1 /* memcontrol.c - Memory Controller 2 * 3 * Copyright IBM Corporation, 2007 4 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 5 * 6 * Copyright 2007 OpenVZ SWsoft Inc 7 * Author: Pavel Emelianov <xemul@openvz.org> 8 * 9 * Memory thresholds 10 * Copyright (C) 2009 Nokia Corporation 11 * Author: Kirill A. Shutemov 12 * 13 * Kernel Memory Controller 14 * Copyright (C) 2012 Parallels Inc. and Google Inc. 15 * Authors: Glauber Costa and Suleiman Souhlal 16 * 17 * Native page reclaim 18 * Charge lifetime sanitation 19 * Lockless page tracking & accounting 20 * Unified hierarchy configuration model 21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner 22 * 23 * This program is free software; you can redistribute it and/or modify 24 * it under the terms of the GNU General Public License as published by 25 * the Free Software Foundation; either version 2 of the License, or 26 * (at your option) any later version. 27 * 28 * This program is distributed in the hope that it will be useful, 29 * but WITHOUT ANY WARRANTY; without even the implied warranty of 30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 31 * GNU General Public License for more details. 32 */ 33 34 #include <linux/page_counter.h> 35 #include <linux/memcontrol.h> 36 #include <linux/cgroup.h> 37 #include <linux/mm.h> 38 #include <linux/sched/mm.h> 39 #include <linux/shmem_fs.h> 40 #include <linux/hugetlb.h> 41 #include <linux/pagemap.h> 42 #include <linux/smp.h> 43 #include <linux/page-flags.h> 44 #include <linux/backing-dev.h> 45 #include <linux/bit_spinlock.h> 46 #include <linux/rcupdate.h> 47 #include <linux/limits.h> 48 #include <linux/export.h> 49 #include <linux/mutex.h> 50 #include <linux/rbtree.h> 51 #include <linux/slab.h> 52 #include <linux/swap.h> 53 #include <linux/swapops.h> 54 #include <linux/spinlock.h> 55 #include <linux/eventfd.h> 56 #include <linux/poll.h> 57 #include <linux/sort.h> 58 #include <linux/fs.h> 59 #include <linux/seq_file.h> 60 #include <linux/vmpressure.h> 61 #include <linux/mm_inline.h> 62 #include <linux/swap_cgroup.h> 63 #include <linux/cpu.h> 64 #include <linux/oom.h> 65 #include <linux/lockdep.h> 66 #include <linux/file.h> 67 #include <linux/tracehook.h> 68 #include "internal.h" 69 #include <net/sock.h> 70 #include <net/ip.h> 71 #include "slab.h" 72 73 #include <linux/uaccess.h> 74 75 #include <trace/events/vmscan.h> 76 77 struct cgroup_subsys memory_cgrp_subsys __read_mostly; 78 EXPORT_SYMBOL(memory_cgrp_subsys); 79 80 struct mem_cgroup *root_mem_cgroup __read_mostly; 81 82 #define MEM_CGROUP_RECLAIM_RETRIES 5 83 84 /* Socket memory accounting disabled? */ 85 static bool cgroup_memory_nosocket; 86 87 /* Kernel memory accounting disabled? */ 88 static bool cgroup_memory_nokmem; 89 90 /* Whether the swap controller is active */ 91 #ifdef CONFIG_MEMCG_SWAP 92 int do_swap_account __read_mostly; 93 #else 94 #define do_swap_account 0 95 #endif 96 97 /* Whether legacy memory+swap accounting is active */ 98 static bool do_memsw_account(void) 99 { 100 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account; 101 } 102 103 static const char *const mem_cgroup_lru_names[] = { 104 "inactive_anon", 105 "active_anon", 106 "inactive_file", 107 "active_file", 108 "unevictable", 109 }; 110 111 #define THRESHOLDS_EVENTS_TARGET 128 112 #define SOFTLIMIT_EVENTS_TARGET 1024 113 #define NUMAINFO_EVENTS_TARGET 1024 114 115 /* 116 * Cgroups above their limits are maintained in a RB-Tree, independent of 117 * their hierarchy representation 118 */ 119 120 struct mem_cgroup_tree_per_node { 121 struct rb_root rb_root; 122 struct rb_node *rb_rightmost; 123 spinlock_t lock; 124 }; 125 126 struct mem_cgroup_tree { 127 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 128 }; 129 130 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 131 132 /* for OOM */ 133 struct mem_cgroup_eventfd_list { 134 struct list_head list; 135 struct eventfd_ctx *eventfd; 136 }; 137 138 /* 139 * cgroup_event represents events which userspace want to receive. 140 */ 141 struct mem_cgroup_event { 142 /* 143 * memcg which the event belongs to. 144 */ 145 struct mem_cgroup *memcg; 146 /* 147 * eventfd to signal userspace about the event. 148 */ 149 struct eventfd_ctx *eventfd; 150 /* 151 * Each of these stored in a list by the cgroup. 152 */ 153 struct list_head list; 154 /* 155 * register_event() callback will be used to add new userspace 156 * waiter for changes related to this event. Use eventfd_signal() 157 * on eventfd to send notification to userspace. 158 */ 159 int (*register_event)(struct mem_cgroup *memcg, 160 struct eventfd_ctx *eventfd, const char *args); 161 /* 162 * unregister_event() callback will be called when userspace closes 163 * the eventfd or on cgroup removing. This callback must be set, 164 * if you want provide notification functionality. 165 */ 166 void (*unregister_event)(struct mem_cgroup *memcg, 167 struct eventfd_ctx *eventfd); 168 /* 169 * All fields below needed to unregister event when 170 * userspace closes eventfd. 171 */ 172 poll_table pt; 173 wait_queue_head_t *wqh; 174 wait_queue_entry_t wait; 175 struct work_struct remove; 176 }; 177 178 static void mem_cgroup_threshold(struct mem_cgroup *memcg); 179 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); 180 181 /* Stuffs for move charges at task migration. */ 182 /* 183 * Types of charges to be moved. 184 */ 185 #define MOVE_ANON 0x1U 186 #define MOVE_FILE 0x2U 187 #define MOVE_MASK (MOVE_ANON | MOVE_FILE) 188 189 /* "mc" and its members are protected by cgroup_mutex */ 190 static struct move_charge_struct { 191 spinlock_t lock; /* for from, to */ 192 struct mm_struct *mm; 193 struct mem_cgroup *from; 194 struct mem_cgroup *to; 195 unsigned long flags; 196 unsigned long precharge; 197 unsigned long moved_charge; 198 unsigned long moved_swap; 199 struct task_struct *moving_task; /* a task moving charges */ 200 wait_queue_head_t waitq; /* a waitq for other context */ 201 } mc = { 202 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 203 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 204 }; 205 206 /* 207 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft 208 * limit reclaim to prevent infinite loops, if they ever occur. 209 */ 210 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 211 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 212 213 enum charge_type { 214 MEM_CGROUP_CHARGE_TYPE_CACHE = 0, 215 MEM_CGROUP_CHARGE_TYPE_ANON, 216 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */ 217 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */ 218 NR_CHARGE_TYPE, 219 }; 220 221 /* for encoding cft->private value on file */ 222 enum res_type { 223 _MEM, 224 _MEMSWAP, 225 _OOM_TYPE, 226 _KMEM, 227 _TCP, 228 }; 229 230 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) 231 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) 232 #define MEMFILE_ATTR(val) ((val) & 0xffff) 233 /* Used for OOM nofiier */ 234 #define OOM_CONTROL (0) 235 236 /* 237 * Iteration constructs for visiting all cgroups (under a tree). If 238 * loops are exited prematurely (break), mem_cgroup_iter_break() must 239 * be used for reference counting. 240 */ 241 #define for_each_mem_cgroup_tree(iter, root) \ 242 for (iter = mem_cgroup_iter(root, NULL, NULL); \ 243 iter != NULL; \ 244 iter = mem_cgroup_iter(root, iter, NULL)) 245 246 #define for_each_mem_cgroup(iter) \ 247 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ 248 iter != NULL; \ 249 iter = mem_cgroup_iter(NULL, iter, NULL)) 250 251 /* Some nice accessors for the vmpressure. */ 252 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 253 { 254 if (!memcg) 255 memcg = root_mem_cgroup; 256 return &memcg->vmpressure; 257 } 258 259 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr) 260 { 261 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css; 262 } 263 264 #ifdef CONFIG_MEMCG_KMEM 265 /* 266 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches. 267 * The main reason for not using cgroup id for this: 268 * this works better in sparse environments, where we have a lot of memcgs, 269 * but only a few kmem-limited. Or also, if we have, for instance, 200 270 * memcgs, and none but the 200th is kmem-limited, we'd have to have a 271 * 200 entry array for that. 272 * 273 * The current size of the caches array is stored in memcg_nr_cache_ids. It 274 * will double each time we have to increase it. 275 */ 276 static DEFINE_IDA(memcg_cache_ida); 277 int memcg_nr_cache_ids; 278 279 /* Protects memcg_nr_cache_ids */ 280 static DECLARE_RWSEM(memcg_cache_ids_sem); 281 282 void memcg_get_cache_ids(void) 283 { 284 down_read(&memcg_cache_ids_sem); 285 } 286 287 void memcg_put_cache_ids(void) 288 { 289 up_read(&memcg_cache_ids_sem); 290 } 291 292 /* 293 * MIN_SIZE is different than 1, because we would like to avoid going through 294 * the alloc/free process all the time. In a small machine, 4 kmem-limited 295 * cgroups is a reasonable guess. In the future, it could be a parameter or 296 * tunable, but that is strictly not necessary. 297 * 298 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get 299 * this constant directly from cgroup, but it is understandable that this is 300 * better kept as an internal representation in cgroup.c. In any case, the 301 * cgrp_id space is not getting any smaller, and we don't have to necessarily 302 * increase ours as well if it increases. 303 */ 304 #define MEMCG_CACHES_MIN_SIZE 4 305 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX 306 307 /* 308 * A lot of the calls to the cache allocation functions are expected to be 309 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are 310 * conditional to this static branch, we'll have to allow modules that does 311 * kmem_cache_alloc and the such to see this symbol as well 312 */ 313 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key); 314 EXPORT_SYMBOL(memcg_kmem_enabled_key); 315 316 struct workqueue_struct *memcg_kmem_cache_wq; 317 318 static int memcg_shrinker_map_size; 319 static DEFINE_MUTEX(memcg_shrinker_map_mutex); 320 321 static void memcg_free_shrinker_map_rcu(struct rcu_head *head) 322 { 323 kvfree(container_of(head, struct memcg_shrinker_map, rcu)); 324 } 325 326 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg, 327 int size, int old_size) 328 { 329 struct memcg_shrinker_map *new, *old; 330 int nid; 331 332 lockdep_assert_held(&memcg_shrinker_map_mutex); 333 334 for_each_node(nid) { 335 old = rcu_dereference_protected( 336 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true); 337 /* Not yet online memcg */ 338 if (!old) 339 return 0; 340 341 new = kvmalloc(sizeof(*new) + size, GFP_KERNEL); 342 if (!new) 343 return -ENOMEM; 344 345 /* Set all old bits, clear all new bits */ 346 memset(new->map, (int)0xff, old_size); 347 memset((void *)new->map + old_size, 0, size - old_size); 348 349 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new); 350 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu); 351 } 352 353 return 0; 354 } 355 356 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) 357 { 358 struct mem_cgroup_per_node *pn; 359 struct memcg_shrinker_map *map; 360 int nid; 361 362 if (mem_cgroup_is_root(memcg)) 363 return; 364 365 for_each_node(nid) { 366 pn = mem_cgroup_nodeinfo(memcg, nid); 367 map = rcu_dereference_protected(pn->shrinker_map, true); 368 if (map) 369 kvfree(map); 370 rcu_assign_pointer(pn->shrinker_map, NULL); 371 } 372 } 373 374 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg) 375 { 376 struct memcg_shrinker_map *map; 377 int nid, size, ret = 0; 378 379 if (mem_cgroup_is_root(memcg)) 380 return 0; 381 382 mutex_lock(&memcg_shrinker_map_mutex); 383 size = memcg_shrinker_map_size; 384 for_each_node(nid) { 385 map = kvzalloc(sizeof(*map) + size, GFP_KERNEL); 386 if (!map) { 387 memcg_free_shrinker_maps(memcg); 388 ret = -ENOMEM; 389 break; 390 } 391 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map); 392 } 393 mutex_unlock(&memcg_shrinker_map_mutex); 394 395 return ret; 396 } 397 398 int memcg_expand_shrinker_maps(int new_id) 399 { 400 int size, old_size, ret = 0; 401 struct mem_cgroup *memcg; 402 403 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long); 404 old_size = memcg_shrinker_map_size; 405 if (size <= old_size) 406 return 0; 407 408 mutex_lock(&memcg_shrinker_map_mutex); 409 if (!root_mem_cgroup) 410 goto unlock; 411 412 for_each_mem_cgroup(memcg) { 413 if (mem_cgroup_is_root(memcg)) 414 continue; 415 ret = memcg_expand_one_shrinker_map(memcg, size, old_size); 416 if (ret) 417 goto unlock; 418 } 419 unlock: 420 if (!ret) 421 memcg_shrinker_map_size = size; 422 mutex_unlock(&memcg_shrinker_map_mutex); 423 return ret; 424 } 425 426 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id) 427 { 428 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) { 429 struct memcg_shrinker_map *map; 430 431 rcu_read_lock(); 432 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map); 433 /* Pairs with smp mb in shrink_slab() */ 434 smp_mb__before_atomic(); 435 set_bit(shrinker_id, map->map); 436 rcu_read_unlock(); 437 } 438 } 439 440 #else /* CONFIG_MEMCG_KMEM */ 441 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg) 442 { 443 return 0; 444 } 445 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) { } 446 #endif /* CONFIG_MEMCG_KMEM */ 447 448 /** 449 * mem_cgroup_css_from_page - css of the memcg associated with a page 450 * @page: page of interest 451 * 452 * If memcg is bound to the default hierarchy, css of the memcg associated 453 * with @page is returned. The returned css remains associated with @page 454 * until it is released. 455 * 456 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup 457 * is returned. 458 */ 459 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page) 460 { 461 struct mem_cgroup *memcg; 462 463 memcg = page->mem_cgroup; 464 465 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 466 memcg = root_mem_cgroup; 467 468 return &memcg->css; 469 } 470 471 /** 472 * page_cgroup_ino - return inode number of the memcg a page is charged to 473 * @page: the page 474 * 475 * Look up the closest online ancestor of the memory cgroup @page is charged to 476 * and return its inode number or 0 if @page is not charged to any cgroup. It 477 * is safe to call this function without holding a reference to @page. 478 * 479 * Note, this function is inherently racy, because there is nothing to prevent 480 * the cgroup inode from getting torn down and potentially reallocated a moment 481 * after page_cgroup_ino() returns, so it only should be used by callers that 482 * do not care (such as procfs interfaces). 483 */ 484 ino_t page_cgroup_ino(struct page *page) 485 { 486 struct mem_cgroup *memcg; 487 unsigned long ino = 0; 488 489 rcu_read_lock(); 490 memcg = READ_ONCE(page->mem_cgroup); 491 while (memcg && !(memcg->css.flags & CSS_ONLINE)) 492 memcg = parent_mem_cgroup(memcg); 493 if (memcg) 494 ino = cgroup_ino(memcg->css.cgroup); 495 rcu_read_unlock(); 496 return ino; 497 } 498 499 static struct mem_cgroup_per_node * 500 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page) 501 { 502 int nid = page_to_nid(page); 503 504 return memcg->nodeinfo[nid]; 505 } 506 507 static struct mem_cgroup_tree_per_node * 508 soft_limit_tree_node(int nid) 509 { 510 return soft_limit_tree.rb_tree_per_node[nid]; 511 } 512 513 static struct mem_cgroup_tree_per_node * 514 soft_limit_tree_from_page(struct page *page) 515 { 516 int nid = page_to_nid(page); 517 518 return soft_limit_tree.rb_tree_per_node[nid]; 519 } 520 521 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz, 522 struct mem_cgroup_tree_per_node *mctz, 523 unsigned long new_usage_in_excess) 524 { 525 struct rb_node **p = &mctz->rb_root.rb_node; 526 struct rb_node *parent = NULL; 527 struct mem_cgroup_per_node *mz_node; 528 bool rightmost = true; 529 530 if (mz->on_tree) 531 return; 532 533 mz->usage_in_excess = new_usage_in_excess; 534 if (!mz->usage_in_excess) 535 return; 536 while (*p) { 537 parent = *p; 538 mz_node = rb_entry(parent, struct mem_cgroup_per_node, 539 tree_node); 540 if (mz->usage_in_excess < mz_node->usage_in_excess) { 541 p = &(*p)->rb_left; 542 rightmost = false; 543 } 544 545 /* 546 * We can't avoid mem cgroups that are over their soft 547 * limit by the same amount 548 */ 549 else if (mz->usage_in_excess >= mz_node->usage_in_excess) 550 p = &(*p)->rb_right; 551 } 552 553 if (rightmost) 554 mctz->rb_rightmost = &mz->tree_node; 555 556 rb_link_node(&mz->tree_node, parent, p); 557 rb_insert_color(&mz->tree_node, &mctz->rb_root); 558 mz->on_tree = true; 559 } 560 561 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 562 struct mem_cgroup_tree_per_node *mctz) 563 { 564 if (!mz->on_tree) 565 return; 566 567 if (&mz->tree_node == mctz->rb_rightmost) 568 mctz->rb_rightmost = rb_prev(&mz->tree_node); 569 570 rb_erase(&mz->tree_node, &mctz->rb_root); 571 mz->on_tree = false; 572 } 573 574 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 575 struct mem_cgroup_tree_per_node *mctz) 576 { 577 unsigned long flags; 578 579 spin_lock_irqsave(&mctz->lock, flags); 580 __mem_cgroup_remove_exceeded(mz, mctz); 581 spin_unlock_irqrestore(&mctz->lock, flags); 582 } 583 584 static unsigned long soft_limit_excess(struct mem_cgroup *memcg) 585 { 586 unsigned long nr_pages = page_counter_read(&memcg->memory); 587 unsigned long soft_limit = READ_ONCE(memcg->soft_limit); 588 unsigned long excess = 0; 589 590 if (nr_pages > soft_limit) 591 excess = nr_pages - soft_limit; 592 593 return excess; 594 } 595 596 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page) 597 { 598 unsigned long excess; 599 struct mem_cgroup_per_node *mz; 600 struct mem_cgroup_tree_per_node *mctz; 601 602 mctz = soft_limit_tree_from_page(page); 603 if (!mctz) 604 return; 605 /* 606 * Necessary to update all ancestors when hierarchy is used. 607 * because their event counter is not touched. 608 */ 609 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 610 mz = mem_cgroup_page_nodeinfo(memcg, page); 611 excess = soft_limit_excess(memcg); 612 /* 613 * We have to update the tree if mz is on RB-tree or 614 * mem is over its softlimit. 615 */ 616 if (excess || mz->on_tree) { 617 unsigned long flags; 618 619 spin_lock_irqsave(&mctz->lock, flags); 620 /* if on-tree, remove it */ 621 if (mz->on_tree) 622 __mem_cgroup_remove_exceeded(mz, mctz); 623 /* 624 * Insert again. mz->usage_in_excess will be updated. 625 * If excess is 0, no tree ops. 626 */ 627 __mem_cgroup_insert_exceeded(mz, mctz, excess); 628 spin_unlock_irqrestore(&mctz->lock, flags); 629 } 630 } 631 } 632 633 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) 634 { 635 struct mem_cgroup_tree_per_node *mctz; 636 struct mem_cgroup_per_node *mz; 637 int nid; 638 639 for_each_node(nid) { 640 mz = mem_cgroup_nodeinfo(memcg, nid); 641 mctz = soft_limit_tree_node(nid); 642 if (mctz) 643 mem_cgroup_remove_exceeded(mz, mctz); 644 } 645 } 646 647 static struct mem_cgroup_per_node * 648 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 649 { 650 struct mem_cgroup_per_node *mz; 651 652 retry: 653 mz = NULL; 654 if (!mctz->rb_rightmost) 655 goto done; /* Nothing to reclaim from */ 656 657 mz = rb_entry(mctz->rb_rightmost, 658 struct mem_cgroup_per_node, tree_node); 659 /* 660 * Remove the node now but someone else can add it back, 661 * we will to add it back at the end of reclaim to its correct 662 * position in the tree. 663 */ 664 __mem_cgroup_remove_exceeded(mz, mctz); 665 if (!soft_limit_excess(mz->memcg) || 666 !css_tryget_online(&mz->memcg->css)) 667 goto retry; 668 done: 669 return mz; 670 } 671 672 static struct mem_cgroup_per_node * 673 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 674 { 675 struct mem_cgroup_per_node *mz; 676 677 spin_lock_irq(&mctz->lock); 678 mz = __mem_cgroup_largest_soft_limit_node(mctz); 679 spin_unlock_irq(&mctz->lock); 680 return mz; 681 } 682 683 static unsigned long memcg_sum_events(struct mem_cgroup *memcg, 684 int event) 685 { 686 return atomic_long_read(&memcg->events[event]); 687 } 688 689 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, 690 struct page *page, 691 bool compound, int nr_pages) 692 { 693 /* 694 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is 695 * counted as CACHE even if it's on ANON LRU. 696 */ 697 if (PageAnon(page)) 698 __mod_memcg_state(memcg, MEMCG_RSS, nr_pages); 699 else { 700 __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages); 701 if (PageSwapBacked(page)) 702 __mod_memcg_state(memcg, NR_SHMEM, nr_pages); 703 } 704 705 if (compound) { 706 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 707 __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages); 708 } 709 710 /* pagein of a big page is an event. So, ignore page size */ 711 if (nr_pages > 0) 712 __count_memcg_events(memcg, PGPGIN, 1); 713 else { 714 __count_memcg_events(memcg, PGPGOUT, 1); 715 nr_pages = -nr_pages; /* for event */ 716 } 717 718 __this_cpu_add(memcg->stat_cpu->nr_page_events, nr_pages); 719 } 720 721 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 722 int nid, unsigned int lru_mask) 723 { 724 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg); 725 unsigned long nr = 0; 726 enum lru_list lru; 727 728 VM_BUG_ON((unsigned)nid >= nr_node_ids); 729 730 for_each_lru(lru) { 731 if (!(BIT(lru) & lru_mask)) 732 continue; 733 nr += mem_cgroup_get_lru_size(lruvec, lru); 734 } 735 return nr; 736 } 737 738 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 739 unsigned int lru_mask) 740 { 741 unsigned long nr = 0; 742 int nid; 743 744 for_each_node_state(nid, N_MEMORY) 745 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask); 746 return nr; 747 } 748 749 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, 750 enum mem_cgroup_events_target target) 751 { 752 unsigned long val, next; 753 754 val = __this_cpu_read(memcg->stat_cpu->nr_page_events); 755 next = __this_cpu_read(memcg->stat_cpu->targets[target]); 756 /* from time_after() in jiffies.h */ 757 if ((long)(next - val) < 0) { 758 switch (target) { 759 case MEM_CGROUP_TARGET_THRESH: 760 next = val + THRESHOLDS_EVENTS_TARGET; 761 break; 762 case MEM_CGROUP_TARGET_SOFTLIMIT: 763 next = val + SOFTLIMIT_EVENTS_TARGET; 764 break; 765 case MEM_CGROUP_TARGET_NUMAINFO: 766 next = val + NUMAINFO_EVENTS_TARGET; 767 break; 768 default: 769 break; 770 } 771 __this_cpu_write(memcg->stat_cpu->targets[target], next); 772 return true; 773 } 774 return false; 775 } 776 777 /* 778 * Check events in order. 779 * 780 */ 781 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) 782 { 783 /* threshold event is triggered in finer grain than soft limit */ 784 if (unlikely(mem_cgroup_event_ratelimit(memcg, 785 MEM_CGROUP_TARGET_THRESH))) { 786 bool do_softlimit; 787 bool do_numainfo __maybe_unused; 788 789 do_softlimit = mem_cgroup_event_ratelimit(memcg, 790 MEM_CGROUP_TARGET_SOFTLIMIT); 791 #if MAX_NUMNODES > 1 792 do_numainfo = mem_cgroup_event_ratelimit(memcg, 793 MEM_CGROUP_TARGET_NUMAINFO); 794 #endif 795 mem_cgroup_threshold(memcg); 796 if (unlikely(do_softlimit)) 797 mem_cgroup_update_tree(memcg, page); 798 #if MAX_NUMNODES > 1 799 if (unlikely(do_numainfo)) 800 atomic_inc(&memcg->numainfo_events); 801 #endif 802 } 803 } 804 805 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 806 { 807 /* 808 * mm_update_next_owner() may clear mm->owner to NULL 809 * if it races with swapoff, page migration, etc. 810 * So this can be called with p == NULL. 811 */ 812 if (unlikely(!p)) 813 return NULL; 814 815 return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); 816 } 817 EXPORT_SYMBOL(mem_cgroup_from_task); 818 819 /** 820 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg. 821 * @mm: mm from which memcg should be extracted. It can be NULL. 822 * 823 * Obtain a reference on mm->memcg and returns it if successful. Otherwise 824 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is 825 * returned. 826 */ 827 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 828 { 829 struct mem_cgroup *memcg; 830 831 if (mem_cgroup_disabled()) 832 return NULL; 833 834 rcu_read_lock(); 835 do { 836 /* 837 * Page cache insertions can happen withou an 838 * actual mm context, e.g. during disk probing 839 * on boot, loopback IO, acct() writes etc. 840 */ 841 if (unlikely(!mm)) 842 memcg = root_mem_cgroup; 843 else { 844 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 845 if (unlikely(!memcg)) 846 memcg = root_mem_cgroup; 847 } 848 } while (!css_tryget_online(&memcg->css)); 849 rcu_read_unlock(); 850 return memcg; 851 } 852 EXPORT_SYMBOL(get_mem_cgroup_from_mm); 853 854 /** 855 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg. 856 * @page: page from which memcg should be extracted. 857 * 858 * Obtain a reference on page->memcg and returns it if successful. Otherwise 859 * root_mem_cgroup is returned. 860 */ 861 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page) 862 { 863 struct mem_cgroup *memcg = page->mem_cgroup; 864 865 if (mem_cgroup_disabled()) 866 return NULL; 867 868 rcu_read_lock(); 869 if (!memcg || !css_tryget_online(&memcg->css)) 870 memcg = root_mem_cgroup; 871 rcu_read_unlock(); 872 return memcg; 873 } 874 EXPORT_SYMBOL(get_mem_cgroup_from_page); 875 876 /** 877 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg. 878 */ 879 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void) 880 { 881 if (unlikely(current->active_memcg)) { 882 struct mem_cgroup *memcg = root_mem_cgroup; 883 884 rcu_read_lock(); 885 if (css_tryget_online(¤t->active_memcg->css)) 886 memcg = current->active_memcg; 887 rcu_read_unlock(); 888 return memcg; 889 } 890 return get_mem_cgroup_from_mm(current->mm); 891 } 892 893 /** 894 * mem_cgroup_iter - iterate over memory cgroup hierarchy 895 * @root: hierarchy root 896 * @prev: previously returned memcg, NULL on first invocation 897 * @reclaim: cookie for shared reclaim walks, NULL for full walks 898 * 899 * Returns references to children of the hierarchy below @root, or 900 * @root itself, or %NULL after a full round-trip. 901 * 902 * Caller must pass the return value in @prev on subsequent 903 * invocations for reference counting, or use mem_cgroup_iter_break() 904 * to cancel a hierarchy walk before the round-trip is complete. 905 * 906 * Reclaimers can specify a node and a priority level in @reclaim to 907 * divide up the memcgs in the hierarchy among all concurrent 908 * reclaimers operating on the same node and priority. 909 */ 910 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 911 struct mem_cgroup *prev, 912 struct mem_cgroup_reclaim_cookie *reclaim) 913 { 914 struct mem_cgroup_reclaim_iter *uninitialized_var(iter); 915 struct cgroup_subsys_state *css = NULL; 916 struct mem_cgroup *memcg = NULL; 917 struct mem_cgroup *pos = NULL; 918 919 if (mem_cgroup_disabled()) 920 return NULL; 921 922 if (!root) 923 root = root_mem_cgroup; 924 925 if (prev && !reclaim) 926 pos = prev; 927 928 if (!root->use_hierarchy && root != root_mem_cgroup) { 929 if (prev) 930 goto out; 931 return root; 932 } 933 934 rcu_read_lock(); 935 936 if (reclaim) { 937 struct mem_cgroup_per_node *mz; 938 939 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id); 940 iter = &mz->iter[reclaim->priority]; 941 942 if (prev && reclaim->generation != iter->generation) 943 goto out_unlock; 944 945 while (1) { 946 pos = READ_ONCE(iter->position); 947 if (!pos || css_tryget(&pos->css)) 948 break; 949 /* 950 * css reference reached zero, so iter->position will 951 * be cleared by ->css_released. However, we should not 952 * rely on this happening soon, because ->css_released 953 * is called from a work queue, and by busy-waiting we 954 * might block it. So we clear iter->position right 955 * away. 956 */ 957 (void)cmpxchg(&iter->position, pos, NULL); 958 } 959 } 960 961 if (pos) 962 css = &pos->css; 963 964 for (;;) { 965 css = css_next_descendant_pre(css, &root->css); 966 if (!css) { 967 /* 968 * Reclaimers share the hierarchy walk, and a 969 * new one might jump in right at the end of 970 * the hierarchy - make sure they see at least 971 * one group and restart from the beginning. 972 */ 973 if (!prev) 974 continue; 975 break; 976 } 977 978 /* 979 * Verify the css and acquire a reference. The root 980 * is provided by the caller, so we know it's alive 981 * and kicking, and don't take an extra reference. 982 */ 983 memcg = mem_cgroup_from_css(css); 984 985 if (css == &root->css) 986 break; 987 988 if (css_tryget(css)) 989 break; 990 991 memcg = NULL; 992 } 993 994 if (reclaim) { 995 /* 996 * The position could have already been updated by a competing 997 * thread, so check that the value hasn't changed since we read 998 * it to avoid reclaiming from the same cgroup twice. 999 */ 1000 (void)cmpxchg(&iter->position, pos, memcg); 1001 1002 if (pos) 1003 css_put(&pos->css); 1004 1005 if (!memcg) 1006 iter->generation++; 1007 else if (!prev) 1008 reclaim->generation = iter->generation; 1009 } 1010 1011 out_unlock: 1012 rcu_read_unlock(); 1013 out: 1014 if (prev && prev != root) 1015 css_put(&prev->css); 1016 1017 return memcg; 1018 } 1019 1020 /** 1021 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 1022 * @root: hierarchy root 1023 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 1024 */ 1025 void mem_cgroup_iter_break(struct mem_cgroup *root, 1026 struct mem_cgroup *prev) 1027 { 1028 if (!root) 1029 root = root_mem_cgroup; 1030 if (prev && prev != root) 1031 css_put(&prev->css); 1032 } 1033 1034 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) 1035 { 1036 struct mem_cgroup *memcg = dead_memcg; 1037 struct mem_cgroup_reclaim_iter *iter; 1038 struct mem_cgroup_per_node *mz; 1039 int nid; 1040 int i; 1041 1042 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 1043 for_each_node(nid) { 1044 mz = mem_cgroup_nodeinfo(memcg, nid); 1045 for (i = 0; i <= DEF_PRIORITY; i++) { 1046 iter = &mz->iter[i]; 1047 cmpxchg(&iter->position, 1048 dead_memcg, NULL); 1049 } 1050 } 1051 } 1052 } 1053 1054 /** 1055 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy 1056 * @memcg: hierarchy root 1057 * @fn: function to call for each task 1058 * @arg: argument passed to @fn 1059 * 1060 * This function iterates over tasks attached to @memcg or to any of its 1061 * descendants and calls @fn for each task. If @fn returns a non-zero 1062 * value, the function breaks the iteration loop and returns the value. 1063 * Otherwise, it will iterate over all tasks and return 0. 1064 * 1065 * This function must not be called for the root memory cgroup. 1066 */ 1067 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1068 int (*fn)(struct task_struct *, void *), void *arg) 1069 { 1070 struct mem_cgroup *iter; 1071 int ret = 0; 1072 1073 BUG_ON(memcg == root_mem_cgroup); 1074 1075 for_each_mem_cgroup_tree(iter, memcg) { 1076 struct css_task_iter it; 1077 struct task_struct *task; 1078 1079 css_task_iter_start(&iter->css, 0, &it); 1080 while (!ret && (task = css_task_iter_next(&it))) 1081 ret = fn(task, arg); 1082 css_task_iter_end(&it); 1083 if (ret) { 1084 mem_cgroup_iter_break(memcg, iter); 1085 break; 1086 } 1087 } 1088 return ret; 1089 } 1090 1091 /** 1092 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page 1093 * @page: the page 1094 * @pgdat: pgdat of the page 1095 * 1096 * This function is only safe when following the LRU page isolation 1097 * and putback protocol: the LRU lock must be held, and the page must 1098 * either be PageLRU() or the caller must have isolated/allocated it. 1099 */ 1100 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat) 1101 { 1102 struct mem_cgroup_per_node *mz; 1103 struct mem_cgroup *memcg; 1104 struct lruvec *lruvec; 1105 1106 if (mem_cgroup_disabled()) { 1107 lruvec = &pgdat->lruvec; 1108 goto out; 1109 } 1110 1111 memcg = page->mem_cgroup; 1112 /* 1113 * Swapcache readahead pages are added to the LRU - and 1114 * possibly migrated - before they are charged. 1115 */ 1116 if (!memcg) 1117 memcg = root_mem_cgroup; 1118 1119 mz = mem_cgroup_page_nodeinfo(memcg, page); 1120 lruvec = &mz->lruvec; 1121 out: 1122 /* 1123 * Since a node can be onlined after the mem_cgroup was created, 1124 * we have to be prepared to initialize lruvec->zone here; 1125 * and if offlined then reonlined, we need to reinitialize it. 1126 */ 1127 if (unlikely(lruvec->pgdat != pgdat)) 1128 lruvec->pgdat = pgdat; 1129 return lruvec; 1130 } 1131 1132 /** 1133 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1134 * @lruvec: mem_cgroup per zone lru vector 1135 * @lru: index of lru list the page is sitting on 1136 * @zid: zone id of the accounted pages 1137 * @nr_pages: positive when adding or negative when removing 1138 * 1139 * This function must be called under lru_lock, just before a page is added 1140 * to or just after a page is removed from an lru list (that ordering being 1141 * so as to allow it to check that lru_size 0 is consistent with list_empty). 1142 */ 1143 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1144 int zid, int nr_pages) 1145 { 1146 struct mem_cgroup_per_node *mz; 1147 unsigned long *lru_size; 1148 long size; 1149 1150 if (mem_cgroup_disabled()) 1151 return; 1152 1153 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 1154 lru_size = &mz->lru_zone_size[zid][lru]; 1155 1156 if (nr_pages < 0) 1157 *lru_size += nr_pages; 1158 1159 size = *lru_size; 1160 if (WARN_ONCE(size < 0, 1161 "%s(%p, %d, %d): lru_size %ld\n", 1162 __func__, lruvec, lru, nr_pages, size)) { 1163 VM_BUG_ON(1); 1164 *lru_size = 0; 1165 } 1166 1167 if (nr_pages > 0) 1168 *lru_size += nr_pages; 1169 } 1170 1171 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg) 1172 { 1173 struct mem_cgroup *task_memcg; 1174 struct task_struct *p; 1175 bool ret; 1176 1177 p = find_lock_task_mm(task); 1178 if (p) { 1179 task_memcg = get_mem_cgroup_from_mm(p->mm); 1180 task_unlock(p); 1181 } else { 1182 /* 1183 * All threads may have already detached their mm's, but the oom 1184 * killer still needs to detect if they have already been oom 1185 * killed to prevent needlessly killing additional tasks. 1186 */ 1187 rcu_read_lock(); 1188 task_memcg = mem_cgroup_from_task(task); 1189 css_get(&task_memcg->css); 1190 rcu_read_unlock(); 1191 } 1192 ret = mem_cgroup_is_descendant(task_memcg, memcg); 1193 css_put(&task_memcg->css); 1194 return ret; 1195 } 1196 1197 /** 1198 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1199 * @memcg: the memory cgroup 1200 * 1201 * Returns the maximum amount of memory @mem can be charged with, in 1202 * pages. 1203 */ 1204 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1205 { 1206 unsigned long margin = 0; 1207 unsigned long count; 1208 unsigned long limit; 1209 1210 count = page_counter_read(&memcg->memory); 1211 limit = READ_ONCE(memcg->memory.max); 1212 if (count < limit) 1213 margin = limit - count; 1214 1215 if (do_memsw_account()) { 1216 count = page_counter_read(&memcg->memsw); 1217 limit = READ_ONCE(memcg->memsw.max); 1218 if (count <= limit) 1219 margin = min(margin, limit - count); 1220 else 1221 margin = 0; 1222 } 1223 1224 return margin; 1225 } 1226 1227 /* 1228 * A routine for checking "mem" is under move_account() or not. 1229 * 1230 * Checking a cgroup is mc.from or mc.to or under hierarchy of 1231 * moving cgroups. This is for waiting at high-memory pressure 1232 * caused by "move". 1233 */ 1234 static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 1235 { 1236 struct mem_cgroup *from; 1237 struct mem_cgroup *to; 1238 bool ret = false; 1239 /* 1240 * Unlike task_move routines, we access mc.to, mc.from not under 1241 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1242 */ 1243 spin_lock(&mc.lock); 1244 from = mc.from; 1245 to = mc.to; 1246 if (!from) 1247 goto unlock; 1248 1249 ret = mem_cgroup_is_descendant(from, memcg) || 1250 mem_cgroup_is_descendant(to, memcg); 1251 unlock: 1252 spin_unlock(&mc.lock); 1253 return ret; 1254 } 1255 1256 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) 1257 { 1258 if (mc.moving_task && current != mc.moving_task) { 1259 if (mem_cgroup_under_move(memcg)) { 1260 DEFINE_WAIT(wait); 1261 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1262 /* moving charge context might have finished. */ 1263 if (mc.moving_task) 1264 schedule(); 1265 finish_wait(&mc.waitq, &wait); 1266 return true; 1267 } 1268 } 1269 return false; 1270 } 1271 1272 static const unsigned int memcg1_stats[] = { 1273 MEMCG_CACHE, 1274 MEMCG_RSS, 1275 MEMCG_RSS_HUGE, 1276 NR_SHMEM, 1277 NR_FILE_MAPPED, 1278 NR_FILE_DIRTY, 1279 NR_WRITEBACK, 1280 MEMCG_SWAP, 1281 }; 1282 1283 static const char *const memcg1_stat_names[] = { 1284 "cache", 1285 "rss", 1286 "rss_huge", 1287 "shmem", 1288 "mapped_file", 1289 "dirty", 1290 "writeback", 1291 "swap", 1292 }; 1293 1294 #define K(x) ((x) << (PAGE_SHIFT-10)) 1295 /** 1296 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller. 1297 * @memcg: The memory cgroup that went over limit 1298 * @p: Task that is going to be killed 1299 * 1300 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1301 * enabled 1302 */ 1303 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) 1304 { 1305 struct mem_cgroup *iter; 1306 unsigned int i; 1307 1308 rcu_read_lock(); 1309 1310 if (p) { 1311 pr_info("Task in "); 1312 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); 1313 pr_cont(" killed as a result of limit of "); 1314 } else { 1315 pr_info("Memory limit reached of cgroup "); 1316 } 1317 1318 pr_cont_cgroup_path(memcg->css.cgroup); 1319 pr_cont("\n"); 1320 1321 rcu_read_unlock(); 1322 1323 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", 1324 K((u64)page_counter_read(&memcg->memory)), 1325 K((u64)memcg->memory.max), memcg->memory.failcnt); 1326 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", 1327 K((u64)page_counter_read(&memcg->memsw)), 1328 K((u64)memcg->memsw.max), memcg->memsw.failcnt); 1329 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", 1330 K((u64)page_counter_read(&memcg->kmem)), 1331 K((u64)memcg->kmem.max), memcg->kmem.failcnt); 1332 1333 for_each_mem_cgroup_tree(iter, memcg) { 1334 pr_info("Memory cgroup stats for "); 1335 pr_cont_cgroup_path(iter->css.cgroup); 1336 pr_cont(":"); 1337 1338 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 1339 if (memcg1_stats[i] == MEMCG_SWAP && !do_swap_account) 1340 continue; 1341 pr_cont(" %s:%luKB", memcg1_stat_names[i], 1342 K(memcg_page_state(iter, memcg1_stats[i]))); 1343 } 1344 1345 for (i = 0; i < NR_LRU_LISTS; i++) 1346 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i], 1347 K(mem_cgroup_nr_lru_pages(iter, BIT(i)))); 1348 1349 pr_cont("\n"); 1350 } 1351 } 1352 1353 /* 1354 * Return the memory (and swap, if configured) limit for a memcg. 1355 */ 1356 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1357 { 1358 unsigned long max; 1359 1360 max = memcg->memory.max; 1361 if (mem_cgroup_swappiness(memcg)) { 1362 unsigned long memsw_max; 1363 unsigned long swap_max; 1364 1365 memsw_max = memcg->memsw.max; 1366 swap_max = memcg->swap.max; 1367 swap_max = min(swap_max, (unsigned long)total_swap_pages); 1368 max = min(max + swap_max, memsw_max); 1369 } 1370 return max; 1371 } 1372 1373 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1374 int order) 1375 { 1376 struct oom_control oc = { 1377 .zonelist = NULL, 1378 .nodemask = NULL, 1379 .memcg = memcg, 1380 .gfp_mask = gfp_mask, 1381 .order = order, 1382 }; 1383 bool ret; 1384 1385 mutex_lock(&oom_lock); 1386 ret = out_of_memory(&oc); 1387 mutex_unlock(&oom_lock); 1388 return ret; 1389 } 1390 1391 #if MAX_NUMNODES > 1 1392 1393 /** 1394 * test_mem_cgroup_node_reclaimable 1395 * @memcg: the target memcg 1396 * @nid: the node ID to be checked. 1397 * @noswap : specify true here if the user wants flle only information. 1398 * 1399 * This function returns whether the specified memcg contains any 1400 * reclaimable pages on a node. Returns true if there are any reclaimable 1401 * pages in the node. 1402 */ 1403 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg, 1404 int nid, bool noswap) 1405 { 1406 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE)) 1407 return true; 1408 if (noswap || !total_swap_pages) 1409 return false; 1410 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON)) 1411 return true; 1412 return false; 1413 1414 } 1415 1416 /* 1417 * Always updating the nodemask is not very good - even if we have an empty 1418 * list or the wrong list here, we can start from some node and traverse all 1419 * nodes based on the zonelist. So update the list loosely once per 10 secs. 1420 * 1421 */ 1422 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg) 1423 { 1424 int nid; 1425 /* 1426 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET 1427 * pagein/pageout changes since the last update. 1428 */ 1429 if (!atomic_read(&memcg->numainfo_events)) 1430 return; 1431 if (atomic_inc_return(&memcg->numainfo_updating) > 1) 1432 return; 1433 1434 /* make a nodemask where this memcg uses memory from */ 1435 memcg->scan_nodes = node_states[N_MEMORY]; 1436 1437 for_each_node_mask(nid, node_states[N_MEMORY]) { 1438 1439 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false)) 1440 node_clear(nid, memcg->scan_nodes); 1441 } 1442 1443 atomic_set(&memcg->numainfo_events, 0); 1444 atomic_set(&memcg->numainfo_updating, 0); 1445 } 1446 1447 /* 1448 * Selecting a node where we start reclaim from. Because what we need is just 1449 * reducing usage counter, start from anywhere is O,K. Considering 1450 * memory reclaim from current node, there are pros. and cons. 1451 * 1452 * Freeing memory from current node means freeing memory from a node which 1453 * we'll use or we've used. So, it may make LRU bad. And if several threads 1454 * hit limits, it will see a contention on a node. But freeing from remote 1455 * node means more costs for memory reclaim because of memory latency. 1456 * 1457 * Now, we use round-robin. Better algorithm is welcomed. 1458 */ 1459 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1460 { 1461 int node; 1462 1463 mem_cgroup_may_update_nodemask(memcg); 1464 node = memcg->last_scanned_node; 1465 1466 node = next_node_in(node, memcg->scan_nodes); 1467 /* 1468 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages 1469 * last time it really checked all the LRUs due to rate limiting. 1470 * Fallback to the current node in that case for simplicity. 1471 */ 1472 if (unlikely(node == MAX_NUMNODES)) 1473 node = numa_node_id(); 1474 1475 memcg->last_scanned_node = node; 1476 return node; 1477 } 1478 #else 1479 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1480 { 1481 return 0; 1482 } 1483 #endif 1484 1485 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, 1486 pg_data_t *pgdat, 1487 gfp_t gfp_mask, 1488 unsigned long *total_scanned) 1489 { 1490 struct mem_cgroup *victim = NULL; 1491 int total = 0; 1492 int loop = 0; 1493 unsigned long excess; 1494 unsigned long nr_scanned; 1495 struct mem_cgroup_reclaim_cookie reclaim = { 1496 .pgdat = pgdat, 1497 .priority = 0, 1498 }; 1499 1500 excess = soft_limit_excess(root_memcg); 1501 1502 while (1) { 1503 victim = mem_cgroup_iter(root_memcg, victim, &reclaim); 1504 if (!victim) { 1505 loop++; 1506 if (loop >= 2) { 1507 /* 1508 * If we have not been able to reclaim 1509 * anything, it might because there are 1510 * no reclaimable pages under this hierarchy 1511 */ 1512 if (!total) 1513 break; 1514 /* 1515 * We want to do more targeted reclaim. 1516 * excess >> 2 is not to excessive so as to 1517 * reclaim too much, nor too less that we keep 1518 * coming back to reclaim from this cgroup 1519 */ 1520 if (total >= (excess >> 2) || 1521 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) 1522 break; 1523 } 1524 continue; 1525 } 1526 total += mem_cgroup_shrink_node(victim, gfp_mask, false, 1527 pgdat, &nr_scanned); 1528 *total_scanned += nr_scanned; 1529 if (!soft_limit_excess(root_memcg)) 1530 break; 1531 } 1532 mem_cgroup_iter_break(root_memcg, victim); 1533 return total; 1534 } 1535 1536 #ifdef CONFIG_LOCKDEP 1537 static struct lockdep_map memcg_oom_lock_dep_map = { 1538 .name = "memcg_oom_lock", 1539 }; 1540 #endif 1541 1542 static DEFINE_SPINLOCK(memcg_oom_lock); 1543 1544 /* 1545 * Check OOM-Killer is already running under our hierarchy. 1546 * If someone is running, return false. 1547 */ 1548 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) 1549 { 1550 struct mem_cgroup *iter, *failed = NULL; 1551 1552 spin_lock(&memcg_oom_lock); 1553 1554 for_each_mem_cgroup_tree(iter, memcg) { 1555 if (iter->oom_lock) { 1556 /* 1557 * this subtree of our hierarchy is already locked 1558 * so we cannot give a lock. 1559 */ 1560 failed = iter; 1561 mem_cgroup_iter_break(memcg, iter); 1562 break; 1563 } else 1564 iter->oom_lock = true; 1565 } 1566 1567 if (failed) { 1568 /* 1569 * OK, we failed to lock the whole subtree so we have 1570 * to clean up what we set up to the failing subtree 1571 */ 1572 for_each_mem_cgroup_tree(iter, memcg) { 1573 if (iter == failed) { 1574 mem_cgroup_iter_break(memcg, iter); 1575 break; 1576 } 1577 iter->oom_lock = false; 1578 } 1579 } else 1580 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); 1581 1582 spin_unlock(&memcg_oom_lock); 1583 1584 return !failed; 1585 } 1586 1587 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 1588 { 1589 struct mem_cgroup *iter; 1590 1591 spin_lock(&memcg_oom_lock); 1592 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_); 1593 for_each_mem_cgroup_tree(iter, memcg) 1594 iter->oom_lock = false; 1595 spin_unlock(&memcg_oom_lock); 1596 } 1597 1598 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 1599 { 1600 struct mem_cgroup *iter; 1601 1602 spin_lock(&memcg_oom_lock); 1603 for_each_mem_cgroup_tree(iter, memcg) 1604 iter->under_oom++; 1605 spin_unlock(&memcg_oom_lock); 1606 } 1607 1608 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 1609 { 1610 struct mem_cgroup *iter; 1611 1612 /* 1613 * When a new child is created while the hierarchy is under oom, 1614 * mem_cgroup_oom_lock() may not be called. Watch for underflow. 1615 */ 1616 spin_lock(&memcg_oom_lock); 1617 for_each_mem_cgroup_tree(iter, memcg) 1618 if (iter->under_oom > 0) 1619 iter->under_oom--; 1620 spin_unlock(&memcg_oom_lock); 1621 } 1622 1623 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 1624 1625 struct oom_wait_info { 1626 struct mem_cgroup *memcg; 1627 wait_queue_entry_t wait; 1628 }; 1629 1630 static int memcg_oom_wake_function(wait_queue_entry_t *wait, 1631 unsigned mode, int sync, void *arg) 1632 { 1633 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; 1634 struct mem_cgroup *oom_wait_memcg; 1635 struct oom_wait_info *oom_wait_info; 1636 1637 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 1638 oom_wait_memcg = oom_wait_info->memcg; 1639 1640 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) && 1641 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg)) 1642 return 0; 1643 return autoremove_wake_function(wait, mode, sync, arg); 1644 } 1645 1646 static void memcg_oom_recover(struct mem_cgroup *memcg) 1647 { 1648 /* 1649 * For the following lockless ->under_oom test, the only required 1650 * guarantee is that it must see the state asserted by an OOM when 1651 * this function is called as a result of userland actions 1652 * triggered by the notification of the OOM. This is trivially 1653 * achieved by invoking mem_cgroup_mark_under_oom() before 1654 * triggering notification. 1655 */ 1656 if (memcg && memcg->under_oom) 1657 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 1658 } 1659 1660 enum oom_status { 1661 OOM_SUCCESS, 1662 OOM_FAILED, 1663 OOM_ASYNC, 1664 OOM_SKIPPED 1665 }; 1666 1667 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 1668 { 1669 if (order > PAGE_ALLOC_COSTLY_ORDER) 1670 return OOM_SKIPPED; 1671 1672 memcg_memory_event(memcg, MEMCG_OOM); 1673 1674 /* 1675 * We are in the middle of the charge context here, so we 1676 * don't want to block when potentially sitting on a callstack 1677 * that holds all kinds of filesystem and mm locks. 1678 * 1679 * cgroup1 allows disabling the OOM killer and waiting for outside 1680 * handling until the charge can succeed; remember the context and put 1681 * the task to sleep at the end of the page fault when all locks are 1682 * released. 1683 * 1684 * On the other hand, in-kernel OOM killer allows for an async victim 1685 * memory reclaim (oom_reaper) and that means that we are not solely 1686 * relying on the oom victim to make a forward progress and we can 1687 * invoke the oom killer here. 1688 * 1689 * Please note that mem_cgroup_out_of_memory might fail to find a 1690 * victim and then we have to bail out from the charge path. 1691 */ 1692 if (memcg->oom_kill_disable) { 1693 if (!current->in_user_fault) 1694 return OOM_SKIPPED; 1695 css_get(&memcg->css); 1696 current->memcg_in_oom = memcg; 1697 current->memcg_oom_gfp_mask = mask; 1698 current->memcg_oom_order = order; 1699 1700 return OOM_ASYNC; 1701 } 1702 1703 if (mem_cgroup_out_of_memory(memcg, mask, order)) 1704 return OOM_SUCCESS; 1705 1706 return OOM_FAILED; 1707 } 1708 1709 /** 1710 * mem_cgroup_oom_synchronize - complete memcg OOM handling 1711 * @handle: actually kill/wait or just clean up the OOM state 1712 * 1713 * This has to be called at the end of a page fault if the memcg OOM 1714 * handler was enabled. 1715 * 1716 * Memcg supports userspace OOM handling where failed allocations must 1717 * sleep on a waitqueue until the userspace task resolves the 1718 * situation. Sleeping directly in the charge context with all kinds 1719 * of locks held is not a good idea, instead we remember an OOM state 1720 * in the task and mem_cgroup_oom_synchronize() has to be called at 1721 * the end of the page fault to complete the OOM handling. 1722 * 1723 * Returns %true if an ongoing memcg OOM situation was detected and 1724 * completed, %false otherwise. 1725 */ 1726 bool mem_cgroup_oom_synchronize(bool handle) 1727 { 1728 struct mem_cgroup *memcg = current->memcg_in_oom; 1729 struct oom_wait_info owait; 1730 bool locked; 1731 1732 /* OOM is global, do not handle */ 1733 if (!memcg) 1734 return false; 1735 1736 if (!handle) 1737 goto cleanup; 1738 1739 owait.memcg = memcg; 1740 owait.wait.flags = 0; 1741 owait.wait.func = memcg_oom_wake_function; 1742 owait.wait.private = current; 1743 INIT_LIST_HEAD(&owait.wait.entry); 1744 1745 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 1746 mem_cgroup_mark_under_oom(memcg); 1747 1748 locked = mem_cgroup_oom_trylock(memcg); 1749 1750 if (locked) 1751 mem_cgroup_oom_notify(memcg); 1752 1753 if (locked && !memcg->oom_kill_disable) { 1754 mem_cgroup_unmark_under_oom(memcg); 1755 finish_wait(&memcg_oom_waitq, &owait.wait); 1756 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask, 1757 current->memcg_oom_order); 1758 } else { 1759 schedule(); 1760 mem_cgroup_unmark_under_oom(memcg); 1761 finish_wait(&memcg_oom_waitq, &owait.wait); 1762 } 1763 1764 if (locked) { 1765 mem_cgroup_oom_unlock(memcg); 1766 /* 1767 * There is no guarantee that an OOM-lock contender 1768 * sees the wakeups triggered by the OOM kill 1769 * uncharges. Wake any sleepers explicitely. 1770 */ 1771 memcg_oom_recover(memcg); 1772 } 1773 cleanup: 1774 current->memcg_in_oom = NULL; 1775 css_put(&memcg->css); 1776 return true; 1777 } 1778 1779 /** 1780 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM 1781 * @victim: task to be killed by the OOM killer 1782 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM 1783 * 1784 * Returns a pointer to a memory cgroup, which has to be cleaned up 1785 * by killing all belonging OOM-killable tasks. 1786 * 1787 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg. 1788 */ 1789 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 1790 struct mem_cgroup *oom_domain) 1791 { 1792 struct mem_cgroup *oom_group = NULL; 1793 struct mem_cgroup *memcg; 1794 1795 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1796 return NULL; 1797 1798 if (!oom_domain) 1799 oom_domain = root_mem_cgroup; 1800 1801 rcu_read_lock(); 1802 1803 memcg = mem_cgroup_from_task(victim); 1804 if (memcg == root_mem_cgroup) 1805 goto out; 1806 1807 /* 1808 * Traverse the memory cgroup hierarchy from the victim task's 1809 * cgroup up to the OOMing cgroup (or root) to find the 1810 * highest-level memory cgroup with oom.group set. 1811 */ 1812 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 1813 if (memcg->oom_group) 1814 oom_group = memcg; 1815 1816 if (memcg == oom_domain) 1817 break; 1818 } 1819 1820 if (oom_group) 1821 css_get(&oom_group->css); 1822 out: 1823 rcu_read_unlock(); 1824 1825 return oom_group; 1826 } 1827 1828 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 1829 { 1830 pr_info("Tasks in "); 1831 pr_cont_cgroup_path(memcg->css.cgroup); 1832 pr_cont(" are going to be killed due to memory.oom.group set\n"); 1833 } 1834 1835 /** 1836 * lock_page_memcg - lock a page->mem_cgroup binding 1837 * @page: the page 1838 * 1839 * This function protects unlocked LRU pages from being moved to 1840 * another cgroup. 1841 * 1842 * It ensures lifetime of the returned memcg. Caller is responsible 1843 * for the lifetime of the page; __unlock_page_memcg() is available 1844 * when @page might get freed inside the locked section. 1845 */ 1846 struct mem_cgroup *lock_page_memcg(struct page *page) 1847 { 1848 struct mem_cgroup *memcg; 1849 unsigned long flags; 1850 1851 /* 1852 * The RCU lock is held throughout the transaction. The fast 1853 * path can get away without acquiring the memcg->move_lock 1854 * because page moving starts with an RCU grace period. 1855 * 1856 * The RCU lock also protects the memcg from being freed when 1857 * the page state that is going to change is the only thing 1858 * preventing the page itself from being freed. E.g. writeback 1859 * doesn't hold a page reference and relies on PG_writeback to 1860 * keep off truncation, migration and so forth. 1861 */ 1862 rcu_read_lock(); 1863 1864 if (mem_cgroup_disabled()) 1865 return NULL; 1866 again: 1867 memcg = page->mem_cgroup; 1868 if (unlikely(!memcg)) 1869 return NULL; 1870 1871 if (atomic_read(&memcg->moving_account) <= 0) 1872 return memcg; 1873 1874 spin_lock_irqsave(&memcg->move_lock, flags); 1875 if (memcg != page->mem_cgroup) { 1876 spin_unlock_irqrestore(&memcg->move_lock, flags); 1877 goto again; 1878 } 1879 1880 /* 1881 * When charge migration first begins, we can have locked and 1882 * unlocked page stat updates happening concurrently. Track 1883 * the task who has the lock for unlock_page_memcg(). 1884 */ 1885 memcg->move_lock_task = current; 1886 memcg->move_lock_flags = flags; 1887 1888 return memcg; 1889 } 1890 EXPORT_SYMBOL(lock_page_memcg); 1891 1892 /** 1893 * __unlock_page_memcg - unlock and unpin a memcg 1894 * @memcg: the memcg 1895 * 1896 * Unlock and unpin a memcg returned by lock_page_memcg(). 1897 */ 1898 void __unlock_page_memcg(struct mem_cgroup *memcg) 1899 { 1900 if (memcg && memcg->move_lock_task == current) { 1901 unsigned long flags = memcg->move_lock_flags; 1902 1903 memcg->move_lock_task = NULL; 1904 memcg->move_lock_flags = 0; 1905 1906 spin_unlock_irqrestore(&memcg->move_lock, flags); 1907 } 1908 1909 rcu_read_unlock(); 1910 } 1911 1912 /** 1913 * unlock_page_memcg - unlock a page->mem_cgroup binding 1914 * @page: the page 1915 */ 1916 void unlock_page_memcg(struct page *page) 1917 { 1918 __unlock_page_memcg(page->mem_cgroup); 1919 } 1920 EXPORT_SYMBOL(unlock_page_memcg); 1921 1922 struct memcg_stock_pcp { 1923 struct mem_cgroup *cached; /* this never be root cgroup */ 1924 unsigned int nr_pages; 1925 struct work_struct work; 1926 unsigned long flags; 1927 #define FLUSHING_CACHED_CHARGE 0 1928 }; 1929 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); 1930 static DEFINE_MUTEX(percpu_charge_mutex); 1931 1932 /** 1933 * consume_stock: Try to consume stocked charge on this cpu. 1934 * @memcg: memcg to consume from. 1935 * @nr_pages: how many pages to charge. 1936 * 1937 * The charges will only happen if @memcg matches the current cpu's memcg 1938 * stock, and at least @nr_pages are available in that stock. Failure to 1939 * service an allocation will refill the stock. 1940 * 1941 * returns true if successful, false otherwise. 1942 */ 1943 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 1944 { 1945 struct memcg_stock_pcp *stock; 1946 unsigned long flags; 1947 bool ret = false; 1948 1949 if (nr_pages > MEMCG_CHARGE_BATCH) 1950 return ret; 1951 1952 local_irq_save(flags); 1953 1954 stock = this_cpu_ptr(&memcg_stock); 1955 if (memcg == stock->cached && stock->nr_pages >= nr_pages) { 1956 stock->nr_pages -= nr_pages; 1957 ret = true; 1958 } 1959 1960 local_irq_restore(flags); 1961 1962 return ret; 1963 } 1964 1965 /* 1966 * Returns stocks cached in percpu and reset cached information. 1967 */ 1968 static void drain_stock(struct memcg_stock_pcp *stock) 1969 { 1970 struct mem_cgroup *old = stock->cached; 1971 1972 if (stock->nr_pages) { 1973 page_counter_uncharge(&old->memory, stock->nr_pages); 1974 if (do_memsw_account()) 1975 page_counter_uncharge(&old->memsw, stock->nr_pages); 1976 css_put_many(&old->css, stock->nr_pages); 1977 stock->nr_pages = 0; 1978 } 1979 stock->cached = NULL; 1980 } 1981 1982 static void drain_local_stock(struct work_struct *dummy) 1983 { 1984 struct memcg_stock_pcp *stock; 1985 unsigned long flags; 1986 1987 /* 1988 * The only protection from memory hotplug vs. drain_stock races is 1989 * that we always operate on local CPU stock here with IRQ disabled 1990 */ 1991 local_irq_save(flags); 1992 1993 stock = this_cpu_ptr(&memcg_stock); 1994 drain_stock(stock); 1995 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 1996 1997 local_irq_restore(flags); 1998 } 1999 2000 /* 2001 * Cache charges(val) to local per_cpu area. 2002 * This will be consumed by consume_stock() function, later. 2003 */ 2004 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2005 { 2006 struct memcg_stock_pcp *stock; 2007 unsigned long flags; 2008 2009 local_irq_save(flags); 2010 2011 stock = this_cpu_ptr(&memcg_stock); 2012 if (stock->cached != memcg) { /* reset if necessary */ 2013 drain_stock(stock); 2014 stock->cached = memcg; 2015 } 2016 stock->nr_pages += nr_pages; 2017 2018 if (stock->nr_pages > MEMCG_CHARGE_BATCH) 2019 drain_stock(stock); 2020 2021 local_irq_restore(flags); 2022 } 2023 2024 /* 2025 * Drains all per-CPU charge caches for given root_memcg resp. subtree 2026 * of the hierarchy under it. 2027 */ 2028 static void drain_all_stock(struct mem_cgroup *root_memcg) 2029 { 2030 int cpu, curcpu; 2031 2032 /* If someone's already draining, avoid adding running more workers. */ 2033 if (!mutex_trylock(&percpu_charge_mutex)) 2034 return; 2035 /* 2036 * Notify other cpus that system-wide "drain" is running 2037 * We do not care about races with the cpu hotplug because cpu down 2038 * as well as workers from this path always operate on the local 2039 * per-cpu data. CPU up doesn't touch memcg_stock at all. 2040 */ 2041 curcpu = get_cpu(); 2042 for_each_online_cpu(cpu) { 2043 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2044 struct mem_cgroup *memcg; 2045 2046 memcg = stock->cached; 2047 if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css)) 2048 continue; 2049 if (!mem_cgroup_is_descendant(memcg, root_memcg)) { 2050 css_put(&memcg->css); 2051 continue; 2052 } 2053 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 2054 if (cpu == curcpu) 2055 drain_local_stock(&stock->work); 2056 else 2057 schedule_work_on(cpu, &stock->work); 2058 } 2059 css_put(&memcg->css); 2060 } 2061 put_cpu(); 2062 mutex_unlock(&percpu_charge_mutex); 2063 } 2064 2065 static int memcg_hotplug_cpu_dead(unsigned int cpu) 2066 { 2067 struct memcg_stock_pcp *stock; 2068 struct mem_cgroup *memcg; 2069 2070 stock = &per_cpu(memcg_stock, cpu); 2071 drain_stock(stock); 2072 2073 for_each_mem_cgroup(memcg) { 2074 int i; 2075 2076 for (i = 0; i < MEMCG_NR_STAT; i++) { 2077 int nid; 2078 long x; 2079 2080 x = this_cpu_xchg(memcg->stat_cpu->count[i], 0); 2081 if (x) 2082 atomic_long_add(x, &memcg->stat[i]); 2083 2084 if (i >= NR_VM_NODE_STAT_ITEMS) 2085 continue; 2086 2087 for_each_node(nid) { 2088 struct mem_cgroup_per_node *pn; 2089 2090 pn = mem_cgroup_nodeinfo(memcg, nid); 2091 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0); 2092 if (x) 2093 atomic_long_add(x, &pn->lruvec_stat[i]); 2094 } 2095 } 2096 2097 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) { 2098 long x; 2099 2100 x = this_cpu_xchg(memcg->stat_cpu->events[i], 0); 2101 if (x) 2102 atomic_long_add(x, &memcg->events[i]); 2103 } 2104 } 2105 2106 return 0; 2107 } 2108 2109 static void reclaim_high(struct mem_cgroup *memcg, 2110 unsigned int nr_pages, 2111 gfp_t gfp_mask) 2112 { 2113 do { 2114 if (page_counter_read(&memcg->memory) <= memcg->high) 2115 continue; 2116 memcg_memory_event(memcg, MEMCG_HIGH); 2117 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true); 2118 } while ((memcg = parent_mem_cgroup(memcg))); 2119 } 2120 2121 static void high_work_func(struct work_struct *work) 2122 { 2123 struct mem_cgroup *memcg; 2124 2125 memcg = container_of(work, struct mem_cgroup, high_work); 2126 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL); 2127 } 2128 2129 /* 2130 * Scheduled by try_charge() to be executed from the userland return path 2131 * and reclaims memory over the high limit. 2132 */ 2133 void mem_cgroup_handle_over_high(void) 2134 { 2135 unsigned int nr_pages = current->memcg_nr_pages_over_high; 2136 struct mem_cgroup *memcg; 2137 2138 if (likely(!nr_pages)) 2139 return; 2140 2141 memcg = get_mem_cgroup_from_mm(current->mm); 2142 reclaim_high(memcg, nr_pages, GFP_KERNEL); 2143 css_put(&memcg->css); 2144 current->memcg_nr_pages_over_high = 0; 2145 } 2146 2147 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 2148 unsigned int nr_pages) 2149 { 2150 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages); 2151 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 2152 struct mem_cgroup *mem_over_limit; 2153 struct page_counter *counter; 2154 unsigned long nr_reclaimed; 2155 bool may_swap = true; 2156 bool drained = false; 2157 bool oomed = false; 2158 enum oom_status oom_status; 2159 2160 if (mem_cgroup_is_root(memcg)) 2161 return 0; 2162 retry: 2163 if (consume_stock(memcg, nr_pages)) 2164 return 0; 2165 2166 if (!do_memsw_account() || 2167 page_counter_try_charge(&memcg->memsw, batch, &counter)) { 2168 if (page_counter_try_charge(&memcg->memory, batch, &counter)) 2169 goto done_restock; 2170 if (do_memsw_account()) 2171 page_counter_uncharge(&memcg->memsw, batch); 2172 mem_over_limit = mem_cgroup_from_counter(counter, memory); 2173 } else { 2174 mem_over_limit = mem_cgroup_from_counter(counter, memsw); 2175 may_swap = false; 2176 } 2177 2178 if (batch > nr_pages) { 2179 batch = nr_pages; 2180 goto retry; 2181 } 2182 2183 /* 2184 * Unlike in global OOM situations, memcg is not in a physical 2185 * memory shortage. Allow dying and OOM-killed tasks to 2186 * bypass the last charges so that they can exit quickly and 2187 * free their memory. 2188 */ 2189 if (unlikely(tsk_is_oom_victim(current) || 2190 fatal_signal_pending(current) || 2191 current->flags & PF_EXITING)) 2192 goto force; 2193 2194 /* 2195 * Prevent unbounded recursion when reclaim operations need to 2196 * allocate memory. This might exceed the limits temporarily, 2197 * but we prefer facilitating memory reclaim and getting back 2198 * under the limit over triggering OOM kills in these cases. 2199 */ 2200 if (unlikely(current->flags & PF_MEMALLOC)) 2201 goto force; 2202 2203 if (unlikely(task_in_memcg_oom(current))) 2204 goto nomem; 2205 2206 if (!gfpflags_allow_blocking(gfp_mask)) 2207 goto nomem; 2208 2209 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2210 2211 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, 2212 gfp_mask, may_swap); 2213 2214 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2215 goto retry; 2216 2217 if (!drained) { 2218 drain_all_stock(mem_over_limit); 2219 drained = true; 2220 goto retry; 2221 } 2222 2223 if (gfp_mask & __GFP_NORETRY) 2224 goto nomem; 2225 /* 2226 * Even though the limit is exceeded at this point, reclaim 2227 * may have been able to free some pages. Retry the charge 2228 * before killing the task. 2229 * 2230 * Only for regular pages, though: huge pages are rather 2231 * unlikely to succeed so close to the limit, and we fall back 2232 * to regular pages anyway in case of failure. 2233 */ 2234 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) 2235 goto retry; 2236 /* 2237 * At task move, charge accounts can be doubly counted. So, it's 2238 * better to wait until the end of task_move if something is going on. 2239 */ 2240 if (mem_cgroup_wait_acct_move(mem_over_limit)) 2241 goto retry; 2242 2243 if (nr_retries--) 2244 goto retry; 2245 2246 if (gfp_mask & __GFP_RETRY_MAYFAIL && oomed) 2247 goto nomem; 2248 2249 if (gfp_mask & __GFP_NOFAIL) 2250 goto force; 2251 2252 if (fatal_signal_pending(current)) 2253 goto force; 2254 2255 /* 2256 * keep retrying as long as the memcg oom killer is able to make 2257 * a forward progress or bypass the charge if the oom killer 2258 * couldn't make any progress. 2259 */ 2260 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask, 2261 get_order(nr_pages * PAGE_SIZE)); 2262 switch (oom_status) { 2263 case OOM_SUCCESS: 2264 nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 2265 oomed = true; 2266 goto retry; 2267 case OOM_FAILED: 2268 goto force; 2269 default: 2270 goto nomem; 2271 } 2272 nomem: 2273 if (!(gfp_mask & __GFP_NOFAIL)) 2274 return -ENOMEM; 2275 force: 2276 /* 2277 * The allocation either can't fail or will lead to more memory 2278 * being freed very soon. Allow memory usage go over the limit 2279 * temporarily by force charging it. 2280 */ 2281 page_counter_charge(&memcg->memory, nr_pages); 2282 if (do_memsw_account()) 2283 page_counter_charge(&memcg->memsw, nr_pages); 2284 css_get_many(&memcg->css, nr_pages); 2285 2286 return 0; 2287 2288 done_restock: 2289 css_get_many(&memcg->css, batch); 2290 if (batch > nr_pages) 2291 refill_stock(memcg, batch - nr_pages); 2292 2293 /* 2294 * If the hierarchy is above the normal consumption range, schedule 2295 * reclaim on returning to userland. We can perform reclaim here 2296 * if __GFP_RECLAIM but let's always punt for simplicity and so that 2297 * GFP_KERNEL can consistently be used during reclaim. @memcg is 2298 * not recorded as it most likely matches current's and won't 2299 * change in the meantime. As high limit is checked again before 2300 * reclaim, the cost of mismatch is negligible. 2301 */ 2302 do { 2303 if (page_counter_read(&memcg->memory) > memcg->high) { 2304 /* Don't bother a random interrupted task */ 2305 if (in_interrupt()) { 2306 schedule_work(&memcg->high_work); 2307 break; 2308 } 2309 current->memcg_nr_pages_over_high += batch; 2310 set_notify_resume(current); 2311 break; 2312 } 2313 } while ((memcg = parent_mem_cgroup(memcg))); 2314 2315 return 0; 2316 } 2317 2318 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages) 2319 { 2320 if (mem_cgroup_is_root(memcg)) 2321 return; 2322 2323 page_counter_uncharge(&memcg->memory, nr_pages); 2324 if (do_memsw_account()) 2325 page_counter_uncharge(&memcg->memsw, nr_pages); 2326 2327 css_put_many(&memcg->css, nr_pages); 2328 } 2329 2330 static void lock_page_lru(struct page *page, int *isolated) 2331 { 2332 struct zone *zone = page_zone(page); 2333 2334 spin_lock_irq(zone_lru_lock(zone)); 2335 if (PageLRU(page)) { 2336 struct lruvec *lruvec; 2337 2338 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat); 2339 ClearPageLRU(page); 2340 del_page_from_lru_list(page, lruvec, page_lru(page)); 2341 *isolated = 1; 2342 } else 2343 *isolated = 0; 2344 } 2345 2346 static void unlock_page_lru(struct page *page, int isolated) 2347 { 2348 struct zone *zone = page_zone(page); 2349 2350 if (isolated) { 2351 struct lruvec *lruvec; 2352 2353 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat); 2354 VM_BUG_ON_PAGE(PageLRU(page), page); 2355 SetPageLRU(page); 2356 add_page_to_lru_list(page, lruvec, page_lru(page)); 2357 } 2358 spin_unlock_irq(zone_lru_lock(zone)); 2359 } 2360 2361 static void commit_charge(struct page *page, struct mem_cgroup *memcg, 2362 bool lrucare) 2363 { 2364 int isolated; 2365 2366 VM_BUG_ON_PAGE(page->mem_cgroup, page); 2367 2368 /* 2369 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page 2370 * may already be on some other mem_cgroup's LRU. Take care of it. 2371 */ 2372 if (lrucare) 2373 lock_page_lru(page, &isolated); 2374 2375 /* 2376 * Nobody should be changing or seriously looking at 2377 * page->mem_cgroup at this point: 2378 * 2379 * - the page is uncharged 2380 * 2381 * - the page is off-LRU 2382 * 2383 * - an anonymous fault has exclusive page access, except for 2384 * a locked page table 2385 * 2386 * - a page cache insertion, a swapin fault, or a migration 2387 * have the page locked 2388 */ 2389 page->mem_cgroup = memcg; 2390 2391 if (lrucare) 2392 unlock_page_lru(page, isolated); 2393 } 2394 2395 #ifdef CONFIG_MEMCG_KMEM 2396 static int memcg_alloc_cache_id(void) 2397 { 2398 int id, size; 2399 int err; 2400 2401 id = ida_simple_get(&memcg_cache_ida, 2402 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL); 2403 if (id < 0) 2404 return id; 2405 2406 if (id < memcg_nr_cache_ids) 2407 return id; 2408 2409 /* 2410 * There's no space for the new id in memcg_caches arrays, 2411 * so we have to grow them. 2412 */ 2413 down_write(&memcg_cache_ids_sem); 2414 2415 size = 2 * (id + 1); 2416 if (size < MEMCG_CACHES_MIN_SIZE) 2417 size = MEMCG_CACHES_MIN_SIZE; 2418 else if (size > MEMCG_CACHES_MAX_SIZE) 2419 size = MEMCG_CACHES_MAX_SIZE; 2420 2421 err = memcg_update_all_caches(size); 2422 if (!err) 2423 err = memcg_update_all_list_lrus(size); 2424 if (!err) 2425 memcg_nr_cache_ids = size; 2426 2427 up_write(&memcg_cache_ids_sem); 2428 2429 if (err) { 2430 ida_simple_remove(&memcg_cache_ida, id); 2431 return err; 2432 } 2433 return id; 2434 } 2435 2436 static void memcg_free_cache_id(int id) 2437 { 2438 ida_simple_remove(&memcg_cache_ida, id); 2439 } 2440 2441 struct memcg_kmem_cache_create_work { 2442 struct mem_cgroup *memcg; 2443 struct kmem_cache *cachep; 2444 struct work_struct work; 2445 }; 2446 2447 static void memcg_kmem_cache_create_func(struct work_struct *w) 2448 { 2449 struct memcg_kmem_cache_create_work *cw = 2450 container_of(w, struct memcg_kmem_cache_create_work, work); 2451 struct mem_cgroup *memcg = cw->memcg; 2452 struct kmem_cache *cachep = cw->cachep; 2453 2454 memcg_create_kmem_cache(memcg, cachep); 2455 2456 css_put(&memcg->css); 2457 kfree(cw); 2458 } 2459 2460 /* 2461 * Enqueue the creation of a per-memcg kmem_cache. 2462 */ 2463 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg, 2464 struct kmem_cache *cachep) 2465 { 2466 struct memcg_kmem_cache_create_work *cw; 2467 2468 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN); 2469 if (!cw) 2470 return; 2471 2472 css_get(&memcg->css); 2473 2474 cw->memcg = memcg; 2475 cw->cachep = cachep; 2476 INIT_WORK(&cw->work, memcg_kmem_cache_create_func); 2477 2478 queue_work(memcg_kmem_cache_wq, &cw->work); 2479 } 2480 2481 static inline bool memcg_kmem_bypass(void) 2482 { 2483 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD)) 2484 return true; 2485 return false; 2486 } 2487 2488 /** 2489 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation 2490 * @cachep: the original global kmem cache 2491 * 2492 * Return the kmem_cache we're supposed to use for a slab allocation. 2493 * We try to use the current memcg's version of the cache. 2494 * 2495 * If the cache does not exist yet, if we are the first user of it, we 2496 * create it asynchronously in a workqueue and let the current allocation 2497 * go through with the original cache. 2498 * 2499 * This function takes a reference to the cache it returns to assure it 2500 * won't get destroyed while we are working with it. Once the caller is 2501 * done with it, memcg_kmem_put_cache() must be called to release the 2502 * reference. 2503 */ 2504 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep) 2505 { 2506 struct mem_cgroup *memcg; 2507 struct kmem_cache *memcg_cachep; 2508 int kmemcg_id; 2509 2510 VM_BUG_ON(!is_root_cache(cachep)); 2511 2512 if (memcg_kmem_bypass()) 2513 return cachep; 2514 2515 memcg = get_mem_cgroup_from_current(); 2516 kmemcg_id = READ_ONCE(memcg->kmemcg_id); 2517 if (kmemcg_id < 0) 2518 goto out; 2519 2520 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id); 2521 if (likely(memcg_cachep)) 2522 return memcg_cachep; 2523 2524 /* 2525 * If we are in a safe context (can wait, and not in interrupt 2526 * context), we could be be predictable and return right away. 2527 * This would guarantee that the allocation being performed 2528 * already belongs in the new cache. 2529 * 2530 * However, there are some clashes that can arrive from locking. 2531 * For instance, because we acquire the slab_mutex while doing 2532 * memcg_create_kmem_cache, this means no further allocation 2533 * could happen with the slab_mutex held. So it's better to 2534 * defer everything. 2535 */ 2536 memcg_schedule_kmem_cache_create(memcg, cachep); 2537 out: 2538 css_put(&memcg->css); 2539 return cachep; 2540 } 2541 2542 /** 2543 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache 2544 * @cachep: the cache returned by memcg_kmem_get_cache 2545 */ 2546 void memcg_kmem_put_cache(struct kmem_cache *cachep) 2547 { 2548 if (!is_root_cache(cachep)) 2549 css_put(&cachep->memcg_params.memcg->css); 2550 } 2551 2552 /** 2553 * memcg_kmem_charge_memcg: charge a kmem page 2554 * @page: page to charge 2555 * @gfp: reclaim mode 2556 * @order: allocation order 2557 * @memcg: memory cgroup to charge 2558 * 2559 * Returns 0 on success, an error code on failure. 2560 */ 2561 int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order, 2562 struct mem_cgroup *memcg) 2563 { 2564 unsigned int nr_pages = 1 << order; 2565 struct page_counter *counter; 2566 int ret; 2567 2568 ret = try_charge(memcg, gfp, nr_pages); 2569 if (ret) 2570 return ret; 2571 2572 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && 2573 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) { 2574 cancel_charge(memcg, nr_pages); 2575 return -ENOMEM; 2576 } 2577 2578 page->mem_cgroup = memcg; 2579 2580 return 0; 2581 } 2582 2583 /** 2584 * memcg_kmem_charge: charge a kmem page to the current memory cgroup 2585 * @page: page to charge 2586 * @gfp: reclaim mode 2587 * @order: allocation order 2588 * 2589 * Returns 0 on success, an error code on failure. 2590 */ 2591 int memcg_kmem_charge(struct page *page, gfp_t gfp, int order) 2592 { 2593 struct mem_cgroup *memcg; 2594 int ret = 0; 2595 2596 if (mem_cgroup_disabled() || memcg_kmem_bypass()) 2597 return 0; 2598 2599 memcg = get_mem_cgroup_from_current(); 2600 if (!mem_cgroup_is_root(memcg)) { 2601 ret = memcg_kmem_charge_memcg(page, gfp, order, memcg); 2602 if (!ret) 2603 __SetPageKmemcg(page); 2604 } 2605 css_put(&memcg->css); 2606 return ret; 2607 } 2608 /** 2609 * memcg_kmem_uncharge: uncharge a kmem page 2610 * @page: page to uncharge 2611 * @order: allocation order 2612 */ 2613 void memcg_kmem_uncharge(struct page *page, int order) 2614 { 2615 struct mem_cgroup *memcg = page->mem_cgroup; 2616 unsigned int nr_pages = 1 << order; 2617 2618 if (!memcg) 2619 return; 2620 2621 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page); 2622 2623 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 2624 page_counter_uncharge(&memcg->kmem, nr_pages); 2625 2626 page_counter_uncharge(&memcg->memory, nr_pages); 2627 if (do_memsw_account()) 2628 page_counter_uncharge(&memcg->memsw, nr_pages); 2629 2630 page->mem_cgroup = NULL; 2631 2632 /* slab pages do not have PageKmemcg flag set */ 2633 if (PageKmemcg(page)) 2634 __ClearPageKmemcg(page); 2635 2636 css_put_many(&memcg->css, nr_pages); 2637 } 2638 #endif /* CONFIG_MEMCG_KMEM */ 2639 2640 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2641 2642 /* 2643 * Because tail pages are not marked as "used", set it. We're under 2644 * zone_lru_lock and migration entries setup in all page mappings. 2645 */ 2646 void mem_cgroup_split_huge_fixup(struct page *head) 2647 { 2648 int i; 2649 2650 if (mem_cgroup_disabled()) 2651 return; 2652 2653 for (i = 1; i < HPAGE_PMD_NR; i++) 2654 head[i].mem_cgroup = head->mem_cgroup; 2655 2656 __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR); 2657 } 2658 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 2659 2660 #ifdef CONFIG_MEMCG_SWAP 2661 /** 2662 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 2663 * @entry: swap entry to be moved 2664 * @from: mem_cgroup which the entry is moved from 2665 * @to: mem_cgroup which the entry is moved to 2666 * 2667 * It succeeds only when the swap_cgroup's record for this entry is the same 2668 * as the mem_cgroup's id of @from. 2669 * 2670 * Returns 0 on success, -EINVAL on failure. 2671 * 2672 * The caller must have charged to @to, IOW, called page_counter_charge() about 2673 * both res and memsw, and called css_get(). 2674 */ 2675 static int mem_cgroup_move_swap_account(swp_entry_t entry, 2676 struct mem_cgroup *from, struct mem_cgroup *to) 2677 { 2678 unsigned short old_id, new_id; 2679 2680 old_id = mem_cgroup_id(from); 2681 new_id = mem_cgroup_id(to); 2682 2683 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 2684 mod_memcg_state(from, MEMCG_SWAP, -1); 2685 mod_memcg_state(to, MEMCG_SWAP, 1); 2686 return 0; 2687 } 2688 return -EINVAL; 2689 } 2690 #else 2691 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 2692 struct mem_cgroup *from, struct mem_cgroup *to) 2693 { 2694 return -EINVAL; 2695 } 2696 #endif 2697 2698 static DEFINE_MUTEX(memcg_max_mutex); 2699 2700 static int mem_cgroup_resize_max(struct mem_cgroup *memcg, 2701 unsigned long max, bool memsw) 2702 { 2703 bool enlarge = false; 2704 bool drained = false; 2705 int ret; 2706 bool limits_invariant; 2707 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory; 2708 2709 do { 2710 if (signal_pending(current)) { 2711 ret = -EINTR; 2712 break; 2713 } 2714 2715 mutex_lock(&memcg_max_mutex); 2716 /* 2717 * Make sure that the new limit (memsw or memory limit) doesn't 2718 * break our basic invariant rule memory.max <= memsw.max. 2719 */ 2720 limits_invariant = memsw ? max >= memcg->memory.max : 2721 max <= memcg->memsw.max; 2722 if (!limits_invariant) { 2723 mutex_unlock(&memcg_max_mutex); 2724 ret = -EINVAL; 2725 break; 2726 } 2727 if (max > counter->max) 2728 enlarge = true; 2729 ret = page_counter_set_max(counter, max); 2730 mutex_unlock(&memcg_max_mutex); 2731 2732 if (!ret) 2733 break; 2734 2735 if (!drained) { 2736 drain_all_stock(memcg); 2737 drained = true; 2738 continue; 2739 } 2740 2741 if (!try_to_free_mem_cgroup_pages(memcg, 1, 2742 GFP_KERNEL, !memsw)) { 2743 ret = -EBUSY; 2744 break; 2745 } 2746 } while (true); 2747 2748 if (!ret && enlarge) 2749 memcg_oom_recover(memcg); 2750 2751 return ret; 2752 } 2753 2754 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 2755 gfp_t gfp_mask, 2756 unsigned long *total_scanned) 2757 { 2758 unsigned long nr_reclaimed = 0; 2759 struct mem_cgroup_per_node *mz, *next_mz = NULL; 2760 unsigned long reclaimed; 2761 int loop = 0; 2762 struct mem_cgroup_tree_per_node *mctz; 2763 unsigned long excess; 2764 unsigned long nr_scanned; 2765 2766 if (order > 0) 2767 return 0; 2768 2769 mctz = soft_limit_tree_node(pgdat->node_id); 2770 2771 /* 2772 * Do not even bother to check the largest node if the root 2773 * is empty. Do it lockless to prevent lock bouncing. Races 2774 * are acceptable as soft limit is best effort anyway. 2775 */ 2776 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root)) 2777 return 0; 2778 2779 /* 2780 * This loop can run a while, specially if mem_cgroup's continuously 2781 * keep exceeding their soft limit and putting the system under 2782 * pressure 2783 */ 2784 do { 2785 if (next_mz) 2786 mz = next_mz; 2787 else 2788 mz = mem_cgroup_largest_soft_limit_node(mctz); 2789 if (!mz) 2790 break; 2791 2792 nr_scanned = 0; 2793 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat, 2794 gfp_mask, &nr_scanned); 2795 nr_reclaimed += reclaimed; 2796 *total_scanned += nr_scanned; 2797 spin_lock_irq(&mctz->lock); 2798 __mem_cgroup_remove_exceeded(mz, mctz); 2799 2800 /* 2801 * If we failed to reclaim anything from this memory cgroup 2802 * it is time to move on to the next cgroup 2803 */ 2804 next_mz = NULL; 2805 if (!reclaimed) 2806 next_mz = __mem_cgroup_largest_soft_limit_node(mctz); 2807 2808 excess = soft_limit_excess(mz->memcg); 2809 /* 2810 * One school of thought says that we should not add 2811 * back the node to the tree if reclaim returns 0. 2812 * But our reclaim could return 0, simply because due 2813 * to priority we are exposing a smaller subset of 2814 * memory to reclaim from. Consider this as a longer 2815 * term TODO. 2816 */ 2817 /* If excess == 0, no tree ops */ 2818 __mem_cgroup_insert_exceeded(mz, mctz, excess); 2819 spin_unlock_irq(&mctz->lock); 2820 css_put(&mz->memcg->css); 2821 loop++; 2822 /* 2823 * Could not reclaim anything and there are no more 2824 * mem cgroups to try or we seem to be looping without 2825 * reclaiming anything. 2826 */ 2827 if (!nr_reclaimed && 2828 (next_mz == NULL || 2829 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 2830 break; 2831 } while (!nr_reclaimed); 2832 if (next_mz) 2833 css_put(&next_mz->memcg->css); 2834 return nr_reclaimed; 2835 } 2836 2837 /* 2838 * Test whether @memcg has children, dead or alive. Note that this 2839 * function doesn't care whether @memcg has use_hierarchy enabled and 2840 * returns %true if there are child csses according to the cgroup 2841 * hierarchy. Testing use_hierarchy is the caller's responsiblity. 2842 */ 2843 static inline bool memcg_has_children(struct mem_cgroup *memcg) 2844 { 2845 bool ret; 2846 2847 rcu_read_lock(); 2848 ret = css_next_child(NULL, &memcg->css); 2849 rcu_read_unlock(); 2850 return ret; 2851 } 2852 2853 /* 2854 * Reclaims as many pages from the given memcg as possible. 2855 * 2856 * Caller is responsible for holding css reference for memcg. 2857 */ 2858 static int mem_cgroup_force_empty(struct mem_cgroup *memcg) 2859 { 2860 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 2861 2862 /* we call try-to-free pages for make this cgroup empty */ 2863 lru_add_drain_all(); 2864 2865 drain_all_stock(memcg); 2866 2867 /* try to free all pages in this cgroup */ 2868 while (nr_retries && page_counter_read(&memcg->memory)) { 2869 int progress; 2870 2871 if (signal_pending(current)) 2872 return -EINTR; 2873 2874 progress = try_to_free_mem_cgroup_pages(memcg, 1, 2875 GFP_KERNEL, true); 2876 if (!progress) { 2877 nr_retries--; 2878 /* maybe some writeback is necessary */ 2879 congestion_wait(BLK_RW_ASYNC, HZ/10); 2880 } 2881 2882 } 2883 2884 return 0; 2885 } 2886 2887 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of, 2888 char *buf, size_t nbytes, 2889 loff_t off) 2890 { 2891 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 2892 2893 if (mem_cgroup_is_root(memcg)) 2894 return -EINVAL; 2895 return mem_cgroup_force_empty(memcg) ?: nbytes; 2896 } 2897 2898 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, 2899 struct cftype *cft) 2900 { 2901 return mem_cgroup_from_css(css)->use_hierarchy; 2902 } 2903 2904 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, 2905 struct cftype *cft, u64 val) 2906 { 2907 int retval = 0; 2908 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 2909 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent); 2910 2911 if (memcg->use_hierarchy == val) 2912 return 0; 2913 2914 /* 2915 * If parent's use_hierarchy is set, we can't make any modifications 2916 * in the child subtrees. If it is unset, then the change can 2917 * occur, provided the current cgroup has no children. 2918 * 2919 * For the root cgroup, parent_mem is NULL, we allow value to be 2920 * set if there are no children. 2921 */ 2922 if ((!parent_memcg || !parent_memcg->use_hierarchy) && 2923 (val == 1 || val == 0)) { 2924 if (!memcg_has_children(memcg)) 2925 memcg->use_hierarchy = val; 2926 else 2927 retval = -EBUSY; 2928 } else 2929 retval = -EINVAL; 2930 2931 return retval; 2932 } 2933 2934 struct accumulated_stats { 2935 unsigned long stat[MEMCG_NR_STAT]; 2936 unsigned long events[NR_VM_EVENT_ITEMS]; 2937 unsigned long lru_pages[NR_LRU_LISTS]; 2938 const unsigned int *stats_array; 2939 const unsigned int *events_array; 2940 int stats_size; 2941 int events_size; 2942 }; 2943 2944 static void accumulate_memcg_tree(struct mem_cgroup *memcg, 2945 struct accumulated_stats *acc) 2946 { 2947 struct mem_cgroup *mi; 2948 int i; 2949 2950 for_each_mem_cgroup_tree(mi, memcg) { 2951 for (i = 0; i < acc->stats_size; i++) 2952 acc->stat[i] += memcg_page_state(mi, 2953 acc->stats_array ? acc->stats_array[i] : i); 2954 2955 for (i = 0; i < acc->events_size; i++) 2956 acc->events[i] += memcg_sum_events(mi, 2957 acc->events_array ? acc->events_array[i] : i); 2958 2959 for (i = 0; i < NR_LRU_LISTS; i++) 2960 acc->lru_pages[i] += 2961 mem_cgroup_nr_lru_pages(mi, BIT(i)); 2962 } 2963 } 2964 2965 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 2966 { 2967 unsigned long val = 0; 2968 2969 if (mem_cgroup_is_root(memcg)) { 2970 struct mem_cgroup *iter; 2971 2972 for_each_mem_cgroup_tree(iter, memcg) { 2973 val += memcg_page_state(iter, MEMCG_CACHE); 2974 val += memcg_page_state(iter, MEMCG_RSS); 2975 if (swap) 2976 val += memcg_page_state(iter, MEMCG_SWAP); 2977 } 2978 } else { 2979 if (!swap) 2980 val = page_counter_read(&memcg->memory); 2981 else 2982 val = page_counter_read(&memcg->memsw); 2983 } 2984 return val; 2985 } 2986 2987 enum { 2988 RES_USAGE, 2989 RES_LIMIT, 2990 RES_MAX_USAGE, 2991 RES_FAILCNT, 2992 RES_SOFT_LIMIT, 2993 }; 2994 2995 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css, 2996 struct cftype *cft) 2997 { 2998 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 2999 struct page_counter *counter; 3000 3001 switch (MEMFILE_TYPE(cft->private)) { 3002 case _MEM: 3003 counter = &memcg->memory; 3004 break; 3005 case _MEMSWAP: 3006 counter = &memcg->memsw; 3007 break; 3008 case _KMEM: 3009 counter = &memcg->kmem; 3010 break; 3011 case _TCP: 3012 counter = &memcg->tcpmem; 3013 break; 3014 default: 3015 BUG(); 3016 } 3017 3018 switch (MEMFILE_ATTR(cft->private)) { 3019 case RES_USAGE: 3020 if (counter == &memcg->memory) 3021 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE; 3022 if (counter == &memcg->memsw) 3023 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE; 3024 return (u64)page_counter_read(counter) * PAGE_SIZE; 3025 case RES_LIMIT: 3026 return (u64)counter->max * PAGE_SIZE; 3027 case RES_MAX_USAGE: 3028 return (u64)counter->watermark * PAGE_SIZE; 3029 case RES_FAILCNT: 3030 return counter->failcnt; 3031 case RES_SOFT_LIMIT: 3032 return (u64)memcg->soft_limit * PAGE_SIZE; 3033 default: 3034 BUG(); 3035 } 3036 } 3037 3038 #ifdef CONFIG_MEMCG_KMEM 3039 static int memcg_online_kmem(struct mem_cgroup *memcg) 3040 { 3041 int memcg_id; 3042 3043 if (cgroup_memory_nokmem) 3044 return 0; 3045 3046 BUG_ON(memcg->kmemcg_id >= 0); 3047 BUG_ON(memcg->kmem_state); 3048 3049 memcg_id = memcg_alloc_cache_id(); 3050 if (memcg_id < 0) 3051 return memcg_id; 3052 3053 static_branch_inc(&memcg_kmem_enabled_key); 3054 /* 3055 * A memory cgroup is considered kmem-online as soon as it gets 3056 * kmemcg_id. Setting the id after enabling static branching will 3057 * guarantee no one starts accounting before all call sites are 3058 * patched. 3059 */ 3060 memcg->kmemcg_id = memcg_id; 3061 memcg->kmem_state = KMEM_ONLINE; 3062 INIT_LIST_HEAD(&memcg->kmem_caches); 3063 3064 return 0; 3065 } 3066 3067 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3068 { 3069 struct cgroup_subsys_state *css; 3070 struct mem_cgroup *parent, *child; 3071 int kmemcg_id; 3072 3073 if (memcg->kmem_state != KMEM_ONLINE) 3074 return; 3075 /* 3076 * Clear the online state before clearing memcg_caches array 3077 * entries. The slab_mutex in memcg_deactivate_kmem_caches() 3078 * guarantees that no cache will be created for this cgroup 3079 * after we are done (see memcg_create_kmem_cache()). 3080 */ 3081 memcg->kmem_state = KMEM_ALLOCATED; 3082 3083 memcg_deactivate_kmem_caches(memcg); 3084 3085 kmemcg_id = memcg->kmemcg_id; 3086 BUG_ON(kmemcg_id < 0); 3087 3088 parent = parent_mem_cgroup(memcg); 3089 if (!parent) 3090 parent = root_mem_cgroup; 3091 3092 /* 3093 * Change kmemcg_id of this cgroup and all its descendants to the 3094 * parent's id, and then move all entries from this cgroup's list_lrus 3095 * to ones of the parent. After we have finished, all list_lrus 3096 * corresponding to this cgroup are guaranteed to remain empty. The 3097 * ordering is imposed by list_lru_node->lock taken by 3098 * memcg_drain_all_list_lrus(). 3099 */ 3100 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */ 3101 css_for_each_descendant_pre(css, &memcg->css) { 3102 child = mem_cgroup_from_css(css); 3103 BUG_ON(child->kmemcg_id != kmemcg_id); 3104 child->kmemcg_id = parent->kmemcg_id; 3105 if (!memcg->use_hierarchy) 3106 break; 3107 } 3108 rcu_read_unlock(); 3109 3110 memcg_drain_all_list_lrus(kmemcg_id, parent); 3111 3112 memcg_free_cache_id(kmemcg_id); 3113 } 3114 3115 static void memcg_free_kmem(struct mem_cgroup *memcg) 3116 { 3117 /* css_alloc() failed, offlining didn't happen */ 3118 if (unlikely(memcg->kmem_state == KMEM_ONLINE)) 3119 memcg_offline_kmem(memcg); 3120 3121 if (memcg->kmem_state == KMEM_ALLOCATED) { 3122 memcg_destroy_kmem_caches(memcg); 3123 static_branch_dec(&memcg_kmem_enabled_key); 3124 WARN_ON(page_counter_read(&memcg->kmem)); 3125 } 3126 } 3127 #else 3128 static int memcg_online_kmem(struct mem_cgroup *memcg) 3129 { 3130 return 0; 3131 } 3132 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3133 { 3134 } 3135 static void memcg_free_kmem(struct mem_cgroup *memcg) 3136 { 3137 } 3138 #endif /* CONFIG_MEMCG_KMEM */ 3139 3140 static int memcg_update_kmem_max(struct mem_cgroup *memcg, 3141 unsigned long max) 3142 { 3143 int ret; 3144 3145 mutex_lock(&memcg_max_mutex); 3146 ret = page_counter_set_max(&memcg->kmem, max); 3147 mutex_unlock(&memcg_max_mutex); 3148 return ret; 3149 } 3150 3151 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max) 3152 { 3153 int ret; 3154 3155 mutex_lock(&memcg_max_mutex); 3156 3157 ret = page_counter_set_max(&memcg->tcpmem, max); 3158 if (ret) 3159 goto out; 3160 3161 if (!memcg->tcpmem_active) { 3162 /* 3163 * The active flag needs to be written after the static_key 3164 * update. This is what guarantees that the socket activation 3165 * function is the last one to run. See mem_cgroup_sk_alloc() 3166 * for details, and note that we don't mark any socket as 3167 * belonging to this memcg until that flag is up. 3168 * 3169 * We need to do this, because static_keys will span multiple 3170 * sites, but we can't control their order. If we mark a socket 3171 * as accounted, but the accounting functions are not patched in 3172 * yet, we'll lose accounting. 3173 * 3174 * We never race with the readers in mem_cgroup_sk_alloc(), 3175 * because when this value change, the code to process it is not 3176 * patched in yet. 3177 */ 3178 static_branch_inc(&memcg_sockets_enabled_key); 3179 memcg->tcpmem_active = true; 3180 } 3181 out: 3182 mutex_unlock(&memcg_max_mutex); 3183 return ret; 3184 } 3185 3186 /* 3187 * The user of this function is... 3188 * RES_LIMIT. 3189 */ 3190 static ssize_t mem_cgroup_write(struct kernfs_open_file *of, 3191 char *buf, size_t nbytes, loff_t off) 3192 { 3193 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3194 unsigned long nr_pages; 3195 int ret; 3196 3197 buf = strstrip(buf); 3198 ret = page_counter_memparse(buf, "-1", &nr_pages); 3199 if (ret) 3200 return ret; 3201 3202 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3203 case RES_LIMIT: 3204 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 3205 ret = -EINVAL; 3206 break; 3207 } 3208 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3209 case _MEM: 3210 ret = mem_cgroup_resize_max(memcg, nr_pages, false); 3211 break; 3212 case _MEMSWAP: 3213 ret = mem_cgroup_resize_max(memcg, nr_pages, true); 3214 break; 3215 case _KMEM: 3216 ret = memcg_update_kmem_max(memcg, nr_pages); 3217 break; 3218 case _TCP: 3219 ret = memcg_update_tcp_max(memcg, nr_pages); 3220 break; 3221 } 3222 break; 3223 case RES_SOFT_LIMIT: 3224 memcg->soft_limit = nr_pages; 3225 ret = 0; 3226 break; 3227 } 3228 return ret ?: nbytes; 3229 } 3230 3231 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf, 3232 size_t nbytes, loff_t off) 3233 { 3234 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3235 struct page_counter *counter; 3236 3237 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3238 case _MEM: 3239 counter = &memcg->memory; 3240 break; 3241 case _MEMSWAP: 3242 counter = &memcg->memsw; 3243 break; 3244 case _KMEM: 3245 counter = &memcg->kmem; 3246 break; 3247 case _TCP: 3248 counter = &memcg->tcpmem; 3249 break; 3250 default: 3251 BUG(); 3252 } 3253 3254 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3255 case RES_MAX_USAGE: 3256 page_counter_reset_watermark(counter); 3257 break; 3258 case RES_FAILCNT: 3259 counter->failcnt = 0; 3260 break; 3261 default: 3262 BUG(); 3263 } 3264 3265 return nbytes; 3266 } 3267 3268 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, 3269 struct cftype *cft) 3270 { 3271 return mem_cgroup_from_css(css)->move_charge_at_immigrate; 3272 } 3273 3274 #ifdef CONFIG_MMU 3275 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3276 struct cftype *cft, u64 val) 3277 { 3278 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3279 3280 if (val & ~MOVE_MASK) 3281 return -EINVAL; 3282 3283 /* 3284 * No kind of locking is needed in here, because ->can_attach() will 3285 * check this value once in the beginning of the process, and then carry 3286 * on with stale data. This means that changes to this value will only 3287 * affect task migrations starting after the change. 3288 */ 3289 memcg->move_charge_at_immigrate = val; 3290 return 0; 3291 } 3292 #else 3293 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3294 struct cftype *cft, u64 val) 3295 { 3296 return -ENOSYS; 3297 } 3298 #endif 3299 3300 #ifdef CONFIG_NUMA 3301 static int memcg_numa_stat_show(struct seq_file *m, void *v) 3302 { 3303 struct numa_stat { 3304 const char *name; 3305 unsigned int lru_mask; 3306 }; 3307 3308 static const struct numa_stat stats[] = { 3309 { "total", LRU_ALL }, 3310 { "file", LRU_ALL_FILE }, 3311 { "anon", LRU_ALL_ANON }, 3312 { "unevictable", BIT(LRU_UNEVICTABLE) }, 3313 }; 3314 const struct numa_stat *stat; 3315 int nid; 3316 unsigned long nr; 3317 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 3318 3319 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3320 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask); 3321 seq_printf(m, "%s=%lu", stat->name, nr); 3322 for_each_node_state(nid, N_MEMORY) { 3323 nr = mem_cgroup_node_nr_lru_pages(memcg, nid, 3324 stat->lru_mask); 3325 seq_printf(m, " N%d=%lu", nid, nr); 3326 } 3327 seq_putc(m, '\n'); 3328 } 3329 3330 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3331 struct mem_cgroup *iter; 3332 3333 nr = 0; 3334 for_each_mem_cgroup_tree(iter, memcg) 3335 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask); 3336 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr); 3337 for_each_node_state(nid, N_MEMORY) { 3338 nr = 0; 3339 for_each_mem_cgroup_tree(iter, memcg) 3340 nr += mem_cgroup_node_nr_lru_pages( 3341 iter, nid, stat->lru_mask); 3342 seq_printf(m, " N%d=%lu", nid, nr); 3343 } 3344 seq_putc(m, '\n'); 3345 } 3346 3347 return 0; 3348 } 3349 #endif /* CONFIG_NUMA */ 3350 3351 /* Universal VM events cgroup1 shows, original sort order */ 3352 static const unsigned int memcg1_events[] = { 3353 PGPGIN, 3354 PGPGOUT, 3355 PGFAULT, 3356 PGMAJFAULT, 3357 }; 3358 3359 static const char *const memcg1_event_names[] = { 3360 "pgpgin", 3361 "pgpgout", 3362 "pgfault", 3363 "pgmajfault", 3364 }; 3365 3366 static int memcg_stat_show(struct seq_file *m, void *v) 3367 { 3368 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 3369 unsigned long memory, memsw; 3370 struct mem_cgroup *mi; 3371 unsigned int i; 3372 struct accumulated_stats acc; 3373 3374 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats)); 3375 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS); 3376 3377 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 3378 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 3379 continue; 3380 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], 3381 memcg_page_state(memcg, memcg1_stats[i]) * 3382 PAGE_SIZE); 3383 } 3384 3385 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 3386 seq_printf(m, "%s %lu\n", memcg1_event_names[i], 3387 memcg_sum_events(memcg, memcg1_events[i])); 3388 3389 for (i = 0; i < NR_LRU_LISTS; i++) 3390 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i], 3391 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE); 3392 3393 /* Hierarchical information */ 3394 memory = memsw = PAGE_COUNTER_MAX; 3395 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) { 3396 memory = min(memory, mi->memory.max); 3397 memsw = min(memsw, mi->memsw.max); 3398 } 3399 seq_printf(m, "hierarchical_memory_limit %llu\n", 3400 (u64)memory * PAGE_SIZE); 3401 if (do_memsw_account()) 3402 seq_printf(m, "hierarchical_memsw_limit %llu\n", 3403 (u64)memsw * PAGE_SIZE); 3404 3405 memset(&acc, 0, sizeof(acc)); 3406 acc.stats_size = ARRAY_SIZE(memcg1_stats); 3407 acc.stats_array = memcg1_stats; 3408 acc.events_size = ARRAY_SIZE(memcg1_events); 3409 acc.events_array = memcg1_events; 3410 accumulate_memcg_tree(memcg, &acc); 3411 3412 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 3413 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 3414 continue; 3415 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], 3416 (u64)acc.stat[i] * PAGE_SIZE); 3417 } 3418 3419 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 3420 seq_printf(m, "total_%s %llu\n", memcg1_event_names[i], 3421 (u64)acc.events[i]); 3422 3423 for (i = 0; i < NR_LRU_LISTS; i++) 3424 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], 3425 (u64)acc.lru_pages[i] * PAGE_SIZE); 3426 3427 #ifdef CONFIG_DEBUG_VM 3428 { 3429 pg_data_t *pgdat; 3430 struct mem_cgroup_per_node *mz; 3431 struct zone_reclaim_stat *rstat; 3432 unsigned long recent_rotated[2] = {0, 0}; 3433 unsigned long recent_scanned[2] = {0, 0}; 3434 3435 for_each_online_pgdat(pgdat) { 3436 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 3437 rstat = &mz->lruvec.reclaim_stat; 3438 3439 recent_rotated[0] += rstat->recent_rotated[0]; 3440 recent_rotated[1] += rstat->recent_rotated[1]; 3441 recent_scanned[0] += rstat->recent_scanned[0]; 3442 recent_scanned[1] += rstat->recent_scanned[1]; 3443 } 3444 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]); 3445 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]); 3446 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]); 3447 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]); 3448 } 3449 #endif 3450 3451 return 0; 3452 } 3453 3454 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, 3455 struct cftype *cft) 3456 { 3457 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3458 3459 return mem_cgroup_swappiness(memcg); 3460 } 3461 3462 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, 3463 struct cftype *cft, u64 val) 3464 { 3465 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3466 3467 if (val > 100) 3468 return -EINVAL; 3469 3470 if (css->parent) 3471 memcg->swappiness = val; 3472 else 3473 vm_swappiness = val; 3474 3475 return 0; 3476 } 3477 3478 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 3479 { 3480 struct mem_cgroup_threshold_ary *t; 3481 unsigned long usage; 3482 int i; 3483 3484 rcu_read_lock(); 3485 if (!swap) 3486 t = rcu_dereference(memcg->thresholds.primary); 3487 else 3488 t = rcu_dereference(memcg->memsw_thresholds.primary); 3489 3490 if (!t) 3491 goto unlock; 3492 3493 usage = mem_cgroup_usage(memcg, swap); 3494 3495 /* 3496 * current_threshold points to threshold just below or equal to usage. 3497 * If it's not true, a threshold was crossed after last 3498 * call of __mem_cgroup_threshold(). 3499 */ 3500 i = t->current_threshold; 3501 3502 /* 3503 * Iterate backward over array of thresholds starting from 3504 * current_threshold and check if a threshold is crossed. 3505 * If none of thresholds below usage is crossed, we read 3506 * only one element of the array here. 3507 */ 3508 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 3509 eventfd_signal(t->entries[i].eventfd, 1); 3510 3511 /* i = current_threshold + 1 */ 3512 i++; 3513 3514 /* 3515 * Iterate forward over array of thresholds starting from 3516 * current_threshold+1 and check if a threshold is crossed. 3517 * If none of thresholds above usage is crossed, we read 3518 * only one element of the array here. 3519 */ 3520 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 3521 eventfd_signal(t->entries[i].eventfd, 1); 3522 3523 /* Update current_threshold */ 3524 t->current_threshold = i - 1; 3525 unlock: 3526 rcu_read_unlock(); 3527 } 3528 3529 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 3530 { 3531 while (memcg) { 3532 __mem_cgroup_threshold(memcg, false); 3533 if (do_memsw_account()) 3534 __mem_cgroup_threshold(memcg, true); 3535 3536 memcg = parent_mem_cgroup(memcg); 3537 } 3538 } 3539 3540 static int compare_thresholds(const void *a, const void *b) 3541 { 3542 const struct mem_cgroup_threshold *_a = a; 3543 const struct mem_cgroup_threshold *_b = b; 3544 3545 if (_a->threshold > _b->threshold) 3546 return 1; 3547 3548 if (_a->threshold < _b->threshold) 3549 return -1; 3550 3551 return 0; 3552 } 3553 3554 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 3555 { 3556 struct mem_cgroup_eventfd_list *ev; 3557 3558 spin_lock(&memcg_oom_lock); 3559 3560 list_for_each_entry(ev, &memcg->oom_notify, list) 3561 eventfd_signal(ev->eventfd, 1); 3562 3563 spin_unlock(&memcg_oom_lock); 3564 return 0; 3565 } 3566 3567 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 3568 { 3569 struct mem_cgroup *iter; 3570 3571 for_each_mem_cgroup_tree(iter, memcg) 3572 mem_cgroup_oom_notify_cb(iter); 3573 } 3574 3575 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 3576 struct eventfd_ctx *eventfd, const char *args, enum res_type type) 3577 { 3578 struct mem_cgroup_thresholds *thresholds; 3579 struct mem_cgroup_threshold_ary *new; 3580 unsigned long threshold; 3581 unsigned long usage; 3582 int i, size, ret; 3583 3584 ret = page_counter_memparse(args, "-1", &threshold); 3585 if (ret) 3586 return ret; 3587 3588 mutex_lock(&memcg->thresholds_lock); 3589 3590 if (type == _MEM) { 3591 thresholds = &memcg->thresholds; 3592 usage = mem_cgroup_usage(memcg, false); 3593 } else if (type == _MEMSWAP) { 3594 thresholds = &memcg->memsw_thresholds; 3595 usage = mem_cgroup_usage(memcg, true); 3596 } else 3597 BUG(); 3598 3599 /* Check if a threshold crossed before adding a new one */ 3600 if (thresholds->primary) 3601 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 3602 3603 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 3604 3605 /* Allocate memory for new array of thresholds */ 3606 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold), 3607 GFP_KERNEL); 3608 if (!new) { 3609 ret = -ENOMEM; 3610 goto unlock; 3611 } 3612 new->size = size; 3613 3614 /* Copy thresholds (if any) to new array */ 3615 if (thresholds->primary) { 3616 memcpy(new->entries, thresholds->primary->entries, (size - 1) * 3617 sizeof(struct mem_cgroup_threshold)); 3618 } 3619 3620 /* Add new threshold */ 3621 new->entries[size - 1].eventfd = eventfd; 3622 new->entries[size - 1].threshold = threshold; 3623 3624 /* Sort thresholds. Registering of new threshold isn't time-critical */ 3625 sort(new->entries, size, sizeof(struct mem_cgroup_threshold), 3626 compare_thresholds, NULL); 3627 3628 /* Find current threshold */ 3629 new->current_threshold = -1; 3630 for (i = 0; i < size; i++) { 3631 if (new->entries[i].threshold <= usage) { 3632 /* 3633 * new->current_threshold will not be used until 3634 * rcu_assign_pointer(), so it's safe to increment 3635 * it here. 3636 */ 3637 ++new->current_threshold; 3638 } else 3639 break; 3640 } 3641 3642 /* Free old spare buffer and save old primary buffer as spare */ 3643 kfree(thresholds->spare); 3644 thresholds->spare = thresholds->primary; 3645 3646 rcu_assign_pointer(thresholds->primary, new); 3647 3648 /* To be sure that nobody uses thresholds */ 3649 synchronize_rcu(); 3650 3651 unlock: 3652 mutex_unlock(&memcg->thresholds_lock); 3653 3654 return ret; 3655 } 3656 3657 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 3658 struct eventfd_ctx *eventfd, const char *args) 3659 { 3660 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM); 3661 } 3662 3663 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg, 3664 struct eventfd_ctx *eventfd, const char *args) 3665 { 3666 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP); 3667 } 3668 3669 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 3670 struct eventfd_ctx *eventfd, enum res_type type) 3671 { 3672 struct mem_cgroup_thresholds *thresholds; 3673 struct mem_cgroup_threshold_ary *new; 3674 unsigned long usage; 3675 int i, j, size; 3676 3677 mutex_lock(&memcg->thresholds_lock); 3678 3679 if (type == _MEM) { 3680 thresholds = &memcg->thresholds; 3681 usage = mem_cgroup_usage(memcg, false); 3682 } else if (type == _MEMSWAP) { 3683 thresholds = &memcg->memsw_thresholds; 3684 usage = mem_cgroup_usage(memcg, true); 3685 } else 3686 BUG(); 3687 3688 if (!thresholds->primary) 3689 goto unlock; 3690 3691 /* Check if a threshold crossed before removing */ 3692 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 3693 3694 /* Calculate new number of threshold */ 3695 size = 0; 3696 for (i = 0; i < thresholds->primary->size; i++) { 3697 if (thresholds->primary->entries[i].eventfd != eventfd) 3698 size++; 3699 } 3700 3701 new = thresholds->spare; 3702 3703 /* Set thresholds array to NULL if we don't have thresholds */ 3704 if (!size) { 3705 kfree(new); 3706 new = NULL; 3707 goto swap_buffers; 3708 } 3709 3710 new->size = size; 3711 3712 /* Copy thresholds and find current threshold */ 3713 new->current_threshold = -1; 3714 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 3715 if (thresholds->primary->entries[i].eventfd == eventfd) 3716 continue; 3717 3718 new->entries[j] = thresholds->primary->entries[i]; 3719 if (new->entries[j].threshold <= usage) { 3720 /* 3721 * new->current_threshold will not be used 3722 * until rcu_assign_pointer(), so it's safe to increment 3723 * it here. 3724 */ 3725 ++new->current_threshold; 3726 } 3727 j++; 3728 } 3729 3730 swap_buffers: 3731 /* Swap primary and spare array */ 3732 thresholds->spare = thresholds->primary; 3733 3734 rcu_assign_pointer(thresholds->primary, new); 3735 3736 /* To be sure that nobody uses thresholds */ 3737 synchronize_rcu(); 3738 3739 /* If all events are unregistered, free the spare array */ 3740 if (!new) { 3741 kfree(thresholds->spare); 3742 thresholds->spare = NULL; 3743 } 3744 unlock: 3745 mutex_unlock(&memcg->thresholds_lock); 3746 } 3747 3748 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 3749 struct eventfd_ctx *eventfd) 3750 { 3751 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM); 3752 } 3753 3754 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 3755 struct eventfd_ctx *eventfd) 3756 { 3757 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP); 3758 } 3759 3760 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg, 3761 struct eventfd_ctx *eventfd, const char *args) 3762 { 3763 struct mem_cgroup_eventfd_list *event; 3764 3765 event = kmalloc(sizeof(*event), GFP_KERNEL); 3766 if (!event) 3767 return -ENOMEM; 3768 3769 spin_lock(&memcg_oom_lock); 3770 3771 event->eventfd = eventfd; 3772 list_add(&event->list, &memcg->oom_notify); 3773 3774 /* already in OOM ? */ 3775 if (memcg->under_oom) 3776 eventfd_signal(eventfd, 1); 3777 spin_unlock(&memcg_oom_lock); 3778 3779 return 0; 3780 } 3781 3782 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg, 3783 struct eventfd_ctx *eventfd) 3784 { 3785 struct mem_cgroup_eventfd_list *ev, *tmp; 3786 3787 spin_lock(&memcg_oom_lock); 3788 3789 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 3790 if (ev->eventfd == eventfd) { 3791 list_del(&ev->list); 3792 kfree(ev); 3793 } 3794 } 3795 3796 spin_unlock(&memcg_oom_lock); 3797 } 3798 3799 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v) 3800 { 3801 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf)); 3802 3803 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable); 3804 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom); 3805 seq_printf(sf, "oom_kill %lu\n", 3806 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL])); 3807 return 0; 3808 } 3809 3810 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, 3811 struct cftype *cft, u64 val) 3812 { 3813 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3814 3815 /* cannot set to root cgroup and only 0 and 1 are allowed */ 3816 if (!css->parent || !((val == 0) || (val == 1))) 3817 return -EINVAL; 3818 3819 memcg->oom_kill_disable = val; 3820 if (!val) 3821 memcg_oom_recover(memcg); 3822 3823 return 0; 3824 } 3825 3826 #ifdef CONFIG_CGROUP_WRITEBACK 3827 3828 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 3829 { 3830 return wb_domain_init(&memcg->cgwb_domain, gfp); 3831 } 3832 3833 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 3834 { 3835 wb_domain_exit(&memcg->cgwb_domain); 3836 } 3837 3838 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 3839 { 3840 wb_domain_size_changed(&memcg->cgwb_domain); 3841 } 3842 3843 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 3844 { 3845 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3846 3847 if (!memcg->css.parent) 3848 return NULL; 3849 3850 return &memcg->cgwb_domain; 3851 } 3852 3853 /** 3854 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg 3855 * @wb: bdi_writeback in question 3856 * @pfilepages: out parameter for number of file pages 3857 * @pheadroom: out parameter for number of allocatable pages according to memcg 3858 * @pdirty: out parameter for number of dirty pages 3859 * @pwriteback: out parameter for number of pages under writeback 3860 * 3861 * Determine the numbers of file, headroom, dirty, and writeback pages in 3862 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom 3863 * is a bit more involved. 3864 * 3865 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the 3866 * headroom is calculated as the lowest headroom of itself and the 3867 * ancestors. Note that this doesn't consider the actual amount of 3868 * available memory in the system. The caller should further cap 3869 * *@pheadroom accordingly. 3870 */ 3871 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 3872 unsigned long *pheadroom, unsigned long *pdirty, 3873 unsigned long *pwriteback) 3874 { 3875 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3876 struct mem_cgroup *parent; 3877 3878 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY); 3879 3880 /* this should eventually include NR_UNSTABLE_NFS */ 3881 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK); 3882 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) | 3883 (1 << LRU_ACTIVE_FILE)); 3884 *pheadroom = PAGE_COUNTER_MAX; 3885 3886 while ((parent = parent_mem_cgroup(memcg))) { 3887 unsigned long ceiling = min(memcg->memory.max, memcg->high); 3888 unsigned long used = page_counter_read(&memcg->memory); 3889 3890 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); 3891 memcg = parent; 3892 } 3893 } 3894 3895 #else /* CONFIG_CGROUP_WRITEBACK */ 3896 3897 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 3898 { 3899 return 0; 3900 } 3901 3902 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 3903 { 3904 } 3905 3906 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 3907 { 3908 } 3909 3910 #endif /* CONFIG_CGROUP_WRITEBACK */ 3911 3912 /* 3913 * DO NOT USE IN NEW FILES. 3914 * 3915 * "cgroup.event_control" implementation. 3916 * 3917 * This is way over-engineered. It tries to support fully configurable 3918 * events for each user. Such level of flexibility is completely 3919 * unnecessary especially in the light of the planned unified hierarchy. 3920 * 3921 * Please deprecate this and replace with something simpler if at all 3922 * possible. 3923 */ 3924 3925 /* 3926 * Unregister event and free resources. 3927 * 3928 * Gets called from workqueue. 3929 */ 3930 static void memcg_event_remove(struct work_struct *work) 3931 { 3932 struct mem_cgroup_event *event = 3933 container_of(work, struct mem_cgroup_event, remove); 3934 struct mem_cgroup *memcg = event->memcg; 3935 3936 remove_wait_queue(event->wqh, &event->wait); 3937 3938 event->unregister_event(memcg, event->eventfd); 3939 3940 /* Notify userspace the event is going away. */ 3941 eventfd_signal(event->eventfd, 1); 3942 3943 eventfd_ctx_put(event->eventfd); 3944 kfree(event); 3945 css_put(&memcg->css); 3946 } 3947 3948 /* 3949 * Gets called on EPOLLHUP on eventfd when user closes it. 3950 * 3951 * Called with wqh->lock held and interrupts disabled. 3952 */ 3953 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode, 3954 int sync, void *key) 3955 { 3956 struct mem_cgroup_event *event = 3957 container_of(wait, struct mem_cgroup_event, wait); 3958 struct mem_cgroup *memcg = event->memcg; 3959 __poll_t flags = key_to_poll(key); 3960 3961 if (flags & EPOLLHUP) { 3962 /* 3963 * If the event has been detached at cgroup removal, we 3964 * can simply return knowing the other side will cleanup 3965 * for us. 3966 * 3967 * We can't race against event freeing since the other 3968 * side will require wqh->lock via remove_wait_queue(), 3969 * which we hold. 3970 */ 3971 spin_lock(&memcg->event_list_lock); 3972 if (!list_empty(&event->list)) { 3973 list_del_init(&event->list); 3974 /* 3975 * We are in atomic context, but cgroup_event_remove() 3976 * may sleep, so we have to call it in workqueue. 3977 */ 3978 schedule_work(&event->remove); 3979 } 3980 spin_unlock(&memcg->event_list_lock); 3981 } 3982 3983 return 0; 3984 } 3985 3986 static void memcg_event_ptable_queue_proc(struct file *file, 3987 wait_queue_head_t *wqh, poll_table *pt) 3988 { 3989 struct mem_cgroup_event *event = 3990 container_of(pt, struct mem_cgroup_event, pt); 3991 3992 event->wqh = wqh; 3993 add_wait_queue(wqh, &event->wait); 3994 } 3995 3996 /* 3997 * DO NOT USE IN NEW FILES. 3998 * 3999 * Parse input and register new cgroup event handler. 4000 * 4001 * Input must be in format '<event_fd> <control_fd> <args>'. 4002 * Interpretation of args is defined by control file implementation. 4003 */ 4004 static ssize_t memcg_write_event_control(struct kernfs_open_file *of, 4005 char *buf, size_t nbytes, loff_t off) 4006 { 4007 struct cgroup_subsys_state *css = of_css(of); 4008 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4009 struct mem_cgroup_event *event; 4010 struct cgroup_subsys_state *cfile_css; 4011 unsigned int efd, cfd; 4012 struct fd efile; 4013 struct fd cfile; 4014 const char *name; 4015 char *endp; 4016 int ret; 4017 4018 buf = strstrip(buf); 4019 4020 efd = simple_strtoul(buf, &endp, 10); 4021 if (*endp != ' ') 4022 return -EINVAL; 4023 buf = endp + 1; 4024 4025 cfd = simple_strtoul(buf, &endp, 10); 4026 if ((*endp != ' ') && (*endp != '\0')) 4027 return -EINVAL; 4028 buf = endp + 1; 4029 4030 event = kzalloc(sizeof(*event), GFP_KERNEL); 4031 if (!event) 4032 return -ENOMEM; 4033 4034 event->memcg = memcg; 4035 INIT_LIST_HEAD(&event->list); 4036 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc); 4037 init_waitqueue_func_entry(&event->wait, memcg_event_wake); 4038 INIT_WORK(&event->remove, memcg_event_remove); 4039 4040 efile = fdget(efd); 4041 if (!efile.file) { 4042 ret = -EBADF; 4043 goto out_kfree; 4044 } 4045 4046 event->eventfd = eventfd_ctx_fileget(efile.file); 4047 if (IS_ERR(event->eventfd)) { 4048 ret = PTR_ERR(event->eventfd); 4049 goto out_put_efile; 4050 } 4051 4052 cfile = fdget(cfd); 4053 if (!cfile.file) { 4054 ret = -EBADF; 4055 goto out_put_eventfd; 4056 } 4057 4058 /* the process need read permission on control file */ 4059 /* AV: shouldn't we check that it's been opened for read instead? */ 4060 ret = inode_permission(file_inode(cfile.file), MAY_READ); 4061 if (ret < 0) 4062 goto out_put_cfile; 4063 4064 /* 4065 * Determine the event callbacks and set them in @event. This used 4066 * to be done via struct cftype but cgroup core no longer knows 4067 * about these events. The following is crude but the whole thing 4068 * is for compatibility anyway. 4069 * 4070 * DO NOT ADD NEW FILES. 4071 */ 4072 name = cfile.file->f_path.dentry->d_name.name; 4073 4074 if (!strcmp(name, "memory.usage_in_bytes")) { 4075 event->register_event = mem_cgroup_usage_register_event; 4076 event->unregister_event = mem_cgroup_usage_unregister_event; 4077 } else if (!strcmp(name, "memory.oom_control")) { 4078 event->register_event = mem_cgroup_oom_register_event; 4079 event->unregister_event = mem_cgroup_oom_unregister_event; 4080 } else if (!strcmp(name, "memory.pressure_level")) { 4081 event->register_event = vmpressure_register_event; 4082 event->unregister_event = vmpressure_unregister_event; 4083 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) { 4084 event->register_event = memsw_cgroup_usage_register_event; 4085 event->unregister_event = memsw_cgroup_usage_unregister_event; 4086 } else { 4087 ret = -EINVAL; 4088 goto out_put_cfile; 4089 } 4090 4091 /* 4092 * Verify @cfile should belong to @css. Also, remaining events are 4093 * automatically removed on cgroup destruction but the removal is 4094 * asynchronous, so take an extra ref on @css. 4095 */ 4096 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent, 4097 &memory_cgrp_subsys); 4098 ret = -EINVAL; 4099 if (IS_ERR(cfile_css)) 4100 goto out_put_cfile; 4101 if (cfile_css != css) { 4102 css_put(cfile_css); 4103 goto out_put_cfile; 4104 } 4105 4106 ret = event->register_event(memcg, event->eventfd, buf); 4107 if (ret) 4108 goto out_put_css; 4109 4110 vfs_poll(efile.file, &event->pt); 4111 4112 spin_lock(&memcg->event_list_lock); 4113 list_add(&event->list, &memcg->event_list); 4114 spin_unlock(&memcg->event_list_lock); 4115 4116 fdput(cfile); 4117 fdput(efile); 4118 4119 return nbytes; 4120 4121 out_put_css: 4122 css_put(css); 4123 out_put_cfile: 4124 fdput(cfile); 4125 out_put_eventfd: 4126 eventfd_ctx_put(event->eventfd); 4127 out_put_efile: 4128 fdput(efile); 4129 out_kfree: 4130 kfree(event); 4131 4132 return ret; 4133 } 4134 4135 static struct cftype mem_cgroup_legacy_files[] = { 4136 { 4137 .name = "usage_in_bytes", 4138 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 4139 .read_u64 = mem_cgroup_read_u64, 4140 }, 4141 { 4142 .name = "max_usage_in_bytes", 4143 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 4144 .write = mem_cgroup_reset, 4145 .read_u64 = mem_cgroup_read_u64, 4146 }, 4147 { 4148 .name = "limit_in_bytes", 4149 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 4150 .write = mem_cgroup_write, 4151 .read_u64 = mem_cgroup_read_u64, 4152 }, 4153 { 4154 .name = "soft_limit_in_bytes", 4155 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 4156 .write = mem_cgroup_write, 4157 .read_u64 = mem_cgroup_read_u64, 4158 }, 4159 { 4160 .name = "failcnt", 4161 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 4162 .write = mem_cgroup_reset, 4163 .read_u64 = mem_cgroup_read_u64, 4164 }, 4165 { 4166 .name = "stat", 4167 .seq_show = memcg_stat_show, 4168 }, 4169 { 4170 .name = "force_empty", 4171 .write = mem_cgroup_force_empty_write, 4172 }, 4173 { 4174 .name = "use_hierarchy", 4175 .write_u64 = mem_cgroup_hierarchy_write, 4176 .read_u64 = mem_cgroup_hierarchy_read, 4177 }, 4178 { 4179 .name = "cgroup.event_control", /* XXX: for compat */ 4180 .write = memcg_write_event_control, 4181 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE, 4182 }, 4183 { 4184 .name = "swappiness", 4185 .read_u64 = mem_cgroup_swappiness_read, 4186 .write_u64 = mem_cgroup_swappiness_write, 4187 }, 4188 { 4189 .name = "move_charge_at_immigrate", 4190 .read_u64 = mem_cgroup_move_charge_read, 4191 .write_u64 = mem_cgroup_move_charge_write, 4192 }, 4193 { 4194 .name = "oom_control", 4195 .seq_show = mem_cgroup_oom_control_read, 4196 .write_u64 = mem_cgroup_oom_control_write, 4197 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), 4198 }, 4199 { 4200 .name = "pressure_level", 4201 }, 4202 #ifdef CONFIG_NUMA 4203 { 4204 .name = "numa_stat", 4205 .seq_show = memcg_numa_stat_show, 4206 }, 4207 #endif 4208 { 4209 .name = "kmem.limit_in_bytes", 4210 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), 4211 .write = mem_cgroup_write, 4212 .read_u64 = mem_cgroup_read_u64, 4213 }, 4214 { 4215 .name = "kmem.usage_in_bytes", 4216 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), 4217 .read_u64 = mem_cgroup_read_u64, 4218 }, 4219 { 4220 .name = "kmem.failcnt", 4221 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), 4222 .write = mem_cgroup_reset, 4223 .read_u64 = mem_cgroup_read_u64, 4224 }, 4225 { 4226 .name = "kmem.max_usage_in_bytes", 4227 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), 4228 .write = mem_cgroup_reset, 4229 .read_u64 = mem_cgroup_read_u64, 4230 }, 4231 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG) 4232 { 4233 .name = "kmem.slabinfo", 4234 .seq_start = memcg_slab_start, 4235 .seq_next = memcg_slab_next, 4236 .seq_stop = memcg_slab_stop, 4237 .seq_show = memcg_slab_show, 4238 }, 4239 #endif 4240 { 4241 .name = "kmem.tcp.limit_in_bytes", 4242 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT), 4243 .write = mem_cgroup_write, 4244 .read_u64 = mem_cgroup_read_u64, 4245 }, 4246 { 4247 .name = "kmem.tcp.usage_in_bytes", 4248 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE), 4249 .read_u64 = mem_cgroup_read_u64, 4250 }, 4251 { 4252 .name = "kmem.tcp.failcnt", 4253 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT), 4254 .write = mem_cgroup_reset, 4255 .read_u64 = mem_cgroup_read_u64, 4256 }, 4257 { 4258 .name = "kmem.tcp.max_usage_in_bytes", 4259 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE), 4260 .write = mem_cgroup_reset, 4261 .read_u64 = mem_cgroup_read_u64, 4262 }, 4263 { }, /* terminate */ 4264 }; 4265 4266 /* 4267 * Private memory cgroup IDR 4268 * 4269 * Swap-out records and page cache shadow entries need to store memcg 4270 * references in constrained space, so we maintain an ID space that is 4271 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of 4272 * memory-controlled cgroups to 64k. 4273 * 4274 * However, there usually are many references to the oflline CSS after 4275 * the cgroup has been destroyed, such as page cache or reclaimable 4276 * slab objects, that don't need to hang on to the ID. We want to keep 4277 * those dead CSS from occupying IDs, or we might quickly exhaust the 4278 * relatively small ID space and prevent the creation of new cgroups 4279 * even when there are much fewer than 64k cgroups - possibly none. 4280 * 4281 * Maintain a private 16-bit ID space for memcg, and allow the ID to 4282 * be freed and recycled when it's no longer needed, which is usually 4283 * when the CSS is offlined. 4284 * 4285 * The only exception to that are records of swapped out tmpfs/shmem 4286 * pages that need to be attributed to live ancestors on swapin. But 4287 * those references are manageable from userspace. 4288 */ 4289 4290 static DEFINE_IDR(mem_cgroup_idr); 4291 4292 static void mem_cgroup_id_remove(struct mem_cgroup *memcg) 4293 { 4294 if (memcg->id.id > 0) { 4295 idr_remove(&mem_cgroup_idr, memcg->id.id); 4296 memcg->id.id = 0; 4297 } 4298 } 4299 4300 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n) 4301 { 4302 refcount_add(n, &memcg->id.ref); 4303 } 4304 4305 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n) 4306 { 4307 if (refcount_sub_and_test(n, &memcg->id.ref)) { 4308 mem_cgroup_id_remove(memcg); 4309 4310 /* Memcg ID pins CSS */ 4311 css_put(&memcg->css); 4312 } 4313 } 4314 4315 static inline void mem_cgroup_id_get(struct mem_cgroup *memcg) 4316 { 4317 mem_cgroup_id_get_many(memcg, 1); 4318 } 4319 4320 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg) 4321 { 4322 mem_cgroup_id_put_many(memcg, 1); 4323 } 4324 4325 /** 4326 * mem_cgroup_from_id - look up a memcg from a memcg id 4327 * @id: the memcg id to look up 4328 * 4329 * Caller must hold rcu_read_lock(). 4330 */ 4331 struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 4332 { 4333 WARN_ON_ONCE(!rcu_read_lock_held()); 4334 return idr_find(&mem_cgroup_idr, id); 4335 } 4336 4337 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 4338 { 4339 struct mem_cgroup_per_node *pn; 4340 int tmp = node; 4341 /* 4342 * This routine is called against possible nodes. 4343 * But it's BUG to call kmalloc() against offline node. 4344 * 4345 * TODO: this routine can waste much memory for nodes which will 4346 * never be onlined. It's better to use memory hotplug callback 4347 * function. 4348 */ 4349 if (!node_state(node, N_NORMAL_MEMORY)) 4350 tmp = -1; 4351 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); 4352 if (!pn) 4353 return 1; 4354 4355 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat); 4356 if (!pn->lruvec_stat_cpu) { 4357 kfree(pn); 4358 return 1; 4359 } 4360 4361 lruvec_init(&pn->lruvec); 4362 pn->usage_in_excess = 0; 4363 pn->on_tree = false; 4364 pn->memcg = memcg; 4365 4366 memcg->nodeinfo[node] = pn; 4367 return 0; 4368 } 4369 4370 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 4371 { 4372 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node]; 4373 4374 if (!pn) 4375 return; 4376 4377 free_percpu(pn->lruvec_stat_cpu); 4378 kfree(pn); 4379 } 4380 4381 static void __mem_cgroup_free(struct mem_cgroup *memcg) 4382 { 4383 int node; 4384 4385 for_each_node(node) 4386 free_mem_cgroup_per_node_info(memcg, node); 4387 free_percpu(memcg->stat_cpu); 4388 kfree(memcg); 4389 } 4390 4391 static void mem_cgroup_free(struct mem_cgroup *memcg) 4392 { 4393 memcg_wb_domain_exit(memcg); 4394 __mem_cgroup_free(memcg); 4395 } 4396 4397 static struct mem_cgroup *mem_cgroup_alloc(void) 4398 { 4399 struct mem_cgroup *memcg; 4400 size_t size; 4401 int node; 4402 4403 size = sizeof(struct mem_cgroup); 4404 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *); 4405 4406 memcg = kzalloc(size, GFP_KERNEL); 4407 if (!memcg) 4408 return NULL; 4409 4410 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL, 4411 1, MEM_CGROUP_ID_MAX, 4412 GFP_KERNEL); 4413 if (memcg->id.id < 0) 4414 goto fail; 4415 4416 memcg->stat_cpu = alloc_percpu(struct mem_cgroup_stat_cpu); 4417 if (!memcg->stat_cpu) 4418 goto fail; 4419 4420 for_each_node(node) 4421 if (alloc_mem_cgroup_per_node_info(memcg, node)) 4422 goto fail; 4423 4424 if (memcg_wb_domain_init(memcg, GFP_KERNEL)) 4425 goto fail; 4426 4427 INIT_WORK(&memcg->high_work, high_work_func); 4428 memcg->last_scanned_node = MAX_NUMNODES; 4429 INIT_LIST_HEAD(&memcg->oom_notify); 4430 mutex_init(&memcg->thresholds_lock); 4431 spin_lock_init(&memcg->move_lock); 4432 vmpressure_init(&memcg->vmpressure); 4433 INIT_LIST_HEAD(&memcg->event_list); 4434 spin_lock_init(&memcg->event_list_lock); 4435 memcg->socket_pressure = jiffies; 4436 #ifdef CONFIG_MEMCG_KMEM 4437 memcg->kmemcg_id = -1; 4438 #endif 4439 #ifdef CONFIG_CGROUP_WRITEBACK 4440 INIT_LIST_HEAD(&memcg->cgwb_list); 4441 #endif 4442 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id); 4443 return memcg; 4444 fail: 4445 mem_cgroup_id_remove(memcg); 4446 __mem_cgroup_free(memcg); 4447 return NULL; 4448 } 4449 4450 static struct cgroup_subsys_state * __ref 4451 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 4452 { 4453 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); 4454 struct mem_cgroup *memcg; 4455 long error = -ENOMEM; 4456 4457 memcg = mem_cgroup_alloc(); 4458 if (!memcg) 4459 return ERR_PTR(error); 4460 4461 memcg->high = PAGE_COUNTER_MAX; 4462 memcg->soft_limit = PAGE_COUNTER_MAX; 4463 if (parent) { 4464 memcg->swappiness = mem_cgroup_swappiness(parent); 4465 memcg->oom_kill_disable = parent->oom_kill_disable; 4466 } 4467 if (parent && parent->use_hierarchy) { 4468 memcg->use_hierarchy = true; 4469 page_counter_init(&memcg->memory, &parent->memory); 4470 page_counter_init(&memcg->swap, &parent->swap); 4471 page_counter_init(&memcg->memsw, &parent->memsw); 4472 page_counter_init(&memcg->kmem, &parent->kmem); 4473 page_counter_init(&memcg->tcpmem, &parent->tcpmem); 4474 } else { 4475 page_counter_init(&memcg->memory, NULL); 4476 page_counter_init(&memcg->swap, NULL); 4477 page_counter_init(&memcg->memsw, NULL); 4478 page_counter_init(&memcg->kmem, NULL); 4479 page_counter_init(&memcg->tcpmem, NULL); 4480 /* 4481 * Deeper hierachy with use_hierarchy == false doesn't make 4482 * much sense so let cgroup subsystem know about this 4483 * unfortunate state in our controller. 4484 */ 4485 if (parent != root_mem_cgroup) 4486 memory_cgrp_subsys.broken_hierarchy = true; 4487 } 4488 4489 /* The following stuff does not apply to the root */ 4490 if (!parent) { 4491 root_mem_cgroup = memcg; 4492 return &memcg->css; 4493 } 4494 4495 error = memcg_online_kmem(memcg); 4496 if (error) 4497 goto fail; 4498 4499 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 4500 static_branch_inc(&memcg_sockets_enabled_key); 4501 4502 return &memcg->css; 4503 fail: 4504 mem_cgroup_id_remove(memcg); 4505 mem_cgroup_free(memcg); 4506 return ERR_PTR(-ENOMEM); 4507 } 4508 4509 static int mem_cgroup_css_online(struct cgroup_subsys_state *css) 4510 { 4511 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4512 4513 /* 4514 * A memcg must be visible for memcg_expand_shrinker_maps() 4515 * by the time the maps are allocated. So, we allocate maps 4516 * here, when for_each_mem_cgroup() can't skip it. 4517 */ 4518 if (memcg_alloc_shrinker_maps(memcg)) { 4519 mem_cgroup_id_remove(memcg); 4520 return -ENOMEM; 4521 } 4522 4523 /* Online state pins memcg ID, memcg ID pins CSS */ 4524 refcount_set(&memcg->id.ref, 1); 4525 css_get(css); 4526 return 0; 4527 } 4528 4529 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 4530 { 4531 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4532 struct mem_cgroup_event *event, *tmp; 4533 4534 /* 4535 * Unregister events and notify userspace. 4536 * Notify userspace about cgroup removing only after rmdir of cgroup 4537 * directory to avoid race between userspace and kernelspace. 4538 */ 4539 spin_lock(&memcg->event_list_lock); 4540 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) { 4541 list_del_init(&event->list); 4542 schedule_work(&event->remove); 4543 } 4544 spin_unlock(&memcg->event_list_lock); 4545 4546 page_counter_set_min(&memcg->memory, 0); 4547 page_counter_set_low(&memcg->memory, 0); 4548 4549 memcg_offline_kmem(memcg); 4550 wb_memcg_offline(memcg); 4551 4552 drain_all_stock(memcg); 4553 4554 mem_cgroup_id_put(memcg); 4555 } 4556 4557 static void mem_cgroup_css_released(struct cgroup_subsys_state *css) 4558 { 4559 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4560 4561 invalidate_reclaim_iterators(memcg); 4562 } 4563 4564 static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 4565 { 4566 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4567 4568 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 4569 static_branch_dec(&memcg_sockets_enabled_key); 4570 4571 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active) 4572 static_branch_dec(&memcg_sockets_enabled_key); 4573 4574 vmpressure_cleanup(&memcg->vmpressure); 4575 cancel_work_sync(&memcg->high_work); 4576 mem_cgroup_remove_from_trees(memcg); 4577 memcg_free_shrinker_maps(memcg); 4578 memcg_free_kmem(memcg); 4579 mem_cgroup_free(memcg); 4580 } 4581 4582 /** 4583 * mem_cgroup_css_reset - reset the states of a mem_cgroup 4584 * @css: the target css 4585 * 4586 * Reset the states of the mem_cgroup associated with @css. This is 4587 * invoked when the userland requests disabling on the default hierarchy 4588 * but the memcg is pinned through dependency. The memcg should stop 4589 * applying policies and should revert to the vanilla state as it may be 4590 * made visible again. 4591 * 4592 * The current implementation only resets the essential configurations. 4593 * This needs to be expanded to cover all the visible parts. 4594 */ 4595 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) 4596 { 4597 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4598 4599 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX); 4600 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX); 4601 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX); 4602 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX); 4603 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX); 4604 page_counter_set_min(&memcg->memory, 0); 4605 page_counter_set_low(&memcg->memory, 0); 4606 memcg->high = PAGE_COUNTER_MAX; 4607 memcg->soft_limit = PAGE_COUNTER_MAX; 4608 memcg_wb_domain_size_changed(memcg); 4609 } 4610 4611 #ifdef CONFIG_MMU 4612 /* Handlers for move charge at task migration. */ 4613 static int mem_cgroup_do_precharge(unsigned long count) 4614 { 4615 int ret; 4616 4617 /* Try a single bulk charge without reclaim first, kswapd may wake */ 4618 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count); 4619 if (!ret) { 4620 mc.precharge += count; 4621 return ret; 4622 } 4623 4624 /* Try charges one by one with reclaim, but do not retry */ 4625 while (count--) { 4626 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1); 4627 if (ret) 4628 return ret; 4629 mc.precharge++; 4630 cond_resched(); 4631 } 4632 return 0; 4633 } 4634 4635 union mc_target { 4636 struct page *page; 4637 swp_entry_t ent; 4638 }; 4639 4640 enum mc_target_type { 4641 MC_TARGET_NONE = 0, 4642 MC_TARGET_PAGE, 4643 MC_TARGET_SWAP, 4644 MC_TARGET_DEVICE, 4645 }; 4646 4647 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 4648 unsigned long addr, pte_t ptent) 4649 { 4650 struct page *page = _vm_normal_page(vma, addr, ptent, true); 4651 4652 if (!page || !page_mapped(page)) 4653 return NULL; 4654 if (PageAnon(page)) { 4655 if (!(mc.flags & MOVE_ANON)) 4656 return NULL; 4657 } else { 4658 if (!(mc.flags & MOVE_FILE)) 4659 return NULL; 4660 } 4661 if (!get_page_unless_zero(page)) 4662 return NULL; 4663 4664 return page; 4665 } 4666 4667 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE) 4668 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 4669 pte_t ptent, swp_entry_t *entry) 4670 { 4671 struct page *page = NULL; 4672 swp_entry_t ent = pte_to_swp_entry(ptent); 4673 4674 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent)) 4675 return NULL; 4676 4677 /* 4678 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to 4679 * a device and because they are not accessible by CPU they are store 4680 * as special swap entry in the CPU page table. 4681 */ 4682 if (is_device_private_entry(ent)) { 4683 page = device_private_entry_to_page(ent); 4684 /* 4685 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have 4686 * a refcount of 1 when free (unlike normal page) 4687 */ 4688 if (!page_ref_add_unless(page, 1, 1)) 4689 return NULL; 4690 return page; 4691 } 4692 4693 /* 4694 * Because lookup_swap_cache() updates some statistics counter, 4695 * we call find_get_page() with swapper_space directly. 4696 */ 4697 page = find_get_page(swap_address_space(ent), swp_offset(ent)); 4698 if (do_memsw_account()) 4699 entry->val = ent.val; 4700 4701 return page; 4702 } 4703 #else 4704 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 4705 pte_t ptent, swp_entry_t *entry) 4706 { 4707 return NULL; 4708 } 4709 #endif 4710 4711 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 4712 unsigned long addr, pte_t ptent, swp_entry_t *entry) 4713 { 4714 struct page *page = NULL; 4715 struct address_space *mapping; 4716 pgoff_t pgoff; 4717 4718 if (!vma->vm_file) /* anonymous vma */ 4719 return NULL; 4720 if (!(mc.flags & MOVE_FILE)) 4721 return NULL; 4722 4723 mapping = vma->vm_file->f_mapping; 4724 pgoff = linear_page_index(vma, addr); 4725 4726 /* page is moved even if it's not RSS of this task(page-faulted). */ 4727 #ifdef CONFIG_SWAP 4728 /* shmem/tmpfs may report page out on swap: account for that too. */ 4729 if (shmem_mapping(mapping)) { 4730 page = find_get_entry(mapping, pgoff); 4731 if (xa_is_value(page)) { 4732 swp_entry_t swp = radix_to_swp_entry(page); 4733 if (do_memsw_account()) 4734 *entry = swp; 4735 page = find_get_page(swap_address_space(swp), 4736 swp_offset(swp)); 4737 } 4738 } else 4739 page = find_get_page(mapping, pgoff); 4740 #else 4741 page = find_get_page(mapping, pgoff); 4742 #endif 4743 return page; 4744 } 4745 4746 /** 4747 * mem_cgroup_move_account - move account of the page 4748 * @page: the page 4749 * @compound: charge the page as compound or small page 4750 * @from: mem_cgroup which the page is moved from. 4751 * @to: mem_cgroup which the page is moved to. @from != @to. 4752 * 4753 * The caller must make sure the page is not on LRU (isolate_page() is useful.) 4754 * 4755 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" 4756 * from old cgroup. 4757 */ 4758 static int mem_cgroup_move_account(struct page *page, 4759 bool compound, 4760 struct mem_cgroup *from, 4761 struct mem_cgroup *to) 4762 { 4763 unsigned long flags; 4764 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 4765 int ret; 4766 bool anon; 4767 4768 VM_BUG_ON(from == to); 4769 VM_BUG_ON_PAGE(PageLRU(page), page); 4770 VM_BUG_ON(compound && !PageTransHuge(page)); 4771 4772 /* 4773 * Prevent mem_cgroup_migrate() from looking at 4774 * page->mem_cgroup of its source page while we change it. 4775 */ 4776 ret = -EBUSY; 4777 if (!trylock_page(page)) 4778 goto out; 4779 4780 ret = -EINVAL; 4781 if (page->mem_cgroup != from) 4782 goto out_unlock; 4783 4784 anon = PageAnon(page); 4785 4786 spin_lock_irqsave(&from->move_lock, flags); 4787 4788 if (!anon && page_mapped(page)) { 4789 __mod_memcg_state(from, NR_FILE_MAPPED, -nr_pages); 4790 __mod_memcg_state(to, NR_FILE_MAPPED, nr_pages); 4791 } 4792 4793 /* 4794 * move_lock grabbed above and caller set from->moving_account, so 4795 * mod_memcg_page_state will serialize updates to PageDirty. 4796 * So mapping should be stable for dirty pages. 4797 */ 4798 if (!anon && PageDirty(page)) { 4799 struct address_space *mapping = page_mapping(page); 4800 4801 if (mapping_cap_account_dirty(mapping)) { 4802 __mod_memcg_state(from, NR_FILE_DIRTY, -nr_pages); 4803 __mod_memcg_state(to, NR_FILE_DIRTY, nr_pages); 4804 } 4805 } 4806 4807 if (PageWriteback(page)) { 4808 __mod_memcg_state(from, NR_WRITEBACK, -nr_pages); 4809 __mod_memcg_state(to, NR_WRITEBACK, nr_pages); 4810 } 4811 4812 /* 4813 * It is safe to change page->mem_cgroup here because the page 4814 * is referenced, charged, and isolated - we can't race with 4815 * uncharging, charging, migration, or LRU putback. 4816 */ 4817 4818 /* caller should have done css_get */ 4819 page->mem_cgroup = to; 4820 spin_unlock_irqrestore(&from->move_lock, flags); 4821 4822 ret = 0; 4823 4824 local_irq_disable(); 4825 mem_cgroup_charge_statistics(to, page, compound, nr_pages); 4826 memcg_check_events(to, page); 4827 mem_cgroup_charge_statistics(from, page, compound, -nr_pages); 4828 memcg_check_events(from, page); 4829 local_irq_enable(); 4830 out_unlock: 4831 unlock_page(page); 4832 out: 4833 return ret; 4834 } 4835 4836 /** 4837 * get_mctgt_type - get target type of moving charge 4838 * @vma: the vma the pte to be checked belongs 4839 * @addr: the address corresponding to the pte to be checked 4840 * @ptent: the pte to be checked 4841 * @target: the pointer the target page or swap ent will be stored(can be NULL) 4842 * 4843 * Returns 4844 * 0(MC_TARGET_NONE): if the pte is not a target for move charge. 4845 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for 4846 * move charge. if @target is not NULL, the page is stored in target->page 4847 * with extra refcnt got(Callers should handle it). 4848 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a 4849 * target for charge migration. if @target is not NULL, the entry is stored 4850 * in target->ent. 4851 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PUBLIC 4852 * or MEMORY_DEVICE_PRIVATE (so ZONE_DEVICE page and thus not on the lru). 4853 * For now we such page is charge like a regular page would be as for all 4854 * intent and purposes it is just special memory taking the place of a 4855 * regular page. 4856 * 4857 * See Documentations/vm/hmm.txt and include/linux/hmm.h 4858 * 4859 * Called with pte lock held. 4860 */ 4861 4862 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, 4863 unsigned long addr, pte_t ptent, union mc_target *target) 4864 { 4865 struct page *page = NULL; 4866 enum mc_target_type ret = MC_TARGET_NONE; 4867 swp_entry_t ent = { .val = 0 }; 4868 4869 if (pte_present(ptent)) 4870 page = mc_handle_present_pte(vma, addr, ptent); 4871 else if (is_swap_pte(ptent)) 4872 page = mc_handle_swap_pte(vma, ptent, &ent); 4873 else if (pte_none(ptent)) 4874 page = mc_handle_file_pte(vma, addr, ptent, &ent); 4875 4876 if (!page && !ent.val) 4877 return ret; 4878 if (page) { 4879 /* 4880 * Do only loose check w/o serialization. 4881 * mem_cgroup_move_account() checks the page is valid or 4882 * not under LRU exclusion. 4883 */ 4884 if (page->mem_cgroup == mc.from) { 4885 ret = MC_TARGET_PAGE; 4886 if (is_device_private_page(page) || 4887 is_device_public_page(page)) 4888 ret = MC_TARGET_DEVICE; 4889 if (target) 4890 target->page = page; 4891 } 4892 if (!ret || !target) 4893 put_page(page); 4894 } 4895 /* 4896 * There is a swap entry and a page doesn't exist or isn't charged. 4897 * But we cannot move a tail-page in a THP. 4898 */ 4899 if (ent.val && !ret && (!page || !PageTransCompound(page)) && 4900 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) { 4901 ret = MC_TARGET_SWAP; 4902 if (target) 4903 target->ent = ent; 4904 } 4905 return ret; 4906 } 4907 4908 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4909 /* 4910 * We don't consider PMD mapped swapping or file mapped pages because THP does 4911 * not support them for now. 4912 * Caller should make sure that pmd_trans_huge(pmd) is true. 4913 */ 4914 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 4915 unsigned long addr, pmd_t pmd, union mc_target *target) 4916 { 4917 struct page *page = NULL; 4918 enum mc_target_type ret = MC_TARGET_NONE; 4919 4920 if (unlikely(is_swap_pmd(pmd))) { 4921 VM_BUG_ON(thp_migration_supported() && 4922 !is_pmd_migration_entry(pmd)); 4923 return ret; 4924 } 4925 page = pmd_page(pmd); 4926 VM_BUG_ON_PAGE(!page || !PageHead(page), page); 4927 if (!(mc.flags & MOVE_ANON)) 4928 return ret; 4929 if (page->mem_cgroup == mc.from) { 4930 ret = MC_TARGET_PAGE; 4931 if (target) { 4932 get_page(page); 4933 target->page = page; 4934 } 4935 } 4936 return ret; 4937 } 4938 #else 4939 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 4940 unsigned long addr, pmd_t pmd, union mc_target *target) 4941 { 4942 return MC_TARGET_NONE; 4943 } 4944 #endif 4945 4946 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 4947 unsigned long addr, unsigned long end, 4948 struct mm_walk *walk) 4949 { 4950 struct vm_area_struct *vma = walk->vma; 4951 pte_t *pte; 4952 spinlock_t *ptl; 4953 4954 ptl = pmd_trans_huge_lock(pmd, vma); 4955 if (ptl) { 4956 /* 4957 * Note their can not be MC_TARGET_DEVICE for now as we do not 4958 * support transparent huge page with MEMORY_DEVICE_PUBLIC or 4959 * MEMORY_DEVICE_PRIVATE but this might change. 4960 */ 4961 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) 4962 mc.precharge += HPAGE_PMD_NR; 4963 spin_unlock(ptl); 4964 return 0; 4965 } 4966 4967 if (pmd_trans_unstable(pmd)) 4968 return 0; 4969 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 4970 for (; addr != end; pte++, addr += PAGE_SIZE) 4971 if (get_mctgt_type(vma, addr, *pte, NULL)) 4972 mc.precharge++; /* increment precharge temporarily */ 4973 pte_unmap_unlock(pte - 1, ptl); 4974 cond_resched(); 4975 4976 return 0; 4977 } 4978 4979 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 4980 { 4981 unsigned long precharge; 4982 4983 struct mm_walk mem_cgroup_count_precharge_walk = { 4984 .pmd_entry = mem_cgroup_count_precharge_pte_range, 4985 .mm = mm, 4986 }; 4987 down_read(&mm->mmap_sem); 4988 walk_page_range(0, mm->highest_vm_end, 4989 &mem_cgroup_count_precharge_walk); 4990 up_read(&mm->mmap_sem); 4991 4992 precharge = mc.precharge; 4993 mc.precharge = 0; 4994 4995 return precharge; 4996 } 4997 4998 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 4999 { 5000 unsigned long precharge = mem_cgroup_count_precharge(mm); 5001 5002 VM_BUG_ON(mc.moving_task); 5003 mc.moving_task = current; 5004 return mem_cgroup_do_precharge(precharge); 5005 } 5006 5007 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 5008 static void __mem_cgroup_clear_mc(void) 5009 { 5010 struct mem_cgroup *from = mc.from; 5011 struct mem_cgroup *to = mc.to; 5012 5013 /* we must uncharge all the leftover precharges from mc.to */ 5014 if (mc.precharge) { 5015 cancel_charge(mc.to, mc.precharge); 5016 mc.precharge = 0; 5017 } 5018 /* 5019 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 5020 * we must uncharge here. 5021 */ 5022 if (mc.moved_charge) { 5023 cancel_charge(mc.from, mc.moved_charge); 5024 mc.moved_charge = 0; 5025 } 5026 /* we must fixup refcnts and charges */ 5027 if (mc.moved_swap) { 5028 /* uncharge swap account from the old cgroup */ 5029 if (!mem_cgroup_is_root(mc.from)) 5030 page_counter_uncharge(&mc.from->memsw, mc.moved_swap); 5031 5032 mem_cgroup_id_put_many(mc.from, mc.moved_swap); 5033 5034 /* 5035 * we charged both to->memory and to->memsw, so we 5036 * should uncharge to->memory. 5037 */ 5038 if (!mem_cgroup_is_root(mc.to)) 5039 page_counter_uncharge(&mc.to->memory, mc.moved_swap); 5040 5041 mem_cgroup_id_get_many(mc.to, mc.moved_swap); 5042 css_put_many(&mc.to->css, mc.moved_swap); 5043 5044 mc.moved_swap = 0; 5045 } 5046 memcg_oom_recover(from); 5047 memcg_oom_recover(to); 5048 wake_up_all(&mc.waitq); 5049 } 5050 5051 static void mem_cgroup_clear_mc(void) 5052 { 5053 struct mm_struct *mm = mc.mm; 5054 5055 /* 5056 * we must clear moving_task before waking up waiters at the end of 5057 * task migration. 5058 */ 5059 mc.moving_task = NULL; 5060 __mem_cgroup_clear_mc(); 5061 spin_lock(&mc.lock); 5062 mc.from = NULL; 5063 mc.to = NULL; 5064 mc.mm = NULL; 5065 spin_unlock(&mc.lock); 5066 5067 mmput(mm); 5068 } 5069 5070 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 5071 { 5072 struct cgroup_subsys_state *css; 5073 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */ 5074 struct mem_cgroup *from; 5075 struct task_struct *leader, *p; 5076 struct mm_struct *mm; 5077 unsigned long move_flags; 5078 int ret = 0; 5079 5080 /* charge immigration isn't supported on the default hierarchy */ 5081 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5082 return 0; 5083 5084 /* 5085 * Multi-process migrations only happen on the default hierarchy 5086 * where charge immigration is not used. Perform charge 5087 * immigration if @tset contains a leader and whine if there are 5088 * multiple. 5089 */ 5090 p = NULL; 5091 cgroup_taskset_for_each_leader(leader, css, tset) { 5092 WARN_ON_ONCE(p); 5093 p = leader; 5094 memcg = mem_cgroup_from_css(css); 5095 } 5096 if (!p) 5097 return 0; 5098 5099 /* 5100 * We are now commited to this value whatever it is. Changes in this 5101 * tunable will only affect upcoming migrations, not the current one. 5102 * So we need to save it, and keep it going. 5103 */ 5104 move_flags = READ_ONCE(memcg->move_charge_at_immigrate); 5105 if (!move_flags) 5106 return 0; 5107 5108 from = mem_cgroup_from_task(p); 5109 5110 VM_BUG_ON(from == memcg); 5111 5112 mm = get_task_mm(p); 5113 if (!mm) 5114 return 0; 5115 /* We move charges only when we move a owner of the mm */ 5116 if (mm->owner == p) { 5117 VM_BUG_ON(mc.from); 5118 VM_BUG_ON(mc.to); 5119 VM_BUG_ON(mc.precharge); 5120 VM_BUG_ON(mc.moved_charge); 5121 VM_BUG_ON(mc.moved_swap); 5122 5123 spin_lock(&mc.lock); 5124 mc.mm = mm; 5125 mc.from = from; 5126 mc.to = memcg; 5127 mc.flags = move_flags; 5128 spin_unlock(&mc.lock); 5129 /* We set mc.moving_task later */ 5130 5131 ret = mem_cgroup_precharge_mc(mm); 5132 if (ret) 5133 mem_cgroup_clear_mc(); 5134 } else { 5135 mmput(mm); 5136 } 5137 return ret; 5138 } 5139 5140 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 5141 { 5142 if (mc.to) 5143 mem_cgroup_clear_mc(); 5144 } 5145 5146 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 5147 unsigned long addr, unsigned long end, 5148 struct mm_walk *walk) 5149 { 5150 int ret = 0; 5151 struct vm_area_struct *vma = walk->vma; 5152 pte_t *pte; 5153 spinlock_t *ptl; 5154 enum mc_target_type target_type; 5155 union mc_target target; 5156 struct page *page; 5157 5158 ptl = pmd_trans_huge_lock(pmd, vma); 5159 if (ptl) { 5160 if (mc.precharge < HPAGE_PMD_NR) { 5161 spin_unlock(ptl); 5162 return 0; 5163 } 5164 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); 5165 if (target_type == MC_TARGET_PAGE) { 5166 page = target.page; 5167 if (!isolate_lru_page(page)) { 5168 if (!mem_cgroup_move_account(page, true, 5169 mc.from, mc.to)) { 5170 mc.precharge -= HPAGE_PMD_NR; 5171 mc.moved_charge += HPAGE_PMD_NR; 5172 } 5173 putback_lru_page(page); 5174 } 5175 put_page(page); 5176 } else if (target_type == MC_TARGET_DEVICE) { 5177 page = target.page; 5178 if (!mem_cgroup_move_account(page, true, 5179 mc.from, mc.to)) { 5180 mc.precharge -= HPAGE_PMD_NR; 5181 mc.moved_charge += HPAGE_PMD_NR; 5182 } 5183 put_page(page); 5184 } 5185 spin_unlock(ptl); 5186 return 0; 5187 } 5188 5189 if (pmd_trans_unstable(pmd)) 5190 return 0; 5191 retry: 5192 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 5193 for (; addr != end; addr += PAGE_SIZE) { 5194 pte_t ptent = *(pte++); 5195 bool device = false; 5196 swp_entry_t ent; 5197 5198 if (!mc.precharge) 5199 break; 5200 5201 switch (get_mctgt_type(vma, addr, ptent, &target)) { 5202 case MC_TARGET_DEVICE: 5203 device = true; 5204 /* fall through */ 5205 case MC_TARGET_PAGE: 5206 page = target.page; 5207 /* 5208 * We can have a part of the split pmd here. Moving it 5209 * can be done but it would be too convoluted so simply 5210 * ignore such a partial THP and keep it in original 5211 * memcg. There should be somebody mapping the head. 5212 */ 5213 if (PageTransCompound(page)) 5214 goto put; 5215 if (!device && isolate_lru_page(page)) 5216 goto put; 5217 if (!mem_cgroup_move_account(page, false, 5218 mc.from, mc.to)) { 5219 mc.precharge--; 5220 /* we uncharge from mc.from later. */ 5221 mc.moved_charge++; 5222 } 5223 if (!device) 5224 putback_lru_page(page); 5225 put: /* get_mctgt_type() gets the page */ 5226 put_page(page); 5227 break; 5228 case MC_TARGET_SWAP: 5229 ent = target.ent; 5230 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { 5231 mc.precharge--; 5232 /* we fixup refcnts and charges later. */ 5233 mc.moved_swap++; 5234 } 5235 break; 5236 default: 5237 break; 5238 } 5239 } 5240 pte_unmap_unlock(pte - 1, ptl); 5241 cond_resched(); 5242 5243 if (addr != end) { 5244 /* 5245 * We have consumed all precharges we got in can_attach(). 5246 * We try charge one by one, but don't do any additional 5247 * charges to mc.to if we have failed in charge once in attach() 5248 * phase. 5249 */ 5250 ret = mem_cgroup_do_precharge(1); 5251 if (!ret) 5252 goto retry; 5253 } 5254 5255 return ret; 5256 } 5257 5258 static void mem_cgroup_move_charge(void) 5259 { 5260 struct mm_walk mem_cgroup_move_charge_walk = { 5261 .pmd_entry = mem_cgroup_move_charge_pte_range, 5262 .mm = mc.mm, 5263 }; 5264 5265 lru_add_drain_all(); 5266 /* 5267 * Signal lock_page_memcg() to take the memcg's move_lock 5268 * while we're moving its pages to another memcg. Then wait 5269 * for already started RCU-only updates to finish. 5270 */ 5271 atomic_inc(&mc.from->moving_account); 5272 synchronize_rcu(); 5273 retry: 5274 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) { 5275 /* 5276 * Someone who are holding the mmap_sem might be waiting in 5277 * waitq. So we cancel all extra charges, wake up all waiters, 5278 * and retry. Because we cancel precharges, we might not be able 5279 * to move enough charges, but moving charge is a best-effort 5280 * feature anyway, so it wouldn't be a big problem. 5281 */ 5282 __mem_cgroup_clear_mc(); 5283 cond_resched(); 5284 goto retry; 5285 } 5286 /* 5287 * When we have consumed all precharges and failed in doing 5288 * additional charge, the page walk just aborts. 5289 */ 5290 walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk); 5291 5292 up_read(&mc.mm->mmap_sem); 5293 atomic_dec(&mc.from->moving_account); 5294 } 5295 5296 static void mem_cgroup_move_task(void) 5297 { 5298 if (mc.to) { 5299 mem_cgroup_move_charge(); 5300 mem_cgroup_clear_mc(); 5301 } 5302 } 5303 #else /* !CONFIG_MMU */ 5304 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 5305 { 5306 return 0; 5307 } 5308 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 5309 { 5310 } 5311 static void mem_cgroup_move_task(void) 5312 { 5313 } 5314 #endif 5315 5316 /* 5317 * Cgroup retains root cgroups across [un]mount cycles making it necessary 5318 * to verify whether we're attached to the default hierarchy on each mount 5319 * attempt. 5320 */ 5321 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css) 5322 { 5323 /* 5324 * use_hierarchy is forced on the default hierarchy. cgroup core 5325 * guarantees that @root doesn't have any children, so turning it 5326 * on for the root memcg is enough. 5327 */ 5328 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5329 root_mem_cgroup->use_hierarchy = true; 5330 else 5331 root_mem_cgroup->use_hierarchy = false; 5332 } 5333 5334 static u64 memory_current_read(struct cgroup_subsys_state *css, 5335 struct cftype *cft) 5336 { 5337 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5338 5339 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; 5340 } 5341 5342 static int memory_min_show(struct seq_file *m, void *v) 5343 { 5344 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5345 unsigned long min = READ_ONCE(memcg->memory.min); 5346 5347 if (min == PAGE_COUNTER_MAX) 5348 seq_puts(m, "max\n"); 5349 else 5350 seq_printf(m, "%llu\n", (u64)min * PAGE_SIZE); 5351 5352 return 0; 5353 } 5354 5355 static ssize_t memory_min_write(struct kernfs_open_file *of, 5356 char *buf, size_t nbytes, loff_t off) 5357 { 5358 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5359 unsigned long min; 5360 int err; 5361 5362 buf = strstrip(buf); 5363 err = page_counter_memparse(buf, "max", &min); 5364 if (err) 5365 return err; 5366 5367 page_counter_set_min(&memcg->memory, min); 5368 5369 return nbytes; 5370 } 5371 5372 static int memory_low_show(struct seq_file *m, void *v) 5373 { 5374 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5375 unsigned long low = READ_ONCE(memcg->memory.low); 5376 5377 if (low == PAGE_COUNTER_MAX) 5378 seq_puts(m, "max\n"); 5379 else 5380 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE); 5381 5382 return 0; 5383 } 5384 5385 static ssize_t memory_low_write(struct kernfs_open_file *of, 5386 char *buf, size_t nbytes, loff_t off) 5387 { 5388 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5389 unsigned long low; 5390 int err; 5391 5392 buf = strstrip(buf); 5393 err = page_counter_memparse(buf, "max", &low); 5394 if (err) 5395 return err; 5396 5397 page_counter_set_low(&memcg->memory, low); 5398 5399 return nbytes; 5400 } 5401 5402 static int memory_high_show(struct seq_file *m, void *v) 5403 { 5404 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5405 unsigned long high = READ_ONCE(memcg->high); 5406 5407 if (high == PAGE_COUNTER_MAX) 5408 seq_puts(m, "max\n"); 5409 else 5410 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE); 5411 5412 return 0; 5413 } 5414 5415 static ssize_t memory_high_write(struct kernfs_open_file *of, 5416 char *buf, size_t nbytes, loff_t off) 5417 { 5418 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5419 unsigned long nr_pages; 5420 unsigned long high; 5421 int err; 5422 5423 buf = strstrip(buf); 5424 err = page_counter_memparse(buf, "max", &high); 5425 if (err) 5426 return err; 5427 5428 memcg->high = high; 5429 5430 nr_pages = page_counter_read(&memcg->memory); 5431 if (nr_pages > high) 5432 try_to_free_mem_cgroup_pages(memcg, nr_pages - high, 5433 GFP_KERNEL, true); 5434 5435 memcg_wb_domain_size_changed(memcg); 5436 return nbytes; 5437 } 5438 5439 static int memory_max_show(struct seq_file *m, void *v) 5440 { 5441 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5442 unsigned long max = READ_ONCE(memcg->memory.max); 5443 5444 if (max == PAGE_COUNTER_MAX) 5445 seq_puts(m, "max\n"); 5446 else 5447 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE); 5448 5449 return 0; 5450 } 5451 5452 static ssize_t memory_max_write(struct kernfs_open_file *of, 5453 char *buf, size_t nbytes, loff_t off) 5454 { 5455 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5456 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES; 5457 bool drained = false; 5458 unsigned long max; 5459 int err; 5460 5461 buf = strstrip(buf); 5462 err = page_counter_memparse(buf, "max", &max); 5463 if (err) 5464 return err; 5465 5466 xchg(&memcg->memory.max, max); 5467 5468 for (;;) { 5469 unsigned long nr_pages = page_counter_read(&memcg->memory); 5470 5471 if (nr_pages <= max) 5472 break; 5473 5474 if (signal_pending(current)) { 5475 err = -EINTR; 5476 break; 5477 } 5478 5479 if (!drained) { 5480 drain_all_stock(memcg); 5481 drained = true; 5482 continue; 5483 } 5484 5485 if (nr_reclaims) { 5486 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max, 5487 GFP_KERNEL, true)) 5488 nr_reclaims--; 5489 continue; 5490 } 5491 5492 memcg_memory_event(memcg, MEMCG_OOM); 5493 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0)) 5494 break; 5495 } 5496 5497 memcg_wb_domain_size_changed(memcg); 5498 return nbytes; 5499 } 5500 5501 static int memory_events_show(struct seq_file *m, void *v) 5502 { 5503 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5504 5505 seq_printf(m, "low %lu\n", 5506 atomic_long_read(&memcg->memory_events[MEMCG_LOW])); 5507 seq_printf(m, "high %lu\n", 5508 atomic_long_read(&memcg->memory_events[MEMCG_HIGH])); 5509 seq_printf(m, "max %lu\n", 5510 atomic_long_read(&memcg->memory_events[MEMCG_MAX])); 5511 seq_printf(m, "oom %lu\n", 5512 atomic_long_read(&memcg->memory_events[MEMCG_OOM])); 5513 seq_printf(m, "oom_kill %lu\n", 5514 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL])); 5515 5516 return 0; 5517 } 5518 5519 static int memory_stat_show(struct seq_file *m, void *v) 5520 { 5521 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5522 struct accumulated_stats acc; 5523 int i; 5524 5525 /* 5526 * Provide statistics on the state of the memory subsystem as 5527 * well as cumulative event counters that show past behavior. 5528 * 5529 * This list is ordered following a combination of these gradients: 5530 * 1) generic big picture -> specifics and details 5531 * 2) reflecting userspace activity -> reflecting kernel heuristics 5532 * 5533 * Current memory state: 5534 */ 5535 5536 memset(&acc, 0, sizeof(acc)); 5537 acc.stats_size = MEMCG_NR_STAT; 5538 acc.events_size = NR_VM_EVENT_ITEMS; 5539 accumulate_memcg_tree(memcg, &acc); 5540 5541 seq_printf(m, "anon %llu\n", 5542 (u64)acc.stat[MEMCG_RSS] * PAGE_SIZE); 5543 seq_printf(m, "file %llu\n", 5544 (u64)acc.stat[MEMCG_CACHE] * PAGE_SIZE); 5545 seq_printf(m, "kernel_stack %llu\n", 5546 (u64)acc.stat[MEMCG_KERNEL_STACK_KB] * 1024); 5547 seq_printf(m, "slab %llu\n", 5548 (u64)(acc.stat[NR_SLAB_RECLAIMABLE] + 5549 acc.stat[NR_SLAB_UNRECLAIMABLE]) * PAGE_SIZE); 5550 seq_printf(m, "sock %llu\n", 5551 (u64)acc.stat[MEMCG_SOCK] * PAGE_SIZE); 5552 5553 seq_printf(m, "shmem %llu\n", 5554 (u64)acc.stat[NR_SHMEM] * PAGE_SIZE); 5555 seq_printf(m, "file_mapped %llu\n", 5556 (u64)acc.stat[NR_FILE_MAPPED] * PAGE_SIZE); 5557 seq_printf(m, "file_dirty %llu\n", 5558 (u64)acc.stat[NR_FILE_DIRTY] * PAGE_SIZE); 5559 seq_printf(m, "file_writeback %llu\n", 5560 (u64)acc.stat[NR_WRITEBACK] * PAGE_SIZE); 5561 5562 for (i = 0; i < NR_LRU_LISTS; i++) 5563 seq_printf(m, "%s %llu\n", mem_cgroup_lru_names[i], 5564 (u64)acc.lru_pages[i] * PAGE_SIZE); 5565 5566 seq_printf(m, "slab_reclaimable %llu\n", 5567 (u64)acc.stat[NR_SLAB_RECLAIMABLE] * PAGE_SIZE); 5568 seq_printf(m, "slab_unreclaimable %llu\n", 5569 (u64)acc.stat[NR_SLAB_UNRECLAIMABLE] * PAGE_SIZE); 5570 5571 /* Accumulated memory events */ 5572 5573 seq_printf(m, "pgfault %lu\n", acc.events[PGFAULT]); 5574 seq_printf(m, "pgmajfault %lu\n", acc.events[PGMAJFAULT]); 5575 5576 seq_printf(m, "workingset_refault %lu\n", 5577 acc.stat[WORKINGSET_REFAULT]); 5578 seq_printf(m, "workingset_activate %lu\n", 5579 acc.stat[WORKINGSET_ACTIVATE]); 5580 seq_printf(m, "workingset_nodereclaim %lu\n", 5581 acc.stat[WORKINGSET_NODERECLAIM]); 5582 5583 seq_printf(m, "pgrefill %lu\n", acc.events[PGREFILL]); 5584 seq_printf(m, "pgscan %lu\n", acc.events[PGSCAN_KSWAPD] + 5585 acc.events[PGSCAN_DIRECT]); 5586 seq_printf(m, "pgsteal %lu\n", acc.events[PGSTEAL_KSWAPD] + 5587 acc.events[PGSTEAL_DIRECT]); 5588 seq_printf(m, "pgactivate %lu\n", acc.events[PGACTIVATE]); 5589 seq_printf(m, "pgdeactivate %lu\n", acc.events[PGDEACTIVATE]); 5590 seq_printf(m, "pglazyfree %lu\n", acc.events[PGLAZYFREE]); 5591 seq_printf(m, "pglazyfreed %lu\n", acc.events[PGLAZYFREED]); 5592 5593 return 0; 5594 } 5595 5596 static int memory_oom_group_show(struct seq_file *m, void *v) 5597 { 5598 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5599 5600 seq_printf(m, "%d\n", memcg->oom_group); 5601 5602 return 0; 5603 } 5604 5605 static ssize_t memory_oom_group_write(struct kernfs_open_file *of, 5606 char *buf, size_t nbytes, loff_t off) 5607 { 5608 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5609 int ret, oom_group; 5610 5611 buf = strstrip(buf); 5612 if (!buf) 5613 return -EINVAL; 5614 5615 ret = kstrtoint(buf, 0, &oom_group); 5616 if (ret) 5617 return ret; 5618 5619 if (oom_group != 0 && oom_group != 1) 5620 return -EINVAL; 5621 5622 memcg->oom_group = oom_group; 5623 5624 return nbytes; 5625 } 5626 5627 static struct cftype memory_files[] = { 5628 { 5629 .name = "current", 5630 .flags = CFTYPE_NOT_ON_ROOT, 5631 .read_u64 = memory_current_read, 5632 }, 5633 { 5634 .name = "min", 5635 .flags = CFTYPE_NOT_ON_ROOT, 5636 .seq_show = memory_min_show, 5637 .write = memory_min_write, 5638 }, 5639 { 5640 .name = "low", 5641 .flags = CFTYPE_NOT_ON_ROOT, 5642 .seq_show = memory_low_show, 5643 .write = memory_low_write, 5644 }, 5645 { 5646 .name = "high", 5647 .flags = CFTYPE_NOT_ON_ROOT, 5648 .seq_show = memory_high_show, 5649 .write = memory_high_write, 5650 }, 5651 { 5652 .name = "max", 5653 .flags = CFTYPE_NOT_ON_ROOT, 5654 .seq_show = memory_max_show, 5655 .write = memory_max_write, 5656 }, 5657 { 5658 .name = "events", 5659 .flags = CFTYPE_NOT_ON_ROOT, 5660 .file_offset = offsetof(struct mem_cgroup, events_file), 5661 .seq_show = memory_events_show, 5662 }, 5663 { 5664 .name = "stat", 5665 .flags = CFTYPE_NOT_ON_ROOT, 5666 .seq_show = memory_stat_show, 5667 }, 5668 { 5669 .name = "oom.group", 5670 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE, 5671 .seq_show = memory_oom_group_show, 5672 .write = memory_oom_group_write, 5673 }, 5674 { } /* terminate */ 5675 }; 5676 5677 struct cgroup_subsys memory_cgrp_subsys = { 5678 .css_alloc = mem_cgroup_css_alloc, 5679 .css_online = mem_cgroup_css_online, 5680 .css_offline = mem_cgroup_css_offline, 5681 .css_released = mem_cgroup_css_released, 5682 .css_free = mem_cgroup_css_free, 5683 .css_reset = mem_cgroup_css_reset, 5684 .can_attach = mem_cgroup_can_attach, 5685 .cancel_attach = mem_cgroup_cancel_attach, 5686 .post_attach = mem_cgroup_move_task, 5687 .bind = mem_cgroup_bind, 5688 .dfl_cftypes = memory_files, 5689 .legacy_cftypes = mem_cgroup_legacy_files, 5690 .early_init = 0, 5691 }; 5692 5693 /** 5694 * mem_cgroup_protected - check if memory consumption is in the normal range 5695 * @root: the top ancestor of the sub-tree being checked 5696 * @memcg: the memory cgroup to check 5697 * 5698 * WARNING: This function is not stateless! It can only be used as part 5699 * of a top-down tree iteration, not for isolated queries. 5700 * 5701 * Returns one of the following: 5702 * MEMCG_PROT_NONE: cgroup memory is not protected 5703 * MEMCG_PROT_LOW: cgroup memory is protected as long there is 5704 * an unprotected supply of reclaimable memory from other cgroups. 5705 * MEMCG_PROT_MIN: cgroup memory is protected 5706 * 5707 * @root is exclusive; it is never protected when looked at directly 5708 * 5709 * To provide a proper hierarchical behavior, effective memory.min/low values 5710 * are used. Below is the description of how effective memory.low is calculated. 5711 * Effective memory.min values is calculated in the same way. 5712 * 5713 * Effective memory.low is always equal or less than the original memory.low. 5714 * If there is no memory.low overcommittment (which is always true for 5715 * top-level memory cgroups), these two values are equal. 5716 * Otherwise, it's a part of parent's effective memory.low, 5717 * calculated as a cgroup's memory.low usage divided by sum of sibling's 5718 * memory.low usages, where memory.low usage is the size of actually 5719 * protected memory. 5720 * 5721 * low_usage 5722 * elow = min( memory.low, parent->elow * ------------------ ), 5723 * siblings_low_usage 5724 * 5725 * | memory.current, if memory.current < memory.low 5726 * low_usage = | 5727 | 0, otherwise. 5728 * 5729 * 5730 * Such definition of the effective memory.low provides the expected 5731 * hierarchical behavior: parent's memory.low value is limiting 5732 * children, unprotected memory is reclaimed first and cgroups, 5733 * which are not using their guarantee do not affect actual memory 5734 * distribution. 5735 * 5736 * For example, if there are memcgs A, A/B, A/C, A/D and A/E: 5737 * 5738 * A A/memory.low = 2G, A/memory.current = 6G 5739 * //\\ 5740 * BC DE B/memory.low = 3G B/memory.current = 2G 5741 * C/memory.low = 1G C/memory.current = 2G 5742 * D/memory.low = 0 D/memory.current = 2G 5743 * E/memory.low = 10G E/memory.current = 0 5744 * 5745 * and the memory pressure is applied, the following memory distribution 5746 * is expected (approximately): 5747 * 5748 * A/memory.current = 2G 5749 * 5750 * B/memory.current = 1.3G 5751 * C/memory.current = 0.6G 5752 * D/memory.current = 0 5753 * E/memory.current = 0 5754 * 5755 * These calculations require constant tracking of the actual low usages 5756 * (see propagate_protected_usage()), as well as recursive calculation of 5757 * effective memory.low values. But as we do call mem_cgroup_protected() 5758 * path for each memory cgroup top-down from the reclaim, 5759 * it's possible to optimize this part, and save calculated elow 5760 * for next usage. This part is intentionally racy, but it's ok, 5761 * as memory.low is a best-effort mechanism. 5762 */ 5763 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root, 5764 struct mem_cgroup *memcg) 5765 { 5766 struct mem_cgroup *parent; 5767 unsigned long emin, parent_emin; 5768 unsigned long elow, parent_elow; 5769 unsigned long usage; 5770 5771 if (mem_cgroup_disabled()) 5772 return MEMCG_PROT_NONE; 5773 5774 if (!root) 5775 root = root_mem_cgroup; 5776 if (memcg == root) 5777 return MEMCG_PROT_NONE; 5778 5779 usage = page_counter_read(&memcg->memory); 5780 if (!usage) 5781 return MEMCG_PROT_NONE; 5782 5783 emin = memcg->memory.min; 5784 elow = memcg->memory.low; 5785 5786 parent = parent_mem_cgroup(memcg); 5787 /* No parent means a non-hierarchical mode on v1 memcg */ 5788 if (!parent) 5789 return MEMCG_PROT_NONE; 5790 5791 if (parent == root) 5792 goto exit; 5793 5794 parent_emin = READ_ONCE(parent->memory.emin); 5795 emin = min(emin, parent_emin); 5796 if (emin && parent_emin) { 5797 unsigned long min_usage, siblings_min_usage; 5798 5799 min_usage = min(usage, memcg->memory.min); 5800 siblings_min_usage = atomic_long_read( 5801 &parent->memory.children_min_usage); 5802 5803 if (min_usage && siblings_min_usage) 5804 emin = min(emin, parent_emin * min_usage / 5805 siblings_min_usage); 5806 } 5807 5808 parent_elow = READ_ONCE(parent->memory.elow); 5809 elow = min(elow, parent_elow); 5810 if (elow && parent_elow) { 5811 unsigned long low_usage, siblings_low_usage; 5812 5813 low_usage = min(usage, memcg->memory.low); 5814 siblings_low_usage = atomic_long_read( 5815 &parent->memory.children_low_usage); 5816 5817 if (low_usage && siblings_low_usage) 5818 elow = min(elow, parent_elow * low_usage / 5819 siblings_low_usage); 5820 } 5821 5822 exit: 5823 memcg->memory.emin = emin; 5824 memcg->memory.elow = elow; 5825 5826 if (usage <= emin) 5827 return MEMCG_PROT_MIN; 5828 else if (usage <= elow) 5829 return MEMCG_PROT_LOW; 5830 else 5831 return MEMCG_PROT_NONE; 5832 } 5833 5834 /** 5835 * mem_cgroup_try_charge - try charging a page 5836 * @page: page to charge 5837 * @mm: mm context of the victim 5838 * @gfp_mask: reclaim mode 5839 * @memcgp: charged memcg return 5840 * @compound: charge the page as compound or small page 5841 * 5842 * Try to charge @page to the memcg that @mm belongs to, reclaiming 5843 * pages according to @gfp_mask if necessary. 5844 * 5845 * Returns 0 on success, with *@memcgp pointing to the charged memcg. 5846 * Otherwise, an error code is returned. 5847 * 5848 * After page->mapping has been set up, the caller must finalize the 5849 * charge with mem_cgroup_commit_charge(). Or abort the transaction 5850 * with mem_cgroup_cancel_charge() in case page instantiation fails. 5851 */ 5852 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, 5853 gfp_t gfp_mask, struct mem_cgroup **memcgp, 5854 bool compound) 5855 { 5856 struct mem_cgroup *memcg = NULL; 5857 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 5858 int ret = 0; 5859 5860 if (mem_cgroup_disabled()) 5861 goto out; 5862 5863 if (PageSwapCache(page)) { 5864 /* 5865 * Every swap fault against a single page tries to charge the 5866 * page, bail as early as possible. shmem_unuse() encounters 5867 * already charged pages, too. The USED bit is protected by 5868 * the page lock, which serializes swap cache removal, which 5869 * in turn serializes uncharging. 5870 */ 5871 VM_BUG_ON_PAGE(!PageLocked(page), page); 5872 if (compound_head(page)->mem_cgroup) 5873 goto out; 5874 5875 if (do_swap_account) { 5876 swp_entry_t ent = { .val = page_private(page), }; 5877 unsigned short id = lookup_swap_cgroup_id(ent); 5878 5879 rcu_read_lock(); 5880 memcg = mem_cgroup_from_id(id); 5881 if (memcg && !css_tryget_online(&memcg->css)) 5882 memcg = NULL; 5883 rcu_read_unlock(); 5884 } 5885 } 5886 5887 if (!memcg) 5888 memcg = get_mem_cgroup_from_mm(mm); 5889 5890 ret = try_charge(memcg, gfp_mask, nr_pages); 5891 5892 css_put(&memcg->css); 5893 out: 5894 *memcgp = memcg; 5895 return ret; 5896 } 5897 5898 int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm, 5899 gfp_t gfp_mask, struct mem_cgroup **memcgp, 5900 bool compound) 5901 { 5902 struct mem_cgroup *memcg; 5903 int ret; 5904 5905 ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound); 5906 memcg = *memcgp; 5907 mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask); 5908 return ret; 5909 } 5910 5911 /** 5912 * mem_cgroup_commit_charge - commit a page charge 5913 * @page: page to charge 5914 * @memcg: memcg to charge the page to 5915 * @lrucare: page might be on LRU already 5916 * @compound: charge the page as compound or small page 5917 * 5918 * Finalize a charge transaction started by mem_cgroup_try_charge(), 5919 * after page->mapping has been set up. This must happen atomically 5920 * as part of the page instantiation, i.e. under the page table lock 5921 * for anonymous pages, under the page lock for page and swap cache. 5922 * 5923 * In addition, the page must not be on the LRU during the commit, to 5924 * prevent racing with task migration. If it might be, use @lrucare. 5925 * 5926 * Use mem_cgroup_cancel_charge() to cancel the transaction instead. 5927 */ 5928 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg, 5929 bool lrucare, bool compound) 5930 { 5931 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 5932 5933 VM_BUG_ON_PAGE(!page->mapping, page); 5934 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page); 5935 5936 if (mem_cgroup_disabled()) 5937 return; 5938 /* 5939 * Swap faults will attempt to charge the same page multiple 5940 * times. But reuse_swap_page() might have removed the page 5941 * from swapcache already, so we can't check PageSwapCache(). 5942 */ 5943 if (!memcg) 5944 return; 5945 5946 commit_charge(page, memcg, lrucare); 5947 5948 local_irq_disable(); 5949 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages); 5950 memcg_check_events(memcg, page); 5951 local_irq_enable(); 5952 5953 if (do_memsw_account() && PageSwapCache(page)) { 5954 swp_entry_t entry = { .val = page_private(page) }; 5955 /* 5956 * The swap entry might not get freed for a long time, 5957 * let's not wait for it. The page already received a 5958 * memory+swap charge, drop the swap entry duplicate. 5959 */ 5960 mem_cgroup_uncharge_swap(entry, nr_pages); 5961 } 5962 } 5963 5964 /** 5965 * mem_cgroup_cancel_charge - cancel a page charge 5966 * @page: page to charge 5967 * @memcg: memcg to charge the page to 5968 * @compound: charge the page as compound or small page 5969 * 5970 * Cancel a charge transaction started by mem_cgroup_try_charge(). 5971 */ 5972 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg, 5973 bool compound) 5974 { 5975 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 5976 5977 if (mem_cgroup_disabled()) 5978 return; 5979 /* 5980 * Swap faults will attempt to charge the same page multiple 5981 * times. But reuse_swap_page() might have removed the page 5982 * from swapcache already, so we can't check PageSwapCache(). 5983 */ 5984 if (!memcg) 5985 return; 5986 5987 cancel_charge(memcg, nr_pages); 5988 } 5989 5990 struct uncharge_gather { 5991 struct mem_cgroup *memcg; 5992 unsigned long pgpgout; 5993 unsigned long nr_anon; 5994 unsigned long nr_file; 5995 unsigned long nr_kmem; 5996 unsigned long nr_huge; 5997 unsigned long nr_shmem; 5998 struct page *dummy_page; 5999 }; 6000 6001 static inline void uncharge_gather_clear(struct uncharge_gather *ug) 6002 { 6003 memset(ug, 0, sizeof(*ug)); 6004 } 6005 6006 static void uncharge_batch(const struct uncharge_gather *ug) 6007 { 6008 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem; 6009 unsigned long flags; 6010 6011 if (!mem_cgroup_is_root(ug->memcg)) { 6012 page_counter_uncharge(&ug->memcg->memory, nr_pages); 6013 if (do_memsw_account()) 6014 page_counter_uncharge(&ug->memcg->memsw, nr_pages); 6015 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem) 6016 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem); 6017 memcg_oom_recover(ug->memcg); 6018 } 6019 6020 local_irq_save(flags); 6021 __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon); 6022 __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file); 6023 __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge); 6024 __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem); 6025 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout); 6026 __this_cpu_add(ug->memcg->stat_cpu->nr_page_events, nr_pages); 6027 memcg_check_events(ug->memcg, ug->dummy_page); 6028 local_irq_restore(flags); 6029 6030 if (!mem_cgroup_is_root(ug->memcg)) 6031 css_put_many(&ug->memcg->css, nr_pages); 6032 } 6033 6034 static void uncharge_page(struct page *page, struct uncharge_gather *ug) 6035 { 6036 VM_BUG_ON_PAGE(PageLRU(page), page); 6037 VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) && 6038 !PageHWPoison(page) , page); 6039 6040 if (!page->mem_cgroup) 6041 return; 6042 6043 /* 6044 * Nobody should be changing or seriously looking at 6045 * page->mem_cgroup at this point, we have fully 6046 * exclusive access to the page. 6047 */ 6048 6049 if (ug->memcg != page->mem_cgroup) { 6050 if (ug->memcg) { 6051 uncharge_batch(ug); 6052 uncharge_gather_clear(ug); 6053 } 6054 ug->memcg = page->mem_cgroup; 6055 } 6056 6057 if (!PageKmemcg(page)) { 6058 unsigned int nr_pages = 1; 6059 6060 if (PageTransHuge(page)) { 6061 nr_pages <<= compound_order(page); 6062 ug->nr_huge += nr_pages; 6063 } 6064 if (PageAnon(page)) 6065 ug->nr_anon += nr_pages; 6066 else { 6067 ug->nr_file += nr_pages; 6068 if (PageSwapBacked(page)) 6069 ug->nr_shmem += nr_pages; 6070 } 6071 ug->pgpgout++; 6072 } else { 6073 ug->nr_kmem += 1 << compound_order(page); 6074 __ClearPageKmemcg(page); 6075 } 6076 6077 ug->dummy_page = page; 6078 page->mem_cgroup = NULL; 6079 } 6080 6081 static void uncharge_list(struct list_head *page_list) 6082 { 6083 struct uncharge_gather ug; 6084 struct list_head *next; 6085 6086 uncharge_gather_clear(&ug); 6087 6088 /* 6089 * Note that the list can be a single page->lru; hence the 6090 * do-while loop instead of a simple list_for_each_entry(). 6091 */ 6092 next = page_list->next; 6093 do { 6094 struct page *page; 6095 6096 page = list_entry(next, struct page, lru); 6097 next = page->lru.next; 6098 6099 uncharge_page(page, &ug); 6100 } while (next != page_list); 6101 6102 if (ug.memcg) 6103 uncharge_batch(&ug); 6104 } 6105 6106 /** 6107 * mem_cgroup_uncharge - uncharge a page 6108 * @page: page to uncharge 6109 * 6110 * Uncharge a page previously charged with mem_cgroup_try_charge() and 6111 * mem_cgroup_commit_charge(). 6112 */ 6113 void mem_cgroup_uncharge(struct page *page) 6114 { 6115 struct uncharge_gather ug; 6116 6117 if (mem_cgroup_disabled()) 6118 return; 6119 6120 /* Don't touch page->lru of any random page, pre-check: */ 6121 if (!page->mem_cgroup) 6122 return; 6123 6124 uncharge_gather_clear(&ug); 6125 uncharge_page(page, &ug); 6126 uncharge_batch(&ug); 6127 } 6128 6129 /** 6130 * mem_cgroup_uncharge_list - uncharge a list of page 6131 * @page_list: list of pages to uncharge 6132 * 6133 * Uncharge a list of pages previously charged with 6134 * mem_cgroup_try_charge() and mem_cgroup_commit_charge(). 6135 */ 6136 void mem_cgroup_uncharge_list(struct list_head *page_list) 6137 { 6138 if (mem_cgroup_disabled()) 6139 return; 6140 6141 if (!list_empty(page_list)) 6142 uncharge_list(page_list); 6143 } 6144 6145 /** 6146 * mem_cgroup_migrate - charge a page's replacement 6147 * @oldpage: currently circulating page 6148 * @newpage: replacement page 6149 * 6150 * Charge @newpage as a replacement page for @oldpage. @oldpage will 6151 * be uncharged upon free. 6152 * 6153 * Both pages must be locked, @newpage->mapping must be set up. 6154 */ 6155 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage) 6156 { 6157 struct mem_cgroup *memcg; 6158 unsigned int nr_pages; 6159 bool compound; 6160 unsigned long flags; 6161 6162 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage); 6163 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 6164 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage); 6165 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage), 6166 newpage); 6167 6168 if (mem_cgroup_disabled()) 6169 return; 6170 6171 /* Page cache replacement: new page already charged? */ 6172 if (newpage->mem_cgroup) 6173 return; 6174 6175 /* Swapcache readahead pages can get replaced before being charged */ 6176 memcg = oldpage->mem_cgroup; 6177 if (!memcg) 6178 return; 6179 6180 /* Force-charge the new page. The old one will be freed soon */ 6181 compound = PageTransHuge(newpage); 6182 nr_pages = compound ? hpage_nr_pages(newpage) : 1; 6183 6184 page_counter_charge(&memcg->memory, nr_pages); 6185 if (do_memsw_account()) 6186 page_counter_charge(&memcg->memsw, nr_pages); 6187 css_get_many(&memcg->css, nr_pages); 6188 6189 commit_charge(newpage, memcg, false); 6190 6191 local_irq_save(flags); 6192 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages); 6193 memcg_check_events(memcg, newpage); 6194 local_irq_restore(flags); 6195 } 6196 6197 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); 6198 EXPORT_SYMBOL(memcg_sockets_enabled_key); 6199 6200 void mem_cgroup_sk_alloc(struct sock *sk) 6201 { 6202 struct mem_cgroup *memcg; 6203 6204 if (!mem_cgroup_sockets_enabled) 6205 return; 6206 6207 /* 6208 * Socket cloning can throw us here with sk_memcg already 6209 * filled. It won't however, necessarily happen from 6210 * process context. So the test for root memcg given 6211 * the current task's memcg won't help us in this case. 6212 * 6213 * Respecting the original socket's memcg is a better 6214 * decision in this case. 6215 */ 6216 if (sk->sk_memcg) { 6217 css_get(&sk->sk_memcg->css); 6218 return; 6219 } 6220 6221 rcu_read_lock(); 6222 memcg = mem_cgroup_from_task(current); 6223 if (memcg == root_mem_cgroup) 6224 goto out; 6225 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active) 6226 goto out; 6227 if (css_tryget_online(&memcg->css)) 6228 sk->sk_memcg = memcg; 6229 out: 6230 rcu_read_unlock(); 6231 } 6232 6233 void mem_cgroup_sk_free(struct sock *sk) 6234 { 6235 if (sk->sk_memcg) 6236 css_put(&sk->sk_memcg->css); 6237 } 6238 6239 /** 6240 * mem_cgroup_charge_skmem - charge socket memory 6241 * @memcg: memcg to charge 6242 * @nr_pages: number of pages to charge 6243 * 6244 * Charges @nr_pages to @memcg. Returns %true if the charge fit within 6245 * @memcg's configured limit, %false if the charge had to be forced. 6246 */ 6247 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 6248 { 6249 gfp_t gfp_mask = GFP_KERNEL; 6250 6251 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 6252 struct page_counter *fail; 6253 6254 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) { 6255 memcg->tcpmem_pressure = 0; 6256 return true; 6257 } 6258 page_counter_charge(&memcg->tcpmem, nr_pages); 6259 memcg->tcpmem_pressure = 1; 6260 return false; 6261 } 6262 6263 /* Don't block in the packet receive path */ 6264 if (in_softirq()) 6265 gfp_mask = GFP_NOWAIT; 6266 6267 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages); 6268 6269 if (try_charge(memcg, gfp_mask, nr_pages) == 0) 6270 return true; 6271 6272 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages); 6273 return false; 6274 } 6275 6276 /** 6277 * mem_cgroup_uncharge_skmem - uncharge socket memory 6278 * @memcg: memcg to uncharge 6279 * @nr_pages: number of pages to uncharge 6280 */ 6281 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 6282 { 6283 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 6284 page_counter_uncharge(&memcg->tcpmem, nr_pages); 6285 return; 6286 } 6287 6288 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages); 6289 6290 refill_stock(memcg, nr_pages); 6291 } 6292 6293 static int __init cgroup_memory(char *s) 6294 { 6295 char *token; 6296 6297 while ((token = strsep(&s, ",")) != NULL) { 6298 if (!*token) 6299 continue; 6300 if (!strcmp(token, "nosocket")) 6301 cgroup_memory_nosocket = true; 6302 if (!strcmp(token, "nokmem")) 6303 cgroup_memory_nokmem = true; 6304 } 6305 return 0; 6306 } 6307 __setup("cgroup.memory=", cgroup_memory); 6308 6309 /* 6310 * subsys_initcall() for memory controller. 6311 * 6312 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this 6313 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but 6314 * basically everything that doesn't depend on a specific mem_cgroup structure 6315 * should be initialized from here. 6316 */ 6317 static int __init mem_cgroup_init(void) 6318 { 6319 int cpu, node; 6320 6321 #ifdef CONFIG_MEMCG_KMEM 6322 /* 6323 * Kmem cache creation is mostly done with the slab_mutex held, 6324 * so use a workqueue with limited concurrency to avoid stalling 6325 * all worker threads in case lots of cgroups are created and 6326 * destroyed simultaneously. 6327 */ 6328 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1); 6329 BUG_ON(!memcg_kmem_cache_wq); 6330 #endif 6331 6332 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL, 6333 memcg_hotplug_cpu_dead); 6334 6335 for_each_possible_cpu(cpu) 6336 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, 6337 drain_local_stock); 6338 6339 for_each_node(node) { 6340 struct mem_cgroup_tree_per_node *rtpn; 6341 6342 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, 6343 node_online(node) ? node : NUMA_NO_NODE); 6344 6345 rtpn->rb_root = RB_ROOT; 6346 rtpn->rb_rightmost = NULL; 6347 spin_lock_init(&rtpn->lock); 6348 soft_limit_tree.rb_tree_per_node[node] = rtpn; 6349 } 6350 6351 return 0; 6352 } 6353 subsys_initcall(mem_cgroup_init); 6354 6355 #ifdef CONFIG_MEMCG_SWAP 6356 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg) 6357 { 6358 while (!refcount_inc_not_zero(&memcg->id.ref)) { 6359 /* 6360 * The root cgroup cannot be destroyed, so it's refcount must 6361 * always be >= 1. 6362 */ 6363 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) { 6364 VM_BUG_ON(1); 6365 break; 6366 } 6367 memcg = parent_mem_cgroup(memcg); 6368 if (!memcg) 6369 memcg = root_mem_cgroup; 6370 } 6371 return memcg; 6372 } 6373 6374 /** 6375 * mem_cgroup_swapout - transfer a memsw charge to swap 6376 * @page: page whose memsw charge to transfer 6377 * @entry: swap entry to move the charge to 6378 * 6379 * Transfer the memsw charge of @page to @entry. 6380 */ 6381 void mem_cgroup_swapout(struct page *page, swp_entry_t entry) 6382 { 6383 struct mem_cgroup *memcg, *swap_memcg; 6384 unsigned int nr_entries; 6385 unsigned short oldid; 6386 6387 VM_BUG_ON_PAGE(PageLRU(page), page); 6388 VM_BUG_ON_PAGE(page_count(page), page); 6389 6390 if (!do_memsw_account()) 6391 return; 6392 6393 memcg = page->mem_cgroup; 6394 6395 /* Readahead page, never charged */ 6396 if (!memcg) 6397 return; 6398 6399 /* 6400 * In case the memcg owning these pages has been offlined and doesn't 6401 * have an ID allocated to it anymore, charge the closest online 6402 * ancestor for the swap instead and transfer the memory+swap charge. 6403 */ 6404 swap_memcg = mem_cgroup_id_get_online(memcg); 6405 nr_entries = hpage_nr_pages(page); 6406 /* Get references for the tail pages, too */ 6407 if (nr_entries > 1) 6408 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1); 6409 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg), 6410 nr_entries); 6411 VM_BUG_ON_PAGE(oldid, page); 6412 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries); 6413 6414 page->mem_cgroup = NULL; 6415 6416 if (!mem_cgroup_is_root(memcg)) 6417 page_counter_uncharge(&memcg->memory, nr_entries); 6418 6419 if (memcg != swap_memcg) { 6420 if (!mem_cgroup_is_root(swap_memcg)) 6421 page_counter_charge(&swap_memcg->memsw, nr_entries); 6422 page_counter_uncharge(&memcg->memsw, nr_entries); 6423 } 6424 6425 /* 6426 * Interrupts should be disabled here because the caller holds the 6427 * i_pages lock which is taken with interrupts-off. It is 6428 * important here to have the interrupts disabled because it is the 6429 * only synchronisation we have for updating the per-CPU variables. 6430 */ 6431 VM_BUG_ON(!irqs_disabled()); 6432 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page), 6433 -nr_entries); 6434 memcg_check_events(memcg, page); 6435 6436 if (!mem_cgroup_is_root(memcg)) 6437 css_put_many(&memcg->css, nr_entries); 6438 } 6439 6440 /** 6441 * mem_cgroup_try_charge_swap - try charging swap space for a page 6442 * @page: page being added to swap 6443 * @entry: swap entry to charge 6444 * 6445 * Try to charge @page's memcg for the swap space at @entry. 6446 * 6447 * Returns 0 on success, -ENOMEM on failure. 6448 */ 6449 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry) 6450 { 6451 unsigned int nr_pages = hpage_nr_pages(page); 6452 struct page_counter *counter; 6453 struct mem_cgroup *memcg; 6454 unsigned short oldid; 6455 6456 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account) 6457 return 0; 6458 6459 memcg = page->mem_cgroup; 6460 6461 /* Readahead page, never charged */ 6462 if (!memcg) 6463 return 0; 6464 6465 if (!entry.val) { 6466 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 6467 return 0; 6468 } 6469 6470 memcg = mem_cgroup_id_get_online(memcg); 6471 6472 if (!mem_cgroup_is_root(memcg) && 6473 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) { 6474 memcg_memory_event(memcg, MEMCG_SWAP_MAX); 6475 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 6476 mem_cgroup_id_put(memcg); 6477 return -ENOMEM; 6478 } 6479 6480 /* Get references for the tail pages, too */ 6481 if (nr_pages > 1) 6482 mem_cgroup_id_get_many(memcg, nr_pages - 1); 6483 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages); 6484 VM_BUG_ON_PAGE(oldid, page); 6485 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages); 6486 6487 return 0; 6488 } 6489 6490 /** 6491 * mem_cgroup_uncharge_swap - uncharge swap space 6492 * @entry: swap entry to uncharge 6493 * @nr_pages: the amount of swap space to uncharge 6494 */ 6495 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages) 6496 { 6497 struct mem_cgroup *memcg; 6498 unsigned short id; 6499 6500 if (!do_swap_account) 6501 return; 6502 6503 id = swap_cgroup_record(entry, 0, nr_pages); 6504 rcu_read_lock(); 6505 memcg = mem_cgroup_from_id(id); 6506 if (memcg) { 6507 if (!mem_cgroup_is_root(memcg)) { 6508 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 6509 page_counter_uncharge(&memcg->swap, nr_pages); 6510 else 6511 page_counter_uncharge(&memcg->memsw, nr_pages); 6512 } 6513 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages); 6514 mem_cgroup_id_put_many(memcg, nr_pages); 6515 } 6516 rcu_read_unlock(); 6517 } 6518 6519 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) 6520 { 6521 long nr_swap_pages = get_nr_swap_pages(); 6522 6523 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 6524 return nr_swap_pages; 6525 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) 6526 nr_swap_pages = min_t(long, nr_swap_pages, 6527 READ_ONCE(memcg->swap.max) - 6528 page_counter_read(&memcg->swap)); 6529 return nr_swap_pages; 6530 } 6531 6532 bool mem_cgroup_swap_full(struct page *page) 6533 { 6534 struct mem_cgroup *memcg; 6535 6536 VM_BUG_ON_PAGE(!PageLocked(page), page); 6537 6538 if (vm_swap_full()) 6539 return true; 6540 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 6541 return false; 6542 6543 memcg = page->mem_cgroup; 6544 if (!memcg) 6545 return false; 6546 6547 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) 6548 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max) 6549 return true; 6550 6551 return false; 6552 } 6553 6554 /* for remember boot option*/ 6555 #ifdef CONFIG_MEMCG_SWAP_ENABLED 6556 static int really_do_swap_account __initdata = 1; 6557 #else 6558 static int really_do_swap_account __initdata; 6559 #endif 6560 6561 static int __init enable_swap_account(char *s) 6562 { 6563 if (!strcmp(s, "1")) 6564 really_do_swap_account = 1; 6565 else if (!strcmp(s, "0")) 6566 really_do_swap_account = 0; 6567 return 1; 6568 } 6569 __setup("swapaccount=", enable_swap_account); 6570 6571 static u64 swap_current_read(struct cgroup_subsys_state *css, 6572 struct cftype *cft) 6573 { 6574 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6575 6576 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; 6577 } 6578 6579 static int swap_max_show(struct seq_file *m, void *v) 6580 { 6581 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 6582 unsigned long max = READ_ONCE(memcg->swap.max); 6583 6584 if (max == PAGE_COUNTER_MAX) 6585 seq_puts(m, "max\n"); 6586 else 6587 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE); 6588 6589 return 0; 6590 } 6591 6592 static ssize_t swap_max_write(struct kernfs_open_file *of, 6593 char *buf, size_t nbytes, loff_t off) 6594 { 6595 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6596 unsigned long max; 6597 int err; 6598 6599 buf = strstrip(buf); 6600 err = page_counter_memparse(buf, "max", &max); 6601 if (err) 6602 return err; 6603 6604 xchg(&memcg->swap.max, max); 6605 6606 return nbytes; 6607 } 6608 6609 static int swap_events_show(struct seq_file *m, void *v) 6610 { 6611 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 6612 6613 seq_printf(m, "max %lu\n", 6614 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX])); 6615 seq_printf(m, "fail %lu\n", 6616 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL])); 6617 6618 return 0; 6619 } 6620 6621 static struct cftype swap_files[] = { 6622 { 6623 .name = "swap.current", 6624 .flags = CFTYPE_NOT_ON_ROOT, 6625 .read_u64 = swap_current_read, 6626 }, 6627 { 6628 .name = "swap.max", 6629 .flags = CFTYPE_NOT_ON_ROOT, 6630 .seq_show = swap_max_show, 6631 .write = swap_max_write, 6632 }, 6633 { 6634 .name = "swap.events", 6635 .flags = CFTYPE_NOT_ON_ROOT, 6636 .file_offset = offsetof(struct mem_cgroup, swap_events_file), 6637 .seq_show = swap_events_show, 6638 }, 6639 { } /* terminate */ 6640 }; 6641 6642 static struct cftype memsw_cgroup_files[] = { 6643 { 6644 .name = "memsw.usage_in_bytes", 6645 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 6646 .read_u64 = mem_cgroup_read_u64, 6647 }, 6648 { 6649 .name = "memsw.max_usage_in_bytes", 6650 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 6651 .write = mem_cgroup_reset, 6652 .read_u64 = mem_cgroup_read_u64, 6653 }, 6654 { 6655 .name = "memsw.limit_in_bytes", 6656 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 6657 .write = mem_cgroup_write, 6658 .read_u64 = mem_cgroup_read_u64, 6659 }, 6660 { 6661 .name = "memsw.failcnt", 6662 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 6663 .write = mem_cgroup_reset, 6664 .read_u64 = mem_cgroup_read_u64, 6665 }, 6666 { }, /* terminate */ 6667 }; 6668 6669 static int __init mem_cgroup_swap_init(void) 6670 { 6671 if (!mem_cgroup_disabled() && really_do_swap_account) { 6672 do_swap_account = 1; 6673 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, 6674 swap_files)); 6675 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, 6676 memsw_cgroup_files)); 6677 } 6678 return 0; 6679 } 6680 subsys_initcall(mem_cgroup_swap_init); 6681 6682 #endif /* CONFIG_MEMCG_SWAP */ 6683