xref: /openbmc/linux/mm/memcontrol.c (revision 6d99a79c)
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * Kernel Memory Controller
14  * Copyright (C) 2012 Parallels Inc. and Google Inc.
15  * Authors: Glauber Costa and Suleiman Souhlal
16  *
17  * Native page reclaim
18  * Charge lifetime sanitation
19  * Lockless page tracking & accounting
20  * Unified hierarchy configuration model
21  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22  *
23  * This program is free software; you can redistribute it and/or modify
24  * it under the terms of the GNU General Public License as published by
25  * the Free Software Foundation; either version 2 of the License, or
26  * (at your option) any later version.
27  *
28  * This program is distributed in the hope that it will be useful,
29  * but WITHOUT ANY WARRANTY; without even the implied warranty of
30  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
31  * GNU General Public License for more details.
32  */
33 
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/sched/mm.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/hugetlb.h>
41 #include <linux/pagemap.h>
42 #include <linux/smp.h>
43 #include <linux/page-flags.h>
44 #include <linux/backing-dev.h>
45 #include <linux/bit_spinlock.h>
46 #include <linux/rcupdate.h>
47 #include <linux/limits.h>
48 #include <linux/export.h>
49 #include <linux/mutex.h>
50 #include <linux/rbtree.h>
51 #include <linux/slab.h>
52 #include <linux/swap.h>
53 #include <linux/swapops.h>
54 #include <linux/spinlock.h>
55 #include <linux/eventfd.h>
56 #include <linux/poll.h>
57 #include <linux/sort.h>
58 #include <linux/fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/vmpressure.h>
61 #include <linux/mm_inline.h>
62 #include <linux/swap_cgroup.h>
63 #include <linux/cpu.h>
64 #include <linux/oom.h>
65 #include <linux/lockdep.h>
66 #include <linux/file.h>
67 #include <linux/tracehook.h>
68 #include "internal.h"
69 #include <net/sock.h>
70 #include <net/ip.h>
71 #include "slab.h"
72 
73 #include <linux/uaccess.h>
74 
75 #include <trace/events/vmscan.h>
76 
77 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
78 EXPORT_SYMBOL(memory_cgrp_subsys);
79 
80 struct mem_cgroup *root_mem_cgroup __read_mostly;
81 
82 #define MEM_CGROUP_RECLAIM_RETRIES	5
83 
84 /* Socket memory accounting disabled? */
85 static bool cgroup_memory_nosocket;
86 
87 /* Kernel memory accounting disabled? */
88 static bool cgroup_memory_nokmem;
89 
90 /* Whether the swap controller is active */
91 #ifdef CONFIG_MEMCG_SWAP
92 int do_swap_account __read_mostly;
93 #else
94 #define do_swap_account		0
95 #endif
96 
97 /* Whether legacy memory+swap accounting is active */
98 static bool do_memsw_account(void)
99 {
100 	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
101 }
102 
103 static const char *const mem_cgroup_lru_names[] = {
104 	"inactive_anon",
105 	"active_anon",
106 	"inactive_file",
107 	"active_file",
108 	"unevictable",
109 };
110 
111 #define THRESHOLDS_EVENTS_TARGET 128
112 #define SOFTLIMIT_EVENTS_TARGET 1024
113 #define NUMAINFO_EVENTS_TARGET	1024
114 
115 /*
116  * Cgroups above their limits are maintained in a RB-Tree, independent of
117  * their hierarchy representation
118  */
119 
120 struct mem_cgroup_tree_per_node {
121 	struct rb_root rb_root;
122 	struct rb_node *rb_rightmost;
123 	spinlock_t lock;
124 };
125 
126 struct mem_cgroup_tree {
127 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
128 };
129 
130 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
131 
132 /* for OOM */
133 struct mem_cgroup_eventfd_list {
134 	struct list_head list;
135 	struct eventfd_ctx *eventfd;
136 };
137 
138 /*
139  * cgroup_event represents events which userspace want to receive.
140  */
141 struct mem_cgroup_event {
142 	/*
143 	 * memcg which the event belongs to.
144 	 */
145 	struct mem_cgroup *memcg;
146 	/*
147 	 * eventfd to signal userspace about the event.
148 	 */
149 	struct eventfd_ctx *eventfd;
150 	/*
151 	 * Each of these stored in a list by the cgroup.
152 	 */
153 	struct list_head list;
154 	/*
155 	 * register_event() callback will be used to add new userspace
156 	 * waiter for changes related to this event.  Use eventfd_signal()
157 	 * on eventfd to send notification to userspace.
158 	 */
159 	int (*register_event)(struct mem_cgroup *memcg,
160 			      struct eventfd_ctx *eventfd, const char *args);
161 	/*
162 	 * unregister_event() callback will be called when userspace closes
163 	 * the eventfd or on cgroup removing.  This callback must be set,
164 	 * if you want provide notification functionality.
165 	 */
166 	void (*unregister_event)(struct mem_cgroup *memcg,
167 				 struct eventfd_ctx *eventfd);
168 	/*
169 	 * All fields below needed to unregister event when
170 	 * userspace closes eventfd.
171 	 */
172 	poll_table pt;
173 	wait_queue_head_t *wqh;
174 	wait_queue_entry_t wait;
175 	struct work_struct remove;
176 };
177 
178 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
179 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
180 
181 /* Stuffs for move charges at task migration. */
182 /*
183  * Types of charges to be moved.
184  */
185 #define MOVE_ANON	0x1U
186 #define MOVE_FILE	0x2U
187 #define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
188 
189 /* "mc" and its members are protected by cgroup_mutex */
190 static struct move_charge_struct {
191 	spinlock_t	  lock; /* for from, to */
192 	struct mm_struct  *mm;
193 	struct mem_cgroup *from;
194 	struct mem_cgroup *to;
195 	unsigned long flags;
196 	unsigned long precharge;
197 	unsigned long moved_charge;
198 	unsigned long moved_swap;
199 	struct task_struct *moving_task;	/* a task moving charges */
200 	wait_queue_head_t waitq;		/* a waitq for other context */
201 } mc = {
202 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
203 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
204 };
205 
206 /*
207  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
208  * limit reclaim to prevent infinite loops, if they ever occur.
209  */
210 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
211 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
212 
213 enum charge_type {
214 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
215 	MEM_CGROUP_CHARGE_TYPE_ANON,
216 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
217 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
218 	NR_CHARGE_TYPE,
219 };
220 
221 /* for encoding cft->private value on file */
222 enum res_type {
223 	_MEM,
224 	_MEMSWAP,
225 	_OOM_TYPE,
226 	_KMEM,
227 	_TCP,
228 };
229 
230 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
231 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
232 #define MEMFILE_ATTR(val)	((val) & 0xffff)
233 /* Used for OOM nofiier */
234 #define OOM_CONTROL		(0)
235 
236 /*
237  * Iteration constructs for visiting all cgroups (under a tree).  If
238  * loops are exited prematurely (break), mem_cgroup_iter_break() must
239  * be used for reference counting.
240  */
241 #define for_each_mem_cgroup_tree(iter, root)		\
242 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
243 	     iter != NULL;				\
244 	     iter = mem_cgroup_iter(root, iter, NULL))
245 
246 #define for_each_mem_cgroup(iter)			\
247 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
248 	     iter != NULL;				\
249 	     iter = mem_cgroup_iter(NULL, iter, NULL))
250 
251 /* Some nice accessors for the vmpressure. */
252 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
253 {
254 	if (!memcg)
255 		memcg = root_mem_cgroup;
256 	return &memcg->vmpressure;
257 }
258 
259 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
260 {
261 	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
262 }
263 
264 #ifdef CONFIG_MEMCG_KMEM
265 /*
266  * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
267  * The main reason for not using cgroup id for this:
268  *  this works better in sparse environments, where we have a lot of memcgs,
269  *  but only a few kmem-limited. Or also, if we have, for instance, 200
270  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
271  *  200 entry array for that.
272  *
273  * The current size of the caches array is stored in memcg_nr_cache_ids. It
274  * will double each time we have to increase it.
275  */
276 static DEFINE_IDA(memcg_cache_ida);
277 int memcg_nr_cache_ids;
278 
279 /* Protects memcg_nr_cache_ids */
280 static DECLARE_RWSEM(memcg_cache_ids_sem);
281 
282 void memcg_get_cache_ids(void)
283 {
284 	down_read(&memcg_cache_ids_sem);
285 }
286 
287 void memcg_put_cache_ids(void)
288 {
289 	up_read(&memcg_cache_ids_sem);
290 }
291 
292 /*
293  * MIN_SIZE is different than 1, because we would like to avoid going through
294  * the alloc/free process all the time. In a small machine, 4 kmem-limited
295  * cgroups is a reasonable guess. In the future, it could be a parameter or
296  * tunable, but that is strictly not necessary.
297  *
298  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
299  * this constant directly from cgroup, but it is understandable that this is
300  * better kept as an internal representation in cgroup.c. In any case, the
301  * cgrp_id space is not getting any smaller, and we don't have to necessarily
302  * increase ours as well if it increases.
303  */
304 #define MEMCG_CACHES_MIN_SIZE 4
305 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
306 
307 /*
308  * A lot of the calls to the cache allocation functions are expected to be
309  * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
310  * conditional to this static branch, we'll have to allow modules that does
311  * kmem_cache_alloc and the such to see this symbol as well
312  */
313 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
314 EXPORT_SYMBOL(memcg_kmem_enabled_key);
315 
316 struct workqueue_struct *memcg_kmem_cache_wq;
317 
318 static int memcg_shrinker_map_size;
319 static DEFINE_MUTEX(memcg_shrinker_map_mutex);
320 
321 static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
322 {
323 	kvfree(container_of(head, struct memcg_shrinker_map, rcu));
324 }
325 
326 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
327 					 int size, int old_size)
328 {
329 	struct memcg_shrinker_map *new, *old;
330 	int nid;
331 
332 	lockdep_assert_held(&memcg_shrinker_map_mutex);
333 
334 	for_each_node(nid) {
335 		old = rcu_dereference_protected(
336 			mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
337 		/* Not yet online memcg */
338 		if (!old)
339 			return 0;
340 
341 		new = kvmalloc(sizeof(*new) + size, GFP_KERNEL);
342 		if (!new)
343 			return -ENOMEM;
344 
345 		/* Set all old bits, clear all new bits */
346 		memset(new->map, (int)0xff, old_size);
347 		memset((void *)new->map + old_size, 0, size - old_size);
348 
349 		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
350 		call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
351 	}
352 
353 	return 0;
354 }
355 
356 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
357 {
358 	struct mem_cgroup_per_node *pn;
359 	struct memcg_shrinker_map *map;
360 	int nid;
361 
362 	if (mem_cgroup_is_root(memcg))
363 		return;
364 
365 	for_each_node(nid) {
366 		pn = mem_cgroup_nodeinfo(memcg, nid);
367 		map = rcu_dereference_protected(pn->shrinker_map, true);
368 		if (map)
369 			kvfree(map);
370 		rcu_assign_pointer(pn->shrinker_map, NULL);
371 	}
372 }
373 
374 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
375 {
376 	struct memcg_shrinker_map *map;
377 	int nid, size, ret = 0;
378 
379 	if (mem_cgroup_is_root(memcg))
380 		return 0;
381 
382 	mutex_lock(&memcg_shrinker_map_mutex);
383 	size = memcg_shrinker_map_size;
384 	for_each_node(nid) {
385 		map = kvzalloc(sizeof(*map) + size, GFP_KERNEL);
386 		if (!map) {
387 			memcg_free_shrinker_maps(memcg);
388 			ret = -ENOMEM;
389 			break;
390 		}
391 		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
392 	}
393 	mutex_unlock(&memcg_shrinker_map_mutex);
394 
395 	return ret;
396 }
397 
398 int memcg_expand_shrinker_maps(int new_id)
399 {
400 	int size, old_size, ret = 0;
401 	struct mem_cgroup *memcg;
402 
403 	size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
404 	old_size = memcg_shrinker_map_size;
405 	if (size <= old_size)
406 		return 0;
407 
408 	mutex_lock(&memcg_shrinker_map_mutex);
409 	if (!root_mem_cgroup)
410 		goto unlock;
411 
412 	for_each_mem_cgroup(memcg) {
413 		if (mem_cgroup_is_root(memcg))
414 			continue;
415 		ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
416 		if (ret)
417 			goto unlock;
418 	}
419 unlock:
420 	if (!ret)
421 		memcg_shrinker_map_size = size;
422 	mutex_unlock(&memcg_shrinker_map_mutex);
423 	return ret;
424 }
425 
426 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
427 {
428 	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
429 		struct memcg_shrinker_map *map;
430 
431 		rcu_read_lock();
432 		map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
433 		/* Pairs with smp mb in shrink_slab() */
434 		smp_mb__before_atomic();
435 		set_bit(shrinker_id, map->map);
436 		rcu_read_unlock();
437 	}
438 }
439 
440 #else /* CONFIG_MEMCG_KMEM */
441 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
442 {
443 	return 0;
444 }
445 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) { }
446 #endif /* CONFIG_MEMCG_KMEM */
447 
448 /**
449  * mem_cgroup_css_from_page - css of the memcg associated with a page
450  * @page: page of interest
451  *
452  * If memcg is bound to the default hierarchy, css of the memcg associated
453  * with @page is returned.  The returned css remains associated with @page
454  * until it is released.
455  *
456  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
457  * is returned.
458  */
459 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
460 {
461 	struct mem_cgroup *memcg;
462 
463 	memcg = page->mem_cgroup;
464 
465 	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
466 		memcg = root_mem_cgroup;
467 
468 	return &memcg->css;
469 }
470 
471 /**
472  * page_cgroup_ino - return inode number of the memcg a page is charged to
473  * @page: the page
474  *
475  * Look up the closest online ancestor of the memory cgroup @page is charged to
476  * and return its inode number or 0 if @page is not charged to any cgroup. It
477  * is safe to call this function without holding a reference to @page.
478  *
479  * Note, this function is inherently racy, because there is nothing to prevent
480  * the cgroup inode from getting torn down and potentially reallocated a moment
481  * after page_cgroup_ino() returns, so it only should be used by callers that
482  * do not care (such as procfs interfaces).
483  */
484 ino_t page_cgroup_ino(struct page *page)
485 {
486 	struct mem_cgroup *memcg;
487 	unsigned long ino = 0;
488 
489 	rcu_read_lock();
490 	memcg = READ_ONCE(page->mem_cgroup);
491 	while (memcg && !(memcg->css.flags & CSS_ONLINE))
492 		memcg = parent_mem_cgroup(memcg);
493 	if (memcg)
494 		ino = cgroup_ino(memcg->css.cgroup);
495 	rcu_read_unlock();
496 	return ino;
497 }
498 
499 static struct mem_cgroup_per_node *
500 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
501 {
502 	int nid = page_to_nid(page);
503 
504 	return memcg->nodeinfo[nid];
505 }
506 
507 static struct mem_cgroup_tree_per_node *
508 soft_limit_tree_node(int nid)
509 {
510 	return soft_limit_tree.rb_tree_per_node[nid];
511 }
512 
513 static struct mem_cgroup_tree_per_node *
514 soft_limit_tree_from_page(struct page *page)
515 {
516 	int nid = page_to_nid(page);
517 
518 	return soft_limit_tree.rb_tree_per_node[nid];
519 }
520 
521 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
522 					 struct mem_cgroup_tree_per_node *mctz,
523 					 unsigned long new_usage_in_excess)
524 {
525 	struct rb_node **p = &mctz->rb_root.rb_node;
526 	struct rb_node *parent = NULL;
527 	struct mem_cgroup_per_node *mz_node;
528 	bool rightmost = true;
529 
530 	if (mz->on_tree)
531 		return;
532 
533 	mz->usage_in_excess = new_usage_in_excess;
534 	if (!mz->usage_in_excess)
535 		return;
536 	while (*p) {
537 		parent = *p;
538 		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
539 					tree_node);
540 		if (mz->usage_in_excess < mz_node->usage_in_excess) {
541 			p = &(*p)->rb_left;
542 			rightmost = false;
543 		}
544 
545 		/*
546 		 * We can't avoid mem cgroups that are over their soft
547 		 * limit by the same amount
548 		 */
549 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
550 			p = &(*p)->rb_right;
551 	}
552 
553 	if (rightmost)
554 		mctz->rb_rightmost = &mz->tree_node;
555 
556 	rb_link_node(&mz->tree_node, parent, p);
557 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
558 	mz->on_tree = true;
559 }
560 
561 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
562 					 struct mem_cgroup_tree_per_node *mctz)
563 {
564 	if (!mz->on_tree)
565 		return;
566 
567 	if (&mz->tree_node == mctz->rb_rightmost)
568 		mctz->rb_rightmost = rb_prev(&mz->tree_node);
569 
570 	rb_erase(&mz->tree_node, &mctz->rb_root);
571 	mz->on_tree = false;
572 }
573 
574 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
575 				       struct mem_cgroup_tree_per_node *mctz)
576 {
577 	unsigned long flags;
578 
579 	spin_lock_irqsave(&mctz->lock, flags);
580 	__mem_cgroup_remove_exceeded(mz, mctz);
581 	spin_unlock_irqrestore(&mctz->lock, flags);
582 }
583 
584 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
585 {
586 	unsigned long nr_pages = page_counter_read(&memcg->memory);
587 	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
588 	unsigned long excess = 0;
589 
590 	if (nr_pages > soft_limit)
591 		excess = nr_pages - soft_limit;
592 
593 	return excess;
594 }
595 
596 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
597 {
598 	unsigned long excess;
599 	struct mem_cgroup_per_node *mz;
600 	struct mem_cgroup_tree_per_node *mctz;
601 
602 	mctz = soft_limit_tree_from_page(page);
603 	if (!mctz)
604 		return;
605 	/*
606 	 * Necessary to update all ancestors when hierarchy is used.
607 	 * because their event counter is not touched.
608 	 */
609 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
610 		mz = mem_cgroup_page_nodeinfo(memcg, page);
611 		excess = soft_limit_excess(memcg);
612 		/*
613 		 * We have to update the tree if mz is on RB-tree or
614 		 * mem is over its softlimit.
615 		 */
616 		if (excess || mz->on_tree) {
617 			unsigned long flags;
618 
619 			spin_lock_irqsave(&mctz->lock, flags);
620 			/* if on-tree, remove it */
621 			if (mz->on_tree)
622 				__mem_cgroup_remove_exceeded(mz, mctz);
623 			/*
624 			 * Insert again. mz->usage_in_excess will be updated.
625 			 * If excess is 0, no tree ops.
626 			 */
627 			__mem_cgroup_insert_exceeded(mz, mctz, excess);
628 			spin_unlock_irqrestore(&mctz->lock, flags);
629 		}
630 	}
631 }
632 
633 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
634 {
635 	struct mem_cgroup_tree_per_node *mctz;
636 	struct mem_cgroup_per_node *mz;
637 	int nid;
638 
639 	for_each_node(nid) {
640 		mz = mem_cgroup_nodeinfo(memcg, nid);
641 		mctz = soft_limit_tree_node(nid);
642 		if (mctz)
643 			mem_cgroup_remove_exceeded(mz, mctz);
644 	}
645 }
646 
647 static struct mem_cgroup_per_node *
648 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
649 {
650 	struct mem_cgroup_per_node *mz;
651 
652 retry:
653 	mz = NULL;
654 	if (!mctz->rb_rightmost)
655 		goto done;		/* Nothing to reclaim from */
656 
657 	mz = rb_entry(mctz->rb_rightmost,
658 		      struct mem_cgroup_per_node, tree_node);
659 	/*
660 	 * Remove the node now but someone else can add it back,
661 	 * we will to add it back at the end of reclaim to its correct
662 	 * position in the tree.
663 	 */
664 	__mem_cgroup_remove_exceeded(mz, mctz);
665 	if (!soft_limit_excess(mz->memcg) ||
666 	    !css_tryget_online(&mz->memcg->css))
667 		goto retry;
668 done:
669 	return mz;
670 }
671 
672 static struct mem_cgroup_per_node *
673 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
674 {
675 	struct mem_cgroup_per_node *mz;
676 
677 	spin_lock_irq(&mctz->lock);
678 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
679 	spin_unlock_irq(&mctz->lock);
680 	return mz;
681 }
682 
683 static unsigned long memcg_sum_events(struct mem_cgroup *memcg,
684 				      int event)
685 {
686 	return atomic_long_read(&memcg->events[event]);
687 }
688 
689 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
690 					 struct page *page,
691 					 bool compound, int nr_pages)
692 {
693 	/*
694 	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
695 	 * counted as CACHE even if it's on ANON LRU.
696 	 */
697 	if (PageAnon(page))
698 		__mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
699 	else {
700 		__mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
701 		if (PageSwapBacked(page))
702 			__mod_memcg_state(memcg, NR_SHMEM, nr_pages);
703 	}
704 
705 	if (compound) {
706 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
707 		__mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
708 	}
709 
710 	/* pagein of a big page is an event. So, ignore page size */
711 	if (nr_pages > 0)
712 		__count_memcg_events(memcg, PGPGIN, 1);
713 	else {
714 		__count_memcg_events(memcg, PGPGOUT, 1);
715 		nr_pages = -nr_pages; /* for event */
716 	}
717 
718 	__this_cpu_add(memcg->stat_cpu->nr_page_events, nr_pages);
719 }
720 
721 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
722 					   int nid, unsigned int lru_mask)
723 {
724 	struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
725 	unsigned long nr = 0;
726 	enum lru_list lru;
727 
728 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
729 
730 	for_each_lru(lru) {
731 		if (!(BIT(lru) & lru_mask))
732 			continue;
733 		nr += mem_cgroup_get_lru_size(lruvec, lru);
734 	}
735 	return nr;
736 }
737 
738 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
739 			unsigned int lru_mask)
740 {
741 	unsigned long nr = 0;
742 	int nid;
743 
744 	for_each_node_state(nid, N_MEMORY)
745 		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
746 	return nr;
747 }
748 
749 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
750 				       enum mem_cgroup_events_target target)
751 {
752 	unsigned long val, next;
753 
754 	val = __this_cpu_read(memcg->stat_cpu->nr_page_events);
755 	next = __this_cpu_read(memcg->stat_cpu->targets[target]);
756 	/* from time_after() in jiffies.h */
757 	if ((long)(next - val) < 0) {
758 		switch (target) {
759 		case MEM_CGROUP_TARGET_THRESH:
760 			next = val + THRESHOLDS_EVENTS_TARGET;
761 			break;
762 		case MEM_CGROUP_TARGET_SOFTLIMIT:
763 			next = val + SOFTLIMIT_EVENTS_TARGET;
764 			break;
765 		case MEM_CGROUP_TARGET_NUMAINFO:
766 			next = val + NUMAINFO_EVENTS_TARGET;
767 			break;
768 		default:
769 			break;
770 		}
771 		__this_cpu_write(memcg->stat_cpu->targets[target], next);
772 		return true;
773 	}
774 	return false;
775 }
776 
777 /*
778  * Check events in order.
779  *
780  */
781 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
782 {
783 	/* threshold event is triggered in finer grain than soft limit */
784 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
785 						MEM_CGROUP_TARGET_THRESH))) {
786 		bool do_softlimit;
787 		bool do_numainfo __maybe_unused;
788 
789 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
790 						MEM_CGROUP_TARGET_SOFTLIMIT);
791 #if MAX_NUMNODES > 1
792 		do_numainfo = mem_cgroup_event_ratelimit(memcg,
793 						MEM_CGROUP_TARGET_NUMAINFO);
794 #endif
795 		mem_cgroup_threshold(memcg);
796 		if (unlikely(do_softlimit))
797 			mem_cgroup_update_tree(memcg, page);
798 #if MAX_NUMNODES > 1
799 		if (unlikely(do_numainfo))
800 			atomic_inc(&memcg->numainfo_events);
801 #endif
802 	}
803 }
804 
805 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
806 {
807 	/*
808 	 * mm_update_next_owner() may clear mm->owner to NULL
809 	 * if it races with swapoff, page migration, etc.
810 	 * So this can be called with p == NULL.
811 	 */
812 	if (unlikely(!p))
813 		return NULL;
814 
815 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
816 }
817 EXPORT_SYMBOL(mem_cgroup_from_task);
818 
819 /**
820  * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
821  * @mm: mm from which memcg should be extracted. It can be NULL.
822  *
823  * Obtain a reference on mm->memcg and returns it if successful. Otherwise
824  * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
825  * returned.
826  */
827 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
828 {
829 	struct mem_cgroup *memcg;
830 
831 	if (mem_cgroup_disabled())
832 		return NULL;
833 
834 	rcu_read_lock();
835 	do {
836 		/*
837 		 * Page cache insertions can happen withou an
838 		 * actual mm context, e.g. during disk probing
839 		 * on boot, loopback IO, acct() writes etc.
840 		 */
841 		if (unlikely(!mm))
842 			memcg = root_mem_cgroup;
843 		else {
844 			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
845 			if (unlikely(!memcg))
846 				memcg = root_mem_cgroup;
847 		}
848 	} while (!css_tryget_online(&memcg->css));
849 	rcu_read_unlock();
850 	return memcg;
851 }
852 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
853 
854 /**
855  * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
856  * @page: page from which memcg should be extracted.
857  *
858  * Obtain a reference on page->memcg and returns it if successful. Otherwise
859  * root_mem_cgroup is returned.
860  */
861 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
862 {
863 	struct mem_cgroup *memcg = page->mem_cgroup;
864 
865 	if (mem_cgroup_disabled())
866 		return NULL;
867 
868 	rcu_read_lock();
869 	if (!memcg || !css_tryget_online(&memcg->css))
870 		memcg = root_mem_cgroup;
871 	rcu_read_unlock();
872 	return memcg;
873 }
874 EXPORT_SYMBOL(get_mem_cgroup_from_page);
875 
876 /**
877  * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
878  */
879 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
880 {
881 	if (unlikely(current->active_memcg)) {
882 		struct mem_cgroup *memcg = root_mem_cgroup;
883 
884 		rcu_read_lock();
885 		if (css_tryget_online(&current->active_memcg->css))
886 			memcg = current->active_memcg;
887 		rcu_read_unlock();
888 		return memcg;
889 	}
890 	return get_mem_cgroup_from_mm(current->mm);
891 }
892 
893 /**
894  * mem_cgroup_iter - iterate over memory cgroup hierarchy
895  * @root: hierarchy root
896  * @prev: previously returned memcg, NULL on first invocation
897  * @reclaim: cookie for shared reclaim walks, NULL for full walks
898  *
899  * Returns references to children of the hierarchy below @root, or
900  * @root itself, or %NULL after a full round-trip.
901  *
902  * Caller must pass the return value in @prev on subsequent
903  * invocations for reference counting, or use mem_cgroup_iter_break()
904  * to cancel a hierarchy walk before the round-trip is complete.
905  *
906  * Reclaimers can specify a node and a priority level in @reclaim to
907  * divide up the memcgs in the hierarchy among all concurrent
908  * reclaimers operating on the same node and priority.
909  */
910 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
911 				   struct mem_cgroup *prev,
912 				   struct mem_cgroup_reclaim_cookie *reclaim)
913 {
914 	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
915 	struct cgroup_subsys_state *css = NULL;
916 	struct mem_cgroup *memcg = NULL;
917 	struct mem_cgroup *pos = NULL;
918 
919 	if (mem_cgroup_disabled())
920 		return NULL;
921 
922 	if (!root)
923 		root = root_mem_cgroup;
924 
925 	if (prev && !reclaim)
926 		pos = prev;
927 
928 	if (!root->use_hierarchy && root != root_mem_cgroup) {
929 		if (prev)
930 			goto out;
931 		return root;
932 	}
933 
934 	rcu_read_lock();
935 
936 	if (reclaim) {
937 		struct mem_cgroup_per_node *mz;
938 
939 		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
940 		iter = &mz->iter[reclaim->priority];
941 
942 		if (prev && reclaim->generation != iter->generation)
943 			goto out_unlock;
944 
945 		while (1) {
946 			pos = READ_ONCE(iter->position);
947 			if (!pos || css_tryget(&pos->css))
948 				break;
949 			/*
950 			 * css reference reached zero, so iter->position will
951 			 * be cleared by ->css_released. However, we should not
952 			 * rely on this happening soon, because ->css_released
953 			 * is called from a work queue, and by busy-waiting we
954 			 * might block it. So we clear iter->position right
955 			 * away.
956 			 */
957 			(void)cmpxchg(&iter->position, pos, NULL);
958 		}
959 	}
960 
961 	if (pos)
962 		css = &pos->css;
963 
964 	for (;;) {
965 		css = css_next_descendant_pre(css, &root->css);
966 		if (!css) {
967 			/*
968 			 * Reclaimers share the hierarchy walk, and a
969 			 * new one might jump in right at the end of
970 			 * the hierarchy - make sure they see at least
971 			 * one group and restart from the beginning.
972 			 */
973 			if (!prev)
974 				continue;
975 			break;
976 		}
977 
978 		/*
979 		 * Verify the css and acquire a reference.  The root
980 		 * is provided by the caller, so we know it's alive
981 		 * and kicking, and don't take an extra reference.
982 		 */
983 		memcg = mem_cgroup_from_css(css);
984 
985 		if (css == &root->css)
986 			break;
987 
988 		if (css_tryget(css))
989 			break;
990 
991 		memcg = NULL;
992 	}
993 
994 	if (reclaim) {
995 		/*
996 		 * The position could have already been updated by a competing
997 		 * thread, so check that the value hasn't changed since we read
998 		 * it to avoid reclaiming from the same cgroup twice.
999 		 */
1000 		(void)cmpxchg(&iter->position, pos, memcg);
1001 
1002 		if (pos)
1003 			css_put(&pos->css);
1004 
1005 		if (!memcg)
1006 			iter->generation++;
1007 		else if (!prev)
1008 			reclaim->generation = iter->generation;
1009 	}
1010 
1011 out_unlock:
1012 	rcu_read_unlock();
1013 out:
1014 	if (prev && prev != root)
1015 		css_put(&prev->css);
1016 
1017 	return memcg;
1018 }
1019 
1020 /**
1021  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1022  * @root: hierarchy root
1023  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1024  */
1025 void mem_cgroup_iter_break(struct mem_cgroup *root,
1026 			   struct mem_cgroup *prev)
1027 {
1028 	if (!root)
1029 		root = root_mem_cgroup;
1030 	if (prev && prev != root)
1031 		css_put(&prev->css);
1032 }
1033 
1034 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1035 {
1036 	struct mem_cgroup *memcg = dead_memcg;
1037 	struct mem_cgroup_reclaim_iter *iter;
1038 	struct mem_cgroup_per_node *mz;
1039 	int nid;
1040 	int i;
1041 
1042 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1043 		for_each_node(nid) {
1044 			mz = mem_cgroup_nodeinfo(memcg, nid);
1045 			for (i = 0; i <= DEF_PRIORITY; i++) {
1046 				iter = &mz->iter[i];
1047 				cmpxchg(&iter->position,
1048 					dead_memcg, NULL);
1049 			}
1050 		}
1051 	}
1052 }
1053 
1054 /**
1055  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1056  * @memcg: hierarchy root
1057  * @fn: function to call for each task
1058  * @arg: argument passed to @fn
1059  *
1060  * This function iterates over tasks attached to @memcg or to any of its
1061  * descendants and calls @fn for each task. If @fn returns a non-zero
1062  * value, the function breaks the iteration loop and returns the value.
1063  * Otherwise, it will iterate over all tasks and return 0.
1064  *
1065  * This function must not be called for the root memory cgroup.
1066  */
1067 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1068 			  int (*fn)(struct task_struct *, void *), void *arg)
1069 {
1070 	struct mem_cgroup *iter;
1071 	int ret = 0;
1072 
1073 	BUG_ON(memcg == root_mem_cgroup);
1074 
1075 	for_each_mem_cgroup_tree(iter, memcg) {
1076 		struct css_task_iter it;
1077 		struct task_struct *task;
1078 
1079 		css_task_iter_start(&iter->css, 0, &it);
1080 		while (!ret && (task = css_task_iter_next(&it)))
1081 			ret = fn(task, arg);
1082 		css_task_iter_end(&it);
1083 		if (ret) {
1084 			mem_cgroup_iter_break(memcg, iter);
1085 			break;
1086 		}
1087 	}
1088 	return ret;
1089 }
1090 
1091 /**
1092  * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1093  * @page: the page
1094  * @pgdat: pgdat of the page
1095  *
1096  * This function is only safe when following the LRU page isolation
1097  * and putback protocol: the LRU lock must be held, and the page must
1098  * either be PageLRU() or the caller must have isolated/allocated it.
1099  */
1100 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
1101 {
1102 	struct mem_cgroup_per_node *mz;
1103 	struct mem_cgroup *memcg;
1104 	struct lruvec *lruvec;
1105 
1106 	if (mem_cgroup_disabled()) {
1107 		lruvec = &pgdat->lruvec;
1108 		goto out;
1109 	}
1110 
1111 	memcg = page->mem_cgroup;
1112 	/*
1113 	 * Swapcache readahead pages are added to the LRU - and
1114 	 * possibly migrated - before they are charged.
1115 	 */
1116 	if (!memcg)
1117 		memcg = root_mem_cgroup;
1118 
1119 	mz = mem_cgroup_page_nodeinfo(memcg, page);
1120 	lruvec = &mz->lruvec;
1121 out:
1122 	/*
1123 	 * Since a node can be onlined after the mem_cgroup was created,
1124 	 * we have to be prepared to initialize lruvec->zone here;
1125 	 * and if offlined then reonlined, we need to reinitialize it.
1126 	 */
1127 	if (unlikely(lruvec->pgdat != pgdat))
1128 		lruvec->pgdat = pgdat;
1129 	return lruvec;
1130 }
1131 
1132 /**
1133  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1134  * @lruvec: mem_cgroup per zone lru vector
1135  * @lru: index of lru list the page is sitting on
1136  * @zid: zone id of the accounted pages
1137  * @nr_pages: positive when adding or negative when removing
1138  *
1139  * This function must be called under lru_lock, just before a page is added
1140  * to or just after a page is removed from an lru list (that ordering being
1141  * so as to allow it to check that lru_size 0 is consistent with list_empty).
1142  */
1143 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1144 				int zid, int nr_pages)
1145 {
1146 	struct mem_cgroup_per_node *mz;
1147 	unsigned long *lru_size;
1148 	long size;
1149 
1150 	if (mem_cgroup_disabled())
1151 		return;
1152 
1153 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1154 	lru_size = &mz->lru_zone_size[zid][lru];
1155 
1156 	if (nr_pages < 0)
1157 		*lru_size += nr_pages;
1158 
1159 	size = *lru_size;
1160 	if (WARN_ONCE(size < 0,
1161 		"%s(%p, %d, %d): lru_size %ld\n",
1162 		__func__, lruvec, lru, nr_pages, size)) {
1163 		VM_BUG_ON(1);
1164 		*lru_size = 0;
1165 	}
1166 
1167 	if (nr_pages > 0)
1168 		*lru_size += nr_pages;
1169 }
1170 
1171 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1172 {
1173 	struct mem_cgroup *task_memcg;
1174 	struct task_struct *p;
1175 	bool ret;
1176 
1177 	p = find_lock_task_mm(task);
1178 	if (p) {
1179 		task_memcg = get_mem_cgroup_from_mm(p->mm);
1180 		task_unlock(p);
1181 	} else {
1182 		/*
1183 		 * All threads may have already detached their mm's, but the oom
1184 		 * killer still needs to detect if they have already been oom
1185 		 * killed to prevent needlessly killing additional tasks.
1186 		 */
1187 		rcu_read_lock();
1188 		task_memcg = mem_cgroup_from_task(task);
1189 		css_get(&task_memcg->css);
1190 		rcu_read_unlock();
1191 	}
1192 	ret = mem_cgroup_is_descendant(task_memcg, memcg);
1193 	css_put(&task_memcg->css);
1194 	return ret;
1195 }
1196 
1197 /**
1198  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1199  * @memcg: the memory cgroup
1200  *
1201  * Returns the maximum amount of memory @mem can be charged with, in
1202  * pages.
1203  */
1204 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1205 {
1206 	unsigned long margin = 0;
1207 	unsigned long count;
1208 	unsigned long limit;
1209 
1210 	count = page_counter_read(&memcg->memory);
1211 	limit = READ_ONCE(memcg->memory.max);
1212 	if (count < limit)
1213 		margin = limit - count;
1214 
1215 	if (do_memsw_account()) {
1216 		count = page_counter_read(&memcg->memsw);
1217 		limit = READ_ONCE(memcg->memsw.max);
1218 		if (count <= limit)
1219 			margin = min(margin, limit - count);
1220 		else
1221 			margin = 0;
1222 	}
1223 
1224 	return margin;
1225 }
1226 
1227 /*
1228  * A routine for checking "mem" is under move_account() or not.
1229  *
1230  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1231  * moving cgroups. This is for waiting at high-memory pressure
1232  * caused by "move".
1233  */
1234 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1235 {
1236 	struct mem_cgroup *from;
1237 	struct mem_cgroup *to;
1238 	bool ret = false;
1239 	/*
1240 	 * Unlike task_move routines, we access mc.to, mc.from not under
1241 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1242 	 */
1243 	spin_lock(&mc.lock);
1244 	from = mc.from;
1245 	to = mc.to;
1246 	if (!from)
1247 		goto unlock;
1248 
1249 	ret = mem_cgroup_is_descendant(from, memcg) ||
1250 		mem_cgroup_is_descendant(to, memcg);
1251 unlock:
1252 	spin_unlock(&mc.lock);
1253 	return ret;
1254 }
1255 
1256 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1257 {
1258 	if (mc.moving_task && current != mc.moving_task) {
1259 		if (mem_cgroup_under_move(memcg)) {
1260 			DEFINE_WAIT(wait);
1261 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1262 			/* moving charge context might have finished. */
1263 			if (mc.moving_task)
1264 				schedule();
1265 			finish_wait(&mc.waitq, &wait);
1266 			return true;
1267 		}
1268 	}
1269 	return false;
1270 }
1271 
1272 static const unsigned int memcg1_stats[] = {
1273 	MEMCG_CACHE,
1274 	MEMCG_RSS,
1275 	MEMCG_RSS_HUGE,
1276 	NR_SHMEM,
1277 	NR_FILE_MAPPED,
1278 	NR_FILE_DIRTY,
1279 	NR_WRITEBACK,
1280 	MEMCG_SWAP,
1281 };
1282 
1283 static const char *const memcg1_stat_names[] = {
1284 	"cache",
1285 	"rss",
1286 	"rss_huge",
1287 	"shmem",
1288 	"mapped_file",
1289 	"dirty",
1290 	"writeback",
1291 	"swap",
1292 };
1293 
1294 #define K(x) ((x) << (PAGE_SHIFT-10))
1295 /**
1296  * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1297  * @memcg: The memory cgroup that went over limit
1298  * @p: Task that is going to be killed
1299  *
1300  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1301  * enabled
1302  */
1303 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1304 {
1305 	struct mem_cgroup *iter;
1306 	unsigned int i;
1307 
1308 	rcu_read_lock();
1309 
1310 	if (p) {
1311 		pr_info("Task in ");
1312 		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1313 		pr_cont(" killed as a result of limit of ");
1314 	} else {
1315 		pr_info("Memory limit reached of cgroup ");
1316 	}
1317 
1318 	pr_cont_cgroup_path(memcg->css.cgroup);
1319 	pr_cont("\n");
1320 
1321 	rcu_read_unlock();
1322 
1323 	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1324 		K((u64)page_counter_read(&memcg->memory)),
1325 		K((u64)memcg->memory.max), memcg->memory.failcnt);
1326 	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1327 		K((u64)page_counter_read(&memcg->memsw)),
1328 		K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1329 	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1330 		K((u64)page_counter_read(&memcg->kmem)),
1331 		K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1332 
1333 	for_each_mem_cgroup_tree(iter, memcg) {
1334 		pr_info("Memory cgroup stats for ");
1335 		pr_cont_cgroup_path(iter->css.cgroup);
1336 		pr_cont(":");
1337 
1338 		for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
1339 			if (memcg1_stats[i] == MEMCG_SWAP && !do_swap_account)
1340 				continue;
1341 			pr_cont(" %s:%luKB", memcg1_stat_names[i],
1342 				K(memcg_page_state(iter, memcg1_stats[i])));
1343 		}
1344 
1345 		for (i = 0; i < NR_LRU_LISTS; i++)
1346 			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1347 				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1348 
1349 		pr_cont("\n");
1350 	}
1351 }
1352 
1353 /*
1354  * Return the memory (and swap, if configured) limit for a memcg.
1355  */
1356 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1357 {
1358 	unsigned long max;
1359 
1360 	max = memcg->memory.max;
1361 	if (mem_cgroup_swappiness(memcg)) {
1362 		unsigned long memsw_max;
1363 		unsigned long swap_max;
1364 
1365 		memsw_max = memcg->memsw.max;
1366 		swap_max = memcg->swap.max;
1367 		swap_max = min(swap_max, (unsigned long)total_swap_pages);
1368 		max = min(max + swap_max, memsw_max);
1369 	}
1370 	return max;
1371 }
1372 
1373 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1374 				     int order)
1375 {
1376 	struct oom_control oc = {
1377 		.zonelist = NULL,
1378 		.nodemask = NULL,
1379 		.memcg = memcg,
1380 		.gfp_mask = gfp_mask,
1381 		.order = order,
1382 	};
1383 	bool ret;
1384 
1385 	mutex_lock(&oom_lock);
1386 	ret = out_of_memory(&oc);
1387 	mutex_unlock(&oom_lock);
1388 	return ret;
1389 }
1390 
1391 #if MAX_NUMNODES > 1
1392 
1393 /**
1394  * test_mem_cgroup_node_reclaimable
1395  * @memcg: the target memcg
1396  * @nid: the node ID to be checked.
1397  * @noswap : specify true here if the user wants flle only information.
1398  *
1399  * This function returns whether the specified memcg contains any
1400  * reclaimable pages on a node. Returns true if there are any reclaimable
1401  * pages in the node.
1402  */
1403 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1404 		int nid, bool noswap)
1405 {
1406 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1407 		return true;
1408 	if (noswap || !total_swap_pages)
1409 		return false;
1410 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1411 		return true;
1412 	return false;
1413 
1414 }
1415 
1416 /*
1417  * Always updating the nodemask is not very good - even if we have an empty
1418  * list or the wrong list here, we can start from some node and traverse all
1419  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1420  *
1421  */
1422 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1423 {
1424 	int nid;
1425 	/*
1426 	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1427 	 * pagein/pageout changes since the last update.
1428 	 */
1429 	if (!atomic_read(&memcg->numainfo_events))
1430 		return;
1431 	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1432 		return;
1433 
1434 	/* make a nodemask where this memcg uses memory from */
1435 	memcg->scan_nodes = node_states[N_MEMORY];
1436 
1437 	for_each_node_mask(nid, node_states[N_MEMORY]) {
1438 
1439 		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1440 			node_clear(nid, memcg->scan_nodes);
1441 	}
1442 
1443 	atomic_set(&memcg->numainfo_events, 0);
1444 	atomic_set(&memcg->numainfo_updating, 0);
1445 }
1446 
1447 /*
1448  * Selecting a node where we start reclaim from. Because what we need is just
1449  * reducing usage counter, start from anywhere is O,K. Considering
1450  * memory reclaim from current node, there are pros. and cons.
1451  *
1452  * Freeing memory from current node means freeing memory from a node which
1453  * we'll use or we've used. So, it may make LRU bad. And if several threads
1454  * hit limits, it will see a contention on a node. But freeing from remote
1455  * node means more costs for memory reclaim because of memory latency.
1456  *
1457  * Now, we use round-robin. Better algorithm is welcomed.
1458  */
1459 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1460 {
1461 	int node;
1462 
1463 	mem_cgroup_may_update_nodemask(memcg);
1464 	node = memcg->last_scanned_node;
1465 
1466 	node = next_node_in(node, memcg->scan_nodes);
1467 	/*
1468 	 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1469 	 * last time it really checked all the LRUs due to rate limiting.
1470 	 * Fallback to the current node in that case for simplicity.
1471 	 */
1472 	if (unlikely(node == MAX_NUMNODES))
1473 		node = numa_node_id();
1474 
1475 	memcg->last_scanned_node = node;
1476 	return node;
1477 }
1478 #else
1479 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1480 {
1481 	return 0;
1482 }
1483 #endif
1484 
1485 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1486 				   pg_data_t *pgdat,
1487 				   gfp_t gfp_mask,
1488 				   unsigned long *total_scanned)
1489 {
1490 	struct mem_cgroup *victim = NULL;
1491 	int total = 0;
1492 	int loop = 0;
1493 	unsigned long excess;
1494 	unsigned long nr_scanned;
1495 	struct mem_cgroup_reclaim_cookie reclaim = {
1496 		.pgdat = pgdat,
1497 		.priority = 0,
1498 	};
1499 
1500 	excess = soft_limit_excess(root_memcg);
1501 
1502 	while (1) {
1503 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1504 		if (!victim) {
1505 			loop++;
1506 			if (loop >= 2) {
1507 				/*
1508 				 * If we have not been able to reclaim
1509 				 * anything, it might because there are
1510 				 * no reclaimable pages under this hierarchy
1511 				 */
1512 				if (!total)
1513 					break;
1514 				/*
1515 				 * We want to do more targeted reclaim.
1516 				 * excess >> 2 is not to excessive so as to
1517 				 * reclaim too much, nor too less that we keep
1518 				 * coming back to reclaim from this cgroup
1519 				 */
1520 				if (total >= (excess >> 2) ||
1521 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1522 					break;
1523 			}
1524 			continue;
1525 		}
1526 		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1527 					pgdat, &nr_scanned);
1528 		*total_scanned += nr_scanned;
1529 		if (!soft_limit_excess(root_memcg))
1530 			break;
1531 	}
1532 	mem_cgroup_iter_break(root_memcg, victim);
1533 	return total;
1534 }
1535 
1536 #ifdef CONFIG_LOCKDEP
1537 static struct lockdep_map memcg_oom_lock_dep_map = {
1538 	.name = "memcg_oom_lock",
1539 };
1540 #endif
1541 
1542 static DEFINE_SPINLOCK(memcg_oom_lock);
1543 
1544 /*
1545  * Check OOM-Killer is already running under our hierarchy.
1546  * If someone is running, return false.
1547  */
1548 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1549 {
1550 	struct mem_cgroup *iter, *failed = NULL;
1551 
1552 	spin_lock(&memcg_oom_lock);
1553 
1554 	for_each_mem_cgroup_tree(iter, memcg) {
1555 		if (iter->oom_lock) {
1556 			/*
1557 			 * this subtree of our hierarchy is already locked
1558 			 * so we cannot give a lock.
1559 			 */
1560 			failed = iter;
1561 			mem_cgroup_iter_break(memcg, iter);
1562 			break;
1563 		} else
1564 			iter->oom_lock = true;
1565 	}
1566 
1567 	if (failed) {
1568 		/*
1569 		 * OK, we failed to lock the whole subtree so we have
1570 		 * to clean up what we set up to the failing subtree
1571 		 */
1572 		for_each_mem_cgroup_tree(iter, memcg) {
1573 			if (iter == failed) {
1574 				mem_cgroup_iter_break(memcg, iter);
1575 				break;
1576 			}
1577 			iter->oom_lock = false;
1578 		}
1579 	} else
1580 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1581 
1582 	spin_unlock(&memcg_oom_lock);
1583 
1584 	return !failed;
1585 }
1586 
1587 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1588 {
1589 	struct mem_cgroup *iter;
1590 
1591 	spin_lock(&memcg_oom_lock);
1592 	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1593 	for_each_mem_cgroup_tree(iter, memcg)
1594 		iter->oom_lock = false;
1595 	spin_unlock(&memcg_oom_lock);
1596 }
1597 
1598 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1599 {
1600 	struct mem_cgroup *iter;
1601 
1602 	spin_lock(&memcg_oom_lock);
1603 	for_each_mem_cgroup_tree(iter, memcg)
1604 		iter->under_oom++;
1605 	spin_unlock(&memcg_oom_lock);
1606 }
1607 
1608 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1609 {
1610 	struct mem_cgroup *iter;
1611 
1612 	/*
1613 	 * When a new child is created while the hierarchy is under oom,
1614 	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1615 	 */
1616 	spin_lock(&memcg_oom_lock);
1617 	for_each_mem_cgroup_tree(iter, memcg)
1618 		if (iter->under_oom > 0)
1619 			iter->under_oom--;
1620 	spin_unlock(&memcg_oom_lock);
1621 }
1622 
1623 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1624 
1625 struct oom_wait_info {
1626 	struct mem_cgroup *memcg;
1627 	wait_queue_entry_t	wait;
1628 };
1629 
1630 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1631 	unsigned mode, int sync, void *arg)
1632 {
1633 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1634 	struct mem_cgroup *oom_wait_memcg;
1635 	struct oom_wait_info *oom_wait_info;
1636 
1637 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1638 	oom_wait_memcg = oom_wait_info->memcg;
1639 
1640 	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1641 	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1642 		return 0;
1643 	return autoremove_wake_function(wait, mode, sync, arg);
1644 }
1645 
1646 static void memcg_oom_recover(struct mem_cgroup *memcg)
1647 {
1648 	/*
1649 	 * For the following lockless ->under_oom test, the only required
1650 	 * guarantee is that it must see the state asserted by an OOM when
1651 	 * this function is called as a result of userland actions
1652 	 * triggered by the notification of the OOM.  This is trivially
1653 	 * achieved by invoking mem_cgroup_mark_under_oom() before
1654 	 * triggering notification.
1655 	 */
1656 	if (memcg && memcg->under_oom)
1657 		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1658 }
1659 
1660 enum oom_status {
1661 	OOM_SUCCESS,
1662 	OOM_FAILED,
1663 	OOM_ASYNC,
1664 	OOM_SKIPPED
1665 };
1666 
1667 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1668 {
1669 	if (order > PAGE_ALLOC_COSTLY_ORDER)
1670 		return OOM_SKIPPED;
1671 
1672 	memcg_memory_event(memcg, MEMCG_OOM);
1673 
1674 	/*
1675 	 * We are in the middle of the charge context here, so we
1676 	 * don't want to block when potentially sitting on a callstack
1677 	 * that holds all kinds of filesystem and mm locks.
1678 	 *
1679 	 * cgroup1 allows disabling the OOM killer and waiting for outside
1680 	 * handling until the charge can succeed; remember the context and put
1681 	 * the task to sleep at the end of the page fault when all locks are
1682 	 * released.
1683 	 *
1684 	 * On the other hand, in-kernel OOM killer allows for an async victim
1685 	 * memory reclaim (oom_reaper) and that means that we are not solely
1686 	 * relying on the oom victim to make a forward progress and we can
1687 	 * invoke the oom killer here.
1688 	 *
1689 	 * Please note that mem_cgroup_out_of_memory might fail to find a
1690 	 * victim and then we have to bail out from the charge path.
1691 	 */
1692 	if (memcg->oom_kill_disable) {
1693 		if (!current->in_user_fault)
1694 			return OOM_SKIPPED;
1695 		css_get(&memcg->css);
1696 		current->memcg_in_oom = memcg;
1697 		current->memcg_oom_gfp_mask = mask;
1698 		current->memcg_oom_order = order;
1699 
1700 		return OOM_ASYNC;
1701 	}
1702 
1703 	if (mem_cgroup_out_of_memory(memcg, mask, order))
1704 		return OOM_SUCCESS;
1705 
1706 	return OOM_FAILED;
1707 }
1708 
1709 /**
1710  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1711  * @handle: actually kill/wait or just clean up the OOM state
1712  *
1713  * This has to be called at the end of a page fault if the memcg OOM
1714  * handler was enabled.
1715  *
1716  * Memcg supports userspace OOM handling where failed allocations must
1717  * sleep on a waitqueue until the userspace task resolves the
1718  * situation.  Sleeping directly in the charge context with all kinds
1719  * of locks held is not a good idea, instead we remember an OOM state
1720  * in the task and mem_cgroup_oom_synchronize() has to be called at
1721  * the end of the page fault to complete the OOM handling.
1722  *
1723  * Returns %true if an ongoing memcg OOM situation was detected and
1724  * completed, %false otherwise.
1725  */
1726 bool mem_cgroup_oom_synchronize(bool handle)
1727 {
1728 	struct mem_cgroup *memcg = current->memcg_in_oom;
1729 	struct oom_wait_info owait;
1730 	bool locked;
1731 
1732 	/* OOM is global, do not handle */
1733 	if (!memcg)
1734 		return false;
1735 
1736 	if (!handle)
1737 		goto cleanup;
1738 
1739 	owait.memcg = memcg;
1740 	owait.wait.flags = 0;
1741 	owait.wait.func = memcg_oom_wake_function;
1742 	owait.wait.private = current;
1743 	INIT_LIST_HEAD(&owait.wait.entry);
1744 
1745 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1746 	mem_cgroup_mark_under_oom(memcg);
1747 
1748 	locked = mem_cgroup_oom_trylock(memcg);
1749 
1750 	if (locked)
1751 		mem_cgroup_oom_notify(memcg);
1752 
1753 	if (locked && !memcg->oom_kill_disable) {
1754 		mem_cgroup_unmark_under_oom(memcg);
1755 		finish_wait(&memcg_oom_waitq, &owait.wait);
1756 		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1757 					 current->memcg_oom_order);
1758 	} else {
1759 		schedule();
1760 		mem_cgroup_unmark_under_oom(memcg);
1761 		finish_wait(&memcg_oom_waitq, &owait.wait);
1762 	}
1763 
1764 	if (locked) {
1765 		mem_cgroup_oom_unlock(memcg);
1766 		/*
1767 		 * There is no guarantee that an OOM-lock contender
1768 		 * sees the wakeups triggered by the OOM kill
1769 		 * uncharges.  Wake any sleepers explicitely.
1770 		 */
1771 		memcg_oom_recover(memcg);
1772 	}
1773 cleanup:
1774 	current->memcg_in_oom = NULL;
1775 	css_put(&memcg->css);
1776 	return true;
1777 }
1778 
1779 /**
1780  * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1781  * @victim: task to be killed by the OOM killer
1782  * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1783  *
1784  * Returns a pointer to a memory cgroup, which has to be cleaned up
1785  * by killing all belonging OOM-killable tasks.
1786  *
1787  * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1788  */
1789 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1790 					    struct mem_cgroup *oom_domain)
1791 {
1792 	struct mem_cgroup *oom_group = NULL;
1793 	struct mem_cgroup *memcg;
1794 
1795 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1796 		return NULL;
1797 
1798 	if (!oom_domain)
1799 		oom_domain = root_mem_cgroup;
1800 
1801 	rcu_read_lock();
1802 
1803 	memcg = mem_cgroup_from_task(victim);
1804 	if (memcg == root_mem_cgroup)
1805 		goto out;
1806 
1807 	/*
1808 	 * Traverse the memory cgroup hierarchy from the victim task's
1809 	 * cgroup up to the OOMing cgroup (or root) to find the
1810 	 * highest-level memory cgroup with oom.group set.
1811 	 */
1812 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1813 		if (memcg->oom_group)
1814 			oom_group = memcg;
1815 
1816 		if (memcg == oom_domain)
1817 			break;
1818 	}
1819 
1820 	if (oom_group)
1821 		css_get(&oom_group->css);
1822 out:
1823 	rcu_read_unlock();
1824 
1825 	return oom_group;
1826 }
1827 
1828 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1829 {
1830 	pr_info("Tasks in ");
1831 	pr_cont_cgroup_path(memcg->css.cgroup);
1832 	pr_cont(" are going to be killed due to memory.oom.group set\n");
1833 }
1834 
1835 /**
1836  * lock_page_memcg - lock a page->mem_cgroup binding
1837  * @page: the page
1838  *
1839  * This function protects unlocked LRU pages from being moved to
1840  * another cgroup.
1841  *
1842  * It ensures lifetime of the returned memcg. Caller is responsible
1843  * for the lifetime of the page; __unlock_page_memcg() is available
1844  * when @page might get freed inside the locked section.
1845  */
1846 struct mem_cgroup *lock_page_memcg(struct page *page)
1847 {
1848 	struct mem_cgroup *memcg;
1849 	unsigned long flags;
1850 
1851 	/*
1852 	 * The RCU lock is held throughout the transaction.  The fast
1853 	 * path can get away without acquiring the memcg->move_lock
1854 	 * because page moving starts with an RCU grace period.
1855 	 *
1856 	 * The RCU lock also protects the memcg from being freed when
1857 	 * the page state that is going to change is the only thing
1858 	 * preventing the page itself from being freed. E.g. writeback
1859 	 * doesn't hold a page reference and relies on PG_writeback to
1860 	 * keep off truncation, migration and so forth.
1861          */
1862 	rcu_read_lock();
1863 
1864 	if (mem_cgroup_disabled())
1865 		return NULL;
1866 again:
1867 	memcg = page->mem_cgroup;
1868 	if (unlikely(!memcg))
1869 		return NULL;
1870 
1871 	if (atomic_read(&memcg->moving_account) <= 0)
1872 		return memcg;
1873 
1874 	spin_lock_irqsave(&memcg->move_lock, flags);
1875 	if (memcg != page->mem_cgroup) {
1876 		spin_unlock_irqrestore(&memcg->move_lock, flags);
1877 		goto again;
1878 	}
1879 
1880 	/*
1881 	 * When charge migration first begins, we can have locked and
1882 	 * unlocked page stat updates happening concurrently.  Track
1883 	 * the task who has the lock for unlock_page_memcg().
1884 	 */
1885 	memcg->move_lock_task = current;
1886 	memcg->move_lock_flags = flags;
1887 
1888 	return memcg;
1889 }
1890 EXPORT_SYMBOL(lock_page_memcg);
1891 
1892 /**
1893  * __unlock_page_memcg - unlock and unpin a memcg
1894  * @memcg: the memcg
1895  *
1896  * Unlock and unpin a memcg returned by lock_page_memcg().
1897  */
1898 void __unlock_page_memcg(struct mem_cgroup *memcg)
1899 {
1900 	if (memcg && memcg->move_lock_task == current) {
1901 		unsigned long flags = memcg->move_lock_flags;
1902 
1903 		memcg->move_lock_task = NULL;
1904 		memcg->move_lock_flags = 0;
1905 
1906 		spin_unlock_irqrestore(&memcg->move_lock, flags);
1907 	}
1908 
1909 	rcu_read_unlock();
1910 }
1911 
1912 /**
1913  * unlock_page_memcg - unlock a page->mem_cgroup binding
1914  * @page: the page
1915  */
1916 void unlock_page_memcg(struct page *page)
1917 {
1918 	__unlock_page_memcg(page->mem_cgroup);
1919 }
1920 EXPORT_SYMBOL(unlock_page_memcg);
1921 
1922 struct memcg_stock_pcp {
1923 	struct mem_cgroup *cached; /* this never be root cgroup */
1924 	unsigned int nr_pages;
1925 	struct work_struct work;
1926 	unsigned long flags;
1927 #define FLUSHING_CACHED_CHARGE	0
1928 };
1929 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1930 static DEFINE_MUTEX(percpu_charge_mutex);
1931 
1932 /**
1933  * consume_stock: Try to consume stocked charge on this cpu.
1934  * @memcg: memcg to consume from.
1935  * @nr_pages: how many pages to charge.
1936  *
1937  * The charges will only happen if @memcg matches the current cpu's memcg
1938  * stock, and at least @nr_pages are available in that stock.  Failure to
1939  * service an allocation will refill the stock.
1940  *
1941  * returns true if successful, false otherwise.
1942  */
1943 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1944 {
1945 	struct memcg_stock_pcp *stock;
1946 	unsigned long flags;
1947 	bool ret = false;
1948 
1949 	if (nr_pages > MEMCG_CHARGE_BATCH)
1950 		return ret;
1951 
1952 	local_irq_save(flags);
1953 
1954 	stock = this_cpu_ptr(&memcg_stock);
1955 	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1956 		stock->nr_pages -= nr_pages;
1957 		ret = true;
1958 	}
1959 
1960 	local_irq_restore(flags);
1961 
1962 	return ret;
1963 }
1964 
1965 /*
1966  * Returns stocks cached in percpu and reset cached information.
1967  */
1968 static void drain_stock(struct memcg_stock_pcp *stock)
1969 {
1970 	struct mem_cgroup *old = stock->cached;
1971 
1972 	if (stock->nr_pages) {
1973 		page_counter_uncharge(&old->memory, stock->nr_pages);
1974 		if (do_memsw_account())
1975 			page_counter_uncharge(&old->memsw, stock->nr_pages);
1976 		css_put_many(&old->css, stock->nr_pages);
1977 		stock->nr_pages = 0;
1978 	}
1979 	stock->cached = NULL;
1980 }
1981 
1982 static void drain_local_stock(struct work_struct *dummy)
1983 {
1984 	struct memcg_stock_pcp *stock;
1985 	unsigned long flags;
1986 
1987 	/*
1988 	 * The only protection from memory hotplug vs. drain_stock races is
1989 	 * that we always operate on local CPU stock here with IRQ disabled
1990 	 */
1991 	local_irq_save(flags);
1992 
1993 	stock = this_cpu_ptr(&memcg_stock);
1994 	drain_stock(stock);
1995 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1996 
1997 	local_irq_restore(flags);
1998 }
1999 
2000 /*
2001  * Cache charges(val) to local per_cpu area.
2002  * This will be consumed by consume_stock() function, later.
2003  */
2004 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2005 {
2006 	struct memcg_stock_pcp *stock;
2007 	unsigned long flags;
2008 
2009 	local_irq_save(flags);
2010 
2011 	stock = this_cpu_ptr(&memcg_stock);
2012 	if (stock->cached != memcg) { /* reset if necessary */
2013 		drain_stock(stock);
2014 		stock->cached = memcg;
2015 	}
2016 	stock->nr_pages += nr_pages;
2017 
2018 	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2019 		drain_stock(stock);
2020 
2021 	local_irq_restore(flags);
2022 }
2023 
2024 /*
2025  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2026  * of the hierarchy under it.
2027  */
2028 static void drain_all_stock(struct mem_cgroup *root_memcg)
2029 {
2030 	int cpu, curcpu;
2031 
2032 	/* If someone's already draining, avoid adding running more workers. */
2033 	if (!mutex_trylock(&percpu_charge_mutex))
2034 		return;
2035 	/*
2036 	 * Notify other cpus that system-wide "drain" is running
2037 	 * We do not care about races with the cpu hotplug because cpu down
2038 	 * as well as workers from this path always operate on the local
2039 	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2040 	 */
2041 	curcpu = get_cpu();
2042 	for_each_online_cpu(cpu) {
2043 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2044 		struct mem_cgroup *memcg;
2045 
2046 		memcg = stock->cached;
2047 		if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css))
2048 			continue;
2049 		if (!mem_cgroup_is_descendant(memcg, root_memcg)) {
2050 			css_put(&memcg->css);
2051 			continue;
2052 		}
2053 		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2054 			if (cpu == curcpu)
2055 				drain_local_stock(&stock->work);
2056 			else
2057 				schedule_work_on(cpu, &stock->work);
2058 		}
2059 		css_put(&memcg->css);
2060 	}
2061 	put_cpu();
2062 	mutex_unlock(&percpu_charge_mutex);
2063 }
2064 
2065 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2066 {
2067 	struct memcg_stock_pcp *stock;
2068 	struct mem_cgroup *memcg;
2069 
2070 	stock = &per_cpu(memcg_stock, cpu);
2071 	drain_stock(stock);
2072 
2073 	for_each_mem_cgroup(memcg) {
2074 		int i;
2075 
2076 		for (i = 0; i < MEMCG_NR_STAT; i++) {
2077 			int nid;
2078 			long x;
2079 
2080 			x = this_cpu_xchg(memcg->stat_cpu->count[i], 0);
2081 			if (x)
2082 				atomic_long_add(x, &memcg->stat[i]);
2083 
2084 			if (i >= NR_VM_NODE_STAT_ITEMS)
2085 				continue;
2086 
2087 			for_each_node(nid) {
2088 				struct mem_cgroup_per_node *pn;
2089 
2090 				pn = mem_cgroup_nodeinfo(memcg, nid);
2091 				x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2092 				if (x)
2093 					atomic_long_add(x, &pn->lruvec_stat[i]);
2094 			}
2095 		}
2096 
2097 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2098 			long x;
2099 
2100 			x = this_cpu_xchg(memcg->stat_cpu->events[i], 0);
2101 			if (x)
2102 				atomic_long_add(x, &memcg->events[i]);
2103 		}
2104 	}
2105 
2106 	return 0;
2107 }
2108 
2109 static void reclaim_high(struct mem_cgroup *memcg,
2110 			 unsigned int nr_pages,
2111 			 gfp_t gfp_mask)
2112 {
2113 	do {
2114 		if (page_counter_read(&memcg->memory) <= memcg->high)
2115 			continue;
2116 		memcg_memory_event(memcg, MEMCG_HIGH);
2117 		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2118 	} while ((memcg = parent_mem_cgroup(memcg)));
2119 }
2120 
2121 static void high_work_func(struct work_struct *work)
2122 {
2123 	struct mem_cgroup *memcg;
2124 
2125 	memcg = container_of(work, struct mem_cgroup, high_work);
2126 	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2127 }
2128 
2129 /*
2130  * Scheduled by try_charge() to be executed from the userland return path
2131  * and reclaims memory over the high limit.
2132  */
2133 void mem_cgroup_handle_over_high(void)
2134 {
2135 	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2136 	struct mem_cgroup *memcg;
2137 
2138 	if (likely(!nr_pages))
2139 		return;
2140 
2141 	memcg = get_mem_cgroup_from_mm(current->mm);
2142 	reclaim_high(memcg, nr_pages, GFP_KERNEL);
2143 	css_put(&memcg->css);
2144 	current->memcg_nr_pages_over_high = 0;
2145 }
2146 
2147 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2148 		      unsigned int nr_pages)
2149 {
2150 	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2151 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2152 	struct mem_cgroup *mem_over_limit;
2153 	struct page_counter *counter;
2154 	unsigned long nr_reclaimed;
2155 	bool may_swap = true;
2156 	bool drained = false;
2157 	bool oomed = false;
2158 	enum oom_status oom_status;
2159 
2160 	if (mem_cgroup_is_root(memcg))
2161 		return 0;
2162 retry:
2163 	if (consume_stock(memcg, nr_pages))
2164 		return 0;
2165 
2166 	if (!do_memsw_account() ||
2167 	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2168 		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2169 			goto done_restock;
2170 		if (do_memsw_account())
2171 			page_counter_uncharge(&memcg->memsw, batch);
2172 		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2173 	} else {
2174 		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2175 		may_swap = false;
2176 	}
2177 
2178 	if (batch > nr_pages) {
2179 		batch = nr_pages;
2180 		goto retry;
2181 	}
2182 
2183 	/*
2184 	 * Unlike in global OOM situations, memcg is not in a physical
2185 	 * memory shortage.  Allow dying and OOM-killed tasks to
2186 	 * bypass the last charges so that they can exit quickly and
2187 	 * free their memory.
2188 	 */
2189 	if (unlikely(tsk_is_oom_victim(current) ||
2190 		     fatal_signal_pending(current) ||
2191 		     current->flags & PF_EXITING))
2192 		goto force;
2193 
2194 	/*
2195 	 * Prevent unbounded recursion when reclaim operations need to
2196 	 * allocate memory. This might exceed the limits temporarily,
2197 	 * but we prefer facilitating memory reclaim and getting back
2198 	 * under the limit over triggering OOM kills in these cases.
2199 	 */
2200 	if (unlikely(current->flags & PF_MEMALLOC))
2201 		goto force;
2202 
2203 	if (unlikely(task_in_memcg_oom(current)))
2204 		goto nomem;
2205 
2206 	if (!gfpflags_allow_blocking(gfp_mask))
2207 		goto nomem;
2208 
2209 	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2210 
2211 	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2212 						    gfp_mask, may_swap);
2213 
2214 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2215 		goto retry;
2216 
2217 	if (!drained) {
2218 		drain_all_stock(mem_over_limit);
2219 		drained = true;
2220 		goto retry;
2221 	}
2222 
2223 	if (gfp_mask & __GFP_NORETRY)
2224 		goto nomem;
2225 	/*
2226 	 * Even though the limit is exceeded at this point, reclaim
2227 	 * may have been able to free some pages.  Retry the charge
2228 	 * before killing the task.
2229 	 *
2230 	 * Only for regular pages, though: huge pages are rather
2231 	 * unlikely to succeed so close to the limit, and we fall back
2232 	 * to regular pages anyway in case of failure.
2233 	 */
2234 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2235 		goto retry;
2236 	/*
2237 	 * At task move, charge accounts can be doubly counted. So, it's
2238 	 * better to wait until the end of task_move if something is going on.
2239 	 */
2240 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2241 		goto retry;
2242 
2243 	if (nr_retries--)
2244 		goto retry;
2245 
2246 	if (gfp_mask & __GFP_RETRY_MAYFAIL && oomed)
2247 		goto nomem;
2248 
2249 	if (gfp_mask & __GFP_NOFAIL)
2250 		goto force;
2251 
2252 	if (fatal_signal_pending(current))
2253 		goto force;
2254 
2255 	/*
2256 	 * keep retrying as long as the memcg oom killer is able to make
2257 	 * a forward progress or bypass the charge if the oom killer
2258 	 * couldn't make any progress.
2259 	 */
2260 	oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2261 		       get_order(nr_pages * PAGE_SIZE));
2262 	switch (oom_status) {
2263 	case OOM_SUCCESS:
2264 		nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2265 		oomed = true;
2266 		goto retry;
2267 	case OOM_FAILED:
2268 		goto force;
2269 	default:
2270 		goto nomem;
2271 	}
2272 nomem:
2273 	if (!(gfp_mask & __GFP_NOFAIL))
2274 		return -ENOMEM;
2275 force:
2276 	/*
2277 	 * The allocation either can't fail or will lead to more memory
2278 	 * being freed very soon.  Allow memory usage go over the limit
2279 	 * temporarily by force charging it.
2280 	 */
2281 	page_counter_charge(&memcg->memory, nr_pages);
2282 	if (do_memsw_account())
2283 		page_counter_charge(&memcg->memsw, nr_pages);
2284 	css_get_many(&memcg->css, nr_pages);
2285 
2286 	return 0;
2287 
2288 done_restock:
2289 	css_get_many(&memcg->css, batch);
2290 	if (batch > nr_pages)
2291 		refill_stock(memcg, batch - nr_pages);
2292 
2293 	/*
2294 	 * If the hierarchy is above the normal consumption range, schedule
2295 	 * reclaim on returning to userland.  We can perform reclaim here
2296 	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2297 	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2298 	 * not recorded as it most likely matches current's and won't
2299 	 * change in the meantime.  As high limit is checked again before
2300 	 * reclaim, the cost of mismatch is negligible.
2301 	 */
2302 	do {
2303 		if (page_counter_read(&memcg->memory) > memcg->high) {
2304 			/* Don't bother a random interrupted task */
2305 			if (in_interrupt()) {
2306 				schedule_work(&memcg->high_work);
2307 				break;
2308 			}
2309 			current->memcg_nr_pages_over_high += batch;
2310 			set_notify_resume(current);
2311 			break;
2312 		}
2313 	} while ((memcg = parent_mem_cgroup(memcg)));
2314 
2315 	return 0;
2316 }
2317 
2318 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2319 {
2320 	if (mem_cgroup_is_root(memcg))
2321 		return;
2322 
2323 	page_counter_uncharge(&memcg->memory, nr_pages);
2324 	if (do_memsw_account())
2325 		page_counter_uncharge(&memcg->memsw, nr_pages);
2326 
2327 	css_put_many(&memcg->css, nr_pages);
2328 }
2329 
2330 static void lock_page_lru(struct page *page, int *isolated)
2331 {
2332 	struct zone *zone = page_zone(page);
2333 
2334 	spin_lock_irq(zone_lru_lock(zone));
2335 	if (PageLRU(page)) {
2336 		struct lruvec *lruvec;
2337 
2338 		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2339 		ClearPageLRU(page);
2340 		del_page_from_lru_list(page, lruvec, page_lru(page));
2341 		*isolated = 1;
2342 	} else
2343 		*isolated = 0;
2344 }
2345 
2346 static void unlock_page_lru(struct page *page, int isolated)
2347 {
2348 	struct zone *zone = page_zone(page);
2349 
2350 	if (isolated) {
2351 		struct lruvec *lruvec;
2352 
2353 		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2354 		VM_BUG_ON_PAGE(PageLRU(page), page);
2355 		SetPageLRU(page);
2356 		add_page_to_lru_list(page, lruvec, page_lru(page));
2357 	}
2358 	spin_unlock_irq(zone_lru_lock(zone));
2359 }
2360 
2361 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2362 			  bool lrucare)
2363 {
2364 	int isolated;
2365 
2366 	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2367 
2368 	/*
2369 	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2370 	 * may already be on some other mem_cgroup's LRU.  Take care of it.
2371 	 */
2372 	if (lrucare)
2373 		lock_page_lru(page, &isolated);
2374 
2375 	/*
2376 	 * Nobody should be changing or seriously looking at
2377 	 * page->mem_cgroup at this point:
2378 	 *
2379 	 * - the page is uncharged
2380 	 *
2381 	 * - the page is off-LRU
2382 	 *
2383 	 * - an anonymous fault has exclusive page access, except for
2384 	 *   a locked page table
2385 	 *
2386 	 * - a page cache insertion, a swapin fault, or a migration
2387 	 *   have the page locked
2388 	 */
2389 	page->mem_cgroup = memcg;
2390 
2391 	if (lrucare)
2392 		unlock_page_lru(page, isolated);
2393 }
2394 
2395 #ifdef CONFIG_MEMCG_KMEM
2396 static int memcg_alloc_cache_id(void)
2397 {
2398 	int id, size;
2399 	int err;
2400 
2401 	id = ida_simple_get(&memcg_cache_ida,
2402 			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2403 	if (id < 0)
2404 		return id;
2405 
2406 	if (id < memcg_nr_cache_ids)
2407 		return id;
2408 
2409 	/*
2410 	 * There's no space for the new id in memcg_caches arrays,
2411 	 * so we have to grow them.
2412 	 */
2413 	down_write(&memcg_cache_ids_sem);
2414 
2415 	size = 2 * (id + 1);
2416 	if (size < MEMCG_CACHES_MIN_SIZE)
2417 		size = MEMCG_CACHES_MIN_SIZE;
2418 	else if (size > MEMCG_CACHES_MAX_SIZE)
2419 		size = MEMCG_CACHES_MAX_SIZE;
2420 
2421 	err = memcg_update_all_caches(size);
2422 	if (!err)
2423 		err = memcg_update_all_list_lrus(size);
2424 	if (!err)
2425 		memcg_nr_cache_ids = size;
2426 
2427 	up_write(&memcg_cache_ids_sem);
2428 
2429 	if (err) {
2430 		ida_simple_remove(&memcg_cache_ida, id);
2431 		return err;
2432 	}
2433 	return id;
2434 }
2435 
2436 static void memcg_free_cache_id(int id)
2437 {
2438 	ida_simple_remove(&memcg_cache_ida, id);
2439 }
2440 
2441 struct memcg_kmem_cache_create_work {
2442 	struct mem_cgroup *memcg;
2443 	struct kmem_cache *cachep;
2444 	struct work_struct work;
2445 };
2446 
2447 static void memcg_kmem_cache_create_func(struct work_struct *w)
2448 {
2449 	struct memcg_kmem_cache_create_work *cw =
2450 		container_of(w, struct memcg_kmem_cache_create_work, work);
2451 	struct mem_cgroup *memcg = cw->memcg;
2452 	struct kmem_cache *cachep = cw->cachep;
2453 
2454 	memcg_create_kmem_cache(memcg, cachep);
2455 
2456 	css_put(&memcg->css);
2457 	kfree(cw);
2458 }
2459 
2460 /*
2461  * Enqueue the creation of a per-memcg kmem_cache.
2462  */
2463 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2464 					       struct kmem_cache *cachep)
2465 {
2466 	struct memcg_kmem_cache_create_work *cw;
2467 
2468 	cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
2469 	if (!cw)
2470 		return;
2471 
2472 	css_get(&memcg->css);
2473 
2474 	cw->memcg = memcg;
2475 	cw->cachep = cachep;
2476 	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2477 
2478 	queue_work(memcg_kmem_cache_wq, &cw->work);
2479 }
2480 
2481 static inline bool memcg_kmem_bypass(void)
2482 {
2483 	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2484 		return true;
2485 	return false;
2486 }
2487 
2488 /**
2489  * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2490  * @cachep: the original global kmem cache
2491  *
2492  * Return the kmem_cache we're supposed to use for a slab allocation.
2493  * We try to use the current memcg's version of the cache.
2494  *
2495  * If the cache does not exist yet, if we are the first user of it, we
2496  * create it asynchronously in a workqueue and let the current allocation
2497  * go through with the original cache.
2498  *
2499  * This function takes a reference to the cache it returns to assure it
2500  * won't get destroyed while we are working with it. Once the caller is
2501  * done with it, memcg_kmem_put_cache() must be called to release the
2502  * reference.
2503  */
2504 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2505 {
2506 	struct mem_cgroup *memcg;
2507 	struct kmem_cache *memcg_cachep;
2508 	int kmemcg_id;
2509 
2510 	VM_BUG_ON(!is_root_cache(cachep));
2511 
2512 	if (memcg_kmem_bypass())
2513 		return cachep;
2514 
2515 	memcg = get_mem_cgroup_from_current();
2516 	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2517 	if (kmemcg_id < 0)
2518 		goto out;
2519 
2520 	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2521 	if (likely(memcg_cachep))
2522 		return memcg_cachep;
2523 
2524 	/*
2525 	 * If we are in a safe context (can wait, and not in interrupt
2526 	 * context), we could be be predictable and return right away.
2527 	 * This would guarantee that the allocation being performed
2528 	 * already belongs in the new cache.
2529 	 *
2530 	 * However, there are some clashes that can arrive from locking.
2531 	 * For instance, because we acquire the slab_mutex while doing
2532 	 * memcg_create_kmem_cache, this means no further allocation
2533 	 * could happen with the slab_mutex held. So it's better to
2534 	 * defer everything.
2535 	 */
2536 	memcg_schedule_kmem_cache_create(memcg, cachep);
2537 out:
2538 	css_put(&memcg->css);
2539 	return cachep;
2540 }
2541 
2542 /**
2543  * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2544  * @cachep: the cache returned by memcg_kmem_get_cache
2545  */
2546 void memcg_kmem_put_cache(struct kmem_cache *cachep)
2547 {
2548 	if (!is_root_cache(cachep))
2549 		css_put(&cachep->memcg_params.memcg->css);
2550 }
2551 
2552 /**
2553  * memcg_kmem_charge_memcg: charge a kmem page
2554  * @page: page to charge
2555  * @gfp: reclaim mode
2556  * @order: allocation order
2557  * @memcg: memory cgroup to charge
2558  *
2559  * Returns 0 on success, an error code on failure.
2560  */
2561 int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2562 			    struct mem_cgroup *memcg)
2563 {
2564 	unsigned int nr_pages = 1 << order;
2565 	struct page_counter *counter;
2566 	int ret;
2567 
2568 	ret = try_charge(memcg, gfp, nr_pages);
2569 	if (ret)
2570 		return ret;
2571 
2572 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2573 	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2574 		cancel_charge(memcg, nr_pages);
2575 		return -ENOMEM;
2576 	}
2577 
2578 	page->mem_cgroup = memcg;
2579 
2580 	return 0;
2581 }
2582 
2583 /**
2584  * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2585  * @page: page to charge
2586  * @gfp: reclaim mode
2587  * @order: allocation order
2588  *
2589  * Returns 0 on success, an error code on failure.
2590  */
2591 int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2592 {
2593 	struct mem_cgroup *memcg;
2594 	int ret = 0;
2595 
2596 	if (mem_cgroup_disabled() || memcg_kmem_bypass())
2597 		return 0;
2598 
2599 	memcg = get_mem_cgroup_from_current();
2600 	if (!mem_cgroup_is_root(memcg)) {
2601 		ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
2602 		if (!ret)
2603 			__SetPageKmemcg(page);
2604 	}
2605 	css_put(&memcg->css);
2606 	return ret;
2607 }
2608 /**
2609  * memcg_kmem_uncharge: uncharge a kmem page
2610  * @page: page to uncharge
2611  * @order: allocation order
2612  */
2613 void memcg_kmem_uncharge(struct page *page, int order)
2614 {
2615 	struct mem_cgroup *memcg = page->mem_cgroup;
2616 	unsigned int nr_pages = 1 << order;
2617 
2618 	if (!memcg)
2619 		return;
2620 
2621 	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2622 
2623 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2624 		page_counter_uncharge(&memcg->kmem, nr_pages);
2625 
2626 	page_counter_uncharge(&memcg->memory, nr_pages);
2627 	if (do_memsw_account())
2628 		page_counter_uncharge(&memcg->memsw, nr_pages);
2629 
2630 	page->mem_cgroup = NULL;
2631 
2632 	/* slab pages do not have PageKmemcg flag set */
2633 	if (PageKmemcg(page))
2634 		__ClearPageKmemcg(page);
2635 
2636 	css_put_many(&memcg->css, nr_pages);
2637 }
2638 #endif /* CONFIG_MEMCG_KMEM */
2639 
2640 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2641 
2642 /*
2643  * Because tail pages are not marked as "used", set it. We're under
2644  * zone_lru_lock and migration entries setup in all page mappings.
2645  */
2646 void mem_cgroup_split_huge_fixup(struct page *head)
2647 {
2648 	int i;
2649 
2650 	if (mem_cgroup_disabled())
2651 		return;
2652 
2653 	for (i = 1; i < HPAGE_PMD_NR; i++)
2654 		head[i].mem_cgroup = head->mem_cgroup;
2655 
2656 	__mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
2657 }
2658 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2659 
2660 #ifdef CONFIG_MEMCG_SWAP
2661 /**
2662  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2663  * @entry: swap entry to be moved
2664  * @from:  mem_cgroup which the entry is moved from
2665  * @to:  mem_cgroup which the entry is moved to
2666  *
2667  * It succeeds only when the swap_cgroup's record for this entry is the same
2668  * as the mem_cgroup's id of @from.
2669  *
2670  * Returns 0 on success, -EINVAL on failure.
2671  *
2672  * The caller must have charged to @to, IOW, called page_counter_charge() about
2673  * both res and memsw, and called css_get().
2674  */
2675 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2676 				struct mem_cgroup *from, struct mem_cgroup *to)
2677 {
2678 	unsigned short old_id, new_id;
2679 
2680 	old_id = mem_cgroup_id(from);
2681 	new_id = mem_cgroup_id(to);
2682 
2683 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2684 		mod_memcg_state(from, MEMCG_SWAP, -1);
2685 		mod_memcg_state(to, MEMCG_SWAP, 1);
2686 		return 0;
2687 	}
2688 	return -EINVAL;
2689 }
2690 #else
2691 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2692 				struct mem_cgroup *from, struct mem_cgroup *to)
2693 {
2694 	return -EINVAL;
2695 }
2696 #endif
2697 
2698 static DEFINE_MUTEX(memcg_max_mutex);
2699 
2700 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
2701 				 unsigned long max, bool memsw)
2702 {
2703 	bool enlarge = false;
2704 	bool drained = false;
2705 	int ret;
2706 	bool limits_invariant;
2707 	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
2708 
2709 	do {
2710 		if (signal_pending(current)) {
2711 			ret = -EINTR;
2712 			break;
2713 		}
2714 
2715 		mutex_lock(&memcg_max_mutex);
2716 		/*
2717 		 * Make sure that the new limit (memsw or memory limit) doesn't
2718 		 * break our basic invariant rule memory.max <= memsw.max.
2719 		 */
2720 		limits_invariant = memsw ? max >= memcg->memory.max :
2721 					   max <= memcg->memsw.max;
2722 		if (!limits_invariant) {
2723 			mutex_unlock(&memcg_max_mutex);
2724 			ret = -EINVAL;
2725 			break;
2726 		}
2727 		if (max > counter->max)
2728 			enlarge = true;
2729 		ret = page_counter_set_max(counter, max);
2730 		mutex_unlock(&memcg_max_mutex);
2731 
2732 		if (!ret)
2733 			break;
2734 
2735 		if (!drained) {
2736 			drain_all_stock(memcg);
2737 			drained = true;
2738 			continue;
2739 		}
2740 
2741 		if (!try_to_free_mem_cgroup_pages(memcg, 1,
2742 					GFP_KERNEL, !memsw)) {
2743 			ret = -EBUSY;
2744 			break;
2745 		}
2746 	} while (true);
2747 
2748 	if (!ret && enlarge)
2749 		memcg_oom_recover(memcg);
2750 
2751 	return ret;
2752 }
2753 
2754 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2755 					    gfp_t gfp_mask,
2756 					    unsigned long *total_scanned)
2757 {
2758 	unsigned long nr_reclaimed = 0;
2759 	struct mem_cgroup_per_node *mz, *next_mz = NULL;
2760 	unsigned long reclaimed;
2761 	int loop = 0;
2762 	struct mem_cgroup_tree_per_node *mctz;
2763 	unsigned long excess;
2764 	unsigned long nr_scanned;
2765 
2766 	if (order > 0)
2767 		return 0;
2768 
2769 	mctz = soft_limit_tree_node(pgdat->node_id);
2770 
2771 	/*
2772 	 * Do not even bother to check the largest node if the root
2773 	 * is empty. Do it lockless to prevent lock bouncing. Races
2774 	 * are acceptable as soft limit is best effort anyway.
2775 	 */
2776 	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
2777 		return 0;
2778 
2779 	/*
2780 	 * This loop can run a while, specially if mem_cgroup's continuously
2781 	 * keep exceeding their soft limit and putting the system under
2782 	 * pressure
2783 	 */
2784 	do {
2785 		if (next_mz)
2786 			mz = next_mz;
2787 		else
2788 			mz = mem_cgroup_largest_soft_limit_node(mctz);
2789 		if (!mz)
2790 			break;
2791 
2792 		nr_scanned = 0;
2793 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
2794 						    gfp_mask, &nr_scanned);
2795 		nr_reclaimed += reclaimed;
2796 		*total_scanned += nr_scanned;
2797 		spin_lock_irq(&mctz->lock);
2798 		__mem_cgroup_remove_exceeded(mz, mctz);
2799 
2800 		/*
2801 		 * If we failed to reclaim anything from this memory cgroup
2802 		 * it is time to move on to the next cgroup
2803 		 */
2804 		next_mz = NULL;
2805 		if (!reclaimed)
2806 			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2807 
2808 		excess = soft_limit_excess(mz->memcg);
2809 		/*
2810 		 * One school of thought says that we should not add
2811 		 * back the node to the tree if reclaim returns 0.
2812 		 * But our reclaim could return 0, simply because due
2813 		 * to priority we are exposing a smaller subset of
2814 		 * memory to reclaim from. Consider this as a longer
2815 		 * term TODO.
2816 		 */
2817 		/* If excess == 0, no tree ops */
2818 		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2819 		spin_unlock_irq(&mctz->lock);
2820 		css_put(&mz->memcg->css);
2821 		loop++;
2822 		/*
2823 		 * Could not reclaim anything and there are no more
2824 		 * mem cgroups to try or we seem to be looping without
2825 		 * reclaiming anything.
2826 		 */
2827 		if (!nr_reclaimed &&
2828 			(next_mz == NULL ||
2829 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2830 			break;
2831 	} while (!nr_reclaimed);
2832 	if (next_mz)
2833 		css_put(&next_mz->memcg->css);
2834 	return nr_reclaimed;
2835 }
2836 
2837 /*
2838  * Test whether @memcg has children, dead or alive.  Note that this
2839  * function doesn't care whether @memcg has use_hierarchy enabled and
2840  * returns %true if there are child csses according to the cgroup
2841  * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
2842  */
2843 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2844 {
2845 	bool ret;
2846 
2847 	rcu_read_lock();
2848 	ret = css_next_child(NULL, &memcg->css);
2849 	rcu_read_unlock();
2850 	return ret;
2851 }
2852 
2853 /*
2854  * Reclaims as many pages from the given memcg as possible.
2855  *
2856  * Caller is responsible for holding css reference for memcg.
2857  */
2858 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2859 {
2860 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2861 
2862 	/* we call try-to-free pages for make this cgroup empty */
2863 	lru_add_drain_all();
2864 
2865 	drain_all_stock(memcg);
2866 
2867 	/* try to free all pages in this cgroup */
2868 	while (nr_retries && page_counter_read(&memcg->memory)) {
2869 		int progress;
2870 
2871 		if (signal_pending(current))
2872 			return -EINTR;
2873 
2874 		progress = try_to_free_mem_cgroup_pages(memcg, 1,
2875 							GFP_KERNEL, true);
2876 		if (!progress) {
2877 			nr_retries--;
2878 			/* maybe some writeback is necessary */
2879 			congestion_wait(BLK_RW_ASYNC, HZ/10);
2880 		}
2881 
2882 	}
2883 
2884 	return 0;
2885 }
2886 
2887 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2888 					    char *buf, size_t nbytes,
2889 					    loff_t off)
2890 {
2891 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2892 
2893 	if (mem_cgroup_is_root(memcg))
2894 		return -EINVAL;
2895 	return mem_cgroup_force_empty(memcg) ?: nbytes;
2896 }
2897 
2898 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2899 				     struct cftype *cft)
2900 {
2901 	return mem_cgroup_from_css(css)->use_hierarchy;
2902 }
2903 
2904 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2905 				      struct cftype *cft, u64 val)
2906 {
2907 	int retval = 0;
2908 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2909 	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2910 
2911 	if (memcg->use_hierarchy == val)
2912 		return 0;
2913 
2914 	/*
2915 	 * If parent's use_hierarchy is set, we can't make any modifications
2916 	 * in the child subtrees. If it is unset, then the change can
2917 	 * occur, provided the current cgroup has no children.
2918 	 *
2919 	 * For the root cgroup, parent_mem is NULL, we allow value to be
2920 	 * set if there are no children.
2921 	 */
2922 	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2923 				(val == 1 || val == 0)) {
2924 		if (!memcg_has_children(memcg))
2925 			memcg->use_hierarchy = val;
2926 		else
2927 			retval = -EBUSY;
2928 	} else
2929 		retval = -EINVAL;
2930 
2931 	return retval;
2932 }
2933 
2934 struct accumulated_stats {
2935 	unsigned long stat[MEMCG_NR_STAT];
2936 	unsigned long events[NR_VM_EVENT_ITEMS];
2937 	unsigned long lru_pages[NR_LRU_LISTS];
2938 	const unsigned int *stats_array;
2939 	const unsigned int *events_array;
2940 	int stats_size;
2941 	int events_size;
2942 };
2943 
2944 static void accumulate_memcg_tree(struct mem_cgroup *memcg,
2945 				  struct accumulated_stats *acc)
2946 {
2947 	struct mem_cgroup *mi;
2948 	int i;
2949 
2950 	for_each_mem_cgroup_tree(mi, memcg) {
2951 		for (i = 0; i < acc->stats_size; i++)
2952 			acc->stat[i] += memcg_page_state(mi,
2953 				acc->stats_array ? acc->stats_array[i] : i);
2954 
2955 		for (i = 0; i < acc->events_size; i++)
2956 			acc->events[i] += memcg_sum_events(mi,
2957 				acc->events_array ? acc->events_array[i] : i);
2958 
2959 		for (i = 0; i < NR_LRU_LISTS; i++)
2960 			acc->lru_pages[i] +=
2961 				mem_cgroup_nr_lru_pages(mi, BIT(i));
2962 	}
2963 }
2964 
2965 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2966 {
2967 	unsigned long val = 0;
2968 
2969 	if (mem_cgroup_is_root(memcg)) {
2970 		struct mem_cgroup *iter;
2971 
2972 		for_each_mem_cgroup_tree(iter, memcg) {
2973 			val += memcg_page_state(iter, MEMCG_CACHE);
2974 			val += memcg_page_state(iter, MEMCG_RSS);
2975 			if (swap)
2976 				val += memcg_page_state(iter, MEMCG_SWAP);
2977 		}
2978 	} else {
2979 		if (!swap)
2980 			val = page_counter_read(&memcg->memory);
2981 		else
2982 			val = page_counter_read(&memcg->memsw);
2983 	}
2984 	return val;
2985 }
2986 
2987 enum {
2988 	RES_USAGE,
2989 	RES_LIMIT,
2990 	RES_MAX_USAGE,
2991 	RES_FAILCNT,
2992 	RES_SOFT_LIMIT,
2993 };
2994 
2995 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2996 			       struct cftype *cft)
2997 {
2998 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2999 	struct page_counter *counter;
3000 
3001 	switch (MEMFILE_TYPE(cft->private)) {
3002 	case _MEM:
3003 		counter = &memcg->memory;
3004 		break;
3005 	case _MEMSWAP:
3006 		counter = &memcg->memsw;
3007 		break;
3008 	case _KMEM:
3009 		counter = &memcg->kmem;
3010 		break;
3011 	case _TCP:
3012 		counter = &memcg->tcpmem;
3013 		break;
3014 	default:
3015 		BUG();
3016 	}
3017 
3018 	switch (MEMFILE_ATTR(cft->private)) {
3019 	case RES_USAGE:
3020 		if (counter == &memcg->memory)
3021 			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3022 		if (counter == &memcg->memsw)
3023 			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3024 		return (u64)page_counter_read(counter) * PAGE_SIZE;
3025 	case RES_LIMIT:
3026 		return (u64)counter->max * PAGE_SIZE;
3027 	case RES_MAX_USAGE:
3028 		return (u64)counter->watermark * PAGE_SIZE;
3029 	case RES_FAILCNT:
3030 		return counter->failcnt;
3031 	case RES_SOFT_LIMIT:
3032 		return (u64)memcg->soft_limit * PAGE_SIZE;
3033 	default:
3034 		BUG();
3035 	}
3036 }
3037 
3038 #ifdef CONFIG_MEMCG_KMEM
3039 static int memcg_online_kmem(struct mem_cgroup *memcg)
3040 {
3041 	int memcg_id;
3042 
3043 	if (cgroup_memory_nokmem)
3044 		return 0;
3045 
3046 	BUG_ON(memcg->kmemcg_id >= 0);
3047 	BUG_ON(memcg->kmem_state);
3048 
3049 	memcg_id = memcg_alloc_cache_id();
3050 	if (memcg_id < 0)
3051 		return memcg_id;
3052 
3053 	static_branch_inc(&memcg_kmem_enabled_key);
3054 	/*
3055 	 * A memory cgroup is considered kmem-online as soon as it gets
3056 	 * kmemcg_id. Setting the id after enabling static branching will
3057 	 * guarantee no one starts accounting before all call sites are
3058 	 * patched.
3059 	 */
3060 	memcg->kmemcg_id = memcg_id;
3061 	memcg->kmem_state = KMEM_ONLINE;
3062 	INIT_LIST_HEAD(&memcg->kmem_caches);
3063 
3064 	return 0;
3065 }
3066 
3067 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3068 {
3069 	struct cgroup_subsys_state *css;
3070 	struct mem_cgroup *parent, *child;
3071 	int kmemcg_id;
3072 
3073 	if (memcg->kmem_state != KMEM_ONLINE)
3074 		return;
3075 	/*
3076 	 * Clear the online state before clearing memcg_caches array
3077 	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
3078 	 * guarantees that no cache will be created for this cgroup
3079 	 * after we are done (see memcg_create_kmem_cache()).
3080 	 */
3081 	memcg->kmem_state = KMEM_ALLOCATED;
3082 
3083 	memcg_deactivate_kmem_caches(memcg);
3084 
3085 	kmemcg_id = memcg->kmemcg_id;
3086 	BUG_ON(kmemcg_id < 0);
3087 
3088 	parent = parent_mem_cgroup(memcg);
3089 	if (!parent)
3090 		parent = root_mem_cgroup;
3091 
3092 	/*
3093 	 * Change kmemcg_id of this cgroup and all its descendants to the
3094 	 * parent's id, and then move all entries from this cgroup's list_lrus
3095 	 * to ones of the parent. After we have finished, all list_lrus
3096 	 * corresponding to this cgroup are guaranteed to remain empty. The
3097 	 * ordering is imposed by list_lru_node->lock taken by
3098 	 * memcg_drain_all_list_lrus().
3099 	 */
3100 	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3101 	css_for_each_descendant_pre(css, &memcg->css) {
3102 		child = mem_cgroup_from_css(css);
3103 		BUG_ON(child->kmemcg_id != kmemcg_id);
3104 		child->kmemcg_id = parent->kmemcg_id;
3105 		if (!memcg->use_hierarchy)
3106 			break;
3107 	}
3108 	rcu_read_unlock();
3109 
3110 	memcg_drain_all_list_lrus(kmemcg_id, parent);
3111 
3112 	memcg_free_cache_id(kmemcg_id);
3113 }
3114 
3115 static void memcg_free_kmem(struct mem_cgroup *memcg)
3116 {
3117 	/* css_alloc() failed, offlining didn't happen */
3118 	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3119 		memcg_offline_kmem(memcg);
3120 
3121 	if (memcg->kmem_state == KMEM_ALLOCATED) {
3122 		memcg_destroy_kmem_caches(memcg);
3123 		static_branch_dec(&memcg_kmem_enabled_key);
3124 		WARN_ON(page_counter_read(&memcg->kmem));
3125 	}
3126 }
3127 #else
3128 static int memcg_online_kmem(struct mem_cgroup *memcg)
3129 {
3130 	return 0;
3131 }
3132 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3133 {
3134 }
3135 static void memcg_free_kmem(struct mem_cgroup *memcg)
3136 {
3137 }
3138 #endif /* CONFIG_MEMCG_KMEM */
3139 
3140 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3141 				 unsigned long max)
3142 {
3143 	int ret;
3144 
3145 	mutex_lock(&memcg_max_mutex);
3146 	ret = page_counter_set_max(&memcg->kmem, max);
3147 	mutex_unlock(&memcg_max_mutex);
3148 	return ret;
3149 }
3150 
3151 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3152 {
3153 	int ret;
3154 
3155 	mutex_lock(&memcg_max_mutex);
3156 
3157 	ret = page_counter_set_max(&memcg->tcpmem, max);
3158 	if (ret)
3159 		goto out;
3160 
3161 	if (!memcg->tcpmem_active) {
3162 		/*
3163 		 * The active flag needs to be written after the static_key
3164 		 * update. This is what guarantees that the socket activation
3165 		 * function is the last one to run. See mem_cgroup_sk_alloc()
3166 		 * for details, and note that we don't mark any socket as
3167 		 * belonging to this memcg until that flag is up.
3168 		 *
3169 		 * We need to do this, because static_keys will span multiple
3170 		 * sites, but we can't control their order. If we mark a socket
3171 		 * as accounted, but the accounting functions are not patched in
3172 		 * yet, we'll lose accounting.
3173 		 *
3174 		 * We never race with the readers in mem_cgroup_sk_alloc(),
3175 		 * because when this value change, the code to process it is not
3176 		 * patched in yet.
3177 		 */
3178 		static_branch_inc(&memcg_sockets_enabled_key);
3179 		memcg->tcpmem_active = true;
3180 	}
3181 out:
3182 	mutex_unlock(&memcg_max_mutex);
3183 	return ret;
3184 }
3185 
3186 /*
3187  * The user of this function is...
3188  * RES_LIMIT.
3189  */
3190 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3191 				char *buf, size_t nbytes, loff_t off)
3192 {
3193 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3194 	unsigned long nr_pages;
3195 	int ret;
3196 
3197 	buf = strstrip(buf);
3198 	ret = page_counter_memparse(buf, "-1", &nr_pages);
3199 	if (ret)
3200 		return ret;
3201 
3202 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3203 	case RES_LIMIT:
3204 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3205 			ret = -EINVAL;
3206 			break;
3207 		}
3208 		switch (MEMFILE_TYPE(of_cft(of)->private)) {
3209 		case _MEM:
3210 			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3211 			break;
3212 		case _MEMSWAP:
3213 			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3214 			break;
3215 		case _KMEM:
3216 			ret = memcg_update_kmem_max(memcg, nr_pages);
3217 			break;
3218 		case _TCP:
3219 			ret = memcg_update_tcp_max(memcg, nr_pages);
3220 			break;
3221 		}
3222 		break;
3223 	case RES_SOFT_LIMIT:
3224 		memcg->soft_limit = nr_pages;
3225 		ret = 0;
3226 		break;
3227 	}
3228 	return ret ?: nbytes;
3229 }
3230 
3231 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3232 				size_t nbytes, loff_t off)
3233 {
3234 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3235 	struct page_counter *counter;
3236 
3237 	switch (MEMFILE_TYPE(of_cft(of)->private)) {
3238 	case _MEM:
3239 		counter = &memcg->memory;
3240 		break;
3241 	case _MEMSWAP:
3242 		counter = &memcg->memsw;
3243 		break;
3244 	case _KMEM:
3245 		counter = &memcg->kmem;
3246 		break;
3247 	case _TCP:
3248 		counter = &memcg->tcpmem;
3249 		break;
3250 	default:
3251 		BUG();
3252 	}
3253 
3254 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3255 	case RES_MAX_USAGE:
3256 		page_counter_reset_watermark(counter);
3257 		break;
3258 	case RES_FAILCNT:
3259 		counter->failcnt = 0;
3260 		break;
3261 	default:
3262 		BUG();
3263 	}
3264 
3265 	return nbytes;
3266 }
3267 
3268 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3269 					struct cftype *cft)
3270 {
3271 	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3272 }
3273 
3274 #ifdef CONFIG_MMU
3275 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3276 					struct cftype *cft, u64 val)
3277 {
3278 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3279 
3280 	if (val & ~MOVE_MASK)
3281 		return -EINVAL;
3282 
3283 	/*
3284 	 * No kind of locking is needed in here, because ->can_attach() will
3285 	 * check this value once in the beginning of the process, and then carry
3286 	 * on with stale data. This means that changes to this value will only
3287 	 * affect task migrations starting after the change.
3288 	 */
3289 	memcg->move_charge_at_immigrate = val;
3290 	return 0;
3291 }
3292 #else
3293 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3294 					struct cftype *cft, u64 val)
3295 {
3296 	return -ENOSYS;
3297 }
3298 #endif
3299 
3300 #ifdef CONFIG_NUMA
3301 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3302 {
3303 	struct numa_stat {
3304 		const char *name;
3305 		unsigned int lru_mask;
3306 	};
3307 
3308 	static const struct numa_stat stats[] = {
3309 		{ "total", LRU_ALL },
3310 		{ "file", LRU_ALL_FILE },
3311 		{ "anon", LRU_ALL_ANON },
3312 		{ "unevictable", BIT(LRU_UNEVICTABLE) },
3313 	};
3314 	const struct numa_stat *stat;
3315 	int nid;
3316 	unsigned long nr;
3317 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3318 
3319 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3320 		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3321 		seq_printf(m, "%s=%lu", stat->name, nr);
3322 		for_each_node_state(nid, N_MEMORY) {
3323 			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3324 							  stat->lru_mask);
3325 			seq_printf(m, " N%d=%lu", nid, nr);
3326 		}
3327 		seq_putc(m, '\n');
3328 	}
3329 
3330 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3331 		struct mem_cgroup *iter;
3332 
3333 		nr = 0;
3334 		for_each_mem_cgroup_tree(iter, memcg)
3335 			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3336 		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3337 		for_each_node_state(nid, N_MEMORY) {
3338 			nr = 0;
3339 			for_each_mem_cgroup_tree(iter, memcg)
3340 				nr += mem_cgroup_node_nr_lru_pages(
3341 					iter, nid, stat->lru_mask);
3342 			seq_printf(m, " N%d=%lu", nid, nr);
3343 		}
3344 		seq_putc(m, '\n');
3345 	}
3346 
3347 	return 0;
3348 }
3349 #endif /* CONFIG_NUMA */
3350 
3351 /* Universal VM events cgroup1 shows, original sort order */
3352 static const unsigned int memcg1_events[] = {
3353 	PGPGIN,
3354 	PGPGOUT,
3355 	PGFAULT,
3356 	PGMAJFAULT,
3357 };
3358 
3359 static const char *const memcg1_event_names[] = {
3360 	"pgpgin",
3361 	"pgpgout",
3362 	"pgfault",
3363 	"pgmajfault",
3364 };
3365 
3366 static int memcg_stat_show(struct seq_file *m, void *v)
3367 {
3368 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3369 	unsigned long memory, memsw;
3370 	struct mem_cgroup *mi;
3371 	unsigned int i;
3372 	struct accumulated_stats acc;
3373 
3374 	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3375 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3376 
3377 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3378 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3379 			continue;
3380 		seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3381 			   memcg_page_state(memcg, memcg1_stats[i]) *
3382 			   PAGE_SIZE);
3383 	}
3384 
3385 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3386 		seq_printf(m, "%s %lu\n", memcg1_event_names[i],
3387 			   memcg_sum_events(memcg, memcg1_events[i]));
3388 
3389 	for (i = 0; i < NR_LRU_LISTS; i++)
3390 		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3391 			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3392 
3393 	/* Hierarchical information */
3394 	memory = memsw = PAGE_COUNTER_MAX;
3395 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3396 		memory = min(memory, mi->memory.max);
3397 		memsw = min(memsw, mi->memsw.max);
3398 	}
3399 	seq_printf(m, "hierarchical_memory_limit %llu\n",
3400 		   (u64)memory * PAGE_SIZE);
3401 	if (do_memsw_account())
3402 		seq_printf(m, "hierarchical_memsw_limit %llu\n",
3403 			   (u64)memsw * PAGE_SIZE);
3404 
3405 	memset(&acc, 0, sizeof(acc));
3406 	acc.stats_size = ARRAY_SIZE(memcg1_stats);
3407 	acc.stats_array = memcg1_stats;
3408 	acc.events_size = ARRAY_SIZE(memcg1_events);
3409 	acc.events_array = memcg1_events;
3410 	accumulate_memcg_tree(memcg, &acc);
3411 
3412 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3413 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3414 			continue;
3415 		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
3416 			   (u64)acc.stat[i] * PAGE_SIZE);
3417 	}
3418 
3419 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3420 		seq_printf(m, "total_%s %llu\n", memcg1_event_names[i],
3421 			   (u64)acc.events[i]);
3422 
3423 	for (i = 0; i < NR_LRU_LISTS; i++)
3424 		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i],
3425 			   (u64)acc.lru_pages[i] * PAGE_SIZE);
3426 
3427 #ifdef CONFIG_DEBUG_VM
3428 	{
3429 		pg_data_t *pgdat;
3430 		struct mem_cgroup_per_node *mz;
3431 		struct zone_reclaim_stat *rstat;
3432 		unsigned long recent_rotated[2] = {0, 0};
3433 		unsigned long recent_scanned[2] = {0, 0};
3434 
3435 		for_each_online_pgdat(pgdat) {
3436 			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3437 			rstat = &mz->lruvec.reclaim_stat;
3438 
3439 			recent_rotated[0] += rstat->recent_rotated[0];
3440 			recent_rotated[1] += rstat->recent_rotated[1];
3441 			recent_scanned[0] += rstat->recent_scanned[0];
3442 			recent_scanned[1] += rstat->recent_scanned[1];
3443 		}
3444 		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3445 		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3446 		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3447 		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3448 	}
3449 #endif
3450 
3451 	return 0;
3452 }
3453 
3454 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3455 				      struct cftype *cft)
3456 {
3457 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3458 
3459 	return mem_cgroup_swappiness(memcg);
3460 }
3461 
3462 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3463 				       struct cftype *cft, u64 val)
3464 {
3465 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3466 
3467 	if (val > 100)
3468 		return -EINVAL;
3469 
3470 	if (css->parent)
3471 		memcg->swappiness = val;
3472 	else
3473 		vm_swappiness = val;
3474 
3475 	return 0;
3476 }
3477 
3478 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3479 {
3480 	struct mem_cgroup_threshold_ary *t;
3481 	unsigned long usage;
3482 	int i;
3483 
3484 	rcu_read_lock();
3485 	if (!swap)
3486 		t = rcu_dereference(memcg->thresholds.primary);
3487 	else
3488 		t = rcu_dereference(memcg->memsw_thresholds.primary);
3489 
3490 	if (!t)
3491 		goto unlock;
3492 
3493 	usage = mem_cgroup_usage(memcg, swap);
3494 
3495 	/*
3496 	 * current_threshold points to threshold just below or equal to usage.
3497 	 * If it's not true, a threshold was crossed after last
3498 	 * call of __mem_cgroup_threshold().
3499 	 */
3500 	i = t->current_threshold;
3501 
3502 	/*
3503 	 * Iterate backward over array of thresholds starting from
3504 	 * current_threshold and check if a threshold is crossed.
3505 	 * If none of thresholds below usage is crossed, we read
3506 	 * only one element of the array here.
3507 	 */
3508 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3509 		eventfd_signal(t->entries[i].eventfd, 1);
3510 
3511 	/* i = current_threshold + 1 */
3512 	i++;
3513 
3514 	/*
3515 	 * Iterate forward over array of thresholds starting from
3516 	 * current_threshold+1 and check if a threshold is crossed.
3517 	 * If none of thresholds above usage is crossed, we read
3518 	 * only one element of the array here.
3519 	 */
3520 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3521 		eventfd_signal(t->entries[i].eventfd, 1);
3522 
3523 	/* Update current_threshold */
3524 	t->current_threshold = i - 1;
3525 unlock:
3526 	rcu_read_unlock();
3527 }
3528 
3529 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3530 {
3531 	while (memcg) {
3532 		__mem_cgroup_threshold(memcg, false);
3533 		if (do_memsw_account())
3534 			__mem_cgroup_threshold(memcg, true);
3535 
3536 		memcg = parent_mem_cgroup(memcg);
3537 	}
3538 }
3539 
3540 static int compare_thresholds(const void *a, const void *b)
3541 {
3542 	const struct mem_cgroup_threshold *_a = a;
3543 	const struct mem_cgroup_threshold *_b = b;
3544 
3545 	if (_a->threshold > _b->threshold)
3546 		return 1;
3547 
3548 	if (_a->threshold < _b->threshold)
3549 		return -1;
3550 
3551 	return 0;
3552 }
3553 
3554 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3555 {
3556 	struct mem_cgroup_eventfd_list *ev;
3557 
3558 	spin_lock(&memcg_oom_lock);
3559 
3560 	list_for_each_entry(ev, &memcg->oom_notify, list)
3561 		eventfd_signal(ev->eventfd, 1);
3562 
3563 	spin_unlock(&memcg_oom_lock);
3564 	return 0;
3565 }
3566 
3567 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3568 {
3569 	struct mem_cgroup *iter;
3570 
3571 	for_each_mem_cgroup_tree(iter, memcg)
3572 		mem_cgroup_oom_notify_cb(iter);
3573 }
3574 
3575 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3576 	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3577 {
3578 	struct mem_cgroup_thresholds *thresholds;
3579 	struct mem_cgroup_threshold_ary *new;
3580 	unsigned long threshold;
3581 	unsigned long usage;
3582 	int i, size, ret;
3583 
3584 	ret = page_counter_memparse(args, "-1", &threshold);
3585 	if (ret)
3586 		return ret;
3587 
3588 	mutex_lock(&memcg->thresholds_lock);
3589 
3590 	if (type == _MEM) {
3591 		thresholds = &memcg->thresholds;
3592 		usage = mem_cgroup_usage(memcg, false);
3593 	} else if (type == _MEMSWAP) {
3594 		thresholds = &memcg->memsw_thresholds;
3595 		usage = mem_cgroup_usage(memcg, true);
3596 	} else
3597 		BUG();
3598 
3599 	/* Check if a threshold crossed before adding a new one */
3600 	if (thresholds->primary)
3601 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3602 
3603 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3604 
3605 	/* Allocate memory for new array of thresholds */
3606 	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3607 			GFP_KERNEL);
3608 	if (!new) {
3609 		ret = -ENOMEM;
3610 		goto unlock;
3611 	}
3612 	new->size = size;
3613 
3614 	/* Copy thresholds (if any) to new array */
3615 	if (thresholds->primary) {
3616 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3617 				sizeof(struct mem_cgroup_threshold));
3618 	}
3619 
3620 	/* Add new threshold */
3621 	new->entries[size - 1].eventfd = eventfd;
3622 	new->entries[size - 1].threshold = threshold;
3623 
3624 	/* Sort thresholds. Registering of new threshold isn't time-critical */
3625 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3626 			compare_thresholds, NULL);
3627 
3628 	/* Find current threshold */
3629 	new->current_threshold = -1;
3630 	for (i = 0; i < size; i++) {
3631 		if (new->entries[i].threshold <= usage) {
3632 			/*
3633 			 * new->current_threshold will not be used until
3634 			 * rcu_assign_pointer(), so it's safe to increment
3635 			 * it here.
3636 			 */
3637 			++new->current_threshold;
3638 		} else
3639 			break;
3640 	}
3641 
3642 	/* Free old spare buffer and save old primary buffer as spare */
3643 	kfree(thresholds->spare);
3644 	thresholds->spare = thresholds->primary;
3645 
3646 	rcu_assign_pointer(thresholds->primary, new);
3647 
3648 	/* To be sure that nobody uses thresholds */
3649 	synchronize_rcu();
3650 
3651 unlock:
3652 	mutex_unlock(&memcg->thresholds_lock);
3653 
3654 	return ret;
3655 }
3656 
3657 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3658 	struct eventfd_ctx *eventfd, const char *args)
3659 {
3660 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3661 }
3662 
3663 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3664 	struct eventfd_ctx *eventfd, const char *args)
3665 {
3666 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3667 }
3668 
3669 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3670 	struct eventfd_ctx *eventfd, enum res_type type)
3671 {
3672 	struct mem_cgroup_thresholds *thresholds;
3673 	struct mem_cgroup_threshold_ary *new;
3674 	unsigned long usage;
3675 	int i, j, size;
3676 
3677 	mutex_lock(&memcg->thresholds_lock);
3678 
3679 	if (type == _MEM) {
3680 		thresholds = &memcg->thresholds;
3681 		usage = mem_cgroup_usage(memcg, false);
3682 	} else if (type == _MEMSWAP) {
3683 		thresholds = &memcg->memsw_thresholds;
3684 		usage = mem_cgroup_usage(memcg, true);
3685 	} else
3686 		BUG();
3687 
3688 	if (!thresholds->primary)
3689 		goto unlock;
3690 
3691 	/* Check if a threshold crossed before removing */
3692 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3693 
3694 	/* Calculate new number of threshold */
3695 	size = 0;
3696 	for (i = 0; i < thresholds->primary->size; i++) {
3697 		if (thresholds->primary->entries[i].eventfd != eventfd)
3698 			size++;
3699 	}
3700 
3701 	new = thresholds->spare;
3702 
3703 	/* Set thresholds array to NULL if we don't have thresholds */
3704 	if (!size) {
3705 		kfree(new);
3706 		new = NULL;
3707 		goto swap_buffers;
3708 	}
3709 
3710 	new->size = size;
3711 
3712 	/* Copy thresholds and find current threshold */
3713 	new->current_threshold = -1;
3714 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3715 		if (thresholds->primary->entries[i].eventfd == eventfd)
3716 			continue;
3717 
3718 		new->entries[j] = thresholds->primary->entries[i];
3719 		if (new->entries[j].threshold <= usage) {
3720 			/*
3721 			 * new->current_threshold will not be used
3722 			 * until rcu_assign_pointer(), so it's safe to increment
3723 			 * it here.
3724 			 */
3725 			++new->current_threshold;
3726 		}
3727 		j++;
3728 	}
3729 
3730 swap_buffers:
3731 	/* Swap primary and spare array */
3732 	thresholds->spare = thresholds->primary;
3733 
3734 	rcu_assign_pointer(thresholds->primary, new);
3735 
3736 	/* To be sure that nobody uses thresholds */
3737 	synchronize_rcu();
3738 
3739 	/* If all events are unregistered, free the spare array */
3740 	if (!new) {
3741 		kfree(thresholds->spare);
3742 		thresholds->spare = NULL;
3743 	}
3744 unlock:
3745 	mutex_unlock(&memcg->thresholds_lock);
3746 }
3747 
3748 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3749 	struct eventfd_ctx *eventfd)
3750 {
3751 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3752 }
3753 
3754 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3755 	struct eventfd_ctx *eventfd)
3756 {
3757 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3758 }
3759 
3760 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3761 	struct eventfd_ctx *eventfd, const char *args)
3762 {
3763 	struct mem_cgroup_eventfd_list *event;
3764 
3765 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
3766 	if (!event)
3767 		return -ENOMEM;
3768 
3769 	spin_lock(&memcg_oom_lock);
3770 
3771 	event->eventfd = eventfd;
3772 	list_add(&event->list, &memcg->oom_notify);
3773 
3774 	/* already in OOM ? */
3775 	if (memcg->under_oom)
3776 		eventfd_signal(eventfd, 1);
3777 	spin_unlock(&memcg_oom_lock);
3778 
3779 	return 0;
3780 }
3781 
3782 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3783 	struct eventfd_ctx *eventfd)
3784 {
3785 	struct mem_cgroup_eventfd_list *ev, *tmp;
3786 
3787 	spin_lock(&memcg_oom_lock);
3788 
3789 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3790 		if (ev->eventfd == eventfd) {
3791 			list_del(&ev->list);
3792 			kfree(ev);
3793 		}
3794 	}
3795 
3796 	spin_unlock(&memcg_oom_lock);
3797 }
3798 
3799 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3800 {
3801 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3802 
3803 	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3804 	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3805 	seq_printf(sf, "oom_kill %lu\n",
3806 		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3807 	return 0;
3808 }
3809 
3810 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3811 	struct cftype *cft, u64 val)
3812 {
3813 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3814 
3815 	/* cannot set to root cgroup and only 0 and 1 are allowed */
3816 	if (!css->parent || !((val == 0) || (val == 1)))
3817 		return -EINVAL;
3818 
3819 	memcg->oom_kill_disable = val;
3820 	if (!val)
3821 		memcg_oom_recover(memcg);
3822 
3823 	return 0;
3824 }
3825 
3826 #ifdef CONFIG_CGROUP_WRITEBACK
3827 
3828 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3829 {
3830 	return wb_domain_init(&memcg->cgwb_domain, gfp);
3831 }
3832 
3833 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3834 {
3835 	wb_domain_exit(&memcg->cgwb_domain);
3836 }
3837 
3838 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3839 {
3840 	wb_domain_size_changed(&memcg->cgwb_domain);
3841 }
3842 
3843 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3844 {
3845 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3846 
3847 	if (!memcg->css.parent)
3848 		return NULL;
3849 
3850 	return &memcg->cgwb_domain;
3851 }
3852 
3853 /**
3854  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3855  * @wb: bdi_writeback in question
3856  * @pfilepages: out parameter for number of file pages
3857  * @pheadroom: out parameter for number of allocatable pages according to memcg
3858  * @pdirty: out parameter for number of dirty pages
3859  * @pwriteback: out parameter for number of pages under writeback
3860  *
3861  * Determine the numbers of file, headroom, dirty, and writeback pages in
3862  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
3863  * is a bit more involved.
3864  *
3865  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
3866  * headroom is calculated as the lowest headroom of itself and the
3867  * ancestors.  Note that this doesn't consider the actual amount of
3868  * available memory in the system.  The caller should further cap
3869  * *@pheadroom accordingly.
3870  */
3871 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3872 			 unsigned long *pheadroom, unsigned long *pdirty,
3873 			 unsigned long *pwriteback)
3874 {
3875 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3876 	struct mem_cgroup *parent;
3877 
3878 	*pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
3879 
3880 	/* this should eventually include NR_UNSTABLE_NFS */
3881 	*pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
3882 	*pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3883 						     (1 << LRU_ACTIVE_FILE));
3884 	*pheadroom = PAGE_COUNTER_MAX;
3885 
3886 	while ((parent = parent_mem_cgroup(memcg))) {
3887 		unsigned long ceiling = min(memcg->memory.max, memcg->high);
3888 		unsigned long used = page_counter_read(&memcg->memory);
3889 
3890 		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3891 		memcg = parent;
3892 	}
3893 }
3894 
3895 #else	/* CONFIG_CGROUP_WRITEBACK */
3896 
3897 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3898 {
3899 	return 0;
3900 }
3901 
3902 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3903 {
3904 }
3905 
3906 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3907 {
3908 }
3909 
3910 #endif	/* CONFIG_CGROUP_WRITEBACK */
3911 
3912 /*
3913  * DO NOT USE IN NEW FILES.
3914  *
3915  * "cgroup.event_control" implementation.
3916  *
3917  * This is way over-engineered.  It tries to support fully configurable
3918  * events for each user.  Such level of flexibility is completely
3919  * unnecessary especially in the light of the planned unified hierarchy.
3920  *
3921  * Please deprecate this and replace with something simpler if at all
3922  * possible.
3923  */
3924 
3925 /*
3926  * Unregister event and free resources.
3927  *
3928  * Gets called from workqueue.
3929  */
3930 static void memcg_event_remove(struct work_struct *work)
3931 {
3932 	struct mem_cgroup_event *event =
3933 		container_of(work, struct mem_cgroup_event, remove);
3934 	struct mem_cgroup *memcg = event->memcg;
3935 
3936 	remove_wait_queue(event->wqh, &event->wait);
3937 
3938 	event->unregister_event(memcg, event->eventfd);
3939 
3940 	/* Notify userspace the event is going away. */
3941 	eventfd_signal(event->eventfd, 1);
3942 
3943 	eventfd_ctx_put(event->eventfd);
3944 	kfree(event);
3945 	css_put(&memcg->css);
3946 }
3947 
3948 /*
3949  * Gets called on EPOLLHUP on eventfd when user closes it.
3950  *
3951  * Called with wqh->lock held and interrupts disabled.
3952  */
3953 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3954 			    int sync, void *key)
3955 {
3956 	struct mem_cgroup_event *event =
3957 		container_of(wait, struct mem_cgroup_event, wait);
3958 	struct mem_cgroup *memcg = event->memcg;
3959 	__poll_t flags = key_to_poll(key);
3960 
3961 	if (flags & EPOLLHUP) {
3962 		/*
3963 		 * If the event has been detached at cgroup removal, we
3964 		 * can simply return knowing the other side will cleanup
3965 		 * for us.
3966 		 *
3967 		 * We can't race against event freeing since the other
3968 		 * side will require wqh->lock via remove_wait_queue(),
3969 		 * which we hold.
3970 		 */
3971 		spin_lock(&memcg->event_list_lock);
3972 		if (!list_empty(&event->list)) {
3973 			list_del_init(&event->list);
3974 			/*
3975 			 * We are in atomic context, but cgroup_event_remove()
3976 			 * may sleep, so we have to call it in workqueue.
3977 			 */
3978 			schedule_work(&event->remove);
3979 		}
3980 		spin_unlock(&memcg->event_list_lock);
3981 	}
3982 
3983 	return 0;
3984 }
3985 
3986 static void memcg_event_ptable_queue_proc(struct file *file,
3987 		wait_queue_head_t *wqh, poll_table *pt)
3988 {
3989 	struct mem_cgroup_event *event =
3990 		container_of(pt, struct mem_cgroup_event, pt);
3991 
3992 	event->wqh = wqh;
3993 	add_wait_queue(wqh, &event->wait);
3994 }
3995 
3996 /*
3997  * DO NOT USE IN NEW FILES.
3998  *
3999  * Parse input and register new cgroup event handler.
4000  *
4001  * Input must be in format '<event_fd> <control_fd> <args>'.
4002  * Interpretation of args is defined by control file implementation.
4003  */
4004 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4005 					 char *buf, size_t nbytes, loff_t off)
4006 {
4007 	struct cgroup_subsys_state *css = of_css(of);
4008 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4009 	struct mem_cgroup_event *event;
4010 	struct cgroup_subsys_state *cfile_css;
4011 	unsigned int efd, cfd;
4012 	struct fd efile;
4013 	struct fd cfile;
4014 	const char *name;
4015 	char *endp;
4016 	int ret;
4017 
4018 	buf = strstrip(buf);
4019 
4020 	efd = simple_strtoul(buf, &endp, 10);
4021 	if (*endp != ' ')
4022 		return -EINVAL;
4023 	buf = endp + 1;
4024 
4025 	cfd = simple_strtoul(buf, &endp, 10);
4026 	if ((*endp != ' ') && (*endp != '\0'))
4027 		return -EINVAL;
4028 	buf = endp + 1;
4029 
4030 	event = kzalloc(sizeof(*event), GFP_KERNEL);
4031 	if (!event)
4032 		return -ENOMEM;
4033 
4034 	event->memcg = memcg;
4035 	INIT_LIST_HEAD(&event->list);
4036 	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4037 	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4038 	INIT_WORK(&event->remove, memcg_event_remove);
4039 
4040 	efile = fdget(efd);
4041 	if (!efile.file) {
4042 		ret = -EBADF;
4043 		goto out_kfree;
4044 	}
4045 
4046 	event->eventfd = eventfd_ctx_fileget(efile.file);
4047 	if (IS_ERR(event->eventfd)) {
4048 		ret = PTR_ERR(event->eventfd);
4049 		goto out_put_efile;
4050 	}
4051 
4052 	cfile = fdget(cfd);
4053 	if (!cfile.file) {
4054 		ret = -EBADF;
4055 		goto out_put_eventfd;
4056 	}
4057 
4058 	/* the process need read permission on control file */
4059 	/* AV: shouldn't we check that it's been opened for read instead? */
4060 	ret = inode_permission(file_inode(cfile.file), MAY_READ);
4061 	if (ret < 0)
4062 		goto out_put_cfile;
4063 
4064 	/*
4065 	 * Determine the event callbacks and set them in @event.  This used
4066 	 * to be done via struct cftype but cgroup core no longer knows
4067 	 * about these events.  The following is crude but the whole thing
4068 	 * is for compatibility anyway.
4069 	 *
4070 	 * DO NOT ADD NEW FILES.
4071 	 */
4072 	name = cfile.file->f_path.dentry->d_name.name;
4073 
4074 	if (!strcmp(name, "memory.usage_in_bytes")) {
4075 		event->register_event = mem_cgroup_usage_register_event;
4076 		event->unregister_event = mem_cgroup_usage_unregister_event;
4077 	} else if (!strcmp(name, "memory.oom_control")) {
4078 		event->register_event = mem_cgroup_oom_register_event;
4079 		event->unregister_event = mem_cgroup_oom_unregister_event;
4080 	} else if (!strcmp(name, "memory.pressure_level")) {
4081 		event->register_event = vmpressure_register_event;
4082 		event->unregister_event = vmpressure_unregister_event;
4083 	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4084 		event->register_event = memsw_cgroup_usage_register_event;
4085 		event->unregister_event = memsw_cgroup_usage_unregister_event;
4086 	} else {
4087 		ret = -EINVAL;
4088 		goto out_put_cfile;
4089 	}
4090 
4091 	/*
4092 	 * Verify @cfile should belong to @css.  Also, remaining events are
4093 	 * automatically removed on cgroup destruction but the removal is
4094 	 * asynchronous, so take an extra ref on @css.
4095 	 */
4096 	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4097 					       &memory_cgrp_subsys);
4098 	ret = -EINVAL;
4099 	if (IS_ERR(cfile_css))
4100 		goto out_put_cfile;
4101 	if (cfile_css != css) {
4102 		css_put(cfile_css);
4103 		goto out_put_cfile;
4104 	}
4105 
4106 	ret = event->register_event(memcg, event->eventfd, buf);
4107 	if (ret)
4108 		goto out_put_css;
4109 
4110 	vfs_poll(efile.file, &event->pt);
4111 
4112 	spin_lock(&memcg->event_list_lock);
4113 	list_add(&event->list, &memcg->event_list);
4114 	spin_unlock(&memcg->event_list_lock);
4115 
4116 	fdput(cfile);
4117 	fdput(efile);
4118 
4119 	return nbytes;
4120 
4121 out_put_css:
4122 	css_put(css);
4123 out_put_cfile:
4124 	fdput(cfile);
4125 out_put_eventfd:
4126 	eventfd_ctx_put(event->eventfd);
4127 out_put_efile:
4128 	fdput(efile);
4129 out_kfree:
4130 	kfree(event);
4131 
4132 	return ret;
4133 }
4134 
4135 static struct cftype mem_cgroup_legacy_files[] = {
4136 	{
4137 		.name = "usage_in_bytes",
4138 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4139 		.read_u64 = mem_cgroup_read_u64,
4140 	},
4141 	{
4142 		.name = "max_usage_in_bytes",
4143 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4144 		.write = mem_cgroup_reset,
4145 		.read_u64 = mem_cgroup_read_u64,
4146 	},
4147 	{
4148 		.name = "limit_in_bytes",
4149 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4150 		.write = mem_cgroup_write,
4151 		.read_u64 = mem_cgroup_read_u64,
4152 	},
4153 	{
4154 		.name = "soft_limit_in_bytes",
4155 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4156 		.write = mem_cgroup_write,
4157 		.read_u64 = mem_cgroup_read_u64,
4158 	},
4159 	{
4160 		.name = "failcnt",
4161 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4162 		.write = mem_cgroup_reset,
4163 		.read_u64 = mem_cgroup_read_u64,
4164 	},
4165 	{
4166 		.name = "stat",
4167 		.seq_show = memcg_stat_show,
4168 	},
4169 	{
4170 		.name = "force_empty",
4171 		.write = mem_cgroup_force_empty_write,
4172 	},
4173 	{
4174 		.name = "use_hierarchy",
4175 		.write_u64 = mem_cgroup_hierarchy_write,
4176 		.read_u64 = mem_cgroup_hierarchy_read,
4177 	},
4178 	{
4179 		.name = "cgroup.event_control",		/* XXX: for compat */
4180 		.write = memcg_write_event_control,
4181 		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4182 	},
4183 	{
4184 		.name = "swappiness",
4185 		.read_u64 = mem_cgroup_swappiness_read,
4186 		.write_u64 = mem_cgroup_swappiness_write,
4187 	},
4188 	{
4189 		.name = "move_charge_at_immigrate",
4190 		.read_u64 = mem_cgroup_move_charge_read,
4191 		.write_u64 = mem_cgroup_move_charge_write,
4192 	},
4193 	{
4194 		.name = "oom_control",
4195 		.seq_show = mem_cgroup_oom_control_read,
4196 		.write_u64 = mem_cgroup_oom_control_write,
4197 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4198 	},
4199 	{
4200 		.name = "pressure_level",
4201 	},
4202 #ifdef CONFIG_NUMA
4203 	{
4204 		.name = "numa_stat",
4205 		.seq_show = memcg_numa_stat_show,
4206 	},
4207 #endif
4208 	{
4209 		.name = "kmem.limit_in_bytes",
4210 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4211 		.write = mem_cgroup_write,
4212 		.read_u64 = mem_cgroup_read_u64,
4213 	},
4214 	{
4215 		.name = "kmem.usage_in_bytes",
4216 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4217 		.read_u64 = mem_cgroup_read_u64,
4218 	},
4219 	{
4220 		.name = "kmem.failcnt",
4221 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4222 		.write = mem_cgroup_reset,
4223 		.read_u64 = mem_cgroup_read_u64,
4224 	},
4225 	{
4226 		.name = "kmem.max_usage_in_bytes",
4227 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4228 		.write = mem_cgroup_reset,
4229 		.read_u64 = mem_cgroup_read_u64,
4230 	},
4231 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
4232 	{
4233 		.name = "kmem.slabinfo",
4234 		.seq_start = memcg_slab_start,
4235 		.seq_next = memcg_slab_next,
4236 		.seq_stop = memcg_slab_stop,
4237 		.seq_show = memcg_slab_show,
4238 	},
4239 #endif
4240 	{
4241 		.name = "kmem.tcp.limit_in_bytes",
4242 		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4243 		.write = mem_cgroup_write,
4244 		.read_u64 = mem_cgroup_read_u64,
4245 	},
4246 	{
4247 		.name = "kmem.tcp.usage_in_bytes",
4248 		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4249 		.read_u64 = mem_cgroup_read_u64,
4250 	},
4251 	{
4252 		.name = "kmem.tcp.failcnt",
4253 		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4254 		.write = mem_cgroup_reset,
4255 		.read_u64 = mem_cgroup_read_u64,
4256 	},
4257 	{
4258 		.name = "kmem.tcp.max_usage_in_bytes",
4259 		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4260 		.write = mem_cgroup_reset,
4261 		.read_u64 = mem_cgroup_read_u64,
4262 	},
4263 	{ },	/* terminate */
4264 };
4265 
4266 /*
4267  * Private memory cgroup IDR
4268  *
4269  * Swap-out records and page cache shadow entries need to store memcg
4270  * references in constrained space, so we maintain an ID space that is
4271  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4272  * memory-controlled cgroups to 64k.
4273  *
4274  * However, there usually are many references to the oflline CSS after
4275  * the cgroup has been destroyed, such as page cache or reclaimable
4276  * slab objects, that don't need to hang on to the ID. We want to keep
4277  * those dead CSS from occupying IDs, or we might quickly exhaust the
4278  * relatively small ID space and prevent the creation of new cgroups
4279  * even when there are much fewer than 64k cgroups - possibly none.
4280  *
4281  * Maintain a private 16-bit ID space for memcg, and allow the ID to
4282  * be freed and recycled when it's no longer needed, which is usually
4283  * when the CSS is offlined.
4284  *
4285  * The only exception to that are records of swapped out tmpfs/shmem
4286  * pages that need to be attributed to live ancestors on swapin. But
4287  * those references are manageable from userspace.
4288  */
4289 
4290 static DEFINE_IDR(mem_cgroup_idr);
4291 
4292 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4293 {
4294 	if (memcg->id.id > 0) {
4295 		idr_remove(&mem_cgroup_idr, memcg->id.id);
4296 		memcg->id.id = 0;
4297 	}
4298 }
4299 
4300 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4301 {
4302 	refcount_add(n, &memcg->id.ref);
4303 }
4304 
4305 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4306 {
4307 	if (refcount_sub_and_test(n, &memcg->id.ref)) {
4308 		mem_cgroup_id_remove(memcg);
4309 
4310 		/* Memcg ID pins CSS */
4311 		css_put(&memcg->css);
4312 	}
4313 }
4314 
4315 static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4316 {
4317 	mem_cgroup_id_get_many(memcg, 1);
4318 }
4319 
4320 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4321 {
4322 	mem_cgroup_id_put_many(memcg, 1);
4323 }
4324 
4325 /**
4326  * mem_cgroup_from_id - look up a memcg from a memcg id
4327  * @id: the memcg id to look up
4328  *
4329  * Caller must hold rcu_read_lock().
4330  */
4331 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4332 {
4333 	WARN_ON_ONCE(!rcu_read_lock_held());
4334 	return idr_find(&mem_cgroup_idr, id);
4335 }
4336 
4337 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4338 {
4339 	struct mem_cgroup_per_node *pn;
4340 	int tmp = node;
4341 	/*
4342 	 * This routine is called against possible nodes.
4343 	 * But it's BUG to call kmalloc() against offline node.
4344 	 *
4345 	 * TODO: this routine can waste much memory for nodes which will
4346 	 *       never be onlined. It's better to use memory hotplug callback
4347 	 *       function.
4348 	 */
4349 	if (!node_state(node, N_NORMAL_MEMORY))
4350 		tmp = -1;
4351 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4352 	if (!pn)
4353 		return 1;
4354 
4355 	pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
4356 	if (!pn->lruvec_stat_cpu) {
4357 		kfree(pn);
4358 		return 1;
4359 	}
4360 
4361 	lruvec_init(&pn->lruvec);
4362 	pn->usage_in_excess = 0;
4363 	pn->on_tree = false;
4364 	pn->memcg = memcg;
4365 
4366 	memcg->nodeinfo[node] = pn;
4367 	return 0;
4368 }
4369 
4370 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4371 {
4372 	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4373 
4374 	if (!pn)
4375 		return;
4376 
4377 	free_percpu(pn->lruvec_stat_cpu);
4378 	kfree(pn);
4379 }
4380 
4381 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4382 {
4383 	int node;
4384 
4385 	for_each_node(node)
4386 		free_mem_cgroup_per_node_info(memcg, node);
4387 	free_percpu(memcg->stat_cpu);
4388 	kfree(memcg);
4389 }
4390 
4391 static void mem_cgroup_free(struct mem_cgroup *memcg)
4392 {
4393 	memcg_wb_domain_exit(memcg);
4394 	__mem_cgroup_free(memcg);
4395 }
4396 
4397 static struct mem_cgroup *mem_cgroup_alloc(void)
4398 {
4399 	struct mem_cgroup *memcg;
4400 	size_t size;
4401 	int node;
4402 
4403 	size = sizeof(struct mem_cgroup);
4404 	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4405 
4406 	memcg = kzalloc(size, GFP_KERNEL);
4407 	if (!memcg)
4408 		return NULL;
4409 
4410 	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4411 				 1, MEM_CGROUP_ID_MAX,
4412 				 GFP_KERNEL);
4413 	if (memcg->id.id < 0)
4414 		goto fail;
4415 
4416 	memcg->stat_cpu = alloc_percpu(struct mem_cgroup_stat_cpu);
4417 	if (!memcg->stat_cpu)
4418 		goto fail;
4419 
4420 	for_each_node(node)
4421 		if (alloc_mem_cgroup_per_node_info(memcg, node))
4422 			goto fail;
4423 
4424 	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4425 		goto fail;
4426 
4427 	INIT_WORK(&memcg->high_work, high_work_func);
4428 	memcg->last_scanned_node = MAX_NUMNODES;
4429 	INIT_LIST_HEAD(&memcg->oom_notify);
4430 	mutex_init(&memcg->thresholds_lock);
4431 	spin_lock_init(&memcg->move_lock);
4432 	vmpressure_init(&memcg->vmpressure);
4433 	INIT_LIST_HEAD(&memcg->event_list);
4434 	spin_lock_init(&memcg->event_list_lock);
4435 	memcg->socket_pressure = jiffies;
4436 #ifdef CONFIG_MEMCG_KMEM
4437 	memcg->kmemcg_id = -1;
4438 #endif
4439 #ifdef CONFIG_CGROUP_WRITEBACK
4440 	INIT_LIST_HEAD(&memcg->cgwb_list);
4441 #endif
4442 	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4443 	return memcg;
4444 fail:
4445 	mem_cgroup_id_remove(memcg);
4446 	__mem_cgroup_free(memcg);
4447 	return NULL;
4448 }
4449 
4450 static struct cgroup_subsys_state * __ref
4451 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4452 {
4453 	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4454 	struct mem_cgroup *memcg;
4455 	long error = -ENOMEM;
4456 
4457 	memcg = mem_cgroup_alloc();
4458 	if (!memcg)
4459 		return ERR_PTR(error);
4460 
4461 	memcg->high = PAGE_COUNTER_MAX;
4462 	memcg->soft_limit = PAGE_COUNTER_MAX;
4463 	if (parent) {
4464 		memcg->swappiness = mem_cgroup_swappiness(parent);
4465 		memcg->oom_kill_disable = parent->oom_kill_disable;
4466 	}
4467 	if (parent && parent->use_hierarchy) {
4468 		memcg->use_hierarchy = true;
4469 		page_counter_init(&memcg->memory, &parent->memory);
4470 		page_counter_init(&memcg->swap, &parent->swap);
4471 		page_counter_init(&memcg->memsw, &parent->memsw);
4472 		page_counter_init(&memcg->kmem, &parent->kmem);
4473 		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4474 	} else {
4475 		page_counter_init(&memcg->memory, NULL);
4476 		page_counter_init(&memcg->swap, NULL);
4477 		page_counter_init(&memcg->memsw, NULL);
4478 		page_counter_init(&memcg->kmem, NULL);
4479 		page_counter_init(&memcg->tcpmem, NULL);
4480 		/*
4481 		 * Deeper hierachy with use_hierarchy == false doesn't make
4482 		 * much sense so let cgroup subsystem know about this
4483 		 * unfortunate state in our controller.
4484 		 */
4485 		if (parent != root_mem_cgroup)
4486 			memory_cgrp_subsys.broken_hierarchy = true;
4487 	}
4488 
4489 	/* The following stuff does not apply to the root */
4490 	if (!parent) {
4491 		root_mem_cgroup = memcg;
4492 		return &memcg->css;
4493 	}
4494 
4495 	error = memcg_online_kmem(memcg);
4496 	if (error)
4497 		goto fail;
4498 
4499 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4500 		static_branch_inc(&memcg_sockets_enabled_key);
4501 
4502 	return &memcg->css;
4503 fail:
4504 	mem_cgroup_id_remove(memcg);
4505 	mem_cgroup_free(memcg);
4506 	return ERR_PTR(-ENOMEM);
4507 }
4508 
4509 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4510 {
4511 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4512 
4513 	/*
4514 	 * A memcg must be visible for memcg_expand_shrinker_maps()
4515 	 * by the time the maps are allocated. So, we allocate maps
4516 	 * here, when for_each_mem_cgroup() can't skip it.
4517 	 */
4518 	if (memcg_alloc_shrinker_maps(memcg)) {
4519 		mem_cgroup_id_remove(memcg);
4520 		return -ENOMEM;
4521 	}
4522 
4523 	/* Online state pins memcg ID, memcg ID pins CSS */
4524 	refcount_set(&memcg->id.ref, 1);
4525 	css_get(css);
4526 	return 0;
4527 }
4528 
4529 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4530 {
4531 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4532 	struct mem_cgroup_event *event, *tmp;
4533 
4534 	/*
4535 	 * Unregister events and notify userspace.
4536 	 * Notify userspace about cgroup removing only after rmdir of cgroup
4537 	 * directory to avoid race between userspace and kernelspace.
4538 	 */
4539 	spin_lock(&memcg->event_list_lock);
4540 	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4541 		list_del_init(&event->list);
4542 		schedule_work(&event->remove);
4543 	}
4544 	spin_unlock(&memcg->event_list_lock);
4545 
4546 	page_counter_set_min(&memcg->memory, 0);
4547 	page_counter_set_low(&memcg->memory, 0);
4548 
4549 	memcg_offline_kmem(memcg);
4550 	wb_memcg_offline(memcg);
4551 
4552 	drain_all_stock(memcg);
4553 
4554 	mem_cgroup_id_put(memcg);
4555 }
4556 
4557 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4558 {
4559 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4560 
4561 	invalidate_reclaim_iterators(memcg);
4562 }
4563 
4564 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4565 {
4566 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4567 
4568 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4569 		static_branch_dec(&memcg_sockets_enabled_key);
4570 
4571 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4572 		static_branch_dec(&memcg_sockets_enabled_key);
4573 
4574 	vmpressure_cleanup(&memcg->vmpressure);
4575 	cancel_work_sync(&memcg->high_work);
4576 	mem_cgroup_remove_from_trees(memcg);
4577 	memcg_free_shrinker_maps(memcg);
4578 	memcg_free_kmem(memcg);
4579 	mem_cgroup_free(memcg);
4580 }
4581 
4582 /**
4583  * mem_cgroup_css_reset - reset the states of a mem_cgroup
4584  * @css: the target css
4585  *
4586  * Reset the states of the mem_cgroup associated with @css.  This is
4587  * invoked when the userland requests disabling on the default hierarchy
4588  * but the memcg is pinned through dependency.  The memcg should stop
4589  * applying policies and should revert to the vanilla state as it may be
4590  * made visible again.
4591  *
4592  * The current implementation only resets the essential configurations.
4593  * This needs to be expanded to cover all the visible parts.
4594  */
4595 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4596 {
4597 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4598 
4599 	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
4600 	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
4601 	page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
4602 	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
4603 	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
4604 	page_counter_set_min(&memcg->memory, 0);
4605 	page_counter_set_low(&memcg->memory, 0);
4606 	memcg->high = PAGE_COUNTER_MAX;
4607 	memcg->soft_limit = PAGE_COUNTER_MAX;
4608 	memcg_wb_domain_size_changed(memcg);
4609 }
4610 
4611 #ifdef CONFIG_MMU
4612 /* Handlers for move charge at task migration. */
4613 static int mem_cgroup_do_precharge(unsigned long count)
4614 {
4615 	int ret;
4616 
4617 	/* Try a single bulk charge without reclaim first, kswapd may wake */
4618 	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4619 	if (!ret) {
4620 		mc.precharge += count;
4621 		return ret;
4622 	}
4623 
4624 	/* Try charges one by one with reclaim, but do not retry */
4625 	while (count--) {
4626 		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
4627 		if (ret)
4628 			return ret;
4629 		mc.precharge++;
4630 		cond_resched();
4631 	}
4632 	return 0;
4633 }
4634 
4635 union mc_target {
4636 	struct page	*page;
4637 	swp_entry_t	ent;
4638 };
4639 
4640 enum mc_target_type {
4641 	MC_TARGET_NONE = 0,
4642 	MC_TARGET_PAGE,
4643 	MC_TARGET_SWAP,
4644 	MC_TARGET_DEVICE,
4645 };
4646 
4647 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4648 						unsigned long addr, pte_t ptent)
4649 {
4650 	struct page *page = _vm_normal_page(vma, addr, ptent, true);
4651 
4652 	if (!page || !page_mapped(page))
4653 		return NULL;
4654 	if (PageAnon(page)) {
4655 		if (!(mc.flags & MOVE_ANON))
4656 			return NULL;
4657 	} else {
4658 		if (!(mc.flags & MOVE_FILE))
4659 			return NULL;
4660 	}
4661 	if (!get_page_unless_zero(page))
4662 		return NULL;
4663 
4664 	return page;
4665 }
4666 
4667 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
4668 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4669 			pte_t ptent, swp_entry_t *entry)
4670 {
4671 	struct page *page = NULL;
4672 	swp_entry_t ent = pte_to_swp_entry(ptent);
4673 
4674 	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4675 		return NULL;
4676 
4677 	/*
4678 	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
4679 	 * a device and because they are not accessible by CPU they are store
4680 	 * as special swap entry in the CPU page table.
4681 	 */
4682 	if (is_device_private_entry(ent)) {
4683 		page = device_private_entry_to_page(ent);
4684 		/*
4685 		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
4686 		 * a refcount of 1 when free (unlike normal page)
4687 		 */
4688 		if (!page_ref_add_unless(page, 1, 1))
4689 			return NULL;
4690 		return page;
4691 	}
4692 
4693 	/*
4694 	 * Because lookup_swap_cache() updates some statistics counter,
4695 	 * we call find_get_page() with swapper_space directly.
4696 	 */
4697 	page = find_get_page(swap_address_space(ent), swp_offset(ent));
4698 	if (do_memsw_account())
4699 		entry->val = ent.val;
4700 
4701 	return page;
4702 }
4703 #else
4704 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4705 			pte_t ptent, swp_entry_t *entry)
4706 {
4707 	return NULL;
4708 }
4709 #endif
4710 
4711 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4712 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4713 {
4714 	struct page *page = NULL;
4715 	struct address_space *mapping;
4716 	pgoff_t pgoff;
4717 
4718 	if (!vma->vm_file) /* anonymous vma */
4719 		return NULL;
4720 	if (!(mc.flags & MOVE_FILE))
4721 		return NULL;
4722 
4723 	mapping = vma->vm_file->f_mapping;
4724 	pgoff = linear_page_index(vma, addr);
4725 
4726 	/* page is moved even if it's not RSS of this task(page-faulted). */
4727 #ifdef CONFIG_SWAP
4728 	/* shmem/tmpfs may report page out on swap: account for that too. */
4729 	if (shmem_mapping(mapping)) {
4730 		page = find_get_entry(mapping, pgoff);
4731 		if (xa_is_value(page)) {
4732 			swp_entry_t swp = radix_to_swp_entry(page);
4733 			if (do_memsw_account())
4734 				*entry = swp;
4735 			page = find_get_page(swap_address_space(swp),
4736 					     swp_offset(swp));
4737 		}
4738 	} else
4739 		page = find_get_page(mapping, pgoff);
4740 #else
4741 	page = find_get_page(mapping, pgoff);
4742 #endif
4743 	return page;
4744 }
4745 
4746 /**
4747  * mem_cgroup_move_account - move account of the page
4748  * @page: the page
4749  * @compound: charge the page as compound or small page
4750  * @from: mem_cgroup which the page is moved from.
4751  * @to:	mem_cgroup which the page is moved to. @from != @to.
4752  *
4753  * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4754  *
4755  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4756  * from old cgroup.
4757  */
4758 static int mem_cgroup_move_account(struct page *page,
4759 				   bool compound,
4760 				   struct mem_cgroup *from,
4761 				   struct mem_cgroup *to)
4762 {
4763 	unsigned long flags;
4764 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4765 	int ret;
4766 	bool anon;
4767 
4768 	VM_BUG_ON(from == to);
4769 	VM_BUG_ON_PAGE(PageLRU(page), page);
4770 	VM_BUG_ON(compound && !PageTransHuge(page));
4771 
4772 	/*
4773 	 * Prevent mem_cgroup_migrate() from looking at
4774 	 * page->mem_cgroup of its source page while we change it.
4775 	 */
4776 	ret = -EBUSY;
4777 	if (!trylock_page(page))
4778 		goto out;
4779 
4780 	ret = -EINVAL;
4781 	if (page->mem_cgroup != from)
4782 		goto out_unlock;
4783 
4784 	anon = PageAnon(page);
4785 
4786 	spin_lock_irqsave(&from->move_lock, flags);
4787 
4788 	if (!anon && page_mapped(page)) {
4789 		__mod_memcg_state(from, NR_FILE_MAPPED, -nr_pages);
4790 		__mod_memcg_state(to, NR_FILE_MAPPED, nr_pages);
4791 	}
4792 
4793 	/*
4794 	 * move_lock grabbed above and caller set from->moving_account, so
4795 	 * mod_memcg_page_state will serialize updates to PageDirty.
4796 	 * So mapping should be stable for dirty pages.
4797 	 */
4798 	if (!anon && PageDirty(page)) {
4799 		struct address_space *mapping = page_mapping(page);
4800 
4801 		if (mapping_cap_account_dirty(mapping)) {
4802 			__mod_memcg_state(from, NR_FILE_DIRTY, -nr_pages);
4803 			__mod_memcg_state(to, NR_FILE_DIRTY, nr_pages);
4804 		}
4805 	}
4806 
4807 	if (PageWriteback(page)) {
4808 		__mod_memcg_state(from, NR_WRITEBACK, -nr_pages);
4809 		__mod_memcg_state(to, NR_WRITEBACK, nr_pages);
4810 	}
4811 
4812 	/*
4813 	 * It is safe to change page->mem_cgroup here because the page
4814 	 * is referenced, charged, and isolated - we can't race with
4815 	 * uncharging, charging, migration, or LRU putback.
4816 	 */
4817 
4818 	/* caller should have done css_get */
4819 	page->mem_cgroup = to;
4820 	spin_unlock_irqrestore(&from->move_lock, flags);
4821 
4822 	ret = 0;
4823 
4824 	local_irq_disable();
4825 	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4826 	memcg_check_events(to, page);
4827 	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4828 	memcg_check_events(from, page);
4829 	local_irq_enable();
4830 out_unlock:
4831 	unlock_page(page);
4832 out:
4833 	return ret;
4834 }
4835 
4836 /**
4837  * get_mctgt_type - get target type of moving charge
4838  * @vma: the vma the pte to be checked belongs
4839  * @addr: the address corresponding to the pte to be checked
4840  * @ptent: the pte to be checked
4841  * @target: the pointer the target page or swap ent will be stored(can be NULL)
4842  *
4843  * Returns
4844  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
4845  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4846  *     move charge. if @target is not NULL, the page is stored in target->page
4847  *     with extra refcnt got(Callers should handle it).
4848  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4849  *     target for charge migration. if @target is not NULL, the entry is stored
4850  *     in target->ent.
4851  *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PUBLIC
4852  *     or MEMORY_DEVICE_PRIVATE (so ZONE_DEVICE page and thus not on the lru).
4853  *     For now we such page is charge like a regular page would be as for all
4854  *     intent and purposes it is just special memory taking the place of a
4855  *     regular page.
4856  *
4857  *     See Documentations/vm/hmm.txt and include/linux/hmm.h
4858  *
4859  * Called with pte lock held.
4860  */
4861 
4862 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4863 		unsigned long addr, pte_t ptent, union mc_target *target)
4864 {
4865 	struct page *page = NULL;
4866 	enum mc_target_type ret = MC_TARGET_NONE;
4867 	swp_entry_t ent = { .val = 0 };
4868 
4869 	if (pte_present(ptent))
4870 		page = mc_handle_present_pte(vma, addr, ptent);
4871 	else if (is_swap_pte(ptent))
4872 		page = mc_handle_swap_pte(vma, ptent, &ent);
4873 	else if (pte_none(ptent))
4874 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
4875 
4876 	if (!page && !ent.val)
4877 		return ret;
4878 	if (page) {
4879 		/*
4880 		 * Do only loose check w/o serialization.
4881 		 * mem_cgroup_move_account() checks the page is valid or
4882 		 * not under LRU exclusion.
4883 		 */
4884 		if (page->mem_cgroup == mc.from) {
4885 			ret = MC_TARGET_PAGE;
4886 			if (is_device_private_page(page) ||
4887 			    is_device_public_page(page))
4888 				ret = MC_TARGET_DEVICE;
4889 			if (target)
4890 				target->page = page;
4891 		}
4892 		if (!ret || !target)
4893 			put_page(page);
4894 	}
4895 	/*
4896 	 * There is a swap entry and a page doesn't exist or isn't charged.
4897 	 * But we cannot move a tail-page in a THP.
4898 	 */
4899 	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
4900 	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4901 		ret = MC_TARGET_SWAP;
4902 		if (target)
4903 			target->ent = ent;
4904 	}
4905 	return ret;
4906 }
4907 
4908 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4909 /*
4910  * We don't consider PMD mapped swapping or file mapped pages because THP does
4911  * not support them for now.
4912  * Caller should make sure that pmd_trans_huge(pmd) is true.
4913  */
4914 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4915 		unsigned long addr, pmd_t pmd, union mc_target *target)
4916 {
4917 	struct page *page = NULL;
4918 	enum mc_target_type ret = MC_TARGET_NONE;
4919 
4920 	if (unlikely(is_swap_pmd(pmd))) {
4921 		VM_BUG_ON(thp_migration_supported() &&
4922 				  !is_pmd_migration_entry(pmd));
4923 		return ret;
4924 	}
4925 	page = pmd_page(pmd);
4926 	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4927 	if (!(mc.flags & MOVE_ANON))
4928 		return ret;
4929 	if (page->mem_cgroup == mc.from) {
4930 		ret = MC_TARGET_PAGE;
4931 		if (target) {
4932 			get_page(page);
4933 			target->page = page;
4934 		}
4935 	}
4936 	return ret;
4937 }
4938 #else
4939 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4940 		unsigned long addr, pmd_t pmd, union mc_target *target)
4941 {
4942 	return MC_TARGET_NONE;
4943 }
4944 #endif
4945 
4946 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4947 					unsigned long addr, unsigned long end,
4948 					struct mm_walk *walk)
4949 {
4950 	struct vm_area_struct *vma = walk->vma;
4951 	pte_t *pte;
4952 	spinlock_t *ptl;
4953 
4954 	ptl = pmd_trans_huge_lock(pmd, vma);
4955 	if (ptl) {
4956 		/*
4957 		 * Note their can not be MC_TARGET_DEVICE for now as we do not
4958 		 * support transparent huge page with MEMORY_DEVICE_PUBLIC or
4959 		 * MEMORY_DEVICE_PRIVATE but this might change.
4960 		 */
4961 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4962 			mc.precharge += HPAGE_PMD_NR;
4963 		spin_unlock(ptl);
4964 		return 0;
4965 	}
4966 
4967 	if (pmd_trans_unstable(pmd))
4968 		return 0;
4969 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4970 	for (; addr != end; pte++, addr += PAGE_SIZE)
4971 		if (get_mctgt_type(vma, addr, *pte, NULL))
4972 			mc.precharge++;	/* increment precharge temporarily */
4973 	pte_unmap_unlock(pte - 1, ptl);
4974 	cond_resched();
4975 
4976 	return 0;
4977 }
4978 
4979 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4980 {
4981 	unsigned long precharge;
4982 
4983 	struct mm_walk mem_cgroup_count_precharge_walk = {
4984 		.pmd_entry = mem_cgroup_count_precharge_pte_range,
4985 		.mm = mm,
4986 	};
4987 	down_read(&mm->mmap_sem);
4988 	walk_page_range(0, mm->highest_vm_end,
4989 			&mem_cgroup_count_precharge_walk);
4990 	up_read(&mm->mmap_sem);
4991 
4992 	precharge = mc.precharge;
4993 	mc.precharge = 0;
4994 
4995 	return precharge;
4996 }
4997 
4998 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4999 {
5000 	unsigned long precharge = mem_cgroup_count_precharge(mm);
5001 
5002 	VM_BUG_ON(mc.moving_task);
5003 	mc.moving_task = current;
5004 	return mem_cgroup_do_precharge(precharge);
5005 }
5006 
5007 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5008 static void __mem_cgroup_clear_mc(void)
5009 {
5010 	struct mem_cgroup *from = mc.from;
5011 	struct mem_cgroup *to = mc.to;
5012 
5013 	/* we must uncharge all the leftover precharges from mc.to */
5014 	if (mc.precharge) {
5015 		cancel_charge(mc.to, mc.precharge);
5016 		mc.precharge = 0;
5017 	}
5018 	/*
5019 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5020 	 * we must uncharge here.
5021 	 */
5022 	if (mc.moved_charge) {
5023 		cancel_charge(mc.from, mc.moved_charge);
5024 		mc.moved_charge = 0;
5025 	}
5026 	/* we must fixup refcnts and charges */
5027 	if (mc.moved_swap) {
5028 		/* uncharge swap account from the old cgroup */
5029 		if (!mem_cgroup_is_root(mc.from))
5030 			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5031 
5032 		mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5033 
5034 		/*
5035 		 * we charged both to->memory and to->memsw, so we
5036 		 * should uncharge to->memory.
5037 		 */
5038 		if (!mem_cgroup_is_root(mc.to))
5039 			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5040 
5041 		mem_cgroup_id_get_many(mc.to, mc.moved_swap);
5042 		css_put_many(&mc.to->css, mc.moved_swap);
5043 
5044 		mc.moved_swap = 0;
5045 	}
5046 	memcg_oom_recover(from);
5047 	memcg_oom_recover(to);
5048 	wake_up_all(&mc.waitq);
5049 }
5050 
5051 static void mem_cgroup_clear_mc(void)
5052 {
5053 	struct mm_struct *mm = mc.mm;
5054 
5055 	/*
5056 	 * we must clear moving_task before waking up waiters at the end of
5057 	 * task migration.
5058 	 */
5059 	mc.moving_task = NULL;
5060 	__mem_cgroup_clear_mc();
5061 	spin_lock(&mc.lock);
5062 	mc.from = NULL;
5063 	mc.to = NULL;
5064 	mc.mm = NULL;
5065 	spin_unlock(&mc.lock);
5066 
5067 	mmput(mm);
5068 }
5069 
5070 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5071 {
5072 	struct cgroup_subsys_state *css;
5073 	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5074 	struct mem_cgroup *from;
5075 	struct task_struct *leader, *p;
5076 	struct mm_struct *mm;
5077 	unsigned long move_flags;
5078 	int ret = 0;
5079 
5080 	/* charge immigration isn't supported on the default hierarchy */
5081 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5082 		return 0;
5083 
5084 	/*
5085 	 * Multi-process migrations only happen on the default hierarchy
5086 	 * where charge immigration is not used.  Perform charge
5087 	 * immigration if @tset contains a leader and whine if there are
5088 	 * multiple.
5089 	 */
5090 	p = NULL;
5091 	cgroup_taskset_for_each_leader(leader, css, tset) {
5092 		WARN_ON_ONCE(p);
5093 		p = leader;
5094 		memcg = mem_cgroup_from_css(css);
5095 	}
5096 	if (!p)
5097 		return 0;
5098 
5099 	/*
5100 	 * We are now commited to this value whatever it is. Changes in this
5101 	 * tunable will only affect upcoming migrations, not the current one.
5102 	 * So we need to save it, and keep it going.
5103 	 */
5104 	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5105 	if (!move_flags)
5106 		return 0;
5107 
5108 	from = mem_cgroup_from_task(p);
5109 
5110 	VM_BUG_ON(from == memcg);
5111 
5112 	mm = get_task_mm(p);
5113 	if (!mm)
5114 		return 0;
5115 	/* We move charges only when we move a owner of the mm */
5116 	if (mm->owner == p) {
5117 		VM_BUG_ON(mc.from);
5118 		VM_BUG_ON(mc.to);
5119 		VM_BUG_ON(mc.precharge);
5120 		VM_BUG_ON(mc.moved_charge);
5121 		VM_BUG_ON(mc.moved_swap);
5122 
5123 		spin_lock(&mc.lock);
5124 		mc.mm = mm;
5125 		mc.from = from;
5126 		mc.to = memcg;
5127 		mc.flags = move_flags;
5128 		spin_unlock(&mc.lock);
5129 		/* We set mc.moving_task later */
5130 
5131 		ret = mem_cgroup_precharge_mc(mm);
5132 		if (ret)
5133 			mem_cgroup_clear_mc();
5134 	} else {
5135 		mmput(mm);
5136 	}
5137 	return ret;
5138 }
5139 
5140 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5141 {
5142 	if (mc.to)
5143 		mem_cgroup_clear_mc();
5144 }
5145 
5146 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5147 				unsigned long addr, unsigned long end,
5148 				struct mm_walk *walk)
5149 {
5150 	int ret = 0;
5151 	struct vm_area_struct *vma = walk->vma;
5152 	pte_t *pte;
5153 	spinlock_t *ptl;
5154 	enum mc_target_type target_type;
5155 	union mc_target target;
5156 	struct page *page;
5157 
5158 	ptl = pmd_trans_huge_lock(pmd, vma);
5159 	if (ptl) {
5160 		if (mc.precharge < HPAGE_PMD_NR) {
5161 			spin_unlock(ptl);
5162 			return 0;
5163 		}
5164 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5165 		if (target_type == MC_TARGET_PAGE) {
5166 			page = target.page;
5167 			if (!isolate_lru_page(page)) {
5168 				if (!mem_cgroup_move_account(page, true,
5169 							     mc.from, mc.to)) {
5170 					mc.precharge -= HPAGE_PMD_NR;
5171 					mc.moved_charge += HPAGE_PMD_NR;
5172 				}
5173 				putback_lru_page(page);
5174 			}
5175 			put_page(page);
5176 		} else if (target_type == MC_TARGET_DEVICE) {
5177 			page = target.page;
5178 			if (!mem_cgroup_move_account(page, true,
5179 						     mc.from, mc.to)) {
5180 				mc.precharge -= HPAGE_PMD_NR;
5181 				mc.moved_charge += HPAGE_PMD_NR;
5182 			}
5183 			put_page(page);
5184 		}
5185 		spin_unlock(ptl);
5186 		return 0;
5187 	}
5188 
5189 	if (pmd_trans_unstable(pmd))
5190 		return 0;
5191 retry:
5192 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5193 	for (; addr != end; addr += PAGE_SIZE) {
5194 		pte_t ptent = *(pte++);
5195 		bool device = false;
5196 		swp_entry_t ent;
5197 
5198 		if (!mc.precharge)
5199 			break;
5200 
5201 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5202 		case MC_TARGET_DEVICE:
5203 			device = true;
5204 			/* fall through */
5205 		case MC_TARGET_PAGE:
5206 			page = target.page;
5207 			/*
5208 			 * We can have a part of the split pmd here. Moving it
5209 			 * can be done but it would be too convoluted so simply
5210 			 * ignore such a partial THP and keep it in original
5211 			 * memcg. There should be somebody mapping the head.
5212 			 */
5213 			if (PageTransCompound(page))
5214 				goto put;
5215 			if (!device && isolate_lru_page(page))
5216 				goto put;
5217 			if (!mem_cgroup_move_account(page, false,
5218 						mc.from, mc.to)) {
5219 				mc.precharge--;
5220 				/* we uncharge from mc.from later. */
5221 				mc.moved_charge++;
5222 			}
5223 			if (!device)
5224 				putback_lru_page(page);
5225 put:			/* get_mctgt_type() gets the page */
5226 			put_page(page);
5227 			break;
5228 		case MC_TARGET_SWAP:
5229 			ent = target.ent;
5230 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5231 				mc.precharge--;
5232 				/* we fixup refcnts and charges later. */
5233 				mc.moved_swap++;
5234 			}
5235 			break;
5236 		default:
5237 			break;
5238 		}
5239 	}
5240 	pte_unmap_unlock(pte - 1, ptl);
5241 	cond_resched();
5242 
5243 	if (addr != end) {
5244 		/*
5245 		 * We have consumed all precharges we got in can_attach().
5246 		 * We try charge one by one, but don't do any additional
5247 		 * charges to mc.to if we have failed in charge once in attach()
5248 		 * phase.
5249 		 */
5250 		ret = mem_cgroup_do_precharge(1);
5251 		if (!ret)
5252 			goto retry;
5253 	}
5254 
5255 	return ret;
5256 }
5257 
5258 static void mem_cgroup_move_charge(void)
5259 {
5260 	struct mm_walk mem_cgroup_move_charge_walk = {
5261 		.pmd_entry = mem_cgroup_move_charge_pte_range,
5262 		.mm = mc.mm,
5263 	};
5264 
5265 	lru_add_drain_all();
5266 	/*
5267 	 * Signal lock_page_memcg() to take the memcg's move_lock
5268 	 * while we're moving its pages to another memcg. Then wait
5269 	 * for already started RCU-only updates to finish.
5270 	 */
5271 	atomic_inc(&mc.from->moving_account);
5272 	synchronize_rcu();
5273 retry:
5274 	if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
5275 		/*
5276 		 * Someone who are holding the mmap_sem might be waiting in
5277 		 * waitq. So we cancel all extra charges, wake up all waiters,
5278 		 * and retry. Because we cancel precharges, we might not be able
5279 		 * to move enough charges, but moving charge is a best-effort
5280 		 * feature anyway, so it wouldn't be a big problem.
5281 		 */
5282 		__mem_cgroup_clear_mc();
5283 		cond_resched();
5284 		goto retry;
5285 	}
5286 	/*
5287 	 * When we have consumed all precharges and failed in doing
5288 	 * additional charge, the page walk just aborts.
5289 	 */
5290 	walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
5291 
5292 	up_read(&mc.mm->mmap_sem);
5293 	atomic_dec(&mc.from->moving_account);
5294 }
5295 
5296 static void mem_cgroup_move_task(void)
5297 {
5298 	if (mc.to) {
5299 		mem_cgroup_move_charge();
5300 		mem_cgroup_clear_mc();
5301 	}
5302 }
5303 #else	/* !CONFIG_MMU */
5304 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5305 {
5306 	return 0;
5307 }
5308 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5309 {
5310 }
5311 static void mem_cgroup_move_task(void)
5312 {
5313 }
5314 #endif
5315 
5316 /*
5317  * Cgroup retains root cgroups across [un]mount cycles making it necessary
5318  * to verify whether we're attached to the default hierarchy on each mount
5319  * attempt.
5320  */
5321 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5322 {
5323 	/*
5324 	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5325 	 * guarantees that @root doesn't have any children, so turning it
5326 	 * on for the root memcg is enough.
5327 	 */
5328 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5329 		root_mem_cgroup->use_hierarchy = true;
5330 	else
5331 		root_mem_cgroup->use_hierarchy = false;
5332 }
5333 
5334 static u64 memory_current_read(struct cgroup_subsys_state *css,
5335 			       struct cftype *cft)
5336 {
5337 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5338 
5339 	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5340 }
5341 
5342 static int memory_min_show(struct seq_file *m, void *v)
5343 {
5344 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5345 	unsigned long min = READ_ONCE(memcg->memory.min);
5346 
5347 	if (min == PAGE_COUNTER_MAX)
5348 		seq_puts(m, "max\n");
5349 	else
5350 		seq_printf(m, "%llu\n", (u64)min * PAGE_SIZE);
5351 
5352 	return 0;
5353 }
5354 
5355 static ssize_t memory_min_write(struct kernfs_open_file *of,
5356 				char *buf, size_t nbytes, loff_t off)
5357 {
5358 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5359 	unsigned long min;
5360 	int err;
5361 
5362 	buf = strstrip(buf);
5363 	err = page_counter_memparse(buf, "max", &min);
5364 	if (err)
5365 		return err;
5366 
5367 	page_counter_set_min(&memcg->memory, min);
5368 
5369 	return nbytes;
5370 }
5371 
5372 static int memory_low_show(struct seq_file *m, void *v)
5373 {
5374 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5375 	unsigned long low = READ_ONCE(memcg->memory.low);
5376 
5377 	if (low == PAGE_COUNTER_MAX)
5378 		seq_puts(m, "max\n");
5379 	else
5380 		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5381 
5382 	return 0;
5383 }
5384 
5385 static ssize_t memory_low_write(struct kernfs_open_file *of,
5386 				char *buf, size_t nbytes, loff_t off)
5387 {
5388 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5389 	unsigned long low;
5390 	int err;
5391 
5392 	buf = strstrip(buf);
5393 	err = page_counter_memparse(buf, "max", &low);
5394 	if (err)
5395 		return err;
5396 
5397 	page_counter_set_low(&memcg->memory, low);
5398 
5399 	return nbytes;
5400 }
5401 
5402 static int memory_high_show(struct seq_file *m, void *v)
5403 {
5404 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5405 	unsigned long high = READ_ONCE(memcg->high);
5406 
5407 	if (high == PAGE_COUNTER_MAX)
5408 		seq_puts(m, "max\n");
5409 	else
5410 		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5411 
5412 	return 0;
5413 }
5414 
5415 static ssize_t memory_high_write(struct kernfs_open_file *of,
5416 				 char *buf, size_t nbytes, loff_t off)
5417 {
5418 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5419 	unsigned long nr_pages;
5420 	unsigned long high;
5421 	int err;
5422 
5423 	buf = strstrip(buf);
5424 	err = page_counter_memparse(buf, "max", &high);
5425 	if (err)
5426 		return err;
5427 
5428 	memcg->high = high;
5429 
5430 	nr_pages = page_counter_read(&memcg->memory);
5431 	if (nr_pages > high)
5432 		try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5433 					     GFP_KERNEL, true);
5434 
5435 	memcg_wb_domain_size_changed(memcg);
5436 	return nbytes;
5437 }
5438 
5439 static int memory_max_show(struct seq_file *m, void *v)
5440 {
5441 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5442 	unsigned long max = READ_ONCE(memcg->memory.max);
5443 
5444 	if (max == PAGE_COUNTER_MAX)
5445 		seq_puts(m, "max\n");
5446 	else
5447 		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5448 
5449 	return 0;
5450 }
5451 
5452 static ssize_t memory_max_write(struct kernfs_open_file *of,
5453 				char *buf, size_t nbytes, loff_t off)
5454 {
5455 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5456 	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5457 	bool drained = false;
5458 	unsigned long max;
5459 	int err;
5460 
5461 	buf = strstrip(buf);
5462 	err = page_counter_memparse(buf, "max", &max);
5463 	if (err)
5464 		return err;
5465 
5466 	xchg(&memcg->memory.max, max);
5467 
5468 	for (;;) {
5469 		unsigned long nr_pages = page_counter_read(&memcg->memory);
5470 
5471 		if (nr_pages <= max)
5472 			break;
5473 
5474 		if (signal_pending(current)) {
5475 			err = -EINTR;
5476 			break;
5477 		}
5478 
5479 		if (!drained) {
5480 			drain_all_stock(memcg);
5481 			drained = true;
5482 			continue;
5483 		}
5484 
5485 		if (nr_reclaims) {
5486 			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5487 							  GFP_KERNEL, true))
5488 				nr_reclaims--;
5489 			continue;
5490 		}
5491 
5492 		memcg_memory_event(memcg, MEMCG_OOM);
5493 		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5494 			break;
5495 	}
5496 
5497 	memcg_wb_domain_size_changed(memcg);
5498 	return nbytes;
5499 }
5500 
5501 static int memory_events_show(struct seq_file *m, void *v)
5502 {
5503 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5504 
5505 	seq_printf(m, "low %lu\n",
5506 		   atomic_long_read(&memcg->memory_events[MEMCG_LOW]));
5507 	seq_printf(m, "high %lu\n",
5508 		   atomic_long_read(&memcg->memory_events[MEMCG_HIGH]));
5509 	seq_printf(m, "max %lu\n",
5510 		   atomic_long_read(&memcg->memory_events[MEMCG_MAX]));
5511 	seq_printf(m, "oom %lu\n",
5512 		   atomic_long_read(&memcg->memory_events[MEMCG_OOM]));
5513 	seq_printf(m, "oom_kill %lu\n",
5514 		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
5515 
5516 	return 0;
5517 }
5518 
5519 static int memory_stat_show(struct seq_file *m, void *v)
5520 {
5521 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5522 	struct accumulated_stats acc;
5523 	int i;
5524 
5525 	/*
5526 	 * Provide statistics on the state of the memory subsystem as
5527 	 * well as cumulative event counters that show past behavior.
5528 	 *
5529 	 * This list is ordered following a combination of these gradients:
5530 	 * 1) generic big picture -> specifics and details
5531 	 * 2) reflecting userspace activity -> reflecting kernel heuristics
5532 	 *
5533 	 * Current memory state:
5534 	 */
5535 
5536 	memset(&acc, 0, sizeof(acc));
5537 	acc.stats_size = MEMCG_NR_STAT;
5538 	acc.events_size = NR_VM_EVENT_ITEMS;
5539 	accumulate_memcg_tree(memcg, &acc);
5540 
5541 	seq_printf(m, "anon %llu\n",
5542 		   (u64)acc.stat[MEMCG_RSS] * PAGE_SIZE);
5543 	seq_printf(m, "file %llu\n",
5544 		   (u64)acc.stat[MEMCG_CACHE] * PAGE_SIZE);
5545 	seq_printf(m, "kernel_stack %llu\n",
5546 		   (u64)acc.stat[MEMCG_KERNEL_STACK_KB] * 1024);
5547 	seq_printf(m, "slab %llu\n",
5548 		   (u64)(acc.stat[NR_SLAB_RECLAIMABLE] +
5549 			 acc.stat[NR_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5550 	seq_printf(m, "sock %llu\n",
5551 		   (u64)acc.stat[MEMCG_SOCK] * PAGE_SIZE);
5552 
5553 	seq_printf(m, "shmem %llu\n",
5554 		   (u64)acc.stat[NR_SHMEM] * PAGE_SIZE);
5555 	seq_printf(m, "file_mapped %llu\n",
5556 		   (u64)acc.stat[NR_FILE_MAPPED] * PAGE_SIZE);
5557 	seq_printf(m, "file_dirty %llu\n",
5558 		   (u64)acc.stat[NR_FILE_DIRTY] * PAGE_SIZE);
5559 	seq_printf(m, "file_writeback %llu\n",
5560 		   (u64)acc.stat[NR_WRITEBACK] * PAGE_SIZE);
5561 
5562 	for (i = 0; i < NR_LRU_LISTS; i++)
5563 		seq_printf(m, "%s %llu\n", mem_cgroup_lru_names[i],
5564 			   (u64)acc.lru_pages[i] * PAGE_SIZE);
5565 
5566 	seq_printf(m, "slab_reclaimable %llu\n",
5567 		   (u64)acc.stat[NR_SLAB_RECLAIMABLE] * PAGE_SIZE);
5568 	seq_printf(m, "slab_unreclaimable %llu\n",
5569 		   (u64)acc.stat[NR_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5570 
5571 	/* Accumulated memory events */
5572 
5573 	seq_printf(m, "pgfault %lu\n", acc.events[PGFAULT]);
5574 	seq_printf(m, "pgmajfault %lu\n", acc.events[PGMAJFAULT]);
5575 
5576 	seq_printf(m, "workingset_refault %lu\n",
5577 		   acc.stat[WORKINGSET_REFAULT]);
5578 	seq_printf(m, "workingset_activate %lu\n",
5579 		   acc.stat[WORKINGSET_ACTIVATE]);
5580 	seq_printf(m, "workingset_nodereclaim %lu\n",
5581 		   acc.stat[WORKINGSET_NODERECLAIM]);
5582 
5583 	seq_printf(m, "pgrefill %lu\n", acc.events[PGREFILL]);
5584 	seq_printf(m, "pgscan %lu\n", acc.events[PGSCAN_KSWAPD] +
5585 		   acc.events[PGSCAN_DIRECT]);
5586 	seq_printf(m, "pgsteal %lu\n", acc.events[PGSTEAL_KSWAPD] +
5587 		   acc.events[PGSTEAL_DIRECT]);
5588 	seq_printf(m, "pgactivate %lu\n", acc.events[PGACTIVATE]);
5589 	seq_printf(m, "pgdeactivate %lu\n", acc.events[PGDEACTIVATE]);
5590 	seq_printf(m, "pglazyfree %lu\n", acc.events[PGLAZYFREE]);
5591 	seq_printf(m, "pglazyfreed %lu\n", acc.events[PGLAZYFREED]);
5592 
5593 	return 0;
5594 }
5595 
5596 static int memory_oom_group_show(struct seq_file *m, void *v)
5597 {
5598 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5599 
5600 	seq_printf(m, "%d\n", memcg->oom_group);
5601 
5602 	return 0;
5603 }
5604 
5605 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
5606 				      char *buf, size_t nbytes, loff_t off)
5607 {
5608 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5609 	int ret, oom_group;
5610 
5611 	buf = strstrip(buf);
5612 	if (!buf)
5613 		return -EINVAL;
5614 
5615 	ret = kstrtoint(buf, 0, &oom_group);
5616 	if (ret)
5617 		return ret;
5618 
5619 	if (oom_group != 0 && oom_group != 1)
5620 		return -EINVAL;
5621 
5622 	memcg->oom_group = oom_group;
5623 
5624 	return nbytes;
5625 }
5626 
5627 static struct cftype memory_files[] = {
5628 	{
5629 		.name = "current",
5630 		.flags = CFTYPE_NOT_ON_ROOT,
5631 		.read_u64 = memory_current_read,
5632 	},
5633 	{
5634 		.name = "min",
5635 		.flags = CFTYPE_NOT_ON_ROOT,
5636 		.seq_show = memory_min_show,
5637 		.write = memory_min_write,
5638 	},
5639 	{
5640 		.name = "low",
5641 		.flags = CFTYPE_NOT_ON_ROOT,
5642 		.seq_show = memory_low_show,
5643 		.write = memory_low_write,
5644 	},
5645 	{
5646 		.name = "high",
5647 		.flags = CFTYPE_NOT_ON_ROOT,
5648 		.seq_show = memory_high_show,
5649 		.write = memory_high_write,
5650 	},
5651 	{
5652 		.name = "max",
5653 		.flags = CFTYPE_NOT_ON_ROOT,
5654 		.seq_show = memory_max_show,
5655 		.write = memory_max_write,
5656 	},
5657 	{
5658 		.name = "events",
5659 		.flags = CFTYPE_NOT_ON_ROOT,
5660 		.file_offset = offsetof(struct mem_cgroup, events_file),
5661 		.seq_show = memory_events_show,
5662 	},
5663 	{
5664 		.name = "stat",
5665 		.flags = CFTYPE_NOT_ON_ROOT,
5666 		.seq_show = memory_stat_show,
5667 	},
5668 	{
5669 		.name = "oom.group",
5670 		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
5671 		.seq_show = memory_oom_group_show,
5672 		.write = memory_oom_group_write,
5673 	},
5674 	{ }	/* terminate */
5675 };
5676 
5677 struct cgroup_subsys memory_cgrp_subsys = {
5678 	.css_alloc = mem_cgroup_css_alloc,
5679 	.css_online = mem_cgroup_css_online,
5680 	.css_offline = mem_cgroup_css_offline,
5681 	.css_released = mem_cgroup_css_released,
5682 	.css_free = mem_cgroup_css_free,
5683 	.css_reset = mem_cgroup_css_reset,
5684 	.can_attach = mem_cgroup_can_attach,
5685 	.cancel_attach = mem_cgroup_cancel_attach,
5686 	.post_attach = mem_cgroup_move_task,
5687 	.bind = mem_cgroup_bind,
5688 	.dfl_cftypes = memory_files,
5689 	.legacy_cftypes = mem_cgroup_legacy_files,
5690 	.early_init = 0,
5691 };
5692 
5693 /**
5694  * mem_cgroup_protected - check if memory consumption is in the normal range
5695  * @root: the top ancestor of the sub-tree being checked
5696  * @memcg: the memory cgroup to check
5697  *
5698  * WARNING: This function is not stateless! It can only be used as part
5699  *          of a top-down tree iteration, not for isolated queries.
5700  *
5701  * Returns one of the following:
5702  *   MEMCG_PROT_NONE: cgroup memory is not protected
5703  *   MEMCG_PROT_LOW: cgroup memory is protected as long there is
5704  *     an unprotected supply of reclaimable memory from other cgroups.
5705  *   MEMCG_PROT_MIN: cgroup memory is protected
5706  *
5707  * @root is exclusive; it is never protected when looked at directly
5708  *
5709  * To provide a proper hierarchical behavior, effective memory.min/low values
5710  * are used. Below is the description of how effective memory.low is calculated.
5711  * Effective memory.min values is calculated in the same way.
5712  *
5713  * Effective memory.low is always equal or less than the original memory.low.
5714  * If there is no memory.low overcommittment (which is always true for
5715  * top-level memory cgroups), these two values are equal.
5716  * Otherwise, it's a part of parent's effective memory.low,
5717  * calculated as a cgroup's memory.low usage divided by sum of sibling's
5718  * memory.low usages, where memory.low usage is the size of actually
5719  * protected memory.
5720  *
5721  *                                             low_usage
5722  * elow = min( memory.low, parent->elow * ------------------ ),
5723  *                                        siblings_low_usage
5724  *
5725  *             | memory.current, if memory.current < memory.low
5726  * low_usage = |
5727 	       | 0, otherwise.
5728  *
5729  *
5730  * Such definition of the effective memory.low provides the expected
5731  * hierarchical behavior: parent's memory.low value is limiting
5732  * children, unprotected memory is reclaimed first and cgroups,
5733  * which are not using their guarantee do not affect actual memory
5734  * distribution.
5735  *
5736  * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
5737  *
5738  *     A      A/memory.low = 2G, A/memory.current = 6G
5739  *    //\\
5740  *   BC  DE   B/memory.low = 3G  B/memory.current = 2G
5741  *            C/memory.low = 1G  C/memory.current = 2G
5742  *            D/memory.low = 0   D/memory.current = 2G
5743  *            E/memory.low = 10G E/memory.current = 0
5744  *
5745  * and the memory pressure is applied, the following memory distribution
5746  * is expected (approximately):
5747  *
5748  *     A/memory.current = 2G
5749  *
5750  *     B/memory.current = 1.3G
5751  *     C/memory.current = 0.6G
5752  *     D/memory.current = 0
5753  *     E/memory.current = 0
5754  *
5755  * These calculations require constant tracking of the actual low usages
5756  * (see propagate_protected_usage()), as well as recursive calculation of
5757  * effective memory.low values. But as we do call mem_cgroup_protected()
5758  * path for each memory cgroup top-down from the reclaim,
5759  * it's possible to optimize this part, and save calculated elow
5760  * for next usage. This part is intentionally racy, but it's ok,
5761  * as memory.low is a best-effort mechanism.
5762  */
5763 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
5764 						struct mem_cgroup *memcg)
5765 {
5766 	struct mem_cgroup *parent;
5767 	unsigned long emin, parent_emin;
5768 	unsigned long elow, parent_elow;
5769 	unsigned long usage;
5770 
5771 	if (mem_cgroup_disabled())
5772 		return MEMCG_PROT_NONE;
5773 
5774 	if (!root)
5775 		root = root_mem_cgroup;
5776 	if (memcg == root)
5777 		return MEMCG_PROT_NONE;
5778 
5779 	usage = page_counter_read(&memcg->memory);
5780 	if (!usage)
5781 		return MEMCG_PROT_NONE;
5782 
5783 	emin = memcg->memory.min;
5784 	elow = memcg->memory.low;
5785 
5786 	parent = parent_mem_cgroup(memcg);
5787 	/* No parent means a non-hierarchical mode on v1 memcg */
5788 	if (!parent)
5789 		return MEMCG_PROT_NONE;
5790 
5791 	if (parent == root)
5792 		goto exit;
5793 
5794 	parent_emin = READ_ONCE(parent->memory.emin);
5795 	emin = min(emin, parent_emin);
5796 	if (emin && parent_emin) {
5797 		unsigned long min_usage, siblings_min_usage;
5798 
5799 		min_usage = min(usage, memcg->memory.min);
5800 		siblings_min_usage = atomic_long_read(
5801 			&parent->memory.children_min_usage);
5802 
5803 		if (min_usage && siblings_min_usage)
5804 			emin = min(emin, parent_emin * min_usage /
5805 				   siblings_min_usage);
5806 	}
5807 
5808 	parent_elow = READ_ONCE(parent->memory.elow);
5809 	elow = min(elow, parent_elow);
5810 	if (elow && parent_elow) {
5811 		unsigned long low_usage, siblings_low_usage;
5812 
5813 		low_usage = min(usage, memcg->memory.low);
5814 		siblings_low_usage = atomic_long_read(
5815 			&parent->memory.children_low_usage);
5816 
5817 		if (low_usage && siblings_low_usage)
5818 			elow = min(elow, parent_elow * low_usage /
5819 				   siblings_low_usage);
5820 	}
5821 
5822 exit:
5823 	memcg->memory.emin = emin;
5824 	memcg->memory.elow = elow;
5825 
5826 	if (usage <= emin)
5827 		return MEMCG_PROT_MIN;
5828 	else if (usage <= elow)
5829 		return MEMCG_PROT_LOW;
5830 	else
5831 		return MEMCG_PROT_NONE;
5832 }
5833 
5834 /**
5835  * mem_cgroup_try_charge - try charging a page
5836  * @page: page to charge
5837  * @mm: mm context of the victim
5838  * @gfp_mask: reclaim mode
5839  * @memcgp: charged memcg return
5840  * @compound: charge the page as compound or small page
5841  *
5842  * Try to charge @page to the memcg that @mm belongs to, reclaiming
5843  * pages according to @gfp_mask if necessary.
5844  *
5845  * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5846  * Otherwise, an error code is returned.
5847  *
5848  * After page->mapping has been set up, the caller must finalize the
5849  * charge with mem_cgroup_commit_charge().  Or abort the transaction
5850  * with mem_cgroup_cancel_charge() in case page instantiation fails.
5851  */
5852 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5853 			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
5854 			  bool compound)
5855 {
5856 	struct mem_cgroup *memcg = NULL;
5857 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5858 	int ret = 0;
5859 
5860 	if (mem_cgroup_disabled())
5861 		goto out;
5862 
5863 	if (PageSwapCache(page)) {
5864 		/*
5865 		 * Every swap fault against a single page tries to charge the
5866 		 * page, bail as early as possible.  shmem_unuse() encounters
5867 		 * already charged pages, too.  The USED bit is protected by
5868 		 * the page lock, which serializes swap cache removal, which
5869 		 * in turn serializes uncharging.
5870 		 */
5871 		VM_BUG_ON_PAGE(!PageLocked(page), page);
5872 		if (compound_head(page)->mem_cgroup)
5873 			goto out;
5874 
5875 		if (do_swap_account) {
5876 			swp_entry_t ent = { .val = page_private(page), };
5877 			unsigned short id = lookup_swap_cgroup_id(ent);
5878 
5879 			rcu_read_lock();
5880 			memcg = mem_cgroup_from_id(id);
5881 			if (memcg && !css_tryget_online(&memcg->css))
5882 				memcg = NULL;
5883 			rcu_read_unlock();
5884 		}
5885 	}
5886 
5887 	if (!memcg)
5888 		memcg = get_mem_cgroup_from_mm(mm);
5889 
5890 	ret = try_charge(memcg, gfp_mask, nr_pages);
5891 
5892 	css_put(&memcg->css);
5893 out:
5894 	*memcgp = memcg;
5895 	return ret;
5896 }
5897 
5898 int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
5899 			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
5900 			  bool compound)
5901 {
5902 	struct mem_cgroup *memcg;
5903 	int ret;
5904 
5905 	ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
5906 	memcg = *memcgp;
5907 	mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
5908 	return ret;
5909 }
5910 
5911 /**
5912  * mem_cgroup_commit_charge - commit a page charge
5913  * @page: page to charge
5914  * @memcg: memcg to charge the page to
5915  * @lrucare: page might be on LRU already
5916  * @compound: charge the page as compound or small page
5917  *
5918  * Finalize a charge transaction started by mem_cgroup_try_charge(),
5919  * after page->mapping has been set up.  This must happen atomically
5920  * as part of the page instantiation, i.e. under the page table lock
5921  * for anonymous pages, under the page lock for page and swap cache.
5922  *
5923  * In addition, the page must not be on the LRU during the commit, to
5924  * prevent racing with task migration.  If it might be, use @lrucare.
5925  *
5926  * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5927  */
5928 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5929 			      bool lrucare, bool compound)
5930 {
5931 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5932 
5933 	VM_BUG_ON_PAGE(!page->mapping, page);
5934 	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5935 
5936 	if (mem_cgroup_disabled())
5937 		return;
5938 	/*
5939 	 * Swap faults will attempt to charge the same page multiple
5940 	 * times.  But reuse_swap_page() might have removed the page
5941 	 * from swapcache already, so we can't check PageSwapCache().
5942 	 */
5943 	if (!memcg)
5944 		return;
5945 
5946 	commit_charge(page, memcg, lrucare);
5947 
5948 	local_irq_disable();
5949 	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5950 	memcg_check_events(memcg, page);
5951 	local_irq_enable();
5952 
5953 	if (do_memsw_account() && PageSwapCache(page)) {
5954 		swp_entry_t entry = { .val = page_private(page) };
5955 		/*
5956 		 * The swap entry might not get freed for a long time,
5957 		 * let's not wait for it.  The page already received a
5958 		 * memory+swap charge, drop the swap entry duplicate.
5959 		 */
5960 		mem_cgroup_uncharge_swap(entry, nr_pages);
5961 	}
5962 }
5963 
5964 /**
5965  * mem_cgroup_cancel_charge - cancel a page charge
5966  * @page: page to charge
5967  * @memcg: memcg to charge the page to
5968  * @compound: charge the page as compound or small page
5969  *
5970  * Cancel a charge transaction started by mem_cgroup_try_charge().
5971  */
5972 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5973 		bool compound)
5974 {
5975 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5976 
5977 	if (mem_cgroup_disabled())
5978 		return;
5979 	/*
5980 	 * Swap faults will attempt to charge the same page multiple
5981 	 * times.  But reuse_swap_page() might have removed the page
5982 	 * from swapcache already, so we can't check PageSwapCache().
5983 	 */
5984 	if (!memcg)
5985 		return;
5986 
5987 	cancel_charge(memcg, nr_pages);
5988 }
5989 
5990 struct uncharge_gather {
5991 	struct mem_cgroup *memcg;
5992 	unsigned long pgpgout;
5993 	unsigned long nr_anon;
5994 	unsigned long nr_file;
5995 	unsigned long nr_kmem;
5996 	unsigned long nr_huge;
5997 	unsigned long nr_shmem;
5998 	struct page *dummy_page;
5999 };
6000 
6001 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6002 {
6003 	memset(ug, 0, sizeof(*ug));
6004 }
6005 
6006 static void uncharge_batch(const struct uncharge_gather *ug)
6007 {
6008 	unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
6009 	unsigned long flags;
6010 
6011 	if (!mem_cgroup_is_root(ug->memcg)) {
6012 		page_counter_uncharge(&ug->memcg->memory, nr_pages);
6013 		if (do_memsw_account())
6014 			page_counter_uncharge(&ug->memcg->memsw, nr_pages);
6015 		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6016 			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6017 		memcg_oom_recover(ug->memcg);
6018 	}
6019 
6020 	local_irq_save(flags);
6021 	__mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
6022 	__mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
6023 	__mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
6024 	__mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
6025 	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6026 	__this_cpu_add(ug->memcg->stat_cpu->nr_page_events, nr_pages);
6027 	memcg_check_events(ug->memcg, ug->dummy_page);
6028 	local_irq_restore(flags);
6029 
6030 	if (!mem_cgroup_is_root(ug->memcg))
6031 		css_put_many(&ug->memcg->css, nr_pages);
6032 }
6033 
6034 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6035 {
6036 	VM_BUG_ON_PAGE(PageLRU(page), page);
6037 	VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
6038 			!PageHWPoison(page) , page);
6039 
6040 	if (!page->mem_cgroup)
6041 		return;
6042 
6043 	/*
6044 	 * Nobody should be changing or seriously looking at
6045 	 * page->mem_cgroup at this point, we have fully
6046 	 * exclusive access to the page.
6047 	 */
6048 
6049 	if (ug->memcg != page->mem_cgroup) {
6050 		if (ug->memcg) {
6051 			uncharge_batch(ug);
6052 			uncharge_gather_clear(ug);
6053 		}
6054 		ug->memcg = page->mem_cgroup;
6055 	}
6056 
6057 	if (!PageKmemcg(page)) {
6058 		unsigned int nr_pages = 1;
6059 
6060 		if (PageTransHuge(page)) {
6061 			nr_pages <<= compound_order(page);
6062 			ug->nr_huge += nr_pages;
6063 		}
6064 		if (PageAnon(page))
6065 			ug->nr_anon += nr_pages;
6066 		else {
6067 			ug->nr_file += nr_pages;
6068 			if (PageSwapBacked(page))
6069 				ug->nr_shmem += nr_pages;
6070 		}
6071 		ug->pgpgout++;
6072 	} else {
6073 		ug->nr_kmem += 1 << compound_order(page);
6074 		__ClearPageKmemcg(page);
6075 	}
6076 
6077 	ug->dummy_page = page;
6078 	page->mem_cgroup = NULL;
6079 }
6080 
6081 static void uncharge_list(struct list_head *page_list)
6082 {
6083 	struct uncharge_gather ug;
6084 	struct list_head *next;
6085 
6086 	uncharge_gather_clear(&ug);
6087 
6088 	/*
6089 	 * Note that the list can be a single page->lru; hence the
6090 	 * do-while loop instead of a simple list_for_each_entry().
6091 	 */
6092 	next = page_list->next;
6093 	do {
6094 		struct page *page;
6095 
6096 		page = list_entry(next, struct page, lru);
6097 		next = page->lru.next;
6098 
6099 		uncharge_page(page, &ug);
6100 	} while (next != page_list);
6101 
6102 	if (ug.memcg)
6103 		uncharge_batch(&ug);
6104 }
6105 
6106 /**
6107  * mem_cgroup_uncharge - uncharge a page
6108  * @page: page to uncharge
6109  *
6110  * Uncharge a page previously charged with mem_cgroup_try_charge() and
6111  * mem_cgroup_commit_charge().
6112  */
6113 void mem_cgroup_uncharge(struct page *page)
6114 {
6115 	struct uncharge_gather ug;
6116 
6117 	if (mem_cgroup_disabled())
6118 		return;
6119 
6120 	/* Don't touch page->lru of any random page, pre-check: */
6121 	if (!page->mem_cgroup)
6122 		return;
6123 
6124 	uncharge_gather_clear(&ug);
6125 	uncharge_page(page, &ug);
6126 	uncharge_batch(&ug);
6127 }
6128 
6129 /**
6130  * mem_cgroup_uncharge_list - uncharge a list of page
6131  * @page_list: list of pages to uncharge
6132  *
6133  * Uncharge a list of pages previously charged with
6134  * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6135  */
6136 void mem_cgroup_uncharge_list(struct list_head *page_list)
6137 {
6138 	if (mem_cgroup_disabled())
6139 		return;
6140 
6141 	if (!list_empty(page_list))
6142 		uncharge_list(page_list);
6143 }
6144 
6145 /**
6146  * mem_cgroup_migrate - charge a page's replacement
6147  * @oldpage: currently circulating page
6148  * @newpage: replacement page
6149  *
6150  * Charge @newpage as a replacement page for @oldpage. @oldpage will
6151  * be uncharged upon free.
6152  *
6153  * Both pages must be locked, @newpage->mapping must be set up.
6154  */
6155 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6156 {
6157 	struct mem_cgroup *memcg;
6158 	unsigned int nr_pages;
6159 	bool compound;
6160 	unsigned long flags;
6161 
6162 	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6163 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6164 	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6165 	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6166 		       newpage);
6167 
6168 	if (mem_cgroup_disabled())
6169 		return;
6170 
6171 	/* Page cache replacement: new page already charged? */
6172 	if (newpage->mem_cgroup)
6173 		return;
6174 
6175 	/* Swapcache readahead pages can get replaced before being charged */
6176 	memcg = oldpage->mem_cgroup;
6177 	if (!memcg)
6178 		return;
6179 
6180 	/* Force-charge the new page. The old one will be freed soon */
6181 	compound = PageTransHuge(newpage);
6182 	nr_pages = compound ? hpage_nr_pages(newpage) : 1;
6183 
6184 	page_counter_charge(&memcg->memory, nr_pages);
6185 	if (do_memsw_account())
6186 		page_counter_charge(&memcg->memsw, nr_pages);
6187 	css_get_many(&memcg->css, nr_pages);
6188 
6189 	commit_charge(newpage, memcg, false);
6190 
6191 	local_irq_save(flags);
6192 	mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
6193 	memcg_check_events(memcg, newpage);
6194 	local_irq_restore(flags);
6195 }
6196 
6197 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6198 EXPORT_SYMBOL(memcg_sockets_enabled_key);
6199 
6200 void mem_cgroup_sk_alloc(struct sock *sk)
6201 {
6202 	struct mem_cgroup *memcg;
6203 
6204 	if (!mem_cgroup_sockets_enabled)
6205 		return;
6206 
6207 	/*
6208 	 * Socket cloning can throw us here with sk_memcg already
6209 	 * filled. It won't however, necessarily happen from
6210 	 * process context. So the test for root memcg given
6211 	 * the current task's memcg won't help us in this case.
6212 	 *
6213 	 * Respecting the original socket's memcg is a better
6214 	 * decision in this case.
6215 	 */
6216 	if (sk->sk_memcg) {
6217 		css_get(&sk->sk_memcg->css);
6218 		return;
6219 	}
6220 
6221 	rcu_read_lock();
6222 	memcg = mem_cgroup_from_task(current);
6223 	if (memcg == root_mem_cgroup)
6224 		goto out;
6225 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6226 		goto out;
6227 	if (css_tryget_online(&memcg->css))
6228 		sk->sk_memcg = memcg;
6229 out:
6230 	rcu_read_unlock();
6231 }
6232 
6233 void mem_cgroup_sk_free(struct sock *sk)
6234 {
6235 	if (sk->sk_memcg)
6236 		css_put(&sk->sk_memcg->css);
6237 }
6238 
6239 /**
6240  * mem_cgroup_charge_skmem - charge socket memory
6241  * @memcg: memcg to charge
6242  * @nr_pages: number of pages to charge
6243  *
6244  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6245  * @memcg's configured limit, %false if the charge had to be forced.
6246  */
6247 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6248 {
6249 	gfp_t gfp_mask = GFP_KERNEL;
6250 
6251 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6252 		struct page_counter *fail;
6253 
6254 		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6255 			memcg->tcpmem_pressure = 0;
6256 			return true;
6257 		}
6258 		page_counter_charge(&memcg->tcpmem, nr_pages);
6259 		memcg->tcpmem_pressure = 1;
6260 		return false;
6261 	}
6262 
6263 	/* Don't block in the packet receive path */
6264 	if (in_softirq())
6265 		gfp_mask = GFP_NOWAIT;
6266 
6267 	mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6268 
6269 	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6270 		return true;
6271 
6272 	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
6273 	return false;
6274 }
6275 
6276 /**
6277  * mem_cgroup_uncharge_skmem - uncharge socket memory
6278  * @memcg: memcg to uncharge
6279  * @nr_pages: number of pages to uncharge
6280  */
6281 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6282 {
6283 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6284 		page_counter_uncharge(&memcg->tcpmem, nr_pages);
6285 		return;
6286 	}
6287 
6288 	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
6289 
6290 	refill_stock(memcg, nr_pages);
6291 }
6292 
6293 static int __init cgroup_memory(char *s)
6294 {
6295 	char *token;
6296 
6297 	while ((token = strsep(&s, ",")) != NULL) {
6298 		if (!*token)
6299 			continue;
6300 		if (!strcmp(token, "nosocket"))
6301 			cgroup_memory_nosocket = true;
6302 		if (!strcmp(token, "nokmem"))
6303 			cgroup_memory_nokmem = true;
6304 	}
6305 	return 0;
6306 }
6307 __setup("cgroup.memory=", cgroup_memory);
6308 
6309 /*
6310  * subsys_initcall() for memory controller.
6311  *
6312  * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6313  * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6314  * basically everything that doesn't depend on a specific mem_cgroup structure
6315  * should be initialized from here.
6316  */
6317 static int __init mem_cgroup_init(void)
6318 {
6319 	int cpu, node;
6320 
6321 #ifdef CONFIG_MEMCG_KMEM
6322 	/*
6323 	 * Kmem cache creation is mostly done with the slab_mutex held,
6324 	 * so use a workqueue with limited concurrency to avoid stalling
6325 	 * all worker threads in case lots of cgroups are created and
6326 	 * destroyed simultaneously.
6327 	 */
6328 	memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
6329 	BUG_ON(!memcg_kmem_cache_wq);
6330 #endif
6331 
6332 	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
6333 				  memcg_hotplug_cpu_dead);
6334 
6335 	for_each_possible_cpu(cpu)
6336 		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
6337 			  drain_local_stock);
6338 
6339 	for_each_node(node) {
6340 		struct mem_cgroup_tree_per_node *rtpn;
6341 
6342 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
6343 				    node_online(node) ? node : NUMA_NO_NODE);
6344 
6345 		rtpn->rb_root = RB_ROOT;
6346 		rtpn->rb_rightmost = NULL;
6347 		spin_lock_init(&rtpn->lock);
6348 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
6349 	}
6350 
6351 	return 0;
6352 }
6353 subsys_initcall(mem_cgroup_init);
6354 
6355 #ifdef CONFIG_MEMCG_SWAP
6356 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6357 {
6358 	while (!refcount_inc_not_zero(&memcg->id.ref)) {
6359 		/*
6360 		 * The root cgroup cannot be destroyed, so it's refcount must
6361 		 * always be >= 1.
6362 		 */
6363 		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
6364 			VM_BUG_ON(1);
6365 			break;
6366 		}
6367 		memcg = parent_mem_cgroup(memcg);
6368 		if (!memcg)
6369 			memcg = root_mem_cgroup;
6370 	}
6371 	return memcg;
6372 }
6373 
6374 /**
6375  * mem_cgroup_swapout - transfer a memsw charge to swap
6376  * @page: page whose memsw charge to transfer
6377  * @entry: swap entry to move the charge to
6378  *
6379  * Transfer the memsw charge of @page to @entry.
6380  */
6381 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6382 {
6383 	struct mem_cgroup *memcg, *swap_memcg;
6384 	unsigned int nr_entries;
6385 	unsigned short oldid;
6386 
6387 	VM_BUG_ON_PAGE(PageLRU(page), page);
6388 	VM_BUG_ON_PAGE(page_count(page), page);
6389 
6390 	if (!do_memsw_account())
6391 		return;
6392 
6393 	memcg = page->mem_cgroup;
6394 
6395 	/* Readahead page, never charged */
6396 	if (!memcg)
6397 		return;
6398 
6399 	/*
6400 	 * In case the memcg owning these pages has been offlined and doesn't
6401 	 * have an ID allocated to it anymore, charge the closest online
6402 	 * ancestor for the swap instead and transfer the memory+swap charge.
6403 	 */
6404 	swap_memcg = mem_cgroup_id_get_online(memcg);
6405 	nr_entries = hpage_nr_pages(page);
6406 	/* Get references for the tail pages, too */
6407 	if (nr_entries > 1)
6408 		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
6409 	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
6410 				   nr_entries);
6411 	VM_BUG_ON_PAGE(oldid, page);
6412 	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
6413 
6414 	page->mem_cgroup = NULL;
6415 
6416 	if (!mem_cgroup_is_root(memcg))
6417 		page_counter_uncharge(&memcg->memory, nr_entries);
6418 
6419 	if (memcg != swap_memcg) {
6420 		if (!mem_cgroup_is_root(swap_memcg))
6421 			page_counter_charge(&swap_memcg->memsw, nr_entries);
6422 		page_counter_uncharge(&memcg->memsw, nr_entries);
6423 	}
6424 
6425 	/*
6426 	 * Interrupts should be disabled here because the caller holds the
6427 	 * i_pages lock which is taken with interrupts-off. It is
6428 	 * important here to have the interrupts disabled because it is the
6429 	 * only synchronisation we have for updating the per-CPU variables.
6430 	 */
6431 	VM_BUG_ON(!irqs_disabled());
6432 	mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
6433 				     -nr_entries);
6434 	memcg_check_events(memcg, page);
6435 
6436 	if (!mem_cgroup_is_root(memcg))
6437 		css_put_many(&memcg->css, nr_entries);
6438 }
6439 
6440 /**
6441  * mem_cgroup_try_charge_swap - try charging swap space for a page
6442  * @page: page being added to swap
6443  * @entry: swap entry to charge
6444  *
6445  * Try to charge @page's memcg for the swap space at @entry.
6446  *
6447  * Returns 0 on success, -ENOMEM on failure.
6448  */
6449 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
6450 {
6451 	unsigned int nr_pages = hpage_nr_pages(page);
6452 	struct page_counter *counter;
6453 	struct mem_cgroup *memcg;
6454 	unsigned short oldid;
6455 
6456 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
6457 		return 0;
6458 
6459 	memcg = page->mem_cgroup;
6460 
6461 	/* Readahead page, never charged */
6462 	if (!memcg)
6463 		return 0;
6464 
6465 	if (!entry.val) {
6466 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6467 		return 0;
6468 	}
6469 
6470 	memcg = mem_cgroup_id_get_online(memcg);
6471 
6472 	if (!mem_cgroup_is_root(memcg) &&
6473 	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
6474 		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
6475 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6476 		mem_cgroup_id_put(memcg);
6477 		return -ENOMEM;
6478 	}
6479 
6480 	/* Get references for the tail pages, too */
6481 	if (nr_pages > 1)
6482 		mem_cgroup_id_get_many(memcg, nr_pages - 1);
6483 	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
6484 	VM_BUG_ON_PAGE(oldid, page);
6485 	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
6486 
6487 	return 0;
6488 }
6489 
6490 /**
6491  * mem_cgroup_uncharge_swap - uncharge swap space
6492  * @entry: swap entry to uncharge
6493  * @nr_pages: the amount of swap space to uncharge
6494  */
6495 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
6496 {
6497 	struct mem_cgroup *memcg;
6498 	unsigned short id;
6499 
6500 	if (!do_swap_account)
6501 		return;
6502 
6503 	id = swap_cgroup_record(entry, 0, nr_pages);
6504 	rcu_read_lock();
6505 	memcg = mem_cgroup_from_id(id);
6506 	if (memcg) {
6507 		if (!mem_cgroup_is_root(memcg)) {
6508 			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6509 				page_counter_uncharge(&memcg->swap, nr_pages);
6510 			else
6511 				page_counter_uncharge(&memcg->memsw, nr_pages);
6512 		}
6513 		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
6514 		mem_cgroup_id_put_many(memcg, nr_pages);
6515 	}
6516 	rcu_read_unlock();
6517 }
6518 
6519 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
6520 {
6521 	long nr_swap_pages = get_nr_swap_pages();
6522 
6523 	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6524 		return nr_swap_pages;
6525 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6526 		nr_swap_pages = min_t(long, nr_swap_pages,
6527 				      READ_ONCE(memcg->swap.max) -
6528 				      page_counter_read(&memcg->swap));
6529 	return nr_swap_pages;
6530 }
6531 
6532 bool mem_cgroup_swap_full(struct page *page)
6533 {
6534 	struct mem_cgroup *memcg;
6535 
6536 	VM_BUG_ON_PAGE(!PageLocked(page), page);
6537 
6538 	if (vm_swap_full())
6539 		return true;
6540 	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6541 		return false;
6542 
6543 	memcg = page->mem_cgroup;
6544 	if (!memcg)
6545 		return false;
6546 
6547 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6548 		if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
6549 			return true;
6550 
6551 	return false;
6552 }
6553 
6554 /* for remember boot option*/
6555 #ifdef CONFIG_MEMCG_SWAP_ENABLED
6556 static int really_do_swap_account __initdata = 1;
6557 #else
6558 static int really_do_swap_account __initdata;
6559 #endif
6560 
6561 static int __init enable_swap_account(char *s)
6562 {
6563 	if (!strcmp(s, "1"))
6564 		really_do_swap_account = 1;
6565 	else if (!strcmp(s, "0"))
6566 		really_do_swap_account = 0;
6567 	return 1;
6568 }
6569 __setup("swapaccount=", enable_swap_account);
6570 
6571 static u64 swap_current_read(struct cgroup_subsys_state *css,
6572 			     struct cftype *cft)
6573 {
6574 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6575 
6576 	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6577 }
6578 
6579 static int swap_max_show(struct seq_file *m, void *v)
6580 {
6581 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
6582 	unsigned long max = READ_ONCE(memcg->swap.max);
6583 
6584 	if (max == PAGE_COUNTER_MAX)
6585 		seq_puts(m, "max\n");
6586 	else
6587 		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
6588 
6589 	return 0;
6590 }
6591 
6592 static ssize_t swap_max_write(struct kernfs_open_file *of,
6593 			      char *buf, size_t nbytes, loff_t off)
6594 {
6595 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6596 	unsigned long max;
6597 	int err;
6598 
6599 	buf = strstrip(buf);
6600 	err = page_counter_memparse(buf, "max", &max);
6601 	if (err)
6602 		return err;
6603 
6604 	xchg(&memcg->swap.max, max);
6605 
6606 	return nbytes;
6607 }
6608 
6609 static int swap_events_show(struct seq_file *m, void *v)
6610 {
6611 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
6612 
6613 	seq_printf(m, "max %lu\n",
6614 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
6615 	seq_printf(m, "fail %lu\n",
6616 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
6617 
6618 	return 0;
6619 }
6620 
6621 static struct cftype swap_files[] = {
6622 	{
6623 		.name = "swap.current",
6624 		.flags = CFTYPE_NOT_ON_ROOT,
6625 		.read_u64 = swap_current_read,
6626 	},
6627 	{
6628 		.name = "swap.max",
6629 		.flags = CFTYPE_NOT_ON_ROOT,
6630 		.seq_show = swap_max_show,
6631 		.write = swap_max_write,
6632 	},
6633 	{
6634 		.name = "swap.events",
6635 		.flags = CFTYPE_NOT_ON_ROOT,
6636 		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
6637 		.seq_show = swap_events_show,
6638 	},
6639 	{ }	/* terminate */
6640 };
6641 
6642 static struct cftype memsw_cgroup_files[] = {
6643 	{
6644 		.name = "memsw.usage_in_bytes",
6645 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6646 		.read_u64 = mem_cgroup_read_u64,
6647 	},
6648 	{
6649 		.name = "memsw.max_usage_in_bytes",
6650 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6651 		.write = mem_cgroup_reset,
6652 		.read_u64 = mem_cgroup_read_u64,
6653 	},
6654 	{
6655 		.name = "memsw.limit_in_bytes",
6656 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6657 		.write = mem_cgroup_write,
6658 		.read_u64 = mem_cgroup_read_u64,
6659 	},
6660 	{
6661 		.name = "memsw.failcnt",
6662 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6663 		.write = mem_cgroup_reset,
6664 		.read_u64 = mem_cgroup_read_u64,
6665 	},
6666 	{ },	/* terminate */
6667 };
6668 
6669 static int __init mem_cgroup_swap_init(void)
6670 {
6671 	if (!mem_cgroup_disabled() && really_do_swap_account) {
6672 		do_swap_account = 1;
6673 		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6674 					       swap_files));
6675 		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6676 						  memsw_cgroup_files));
6677 	}
6678 	return 0;
6679 }
6680 subsys_initcall(mem_cgroup_swap_init);
6681 
6682 #endif /* CONFIG_MEMCG_SWAP */
6683