1 /* memcontrol.c - Memory Controller 2 * 3 * Copyright IBM Corporation, 2007 4 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 5 * 6 * Copyright 2007 OpenVZ SWsoft Inc 7 * Author: Pavel Emelianov <xemul@openvz.org> 8 * 9 * Memory thresholds 10 * Copyright (C) 2009 Nokia Corporation 11 * Author: Kirill A. Shutemov 12 * 13 * Kernel Memory Controller 14 * Copyright (C) 2012 Parallels Inc. and Google Inc. 15 * Authors: Glauber Costa and Suleiman Souhlal 16 * 17 * This program is free software; you can redistribute it and/or modify 18 * it under the terms of the GNU General Public License as published by 19 * the Free Software Foundation; either version 2 of the License, or 20 * (at your option) any later version. 21 * 22 * This program is distributed in the hope that it will be useful, 23 * but WITHOUT ANY WARRANTY; without even the implied warranty of 24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 25 * GNU General Public License for more details. 26 */ 27 28 #include <linux/res_counter.h> 29 #include <linux/memcontrol.h> 30 #include <linux/cgroup.h> 31 #include <linux/mm.h> 32 #include <linux/hugetlb.h> 33 #include <linux/pagemap.h> 34 #include <linux/smp.h> 35 #include <linux/page-flags.h> 36 #include <linux/backing-dev.h> 37 #include <linux/bit_spinlock.h> 38 #include <linux/rcupdate.h> 39 #include <linux/limits.h> 40 #include <linux/export.h> 41 #include <linux/mutex.h> 42 #include <linux/rbtree.h> 43 #include <linux/slab.h> 44 #include <linux/swap.h> 45 #include <linux/swapops.h> 46 #include <linux/spinlock.h> 47 #include <linux/eventfd.h> 48 #include <linux/poll.h> 49 #include <linux/sort.h> 50 #include <linux/fs.h> 51 #include <linux/seq_file.h> 52 #include <linux/vmpressure.h> 53 #include <linux/mm_inline.h> 54 #include <linux/page_cgroup.h> 55 #include <linux/cpu.h> 56 #include <linux/oom.h> 57 #include <linux/lockdep.h> 58 #include <linux/file.h> 59 #include "internal.h" 60 #include <net/sock.h> 61 #include <net/ip.h> 62 #include <net/tcp_memcontrol.h> 63 #include "slab.h" 64 65 #include <asm/uaccess.h> 66 67 #include <trace/events/vmscan.h> 68 69 struct cgroup_subsys memory_cgrp_subsys __read_mostly; 70 EXPORT_SYMBOL(memory_cgrp_subsys); 71 72 #define MEM_CGROUP_RECLAIM_RETRIES 5 73 static struct mem_cgroup *root_mem_cgroup __read_mostly; 74 75 #ifdef CONFIG_MEMCG_SWAP 76 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */ 77 int do_swap_account __read_mostly; 78 79 /* for remember boot option*/ 80 #ifdef CONFIG_MEMCG_SWAP_ENABLED 81 static int really_do_swap_account __initdata = 1; 82 #else 83 static int really_do_swap_account __initdata; 84 #endif 85 86 #else 87 #define do_swap_account 0 88 #endif 89 90 91 static const char * const mem_cgroup_stat_names[] = { 92 "cache", 93 "rss", 94 "rss_huge", 95 "mapped_file", 96 "writeback", 97 "swap", 98 }; 99 100 enum mem_cgroup_events_index { 101 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */ 102 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */ 103 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */ 104 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */ 105 MEM_CGROUP_EVENTS_NSTATS, 106 }; 107 108 static const char * const mem_cgroup_events_names[] = { 109 "pgpgin", 110 "pgpgout", 111 "pgfault", 112 "pgmajfault", 113 }; 114 115 static const char * const mem_cgroup_lru_names[] = { 116 "inactive_anon", 117 "active_anon", 118 "inactive_file", 119 "active_file", 120 "unevictable", 121 }; 122 123 /* 124 * Per memcg event counter is incremented at every pagein/pageout. With THP, 125 * it will be incremated by the number of pages. This counter is used for 126 * for trigger some periodic events. This is straightforward and better 127 * than using jiffies etc. to handle periodic memcg event. 128 */ 129 enum mem_cgroup_events_target { 130 MEM_CGROUP_TARGET_THRESH, 131 MEM_CGROUP_TARGET_SOFTLIMIT, 132 MEM_CGROUP_TARGET_NUMAINFO, 133 MEM_CGROUP_NTARGETS, 134 }; 135 #define THRESHOLDS_EVENTS_TARGET 128 136 #define SOFTLIMIT_EVENTS_TARGET 1024 137 #define NUMAINFO_EVENTS_TARGET 1024 138 139 struct mem_cgroup_stat_cpu { 140 long count[MEM_CGROUP_STAT_NSTATS]; 141 unsigned long events[MEM_CGROUP_EVENTS_NSTATS]; 142 unsigned long nr_page_events; 143 unsigned long targets[MEM_CGROUP_NTARGETS]; 144 }; 145 146 struct mem_cgroup_reclaim_iter { 147 /* 148 * last scanned hierarchy member. Valid only if last_dead_count 149 * matches memcg->dead_count of the hierarchy root group. 150 */ 151 struct mem_cgroup *last_visited; 152 int last_dead_count; 153 154 /* scan generation, increased every round-trip */ 155 unsigned int generation; 156 }; 157 158 /* 159 * per-zone information in memory controller. 160 */ 161 struct mem_cgroup_per_zone { 162 struct lruvec lruvec; 163 unsigned long lru_size[NR_LRU_LISTS]; 164 165 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1]; 166 167 struct rb_node tree_node; /* RB tree node */ 168 unsigned long long usage_in_excess;/* Set to the value by which */ 169 /* the soft limit is exceeded*/ 170 bool on_tree; 171 struct mem_cgroup *memcg; /* Back pointer, we cannot */ 172 /* use container_of */ 173 }; 174 175 struct mem_cgroup_per_node { 176 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES]; 177 }; 178 179 /* 180 * Cgroups above their limits are maintained in a RB-Tree, independent of 181 * their hierarchy representation 182 */ 183 184 struct mem_cgroup_tree_per_zone { 185 struct rb_root rb_root; 186 spinlock_t lock; 187 }; 188 189 struct mem_cgroup_tree_per_node { 190 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES]; 191 }; 192 193 struct mem_cgroup_tree { 194 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 195 }; 196 197 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 198 199 struct mem_cgroup_threshold { 200 struct eventfd_ctx *eventfd; 201 u64 threshold; 202 }; 203 204 /* For threshold */ 205 struct mem_cgroup_threshold_ary { 206 /* An array index points to threshold just below or equal to usage. */ 207 int current_threshold; 208 /* Size of entries[] */ 209 unsigned int size; 210 /* Array of thresholds */ 211 struct mem_cgroup_threshold entries[0]; 212 }; 213 214 struct mem_cgroup_thresholds { 215 /* Primary thresholds array */ 216 struct mem_cgroup_threshold_ary *primary; 217 /* 218 * Spare threshold array. 219 * This is needed to make mem_cgroup_unregister_event() "never fail". 220 * It must be able to store at least primary->size - 1 entries. 221 */ 222 struct mem_cgroup_threshold_ary *spare; 223 }; 224 225 /* for OOM */ 226 struct mem_cgroup_eventfd_list { 227 struct list_head list; 228 struct eventfd_ctx *eventfd; 229 }; 230 231 /* 232 * cgroup_event represents events which userspace want to receive. 233 */ 234 struct mem_cgroup_event { 235 /* 236 * memcg which the event belongs to. 237 */ 238 struct mem_cgroup *memcg; 239 /* 240 * eventfd to signal userspace about the event. 241 */ 242 struct eventfd_ctx *eventfd; 243 /* 244 * Each of these stored in a list by the cgroup. 245 */ 246 struct list_head list; 247 /* 248 * register_event() callback will be used to add new userspace 249 * waiter for changes related to this event. Use eventfd_signal() 250 * on eventfd to send notification to userspace. 251 */ 252 int (*register_event)(struct mem_cgroup *memcg, 253 struct eventfd_ctx *eventfd, const char *args); 254 /* 255 * unregister_event() callback will be called when userspace closes 256 * the eventfd or on cgroup removing. This callback must be set, 257 * if you want provide notification functionality. 258 */ 259 void (*unregister_event)(struct mem_cgroup *memcg, 260 struct eventfd_ctx *eventfd); 261 /* 262 * All fields below needed to unregister event when 263 * userspace closes eventfd. 264 */ 265 poll_table pt; 266 wait_queue_head_t *wqh; 267 wait_queue_t wait; 268 struct work_struct remove; 269 }; 270 271 static void mem_cgroup_threshold(struct mem_cgroup *memcg); 272 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); 273 274 /* 275 * The memory controller data structure. The memory controller controls both 276 * page cache and RSS per cgroup. We would eventually like to provide 277 * statistics based on the statistics developed by Rik Van Riel for clock-pro, 278 * to help the administrator determine what knobs to tune. 279 * 280 * TODO: Add a water mark for the memory controller. Reclaim will begin when 281 * we hit the water mark. May be even add a low water mark, such that 282 * no reclaim occurs from a cgroup at it's low water mark, this is 283 * a feature that will be implemented much later in the future. 284 */ 285 struct mem_cgroup { 286 struct cgroup_subsys_state css; 287 /* 288 * the counter to account for memory usage 289 */ 290 struct res_counter res; 291 292 /* vmpressure notifications */ 293 struct vmpressure vmpressure; 294 295 /* css_online() has been completed */ 296 int initialized; 297 298 /* 299 * the counter to account for mem+swap usage. 300 */ 301 struct res_counter memsw; 302 303 /* 304 * the counter to account for kernel memory usage. 305 */ 306 struct res_counter kmem; 307 /* 308 * Should the accounting and control be hierarchical, per subtree? 309 */ 310 bool use_hierarchy; 311 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */ 312 313 bool oom_lock; 314 atomic_t under_oom; 315 atomic_t oom_wakeups; 316 317 int swappiness; 318 /* OOM-Killer disable */ 319 int oom_kill_disable; 320 321 /* protect arrays of thresholds */ 322 struct mutex thresholds_lock; 323 324 /* thresholds for memory usage. RCU-protected */ 325 struct mem_cgroup_thresholds thresholds; 326 327 /* thresholds for mem+swap usage. RCU-protected */ 328 struct mem_cgroup_thresholds memsw_thresholds; 329 330 /* For oom notifier event fd */ 331 struct list_head oom_notify; 332 333 /* 334 * Should we move charges of a task when a task is moved into this 335 * mem_cgroup ? And what type of charges should we move ? 336 */ 337 unsigned long move_charge_at_immigrate; 338 /* 339 * set > 0 if pages under this cgroup are moving to other cgroup. 340 */ 341 atomic_t moving_account; 342 /* taken only while moving_account > 0 */ 343 spinlock_t move_lock; 344 /* 345 * percpu counter. 346 */ 347 struct mem_cgroup_stat_cpu __percpu *stat; 348 /* 349 * used when a cpu is offlined or other synchronizations 350 * See mem_cgroup_read_stat(). 351 */ 352 struct mem_cgroup_stat_cpu nocpu_base; 353 spinlock_t pcp_counter_lock; 354 355 atomic_t dead_count; 356 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET) 357 struct cg_proto tcp_mem; 358 #endif 359 #if defined(CONFIG_MEMCG_KMEM) 360 /* analogous to slab_common's slab_caches list, but per-memcg; 361 * protected by memcg_slab_mutex */ 362 struct list_head memcg_slab_caches; 363 /* Index in the kmem_cache->memcg_params->memcg_caches array */ 364 int kmemcg_id; 365 #endif 366 367 int last_scanned_node; 368 #if MAX_NUMNODES > 1 369 nodemask_t scan_nodes; 370 atomic_t numainfo_events; 371 atomic_t numainfo_updating; 372 #endif 373 374 /* List of events which userspace want to receive */ 375 struct list_head event_list; 376 spinlock_t event_list_lock; 377 378 struct mem_cgroup_per_node *nodeinfo[0]; 379 /* WARNING: nodeinfo must be the last member here */ 380 }; 381 382 /* internal only representation about the status of kmem accounting. */ 383 enum { 384 KMEM_ACCOUNTED_ACTIVE, /* accounted by this cgroup itself */ 385 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */ 386 }; 387 388 #ifdef CONFIG_MEMCG_KMEM 389 static inline void memcg_kmem_set_active(struct mem_cgroup *memcg) 390 { 391 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags); 392 } 393 394 static bool memcg_kmem_is_active(struct mem_cgroup *memcg) 395 { 396 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags); 397 } 398 399 static void memcg_kmem_mark_dead(struct mem_cgroup *memcg) 400 { 401 /* 402 * Our caller must use css_get() first, because memcg_uncharge_kmem() 403 * will call css_put() if it sees the memcg is dead. 404 */ 405 smp_wmb(); 406 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags)) 407 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags); 408 } 409 410 static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg) 411 { 412 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD, 413 &memcg->kmem_account_flags); 414 } 415 #endif 416 417 /* Stuffs for move charges at task migration. */ 418 /* 419 * Types of charges to be moved. "move_charge_at_immitgrate" and 420 * "immigrate_flags" are treated as a left-shifted bitmap of these types. 421 */ 422 enum move_type { 423 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */ 424 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */ 425 NR_MOVE_TYPE, 426 }; 427 428 /* "mc" and its members are protected by cgroup_mutex */ 429 static struct move_charge_struct { 430 spinlock_t lock; /* for from, to */ 431 struct mem_cgroup *from; 432 struct mem_cgroup *to; 433 unsigned long immigrate_flags; 434 unsigned long precharge; 435 unsigned long moved_charge; 436 unsigned long moved_swap; 437 struct task_struct *moving_task; /* a task moving charges */ 438 wait_queue_head_t waitq; /* a waitq for other context */ 439 } mc = { 440 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 441 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 442 }; 443 444 static bool move_anon(void) 445 { 446 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags); 447 } 448 449 static bool move_file(void) 450 { 451 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags); 452 } 453 454 /* 455 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft 456 * limit reclaim to prevent infinite loops, if they ever occur. 457 */ 458 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 459 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 460 461 enum charge_type { 462 MEM_CGROUP_CHARGE_TYPE_CACHE = 0, 463 MEM_CGROUP_CHARGE_TYPE_ANON, 464 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */ 465 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */ 466 NR_CHARGE_TYPE, 467 }; 468 469 /* for encoding cft->private value on file */ 470 enum res_type { 471 _MEM, 472 _MEMSWAP, 473 _OOM_TYPE, 474 _KMEM, 475 }; 476 477 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) 478 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) 479 #define MEMFILE_ATTR(val) ((val) & 0xffff) 480 /* Used for OOM nofiier */ 481 #define OOM_CONTROL (0) 482 483 /* 484 * The memcg_create_mutex will be held whenever a new cgroup is created. 485 * As a consequence, any change that needs to protect against new child cgroups 486 * appearing has to hold it as well. 487 */ 488 static DEFINE_MUTEX(memcg_create_mutex); 489 490 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s) 491 { 492 return s ? container_of(s, struct mem_cgroup, css) : NULL; 493 } 494 495 /* Some nice accessors for the vmpressure. */ 496 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 497 { 498 if (!memcg) 499 memcg = root_mem_cgroup; 500 return &memcg->vmpressure; 501 } 502 503 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr) 504 { 505 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css; 506 } 507 508 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 509 { 510 return (memcg == root_mem_cgroup); 511 } 512 513 /* 514 * We restrict the id in the range of [1, 65535], so it can fit into 515 * an unsigned short. 516 */ 517 #define MEM_CGROUP_ID_MAX USHRT_MAX 518 519 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 520 { 521 return memcg->css.id; 522 } 523 524 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 525 { 526 struct cgroup_subsys_state *css; 527 528 css = css_from_id(id, &memory_cgrp_subsys); 529 return mem_cgroup_from_css(css); 530 } 531 532 /* Writing them here to avoid exposing memcg's inner layout */ 533 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM) 534 535 void sock_update_memcg(struct sock *sk) 536 { 537 if (mem_cgroup_sockets_enabled) { 538 struct mem_cgroup *memcg; 539 struct cg_proto *cg_proto; 540 541 BUG_ON(!sk->sk_prot->proto_cgroup); 542 543 /* Socket cloning can throw us here with sk_cgrp already 544 * filled. It won't however, necessarily happen from 545 * process context. So the test for root memcg given 546 * the current task's memcg won't help us in this case. 547 * 548 * Respecting the original socket's memcg is a better 549 * decision in this case. 550 */ 551 if (sk->sk_cgrp) { 552 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg)); 553 css_get(&sk->sk_cgrp->memcg->css); 554 return; 555 } 556 557 rcu_read_lock(); 558 memcg = mem_cgroup_from_task(current); 559 cg_proto = sk->sk_prot->proto_cgroup(memcg); 560 if (!mem_cgroup_is_root(memcg) && 561 memcg_proto_active(cg_proto) && 562 css_tryget_online(&memcg->css)) { 563 sk->sk_cgrp = cg_proto; 564 } 565 rcu_read_unlock(); 566 } 567 } 568 EXPORT_SYMBOL(sock_update_memcg); 569 570 void sock_release_memcg(struct sock *sk) 571 { 572 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 573 struct mem_cgroup *memcg; 574 WARN_ON(!sk->sk_cgrp->memcg); 575 memcg = sk->sk_cgrp->memcg; 576 css_put(&sk->sk_cgrp->memcg->css); 577 } 578 } 579 580 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg) 581 { 582 if (!memcg || mem_cgroup_is_root(memcg)) 583 return NULL; 584 585 return &memcg->tcp_mem; 586 } 587 EXPORT_SYMBOL(tcp_proto_cgroup); 588 589 static void disarm_sock_keys(struct mem_cgroup *memcg) 590 { 591 if (!memcg_proto_activated(&memcg->tcp_mem)) 592 return; 593 static_key_slow_dec(&memcg_socket_limit_enabled); 594 } 595 #else 596 static void disarm_sock_keys(struct mem_cgroup *memcg) 597 { 598 } 599 #endif 600 601 #ifdef CONFIG_MEMCG_KMEM 602 /* 603 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches. 604 * The main reason for not using cgroup id for this: 605 * this works better in sparse environments, where we have a lot of memcgs, 606 * but only a few kmem-limited. Or also, if we have, for instance, 200 607 * memcgs, and none but the 200th is kmem-limited, we'd have to have a 608 * 200 entry array for that. 609 * 610 * The current size of the caches array is stored in 611 * memcg_limited_groups_array_size. It will double each time we have to 612 * increase it. 613 */ 614 static DEFINE_IDA(kmem_limited_groups); 615 int memcg_limited_groups_array_size; 616 617 /* 618 * MIN_SIZE is different than 1, because we would like to avoid going through 619 * the alloc/free process all the time. In a small machine, 4 kmem-limited 620 * cgroups is a reasonable guess. In the future, it could be a parameter or 621 * tunable, but that is strictly not necessary. 622 * 623 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get 624 * this constant directly from cgroup, but it is understandable that this is 625 * better kept as an internal representation in cgroup.c. In any case, the 626 * cgrp_id space is not getting any smaller, and we don't have to necessarily 627 * increase ours as well if it increases. 628 */ 629 #define MEMCG_CACHES_MIN_SIZE 4 630 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX 631 632 /* 633 * A lot of the calls to the cache allocation functions are expected to be 634 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are 635 * conditional to this static branch, we'll have to allow modules that does 636 * kmem_cache_alloc and the such to see this symbol as well 637 */ 638 struct static_key memcg_kmem_enabled_key; 639 EXPORT_SYMBOL(memcg_kmem_enabled_key); 640 641 static void memcg_free_cache_id(int id); 642 643 static void disarm_kmem_keys(struct mem_cgroup *memcg) 644 { 645 if (memcg_kmem_is_active(memcg)) { 646 static_key_slow_dec(&memcg_kmem_enabled_key); 647 memcg_free_cache_id(memcg->kmemcg_id); 648 } 649 /* 650 * This check can't live in kmem destruction function, 651 * since the charges will outlive the cgroup 652 */ 653 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0); 654 } 655 #else 656 static void disarm_kmem_keys(struct mem_cgroup *memcg) 657 { 658 } 659 #endif /* CONFIG_MEMCG_KMEM */ 660 661 static void disarm_static_keys(struct mem_cgroup *memcg) 662 { 663 disarm_sock_keys(memcg); 664 disarm_kmem_keys(memcg); 665 } 666 667 static void drain_all_stock_async(struct mem_cgroup *memcg); 668 669 static struct mem_cgroup_per_zone * 670 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone) 671 { 672 int nid = zone_to_nid(zone); 673 int zid = zone_idx(zone); 674 675 return &memcg->nodeinfo[nid]->zoneinfo[zid]; 676 } 677 678 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg) 679 { 680 return &memcg->css; 681 } 682 683 static struct mem_cgroup_per_zone * 684 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page) 685 { 686 int nid = page_to_nid(page); 687 int zid = page_zonenum(page); 688 689 return &memcg->nodeinfo[nid]->zoneinfo[zid]; 690 } 691 692 static struct mem_cgroup_tree_per_zone * 693 soft_limit_tree_node_zone(int nid, int zid) 694 { 695 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; 696 } 697 698 static struct mem_cgroup_tree_per_zone * 699 soft_limit_tree_from_page(struct page *page) 700 { 701 int nid = page_to_nid(page); 702 int zid = page_zonenum(page); 703 704 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; 705 } 706 707 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz, 708 struct mem_cgroup_tree_per_zone *mctz, 709 unsigned long long new_usage_in_excess) 710 { 711 struct rb_node **p = &mctz->rb_root.rb_node; 712 struct rb_node *parent = NULL; 713 struct mem_cgroup_per_zone *mz_node; 714 715 if (mz->on_tree) 716 return; 717 718 mz->usage_in_excess = new_usage_in_excess; 719 if (!mz->usage_in_excess) 720 return; 721 while (*p) { 722 parent = *p; 723 mz_node = rb_entry(parent, struct mem_cgroup_per_zone, 724 tree_node); 725 if (mz->usage_in_excess < mz_node->usage_in_excess) 726 p = &(*p)->rb_left; 727 /* 728 * We can't avoid mem cgroups that are over their soft 729 * limit by the same amount 730 */ 731 else if (mz->usage_in_excess >= mz_node->usage_in_excess) 732 p = &(*p)->rb_right; 733 } 734 rb_link_node(&mz->tree_node, parent, p); 735 rb_insert_color(&mz->tree_node, &mctz->rb_root); 736 mz->on_tree = true; 737 } 738 739 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz, 740 struct mem_cgroup_tree_per_zone *mctz) 741 { 742 if (!mz->on_tree) 743 return; 744 rb_erase(&mz->tree_node, &mctz->rb_root); 745 mz->on_tree = false; 746 } 747 748 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz, 749 struct mem_cgroup_tree_per_zone *mctz) 750 { 751 unsigned long flags; 752 753 spin_lock_irqsave(&mctz->lock, flags); 754 __mem_cgroup_remove_exceeded(mz, mctz); 755 spin_unlock_irqrestore(&mctz->lock, flags); 756 } 757 758 759 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page) 760 { 761 unsigned long long excess; 762 struct mem_cgroup_per_zone *mz; 763 struct mem_cgroup_tree_per_zone *mctz; 764 765 mctz = soft_limit_tree_from_page(page); 766 /* 767 * Necessary to update all ancestors when hierarchy is used. 768 * because their event counter is not touched. 769 */ 770 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 771 mz = mem_cgroup_page_zoneinfo(memcg, page); 772 excess = res_counter_soft_limit_excess(&memcg->res); 773 /* 774 * We have to update the tree if mz is on RB-tree or 775 * mem is over its softlimit. 776 */ 777 if (excess || mz->on_tree) { 778 unsigned long flags; 779 780 spin_lock_irqsave(&mctz->lock, flags); 781 /* if on-tree, remove it */ 782 if (mz->on_tree) 783 __mem_cgroup_remove_exceeded(mz, mctz); 784 /* 785 * Insert again. mz->usage_in_excess will be updated. 786 * If excess is 0, no tree ops. 787 */ 788 __mem_cgroup_insert_exceeded(mz, mctz, excess); 789 spin_unlock_irqrestore(&mctz->lock, flags); 790 } 791 } 792 } 793 794 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) 795 { 796 struct mem_cgroup_tree_per_zone *mctz; 797 struct mem_cgroup_per_zone *mz; 798 int nid, zid; 799 800 for_each_node(nid) { 801 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 802 mz = &memcg->nodeinfo[nid]->zoneinfo[zid]; 803 mctz = soft_limit_tree_node_zone(nid, zid); 804 mem_cgroup_remove_exceeded(mz, mctz); 805 } 806 } 807 } 808 809 static struct mem_cgroup_per_zone * 810 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) 811 { 812 struct rb_node *rightmost = NULL; 813 struct mem_cgroup_per_zone *mz; 814 815 retry: 816 mz = NULL; 817 rightmost = rb_last(&mctz->rb_root); 818 if (!rightmost) 819 goto done; /* Nothing to reclaim from */ 820 821 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node); 822 /* 823 * Remove the node now but someone else can add it back, 824 * we will to add it back at the end of reclaim to its correct 825 * position in the tree. 826 */ 827 __mem_cgroup_remove_exceeded(mz, mctz); 828 if (!res_counter_soft_limit_excess(&mz->memcg->res) || 829 !css_tryget_online(&mz->memcg->css)) 830 goto retry; 831 done: 832 return mz; 833 } 834 835 static struct mem_cgroup_per_zone * 836 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) 837 { 838 struct mem_cgroup_per_zone *mz; 839 840 spin_lock_irq(&mctz->lock); 841 mz = __mem_cgroup_largest_soft_limit_node(mctz); 842 spin_unlock_irq(&mctz->lock); 843 return mz; 844 } 845 846 /* 847 * Implementation Note: reading percpu statistics for memcg. 848 * 849 * Both of vmstat[] and percpu_counter has threshold and do periodic 850 * synchronization to implement "quick" read. There are trade-off between 851 * reading cost and precision of value. Then, we may have a chance to implement 852 * a periodic synchronizion of counter in memcg's counter. 853 * 854 * But this _read() function is used for user interface now. The user accounts 855 * memory usage by memory cgroup and he _always_ requires exact value because 856 * he accounts memory. Even if we provide quick-and-fuzzy read, we always 857 * have to visit all online cpus and make sum. So, for now, unnecessary 858 * synchronization is not implemented. (just implemented for cpu hotplug) 859 * 860 * If there are kernel internal actions which can make use of some not-exact 861 * value, and reading all cpu value can be performance bottleneck in some 862 * common workload, threashold and synchonization as vmstat[] should be 863 * implemented. 864 */ 865 static long mem_cgroup_read_stat(struct mem_cgroup *memcg, 866 enum mem_cgroup_stat_index idx) 867 { 868 long val = 0; 869 int cpu; 870 871 get_online_cpus(); 872 for_each_online_cpu(cpu) 873 val += per_cpu(memcg->stat->count[idx], cpu); 874 #ifdef CONFIG_HOTPLUG_CPU 875 spin_lock(&memcg->pcp_counter_lock); 876 val += memcg->nocpu_base.count[idx]; 877 spin_unlock(&memcg->pcp_counter_lock); 878 #endif 879 put_online_cpus(); 880 return val; 881 } 882 883 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg, 884 enum mem_cgroup_events_index idx) 885 { 886 unsigned long val = 0; 887 int cpu; 888 889 get_online_cpus(); 890 for_each_online_cpu(cpu) 891 val += per_cpu(memcg->stat->events[idx], cpu); 892 #ifdef CONFIG_HOTPLUG_CPU 893 spin_lock(&memcg->pcp_counter_lock); 894 val += memcg->nocpu_base.events[idx]; 895 spin_unlock(&memcg->pcp_counter_lock); 896 #endif 897 put_online_cpus(); 898 return val; 899 } 900 901 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, 902 struct page *page, 903 int nr_pages) 904 { 905 /* 906 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is 907 * counted as CACHE even if it's on ANON LRU. 908 */ 909 if (PageAnon(page)) 910 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS], 911 nr_pages); 912 else 913 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE], 914 nr_pages); 915 916 if (PageTransHuge(page)) 917 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], 918 nr_pages); 919 920 /* pagein of a big page is an event. So, ignore page size */ 921 if (nr_pages > 0) 922 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]); 923 else { 924 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]); 925 nr_pages = -nr_pages; /* for event */ 926 } 927 928 __this_cpu_add(memcg->stat->nr_page_events, nr_pages); 929 } 930 931 unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru) 932 { 933 struct mem_cgroup_per_zone *mz; 934 935 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec); 936 return mz->lru_size[lru]; 937 } 938 939 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 940 int nid, 941 unsigned int lru_mask) 942 { 943 unsigned long nr = 0; 944 int zid; 945 946 VM_BUG_ON((unsigned)nid >= nr_node_ids); 947 948 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 949 struct mem_cgroup_per_zone *mz; 950 enum lru_list lru; 951 952 for_each_lru(lru) { 953 if (!(BIT(lru) & lru_mask)) 954 continue; 955 mz = &memcg->nodeinfo[nid]->zoneinfo[zid]; 956 nr += mz->lru_size[lru]; 957 } 958 } 959 return nr; 960 } 961 962 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 963 unsigned int lru_mask) 964 { 965 unsigned long nr = 0; 966 int nid; 967 968 for_each_node_state(nid, N_MEMORY) 969 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask); 970 return nr; 971 } 972 973 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, 974 enum mem_cgroup_events_target target) 975 { 976 unsigned long val, next; 977 978 val = __this_cpu_read(memcg->stat->nr_page_events); 979 next = __this_cpu_read(memcg->stat->targets[target]); 980 /* from time_after() in jiffies.h */ 981 if ((long)next - (long)val < 0) { 982 switch (target) { 983 case MEM_CGROUP_TARGET_THRESH: 984 next = val + THRESHOLDS_EVENTS_TARGET; 985 break; 986 case MEM_CGROUP_TARGET_SOFTLIMIT: 987 next = val + SOFTLIMIT_EVENTS_TARGET; 988 break; 989 case MEM_CGROUP_TARGET_NUMAINFO: 990 next = val + NUMAINFO_EVENTS_TARGET; 991 break; 992 default: 993 break; 994 } 995 __this_cpu_write(memcg->stat->targets[target], next); 996 return true; 997 } 998 return false; 999 } 1000 1001 /* 1002 * Check events in order. 1003 * 1004 */ 1005 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) 1006 { 1007 /* threshold event is triggered in finer grain than soft limit */ 1008 if (unlikely(mem_cgroup_event_ratelimit(memcg, 1009 MEM_CGROUP_TARGET_THRESH))) { 1010 bool do_softlimit; 1011 bool do_numainfo __maybe_unused; 1012 1013 do_softlimit = mem_cgroup_event_ratelimit(memcg, 1014 MEM_CGROUP_TARGET_SOFTLIMIT); 1015 #if MAX_NUMNODES > 1 1016 do_numainfo = mem_cgroup_event_ratelimit(memcg, 1017 MEM_CGROUP_TARGET_NUMAINFO); 1018 #endif 1019 mem_cgroup_threshold(memcg); 1020 if (unlikely(do_softlimit)) 1021 mem_cgroup_update_tree(memcg, page); 1022 #if MAX_NUMNODES > 1 1023 if (unlikely(do_numainfo)) 1024 atomic_inc(&memcg->numainfo_events); 1025 #endif 1026 } 1027 } 1028 1029 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 1030 { 1031 /* 1032 * mm_update_next_owner() may clear mm->owner to NULL 1033 * if it races with swapoff, page migration, etc. 1034 * So this can be called with p == NULL. 1035 */ 1036 if (unlikely(!p)) 1037 return NULL; 1038 1039 return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); 1040 } 1041 1042 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 1043 { 1044 struct mem_cgroup *memcg = NULL; 1045 1046 rcu_read_lock(); 1047 do { 1048 /* 1049 * Page cache insertions can happen withou an 1050 * actual mm context, e.g. during disk probing 1051 * on boot, loopback IO, acct() writes etc. 1052 */ 1053 if (unlikely(!mm)) 1054 memcg = root_mem_cgroup; 1055 else { 1056 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1057 if (unlikely(!memcg)) 1058 memcg = root_mem_cgroup; 1059 } 1060 } while (!css_tryget_online(&memcg->css)); 1061 rcu_read_unlock(); 1062 return memcg; 1063 } 1064 1065 /* 1066 * Returns a next (in a pre-order walk) alive memcg (with elevated css 1067 * ref. count) or NULL if the whole root's subtree has been visited. 1068 * 1069 * helper function to be used by mem_cgroup_iter 1070 */ 1071 static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root, 1072 struct mem_cgroup *last_visited) 1073 { 1074 struct cgroup_subsys_state *prev_css, *next_css; 1075 1076 prev_css = last_visited ? &last_visited->css : NULL; 1077 skip_node: 1078 next_css = css_next_descendant_pre(prev_css, &root->css); 1079 1080 /* 1081 * Even if we found a group we have to make sure it is 1082 * alive. css && !memcg means that the groups should be 1083 * skipped and we should continue the tree walk. 1084 * last_visited css is safe to use because it is 1085 * protected by css_get and the tree walk is rcu safe. 1086 * 1087 * We do not take a reference on the root of the tree walk 1088 * because we might race with the root removal when it would 1089 * be the only node in the iterated hierarchy and mem_cgroup_iter 1090 * would end up in an endless loop because it expects that at 1091 * least one valid node will be returned. Root cannot disappear 1092 * because caller of the iterator should hold it already so 1093 * skipping css reference should be safe. 1094 */ 1095 if (next_css) { 1096 struct mem_cgroup *memcg = mem_cgroup_from_css(next_css); 1097 1098 if (next_css == &root->css) 1099 return memcg; 1100 1101 if (css_tryget_online(next_css)) { 1102 /* 1103 * Make sure the memcg is initialized: 1104 * mem_cgroup_css_online() orders the the 1105 * initialization against setting the flag. 1106 */ 1107 if (smp_load_acquire(&memcg->initialized)) 1108 return memcg; 1109 css_put(next_css); 1110 } 1111 1112 prev_css = next_css; 1113 goto skip_node; 1114 } 1115 1116 return NULL; 1117 } 1118 1119 static void mem_cgroup_iter_invalidate(struct mem_cgroup *root) 1120 { 1121 /* 1122 * When a group in the hierarchy below root is destroyed, the 1123 * hierarchy iterator can no longer be trusted since it might 1124 * have pointed to the destroyed group. Invalidate it. 1125 */ 1126 atomic_inc(&root->dead_count); 1127 } 1128 1129 static struct mem_cgroup * 1130 mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter, 1131 struct mem_cgroup *root, 1132 int *sequence) 1133 { 1134 struct mem_cgroup *position = NULL; 1135 /* 1136 * A cgroup destruction happens in two stages: offlining and 1137 * release. They are separated by a RCU grace period. 1138 * 1139 * If the iterator is valid, we may still race with an 1140 * offlining. The RCU lock ensures the object won't be 1141 * released, tryget will fail if we lost the race. 1142 */ 1143 *sequence = atomic_read(&root->dead_count); 1144 if (iter->last_dead_count == *sequence) { 1145 smp_rmb(); 1146 position = iter->last_visited; 1147 1148 /* 1149 * We cannot take a reference to root because we might race 1150 * with root removal and returning NULL would end up in 1151 * an endless loop on the iterator user level when root 1152 * would be returned all the time. 1153 */ 1154 if (position && position != root && 1155 !css_tryget_online(&position->css)) 1156 position = NULL; 1157 } 1158 return position; 1159 } 1160 1161 static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter, 1162 struct mem_cgroup *last_visited, 1163 struct mem_cgroup *new_position, 1164 struct mem_cgroup *root, 1165 int sequence) 1166 { 1167 /* root reference counting symmetric to mem_cgroup_iter_load */ 1168 if (last_visited && last_visited != root) 1169 css_put(&last_visited->css); 1170 /* 1171 * We store the sequence count from the time @last_visited was 1172 * loaded successfully instead of rereading it here so that we 1173 * don't lose destruction events in between. We could have 1174 * raced with the destruction of @new_position after all. 1175 */ 1176 iter->last_visited = new_position; 1177 smp_wmb(); 1178 iter->last_dead_count = sequence; 1179 } 1180 1181 /** 1182 * mem_cgroup_iter - iterate over memory cgroup hierarchy 1183 * @root: hierarchy root 1184 * @prev: previously returned memcg, NULL on first invocation 1185 * @reclaim: cookie for shared reclaim walks, NULL for full walks 1186 * 1187 * Returns references to children of the hierarchy below @root, or 1188 * @root itself, or %NULL after a full round-trip. 1189 * 1190 * Caller must pass the return value in @prev on subsequent 1191 * invocations for reference counting, or use mem_cgroup_iter_break() 1192 * to cancel a hierarchy walk before the round-trip is complete. 1193 * 1194 * Reclaimers can specify a zone and a priority level in @reclaim to 1195 * divide up the memcgs in the hierarchy among all concurrent 1196 * reclaimers operating on the same zone and priority. 1197 */ 1198 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 1199 struct mem_cgroup *prev, 1200 struct mem_cgroup_reclaim_cookie *reclaim) 1201 { 1202 struct mem_cgroup *memcg = NULL; 1203 struct mem_cgroup *last_visited = NULL; 1204 1205 if (mem_cgroup_disabled()) 1206 return NULL; 1207 1208 if (!root) 1209 root = root_mem_cgroup; 1210 1211 if (prev && !reclaim) 1212 last_visited = prev; 1213 1214 if (!root->use_hierarchy && root != root_mem_cgroup) { 1215 if (prev) 1216 goto out_css_put; 1217 return root; 1218 } 1219 1220 rcu_read_lock(); 1221 while (!memcg) { 1222 struct mem_cgroup_reclaim_iter *uninitialized_var(iter); 1223 int uninitialized_var(seq); 1224 1225 if (reclaim) { 1226 struct mem_cgroup_per_zone *mz; 1227 1228 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone); 1229 iter = &mz->reclaim_iter[reclaim->priority]; 1230 if (prev && reclaim->generation != iter->generation) { 1231 iter->last_visited = NULL; 1232 goto out_unlock; 1233 } 1234 1235 last_visited = mem_cgroup_iter_load(iter, root, &seq); 1236 } 1237 1238 memcg = __mem_cgroup_iter_next(root, last_visited); 1239 1240 if (reclaim) { 1241 mem_cgroup_iter_update(iter, last_visited, memcg, root, 1242 seq); 1243 1244 if (!memcg) 1245 iter->generation++; 1246 else if (!prev && memcg) 1247 reclaim->generation = iter->generation; 1248 } 1249 1250 if (prev && !memcg) 1251 goto out_unlock; 1252 } 1253 out_unlock: 1254 rcu_read_unlock(); 1255 out_css_put: 1256 if (prev && prev != root) 1257 css_put(&prev->css); 1258 1259 return memcg; 1260 } 1261 1262 /** 1263 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 1264 * @root: hierarchy root 1265 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 1266 */ 1267 void mem_cgroup_iter_break(struct mem_cgroup *root, 1268 struct mem_cgroup *prev) 1269 { 1270 if (!root) 1271 root = root_mem_cgroup; 1272 if (prev && prev != root) 1273 css_put(&prev->css); 1274 } 1275 1276 /* 1277 * Iteration constructs for visiting all cgroups (under a tree). If 1278 * loops are exited prematurely (break), mem_cgroup_iter_break() must 1279 * be used for reference counting. 1280 */ 1281 #define for_each_mem_cgroup_tree(iter, root) \ 1282 for (iter = mem_cgroup_iter(root, NULL, NULL); \ 1283 iter != NULL; \ 1284 iter = mem_cgroup_iter(root, iter, NULL)) 1285 1286 #define for_each_mem_cgroup(iter) \ 1287 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ 1288 iter != NULL; \ 1289 iter = mem_cgroup_iter(NULL, iter, NULL)) 1290 1291 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx) 1292 { 1293 struct mem_cgroup *memcg; 1294 1295 rcu_read_lock(); 1296 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1297 if (unlikely(!memcg)) 1298 goto out; 1299 1300 switch (idx) { 1301 case PGFAULT: 1302 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]); 1303 break; 1304 case PGMAJFAULT: 1305 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]); 1306 break; 1307 default: 1308 BUG(); 1309 } 1310 out: 1311 rcu_read_unlock(); 1312 } 1313 EXPORT_SYMBOL(__mem_cgroup_count_vm_event); 1314 1315 /** 1316 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg 1317 * @zone: zone of the wanted lruvec 1318 * @memcg: memcg of the wanted lruvec 1319 * 1320 * Returns the lru list vector holding pages for the given @zone and 1321 * @mem. This can be the global zone lruvec, if the memory controller 1322 * is disabled. 1323 */ 1324 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone, 1325 struct mem_cgroup *memcg) 1326 { 1327 struct mem_cgroup_per_zone *mz; 1328 struct lruvec *lruvec; 1329 1330 if (mem_cgroup_disabled()) { 1331 lruvec = &zone->lruvec; 1332 goto out; 1333 } 1334 1335 mz = mem_cgroup_zone_zoneinfo(memcg, zone); 1336 lruvec = &mz->lruvec; 1337 out: 1338 /* 1339 * Since a node can be onlined after the mem_cgroup was created, 1340 * we have to be prepared to initialize lruvec->zone here; 1341 * and if offlined then reonlined, we need to reinitialize it. 1342 */ 1343 if (unlikely(lruvec->zone != zone)) 1344 lruvec->zone = zone; 1345 return lruvec; 1346 } 1347 1348 /** 1349 * mem_cgroup_page_lruvec - return lruvec for adding an lru page 1350 * @page: the page 1351 * @zone: zone of the page 1352 */ 1353 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone) 1354 { 1355 struct mem_cgroup_per_zone *mz; 1356 struct mem_cgroup *memcg; 1357 struct page_cgroup *pc; 1358 struct lruvec *lruvec; 1359 1360 if (mem_cgroup_disabled()) { 1361 lruvec = &zone->lruvec; 1362 goto out; 1363 } 1364 1365 pc = lookup_page_cgroup(page); 1366 memcg = pc->mem_cgroup; 1367 1368 /* 1369 * Surreptitiously switch any uncharged offlist page to root: 1370 * an uncharged page off lru does nothing to secure 1371 * its former mem_cgroup from sudden removal. 1372 * 1373 * Our caller holds lru_lock, and PageCgroupUsed is updated 1374 * under page_cgroup lock: between them, they make all uses 1375 * of pc->mem_cgroup safe. 1376 */ 1377 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup) 1378 pc->mem_cgroup = memcg = root_mem_cgroup; 1379 1380 mz = mem_cgroup_page_zoneinfo(memcg, page); 1381 lruvec = &mz->lruvec; 1382 out: 1383 /* 1384 * Since a node can be onlined after the mem_cgroup was created, 1385 * we have to be prepared to initialize lruvec->zone here; 1386 * and if offlined then reonlined, we need to reinitialize it. 1387 */ 1388 if (unlikely(lruvec->zone != zone)) 1389 lruvec->zone = zone; 1390 return lruvec; 1391 } 1392 1393 /** 1394 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1395 * @lruvec: mem_cgroup per zone lru vector 1396 * @lru: index of lru list the page is sitting on 1397 * @nr_pages: positive when adding or negative when removing 1398 * 1399 * This function must be called when a page is added to or removed from an 1400 * lru list. 1401 */ 1402 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1403 int nr_pages) 1404 { 1405 struct mem_cgroup_per_zone *mz; 1406 unsigned long *lru_size; 1407 1408 if (mem_cgroup_disabled()) 1409 return; 1410 1411 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec); 1412 lru_size = mz->lru_size + lru; 1413 *lru_size += nr_pages; 1414 VM_BUG_ON((long)(*lru_size) < 0); 1415 } 1416 1417 /* 1418 * Checks whether given mem is same or in the root_mem_cgroup's 1419 * hierarchy subtree 1420 */ 1421 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg, 1422 struct mem_cgroup *memcg) 1423 { 1424 if (root_memcg == memcg) 1425 return true; 1426 if (!root_memcg->use_hierarchy || !memcg) 1427 return false; 1428 return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup); 1429 } 1430 1431 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg, 1432 struct mem_cgroup *memcg) 1433 { 1434 bool ret; 1435 1436 rcu_read_lock(); 1437 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg); 1438 rcu_read_unlock(); 1439 return ret; 1440 } 1441 1442 bool task_in_mem_cgroup(struct task_struct *task, 1443 const struct mem_cgroup *memcg) 1444 { 1445 struct mem_cgroup *curr = NULL; 1446 struct task_struct *p; 1447 bool ret; 1448 1449 p = find_lock_task_mm(task); 1450 if (p) { 1451 curr = get_mem_cgroup_from_mm(p->mm); 1452 task_unlock(p); 1453 } else { 1454 /* 1455 * All threads may have already detached their mm's, but the oom 1456 * killer still needs to detect if they have already been oom 1457 * killed to prevent needlessly killing additional tasks. 1458 */ 1459 rcu_read_lock(); 1460 curr = mem_cgroup_from_task(task); 1461 if (curr) 1462 css_get(&curr->css); 1463 rcu_read_unlock(); 1464 } 1465 /* 1466 * We should check use_hierarchy of "memcg" not "curr". Because checking 1467 * use_hierarchy of "curr" here make this function true if hierarchy is 1468 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup* 1469 * hierarchy(even if use_hierarchy is disabled in "memcg"). 1470 */ 1471 ret = mem_cgroup_same_or_subtree(memcg, curr); 1472 css_put(&curr->css); 1473 return ret; 1474 } 1475 1476 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec) 1477 { 1478 unsigned long inactive_ratio; 1479 unsigned long inactive; 1480 unsigned long active; 1481 unsigned long gb; 1482 1483 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON); 1484 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON); 1485 1486 gb = (inactive + active) >> (30 - PAGE_SHIFT); 1487 if (gb) 1488 inactive_ratio = int_sqrt(10 * gb); 1489 else 1490 inactive_ratio = 1; 1491 1492 return inactive * inactive_ratio < active; 1493 } 1494 1495 #define mem_cgroup_from_res_counter(counter, member) \ 1496 container_of(counter, struct mem_cgroup, member) 1497 1498 /** 1499 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1500 * @memcg: the memory cgroup 1501 * 1502 * Returns the maximum amount of memory @mem can be charged with, in 1503 * pages. 1504 */ 1505 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1506 { 1507 unsigned long long margin; 1508 1509 margin = res_counter_margin(&memcg->res); 1510 if (do_swap_account) 1511 margin = min(margin, res_counter_margin(&memcg->memsw)); 1512 return margin >> PAGE_SHIFT; 1513 } 1514 1515 int mem_cgroup_swappiness(struct mem_cgroup *memcg) 1516 { 1517 /* root ? */ 1518 if (mem_cgroup_disabled() || !memcg->css.parent) 1519 return vm_swappiness; 1520 1521 return memcg->swappiness; 1522 } 1523 1524 /* 1525 * memcg->moving_account is used for checking possibility that some thread is 1526 * calling move_account(). When a thread on CPU-A starts moving pages under 1527 * a memcg, other threads should check memcg->moving_account under 1528 * rcu_read_lock(), like this: 1529 * 1530 * CPU-A CPU-B 1531 * rcu_read_lock() 1532 * memcg->moving_account+1 if (memcg->mocing_account) 1533 * take heavy locks. 1534 * synchronize_rcu() update something. 1535 * rcu_read_unlock() 1536 * start move here. 1537 */ 1538 1539 static void mem_cgroup_start_move(struct mem_cgroup *memcg) 1540 { 1541 atomic_inc(&memcg->moving_account); 1542 synchronize_rcu(); 1543 } 1544 1545 static void mem_cgroup_end_move(struct mem_cgroup *memcg) 1546 { 1547 /* 1548 * Now, mem_cgroup_clear_mc() may call this function with NULL. 1549 * We check NULL in callee rather than caller. 1550 */ 1551 if (memcg) 1552 atomic_dec(&memcg->moving_account); 1553 } 1554 1555 /* 1556 * A routine for checking "mem" is under move_account() or not. 1557 * 1558 * Checking a cgroup is mc.from or mc.to or under hierarchy of 1559 * moving cgroups. This is for waiting at high-memory pressure 1560 * caused by "move". 1561 */ 1562 static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 1563 { 1564 struct mem_cgroup *from; 1565 struct mem_cgroup *to; 1566 bool ret = false; 1567 /* 1568 * Unlike task_move routines, we access mc.to, mc.from not under 1569 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1570 */ 1571 spin_lock(&mc.lock); 1572 from = mc.from; 1573 to = mc.to; 1574 if (!from) 1575 goto unlock; 1576 1577 ret = mem_cgroup_same_or_subtree(memcg, from) 1578 || mem_cgroup_same_or_subtree(memcg, to); 1579 unlock: 1580 spin_unlock(&mc.lock); 1581 return ret; 1582 } 1583 1584 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) 1585 { 1586 if (mc.moving_task && current != mc.moving_task) { 1587 if (mem_cgroup_under_move(memcg)) { 1588 DEFINE_WAIT(wait); 1589 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1590 /* moving charge context might have finished. */ 1591 if (mc.moving_task) 1592 schedule(); 1593 finish_wait(&mc.waitq, &wait); 1594 return true; 1595 } 1596 } 1597 return false; 1598 } 1599 1600 /* 1601 * Take this lock when 1602 * - a code tries to modify page's memcg while it's USED. 1603 * - a code tries to modify page state accounting in a memcg. 1604 */ 1605 static void move_lock_mem_cgroup(struct mem_cgroup *memcg, 1606 unsigned long *flags) 1607 { 1608 spin_lock_irqsave(&memcg->move_lock, *flags); 1609 } 1610 1611 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg, 1612 unsigned long *flags) 1613 { 1614 spin_unlock_irqrestore(&memcg->move_lock, *flags); 1615 } 1616 1617 #define K(x) ((x) << (PAGE_SHIFT-10)) 1618 /** 1619 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller. 1620 * @memcg: The memory cgroup that went over limit 1621 * @p: Task that is going to be killed 1622 * 1623 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1624 * enabled 1625 */ 1626 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) 1627 { 1628 /* oom_info_lock ensures that parallel ooms do not interleave */ 1629 static DEFINE_MUTEX(oom_info_lock); 1630 struct mem_cgroup *iter; 1631 unsigned int i; 1632 1633 if (!p) 1634 return; 1635 1636 mutex_lock(&oom_info_lock); 1637 rcu_read_lock(); 1638 1639 pr_info("Task in "); 1640 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); 1641 pr_info(" killed as a result of limit of "); 1642 pr_cont_cgroup_path(memcg->css.cgroup); 1643 pr_info("\n"); 1644 1645 rcu_read_unlock(); 1646 1647 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n", 1648 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10, 1649 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10, 1650 res_counter_read_u64(&memcg->res, RES_FAILCNT)); 1651 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n", 1652 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10, 1653 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10, 1654 res_counter_read_u64(&memcg->memsw, RES_FAILCNT)); 1655 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n", 1656 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10, 1657 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10, 1658 res_counter_read_u64(&memcg->kmem, RES_FAILCNT)); 1659 1660 for_each_mem_cgroup_tree(iter, memcg) { 1661 pr_info("Memory cgroup stats for "); 1662 pr_cont_cgroup_path(iter->css.cgroup); 1663 pr_cont(":"); 1664 1665 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 1666 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) 1667 continue; 1668 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i], 1669 K(mem_cgroup_read_stat(iter, i))); 1670 } 1671 1672 for (i = 0; i < NR_LRU_LISTS; i++) 1673 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i], 1674 K(mem_cgroup_nr_lru_pages(iter, BIT(i)))); 1675 1676 pr_cont("\n"); 1677 } 1678 mutex_unlock(&oom_info_lock); 1679 } 1680 1681 /* 1682 * This function returns the number of memcg under hierarchy tree. Returns 1683 * 1(self count) if no children. 1684 */ 1685 static int mem_cgroup_count_children(struct mem_cgroup *memcg) 1686 { 1687 int num = 0; 1688 struct mem_cgroup *iter; 1689 1690 for_each_mem_cgroup_tree(iter, memcg) 1691 num++; 1692 return num; 1693 } 1694 1695 /* 1696 * Return the memory (and swap, if configured) limit for a memcg. 1697 */ 1698 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg) 1699 { 1700 u64 limit; 1701 1702 limit = res_counter_read_u64(&memcg->res, RES_LIMIT); 1703 1704 /* 1705 * Do not consider swap space if we cannot swap due to swappiness 1706 */ 1707 if (mem_cgroup_swappiness(memcg)) { 1708 u64 memsw; 1709 1710 limit += total_swap_pages << PAGE_SHIFT; 1711 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 1712 1713 /* 1714 * If memsw is finite and limits the amount of swap space 1715 * available to this memcg, return that limit. 1716 */ 1717 limit = min(limit, memsw); 1718 } 1719 1720 return limit; 1721 } 1722 1723 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1724 int order) 1725 { 1726 struct mem_cgroup *iter; 1727 unsigned long chosen_points = 0; 1728 unsigned long totalpages; 1729 unsigned int points = 0; 1730 struct task_struct *chosen = NULL; 1731 1732 /* 1733 * If current has a pending SIGKILL or is exiting, then automatically 1734 * select it. The goal is to allow it to allocate so that it may 1735 * quickly exit and free its memory. 1736 */ 1737 if (fatal_signal_pending(current) || current->flags & PF_EXITING) { 1738 set_thread_flag(TIF_MEMDIE); 1739 return; 1740 } 1741 1742 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL); 1743 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1; 1744 for_each_mem_cgroup_tree(iter, memcg) { 1745 struct css_task_iter it; 1746 struct task_struct *task; 1747 1748 css_task_iter_start(&iter->css, &it); 1749 while ((task = css_task_iter_next(&it))) { 1750 switch (oom_scan_process_thread(task, totalpages, NULL, 1751 false)) { 1752 case OOM_SCAN_SELECT: 1753 if (chosen) 1754 put_task_struct(chosen); 1755 chosen = task; 1756 chosen_points = ULONG_MAX; 1757 get_task_struct(chosen); 1758 /* fall through */ 1759 case OOM_SCAN_CONTINUE: 1760 continue; 1761 case OOM_SCAN_ABORT: 1762 css_task_iter_end(&it); 1763 mem_cgroup_iter_break(memcg, iter); 1764 if (chosen) 1765 put_task_struct(chosen); 1766 return; 1767 case OOM_SCAN_OK: 1768 break; 1769 }; 1770 points = oom_badness(task, memcg, NULL, totalpages); 1771 if (!points || points < chosen_points) 1772 continue; 1773 /* Prefer thread group leaders for display purposes */ 1774 if (points == chosen_points && 1775 thread_group_leader(chosen)) 1776 continue; 1777 1778 if (chosen) 1779 put_task_struct(chosen); 1780 chosen = task; 1781 chosen_points = points; 1782 get_task_struct(chosen); 1783 } 1784 css_task_iter_end(&it); 1785 } 1786 1787 if (!chosen) 1788 return; 1789 points = chosen_points * 1000 / totalpages; 1790 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg, 1791 NULL, "Memory cgroup out of memory"); 1792 } 1793 1794 /** 1795 * test_mem_cgroup_node_reclaimable 1796 * @memcg: the target memcg 1797 * @nid: the node ID to be checked. 1798 * @noswap : specify true here if the user wants flle only information. 1799 * 1800 * This function returns whether the specified memcg contains any 1801 * reclaimable pages on a node. Returns true if there are any reclaimable 1802 * pages in the node. 1803 */ 1804 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg, 1805 int nid, bool noswap) 1806 { 1807 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE)) 1808 return true; 1809 if (noswap || !total_swap_pages) 1810 return false; 1811 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON)) 1812 return true; 1813 return false; 1814 1815 } 1816 #if MAX_NUMNODES > 1 1817 1818 /* 1819 * Always updating the nodemask is not very good - even if we have an empty 1820 * list or the wrong list here, we can start from some node and traverse all 1821 * nodes based on the zonelist. So update the list loosely once per 10 secs. 1822 * 1823 */ 1824 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg) 1825 { 1826 int nid; 1827 /* 1828 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET 1829 * pagein/pageout changes since the last update. 1830 */ 1831 if (!atomic_read(&memcg->numainfo_events)) 1832 return; 1833 if (atomic_inc_return(&memcg->numainfo_updating) > 1) 1834 return; 1835 1836 /* make a nodemask where this memcg uses memory from */ 1837 memcg->scan_nodes = node_states[N_MEMORY]; 1838 1839 for_each_node_mask(nid, node_states[N_MEMORY]) { 1840 1841 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false)) 1842 node_clear(nid, memcg->scan_nodes); 1843 } 1844 1845 atomic_set(&memcg->numainfo_events, 0); 1846 atomic_set(&memcg->numainfo_updating, 0); 1847 } 1848 1849 /* 1850 * Selecting a node where we start reclaim from. Because what we need is just 1851 * reducing usage counter, start from anywhere is O,K. Considering 1852 * memory reclaim from current node, there are pros. and cons. 1853 * 1854 * Freeing memory from current node means freeing memory from a node which 1855 * we'll use or we've used. So, it may make LRU bad. And if several threads 1856 * hit limits, it will see a contention on a node. But freeing from remote 1857 * node means more costs for memory reclaim because of memory latency. 1858 * 1859 * Now, we use round-robin. Better algorithm is welcomed. 1860 */ 1861 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1862 { 1863 int node; 1864 1865 mem_cgroup_may_update_nodemask(memcg); 1866 node = memcg->last_scanned_node; 1867 1868 node = next_node(node, memcg->scan_nodes); 1869 if (node == MAX_NUMNODES) 1870 node = first_node(memcg->scan_nodes); 1871 /* 1872 * We call this when we hit limit, not when pages are added to LRU. 1873 * No LRU may hold pages because all pages are UNEVICTABLE or 1874 * memcg is too small and all pages are not on LRU. In that case, 1875 * we use curret node. 1876 */ 1877 if (unlikely(node == MAX_NUMNODES)) 1878 node = numa_node_id(); 1879 1880 memcg->last_scanned_node = node; 1881 return node; 1882 } 1883 1884 /* 1885 * Check all nodes whether it contains reclaimable pages or not. 1886 * For quick scan, we make use of scan_nodes. This will allow us to skip 1887 * unused nodes. But scan_nodes is lazily updated and may not cotain 1888 * enough new information. We need to do double check. 1889 */ 1890 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap) 1891 { 1892 int nid; 1893 1894 /* 1895 * quick check...making use of scan_node. 1896 * We can skip unused nodes. 1897 */ 1898 if (!nodes_empty(memcg->scan_nodes)) { 1899 for (nid = first_node(memcg->scan_nodes); 1900 nid < MAX_NUMNODES; 1901 nid = next_node(nid, memcg->scan_nodes)) { 1902 1903 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap)) 1904 return true; 1905 } 1906 } 1907 /* 1908 * Check rest of nodes. 1909 */ 1910 for_each_node_state(nid, N_MEMORY) { 1911 if (node_isset(nid, memcg->scan_nodes)) 1912 continue; 1913 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap)) 1914 return true; 1915 } 1916 return false; 1917 } 1918 1919 #else 1920 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1921 { 1922 return 0; 1923 } 1924 1925 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap) 1926 { 1927 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap); 1928 } 1929 #endif 1930 1931 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, 1932 struct zone *zone, 1933 gfp_t gfp_mask, 1934 unsigned long *total_scanned) 1935 { 1936 struct mem_cgroup *victim = NULL; 1937 int total = 0; 1938 int loop = 0; 1939 unsigned long excess; 1940 unsigned long nr_scanned; 1941 struct mem_cgroup_reclaim_cookie reclaim = { 1942 .zone = zone, 1943 .priority = 0, 1944 }; 1945 1946 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT; 1947 1948 while (1) { 1949 victim = mem_cgroup_iter(root_memcg, victim, &reclaim); 1950 if (!victim) { 1951 loop++; 1952 if (loop >= 2) { 1953 /* 1954 * If we have not been able to reclaim 1955 * anything, it might because there are 1956 * no reclaimable pages under this hierarchy 1957 */ 1958 if (!total) 1959 break; 1960 /* 1961 * We want to do more targeted reclaim. 1962 * excess >> 2 is not to excessive so as to 1963 * reclaim too much, nor too less that we keep 1964 * coming back to reclaim from this cgroup 1965 */ 1966 if (total >= (excess >> 2) || 1967 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) 1968 break; 1969 } 1970 continue; 1971 } 1972 if (!mem_cgroup_reclaimable(victim, false)) 1973 continue; 1974 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false, 1975 zone, &nr_scanned); 1976 *total_scanned += nr_scanned; 1977 if (!res_counter_soft_limit_excess(&root_memcg->res)) 1978 break; 1979 } 1980 mem_cgroup_iter_break(root_memcg, victim); 1981 return total; 1982 } 1983 1984 #ifdef CONFIG_LOCKDEP 1985 static struct lockdep_map memcg_oom_lock_dep_map = { 1986 .name = "memcg_oom_lock", 1987 }; 1988 #endif 1989 1990 static DEFINE_SPINLOCK(memcg_oom_lock); 1991 1992 /* 1993 * Check OOM-Killer is already running under our hierarchy. 1994 * If someone is running, return false. 1995 */ 1996 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) 1997 { 1998 struct mem_cgroup *iter, *failed = NULL; 1999 2000 spin_lock(&memcg_oom_lock); 2001 2002 for_each_mem_cgroup_tree(iter, memcg) { 2003 if (iter->oom_lock) { 2004 /* 2005 * this subtree of our hierarchy is already locked 2006 * so we cannot give a lock. 2007 */ 2008 failed = iter; 2009 mem_cgroup_iter_break(memcg, iter); 2010 break; 2011 } else 2012 iter->oom_lock = true; 2013 } 2014 2015 if (failed) { 2016 /* 2017 * OK, we failed to lock the whole subtree so we have 2018 * to clean up what we set up to the failing subtree 2019 */ 2020 for_each_mem_cgroup_tree(iter, memcg) { 2021 if (iter == failed) { 2022 mem_cgroup_iter_break(memcg, iter); 2023 break; 2024 } 2025 iter->oom_lock = false; 2026 } 2027 } else 2028 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); 2029 2030 spin_unlock(&memcg_oom_lock); 2031 2032 return !failed; 2033 } 2034 2035 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 2036 { 2037 struct mem_cgroup *iter; 2038 2039 spin_lock(&memcg_oom_lock); 2040 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_); 2041 for_each_mem_cgroup_tree(iter, memcg) 2042 iter->oom_lock = false; 2043 spin_unlock(&memcg_oom_lock); 2044 } 2045 2046 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 2047 { 2048 struct mem_cgroup *iter; 2049 2050 for_each_mem_cgroup_tree(iter, memcg) 2051 atomic_inc(&iter->under_oom); 2052 } 2053 2054 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 2055 { 2056 struct mem_cgroup *iter; 2057 2058 /* 2059 * When a new child is created while the hierarchy is under oom, 2060 * mem_cgroup_oom_lock() may not be called. We have to use 2061 * atomic_add_unless() here. 2062 */ 2063 for_each_mem_cgroup_tree(iter, memcg) 2064 atomic_add_unless(&iter->under_oom, -1, 0); 2065 } 2066 2067 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 2068 2069 struct oom_wait_info { 2070 struct mem_cgroup *memcg; 2071 wait_queue_t wait; 2072 }; 2073 2074 static int memcg_oom_wake_function(wait_queue_t *wait, 2075 unsigned mode, int sync, void *arg) 2076 { 2077 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; 2078 struct mem_cgroup *oom_wait_memcg; 2079 struct oom_wait_info *oom_wait_info; 2080 2081 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 2082 oom_wait_memcg = oom_wait_info->memcg; 2083 2084 /* 2085 * Both of oom_wait_info->memcg and wake_memcg are stable under us. 2086 * Then we can use css_is_ancestor without taking care of RCU. 2087 */ 2088 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg) 2089 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg)) 2090 return 0; 2091 return autoremove_wake_function(wait, mode, sync, arg); 2092 } 2093 2094 static void memcg_wakeup_oom(struct mem_cgroup *memcg) 2095 { 2096 atomic_inc(&memcg->oom_wakeups); 2097 /* for filtering, pass "memcg" as argument. */ 2098 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 2099 } 2100 2101 static void memcg_oom_recover(struct mem_cgroup *memcg) 2102 { 2103 if (memcg && atomic_read(&memcg->under_oom)) 2104 memcg_wakeup_oom(memcg); 2105 } 2106 2107 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 2108 { 2109 if (!current->memcg_oom.may_oom) 2110 return; 2111 /* 2112 * We are in the middle of the charge context here, so we 2113 * don't want to block when potentially sitting on a callstack 2114 * that holds all kinds of filesystem and mm locks. 2115 * 2116 * Also, the caller may handle a failed allocation gracefully 2117 * (like optional page cache readahead) and so an OOM killer 2118 * invocation might not even be necessary. 2119 * 2120 * That's why we don't do anything here except remember the 2121 * OOM context and then deal with it at the end of the page 2122 * fault when the stack is unwound, the locks are released, 2123 * and when we know whether the fault was overall successful. 2124 */ 2125 css_get(&memcg->css); 2126 current->memcg_oom.memcg = memcg; 2127 current->memcg_oom.gfp_mask = mask; 2128 current->memcg_oom.order = order; 2129 } 2130 2131 /** 2132 * mem_cgroup_oom_synchronize - complete memcg OOM handling 2133 * @handle: actually kill/wait or just clean up the OOM state 2134 * 2135 * This has to be called at the end of a page fault if the memcg OOM 2136 * handler was enabled. 2137 * 2138 * Memcg supports userspace OOM handling where failed allocations must 2139 * sleep on a waitqueue until the userspace task resolves the 2140 * situation. Sleeping directly in the charge context with all kinds 2141 * of locks held is not a good idea, instead we remember an OOM state 2142 * in the task and mem_cgroup_oom_synchronize() has to be called at 2143 * the end of the page fault to complete the OOM handling. 2144 * 2145 * Returns %true if an ongoing memcg OOM situation was detected and 2146 * completed, %false otherwise. 2147 */ 2148 bool mem_cgroup_oom_synchronize(bool handle) 2149 { 2150 struct mem_cgroup *memcg = current->memcg_oom.memcg; 2151 struct oom_wait_info owait; 2152 bool locked; 2153 2154 /* OOM is global, do not handle */ 2155 if (!memcg) 2156 return false; 2157 2158 if (!handle) 2159 goto cleanup; 2160 2161 owait.memcg = memcg; 2162 owait.wait.flags = 0; 2163 owait.wait.func = memcg_oom_wake_function; 2164 owait.wait.private = current; 2165 INIT_LIST_HEAD(&owait.wait.task_list); 2166 2167 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 2168 mem_cgroup_mark_under_oom(memcg); 2169 2170 locked = mem_cgroup_oom_trylock(memcg); 2171 2172 if (locked) 2173 mem_cgroup_oom_notify(memcg); 2174 2175 if (locked && !memcg->oom_kill_disable) { 2176 mem_cgroup_unmark_under_oom(memcg); 2177 finish_wait(&memcg_oom_waitq, &owait.wait); 2178 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask, 2179 current->memcg_oom.order); 2180 } else { 2181 schedule(); 2182 mem_cgroup_unmark_under_oom(memcg); 2183 finish_wait(&memcg_oom_waitq, &owait.wait); 2184 } 2185 2186 if (locked) { 2187 mem_cgroup_oom_unlock(memcg); 2188 /* 2189 * There is no guarantee that an OOM-lock contender 2190 * sees the wakeups triggered by the OOM kill 2191 * uncharges. Wake any sleepers explicitely. 2192 */ 2193 memcg_oom_recover(memcg); 2194 } 2195 cleanup: 2196 current->memcg_oom.memcg = NULL; 2197 css_put(&memcg->css); 2198 return true; 2199 } 2200 2201 /** 2202 * mem_cgroup_begin_page_stat - begin a page state statistics transaction 2203 * @page: page that is going to change accounted state 2204 * @locked: &memcg->move_lock slowpath was taken 2205 * @flags: IRQ-state flags for &memcg->move_lock 2206 * 2207 * This function must mark the beginning of an accounted page state 2208 * change to prevent double accounting when the page is concurrently 2209 * being moved to another memcg: 2210 * 2211 * memcg = mem_cgroup_begin_page_stat(page, &locked, &flags); 2212 * if (TestClearPageState(page)) 2213 * mem_cgroup_update_page_stat(memcg, state, -1); 2214 * mem_cgroup_end_page_stat(memcg, locked, flags); 2215 * 2216 * The RCU lock is held throughout the transaction. The fast path can 2217 * get away without acquiring the memcg->move_lock (@locked is false) 2218 * because page moving starts with an RCU grace period. 2219 * 2220 * The RCU lock also protects the memcg from being freed when the page 2221 * state that is going to change is the only thing preventing the page 2222 * from being uncharged. E.g. end-writeback clearing PageWriteback(), 2223 * which allows migration to go ahead and uncharge the page before the 2224 * account transaction might be complete. 2225 */ 2226 struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page, 2227 bool *locked, 2228 unsigned long *flags) 2229 { 2230 struct mem_cgroup *memcg; 2231 struct page_cgroup *pc; 2232 2233 rcu_read_lock(); 2234 2235 if (mem_cgroup_disabled()) 2236 return NULL; 2237 2238 pc = lookup_page_cgroup(page); 2239 again: 2240 memcg = pc->mem_cgroup; 2241 if (unlikely(!memcg || !PageCgroupUsed(pc))) 2242 return NULL; 2243 2244 *locked = false; 2245 if (atomic_read(&memcg->moving_account) <= 0) 2246 return memcg; 2247 2248 move_lock_mem_cgroup(memcg, flags); 2249 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) { 2250 move_unlock_mem_cgroup(memcg, flags); 2251 goto again; 2252 } 2253 *locked = true; 2254 2255 return memcg; 2256 } 2257 2258 /** 2259 * mem_cgroup_end_page_stat - finish a page state statistics transaction 2260 * @memcg: the memcg that was accounted against 2261 * @locked: value received from mem_cgroup_begin_page_stat() 2262 * @flags: value received from mem_cgroup_begin_page_stat() 2263 */ 2264 void mem_cgroup_end_page_stat(struct mem_cgroup *memcg, bool locked, 2265 unsigned long flags) 2266 { 2267 if (memcg && locked) 2268 move_unlock_mem_cgroup(memcg, &flags); 2269 2270 rcu_read_unlock(); 2271 } 2272 2273 /** 2274 * mem_cgroup_update_page_stat - update page state statistics 2275 * @memcg: memcg to account against 2276 * @idx: page state item to account 2277 * @val: number of pages (positive or negative) 2278 * 2279 * See mem_cgroup_begin_page_stat() for locking requirements. 2280 */ 2281 void mem_cgroup_update_page_stat(struct mem_cgroup *memcg, 2282 enum mem_cgroup_stat_index idx, int val) 2283 { 2284 VM_BUG_ON(!rcu_read_lock_held()); 2285 2286 if (memcg) 2287 this_cpu_add(memcg->stat->count[idx], val); 2288 } 2289 2290 /* 2291 * size of first charge trial. "32" comes from vmscan.c's magic value. 2292 * TODO: maybe necessary to use big numbers in big irons. 2293 */ 2294 #define CHARGE_BATCH 32U 2295 struct memcg_stock_pcp { 2296 struct mem_cgroup *cached; /* this never be root cgroup */ 2297 unsigned int nr_pages; 2298 struct work_struct work; 2299 unsigned long flags; 2300 #define FLUSHING_CACHED_CHARGE 0 2301 }; 2302 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); 2303 static DEFINE_MUTEX(percpu_charge_mutex); 2304 2305 /** 2306 * consume_stock: Try to consume stocked charge on this cpu. 2307 * @memcg: memcg to consume from. 2308 * @nr_pages: how many pages to charge. 2309 * 2310 * The charges will only happen if @memcg matches the current cpu's memcg 2311 * stock, and at least @nr_pages are available in that stock. Failure to 2312 * service an allocation will refill the stock. 2313 * 2314 * returns true if successful, false otherwise. 2315 */ 2316 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2317 { 2318 struct memcg_stock_pcp *stock; 2319 bool ret = true; 2320 2321 if (nr_pages > CHARGE_BATCH) 2322 return false; 2323 2324 stock = &get_cpu_var(memcg_stock); 2325 if (memcg == stock->cached && stock->nr_pages >= nr_pages) 2326 stock->nr_pages -= nr_pages; 2327 else /* need to call res_counter_charge */ 2328 ret = false; 2329 put_cpu_var(memcg_stock); 2330 return ret; 2331 } 2332 2333 /* 2334 * Returns stocks cached in percpu to res_counter and reset cached information. 2335 */ 2336 static void drain_stock(struct memcg_stock_pcp *stock) 2337 { 2338 struct mem_cgroup *old = stock->cached; 2339 2340 if (stock->nr_pages) { 2341 unsigned long bytes = stock->nr_pages * PAGE_SIZE; 2342 2343 res_counter_uncharge(&old->res, bytes); 2344 if (do_swap_account) 2345 res_counter_uncharge(&old->memsw, bytes); 2346 stock->nr_pages = 0; 2347 } 2348 stock->cached = NULL; 2349 } 2350 2351 /* 2352 * This must be called under preempt disabled or must be called by 2353 * a thread which is pinned to local cpu. 2354 */ 2355 static void drain_local_stock(struct work_struct *dummy) 2356 { 2357 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock); 2358 drain_stock(stock); 2359 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 2360 } 2361 2362 static void __init memcg_stock_init(void) 2363 { 2364 int cpu; 2365 2366 for_each_possible_cpu(cpu) { 2367 struct memcg_stock_pcp *stock = 2368 &per_cpu(memcg_stock, cpu); 2369 INIT_WORK(&stock->work, drain_local_stock); 2370 } 2371 } 2372 2373 /* 2374 * Cache charges(val) which is from res_counter, to local per_cpu area. 2375 * This will be consumed by consume_stock() function, later. 2376 */ 2377 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2378 { 2379 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock); 2380 2381 if (stock->cached != memcg) { /* reset if necessary */ 2382 drain_stock(stock); 2383 stock->cached = memcg; 2384 } 2385 stock->nr_pages += nr_pages; 2386 put_cpu_var(memcg_stock); 2387 } 2388 2389 /* 2390 * Drains all per-CPU charge caches for given root_memcg resp. subtree 2391 * of the hierarchy under it. sync flag says whether we should block 2392 * until the work is done. 2393 */ 2394 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync) 2395 { 2396 int cpu, curcpu; 2397 2398 /* Notify other cpus that system-wide "drain" is running */ 2399 get_online_cpus(); 2400 curcpu = get_cpu(); 2401 for_each_online_cpu(cpu) { 2402 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2403 struct mem_cgroup *memcg; 2404 2405 memcg = stock->cached; 2406 if (!memcg || !stock->nr_pages) 2407 continue; 2408 if (!mem_cgroup_same_or_subtree(root_memcg, memcg)) 2409 continue; 2410 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 2411 if (cpu == curcpu) 2412 drain_local_stock(&stock->work); 2413 else 2414 schedule_work_on(cpu, &stock->work); 2415 } 2416 } 2417 put_cpu(); 2418 2419 if (!sync) 2420 goto out; 2421 2422 for_each_online_cpu(cpu) { 2423 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2424 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) 2425 flush_work(&stock->work); 2426 } 2427 out: 2428 put_online_cpus(); 2429 } 2430 2431 /* 2432 * Tries to drain stocked charges in other cpus. This function is asynchronous 2433 * and just put a work per cpu for draining localy on each cpu. Caller can 2434 * expects some charges will be back to res_counter later but cannot wait for 2435 * it. 2436 */ 2437 static void drain_all_stock_async(struct mem_cgroup *root_memcg) 2438 { 2439 /* 2440 * If someone calls draining, avoid adding more kworker runs. 2441 */ 2442 if (!mutex_trylock(&percpu_charge_mutex)) 2443 return; 2444 drain_all_stock(root_memcg, false); 2445 mutex_unlock(&percpu_charge_mutex); 2446 } 2447 2448 /* This is a synchronous drain interface. */ 2449 static void drain_all_stock_sync(struct mem_cgroup *root_memcg) 2450 { 2451 /* called when force_empty is called */ 2452 mutex_lock(&percpu_charge_mutex); 2453 drain_all_stock(root_memcg, true); 2454 mutex_unlock(&percpu_charge_mutex); 2455 } 2456 2457 /* 2458 * This function drains percpu counter value from DEAD cpu and 2459 * move it to local cpu. Note that this function can be preempted. 2460 */ 2461 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu) 2462 { 2463 int i; 2464 2465 spin_lock(&memcg->pcp_counter_lock); 2466 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 2467 long x = per_cpu(memcg->stat->count[i], cpu); 2468 2469 per_cpu(memcg->stat->count[i], cpu) = 0; 2470 memcg->nocpu_base.count[i] += x; 2471 } 2472 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) { 2473 unsigned long x = per_cpu(memcg->stat->events[i], cpu); 2474 2475 per_cpu(memcg->stat->events[i], cpu) = 0; 2476 memcg->nocpu_base.events[i] += x; 2477 } 2478 spin_unlock(&memcg->pcp_counter_lock); 2479 } 2480 2481 static int memcg_cpu_hotplug_callback(struct notifier_block *nb, 2482 unsigned long action, 2483 void *hcpu) 2484 { 2485 int cpu = (unsigned long)hcpu; 2486 struct memcg_stock_pcp *stock; 2487 struct mem_cgroup *iter; 2488 2489 if (action == CPU_ONLINE) 2490 return NOTIFY_OK; 2491 2492 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 2493 return NOTIFY_OK; 2494 2495 for_each_mem_cgroup(iter) 2496 mem_cgroup_drain_pcp_counter(iter, cpu); 2497 2498 stock = &per_cpu(memcg_stock, cpu); 2499 drain_stock(stock); 2500 return NOTIFY_OK; 2501 } 2502 2503 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 2504 unsigned int nr_pages) 2505 { 2506 unsigned int batch = max(CHARGE_BATCH, nr_pages); 2507 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 2508 struct mem_cgroup *mem_over_limit; 2509 struct res_counter *fail_res; 2510 unsigned long nr_reclaimed; 2511 unsigned long long size; 2512 bool may_swap = true; 2513 bool drained = false; 2514 int ret = 0; 2515 2516 if (mem_cgroup_is_root(memcg)) 2517 goto done; 2518 retry: 2519 if (consume_stock(memcg, nr_pages)) 2520 goto done; 2521 2522 size = batch * PAGE_SIZE; 2523 if (!do_swap_account || 2524 !res_counter_charge(&memcg->memsw, size, &fail_res)) { 2525 if (!res_counter_charge(&memcg->res, size, &fail_res)) 2526 goto done_restock; 2527 if (do_swap_account) 2528 res_counter_uncharge(&memcg->memsw, size); 2529 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res); 2530 } else { 2531 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw); 2532 may_swap = false; 2533 } 2534 2535 if (batch > nr_pages) { 2536 batch = nr_pages; 2537 goto retry; 2538 } 2539 2540 /* 2541 * Unlike in global OOM situations, memcg is not in a physical 2542 * memory shortage. Allow dying and OOM-killed tasks to 2543 * bypass the last charges so that they can exit quickly and 2544 * free their memory. 2545 */ 2546 if (unlikely(test_thread_flag(TIF_MEMDIE) || 2547 fatal_signal_pending(current) || 2548 current->flags & PF_EXITING)) 2549 goto bypass; 2550 2551 if (unlikely(task_in_memcg_oom(current))) 2552 goto nomem; 2553 2554 if (!(gfp_mask & __GFP_WAIT)) 2555 goto nomem; 2556 2557 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, 2558 gfp_mask, may_swap); 2559 2560 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2561 goto retry; 2562 2563 if (!drained) { 2564 drain_all_stock_async(mem_over_limit); 2565 drained = true; 2566 goto retry; 2567 } 2568 2569 if (gfp_mask & __GFP_NORETRY) 2570 goto nomem; 2571 /* 2572 * Even though the limit is exceeded at this point, reclaim 2573 * may have been able to free some pages. Retry the charge 2574 * before killing the task. 2575 * 2576 * Only for regular pages, though: huge pages are rather 2577 * unlikely to succeed so close to the limit, and we fall back 2578 * to regular pages anyway in case of failure. 2579 */ 2580 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) 2581 goto retry; 2582 /* 2583 * At task move, charge accounts can be doubly counted. So, it's 2584 * better to wait until the end of task_move if something is going on. 2585 */ 2586 if (mem_cgroup_wait_acct_move(mem_over_limit)) 2587 goto retry; 2588 2589 if (nr_retries--) 2590 goto retry; 2591 2592 if (gfp_mask & __GFP_NOFAIL) 2593 goto bypass; 2594 2595 if (fatal_signal_pending(current)) 2596 goto bypass; 2597 2598 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages)); 2599 nomem: 2600 if (!(gfp_mask & __GFP_NOFAIL)) 2601 return -ENOMEM; 2602 bypass: 2603 return -EINTR; 2604 2605 done_restock: 2606 if (batch > nr_pages) 2607 refill_stock(memcg, batch - nr_pages); 2608 done: 2609 return ret; 2610 } 2611 2612 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages) 2613 { 2614 unsigned long bytes = nr_pages * PAGE_SIZE; 2615 2616 if (mem_cgroup_is_root(memcg)) 2617 return; 2618 2619 res_counter_uncharge(&memcg->res, bytes); 2620 if (do_swap_account) 2621 res_counter_uncharge(&memcg->memsw, bytes); 2622 } 2623 2624 /* 2625 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup. 2626 * This is useful when moving usage to parent cgroup. 2627 */ 2628 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg, 2629 unsigned int nr_pages) 2630 { 2631 unsigned long bytes = nr_pages * PAGE_SIZE; 2632 2633 if (mem_cgroup_is_root(memcg)) 2634 return; 2635 2636 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes); 2637 if (do_swap_account) 2638 res_counter_uncharge_until(&memcg->memsw, 2639 memcg->memsw.parent, bytes); 2640 } 2641 2642 /* 2643 * A helper function to get mem_cgroup from ID. must be called under 2644 * rcu_read_lock(). The caller is responsible for calling 2645 * css_tryget_online() if the mem_cgroup is used for charging. (dropping 2646 * refcnt from swap can be called against removed memcg.) 2647 */ 2648 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id) 2649 { 2650 /* ID 0 is unused ID */ 2651 if (!id) 2652 return NULL; 2653 return mem_cgroup_from_id(id); 2654 } 2655 2656 /* 2657 * try_get_mem_cgroup_from_page - look up page's memcg association 2658 * @page: the page 2659 * 2660 * Look up, get a css reference, and return the memcg that owns @page. 2661 * 2662 * The page must be locked to prevent racing with swap-in and page 2663 * cache charges. If coming from an unlocked page table, the caller 2664 * must ensure the page is on the LRU or this can race with charging. 2665 */ 2666 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page) 2667 { 2668 struct mem_cgroup *memcg = NULL; 2669 struct page_cgroup *pc; 2670 unsigned short id; 2671 swp_entry_t ent; 2672 2673 VM_BUG_ON_PAGE(!PageLocked(page), page); 2674 2675 pc = lookup_page_cgroup(page); 2676 if (PageCgroupUsed(pc)) { 2677 memcg = pc->mem_cgroup; 2678 if (memcg && !css_tryget_online(&memcg->css)) 2679 memcg = NULL; 2680 } else if (PageSwapCache(page)) { 2681 ent.val = page_private(page); 2682 id = lookup_swap_cgroup_id(ent); 2683 rcu_read_lock(); 2684 memcg = mem_cgroup_lookup(id); 2685 if (memcg && !css_tryget_online(&memcg->css)) 2686 memcg = NULL; 2687 rcu_read_unlock(); 2688 } 2689 return memcg; 2690 } 2691 2692 static void lock_page_lru(struct page *page, int *isolated) 2693 { 2694 struct zone *zone = page_zone(page); 2695 2696 spin_lock_irq(&zone->lru_lock); 2697 if (PageLRU(page)) { 2698 struct lruvec *lruvec; 2699 2700 lruvec = mem_cgroup_page_lruvec(page, zone); 2701 ClearPageLRU(page); 2702 del_page_from_lru_list(page, lruvec, page_lru(page)); 2703 *isolated = 1; 2704 } else 2705 *isolated = 0; 2706 } 2707 2708 static void unlock_page_lru(struct page *page, int isolated) 2709 { 2710 struct zone *zone = page_zone(page); 2711 2712 if (isolated) { 2713 struct lruvec *lruvec; 2714 2715 lruvec = mem_cgroup_page_lruvec(page, zone); 2716 VM_BUG_ON_PAGE(PageLRU(page), page); 2717 SetPageLRU(page); 2718 add_page_to_lru_list(page, lruvec, page_lru(page)); 2719 } 2720 spin_unlock_irq(&zone->lru_lock); 2721 } 2722 2723 static void commit_charge(struct page *page, struct mem_cgroup *memcg, 2724 bool lrucare) 2725 { 2726 struct page_cgroup *pc = lookup_page_cgroup(page); 2727 int isolated; 2728 2729 VM_BUG_ON_PAGE(PageCgroupUsed(pc), page); 2730 /* 2731 * we don't need page_cgroup_lock about tail pages, becase they are not 2732 * accessed by any other context at this point. 2733 */ 2734 2735 /* 2736 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page 2737 * may already be on some other mem_cgroup's LRU. Take care of it. 2738 */ 2739 if (lrucare) 2740 lock_page_lru(page, &isolated); 2741 2742 /* 2743 * Nobody should be changing or seriously looking at 2744 * pc->mem_cgroup and pc->flags at this point: 2745 * 2746 * - the page is uncharged 2747 * 2748 * - the page is off-LRU 2749 * 2750 * - an anonymous fault has exclusive page access, except for 2751 * a locked page table 2752 * 2753 * - a page cache insertion, a swapin fault, or a migration 2754 * have the page locked 2755 */ 2756 pc->mem_cgroup = memcg; 2757 pc->flags = PCG_USED | PCG_MEM | (do_swap_account ? PCG_MEMSW : 0); 2758 2759 if (lrucare) 2760 unlock_page_lru(page, isolated); 2761 } 2762 2763 static DEFINE_MUTEX(set_limit_mutex); 2764 2765 #ifdef CONFIG_MEMCG_KMEM 2766 /* 2767 * The memcg_slab_mutex is held whenever a per memcg kmem cache is created or 2768 * destroyed. It protects memcg_caches arrays and memcg_slab_caches lists. 2769 */ 2770 static DEFINE_MUTEX(memcg_slab_mutex); 2771 2772 static DEFINE_MUTEX(activate_kmem_mutex); 2773 2774 /* 2775 * This is a bit cumbersome, but it is rarely used and avoids a backpointer 2776 * in the memcg_cache_params struct. 2777 */ 2778 static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p) 2779 { 2780 struct kmem_cache *cachep; 2781 2782 VM_BUG_ON(p->is_root_cache); 2783 cachep = p->root_cache; 2784 return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg)); 2785 } 2786 2787 #ifdef CONFIG_SLABINFO 2788 static int mem_cgroup_slabinfo_read(struct seq_file *m, void *v) 2789 { 2790 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 2791 struct memcg_cache_params *params; 2792 2793 if (!memcg_kmem_is_active(memcg)) 2794 return -EIO; 2795 2796 print_slabinfo_header(m); 2797 2798 mutex_lock(&memcg_slab_mutex); 2799 list_for_each_entry(params, &memcg->memcg_slab_caches, list) 2800 cache_show(memcg_params_to_cache(params), m); 2801 mutex_unlock(&memcg_slab_mutex); 2802 2803 return 0; 2804 } 2805 #endif 2806 2807 static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size) 2808 { 2809 struct res_counter *fail_res; 2810 int ret = 0; 2811 2812 ret = res_counter_charge(&memcg->kmem, size, &fail_res); 2813 if (ret) 2814 return ret; 2815 2816 ret = try_charge(memcg, gfp, size >> PAGE_SHIFT); 2817 if (ret == -EINTR) { 2818 /* 2819 * try_charge() chose to bypass to root due to OOM kill or 2820 * fatal signal. Since our only options are to either fail 2821 * the allocation or charge it to this cgroup, do it as a 2822 * temporary condition. But we can't fail. From a kmem/slab 2823 * perspective, the cache has already been selected, by 2824 * mem_cgroup_kmem_get_cache(), so it is too late to change 2825 * our minds. 2826 * 2827 * This condition will only trigger if the task entered 2828 * memcg_charge_kmem in a sane state, but was OOM-killed 2829 * during try_charge() above. Tasks that were already dying 2830 * when the allocation triggers should have been already 2831 * directed to the root cgroup in memcontrol.h 2832 */ 2833 res_counter_charge_nofail(&memcg->res, size, &fail_res); 2834 if (do_swap_account) 2835 res_counter_charge_nofail(&memcg->memsw, size, 2836 &fail_res); 2837 ret = 0; 2838 } else if (ret) 2839 res_counter_uncharge(&memcg->kmem, size); 2840 2841 return ret; 2842 } 2843 2844 static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size) 2845 { 2846 res_counter_uncharge(&memcg->res, size); 2847 if (do_swap_account) 2848 res_counter_uncharge(&memcg->memsw, size); 2849 2850 /* Not down to 0 */ 2851 if (res_counter_uncharge(&memcg->kmem, size)) 2852 return; 2853 2854 /* 2855 * Releases a reference taken in kmem_cgroup_css_offline in case 2856 * this last uncharge is racing with the offlining code or it is 2857 * outliving the memcg existence. 2858 * 2859 * The memory barrier imposed by test&clear is paired with the 2860 * explicit one in memcg_kmem_mark_dead(). 2861 */ 2862 if (memcg_kmem_test_and_clear_dead(memcg)) 2863 css_put(&memcg->css); 2864 } 2865 2866 /* 2867 * helper for acessing a memcg's index. It will be used as an index in the 2868 * child cache array in kmem_cache, and also to derive its name. This function 2869 * will return -1 when this is not a kmem-limited memcg. 2870 */ 2871 int memcg_cache_id(struct mem_cgroup *memcg) 2872 { 2873 return memcg ? memcg->kmemcg_id : -1; 2874 } 2875 2876 static int memcg_alloc_cache_id(void) 2877 { 2878 int id, size; 2879 int err; 2880 2881 id = ida_simple_get(&kmem_limited_groups, 2882 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL); 2883 if (id < 0) 2884 return id; 2885 2886 if (id < memcg_limited_groups_array_size) 2887 return id; 2888 2889 /* 2890 * There's no space for the new id in memcg_caches arrays, 2891 * so we have to grow them. 2892 */ 2893 2894 size = 2 * (id + 1); 2895 if (size < MEMCG_CACHES_MIN_SIZE) 2896 size = MEMCG_CACHES_MIN_SIZE; 2897 else if (size > MEMCG_CACHES_MAX_SIZE) 2898 size = MEMCG_CACHES_MAX_SIZE; 2899 2900 mutex_lock(&memcg_slab_mutex); 2901 err = memcg_update_all_caches(size); 2902 mutex_unlock(&memcg_slab_mutex); 2903 2904 if (err) { 2905 ida_simple_remove(&kmem_limited_groups, id); 2906 return err; 2907 } 2908 return id; 2909 } 2910 2911 static void memcg_free_cache_id(int id) 2912 { 2913 ida_simple_remove(&kmem_limited_groups, id); 2914 } 2915 2916 /* 2917 * We should update the current array size iff all caches updates succeed. This 2918 * can only be done from the slab side. The slab mutex needs to be held when 2919 * calling this. 2920 */ 2921 void memcg_update_array_size(int num) 2922 { 2923 memcg_limited_groups_array_size = num; 2924 } 2925 2926 static void memcg_register_cache(struct mem_cgroup *memcg, 2927 struct kmem_cache *root_cache) 2928 { 2929 static char memcg_name_buf[NAME_MAX + 1]; /* protected by 2930 memcg_slab_mutex */ 2931 struct kmem_cache *cachep; 2932 int id; 2933 2934 lockdep_assert_held(&memcg_slab_mutex); 2935 2936 id = memcg_cache_id(memcg); 2937 2938 /* 2939 * Since per-memcg caches are created asynchronously on first 2940 * allocation (see memcg_kmem_get_cache()), several threads can try to 2941 * create the same cache, but only one of them may succeed. 2942 */ 2943 if (cache_from_memcg_idx(root_cache, id)) 2944 return; 2945 2946 cgroup_name(memcg->css.cgroup, memcg_name_buf, NAME_MAX + 1); 2947 cachep = memcg_create_kmem_cache(memcg, root_cache, memcg_name_buf); 2948 /* 2949 * If we could not create a memcg cache, do not complain, because 2950 * that's not critical at all as we can always proceed with the root 2951 * cache. 2952 */ 2953 if (!cachep) 2954 return; 2955 2956 css_get(&memcg->css); 2957 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches); 2958 2959 /* 2960 * Since readers won't lock (see cache_from_memcg_idx()), we need a 2961 * barrier here to ensure nobody will see the kmem_cache partially 2962 * initialized. 2963 */ 2964 smp_wmb(); 2965 2966 BUG_ON(root_cache->memcg_params->memcg_caches[id]); 2967 root_cache->memcg_params->memcg_caches[id] = cachep; 2968 } 2969 2970 static void memcg_unregister_cache(struct kmem_cache *cachep) 2971 { 2972 struct kmem_cache *root_cache; 2973 struct mem_cgroup *memcg; 2974 int id; 2975 2976 lockdep_assert_held(&memcg_slab_mutex); 2977 2978 BUG_ON(is_root_cache(cachep)); 2979 2980 root_cache = cachep->memcg_params->root_cache; 2981 memcg = cachep->memcg_params->memcg; 2982 id = memcg_cache_id(memcg); 2983 2984 BUG_ON(root_cache->memcg_params->memcg_caches[id] != cachep); 2985 root_cache->memcg_params->memcg_caches[id] = NULL; 2986 2987 list_del(&cachep->memcg_params->list); 2988 2989 kmem_cache_destroy(cachep); 2990 2991 /* drop the reference taken in memcg_register_cache */ 2992 css_put(&memcg->css); 2993 } 2994 2995 /* 2996 * During the creation a new cache, we need to disable our accounting mechanism 2997 * altogether. This is true even if we are not creating, but rather just 2998 * enqueing new caches to be created. 2999 * 3000 * This is because that process will trigger allocations; some visible, like 3001 * explicit kmallocs to auxiliary data structures, name strings and internal 3002 * cache structures; some well concealed, like INIT_WORK() that can allocate 3003 * objects during debug. 3004 * 3005 * If any allocation happens during memcg_kmem_get_cache, we will recurse back 3006 * to it. This may not be a bounded recursion: since the first cache creation 3007 * failed to complete (waiting on the allocation), we'll just try to create the 3008 * cache again, failing at the same point. 3009 * 3010 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of 3011 * memcg_kmem_skip_account. So we enclose anything that might allocate memory 3012 * inside the following two functions. 3013 */ 3014 static inline void memcg_stop_kmem_account(void) 3015 { 3016 VM_BUG_ON(!current->mm); 3017 current->memcg_kmem_skip_account++; 3018 } 3019 3020 static inline void memcg_resume_kmem_account(void) 3021 { 3022 VM_BUG_ON(!current->mm); 3023 current->memcg_kmem_skip_account--; 3024 } 3025 3026 int __memcg_cleanup_cache_params(struct kmem_cache *s) 3027 { 3028 struct kmem_cache *c; 3029 int i, failed = 0; 3030 3031 mutex_lock(&memcg_slab_mutex); 3032 for_each_memcg_cache_index(i) { 3033 c = cache_from_memcg_idx(s, i); 3034 if (!c) 3035 continue; 3036 3037 memcg_unregister_cache(c); 3038 3039 if (cache_from_memcg_idx(s, i)) 3040 failed++; 3041 } 3042 mutex_unlock(&memcg_slab_mutex); 3043 return failed; 3044 } 3045 3046 static void memcg_unregister_all_caches(struct mem_cgroup *memcg) 3047 { 3048 struct kmem_cache *cachep; 3049 struct memcg_cache_params *params, *tmp; 3050 3051 if (!memcg_kmem_is_active(memcg)) 3052 return; 3053 3054 mutex_lock(&memcg_slab_mutex); 3055 list_for_each_entry_safe(params, tmp, &memcg->memcg_slab_caches, list) { 3056 cachep = memcg_params_to_cache(params); 3057 kmem_cache_shrink(cachep); 3058 if (atomic_read(&cachep->memcg_params->nr_pages) == 0) 3059 memcg_unregister_cache(cachep); 3060 } 3061 mutex_unlock(&memcg_slab_mutex); 3062 } 3063 3064 struct memcg_register_cache_work { 3065 struct mem_cgroup *memcg; 3066 struct kmem_cache *cachep; 3067 struct work_struct work; 3068 }; 3069 3070 static void memcg_register_cache_func(struct work_struct *w) 3071 { 3072 struct memcg_register_cache_work *cw = 3073 container_of(w, struct memcg_register_cache_work, work); 3074 struct mem_cgroup *memcg = cw->memcg; 3075 struct kmem_cache *cachep = cw->cachep; 3076 3077 mutex_lock(&memcg_slab_mutex); 3078 memcg_register_cache(memcg, cachep); 3079 mutex_unlock(&memcg_slab_mutex); 3080 3081 css_put(&memcg->css); 3082 kfree(cw); 3083 } 3084 3085 /* 3086 * Enqueue the creation of a per-memcg kmem_cache. 3087 */ 3088 static void __memcg_schedule_register_cache(struct mem_cgroup *memcg, 3089 struct kmem_cache *cachep) 3090 { 3091 struct memcg_register_cache_work *cw; 3092 3093 cw = kmalloc(sizeof(*cw), GFP_NOWAIT); 3094 if (cw == NULL) { 3095 css_put(&memcg->css); 3096 return; 3097 } 3098 3099 cw->memcg = memcg; 3100 cw->cachep = cachep; 3101 3102 INIT_WORK(&cw->work, memcg_register_cache_func); 3103 schedule_work(&cw->work); 3104 } 3105 3106 static void memcg_schedule_register_cache(struct mem_cgroup *memcg, 3107 struct kmem_cache *cachep) 3108 { 3109 /* 3110 * We need to stop accounting when we kmalloc, because if the 3111 * corresponding kmalloc cache is not yet created, the first allocation 3112 * in __memcg_schedule_register_cache will recurse. 3113 * 3114 * However, it is better to enclose the whole function. Depending on 3115 * the debugging options enabled, INIT_WORK(), for instance, can 3116 * trigger an allocation. This too, will make us recurse. Because at 3117 * this point we can't allow ourselves back into memcg_kmem_get_cache, 3118 * the safest choice is to do it like this, wrapping the whole function. 3119 */ 3120 memcg_stop_kmem_account(); 3121 __memcg_schedule_register_cache(memcg, cachep); 3122 memcg_resume_kmem_account(); 3123 } 3124 3125 int __memcg_charge_slab(struct kmem_cache *cachep, gfp_t gfp, int order) 3126 { 3127 int res; 3128 3129 res = memcg_charge_kmem(cachep->memcg_params->memcg, gfp, 3130 PAGE_SIZE << order); 3131 if (!res) 3132 atomic_add(1 << order, &cachep->memcg_params->nr_pages); 3133 return res; 3134 } 3135 3136 void __memcg_uncharge_slab(struct kmem_cache *cachep, int order) 3137 { 3138 memcg_uncharge_kmem(cachep->memcg_params->memcg, PAGE_SIZE << order); 3139 atomic_sub(1 << order, &cachep->memcg_params->nr_pages); 3140 } 3141 3142 /* 3143 * Return the kmem_cache we're supposed to use for a slab allocation. 3144 * We try to use the current memcg's version of the cache. 3145 * 3146 * If the cache does not exist yet, if we are the first user of it, 3147 * we either create it immediately, if possible, or create it asynchronously 3148 * in a workqueue. 3149 * In the latter case, we will let the current allocation go through with 3150 * the original cache. 3151 * 3152 * Can't be called in interrupt context or from kernel threads. 3153 * This function needs to be called with rcu_read_lock() held. 3154 */ 3155 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, 3156 gfp_t gfp) 3157 { 3158 struct mem_cgroup *memcg; 3159 struct kmem_cache *memcg_cachep; 3160 3161 VM_BUG_ON(!cachep->memcg_params); 3162 VM_BUG_ON(!cachep->memcg_params->is_root_cache); 3163 3164 if (!current->mm || current->memcg_kmem_skip_account) 3165 return cachep; 3166 3167 rcu_read_lock(); 3168 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner)); 3169 3170 if (!memcg_kmem_is_active(memcg)) 3171 goto out; 3172 3173 memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg)); 3174 if (likely(memcg_cachep)) { 3175 cachep = memcg_cachep; 3176 goto out; 3177 } 3178 3179 /* The corresponding put will be done in the workqueue. */ 3180 if (!css_tryget_online(&memcg->css)) 3181 goto out; 3182 rcu_read_unlock(); 3183 3184 /* 3185 * If we are in a safe context (can wait, and not in interrupt 3186 * context), we could be be predictable and return right away. 3187 * This would guarantee that the allocation being performed 3188 * already belongs in the new cache. 3189 * 3190 * However, there are some clashes that can arrive from locking. 3191 * For instance, because we acquire the slab_mutex while doing 3192 * memcg_create_kmem_cache, this means no further allocation 3193 * could happen with the slab_mutex held. So it's better to 3194 * defer everything. 3195 */ 3196 memcg_schedule_register_cache(memcg, cachep); 3197 return cachep; 3198 out: 3199 rcu_read_unlock(); 3200 return cachep; 3201 } 3202 3203 /* 3204 * We need to verify if the allocation against current->mm->owner's memcg is 3205 * possible for the given order. But the page is not allocated yet, so we'll 3206 * need a further commit step to do the final arrangements. 3207 * 3208 * It is possible for the task to switch cgroups in this mean time, so at 3209 * commit time, we can't rely on task conversion any longer. We'll then use 3210 * the handle argument to return to the caller which cgroup we should commit 3211 * against. We could also return the memcg directly and avoid the pointer 3212 * passing, but a boolean return value gives better semantics considering 3213 * the compiled-out case as well. 3214 * 3215 * Returning true means the allocation is possible. 3216 */ 3217 bool 3218 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order) 3219 { 3220 struct mem_cgroup *memcg; 3221 int ret; 3222 3223 *_memcg = NULL; 3224 3225 /* 3226 * Disabling accounting is only relevant for some specific memcg 3227 * internal allocations. Therefore we would initially not have such 3228 * check here, since direct calls to the page allocator that are 3229 * accounted to kmemcg (alloc_kmem_pages and friends) only happen 3230 * outside memcg core. We are mostly concerned with cache allocations, 3231 * and by having this test at memcg_kmem_get_cache, we are already able 3232 * to relay the allocation to the root cache and bypass the memcg cache 3233 * altogether. 3234 * 3235 * There is one exception, though: the SLUB allocator does not create 3236 * large order caches, but rather service large kmallocs directly from 3237 * the page allocator. Therefore, the following sequence when backed by 3238 * the SLUB allocator: 3239 * 3240 * memcg_stop_kmem_account(); 3241 * kmalloc(<large_number>) 3242 * memcg_resume_kmem_account(); 3243 * 3244 * would effectively ignore the fact that we should skip accounting, 3245 * since it will drive us directly to this function without passing 3246 * through the cache selector memcg_kmem_get_cache. Such large 3247 * allocations are extremely rare but can happen, for instance, for the 3248 * cache arrays. We bring this test here. 3249 */ 3250 if (!current->mm || current->memcg_kmem_skip_account) 3251 return true; 3252 3253 memcg = get_mem_cgroup_from_mm(current->mm); 3254 3255 if (!memcg_kmem_is_active(memcg)) { 3256 css_put(&memcg->css); 3257 return true; 3258 } 3259 3260 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order); 3261 if (!ret) 3262 *_memcg = memcg; 3263 3264 css_put(&memcg->css); 3265 return (ret == 0); 3266 } 3267 3268 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, 3269 int order) 3270 { 3271 struct page_cgroup *pc; 3272 3273 VM_BUG_ON(mem_cgroup_is_root(memcg)); 3274 3275 /* The page allocation failed. Revert */ 3276 if (!page) { 3277 memcg_uncharge_kmem(memcg, PAGE_SIZE << order); 3278 return; 3279 } 3280 /* 3281 * The page is freshly allocated and not visible to any 3282 * outside callers yet. Set up pc non-atomically. 3283 */ 3284 pc = lookup_page_cgroup(page); 3285 pc->mem_cgroup = memcg; 3286 pc->flags = PCG_USED; 3287 } 3288 3289 void __memcg_kmem_uncharge_pages(struct page *page, int order) 3290 { 3291 struct mem_cgroup *memcg = NULL; 3292 struct page_cgroup *pc; 3293 3294 3295 pc = lookup_page_cgroup(page); 3296 if (!PageCgroupUsed(pc)) 3297 return; 3298 3299 memcg = pc->mem_cgroup; 3300 pc->flags = 0; 3301 3302 /* 3303 * We trust that only if there is a memcg associated with the page, it 3304 * is a valid allocation 3305 */ 3306 if (!memcg) 3307 return; 3308 3309 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page); 3310 memcg_uncharge_kmem(memcg, PAGE_SIZE << order); 3311 } 3312 #else 3313 static inline void memcg_unregister_all_caches(struct mem_cgroup *memcg) 3314 { 3315 } 3316 #endif /* CONFIG_MEMCG_KMEM */ 3317 3318 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3319 3320 /* 3321 * Because tail pages are not marked as "used", set it. We're under 3322 * zone->lru_lock, 'splitting on pmd' and compound_lock. 3323 * charge/uncharge will be never happen and move_account() is done under 3324 * compound_lock(), so we don't have to take care of races. 3325 */ 3326 void mem_cgroup_split_huge_fixup(struct page *head) 3327 { 3328 struct page_cgroup *head_pc = lookup_page_cgroup(head); 3329 struct page_cgroup *pc; 3330 struct mem_cgroup *memcg; 3331 int i; 3332 3333 if (mem_cgroup_disabled()) 3334 return; 3335 3336 memcg = head_pc->mem_cgroup; 3337 for (i = 1; i < HPAGE_PMD_NR; i++) { 3338 pc = head_pc + i; 3339 pc->mem_cgroup = memcg; 3340 pc->flags = head_pc->flags; 3341 } 3342 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], 3343 HPAGE_PMD_NR); 3344 } 3345 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 3346 3347 /** 3348 * mem_cgroup_move_account - move account of the page 3349 * @page: the page 3350 * @nr_pages: number of regular pages (>1 for huge pages) 3351 * @pc: page_cgroup of the page. 3352 * @from: mem_cgroup which the page is moved from. 3353 * @to: mem_cgroup which the page is moved to. @from != @to. 3354 * 3355 * The caller must confirm following. 3356 * - page is not on LRU (isolate_page() is useful.) 3357 * - compound_lock is held when nr_pages > 1 3358 * 3359 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" 3360 * from old cgroup. 3361 */ 3362 static int mem_cgroup_move_account(struct page *page, 3363 unsigned int nr_pages, 3364 struct page_cgroup *pc, 3365 struct mem_cgroup *from, 3366 struct mem_cgroup *to) 3367 { 3368 unsigned long flags; 3369 int ret; 3370 3371 VM_BUG_ON(from == to); 3372 VM_BUG_ON_PAGE(PageLRU(page), page); 3373 /* 3374 * The page is isolated from LRU. So, collapse function 3375 * will not handle this page. But page splitting can happen. 3376 * Do this check under compound_page_lock(). The caller should 3377 * hold it. 3378 */ 3379 ret = -EBUSY; 3380 if (nr_pages > 1 && !PageTransHuge(page)) 3381 goto out; 3382 3383 /* 3384 * Prevent mem_cgroup_migrate() from looking at pc->mem_cgroup 3385 * of its source page while we change it: page migration takes 3386 * both pages off the LRU, but page cache replacement doesn't. 3387 */ 3388 if (!trylock_page(page)) 3389 goto out; 3390 3391 ret = -EINVAL; 3392 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from) 3393 goto out_unlock; 3394 3395 move_lock_mem_cgroup(from, &flags); 3396 3397 if (!PageAnon(page) && page_mapped(page)) { 3398 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED], 3399 nr_pages); 3400 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED], 3401 nr_pages); 3402 } 3403 3404 if (PageWriteback(page)) { 3405 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK], 3406 nr_pages); 3407 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK], 3408 nr_pages); 3409 } 3410 3411 /* 3412 * It is safe to change pc->mem_cgroup here because the page 3413 * is referenced, charged, and isolated - we can't race with 3414 * uncharging, charging, migration, or LRU putback. 3415 */ 3416 3417 /* caller should have done css_get */ 3418 pc->mem_cgroup = to; 3419 move_unlock_mem_cgroup(from, &flags); 3420 ret = 0; 3421 3422 local_irq_disable(); 3423 mem_cgroup_charge_statistics(to, page, nr_pages); 3424 memcg_check_events(to, page); 3425 mem_cgroup_charge_statistics(from, page, -nr_pages); 3426 memcg_check_events(from, page); 3427 local_irq_enable(); 3428 out_unlock: 3429 unlock_page(page); 3430 out: 3431 return ret; 3432 } 3433 3434 /** 3435 * mem_cgroup_move_parent - moves page to the parent group 3436 * @page: the page to move 3437 * @pc: page_cgroup of the page 3438 * @child: page's cgroup 3439 * 3440 * move charges to its parent or the root cgroup if the group has no 3441 * parent (aka use_hierarchy==0). 3442 * Although this might fail (get_page_unless_zero, isolate_lru_page or 3443 * mem_cgroup_move_account fails) the failure is always temporary and 3444 * it signals a race with a page removal/uncharge or migration. In the 3445 * first case the page is on the way out and it will vanish from the LRU 3446 * on the next attempt and the call should be retried later. 3447 * Isolation from the LRU fails only if page has been isolated from 3448 * the LRU since we looked at it and that usually means either global 3449 * reclaim or migration going on. The page will either get back to the 3450 * LRU or vanish. 3451 * Finaly mem_cgroup_move_account fails only if the page got uncharged 3452 * (!PageCgroupUsed) or moved to a different group. The page will 3453 * disappear in the next attempt. 3454 */ 3455 static int mem_cgroup_move_parent(struct page *page, 3456 struct page_cgroup *pc, 3457 struct mem_cgroup *child) 3458 { 3459 struct mem_cgroup *parent; 3460 unsigned int nr_pages; 3461 unsigned long uninitialized_var(flags); 3462 int ret; 3463 3464 VM_BUG_ON(mem_cgroup_is_root(child)); 3465 3466 ret = -EBUSY; 3467 if (!get_page_unless_zero(page)) 3468 goto out; 3469 if (isolate_lru_page(page)) 3470 goto put; 3471 3472 nr_pages = hpage_nr_pages(page); 3473 3474 parent = parent_mem_cgroup(child); 3475 /* 3476 * If no parent, move charges to root cgroup. 3477 */ 3478 if (!parent) 3479 parent = root_mem_cgroup; 3480 3481 if (nr_pages > 1) { 3482 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 3483 flags = compound_lock_irqsave(page); 3484 } 3485 3486 ret = mem_cgroup_move_account(page, nr_pages, 3487 pc, child, parent); 3488 if (!ret) 3489 __mem_cgroup_cancel_local_charge(child, nr_pages); 3490 3491 if (nr_pages > 1) 3492 compound_unlock_irqrestore(page, flags); 3493 putback_lru_page(page); 3494 put: 3495 put_page(page); 3496 out: 3497 return ret; 3498 } 3499 3500 #ifdef CONFIG_MEMCG_SWAP 3501 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg, 3502 bool charge) 3503 { 3504 int val = (charge) ? 1 : -1; 3505 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val); 3506 } 3507 3508 /** 3509 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 3510 * @entry: swap entry to be moved 3511 * @from: mem_cgroup which the entry is moved from 3512 * @to: mem_cgroup which the entry is moved to 3513 * 3514 * It succeeds only when the swap_cgroup's record for this entry is the same 3515 * as the mem_cgroup's id of @from. 3516 * 3517 * Returns 0 on success, -EINVAL on failure. 3518 * 3519 * The caller must have charged to @to, IOW, called res_counter_charge() about 3520 * both res and memsw, and called css_get(). 3521 */ 3522 static int mem_cgroup_move_swap_account(swp_entry_t entry, 3523 struct mem_cgroup *from, struct mem_cgroup *to) 3524 { 3525 unsigned short old_id, new_id; 3526 3527 old_id = mem_cgroup_id(from); 3528 new_id = mem_cgroup_id(to); 3529 3530 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 3531 mem_cgroup_swap_statistics(from, false); 3532 mem_cgroup_swap_statistics(to, true); 3533 /* 3534 * This function is only called from task migration context now. 3535 * It postpones res_counter and refcount handling till the end 3536 * of task migration(mem_cgroup_clear_mc()) for performance 3537 * improvement. But we cannot postpone css_get(to) because if 3538 * the process that has been moved to @to does swap-in, the 3539 * refcount of @to might be decreased to 0. 3540 * 3541 * We are in attach() phase, so the cgroup is guaranteed to be 3542 * alive, so we can just call css_get(). 3543 */ 3544 css_get(&to->css); 3545 return 0; 3546 } 3547 return -EINVAL; 3548 } 3549 #else 3550 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 3551 struct mem_cgroup *from, struct mem_cgroup *to) 3552 { 3553 return -EINVAL; 3554 } 3555 #endif 3556 3557 #ifdef CONFIG_DEBUG_VM 3558 static struct page_cgroup *lookup_page_cgroup_used(struct page *page) 3559 { 3560 struct page_cgroup *pc; 3561 3562 pc = lookup_page_cgroup(page); 3563 /* 3564 * Can be NULL while feeding pages into the page allocator for 3565 * the first time, i.e. during boot or memory hotplug; 3566 * or when mem_cgroup_disabled(). 3567 */ 3568 if (likely(pc) && PageCgroupUsed(pc)) 3569 return pc; 3570 return NULL; 3571 } 3572 3573 bool mem_cgroup_bad_page_check(struct page *page) 3574 { 3575 if (mem_cgroup_disabled()) 3576 return false; 3577 3578 return lookup_page_cgroup_used(page) != NULL; 3579 } 3580 3581 void mem_cgroup_print_bad_page(struct page *page) 3582 { 3583 struct page_cgroup *pc; 3584 3585 pc = lookup_page_cgroup_used(page); 3586 if (pc) { 3587 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n", 3588 pc, pc->flags, pc->mem_cgroup); 3589 } 3590 } 3591 #endif 3592 3593 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg, 3594 unsigned long long val) 3595 { 3596 int retry_count; 3597 int ret = 0; 3598 int children = mem_cgroup_count_children(memcg); 3599 u64 curusage, oldusage; 3600 int enlarge; 3601 3602 /* 3603 * For keeping hierarchical_reclaim simple, how long we should retry 3604 * is depends on callers. We set our retry-count to be function 3605 * of # of children which we should visit in this loop. 3606 */ 3607 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children; 3608 3609 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE); 3610 3611 enlarge = 0; 3612 while (retry_count) { 3613 if (signal_pending(current)) { 3614 ret = -EINTR; 3615 break; 3616 } 3617 /* 3618 * Rather than hide all in some function, I do this in 3619 * open coded manner. You see what this really does. 3620 * We have to guarantee memcg->res.limit <= memcg->memsw.limit. 3621 */ 3622 mutex_lock(&set_limit_mutex); 3623 if (res_counter_read_u64(&memcg->memsw, RES_LIMIT) < val) { 3624 ret = -EINVAL; 3625 mutex_unlock(&set_limit_mutex); 3626 break; 3627 } 3628 3629 if (res_counter_read_u64(&memcg->res, RES_LIMIT) < val) 3630 enlarge = 1; 3631 3632 ret = res_counter_set_limit(&memcg->res, val); 3633 mutex_unlock(&set_limit_mutex); 3634 3635 if (!ret) 3636 break; 3637 3638 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true); 3639 3640 curusage = res_counter_read_u64(&memcg->res, RES_USAGE); 3641 /* Usage is reduced ? */ 3642 if (curusage >= oldusage) 3643 retry_count--; 3644 else 3645 oldusage = curusage; 3646 } 3647 if (!ret && enlarge) 3648 memcg_oom_recover(memcg); 3649 3650 return ret; 3651 } 3652 3653 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg, 3654 unsigned long long val) 3655 { 3656 int retry_count; 3657 u64 oldusage, curusage; 3658 int children = mem_cgroup_count_children(memcg); 3659 int ret = -EBUSY; 3660 int enlarge = 0; 3661 3662 /* see mem_cgroup_resize_res_limit */ 3663 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES; 3664 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); 3665 while (retry_count) { 3666 if (signal_pending(current)) { 3667 ret = -EINTR; 3668 break; 3669 } 3670 /* 3671 * Rather than hide all in some function, I do this in 3672 * open coded manner. You see what this really does. 3673 * We have to guarantee memcg->res.limit <= memcg->memsw.limit. 3674 */ 3675 mutex_lock(&set_limit_mutex); 3676 if (res_counter_read_u64(&memcg->res, RES_LIMIT) > val) { 3677 ret = -EINVAL; 3678 mutex_unlock(&set_limit_mutex); 3679 break; 3680 } 3681 if (res_counter_read_u64(&memcg->memsw, RES_LIMIT) < val) 3682 enlarge = 1; 3683 ret = res_counter_set_limit(&memcg->memsw, val); 3684 mutex_unlock(&set_limit_mutex); 3685 3686 if (!ret) 3687 break; 3688 3689 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false); 3690 3691 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); 3692 /* Usage is reduced ? */ 3693 if (curusage >= oldusage) 3694 retry_count--; 3695 else 3696 oldusage = curusage; 3697 } 3698 if (!ret && enlarge) 3699 memcg_oom_recover(memcg); 3700 return ret; 3701 } 3702 3703 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, 3704 gfp_t gfp_mask, 3705 unsigned long *total_scanned) 3706 { 3707 unsigned long nr_reclaimed = 0; 3708 struct mem_cgroup_per_zone *mz, *next_mz = NULL; 3709 unsigned long reclaimed; 3710 int loop = 0; 3711 struct mem_cgroup_tree_per_zone *mctz; 3712 unsigned long long excess; 3713 unsigned long nr_scanned; 3714 3715 if (order > 0) 3716 return 0; 3717 3718 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone)); 3719 /* 3720 * This loop can run a while, specially if mem_cgroup's continuously 3721 * keep exceeding their soft limit and putting the system under 3722 * pressure 3723 */ 3724 do { 3725 if (next_mz) 3726 mz = next_mz; 3727 else 3728 mz = mem_cgroup_largest_soft_limit_node(mctz); 3729 if (!mz) 3730 break; 3731 3732 nr_scanned = 0; 3733 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone, 3734 gfp_mask, &nr_scanned); 3735 nr_reclaimed += reclaimed; 3736 *total_scanned += nr_scanned; 3737 spin_lock_irq(&mctz->lock); 3738 3739 /* 3740 * If we failed to reclaim anything from this memory cgroup 3741 * it is time to move on to the next cgroup 3742 */ 3743 next_mz = NULL; 3744 if (!reclaimed) { 3745 do { 3746 /* 3747 * Loop until we find yet another one. 3748 * 3749 * By the time we get the soft_limit lock 3750 * again, someone might have aded the 3751 * group back on the RB tree. Iterate to 3752 * make sure we get a different mem. 3753 * mem_cgroup_largest_soft_limit_node returns 3754 * NULL if no other cgroup is present on 3755 * the tree 3756 */ 3757 next_mz = 3758 __mem_cgroup_largest_soft_limit_node(mctz); 3759 if (next_mz == mz) 3760 css_put(&next_mz->memcg->css); 3761 else /* next_mz == NULL or other memcg */ 3762 break; 3763 } while (1); 3764 } 3765 __mem_cgroup_remove_exceeded(mz, mctz); 3766 excess = res_counter_soft_limit_excess(&mz->memcg->res); 3767 /* 3768 * One school of thought says that we should not add 3769 * back the node to the tree if reclaim returns 0. 3770 * But our reclaim could return 0, simply because due 3771 * to priority we are exposing a smaller subset of 3772 * memory to reclaim from. Consider this as a longer 3773 * term TODO. 3774 */ 3775 /* If excess == 0, no tree ops */ 3776 __mem_cgroup_insert_exceeded(mz, mctz, excess); 3777 spin_unlock_irq(&mctz->lock); 3778 css_put(&mz->memcg->css); 3779 loop++; 3780 /* 3781 * Could not reclaim anything and there are no more 3782 * mem cgroups to try or we seem to be looping without 3783 * reclaiming anything. 3784 */ 3785 if (!nr_reclaimed && 3786 (next_mz == NULL || 3787 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 3788 break; 3789 } while (!nr_reclaimed); 3790 if (next_mz) 3791 css_put(&next_mz->memcg->css); 3792 return nr_reclaimed; 3793 } 3794 3795 /** 3796 * mem_cgroup_force_empty_list - clears LRU of a group 3797 * @memcg: group to clear 3798 * @node: NUMA node 3799 * @zid: zone id 3800 * @lru: lru to to clear 3801 * 3802 * Traverse a specified page_cgroup list and try to drop them all. This doesn't 3803 * reclaim the pages page themselves - pages are moved to the parent (or root) 3804 * group. 3805 */ 3806 static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg, 3807 int node, int zid, enum lru_list lru) 3808 { 3809 struct lruvec *lruvec; 3810 unsigned long flags; 3811 struct list_head *list; 3812 struct page *busy; 3813 struct zone *zone; 3814 3815 zone = &NODE_DATA(node)->node_zones[zid]; 3816 lruvec = mem_cgroup_zone_lruvec(zone, memcg); 3817 list = &lruvec->lists[lru]; 3818 3819 busy = NULL; 3820 do { 3821 struct page_cgroup *pc; 3822 struct page *page; 3823 3824 spin_lock_irqsave(&zone->lru_lock, flags); 3825 if (list_empty(list)) { 3826 spin_unlock_irqrestore(&zone->lru_lock, flags); 3827 break; 3828 } 3829 page = list_entry(list->prev, struct page, lru); 3830 if (busy == page) { 3831 list_move(&page->lru, list); 3832 busy = NULL; 3833 spin_unlock_irqrestore(&zone->lru_lock, flags); 3834 continue; 3835 } 3836 spin_unlock_irqrestore(&zone->lru_lock, flags); 3837 3838 pc = lookup_page_cgroup(page); 3839 3840 if (mem_cgroup_move_parent(page, pc, memcg)) { 3841 /* found lock contention or "pc" is obsolete. */ 3842 busy = page; 3843 } else 3844 busy = NULL; 3845 cond_resched(); 3846 } while (!list_empty(list)); 3847 } 3848 3849 /* 3850 * make mem_cgroup's charge to be 0 if there is no task by moving 3851 * all the charges and pages to the parent. 3852 * This enables deleting this mem_cgroup. 3853 * 3854 * Caller is responsible for holding css reference on the memcg. 3855 */ 3856 static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg) 3857 { 3858 int node, zid; 3859 u64 usage; 3860 3861 do { 3862 /* This is for making all *used* pages to be on LRU. */ 3863 lru_add_drain_all(); 3864 drain_all_stock_sync(memcg); 3865 mem_cgroup_start_move(memcg); 3866 for_each_node_state(node, N_MEMORY) { 3867 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 3868 enum lru_list lru; 3869 for_each_lru(lru) { 3870 mem_cgroup_force_empty_list(memcg, 3871 node, zid, lru); 3872 } 3873 } 3874 } 3875 mem_cgroup_end_move(memcg); 3876 memcg_oom_recover(memcg); 3877 cond_resched(); 3878 3879 /* 3880 * Kernel memory may not necessarily be trackable to a specific 3881 * process. So they are not migrated, and therefore we can't 3882 * expect their value to drop to 0 here. 3883 * Having res filled up with kmem only is enough. 3884 * 3885 * This is a safety check because mem_cgroup_force_empty_list 3886 * could have raced with mem_cgroup_replace_page_cache callers 3887 * so the lru seemed empty but the page could have been added 3888 * right after the check. RES_USAGE should be safe as we always 3889 * charge before adding to the LRU. 3890 */ 3891 usage = res_counter_read_u64(&memcg->res, RES_USAGE) - 3892 res_counter_read_u64(&memcg->kmem, RES_USAGE); 3893 } while (usage > 0); 3894 } 3895 3896 /* 3897 * Test whether @memcg has children, dead or alive. Note that this 3898 * function doesn't care whether @memcg has use_hierarchy enabled and 3899 * returns %true if there are child csses according to the cgroup 3900 * hierarchy. Testing use_hierarchy is the caller's responsiblity. 3901 */ 3902 static inline bool memcg_has_children(struct mem_cgroup *memcg) 3903 { 3904 bool ret; 3905 3906 /* 3907 * The lock does not prevent addition or deletion of children, but 3908 * it prevents a new child from being initialized based on this 3909 * parent in css_online(), so it's enough to decide whether 3910 * hierarchically inherited attributes can still be changed or not. 3911 */ 3912 lockdep_assert_held(&memcg_create_mutex); 3913 3914 rcu_read_lock(); 3915 ret = css_next_child(NULL, &memcg->css); 3916 rcu_read_unlock(); 3917 return ret; 3918 } 3919 3920 /* 3921 * Reclaims as many pages from the given memcg as possible and moves 3922 * the rest to the parent. 3923 * 3924 * Caller is responsible for holding css reference for memcg. 3925 */ 3926 static int mem_cgroup_force_empty(struct mem_cgroup *memcg) 3927 { 3928 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 3929 3930 /* we call try-to-free pages for make this cgroup empty */ 3931 lru_add_drain_all(); 3932 /* try to free all pages in this cgroup */ 3933 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) { 3934 int progress; 3935 3936 if (signal_pending(current)) 3937 return -EINTR; 3938 3939 progress = try_to_free_mem_cgroup_pages(memcg, 1, 3940 GFP_KERNEL, true); 3941 if (!progress) { 3942 nr_retries--; 3943 /* maybe some writeback is necessary */ 3944 congestion_wait(BLK_RW_ASYNC, HZ/10); 3945 } 3946 3947 } 3948 3949 return 0; 3950 } 3951 3952 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of, 3953 char *buf, size_t nbytes, 3954 loff_t off) 3955 { 3956 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3957 3958 if (mem_cgroup_is_root(memcg)) 3959 return -EINVAL; 3960 return mem_cgroup_force_empty(memcg) ?: nbytes; 3961 } 3962 3963 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, 3964 struct cftype *cft) 3965 { 3966 return mem_cgroup_from_css(css)->use_hierarchy; 3967 } 3968 3969 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, 3970 struct cftype *cft, u64 val) 3971 { 3972 int retval = 0; 3973 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3974 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent); 3975 3976 mutex_lock(&memcg_create_mutex); 3977 3978 if (memcg->use_hierarchy == val) 3979 goto out; 3980 3981 /* 3982 * If parent's use_hierarchy is set, we can't make any modifications 3983 * in the child subtrees. If it is unset, then the change can 3984 * occur, provided the current cgroup has no children. 3985 * 3986 * For the root cgroup, parent_mem is NULL, we allow value to be 3987 * set if there are no children. 3988 */ 3989 if ((!parent_memcg || !parent_memcg->use_hierarchy) && 3990 (val == 1 || val == 0)) { 3991 if (!memcg_has_children(memcg)) 3992 memcg->use_hierarchy = val; 3993 else 3994 retval = -EBUSY; 3995 } else 3996 retval = -EINVAL; 3997 3998 out: 3999 mutex_unlock(&memcg_create_mutex); 4000 4001 return retval; 4002 } 4003 4004 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg, 4005 enum mem_cgroup_stat_index idx) 4006 { 4007 struct mem_cgroup *iter; 4008 long val = 0; 4009 4010 /* Per-cpu values can be negative, use a signed accumulator */ 4011 for_each_mem_cgroup_tree(iter, memcg) 4012 val += mem_cgroup_read_stat(iter, idx); 4013 4014 if (val < 0) /* race ? */ 4015 val = 0; 4016 return val; 4017 } 4018 4019 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 4020 { 4021 u64 val; 4022 4023 if (!mem_cgroup_is_root(memcg)) { 4024 if (!swap) 4025 return res_counter_read_u64(&memcg->res, RES_USAGE); 4026 else 4027 return res_counter_read_u64(&memcg->memsw, RES_USAGE); 4028 } 4029 4030 /* 4031 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS 4032 * as well as in MEM_CGROUP_STAT_RSS_HUGE. 4033 */ 4034 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE); 4035 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS); 4036 4037 if (swap) 4038 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP); 4039 4040 return val << PAGE_SHIFT; 4041 } 4042 4043 4044 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css, 4045 struct cftype *cft) 4046 { 4047 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4048 enum res_type type = MEMFILE_TYPE(cft->private); 4049 int name = MEMFILE_ATTR(cft->private); 4050 4051 switch (type) { 4052 case _MEM: 4053 if (name == RES_USAGE) 4054 return mem_cgroup_usage(memcg, false); 4055 return res_counter_read_u64(&memcg->res, name); 4056 case _MEMSWAP: 4057 if (name == RES_USAGE) 4058 return mem_cgroup_usage(memcg, true); 4059 return res_counter_read_u64(&memcg->memsw, name); 4060 case _KMEM: 4061 return res_counter_read_u64(&memcg->kmem, name); 4062 break; 4063 default: 4064 BUG(); 4065 } 4066 } 4067 4068 #ifdef CONFIG_MEMCG_KMEM 4069 /* should be called with activate_kmem_mutex held */ 4070 static int __memcg_activate_kmem(struct mem_cgroup *memcg, 4071 unsigned long long limit) 4072 { 4073 int err = 0; 4074 int memcg_id; 4075 4076 if (memcg_kmem_is_active(memcg)) 4077 return 0; 4078 4079 /* 4080 * We are going to allocate memory for data shared by all memory 4081 * cgroups so let's stop accounting here. 4082 */ 4083 memcg_stop_kmem_account(); 4084 4085 /* 4086 * For simplicity, we won't allow this to be disabled. It also can't 4087 * be changed if the cgroup has children already, or if tasks had 4088 * already joined. 4089 * 4090 * If tasks join before we set the limit, a person looking at 4091 * kmem.usage_in_bytes will have no way to determine when it took 4092 * place, which makes the value quite meaningless. 4093 * 4094 * After it first became limited, changes in the value of the limit are 4095 * of course permitted. 4096 */ 4097 mutex_lock(&memcg_create_mutex); 4098 if (cgroup_has_tasks(memcg->css.cgroup) || 4099 (memcg->use_hierarchy && memcg_has_children(memcg))) 4100 err = -EBUSY; 4101 mutex_unlock(&memcg_create_mutex); 4102 if (err) 4103 goto out; 4104 4105 memcg_id = memcg_alloc_cache_id(); 4106 if (memcg_id < 0) { 4107 err = memcg_id; 4108 goto out; 4109 } 4110 4111 memcg->kmemcg_id = memcg_id; 4112 INIT_LIST_HEAD(&memcg->memcg_slab_caches); 4113 4114 /* 4115 * We couldn't have accounted to this cgroup, because it hasn't got the 4116 * active bit set yet, so this should succeed. 4117 */ 4118 err = res_counter_set_limit(&memcg->kmem, limit); 4119 VM_BUG_ON(err); 4120 4121 static_key_slow_inc(&memcg_kmem_enabled_key); 4122 /* 4123 * Setting the active bit after enabling static branching will 4124 * guarantee no one starts accounting before all call sites are 4125 * patched. 4126 */ 4127 memcg_kmem_set_active(memcg); 4128 out: 4129 memcg_resume_kmem_account(); 4130 return err; 4131 } 4132 4133 static int memcg_activate_kmem(struct mem_cgroup *memcg, 4134 unsigned long long limit) 4135 { 4136 int ret; 4137 4138 mutex_lock(&activate_kmem_mutex); 4139 ret = __memcg_activate_kmem(memcg, limit); 4140 mutex_unlock(&activate_kmem_mutex); 4141 return ret; 4142 } 4143 4144 static int memcg_update_kmem_limit(struct mem_cgroup *memcg, 4145 unsigned long long val) 4146 { 4147 int ret; 4148 4149 if (!memcg_kmem_is_active(memcg)) 4150 ret = memcg_activate_kmem(memcg, val); 4151 else 4152 ret = res_counter_set_limit(&memcg->kmem, val); 4153 return ret; 4154 } 4155 4156 static int memcg_propagate_kmem(struct mem_cgroup *memcg) 4157 { 4158 int ret = 0; 4159 struct mem_cgroup *parent = parent_mem_cgroup(memcg); 4160 4161 if (!parent) 4162 return 0; 4163 4164 mutex_lock(&activate_kmem_mutex); 4165 /* 4166 * If the parent cgroup is not kmem-active now, it cannot be activated 4167 * after this point, because it has at least one child already. 4168 */ 4169 if (memcg_kmem_is_active(parent)) 4170 ret = __memcg_activate_kmem(memcg, RES_COUNTER_MAX); 4171 mutex_unlock(&activate_kmem_mutex); 4172 return ret; 4173 } 4174 #else 4175 static int memcg_update_kmem_limit(struct mem_cgroup *memcg, 4176 unsigned long long val) 4177 { 4178 return -EINVAL; 4179 } 4180 #endif /* CONFIG_MEMCG_KMEM */ 4181 4182 /* 4183 * The user of this function is... 4184 * RES_LIMIT. 4185 */ 4186 static ssize_t mem_cgroup_write(struct kernfs_open_file *of, 4187 char *buf, size_t nbytes, loff_t off) 4188 { 4189 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4190 enum res_type type; 4191 int name; 4192 unsigned long long val; 4193 int ret; 4194 4195 buf = strstrip(buf); 4196 type = MEMFILE_TYPE(of_cft(of)->private); 4197 name = MEMFILE_ATTR(of_cft(of)->private); 4198 4199 switch (name) { 4200 case RES_LIMIT: 4201 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 4202 ret = -EINVAL; 4203 break; 4204 } 4205 /* This function does all necessary parse...reuse it */ 4206 ret = res_counter_memparse_write_strategy(buf, &val); 4207 if (ret) 4208 break; 4209 if (type == _MEM) 4210 ret = mem_cgroup_resize_limit(memcg, val); 4211 else if (type == _MEMSWAP) 4212 ret = mem_cgroup_resize_memsw_limit(memcg, val); 4213 else if (type == _KMEM) 4214 ret = memcg_update_kmem_limit(memcg, val); 4215 else 4216 return -EINVAL; 4217 break; 4218 case RES_SOFT_LIMIT: 4219 ret = res_counter_memparse_write_strategy(buf, &val); 4220 if (ret) 4221 break; 4222 /* 4223 * For memsw, soft limits are hard to implement in terms 4224 * of semantics, for now, we support soft limits for 4225 * control without swap 4226 */ 4227 if (type == _MEM) 4228 ret = res_counter_set_soft_limit(&memcg->res, val); 4229 else 4230 ret = -EINVAL; 4231 break; 4232 default: 4233 ret = -EINVAL; /* should be BUG() ? */ 4234 break; 4235 } 4236 return ret ?: nbytes; 4237 } 4238 4239 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg, 4240 unsigned long long *mem_limit, unsigned long long *memsw_limit) 4241 { 4242 unsigned long long min_limit, min_memsw_limit, tmp; 4243 4244 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT); 4245 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 4246 if (!memcg->use_hierarchy) 4247 goto out; 4248 4249 while (memcg->css.parent) { 4250 memcg = mem_cgroup_from_css(memcg->css.parent); 4251 if (!memcg->use_hierarchy) 4252 break; 4253 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT); 4254 min_limit = min(min_limit, tmp); 4255 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 4256 min_memsw_limit = min(min_memsw_limit, tmp); 4257 } 4258 out: 4259 *mem_limit = min_limit; 4260 *memsw_limit = min_memsw_limit; 4261 } 4262 4263 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf, 4264 size_t nbytes, loff_t off) 4265 { 4266 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4267 int name; 4268 enum res_type type; 4269 4270 type = MEMFILE_TYPE(of_cft(of)->private); 4271 name = MEMFILE_ATTR(of_cft(of)->private); 4272 4273 switch (name) { 4274 case RES_MAX_USAGE: 4275 if (type == _MEM) 4276 res_counter_reset_max(&memcg->res); 4277 else if (type == _MEMSWAP) 4278 res_counter_reset_max(&memcg->memsw); 4279 else if (type == _KMEM) 4280 res_counter_reset_max(&memcg->kmem); 4281 else 4282 return -EINVAL; 4283 break; 4284 case RES_FAILCNT: 4285 if (type == _MEM) 4286 res_counter_reset_failcnt(&memcg->res); 4287 else if (type == _MEMSWAP) 4288 res_counter_reset_failcnt(&memcg->memsw); 4289 else if (type == _KMEM) 4290 res_counter_reset_failcnt(&memcg->kmem); 4291 else 4292 return -EINVAL; 4293 break; 4294 } 4295 4296 return nbytes; 4297 } 4298 4299 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, 4300 struct cftype *cft) 4301 { 4302 return mem_cgroup_from_css(css)->move_charge_at_immigrate; 4303 } 4304 4305 #ifdef CONFIG_MMU 4306 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 4307 struct cftype *cft, u64 val) 4308 { 4309 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4310 4311 if (val >= (1 << NR_MOVE_TYPE)) 4312 return -EINVAL; 4313 4314 /* 4315 * No kind of locking is needed in here, because ->can_attach() will 4316 * check this value once in the beginning of the process, and then carry 4317 * on with stale data. This means that changes to this value will only 4318 * affect task migrations starting after the change. 4319 */ 4320 memcg->move_charge_at_immigrate = val; 4321 return 0; 4322 } 4323 #else 4324 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 4325 struct cftype *cft, u64 val) 4326 { 4327 return -ENOSYS; 4328 } 4329 #endif 4330 4331 #ifdef CONFIG_NUMA 4332 static int memcg_numa_stat_show(struct seq_file *m, void *v) 4333 { 4334 struct numa_stat { 4335 const char *name; 4336 unsigned int lru_mask; 4337 }; 4338 4339 static const struct numa_stat stats[] = { 4340 { "total", LRU_ALL }, 4341 { "file", LRU_ALL_FILE }, 4342 { "anon", LRU_ALL_ANON }, 4343 { "unevictable", BIT(LRU_UNEVICTABLE) }, 4344 }; 4345 const struct numa_stat *stat; 4346 int nid; 4347 unsigned long nr; 4348 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 4349 4350 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 4351 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask); 4352 seq_printf(m, "%s=%lu", stat->name, nr); 4353 for_each_node_state(nid, N_MEMORY) { 4354 nr = mem_cgroup_node_nr_lru_pages(memcg, nid, 4355 stat->lru_mask); 4356 seq_printf(m, " N%d=%lu", nid, nr); 4357 } 4358 seq_putc(m, '\n'); 4359 } 4360 4361 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 4362 struct mem_cgroup *iter; 4363 4364 nr = 0; 4365 for_each_mem_cgroup_tree(iter, memcg) 4366 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask); 4367 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr); 4368 for_each_node_state(nid, N_MEMORY) { 4369 nr = 0; 4370 for_each_mem_cgroup_tree(iter, memcg) 4371 nr += mem_cgroup_node_nr_lru_pages( 4372 iter, nid, stat->lru_mask); 4373 seq_printf(m, " N%d=%lu", nid, nr); 4374 } 4375 seq_putc(m, '\n'); 4376 } 4377 4378 return 0; 4379 } 4380 #endif /* CONFIG_NUMA */ 4381 4382 static inline void mem_cgroup_lru_names_not_uptodate(void) 4383 { 4384 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS); 4385 } 4386 4387 static int memcg_stat_show(struct seq_file *m, void *v) 4388 { 4389 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 4390 struct mem_cgroup *mi; 4391 unsigned int i; 4392 4393 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 4394 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) 4395 continue; 4396 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i], 4397 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE); 4398 } 4399 4400 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) 4401 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i], 4402 mem_cgroup_read_events(memcg, i)); 4403 4404 for (i = 0; i < NR_LRU_LISTS; i++) 4405 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i], 4406 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE); 4407 4408 /* Hierarchical information */ 4409 { 4410 unsigned long long limit, memsw_limit; 4411 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit); 4412 seq_printf(m, "hierarchical_memory_limit %llu\n", limit); 4413 if (do_swap_account) 4414 seq_printf(m, "hierarchical_memsw_limit %llu\n", 4415 memsw_limit); 4416 } 4417 4418 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 4419 long long val = 0; 4420 4421 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) 4422 continue; 4423 for_each_mem_cgroup_tree(mi, memcg) 4424 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE; 4425 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val); 4426 } 4427 4428 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) { 4429 unsigned long long val = 0; 4430 4431 for_each_mem_cgroup_tree(mi, memcg) 4432 val += mem_cgroup_read_events(mi, i); 4433 seq_printf(m, "total_%s %llu\n", 4434 mem_cgroup_events_names[i], val); 4435 } 4436 4437 for (i = 0; i < NR_LRU_LISTS; i++) { 4438 unsigned long long val = 0; 4439 4440 for_each_mem_cgroup_tree(mi, memcg) 4441 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE; 4442 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val); 4443 } 4444 4445 #ifdef CONFIG_DEBUG_VM 4446 { 4447 int nid, zid; 4448 struct mem_cgroup_per_zone *mz; 4449 struct zone_reclaim_stat *rstat; 4450 unsigned long recent_rotated[2] = {0, 0}; 4451 unsigned long recent_scanned[2] = {0, 0}; 4452 4453 for_each_online_node(nid) 4454 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 4455 mz = &memcg->nodeinfo[nid]->zoneinfo[zid]; 4456 rstat = &mz->lruvec.reclaim_stat; 4457 4458 recent_rotated[0] += rstat->recent_rotated[0]; 4459 recent_rotated[1] += rstat->recent_rotated[1]; 4460 recent_scanned[0] += rstat->recent_scanned[0]; 4461 recent_scanned[1] += rstat->recent_scanned[1]; 4462 } 4463 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]); 4464 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]); 4465 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]); 4466 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]); 4467 } 4468 #endif 4469 4470 return 0; 4471 } 4472 4473 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, 4474 struct cftype *cft) 4475 { 4476 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4477 4478 return mem_cgroup_swappiness(memcg); 4479 } 4480 4481 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, 4482 struct cftype *cft, u64 val) 4483 { 4484 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4485 4486 if (val > 100) 4487 return -EINVAL; 4488 4489 if (css->parent) 4490 memcg->swappiness = val; 4491 else 4492 vm_swappiness = val; 4493 4494 return 0; 4495 } 4496 4497 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 4498 { 4499 struct mem_cgroup_threshold_ary *t; 4500 u64 usage; 4501 int i; 4502 4503 rcu_read_lock(); 4504 if (!swap) 4505 t = rcu_dereference(memcg->thresholds.primary); 4506 else 4507 t = rcu_dereference(memcg->memsw_thresholds.primary); 4508 4509 if (!t) 4510 goto unlock; 4511 4512 usage = mem_cgroup_usage(memcg, swap); 4513 4514 /* 4515 * current_threshold points to threshold just below or equal to usage. 4516 * If it's not true, a threshold was crossed after last 4517 * call of __mem_cgroup_threshold(). 4518 */ 4519 i = t->current_threshold; 4520 4521 /* 4522 * Iterate backward over array of thresholds starting from 4523 * current_threshold and check if a threshold is crossed. 4524 * If none of thresholds below usage is crossed, we read 4525 * only one element of the array here. 4526 */ 4527 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 4528 eventfd_signal(t->entries[i].eventfd, 1); 4529 4530 /* i = current_threshold + 1 */ 4531 i++; 4532 4533 /* 4534 * Iterate forward over array of thresholds starting from 4535 * current_threshold+1 and check if a threshold is crossed. 4536 * If none of thresholds above usage is crossed, we read 4537 * only one element of the array here. 4538 */ 4539 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 4540 eventfd_signal(t->entries[i].eventfd, 1); 4541 4542 /* Update current_threshold */ 4543 t->current_threshold = i - 1; 4544 unlock: 4545 rcu_read_unlock(); 4546 } 4547 4548 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 4549 { 4550 while (memcg) { 4551 __mem_cgroup_threshold(memcg, false); 4552 if (do_swap_account) 4553 __mem_cgroup_threshold(memcg, true); 4554 4555 memcg = parent_mem_cgroup(memcg); 4556 } 4557 } 4558 4559 static int compare_thresholds(const void *a, const void *b) 4560 { 4561 const struct mem_cgroup_threshold *_a = a; 4562 const struct mem_cgroup_threshold *_b = b; 4563 4564 if (_a->threshold > _b->threshold) 4565 return 1; 4566 4567 if (_a->threshold < _b->threshold) 4568 return -1; 4569 4570 return 0; 4571 } 4572 4573 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 4574 { 4575 struct mem_cgroup_eventfd_list *ev; 4576 4577 spin_lock(&memcg_oom_lock); 4578 4579 list_for_each_entry(ev, &memcg->oom_notify, list) 4580 eventfd_signal(ev->eventfd, 1); 4581 4582 spin_unlock(&memcg_oom_lock); 4583 return 0; 4584 } 4585 4586 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 4587 { 4588 struct mem_cgroup *iter; 4589 4590 for_each_mem_cgroup_tree(iter, memcg) 4591 mem_cgroup_oom_notify_cb(iter); 4592 } 4593 4594 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 4595 struct eventfd_ctx *eventfd, const char *args, enum res_type type) 4596 { 4597 struct mem_cgroup_thresholds *thresholds; 4598 struct mem_cgroup_threshold_ary *new; 4599 u64 threshold, usage; 4600 int i, size, ret; 4601 4602 ret = res_counter_memparse_write_strategy(args, &threshold); 4603 if (ret) 4604 return ret; 4605 4606 mutex_lock(&memcg->thresholds_lock); 4607 4608 if (type == _MEM) { 4609 thresholds = &memcg->thresholds; 4610 usage = mem_cgroup_usage(memcg, false); 4611 } else if (type == _MEMSWAP) { 4612 thresholds = &memcg->memsw_thresholds; 4613 usage = mem_cgroup_usage(memcg, true); 4614 } else 4615 BUG(); 4616 4617 /* Check if a threshold crossed before adding a new one */ 4618 if (thresholds->primary) 4619 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4620 4621 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 4622 4623 /* Allocate memory for new array of thresholds */ 4624 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold), 4625 GFP_KERNEL); 4626 if (!new) { 4627 ret = -ENOMEM; 4628 goto unlock; 4629 } 4630 new->size = size; 4631 4632 /* Copy thresholds (if any) to new array */ 4633 if (thresholds->primary) { 4634 memcpy(new->entries, thresholds->primary->entries, (size - 1) * 4635 sizeof(struct mem_cgroup_threshold)); 4636 } 4637 4638 /* Add new threshold */ 4639 new->entries[size - 1].eventfd = eventfd; 4640 new->entries[size - 1].threshold = threshold; 4641 4642 /* Sort thresholds. Registering of new threshold isn't time-critical */ 4643 sort(new->entries, size, sizeof(struct mem_cgroup_threshold), 4644 compare_thresholds, NULL); 4645 4646 /* Find current threshold */ 4647 new->current_threshold = -1; 4648 for (i = 0; i < size; i++) { 4649 if (new->entries[i].threshold <= usage) { 4650 /* 4651 * new->current_threshold will not be used until 4652 * rcu_assign_pointer(), so it's safe to increment 4653 * it here. 4654 */ 4655 ++new->current_threshold; 4656 } else 4657 break; 4658 } 4659 4660 /* Free old spare buffer and save old primary buffer as spare */ 4661 kfree(thresholds->spare); 4662 thresholds->spare = thresholds->primary; 4663 4664 rcu_assign_pointer(thresholds->primary, new); 4665 4666 /* To be sure that nobody uses thresholds */ 4667 synchronize_rcu(); 4668 4669 unlock: 4670 mutex_unlock(&memcg->thresholds_lock); 4671 4672 return ret; 4673 } 4674 4675 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 4676 struct eventfd_ctx *eventfd, const char *args) 4677 { 4678 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM); 4679 } 4680 4681 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg, 4682 struct eventfd_ctx *eventfd, const char *args) 4683 { 4684 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP); 4685 } 4686 4687 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4688 struct eventfd_ctx *eventfd, enum res_type type) 4689 { 4690 struct mem_cgroup_thresholds *thresholds; 4691 struct mem_cgroup_threshold_ary *new; 4692 u64 usage; 4693 int i, j, size; 4694 4695 mutex_lock(&memcg->thresholds_lock); 4696 4697 if (type == _MEM) { 4698 thresholds = &memcg->thresholds; 4699 usage = mem_cgroup_usage(memcg, false); 4700 } else if (type == _MEMSWAP) { 4701 thresholds = &memcg->memsw_thresholds; 4702 usage = mem_cgroup_usage(memcg, true); 4703 } else 4704 BUG(); 4705 4706 if (!thresholds->primary) 4707 goto unlock; 4708 4709 /* Check if a threshold crossed before removing */ 4710 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4711 4712 /* Calculate new number of threshold */ 4713 size = 0; 4714 for (i = 0; i < thresholds->primary->size; i++) { 4715 if (thresholds->primary->entries[i].eventfd != eventfd) 4716 size++; 4717 } 4718 4719 new = thresholds->spare; 4720 4721 /* Set thresholds array to NULL if we don't have thresholds */ 4722 if (!size) { 4723 kfree(new); 4724 new = NULL; 4725 goto swap_buffers; 4726 } 4727 4728 new->size = size; 4729 4730 /* Copy thresholds and find current threshold */ 4731 new->current_threshold = -1; 4732 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 4733 if (thresholds->primary->entries[i].eventfd == eventfd) 4734 continue; 4735 4736 new->entries[j] = thresholds->primary->entries[i]; 4737 if (new->entries[j].threshold <= usage) { 4738 /* 4739 * new->current_threshold will not be used 4740 * until rcu_assign_pointer(), so it's safe to increment 4741 * it here. 4742 */ 4743 ++new->current_threshold; 4744 } 4745 j++; 4746 } 4747 4748 swap_buffers: 4749 /* Swap primary and spare array */ 4750 thresholds->spare = thresholds->primary; 4751 /* If all events are unregistered, free the spare array */ 4752 if (!new) { 4753 kfree(thresholds->spare); 4754 thresholds->spare = NULL; 4755 } 4756 4757 rcu_assign_pointer(thresholds->primary, new); 4758 4759 /* To be sure that nobody uses thresholds */ 4760 synchronize_rcu(); 4761 unlock: 4762 mutex_unlock(&memcg->thresholds_lock); 4763 } 4764 4765 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4766 struct eventfd_ctx *eventfd) 4767 { 4768 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM); 4769 } 4770 4771 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4772 struct eventfd_ctx *eventfd) 4773 { 4774 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP); 4775 } 4776 4777 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg, 4778 struct eventfd_ctx *eventfd, const char *args) 4779 { 4780 struct mem_cgroup_eventfd_list *event; 4781 4782 event = kmalloc(sizeof(*event), GFP_KERNEL); 4783 if (!event) 4784 return -ENOMEM; 4785 4786 spin_lock(&memcg_oom_lock); 4787 4788 event->eventfd = eventfd; 4789 list_add(&event->list, &memcg->oom_notify); 4790 4791 /* already in OOM ? */ 4792 if (atomic_read(&memcg->under_oom)) 4793 eventfd_signal(eventfd, 1); 4794 spin_unlock(&memcg_oom_lock); 4795 4796 return 0; 4797 } 4798 4799 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg, 4800 struct eventfd_ctx *eventfd) 4801 { 4802 struct mem_cgroup_eventfd_list *ev, *tmp; 4803 4804 spin_lock(&memcg_oom_lock); 4805 4806 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 4807 if (ev->eventfd == eventfd) { 4808 list_del(&ev->list); 4809 kfree(ev); 4810 } 4811 } 4812 4813 spin_unlock(&memcg_oom_lock); 4814 } 4815 4816 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v) 4817 { 4818 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf)); 4819 4820 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable); 4821 seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom)); 4822 return 0; 4823 } 4824 4825 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, 4826 struct cftype *cft, u64 val) 4827 { 4828 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4829 4830 /* cannot set to root cgroup and only 0 and 1 are allowed */ 4831 if (!css->parent || !((val == 0) || (val == 1))) 4832 return -EINVAL; 4833 4834 memcg->oom_kill_disable = val; 4835 if (!val) 4836 memcg_oom_recover(memcg); 4837 4838 return 0; 4839 } 4840 4841 #ifdef CONFIG_MEMCG_KMEM 4842 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss) 4843 { 4844 int ret; 4845 4846 memcg->kmemcg_id = -1; 4847 ret = memcg_propagate_kmem(memcg); 4848 if (ret) 4849 return ret; 4850 4851 return mem_cgroup_sockets_init(memcg, ss); 4852 } 4853 4854 static void memcg_destroy_kmem(struct mem_cgroup *memcg) 4855 { 4856 mem_cgroup_sockets_destroy(memcg); 4857 } 4858 4859 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg) 4860 { 4861 if (!memcg_kmem_is_active(memcg)) 4862 return; 4863 4864 /* 4865 * kmem charges can outlive the cgroup. In the case of slab 4866 * pages, for instance, a page contain objects from various 4867 * processes. As we prevent from taking a reference for every 4868 * such allocation we have to be careful when doing uncharge 4869 * (see memcg_uncharge_kmem) and here during offlining. 4870 * 4871 * The idea is that that only the _last_ uncharge which sees 4872 * the dead memcg will drop the last reference. An additional 4873 * reference is taken here before the group is marked dead 4874 * which is then paired with css_put during uncharge resp. here. 4875 * 4876 * Although this might sound strange as this path is called from 4877 * css_offline() when the referencemight have dropped down to 0 and 4878 * shouldn't be incremented anymore (css_tryget_online() would 4879 * fail) we do not have other options because of the kmem 4880 * allocations lifetime. 4881 */ 4882 css_get(&memcg->css); 4883 4884 memcg_kmem_mark_dead(memcg); 4885 4886 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0) 4887 return; 4888 4889 if (memcg_kmem_test_and_clear_dead(memcg)) 4890 css_put(&memcg->css); 4891 } 4892 #else 4893 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss) 4894 { 4895 return 0; 4896 } 4897 4898 static void memcg_destroy_kmem(struct mem_cgroup *memcg) 4899 { 4900 } 4901 4902 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg) 4903 { 4904 } 4905 #endif 4906 4907 /* 4908 * DO NOT USE IN NEW FILES. 4909 * 4910 * "cgroup.event_control" implementation. 4911 * 4912 * This is way over-engineered. It tries to support fully configurable 4913 * events for each user. Such level of flexibility is completely 4914 * unnecessary especially in the light of the planned unified hierarchy. 4915 * 4916 * Please deprecate this and replace with something simpler if at all 4917 * possible. 4918 */ 4919 4920 /* 4921 * Unregister event and free resources. 4922 * 4923 * Gets called from workqueue. 4924 */ 4925 static void memcg_event_remove(struct work_struct *work) 4926 { 4927 struct mem_cgroup_event *event = 4928 container_of(work, struct mem_cgroup_event, remove); 4929 struct mem_cgroup *memcg = event->memcg; 4930 4931 remove_wait_queue(event->wqh, &event->wait); 4932 4933 event->unregister_event(memcg, event->eventfd); 4934 4935 /* Notify userspace the event is going away. */ 4936 eventfd_signal(event->eventfd, 1); 4937 4938 eventfd_ctx_put(event->eventfd); 4939 kfree(event); 4940 css_put(&memcg->css); 4941 } 4942 4943 /* 4944 * Gets called on POLLHUP on eventfd when user closes it. 4945 * 4946 * Called with wqh->lock held and interrupts disabled. 4947 */ 4948 static int memcg_event_wake(wait_queue_t *wait, unsigned mode, 4949 int sync, void *key) 4950 { 4951 struct mem_cgroup_event *event = 4952 container_of(wait, struct mem_cgroup_event, wait); 4953 struct mem_cgroup *memcg = event->memcg; 4954 unsigned long flags = (unsigned long)key; 4955 4956 if (flags & POLLHUP) { 4957 /* 4958 * If the event has been detached at cgroup removal, we 4959 * can simply return knowing the other side will cleanup 4960 * for us. 4961 * 4962 * We can't race against event freeing since the other 4963 * side will require wqh->lock via remove_wait_queue(), 4964 * which we hold. 4965 */ 4966 spin_lock(&memcg->event_list_lock); 4967 if (!list_empty(&event->list)) { 4968 list_del_init(&event->list); 4969 /* 4970 * We are in atomic context, but cgroup_event_remove() 4971 * may sleep, so we have to call it in workqueue. 4972 */ 4973 schedule_work(&event->remove); 4974 } 4975 spin_unlock(&memcg->event_list_lock); 4976 } 4977 4978 return 0; 4979 } 4980 4981 static void memcg_event_ptable_queue_proc(struct file *file, 4982 wait_queue_head_t *wqh, poll_table *pt) 4983 { 4984 struct mem_cgroup_event *event = 4985 container_of(pt, struct mem_cgroup_event, pt); 4986 4987 event->wqh = wqh; 4988 add_wait_queue(wqh, &event->wait); 4989 } 4990 4991 /* 4992 * DO NOT USE IN NEW FILES. 4993 * 4994 * Parse input and register new cgroup event handler. 4995 * 4996 * Input must be in format '<event_fd> <control_fd> <args>'. 4997 * Interpretation of args is defined by control file implementation. 4998 */ 4999 static ssize_t memcg_write_event_control(struct kernfs_open_file *of, 5000 char *buf, size_t nbytes, loff_t off) 5001 { 5002 struct cgroup_subsys_state *css = of_css(of); 5003 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5004 struct mem_cgroup_event *event; 5005 struct cgroup_subsys_state *cfile_css; 5006 unsigned int efd, cfd; 5007 struct fd efile; 5008 struct fd cfile; 5009 const char *name; 5010 char *endp; 5011 int ret; 5012 5013 buf = strstrip(buf); 5014 5015 efd = simple_strtoul(buf, &endp, 10); 5016 if (*endp != ' ') 5017 return -EINVAL; 5018 buf = endp + 1; 5019 5020 cfd = simple_strtoul(buf, &endp, 10); 5021 if ((*endp != ' ') && (*endp != '\0')) 5022 return -EINVAL; 5023 buf = endp + 1; 5024 5025 event = kzalloc(sizeof(*event), GFP_KERNEL); 5026 if (!event) 5027 return -ENOMEM; 5028 5029 event->memcg = memcg; 5030 INIT_LIST_HEAD(&event->list); 5031 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc); 5032 init_waitqueue_func_entry(&event->wait, memcg_event_wake); 5033 INIT_WORK(&event->remove, memcg_event_remove); 5034 5035 efile = fdget(efd); 5036 if (!efile.file) { 5037 ret = -EBADF; 5038 goto out_kfree; 5039 } 5040 5041 event->eventfd = eventfd_ctx_fileget(efile.file); 5042 if (IS_ERR(event->eventfd)) { 5043 ret = PTR_ERR(event->eventfd); 5044 goto out_put_efile; 5045 } 5046 5047 cfile = fdget(cfd); 5048 if (!cfile.file) { 5049 ret = -EBADF; 5050 goto out_put_eventfd; 5051 } 5052 5053 /* the process need read permission on control file */ 5054 /* AV: shouldn't we check that it's been opened for read instead? */ 5055 ret = inode_permission(file_inode(cfile.file), MAY_READ); 5056 if (ret < 0) 5057 goto out_put_cfile; 5058 5059 /* 5060 * Determine the event callbacks and set them in @event. This used 5061 * to be done via struct cftype but cgroup core no longer knows 5062 * about these events. The following is crude but the whole thing 5063 * is for compatibility anyway. 5064 * 5065 * DO NOT ADD NEW FILES. 5066 */ 5067 name = cfile.file->f_dentry->d_name.name; 5068 5069 if (!strcmp(name, "memory.usage_in_bytes")) { 5070 event->register_event = mem_cgroup_usage_register_event; 5071 event->unregister_event = mem_cgroup_usage_unregister_event; 5072 } else if (!strcmp(name, "memory.oom_control")) { 5073 event->register_event = mem_cgroup_oom_register_event; 5074 event->unregister_event = mem_cgroup_oom_unregister_event; 5075 } else if (!strcmp(name, "memory.pressure_level")) { 5076 event->register_event = vmpressure_register_event; 5077 event->unregister_event = vmpressure_unregister_event; 5078 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) { 5079 event->register_event = memsw_cgroup_usage_register_event; 5080 event->unregister_event = memsw_cgroup_usage_unregister_event; 5081 } else { 5082 ret = -EINVAL; 5083 goto out_put_cfile; 5084 } 5085 5086 /* 5087 * Verify @cfile should belong to @css. Also, remaining events are 5088 * automatically removed on cgroup destruction but the removal is 5089 * asynchronous, so take an extra ref on @css. 5090 */ 5091 cfile_css = css_tryget_online_from_dir(cfile.file->f_dentry->d_parent, 5092 &memory_cgrp_subsys); 5093 ret = -EINVAL; 5094 if (IS_ERR(cfile_css)) 5095 goto out_put_cfile; 5096 if (cfile_css != css) { 5097 css_put(cfile_css); 5098 goto out_put_cfile; 5099 } 5100 5101 ret = event->register_event(memcg, event->eventfd, buf); 5102 if (ret) 5103 goto out_put_css; 5104 5105 efile.file->f_op->poll(efile.file, &event->pt); 5106 5107 spin_lock(&memcg->event_list_lock); 5108 list_add(&event->list, &memcg->event_list); 5109 spin_unlock(&memcg->event_list_lock); 5110 5111 fdput(cfile); 5112 fdput(efile); 5113 5114 return nbytes; 5115 5116 out_put_css: 5117 css_put(css); 5118 out_put_cfile: 5119 fdput(cfile); 5120 out_put_eventfd: 5121 eventfd_ctx_put(event->eventfd); 5122 out_put_efile: 5123 fdput(efile); 5124 out_kfree: 5125 kfree(event); 5126 5127 return ret; 5128 } 5129 5130 static struct cftype mem_cgroup_files[] = { 5131 { 5132 .name = "usage_in_bytes", 5133 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 5134 .read_u64 = mem_cgroup_read_u64, 5135 }, 5136 { 5137 .name = "max_usage_in_bytes", 5138 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 5139 .write = mem_cgroup_reset, 5140 .read_u64 = mem_cgroup_read_u64, 5141 }, 5142 { 5143 .name = "limit_in_bytes", 5144 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 5145 .write = mem_cgroup_write, 5146 .read_u64 = mem_cgroup_read_u64, 5147 }, 5148 { 5149 .name = "soft_limit_in_bytes", 5150 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 5151 .write = mem_cgroup_write, 5152 .read_u64 = mem_cgroup_read_u64, 5153 }, 5154 { 5155 .name = "failcnt", 5156 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 5157 .write = mem_cgroup_reset, 5158 .read_u64 = mem_cgroup_read_u64, 5159 }, 5160 { 5161 .name = "stat", 5162 .seq_show = memcg_stat_show, 5163 }, 5164 { 5165 .name = "force_empty", 5166 .write = mem_cgroup_force_empty_write, 5167 }, 5168 { 5169 .name = "use_hierarchy", 5170 .write_u64 = mem_cgroup_hierarchy_write, 5171 .read_u64 = mem_cgroup_hierarchy_read, 5172 }, 5173 { 5174 .name = "cgroup.event_control", /* XXX: for compat */ 5175 .write = memcg_write_event_control, 5176 .flags = CFTYPE_NO_PREFIX, 5177 .mode = S_IWUGO, 5178 }, 5179 { 5180 .name = "swappiness", 5181 .read_u64 = mem_cgroup_swappiness_read, 5182 .write_u64 = mem_cgroup_swappiness_write, 5183 }, 5184 { 5185 .name = "move_charge_at_immigrate", 5186 .read_u64 = mem_cgroup_move_charge_read, 5187 .write_u64 = mem_cgroup_move_charge_write, 5188 }, 5189 { 5190 .name = "oom_control", 5191 .seq_show = mem_cgroup_oom_control_read, 5192 .write_u64 = mem_cgroup_oom_control_write, 5193 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), 5194 }, 5195 { 5196 .name = "pressure_level", 5197 }, 5198 #ifdef CONFIG_NUMA 5199 { 5200 .name = "numa_stat", 5201 .seq_show = memcg_numa_stat_show, 5202 }, 5203 #endif 5204 #ifdef CONFIG_MEMCG_KMEM 5205 { 5206 .name = "kmem.limit_in_bytes", 5207 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), 5208 .write = mem_cgroup_write, 5209 .read_u64 = mem_cgroup_read_u64, 5210 }, 5211 { 5212 .name = "kmem.usage_in_bytes", 5213 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), 5214 .read_u64 = mem_cgroup_read_u64, 5215 }, 5216 { 5217 .name = "kmem.failcnt", 5218 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), 5219 .write = mem_cgroup_reset, 5220 .read_u64 = mem_cgroup_read_u64, 5221 }, 5222 { 5223 .name = "kmem.max_usage_in_bytes", 5224 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), 5225 .write = mem_cgroup_reset, 5226 .read_u64 = mem_cgroup_read_u64, 5227 }, 5228 #ifdef CONFIG_SLABINFO 5229 { 5230 .name = "kmem.slabinfo", 5231 .seq_show = mem_cgroup_slabinfo_read, 5232 }, 5233 #endif 5234 #endif 5235 { }, /* terminate */ 5236 }; 5237 5238 #ifdef CONFIG_MEMCG_SWAP 5239 static struct cftype memsw_cgroup_files[] = { 5240 { 5241 .name = "memsw.usage_in_bytes", 5242 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 5243 .read_u64 = mem_cgroup_read_u64, 5244 }, 5245 { 5246 .name = "memsw.max_usage_in_bytes", 5247 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 5248 .write = mem_cgroup_reset, 5249 .read_u64 = mem_cgroup_read_u64, 5250 }, 5251 { 5252 .name = "memsw.limit_in_bytes", 5253 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 5254 .write = mem_cgroup_write, 5255 .read_u64 = mem_cgroup_read_u64, 5256 }, 5257 { 5258 .name = "memsw.failcnt", 5259 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 5260 .write = mem_cgroup_reset, 5261 .read_u64 = mem_cgroup_read_u64, 5262 }, 5263 { }, /* terminate */ 5264 }; 5265 #endif 5266 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) 5267 { 5268 struct mem_cgroup_per_node *pn; 5269 struct mem_cgroup_per_zone *mz; 5270 int zone, tmp = node; 5271 /* 5272 * This routine is called against possible nodes. 5273 * But it's BUG to call kmalloc() against offline node. 5274 * 5275 * TODO: this routine can waste much memory for nodes which will 5276 * never be onlined. It's better to use memory hotplug callback 5277 * function. 5278 */ 5279 if (!node_state(node, N_NORMAL_MEMORY)) 5280 tmp = -1; 5281 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); 5282 if (!pn) 5283 return 1; 5284 5285 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 5286 mz = &pn->zoneinfo[zone]; 5287 lruvec_init(&mz->lruvec); 5288 mz->usage_in_excess = 0; 5289 mz->on_tree = false; 5290 mz->memcg = memcg; 5291 } 5292 memcg->nodeinfo[node] = pn; 5293 return 0; 5294 } 5295 5296 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) 5297 { 5298 kfree(memcg->nodeinfo[node]); 5299 } 5300 5301 static struct mem_cgroup *mem_cgroup_alloc(void) 5302 { 5303 struct mem_cgroup *memcg; 5304 size_t size; 5305 5306 size = sizeof(struct mem_cgroup); 5307 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *); 5308 5309 memcg = kzalloc(size, GFP_KERNEL); 5310 if (!memcg) 5311 return NULL; 5312 5313 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu); 5314 if (!memcg->stat) 5315 goto out_free; 5316 spin_lock_init(&memcg->pcp_counter_lock); 5317 return memcg; 5318 5319 out_free: 5320 kfree(memcg); 5321 return NULL; 5322 } 5323 5324 /* 5325 * At destroying mem_cgroup, references from swap_cgroup can remain. 5326 * (scanning all at force_empty is too costly...) 5327 * 5328 * Instead of clearing all references at force_empty, we remember 5329 * the number of reference from swap_cgroup and free mem_cgroup when 5330 * it goes down to 0. 5331 * 5332 * Removal of cgroup itself succeeds regardless of refs from swap. 5333 */ 5334 5335 static void __mem_cgroup_free(struct mem_cgroup *memcg) 5336 { 5337 int node; 5338 5339 mem_cgroup_remove_from_trees(memcg); 5340 5341 for_each_node(node) 5342 free_mem_cgroup_per_zone_info(memcg, node); 5343 5344 free_percpu(memcg->stat); 5345 5346 /* 5347 * We need to make sure that (at least for now), the jump label 5348 * destruction code runs outside of the cgroup lock. This is because 5349 * get_online_cpus(), which is called from the static_branch update, 5350 * can't be called inside the cgroup_lock. cpusets are the ones 5351 * enforcing this dependency, so if they ever change, we might as well. 5352 * 5353 * schedule_work() will guarantee this happens. Be careful if you need 5354 * to move this code around, and make sure it is outside 5355 * the cgroup_lock. 5356 */ 5357 disarm_static_keys(memcg); 5358 kfree(memcg); 5359 } 5360 5361 /* 5362 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled. 5363 */ 5364 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 5365 { 5366 if (!memcg->res.parent) 5367 return NULL; 5368 return mem_cgroup_from_res_counter(memcg->res.parent, res); 5369 } 5370 EXPORT_SYMBOL(parent_mem_cgroup); 5371 5372 static void __init mem_cgroup_soft_limit_tree_init(void) 5373 { 5374 struct mem_cgroup_tree_per_node *rtpn; 5375 struct mem_cgroup_tree_per_zone *rtpz; 5376 int tmp, node, zone; 5377 5378 for_each_node(node) { 5379 tmp = node; 5380 if (!node_state(node, N_NORMAL_MEMORY)) 5381 tmp = -1; 5382 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp); 5383 BUG_ON(!rtpn); 5384 5385 soft_limit_tree.rb_tree_per_node[node] = rtpn; 5386 5387 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 5388 rtpz = &rtpn->rb_tree_per_zone[zone]; 5389 rtpz->rb_root = RB_ROOT; 5390 spin_lock_init(&rtpz->lock); 5391 } 5392 } 5393 } 5394 5395 static struct cgroup_subsys_state * __ref 5396 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 5397 { 5398 struct mem_cgroup *memcg; 5399 long error = -ENOMEM; 5400 int node; 5401 5402 memcg = mem_cgroup_alloc(); 5403 if (!memcg) 5404 return ERR_PTR(error); 5405 5406 for_each_node(node) 5407 if (alloc_mem_cgroup_per_zone_info(memcg, node)) 5408 goto free_out; 5409 5410 /* root ? */ 5411 if (parent_css == NULL) { 5412 root_mem_cgroup = memcg; 5413 res_counter_init(&memcg->res, NULL); 5414 res_counter_init(&memcg->memsw, NULL); 5415 res_counter_init(&memcg->kmem, NULL); 5416 } 5417 5418 memcg->last_scanned_node = MAX_NUMNODES; 5419 INIT_LIST_HEAD(&memcg->oom_notify); 5420 memcg->move_charge_at_immigrate = 0; 5421 mutex_init(&memcg->thresholds_lock); 5422 spin_lock_init(&memcg->move_lock); 5423 vmpressure_init(&memcg->vmpressure); 5424 INIT_LIST_HEAD(&memcg->event_list); 5425 spin_lock_init(&memcg->event_list_lock); 5426 5427 return &memcg->css; 5428 5429 free_out: 5430 __mem_cgroup_free(memcg); 5431 return ERR_PTR(error); 5432 } 5433 5434 static int 5435 mem_cgroup_css_online(struct cgroup_subsys_state *css) 5436 { 5437 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5438 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent); 5439 int ret; 5440 5441 if (css->id > MEM_CGROUP_ID_MAX) 5442 return -ENOSPC; 5443 5444 if (!parent) 5445 return 0; 5446 5447 mutex_lock(&memcg_create_mutex); 5448 5449 memcg->use_hierarchy = parent->use_hierarchy; 5450 memcg->oom_kill_disable = parent->oom_kill_disable; 5451 memcg->swappiness = mem_cgroup_swappiness(parent); 5452 5453 if (parent->use_hierarchy) { 5454 res_counter_init(&memcg->res, &parent->res); 5455 res_counter_init(&memcg->memsw, &parent->memsw); 5456 res_counter_init(&memcg->kmem, &parent->kmem); 5457 5458 /* 5459 * No need to take a reference to the parent because cgroup 5460 * core guarantees its existence. 5461 */ 5462 } else { 5463 res_counter_init(&memcg->res, NULL); 5464 res_counter_init(&memcg->memsw, NULL); 5465 res_counter_init(&memcg->kmem, NULL); 5466 /* 5467 * Deeper hierachy with use_hierarchy == false doesn't make 5468 * much sense so let cgroup subsystem know about this 5469 * unfortunate state in our controller. 5470 */ 5471 if (parent != root_mem_cgroup) 5472 memory_cgrp_subsys.broken_hierarchy = true; 5473 } 5474 mutex_unlock(&memcg_create_mutex); 5475 5476 ret = memcg_init_kmem(memcg, &memory_cgrp_subsys); 5477 if (ret) 5478 return ret; 5479 5480 /* 5481 * Make sure the memcg is initialized: mem_cgroup_iter() 5482 * orders reading memcg->initialized against its callers 5483 * reading the memcg members. 5484 */ 5485 smp_store_release(&memcg->initialized, 1); 5486 5487 return 0; 5488 } 5489 5490 /* 5491 * Announce all parents that a group from their hierarchy is gone. 5492 */ 5493 static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg) 5494 { 5495 struct mem_cgroup *parent = memcg; 5496 5497 while ((parent = parent_mem_cgroup(parent))) 5498 mem_cgroup_iter_invalidate(parent); 5499 5500 /* 5501 * if the root memcg is not hierarchical we have to check it 5502 * explicitely. 5503 */ 5504 if (!root_mem_cgroup->use_hierarchy) 5505 mem_cgroup_iter_invalidate(root_mem_cgroup); 5506 } 5507 5508 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 5509 { 5510 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5511 struct mem_cgroup_event *event, *tmp; 5512 struct cgroup_subsys_state *iter; 5513 5514 /* 5515 * Unregister events and notify userspace. 5516 * Notify userspace about cgroup removing only after rmdir of cgroup 5517 * directory to avoid race between userspace and kernelspace. 5518 */ 5519 spin_lock(&memcg->event_list_lock); 5520 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) { 5521 list_del_init(&event->list); 5522 schedule_work(&event->remove); 5523 } 5524 spin_unlock(&memcg->event_list_lock); 5525 5526 kmem_cgroup_css_offline(memcg); 5527 5528 mem_cgroup_invalidate_reclaim_iterators(memcg); 5529 5530 /* 5531 * This requires that offlining is serialized. Right now that is 5532 * guaranteed because css_killed_work_fn() holds the cgroup_mutex. 5533 */ 5534 css_for_each_descendant_post(iter, css) 5535 mem_cgroup_reparent_charges(mem_cgroup_from_css(iter)); 5536 5537 memcg_unregister_all_caches(memcg); 5538 vmpressure_cleanup(&memcg->vmpressure); 5539 } 5540 5541 static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 5542 { 5543 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5544 /* 5545 * XXX: css_offline() would be where we should reparent all 5546 * memory to prepare the cgroup for destruction. However, 5547 * memcg does not do css_tryget_online() and res_counter charging 5548 * under the same RCU lock region, which means that charging 5549 * could race with offlining. Offlining only happens to 5550 * cgroups with no tasks in them but charges can show up 5551 * without any tasks from the swapin path when the target 5552 * memcg is looked up from the swapout record and not from the 5553 * current task as it usually is. A race like this can leak 5554 * charges and put pages with stale cgroup pointers into 5555 * circulation: 5556 * 5557 * #0 #1 5558 * lookup_swap_cgroup_id() 5559 * rcu_read_lock() 5560 * mem_cgroup_lookup() 5561 * css_tryget_online() 5562 * rcu_read_unlock() 5563 * disable css_tryget_online() 5564 * call_rcu() 5565 * offline_css() 5566 * reparent_charges() 5567 * res_counter_charge() 5568 * css_put() 5569 * css_free() 5570 * pc->mem_cgroup = dead memcg 5571 * add page to lru 5572 * 5573 * The bulk of the charges are still moved in offline_css() to 5574 * avoid pinning a lot of pages in case a long-term reference 5575 * like a swapout record is deferring the css_free() to long 5576 * after offlining. But this makes sure we catch any charges 5577 * made after offlining: 5578 */ 5579 mem_cgroup_reparent_charges(memcg); 5580 5581 memcg_destroy_kmem(memcg); 5582 __mem_cgroup_free(memcg); 5583 } 5584 5585 /** 5586 * mem_cgroup_css_reset - reset the states of a mem_cgroup 5587 * @css: the target css 5588 * 5589 * Reset the states of the mem_cgroup associated with @css. This is 5590 * invoked when the userland requests disabling on the default hierarchy 5591 * but the memcg is pinned through dependency. The memcg should stop 5592 * applying policies and should revert to the vanilla state as it may be 5593 * made visible again. 5594 * 5595 * The current implementation only resets the essential configurations. 5596 * This needs to be expanded to cover all the visible parts. 5597 */ 5598 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) 5599 { 5600 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5601 5602 mem_cgroup_resize_limit(memcg, ULLONG_MAX); 5603 mem_cgroup_resize_memsw_limit(memcg, ULLONG_MAX); 5604 memcg_update_kmem_limit(memcg, ULLONG_MAX); 5605 res_counter_set_soft_limit(&memcg->res, ULLONG_MAX); 5606 } 5607 5608 #ifdef CONFIG_MMU 5609 /* Handlers for move charge at task migration. */ 5610 static int mem_cgroup_do_precharge(unsigned long count) 5611 { 5612 int ret; 5613 5614 /* Try a single bulk charge without reclaim first */ 5615 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count); 5616 if (!ret) { 5617 mc.precharge += count; 5618 return ret; 5619 } 5620 if (ret == -EINTR) { 5621 cancel_charge(root_mem_cgroup, count); 5622 return ret; 5623 } 5624 5625 /* Try charges one by one with reclaim */ 5626 while (count--) { 5627 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1); 5628 /* 5629 * In case of failure, any residual charges against 5630 * mc.to will be dropped by mem_cgroup_clear_mc() 5631 * later on. However, cancel any charges that are 5632 * bypassed to root right away or they'll be lost. 5633 */ 5634 if (ret == -EINTR) 5635 cancel_charge(root_mem_cgroup, 1); 5636 if (ret) 5637 return ret; 5638 mc.precharge++; 5639 cond_resched(); 5640 } 5641 return 0; 5642 } 5643 5644 /** 5645 * get_mctgt_type - get target type of moving charge 5646 * @vma: the vma the pte to be checked belongs 5647 * @addr: the address corresponding to the pte to be checked 5648 * @ptent: the pte to be checked 5649 * @target: the pointer the target page or swap ent will be stored(can be NULL) 5650 * 5651 * Returns 5652 * 0(MC_TARGET_NONE): if the pte is not a target for move charge. 5653 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for 5654 * move charge. if @target is not NULL, the page is stored in target->page 5655 * with extra refcnt got(Callers should handle it). 5656 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a 5657 * target for charge migration. if @target is not NULL, the entry is stored 5658 * in target->ent. 5659 * 5660 * Called with pte lock held. 5661 */ 5662 union mc_target { 5663 struct page *page; 5664 swp_entry_t ent; 5665 }; 5666 5667 enum mc_target_type { 5668 MC_TARGET_NONE = 0, 5669 MC_TARGET_PAGE, 5670 MC_TARGET_SWAP, 5671 }; 5672 5673 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 5674 unsigned long addr, pte_t ptent) 5675 { 5676 struct page *page = vm_normal_page(vma, addr, ptent); 5677 5678 if (!page || !page_mapped(page)) 5679 return NULL; 5680 if (PageAnon(page)) { 5681 /* we don't move shared anon */ 5682 if (!move_anon()) 5683 return NULL; 5684 } else if (!move_file()) 5685 /* we ignore mapcount for file pages */ 5686 return NULL; 5687 if (!get_page_unless_zero(page)) 5688 return NULL; 5689 5690 return page; 5691 } 5692 5693 #ifdef CONFIG_SWAP 5694 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5695 unsigned long addr, pte_t ptent, swp_entry_t *entry) 5696 { 5697 struct page *page = NULL; 5698 swp_entry_t ent = pte_to_swp_entry(ptent); 5699 5700 if (!move_anon() || non_swap_entry(ent)) 5701 return NULL; 5702 /* 5703 * Because lookup_swap_cache() updates some statistics counter, 5704 * we call find_get_page() with swapper_space directly. 5705 */ 5706 page = find_get_page(swap_address_space(ent), ent.val); 5707 if (do_swap_account) 5708 entry->val = ent.val; 5709 5710 return page; 5711 } 5712 #else 5713 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5714 unsigned long addr, pte_t ptent, swp_entry_t *entry) 5715 { 5716 return NULL; 5717 } 5718 #endif 5719 5720 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 5721 unsigned long addr, pte_t ptent, swp_entry_t *entry) 5722 { 5723 struct page *page = NULL; 5724 struct address_space *mapping; 5725 pgoff_t pgoff; 5726 5727 if (!vma->vm_file) /* anonymous vma */ 5728 return NULL; 5729 if (!move_file()) 5730 return NULL; 5731 5732 mapping = vma->vm_file->f_mapping; 5733 if (pte_none(ptent)) 5734 pgoff = linear_page_index(vma, addr); 5735 else /* pte_file(ptent) is true */ 5736 pgoff = pte_to_pgoff(ptent); 5737 5738 /* page is moved even if it's not RSS of this task(page-faulted). */ 5739 #ifdef CONFIG_SWAP 5740 /* shmem/tmpfs may report page out on swap: account for that too. */ 5741 if (shmem_mapping(mapping)) { 5742 page = find_get_entry(mapping, pgoff); 5743 if (radix_tree_exceptional_entry(page)) { 5744 swp_entry_t swp = radix_to_swp_entry(page); 5745 if (do_swap_account) 5746 *entry = swp; 5747 page = find_get_page(swap_address_space(swp), swp.val); 5748 } 5749 } else 5750 page = find_get_page(mapping, pgoff); 5751 #else 5752 page = find_get_page(mapping, pgoff); 5753 #endif 5754 return page; 5755 } 5756 5757 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, 5758 unsigned long addr, pte_t ptent, union mc_target *target) 5759 { 5760 struct page *page = NULL; 5761 struct page_cgroup *pc; 5762 enum mc_target_type ret = MC_TARGET_NONE; 5763 swp_entry_t ent = { .val = 0 }; 5764 5765 if (pte_present(ptent)) 5766 page = mc_handle_present_pte(vma, addr, ptent); 5767 else if (is_swap_pte(ptent)) 5768 page = mc_handle_swap_pte(vma, addr, ptent, &ent); 5769 else if (pte_none(ptent) || pte_file(ptent)) 5770 page = mc_handle_file_pte(vma, addr, ptent, &ent); 5771 5772 if (!page && !ent.val) 5773 return ret; 5774 if (page) { 5775 pc = lookup_page_cgroup(page); 5776 /* 5777 * Do only loose check w/o serialization. 5778 * mem_cgroup_move_account() checks the pc is valid or 5779 * not under LRU exclusion. 5780 */ 5781 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) { 5782 ret = MC_TARGET_PAGE; 5783 if (target) 5784 target->page = page; 5785 } 5786 if (!ret || !target) 5787 put_page(page); 5788 } 5789 /* There is a swap entry and a page doesn't exist or isn't charged */ 5790 if (ent.val && !ret && 5791 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) { 5792 ret = MC_TARGET_SWAP; 5793 if (target) 5794 target->ent = ent; 5795 } 5796 return ret; 5797 } 5798 5799 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5800 /* 5801 * We don't consider swapping or file mapped pages because THP does not 5802 * support them for now. 5803 * Caller should make sure that pmd_trans_huge(pmd) is true. 5804 */ 5805 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5806 unsigned long addr, pmd_t pmd, union mc_target *target) 5807 { 5808 struct page *page = NULL; 5809 struct page_cgroup *pc; 5810 enum mc_target_type ret = MC_TARGET_NONE; 5811 5812 page = pmd_page(pmd); 5813 VM_BUG_ON_PAGE(!page || !PageHead(page), page); 5814 if (!move_anon()) 5815 return ret; 5816 pc = lookup_page_cgroup(page); 5817 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) { 5818 ret = MC_TARGET_PAGE; 5819 if (target) { 5820 get_page(page); 5821 target->page = page; 5822 } 5823 } 5824 return ret; 5825 } 5826 #else 5827 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5828 unsigned long addr, pmd_t pmd, union mc_target *target) 5829 { 5830 return MC_TARGET_NONE; 5831 } 5832 #endif 5833 5834 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 5835 unsigned long addr, unsigned long end, 5836 struct mm_walk *walk) 5837 { 5838 struct vm_area_struct *vma = walk->private; 5839 pte_t *pte; 5840 spinlock_t *ptl; 5841 5842 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) { 5843 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) 5844 mc.precharge += HPAGE_PMD_NR; 5845 spin_unlock(ptl); 5846 return 0; 5847 } 5848 5849 if (pmd_trans_unstable(pmd)) 5850 return 0; 5851 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 5852 for (; addr != end; pte++, addr += PAGE_SIZE) 5853 if (get_mctgt_type(vma, addr, *pte, NULL)) 5854 mc.precharge++; /* increment precharge temporarily */ 5855 pte_unmap_unlock(pte - 1, ptl); 5856 cond_resched(); 5857 5858 return 0; 5859 } 5860 5861 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 5862 { 5863 unsigned long precharge; 5864 struct vm_area_struct *vma; 5865 5866 down_read(&mm->mmap_sem); 5867 for (vma = mm->mmap; vma; vma = vma->vm_next) { 5868 struct mm_walk mem_cgroup_count_precharge_walk = { 5869 .pmd_entry = mem_cgroup_count_precharge_pte_range, 5870 .mm = mm, 5871 .private = vma, 5872 }; 5873 if (is_vm_hugetlb_page(vma)) 5874 continue; 5875 walk_page_range(vma->vm_start, vma->vm_end, 5876 &mem_cgroup_count_precharge_walk); 5877 } 5878 up_read(&mm->mmap_sem); 5879 5880 precharge = mc.precharge; 5881 mc.precharge = 0; 5882 5883 return precharge; 5884 } 5885 5886 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 5887 { 5888 unsigned long precharge = mem_cgroup_count_precharge(mm); 5889 5890 VM_BUG_ON(mc.moving_task); 5891 mc.moving_task = current; 5892 return mem_cgroup_do_precharge(precharge); 5893 } 5894 5895 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 5896 static void __mem_cgroup_clear_mc(void) 5897 { 5898 struct mem_cgroup *from = mc.from; 5899 struct mem_cgroup *to = mc.to; 5900 int i; 5901 5902 /* we must uncharge all the leftover precharges from mc.to */ 5903 if (mc.precharge) { 5904 cancel_charge(mc.to, mc.precharge); 5905 mc.precharge = 0; 5906 } 5907 /* 5908 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 5909 * we must uncharge here. 5910 */ 5911 if (mc.moved_charge) { 5912 cancel_charge(mc.from, mc.moved_charge); 5913 mc.moved_charge = 0; 5914 } 5915 /* we must fixup refcnts and charges */ 5916 if (mc.moved_swap) { 5917 /* uncharge swap account from the old cgroup */ 5918 if (!mem_cgroup_is_root(mc.from)) 5919 res_counter_uncharge(&mc.from->memsw, 5920 PAGE_SIZE * mc.moved_swap); 5921 5922 for (i = 0; i < mc.moved_swap; i++) 5923 css_put(&mc.from->css); 5924 5925 /* 5926 * we charged both to->res and to->memsw, so we should 5927 * uncharge to->res. 5928 */ 5929 if (!mem_cgroup_is_root(mc.to)) 5930 res_counter_uncharge(&mc.to->res, 5931 PAGE_SIZE * mc.moved_swap); 5932 /* we've already done css_get(mc.to) */ 5933 mc.moved_swap = 0; 5934 } 5935 memcg_oom_recover(from); 5936 memcg_oom_recover(to); 5937 wake_up_all(&mc.waitq); 5938 } 5939 5940 static void mem_cgroup_clear_mc(void) 5941 { 5942 struct mem_cgroup *from = mc.from; 5943 5944 /* 5945 * we must clear moving_task before waking up waiters at the end of 5946 * task migration. 5947 */ 5948 mc.moving_task = NULL; 5949 __mem_cgroup_clear_mc(); 5950 spin_lock(&mc.lock); 5951 mc.from = NULL; 5952 mc.to = NULL; 5953 spin_unlock(&mc.lock); 5954 mem_cgroup_end_move(from); 5955 } 5956 5957 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css, 5958 struct cgroup_taskset *tset) 5959 { 5960 struct task_struct *p = cgroup_taskset_first(tset); 5961 int ret = 0; 5962 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5963 unsigned long move_charge_at_immigrate; 5964 5965 /* 5966 * We are now commited to this value whatever it is. Changes in this 5967 * tunable will only affect upcoming migrations, not the current one. 5968 * So we need to save it, and keep it going. 5969 */ 5970 move_charge_at_immigrate = memcg->move_charge_at_immigrate; 5971 if (move_charge_at_immigrate) { 5972 struct mm_struct *mm; 5973 struct mem_cgroup *from = mem_cgroup_from_task(p); 5974 5975 VM_BUG_ON(from == memcg); 5976 5977 mm = get_task_mm(p); 5978 if (!mm) 5979 return 0; 5980 /* We move charges only when we move a owner of the mm */ 5981 if (mm->owner == p) { 5982 VM_BUG_ON(mc.from); 5983 VM_BUG_ON(mc.to); 5984 VM_BUG_ON(mc.precharge); 5985 VM_BUG_ON(mc.moved_charge); 5986 VM_BUG_ON(mc.moved_swap); 5987 mem_cgroup_start_move(from); 5988 spin_lock(&mc.lock); 5989 mc.from = from; 5990 mc.to = memcg; 5991 mc.immigrate_flags = move_charge_at_immigrate; 5992 spin_unlock(&mc.lock); 5993 /* We set mc.moving_task later */ 5994 5995 ret = mem_cgroup_precharge_mc(mm); 5996 if (ret) 5997 mem_cgroup_clear_mc(); 5998 } 5999 mmput(mm); 6000 } 6001 return ret; 6002 } 6003 6004 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css, 6005 struct cgroup_taskset *tset) 6006 { 6007 mem_cgroup_clear_mc(); 6008 } 6009 6010 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 6011 unsigned long addr, unsigned long end, 6012 struct mm_walk *walk) 6013 { 6014 int ret = 0; 6015 struct vm_area_struct *vma = walk->private; 6016 pte_t *pte; 6017 spinlock_t *ptl; 6018 enum mc_target_type target_type; 6019 union mc_target target; 6020 struct page *page; 6021 struct page_cgroup *pc; 6022 6023 /* 6024 * We don't take compound_lock() here but no race with splitting thp 6025 * happens because: 6026 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not 6027 * under splitting, which means there's no concurrent thp split, 6028 * - if another thread runs into split_huge_page() just after we 6029 * entered this if-block, the thread must wait for page table lock 6030 * to be unlocked in __split_huge_page_splitting(), where the main 6031 * part of thp split is not executed yet. 6032 */ 6033 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) { 6034 if (mc.precharge < HPAGE_PMD_NR) { 6035 spin_unlock(ptl); 6036 return 0; 6037 } 6038 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); 6039 if (target_type == MC_TARGET_PAGE) { 6040 page = target.page; 6041 if (!isolate_lru_page(page)) { 6042 pc = lookup_page_cgroup(page); 6043 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR, 6044 pc, mc.from, mc.to)) { 6045 mc.precharge -= HPAGE_PMD_NR; 6046 mc.moved_charge += HPAGE_PMD_NR; 6047 } 6048 putback_lru_page(page); 6049 } 6050 put_page(page); 6051 } 6052 spin_unlock(ptl); 6053 return 0; 6054 } 6055 6056 if (pmd_trans_unstable(pmd)) 6057 return 0; 6058 retry: 6059 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 6060 for (; addr != end; addr += PAGE_SIZE) { 6061 pte_t ptent = *(pte++); 6062 swp_entry_t ent; 6063 6064 if (!mc.precharge) 6065 break; 6066 6067 switch (get_mctgt_type(vma, addr, ptent, &target)) { 6068 case MC_TARGET_PAGE: 6069 page = target.page; 6070 if (isolate_lru_page(page)) 6071 goto put; 6072 pc = lookup_page_cgroup(page); 6073 if (!mem_cgroup_move_account(page, 1, pc, 6074 mc.from, mc.to)) { 6075 mc.precharge--; 6076 /* we uncharge from mc.from later. */ 6077 mc.moved_charge++; 6078 } 6079 putback_lru_page(page); 6080 put: /* get_mctgt_type() gets the page */ 6081 put_page(page); 6082 break; 6083 case MC_TARGET_SWAP: 6084 ent = target.ent; 6085 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { 6086 mc.precharge--; 6087 /* we fixup refcnts and charges later. */ 6088 mc.moved_swap++; 6089 } 6090 break; 6091 default: 6092 break; 6093 } 6094 } 6095 pte_unmap_unlock(pte - 1, ptl); 6096 cond_resched(); 6097 6098 if (addr != end) { 6099 /* 6100 * We have consumed all precharges we got in can_attach(). 6101 * We try charge one by one, but don't do any additional 6102 * charges to mc.to if we have failed in charge once in attach() 6103 * phase. 6104 */ 6105 ret = mem_cgroup_do_precharge(1); 6106 if (!ret) 6107 goto retry; 6108 } 6109 6110 return ret; 6111 } 6112 6113 static void mem_cgroup_move_charge(struct mm_struct *mm) 6114 { 6115 struct vm_area_struct *vma; 6116 6117 lru_add_drain_all(); 6118 retry: 6119 if (unlikely(!down_read_trylock(&mm->mmap_sem))) { 6120 /* 6121 * Someone who are holding the mmap_sem might be waiting in 6122 * waitq. So we cancel all extra charges, wake up all waiters, 6123 * and retry. Because we cancel precharges, we might not be able 6124 * to move enough charges, but moving charge is a best-effort 6125 * feature anyway, so it wouldn't be a big problem. 6126 */ 6127 __mem_cgroup_clear_mc(); 6128 cond_resched(); 6129 goto retry; 6130 } 6131 for (vma = mm->mmap; vma; vma = vma->vm_next) { 6132 int ret; 6133 struct mm_walk mem_cgroup_move_charge_walk = { 6134 .pmd_entry = mem_cgroup_move_charge_pte_range, 6135 .mm = mm, 6136 .private = vma, 6137 }; 6138 if (is_vm_hugetlb_page(vma)) 6139 continue; 6140 ret = walk_page_range(vma->vm_start, vma->vm_end, 6141 &mem_cgroup_move_charge_walk); 6142 if (ret) 6143 /* 6144 * means we have consumed all precharges and failed in 6145 * doing additional charge. Just abandon here. 6146 */ 6147 break; 6148 } 6149 up_read(&mm->mmap_sem); 6150 } 6151 6152 static void mem_cgroup_move_task(struct cgroup_subsys_state *css, 6153 struct cgroup_taskset *tset) 6154 { 6155 struct task_struct *p = cgroup_taskset_first(tset); 6156 struct mm_struct *mm = get_task_mm(p); 6157 6158 if (mm) { 6159 if (mc.to) 6160 mem_cgroup_move_charge(mm); 6161 mmput(mm); 6162 } 6163 if (mc.to) 6164 mem_cgroup_clear_mc(); 6165 } 6166 #else /* !CONFIG_MMU */ 6167 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css, 6168 struct cgroup_taskset *tset) 6169 { 6170 return 0; 6171 } 6172 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css, 6173 struct cgroup_taskset *tset) 6174 { 6175 } 6176 static void mem_cgroup_move_task(struct cgroup_subsys_state *css, 6177 struct cgroup_taskset *tset) 6178 { 6179 } 6180 #endif 6181 6182 /* 6183 * Cgroup retains root cgroups across [un]mount cycles making it necessary 6184 * to verify whether we're attached to the default hierarchy on each mount 6185 * attempt. 6186 */ 6187 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css) 6188 { 6189 /* 6190 * use_hierarchy is forced on the default hierarchy. cgroup core 6191 * guarantees that @root doesn't have any children, so turning it 6192 * on for the root memcg is enough. 6193 */ 6194 if (cgroup_on_dfl(root_css->cgroup)) 6195 mem_cgroup_from_css(root_css)->use_hierarchy = true; 6196 } 6197 6198 struct cgroup_subsys memory_cgrp_subsys = { 6199 .css_alloc = mem_cgroup_css_alloc, 6200 .css_online = mem_cgroup_css_online, 6201 .css_offline = mem_cgroup_css_offline, 6202 .css_free = mem_cgroup_css_free, 6203 .css_reset = mem_cgroup_css_reset, 6204 .can_attach = mem_cgroup_can_attach, 6205 .cancel_attach = mem_cgroup_cancel_attach, 6206 .attach = mem_cgroup_move_task, 6207 .bind = mem_cgroup_bind, 6208 .legacy_cftypes = mem_cgroup_files, 6209 .early_init = 0, 6210 }; 6211 6212 #ifdef CONFIG_MEMCG_SWAP 6213 static int __init enable_swap_account(char *s) 6214 { 6215 if (!strcmp(s, "1")) 6216 really_do_swap_account = 1; 6217 else if (!strcmp(s, "0")) 6218 really_do_swap_account = 0; 6219 return 1; 6220 } 6221 __setup("swapaccount=", enable_swap_account); 6222 6223 static void __init memsw_file_init(void) 6224 { 6225 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, 6226 memsw_cgroup_files)); 6227 } 6228 6229 static void __init enable_swap_cgroup(void) 6230 { 6231 if (!mem_cgroup_disabled() && really_do_swap_account) { 6232 do_swap_account = 1; 6233 memsw_file_init(); 6234 } 6235 } 6236 6237 #else 6238 static void __init enable_swap_cgroup(void) 6239 { 6240 } 6241 #endif 6242 6243 #ifdef CONFIG_MEMCG_SWAP 6244 /** 6245 * mem_cgroup_swapout - transfer a memsw charge to swap 6246 * @page: page whose memsw charge to transfer 6247 * @entry: swap entry to move the charge to 6248 * 6249 * Transfer the memsw charge of @page to @entry. 6250 */ 6251 void mem_cgroup_swapout(struct page *page, swp_entry_t entry) 6252 { 6253 struct page_cgroup *pc; 6254 unsigned short oldid; 6255 6256 VM_BUG_ON_PAGE(PageLRU(page), page); 6257 VM_BUG_ON_PAGE(page_count(page), page); 6258 6259 if (!do_swap_account) 6260 return; 6261 6262 pc = lookup_page_cgroup(page); 6263 6264 /* Readahead page, never charged */ 6265 if (!PageCgroupUsed(pc)) 6266 return; 6267 6268 VM_BUG_ON_PAGE(!(pc->flags & PCG_MEMSW), page); 6269 6270 oldid = swap_cgroup_record(entry, mem_cgroup_id(pc->mem_cgroup)); 6271 VM_BUG_ON_PAGE(oldid, page); 6272 6273 pc->flags &= ~PCG_MEMSW; 6274 css_get(&pc->mem_cgroup->css); 6275 mem_cgroup_swap_statistics(pc->mem_cgroup, true); 6276 } 6277 6278 /** 6279 * mem_cgroup_uncharge_swap - uncharge a swap entry 6280 * @entry: swap entry to uncharge 6281 * 6282 * Drop the memsw charge associated with @entry. 6283 */ 6284 void mem_cgroup_uncharge_swap(swp_entry_t entry) 6285 { 6286 struct mem_cgroup *memcg; 6287 unsigned short id; 6288 6289 if (!do_swap_account) 6290 return; 6291 6292 id = swap_cgroup_record(entry, 0); 6293 rcu_read_lock(); 6294 memcg = mem_cgroup_lookup(id); 6295 if (memcg) { 6296 if (!mem_cgroup_is_root(memcg)) 6297 res_counter_uncharge(&memcg->memsw, PAGE_SIZE); 6298 mem_cgroup_swap_statistics(memcg, false); 6299 css_put(&memcg->css); 6300 } 6301 rcu_read_unlock(); 6302 } 6303 #endif 6304 6305 /** 6306 * mem_cgroup_try_charge - try charging a page 6307 * @page: page to charge 6308 * @mm: mm context of the victim 6309 * @gfp_mask: reclaim mode 6310 * @memcgp: charged memcg return 6311 * 6312 * Try to charge @page to the memcg that @mm belongs to, reclaiming 6313 * pages according to @gfp_mask if necessary. 6314 * 6315 * Returns 0 on success, with *@memcgp pointing to the charged memcg. 6316 * Otherwise, an error code is returned. 6317 * 6318 * After page->mapping has been set up, the caller must finalize the 6319 * charge with mem_cgroup_commit_charge(). Or abort the transaction 6320 * with mem_cgroup_cancel_charge() in case page instantiation fails. 6321 */ 6322 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, 6323 gfp_t gfp_mask, struct mem_cgroup **memcgp) 6324 { 6325 struct mem_cgroup *memcg = NULL; 6326 unsigned int nr_pages = 1; 6327 int ret = 0; 6328 6329 if (mem_cgroup_disabled()) 6330 goto out; 6331 6332 if (PageSwapCache(page)) { 6333 struct page_cgroup *pc = lookup_page_cgroup(page); 6334 /* 6335 * Every swap fault against a single page tries to charge the 6336 * page, bail as early as possible. shmem_unuse() encounters 6337 * already charged pages, too. The USED bit is protected by 6338 * the page lock, which serializes swap cache removal, which 6339 * in turn serializes uncharging. 6340 */ 6341 if (PageCgroupUsed(pc)) 6342 goto out; 6343 } 6344 6345 if (PageTransHuge(page)) { 6346 nr_pages <<= compound_order(page); 6347 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 6348 } 6349 6350 if (do_swap_account && PageSwapCache(page)) 6351 memcg = try_get_mem_cgroup_from_page(page); 6352 if (!memcg) 6353 memcg = get_mem_cgroup_from_mm(mm); 6354 6355 ret = try_charge(memcg, gfp_mask, nr_pages); 6356 6357 css_put(&memcg->css); 6358 6359 if (ret == -EINTR) { 6360 memcg = root_mem_cgroup; 6361 ret = 0; 6362 } 6363 out: 6364 *memcgp = memcg; 6365 return ret; 6366 } 6367 6368 /** 6369 * mem_cgroup_commit_charge - commit a page charge 6370 * @page: page to charge 6371 * @memcg: memcg to charge the page to 6372 * @lrucare: page might be on LRU already 6373 * 6374 * Finalize a charge transaction started by mem_cgroup_try_charge(), 6375 * after page->mapping has been set up. This must happen atomically 6376 * as part of the page instantiation, i.e. under the page table lock 6377 * for anonymous pages, under the page lock for page and swap cache. 6378 * 6379 * In addition, the page must not be on the LRU during the commit, to 6380 * prevent racing with task migration. If it might be, use @lrucare. 6381 * 6382 * Use mem_cgroup_cancel_charge() to cancel the transaction instead. 6383 */ 6384 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg, 6385 bool lrucare) 6386 { 6387 unsigned int nr_pages = 1; 6388 6389 VM_BUG_ON_PAGE(!page->mapping, page); 6390 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page); 6391 6392 if (mem_cgroup_disabled()) 6393 return; 6394 /* 6395 * Swap faults will attempt to charge the same page multiple 6396 * times. But reuse_swap_page() might have removed the page 6397 * from swapcache already, so we can't check PageSwapCache(). 6398 */ 6399 if (!memcg) 6400 return; 6401 6402 commit_charge(page, memcg, lrucare); 6403 6404 if (PageTransHuge(page)) { 6405 nr_pages <<= compound_order(page); 6406 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 6407 } 6408 6409 local_irq_disable(); 6410 mem_cgroup_charge_statistics(memcg, page, nr_pages); 6411 memcg_check_events(memcg, page); 6412 local_irq_enable(); 6413 6414 if (do_swap_account && PageSwapCache(page)) { 6415 swp_entry_t entry = { .val = page_private(page) }; 6416 /* 6417 * The swap entry might not get freed for a long time, 6418 * let's not wait for it. The page already received a 6419 * memory+swap charge, drop the swap entry duplicate. 6420 */ 6421 mem_cgroup_uncharge_swap(entry); 6422 } 6423 } 6424 6425 /** 6426 * mem_cgroup_cancel_charge - cancel a page charge 6427 * @page: page to charge 6428 * @memcg: memcg to charge the page to 6429 * 6430 * Cancel a charge transaction started by mem_cgroup_try_charge(). 6431 */ 6432 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg) 6433 { 6434 unsigned int nr_pages = 1; 6435 6436 if (mem_cgroup_disabled()) 6437 return; 6438 /* 6439 * Swap faults will attempt to charge the same page multiple 6440 * times. But reuse_swap_page() might have removed the page 6441 * from swapcache already, so we can't check PageSwapCache(). 6442 */ 6443 if (!memcg) 6444 return; 6445 6446 if (PageTransHuge(page)) { 6447 nr_pages <<= compound_order(page); 6448 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 6449 } 6450 6451 cancel_charge(memcg, nr_pages); 6452 } 6453 6454 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout, 6455 unsigned long nr_mem, unsigned long nr_memsw, 6456 unsigned long nr_anon, unsigned long nr_file, 6457 unsigned long nr_huge, struct page *dummy_page) 6458 { 6459 unsigned long flags; 6460 6461 if (!mem_cgroup_is_root(memcg)) { 6462 if (nr_mem) 6463 res_counter_uncharge(&memcg->res, 6464 nr_mem * PAGE_SIZE); 6465 if (nr_memsw) 6466 res_counter_uncharge(&memcg->memsw, 6467 nr_memsw * PAGE_SIZE); 6468 memcg_oom_recover(memcg); 6469 } 6470 6471 local_irq_save(flags); 6472 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon); 6473 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file); 6474 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge); 6475 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout); 6476 __this_cpu_add(memcg->stat->nr_page_events, nr_anon + nr_file); 6477 memcg_check_events(memcg, dummy_page); 6478 local_irq_restore(flags); 6479 } 6480 6481 static void uncharge_list(struct list_head *page_list) 6482 { 6483 struct mem_cgroup *memcg = NULL; 6484 unsigned long nr_memsw = 0; 6485 unsigned long nr_anon = 0; 6486 unsigned long nr_file = 0; 6487 unsigned long nr_huge = 0; 6488 unsigned long pgpgout = 0; 6489 unsigned long nr_mem = 0; 6490 struct list_head *next; 6491 struct page *page; 6492 6493 next = page_list->next; 6494 do { 6495 unsigned int nr_pages = 1; 6496 struct page_cgroup *pc; 6497 6498 page = list_entry(next, struct page, lru); 6499 next = page->lru.next; 6500 6501 VM_BUG_ON_PAGE(PageLRU(page), page); 6502 VM_BUG_ON_PAGE(page_count(page), page); 6503 6504 pc = lookup_page_cgroup(page); 6505 if (!PageCgroupUsed(pc)) 6506 continue; 6507 6508 /* 6509 * Nobody should be changing or seriously looking at 6510 * pc->mem_cgroup and pc->flags at this point, we have 6511 * fully exclusive access to the page. 6512 */ 6513 6514 if (memcg != pc->mem_cgroup) { 6515 if (memcg) { 6516 uncharge_batch(memcg, pgpgout, nr_mem, nr_memsw, 6517 nr_anon, nr_file, nr_huge, page); 6518 pgpgout = nr_mem = nr_memsw = 0; 6519 nr_anon = nr_file = nr_huge = 0; 6520 } 6521 memcg = pc->mem_cgroup; 6522 } 6523 6524 if (PageTransHuge(page)) { 6525 nr_pages <<= compound_order(page); 6526 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 6527 nr_huge += nr_pages; 6528 } 6529 6530 if (PageAnon(page)) 6531 nr_anon += nr_pages; 6532 else 6533 nr_file += nr_pages; 6534 6535 if (pc->flags & PCG_MEM) 6536 nr_mem += nr_pages; 6537 if (pc->flags & PCG_MEMSW) 6538 nr_memsw += nr_pages; 6539 pc->flags = 0; 6540 6541 pgpgout++; 6542 } while (next != page_list); 6543 6544 if (memcg) 6545 uncharge_batch(memcg, pgpgout, nr_mem, nr_memsw, 6546 nr_anon, nr_file, nr_huge, page); 6547 } 6548 6549 /** 6550 * mem_cgroup_uncharge - uncharge a page 6551 * @page: page to uncharge 6552 * 6553 * Uncharge a page previously charged with mem_cgroup_try_charge() and 6554 * mem_cgroup_commit_charge(). 6555 */ 6556 void mem_cgroup_uncharge(struct page *page) 6557 { 6558 struct page_cgroup *pc; 6559 6560 if (mem_cgroup_disabled()) 6561 return; 6562 6563 /* Don't touch page->lru of any random page, pre-check: */ 6564 pc = lookup_page_cgroup(page); 6565 if (!PageCgroupUsed(pc)) 6566 return; 6567 6568 INIT_LIST_HEAD(&page->lru); 6569 uncharge_list(&page->lru); 6570 } 6571 6572 /** 6573 * mem_cgroup_uncharge_list - uncharge a list of page 6574 * @page_list: list of pages to uncharge 6575 * 6576 * Uncharge a list of pages previously charged with 6577 * mem_cgroup_try_charge() and mem_cgroup_commit_charge(). 6578 */ 6579 void mem_cgroup_uncharge_list(struct list_head *page_list) 6580 { 6581 if (mem_cgroup_disabled()) 6582 return; 6583 6584 if (!list_empty(page_list)) 6585 uncharge_list(page_list); 6586 } 6587 6588 /** 6589 * mem_cgroup_migrate - migrate a charge to another page 6590 * @oldpage: currently charged page 6591 * @newpage: page to transfer the charge to 6592 * @lrucare: both pages might be on the LRU already 6593 * 6594 * Migrate the charge from @oldpage to @newpage. 6595 * 6596 * Both pages must be locked, @newpage->mapping must be set up. 6597 */ 6598 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage, 6599 bool lrucare) 6600 { 6601 struct page_cgroup *pc; 6602 int isolated; 6603 6604 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage); 6605 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 6606 VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage); 6607 VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage); 6608 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage); 6609 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage), 6610 newpage); 6611 6612 if (mem_cgroup_disabled()) 6613 return; 6614 6615 /* Page cache replacement: new page already charged? */ 6616 pc = lookup_page_cgroup(newpage); 6617 if (PageCgroupUsed(pc)) 6618 return; 6619 6620 /* Re-entrant migration: old page already uncharged? */ 6621 pc = lookup_page_cgroup(oldpage); 6622 if (!PageCgroupUsed(pc)) 6623 return; 6624 6625 VM_BUG_ON_PAGE(!(pc->flags & PCG_MEM), oldpage); 6626 VM_BUG_ON_PAGE(do_swap_account && !(pc->flags & PCG_MEMSW), oldpage); 6627 6628 if (lrucare) 6629 lock_page_lru(oldpage, &isolated); 6630 6631 pc->flags = 0; 6632 6633 if (lrucare) 6634 unlock_page_lru(oldpage, isolated); 6635 6636 commit_charge(newpage, pc->mem_cgroup, lrucare); 6637 } 6638 6639 /* 6640 * subsys_initcall() for memory controller. 6641 * 6642 * Some parts like hotcpu_notifier() have to be initialized from this context 6643 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically 6644 * everything that doesn't depend on a specific mem_cgroup structure should 6645 * be initialized from here. 6646 */ 6647 static int __init mem_cgroup_init(void) 6648 { 6649 hotcpu_notifier(memcg_cpu_hotplug_callback, 0); 6650 enable_swap_cgroup(); 6651 mem_cgroup_soft_limit_tree_init(); 6652 memcg_stock_init(); 6653 return 0; 6654 } 6655 subsys_initcall(mem_cgroup_init); 6656