xref: /openbmc/linux/mm/memcontrol.c (revision 6aa7de05)
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * Kernel Memory Controller
14  * Copyright (C) 2012 Parallels Inc. and Google Inc.
15  * Authors: Glauber Costa and Suleiman Souhlal
16  *
17  * Native page reclaim
18  * Charge lifetime sanitation
19  * Lockless page tracking & accounting
20  * Unified hierarchy configuration model
21  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22  *
23  * This program is free software; you can redistribute it and/or modify
24  * it under the terms of the GNU General Public License as published by
25  * the Free Software Foundation; either version 2 of the License, or
26  * (at your option) any later version.
27  *
28  * This program is distributed in the hope that it will be useful,
29  * but WITHOUT ANY WARRANTY; without even the implied warranty of
30  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
31  * GNU General Public License for more details.
32  */
33 
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/sched/mm.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/hugetlb.h>
41 #include <linux/pagemap.h>
42 #include <linux/smp.h>
43 #include <linux/page-flags.h>
44 #include <linux/backing-dev.h>
45 #include <linux/bit_spinlock.h>
46 #include <linux/rcupdate.h>
47 #include <linux/limits.h>
48 #include <linux/export.h>
49 #include <linux/mutex.h>
50 #include <linux/rbtree.h>
51 #include <linux/slab.h>
52 #include <linux/swap.h>
53 #include <linux/swapops.h>
54 #include <linux/spinlock.h>
55 #include <linux/eventfd.h>
56 #include <linux/poll.h>
57 #include <linux/sort.h>
58 #include <linux/fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/vmpressure.h>
61 #include <linux/mm_inline.h>
62 #include <linux/swap_cgroup.h>
63 #include <linux/cpu.h>
64 #include <linux/oom.h>
65 #include <linux/lockdep.h>
66 #include <linux/file.h>
67 #include <linux/tracehook.h>
68 #include "internal.h"
69 #include <net/sock.h>
70 #include <net/ip.h>
71 #include "slab.h"
72 
73 #include <linux/uaccess.h>
74 
75 #include <trace/events/vmscan.h>
76 
77 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
78 EXPORT_SYMBOL(memory_cgrp_subsys);
79 
80 struct mem_cgroup *root_mem_cgroup __read_mostly;
81 
82 #define MEM_CGROUP_RECLAIM_RETRIES	5
83 
84 /* Socket memory accounting disabled? */
85 static bool cgroup_memory_nosocket;
86 
87 /* Kernel memory accounting disabled? */
88 static bool cgroup_memory_nokmem;
89 
90 /* Whether the swap controller is active */
91 #ifdef CONFIG_MEMCG_SWAP
92 int do_swap_account __read_mostly;
93 #else
94 #define do_swap_account		0
95 #endif
96 
97 /* Whether legacy memory+swap accounting is active */
98 static bool do_memsw_account(void)
99 {
100 	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
101 }
102 
103 static const char *const mem_cgroup_lru_names[] = {
104 	"inactive_anon",
105 	"active_anon",
106 	"inactive_file",
107 	"active_file",
108 	"unevictable",
109 };
110 
111 #define THRESHOLDS_EVENTS_TARGET 128
112 #define SOFTLIMIT_EVENTS_TARGET 1024
113 #define NUMAINFO_EVENTS_TARGET	1024
114 
115 /*
116  * Cgroups above their limits are maintained in a RB-Tree, independent of
117  * their hierarchy representation
118  */
119 
120 struct mem_cgroup_tree_per_node {
121 	struct rb_root rb_root;
122 	struct rb_node *rb_rightmost;
123 	spinlock_t lock;
124 };
125 
126 struct mem_cgroup_tree {
127 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
128 };
129 
130 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
131 
132 /* for OOM */
133 struct mem_cgroup_eventfd_list {
134 	struct list_head list;
135 	struct eventfd_ctx *eventfd;
136 };
137 
138 /*
139  * cgroup_event represents events which userspace want to receive.
140  */
141 struct mem_cgroup_event {
142 	/*
143 	 * memcg which the event belongs to.
144 	 */
145 	struct mem_cgroup *memcg;
146 	/*
147 	 * eventfd to signal userspace about the event.
148 	 */
149 	struct eventfd_ctx *eventfd;
150 	/*
151 	 * Each of these stored in a list by the cgroup.
152 	 */
153 	struct list_head list;
154 	/*
155 	 * register_event() callback will be used to add new userspace
156 	 * waiter for changes related to this event.  Use eventfd_signal()
157 	 * on eventfd to send notification to userspace.
158 	 */
159 	int (*register_event)(struct mem_cgroup *memcg,
160 			      struct eventfd_ctx *eventfd, const char *args);
161 	/*
162 	 * unregister_event() callback will be called when userspace closes
163 	 * the eventfd or on cgroup removing.  This callback must be set,
164 	 * if you want provide notification functionality.
165 	 */
166 	void (*unregister_event)(struct mem_cgroup *memcg,
167 				 struct eventfd_ctx *eventfd);
168 	/*
169 	 * All fields below needed to unregister event when
170 	 * userspace closes eventfd.
171 	 */
172 	poll_table pt;
173 	wait_queue_head_t *wqh;
174 	wait_queue_entry_t wait;
175 	struct work_struct remove;
176 };
177 
178 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
179 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
180 
181 /* Stuffs for move charges at task migration. */
182 /*
183  * Types of charges to be moved.
184  */
185 #define MOVE_ANON	0x1U
186 #define MOVE_FILE	0x2U
187 #define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
188 
189 /* "mc" and its members are protected by cgroup_mutex */
190 static struct move_charge_struct {
191 	spinlock_t	  lock; /* for from, to */
192 	struct mm_struct  *mm;
193 	struct mem_cgroup *from;
194 	struct mem_cgroup *to;
195 	unsigned long flags;
196 	unsigned long precharge;
197 	unsigned long moved_charge;
198 	unsigned long moved_swap;
199 	struct task_struct *moving_task;	/* a task moving charges */
200 	wait_queue_head_t waitq;		/* a waitq for other context */
201 } mc = {
202 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
203 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
204 };
205 
206 /*
207  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
208  * limit reclaim to prevent infinite loops, if they ever occur.
209  */
210 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
211 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
212 
213 enum charge_type {
214 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
215 	MEM_CGROUP_CHARGE_TYPE_ANON,
216 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
217 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
218 	NR_CHARGE_TYPE,
219 };
220 
221 /* for encoding cft->private value on file */
222 enum res_type {
223 	_MEM,
224 	_MEMSWAP,
225 	_OOM_TYPE,
226 	_KMEM,
227 	_TCP,
228 };
229 
230 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
231 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
232 #define MEMFILE_ATTR(val)	((val) & 0xffff)
233 /* Used for OOM nofiier */
234 #define OOM_CONTROL		(0)
235 
236 /* Some nice accessors for the vmpressure. */
237 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
238 {
239 	if (!memcg)
240 		memcg = root_mem_cgroup;
241 	return &memcg->vmpressure;
242 }
243 
244 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
245 {
246 	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
247 }
248 
249 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
250 {
251 	return (memcg == root_mem_cgroup);
252 }
253 
254 #ifndef CONFIG_SLOB
255 /*
256  * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
257  * The main reason for not using cgroup id for this:
258  *  this works better in sparse environments, where we have a lot of memcgs,
259  *  but only a few kmem-limited. Or also, if we have, for instance, 200
260  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
261  *  200 entry array for that.
262  *
263  * The current size of the caches array is stored in memcg_nr_cache_ids. It
264  * will double each time we have to increase it.
265  */
266 static DEFINE_IDA(memcg_cache_ida);
267 int memcg_nr_cache_ids;
268 
269 /* Protects memcg_nr_cache_ids */
270 static DECLARE_RWSEM(memcg_cache_ids_sem);
271 
272 void memcg_get_cache_ids(void)
273 {
274 	down_read(&memcg_cache_ids_sem);
275 }
276 
277 void memcg_put_cache_ids(void)
278 {
279 	up_read(&memcg_cache_ids_sem);
280 }
281 
282 /*
283  * MIN_SIZE is different than 1, because we would like to avoid going through
284  * the alloc/free process all the time. In a small machine, 4 kmem-limited
285  * cgroups is a reasonable guess. In the future, it could be a parameter or
286  * tunable, but that is strictly not necessary.
287  *
288  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
289  * this constant directly from cgroup, but it is understandable that this is
290  * better kept as an internal representation in cgroup.c. In any case, the
291  * cgrp_id space is not getting any smaller, and we don't have to necessarily
292  * increase ours as well if it increases.
293  */
294 #define MEMCG_CACHES_MIN_SIZE 4
295 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
296 
297 /*
298  * A lot of the calls to the cache allocation functions are expected to be
299  * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
300  * conditional to this static branch, we'll have to allow modules that does
301  * kmem_cache_alloc and the such to see this symbol as well
302  */
303 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
304 EXPORT_SYMBOL(memcg_kmem_enabled_key);
305 
306 struct workqueue_struct *memcg_kmem_cache_wq;
307 
308 #endif /* !CONFIG_SLOB */
309 
310 /**
311  * mem_cgroup_css_from_page - css of the memcg associated with a page
312  * @page: page of interest
313  *
314  * If memcg is bound to the default hierarchy, css of the memcg associated
315  * with @page is returned.  The returned css remains associated with @page
316  * until it is released.
317  *
318  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
319  * is returned.
320  */
321 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
322 {
323 	struct mem_cgroup *memcg;
324 
325 	memcg = page->mem_cgroup;
326 
327 	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
328 		memcg = root_mem_cgroup;
329 
330 	return &memcg->css;
331 }
332 
333 /**
334  * page_cgroup_ino - return inode number of the memcg a page is charged to
335  * @page: the page
336  *
337  * Look up the closest online ancestor of the memory cgroup @page is charged to
338  * and return its inode number or 0 if @page is not charged to any cgroup. It
339  * is safe to call this function without holding a reference to @page.
340  *
341  * Note, this function is inherently racy, because there is nothing to prevent
342  * the cgroup inode from getting torn down and potentially reallocated a moment
343  * after page_cgroup_ino() returns, so it only should be used by callers that
344  * do not care (such as procfs interfaces).
345  */
346 ino_t page_cgroup_ino(struct page *page)
347 {
348 	struct mem_cgroup *memcg;
349 	unsigned long ino = 0;
350 
351 	rcu_read_lock();
352 	memcg = READ_ONCE(page->mem_cgroup);
353 	while (memcg && !(memcg->css.flags & CSS_ONLINE))
354 		memcg = parent_mem_cgroup(memcg);
355 	if (memcg)
356 		ino = cgroup_ino(memcg->css.cgroup);
357 	rcu_read_unlock();
358 	return ino;
359 }
360 
361 static struct mem_cgroup_per_node *
362 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
363 {
364 	int nid = page_to_nid(page);
365 
366 	return memcg->nodeinfo[nid];
367 }
368 
369 static struct mem_cgroup_tree_per_node *
370 soft_limit_tree_node(int nid)
371 {
372 	return soft_limit_tree.rb_tree_per_node[nid];
373 }
374 
375 static struct mem_cgroup_tree_per_node *
376 soft_limit_tree_from_page(struct page *page)
377 {
378 	int nid = page_to_nid(page);
379 
380 	return soft_limit_tree.rb_tree_per_node[nid];
381 }
382 
383 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
384 					 struct mem_cgroup_tree_per_node *mctz,
385 					 unsigned long new_usage_in_excess)
386 {
387 	struct rb_node **p = &mctz->rb_root.rb_node;
388 	struct rb_node *parent = NULL;
389 	struct mem_cgroup_per_node *mz_node;
390 	bool rightmost = true;
391 
392 	if (mz->on_tree)
393 		return;
394 
395 	mz->usage_in_excess = new_usage_in_excess;
396 	if (!mz->usage_in_excess)
397 		return;
398 	while (*p) {
399 		parent = *p;
400 		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
401 					tree_node);
402 		if (mz->usage_in_excess < mz_node->usage_in_excess) {
403 			p = &(*p)->rb_left;
404 			rightmost = false;
405 		}
406 
407 		/*
408 		 * We can't avoid mem cgroups that are over their soft
409 		 * limit by the same amount
410 		 */
411 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
412 			p = &(*p)->rb_right;
413 	}
414 
415 	if (rightmost)
416 		mctz->rb_rightmost = &mz->tree_node;
417 
418 	rb_link_node(&mz->tree_node, parent, p);
419 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
420 	mz->on_tree = true;
421 }
422 
423 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
424 					 struct mem_cgroup_tree_per_node *mctz)
425 {
426 	if (!mz->on_tree)
427 		return;
428 
429 	if (&mz->tree_node == mctz->rb_rightmost)
430 		mctz->rb_rightmost = rb_prev(&mz->tree_node);
431 
432 	rb_erase(&mz->tree_node, &mctz->rb_root);
433 	mz->on_tree = false;
434 }
435 
436 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
437 				       struct mem_cgroup_tree_per_node *mctz)
438 {
439 	unsigned long flags;
440 
441 	spin_lock_irqsave(&mctz->lock, flags);
442 	__mem_cgroup_remove_exceeded(mz, mctz);
443 	spin_unlock_irqrestore(&mctz->lock, flags);
444 }
445 
446 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
447 {
448 	unsigned long nr_pages = page_counter_read(&memcg->memory);
449 	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
450 	unsigned long excess = 0;
451 
452 	if (nr_pages > soft_limit)
453 		excess = nr_pages - soft_limit;
454 
455 	return excess;
456 }
457 
458 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
459 {
460 	unsigned long excess;
461 	struct mem_cgroup_per_node *mz;
462 	struct mem_cgroup_tree_per_node *mctz;
463 
464 	mctz = soft_limit_tree_from_page(page);
465 	if (!mctz)
466 		return;
467 	/*
468 	 * Necessary to update all ancestors when hierarchy is used.
469 	 * because their event counter is not touched.
470 	 */
471 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
472 		mz = mem_cgroup_page_nodeinfo(memcg, page);
473 		excess = soft_limit_excess(memcg);
474 		/*
475 		 * We have to update the tree if mz is on RB-tree or
476 		 * mem is over its softlimit.
477 		 */
478 		if (excess || mz->on_tree) {
479 			unsigned long flags;
480 
481 			spin_lock_irqsave(&mctz->lock, flags);
482 			/* if on-tree, remove it */
483 			if (mz->on_tree)
484 				__mem_cgroup_remove_exceeded(mz, mctz);
485 			/*
486 			 * Insert again. mz->usage_in_excess will be updated.
487 			 * If excess is 0, no tree ops.
488 			 */
489 			__mem_cgroup_insert_exceeded(mz, mctz, excess);
490 			spin_unlock_irqrestore(&mctz->lock, flags);
491 		}
492 	}
493 }
494 
495 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
496 {
497 	struct mem_cgroup_tree_per_node *mctz;
498 	struct mem_cgroup_per_node *mz;
499 	int nid;
500 
501 	for_each_node(nid) {
502 		mz = mem_cgroup_nodeinfo(memcg, nid);
503 		mctz = soft_limit_tree_node(nid);
504 		if (mctz)
505 			mem_cgroup_remove_exceeded(mz, mctz);
506 	}
507 }
508 
509 static struct mem_cgroup_per_node *
510 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
511 {
512 	struct mem_cgroup_per_node *mz;
513 
514 retry:
515 	mz = NULL;
516 	if (!mctz->rb_rightmost)
517 		goto done;		/* Nothing to reclaim from */
518 
519 	mz = rb_entry(mctz->rb_rightmost,
520 		      struct mem_cgroup_per_node, tree_node);
521 	/*
522 	 * Remove the node now but someone else can add it back,
523 	 * we will to add it back at the end of reclaim to its correct
524 	 * position in the tree.
525 	 */
526 	__mem_cgroup_remove_exceeded(mz, mctz);
527 	if (!soft_limit_excess(mz->memcg) ||
528 	    !css_tryget_online(&mz->memcg->css))
529 		goto retry;
530 done:
531 	return mz;
532 }
533 
534 static struct mem_cgroup_per_node *
535 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
536 {
537 	struct mem_cgroup_per_node *mz;
538 
539 	spin_lock_irq(&mctz->lock);
540 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
541 	spin_unlock_irq(&mctz->lock);
542 	return mz;
543 }
544 
545 /*
546  * Return page count for single (non recursive) @memcg.
547  *
548  * Implementation Note: reading percpu statistics for memcg.
549  *
550  * Both of vmstat[] and percpu_counter has threshold and do periodic
551  * synchronization to implement "quick" read. There are trade-off between
552  * reading cost and precision of value. Then, we may have a chance to implement
553  * a periodic synchronization of counter in memcg's counter.
554  *
555  * But this _read() function is used for user interface now. The user accounts
556  * memory usage by memory cgroup and he _always_ requires exact value because
557  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
558  * have to visit all online cpus and make sum. So, for now, unnecessary
559  * synchronization is not implemented. (just implemented for cpu hotplug)
560  *
561  * If there are kernel internal actions which can make use of some not-exact
562  * value, and reading all cpu value can be performance bottleneck in some
563  * common workload, threshold and synchronization as vmstat[] should be
564  * implemented.
565  *
566  * The parameter idx can be of type enum memcg_event_item or vm_event_item.
567  */
568 
569 static unsigned long memcg_sum_events(struct mem_cgroup *memcg,
570 				      int event)
571 {
572 	unsigned long val = 0;
573 	int cpu;
574 
575 	for_each_possible_cpu(cpu)
576 		val += per_cpu(memcg->stat->events[event], cpu);
577 	return val;
578 }
579 
580 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
581 					 struct page *page,
582 					 bool compound, int nr_pages)
583 {
584 	/*
585 	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
586 	 * counted as CACHE even if it's on ANON LRU.
587 	 */
588 	if (PageAnon(page))
589 		__this_cpu_add(memcg->stat->count[MEMCG_RSS], nr_pages);
590 	else {
591 		__this_cpu_add(memcg->stat->count[MEMCG_CACHE], nr_pages);
592 		if (PageSwapBacked(page))
593 			__this_cpu_add(memcg->stat->count[NR_SHMEM], nr_pages);
594 	}
595 
596 	if (compound) {
597 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
598 		__this_cpu_add(memcg->stat->count[MEMCG_RSS_HUGE], nr_pages);
599 	}
600 
601 	/* pagein of a big page is an event. So, ignore page size */
602 	if (nr_pages > 0)
603 		__this_cpu_inc(memcg->stat->events[PGPGIN]);
604 	else {
605 		__this_cpu_inc(memcg->stat->events[PGPGOUT]);
606 		nr_pages = -nr_pages; /* for event */
607 	}
608 
609 	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
610 }
611 
612 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
613 					   int nid, unsigned int lru_mask)
614 {
615 	struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
616 	unsigned long nr = 0;
617 	enum lru_list lru;
618 
619 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
620 
621 	for_each_lru(lru) {
622 		if (!(BIT(lru) & lru_mask))
623 			continue;
624 		nr += mem_cgroup_get_lru_size(lruvec, lru);
625 	}
626 	return nr;
627 }
628 
629 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
630 			unsigned int lru_mask)
631 {
632 	unsigned long nr = 0;
633 	int nid;
634 
635 	for_each_node_state(nid, N_MEMORY)
636 		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
637 	return nr;
638 }
639 
640 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
641 				       enum mem_cgroup_events_target target)
642 {
643 	unsigned long val, next;
644 
645 	val = __this_cpu_read(memcg->stat->nr_page_events);
646 	next = __this_cpu_read(memcg->stat->targets[target]);
647 	/* from time_after() in jiffies.h */
648 	if ((long)(next - val) < 0) {
649 		switch (target) {
650 		case MEM_CGROUP_TARGET_THRESH:
651 			next = val + THRESHOLDS_EVENTS_TARGET;
652 			break;
653 		case MEM_CGROUP_TARGET_SOFTLIMIT:
654 			next = val + SOFTLIMIT_EVENTS_TARGET;
655 			break;
656 		case MEM_CGROUP_TARGET_NUMAINFO:
657 			next = val + NUMAINFO_EVENTS_TARGET;
658 			break;
659 		default:
660 			break;
661 		}
662 		__this_cpu_write(memcg->stat->targets[target], next);
663 		return true;
664 	}
665 	return false;
666 }
667 
668 /*
669  * Check events in order.
670  *
671  */
672 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
673 {
674 	/* threshold event is triggered in finer grain than soft limit */
675 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
676 						MEM_CGROUP_TARGET_THRESH))) {
677 		bool do_softlimit;
678 		bool do_numainfo __maybe_unused;
679 
680 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
681 						MEM_CGROUP_TARGET_SOFTLIMIT);
682 #if MAX_NUMNODES > 1
683 		do_numainfo = mem_cgroup_event_ratelimit(memcg,
684 						MEM_CGROUP_TARGET_NUMAINFO);
685 #endif
686 		mem_cgroup_threshold(memcg);
687 		if (unlikely(do_softlimit))
688 			mem_cgroup_update_tree(memcg, page);
689 #if MAX_NUMNODES > 1
690 		if (unlikely(do_numainfo))
691 			atomic_inc(&memcg->numainfo_events);
692 #endif
693 	}
694 }
695 
696 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
697 {
698 	/*
699 	 * mm_update_next_owner() may clear mm->owner to NULL
700 	 * if it races with swapoff, page migration, etc.
701 	 * So this can be called with p == NULL.
702 	 */
703 	if (unlikely(!p))
704 		return NULL;
705 
706 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
707 }
708 EXPORT_SYMBOL(mem_cgroup_from_task);
709 
710 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
711 {
712 	struct mem_cgroup *memcg = NULL;
713 
714 	rcu_read_lock();
715 	do {
716 		/*
717 		 * Page cache insertions can happen withou an
718 		 * actual mm context, e.g. during disk probing
719 		 * on boot, loopback IO, acct() writes etc.
720 		 */
721 		if (unlikely(!mm))
722 			memcg = root_mem_cgroup;
723 		else {
724 			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
725 			if (unlikely(!memcg))
726 				memcg = root_mem_cgroup;
727 		}
728 	} while (!css_tryget_online(&memcg->css));
729 	rcu_read_unlock();
730 	return memcg;
731 }
732 
733 /**
734  * mem_cgroup_iter - iterate over memory cgroup hierarchy
735  * @root: hierarchy root
736  * @prev: previously returned memcg, NULL on first invocation
737  * @reclaim: cookie for shared reclaim walks, NULL for full walks
738  *
739  * Returns references to children of the hierarchy below @root, or
740  * @root itself, or %NULL after a full round-trip.
741  *
742  * Caller must pass the return value in @prev on subsequent
743  * invocations for reference counting, or use mem_cgroup_iter_break()
744  * to cancel a hierarchy walk before the round-trip is complete.
745  *
746  * Reclaimers can specify a zone and a priority level in @reclaim to
747  * divide up the memcgs in the hierarchy among all concurrent
748  * reclaimers operating on the same zone and priority.
749  */
750 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
751 				   struct mem_cgroup *prev,
752 				   struct mem_cgroup_reclaim_cookie *reclaim)
753 {
754 	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
755 	struct cgroup_subsys_state *css = NULL;
756 	struct mem_cgroup *memcg = NULL;
757 	struct mem_cgroup *pos = NULL;
758 
759 	if (mem_cgroup_disabled())
760 		return NULL;
761 
762 	if (!root)
763 		root = root_mem_cgroup;
764 
765 	if (prev && !reclaim)
766 		pos = prev;
767 
768 	if (!root->use_hierarchy && root != root_mem_cgroup) {
769 		if (prev)
770 			goto out;
771 		return root;
772 	}
773 
774 	rcu_read_lock();
775 
776 	if (reclaim) {
777 		struct mem_cgroup_per_node *mz;
778 
779 		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
780 		iter = &mz->iter[reclaim->priority];
781 
782 		if (prev && reclaim->generation != iter->generation)
783 			goto out_unlock;
784 
785 		while (1) {
786 			pos = READ_ONCE(iter->position);
787 			if (!pos || css_tryget(&pos->css))
788 				break;
789 			/*
790 			 * css reference reached zero, so iter->position will
791 			 * be cleared by ->css_released. However, we should not
792 			 * rely on this happening soon, because ->css_released
793 			 * is called from a work queue, and by busy-waiting we
794 			 * might block it. So we clear iter->position right
795 			 * away.
796 			 */
797 			(void)cmpxchg(&iter->position, pos, NULL);
798 		}
799 	}
800 
801 	if (pos)
802 		css = &pos->css;
803 
804 	for (;;) {
805 		css = css_next_descendant_pre(css, &root->css);
806 		if (!css) {
807 			/*
808 			 * Reclaimers share the hierarchy walk, and a
809 			 * new one might jump in right at the end of
810 			 * the hierarchy - make sure they see at least
811 			 * one group and restart from the beginning.
812 			 */
813 			if (!prev)
814 				continue;
815 			break;
816 		}
817 
818 		/*
819 		 * Verify the css and acquire a reference.  The root
820 		 * is provided by the caller, so we know it's alive
821 		 * and kicking, and don't take an extra reference.
822 		 */
823 		memcg = mem_cgroup_from_css(css);
824 
825 		if (css == &root->css)
826 			break;
827 
828 		if (css_tryget(css))
829 			break;
830 
831 		memcg = NULL;
832 	}
833 
834 	if (reclaim) {
835 		/*
836 		 * The position could have already been updated by a competing
837 		 * thread, so check that the value hasn't changed since we read
838 		 * it to avoid reclaiming from the same cgroup twice.
839 		 */
840 		(void)cmpxchg(&iter->position, pos, memcg);
841 
842 		if (pos)
843 			css_put(&pos->css);
844 
845 		if (!memcg)
846 			iter->generation++;
847 		else if (!prev)
848 			reclaim->generation = iter->generation;
849 	}
850 
851 out_unlock:
852 	rcu_read_unlock();
853 out:
854 	if (prev && prev != root)
855 		css_put(&prev->css);
856 
857 	return memcg;
858 }
859 
860 /**
861  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
862  * @root: hierarchy root
863  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
864  */
865 void mem_cgroup_iter_break(struct mem_cgroup *root,
866 			   struct mem_cgroup *prev)
867 {
868 	if (!root)
869 		root = root_mem_cgroup;
870 	if (prev && prev != root)
871 		css_put(&prev->css);
872 }
873 
874 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
875 {
876 	struct mem_cgroup *memcg = dead_memcg;
877 	struct mem_cgroup_reclaim_iter *iter;
878 	struct mem_cgroup_per_node *mz;
879 	int nid;
880 	int i;
881 
882 	while ((memcg = parent_mem_cgroup(memcg))) {
883 		for_each_node(nid) {
884 			mz = mem_cgroup_nodeinfo(memcg, nid);
885 			for (i = 0; i <= DEF_PRIORITY; i++) {
886 				iter = &mz->iter[i];
887 				cmpxchg(&iter->position,
888 					dead_memcg, NULL);
889 			}
890 		}
891 	}
892 }
893 
894 /*
895  * Iteration constructs for visiting all cgroups (under a tree).  If
896  * loops are exited prematurely (break), mem_cgroup_iter_break() must
897  * be used for reference counting.
898  */
899 #define for_each_mem_cgroup_tree(iter, root)		\
900 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
901 	     iter != NULL;				\
902 	     iter = mem_cgroup_iter(root, iter, NULL))
903 
904 #define for_each_mem_cgroup(iter)			\
905 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
906 	     iter != NULL;				\
907 	     iter = mem_cgroup_iter(NULL, iter, NULL))
908 
909 /**
910  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
911  * @memcg: hierarchy root
912  * @fn: function to call for each task
913  * @arg: argument passed to @fn
914  *
915  * This function iterates over tasks attached to @memcg or to any of its
916  * descendants and calls @fn for each task. If @fn returns a non-zero
917  * value, the function breaks the iteration loop and returns the value.
918  * Otherwise, it will iterate over all tasks and return 0.
919  *
920  * This function must not be called for the root memory cgroup.
921  */
922 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
923 			  int (*fn)(struct task_struct *, void *), void *arg)
924 {
925 	struct mem_cgroup *iter;
926 	int ret = 0;
927 
928 	BUG_ON(memcg == root_mem_cgroup);
929 
930 	for_each_mem_cgroup_tree(iter, memcg) {
931 		struct css_task_iter it;
932 		struct task_struct *task;
933 
934 		css_task_iter_start(&iter->css, 0, &it);
935 		while (!ret && (task = css_task_iter_next(&it)))
936 			ret = fn(task, arg);
937 		css_task_iter_end(&it);
938 		if (ret) {
939 			mem_cgroup_iter_break(memcg, iter);
940 			break;
941 		}
942 	}
943 	return ret;
944 }
945 
946 /**
947  * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
948  * @page: the page
949  * @zone: zone of the page
950  *
951  * This function is only safe when following the LRU page isolation
952  * and putback protocol: the LRU lock must be held, and the page must
953  * either be PageLRU() or the caller must have isolated/allocated it.
954  */
955 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
956 {
957 	struct mem_cgroup_per_node *mz;
958 	struct mem_cgroup *memcg;
959 	struct lruvec *lruvec;
960 
961 	if (mem_cgroup_disabled()) {
962 		lruvec = &pgdat->lruvec;
963 		goto out;
964 	}
965 
966 	memcg = page->mem_cgroup;
967 	/*
968 	 * Swapcache readahead pages are added to the LRU - and
969 	 * possibly migrated - before they are charged.
970 	 */
971 	if (!memcg)
972 		memcg = root_mem_cgroup;
973 
974 	mz = mem_cgroup_page_nodeinfo(memcg, page);
975 	lruvec = &mz->lruvec;
976 out:
977 	/*
978 	 * Since a node can be onlined after the mem_cgroup was created,
979 	 * we have to be prepared to initialize lruvec->zone here;
980 	 * and if offlined then reonlined, we need to reinitialize it.
981 	 */
982 	if (unlikely(lruvec->pgdat != pgdat))
983 		lruvec->pgdat = pgdat;
984 	return lruvec;
985 }
986 
987 /**
988  * mem_cgroup_update_lru_size - account for adding or removing an lru page
989  * @lruvec: mem_cgroup per zone lru vector
990  * @lru: index of lru list the page is sitting on
991  * @zid: zone id of the accounted pages
992  * @nr_pages: positive when adding or negative when removing
993  *
994  * This function must be called under lru_lock, just before a page is added
995  * to or just after a page is removed from an lru list (that ordering being
996  * so as to allow it to check that lru_size 0 is consistent with list_empty).
997  */
998 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
999 				int zid, int nr_pages)
1000 {
1001 	struct mem_cgroup_per_node *mz;
1002 	unsigned long *lru_size;
1003 	long size;
1004 
1005 	if (mem_cgroup_disabled())
1006 		return;
1007 
1008 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1009 	lru_size = &mz->lru_zone_size[zid][lru];
1010 
1011 	if (nr_pages < 0)
1012 		*lru_size += nr_pages;
1013 
1014 	size = *lru_size;
1015 	if (WARN_ONCE(size < 0,
1016 		"%s(%p, %d, %d): lru_size %ld\n",
1017 		__func__, lruvec, lru, nr_pages, size)) {
1018 		VM_BUG_ON(1);
1019 		*lru_size = 0;
1020 	}
1021 
1022 	if (nr_pages > 0)
1023 		*lru_size += nr_pages;
1024 }
1025 
1026 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1027 {
1028 	struct mem_cgroup *task_memcg;
1029 	struct task_struct *p;
1030 	bool ret;
1031 
1032 	p = find_lock_task_mm(task);
1033 	if (p) {
1034 		task_memcg = get_mem_cgroup_from_mm(p->mm);
1035 		task_unlock(p);
1036 	} else {
1037 		/*
1038 		 * All threads may have already detached their mm's, but the oom
1039 		 * killer still needs to detect if they have already been oom
1040 		 * killed to prevent needlessly killing additional tasks.
1041 		 */
1042 		rcu_read_lock();
1043 		task_memcg = mem_cgroup_from_task(task);
1044 		css_get(&task_memcg->css);
1045 		rcu_read_unlock();
1046 	}
1047 	ret = mem_cgroup_is_descendant(task_memcg, memcg);
1048 	css_put(&task_memcg->css);
1049 	return ret;
1050 }
1051 
1052 /**
1053  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1054  * @memcg: the memory cgroup
1055  *
1056  * Returns the maximum amount of memory @mem can be charged with, in
1057  * pages.
1058  */
1059 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1060 {
1061 	unsigned long margin = 0;
1062 	unsigned long count;
1063 	unsigned long limit;
1064 
1065 	count = page_counter_read(&memcg->memory);
1066 	limit = READ_ONCE(memcg->memory.limit);
1067 	if (count < limit)
1068 		margin = limit - count;
1069 
1070 	if (do_memsw_account()) {
1071 		count = page_counter_read(&memcg->memsw);
1072 		limit = READ_ONCE(memcg->memsw.limit);
1073 		if (count <= limit)
1074 			margin = min(margin, limit - count);
1075 		else
1076 			margin = 0;
1077 	}
1078 
1079 	return margin;
1080 }
1081 
1082 /*
1083  * A routine for checking "mem" is under move_account() or not.
1084  *
1085  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1086  * moving cgroups. This is for waiting at high-memory pressure
1087  * caused by "move".
1088  */
1089 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1090 {
1091 	struct mem_cgroup *from;
1092 	struct mem_cgroup *to;
1093 	bool ret = false;
1094 	/*
1095 	 * Unlike task_move routines, we access mc.to, mc.from not under
1096 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1097 	 */
1098 	spin_lock(&mc.lock);
1099 	from = mc.from;
1100 	to = mc.to;
1101 	if (!from)
1102 		goto unlock;
1103 
1104 	ret = mem_cgroup_is_descendant(from, memcg) ||
1105 		mem_cgroup_is_descendant(to, memcg);
1106 unlock:
1107 	spin_unlock(&mc.lock);
1108 	return ret;
1109 }
1110 
1111 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1112 {
1113 	if (mc.moving_task && current != mc.moving_task) {
1114 		if (mem_cgroup_under_move(memcg)) {
1115 			DEFINE_WAIT(wait);
1116 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1117 			/* moving charge context might have finished. */
1118 			if (mc.moving_task)
1119 				schedule();
1120 			finish_wait(&mc.waitq, &wait);
1121 			return true;
1122 		}
1123 	}
1124 	return false;
1125 }
1126 
1127 unsigned int memcg1_stats[] = {
1128 	MEMCG_CACHE,
1129 	MEMCG_RSS,
1130 	MEMCG_RSS_HUGE,
1131 	NR_SHMEM,
1132 	NR_FILE_MAPPED,
1133 	NR_FILE_DIRTY,
1134 	NR_WRITEBACK,
1135 	MEMCG_SWAP,
1136 };
1137 
1138 static const char *const memcg1_stat_names[] = {
1139 	"cache",
1140 	"rss",
1141 	"rss_huge",
1142 	"shmem",
1143 	"mapped_file",
1144 	"dirty",
1145 	"writeback",
1146 	"swap",
1147 };
1148 
1149 #define K(x) ((x) << (PAGE_SHIFT-10))
1150 /**
1151  * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1152  * @memcg: The memory cgroup that went over limit
1153  * @p: Task that is going to be killed
1154  *
1155  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1156  * enabled
1157  */
1158 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1159 {
1160 	struct mem_cgroup *iter;
1161 	unsigned int i;
1162 
1163 	rcu_read_lock();
1164 
1165 	if (p) {
1166 		pr_info("Task in ");
1167 		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1168 		pr_cont(" killed as a result of limit of ");
1169 	} else {
1170 		pr_info("Memory limit reached of cgroup ");
1171 	}
1172 
1173 	pr_cont_cgroup_path(memcg->css.cgroup);
1174 	pr_cont("\n");
1175 
1176 	rcu_read_unlock();
1177 
1178 	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1179 		K((u64)page_counter_read(&memcg->memory)),
1180 		K((u64)memcg->memory.limit), memcg->memory.failcnt);
1181 	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1182 		K((u64)page_counter_read(&memcg->memsw)),
1183 		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1184 	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1185 		K((u64)page_counter_read(&memcg->kmem)),
1186 		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1187 
1188 	for_each_mem_cgroup_tree(iter, memcg) {
1189 		pr_info("Memory cgroup stats for ");
1190 		pr_cont_cgroup_path(iter->css.cgroup);
1191 		pr_cont(":");
1192 
1193 		for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
1194 			if (memcg1_stats[i] == MEMCG_SWAP && !do_swap_account)
1195 				continue;
1196 			pr_cont(" %s:%luKB", memcg1_stat_names[i],
1197 				K(memcg_page_state(iter, memcg1_stats[i])));
1198 		}
1199 
1200 		for (i = 0; i < NR_LRU_LISTS; i++)
1201 			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1202 				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1203 
1204 		pr_cont("\n");
1205 	}
1206 }
1207 
1208 /*
1209  * This function returns the number of memcg under hierarchy tree. Returns
1210  * 1(self count) if no children.
1211  */
1212 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1213 {
1214 	int num = 0;
1215 	struct mem_cgroup *iter;
1216 
1217 	for_each_mem_cgroup_tree(iter, memcg)
1218 		num++;
1219 	return num;
1220 }
1221 
1222 /*
1223  * Return the memory (and swap, if configured) limit for a memcg.
1224  */
1225 unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1226 {
1227 	unsigned long limit;
1228 
1229 	limit = memcg->memory.limit;
1230 	if (mem_cgroup_swappiness(memcg)) {
1231 		unsigned long memsw_limit;
1232 		unsigned long swap_limit;
1233 
1234 		memsw_limit = memcg->memsw.limit;
1235 		swap_limit = memcg->swap.limit;
1236 		swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1237 		limit = min(limit + swap_limit, memsw_limit);
1238 	}
1239 	return limit;
1240 }
1241 
1242 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1243 				     int order)
1244 {
1245 	struct oom_control oc = {
1246 		.zonelist = NULL,
1247 		.nodemask = NULL,
1248 		.memcg = memcg,
1249 		.gfp_mask = gfp_mask,
1250 		.order = order,
1251 	};
1252 	bool ret;
1253 
1254 	mutex_lock(&oom_lock);
1255 	ret = out_of_memory(&oc);
1256 	mutex_unlock(&oom_lock);
1257 	return ret;
1258 }
1259 
1260 #if MAX_NUMNODES > 1
1261 
1262 /**
1263  * test_mem_cgroup_node_reclaimable
1264  * @memcg: the target memcg
1265  * @nid: the node ID to be checked.
1266  * @noswap : specify true here if the user wants flle only information.
1267  *
1268  * This function returns whether the specified memcg contains any
1269  * reclaimable pages on a node. Returns true if there are any reclaimable
1270  * pages in the node.
1271  */
1272 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1273 		int nid, bool noswap)
1274 {
1275 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1276 		return true;
1277 	if (noswap || !total_swap_pages)
1278 		return false;
1279 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1280 		return true;
1281 	return false;
1282 
1283 }
1284 
1285 /*
1286  * Always updating the nodemask is not very good - even if we have an empty
1287  * list or the wrong list here, we can start from some node and traverse all
1288  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1289  *
1290  */
1291 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1292 {
1293 	int nid;
1294 	/*
1295 	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1296 	 * pagein/pageout changes since the last update.
1297 	 */
1298 	if (!atomic_read(&memcg->numainfo_events))
1299 		return;
1300 	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1301 		return;
1302 
1303 	/* make a nodemask where this memcg uses memory from */
1304 	memcg->scan_nodes = node_states[N_MEMORY];
1305 
1306 	for_each_node_mask(nid, node_states[N_MEMORY]) {
1307 
1308 		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1309 			node_clear(nid, memcg->scan_nodes);
1310 	}
1311 
1312 	atomic_set(&memcg->numainfo_events, 0);
1313 	atomic_set(&memcg->numainfo_updating, 0);
1314 }
1315 
1316 /*
1317  * Selecting a node where we start reclaim from. Because what we need is just
1318  * reducing usage counter, start from anywhere is O,K. Considering
1319  * memory reclaim from current node, there are pros. and cons.
1320  *
1321  * Freeing memory from current node means freeing memory from a node which
1322  * we'll use or we've used. So, it may make LRU bad. And if several threads
1323  * hit limits, it will see a contention on a node. But freeing from remote
1324  * node means more costs for memory reclaim because of memory latency.
1325  *
1326  * Now, we use round-robin. Better algorithm is welcomed.
1327  */
1328 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1329 {
1330 	int node;
1331 
1332 	mem_cgroup_may_update_nodemask(memcg);
1333 	node = memcg->last_scanned_node;
1334 
1335 	node = next_node_in(node, memcg->scan_nodes);
1336 	/*
1337 	 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1338 	 * last time it really checked all the LRUs due to rate limiting.
1339 	 * Fallback to the current node in that case for simplicity.
1340 	 */
1341 	if (unlikely(node == MAX_NUMNODES))
1342 		node = numa_node_id();
1343 
1344 	memcg->last_scanned_node = node;
1345 	return node;
1346 }
1347 #else
1348 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1349 {
1350 	return 0;
1351 }
1352 #endif
1353 
1354 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1355 				   pg_data_t *pgdat,
1356 				   gfp_t gfp_mask,
1357 				   unsigned long *total_scanned)
1358 {
1359 	struct mem_cgroup *victim = NULL;
1360 	int total = 0;
1361 	int loop = 0;
1362 	unsigned long excess;
1363 	unsigned long nr_scanned;
1364 	struct mem_cgroup_reclaim_cookie reclaim = {
1365 		.pgdat = pgdat,
1366 		.priority = 0,
1367 	};
1368 
1369 	excess = soft_limit_excess(root_memcg);
1370 
1371 	while (1) {
1372 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1373 		if (!victim) {
1374 			loop++;
1375 			if (loop >= 2) {
1376 				/*
1377 				 * If we have not been able to reclaim
1378 				 * anything, it might because there are
1379 				 * no reclaimable pages under this hierarchy
1380 				 */
1381 				if (!total)
1382 					break;
1383 				/*
1384 				 * We want to do more targeted reclaim.
1385 				 * excess >> 2 is not to excessive so as to
1386 				 * reclaim too much, nor too less that we keep
1387 				 * coming back to reclaim from this cgroup
1388 				 */
1389 				if (total >= (excess >> 2) ||
1390 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1391 					break;
1392 			}
1393 			continue;
1394 		}
1395 		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1396 					pgdat, &nr_scanned);
1397 		*total_scanned += nr_scanned;
1398 		if (!soft_limit_excess(root_memcg))
1399 			break;
1400 	}
1401 	mem_cgroup_iter_break(root_memcg, victim);
1402 	return total;
1403 }
1404 
1405 #ifdef CONFIG_LOCKDEP
1406 static struct lockdep_map memcg_oom_lock_dep_map = {
1407 	.name = "memcg_oom_lock",
1408 };
1409 #endif
1410 
1411 static DEFINE_SPINLOCK(memcg_oom_lock);
1412 
1413 /*
1414  * Check OOM-Killer is already running under our hierarchy.
1415  * If someone is running, return false.
1416  */
1417 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1418 {
1419 	struct mem_cgroup *iter, *failed = NULL;
1420 
1421 	spin_lock(&memcg_oom_lock);
1422 
1423 	for_each_mem_cgroup_tree(iter, memcg) {
1424 		if (iter->oom_lock) {
1425 			/*
1426 			 * this subtree of our hierarchy is already locked
1427 			 * so we cannot give a lock.
1428 			 */
1429 			failed = iter;
1430 			mem_cgroup_iter_break(memcg, iter);
1431 			break;
1432 		} else
1433 			iter->oom_lock = true;
1434 	}
1435 
1436 	if (failed) {
1437 		/*
1438 		 * OK, we failed to lock the whole subtree so we have
1439 		 * to clean up what we set up to the failing subtree
1440 		 */
1441 		for_each_mem_cgroup_tree(iter, memcg) {
1442 			if (iter == failed) {
1443 				mem_cgroup_iter_break(memcg, iter);
1444 				break;
1445 			}
1446 			iter->oom_lock = false;
1447 		}
1448 	} else
1449 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1450 
1451 	spin_unlock(&memcg_oom_lock);
1452 
1453 	return !failed;
1454 }
1455 
1456 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1457 {
1458 	struct mem_cgroup *iter;
1459 
1460 	spin_lock(&memcg_oom_lock);
1461 	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1462 	for_each_mem_cgroup_tree(iter, memcg)
1463 		iter->oom_lock = false;
1464 	spin_unlock(&memcg_oom_lock);
1465 }
1466 
1467 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1468 {
1469 	struct mem_cgroup *iter;
1470 
1471 	spin_lock(&memcg_oom_lock);
1472 	for_each_mem_cgroup_tree(iter, memcg)
1473 		iter->under_oom++;
1474 	spin_unlock(&memcg_oom_lock);
1475 }
1476 
1477 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1478 {
1479 	struct mem_cgroup *iter;
1480 
1481 	/*
1482 	 * When a new child is created while the hierarchy is under oom,
1483 	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1484 	 */
1485 	spin_lock(&memcg_oom_lock);
1486 	for_each_mem_cgroup_tree(iter, memcg)
1487 		if (iter->under_oom > 0)
1488 			iter->under_oom--;
1489 	spin_unlock(&memcg_oom_lock);
1490 }
1491 
1492 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1493 
1494 struct oom_wait_info {
1495 	struct mem_cgroup *memcg;
1496 	wait_queue_entry_t	wait;
1497 };
1498 
1499 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1500 	unsigned mode, int sync, void *arg)
1501 {
1502 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1503 	struct mem_cgroup *oom_wait_memcg;
1504 	struct oom_wait_info *oom_wait_info;
1505 
1506 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1507 	oom_wait_memcg = oom_wait_info->memcg;
1508 
1509 	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1510 	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1511 		return 0;
1512 	return autoremove_wake_function(wait, mode, sync, arg);
1513 }
1514 
1515 static void memcg_oom_recover(struct mem_cgroup *memcg)
1516 {
1517 	/*
1518 	 * For the following lockless ->under_oom test, the only required
1519 	 * guarantee is that it must see the state asserted by an OOM when
1520 	 * this function is called as a result of userland actions
1521 	 * triggered by the notification of the OOM.  This is trivially
1522 	 * achieved by invoking mem_cgroup_mark_under_oom() before
1523 	 * triggering notification.
1524 	 */
1525 	if (memcg && memcg->under_oom)
1526 		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1527 }
1528 
1529 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1530 {
1531 	if (!current->memcg_may_oom)
1532 		return;
1533 	/*
1534 	 * We are in the middle of the charge context here, so we
1535 	 * don't want to block when potentially sitting on a callstack
1536 	 * that holds all kinds of filesystem and mm locks.
1537 	 *
1538 	 * Also, the caller may handle a failed allocation gracefully
1539 	 * (like optional page cache readahead) and so an OOM killer
1540 	 * invocation might not even be necessary.
1541 	 *
1542 	 * That's why we don't do anything here except remember the
1543 	 * OOM context and then deal with it at the end of the page
1544 	 * fault when the stack is unwound, the locks are released,
1545 	 * and when we know whether the fault was overall successful.
1546 	 */
1547 	css_get(&memcg->css);
1548 	current->memcg_in_oom = memcg;
1549 	current->memcg_oom_gfp_mask = mask;
1550 	current->memcg_oom_order = order;
1551 }
1552 
1553 /**
1554  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1555  * @handle: actually kill/wait or just clean up the OOM state
1556  *
1557  * This has to be called at the end of a page fault if the memcg OOM
1558  * handler was enabled.
1559  *
1560  * Memcg supports userspace OOM handling where failed allocations must
1561  * sleep on a waitqueue until the userspace task resolves the
1562  * situation.  Sleeping directly in the charge context with all kinds
1563  * of locks held is not a good idea, instead we remember an OOM state
1564  * in the task and mem_cgroup_oom_synchronize() has to be called at
1565  * the end of the page fault to complete the OOM handling.
1566  *
1567  * Returns %true if an ongoing memcg OOM situation was detected and
1568  * completed, %false otherwise.
1569  */
1570 bool mem_cgroup_oom_synchronize(bool handle)
1571 {
1572 	struct mem_cgroup *memcg = current->memcg_in_oom;
1573 	struct oom_wait_info owait;
1574 	bool locked;
1575 
1576 	/* OOM is global, do not handle */
1577 	if (!memcg)
1578 		return false;
1579 
1580 	if (!handle)
1581 		goto cleanup;
1582 
1583 	owait.memcg = memcg;
1584 	owait.wait.flags = 0;
1585 	owait.wait.func = memcg_oom_wake_function;
1586 	owait.wait.private = current;
1587 	INIT_LIST_HEAD(&owait.wait.entry);
1588 
1589 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1590 	mem_cgroup_mark_under_oom(memcg);
1591 
1592 	locked = mem_cgroup_oom_trylock(memcg);
1593 
1594 	if (locked)
1595 		mem_cgroup_oom_notify(memcg);
1596 
1597 	if (locked && !memcg->oom_kill_disable) {
1598 		mem_cgroup_unmark_under_oom(memcg);
1599 		finish_wait(&memcg_oom_waitq, &owait.wait);
1600 		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1601 					 current->memcg_oom_order);
1602 	} else {
1603 		schedule();
1604 		mem_cgroup_unmark_under_oom(memcg);
1605 		finish_wait(&memcg_oom_waitq, &owait.wait);
1606 	}
1607 
1608 	if (locked) {
1609 		mem_cgroup_oom_unlock(memcg);
1610 		/*
1611 		 * There is no guarantee that an OOM-lock contender
1612 		 * sees the wakeups triggered by the OOM kill
1613 		 * uncharges.  Wake any sleepers explicitely.
1614 		 */
1615 		memcg_oom_recover(memcg);
1616 	}
1617 cleanup:
1618 	current->memcg_in_oom = NULL;
1619 	css_put(&memcg->css);
1620 	return true;
1621 }
1622 
1623 /**
1624  * lock_page_memcg - lock a page->mem_cgroup binding
1625  * @page: the page
1626  *
1627  * This function protects unlocked LRU pages from being moved to
1628  * another cgroup.
1629  *
1630  * It ensures lifetime of the returned memcg. Caller is responsible
1631  * for the lifetime of the page; __unlock_page_memcg() is available
1632  * when @page might get freed inside the locked section.
1633  */
1634 struct mem_cgroup *lock_page_memcg(struct page *page)
1635 {
1636 	struct mem_cgroup *memcg;
1637 	unsigned long flags;
1638 
1639 	/*
1640 	 * The RCU lock is held throughout the transaction.  The fast
1641 	 * path can get away without acquiring the memcg->move_lock
1642 	 * because page moving starts with an RCU grace period.
1643 	 *
1644 	 * The RCU lock also protects the memcg from being freed when
1645 	 * the page state that is going to change is the only thing
1646 	 * preventing the page itself from being freed. E.g. writeback
1647 	 * doesn't hold a page reference and relies on PG_writeback to
1648 	 * keep off truncation, migration and so forth.
1649          */
1650 	rcu_read_lock();
1651 
1652 	if (mem_cgroup_disabled())
1653 		return NULL;
1654 again:
1655 	memcg = page->mem_cgroup;
1656 	if (unlikely(!memcg))
1657 		return NULL;
1658 
1659 	if (atomic_read(&memcg->moving_account) <= 0)
1660 		return memcg;
1661 
1662 	spin_lock_irqsave(&memcg->move_lock, flags);
1663 	if (memcg != page->mem_cgroup) {
1664 		spin_unlock_irqrestore(&memcg->move_lock, flags);
1665 		goto again;
1666 	}
1667 
1668 	/*
1669 	 * When charge migration first begins, we can have locked and
1670 	 * unlocked page stat updates happening concurrently.  Track
1671 	 * the task who has the lock for unlock_page_memcg().
1672 	 */
1673 	memcg->move_lock_task = current;
1674 	memcg->move_lock_flags = flags;
1675 
1676 	return memcg;
1677 }
1678 EXPORT_SYMBOL(lock_page_memcg);
1679 
1680 /**
1681  * __unlock_page_memcg - unlock and unpin a memcg
1682  * @memcg: the memcg
1683  *
1684  * Unlock and unpin a memcg returned by lock_page_memcg().
1685  */
1686 void __unlock_page_memcg(struct mem_cgroup *memcg)
1687 {
1688 	if (memcg && memcg->move_lock_task == current) {
1689 		unsigned long flags = memcg->move_lock_flags;
1690 
1691 		memcg->move_lock_task = NULL;
1692 		memcg->move_lock_flags = 0;
1693 
1694 		spin_unlock_irqrestore(&memcg->move_lock, flags);
1695 	}
1696 
1697 	rcu_read_unlock();
1698 }
1699 
1700 /**
1701  * unlock_page_memcg - unlock a page->mem_cgroup binding
1702  * @page: the page
1703  */
1704 void unlock_page_memcg(struct page *page)
1705 {
1706 	__unlock_page_memcg(page->mem_cgroup);
1707 }
1708 EXPORT_SYMBOL(unlock_page_memcg);
1709 
1710 /*
1711  * size of first charge trial. "32" comes from vmscan.c's magic value.
1712  * TODO: maybe necessary to use big numbers in big irons.
1713  */
1714 #define CHARGE_BATCH	32U
1715 struct memcg_stock_pcp {
1716 	struct mem_cgroup *cached; /* this never be root cgroup */
1717 	unsigned int nr_pages;
1718 	struct work_struct work;
1719 	unsigned long flags;
1720 #define FLUSHING_CACHED_CHARGE	0
1721 };
1722 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1723 static DEFINE_MUTEX(percpu_charge_mutex);
1724 
1725 /**
1726  * consume_stock: Try to consume stocked charge on this cpu.
1727  * @memcg: memcg to consume from.
1728  * @nr_pages: how many pages to charge.
1729  *
1730  * The charges will only happen if @memcg matches the current cpu's memcg
1731  * stock, and at least @nr_pages are available in that stock.  Failure to
1732  * service an allocation will refill the stock.
1733  *
1734  * returns true if successful, false otherwise.
1735  */
1736 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1737 {
1738 	struct memcg_stock_pcp *stock;
1739 	unsigned long flags;
1740 	bool ret = false;
1741 
1742 	if (nr_pages > CHARGE_BATCH)
1743 		return ret;
1744 
1745 	local_irq_save(flags);
1746 
1747 	stock = this_cpu_ptr(&memcg_stock);
1748 	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1749 		stock->nr_pages -= nr_pages;
1750 		ret = true;
1751 	}
1752 
1753 	local_irq_restore(flags);
1754 
1755 	return ret;
1756 }
1757 
1758 /*
1759  * Returns stocks cached in percpu and reset cached information.
1760  */
1761 static void drain_stock(struct memcg_stock_pcp *stock)
1762 {
1763 	struct mem_cgroup *old = stock->cached;
1764 
1765 	if (stock->nr_pages) {
1766 		page_counter_uncharge(&old->memory, stock->nr_pages);
1767 		if (do_memsw_account())
1768 			page_counter_uncharge(&old->memsw, stock->nr_pages);
1769 		css_put_many(&old->css, stock->nr_pages);
1770 		stock->nr_pages = 0;
1771 	}
1772 	stock->cached = NULL;
1773 }
1774 
1775 static void drain_local_stock(struct work_struct *dummy)
1776 {
1777 	struct memcg_stock_pcp *stock;
1778 	unsigned long flags;
1779 
1780 	/*
1781 	 * The only protection from memory hotplug vs. drain_stock races is
1782 	 * that we always operate on local CPU stock here with IRQ disabled
1783 	 */
1784 	local_irq_save(flags);
1785 
1786 	stock = this_cpu_ptr(&memcg_stock);
1787 	drain_stock(stock);
1788 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1789 
1790 	local_irq_restore(flags);
1791 }
1792 
1793 /*
1794  * Cache charges(val) to local per_cpu area.
1795  * This will be consumed by consume_stock() function, later.
1796  */
1797 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1798 {
1799 	struct memcg_stock_pcp *stock;
1800 	unsigned long flags;
1801 
1802 	local_irq_save(flags);
1803 
1804 	stock = this_cpu_ptr(&memcg_stock);
1805 	if (stock->cached != memcg) { /* reset if necessary */
1806 		drain_stock(stock);
1807 		stock->cached = memcg;
1808 	}
1809 	stock->nr_pages += nr_pages;
1810 
1811 	if (stock->nr_pages > CHARGE_BATCH)
1812 		drain_stock(stock);
1813 
1814 	local_irq_restore(flags);
1815 }
1816 
1817 /*
1818  * Drains all per-CPU charge caches for given root_memcg resp. subtree
1819  * of the hierarchy under it.
1820  */
1821 static void drain_all_stock(struct mem_cgroup *root_memcg)
1822 {
1823 	int cpu, curcpu;
1824 
1825 	/* If someone's already draining, avoid adding running more workers. */
1826 	if (!mutex_trylock(&percpu_charge_mutex))
1827 		return;
1828 	/*
1829 	 * Notify other cpus that system-wide "drain" is running
1830 	 * We do not care about races with the cpu hotplug because cpu down
1831 	 * as well as workers from this path always operate on the local
1832 	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
1833 	 */
1834 	curcpu = get_cpu();
1835 	for_each_online_cpu(cpu) {
1836 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1837 		struct mem_cgroup *memcg;
1838 
1839 		memcg = stock->cached;
1840 		if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css))
1841 			continue;
1842 		if (!mem_cgroup_is_descendant(memcg, root_memcg)) {
1843 			css_put(&memcg->css);
1844 			continue;
1845 		}
1846 		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1847 			if (cpu == curcpu)
1848 				drain_local_stock(&stock->work);
1849 			else
1850 				schedule_work_on(cpu, &stock->work);
1851 		}
1852 		css_put(&memcg->css);
1853 	}
1854 	put_cpu();
1855 	mutex_unlock(&percpu_charge_mutex);
1856 }
1857 
1858 static int memcg_hotplug_cpu_dead(unsigned int cpu)
1859 {
1860 	struct memcg_stock_pcp *stock;
1861 
1862 	stock = &per_cpu(memcg_stock, cpu);
1863 	drain_stock(stock);
1864 	return 0;
1865 }
1866 
1867 static void reclaim_high(struct mem_cgroup *memcg,
1868 			 unsigned int nr_pages,
1869 			 gfp_t gfp_mask)
1870 {
1871 	do {
1872 		if (page_counter_read(&memcg->memory) <= memcg->high)
1873 			continue;
1874 		mem_cgroup_event(memcg, MEMCG_HIGH);
1875 		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1876 	} while ((memcg = parent_mem_cgroup(memcg)));
1877 }
1878 
1879 static void high_work_func(struct work_struct *work)
1880 {
1881 	struct mem_cgroup *memcg;
1882 
1883 	memcg = container_of(work, struct mem_cgroup, high_work);
1884 	reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1885 }
1886 
1887 /*
1888  * Scheduled by try_charge() to be executed from the userland return path
1889  * and reclaims memory over the high limit.
1890  */
1891 void mem_cgroup_handle_over_high(void)
1892 {
1893 	unsigned int nr_pages = current->memcg_nr_pages_over_high;
1894 	struct mem_cgroup *memcg;
1895 
1896 	if (likely(!nr_pages))
1897 		return;
1898 
1899 	memcg = get_mem_cgroup_from_mm(current->mm);
1900 	reclaim_high(memcg, nr_pages, GFP_KERNEL);
1901 	css_put(&memcg->css);
1902 	current->memcg_nr_pages_over_high = 0;
1903 }
1904 
1905 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1906 		      unsigned int nr_pages)
1907 {
1908 	unsigned int batch = max(CHARGE_BATCH, nr_pages);
1909 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1910 	struct mem_cgroup *mem_over_limit;
1911 	struct page_counter *counter;
1912 	unsigned long nr_reclaimed;
1913 	bool may_swap = true;
1914 	bool drained = false;
1915 
1916 	if (mem_cgroup_is_root(memcg))
1917 		return 0;
1918 retry:
1919 	if (consume_stock(memcg, nr_pages))
1920 		return 0;
1921 
1922 	if (!do_memsw_account() ||
1923 	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1924 		if (page_counter_try_charge(&memcg->memory, batch, &counter))
1925 			goto done_restock;
1926 		if (do_memsw_account())
1927 			page_counter_uncharge(&memcg->memsw, batch);
1928 		mem_over_limit = mem_cgroup_from_counter(counter, memory);
1929 	} else {
1930 		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1931 		may_swap = false;
1932 	}
1933 
1934 	if (batch > nr_pages) {
1935 		batch = nr_pages;
1936 		goto retry;
1937 	}
1938 
1939 	/*
1940 	 * Unlike in global OOM situations, memcg is not in a physical
1941 	 * memory shortage.  Allow dying and OOM-killed tasks to
1942 	 * bypass the last charges so that they can exit quickly and
1943 	 * free their memory.
1944 	 */
1945 	if (unlikely(tsk_is_oom_victim(current) ||
1946 		     fatal_signal_pending(current) ||
1947 		     current->flags & PF_EXITING))
1948 		goto force;
1949 
1950 	/*
1951 	 * Prevent unbounded recursion when reclaim operations need to
1952 	 * allocate memory. This might exceed the limits temporarily,
1953 	 * but we prefer facilitating memory reclaim and getting back
1954 	 * under the limit over triggering OOM kills in these cases.
1955 	 */
1956 	if (unlikely(current->flags & PF_MEMALLOC))
1957 		goto force;
1958 
1959 	if (unlikely(task_in_memcg_oom(current)))
1960 		goto nomem;
1961 
1962 	if (!gfpflags_allow_blocking(gfp_mask))
1963 		goto nomem;
1964 
1965 	mem_cgroup_event(mem_over_limit, MEMCG_MAX);
1966 
1967 	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1968 						    gfp_mask, may_swap);
1969 
1970 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1971 		goto retry;
1972 
1973 	if (!drained) {
1974 		drain_all_stock(mem_over_limit);
1975 		drained = true;
1976 		goto retry;
1977 	}
1978 
1979 	if (gfp_mask & __GFP_NORETRY)
1980 		goto nomem;
1981 	/*
1982 	 * Even though the limit is exceeded at this point, reclaim
1983 	 * may have been able to free some pages.  Retry the charge
1984 	 * before killing the task.
1985 	 *
1986 	 * Only for regular pages, though: huge pages are rather
1987 	 * unlikely to succeed so close to the limit, and we fall back
1988 	 * to regular pages anyway in case of failure.
1989 	 */
1990 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
1991 		goto retry;
1992 	/*
1993 	 * At task move, charge accounts can be doubly counted. So, it's
1994 	 * better to wait until the end of task_move if something is going on.
1995 	 */
1996 	if (mem_cgroup_wait_acct_move(mem_over_limit))
1997 		goto retry;
1998 
1999 	if (nr_retries--)
2000 		goto retry;
2001 
2002 	if (gfp_mask & __GFP_NOFAIL)
2003 		goto force;
2004 
2005 	if (fatal_signal_pending(current))
2006 		goto force;
2007 
2008 	mem_cgroup_event(mem_over_limit, MEMCG_OOM);
2009 
2010 	mem_cgroup_oom(mem_over_limit, gfp_mask,
2011 		       get_order(nr_pages * PAGE_SIZE));
2012 nomem:
2013 	if (!(gfp_mask & __GFP_NOFAIL))
2014 		return -ENOMEM;
2015 force:
2016 	/*
2017 	 * The allocation either can't fail or will lead to more memory
2018 	 * being freed very soon.  Allow memory usage go over the limit
2019 	 * temporarily by force charging it.
2020 	 */
2021 	page_counter_charge(&memcg->memory, nr_pages);
2022 	if (do_memsw_account())
2023 		page_counter_charge(&memcg->memsw, nr_pages);
2024 	css_get_many(&memcg->css, nr_pages);
2025 
2026 	return 0;
2027 
2028 done_restock:
2029 	css_get_many(&memcg->css, batch);
2030 	if (batch > nr_pages)
2031 		refill_stock(memcg, batch - nr_pages);
2032 
2033 	/*
2034 	 * If the hierarchy is above the normal consumption range, schedule
2035 	 * reclaim on returning to userland.  We can perform reclaim here
2036 	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2037 	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2038 	 * not recorded as it most likely matches current's and won't
2039 	 * change in the meantime.  As high limit is checked again before
2040 	 * reclaim, the cost of mismatch is negligible.
2041 	 */
2042 	do {
2043 		if (page_counter_read(&memcg->memory) > memcg->high) {
2044 			/* Don't bother a random interrupted task */
2045 			if (in_interrupt()) {
2046 				schedule_work(&memcg->high_work);
2047 				break;
2048 			}
2049 			current->memcg_nr_pages_over_high += batch;
2050 			set_notify_resume(current);
2051 			break;
2052 		}
2053 	} while ((memcg = parent_mem_cgroup(memcg)));
2054 
2055 	return 0;
2056 }
2057 
2058 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2059 {
2060 	if (mem_cgroup_is_root(memcg))
2061 		return;
2062 
2063 	page_counter_uncharge(&memcg->memory, nr_pages);
2064 	if (do_memsw_account())
2065 		page_counter_uncharge(&memcg->memsw, nr_pages);
2066 
2067 	css_put_many(&memcg->css, nr_pages);
2068 }
2069 
2070 static void lock_page_lru(struct page *page, int *isolated)
2071 {
2072 	struct zone *zone = page_zone(page);
2073 
2074 	spin_lock_irq(zone_lru_lock(zone));
2075 	if (PageLRU(page)) {
2076 		struct lruvec *lruvec;
2077 
2078 		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2079 		ClearPageLRU(page);
2080 		del_page_from_lru_list(page, lruvec, page_lru(page));
2081 		*isolated = 1;
2082 	} else
2083 		*isolated = 0;
2084 }
2085 
2086 static void unlock_page_lru(struct page *page, int isolated)
2087 {
2088 	struct zone *zone = page_zone(page);
2089 
2090 	if (isolated) {
2091 		struct lruvec *lruvec;
2092 
2093 		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2094 		VM_BUG_ON_PAGE(PageLRU(page), page);
2095 		SetPageLRU(page);
2096 		add_page_to_lru_list(page, lruvec, page_lru(page));
2097 	}
2098 	spin_unlock_irq(zone_lru_lock(zone));
2099 }
2100 
2101 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2102 			  bool lrucare)
2103 {
2104 	int isolated;
2105 
2106 	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2107 
2108 	/*
2109 	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2110 	 * may already be on some other mem_cgroup's LRU.  Take care of it.
2111 	 */
2112 	if (lrucare)
2113 		lock_page_lru(page, &isolated);
2114 
2115 	/*
2116 	 * Nobody should be changing or seriously looking at
2117 	 * page->mem_cgroup at this point:
2118 	 *
2119 	 * - the page is uncharged
2120 	 *
2121 	 * - the page is off-LRU
2122 	 *
2123 	 * - an anonymous fault has exclusive page access, except for
2124 	 *   a locked page table
2125 	 *
2126 	 * - a page cache insertion, a swapin fault, or a migration
2127 	 *   have the page locked
2128 	 */
2129 	page->mem_cgroup = memcg;
2130 
2131 	if (lrucare)
2132 		unlock_page_lru(page, isolated);
2133 }
2134 
2135 #ifndef CONFIG_SLOB
2136 static int memcg_alloc_cache_id(void)
2137 {
2138 	int id, size;
2139 	int err;
2140 
2141 	id = ida_simple_get(&memcg_cache_ida,
2142 			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2143 	if (id < 0)
2144 		return id;
2145 
2146 	if (id < memcg_nr_cache_ids)
2147 		return id;
2148 
2149 	/*
2150 	 * There's no space for the new id in memcg_caches arrays,
2151 	 * so we have to grow them.
2152 	 */
2153 	down_write(&memcg_cache_ids_sem);
2154 
2155 	size = 2 * (id + 1);
2156 	if (size < MEMCG_CACHES_MIN_SIZE)
2157 		size = MEMCG_CACHES_MIN_SIZE;
2158 	else if (size > MEMCG_CACHES_MAX_SIZE)
2159 		size = MEMCG_CACHES_MAX_SIZE;
2160 
2161 	err = memcg_update_all_caches(size);
2162 	if (!err)
2163 		err = memcg_update_all_list_lrus(size);
2164 	if (!err)
2165 		memcg_nr_cache_ids = size;
2166 
2167 	up_write(&memcg_cache_ids_sem);
2168 
2169 	if (err) {
2170 		ida_simple_remove(&memcg_cache_ida, id);
2171 		return err;
2172 	}
2173 	return id;
2174 }
2175 
2176 static void memcg_free_cache_id(int id)
2177 {
2178 	ida_simple_remove(&memcg_cache_ida, id);
2179 }
2180 
2181 struct memcg_kmem_cache_create_work {
2182 	struct mem_cgroup *memcg;
2183 	struct kmem_cache *cachep;
2184 	struct work_struct work;
2185 };
2186 
2187 static void memcg_kmem_cache_create_func(struct work_struct *w)
2188 {
2189 	struct memcg_kmem_cache_create_work *cw =
2190 		container_of(w, struct memcg_kmem_cache_create_work, work);
2191 	struct mem_cgroup *memcg = cw->memcg;
2192 	struct kmem_cache *cachep = cw->cachep;
2193 
2194 	memcg_create_kmem_cache(memcg, cachep);
2195 
2196 	css_put(&memcg->css);
2197 	kfree(cw);
2198 }
2199 
2200 /*
2201  * Enqueue the creation of a per-memcg kmem_cache.
2202  */
2203 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2204 					       struct kmem_cache *cachep)
2205 {
2206 	struct memcg_kmem_cache_create_work *cw;
2207 
2208 	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2209 	if (!cw)
2210 		return;
2211 
2212 	css_get(&memcg->css);
2213 
2214 	cw->memcg = memcg;
2215 	cw->cachep = cachep;
2216 	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2217 
2218 	queue_work(memcg_kmem_cache_wq, &cw->work);
2219 }
2220 
2221 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2222 					     struct kmem_cache *cachep)
2223 {
2224 	/*
2225 	 * We need to stop accounting when we kmalloc, because if the
2226 	 * corresponding kmalloc cache is not yet created, the first allocation
2227 	 * in __memcg_schedule_kmem_cache_create will recurse.
2228 	 *
2229 	 * However, it is better to enclose the whole function. Depending on
2230 	 * the debugging options enabled, INIT_WORK(), for instance, can
2231 	 * trigger an allocation. This too, will make us recurse. Because at
2232 	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2233 	 * the safest choice is to do it like this, wrapping the whole function.
2234 	 */
2235 	current->memcg_kmem_skip_account = 1;
2236 	__memcg_schedule_kmem_cache_create(memcg, cachep);
2237 	current->memcg_kmem_skip_account = 0;
2238 }
2239 
2240 static inline bool memcg_kmem_bypass(void)
2241 {
2242 	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2243 		return true;
2244 	return false;
2245 }
2246 
2247 /**
2248  * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2249  * @cachep: the original global kmem cache
2250  *
2251  * Return the kmem_cache we're supposed to use for a slab allocation.
2252  * We try to use the current memcg's version of the cache.
2253  *
2254  * If the cache does not exist yet, if we are the first user of it, we
2255  * create it asynchronously in a workqueue and let the current allocation
2256  * go through with the original cache.
2257  *
2258  * This function takes a reference to the cache it returns to assure it
2259  * won't get destroyed while we are working with it. Once the caller is
2260  * done with it, memcg_kmem_put_cache() must be called to release the
2261  * reference.
2262  */
2263 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2264 {
2265 	struct mem_cgroup *memcg;
2266 	struct kmem_cache *memcg_cachep;
2267 	int kmemcg_id;
2268 
2269 	VM_BUG_ON(!is_root_cache(cachep));
2270 
2271 	if (memcg_kmem_bypass())
2272 		return cachep;
2273 
2274 	if (current->memcg_kmem_skip_account)
2275 		return cachep;
2276 
2277 	memcg = get_mem_cgroup_from_mm(current->mm);
2278 	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2279 	if (kmemcg_id < 0)
2280 		goto out;
2281 
2282 	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2283 	if (likely(memcg_cachep))
2284 		return memcg_cachep;
2285 
2286 	/*
2287 	 * If we are in a safe context (can wait, and not in interrupt
2288 	 * context), we could be be predictable and return right away.
2289 	 * This would guarantee that the allocation being performed
2290 	 * already belongs in the new cache.
2291 	 *
2292 	 * However, there are some clashes that can arrive from locking.
2293 	 * For instance, because we acquire the slab_mutex while doing
2294 	 * memcg_create_kmem_cache, this means no further allocation
2295 	 * could happen with the slab_mutex held. So it's better to
2296 	 * defer everything.
2297 	 */
2298 	memcg_schedule_kmem_cache_create(memcg, cachep);
2299 out:
2300 	css_put(&memcg->css);
2301 	return cachep;
2302 }
2303 
2304 /**
2305  * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2306  * @cachep: the cache returned by memcg_kmem_get_cache
2307  */
2308 void memcg_kmem_put_cache(struct kmem_cache *cachep)
2309 {
2310 	if (!is_root_cache(cachep))
2311 		css_put(&cachep->memcg_params.memcg->css);
2312 }
2313 
2314 /**
2315  * memcg_kmem_charge: charge a kmem page
2316  * @page: page to charge
2317  * @gfp: reclaim mode
2318  * @order: allocation order
2319  * @memcg: memory cgroup to charge
2320  *
2321  * Returns 0 on success, an error code on failure.
2322  */
2323 int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2324 			    struct mem_cgroup *memcg)
2325 {
2326 	unsigned int nr_pages = 1 << order;
2327 	struct page_counter *counter;
2328 	int ret;
2329 
2330 	ret = try_charge(memcg, gfp, nr_pages);
2331 	if (ret)
2332 		return ret;
2333 
2334 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2335 	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2336 		cancel_charge(memcg, nr_pages);
2337 		return -ENOMEM;
2338 	}
2339 
2340 	page->mem_cgroup = memcg;
2341 
2342 	return 0;
2343 }
2344 
2345 /**
2346  * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2347  * @page: page to charge
2348  * @gfp: reclaim mode
2349  * @order: allocation order
2350  *
2351  * Returns 0 on success, an error code on failure.
2352  */
2353 int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2354 {
2355 	struct mem_cgroup *memcg;
2356 	int ret = 0;
2357 
2358 	if (memcg_kmem_bypass())
2359 		return 0;
2360 
2361 	memcg = get_mem_cgroup_from_mm(current->mm);
2362 	if (!mem_cgroup_is_root(memcg)) {
2363 		ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
2364 		if (!ret)
2365 			__SetPageKmemcg(page);
2366 	}
2367 	css_put(&memcg->css);
2368 	return ret;
2369 }
2370 /**
2371  * memcg_kmem_uncharge: uncharge a kmem page
2372  * @page: page to uncharge
2373  * @order: allocation order
2374  */
2375 void memcg_kmem_uncharge(struct page *page, int order)
2376 {
2377 	struct mem_cgroup *memcg = page->mem_cgroup;
2378 	unsigned int nr_pages = 1 << order;
2379 
2380 	if (!memcg)
2381 		return;
2382 
2383 	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2384 
2385 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2386 		page_counter_uncharge(&memcg->kmem, nr_pages);
2387 
2388 	page_counter_uncharge(&memcg->memory, nr_pages);
2389 	if (do_memsw_account())
2390 		page_counter_uncharge(&memcg->memsw, nr_pages);
2391 
2392 	page->mem_cgroup = NULL;
2393 
2394 	/* slab pages do not have PageKmemcg flag set */
2395 	if (PageKmemcg(page))
2396 		__ClearPageKmemcg(page);
2397 
2398 	css_put_many(&memcg->css, nr_pages);
2399 }
2400 #endif /* !CONFIG_SLOB */
2401 
2402 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2403 
2404 /*
2405  * Because tail pages are not marked as "used", set it. We're under
2406  * zone_lru_lock and migration entries setup in all page mappings.
2407  */
2408 void mem_cgroup_split_huge_fixup(struct page *head)
2409 {
2410 	int i;
2411 
2412 	if (mem_cgroup_disabled())
2413 		return;
2414 
2415 	for (i = 1; i < HPAGE_PMD_NR; i++)
2416 		head[i].mem_cgroup = head->mem_cgroup;
2417 
2418 	__this_cpu_sub(head->mem_cgroup->stat->count[MEMCG_RSS_HUGE],
2419 		       HPAGE_PMD_NR);
2420 }
2421 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2422 
2423 #ifdef CONFIG_MEMCG_SWAP
2424 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2425 				       int nr_entries)
2426 {
2427 	this_cpu_add(memcg->stat->count[MEMCG_SWAP], nr_entries);
2428 }
2429 
2430 /**
2431  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2432  * @entry: swap entry to be moved
2433  * @from:  mem_cgroup which the entry is moved from
2434  * @to:  mem_cgroup which the entry is moved to
2435  *
2436  * It succeeds only when the swap_cgroup's record for this entry is the same
2437  * as the mem_cgroup's id of @from.
2438  *
2439  * Returns 0 on success, -EINVAL on failure.
2440  *
2441  * The caller must have charged to @to, IOW, called page_counter_charge() about
2442  * both res and memsw, and called css_get().
2443  */
2444 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2445 				struct mem_cgroup *from, struct mem_cgroup *to)
2446 {
2447 	unsigned short old_id, new_id;
2448 
2449 	old_id = mem_cgroup_id(from);
2450 	new_id = mem_cgroup_id(to);
2451 
2452 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2453 		mem_cgroup_swap_statistics(from, -1);
2454 		mem_cgroup_swap_statistics(to, 1);
2455 		return 0;
2456 	}
2457 	return -EINVAL;
2458 }
2459 #else
2460 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2461 				struct mem_cgroup *from, struct mem_cgroup *to)
2462 {
2463 	return -EINVAL;
2464 }
2465 #endif
2466 
2467 static DEFINE_MUTEX(memcg_limit_mutex);
2468 
2469 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2470 				   unsigned long limit)
2471 {
2472 	unsigned long curusage;
2473 	unsigned long oldusage;
2474 	bool enlarge = false;
2475 	int retry_count;
2476 	int ret;
2477 
2478 	/*
2479 	 * For keeping hierarchical_reclaim simple, how long we should retry
2480 	 * is depends on callers. We set our retry-count to be function
2481 	 * of # of children which we should visit in this loop.
2482 	 */
2483 	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2484 		      mem_cgroup_count_children(memcg);
2485 
2486 	oldusage = page_counter_read(&memcg->memory);
2487 
2488 	do {
2489 		if (signal_pending(current)) {
2490 			ret = -EINTR;
2491 			break;
2492 		}
2493 
2494 		mutex_lock(&memcg_limit_mutex);
2495 		if (limit > memcg->memsw.limit) {
2496 			mutex_unlock(&memcg_limit_mutex);
2497 			ret = -EINVAL;
2498 			break;
2499 		}
2500 		if (limit > memcg->memory.limit)
2501 			enlarge = true;
2502 		ret = page_counter_limit(&memcg->memory, limit);
2503 		mutex_unlock(&memcg_limit_mutex);
2504 
2505 		if (!ret)
2506 			break;
2507 
2508 		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2509 
2510 		curusage = page_counter_read(&memcg->memory);
2511 		/* Usage is reduced ? */
2512 		if (curusage >= oldusage)
2513 			retry_count--;
2514 		else
2515 			oldusage = curusage;
2516 	} while (retry_count);
2517 
2518 	if (!ret && enlarge)
2519 		memcg_oom_recover(memcg);
2520 
2521 	return ret;
2522 }
2523 
2524 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2525 					 unsigned long limit)
2526 {
2527 	unsigned long curusage;
2528 	unsigned long oldusage;
2529 	bool enlarge = false;
2530 	int retry_count;
2531 	int ret;
2532 
2533 	/* see mem_cgroup_resize_res_limit */
2534 	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2535 		      mem_cgroup_count_children(memcg);
2536 
2537 	oldusage = page_counter_read(&memcg->memsw);
2538 
2539 	do {
2540 		if (signal_pending(current)) {
2541 			ret = -EINTR;
2542 			break;
2543 		}
2544 
2545 		mutex_lock(&memcg_limit_mutex);
2546 		if (limit < memcg->memory.limit) {
2547 			mutex_unlock(&memcg_limit_mutex);
2548 			ret = -EINVAL;
2549 			break;
2550 		}
2551 		if (limit > memcg->memsw.limit)
2552 			enlarge = true;
2553 		ret = page_counter_limit(&memcg->memsw, limit);
2554 		mutex_unlock(&memcg_limit_mutex);
2555 
2556 		if (!ret)
2557 			break;
2558 
2559 		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2560 
2561 		curusage = page_counter_read(&memcg->memsw);
2562 		/* Usage is reduced ? */
2563 		if (curusage >= oldusage)
2564 			retry_count--;
2565 		else
2566 			oldusage = curusage;
2567 	} while (retry_count);
2568 
2569 	if (!ret && enlarge)
2570 		memcg_oom_recover(memcg);
2571 
2572 	return ret;
2573 }
2574 
2575 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2576 					    gfp_t gfp_mask,
2577 					    unsigned long *total_scanned)
2578 {
2579 	unsigned long nr_reclaimed = 0;
2580 	struct mem_cgroup_per_node *mz, *next_mz = NULL;
2581 	unsigned long reclaimed;
2582 	int loop = 0;
2583 	struct mem_cgroup_tree_per_node *mctz;
2584 	unsigned long excess;
2585 	unsigned long nr_scanned;
2586 
2587 	if (order > 0)
2588 		return 0;
2589 
2590 	mctz = soft_limit_tree_node(pgdat->node_id);
2591 
2592 	/*
2593 	 * Do not even bother to check the largest node if the root
2594 	 * is empty. Do it lockless to prevent lock bouncing. Races
2595 	 * are acceptable as soft limit is best effort anyway.
2596 	 */
2597 	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
2598 		return 0;
2599 
2600 	/*
2601 	 * This loop can run a while, specially if mem_cgroup's continuously
2602 	 * keep exceeding their soft limit and putting the system under
2603 	 * pressure
2604 	 */
2605 	do {
2606 		if (next_mz)
2607 			mz = next_mz;
2608 		else
2609 			mz = mem_cgroup_largest_soft_limit_node(mctz);
2610 		if (!mz)
2611 			break;
2612 
2613 		nr_scanned = 0;
2614 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
2615 						    gfp_mask, &nr_scanned);
2616 		nr_reclaimed += reclaimed;
2617 		*total_scanned += nr_scanned;
2618 		spin_lock_irq(&mctz->lock);
2619 		__mem_cgroup_remove_exceeded(mz, mctz);
2620 
2621 		/*
2622 		 * If we failed to reclaim anything from this memory cgroup
2623 		 * it is time to move on to the next cgroup
2624 		 */
2625 		next_mz = NULL;
2626 		if (!reclaimed)
2627 			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2628 
2629 		excess = soft_limit_excess(mz->memcg);
2630 		/*
2631 		 * One school of thought says that we should not add
2632 		 * back the node to the tree if reclaim returns 0.
2633 		 * But our reclaim could return 0, simply because due
2634 		 * to priority we are exposing a smaller subset of
2635 		 * memory to reclaim from. Consider this as a longer
2636 		 * term TODO.
2637 		 */
2638 		/* If excess == 0, no tree ops */
2639 		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2640 		spin_unlock_irq(&mctz->lock);
2641 		css_put(&mz->memcg->css);
2642 		loop++;
2643 		/*
2644 		 * Could not reclaim anything and there are no more
2645 		 * mem cgroups to try or we seem to be looping without
2646 		 * reclaiming anything.
2647 		 */
2648 		if (!nr_reclaimed &&
2649 			(next_mz == NULL ||
2650 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2651 			break;
2652 	} while (!nr_reclaimed);
2653 	if (next_mz)
2654 		css_put(&next_mz->memcg->css);
2655 	return nr_reclaimed;
2656 }
2657 
2658 /*
2659  * Test whether @memcg has children, dead or alive.  Note that this
2660  * function doesn't care whether @memcg has use_hierarchy enabled and
2661  * returns %true if there are child csses according to the cgroup
2662  * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
2663  */
2664 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2665 {
2666 	bool ret;
2667 
2668 	rcu_read_lock();
2669 	ret = css_next_child(NULL, &memcg->css);
2670 	rcu_read_unlock();
2671 	return ret;
2672 }
2673 
2674 /*
2675  * Reclaims as many pages from the given memcg as possible.
2676  *
2677  * Caller is responsible for holding css reference for memcg.
2678  */
2679 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2680 {
2681 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2682 
2683 	/* we call try-to-free pages for make this cgroup empty */
2684 	lru_add_drain_all();
2685 	/* try to free all pages in this cgroup */
2686 	while (nr_retries && page_counter_read(&memcg->memory)) {
2687 		int progress;
2688 
2689 		if (signal_pending(current))
2690 			return -EINTR;
2691 
2692 		progress = try_to_free_mem_cgroup_pages(memcg, 1,
2693 							GFP_KERNEL, true);
2694 		if (!progress) {
2695 			nr_retries--;
2696 			/* maybe some writeback is necessary */
2697 			congestion_wait(BLK_RW_ASYNC, HZ/10);
2698 		}
2699 
2700 	}
2701 
2702 	return 0;
2703 }
2704 
2705 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2706 					    char *buf, size_t nbytes,
2707 					    loff_t off)
2708 {
2709 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2710 
2711 	if (mem_cgroup_is_root(memcg))
2712 		return -EINVAL;
2713 	return mem_cgroup_force_empty(memcg) ?: nbytes;
2714 }
2715 
2716 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2717 				     struct cftype *cft)
2718 {
2719 	return mem_cgroup_from_css(css)->use_hierarchy;
2720 }
2721 
2722 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2723 				      struct cftype *cft, u64 val)
2724 {
2725 	int retval = 0;
2726 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2727 	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2728 
2729 	if (memcg->use_hierarchy == val)
2730 		return 0;
2731 
2732 	/*
2733 	 * If parent's use_hierarchy is set, we can't make any modifications
2734 	 * in the child subtrees. If it is unset, then the change can
2735 	 * occur, provided the current cgroup has no children.
2736 	 *
2737 	 * For the root cgroup, parent_mem is NULL, we allow value to be
2738 	 * set if there are no children.
2739 	 */
2740 	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2741 				(val == 1 || val == 0)) {
2742 		if (!memcg_has_children(memcg))
2743 			memcg->use_hierarchy = val;
2744 		else
2745 			retval = -EBUSY;
2746 	} else
2747 		retval = -EINVAL;
2748 
2749 	return retval;
2750 }
2751 
2752 static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2753 {
2754 	struct mem_cgroup *iter;
2755 	int i;
2756 
2757 	memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2758 
2759 	for_each_mem_cgroup_tree(iter, memcg) {
2760 		for (i = 0; i < MEMCG_NR_STAT; i++)
2761 			stat[i] += memcg_page_state(iter, i);
2762 	}
2763 }
2764 
2765 static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2766 {
2767 	struct mem_cgroup *iter;
2768 	int i;
2769 
2770 	memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2771 
2772 	for_each_mem_cgroup_tree(iter, memcg) {
2773 		for (i = 0; i < MEMCG_NR_EVENTS; i++)
2774 			events[i] += memcg_sum_events(iter, i);
2775 	}
2776 }
2777 
2778 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2779 {
2780 	unsigned long val = 0;
2781 
2782 	if (mem_cgroup_is_root(memcg)) {
2783 		struct mem_cgroup *iter;
2784 
2785 		for_each_mem_cgroup_tree(iter, memcg) {
2786 			val += memcg_page_state(iter, MEMCG_CACHE);
2787 			val += memcg_page_state(iter, MEMCG_RSS);
2788 			if (swap)
2789 				val += memcg_page_state(iter, MEMCG_SWAP);
2790 		}
2791 	} else {
2792 		if (!swap)
2793 			val = page_counter_read(&memcg->memory);
2794 		else
2795 			val = page_counter_read(&memcg->memsw);
2796 	}
2797 	return val;
2798 }
2799 
2800 enum {
2801 	RES_USAGE,
2802 	RES_LIMIT,
2803 	RES_MAX_USAGE,
2804 	RES_FAILCNT,
2805 	RES_SOFT_LIMIT,
2806 };
2807 
2808 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2809 			       struct cftype *cft)
2810 {
2811 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2812 	struct page_counter *counter;
2813 
2814 	switch (MEMFILE_TYPE(cft->private)) {
2815 	case _MEM:
2816 		counter = &memcg->memory;
2817 		break;
2818 	case _MEMSWAP:
2819 		counter = &memcg->memsw;
2820 		break;
2821 	case _KMEM:
2822 		counter = &memcg->kmem;
2823 		break;
2824 	case _TCP:
2825 		counter = &memcg->tcpmem;
2826 		break;
2827 	default:
2828 		BUG();
2829 	}
2830 
2831 	switch (MEMFILE_ATTR(cft->private)) {
2832 	case RES_USAGE:
2833 		if (counter == &memcg->memory)
2834 			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2835 		if (counter == &memcg->memsw)
2836 			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2837 		return (u64)page_counter_read(counter) * PAGE_SIZE;
2838 	case RES_LIMIT:
2839 		return (u64)counter->limit * PAGE_SIZE;
2840 	case RES_MAX_USAGE:
2841 		return (u64)counter->watermark * PAGE_SIZE;
2842 	case RES_FAILCNT:
2843 		return counter->failcnt;
2844 	case RES_SOFT_LIMIT:
2845 		return (u64)memcg->soft_limit * PAGE_SIZE;
2846 	default:
2847 		BUG();
2848 	}
2849 }
2850 
2851 #ifndef CONFIG_SLOB
2852 static int memcg_online_kmem(struct mem_cgroup *memcg)
2853 {
2854 	int memcg_id;
2855 
2856 	if (cgroup_memory_nokmem)
2857 		return 0;
2858 
2859 	BUG_ON(memcg->kmemcg_id >= 0);
2860 	BUG_ON(memcg->kmem_state);
2861 
2862 	memcg_id = memcg_alloc_cache_id();
2863 	if (memcg_id < 0)
2864 		return memcg_id;
2865 
2866 	static_branch_inc(&memcg_kmem_enabled_key);
2867 	/*
2868 	 * A memory cgroup is considered kmem-online as soon as it gets
2869 	 * kmemcg_id. Setting the id after enabling static branching will
2870 	 * guarantee no one starts accounting before all call sites are
2871 	 * patched.
2872 	 */
2873 	memcg->kmemcg_id = memcg_id;
2874 	memcg->kmem_state = KMEM_ONLINE;
2875 	INIT_LIST_HEAD(&memcg->kmem_caches);
2876 
2877 	return 0;
2878 }
2879 
2880 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2881 {
2882 	struct cgroup_subsys_state *css;
2883 	struct mem_cgroup *parent, *child;
2884 	int kmemcg_id;
2885 
2886 	if (memcg->kmem_state != KMEM_ONLINE)
2887 		return;
2888 	/*
2889 	 * Clear the online state before clearing memcg_caches array
2890 	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2891 	 * guarantees that no cache will be created for this cgroup
2892 	 * after we are done (see memcg_create_kmem_cache()).
2893 	 */
2894 	memcg->kmem_state = KMEM_ALLOCATED;
2895 
2896 	memcg_deactivate_kmem_caches(memcg);
2897 
2898 	kmemcg_id = memcg->kmemcg_id;
2899 	BUG_ON(kmemcg_id < 0);
2900 
2901 	parent = parent_mem_cgroup(memcg);
2902 	if (!parent)
2903 		parent = root_mem_cgroup;
2904 
2905 	/*
2906 	 * Change kmemcg_id of this cgroup and all its descendants to the
2907 	 * parent's id, and then move all entries from this cgroup's list_lrus
2908 	 * to ones of the parent. After we have finished, all list_lrus
2909 	 * corresponding to this cgroup are guaranteed to remain empty. The
2910 	 * ordering is imposed by list_lru_node->lock taken by
2911 	 * memcg_drain_all_list_lrus().
2912 	 */
2913 	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
2914 	css_for_each_descendant_pre(css, &memcg->css) {
2915 		child = mem_cgroup_from_css(css);
2916 		BUG_ON(child->kmemcg_id != kmemcg_id);
2917 		child->kmemcg_id = parent->kmemcg_id;
2918 		if (!memcg->use_hierarchy)
2919 			break;
2920 	}
2921 	rcu_read_unlock();
2922 
2923 	memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2924 
2925 	memcg_free_cache_id(kmemcg_id);
2926 }
2927 
2928 static void memcg_free_kmem(struct mem_cgroup *memcg)
2929 {
2930 	/* css_alloc() failed, offlining didn't happen */
2931 	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2932 		memcg_offline_kmem(memcg);
2933 
2934 	if (memcg->kmem_state == KMEM_ALLOCATED) {
2935 		memcg_destroy_kmem_caches(memcg);
2936 		static_branch_dec(&memcg_kmem_enabled_key);
2937 		WARN_ON(page_counter_read(&memcg->kmem));
2938 	}
2939 }
2940 #else
2941 static int memcg_online_kmem(struct mem_cgroup *memcg)
2942 {
2943 	return 0;
2944 }
2945 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2946 {
2947 }
2948 static void memcg_free_kmem(struct mem_cgroup *memcg)
2949 {
2950 }
2951 #endif /* !CONFIG_SLOB */
2952 
2953 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2954 				   unsigned long limit)
2955 {
2956 	int ret;
2957 
2958 	mutex_lock(&memcg_limit_mutex);
2959 	ret = page_counter_limit(&memcg->kmem, limit);
2960 	mutex_unlock(&memcg_limit_mutex);
2961 	return ret;
2962 }
2963 
2964 static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2965 {
2966 	int ret;
2967 
2968 	mutex_lock(&memcg_limit_mutex);
2969 
2970 	ret = page_counter_limit(&memcg->tcpmem, limit);
2971 	if (ret)
2972 		goto out;
2973 
2974 	if (!memcg->tcpmem_active) {
2975 		/*
2976 		 * The active flag needs to be written after the static_key
2977 		 * update. This is what guarantees that the socket activation
2978 		 * function is the last one to run. See mem_cgroup_sk_alloc()
2979 		 * for details, and note that we don't mark any socket as
2980 		 * belonging to this memcg until that flag is up.
2981 		 *
2982 		 * We need to do this, because static_keys will span multiple
2983 		 * sites, but we can't control their order. If we mark a socket
2984 		 * as accounted, but the accounting functions are not patched in
2985 		 * yet, we'll lose accounting.
2986 		 *
2987 		 * We never race with the readers in mem_cgroup_sk_alloc(),
2988 		 * because when this value change, the code to process it is not
2989 		 * patched in yet.
2990 		 */
2991 		static_branch_inc(&memcg_sockets_enabled_key);
2992 		memcg->tcpmem_active = true;
2993 	}
2994 out:
2995 	mutex_unlock(&memcg_limit_mutex);
2996 	return ret;
2997 }
2998 
2999 /*
3000  * The user of this function is...
3001  * RES_LIMIT.
3002  */
3003 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3004 				char *buf, size_t nbytes, loff_t off)
3005 {
3006 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3007 	unsigned long nr_pages;
3008 	int ret;
3009 
3010 	buf = strstrip(buf);
3011 	ret = page_counter_memparse(buf, "-1", &nr_pages);
3012 	if (ret)
3013 		return ret;
3014 
3015 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3016 	case RES_LIMIT:
3017 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3018 			ret = -EINVAL;
3019 			break;
3020 		}
3021 		switch (MEMFILE_TYPE(of_cft(of)->private)) {
3022 		case _MEM:
3023 			ret = mem_cgroup_resize_limit(memcg, nr_pages);
3024 			break;
3025 		case _MEMSWAP:
3026 			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3027 			break;
3028 		case _KMEM:
3029 			ret = memcg_update_kmem_limit(memcg, nr_pages);
3030 			break;
3031 		case _TCP:
3032 			ret = memcg_update_tcp_limit(memcg, nr_pages);
3033 			break;
3034 		}
3035 		break;
3036 	case RES_SOFT_LIMIT:
3037 		memcg->soft_limit = nr_pages;
3038 		ret = 0;
3039 		break;
3040 	}
3041 	return ret ?: nbytes;
3042 }
3043 
3044 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3045 				size_t nbytes, loff_t off)
3046 {
3047 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3048 	struct page_counter *counter;
3049 
3050 	switch (MEMFILE_TYPE(of_cft(of)->private)) {
3051 	case _MEM:
3052 		counter = &memcg->memory;
3053 		break;
3054 	case _MEMSWAP:
3055 		counter = &memcg->memsw;
3056 		break;
3057 	case _KMEM:
3058 		counter = &memcg->kmem;
3059 		break;
3060 	case _TCP:
3061 		counter = &memcg->tcpmem;
3062 		break;
3063 	default:
3064 		BUG();
3065 	}
3066 
3067 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3068 	case RES_MAX_USAGE:
3069 		page_counter_reset_watermark(counter);
3070 		break;
3071 	case RES_FAILCNT:
3072 		counter->failcnt = 0;
3073 		break;
3074 	default:
3075 		BUG();
3076 	}
3077 
3078 	return nbytes;
3079 }
3080 
3081 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3082 					struct cftype *cft)
3083 {
3084 	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3085 }
3086 
3087 #ifdef CONFIG_MMU
3088 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3089 					struct cftype *cft, u64 val)
3090 {
3091 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3092 
3093 	if (val & ~MOVE_MASK)
3094 		return -EINVAL;
3095 
3096 	/*
3097 	 * No kind of locking is needed in here, because ->can_attach() will
3098 	 * check this value once in the beginning of the process, and then carry
3099 	 * on with stale data. This means that changes to this value will only
3100 	 * affect task migrations starting after the change.
3101 	 */
3102 	memcg->move_charge_at_immigrate = val;
3103 	return 0;
3104 }
3105 #else
3106 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3107 					struct cftype *cft, u64 val)
3108 {
3109 	return -ENOSYS;
3110 }
3111 #endif
3112 
3113 #ifdef CONFIG_NUMA
3114 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3115 {
3116 	struct numa_stat {
3117 		const char *name;
3118 		unsigned int lru_mask;
3119 	};
3120 
3121 	static const struct numa_stat stats[] = {
3122 		{ "total", LRU_ALL },
3123 		{ "file", LRU_ALL_FILE },
3124 		{ "anon", LRU_ALL_ANON },
3125 		{ "unevictable", BIT(LRU_UNEVICTABLE) },
3126 	};
3127 	const struct numa_stat *stat;
3128 	int nid;
3129 	unsigned long nr;
3130 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3131 
3132 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3133 		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3134 		seq_printf(m, "%s=%lu", stat->name, nr);
3135 		for_each_node_state(nid, N_MEMORY) {
3136 			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3137 							  stat->lru_mask);
3138 			seq_printf(m, " N%d=%lu", nid, nr);
3139 		}
3140 		seq_putc(m, '\n');
3141 	}
3142 
3143 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3144 		struct mem_cgroup *iter;
3145 
3146 		nr = 0;
3147 		for_each_mem_cgroup_tree(iter, memcg)
3148 			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3149 		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3150 		for_each_node_state(nid, N_MEMORY) {
3151 			nr = 0;
3152 			for_each_mem_cgroup_tree(iter, memcg)
3153 				nr += mem_cgroup_node_nr_lru_pages(
3154 					iter, nid, stat->lru_mask);
3155 			seq_printf(m, " N%d=%lu", nid, nr);
3156 		}
3157 		seq_putc(m, '\n');
3158 	}
3159 
3160 	return 0;
3161 }
3162 #endif /* CONFIG_NUMA */
3163 
3164 /* Universal VM events cgroup1 shows, original sort order */
3165 unsigned int memcg1_events[] = {
3166 	PGPGIN,
3167 	PGPGOUT,
3168 	PGFAULT,
3169 	PGMAJFAULT,
3170 };
3171 
3172 static const char *const memcg1_event_names[] = {
3173 	"pgpgin",
3174 	"pgpgout",
3175 	"pgfault",
3176 	"pgmajfault",
3177 };
3178 
3179 static int memcg_stat_show(struct seq_file *m, void *v)
3180 {
3181 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3182 	unsigned long memory, memsw;
3183 	struct mem_cgroup *mi;
3184 	unsigned int i;
3185 
3186 	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3187 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3188 
3189 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3190 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3191 			continue;
3192 		seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3193 			   memcg_page_state(memcg, memcg1_stats[i]) *
3194 			   PAGE_SIZE);
3195 	}
3196 
3197 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3198 		seq_printf(m, "%s %lu\n", memcg1_event_names[i],
3199 			   memcg_sum_events(memcg, memcg1_events[i]));
3200 
3201 	for (i = 0; i < NR_LRU_LISTS; i++)
3202 		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3203 			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3204 
3205 	/* Hierarchical information */
3206 	memory = memsw = PAGE_COUNTER_MAX;
3207 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3208 		memory = min(memory, mi->memory.limit);
3209 		memsw = min(memsw, mi->memsw.limit);
3210 	}
3211 	seq_printf(m, "hierarchical_memory_limit %llu\n",
3212 		   (u64)memory * PAGE_SIZE);
3213 	if (do_memsw_account())
3214 		seq_printf(m, "hierarchical_memsw_limit %llu\n",
3215 			   (u64)memsw * PAGE_SIZE);
3216 
3217 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3218 		unsigned long long val = 0;
3219 
3220 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3221 			continue;
3222 		for_each_mem_cgroup_tree(mi, memcg)
3223 			val += memcg_page_state(mi, memcg1_stats[i]) *
3224 			PAGE_SIZE;
3225 		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], val);
3226 	}
3227 
3228 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) {
3229 		unsigned long long val = 0;
3230 
3231 		for_each_mem_cgroup_tree(mi, memcg)
3232 			val += memcg_sum_events(mi, memcg1_events[i]);
3233 		seq_printf(m, "total_%s %llu\n", memcg1_event_names[i], val);
3234 	}
3235 
3236 	for (i = 0; i < NR_LRU_LISTS; i++) {
3237 		unsigned long long val = 0;
3238 
3239 		for_each_mem_cgroup_tree(mi, memcg)
3240 			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3241 		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3242 	}
3243 
3244 #ifdef CONFIG_DEBUG_VM
3245 	{
3246 		pg_data_t *pgdat;
3247 		struct mem_cgroup_per_node *mz;
3248 		struct zone_reclaim_stat *rstat;
3249 		unsigned long recent_rotated[2] = {0, 0};
3250 		unsigned long recent_scanned[2] = {0, 0};
3251 
3252 		for_each_online_pgdat(pgdat) {
3253 			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3254 			rstat = &mz->lruvec.reclaim_stat;
3255 
3256 			recent_rotated[0] += rstat->recent_rotated[0];
3257 			recent_rotated[1] += rstat->recent_rotated[1];
3258 			recent_scanned[0] += rstat->recent_scanned[0];
3259 			recent_scanned[1] += rstat->recent_scanned[1];
3260 		}
3261 		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3262 		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3263 		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3264 		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3265 	}
3266 #endif
3267 
3268 	return 0;
3269 }
3270 
3271 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3272 				      struct cftype *cft)
3273 {
3274 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3275 
3276 	return mem_cgroup_swappiness(memcg);
3277 }
3278 
3279 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3280 				       struct cftype *cft, u64 val)
3281 {
3282 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3283 
3284 	if (val > 100)
3285 		return -EINVAL;
3286 
3287 	if (css->parent)
3288 		memcg->swappiness = val;
3289 	else
3290 		vm_swappiness = val;
3291 
3292 	return 0;
3293 }
3294 
3295 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3296 {
3297 	struct mem_cgroup_threshold_ary *t;
3298 	unsigned long usage;
3299 	int i;
3300 
3301 	rcu_read_lock();
3302 	if (!swap)
3303 		t = rcu_dereference(memcg->thresholds.primary);
3304 	else
3305 		t = rcu_dereference(memcg->memsw_thresholds.primary);
3306 
3307 	if (!t)
3308 		goto unlock;
3309 
3310 	usage = mem_cgroup_usage(memcg, swap);
3311 
3312 	/*
3313 	 * current_threshold points to threshold just below or equal to usage.
3314 	 * If it's not true, a threshold was crossed after last
3315 	 * call of __mem_cgroup_threshold().
3316 	 */
3317 	i = t->current_threshold;
3318 
3319 	/*
3320 	 * Iterate backward over array of thresholds starting from
3321 	 * current_threshold and check if a threshold is crossed.
3322 	 * If none of thresholds below usage is crossed, we read
3323 	 * only one element of the array here.
3324 	 */
3325 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3326 		eventfd_signal(t->entries[i].eventfd, 1);
3327 
3328 	/* i = current_threshold + 1 */
3329 	i++;
3330 
3331 	/*
3332 	 * Iterate forward over array of thresholds starting from
3333 	 * current_threshold+1 and check if a threshold is crossed.
3334 	 * If none of thresholds above usage is crossed, we read
3335 	 * only one element of the array here.
3336 	 */
3337 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3338 		eventfd_signal(t->entries[i].eventfd, 1);
3339 
3340 	/* Update current_threshold */
3341 	t->current_threshold = i - 1;
3342 unlock:
3343 	rcu_read_unlock();
3344 }
3345 
3346 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3347 {
3348 	while (memcg) {
3349 		__mem_cgroup_threshold(memcg, false);
3350 		if (do_memsw_account())
3351 			__mem_cgroup_threshold(memcg, true);
3352 
3353 		memcg = parent_mem_cgroup(memcg);
3354 	}
3355 }
3356 
3357 static int compare_thresholds(const void *a, const void *b)
3358 {
3359 	const struct mem_cgroup_threshold *_a = a;
3360 	const struct mem_cgroup_threshold *_b = b;
3361 
3362 	if (_a->threshold > _b->threshold)
3363 		return 1;
3364 
3365 	if (_a->threshold < _b->threshold)
3366 		return -1;
3367 
3368 	return 0;
3369 }
3370 
3371 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3372 {
3373 	struct mem_cgroup_eventfd_list *ev;
3374 
3375 	spin_lock(&memcg_oom_lock);
3376 
3377 	list_for_each_entry(ev, &memcg->oom_notify, list)
3378 		eventfd_signal(ev->eventfd, 1);
3379 
3380 	spin_unlock(&memcg_oom_lock);
3381 	return 0;
3382 }
3383 
3384 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3385 {
3386 	struct mem_cgroup *iter;
3387 
3388 	for_each_mem_cgroup_tree(iter, memcg)
3389 		mem_cgroup_oom_notify_cb(iter);
3390 }
3391 
3392 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3393 	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3394 {
3395 	struct mem_cgroup_thresholds *thresholds;
3396 	struct mem_cgroup_threshold_ary *new;
3397 	unsigned long threshold;
3398 	unsigned long usage;
3399 	int i, size, ret;
3400 
3401 	ret = page_counter_memparse(args, "-1", &threshold);
3402 	if (ret)
3403 		return ret;
3404 
3405 	mutex_lock(&memcg->thresholds_lock);
3406 
3407 	if (type == _MEM) {
3408 		thresholds = &memcg->thresholds;
3409 		usage = mem_cgroup_usage(memcg, false);
3410 	} else if (type == _MEMSWAP) {
3411 		thresholds = &memcg->memsw_thresholds;
3412 		usage = mem_cgroup_usage(memcg, true);
3413 	} else
3414 		BUG();
3415 
3416 	/* Check if a threshold crossed before adding a new one */
3417 	if (thresholds->primary)
3418 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3419 
3420 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3421 
3422 	/* Allocate memory for new array of thresholds */
3423 	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3424 			GFP_KERNEL);
3425 	if (!new) {
3426 		ret = -ENOMEM;
3427 		goto unlock;
3428 	}
3429 	new->size = size;
3430 
3431 	/* Copy thresholds (if any) to new array */
3432 	if (thresholds->primary) {
3433 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3434 				sizeof(struct mem_cgroup_threshold));
3435 	}
3436 
3437 	/* Add new threshold */
3438 	new->entries[size - 1].eventfd = eventfd;
3439 	new->entries[size - 1].threshold = threshold;
3440 
3441 	/* Sort thresholds. Registering of new threshold isn't time-critical */
3442 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3443 			compare_thresholds, NULL);
3444 
3445 	/* Find current threshold */
3446 	new->current_threshold = -1;
3447 	for (i = 0; i < size; i++) {
3448 		if (new->entries[i].threshold <= usage) {
3449 			/*
3450 			 * new->current_threshold will not be used until
3451 			 * rcu_assign_pointer(), so it's safe to increment
3452 			 * it here.
3453 			 */
3454 			++new->current_threshold;
3455 		} else
3456 			break;
3457 	}
3458 
3459 	/* Free old spare buffer and save old primary buffer as spare */
3460 	kfree(thresholds->spare);
3461 	thresholds->spare = thresholds->primary;
3462 
3463 	rcu_assign_pointer(thresholds->primary, new);
3464 
3465 	/* To be sure that nobody uses thresholds */
3466 	synchronize_rcu();
3467 
3468 unlock:
3469 	mutex_unlock(&memcg->thresholds_lock);
3470 
3471 	return ret;
3472 }
3473 
3474 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3475 	struct eventfd_ctx *eventfd, const char *args)
3476 {
3477 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3478 }
3479 
3480 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3481 	struct eventfd_ctx *eventfd, const char *args)
3482 {
3483 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3484 }
3485 
3486 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3487 	struct eventfd_ctx *eventfd, enum res_type type)
3488 {
3489 	struct mem_cgroup_thresholds *thresholds;
3490 	struct mem_cgroup_threshold_ary *new;
3491 	unsigned long usage;
3492 	int i, j, size;
3493 
3494 	mutex_lock(&memcg->thresholds_lock);
3495 
3496 	if (type == _MEM) {
3497 		thresholds = &memcg->thresholds;
3498 		usage = mem_cgroup_usage(memcg, false);
3499 	} else if (type == _MEMSWAP) {
3500 		thresholds = &memcg->memsw_thresholds;
3501 		usage = mem_cgroup_usage(memcg, true);
3502 	} else
3503 		BUG();
3504 
3505 	if (!thresholds->primary)
3506 		goto unlock;
3507 
3508 	/* Check if a threshold crossed before removing */
3509 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3510 
3511 	/* Calculate new number of threshold */
3512 	size = 0;
3513 	for (i = 0; i < thresholds->primary->size; i++) {
3514 		if (thresholds->primary->entries[i].eventfd != eventfd)
3515 			size++;
3516 	}
3517 
3518 	new = thresholds->spare;
3519 
3520 	/* Set thresholds array to NULL if we don't have thresholds */
3521 	if (!size) {
3522 		kfree(new);
3523 		new = NULL;
3524 		goto swap_buffers;
3525 	}
3526 
3527 	new->size = size;
3528 
3529 	/* Copy thresholds and find current threshold */
3530 	new->current_threshold = -1;
3531 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3532 		if (thresholds->primary->entries[i].eventfd == eventfd)
3533 			continue;
3534 
3535 		new->entries[j] = thresholds->primary->entries[i];
3536 		if (new->entries[j].threshold <= usage) {
3537 			/*
3538 			 * new->current_threshold will not be used
3539 			 * until rcu_assign_pointer(), so it's safe to increment
3540 			 * it here.
3541 			 */
3542 			++new->current_threshold;
3543 		}
3544 		j++;
3545 	}
3546 
3547 swap_buffers:
3548 	/* Swap primary and spare array */
3549 	thresholds->spare = thresholds->primary;
3550 
3551 	rcu_assign_pointer(thresholds->primary, new);
3552 
3553 	/* To be sure that nobody uses thresholds */
3554 	synchronize_rcu();
3555 
3556 	/* If all events are unregistered, free the spare array */
3557 	if (!new) {
3558 		kfree(thresholds->spare);
3559 		thresholds->spare = NULL;
3560 	}
3561 unlock:
3562 	mutex_unlock(&memcg->thresholds_lock);
3563 }
3564 
3565 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3566 	struct eventfd_ctx *eventfd)
3567 {
3568 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3569 }
3570 
3571 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3572 	struct eventfd_ctx *eventfd)
3573 {
3574 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3575 }
3576 
3577 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3578 	struct eventfd_ctx *eventfd, const char *args)
3579 {
3580 	struct mem_cgroup_eventfd_list *event;
3581 
3582 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
3583 	if (!event)
3584 		return -ENOMEM;
3585 
3586 	spin_lock(&memcg_oom_lock);
3587 
3588 	event->eventfd = eventfd;
3589 	list_add(&event->list, &memcg->oom_notify);
3590 
3591 	/* already in OOM ? */
3592 	if (memcg->under_oom)
3593 		eventfd_signal(eventfd, 1);
3594 	spin_unlock(&memcg_oom_lock);
3595 
3596 	return 0;
3597 }
3598 
3599 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3600 	struct eventfd_ctx *eventfd)
3601 {
3602 	struct mem_cgroup_eventfd_list *ev, *tmp;
3603 
3604 	spin_lock(&memcg_oom_lock);
3605 
3606 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3607 		if (ev->eventfd == eventfd) {
3608 			list_del(&ev->list);
3609 			kfree(ev);
3610 		}
3611 	}
3612 
3613 	spin_unlock(&memcg_oom_lock);
3614 }
3615 
3616 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3617 {
3618 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3619 
3620 	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3621 	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3622 	seq_printf(sf, "oom_kill %lu\n", memcg_sum_events(memcg, OOM_KILL));
3623 	return 0;
3624 }
3625 
3626 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3627 	struct cftype *cft, u64 val)
3628 {
3629 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3630 
3631 	/* cannot set to root cgroup and only 0 and 1 are allowed */
3632 	if (!css->parent || !((val == 0) || (val == 1)))
3633 		return -EINVAL;
3634 
3635 	memcg->oom_kill_disable = val;
3636 	if (!val)
3637 		memcg_oom_recover(memcg);
3638 
3639 	return 0;
3640 }
3641 
3642 #ifdef CONFIG_CGROUP_WRITEBACK
3643 
3644 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3645 {
3646 	return &memcg->cgwb_list;
3647 }
3648 
3649 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3650 {
3651 	return wb_domain_init(&memcg->cgwb_domain, gfp);
3652 }
3653 
3654 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3655 {
3656 	wb_domain_exit(&memcg->cgwb_domain);
3657 }
3658 
3659 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3660 {
3661 	wb_domain_size_changed(&memcg->cgwb_domain);
3662 }
3663 
3664 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3665 {
3666 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3667 
3668 	if (!memcg->css.parent)
3669 		return NULL;
3670 
3671 	return &memcg->cgwb_domain;
3672 }
3673 
3674 /**
3675  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3676  * @wb: bdi_writeback in question
3677  * @pfilepages: out parameter for number of file pages
3678  * @pheadroom: out parameter for number of allocatable pages according to memcg
3679  * @pdirty: out parameter for number of dirty pages
3680  * @pwriteback: out parameter for number of pages under writeback
3681  *
3682  * Determine the numbers of file, headroom, dirty, and writeback pages in
3683  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
3684  * is a bit more involved.
3685  *
3686  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
3687  * headroom is calculated as the lowest headroom of itself and the
3688  * ancestors.  Note that this doesn't consider the actual amount of
3689  * available memory in the system.  The caller should further cap
3690  * *@pheadroom accordingly.
3691  */
3692 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3693 			 unsigned long *pheadroom, unsigned long *pdirty,
3694 			 unsigned long *pwriteback)
3695 {
3696 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3697 	struct mem_cgroup *parent;
3698 
3699 	*pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
3700 
3701 	/* this should eventually include NR_UNSTABLE_NFS */
3702 	*pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
3703 	*pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3704 						     (1 << LRU_ACTIVE_FILE));
3705 	*pheadroom = PAGE_COUNTER_MAX;
3706 
3707 	while ((parent = parent_mem_cgroup(memcg))) {
3708 		unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3709 		unsigned long used = page_counter_read(&memcg->memory);
3710 
3711 		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3712 		memcg = parent;
3713 	}
3714 }
3715 
3716 #else	/* CONFIG_CGROUP_WRITEBACK */
3717 
3718 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3719 {
3720 	return 0;
3721 }
3722 
3723 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3724 {
3725 }
3726 
3727 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3728 {
3729 }
3730 
3731 #endif	/* CONFIG_CGROUP_WRITEBACK */
3732 
3733 /*
3734  * DO NOT USE IN NEW FILES.
3735  *
3736  * "cgroup.event_control" implementation.
3737  *
3738  * This is way over-engineered.  It tries to support fully configurable
3739  * events for each user.  Such level of flexibility is completely
3740  * unnecessary especially in the light of the planned unified hierarchy.
3741  *
3742  * Please deprecate this and replace with something simpler if at all
3743  * possible.
3744  */
3745 
3746 /*
3747  * Unregister event and free resources.
3748  *
3749  * Gets called from workqueue.
3750  */
3751 static void memcg_event_remove(struct work_struct *work)
3752 {
3753 	struct mem_cgroup_event *event =
3754 		container_of(work, struct mem_cgroup_event, remove);
3755 	struct mem_cgroup *memcg = event->memcg;
3756 
3757 	remove_wait_queue(event->wqh, &event->wait);
3758 
3759 	event->unregister_event(memcg, event->eventfd);
3760 
3761 	/* Notify userspace the event is going away. */
3762 	eventfd_signal(event->eventfd, 1);
3763 
3764 	eventfd_ctx_put(event->eventfd);
3765 	kfree(event);
3766 	css_put(&memcg->css);
3767 }
3768 
3769 /*
3770  * Gets called on POLLHUP on eventfd when user closes it.
3771  *
3772  * Called with wqh->lock held and interrupts disabled.
3773  */
3774 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3775 			    int sync, void *key)
3776 {
3777 	struct mem_cgroup_event *event =
3778 		container_of(wait, struct mem_cgroup_event, wait);
3779 	struct mem_cgroup *memcg = event->memcg;
3780 	unsigned long flags = (unsigned long)key;
3781 
3782 	if (flags & POLLHUP) {
3783 		/*
3784 		 * If the event has been detached at cgroup removal, we
3785 		 * can simply return knowing the other side will cleanup
3786 		 * for us.
3787 		 *
3788 		 * We can't race against event freeing since the other
3789 		 * side will require wqh->lock via remove_wait_queue(),
3790 		 * which we hold.
3791 		 */
3792 		spin_lock(&memcg->event_list_lock);
3793 		if (!list_empty(&event->list)) {
3794 			list_del_init(&event->list);
3795 			/*
3796 			 * We are in atomic context, but cgroup_event_remove()
3797 			 * may sleep, so we have to call it in workqueue.
3798 			 */
3799 			schedule_work(&event->remove);
3800 		}
3801 		spin_unlock(&memcg->event_list_lock);
3802 	}
3803 
3804 	return 0;
3805 }
3806 
3807 static void memcg_event_ptable_queue_proc(struct file *file,
3808 		wait_queue_head_t *wqh, poll_table *pt)
3809 {
3810 	struct mem_cgroup_event *event =
3811 		container_of(pt, struct mem_cgroup_event, pt);
3812 
3813 	event->wqh = wqh;
3814 	add_wait_queue(wqh, &event->wait);
3815 }
3816 
3817 /*
3818  * DO NOT USE IN NEW FILES.
3819  *
3820  * Parse input and register new cgroup event handler.
3821  *
3822  * Input must be in format '<event_fd> <control_fd> <args>'.
3823  * Interpretation of args is defined by control file implementation.
3824  */
3825 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3826 					 char *buf, size_t nbytes, loff_t off)
3827 {
3828 	struct cgroup_subsys_state *css = of_css(of);
3829 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3830 	struct mem_cgroup_event *event;
3831 	struct cgroup_subsys_state *cfile_css;
3832 	unsigned int efd, cfd;
3833 	struct fd efile;
3834 	struct fd cfile;
3835 	const char *name;
3836 	char *endp;
3837 	int ret;
3838 
3839 	buf = strstrip(buf);
3840 
3841 	efd = simple_strtoul(buf, &endp, 10);
3842 	if (*endp != ' ')
3843 		return -EINVAL;
3844 	buf = endp + 1;
3845 
3846 	cfd = simple_strtoul(buf, &endp, 10);
3847 	if ((*endp != ' ') && (*endp != '\0'))
3848 		return -EINVAL;
3849 	buf = endp + 1;
3850 
3851 	event = kzalloc(sizeof(*event), GFP_KERNEL);
3852 	if (!event)
3853 		return -ENOMEM;
3854 
3855 	event->memcg = memcg;
3856 	INIT_LIST_HEAD(&event->list);
3857 	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3858 	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3859 	INIT_WORK(&event->remove, memcg_event_remove);
3860 
3861 	efile = fdget(efd);
3862 	if (!efile.file) {
3863 		ret = -EBADF;
3864 		goto out_kfree;
3865 	}
3866 
3867 	event->eventfd = eventfd_ctx_fileget(efile.file);
3868 	if (IS_ERR(event->eventfd)) {
3869 		ret = PTR_ERR(event->eventfd);
3870 		goto out_put_efile;
3871 	}
3872 
3873 	cfile = fdget(cfd);
3874 	if (!cfile.file) {
3875 		ret = -EBADF;
3876 		goto out_put_eventfd;
3877 	}
3878 
3879 	/* the process need read permission on control file */
3880 	/* AV: shouldn't we check that it's been opened for read instead? */
3881 	ret = inode_permission(file_inode(cfile.file), MAY_READ);
3882 	if (ret < 0)
3883 		goto out_put_cfile;
3884 
3885 	/*
3886 	 * Determine the event callbacks and set them in @event.  This used
3887 	 * to be done via struct cftype but cgroup core no longer knows
3888 	 * about these events.  The following is crude but the whole thing
3889 	 * is for compatibility anyway.
3890 	 *
3891 	 * DO NOT ADD NEW FILES.
3892 	 */
3893 	name = cfile.file->f_path.dentry->d_name.name;
3894 
3895 	if (!strcmp(name, "memory.usage_in_bytes")) {
3896 		event->register_event = mem_cgroup_usage_register_event;
3897 		event->unregister_event = mem_cgroup_usage_unregister_event;
3898 	} else if (!strcmp(name, "memory.oom_control")) {
3899 		event->register_event = mem_cgroup_oom_register_event;
3900 		event->unregister_event = mem_cgroup_oom_unregister_event;
3901 	} else if (!strcmp(name, "memory.pressure_level")) {
3902 		event->register_event = vmpressure_register_event;
3903 		event->unregister_event = vmpressure_unregister_event;
3904 	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3905 		event->register_event = memsw_cgroup_usage_register_event;
3906 		event->unregister_event = memsw_cgroup_usage_unregister_event;
3907 	} else {
3908 		ret = -EINVAL;
3909 		goto out_put_cfile;
3910 	}
3911 
3912 	/*
3913 	 * Verify @cfile should belong to @css.  Also, remaining events are
3914 	 * automatically removed on cgroup destruction but the removal is
3915 	 * asynchronous, so take an extra ref on @css.
3916 	 */
3917 	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3918 					       &memory_cgrp_subsys);
3919 	ret = -EINVAL;
3920 	if (IS_ERR(cfile_css))
3921 		goto out_put_cfile;
3922 	if (cfile_css != css) {
3923 		css_put(cfile_css);
3924 		goto out_put_cfile;
3925 	}
3926 
3927 	ret = event->register_event(memcg, event->eventfd, buf);
3928 	if (ret)
3929 		goto out_put_css;
3930 
3931 	efile.file->f_op->poll(efile.file, &event->pt);
3932 
3933 	spin_lock(&memcg->event_list_lock);
3934 	list_add(&event->list, &memcg->event_list);
3935 	spin_unlock(&memcg->event_list_lock);
3936 
3937 	fdput(cfile);
3938 	fdput(efile);
3939 
3940 	return nbytes;
3941 
3942 out_put_css:
3943 	css_put(css);
3944 out_put_cfile:
3945 	fdput(cfile);
3946 out_put_eventfd:
3947 	eventfd_ctx_put(event->eventfd);
3948 out_put_efile:
3949 	fdput(efile);
3950 out_kfree:
3951 	kfree(event);
3952 
3953 	return ret;
3954 }
3955 
3956 static struct cftype mem_cgroup_legacy_files[] = {
3957 	{
3958 		.name = "usage_in_bytes",
3959 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3960 		.read_u64 = mem_cgroup_read_u64,
3961 	},
3962 	{
3963 		.name = "max_usage_in_bytes",
3964 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3965 		.write = mem_cgroup_reset,
3966 		.read_u64 = mem_cgroup_read_u64,
3967 	},
3968 	{
3969 		.name = "limit_in_bytes",
3970 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3971 		.write = mem_cgroup_write,
3972 		.read_u64 = mem_cgroup_read_u64,
3973 	},
3974 	{
3975 		.name = "soft_limit_in_bytes",
3976 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3977 		.write = mem_cgroup_write,
3978 		.read_u64 = mem_cgroup_read_u64,
3979 	},
3980 	{
3981 		.name = "failcnt",
3982 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3983 		.write = mem_cgroup_reset,
3984 		.read_u64 = mem_cgroup_read_u64,
3985 	},
3986 	{
3987 		.name = "stat",
3988 		.seq_show = memcg_stat_show,
3989 	},
3990 	{
3991 		.name = "force_empty",
3992 		.write = mem_cgroup_force_empty_write,
3993 	},
3994 	{
3995 		.name = "use_hierarchy",
3996 		.write_u64 = mem_cgroup_hierarchy_write,
3997 		.read_u64 = mem_cgroup_hierarchy_read,
3998 	},
3999 	{
4000 		.name = "cgroup.event_control",		/* XXX: for compat */
4001 		.write = memcg_write_event_control,
4002 		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4003 	},
4004 	{
4005 		.name = "swappiness",
4006 		.read_u64 = mem_cgroup_swappiness_read,
4007 		.write_u64 = mem_cgroup_swappiness_write,
4008 	},
4009 	{
4010 		.name = "move_charge_at_immigrate",
4011 		.read_u64 = mem_cgroup_move_charge_read,
4012 		.write_u64 = mem_cgroup_move_charge_write,
4013 	},
4014 	{
4015 		.name = "oom_control",
4016 		.seq_show = mem_cgroup_oom_control_read,
4017 		.write_u64 = mem_cgroup_oom_control_write,
4018 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4019 	},
4020 	{
4021 		.name = "pressure_level",
4022 	},
4023 #ifdef CONFIG_NUMA
4024 	{
4025 		.name = "numa_stat",
4026 		.seq_show = memcg_numa_stat_show,
4027 	},
4028 #endif
4029 	{
4030 		.name = "kmem.limit_in_bytes",
4031 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4032 		.write = mem_cgroup_write,
4033 		.read_u64 = mem_cgroup_read_u64,
4034 	},
4035 	{
4036 		.name = "kmem.usage_in_bytes",
4037 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4038 		.read_u64 = mem_cgroup_read_u64,
4039 	},
4040 	{
4041 		.name = "kmem.failcnt",
4042 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4043 		.write = mem_cgroup_reset,
4044 		.read_u64 = mem_cgroup_read_u64,
4045 	},
4046 	{
4047 		.name = "kmem.max_usage_in_bytes",
4048 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4049 		.write = mem_cgroup_reset,
4050 		.read_u64 = mem_cgroup_read_u64,
4051 	},
4052 #ifdef CONFIG_SLABINFO
4053 	{
4054 		.name = "kmem.slabinfo",
4055 		.seq_start = memcg_slab_start,
4056 		.seq_next = memcg_slab_next,
4057 		.seq_stop = memcg_slab_stop,
4058 		.seq_show = memcg_slab_show,
4059 	},
4060 #endif
4061 	{
4062 		.name = "kmem.tcp.limit_in_bytes",
4063 		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4064 		.write = mem_cgroup_write,
4065 		.read_u64 = mem_cgroup_read_u64,
4066 	},
4067 	{
4068 		.name = "kmem.tcp.usage_in_bytes",
4069 		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4070 		.read_u64 = mem_cgroup_read_u64,
4071 	},
4072 	{
4073 		.name = "kmem.tcp.failcnt",
4074 		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4075 		.write = mem_cgroup_reset,
4076 		.read_u64 = mem_cgroup_read_u64,
4077 	},
4078 	{
4079 		.name = "kmem.tcp.max_usage_in_bytes",
4080 		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4081 		.write = mem_cgroup_reset,
4082 		.read_u64 = mem_cgroup_read_u64,
4083 	},
4084 	{ },	/* terminate */
4085 };
4086 
4087 /*
4088  * Private memory cgroup IDR
4089  *
4090  * Swap-out records and page cache shadow entries need to store memcg
4091  * references in constrained space, so we maintain an ID space that is
4092  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4093  * memory-controlled cgroups to 64k.
4094  *
4095  * However, there usually are many references to the oflline CSS after
4096  * the cgroup has been destroyed, such as page cache or reclaimable
4097  * slab objects, that don't need to hang on to the ID. We want to keep
4098  * those dead CSS from occupying IDs, or we might quickly exhaust the
4099  * relatively small ID space and prevent the creation of new cgroups
4100  * even when there are much fewer than 64k cgroups - possibly none.
4101  *
4102  * Maintain a private 16-bit ID space for memcg, and allow the ID to
4103  * be freed and recycled when it's no longer needed, which is usually
4104  * when the CSS is offlined.
4105  *
4106  * The only exception to that are records of swapped out tmpfs/shmem
4107  * pages that need to be attributed to live ancestors on swapin. But
4108  * those references are manageable from userspace.
4109  */
4110 
4111 static DEFINE_IDR(mem_cgroup_idr);
4112 
4113 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4114 {
4115 	VM_BUG_ON(atomic_read(&memcg->id.ref) <= 0);
4116 	atomic_add(n, &memcg->id.ref);
4117 }
4118 
4119 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4120 {
4121 	VM_BUG_ON(atomic_read(&memcg->id.ref) < n);
4122 	if (atomic_sub_and_test(n, &memcg->id.ref)) {
4123 		idr_remove(&mem_cgroup_idr, memcg->id.id);
4124 		memcg->id.id = 0;
4125 
4126 		/* Memcg ID pins CSS */
4127 		css_put(&memcg->css);
4128 	}
4129 }
4130 
4131 static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4132 {
4133 	mem_cgroup_id_get_many(memcg, 1);
4134 }
4135 
4136 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4137 {
4138 	mem_cgroup_id_put_many(memcg, 1);
4139 }
4140 
4141 /**
4142  * mem_cgroup_from_id - look up a memcg from a memcg id
4143  * @id: the memcg id to look up
4144  *
4145  * Caller must hold rcu_read_lock().
4146  */
4147 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4148 {
4149 	WARN_ON_ONCE(!rcu_read_lock_held());
4150 	return idr_find(&mem_cgroup_idr, id);
4151 }
4152 
4153 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4154 {
4155 	struct mem_cgroup_per_node *pn;
4156 	int tmp = node;
4157 	/*
4158 	 * This routine is called against possible nodes.
4159 	 * But it's BUG to call kmalloc() against offline node.
4160 	 *
4161 	 * TODO: this routine can waste much memory for nodes which will
4162 	 *       never be onlined. It's better to use memory hotplug callback
4163 	 *       function.
4164 	 */
4165 	if (!node_state(node, N_NORMAL_MEMORY))
4166 		tmp = -1;
4167 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4168 	if (!pn)
4169 		return 1;
4170 
4171 	pn->lruvec_stat = alloc_percpu(struct lruvec_stat);
4172 	if (!pn->lruvec_stat) {
4173 		kfree(pn);
4174 		return 1;
4175 	}
4176 
4177 	lruvec_init(&pn->lruvec);
4178 	pn->usage_in_excess = 0;
4179 	pn->on_tree = false;
4180 	pn->memcg = memcg;
4181 
4182 	memcg->nodeinfo[node] = pn;
4183 	return 0;
4184 }
4185 
4186 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4187 {
4188 	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4189 
4190 	free_percpu(pn->lruvec_stat);
4191 	kfree(pn);
4192 }
4193 
4194 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4195 {
4196 	int node;
4197 
4198 	for_each_node(node)
4199 		free_mem_cgroup_per_node_info(memcg, node);
4200 	free_percpu(memcg->stat);
4201 	kfree(memcg);
4202 }
4203 
4204 static void mem_cgroup_free(struct mem_cgroup *memcg)
4205 {
4206 	memcg_wb_domain_exit(memcg);
4207 	__mem_cgroup_free(memcg);
4208 }
4209 
4210 static struct mem_cgroup *mem_cgroup_alloc(void)
4211 {
4212 	struct mem_cgroup *memcg;
4213 	size_t size;
4214 	int node;
4215 
4216 	size = sizeof(struct mem_cgroup);
4217 	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4218 
4219 	memcg = kzalloc(size, GFP_KERNEL);
4220 	if (!memcg)
4221 		return NULL;
4222 
4223 	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4224 				 1, MEM_CGROUP_ID_MAX,
4225 				 GFP_KERNEL);
4226 	if (memcg->id.id < 0)
4227 		goto fail;
4228 
4229 	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4230 	if (!memcg->stat)
4231 		goto fail;
4232 
4233 	for_each_node(node)
4234 		if (alloc_mem_cgroup_per_node_info(memcg, node))
4235 			goto fail;
4236 
4237 	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4238 		goto fail;
4239 
4240 	INIT_WORK(&memcg->high_work, high_work_func);
4241 	memcg->last_scanned_node = MAX_NUMNODES;
4242 	INIT_LIST_HEAD(&memcg->oom_notify);
4243 	mutex_init(&memcg->thresholds_lock);
4244 	spin_lock_init(&memcg->move_lock);
4245 	vmpressure_init(&memcg->vmpressure);
4246 	INIT_LIST_HEAD(&memcg->event_list);
4247 	spin_lock_init(&memcg->event_list_lock);
4248 	memcg->socket_pressure = jiffies;
4249 #ifndef CONFIG_SLOB
4250 	memcg->kmemcg_id = -1;
4251 #endif
4252 #ifdef CONFIG_CGROUP_WRITEBACK
4253 	INIT_LIST_HEAD(&memcg->cgwb_list);
4254 #endif
4255 	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4256 	return memcg;
4257 fail:
4258 	if (memcg->id.id > 0)
4259 		idr_remove(&mem_cgroup_idr, memcg->id.id);
4260 	__mem_cgroup_free(memcg);
4261 	return NULL;
4262 }
4263 
4264 static struct cgroup_subsys_state * __ref
4265 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4266 {
4267 	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4268 	struct mem_cgroup *memcg;
4269 	long error = -ENOMEM;
4270 
4271 	memcg = mem_cgroup_alloc();
4272 	if (!memcg)
4273 		return ERR_PTR(error);
4274 
4275 	memcg->high = PAGE_COUNTER_MAX;
4276 	memcg->soft_limit = PAGE_COUNTER_MAX;
4277 	if (parent) {
4278 		memcg->swappiness = mem_cgroup_swappiness(parent);
4279 		memcg->oom_kill_disable = parent->oom_kill_disable;
4280 	}
4281 	if (parent && parent->use_hierarchy) {
4282 		memcg->use_hierarchy = true;
4283 		page_counter_init(&memcg->memory, &parent->memory);
4284 		page_counter_init(&memcg->swap, &parent->swap);
4285 		page_counter_init(&memcg->memsw, &parent->memsw);
4286 		page_counter_init(&memcg->kmem, &parent->kmem);
4287 		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4288 	} else {
4289 		page_counter_init(&memcg->memory, NULL);
4290 		page_counter_init(&memcg->swap, NULL);
4291 		page_counter_init(&memcg->memsw, NULL);
4292 		page_counter_init(&memcg->kmem, NULL);
4293 		page_counter_init(&memcg->tcpmem, NULL);
4294 		/*
4295 		 * Deeper hierachy with use_hierarchy == false doesn't make
4296 		 * much sense so let cgroup subsystem know about this
4297 		 * unfortunate state in our controller.
4298 		 */
4299 		if (parent != root_mem_cgroup)
4300 			memory_cgrp_subsys.broken_hierarchy = true;
4301 	}
4302 
4303 	/* The following stuff does not apply to the root */
4304 	if (!parent) {
4305 		root_mem_cgroup = memcg;
4306 		return &memcg->css;
4307 	}
4308 
4309 	error = memcg_online_kmem(memcg);
4310 	if (error)
4311 		goto fail;
4312 
4313 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4314 		static_branch_inc(&memcg_sockets_enabled_key);
4315 
4316 	return &memcg->css;
4317 fail:
4318 	mem_cgroup_free(memcg);
4319 	return ERR_PTR(-ENOMEM);
4320 }
4321 
4322 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4323 {
4324 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4325 
4326 	/* Online state pins memcg ID, memcg ID pins CSS */
4327 	atomic_set(&memcg->id.ref, 1);
4328 	css_get(css);
4329 	return 0;
4330 }
4331 
4332 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4333 {
4334 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4335 	struct mem_cgroup_event *event, *tmp;
4336 
4337 	/*
4338 	 * Unregister events and notify userspace.
4339 	 * Notify userspace about cgroup removing only after rmdir of cgroup
4340 	 * directory to avoid race between userspace and kernelspace.
4341 	 */
4342 	spin_lock(&memcg->event_list_lock);
4343 	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4344 		list_del_init(&event->list);
4345 		schedule_work(&event->remove);
4346 	}
4347 	spin_unlock(&memcg->event_list_lock);
4348 
4349 	memcg->low = 0;
4350 
4351 	memcg_offline_kmem(memcg);
4352 	wb_memcg_offline(memcg);
4353 
4354 	mem_cgroup_id_put(memcg);
4355 }
4356 
4357 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4358 {
4359 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4360 
4361 	invalidate_reclaim_iterators(memcg);
4362 }
4363 
4364 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4365 {
4366 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4367 
4368 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4369 		static_branch_dec(&memcg_sockets_enabled_key);
4370 
4371 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4372 		static_branch_dec(&memcg_sockets_enabled_key);
4373 
4374 	vmpressure_cleanup(&memcg->vmpressure);
4375 	cancel_work_sync(&memcg->high_work);
4376 	mem_cgroup_remove_from_trees(memcg);
4377 	memcg_free_kmem(memcg);
4378 	mem_cgroup_free(memcg);
4379 }
4380 
4381 /**
4382  * mem_cgroup_css_reset - reset the states of a mem_cgroup
4383  * @css: the target css
4384  *
4385  * Reset the states of the mem_cgroup associated with @css.  This is
4386  * invoked when the userland requests disabling on the default hierarchy
4387  * but the memcg is pinned through dependency.  The memcg should stop
4388  * applying policies and should revert to the vanilla state as it may be
4389  * made visible again.
4390  *
4391  * The current implementation only resets the essential configurations.
4392  * This needs to be expanded to cover all the visible parts.
4393  */
4394 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4395 {
4396 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4397 
4398 	page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4399 	page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4400 	page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4401 	page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4402 	page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4403 	memcg->low = 0;
4404 	memcg->high = PAGE_COUNTER_MAX;
4405 	memcg->soft_limit = PAGE_COUNTER_MAX;
4406 	memcg_wb_domain_size_changed(memcg);
4407 }
4408 
4409 #ifdef CONFIG_MMU
4410 /* Handlers for move charge at task migration. */
4411 static int mem_cgroup_do_precharge(unsigned long count)
4412 {
4413 	int ret;
4414 
4415 	/* Try a single bulk charge without reclaim first, kswapd may wake */
4416 	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4417 	if (!ret) {
4418 		mc.precharge += count;
4419 		return ret;
4420 	}
4421 
4422 	/* Try charges one by one with reclaim, but do not retry */
4423 	while (count--) {
4424 		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
4425 		if (ret)
4426 			return ret;
4427 		mc.precharge++;
4428 		cond_resched();
4429 	}
4430 	return 0;
4431 }
4432 
4433 union mc_target {
4434 	struct page	*page;
4435 	swp_entry_t	ent;
4436 };
4437 
4438 enum mc_target_type {
4439 	MC_TARGET_NONE = 0,
4440 	MC_TARGET_PAGE,
4441 	MC_TARGET_SWAP,
4442 	MC_TARGET_DEVICE,
4443 };
4444 
4445 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4446 						unsigned long addr, pte_t ptent)
4447 {
4448 	struct page *page = _vm_normal_page(vma, addr, ptent, true);
4449 
4450 	if (!page || !page_mapped(page))
4451 		return NULL;
4452 	if (PageAnon(page)) {
4453 		if (!(mc.flags & MOVE_ANON))
4454 			return NULL;
4455 	} else {
4456 		if (!(mc.flags & MOVE_FILE))
4457 			return NULL;
4458 	}
4459 	if (!get_page_unless_zero(page))
4460 		return NULL;
4461 
4462 	return page;
4463 }
4464 
4465 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
4466 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4467 			pte_t ptent, swp_entry_t *entry)
4468 {
4469 	struct page *page = NULL;
4470 	swp_entry_t ent = pte_to_swp_entry(ptent);
4471 
4472 	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4473 		return NULL;
4474 
4475 	/*
4476 	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
4477 	 * a device and because they are not accessible by CPU they are store
4478 	 * as special swap entry in the CPU page table.
4479 	 */
4480 	if (is_device_private_entry(ent)) {
4481 		page = device_private_entry_to_page(ent);
4482 		/*
4483 		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
4484 		 * a refcount of 1 when free (unlike normal page)
4485 		 */
4486 		if (!page_ref_add_unless(page, 1, 1))
4487 			return NULL;
4488 		return page;
4489 	}
4490 
4491 	/*
4492 	 * Because lookup_swap_cache() updates some statistics counter,
4493 	 * we call find_get_page() with swapper_space directly.
4494 	 */
4495 	page = find_get_page(swap_address_space(ent), swp_offset(ent));
4496 	if (do_memsw_account())
4497 		entry->val = ent.val;
4498 
4499 	return page;
4500 }
4501 #else
4502 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4503 			pte_t ptent, swp_entry_t *entry)
4504 {
4505 	return NULL;
4506 }
4507 #endif
4508 
4509 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4510 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4511 {
4512 	struct page *page = NULL;
4513 	struct address_space *mapping;
4514 	pgoff_t pgoff;
4515 
4516 	if (!vma->vm_file) /* anonymous vma */
4517 		return NULL;
4518 	if (!(mc.flags & MOVE_FILE))
4519 		return NULL;
4520 
4521 	mapping = vma->vm_file->f_mapping;
4522 	pgoff = linear_page_index(vma, addr);
4523 
4524 	/* page is moved even if it's not RSS of this task(page-faulted). */
4525 #ifdef CONFIG_SWAP
4526 	/* shmem/tmpfs may report page out on swap: account for that too. */
4527 	if (shmem_mapping(mapping)) {
4528 		page = find_get_entry(mapping, pgoff);
4529 		if (radix_tree_exceptional_entry(page)) {
4530 			swp_entry_t swp = radix_to_swp_entry(page);
4531 			if (do_memsw_account())
4532 				*entry = swp;
4533 			page = find_get_page(swap_address_space(swp),
4534 					     swp_offset(swp));
4535 		}
4536 	} else
4537 		page = find_get_page(mapping, pgoff);
4538 #else
4539 	page = find_get_page(mapping, pgoff);
4540 #endif
4541 	return page;
4542 }
4543 
4544 /**
4545  * mem_cgroup_move_account - move account of the page
4546  * @page: the page
4547  * @compound: charge the page as compound or small page
4548  * @from: mem_cgroup which the page is moved from.
4549  * @to:	mem_cgroup which the page is moved to. @from != @to.
4550  *
4551  * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4552  *
4553  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4554  * from old cgroup.
4555  */
4556 static int mem_cgroup_move_account(struct page *page,
4557 				   bool compound,
4558 				   struct mem_cgroup *from,
4559 				   struct mem_cgroup *to)
4560 {
4561 	unsigned long flags;
4562 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4563 	int ret;
4564 	bool anon;
4565 
4566 	VM_BUG_ON(from == to);
4567 	VM_BUG_ON_PAGE(PageLRU(page), page);
4568 	VM_BUG_ON(compound && !PageTransHuge(page));
4569 
4570 	/*
4571 	 * Prevent mem_cgroup_migrate() from looking at
4572 	 * page->mem_cgroup of its source page while we change it.
4573 	 */
4574 	ret = -EBUSY;
4575 	if (!trylock_page(page))
4576 		goto out;
4577 
4578 	ret = -EINVAL;
4579 	if (page->mem_cgroup != from)
4580 		goto out_unlock;
4581 
4582 	anon = PageAnon(page);
4583 
4584 	spin_lock_irqsave(&from->move_lock, flags);
4585 
4586 	if (!anon && page_mapped(page)) {
4587 		__this_cpu_sub(from->stat->count[NR_FILE_MAPPED], nr_pages);
4588 		__this_cpu_add(to->stat->count[NR_FILE_MAPPED], nr_pages);
4589 	}
4590 
4591 	/*
4592 	 * move_lock grabbed above and caller set from->moving_account, so
4593 	 * mod_memcg_page_state will serialize updates to PageDirty.
4594 	 * So mapping should be stable for dirty pages.
4595 	 */
4596 	if (!anon && PageDirty(page)) {
4597 		struct address_space *mapping = page_mapping(page);
4598 
4599 		if (mapping_cap_account_dirty(mapping)) {
4600 			__this_cpu_sub(from->stat->count[NR_FILE_DIRTY],
4601 				       nr_pages);
4602 			__this_cpu_add(to->stat->count[NR_FILE_DIRTY],
4603 				       nr_pages);
4604 		}
4605 	}
4606 
4607 	if (PageWriteback(page)) {
4608 		__this_cpu_sub(from->stat->count[NR_WRITEBACK], nr_pages);
4609 		__this_cpu_add(to->stat->count[NR_WRITEBACK], nr_pages);
4610 	}
4611 
4612 	/*
4613 	 * It is safe to change page->mem_cgroup here because the page
4614 	 * is referenced, charged, and isolated - we can't race with
4615 	 * uncharging, charging, migration, or LRU putback.
4616 	 */
4617 
4618 	/* caller should have done css_get */
4619 	page->mem_cgroup = to;
4620 	spin_unlock_irqrestore(&from->move_lock, flags);
4621 
4622 	ret = 0;
4623 
4624 	local_irq_disable();
4625 	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4626 	memcg_check_events(to, page);
4627 	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4628 	memcg_check_events(from, page);
4629 	local_irq_enable();
4630 out_unlock:
4631 	unlock_page(page);
4632 out:
4633 	return ret;
4634 }
4635 
4636 /**
4637  * get_mctgt_type - get target type of moving charge
4638  * @vma: the vma the pte to be checked belongs
4639  * @addr: the address corresponding to the pte to be checked
4640  * @ptent: the pte to be checked
4641  * @target: the pointer the target page or swap ent will be stored(can be NULL)
4642  *
4643  * Returns
4644  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
4645  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4646  *     move charge. if @target is not NULL, the page is stored in target->page
4647  *     with extra refcnt got(Callers should handle it).
4648  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4649  *     target for charge migration. if @target is not NULL, the entry is stored
4650  *     in target->ent.
4651  *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PUBLIC
4652  *     or MEMORY_DEVICE_PRIVATE (so ZONE_DEVICE page and thus not on the lru).
4653  *     For now we such page is charge like a regular page would be as for all
4654  *     intent and purposes it is just special memory taking the place of a
4655  *     regular page.
4656  *
4657  *     See Documentations/vm/hmm.txt and include/linux/hmm.h
4658  *
4659  * Called with pte lock held.
4660  */
4661 
4662 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4663 		unsigned long addr, pte_t ptent, union mc_target *target)
4664 {
4665 	struct page *page = NULL;
4666 	enum mc_target_type ret = MC_TARGET_NONE;
4667 	swp_entry_t ent = { .val = 0 };
4668 
4669 	if (pte_present(ptent))
4670 		page = mc_handle_present_pte(vma, addr, ptent);
4671 	else if (is_swap_pte(ptent))
4672 		page = mc_handle_swap_pte(vma, ptent, &ent);
4673 	else if (pte_none(ptent))
4674 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
4675 
4676 	if (!page && !ent.val)
4677 		return ret;
4678 	if (page) {
4679 		/*
4680 		 * Do only loose check w/o serialization.
4681 		 * mem_cgroup_move_account() checks the page is valid or
4682 		 * not under LRU exclusion.
4683 		 */
4684 		if (page->mem_cgroup == mc.from) {
4685 			ret = MC_TARGET_PAGE;
4686 			if (is_device_private_page(page) ||
4687 			    is_device_public_page(page))
4688 				ret = MC_TARGET_DEVICE;
4689 			if (target)
4690 				target->page = page;
4691 		}
4692 		if (!ret || !target)
4693 			put_page(page);
4694 	}
4695 	/*
4696 	 * There is a swap entry and a page doesn't exist or isn't charged.
4697 	 * But we cannot move a tail-page in a THP.
4698 	 */
4699 	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
4700 	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4701 		ret = MC_TARGET_SWAP;
4702 		if (target)
4703 			target->ent = ent;
4704 	}
4705 	return ret;
4706 }
4707 
4708 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4709 /*
4710  * We don't consider PMD mapped swapping or file mapped pages because THP does
4711  * not support them for now.
4712  * Caller should make sure that pmd_trans_huge(pmd) is true.
4713  */
4714 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4715 		unsigned long addr, pmd_t pmd, union mc_target *target)
4716 {
4717 	struct page *page = NULL;
4718 	enum mc_target_type ret = MC_TARGET_NONE;
4719 
4720 	if (unlikely(is_swap_pmd(pmd))) {
4721 		VM_BUG_ON(thp_migration_supported() &&
4722 				  !is_pmd_migration_entry(pmd));
4723 		return ret;
4724 	}
4725 	page = pmd_page(pmd);
4726 	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4727 	if (!(mc.flags & MOVE_ANON))
4728 		return ret;
4729 	if (page->mem_cgroup == mc.from) {
4730 		ret = MC_TARGET_PAGE;
4731 		if (target) {
4732 			get_page(page);
4733 			target->page = page;
4734 		}
4735 	}
4736 	return ret;
4737 }
4738 #else
4739 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4740 		unsigned long addr, pmd_t pmd, union mc_target *target)
4741 {
4742 	return MC_TARGET_NONE;
4743 }
4744 #endif
4745 
4746 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4747 					unsigned long addr, unsigned long end,
4748 					struct mm_walk *walk)
4749 {
4750 	struct vm_area_struct *vma = walk->vma;
4751 	pte_t *pte;
4752 	spinlock_t *ptl;
4753 
4754 	ptl = pmd_trans_huge_lock(pmd, vma);
4755 	if (ptl) {
4756 		/*
4757 		 * Note their can not be MC_TARGET_DEVICE for now as we do not
4758 		 * support transparent huge page with MEMORY_DEVICE_PUBLIC or
4759 		 * MEMORY_DEVICE_PRIVATE but this might change.
4760 		 */
4761 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4762 			mc.precharge += HPAGE_PMD_NR;
4763 		spin_unlock(ptl);
4764 		return 0;
4765 	}
4766 
4767 	if (pmd_trans_unstable(pmd))
4768 		return 0;
4769 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4770 	for (; addr != end; pte++, addr += PAGE_SIZE)
4771 		if (get_mctgt_type(vma, addr, *pte, NULL))
4772 			mc.precharge++;	/* increment precharge temporarily */
4773 	pte_unmap_unlock(pte - 1, ptl);
4774 	cond_resched();
4775 
4776 	return 0;
4777 }
4778 
4779 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4780 {
4781 	unsigned long precharge;
4782 
4783 	struct mm_walk mem_cgroup_count_precharge_walk = {
4784 		.pmd_entry = mem_cgroup_count_precharge_pte_range,
4785 		.mm = mm,
4786 	};
4787 	down_read(&mm->mmap_sem);
4788 	walk_page_range(0, mm->highest_vm_end,
4789 			&mem_cgroup_count_precharge_walk);
4790 	up_read(&mm->mmap_sem);
4791 
4792 	precharge = mc.precharge;
4793 	mc.precharge = 0;
4794 
4795 	return precharge;
4796 }
4797 
4798 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4799 {
4800 	unsigned long precharge = mem_cgroup_count_precharge(mm);
4801 
4802 	VM_BUG_ON(mc.moving_task);
4803 	mc.moving_task = current;
4804 	return mem_cgroup_do_precharge(precharge);
4805 }
4806 
4807 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4808 static void __mem_cgroup_clear_mc(void)
4809 {
4810 	struct mem_cgroup *from = mc.from;
4811 	struct mem_cgroup *to = mc.to;
4812 
4813 	/* we must uncharge all the leftover precharges from mc.to */
4814 	if (mc.precharge) {
4815 		cancel_charge(mc.to, mc.precharge);
4816 		mc.precharge = 0;
4817 	}
4818 	/*
4819 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4820 	 * we must uncharge here.
4821 	 */
4822 	if (mc.moved_charge) {
4823 		cancel_charge(mc.from, mc.moved_charge);
4824 		mc.moved_charge = 0;
4825 	}
4826 	/* we must fixup refcnts and charges */
4827 	if (mc.moved_swap) {
4828 		/* uncharge swap account from the old cgroup */
4829 		if (!mem_cgroup_is_root(mc.from))
4830 			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4831 
4832 		mem_cgroup_id_put_many(mc.from, mc.moved_swap);
4833 
4834 		/*
4835 		 * we charged both to->memory and to->memsw, so we
4836 		 * should uncharge to->memory.
4837 		 */
4838 		if (!mem_cgroup_is_root(mc.to))
4839 			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4840 
4841 		mem_cgroup_id_get_many(mc.to, mc.moved_swap);
4842 		css_put_many(&mc.to->css, mc.moved_swap);
4843 
4844 		mc.moved_swap = 0;
4845 	}
4846 	memcg_oom_recover(from);
4847 	memcg_oom_recover(to);
4848 	wake_up_all(&mc.waitq);
4849 }
4850 
4851 static void mem_cgroup_clear_mc(void)
4852 {
4853 	struct mm_struct *mm = mc.mm;
4854 
4855 	/*
4856 	 * we must clear moving_task before waking up waiters at the end of
4857 	 * task migration.
4858 	 */
4859 	mc.moving_task = NULL;
4860 	__mem_cgroup_clear_mc();
4861 	spin_lock(&mc.lock);
4862 	mc.from = NULL;
4863 	mc.to = NULL;
4864 	mc.mm = NULL;
4865 	spin_unlock(&mc.lock);
4866 
4867 	mmput(mm);
4868 }
4869 
4870 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4871 {
4872 	struct cgroup_subsys_state *css;
4873 	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4874 	struct mem_cgroup *from;
4875 	struct task_struct *leader, *p;
4876 	struct mm_struct *mm;
4877 	unsigned long move_flags;
4878 	int ret = 0;
4879 
4880 	/* charge immigration isn't supported on the default hierarchy */
4881 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4882 		return 0;
4883 
4884 	/*
4885 	 * Multi-process migrations only happen on the default hierarchy
4886 	 * where charge immigration is not used.  Perform charge
4887 	 * immigration if @tset contains a leader and whine if there are
4888 	 * multiple.
4889 	 */
4890 	p = NULL;
4891 	cgroup_taskset_for_each_leader(leader, css, tset) {
4892 		WARN_ON_ONCE(p);
4893 		p = leader;
4894 		memcg = mem_cgroup_from_css(css);
4895 	}
4896 	if (!p)
4897 		return 0;
4898 
4899 	/*
4900 	 * We are now commited to this value whatever it is. Changes in this
4901 	 * tunable will only affect upcoming migrations, not the current one.
4902 	 * So we need to save it, and keep it going.
4903 	 */
4904 	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4905 	if (!move_flags)
4906 		return 0;
4907 
4908 	from = mem_cgroup_from_task(p);
4909 
4910 	VM_BUG_ON(from == memcg);
4911 
4912 	mm = get_task_mm(p);
4913 	if (!mm)
4914 		return 0;
4915 	/* We move charges only when we move a owner of the mm */
4916 	if (mm->owner == p) {
4917 		VM_BUG_ON(mc.from);
4918 		VM_BUG_ON(mc.to);
4919 		VM_BUG_ON(mc.precharge);
4920 		VM_BUG_ON(mc.moved_charge);
4921 		VM_BUG_ON(mc.moved_swap);
4922 
4923 		spin_lock(&mc.lock);
4924 		mc.mm = mm;
4925 		mc.from = from;
4926 		mc.to = memcg;
4927 		mc.flags = move_flags;
4928 		spin_unlock(&mc.lock);
4929 		/* We set mc.moving_task later */
4930 
4931 		ret = mem_cgroup_precharge_mc(mm);
4932 		if (ret)
4933 			mem_cgroup_clear_mc();
4934 	} else {
4935 		mmput(mm);
4936 	}
4937 	return ret;
4938 }
4939 
4940 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4941 {
4942 	if (mc.to)
4943 		mem_cgroup_clear_mc();
4944 }
4945 
4946 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4947 				unsigned long addr, unsigned long end,
4948 				struct mm_walk *walk)
4949 {
4950 	int ret = 0;
4951 	struct vm_area_struct *vma = walk->vma;
4952 	pte_t *pte;
4953 	spinlock_t *ptl;
4954 	enum mc_target_type target_type;
4955 	union mc_target target;
4956 	struct page *page;
4957 
4958 	ptl = pmd_trans_huge_lock(pmd, vma);
4959 	if (ptl) {
4960 		if (mc.precharge < HPAGE_PMD_NR) {
4961 			spin_unlock(ptl);
4962 			return 0;
4963 		}
4964 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4965 		if (target_type == MC_TARGET_PAGE) {
4966 			page = target.page;
4967 			if (!isolate_lru_page(page)) {
4968 				if (!mem_cgroup_move_account(page, true,
4969 							     mc.from, mc.to)) {
4970 					mc.precharge -= HPAGE_PMD_NR;
4971 					mc.moved_charge += HPAGE_PMD_NR;
4972 				}
4973 				putback_lru_page(page);
4974 			}
4975 			put_page(page);
4976 		} else if (target_type == MC_TARGET_DEVICE) {
4977 			page = target.page;
4978 			if (!mem_cgroup_move_account(page, true,
4979 						     mc.from, mc.to)) {
4980 				mc.precharge -= HPAGE_PMD_NR;
4981 				mc.moved_charge += HPAGE_PMD_NR;
4982 			}
4983 			put_page(page);
4984 		}
4985 		spin_unlock(ptl);
4986 		return 0;
4987 	}
4988 
4989 	if (pmd_trans_unstable(pmd))
4990 		return 0;
4991 retry:
4992 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4993 	for (; addr != end; addr += PAGE_SIZE) {
4994 		pte_t ptent = *(pte++);
4995 		bool device = false;
4996 		swp_entry_t ent;
4997 
4998 		if (!mc.precharge)
4999 			break;
5000 
5001 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5002 		case MC_TARGET_DEVICE:
5003 			device = true;
5004 			/* fall through */
5005 		case MC_TARGET_PAGE:
5006 			page = target.page;
5007 			/*
5008 			 * We can have a part of the split pmd here. Moving it
5009 			 * can be done but it would be too convoluted so simply
5010 			 * ignore such a partial THP and keep it in original
5011 			 * memcg. There should be somebody mapping the head.
5012 			 */
5013 			if (PageTransCompound(page))
5014 				goto put;
5015 			if (!device && isolate_lru_page(page))
5016 				goto put;
5017 			if (!mem_cgroup_move_account(page, false,
5018 						mc.from, mc.to)) {
5019 				mc.precharge--;
5020 				/* we uncharge from mc.from later. */
5021 				mc.moved_charge++;
5022 			}
5023 			if (!device)
5024 				putback_lru_page(page);
5025 put:			/* get_mctgt_type() gets the page */
5026 			put_page(page);
5027 			break;
5028 		case MC_TARGET_SWAP:
5029 			ent = target.ent;
5030 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5031 				mc.precharge--;
5032 				/* we fixup refcnts and charges later. */
5033 				mc.moved_swap++;
5034 			}
5035 			break;
5036 		default:
5037 			break;
5038 		}
5039 	}
5040 	pte_unmap_unlock(pte - 1, ptl);
5041 	cond_resched();
5042 
5043 	if (addr != end) {
5044 		/*
5045 		 * We have consumed all precharges we got in can_attach().
5046 		 * We try charge one by one, but don't do any additional
5047 		 * charges to mc.to if we have failed in charge once in attach()
5048 		 * phase.
5049 		 */
5050 		ret = mem_cgroup_do_precharge(1);
5051 		if (!ret)
5052 			goto retry;
5053 	}
5054 
5055 	return ret;
5056 }
5057 
5058 static void mem_cgroup_move_charge(void)
5059 {
5060 	struct mm_walk mem_cgroup_move_charge_walk = {
5061 		.pmd_entry = mem_cgroup_move_charge_pte_range,
5062 		.mm = mc.mm,
5063 	};
5064 
5065 	lru_add_drain_all();
5066 	/*
5067 	 * Signal lock_page_memcg() to take the memcg's move_lock
5068 	 * while we're moving its pages to another memcg. Then wait
5069 	 * for already started RCU-only updates to finish.
5070 	 */
5071 	atomic_inc(&mc.from->moving_account);
5072 	synchronize_rcu();
5073 retry:
5074 	if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
5075 		/*
5076 		 * Someone who are holding the mmap_sem might be waiting in
5077 		 * waitq. So we cancel all extra charges, wake up all waiters,
5078 		 * and retry. Because we cancel precharges, we might not be able
5079 		 * to move enough charges, but moving charge is a best-effort
5080 		 * feature anyway, so it wouldn't be a big problem.
5081 		 */
5082 		__mem_cgroup_clear_mc();
5083 		cond_resched();
5084 		goto retry;
5085 	}
5086 	/*
5087 	 * When we have consumed all precharges and failed in doing
5088 	 * additional charge, the page walk just aborts.
5089 	 */
5090 	walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
5091 
5092 	up_read(&mc.mm->mmap_sem);
5093 	atomic_dec(&mc.from->moving_account);
5094 }
5095 
5096 static void mem_cgroup_move_task(void)
5097 {
5098 	if (mc.to) {
5099 		mem_cgroup_move_charge();
5100 		mem_cgroup_clear_mc();
5101 	}
5102 }
5103 #else	/* !CONFIG_MMU */
5104 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5105 {
5106 	return 0;
5107 }
5108 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5109 {
5110 }
5111 static void mem_cgroup_move_task(void)
5112 {
5113 }
5114 #endif
5115 
5116 /*
5117  * Cgroup retains root cgroups across [un]mount cycles making it necessary
5118  * to verify whether we're attached to the default hierarchy on each mount
5119  * attempt.
5120  */
5121 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5122 {
5123 	/*
5124 	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5125 	 * guarantees that @root doesn't have any children, so turning it
5126 	 * on for the root memcg is enough.
5127 	 */
5128 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5129 		root_mem_cgroup->use_hierarchy = true;
5130 	else
5131 		root_mem_cgroup->use_hierarchy = false;
5132 }
5133 
5134 static u64 memory_current_read(struct cgroup_subsys_state *css,
5135 			       struct cftype *cft)
5136 {
5137 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5138 
5139 	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5140 }
5141 
5142 static int memory_low_show(struct seq_file *m, void *v)
5143 {
5144 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5145 	unsigned long low = READ_ONCE(memcg->low);
5146 
5147 	if (low == PAGE_COUNTER_MAX)
5148 		seq_puts(m, "max\n");
5149 	else
5150 		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5151 
5152 	return 0;
5153 }
5154 
5155 static ssize_t memory_low_write(struct kernfs_open_file *of,
5156 				char *buf, size_t nbytes, loff_t off)
5157 {
5158 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5159 	unsigned long low;
5160 	int err;
5161 
5162 	buf = strstrip(buf);
5163 	err = page_counter_memparse(buf, "max", &low);
5164 	if (err)
5165 		return err;
5166 
5167 	memcg->low = low;
5168 
5169 	return nbytes;
5170 }
5171 
5172 static int memory_high_show(struct seq_file *m, void *v)
5173 {
5174 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5175 	unsigned long high = READ_ONCE(memcg->high);
5176 
5177 	if (high == PAGE_COUNTER_MAX)
5178 		seq_puts(m, "max\n");
5179 	else
5180 		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5181 
5182 	return 0;
5183 }
5184 
5185 static ssize_t memory_high_write(struct kernfs_open_file *of,
5186 				 char *buf, size_t nbytes, loff_t off)
5187 {
5188 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5189 	unsigned long nr_pages;
5190 	unsigned long high;
5191 	int err;
5192 
5193 	buf = strstrip(buf);
5194 	err = page_counter_memparse(buf, "max", &high);
5195 	if (err)
5196 		return err;
5197 
5198 	memcg->high = high;
5199 
5200 	nr_pages = page_counter_read(&memcg->memory);
5201 	if (nr_pages > high)
5202 		try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5203 					     GFP_KERNEL, true);
5204 
5205 	memcg_wb_domain_size_changed(memcg);
5206 	return nbytes;
5207 }
5208 
5209 static int memory_max_show(struct seq_file *m, void *v)
5210 {
5211 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5212 	unsigned long max = READ_ONCE(memcg->memory.limit);
5213 
5214 	if (max == PAGE_COUNTER_MAX)
5215 		seq_puts(m, "max\n");
5216 	else
5217 		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5218 
5219 	return 0;
5220 }
5221 
5222 static ssize_t memory_max_write(struct kernfs_open_file *of,
5223 				char *buf, size_t nbytes, loff_t off)
5224 {
5225 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5226 	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5227 	bool drained = false;
5228 	unsigned long max;
5229 	int err;
5230 
5231 	buf = strstrip(buf);
5232 	err = page_counter_memparse(buf, "max", &max);
5233 	if (err)
5234 		return err;
5235 
5236 	xchg(&memcg->memory.limit, max);
5237 
5238 	for (;;) {
5239 		unsigned long nr_pages = page_counter_read(&memcg->memory);
5240 
5241 		if (nr_pages <= max)
5242 			break;
5243 
5244 		if (signal_pending(current)) {
5245 			err = -EINTR;
5246 			break;
5247 		}
5248 
5249 		if (!drained) {
5250 			drain_all_stock(memcg);
5251 			drained = true;
5252 			continue;
5253 		}
5254 
5255 		if (nr_reclaims) {
5256 			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5257 							  GFP_KERNEL, true))
5258 				nr_reclaims--;
5259 			continue;
5260 		}
5261 
5262 		mem_cgroup_event(memcg, MEMCG_OOM);
5263 		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5264 			break;
5265 	}
5266 
5267 	memcg_wb_domain_size_changed(memcg);
5268 	return nbytes;
5269 }
5270 
5271 static int memory_events_show(struct seq_file *m, void *v)
5272 {
5273 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5274 
5275 	seq_printf(m, "low %lu\n", memcg_sum_events(memcg, MEMCG_LOW));
5276 	seq_printf(m, "high %lu\n", memcg_sum_events(memcg, MEMCG_HIGH));
5277 	seq_printf(m, "max %lu\n", memcg_sum_events(memcg, MEMCG_MAX));
5278 	seq_printf(m, "oom %lu\n", memcg_sum_events(memcg, MEMCG_OOM));
5279 	seq_printf(m, "oom_kill %lu\n", memcg_sum_events(memcg, OOM_KILL));
5280 
5281 	return 0;
5282 }
5283 
5284 static int memory_stat_show(struct seq_file *m, void *v)
5285 {
5286 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5287 	unsigned long stat[MEMCG_NR_STAT];
5288 	unsigned long events[MEMCG_NR_EVENTS];
5289 	int i;
5290 
5291 	/*
5292 	 * Provide statistics on the state of the memory subsystem as
5293 	 * well as cumulative event counters that show past behavior.
5294 	 *
5295 	 * This list is ordered following a combination of these gradients:
5296 	 * 1) generic big picture -> specifics and details
5297 	 * 2) reflecting userspace activity -> reflecting kernel heuristics
5298 	 *
5299 	 * Current memory state:
5300 	 */
5301 
5302 	tree_stat(memcg, stat);
5303 	tree_events(memcg, events);
5304 
5305 	seq_printf(m, "anon %llu\n",
5306 		   (u64)stat[MEMCG_RSS] * PAGE_SIZE);
5307 	seq_printf(m, "file %llu\n",
5308 		   (u64)stat[MEMCG_CACHE] * PAGE_SIZE);
5309 	seq_printf(m, "kernel_stack %llu\n",
5310 		   (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024);
5311 	seq_printf(m, "slab %llu\n",
5312 		   (u64)(stat[NR_SLAB_RECLAIMABLE] +
5313 			 stat[NR_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5314 	seq_printf(m, "sock %llu\n",
5315 		   (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5316 
5317 	seq_printf(m, "shmem %llu\n",
5318 		   (u64)stat[NR_SHMEM] * PAGE_SIZE);
5319 	seq_printf(m, "file_mapped %llu\n",
5320 		   (u64)stat[NR_FILE_MAPPED] * PAGE_SIZE);
5321 	seq_printf(m, "file_dirty %llu\n",
5322 		   (u64)stat[NR_FILE_DIRTY] * PAGE_SIZE);
5323 	seq_printf(m, "file_writeback %llu\n",
5324 		   (u64)stat[NR_WRITEBACK] * PAGE_SIZE);
5325 
5326 	for (i = 0; i < NR_LRU_LISTS; i++) {
5327 		struct mem_cgroup *mi;
5328 		unsigned long val = 0;
5329 
5330 		for_each_mem_cgroup_tree(mi, memcg)
5331 			val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5332 		seq_printf(m, "%s %llu\n",
5333 			   mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5334 	}
5335 
5336 	seq_printf(m, "slab_reclaimable %llu\n",
5337 		   (u64)stat[NR_SLAB_RECLAIMABLE] * PAGE_SIZE);
5338 	seq_printf(m, "slab_unreclaimable %llu\n",
5339 		   (u64)stat[NR_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5340 
5341 	/* Accumulated memory events */
5342 
5343 	seq_printf(m, "pgfault %lu\n", events[PGFAULT]);
5344 	seq_printf(m, "pgmajfault %lu\n", events[PGMAJFAULT]);
5345 
5346 	seq_printf(m, "pgrefill %lu\n", events[PGREFILL]);
5347 	seq_printf(m, "pgscan %lu\n", events[PGSCAN_KSWAPD] +
5348 		   events[PGSCAN_DIRECT]);
5349 	seq_printf(m, "pgsteal %lu\n", events[PGSTEAL_KSWAPD] +
5350 		   events[PGSTEAL_DIRECT]);
5351 	seq_printf(m, "pgactivate %lu\n", events[PGACTIVATE]);
5352 	seq_printf(m, "pgdeactivate %lu\n", events[PGDEACTIVATE]);
5353 	seq_printf(m, "pglazyfree %lu\n", events[PGLAZYFREE]);
5354 	seq_printf(m, "pglazyfreed %lu\n", events[PGLAZYFREED]);
5355 
5356 	seq_printf(m, "workingset_refault %lu\n",
5357 		   stat[WORKINGSET_REFAULT]);
5358 	seq_printf(m, "workingset_activate %lu\n",
5359 		   stat[WORKINGSET_ACTIVATE]);
5360 	seq_printf(m, "workingset_nodereclaim %lu\n",
5361 		   stat[WORKINGSET_NODERECLAIM]);
5362 
5363 	return 0;
5364 }
5365 
5366 static struct cftype memory_files[] = {
5367 	{
5368 		.name = "current",
5369 		.flags = CFTYPE_NOT_ON_ROOT,
5370 		.read_u64 = memory_current_read,
5371 	},
5372 	{
5373 		.name = "low",
5374 		.flags = CFTYPE_NOT_ON_ROOT,
5375 		.seq_show = memory_low_show,
5376 		.write = memory_low_write,
5377 	},
5378 	{
5379 		.name = "high",
5380 		.flags = CFTYPE_NOT_ON_ROOT,
5381 		.seq_show = memory_high_show,
5382 		.write = memory_high_write,
5383 	},
5384 	{
5385 		.name = "max",
5386 		.flags = CFTYPE_NOT_ON_ROOT,
5387 		.seq_show = memory_max_show,
5388 		.write = memory_max_write,
5389 	},
5390 	{
5391 		.name = "events",
5392 		.flags = CFTYPE_NOT_ON_ROOT,
5393 		.file_offset = offsetof(struct mem_cgroup, events_file),
5394 		.seq_show = memory_events_show,
5395 	},
5396 	{
5397 		.name = "stat",
5398 		.flags = CFTYPE_NOT_ON_ROOT,
5399 		.seq_show = memory_stat_show,
5400 	},
5401 	{ }	/* terminate */
5402 };
5403 
5404 struct cgroup_subsys memory_cgrp_subsys = {
5405 	.css_alloc = mem_cgroup_css_alloc,
5406 	.css_online = mem_cgroup_css_online,
5407 	.css_offline = mem_cgroup_css_offline,
5408 	.css_released = mem_cgroup_css_released,
5409 	.css_free = mem_cgroup_css_free,
5410 	.css_reset = mem_cgroup_css_reset,
5411 	.can_attach = mem_cgroup_can_attach,
5412 	.cancel_attach = mem_cgroup_cancel_attach,
5413 	.post_attach = mem_cgroup_move_task,
5414 	.bind = mem_cgroup_bind,
5415 	.dfl_cftypes = memory_files,
5416 	.legacy_cftypes = mem_cgroup_legacy_files,
5417 	.early_init = 0,
5418 };
5419 
5420 /**
5421  * mem_cgroup_low - check if memory consumption is below the normal range
5422  * @root: the top ancestor of the sub-tree being checked
5423  * @memcg: the memory cgroup to check
5424  *
5425  * Returns %true if memory consumption of @memcg, and that of all
5426  * ancestors up to (but not including) @root, is below the normal range.
5427  *
5428  * @root is exclusive; it is never low when looked at directly and isn't
5429  * checked when traversing the hierarchy.
5430  *
5431  * Excluding @root enables using memory.low to prioritize memory usage
5432  * between cgroups within a subtree of the hierarchy that is limited by
5433  * memory.high or memory.max.
5434  *
5435  * For example, given cgroup A with children B and C:
5436  *
5437  *    A
5438  *   / \
5439  *  B   C
5440  *
5441  * and
5442  *
5443  *  1. A/memory.current > A/memory.high
5444  *  2. A/B/memory.current < A/B/memory.low
5445  *  3. A/C/memory.current >= A/C/memory.low
5446  *
5447  * As 'A' is high, i.e. triggers reclaim from 'A', and 'B' is low, we
5448  * should reclaim from 'C' until 'A' is no longer high or until we can
5449  * no longer reclaim from 'C'.  If 'A', i.e. @root, isn't excluded by
5450  * mem_cgroup_low when reclaming from 'A', then 'B' won't be considered
5451  * low and we will reclaim indiscriminately from both 'B' and 'C'.
5452  */
5453 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5454 {
5455 	if (mem_cgroup_disabled())
5456 		return false;
5457 
5458 	if (!root)
5459 		root = root_mem_cgroup;
5460 	if (memcg == root)
5461 		return false;
5462 
5463 	for (; memcg != root; memcg = parent_mem_cgroup(memcg)) {
5464 		if (page_counter_read(&memcg->memory) >= memcg->low)
5465 			return false;
5466 	}
5467 
5468 	return true;
5469 }
5470 
5471 /**
5472  * mem_cgroup_try_charge - try charging a page
5473  * @page: page to charge
5474  * @mm: mm context of the victim
5475  * @gfp_mask: reclaim mode
5476  * @memcgp: charged memcg return
5477  * @compound: charge the page as compound or small page
5478  *
5479  * Try to charge @page to the memcg that @mm belongs to, reclaiming
5480  * pages according to @gfp_mask if necessary.
5481  *
5482  * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5483  * Otherwise, an error code is returned.
5484  *
5485  * After page->mapping has been set up, the caller must finalize the
5486  * charge with mem_cgroup_commit_charge().  Or abort the transaction
5487  * with mem_cgroup_cancel_charge() in case page instantiation fails.
5488  */
5489 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5490 			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
5491 			  bool compound)
5492 {
5493 	struct mem_cgroup *memcg = NULL;
5494 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5495 	int ret = 0;
5496 
5497 	if (mem_cgroup_disabled())
5498 		goto out;
5499 
5500 	if (PageSwapCache(page)) {
5501 		/*
5502 		 * Every swap fault against a single page tries to charge the
5503 		 * page, bail as early as possible.  shmem_unuse() encounters
5504 		 * already charged pages, too.  The USED bit is protected by
5505 		 * the page lock, which serializes swap cache removal, which
5506 		 * in turn serializes uncharging.
5507 		 */
5508 		VM_BUG_ON_PAGE(!PageLocked(page), page);
5509 		if (compound_head(page)->mem_cgroup)
5510 			goto out;
5511 
5512 		if (do_swap_account) {
5513 			swp_entry_t ent = { .val = page_private(page), };
5514 			unsigned short id = lookup_swap_cgroup_id(ent);
5515 
5516 			rcu_read_lock();
5517 			memcg = mem_cgroup_from_id(id);
5518 			if (memcg && !css_tryget_online(&memcg->css))
5519 				memcg = NULL;
5520 			rcu_read_unlock();
5521 		}
5522 	}
5523 
5524 	if (!memcg)
5525 		memcg = get_mem_cgroup_from_mm(mm);
5526 
5527 	ret = try_charge(memcg, gfp_mask, nr_pages);
5528 
5529 	css_put(&memcg->css);
5530 out:
5531 	*memcgp = memcg;
5532 	return ret;
5533 }
5534 
5535 /**
5536  * mem_cgroup_commit_charge - commit a page charge
5537  * @page: page to charge
5538  * @memcg: memcg to charge the page to
5539  * @lrucare: page might be on LRU already
5540  * @compound: charge the page as compound or small page
5541  *
5542  * Finalize a charge transaction started by mem_cgroup_try_charge(),
5543  * after page->mapping has been set up.  This must happen atomically
5544  * as part of the page instantiation, i.e. under the page table lock
5545  * for anonymous pages, under the page lock for page and swap cache.
5546  *
5547  * In addition, the page must not be on the LRU during the commit, to
5548  * prevent racing with task migration.  If it might be, use @lrucare.
5549  *
5550  * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5551  */
5552 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5553 			      bool lrucare, bool compound)
5554 {
5555 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5556 
5557 	VM_BUG_ON_PAGE(!page->mapping, page);
5558 	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5559 
5560 	if (mem_cgroup_disabled())
5561 		return;
5562 	/*
5563 	 * Swap faults will attempt to charge the same page multiple
5564 	 * times.  But reuse_swap_page() might have removed the page
5565 	 * from swapcache already, so we can't check PageSwapCache().
5566 	 */
5567 	if (!memcg)
5568 		return;
5569 
5570 	commit_charge(page, memcg, lrucare);
5571 
5572 	local_irq_disable();
5573 	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5574 	memcg_check_events(memcg, page);
5575 	local_irq_enable();
5576 
5577 	if (do_memsw_account() && PageSwapCache(page)) {
5578 		swp_entry_t entry = { .val = page_private(page) };
5579 		/*
5580 		 * The swap entry might not get freed for a long time,
5581 		 * let's not wait for it.  The page already received a
5582 		 * memory+swap charge, drop the swap entry duplicate.
5583 		 */
5584 		mem_cgroup_uncharge_swap(entry, nr_pages);
5585 	}
5586 }
5587 
5588 /**
5589  * mem_cgroup_cancel_charge - cancel a page charge
5590  * @page: page to charge
5591  * @memcg: memcg to charge the page to
5592  * @compound: charge the page as compound or small page
5593  *
5594  * Cancel a charge transaction started by mem_cgroup_try_charge().
5595  */
5596 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5597 		bool compound)
5598 {
5599 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5600 
5601 	if (mem_cgroup_disabled())
5602 		return;
5603 	/*
5604 	 * Swap faults will attempt to charge the same page multiple
5605 	 * times.  But reuse_swap_page() might have removed the page
5606 	 * from swapcache already, so we can't check PageSwapCache().
5607 	 */
5608 	if (!memcg)
5609 		return;
5610 
5611 	cancel_charge(memcg, nr_pages);
5612 }
5613 
5614 struct uncharge_gather {
5615 	struct mem_cgroup *memcg;
5616 	unsigned long pgpgout;
5617 	unsigned long nr_anon;
5618 	unsigned long nr_file;
5619 	unsigned long nr_kmem;
5620 	unsigned long nr_huge;
5621 	unsigned long nr_shmem;
5622 	struct page *dummy_page;
5623 };
5624 
5625 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
5626 {
5627 	memset(ug, 0, sizeof(*ug));
5628 }
5629 
5630 static void uncharge_batch(const struct uncharge_gather *ug)
5631 {
5632 	unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
5633 	unsigned long flags;
5634 
5635 	if (!mem_cgroup_is_root(ug->memcg)) {
5636 		page_counter_uncharge(&ug->memcg->memory, nr_pages);
5637 		if (do_memsw_account())
5638 			page_counter_uncharge(&ug->memcg->memsw, nr_pages);
5639 		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
5640 			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
5641 		memcg_oom_recover(ug->memcg);
5642 	}
5643 
5644 	local_irq_save(flags);
5645 	__this_cpu_sub(ug->memcg->stat->count[MEMCG_RSS], ug->nr_anon);
5646 	__this_cpu_sub(ug->memcg->stat->count[MEMCG_CACHE], ug->nr_file);
5647 	__this_cpu_sub(ug->memcg->stat->count[MEMCG_RSS_HUGE], ug->nr_huge);
5648 	__this_cpu_sub(ug->memcg->stat->count[NR_SHMEM], ug->nr_shmem);
5649 	__this_cpu_add(ug->memcg->stat->events[PGPGOUT], ug->pgpgout);
5650 	__this_cpu_add(ug->memcg->stat->nr_page_events, nr_pages);
5651 	memcg_check_events(ug->memcg, ug->dummy_page);
5652 	local_irq_restore(flags);
5653 
5654 	if (!mem_cgroup_is_root(ug->memcg))
5655 		css_put_many(&ug->memcg->css, nr_pages);
5656 }
5657 
5658 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
5659 {
5660 	VM_BUG_ON_PAGE(PageLRU(page), page);
5661 	VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
5662 			!PageHWPoison(page) , page);
5663 
5664 	if (!page->mem_cgroup)
5665 		return;
5666 
5667 	/*
5668 	 * Nobody should be changing or seriously looking at
5669 	 * page->mem_cgroup at this point, we have fully
5670 	 * exclusive access to the page.
5671 	 */
5672 
5673 	if (ug->memcg != page->mem_cgroup) {
5674 		if (ug->memcg) {
5675 			uncharge_batch(ug);
5676 			uncharge_gather_clear(ug);
5677 		}
5678 		ug->memcg = page->mem_cgroup;
5679 	}
5680 
5681 	if (!PageKmemcg(page)) {
5682 		unsigned int nr_pages = 1;
5683 
5684 		if (PageTransHuge(page)) {
5685 			nr_pages <<= compound_order(page);
5686 			ug->nr_huge += nr_pages;
5687 		}
5688 		if (PageAnon(page))
5689 			ug->nr_anon += nr_pages;
5690 		else {
5691 			ug->nr_file += nr_pages;
5692 			if (PageSwapBacked(page))
5693 				ug->nr_shmem += nr_pages;
5694 		}
5695 		ug->pgpgout++;
5696 	} else {
5697 		ug->nr_kmem += 1 << compound_order(page);
5698 		__ClearPageKmemcg(page);
5699 	}
5700 
5701 	ug->dummy_page = page;
5702 	page->mem_cgroup = NULL;
5703 }
5704 
5705 static void uncharge_list(struct list_head *page_list)
5706 {
5707 	struct uncharge_gather ug;
5708 	struct list_head *next;
5709 
5710 	uncharge_gather_clear(&ug);
5711 
5712 	/*
5713 	 * Note that the list can be a single page->lru; hence the
5714 	 * do-while loop instead of a simple list_for_each_entry().
5715 	 */
5716 	next = page_list->next;
5717 	do {
5718 		struct page *page;
5719 
5720 		page = list_entry(next, struct page, lru);
5721 		next = page->lru.next;
5722 
5723 		uncharge_page(page, &ug);
5724 	} while (next != page_list);
5725 
5726 	if (ug.memcg)
5727 		uncharge_batch(&ug);
5728 }
5729 
5730 /**
5731  * mem_cgroup_uncharge - uncharge a page
5732  * @page: page to uncharge
5733  *
5734  * Uncharge a page previously charged with mem_cgroup_try_charge() and
5735  * mem_cgroup_commit_charge().
5736  */
5737 void mem_cgroup_uncharge(struct page *page)
5738 {
5739 	struct uncharge_gather ug;
5740 
5741 	if (mem_cgroup_disabled())
5742 		return;
5743 
5744 	/* Don't touch page->lru of any random page, pre-check: */
5745 	if (!page->mem_cgroup)
5746 		return;
5747 
5748 	uncharge_gather_clear(&ug);
5749 	uncharge_page(page, &ug);
5750 	uncharge_batch(&ug);
5751 }
5752 
5753 /**
5754  * mem_cgroup_uncharge_list - uncharge a list of page
5755  * @page_list: list of pages to uncharge
5756  *
5757  * Uncharge a list of pages previously charged with
5758  * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5759  */
5760 void mem_cgroup_uncharge_list(struct list_head *page_list)
5761 {
5762 	if (mem_cgroup_disabled())
5763 		return;
5764 
5765 	if (!list_empty(page_list))
5766 		uncharge_list(page_list);
5767 }
5768 
5769 /**
5770  * mem_cgroup_migrate - charge a page's replacement
5771  * @oldpage: currently circulating page
5772  * @newpage: replacement page
5773  *
5774  * Charge @newpage as a replacement page for @oldpage. @oldpage will
5775  * be uncharged upon free.
5776  *
5777  * Both pages must be locked, @newpage->mapping must be set up.
5778  */
5779 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5780 {
5781 	struct mem_cgroup *memcg;
5782 	unsigned int nr_pages;
5783 	bool compound;
5784 	unsigned long flags;
5785 
5786 	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5787 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5788 	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5789 	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5790 		       newpage);
5791 
5792 	if (mem_cgroup_disabled())
5793 		return;
5794 
5795 	/* Page cache replacement: new page already charged? */
5796 	if (newpage->mem_cgroup)
5797 		return;
5798 
5799 	/* Swapcache readahead pages can get replaced before being charged */
5800 	memcg = oldpage->mem_cgroup;
5801 	if (!memcg)
5802 		return;
5803 
5804 	/* Force-charge the new page. The old one will be freed soon */
5805 	compound = PageTransHuge(newpage);
5806 	nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5807 
5808 	page_counter_charge(&memcg->memory, nr_pages);
5809 	if (do_memsw_account())
5810 		page_counter_charge(&memcg->memsw, nr_pages);
5811 	css_get_many(&memcg->css, nr_pages);
5812 
5813 	commit_charge(newpage, memcg, false);
5814 
5815 	local_irq_save(flags);
5816 	mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5817 	memcg_check_events(memcg, newpage);
5818 	local_irq_restore(flags);
5819 }
5820 
5821 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5822 EXPORT_SYMBOL(memcg_sockets_enabled_key);
5823 
5824 void mem_cgroup_sk_alloc(struct sock *sk)
5825 {
5826 	struct mem_cgroup *memcg;
5827 
5828 	if (!mem_cgroup_sockets_enabled)
5829 		return;
5830 
5831 	rcu_read_lock();
5832 	memcg = mem_cgroup_from_task(current);
5833 	if (memcg == root_mem_cgroup)
5834 		goto out;
5835 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5836 		goto out;
5837 	if (css_tryget_online(&memcg->css))
5838 		sk->sk_memcg = memcg;
5839 out:
5840 	rcu_read_unlock();
5841 }
5842 
5843 void mem_cgroup_sk_free(struct sock *sk)
5844 {
5845 	if (sk->sk_memcg)
5846 		css_put(&sk->sk_memcg->css);
5847 }
5848 
5849 /**
5850  * mem_cgroup_charge_skmem - charge socket memory
5851  * @memcg: memcg to charge
5852  * @nr_pages: number of pages to charge
5853  *
5854  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5855  * @memcg's configured limit, %false if the charge had to be forced.
5856  */
5857 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5858 {
5859 	gfp_t gfp_mask = GFP_KERNEL;
5860 
5861 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5862 		struct page_counter *fail;
5863 
5864 		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5865 			memcg->tcpmem_pressure = 0;
5866 			return true;
5867 		}
5868 		page_counter_charge(&memcg->tcpmem, nr_pages);
5869 		memcg->tcpmem_pressure = 1;
5870 		return false;
5871 	}
5872 
5873 	/* Don't block in the packet receive path */
5874 	if (in_softirq())
5875 		gfp_mask = GFP_NOWAIT;
5876 
5877 	this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5878 
5879 	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5880 		return true;
5881 
5882 	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5883 	return false;
5884 }
5885 
5886 /**
5887  * mem_cgroup_uncharge_skmem - uncharge socket memory
5888  * @memcg - memcg to uncharge
5889  * @nr_pages - number of pages to uncharge
5890  */
5891 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5892 {
5893 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5894 		page_counter_uncharge(&memcg->tcpmem, nr_pages);
5895 		return;
5896 	}
5897 
5898 	this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5899 
5900 	refill_stock(memcg, nr_pages);
5901 }
5902 
5903 static int __init cgroup_memory(char *s)
5904 {
5905 	char *token;
5906 
5907 	while ((token = strsep(&s, ",")) != NULL) {
5908 		if (!*token)
5909 			continue;
5910 		if (!strcmp(token, "nosocket"))
5911 			cgroup_memory_nosocket = true;
5912 		if (!strcmp(token, "nokmem"))
5913 			cgroup_memory_nokmem = true;
5914 	}
5915 	return 0;
5916 }
5917 __setup("cgroup.memory=", cgroup_memory);
5918 
5919 /*
5920  * subsys_initcall() for memory controller.
5921  *
5922  * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
5923  * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
5924  * basically everything that doesn't depend on a specific mem_cgroup structure
5925  * should be initialized from here.
5926  */
5927 static int __init mem_cgroup_init(void)
5928 {
5929 	int cpu, node;
5930 
5931 #ifndef CONFIG_SLOB
5932 	/*
5933 	 * Kmem cache creation is mostly done with the slab_mutex held,
5934 	 * so use a workqueue with limited concurrency to avoid stalling
5935 	 * all worker threads in case lots of cgroups are created and
5936 	 * destroyed simultaneously.
5937 	 */
5938 	memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
5939 	BUG_ON(!memcg_kmem_cache_wq);
5940 #endif
5941 
5942 	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
5943 				  memcg_hotplug_cpu_dead);
5944 
5945 	for_each_possible_cpu(cpu)
5946 		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5947 			  drain_local_stock);
5948 
5949 	for_each_node(node) {
5950 		struct mem_cgroup_tree_per_node *rtpn;
5951 
5952 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5953 				    node_online(node) ? node : NUMA_NO_NODE);
5954 
5955 		rtpn->rb_root = RB_ROOT;
5956 		rtpn->rb_rightmost = NULL;
5957 		spin_lock_init(&rtpn->lock);
5958 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
5959 	}
5960 
5961 	return 0;
5962 }
5963 subsys_initcall(mem_cgroup_init);
5964 
5965 #ifdef CONFIG_MEMCG_SWAP
5966 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
5967 {
5968 	while (!atomic_inc_not_zero(&memcg->id.ref)) {
5969 		/*
5970 		 * The root cgroup cannot be destroyed, so it's refcount must
5971 		 * always be >= 1.
5972 		 */
5973 		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
5974 			VM_BUG_ON(1);
5975 			break;
5976 		}
5977 		memcg = parent_mem_cgroup(memcg);
5978 		if (!memcg)
5979 			memcg = root_mem_cgroup;
5980 	}
5981 	return memcg;
5982 }
5983 
5984 /**
5985  * mem_cgroup_swapout - transfer a memsw charge to swap
5986  * @page: page whose memsw charge to transfer
5987  * @entry: swap entry to move the charge to
5988  *
5989  * Transfer the memsw charge of @page to @entry.
5990  */
5991 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5992 {
5993 	struct mem_cgroup *memcg, *swap_memcg;
5994 	unsigned int nr_entries;
5995 	unsigned short oldid;
5996 
5997 	VM_BUG_ON_PAGE(PageLRU(page), page);
5998 	VM_BUG_ON_PAGE(page_count(page), page);
5999 
6000 	if (!do_memsw_account())
6001 		return;
6002 
6003 	memcg = page->mem_cgroup;
6004 
6005 	/* Readahead page, never charged */
6006 	if (!memcg)
6007 		return;
6008 
6009 	/*
6010 	 * In case the memcg owning these pages has been offlined and doesn't
6011 	 * have an ID allocated to it anymore, charge the closest online
6012 	 * ancestor for the swap instead and transfer the memory+swap charge.
6013 	 */
6014 	swap_memcg = mem_cgroup_id_get_online(memcg);
6015 	nr_entries = hpage_nr_pages(page);
6016 	/* Get references for the tail pages, too */
6017 	if (nr_entries > 1)
6018 		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
6019 	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
6020 				   nr_entries);
6021 	VM_BUG_ON_PAGE(oldid, page);
6022 	mem_cgroup_swap_statistics(swap_memcg, nr_entries);
6023 
6024 	page->mem_cgroup = NULL;
6025 
6026 	if (!mem_cgroup_is_root(memcg))
6027 		page_counter_uncharge(&memcg->memory, nr_entries);
6028 
6029 	if (memcg != swap_memcg) {
6030 		if (!mem_cgroup_is_root(swap_memcg))
6031 			page_counter_charge(&swap_memcg->memsw, nr_entries);
6032 		page_counter_uncharge(&memcg->memsw, nr_entries);
6033 	}
6034 
6035 	/*
6036 	 * Interrupts should be disabled here because the caller holds the
6037 	 * mapping->tree_lock lock which is taken with interrupts-off. It is
6038 	 * important here to have the interrupts disabled because it is the
6039 	 * only synchronisation we have for udpating the per-CPU variables.
6040 	 */
6041 	VM_BUG_ON(!irqs_disabled());
6042 	mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
6043 				     -nr_entries);
6044 	memcg_check_events(memcg, page);
6045 
6046 	if (!mem_cgroup_is_root(memcg))
6047 		css_put(&memcg->css);
6048 }
6049 
6050 /**
6051  * mem_cgroup_try_charge_swap - try charging swap space for a page
6052  * @page: page being added to swap
6053  * @entry: swap entry to charge
6054  *
6055  * Try to charge @page's memcg for the swap space at @entry.
6056  *
6057  * Returns 0 on success, -ENOMEM on failure.
6058  */
6059 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
6060 {
6061 	unsigned int nr_pages = hpage_nr_pages(page);
6062 	struct page_counter *counter;
6063 	struct mem_cgroup *memcg;
6064 	unsigned short oldid;
6065 
6066 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
6067 		return 0;
6068 
6069 	memcg = page->mem_cgroup;
6070 
6071 	/* Readahead page, never charged */
6072 	if (!memcg)
6073 		return 0;
6074 
6075 	memcg = mem_cgroup_id_get_online(memcg);
6076 
6077 	if (!mem_cgroup_is_root(memcg) &&
6078 	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
6079 		mem_cgroup_id_put(memcg);
6080 		return -ENOMEM;
6081 	}
6082 
6083 	/* Get references for the tail pages, too */
6084 	if (nr_pages > 1)
6085 		mem_cgroup_id_get_many(memcg, nr_pages - 1);
6086 	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
6087 	VM_BUG_ON_PAGE(oldid, page);
6088 	mem_cgroup_swap_statistics(memcg, nr_pages);
6089 
6090 	return 0;
6091 }
6092 
6093 /**
6094  * mem_cgroup_uncharge_swap - uncharge swap space
6095  * @entry: swap entry to uncharge
6096  * @nr_pages: the amount of swap space to uncharge
6097  */
6098 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
6099 {
6100 	struct mem_cgroup *memcg;
6101 	unsigned short id;
6102 
6103 	if (!do_swap_account)
6104 		return;
6105 
6106 	id = swap_cgroup_record(entry, 0, nr_pages);
6107 	rcu_read_lock();
6108 	memcg = mem_cgroup_from_id(id);
6109 	if (memcg) {
6110 		if (!mem_cgroup_is_root(memcg)) {
6111 			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6112 				page_counter_uncharge(&memcg->swap, nr_pages);
6113 			else
6114 				page_counter_uncharge(&memcg->memsw, nr_pages);
6115 		}
6116 		mem_cgroup_swap_statistics(memcg, -nr_pages);
6117 		mem_cgroup_id_put_many(memcg, nr_pages);
6118 	}
6119 	rcu_read_unlock();
6120 }
6121 
6122 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
6123 {
6124 	long nr_swap_pages = get_nr_swap_pages();
6125 
6126 	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6127 		return nr_swap_pages;
6128 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6129 		nr_swap_pages = min_t(long, nr_swap_pages,
6130 				      READ_ONCE(memcg->swap.limit) -
6131 				      page_counter_read(&memcg->swap));
6132 	return nr_swap_pages;
6133 }
6134 
6135 bool mem_cgroup_swap_full(struct page *page)
6136 {
6137 	struct mem_cgroup *memcg;
6138 
6139 	VM_BUG_ON_PAGE(!PageLocked(page), page);
6140 
6141 	if (vm_swap_full())
6142 		return true;
6143 	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6144 		return false;
6145 
6146 	memcg = page->mem_cgroup;
6147 	if (!memcg)
6148 		return false;
6149 
6150 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6151 		if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
6152 			return true;
6153 
6154 	return false;
6155 }
6156 
6157 /* for remember boot option*/
6158 #ifdef CONFIG_MEMCG_SWAP_ENABLED
6159 static int really_do_swap_account __initdata = 1;
6160 #else
6161 static int really_do_swap_account __initdata;
6162 #endif
6163 
6164 static int __init enable_swap_account(char *s)
6165 {
6166 	if (!strcmp(s, "1"))
6167 		really_do_swap_account = 1;
6168 	else if (!strcmp(s, "0"))
6169 		really_do_swap_account = 0;
6170 	return 1;
6171 }
6172 __setup("swapaccount=", enable_swap_account);
6173 
6174 static u64 swap_current_read(struct cgroup_subsys_state *css,
6175 			     struct cftype *cft)
6176 {
6177 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6178 
6179 	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6180 }
6181 
6182 static int swap_max_show(struct seq_file *m, void *v)
6183 {
6184 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
6185 	unsigned long max = READ_ONCE(memcg->swap.limit);
6186 
6187 	if (max == PAGE_COUNTER_MAX)
6188 		seq_puts(m, "max\n");
6189 	else
6190 		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
6191 
6192 	return 0;
6193 }
6194 
6195 static ssize_t swap_max_write(struct kernfs_open_file *of,
6196 			      char *buf, size_t nbytes, loff_t off)
6197 {
6198 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6199 	unsigned long max;
6200 	int err;
6201 
6202 	buf = strstrip(buf);
6203 	err = page_counter_memparse(buf, "max", &max);
6204 	if (err)
6205 		return err;
6206 
6207 	mutex_lock(&memcg_limit_mutex);
6208 	err = page_counter_limit(&memcg->swap, max);
6209 	mutex_unlock(&memcg_limit_mutex);
6210 	if (err)
6211 		return err;
6212 
6213 	return nbytes;
6214 }
6215 
6216 static struct cftype swap_files[] = {
6217 	{
6218 		.name = "swap.current",
6219 		.flags = CFTYPE_NOT_ON_ROOT,
6220 		.read_u64 = swap_current_read,
6221 	},
6222 	{
6223 		.name = "swap.max",
6224 		.flags = CFTYPE_NOT_ON_ROOT,
6225 		.seq_show = swap_max_show,
6226 		.write = swap_max_write,
6227 	},
6228 	{ }	/* terminate */
6229 };
6230 
6231 static struct cftype memsw_cgroup_files[] = {
6232 	{
6233 		.name = "memsw.usage_in_bytes",
6234 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6235 		.read_u64 = mem_cgroup_read_u64,
6236 	},
6237 	{
6238 		.name = "memsw.max_usage_in_bytes",
6239 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6240 		.write = mem_cgroup_reset,
6241 		.read_u64 = mem_cgroup_read_u64,
6242 	},
6243 	{
6244 		.name = "memsw.limit_in_bytes",
6245 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6246 		.write = mem_cgroup_write,
6247 		.read_u64 = mem_cgroup_read_u64,
6248 	},
6249 	{
6250 		.name = "memsw.failcnt",
6251 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6252 		.write = mem_cgroup_reset,
6253 		.read_u64 = mem_cgroup_read_u64,
6254 	},
6255 	{ },	/* terminate */
6256 };
6257 
6258 static int __init mem_cgroup_swap_init(void)
6259 {
6260 	if (!mem_cgroup_disabled() && really_do_swap_account) {
6261 		do_swap_account = 1;
6262 		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6263 					       swap_files));
6264 		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6265 						  memsw_cgroup_files));
6266 	}
6267 	return 0;
6268 }
6269 subsys_initcall(mem_cgroup_swap_init);
6270 
6271 #endif /* CONFIG_MEMCG_SWAP */
6272