xref: /openbmc/linux/mm/memcontrol.c (revision 6c33a6f4)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <xemul@openvz.org>
9  *
10  * Memory thresholds
11  * Copyright (C) 2009 Nokia Corporation
12  * Author: Kirill A. Shutemov
13  *
14  * Kernel Memory Controller
15  * Copyright (C) 2012 Parallels Inc. and Google Inc.
16  * Authors: Glauber Costa and Suleiman Souhlal
17  *
18  * Native page reclaim
19  * Charge lifetime sanitation
20  * Lockless page tracking & accounting
21  * Unified hierarchy configuration model
22  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23  */
24 
25 #include <linux/page_counter.h>
26 #include <linux/memcontrol.h>
27 #include <linux/cgroup.h>
28 #include <linux/pagewalk.h>
29 #include <linux/sched/mm.h>
30 #include <linux/shmem_fs.h>
31 #include <linux/hugetlb.h>
32 #include <linux/pagemap.h>
33 #include <linux/vm_event_item.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
50 #include <linux/fs.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/swap_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include <linux/tracehook.h>
60 #include <linux/psi.h>
61 #include <linux/seq_buf.h>
62 #include "internal.h"
63 #include <net/sock.h>
64 #include <net/ip.h>
65 #include "slab.h"
66 
67 #include <linux/uaccess.h>
68 
69 #include <trace/events/vmscan.h>
70 
71 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
72 EXPORT_SYMBOL(memory_cgrp_subsys);
73 
74 struct mem_cgroup *root_mem_cgroup __read_mostly;
75 
76 #define MEM_CGROUP_RECLAIM_RETRIES	5
77 
78 /* Socket memory accounting disabled? */
79 static bool cgroup_memory_nosocket;
80 
81 /* Kernel memory accounting disabled? */
82 static bool cgroup_memory_nokmem;
83 
84 /* Whether the swap controller is active */
85 #ifdef CONFIG_MEMCG_SWAP
86 int do_swap_account __read_mostly;
87 #else
88 #define do_swap_account		0
89 #endif
90 
91 #ifdef CONFIG_CGROUP_WRITEBACK
92 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
93 #endif
94 
95 /* Whether legacy memory+swap accounting is active */
96 static bool do_memsw_account(void)
97 {
98 	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99 }
100 
101 #define THRESHOLDS_EVENTS_TARGET 128
102 #define SOFTLIMIT_EVENTS_TARGET 1024
103 
104 /*
105  * Cgroups above their limits are maintained in a RB-Tree, independent of
106  * their hierarchy representation
107  */
108 
109 struct mem_cgroup_tree_per_node {
110 	struct rb_root rb_root;
111 	struct rb_node *rb_rightmost;
112 	spinlock_t lock;
113 };
114 
115 struct mem_cgroup_tree {
116 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
117 };
118 
119 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
120 
121 /* for OOM */
122 struct mem_cgroup_eventfd_list {
123 	struct list_head list;
124 	struct eventfd_ctx *eventfd;
125 };
126 
127 /*
128  * cgroup_event represents events which userspace want to receive.
129  */
130 struct mem_cgroup_event {
131 	/*
132 	 * memcg which the event belongs to.
133 	 */
134 	struct mem_cgroup *memcg;
135 	/*
136 	 * eventfd to signal userspace about the event.
137 	 */
138 	struct eventfd_ctx *eventfd;
139 	/*
140 	 * Each of these stored in a list by the cgroup.
141 	 */
142 	struct list_head list;
143 	/*
144 	 * register_event() callback will be used to add new userspace
145 	 * waiter for changes related to this event.  Use eventfd_signal()
146 	 * on eventfd to send notification to userspace.
147 	 */
148 	int (*register_event)(struct mem_cgroup *memcg,
149 			      struct eventfd_ctx *eventfd, const char *args);
150 	/*
151 	 * unregister_event() callback will be called when userspace closes
152 	 * the eventfd or on cgroup removing.  This callback must be set,
153 	 * if you want provide notification functionality.
154 	 */
155 	void (*unregister_event)(struct mem_cgroup *memcg,
156 				 struct eventfd_ctx *eventfd);
157 	/*
158 	 * All fields below needed to unregister event when
159 	 * userspace closes eventfd.
160 	 */
161 	poll_table pt;
162 	wait_queue_head_t *wqh;
163 	wait_queue_entry_t wait;
164 	struct work_struct remove;
165 };
166 
167 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
168 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
169 
170 /* Stuffs for move charges at task migration. */
171 /*
172  * Types of charges to be moved.
173  */
174 #define MOVE_ANON	0x1U
175 #define MOVE_FILE	0x2U
176 #define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
177 
178 /* "mc" and its members are protected by cgroup_mutex */
179 static struct move_charge_struct {
180 	spinlock_t	  lock; /* for from, to */
181 	struct mm_struct  *mm;
182 	struct mem_cgroup *from;
183 	struct mem_cgroup *to;
184 	unsigned long flags;
185 	unsigned long precharge;
186 	unsigned long moved_charge;
187 	unsigned long moved_swap;
188 	struct task_struct *moving_task;	/* a task moving charges */
189 	wait_queue_head_t waitq;		/* a waitq for other context */
190 } mc = {
191 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
192 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
193 };
194 
195 /*
196  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
197  * limit reclaim to prevent infinite loops, if they ever occur.
198  */
199 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
200 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
201 
202 enum charge_type {
203 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
204 	MEM_CGROUP_CHARGE_TYPE_ANON,
205 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
206 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
207 	NR_CHARGE_TYPE,
208 };
209 
210 /* for encoding cft->private value on file */
211 enum res_type {
212 	_MEM,
213 	_MEMSWAP,
214 	_OOM_TYPE,
215 	_KMEM,
216 	_TCP,
217 };
218 
219 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
220 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
221 #define MEMFILE_ATTR(val)	((val) & 0xffff)
222 /* Used for OOM nofiier */
223 #define OOM_CONTROL		(0)
224 
225 /*
226  * Iteration constructs for visiting all cgroups (under a tree).  If
227  * loops are exited prematurely (break), mem_cgroup_iter_break() must
228  * be used for reference counting.
229  */
230 #define for_each_mem_cgroup_tree(iter, root)		\
231 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
232 	     iter != NULL;				\
233 	     iter = mem_cgroup_iter(root, iter, NULL))
234 
235 #define for_each_mem_cgroup(iter)			\
236 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
237 	     iter != NULL;				\
238 	     iter = mem_cgroup_iter(NULL, iter, NULL))
239 
240 static inline bool should_force_charge(void)
241 {
242 	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
243 		(current->flags & PF_EXITING);
244 }
245 
246 /* Some nice accessors for the vmpressure. */
247 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
248 {
249 	if (!memcg)
250 		memcg = root_mem_cgroup;
251 	return &memcg->vmpressure;
252 }
253 
254 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
255 {
256 	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
257 }
258 
259 #ifdef CONFIG_MEMCG_KMEM
260 /*
261  * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
262  * The main reason for not using cgroup id for this:
263  *  this works better in sparse environments, where we have a lot of memcgs,
264  *  but only a few kmem-limited. Or also, if we have, for instance, 200
265  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
266  *  200 entry array for that.
267  *
268  * The current size of the caches array is stored in memcg_nr_cache_ids. It
269  * will double each time we have to increase it.
270  */
271 static DEFINE_IDA(memcg_cache_ida);
272 int memcg_nr_cache_ids;
273 
274 /* Protects memcg_nr_cache_ids */
275 static DECLARE_RWSEM(memcg_cache_ids_sem);
276 
277 void memcg_get_cache_ids(void)
278 {
279 	down_read(&memcg_cache_ids_sem);
280 }
281 
282 void memcg_put_cache_ids(void)
283 {
284 	up_read(&memcg_cache_ids_sem);
285 }
286 
287 /*
288  * MIN_SIZE is different than 1, because we would like to avoid going through
289  * the alloc/free process all the time. In a small machine, 4 kmem-limited
290  * cgroups is a reasonable guess. In the future, it could be a parameter or
291  * tunable, but that is strictly not necessary.
292  *
293  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
294  * this constant directly from cgroup, but it is understandable that this is
295  * better kept as an internal representation in cgroup.c. In any case, the
296  * cgrp_id space is not getting any smaller, and we don't have to necessarily
297  * increase ours as well if it increases.
298  */
299 #define MEMCG_CACHES_MIN_SIZE 4
300 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
301 
302 /*
303  * A lot of the calls to the cache allocation functions are expected to be
304  * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
305  * conditional to this static branch, we'll have to allow modules that does
306  * kmem_cache_alloc and the such to see this symbol as well
307  */
308 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
309 EXPORT_SYMBOL(memcg_kmem_enabled_key);
310 
311 struct workqueue_struct *memcg_kmem_cache_wq;
312 #endif
313 
314 static int memcg_shrinker_map_size;
315 static DEFINE_MUTEX(memcg_shrinker_map_mutex);
316 
317 static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
318 {
319 	kvfree(container_of(head, struct memcg_shrinker_map, rcu));
320 }
321 
322 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
323 					 int size, int old_size)
324 {
325 	struct memcg_shrinker_map *new, *old;
326 	int nid;
327 
328 	lockdep_assert_held(&memcg_shrinker_map_mutex);
329 
330 	for_each_node(nid) {
331 		old = rcu_dereference_protected(
332 			mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
333 		/* Not yet online memcg */
334 		if (!old)
335 			return 0;
336 
337 		new = kvmalloc(sizeof(*new) + size, GFP_KERNEL);
338 		if (!new)
339 			return -ENOMEM;
340 
341 		/* Set all old bits, clear all new bits */
342 		memset(new->map, (int)0xff, old_size);
343 		memset((void *)new->map + old_size, 0, size - old_size);
344 
345 		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
346 		call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
347 	}
348 
349 	return 0;
350 }
351 
352 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
353 {
354 	struct mem_cgroup_per_node *pn;
355 	struct memcg_shrinker_map *map;
356 	int nid;
357 
358 	if (mem_cgroup_is_root(memcg))
359 		return;
360 
361 	for_each_node(nid) {
362 		pn = mem_cgroup_nodeinfo(memcg, nid);
363 		map = rcu_dereference_protected(pn->shrinker_map, true);
364 		if (map)
365 			kvfree(map);
366 		rcu_assign_pointer(pn->shrinker_map, NULL);
367 	}
368 }
369 
370 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
371 {
372 	struct memcg_shrinker_map *map;
373 	int nid, size, ret = 0;
374 
375 	if (mem_cgroup_is_root(memcg))
376 		return 0;
377 
378 	mutex_lock(&memcg_shrinker_map_mutex);
379 	size = memcg_shrinker_map_size;
380 	for_each_node(nid) {
381 		map = kvzalloc(sizeof(*map) + size, GFP_KERNEL);
382 		if (!map) {
383 			memcg_free_shrinker_maps(memcg);
384 			ret = -ENOMEM;
385 			break;
386 		}
387 		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
388 	}
389 	mutex_unlock(&memcg_shrinker_map_mutex);
390 
391 	return ret;
392 }
393 
394 int memcg_expand_shrinker_maps(int new_id)
395 {
396 	int size, old_size, ret = 0;
397 	struct mem_cgroup *memcg;
398 
399 	size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
400 	old_size = memcg_shrinker_map_size;
401 	if (size <= old_size)
402 		return 0;
403 
404 	mutex_lock(&memcg_shrinker_map_mutex);
405 	if (!root_mem_cgroup)
406 		goto unlock;
407 
408 	for_each_mem_cgroup(memcg) {
409 		if (mem_cgroup_is_root(memcg))
410 			continue;
411 		ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
412 		if (ret) {
413 			mem_cgroup_iter_break(NULL, memcg);
414 			goto unlock;
415 		}
416 	}
417 unlock:
418 	if (!ret)
419 		memcg_shrinker_map_size = size;
420 	mutex_unlock(&memcg_shrinker_map_mutex);
421 	return ret;
422 }
423 
424 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
425 {
426 	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
427 		struct memcg_shrinker_map *map;
428 
429 		rcu_read_lock();
430 		map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
431 		/* Pairs with smp mb in shrink_slab() */
432 		smp_mb__before_atomic();
433 		set_bit(shrinker_id, map->map);
434 		rcu_read_unlock();
435 	}
436 }
437 
438 /**
439  * mem_cgroup_css_from_page - css of the memcg associated with a page
440  * @page: page of interest
441  *
442  * If memcg is bound to the default hierarchy, css of the memcg associated
443  * with @page is returned.  The returned css remains associated with @page
444  * until it is released.
445  *
446  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
447  * is returned.
448  */
449 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
450 {
451 	struct mem_cgroup *memcg;
452 
453 	memcg = page->mem_cgroup;
454 
455 	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
456 		memcg = root_mem_cgroup;
457 
458 	return &memcg->css;
459 }
460 
461 /**
462  * page_cgroup_ino - return inode number of the memcg a page is charged to
463  * @page: the page
464  *
465  * Look up the closest online ancestor of the memory cgroup @page is charged to
466  * and return its inode number or 0 if @page is not charged to any cgroup. It
467  * is safe to call this function without holding a reference to @page.
468  *
469  * Note, this function is inherently racy, because there is nothing to prevent
470  * the cgroup inode from getting torn down and potentially reallocated a moment
471  * after page_cgroup_ino() returns, so it only should be used by callers that
472  * do not care (such as procfs interfaces).
473  */
474 ino_t page_cgroup_ino(struct page *page)
475 {
476 	struct mem_cgroup *memcg;
477 	unsigned long ino = 0;
478 
479 	rcu_read_lock();
480 	if (PageSlab(page) && !PageTail(page))
481 		memcg = memcg_from_slab_page(page);
482 	else
483 		memcg = READ_ONCE(page->mem_cgroup);
484 	while (memcg && !(memcg->css.flags & CSS_ONLINE))
485 		memcg = parent_mem_cgroup(memcg);
486 	if (memcg)
487 		ino = cgroup_ino(memcg->css.cgroup);
488 	rcu_read_unlock();
489 	return ino;
490 }
491 
492 static struct mem_cgroup_per_node *
493 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
494 {
495 	int nid = page_to_nid(page);
496 
497 	return memcg->nodeinfo[nid];
498 }
499 
500 static struct mem_cgroup_tree_per_node *
501 soft_limit_tree_node(int nid)
502 {
503 	return soft_limit_tree.rb_tree_per_node[nid];
504 }
505 
506 static struct mem_cgroup_tree_per_node *
507 soft_limit_tree_from_page(struct page *page)
508 {
509 	int nid = page_to_nid(page);
510 
511 	return soft_limit_tree.rb_tree_per_node[nid];
512 }
513 
514 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
515 					 struct mem_cgroup_tree_per_node *mctz,
516 					 unsigned long new_usage_in_excess)
517 {
518 	struct rb_node **p = &mctz->rb_root.rb_node;
519 	struct rb_node *parent = NULL;
520 	struct mem_cgroup_per_node *mz_node;
521 	bool rightmost = true;
522 
523 	if (mz->on_tree)
524 		return;
525 
526 	mz->usage_in_excess = new_usage_in_excess;
527 	if (!mz->usage_in_excess)
528 		return;
529 	while (*p) {
530 		parent = *p;
531 		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
532 					tree_node);
533 		if (mz->usage_in_excess < mz_node->usage_in_excess) {
534 			p = &(*p)->rb_left;
535 			rightmost = false;
536 		}
537 
538 		/*
539 		 * We can't avoid mem cgroups that are over their soft
540 		 * limit by the same amount
541 		 */
542 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
543 			p = &(*p)->rb_right;
544 	}
545 
546 	if (rightmost)
547 		mctz->rb_rightmost = &mz->tree_node;
548 
549 	rb_link_node(&mz->tree_node, parent, p);
550 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
551 	mz->on_tree = true;
552 }
553 
554 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
555 					 struct mem_cgroup_tree_per_node *mctz)
556 {
557 	if (!mz->on_tree)
558 		return;
559 
560 	if (&mz->tree_node == mctz->rb_rightmost)
561 		mctz->rb_rightmost = rb_prev(&mz->tree_node);
562 
563 	rb_erase(&mz->tree_node, &mctz->rb_root);
564 	mz->on_tree = false;
565 }
566 
567 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
568 				       struct mem_cgroup_tree_per_node *mctz)
569 {
570 	unsigned long flags;
571 
572 	spin_lock_irqsave(&mctz->lock, flags);
573 	__mem_cgroup_remove_exceeded(mz, mctz);
574 	spin_unlock_irqrestore(&mctz->lock, flags);
575 }
576 
577 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
578 {
579 	unsigned long nr_pages = page_counter_read(&memcg->memory);
580 	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
581 	unsigned long excess = 0;
582 
583 	if (nr_pages > soft_limit)
584 		excess = nr_pages - soft_limit;
585 
586 	return excess;
587 }
588 
589 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
590 {
591 	unsigned long excess;
592 	struct mem_cgroup_per_node *mz;
593 	struct mem_cgroup_tree_per_node *mctz;
594 
595 	mctz = soft_limit_tree_from_page(page);
596 	if (!mctz)
597 		return;
598 	/*
599 	 * Necessary to update all ancestors when hierarchy is used.
600 	 * because their event counter is not touched.
601 	 */
602 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
603 		mz = mem_cgroup_page_nodeinfo(memcg, page);
604 		excess = soft_limit_excess(memcg);
605 		/*
606 		 * We have to update the tree if mz is on RB-tree or
607 		 * mem is over its softlimit.
608 		 */
609 		if (excess || mz->on_tree) {
610 			unsigned long flags;
611 
612 			spin_lock_irqsave(&mctz->lock, flags);
613 			/* if on-tree, remove it */
614 			if (mz->on_tree)
615 				__mem_cgroup_remove_exceeded(mz, mctz);
616 			/*
617 			 * Insert again. mz->usage_in_excess will be updated.
618 			 * If excess is 0, no tree ops.
619 			 */
620 			__mem_cgroup_insert_exceeded(mz, mctz, excess);
621 			spin_unlock_irqrestore(&mctz->lock, flags);
622 		}
623 	}
624 }
625 
626 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
627 {
628 	struct mem_cgroup_tree_per_node *mctz;
629 	struct mem_cgroup_per_node *mz;
630 	int nid;
631 
632 	for_each_node(nid) {
633 		mz = mem_cgroup_nodeinfo(memcg, nid);
634 		mctz = soft_limit_tree_node(nid);
635 		if (mctz)
636 			mem_cgroup_remove_exceeded(mz, mctz);
637 	}
638 }
639 
640 static struct mem_cgroup_per_node *
641 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
642 {
643 	struct mem_cgroup_per_node *mz;
644 
645 retry:
646 	mz = NULL;
647 	if (!mctz->rb_rightmost)
648 		goto done;		/* Nothing to reclaim from */
649 
650 	mz = rb_entry(mctz->rb_rightmost,
651 		      struct mem_cgroup_per_node, tree_node);
652 	/*
653 	 * Remove the node now but someone else can add it back,
654 	 * we will to add it back at the end of reclaim to its correct
655 	 * position in the tree.
656 	 */
657 	__mem_cgroup_remove_exceeded(mz, mctz);
658 	if (!soft_limit_excess(mz->memcg) ||
659 	    !css_tryget_online(&mz->memcg->css))
660 		goto retry;
661 done:
662 	return mz;
663 }
664 
665 static struct mem_cgroup_per_node *
666 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
667 {
668 	struct mem_cgroup_per_node *mz;
669 
670 	spin_lock_irq(&mctz->lock);
671 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
672 	spin_unlock_irq(&mctz->lock);
673 	return mz;
674 }
675 
676 /**
677  * __mod_memcg_state - update cgroup memory statistics
678  * @memcg: the memory cgroup
679  * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
680  * @val: delta to add to the counter, can be negative
681  */
682 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
683 {
684 	long x;
685 
686 	if (mem_cgroup_disabled())
687 		return;
688 
689 	x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
690 	if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
691 		struct mem_cgroup *mi;
692 
693 		/*
694 		 * Batch local counters to keep them in sync with
695 		 * the hierarchical ones.
696 		 */
697 		__this_cpu_add(memcg->vmstats_local->stat[idx], x);
698 		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
699 			atomic_long_add(x, &mi->vmstats[idx]);
700 		x = 0;
701 	}
702 	__this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
703 }
704 
705 static struct mem_cgroup_per_node *
706 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
707 {
708 	struct mem_cgroup *parent;
709 
710 	parent = parent_mem_cgroup(pn->memcg);
711 	if (!parent)
712 		return NULL;
713 	return mem_cgroup_nodeinfo(parent, nid);
714 }
715 
716 /**
717  * __mod_lruvec_state - update lruvec memory statistics
718  * @lruvec: the lruvec
719  * @idx: the stat item
720  * @val: delta to add to the counter, can be negative
721  *
722  * The lruvec is the intersection of the NUMA node and a cgroup. This
723  * function updates the all three counters that are affected by a
724  * change of state at this level: per-node, per-cgroup, per-lruvec.
725  */
726 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
727 			int val)
728 {
729 	pg_data_t *pgdat = lruvec_pgdat(lruvec);
730 	struct mem_cgroup_per_node *pn;
731 	struct mem_cgroup *memcg;
732 	long x;
733 
734 	/* Update node */
735 	__mod_node_page_state(pgdat, idx, val);
736 
737 	if (mem_cgroup_disabled())
738 		return;
739 
740 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
741 	memcg = pn->memcg;
742 
743 	/* Update memcg */
744 	__mod_memcg_state(memcg, idx, val);
745 
746 	/* Update lruvec */
747 	__this_cpu_add(pn->lruvec_stat_local->count[idx], val);
748 
749 	x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
750 	if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
751 		struct mem_cgroup_per_node *pi;
752 
753 		for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
754 			atomic_long_add(x, &pi->lruvec_stat[idx]);
755 		x = 0;
756 	}
757 	__this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
758 }
759 
760 void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
761 {
762 	struct page *page = virt_to_head_page(p);
763 	pg_data_t *pgdat = page_pgdat(page);
764 	struct mem_cgroup *memcg;
765 	struct lruvec *lruvec;
766 
767 	rcu_read_lock();
768 	memcg = memcg_from_slab_page(page);
769 
770 	/* Untracked pages have no memcg, no lruvec. Update only the node */
771 	if (!memcg || memcg == root_mem_cgroup) {
772 		__mod_node_page_state(pgdat, idx, val);
773 	} else {
774 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
775 		__mod_lruvec_state(lruvec, idx, val);
776 	}
777 	rcu_read_unlock();
778 }
779 
780 void mod_memcg_obj_state(void *p, int idx, int val)
781 {
782 	struct mem_cgroup *memcg;
783 
784 	rcu_read_lock();
785 	memcg = mem_cgroup_from_obj(p);
786 	if (memcg)
787 		mod_memcg_state(memcg, idx, val);
788 	rcu_read_unlock();
789 }
790 
791 /**
792  * __count_memcg_events - account VM events in a cgroup
793  * @memcg: the memory cgroup
794  * @idx: the event item
795  * @count: the number of events that occured
796  */
797 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
798 			  unsigned long count)
799 {
800 	unsigned long x;
801 
802 	if (mem_cgroup_disabled())
803 		return;
804 
805 	x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
806 	if (unlikely(x > MEMCG_CHARGE_BATCH)) {
807 		struct mem_cgroup *mi;
808 
809 		/*
810 		 * Batch local counters to keep them in sync with
811 		 * the hierarchical ones.
812 		 */
813 		__this_cpu_add(memcg->vmstats_local->events[idx], x);
814 		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
815 			atomic_long_add(x, &mi->vmevents[idx]);
816 		x = 0;
817 	}
818 	__this_cpu_write(memcg->vmstats_percpu->events[idx], x);
819 }
820 
821 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
822 {
823 	return atomic_long_read(&memcg->vmevents[event]);
824 }
825 
826 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
827 {
828 	long x = 0;
829 	int cpu;
830 
831 	for_each_possible_cpu(cpu)
832 		x += per_cpu(memcg->vmstats_local->events[event], cpu);
833 	return x;
834 }
835 
836 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
837 					 struct page *page,
838 					 bool compound, int nr_pages)
839 {
840 	/*
841 	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
842 	 * counted as CACHE even if it's on ANON LRU.
843 	 */
844 	if (PageAnon(page))
845 		__mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
846 	else {
847 		__mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
848 		if (PageSwapBacked(page))
849 			__mod_memcg_state(memcg, NR_SHMEM, nr_pages);
850 	}
851 
852 	if (compound) {
853 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
854 		__mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
855 	}
856 
857 	/* pagein of a big page is an event. So, ignore page size */
858 	if (nr_pages > 0)
859 		__count_memcg_events(memcg, PGPGIN, 1);
860 	else {
861 		__count_memcg_events(memcg, PGPGOUT, 1);
862 		nr_pages = -nr_pages; /* for event */
863 	}
864 
865 	__this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
866 }
867 
868 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
869 				       enum mem_cgroup_events_target target)
870 {
871 	unsigned long val, next;
872 
873 	val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
874 	next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
875 	/* from time_after() in jiffies.h */
876 	if ((long)(next - val) < 0) {
877 		switch (target) {
878 		case MEM_CGROUP_TARGET_THRESH:
879 			next = val + THRESHOLDS_EVENTS_TARGET;
880 			break;
881 		case MEM_CGROUP_TARGET_SOFTLIMIT:
882 			next = val + SOFTLIMIT_EVENTS_TARGET;
883 			break;
884 		default:
885 			break;
886 		}
887 		__this_cpu_write(memcg->vmstats_percpu->targets[target], next);
888 		return true;
889 	}
890 	return false;
891 }
892 
893 /*
894  * Check events in order.
895  *
896  */
897 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
898 {
899 	/* threshold event is triggered in finer grain than soft limit */
900 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
901 						MEM_CGROUP_TARGET_THRESH))) {
902 		bool do_softlimit;
903 
904 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
905 						MEM_CGROUP_TARGET_SOFTLIMIT);
906 		mem_cgroup_threshold(memcg);
907 		if (unlikely(do_softlimit))
908 			mem_cgroup_update_tree(memcg, page);
909 	}
910 }
911 
912 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
913 {
914 	/*
915 	 * mm_update_next_owner() may clear mm->owner to NULL
916 	 * if it races with swapoff, page migration, etc.
917 	 * So this can be called with p == NULL.
918 	 */
919 	if (unlikely(!p))
920 		return NULL;
921 
922 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
923 }
924 EXPORT_SYMBOL(mem_cgroup_from_task);
925 
926 /**
927  * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
928  * @mm: mm from which memcg should be extracted. It can be NULL.
929  *
930  * Obtain a reference on mm->memcg and returns it if successful. Otherwise
931  * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
932  * returned.
933  */
934 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
935 {
936 	struct mem_cgroup *memcg;
937 
938 	if (mem_cgroup_disabled())
939 		return NULL;
940 
941 	rcu_read_lock();
942 	do {
943 		/*
944 		 * Page cache insertions can happen withou an
945 		 * actual mm context, e.g. during disk probing
946 		 * on boot, loopback IO, acct() writes etc.
947 		 */
948 		if (unlikely(!mm))
949 			memcg = root_mem_cgroup;
950 		else {
951 			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
952 			if (unlikely(!memcg))
953 				memcg = root_mem_cgroup;
954 		}
955 	} while (!css_tryget(&memcg->css));
956 	rcu_read_unlock();
957 	return memcg;
958 }
959 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
960 
961 /**
962  * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
963  * @page: page from which memcg should be extracted.
964  *
965  * Obtain a reference on page->memcg and returns it if successful. Otherwise
966  * root_mem_cgroup is returned.
967  */
968 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
969 {
970 	struct mem_cgroup *memcg = page->mem_cgroup;
971 
972 	if (mem_cgroup_disabled())
973 		return NULL;
974 
975 	rcu_read_lock();
976 	if (!memcg || !css_tryget_online(&memcg->css))
977 		memcg = root_mem_cgroup;
978 	rcu_read_unlock();
979 	return memcg;
980 }
981 EXPORT_SYMBOL(get_mem_cgroup_from_page);
982 
983 /**
984  * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
985  */
986 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
987 {
988 	if (unlikely(current->active_memcg)) {
989 		struct mem_cgroup *memcg = root_mem_cgroup;
990 
991 		rcu_read_lock();
992 		if (css_tryget_online(&current->active_memcg->css))
993 			memcg = current->active_memcg;
994 		rcu_read_unlock();
995 		return memcg;
996 	}
997 	return get_mem_cgroup_from_mm(current->mm);
998 }
999 
1000 /**
1001  * mem_cgroup_iter - iterate over memory cgroup hierarchy
1002  * @root: hierarchy root
1003  * @prev: previously returned memcg, NULL on first invocation
1004  * @reclaim: cookie for shared reclaim walks, NULL for full walks
1005  *
1006  * Returns references to children of the hierarchy below @root, or
1007  * @root itself, or %NULL after a full round-trip.
1008  *
1009  * Caller must pass the return value in @prev on subsequent
1010  * invocations for reference counting, or use mem_cgroup_iter_break()
1011  * to cancel a hierarchy walk before the round-trip is complete.
1012  *
1013  * Reclaimers can specify a node and a priority level in @reclaim to
1014  * divide up the memcgs in the hierarchy among all concurrent
1015  * reclaimers operating on the same node and priority.
1016  */
1017 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1018 				   struct mem_cgroup *prev,
1019 				   struct mem_cgroup_reclaim_cookie *reclaim)
1020 {
1021 	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1022 	struct cgroup_subsys_state *css = NULL;
1023 	struct mem_cgroup *memcg = NULL;
1024 	struct mem_cgroup *pos = NULL;
1025 
1026 	if (mem_cgroup_disabled())
1027 		return NULL;
1028 
1029 	if (!root)
1030 		root = root_mem_cgroup;
1031 
1032 	if (prev && !reclaim)
1033 		pos = prev;
1034 
1035 	if (!root->use_hierarchy && root != root_mem_cgroup) {
1036 		if (prev)
1037 			goto out;
1038 		return root;
1039 	}
1040 
1041 	rcu_read_lock();
1042 
1043 	if (reclaim) {
1044 		struct mem_cgroup_per_node *mz;
1045 
1046 		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1047 		iter = &mz->iter;
1048 
1049 		if (prev && reclaim->generation != iter->generation)
1050 			goto out_unlock;
1051 
1052 		while (1) {
1053 			pos = READ_ONCE(iter->position);
1054 			if (!pos || css_tryget(&pos->css))
1055 				break;
1056 			/*
1057 			 * css reference reached zero, so iter->position will
1058 			 * be cleared by ->css_released. However, we should not
1059 			 * rely on this happening soon, because ->css_released
1060 			 * is called from a work queue, and by busy-waiting we
1061 			 * might block it. So we clear iter->position right
1062 			 * away.
1063 			 */
1064 			(void)cmpxchg(&iter->position, pos, NULL);
1065 		}
1066 	}
1067 
1068 	if (pos)
1069 		css = &pos->css;
1070 
1071 	for (;;) {
1072 		css = css_next_descendant_pre(css, &root->css);
1073 		if (!css) {
1074 			/*
1075 			 * Reclaimers share the hierarchy walk, and a
1076 			 * new one might jump in right at the end of
1077 			 * the hierarchy - make sure they see at least
1078 			 * one group and restart from the beginning.
1079 			 */
1080 			if (!prev)
1081 				continue;
1082 			break;
1083 		}
1084 
1085 		/*
1086 		 * Verify the css and acquire a reference.  The root
1087 		 * is provided by the caller, so we know it's alive
1088 		 * and kicking, and don't take an extra reference.
1089 		 */
1090 		memcg = mem_cgroup_from_css(css);
1091 
1092 		if (css == &root->css)
1093 			break;
1094 
1095 		if (css_tryget(css))
1096 			break;
1097 
1098 		memcg = NULL;
1099 	}
1100 
1101 	if (reclaim) {
1102 		/*
1103 		 * The position could have already been updated by a competing
1104 		 * thread, so check that the value hasn't changed since we read
1105 		 * it to avoid reclaiming from the same cgroup twice.
1106 		 */
1107 		(void)cmpxchg(&iter->position, pos, memcg);
1108 
1109 		if (pos)
1110 			css_put(&pos->css);
1111 
1112 		if (!memcg)
1113 			iter->generation++;
1114 		else if (!prev)
1115 			reclaim->generation = iter->generation;
1116 	}
1117 
1118 out_unlock:
1119 	rcu_read_unlock();
1120 out:
1121 	if (prev && prev != root)
1122 		css_put(&prev->css);
1123 
1124 	return memcg;
1125 }
1126 
1127 /**
1128  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1129  * @root: hierarchy root
1130  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1131  */
1132 void mem_cgroup_iter_break(struct mem_cgroup *root,
1133 			   struct mem_cgroup *prev)
1134 {
1135 	if (!root)
1136 		root = root_mem_cgroup;
1137 	if (prev && prev != root)
1138 		css_put(&prev->css);
1139 }
1140 
1141 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1142 					struct mem_cgroup *dead_memcg)
1143 {
1144 	struct mem_cgroup_reclaim_iter *iter;
1145 	struct mem_cgroup_per_node *mz;
1146 	int nid;
1147 
1148 	for_each_node(nid) {
1149 		mz = mem_cgroup_nodeinfo(from, nid);
1150 		iter = &mz->iter;
1151 		cmpxchg(&iter->position, dead_memcg, NULL);
1152 	}
1153 }
1154 
1155 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1156 {
1157 	struct mem_cgroup *memcg = dead_memcg;
1158 	struct mem_cgroup *last;
1159 
1160 	do {
1161 		__invalidate_reclaim_iterators(memcg, dead_memcg);
1162 		last = memcg;
1163 	} while ((memcg = parent_mem_cgroup(memcg)));
1164 
1165 	/*
1166 	 * When cgruop1 non-hierarchy mode is used,
1167 	 * parent_mem_cgroup() does not walk all the way up to the
1168 	 * cgroup root (root_mem_cgroup). So we have to handle
1169 	 * dead_memcg from cgroup root separately.
1170 	 */
1171 	if (last != root_mem_cgroup)
1172 		__invalidate_reclaim_iterators(root_mem_cgroup,
1173 						dead_memcg);
1174 }
1175 
1176 /**
1177  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1178  * @memcg: hierarchy root
1179  * @fn: function to call for each task
1180  * @arg: argument passed to @fn
1181  *
1182  * This function iterates over tasks attached to @memcg or to any of its
1183  * descendants and calls @fn for each task. If @fn returns a non-zero
1184  * value, the function breaks the iteration loop and returns the value.
1185  * Otherwise, it will iterate over all tasks and return 0.
1186  *
1187  * This function must not be called for the root memory cgroup.
1188  */
1189 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1190 			  int (*fn)(struct task_struct *, void *), void *arg)
1191 {
1192 	struct mem_cgroup *iter;
1193 	int ret = 0;
1194 
1195 	BUG_ON(memcg == root_mem_cgroup);
1196 
1197 	for_each_mem_cgroup_tree(iter, memcg) {
1198 		struct css_task_iter it;
1199 		struct task_struct *task;
1200 
1201 		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1202 		while (!ret && (task = css_task_iter_next(&it)))
1203 			ret = fn(task, arg);
1204 		css_task_iter_end(&it);
1205 		if (ret) {
1206 			mem_cgroup_iter_break(memcg, iter);
1207 			break;
1208 		}
1209 	}
1210 	return ret;
1211 }
1212 
1213 /**
1214  * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1215  * @page: the page
1216  * @pgdat: pgdat of the page
1217  *
1218  * This function is only safe when following the LRU page isolation
1219  * and putback protocol: the LRU lock must be held, and the page must
1220  * either be PageLRU() or the caller must have isolated/allocated it.
1221  */
1222 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
1223 {
1224 	struct mem_cgroup_per_node *mz;
1225 	struct mem_cgroup *memcg;
1226 	struct lruvec *lruvec;
1227 
1228 	if (mem_cgroup_disabled()) {
1229 		lruvec = &pgdat->__lruvec;
1230 		goto out;
1231 	}
1232 
1233 	memcg = page->mem_cgroup;
1234 	/*
1235 	 * Swapcache readahead pages are added to the LRU - and
1236 	 * possibly migrated - before they are charged.
1237 	 */
1238 	if (!memcg)
1239 		memcg = root_mem_cgroup;
1240 
1241 	mz = mem_cgroup_page_nodeinfo(memcg, page);
1242 	lruvec = &mz->lruvec;
1243 out:
1244 	/*
1245 	 * Since a node can be onlined after the mem_cgroup was created,
1246 	 * we have to be prepared to initialize lruvec->zone here;
1247 	 * and if offlined then reonlined, we need to reinitialize it.
1248 	 */
1249 	if (unlikely(lruvec->pgdat != pgdat))
1250 		lruvec->pgdat = pgdat;
1251 	return lruvec;
1252 }
1253 
1254 /**
1255  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1256  * @lruvec: mem_cgroup per zone lru vector
1257  * @lru: index of lru list the page is sitting on
1258  * @zid: zone id of the accounted pages
1259  * @nr_pages: positive when adding or negative when removing
1260  *
1261  * This function must be called under lru_lock, just before a page is added
1262  * to or just after a page is removed from an lru list (that ordering being
1263  * so as to allow it to check that lru_size 0 is consistent with list_empty).
1264  */
1265 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1266 				int zid, int nr_pages)
1267 {
1268 	struct mem_cgroup_per_node *mz;
1269 	unsigned long *lru_size;
1270 	long size;
1271 
1272 	if (mem_cgroup_disabled())
1273 		return;
1274 
1275 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1276 	lru_size = &mz->lru_zone_size[zid][lru];
1277 
1278 	if (nr_pages < 0)
1279 		*lru_size += nr_pages;
1280 
1281 	size = *lru_size;
1282 	if (WARN_ONCE(size < 0,
1283 		"%s(%p, %d, %d): lru_size %ld\n",
1284 		__func__, lruvec, lru, nr_pages, size)) {
1285 		VM_BUG_ON(1);
1286 		*lru_size = 0;
1287 	}
1288 
1289 	if (nr_pages > 0)
1290 		*lru_size += nr_pages;
1291 }
1292 
1293 /**
1294  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1295  * @memcg: the memory cgroup
1296  *
1297  * Returns the maximum amount of memory @mem can be charged with, in
1298  * pages.
1299  */
1300 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1301 {
1302 	unsigned long margin = 0;
1303 	unsigned long count;
1304 	unsigned long limit;
1305 
1306 	count = page_counter_read(&memcg->memory);
1307 	limit = READ_ONCE(memcg->memory.max);
1308 	if (count < limit)
1309 		margin = limit - count;
1310 
1311 	if (do_memsw_account()) {
1312 		count = page_counter_read(&memcg->memsw);
1313 		limit = READ_ONCE(memcg->memsw.max);
1314 		if (count <= limit)
1315 			margin = min(margin, limit - count);
1316 		else
1317 			margin = 0;
1318 	}
1319 
1320 	return margin;
1321 }
1322 
1323 /*
1324  * A routine for checking "mem" is under move_account() or not.
1325  *
1326  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1327  * moving cgroups. This is for waiting at high-memory pressure
1328  * caused by "move".
1329  */
1330 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1331 {
1332 	struct mem_cgroup *from;
1333 	struct mem_cgroup *to;
1334 	bool ret = false;
1335 	/*
1336 	 * Unlike task_move routines, we access mc.to, mc.from not under
1337 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1338 	 */
1339 	spin_lock(&mc.lock);
1340 	from = mc.from;
1341 	to = mc.to;
1342 	if (!from)
1343 		goto unlock;
1344 
1345 	ret = mem_cgroup_is_descendant(from, memcg) ||
1346 		mem_cgroup_is_descendant(to, memcg);
1347 unlock:
1348 	spin_unlock(&mc.lock);
1349 	return ret;
1350 }
1351 
1352 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1353 {
1354 	if (mc.moving_task && current != mc.moving_task) {
1355 		if (mem_cgroup_under_move(memcg)) {
1356 			DEFINE_WAIT(wait);
1357 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1358 			/* moving charge context might have finished. */
1359 			if (mc.moving_task)
1360 				schedule();
1361 			finish_wait(&mc.waitq, &wait);
1362 			return true;
1363 		}
1364 	}
1365 	return false;
1366 }
1367 
1368 static char *memory_stat_format(struct mem_cgroup *memcg)
1369 {
1370 	struct seq_buf s;
1371 	int i;
1372 
1373 	seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1374 	if (!s.buffer)
1375 		return NULL;
1376 
1377 	/*
1378 	 * Provide statistics on the state of the memory subsystem as
1379 	 * well as cumulative event counters that show past behavior.
1380 	 *
1381 	 * This list is ordered following a combination of these gradients:
1382 	 * 1) generic big picture -> specifics and details
1383 	 * 2) reflecting userspace activity -> reflecting kernel heuristics
1384 	 *
1385 	 * Current memory state:
1386 	 */
1387 
1388 	seq_buf_printf(&s, "anon %llu\n",
1389 		       (u64)memcg_page_state(memcg, MEMCG_RSS) *
1390 		       PAGE_SIZE);
1391 	seq_buf_printf(&s, "file %llu\n",
1392 		       (u64)memcg_page_state(memcg, MEMCG_CACHE) *
1393 		       PAGE_SIZE);
1394 	seq_buf_printf(&s, "kernel_stack %llu\n",
1395 		       (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) *
1396 		       1024);
1397 	seq_buf_printf(&s, "slab %llu\n",
1398 		       (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) +
1399 			     memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) *
1400 		       PAGE_SIZE);
1401 	seq_buf_printf(&s, "sock %llu\n",
1402 		       (u64)memcg_page_state(memcg, MEMCG_SOCK) *
1403 		       PAGE_SIZE);
1404 
1405 	seq_buf_printf(&s, "shmem %llu\n",
1406 		       (u64)memcg_page_state(memcg, NR_SHMEM) *
1407 		       PAGE_SIZE);
1408 	seq_buf_printf(&s, "file_mapped %llu\n",
1409 		       (u64)memcg_page_state(memcg, NR_FILE_MAPPED) *
1410 		       PAGE_SIZE);
1411 	seq_buf_printf(&s, "file_dirty %llu\n",
1412 		       (u64)memcg_page_state(memcg, NR_FILE_DIRTY) *
1413 		       PAGE_SIZE);
1414 	seq_buf_printf(&s, "file_writeback %llu\n",
1415 		       (u64)memcg_page_state(memcg, NR_WRITEBACK) *
1416 		       PAGE_SIZE);
1417 
1418 	/*
1419 	 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter
1420 	 * with the NR_ANON_THP vm counter, but right now it's a pain in the
1421 	 * arse because it requires migrating the work out of rmap to a place
1422 	 * where the page->mem_cgroup is set up and stable.
1423 	 */
1424 	seq_buf_printf(&s, "anon_thp %llu\n",
1425 		       (u64)memcg_page_state(memcg, MEMCG_RSS_HUGE) *
1426 		       PAGE_SIZE);
1427 
1428 	for (i = 0; i < NR_LRU_LISTS; i++)
1429 		seq_buf_printf(&s, "%s %llu\n", lru_list_name(i),
1430 			       (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
1431 			       PAGE_SIZE);
1432 
1433 	seq_buf_printf(&s, "slab_reclaimable %llu\n",
1434 		       (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) *
1435 		       PAGE_SIZE);
1436 	seq_buf_printf(&s, "slab_unreclaimable %llu\n",
1437 		       (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) *
1438 		       PAGE_SIZE);
1439 
1440 	/* Accumulated memory events */
1441 
1442 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1443 		       memcg_events(memcg, PGFAULT));
1444 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1445 		       memcg_events(memcg, PGMAJFAULT));
1446 
1447 	seq_buf_printf(&s, "workingset_refault %lu\n",
1448 		       memcg_page_state(memcg, WORKINGSET_REFAULT));
1449 	seq_buf_printf(&s, "workingset_activate %lu\n",
1450 		       memcg_page_state(memcg, WORKINGSET_ACTIVATE));
1451 	seq_buf_printf(&s, "workingset_nodereclaim %lu\n",
1452 		       memcg_page_state(memcg, WORKINGSET_NODERECLAIM));
1453 
1454 	seq_buf_printf(&s, "%s %lu\n",  vm_event_name(PGREFILL),
1455 		       memcg_events(memcg, PGREFILL));
1456 	seq_buf_printf(&s, "pgscan %lu\n",
1457 		       memcg_events(memcg, PGSCAN_KSWAPD) +
1458 		       memcg_events(memcg, PGSCAN_DIRECT));
1459 	seq_buf_printf(&s, "pgsteal %lu\n",
1460 		       memcg_events(memcg, PGSTEAL_KSWAPD) +
1461 		       memcg_events(memcg, PGSTEAL_DIRECT));
1462 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1463 		       memcg_events(memcg, PGACTIVATE));
1464 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1465 		       memcg_events(memcg, PGDEACTIVATE));
1466 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1467 		       memcg_events(memcg, PGLAZYFREE));
1468 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1469 		       memcg_events(memcg, PGLAZYFREED));
1470 
1471 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1472 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1473 		       memcg_events(memcg, THP_FAULT_ALLOC));
1474 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1475 		       memcg_events(memcg, THP_COLLAPSE_ALLOC));
1476 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1477 
1478 	/* The above should easily fit into one page */
1479 	WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1480 
1481 	return s.buffer;
1482 }
1483 
1484 #define K(x) ((x) << (PAGE_SHIFT-10))
1485 /**
1486  * mem_cgroup_print_oom_context: Print OOM information relevant to
1487  * memory controller.
1488  * @memcg: The memory cgroup that went over limit
1489  * @p: Task that is going to be killed
1490  *
1491  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1492  * enabled
1493  */
1494 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1495 {
1496 	rcu_read_lock();
1497 
1498 	if (memcg) {
1499 		pr_cont(",oom_memcg=");
1500 		pr_cont_cgroup_path(memcg->css.cgroup);
1501 	} else
1502 		pr_cont(",global_oom");
1503 	if (p) {
1504 		pr_cont(",task_memcg=");
1505 		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1506 	}
1507 	rcu_read_unlock();
1508 }
1509 
1510 /**
1511  * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1512  * memory controller.
1513  * @memcg: The memory cgroup that went over limit
1514  */
1515 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1516 {
1517 	char *buf;
1518 
1519 	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1520 		K((u64)page_counter_read(&memcg->memory)),
1521 		K((u64)memcg->memory.max), memcg->memory.failcnt);
1522 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1523 		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1524 			K((u64)page_counter_read(&memcg->swap)),
1525 			K((u64)memcg->swap.max), memcg->swap.failcnt);
1526 	else {
1527 		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1528 			K((u64)page_counter_read(&memcg->memsw)),
1529 			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1530 		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1531 			K((u64)page_counter_read(&memcg->kmem)),
1532 			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1533 	}
1534 
1535 	pr_info("Memory cgroup stats for ");
1536 	pr_cont_cgroup_path(memcg->css.cgroup);
1537 	pr_cont(":");
1538 	buf = memory_stat_format(memcg);
1539 	if (!buf)
1540 		return;
1541 	pr_info("%s", buf);
1542 	kfree(buf);
1543 }
1544 
1545 /*
1546  * Return the memory (and swap, if configured) limit for a memcg.
1547  */
1548 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1549 {
1550 	unsigned long max;
1551 
1552 	max = memcg->memory.max;
1553 	if (mem_cgroup_swappiness(memcg)) {
1554 		unsigned long memsw_max;
1555 		unsigned long swap_max;
1556 
1557 		memsw_max = memcg->memsw.max;
1558 		swap_max = memcg->swap.max;
1559 		swap_max = min(swap_max, (unsigned long)total_swap_pages);
1560 		max = min(max + swap_max, memsw_max);
1561 	}
1562 	return max;
1563 }
1564 
1565 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1566 {
1567 	return page_counter_read(&memcg->memory);
1568 }
1569 
1570 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1571 				     int order)
1572 {
1573 	struct oom_control oc = {
1574 		.zonelist = NULL,
1575 		.nodemask = NULL,
1576 		.memcg = memcg,
1577 		.gfp_mask = gfp_mask,
1578 		.order = order,
1579 	};
1580 	bool ret;
1581 
1582 	if (mutex_lock_killable(&oom_lock))
1583 		return true;
1584 	/*
1585 	 * A few threads which were not waiting at mutex_lock_killable() can
1586 	 * fail to bail out. Therefore, check again after holding oom_lock.
1587 	 */
1588 	ret = should_force_charge() || out_of_memory(&oc);
1589 	mutex_unlock(&oom_lock);
1590 	return ret;
1591 }
1592 
1593 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1594 				   pg_data_t *pgdat,
1595 				   gfp_t gfp_mask,
1596 				   unsigned long *total_scanned)
1597 {
1598 	struct mem_cgroup *victim = NULL;
1599 	int total = 0;
1600 	int loop = 0;
1601 	unsigned long excess;
1602 	unsigned long nr_scanned;
1603 	struct mem_cgroup_reclaim_cookie reclaim = {
1604 		.pgdat = pgdat,
1605 	};
1606 
1607 	excess = soft_limit_excess(root_memcg);
1608 
1609 	while (1) {
1610 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1611 		if (!victim) {
1612 			loop++;
1613 			if (loop >= 2) {
1614 				/*
1615 				 * If we have not been able to reclaim
1616 				 * anything, it might because there are
1617 				 * no reclaimable pages under this hierarchy
1618 				 */
1619 				if (!total)
1620 					break;
1621 				/*
1622 				 * We want to do more targeted reclaim.
1623 				 * excess >> 2 is not to excessive so as to
1624 				 * reclaim too much, nor too less that we keep
1625 				 * coming back to reclaim from this cgroup
1626 				 */
1627 				if (total >= (excess >> 2) ||
1628 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1629 					break;
1630 			}
1631 			continue;
1632 		}
1633 		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1634 					pgdat, &nr_scanned);
1635 		*total_scanned += nr_scanned;
1636 		if (!soft_limit_excess(root_memcg))
1637 			break;
1638 	}
1639 	mem_cgroup_iter_break(root_memcg, victim);
1640 	return total;
1641 }
1642 
1643 #ifdef CONFIG_LOCKDEP
1644 static struct lockdep_map memcg_oom_lock_dep_map = {
1645 	.name = "memcg_oom_lock",
1646 };
1647 #endif
1648 
1649 static DEFINE_SPINLOCK(memcg_oom_lock);
1650 
1651 /*
1652  * Check OOM-Killer is already running under our hierarchy.
1653  * If someone is running, return false.
1654  */
1655 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1656 {
1657 	struct mem_cgroup *iter, *failed = NULL;
1658 
1659 	spin_lock(&memcg_oom_lock);
1660 
1661 	for_each_mem_cgroup_tree(iter, memcg) {
1662 		if (iter->oom_lock) {
1663 			/*
1664 			 * this subtree of our hierarchy is already locked
1665 			 * so we cannot give a lock.
1666 			 */
1667 			failed = iter;
1668 			mem_cgroup_iter_break(memcg, iter);
1669 			break;
1670 		} else
1671 			iter->oom_lock = true;
1672 	}
1673 
1674 	if (failed) {
1675 		/*
1676 		 * OK, we failed to lock the whole subtree so we have
1677 		 * to clean up what we set up to the failing subtree
1678 		 */
1679 		for_each_mem_cgroup_tree(iter, memcg) {
1680 			if (iter == failed) {
1681 				mem_cgroup_iter_break(memcg, iter);
1682 				break;
1683 			}
1684 			iter->oom_lock = false;
1685 		}
1686 	} else
1687 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1688 
1689 	spin_unlock(&memcg_oom_lock);
1690 
1691 	return !failed;
1692 }
1693 
1694 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1695 {
1696 	struct mem_cgroup *iter;
1697 
1698 	spin_lock(&memcg_oom_lock);
1699 	mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1700 	for_each_mem_cgroup_tree(iter, memcg)
1701 		iter->oom_lock = false;
1702 	spin_unlock(&memcg_oom_lock);
1703 }
1704 
1705 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1706 {
1707 	struct mem_cgroup *iter;
1708 
1709 	spin_lock(&memcg_oom_lock);
1710 	for_each_mem_cgroup_tree(iter, memcg)
1711 		iter->under_oom++;
1712 	spin_unlock(&memcg_oom_lock);
1713 }
1714 
1715 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1716 {
1717 	struct mem_cgroup *iter;
1718 
1719 	/*
1720 	 * When a new child is created while the hierarchy is under oom,
1721 	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1722 	 */
1723 	spin_lock(&memcg_oom_lock);
1724 	for_each_mem_cgroup_tree(iter, memcg)
1725 		if (iter->under_oom > 0)
1726 			iter->under_oom--;
1727 	spin_unlock(&memcg_oom_lock);
1728 }
1729 
1730 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1731 
1732 struct oom_wait_info {
1733 	struct mem_cgroup *memcg;
1734 	wait_queue_entry_t	wait;
1735 };
1736 
1737 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1738 	unsigned mode, int sync, void *arg)
1739 {
1740 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1741 	struct mem_cgroup *oom_wait_memcg;
1742 	struct oom_wait_info *oom_wait_info;
1743 
1744 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1745 	oom_wait_memcg = oom_wait_info->memcg;
1746 
1747 	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1748 	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1749 		return 0;
1750 	return autoremove_wake_function(wait, mode, sync, arg);
1751 }
1752 
1753 static void memcg_oom_recover(struct mem_cgroup *memcg)
1754 {
1755 	/*
1756 	 * For the following lockless ->under_oom test, the only required
1757 	 * guarantee is that it must see the state asserted by an OOM when
1758 	 * this function is called as a result of userland actions
1759 	 * triggered by the notification of the OOM.  This is trivially
1760 	 * achieved by invoking mem_cgroup_mark_under_oom() before
1761 	 * triggering notification.
1762 	 */
1763 	if (memcg && memcg->under_oom)
1764 		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1765 }
1766 
1767 enum oom_status {
1768 	OOM_SUCCESS,
1769 	OOM_FAILED,
1770 	OOM_ASYNC,
1771 	OOM_SKIPPED
1772 };
1773 
1774 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1775 {
1776 	enum oom_status ret;
1777 	bool locked;
1778 
1779 	if (order > PAGE_ALLOC_COSTLY_ORDER)
1780 		return OOM_SKIPPED;
1781 
1782 	memcg_memory_event(memcg, MEMCG_OOM);
1783 
1784 	/*
1785 	 * We are in the middle of the charge context here, so we
1786 	 * don't want to block when potentially sitting on a callstack
1787 	 * that holds all kinds of filesystem and mm locks.
1788 	 *
1789 	 * cgroup1 allows disabling the OOM killer and waiting for outside
1790 	 * handling until the charge can succeed; remember the context and put
1791 	 * the task to sleep at the end of the page fault when all locks are
1792 	 * released.
1793 	 *
1794 	 * On the other hand, in-kernel OOM killer allows for an async victim
1795 	 * memory reclaim (oom_reaper) and that means that we are not solely
1796 	 * relying on the oom victim to make a forward progress and we can
1797 	 * invoke the oom killer here.
1798 	 *
1799 	 * Please note that mem_cgroup_out_of_memory might fail to find a
1800 	 * victim and then we have to bail out from the charge path.
1801 	 */
1802 	if (memcg->oom_kill_disable) {
1803 		if (!current->in_user_fault)
1804 			return OOM_SKIPPED;
1805 		css_get(&memcg->css);
1806 		current->memcg_in_oom = memcg;
1807 		current->memcg_oom_gfp_mask = mask;
1808 		current->memcg_oom_order = order;
1809 
1810 		return OOM_ASYNC;
1811 	}
1812 
1813 	mem_cgroup_mark_under_oom(memcg);
1814 
1815 	locked = mem_cgroup_oom_trylock(memcg);
1816 
1817 	if (locked)
1818 		mem_cgroup_oom_notify(memcg);
1819 
1820 	mem_cgroup_unmark_under_oom(memcg);
1821 	if (mem_cgroup_out_of_memory(memcg, mask, order))
1822 		ret = OOM_SUCCESS;
1823 	else
1824 		ret = OOM_FAILED;
1825 
1826 	if (locked)
1827 		mem_cgroup_oom_unlock(memcg);
1828 
1829 	return ret;
1830 }
1831 
1832 /**
1833  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1834  * @handle: actually kill/wait or just clean up the OOM state
1835  *
1836  * This has to be called at the end of a page fault if the memcg OOM
1837  * handler was enabled.
1838  *
1839  * Memcg supports userspace OOM handling where failed allocations must
1840  * sleep on a waitqueue until the userspace task resolves the
1841  * situation.  Sleeping directly in the charge context with all kinds
1842  * of locks held is not a good idea, instead we remember an OOM state
1843  * in the task and mem_cgroup_oom_synchronize() has to be called at
1844  * the end of the page fault to complete the OOM handling.
1845  *
1846  * Returns %true if an ongoing memcg OOM situation was detected and
1847  * completed, %false otherwise.
1848  */
1849 bool mem_cgroup_oom_synchronize(bool handle)
1850 {
1851 	struct mem_cgroup *memcg = current->memcg_in_oom;
1852 	struct oom_wait_info owait;
1853 	bool locked;
1854 
1855 	/* OOM is global, do not handle */
1856 	if (!memcg)
1857 		return false;
1858 
1859 	if (!handle)
1860 		goto cleanup;
1861 
1862 	owait.memcg = memcg;
1863 	owait.wait.flags = 0;
1864 	owait.wait.func = memcg_oom_wake_function;
1865 	owait.wait.private = current;
1866 	INIT_LIST_HEAD(&owait.wait.entry);
1867 
1868 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1869 	mem_cgroup_mark_under_oom(memcg);
1870 
1871 	locked = mem_cgroup_oom_trylock(memcg);
1872 
1873 	if (locked)
1874 		mem_cgroup_oom_notify(memcg);
1875 
1876 	if (locked && !memcg->oom_kill_disable) {
1877 		mem_cgroup_unmark_under_oom(memcg);
1878 		finish_wait(&memcg_oom_waitq, &owait.wait);
1879 		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1880 					 current->memcg_oom_order);
1881 	} else {
1882 		schedule();
1883 		mem_cgroup_unmark_under_oom(memcg);
1884 		finish_wait(&memcg_oom_waitq, &owait.wait);
1885 	}
1886 
1887 	if (locked) {
1888 		mem_cgroup_oom_unlock(memcg);
1889 		/*
1890 		 * There is no guarantee that an OOM-lock contender
1891 		 * sees the wakeups triggered by the OOM kill
1892 		 * uncharges.  Wake any sleepers explicitely.
1893 		 */
1894 		memcg_oom_recover(memcg);
1895 	}
1896 cleanup:
1897 	current->memcg_in_oom = NULL;
1898 	css_put(&memcg->css);
1899 	return true;
1900 }
1901 
1902 /**
1903  * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1904  * @victim: task to be killed by the OOM killer
1905  * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1906  *
1907  * Returns a pointer to a memory cgroup, which has to be cleaned up
1908  * by killing all belonging OOM-killable tasks.
1909  *
1910  * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1911  */
1912 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1913 					    struct mem_cgroup *oom_domain)
1914 {
1915 	struct mem_cgroup *oom_group = NULL;
1916 	struct mem_cgroup *memcg;
1917 
1918 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1919 		return NULL;
1920 
1921 	if (!oom_domain)
1922 		oom_domain = root_mem_cgroup;
1923 
1924 	rcu_read_lock();
1925 
1926 	memcg = mem_cgroup_from_task(victim);
1927 	if (memcg == root_mem_cgroup)
1928 		goto out;
1929 
1930 	/*
1931 	 * Traverse the memory cgroup hierarchy from the victim task's
1932 	 * cgroup up to the OOMing cgroup (or root) to find the
1933 	 * highest-level memory cgroup with oom.group set.
1934 	 */
1935 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1936 		if (memcg->oom_group)
1937 			oom_group = memcg;
1938 
1939 		if (memcg == oom_domain)
1940 			break;
1941 	}
1942 
1943 	if (oom_group)
1944 		css_get(&oom_group->css);
1945 out:
1946 	rcu_read_unlock();
1947 
1948 	return oom_group;
1949 }
1950 
1951 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1952 {
1953 	pr_info("Tasks in ");
1954 	pr_cont_cgroup_path(memcg->css.cgroup);
1955 	pr_cont(" are going to be killed due to memory.oom.group set\n");
1956 }
1957 
1958 /**
1959  * lock_page_memcg - lock a page->mem_cgroup binding
1960  * @page: the page
1961  *
1962  * This function protects unlocked LRU pages from being moved to
1963  * another cgroup.
1964  *
1965  * It ensures lifetime of the returned memcg. Caller is responsible
1966  * for the lifetime of the page; __unlock_page_memcg() is available
1967  * when @page might get freed inside the locked section.
1968  */
1969 struct mem_cgroup *lock_page_memcg(struct page *page)
1970 {
1971 	struct mem_cgroup *memcg;
1972 	unsigned long flags;
1973 
1974 	/*
1975 	 * The RCU lock is held throughout the transaction.  The fast
1976 	 * path can get away without acquiring the memcg->move_lock
1977 	 * because page moving starts with an RCU grace period.
1978 	 *
1979 	 * The RCU lock also protects the memcg from being freed when
1980 	 * the page state that is going to change is the only thing
1981 	 * preventing the page itself from being freed. E.g. writeback
1982 	 * doesn't hold a page reference and relies on PG_writeback to
1983 	 * keep off truncation, migration and so forth.
1984          */
1985 	rcu_read_lock();
1986 
1987 	if (mem_cgroup_disabled())
1988 		return NULL;
1989 again:
1990 	memcg = page->mem_cgroup;
1991 	if (unlikely(!memcg))
1992 		return NULL;
1993 
1994 	if (atomic_read(&memcg->moving_account) <= 0)
1995 		return memcg;
1996 
1997 	spin_lock_irqsave(&memcg->move_lock, flags);
1998 	if (memcg != page->mem_cgroup) {
1999 		spin_unlock_irqrestore(&memcg->move_lock, flags);
2000 		goto again;
2001 	}
2002 
2003 	/*
2004 	 * When charge migration first begins, we can have locked and
2005 	 * unlocked page stat updates happening concurrently.  Track
2006 	 * the task who has the lock for unlock_page_memcg().
2007 	 */
2008 	memcg->move_lock_task = current;
2009 	memcg->move_lock_flags = flags;
2010 
2011 	return memcg;
2012 }
2013 EXPORT_SYMBOL(lock_page_memcg);
2014 
2015 /**
2016  * __unlock_page_memcg - unlock and unpin a memcg
2017  * @memcg: the memcg
2018  *
2019  * Unlock and unpin a memcg returned by lock_page_memcg().
2020  */
2021 void __unlock_page_memcg(struct mem_cgroup *memcg)
2022 {
2023 	if (memcg && memcg->move_lock_task == current) {
2024 		unsigned long flags = memcg->move_lock_flags;
2025 
2026 		memcg->move_lock_task = NULL;
2027 		memcg->move_lock_flags = 0;
2028 
2029 		spin_unlock_irqrestore(&memcg->move_lock, flags);
2030 	}
2031 
2032 	rcu_read_unlock();
2033 }
2034 
2035 /**
2036  * unlock_page_memcg - unlock a page->mem_cgroup binding
2037  * @page: the page
2038  */
2039 void unlock_page_memcg(struct page *page)
2040 {
2041 	__unlock_page_memcg(page->mem_cgroup);
2042 }
2043 EXPORT_SYMBOL(unlock_page_memcg);
2044 
2045 struct memcg_stock_pcp {
2046 	struct mem_cgroup *cached; /* this never be root cgroup */
2047 	unsigned int nr_pages;
2048 	struct work_struct work;
2049 	unsigned long flags;
2050 #define FLUSHING_CACHED_CHARGE	0
2051 };
2052 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2053 static DEFINE_MUTEX(percpu_charge_mutex);
2054 
2055 /**
2056  * consume_stock: Try to consume stocked charge on this cpu.
2057  * @memcg: memcg to consume from.
2058  * @nr_pages: how many pages to charge.
2059  *
2060  * The charges will only happen if @memcg matches the current cpu's memcg
2061  * stock, and at least @nr_pages are available in that stock.  Failure to
2062  * service an allocation will refill the stock.
2063  *
2064  * returns true if successful, false otherwise.
2065  */
2066 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2067 {
2068 	struct memcg_stock_pcp *stock;
2069 	unsigned long flags;
2070 	bool ret = false;
2071 
2072 	if (nr_pages > MEMCG_CHARGE_BATCH)
2073 		return ret;
2074 
2075 	local_irq_save(flags);
2076 
2077 	stock = this_cpu_ptr(&memcg_stock);
2078 	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2079 		stock->nr_pages -= nr_pages;
2080 		ret = true;
2081 	}
2082 
2083 	local_irq_restore(flags);
2084 
2085 	return ret;
2086 }
2087 
2088 /*
2089  * Returns stocks cached in percpu and reset cached information.
2090  */
2091 static void drain_stock(struct memcg_stock_pcp *stock)
2092 {
2093 	struct mem_cgroup *old = stock->cached;
2094 
2095 	if (stock->nr_pages) {
2096 		page_counter_uncharge(&old->memory, stock->nr_pages);
2097 		if (do_memsw_account())
2098 			page_counter_uncharge(&old->memsw, stock->nr_pages);
2099 		css_put_many(&old->css, stock->nr_pages);
2100 		stock->nr_pages = 0;
2101 	}
2102 	stock->cached = NULL;
2103 }
2104 
2105 static void drain_local_stock(struct work_struct *dummy)
2106 {
2107 	struct memcg_stock_pcp *stock;
2108 	unsigned long flags;
2109 
2110 	/*
2111 	 * The only protection from memory hotplug vs. drain_stock races is
2112 	 * that we always operate on local CPU stock here with IRQ disabled
2113 	 */
2114 	local_irq_save(flags);
2115 
2116 	stock = this_cpu_ptr(&memcg_stock);
2117 	drain_stock(stock);
2118 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2119 
2120 	local_irq_restore(flags);
2121 }
2122 
2123 /*
2124  * Cache charges(val) to local per_cpu area.
2125  * This will be consumed by consume_stock() function, later.
2126  */
2127 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2128 {
2129 	struct memcg_stock_pcp *stock;
2130 	unsigned long flags;
2131 
2132 	local_irq_save(flags);
2133 
2134 	stock = this_cpu_ptr(&memcg_stock);
2135 	if (stock->cached != memcg) { /* reset if necessary */
2136 		drain_stock(stock);
2137 		stock->cached = memcg;
2138 	}
2139 	stock->nr_pages += nr_pages;
2140 
2141 	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2142 		drain_stock(stock);
2143 
2144 	local_irq_restore(flags);
2145 }
2146 
2147 /*
2148  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2149  * of the hierarchy under it.
2150  */
2151 static void drain_all_stock(struct mem_cgroup *root_memcg)
2152 {
2153 	int cpu, curcpu;
2154 
2155 	/* If someone's already draining, avoid adding running more workers. */
2156 	if (!mutex_trylock(&percpu_charge_mutex))
2157 		return;
2158 	/*
2159 	 * Notify other cpus that system-wide "drain" is running
2160 	 * We do not care about races with the cpu hotplug because cpu down
2161 	 * as well as workers from this path always operate on the local
2162 	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2163 	 */
2164 	curcpu = get_cpu();
2165 	for_each_online_cpu(cpu) {
2166 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2167 		struct mem_cgroup *memcg;
2168 		bool flush = false;
2169 
2170 		rcu_read_lock();
2171 		memcg = stock->cached;
2172 		if (memcg && stock->nr_pages &&
2173 		    mem_cgroup_is_descendant(memcg, root_memcg))
2174 			flush = true;
2175 		rcu_read_unlock();
2176 
2177 		if (flush &&
2178 		    !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2179 			if (cpu == curcpu)
2180 				drain_local_stock(&stock->work);
2181 			else
2182 				schedule_work_on(cpu, &stock->work);
2183 		}
2184 	}
2185 	put_cpu();
2186 	mutex_unlock(&percpu_charge_mutex);
2187 }
2188 
2189 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2190 {
2191 	struct memcg_stock_pcp *stock;
2192 	struct mem_cgroup *memcg, *mi;
2193 
2194 	stock = &per_cpu(memcg_stock, cpu);
2195 	drain_stock(stock);
2196 
2197 	for_each_mem_cgroup(memcg) {
2198 		int i;
2199 
2200 		for (i = 0; i < MEMCG_NR_STAT; i++) {
2201 			int nid;
2202 			long x;
2203 
2204 			x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2205 			if (x)
2206 				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2207 					atomic_long_add(x, &memcg->vmstats[i]);
2208 
2209 			if (i >= NR_VM_NODE_STAT_ITEMS)
2210 				continue;
2211 
2212 			for_each_node(nid) {
2213 				struct mem_cgroup_per_node *pn;
2214 
2215 				pn = mem_cgroup_nodeinfo(memcg, nid);
2216 				x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2217 				if (x)
2218 					do {
2219 						atomic_long_add(x, &pn->lruvec_stat[i]);
2220 					} while ((pn = parent_nodeinfo(pn, nid)));
2221 			}
2222 		}
2223 
2224 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2225 			long x;
2226 
2227 			x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2228 			if (x)
2229 				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2230 					atomic_long_add(x, &memcg->vmevents[i]);
2231 		}
2232 	}
2233 
2234 	return 0;
2235 }
2236 
2237 static void reclaim_high(struct mem_cgroup *memcg,
2238 			 unsigned int nr_pages,
2239 			 gfp_t gfp_mask)
2240 {
2241 	do {
2242 		if (page_counter_read(&memcg->memory) <= memcg->high)
2243 			continue;
2244 		memcg_memory_event(memcg, MEMCG_HIGH);
2245 		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2246 	} while ((memcg = parent_mem_cgroup(memcg)));
2247 }
2248 
2249 static void high_work_func(struct work_struct *work)
2250 {
2251 	struct mem_cgroup *memcg;
2252 
2253 	memcg = container_of(work, struct mem_cgroup, high_work);
2254 	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2255 }
2256 
2257 /*
2258  * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2259  * enough to still cause a significant slowdown in most cases, while still
2260  * allowing diagnostics and tracing to proceed without becoming stuck.
2261  */
2262 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2263 
2264 /*
2265  * When calculating the delay, we use these either side of the exponentiation to
2266  * maintain precision and scale to a reasonable number of jiffies (see the table
2267  * below.
2268  *
2269  * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2270  *   overage ratio to a delay.
2271  * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down down the
2272  *   proposed penalty in order to reduce to a reasonable number of jiffies, and
2273  *   to produce a reasonable delay curve.
2274  *
2275  * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2276  * reasonable delay curve compared to precision-adjusted overage, not
2277  * penalising heavily at first, but still making sure that growth beyond the
2278  * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2279  * example, with a high of 100 megabytes:
2280  *
2281  *  +-------+------------------------+
2282  *  | usage | time to allocate in ms |
2283  *  +-------+------------------------+
2284  *  | 100M  |                      0 |
2285  *  | 101M  |                      6 |
2286  *  | 102M  |                     25 |
2287  *  | 103M  |                     57 |
2288  *  | 104M  |                    102 |
2289  *  | 105M  |                    159 |
2290  *  | 106M  |                    230 |
2291  *  | 107M  |                    313 |
2292  *  | 108M  |                    409 |
2293  *  | 109M  |                    518 |
2294  *  | 110M  |                    639 |
2295  *  | 111M  |                    774 |
2296  *  | 112M  |                    921 |
2297  *  | 113M  |                   1081 |
2298  *  | 114M  |                   1254 |
2299  *  | 115M  |                   1439 |
2300  *  | 116M  |                   1638 |
2301  *  | 117M  |                   1849 |
2302  *  | 118M  |                   2000 |
2303  *  | 119M  |                   2000 |
2304  *  | 120M  |                   2000 |
2305  *  +-------+------------------------+
2306  */
2307  #define MEMCG_DELAY_PRECISION_SHIFT 20
2308  #define MEMCG_DELAY_SCALING_SHIFT 14
2309 
2310 /*
2311  * Get the number of jiffies that we should penalise a mischievous cgroup which
2312  * is exceeding its memory.high by checking both it and its ancestors.
2313  */
2314 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2315 					  unsigned int nr_pages)
2316 {
2317 	unsigned long penalty_jiffies;
2318 	u64 max_overage = 0;
2319 
2320 	do {
2321 		unsigned long usage, high;
2322 		u64 overage;
2323 
2324 		usage = page_counter_read(&memcg->memory);
2325 		high = READ_ONCE(memcg->high);
2326 
2327 		/*
2328 		 * Prevent division by 0 in overage calculation by acting as if
2329 		 * it was a threshold of 1 page
2330 		 */
2331 		high = max(high, 1UL);
2332 
2333 		overage = usage - high;
2334 		overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2335 		overage = div64_u64(overage, high);
2336 
2337 		if (overage > max_overage)
2338 			max_overage = overage;
2339 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2340 		 !mem_cgroup_is_root(memcg));
2341 
2342 	if (!max_overage)
2343 		return 0;
2344 
2345 	/*
2346 	 * We use overage compared to memory.high to calculate the number of
2347 	 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2348 	 * fairly lenient on small overages, and increasingly harsh when the
2349 	 * memcg in question makes it clear that it has no intention of stopping
2350 	 * its crazy behaviour, so we exponentially increase the delay based on
2351 	 * overage amount.
2352 	 */
2353 	penalty_jiffies = max_overage * max_overage * HZ;
2354 	penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2355 	penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2356 
2357 	/*
2358 	 * Factor in the task's own contribution to the overage, such that four
2359 	 * N-sized allocations are throttled approximately the same as one
2360 	 * 4N-sized allocation.
2361 	 *
2362 	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2363 	 * larger the current charge patch is than that.
2364 	 */
2365 	penalty_jiffies = penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2366 
2367 	/*
2368 	 * Clamp the max delay per usermode return so as to still keep the
2369 	 * application moving forwards and also permit diagnostics, albeit
2370 	 * extremely slowly.
2371 	 */
2372 	return min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2373 }
2374 
2375 /*
2376  * Scheduled by try_charge() to be executed from the userland return path
2377  * and reclaims memory over the high limit.
2378  */
2379 void mem_cgroup_handle_over_high(void)
2380 {
2381 	unsigned long penalty_jiffies;
2382 	unsigned long pflags;
2383 	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2384 	struct mem_cgroup *memcg;
2385 
2386 	if (likely(!nr_pages))
2387 		return;
2388 
2389 	memcg = get_mem_cgroup_from_mm(current->mm);
2390 	reclaim_high(memcg, nr_pages, GFP_KERNEL);
2391 	current->memcg_nr_pages_over_high = 0;
2392 
2393 	/*
2394 	 * memory.high is breached and reclaim is unable to keep up. Throttle
2395 	 * allocators proactively to slow down excessive growth.
2396 	 */
2397 	penalty_jiffies = calculate_high_delay(memcg, nr_pages);
2398 
2399 	/*
2400 	 * Don't sleep if the amount of jiffies this memcg owes us is so low
2401 	 * that it's not even worth doing, in an attempt to be nice to those who
2402 	 * go only a small amount over their memory.high value and maybe haven't
2403 	 * been aggressively reclaimed enough yet.
2404 	 */
2405 	if (penalty_jiffies <= HZ / 100)
2406 		goto out;
2407 
2408 	/*
2409 	 * If we exit early, we're guaranteed to die (since
2410 	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2411 	 * need to account for any ill-begotten jiffies to pay them off later.
2412 	 */
2413 	psi_memstall_enter(&pflags);
2414 	schedule_timeout_killable(penalty_jiffies);
2415 	psi_memstall_leave(&pflags);
2416 
2417 out:
2418 	css_put(&memcg->css);
2419 }
2420 
2421 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2422 		      unsigned int nr_pages)
2423 {
2424 	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2425 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2426 	struct mem_cgroup *mem_over_limit;
2427 	struct page_counter *counter;
2428 	unsigned long nr_reclaimed;
2429 	bool may_swap = true;
2430 	bool drained = false;
2431 	enum oom_status oom_status;
2432 
2433 	if (mem_cgroup_is_root(memcg))
2434 		return 0;
2435 retry:
2436 	if (consume_stock(memcg, nr_pages))
2437 		return 0;
2438 
2439 	if (!do_memsw_account() ||
2440 	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2441 		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2442 			goto done_restock;
2443 		if (do_memsw_account())
2444 			page_counter_uncharge(&memcg->memsw, batch);
2445 		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2446 	} else {
2447 		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2448 		may_swap = false;
2449 	}
2450 
2451 	if (batch > nr_pages) {
2452 		batch = nr_pages;
2453 		goto retry;
2454 	}
2455 
2456 	/*
2457 	 * Memcg doesn't have a dedicated reserve for atomic
2458 	 * allocations. But like the global atomic pool, we need to
2459 	 * put the burden of reclaim on regular allocation requests
2460 	 * and let these go through as privileged allocations.
2461 	 */
2462 	if (gfp_mask & __GFP_ATOMIC)
2463 		goto force;
2464 
2465 	/*
2466 	 * Unlike in global OOM situations, memcg is not in a physical
2467 	 * memory shortage.  Allow dying and OOM-killed tasks to
2468 	 * bypass the last charges so that they can exit quickly and
2469 	 * free their memory.
2470 	 */
2471 	if (unlikely(should_force_charge()))
2472 		goto force;
2473 
2474 	/*
2475 	 * Prevent unbounded recursion when reclaim operations need to
2476 	 * allocate memory. This might exceed the limits temporarily,
2477 	 * but we prefer facilitating memory reclaim and getting back
2478 	 * under the limit over triggering OOM kills in these cases.
2479 	 */
2480 	if (unlikely(current->flags & PF_MEMALLOC))
2481 		goto force;
2482 
2483 	if (unlikely(task_in_memcg_oom(current)))
2484 		goto nomem;
2485 
2486 	if (!gfpflags_allow_blocking(gfp_mask))
2487 		goto nomem;
2488 
2489 	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2490 
2491 	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2492 						    gfp_mask, may_swap);
2493 
2494 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2495 		goto retry;
2496 
2497 	if (!drained) {
2498 		drain_all_stock(mem_over_limit);
2499 		drained = true;
2500 		goto retry;
2501 	}
2502 
2503 	if (gfp_mask & __GFP_NORETRY)
2504 		goto nomem;
2505 	/*
2506 	 * Even though the limit is exceeded at this point, reclaim
2507 	 * may have been able to free some pages.  Retry the charge
2508 	 * before killing the task.
2509 	 *
2510 	 * Only for regular pages, though: huge pages are rather
2511 	 * unlikely to succeed so close to the limit, and we fall back
2512 	 * to regular pages anyway in case of failure.
2513 	 */
2514 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2515 		goto retry;
2516 	/*
2517 	 * At task move, charge accounts can be doubly counted. So, it's
2518 	 * better to wait until the end of task_move if something is going on.
2519 	 */
2520 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2521 		goto retry;
2522 
2523 	if (nr_retries--)
2524 		goto retry;
2525 
2526 	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2527 		goto nomem;
2528 
2529 	if (gfp_mask & __GFP_NOFAIL)
2530 		goto force;
2531 
2532 	if (fatal_signal_pending(current))
2533 		goto force;
2534 
2535 	/*
2536 	 * keep retrying as long as the memcg oom killer is able to make
2537 	 * a forward progress or bypass the charge if the oom killer
2538 	 * couldn't make any progress.
2539 	 */
2540 	oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2541 		       get_order(nr_pages * PAGE_SIZE));
2542 	switch (oom_status) {
2543 	case OOM_SUCCESS:
2544 		nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2545 		goto retry;
2546 	case OOM_FAILED:
2547 		goto force;
2548 	default:
2549 		goto nomem;
2550 	}
2551 nomem:
2552 	if (!(gfp_mask & __GFP_NOFAIL))
2553 		return -ENOMEM;
2554 force:
2555 	/*
2556 	 * The allocation either can't fail or will lead to more memory
2557 	 * being freed very soon.  Allow memory usage go over the limit
2558 	 * temporarily by force charging it.
2559 	 */
2560 	page_counter_charge(&memcg->memory, nr_pages);
2561 	if (do_memsw_account())
2562 		page_counter_charge(&memcg->memsw, nr_pages);
2563 	css_get_many(&memcg->css, nr_pages);
2564 
2565 	return 0;
2566 
2567 done_restock:
2568 	css_get_many(&memcg->css, batch);
2569 	if (batch > nr_pages)
2570 		refill_stock(memcg, batch - nr_pages);
2571 
2572 	/*
2573 	 * If the hierarchy is above the normal consumption range, schedule
2574 	 * reclaim on returning to userland.  We can perform reclaim here
2575 	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2576 	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2577 	 * not recorded as it most likely matches current's and won't
2578 	 * change in the meantime.  As high limit is checked again before
2579 	 * reclaim, the cost of mismatch is negligible.
2580 	 */
2581 	do {
2582 		if (page_counter_read(&memcg->memory) > memcg->high) {
2583 			/* Don't bother a random interrupted task */
2584 			if (in_interrupt()) {
2585 				schedule_work(&memcg->high_work);
2586 				break;
2587 			}
2588 			current->memcg_nr_pages_over_high += batch;
2589 			set_notify_resume(current);
2590 			break;
2591 		}
2592 	} while ((memcg = parent_mem_cgroup(memcg)));
2593 
2594 	return 0;
2595 }
2596 
2597 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2598 {
2599 	if (mem_cgroup_is_root(memcg))
2600 		return;
2601 
2602 	page_counter_uncharge(&memcg->memory, nr_pages);
2603 	if (do_memsw_account())
2604 		page_counter_uncharge(&memcg->memsw, nr_pages);
2605 
2606 	css_put_many(&memcg->css, nr_pages);
2607 }
2608 
2609 static void lock_page_lru(struct page *page, int *isolated)
2610 {
2611 	pg_data_t *pgdat = page_pgdat(page);
2612 
2613 	spin_lock_irq(&pgdat->lru_lock);
2614 	if (PageLRU(page)) {
2615 		struct lruvec *lruvec;
2616 
2617 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
2618 		ClearPageLRU(page);
2619 		del_page_from_lru_list(page, lruvec, page_lru(page));
2620 		*isolated = 1;
2621 	} else
2622 		*isolated = 0;
2623 }
2624 
2625 static void unlock_page_lru(struct page *page, int isolated)
2626 {
2627 	pg_data_t *pgdat = page_pgdat(page);
2628 
2629 	if (isolated) {
2630 		struct lruvec *lruvec;
2631 
2632 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
2633 		VM_BUG_ON_PAGE(PageLRU(page), page);
2634 		SetPageLRU(page);
2635 		add_page_to_lru_list(page, lruvec, page_lru(page));
2636 	}
2637 	spin_unlock_irq(&pgdat->lru_lock);
2638 }
2639 
2640 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2641 			  bool lrucare)
2642 {
2643 	int isolated;
2644 
2645 	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2646 
2647 	/*
2648 	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2649 	 * may already be on some other mem_cgroup's LRU.  Take care of it.
2650 	 */
2651 	if (lrucare)
2652 		lock_page_lru(page, &isolated);
2653 
2654 	/*
2655 	 * Nobody should be changing or seriously looking at
2656 	 * page->mem_cgroup at this point:
2657 	 *
2658 	 * - the page is uncharged
2659 	 *
2660 	 * - the page is off-LRU
2661 	 *
2662 	 * - an anonymous fault has exclusive page access, except for
2663 	 *   a locked page table
2664 	 *
2665 	 * - a page cache insertion, a swapin fault, or a migration
2666 	 *   have the page locked
2667 	 */
2668 	page->mem_cgroup = memcg;
2669 
2670 	if (lrucare)
2671 		unlock_page_lru(page, isolated);
2672 }
2673 
2674 #ifdef CONFIG_MEMCG_KMEM
2675 /*
2676  * Returns a pointer to the memory cgroup to which the kernel object is charged.
2677  *
2678  * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2679  * cgroup_mutex, etc.
2680  */
2681 struct mem_cgroup *mem_cgroup_from_obj(void *p)
2682 {
2683 	struct page *page;
2684 
2685 	if (mem_cgroup_disabled())
2686 		return NULL;
2687 
2688 	page = virt_to_head_page(p);
2689 
2690 	/*
2691 	 * Slab pages don't have page->mem_cgroup set because corresponding
2692 	 * kmem caches can be reparented during the lifetime. That's why
2693 	 * memcg_from_slab_page() should be used instead.
2694 	 */
2695 	if (PageSlab(page))
2696 		return memcg_from_slab_page(page);
2697 
2698 	/* All other pages use page->mem_cgroup */
2699 	return page->mem_cgroup;
2700 }
2701 
2702 static int memcg_alloc_cache_id(void)
2703 {
2704 	int id, size;
2705 	int err;
2706 
2707 	id = ida_simple_get(&memcg_cache_ida,
2708 			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2709 	if (id < 0)
2710 		return id;
2711 
2712 	if (id < memcg_nr_cache_ids)
2713 		return id;
2714 
2715 	/*
2716 	 * There's no space for the new id in memcg_caches arrays,
2717 	 * so we have to grow them.
2718 	 */
2719 	down_write(&memcg_cache_ids_sem);
2720 
2721 	size = 2 * (id + 1);
2722 	if (size < MEMCG_CACHES_MIN_SIZE)
2723 		size = MEMCG_CACHES_MIN_SIZE;
2724 	else if (size > MEMCG_CACHES_MAX_SIZE)
2725 		size = MEMCG_CACHES_MAX_SIZE;
2726 
2727 	err = memcg_update_all_caches(size);
2728 	if (!err)
2729 		err = memcg_update_all_list_lrus(size);
2730 	if (!err)
2731 		memcg_nr_cache_ids = size;
2732 
2733 	up_write(&memcg_cache_ids_sem);
2734 
2735 	if (err) {
2736 		ida_simple_remove(&memcg_cache_ida, id);
2737 		return err;
2738 	}
2739 	return id;
2740 }
2741 
2742 static void memcg_free_cache_id(int id)
2743 {
2744 	ida_simple_remove(&memcg_cache_ida, id);
2745 }
2746 
2747 struct memcg_kmem_cache_create_work {
2748 	struct mem_cgroup *memcg;
2749 	struct kmem_cache *cachep;
2750 	struct work_struct work;
2751 };
2752 
2753 static void memcg_kmem_cache_create_func(struct work_struct *w)
2754 {
2755 	struct memcg_kmem_cache_create_work *cw =
2756 		container_of(w, struct memcg_kmem_cache_create_work, work);
2757 	struct mem_cgroup *memcg = cw->memcg;
2758 	struct kmem_cache *cachep = cw->cachep;
2759 
2760 	memcg_create_kmem_cache(memcg, cachep);
2761 
2762 	css_put(&memcg->css);
2763 	kfree(cw);
2764 }
2765 
2766 /*
2767  * Enqueue the creation of a per-memcg kmem_cache.
2768  */
2769 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2770 					       struct kmem_cache *cachep)
2771 {
2772 	struct memcg_kmem_cache_create_work *cw;
2773 
2774 	if (!css_tryget_online(&memcg->css))
2775 		return;
2776 
2777 	cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
2778 	if (!cw)
2779 		return;
2780 
2781 	cw->memcg = memcg;
2782 	cw->cachep = cachep;
2783 	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2784 
2785 	queue_work(memcg_kmem_cache_wq, &cw->work);
2786 }
2787 
2788 static inline bool memcg_kmem_bypass(void)
2789 {
2790 	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2791 		return true;
2792 	return false;
2793 }
2794 
2795 /**
2796  * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2797  * @cachep: the original global kmem cache
2798  *
2799  * Return the kmem_cache we're supposed to use for a slab allocation.
2800  * We try to use the current memcg's version of the cache.
2801  *
2802  * If the cache does not exist yet, if we are the first user of it, we
2803  * create it asynchronously in a workqueue and let the current allocation
2804  * go through with the original cache.
2805  *
2806  * This function takes a reference to the cache it returns to assure it
2807  * won't get destroyed while we are working with it. Once the caller is
2808  * done with it, memcg_kmem_put_cache() must be called to release the
2809  * reference.
2810  */
2811 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2812 {
2813 	struct mem_cgroup *memcg;
2814 	struct kmem_cache *memcg_cachep;
2815 	struct memcg_cache_array *arr;
2816 	int kmemcg_id;
2817 
2818 	VM_BUG_ON(!is_root_cache(cachep));
2819 
2820 	if (memcg_kmem_bypass())
2821 		return cachep;
2822 
2823 	rcu_read_lock();
2824 
2825 	if (unlikely(current->active_memcg))
2826 		memcg = current->active_memcg;
2827 	else
2828 		memcg = mem_cgroup_from_task(current);
2829 
2830 	if (!memcg || memcg == root_mem_cgroup)
2831 		goto out_unlock;
2832 
2833 	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2834 	if (kmemcg_id < 0)
2835 		goto out_unlock;
2836 
2837 	arr = rcu_dereference(cachep->memcg_params.memcg_caches);
2838 
2839 	/*
2840 	 * Make sure we will access the up-to-date value. The code updating
2841 	 * memcg_caches issues a write barrier to match the data dependency
2842 	 * barrier inside READ_ONCE() (see memcg_create_kmem_cache()).
2843 	 */
2844 	memcg_cachep = READ_ONCE(arr->entries[kmemcg_id]);
2845 
2846 	/*
2847 	 * If we are in a safe context (can wait, and not in interrupt
2848 	 * context), we could be be predictable and return right away.
2849 	 * This would guarantee that the allocation being performed
2850 	 * already belongs in the new cache.
2851 	 *
2852 	 * However, there are some clashes that can arrive from locking.
2853 	 * For instance, because we acquire the slab_mutex while doing
2854 	 * memcg_create_kmem_cache, this means no further allocation
2855 	 * could happen with the slab_mutex held. So it's better to
2856 	 * defer everything.
2857 	 *
2858 	 * If the memcg is dying or memcg_cache is about to be released,
2859 	 * don't bother creating new kmem_caches. Because memcg_cachep
2860 	 * is ZEROed as the fist step of kmem offlining, we don't need
2861 	 * percpu_ref_tryget_live() here. css_tryget_online() check in
2862 	 * memcg_schedule_kmem_cache_create() will prevent us from
2863 	 * creation of a new kmem_cache.
2864 	 */
2865 	if (unlikely(!memcg_cachep))
2866 		memcg_schedule_kmem_cache_create(memcg, cachep);
2867 	else if (percpu_ref_tryget(&memcg_cachep->memcg_params.refcnt))
2868 		cachep = memcg_cachep;
2869 out_unlock:
2870 	rcu_read_unlock();
2871 	return cachep;
2872 }
2873 
2874 /**
2875  * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2876  * @cachep: the cache returned by memcg_kmem_get_cache
2877  */
2878 void memcg_kmem_put_cache(struct kmem_cache *cachep)
2879 {
2880 	if (!is_root_cache(cachep))
2881 		percpu_ref_put(&cachep->memcg_params.refcnt);
2882 }
2883 
2884 /**
2885  * __memcg_kmem_charge_memcg: charge a kmem page
2886  * @page: page to charge
2887  * @gfp: reclaim mode
2888  * @order: allocation order
2889  * @memcg: memory cgroup to charge
2890  *
2891  * Returns 0 on success, an error code on failure.
2892  */
2893 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2894 			    struct mem_cgroup *memcg)
2895 {
2896 	unsigned int nr_pages = 1 << order;
2897 	struct page_counter *counter;
2898 	int ret;
2899 
2900 	ret = try_charge(memcg, gfp, nr_pages);
2901 	if (ret)
2902 		return ret;
2903 
2904 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2905 	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2906 
2907 		/*
2908 		 * Enforce __GFP_NOFAIL allocation because callers are not
2909 		 * prepared to see failures and likely do not have any failure
2910 		 * handling code.
2911 		 */
2912 		if (gfp & __GFP_NOFAIL) {
2913 			page_counter_charge(&memcg->kmem, nr_pages);
2914 			return 0;
2915 		}
2916 		cancel_charge(memcg, nr_pages);
2917 		return -ENOMEM;
2918 	}
2919 	return 0;
2920 }
2921 
2922 /**
2923  * __memcg_kmem_charge: charge a kmem page to the current memory cgroup
2924  * @page: page to charge
2925  * @gfp: reclaim mode
2926  * @order: allocation order
2927  *
2928  * Returns 0 on success, an error code on failure.
2929  */
2930 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2931 {
2932 	struct mem_cgroup *memcg;
2933 	int ret = 0;
2934 
2935 	if (memcg_kmem_bypass())
2936 		return 0;
2937 
2938 	memcg = get_mem_cgroup_from_current();
2939 	if (!mem_cgroup_is_root(memcg)) {
2940 		ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2941 		if (!ret) {
2942 			page->mem_cgroup = memcg;
2943 			__SetPageKmemcg(page);
2944 		}
2945 	}
2946 	css_put(&memcg->css);
2947 	return ret;
2948 }
2949 
2950 /**
2951  * __memcg_kmem_uncharge_memcg: uncharge a kmem page
2952  * @memcg: memcg to uncharge
2953  * @nr_pages: number of pages to uncharge
2954  */
2955 void __memcg_kmem_uncharge_memcg(struct mem_cgroup *memcg,
2956 				 unsigned int nr_pages)
2957 {
2958 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2959 		page_counter_uncharge(&memcg->kmem, nr_pages);
2960 
2961 	page_counter_uncharge(&memcg->memory, nr_pages);
2962 	if (do_memsw_account())
2963 		page_counter_uncharge(&memcg->memsw, nr_pages);
2964 }
2965 /**
2966  * __memcg_kmem_uncharge: uncharge a kmem page
2967  * @page: page to uncharge
2968  * @order: allocation order
2969  */
2970 void __memcg_kmem_uncharge(struct page *page, int order)
2971 {
2972 	struct mem_cgroup *memcg = page->mem_cgroup;
2973 	unsigned int nr_pages = 1 << order;
2974 
2975 	if (!memcg)
2976 		return;
2977 
2978 	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2979 	__memcg_kmem_uncharge_memcg(memcg, nr_pages);
2980 	page->mem_cgroup = NULL;
2981 
2982 	/* slab pages do not have PageKmemcg flag set */
2983 	if (PageKmemcg(page))
2984 		__ClearPageKmemcg(page);
2985 
2986 	css_put_many(&memcg->css, nr_pages);
2987 }
2988 #endif /* CONFIG_MEMCG_KMEM */
2989 
2990 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2991 
2992 /*
2993  * Because tail pages are not marked as "used", set it. We're under
2994  * pgdat->lru_lock and migration entries setup in all page mappings.
2995  */
2996 void mem_cgroup_split_huge_fixup(struct page *head)
2997 {
2998 	int i;
2999 
3000 	if (mem_cgroup_disabled())
3001 		return;
3002 
3003 	for (i = 1; i < HPAGE_PMD_NR; i++)
3004 		head[i].mem_cgroup = head->mem_cgroup;
3005 
3006 	__mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
3007 }
3008 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3009 
3010 #ifdef CONFIG_MEMCG_SWAP
3011 /**
3012  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3013  * @entry: swap entry to be moved
3014  * @from:  mem_cgroup which the entry is moved from
3015  * @to:  mem_cgroup which the entry is moved to
3016  *
3017  * It succeeds only when the swap_cgroup's record for this entry is the same
3018  * as the mem_cgroup's id of @from.
3019  *
3020  * Returns 0 on success, -EINVAL on failure.
3021  *
3022  * The caller must have charged to @to, IOW, called page_counter_charge() about
3023  * both res and memsw, and called css_get().
3024  */
3025 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3026 				struct mem_cgroup *from, struct mem_cgroup *to)
3027 {
3028 	unsigned short old_id, new_id;
3029 
3030 	old_id = mem_cgroup_id(from);
3031 	new_id = mem_cgroup_id(to);
3032 
3033 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3034 		mod_memcg_state(from, MEMCG_SWAP, -1);
3035 		mod_memcg_state(to, MEMCG_SWAP, 1);
3036 		return 0;
3037 	}
3038 	return -EINVAL;
3039 }
3040 #else
3041 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3042 				struct mem_cgroup *from, struct mem_cgroup *to)
3043 {
3044 	return -EINVAL;
3045 }
3046 #endif
3047 
3048 static DEFINE_MUTEX(memcg_max_mutex);
3049 
3050 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3051 				 unsigned long max, bool memsw)
3052 {
3053 	bool enlarge = false;
3054 	bool drained = false;
3055 	int ret;
3056 	bool limits_invariant;
3057 	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3058 
3059 	do {
3060 		if (signal_pending(current)) {
3061 			ret = -EINTR;
3062 			break;
3063 		}
3064 
3065 		mutex_lock(&memcg_max_mutex);
3066 		/*
3067 		 * Make sure that the new limit (memsw or memory limit) doesn't
3068 		 * break our basic invariant rule memory.max <= memsw.max.
3069 		 */
3070 		limits_invariant = memsw ? max >= memcg->memory.max :
3071 					   max <= memcg->memsw.max;
3072 		if (!limits_invariant) {
3073 			mutex_unlock(&memcg_max_mutex);
3074 			ret = -EINVAL;
3075 			break;
3076 		}
3077 		if (max > counter->max)
3078 			enlarge = true;
3079 		ret = page_counter_set_max(counter, max);
3080 		mutex_unlock(&memcg_max_mutex);
3081 
3082 		if (!ret)
3083 			break;
3084 
3085 		if (!drained) {
3086 			drain_all_stock(memcg);
3087 			drained = true;
3088 			continue;
3089 		}
3090 
3091 		if (!try_to_free_mem_cgroup_pages(memcg, 1,
3092 					GFP_KERNEL, !memsw)) {
3093 			ret = -EBUSY;
3094 			break;
3095 		}
3096 	} while (true);
3097 
3098 	if (!ret && enlarge)
3099 		memcg_oom_recover(memcg);
3100 
3101 	return ret;
3102 }
3103 
3104 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3105 					    gfp_t gfp_mask,
3106 					    unsigned long *total_scanned)
3107 {
3108 	unsigned long nr_reclaimed = 0;
3109 	struct mem_cgroup_per_node *mz, *next_mz = NULL;
3110 	unsigned long reclaimed;
3111 	int loop = 0;
3112 	struct mem_cgroup_tree_per_node *mctz;
3113 	unsigned long excess;
3114 	unsigned long nr_scanned;
3115 
3116 	if (order > 0)
3117 		return 0;
3118 
3119 	mctz = soft_limit_tree_node(pgdat->node_id);
3120 
3121 	/*
3122 	 * Do not even bother to check the largest node if the root
3123 	 * is empty. Do it lockless to prevent lock bouncing. Races
3124 	 * are acceptable as soft limit is best effort anyway.
3125 	 */
3126 	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3127 		return 0;
3128 
3129 	/*
3130 	 * This loop can run a while, specially if mem_cgroup's continuously
3131 	 * keep exceeding their soft limit and putting the system under
3132 	 * pressure
3133 	 */
3134 	do {
3135 		if (next_mz)
3136 			mz = next_mz;
3137 		else
3138 			mz = mem_cgroup_largest_soft_limit_node(mctz);
3139 		if (!mz)
3140 			break;
3141 
3142 		nr_scanned = 0;
3143 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3144 						    gfp_mask, &nr_scanned);
3145 		nr_reclaimed += reclaimed;
3146 		*total_scanned += nr_scanned;
3147 		spin_lock_irq(&mctz->lock);
3148 		__mem_cgroup_remove_exceeded(mz, mctz);
3149 
3150 		/*
3151 		 * If we failed to reclaim anything from this memory cgroup
3152 		 * it is time to move on to the next cgroup
3153 		 */
3154 		next_mz = NULL;
3155 		if (!reclaimed)
3156 			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3157 
3158 		excess = soft_limit_excess(mz->memcg);
3159 		/*
3160 		 * One school of thought says that we should not add
3161 		 * back the node to the tree if reclaim returns 0.
3162 		 * But our reclaim could return 0, simply because due
3163 		 * to priority we are exposing a smaller subset of
3164 		 * memory to reclaim from. Consider this as a longer
3165 		 * term TODO.
3166 		 */
3167 		/* If excess == 0, no tree ops */
3168 		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3169 		spin_unlock_irq(&mctz->lock);
3170 		css_put(&mz->memcg->css);
3171 		loop++;
3172 		/*
3173 		 * Could not reclaim anything and there are no more
3174 		 * mem cgroups to try or we seem to be looping without
3175 		 * reclaiming anything.
3176 		 */
3177 		if (!nr_reclaimed &&
3178 			(next_mz == NULL ||
3179 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3180 			break;
3181 	} while (!nr_reclaimed);
3182 	if (next_mz)
3183 		css_put(&next_mz->memcg->css);
3184 	return nr_reclaimed;
3185 }
3186 
3187 /*
3188  * Test whether @memcg has children, dead or alive.  Note that this
3189  * function doesn't care whether @memcg has use_hierarchy enabled and
3190  * returns %true if there are child csses according to the cgroup
3191  * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
3192  */
3193 static inline bool memcg_has_children(struct mem_cgroup *memcg)
3194 {
3195 	bool ret;
3196 
3197 	rcu_read_lock();
3198 	ret = css_next_child(NULL, &memcg->css);
3199 	rcu_read_unlock();
3200 	return ret;
3201 }
3202 
3203 /*
3204  * Reclaims as many pages from the given memcg as possible.
3205  *
3206  * Caller is responsible for holding css reference for memcg.
3207  */
3208 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3209 {
3210 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3211 
3212 	/* we call try-to-free pages for make this cgroup empty */
3213 	lru_add_drain_all();
3214 
3215 	drain_all_stock(memcg);
3216 
3217 	/* try to free all pages in this cgroup */
3218 	while (nr_retries && page_counter_read(&memcg->memory)) {
3219 		int progress;
3220 
3221 		if (signal_pending(current))
3222 			return -EINTR;
3223 
3224 		progress = try_to_free_mem_cgroup_pages(memcg, 1,
3225 							GFP_KERNEL, true);
3226 		if (!progress) {
3227 			nr_retries--;
3228 			/* maybe some writeback is necessary */
3229 			congestion_wait(BLK_RW_ASYNC, HZ/10);
3230 		}
3231 
3232 	}
3233 
3234 	return 0;
3235 }
3236 
3237 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3238 					    char *buf, size_t nbytes,
3239 					    loff_t off)
3240 {
3241 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3242 
3243 	if (mem_cgroup_is_root(memcg))
3244 		return -EINVAL;
3245 	return mem_cgroup_force_empty(memcg) ?: nbytes;
3246 }
3247 
3248 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3249 				     struct cftype *cft)
3250 {
3251 	return mem_cgroup_from_css(css)->use_hierarchy;
3252 }
3253 
3254 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3255 				      struct cftype *cft, u64 val)
3256 {
3257 	int retval = 0;
3258 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3259 	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3260 
3261 	if (memcg->use_hierarchy == val)
3262 		return 0;
3263 
3264 	/*
3265 	 * If parent's use_hierarchy is set, we can't make any modifications
3266 	 * in the child subtrees. If it is unset, then the change can
3267 	 * occur, provided the current cgroup has no children.
3268 	 *
3269 	 * For the root cgroup, parent_mem is NULL, we allow value to be
3270 	 * set if there are no children.
3271 	 */
3272 	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3273 				(val == 1 || val == 0)) {
3274 		if (!memcg_has_children(memcg))
3275 			memcg->use_hierarchy = val;
3276 		else
3277 			retval = -EBUSY;
3278 	} else
3279 		retval = -EINVAL;
3280 
3281 	return retval;
3282 }
3283 
3284 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3285 {
3286 	unsigned long val;
3287 
3288 	if (mem_cgroup_is_root(memcg)) {
3289 		val = memcg_page_state(memcg, MEMCG_CACHE) +
3290 			memcg_page_state(memcg, MEMCG_RSS);
3291 		if (swap)
3292 			val += memcg_page_state(memcg, MEMCG_SWAP);
3293 	} else {
3294 		if (!swap)
3295 			val = page_counter_read(&memcg->memory);
3296 		else
3297 			val = page_counter_read(&memcg->memsw);
3298 	}
3299 	return val;
3300 }
3301 
3302 enum {
3303 	RES_USAGE,
3304 	RES_LIMIT,
3305 	RES_MAX_USAGE,
3306 	RES_FAILCNT,
3307 	RES_SOFT_LIMIT,
3308 };
3309 
3310 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3311 			       struct cftype *cft)
3312 {
3313 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3314 	struct page_counter *counter;
3315 
3316 	switch (MEMFILE_TYPE(cft->private)) {
3317 	case _MEM:
3318 		counter = &memcg->memory;
3319 		break;
3320 	case _MEMSWAP:
3321 		counter = &memcg->memsw;
3322 		break;
3323 	case _KMEM:
3324 		counter = &memcg->kmem;
3325 		break;
3326 	case _TCP:
3327 		counter = &memcg->tcpmem;
3328 		break;
3329 	default:
3330 		BUG();
3331 	}
3332 
3333 	switch (MEMFILE_ATTR(cft->private)) {
3334 	case RES_USAGE:
3335 		if (counter == &memcg->memory)
3336 			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3337 		if (counter == &memcg->memsw)
3338 			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3339 		return (u64)page_counter_read(counter) * PAGE_SIZE;
3340 	case RES_LIMIT:
3341 		return (u64)counter->max * PAGE_SIZE;
3342 	case RES_MAX_USAGE:
3343 		return (u64)counter->watermark * PAGE_SIZE;
3344 	case RES_FAILCNT:
3345 		return counter->failcnt;
3346 	case RES_SOFT_LIMIT:
3347 		return (u64)memcg->soft_limit * PAGE_SIZE;
3348 	default:
3349 		BUG();
3350 	}
3351 }
3352 
3353 static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
3354 {
3355 	unsigned long stat[MEMCG_NR_STAT] = {0};
3356 	struct mem_cgroup *mi;
3357 	int node, cpu, i;
3358 
3359 	for_each_online_cpu(cpu)
3360 		for (i = 0; i < MEMCG_NR_STAT; i++)
3361 			stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
3362 
3363 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3364 		for (i = 0; i < MEMCG_NR_STAT; i++)
3365 			atomic_long_add(stat[i], &mi->vmstats[i]);
3366 
3367 	for_each_node(node) {
3368 		struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3369 		struct mem_cgroup_per_node *pi;
3370 
3371 		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3372 			stat[i] = 0;
3373 
3374 		for_each_online_cpu(cpu)
3375 			for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3376 				stat[i] += per_cpu(
3377 					pn->lruvec_stat_cpu->count[i], cpu);
3378 
3379 		for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
3380 			for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3381 				atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3382 	}
3383 }
3384 
3385 static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3386 {
3387 	unsigned long events[NR_VM_EVENT_ITEMS];
3388 	struct mem_cgroup *mi;
3389 	int cpu, i;
3390 
3391 	for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3392 		events[i] = 0;
3393 
3394 	for_each_online_cpu(cpu)
3395 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3396 			events[i] += per_cpu(memcg->vmstats_percpu->events[i],
3397 					     cpu);
3398 
3399 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3400 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3401 			atomic_long_add(events[i], &mi->vmevents[i]);
3402 }
3403 
3404 #ifdef CONFIG_MEMCG_KMEM
3405 static int memcg_online_kmem(struct mem_cgroup *memcg)
3406 {
3407 	int memcg_id;
3408 
3409 	if (cgroup_memory_nokmem)
3410 		return 0;
3411 
3412 	BUG_ON(memcg->kmemcg_id >= 0);
3413 	BUG_ON(memcg->kmem_state);
3414 
3415 	memcg_id = memcg_alloc_cache_id();
3416 	if (memcg_id < 0)
3417 		return memcg_id;
3418 
3419 	static_branch_inc(&memcg_kmem_enabled_key);
3420 	/*
3421 	 * A memory cgroup is considered kmem-online as soon as it gets
3422 	 * kmemcg_id. Setting the id after enabling static branching will
3423 	 * guarantee no one starts accounting before all call sites are
3424 	 * patched.
3425 	 */
3426 	memcg->kmemcg_id = memcg_id;
3427 	memcg->kmem_state = KMEM_ONLINE;
3428 	INIT_LIST_HEAD(&memcg->kmem_caches);
3429 
3430 	return 0;
3431 }
3432 
3433 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3434 {
3435 	struct cgroup_subsys_state *css;
3436 	struct mem_cgroup *parent, *child;
3437 	int kmemcg_id;
3438 
3439 	if (memcg->kmem_state != KMEM_ONLINE)
3440 		return;
3441 	/*
3442 	 * Clear the online state before clearing memcg_caches array
3443 	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
3444 	 * guarantees that no cache will be created for this cgroup
3445 	 * after we are done (see memcg_create_kmem_cache()).
3446 	 */
3447 	memcg->kmem_state = KMEM_ALLOCATED;
3448 
3449 	parent = parent_mem_cgroup(memcg);
3450 	if (!parent)
3451 		parent = root_mem_cgroup;
3452 
3453 	/*
3454 	 * Deactivate and reparent kmem_caches.
3455 	 */
3456 	memcg_deactivate_kmem_caches(memcg, parent);
3457 
3458 	kmemcg_id = memcg->kmemcg_id;
3459 	BUG_ON(kmemcg_id < 0);
3460 
3461 	/*
3462 	 * Change kmemcg_id of this cgroup and all its descendants to the
3463 	 * parent's id, and then move all entries from this cgroup's list_lrus
3464 	 * to ones of the parent. After we have finished, all list_lrus
3465 	 * corresponding to this cgroup are guaranteed to remain empty. The
3466 	 * ordering is imposed by list_lru_node->lock taken by
3467 	 * memcg_drain_all_list_lrus().
3468 	 */
3469 	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3470 	css_for_each_descendant_pre(css, &memcg->css) {
3471 		child = mem_cgroup_from_css(css);
3472 		BUG_ON(child->kmemcg_id != kmemcg_id);
3473 		child->kmemcg_id = parent->kmemcg_id;
3474 		if (!memcg->use_hierarchy)
3475 			break;
3476 	}
3477 	rcu_read_unlock();
3478 
3479 	memcg_drain_all_list_lrus(kmemcg_id, parent);
3480 
3481 	memcg_free_cache_id(kmemcg_id);
3482 }
3483 
3484 static void memcg_free_kmem(struct mem_cgroup *memcg)
3485 {
3486 	/* css_alloc() failed, offlining didn't happen */
3487 	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3488 		memcg_offline_kmem(memcg);
3489 
3490 	if (memcg->kmem_state == KMEM_ALLOCATED) {
3491 		WARN_ON(!list_empty(&memcg->kmem_caches));
3492 		static_branch_dec(&memcg_kmem_enabled_key);
3493 	}
3494 }
3495 #else
3496 static int memcg_online_kmem(struct mem_cgroup *memcg)
3497 {
3498 	return 0;
3499 }
3500 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3501 {
3502 }
3503 static void memcg_free_kmem(struct mem_cgroup *memcg)
3504 {
3505 }
3506 #endif /* CONFIG_MEMCG_KMEM */
3507 
3508 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3509 				 unsigned long max)
3510 {
3511 	int ret;
3512 
3513 	mutex_lock(&memcg_max_mutex);
3514 	ret = page_counter_set_max(&memcg->kmem, max);
3515 	mutex_unlock(&memcg_max_mutex);
3516 	return ret;
3517 }
3518 
3519 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3520 {
3521 	int ret;
3522 
3523 	mutex_lock(&memcg_max_mutex);
3524 
3525 	ret = page_counter_set_max(&memcg->tcpmem, max);
3526 	if (ret)
3527 		goto out;
3528 
3529 	if (!memcg->tcpmem_active) {
3530 		/*
3531 		 * The active flag needs to be written after the static_key
3532 		 * update. This is what guarantees that the socket activation
3533 		 * function is the last one to run. See mem_cgroup_sk_alloc()
3534 		 * for details, and note that we don't mark any socket as
3535 		 * belonging to this memcg until that flag is up.
3536 		 *
3537 		 * We need to do this, because static_keys will span multiple
3538 		 * sites, but we can't control their order. If we mark a socket
3539 		 * as accounted, but the accounting functions are not patched in
3540 		 * yet, we'll lose accounting.
3541 		 *
3542 		 * We never race with the readers in mem_cgroup_sk_alloc(),
3543 		 * because when this value change, the code to process it is not
3544 		 * patched in yet.
3545 		 */
3546 		static_branch_inc(&memcg_sockets_enabled_key);
3547 		memcg->tcpmem_active = true;
3548 	}
3549 out:
3550 	mutex_unlock(&memcg_max_mutex);
3551 	return ret;
3552 }
3553 
3554 /*
3555  * The user of this function is...
3556  * RES_LIMIT.
3557  */
3558 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3559 				char *buf, size_t nbytes, loff_t off)
3560 {
3561 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3562 	unsigned long nr_pages;
3563 	int ret;
3564 
3565 	buf = strstrip(buf);
3566 	ret = page_counter_memparse(buf, "-1", &nr_pages);
3567 	if (ret)
3568 		return ret;
3569 
3570 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3571 	case RES_LIMIT:
3572 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3573 			ret = -EINVAL;
3574 			break;
3575 		}
3576 		switch (MEMFILE_TYPE(of_cft(of)->private)) {
3577 		case _MEM:
3578 			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3579 			break;
3580 		case _MEMSWAP:
3581 			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3582 			break;
3583 		case _KMEM:
3584 			pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3585 				     "Please report your usecase to linux-mm@kvack.org if you "
3586 				     "depend on this functionality.\n");
3587 			ret = memcg_update_kmem_max(memcg, nr_pages);
3588 			break;
3589 		case _TCP:
3590 			ret = memcg_update_tcp_max(memcg, nr_pages);
3591 			break;
3592 		}
3593 		break;
3594 	case RES_SOFT_LIMIT:
3595 		memcg->soft_limit = nr_pages;
3596 		ret = 0;
3597 		break;
3598 	}
3599 	return ret ?: nbytes;
3600 }
3601 
3602 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3603 				size_t nbytes, loff_t off)
3604 {
3605 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3606 	struct page_counter *counter;
3607 
3608 	switch (MEMFILE_TYPE(of_cft(of)->private)) {
3609 	case _MEM:
3610 		counter = &memcg->memory;
3611 		break;
3612 	case _MEMSWAP:
3613 		counter = &memcg->memsw;
3614 		break;
3615 	case _KMEM:
3616 		counter = &memcg->kmem;
3617 		break;
3618 	case _TCP:
3619 		counter = &memcg->tcpmem;
3620 		break;
3621 	default:
3622 		BUG();
3623 	}
3624 
3625 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3626 	case RES_MAX_USAGE:
3627 		page_counter_reset_watermark(counter);
3628 		break;
3629 	case RES_FAILCNT:
3630 		counter->failcnt = 0;
3631 		break;
3632 	default:
3633 		BUG();
3634 	}
3635 
3636 	return nbytes;
3637 }
3638 
3639 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3640 					struct cftype *cft)
3641 {
3642 	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3643 }
3644 
3645 #ifdef CONFIG_MMU
3646 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3647 					struct cftype *cft, u64 val)
3648 {
3649 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3650 
3651 	if (val & ~MOVE_MASK)
3652 		return -EINVAL;
3653 
3654 	/*
3655 	 * No kind of locking is needed in here, because ->can_attach() will
3656 	 * check this value once in the beginning of the process, and then carry
3657 	 * on with stale data. This means that changes to this value will only
3658 	 * affect task migrations starting after the change.
3659 	 */
3660 	memcg->move_charge_at_immigrate = val;
3661 	return 0;
3662 }
3663 #else
3664 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3665 					struct cftype *cft, u64 val)
3666 {
3667 	return -ENOSYS;
3668 }
3669 #endif
3670 
3671 #ifdef CONFIG_NUMA
3672 
3673 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3674 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3675 #define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)
3676 
3677 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3678 					   int nid, unsigned int lru_mask)
3679 {
3680 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3681 	unsigned long nr = 0;
3682 	enum lru_list lru;
3683 
3684 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
3685 
3686 	for_each_lru(lru) {
3687 		if (!(BIT(lru) & lru_mask))
3688 			continue;
3689 		nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3690 	}
3691 	return nr;
3692 }
3693 
3694 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3695 					     unsigned int lru_mask)
3696 {
3697 	unsigned long nr = 0;
3698 	enum lru_list lru;
3699 
3700 	for_each_lru(lru) {
3701 		if (!(BIT(lru) & lru_mask))
3702 			continue;
3703 		nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3704 	}
3705 	return nr;
3706 }
3707 
3708 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3709 {
3710 	struct numa_stat {
3711 		const char *name;
3712 		unsigned int lru_mask;
3713 	};
3714 
3715 	static const struct numa_stat stats[] = {
3716 		{ "total", LRU_ALL },
3717 		{ "file", LRU_ALL_FILE },
3718 		{ "anon", LRU_ALL_ANON },
3719 		{ "unevictable", BIT(LRU_UNEVICTABLE) },
3720 	};
3721 	const struct numa_stat *stat;
3722 	int nid;
3723 	unsigned long nr;
3724 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3725 
3726 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3727 		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3728 		seq_printf(m, "%s=%lu", stat->name, nr);
3729 		for_each_node_state(nid, N_MEMORY) {
3730 			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3731 							  stat->lru_mask);
3732 			seq_printf(m, " N%d=%lu", nid, nr);
3733 		}
3734 		seq_putc(m, '\n');
3735 	}
3736 
3737 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3738 		struct mem_cgroup *iter;
3739 
3740 		nr = 0;
3741 		for_each_mem_cgroup_tree(iter, memcg)
3742 			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3743 		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3744 		for_each_node_state(nid, N_MEMORY) {
3745 			nr = 0;
3746 			for_each_mem_cgroup_tree(iter, memcg)
3747 				nr += mem_cgroup_node_nr_lru_pages(
3748 					iter, nid, stat->lru_mask);
3749 			seq_printf(m, " N%d=%lu", nid, nr);
3750 		}
3751 		seq_putc(m, '\n');
3752 	}
3753 
3754 	return 0;
3755 }
3756 #endif /* CONFIG_NUMA */
3757 
3758 static const unsigned int memcg1_stats[] = {
3759 	MEMCG_CACHE,
3760 	MEMCG_RSS,
3761 	MEMCG_RSS_HUGE,
3762 	NR_SHMEM,
3763 	NR_FILE_MAPPED,
3764 	NR_FILE_DIRTY,
3765 	NR_WRITEBACK,
3766 	MEMCG_SWAP,
3767 };
3768 
3769 static const char *const memcg1_stat_names[] = {
3770 	"cache",
3771 	"rss",
3772 	"rss_huge",
3773 	"shmem",
3774 	"mapped_file",
3775 	"dirty",
3776 	"writeback",
3777 	"swap",
3778 };
3779 
3780 /* Universal VM events cgroup1 shows, original sort order */
3781 static const unsigned int memcg1_events[] = {
3782 	PGPGIN,
3783 	PGPGOUT,
3784 	PGFAULT,
3785 	PGMAJFAULT,
3786 };
3787 
3788 static int memcg_stat_show(struct seq_file *m, void *v)
3789 {
3790 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3791 	unsigned long memory, memsw;
3792 	struct mem_cgroup *mi;
3793 	unsigned int i;
3794 
3795 	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3796 
3797 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3798 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3799 			continue;
3800 		seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3801 			   memcg_page_state_local(memcg, memcg1_stats[i]) *
3802 			   PAGE_SIZE);
3803 	}
3804 
3805 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3806 		seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
3807 			   memcg_events_local(memcg, memcg1_events[i]));
3808 
3809 	for (i = 0; i < NR_LRU_LISTS; i++)
3810 		seq_printf(m, "%s %lu\n", lru_list_name(i),
3811 			   memcg_page_state_local(memcg, NR_LRU_BASE + i) *
3812 			   PAGE_SIZE);
3813 
3814 	/* Hierarchical information */
3815 	memory = memsw = PAGE_COUNTER_MAX;
3816 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3817 		memory = min(memory, mi->memory.max);
3818 		memsw = min(memsw, mi->memsw.max);
3819 	}
3820 	seq_printf(m, "hierarchical_memory_limit %llu\n",
3821 		   (u64)memory * PAGE_SIZE);
3822 	if (do_memsw_account())
3823 		seq_printf(m, "hierarchical_memsw_limit %llu\n",
3824 			   (u64)memsw * PAGE_SIZE);
3825 
3826 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3827 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3828 			continue;
3829 		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
3830 			   (u64)memcg_page_state(memcg, memcg1_stats[i]) *
3831 			   PAGE_SIZE);
3832 	}
3833 
3834 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3835 		seq_printf(m, "total_%s %llu\n",
3836 			   vm_event_name(memcg1_events[i]),
3837 			   (u64)memcg_events(memcg, memcg1_events[i]));
3838 
3839 	for (i = 0; i < NR_LRU_LISTS; i++)
3840 		seq_printf(m, "total_%s %llu\n", lru_list_name(i),
3841 			   (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
3842 			   PAGE_SIZE);
3843 
3844 #ifdef CONFIG_DEBUG_VM
3845 	{
3846 		pg_data_t *pgdat;
3847 		struct mem_cgroup_per_node *mz;
3848 		struct zone_reclaim_stat *rstat;
3849 		unsigned long recent_rotated[2] = {0, 0};
3850 		unsigned long recent_scanned[2] = {0, 0};
3851 
3852 		for_each_online_pgdat(pgdat) {
3853 			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3854 			rstat = &mz->lruvec.reclaim_stat;
3855 
3856 			recent_rotated[0] += rstat->recent_rotated[0];
3857 			recent_rotated[1] += rstat->recent_rotated[1];
3858 			recent_scanned[0] += rstat->recent_scanned[0];
3859 			recent_scanned[1] += rstat->recent_scanned[1];
3860 		}
3861 		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3862 		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3863 		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3864 		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3865 	}
3866 #endif
3867 
3868 	return 0;
3869 }
3870 
3871 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3872 				      struct cftype *cft)
3873 {
3874 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3875 
3876 	return mem_cgroup_swappiness(memcg);
3877 }
3878 
3879 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3880 				       struct cftype *cft, u64 val)
3881 {
3882 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3883 
3884 	if (val > 100)
3885 		return -EINVAL;
3886 
3887 	if (css->parent)
3888 		memcg->swappiness = val;
3889 	else
3890 		vm_swappiness = val;
3891 
3892 	return 0;
3893 }
3894 
3895 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3896 {
3897 	struct mem_cgroup_threshold_ary *t;
3898 	unsigned long usage;
3899 	int i;
3900 
3901 	rcu_read_lock();
3902 	if (!swap)
3903 		t = rcu_dereference(memcg->thresholds.primary);
3904 	else
3905 		t = rcu_dereference(memcg->memsw_thresholds.primary);
3906 
3907 	if (!t)
3908 		goto unlock;
3909 
3910 	usage = mem_cgroup_usage(memcg, swap);
3911 
3912 	/*
3913 	 * current_threshold points to threshold just below or equal to usage.
3914 	 * If it's not true, a threshold was crossed after last
3915 	 * call of __mem_cgroup_threshold().
3916 	 */
3917 	i = t->current_threshold;
3918 
3919 	/*
3920 	 * Iterate backward over array of thresholds starting from
3921 	 * current_threshold and check if a threshold is crossed.
3922 	 * If none of thresholds below usage is crossed, we read
3923 	 * only one element of the array here.
3924 	 */
3925 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3926 		eventfd_signal(t->entries[i].eventfd, 1);
3927 
3928 	/* i = current_threshold + 1 */
3929 	i++;
3930 
3931 	/*
3932 	 * Iterate forward over array of thresholds starting from
3933 	 * current_threshold+1 and check if a threshold is crossed.
3934 	 * If none of thresholds above usage is crossed, we read
3935 	 * only one element of the array here.
3936 	 */
3937 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3938 		eventfd_signal(t->entries[i].eventfd, 1);
3939 
3940 	/* Update current_threshold */
3941 	t->current_threshold = i - 1;
3942 unlock:
3943 	rcu_read_unlock();
3944 }
3945 
3946 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3947 {
3948 	while (memcg) {
3949 		__mem_cgroup_threshold(memcg, false);
3950 		if (do_memsw_account())
3951 			__mem_cgroup_threshold(memcg, true);
3952 
3953 		memcg = parent_mem_cgroup(memcg);
3954 	}
3955 }
3956 
3957 static int compare_thresholds(const void *a, const void *b)
3958 {
3959 	const struct mem_cgroup_threshold *_a = a;
3960 	const struct mem_cgroup_threshold *_b = b;
3961 
3962 	if (_a->threshold > _b->threshold)
3963 		return 1;
3964 
3965 	if (_a->threshold < _b->threshold)
3966 		return -1;
3967 
3968 	return 0;
3969 }
3970 
3971 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3972 {
3973 	struct mem_cgroup_eventfd_list *ev;
3974 
3975 	spin_lock(&memcg_oom_lock);
3976 
3977 	list_for_each_entry(ev, &memcg->oom_notify, list)
3978 		eventfd_signal(ev->eventfd, 1);
3979 
3980 	spin_unlock(&memcg_oom_lock);
3981 	return 0;
3982 }
3983 
3984 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3985 {
3986 	struct mem_cgroup *iter;
3987 
3988 	for_each_mem_cgroup_tree(iter, memcg)
3989 		mem_cgroup_oom_notify_cb(iter);
3990 }
3991 
3992 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3993 	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3994 {
3995 	struct mem_cgroup_thresholds *thresholds;
3996 	struct mem_cgroup_threshold_ary *new;
3997 	unsigned long threshold;
3998 	unsigned long usage;
3999 	int i, size, ret;
4000 
4001 	ret = page_counter_memparse(args, "-1", &threshold);
4002 	if (ret)
4003 		return ret;
4004 
4005 	mutex_lock(&memcg->thresholds_lock);
4006 
4007 	if (type == _MEM) {
4008 		thresholds = &memcg->thresholds;
4009 		usage = mem_cgroup_usage(memcg, false);
4010 	} else if (type == _MEMSWAP) {
4011 		thresholds = &memcg->memsw_thresholds;
4012 		usage = mem_cgroup_usage(memcg, true);
4013 	} else
4014 		BUG();
4015 
4016 	/* Check if a threshold crossed before adding a new one */
4017 	if (thresholds->primary)
4018 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4019 
4020 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4021 
4022 	/* Allocate memory for new array of thresholds */
4023 	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4024 	if (!new) {
4025 		ret = -ENOMEM;
4026 		goto unlock;
4027 	}
4028 	new->size = size;
4029 
4030 	/* Copy thresholds (if any) to new array */
4031 	if (thresholds->primary) {
4032 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4033 				sizeof(struct mem_cgroup_threshold));
4034 	}
4035 
4036 	/* Add new threshold */
4037 	new->entries[size - 1].eventfd = eventfd;
4038 	new->entries[size - 1].threshold = threshold;
4039 
4040 	/* Sort thresholds. Registering of new threshold isn't time-critical */
4041 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4042 			compare_thresholds, NULL);
4043 
4044 	/* Find current threshold */
4045 	new->current_threshold = -1;
4046 	for (i = 0; i < size; i++) {
4047 		if (new->entries[i].threshold <= usage) {
4048 			/*
4049 			 * new->current_threshold will not be used until
4050 			 * rcu_assign_pointer(), so it's safe to increment
4051 			 * it here.
4052 			 */
4053 			++new->current_threshold;
4054 		} else
4055 			break;
4056 	}
4057 
4058 	/* Free old spare buffer and save old primary buffer as spare */
4059 	kfree(thresholds->spare);
4060 	thresholds->spare = thresholds->primary;
4061 
4062 	rcu_assign_pointer(thresholds->primary, new);
4063 
4064 	/* To be sure that nobody uses thresholds */
4065 	synchronize_rcu();
4066 
4067 unlock:
4068 	mutex_unlock(&memcg->thresholds_lock);
4069 
4070 	return ret;
4071 }
4072 
4073 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4074 	struct eventfd_ctx *eventfd, const char *args)
4075 {
4076 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4077 }
4078 
4079 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4080 	struct eventfd_ctx *eventfd, const char *args)
4081 {
4082 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4083 }
4084 
4085 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4086 	struct eventfd_ctx *eventfd, enum res_type type)
4087 {
4088 	struct mem_cgroup_thresholds *thresholds;
4089 	struct mem_cgroup_threshold_ary *new;
4090 	unsigned long usage;
4091 	int i, j, size, entries;
4092 
4093 	mutex_lock(&memcg->thresholds_lock);
4094 
4095 	if (type == _MEM) {
4096 		thresholds = &memcg->thresholds;
4097 		usage = mem_cgroup_usage(memcg, false);
4098 	} else if (type == _MEMSWAP) {
4099 		thresholds = &memcg->memsw_thresholds;
4100 		usage = mem_cgroup_usage(memcg, true);
4101 	} else
4102 		BUG();
4103 
4104 	if (!thresholds->primary)
4105 		goto unlock;
4106 
4107 	/* Check if a threshold crossed before removing */
4108 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4109 
4110 	/* Calculate new number of threshold */
4111 	size = entries = 0;
4112 	for (i = 0; i < thresholds->primary->size; i++) {
4113 		if (thresholds->primary->entries[i].eventfd != eventfd)
4114 			size++;
4115 		else
4116 			entries++;
4117 	}
4118 
4119 	new = thresholds->spare;
4120 
4121 	/* If no items related to eventfd have been cleared, nothing to do */
4122 	if (!entries)
4123 		goto unlock;
4124 
4125 	/* Set thresholds array to NULL if we don't have thresholds */
4126 	if (!size) {
4127 		kfree(new);
4128 		new = NULL;
4129 		goto swap_buffers;
4130 	}
4131 
4132 	new->size = size;
4133 
4134 	/* Copy thresholds and find current threshold */
4135 	new->current_threshold = -1;
4136 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4137 		if (thresholds->primary->entries[i].eventfd == eventfd)
4138 			continue;
4139 
4140 		new->entries[j] = thresholds->primary->entries[i];
4141 		if (new->entries[j].threshold <= usage) {
4142 			/*
4143 			 * new->current_threshold will not be used
4144 			 * until rcu_assign_pointer(), so it's safe to increment
4145 			 * it here.
4146 			 */
4147 			++new->current_threshold;
4148 		}
4149 		j++;
4150 	}
4151 
4152 swap_buffers:
4153 	/* Swap primary and spare array */
4154 	thresholds->spare = thresholds->primary;
4155 
4156 	rcu_assign_pointer(thresholds->primary, new);
4157 
4158 	/* To be sure that nobody uses thresholds */
4159 	synchronize_rcu();
4160 
4161 	/* If all events are unregistered, free the spare array */
4162 	if (!new) {
4163 		kfree(thresholds->spare);
4164 		thresholds->spare = NULL;
4165 	}
4166 unlock:
4167 	mutex_unlock(&memcg->thresholds_lock);
4168 }
4169 
4170 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4171 	struct eventfd_ctx *eventfd)
4172 {
4173 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4174 }
4175 
4176 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4177 	struct eventfd_ctx *eventfd)
4178 {
4179 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4180 }
4181 
4182 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4183 	struct eventfd_ctx *eventfd, const char *args)
4184 {
4185 	struct mem_cgroup_eventfd_list *event;
4186 
4187 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4188 	if (!event)
4189 		return -ENOMEM;
4190 
4191 	spin_lock(&memcg_oom_lock);
4192 
4193 	event->eventfd = eventfd;
4194 	list_add(&event->list, &memcg->oom_notify);
4195 
4196 	/* already in OOM ? */
4197 	if (memcg->under_oom)
4198 		eventfd_signal(eventfd, 1);
4199 	spin_unlock(&memcg_oom_lock);
4200 
4201 	return 0;
4202 }
4203 
4204 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4205 	struct eventfd_ctx *eventfd)
4206 {
4207 	struct mem_cgroup_eventfd_list *ev, *tmp;
4208 
4209 	spin_lock(&memcg_oom_lock);
4210 
4211 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4212 		if (ev->eventfd == eventfd) {
4213 			list_del(&ev->list);
4214 			kfree(ev);
4215 		}
4216 	}
4217 
4218 	spin_unlock(&memcg_oom_lock);
4219 }
4220 
4221 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4222 {
4223 	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4224 
4225 	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4226 	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4227 	seq_printf(sf, "oom_kill %lu\n",
4228 		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4229 	return 0;
4230 }
4231 
4232 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4233 	struct cftype *cft, u64 val)
4234 {
4235 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4236 
4237 	/* cannot set to root cgroup and only 0 and 1 are allowed */
4238 	if (!css->parent || !((val == 0) || (val == 1)))
4239 		return -EINVAL;
4240 
4241 	memcg->oom_kill_disable = val;
4242 	if (!val)
4243 		memcg_oom_recover(memcg);
4244 
4245 	return 0;
4246 }
4247 
4248 #ifdef CONFIG_CGROUP_WRITEBACK
4249 
4250 #include <trace/events/writeback.h>
4251 
4252 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4253 {
4254 	return wb_domain_init(&memcg->cgwb_domain, gfp);
4255 }
4256 
4257 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4258 {
4259 	wb_domain_exit(&memcg->cgwb_domain);
4260 }
4261 
4262 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4263 {
4264 	wb_domain_size_changed(&memcg->cgwb_domain);
4265 }
4266 
4267 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4268 {
4269 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4270 
4271 	if (!memcg->css.parent)
4272 		return NULL;
4273 
4274 	return &memcg->cgwb_domain;
4275 }
4276 
4277 /*
4278  * idx can be of type enum memcg_stat_item or node_stat_item.
4279  * Keep in sync with memcg_exact_page().
4280  */
4281 static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4282 {
4283 	long x = atomic_long_read(&memcg->vmstats[idx]);
4284 	int cpu;
4285 
4286 	for_each_online_cpu(cpu)
4287 		x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4288 	if (x < 0)
4289 		x = 0;
4290 	return x;
4291 }
4292 
4293 /**
4294  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4295  * @wb: bdi_writeback in question
4296  * @pfilepages: out parameter for number of file pages
4297  * @pheadroom: out parameter for number of allocatable pages according to memcg
4298  * @pdirty: out parameter for number of dirty pages
4299  * @pwriteback: out parameter for number of pages under writeback
4300  *
4301  * Determine the numbers of file, headroom, dirty, and writeback pages in
4302  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
4303  * is a bit more involved.
4304  *
4305  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
4306  * headroom is calculated as the lowest headroom of itself and the
4307  * ancestors.  Note that this doesn't consider the actual amount of
4308  * available memory in the system.  The caller should further cap
4309  * *@pheadroom accordingly.
4310  */
4311 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4312 			 unsigned long *pheadroom, unsigned long *pdirty,
4313 			 unsigned long *pwriteback)
4314 {
4315 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4316 	struct mem_cgroup *parent;
4317 
4318 	*pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4319 
4320 	/* this should eventually include NR_UNSTABLE_NFS */
4321 	*pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4322 	*pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4323 			memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4324 	*pheadroom = PAGE_COUNTER_MAX;
4325 
4326 	while ((parent = parent_mem_cgroup(memcg))) {
4327 		unsigned long ceiling = min(memcg->memory.max, memcg->high);
4328 		unsigned long used = page_counter_read(&memcg->memory);
4329 
4330 		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4331 		memcg = parent;
4332 	}
4333 }
4334 
4335 /*
4336  * Foreign dirty flushing
4337  *
4338  * There's an inherent mismatch between memcg and writeback.  The former
4339  * trackes ownership per-page while the latter per-inode.  This was a
4340  * deliberate design decision because honoring per-page ownership in the
4341  * writeback path is complicated, may lead to higher CPU and IO overheads
4342  * and deemed unnecessary given that write-sharing an inode across
4343  * different cgroups isn't a common use-case.
4344  *
4345  * Combined with inode majority-writer ownership switching, this works well
4346  * enough in most cases but there are some pathological cases.  For
4347  * example, let's say there are two cgroups A and B which keep writing to
4348  * different but confined parts of the same inode.  B owns the inode and
4349  * A's memory is limited far below B's.  A's dirty ratio can rise enough to
4350  * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4351  * triggering background writeback.  A will be slowed down without a way to
4352  * make writeback of the dirty pages happen.
4353  *
4354  * Conditions like the above can lead to a cgroup getting repatedly and
4355  * severely throttled after making some progress after each
4356  * dirty_expire_interval while the underyling IO device is almost
4357  * completely idle.
4358  *
4359  * Solving this problem completely requires matching the ownership tracking
4360  * granularities between memcg and writeback in either direction.  However,
4361  * the more egregious behaviors can be avoided by simply remembering the
4362  * most recent foreign dirtying events and initiating remote flushes on
4363  * them when local writeback isn't enough to keep the memory clean enough.
4364  *
4365  * The following two functions implement such mechanism.  When a foreign
4366  * page - a page whose memcg and writeback ownerships don't match - is
4367  * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4368  * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
4369  * decides that the memcg needs to sleep due to high dirty ratio, it calls
4370  * mem_cgroup_flush_foreign() which queues writeback on the recorded
4371  * foreign bdi_writebacks which haven't expired.  Both the numbers of
4372  * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4373  * limited to MEMCG_CGWB_FRN_CNT.
4374  *
4375  * The mechanism only remembers IDs and doesn't hold any object references.
4376  * As being wrong occasionally doesn't matter, updates and accesses to the
4377  * records are lockless and racy.
4378  */
4379 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4380 					     struct bdi_writeback *wb)
4381 {
4382 	struct mem_cgroup *memcg = page->mem_cgroup;
4383 	struct memcg_cgwb_frn *frn;
4384 	u64 now = get_jiffies_64();
4385 	u64 oldest_at = now;
4386 	int oldest = -1;
4387 	int i;
4388 
4389 	trace_track_foreign_dirty(page, wb);
4390 
4391 	/*
4392 	 * Pick the slot to use.  If there is already a slot for @wb, keep
4393 	 * using it.  If not replace the oldest one which isn't being
4394 	 * written out.
4395 	 */
4396 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4397 		frn = &memcg->cgwb_frn[i];
4398 		if (frn->bdi_id == wb->bdi->id &&
4399 		    frn->memcg_id == wb->memcg_css->id)
4400 			break;
4401 		if (time_before64(frn->at, oldest_at) &&
4402 		    atomic_read(&frn->done.cnt) == 1) {
4403 			oldest = i;
4404 			oldest_at = frn->at;
4405 		}
4406 	}
4407 
4408 	if (i < MEMCG_CGWB_FRN_CNT) {
4409 		/*
4410 		 * Re-using an existing one.  Update timestamp lazily to
4411 		 * avoid making the cacheline hot.  We want them to be
4412 		 * reasonably up-to-date and significantly shorter than
4413 		 * dirty_expire_interval as that's what expires the record.
4414 		 * Use the shorter of 1s and dirty_expire_interval / 8.
4415 		 */
4416 		unsigned long update_intv =
4417 			min_t(unsigned long, HZ,
4418 			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4419 
4420 		if (time_before64(frn->at, now - update_intv))
4421 			frn->at = now;
4422 	} else if (oldest >= 0) {
4423 		/* replace the oldest free one */
4424 		frn = &memcg->cgwb_frn[oldest];
4425 		frn->bdi_id = wb->bdi->id;
4426 		frn->memcg_id = wb->memcg_css->id;
4427 		frn->at = now;
4428 	}
4429 }
4430 
4431 /* issue foreign writeback flushes for recorded foreign dirtying events */
4432 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4433 {
4434 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4435 	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4436 	u64 now = jiffies_64;
4437 	int i;
4438 
4439 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4440 		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4441 
4442 		/*
4443 		 * If the record is older than dirty_expire_interval,
4444 		 * writeback on it has already started.  No need to kick it
4445 		 * off again.  Also, don't start a new one if there's
4446 		 * already one in flight.
4447 		 */
4448 		if (time_after64(frn->at, now - intv) &&
4449 		    atomic_read(&frn->done.cnt) == 1) {
4450 			frn->at = 0;
4451 			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4452 			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4453 					       WB_REASON_FOREIGN_FLUSH,
4454 					       &frn->done);
4455 		}
4456 	}
4457 }
4458 
4459 #else	/* CONFIG_CGROUP_WRITEBACK */
4460 
4461 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4462 {
4463 	return 0;
4464 }
4465 
4466 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4467 {
4468 }
4469 
4470 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4471 {
4472 }
4473 
4474 #endif	/* CONFIG_CGROUP_WRITEBACK */
4475 
4476 /*
4477  * DO NOT USE IN NEW FILES.
4478  *
4479  * "cgroup.event_control" implementation.
4480  *
4481  * This is way over-engineered.  It tries to support fully configurable
4482  * events for each user.  Such level of flexibility is completely
4483  * unnecessary especially in the light of the planned unified hierarchy.
4484  *
4485  * Please deprecate this and replace with something simpler if at all
4486  * possible.
4487  */
4488 
4489 /*
4490  * Unregister event and free resources.
4491  *
4492  * Gets called from workqueue.
4493  */
4494 static void memcg_event_remove(struct work_struct *work)
4495 {
4496 	struct mem_cgroup_event *event =
4497 		container_of(work, struct mem_cgroup_event, remove);
4498 	struct mem_cgroup *memcg = event->memcg;
4499 
4500 	remove_wait_queue(event->wqh, &event->wait);
4501 
4502 	event->unregister_event(memcg, event->eventfd);
4503 
4504 	/* Notify userspace the event is going away. */
4505 	eventfd_signal(event->eventfd, 1);
4506 
4507 	eventfd_ctx_put(event->eventfd);
4508 	kfree(event);
4509 	css_put(&memcg->css);
4510 }
4511 
4512 /*
4513  * Gets called on EPOLLHUP on eventfd when user closes it.
4514  *
4515  * Called with wqh->lock held and interrupts disabled.
4516  */
4517 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4518 			    int sync, void *key)
4519 {
4520 	struct mem_cgroup_event *event =
4521 		container_of(wait, struct mem_cgroup_event, wait);
4522 	struct mem_cgroup *memcg = event->memcg;
4523 	__poll_t flags = key_to_poll(key);
4524 
4525 	if (flags & EPOLLHUP) {
4526 		/*
4527 		 * If the event has been detached at cgroup removal, we
4528 		 * can simply return knowing the other side will cleanup
4529 		 * for us.
4530 		 *
4531 		 * We can't race against event freeing since the other
4532 		 * side will require wqh->lock via remove_wait_queue(),
4533 		 * which we hold.
4534 		 */
4535 		spin_lock(&memcg->event_list_lock);
4536 		if (!list_empty(&event->list)) {
4537 			list_del_init(&event->list);
4538 			/*
4539 			 * We are in atomic context, but cgroup_event_remove()
4540 			 * may sleep, so we have to call it in workqueue.
4541 			 */
4542 			schedule_work(&event->remove);
4543 		}
4544 		spin_unlock(&memcg->event_list_lock);
4545 	}
4546 
4547 	return 0;
4548 }
4549 
4550 static void memcg_event_ptable_queue_proc(struct file *file,
4551 		wait_queue_head_t *wqh, poll_table *pt)
4552 {
4553 	struct mem_cgroup_event *event =
4554 		container_of(pt, struct mem_cgroup_event, pt);
4555 
4556 	event->wqh = wqh;
4557 	add_wait_queue(wqh, &event->wait);
4558 }
4559 
4560 /*
4561  * DO NOT USE IN NEW FILES.
4562  *
4563  * Parse input and register new cgroup event handler.
4564  *
4565  * Input must be in format '<event_fd> <control_fd> <args>'.
4566  * Interpretation of args is defined by control file implementation.
4567  */
4568 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4569 					 char *buf, size_t nbytes, loff_t off)
4570 {
4571 	struct cgroup_subsys_state *css = of_css(of);
4572 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4573 	struct mem_cgroup_event *event;
4574 	struct cgroup_subsys_state *cfile_css;
4575 	unsigned int efd, cfd;
4576 	struct fd efile;
4577 	struct fd cfile;
4578 	const char *name;
4579 	char *endp;
4580 	int ret;
4581 
4582 	buf = strstrip(buf);
4583 
4584 	efd = simple_strtoul(buf, &endp, 10);
4585 	if (*endp != ' ')
4586 		return -EINVAL;
4587 	buf = endp + 1;
4588 
4589 	cfd = simple_strtoul(buf, &endp, 10);
4590 	if ((*endp != ' ') && (*endp != '\0'))
4591 		return -EINVAL;
4592 	buf = endp + 1;
4593 
4594 	event = kzalloc(sizeof(*event), GFP_KERNEL);
4595 	if (!event)
4596 		return -ENOMEM;
4597 
4598 	event->memcg = memcg;
4599 	INIT_LIST_HEAD(&event->list);
4600 	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4601 	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4602 	INIT_WORK(&event->remove, memcg_event_remove);
4603 
4604 	efile = fdget(efd);
4605 	if (!efile.file) {
4606 		ret = -EBADF;
4607 		goto out_kfree;
4608 	}
4609 
4610 	event->eventfd = eventfd_ctx_fileget(efile.file);
4611 	if (IS_ERR(event->eventfd)) {
4612 		ret = PTR_ERR(event->eventfd);
4613 		goto out_put_efile;
4614 	}
4615 
4616 	cfile = fdget(cfd);
4617 	if (!cfile.file) {
4618 		ret = -EBADF;
4619 		goto out_put_eventfd;
4620 	}
4621 
4622 	/* the process need read permission on control file */
4623 	/* AV: shouldn't we check that it's been opened for read instead? */
4624 	ret = inode_permission(file_inode(cfile.file), MAY_READ);
4625 	if (ret < 0)
4626 		goto out_put_cfile;
4627 
4628 	/*
4629 	 * Determine the event callbacks and set them in @event.  This used
4630 	 * to be done via struct cftype but cgroup core no longer knows
4631 	 * about these events.  The following is crude but the whole thing
4632 	 * is for compatibility anyway.
4633 	 *
4634 	 * DO NOT ADD NEW FILES.
4635 	 */
4636 	name = cfile.file->f_path.dentry->d_name.name;
4637 
4638 	if (!strcmp(name, "memory.usage_in_bytes")) {
4639 		event->register_event = mem_cgroup_usage_register_event;
4640 		event->unregister_event = mem_cgroup_usage_unregister_event;
4641 	} else if (!strcmp(name, "memory.oom_control")) {
4642 		event->register_event = mem_cgroup_oom_register_event;
4643 		event->unregister_event = mem_cgroup_oom_unregister_event;
4644 	} else if (!strcmp(name, "memory.pressure_level")) {
4645 		event->register_event = vmpressure_register_event;
4646 		event->unregister_event = vmpressure_unregister_event;
4647 	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4648 		event->register_event = memsw_cgroup_usage_register_event;
4649 		event->unregister_event = memsw_cgroup_usage_unregister_event;
4650 	} else {
4651 		ret = -EINVAL;
4652 		goto out_put_cfile;
4653 	}
4654 
4655 	/*
4656 	 * Verify @cfile should belong to @css.  Also, remaining events are
4657 	 * automatically removed on cgroup destruction but the removal is
4658 	 * asynchronous, so take an extra ref on @css.
4659 	 */
4660 	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4661 					       &memory_cgrp_subsys);
4662 	ret = -EINVAL;
4663 	if (IS_ERR(cfile_css))
4664 		goto out_put_cfile;
4665 	if (cfile_css != css) {
4666 		css_put(cfile_css);
4667 		goto out_put_cfile;
4668 	}
4669 
4670 	ret = event->register_event(memcg, event->eventfd, buf);
4671 	if (ret)
4672 		goto out_put_css;
4673 
4674 	vfs_poll(efile.file, &event->pt);
4675 
4676 	spin_lock(&memcg->event_list_lock);
4677 	list_add(&event->list, &memcg->event_list);
4678 	spin_unlock(&memcg->event_list_lock);
4679 
4680 	fdput(cfile);
4681 	fdput(efile);
4682 
4683 	return nbytes;
4684 
4685 out_put_css:
4686 	css_put(css);
4687 out_put_cfile:
4688 	fdput(cfile);
4689 out_put_eventfd:
4690 	eventfd_ctx_put(event->eventfd);
4691 out_put_efile:
4692 	fdput(efile);
4693 out_kfree:
4694 	kfree(event);
4695 
4696 	return ret;
4697 }
4698 
4699 static struct cftype mem_cgroup_legacy_files[] = {
4700 	{
4701 		.name = "usage_in_bytes",
4702 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4703 		.read_u64 = mem_cgroup_read_u64,
4704 	},
4705 	{
4706 		.name = "max_usage_in_bytes",
4707 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4708 		.write = mem_cgroup_reset,
4709 		.read_u64 = mem_cgroup_read_u64,
4710 	},
4711 	{
4712 		.name = "limit_in_bytes",
4713 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4714 		.write = mem_cgroup_write,
4715 		.read_u64 = mem_cgroup_read_u64,
4716 	},
4717 	{
4718 		.name = "soft_limit_in_bytes",
4719 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4720 		.write = mem_cgroup_write,
4721 		.read_u64 = mem_cgroup_read_u64,
4722 	},
4723 	{
4724 		.name = "failcnt",
4725 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4726 		.write = mem_cgroup_reset,
4727 		.read_u64 = mem_cgroup_read_u64,
4728 	},
4729 	{
4730 		.name = "stat",
4731 		.seq_show = memcg_stat_show,
4732 	},
4733 	{
4734 		.name = "force_empty",
4735 		.write = mem_cgroup_force_empty_write,
4736 	},
4737 	{
4738 		.name = "use_hierarchy",
4739 		.write_u64 = mem_cgroup_hierarchy_write,
4740 		.read_u64 = mem_cgroup_hierarchy_read,
4741 	},
4742 	{
4743 		.name = "cgroup.event_control",		/* XXX: for compat */
4744 		.write = memcg_write_event_control,
4745 		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4746 	},
4747 	{
4748 		.name = "swappiness",
4749 		.read_u64 = mem_cgroup_swappiness_read,
4750 		.write_u64 = mem_cgroup_swappiness_write,
4751 	},
4752 	{
4753 		.name = "move_charge_at_immigrate",
4754 		.read_u64 = mem_cgroup_move_charge_read,
4755 		.write_u64 = mem_cgroup_move_charge_write,
4756 	},
4757 	{
4758 		.name = "oom_control",
4759 		.seq_show = mem_cgroup_oom_control_read,
4760 		.write_u64 = mem_cgroup_oom_control_write,
4761 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4762 	},
4763 	{
4764 		.name = "pressure_level",
4765 	},
4766 #ifdef CONFIG_NUMA
4767 	{
4768 		.name = "numa_stat",
4769 		.seq_show = memcg_numa_stat_show,
4770 	},
4771 #endif
4772 	{
4773 		.name = "kmem.limit_in_bytes",
4774 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4775 		.write = mem_cgroup_write,
4776 		.read_u64 = mem_cgroup_read_u64,
4777 	},
4778 	{
4779 		.name = "kmem.usage_in_bytes",
4780 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4781 		.read_u64 = mem_cgroup_read_u64,
4782 	},
4783 	{
4784 		.name = "kmem.failcnt",
4785 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4786 		.write = mem_cgroup_reset,
4787 		.read_u64 = mem_cgroup_read_u64,
4788 	},
4789 	{
4790 		.name = "kmem.max_usage_in_bytes",
4791 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4792 		.write = mem_cgroup_reset,
4793 		.read_u64 = mem_cgroup_read_u64,
4794 	},
4795 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
4796 	{
4797 		.name = "kmem.slabinfo",
4798 		.seq_start = memcg_slab_start,
4799 		.seq_next = memcg_slab_next,
4800 		.seq_stop = memcg_slab_stop,
4801 		.seq_show = memcg_slab_show,
4802 	},
4803 #endif
4804 	{
4805 		.name = "kmem.tcp.limit_in_bytes",
4806 		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4807 		.write = mem_cgroup_write,
4808 		.read_u64 = mem_cgroup_read_u64,
4809 	},
4810 	{
4811 		.name = "kmem.tcp.usage_in_bytes",
4812 		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4813 		.read_u64 = mem_cgroup_read_u64,
4814 	},
4815 	{
4816 		.name = "kmem.tcp.failcnt",
4817 		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4818 		.write = mem_cgroup_reset,
4819 		.read_u64 = mem_cgroup_read_u64,
4820 	},
4821 	{
4822 		.name = "kmem.tcp.max_usage_in_bytes",
4823 		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4824 		.write = mem_cgroup_reset,
4825 		.read_u64 = mem_cgroup_read_u64,
4826 	},
4827 	{ },	/* terminate */
4828 };
4829 
4830 /*
4831  * Private memory cgroup IDR
4832  *
4833  * Swap-out records and page cache shadow entries need to store memcg
4834  * references in constrained space, so we maintain an ID space that is
4835  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4836  * memory-controlled cgroups to 64k.
4837  *
4838  * However, there usually are many references to the oflline CSS after
4839  * the cgroup has been destroyed, such as page cache or reclaimable
4840  * slab objects, that don't need to hang on to the ID. We want to keep
4841  * those dead CSS from occupying IDs, or we might quickly exhaust the
4842  * relatively small ID space and prevent the creation of new cgroups
4843  * even when there are much fewer than 64k cgroups - possibly none.
4844  *
4845  * Maintain a private 16-bit ID space for memcg, and allow the ID to
4846  * be freed and recycled when it's no longer needed, which is usually
4847  * when the CSS is offlined.
4848  *
4849  * The only exception to that are records of swapped out tmpfs/shmem
4850  * pages that need to be attributed to live ancestors on swapin. But
4851  * those references are manageable from userspace.
4852  */
4853 
4854 static DEFINE_IDR(mem_cgroup_idr);
4855 
4856 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4857 {
4858 	if (memcg->id.id > 0) {
4859 		idr_remove(&mem_cgroup_idr, memcg->id.id);
4860 		memcg->id.id = 0;
4861 	}
4862 }
4863 
4864 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4865 {
4866 	refcount_add(n, &memcg->id.ref);
4867 }
4868 
4869 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4870 {
4871 	if (refcount_sub_and_test(n, &memcg->id.ref)) {
4872 		mem_cgroup_id_remove(memcg);
4873 
4874 		/* Memcg ID pins CSS */
4875 		css_put(&memcg->css);
4876 	}
4877 }
4878 
4879 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4880 {
4881 	mem_cgroup_id_put_many(memcg, 1);
4882 }
4883 
4884 /**
4885  * mem_cgroup_from_id - look up a memcg from a memcg id
4886  * @id: the memcg id to look up
4887  *
4888  * Caller must hold rcu_read_lock().
4889  */
4890 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4891 {
4892 	WARN_ON_ONCE(!rcu_read_lock_held());
4893 	return idr_find(&mem_cgroup_idr, id);
4894 }
4895 
4896 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4897 {
4898 	struct mem_cgroup_per_node *pn;
4899 	int tmp = node;
4900 	/*
4901 	 * This routine is called against possible nodes.
4902 	 * But it's BUG to call kmalloc() against offline node.
4903 	 *
4904 	 * TODO: this routine can waste much memory for nodes which will
4905 	 *       never be onlined. It's better to use memory hotplug callback
4906 	 *       function.
4907 	 */
4908 	if (!node_state(node, N_NORMAL_MEMORY))
4909 		tmp = -1;
4910 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4911 	if (!pn)
4912 		return 1;
4913 
4914 	pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat);
4915 	if (!pn->lruvec_stat_local) {
4916 		kfree(pn);
4917 		return 1;
4918 	}
4919 
4920 	pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
4921 	if (!pn->lruvec_stat_cpu) {
4922 		free_percpu(pn->lruvec_stat_local);
4923 		kfree(pn);
4924 		return 1;
4925 	}
4926 
4927 	lruvec_init(&pn->lruvec);
4928 	pn->usage_in_excess = 0;
4929 	pn->on_tree = false;
4930 	pn->memcg = memcg;
4931 
4932 	memcg->nodeinfo[node] = pn;
4933 	return 0;
4934 }
4935 
4936 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4937 {
4938 	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4939 
4940 	if (!pn)
4941 		return;
4942 
4943 	free_percpu(pn->lruvec_stat_cpu);
4944 	free_percpu(pn->lruvec_stat_local);
4945 	kfree(pn);
4946 }
4947 
4948 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4949 {
4950 	int node;
4951 
4952 	for_each_node(node)
4953 		free_mem_cgroup_per_node_info(memcg, node);
4954 	free_percpu(memcg->vmstats_percpu);
4955 	free_percpu(memcg->vmstats_local);
4956 	kfree(memcg);
4957 }
4958 
4959 static void mem_cgroup_free(struct mem_cgroup *memcg)
4960 {
4961 	memcg_wb_domain_exit(memcg);
4962 	/*
4963 	 * Flush percpu vmstats and vmevents to guarantee the value correctness
4964 	 * on parent's and all ancestor levels.
4965 	 */
4966 	memcg_flush_percpu_vmstats(memcg);
4967 	memcg_flush_percpu_vmevents(memcg);
4968 	__mem_cgroup_free(memcg);
4969 }
4970 
4971 static struct mem_cgroup *mem_cgroup_alloc(void)
4972 {
4973 	struct mem_cgroup *memcg;
4974 	unsigned int size;
4975 	int node;
4976 	int __maybe_unused i;
4977 
4978 	size = sizeof(struct mem_cgroup);
4979 	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4980 
4981 	memcg = kzalloc(size, GFP_KERNEL);
4982 	if (!memcg)
4983 		return NULL;
4984 
4985 	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4986 				 1, MEM_CGROUP_ID_MAX,
4987 				 GFP_KERNEL);
4988 	if (memcg->id.id < 0)
4989 		goto fail;
4990 
4991 	memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu);
4992 	if (!memcg->vmstats_local)
4993 		goto fail;
4994 
4995 	memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu);
4996 	if (!memcg->vmstats_percpu)
4997 		goto fail;
4998 
4999 	for_each_node(node)
5000 		if (alloc_mem_cgroup_per_node_info(memcg, node))
5001 			goto fail;
5002 
5003 	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5004 		goto fail;
5005 
5006 	INIT_WORK(&memcg->high_work, high_work_func);
5007 	INIT_LIST_HEAD(&memcg->oom_notify);
5008 	mutex_init(&memcg->thresholds_lock);
5009 	spin_lock_init(&memcg->move_lock);
5010 	vmpressure_init(&memcg->vmpressure);
5011 	INIT_LIST_HEAD(&memcg->event_list);
5012 	spin_lock_init(&memcg->event_list_lock);
5013 	memcg->socket_pressure = jiffies;
5014 #ifdef CONFIG_MEMCG_KMEM
5015 	memcg->kmemcg_id = -1;
5016 #endif
5017 #ifdef CONFIG_CGROUP_WRITEBACK
5018 	INIT_LIST_HEAD(&memcg->cgwb_list);
5019 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5020 		memcg->cgwb_frn[i].done =
5021 			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5022 #endif
5023 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5024 	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5025 	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5026 	memcg->deferred_split_queue.split_queue_len = 0;
5027 #endif
5028 	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5029 	return memcg;
5030 fail:
5031 	mem_cgroup_id_remove(memcg);
5032 	__mem_cgroup_free(memcg);
5033 	return NULL;
5034 }
5035 
5036 static struct cgroup_subsys_state * __ref
5037 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5038 {
5039 	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5040 	struct mem_cgroup *memcg;
5041 	long error = -ENOMEM;
5042 
5043 	memcg = mem_cgroup_alloc();
5044 	if (!memcg)
5045 		return ERR_PTR(error);
5046 
5047 	memcg->high = PAGE_COUNTER_MAX;
5048 	memcg->soft_limit = PAGE_COUNTER_MAX;
5049 	if (parent) {
5050 		memcg->swappiness = mem_cgroup_swappiness(parent);
5051 		memcg->oom_kill_disable = parent->oom_kill_disable;
5052 	}
5053 	if (parent && parent->use_hierarchy) {
5054 		memcg->use_hierarchy = true;
5055 		page_counter_init(&memcg->memory, &parent->memory);
5056 		page_counter_init(&memcg->swap, &parent->swap);
5057 		page_counter_init(&memcg->memsw, &parent->memsw);
5058 		page_counter_init(&memcg->kmem, &parent->kmem);
5059 		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5060 	} else {
5061 		page_counter_init(&memcg->memory, NULL);
5062 		page_counter_init(&memcg->swap, NULL);
5063 		page_counter_init(&memcg->memsw, NULL);
5064 		page_counter_init(&memcg->kmem, NULL);
5065 		page_counter_init(&memcg->tcpmem, NULL);
5066 		/*
5067 		 * Deeper hierachy with use_hierarchy == false doesn't make
5068 		 * much sense so let cgroup subsystem know about this
5069 		 * unfortunate state in our controller.
5070 		 */
5071 		if (parent != root_mem_cgroup)
5072 			memory_cgrp_subsys.broken_hierarchy = true;
5073 	}
5074 
5075 	/* The following stuff does not apply to the root */
5076 	if (!parent) {
5077 #ifdef CONFIG_MEMCG_KMEM
5078 		INIT_LIST_HEAD(&memcg->kmem_caches);
5079 #endif
5080 		root_mem_cgroup = memcg;
5081 		return &memcg->css;
5082 	}
5083 
5084 	error = memcg_online_kmem(memcg);
5085 	if (error)
5086 		goto fail;
5087 
5088 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5089 		static_branch_inc(&memcg_sockets_enabled_key);
5090 
5091 	return &memcg->css;
5092 fail:
5093 	mem_cgroup_id_remove(memcg);
5094 	mem_cgroup_free(memcg);
5095 	return ERR_PTR(-ENOMEM);
5096 }
5097 
5098 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5099 {
5100 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5101 
5102 	/*
5103 	 * A memcg must be visible for memcg_expand_shrinker_maps()
5104 	 * by the time the maps are allocated. So, we allocate maps
5105 	 * here, when for_each_mem_cgroup() can't skip it.
5106 	 */
5107 	if (memcg_alloc_shrinker_maps(memcg)) {
5108 		mem_cgroup_id_remove(memcg);
5109 		return -ENOMEM;
5110 	}
5111 
5112 	/* Online state pins memcg ID, memcg ID pins CSS */
5113 	refcount_set(&memcg->id.ref, 1);
5114 	css_get(css);
5115 	return 0;
5116 }
5117 
5118 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5119 {
5120 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5121 	struct mem_cgroup_event *event, *tmp;
5122 
5123 	/*
5124 	 * Unregister events and notify userspace.
5125 	 * Notify userspace about cgroup removing only after rmdir of cgroup
5126 	 * directory to avoid race between userspace and kernelspace.
5127 	 */
5128 	spin_lock(&memcg->event_list_lock);
5129 	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5130 		list_del_init(&event->list);
5131 		schedule_work(&event->remove);
5132 	}
5133 	spin_unlock(&memcg->event_list_lock);
5134 
5135 	page_counter_set_min(&memcg->memory, 0);
5136 	page_counter_set_low(&memcg->memory, 0);
5137 
5138 	memcg_offline_kmem(memcg);
5139 	wb_memcg_offline(memcg);
5140 
5141 	drain_all_stock(memcg);
5142 
5143 	mem_cgroup_id_put(memcg);
5144 }
5145 
5146 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5147 {
5148 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5149 
5150 	invalidate_reclaim_iterators(memcg);
5151 }
5152 
5153 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5154 {
5155 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5156 	int __maybe_unused i;
5157 
5158 #ifdef CONFIG_CGROUP_WRITEBACK
5159 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5160 		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5161 #endif
5162 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5163 		static_branch_dec(&memcg_sockets_enabled_key);
5164 
5165 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5166 		static_branch_dec(&memcg_sockets_enabled_key);
5167 
5168 	vmpressure_cleanup(&memcg->vmpressure);
5169 	cancel_work_sync(&memcg->high_work);
5170 	mem_cgroup_remove_from_trees(memcg);
5171 	memcg_free_shrinker_maps(memcg);
5172 	memcg_free_kmem(memcg);
5173 	mem_cgroup_free(memcg);
5174 }
5175 
5176 /**
5177  * mem_cgroup_css_reset - reset the states of a mem_cgroup
5178  * @css: the target css
5179  *
5180  * Reset the states of the mem_cgroup associated with @css.  This is
5181  * invoked when the userland requests disabling on the default hierarchy
5182  * but the memcg is pinned through dependency.  The memcg should stop
5183  * applying policies and should revert to the vanilla state as it may be
5184  * made visible again.
5185  *
5186  * The current implementation only resets the essential configurations.
5187  * This needs to be expanded to cover all the visible parts.
5188  */
5189 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5190 {
5191 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5192 
5193 	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5194 	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5195 	page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
5196 	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5197 	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5198 	page_counter_set_min(&memcg->memory, 0);
5199 	page_counter_set_low(&memcg->memory, 0);
5200 	memcg->high = PAGE_COUNTER_MAX;
5201 	memcg->soft_limit = PAGE_COUNTER_MAX;
5202 	memcg_wb_domain_size_changed(memcg);
5203 }
5204 
5205 #ifdef CONFIG_MMU
5206 /* Handlers for move charge at task migration. */
5207 static int mem_cgroup_do_precharge(unsigned long count)
5208 {
5209 	int ret;
5210 
5211 	/* Try a single bulk charge without reclaim first, kswapd may wake */
5212 	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5213 	if (!ret) {
5214 		mc.precharge += count;
5215 		return ret;
5216 	}
5217 
5218 	/* Try charges one by one with reclaim, but do not retry */
5219 	while (count--) {
5220 		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5221 		if (ret)
5222 			return ret;
5223 		mc.precharge++;
5224 		cond_resched();
5225 	}
5226 	return 0;
5227 }
5228 
5229 union mc_target {
5230 	struct page	*page;
5231 	swp_entry_t	ent;
5232 };
5233 
5234 enum mc_target_type {
5235 	MC_TARGET_NONE = 0,
5236 	MC_TARGET_PAGE,
5237 	MC_TARGET_SWAP,
5238 	MC_TARGET_DEVICE,
5239 };
5240 
5241 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5242 						unsigned long addr, pte_t ptent)
5243 {
5244 	struct page *page = vm_normal_page(vma, addr, ptent);
5245 
5246 	if (!page || !page_mapped(page))
5247 		return NULL;
5248 	if (PageAnon(page)) {
5249 		if (!(mc.flags & MOVE_ANON))
5250 			return NULL;
5251 	} else {
5252 		if (!(mc.flags & MOVE_FILE))
5253 			return NULL;
5254 	}
5255 	if (!get_page_unless_zero(page))
5256 		return NULL;
5257 
5258 	return page;
5259 }
5260 
5261 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5262 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5263 			pte_t ptent, swp_entry_t *entry)
5264 {
5265 	struct page *page = NULL;
5266 	swp_entry_t ent = pte_to_swp_entry(ptent);
5267 
5268 	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
5269 		return NULL;
5270 
5271 	/*
5272 	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5273 	 * a device and because they are not accessible by CPU they are store
5274 	 * as special swap entry in the CPU page table.
5275 	 */
5276 	if (is_device_private_entry(ent)) {
5277 		page = device_private_entry_to_page(ent);
5278 		/*
5279 		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5280 		 * a refcount of 1 when free (unlike normal page)
5281 		 */
5282 		if (!page_ref_add_unless(page, 1, 1))
5283 			return NULL;
5284 		return page;
5285 	}
5286 
5287 	/*
5288 	 * Because lookup_swap_cache() updates some statistics counter,
5289 	 * we call find_get_page() with swapper_space directly.
5290 	 */
5291 	page = find_get_page(swap_address_space(ent), swp_offset(ent));
5292 	if (do_memsw_account())
5293 		entry->val = ent.val;
5294 
5295 	return page;
5296 }
5297 #else
5298 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5299 			pte_t ptent, swp_entry_t *entry)
5300 {
5301 	return NULL;
5302 }
5303 #endif
5304 
5305 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5306 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5307 {
5308 	struct page *page = NULL;
5309 	struct address_space *mapping;
5310 	pgoff_t pgoff;
5311 
5312 	if (!vma->vm_file) /* anonymous vma */
5313 		return NULL;
5314 	if (!(mc.flags & MOVE_FILE))
5315 		return NULL;
5316 
5317 	mapping = vma->vm_file->f_mapping;
5318 	pgoff = linear_page_index(vma, addr);
5319 
5320 	/* page is moved even if it's not RSS of this task(page-faulted). */
5321 #ifdef CONFIG_SWAP
5322 	/* shmem/tmpfs may report page out on swap: account for that too. */
5323 	if (shmem_mapping(mapping)) {
5324 		page = find_get_entry(mapping, pgoff);
5325 		if (xa_is_value(page)) {
5326 			swp_entry_t swp = radix_to_swp_entry(page);
5327 			if (do_memsw_account())
5328 				*entry = swp;
5329 			page = find_get_page(swap_address_space(swp),
5330 					     swp_offset(swp));
5331 		}
5332 	} else
5333 		page = find_get_page(mapping, pgoff);
5334 #else
5335 	page = find_get_page(mapping, pgoff);
5336 #endif
5337 	return page;
5338 }
5339 
5340 /**
5341  * mem_cgroup_move_account - move account of the page
5342  * @page: the page
5343  * @compound: charge the page as compound or small page
5344  * @from: mem_cgroup which the page is moved from.
5345  * @to:	mem_cgroup which the page is moved to. @from != @to.
5346  *
5347  * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5348  *
5349  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5350  * from old cgroup.
5351  */
5352 static int mem_cgroup_move_account(struct page *page,
5353 				   bool compound,
5354 				   struct mem_cgroup *from,
5355 				   struct mem_cgroup *to)
5356 {
5357 	struct lruvec *from_vec, *to_vec;
5358 	struct pglist_data *pgdat;
5359 	unsigned long flags;
5360 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5361 	int ret;
5362 	bool anon;
5363 
5364 	VM_BUG_ON(from == to);
5365 	VM_BUG_ON_PAGE(PageLRU(page), page);
5366 	VM_BUG_ON(compound && !PageTransHuge(page));
5367 
5368 	/*
5369 	 * Prevent mem_cgroup_migrate() from looking at
5370 	 * page->mem_cgroup of its source page while we change it.
5371 	 */
5372 	ret = -EBUSY;
5373 	if (!trylock_page(page))
5374 		goto out;
5375 
5376 	ret = -EINVAL;
5377 	if (page->mem_cgroup != from)
5378 		goto out_unlock;
5379 
5380 	anon = PageAnon(page);
5381 
5382 	pgdat = page_pgdat(page);
5383 	from_vec = mem_cgroup_lruvec(from, pgdat);
5384 	to_vec = mem_cgroup_lruvec(to, pgdat);
5385 
5386 	spin_lock_irqsave(&from->move_lock, flags);
5387 
5388 	if (!anon && page_mapped(page)) {
5389 		__mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5390 		__mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5391 	}
5392 
5393 	/*
5394 	 * move_lock grabbed above and caller set from->moving_account, so
5395 	 * mod_memcg_page_state will serialize updates to PageDirty.
5396 	 * So mapping should be stable for dirty pages.
5397 	 */
5398 	if (!anon && PageDirty(page)) {
5399 		struct address_space *mapping = page_mapping(page);
5400 
5401 		if (mapping_cap_account_dirty(mapping)) {
5402 			__mod_lruvec_state(from_vec, NR_FILE_DIRTY, -nr_pages);
5403 			__mod_lruvec_state(to_vec, NR_FILE_DIRTY, nr_pages);
5404 		}
5405 	}
5406 
5407 	if (PageWriteback(page)) {
5408 		__mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5409 		__mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5410 	}
5411 
5412 	/*
5413 	 * It is safe to change page->mem_cgroup here because the page
5414 	 * is referenced, charged, and isolated - we can't race with
5415 	 * uncharging, charging, migration, or LRU putback.
5416 	 */
5417 
5418 	/* caller should have done css_get */
5419 	page->mem_cgroup = to;
5420 
5421 	spin_unlock_irqrestore(&from->move_lock, flags);
5422 
5423 	ret = 0;
5424 
5425 	local_irq_disable();
5426 	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
5427 	memcg_check_events(to, page);
5428 	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
5429 	memcg_check_events(from, page);
5430 	local_irq_enable();
5431 out_unlock:
5432 	unlock_page(page);
5433 out:
5434 	return ret;
5435 }
5436 
5437 /**
5438  * get_mctgt_type - get target type of moving charge
5439  * @vma: the vma the pte to be checked belongs
5440  * @addr: the address corresponding to the pte to be checked
5441  * @ptent: the pte to be checked
5442  * @target: the pointer the target page or swap ent will be stored(can be NULL)
5443  *
5444  * Returns
5445  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5446  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5447  *     move charge. if @target is not NULL, the page is stored in target->page
5448  *     with extra refcnt got(Callers should handle it).
5449  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5450  *     target for charge migration. if @target is not NULL, the entry is stored
5451  *     in target->ent.
5452  *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PRIVATE
5453  *     (so ZONE_DEVICE page and thus not on the lru).
5454  *     For now we such page is charge like a regular page would be as for all
5455  *     intent and purposes it is just special memory taking the place of a
5456  *     regular page.
5457  *
5458  *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5459  *
5460  * Called with pte lock held.
5461  */
5462 
5463 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5464 		unsigned long addr, pte_t ptent, union mc_target *target)
5465 {
5466 	struct page *page = NULL;
5467 	enum mc_target_type ret = MC_TARGET_NONE;
5468 	swp_entry_t ent = { .val = 0 };
5469 
5470 	if (pte_present(ptent))
5471 		page = mc_handle_present_pte(vma, addr, ptent);
5472 	else if (is_swap_pte(ptent))
5473 		page = mc_handle_swap_pte(vma, ptent, &ent);
5474 	else if (pte_none(ptent))
5475 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
5476 
5477 	if (!page && !ent.val)
5478 		return ret;
5479 	if (page) {
5480 		/*
5481 		 * Do only loose check w/o serialization.
5482 		 * mem_cgroup_move_account() checks the page is valid or
5483 		 * not under LRU exclusion.
5484 		 */
5485 		if (page->mem_cgroup == mc.from) {
5486 			ret = MC_TARGET_PAGE;
5487 			if (is_device_private_page(page))
5488 				ret = MC_TARGET_DEVICE;
5489 			if (target)
5490 				target->page = page;
5491 		}
5492 		if (!ret || !target)
5493 			put_page(page);
5494 	}
5495 	/*
5496 	 * There is a swap entry and a page doesn't exist or isn't charged.
5497 	 * But we cannot move a tail-page in a THP.
5498 	 */
5499 	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5500 	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5501 		ret = MC_TARGET_SWAP;
5502 		if (target)
5503 			target->ent = ent;
5504 	}
5505 	return ret;
5506 }
5507 
5508 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5509 /*
5510  * We don't consider PMD mapped swapping or file mapped pages because THP does
5511  * not support them for now.
5512  * Caller should make sure that pmd_trans_huge(pmd) is true.
5513  */
5514 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5515 		unsigned long addr, pmd_t pmd, union mc_target *target)
5516 {
5517 	struct page *page = NULL;
5518 	enum mc_target_type ret = MC_TARGET_NONE;
5519 
5520 	if (unlikely(is_swap_pmd(pmd))) {
5521 		VM_BUG_ON(thp_migration_supported() &&
5522 				  !is_pmd_migration_entry(pmd));
5523 		return ret;
5524 	}
5525 	page = pmd_page(pmd);
5526 	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5527 	if (!(mc.flags & MOVE_ANON))
5528 		return ret;
5529 	if (page->mem_cgroup == mc.from) {
5530 		ret = MC_TARGET_PAGE;
5531 		if (target) {
5532 			get_page(page);
5533 			target->page = page;
5534 		}
5535 	}
5536 	return ret;
5537 }
5538 #else
5539 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5540 		unsigned long addr, pmd_t pmd, union mc_target *target)
5541 {
5542 	return MC_TARGET_NONE;
5543 }
5544 #endif
5545 
5546 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5547 					unsigned long addr, unsigned long end,
5548 					struct mm_walk *walk)
5549 {
5550 	struct vm_area_struct *vma = walk->vma;
5551 	pte_t *pte;
5552 	spinlock_t *ptl;
5553 
5554 	ptl = pmd_trans_huge_lock(pmd, vma);
5555 	if (ptl) {
5556 		/*
5557 		 * Note their can not be MC_TARGET_DEVICE for now as we do not
5558 		 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5559 		 * this might change.
5560 		 */
5561 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5562 			mc.precharge += HPAGE_PMD_NR;
5563 		spin_unlock(ptl);
5564 		return 0;
5565 	}
5566 
5567 	if (pmd_trans_unstable(pmd))
5568 		return 0;
5569 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5570 	for (; addr != end; pte++, addr += PAGE_SIZE)
5571 		if (get_mctgt_type(vma, addr, *pte, NULL))
5572 			mc.precharge++;	/* increment precharge temporarily */
5573 	pte_unmap_unlock(pte - 1, ptl);
5574 	cond_resched();
5575 
5576 	return 0;
5577 }
5578 
5579 static const struct mm_walk_ops precharge_walk_ops = {
5580 	.pmd_entry	= mem_cgroup_count_precharge_pte_range,
5581 };
5582 
5583 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5584 {
5585 	unsigned long precharge;
5586 
5587 	down_read(&mm->mmap_sem);
5588 	walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5589 	up_read(&mm->mmap_sem);
5590 
5591 	precharge = mc.precharge;
5592 	mc.precharge = 0;
5593 
5594 	return precharge;
5595 }
5596 
5597 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5598 {
5599 	unsigned long precharge = mem_cgroup_count_precharge(mm);
5600 
5601 	VM_BUG_ON(mc.moving_task);
5602 	mc.moving_task = current;
5603 	return mem_cgroup_do_precharge(precharge);
5604 }
5605 
5606 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5607 static void __mem_cgroup_clear_mc(void)
5608 {
5609 	struct mem_cgroup *from = mc.from;
5610 	struct mem_cgroup *to = mc.to;
5611 
5612 	/* we must uncharge all the leftover precharges from mc.to */
5613 	if (mc.precharge) {
5614 		cancel_charge(mc.to, mc.precharge);
5615 		mc.precharge = 0;
5616 	}
5617 	/*
5618 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5619 	 * we must uncharge here.
5620 	 */
5621 	if (mc.moved_charge) {
5622 		cancel_charge(mc.from, mc.moved_charge);
5623 		mc.moved_charge = 0;
5624 	}
5625 	/* we must fixup refcnts and charges */
5626 	if (mc.moved_swap) {
5627 		/* uncharge swap account from the old cgroup */
5628 		if (!mem_cgroup_is_root(mc.from))
5629 			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5630 
5631 		mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5632 
5633 		/*
5634 		 * we charged both to->memory and to->memsw, so we
5635 		 * should uncharge to->memory.
5636 		 */
5637 		if (!mem_cgroup_is_root(mc.to))
5638 			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5639 
5640 		mem_cgroup_id_get_many(mc.to, mc.moved_swap);
5641 		css_put_many(&mc.to->css, mc.moved_swap);
5642 
5643 		mc.moved_swap = 0;
5644 	}
5645 	memcg_oom_recover(from);
5646 	memcg_oom_recover(to);
5647 	wake_up_all(&mc.waitq);
5648 }
5649 
5650 static void mem_cgroup_clear_mc(void)
5651 {
5652 	struct mm_struct *mm = mc.mm;
5653 
5654 	/*
5655 	 * we must clear moving_task before waking up waiters at the end of
5656 	 * task migration.
5657 	 */
5658 	mc.moving_task = NULL;
5659 	__mem_cgroup_clear_mc();
5660 	spin_lock(&mc.lock);
5661 	mc.from = NULL;
5662 	mc.to = NULL;
5663 	mc.mm = NULL;
5664 	spin_unlock(&mc.lock);
5665 
5666 	mmput(mm);
5667 }
5668 
5669 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5670 {
5671 	struct cgroup_subsys_state *css;
5672 	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5673 	struct mem_cgroup *from;
5674 	struct task_struct *leader, *p;
5675 	struct mm_struct *mm;
5676 	unsigned long move_flags;
5677 	int ret = 0;
5678 
5679 	/* charge immigration isn't supported on the default hierarchy */
5680 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5681 		return 0;
5682 
5683 	/*
5684 	 * Multi-process migrations only happen on the default hierarchy
5685 	 * where charge immigration is not used.  Perform charge
5686 	 * immigration if @tset contains a leader and whine if there are
5687 	 * multiple.
5688 	 */
5689 	p = NULL;
5690 	cgroup_taskset_for_each_leader(leader, css, tset) {
5691 		WARN_ON_ONCE(p);
5692 		p = leader;
5693 		memcg = mem_cgroup_from_css(css);
5694 	}
5695 	if (!p)
5696 		return 0;
5697 
5698 	/*
5699 	 * We are now commited to this value whatever it is. Changes in this
5700 	 * tunable will only affect upcoming migrations, not the current one.
5701 	 * So we need to save it, and keep it going.
5702 	 */
5703 	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5704 	if (!move_flags)
5705 		return 0;
5706 
5707 	from = mem_cgroup_from_task(p);
5708 
5709 	VM_BUG_ON(from == memcg);
5710 
5711 	mm = get_task_mm(p);
5712 	if (!mm)
5713 		return 0;
5714 	/* We move charges only when we move a owner of the mm */
5715 	if (mm->owner == p) {
5716 		VM_BUG_ON(mc.from);
5717 		VM_BUG_ON(mc.to);
5718 		VM_BUG_ON(mc.precharge);
5719 		VM_BUG_ON(mc.moved_charge);
5720 		VM_BUG_ON(mc.moved_swap);
5721 
5722 		spin_lock(&mc.lock);
5723 		mc.mm = mm;
5724 		mc.from = from;
5725 		mc.to = memcg;
5726 		mc.flags = move_flags;
5727 		spin_unlock(&mc.lock);
5728 		/* We set mc.moving_task later */
5729 
5730 		ret = mem_cgroup_precharge_mc(mm);
5731 		if (ret)
5732 			mem_cgroup_clear_mc();
5733 	} else {
5734 		mmput(mm);
5735 	}
5736 	return ret;
5737 }
5738 
5739 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5740 {
5741 	if (mc.to)
5742 		mem_cgroup_clear_mc();
5743 }
5744 
5745 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5746 				unsigned long addr, unsigned long end,
5747 				struct mm_walk *walk)
5748 {
5749 	int ret = 0;
5750 	struct vm_area_struct *vma = walk->vma;
5751 	pte_t *pte;
5752 	spinlock_t *ptl;
5753 	enum mc_target_type target_type;
5754 	union mc_target target;
5755 	struct page *page;
5756 
5757 	ptl = pmd_trans_huge_lock(pmd, vma);
5758 	if (ptl) {
5759 		if (mc.precharge < HPAGE_PMD_NR) {
5760 			spin_unlock(ptl);
5761 			return 0;
5762 		}
5763 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5764 		if (target_type == MC_TARGET_PAGE) {
5765 			page = target.page;
5766 			if (!isolate_lru_page(page)) {
5767 				if (!mem_cgroup_move_account(page, true,
5768 							     mc.from, mc.to)) {
5769 					mc.precharge -= HPAGE_PMD_NR;
5770 					mc.moved_charge += HPAGE_PMD_NR;
5771 				}
5772 				putback_lru_page(page);
5773 			}
5774 			put_page(page);
5775 		} else if (target_type == MC_TARGET_DEVICE) {
5776 			page = target.page;
5777 			if (!mem_cgroup_move_account(page, true,
5778 						     mc.from, mc.to)) {
5779 				mc.precharge -= HPAGE_PMD_NR;
5780 				mc.moved_charge += HPAGE_PMD_NR;
5781 			}
5782 			put_page(page);
5783 		}
5784 		spin_unlock(ptl);
5785 		return 0;
5786 	}
5787 
5788 	if (pmd_trans_unstable(pmd))
5789 		return 0;
5790 retry:
5791 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5792 	for (; addr != end; addr += PAGE_SIZE) {
5793 		pte_t ptent = *(pte++);
5794 		bool device = false;
5795 		swp_entry_t ent;
5796 
5797 		if (!mc.precharge)
5798 			break;
5799 
5800 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5801 		case MC_TARGET_DEVICE:
5802 			device = true;
5803 			/* fall through */
5804 		case MC_TARGET_PAGE:
5805 			page = target.page;
5806 			/*
5807 			 * We can have a part of the split pmd here. Moving it
5808 			 * can be done but it would be too convoluted so simply
5809 			 * ignore such a partial THP and keep it in original
5810 			 * memcg. There should be somebody mapping the head.
5811 			 */
5812 			if (PageTransCompound(page))
5813 				goto put;
5814 			if (!device && isolate_lru_page(page))
5815 				goto put;
5816 			if (!mem_cgroup_move_account(page, false,
5817 						mc.from, mc.to)) {
5818 				mc.precharge--;
5819 				/* we uncharge from mc.from later. */
5820 				mc.moved_charge++;
5821 			}
5822 			if (!device)
5823 				putback_lru_page(page);
5824 put:			/* get_mctgt_type() gets the page */
5825 			put_page(page);
5826 			break;
5827 		case MC_TARGET_SWAP:
5828 			ent = target.ent;
5829 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5830 				mc.precharge--;
5831 				/* we fixup refcnts and charges later. */
5832 				mc.moved_swap++;
5833 			}
5834 			break;
5835 		default:
5836 			break;
5837 		}
5838 	}
5839 	pte_unmap_unlock(pte - 1, ptl);
5840 	cond_resched();
5841 
5842 	if (addr != end) {
5843 		/*
5844 		 * We have consumed all precharges we got in can_attach().
5845 		 * We try charge one by one, but don't do any additional
5846 		 * charges to mc.to if we have failed in charge once in attach()
5847 		 * phase.
5848 		 */
5849 		ret = mem_cgroup_do_precharge(1);
5850 		if (!ret)
5851 			goto retry;
5852 	}
5853 
5854 	return ret;
5855 }
5856 
5857 static const struct mm_walk_ops charge_walk_ops = {
5858 	.pmd_entry	= mem_cgroup_move_charge_pte_range,
5859 };
5860 
5861 static void mem_cgroup_move_charge(void)
5862 {
5863 	lru_add_drain_all();
5864 	/*
5865 	 * Signal lock_page_memcg() to take the memcg's move_lock
5866 	 * while we're moving its pages to another memcg. Then wait
5867 	 * for already started RCU-only updates to finish.
5868 	 */
5869 	atomic_inc(&mc.from->moving_account);
5870 	synchronize_rcu();
5871 retry:
5872 	if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
5873 		/*
5874 		 * Someone who are holding the mmap_sem might be waiting in
5875 		 * waitq. So we cancel all extra charges, wake up all waiters,
5876 		 * and retry. Because we cancel precharges, we might not be able
5877 		 * to move enough charges, but moving charge is a best-effort
5878 		 * feature anyway, so it wouldn't be a big problem.
5879 		 */
5880 		__mem_cgroup_clear_mc();
5881 		cond_resched();
5882 		goto retry;
5883 	}
5884 	/*
5885 	 * When we have consumed all precharges and failed in doing
5886 	 * additional charge, the page walk just aborts.
5887 	 */
5888 	walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
5889 			NULL);
5890 
5891 	up_read(&mc.mm->mmap_sem);
5892 	atomic_dec(&mc.from->moving_account);
5893 }
5894 
5895 static void mem_cgroup_move_task(void)
5896 {
5897 	if (mc.to) {
5898 		mem_cgroup_move_charge();
5899 		mem_cgroup_clear_mc();
5900 	}
5901 }
5902 #else	/* !CONFIG_MMU */
5903 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5904 {
5905 	return 0;
5906 }
5907 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5908 {
5909 }
5910 static void mem_cgroup_move_task(void)
5911 {
5912 }
5913 #endif
5914 
5915 /*
5916  * Cgroup retains root cgroups across [un]mount cycles making it necessary
5917  * to verify whether we're attached to the default hierarchy on each mount
5918  * attempt.
5919  */
5920 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5921 {
5922 	/*
5923 	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5924 	 * guarantees that @root doesn't have any children, so turning it
5925 	 * on for the root memcg is enough.
5926 	 */
5927 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5928 		root_mem_cgroup->use_hierarchy = true;
5929 	else
5930 		root_mem_cgroup->use_hierarchy = false;
5931 }
5932 
5933 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
5934 {
5935 	if (value == PAGE_COUNTER_MAX)
5936 		seq_puts(m, "max\n");
5937 	else
5938 		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
5939 
5940 	return 0;
5941 }
5942 
5943 static u64 memory_current_read(struct cgroup_subsys_state *css,
5944 			       struct cftype *cft)
5945 {
5946 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5947 
5948 	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5949 }
5950 
5951 static int memory_min_show(struct seq_file *m, void *v)
5952 {
5953 	return seq_puts_memcg_tunable(m,
5954 		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
5955 }
5956 
5957 static ssize_t memory_min_write(struct kernfs_open_file *of,
5958 				char *buf, size_t nbytes, loff_t off)
5959 {
5960 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5961 	unsigned long min;
5962 	int err;
5963 
5964 	buf = strstrip(buf);
5965 	err = page_counter_memparse(buf, "max", &min);
5966 	if (err)
5967 		return err;
5968 
5969 	page_counter_set_min(&memcg->memory, min);
5970 
5971 	return nbytes;
5972 }
5973 
5974 static int memory_low_show(struct seq_file *m, void *v)
5975 {
5976 	return seq_puts_memcg_tunable(m,
5977 		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
5978 }
5979 
5980 static ssize_t memory_low_write(struct kernfs_open_file *of,
5981 				char *buf, size_t nbytes, loff_t off)
5982 {
5983 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5984 	unsigned long low;
5985 	int err;
5986 
5987 	buf = strstrip(buf);
5988 	err = page_counter_memparse(buf, "max", &low);
5989 	if (err)
5990 		return err;
5991 
5992 	page_counter_set_low(&memcg->memory, low);
5993 
5994 	return nbytes;
5995 }
5996 
5997 static int memory_high_show(struct seq_file *m, void *v)
5998 {
5999 	return seq_puts_memcg_tunable(m, READ_ONCE(mem_cgroup_from_seq(m)->high));
6000 }
6001 
6002 static ssize_t memory_high_write(struct kernfs_open_file *of,
6003 				 char *buf, size_t nbytes, loff_t off)
6004 {
6005 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6006 	unsigned int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6007 	bool drained = false;
6008 	unsigned long high;
6009 	int err;
6010 
6011 	buf = strstrip(buf);
6012 	err = page_counter_memparse(buf, "max", &high);
6013 	if (err)
6014 		return err;
6015 
6016 	memcg->high = high;
6017 
6018 	for (;;) {
6019 		unsigned long nr_pages = page_counter_read(&memcg->memory);
6020 		unsigned long reclaimed;
6021 
6022 		if (nr_pages <= high)
6023 			break;
6024 
6025 		if (signal_pending(current))
6026 			break;
6027 
6028 		if (!drained) {
6029 			drain_all_stock(memcg);
6030 			drained = true;
6031 			continue;
6032 		}
6033 
6034 		reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6035 							 GFP_KERNEL, true);
6036 
6037 		if (!reclaimed && !nr_retries--)
6038 			break;
6039 	}
6040 
6041 	return nbytes;
6042 }
6043 
6044 static int memory_max_show(struct seq_file *m, void *v)
6045 {
6046 	return seq_puts_memcg_tunable(m,
6047 		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6048 }
6049 
6050 static ssize_t memory_max_write(struct kernfs_open_file *of,
6051 				char *buf, size_t nbytes, loff_t off)
6052 {
6053 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6054 	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
6055 	bool drained = false;
6056 	unsigned long max;
6057 	int err;
6058 
6059 	buf = strstrip(buf);
6060 	err = page_counter_memparse(buf, "max", &max);
6061 	if (err)
6062 		return err;
6063 
6064 	xchg(&memcg->memory.max, max);
6065 
6066 	for (;;) {
6067 		unsigned long nr_pages = page_counter_read(&memcg->memory);
6068 
6069 		if (nr_pages <= max)
6070 			break;
6071 
6072 		if (signal_pending(current))
6073 			break;
6074 
6075 		if (!drained) {
6076 			drain_all_stock(memcg);
6077 			drained = true;
6078 			continue;
6079 		}
6080 
6081 		if (nr_reclaims) {
6082 			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6083 							  GFP_KERNEL, true))
6084 				nr_reclaims--;
6085 			continue;
6086 		}
6087 
6088 		memcg_memory_event(memcg, MEMCG_OOM);
6089 		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6090 			break;
6091 	}
6092 
6093 	memcg_wb_domain_size_changed(memcg);
6094 	return nbytes;
6095 }
6096 
6097 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6098 {
6099 	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6100 	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6101 	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6102 	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6103 	seq_printf(m, "oom_kill %lu\n",
6104 		   atomic_long_read(&events[MEMCG_OOM_KILL]));
6105 }
6106 
6107 static int memory_events_show(struct seq_file *m, void *v)
6108 {
6109 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6110 
6111 	__memory_events_show(m, memcg->memory_events);
6112 	return 0;
6113 }
6114 
6115 static int memory_events_local_show(struct seq_file *m, void *v)
6116 {
6117 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6118 
6119 	__memory_events_show(m, memcg->memory_events_local);
6120 	return 0;
6121 }
6122 
6123 static int memory_stat_show(struct seq_file *m, void *v)
6124 {
6125 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6126 	char *buf;
6127 
6128 	buf = memory_stat_format(memcg);
6129 	if (!buf)
6130 		return -ENOMEM;
6131 	seq_puts(m, buf);
6132 	kfree(buf);
6133 	return 0;
6134 }
6135 
6136 static int memory_oom_group_show(struct seq_file *m, void *v)
6137 {
6138 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6139 
6140 	seq_printf(m, "%d\n", memcg->oom_group);
6141 
6142 	return 0;
6143 }
6144 
6145 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6146 				      char *buf, size_t nbytes, loff_t off)
6147 {
6148 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6149 	int ret, oom_group;
6150 
6151 	buf = strstrip(buf);
6152 	if (!buf)
6153 		return -EINVAL;
6154 
6155 	ret = kstrtoint(buf, 0, &oom_group);
6156 	if (ret)
6157 		return ret;
6158 
6159 	if (oom_group != 0 && oom_group != 1)
6160 		return -EINVAL;
6161 
6162 	memcg->oom_group = oom_group;
6163 
6164 	return nbytes;
6165 }
6166 
6167 static struct cftype memory_files[] = {
6168 	{
6169 		.name = "current",
6170 		.flags = CFTYPE_NOT_ON_ROOT,
6171 		.read_u64 = memory_current_read,
6172 	},
6173 	{
6174 		.name = "min",
6175 		.flags = CFTYPE_NOT_ON_ROOT,
6176 		.seq_show = memory_min_show,
6177 		.write = memory_min_write,
6178 	},
6179 	{
6180 		.name = "low",
6181 		.flags = CFTYPE_NOT_ON_ROOT,
6182 		.seq_show = memory_low_show,
6183 		.write = memory_low_write,
6184 	},
6185 	{
6186 		.name = "high",
6187 		.flags = CFTYPE_NOT_ON_ROOT,
6188 		.seq_show = memory_high_show,
6189 		.write = memory_high_write,
6190 	},
6191 	{
6192 		.name = "max",
6193 		.flags = CFTYPE_NOT_ON_ROOT,
6194 		.seq_show = memory_max_show,
6195 		.write = memory_max_write,
6196 	},
6197 	{
6198 		.name = "events",
6199 		.flags = CFTYPE_NOT_ON_ROOT,
6200 		.file_offset = offsetof(struct mem_cgroup, events_file),
6201 		.seq_show = memory_events_show,
6202 	},
6203 	{
6204 		.name = "events.local",
6205 		.flags = CFTYPE_NOT_ON_ROOT,
6206 		.file_offset = offsetof(struct mem_cgroup, events_local_file),
6207 		.seq_show = memory_events_local_show,
6208 	},
6209 	{
6210 		.name = "stat",
6211 		.flags = CFTYPE_NOT_ON_ROOT,
6212 		.seq_show = memory_stat_show,
6213 	},
6214 	{
6215 		.name = "oom.group",
6216 		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6217 		.seq_show = memory_oom_group_show,
6218 		.write = memory_oom_group_write,
6219 	},
6220 	{ }	/* terminate */
6221 };
6222 
6223 struct cgroup_subsys memory_cgrp_subsys = {
6224 	.css_alloc = mem_cgroup_css_alloc,
6225 	.css_online = mem_cgroup_css_online,
6226 	.css_offline = mem_cgroup_css_offline,
6227 	.css_released = mem_cgroup_css_released,
6228 	.css_free = mem_cgroup_css_free,
6229 	.css_reset = mem_cgroup_css_reset,
6230 	.can_attach = mem_cgroup_can_attach,
6231 	.cancel_attach = mem_cgroup_cancel_attach,
6232 	.post_attach = mem_cgroup_move_task,
6233 	.bind = mem_cgroup_bind,
6234 	.dfl_cftypes = memory_files,
6235 	.legacy_cftypes = mem_cgroup_legacy_files,
6236 	.early_init = 0,
6237 };
6238 
6239 /**
6240  * mem_cgroup_protected - check if memory consumption is in the normal range
6241  * @root: the top ancestor of the sub-tree being checked
6242  * @memcg: the memory cgroup to check
6243  *
6244  * WARNING: This function is not stateless! It can only be used as part
6245  *          of a top-down tree iteration, not for isolated queries.
6246  *
6247  * Returns one of the following:
6248  *   MEMCG_PROT_NONE: cgroup memory is not protected
6249  *   MEMCG_PROT_LOW: cgroup memory is protected as long there is
6250  *     an unprotected supply of reclaimable memory from other cgroups.
6251  *   MEMCG_PROT_MIN: cgroup memory is protected
6252  *
6253  * @root is exclusive; it is never protected when looked at directly
6254  *
6255  * To provide a proper hierarchical behavior, effective memory.min/low values
6256  * are used. Below is the description of how effective memory.low is calculated.
6257  * Effective memory.min values is calculated in the same way.
6258  *
6259  * Effective memory.low is always equal or less than the original memory.low.
6260  * If there is no memory.low overcommittment (which is always true for
6261  * top-level memory cgroups), these two values are equal.
6262  * Otherwise, it's a part of parent's effective memory.low,
6263  * calculated as a cgroup's memory.low usage divided by sum of sibling's
6264  * memory.low usages, where memory.low usage is the size of actually
6265  * protected memory.
6266  *
6267  *                                             low_usage
6268  * elow = min( memory.low, parent->elow * ------------------ ),
6269  *                                        siblings_low_usage
6270  *
6271  *             | memory.current, if memory.current < memory.low
6272  * low_usage = |
6273  *	       | 0, otherwise.
6274  *
6275  *
6276  * Such definition of the effective memory.low provides the expected
6277  * hierarchical behavior: parent's memory.low value is limiting
6278  * children, unprotected memory is reclaimed first and cgroups,
6279  * which are not using their guarantee do not affect actual memory
6280  * distribution.
6281  *
6282  * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
6283  *
6284  *     A      A/memory.low = 2G, A/memory.current = 6G
6285  *    //\\
6286  *   BC  DE   B/memory.low = 3G  B/memory.current = 2G
6287  *            C/memory.low = 1G  C/memory.current = 2G
6288  *            D/memory.low = 0   D/memory.current = 2G
6289  *            E/memory.low = 10G E/memory.current = 0
6290  *
6291  * and the memory pressure is applied, the following memory distribution
6292  * is expected (approximately):
6293  *
6294  *     A/memory.current = 2G
6295  *
6296  *     B/memory.current = 1.3G
6297  *     C/memory.current = 0.6G
6298  *     D/memory.current = 0
6299  *     E/memory.current = 0
6300  *
6301  * These calculations require constant tracking of the actual low usages
6302  * (see propagate_protected_usage()), as well as recursive calculation of
6303  * effective memory.low values. But as we do call mem_cgroup_protected()
6304  * path for each memory cgroup top-down from the reclaim,
6305  * it's possible to optimize this part, and save calculated elow
6306  * for next usage. This part is intentionally racy, but it's ok,
6307  * as memory.low is a best-effort mechanism.
6308  */
6309 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
6310 						struct mem_cgroup *memcg)
6311 {
6312 	struct mem_cgroup *parent;
6313 	unsigned long emin, parent_emin;
6314 	unsigned long elow, parent_elow;
6315 	unsigned long usage;
6316 
6317 	if (mem_cgroup_disabled())
6318 		return MEMCG_PROT_NONE;
6319 
6320 	if (!root)
6321 		root = root_mem_cgroup;
6322 	if (memcg == root)
6323 		return MEMCG_PROT_NONE;
6324 
6325 	usage = page_counter_read(&memcg->memory);
6326 	if (!usage)
6327 		return MEMCG_PROT_NONE;
6328 
6329 	emin = memcg->memory.min;
6330 	elow = memcg->memory.low;
6331 
6332 	parent = parent_mem_cgroup(memcg);
6333 	/* No parent means a non-hierarchical mode on v1 memcg */
6334 	if (!parent)
6335 		return MEMCG_PROT_NONE;
6336 
6337 	if (parent == root)
6338 		goto exit;
6339 
6340 	parent_emin = READ_ONCE(parent->memory.emin);
6341 	emin = min(emin, parent_emin);
6342 	if (emin && parent_emin) {
6343 		unsigned long min_usage, siblings_min_usage;
6344 
6345 		min_usage = min(usage, memcg->memory.min);
6346 		siblings_min_usage = atomic_long_read(
6347 			&parent->memory.children_min_usage);
6348 
6349 		if (min_usage && siblings_min_usage)
6350 			emin = min(emin, parent_emin * min_usage /
6351 				   siblings_min_usage);
6352 	}
6353 
6354 	parent_elow = READ_ONCE(parent->memory.elow);
6355 	elow = min(elow, parent_elow);
6356 	if (elow && parent_elow) {
6357 		unsigned long low_usage, siblings_low_usage;
6358 
6359 		low_usage = min(usage, memcg->memory.low);
6360 		siblings_low_usage = atomic_long_read(
6361 			&parent->memory.children_low_usage);
6362 
6363 		if (low_usage && siblings_low_usage)
6364 			elow = min(elow, parent_elow * low_usage /
6365 				   siblings_low_usage);
6366 	}
6367 
6368 exit:
6369 	memcg->memory.emin = emin;
6370 	memcg->memory.elow = elow;
6371 
6372 	if (usage <= emin)
6373 		return MEMCG_PROT_MIN;
6374 	else if (usage <= elow)
6375 		return MEMCG_PROT_LOW;
6376 	else
6377 		return MEMCG_PROT_NONE;
6378 }
6379 
6380 /**
6381  * mem_cgroup_try_charge - try charging a page
6382  * @page: page to charge
6383  * @mm: mm context of the victim
6384  * @gfp_mask: reclaim mode
6385  * @memcgp: charged memcg return
6386  * @compound: charge the page as compound or small page
6387  *
6388  * Try to charge @page to the memcg that @mm belongs to, reclaiming
6389  * pages according to @gfp_mask if necessary.
6390  *
6391  * Returns 0 on success, with *@memcgp pointing to the charged memcg.
6392  * Otherwise, an error code is returned.
6393  *
6394  * After page->mapping has been set up, the caller must finalize the
6395  * charge with mem_cgroup_commit_charge().  Or abort the transaction
6396  * with mem_cgroup_cancel_charge() in case page instantiation fails.
6397  */
6398 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
6399 			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
6400 			  bool compound)
6401 {
6402 	struct mem_cgroup *memcg = NULL;
6403 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6404 	int ret = 0;
6405 
6406 	if (mem_cgroup_disabled())
6407 		goto out;
6408 
6409 	if (PageSwapCache(page)) {
6410 		/*
6411 		 * Every swap fault against a single page tries to charge the
6412 		 * page, bail as early as possible.  shmem_unuse() encounters
6413 		 * already charged pages, too.  The USED bit is protected by
6414 		 * the page lock, which serializes swap cache removal, which
6415 		 * in turn serializes uncharging.
6416 		 */
6417 		VM_BUG_ON_PAGE(!PageLocked(page), page);
6418 		if (compound_head(page)->mem_cgroup)
6419 			goto out;
6420 
6421 		if (do_swap_account) {
6422 			swp_entry_t ent = { .val = page_private(page), };
6423 			unsigned short id = lookup_swap_cgroup_id(ent);
6424 
6425 			rcu_read_lock();
6426 			memcg = mem_cgroup_from_id(id);
6427 			if (memcg && !css_tryget_online(&memcg->css))
6428 				memcg = NULL;
6429 			rcu_read_unlock();
6430 		}
6431 	}
6432 
6433 	if (!memcg)
6434 		memcg = get_mem_cgroup_from_mm(mm);
6435 
6436 	ret = try_charge(memcg, gfp_mask, nr_pages);
6437 
6438 	css_put(&memcg->css);
6439 out:
6440 	*memcgp = memcg;
6441 	return ret;
6442 }
6443 
6444 int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
6445 			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
6446 			  bool compound)
6447 {
6448 	struct mem_cgroup *memcg;
6449 	int ret;
6450 
6451 	ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
6452 	memcg = *memcgp;
6453 	mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
6454 	return ret;
6455 }
6456 
6457 /**
6458  * mem_cgroup_commit_charge - commit a page charge
6459  * @page: page to charge
6460  * @memcg: memcg to charge the page to
6461  * @lrucare: page might be on LRU already
6462  * @compound: charge the page as compound or small page
6463  *
6464  * Finalize a charge transaction started by mem_cgroup_try_charge(),
6465  * after page->mapping has been set up.  This must happen atomically
6466  * as part of the page instantiation, i.e. under the page table lock
6467  * for anonymous pages, under the page lock for page and swap cache.
6468  *
6469  * In addition, the page must not be on the LRU during the commit, to
6470  * prevent racing with task migration.  If it might be, use @lrucare.
6471  *
6472  * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
6473  */
6474 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
6475 			      bool lrucare, bool compound)
6476 {
6477 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6478 
6479 	VM_BUG_ON_PAGE(!page->mapping, page);
6480 	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
6481 
6482 	if (mem_cgroup_disabled())
6483 		return;
6484 	/*
6485 	 * Swap faults will attempt to charge the same page multiple
6486 	 * times.  But reuse_swap_page() might have removed the page
6487 	 * from swapcache already, so we can't check PageSwapCache().
6488 	 */
6489 	if (!memcg)
6490 		return;
6491 
6492 	commit_charge(page, memcg, lrucare);
6493 
6494 	local_irq_disable();
6495 	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6496 	memcg_check_events(memcg, page);
6497 	local_irq_enable();
6498 
6499 	if (do_memsw_account() && PageSwapCache(page)) {
6500 		swp_entry_t entry = { .val = page_private(page) };
6501 		/*
6502 		 * The swap entry might not get freed for a long time,
6503 		 * let's not wait for it.  The page already received a
6504 		 * memory+swap charge, drop the swap entry duplicate.
6505 		 */
6506 		mem_cgroup_uncharge_swap(entry, nr_pages);
6507 	}
6508 }
6509 
6510 /**
6511  * mem_cgroup_cancel_charge - cancel a page charge
6512  * @page: page to charge
6513  * @memcg: memcg to charge the page to
6514  * @compound: charge the page as compound or small page
6515  *
6516  * Cancel a charge transaction started by mem_cgroup_try_charge().
6517  */
6518 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
6519 		bool compound)
6520 {
6521 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6522 
6523 	if (mem_cgroup_disabled())
6524 		return;
6525 	/*
6526 	 * Swap faults will attempt to charge the same page multiple
6527 	 * times.  But reuse_swap_page() might have removed the page
6528 	 * from swapcache already, so we can't check PageSwapCache().
6529 	 */
6530 	if (!memcg)
6531 		return;
6532 
6533 	cancel_charge(memcg, nr_pages);
6534 }
6535 
6536 struct uncharge_gather {
6537 	struct mem_cgroup *memcg;
6538 	unsigned long pgpgout;
6539 	unsigned long nr_anon;
6540 	unsigned long nr_file;
6541 	unsigned long nr_kmem;
6542 	unsigned long nr_huge;
6543 	unsigned long nr_shmem;
6544 	struct page *dummy_page;
6545 };
6546 
6547 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6548 {
6549 	memset(ug, 0, sizeof(*ug));
6550 }
6551 
6552 static void uncharge_batch(const struct uncharge_gather *ug)
6553 {
6554 	unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
6555 	unsigned long flags;
6556 
6557 	if (!mem_cgroup_is_root(ug->memcg)) {
6558 		page_counter_uncharge(&ug->memcg->memory, nr_pages);
6559 		if (do_memsw_account())
6560 			page_counter_uncharge(&ug->memcg->memsw, nr_pages);
6561 		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6562 			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6563 		memcg_oom_recover(ug->memcg);
6564 	}
6565 
6566 	local_irq_save(flags);
6567 	__mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
6568 	__mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
6569 	__mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
6570 	__mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
6571 	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6572 	__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, nr_pages);
6573 	memcg_check_events(ug->memcg, ug->dummy_page);
6574 	local_irq_restore(flags);
6575 
6576 	if (!mem_cgroup_is_root(ug->memcg))
6577 		css_put_many(&ug->memcg->css, nr_pages);
6578 }
6579 
6580 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6581 {
6582 	VM_BUG_ON_PAGE(PageLRU(page), page);
6583 	VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
6584 			!PageHWPoison(page) , page);
6585 
6586 	if (!page->mem_cgroup)
6587 		return;
6588 
6589 	/*
6590 	 * Nobody should be changing or seriously looking at
6591 	 * page->mem_cgroup at this point, we have fully
6592 	 * exclusive access to the page.
6593 	 */
6594 
6595 	if (ug->memcg != page->mem_cgroup) {
6596 		if (ug->memcg) {
6597 			uncharge_batch(ug);
6598 			uncharge_gather_clear(ug);
6599 		}
6600 		ug->memcg = page->mem_cgroup;
6601 	}
6602 
6603 	if (!PageKmemcg(page)) {
6604 		unsigned int nr_pages = 1;
6605 
6606 		if (PageTransHuge(page)) {
6607 			nr_pages = compound_nr(page);
6608 			ug->nr_huge += nr_pages;
6609 		}
6610 		if (PageAnon(page))
6611 			ug->nr_anon += nr_pages;
6612 		else {
6613 			ug->nr_file += nr_pages;
6614 			if (PageSwapBacked(page))
6615 				ug->nr_shmem += nr_pages;
6616 		}
6617 		ug->pgpgout++;
6618 	} else {
6619 		ug->nr_kmem += compound_nr(page);
6620 		__ClearPageKmemcg(page);
6621 	}
6622 
6623 	ug->dummy_page = page;
6624 	page->mem_cgroup = NULL;
6625 }
6626 
6627 static void uncharge_list(struct list_head *page_list)
6628 {
6629 	struct uncharge_gather ug;
6630 	struct list_head *next;
6631 
6632 	uncharge_gather_clear(&ug);
6633 
6634 	/*
6635 	 * Note that the list can be a single page->lru; hence the
6636 	 * do-while loop instead of a simple list_for_each_entry().
6637 	 */
6638 	next = page_list->next;
6639 	do {
6640 		struct page *page;
6641 
6642 		page = list_entry(next, struct page, lru);
6643 		next = page->lru.next;
6644 
6645 		uncharge_page(page, &ug);
6646 	} while (next != page_list);
6647 
6648 	if (ug.memcg)
6649 		uncharge_batch(&ug);
6650 }
6651 
6652 /**
6653  * mem_cgroup_uncharge - uncharge a page
6654  * @page: page to uncharge
6655  *
6656  * Uncharge a page previously charged with mem_cgroup_try_charge() and
6657  * mem_cgroup_commit_charge().
6658  */
6659 void mem_cgroup_uncharge(struct page *page)
6660 {
6661 	struct uncharge_gather ug;
6662 
6663 	if (mem_cgroup_disabled())
6664 		return;
6665 
6666 	/* Don't touch page->lru of any random page, pre-check: */
6667 	if (!page->mem_cgroup)
6668 		return;
6669 
6670 	uncharge_gather_clear(&ug);
6671 	uncharge_page(page, &ug);
6672 	uncharge_batch(&ug);
6673 }
6674 
6675 /**
6676  * mem_cgroup_uncharge_list - uncharge a list of page
6677  * @page_list: list of pages to uncharge
6678  *
6679  * Uncharge a list of pages previously charged with
6680  * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6681  */
6682 void mem_cgroup_uncharge_list(struct list_head *page_list)
6683 {
6684 	if (mem_cgroup_disabled())
6685 		return;
6686 
6687 	if (!list_empty(page_list))
6688 		uncharge_list(page_list);
6689 }
6690 
6691 /**
6692  * mem_cgroup_migrate - charge a page's replacement
6693  * @oldpage: currently circulating page
6694  * @newpage: replacement page
6695  *
6696  * Charge @newpage as a replacement page for @oldpage. @oldpage will
6697  * be uncharged upon free.
6698  *
6699  * Both pages must be locked, @newpage->mapping must be set up.
6700  */
6701 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6702 {
6703 	struct mem_cgroup *memcg;
6704 	unsigned int nr_pages;
6705 	unsigned long flags;
6706 
6707 	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6708 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6709 	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6710 	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6711 		       newpage);
6712 
6713 	if (mem_cgroup_disabled())
6714 		return;
6715 
6716 	/* Page cache replacement: new page already charged? */
6717 	if (newpage->mem_cgroup)
6718 		return;
6719 
6720 	/* Swapcache readahead pages can get replaced before being charged */
6721 	memcg = oldpage->mem_cgroup;
6722 	if (!memcg)
6723 		return;
6724 
6725 	/* Force-charge the new page. The old one will be freed soon */
6726 	nr_pages = hpage_nr_pages(newpage);
6727 
6728 	page_counter_charge(&memcg->memory, nr_pages);
6729 	if (do_memsw_account())
6730 		page_counter_charge(&memcg->memsw, nr_pages);
6731 	css_get_many(&memcg->css, nr_pages);
6732 
6733 	commit_charge(newpage, memcg, false);
6734 
6735 	local_irq_save(flags);
6736 	mem_cgroup_charge_statistics(memcg, newpage, PageTransHuge(newpage),
6737 			nr_pages);
6738 	memcg_check_events(memcg, newpage);
6739 	local_irq_restore(flags);
6740 }
6741 
6742 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6743 EXPORT_SYMBOL(memcg_sockets_enabled_key);
6744 
6745 void mem_cgroup_sk_alloc(struct sock *sk)
6746 {
6747 	struct mem_cgroup *memcg;
6748 
6749 	if (!mem_cgroup_sockets_enabled)
6750 		return;
6751 
6752 	/* Do not associate the sock with unrelated interrupted task's memcg. */
6753 	if (in_interrupt())
6754 		return;
6755 
6756 	rcu_read_lock();
6757 	memcg = mem_cgroup_from_task(current);
6758 	if (memcg == root_mem_cgroup)
6759 		goto out;
6760 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6761 		goto out;
6762 	if (css_tryget_online(&memcg->css))
6763 		sk->sk_memcg = memcg;
6764 out:
6765 	rcu_read_unlock();
6766 }
6767 
6768 void mem_cgroup_sk_free(struct sock *sk)
6769 {
6770 	if (sk->sk_memcg)
6771 		css_put(&sk->sk_memcg->css);
6772 }
6773 
6774 /**
6775  * mem_cgroup_charge_skmem - charge socket memory
6776  * @memcg: memcg to charge
6777  * @nr_pages: number of pages to charge
6778  *
6779  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6780  * @memcg's configured limit, %false if the charge had to be forced.
6781  */
6782 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6783 {
6784 	gfp_t gfp_mask = GFP_KERNEL;
6785 
6786 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6787 		struct page_counter *fail;
6788 
6789 		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6790 			memcg->tcpmem_pressure = 0;
6791 			return true;
6792 		}
6793 		page_counter_charge(&memcg->tcpmem, nr_pages);
6794 		memcg->tcpmem_pressure = 1;
6795 		return false;
6796 	}
6797 
6798 	/* Don't block in the packet receive path */
6799 	if (in_softirq())
6800 		gfp_mask = GFP_NOWAIT;
6801 
6802 	mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6803 
6804 	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6805 		return true;
6806 
6807 	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
6808 	return false;
6809 }
6810 
6811 /**
6812  * mem_cgroup_uncharge_skmem - uncharge socket memory
6813  * @memcg: memcg to uncharge
6814  * @nr_pages: number of pages to uncharge
6815  */
6816 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6817 {
6818 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6819 		page_counter_uncharge(&memcg->tcpmem, nr_pages);
6820 		return;
6821 	}
6822 
6823 	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
6824 
6825 	refill_stock(memcg, nr_pages);
6826 }
6827 
6828 static int __init cgroup_memory(char *s)
6829 {
6830 	char *token;
6831 
6832 	while ((token = strsep(&s, ",")) != NULL) {
6833 		if (!*token)
6834 			continue;
6835 		if (!strcmp(token, "nosocket"))
6836 			cgroup_memory_nosocket = true;
6837 		if (!strcmp(token, "nokmem"))
6838 			cgroup_memory_nokmem = true;
6839 	}
6840 	return 0;
6841 }
6842 __setup("cgroup.memory=", cgroup_memory);
6843 
6844 /*
6845  * subsys_initcall() for memory controller.
6846  *
6847  * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6848  * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6849  * basically everything that doesn't depend on a specific mem_cgroup structure
6850  * should be initialized from here.
6851  */
6852 static int __init mem_cgroup_init(void)
6853 {
6854 	int cpu, node;
6855 
6856 #ifdef CONFIG_MEMCG_KMEM
6857 	/*
6858 	 * Kmem cache creation is mostly done with the slab_mutex held,
6859 	 * so use a workqueue with limited concurrency to avoid stalling
6860 	 * all worker threads in case lots of cgroups are created and
6861 	 * destroyed simultaneously.
6862 	 */
6863 	memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
6864 	BUG_ON(!memcg_kmem_cache_wq);
6865 #endif
6866 
6867 	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
6868 				  memcg_hotplug_cpu_dead);
6869 
6870 	for_each_possible_cpu(cpu)
6871 		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
6872 			  drain_local_stock);
6873 
6874 	for_each_node(node) {
6875 		struct mem_cgroup_tree_per_node *rtpn;
6876 
6877 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
6878 				    node_online(node) ? node : NUMA_NO_NODE);
6879 
6880 		rtpn->rb_root = RB_ROOT;
6881 		rtpn->rb_rightmost = NULL;
6882 		spin_lock_init(&rtpn->lock);
6883 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
6884 	}
6885 
6886 	return 0;
6887 }
6888 subsys_initcall(mem_cgroup_init);
6889 
6890 #ifdef CONFIG_MEMCG_SWAP
6891 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6892 {
6893 	while (!refcount_inc_not_zero(&memcg->id.ref)) {
6894 		/*
6895 		 * The root cgroup cannot be destroyed, so it's refcount must
6896 		 * always be >= 1.
6897 		 */
6898 		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
6899 			VM_BUG_ON(1);
6900 			break;
6901 		}
6902 		memcg = parent_mem_cgroup(memcg);
6903 		if (!memcg)
6904 			memcg = root_mem_cgroup;
6905 	}
6906 	return memcg;
6907 }
6908 
6909 /**
6910  * mem_cgroup_swapout - transfer a memsw charge to swap
6911  * @page: page whose memsw charge to transfer
6912  * @entry: swap entry to move the charge to
6913  *
6914  * Transfer the memsw charge of @page to @entry.
6915  */
6916 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6917 {
6918 	struct mem_cgroup *memcg, *swap_memcg;
6919 	unsigned int nr_entries;
6920 	unsigned short oldid;
6921 
6922 	VM_BUG_ON_PAGE(PageLRU(page), page);
6923 	VM_BUG_ON_PAGE(page_count(page), page);
6924 
6925 	if (!do_memsw_account())
6926 		return;
6927 
6928 	memcg = page->mem_cgroup;
6929 
6930 	/* Readahead page, never charged */
6931 	if (!memcg)
6932 		return;
6933 
6934 	/*
6935 	 * In case the memcg owning these pages has been offlined and doesn't
6936 	 * have an ID allocated to it anymore, charge the closest online
6937 	 * ancestor for the swap instead and transfer the memory+swap charge.
6938 	 */
6939 	swap_memcg = mem_cgroup_id_get_online(memcg);
6940 	nr_entries = hpage_nr_pages(page);
6941 	/* Get references for the tail pages, too */
6942 	if (nr_entries > 1)
6943 		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
6944 	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
6945 				   nr_entries);
6946 	VM_BUG_ON_PAGE(oldid, page);
6947 	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
6948 
6949 	page->mem_cgroup = NULL;
6950 
6951 	if (!mem_cgroup_is_root(memcg))
6952 		page_counter_uncharge(&memcg->memory, nr_entries);
6953 
6954 	if (memcg != swap_memcg) {
6955 		if (!mem_cgroup_is_root(swap_memcg))
6956 			page_counter_charge(&swap_memcg->memsw, nr_entries);
6957 		page_counter_uncharge(&memcg->memsw, nr_entries);
6958 	}
6959 
6960 	/*
6961 	 * Interrupts should be disabled here because the caller holds the
6962 	 * i_pages lock which is taken with interrupts-off. It is
6963 	 * important here to have the interrupts disabled because it is the
6964 	 * only synchronisation we have for updating the per-CPU variables.
6965 	 */
6966 	VM_BUG_ON(!irqs_disabled());
6967 	mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
6968 				     -nr_entries);
6969 	memcg_check_events(memcg, page);
6970 
6971 	if (!mem_cgroup_is_root(memcg))
6972 		css_put_many(&memcg->css, nr_entries);
6973 }
6974 
6975 /**
6976  * mem_cgroup_try_charge_swap - try charging swap space for a page
6977  * @page: page being added to swap
6978  * @entry: swap entry to charge
6979  *
6980  * Try to charge @page's memcg for the swap space at @entry.
6981  *
6982  * Returns 0 on success, -ENOMEM on failure.
6983  */
6984 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
6985 {
6986 	unsigned int nr_pages = hpage_nr_pages(page);
6987 	struct page_counter *counter;
6988 	struct mem_cgroup *memcg;
6989 	unsigned short oldid;
6990 
6991 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
6992 		return 0;
6993 
6994 	memcg = page->mem_cgroup;
6995 
6996 	/* Readahead page, never charged */
6997 	if (!memcg)
6998 		return 0;
6999 
7000 	if (!entry.val) {
7001 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7002 		return 0;
7003 	}
7004 
7005 	memcg = mem_cgroup_id_get_online(memcg);
7006 
7007 	if (!mem_cgroup_is_root(memcg) &&
7008 	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7009 		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7010 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7011 		mem_cgroup_id_put(memcg);
7012 		return -ENOMEM;
7013 	}
7014 
7015 	/* Get references for the tail pages, too */
7016 	if (nr_pages > 1)
7017 		mem_cgroup_id_get_many(memcg, nr_pages - 1);
7018 	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7019 	VM_BUG_ON_PAGE(oldid, page);
7020 	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7021 
7022 	return 0;
7023 }
7024 
7025 /**
7026  * mem_cgroup_uncharge_swap - uncharge swap space
7027  * @entry: swap entry to uncharge
7028  * @nr_pages: the amount of swap space to uncharge
7029  */
7030 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7031 {
7032 	struct mem_cgroup *memcg;
7033 	unsigned short id;
7034 
7035 	if (!do_swap_account)
7036 		return;
7037 
7038 	id = swap_cgroup_record(entry, 0, nr_pages);
7039 	rcu_read_lock();
7040 	memcg = mem_cgroup_from_id(id);
7041 	if (memcg) {
7042 		if (!mem_cgroup_is_root(memcg)) {
7043 			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7044 				page_counter_uncharge(&memcg->swap, nr_pages);
7045 			else
7046 				page_counter_uncharge(&memcg->memsw, nr_pages);
7047 		}
7048 		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7049 		mem_cgroup_id_put_many(memcg, nr_pages);
7050 	}
7051 	rcu_read_unlock();
7052 }
7053 
7054 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7055 {
7056 	long nr_swap_pages = get_nr_swap_pages();
7057 
7058 	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7059 		return nr_swap_pages;
7060 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7061 		nr_swap_pages = min_t(long, nr_swap_pages,
7062 				      READ_ONCE(memcg->swap.max) -
7063 				      page_counter_read(&memcg->swap));
7064 	return nr_swap_pages;
7065 }
7066 
7067 bool mem_cgroup_swap_full(struct page *page)
7068 {
7069 	struct mem_cgroup *memcg;
7070 
7071 	VM_BUG_ON_PAGE(!PageLocked(page), page);
7072 
7073 	if (vm_swap_full())
7074 		return true;
7075 	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7076 		return false;
7077 
7078 	memcg = page->mem_cgroup;
7079 	if (!memcg)
7080 		return false;
7081 
7082 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7083 		if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
7084 			return true;
7085 
7086 	return false;
7087 }
7088 
7089 /* for remember boot option*/
7090 #ifdef CONFIG_MEMCG_SWAP_ENABLED
7091 static int really_do_swap_account __initdata = 1;
7092 #else
7093 static int really_do_swap_account __initdata;
7094 #endif
7095 
7096 static int __init enable_swap_account(char *s)
7097 {
7098 	if (!strcmp(s, "1"))
7099 		really_do_swap_account = 1;
7100 	else if (!strcmp(s, "0"))
7101 		really_do_swap_account = 0;
7102 	return 1;
7103 }
7104 __setup("swapaccount=", enable_swap_account);
7105 
7106 static u64 swap_current_read(struct cgroup_subsys_state *css,
7107 			     struct cftype *cft)
7108 {
7109 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7110 
7111 	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7112 }
7113 
7114 static int swap_max_show(struct seq_file *m, void *v)
7115 {
7116 	return seq_puts_memcg_tunable(m,
7117 		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7118 }
7119 
7120 static ssize_t swap_max_write(struct kernfs_open_file *of,
7121 			      char *buf, size_t nbytes, loff_t off)
7122 {
7123 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7124 	unsigned long max;
7125 	int err;
7126 
7127 	buf = strstrip(buf);
7128 	err = page_counter_memparse(buf, "max", &max);
7129 	if (err)
7130 		return err;
7131 
7132 	xchg(&memcg->swap.max, max);
7133 
7134 	return nbytes;
7135 }
7136 
7137 static int swap_events_show(struct seq_file *m, void *v)
7138 {
7139 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7140 
7141 	seq_printf(m, "max %lu\n",
7142 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7143 	seq_printf(m, "fail %lu\n",
7144 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7145 
7146 	return 0;
7147 }
7148 
7149 static struct cftype swap_files[] = {
7150 	{
7151 		.name = "swap.current",
7152 		.flags = CFTYPE_NOT_ON_ROOT,
7153 		.read_u64 = swap_current_read,
7154 	},
7155 	{
7156 		.name = "swap.max",
7157 		.flags = CFTYPE_NOT_ON_ROOT,
7158 		.seq_show = swap_max_show,
7159 		.write = swap_max_write,
7160 	},
7161 	{
7162 		.name = "swap.events",
7163 		.flags = CFTYPE_NOT_ON_ROOT,
7164 		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
7165 		.seq_show = swap_events_show,
7166 	},
7167 	{ }	/* terminate */
7168 };
7169 
7170 static struct cftype memsw_cgroup_files[] = {
7171 	{
7172 		.name = "memsw.usage_in_bytes",
7173 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7174 		.read_u64 = mem_cgroup_read_u64,
7175 	},
7176 	{
7177 		.name = "memsw.max_usage_in_bytes",
7178 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7179 		.write = mem_cgroup_reset,
7180 		.read_u64 = mem_cgroup_read_u64,
7181 	},
7182 	{
7183 		.name = "memsw.limit_in_bytes",
7184 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7185 		.write = mem_cgroup_write,
7186 		.read_u64 = mem_cgroup_read_u64,
7187 	},
7188 	{
7189 		.name = "memsw.failcnt",
7190 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7191 		.write = mem_cgroup_reset,
7192 		.read_u64 = mem_cgroup_read_u64,
7193 	},
7194 	{ },	/* terminate */
7195 };
7196 
7197 static int __init mem_cgroup_swap_init(void)
7198 {
7199 	if (!mem_cgroup_disabled() && really_do_swap_account) {
7200 		do_swap_account = 1;
7201 		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
7202 					       swap_files));
7203 		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
7204 						  memsw_cgroup_files));
7205 	}
7206 	return 0;
7207 }
7208 subsys_initcall(mem_cgroup_swap_init);
7209 
7210 #endif /* CONFIG_MEMCG_SWAP */
7211