xref: /openbmc/linux/mm/memcontrol.c (revision 6a108a14)
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  */
23 
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/mutex.h>
37 #include <linux/rbtree.h>
38 #include <linux/slab.h>
39 #include <linux/swap.h>
40 #include <linux/swapops.h>
41 #include <linux/spinlock.h>
42 #include <linux/eventfd.h>
43 #include <linux/sort.h>
44 #include <linux/fs.h>
45 #include <linux/seq_file.h>
46 #include <linux/vmalloc.h>
47 #include <linux/mm_inline.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/cpu.h>
50 #include <linux/oom.h>
51 #include "internal.h"
52 
53 #include <asm/uaccess.h>
54 
55 #include <trace/events/vmscan.h>
56 
57 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
58 #define MEM_CGROUP_RECLAIM_RETRIES	5
59 struct mem_cgroup *root_mem_cgroup __read_mostly;
60 
61 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
62 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
63 int do_swap_account __read_mostly;
64 
65 /* for remember boot option*/
66 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
67 static int really_do_swap_account __initdata = 1;
68 #else
69 static int really_do_swap_account __initdata = 0;
70 #endif
71 
72 #else
73 #define do_swap_account		(0)
74 #endif
75 
76 /*
77  * Per memcg event counter is incremented at every pagein/pageout. This counter
78  * is used for trigger some periodic events. This is straightforward and better
79  * than using jiffies etc. to handle periodic memcg event.
80  *
81  * These values will be used as !((event) & ((1 <<(thresh)) - 1))
82  */
83 #define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
84 #define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
85 
86 /*
87  * Statistics for memory cgroup.
88  */
89 enum mem_cgroup_stat_index {
90 	/*
91 	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
92 	 */
93 	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
94 	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
95 	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
96 	MEM_CGROUP_STAT_PGPGIN_COUNT,	/* # of pages paged in */
97 	MEM_CGROUP_STAT_PGPGOUT_COUNT,	/* # of pages paged out */
98 	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
99 	MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
100 	/* incremented at every  pagein/pageout */
101 	MEM_CGROUP_EVENTS = MEM_CGROUP_STAT_DATA,
102 	MEM_CGROUP_ON_MOVE,	/* someone is moving account between groups */
103 
104 	MEM_CGROUP_STAT_NSTATS,
105 };
106 
107 struct mem_cgroup_stat_cpu {
108 	s64 count[MEM_CGROUP_STAT_NSTATS];
109 };
110 
111 /*
112  * per-zone information in memory controller.
113  */
114 struct mem_cgroup_per_zone {
115 	/*
116 	 * spin_lock to protect the per cgroup LRU
117 	 */
118 	struct list_head	lists[NR_LRU_LISTS];
119 	unsigned long		count[NR_LRU_LISTS];
120 
121 	struct zone_reclaim_stat reclaim_stat;
122 	struct rb_node		tree_node;	/* RB tree node */
123 	unsigned long long	usage_in_excess;/* Set to the value by which */
124 						/* the soft limit is exceeded*/
125 	bool			on_tree;
126 	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
127 						/* use container_of	   */
128 };
129 /* Macro for accessing counter */
130 #define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])
131 
132 struct mem_cgroup_per_node {
133 	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
134 };
135 
136 struct mem_cgroup_lru_info {
137 	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
138 };
139 
140 /*
141  * Cgroups above their limits are maintained in a RB-Tree, independent of
142  * their hierarchy representation
143  */
144 
145 struct mem_cgroup_tree_per_zone {
146 	struct rb_root rb_root;
147 	spinlock_t lock;
148 };
149 
150 struct mem_cgroup_tree_per_node {
151 	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
152 };
153 
154 struct mem_cgroup_tree {
155 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
156 };
157 
158 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
159 
160 struct mem_cgroup_threshold {
161 	struct eventfd_ctx *eventfd;
162 	u64 threshold;
163 };
164 
165 /* For threshold */
166 struct mem_cgroup_threshold_ary {
167 	/* An array index points to threshold just below usage. */
168 	int current_threshold;
169 	/* Size of entries[] */
170 	unsigned int size;
171 	/* Array of thresholds */
172 	struct mem_cgroup_threshold entries[0];
173 };
174 
175 struct mem_cgroup_thresholds {
176 	/* Primary thresholds array */
177 	struct mem_cgroup_threshold_ary *primary;
178 	/*
179 	 * Spare threshold array.
180 	 * This is needed to make mem_cgroup_unregister_event() "never fail".
181 	 * It must be able to store at least primary->size - 1 entries.
182 	 */
183 	struct mem_cgroup_threshold_ary *spare;
184 };
185 
186 /* for OOM */
187 struct mem_cgroup_eventfd_list {
188 	struct list_head list;
189 	struct eventfd_ctx *eventfd;
190 };
191 
192 static void mem_cgroup_threshold(struct mem_cgroup *mem);
193 static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
194 
195 /*
196  * The memory controller data structure. The memory controller controls both
197  * page cache and RSS per cgroup. We would eventually like to provide
198  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
199  * to help the administrator determine what knobs to tune.
200  *
201  * TODO: Add a water mark for the memory controller. Reclaim will begin when
202  * we hit the water mark. May be even add a low water mark, such that
203  * no reclaim occurs from a cgroup at it's low water mark, this is
204  * a feature that will be implemented much later in the future.
205  */
206 struct mem_cgroup {
207 	struct cgroup_subsys_state css;
208 	/*
209 	 * the counter to account for memory usage
210 	 */
211 	struct res_counter res;
212 	/*
213 	 * the counter to account for mem+swap usage.
214 	 */
215 	struct res_counter memsw;
216 	/*
217 	 * Per cgroup active and inactive list, similar to the
218 	 * per zone LRU lists.
219 	 */
220 	struct mem_cgroup_lru_info info;
221 
222 	/*
223 	  protect against reclaim related member.
224 	*/
225 	spinlock_t reclaim_param_lock;
226 
227 	/*
228 	 * While reclaiming in a hierarchy, we cache the last child we
229 	 * reclaimed from.
230 	 */
231 	int last_scanned_child;
232 	/*
233 	 * Should the accounting and control be hierarchical, per subtree?
234 	 */
235 	bool use_hierarchy;
236 	atomic_t	oom_lock;
237 	atomic_t	refcnt;
238 
239 	unsigned int	swappiness;
240 	/* OOM-Killer disable */
241 	int		oom_kill_disable;
242 
243 	/* set when res.limit == memsw.limit */
244 	bool		memsw_is_minimum;
245 
246 	/* protect arrays of thresholds */
247 	struct mutex thresholds_lock;
248 
249 	/* thresholds for memory usage. RCU-protected */
250 	struct mem_cgroup_thresholds thresholds;
251 
252 	/* thresholds for mem+swap usage. RCU-protected */
253 	struct mem_cgroup_thresholds memsw_thresholds;
254 
255 	/* For oom notifier event fd */
256 	struct list_head oom_notify;
257 
258 	/*
259 	 * Should we move charges of a task when a task is moved into this
260 	 * mem_cgroup ? And what type of charges should we move ?
261 	 */
262 	unsigned long 	move_charge_at_immigrate;
263 	/*
264 	 * percpu counter.
265 	 */
266 	struct mem_cgroup_stat_cpu *stat;
267 	/*
268 	 * used when a cpu is offlined or other synchronizations
269 	 * See mem_cgroup_read_stat().
270 	 */
271 	struct mem_cgroup_stat_cpu nocpu_base;
272 	spinlock_t pcp_counter_lock;
273 };
274 
275 /* Stuffs for move charges at task migration. */
276 /*
277  * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
278  * left-shifted bitmap of these types.
279  */
280 enum move_type {
281 	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
282 	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
283 	NR_MOVE_TYPE,
284 };
285 
286 /* "mc" and its members are protected by cgroup_mutex */
287 static struct move_charge_struct {
288 	spinlock_t	  lock; /* for from, to */
289 	struct mem_cgroup *from;
290 	struct mem_cgroup *to;
291 	unsigned long precharge;
292 	unsigned long moved_charge;
293 	unsigned long moved_swap;
294 	struct task_struct *moving_task;	/* a task moving charges */
295 	wait_queue_head_t waitq;		/* a waitq for other context */
296 } mc = {
297 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
298 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
299 };
300 
301 static bool move_anon(void)
302 {
303 	return test_bit(MOVE_CHARGE_TYPE_ANON,
304 					&mc.to->move_charge_at_immigrate);
305 }
306 
307 static bool move_file(void)
308 {
309 	return test_bit(MOVE_CHARGE_TYPE_FILE,
310 					&mc.to->move_charge_at_immigrate);
311 }
312 
313 /*
314  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
315  * limit reclaim to prevent infinite loops, if they ever occur.
316  */
317 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
318 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)
319 
320 enum charge_type {
321 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
322 	MEM_CGROUP_CHARGE_TYPE_MAPPED,
323 	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
324 	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
325 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
326 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
327 	NR_CHARGE_TYPE,
328 };
329 
330 /* only for here (for easy reading.) */
331 #define PCGF_CACHE	(1UL << PCG_CACHE)
332 #define PCGF_USED	(1UL << PCG_USED)
333 #define PCGF_LOCK	(1UL << PCG_LOCK)
334 /* Not used, but added here for completeness */
335 #define PCGF_ACCT	(1UL << PCG_ACCT)
336 
337 /* for encoding cft->private value on file */
338 #define _MEM			(0)
339 #define _MEMSWAP		(1)
340 #define _OOM_TYPE		(2)
341 #define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
342 #define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
343 #define MEMFILE_ATTR(val)	((val) & 0xffff)
344 /* Used for OOM nofiier */
345 #define OOM_CONTROL		(0)
346 
347 /*
348  * Reclaim flags for mem_cgroup_hierarchical_reclaim
349  */
350 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
351 #define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
352 #define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
353 #define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
354 #define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2
355 #define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
356 
357 static void mem_cgroup_get(struct mem_cgroup *mem);
358 static void mem_cgroup_put(struct mem_cgroup *mem);
359 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
360 static void drain_all_stock_async(void);
361 
362 static struct mem_cgroup_per_zone *
363 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
364 {
365 	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
366 }
367 
368 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
369 {
370 	return &mem->css;
371 }
372 
373 static struct mem_cgroup_per_zone *
374 page_cgroup_zoneinfo(struct page_cgroup *pc)
375 {
376 	struct mem_cgroup *mem = pc->mem_cgroup;
377 	int nid = page_cgroup_nid(pc);
378 	int zid = page_cgroup_zid(pc);
379 
380 	if (!mem)
381 		return NULL;
382 
383 	return mem_cgroup_zoneinfo(mem, nid, zid);
384 }
385 
386 static struct mem_cgroup_tree_per_zone *
387 soft_limit_tree_node_zone(int nid, int zid)
388 {
389 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
390 }
391 
392 static struct mem_cgroup_tree_per_zone *
393 soft_limit_tree_from_page(struct page *page)
394 {
395 	int nid = page_to_nid(page);
396 	int zid = page_zonenum(page);
397 
398 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
399 }
400 
401 static void
402 __mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
403 				struct mem_cgroup_per_zone *mz,
404 				struct mem_cgroup_tree_per_zone *mctz,
405 				unsigned long long new_usage_in_excess)
406 {
407 	struct rb_node **p = &mctz->rb_root.rb_node;
408 	struct rb_node *parent = NULL;
409 	struct mem_cgroup_per_zone *mz_node;
410 
411 	if (mz->on_tree)
412 		return;
413 
414 	mz->usage_in_excess = new_usage_in_excess;
415 	if (!mz->usage_in_excess)
416 		return;
417 	while (*p) {
418 		parent = *p;
419 		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
420 					tree_node);
421 		if (mz->usage_in_excess < mz_node->usage_in_excess)
422 			p = &(*p)->rb_left;
423 		/*
424 		 * We can't avoid mem cgroups that are over their soft
425 		 * limit by the same amount
426 		 */
427 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
428 			p = &(*p)->rb_right;
429 	}
430 	rb_link_node(&mz->tree_node, parent, p);
431 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
432 	mz->on_tree = true;
433 }
434 
435 static void
436 __mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
437 				struct mem_cgroup_per_zone *mz,
438 				struct mem_cgroup_tree_per_zone *mctz)
439 {
440 	if (!mz->on_tree)
441 		return;
442 	rb_erase(&mz->tree_node, &mctz->rb_root);
443 	mz->on_tree = false;
444 }
445 
446 static void
447 mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
448 				struct mem_cgroup_per_zone *mz,
449 				struct mem_cgroup_tree_per_zone *mctz)
450 {
451 	spin_lock(&mctz->lock);
452 	__mem_cgroup_remove_exceeded(mem, mz, mctz);
453 	spin_unlock(&mctz->lock);
454 }
455 
456 
457 static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
458 {
459 	unsigned long long excess;
460 	struct mem_cgroup_per_zone *mz;
461 	struct mem_cgroup_tree_per_zone *mctz;
462 	int nid = page_to_nid(page);
463 	int zid = page_zonenum(page);
464 	mctz = soft_limit_tree_from_page(page);
465 
466 	/*
467 	 * Necessary to update all ancestors when hierarchy is used.
468 	 * because their event counter is not touched.
469 	 */
470 	for (; mem; mem = parent_mem_cgroup(mem)) {
471 		mz = mem_cgroup_zoneinfo(mem, nid, zid);
472 		excess = res_counter_soft_limit_excess(&mem->res);
473 		/*
474 		 * We have to update the tree if mz is on RB-tree or
475 		 * mem is over its softlimit.
476 		 */
477 		if (excess || mz->on_tree) {
478 			spin_lock(&mctz->lock);
479 			/* if on-tree, remove it */
480 			if (mz->on_tree)
481 				__mem_cgroup_remove_exceeded(mem, mz, mctz);
482 			/*
483 			 * Insert again. mz->usage_in_excess will be updated.
484 			 * If excess is 0, no tree ops.
485 			 */
486 			__mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
487 			spin_unlock(&mctz->lock);
488 		}
489 	}
490 }
491 
492 static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
493 {
494 	int node, zone;
495 	struct mem_cgroup_per_zone *mz;
496 	struct mem_cgroup_tree_per_zone *mctz;
497 
498 	for_each_node_state(node, N_POSSIBLE) {
499 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
500 			mz = mem_cgroup_zoneinfo(mem, node, zone);
501 			mctz = soft_limit_tree_node_zone(node, zone);
502 			mem_cgroup_remove_exceeded(mem, mz, mctz);
503 		}
504 	}
505 }
506 
507 static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
508 {
509 	return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
510 }
511 
512 static struct mem_cgroup_per_zone *
513 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
514 {
515 	struct rb_node *rightmost = NULL;
516 	struct mem_cgroup_per_zone *mz;
517 
518 retry:
519 	mz = NULL;
520 	rightmost = rb_last(&mctz->rb_root);
521 	if (!rightmost)
522 		goto done;		/* Nothing to reclaim from */
523 
524 	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
525 	/*
526 	 * Remove the node now but someone else can add it back,
527 	 * we will to add it back at the end of reclaim to its correct
528 	 * position in the tree.
529 	 */
530 	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
531 	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
532 		!css_tryget(&mz->mem->css))
533 		goto retry;
534 done:
535 	return mz;
536 }
537 
538 static struct mem_cgroup_per_zone *
539 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
540 {
541 	struct mem_cgroup_per_zone *mz;
542 
543 	spin_lock(&mctz->lock);
544 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
545 	spin_unlock(&mctz->lock);
546 	return mz;
547 }
548 
549 /*
550  * Implementation Note: reading percpu statistics for memcg.
551  *
552  * Both of vmstat[] and percpu_counter has threshold and do periodic
553  * synchronization to implement "quick" read. There are trade-off between
554  * reading cost and precision of value. Then, we may have a chance to implement
555  * a periodic synchronizion of counter in memcg's counter.
556  *
557  * But this _read() function is used for user interface now. The user accounts
558  * memory usage by memory cgroup and he _always_ requires exact value because
559  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
560  * have to visit all online cpus and make sum. So, for now, unnecessary
561  * synchronization is not implemented. (just implemented for cpu hotplug)
562  *
563  * If there are kernel internal actions which can make use of some not-exact
564  * value, and reading all cpu value can be performance bottleneck in some
565  * common workload, threashold and synchonization as vmstat[] should be
566  * implemented.
567  */
568 static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
569 		enum mem_cgroup_stat_index idx)
570 {
571 	int cpu;
572 	s64 val = 0;
573 
574 	get_online_cpus();
575 	for_each_online_cpu(cpu)
576 		val += per_cpu(mem->stat->count[idx], cpu);
577 #ifdef CONFIG_HOTPLUG_CPU
578 	spin_lock(&mem->pcp_counter_lock);
579 	val += mem->nocpu_base.count[idx];
580 	spin_unlock(&mem->pcp_counter_lock);
581 #endif
582 	put_online_cpus();
583 	return val;
584 }
585 
586 static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
587 {
588 	s64 ret;
589 
590 	ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
591 	ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
592 	return ret;
593 }
594 
595 static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
596 					 bool charge)
597 {
598 	int val = (charge) ? 1 : -1;
599 	this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
600 }
601 
602 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
603 					 struct page_cgroup *pc,
604 					 bool charge)
605 {
606 	int val = (charge) ? 1 : -1;
607 
608 	preempt_disable();
609 
610 	if (PageCgroupCache(pc))
611 		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], val);
612 	else
613 		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], val);
614 
615 	if (charge)
616 		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]);
617 	else
618 		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]);
619 	__this_cpu_inc(mem->stat->count[MEM_CGROUP_EVENTS]);
620 
621 	preempt_enable();
622 }
623 
624 static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
625 					enum lru_list idx)
626 {
627 	int nid, zid;
628 	struct mem_cgroup_per_zone *mz;
629 	u64 total = 0;
630 
631 	for_each_online_node(nid)
632 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
633 			mz = mem_cgroup_zoneinfo(mem, nid, zid);
634 			total += MEM_CGROUP_ZSTAT(mz, idx);
635 		}
636 	return total;
637 }
638 
639 static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift)
640 {
641 	s64 val;
642 
643 	val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]);
644 
645 	return !(val & ((1 << event_mask_shift) - 1));
646 }
647 
648 /*
649  * Check events in order.
650  *
651  */
652 static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
653 {
654 	/* threshold event is triggered in finer grain than soft limit */
655 	if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) {
656 		mem_cgroup_threshold(mem);
657 		if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH)))
658 			mem_cgroup_update_tree(mem, page);
659 	}
660 }
661 
662 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
663 {
664 	return container_of(cgroup_subsys_state(cont,
665 				mem_cgroup_subsys_id), struct mem_cgroup,
666 				css);
667 }
668 
669 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
670 {
671 	/*
672 	 * mm_update_next_owner() may clear mm->owner to NULL
673 	 * if it races with swapoff, page migration, etc.
674 	 * So this can be called with p == NULL.
675 	 */
676 	if (unlikely(!p))
677 		return NULL;
678 
679 	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
680 				struct mem_cgroup, css);
681 }
682 
683 static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
684 {
685 	struct mem_cgroup *mem = NULL;
686 
687 	if (!mm)
688 		return NULL;
689 	/*
690 	 * Because we have no locks, mm->owner's may be being moved to other
691 	 * cgroup. We use css_tryget() here even if this looks
692 	 * pessimistic (rather than adding locks here).
693 	 */
694 	rcu_read_lock();
695 	do {
696 		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
697 		if (unlikely(!mem))
698 			break;
699 	} while (!css_tryget(&mem->css));
700 	rcu_read_unlock();
701 	return mem;
702 }
703 
704 /* The caller has to guarantee "mem" exists before calling this */
705 static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
706 {
707 	struct cgroup_subsys_state *css;
708 	int found;
709 
710 	if (!mem) /* ROOT cgroup has the smallest ID */
711 		return root_mem_cgroup; /*css_put/get against root is ignored*/
712 	if (!mem->use_hierarchy) {
713 		if (css_tryget(&mem->css))
714 			return mem;
715 		return NULL;
716 	}
717 	rcu_read_lock();
718 	/*
719 	 * searching a memory cgroup which has the smallest ID under given
720 	 * ROOT cgroup. (ID >= 1)
721 	 */
722 	css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
723 	if (css && css_tryget(css))
724 		mem = container_of(css, struct mem_cgroup, css);
725 	else
726 		mem = NULL;
727 	rcu_read_unlock();
728 	return mem;
729 }
730 
731 static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
732 					struct mem_cgroup *root,
733 					bool cond)
734 {
735 	int nextid = css_id(&iter->css) + 1;
736 	int found;
737 	int hierarchy_used;
738 	struct cgroup_subsys_state *css;
739 
740 	hierarchy_used = iter->use_hierarchy;
741 
742 	css_put(&iter->css);
743 	/* If no ROOT, walk all, ignore hierarchy */
744 	if (!cond || (root && !hierarchy_used))
745 		return NULL;
746 
747 	if (!root)
748 		root = root_mem_cgroup;
749 
750 	do {
751 		iter = NULL;
752 		rcu_read_lock();
753 
754 		css = css_get_next(&mem_cgroup_subsys, nextid,
755 				&root->css, &found);
756 		if (css && css_tryget(css))
757 			iter = container_of(css, struct mem_cgroup, css);
758 		rcu_read_unlock();
759 		/* If css is NULL, no more cgroups will be found */
760 		nextid = found + 1;
761 	} while (css && !iter);
762 
763 	return iter;
764 }
765 /*
766  * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
767  * be careful that "break" loop is not allowed. We have reference count.
768  * Instead of that modify "cond" to be false and "continue" to exit the loop.
769  */
770 #define for_each_mem_cgroup_tree_cond(iter, root, cond)	\
771 	for (iter = mem_cgroup_start_loop(root);\
772 	     iter != NULL;\
773 	     iter = mem_cgroup_get_next(iter, root, cond))
774 
775 #define for_each_mem_cgroup_tree(iter, root) \
776 	for_each_mem_cgroup_tree_cond(iter, root, true)
777 
778 #define for_each_mem_cgroup_all(iter) \
779 	for_each_mem_cgroup_tree_cond(iter, NULL, true)
780 
781 
782 static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
783 {
784 	return (mem == root_mem_cgroup);
785 }
786 
787 /*
788  * Following LRU functions are allowed to be used without PCG_LOCK.
789  * Operations are called by routine of global LRU independently from memcg.
790  * What we have to take care of here is validness of pc->mem_cgroup.
791  *
792  * Changes to pc->mem_cgroup happens when
793  * 1. charge
794  * 2. moving account
795  * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
796  * It is added to LRU before charge.
797  * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
798  * When moving account, the page is not on LRU. It's isolated.
799  */
800 
801 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
802 {
803 	struct page_cgroup *pc;
804 	struct mem_cgroup_per_zone *mz;
805 
806 	if (mem_cgroup_disabled())
807 		return;
808 	pc = lookup_page_cgroup(page);
809 	/* can happen while we handle swapcache. */
810 	if (!TestClearPageCgroupAcctLRU(pc))
811 		return;
812 	VM_BUG_ON(!pc->mem_cgroup);
813 	/*
814 	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
815 	 * removed from global LRU.
816 	 */
817 	mz = page_cgroup_zoneinfo(pc);
818 	MEM_CGROUP_ZSTAT(mz, lru) -= 1;
819 	if (mem_cgroup_is_root(pc->mem_cgroup))
820 		return;
821 	VM_BUG_ON(list_empty(&pc->lru));
822 	list_del_init(&pc->lru);
823 }
824 
825 void mem_cgroup_del_lru(struct page *page)
826 {
827 	mem_cgroup_del_lru_list(page, page_lru(page));
828 }
829 
830 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
831 {
832 	struct mem_cgroup_per_zone *mz;
833 	struct page_cgroup *pc;
834 
835 	if (mem_cgroup_disabled())
836 		return;
837 
838 	pc = lookup_page_cgroup(page);
839 	/*
840 	 * Used bit is set without atomic ops but after smp_wmb().
841 	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
842 	 */
843 	smp_rmb();
844 	/* unused or root page is not rotated. */
845 	if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup))
846 		return;
847 	mz = page_cgroup_zoneinfo(pc);
848 	list_move(&pc->lru, &mz->lists[lru]);
849 }
850 
851 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
852 {
853 	struct page_cgroup *pc;
854 	struct mem_cgroup_per_zone *mz;
855 
856 	if (mem_cgroup_disabled())
857 		return;
858 	pc = lookup_page_cgroup(page);
859 	VM_BUG_ON(PageCgroupAcctLRU(pc));
860 	/*
861 	 * Used bit is set without atomic ops but after smp_wmb().
862 	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
863 	 */
864 	smp_rmb();
865 	if (!PageCgroupUsed(pc))
866 		return;
867 
868 	mz = page_cgroup_zoneinfo(pc);
869 	MEM_CGROUP_ZSTAT(mz, lru) += 1;
870 	SetPageCgroupAcctLRU(pc);
871 	if (mem_cgroup_is_root(pc->mem_cgroup))
872 		return;
873 	list_add(&pc->lru, &mz->lists[lru]);
874 }
875 
876 /*
877  * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
878  * lru because the page may.be reused after it's fully uncharged (because of
879  * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
880  * it again. This function is only used to charge SwapCache. It's done under
881  * lock_page and expected that zone->lru_lock is never held.
882  */
883 static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
884 {
885 	unsigned long flags;
886 	struct zone *zone = page_zone(page);
887 	struct page_cgroup *pc = lookup_page_cgroup(page);
888 
889 	spin_lock_irqsave(&zone->lru_lock, flags);
890 	/*
891 	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
892 	 * is guarded by lock_page() because the page is SwapCache.
893 	 */
894 	if (!PageCgroupUsed(pc))
895 		mem_cgroup_del_lru_list(page, page_lru(page));
896 	spin_unlock_irqrestore(&zone->lru_lock, flags);
897 }
898 
899 static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
900 {
901 	unsigned long flags;
902 	struct zone *zone = page_zone(page);
903 	struct page_cgroup *pc = lookup_page_cgroup(page);
904 
905 	spin_lock_irqsave(&zone->lru_lock, flags);
906 	/* link when the page is linked to LRU but page_cgroup isn't */
907 	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
908 		mem_cgroup_add_lru_list(page, page_lru(page));
909 	spin_unlock_irqrestore(&zone->lru_lock, flags);
910 }
911 
912 
913 void mem_cgroup_move_lists(struct page *page,
914 			   enum lru_list from, enum lru_list to)
915 {
916 	if (mem_cgroup_disabled())
917 		return;
918 	mem_cgroup_del_lru_list(page, from);
919 	mem_cgroup_add_lru_list(page, to);
920 }
921 
922 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
923 {
924 	int ret;
925 	struct mem_cgroup *curr = NULL;
926 	struct task_struct *p;
927 
928 	p = find_lock_task_mm(task);
929 	if (!p)
930 		return 0;
931 	curr = try_get_mem_cgroup_from_mm(p->mm);
932 	task_unlock(p);
933 	if (!curr)
934 		return 0;
935 	/*
936 	 * We should check use_hierarchy of "mem" not "curr". Because checking
937 	 * use_hierarchy of "curr" here make this function true if hierarchy is
938 	 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
939 	 * hierarchy(even if use_hierarchy is disabled in "mem").
940 	 */
941 	if (mem->use_hierarchy)
942 		ret = css_is_ancestor(&curr->css, &mem->css);
943 	else
944 		ret = (curr == mem);
945 	css_put(&curr->css);
946 	return ret;
947 }
948 
949 static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
950 {
951 	unsigned long active;
952 	unsigned long inactive;
953 	unsigned long gb;
954 	unsigned long inactive_ratio;
955 
956 	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
957 	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
958 
959 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
960 	if (gb)
961 		inactive_ratio = int_sqrt(10 * gb);
962 	else
963 		inactive_ratio = 1;
964 
965 	if (present_pages) {
966 		present_pages[0] = inactive;
967 		present_pages[1] = active;
968 	}
969 
970 	return inactive_ratio;
971 }
972 
973 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
974 {
975 	unsigned long active;
976 	unsigned long inactive;
977 	unsigned long present_pages[2];
978 	unsigned long inactive_ratio;
979 
980 	inactive_ratio = calc_inactive_ratio(memcg, present_pages);
981 
982 	inactive = present_pages[0];
983 	active = present_pages[1];
984 
985 	if (inactive * inactive_ratio < active)
986 		return 1;
987 
988 	return 0;
989 }
990 
991 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
992 {
993 	unsigned long active;
994 	unsigned long inactive;
995 
996 	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
997 	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
998 
999 	return (active > inactive);
1000 }
1001 
1002 unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
1003 				       struct zone *zone,
1004 				       enum lru_list lru)
1005 {
1006 	int nid = zone_to_nid(zone);
1007 	int zid = zone_idx(zone);
1008 	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1009 
1010 	return MEM_CGROUP_ZSTAT(mz, lru);
1011 }
1012 
1013 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1014 						      struct zone *zone)
1015 {
1016 	int nid = zone_to_nid(zone);
1017 	int zid = zone_idx(zone);
1018 	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1019 
1020 	return &mz->reclaim_stat;
1021 }
1022 
1023 struct zone_reclaim_stat *
1024 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1025 {
1026 	struct page_cgroup *pc;
1027 	struct mem_cgroup_per_zone *mz;
1028 
1029 	if (mem_cgroup_disabled())
1030 		return NULL;
1031 
1032 	pc = lookup_page_cgroup(page);
1033 	/*
1034 	 * Used bit is set without atomic ops but after smp_wmb().
1035 	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
1036 	 */
1037 	smp_rmb();
1038 	if (!PageCgroupUsed(pc))
1039 		return NULL;
1040 
1041 	mz = page_cgroup_zoneinfo(pc);
1042 	if (!mz)
1043 		return NULL;
1044 
1045 	return &mz->reclaim_stat;
1046 }
1047 
1048 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1049 					struct list_head *dst,
1050 					unsigned long *scanned, int order,
1051 					int mode, struct zone *z,
1052 					struct mem_cgroup *mem_cont,
1053 					int active, int file)
1054 {
1055 	unsigned long nr_taken = 0;
1056 	struct page *page;
1057 	unsigned long scan;
1058 	LIST_HEAD(pc_list);
1059 	struct list_head *src;
1060 	struct page_cgroup *pc, *tmp;
1061 	int nid = zone_to_nid(z);
1062 	int zid = zone_idx(z);
1063 	struct mem_cgroup_per_zone *mz;
1064 	int lru = LRU_FILE * file + active;
1065 	int ret;
1066 
1067 	BUG_ON(!mem_cont);
1068 	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1069 	src = &mz->lists[lru];
1070 
1071 	scan = 0;
1072 	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
1073 		if (scan >= nr_to_scan)
1074 			break;
1075 
1076 		page = pc->page;
1077 		if (unlikely(!PageCgroupUsed(pc)))
1078 			continue;
1079 		if (unlikely(!PageLRU(page)))
1080 			continue;
1081 
1082 		scan++;
1083 		ret = __isolate_lru_page(page, mode, file);
1084 		switch (ret) {
1085 		case 0:
1086 			list_move(&page->lru, dst);
1087 			mem_cgroup_del_lru(page);
1088 			nr_taken += hpage_nr_pages(page);
1089 			break;
1090 		case -EBUSY:
1091 			/* we don't affect global LRU but rotate in our LRU */
1092 			mem_cgroup_rotate_lru_list(page, page_lru(page));
1093 			break;
1094 		default:
1095 			break;
1096 		}
1097 	}
1098 
1099 	*scanned = scan;
1100 
1101 	trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1102 				      0, 0, 0, mode);
1103 
1104 	return nr_taken;
1105 }
1106 
1107 #define mem_cgroup_from_res_counter(counter, member)	\
1108 	container_of(counter, struct mem_cgroup, member)
1109 
1110 static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
1111 {
1112 	if (do_swap_account) {
1113 		if (res_counter_check_under_limit(&mem->res) &&
1114 			res_counter_check_under_limit(&mem->memsw))
1115 			return true;
1116 	} else
1117 		if (res_counter_check_under_limit(&mem->res))
1118 			return true;
1119 	return false;
1120 }
1121 
1122 static unsigned int get_swappiness(struct mem_cgroup *memcg)
1123 {
1124 	struct cgroup *cgrp = memcg->css.cgroup;
1125 	unsigned int swappiness;
1126 
1127 	/* root ? */
1128 	if (cgrp->parent == NULL)
1129 		return vm_swappiness;
1130 
1131 	spin_lock(&memcg->reclaim_param_lock);
1132 	swappiness = memcg->swappiness;
1133 	spin_unlock(&memcg->reclaim_param_lock);
1134 
1135 	return swappiness;
1136 }
1137 
1138 static void mem_cgroup_start_move(struct mem_cgroup *mem)
1139 {
1140 	int cpu;
1141 
1142 	get_online_cpus();
1143 	spin_lock(&mem->pcp_counter_lock);
1144 	for_each_online_cpu(cpu)
1145 		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1146 	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1147 	spin_unlock(&mem->pcp_counter_lock);
1148 	put_online_cpus();
1149 
1150 	synchronize_rcu();
1151 }
1152 
1153 static void mem_cgroup_end_move(struct mem_cgroup *mem)
1154 {
1155 	int cpu;
1156 
1157 	if (!mem)
1158 		return;
1159 	get_online_cpus();
1160 	spin_lock(&mem->pcp_counter_lock);
1161 	for_each_online_cpu(cpu)
1162 		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1163 	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1164 	spin_unlock(&mem->pcp_counter_lock);
1165 	put_online_cpus();
1166 }
1167 /*
1168  * 2 routines for checking "mem" is under move_account() or not.
1169  *
1170  * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1171  *			  for avoiding race in accounting. If true,
1172  *			  pc->mem_cgroup may be overwritten.
1173  *
1174  * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1175  *			  under hierarchy of moving cgroups. This is for
1176  *			  waiting at hith-memory prressure caused by "move".
1177  */
1178 
1179 static bool mem_cgroup_stealed(struct mem_cgroup *mem)
1180 {
1181 	VM_BUG_ON(!rcu_read_lock_held());
1182 	return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1183 }
1184 
1185 static bool mem_cgroup_under_move(struct mem_cgroup *mem)
1186 {
1187 	struct mem_cgroup *from;
1188 	struct mem_cgroup *to;
1189 	bool ret = false;
1190 	/*
1191 	 * Unlike task_move routines, we access mc.to, mc.from not under
1192 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1193 	 */
1194 	spin_lock(&mc.lock);
1195 	from = mc.from;
1196 	to = mc.to;
1197 	if (!from)
1198 		goto unlock;
1199 	if (from == mem || to == mem
1200 	    || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
1201 	    || (mem->use_hierarchy && css_is_ancestor(&to->css,	&mem->css)))
1202 		ret = true;
1203 unlock:
1204 	spin_unlock(&mc.lock);
1205 	return ret;
1206 }
1207 
1208 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
1209 {
1210 	if (mc.moving_task && current != mc.moving_task) {
1211 		if (mem_cgroup_under_move(mem)) {
1212 			DEFINE_WAIT(wait);
1213 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1214 			/* moving charge context might have finished. */
1215 			if (mc.moving_task)
1216 				schedule();
1217 			finish_wait(&mc.waitq, &wait);
1218 			return true;
1219 		}
1220 	}
1221 	return false;
1222 }
1223 
1224 /**
1225  * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1226  * @memcg: The memory cgroup that went over limit
1227  * @p: Task that is going to be killed
1228  *
1229  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1230  * enabled
1231  */
1232 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1233 {
1234 	struct cgroup *task_cgrp;
1235 	struct cgroup *mem_cgrp;
1236 	/*
1237 	 * Need a buffer in BSS, can't rely on allocations. The code relies
1238 	 * on the assumption that OOM is serialized for memory controller.
1239 	 * If this assumption is broken, revisit this code.
1240 	 */
1241 	static char memcg_name[PATH_MAX];
1242 	int ret;
1243 
1244 	if (!memcg || !p)
1245 		return;
1246 
1247 
1248 	rcu_read_lock();
1249 
1250 	mem_cgrp = memcg->css.cgroup;
1251 	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1252 
1253 	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1254 	if (ret < 0) {
1255 		/*
1256 		 * Unfortunately, we are unable to convert to a useful name
1257 		 * But we'll still print out the usage information
1258 		 */
1259 		rcu_read_unlock();
1260 		goto done;
1261 	}
1262 	rcu_read_unlock();
1263 
1264 	printk(KERN_INFO "Task in %s killed", memcg_name);
1265 
1266 	rcu_read_lock();
1267 	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1268 	if (ret < 0) {
1269 		rcu_read_unlock();
1270 		goto done;
1271 	}
1272 	rcu_read_unlock();
1273 
1274 	/*
1275 	 * Continues from above, so we don't need an KERN_ level
1276 	 */
1277 	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1278 done:
1279 
1280 	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1281 		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1282 		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1283 		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1284 	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1285 		"failcnt %llu\n",
1286 		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1287 		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1288 		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1289 }
1290 
1291 /*
1292  * This function returns the number of memcg under hierarchy tree. Returns
1293  * 1(self count) if no children.
1294  */
1295 static int mem_cgroup_count_children(struct mem_cgroup *mem)
1296 {
1297 	int num = 0;
1298 	struct mem_cgroup *iter;
1299 
1300 	for_each_mem_cgroup_tree(iter, mem)
1301 		num++;
1302 	return num;
1303 }
1304 
1305 /*
1306  * Return the memory (and swap, if configured) limit for a memcg.
1307  */
1308 u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1309 {
1310 	u64 limit;
1311 	u64 memsw;
1312 
1313 	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1314 	limit += total_swap_pages << PAGE_SHIFT;
1315 
1316 	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1317 	/*
1318 	 * If memsw is finite and limits the amount of swap space available
1319 	 * to this memcg, return that limit.
1320 	 */
1321 	return min(limit, memsw);
1322 }
1323 
1324 /*
1325  * Visit the first child (need not be the first child as per the ordering
1326  * of the cgroup list, since we track last_scanned_child) of @mem and use
1327  * that to reclaim free pages from.
1328  */
1329 static struct mem_cgroup *
1330 mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1331 {
1332 	struct mem_cgroup *ret = NULL;
1333 	struct cgroup_subsys_state *css;
1334 	int nextid, found;
1335 
1336 	if (!root_mem->use_hierarchy) {
1337 		css_get(&root_mem->css);
1338 		ret = root_mem;
1339 	}
1340 
1341 	while (!ret) {
1342 		rcu_read_lock();
1343 		nextid = root_mem->last_scanned_child + 1;
1344 		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1345 				   &found);
1346 		if (css && css_tryget(css))
1347 			ret = container_of(css, struct mem_cgroup, css);
1348 
1349 		rcu_read_unlock();
1350 		/* Updates scanning parameter */
1351 		spin_lock(&root_mem->reclaim_param_lock);
1352 		if (!css) {
1353 			/* this means start scan from ID:1 */
1354 			root_mem->last_scanned_child = 0;
1355 		} else
1356 			root_mem->last_scanned_child = found;
1357 		spin_unlock(&root_mem->reclaim_param_lock);
1358 	}
1359 
1360 	return ret;
1361 }
1362 
1363 /*
1364  * Scan the hierarchy if needed to reclaim memory. We remember the last child
1365  * we reclaimed from, so that we don't end up penalizing one child extensively
1366  * based on its position in the children list.
1367  *
1368  * root_mem is the original ancestor that we've been reclaim from.
1369  *
1370  * We give up and return to the caller when we visit root_mem twice.
1371  * (other groups can be removed while we're walking....)
1372  *
1373  * If shrink==true, for avoiding to free too much, this returns immedieately.
1374  */
1375 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1376 						struct zone *zone,
1377 						gfp_t gfp_mask,
1378 						unsigned long reclaim_options)
1379 {
1380 	struct mem_cgroup *victim;
1381 	int ret, total = 0;
1382 	int loop = 0;
1383 	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1384 	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1385 	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1386 	unsigned long excess = mem_cgroup_get_excess(root_mem);
1387 
1388 	/* If memsw_is_minimum==1, swap-out is of-no-use. */
1389 	if (root_mem->memsw_is_minimum)
1390 		noswap = true;
1391 
1392 	while (1) {
1393 		victim = mem_cgroup_select_victim(root_mem);
1394 		if (victim == root_mem) {
1395 			loop++;
1396 			if (loop >= 1)
1397 				drain_all_stock_async();
1398 			if (loop >= 2) {
1399 				/*
1400 				 * If we have not been able to reclaim
1401 				 * anything, it might because there are
1402 				 * no reclaimable pages under this hierarchy
1403 				 */
1404 				if (!check_soft || !total) {
1405 					css_put(&victim->css);
1406 					break;
1407 				}
1408 				/*
1409 				 * We want to do more targetted reclaim.
1410 				 * excess >> 2 is not to excessive so as to
1411 				 * reclaim too much, nor too less that we keep
1412 				 * coming back to reclaim from this cgroup
1413 				 */
1414 				if (total >= (excess >> 2) ||
1415 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1416 					css_put(&victim->css);
1417 					break;
1418 				}
1419 			}
1420 		}
1421 		if (!mem_cgroup_local_usage(victim)) {
1422 			/* this cgroup's local usage == 0 */
1423 			css_put(&victim->css);
1424 			continue;
1425 		}
1426 		/* we use swappiness of local cgroup */
1427 		if (check_soft)
1428 			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1429 				noswap, get_swappiness(victim), zone);
1430 		else
1431 			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1432 						noswap, get_swappiness(victim));
1433 		css_put(&victim->css);
1434 		/*
1435 		 * At shrinking usage, we can't check we should stop here or
1436 		 * reclaim more. It's depends on callers. last_scanned_child
1437 		 * will work enough for keeping fairness under tree.
1438 		 */
1439 		if (shrink)
1440 			return ret;
1441 		total += ret;
1442 		if (check_soft) {
1443 			if (res_counter_check_under_soft_limit(&root_mem->res))
1444 				return total;
1445 		} else if (mem_cgroup_check_under_limit(root_mem))
1446 			return 1 + total;
1447 	}
1448 	return total;
1449 }
1450 
1451 /*
1452  * Check OOM-Killer is already running under our hierarchy.
1453  * If someone is running, return false.
1454  */
1455 static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1456 {
1457 	int x, lock_count = 0;
1458 	struct mem_cgroup *iter;
1459 
1460 	for_each_mem_cgroup_tree(iter, mem) {
1461 		x = atomic_inc_return(&iter->oom_lock);
1462 		lock_count = max(x, lock_count);
1463 	}
1464 
1465 	if (lock_count == 1)
1466 		return true;
1467 	return false;
1468 }
1469 
1470 static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1471 {
1472 	struct mem_cgroup *iter;
1473 
1474 	/*
1475 	 * When a new child is created while the hierarchy is under oom,
1476 	 * mem_cgroup_oom_lock() may not be called. We have to use
1477 	 * atomic_add_unless() here.
1478 	 */
1479 	for_each_mem_cgroup_tree(iter, mem)
1480 		atomic_add_unless(&iter->oom_lock, -1, 0);
1481 	return 0;
1482 }
1483 
1484 
1485 static DEFINE_MUTEX(memcg_oom_mutex);
1486 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1487 
1488 struct oom_wait_info {
1489 	struct mem_cgroup *mem;
1490 	wait_queue_t	wait;
1491 };
1492 
1493 static int memcg_oom_wake_function(wait_queue_t *wait,
1494 	unsigned mode, int sync, void *arg)
1495 {
1496 	struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
1497 	struct oom_wait_info *oom_wait_info;
1498 
1499 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1500 
1501 	if (oom_wait_info->mem == wake_mem)
1502 		goto wakeup;
1503 	/* if no hierarchy, no match */
1504 	if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
1505 		return 0;
1506 	/*
1507 	 * Both of oom_wait_info->mem and wake_mem are stable under us.
1508 	 * Then we can use css_is_ancestor without taking care of RCU.
1509 	 */
1510 	if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
1511 	    !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
1512 		return 0;
1513 
1514 wakeup:
1515 	return autoremove_wake_function(wait, mode, sync, arg);
1516 }
1517 
1518 static void memcg_wakeup_oom(struct mem_cgroup *mem)
1519 {
1520 	/* for filtering, pass "mem" as argument. */
1521 	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
1522 }
1523 
1524 static void memcg_oom_recover(struct mem_cgroup *mem)
1525 {
1526 	if (mem && atomic_read(&mem->oom_lock))
1527 		memcg_wakeup_oom(mem);
1528 }
1529 
1530 /*
1531  * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1532  */
1533 bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1534 {
1535 	struct oom_wait_info owait;
1536 	bool locked, need_to_kill;
1537 
1538 	owait.mem = mem;
1539 	owait.wait.flags = 0;
1540 	owait.wait.func = memcg_oom_wake_function;
1541 	owait.wait.private = current;
1542 	INIT_LIST_HEAD(&owait.wait.task_list);
1543 	need_to_kill = true;
1544 	/* At first, try to OOM lock hierarchy under mem.*/
1545 	mutex_lock(&memcg_oom_mutex);
1546 	locked = mem_cgroup_oom_lock(mem);
1547 	/*
1548 	 * Even if signal_pending(), we can't quit charge() loop without
1549 	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1550 	 * under OOM is always welcomed, use TASK_KILLABLE here.
1551 	 */
1552 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1553 	if (!locked || mem->oom_kill_disable)
1554 		need_to_kill = false;
1555 	if (locked)
1556 		mem_cgroup_oom_notify(mem);
1557 	mutex_unlock(&memcg_oom_mutex);
1558 
1559 	if (need_to_kill) {
1560 		finish_wait(&memcg_oom_waitq, &owait.wait);
1561 		mem_cgroup_out_of_memory(mem, mask);
1562 	} else {
1563 		schedule();
1564 		finish_wait(&memcg_oom_waitq, &owait.wait);
1565 	}
1566 	mutex_lock(&memcg_oom_mutex);
1567 	mem_cgroup_oom_unlock(mem);
1568 	memcg_wakeup_oom(mem);
1569 	mutex_unlock(&memcg_oom_mutex);
1570 
1571 	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1572 		return false;
1573 	/* Give chance to dying process */
1574 	schedule_timeout(1);
1575 	return true;
1576 }
1577 
1578 /*
1579  * Currently used to update mapped file statistics, but the routine can be
1580  * generalized to update other statistics as well.
1581  *
1582  * Notes: Race condition
1583  *
1584  * We usually use page_cgroup_lock() for accessing page_cgroup member but
1585  * it tends to be costly. But considering some conditions, we doesn't need
1586  * to do so _always_.
1587  *
1588  * Considering "charge", lock_page_cgroup() is not required because all
1589  * file-stat operations happen after a page is attached to radix-tree. There
1590  * are no race with "charge".
1591  *
1592  * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1593  * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1594  * if there are race with "uncharge". Statistics itself is properly handled
1595  * by flags.
1596  *
1597  * Considering "move", this is an only case we see a race. To make the race
1598  * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1599  * possibility of race condition. If there is, we take a lock.
1600  */
1601 
1602 void mem_cgroup_update_page_stat(struct page *page,
1603 				 enum mem_cgroup_page_stat_item idx, int val)
1604 {
1605 	struct mem_cgroup *mem;
1606 	struct page_cgroup *pc = lookup_page_cgroup(page);
1607 	bool need_unlock = false;
1608 	unsigned long uninitialized_var(flags);
1609 
1610 	if (unlikely(!pc))
1611 		return;
1612 
1613 	rcu_read_lock();
1614 	mem = pc->mem_cgroup;
1615 	if (unlikely(!mem || !PageCgroupUsed(pc)))
1616 		goto out;
1617 	/* pc->mem_cgroup is unstable ? */
1618 	if (unlikely(mem_cgroup_stealed(mem))) {
1619 		/* take a lock against to access pc->mem_cgroup */
1620 		move_lock_page_cgroup(pc, &flags);
1621 		need_unlock = true;
1622 		mem = pc->mem_cgroup;
1623 		if (!mem || !PageCgroupUsed(pc))
1624 			goto out;
1625 	}
1626 
1627 	switch (idx) {
1628 	case MEMCG_NR_FILE_MAPPED:
1629 		if (val > 0)
1630 			SetPageCgroupFileMapped(pc);
1631 		else if (!page_mapped(page))
1632 			ClearPageCgroupFileMapped(pc);
1633 		idx = MEM_CGROUP_STAT_FILE_MAPPED;
1634 		break;
1635 	default:
1636 		BUG();
1637 	}
1638 
1639 	this_cpu_add(mem->stat->count[idx], val);
1640 
1641 out:
1642 	if (unlikely(need_unlock))
1643 		move_unlock_page_cgroup(pc, &flags);
1644 	rcu_read_unlock();
1645 	return;
1646 }
1647 EXPORT_SYMBOL(mem_cgroup_update_page_stat);
1648 
1649 /*
1650  * size of first charge trial. "32" comes from vmscan.c's magic value.
1651  * TODO: maybe necessary to use big numbers in big irons.
1652  */
1653 #define CHARGE_SIZE	(32 * PAGE_SIZE)
1654 struct memcg_stock_pcp {
1655 	struct mem_cgroup *cached; /* this never be root cgroup */
1656 	int charge;
1657 	struct work_struct work;
1658 };
1659 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1660 static atomic_t memcg_drain_count;
1661 
1662 /*
1663  * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
1664  * from local stock and true is returned. If the stock is 0 or charges from a
1665  * cgroup which is not current target, returns false. This stock will be
1666  * refilled.
1667  */
1668 static bool consume_stock(struct mem_cgroup *mem)
1669 {
1670 	struct memcg_stock_pcp *stock;
1671 	bool ret = true;
1672 
1673 	stock = &get_cpu_var(memcg_stock);
1674 	if (mem == stock->cached && stock->charge)
1675 		stock->charge -= PAGE_SIZE;
1676 	else /* need to call res_counter_charge */
1677 		ret = false;
1678 	put_cpu_var(memcg_stock);
1679 	return ret;
1680 }
1681 
1682 /*
1683  * Returns stocks cached in percpu to res_counter and reset cached information.
1684  */
1685 static void drain_stock(struct memcg_stock_pcp *stock)
1686 {
1687 	struct mem_cgroup *old = stock->cached;
1688 
1689 	if (stock->charge) {
1690 		res_counter_uncharge(&old->res, stock->charge);
1691 		if (do_swap_account)
1692 			res_counter_uncharge(&old->memsw, stock->charge);
1693 	}
1694 	stock->cached = NULL;
1695 	stock->charge = 0;
1696 }
1697 
1698 /*
1699  * This must be called under preempt disabled or must be called by
1700  * a thread which is pinned to local cpu.
1701  */
1702 static void drain_local_stock(struct work_struct *dummy)
1703 {
1704 	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1705 	drain_stock(stock);
1706 }
1707 
1708 /*
1709  * Cache charges(val) which is from res_counter, to local per_cpu area.
1710  * This will be consumed by consume_stock() function, later.
1711  */
1712 static void refill_stock(struct mem_cgroup *mem, int val)
1713 {
1714 	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1715 
1716 	if (stock->cached != mem) { /* reset if necessary */
1717 		drain_stock(stock);
1718 		stock->cached = mem;
1719 	}
1720 	stock->charge += val;
1721 	put_cpu_var(memcg_stock);
1722 }
1723 
1724 /*
1725  * Tries to drain stocked charges in other cpus. This function is asynchronous
1726  * and just put a work per cpu for draining localy on each cpu. Caller can
1727  * expects some charges will be back to res_counter later but cannot wait for
1728  * it.
1729  */
1730 static void drain_all_stock_async(void)
1731 {
1732 	int cpu;
1733 	/* This function is for scheduling "drain" in asynchronous way.
1734 	 * The result of "drain" is not directly handled by callers. Then,
1735 	 * if someone is calling drain, we don't have to call drain more.
1736 	 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
1737 	 * there is a race. We just do loose check here.
1738 	 */
1739 	if (atomic_read(&memcg_drain_count))
1740 		return;
1741 	/* Notify other cpus that system-wide "drain" is running */
1742 	atomic_inc(&memcg_drain_count);
1743 	get_online_cpus();
1744 	for_each_online_cpu(cpu) {
1745 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1746 		schedule_work_on(cpu, &stock->work);
1747 	}
1748  	put_online_cpus();
1749 	atomic_dec(&memcg_drain_count);
1750 	/* We don't wait for flush_work */
1751 }
1752 
1753 /* This is a synchronous drain interface. */
1754 static void drain_all_stock_sync(void)
1755 {
1756 	/* called when force_empty is called */
1757 	atomic_inc(&memcg_drain_count);
1758 	schedule_on_each_cpu(drain_local_stock);
1759 	atomic_dec(&memcg_drain_count);
1760 }
1761 
1762 /*
1763  * This function drains percpu counter value from DEAD cpu and
1764  * move it to local cpu. Note that this function can be preempted.
1765  */
1766 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
1767 {
1768 	int i;
1769 
1770 	spin_lock(&mem->pcp_counter_lock);
1771 	for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
1772 		s64 x = per_cpu(mem->stat->count[i], cpu);
1773 
1774 		per_cpu(mem->stat->count[i], cpu) = 0;
1775 		mem->nocpu_base.count[i] += x;
1776 	}
1777 	/* need to clear ON_MOVE value, works as a kind of lock. */
1778 	per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
1779 	spin_unlock(&mem->pcp_counter_lock);
1780 }
1781 
1782 static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
1783 {
1784 	int idx = MEM_CGROUP_ON_MOVE;
1785 
1786 	spin_lock(&mem->pcp_counter_lock);
1787 	per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
1788 	spin_unlock(&mem->pcp_counter_lock);
1789 }
1790 
1791 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
1792 					unsigned long action,
1793 					void *hcpu)
1794 {
1795 	int cpu = (unsigned long)hcpu;
1796 	struct memcg_stock_pcp *stock;
1797 	struct mem_cgroup *iter;
1798 
1799 	if ((action == CPU_ONLINE)) {
1800 		for_each_mem_cgroup_all(iter)
1801 			synchronize_mem_cgroup_on_move(iter, cpu);
1802 		return NOTIFY_OK;
1803 	}
1804 
1805 	if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
1806 		return NOTIFY_OK;
1807 
1808 	for_each_mem_cgroup_all(iter)
1809 		mem_cgroup_drain_pcp_counter(iter, cpu);
1810 
1811 	stock = &per_cpu(memcg_stock, cpu);
1812 	drain_stock(stock);
1813 	return NOTIFY_OK;
1814 }
1815 
1816 
1817 /* See __mem_cgroup_try_charge() for details */
1818 enum {
1819 	CHARGE_OK,		/* success */
1820 	CHARGE_RETRY,		/* need to retry but retry is not bad */
1821 	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
1822 	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
1823 	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
1824 };
1825 
1826 static int __mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
1827 				int csize, bool oom_check)
1828 {
1829 	struct mem_cgroup *mem_over_limit;
1830 	struct res_counter *fail_res;
1831 	unsigned long flags = 0;
1832 	int ret;
1833 
1834 	ret = res_counter_charge(&mem->res, csize, &fail_res);
1835 
1836 	if (likely(!ret)) {
1837 		if (!do_swap_account)
1838 			return CHARGE_OK;
1839 		ret = res_counter_charge(&mem->memsw, csize, &fail_res);
1840 		if (likely(!ret))
1841 			return CHARGE_OK;
1842 
1843 		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
1844 		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1845 	} else
1846 		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
1847 
1848 	if (csize > PAGE_SIZE) /* change csize and retry */
1849 		return CHARGE_RETRY;
1850 
1851 	if (!(gfp_mask & __GFP_WAIT))
1852 		return CHARGE_WOULDBLOCK;
1853 
1854 	ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
1855 					gfp_mask, flags);
1856 	/*
1857 	 * try_to_free_mem_cgroup_pages() might not give us a full
1858 	 * picture of reclaim. Some pages are reclaimed and might be
1859 	 * moved to swap cache or just unmapped from the cgroup.
1860 	 * Check the limit again to see if the reclaim reduced the
1861 	 * current usage of the cgroup before giving up
1862 	 */
1863 	if (ret || mem_cgroup_check_under_limit(mem_over_limit))
1864 		return CHARGE_RETRY;
1865 
1866 	/*
1867 	 * At task move, charge accounts can be doubly counted. So, it's
1868 	 * better to wait until the end of task_move if something is going on.
1869 	 */
1870 	if (mem_cgroup_wait_acct_move(mem_over_limit))
1871 		return CHARGE_RETRY;
1872 
1873 	/* If we don't need to call oom-killer at el, return immediately */
1874 	if (!oom_check)
1875 		return CHARGE_NOMEM;
1876 	/* check OOM */
1877 	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
1878 		return CHARGE_OOM_DIE;
1879 
1880 	return CHARGE_RETRY;
1881 }
1882 
1883 /*
1884  * Unlike exported interface, "oom" parameter is added. if oom==true,
1885  * oom-killer can be invoked.
1886  */
1887 static int __mem_cgroup_try_charge(struct mm_struct *mm,
1888 				   gfp_t gfp_mask,
1889 				   struct mem_cgroup **memcg, bool oom,
1890 				   int page_size)
1891 {
1892 	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1893 	struct mem_cgroup *mem = NULL;
1894 	int ret;
1895 	int csize = max(CHARGE_SIZE, (unsigned long) page_size);
1896 
1897 	/*
1898 	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
1899 	 * in system level. So, allow to go ahead dying process in addition to
1900 	 * MEMDIE process.
1901 	 */
1902 	if (unlikely(test_thread_flag(TIF_MEMDIE)
1903 		     || fatal_signal_pending(current)))
1904 		goto bypass;
1905 
1906 	/*
1907 	 * We always charge the cgroup the mm_struct belongs to.
1908 	 * The mm_struct's mem_cgroup changes on task migration if the
1909 	 * thread group leader migrates. It's possible that mm is not
1910 	 * set, if so charge the init_mm (happens for pagecache usage).
1911 	 */
1912 	if (!*memcg && !mm)
1913 		goto bypass;
1914 again:
1915 	if (*memcg) { /* css should be a valid one */
1916 		mem = *memcg;
1917 		VM_BUG_ON(css_is_removed(&mem->css));
1918 		if (mem_cgroup_is_root(mem))
1919 			goto done;
1920 		if (page_size == PAGE_SIZE && consume_stock(mem))
1921 			goto done;
1922 		css_get(&mem->css);
1923 	} else {
1924 		struct task_struct *p;
1925 
1926 		rcu_read_lock();
1927 		p = rcu_dereference(mm->owner);
1928 		/*
1929 		 * Because we don't have task_lock(), "p" can exit.
1930 		 * In that case, "mem" can point to root or p can be NULL with
1931 		 * race with swapoff. Then, we have small risk of mis-accouning.
1932 		 * But such kind of mis-account by race always happens because
1933 		 * we don't have cgroup_mutex(). It's overkill and we allo that
1934 		 * small race, here.
1935 		 * (*) swapoff at el will charge against mm-struct not against
1936 		 * task-struct. So, mm->owner can be NULL.
1937 		 */
1938 		mem = mem_cgroup_from_task(p);
1939 		if (!mem || mem_cgroup_is_root(mem)) {
1940 			rcu_read_unlock();
1941 			goto done;
1942 		}
1943 		if (page_size == PAGE_SIZE && consume_stock(mem)) {
1944 			/*
1945 			 * It seems dagerous to access memcg without css_get().
1946 			 * But considering how consume_stok works, it's not
1947 			 * necessary. If consume_stock success, some charges
1948 			 * from this memcg are cached on this cpu. So, we
1949 			 * don't need to call css_get()/css_tryget() before
1950 			 * calling consume_stock().
1951 			 */
1952 			rcu_read_unlock();
1953 			goto done;
1954 		}
1955 		/* after here, we may be blocked. we need to get refcnt */
1956 		if (!css_tryget(&mem->css)) {
1957 			rcu_read_unlock();
1958 			goto again;
1959 		}
1960 		rcu_read_unlock();
1961 	}
1962 
1963 	do {
1964 		bool oom_check;
1965 
1966 		/* If killed, bypass charge */
1967 		if (fatal_signal_pending(current)) {
1968 			css_put(&mem->css);
1969 			goto bypass;
1970 		}
1971 
1972 		oom_check = false;
1973 		if (oom && !nr_oom_retries) {
1974 			oom_check = true;
1975 			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1976 		}
1977 
1978 		ret = __mem_cgroup_do_charge(mem, gfp_mask, csize, oom_check);
1979 
1980 		switch (ret) {
1981 		case CHARGE_OK:
1982 			break;
1983 		case CHARGE_RETRY: /* not in OOM situation but retry */
1984 			csize = page_size;
1985 			css_put(&mem->css);
1986 			mem = NULL;
1987 			goto again;
1988 		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
1989 			css_put(&mem->css);
1990 			goto nomem;
1991 		case CHARGE_NOMEM: /* OOM routine works */
1992 			if (!oom) {
1993 				css_put(&mem->css);
1994 				goto nomem;
1995 			}
1996 			/* If oom, we never return -ENOMEM */
1997 			nr_oom_retries--;
1998 			break;
1999 		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2000 			css_put(&mem->css);
2001 			goto bypass;
2002 		}
2003 	} while (ret != CHARGE_OK);
2004 
2005 	if (csize > page_size)
2006 		refill_stock(mem, csize - page_size);
2007 	css_put(&mem->css);
2008 done:
2009 	*memcg = mem;
2010 	return 0;
2011 nomem:
2012 	*memcg = NULL;
2013 	return -ENOMEM;
2014 bypass:
2015 	*memcg = NULL;
2016 	return 0;
2017 }
2018 
2019 /*
2020  * Somemtimes we have to undo a charge we got by try_charge().
2021  * This function is for that and do uncharge, put css's refcnt.
2022  * gotten by try_charge().
2023  */
2024 static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2025 							unsigned long count)
2026 {
2027 	if (!mem_cgroup_is_root(mem)) {
2028 		res_counter_uncharge(&mem->res, PAGE_SIZE * count);
2029 		if (do_swap_account)
2030 			res_counter_uncharge(&mem->memsw, PAGE_SIZE * count);
2031 	}
2032 }
2033 
2034 static void mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2035 				     int page_size)
2036 {
2037 	__mem_cgroup_cancel_charge(mem, page_size >> PAGE_SHIFT);
2038 }
2039 
2040 /*
2041  * A helper function to get mem_cgroup from ID. must be called under
2042  * rcu_read_lock(). The caller must check css_is_removed() or some if
2043  * it's concern. (dropping refcnt from swap can be called against removed
2044  * memcg.)
2045  */
2046 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2047 {
2048 	struct cgroup_subsys_state *css;
2049 
2050 	/* ID 0 is unused ID */
2051 	if (!id)
2052 		return NULL;
2053 	css = css_lookup(&mem_cgroup_subsys, id);
2054 	if (!css)
2055 		return NULL;
2056 	return container_of(css, struct mem_cgroup, css);
2057 }
2058 
2059 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2060 {
2061 	struct mem_cgroup *mem = NULL;
2062 	struct page_cgroup *pc;
2063 	unsigned short id;
2064 	swp_entry_t ent;
2065 
2066 	VM_BUG_ON(!PageLocked(page));
2067 
2068 	pc = lookup_page_cgroup(page);
2069 	lock_page_cgroup(pc);
2070 	if (PageCgroupUsed(pc)) {
2071 		mem = pc->mem_cgroup;
2072 		if (mem && !css_tryget(&mem->css))
2073 			mem = NULL;
2074 	} else if (PageSwapCache(page)) {
2075 		ent.val = page_private(page);
2076 		id = lookup_swap_cgroup(ent);
2077 		rcu_read_lock();
2078 		mem = mem_cgroup_lookup(id);
2079 		if (mem && !css_tryget(&mem->css))
2080 			mem = NULL;
2081 		rcu_read_unlock();
2082 	}
2083 	unlock_page_cgroup(pc);
2084 	return mem;
2085 }
2086 
2087 /*
2088  * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
2089  * USED state. If already USED, uncharge and return.
2090  */
2091 static void ____mem_cgroup_commit_charge(struct mem_cgroup *mem,
2092 					 struct page_cgroup *pc,
2093 					 enum charge_type ctype)
2094 {
2095 	pc->mem_cgroup = mem;
2096 	/*
2097 	 * We access a page_cgroup asynchronously without lock_page_cgroup().
2098 	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2099 	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2100 	 * before USED bit, we need memory barrier here.
2101 	 * See mem_cgroup_add_lru_list(), etc.
2102  	 */
2103 	smp_wmb();
2104 	switch (ctype) {
2105 	case MEM_CGROUP_CHARGE_TYPE_CACHE:
2106 	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2107 		SetPageCgroupCache(pc);
2108 		SetPageCgroupUsed(pc);
2109 		break;
2110 	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2111 		ClearPageCgroupCache(pc);
2112 		SetPageCgroupUsed(pc);
2113 		break;
2114 	default:
2115 		break;
2116 	}
2117 
2118 	mem_cgroup_charge_statistics(mem, pc, true);
2119 }
2120 
2121 static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
2122 				       struct page_cgroup *pc,
2123 				       enum charge_type ctype,
2124 				       int page_size)
2125 {
2126 	int i;
2127 	int count = page_size >> PAGE_SHIFT;
2128 
2129 	/* try_charge() can return NULL to *memcg, taking care of it. */
2130 	if (!mem)
2131 		return;
2132 
2133 	lock_page_cgroup(pc);
2134 	if (unlikely(PageCgroupUsed(pc))) {
2135 		unlock_page_cgroup(pc);
2136 		mem_cgroup_cancel_charge(mem, page_size);
2137 		return;
2138 	}
2139 
2140 	/*
2141 	 * we don't need page_cgroup_lock about tail pages, becase they are not
2142 	 * accessed by any other context at this point.
2143 	 */
2144 	for (i = 0; i < count; i++)
2145 		____mem_cgroup_commit_charge(mem, pc + i, ctype);
2146 
2147 	unlock_page_cgroup(pc);
2148 	/*
2149 	 * "charge_statistics" updated event counter. Then, check it.
2150 	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2151 	 * if they exceeds softlimit.
2152 	 */
2153 	memcg_check_events(mem, pc->page);
2154 }
2155 
2156 /**
2157  * __mem_cgroup_move_account - move account of the page
2158  * @pc:	page_cgroup of the page.
2159  * @from: mem_cgroup which the page is moved from.
2160  * @to:	mem_cgroup which the page is moved to. @from != @to.
2161  * @uncharge: whether we should call uncharge and css_put against @from.
2162  *
2163  * The caller must confirm following.
2164  * - page is not on LRU (isolate_page() is useful.)
2165  * - the pc is locked, used, and ->mem_cgroup points to @from.
2166  *
2167  * This function doesn't do "charge" nor css_get to new cgroup. It should be
2168  * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
2169  * true, this function does "uncharge" from old cgroup, but it doesn't if
2170  * @uncharge is false, so a caller should do "uncharge".
2171  */
2172 
2173 static void __mem_cgroup_move_account(struct page_cgroup *pc,
2174 	struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
2175 {
2176 	VM_BUG_ON(from == to);
2177 	VM_BUG_ON(PageLRU(pc->page));
2178 	VM_BUG_ON(!page_is_cgroup_locked(pc));
2179 	VM_BUG_ON(!PageCgroupUsed(pc));
2180 	VM_BUG_ON(pc->mem_cgroup != from);
2181 
2182 	if (PageCgroupFileMapped(pc)) {
2183 		/* Update mapped_file data for mem_cgroup */
2184 		preempt_disable();
2185 		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2186 		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2187 		preempt_enable();
2188 	}
2189 	mem_cgroup_charge_statistics(from, pc, false);
2190 	if (uncharge)
2191 		/* This is not "cancel", but cancel_charge does all we need. */
2192 		mem_cgroup_cancel_charge(from, PAGE_SIZE);
2193 
2194 	/* caller should have done css_get */
2195 	pc->mem_cgroup = to;
2196 	mem_cgroup_charge_statistics(to, pc, true);
2197 	/*
2198 	 * We charges against "to" which may not have any tasks. Then, "to"
2199 	 * can be under rmdir(). But in current implementation, caller of
2200 	 * this function is just force_empty() and move charge, so it's
2201 	 * garanteed that "to" is never removed. So, we don't check rmdir
2202 	 * status here.
2203 	 */
2204 }
2205 
2206 /*
2207  * check whether the @pc is valid for moving account and call
2208  * __mem_cgroup_move_account()
2209  */
2210 static int mem_cgroup_move_account(struct page_cgroup *pc,
2211 		struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
2212 {
2213 	int ret = -EINVAL;
2214 	unsigned long flags;
2215 
2216 	lock_page_cgroup(pc);
2217 	if (PageCgroupUsed(pc) && pc->mem_cgroup == from) {
2218 		move_lock_page_cgroup(pc, &flags);
2219 		__mem_cgroup_move_account(pc, from, to, uncharge);
2220 		move_unlock_page_cgroup(pc, &flags);
2221 		ret = 0;
2222 	}
2223 	unlock_page_cgroup(pc);
2224 	/*
2225 	 * check events
2226 	 */
2227 	memcg_check_events(to, pc->page);
2228 	memcg_check_events(from, pc->page);
2229 	return ret;
2230 }
2231 
2232 /*
2233  * move charges to its parent.
2234  */
2235 
2236 static int mem_cgroup_move_parent(struct page_cgroup *pc,
2237 				  struct mem_cgroup *child,
2238 				  gfp_t gfp_mask)
2239 {
2240 	struct page *page = pc->page;
2241 	struct cgroup *cg = child->css.cgroup;
2242 	struct cgroup *pcg = cg->parent;
2243 	struct mem_cgroup *parent;
2244 	int ret;
2245 
2246 	/* Is ROOT ? */
2247 	if (!pcg)
2248 		return -EINVAL;
2249 
2250 	ret = -EBUSY;
2251 	if (!get_page_unless_zero(page))
2252 		goto out;
2253 	if (isolate_lru_page(page))
2254 		goto put;
2255 
2256 	parent = mem_cgroup_from_cont(pcg);
2257 	ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false,
2258 				      PAGE_SIZE);
2259 	if (ret || !parent)
2260 		goto put_back;
2261 
2262 	ret = mem_cgroup_move_account(pc, child, parent, true);
2263 	if (ret)
2264 		mem_cgroup_cancel_charge(parent, PAGE_SIZE);
2265 put_back:
2266 	putback_lru_page(page);
2267 put:
2268 	put_page(page);
2269 out:
2270 	return ret;
2271 }
2272 
2273 /*
2274  * Charge the memory controller for page usage.
2275  * Return
2276  * 0 if the charge was successful
2277  * < 0 if the cgroup is over its limit
2278  */
2279 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2280 				gfp_t gfp_mask, enum charge_type ctype)
2281 {
2282 	struct mem_cgroup *mem = NULL;
2283 	struct page_cgroup *pc;
2284 	int ret;
2285 	int page_size = PAGE_SIZE;
2286 
2287 	if (PageTransHuge(page)) {
2288 		page_size <<= compound_order(page);
2289 		VM_BUG_ON(!PageTransHuge(page));
2290 	}
2291 
2292 	pc = lookup_page_cgroup(page);
2293 	/* can happen at boot */
2294 	if (unlikely(!pc))
2295 		return 0;
2296 	prefetchw(pc);
2297 
2298 	ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true, page_size);
2299 	if (ret || !mem)
2300 		return ret;
2301 
2302 	__mem_cgroup_commit_charge(mem, pc, ctype, page_size);
2303 	return 0;
2304 }
2305 
2306 int mem_cgroup_newpage_charge(struct page *page,
2307 			      struct mm_struct *mm, gfp_t gfp_mask)
2308 {
2309 	if (mem_cgroup_disabled())
2310 		return 0;
2311 	/*
2312 	 * If already mapped, we don't have to account.
2313 	 * If page cache, page->mapping has address_space.
2314 	 * But page->mapping may have out-of-use anon_vma pointer,
2315 	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2316 	 * is NULL.
2317   	 */
2318 	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2319 		return 0;
2320 	if (unlikely(!mm))
2321 		mm = &init_mm;
2322 	return mem_cgroup_charge_common(page, mm, gfp_mask,
2323 				MEM_CGROUP_CHARGE_TYPE_MAPPED);
2324 }
2325 
2326 static void
2327 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2328 					enum charge_type ctype);
2329 
2330 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2331 				gfp_t gfp_mask)
2332 {
2333 	int ret;
2334 
2335 	if (mem_cgroup_disabled())
2336 		return 0;
2337 	if (PageCompound(page))
2338 		return 0;
2339 	/*
2340 	 * Corner case handling. This is called from add_to_page_cache()
2341 	 * in usual. But some FS (shmem) precharges this page before calling it
2342 	 * and call add_to_page_cache() with GFP_NOWAIT.
2343 	 *
2344 	 * For GFP_NOWAIT case, the page may be pre-charged before calling
2345 	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
2346 	 * charge twice. (It works but has to pay a bit larger cost.)
2347 	 * And when the page is SwapCache, it should take swap information
2348 	 * into account. This is under lock_page() now.
2349 	 */
2350 	if (!(gfp_mask & __GFP_WAIT)) {
2351 		struct page_cgroup *pc;
2352 
2353 		pc = lookup_page_cgroup(page);
2354 		if (!pc)
2355 			return 0;
2356 		lock_page_cgroup(pc);
2357 		if (PageCgroupUsed(pc)) {
2358 			unlock_page_cgroup(pc);
2359 			return 0;
2360 		}
2361 		unlock_page_cgroup(pc);
2362 	}
2363 
2364 	if (unlikely(!mm))
2365 		mm = &init_mm;
2366 
2367 	if (page_is_file_cache(page))
2368 		return mem_cgroup_charge_common(page, mm, gfp_mask,
2369 				MEM_CGROUP_CHARGE_TYPE_CACHE);
2370 
2371 	/* shmem */
2372 	if (PageSwapCache(page)) {
2373 		struct mem_cgroup *mem = NULL;
2374 
2375 		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2376 		if (!ret)
2377 			__mem_cgroup_commit_charge_swapin(page, mem,
2378 					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2379 	} else
2380 		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2381 					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2382 
2383 	return ret;
2384 }
2385 
2386 /*
2387  * While swap-in, try_charge -> commit or cancel, the page is locked.
2388  * And when try_charge() successfully returns, one refcnt to memcg without
2389  * struct page_cgroup is acquired. This refcnt will be consumed by
2390  * "commit()" or removed by "cancel()"
2391  */
2392 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2393 				 struct page *page,
2394 				 gfp_t mask, struct mem_cgroup **ptr)
2395 {
2396 	struct mem_cgroup *mem;
2397 	int ret;
2398 
2399 	if (mem_cgroup_disabled())
2400 		return 0;
2401 
2402 	if (!do_swap_account)
2403 		goto charge_cur_mm;
2404 	/*
2405 	 * A racing thread's fault, or swapoff, may have already updated
2406 	 * the pte, and even removed page from swap cache: in those cases
2407 	 * do_swap_page()'s pte_same() test will fail; but there's also a
2408 	 * KSM case which does need to charge the page.
2409 	 */
2410 	if (!PageSwapCache(page))
2411 		goto charge_cur_mm;
2412 	mem = try_get_mem_cgroup_from_page(page);
2413 	if (!mem)
2414 		goto charge_cur_mm;
2415 	*ptr = mem;
2416 	ret = __mem_cgroup_try_charge(NULL, mask, ptr, true, PAGE_SIZE);
2417 	css_put(&mem->css);
2418 	return ret;
2419 charge_cur_mm:
2420 	if (unlikely(!mm))
2421 		mm = &init_mm;
2422 	return __mem_cgroup_try_charge(mm, mask, ptr, true, PAGE_SIZE);
2423 }
2424 
2425 static void
2426 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2427 					enum charge_type ctype)
2428 {
2429 	struct page_cgroup *pc;
2430 
2431 	if (mem_cgroup_disabled())
2432 		return;
2433 	if (!ptr)
2434 		return;
2435 	cgroup_exclude_rmdir(&ptr->css);
2436 	pc = lookup_page_cgroup(page);
2437 	mem_cgroup_lru_del_before_commit_swapcache(page);
2438 	__mem_cgroup_commit_charge(ptr, pc, ctype, PAGE_SIZE);
2439 	mem_cgroup_lru_add_after_commit_swapcache(page);
2440 	/*
2441 	 * Now swap is on-memory. This means this page may be
2442 	 * counted both as mem and swap....double count.
2443 	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2444 	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2445 	 * may call delete_from_swap_cache() before reach here.
2446 	 */
2447 	if (do_swap_account && PageSwapCache(page)) {
2448 		swp_entry_t ent = {.val = page_private(page)};
2449 		unsigned short id;
2450 		struct mem_cgroup *memcg;
2451 
2452 		id = swap_cgroup_record(ent, 0);
2453 		rcu_read_lock();
2454 		memcg = mem_cgroup_lookup(id);
2455 		if (memcg) {
2456 			/*
2457 			 * This recorded memcg can be obsolete one. So, avoid
2458 			 * calling css_tryget
2459 			 */
2460 			if (!mem_cgroup_is_root(memcg))
2461 				res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2462 			mem_cgroup_swap_statistics(memcg, false);
2463 			mem_cgroup_put(memcg);
2464 		}
2465 		rcu_read_unlock();
2466 	}
2467 	/*
2468 	 * At swapin, we may charge account against cgroup which has no tasks.
2469 	 * So, rmdir()->pre_destroy() can be called while we do this charge.
2470 	 * In that case, we need to call pre_destroy() again. check it here.
2471 	 */
2472 	cgroup_release_and_wakeup_rmdir(&ptr->css);
2473 }
2474 
2475 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2476 {
2477 	__mem_cgroup_commit_charge_swapin(page, ptr,
2478 					MEM_CGROUP_CHARGE_TYPE_MAPPED);
2479 }
2480 
2481 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
2482 {
2483 	if (mem_cgroup_disabled())
2484 		return;
2485 	if (!mem)
2486 		return;
2487 	mem_cgroup_cancel_charge(mem, PAGE_SIZE);
2488 }
2489 
2490 static void
2491 __do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype,
2492 	      int page_size)
2493 {
2494 	struct memcg_batch_info *batch = NULL;
2495 	bool uncharge_memsw = true;
2496 	/* If swapout, usage of swap doesn't decrease */
2497 	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2498 		uncharge_memsw = false;
2499 
2500 	batch = &current->memcg_batch;
2501 	/*
2502 	 * In usual, we do css_get() when we remember memcg pointer.
2503 	 * But in this case, we keep res->usage until end of a series of
2504 	 * uncharges. Then, it's ok to ignore memcg's refcnt.
2505 	 */
2506 	if (!batch->memcg)
2507 		batch->memcg = mem;
2508 	/*
2509 	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2510 	 * In those cases, all pages freed continously can be expected to be in
2511 	 * the same cgroup and we have chance to coalesce uncharges.
2512 	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2513 	 * because we want to do uncharge as soon as possible.
2514 	 */
2515 
2516 	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2517 		goto direct_uncharge;
2518 
2519 	if (page_size != PAGE_SIZE)
2520 		goto direct_uncharge;
2521 
2522 	/*
2523 	 * In typical case, batch->memcg == mem. This means we can
2524 	 * merge a series of uncharges to an uncharge of res_counter.
2525 	 * If not, we uncharge res_counter ony by one.
2526 	 */
2527 	if (batch->memcg != mem)
2528 		goto direct_uncharge;
2529 	/* remember freed charge and uncharge it later */
2530 	batch->bytes += PAGE_SIZE;
2531 	if (uncharge_memsw)
2532 		batch->memsw_bytes += PAGE_SIZE;
2533 	return;
2534 direct_uncharge:
2535 	res_counter_uncharge(&mem->res, page_size);
2536 	if (uncharge_memsw)
2537 		res_counter_uncharge(&mem->memsw, page_size);
2538 	if (unlikely(batch->memcg != mem))
2539 		memcg_oom_recover(mem);
2540 	return;
2541 }
2542 
2543 /*
2544  * uncharge if !page_mapped(page)
2545  */
2546 static struct mem_cgroup *
2547 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2548 {
2549 	int i;
2550 	int count;
2551 	struct page_cgroup *pc;
2552 	struct mem_cgroup *mem = NULL;
2553 	int page_size = PAGE_SIZE;
2554 
2555 	if (mem_cgroup_disabled())
2556 		return NULL;
2557 
2558 	if (PageSwapCache(page))
2559 		return NULL;
2560 
2561 	if (PageTransHuge(page)) {
2562 		page_size <<= compound_order(page);
2563 		VM_BUG_ON(!PageTransHuge(page));
2564 	}
2565 
2566 	count = page_size >> PAGE_SHIFT;
2567 	/*
2568 	 * Check if our page_cgroup is valid
2569 	 */
2570 	pc = lookup_page_cgroup(page);
2571 	if (unlikely(!pc || !PageCgroupUsed(pc)))
2572 		return NULL;
2573 
2574 	lock_page_cgroup(pc);
2575 
2576 	mem = pc->mem_cgroup;
2577 
2578 	if (!PageCgroupUsed(pc))
2579 		goto unlock_out;
2580 
2581 	switch (ctype) {
2582 	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2583 	case MEM_CGROUP_CHARGE_TYPE_DROP:
2584 		/* See mem_cgroup_prepare_migration() */
2585 		if (page_mapped(page) || PageCgroupMigration(pc))
2586 			goto unlock_out;
2587 		break;
2588 	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2589 		if (!PageAnon(page)) {	/* Shared memory */
2590 			if (page->mapping && !page_is_file_cache(page))
2591 				goto unlock_out;
2592 		} else if (page_mapped(page)) /* Anon */
2593 				goto unlock_out;
2594 		break;
2595 	default:
2596 		break;
2597 	}
2598 
2599 	for (i = 0; i < count; i++)
2600 		mem_cgroup_charge_statistics(mem, pc + i, false);
2601 
2602 	ClearPageCgroupUsed(pc);
2603 	/*
2604 	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2605 	 * freed from LRU. This is safe because uncharged page is expected not
2606 	 * to be reused (freed soon). Exception is SwapCache, it's handled by
2607 	 * special functions.
2608 	 */
2609 
2610 	unlock_page_cgroup(pc);
2611 	/*
2612 	 * even after unlock, we have mem->res.usage here and this memcg
2613 	 * will never be freed.
2614 	 */
2615 	memcg_check_events(mem, page);
2616 	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
2617 		mem_cgroup_swap_statistics(mem, true);
2618 		mem_cgroup_get(mem);
2619 	}
2620 	if (!mem_cgroup_is_root(mem))
2621 		__do_uncharge(mem, ctype, page_size);
2622 
2623 	return mem;
2624 
2625 unlock_out:
2626 	unlock_page_cgroup(pc);
2627 	return NULL;
2628 }
2629 
2630 void mem_cgroup_uncharge_page(struct page *page)
2631 {
2632 	/* early check. */
2633 	if (page_mapped(page))
2634 		return;
2635 	if (page->mapping && !PageAnon(page))
2636 		return;
2637 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
2638 }
2639 
2640 void mem_cgroup_uncharge_cache_page(struct page *page)
2641 {
2642 	VM_BUG_ON(page_mapped(page));
2643 	VM_BUG_ON(page->mapping);
2644 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
2645 }
2646 
2647 /*
2648  * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2649  * In that cases, pages are freed continuously and we can expect pages
2650  * are in the same memcg. All these calls itself limits the number of
2651  * pages freed at once, then uncharge_start/end() is called properly.
2652  * This may be called prural(2) times in a context,
2653  */
2654 
2655 void mem_cgroup_uncharge_start(void)
2656 {
2657 	current->memcg_batch.do_batch++;
2658 	/* We can do nest. */
2659 	if (current->memcg_batch.do_batch == 1) {
2660 		current->memcg_batch.memcg = NULL;
2661 		current->memcg_batch.bytes = 0;
2662 		current->memcg_batch.memsw_bytes = 0;
2663 	}
2664 }
2665 
2666 void mem_cgroup_uncharge_end(void)
2667 {
2668 	struct memcg_batch_info *batch = &current->memcg_batch;
2669 
2670 	if (!batch->do_batch)
2671 		return;
2672 
2673 	batch->do_batch--;
2674 	if (batch->do_batch) /* If stacked, do nothing. */
2675 		return;
2676 
2677 	if (!batch->memcg)
2678 		return;
2679 	/*
2680 	 * This "batch->memcg" is valid without any css_get/put etc...
2681 	 * bacause we hide charges behind us.
2682 	 */
2683 	if (batch->bytes)
2684 		res_counter_uncharge(&batch->memcg->res, batch->bytes);
2685 	if (batch->memsw_bytes)
2686 		res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
2687 	memcg_oom_recover(batch->memcg);
2688 	/* forget this pointer (for sanity check) */
2689 	batch->memcg = NULL;
2690 }
2691 
2692 #ifdef CONFIG_SWAP
2693 /*
2694  * called after __delete_from_swap_cache() and drop "page" account.
2695  * memcg information is recorded to swap_cgroup of "ent"
2696  */
2697 void
2698 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
2699 {
2700 	struct mem_cgroup *memcg;
2701 	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
2702 
2703 	if (!swapout) /* this was a swap cache but the swap is unused ! */
2704 		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
2705 
2706 	memcg = __mem_cgroup_uncharge_common(page, ctype);
2707 
2708 	/*
2709 	 * record memcg information,  if swapout && memcg != NULL,
2710 	 * mem_cgroup_get() was called in uncharge().
2711 	 */
2712 	if (do_swap_account && swapout && memcg)
2713 		swap_cgroup_record(ent, css_id(&memcg->css));
2714 }
2715 #endif
2716 
2717 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2718 /*
2719  * called from swap_entry_free(). remove record in swap_cgroup and
2720  * uncharge "memsw" account.
2721  */
2722 void mem_cgroup_uncharge_swap(swp_entry_t ent)
2723 {
2724 	struct mem_cgroup *memcg;
2725 	unsigned short id;
2726 
2727 	if (!do_swap_account)
2728 		return;
2729 
2730 	id = swap_cgroup_record(ent, 0);
2731 	rcu_read_lock();
2732 	memcg = mem_cgroup_lookup(id);
2733 	if (memcg) {
2734 		/*
2735 		 * We uncharge this because swap is freed.
2736 		 * This memcg can be obsolete one. We avoid calling css_tryget
2737 		 */
2738 		if (!mem_cgroup_is_root(memcg))
2739 			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2740 		mem_cgroup_swap_statistics(memcg, false);
2741 		mem_cgroup_put(memcg);
2742 	}
2743 	rcu_read_unlock();
2744 }
2745 
2746 /**
2747  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2748  * @entry: swap entry to be moved
2749  * @from:  mem_cgroup which the entry is moved from
2750  * @to:  mem_cgroup which the entry is moved to
2751  * @need_fixup: whether we should fixup res_counters and refcounts.
2752  *
2753  * It succeeds only when the swap_cgroup's record for this entry is the same
2754  * as the mem_cgroup's id of @from.
2755  *
2756  * Returns 0 on success, -EINVAL on failure.
2757  *
2758  * The caller must have charged to @to, IOW, called res_counter_charge() about
2759  * both res and memsw, and called css_get().
2760  */
2761 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2762 		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2763 {
2764 	unsigned short old_id, new_id;
2765 
2766 	old_id = css_id(&from->css);
2767 	new_id = css_id(&to->css);
2768 
2769 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2770 		mem_cgroup_swap_statistics(from, false);
2771 		mem_cgroup_swap_statistics(to, true);
2772 		/*
2773 		 * This function is only called from task migration context now.
2774 		 * It postpones res_counter and refcount handling till the end
2775 		 * of task migration(mem_cgroup_clear_mc()) for performance
2776 		 * improvement. But we cannot postpone mem_cgroup_get(to)
2777 		 * because if the process that has been moved to @to does
2778 		 * swap-in, the refcount of @to might be decreased to 0.
2779 		 */
2780 		mem_cgroup_get(to);
2781 		if (need_fixup) {
2782 			if (!mem_cgroup_is_root(from))
2783 				res_counter_uncharge(&from->memsw, PAGE_SIZE);
2784 			mem_cgroup_put(from);
2785 			/*
2786 			 * we charged both to->res and to->memsw, so we should
2787 			 * uncharge to->res.
2788 			 */
2789 			if (!mem_cgroup_is_root(to))
2790 				res_counter_uncharge(&to->res, PAGE_SIZE);
2791 		}
2792 		return 0;
2793 	}
2794 	return -EINVAL;
2795 }
2796 #else
2797 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2798 		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2799 {
2800 	return -EINVAL;
2801 }
2802 #endif
2803 
2804 /*
2805  * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
2806  * page belongs to.
2807  */
2808 int mem_cgroup_prepare_migration(struct page *page,
2809 	struct page *newpage, struct mem_cgroup **ptr)
2810 {
2811 	struct page_cgroup *pc;
2812 	struct mem_cgroup *mem = NULL;
2813 	enum charge_type ctype;
2814 	int ret = 0;
2815 
2816 	VM_BUG_ON(PageTransHuge(page));
2817 	if (mem_cgroup_disabled())
2818 		return 0;
2819 
2820 	pc = lookup_page_cgroup(page);
2821 	lock_page_cgroup(pc);
2822 	if (PageCgroupUsed(pc)) {
2823 		mem = pc->mem_cgroup;
2824 		css_get(&mem->css);
2825 		/*
2826 		 * At migrating an anonymous page, its mapcount goes down
2827 		 * to 0 and uncharge() will be called. But, even if it's fully
2828 		 * unmapped, migration may fail and this page has to be
2829 		 * charged again. We set MIGRATION flag here and delay uncharge
2830 		 * until end_migration() is called
2831 		 *
2832 		 * Corner Case Thinking
2833 		 * A)
2834 		 * When the old page was mapped as Anon and it's unmap-and-freed
2835 		 * while migration was ongoing.
2836 		 * If unmap finds the old page, uncharge() of it will be delayed
2837 		 * until end_migration(). If unmap finds a new page, it's
2838 		 * uncharged when it make mapcount to be 1->0. If unmap code
2839 		 * finds swap_migration_entry, the new page will not be mapped
2840 		 * and end_migration() will find it(mapcount==0).
2841 		 *
2842 		 * B)
2843 		 * When the old page was mapped but migraion fails, the kernel
2844 		 * remaps it. A charge for it is kept by MIGRATION flag even
2845 		 * if mapcount goes down to 0. We can do remap successfully
2846 		 * without charging it again.
2847 		 *
2848 		 * C)
2849 		 * The "old" page is under lock_page() until the end of
2850 		 * migration, so, the old page itself will not be swapped-out.
2851 		 * If the new page is swapped out before end_migraton, our
2852 		 * hook to usual swap-out path will catch the event.
2853 		 */
2854 		if (PageAnon(page))
2855 			SetPageCgroupMigration(pc);
2856 	}
2857 	unlock_page_cgroup(pc);
2858 	/*
2859 	 * If the page is not charged at this point,
2860 	 * we return here.
2861 	 */
2862 	if (!mem)
2863 		return 0;
2864 
2865 	*ptr = mem;
2866 	ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, ptr, false, PAGE_SIZE);
2867 	css_put(&mem->css);/* drop extra refcnt */
2868 	if (ret || *ptr == NULL) {
2869 		if (PageAnon(page)) {
2870 			lock_page_cgroup(pc);
2871 			ClearPageCgroupMigration(pc);
2872 			unlock_page_cgroup(pc);
2873 			/*
2874 			 * The old page may be fully unmapped while we kept it.
2875 			 */
2876 			mem_cgroup_uncharge_page(page);
2877 		}
2878 		return -ENOMEM;
2879 	}
2880 	/*
2881 	 * We charge new page before it's used/mapped. So, even if unlock_page()
2882 	 * is called before end_migration, we can catch all events on this new
2883 	 * page. In the case new page is migrated but not remapped, new page's
2884 	 * mapcount will be finally 0 and we call uncharge in end_migration().
2885 	 */
2886 	pc = lookup_page_cgroup(newpage);
2887 	if (PageAnon(page))
2888 		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
2889 	else if (page_is_file_cache(page))
2890 		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
2891 	else
2892 		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2893 	__mem_cgroup_commit_charge(mem, pc, ctype, PAGE_SIZE);
2894 	return ret;
2895 }
2896 
2897 /* remove redundant charge if migration failed*/
2898 void mem_cgroup_end_migration(struct mem_cgroup *mem,
2899 	struct page *oldpage, struct page *newpage, bool migration_ok)
2900 {
2901 	struct page *used, *unused;
2902 	struct page_cgroup *pc;
2903 
2904 	if (!mem)
2905 		return;
2906 	/* blocks rmdir() */
2907 	cgroup_exclude_rmdir(&mem->css);
2908 	if (!migration_ok) {
2909 		used = oldpage;
2910 		unused = newpage;
2911 	} else {
2912 		used = newpage;
2913 		unused = oldpage;
2914 	}
2915 	/*
2916 	 * We disallowed uncharge of pages under migration because mapcount
2917 	 * of the page goes down to zero, temporarly.
2918 	 * Clear the flag and check the page should be charged.
2919 	 */
2920 	pc = lookup_page_cgroup(oldpage);
2921 	lock_page_cgroup(pc);
2922 	ClearPageCgroupMigration(pc);
2923 	unlock_page_cgroup(pc);
2924 
2925 	__mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
2926 
2927 	/*
2928 	 * If a page is a file cache, radix-tree replacement is very atomic
2929 	 * and we can skip this check. When it was an Anon page, its mapcount
2930 	 * goes down to 0. But because we added MIGRATION flage, it's not
2931 	 * uncharged yet. There are several case but page->mapcount check
2932 	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
2933 	 * check. (see prepare_charge() also)
2934 	 */
2935 	if (PageAnon(used))
2936 		mem_cgroup_uncharge_page(used);
2937 	/*
2938 	 * At migration, we may charge account against cgroup which has no
2939 	 * tasks.
2940 	 * So, rmdir()->pre_destroy() can be called while we do this charge.
2941 	 * In that case, we need to call pre_destroy() again. check it here.
2942 	 */
2943 	cgroup_release_and_wakeup_rmdir(&mem->css);
2944 }
2945 
2946 /*
2947  * A call to try to shrink memory usage on charge failure at shmem's swapin.
2948  * Calling hierarchical_reclaim is not enough because we should update
2949  * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
2950  * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
2951  * not from the memcg which this page would be charged to.
2952  * try_charge_swapin does all of these works properly.
2953  */
2954 int mem_cgroup_shmem_charge_fallback(struct page *page,
2955 			    struct mm_struct *mm,
2956 			    gfp_t gfp_mask)
2957 {
2958 	struct mem_cgroup *mem = NULL;
2959 	int ret;
2960 
2961 	if (mem_cgroup_disabled())
2962 		return 0;
2963 
2964 	ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2965 	if (!ret)
2966 		mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
2967 
2968 	return ret;
2969 }
2970 
2971 static DEFINE_MUTEX(set_limit_mutex);
2972 
2973 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2974 				unsigned long long val)
2975 {
2976 	int retry_count;
2977 	u64 memswlimit, memlimit;
2978 	int ret = 0;
2979 	int children = mem_cgroup_count_children(memcg);
2980 	u64 curusage, oldusage;
2981 	int enlarge;
2982 
2983 	/*
2984 	 * For keeping hierarchical_reclaim simple, how long we should retry
2985 	 * is depends on callers. We set our retry-count to be function
2986 	 * of # of children which we should visit in this loop.
2987 	 */
2988 	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
2989 
2990 	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2991 
2992 	enlarge = 0;
2993 	while (retry_count) {
2994 		if (signal_pending(current)) {
2995 			ret = -EINTR;
2996 			break;
2997 		}
2998 		/*
2999 		 * Rather than hide all in some function, I do this in
3000 		 * open coded manner. You see what this really does.
3001 		 * We have to guarantee mem->res.limit < mem->memsw.limit.
3002 		 */
3003 		mutex_lock(&set_limit_mutex);
3004 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3005 		if (memswlimit < val) {
3006 			ret = -EINVAL;
3007 			mutex_unlock(&set_limit_mutex);
3008 			break;
3009 		}
3010 
3011 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3012 		if (memlimit < val)
3013 			enlarge = 1;
3014 
3015 		ret = res_counter_set_limit(&memcg->res, val);
3016 		if (!ret) {
3017 			if (memswlimit == val)
3018 				memcg->memsw_is_minimum = true;
3019 			else
3020 				memcg->memsw_is_minimum = false;
3021 		}
3022 		mutex_unlock(&set_limit_mutex);
3023 
3024 		if (!ret)
3025 			break;
3026 
3027 		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3028 						MEM_CGROUP_RECLAIM_SHRINK);
3029 		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3030 		/* Usage is reduced ? */
3031   		if (curusage >= oldusage)
3032 			retry_count--;
3033 		else
3034 			oldusage = curusage;
3035 	}
3036 	if (!ret && enlarge)
3037 		memcg_oom_recover(memcg);
3038 
3039 	return ret;
3040 }
3041 
3042 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3043 					unsigned long long val)
3044 {
3045 	int retry_count;
3046 	u64 memlimit, memswlimit, oldusage, curusage;
3047 	int children = mem_cgroup_count_children(memcg);
3048 	int ret = -EBUSY;
3049 	int enlarge = 0;
3050 
3051 	/* see mem_cgroup_resize_res_limit */
3052  	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3053 	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3054 	while (retry_count) {
3055 		if (signal_pending(current)) {
3056 			ret = -EINTR;
3057 			break;
3058 		}
3059 		/*
3060 		 * Rather than hide all in some function, I do this in
3061 		 * open coded manner. You see what this really does.
3062 		 * We have to guarantee mem->res.limit < mem->memsw.limit.
3063 		 */
3064 		mutex_lock(&set_limit_mutex);
3065 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3066 		if (memlimit > val) {
3067 			ret = -EINVAL;
3068 			mutex_unlock(&set_limit_mutex);
3069 			break;
3070 		}
3071 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3072 		if (memswlimit < val)
3073 			enlarge = 1;
3074 		ret = res_counter_set_limit(&memcg->memsw, val);
3075 		if (!ret) {
3076 			if (memlimit == val)
3077 				memcg->memsw_is_minimum = true;
3078 			else
3079 				memcg->memsw_is_minimum = false;
3080 		}
3081 		mutex_unlock(&set_limit_mutex);
3082 
3083 		if (!ret)
3084 			break;
3085 
3086 		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3087 						MEM_CGROUP_RECLAIM_NOSWAP |
3088 						MEM_CGROUP_RECLAIM_SHRINK);
3089 		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3090 		/* Usage is reduced ? */
3091 		if (curusage >= oldusage)
3092 			retry_count--;
3093 		else
3094 			oldusage = curusage;
3095 	}
3096 	if (!ret && enlarge)
3097 		memcg_oom_recover(memcg);
3098 	return ret;
3099 }
3100 
3101 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3102 					    gfp_t gfp_mask)
3103 {
3104 	unsigned long nr_reclaimed = 0;
3105 	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3106 	unsigned long reclaimed;
3107 	int loop = 0;
3108 	struct mem_cgroup_tree_per_zone *mctz;
3109 	unsigned long long excess;
3110 
3111 	if (order > 0)
3112 		return 0;
3113 
3114 	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3115 	/*
3116 	 * This loop can run a while, specially if mem_cgroup's continuously
3117 	 * keep exceeding their soft limit and putting the system under
3118 	 * pressure
3119 	 */
3120 	do {
3121 		if (next_mz)
3122 			mz = next_mz;
3123 		else
3124 			mz = mem_cgroup_largest_soft_limit_node(mctz);
3125 		if (!mz)
3126 			break;
3127 
3128 		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
3129 						gfp_mask,
3130 						MEM_CGROUP_RECLAIM_SOFT);
3131 		nr_reclaimed += reclaimed;
3132 		spin_lock(&mctz->lock);
3133 
3134 		/*
3135 		 * If we failed to reclaim anything from this memory cgroup
3136 		 * it is time to move on to the next cgroup
3137 		 */
3138 		next_mz = NULL;
3139 		if (!reclaimed) {
3140 			do {
3141 				/*
3142 				 * Loop until we find yet another one.
3143 				 *
3144 				 * By the time we get the soft_limit lock
3145 				 * again, someone might have aded the
3146 				 * group back on the RB tree. Iterate to
3147 				 * make sure we get a different mem.
3148 				 * mem_cgroup_largest_soft_limit_node returns
3149 				 * NULL if no other cgroup is present on
3150 				 * the tree
3151 				 */
3152 				next_mz =
3153 				__mem_cgroup_largest_soft_limit_node(mctz);
3154 				if (next_mz == mz) {
3155 					css_put(&next_mz->mem->css);
3156 					next_mz = NULL;
3157 				} else /* next_mz == NULL or other memcg */
3158 					break;
3159 			} while (1);
3160 		}
3161 		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3162 		excess = res_counter_soft_limit_excess(&mz->mem->res);
3163 		/*
3164 		 * One school of thought says that we should not add
3165 		 * back the node to the tree if reclaim returns 0.
3166 		 * But our reclaim could return 0, simply because due
3167 		 * to priority we are exposing a smaller subset of
3168 		 * memory to reclaim from. Consider this as a longer
3169 		 * term TODO.
3170 		 */
3171 		/* If excess == 0, no tree ops */
3172 		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3173 		spin_unlock(&mctz->lock);
3174 		css_put(&mz->mem->css);
3175 		loop++;
3176 		/*
3177 		 * Could not reclaim anything and there are no more
3178 		 * mem cgroups to try or we seem to be looping without
3179 		 * reclaiming anything.
3180 		 */
3181 		if (!nr_reclaimed &&
3182 			(next_mz == NULL ||
3183 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3184 			break;
3185 	} while (!nr_reclaimed);
3186 	if (next_mz)
3187 		css_put(&next_mz->mem->css);
3188 	return nr_reclaimed;
3189 }
3190 
3191 /*
3192  * This routine traverse page_cgroup in given list and drop them all.
3193  * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3194  */
3195 static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
3196 				int node, int zid, enum lru_list lru)
3197 {
3198 	struct zone *zone;
3199 	struct mem_cgroup_per_zone *mz;
3200 	struct page_cgroup *pc, *busy;
3201 	unsigned long flags, loop;
3202 	struct list_head *list;
3203 	int ret = 0;
3204 
3205 	zone = &NODE_DATA(node)->node_zones[zid];
3206 	mz = mem_cgroup_zoneinfo(mem, node, zid);
3207 	list = &mz->lists[lru];
3208 
3209 	loop = MEM_CGROUP_ZSTAT(mz, lru);
3210 	/* give some margin against EBUSY etc...*/
3211 	loop += 256;
3212 	busy = NULL;
3213 	while (loop--) {
3214 		ret = 0;
3215 		spin_lock_irqsave(&zone->lru_lock, flags);
3216 		if (list_empty(list)) {
3217 			spin_unlock_irqrestore(&zone->lru_lock, flags);
3218 			break;
3219 		}
3220 		pc = list_entry(list->prev, struct page_cgroup, lru);
3221 		if (busy == pc) {
3222 			list_move(&pc->lru, list);
3223 			busy = NULL;
3224 			spin_unlock_irqrestore(&zone->lru_lock, flags);
3225 			continue;
3226 		}
3227 		spin_unlock_irqrestore(&zone->lru_lock, flags);
3228 
3229 		ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
3230 		if (ret == -ENOMEM)
3231 			break;
3232 
3233 		if (ret == -EBUSY || ret == -EINVAL) {
3234 			/* found lock contention or "pc" is obsolete. */
3235 			busy = pc;
3236 			cond_resched();
3237 		} else
3238 			busy = NULL;
3239 	}
3240 
3241 	if (!ret && !list_empty(list))
3242 		return -EBUSY;
3243 	return ret;
3244 }
3245 
3246 /*
3247  * make mem_cgroup's charge to be 0 if there is no task.
3248  * This enables deleting this mem_cgroup.
3249  */
3250 static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3251 {
3252 	int ret;
3253 	int node, zid, shrink;
3254 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3255 	struct cgroup *cgrp = mem->css.cgroup;
3256 
3257 	css_get(&mem->css);
3258 
3259 	shrink = 0;
3260 	/* should free all ? */
3261 	if (free_all)
3262 		goto try_to_free;
3263 move_account:
3264 	do {
3265 		ret = -EBUSY;
3266 		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3267 			goto out;
3268 		ret = -EINTR;
3269 		if (signal_pending(current))
3270 			goto out;
3271 		/* This is for making all *used* pages to be on LRU. */
3272 		lru_add_drain_all();
3273 		drain_all_stock_sync();
3274 		ret = 0;
3275 		mem_cgroup_start_move(mem);
3276 		for_each_node_state(node, N_HIGH_MEMORY) {
3277 			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3278 				enum lru_list l;
3279 				for_each_lru(l) {
3280 					ret = mem_cgroup_force_empty_list(mem,
3281 							node, zid, l);
3282 					if (ret)
3283 						break;
3284 				}
3285 			}
3286 			if (ret)
3287 				break;
3288 		}
3289 		mem_cgroup_end_move(mem);
3290 		memcg_oom_recover(mem);
3291 		/* it seems parent cgroup doesn't have enough mem */
3292 		if (ret == -ENOMEM)
3293 			goto try_to_free;
3294 		cond_resched();
3295 	/* "ret" should also be checked to ensure all lists are empty. */
3296 	} while (mem->res.usage > 0 || ret);
3297 out:
3298 	css_put(&mem->css);
3299 	return ret;
3300 
3301 try_to_free:
3302 	/* returns EBUSY if there is a task or if we come here twice. */
3303 	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3304 		ret = -EBUSY;
3305 		goto out;
3306 	}
3307 	/* we call try-to-free pages for make this cgroup empty */
3308 	lru_add_drain_all();
3309 	/* try to free all pages in this cgroup */
3310 	shrink = 1;
3311 	while (nr_retries && mem->res.usage > 0) {
3312 		int progress;
3313 
3314 		if (signal_pending(current)) {
3315 			ret = -EINTR;
3316 			goto out;
3317 		}
3318 		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
3319 						false, get_swappiness(mem));
3320 		if (!progress) {
3321 			nr_retries--;
3322 			/* maybe some writeback is necessary */
3323 			congestion_wait(BLK_RW_ASYNC, HZ/10);
3324 		}
3325 
3326 	}
3327 	lru_add_drain();
3328 	/* try move_account...there may be some *locked* pages. */
3329 	goto move_account;
3330 }
3331 
3332 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3333 {
3334 	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3335 }
3336 
3337 
3338 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3339 {
3340 	return mem_cgroup_from_cont(cont)->use_hierarchy;
3341 }
3342 
3343 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3344 					u64 val)
3345 {
3346 	int retval = 0;
3347 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3348 	struct cgroup *parent = cont->parent;
3349 	struct mem_cgroup *parent_mem = NULL;
3350 
3351 	if (parent)
3352 		parent_mem = mem_cgroup_from_cont(parent);
3353 
3354 	cgroup_lock();
3355 	/*
3356 	 * If parent's use_hierarchy is set, we can't make any modifications
3357 	 * in the child subtrees. If it is unset, then the change can
3358 	 * occur, provided the current cgroup has no children.
3359 	 *
3360 	 * For the root cgroup, parent_mem is NULL, we allow value to be
3361 	 * set if there are no children.
3362 	 */
3363 	if ((!parent_mem || !parent_mem->use_hierarchy) &&
3364 				(val == 1 || val == 0)) {
3365 		if (list_empty(&cont->children))
3366 			mem->use_hierarchy = val;
3367 		else
3368 			retval = -EBUSY;
3369 	} else
3370 		retval = -EINVAL;
3371 	cgroup_unlock();
3372 
3373 	return retval;
3374 }
3375 
3376 
3377 static u64 mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
3378 				enum mem_cgroup_stat_index idx)
3379 {
3380 	struct mem_cgroup *iter;
3381 	s64 val = 0;
3382 
3383 	/* each per cpu's value can be minus.Then, use s64 */
3384 	for_each_mem_cgroup_tree(iter, mem)
3385 		val += mem_cgroup_read_stat(iter, idx);
3386 
3387 	if (val < 0) /* race ? */
3388 		val = 0;
3389 	return val;
3390 }
3391 
3392 static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
3393 {
3394 	u64 val;
3395 
3396 	if (!mem_cgroup_is_root(mem)) {
3397 		if (!swap)
3398 			return res_counter_read_u64(&mem->res, RES_USAGE);
3399 		else
3400 			return res_counter_read_u64(&mem->memsw, RES_USAGE);
3401 	}
3402 
3403 	val = mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE);
3404 	val += mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS);
3405 
3406 	if (swap)
3407 		val += mem_cgroup_get_recursive_idx_stat(mem,
3408 				MEM_CGROUP_STAT_SWAPOUT);
3409 
3410 	return val << PAGE_SHIFT;
3411 }
3412 
3413 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3414 {
3415 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3416 	u64 val;
3417 	int type, name;
3418 
3419 	type = MEMFILE_TYPE(cft->private);
3420 	name = MEMFILE_ATTR(cft->private);
3421 	switch (type) {
3422 	case _MEM:
3423 		if (name == RES_USAGE)
3424 			val = mem_cgroup_usage(mem, false);
3425 		else
3426 			val = res_counter_read_u64(&mem->res, name);
3427 		break;
3428 	case _MEMSWAP:
3429 		if (name == RES_USAGE)
3430 			val = mem_cgroup_usage(mem, true);
3431 		else
3432 			val = res_counter_read_u64(&mem->memsw, name);
3433 		break;
3434 	default:
3435 		BUG();
3436 		break;
3437 	}
3438 	return val;
3439 }
3440 /*
3441  * The user of this function is...
3442  * RES_LIMIT.
3443  */
3444 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3445 			    const char *buffer)
3446 {
3447 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3448 	int type, name;
3449 	unsigned long long val;
3450 	int ret;
3451 
3452 	type = MEMFILE_TYPE(cft->private);
3453 	name = MEMFILE_ATTR(cft->private);
3454 	switch (name) {
3455 	case RES_LIMIT:
3456 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3457 			ret = -EINVAL;
3458 			break;
3459 		}
3460 		/* This function does all necessary parse...reuse it */
3461 		ret = res_counter_memparse_write_strategy(buffer, &val);
3462 		if (ret)
3463 			break;
3464 		if (type == _MEM)
3465 			ret = mem_cgroup_resize_limit(memcg, val);
3466 		else
3467 			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3468 		break;
3469 	case RES_SOFT_LIMIT:
3470 		ret = res_counter_memparse_write_strategy(buffer, &val);
3471 		if (ret)
3472 			break;
3473 		/*
3474 		 * For memsw, soft limits are hard to implement in terms
3475 		 * of semantics, for now, we support soft limits for
3476 		 * control without swap
3477 		 */
3478 		if (type == _MEM)
3479 			ret = res_counter_set_soft_limit(&memcg->res, val);
3480 		else
3481 			ret = -EINVAL;
3482 		break;
3483 	default:
3484 		ret = -EINVAL; /* should be BUG() ? */
3485 		break;
3486 	}
3487 	return ret;
3488 }
3489 
3490 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3491 		unsigned long long *mem_limit, unsigned long long *memsw_limit)
3492 {
3493 	struct cgroup *cgroup;
3494 	unsigned long long min_limit, min_memsw_limit, tmp;
3495 
3496 	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3497 	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3498 	cgroup = memcg->css.cgroup;
3499 	if (!memcg->use_hierarchy)
3500 		goto out;
3501 
3502 	while (cgroup->parent) {
3503 		cgroup = cgroup->parent;
3504 		memcg = mem_cgroup_from_cont(cgroup);
3505 		if (!memcg->use_hierarchy)
3506 			break;
3507 		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3508 		min_limit = min(min_limit, tmp);
3509 		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3510 		min_memsw_limit = min(min_memsw_limit, tmp);
3511 	}
3512 out:
3513 	*mem_limit = min_limit;
3514 	*memsw_limit = min_memsw_limit;
3515 	return;
3516 }
3517 
3518 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3519 {
3520 	struct mem_cgroup *mem;
3521 	int type, name;
3522 
3523 	mem = mem_cgroup_from_cont(cont);
3524 	type = MEMFILE_TYPE(event);
3525 	name = MEMFILE_ATTR(event);
3526 	switch (name) {
3527 	case RES_MAX_USAGE:
3528 		if (type == _MEM)
3529 			res_counter_reset_max(&mem->res);
3530 		else
3531 			res_counter_reset_max(&mem->memsw);
3532 		break;
3533 	case RES_FAILCNT:
3534 		if (type == _MEM)
3535 			res_counter_reset_failcnt(&mem->res);
3536 		else
3537 			res_counter_reset_failcnt(&mem->memsw);
3538 		break;
3539 	}
3540 
3541 	return 0;
3542 }
3543 
3544 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3545 					struct cftype *cft)
3546 {
3547 	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3548 }
3549 
3550 #ifdef CONFIG_MMU
3551 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3552 					struct cftype *cft, u64 val)
3553 {
3554 	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3555 
3556 	if (val >= (1 << NR_MOVE_TYPE))
3557 		return -EINVAL;
3558 	/*
3559 	 * We check this value several times in both in can_attach() and
3560 	 * attach(), so we need cgroup lock to prevent this value from being
3561 	 * inconsistent.
3562 	 */
3563 	cgroup_lock();
3564 	mem->move_charge_at_immigrate = val;
3565 	cgroup_unlock();
3566 
3567 	return 0;
3568 }
3569 #else
3570 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3571 					struct cftype *cft, u64 val)
3572 {
3573 	return -ENOSYS;
3574 }
3575 #endif
3576 
3577 
3578 /* For read statistics */
3579 enum {
3580 	MCS_CACHE,
3581 	MCS_RSS,
3582 	MCS_FILE_MAPPED,
3583 	MCS_PGPGIN,
3584 	MCS_PGPGOUT,
3585 	MCS_SWAP,
3586 	MCS_INACTIVE_ANON,
3587 	MCS_ACTIVE_ANON,
3588 	MCS_INACTIVE_FILE,
3589 	MCS_ACTIVE_FILE,
3590 	MCS_UNEVICTABLE,
3591 	NR_MCS_STAT,
3592 };
3593 
3594 struct mcs_total_stat {
3595 	s64 stat[NR_MCS_STAT];
3596 };
3597 
3598 struct {
3599 	char *local_name;
3600 	char *total_name;
3601 } memcg_stat_strings[NR_MCS_STAT] = {
3602 	{"cache", "total_cache"},
3603 	{"rss", "total_rss"},
3604 	{"mapped_file", "total_mapped_file"},
3605 	{"pgpgin", "total_pgpgin"},
3606 	{"pgpgout", "total_pgpgout"},
3607 	{"swap", "total_swap"},
3608 	{"inactive_anon", "total_inactive_anon"},
3609 	{"active_anon", "total_active_anon"},
3610 	{"inactive_file", "total_inactive_file"},
3611 	{"active_file", "total_active_file"},
3612 	{"unevictable", "total_unevictable"}
3613 };
3614 
3615 
3616 static void
3617 mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3618 {
3619 	s64 val;
3620 
3621 	/* per cpu stat */
3622 	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
3623 	s->stat[MCS_CACHE] += val * PAGE_SIZE;
3624 	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
3625 	s->stat[MCS_RSS] += val * PAGE_SIZE;
3626 	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
3627 	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
3628 	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT);
3629 	s->stat[MCS_PGPGIN] += val;
3630 	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT);
3631 	s->stat[MCS_PGPGOUT] += val;
3632 	if (do_swap_account) {
3633 		val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3634 		s->stat[MCS_SWAP] += val * PAGE_SIZE;
3635 	}
3636 
3637 	/* per zone stat */
3638 	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
3639 	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
3640 	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
3641 	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
3642 	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
3643 	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
3644 	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
3645 	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
3646 	val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
3647 	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
3648 }
3649 
3650 static void
3651 mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3652 {
3653 	struct mem_cgroup *iter;
3654 
3655 	for_each_mem_cgroup_tree(iter, mem)
3656 		mem_cgroup_get_local_stat(iter, s);
3657 }
3658 
3659 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
3660 				 struct cgroup_map_cb *cb)
3661 {
3662 	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
3663 	struct mcs_total_stat mystat;
3664 	int i;
3665 
3666 	memset(&mystat, 0, sizeof(mystat));
3667 	mem_cgroup_get_local_stat(mem_cont, &mystat);
3668 
3669 	for (i = 0; i < NR_MCS_STAT; i++) {
3670 		if (i == MCS_SWAP && !do_swap_account)
3671 			continue;
3672 		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
3673 	}
3674 
3675 	/* Hierarchical information */
3676 	{
3677 		unsigned long long limit, memsw_limit;
3678 		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
3679 		cb->fill(cb, "hierarchical_memory_limit", limit);
3680 		if (do_swap_account)
3681 			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
3682 	}
3683 
3684 	memset(&mystat, 0, sizeof(mystat));
3685 	mem_cgroup_get_total_stat(mem_cont, &mystat);
3686 	for (i = 0; i < NR_MCS_STAT; i++) {
3687 		if (i == MCS_SWAP && !do_swap_account)
3688 			continue;
3689 		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
3690 	}
3691 
3692 #ifdef CONFIG_DEBUG_VM
3693 	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
3694 
3695 	{
3696 		int nid, zid;
3697 		struct mem_cgroup_per_zone *mz;
3698 		unsigned long recent_rotated[2] = {0, 0};
3699 		unsigned long recent_scanned[2] = {0, 0};
3700 
3701 		for_each_online_node(nid)
3702 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3703 				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
3704 
3705 				recent_rotated[0] +=
3706 					mz->reclaim_stat.recent_rotated[0];
3707 				recent_rotated[1] +=
3708 					mz->reclaim_stat.recent_rotated[1];
3709 				recent_scanned[0] +=
3710 					mz->reclaim_stat.recent_scanned[0];
3711 				recent_scanned[1] +=
3712 					mz->reclaim_stat.recent_scanned[1];
3713 			}
3714 		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
3715 		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
3716 		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
3717 		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
3718 	}
3719 #endif
3720 
3721 	return 0;
3722 }
3723 
3724 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
3725 {
3726 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3727 
3728 	return get_swappiness(memcg);
3729 }
3730 
3731 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
3732 				       u64 val)
3733 {
3734 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3735 	struct mem_cgroup *parent;
3736 
3737 	if (val > 100)
3738 		return -EINVAL;
3739 
3740 	if (cgrp->parent == NULL)
3741 		return -EINVAL;
3742 
3743 	parent = mem_cgroup_from_cont(cgrp->parent);
3744 
3745 	cgroup_lock();
3746 
3747 	/* If under hierarchy, only empty-root can set this value */
3748 	if ((parent->use_hierarchy) ||
3749 	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3750 		cgroup_unlock();
3751 		return -EINVAL;
3752 	}
3753 
3754 	spin_lock(&memcg->reclaim_param_lock);
3755 	memcg->swappiness = val;
3756 	spin_unlock(&memcg->reclaim_param_lock);
3757 
3758 	cgroup_unlock();
3759 
3760 	return 0;
3761 }
3762 
3763 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3764 {
3765 	struct mem_cgroup_threshold_ary *t;
3766 	u64 usage;
3767 	int i;
3768 
3769 	rcu_read_lock();
3770 	if (!swap)
3771 		t = rcu_dereference(memcg->thresholds.primary);
3772 	else
3773 		t = rcu_dereference(memcg->memsw_thresholds.primary);
3774 
3775 	if (!t)
3776 		goto unlock;
3777 
3778 	usage = mem_cgroup_usage(memcg, swap);
3779 
3780 	/*
3781 	 * current_threshold points to threshold just below usage.
3782 	 * If it's not true, a threshold was crossed after last
3783 	 * call of __mem_cgroup_threshold().
3784 	 */
3785 	i = t->current_threshold;
3786 
3787 	/*
3788 	 * Iterate backward over array of thresholds starting from
3789 	 * current_threshold and check if a threshold is crossed.
3790 	 * If none of thresholds below usage is crossed, we read
3791 	 * only one element of the array here.
3792 	 */
3793 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3794 		eventfd_signal(t->entries[i].eventfd, 1);
3795 
3796 	/* i = current_threshold + 1 */
3797 	i++;
3798 
3799 	/*
3800 	 * Iterate forward over array of thresholds starting from
3801 	 * current_threshold+1 and check if a threshold is crossed.
3802 	 * If none of thresholds above usage is crossed, we read
3803 	 * only one element of the array here.
3804 	 */
3805 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3806 		eventfd_signal(t->entries[i].eventfd, 1);
3807 
3808 	/* Update current_threshold */
3809 	t->current_threshold = i - 1;
3810 unlock:
3811 	rcu_read_unlock();
3812 }
3813 
3814 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3815 {
3816 	while (memcg) {
3817 		__mem_cgroup_threshold(memcg, false);
3818 		if (do_swap_account)
3819 			__mem_cgroup_threshold(memcg, true);
3820 
3821 		memcg = parent_mem_cgroup(memcg);
3822 	}
3823 }
3824 
3825 static int compare_thresholds(const void *a, const void *b)
3826 {
3827 	const struct mem_cgroup_threshold *_a = a;
3828 	const struct mem_cgroup_threshold *_b = b;
3829 
3830 	return _a->threshold - _b->threshold;
3831 }
3832 
3833 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
3834 {
3835 	struct mem_cgroup_eventfd_list *ev;
3836 
3837 	list_for_each_entry(ev, &mem->oom_notify, list)
3838 		eventfd_signal(ev->eventfd, 1);
3839 	return 0;
3840 }
3841 
3842 static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
3843 {
3844 	struct mem_cgroup *iter;
3845 
3846 	for_each_mem_cgroup_tree(iter, mem)
3847 		mem_cgroup_oom_notify_cb(iter);
3848 }
3849 
3850 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
3851 	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
3852 {
3853 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3854 	struct mem_cgroup_thresholds *thresholds;
3855 	struct mem_cgroup_threshold_ary *new;
3856 	int type = MEMFILE_TYPE(cft->private);
3857 	u64 threshold, usage;
3858 	int i, size, ret;
3859 
3860 	ret = res_counter_memparse_write_strategy(args, &threshold);
3861 	if (ret)
3862 		return ret;
3863 
3864 	mutex_lock(&memcg->thresholds_lock);
3865 
3866 	if (type == _MEM)
3867 		thresholds = &memcg->thresholds;
3868 	else if (type == _MEMSWAP)
3869 		thresholds = &memcg->memsw_thresholds;
3870 	else
3871 		BUG();
3872 
3873 	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3874 
3875 	/* Check if a threshold crossed before adding a new one */
3876 	if (thresholds->primary)
3877 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3878 
3879 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3880 
3881 	/* Allocate memory for new array of thresholds */
3882 	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3883 			GFP_KERNEL);
3884 	if (!new) {
3885 		ret = -ENOMEM;
3886 		goto unlock;
3887 	}
3888 	new->size = size;
3889 
3890 	/* Copy thresholds (if any) to new array */
3891 	if (thresholds->primary) {
3892 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3893 				sizeof(struct mem_cgroup_threshold));
3894 	}
3895 
3896 	/* Add new threshold */
3897 	new->entries[size - 1].eventfd = eventfd;
3898 	new->entries[size - 1].threshold = threshold;
3899 
3900 	/* Sort thresholds. Registering of new threshold isn't time-critical */
3901 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3902 			compare_thresholds, NULL);
3903 
3904 	/* Find current threshold */
3905 	new->current_threshold = -1;
3906 	for (i = 0; i < size; i++) {
3907 		if (new->entries[i].threshold < usage) {
3908 			/*
3909 			 * new->current_threshold will not be used until
3910 			 * rcu_assign_pointer(), so it's safe to increment
3911 			 * it here.
3912 			 */
3913 			++new->current_threshold;
3914 		}
3915 	}
3916 
3917 	/* Free old spare buffer and save old primary buffer as spare */
3918 	kfree(thresholds->spare);
3919 	thresholds->spare = thresholds->primary;
3920 
3921 	rcu_assign_pointer(thresholds->primary, new);
3922 
3923 	/* To be sure that nobody uses thresholds */
3924 	synchronize_rcu();
3925 
3926 unlock:
3927 	mutex_unlock(&memcg->thresholds_lock);
3928 
3929 	return ret;
3930 }
3931 
3932 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
3933 	struct cftype *cft, struct eventfd_ctx *eventfd)
3934 {
3935 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3936 	struct mem_cgroup_thresholds *thresholds;
3937 	struct mem_cgroup_threshold_ary *new;
3938 	int type = MEMFILE_TYPE(cft->private);
3939 	u64 usage;
3940 	int i, j, size;
3941 
3942 	mutex_lock(&memcg->thresholds_lock);
3943 	if (type == _MEM)
3944 		thresholds = &memcg->thresholds;
3945 	else if (type == _MEMSWAP)
3946 		thresholds = &memcg->memsw_thresholds;
3947 	else
3948 		BUG();
3949 
3950 	/*
3951 	 * Something went wrong if we trying to unregister a threshold
3952 	 * if we don't have thresholds
3953 	 */
3954 	BUG_ON(!thresholds);
3955 
3956 	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3957 
3958 	/* Check if a threshold crossed before removing */
3959 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3960 
3961 	/* Calculate new number of threshold */
3962 	size = 0;
3963 	for (i = 0; i < thresholds->primary->size; i++) {
3964 		if (thresholds->primary->entries[i].eventfd != eventfd)
3965 			size++;
3966 	}
3967 
3968 	new = thresholds->spare;
3969 
3970 	/* Set thresholds array to NULL if we don't have thresholds */
3971 	if (!size) {
3972 		kfree(new);
3973 		new = NULL;
3974 		goto swap_buffers;
3975 	}
3976 
3977 	new->size = size;
3978 
3979 	/* Copy thresholds and find current threshold */
3980 	new->current_threshold = -1;
3981 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3982 		if (thresholds->primary->entries[i].eventfd == eventfd)
3983 			continue;
3984 
3985 		new->entries[j] = thresholds->primary->entries[i];
3986 		if (new->entries[j].threshold < usage) {
3987 			/*
3988 			 * new->current_threshold will not be used
3989 			 * until rcu_assign_pointer(), so it's safe to increment
3990 			 * it here.
3991 			 */
3992 			++new->current_threshold;
3993 		}
3994 		j++;
3995 	}
3996 
3997 swap_buffers:
3998 	/* Swap primary and spare array */
3999 	thresholds->spare = thresholds->primary;
4000 	rcu_assign_pointer(thresholds->primary, new);
4001 
4002 	/* To be sure that nobody uses thresholds */
4003 	synchronize_rcu();
4004 
4005 	mutex_unlock(&memcg->thresholds_lock);
4006 }
4007 
4008 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4009 	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4010 {
4011 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4012 	struct mem_cgroup_eventfd_list *event;
4013 	int type = MEMFILE_TYPE(cft->private);
4014 
4015 	BUG_ON(type != _OOM_TYPE);
4016 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4017 	if (!event)
4018 		return -ENOMEM;
4019 
4020 	mutex_lock(&memcg_oom_mutex);
4021 
4022 	event->eventfd = eventfd;
4023 	list_add(&event->list, &memcg->oom_notify);
4024 
4025 	/* already in OOM ? */
4026 	if (atomic_read(&memcg->oom_lock))
4027 		eventfd_signal(eventfd, 1);
4028 	mutex_unlock(&memcg_oom_mutex);
4029 
4030 	return 0;
4031 }
4032 
4033 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4034 	struct cftype *cft, struct eventfd_ctx *eventfd)
4035 {
4036 	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4037 	struct mem_cgroup_eventfd_list *ev, *tmp;
4038 	int type = MEMFILE_TYPE(cft->private);
4039 
4040 	BUG_ON(type != _OOM_TYPE);
4041 
4042 	mutex_lock(&memcg_oom_mutex);
4043 
4044 	list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
4045 		if (ev->eventfd == eventfd) {
4046 			list_del(&ev->list);
4047 			kfree(ev);
4048 		}
4049 	}
4050 
4051 	mutex_unlock(&memcg_oom_mutex);
4052 }
4053 
4054 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4055 	struct cftype *cft,  struct cgroup_map_cb *cb)
4056 {
4057 	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4058 
4059 	cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
4060 
4061 	if (atomic_read(&mem->oom_lock))
4062 		cb->fill(cb, "under_oom", 1);
4063 	else
4064 		cb->fill(cb, "under_oom", 0);
4065 	return 0;
4066 }
4067 
4068 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4069 	struct cftype *cft, u64 val)
4070 {
4071 	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4072 	struct mem_cgroup *parent;
4073 
4074 	/* cannot set to root cgroup and only 0 and 1 are allowed */
4075 	if (!cgrp->parent || !((val == 0) || (val == 1)))
4076 		return -EINVAL;
4077 
4078 	parent = mem_cgroup_from_cont(cgrp->parent);
4079 
4080 	cgroup_lock();
4081 	/* oom-kill-disable is a flag for subhierarchy. */
4082 	if ((parent->use_hierarchy) ||
4083 	    (mem->use_hierarchy && !list_empty(&cgrp->children))) {
4084 		cgroup_unlock();
4085 		return -EINVAL;
4086 	}
4087 	mem->oom_kill_disable = val;
4088 	if (!val)
4089 		memcg_oom_recover(mem);
4090 	cgroup_unlock();
4091 	return 0;
4092 }
4093 
4094 static struct cftype mem_cgroup_files[] = {
4095 	{
4096 		.name = "usage_in_bytes",
4097 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4098 		.read_u64 = mem_cgroup_read,
4099 		.register_event = mem_cgroup_usage_register_event,
4100 		.unregister_event = mem_cgroup_usage_unregister_event,
4101 	},
4102 	{
4103 		.name = "max_usage_in_bytes",
4104 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4105 		.trigger = mem_cgroup_reset,
4106 		.read_u64 = mem_cgroup_read,
4107 	},
4108 	{
4109 		.name = "limit_in_bytes",
4110 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4111 		.write_string = mem_cgroup_write,
4112 		.read_u64 = mem_cgroup_read,
4113 	},
4114 	{
4115 		.name = "soft_limit_in_bytes",
4116 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4117 		.write_string = mem_cgroup_write,
4118 		.read_u64 = mem_cgroup_read,
4119 	},
4120 	{
4121 		.name = "failcnt",
4122 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4123 		.trigger = mem_cgroup_reset,
4124 		.read_u64 = mem_cgroup_read,
4125 	},
4126 	{
4127 		.name = "stat",
4128 		.read_map = mem_control_stat_show,
4129 	},
4130 	{
4131 		.name = "force_empty",
4132 		.trigger = mem_cgroup_force_empty_write,
4133 	},
4134 	{
4135 		.name = "use_hierarchy",
4136 		.write_u64 = mem_cgroup_hierarchy_write,
4137 		.read_u64 = mem_cgroup_hierarchy_read,
4138 	},
4139 	{
4140 		.name = "swappiness",
4141 		.read_u64 = mem_cgroup_swappiness_read,
4142 		.write_u64 = mem_cgroup_swappiness_write,
4143 	},
4144 	{
4145 		.name = "move_charge_at_immigrate",
4146 		.read_u64 = mem_cgroup_move_charge_read,
4147 		.write_u64 = mem_cgroup_move_charge_write,
4148 	},
4149 	{
4150 		.name = "oom_control",
4151 		.read_map = mem_cgroup_oom_control_read,
4152 		.write_u64 = mem_cgroup_oom_control_write,
4153 		.register_event = mem_cgroup_oom_register_event,
4154 		.unregister_event = mem_cgroup_oom_unregister_event,
4155 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4156 	},
4157 };
4158 
4159 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4160 static struct cftype memsw_cgroup_files[] = {
4161 	{
4162 		.name = "memsw.usage_in_bytes",
4163 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4164 		.read_u64 = mem_cgroup_read,
4165 		.register_event = mem_cgroup_usage_register_event,
4166 		.unregister_event = mem_cgroup_usage_unregister_event,
4167 	},
4168 	{
4169 		.name = "memsw.max_usage_in_bytes",
4170 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4171 		.trigger = mem_cgroup_reset,
4172 		.read_u64 = mem_cgroup_read,
4173 	},
4174 	{
4175 		.name = "memsw.limit_in_bytes",
4176 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4177 		.write_string = mem_cgroup_write,
4178 		.read_u64 = mem_cgroup_read,
4179 	},
4180 	{
4181 		.name = "memsw.failcnt",
4182 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4183 		.trigger = mem_cgroup_reset,
4184 		.read_u64 = mem_cgroup_read,
4185 	},
4186 };
4187 
4188 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4189 {
4190 	if (!do_swap_account)
4191 		return 0;
4192 	return cgroup_add_files(cont, ss, memsw_cgroup_files,
4193 				ARRAY_SIZE(memsw_cgroup_files));
4194 };
4195 #else
4196 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4197 {
4198 	return 0;
4199 }
4200 #endif
4201 
4202 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4203 {
4204 	struct mem_cgroup_per_node *pn;
4205 	struct mem_cgroup_per_zone *mz;
4206 	enum lru_list l;
4207 	int zone, tmp = node;
4208 	/*
4209 	 * This routine is called against possible nodes.
4210 	 * But it's BUG to call kmalloc() against offline node.
4211 	 *
4212 	 * TODO: this routine can waste much memory for nodes which will
4213 	 *       never be onlined. It's better to use memory hotplug callback
4214 	 *       function.
4215 	 */
4216 	if (!node_state(node, N_NORMAL_MEMORY))
4217 		tmp = -1;
4218 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4219 	if (!pn)
4220 		return 1;
4221 
4222 	mem->info.nodeinfo[node] = pn;
4223 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4224 		mz = &pn->zoneinfo[zone];
4225 		for_each_lru(l)
4226 			INIT_LIST_HEAD(&mz->lists[l]);
4227 		mz->usage_in_excess = 0;
4228 		mz->on_tree = false;
4229 		mz->mem = mem;
4230 	}
4231 	return 0;
4232 }
4233 
4234 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4235 {
4236 	kfree(mem->info.nodeinfo[node]);
4237 }
4238 
4239 static struct mem_cgroup *mem_cgroup_alloc(void)
4240 {
4241 	struct mem_cgroup *mem;
4242 	int size = sizeof(struct mem_cgroup);
4243 
4244 	/* Can be very big if MAX_NUMNODES is very big */
4245 	if (size < PAGE_SIZE)
4246 		mem = kzalloc(size, GFP_KERNEL);
4247 	else
4248 		mem = vzalloc(size);
4249 
4250 	if (!mem)
4251 		return NULL;
4252 
4253 	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4254 	if (!mem->stat)
4255 		goto out_free;
4256 	spin_lock_init(&mem->pcp_counter_lock);
4257 	return mem;
4258 
4259 out_free:
4260 	if (size < PAGE_SIZE)
4261 		kfree(mem);
4262 	else
4263 		vfree(mem);
4264 	return NULL;
4265 }
4266 
4267 /*
4268  * At destroying mem_cgroup, references from swap_cgroup can remain.
4269  * (scanning all at force_empty is too costly...)
4270  *
4271  * Instead of clearing all references at force_empty, we remember
4272  * the number of reference from swap_cgroup and free mem_cgroup when
4273  * it goes down to 0.
4274  *
4275  * Removal of cgroup itself succeeds regardless of refs from swap.
4276  */
4277 
4278 static void __mem_cgroup_free(struct mem_cgroup *mem)
4279 {
4280 	int node;
4281 
4282 	mem_cgroup_remove_from_trees(mem);
4283 	free_css_id(&mem_cgroup_subsys, &mem->css);
4284 
4285 	for_each_node_state(node, N_POSSIBLE)
4286 		free_mem_cgroup_per_zone_info(mem, node);
4287 
4288 	free_percpu(mem->stat);
4289 	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4290 		kfree(mem);
4291 	else
4292 		vfree(mem);
4293 }
4294 
4295 static void mem_cgroup_get(struct mem_cgroup *mem)
4296 {
4297 	atomic_inc(&mem->refcnt);
4298 }
4299 
4300 static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
4301 {
4302 	if (atomic_sub_and_test(count, &mem->refcnt)) {
4303 		struct mem_cgroup *parent = parent_mem_cgroup(mem);
4304 		__mem_cgroup_free(mem);
4305 		if (parent)
4306 			mem_cgroup_put(parent);
4307 	}
4308 }
4309 
4310 static void mem_cgroup_put(struct mem_cgroup *mem)
4311 {
4312 	__mem_cgroup_put(mem, 1);
4313 }
4314 
4315 /*
4316  * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4317  */
4318 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
4319 {
4320 	if (!mem->res.parent)
4321 		return NULL;
4322 	return mem_cgroup_from_res_counter(mem->res.parent, res);
4323 }
4324 
4325 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4326 static void __init enable_swap_cgroup(void)
4327 {
4328 	if (!mem_cgroup_disabled() && really_do_swap_account)
4329 		do_swap_account = 1;
4330 }
4331 #else
4332 static void __init enable_swap_cgroup(void)
4333 {
4334 }
4335 #endif
4336 
4337 static int mem_cgroup_soft_limit_tree_init(void)
4338 {
4339 	struct mem_cgroup_tree_per_node *rtpn;
4340 	struct mem_cgroup_tree_per_zone *rtpz;
4341 	int tmp, node, zone;
4342 
4343 	for_each_node_state(node, N_POSSIBLE) {
4344 		tmp = node;
4345 		if (!node_state(node, N_NORMAL_MEMORY))
4346 			tmp = -1;
4347 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4348 		if (!rtpn)
4349 			return 1;
4350 
4351 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
4352 
4353 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4354 			rtpz = &rtpn->rb_tree_per_zone[zone];
4355 			rtpz->rb_root = RB_ROOT;
4356 			spin_lock_init(&rtpz->lock);
4357 		}
4358 	}
4359 	return 0;
4360 }
4361 
4362 static struct cgroup_subsys_state * __ref
4363 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4364 {
4365 	struct mem_cgroup *mem, *parent;
4366 	long error = -ENOMEM;
4367 	int node;
4368 
4369 	mem = mem_cgroup_alloc();
4370 	if (!mem)
4371 		return ERR_PTR(error);
4372 
4373 	for_each_node_state(node, N_POSSIBLE)
4374 		if (alloc_mem_cgroup_per_zone_info(mem, node))
4375 			goto free_out;
4376 
4377 	/* root ? */
4378 	if (cont->parent == NULL) {
4379 		int cpu;
4380 		enable_swap_cgroup();
4381 		parent = NULL;
4382 		root_mem_cgroup = mem;
4383 		if (mem_cgroup_soft_limit_tree_init())
4384 			goto free_out;
4385 		for_each_possible_cpu(cpu) {
4386 			struct memcg_stock_pcp *stock =
4387 						&per_cpu(memcg_stock, cpu);
4388 			INIT_WORK(&stock->work, drain_local_stock);
4389 		}
4390 		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4391 	} else {
4392 		parent = mem_cgroup_from_cont(cont->parent);
4393 		mem->use_hierarchy = parent->use_hierarchy;
4394 		mem->oom_kill_disable = parent->oom_kill_disable;
4395 	}
4396 
4397 	if (parent && parent->use_hierarchy) {
4398 		res_counter_init(&mem->res, &parent->res);
4399 		res_counter_init(&mem->memsw, &parent->memsw);
4400 		/*
4401 		 * We increment refcnt of the parent to ensure that we can
4402 		 * safely access it on res_counter_charge/uncharge.
4403 		 * This refcnt will be decremented when freeing this
4404 		 * mem_cgroup(see mem_cgroup_put).
4405 		 */
4406 		mem_cgroup_get(parent);
4407 	} else {
4408 		res_counter_init(&mem->res, NULL);
4409 		res_counter_init(&mem->memsw, NULL);
4410 	}
4411 	mem->last_scanned_child = 0;
4412 	spin_lock_init(&mem->reclaim_param_lock);
4413 	INIT_LIST_HEAD(&mem->oom_notify);
4414 
4415 	if (parent)
4416 		mem->swappiness = get_swappiness(parent);
4417 	atomic_set(&mem->refcnt, 1);
4418 	mem->move_charge_at_immigrate = 0;
4419 	mutex_init(&mem->thresholds_lock);
4420 	return &mem->css;
4421 free_out:
4422 	__mem_cgroup_free(mem);
4423 	root_mem_cgroup = NULL;
4424 	return ERR_PTR(error);
4425 }
4426 
4427 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4428 					struct cgroup *cont)
4429 {
4430 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4431 
4432 	return mem_cgroup_force_empty(mem, false);
4433 }
4434 
4435 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4436 				struct cgroup *cont)
4437 {
4438 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4439 
4440 	mem_cgroup_put(mem);
4441 }
4442 
4443 static int mem_cgroup_populate(struct cgroup_subsys *ss,
4444 				struct cgroup *cont)
4445 {
4446 	int ret;
4447 
4448 	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
4449 				ARRAY_SIZE(mem_cgroup_files));
4450 
4451 	if (!ret)
4452 		ret = register_memsw_files(cont, ss);
4453 	return ret;
4454 }
4455 
4456 #ifdef CONFIG_MMU
4457 /* Handlers for move charge at task migration. */
4458 #define PRECHARGE_COUNT_AT_ONCE	256
4459 static int mem_cgroup_do_precharge(unsigned long count)
4460 {
4461 	int ret = 0;
4462 	int batch_count = PRECHARGE_COUNT_AT_ONCE;
4463 	struct mem_cgroup *mem = mc.to;
4464 
4465 	if (mem_cgroup_is_root(mem)) {
4466 		mc.precharge += count;
4467 		/* we don't need css_get for root */
4468 		return ret;
4469 	}
4470 	/* try to charge at once */
4471 	if (count > 1) {
4472 		struct res_counter *dummy;
4473 		/*
4474 		 * "mem" cannot be under rmdir() because we've already checked
4475 		 * by cgroup_lock_live_cgroup() that it is not removed and we
4476 		 * are still under the same cgroup_mutex. So we can postpone
4477 		 * css_get().
4478 		 */
4479 		if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
4480 			goto one_by_one;
4481 		if (do_swap_account && res_counter_charge(&mem->memsw,
4482 						PAGE_SIZE * count, &dummy)) {
4483 			res_counter_uncharge(&mem->res, PAGE_SIZE * count);
4484 			goto one_by_one;
4485 		}
4486 		mc.precharge += count;
4487 		return ret;
4488 	}
4489 one_by_one:
4490 	/* fall back to one by one charge */
4491 	while (count--) {
4492 		if (signal_pending(current)) {
4493 			ret = -EINTR;
4494 			break;
4495 		}
4496 		if (!batch_count--) {
4497 			batch_count = PRECHARGE_COUNT_AT_ONCE;
4498 			cond_resched();
4499 		}
4500 		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false,
4501 					      PAGE_SIZE);
4502 		if (ret || !mem)
4503 			/* mem_cgroup_clear_mc() will do uncharge later */
4504 			return -ENOMEM;
4505 		mc.precharge++;
4506 	}
4507 	return ret;
4508 }
4509 
4510 /**
4511  * is_target_pte_for_mc - check a pte whether it is valid for move charge
4512  * @vma: the vma the pte to be checked belongs
4513  * @addr: the address corresponding to the pte to be checked
4514  * @ptent: the pte to be checked
4515  * @target: the pointer the target page or swap ent will be stored(can be NULL)
4516  *
4517  * Returns
4518  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
4519  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4520  *     move charge. if @target is not NULL, the page is stored in target->page
4521  *     with extra refcnt got(Callers should handle it).
4522  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4523  *     target for charge migration. if @target is not NULL, the entry is stored
4524  *     in target->ent.
4525  *
4526  * Called with pte lock held.
4527  */
4528 union mc_target {
4529 	struct page	*page;
4530 	swp_entry_t	ent;
4531 };
4532 
4533 enum mc_target_type {
4534 	MC_TARGET_NONE,	/* not used */
4535 	MC_TARGET_PAGE,
4536 	MC_TARGET_SWAP,
4537 };
4538 
4539 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4540 						unsigned long addr, pte_t ptent)
4541 {
4542 	struct page *page = vm_normal_page(vma, addr, ptent);
4543 
4544 	if (!page || !page_mapped(page))
4545 		return NULL;
4546 	if (PageAnon(page)) {
4547 		/* we don't move shared anon */
4548 		if (!move_anon() || page_mapcount(page) > 2)
4549 			return NULL;
4550 	} else if (!move_file())
4551 		/* we ignore mapcount for file pages */
4552 		return NULL;
4553 	if (!get_page_unless_zero(page))
4554 		return NULL;
4555 
4556 	return page;
4557 }
4558 
4559 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4560 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4561 {
4562 	int usage_count;
4563 	struct page *page = NULL;
4564 	swp_entry_t ent = pte_to_swp_entry(ptent);
4565 
4566 	if (!move_anon() || non_swap_entry(ent))
4567 		return NULL;
4568 	usage_count = mem_cgroup_count_swap_user(ent, &page);
4569 	if (usage_count > 1) { /* we don't move shared anon */
4570 		if (page)
4571 			put_page(page);
4572 		return NULL;
4573 	}
4574 	if (do_swap_account)
4575 		entry->val = ent.val;
4576 
4577 	return page;
4578 }
4579 
4580 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4581 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4582 {
4583 	struct page *page = NULL;
4584 	struct inode *inode;
4585 	struct address_space *mapping;
4586 	pgoff_t pgoff;
4587 
4588 	if (!vma->vm_file) /* anonymous vma */
4589 		return NULL;
4590 	if (!move_file())
4591 		return NULL;
4592 
4593 	inode = vma->vm_file->f_path.dentry->d_inode;
4594 	mapping = vma->vm_file->f_mapping;
4595 	if (pte_none(ptent))
4596 		pgoff = linear_page_index(vma, addr);
4597 	else /* pte_file(ptent) is true */
4598 		pgoff = pte_to_pgoff(ptent);
4599 
4600 	/* page is moved even if it's not RSS of this task(page-faulted). */
4601 	if (!mapping_cap_swap_backed(mapping)) { /* normal file */
4602 		page = find_get_page(mapping, pgoff);
4603 	} else { /* shmem/tmpfs file. we should take account of swap too. */
4604 		swp_entry_t ent;
4605 		mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
4606 		if (do_swap_account)
4607 			entry->val = ent.val;
4608 	}
4609 
4610 	return page;
4611 }
4612 
4613 static int is_target_pte_for_mc(struct vm_area_struct *vma,
4614 		unsigned long addr, pte_t ptent, union mc_target *target)
4615 {
4616 	struct page *page = NULL;
4617 	struct page_cgroup *pc;
4618 	int ret = 0;
4619 	swp_entry_t ent = { .val = 0 };
4620 
4621 	if (pte_present(ptent))
4622 		page = mc_handle_present_pte(vma, addr, ptent);
4623 	else if (is_swap_pte(ptent))
4624 		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4625 	else if (pte_none(ptent) || pte_file(ptent))
4626 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
4627 
4628 	if (!page && !ent.val)
4629 		return 0;
4630 	if (page) {
4631 		pc = lookup_page_cgroup(page);
4632 		/*
4633 		 * Do only loose check w/o page_cgroup lock.
4634 		 * mem_cgroup_move_account() checks the pc is valid or not under
4635 		 * the lock.
4636 		 */
4637 		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
4638 			ret = MC_TARGET_PAGE;
4639 			if (target)
4640 				target->page = page;
4641 		}
4642 		if (!ret || !target)
4643 			put_page(page);
4644 	}
4645 	/* There is a swap entry and a page doesn't exist or isn't charged */
4646 	if (ent.val && !ret &&
4647 			css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
4648 		ret = MC_TARGET_SWAP;
4649 		if (target)
4650 			target->ent = ent;
4651 	}
4652 	return ret;
4653 }
4654 
4655 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4656 					unsigned long addr, unsigned long end,
4657 					struct mm_walk *walk)
4658 {
4659 	struct vm_area_struct *vma = walk->private;
4660 	pte_t *pte;
4661 	spinlock_t *ptl;
4662 
4663 	VM_BUG_ON(pmd_trans_huge(*pmd));
4664 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4665 	for (; addr != end; pte++, addr += PAGE_SIZE)
4666 		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
4667 			mc.precharge++;	/* increment precharge temporarily */
4668 	pte_unmap_unlock(pte - 1, ptl);
4669 	cond_resched();
4670 
4671 	return 0;
4672 }
4673 
4674 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4675 {
4676 	unsigned long precharge;
4677 	struct vm_area_struct *vma;
4678 
4679 	down_read(&mm->mmap_sem);
4680 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
4681 		struct mm_walk mem_cgroup_count_precharge_walk = {
4682 			.pmd_entry = mem_cgroup_count_precharge_pte_range,
4683 			.mm = mm,
4684 			.private = vma,
4685 		};
4686 		if (is_vm_hugetlb_page(vma))
4687 			continue;
4688 		walk_page_range(vma->vm_start, vma->vm_end,
4689 					&mem_cgroup_count_precharge_walk);
4690 	}
4691 	up_read(&mm->mmap_sem);
4692 
4693 	precharge = mc.precharge;
4694 	mc.precharge = 0;
4695 
4696 	return precharge;
4697 }
4698 
4699 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4700 {
4701 	unsigned long precharge = mem_cgroup_count_precharge(mm);
4702 
4703 	VM_BUG_ON(mc.moving_task);
4704 	mc.moving_task = current;
4705 	return mem_cgroup_do_precharge(precharge);
4706 }
4707 
4708 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4709 static void __mem_cgroup_clear_mc(void)
4710 {
4711 	struct mem_cgroup *from = mc.from;
4712 	struct mem_cgroup *to = mc.to;
4713 
4714 	/* we must uncharge all the leftover precharges from mc.to */
4715 	if (mc.precharge) {
4716 		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
4717 		mc.precharge = 0;
4718 	}
4719 	/*
4720 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4721 	 * we must uncharge here.
4722 	 */
4723 	if (mc.moved_charge) {
4724 		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
4725 		mc.moved_charge = 0;
4726 	}
4727 	/* we must fixup refcnts and charges */
4728 	if (mc.moved_swap) {
4729 		/* uncharge swap account from the old cgroup */
4730 		if (!mem_cgroup_is_root(mc.from))
4731 			res_counter_uncharge(&mc.from->memsw,
4732 						PAGE_SIZE * mc.moved_swap);
4733 		__mem_cgroup_put(mc.from, mc.moved_swap);
4734 
4735 		if (!mem_cgroup_is_root(mc.to)) {
4736 			/*
4737 			 * we charged both to->res and to->memsw, so we should
4738 			 * uncharge to->res.
4739 			 */
4740 			res_counter_uncharge(&mc.to->res,
4741 						PAGE_SIZE * mc.moved_swap);
4742 		}
4743 		/* we've already done mem_cgroup_get(mc.to) */
4744 		mc.moved_swap = 0;
4745 	}
4746 	memcg_oom_recover(from);
4747 	memcg_oom_recover(to);
4748 	wake_up_all(&mc.waitq);
4749 }
4750 
4751 static void mem_cgroup_clear_mc(void)
4752 {
4753 	struct mem_cgroup *from = mc.from;
4754 
4755 	/*
4756 	 * we must clear moving_task before waking up waiters at the end of
4757 	 * task migration.
4758 	 */
4759 	mc.moving_task = NULL;
4760 	__mem_cgroup_clear_mc();
4761 	spin_lock(&mc.lock);
4762 	mc.from = NULL;
4763 	mc.to = NULL;
4764 	spin_unlock(&mc.lock);
4765 	mem_cgroup_end_move(from);
4766 }
4767 
4768 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4769 				struct cgroup *cgroup,
4770 				struct task_struct *p,
4771 				bool threadgroup)
4772 {
4773 	int ret = 0;
4774 	struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
4775 
4776 	if (mem->move_charge_at_immigrate) {
4777 		struct mm_struct *mm;
4778 		struct mem_cgroup *from = mem_cgroup_from_task(p);
4779 
4780 		VM_BUG_ON(from == mem);
4781 
4782 		mm = get_task_mm(p);
4783 		if (!mm)
4784 			return 0;
4785 		/* We move charges only when we move a owner of the mm */
4786 		if (mm->owner == p) {
4787 			VM_BUG_ON(mc.from);
4788 			VM_BUG_ON(mc.to);
4789 			VM_BUG_ON(mc.precharge);
4790 			VM_BUG_ON(mc.moved_charge);
4791 			VM_BUG_ON(mc.moved_swap);
4792 			mem_cgroup_start_move(from);
4793 			spin_lock(&mc.lock);
4794 			mc.from = from;
4795 			mc.to = mem;
4796 			spin_unlock(&mc.lock);
4797 			/* We set mc.moving_task later */
4798 
4799 			ret = mem_cgroup_precharge_mc(mm);
4800 			if (ret)
4801 				mem_cgroup_clear_mc();
4802 		}
4803 		mmput(mm);
4804 	}
4805 	return ret;
4806 }
4807 
4808 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4809 				struct cgroup *cgroup,
4810 				struct task_struct *p,
4811 				bool threadgroup)
4812 {
4813 	mem_cgroup_clear_mc();
4814 }
4815 
4816 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4817 				unsigned long addr, unsigned long end,
4818 				struct mm_walk *walk)
4819 {
4820 	int ret = 0;
4821 	struct vm_area_struct *vma = walk->private;
4822 	pte_t *pte;
4823 	spinlock_t *ptl;
4824 
4825 retry:
4826 	VM_BUG_ON(pmd_trans_huge(*pmd));
4827 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4828 	for (; addr != end; addr += PAGE_SIZE) {
4829 		pte_t ptent = *(pte++);
4830 		union mc_target target;
4831 		int type;
4832 		struct page *page;
4833 		struct page_cgroup *pc;
4834 		swp_entry_t ent;
4835 
4836 		if (!mc.precharge)
4837 			break;
4838 
4839 		type = is_target_pte_for_mc(vma, addr, ptent, &target);
4840 		switch (type) {
4841 		case MC_TARGET_PAGE:
4842 			page = target.page;
4843 			if (isolate_lru_page(page))
4844 				goto put;
4845 			pc = lookup_page_cgroup(page);
4846 			if (!mem_cgroup_move_account(pc,
4847 						mc.from, mc.to, false)) {
4848 				mc.precharge--;
4849 				/* we uncharge from mc.from later. */
4850 				mc.moved_charge++;
4851 			}
4852 			putback_lru_page(page);
4853 put:			/* is_target_pte_for_mc() gets the page */
4854 			put_page(page);
4855 			break;
4856 		case MC_TARGET_SWAP:
4857 			ent = target.ent;
4858 			if (!mem_cgroup_move_swap_account(ent,
4859 						mc.from, mc.to, false)) {
4860 				mc.precharge--;
4861 				/* we fixup refcnts and charges later. */
4862 				mc.moved_swap++;
4863 			}
4864 			break;
4865 		default:
4866 			break;
4867 		}
4868 	}
4869 	pte_unmap_unlock(pte - 1, ptl);
4870 	cond_resched();
4871 
4872 	if (addr != end) {
4873 		/*
4874 		 * We have consumed all precharges we got in can_attach().
4875 		 * We try charge one by one, but don't do any additional
4876 		 * charges to mc.to if we have failed in charge once in attach()
4877 		 * phase.
4878 		 */
4879 		ret = mem_cgroup_do_precharge(1);
4880 		if (!ret)
4881 			goto retry;
4882 	}
4883 
4884 	return ret;
4885 }
4886 
4887 static void mem_cgroup_move_charge(struct mm_struct *mm)
4888 {
4889 	struct vm_area_struct *vma;
4890 
4891 	lru_add_drain_all();
4892 retry:
4893 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
4894 		/*
4895 		 * Someone who are holding the mmap_sem might be waiting in
4896 		 * waitq. So we cancel all extra charges, wake up all waiters,
4897 		 * and retry. Because we cancel precharges, we might not be able
4898 		 * to move enough charges, but moving charge is a best-effort
4899 		 * feature anyway, so it wouldn't be a big problem.
4900 		 */
4901 		__mem_cgroup_clear_mc();
4902 		cond_resched();
4903 		goto retry;
4904 	}
4905 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
4906 		int ret;
4907 		struct mm_walk mem_cgroup_move_charge_walk = {
4908 			.pmd_entry = mem_cgroup_move_charge_pte_range,
4909 			.mm = mm,
4910 			.private = vma,
4911 		};
4912 		if (is_vm_hugetlb_page(vma))
4913 			continue;
4914 		ret = walk_page_range(vma->vm_start, vma->vm_end,
4915 						&mem_cgroup_move_charge_walk);
4916 		if (ret)
4917 			/*
4918 			 * means we have consumed all precharges and failed in
4919 			 * doing additional charge. Just abandon here.
4920 			 */
4921 			break;
4922 	}
4923 	up_read(&mm->mmap_sem);
4924 }
4925 
4926 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
4927 				struct cgroup *cont,
4928 				struct cgroup *old_cont,
4929 				struct task_struct *p,
4930 				bool threadgroup)
4931 {
4932 	struct mm_struct *mm;
4933 
4934 	if (!mc.to)
4935 		/* no need to move charge */
4936 		return;
4937 
4938 	mm = get_task_mm(p);
4939 	if (mm) {
4940 		mem_cgroup_move_charge(mm);
4941 		mmput(mm);
4942 	}
4943 	mem_cgroup_clear_mc();
4944 }
4945 #else	/* !CONFIG_MMU */
4946 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4947 				struct cgroup *cgroup,
4948 				struct task_struct *p,
4949 				bool threadgroup)
4950 {
4951 	return 0;
4952 }
4953 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4954 				struct cgroup *cgroup,
4955 				struct task_struct *p,
4956 				bool threadgroup)
4957 {
4958 }
4959 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
4960 				struct cgroup *cont,
4961 				struct cgroup *old_cont,
4962 				struct task_struct *p,
4963 				bool threadgroup)
4964 {
4965 }
4966 #endif
4967 
4968 struct cgroup_subsys mem_cgroup_subsys = {
4969 	.name = "memory",
4970 	.subsys_id = mem_cgroup_subsys_id,
4971 	.create = mem_cgroup_create,
4972 	.pre_destroy = mem_cgroup_pre_destroy,
4973 	.destroy = mem_cgroup_destroy,
4974 	.populate = mem_cgroup_populate,
4975 	.can_attach = mem_cgroup_can_attach,
4976 	.cancel_attach = mem_cgroup_cancel_attach,
4977 	.attach = mem_cgroup_move_task,
4978 	.early_init = 0,
4979 	.use_id = 1,
4980 };
4981 
4982 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4983 static int __init enable_swap_account(char *s)
4984 {
4985 	/* consider enabled if no parameter or 1 is given */
4986 	if (!s || !strcmp(s, "1"))
4987 		really_do_swap_account = 1;
4988 	else if (!strcmp(s, "0"))
4989 		really_do_swap_account = 0;
4990 	return 1;
4991 }
4992 __setup("swapaccount", enable_swap_account);
4993 
4994 static int __init disable_swap_account(char *s)
4995 {
4996 	enable_swap_account("0");
4997 	return 1;
4998 }
4999 __setup("noswapaccount", disable_swap_account);
5000 #endif
5001