1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* memcontrol.c - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <xemul@openvz.org> 9 * 10 * Memory thresholds 11 * Copyright (C) 2009 Nokia Corporation 12 * Author: Kirill A. Shutemov 13 * 14 * Kernel Memory Controller 15 * Copyright (C) 2012 Parallels Inc. and Google Inc. 16 * Authors: Glauber Costa and Suleiman Souhlal 17 * 18 * Native page reclaim 19 * Charge lifetime sanitation 20 * Lockless page tracking & accounting 21 * Unified hierarchy configuration model 22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner 23 */ 24 25 #include <linux/page_counter.h> 26 #include <linux/memcontrol.h> 27 #include <linux/cgroup.h> 28 #include <linux/pagewalk.h> 29 #include <linux/sched/mm.h> 30 #include <linux/shmem_fs.h> 31 #include <linux/hugetlb.h> 32 #include <linux/pagemap.h> 33 #include <linux/vm_event_item.h> 34 #include <linux/smp.h> 35 #include <linux/page-flags.h> 36 #include <linux/backing-dev.h> 37 #include <linux/bit_spinlock.h> 38 #include <linux/rcupdate.h> 39 #include <linux/limits.h> 40 #include <linux/export.h> 41 #include <linux/mutex.h> 42 #include <linux/rbtree.h> 43 #include <linux/slab.h> 44 #include <linux/swap.h> 45 #include <linux/swapops.h> 46 #include <linux/spinlock.h> 47 #include <linux/eventfd.h> 48 #include <linux/poll.h> 49 #include <linux/sort.h> 50 #include <linux/fs.h> 51 #include <linux/seq_file.h> 52 #include <linux/vmpressure.h> 53 #include <linux/mm_inline.h> 54 #include <linux/swap_cgroup.h> 55 #include <linux/cpu.h> 56 #include <linux/oom.h> 57 #include <linux/lockdep.h> 58 #include <linux/file.h> 59 #include <linux/tracehook.h> 60 #include <linux/psi.h> 61 #include <linux/seq_buf.h> 62 #include "internal.h" 63 #include <net/sock.h> 64 #include <net/ip.h> 65 #include "slab.h" 66 67 #include <linux/uaccess.h> 68 69 #include <trace/events/vmscan.h> 70 71 struct cgroup_subsys memory_cgrp_subsys __read_mostly; 72 EXPORT_SYMBOL(memory_cgrp_subsys); 73 74 struct mem_cgroup *root_mem_cgroup __read_mostly; 75 76 #define MEM_CGROUP_RECLAIM_RETRIES 5 77 78 /* Socket memory accounting disabled? */ 79 static bool cgroup_memory_nosocket; 80 81 /* Kernel memory accounting disabled? */ 82 static bool cgroup_memory_nokmem; 83 84 /* Whether the swap controller is active */ 85 #ifdef CONFIG_MEMCG_SWAP 86 int do_swap_account __read_mostly; 87 #else 88 #define do_swap_account 0 89 #endif 90 91 #ifdef CONFIG_CGROUP_WRITEBACK 92 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq); 93 #endif 94 95 /* Whether legacy memory+swap accounting is active */ 96 static bool do_memsw_account(void) 97 { 98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account; 99 } 100 101 #define THRESHOLDS_EVENTS_TARGET 128 102 #define SOFTLIMIT_EVENTS_TARGET 1024 103 104 /* 105 * Cgroups above their limits are maintained in a RB-Tree, independent of 106 * their hierarchy representation 107 */ 108 109 struct mem_cgroup_tree_per_node { 110 struct rb_root rb_root; 111 struct rb_node *rb_rightmost; 112 spinlock_t lock; 113 }; 114 115 struct mem_cgroup_tree { 116 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 117 }; 118 119 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 120 121 /* for OOM */ 122 struct mem_cgroup_eventfd_list { 123 struct list_head list; 124 struct eventfd_ctx *eventfd; 125 }; 126 127 /* 128 * cgroup_event represents events which userspace want to receive. 129 */ 130 struct mem_cgroup_event { 131 /* 132 * memcg which the event belongs to. 133 */ 134 struct mem_cgroup *memcg; 135 /* 136 * eventfd to signal userspace about the event. 137 */ 138 struct eventfd_ctx *eventfd; 139 /* 140 * Each of these stored in a list by the cgroup. 141 */ 142 struct list_head list; 143 /* 144 * register_event() callback will be used to add new userspace 145 * waiter for changes related to this event. Use eventfd_signal() 146 * on eventfd to send notification to userspace. 147 */ 148 int (*register_event)(struct mem_cgroup *memcg, 149 struct eventfd_ctx *eventfd, const char *args); 150 /* 151 * unregister_event() callback will be called when userspace closes 152 * the eventfd or on cgroup removing. This callback must be set, 153 * if you want provide notification functionality. 154 */ 155 void (*unregister_event)(struct mem_cgroup *memcg, 156 struct eventfd_ctx *eventfd); 157 /* 158 * All fields below needed to unregister event when 159 * userspace closes eventfd. 160 */ 161 poll_table pt; 162 wait_queue_head_t *wqh; 163 wait_queue_entry_t wait; 164 struct work_struct remove; 165 }; 166 167 static void mem_cgroup_threshold(struct mem_cgroup *memcg); 168 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); 169 170 /* Stuffs for move charges at task migration. */ 171 /* 172 * Types of charges to be moved. 173 */ 174 #define MOVE_ANON 0x1U 175 #define MOVE_FILE 0x2U 176 #define MOVE_MASK (MOVE_ANON | MOVE_FILE) 177 178 /* "mc" and its members are protected by cgroup_mutex */ 179 static struct move_charge_struct { 180 spinlock_t lock; /* for from, to */ 181 struct mm_struct *mm; 182 struct mem_cgroup *from; 183 struct mem_cgroup *to; 184 unsigned long flags; 185 unsigned long precharge; 186 unsigned long moved_charge; 187 unsigned long moved_swap; 188 struct task_struct *moving_task; /* a task moving charges */ 189 wait_queue_head_t waitq; /* a waitq for other context */ 190 } mc = { 191 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 192 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 193 }; 194 195 /* 196 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft 197 * limit reclaim to prevent infinite loops, if they ever occur. 198 */ 199 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 200 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 201 202 enum charge_type { 203 MEM_CGROUP_CHARGE_TYPE_CACHE = 0, 204 MEM_CGROUP_CHARGE_TYPE_ANON, 205 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */ 206 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */ 207 NR_CHARGE_TYPE, 208 }; 209 210 /* for encoding cft->private value on file */ 211 enum res_type { 212 _MEM, 213 _MEMSWAP, 214 _OOM_TYPE, 215 _KMEM, 216 _TCP, 217 }; 218 219 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) 220 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) 221 #define MEMFILE_ATTR(val) ((val) & 0xffff) 222 /* Used for OOM nofiier */ 223 #define OOM_CONTROL (0) 224 225 /* 226 * Iteration constructs for visiting all cgroups (under a tree). If 227 * loops are exited prematurely (break), mem_cgroup_iter_break() must 228 * be used for reference counting. 229 */ 230 #define for_each_mem_cgroup_tree(iter, root) \ 231 for (iter = mem_cgroup_iter(root, NULL, NULL); \ 232 iter != NULL; \ 233 iter = mem_cgroup_iter(root, iter, NULL)) 234 235 #define for_each_mem_cgroup(iter) \ 236 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ 237 iter != NULL; \ 238 iter = mem_cgroup_iter(NULL, iter, NULL)) 239 240 static inline bool should_force_charge(void) 241 { 242 return tsk_is_oom_victim(current) || fatal_signal_pending(current) || 243 (current->flags & PF_EXITING); 244 } 245 246 /* Some nice accessors for the vmpressure. */ 247 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 248 { 249 if (!memcg) 250 memcg = root_mem_cgroup; 251 return &memcg->vmpressure; 252 } 253 254 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr) 255 { 256 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css; 257 } 258 259 #ifdef CONFIG_MEMCG_KMEM 260 /* 261 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches. 262 * The main reason for not using cgroup id for this: 263 * this works better in sparse environments, where we have a lot of memcgs, 264 * but only a few kmem-limited. Or also, if we have, for instance, 200 265 * memcgs, and none but the 200th is kmem-limited, we'd have to have a 266 * 200 entry array for that. 267 * 268 * The current size of the caches array is stored in memcg_nr_cache_ids. It 269 * will double each time we have to increase it. 270 */ 271 static DEFINE_IDA(memcg_cache_ida); 272 int memcg_nr_cache_ids; 273 274 /* Protects memcg_nr_cache_ids */ 275 static DECLARE_RWSEM(memcg_cache_ids_sem); 276 277 void memcg_get_cache_ids(void) 278 { 279 down_read(&memcg_cache_ids_sem); 280 } 281 282 void memcg_put_cache_ids(void) 283 { 284 up_read(&memcg_cache_ids_sem); 285 } 286 287 /* 288 * MIN_SIZE is different than 1, because we would like to avoid going through 289 * the alloc/free process all the time. In a small machine, 4 kmem-limited 290 * cgroups is a reasonable guess. In the future, it could be a parameter or 291 * tunable, but that is strictly not necessary. 292 * 293 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get 294 * this constant directly from cgroup, but it is understandable that this is 295 * better kept as an internal representation in cgroup.c. In any case, the 296 * cgrp_id space is not getting any smaller, and we don't have to necessarily 297 * increase ours as well if it increases. 298 */ 299 #define MEMCG_CACHES_MIN_SIZE 4 300 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX 301 302 /* 303 * A lot of the calls to the cache allocation functions are expected to be 304 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are 305 * conditional to this static branch, we'll have to allow modules that does 306 * kmem_cache_alloc and the such to see this symbol as well 307 */ 308 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key); 309 EXPORT_SYMBOL(memcg_kmem_enabled_key); 310 311 struct workqueue_struct *memcg_kmem_cache_wq; 312 #endif 313 314 static int memcg_shrinker_map_size; 315 static DEFINE_MUTEX(memcg_shrinker_map_mutex); 316 317 static void memcg_free_shrinker_map_rcu(struct rcu_head *head) 318 { 319 kvfree(container_of(head, struct memcg_shrinker_map, rcu)); 320 } 321 322 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg, 323 int size, int old_size) 324 { 325 struct memcg_shrinker_map *new, *old; 326 int nid; 327 328 lockdep_assert_held(&memcg_shrinker_map_mutex); 329 330 for_each_node(nid) { 331 old = rcu_dereference_protected( 332 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true); 333 /* Not yet online memcg */ 334 if (!old) 335 return 0; 336 337 new = kvmalloc(sizeof(*new) + size, GFP_KERNEL); 338 if (!new) 339 return -ENOMEM; 340 341 /* Set all old bits, clear all new bits */ 342 memset(new->map, (int)0xff, old_size); 343 memset((void *)new->map + old_size, 0, size - old_size); 344 345 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new); 346 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu); 347 } 348 349 return 0; 350 } 351 352 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) 353 { 354 struct mem_cgroup_per_node *pn; 355 struct memcg_shrinker_map *map; 356 int nid; 357 358 if (mem_cgroup_is_root(memcg)) 359 return; 360 361 for_each_node(nid) { 362 pn = mem_cgroup_nodeinfo(memcg, nid); 363 map = rcu_dereference_protected(pn->shrinker_map, true); 364 if (map) 365 kvfree(map); 366 rcu_assign_pointer(pn->shrinker_map, NULL); 367 } 368 } 369 370 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg) 371 { 372 struct memcg_shrinker_map *map; 373 int nid, size, ret = 0; 374 375 if (mem_cgroup_is_root(memcg)) 376 return 0; 377 378 mutex_lock(&memcg_shrinker_map_mutex); 379 size = memcg_shrinker_map_size; 380 for_each_node(nid) { 381 map = kvzalloc(sizeof(*map) + size, GFP_KERNEL); 382 if (!map) { 383 memcg_free_shrinker_maps(memcg); 384 ret = -ENOMEM; 385 break; 386 } 387 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map); 388 } 389 mutex_unlock(&memcg_shrinker_map_mutex); 390 391 return ret; 392 } 393 394 int memcg_expand_shrinker_maps(int new_id) 395 { 396 int size, old_size, ret = 0; 397 struct mem_cgroup *memcg; 398 399 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long); 400 old_size = memcg_shrinker_map_size; 401 if (size <= old_size) 402 return 0; 403 404 mutex_lock(&memcg_shrinker_map_mutex); 405 if (!root_mem_cgroup) 406 goto unlock; 407 408 for_each_mem_cgroup(memcg) { 409 if (mem_cgroup_is_root(memcg)) 410 continue; 411 ret = memcg_expand_one_shrinker_map(memcg, size, old_size); 412 if (ret) { 413 mem_cgroup_iter_break(NULL, memcg); 414 goto unlock; 415 } 416 } 417 unlock: 418 if (!ret) 419 memcg_shrinker_map_size = size; 420 mutex_unlock(&memcg_shrinker_map_mutex); 421 return ret; 422 } 423 424 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id) 425 { 426 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) { 427 struct memcg_shrinker_map *map; 428 429 rcu_read_lock(); 430 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map); 431 /* Pairs with smp mb in shrink_slab() */ 432 smp_mb__before_atomic(); 433 set_bit(shrinker_id, map->map); 434 rcu_read_unlock(); 435 } 436 } 437 438 /** 439 * mem_cgroup_css_from_page - css of the memcg associated with a page 440 * @page: page of interest 441 * 442 * If memcg is bound to the default hierarchy, css of the memcg associated 443 * with @page is returned. The returned css remains associated with @page 444 * until it is released. 445 * 446 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup 447 * is returned. 448 */ 449 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page) 450 { 451 struct mem_cgroup *memcg; 452 453 memcg = page->mem_cgroup; 454 455 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 456 memcg = root_mem_cgroup; 457 458 return &memcg->css; 459 } 460 461 /** 462 * page_cgroup_ino - return inode number of the memcg a page is charged to 463 * @page: the page 464 * 465 * Look up the closest online ancestor of the memory cgroup @page is charged to 466 * and return its inode number or 0 if @page is not charged to any cgroup. It 467 * is safe to call this function without holding a reference to @page. 468 * 469 * Note, this function is inherently racy, because there is nothing to prevent 470 * the cgroup inode from getting torn down and potentially reallocated a moment 471 * after page_cgroup_ino() returns, so it only should be used by callers that 472 * do not care (such as procfs interfaces). 473 */ 474 ino_t page_cgroup_ino(struct page *page) 475 { 476 struct mem_cgroup *memcg; 477 unsigned long ino = 0; 478 479 rcu_read_lock(); 480 if (PageSlab(page) && !PageTail(page)) 481 memcg = memcg_from_slab_page(page); 482 else 483 memcg = READ_ONCE(page->mem_cgroup); 484 while (memcg && !(memcg->css.flags & CSS_ONLINE)) 485 memcg = parent_mem_cgroup(memcg); 486 if (memcg) 487 ino = cgroup_ino(memcg->css.cgroup); 488 rcu_read_unlock(); 489 return ino; 490 } 491 492 static struct mem_cgroup_per_node * 493 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page) 494 { 495 int nid = page_to_nid(page); 496 497 return memcg->nodeinfo[nid]; 498 } 499 500 static struct mem_cgroup_tree_per_node * 501 soft_limit_tree_node(int nid) 502 { 503 return soft_limit_tree.rb_tree_per_node[nid]; 504 } 505 506 static struct mem_cgroup_tree_per_node * 507 soft_limit_tree_from_page(struct page *page) 508 { 509 int nid = page_to_nid(page); 510 511 return soft_limit_tree.rb_tree_per_node[nid]; 512 } 513 514 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz, 515 struct mem_cgroup_tree_per_node *mctz, 516 unsigned long new_usage_in_excess) 517 { 518 struct rb_node **p = &mctz->rb_root.rb_node; 519 struct rb_node *parent = NULL; 520 struct mem_cgroup_per_node *mz_node; 521 bool rightmost = true; 522 523 if (mz->on_tree) 524 return; 525 526 mz->usage_in_excess = new_usage_in_excess; 527 if (!mz->usage_in_excess) 528 return; 529 while (*p) { 530 parent = *p; 531 mz_node = rb_entry(parent, struct mem_cgroup_per_node, 532 tree_node); 533 if (mz->usage_in_excess < mz_node->usage_in_excess) { 534 p = &(*p)->rb_left; 535 rightmost = false; 536 } 537 538 /* 539 * We can't avoid mem cgroups that are over their soft 540 * limit by the same amount 541 */ 542 else if (mz->usage_in_excess >= mz_node->usage_in_excess) 543 p = &(*p)->rb_right; 544 } 545 546 if (rightmost) 547 mctz->rb_rightmost = &mz->tree_node; 548 549 rb_link_node(&mz->tree_node, parent, p); 550 rb_insert_color(&mz->tree_node, &mctz->rb_root); 551 mz->on_tree = true; 552 } 553 554 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 555 struct mem_cgroup_tree_per_node *mctz) 556 { 557 if (!mz->on_tree) 558 return; 559 560 if (&mz->tree_node == mctz->rb_rightmost) 561 mctz->rb_rightmost = rb_prev(&mz->tree_node); 562 563 rb_erase(&mz->tree_node, &mctz->rb_root); 564 mz->on_tree = false; 565 } 566 567 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 568 struct mem_cgroup_tree_per_node *mctz) 569 { 570 unsigned long flags; 571 572 spin_lock_irqsave(&mctz->lock, flags); 573 __mem_cgroup_remove_exceeded(mz, mctz); 574 spin_unlock_irqrestore(&mctz->lock, flags); 575 } 576 577 static unsigned long soft_limit_excess(struct mem_cgroup *memcg) 578 { 579 unsigned long nr_pages = page_counter_read(&memcg->memory); 580 unsigned long soft_limit = READ_ONCE(memcg->soft_limit); 581 unsigned long excess = 0; 582 583 if (nr_pages > soft_limit) 584 excess = nr_pages - soft_limit; 585 586 return excess; 587 } 588 589 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page) 590 { 591 unsigned long excess; 592 struct mem_cgroup_per_node *mz; 593 struct mem_cgroup_tree_per_node *mctz; 594 595 mctz = soft_limit_tree_from_page(page); 596 if (!mctz) 597 return; 598 /* 599 * Necessary to update all ancestors when hierarchy is used. 600 * because their event counter is not touched. 601 */ 602 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 603 mz = mem_cgroup_page_nodeinfo(memcg, page); 604 excess = soft_limit_excess(memcg); 605 /* 606 * We have to update the tree if mz is on RB-tree or 607 * mem is over its softlimit. 608 */ 609 if (excess || mz->on_tree) { 610 unsigned long flags; 611 612 spin_lock_irqsave(&mctz->lock, flags); 613 /* if on-tree, remove it */ 614 if (mz->on_tree) 615 __mem_cgroup_remove_exceeded(mz, mctz); 616 /* 617 * Insert again. mz->usage_in_excess will be updated. 618 * If excess is 0, no tree ops. 619 */ 620 __mem_cgroup_insert_exceeded(mz, mctz, excess); 621 spin_unlock_irqrestore(&mctz->lock, flags); 622 } 623 } 624 } 625 626 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) 627 { 628 struct mem_cgroup_tree_per_node *mctz; 629 struct mem_cgroup_per_node *mz; 630 int nid; 631 632 for_each_node(nid) { 633 mz = mem_cgroup_nodeinfo(memcg, nid); 634 mctz = soft_limit_tree_node(nid); 635 if (mctz) 636 mem_cgroup_remove_exceeded(mz, mctz); 637 } 638 } 639 640 static struct mem_cgroup_per_node * 641 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 642 { 643 struct mem_cgroup_per_node *mz; 644 645 retry: 646 mz = NULL; 647 if (!mctz->rb_rightmost) 648 goto done; /* Nothing to reclaim from */ 649 650 mz = rb_entry(mctz->rb_rightmost, 651 struct mem_cgroup_per_node, tree_node); 652 /* 653 * Remove the node now but someone else can add it back, 654 * we will to add it back at the end of reclaim to its correct 655 * position in the tree. 656 */ 657 __mem_cgroup_remove_exceeded(mz, mctz); 658 if (!soft_limit_excess(mz->memcg) || 659 !css_tryget_online(&mz->memcg->css)) 660 goto retry; 661 done: 662 return mz; 663 } 664 665 static struct mem_cgroup_per_node * 666 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 667 { 668 struct mem_cgroup_per_node *mz; 669 670 spin_lock_irq(&mctz->lock); 671 mz = __mem_cgroup_largest_soft_limit_node(mctz); 672 spin_unlock_irq(&mctz->lock); 673 return mz; 674 } 675 676 /** 677 * __mod_memcg_state - update cgroup memory statistics 678 * @memcg: the memory cgroup 679 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item 680 * @val: delta to add to the counter, can be negative 681 */ 682 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val) 683 { 684 long x; 685 686 if (mem_cgroup_disabled()) 687 return; 688 689 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]); 690 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) { 691 struct mem_cgroup *mi; 692 693 /* 694 * Batch local counters to keep them in sync with 695 * the hierarchical ones. 696 */ 697 __this_cpu_add(memcg->vmstats_local->stat[idx], x); 698 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 699 atomic_long_add(x, &mi->vmstats[idx]); 700 x = 0; 701 } 702 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x); 703 } 704 705 static struct mem_cgroup_per_node * 706 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid) 707 { 708 struct mem_cgroup *parent; 709 710 parent = parent_mem_cgroup(pn->memcg); 711 if (!parent) 712 return NULL; 713 return mem_cgroup_nodeinfo(parent, nid); 714 } 715 716 /** 717 * __mod_lruvec_state - update lruvec memory statistics 718 * @lruvec: the lruvec 719 * @idx: the stat item 720 * @val: delta to add to the counter, can be negative 721 * 722 * The lruvec is the intersection of the NUMA node and a cgroup. This 723 * function updates the all three counters that are affected by a 724 * change of state at this level: per-node, per-cgroup, per-lruvec. 725 */ 726 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 727 int val) 728 { 729 pg_data_t *pgdat = lruvec_pgdat(lruvec); 730 struct mem_cgroup_per_node *pn; 731 struct mem_cgroup *memcg; 732 long x; 733 734 /* Update node */ 735 __mod_node_page_state(pgdat, idx, val); 736 737 if (mem_cgroup_disabled()) 738 return; 739 740 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 741 memcg = pn->memcg; 742 743 /* Update memcg */ 744 __mod_memcg_state(memcg, idx, val); 745 746 /* Update lruvec */ 747 __this_cpu_add(pn->lruvec_stat_local->count[idx], val); 748 749 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]); 750 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) { 751 struct mem_cgroup_per_node *pi; 752 753 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id)) 754 atomic_long_add(x, &pi->lruvec_stat[idx]); 755 x = 0; 756 } 757 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x); 758 } 759 760 void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val) 761 { 762 struct page *page = virt_to_head_page(p); 763 pg_data_t *pgdat = page_pgdat(page); 764 struct mem_cgroup *memcg; 765 struct lruvec *lruvec; 766 767 rcu_read_lock(); 768 memcg = memcg_from_slab_page(page); 769 770 /* Untracked pages have no memcg, no lruvec. Update only the node */ 771 if (!memcg || memcg == root_mem_cgroup) { 772 __mod_node_page_state(pgdat, idx, val); 773 } else { 774 lruvec = mem_cgroup_lruvec(memcg, pgdat); 775 __mod_lruvec_state(lruvec, idx, val); 776 } 777 rcu_read_unlock(); 778 } 779 780 void mod_memcg_obj_state(void *p, int idx, int val) 781 { 782 struct mem_cgroup *memcg; 783 784 rcu_read_lock(); 785 memcg = mem_cgroup_from_obj(p); 786 if (memcg) 787 mod_memcg_state(memcg, idx, val); 788 rcu_read_unlock(); 789 } 790 791 /** 792 * __count_memcg_events - account VM events in a cgroup 793 * @memcg: the memory cgroup 794 * @idx: the event item 795 * @count: the number of events that occured 796 */ 797 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 798 unsigned long count) 799 { 800 unsigned long x; 801 802 if (mem_cgroup_disabled()) 803 return; 804 805 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]); 806 if (unlikely(x > MEMCG_CHARGE_BATCH)) { 807 struct mem_cgroup *mi; 808 809 /* 810 * Batch local counters to keep them in sync with 811 * the hierarchical ones. 812 */ 813 __this_cpu_add(memcg->vmstats_local->events[idx], x); 814 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 815 atomic_long_add(x, &mi->vmevents[idx]); 816 x = 0; 817 } 818 __this_cpu_write(memcg->vmstats_percpu->events[idx], x); 819 } 820 821 static unsigned long memcg_events(struct mem_cgroup *memcg, int event) 822 { 823 return atomic_long_read(&memcg->vmevents[event]); 824 } 825 826 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event) 827 { 828 long x = 0; 829 int cpu; 830 831 for_each_possible_cpu(cpu) 832 x += per_cpu(memcg->vmstats_local->events[event], cpu); 833 return x; 834 } 835 836 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, 837 struct page *page, 838 bool compound, int nr_pages) 839 { 840 /* 841 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is 842 * counted as CACHE even if it's on ANON LRU. 843 */ 844 if (PageAnon(page)) 845 __mod_memcg_state(memcg, MEMCG_RSS, nr_pages); 846 else { 847 __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages); 848 if (PageSwapBacked(page)) 849 __mod_memcg_state(memcg, NR_SHMEM, nr_pages); 850 } 851 852 if (compound) { 853 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 854 __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages); 855 } 856 857 /* pagein of a big page is an event. So, ignore page size */ 858 if (nr_pages > 0) 859 __count_memcg_events(memcg, PGPGIN, 1); 860 else { 861 __count_memcg_events(memcg, PGPGOUT, 1); 862 nr_pages = -nr_pages; /* for event */ 863 } 864 865 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages); 866 } 867 868 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, 869 enum mem_cgroup_events_target target) 870 { 871 unsigned long val, next; 872 873 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events); 874 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]); 875 /* from time_after() in jiffies.h */ 876 if ((long)(next - val) < 0) { 877 switch (target) { 878 case MEM_CGROUP_TARGET_THRESH: 879 next = val + THRESHOLDS_EVENTS_TARGET; 880 break; 881 case MEM_CGROUP_TARGET_SOFTLIMIT: 882 next = val + SOFTLIMIT_EVENTS_TARGET; 883 break; 884 default: 885 break; 886 } 887 __this_cpu_write(memcg->vmstats_percpu->targets[target], next); 888 return true; 889 } 890 return false; 891 } 892 893 /* 894 * Check events in order. 895 * 896 */ 897 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) 898 { 899 /* threshold event is triggered in finer grain than soft limit */ 900 if (unlikely(mem_cgroup_event_ratelimit(memcg, 901 MEM_CGROUP_TARGET_THRESH))) { 902 bool do_softlimit; 903 904 do_softlimit = mem_cgroup_event_ratelimit(memcg, 905 MEM_CGROUP_TARGET_SOFTLIMIT); 906 mem_cgroup_threshold(memcg); 907 if (unlikely(do_softlimit)) 908 mem_cgroup_update_tree(memcg, page); 909 } 910 } 911 912 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 913 { 914 /* 915 * mm_update_next_owner() may clear mm->owner to NULL 916 * if it races with swapoff, page migration, etc. 917 * So this can be called with p == NULL. 918 */ 919 if (unlikely(!p)) 920 return NULL; 921 922 return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); 923 } 924 EXPORT_SYMBOL(mem_cgroup_from_task); 925 926 /** 927 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg. 928 * @mm: mm from which memcg should be extracted. It can be NULL. 929 * 930 * Obtain a reference on mm->memcg and returns it if successful. Otherwise 931 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is 932 * returned. 933 */ 934 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 935 { 936 struct mem_cgroup *memcg; 937 938 if (mem_cgroup_disabled()) 939 return NULL; 940 941 rcu_read_lock(); 942 do { 943 /* 944 * Page cache insertions can happen withou an 945 * actual mm context, e.g. during disk probing 946 * on boot, loopback IO, acct() writes etc. 947 */ 948 if (unlikely(!mm)) 949 memcg = root_mem_cgroup; 950 else { 951 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 952 if (unlikely(!memcg)) 953 memcg = root_mem_cgroup; 954 } 955 } while (!css_tryget(&memcg->css)); 956 rcu_read_unlock(); 957 return memcg; 958 } 959 EXPORT_SYMBOL(get_mem_cgroup_from_mm); 960 961 /** 962 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg. 963 * @page: page from which memcg should be extracted. 964 * 965 * Obtain a reference on page->memcg and returns it if successful. Otherwise 966 * root_mem_cgroup is returned. 967 */ 968 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page) 969 { 970 struct mem_cgroup *memcg = page->mem_cgroup; 971 972 if (mem_cgroup_disabled()) 973 return NULL; 974 975 rcu_read_lock(); 976 if (!memcg || !css_tryget_online(&memcg->css)) 977 memcg = root_mem_cgroup; 978 rcu_read_unlock(); 979 return memcg; 980 } 981 EXPORT_SYMBOL(get_mem_cgroup_from_page); 982 983 /** 984 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg. 985 */ 986 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void) 987 { 988 if (unlikely(current->active_memcg)) { 989 struct mem_cgroup *memcg = root_mem_cgroup; 990 991 rcu_read_lock(); 992 if (css_tryget_online(¤t->active_memcg->css)) 993 memcg = current->active_memcg; 994 rcu_read_unlock(); 995 return memcg; 996 } 997 return get_mem_cgroup_from_mm(current->mm); 998 } 999 1000 /** 1001 * mem_cgroup_iter - iterate over memory cgroup hierarchy 1002 * @root: hierarchy root 1003 * @prev: previously returned memcg, NULL on first invocation 1004 * @reclaim: cookie for shared reclaim walks, NULL for full walks 1005 * 1006 * Returns references to children of the hierarchy below @root, or 1007 * @root itself, or %NULL after a full round-trip. 1008 * 1009 * Caller must pass the return value in @prev on subsequent 1010 * invocations for reference counting, or use mem_cgroup_iter_break() 1011 * to cancel a hierarchy walk before the round-trip is complete. 1012 * 1013 * Reclaimers can specify a node and a priority level in @reclaim to 1014 * divide up the memcgs in the hierarchy among all concurrent 1015 * reclaimers operating on the same node and priority. 1016 */ 1017 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 1018 struct mem_cgroup *prev, 1019 struct mem_cgroup_reclaim_cookie *reclaim) 1020 { 1021 struct mem_cgroup_reclaim_iter *uninitialized_var(iter); 1022 struct cgroup_subsys_state *css = NULL; 1023 struct mem_cgroup *memcg = NULL; 1024 struct mem_cgroup *pos = NULL; 1025 1026 if (mem_cgroup_disabled()) 1027 return NULL; 1028 1029 if (!root) 1030 root = root_mem_cgroup; 1031 1032 if (prev && !reclaim) 1033 pos = prev; 1034 1035 if (!root->use_hierarchy && root != root_mem_cgroup) { 1036 if (prev) 1037 goto out; 1038 return root; 1039 } 1040 1041 rcu_read_lock(); 1042 1043 if (reclaim) { 1044 struct mem_cgroup_per_node *mz; 1045 1046 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id); 1047 iter = &mz->iter; 1048 1049 if (prev && reclaim->generation != iter->generation) 1050 goto out_unlock; 1051 1052 while (1) { 1053 pos = READ_ONCE(iter->position); 1054 if (!pos || css_tryget(&pos->css)) 1055 break; 1056 /* 1057 * css reference reached zero, so iter->position will 1058 * be cleared by ->css_released. However, we should not 1059 * rely on this happening soon, because ->css_released 1060 * is called from a work queue, and by busy-waiting we 1061 * might block it. So we clear iter->position right 1062 * away. 1063 */ 1064 (void)cmpxchg(&iter->position, pos, NULL); 1065 } 1066 } 1067 1068 if (pos) 1069 css = &pos->css; 1070 1071 for (;;) { 1072 css = css_next_descendant_pre(css, &root->css); 1073 if (!css) { 1074 /* 1075 * Reclaimers share the hierarchy walk, and a 1076 * new one might jump in right at the end of 1077 * the hierarchy - make sure they see at least 1078 * one group and restart from the beginning. 1079 */ 1080 if (!prev) 1081 continue; 1082 break; 1083 } 1084 1085 /* 1086 * Verify the css and acquire a reference. The root 1087 * is provided by the caller, so we know it's alive 1088 * and kicking, and don't take an extra reference. 1089 */ 1090 memcg = mem_cgroup_from_css(css); 1091 1092 if (css == &root->css) 1093 break; 1094 1095 if (css_tryget(css)) 1096 break; 1097 1098 memcg = NULL; 1099 } 1100 1101 if (reclaim) { 1102 /* 1103 * The position could have already been updated by a competing 1104 * thread, so check that the value hasn't changed since we read 1105 * it to avoid reclaiming from the same cgroup twice. 1106 */ 1107 (void)cmpxchg(&iter->position, pos, memcg); 1108 1109 if (pos) 1110 css_put(&pos->css); 1111 1112 if (!memcg) 1113 iter->generation++; 1114 else if (!prev) 1115 reclaim->generation = iter->generation; 1116 } 1117 1118 out_unlock: 1119 rcu_read_unlock(); 1120 out: 1121 if (prev && prev != root) 1122 css_put(&prev->css); 1123 1124 return memcg; 1125 } 1126 1127 /** 1128 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 1129 * @root: hierarchy root 1130 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 1131 */ 1132 void mem_cgroup_iter_break(struct mem_cgroup *root, 1133 struct mem_cgroup *prev) 1134 { 1135 if (!root) 1136 root = root_mem_cgroup; 1137 if (prev && prev != root) 1138 css_put(&prev->css); 1139 } 1140 1141 static void __invalidate_reclaim_iterators(struct mem_cgroup *from, 1142 struct mem_cgroup *dead_memcg) 1143 { 1144 struct mem_cgroup_reclaim_iter *iter; 1145 struct mem_cgroup_per_node *mz; 1146 int nid; 1147 1148 for_each_node(nid) { 1149 mz = mem_cgroup_nodeinfo(from, nid); 1150 iter = &mz->iter; 1151 cmpxchg(&iter->position, dead_memcg, NULL); 1152 } 1153 } 1154 1155 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) 1156 { 1157 struct mem_cgroup *memcg = dead_memcg; 1158 struct mem_cgroup *last; 1159 1160 do { 1161 __invalidate_reclaim_iterators(memcg, dead_memcg); 1162 last = memcg; 1163 } while ((memcg = parent_mem_cgroup(memcg))); 1164 1165 /* 1166 * When cgruop1 non-hierarchy mode is used, 1167 * parent_mem_cgroup() does not walk all the way up to the 1168 * cgroup root (root_mem_cgroup). So we have to handle 1169 * dead_memcg from cgroup root separately. 1170 */ 1171 if (last != root_mem_cgroup) 1172 __invalidate_reclaim_iterators(root_mem_cgroup, 1173 dead_memcg); 1174 } 1175 1176 /** 1177 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy 1178 * @memcg: hierarchy root 1179 * @fn: function to call for each task 1180 * @arg: argument passed to @fn 1181 * 1182 * This function iterates over tasks attached to @memcg or to any of its 1183 * descendants and calls @fn for each task. If @fn returns a non-zero 1184 * value, the function breaks the iteration loop and returns the value. 1185 * Otherwise, it will iterate over all tasks and return 0. 1186 * 1187 * This function must not be called for the root memory cgroup. 1188 */ 1189 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1190 int (*fn)(struct task_struct *, void *), void *arg) 1191 { 1192 struct mem_cgroup *iter; 1193 int ret = 0; 1194 1195 BUG_ON(memcg == root_mem_cgroup); 1196 1197 for_each_mem_cgroup_tree(iter, memcg) { 1198 struct css_task_iter it; 1199 struct task_struct *task; 1200 1201 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it); 1202 while (!ret && (task = css_task_iter_next(&it))) 1203 ret = fn(task, arg); 1204 css_task_iter_end(&it); 1205 if (ret) { 1206 mem_cgroup_iter_break(memcg, iter); 1207 break; 1208 } 1209 } 1210 return ret; 1211 } 1212 1213 /** 1214 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page 1215 * @page: the page 1216 * @pgdat: pgdat of the page 1217 * 1218 * This function is only safe when following the LRU page isolation 1219 * and putback protocol: the LRU lock must be held, and the page must 1220 * either be PageLRU() or the caller must have isolated/allocated it. 1221 */ 1222 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat) 1223 { 1224 struct mem_cgroup_per_node *mz; 1225 struct mem_cgroup *memcg; 1226 struct lruvec *lruvec; 1227 1228 if (mem_cgroup_disabled()) { 1229 lruvec = &pgdat->__lruvec; 1230 goto out; 1231 } 1232 1233 memcg = page->mem_cgroup; 1234 /* 1235 * Swapcache readahead pages are added to the LRU - and 1236 * possibly migrated - before they are charged. 1237 */ 1238 if (!memcg) 1239 memcg = root_mem_cgroup; 1240 1241 mz = mem_cgroup_page_nodeinfo(memcg, page); 1242 lruvec = &mz->lruvec; 1243 out: 1244 /* 1245 * Since a node can be onlined after the mem_cgroup was created, 1246 * we have to be prepared to initialize lruvec->zone here; 1247 * and if offlined then reonlined, we need to reinitialize it. 1248 */ 1249 if (unlikely(lruvec->pgdat != pgdat)) 1250 lruvec->pgdat = pgdat; 1251 return lruvec; 1252 } 1253 1254 /** 1255 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1256 * @lruvec: mem_cgroup per zone lru vector 1257 * @lru: index of lru list the page is sitting on 1258 * @zid: zone id of the accounted pages 1259 * @nr_pages: positive when adding or negative when removing 1260 * 1261 * This function must be called under lru_lock, just before a page is added 1262 * to or just after a page is removed from an lru list (that ordering being 1263 * so as to allow it to check that lru_size 0 is consistent with list_empty). 1264 */ 1265 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1266 int zid, int nr_pages) 1267 { 1268 struct mem_cgroup_per_node *mz; 1269 unsigned long *lru_size; 1270 long size; 1271 1272 if (mem_cgroup_disabled()) 1273 return; 1274 1275 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 1276 lru_size = &mz->lru_zone_size[zid][lru]; 1277 1278 if (nr_pages < 0) 1279 *lru_size += nr_pages; 1280 1281 size = *lru_size; 1282 if (WARN_ONCE(size < 0, 1283 "%s(%p, %d, %d): lru_size %ld\n", 1284 __func__, lruvec, lru, nr_pages, size)) { 1285 VM_BUG_ON(1); 1286 *lru_size = 0; 1287 } 1288 1289 if (nr_pages > 0) 1290 *lru_size += nr_pages; 1291 } 1292 1293 /** 1294 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1295 * @memcg: the memory cgroup 1296 * 1297 * Returns the maximum amount of memory @mem can be charged with, in 1298 * pages. 1299 */ 1300 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1301 { 1302 unsigned long margin = 0; 1303 unsigned long count; 1304 unsigned long limit; 1305 1306 count = page_counter_read(&memcg->memory); 1307 limit = READ_ONCE(memcg->memory.max); 1308 if (count < limit) 1309 margin = limit - count; 1310 1311 if (do_memsw_account()) { 1312 count = page_counter_read(&memcg->memsw); 1313 limit = READ_ONCE(memcg->memsw.max); 1314 if (count <= limit) 1315 margin = min(margin, limit - count); 1316 else 1317 margin = 0; 1318 } 1319 1320 return margin; 1321 } 1322 1323 /* 1324 * A routine for checking "mem" is under move_account() or not. 1325 * 1326 * Checking a cgroup is mc.from or mc.to or under hierarchy of 1327 * moving cgroups. This is for waiting at high-memory pressure 1328 * caused by "move". 1329 */ 1330 static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 1331 { 1332 struct mem_cgroup *from; 1333 struct mem_cgroup *to; 1334 bool ret = false; 1335 /* 1336 * Unlike task_move routines, we access mc.to, mc.from not under 1337 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1338 */ 1339 spin_lock(&mc.lock); 1340 from = mc.from; 1341 to = mc.to; 1342 if (!from) 1343 goto unlock; 1344 1345 ret = mem_cgroup_is_descendant(from, memcg) || 1346 mem_cgroup_is_descendant(to, memcg); 1347 unlock: 1348 spin_unlock(&mc.lock); 1349 return ret; 1350 } 1351 1352 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) 1353 { 1354 if (mc.moving_task && current != mc.moving_task) { 1355 if (mem_cgroup_under_move(memcg)) { 1356 DEFINE_WAIT(wait); 1357 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1358 /* moving charge context might have finished. */ 1359 if (mc.moving_task) 1360 schedule(); 1361 finish_wait(&mc.waitq, &wait); 1362 return true; 1363 } 1364 } 1365 return false; 1366 } 1367 1368 static char *memory_stat_format(struct mem_cgroup *memcg) 1369 { 1370 struct seq_buf s; 1371 int i; 1372 1373 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE); 1374 if (!s.buffer) 1375 return NULL; 1376 1377 /* 1378 * Provide statistics on the state of the memory subsystem as 1379 * well as cumulative event counters that show past behavior. 1380 * 1381 * This list is ordered following a combination of these gradients: 1382 * 1) generic big picture -> specifics and details 1383 * 2) reflecting userspace activity -> reflecting kernel heuristics 1384 * 1385 * Current memory state: 1386 */ 1387 1388 seq_buf_printf(&s, "anon %llu\n", 1389 (u64)memcg_page_state(memcg, MEMCG_RSS) * 1390 PAGE_SIZE); 1391 seq_buf_printf(&s, "file %llu\n", 1392 (u64)memcg_page_state(memcg, MEMCG_CACHE) * 1393 PAGE_SIZE); 1394 seq_buf_printf(&s, "kernel_stack %llu\n", 1395 (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) * 1396 1024); 1397 seq_buf_printf(&s, "slab %llu\n", 1398 (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) + 1399 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) * 1400 PAGE_SIZE); 1401 seq_buf_printf(&s, "sock %llu\n", 1402 (u64)memcg_page_state(memcg, MEMCG_SOCK) * 1403 PAGE_SIZE); 1404 1405 seq_buf_printf(&s, "shmem %llu\n", 1406 (u64)memcg_page_state(memcg, NR_SHMEM) * 1407 PAGE_SIZE); 1408 seq_buf_printf(&s, "file_mapped %llu\n", 1409 (u64)memcg_page_state(memcg, NR_FILE_MAPPED) * 1410 PAGE_SIZE); 1411 seq_buf_printf(&s, "file_dirty %llu\n", 1412 (u64)memcg_page_state(memcg, NR_FILE_DIRTY) * 1413 PAGE_SIZE); 1414 seq_buf_printf(&s, "file_writeback %llu\n", 1415 (u64)memcg_page_state(memcg, NR_WRITEBACK) * 1416 PAGE_SIZE); 1417 1418 /* 1419 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter 1420 * with the NR_ANON_THP vm counter, but right now it's a pain in the 1421 * arse because it requires migrating the work out of rmap to a place 1422 * where the page->mem_cgroup is set up and stable. 1423 */ 1424 seq_buf_printf(&s, "anon_thp %llu\n", 1425 (u64)memcg_page_state(memcg, MEMCG_RSS_HUGE) * 1426 PAGE_SIZE); 1427 1428 for (i = 0; i < NR_LRU_LISTS; i++) 1429 seq_buf_printf(&s, "%s %llu\n", lru_list_name(i), 1430 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) * 1431 PAGE_SIZE); 1432 1433 seq_buf_printf(&s, "slab_reclaimable %llu\n", 1434 (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) * 1435 PAGE_SIZE); 1436 seq_buf_printf(&s, "slab_unreclaimable %llu\n", 1437 (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) * 1438 PAGE_SIZE); 1439 1440 /* Accumulated memory events */ 1441 1442 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT), 1443 memcg_events(memcg, PGFAULT)); 1444 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT), 1445 memcg_events(memcg, PGMAJFAULT)); 1446 1447 seq_buf_printf(&s, "workingset_refault %lu\n", 1448 memcg_page_state(memcg, WORKINGSET_REFAULT)); 1449 seq_buf_printf(&s, "workingset_activate %lu\n", 1450 memcg_page_state(memcg, WORKINGSET_ACTIVATE)); 1451 seq_buf_printf(&s, "workingset_nodereclaim %lu\n", 1452 memcg_page_state(memcg, WORKINGSET_NODERECLAIM)); 1453 1454 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL), 1455 memcg_events(memcg, PGREFILL)); 1456 seq_buf_printf(&s, "pgscan %lu\n", 1457 memcg_events(memcg, PGSCAN_KSWAPD) + 1458 memcg_events(memcg, PGSCAN_DIRECT)); 1459 seq_buf_printf(&s, "pgsteal %lu\n", 1460 memcg_events(memcg, PGSTEAL_KSWAPD) + 1461 memcg_events(memcg, PGSTEAL_DIRECT)); 1462 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE), 1463 memcg_events(memcg, PGACTIVATE)); 1464 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE), 1465 memcg_events(memcg, PGDEACTIVATE)); 1466 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE), 1467 memcg_events(memcg, PGLAZYFREE)); 1468 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED), 1469 memcg_events(memcg, PGLAZYFREED)); 1470 1471 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1472 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC), 1473 memcg_events(memcg, THP_FAULT_ALLOC)); 1474 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC), 1475 memcg_events(memcg, THP_COLLAPSE_ALLOC)); 1476 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1477 1478 /* The above should easily fit into one page */ 1479 WARN_ON_ONCE(seq_buf_has_overflowed(&s)); 1480 1481 return s.buffer; 1482 } 1483 1484 #define K(x) ((x) << (PAGE_SHIFT-10)) 1485 /** 1486 * mem_cgroup_print_oom_context: Print OOM information relevant to 1487 * memory controller. 1488 * @memcg: The memory cgroup that went over limit 1489 * @p: Task that is going to be killed 1490 * 1491 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1492 * enabled 1493 */ 1494 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1495 { 1496 rcu_read_lock(); 1497 1498 if (memcg) { 1499 pr_cont(",oom_memcg="); 1500 pr_cont_cgroup_path(memcg->css.cgroup); 1501 } else 1502 pr_cont(",global_oom"); 1503 if (p) { 1504 pr_cont(",task_memcg="); 1505 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); 1506 } 1507 rcu_read_unlock(); 1508 } 1509 1510 /** 1511 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to 1512 * memory controller. 1513 * @memcg: The memory cgroup that went over limit 1514 */ 1515 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1516 { 1517 char *buf; 1518 1519 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", 1520 K((u64)page_counter_read(&memcg->memory)), 1521 K((u64)memcg->memory.max), memcg->memory.failcnt); 1522 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1523 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n", 1524 K((u64)page_counter_read(&memcg->swap)), 1525 K((u64)memcg->swap.max), memcg->swap.failcnt); 1526 else { 1527 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", 1528 K((u64)page_counter_read(&memcg->memsw)), 1529 K((u64)memcg->memsw.max), memcg->memsw.failcnt); 1530 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", 1531 K((u64)page_counter_read(&memcg->kmem)), 1532 K((u64)memcg->kmem.max), memcg->kmem.failcnt); 1533 } 1534 1535 pr_info("Memory cgroup stats for "); 1536 pr_cont_cgroup_path(memcg->css.cgroup); 1537 pr_cont(":"); 1538 buf = memory_stat_format(memcg); 1539 if (!buf) 1540 return; 1541 pr_info("%s", buf); 1542 kfree(buf); 1543 } 1544 1545 /* 1546 * Return the memory (and swap, if configured) limit for a memcg. 1547 */ 1548 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1549 { 1550 unsigned long max; 1551 1552 max = memcg->memory.max; 1553 if (mem_cgroup_swappiness(memcg)) { 1554 unsigned long memsw_max; 1555 unsigned long swap_max; 1556 1557 memsw_max = memcg->memsw.max; 1558 swap_max = memcg->swap.max; 1559 swap_max = min(swap_max, (unsigned long)total_swap_pages); 1560 max = min(max + swap_max, memsw_max); 1561 } 1562 return max; 1563 } 1564 1565 unsigned long mem_cgroup_size(struct mem_cgroup *memcg) 1566 { 1567 return page_counter_read(&memcg->memory); 1568 } 1569 1570 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1571 int order) 1572 { 1573 struct oom_control oc = { 1574 .zonelist = NULL, 1575 .nodemask = NULL, 1576 .memcg = memcg, 1577 .gfp_mask = gfp_mask, 1578 .order = order, 1579 }; 1580 bool ret; 1581 1582 if (mutex_lock_killable(&oom_lock)) 1583 return true; 1584 /* 1585 * A few threads which were not waiting at mutex_lock_killable() can 1586 * fail to bail out. Therefore, check again after holding oom_lock. 1587 */ 1588 ret = should_force_charge() || out_of_memory(&oc); 1589 mutex_unlock(&oom_lock); 1590 return ret; 1591 } 1592 1593 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, 1594 pg_data_t *pgdat, 1595 gfp_t gfp_mask, 1596 unsigned long *total_scanned) 1597 { 1598 struct mem_cgroup *victim = NULL; 1599 int total = 0; 1600 int loop = 0; 1601 unsigned long excess; 1602 unsigned long nr_scanned; 1603 struct mem_cgroup_reclaim_cookie reclaim = { 1604 .pgdat = pgdat, 1605 }; 1606 1607 excess = soft_limit_excess(root_memcg); 1608 1609 while (1) { 1610 victim = mem_cgroup_iter(root_memcg, victim, &reclaim); 1611 if (!victim) { 1612 loop++; 1613 if (loop >= 2) { 1614 /* 1615 * If we have not been able to reclaim 1616 * anything, it might because there are 1617 * no reclaimable pages under this hierarchy 1618 */ 1619 if (!total) 1620 break; 1621 /* 1622 * We want to do more targeted reclaim. 1623 * excess >> 2 is not to excessive so as to 1624 * reclaim too much, nor too less that we keep 1625 * coming back to reclaim from this cgroup 1626 */ 1627 if (total >= (excess >> 2) || 1628 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) 1629 break; 1630 } 1631 continue; 1632 } 1633 total += mem_cgroup_shrink_node(victim, gfp_mask, false, 1634 pgdat, &nr_scanned); 1635 *total_scanned += nr_scanned; 1636 if (!soft_limit_excess(root_memcg)) 1637 break; 1638 } 1639 mem_cgroup_iter_break(root_memcg, victim); 1640 return total; 1641 } 1642 1643 #ifdef CONFIG_LOCKDEP 1644 static struct lockdep_map memcg_oom_lock_dep_map = { 1645 .name = "memcg_oom_lock", 1646 }; 1647 #endif 1648 1649 static DEFINE_SPINLOCK(memcg_oom_lock); 1650 1651 /* 1652 * Check OOM-Killer is already running under our hierarchy. 1653 * If someone is running, return false. 1654 */ 1655 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) 1656 { 1657 struct mem_cgroup *iter, *failed = NULL; 1658 1659 spin_lock(&memcg_oom_lock); 1660 1661 for_each_mem_cgroup_tree(iter, memcg) { 1662 if (iter->oom_lock) { 1663 /* 1664 * this subtree of our hierarchy is already locked 1665 * so we cannot give a lock. 1666 */ 1667 failed = iter; 1668 mem_cgroup_iter_break(memcg, iter); 1669 break; 1670 } else 1671 iter->oom_lock = true; 1672 } 1673 1674 if (failed) { 1675 /* 1676 * OK, we failed to lock the whole subtree so we have 1677 * to clean up what we set up to the failing subtree 1678 */ 1679 for_each_mem_cgroup_tree(iter, memcg) { 1680 if (iter == failed) { 1681 mem_cgroup_iter_break(memcg, iter); 1682 break; 1683 } 1684 iter->oom_lock = false; 1685 } 1686 } else 1687 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); 1688 1689 spin_unlock(&memcg_oom_lock); 1690 1691 return !failed; 1692 } 1693 1694 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 1695 { 1696 struct mem_cgroup *iter; 1697 1698 spin_lock(&memcg_oom_lock); 1699 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_); 1700 for_each_mem_cgroup_tree(iter, memcg) 1701 iter->oom_lock = false; 1702 spin_unlock(&memcg_oom_lock); 1703 } 1704 1705 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 1706 { 1707 struct mem_cgroup *iter; 1708 1709 spin_lock(&memcg_oom_lock); 1710 for_each_mem_cgroup_tree(iter, memcg) 1711 iter->under_oom++; 1712 spin_unlock(&memcg_oom_lock); 1713 } 1714 1715 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 1716 { 1717 struct mem_cgroup *iter; 1718 1719 /* 1720 * When a new child is created while the hierarchy is under oom, 1721 * mem_cgroup_oom_lock() may not be called. Watch for underflow. 1722 */ 1723 spin_lock(&memcg_oom_lock); 1724 for_each_mem_cgroup_tree(iter, memcg) 1725 if (iter->under_oom > 0) 1726 iter->under_oom--; 1727 spin_unlock(&memcg_oom_lock); 1728 } 1729 1730 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 1731 1732 struct oom_wait_info { 1733 struct mem_cgroup *memcg; 1734 wait_queue_entry_t wait; 1735 }; 1736 1737 static int memcg_oom_wake_function(wait_queue_entry_t *wait, 1738 unsigned mode, int sync, void *arg) 1739 { 1740 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; 1741 struct mem_cgroup *oom_wait_memcg; 1742 struct oom_wait_info *oom_wait_info; 1743 1744 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 1745 oom_wait_memcg = oom_wait_info->memcg; 1746 1747 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) && 1748 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg)) 1749 return 0; 1750 return autoremove_wake_function(wait, mode, sync, arg); 1751 } 1752 1753 static void memcg_oom_recover(struct mem_cgroup *memcg) 1754 { 1755 /* 1756 * For the following lockless ->under_oom test, the only required 1757 * guarantee is that it must see the state asserted by an OOM when 1758 * this function is called as a result of userland actions 1759 * triggered by the notification of the OOM. This is trivially 1760 * achieved by invoking mem_cgroup_mark_under_oom() before 1761 * triggering notification. 1762 */ 1763 if (memcg && memcg->under_oom) 1764 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 1765 } 1766 1767 enum oom_status { 1768 OOM_SUCCESS, 1769 OOM_FAILED, 1770 OOM_ASYNC, 1771 OOM_SKIPPED 1772 }; 1773 1774 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 1775 { 1776 enum oom_status ret; 1777 bool locked; 1778 1779 if (order > PAGE_ALLOC_COSTLY_ORDER) 1780 return OOM_SKIPPED; 1781 1782 memcg_memory_event(memcg, MEMCG_OOM); 1783 1784 /* 1785 * We are in the middle of the charge context here, so we 1786 * don't want to block when potentially sitting on a callstack 1787 * that holds all kinds of filesystem and mm locks. 1788 * 1789 * cgroup1 allows disabling the OOM killer and waiting for outside 1790 * handling until the charge can succeed; remember the context and put 1791 * the task to sleep at the end of the page fault when all locks are 1792 * released. 1793 * 1794 * On the other hand, in-kernel OOM killer allows for an async victim 1795 * memory reclaim (oom_reaper) and that means that we are not solely 1796 * relying on the oom victim to make a forward progress and we can 1797 * invoke the oom killer here. 1798 * 1799 * Please note that mem_cgroup_out_of_memory might fail to find a 1800 * victim and then we have to bail out from the charge path. 1801 */ 1802 if (memcg->oom_kill_disable) { 1803 if (!current->in_user_fault) 1804 return OOM_SKIPPED; 1805 css_get(&memcg->css); 1806 current->memcg_in_oom = memcg; 1807 current->memcg_oom_gfp_mask = mask; 1808 current->memcg_oom_order = order; 1809 1810 return OOM_ASYNC; 1811 } 1812 1813 mem_cgroup_mark_under_oom(memcg); 1814 1815 locked = mem_cgroup_oom_trylock(memcg); 1816 1817 if (locked) 1818 mem_cgroup_oom_notify(memcg); 1819 1820 mem_cgroup_unmark_under_oom(memcg); 1821 if (mem_cgroup_out_of_memory(memcg, mask, order)) 1822 ret = OOM_SUCCESS; 1823 else 1824 ret = OOM_FAILED; 1825 1826 if (locked) 1827 mem_cgroup_oom_unlock(memcg); 1828 1829 return ret; 1830 } 1831 1832 /** 1833 * mem_cgroup_oom_synchronize - complete memcg OOM handling 1834 * @handle: actually kill/wait or just clean up the OOM state 1835 * 1836 * This has to be called at the end of a page fault if the memcg OOM 1837 * handler was enabled. 1838 * 1839 * Memcg supports userspace OOM handling where failed allocations must 1840 * sleep on a waitqueue until the userspace task resolves the 1841 * situation. Sleeping directly in the charge context with all kinds 1842 * of locks held is not a good idea, instead we remember an OOM state 1843 * in the task and mem_cgroup_oom_synchronize() has to be called at 1844 * the end of the page fault to complete the OOM handling. 1845 * 1846 * Returns %true if an ongoing memcg OOM situation was detected and 1847 * completed, %false otherwise. 1848 */ 1849 bool mem_cgroup_oom_synchronize(bool handle) 1850 { 1851 struct mem_cgroup *memcg = current->memcg_in_oom; 1852 struct oom_wait_info owait; 1853 bool locked; 1854 1855 /* OOM is global, do not handle */ 1856 if (!memcg) 1857 return false; 1858 1859 if (!handle) 1860 goto cleanup; 1861 1862 owait.memcg = memcg; 1863 owait.wait.flags = 0; 1864 owait.wait.func = memcg_oom_wake_function; 1865 owait.wait.private = current; 1866 INIT_LIST_HEAD(&owait.wait.entry); 1867 1868 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 1869 mem_cgroup_mark_under_oom(memcg); 1870 1871 locked = mem_cgroup_oom_trylock(memcg); 1872 1873 if (locked) 1874 mem_cgroup_oom_notify(memcg); 1875 1876 if (locked && !memcg->oom_kill_disable) { 1877 mem_cgroup_unmark_under_oom(memcg); 1878 finish_wait(&memcg_oom_waitq, &owait.wait); 1879 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask, 1880 current->memcg_oom_order); 1881 } else { 1882 schedule(); 1883 mem_cgroup_unmark_under_oom(memcg); 1884 finish_wait(&memcg_oom_waitq, &owait.wait); 1885 } 1886 1887 if (locked) { 1888 mem_cgroup_oom_unlock(memcg); 1889 /* 1890 * There is no guarantee that an OOM-lock contender 1891 * sees the wakeups triggered by the OOM kill 1892 * uncharges. Wake any sleepers explicitely. 1893 */ 1894 memcg_oom_recover(memcg); 1895 } 1896 cleanup: 1897 current->memcg_in_oom = NULL; 1898 css_put(&memcg->css); 1899 return true; 1900 } 1901 1902 /** 1903 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM 1904 * @victim: task to be killed by the OOM killer 1905 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM 1906 * 1907 * Returns a pointer to a memory cgroup, which has to be cleaned up 1908 * by killing all belonging OOM-killable tasks. 1909 * 1910 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg. 1911 */ 1912 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 1913 struct mem_cgroup *oom_domain) 1914 { 1915 struct mem_cgroup *oom_group = NULL; 1916 struct mem_cgroup *memcg; 1917 1918 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1919 return NULL; 1920 1921 if (!oom_domain) 1922 oom_domain = root_mem_cgroup; 1923 1924 rcu_read_lock(); 1925 1926 memcg = mem_cgroup_from_task(victim); 1927 if (memcg == root_mem_cgroup) 1928 goto out; 1929 1930 /* 1931 * Traverse the memory cgroup hierarchy from the victim task's 1932 * cgroup up to the OOMing cgroup (or root) to find the 1933 * highest-level memory cgroup with oom.group set. 1934 */ 1935 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 1936 if (memcg->oom_group) 1937 oom_group = memcg; 1938 1939 if (memcg == oom_domain) 1940 break; 1941 } 1942 1943 if (oom_group) 1944 css_get(&oom_group->css); 1945 out: 1946 rcu_read_unlock(); 1947 1948 return oom_group; 1949 } 1950 1951 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 1952 { 1953 pr_info("Tasks in "); 1954 pr_cont_cgroup_path(memcg->css.cgroup); 1955 pr_cont(" are going to be killed due to memory.oom.group set\n"); 1956 } 1957 1958 /** 1959 * lock_page_memcg - lock a page->mem_cgroup binding 1960 * @page: the page 1961 * 1962 * This function protects unlocked LRU pages from being moved to 1963 * another cgroup. 1964 * 1965 * It ensures lifetime of the returned memcg. Caller is responsible 1966 * for the lifetime of the page; __unlock_page_memcg() is available 1967 * when @page might get freed inside the locked section. 1968 */ 1969 struct mem_cgroup *lock_page_memcg(struct page *page) 1970 { 1971 struct mem_cgroup *memcg; 1972 unsigned long flags; 1973 1974 /* 1975 * The RCU lock is held throughout the transaction. The fast 1976 * path can get away without acquiring the memcg->move_lock 1977 * because page moving starts with an RCU grace period. 1978 * 1979 * The RCU lock also protects the memcg from being freed when 1980 * the page state that is going to change is the only thing 1981 * preventing the page itself from being freed. E.g. writeback 1982 * doesn't hold a page reference and relies on PG_writeback to 1983 * keep off truncation, migration and so forth. 1984 */ 1985 rcu_read_lock(); 1986 1987 if (mem_cgroup_disabled()) 1988 return NULL; 1989 again: 1990 memcg = page->mem_cgroup; 1991 if (unlikely(!memcg)) 1992 return NULL; 1993 1994 if (atomic_read(&memcg->moving_account) <= 0) 1995 return memcg; 1996 1997 spin_lock_irqsave(&memcg->move_lock, flags); 1998 if (memcg != page->mem_cgroup) { 1999 spin_unlock_irqrestore(&memcg->move_lock, flags); 2000 goto again; 2001 } 2002 2003 /* 2004 * When charge migration first begins, we can have locked and 2005 * unlocked page stat updates happening concurrently. Track 2006 * the task who has the lock for unlock_page_memcg(). 2007 */ 2008 memcg->move_lock_task = current; 2009 memcg->move_lock_flags = flags; 2010 2011 return memcg; 2012 } 2013 EXPORT_SYMBOL(lock_page_memcg); 2014 2015 /** 2016 * __unlock_page_memcg - unlock and unpin a memcg 2017 * @memcg: the memcg 2018 * 2019 * Unlock and unpin a memcg returned by lock_page_memcg(). 2020 */ 2021 void __unlock_page_memcg(struct mem_cgroup *memcg) 2022 { 2023 if (memcg && memcg->move_lock_task == current) { 2024 unsigned long flags = memcg->move_lock_flags; 2025 2026 memcg->move_lock_task = NULL; 2027 memcg->move_lock_flags = 0; 2028 2029 spin_unlock_irqrestore(&memcg->move_lock, flags); 2030 } 2031 2032 rcu_read_unlock(); 2033 } 2034 2035 /** 2036 * unlock_page_memcg - unlock a page->mem_cgroup binding 2037 * @page: the page 2038 */ 2039 void unlock_page_memcg(struct page *page) 2040 { 2041 __unlock_page_memcg(page->mem_cgroup); 2042 } 2043 EXPORT_SYMBOL(unlock_page_memcg); 2044 2045 struct memcg_stock_pcp { 2046 struct mem_cgroup *cached; /* this never be root cgroup */ 2047 unsigned int nr_pages; 2048 struct work_struct work; 2049 unsigned long flags; 2050 #define FLUSHING_CACHED_CHARGE 0 2051 }; 2052 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); 2053 static DEFINE_MUTEX(percpu_charge_mutex); 2054 2055 /** 2056 * consume_stock: Try to consume stocked charge on this cpu. 2057 * @memcg: memcg to consume from. 2058 * @nr_pages: how many pages to charge. 2059 * 2060 * The charges will only happen if @memcg matches the current cpu's memcg 2061 * stock, and at least @nr_pages are available in that stock. Failure to 2062 * service an allocation will refill the stock. 2063 * 2064 * returns true if successful, false otherwise. 2065 */ 2066 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2067 { 2068 struct memcg_stock_pcp *stock; 2069 unsigned long flags; 2070 bool ret = false; 2071 2072 if (nr_pages > MEMCG_CHARGE_BATCH) 2073 return ret; 2074 2075 local_irq_save(flags); 2076 2077 stock = this_cpu_ptr(&memcg_stock); 2078 if (memcg == stock->cached && stock->nr_pages >= nr_pages) { 2079 stock->nr_pages -= nr_pages; 2080 ret = true; 2081 } 2082 2083 local_irq_restore(flags); 2084 2085 return ret; 2086 } 2087 2088 /* 2089 * Returns stocks cached in percpu and reset cached information. 2090 */ 2091 static void drain_stock(struct memcg_stock_pcp *stock) 2092 { 2093 struct mem_cgroup *old = stock->cached; 2094 2095 if (stock->nr_pages) { 2096 page_counter_uncharge(&old->memory, stock->nr_pages); 2097 if (do_memsw_account()) 2098 page_counter_uncharge(&old->memsw, stock->nr_pages); 2099 css_put_many(&old->css, stock->nr_pages); 2100 stock->nr_pages = 0; 2101 } 2102 stock->cached = NULL; 2103 } 2104 2105 static void drain_local_stock(struct work_struct *dummy) 2106 { 2107 struct memcg_stock_pcp *stock; 2108 unsigned long flags; 2109 2110 /* 2111 * The only protection from memory hotplug vs. drain_stock races is 2112 * that we always operate on local CPU stock here with IRQ disabled 2113 */ 2114 local_irq_save(flags); 2115 2116 stock = this_cpu_ptr(&memcg_stock); 2117 drain_stock(stock); 2118 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 2119 2120 local_irq_restore(flags); 2121 } 2122 2123 /* 2124 * Cache charges(val) to local per_cpu area. 2125 * This will be consumed by consume_stock() function, later. 2126 */ 2127 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2128 { 2129 struct memcg_stock_pcp *stock; 2130 unsigned long flags; 2131 2132 local_irq_save(flags); 2133 2134 stock = this_cpu_ptr(&memcg_stock); 2135 if (stock->cached != memcg) { /* reset if necessary */ 2136 drain_stock(stock); 2137 stock->cached = memcg; 2138 } 2139 stock->nr_pages += nr_pages; 2140 2141 if (stock->nr_pages > MEMCG_CHARGE_BATCH) 2142 drain_stock(stock); 2143 2144 local_irq_restore(flags); 2145 } 2146 2147 /* 2148 * Drains all per-CPU charge caches for given root_memcg resp. subtree 2149 * of the hierarchy under it. 2150 */ 2151 static void drain_all_stock(struct mem_cgroup *root_memcg) 2152 { 2153 int cpu, curcpu; 2154 2155 /* If someone's already draining, avoid adding running more workers. */ 2156 if (!mutex_trylock(&percpu_charge_mutex)) 2157 return; 2158 /* 2159 * Notify other cpus that system-wide "drain" is running 2160 * We do not care about races with the cpu hotplug because cpu down 2161 * as well as workers from this path always operate on the local 2162 * per-cpu data. CPU up doesn't touch memcg_stock at all. 2163 */ 2164 curcpu = get_cpu(); 2165 for_each_online_cpu(cpu) { 2166 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2167 struct mem_cgroup *memcg; 2168 bool flush = false; 2169 2170 rcu_read_lock(); 2171 memcg = stock->cached; 2172 if (memcg && stock->nr_pages && 2173 mem_cgroup_is_descendant(memcg, root_memcg)) 2174 flush = true; 2175 rcu_read_unlock(); 2176 2177 if (flush && 2178 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 2179 if (cpu == curcpu) 2180 drain_local_stock(&stock->work); 2181 else 2182 schedule_work_on(cpu, &stock->work); 2183 } 2184 } 2185 put_cpu(); 2186 mutex_unlock(&percpu_charge_mutex); 2187 } 2188 2189 static int memcg_hotplug_cpu_dead(unsigned int cpu) 2190 { 2191 struct memcg_stock_pcp *stock; 2192 struct mem_cgroup *memcg, *mi; 2193 2194 stock = &per_cpu(memcg_stock, cpu); 2195 drain_stock(stock); 2196 2197 for_each_mem_cgroup(memcg) { 2198 int i; 2199 2200 for (i = 0; i < MEMCG_NR_STAT; i++) { 2201 int nid; 2202 long x; 2203 2204 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0); 2205 if (x) 2206 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 2207 atomic_long_add(x, &memcg->vmstats[i]); 2208 2209 if (i >= NR_VM_NODE_STAT_ITEMS) 2210 continue; 2211 2212 for_each_node(nid) { 2213 struct mem_cgroup_per_node *pn; 2214 2215 pn = mem_cgroup_nodeinfo(memcg, nid); 2216 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0); 2217 if (x) 2218 do { 2219 atomic_long_add(x, &pn->lruvec_stat[i]); 2220 } while ((pn = parent_nodeinfo(pn, nid))); 2221 } 2222 } 2223 2224 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) { 2225 long x; 2226 2227 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0); 2228 if (x) 2229 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 2230 atomic_long_add(x, &memcg->vmevents[i]); 2231 } 2232 } 2233 2234 return 0; 2235 } 2236 2237 static void reclaim_high(struct mem_cgroup *memcg, 2238 unsigned int nr_pages, 2239 gfp_t gfp_mask) 2240 { 2241 do { 2242 if (page_counter_read(&memcg->memory) <= memcg->high) 2243 continue; 2244 memcg_memory_event(memcg, MEMCG_HIGH); 2245 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true); 2246 } while ((memcg = parent_mem_cgroup(memcg))); 2247 } 2248 2249 static void high_work_func(struct work_struct *work) 2250 { 2251 struct mem_cgroup *memcg; 2252 2253 memcg = container_of(work, struct mem_cgroup, high_work); 2254 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL); 2255 } 2256 2257 /* 2258 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is 2259 * enough to still cause a significant slowdown in most cases, while still 2260 * allowing diagnostics and tracing to proceed without becoming stuck. 2261 */ 2262 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ) 2263 2264 /* 2265 * When calculating the delay, we use these either side of the exponentiation to 2266 * maintain precision and scale to a reasonable number of jiffies (see the table 2267 * below. 2268 * 2269 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the 2270 * overage ratio to a delay. 2271 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down down the 2272 * proposed penalty in order to reduce to a reasonable number of jiffies, and 2273 * to produce a reasonable delay curve. 2274 * 2275 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a 2276 * reasonable delay curve compared to precision-adjusted overage, not 2277 * penalising heavily at first, but still making sure that growth beyond the 2278 * limit penalises misbehaviour cgroups by slowing them down exponentially. For 2279 * example, with a high of 100 megabytes: 2280 * 2281 * +-------+------------------------+ 2282 * | usage | time to allocate in ms | 2283 * +-------+------------------------+ 2284 * | 100M | 0 | 2285 * | 101M | 6 | 2286 * | 102M | 25 | 2287 * | 103M | 57 | 2288 * | 104M | 102 | 2289 * | 105M | 159 | 2290 * | 106M | 230 | 2291 * | 107M | 313 | 2292 * | 108M | 409 | 2293 * | 109M | 518 | 2294 * | 110M | 639 | 2295 * | 111M | 774 | 2296 * | 112M | 921 | 2297 * | 113M | 1081 | 2298 * | 114M | 1254 | 2299 * | 115M | 1439 | 2300 * | 116M | 1638 | 2301 * | 117M | 1849 | 2302 * | 118M | 2000 | 2303 * | 119M | 2000 | 2304 * | 120M | 2000 | 2305 * +-------+------------------------+ 2306 */ 2307 #define MEMCG_DELAY_PRECISION_SHIFT 20 2308 #define MEMCG_DELAY_SCALING_SHIFT 14 2309 2310 /* 2311 * Get the number of jiffies that we should penalise a mischievous cgroup which 2312 * is exceeding its memory.high by checking both it and its ancestors. 2313 */ 2314 static unsigned long calculate_high_delay(struct mem_cgroup *memcg, 2315 unsigned int nr_pages) 2316 { 2317 unsigned long penalty_jiffies; 2318 u64 max_overage = 0; 2319 2320 do { 2321 unsigned long usage, high; 2322 u64 overage; 2323 2324 usage = page_counter_read(&memcg->memory); 2325 high = READ_ONCE(memcg->high); 2326 2327 /* 2328 * Prevent division by 0 in overage calculation by acting as if 2329 * it was a threshold of 1 page 2330 */ 2331 high = max(high, 1UL); 2332 2333 overage = usage - high; 2334 overage <<= MEMCG_DELAY_PRECISION_SHIFT; 2335 overage = div64_u64(overage, high); 2336 2337 if (overage > max_overage) 2338 max_overage = overage; 2339 } while ((memcg = parent_mem_cgroup(memcg)) && 2340 !mem_cgroup_is_root(memcg)); 2341 2342 if (!max_overage) 2343 return 0; 2344 2345 /* 2346 * We use overage compared to memory.high to calculate the number of 2347 * jiffies to sleep (penalty_jiffies). Ideally this value should be 2348 * fairly lenient on small overages, and increasingly harsh when the 2349 * memcg in question makes it clear that it has no intention of stopping 2350 * its crazy behaviour, so we exponentially increase the delay based on 2351 * overage amount. 2352 */ 2353 penalty_jiffies = max_overage * max_overage * HZ; 2354 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT; 2355 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT; 2356 2357 /* 2358 * Factor in the task's own contribution to the overage, such that four 2359 * N-sized allocations are throttled approximately the same as one 2360 * 4N-sized allocation. 2361 * 2362 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or 2363 * larger the current charge patch is than that. 2364 */ 2365 penalty_jiffies = penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH; 2366 2367 /* 2368 * Clamp the max delay per usermode return so as to still keep the 2369 * application moving forwards and also permit diagnostics, albeit 2370 * extremely slowly. 2371 */ 2372 return min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES); 2373 } 2374 2375 /* 2376 * Scheduled by try_charge() to be executed from the userland return path 2377 * and reclaims memory over the high limit. 2378 */ 2379 void mem_cgroup_handle_over_high(void) 2380 { 2381 unsigned long penalty_jiffies; 2382 unsigned long pflags; 2383 unsigned int nr_pages = current->memcg_nr_pages_over_high; 2384 struct mem_cgroup *memcg; 2385 2386 if (likely(!nr_pages)) 2387 return; 2388 2389 memcg = get_mem_cgroup_from_mm(current->mm); 2390 reclaim_high(memcg, nr_pages, GFP_KERNEL); 2391 current->memcg_nr_pages_over_high = 0; 2392 2393 /* 2394 * memory.high is breached and reclaim is unable to keep up. Throttle 2395 * allocators proactively to slow down excessive growth. 2396 */ 2397 penalty_jiffies = calculate_high_delay(memcg, nr_pages); 2398 2399 /* 2400 * Don't sleep if the amount of jiffies this memcg owes us is so low 2401 * that it's not even worth doing, in an attempt to be nice to those who 2402 * go only a small amount over their memory.high value and maybe haven't 2403 * been aggressively reclaimed enough yet. 2404 */ 2405 if (penalty_jiffies <= HZ / 100) 2406 goto out; 2407 2408 /* 2409 * If we exit early, we're guaranteed to die (since 2410 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't 2411 * need to account for any ill-begotten jiffies to pay them off later. 2412 */ 2413 psi_memstall_enter(&pflags); 2414 schedule_timeout_killable(penalty_jiffies); 2415 psi_memstall_leave(&pflags); 2416 2417 out: 2418 css_put(&memcg->css); 2419 } 2420 2421 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 2422 unsigned int nr_pages) 2423 { 2424 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages); 2425 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 2426 struct mem_cgroup *mem_over_limit; 2427 struct page_counter *counter; 2428 unsigned long nr_reclaimed; 2429 bool may_swap = true; 2430 bool drained = false; 2431 enum oom_status oom_status; 2432 2433 if (mem_cgroup_is_root(memcg)) 2434 return 0; 2435 retry: 2436 if (consume_stock(memcg, nr_pages)) 2437 return 0; 2438 2439 if (!do_memsw_account() || 2440 page_counter_try_charge(&memcg->memsw, batch, &counter)) { 2441 if (page_counter_try_charge(&memcg->memory, batch, &counter)) 2442 goto done_restock; 2443 if (do_memsw_account()) 2444 page_counter_uncharge(&memcg->memsw, batch); 2445 mem_over_limit = mem_cgroup_from_counter(counter, memory); 2446 } else { 2447 mem_over_limit = mem_cgroup_from_counter(counter, memsw); 2448 may_swap = false; 2449 } 2450 2451 if (batch > nr_pages) { 2452 batch = nr_pages; 2453 goto retry; 2454 } 2455 2456 /* 2457 * Memcg doesn't have a dedicated reserve for atomic 2458 * allocations. But like the global atomic pool, we need to 2459 * put the burden of reclaim on regular allocation requests 2460 * and let these go through as privileged allocations. 2461 */ 2462 if (gfp_mask & __GFP_ATOMIC) 2463 goto force; 2464 2465 /* 2466 * Unlike in global OOM situations, memcg is not in a physical 2467 * memory shortage. Allow dying and OOM-killed tasks to 2468 * bypass the last charges so that they can exit quickly and 2469 * free their memory. 2470 */ 2471 if (unlikely(should_force_charge())) 2472 goto force; 2473 2474 /* 2475 * Prevent unbounded recursion when reclaim operations need to 2476 * allocate memory. This might exceed the limits temporarily, 2477 * but we prefer facilitating memory reclaim and getting back 2478 * under the limit over triggering OOM kills in these cases. 2479 */ 2480 if (unlikely(current->flags & PF_MEMALLOC)) 2481 goto force; 2482 2483 if (unlikely(task_in_memcg_oom(current))) 2484 goto nomem; 2485 2486 if (!gfpflags_allow_blocking(gfp_mask)) 2487 goto nomem; 2488 2489 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2490 2491 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, 2492 gfp_mask, may_swap); 2493 2494 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2495 goto retry; 2496 2497 if (!drained) { 2498 drain_all_stock(mem_over_limit); 2499 drained = true; 2500 goto retry; 2501 } 2502 2503 if (gfp_mask & __GFP_NORETRY) 2504 goto nomem; 2505 /* 2506 * Even though the limit is exceeded at this point, reclaim 2507 * may have been able to free some pages. Retry the charge 2508 * before killing the task. 2509 * 2510 * Only for regular pages, though: huge pages are rather 2511 * unlikely to succeed so close to the limit, and we fall back 2512 * to regular pages anyway in case of failure. 2513 */ 2514 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) 2515 goto retry; 2516 /* 2517 * At task move, charge accounts can be doubly counted. So, it's 2518 * better to wait until the end of task_move if something is going on. 2519 */ 2520 if (mem_cgroup_wait_acct_move(mem_over_limit)) 2521 goto retry; 2522 2523 if (nr_retries--) 2524 goto retry; 2525 2526 if (gfp_mask & __GFP_RETRY_MAYFAIL) 2527 goto nomem; 2528 2529 if (gfp_mask & __GFP_NOFAIL) 2530 goto force; 2531 2532 if (fatal_signal_pending(current)) 2533 goto force; 2534 2535 /* 2536 * keep retrying as long as the memcg oom killer is able to make 2537 * a forward progress or bypass the charge if the oom killer 2538 * couldn't make any progress. 2539 */ 2540 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask, 2541 get_order(nr_pages * PAGE_SIZE)); 2542 switch (oom_status) { 2543 case OOM_SUCCESS: 2544 nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 2545 goto retry; 2546 case OOM_FAILED: 2547 goto force; 2548 default: 2549 goto nomem; 2550 } 2551 nomem: 2552 if (!(gfp_mask & __GFP_NOFAIL)) 2553 return -ENOMEM; 2554 force: 2555 /* 2556 * The allocation either can't fail or will lead to more memory 2557 * being freed very soon. Allow memory usage go over the limit 2558 * temporarily by force charging it. 2559 */ 2560 page_counter_charge(&memcg->memory, nr_pages); 2561 if (do_memsw_account()) 2562 page_counter_charge(&memcg->memsw, nr_pages); 2563 css_get_many(&memcg->css, nr_pages); 2564 2565 return 0; 2566 2567 done_restock: 2568 css_get_many(&memcg->css, batch); 2569 if (batch > nr_pages) 2570 refill_stock(memcg, batch - nr_pages); 2571 2572 /* 2573 * If the hierarchy is above the normal consumption range, schedule 2574 * reclaim on returning to userland. We can perform reclaim here 2575 * if __GFP_RECLAIM but let's always punt for simplicity and so that 2576 * GFP_KERNEL can consistently be used during reclaim. @memcg is 2577 * not recorded as it most likely matches current's and won't 2578 * change in the meantime. As high limit is checked again before 2579 * reclaim, the cost of mismatch is negligible. 2580 */ 2581 do { 2582 if (page_counter_read(&memcg->memory) > memcg->high) { 2583 /* Don't bother a random interrupted task */ 2584 if (in_interrupt()) { 2585 schedule_work(&memcg->high_work); 2586 break; 2587 } 2588 current->memcg_nr_pages_over_high += batch; 2589 set_notify_resume(current); 2590 break; 2591 } 2592 } while ((memcg = parent_mem_cgroup(memcg))); 2593 2594 return 0; 2595 } 2596 2597 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages) 2598 { 2599 if (mem_cgroup_is_root(memcg)) 2600 return; 2601 2602 page_counter_uncharge(&memcg->memory, nr_pages); 2603 if (do_memsw_account()) 2604 page_counter_uncharge(&memcg->memsw, nr_pages); 2605 2606 css_put_many(&memcg->css, nr_pages); 2607 } 2608 2609 static void lock_page_lru(struct page *page, int *isolated) 2610 { 2611 pg_data_t *pgdat = page_pgdat(page); 2612 2613 spin_lock_irq(&pgdat->lru_lock); 2614 if (PageLRU(page)) { 2615 struct lruvec *lruvec; 2616 2617 lruvec = mem_cgroup_page_lruvec(page, pgdat); 2618 ClearPageLRU(page); 2619 del_page_from_lru_list(page, lruvec, page_lru(page)); 2620 *isolated = 1; 2621 } else 2622 *isolated = 0; 2623 } 2624 2625 static void unlock_page_lru(struct page *page, int isolated) 2626 { 2627 pg_data_t *pgdat = page_pgdat(page); 2628 2629 if (isolated) { 2630 struct lruvec *lruvec; 2631 2632 lruvec = mem_cgroup_page_lruvec(page, pgdat); 2633 VM_BUG_ON_PAGE(PageLRU(page), page); 2634 SetPageLRU(page); 2635 add_page_to_lru_list(page, lruvec, page_lru(page)); 2636 } 2637 spin_unlock_irq(&pgdat->lru_lock); 2638 } 2639 2640 static void commit_charge(struct page *page, struct mem_cgroup *memcg, 2641 bool lrucare) 2642 { 2643 int isolated; 2644 2645 VM_BUG_ON_PAGE(page->mem_cgroup, page); 2646 2647 /* 2648 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page 2649 * may already be on some other mem_cgroup's LRU. Take care of it. 2650 */ 2651 if (lrucare) 2652 lock_page_lru(page, &isolated); 2653 2654 /* 2655 * Nobody should be changing or seriously looking at 2656 * page->mem_cgroup at this point: 2657 * 2658 * - the page is uncharged 2659 * 2660 * - the page is off-LRU 2661 * 2662 * - an anonymous fault has exclusive page access, except for 2663 * a locked page table 2664 * 2665 * - a page cache insertion, a swapin fault, or a migration 2666 * have the page locked 2667 */ 2668 page->mem_cgroup = memcg; 2669 2670 if (lrucare) 2671 unlock_page_lru(page, isolated); 2672 } 2673 2674 #ifdef CONFIG_MEMCG_KMEM 2675 /* 2676 * Returns a pointer to the memory cgroup to which the kernel object is charged. 2677 * 2678 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(), 2679 * cgroup_mutex, etc. 2680 */ 2681 struct mem_cgroup *mem_cgroup_from_obj(void *p) 2682 { 2683 struct page *page; 2684 2685 if (mem_cgroup_disabled()) 2686 return NULL; 2687 2688 page = virt_to_head_page(p); 2689 2690 /* 2691 * Slab pages don't have page->mem_cgroup set because corresponding 2692 * kmem caches can be reparented during the lifetime. That's why 2693 * memcg_from_slab_page() should be used instead. 2694 */ 2695 if (PageSlab(page)) 2696 return memcg_from_slab_page(page); 2697 2698 /* All other pages use page->mem_cgroup */ 2699 return page->mem_cgroup; 2700 } 2701 2702 static int memcg_alloc_cache_id(void) 2703 { 2704 int id, size; 2705 int err; 2706 2707 id = ida_simple_get(&memcg_cache_ida, 2708 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL); 2709 if (id < 0) 2710 return id; 2711 2712 if (id < memcg_nr_cache_ids) 2713 return id; 2714 2715 /* 2716 * There's no space for the new id in memcg_caches arrays, 2717 * so we have to grow them. 2718 */ 2719 down_write(&memcg_cache_ids_sem); 2720 2721 size = 2 * (id + 1); 2722 if (size < MEMCG_CACHES_MIN_SIZE) 2723 size = MEMCG_CACHES_MIN_SIZE; 2724 else if (size > MEMCG_CACHES_MAX_SIZE) 2725 size = MEMCG_CACHES_MAX_SIZE; 2726 2727 err = memcg_update_all_caches(size); 2728 if (!err) 2729 err = memcg_update_all_list_lrus(size); 2730 if (!err) 2731 memcg_nr_cache_ids = size; 2732 2733 up_write(&memcg_cache_ids_sem); 2734 2735 if (err) { 2736 ida_simple_remove(&memcg_cache_ida, id); 2737 return err; 2738 } 2739 return id; 2740 } 2741 2742 static void memcg_free_cache_id(int id) 2743 { 2744 ida_simple_remove(&memcg_cache_ida, id); 2745 } 2746 2747 struct memcg_kmem_cache_create_work { 2748 struct mem_cgroup *memcg; 2749 struct kmem_cache *cachep; 2750 struct work_struct work; 2751 }; 2752 2753 static void memcg_kmem_cache_create_func(struct work_struct *w) 2754 { 2755 struct memcg_kmem_cache_create_work *cw = 2756 container_of(w, struct memcg_kmem_cache_create_work, work); 2757 struct mem_cgroup *memcg = cw->memcg; 2758 struct kmem_cache *cachep = cw->cachep; 2759 2760 memcg_create_kmem_cache(memcg, cachep); 2761 2762 css_put(&memcg->css); 2763 kfree(cw); 2764 } 2765 2766 /* 2767 * Enqueue the creation of a per-memcg kmem_cache. 2768 */ 2769 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg, 2770 struct kmem_cache *cachep) 2771 { 2772 struct memcg_kmem_cache_create_work *cw; 2773 2774 if (!css_tryget_online(&memcg->css)) 2775 return; 2776 2777 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN); 2778 if (!cw) 2779 return; 2780 2781 cw->memcg = memcg; 2782 cw->cachep = cachep; 2783 INIT_WORK(&cw->work, memcg_kmem_cache_create_func); 2784 2785 queue_work(memcg_kmem_cache_wq, &cw->work); 2786 } 2787 2788 static inline bool memcg_kmem_bypass(void) 2789 { 2790 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD)) 2791 return true; 2792 return false; 2793 } 2794 2795 /** 2796 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation 2797 * @cachep: the original global kmem cache 2798 * 2799 * Return the kmem_cache we're supposed to use for a slab allocation. 2800 * We try to use the current memcg's version of the cache. 2801 * 2802 * If the cache does not exist yet, if we are the first user of it, we 2803 * create it asynchronously in a workqueue and let the current allocation 2804 * go through with the original cache. 2805 * 2806 * This function takes a reference to the cache it returns to assure it 2807 * won't get destroyed while we are working with it. Once the caller is 2808 * done with it, memcg_kmem_put_cache() must be called to release the 2809 * reference. 2810 */ 2811 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep) 2812 { 2813 struct mem_cgroup *memcg; 2814 struct kmem_cache *memcg_cachep; 2815 struct memcg_cache_array *arr; 2816 int kmemcg_id; 2817 2818 VM_BUG_ON(!is_root_cache(cachep)); 2819 2820 if (memcg_kmem_bypass()) 2821 return cachep; 2822 2823 rcu_read_lock(); 2824 2825 if (unlikely(current->active_memcg)) 2826 memcg = current->active_memcg; 2827 else 2828 memcg = mem_cgroup_from_task(current); 2829 2830 if (!memcg || memcg == root_mem_cgroup) 2831 goto out_unlock; 2832 2833 kmemcg_id = READ_ONCE(memcg->kmemcg_id); 2834 if (kmemcg_id < 0) 2835 goto out_unlock; 2836 2837 arr = rcu_dereference(cachep->memcg_params.memcg_caches); 2838 2839 /* 2840 * Make sure we will access the up-to-date value. The code updating 2841 * memcg_caches issues a write barrier to match the data dependency 2842 * barrier inside READ_ONCE() (see memcg_create_kmem_cache()). 2843 */ 2844 memcg_cachep = READ_ONCE(arr->entries[kmemcg_id]); 2845 2846 /* 2847 * If we are in a safe context (can wait, and not in interrupt 2848 * context), we could be be predictable and return right away. 2849 * This would guarantee that the allocation being performed 2850 * already belongs in the new cache. 2851 * 2852 * However, there are some clashes that can arrive from locking. 2853 * For instance, because we acquire the slab_mutex while doing 2854 * memcg_create_kmem_cache, this means no further allocation 2855 * could happen with the slab_mutex held. So it's better to 2856 * defer everything. 2857 * 2858 * If the memcg is dying or memcg_cache is about to be released, 2859 * don't bother creating new kmem_caches. Because memcg_cachep 2860 * is ZEROed as the fist step of kmem offlining, we don't need 2861 * percpu_ref_tryget_live() here. css_tryget_online() check in 2862 * memcg_schedule_kmem_cache_create() will prevent us from 2863 * creation of a new kmem_cache. 2864 */ 2865 if (unlikely(!memcg_cachep)) 2866 memcg_schedule_kmem_cache_create(memcg, cachep); 2867 else if (percpu_ref_tryget(&memcg_cachep->memcg_params.refcnt)) 2868 cachep = memcg_cachep; 2869 out_unlock: 2870 rcu_read_unlock(); 2871 return cachep; 2872 } 2873 2874 /** 2875 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache 2876 * @cachep: the cache returned by memcg_kmem_get_cache 2877 */ 2878 void memcg_kmem_put_cache(struct kmem_cache *cachep) 2879 { 2880 if (!is_root_cache(cachep)) 2881 percpu_ref_put(&cachep->memcg_params.refcnt); 2882 } 2883 2884 /** 2885 * __memcg_kmem_charge_memcg: charge a kmem page 2886 * @page: page to charge 2887 * @gfp: reclaim mode 2888 * @order: allocation order 2889 * @memcg: memory cgroup to charge 2890 * 2891 * Returns 0 on success, an error code on failure. 2892 */ 2893 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order, 2894 struct mem_cgroup *memcg) 2895 { 2896 unsigned int nr_pages = 1 << order; 2897 struct page_counter *counter; 2898 int ret; 2899 2900 ret = try_charge(memcg, gfp, nr_pages); 2901 if (ret) 2902 return ret; 2903 2904 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && 2905 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) { 2906 2907 /* 2908 * Enforce __GFP_NOFAIL allocation because callers are not 2909 * prepared to see failures and likely do not have any failure 2910 * handling code. 2911 */ 2912 if (gfp & __GFP_NOFAIL) { 2913 page_counter_charge(&memcg->kmem, nr_pages); 2914 return 0; 2915 } 2916 cancel_charge(memcg, nr_pages); 2917 return -ENOMEM; 2918 } 2919 return 0; 2920 } 2921 2922 /** 2923 * __memcg_kmem_charge: charge a kmem page to the current memory cgroup 2924 * @page: page to charge 2925 * @gfp: reclaim mode 2926 * @order: allocation order 2927 * 2928 * Returns 0 on success, an error code on failure. 2929 */ 2930 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order) 2931 { 2932 struct mem_cgroup *memcg; 2933 int ret = 0; 2934 2935 if (memcg_kmem_bypass()) 2936 return 0; 2937 2938 memcg = get_mem_cgroup_from_current(); 2939 if (!mem_cgroup_is_root(memcg)) { 2940 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg); 2941 if (!ret) { 2942 page->mem_cgroup = memcg; 2943 __SetPageKmemcg(page); 2944 } 2945 } 2946 css_put(&memcg->css); 2947 return ret; 2948 } 2949 2950 /** 2951 * __memcg_kmem_uncharge_memcg: uncharge a kmem page 2952 * @memcg: memcg to uncharge 2953 * @nr_pages: number of pages to uncharge 2954 */ 2955 void __memcg_kmem_uncharge_memcg(struct mem_cgroup *memcg, 2956 unsigned int nr_pages) 2957 { 2958 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 2959 page_counter_uncharge(&memcg->kmem, nr_pages); 2960 2961 page_counter_uncharge(&memcg->memory, nr_pages); 2962 if (do_memsw_account()) 2963 page_counter_uncharge(&memcg->memsw, nr_pages); 2964 } 2965 /** 2966 * __memcg_kmem_uncharge: uncharge a kmem page 2967 * @page: page to uncharge 2968 * @order: allocation order 2969 */ 2970 void __memcg_kmem_uncharge(struct page *page, int order) 2971 { 2972 struct mem_cgroup *memcg = page->mem_cgroup; 2973 unsigned int nr_pages = 1 << order; 2974 2975 if (!memcg) 2976 return; 2977 2978 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page); 2979 __memcg_kmem_uncharge_memcg(memcg, nr_pages); 2980 page->mem_cgroup = NULL; 2981 2982 /* slab pages do not have PageKmemcg flag set */ 2983 if (PageKmemcg(page)) 2984 __ClearPageKmemcg(page); 2985 2986 css_put_many(&memcg->css, nr_pages); 2987 } 2988 #endif /* CONFIG_MEMCG_KMEM */ 2989 2990 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2991 2992 /* 2993 * Because tail pages are not marked as "used", set it. We're under 2994 * pgdat->lru_lock and migration entries setup in all page mappings. 2995 */ 2996 void mem_cgroup_split_huge_fixup(struct page *head) 2997 { 2998 int i; 2999 3000 if (mem_cgroup_disabled()) 3001 return; 3002 3003 for (i = 1; i < HPAGE_PMD_NR; i++) 3004 head[i].mem_cgroup = head->mem_cgroup; 3005 3006 __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR); 3007 } 3008 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 3009 3010 #ifdef CONFIG_MEMCG_SWAP 3011 /** 3012 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 3013 * @entry: swap entry to be moved 3014 * @from: mem_cgroup which the entry is moved from 3015 * @to: mem_cgroup which the entry is moved to 3016 * 3017 * It succeeds only when the swap_cgroup's record for this entry is the same 3018 * as the mem_cgroup's id of @from. 3019 * 3020 * Returns 0 on success, -EINVAL on failure. 3021 * 3022 * The caller must have charged to @to, IOW, called page_counter_charge() about 3023 * both res and memsw, and called css_get(). 3024 */ 3025 static int mem_cgroup_move_swap_account(swp_entry_t entry, 3026 struct mem_cgroup *from, struct mem_cgroup *to) 3027 { 3028 unsigned short old_id, new_id; 3029 3030 old_id = mem_cgroup_id(from); 3031 new_id = mem_cgroup_id(to); 3032 3033 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 3034 mod_memcg_state(from, MEMCG_SWAP, -1); 3035 mod_memcg_state(to, MEMCG_SWAP, 1); 3036 return 0; 3037 } 3038 return -EINVAL; 3039 } 3040 #else 3041 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 3042 struct mem_cgroup *from, struct mem_cgroup *to) 3043 { 3044 return -EINVAL; 3045 } 3046 #endif 3047 3048 static DEFINE_MUTEX(memcg_max_mutex); 3049 3050 static int mem_cgroup_resize_max(struct mem_cgroup *memcg, 3051 unsigned long max, bool memsw) 3052 { 3053 bool enlarge = false; 3054 bool drained = false; 3055 int ret; 3056 bool limits_invariant; 3057 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory; 3058 3059 do { 3060 if (signal_pending(current)) { 3061 ret = -EINTR; 3062 break; 3063 } 3064 3065 mutex_lock(&memcg_max_mutex); 3066 /* 3067 * Make sure that the new limit (memsw or memory limit) doesn't 3068 * break our basic invariant rule memory.max <= memsw.max. 3069 */ 3070 limits_invariant = memsw ? max >= memcg->memory.max : 3071 max <= memcg->memsw.max; 3072 if (!limits_invariant) { 3073 mutex_unlock(&memcg_max_mutex); 3074 ret = -EINVAL; 3075 break; 3076 } 3077 if (max > counter->max) 3078 enlarge = true; 3079 ret = page_counter_set_max(counter, max); 3080 mutex_unlock(&memcg_max_mutex); 3081 3082 if (!ret) 3083 break; 3084 3085 if (!drained) { 3086 drain_all_stock(memcg); 3087 drained = true; 3088 continue; 3089 } 3090 3091 if (!try_to_free_mem_cgroup_pages(memcg, 1, 3092 GFP_KERNEL, !memsw)) { 3093 ret = -EBUSY; 3094 break; 3095 } 3096 } while (true); 3097 3098 if (!ret && enlarge) 3099 memcg_oom_recover(memcg); 3100 3101 return ret; 3102 } 3103 3104 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 3105 gfp_t gfp_mask, 3106 unsigned long *total_scanned) 3107 { 3108 unsigned long nr_reclaimed = 0; 3109 struct mem_cgroup_per_node *mz, *next_mz = NULL; 3110 unsigned long reclaimed; 3111 int loop = 0; 3112 struct mem_cgroup_tree_per_node *mctz; 3113 unsigned long excess; 3114 unsigned long nr_scanned; 3115 3116 if (order > 0) 3117 return 0; 3118 3119 mctz = soft_limit_tree_node(pgdat->node_id); 3120 3121 /* 3122 * Do not even bother to check the largest node if the root 3123 * is empty. Do it lockless to prevent lock bouncing. Races 3124 * are acceptable as soft limit is best effort anyway. 3125 */ 3126 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root)) 3127 return 0; 3128 3129 /* 3130 * This loop can run a while, specially if mem_cgroup's continuously 3131 * keep exceeding their soft limit and putting the system under 3132 * pressure 3133 */ 3134 do { 3135 if (next_mz) 3136 mz = next_mz; 3137 else 3138 mz = mem_cgroup_largest_soft_limit_node(mctz); 3139 if (!mz) 3140 break; 3141 3142 nr_scanned = 0; 3143 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat, 3144 gfp_mask, &nr_scanned); 3145 nr_reclaimed += reclaimed; 3146 *total_scanned += nr_scanned; 3147 spin_lock_irq(&mctz->lock); 3148 __mem_cgroup_remove_exceeded(mz, mctz); 3149 3150 /* 3151 * If we failed to reclaim anything from this memory cgroup 3152 * it is time to move on to the next cgroup 3153 */ 3154 next_mz = NULL; 3155 if (!reclaimed) 3156 next_mz = __mem_cgroup_largest_soft_limit_node(mctz); 3157 3158 excess = soft_limit_excess(mz->memcg); 3159 /* 3160 * One school of thought says that we should not add 3161 * back the node to the tree if reclaim returns 0. 3162 * But our reclaim could return 0, simply because due 3163 * to priority we are exposing a smaller subset of 3164 * memory to reclaim from. Consider this as a longer 3165 * term TODO. 3166 */ 3167 /* If excess == 0, no tree ops */ 3168 __mem_cgroup_insert_exceeded(mz, mctz, excess); 3169 spin_unlock_irq(&mctz->lock); 3170 css_put(&mz->memcg->css); 3171 loop++; 3172 /* 3173 * Could not reclaim anything and there are no more 3174 * mem cgroups to try or we seem to be looping without 3175 * reclaiming anything. 3176 */ 3177 if (!nr_reclaimed && 3178 (next_mz == NULL || 3179 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 3180 break; 3181 } while (!nr_reclaimed); 3182 if (next_mz) 3183 css_put(&next_mz->memcg->css); 3184 return nr_reclaimed; 3185 } 3186 3187 /* 3188 * Test whether @memcg has children, dead or alive. Note that this 3189 * function doesn't care whether @memcg has use_hierarchy enabled and 3190 * returns %true if there are child csses according to the cgroup 3191 * hierarchy. Testing use_hierarchy is the caller's responsiblity. 3192 */ 3193 static inline bool memcg_has_children(struct mem_cgroup *memcg) 3194 { 3195 bool ret; 3196 3197 rcu_read_lock(); 3198 ret = css_next_child(NULL, &memcg->css); 3199 rcu_read_unlock(); 3200 return ret; 3201 } 3202 3203 /* 3204 * Reclaims as many pages from the given memcg as possible. 3205 * 3206 * Caller is responsible for holding css reference for memcg. 3207 */ 3208 static int mem_cgroup_force_empty(struct mem_cgroup *memcg) 3209 { 3210 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 3211 3212 /* we call try-to-free pages for make this cgroup empty */ 3213 lru_add_drain_all(); 3214 3215 drain_all_stock(memcg); 3216 3217 /* try to free all pages in this cgroup */ 3218 while (nr_retries && page_counter_read(&memcg->memory)) { 3219 int progress; 3220 3221 if (signal_pending(current)) 3222 return -EINTR; 3223 3224 progress = try_to_free_mem_cgroup_pages(memcg, 1, 3225 GFP_KERNEL, true); 3226 if (!progress) { 3227 nr_retries--; 3228 /* maybe some writeback is necessary */ 3229 congestion_wait(BLK_RW_ASYNC, HZ/10); 3230 } 3231 3232 } 3233 3234 return 0; 3235 } 3236 3237 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of, 3238 char *buf, size_t nbytes, 3239 loff_t off) 3240 { 3241 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3242 3243 if (mem_cgroup_is_root(memcg)) 3244 return -EINVAL; 3245 return mem_cgroup_force_empty(memcg) ?: nbytes; 3246 } 3247 3248 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, 3249 struct cftype *cft) 3250 { 3251 return mem_cgroup_from_css(css)->use_hierarchy; 3252 } 3253 3254 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, 3255 struct cftype *cft, u64 val) 3256 { 3257 int retval = 0; 3258 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3259 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent); 3260 3261 if (memcg->use_hierarchy == val) 3262 return 0; 3263 3264 /* 3265 * If parent's use_hierarchy is set, we can't make any modifications 3266 * in the child subtrees. If it is unset, then the change can 3267 * occur, provided the current cgroup has no children. 3268 * 3269 * For the root cgroup, parent_mem is NULL, we allow value to be 3270 * set if there are no children. 3271 */ 3272 if ((!parent_memcg || !parent_memcg->use_hierarchy) && 3273 (val == 1 || val == 0)) { 3274 if (!memcg_has_children(memcg)) 3275 memcg->use_hierarchy = val; 3276 else 3277 retval = -EBUSY; 3278 } else 3279 retval = -EINVAL; 3280 3281 return retval; 3282 } 3283 3284 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 3285 { 3286 unsigned long val; 3287 3288 if (mem_cgroup_is_root(memcg)) { 3289 val = memcg_page_state(memcg, MEMCG_CACHE) + 3290 memcg_page_state(memcg, MEMCG_RSS); 3291 if (swap) 3292 val += memcg_page_state(memcg, MEMCG_SWAP); 3293 } else { 3294 if (!swap) 3295 val = page_counter_read(&memcg->memory); 3296 else 3297 val = page_counter_read(&memcg->memsw); 3298 } 3299 return val; 3300 } 3301 3302 enum { 3303 RES_USAGE, 3304 RES_LIMIT, 3305 RES_MAX_USAGE, 3306 RES_FAILCNT, 3307 RES_SOFT_LIMIT, 3308 }; 3309 3310 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css, 3311 struct cftype *cft) 3312 { 3313 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3314 struct page_counter *counter; 3315 3316 switch (MEMFILE_TYPE(cft->private)) { 3317 case _MEM: 3318 counter = &memcg->memory; 3319 break; 3320 case _MEMSWAP: 3321 counter = &memcg->memsw; 3322 break; 3323 case _KMEM: 3324 counter = &memcg->kmem; 3325 break; 3326 case _TCP: 3327 counter = &memcg->tcpmem; 3328 break; 3329 default: 3330 BUG(); 3331 } 3332 3333 switch (MEMFILE_ATTR(cft->private)) { 3334 case RES_USAGE: 3335 if (counter == &memcg->memory) 3336 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE; 3337 if (counter == &memcg->memsw) 3338 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE; 3339 return (u64)page_counter_read(counter) * PAGE_SIZE; 3340 case RES_LIMIT: 3341 return (u64)counter->max * PAGE_SIZE; 3342 case RES_MAX_USAGE: 3343 return (u64)counter->watermark * PAGE_SIZE; 3344 case RES_FAILCNT: 3345 return counter->failcnt; 3346 case RES_SOFT_LIMIT: 3347 return (u64)memcg->soft_limit * PAGE_SIZE; 3348 default: 3349 BUG(); 3350 } 3351 } 3352 3353 static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg) 3354 { 3355 unsigned long stat[MEMCG_NR_STAT] = {0}; 3356 struct mem_cgroup *mi; 3357 int node, cpu, i; 3358 3359 for_each_online_cpu(cpu) 3360 for (i = 0; i < MEMCG_NR_STAT; i++) 3361 stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu); 3362 3363 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 3364 for (i = 0; i < MEMCG_NR_STAT; i++) 3365 atomic_long_add(stat[i], &mi->vmstats[i]); 3366 3367 for_each_node(node) { 3368 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node]; 3369 struct mem_cgroup_per_node *pi; 3370 3371 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) 3372 stat[i] = 0; 3373 3374 for_each_online_cpu(cpu) 3375 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) 3376 stat[i] += per_cpu( 3377 pn->lruvec_stat_cpu->count[i], cpu); 3378 3379 for (pi = pn; pi; pi = parent_nodeinfo(pi, node)) 3380 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) 3381 atomic_long_add(stat[i], &pi->lruvec_stat[i]); 3382 } 3383 } 3384 3385 static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg) 3386 { 3387 unsigned long events[NR_VM_EVENT_ITEMS]; 3388 struct mem_cgroup *mi; 3389 int cpu, i; 3390 3391 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) 3392 events[i] = 0; 3393 3394 for_each_online_cpu(cpu) 3395 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) 3396 events[i] += per_cpu(memcg->vmstats_percpu->events[i], 3397 cpu); 3398 3399 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 3400 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) 3401 atomic_long_add(events[i], &mi->vmevents[i]); 3402 } 3403 3404 #ifdef CONFIG_MEMCG_KMEM 3405 static int memcg_online_kmem(struct mem_cgroup *memcg) 3406 { 3407 int memcg_id; 3408 3409 if (cgroup_memory_nokmem) 3410 return 0; 3411 3412 BUG_ON(memcg->kmemcg_id >= 0); 3413 BUG_ON(memcg->kmem_state); 3414 3415 memcg_id = memcg_alloc_cache_id(); 3416 if (memcg_id < 0) 3417 return memcg_id; 3418 3419 static_branch_inc(&memcg_kmem_enabled_key); 3420 /* 3421 * A memory cgroup is considered kmem-online as soon as it gets 3422 * kmemcg_id. Setting the id after enabling static branching will 3423 * guarantee no one starts accounting before all call sites are 3424 * patched. 3425 */ 3426 memcg->kmemcg_id = memcg_id; 3427 memcg->kmem_state = KMEM_ONLINE; 3428 INIT_LIST_HEAD(&memcg->kmem_caches); 3429 3430 return 0; 3431 } 3432 3433 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3434 { 3435 struct cgroup_subsys_state *css; 3436 struct mem_cgroup *parent, *child; 3437 int kmemcg_id; 3438 3439 if (memcg->kmem_state != KMEM_ONLINE) 3440 return; 3441 /* 3442 * Clear the online state before clearing memcg_caches array 3443 * entries. The slab_mutex in memcg_deactivate_kmem_caches() 3444 * guarantees that no cache will be created for this cgroup 3445 * after we are done (see memcg_create_kmem_cache()). 3446 */ 3447 memcg->kmem_state = KMEM_ALLOCATED; 3448 3449 parent = parent_mem_cgroup(memcg); 3450 if (!parent) 3451 parent = root_mem_cgroup; 3452 3453 /* 3454 * Deactivate and reparent kmem_caches. 3455 */ 3456 memcg_deactivate_kmem_caches(memcg, parent); 3457 3458 kmemcg_id = memcg->kmemcg_id; 3459 BUG_ON(kmemcg_id < 0); 3460 3461 /* 3462 * Change kmemcg_id of this cgroup and all its descendants to the 3463 * parent's id, and then move all entries from this cgroup's list_lrus 3464 * to ones of the parent. After we have finished, all list_lrus 3465 * corresponding to this cgroup are guaranteed to remain empty. The 3466 * ordering is imposed by list_lru_node->lock taken by 3467 * memcg_drain_all_list_lrus(). 3468 */ 3469 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */ 3470 css_for_each_descendant_pre(css, &memcg->css) { 3471 child = mem_cgroup_from_css(css); 3472 BUG_ON(child->kmemcg_id != kmemcg_id); 3473 child->kmemcg_id = parent->kmemcg_id; 3474 if (!memcg->use_hierarchy) 3475 break; 3476 } 3477 rcu_read_unlock(); 3478 3479 memcg_drain_all_list_lrus(kmemcg_id, parent); 3480 3481 memcg_free_cache_id(kmemcg_id); 3482 } 3483 3484 static void memcg_free_kmem(struct mem_cgroup *memcg) 3485 { 3486 /* css_alloc() failed, offlining didn't happen */ 3487 if (unlikely(memcg->kmem_state == KMEM_ONLINE)) 3488 memcg_offline_kmem(memcg); 3489 3490 if (memcg->kmem_state == KMEM_ALLOCATED) { 3491 WARN_ON(!list_empty(&memcg->kmem_caches)); 3492 static_branch_dec(&memcg_kmem_enabled_key); 3493 } 3494 } 3495 #else 3496 static int memcg_online_kmem(struct mem_cgroup *memcg) 3497 { 3498 return 0; 3499 } 3500 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3501 { 3502 } 3503 static void memcg_free_kmem(struct mem_cgroup *memcg) 3504 { 3505 } 3506 #endif /* CONFIG_MEMCG_KMEM */ 3507 3508 static int memcg_update_kmem_max(struct mem_cgroup *memcg, 3509 unsigned long max) 3510 { 3511 int ret; 3512 3513 mutex_lock(&memcg_max_mutex); 3514 ret = page_counter_set_max(&memcg->kmem, max); 3515 mutex_unlock(&memcg_max_mutex); 3516 return ret; 3517 } 3518 3519 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max) 3520 { 3521 int ret; 3522 3523 mutex_lock(&memcg_max_mutex); 3524 3525 ret = page_counter_set_max(&memcg->tcpmem, max); 3526 if (ret) 3527 goto out; 3528 3529 if (!memcg->tcpmem_active) { 3530 /* 3531 * The active flag needs to be written after the static_key 3532 * update. This is what guarantees that the socket activation 3533 * function is the last one to run. See mem_cgroup_sk_alloc() 3534 * for details, and note that we don't mark any socket as 3535 * belonging to this memcg until that flag is up. 3536 * 3537 * We need to do this, because static_keys will span multiple 3538 * sites, but we can't control their order. If we mark a socket 3539 * as accounted, but the accounting functions are not patched in 3540 * yet, we'll lose accounting. 3541 * 3542 * We never race with the readers in mem_cgroup_sk_alloc(), 3543 * because when this value change, the code to process it is not 3544 * patched in yet. 3545 */ 3546 static_branch_inc(&memcg_sockets_enabled_key); 3547 memcg->tcpmem_active = true; 3548 } 3549 out: 3550 mutex_unlock(&memcg_max_mutex); 3551 return ret; 3552 } 3553 3554 /* 3555 * The user of this function is... 3556 * RES_LIMIT. 3557 */ 3558 static ssize_t mem_cgroup_write(struct kernfs_open_file *of, 3559 char *buf, size_t nbytes, loff_t off) 3560 { 3561 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3562 unsigned long nr_pages; 3563 int ret; 3564 3565 buf = strstrip(buf); 3566 ret = page_counter_memparse(buf, "-1", &nr_pages); 3567 if (ret) 3568 return ret; 3569 3570 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3571 case RES_LIMIT: 3572 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 3573 ret = -EINVAL; 3574 break; 3575 } 3576 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3577 case _MEM: 3578 ret = mem_cgroup_resize_max(memcg, nr_pages, false); 3579 break; 3580 case _MEMSWAP: 3581 ret = mem_cgroup_resize_max(memcg, nr_pages, true); 3582 break; 3583 case _KMEM: 3584 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. " 3585 "Please report your usecase to linux-mm@kvack.org if you " 3586 "depend on this functionality.\n"); 3587 ret = memcg_update_kmem_max(memcg, nr_pages); 3588 break; 3589 case _TCP: 3590 ret = memcg_update_tcp_max(memcg, nr_pages); 3591 break; 3592 } 3593 break; 3594 case RES_SOFT_LIMIT: 3595 memcg->soft_limit = nr_pages; 3596 ret = 0; 3597 break; 3598 } 3599 return ret ?: nbytes; 3600 } 3601 3602 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf, 3603 size_t nbytes, loff_t off) 3604 { 3605 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3606 struct page_counter *counter; 3607 3608 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3609 case _MEM: 3610 counter = &memcg->memory; 3611 break; 3612 case _MEMSWAP: 3613 counter = &memcg->memsw; 3614 break; 3615 case _KMEM: 3616 counter = &memcg->kmem; 3617 break; 3618 case _TCP: 3619 counter = &memcg->tcpmem; 3620 break; 3621 default: 3622 BUG(); 3623 } 3624 3625 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3626 case RES_MAX_USAGE: 3627 page_counter_reset_watermark(counter); 3628 break; 3629 case RES_FAILCNT: 3630 counter->failcnt = 0; 3631 break; 3632 default: 3633 BUG(); 3634 } 3635 3636 return nbytes; 3637 } 3638 3639 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, 3640 struct cftype *cft) 3641 { 3642 return mem_cgroup_from_css(css)->move_charge_at_immigrate; 3643 } 3644 3645 #ifdef CONFIG_MMU 3646 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3647 struct cftype *cft, u64 val) 3648 { 3649 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3650 3651 if (val & ~MOVE_MASK) 3652 return -EINVAL; 3653 3654 /* 3655 * No kind of locking is needed in here, because ->can_attach() will 3656 * check this value once in the beginning of the process, and then carry 3657 * on with stale data. This means that changes to this value will only 3658 * affect task migrations starting after the change. 3659 */ 3660 memcg->move_charge_at_immigrate = val; 3661 return 0; 3662 } 3663 #else 3664 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3665 struct cftype *cft, u64 val) 3666 { 3667 return -ENOSYS; 3668 } 3669 #endif 3670 3671 #ifdef CONFIG_NUMA 3672 3673 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE)) 3674 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON)) 3675 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1) 3676 3677 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 3678 int nid, unsigned int lru_mask) 3679 { 3680 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); 3681 unsigned long nr = 0; 3682 enum lru_list lru; 3683 3684 VM_BUG_ON((unsigned)nid >= nr_node_ids); 3685 3686 for_each_lru(lru) { 3687 if (!(BIT(lru) & lru_mask)) 3688 continue; 3689 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru); 3690 } 3691 return nr; 3692 } 3693 3694 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 3695 unsigned int lru_mask) 3696 { 3697 unsigned long nr = 0; 3698 enum lru_list lru; 3699 3700 for_each_lru(lru) { 3701 if (!(BIT(lru) & lru_mask)) 3702 continue; 3703 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru); 3704 } 3705 return nr; 3706 } 3707 3708 static int memcg_numa_stat_show(struct seq_file *m, void *v) 3709 { 3710 struct numa_stat { 3711 const char *name; 3712 unsigned int lru_mask; 3713 }; 3714 3715 static const struct numa_stat stats[] = { 3716 { "total", LRU_ALL }, 3717 { "file", LRU_ALL_FILE }, 3718 { "anon", LRU_ALL_ANON }, 3719 { "unevictable", BIT(LRU_UNEVICTABLE) }, 3720 }; 3721 const struct numa_stat *stat; 3722 int nid; 3723 unsigned long nr; 3724 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 3725 3726 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3727 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask); 3728 seq_printf(m, "%s=%lu", stat->name, nr); 3729 for_each_node_state(nid, N_MEMORY) { 3730 nr = mem_cgroup_node_nr_lru_pages(memcg, nid, 3731 stat->lru_mask); 3732 seq_printf(m, " N%d=%lu", nid, nr); 3733 } 3734 seq_putc(m, '\n'); 3735 } 3736 3737 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3738 struct mem_cgroup *iter; 3739 3740 nr = 0; 3741 for_each_mem_cgroup_tree(iter, memcg) 3742 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask); 3743 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr); 3744 for_each_node_state(nid, N_MEMORY) { 3745 nr = 0; 3746 for_each_mem_cgroup_tree(iter, memcg) 3747 nr += mem_cgroup_node_nr_lru_pages( 3748 iter, nid, stat->lru_mask); 3749 seq_printf(m, " N%d=%lu", nid, nr); 3750 } 3751 seq_putc(m, '\n'); 3752 } 3753 3754 return 0; 3755 } 3756 #endif /* CONFIG_NUMA */ 3757 3758 static const unsigned int memcg1_stats[] = { 3759 MEMCG_CACHE, 3760 MEMCG_RSS, 3761 MEMCG_RSS_HUGE, 3762 NR_SHMEM, 3763 NR_FILE_MAPPED, 3764 NR_FILE_DIRTY, 3765 NR_WRITEBACK, 3766 MEMCG_SWAP, 3767 }; 3768 3769 static const char *const memcg1_stat_names[] = { 3770 "cache", 3771 "rss", 3772 "rss_huge", 3773 "shmem", 3774 "mapped_file", 3775 "dirty", 3776 "writeback", 3777 "swap", 3778 }; 3779 3780 /* Universal VM events cgroup1 shows, original sort order */ 3781 static const unsigned int memcg1_events[] = { 3782 PGPGIN, 3783 PGPGOUT, 3784 PGFAULT, 3785 PGMAJFAULT, 3786 }; 3787 3788 static int memcg_stat_show(struct seq_file *m, void *v) 3789 { 3790 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 3791 unsigned long memory, memsw; 3792 struct mem_cgroup *mi; 3793 unsigned int i; 3794 3795 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats)); 3796 3797 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 3798 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 3799 continue; 3800 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], 3801 memcg_page_state_local(memcg, memcg1_stats[i]) * 3802 PAGE_SIZE); 3803 } 3804 3805 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 3806 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]), 3807 memcg_events_local(memcg, memcg1_events[i])); 3808 3809 for (i = 0; i < NR_LRU_LISTS; i++) 3810 seq_printf(m, "%s %lu\n", lru_list_name(i), 3811 memcg_page_state_local(memcg, NR_LRU_BASE + i) * 3812 PAGE_SIZE); 3813 3814 /* Hierarchical information */ 3815 memory = memsw = PAGE_COUNTER_MAX; 3816 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) { 3817 memory = min(memory, mi->memory.max); 3818 memsw = min(memsw, mi->memsw.max); 3819 } 3820 seq_printf(m, "hierarchical_memory_limit %llu\n", 3821 (u64)memory * PAGE_SIZE); 3822 if (do_memsw_account()) 3823 seq_printf(m, "hierarchical_memsw_limit %llu\n", 3824 (u64)memsw * PAGE_SIZE); 3825 3826 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 3827 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 3828 continue; 3829 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], 3830 (u64)memcg_page_state(memcg, memcg1_stats[i]) * 3831 PAGE_SIZE); 3832 } 3833 3834 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 3835 seq_printf(m, "total_%s %llu\n", 3836 vm_event_name(memcg1_events[i]), 3837 (u64)memcg_events(memcg, memcg1_events[i])); 3838 3839 for (i = 0; i < NR_LRU_LISTS; i++) 3840 seq_printf(m, "total_%s %llu\n", lru_list_name(i), 3841 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) * 3842 PAGE_SIZE); 3843 3844 #ifdef CONFIG_DEBUG_VM 3845 { 3846 pg_data_t *pgdat; 3847 struct mem_cgroup_per_node *mz; 3848 struct zone_reclaim_stat *rstat; 3849 unsigned long recent_rotated[2] = {0, 0}; 3850 unsigned long recent_scanned[2] = {0, 0}; 3851 3852 for_each_online_pgdat(pgdat) { 3853 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 3854 rstat = &mz->lruvec.reclaim_stat; 3855 3856 recent_rotated[0] += rstat->recent_rotated[0]; 3857 recent_rotated[1] += rstat->recent_rotated[1]; 3858 recent_scanned[0] += rstat->recent_scanned[0]; 3859 recent_scanned[1] += rstat->recent_scanned[1]; 3860 } 3861 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]); 3862 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]); 3863 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]); 3864 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]); 3865 } 3866 #endif 3867 3868 return 0; 3869 } 3870 3871 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, 3872 struct cftype *cft) 3873 { 3874 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3875 3876 return mem_cgroup_swappiness(memcg); 3877 } 3878 3879 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, 3880 struct cftype *cft, u64 val) 3881 { 3882 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3883 3884 if (val > 100) 3885 return -EINVAL; 3886 3887 if (css->parent) 3888 memcg->swappiness = val; 3889 else 3890 vm_swappiness = val; 3891 3892 return 0; 3893 } 3894 3895 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 3896 { 3897 struct mem_cgroup_threshold_ary *t; 3898 unsigned long usage; 3899 int i; 3900 3901 rcu_read_lock(); 3902 if (!swap) 3903 t = rcu_dereference(memcg->thresholds.primary); 3904 else 3905 t = rcu_dereference(memcg->memsw_thresholds.primary); 3906 3907 if (!t) 3908 goto unlock; 3909 3910 usage = mem_cgroup_usage(memcg, swap); 3911 3912 /* 3913 * current_threshold points to threshold just below or equal to usage. 3914 * If it's not true, a threshold was crossed after last 3915 * call of __mem_cgroup_threshold(). 3916 */ 3917 i = t->current_threshold; 3918 3919 /* 3920 * Iterate backward over array of thresholds starting from 3921 * current_threshold and check if a threshold is crossed. 3922 * If none of thresholds below usage is crossed, we read 3923 * only one element of the array here. 3924 */ 3925 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 3926 eventfd_signal(t->entries[i].eventfd, 1); 3927 3928 /* i = current_threshold + 1 */ 3929 i++; 3930 3931 /* 3932 * Iterate forward over array of thresholds starting from 3933 * current_threshold+1 and check if a threshold is crossed. 3934 * If none of thresholds above usage is crossed, we read 3935 * only one element of the array here. 3936 */ 3937 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 3938 eventfd_signal(t->entries[i].eventfd, 1); 3939 3940 /* Update current_threshold */ 3941 t->current_threshold = i - 1; 3942 unlock: 3943 rcu_read_unlock(); 3944 } 3945 3946 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 3947 { 3948 while (memcg) { 3949 __mem_cgroup_threshold(memcg, false); 3950 if (do_memsw_account()) 3951 __mem_cgroup_threshold(memcg, true); 3952 3953 memcg = parent_mem_cgroup(memcg); 3954 } 3955 } 3956 3957 static int compare_thresholds(const void *a, const void *b) 3958 { 3959 const struct mem_cgroup_threshold *_a = a; 3960 const struct mem_cgroup_threshold *_b = b; 3961 3962 if (_a->threshold > _b->threshold) 3963 return 1; 3964 3965 if (_a->threshold < _b->threshold) 3966 return -1; 3967 3968 return 0; 3969 } 3970 3971 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 3972 { 3973 struct mem_cgroup_eventfd_list *ev; 3974 3975 spin_lock(&memcg_oom_lock); 3976 3977 list_for_each_entry(ev, &memcg->oom_notify, list) 3978 eventfd_signal(ev->eventfd, 1); 3979 3980 spin_unlock(&memcg_oom_lock); 3981 return 0; 3982 } 3983 3984 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 3985 { 3986 struct mem_cgroup *iter; 3987 3988 for_each_mem_cgroup_tree(iter, memcg) 3989 mem_cgroup_oom_notify_cb(iter); 3990 } 3991 3992 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 3993 struct eventfd_ctx *eventfd, const char *args, enum res_type type) 3994 { 3995 struct mem_cgroup_thresholds *thresholds; 3996 struct mem_cgroup_threshold_ary *new; 3997 unsigned long threshold; 3998 unsigned long usage; 3999 int i, size, ret; 4000 4001 ret = page_counter_memparse(args, "-1", &threshold); 4002 if (ret) 4003 return ret; 4004 4005 mutex_lock(&memcg->thresholds_lock); 4006 4007 if (type == _MEM) { 4008 thresholds = &memcg->thresholds; 4009 usage = mem_cgroup_usage(memcg, false); 4010 } else if (type == _MEMSWAP) { 4011 thresholds = &memcg->memsw_thresholds; 4012 usage = mem_cgroup_usage(memcg, true); 4013 } else 4014 BUG(); 4015 4016 /* Check if a threshold crossed before adding a new one */ 4017 if (thresholds->primary) 4018 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4019 4020 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 4021 4022 /* Allocate memory for new array of thresholds */ 4023 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL); 4024 if (!new) { 4025 ret = -ENOMEM; 4026 goto unlock; 4027 } 4028 new->size = size; 4029 4030 /* Copy thresholds (if any) to new array */ 4031 if (thresholds->primary) { 4032 memcpy(new->entries, thresholds->primary->entries, (size - 1) * 4033 sizeof(struct mem_cgroup_threshold)); 4034 } 4035 4036 /* Add new threshold */ 4037 new->entries[size - 1].eventfd = eventfd; 4038 new->entries[size - 1].threshold = threshold; 4039 4040 /* Sort thresholds. Registering of new threshold isn't time-critical */ 4041 sort(new->entries, size, sizeof(struct mem_cgroup_threshold), 4042 compare_thresholds, NULL); 4043 4044 /* Find current threshold */ 4045 new->current_threshold = -1; 4046 for (i = 0; i < size; i++) { 4047 if (new->entries[i].threshold <= usage) { 4048 /* 4049 * new->current_threshold will not be used until 4050 * rcu_assign_pointer(), so it's safe to increment 4051 * it here. 4052 */ 4053 ++new->current_threshold; 4054 } else 4055 break; 4056 } 4057 4058 /* Free old spare buffer and save old primary buffer as spare */ 4059 kfree(thresholds->spare); 4060 thresholds->spare = thresholds->primary; 4061 4062 rcu_assign_pointer(thresholds->primary, new); 4063 4064 /* To be sure that nobody uses thresholds */ 4065 synchronize_rcu(); 4066 4067 unlock: 4068 mutex_unlock(&memcg->thresholds_lock); 4069 4070 return ret; 4071 } 4072 4073 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 4074 struct eventfd_ctx *eventfd, const char *args) 4075 { 4076 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM); 4077 } 4078 4079 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg, 4080 struct eventfd_ctx *eventfd, const char *args) 4081 { 4082 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP); 4083 } 4084 4085 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4086 struct eventfd_ctx *eventfd, enum res_type type) 4087 { 4088 struct mem_cgroup_thresholds *thresholds; 4089 struct mem_cgroup_threshold_ary *new; 4090 unsigned long usage; 4091 int i, j, size, entries; 4092 4093 mutex_lock(&memcg->thresholds_lock); 4094 4095 if (type == _MEM) { 4096 thresholds = &memcg->thresholds; 4097 usage = mem_cgroup_usage(memcg, false); 4098 } else if (type == _MEMSWAP) { 4099 thresholds = &memcg->memsw_thresholds; 4100 usage = mem_cgroup_usage(memcg, true); 4101 } else 4102 BUG(); 4103 4104 if (!thresholds->primary) 4105 goto unlock; 4106 4107 /* Check if a threshold crossed before removing */ 4108 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4109 4110 /* Calculate new number of threshold */ 4111 size = entries = 0; 4112 for (i = 0; i < thresholds->primary->size; i++) { 4113 if (thresholds->primary->entries[i].eventfd != eventfd) 4114 size++; 4115 else 4116 entries++; 4117 } 4118 4119 new = thresholds->spare; 4120 4121 /* If no items related to eventfd have been cleared, nothing to do */ 4122 if (!entries) 4123 goto unlock; 4124 4125 /* Set thresholds array to NULL if we don't have thresholds */ 4126 if (!size) { 4127 kfree(new); 4128 new = NULL; 4129 goto swap_buffers; 4130 } 4131 4132 new->size = size; 4133 4134 /* Copy thresholds and find current threshold */ 4135 new->current_threshold = -1; 4136 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 4137 if (thresholds->primary->entries[i].eventfd == eventfd) 4138 continue; 4139 4140 new->entries[j] = thresholds->primary->entries[i]; 4141 if (new->entries[j].threshold <= usage) { 4142 /* 4143 * new->current_threshold will not be used 4144 * until rcu_assign_pointer(), so it's safe to increment 4145 * it here. 4146 */ 4147 ++new->current_threshold; 4148 } 4149 j++; 4150 } 4151 4152 swap_buffers: 4153 /* Swap primary and spare array */ 4154 thresholds->spare = thresholds->primary; 4155 4156 rcu_assign_pointer(thresholds->primary, new); 4157 4158 /* To be sure that nobody uses thresholds */ 4159 synchronize_rcu(); 4160 4161 /* If all events are unregistered, free the spare array */ 4162 if (!new) { 4163 kfree(thresholds->spare); 4164 thresholds->spare = NULL; 4165 } 4166 unlock: 4167 mutex_unlock(&memcg->thresholds_lock); 4168 } 4169 4170 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4171 struct eventfd_ctx *eventfd) 4172 { 4173 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM); 4174 } 4175 4176 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4177 struct eventfd_ctx *eventfd) 4178 { 4179 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP); 4180 } 4181 4182 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg, 4183 struct eventfd_ctx *eventfd, const char *args) 4184 { 4185 struct mem_cgroup_eventfd_list *event; 4186 4187 event = kmalloc(sizeof(*event), GFP_KERNEL); 4188 if (!event) 4189 return -ENOMEM; 4190 4191 spin_lock(&memcg_oom_lock); 4192 4193 event->eventfd = eventfd; 4194 list_add(&event->list, &memcg->oom_notify); 4195 4196 /* already in OOM ? */ 4197 if (memcg->under_oom) 4198 eventfd_signal(eventfd, 1); 4199 spin_unlock(&memcg_oom_lock); 4200 4201 return 0; 4202 } 4203 4204 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg, 4205 struct eventfd_ctx *eventfd) 4206 { 4207 struct mem_cgroup_eventfd_list *ev, *tmp; 4208 4209 spin_lock(&memcg_oom_lock); 4210 4211 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 4212 if (ev->eventfd == eventfd) { 4213 list_del(&ev->list); 4214 kfree(ev); 4215 } 4216 } 4217 4218 spin_unlock(&memcg_oom_lock); 4219 } 4220 4221 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v) 4222 { 4223 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf); 4224 4225 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable); 4226 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom); 4227 seq_printf(sf, "oom_kill %lu\n", 4228 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL])); 4229 return 0; 4230 } 4231 4232 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, 4233 struct cftype *cft, u64 val) 4234 { 4235 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4236 4237 /* cannot set to root cgroup and only 0 and 1 are allowed */ 4238 if (!css->parent || !((val == 0) || (val == 1))) 4239 return -EINVAL; 4240 4241 memcg->oom_kill_disable = val; 4242 if (!val) 4243 memcg_oom_recover(memcg); 4244 4245 return 0; 4246 } 4247 4248 #ifdef CONFIG_CGROUP_WRITEBACK 4249 4250 #include <trace/events/writeback.h> 4251 4252 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 4253 { 4254 return wb_domain_init(&memcg->cgwb_domain, gfp); 4255 } 4256 4257 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 4258 { 4259 wb_domain_exit(&memcg->cgwb_domain); 4260 } 4261 4262 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 4263 { 4264 wb_domain_size_changed(&memcg->cgwb_domain); 4265 } 4266 4267 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 4268 { 4269 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4270 4271 if (!memcg->css.parent) 4272 return NULL; 4273 4274 return &memcg->cgwb_domain; 4275 } 4276 4277 /* 4278 * idx can be of type enum memcg_stat_item or node_stat_item. 4279 * Keep in sync with memcg_exact_page(). 4280 */ 4281 static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx) 4282 { 4283 long x = atomic_long_read(&memcg->vmstats[idx]); 4284 int cpu; 4285 4286 for_each_online_cpu(cpu) 4287 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx]; 4288 if (x < 0) 4289 x = 0; 4290 return x; 4291 } 4292 4293 /** 4294 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg 4295 * @wb: bdi_writeback in question 4296 * @pfilepages: out parameter for number of file pages 4297 * @pheadroom: out parameter for number of allocatable pages according to memcg 4298 * @pdirty: out parameter for number of dirty pages 4299 * @pwriteback: out parameter for number of pages under writeback 4300 * 4301 * Determine the numbers of file, headroom, dirty, and writeback pages in 4302 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom 4303 * is a bit more involved. 4304 * 4305 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the 4306 * headroom is calculated as the lowest headroom of itself and the 4307 * ancestors. Note that this doesn't consider the actual amount of 4308 * available memory in the system. The caller should further cap 4309 * *@pheadroom accordingly. 4310 */ 4311 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 4312 unsigned long *pheadroom, unsigned long *pdirty, 4313 unsigned long *pwriteback) 4314 { 4315 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4316 struct mem_cgroup *parent; 4317 4318 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY); 4319 4320 /* this should eventually include NR_UNSTABLE_NFS */ 4321 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK); 4322 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) + 4323 memcg_exact_page_state(memcg, NR_ACTIVE_FILE); 4324 *pheadroom = PAGE_COUNTER_MAX; 4325 4326 while ((parent = parent_mem_cgroup(memcg))) { 4327 unsigned long ceiling = min(memcg->memory.max, memcg->high); 4328 unsigned long used = page_counter_read(&memcg->memory); 4329 4330 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); 4331 memcg = parent; 4332 } 4333 } 4334 4335 /* 4336 * Foreign dirty flushing 4337 * 4338 * There's an inherent mismatch between memcg and writeback. The former 4339 * trackes ownership per-page while the latter per-inode. This was a 4340 * deliberate design decision because honoring per-page ownership in the 4341 * writeback path is complicated, may lead to higher CPU and IO overheads 4342 * and deemed unnecessary given that write-sharing an inode across 4343 * different cgroups isn't a common use-case. 4344 * 4345 * Combined with inode majority-writer ownership switching, this works well 4346 * enough in most cases but there are some pathological cases. For 4347 * example, let's say there are two cgroups A and B which keep writing to 4348 * different but confined parts of the same inode. B owns the inode and 4349 * A's memory is limited far below B's. A's dirty ratio can rise enough to 4350 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid 4351 * triggering background writeback. A will be slowed down without a way to 4352 * make writeback of the dirty pages happen. 4353 * 4354 * Conditions like the above can lead to a cgroup getting repatedly and 4355 * severely throttled after making some progress after each 4356 * dirty_expire_interval while the underyling IO device is almost 4357 * completely idle. 4358 * 4359 * Solving this problem completely requires matching the ownership tracking 4360 * granularities between memcg and writeback in either direction. However, 4361 * the more egregious behaviors can be avoided by simply remembering the 4362 * most recent foreign dirtying events and initiating remote flushes on 4363 * them when local writeback isn't enough to keep the memory clean enough. 4364 * 4365 * The following two functions implement such mechanism. When a foreign 4366 * page - a page whose memcg and writeback ownerships don't match - is 4367 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning 4368 * bdi_writeback on the page owning memcg. When balance_dirty_pages() 4369 * decides that the memcg needs to sleep due to high dirty ratio, it calls 4370 * mem_cgroup_flush_foreign() which queues writeback on the recorded 4371 * foreign bdi_writebacks which haven't expired. Both the numbers of 4372 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are 4373 * limited to MEMCG_CGWB_FRN_CNT. 4374 * 4375 * The mechanism only remembers IDs and doesn't hold any object references. 4376 * As being wrong occasionally doesn't matter, updates and accesses to the 4377 * records are lockless and racy. 4378 */ 4379 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page, 4380 struct bdi_writeback *wb) 4381 { 4382 struct mem_cgroup *memcg = page->mem_cgroup; 4383 struct memcg_cgwb_frn *frn; 4384 u64 now = get_jiffies_64(); 4385 u64 oldest_at = now; 4386 int oldest = -1; 4387 int i; 4388 4389 trace_track_foreign_dirty(page, wb); 4390 4391 /* 4392 * Pick the slot to use. If there is already a slot for @wb, keep 4393 * using it. If not replace the oldest one which isn't being 4394 * written out. 4395 */ 4396 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 4397 frn = &memcg->cgwb_frn[i]; 4398 if (frn->bdi_id == wb->bdi->id && 4399 frn->memcg_id == wb->memcg_css->id) 4400 break; 4401 if (time_before64(frn->at, oldest_at) && 4402 atomic_read(&frn->done.cnt) == 1) { 4403 oldest = i; 4404 oldest_at = frn->at; 4405 } 4406 } 4407 4408 if (i < MEMCG_CGWB_FRN_CNT) { 4409 /* 4410 * Re-using an existing one. Update timestamp lazily to 4411 * avoid making the cacheline hot. We want them to be 4412 * reasonably up-to-date and significantly shorter than 4413 * dirty_expire_interval as that's what expires the record. 4414 * Use the shorter of 1s and dirty_expire_interval / 8. 4415 */ 4416 unsigned long update_intv = 4417 min_t(unsigned long, HZ, 4418 msecs_to_jiffies(dirty_expire_interval * 10) / 8); 4419 4420 if (time_before64(frn->at, now - update_intv)) 4421 frn->at = now; 4422 } else if (oldest >= 0) { 4423 /* replace the oldest free one */ 4424 frn = &memcg->cgwb_frn[oldest]; 4425 frn->bdi_id = wb->bdi->id; 4426 frn->memcg_id = wb->memcg_css->id; 4427 frn->at = now; 4428 } 4429 } 4430 4431 /* issue foreign writeback flushes for recorded foreign dirtying events */ 4432 void mem_cgroup_flush_foreign(struct bdi_writeback *wb) 4433 { 4434 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4435 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10); 4436 u64 now = jiffies_64; 4437 int i; 4438 4439 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 4440 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i]; 4441 4442 /* 4443 * If the record is older than dirty_expire_interval, 4444 * writeback on it has already started. No need to kick it 4445 * off again. Also, don't start a new one if there's 4446 * already one in flight. 4447 */ 4448 if (time_after64(frn->at, now - intv) && 4449 atomic_read(&frn->done.cnt) == 1) { 4450 frn->at = 0; 4451 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id); 4452 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0, 4453 WB_REASON_FOREIGN_FLUSH, 4454 &frn->done); 4455 } 4456 } 4457 } 4458 4459 #else /* CONFIG_CGROUP_WRITEBACK */ 4460 4461 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 4462 { 4463 return 0; 4464 } 4465 4466 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 4467 { 4468 } 4469 4470 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 4471 { 4472 } 4473 4474 #endif /* CONFIG_CGROUP_WRITEBACK */ 4475 4476 /* 4477 * DO NOT USE IN NEW FILES. 4478 * 4479 * "cgroup.event_control" implementation. 4480 * 4481 * This is way over-engineered. It tries to support fully configurable 4482 * events for each user. Such level of flexibility is completely 4483 * unnecessary especially in the light of the planned unified hierarchy. 4484 * 4485 * Please deprecate this and replace with something simpler if at all 4486 * possible. 4487 */ 4488 4489 /* 4490 * Unregister event and free resources. 4491 * 4492 * Gets called from workqueue. 4493 */ 4494 static void memcg_event_remove(struct work_struct *work) 4495 { 4496 struct mem_cgroup_event *event = 4497 container_of(work, struct mem_cgroup_event, remove); 4498 struct mem_cgroup *memcg = event->memcg; 4499 4500 remove_wait_queue(event->wqh, &event->wait); 4501 4502 event->unregister_event(memcg, event->eventfd); 4503 4504 /* Notify userspace the event is going away. */ 4505 eventfd_signal(event->eventfd, 1); 4506 4507 eventfd_ctx_put(event->eventfd); 4508 kfree(event); 4509 css_put(&memcg->css); 4510 } 4511 4512 /* 4513 * Gets called on EPOLLHUP on eventfd when user closes it. 4514 * 4515 * Called with wqh->lock held and interrupts disabled. 4516 */ 4517 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode, 4518 int sync, void *key) 4519 { 4520 struct mem_cgroup_event *event = 4521 container_of(wait, struct mem_cgroup_event, wait); 4522 struct mem_cgroup *memcg = event->memcg; 4523 __poll_t flags = key_to_poll(key); 4524 4525 if (flags & EPOLLHUP) { 4526 /* 4527 * If the event has been detached at cgroup removal, we 4528 * can simply return knowing the other side will cleanup 4529 * for us. 4530 * 4531 * We can't race against event freeing since the other 4532 * side will require wqh->lock via remove_wait_queue(), 4533 * which we hold. 4534 */ 4535 spin_lock(&memcg->event_list_lock); 4536 if (!list_empty(&event->list)) { 4537 list_del_init(&event->list); 4538 /* 4539 * We are in atomic context, but cgroup_event_remove() 4540 * may sleep, so we have to call it in workqueue. 4541 */ 4542 schedule_work(&event->remove); 4543 } 4544 spin_unlock(&memcg->event_list_lock); 4545 } 4546 4547 return 0; 4548 } 4549 4550 static void memcg_event_ptable_queue_proc(struct file *file, 4551 wait_queue_head_t *wqh, poll_table *pt) 4552 { 4553 struct mem_cgroup_event *event = 4554 container_of(pt, struct mem_cgroup_event, pt); 4555 4556 event->wqh = wqh; 4557 add_wait_queue(wqh, &event->wait); 4558 } 4559 4560 /* 4561 * DO NOT USE IN NEW FILES. 4562 * 4563 * Parse input and register new cgroup event handler. 4564 * 4565 * Input must be in format '<event_fd> <control_fd> <args>'. 4566 * Interpretation of args is defined by control file implementation. 4567 */ 4568 static ssize_t memcg_write_event_control(struct kernfs_open_file *of, 4569 char *buf, size_t nbytes, loff_t off) 4570 { 4571 struct cgroup_subsys_state *css = of_css(of); 4572 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4573 struct mem_cgroup_event *event; 4574 struct cgroup_subsys_state *cfile_css; 4575 unsigned int efd, cfd; 4576 struct fd efile; 4577 struct fd cfile; 4578 const char *name; 4579 char *endp; 4580 int ret; 4581 4582 buf = strstrip(buf); 4583 4584 efd = simple_strtoul(buf, &endp, 10); 4585 if (*endp != ' ') 4586 return -EINVAL; 4587 buf = endp + 1; 4588 4589 cfd = simple_strtoul(buf, &endp, 10); 4590 if ((*endp != ' ') && (*endp != '\0')) 4591 return -EINVAL; 4592 buf = endp + 1; 4593 4594 event = kzalloc(sizeof(*event), GFP_KERNEL); 4595 if (!event) 4596 return -ENOMEM; 4597 4598 event->memcg = memcg; 4599 INIT_LIST_HEAD(&event->list); 4600 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc); 4601 init_waitqueue_func_entry(&event->wait, memcg_event_wake); 4602 INIT_WORK(&event->remove, memcg_event_remove); 4603 4604 efile = fdget(efd); 4605 if (!efile.file) { 4606 ret = -EBADF; 4607 goto out_kfree; 4608 } 4609 4610 event->eventfd = eventfd_ctx_fileget(efile.file); 4611 if (IS_ERR(event->eventfd)) { 4612 ret = PTR_ERR(event->eventfd); 4613 goto out_put_efile; 4614 } 4615 4616 cfile = fdget(cfd); 4617 if (!cfile.file) { 4618 ret = -EBADF; 4619 goto out_put_eventfd; 4620 } 4621 4622 /* the process need read permission on control file */ 4623 /* AV: shouldn't we check that it's been opened for read instead? */ 4624 ret = inode_permission(file_inode(cfile.file), MAY_READ); 4625 if (ret < 0) 4626 goto out_put_cfile; 4627 4628 /* 4629 * Determine the event callbacks and set them in @event. This used 4630 * to be done via struct cftype but cgroup core no longer knows 4631 * about these events. The following is crude but the whole thing 4632 * is for compatibility anyway. 4633 * 4634 * DO NOT ADD NEW FILES. 4635 */ 4636 name = cfile.file->f_path.dentry->d_name.name; 4637 4638 if (!strcmp(name, "memory.usage_in_bytes")) { 4639 event->register_event = mem_cgroup_usage_register_event; 4640 event->unregister_event = mem_cgroup_usage_unregister_event; 4641 } else if (!strcmp(name, "memory.oom_control")) { 4642 event->register_event = mem_cgroup_oom_register_event; 4643 event->unregister_event = mem_cgroup_oom_unregister_event; 4644 } else if (!strcmp(name, "memory.pressure_level")) { 4645 event->register_event = vmpressure_register_event; 4646 event->unregister_event = vmpressure_unregister_event; 4647 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) { 4648 event->register_event = memsw_cgroup_usage_register_event; 4649 event->unregister_event = memsw_cgroup_usage_unregister_event; 4650 } else { 4651 ret = -EINVAL; 4652 goto out_put_cfile; 4653 } 4654 4655 /* 4656 * Verify @cfile should belong to @css. Also, remaining events are 4657 * automatically removed on cgroup destruction but the removal is 4658 * asynchronous, so take an extra ref on @css. 4659 */ 4660 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent, 4661 &memory_cgrp_subsys); 4662 ret = -EINVAL; 4663 if (IS_ERR(cfile_css)) 4664 goto out_put_cfile; 4665 if (cfile_css != css) { 4666 css_put(cfile_css); 4667 goto out_put_cfile; 4668 } 4669 4670 ret = event->register_event(memcg, event->eventfd, buf); 4671 if (ret) 4672 goto out_put_css; 4673 4674 vfs_poll(efile.file, &event->pt); 4675 4676 spin_lock(&memcg->event_list_lock); 4677 list_add(&event->list, &memcg->event_list); 4678 spin_unlock(&memcg->event_list_lock); 4679 4680 fdput(cfile); 4681 fdput(efile); 4682 4683 return nbytes; 4684 4685 out_put_css: 4686 css_put(css); 4687 out_put_cfile: 4688 fdput(cfile); 4689 out_put_eventfd: 4690 eventfd_ctx_put(event->eventfd); 4691 out_put_efile: 4692 fdput(efile); 4693 out_kfree: 4694 kfree(event); 4695 4696 return ret; 4697 } 4698 4699 static struct cftype mem_cgroup_legacy_files[] = { 4700 { 4701 .name = "usage_in_bytes", 4702 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 4703 .read_u64 = mem_cgroup_read_u64, 4704 }, 4705 { 4706 .name = "max_usage_in_bytes", 4707 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 4708 .write = mem_cgroup_reset, 4709 .read_u64 = mem_cgroup_read_u64, 4710 }, 4711 { 4712 .name = "limit_in_bytes", 4713 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 4714 .write = mem_cgroup_write, 4715 .read_u64 = mem_cgroup_read_u64, 4716 }, 4717 { 4718 .name = "soft_limit_in_bytes", 4719 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 4720 .write = mem_cgroup_write, 4721 .read_u64 = mem_cgroup_read_u64, 4722 }, 4723 { 4724 .name = "failcnt", 4725 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 4726 .write = mem_cgroup_reset, 4727 .read_u64 = mem_cgroup_read_u64, 4728 }, 4729 { 4730 .name = "stat", 4731 .seq_show = memcg_stat_show, 4732 }, 4733 { 4734 .name = "force_empty", 4735 .write = mem_cgroup_force_empty_write, 4736 }, 4737 { 4738 .name = "use_hierarchy", 4739 .write_u64 = mem_cgroup_hierarchy_write, 4740 .read_u64 = mem_cgroup_hierarchy_read, 4741 }, 4742 { 4743 .name = "cgroup.event_control", /* XXX: for compat */ 4744 .write = memcg_write_event_control, 4745 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE, 4746 }, 4747 { 4748 .name = "swappiness", 4749 .read_u64 = mem_cgroup_swappiness_read, 4750 .write_u64 = mem_cgroup_swappiness_write, 4751 }, 4752 { 4753 .name = "move_charge_at_immigrate", 4754 .read_u64 = mem_cgroup_move_charge_read, 4755 .write_u64 = mem_cgroup_move_charge_write, 4756 }, 4757 { 4758 .name = "oom_control", 4759 .seq_show = mem_cgroup_oom_control_read, 4760 .write_u64 = mem_cgroup_oom_control_write, 4761 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), 4762 }, 4763 { 4764 .name = "pressure_level", 4765 }, 4766 #ifdef CONFIG_NUMA 4767 { 4768 .name = "numa_stat", 4769 .seq_show = memcg_numa_stat_show, 4770 }, 4771 #endif 4772 { 4773 .name = "kmem.limit_in_bytes", 4774 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), 4775 .write = mem_cgroup_write, 4776 .read_u64 = mem_cgroup_read_u64, 4777 }, 4778 { 4779 .name = "kmem.usage_in_bytes", 4780 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), 4781 .read_u64 = mem_cgroup_read_u64, 4782 }, 4783 { 4784 .name = "kmem.failcnt", 4785 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), 4786 .write = mem_cgroup_reset, 4787 .read_u64 = mem_cgroup_read_u64, 4788 }, 4789 { 4790 .name = "kmem.max_usage_in_bytes", 4791 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), 4792 .write = mem_cgroup_reset, 4793 .read_u64 = mem_cgroup_read_u64, 4794 }, 4795 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG) 4796 { 4797 .name = "kmem.slabinfo", 4798 .seq_start = memcg_slab_start, 4799 .seq_next = memcg_slab_next, 4800 .seq_stop = memcg_slab_stop, 4801 .seq_show = memcg_slab_show, 4802 }, 4803 #endif 4804 { 4805 .name = "kmem.tcp.limit_in_bytes", 4806 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT), 4807 .write = mem_cgroup_write, 4808 .read_u64 = mem_cgroup_read_u64, 4809 }, 4810 { 4811 .name = "kmem.tcp.usage_in_bytes", 4812 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE), 4813 .read_u64 = mem_cgroup_read_u64, 4814 }, 4815 { 4816 .name = "kmem.tcp.failcnt", 4817 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT), 4818 .write = mem_cgroup_reset, 4819 .read_u64 = mem_cgroup_read_u64, 4820 }, 4821 { 4822 .name = "kmem.tcp.max_usage_in_bytes", 4823 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE), 4824 .write = mem_cgroup_reset, 4825 .read_u64 = mem_cgroup_read_u64, 4826 }, 4827 { }, /* terminate */ 4828 }; 4829 4830 /* 4831 * Private memory cgroup IDR 4832 * 4833 * Swap-out records and page cache shadow entries need to store memcg 4834 * references in constrained space, so we maintain an ID space that is 4835 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of 4836 * memory-controlled cgroups to 64k. 4837 * 4838 * However, there usually are many references to the oflline CSS after 4839 * the cgroup has been destroyed, such as page cache or reclaimable 4840 * slab objects, that don't need to hang on to the ID. We want to keep 4841 * those dead CSS from occupying IDs, or we might quickly exhaust the 4842 * relatively small ID space and prevent the creation of new cgroups 4843 * even when there are much fewer than 64k cgroups - possibly none. 4844 * 4845 * Maintain a private 16-bit ID space for memcg, and allow the ID to 4846 * be freed and recycled when it's no longer needed, which is usually 4847 * when the CSS is offlined. 4848 * 4849 * The only exception to that are records of swapped out tmpfs/shmem 4850 * pages that need to be attributed to live ancestors on swapin. But 4851 * those references are manageable from userspace. 4852 */ 4853 4854 static DEFINE_IDR(mem_cgroup_idr); 4855 4856 static void mem_cgroup_id_remove(struct mem_cgroup *memcg) 4857 { 4858 if (memcg->id.id > 0) { 4859 idr_remove(&mem_cgroup_idr, memcg->id.id); 4860 memcg->id.id = 0; 4861 } 4862 } 4863 4864 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n) 4865 { 4866 refcount_add(n, &memcg->id.ref); 4867 } 4868 4869 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n) 4870 { 4871 if (refcount_sub_and_test(n, &memcg->id.ref)) { 4872 mem_cgroup_id_remove(memcg); 4873 4874 /* Memcg ID pins CSS */ 4875 css_put(&memcg->css); 4876 } 4877 } 4878 4879 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg) 4880 { 4881 mem_cgroup_id_put_many(memcg, 1); 4882 } 4883 4884 /** 4885 * mem_cgroup_from_id - look up a memcg from a memcg id 4886 * @id: the memcg id to look up 4887 * 4888 * Caller must hold rcu_read_lock(). 4889 */ 4890 struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 4891 { 4892 WARN_ON_ONCE(!rcu_read_lock_held()); 4893 return idr_find(&mem_cgroup_idr, id); 4894 } 4895 4896 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 4897 { 4898 struct mem_cgroup_per_node *pn; 4899 int tmp = node; 4900 /* 4901 * This routine is called against possible nodes. 4902 * But it's BUG to call kmalloc() against offline node. 4903 * 4904 * TODO: this routine can waste much memory for nodes which will 4905 * never be onlined. It's better to use memory hotplug callback 4906 * function. 4907 */ 4908 if (!node_state(node, N_NORMAL_MEMORY)) 4909 tmp = -1; 4910 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); 4911 if (!pn) 4912 return 1; 4913 4914 pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat); 4915 if (!pn->lruvec_stat_local) { 4916 kfree(pn); 4917 return 1; 4918 } 4919 4920 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat); 4921 if (!pn->lruvec_stat_cpu) { 4922 free_percpu(pn->lruvec_stat_local); 4923 kfree(pn); 4924 return 1; 4925 } 4926 4927 lruvec_init(&pn->lruvec); 4928 pn->usage_in_excess = 0; 4929 pn->on_tree = false; 4930 pn->memcg = memcg; 4931 4932 memcg->nodeinfo[node] = pn; 4933 return 0; 4934 } 4935 4936 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 4937 { 4938 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node]; 4939 4940 if (!pn) 4941 return; 4942 4943 free_percpu(pn->lruvec_stat_cpu); 4944 free_percpu(pn->lruvec_stat_local); 4945 kfree(pn); 4946 } 4947 4948 static void __mem_cgroup_free(struct mem_cgroup *memcg) 4949 { 4950 int node; 4951 4952 for_each_node(node) 4953 free_mem_cgroup_per_node_info(memcg, node); 4954 free_percpu(memcg->vmstats_percpu); 4955 free_percpu(memcg->vmstats_local); 4956 kfree(memcg); 4957 } 4958 4959 static void mem_cgroup_free(struct mem_cgroup *memcg) 4960 { 4961 memcg_wb_domain_exit(memcg); 4962 /* 4963 * Flush percpu vmstats and vmevents to guarantee the value correctness 4964 * on parent's and all ancestor levels. 4965 */ 4966 memcg_flush_percpu_vmstats(memcg); 4967 memcg_flush_percpu_vmevents(memcg); 4968 __mem_cgroup_free(memcg); 4969 } 4970 4971 static struct mem_cgroup *mem_cgroup_alloc(void) 4972 { 4973 struct mem_cgroup *memcg; 4974 unsigned int size; 4975 int node; 4976 int __maybe_unused i; 4977 4978 size = sizeof(struct mem_cgroup); 4979 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *); 4980 4981 memcg = kzalloc(size, GFP_KERNEL); 4982 if (!memcg) 4983 return NULL; 4984 4985 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL, 4986 1, MEM_CGROUP_ID_MAX, 4987 GFP_KERNEL); 4988 if (memcg->id.id < 0) 4989 goto fail; 4990 4991 memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu); 4992 if (!memcg->vmstats_local) 4993 goto fail; 4994 4995 memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu); 4996 if (!memcg->vmstats_percpu) 4997 goto fail; 4998 4999 for_each_node(node) 5000 if (alloc_mem_cgroup_per_node_info(memcg, node)) 5001 goto fail; 5002 5003 if (memcg_wb_domain_init(memcg, GFP_KERNEL)) 5004 goto fail; 5005 5006 INIT_WORK(&memcg->high_work, high_work_func); 5007 INIT_LIST_HEAD(&memcg->oom_notify); 5008 mutex_init(&memcg->thresholds_lock); 5009 spin_lock_init(&memcg->move_lock); 5010 vmpressure_init(&memcg->vmpressure); 5011 INIT_LIST_HEAD(&memcg->event_list); 5012 spin_lock_init(&memcg->event_list_lock); 5013 memcg->socket_pressure = jiffies; 5014 #ifdef CONFIG_MEMCG_KMEM 5015 memcg->kmemcg_id = -1; 5016 #endif 5017 #ifdef CONFIG_CGROUP_WRITEBACK 5018 INIT_LIST_HEAD(&memcg->cgwb_list); 5019 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 5020 memcg->cgwb_frn[i].done = 5021 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq); 5022 #endif 5023 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5024 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock); 5025 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue); 5026 memcg->deferred_split_queue.split_queue_len = 0; 5027 #endif 5028 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id); 5029 return memcg; 5030 fail: 5031 mem_cgroup_id_remove(memcg); 5032 __mem_cgroup_free(memcg); 5033 return NULL; 5034 } 5035 5036 static struct cgroup_subsys_state * __ref 5037 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 5038 { 5039 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); 5040 struct mem_cgroup *memcg; 5041 long error = -ENOMEM; 5042 5043 memcg = mem_cgroup_alloc(); 5044 if (!memcg) 5045 return ERR_PTR(error); 5046 5047 memcg->high = PAGE_COUNTER_MAX; 5048 memcg->soft_limit = PAGE_COUNTER_MAX; 5049 if (parent) { 5050 memcg->swappiness = mem_cgroup_swappiness(parent); 5051 memcg->oom_kill_disable = parent->oom_kill_disable; 5052 } 5053 if (parent && parent->use_hierarchy) { 5054 memcg->use_hierarchy = true; 5055 page_counter_init(&memcg->memory, &parent->memory); 5056 page_counter_init(&memcg->swap, &parent->swap); 5057 page_counter_init(&memcg->memsw, &parent->memsw); 5058 page_counter_init(&memcg->kmem, &parent->kmem); 5059 page_counter_init(&memcg->tcpmem, &parent->tcpmem); 5060 } else { 5061 page_counter_init(&memcg->memory, NULL); 5062 page_counter_init(&memcg->swap, NULL); 5063 page_counter_init(&memcg->memsw, NULL); 5064 page_counter_init(&memcg->kmem, NULL); 5065 page_counter_init(&memcg->tcpmem, NULL); 5066 /* 5067 * Deeper hierachy with use_hierarchy == false doesn't make 5068 * much sense so let cgroup subsystem know about this 5069 * unfortunate state in our controller. 5070 */ 5071 if (parent != root_mem_cgroup) 5072 memory_cgrp_subsys.broken_hierarchy = true; 5073 } 5074 5075 /* The following stuff does not apply to the root */ 5076 if (!parent) { 5077 #ifdef CONFIG_MEMCG_KMEM 5078 INIT_LIST_HEAD(&memcg->kmem_caches); 5079 #endif 5080 root_mem_cgroup = memcg; 5081 return &memcg->css; 5082 } 5083 5084 error = memcg_online_kmem(memcg); 5085 if (error) 5086 goto fail; 5087 5088 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 5089 static_branch_inc(&memcg_sockets_enabled_key); 5090 5091 return &memcg->css; 5092 fail: 5093 mem_cgroup_id_remove(memcg); 5094 mem_cgroup_free(memcg); 5095 return ERR_PTR(-ENOMEM); 5096 } 5097 5098 static int mem_cgroup_css_online(struct cgroup_subsys_state *css) 5099 { 5100 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5101 5102 /* 5103 * A memcg must be visible for memcg_expand_shrinker_maps() 5104 * by the time the maps are allocated. So, we allocate maps 5105 * here, when for_each_mem_cgroup() can't skip it. 5106 */ 5107 if (memcg_alloc_shrinker_maps(memcg)) { 5108 mem_cgroup_id_remove(memcg); 5109 return -ENOMEM; 5110 } 5111 5112 /* Online state pins memcg ID, memcg ID pins CSS */ 5113 refcount_set(&memcg->id.ref, 1); 5114 css_get(css); 5115 return 0; 5116 } 5117 5118 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 5119 { 5120 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5121 struct mem_cgroup_event *event, *tmp; 5122 5123 /* 5124 * Unregister events and notify userspace. 5125 * Notify userspace about cgroup removing only after rmdir of cgroup 5126 * directory to avoid race between userspace and kernelspace. 5127 */ 5128 spin_lock(&memcg->event_list_lock); 5129 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) { 5130 list_del_init(&event->list); 5131 schedule_work(&event->remove); 5132 } 5133 spin_unlock(&memcg->event_list_lock); 5134 5135 page_counter_set_min(&memcg->memory, 0); 5136 page_counter_set_low(&memcg->memory, 0); 5137 5138 memcg_offline_kmem(memcg); 5139 wb_memcg_offline(memcg); 5140 5141 drain_all_stock(memcg); 5142 5143 mem_cgroup_id_put(memcg); 5144 } 5145 5146 static void mem_cgroup_css_released(struct cgroup_subsys_state *css) 5147 { 5148 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5149 5150 invalidate_reclaim_iterators(memcg); 5151 } 5152 5153 static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 5154 { 5155 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5156 int __maybe_unused i; 5157 5158 #ifdef CONFIG_CGROUP_WRITEBACK 5159 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 5160 wb_wait_for_completion(&memcg->cgwb_frn[i].done); 5161 #endif 5162 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 5163 static_branch_dec(&memcg_sockets_enabled_key); 5164 5165 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active) 5166 static_branch_dec(&memcg_sockets_enabled_key); 5167 5168 vmpressure_cleanup(&memcg->vmpressure); 5169 cancel_work_sync(&memcg->high_work); 5170 mem_cgroup_remove_from_trees(memcg); 5171 memcg_free_shrinker_maps(memcg); 5172 memcg_free_kmem(memcg); 5173 mem_cgroup_free(memcg); 5174 } 5175 5176 /** 5177 * mem_cgroup_css_reset - reset the states of a mem_cgroup 5178 * @css: the target css 5179 * 5180 * Reset the states of the mem_cgroup associated with @css. This is 5181 * invoked when the userland requests disabling on the default hierarchy 5182 * but the memcg is pinned through dependency. The memcg should stop 5183 * applying policies and should revert to the vanilla state as it may be 5184 * made visible again. 5185 * 5186 * The current implementation only resets the essential configurations. 5187 * This needs to be expanded to cover all the visible parts. 5188 */ 5189 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) 5190 { 5191 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5192 5193 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX); 5194 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX); 5195 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX); 5196 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX); 5197 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX); 5198 page_counter_set_min(&memcg->memory, 0); 5199 page_counter_set_low(&memcg->memory, 0); 5200 memcg->high = PAGE_COUNTER_MAX; 5201 memcg->soft_limit = PAGE_COUNTER_MAX; 5202 memcg_wb_domain_size_changed(memcg); 5203 } 5204 5205 #ifdef CONFIG_MMU 5206 /* Handlers for move charge at task migration. */ 5207 static int mem_cgroup_do_precharge(unsigned long count) 5208 { 5209 int ret; 5210 5211 /* Try a single bulk charge without reclaim first, kswapd may wake */ 5212 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count); 5213 if (!ret) { 5214 mc.precharge += count; 5215 return ret; 5216 } 5217 5218 /* Try charges one by one with reclaim, but do not retry */ 5219 while (count--) { 5220 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1); 5221 if (ret) 5222 return ret; 5223 mc.precharge++; 5224 cond_resched(); 5225 } 5226 return 0; 5227 } 5228 5229 union mc_target { 5230 struct page *page; 5231 swp_entry_t ent; 5232 }; 5233 5234 enum mc_target_type { 5235 MC_TARGET_NONE = 0, 5236 MC_TARGET_PAGE, 5237 MC_TARGET_SWAP, 5238 MC_TARGET_DEVICE, 5239 }; 5240 5241 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 5242 unsigned long addr, pte_t ptent) 5243 { 5244 struct page *page = vm_normal_page(vma, addr, ptent); 5245 5246 if (!page || !page_mapped(page)) 5247 return NULL; 5248 if (PageAnon(page)) { 5249 if (!(mc.flags & MOVE_ANON)) 5250 return NULL; 5251 } else { 5252 if (!(mc.flags & MOVE_FILE)) 5253 return NULL; 5254 } 5255 if (!get_page_unless_zero(page)) 5256 return NULL; 5257 5258 return page; 5259 } 5260 5261 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE) 5262 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5263 pte_t ptent, swp_entry_t *entry) 5264 { 5265 struct page *page = NULL; 5266 swp_entry_t ent = pte_to_swp_entry(ptent); 5267 5268 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent)) 5269 return NULL; 5270 5271 /* 5272 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to 5273 * a device and because they are not accessible by CPU they are store 5274 * as special swap entry in the CPU page table. 5275 */ 5276 if (is_device_private_entry(ent)) { 5277 page = device_private_entry_to_page(ent); 5278 /* 5279 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have 5280 * a refcount of 1 when free (unlike normal page) 5281 */ 5282 if (!page_ref_add_unless(page, 1, 1)) 5283 return NULL; 5284 return page; 5285 } 5286 5287 /* 5288 * Because lookup_swap_cache() updates some statistics counter, 5289 * we call find_get_page() with swapper_space directly. 5290 */ 5291 page = find_get_page(swap_address_space(ent), swp_offset(ent)); 5292 if (do_memsw_account()) 5293 entry->val = ent.val; 5294 5295 return page; 5296 } 5297 #else 5298 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5299 pte_t ptent, swp_entry_t *entry) 5300 { 5301 return NULL; 5302 } 5303 #endif 5304 5305 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 5306 unsigned long addr, pte_t ptent, swp_entry_t *entry) 5307 { 5308 struct page *page = NULL; 5309 struct address_space *mapping; 5310 pgoff_t pgoff; 5311 5312 if (!vma->vm_file) /* anonymous vma */ 5313 return NULL; 5314 if (!(mc.flags & MOVE_FILE)) 5315 return NULL; 5316 5317 mapping = vma->vm_file->f_mapping; 5318 pgoff = linear_page_index(vma, addr); 5319 5320 /* page is moved even if it's not RSS of this task(page-faulted). */ 5321 #ifdef CONFIG_SWAP 5322 /* shmem/tmpfs may report page out on swap: account for that too. */ 5323 if (shmem_mapping(mapping)) { 5324 page = find_get_entry(mapping, pgoff); 5325 if (xa_is_value(page)) { 5326 swp_entry_t swp = radix_to_swp_entry(page); 5327 if (do_memsw_account()) 5328 *entry = swp; 5329 page = find_get_page(swap_address_space(swp), 5330 swp_offset(swp)); 5331 } 5332 } else 5333 page = find_get_page(mapping, pgoff); 5334 #else 5335 page = find_get_page(mapping, pgoff); 5336 #endif 5337 return page; 5338 } 5339 5340 /** 5341 * mem_cgroup_move_account - move account of the page 5342 * @page: the page 5343 * @compound: charge the page as compound or small page 5344 * @from: mem_cgroup which the page is moved from. 5345 * @to: mem_cgroup which the page is moved to. @from != @to. 5346 * 5347 * The caller must make sure the page is not on LRU (isolate_page() is useful.) 5348 * 5349 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" 5350 * from old cgroup. 5351 */ 5352 static int mem_cgroup_move_account(struct page *page, 5353 bool compound, 5354 struct mem_cgroup *from, 5355 struct mem_cgroup *to) 5356 { 5357 struct lruvec *from_vec, *to_vec; 5358 struct pglist_data *pgdat; 5359 unsigned long flags; 5360 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 5361 int ret; 5362 bool anon; 5363 5364 VM_BUG_ON(from == to); 5365 VM_BUG_ON_PAGE(PageLRU(page), page); 5366 VM_BUG_ON(compound && !PageTransHuge(page)); 5367 5368 /* 5369 * Prevent mem_cgroup_migrate() from looking at 5370 * page->mem_cgroup of its source page while we change it. 5371 */ 5372 ret = -EBUSY; 5373 if (!trylock_page(page)) 5374 goto out; 5375 5376 ret = -EINVAL; 5377 if (page->mem_cgroup != from) 5378 goto out_unlock; 5379 5380 anon = PageAnon(page); 5381 5382 pgdat = page_pgdat(page); 5383 from_vec = mem_cgroup_lruvec(from, pgdat); 5384 to_vec = mem_cgroup_lruvec(to, pgdat); 5385 5386 spin_lock_irqsave(&from->move_lock, flags); 5387 5388 if (!anon && page_mapped(page)) { 5389 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages); 5390 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages); 5391 } 5392 5393 /* 5394 * move_lock grabbed above and caller set from->moving_account, so 5395 * mod_memcg_page_state will serialize updates to PageDirty. 5396 * So mapping should be stable for dirty pages. 5397 */ 5398 if (!anon && PageDirty(page)) { 5399 struct address_space *mapping = page_mapping(page); 5400 5401 if (mapping_cap_account_dirty(mapping)) { 5402 __mod_lruvec_state(from_vec, NR_FILE_DIRTY, -nr_pages); 5403 __mod_lruvec_state(to_vec, NR_FILE_DIRTY, nr_pages); 5404 } 5405 } 5406 5407 if (PageWriteback(page)) { 5408 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages); 5409 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages); 5410 } 5411 5412 /* 5413 * It is safe to change page->mem_cgroup here because the page 5414 * is referenced, charged, and isolated - we can't race with 5415 * uncharging, charging, migration, or LRU putback. 5416 */ 5417 5418 /* caller should have done css_get */ 5419 page->mem_cgroup = to; 5420 5421 spin_unlock_irqrestore(&from->move_lock, flags); 5422 5423 ret = 0; 5424 5425 local_irq_disable(); 5426 mem_cgroup_charge_statistics(to, page, compound, nr_pages); 5427 memcg_check_events(to, page); 5428 mem_cgroup_charge_statistics(from, page, compound, -nr_pages); 5429 memcg_check_events(from, page); 5430 local_irq_enable(); 5431 out_unlock: 5432 unlock_page(page); 5433 out: 5434 return ret; 5435 } 5436 5437 /** 5438 * get_mctgt_type - get target type of moving charge 5439 * @vma: the vma the pte to be checked belongs 5440 * @addr: the address corresponding to the pte to be checked 5441 * @ptent: the pte to be checked 5442 * @target: the pointer the target page or swap ent will be stored(can be NULL) 5443 * 5444 * Returns 5445 * 0(MC_TARGET_NONE): if the pte is not a target for move charge. 5446 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for 5447 * move charge. if @target is not NULL, the page is stored in target->page 5448 * with extra refcnt got(Callers should handle it). 5449 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a 5450 * target for charge migration. if @target is not NULL, the entry is stored 5451 * in target->ent. 5452 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE 5453 * (so ZONE_DEVICE page and thus not on the lru). 5454 * For now we such page is charge like a regular page would be as for all 5455 * intent and purposes it is just special memory taking the place of a 5456 * regular page. 5457 * 5458 * See Documentations/vm/hmm.txt and include/linux/hmm.h 5459 * 5460 * Called with pte lock held. 5461 */ 5462 5463 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, 5464 unsigned long addr, pte_t ptent, union mc_target *target) 5465 { 5466 struct page *page = NULL; 5467 enum mc_target_type ret = MC_TARGET_NONE; 5468 swp_entry_t ent = { .val = 0 }; 5469 5470 if (pte_present(ptent)) 5471 page = mc_handle_present_pte(vma, addr, ptent); 5472 else if (is_swap_pte(ptent)) 5473 page = mc_handle_swap_pte(vma, ptent, &ent); 5474 else if (pte_none(ptent)) 5475 page = mc_handle_file_pte(vma, addr, ptent, &ent); 5476 5477 if (!page && !ent.val) 5478 return ret; 5479 if (page) { 5480 /* 5481 * Do only loose check w/o serialization. 5482 * mem_cgroup_move_account() checks the page is valid or 5483 * not under LRU exclusion. 5484 */ 5485 if (page->mem_cgroup == mc.from) { 5486 ret = MC_TARGET_PAGE; 5487 if (is_device_private_page(page)) 5488 ret = MC_TARGET_DEVICE; 5489 if (target) 5490 target->page = page; 5491 } 5492 if (!ret || !target) 5493 put_page(page); 5494 } 5495 /* 5496 * There is a swap entry and a page doesn't exist or isn't charged. 5497 * But we cannot move a tail-page in a THP. 5498 */ 5499 if (ent.val && !ret && (!page || !PageTransCompound(page)) && 5500 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) { 5501 ret = MC_TARGET_SWAP; 5502 if (target) 5503 target->ent = ent; 5504 } 5505 return ret; 5506 } 5507 5508 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5509 /* 5510 * We don't consider PMD mapped swapping or file mapped pages because THP does 5511 * not support them for now. 5512 * Caller should make sure that pmd_trans_huge(pmd) is true. 5513 */ 5514 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5515 unsigned long addr, pmd_t pmd, union mc_target *target) 5516 { 5517 struct page *page = NULL; 5518 enum mc_target_type ret = MC_TARGET_NONE; 5519 5520 if (unlikely(is_swap_pmd(pmd))) { 5521 VM_BUG_ON(thp_migration_supported() && 5522 !is_pmd_migration_entry(pmd)); 5523 return ret; 5524 } 5525 page = pmd_page(pmd); 5526 VM_BUG_ON_PAGE(!page || !PageHead(page), page); 5527 if (!(mc.flags & MOVE_ANON)) 5528 return ret; 5529 if (page->mem_cgroup == mc.from) { 5530 ret = MC_TARGET_PAGE; 5531 if (target) { 5532 get_page(page); 5533 target->page = page; 5534 } 5535 } 5536 return ret; 5537 } 5538 #else 5539 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5540 unsigned long addr, pmd_t pmd, union mc_target *target) 5541 { 5542 return MC_TARGET_NONE; 5543 } 5544 #endif 5545 5546 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 5547 unsigned long addr, unsigned long end, 5548 struct mm_walk *walk) 5549 { 5550 struct vm_area_struct *vma = walk->vma; 5551 pte_t *pte; 5552 spinlock_t *ptl; 5553 5554 ptl = pmd_trans_huge_lock(pmd, vma); 5555 if (ptl) { 5556 /* 5557 * Note their can not be MC_TARGET_DEVICE for now as we do not 5558 * support transparent huge page with MEMORY_DEVICE_PRIVATE but 5559 * this might change. 5560 */ 5561 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) 5562 mc.precharge += HPAGE_PMD_NR; 5563 spin_unlock(ptl); 5564 return 0; 5565 } 5566 5567 if (pmd_trans_unstable(pmd)) 5568 return 0; 5569 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 5570 for (; addr != end; pte++, addr += PAGE_SIZE) 5571 if (get_mctgt_type(vma, addr, *pte, NULL)) 5572 mc.precharge++; /* increment precharge temporarily */ 5573 pte_unmap_unlock(pte - 1, ptl); 5574 cond_resched(); 5575 5576 return 0; 5577 } 5578 5579 static const struct mm_walk_ops precharge_walk_ops = { 5580 .pmd_entry = mem_cgroup_count_precharge_pte_range, 5581 }; 5582 5583 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 5584 { 5585 unsigned long precharge; 5586 5587 down_read(&mm->mmap_sem); 5588 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL); 5589 up_read(&mm->mmap_sem); 5590 5591 precharge = mc.precharge; 5592 mc.precharge = 0; 5593 5594 return precharge; 5595 } 5596 5597 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 5598 { 5599 unsigned long precharge = mem_cgroup_count_precharge(mm); 5600 5601 VM_BUG_ON(mc.moving_task); 5602 mc.moving_task = current; 5603 return mem_cgroup_do_precharge(precharge); 5604 } 5605 5606 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 5607 static void __mem_cgroup_clear_mc(void) 5608 { 5609 struct mem_cgroup *from = mc.from; 5610 struct mem_cgroup *to = mc.to; 5611 5612 /* we must uncharge all the leftover precharges from mc.to */ 5613 if (mc.precharge) { 5614 cancel_charge(mc.to, mc.precharge); 5615 mc.precharge = 0; 5616 } 5617 /* 5618 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 5619 * we must uncharge here. 5620 */ 5621 if (mc.moved_charge) { 5622 cancel_charge(mc.from, mc.moved_charge); 5623 mc.moved_charge = 0; 5624 } 5625 /* we must fixup refcnts and charges */ 5626 if (mc.moved_swap) { 5627 /* uncharge swap account from the old cgroup */ 5628 if (!mem_cgroup_is_root(mc.from)) 5629 page_counter_uncharge(&mc.from->memsw, mc.moved_swap); 5630 5631 mem_cgroup_id_put_many(mc.from, mc.moved_swap); 5632 5633 /* 5634 * we charged both to->memory and to->memsw, so we 5635 * should uncharge to->memory. 5636 */ 5637 if (!mem_cgroup_is_root(mc.to)) 5638 page_counter_uncharge(&mc.to->memory, mc.moved_swap); 5639 5640 mem_cgroup_id_get_many(mc.to, mc.moved_swap); 5641 css_put_many(&mc.to->css, mc.moved_swap); 5642 5643 mc.moved_swap = 0; 5644 } 5645 memcg_oom_recover(from); 5646 memcg_oom_recover(to); 5647 wake_up_all(&mc.waitq); 5648 } 5649 5650 static void mem_cgroup_clear_mc(void) 5651 { 5652 struct mm_struct *mm = mc.mm; 5653 5654 /* 5655 * we must clear moving_task before waking up waiters at the end of 5656 * task migration. 5657 */ 5658 mc.moving_task = NULL; 5659 __mem_cgroup_clear_mc(); 5660 spin_lock(&mc.lock); 5661 mc.from = NULL; 5662 mc.to = NULL; 5663 mc.mm = NULL; 5664 spin_unlock(&mc.lock); 5665 5666 mmput(mm); 5667 } 5668 5669 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 5670 { 5671 struct cgroup_subsys_state *css; 5672 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */ 5673 struct mem_cgroup *from; 5674 struct task_struct *leader, *p; 5675 struct mm_struct *mm; 5676 unsigned long move_flags; 5677 int ret = 0; 5678 5679 /* charge immigration isn't supported on the default hierarchy */ 5680 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5681 return 0; 5682 5683 /* 5684 * Multi-process migrations only happen on the default hierarchy 5685 * where charge immigration is not used. Perform charge 5686 * immigration if @tset contains a leader and whine if there are 5687 * multiple. 5688 */ 5689 p = NULL; 5690 cgroup_taskset_for_each_leader(leader, css, tset) { 5691 WARN_ON_ONCE(p); 5692 p = leader; 5693 memcg = mem_cgroup_from_css(css); 5694 } 5695 if (!p) 5696 return 0; 5697 5698 /* 5699 * We are now commited to this value whatever it is. Changes in this 5700 * tunable will only affect upcoming migrations, not the current one. 5701 * So we need to save it, and keep it going. 5702 */ 5703 move_flags = READ_ONCE(memcg->move_charge_at_immigrate); 5704 if (!move_flags) 5705 return 0; 5706 5707 from = mem_cgroup_from_task(p); 5708 5709 VM_BUG_ON(from == memcg); 5710 5711 mm = get_task_mm(p); 5712 if (!mm) 5713 return 0; 5714 /* We move charges only when we move a owner of the mm */ 5715 if (mm->owner == p) { 5716 VM_BUG_ON(mc.from); 5717 VM_BUG_ON(mc.to); 5718 VM_BUG_ON(mc.precharge); 5719 VM_BUG_ON(mc.moved_charge); 5720 VM_BUG_ON(mc.moved_swap); 5721 5722 spin_lock(&mc.lock); 5723 mc.mm = mm; 5724 mc.from = from; 5725 mc.to = memcg; 5726 mc.flags = move_flags; 5727 spin_unlock(&mc.lock); 5728 /* We set mc.moving_task later */ 5729 5730 ret = mem_cgroup_precharge_mc(mm); 5731 if (ret) 5732 mem_cgroup_clear_mc(); 5733 } else { 5734 mmput(mm); 5735 } 5736 return ret; 5737 } 5738 5739 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 5740 { 5741 if (mc.to) 5742 mem_cgroup_clear_mc(); 5743 } 5744 5745 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 5746 unsigned long addr, unsigned long end, 5747 struct mm_walk *walk) 5748 { 5749 int ret = 0; 5750 struct vm_area_struct *vma = walk->vma; 5751 pte_t *pte; 5752 spinlock_t *ptl; 5753 enum mc_target_type target_type; 5754 union mc_target target; 5755 struct page *page; 5756 5757 ptl = pmd_trans_huge_lock(pmd, vma); 5758 if (ptl) { 5759 if (mc.precharge < HPAGE_PMD_NR) { 5760 spin_unlock(ptl); 5761 return 0; 5762 } 5763 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); 5764 if (target_type == MC_TARGET_PAGE) { 5765 page = target.page; 5766 if (!isolate_lru_page(page)) { 5767 if (!mem_cgroup_move_account(page, true, 5768 mc.from, mc.to)) { 5769 mc.precharge -= HPAGE_PMD_NR; 5770 mc.moved_charge += HPAGE_PMD_NR; 5771 } 5772 putback_lru_page(page); 5773 } 5774 put_page(page); 5775 } else if (target_type == MC_TARGET_DEVICE) { 5776 page = target.page; 5777 if (!mem_cgroup_move_account(page, true, 5778 mc.from, mc.to)) { 5779 mc.precharge -= HPAGE_PMD_NR; 5780 mc.moved_charge += HPAGE_PMD_NR; 5781 } 5782 put_page(page); 5783 } 5784 spin_unlock(ptl); 5785 return 0; 5786 } 5787 5788 if (pmd_trans_unstable(pmd)) 5789 return 0; 5790 retry: 5791 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 5792 for (; addr != end; addr += PAGE_SIZE) { 5793 pte_t ptent = *(pte++); 5794 bool device = false; 5795 swp_entry_t ent; 5796 5797 if (!mc.precharge) 5798 break; 5799 5800 switch (get_mctgt_type(vma, addr, ptent, &target)) { 5801 case MC_TARGET_DEVICE: 5802 device = true; 5803 /* fall through */ 5804 case MC_TARGET_PAGE: 5805 page = target.page; 5806 /* 5807 * We can have a part of the split pmd here. Moving it 5808 * can be done but it would be too convoluted so simply 5809 * ignore such a partial THP and keep it in original 5810 * memcg. There should be somebody mapping the head. 5811 */ 5812 if (PageTransCompound(page)) 5813 goto put; 5814 if (!device && isolate_lru_page(page)) 5815 goto put; 5816 if (!mem_cgroup_move_account(page, false, 5817 mc.from, mc.to)) { 5818 mc.precharge--; 5819 /* we uncharge from mc.from later. */ 5820 mc.moved_charge++; 5821 } 5822 if (!device) 5823 putback_lru_page(page); 5824 put: /* get_mctgt_type() gets the page */ 5825 put_page(page); 5826 break; 5827 case MC_TARGET_SWAP: 5828 ent = target.ent; 5829 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { 5830 mc.precharge--; 5831 /* we fixup refcnts and charges later. */ 5832 mc.moved_swap++; 5833 } 5834 break; 5835 default: 5836 break; 5837 } 5838 } 5839 pte_unmap_unlock(pte - 1, ptl); 5840 cond_resched(); 5841 5842 if (addr != end) { 5843 /* 5844 * We have consumed all precharges we got in can_attach(). 5845 * We try charge one by one, but don't do any additional 5846 * charges to mc.to if we have failed in charge once in attach() 5847 * phase. 5848 */ 5849 ret = mem_cgroup_do_precharge(1); 5850 if (!ret) 5851 goto retry; 5852 } 5853 5854 return ret; 5855 } 5856 5857 static const struct mm_walk_ops charge_walk_ops = { 5858 .pmd_entry = mem_cgroup_move_charge_pte_range, 5859 }; 5860 5861 static void mem_cgroup_move_charge(void) 5862 { 5863 lru_add_drain_all(); 5864 /* 5865 * Signal lock_page_memcg() to take the memcg's move_lock 5866 * while we're moving its pages to another memcg. Then wait 5867 * for already started RCU-only updates to finish. 5868 */ 5869 atomic_inc(&mc.from->moving_account); 5870 synchronize_rcu(); 5871 retry: 5872 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) { 5873 /* 5874 * Someone who are holding the mmap_sem might be waiting in 5875 * waitq. So we cancel all extra charges, wake up all waiters, 5876 * and retry. Because we cancel precharges, we might not be able 5877 * to move enough charges, but moving charge is a best-effort 5878 * feature anyway, so it wouldn't be a big problem. 5879 */ 5880 __mem_cgroup_clear_mc(); 5881 cond_resched(); 5882 goto retry; 5883 } 5884 /* 5885 * When we have consumed all precharges and failed in doing 5886 * additional charge, the page walk just aborts. 5887 */ 5888 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops, 5889 NULL); 5890 5891 up_read(&mc.mm->mmap_sem); 5892 atomic_dec(&mc.from->moving_account); 5893 } 5894 5895 static void mem_cgroup_move_task(void) 5896 { 5897 if (mc.to) { 5898 mem_cgroup_move_charge(); 5899 mem_cgroup_clear_mc(); 5900 } 5901 } 5902 #else /* !CONFIG_MMU */ 5903 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 5904 { 5905 return 0; 5906 } 5907 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 5908 { 5909 } 5910 static void mem_cgroup_move_task(void) 5911 { 5912 } 5913 #endif 5914 5915 /* 5916 * Cgroup retains root cgroups across [un]mount cycles making it necessary 5917 * to verify whether we're attached to the default hierarchy on each mount 5918 * attempt. 5919 */ 5920 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css) 5921 { 5922 /* 5923 * use_hierarchy is forced on the default hierarchy. cgroup core 5924 * guarantees that @root doesn't have any children, so turning it 5925 * on for the root memcg is enough. 5926 */ 5927 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5928 root_mem_cgroup->use_hierarchy = true; 5929 else 5930 root_mem_cgroup->use_hierarchy = false; 5931 } 5932 5933 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value) 5934 { 5935 if (value == PAGE_COUNTER_MAX) 5936 seq_puts(m, "max\n"); 5937 else 5938 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE); 5939 5940 return 0; 5941 } 5942 5943 static u64 memory_current_read(struct cgroup_subsys_state *css, 5944 struct cftype *cft) 5945 { 5946 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5947 5948 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; 5949 } 5950 5951 static int memory_min_show(struct seq_file *m, void *v) 5952 { 5953 return seq_puts_memcg_tunable(m, 5954 READ_ONCE(mem_cgroup_from_seq(m)->memory.min)); 5955 } 5956 5957 static ssize_t memory_min_write(struct kernfs_open_file *of, 5958 char *buf, size_t nbytes, loff_t off) 5959 { 5960 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5961 unsigned long min; 5962 int err; 5963 5964 buf = strstrip(buf); 5965 err = page_counter_memparse(buf, "max", &min); 5966 if (err) 5967 return err; 5968 5969 page_counter_set_min(&memcg->memory, min); 5970 5971 return nbytes; 5972 } 5973 5974 static int memory_low_show(struct seq_file *m, void *v) 5975 { 5976 return seq_puts_memcg_tunable(m, 5977 READ_ONCE(mem_cgroup_from_seq(m)->memory.low)); 5978 } 5979 5980 static ssize_t memory_low_write(struct kernfs_open_file *of, 5981 char *buf, size_t nbytes, loff_t off) 5982 { 5983 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5984 unsigned long low; 5985 int err; 5986 5987 buf = strstrip(buf); 5988 err = page_counter_memparse(buf, "max", &low); 5989 if (err) 5990 return err; 5991 5992 page_counter_set_low(&memcg->memory, low); 5993 5994 return nbytes; 5995 } 5996 5997 static int memory_high_show(struct seq_file *m, void *v) 5998 { 5999 return seq_puts_memcg_tunable(m, READ_ONCE(mem_cgroup_from_seq(m)->high)); 6000 } 6001 6002 static ssize_t memory_high_write(struct kernfs_open_file *of, 6003 char *buf, size_t nbytes, loff_t off) 6004 { 6005 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6006 unsigned int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 6007 bool drained = false; 6008 unsigned long high; 6009 int err; 6010 6011 buf = strstrip(buf); 6012 err = page_counter_memparse(buf, "max", &high); 6013 if (err) 6014 return err; 6015 6016 memcg->high = high; 6017 6018 for (;;) { 6019 unsigned long nr_pages = page_counter_read(&memcg->memory); 6020 unsigned long reclaimed; 6021 6022 if (nr_pages <= high) 6023 break; 6024 6025 if (signal_pending(current)) 6026 break; 6027 6028 if (!drained) { 6029 drain_all_stock(memcg); 6030 drained = true; 6031 continue; 6032 } 6033 6034 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high, 6035 GFP_KERNEL, true); 6036 6037 if (!reclaimed && !nr_retries--) 6038 break; 6039 } 6040 6041 return nbytes; 6042 } 6043 6044 static int memory_max_show(struct seq_file *m, void *v) 6045 { 6046 return seq_puts_memcg_tunable(m, 6047 READ_ONCE(mem_cgroup_from_seq(m)->memory.max)); 6048 } 6049 6050 static ssize_t memory_max_write(struct kernfs_open_file *of, 6051 char *buf, size_t nbytes, loff_t off) 6052 { 6053 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6054 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES; 6055 bool drained = false; 6056 unsigned long max; 6057 int err; 6058 6059 buf = strstrip(buf); 6060 err = page_counter_memparse(buf, "max", &max); 6061 if (err) 6062 return err; 6063 6064 xchg(&memcg->memory.max, max); 6065 6066 for (;;) { 6067 unsigned long nr_pages = page_counter_read(&memcg->memory); 6068 6069 if (nr_pages <= max) 6070 break; 6071 6072 if (signal_pending(current)) 6073 break; 6074 6075 if (!drained) { 6076 drain_all_stock(memcg); 6077 drained = true; 6078 continue; 6079 } 6080 6081 if (nr_reclaims) { 6082 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max, 6083 GFP_KERNEL, true)) 6084 nr_reclaims--; 6085 continue; 6086 } 6087 6088 memcg_memory_event(memcg, MEMCG_OOM); 6089 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0)) 6090 break; 6091 } 6092 6093 memcg_wb_domain_size_changed(memcg); 6094 return nbytes; 6095 } 6096 6097 static void __memory_events_show(struct seq_file *m, atomic_long_t *events) 6098 { 6099 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW])); 6100 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH])); 6101 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX])); 6102 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM])); 6103 seq_printf(m, "oom_kill %lu\n", 6104 atomic_long_read(&events[MEMCG_OOM_KILL])); 6105 } 6106 6107 static int memory_events_show(struct seq_file *m, void *v) 6108 { 6109 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6110 6111 __memory_events_show(m, memcg->memory_events); 6112 return 0; 6113 } 6114 6115 static int memory_events_local_show(struct seq_file *m, void *v) 6116 { 6117 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6118 6119 __memory_events_show(m, memcg->memory_events_local); 6120 return 0; 6121 } 6122 6123 static int memory_stat_show(struct seq_file *m, void *v) 6124 { 6125 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6126 char *buf; 6127 6128 buf = memory_stat_format(memcg); 6129 if (!buf) 6130 return -ENOMEM; 6131 seq_puts(m, buf); 6132 kfree(buf); 6133 return 0; 6134 } 6135 6136 static int memory_oom_group_show(struct seq_file *m, void *v) 6137 { 6138 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6139 6140 seq_printf(m, "%d\n", memcg->oom_group); 6141 6142 return 0; 6143 } 6144 6145 static ssize_t memory_oom_group_write(struct kernfs_open_file *of, 6146 char *buf, size_t nbytes, loff_t off) 6147 { 6148 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6149 int ret, oom_group; 6150 6151 buf = strstrip(buf); 6152 if (!buf) 6153 return -EINVAL; 6154 6155 ret = kstrtoint(buf, 0, &oom_group); 6156 if (ret) 6157 return ret; 6158 6159 if (oom_group != 0 && oom_group != 1) 6160 return -EINVAL; 6161 6162 memcg->oom_group = oom_group; 6163 6164 return nbytes; 6165 } 6166 6167 static struct cftype memory_files[] = { 6168 { 6169 .name = "current", 6170 .flags = CFTYPE_NOT_ON_ROOT, 6171 .read_u64 = memory_current_read, 6172 }, 6173 { 6174 .name = "min", 6175 .flags = CFTYPE_NOT_ON_ROOT, 6176 .seq_show = memory_min_show, 6177 .write = memory_min_write, 6178 }, 6179 { 6180 .name = "low", 6181 .flags = CFTYPE_NOT_ON_ROOT, 6182 .seq_show = memory_low_show, 6183 .write = memory_low_write, 6184 }, 6185 { 6186 .name = "high", 6187 .flags = CFTYPE_NOT_ON_ROOT, 6188 .seq_show = memory_high_show, 6189 .write = memory_high_write, 6190 }, 6191 { 6192 .name = "max", 6193 .flags = CFTYPE_NOT_ON_ROOT, 6194 .seq_show = memory_max_show, 6195 .write = memory_max_write, 6196 }, 6197 { 6198 .name = "events", 6199 .flags = CFTYPE_NOT_ON_ROOT, 6200 .file_offset = offsetof(struct mem_cgroup, events_file), 6201 .seq_show = memory_events_show, 6202 }, 6203 { 6204 .name = "events.local", 6205 .flags = CFTYPE_NOT_ON_ROOT, 6206 .file_offset = offsetof(struct mem_cgroup, events_local_file), 6207 .seq_show = memory_events_local_show, 6208 }, 6209 { 6210 .name = "stat", 6211 .flags = CFTYPE_NOT_ON_ROOT, 6212 .seq_show = memory_stat_show, 6213 }, 6214 { 6215 .name = "oom.group", 6216 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE, 6217 .seq_show = memory_oom_group_show, 6218 .write = memory_oom_group_write, 6219 }, 6220 { } /* terminate */ 6221 }; 6222 6223 struct cgroup_subsys memory_cgrp_subsys = { 6224 .css_alloc = mem_cgroup_css_alloc, 6225 .css_online = mem_cgroup_css_online, 6226 .css_offline = mem_cgroup_css_offline, 6227 .css_released = mem_cgroup_css_released, 6228 .css_free = mem_cgroup_css_free, 6229 .css_reset = mem_cgroup_css_reset, 6230 .can_attach = mem_cgroup_can_attach, 6231 .cancel_attach = mem_cgroup_cancel_attach, 6232 .post_attach = mem_cgroup_move_task, 6233 .bind = mem_cgroup_bind, 6234 .dfl_cftypes = memory_files, 6235 .legacy_cftypes = mem_cgroup_legacy_files, 6236 .early_init = 0, 6237 }; 6238 6239 /** 6240 * mem_cgroup_protected - check if memory consumption is in the normal range 6241 * @root: the top ancestor of the sub-tree being checked 6242 * @memcg: the memory cgroup to check 6243 * 6244 * WARNING: This function is not stateless! It can only be used as part 6245 * of a top-down tree iteration, not for isolated queries. 6246 * 6247 * Returns one of the following: 6248 * MEMCG_PROT_NONE: cgroup memory is not protected 6249 * MEMCG_PROT_LOW: cgroup memory is protected as long there is 6250 * an unprotected supply of reclaimable memory from other cgroups. 6251 * MEMCG_PROT_MIN: cgroup memory is protected 6252 * 6253 * @root is exclusive; it is never protected when looked at directly 6254 * 6255 * To provide a proper hierarchical behavior, effective memory.min/low values 6256 * are used. Below is the description of how effective memory.low is calculated. 6257 * Effective memory.min values is calculated in the same way. 6258 * 6259 * Effective memory.low is always equal or less than the original memory.low. 6260 * If there is no memory.low overcommittment (which is always true for 6261 * top-level memory cgroups), these two values are equal. 6262 * Otherwise, it's a part of parent's effective memory.low, 6263 * calculated as a cgroup's memory.low usage divided by sum of sibling's 6264 * memory.low usages, where memory.low usage is the size of actually 6265 * protected memory. 6266 * 6267 * low_usage 6268 * elow = min( memory.low, parent->elow * ------------------ ), 6269 * siblings_low_usage 6270 * 6271 * | memory.current, if memory.current < memory.low 6272 * low_usage = | 6273 * | 0, otherwise. 6274 * 6275 * 6276 * Such definition of the effective memory.low provides the expected 6277 * hierarchical behavior: parent's memory.low value is limiting 6278 * children, unprotected memory is reclaimed first and cgroups, 6279 * which are not using their guarantee do not affect actual memory 6280 * distribution. 6281 * 6282 * For example, if there are memcgs A, A/B, A/C, A/D and A/E: 6283 * 6284 * A A/memory.low = 2G, A/memory.current = 6G 6285 * //\\ 6286 * BC DE B/memory.low = 3G B/memory.current = 2G 6287 * C/memory.low = 1G C/memory.current = 2G 6288 * D/memory.low = 0 D/memory.current = 2G 6289 * E/memory.low = 10G E/memory.current = 0 6290 * 6291 * and the memory pressure is applied, the following memory distribution 6292 * is expected (approximately): 6293 * 6294 * A/memory.current = 2G 6295 * 6296 * B/memory.current = 1.3G 6297 * C/memory.current = 0.6G 6298 * D/memory.current = 0 6299 * E/memory.current = 0 6300 * 6301 * These calculations require constant tracking of the actual low usages 6302 * (see propagate_protected_usage()), as well as recursive calculation of 6303 * effective memory.low values. But as we do call mem_cgroup_protected() 6304 * path for each memory cgroup top-down from the reclaim, 6305 * it's possible to optimize this part, and save calculated elow 6306 * for next usage. This part is intentionally racy, but it's ok, 6307 * as memory.low is a best-effort mechanism. 6308 */ 6309 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root, 6310 struct mem_cgroup *memcg) 6311 { 6312 struct mem_cgroup *parent; 6313 unsigned long emin, parent_emin; 6314 unsigned long elow, parent_elow; 6315 unsigned long usage; 6316 6317 if (mem_cgroup_disabled()) 6318 return MEMCG_PROT_NONE; 6319 6320 if (!root) 6321 root = root_mem_cgroup; 6322 if (memcg == root) 6323 return MEMCG_PROT_NONE; 6324 6325 usage = page_counter_read(&memcg->memory); 6326 if (!usage) 6327 return MEMCG_PROT_NONE; 6328 6329 emin = memcg->memory.min; 6330 elow = memcg->memory.low; 6331 6332 parent = parent_mem_cgroup(memcg); 6333 /* No parent means a non-hierarchical mode on v1 memcg */ 6334 if (!parent) 6335 return MEMCG_PROT_NONE; 6336 6337 if (parent == root) 6338 goto exit; 6339 6340 parent_emin = READ_ONCE(parent->memory.emin); 6341 emin = min(emin, parent_emin); 6342 if (emin && parent_emin) { 6343 unsigned long min_usage, siblings_min_usage; 6344 6345 min_usage = min(usage, memcg->memory.min); 6346 siblings_min_usage = atomic_long_read( 6347 &parent->memory.children_min_usage); 6348 6349 if (min_usage && siblings_min_usage) 6350 emin = min(emin, parent_emin * min_usage / 6351 siblings_min_usage); 6352 } 6353 6354 parent_elow = READ_ONCE(parent->memory.elow); 6355 elow = min(elow, parent_elow); 6356 if (elow && parent_elow) { 6357 unsigned long low_usage, siblings_low_usage; 6358 6359 low_usage = min(usage, memcg->memory.low); 6360 siblings_low_usage = atomic_long_read( 6361 &parent->memory.children_low_usage); 6362 6363 if (low_usage && siblings_low_usage) 6364 elow = min(elow, parent_elow * low_usage / 6365 siblings_low_usage); 6366 } 6367 6368 exit: 6369 memcg->memory.emin = emin; 6370 memcg->memory.elow = elow; 6371 6372 if (usage <= emin) 6373 return MEMCG_PROT_MIN; 6374 else if (usage <= elow) 6375 return MEMCG_PROT_LOW; 6376 else 6377 return MEMCG_PROT_NONE; 6378 } 6379 6380 /** 6381 * mem_cgroup_try_charge - try charging a page 6382 * @page: page to charge 6383 * @mm: mm context of the victim 6384 * @gfp_mask: reclaim mode 6385 * @memcgp: charged memcg return 6386 * @compound: charge the page as compound or small page 6387 * 6388 * Try to charge @page to the memcg that @mm belongs to, reclaiming 6389 * pages according to @gfp_mask if necessary. 6390 * 6391 * Returns 0 on success, with *@memcgp pointing to the charged memcg. 6392 * Otherwise, an error code is returned. 6393 * 6394 * After page->mapping has been set up, the caller must finalize the 6395 * charge with mem_cgroup_commit_charge(). Or abort the transaction 6396 * with mem_cgroup_cancel_charge() in case page instantiation fails. 6397 */ 6398 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, 6399 gfp_t gfp_mask, struct mem_cgroup **memcgp, 6400 bool compound) 6401 { 6402 struct mem_cgroup *memcg = NULL; 6403 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 6404 int ret = 0; 6405 6406 if (mem_cgroup_disabled()) 6407 goto out; 6408 6409 if (PageSwapCache(page)) { 6410 /* 6411 * Every swap fault against a single page tries to charge the 6412 * page, bail as early as possible. shmem_unuse() encounters 6413 * already charged pages, too. The USED bit is protected by 6414 * the page lock, which serializes swap cache removal, which 6415 * in turn serializes uncharging. 6416 */ 6417 VM_BUG_ON_PAGE(!PageLocked(page), page); 6418 if (compound_head(page)->mem_cgroup) 6419 goto out; 6420 6421 if (do_swap_account) { 6422 swp_entry_t ent = { .val = page_private(page), }; 6423 unsigned short id = lookup_swap_cgroup_id(ent); 6424 6425 rcu_read_lock(); 6426 memcg = mem_cgroup_from_id(id); 6427 if (memcg && !css_tryget_online(&memcg->css)) 6428 memcg = NULL; 6429 rcu_read_unlock(); 6430 } 6431 } 6432 6433 if (!memcg) 6434 memcg = get_mem_cgroup_from_mm(mm); 6435 6436 ret = try_charge(memcg, gfp_mask, nr_pages); 6437 6438 css_put(&memcg->css); 6439 out: 6440 *memcgp = memcg; 6441 return ret; 6442 } 6443 6444 int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm, 6445 gfp_t gfp_mask, struct mem_cgroup **memcgp, 6446 bool compound) 6447 { 6448 struct mem_cgroup *memcg; 6449 int ret; 6450 6451 ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound); 6452 memcg = *memcgp; 6453 mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask); 6454 return ret; 6455 } 6456 6457 /** 6458 * mem_cgroup_commit_charge - commit a page charge 6459 * @page: page to charge 6460 * @memcg: memcg to charge the page to 6461 * @lrucare: page might be on LRU already 6462 * @compound: charge the page as compound or small page 6463 * 6464 * Finalize a charge transaction started by mem_cgroup_try_charge(), 6465 * after page->mapping has been set up. This must happen atomically 6466 * as part of the page instantiation, i.e. under the page table lock 6467 * for anonymous pages, under the page lock for page and swap cache. 6468 * 6469 * In addition, the page must not be on the LRU during the commit, to 6470 * prevent racing with task migration. If it might be, use @lrucare. 6471 * 6472 * Use mem_cgroup_cancel_charge() to cancel the transaction instead. 6473 */ 6474 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg, 6475 bool lrucare, bool compound) 6476 { 6477 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 6478 6479 VM_BUG_ON_PAGE(!page->mapping, page); 6480 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page); 6481 6482 if (mem_cgroup_disabled()) 6483 return; 6484 /* 6485 * Swap faults will attempt to charge the same page multiple 6486 * times. But reuse_swap_page() might have removed the page 6487 * from swapcache already, so we can't check PageSwapCache(). 6488 */ 6489 if (!memcg) 6490 return; 6491 6492 commit_charge(page, memcg, lrucare); 6493 6494 local_irq_disable(); 6495 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages); 6496 memcg_check_events(memcg, page); 6497 local_irq_enable(); 6498 6499 if (do_memsw_account() && PageSwapCache(page)) { 6500 swp_entry_t entry = { .val = page_private(page) }; 6501 /* 6502 * The swap entry might not get freed for a long time, 6503 * let's not wait for it. The page already received a 6504 * memory+swap charge, drop the swap entry duplicate. 6505 */ 6506 mem_cgroup_uncharge_swap(entry, nr_pages); 6507 } 6508 } 6509 6510 /** 6511 * mem_cgroup_cancel_charge - cancel a page charge 6512 * @page: page to charge 6513 * @memcg: memcg to charge the page to 6514 * @compound: charge the page as compound or small page 6515 * 6516 * Cancel a charge transaction started by mem_cgroup_try_charge(). 6517 */ 6518 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg, 6519 bool compound) 6520 { 6521 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 6522 6523 if (mem_cgroup_disabled()) 6524 return; 6525 /* 6526 * Swap faults will attempt to charge the same page multiple 6527 * times. But reuse_swap_page() might have removed the page 6528 * from swapcache already, so we can't check PageSwapCache(). 6529 */ 6530 if (!memcg) 6531 return; 6532 6533 cancel_charge(memcg, nr_pages); 6534 } 6535 6536 struct uncharge_gather { 6537 struct mem_cgroup *memcg; 6538 unsigned long pgpgout; 6539 unsigned long nr_anon; 6540 unsigned long nr_file; 6541 unsigned long nr_kmem; 6542 unsigned long nr_huge; 6543 unsigned long nr_shmem; 6544 struct page *dummy_page; 6545 }; 6546 6547 static inline void uncharge_gather_clear(struct uncharge_gather *ug) 6548 { 6549 memset(ug, 0, sizeof(*ug)); 6550 } 6551 6552 static void uncharge_batch(const struct uncharge_gather *ug) 6553 { 6554 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem; 6555 unsigned long flags; 6556 6557 if (!mem_cgroup_is_root(ug->memcg)) { 6558 page_counter_uncharge(&ug->memcg->memory, nr_pages); 6559 if (do_memsw_account()) 6560 page_counter_uncharge(&ug->memcg->memsw, nr_pages); 6561 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem) 6562 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem); 6563 memcg_oom_recover(ug->memcg); 6564 } 6565 6566 local_irq_save(flags); 6567 __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon); 6568 __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file); 6569 __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge); 6570 __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem); 6571 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout); 6572 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, nr_pages); 6573 memcg_check_events(ug->memcg, ug->dummy_page); 6574 local_irq_restore(flags); 6575 6576 if (!mem_cgroup_is_root(ug->memcg)) 6577 css_put_many(&ug->memcg->css, nr_pages); 6578 } 6579 6580 static void uncharge_page(struct page *page, struct uncharge_gather *ug) 6581 { 6582 VM_BUG_ON_PAGE(PageLRU(page), page); 6583 VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) && 6584 !PageHWPoison(page) , page); 6585 6586 if (!page->mem_cgroup) 6587 return; 6588 6589 /* 6590 * Nobody should be changing or seriously looking at 6591 * page->mem_cgroup at this point, we have fully 6592 * exclusive access to the page. 6593 */ 6594 6595 if (ug->memcg != page->mem_cgroup) { 6596 if (ug->memcg) { 6597 uncharge_batch(ug); 6598 uncharge_gather_clear(ug); 6599 } 6600 ug->memcg = page->mem_cgroup; 6601 } 6602 6603 if (!PageKmemcg(page)) { 6604 unsigned int nr_pages = 1; 6605 6606 if (PageTransHuge(page)) { 6607 nr_pages = compound_nr(page); 6608 ug->nr_huge += nr_pages; 6609 } 6610 if (PageAnon(page)) 6611 ug->nr_anon += nr_pages; 6612 else { 6613 ug->nr_file += nr_pages; 6614 if (PageSwapBacked(page)) 6615 ug->nr_shmem += nr_pages; 6616 } 6617 ug->pgpgout++; 6618 } else { 6619 ug->nr_kmem += compound_nr(page); 6620 __ClearPageKmemcg(page); 6621 } 6622 6623 ug->dummy_page = page; 6624 page->mem_cgroup = NULL; 6625 } 6626 6627 static void uncharge_list(struct list_head *page_list) 6628 { 6629 struct uncharge_gather ug; 6630 struct list_head *next; 6631 6632 uncharge_gather_clear(&ug); 6633 6634 /* 6635 * Note that the list can be a single page->lru; hence the 6636 * do-while loop instead of a simple list_for_each_entry(). 6637 */ 6638 next = page_list->next; 6639 do { 6640 struct page *page; 6641 6642 page = list_entry(next, struct page, lru); 6643 next = page->lru.next; 6644 6645 uncharge_page(page, &ug); 6646 } while (next != page_list); 6647 6648 if (ug.memcg) 6649 uncharge_batch(&ug); 6650 } 6651 6652 /** 6653 * mem_cgroup_uncharge - uncharge a page 6654 * @page: page to uncharge 6655 * 6656 * Uncharge a page previously charged with mem_cgroup_try_charge() and 6657 * mem_cgroup_commit_charge(). 6658 */ 6659 void mem_cgroup_uncharge(struct page *page) 6660 { 6661 struct uncharge_gather ug; 6662 6663 if (mem_cgroup_disabled()) 6664 return; 6665 6666 /* Don't touch page->lru of any random page, pre-check: */ 6667 if (!page->mem_cgroup) 6668 return; 6669 6670 uncharge_gather_clear(&ug); 6671 uncharge_page(page, &ug); 6672 uncharge_batch(&ug); 6673 } 6674 6675 /** 6676 * mem_cgroup_uncharge_list - uncharge a list of page 6677 * @page_list: list of pages to uncharge 6678 * 6679 * Uncharge a list of pages previously charged with 6680 * mem_cgroup_try_charge() and mem_cgroup_commit_charge(). 6681 */ 6682 void mem_cgroup_uncharge_list(struct list_head *page_list) 6683 { 6684 if (mem_cgroup_disabled()) 6685 return; 6686 6687 if (!list_empty(page_list)) 6688 uncharge_list(page_list); 6689 } 6690 6691 /** 6692 * mem_cgroup_migrate - charge a page's replacement 6693 * @oldpage: currently circulating page 6694 * @newpage: replacement page 6695 * 6696 * Charge @newpage as a replacement page for @oldpage. @oldpage will 6697 * be uncharged upon free. 6698 * 6699 * Both pages must be locked, @newpage->mapping must be set up. 6700 */ 6701 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage) 6702 { 6703 struct mem_cgroup *memcg; 6704 unsigned int nr_pages; 6705 unsigned long flags; 6706 6707 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage); 6708 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 6709 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage); 6710 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage), 6711 newpage); 6712 6713 if (mem_cgroup_disabled()) 6714 return; 6715 6716 /* Page cache replacement: new page already charged? */ 6717 if (newpage->mem_cgroup) 6718 return; 6719 6720 /* Swapcache readahead pages can get replaced before being charged */ 6721 memcg = oldpage->mem_cgroup; 6722 if (!memcg) 6723 return; 6724 6725 /* Force-charge the new page. The old one will be freed soon */ 6726 nr_pages = hpage_nr_pages(newpage); 6727 6728 page_counter_charge(&memcg->memory, nr_pages); 6729 if (do_memsw_account()) 6730 page_counter_charge(&memcg->memsw, nr_pages); 6731 css_get_many(&memcg->css, nr_pages); 6732 6733 commit_charge(newpage, memcg, false); 6734 6735 local_irq_save(flags); 6736 mem_cgroup_charge_statistics(memcg, newpage, PageTransHuge(newpage), 6737 nr_pages); 6738 memcg_check_events(memcg, newpage); 6739 local_irq_restore(flags); 6740 } 6741 6742 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); 6743 EXPORT_SYMBOL(memcg_sockets_enabled_key); 6744 6745 void mem_cgroup_sk_alloc(struct sock *sk) 6746 { 6747 struct mem_cgroup *memcg; 6748 6749 if (!mem_cgroup_sockets_enabled) 6750 return; 6751 6752 /* Do not associate the sock with unrelated interrupted task's memcg. */ 6753 if (in_interrupt()) 6754 return; 6755 6756 rcu_read_lock(); 6757 memcg = mem_cgroup_from_task(current); 6758 if (memcg == root_mem_cgroup) 6759 goto out; 6760 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active) 6761 goto out; 6762 if (css_tryget_online(&memcg->css)) 6763 sk->sk_memcg = memcg; 6764 out: 6765 rcu_read_unlock(); 6766 } 6767 6768 void mem_cgroup_sk_free(struct sock *sk) 6769 { 6770 if (sk->sk_memcg) 6771 css_put(&sk->sk_memcg->css); 6772 } 6773 6774 /** 6775 * mem_cgroup_charge_skmem - charge socket memory 6776 * @memcg: memcg to charge 6777 * @nr_pages: number of pages to charge 6778 * 6779 * Charges @nr_pages to @memcg. Returns %true if the charge fit within 6780 * @memcg's configured limit, %false if the charge had to be forced. 6781 */ 6782 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 6783 { 6784 gfp_t gfp_mask = GFP_KERNEL; 6785 6786 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 6787 struct page_counter *fail; 6788 6789 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) { 6790 memcg->tcpmem_pressure = 0; 6791 return true; 6792 } 6793 page_counter_charge(&memcg->tcpmem, nr_pages); 6794 memcg->tcpmem_pressure = 1; 6795 return false; 6796 } 6797 6798 /* Don't block in the packet receive path */ 6799 if (in_softirq()) 6800 gfp_mask = GFP_NOWAIT; 6801 6802 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages); 6803 6804 if (try_charge(memcg, gfp_mask, nr_pages) == 0) 6805 return true; 6806 6807 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages); 6808 return false; 6809 } 6810 6811 /** 6812 * mem_cgroup_uncharge_skmem - uncharge socket memory 6813 * @memcg: memcg to uncharge 6814 * @nr_pages: number of pages to uncharge 6815 */ 6816 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 6817 { 6818 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 6819 page_counter_uncharge(&memcg->tcpmem, nr_pages); 6820 return; 6821 } 6822 6823 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages); 6824 6825 refill_stock(memcg, nr_pages); 6826 } 6827 6828 static int __init cgroup_memory(char *s) 6829 { 6830 char *token; 6831 6832 while ((token = strsep(&s, ",")) != NULL) { 6833 if (!*token) 6834 continue; 6835 if (!strcmp(token, "nosocket")) 6836 cgroup_memory_nosocket = true; 6837 if (!strcmp(token, "nokmem")) 6838 cgroup_memory_nokmem = true; 6839 } 6840 return 0; 6841 } 6842 __setup("cgroup.memory=", cgroup_memory); 6843 6844 /* 6845 * subsys_initcall() for memory controller. 6846 * 6847 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this 6848 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but 6849 * basically everything that doesn't depend on a specific mem_cgroup structure 6850 * should be initialized from here. 6851 */ 6852 static int __init mem_cgroup_init(void) 6853 { 6854 int cpu, node; 6855 6856 #ifdef CONFIG_MEMCG_KMEM 6857 /* 6858 * Kmem cache creation is mostly done with the slab_mutex held, 6859 * so use a workqueue with limited concurrency to avoid stalling 6860 * all worker threads in case lots of cgroups are created and 6861 * destroyed simultaneously. 6862 */ 6863 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1); 6864 BUG_ON(!memcg_kmem_cache_wq); 6865 #endif 6866 6867 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL, 6868 memcg_hotplug_cpu_dead); 6869 6870 for_each_possible_cpu(cpu) 6871 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, 6872 drain_local_stock); 6873 6874 for_each_node(node) { 6875 struct mem_cgroup_tree_per_node *rtpn; 6876 6877 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, 6878 node_online(node) ? node : NUMA_NO_NODE); 6879 6880 rtpn->rb_root = RB_ROOT; 6881 rtpn->rb_rightmost = NULL; 6882 spin_lock_init(&rtpn->lock); 6883 soft_limit_tree.rb_tree_per_node[node] = rtpn; 6884 } 6885 6886 return 0; 6887 } 6888 subsys_initcall(mem_cgroup_init); 6889 6890 #ifdef CONFIG_MEMCG_SWAP 6891 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg) 6892 { 6893 while (!refcount_inc_not_zero(&memcg->id.ref)) { 6894 /* 6895 * The root cgroup cannot be destroyed, so it's refcount must 6896 * always be >= 1. 6897 */ 6898 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) { 6899 VM_BUG_ON(1); 6900 break; 6901 } 6902 memcg = parent_mem_cgroup(memcg); 6903 if (!memcg) 6904 memcg = root_mem_cgroup; 6905 } 6906 return memcg; 6907 } 6908 6909 /** 6910 * mem_cgroup_swapout - transfer a memsw charge to swap 6911 * @page: page whose memsw charge to transfer 6912 * @entry: swap entry to move the charge to 6913 * 6914 * Transfer the memsw charge of @page to @entry. 6915 */ 6916 void mem_cgroup_swapout(struct page *page, swp_entry_t entry) 6917 { 6918 struct mem_cgroup *memcg, *swap_memcg; 6919 unsigned int nr_entries; 6920 unsigned short oldid; 6921 6922 VM_BUG_ON_PAGE(PageLRU(page), page); 6923 VM_BUG_ON_PAGE(page_count(page), page); 6924 6925 if (!do_memsw_account()) 6926 return; 6927 6928 memcg = page->mem_cgroup; 6929 6930 /* Readahead page, never charged */ 6931 if (!memcg) 6932 return; 6933 6934 /* 6935 * In case the memcg owning these pages has been offlined and doesn't 6936 * have an ID allocated to it anymore, charge the closest online 6937 * ancestor for the swap instead and transfer the memory+swap charge. 6938 */ 6939 swap_memcg = mem_cgroup_id_get_online(memcg); 6940 nr_entries = hpage_nr_pages(page); 6941 /* Get references for the tail pages, too */ 6942 if (nr_entries > 1) 6943 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1); 6944 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg), 6945 nr_entries); 6946 VM_BUG_ON_PAGE(oldid, page); 6947 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries); 6948 6949 page->mem_cgroup = NULL; 6950 6951 if (!mem_cgroup_is_root(memcg)) 6952 page_counter_uncharge(&memcg->memory, nr_entries); 6953 6954 if (memcg != swap_memcg) { 6955 if (!mem_cgroup_is_root(swap_memcg)) 6956 page_counter_charge(&swap_memcg->memsw, nr_entries); 6957 page_counter_uncharge(&memcg->memsw, nr_entries); 6958 } 6959 6960 /* 6961 * Interrupts should be disabled here because the caller holds the 6962 * i_pages lock which is taken with interrupts-off. It is 6963 * important here to have the interrupts disabled because it is the 6964 * only synchronisation we have for updating the per-CPU variables. 6965 */ 6966 VM_BUG_ON(!irqs_disabled()); 6967 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page), 6968 -nr_entries); 6969 memcg_check_events(memcg, page); 6970 6971 if (!mem_cgroup_is_root(memcg)) 6972 css_put_many(&memcg->css, nr_entries); 6973 } 6974 6975 /** 6976 * mem_cgroup_try_charge_swap - try charging swap space for a page 6977 * @page: page being added to swap 6978 * @entry: swap entry to charge 6979 * 6980 * Try to charge @page's memcg for the swap space at @entry. 6981 * 6982 * Returns 0 on success, -ENOMEM on failure. 6983 */ 6984 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry) 6985 { 6986 unsigned int nr_pages = hpage_nr_pages(page); 6987 struct page_counter *counter; 6988 struct mem_cgroup *memcg; 6989 unsigned short oldid; 6990 6991 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account) 6992 return 0; 6993 6994 memcg = page->mem_cgroup; 6995 6996 /* Readahead page, never charged */ 6997 if (!memcg) 6998 return 0; 6999 7000 if (!entry.val) { 7001 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 7002 return 0; 7003 } 7004 7005 memcg = mem_cgroup_id_get_online(memcg); 7006 7007 if (!mem_cgroup_is_root(memcg) && 7008 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) { 7009 memcg_memory_event(memcg, MEMCG_SWAP_MAX); 7010 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 7011 mem_cgroup_id_put(memcg); 7012 return -ENOMEM; 7013 } 7014 7015 /* Get references for the tail pages, too */ 7016 if (nr_pages > 1) 7017 mem_cgroup_id_get_many(memcg, nr_pages - 1); 7018 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages); 7019 VM_BUG_ON_PAGE(oldid, page); 7020 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages); 7021 7022 return 0; 7023 } 7024 7025 /** 7026 * mem_cgroup_uncharge_swap - uncharge swap space 7027 * @entry: swap entry to uncharge 7028 * @nr_pages: the amount of swap space to uncharge 7029 */ 7030 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages) 7031 { 7032 struct mem_cgroup *memcg; 7033 unsigned short id; 7034 7035 if (!do_swap_account) 7036 return; 7037 7038 id = swap_cgroup_record(entry, 0, nr_pages); 7039 rcu_read_lock(); 7040 memcg = mem_cgroup_from_id(id); 7041 if (memcg) { 7042 if (!mem_cgroup_is_root(memcg)) { 7043 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7044 page_counter_uncharge(&memcg->swap, nr_pages); 7045 else 7046 page_counter_uncharge(&memcg->memsw, nr_pages); 7047 } 7048 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages); 7049 mem_cgroup_id_put_many(memcg, nr_pages); 7050 } 7051 rcu_read_unlock(); 7052 } 7053 7054 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) 7055 { 7056 long nr_swap_pages = get_nr_swap_pages(); 7057 7058 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7059 return nr_swap_pages; 7060 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) 7061 nr_swap_pages = min_t(long, nr_swap_pages, 7062 READ_ONCE(memcg->swap.max) - 7063 page_counter_read(&memcg->swap)); 7064 return nr_swap_pages; 7065 } 7066 7067 bool mem_cgroup_swap_full(struct page *page) 7068 { 7069 struct mem_cgroup *memcg; 7070 7071 VM_BUG_ON_PAGE(!PageLocked(page), page); 7072 7073 if (vm_swap_full()) 7074 return true; 7075 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7076 return false; 7077 7078 memcg = page->mem_cgroup; 7079 if (!memcg) 7080 return false; 7081 7082 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) 7083 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max) 7084 return true; 7085 7086 return false; 7087 } 7088 7089 /* for remember boot option*/ 7090 #ifdef CONFIG_MEMCG_SWAP_ENABLED 7091 static int really_do_swap_account __initdata = 1; 7092 #else 7093 static int really_do_swap_account __initdata; 7094 #endif 7095 7096 static int __init enable_swap_account(char *s) 7097 { 7098 if (!strcmp(s, "1")) 7099 really_do_swap_account = 1; 7100 else if (!strcmp(s, "0")) 7101 really_do_swap_account = 0; 7102 return 1; 7103 } 7104 __setup("swapaccount=", enable_swap_account); 7105 7106 static u64 swap_current_read(struct cgroup_subsys_state *css, 7107 struct cftype *cft) 7108 { 7109 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 7110 7111 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; 7112 } 7113 7114 static int swap_max_show(struct seq_file *m, void *v) 7115 { 7116 return seq_puts_memcg_tunable(m, 7117 READ_ONCE(mem_cgroup_from_seq(m)->swap.max)); 7118 } 7119 7120 static ssize_t swap_max_write(struct kernfs_open_file *of, 7121 char *buf, size_t nbytes, loff_t off) 7122 { 7123 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 7124 unsigned long max; 7125 int err; 7126 7127 buf = strstrip(buf); 7128 err = page_counter_memparse(buf, "max", &max); 7129 if (err) 7130 return err; 7131 7132 xchg(&memcg->swap.max, max); 7133 7134 return nbytes; 7135 } 7136 7137 static int swap_events_show(struct seq_file *m, void *v) 7138 { 7139 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 7140 7141 seq_printf(m, "max %lu\n", 7142 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX])); 7143 seq_printf(m, "fail %lu\n", 7144 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL])); 7145 7146 return 0; 7147 } 7148 7149 static struct cftype swap_files[] = { 7150 { 7151 .name = "swap.current", 7152 .flags = CFTYPE_NOT_ON_ROOT, 7153 .read_u64 = swap_current_read, 7154 }, 7155 { 7156 .name = "swap.max", 7157 .flags = CFTYPE_NOT_ON_ROOT, 7158 .seq_show = swap_max_show, 7159 .write = swap_max_write, 7160 }, 7161 { 7162 .name = "swap.events", 7163 .flags = CFTYPE_NOT_ON_ROOT, 7164 .file_offset = offsetof(struct mem_cgroup, swap_events_file), 7165 .seq_show = swap_events_show, 7166 }, 7167 { } /* terminate */ 7168 }; 7169 7170 static struct cftype memsw_cgroup_files[] = { 7171 { 7172 .name = "memsw.usage_in_bytes", 7173 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 7174 .read_u64 = mem_cgroup_read_u64, 7175 }, 7176 { 7177 .name = "memsw.max_usage_in_bytes", 7178 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 7179 .write = mem_cgroup_reset, 7180 .read_u64 = mem_cgroup_read_u64, 7181 }, 7182 { 7183 .name = "memsw.limit_in_bytes", 7184 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 7185 .write = mem_cgroup_write, 7186 .read_u64 = mem_cgroup_read_u64, 7187 }, 7188 { 7189 .name = "memsw.failcnt", 7190 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 7191 .write = mem_cgroup_reset, 7192 .read_u64 = mem_cgroup_read_u64, 7193 }, 7194 { }, /* terminate */ 7195 }; 7196 7197 static int __init mem_cgroup_swap_init(void) 7198 { 7199 if (!mem_cgroup_disabled() && really_do_swap_account) { 7200 do_swap_account = 1; 7201 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, 7202 swap_files)); 7203 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, 7204 memsw_cgroup_files)); 7205 } 7206 return 0; 7207 } 7208 subsys_initcall(mem_cgroup_swap_init); 7209 7210 #endif /* CONFIG_MEMCG_SWAP */ 7211