgroup_charge(objcg, GFP_KERNEL, size)) 7584 VM_WARN_ON_ONCE(1); 7585 7586 rcu_read_lock(); 7587 memcg = obj_cgroup_memcg(objcg); 7588 mod_memcg_state(memcg, MEMCG_ZSWAP_B, size); 7589 mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1); 7590 rcu_read_unlock(); 7591 } 7592 7593 /** 7594 * obj_cgroup_uncharge_zswap - uncharge compression backend memory 7595 * @objcg: the object cgroup 7596 * @size: size of compressed object 7597 * 7598 * Uncharges zswap memory on page in. 7599 */ 7600 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size) 7601 { 7602 struct mem_cgroup *memcg; 7603 7604 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7605 return; 7606 7607 obj_cgroup_uncharge(objcg, size); 7608 7609 rcu_read_lock(); 7610 memcg = obj_cgroup_memcg(objcg); 7611 mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size); 7612 mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1); 7613 rcu_read_unlock(); 7614 } 7615 7616 static u64 zswap_current_read(struct cgroup_subsys_state *css, 7617 struct cftype *cft) 7618 { 7619 cgroup_rstat_flush(css->cgroup); 7620 return memcg_page_state(mem_cgroup_from_css(css), MEMCG_ZSWAP_B); 7621 } 7622 7623 static int zswap_max_show(struct seq_file *m, void *v) 7624 { 7625 return seq_puts_memcg_tunable(m, 7626 READ_ONCE(mem_cgroup_from_seq(m)->zswap_max)); 7627 } 7628 7629 static ssize_t zswap_max_write(struct kernfs_open_file *of, 7630 char *buf, size_t nbytes, loff_t off) 7631 { 7632 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 7633 unsigned long max; 7634 int err; 7635 7636 buf = strstrip(buf); 7637 err = page_counter_memparse(buf, "max", &max); 7638 if (err) 7639 return err; 7640 7641 xchg(&memcg->zswap_max, max); 7642 7643 return nbytes; 7644 } 7645 7646 static struct cftype zswap_files[] = { 7647 { 7648 .name = "zswap.current", 7649 .flags = CFTYPE_NOT_ON_ROOT, 7650 .read_u64 = zswap_current_read, 7651 }, 7652 { 7653 .name = "zswap.max", 7654 .flags = CFTYPE_NOT_ON_ROOT, 7655 .seq_show = zswap_max_show, 7656 .write = zswap_max_write, 7657 }, 7658 { } /* terminate */ 7659 }; 7660 #endif /* CONFIG_MEMCG_KMEM && CONFIG_ZSWAP */ 7661 7662 /* 7663 * If mem_cgroup_swap_init() is implemented as a subsys_initcall() 7664 * instead of a core_initcall(), this could mean cgroup_memory_noswap still 7665 * remains set to false even when memcg is disabled via "cgroup_disable=memory" 7666 * boot parameter. This may result in premature OOPS inside 7667 * mem_cgroup_get_nr_swap_pages() function in corner cases. 7668 */ 7669 static int __init mem_cgroup_swap_init(void) 7670 { 7671 /* No memory control -> no swap control */ 7672 if (mem_cgroup_disabled()) 7673 cgroup_memory_noswap = true; 7674 7675 if (cgroup_memory_noswap) 7676 return 0; 7677 7678 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files)); 7679 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files)); 7680 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 7681 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files)); 7682 #endif 7683 return 0; 7684 } 7685 core_initcall(mem_cgroup_swap_init); 7686 7687 #endif /* CONFIG_MEMCG_SWAP */ 7688