xref: /openbmc/linux/mm/memcontrol.c (revision 6486a57f)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <xemul@openvz.org>
9  *
10  * Memory thresholds
11  * Copyright (C) 2009 Nokia Corporation
12  * Author: Kirill A. Shutemov
13  *
14  * Kernel Memory Controller
15  * Copyright (C) 2012 Parallels Inc. and Google Inc.
16  * Authors: Glauber Costa and Suleiman Souhlal
17  *
18  * Native page reclaim
19  * Charge lifetime sanitation
20  * Lockless page tracking & accounting
21  * Unified hierarchy configuration model
22  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23  *
24  * Per memcg lru locking
25  * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26  */
27 
28 #include <linux/page_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/pagewalk.h>
32 #include <linux/sched/mm.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/hugetlb.h>
35 #include <linux/pagemap.h>
36 #include <linux/vm_event_item.h>
37 #include <linux/smp.h>
38 #include <linux/page-flags.h>
39 #include <linux/backing-dev.h>
40 #include <linux/bit_spinlock.h>
41 #include <linux/rcupdate.h>
42 #include <linux/limits.h>
43 #include <linux/export.h>
44 #include <linux/mutex.h>
45 #include <linux/rbtree.h>
46 #include <linux/slab.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/spinlock.h>
50 #include <linux/eventfd.h>
51 #include <linux/poll.h>
52 #include <linux/sort.h>
53 #include <linux/fs.h>
54 #include <linux/seq_file.h>
55 #include <linux/vmpressure.h>
56 #include <linux/memremap.h>
57 #include <linux/mm_inline.h>
58 #include <linux/swap_cgroup.h>
59 #include <linux/cpu.h>
60 #include <linux/oom.h>
61 #include <linux/lockdep.h>
62 #include <linux/file.h>
63 #include <linux/resume_user_mode.h>
64 #include <linux/psi.h>
65 #include <linux/seq_buf.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include "slab.h"
70 #include "swap.h"
71 
72 #include <linux/uaccess.h>
73 
74 #include <trace/events/vmscan.h>
75 
76 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
77 EXPORT_SYMBOL(memory_cgrp_subsys);
78 
79 struct mem_cgroup *root_mem_cgroup __read_mostly;
80 
81 /* Active memory cgroup to use from an interrupt context */
82 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
83 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
84 
85 /* Socket memory accounting disabled? */
86 static bool cgroup_memory_nosocket __ro_after_init;
87 
88 /* Kernel memory accounting disabled? */
89 static bool cgroup_memory_nokmem __ro_after_init;
90 
91 /* BPF memory accounting disabled? */
92 static bool cgroup_memory_nobpf __ro_after_init;
93 
94 #ifdef CONFIG_CGROUP_WRITEBACK
95 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
96 #endif
97 
98 /* Whether legacy memory+swap accounting is active */
99 static bool do_memsw_account(void)
100 {
101 	return !cgroup_subsys_on_dfl(memory_cgrp_subsys);
102 }
103 
104 #define THRESHOLDS_EVENTS_TARGET 128
105 #define SOFTLIMIT_EVENTS_TARGET 1024
106 
107 /*
108  * Cgroups above their limits are maintained in a RB-Tree, independent of
109  * their hierarchy representation
110  */
111 
112 struct mem_cgroup_tree_per_node {
113 	struct rb_root rb_root;
114 	struct rb_node *rb_rightmost;
115 	spinlock_t lock;
116 };
117 
118 struct mem_cgroup_tree {
119 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
120 };
121 
122 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
123 
124 /* for OOM */
125 struct mem_cgroup_eventfd_list {
126 	struct list_head list;
127 	struct eventfd_ctx *eventfd;
128 };
129 
130 /*
131  * cgroup_event represents events which userspace want to receive.
132  */
133 struct mem_cgroup_event {
134 	/*
135 	 * memcg which the event belongs to.
136 	 */
137 	struct mem_cgroup *memcg;
138 	/*
139 	 * eventfd to signal userspace about the event.
140 	 */
141 	struct eventfd_ctx *eventfd;
142 	/*
143 	 * Each of these stored in a list by the cgroup.
144 	 */
145 	struct list_head list;
146 	/*
147 	 * register_event() callback will be used to add new userspace
148 	 * waiter for changes related to this event.  Use eventfd_signal()
149 	 * on eventfd to send notification to userspace.
150 	 */
151 	int (*register_event)(struct mem_cgroup *memcg,
152 			      struct eventfd_ctx *eventfd, const char *args);
153 	/*
154 	 * unregister_event() callback will be called when userspace closes
155 	 * the eventfd or on cgroup removing.  This callback must be set,
156 	 * if you want provide notification functionality.
157 	 */
158 	void (*unregister_event)(struct mem_cgroup *memcg,
159 				 struct eventfd_ctx *eventfd);
160 	/*
161 	 * All fields below needed to unregister event when
162 	 * userspace closes eventfd.
163 	 */
164 	poll_table pt;
165 	wait_queue_head_t *wqh;
166 	wait_queue_entry_t wait;
167 	struct work_struct remove;
168 };
169 
170 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
171 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
172 
173 /* Stuffs for move charges at task migration. */
174 /*
175  * Types of charges to be moved.
176  */
177 #define MOVE_ANON	0x1U
178 #define MOVE_FILE	0x2U
179 #define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
180 
181 /* "mc" and its members are protected by cgroup_mutex */
182 static struct move_charge_struct {
183 	spinlock_t	  lock; /* for from, to */
184 	struct mm_struct  *mm;
185 	struct mem_cgroup *from;
186 	struct mem_cgroup *to;
187 	unsigned long flags;
188 	unsigned long precharge;
189 	unsigned long moved_charge;
190 	unsigned long moved_swap;
191 	struct task_struct *moving_task;	/* a task moving charges */
192 	wait_queue_head_t waitq;		/* a waitq for other context */
193 } mc = {
194 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
195 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
196 };
197 
198 /*
199  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
200  * limit reclaim to prevent infinite loops, if they ever occur.
201  */
202 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
203 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
204 
205 /* for encoding cft->private value on file */
206 enum res_type {
207 	_MEM,
208 	_MEMSWAP,
209 	_KMEM,
210 	_TCP,
211 };
212 
213 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
214 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
215 #define MEMFILE_ATTR(val)	((val) & 0xffff)
216 
217 /*
218  * Iteration constructs for visiting all cgroups (under a tree).  If
219  * loops are exited prematurely (break), mem_cgroup_iter_break() must
220  * be used for reference counting.
221  */
222 #define for_each_mem_cgroup_tree(iter, root)		\
223 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
224 	     iter != NULL;				\
225 	     iter = mem_cgroup_iter(root, iter, NULL))
226 
227 #define for_each_mem_cgroup(iter)			\
228 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
229 	     iter != NULL;				\
230 	     iter = mem_cgroup_iter(NULL, iter, NULL))
231 
232 static inline bool task_is_dying(void)
233 {
234 	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
235 		(current->flags & PF_EXITING);
236 }
237 
238 /* Some nice accessors for the vmpressure. */
239 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
240 {
241 	if (!memcg)
242 		memcg = root_mem_cgroup;
243 	return &memcg->vmpressure;
244 }
245 
246 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
247 {
248 	return container_of(vmpr, struct mem_cgroup, vmpressure);
249 }
250 
251 #ifdef CONFIG_MEMCG_KMEM
252 static DEFINE_SPINLOCK(objcg_lock);
253 
254 bool mem_cgroup_kmem_disabled(void)
255 {
256 	return cgroup_memory_nokmem;
257 }
258 
259 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
260 				      unsigned int nr_pages);
261 
262 static void obj_cgroup_release(struct percpu_ref *ref)
263 {
264 	struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
265 	unsigned int nr_bytes;
266 	unsigned int nr_pages;
267 	unsigned long flags;
268 
269 	/*
270 	 * At this point all allocated objects are freed, and
271 	 * objcg->nr_charged_bytes can't have an arbitrary byte value.
272 	 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
273 	 *
274 	 * The following sequence can lead to it:
275 	 * 1) CPU0: objcg == stock->cached_objcg
276 	 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
277 	 *          PAGE_SIZE bytes are charged
278 	 * 3) CPU1: a process from another memcg is allocating something,
279 	 *          the stock if flushed,
280 	 *          objcg->nr_charged_bytes = PAGE_SIZE - 92
281 	 * 5) CPU0: we do release this object,
282 	 *          92 bytes are added to stock->nr_bytes
283 	 * 6) CPU0: stock is flushed,
284 	 *          92 bytes are added to objcg->nr_charged_bytes
285 	 *
286 	 * In the result, nr_charged_bytes == PAGE_SIZE.
287 	 * This page will be uncharged in obj_cgroup_release().
288 	 */
289 	nr_bytes = atomic_read(&objcg->nr_charged_bytes);
290 	WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
291 	nr_pages = nr_bytes >> PAGE_SHIFT;
292 
293 	if (nr_pages)
294 		obj_cgroup_uncharge_pages(objcg, nr_pages);
295 
296 	spin_lock_irqsave(&objcg_lock, flags);
297 	list_del(&objcg->list);
298 	spin_unlock_irqrestore(&objcg_lock, flags);
299 
300 	percpu_ref_exit(ref);
301 	kfree_rcu(objcg, rcu);
302 }
303 
304 static struct obj_cgroup *obj_cgroup_alloc(void)
305 {
306 	struct obj_cgroup *objcg;
307 	int ret;
308 
309 	objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
310 	if (!objcg)
311 		return NULL;
312 
313 	ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
314 			      GFP_KERNEL);
315 	if (ret) {
316 		kfree(objcg);
317 		return NULL;
318 	}
319 	INIT_LIST_HEAD(&objcg->list);
320 	return objcg;
321 }
322 
323 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
324 				  struct mem_cgroup *parent)
325 {
326 	struct obj_cgroup *objcg, *iter;
327 
328 	objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
329 
330 	spin_lock_irq(&objcg_lock);
331 
332 	/* 1) Ready to reparent active objcg. */
333 	list_add(&objcg->list, &memcg->objcg_list);
334 	/* 2) Reparent active objcg and already reparented objcgs to parent. */
335 	list_for_each_entry(iter, &memcg->objcg_list, list)
336 		WRITE_ONCE(iter->memcg, parent);
337 	/* 3) Move already reparented objcgs to the parent's list */
338 	list_splice(&memcg->objcg_list, &parent->objcg_list);
339 
340 	spin_unlock_irq(&objcg_lock);
341 
342 	percpu_ref_kill(&objcg->refcnt);
343 }
344 
345 /*
346  * A lot of the calls to the cache allocation functions are expected to be
347  * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
348  * conditional to this static branch, we'll have to allow modules that does
349  * kmem_cache_alloc and the such to see this symbol as well
350  */
351 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
352 EXPORT_SYMBOL(memcg_kmem_enabled_key);
353 
354 DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key);
355 EXPORT_SYMBOL(memcg_bpf_enabled_key);
356 #endif
357 
358 /**
359  * mem_cgroup_css_from_page - css of the memcg associated with a page
360  * @page: page of interest
361  *
362  * If memcg is bound to the default hierarchy, css of the memcg associated
363  * with @page is returned.  The returned css remains associated with @page
364  * until it is released.
365  *
366  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
367  * is returned.
368  */
369 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
370 {
371 	struct mem_cgroup *memcg;
372 
373 	memcg = page_memcg(page);
374 
375 	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
376 		memcg = root_mem_cgroup;
377 
378 	return &memcg->css;
379 }
380 
381 /**
382  * page_cgroup_ino - return inode number of the memcg a page is charged to
383  * @page: the page
384  *
385  * Look up the closest online ancestor of the memory cgroup @page is charged to
386  * and return its inode number or 0 if @page is not charged to any cgroup. It
387  * is safe to call this function without holding a reference to @page.
388  *
389  * Note, this function is inherently racy, because there is nothing to prevent
390  * the cgroup inode from getting torn down and potentially reallocated a moment
391  * after page_cgroup_ino() returns, so it only should be used by callers that
392  * do not care (such as procfs interfaces).
393  */
394 ino_t page_cgroup_ino(struct page *page)
395 {
396 	struct mem_cgroup *memcg;
397 	unsigned long ino = 0;
398 
399 	rcu_read_lock();
400 	memcg = page_memcg_check(page);
401 
402 	while (memcg && !(memcg->css.flags & CSS_ONLINE))
403 		memcg = parent_mem_cgroup(memcg);
404 	if (memcg)
405 		ino = cgroup_ino(memcg->css.cgroup);
406 	rcu_read_unlock();
407 	return ino;
408 }
409 
410 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
411 					 struct mem_cgroup_tree_per_node *mctz,
412 					 unsigned long new_usage_in_excess)
413 {
414 	struct rb_node **p = &mctz->rb_root.rb_node;
415 	struct rb_node *parent = NULL;
416 	struct mem_cgroup_per_node *mz_node;
417 	bool rightmost = true;
418 
419 	if (mz->on_tree)
420 		return;
421 
422 	mz->usage_in_excess = new_usage_in_excess;
423 	if (!mz->usage_in_excess)
424 		return;
425 	while (*p) {
426 		parent = *p;
427 		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
428 					tree_node);
429 		if (mz->usage_in_excess < mz_node->usage_in_excess) {
430 			p = &(*p)->rb_left;
431 			rightmost = false;
432 		} else {
433 			p = &(*p)->rb_right;
434 		}
435 	}
436 
437 	if (rightmost)
438 		mctz->rb_rightmost = &mz->tree_node;
439 
440 	rb_link_node(&mz->tree_node, parent, p);
441 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
442 	mz->on_tree = true;
443 }
444 
445 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
446 					 struct mem_cgroup_tree_per_node *mctz)
447 {
448 	if (!mz->on_tree)
449 		return;
450 
451 	if (&mz->tree_node == mctz->rb_rightmost)
452 		mctz->rb_rightmost = rb_prev(&mz->tree_node);
453 
454 	rb_erase(&mz->tree_node, &mctz->rb_root);
455 	mz->on_tree = false;
456 }
457 
458 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
459 				       struct mem_cgroup_tree_per_node *mctz)
460 {
461 	unsigned long flags;
462 
463 	spin_lock_irqsave(&mctz->lock, flags);
464 	__mem_cgroup_remove_exceeded(mz, mctz);
465 	spin_unlock_irqrestore(&mctz->lock, flags);
466 }
467 
468 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
469 {
470 	unsigned long nr_pages = page_counter_read(&memcg->memory);
471 	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
472 	unsigned long excess = 0;
473 
474 	if (nr_pages > soft_limit)
475 		excess = nr_pages - soft_limit;
476 
477 	return excess;
478 }
479 
480 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid)
481 {
482 	unsigned long excess;
483 	struct mem_cgroup_per_node *mz;
484 	struct mem_cgroup_tree_per_node *mctz;
485 
486 	mctz = soft_limit_tree.rb_tree_per_node[nid];
487 	if (!mctz)
488 		return;
489 	/*
490 	 * Necessary to update all ancestors when hierarchy is used.
491 	 * because their event counter is not touched.
492 	 */
493 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
494 		mz = memcg->nodeinfo[nid];
495 		excess = soft_limit_excess(memcg);
496 		/*
497 		 * We have to update the tree if mz is on RB-tree or
498 		 * mem is over its softlimit.
499 		 */
500 		if (excess || mz->on_tree) {
501 			unsigned long flags;
502 
503 			spin_lock_irqsave(&mctz->lock, flags);
504 			/* if on-tree, remove it */
505 			if (mz->on_tree)
506 				__mem_cgroup_remove_exceeded(mz, mctz);
507 			/*
508 			 * Insert again. mz->usage_in_excess will be updated.
509 			 * If excess is 0, no tree ops.
510 			 */
511 			__mem_cgroup_insert_exceeded(mz, mctz, excess);
512 			spin_unlock_irqrestore(&mctz->lock, flags);
513 		}
514 	}
515 }
516 
517 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
518 {
519 	struct mem_cgroup_tree_per_node *mctz;
520 	struct mem_cgroup_per_node *mz;
521 	int nid;
522 
523 	for_each_node(nid) {
524 		mz = memcg->nodeinfo[nid];
525 		mctz = soft_limit_tree.rb_tree_per_node[nid];
526 		if (mctz)
527 			mem_cgroup_remove_exceeded(mz, mctz);
528 	}
529 }
530 
531 static struct mem_cgroup_per_node *
532 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
533 {
534 	struct mem_cgroup_per_node *mz;
535 
536 retry:
537 	mz = NULL;
538 	if (!mctz->rb_rightmost)
539 		goto done;		/* Nothing to reclaim from */
540 
541 	mz = rb_entry(mctz->rb_rightmost,
542 		      struct mem_cgroup_per_node, tree_node);
543 	/*
544 	 * Remove the node now but someone else can add it back,
545 	 * we will to add it back at the end of reclaim to its correct
546 	 * position in the tree.
547 	 */
548 	__mem_cgroup_remove_exceeded(mz, mctz);
549 	if (!soft_limit_excess(mz->memcg) ||
550 	    !css_tryget(&mz->memcg->css))
551 		goto retry;
552 done:
553 	return mz;
554 }
555 
556 static struct mem_cgroup_per_node *
557 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
558 {
559 	struct mem_cgroup_per_node *mz;
560 
561 	spin_lock_irq(&mctz->lock);
562 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
563 	spin_unlock_irq(&mctz->lock);
564 	return mz;
565 }
566 
567 /*
568  * memcg and lruvec stats flushing
569  *
570  * Many codepaths leading to stats update or read are performance sensitive and
571  * adding stats flushing in such codepaths is not desirable. So, to optimize the
572  * flushing the kernel does:
573  *
574  * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
575  *    rstat update tree grow unbounded.
576  *
577  * 2) Flush the stats synchronously on reader side only when there are more than
578  *    (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
579  *    will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
580  *    only for 2 seconds due to (1).
581  */
582 static void flush_memcg_stats_dwork(struct work_struct *w);
583 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
584 static DEFINE_SPINLOCK(stats_flush_lock);
585 static DEFINE_PER_CPU(unsigned int, stats_updates);
586 static atomic_t stats_flush_threshold = ATOMIC_INIT(0);
587 static u64 flush_next_time;
588 
589 #define FLUSH_TIME (2UL*HZ)
590 
591 /*
592  * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can
593  * not rely on this as part of an acquired spinlock_t lock. These functions are
594  * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion
595  * is sufficient.
596  */
597 static void memcg_stats_lock(void)
598 {
599 	preempt_disable_nested();
600 	VM_WARN_ON_IRQS_ENABLED();
601 }
602 
603 static void __memcg_stats_lock(void)
604 {
605 	preempt_disable_nested();
606 }
607 
608 static void memcg_stats_unlock(void)
609 {
610 	preempt_enable_nested();
611 }
612 
613 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val)
614 {
615 	unsigned int x;
616 
617 	cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
618 
619 	x = __this_cpu_add_return(stats_updates, abs(val));
620 	if (x > MEMCG_CHARGE_BATCH) {
621 		/*
622 		 * If stats_flush_threshold exceeds the threshold
623 		 * (>num_online_cpus()), cgroup stats update will be triggered
624 		 * in __mem_cgroup_flush_stats(). Increasing this var further
625 		 * is redundant and simply adds overhead in atomic update.
626 		 */
627 		if (atomic_read(&stats_flush_threshold) <= num_online_cpus())
628 			atomic_add(x / MEMCG_CHARGE_BATCH, &stats_flush_threshold);
629 		__this_cpu_write(stats_updates, 0);
630 	}
631 }
632 
633 static void __mem_cgroup_flush_stats(void)
634 {
635 	unsigned long flag;
636 
637 	if (!spin_trylock_irqsave(&stats_flush_lock, flag))
638 		return;
639 
640 	flush_next_time = jiffies_64 + 2*FLUSH_TIME;
641 	cgroup_rstat_flush_irqsafe(root_mem_cgroup->css.cgroup);
642 	atomic_set(&stats_flush_threshold, 0);
643 	spin_unlock_irqrestore(&stats_flush_lock, flag);
644 }
645 
646 void mem_cgroup_flush_stats(void)
647 {
648 	if (atomic_read(&stats_flush_threshold) > num_online_cpus())
649 		__mem_cgroup_flush_stats();
650 }
651 
652 void mem_cgroup_flush_stats_delayed(void)
653 {
654 	if (time_after64(jiffies_64, flush_next_time))
655 		mem_cgroup_flush_stats();
656 }
657 
658 static void flush_memcg_stats_dwork(struct work_struct *w)
659 {
660 	__mem_cgroup_flush_stats();
661 	queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME);
662 }
663 
664 /* Subset of vm_event_item to report for memcg event stats */
665 static const unsigned int memcg_vm_event_stat[] = {
666 	PGPGIN,
667 	PGPGOUT,
668 	PGSCAN_KSWAPD,
669 	PGSCAN_DIRECT,
670 	PGSCAN_KHUGEPAGED,
671 	PGSTEAL_KSWAPD,
672 	PGSTEAL_DIRECT,
673 	PGSTEAL_KHUGEPAGED,
674 	PGFAULT,
675 	PGMAJFAULT,
676 	PGREFILL,
677 	PGACTIVATE,
678 	PGDEACTIVATE,
679 	PGLAZYFREE,
680 	PGLAZYFREED,
681 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
682 	ZSWPIN,
683 	ZSWPOUT,
684 #endif
685 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
686 	THP_FAULT_ALLOC,
687 	THP_COLLAPSE_ALLOC,
688 #endif
689 };
690 
691 #define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat)
692 static int mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly;
693 
694 static void init_memcg_events(void)
695 {
696 	int i;
697 
698 	for (i = 0; i < NR_MEMCG_EVENTS; ++i)
699 		mem_cgroup_events_index[memcg_vm_event_stat[i]] = i + 1;
700 }
701 
702 static inline int memcg_events_index(enum vm_event_item idx)
703 {
704 	return mem_cgroup_events_index[idx] - 1;
705 }
706 
707 struct memcg_vmstats_percpu {
708 	/* Local (CPU and cgroup) page state & events */
709 	long			state[MEMCG_NR_STAT];
710 	unsigned long		events[NR_MEMCG_EVENTS];
711 
712 	/* Delta calculation for lockless upward propagation */
713 	long			state_prev[MEMCG_NR_STAT];
714 	unsigned long		events_prev[NR_MEMCG_EVENTS];
715 
716 	/* Cgroup1: threshold notifications & softlimit tree updates */
717 	unsigned long		nr_page_events;
718 	unsigned long		targets[MEM_CGROUP_NTARGETS];
719 };
720 
721 struct memcg_vmstats {
722 	/* Aggregated (CPU and subtree) page state & events */
723 	long			state[MEMCG_NR_STAT];
724 	unsigned long		events[NR_MEMCG_EVENTS];
725 
726 	/* Pending child counts during tree propagation */
727 	long			state_pending[MEMCG_NR_STAT];
728 	unsigned long		events_pending[NR_MEMCG_EVENTS];
729 };
730 
731 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
732 {
733 	long x = READ_ONCE(memcg->vmstats->state[idx]);
734 #ifdef CONFIG_SMP
735 	if (x < 0)
736 		x = 0;
737 #endif
738 	return x;
739 }
740 
741 /**
742  * __mod_memcg_state - update cgroup memory statistics
743  * @memcg: the memory cgroup
744  * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
745  * @val: delta to add to the counter, can be negative
746  */
747 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
748 {
749 	if (mem_cgroup_disabled())
750 		return;
751 
752 	__this_cpu_add(memcg->vmstats_percpu->state[idx], val);
753 	memcg_rstat_updated(memcg, val);
754 }
755 
756 /* idx can be of type enum memcg_stat_item or node_stat_item. */
757 static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
758 {
759 	long x = 0;
760 	int cpu;
761 
762 	for_each_possible_cpu(cpu)
763 		x += per_cpu(memcg->vmstats_percpu->state[idx], cpu);
764 #ifdef CONFIG_SMP
765 	if (x < 0)
766 		x = 0;
767 #endif
768 	return x;
769 }
770 
771 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
772 			      int val)
773 {
774 	struct mem_cgroup_per_node *pn;
775 	struct mem_cgroup *memcg;
776 
777 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
778 	memcg = pn->memcg;
779 
780 	/*
781 	 * The caller from rmap relay on disabled preemption becase they never
782 	 * update their counter from in-interrupt context. For these two
783 	 * counters we check that the update is never performed from an
784 	 * interrupt context while other caller need to have disabled interrupt.
785 	 */
786 	__memcg_stats_lock();
787 	if (IS_ENABLED(CONFIG_DEBUG_VM)) {
788 		switch (idx) {
789 		case NR_ANON_MAPPED:
790 		case NR_FILE_MAPPED:
791 		case NR_ANON_THPS:
792 		case NR_SHMEM_PMDMAPPED:
793 		case NR_FILE_PMDMAPPED:
794 			WARN_ON_ONCE(!in_task());
795 			break;
796 		default:
797 			VM_WARN_ON_IRQS_ENABLED();
798 		}
799 	}
800 
801 	/* Update memcg */
802 	__this_cpu_add(memcg->vmstats_percpu->state[idx], val);
803 
804 	/* Update lruvec */
805 	__this_cpu_add(pn->lruvec_stats_percpu->state[idx], val);
806 
807 	memcg_rstat_updated(memcg, val);
808 	memcg_stats_unlock();
809 }
810 
811 /**
812  * __mod_lruvec_state - update lruvec memory statistics
813  * @lruvec: the lruvec
814  * @idx: the stat item
815  * @val: delta to add to the counter, can be negative
816  *
817  * The lruvec is the intersection of the NUMA node and a cgroup. This
818  * function updates the all three counters that are affected by a
819  * change of state at this level: per-node, per-cgroup, per-lruvec.
820  */
821 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
822 			int val)
823 {
824 	/* Update node */
825 	__mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
826 
827 	/* Update memcg and lruvec */
828 	if (!mem_cgroup_disabled())
829 		__mod_memcg_lruvec_state(lruvec, idx, val);
830 }
831 
832 void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
833 			     int val)
834 {
835 	struct page *head = compound_head(page); /* rmap on tail pages */
836 	struct mem_cgroup *memcg;
837 	pg_data_t *pgdat = page_pgdat(page);
838 	struct lruvec *lruvec;
839 
840 	rcu_read_lock();
841 	memcg = page_memcg(head);
842 	/* Untracked pages have no memcg, no lruvec. Update only the node */
843 	if (!memcg) {
844 		rcu_read_unlock();
845 		__mod_node_page_state(pgdat, idx, val);
846 		return;
847 	}
848 
849 	lruvec = mem_cgroup_lruvec(memcg, pgdat);
850 	__mod_lruvec_state(lruvec, idx, val);
851 	rcu_read_unlock();
852 }
853 EXPORT_SYMBOL(__mod_lruvec_page_state);
854 
855 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
856 {
857 	pg_data_t *pgdat = page_pgdat(virt_to_page(p));
858 	struct mem_cgroup *memcg;
859 	struct lruvec *lruvec;
860 
861 	rcu_read_lock();
862 	memcg = mem_cgroup_from_slab_obj(p);
863 
864 	/*
865 	 * Untracked pages have no memcg, no lruvec. Update only the
866 	 * node. If we reparent the slab objects to the root memcg,
867 	 * when we free the slab object, we need to update the per-memcg
868 	 * vmstats to keep it correct for the root memcg.
869 	 */
870 	if (!memcg) {
871 		__mod_node_page_state(pgdat, idx, val);
872 	} else {
873 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
874 		__mod_lruvec_state(lruvec, idx, val);
875 	}
876 	rcu_read_unlock();
877 }
878 
879 /**
880  * __count_memcg_events - account VM events in a cgroup
881  * @memcg: the memory cgroup
882  * @idx: the event item
883  * @count: the number of events that occurred
884  */
885 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
886 			  unsigned long count)
887 {
888 	int index = memcg_events_index(idx);
889 
890 	if (mem_cgroup_disabled() || index < 0)
891 		return;
892 
893 	memcg_stats_lock();
894 	__this_cpu_add(memcg->vmstats_percpu->events[index], count);
895 	memcg_rstat_updated(memcg, count);
896 	memcg_stats_unlock();
897 }
898 
899 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
900 {
901 	int index = memcg_events_index(event);
902 
903 	if (index < 0)
904 		return 0;
905 	return READ_ONCE(memcg->vmstats->events[index]);
906 }
907 
908 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
909 {
910 	long x = 0;
911 	int cpu;
912 	int index = memcg_events_index(event);
913 
914 	if (index < 0)
915 		return 0;
916 
917 	for_each_possible_cpu(cpu)
918 		x += per_cpu(memcg->vmstats_percpu->events[index], cpu);
919 	return x;
920 }
921 
922 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
923 					 int nr_pages)
924 {
925 	/* pagein of a big page is an event. So, ignore page size */
926 	if (nr_pages > 0)
927 		__count_memcg_events(memcg, PGPGIN, 1);
928 	else {
929 		__count_memcg_events(memcg, PGPGOUT, 1);
930 		nr_pages = -nr_pages; /* for event */
931 	}
932 
933 	__this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
934 }
935 
936 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
937 				       enum mem_cgroup_events_target target)
938 {
939 	unsigned long val, next;
940 
941 	val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
942 	next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
943 	/* from time_after() in jiffies.h */
944 	if ((long)(next - val) < 0) {
945 		switch (target) {
946 		case MEM_CGROUP_TARGET_THRESH:
947 			next = val + THRESHOLDS_EVENTS_TARGET;
948 			break;
949 		case MEM_CGROUP_TARGET_SOFTLIMIT:
950 			next = val + SOFTLIMIT_EVENTS_TARGET;
951 			break;
952 		default:
953 			break;
954 		}
955 		__this_cpu_write(memcg->vmstats_percpu->targets[target], next);
956 		return true;
957 	}
958 	return false;
959 }
960 
961 /*
962  * Check events in order.
963  *
964  */
965 static void memcg_check_events(struct mem_cgroup *memcg, int nid)
966 {
967 	if (IS_ENABLED(CONFIG_PREEMPT_RT))
968 		return;
969 
970 	/* threshold event is triggered in finer grain than soft limit */
971 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
972 						MEM_CGROUP_TARGET_THRESH))) {
973 		bool do_softlimit;
974 
975 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
976 						MEM_CGROUP_TARGET_SOFTLIMIT);
977 		mem_cgroup_threshold(memcg);
978 		if (unlikely(do_softlimit))
979 			mem_cgroup_update_tree(memcg, nid);
980 	}
981 }
982 
983 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
984 {
985 	/*
986 	 * mm_update_next_owner() may clear mm->owner to NULL
987 	 * if it races with swapoff, page migration, etc.
988 	 * So this can be called with p == NULL.
989 	 */
990 	if (unlikely(!p))
991 		return NULL;
992 
993 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
994 }
995 EXPORT_SYMBOL(mem_cgroup_from_task);
996 
997 static __always_inline struct mem_cgroup *active_memcg(void)
998 {
999 	if (!in_task())
1000 		return this_cpu_read(int_active_memcg);
1001 	else
1002 		return current->active_memcg;
1003 }
1004 
1005 /**
1006  * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1007  * @mm: mm from which memcg should be extracted. It can be NULL.
1008  *
1009  * Obtain a reference on mm->memcg and returns it if successful. If mm
1010  * is NULL, then the memcg is chosen as follows:
1011  * 1) The active memcg, if set.
1012  * 2) current->mm->memcg, if available
1013  * 3) root memcg
1014  * If mem_cgroup is disabled, NULL is returned.
1015  */
1016 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1017 {
1018 	struct mem_cgroup *memcg;
1019 
1020 	if (mem_cgroup_disabled())
1021 		return NULL;
1022 
1023 	/*
1024 	 * Page cache insertions can happen without an
1025 	 * actual mm context, e.g. during disk probing
1026 	 * on boot, loopback IO, acct() writes etc.
1027 	 *
1028 	 * No need to css_get on root memcg as the reference
1029 	 * counting is disabled on the root level in the
1030 	 * cgroup core. See CSS_NO_REF.
1031 	 */
1032 	if (unlikely(!mm)) {
1033 		memcg = active_memcg();
1034 		if (unlikely(memcg)) {
1035 			/* remote memcg must hold a ref */
1036 			css_get(&memcg->css);
1037 			return memcg;
1038 		}
1039 		mm = current->mm;
1040 		if (unlikely(!mm))
1041 			return root_mem_cgroup;
1042 	}
1043 
1044 	rcu_read_lock();
1045 	do {
1046 		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1047 		if (unlikely(!memcg))
1048 			memcg = root_mem_cgroup;
1049 	} while (!css_tryget(&memcg->css));
1050 	rcu_read_unlock();
1051 	return memcg;
1052 }
1053 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1054 
1055 static __always_inline bool memcg_kmem_bypass(void)
1056 {
1057 	/* Allow remote memcg charging from any context. */
1058 	if (unlikely(active_memcg()))
1059 		return false;
1060 
1061 	/* Memcg to charge can't be determined. */
1062 	if (!in_task() || !current->mm || (current->flags & PF_KTHREAD))
1063 		return true;
1064 
1065 	return false;
1066 }
1067 
1068 /**
1069  * mem_cgroup_iter - iterate over memory cgroup hierarchy
1070  * @root: hierarchy root
1071  * @prev: previously returned memcg, NULL on first invocation
1072  * @reclaim: cookie for shared reclaim walks, NULL for full walks
1073  *
1074  * Returns references to children of the hierarchy below @root, or
1075  * @root itself, or %NULL after a full round-trip.
1076  *
1077  * Caller must pass the return value in @prev on subsequent
1078  * invocations for reference counting, or use mem_cgroup_iter_break()
1079  * to cancel a hierarchy walk before the round-trip is complete.
1080  *
1081  * Reclaimers can specify a node in @reclaim to divide up the memcgs
1082  * in the hierarchy among all concurrent reclaimers operating on the
1083  * same node.
1084  */
1085 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1086 				   struct mem_cgroup *prev,
1087 				   struct mem_cgroup_reclaim_cookie *reclaim)
1088 {
1089 	struct mem_cgroup_reclaim_iter *iter;
1090 	struct cgroup_subsys_state *css = NULL;
1091 	struct mem_cgroup *memcg = NULL;
1092 	struct mem_cgroup *pos = NULL;
1093 
1094 	if (mem_cgroup_disabled())
1095 		return NULL;
1096 
1097 	if (!root)
1098 		root = root_mem_cgroup;
1099 
1100 	rcu_read_lock();
1101 
1102 	if (reclaim) {
1103 		struct mem_cgroup_per_node *mz;
1104 
1105 		mz = root->nodeinfo[reclaim->pgdat->node_id];
1106 		iter = &mz->iter;
1107 
1108 		/*
1109 		 * On start, join the current reclaim iteration cycle.
1110 		 * Exit when a concurrent walker completes it.
1111 		 */
1112 		if (!prev)
1113 			reclaim->generation = iter->generation;
1114 		else if (reclaim->generation != iter->generation)
1115 			goto out_unlock;
1116 
1117 		while (1) {
1118 			pos = READ_ONCE(iter->position);
1119 			if (!pos || css_tryget(&pos->css))
1120 				break;
1121 			/*
1122 			 * css reference reached zero, so iter->position will
1123 			 * be cleared by ->css_released. However, we should not
1124 			 * rely on this happening soon, because ->css_released
1125 			 * is called from a work queue, and by busy-waiting we
1126 			 * might block it. So we clear iter->position right
1127 			 * away.
1128 			 */
1129 			(void)cmpxchg(&iter->position, pos, NULL);
1130 		}
1131 	} else if (prev) {
1132 		pos = prev;
1133 	}
1134 
1135 	if (pos)
1136 		css = &pos->css;
1137 
1138 	for (;;) {
1139 		css = css_next_descendant_pre(css, &root->css);
1140 		if (!css) {
1141 			/*
1142 			 * Reclaimers share the hierarchy walk, and a
1143 			 * new one might jump in right at the end of
1144 			 * the hierarchy - make sure they see at least
1145 			 * one group and restart from the beginning.
1146 			 */
1147 			if (!prev)
1148 				continue;
1149 			break;
1150 		}
1151 
1152 		/*
1153 		 * Verify the css and acquire a reference.  The root
1154 		 * is provided by the caller, so we know it's alive
1155 		 * and kicking, and don't take an extra reference.
1156 		 */
1157 		if (css == &root->css || css_tryget(css)) {
1158 			memcg = mem_cgroup_from_css(css);
1159 			break;
1160 		}
1161 	}
1162 
1163 	if (reclaim) {
1164 		/*
1165 		 * The position could have already been updated by a competing
1166 		 * thread, so check that the value hasn't changed since we read
1167 		 * it to avoid reclaiming from the same cgroup twice.
1168 		 */
1169 		(void)cmpxchg(&iter->position, pos, memcg);
1170 
1171 		if (pos)
1172 			css_put(&pos->css);
1173 
1174 		if (!memcg)
1175 			iter->generation++;
1176 	}
1177 
1178 out_unlock:
1179 	rcu_read_unlock();
1180 	if (prev && prev != root)
1181 		css_put(&prev->css);
1182 
1183 	return memcg;
1184 }
1185 
1186 /**
1187  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1188  * @root: hierarchy root
1189  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1190  */
1191 void mem_cgroup_iter_break(struct mem_cgroup *root,
1192 			   struct mem_cgroup *prev)
1193 {
1194 	if (!root)
1195 		root = root_mem_cgroup;
1196 	if (prev && prev != root)
1197 		css_put(&prev->css);
1198 }
1199 
1200 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1201 					struct mem_cgroup *dead_memcg)
1202 {
1203 	struct mem_cgroup_reclaim_iter *iter;
1204 	struct mem_cgroup_per_node *mz;
1205 	int nid;
1206 
1207 	for_each_node(nid) {
1208 		mz = from->nodeinfo[nid];
1209 		iter = &mz->iter;
1210 		cmpxchg(&iter->position, dead_memcg, NULL);
1211 	}
1212 }
1213 
1214 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1215 {
1216 	struct mem_cgroup *memcg = dead_memcg;
1217 	struct mem_cgroup *last;
1218 
1219 	do {
1220 		__invalidate_reclaim_iterators(memcg, dead_memcg);
1221 		last = memcg;
1222 	} while ((memcg = parent_mem_cgroup(memcg)));
1223 
1224 	/*
1225 	 * When cgroup1 non-hierarchy mode is used,
1226 	 * parent_mem_cgroup() does not walk all the way up to the
1227 	 * cgroup root (root_mem_cgroup). So we have to handle
1228 	 * dead_memcg from cgroup root separately.
1229 	 */
1230 	if (!mem_cgroup_is_root(last))
1231 		__invalidate_reclaim_iterators(root_mem_cgroup,
1232 						dead_memcg);
1233 }
1234 
1235 /**
1236  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1237  * @memcg: hierarchy root
1238  * @fn: function to call for each task
1239  * @arg: argument passed to @fn
1240  *
1241  * This function iterates over tasks attached to @memcg or to any of its
1242  * descendants and calls @fn for each task. If @fn returns a non-zero
1243  * value, the function breaks the iteration loop and returns the value.
1244  * Otherwise, it will iterate over all tasks and return 0.
1245  *
1246  * This function must not be called for the root memory cgroup.
1247  */
1248 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1249 			  int (*fn)(struct task_struct *, void *), void *arg)
1250 {
1251 	struct mem_cgroup *iter;
1252 	int ret = 0;
1253 
1254 	BUG_ON(mem_cgroup_is_root(memcg));
1255 
1256 	for_each_mem_cgroup_tree(iter, memcg) {
1257 		struct css_task_iter it;
1258 		struct task_struct *task;
1259 
1260 		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1261 		while (!ret && (task = css_task_iter_next(&it)))
1262 			ret = fn(task, arg);
1263 		css_task_iter_end(&it);
1264 		if (ret) {
1265 			mem_cgroup_iter_break(memcg, iter);
1266 			break;
1267 		}
1268 	}
1269 	return ret;
1270 }
1271 
1272 #ifdef CONFIG_DEBUG_VM
1273 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1274 {
1275 	struct mem_cgroup *memcg;
1276 
1277 	if (mem_cgroup_disabled())
1278 		return;
1279 
1280 	memcg = folio_memcg(folio);
1281 
1282 	if (!memcg)
1283 		VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio);
1284 	else
1285 		VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
1286 }
1287 #endif
1288 
1289 /**
1290  * folio_lruvec_lock - Lock the lruvec for a folio.
1291  * @folio: Pointer to the folio.
1292  *
1293  * These functions are safe to use under any of the following conditions:
1294  * - folio locked
1295  * - folio_test_lru false
1296  * - folio_memcg_lock()
1297  * - folio frozen (refcount of 0)
1298  *
1299  * Return: The lruvec this folio is on with its lock held.
1300  */
1301 struct lruvec *folio_lruvec_lock(struct folio *folio)
1302 {
1303 	struct lruvec *lruvec = folio_lruvec(folio);
1304 
1305 	spin_lock(&lruvec->lru_lock);
1306 	lruvec_memcg_debug(lruvec, folio);
1307 
1308 	return lruvec;
1309 }
1310 
1311 /**
1312  * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1313  * @folio: Pointer to the folio.
1314  *
1315  * These functions are safe to use under any of the following conditions:
1316  * - folio locked
1317  * - folio_test_lru false
1318  * - folio_memcg_lock()
1319  * - folio frozen (refcount of 0)
1320  *
1321  * Return: The lruvec this folio is on with its lock held and interrupts
1322  * disabled.
1323  */
1324 struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1325 {
1326 	struct lruvec *lruvec = folio_lruvec(folio);
1327 
1328 	spin_lock_irq(&lruvec->lru_lock);
1329 	lruvec_memcg_debug(lruvec, folio);
1330 
1331 	return lruvec;
1332 }
1333 
1334 /**
1335  * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1336  * @folio: Pointer to the folio.
1337  * @flags: Pointer to irqsave flags.
1338  *
1339  * These functions are safe to use under any of the following conditions:
1340  * - folio locked
1341  * - folio_test_lru false
1342  * - folio_memcg_lock()
1343  * - folio frozen (refcount of 0)
1344  *
1345  * Return: The lruvec this folio is on with its lock held and interrupts
1346  * disabled.
1347  */
1348 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1349 		unsigned long *flags)
1350 {
1351 	struct lruvec *lruvec = folio_lruvec(folio);
1352 
1353 	spin_lock_irqsave(&lruvec->lru_lock, *flags);
1354 	lruvec_memcg_debug(lruvec, folio);
1355 
1356 	return lruvec;
1357 }
1358 
1359 /**
1360  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1361  * @lruvec: mem_cgroup per zone lru vector
1362  * @lru: index of lru list the page is sitting on
1363  * @zid: zone id of the accounted pages
1364  * @nr_pages: positive when adding or negative when removing
1365  *
1366  * This function must be called under lru_lock, just before a page is added
1367  * to or just after a page is removed from an lru list.
1368  */
1369 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1370 				int zid, int nr_pages)
1371 {
1372 	struct mem_cgroup_per_node *mz;
1373 	unsigned long *lru_size;
1374 	long size;
1375 
1376 	if (mem_cgroup_disabled())
1377 		return;
1378 
1379 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1380 	lru_size = &mz->lru_zone_size[zid][lru];
1381 
1382 	if (nr_pages < 0)
1383 		*lru_size += nr_pages;
1384 
1385 	size = *lru_size;
1386 	if (WARN_ONCE(size < 0,
1387 		"%s(%p, %d, %d): lru_size %ld\n",
1388 		__func__, lruvec, lru, nr_pages, size)) {
1389 		VM_BUG_ON(1);
1390 		*lru_size = 0;
1391 	}
1392 
1393 	if (nr_pages > 0)
1394 		*lru_size += nr_pages;
1395 }
1396 
1397 /**
1398  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1399  * @memcg: the memory cgroup
1400  *
1401  * Returns the maximum amount of memory @mem can be charged with, in
1402  * pages.
1403  */
1404 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1405 {
1406 	unsigned long margin = 0;
1407 	unsigned long count;
1408 	unsigned long limit;
1409 
1410 	count = page_counter_read(&memcg->memory);
1411 	limit = READ_ONCE(memcg->memory.max);
1412 	if (count < limit)
1413 		margin = limit - count;
1414 
1415 	if (do_memsw_account()) {
1416 		count = page_counter_read(&memcg->memsw);
1417 		limit = READ_ONCE(memcg->memsw.max);
1418 		if (count < limit)
1419 			margin = min(margin, limit - count);
1420 		else
1421 			margin = 0;
1422 	}
1423 
1424 	return margin;
1425 }
1426 
1427 /*
1428  * A routine for checking "mem" is under move_account() or not.
1429  *
1430  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1431  * moving cgroups. This is for waiting at high-memory pressure
1432  * caused by "move".
1433  */
1434 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1435 {
1436 	struct mem_cgroup *from;
1437 	struct mem_cgroup *to;
1438 	bool ret = false;
1439 	/*
1440 	 * Unlike task_move routines, we access mc.to, mc.from not under
1441 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1442 	 */
1443 	spin_lock(&mc.lock);
1444 	from = mc.from;
1445 	to = mc.to;
1446 	if (!from)
1447 		goto unlock;
1448 
1449 	ret = mem_cgroup_is_descendant(from, memcg) ||
1450 		mem_cgroup_is_descendant(to, memcg);
1451 unlock:
1452 	spin_unlock(&mc.lock);
1453 	return ret;
1454 }
1455 
1456 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1457 {
1458 	if (mc.moving_task && current != mc.moving_task) {
1459 		if (mem_cgroup_under_move(memcg)) {
1460 			DEFINE_WAIT(wait);
1461 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1462 			/* moving charge context might have finished. */
1463 			if (mc.moving_task)
1464 				schedule();
1465 			finish_wait(&mc.waitq, &wait);
1466 			return true;
1467 		}
1468 	}
1469 	return false;
1470 }
1471 
1472 struct memory_stat {
1473 	const char *name;
1474 	unsigned int idx;
1475 };
1476 
1477 static const struct memory_stat memory_stats[] = {
1478 	{ "anon",			NR_ANON_MAPPED			},
1479 	{ "file",			NR_FILE_PAGES			},
1480 	{ "kernel",			MEMCG_KMEM			},
1481 	{ "kernel_stack",		NR_KERNEL_STACK_KB		},
1482 	{ "pagetables",			NR_PAGETABLE			},
1483 	{ "sec_pagetables",		NR_SECONDARY_PAGETABLE		},
1484 	{ "percpu",			MEMCG_PERCPU_B			},
1485 	{ "sock",			MEMCG_SOCK			},
1486 	{ "vmalloc",			MEMCG_VMALLOC			},
1487 	{ "shmem",			NR_SHMEM			},
1488 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1489 	{ "zswap",			MEMCG_ZSWAP_B			},
1490 	{ "zswapped",			MEMCG_ZSWAPPED			},
1491 #endif
1492 	{ "file_mapped",		NR_FILE_MAPPED			},
1493 	{ "file_dirty",			NR_FILE_DIRTY			},
1494 	{ "file_writeback",		NR_WRITEBACK			},
1495 #ifdef CONFIG_SWAP
1496 	{ "swapcached",			NR_SWAPCACHE			},
1497 #endif
1498 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1499 	{ "anon_thp",			NR_ANON_THPS			},
1500 	{ "file_thp",			NR_FILE_THPS			},
1501 	{ "shmem_thp",			NR_SHMEM_THPS			},
1502 #endif
1503 	{ "inactive_anon",		NR_INACTIVE_ANON		},
1504 	{ "active_anon",		NR_ACTIVE_ANON			},
1505 	{ "inactive_file",		NR_INACTIVE_FILE		},
1506 	{ "active_file",		NR_ACTIVE_FILE			},
1507 	{ "unevictable",		NR_UNEVICTABLE			},
1508 	{ "slab_reclaimable",		NR_SLAB_RECLAIMABLE_B		},
1509 	{ "slab_unreclaimable",		NR_SLAB_UNRECLAIMABLE_B		},
1510 
1511 	/* The memory events */
1512 	{ "workingset_refault_anon",	WORKINGSET_REFAULT_ANON		},
1513 	{ "workingset_refault_file",	WORKINGSET_REFAULT_FILE		},
1514 	{ "workingset_activate_anon",	WORKINGSET_ACTIVATE_ANON	},
1515 	{ "workingset_activate_file",	WORKINGSET_ACTIVATE_FILE	},
1516 	{ "workingset_restore_anon",	WORKINGSET_RESTORE_ANON		},
1517 	{ "workingset_restore_file",	WORKINGSET_RESTORE_FILE		},
1518 	{ "workingset_nodereclaim",	WORKINGSET_NODERECLAIM		},
1519 };
1520 
1521 /* Translate stat items to the correct unit for memory.stat output */
1522 static int memcg_page_state_unit(int item)
1523 {
1524 	switch (item) {
1525 	case MEMCG_PERCPU_B:
1526 	case MEMCG_ZSWAP_B:
1527 	case NR_SLAB_RECLAIMABLE_B:
1528 	case NR_SLAB_UNRECLAIMABLE_B:
1529 	case WORKINGSET_REFAULT_ANON:
1530 	case WORKINGSET_REFAULT_FILE:
1531 	case WORKINGSET_ACTIVATE_ANON:
1532 	case WORKINGSET_ACTIVATE_FILE:
1533 	case WORKINGSET_RESTORE_ANON:
1534 	case WORKINGSET_RESTORE_FILE:
1535 	case WORKINGSET_NODERECLAIM:
1536 		return 1;
1537 	case NR_KERNEL_STACK_KB:
1538 		return SZ_1K;
1539 	default:
1540 		return PAGE_SIZE;
1541 	}
1542 }
1543 
1544 static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1545 						    int item)
1546 {
1547 	return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1548 }
1549 
1550 static void memory_stat_format(struct mem_cgroup *memcg, char *buf, int bufsize)
1551 {
1552 	struct seq_buf s;
1553 	int i;
1554 
1555 	seq_buf_init(&s, buf, bufsize);
1556 
1557 	/*
1558 	 * Provide statistics on the state of the memory subsystem as
1559 	 * well as cumulative event counters that show past behavior.
1560 	 *
1561 	 * This list is ordered following a combination of these gradients:
1562 	 * 1) generic big picture -> specifics and details
1563 	 * 2) reflecting userspace activity -> reflecting kernel heuristics
1564 	 *
1565 	 * Current memory state:
1566 	 */
1567 	mem_cgroup_flush_stats();
1568 
1569 	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1570 		u64 size;
1571 
1572 		size = memcg_page_state_output(memcg, memory_stats[i].idx);
1573 		seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
1574 
1575 		if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1576 			size += memcg_page_state_output(memcg,
1577 							NR_SLAB_RECLAIMABLE_B);
1578 			seq_buf_printf(&s, "slab %llu\n", size);
1579 		}
1580 	}
1581 
1582 	/* Accumulated memory events */
1583 	seq_buf_printf(&s, "pgscan %lu\n",
1584 		       memcg_events(memcg, PGSCAN_KSWAPD) +
1585 		       memcg_events(memcg, PGSCAN_DIRECT) +
1586 		       memcg_events(memcg, PGSCAN_KHUGEPAGED));
1587 	seq_buf_printf(&s, "pgsteal %lu\n",
1588 		       memcg_events(memcg, PGSTEAL_KSWAPD) +
1589 		       memcg_events(memcg, PGSTEAL_DIRECT) +
1590 		       memcg_events(memcg, PGSTEAL_KHUGEPAGED));
1591 
1592 	for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) {
1593 		if (memcg_vm_event_stat[i] == PGPGIN ||
1594 		    memcg_vm_event_stat[i] == PGPGOUT)
1595 			continue;
1596 
1597 		seq_buf_printf(&s, "%s %lu\n",
1598 			       vm_event_name(memcg_vm_event_stat[i]),
1599 			       memcg_events(memcg, memcg_vm_event_stat[i]));
1600 	}
1601 
1602 	/* The above should easily fit into one page */
1603 	WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1604 }
1605 
1606 #define K(x) ((x) << (PAGE_SHIFT-10))
1607 /**
1608  * mem_cgroup_print_oom_context: Print OOM information relevant to
1609  * memory controller.
1610  * @memcg: The memory cgroup that went over limit
1611  * @p: Task that is going to be killed
1612  *
1613  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1614  * enabled
1615  */
1616 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1617 {
1618 	rcu_read_lock();
1619 
1620 	if (memcg) {
1621 		pr_cont(",oom_memcg=");
1622 		pr_cont_cgroup_path(memcg->css.cgroup);
1623 	} else
1624 		pr_cont(",global_oom");
1625 	if (p) {
1626 		pr_cont(",task_memcg=");
1627 		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1628 	}
1629 	rcu_read_unlock();
1630 }
1631 
1632 /**
1633  * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1634  * memory controller.
1635  * @memcg: The memory cgroup that went over limit
1636  */
1637 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1638 {
1639 	/* Use static buffer, for the caller is holding oom_lock. */
1640 	static char buf[PAGE_SIZE];
1641 
1642 	lockdep_assert_held(&oom_lock);
1643 
1644 	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1645 		K((u64)page_counter_read(&memcg->memory)),
1646 		K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1647 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1648 		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1649 			K((u64)page_counter_read(&memcg->swap)),
1650 			K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1651 	else {
1652 		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1653 			K((u64)page_counter_read(&memcg->memsw)),
1654 			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1655 		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1656 			K((u64)page_counter_read(&memcg->kmem)),
1657 			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1658 	}
1659 
1660 	pr_info("Memory cgroup stats for ");
1661 	pr_cont_cgroup_path(memcg->css.cgroup);
1662 	pr_cont(":");
1663 	memory_stat_format(memcg, buf, sizeof(buf));
1664 	pr_info("%s", buf);
1665 }
1666 
1667 /*
1668  * Return the memory (and swap, if configured) limit for a memcg.
1669  */
1670 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1671 {
1672 	unsigned long max = READ_ONCE(memcg->memory.max);
1673 
1674 	if (do_memsw_account()) {
1675 		if (mem_cgroup_swappiness(memcg)) {
1676 			/* Calculate swap excess capacity from memsw limit */
1677 			unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1678 
1679 			max += min(swap, (unsigned long)total_swap_pages);
1680 		}
1681 	} else {
1682 		if (mem_cgroup_swappiness(memcg))
1683 			max += min(READ_ONCE(memcg->swap.max),
1684 				   (unsigned long)total_swap_pages);
1685 	}
1686 	return max;
1687 }
1688 
1689 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1690 {
1691 	return page_counter_read(&memcg->memory);
1692 }
1693 
1694 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1695 				     int order)
1696 {
1697 	struct oom_control oc = {
1698 		.zonelist = NULL,
1699 		.nodemask = NULL,
1700 		.memcg = memcg,
1701 		.gfp_mask = gfp_mask,
1702 		.order = order,
1703 	};
1704 	bool ret = true;
1705 
1706 	if (mutex_lock_killable(&oom_lock))
1707 		return true;
1708 
1709 	if (mem_cgroup_margin(memcg) >= (1 << order))
1710 		goto unlock;
1711 
1712 	/*
1713 	 * A few threads which were not waiting at mutex_lock_killable() can
1714 	 * fail to bail out. Therefore, check again after holding oom_lock.
1715 	 */
1716 	ret = task_is_dying() || out_of_memory(&oc);
1717 
1718 unlock:
1719 	mutex_unlock(&oom_lock);
1720 	return ret;
1721 }
1722 
1723 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1724 				   pg_data_t *pgdat,
1725 				   gfp_t gfp_mask,
1726 				   unsigned long *total_scanned)
1727 {
1728 	struct mem_cgroup *victim = NULL;
1729 	int total = 0;
1730 	int loop = 0;
1731 	unsigned long excess;
1732 	unsigned long nr_scanned;
1733 	struct mem_cgroup_reclaim_cookie reclaim = {
1734 		.pgdat = pgdat,
1735 	};
1736 
1737 	excess = soft_limit_excess(root_memcg);
1738 
1739 	while (1) {
1740 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1741 		if (!victim) {
1742 			loop++;
1743 			if (loop >= 2) {
1744 				/*
1745 				 * If we have not been able to reclaim
1746 				 * anything, it might because there are
1747 				 * no reclaimable pages under this hierarchy
1748 				 */
1749 				if (!total)
1750 					break;
1751 				/*
1752 				 * We want to do more targeted reclaim.
1753 				 * excess >> 2 is not to excessive so as to
1754 				 * reclaim too much, nor too less that we keep
1755 				 * coming back to reclaim from this cgroup
1756 				 */
1757 				if (total >= (excess >> 2) ||
1758 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1759 					break;
1760 			}
1761 			continue;
1762 		}
1763 		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1764 					pgdat, &nr_scanned);
1765 		*total_scanned += nr_scanned;
1766 		if (!soft_limit_excess(root_memcg))
1767 			break;
1768 	}
1769 	mem_cgroup_iter_break(root_memcg, victim);
1770 	return total;
1771 }
1772 
1773 #ifdef CONFIG_LOCKDEP
1774 static struct lockdep_map memcg_oom_lock_dep_map = {
1775 	.name = "memcg_oom_lock",
1776 };
1777 #endif
1778 
1779 static DEFINE_SPINLOCK(memcg_oom_lock);
1780 
1781 /*
1782  * Check OOM-Killer is already running under our hierarchy.
1783  * If someone is running, return false.
1784  */
1785 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1786 {
1787 	struct mem_cgroup *iter, *failed = NULL;
1788 
1789 	spin_lock(&memcg_oom_lock);
1790 
1791 	for_each_mem_cgroup_tree(iter, memcg) {
1792 		if (iter->oom_lock) {
1793 			/*
1794 			 * this subtree of our hierarchy is already locked
1795 			 * so we cannot give a lock.
1796 			 */
1797 			failed = iter;
1798 			mem_cgroup_iter_break(memcg, iter);
1799 			break;
1800 		} else
1801 			iter->oom_lock = true;
1802 	}
1803 
1804 	if (failed) {
1805 		/*
1806 		 * OK, we failed to lock the whole subtree so we have
1807 		 * to clean up what we set up to the failing subtree
1808 		 */
1809 		for_each_mem_cgroup_tree(iter, memcg) {
1810 			if (iter == failed) {
1811 				mem_cgroup_iter_break(memcg, iter);
1812 				break;
1813 			}
1814 			iter->oom_lock = false;
1815 		}
1816 	} else
1817 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1818 
1819 	spin_unlock(&memcg_oom_lock);
1820 
1821 	return !failed;
1822 }
1823 
1824 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1825 {
1826 	struct mem_cgroup *iter;
1827 
1828 	spin_lock(&memcg_oom_lock);
1829 	mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1830 	for_each_mem_cgroup_tree(iter, memcg)
1831 		iter->oom_lock = false;
1832 	spin_unlock(&memcg_oom_lock);
1833 }
1834 
1835 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1836 {
1837 	struct mem_cgroup *iter;
1838 
1839 	spin_lock(&memcg_oom_lock);
1840 	for_each_mem_cgroup_tree(iter, memcg)
1841 		iter->under_oom++;
1842 	spin_unlock(&memcg_oom_lock);
1843 }
1844 
1845 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1846 {
1847 	struct mem_cgroup *iter;
1848 
1849 	/*
1850 	 * Be careful about under_oom underflows because a child memcg
1851 	 * could have been added after mem_cgroup_mark_under_oom.
1852 	 */
1853 	spin_lock(&memcg_oom_lock);
1854 	for_each_mem_cgroup_tree(iter, memcg)
1855 		if (iter->under_oom > 0)
1856 			iter->under_oom--;
1857 	spin_unlock(&memcg_oom_lock);
1858 }
1859 
1860 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1861 
1862 struct oom_wait_info {
1863 	struct mem_cgroup *memcg;
1864 	wait_queue_entry_t	wait;
1865 };
1866 
1867 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1868 	unsigned mode, int sync, void *arg)
1869 {
1870 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1871 	struct mem_cgroup *oom_wait_memcg;
1872 	struct oom_wait_info *oom_wait_info;
1873 
1874 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1875 	oom_wait_memcg = oom_wait_info->memcg;
1876 
1877 	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1878 	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1879 		return 0;
1880 	return autoremove_wake_function(wait, mode, sync, arg);
1881 }
1882 
1883 static void memcg_oom_recover(struct mem_cgroup *memcg)
1884 {
1885 	/*
1886 	 * For the following lockless ->under_oom test, the only required
1887 	 * guarantee is that it must see the state asserted by an OOM when
1888 	 * this function is called as a result of userland actions
1889 	 * triggered by the notification of the OOM.  This is trivially
1890 	 * achieved by invoking mem_cgroup_mark_under_oom() before
1891 	 * triggering notification.
1892 	 */
1893 	if (memcg && memcg->under_oom)
1894 		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1895 }
1896 
1897 /*
1898  * Returns true if successfully killed one or more processes. Though in some
1899  * corner cases it can return true even without killing any process.
1900  */
1901 static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1902 {
1903 	bool locked, ret;
1904 
1905 	if (order > PAGE_ALLOC_COSTLY_ORDER)
1906 		return false;
1907 
1908 	memcg_memory_event(memcg, MEMCG_OOM);
1909 
1910 	/*
1911 	 * We are in the middle of the charge context here, so we
1912 	 * don't want to block when potentially sitting on a callstack
1913 	 * that holds all kinds of filesystem and mm locks.
1914 	 *
1915 	 * cgroup1 allows disabling the OOM killer and waiting for outside
1916 	 * handling until the charge can succeed; remember the context and put
1917 	 * the task to sleep at the end of the page fault when all locks are
1918 	 * released.
1919 	 *
1920 	 * On the other hand, in-kernel OOM killer allows for an async victim
1921 	 * memory reclaim (oom_reaper) and that means that we are not solely
1922 	 * relying on the oom victim to make a forward progress and we can
1923 	 * invoke the oom killer here.
1924 	 *
1925 	 * Please note that mem_cgroup_out_of_memory might fail to find a
1926 	 * victim and then we have to bail out from the charge path.
1927 	 */
1928 	if (memcg->oom_kill_disable) {
1929 		if (current->in_user_fault) {
1930 			css_get(&memcg->css);
1931 			current->memcg_in_oom = memcg;
1932 			current->memcg_oom_gfp_mask = mask;
1933 			current->memcg_oom_order = order;
1934 		}
1935 		return false;
1936 	}
1937 
1938 	mem_cgroup_mark_under_oom(memcg);
1939 
1940 	locked = mem_cgroup_oom_trylock(memcg);
1941 
1942 	if (locked)
1943 		mem_cgroup_oom_notify(memcg);
1944 
1945 	mem_cgroup_unmark_under_oom(memcg);
1946 	ret = mem_cgroup_out_of_memory(memcg, mask, order);
1947 
1948 	if (locked)
1949 		mem_cgroup_oom_unlock(memcg);
1950 
1951 	return ret;
1952 }
1953 
1954 /**
1955  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1956  * @handle: actually kill/wait or just clean up the OOM state
1957  *
1958  * This has to be called at the end of a page fault if the memcg OOM
1959  * handler was enabled.
1960  *
1961  * Memcg supports userspace OOM handling where failed allocations must
1962  * sleep on a waitqueue until the userspace task resolves the
1963  * situation.  Sleeping directly in the charge context with all kinds
1964  * of locks held is not a good idea, instead we remember an OOM state
1965  * in the task and mem_cgroup_oom_synchronize() has to be called at
1966  * the end of the page fault to complete the OOM handling.
1967  *
1968  * Returns %true if an ongoing memcg OOM situation was detected and
1969  * completed, %false otherwise.
1970  */
1971 bool mem_cgroup_oom_synchronize(bool handle)
1972 {
1973 	struct mem_cgroup *memcg = current->memcg_in_oom;
1974 	struct oom_wait_info owait;
1975 	bool locked;
1976 
1977 	/* OOM is global, do not handle */
1978 	if (!memcg)
1979 		return false;
1980 
1981 	if (!handle)
1982 		goto cleanup;
1983 
1984 	owait.memcg = memcg;
1985 	owait.wait.flags = 0;
1986 	owait.wait.func = memcg_oom_wake_function;
1987 	owait.wait.private = current;
1988 	INIT_LIST_HEAD(&owait.wait.entry);
1989 
1990 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1991 	mem_cgroup_mark_under_oom(memcg);
1992 
1993 	locked = mem_cgroup_oom_trylock(memcg);
1994 
1995 	if (locked)
1996 		mem_cgroup_oom_notify(memcg);
1997 
1998 	if (locked && !memcg->oom_kill_disable) {
1999 		mem_cgroup_unmark_under_oom(memcg);
2000 		finish_wait(&memcg_oom_waitq, &owait.wait);
2001 		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
2002 					 current->memcg_oom_order);
2003 	} else {
2004 		schedule();
2005 		mem_cgroup_unmark_under_oom(memcg);
2006 		finish_wait(&memcg_oom_waitq, &owait.wait);
2007 	}
2008 
2009 	if (locked) {
2010 		mem_cgroup_oom_unlock(memcg);
2011 		/*
2012 		 * There is no guarantee that an OOM-lock contender
2013 		 * sees the wakeups triggered by the OOM kill
2014 		 * uncharges.  Wake any sleepers explicitly.
2015 		 */
2016 		memcg_oom_recover(memcg);
2017 	}
2018 cleanup:
2019 	current->memcg_in_oom = NULL;
2020 	css_put(&memcg->css);
2021 	return true;
2022 }
2023 
2024 /**
2025  * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2026  * @victim: task to be killed by the OOM killer
2027  * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2028  *
2029  * Returns a pointer to a memory cgroup, which has to be cleaned up
2030  * by killing all belonging OOM-killable tasks.
2031  *
2032  * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2033  */
2034 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2035 					    struct mem_cgroup *oom_domain)
2036 {
2037 	struct mem_cgroup *oom_group = NULL;
2038 	struct mem_cgroup *memcg;
2039 
2040 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2041 		return NULL;
2042 
2043 	if (!oom_domain)
2044 		oom_domain = root_mem_cgroup;
2045 
2046 	rcu_read_lock();
2047 
2048 	memcg = mem_cgroup_from_task(victim);
2049 	if (mem_cgroup_is_root(memcg))
2050 		goto out;
2051 
2052 	/*
2053 	 * If the victim task has been asynchronously moved to a different
2054 	 * memory cgroup, we might end up killing tasks outside oom_domain.
2055 	 * In this case it's better to ignore memory.group.oom.
2056 	 */
2057 	if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2058 		goto out;
2059 
2060 	/*
2061 	 * Traverse the memory cgroup hierarchy from the victim task's
2062 	 * cgroup up to the OOMing cgroup (or root) to find the
2063 	 * highest-level memory cgroup with oom.group set.
2064 	 */
2065 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2066 		if (memcg->oom_group)
2067 			oom_group = memcg;
2068 
2069 		if (memcg == oom_domain)
2070 			break;
2071 	}
2072 
2073 	if (oom_group)
2074 		css_get(&oom_group->css);
2075 out:
2076 	rcu_read_unlock();
2077 
2078 	return oom_group;
2079 }
2080 
2081 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2082 {
2083 	pr_info("Tasks in ");
2084 	pr_cont_cgroup_path(memcg->css.cgroup);
2085 	pr_cont(" are going to be killed due to memory.oom.group set\n");
2086 }
2087 
2088 /**
2089  * folio_memcg_lock - Bind a folio to its memcg.
2090  * @folio: The folio.
2091  *
2092  * This function prevents unlocked LRU folios from being moved to
2093  * another cgroup.
2094  *
2095  * It ensures lifetime of the bound memcg.  The caller is responsible
2096  * for the lifetime of the folio.
2097  */
2098 void folio_memcg_lock(struct folio *folio)
2099 {
2100 	struct mem_cgroup *memcg;
2101 	unsigned long flags;
2102 
2103 	/*
2104 	 * The RCU lock is held throughout the transaction.  The fast
2105 	 * path can get away without acquiring the memcg->move_lock
2106 	 * because page moving starts with an RCU grace period.
2107          */
2108 	rcu_read_lock();
2109 
2110 	if (mem_cgroup_disabled())
2111 		return;
2112 again:
2113 	memcg = folio_memcg(folio);
2114 	if (unlikely(!memcg))
2115 		return;
2116 
2117 #ifdef CONFIG_PROVE_LOCKING
2118 	local_irq_save(flags);
2119 	might_lock(&memcg->move_lock);
2120 	local_irq_restore(flags);
2121 #endif
2122 
2123 	if (atomic_read(&memcg->moving_account) <= 0)
2124 		return;
2125 
2126 	spin_lock_irqsave(&memcg->move_lock, flags);
2127 	if (memcg != folio_memcg(folio)) {
2128 		spin_unlock_irqrestore(&memcg->move_lock, flags);
2129 		goto again;
2130 	}
2131 
2132 	/*
2133 	 * When charge migration first begins, we can have multiple
2134 	 * critical sections holding the fast-path RCU lock and one
2135 	 * holding the slowpath move_lock. Track the task who has the
2136 	 * move_lock for unlock_page_memcg().
2137 	 */
2138 	memcg->move_lock_task = current;
2139 	memcg->move_lock_flags = flags;
2140 }
2141 
2142 void lock_page_memcg(struct page *page)
2143 {
2144 	folio_memcg_lock(page_folio(page));
2145 }
2146 
2147 static void __folio_memcg_unlock(struct mem_cgroup *memcg)
2148 {
2149 	if (memcg && memcg->move_lock_task == current) {
2150 		unsigned long flags = memcg->move_lock_flags;
2151 
2152 		memcg->move_lock_task = NULL;
2153 		memcg->move_lock_flags = 0;
2154 
2155 		spin_unlock_irqrestore(&memcg->move_lock, flags);
2156 	}
2157 
2158 	rcu_read_unlock();
2159 }
2160 
2161 /**
2162  * folio_memcg_unlock - Release the binding between a folio and its memcg.
2163  * @folio: The folio.
2164  *
2165  * This releases the binding created by folio_memcg_lock().  This does
2166  * not change the accounting of this folio to its memcg, but it does
2167  * permit others to change it.
2168  */
2169 void folio_memcg_unlock(struct folio *folio)
2170 {
2171 	__folio_memcg_unlock(folio_memcg(folio));
2172 }
2173 
2174 void unlock_page_memcg(struct page *page)
2175 {
2176 	folio_memcg_unlock(page_folio(page));
2177 }
2178 
2179 struct memcg_stock_pcp {
2180 	local_lock_t stock_lock;
2181 	struct mem_cgroup *cached; /* this never be root cgroup */
2182 	unsigned int nr_pages;
2183 
2184 #ifdef CONFIG_MEMCG_KMEM
2185 	struct obj_cgroup *cached_objcg;
2186 	struct pglist_data *cached_pgdat;
2187 	unsigned int nr_bytes;
2188 	int nr_slab_reclaimable_b;
2189 	int nr_slab_unreclaimable_b;
2190 #endif
2191 
2192 	struct work_struct work;
2193 	unsigned long flags;
2194 #define FLUSHING_CACHED_CHARGE	0
2195 };
2196 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = {
2197 	.stock_lock = INIT_LOCAL_LOCK(stock_lock),
2198 };
2199 static DEFINE_MUTEX(percpu_charge_mutex);
2200 
2201 #ifdef CONFIG_MEMCG_KMEM
2202 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock);
2203 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2204 				     struct mem_cgroup *root_memcg);
2205 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages);
2206 
2207 #else
2208 static inline struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
2209 {
2210 	return NULL;
2211 }
2212 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2213 				     struct mem_cgroup *root_memcg)
2214 {
2215 	return false;
2216 }
2217 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
2218 {
2219 }
2220 #endif
2221 
2222 /**
2223  * consume_stock: Try to consume stocked charge on this cpu.
2224  * @memcg: memcg to consume from.
2225  * @nr_pages: how many pages to charge.
2226  *
2227  * The charges will only happen if @memcg matches the current cpu's memcg
2228  * stock, and at least @nr_pages are available in that stock.  Failure to
2229  * service an allocation will refill the stock.
2230  *
2231  * returns true if successful, false otherwise.
2232  */
2233 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2234 {
2235 	struct memcg_stock_pcp *stock;
2236 	unsigned long flags;
2237 	bool ret = false;
2238 
2239 	if (nr_pages > MEMCG_CHARGE_BATCH)
2240 		return ret;
2241 
2242 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
2243 
2244 	stock = this_cpu_ptr(&memcg_stock);
2245 	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2246 		stock->nr_pages -= nr_pages;
2247 		ret = true;
2248 	}
2249 
2250 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2251 
2252 	return ret;
2253 }
2254 
2255 /*
2256  * Returns stocks cached in percpu and reset cached information.
2257  */
2258 static void drain_stock(struct memcg_stock_pcp *stock)
2259 {
2260 	struct mem_cgroup *old = stock->cached;
2261 
2262 	if (!old)
2263 		return;
2264 
2265 	if (stock->nr_pages) {
2266 		page_counter_uncharge(&old->memory, stock->nr_pages);
2267 		if (do_memsw_account())
2268 			page_counter_uncharge(&old->memsw, stock->nr_pages);
2269 		stock->nr_pages = 0;
2270 	}
2271 
2272 	css_put(&old->css);
2273 	stock->cached = NULL;
2274 }
2275 
2276 static void drain_local_stock(struct work_struct *dummy)
2277 {
2278 	struct memcg_stock_pcp *stock;
2279 	struct obj_cgroup *old = NULL;
2280 	unsigned long flags;
2281 
2282 	/*
2283 	 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
2284 	 * drain_stock races is that we always operate on local CPU stock
2285 	 * here with IRQ disabled
2286 	 */
2287 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
2288 
2289 	stock = this_cpu_ptr(&memcg_stock);
2290 	old = drain_obj_stock(stock);
2291 	drain_stock(stock);
2292 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2293 
2294 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2295 	if (old)
2296 		obj_cgroup_put(old);
2297 }
2298 
2299 /*
2300  * Cache charges(val) to local per_cpu area.
2301  * This will be consumed by consume_stock() function, later.
2302  */
2303 static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2304 {
2305 	struct memcg_stock_pcp *stock;
2306 
2307 	stock = this_cpu_ptr(&memcg_stock);
2308 	if (stock->cached != memcg) { /* reset if necessary */
2309 		drain_stock(stock);
2310 		css_get(&memcg->css);
2311 		stock->cached = memcg;
2312 	}
2313 	stock->nr_pages += nr_pages;
2314 
2315 	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2316 		drain_stock(stock);
2317 }
2318 
2319 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2320 {
2321 	unsigned long flags;
2322 
2323 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
2324 	__refill_stock(memcg, nr_pages);
2325 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2326 }
2327 
2328 /*
2329  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2330  * of the hierarchy under it.
2331  */
2332 static void drain_all_stock(struct mem_cgroup *root_memcg)
2333 {
2334 	int cpu, curcpu;
2335 
2336 	/* If someone's already draining, avoid adding running more workers. */
2337 	if (!mutex_trylock(&percpu_charge_mutex))
2338 		return;
2339 	/*
2340 	 * Notify other cpus that system-wide "drain" is running
2341 	 * We do not care about races with the cpu hotplug because cpu down
2342 	 * as well as workers from this path always operate on the local
2343 	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2344 	 */
2345 	migrate_disable();
2346 	curcpu = smp_processor_id();
2347 	for_each_online_cpu(cpu) {
2348 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2349 		struct mem_cgroup *memcg;
2350 		bool flush = false;
2351 
2352 		rcu_read_lock();
2353 		memcg = stock->cached;
2354 		if (memcg && stock->nr_pages &&
2355 		    mem_cgroup_is_descendant(memcg, root_memcg))
2356 			flush = true;
2357 		else if (obj_stock_flush_required(stock, root_memcg))
2358 			flush = true;
2359 		rcu_read_unlock();
2360 
2361 		if (flush &&
2362 		    !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2363 			if (cpu == curcpu)
2364 				drain_local_stock(&stock->work);
2365 			else
2366 				schedule_work_on(cpu, &stock->work);
2367 		}
2368 	}
2369 	migrate_enable();
2370 	mutex_unlock(&percpu_charge_mutex);
2371 }
2372 
2373 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2374 {
2375 	struct memcg_stock_pcp *stock;
2376 
2377 	stock = &per_cpu(memcg_stock, cpu);
2378 	drain_stock(stock);
2379 
2380 	return 0;
2381 }
2382 
2383 static unsigned long reclaim_high(struct mem_cgroup *memcg,
2384 				  unsigned int nr_pages,
2385 				  gfp_t gfp_mask)
2386 {
2387 	unsigned long nr_reclaimed = 0;
2388 
2389 	do {
2390 		unsigned long pflags;
2391 
2392 		if (page_counter_read(&memcg->memory) <=
2393 		    READ_ONCE(memcg->memory.high))
2394 			continue;
2395 
2396 		memcg_memory_event(memcg, MEMCG_HIGH);
2397 
2398 		psi_memstall_enter(&pflags);
2399 		nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2400 							gfp_mask,
2401 							MEMCG_RECLAIM_MAY_SWAP);
2402 		psi_memstall_leave(&pflags);
2403 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2404 		 !mem_cgroup_is_root(memcg));
2405 
2406 	return nr_reclaimed;
2407 }
2408 
2409 static void high_work_func(struct work_struct *work)
2410 {
2411 	struct mem_cgroup *memcg;
2412 
2413 	memcg = container_of(work, struct mem_cgroup, high_work);
2414 	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2415 }
2416 
2417 /*
2418  * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2419  * enough to still cause a significant slowdown in most cases, while still
2420  * allowing diagnostics and tracing to proceed without becoming stuck.
2421  */
2422 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2423 
2424 /*
2425  * When calculating the delay, we use these either side of the exponentiation to
2426  * maintain precision and scale to a reasonable number of jiffies (see the table
2427  * below.
2428  *
2429  * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2430  *   overage ratio to a delay.
2431  * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2432  *   proposed penalty in order to reduce to a reasonable number of jiffies, and
2433  *   to produce a reasonable delay curve.
2434  *
2435  * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2436  * reasonable delay curve compared to precision-adjusted overage, not
2437  * penalising heavily at first, but still making sure that growth beyond the
2438  * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2439  * example, with a high of 100 megabytes:
2440  *
2441  *  +-------+------------------------+
2442  *  | usage | time to allocate in ms |
2443  *  +-------+------------------------+
2444  *  | 100M  |                      0 |
2445  *  | 101M  |                      6 |
2446  *  | 102M  |                     25 |
2447  *  | 103M  |                     57 |
2448  *  | 104M  |                    102 |
2449  *  | 105M  |                    159 |
2450  *  | 106M  |                    230 |
2451  *  | 107M  |                    313 |
2452  *  | 108M  |                    409 |
2453  *  | 109M  |                    518 |
2454  *  | 110M  |                    639 |
2455  *  | 111M  |                    774 |
2456  *  | 112M  |                    921 |
2457  *  | 113M  |                   1081 |
2458  *  | 114M  |                   1254 |
2459  *  | 115M  |                   1439 |
2460  *  | 116M  |                   1638 |
2461  *  | 117M  |                   1849 |
2462  *  | 118M  |                   2000 |
2463  *  | 119M  |                   2000 |
2464  *  | 120M  |                   2000 |
2465  *  +-------+------------------------+
2466  */
2467  #define MEMCG_DELAY_PRECISION_SHIFT 20
2468  #define MEMCG_DELAY_SCALING_SHIFT 14
2469 
2470 static u64 calculate_overage(unsigned long usage, unsigned long high)
2471 {
2472 	u64 overage;
2473 
2474 	if (usage <= high)
2475 		return 0;
2476 
2477 	/*
2478 	 * Prevent division by 0 in overage calculation by acting as if
2479 	 * it was a threshold of 1 page
2480 	 */
2481 	high = max(high, 1UL);
2482 
2483 	overage = usage - high;
2484 	overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2485 	return div64_u64(overage, high);
2486 }
2487 
2488 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2489 {
2490 	u64 overage, max_overage = 0;
2491 
2492 	do {
2493 		overage = calculate_overage(page_counter_read(&memcg->memory),
2494 					    READ_ONCE(memcg->memory.high));
2495 		max_overage = max(overage, max_overage);
2496 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2497 		 !mem_cgroup_is_root(memcg));
2498 
2499 	return max_overage;
2500 }
2501 
2502 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2503 {
2504 	u64 overage, max_overage = 0;
2505 
2506 	do {
2507 		overage = calculate_overage(page_counter_read(&memcg->swap),
2508 					    READ_ONCE(memcg->swap.high));
2509 		if (overage)
2510 			memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2511 		max_overage = max(overage, max_overage);
2512 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2513 		 !mem_cgroup_is_root(memcg));
2514 
2515 	return max_overage;
2516 }
2517 
2518 /*
2519  * Get the number of jiffies that we should penalise a mischievous cgroup which
2520  * is exceeding its memory.high by checking both it and its ancestors.
2521  */
2522 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2523 					  unsigned int nr_pages,
2524 					  u64 max_overage)
2525 {
2526 	unsigned long penalty_jiffies;
2527 
2528 	if (!max_overage)
2529 		return 0;
2530 
2531 	/*
2532 	 * We use overage compared to memory.high to calculate the number of
2533 	 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2534 	 * fairly lenient on small overages, and increasingly harsh when the
2535 	 * memcg in question makes it clear that it has no intention of stopping
2536 	 * its crazy behaviour, so we exponentially increase the delay based on
2537 	 * overage amount.
2538 	 */
2539 	penalty_jiffies = max_overage * max_overage * HZ;
2540 	penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2541 	penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2542 
2543 	/*
2544 	 * Factor in the task's own contribution to the overage, such that four
2545 	 * N-sized allocations are throttled approximately the same as one
2546 	 * 4N-sized allocation.
2547 	 *
2548 	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2549 	 * larger the current charge patch is than that.
2550 	 */
2551 	return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2552 }
2553 
2554 /*
2555  * Scheduled by try_charge() to be executed from the userland return path
2556  * and reclaims memory over the high limit.
2557  */
2558 void mem_cgroup_handle_over_high(void)
2559 {
2560 	unsigned long penalty_jiffies;
2561 	unsigned long pflags;
2562 	unsigned long nr_reclaimed;
2563 	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2564 	int nr_retries = MAX_RECLAIM_RETRIES;
2565 	struct mem_cgroup *memcg;
2566 	bool in_retry = false;
2567 
2568 	if (likely(!nr_pages))
2569 		return;
2570 
2571 	memcg = get_mem_cgroup_from_mm(current->mm);
2572 	current->memcg_nr_pages_over_high = 0;
2573 
2574 retry_reclaim:
2575 	/*
2576 	 * The allocating task should reclaim at least the batch size, but for
2577 	 * subsequent retries we only want to do what's necessary to prevent oom
2578 	 * or breaching resource isolation.
2579 	 *
2580 	 * This is distinct from memory.max or page allocator behaviour because
2581 	 * memory.high is currently batched, whereas memory.max and the page
2582 	 * allocator run every time an allocation is made.
2583 	 */
2584 	nr_reclaimed = reclaim_high(memcg,
2585 				    in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2586 				    GFP_KERNEL);
2587 
2588 	/*
2589 	 * memory.high is breached and reclaim is unable to keep up. Throttle
2590 	 * allocators proactively to slow down excessive growth.
2591 	 */
2592 	penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2593 					       mem_find_max_overage(memcg));
2594 
2595 	penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2596 						swap_find_max_overage(memcg));
2597 
2598 	/*
2599 	 * Clamp the max delay per usermode return so as to still keep the
2600 	 * application moving forwards and also permit diagnostics, albeit
2601 	 * extremely slowly.
2602 	 */
2603 	penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2604 
2605 	/*
2606 	 * Don't sleep if the amount of jiffies this memcg owes us is so low
2607 	 * that it's not even worth doing, in an attempt to be nice to those who
2608 	 * go only a small amount over their memory.high value and maybe haven't
2609 	 * been aggressively reclaimed enough yet.
2610 	 */
2611 	if (penalty_jiffies <= HZ / 100)
2612 		goto out;
2613 
2614 	/*
2615 	 * If reclaim is making forward progress but we're still over
2616 	 * memory.high, we want to encourage that rather than doing allocator
2617 	 * throttling.
2618 	 */
2619 	if (nr_reclaimed || nr_retries--) {
2620 		in_retry = true;
2621 		goto retry_reclaim;
2622 	}
2623 
2624 	/*
2625 	 * If we exit early, we're guaranteed to die (since
2626 	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2627 	 * need to account for any ill-begotten jiffies to pay them off later.
2628 	 */
2629 	psi_memstall_enter(&pflags);
2630 	schedule_timeout_killable(penalty_jiffies);
2631 	psi_memstall_leave(&pflags);
2632 
2633 out:
2634 	css_put(&memcg->css);
2635 }
2636 
2637 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2638 			unsigned int nr_pages)
2639 {
2640 	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2641 	int nr_retries = MAX_RECLAIM_RETRIES;
2642 	struct mem_cgroup *mem_over_limit;
2643 	struct page_counter *counter;
2644 	unsigned long nr_reclaimed;
2645 	bool passed_oom = false;
2646 	unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP;
2647 	bool drained = false;
2648 	bool raised_max_event = false;
2649 	unsigned long pflags;
2650 
2651 retry:
2652 	if (consume_stock(memcg, nr_pages))
2653 		return 0;
2654 
2655 	if (!do_memsw_account() ||
2656 	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2657 		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2658 			goto done_restock;
2659 		if (do_memsw_account())
2660 			page_counter_uncharge(&memcg->memsw, batch);
2661 		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2662 	} else {
2663 		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2664 		reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP;
2665 	}
2666 
2667 	if (batch > nr_pages) {
2668 		batch = nr_pages;
2669 		goto retry;
2670 	}
2671 
2672 	/*
2673 	 * Prevent unbounded recursion when reclaim operations need to
2674 	 * allocate memory. This might exceed the limits temporarily,
2675 	 * but we prefer facilitating memory reclaim and getting back
2676 	 * under the limit over triggering OOM kills in these cases.
2677 	 */
2678 	if (unlikely(current->flags & PF_MEMALLOC))
2679 		goto force;
2680 
2681 	if (unlikely(task_in_memcg_oom(current)))
2682 		goto nomem;
2683 
2684 	if (!gfpflags_allow_blocking(gfp_mask))
2685 		goto nomem;
2686 
2687 	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2688 	raised_max_event = true;
2689 
2690 	psi_memstall_enter(&pflags);
2691 	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2692 						    gfp_mask, reclaim_options);
2693 	psi_memstall_leave(&pflags);
2694 
2695 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2696 		goto retry;
2697 
2698 	if (!drained) {
2699 		drain_all_stock(mem_over_limit);
2700 		drained = true;
2701 		goto retry;
2702 	}
2703 
2704 	if (gfp_mask & __GFP_NORETRY)
2705 		goto nomem;
2706 	/*
2707 	 * Even though the limit is exceeded at this point, reclaim
2708 	 * may have been able to free some pages.  Retry the charge
2709 	 * before killing the task.
2710 	 *
2711 	 * Only for regular pages, though: huge pages are rather
2712 	 * unlikely to succeed so close to the limit, and we fall back
2713 	 * to regular pages anyway in case of failure.
2714 	 */
2715 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2716 		goto retry;
2717 	/*
2718 	 * At task move, charge accounts can be doubly counted. So, it's
2719 	 * better to wait until the end of task_move if something is going on.
2720 	 */
2721 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2722 		goto retry;
2723 
2724 	if (nr_retries--)
2725 		goto retry;
2726 
2727 	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2728 		goto nomem;
2729 
2730 	/* Avoid endless loop for tasks bypassed by the oom killer */
2731 	if (passed_oom && task_is_dying())
2732 		goto nomem;
2733 
2734 	/*
2735 	 * keep retrying as long as the memcg oom killer is able to make
2736 	 * a forward progress or bypass the charge if the oom killer
2737 	 * couldn't make any progress.
2738 	 */
2739 	if (mem_cgroup_oom(mem_over_limit, gfp_mask,
2740 			   get_order(nr_pages * PAGE_SIZE))) {
2741 		passed_oom = true;
2742 		nr_retries = MAX_RECLAIM_RETRIES;
2743 		goto retry;
2744 	}
2745 nomem:
2746 	/*
2747 	 * Memcg doesn't have a dedicated reserve for atomic
2748 	 * allocations. But like the global atomic pool, we need to
2749 	 * put the burden of reclaim on regular allocation requests
2750 	 * and let these go through as privileged allocations.
2751 	 */
2752 	if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH)))
2753 		return -ENOMEM;
2754 force:
2755 	/*
2756 	 * If the allocation has to be enforced, don't forget to raise
2757 	 * a MEMCG_MAX event.
2758 	 */
2759 	if (!raised_max_event)
2760 		memcg_memory_event(mem_over_limit, MEMCG_MAX);
2761 
2762 	/*
2763 	 * The allocation either can't fail or will lead to more memory
2764 	 * being freed very soon.  Allow memory usage go over the limit
2765 	 * temporarily by force charging it.
2766 	 */
2767 	page_counter_charge(&memcg->memory, nr_pages);
2768 	if (do_memsw_account())
2769 		page_counter_charge(&memcg->memsw, nr_pages);
2770 
2771 	return 0;
2772 
2773 done_restock:
2774 	if (batch > nr_pages)
2775 		refill_stock(memcg, batch - nr_pages);
2776 
2777 	/*
2778 	 * If the hierarchy is above the normal consumption range, schedule
2779 	 * reclaim on returning to userland.  We can perform reclaim here
2780 	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2781 	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2782 	 * not recorded as it most likely matches current's and won't
2783 	 * change in the meantime.  As high limit is checked again before
2784 	 * reclaim, the cost of mismatch is negligible.
2785 	 */
2786 	do {
2787 		bool mem_high, swap_high;
2788 
2789 		mem_high = page_counter_read(&memcg->memory) >
2790 			READ_ONCE(memcg->memory.high);
2791 		swap_high = page_counter_read(&memcg->swap) >
2792 			READ_ONCE(memcg->swap.high);
2793 
2794 		/* Don't bother a random interrupted task */
2795 		if (!in_task()) {
2796 			if (mem_high) {
2797 				schedule_work(&memcg->high_work);
2798 				break;
2799 			}
2800 			continue;
2801 		}
2802 
2803 		if (mem_high || swap_high) {
2804 			/*
2805 			 * The allocating tasks in this cgroup will need to do
2806 			 * reclaim or be throttled to prevent further growth
2807 			 * of the memory or swap footprints.
2808 			 *
2809 			 * Target some best-effort fairness between the tasks,
2810 			 * and distribute reclaim work and delay penalties
2811 			 * based on how much each task is actually allocating.
2812 			 */
2813 			current->memcg_nr_pages_over_high += batch;
2814 			set_notify_resume(current);
2815 			break;
2816 		}
2817 	} while ((memcg = parent_mem_cgroup(memcg)));
2818 
2819 	if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
2820 	    !(current->flags & PF_MEMALLOC) &&
2821 	    gfpflags_allow_blocking(gfp_mask)) {
2822 		mem_cgroup_handle_over_high();
2823 	}
2824 	return 0;
2825 }
2826 
2827 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2828 			     unsigned int nr_pages)
2829 {
2830 	if (mem_cgroup_is_root(memcg))
2831 		return 0;
2832 
2833 	return try_charge_memcg(memcg, gfp_mask, nr_pages);
2834 }
2835 
2836 static inline void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2837 {
2838 	if (mem_cgroup_is_root(memcg))
2839 		return;
2840 
2841 	page_counter_uncharge(&memcg->memory, nr_pages);
2842 	if (do_memsw_account())
2843 		page_counter_uncharge(&memcg->memsw, nr_pages);
2844 }
2845 
2846 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2847 {
2848 	VM_BUG_ON_FOLIO(folio_memcg(folio), folio);
2849 	/*
2850 	 * Any of the following ensures page's memcg stability:
2851 	 *
2852 	 * - the page lock
2853 	 * - LRU isolation
2854 	 * - lock_page_memcg()
2855 	 * - exclusive reference
2856 	 * - mem_cgroup_trylock_pages()
2857 	 */
2858 	folio->memcg_data = (unsigned long)memcg;
2859 }
2860 
2861 #ifdef CONFIG_MEMCG_KMEM
2862 /*
2863  * The allocated objcg pointers array is not accounted directly.
2864  * Moreover, it should not come from DMA buffer and is not readily
2865  * reclaimable. So those GFP bits should be masked off.
2866  */
2867 #define OBJCGS_CLEAR_MASK	(__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT)
2868 
2869 /*
2870  * mod_objcg_mlstate() may be called with irq enabled, so
2871  * mod_memcg_lruvec_state() should be used.
2872  */
2873 static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
2874 				     struct pglist_data *pgdat,
2875 				     enum node_stat_item idx, int nr)
2876 {
2877 	struct mem_cgroup *memcg;
2878 	struct lruvec *lruvec;
2879 
2880 	rcu_read_lock();
2881 	memcg = obj_cgroup_memcg(objcg);
2882 	lruvec = mem_cgroup_lruvec(memcg, pgdat);
2883 	mod_memcg_lruvec_state(lruvec, idx, nr);
2884 	rcu_read_unlock();
2885 }
2886 
2887 int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s,
2888 				 gfp_t gfp, bool new_slab)
2889 {
2890 	unsigned int objects = objs_per_slab(s, slab);
2891 	unsigned long memcg_data;
2892 	void *vec;
2893 
2894 	gfp &= ~OBJCGS_CLEAR_MASK;
2895 	vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2896 			   slab_nid(slab));
2897 	if (!vec)
2898 		return -ENOMEM;
2899 
2900 	memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
2901 	if (new_slab) {
2902 		/*
2903 		 * If the slab is brand new and nobody can yet access its
2904 		 * memcg_data, no synchronization is required and memcg_data can
2905 		 * be simply assigned.
2906 		 */
2907 		slab->memcg_data = memcg_data;
2908 	} else if (cmpxchg(&slab->memcg_data, 0, memcg_data)) {
2909 		/*
2910 		 * If the slab is already in use, somebody can allocate and
2911 		 * assign obj_cgroups in parallel. In this case the existing
2912 		 * objcg vector should be reused.
2913 		 */
2914 		kfree(vec);
2915 		return 0;
2916 	}
2917 
2918 	kmemleak_not_leak(vec);
2919 	return 0;
2920 }
2921 
2922 static __always_inline
2923 struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p)
2924 {
2925 	/*
2926 	 * Slab objects are accounted individually, not per-page.
2927 	 * Memcg membership data for each individual object is saved in
2928 	 * slab->memcg_data.
2929 	 */
2930 	if (folio_test_slab(folio)) {
2931 		struct obj_cgroup **objcgs;
2932 		struct slab *slab;
2933 		unsigned int off;
2934 
2935 		slab = folio_slab(folio);
2936 		objcgs = slab_objcgs(slab);
2937 		if (!objcgs)
2938 			return NULL;
2939 
2940 		off = obj_to_index(slab->slab_cache, slab, p);
2941 		if (objcgs[off])
2942 			return obj_cgroup_memcg(objcgs[off]);
2943 
2944 		return NULL;
2945 	}
2946 
2947 	/*
2948 	 * page_memcg_check() is used here, because in theory we can encounter
2949 	 * a folio where the slab flag has been cleared already, but
2950 	 * slab->memcg_data has not been freed yet
2951 	 * page_memcg_check(page) will guarantee that a proper memory
2952 	 * cgroup pointer or NULL will be returned.
2953 	 */
2954 	return page_memcg_check(folio_page(folio, 0));
2955 }
2956 
2957 /*
2958  * Returns a pointer to the memory cgroup to which the kernel object is charged.
2959  *
2960  * A passed kernel object can be a slab object, vmalloc object or a generic
2961  * kernel page, so different mechanisms for getting the memory cgroup pointer
2962  * should be used.
2963  *
2964  * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2965  * can not know for sure how the kernel object is implemented.
2966  * mem_cgroup_from_obj() can be safely used in such cases.
2967  *
2968  * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2969  * cgroup_mutex, etc.
2970  */
2971 struct mem_cgroup *mem_cgroup_from_obj(void *p)
2972 {
2973 	struct folio *folio;
2974 
2975 	if (mem_cgroup_disabled())
2976 		return NULL;
2977 
2978 	if (unlikely(is_vmalloc_addr(p)))
2979 		folio = page_folio(vmalloc_to_page(p));
2980 	else
2981 		folio = virt_to_folio(p);
2982 
2983 	return mem_cgroup_from_obj_folio(folio, p);
2984 }
2985 
2986 /*
2987  * Returns a pointer to the memory cgroup to which the kernel object is charged.
2988  * Similar to mem_cgroup_from_obj(), but faster and not suitable for objects,
2989  * allocated using vmalloc().
2990  *
2991  * A passed kernel object must be a slab object or a generic kernel page.
2992  *
2993  * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2994  * cgroup_mutex, etc.
2995  */
2996 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
2997 {
2998 	if (mem_cgroup_disabled())
2999 		return NULL;
3000 
3001 	return mem_cgroup_from_obj_folio(virt_to_folio(p), p);
3002 }
3003 
3004 static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg)
3005 {
3006 	struct obj_cgroup *objcg = NULL;
3007 
3008 	for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
3009 		objcg = rcu_dereference(memcg->objcg);
3010 		if (objcg && obj_cgroup_tryget(objcg))
3011 			break;
3012 		objcg = NULL;
3013 	}
3014 	return objcg;
3015 }
3016 
3017 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
3018 {
3019 	struct obj_cgroup *objcg = NULL;
3020 	struct mem_cgroup *memcg;
3021 
3022 	if (memcg_kmem_bypass())
3023 		return NULL;
3024 
3025 	rcu_read_lock();
3026 	if (unlikely(active_memcg()))
3027 		memcg = active_memcg();
3028 	else
3029 		memcg = mem_cgroup_from_task(current);
3030 	objcg = __get_obj_cgroup_from_memcg(memcg);
3031 	rcu_read_unlock();
3032 	return objcg;
3033 }
3034 
3035 struct obj_cgroup *get_obj_cgroup_from_page(struct page *page)
3036 {
3037 	struct obj_cgroup *objcg;
3038 
3039 	if (!memcg_kmem_enabled())
3040 		return NULL;
3041 
3042 	if (PageMemcgKmem(page)) {
3043 		objcg = __folio_objcg(page_folio(page));
3044 		obj_cgroup_get(objcg);
3045 	} else {
3046 		struct mem_cgroup *memcg;
3047 
3048 		rcu_read_lock();
3049 		memcg = __folio_memcg(page_folio(page));
3050 		if (memcg)
3051 			objcg = __get_obj_cgroup_from_memcg(memcg);
3052 		else
3053 			objcg = NULL;
3054 		rcu_read_unlock();
3055 	}
3056 	return objcg;
3057 }
3058 
3059 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
3060 {
3061 	mod_memcg_state(memcg, MEMCG_KMEM, nr_pages);
3062 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
3063 		if (nr_pages > 0)
3064 			page_counter_charge(&memcg->kmem, nr_pages);
3065 		else
3066 			page_counter_uncharge(&memcg->kmem, -nr_pages);
3067 	}
3068 }
3069 
3070 
3071 /*
3072  * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
3073  * @objcg: object cgroup to uncharge
3074  * @nr_pages: number of pages to uncharge
3075  */
3076 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
3077 				      unsigned int nr_pages)
3078 {
3079 	struct mem_cgroup *memcg;
3080 
3081 	memcg = get_mem_cgroup_from_objcg(objcg);
3082 
3083 	memcg_account_kmem(memcg, -nr_pages);
3084 	refill_stock(memcg, nr_pages);
3085 
3086 	css_put(&memcg->css);
3087 }
3088 
3089 /*
3090  * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
3091  * @objcg: object cgroup to charge
3092  * @gfp: reclaim mode
3093  * @nr_pages: number of pages to charge
3094  *
3095  * Returns 0 on success, an error code on failure.
3096  */
3097 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
3098 				   unsigned int nr_pages)
3099 {
3100 	struct mem_cgroup *memcg;
3101 	int ret;
3102 
3103 	memcg = get_mem_cgroup_from_objcg(objcg);
3104 
3105 	ret = try_charge_memcg(memcg, gfp, nr_pages);
3106 	if (ret)
3107 		goto out;
3108 
3109 	memcg_account_kmem(memcg, nr_pages);
3110 out:
3111 	css_put(&memcg->css);
3112 
3113 	return ret;
3114 }
3115 
3116 /**
3117  * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3118  * @page: page to charge
3119  * @gfp: reclaim mode
3120  * @order: allocation order
3121  *
3122  * Returns 0 on success, an error code on failure.
3123  */
3124 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3125 {
3126 	struct obj_cgroup *objcg;
3127 	int ret = 0;
3128 
3129 	objcg = get_obj_cgroup_from_current();
3130 	if (objcg) {
3131 		ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
3132 		if (!ret) {
3133 			page->memcg_data = (unsigned long)objcg |
3134 				MEMCG_DATA_KMEM;
3135 			return 0;
3136 		}
3137 		obj_cgroup_put(objcg);
3138 	}
3139 	return ret;
3140 }
3141 
3142 /**
3143  * __memcg_kmem_uncharge_page: uncharge a kmem page
3144  * @page: page to uncharge
3145  * @order: allocation order
3146  */
3147 void __memcg_kmem_uncharge_page(struct page *page, int order)
3148 {
3149 	struct folio *folio = page_folio(page);
3150 	struct obj_cgroup *objcg;
3151 	unsigned int nr_pages = 1 << order;
3152 
3153 	if (!folio_memcg_kmem(folio))
3154 		return;
3155 
3156 	objcg = __folio_objcg(folio);
3157 	obj_cgroup_uncharge_pages(objcg, nr_pages);
3158 	folio->memcg_data = 0;
3159 	obj_cgroup_put(objcg);
3160 }
3161 
3162 void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3163 		     enum node_stat_item idx, int nr)
3164 {
3165 	struct memcg_stock_pcp *stock;
3166 	struct obj_cgroup *old = NULL;
3167 	unsigned long flags;
3168 	int *bytes;
3169 
3170 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
3171 	stock = this_cpu_ptr(&memcg_stock);
3172 
3173 	/*
3174 	 * Save vmstat data in stock and skip vmstat array update unless
3175 	 * accumulating over a page of vmstat data or when pgdat or idx
3176 	 * changes.
3177 	 */
3178 	if (stock->cached_objcg != objcg) {
3179 		old = drain_obj_stock(stock);
3180 		obj_cgroup_get(objcg);
3181 		stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3182 				? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3183 		stock->cached_objcg = objcg;
3184 		stock->cached_pgdat = pgdat;
3185 	} else if (stock->cached_pgdat != pgdat) {
3186 		/* Flush the existing cached vmstat data */
3187 		struct pglist_data *oldpg = stock->cached_pgdat;
3188 
3189 		if (stock->nr_slab_reclaimable_b) {
3190 			mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
3191 					  stock->nr_slab_reclaimable_b);
3192 			stock->nr_slab_reclaimable_b = 0;
3193 		}
3194 		if (stock->nr_slab_unreclaimable_b) {
3195 			mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
3196 					  stock->nr_slab_unreclaimable_b);
3197 			stock->nr_slab_unreclaimable_b = 0;
3198 		}
3199 		stock->cached_pgdat = pgdat;
3200 	}
3201 
3202 	bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3203 					       : &stock->nr_slab_unreclaimable_b;
3204 	/*
3205 	 * Even for large object >= PAGE_SIZE, the vmstat data will still be
3206 	 * cached locally at least once before pushing it out.
3207 	 */
3208 	if (!*bytes) {
3209 		*bytes = nr;
3210 		nr = 0;
3211 	} else {
3212 		*bytes += nr;
3213 		if (abs(*bytes) > PAGE_SIZE) {
3214 			nr = *bytes;
3215 			*bytes = 0;
3216 		} else {
3217 			nr = 0;
3218 		}
3219 	}
3220 	if (nr)
3221 		mod_objcg_mlstate(objcg, pgdat, idx, nr);
3222 
3223 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3224 	if (old)
3225 		obj_cgroup_put(old);
3226 }
3227 
3228 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3229 {
3230 	struct memcg_stock_pcp *stock;
3231 	unsigned long flags;
3232 	bool ret = false;
3233 
3234 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
3235 
3236 	stock = this_cpu_ptr(&memcg_stock);
3237 	if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3238 		stock->nr_bytes -= nr_bytes;
3239 		ret = true;
3240 	}
3241 
3242 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3243 
3244 	return ret;
3245 }
3246 
3247 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
3248 {
3249 	struct obj_cgroup *old = stock->cached_objcg;
3250 
3251 	if (!old)
3252 		return NULL;
3253 
3254 	if (stock->nr_bytes) {
3255 		unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3256 		unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3257 
3258 		if (nr_pages) {
3259 			struct mem_cgroup *memcg;
3260 
3261 			memcg = get_mem_cgroup_from_objcg(old);
3262 
3263 			memcg_account_kmem(memcg, -nr_pages);
3264 			__refill_stock(memcg, nr_pages);
3265 
3266 			css_put(&memcg->css);
3267 		}
3268 
3269 		/*
3270 		 * The leftover is flushed to the centralized per-memcg value.
3271 		 * On the next attempt to refill obj stock it will be moved
3272 		 * to a per-cpu stock (probably, on an other CPU), see
3273 		 * refill_obj_stock().
3274 		 *
3275 		 * How often it's flushed is a trade-off between the memory
3276 		 * limit enforcement accuracy and potential CPU contention,
3277 		 * so it might be changed in the future.
3278 		 */
3279 		atomic_add(nr_bytes, &old->nr_charged_bytes);
3280 		stock->nr_bytes = 0;
3281 	}
3282 
3283 	/*
3284 	 * Flush the vmstat data in current stock
3285 	 */
3286 	if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3287 		if (stock->nr_slab_reclaimable_b) {
3288 			mod_objcg_mlstate(old, stock->cached_pgdat,
3289 					  NR_SLAB_RECLAIMABLE_B,
3290 					  stock->nr_slab_reclaimable_b);
3291 			stock->nr_slab_reclaimable_b = 0;
3292 		}
3293 		if (stock->nr_slab_unreclaimable_b) {
3294 			mod_objcg_mlstate(old, stock->cached_pgdat,
3295 					  NR_SLAB_UNRECLAIMABLE_B,
3296 					  stock->nr_slab_unreclaimable_b);
3297 			stock->nr_slab_unreclaimable_b = 0;
3298 		}
3299 		stock->cached_pgdat = NULL;
3300 	}
3301 
3302 	stock->cached_objcg = NULL;
3303 	/*
3304 	 * The `old' objects needs to be released by the caller via
3305 	 * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock.
3306 	 */
3307 	return old;
3308 }
3309 
3310 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3311 				     struct mem_cgroup *root_memcg)
3312 {
3313 	struct mem_cgroup *memcg;
3314 
3315 	if (stock->cached_objcg) {
3316 		memcg = obj_cgroup_memcg(stock->cached_objcg);
3317 		if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3318 			return true;
3319 	}
3320 
3321 	return false;
3322 }
3323 
3324 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3325 			     bool allow_uncharge)
3326 {
3327 	struct memcg_stock_pcp *stock;
3328 	struct obj_cgroup *old = NULL;
3329 	unsigned long flags;
3330 	unsigned int nr_pages = 0;
3331 
3332 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
3333 
3334 	stock = this_cpu_ptr(&memcg_stock);
3335 	if (stock->cached_objcg != objcg) { /* reset if necessary */
3336 		old = drain_obj_stock(stock);
3337 		obj_cgroup_get(objcg);
3338 		stock->cached_objcg = objcg;
3339 		stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3340 				? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3341 		allow_uncharge = true;	/* Allow uncharge when objcg changes */
3342 	}
3343 	stock->nr_bytes += nr_bytes;
3344 
3345 	if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3346 		nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3347 		stock->nr_bytes &= (PAGE_SIZE - 1);
3348 	}
3349 
3350 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3351 	if (old)
3352 		obj_cgroup_put(old);
3353 
3354 	if (nr_pages)
3355 		obj_cgroup_uncharge_pages(objcg, nr_pages);
3356 }
3357 
3358 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3359 {
3360 	unsigned int nr_pages, nr_bytes;
3361 	int ret;
3362 
3363 	if (consume_obj_stock(objcg, size))
3364 		return 0;
3365 
3366 	/*
3367 	 * In theory, objcg->nr_charged_bytes can have enough
3368 	 * pre-charged bytes to satisfy the allocation. However,
3369 	 * flushing objcg->nr_charged_bytes requires two atomic
3370 	 * operations, and objcg->nr_charged_bytes can't be big.
3371 	 * The shared objcg->nr_charged_bytes can also become a
3372 	 * performance bottleneck if all tasks of the same memcg are
3373 	 * trying to update it. So it's better to ignore it and try
3374 	 * grab some new pages. The stock's nr_bytes will be flushed to
3375 	 * objcg->nr_charged_bytes later on when objcg changes.
3376 	 *
3377 	 * The stock's nr_bytes may contain enough pre-charged bytes
3378 	 * to allow one less page from being charged, but we can't rely
3379 	 * on the pre-charged bytes not being changed outside of
3380 	 * consume_obj_stock() or refill_obj_stock(). So ignore those
3381 	 * pre-charged bytes as well when charging pages. To avoid a
3382 	 * page uncharge right after a page charge, we set the
3383 	 * allow_uncharge flag to false when calling refill_obj_stock()
3384 	 * to temporarily allow the pre-charged bytes to exceed the page
3385 	 * size limit. The maximum reachable value of the pre-charged
3386 	 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3387 	 * race.
3388 	 */
3389 	nr_pages = size >> PAGE_SHIFT;
3390 	nr_bytes = size & (PAGE_SIZE - 1);
3391 
3392 	if (nr_bytes)
3393 		nr_pages += 1;
3394 
3395 	ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3396 	if (!ret && nr_bytes)
3397 		refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
3398 
3399 	return ret;
3400 }
3401 
3402 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3403 {
3404 	refill_obj_stock(objcg, size, true);
3405 }
3406 
3407 #endif /* CONFIG_MEMCG_KMEM */
3408 
3409 /*
3410  * Because page_memcg(head) is not set on tails, set it now.
3411  */
3412 void split_page_memcg(struct page *head, unsigned int nr)
3413 {
3414 	struct folio *folio = page_folio(head);
3415 	struct mem_cgroup *memcg = folio_memcg(folio);
3416 	int i;
3417 
3418 	if (mem_cgroup_disabled() || !memcg)
3419 		return;
3420 
3421 	for (i = 1; i < nr; i++)
3422 		folio_page(folio, i)->memcg_data = folio->memcg_data;
3423 
3424 	if (folio_memcg_kmem(folio))
3425 		obj_cgroup_get_many(__folio_objcg(folio), nr - 1);
3426 	else
3427 		css_get_many(&memcg->css, nr - 1);
3428 }
3429 
3430 #ifdef CONFIG_SWAP
3431 /**
3432  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3433  * @entry: swap entry to be moved
3434  * @from:  mem_cgroup which the entry is moved from
3435  * @to:  mem_cgroup which the entry is moved to
3436  *
3437  * It succeeds only when the swap_cgroup's record for this entry is the same
3438  * as the mem_cgroup's id of @from.
3439  *
3440  * Returns 0 on success, -EINVAL on failure.
3441  *
3442  * The caller must have charged to @to, IOW, called page_counter_charge() about
3443  * both res and memsw, and called css_get().
3444  */
3445 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3446 				struct mem_cgroup *from, struct mem_cgroup *to)
3447 {
3448 	unsigned short old_id, new_id;
3449 
3450 	old_id = mem_cgroup_id(from);
3451 	new_id = mem_cgroup_id(to);
3452 
3453 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3454 		mod_memcg_state(from, MEMCG_SWAP, -1);
3455 		mod_memcg_state(to, MEMCG_SWAP, 1);
3456 		return 0;
3457 	}
3458 	return -EINVAL;
3459 }
3460 #else
3461 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3462 				struct mem_cgroup *from, struct mem_cgroup *to)
3463 {
3464 	return -EINVAL;
3465 }
3466 #endif
3467 
3468 static DEFINE_MUTEX(memcg_max_mutex);
3469 
3470 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3471 				 unsigned long max, bool memsw)
3472 {
3473 	bool enlarge = false;
3474 	bool drained = false;
3475 	int ret;
3476 	bool limits_invariant;
3477 	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3478 
3479 	do {
3480 		if (signal_pending(current)) {
3481 			ret = -EINTR;
3482 			break;
3483 		}
3484 
3485 		mutex_lock(&memcg_max_mutex);
3486 		/*
3487 		 * Make sure that the new limit (memsw or memory limit) doesn't
3488 		 * break our basic invariant rule memory.max <= memsw.max.
3489 		 */
3490 		limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3491 					   max <= memcg->memsw.max;
3492 		if (!limits_invariant) {
3493 			mutex_unlock(&memcg_max_mutex);
3494 			ret = -EINVAL;
3495 			break;
3496 		}
3497 		if (max > counter->max)
3498 			enlarge = true;
3499 		ret = page_counter_set_max(counter, max);
3500 		mutex_unlock(&memcg_max_mutex);
3501 
3502 		if (!ret)
3503 			break;
3504 
3505 		if (!drained) {
3506 			drain_all_stock(memcg);
3507 			drained = true;
3508 			continue;
3509 		}
3510 
3511 		if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
3512 					memsw ? 0 : MEMCG_RECLAIM_MAY_SWAP)) {
3513 			ret = -EBUSY;
3514 			break;
3515 		}
3516 	} while (true);
3517 
3518 	if (!ret && enlarge)
3519 		memcg_oom_recover(memcg);
3520 
3521 	return ret;
3522 }
3523 
3524 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3525 					    gfp_t gfp_mask,
3526 					    unsigned long *total_scanned)
3527 {
3528 	unsigned long nr_reclaimed = 0;
3529 	struct mem_cgroup_per_node *mz, *next_mz = NULL;
3530 	unsigned long reclaimed;
3531 	int loop = 0;
3532 	struct mem_cgroup_tree_per_node *mctz;
3533 	unsigned long excess;
3534 
3535 	if (order > 0)
3536 		return 0;
3537 
3538 	mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];
3539 
3540 	/*
3541 	 * Do not even bother to check the largest node if the root
3542 	 * is empty. Do it lockless to prevent lock bouncing. Races
3543 	 * are acceptable as soft limit is best effort anyway.
3544 	 */
3545 	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3546 		return 0;
3547 
3548 	/*
3549 	 * This loop can run a while, specially if mem_cgroup's continuously
3550 	 * keep exceeding their soft limit and putting the system under
3551 	 * pressure
3552 	 */
3553 	do {
3554 		if (next_mz)
3555 			mz = next_mz;
3556 		else
3557 			mz = mem_cgroup_largest_soft_limit_node(mctz);
3558 		if (!mz)
3559 			break;
3560 
3561 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3562 						    gfp_mask, total_scanned);
3563 		nr_reclaimed += reclaimed;
3564 		spin_lock_irq(&mctz->lock);
3565 
3566 		/*
3567 		 * If we failed to reclaim anything from this memory cgroup
3568 		 * it is time to move on to the next cgroup
3569 		 */
3570 		next_mz = NULL;
3571 		if (!reclaimed)
3572 			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3573 
3574 		excess = soft_limit_excess(mz->memcg);
3575 		/*
3576 		 * One school of thought says that we should not add
3577 		 * back the node to the tree if reclaim returns 0.
3578 		 * But our reclaim could return 0, simply because due
3579 		 * to priority we are exposing a smaller subset of
3580 		 * memory to reclaim from. Consider this as a longer
3581 		 * term TODO.
3582 		 */
3583 		/* If excess == 0, no tree ops */
3584 		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3585 		spin_unlock_irq(&mctz->lock);
3586 		css_put(&mz->memcg->css);
3587 		loop++;
3588 		/*
3589 		 * Could not reclaim anything and there are no more
3590 		 * mem cgroups to try or we seem to be looping without
3591 		 * reclaiming anything.
3592 		 */
3593 		if (!nr_reclaimed &&
3594 			(next_mz == NULL ||
3595 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3596 			break;
3597 	} while (!nr_reclaimed);
3598 	if (next_mz)
3599 		css_put(&next_mz->memcg->css);
3600 	return nr_reclaimed;
3601 }
3602 
3603 /*
3604  * Reclaims as many pages from the given memcg as possible.
3605  *
3606  * Caller is responsible for holding css reference for memcg.
3607  */
3608 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3609 {
3610 	int nr_retries = MAX_RECLAIM_RETRIES;
3611 
3612 	/* we call try-to-free pages for make this cgroup empty */
3613 	lru_add_drain_all();
3614 
3615 	drain_all_stock(memcg);
3616 
3617 	/* try to free all pages in this cgroup */
3618 	while (nr_retries && page_counter_read(&memcg->memory)) {
3619 		if (signal_pending(current))
3620 			return -EINTR;
3621 
3622 		if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
3623 						  MEMCG_RECLAIM_MAY_SWAP))
3624 			nr_retries--;
3625 	}
3626 
3627 	return 0;
3628 }
3629 
3630 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3631 					    char *buf, size_t nbytes,
3632 					    loff_t off)
3633 {
3634 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3635 
3636 	if (mem_cgroup_is_root(memcg))
3637 		return -EINVAL;
3638 	return mem_cgroup_force_empty(memcg) ?: nbytes;
3639 }
3640 
3641 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3642 				     struct cftype *cft)
3643 {
3644 	return 1;
3645 }
3646 
3647 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3648 				      struct cftype *cft, u64 val)
3649 {
3650 	if (val == 1)
3651 		return 0;
3652 
3653 	pr_warn_once("Non-hierarchical mode is deprecated. "
3654 		     "Please report your usecase to linux-mm@kvack.org if you "
3655 		     "depend on this functionality.\n");
3656 
3657 	return -EINVAL;
3658 }
3659 
3660 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3661 {
3662 	unsigned long val;
3663 
3664 	if (mem_cgroup_is_root(memcg)) {
3665 		mem_cgroup_flush_stats();
3666 		val = memcg_page_state(memcg, NR_FILE_PAGES) +
3667 			memcg_page_state(memcg, NR_ANON_MAPPED);
3668 		if (swap)
3669 			val += memcg_page_state(memcg, MEMCG_SWAP);
3670 	} else {
3671 		if (!swap)
3672 			val = page_counter_read(&memcg->memory);
3673 		else
3674 			val = page_counter_read(&memcg->memsw);
3675 	}
3676 	return val;
3677 }
3678 
3679 enum {
3680 	RES_USAGE,
3681 	RES_LIMIT,
3682 	RES_MAX_USAGE,
3683 	RES_FAILCNT,
3684 	RES_SOFT_LIMIT,
3685 };
3686 
3687 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3688 			       struct cftype *cft)
3689 {
3690 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3691 	struct page_counter *counter;
3692 
3693 	switch (MEMFILE_TYPE(cft->private)) {
3694 	case _MEM:
3695 		counter = &memcg->memory;
3696 		break;
3697 	case _MEMSWAP:
3698 		counter = &memcg->memsw;
3699 		break;
3700 	case _KMEM:
3701 		counter = &memcg->kmem;
3702 		break;
3703 	case _TCP:
3704 		counter = &memcg->tcpmem;
3705 		break;
3706 	default:
3707 		BUG();
3708 	}
3709 
3710 	switch (MEMFILE_ATTR(cft->private)) {
3711 	case RES_USAGE:
3712 		if (counter == &memcg->memory)
3713 			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3714 		if (counter == &memcg->memsw)
3715 			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3716 		return (u64)page_counter_read(counter) * PAGE_SIZE;
3717 	case RES_LIMIT:
3718 		return (u64)counter->max * PAGE_SIZE;
3719 	case RES_MAX_USAGE:
3720 		return (u64)counter->watermark * PAGE_SIZE;
3721 	case RES_FAILCNT:
3722 		return counter->failcnt;
3723 	case RES_SOFT_LIMIT:
3724 		return (u64)memcg->soft_limit * PAGE_SIZE;
3725 	default:
3726 		BUG();
3727 	}
3728 }
3729 
3730 #ifdef CONFIG_MEMCG_KMEM
3731 static int memcg_online_kmem(struct mem_cgroup *memcg)
3732 {
3733 	struct obj_cgroup *objcg;
3734 
3735 	if (mem_cgroup_kmem_disabled())
3736 		return 0;
3737 
3738 	if (unlikely(mem_cgroup_is_root(memcg)))
3739 		return 0;
3740 
3741 	objcg = obj_cgroup_alloc();
3742 	if (!objcg)
3743 		return -ENOMEM;
3744 
3745 	objcg->memcg = memcg;
3746 	rcu_assign_pointer(memcg->objcg, objcg);
3747 
3748 	static_branch_enable(&memcg_kmem_enabled_key);
3749 
3750 	memcg->kmemcg_id = memcg->id.id;
3751 
3752 	return 0;
3753 }
3754 
3755 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3756 {
3757 	struct mem_cgroup *parent;
3758 
3759 	if (mem_cgroup_kmem_disabled())
3760 		return;
3761 
3762 	if (unlikely(mem_cgroup_is_root(memcg)))
3763 		return;
3764 
3765 	parent = parent_mem_cgroup(memcg);
3766 	if (!parent)
3767 		parent = root_mem_cgroup;
3768 
3769 	memcg_reparent_objcgs(memcg, parent);
3770 
3771 	/*
3772 	 * After we have finished memcg_reparent_objcgs(), all list_lrus
3773 	 * corresponding to this cgroup are guaranteed to remain empty.
3774 	 * The ordering is imposed by list_lru_node->lock taken by
3775 	 * memcg_reparent_list_lrus().
3776 	 */
3777 	memcg_reparent_list_lrus(memcg, parent);
3778 }
3779 #else
3780 static int memcg_online_kmem(struct mem_cgroup *memcg)
3781 {
3782 	return 0;
3783 }
3784 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3785 {
3786 }
3787 #endif /* CONFIG_MEMCG_KMEM */
3788 
3789 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3790 {
3791 	int ret;
3792 
3793 	mutex_lock(&memcg_max_mutex);
3794 
3795 	ret = page_counter_set_max(&memcg->tcpmem, max);
3796 	if (ret)
3797 		goto out;
3798 
3799 	if (!memcg->tcpmem_active) {
3800 		/*
3801 		 * The active flag needs to be written after the static_key
3802 		 * update. This is what guarantees that the socket activation
3803 		 * function is the last one to run. See mem_cgroup_sk_alloc()
3804 		 * for details, and note that we don't mark any socket as
3805 		 * belonging to this memcg until that flag is up.
3806 		 *
3807 		 * We need to do this, because static_keys will span multiple
3808 		 * sites, but we can't control their order. If we mark a socket
3809 		 * as accounted, but the accounting functions are not patched in
3810 		 * yet, we'll lose accounting.
3811 		 *
3812 		 * We never race with the readers in mem_cgroup_sk_alloc(),
3813 		 * because when this value change, the code to process it is not
3814 		 * patched in yet.
3815 		 */
3816 		static_branch_inc(&memcg_sockets_enabled_key);
3817 		memcg->tcpmem_active = true;
3818 	}
3819 out:
3820 	mutex_unlock(&memcg_max_mutex);
3821 	return ret;
3822 }
3823 
3824 /*
3825  * The user of this function is...
3826  * RES_LIMIT.
3827  */
3828 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3829 				char *buf, size_t nbytes, loff_t off)
3830 {
3831 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3832 	unsigned long nr_pages;
3833 	int ret;
3834 
3835 	buf = strstrip(buf);
3836 	ret = page_counter_memparse(buf, "-1", &nr_pages);
3837 	if (ret)
3838 		return ret;
3839 
3840 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3841 	case RES_LIMIT:
3842 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3843 			ret = -EINVAL;
3844 			break;
3845 		}
3846 		switch (MEMFILE_TYPE(of_cft(of)->private)) {
3847 		case _MEM:
3848 			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3849 			break;
3850 		case _MEMSWAP:
3851 			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3852 			break;
3853 		case _KMEM:
3854 			/* kmem.limit_in_bytes is deprecated. */
3855 			ret = -EOPNOTSUPP;
3856 			break;
3857 		case _TCP:
3858 			ret = memcg_update_tcp_max(memcg, nr_pages);
3859 			break;
3860 		}
3861 		break;
3862 	case RES_SOFT_LIMIT:
3863 		if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
3864 			ret = -EOPNOTSUPP;
3865 		} else {
3866 			memcg->soft_limit = nr_pages;
3867 			ret = 0;
3868 		}
3869 		break;
3870 	}
3871 	return ret ?: nbytes;
3872 }
3873 
3874 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3875 				size_t nbytes, loff_t off)
3876 {
3877 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3878 	struct page_counter *counter;
3879 
3880 	switch (MEMFILE_TYPE(of_cft(of)->private)) {
3881 	case _MEM:
3882 		counter = &memcg->memory;
3883 		break;
3884 	case _MEMSWAP:
3885 		counter = &memcg->memsw;
3886 		break;
3887 	case _KMEM:
3888 		counter = &memcg->kmem;
3889 		break;
3890 	case _TCP:
3891 		counter = &memcg->tcpmem;
3892 		break;
3893 	default:
3894 		BUG();
3895 	}
3896 
3897 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3898 	case RES_MAX_USAGE:
3899 		page_counter_reset_watermark(counter);
3900 		break;
3901 	case RES_FAILCNT:
3902 		counter->failcnt = 0;
3903 		break;
3904 	default:
3905 		BUG();
3906 	}
3907 
3908 	return nbytes;
3909 }
3910 
3911 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3912 					struct cftype *cft)
3913 {
3914 	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3915 }
3916 
3917 #ifdef CONFIG_MMU
3918 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3919 					struct cftype *cft, u64 val)
3920 {
3921 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3922 
3923 	if (val & ~MOVE_MASK)
3924 		return -EINVAL;
3925 
3926 	/*
3927 	 * No kind of locking is needed in here, because ->can_attach() will
3928 	 * check this value once in the beginning of the process, and then carry
3929 	 * on with stale data. This means that changes to this value will only
3930 	 * affect task migrations starting after the change.
3931 	 */
3932 	memcg->move_charge_at_immigrate = val;
3933 	return 0;
3934 }
3935 #else
3936 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3937 					struct cftype *cft, u64 val)
3938 {
3939 	return -ENOSYS;
3940 }
3941 #endif
3942 
3943 #ifdef CONFIG_NUMA
3944 
3945 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3946 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3947 #define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)
3948 
3949 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3950 				int nid, unsigned int lru_mask, bool tree)
3951 {
3952 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3953 	unsigned long nr = 0;
3954 	enum lru_list lru;
3955 
3956 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
3957 
3958 	for_each_lru(lru) {
3959 		if (!(BIT(lru) & lru_mask))
3960 			continue;
3961 		if (tree)
3962 			nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3963 		else
3964 			nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3965 	}
3966 	return nr;
3967 }
3968 
3969 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3970 					     unsigned int lru_mask,
3971 					     bool tree)
3972 {
3973 	unsigned long nr = 0;
3974 	enum lru_list lru;
3975 
3976 	for_each_lru(lru) {
3977 		if (!(BIT(lru) & lru_mask))
3978 			continue;
3979 		if (tree)
3980 			nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3981 		else
3982 			nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3983 	}
3984 	return nr;
3985 }
3986 
3987 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3988 {
3989 	struct numa_stat {
3990 		const char *name;
3991 		unsigned int lru_mask;
3992 	};
3993 
3994 	static const struct numa_stat stats[] = {
3995 		{ "total", LRU_ALL },
3996 		{ "file", LRU_ALL_FILE },
3997 		{ "anon", LRU_ALL_ANON },
3998 		{ "unevictable", BIT(LRU_UNEVICTABLE) },
3999 	};
4000 	const struct numa_stat *stat;
4001 	int nid;
4002 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4003 
4004 	mem_cgroup_flush_stats();
4005 
4006 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4007 		seq_printf(m, "%s=%lu", stat->name,
4008 			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4009 						   false));
4010 		for_each_node_state(nid, N_MEMORY)
4011 			seq_printf(m, " N%d=%lu", nid,
4012 				   mem_cgroup_node_nr_lru_pages(memcg, nid,
4013 							stat->lru_mask, false));
4014 		seq_putc(m, '\n');
4015 	}
4016 
4017 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4018 
4019 		seq_printf(m, "hierarchical_%s=%lu", stat->name,
4020 			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4021 						   true));
4022 		for_each_node_state(nid, N_MEMORY)
4023 			seq_printf(m, " N%d=%lu", nid,
4024 				   mem_cgroup_node_nr_lru_pages(memcg, nid,
4025 							stat->lru_mask, true));
4026 		seq_putc(m, '\n');
4027 	}
4028 
4029 	return 0;
4030 }
4031 #endif /* CONFIG_NUMA */
4032 
4033 static const unsigned int memcg1_stats[] = {
4034 	NR_FILE_PAGES,
4035 	NR_ANON_MAPPED,
4036 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4037 	NR_ANON_THPS,
4038 #endif
4039 	NR_SHMEM,
4040 	NR_FILE_MAPPED,
4041 	NR_FILE_DIRTY,
4042 	NR_WRITEBACK,
4043 	WORKINGSET_REFAULT_ANON,
4044 	WORKINGSET_REFAULT_FILE,
4045 	MEMCG_SWAP,
4046 };
4047 
4048 static const char *const memcg1_stat_names[] = {
4049 	"cache",
4050 	"rss",
4051 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4052 	"rss_huge",
4053 #endif
4054 	"shmem",
4055 	"mapped_file",
4056 	"dirty",
4057 	"writeback",
4058 	"workingset_refault_anon",
4059 	"workingset_refault_file",
4060 	"swap",
4061 };
4062 
4063 /* Universal VM events cgroup1 shows, original sort order */
4064 static const unsigned int memcg1_events[] = {
4065 	PGPGIN,
4066 	PGPGOUT,
4067 	PGFAULT,
4068 	PGMAJFAULT,
4069 };
4070 
4071 static int memcg_stat_show(struct seq_file *m, void *v)
4072 {
4073 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4074 	unsigned long memory, memsw;
4075 	struct mem_cgroup *mi;
4076 	unsigned int i;
4077 
4078 	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4079 
4080 	mem_cgroup_flush_stats();
4081 
4082 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4083 		unsigned long nr;
4084 
4085 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4086 			continue;
4087 		nr = memcg_page_state_local(memcg, memcg1_stats[i]);
4088 		seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
4089 			   nr * memcg_page_state_unit(memcg1_stats[i]));
4090 	}
4091 
4092 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4093 		seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
4094 			   memcg_events_local(memcg, memcg1_events[i]));
4095 
4096 	for (i = 0; i < NR_LRU_LISTS; i++)
4097 		seq_printf(m, "%s %lu\n", lru_list_name(i),
4098 			   memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4099 			   PAGE_SIZE);
4100 
4101 	/* Hierarchical information */
4102 	memory = memsw = PAGE_COUNTER_MAX;
4103 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4104 		memory = min(memory, READ_ONCE(mi->memory.max));
4105 		memsw = min(memsw, READ_ONCE(mi->memsw.max));
4106 	}
4107 	seq_printf(m, "hierarchical_memory_limit %llu\n",
4108 		   (u64)memory * PAGE_SIZE);
4109 	if (do_memsw_account())
4110 		seq_printf(m, "hierarchical_memsw_limit %llu\n",
4111 			   (u64)memsw * PAGE_SIZE);
4112 
4113 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4114 		unsigned long nr;
4115 
4116 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4117 			continue;
4118 		nr = memcg_page_state(memcg, memcg1_stats[i]);
4119 		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4120 			   (u64)nr * memcg_page_state_unit(memcg1_stats[i]));
4121 	}
4122 
4123 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4124 		seq_printf(m, "total_%s %llu\n",
4125 			   vm_event_name(memcg1_events[i]),
4126 			   (u64)memcg_events(memcg, memcg1_events[i]));
4127 
4128 	for (i = 0; i < NR_LRU_LISTS; i++)
4129 		seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4130 			   (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4131 			   PAGE_SIZE);
4132 
4133 #ifdef CONFIG_DEBUG_VM
4134 	{
4135 		pg_data_t *pgdat;
4136 		struct mem_cgroup_per_node *mz;
4137 		unsigned long anon_cost = 0;
4138 		unsigned long file_cost = 0;
4139 
4140 		for_each_online_pgdat(pgdat) {
4141 			mz = memcg->nodeinfo[pgdat->node_id];
4142 
4143 			anon_cost += mz->lruvec.anon_cost;
4144 			file_cost += mz->lruvec.file_cost;
4145 		}
4146 		seq_printf(m, "anon_cost %lu\n", anon_cost);
4147 		seq_printf(m, "file_cost %lu\n", file_cost);
4148 	}
4149 #endif
4150 
4151 	return 0;
4152 }
4153 
4154 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4155 				      struct cftype *cft)
4156 {
4157 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4158 
4159 	return mem_cgroup_swappiness(memcg);
4160 }
4161 
4162 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4163 				       struct cftype *cft, u64 val)
4164 {
4165 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4166 
4167 	if (val > 200)
4168 		return -EINVAL;
4169 
4170 	if (!mem_cgroup_is_root(memcg))
4171 		memcg->swappiness = val;
4172 	else
4173 		vm_swappiness = val;
4174 
4175 	return 0;
4176 }
4177 
4178 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4179 {
4180 	struct mem_cgroup_threshold_ary *t;
4181 	unsigned long usage;
4182 	int i;
4183 
4184 	rcu_read_lock();
4185 	if (!swap)
4186 		t = rcu_dereference(memcg->thresholds.primary);
4187 	else
4188 		t = rcu_dereference(memcg->memsw_thresholds.primary);
4189 
4190 	if (!t)
4191 		goto unlock;
4192 
4193 	usage = mem_cgroup_usage(memcg, swap);
4194 
4195 	/*
4196 	 * current_threshold points to threshold just below or equal to usage.
4197 	 * If it's not true, a threshold was crossed after last
4198 	 * call of __mem_cgroup_threshold().
4199 	 */
4200 	i = t->current_threshold;
4201 
4202 	/*
4203 	 * Iterate backward over array of thresholds starting from
4204 	 * current_threshold and check if a threshold is crossed.
4205 	 * If none of thresholds below usage is crossed, we read
4206 	 * only one element of the array here.
4207 	 */
4208 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4209 		eventfd_signal(t->entries[i].eventfd, 1);
4210 
4211 	/* i = current_threshold + 1 */
4212 	i++;
4213 
4214 	/*
4215 	 * Iterate forward over array of thresholds starting from
4216 	 * current_threshold+1 and check if a threshold is crossed.
4217 	 * If none of thresholds above usage is crossed, we read
4218 	 * only one element of the array here.
4219 	 */
4220 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4221 		eventfd_signal(t->entries[i].eventfd, 1);
4222 
4223 	/* Update current_threshold */
4224 	t->current_threshold = i - 1;
4225 unlock:
4226 	rcu_read_unlock();
4227 }
4228 
4229 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4230 {
4231 	while (memcg) {
4232 		__mem_cgroup_threshold(memcg, false);
4233 		if (do_memsw_account())
4234 			__mem_cgroup_threshold(memcg, true);
4235 
4236 		memcg = parent_mem_cgroup(memcg);
4237 	}
4238 }
4239 
4240 static int compare_thresholds(const void *a, const void *b)
4241 {
4242 	const struct mem_cgroup_threshold *_a = a;
4243 	const struct mem_cgroup_threshold *_b = b;
4244 
4245 	if (_a->threshold > _b->threshold)
4246 		return 1;
4247 
4248 	if (_a->threshold < _b->threshold)
4249 		return -1;
4250 
4251 	return 0;
4252 }
4253 
4254 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4255 {
4256 	struct mem_cgroup_eventfd_list *ev;
4257 
4258 	spin_lock(&memcg_oom_lock);
4259 
4260 	list_for_each_entry(ev, &memcg->oom_notify, list)
4261 		eventfd_signal(ev->eventfd, 1);
4262 
4263 	spin_unlock(&memcg_oom_lock);
4264 	return 0;
4265 }
4266 
4267 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4268 {
4269 	struct mem_cgroup *iter;
4270 
4271 	for_each_mem_cgroup_tree(iter, memcg)
4272 		mem_cgroup_oom_notify_cb(iter);
4273 }
4274 
4275 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4276 	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4277 {
4278 	struct mem_cgroup_thresholds *thresholds;
4279 	struct mem_cgroup_threshold_ary *new;
4280 	unsigned long threshold;
4281 	unsigned long usage;
4282 	int i, size, ret;
4283 
4284 	ret = page_counter_memparse(args, "-1", &threshold);
4285 	if (ret)
4286 		return ret;
4287 
4288 	mutex_lock(&memcg->thresholds_lock);
4289 
4290 	if (type == _MEM) {
4291 		thresholds = &memcg->thresholds;
4292 		usage = mem_cgroup_usage(memcg, false);
4293 	} else if (type == _MEMSWAP) {
4294 		thresholds = &memcg->memsw_thresholds;
4295 		usage = mem_cgroup_usage(memcg, true);
4296 	} else
4297 		BUG();
4298 
4299 	/* Check if a threshold crossed before adding a new one */
4300 	if (thresholds->primary)
4301 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4302 
4303 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4304 
4305 	/* Allocate memory for new array of thresholds */
4306 	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4307 	if (!new) {
4308 		ret = -ENOMEM;
4309 		goto unlock;
4310 	}
4311 	new->size = size;
4312 
4313 	/* Copy thresholds (if any) to new array */
4314 	if (thresholds->primary)
4315 		memcpy(new->entries, thresholds->primary->entries,
4316 		       flex_array_size(new, entries, size - 1));
4317 
4318 	/* Add new threshold */
4319 	new->entries[size - 1].eventfd = eventfd;
4320 	new->entries[size - 1].threshold = threshold;
4321 
4322 	/* Sort thresholds. Registering of new threshold isn't time-critical */
4323 	sort(new->entries, size, sizeof(*new->entries),
4324 			compare_thresholds, NULL);
4325 
4326 	/* Find current threshold */
4327 	new->current_threshold = -1;
4328 	for (i = 0; i < size; i++) {
4329 		if (new->entries[i].threshold <= usage) {
4330 			/*
4331 			 * new->current_threshold will not be used until
4332 			 * rcu_assign_pointer(), so it's safe to increment
4333 			 * it here.
4334 			 */
4335 			++new->current_threshold;
4336 		} else
4337 			break;
4338 	}
4339 
4340 	/* Free old spare buffer and save old primary buffer as spare */
4341 	kfree(thresholds->spare);
4342 	thresholds->spare = thresholds->primary;
4343 
4344 	rcu_assign_pointer(thresholds->primary, new);
4345 
4346 	/* To be sure that nobody uses thresholds */
4347 	synchronize_rcu();
4348 
4349 unlock:
4350 	mutex_unlock(&memcg->thresholds_lock);
4351 
4352 	return ret;
4353 }
4354 
4355 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4356 	struct eventfd_ctx *eventfd, const char *args)
4357 {
4358 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4359 }
4360 
4361 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4362 	struct eventfd_ctx *eventfd, const char *args)
4363 {
4364 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4365 }
4366 
4367 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4368 	struct eventfd_ctx *eventfd, enum res_type type)
4369 {
4370 	struct mem_cgroup_thresholds *thresholds;
4371 	struct mem_cgroup_threshold_ary *new;
4372 	unsigned long usage;
4373 	int i, j, size, entries;
4374 
4375 	mutex_lock(&memcg->thresholds_lock);
4376 
4377 	if (type == _MEM) {
4378 		thresholds = &memcg->thresholds;
4379 		usage = mem_cgroup_usage(memcg, false);
4380 	} else if (type == _MEMSWAP) {
4381 		thresholds = &memcg->memsw_thresholds;
4382 		usage = mem_cgroup_usage(memcg, true);
4383 	} else
4384 		BUG();
4385 
4386 	if (!thresholds->primary)
4387 		goto unlock;
4388 
4389 	/* Check if a threshold crossed before removing */
4390 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4391 
4392 	/* Calculate new number of threshold */
4393 	size = entries = 0;
4394 	for (i = 0; i < thresholds->primary->size; i++) {
4395 		if (thresholds->primary->entries[i].eventfd != eventfd)
4396 			size++;
4397 		else
4398 			entries++;
4399 	}
4400 
4401 	new = thresholds->spare;
4402 
4403 	/* If no items related to eventfd have been cleared, nothing to do */
4404 	if (!entries)
4405 		goto unlock;
4406 
4407 	/* Set thresholds array to NULL if we don't have thresholds */
4408 	if (!size) {
4409 		kfree(new);
4410 		new = NULL;
4411 		goto swap_buffers;
4412 	}
4413 
4414 	new->size = size;
4415 
4416 	/* Copy thresholds and find current threshold */
4417 	new->current_threshold = -1;
4418 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4419 		if (thresholds->primary->entries[i].eventfd == eventfd)
4420 			continue;
4421 
4422 		new->entries[j] = thresholds->primary->entries[i];
4423 		if (new->entries[j].threshold <= usage) {
4424 			/*
4425 			 * new->current_threshold will not be used
4426 			 * until rcu_assign_pointer(), so it's safe to increment
4427 			 * it here.
4428 			 */
4429 			++new->current_threshold;
4430 		}
4431 		j++;
4432 	}
4433 
4434 swap_buffers:
4435 	/* Swap primary and spare array */
4436 	thresholds->spare = thresholds->primary;
4437 
4438 	rcu_assign_pointer(thresholds->primary, new);
4439 
4440 	/* To be sure that nobody uses thresholds */
4441 	synchronize_rcu();
4442 
4443 	/* If all events are unregistered, free the spare array */
4444 	if (!new) {
4445 		kfree(thresholds->spare);
4446 		thresholds->spare = NULL;
4447 	}
4448 unlock:
4449 	mutex_unlock(&memcg->thresholds_lock);
4450 }
4451 
4452 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4453 	struct eventfd_ctx *eventfd)
4454 {
4455 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4456 }
4457 
4458 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4459 	struct eventfd_ctx *eventfd)
4460 {
4461 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4462 }
4463 
4464 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4465 	struct eventfd_ctx *eventfd, const char *args)
4466 {
4467 	struct mem_cgroup_eventfd_list *event;
4468 
4469 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4470 	if (!event)
4471 		return -ENOMEM;
4472 
4473 	spin_lock(&memcg_oom_lock);
4474 
4475 	event->eventfd = eventfd;
4476 	list_add(&event->list, &memcg->oom_notify);
4477 
4478 	/* already in OOM ? */
4479 	if (memcg->under_oom)
4480 		eventfd_signal(eventfd, 1);
4481 	spin_unlock(&memcg_oom_lock);
4482 
4483 	return 0;
4484 }
4485 
4486 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4487 	struct eventfd_ctx *eventfd)
4488 {
4489 	struct mem_cgroup_eventfd_list *ev, *tmp;
4490 
4491 	spin_lock(&memcg_oom_lock);
4492 
4493 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4494 		if (ev->eventfd == eventfd) {
4495 			list_del(&ev->list);
4496 			kfree(ev);
4497 		}
4498 	}
4499 
4500 	spin_unlock(&memcg_oom_lock);
4501 }
4502 
4503 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4504 {
4505 	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4506 
4507 	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4508 	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4509 	seq_printf(sf, "oom_kill %lu\n",
4510 		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4511 	return 0;
4512 }
4513 
4514 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4515 	struct cftype *cft, u64 val)
4516 {
4517 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4518 
4519 	/* cannot set to root cgroup and only 0 and 1 are allowed */
4520 	if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
4521 		return -EINVAL;
4522 
4523 	memcg->oom_kill_disable = val;
4524 	if (!val)
4525 		memcg_oom_recover(memcg);
4526 
4527 	return 0;
4528 }
4529 
4530 #ifdef CONFIG_CGROUP_WRITEBACK
4531 
4532 #include <trace/events/writeback.h>
4533 
4534 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4535 {
4536 	return wb_domain_init(&memcg->cgwb_domain, gfp);
4537 }
4538 
4539 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4540 {
4541 	wb_domain_exit(&memcg->cgwb_domain);
4542 }
4543 
4544 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4545 {
4546 	wb_domain_size_changed(&memcg->cgwb_domain);
4547 }
4548 
4549 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4550 {
4551 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4552 
4553 	if (!memcg->css.parent)
4554 		return NULL;
4555 
4556 	return &memcg->cgwb_domain;
4557 }
4558 
4559 /**
4560  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4561  * @wb: bdi_writeback in question
4562  * @pfilepages: out parameter for number of file pages
4563  * @pheadroom: out parameter for number of allocatable pages according to memcg
4564  * @pdirty: out parameter for number of dirty pages
4565  * @pwriteback: out parameter for number of pages under writeback
4566  *
4567  * Determine the numbers of file, headroom, dirty, and writeback pages in
4568  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
4569  * is a bit more involved.
4570  *
4571  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
4572  * headroom is calculated as the lowest headroom of itself and the
4573  * ancestors.  Note that this doesn't consider the actual amount of
4574  * available memory in the system.  The caller should further cap
4575  * *@pheadroom accordingly.
4576  */
4577 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4578 			 unsigned long *pheadroom, unsigned long *pdirty,
4579 			 unsigned long *pwriteback)
4580 {
4581 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4582 	struct mem_cgroup *parent;
4583 
4584 	mem_cgroup_flush_stats();
4585 
4586 	*pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4587 	*pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4588 	*pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4589 			memcg_page_state(memcg, NR_ACTIVE_FILE);
4590 
4591 	*pheadroom = PAGE_COUNTER_MAX;
4592 	while ((parent = parent_mem_cgroup(memcg))) {
4593 		unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4594 					    READ_ONCE(memcg->memory.high));
4595 		unsigned long used = page_counter_read(&memcg->memory);
4596 
4597 		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4598 		memcg = parent;
4599 	}
4600 }
4601 
4602 /*
4603  * Foreign dirty flushing
4604  *
4605  * There's an inherent mismatch between memcg and writeback.  The former
4606  * tracks ownership per-page while the latter per-inode.  This was a
4607  * deliberate design decision because honoring per-page ownership in the
4608  * writeback path is complicated, may lead to higher CPU and IO overheads
4609  * and deemed unnecessary given that write-sharing an inode across
4610  * different cgroups isn't a common use-case.
4611  *
4612  * Combined with inode majority-writer ownership switching, this works well
4613  * enough in most cases but there are some pathological cases.  For
4614  * example, let's say there are two cgroups A and B which keep writing to
4615  * different but confined parts of the same inode.  B owns the inode and
4616  * A's memory is limited far below B's.  A's dirty ratio can rise enough to
4617  * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4618  * triggering background writeback.  A will be slowed down without a way to
4619  * make writeback of the dirty pages happen.
4620  *
4621  * Conditions like the above can lead to a cgroup getting repeatedly and
4622  * severely throttled after making some progress after each
4623  * dirty_expire_interval while the underlying IO device is almost
4624  * completely idle.
4625  *
4626  * Solving this problem completely requires matching the ownership tracking
4627  * granularities between memcg and writeback in either direction.  However,
4628  * the more egregious behaviors can be avoided by simply remembering the
4629  * most recent foreign dirtying events and initiating remote flushes on
4630  * them when local writeback isn't enough to keep the memory clean enough.
4631  *
4632  * The following two functions implement such mechanism.  When a foreign
4633  * page - a page whose memcg and writeback ownerships don't match - is
4634  * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4635  * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
4636  * decides that the memcg needs to sleep due to high dirty ratio, it calls
4637  * mem_cgroup_flush_foreign() which queues writeback on the recorded
4638  * foreign bdi_writebacks which haven't expired.  Both the numbers of
4639  * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4640  * limited to MEMCG_CGWB_FRN_CNT.
4641  *
4642  * The mechanism only remembers IDs and doesn't hold any object references.
4643  * As being wrong occasionally doesn't matter, updates and accesses to the
4644  * records are lockless and racy.
4645  */
4646 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
4647 					     struct bdi_writeback *wb)
4648 {
4649 	struct mem_cgroup *memcg = folio_memcg(folio);
4650 	struct memcg_cgwb_frn *frn;
4651 	u64 now = get_jiffies_64();
4652 	u64 oldest_at = now;
4653 	int oldest = -1;
4654 	int i;
4655 
4656 	trace_track_foreign_dirty(folio, wb);
4657 
4658 	/*
4659 	 * Pick the slot to use.  If there is already a slot for @wb, keep
4660 	 * using it.  If not replace the oldest one which isn't being
4661 	 * written out.
4662 	 */
4663 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4664 		frn = &memcg->cgwb_frn[i];
4665 		if (frn->bdi_id == wb->bdi->id &&
4666 		    frn->memcg_id == wb->memcg_css->id)
4667 			break;
4668 		if (time_before64(frn->at, oldest_at) &&
4669 		    atomic_read(&frn->done.cnt) == 1) {
4670 			oldest = i;
4671 			oldest_at = frn->at;
4672 		}
4673 	}
4674 
4675 	if (i < MEMCG_CGWB_FRN_CNT) {
4676 		/*
4677 		 * Re-using an existing one.  Update timestamp lazily to
4678 		 * avoid making the cacheline hot.  We want them to be
4679 		 * reasonably up-to-date and significantly shorter than
4680 		 * dirty_expire_interval as that's what expires the record.
4681 		 * Use the shorter of 1s and dirty_expire_interval / 8.
4682 		 */
4683 		unsigned long update_intv =
4684 			min_t(unsigned long, HZ,
4685 			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4686 
4687 		if (time_before64(frn->at, now - update_intv))
4688 			frn->at = now;
4689 	} else if (oldest >= 0) {
4690 		/* replace the oldest free one */
4691 		frn = &memcg->cgwb_frn[oldest];
4692 		frn->bdi_id = wb->bdi->id;
4693 		frn->memcg_id = wb->memcg_css->id;
4694 		frn->at = now;
4695 	}
4696 }
4697 
4698 /* issue foreign writeback flushes for recorded foreign dirtying events */
4699 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4700 {
4701 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4702 	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4703 	u64 now = jiffies_64;
4704 	int i;
4705 
4706 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4707 		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4708 
4709 		/*
4710 		 * If the record is older than dirty_expire_interval,
4711 		 * writeback on it has already started.  No need to kick it
4712 		 * off again.  Also, don't start a new one if there's
4713 		 * already one in flight.
4714 		 */
4715 		if (time_after64(frn->at, now - intv) &&
4716 		    atomic_read(&frn->done.cnt) == 1) {
4717 			frn->at = 0;
4718 			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4719 			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
4720 					       WB_REASON_FOREIGN_FLUSH,
4721 					       &frn->done);
4722 		}
4723 	}
4724 }
4725 
4726 #else	/* CONFIG_CGROUP_WRITEBACK */
4727 
4728 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4729 {
4730 	return 0;
4731 }
4732 
4733 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4734 {
4735 }
4736 
4737 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4738 {
4739 }
4740 
4741 #endif	/* CONFIG_CGROUP_WRITEBACK */
4742 
4743 /*
4744  * DO NOT USE IN NEW FILES.
4745  *
4746  * "cgroup.event_control" implementation.
4747  *
4748  * This is way over-engineered.  It tries to support fully configurable
4749  * events for each user.  Such level of flexibility is completely
4750  * unnecessary especially in the light of the planned unified hierarchy.
4751  *
4752  * Please deprecate this and replace with something simpler if at all
4753  * possible.
4754  */
4755 
4756 /*
4757  * Unregister event and free resources.
4758  *
4759  * Gets called from workqueue.
4760  */
4761 static void memcg_event_remove(struct work_struct *work)
4762 {
4763 	struct mem_cgroup_event *event =
4764 		container_of(work, struct mem_cgroup_event, remove);
4765 	struct mem_cgroup *memcg = event->memcg;
4766 
4767 	remove_wait_queue(event->wqh, &event->wait);
4768 
4769 	event->unregister_event(memcg, event->eventfd);
4770 
4771 	/* Notify userspace the event is going away. */
4772 	eventfd_signal(event->eventfd, 1);
4773 
4774 	eventfd_ctx_put(event->eventfd);
4775 	kfree(event);
4776 	css_put(&memcg->css);
4777 }
4778 
4779 /*
4780  * Gets called on EPOLLHUP on eventfd when user closes it.
4781  *
4782  * Called with wqh->lock held and interrupts disabled.
4783  */
4784 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4785 			    int sync, void *key)
4786 {
4787 	struct mem_cgroup_event *event =
4788 		container_of(wait, struct mem_cgroup_event, wait);
4789 	struct mem_cgroup *memcg = event->memcg;
4790 	__poll_t flags = key_to_poll(key);
4791 
4792 	if (flags & EPOLLHUP) {
4793 		/*
4794 		 * If the event has been detached at cgroup removal, we
4795 		 * can simply return knowing the other side will cleanup
4796 		 * for us.
4797 		 *
4798 		 * We can't race against event freeing since the other
4799 		 * side will require wqh->lock via remove_wait_queue(),
4800 		 * which we hold.
4801 		 */
4802 		spin_lock(&memcg->event_list_lock);
4803 		if (!list_empty(&event->list)) {
4804 			list_del_init(&event->list);
4805 			/*
4806 			 * We are in atomic context, but cgroup_event_remove()
4807 			 * may sleep, so we have to call it in workqueue.
4808 			 */
4809 			schedule_work(&event->remove);
4810 		}
4811 		spin_unlock(&memcg->event_list_lock);
4812 	}
4813 
4814 	return 0;
4815 }
4816 
4817 static void memcg_event_ptable_queue_proc(struct file *file,
4818 		wait_queue_head_t *wqh, poll_table *pt)
4819 {
4820 	struct mem_cgroup_event *event =
4821 		container_of(pt, struct mem_cgroup_event, pt);
4822 
4823 	event->wqh = wqh;
4824 	add_wait_queue(wqh, &event->wait);
4825 }
4826 
4827 /*
4828  * DO NOT USE IN NEW FILES.
4829  *
4830  * Parse input and register new cgroup event handler.
4831  *
4832  * Input must be in format '<event_fd> <control_fd> <args>'.
4833  * Interpretation of args is defined by control file implementation.
4834  */
4835 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4836 					 char *buf, size_t nbytes, loff_t off)
4837 {
4838 	struct cgroup_subsys_state *css = of_css(of);
4839 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4840 	struct mem_cgroup_event *event;
4841 	struct cgroup_subsys_state *cfile_css;
4842 	unsigned int efd, cfd;
4843 	struct fd efile;
4844 	struct fd cfile;
4845 	struct dentry *cdentry;
4846 	const char *name;
4847 	char *endp;
4848 	int ret;
4849 
4850 	if (IS_ENABLED(CONFIG_PREEMPT_RT))
4851 		return -EOPNOTSUPP;
4852 
4853 	buf = strstrip(buf);
4854 
4855 	efd = simple_strtoul(buf, &endp, 10);
4856 	if (*endp != ' ')
4857 		return -EINVAL;
4858 	buf = endp + 1;
4859 
4860 	cfd = simple_strtoul(buf, &endp, 10);
4861 	if ((*endp != ' ') && (*endp != '\0'))
4862 		return -EINVAL;
4863 	buf = endp + 1;
4864 
4865 	event = kzalloc(sizeof(*event), GFP_KERNEL);
4866 	if (!event)
4867 		return -ENOMEM;
4868 
4869 	event->memcg = memcg;
4870 	INIT_LIST_HEAD(&event->list);
4871 	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4872 	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4873 	INIT_WORK(&event->remove, memcg_event_remove);
4874 
4875 	efile = fdget(efd);
4876 	if (!efile.file) {
4877 		ret = -EBADF;
4878 		goto out_kfree;
4879 	}
4880 
4881 	event->eventfd = eventfd_ctx_fileget(efile.file);
4882 	if (IS_ERR(event->eventfd)) {
4883 		ret = PTR_ERR(event->eventfd);
4884 		goto out_put_efile;
4885 	}
4886 
4887 	cfile = fdget(cfd);
4888 	if (!cfile.file) {
4889 		ret = -EBADF;
4890 		goto out_put_eventfd;
4891 	}
4892 
4893 	/* the process need read permission on control file */
4894 	/* AV: shouldn't we check that it's been opened for read instead? */
4895 	ret = file_permission(cfile.file, MAY_READ);
4896 	if (ret < 0)
4897 		goto out_put_cfile;
4898 
4899 	/*
4900 	 * The control file must be a regular cgroup1 file. As a regular cgroup
4901 	 * file can't be renamed, it's safe to access its name afterwards.
4902 	 */
4903 	cdentry = cfile.file->f_path.dentry;
4904 	if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(cdentry)) {
4905 		ret = -EINVAL;
4906 		goto out_put_cfile;
4907 	}
4908 
4909 	/*
4910 	 * Determine the event callbacks and set them in @event.  This used
4911 	 * to be done via struct cftype but cgroup core no longer knows
4912 	 * about these events.  The following is crude but the whole thing
4913 	 * is for compatibility anyway.
4914 	 *
4915 	 * DO NOT ADD NEW FILES.
4916 	 */
4917 	name = cdentry->d_name.name;
4918 
4919 	if (!strcmp(name, "memory.usage_in_bytes")) {
4920 		event->register_event = mem_cgroup_usage_register_event;
4921 		event->unregister_event = mem_cgroup_usage_unregister_event;
4922 	} else if (!strcmp(name, "memory.oom_control")) {
4923 		event->register_event = mem_cgroup_oom_register_event;
4924 		event->unregister_event = mem_cgroup_oom_unregister_event;
4925 	} else if (!strcmp(name, "memory.pressure_level")) {
4926 		event->register_event = vmpressure_register_event;
4927 		event->unregister_event = vmpressure_unregister_event;
4928 	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4929 		event->register_event = memsw_cgroup_usage_register_event;
4930 		event->unregister_event = memsw_cgroup_usage_unregister_event;
4931 	} else {
4932 		ret = -EINVAL;
4933 		goto out_put_cfile;
4934 	}
4935 
4936 	/*
4937 	 * Verify @cfile should belong to @css.  Also, remaining events are
4938 	 * automatically removed on cgroup destruction but the removal is
4939 	 * asynchronous, so take an extra ref on @css.
4940 	 */
4941 	cfile_css = css_tryget_online_from_dir(cdentry->d_parent,
4942 					       &memory_cgrp_subsys);
4943 	ret = -EINVAL;
4944 	if (IS_ERR(cfile_css))
4945 		goto out_put_cfile;
4946 	if (cfile_css != css) {
4947 		css_put(cfile_css);
4948 		goto out_put_cfile;
4949 	}
4950 
4951 	ret = event->register_event(memcg, event->eventfd, buf);
4952 	if (ret)
4953 		goto out_put_css;
4954 
4955 	vfs_poll(efile.file, &event->pt);
4956 
4957 	spin_lock_irq(&memcg->event_list_lock);
4958 	list_add(&event->list, &memcg->event_list);
4959 	spin_unlock_irq(&memcg->event_list_lock);
4960 
4961 	fdput(cfile);
4962 	fdput(efile);
4963 
4964 	return nbytes;
4965 
4966 out_put_css:
4967 	css_put(css);
4968 out_put_cfile:
4969 	fdput(cfile);
4970 out_put_eventfd:
4971 	eventfd_ctx_put(event->eventfd);
4972 out_put_efile:
4973 	fdput(efile);
4974 out_kfree:
4975 	kfree(event);
4976 
4977 	return ret;
4978 }
4979 
4980 #if defined(CONFIG_MEMCG_KMEM) && (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
4981 static int mem_cgroup_slab_show(struct seq_file *m, void *p)
4982 {
4983 	/*
4984 	 * Deprecated.
4985 	 * Please, take a look at tools/cgroup/memcg_slabinfo.py .
4986 	 */
4987 	return 0;
4988 }
4989 #endif
4990 
4991 static struct cftype mem_cgroup_legacy_files[] = {
4992 	{
4993 		.name = "usage_in_bytes",
4994 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4995 		.read_u64 = mem_cgroup_read_u64,
4996 	},
4997 	{
4998 		.name = "max_usage_in_bytes",
4999 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5000 		.write = mem_cgroup_reset,
5001 		.read_u64 = mem_cgroup_read_u64,
5002 	},
5003 	{
5004 		.name = "limit_in_bytes",
5005 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5006 		.write = mem_cgroup_write,
5007 		.read_u64 = mem_cgroup_read_u64,
5008 	},
5009 	{
5010 		.name = "soft_limit_in_bytes",
5011 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5012 		.write = mem_cgroup_write,
5013 		.read_u64 = mem_cgroup_read_u64,
5014 	},
5015 	{
5016 		.name = "failcnt",
5017 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5018 		.write = mem_cgroup_reset,
5019 		.read_u64 = mem_cgroup_read_u64,
5020 	},
5021 	{
5022 		.name = "stat",
5023 		.seq_show = memcg_stat_show,
5024 	},
5025 	{
5026 		.name = "force_empty",
5027 		.write = mem_cgroup_force_empty_write,
5028 	},
5029 	{
5030 		.name = "use_hierarchy",
5031 		.write_u64 = mem_cgroup_hierarchy_write,
5032 		.read_u64 = mem_cgroup_hierarchy_read,
5033 	},
5034 	{
5035 		.name = "cgroup.event_control",		/* XXX: for compat */
5036 		.write = memcg_write_event_control,
5037 		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
5038 	},
5039 	{
5040 		.name = "swappiness",
5041 		.read_u64 = mem_cgroup_swappiness_read,
5042 		.write_u64 = mem_cgroup_swappiness_write,
5043 	},
5044 	{
5045 		.name = "move_charge_at_immigrate",
5046 		.read_u64 = mem_cgroup_move_charge_read,
5047 		.write_u64 = mem_cgroup_move_charge_write,
5048 	},
5049 	{
5050 		.name = "oom_control",
5051 		.seq_show = mem_cgroup_oom_control_read,
5052 		.write_u64 = mem_cgroup_oom_control_write,
5053 	},
5054 	{
5055 		.name = "pressure_level",
5056 	},
5057 #ifdef CONFIG_NUMA
5058 	{
5059 		.name = "numa_stat",
5060 		.seq_show = memcg_numa_stat_show,
5061 	},
5062 #endif
5063 	{
5064 		.name = "kmem.limit_in_bytes",
5065 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5066 		.write = mem_cgroup_write,
5067 		.read_u64 = mem_cgroup_read_u64,
5068 	},
5069 	{
5070 		.name = "kmem.usage_in_bytes",
5071 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5072 		.read_u64 = mem_cgroup_read_u64,
5073 	},
5074 	{
5075 		.name = "kmem.failcnt",
5076 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5077 		.write = mem_cgroup_reset,
5078 		.read_u64 = mem_cgroup_read_u64,
5079 	},
5080 	{
5081 		.name = "kmem.max_usage_in_bytes",
5082 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5083 		.write = mem_cgroup_reset,
5084 		.read_u64 = mem_cgroup_read_u64,
5085 	},
5086 #if defined(CONFIG_MEMCG_KMEM) && \
5087 	(defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5088 	{
5089 		.name = "kmem.slabinfo",
5090 		.seq_show = mem_cgroup_slab_show,
5091 	},
5092 #endif
5093 	{
5094 		.name = "kmem.tcp.limit_in_bytes",
5095 		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5096 		.write = mem_cgroup_write,
5097 		.read_u64 = mem_cgroup_read_u64,
5098 	},
5099 	{
5100 		.name = "kmem.tcp.usage_in_bytes",
5101 		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5102 		.read_u64 = mem_cgroup_read_u64,
5103 	},
5104 	{
5105 		.name = "kmem.tcp.failcnt",
5106 		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5107 		.write = mem_cgroup_reset,
5108 		.read_u64 = mem_cgroup_read_u64,
5109 	},
5110 	{
5111 		.name = "kmem.tcp.max_usage_in_bytes",
5112 		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5113 		.write = mem_cgroup_reset,
5114 		.read_u64 = mem_cgroup_read_u64,
5115 	},
5116 	{ },	/* terminate */
5117 };
5118 
5119 /*
5120  * Private memory cgroup IDR
5121  *
5122  * Swap-out records and page cache shadow entries need to store memcg
5123  * references in constrained space, so we maintain an ID space that is
5124  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5125  * memory-controlled cgroups to 64k.
5126  *
5127  * However, there usually are many references to the offline CSS after
5128  * the cgroup has been destroyed, such as page cache or reclaimable
5129  * slab objects, that don't need to hang on to the ID. We want to keep
5130  * those dead CSS from occupying IDs, or we might quickly exhaust the
5131  * relatively small ID space and prevent the creation of new cgroups
5132  * even when there are much fewer than 64k cgroups - possibly none.
5133  *
5134  * Maintain a private 16-bit ID space for memcg, and allow the ID to
5135  * be freed and recycled when it's no longer needed, which is usually
5136  * when the CSS is offlined.
5137  *
5138  * The only exception to that are records of swapped out tmpfs/shmem
5139  * pages that need to be attributed to live ancestors on swapin. But
5140  * those references are manageable from userspace.
5141  */
5142 
5143 static DEFINE_IDR(mem_cgroup_idr);
5144 
5145 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5146 {
5147 	if (memcg->id.id > 0) {
5148 		idr_remove(&mem_cgroup_idr, memcg->id.id);
5149 		memcg->id.id = 0;
5150 	}
5151 }
5152 
5153 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5154 						  unsigned int n)
5155 {
5156 	refcount_add(n, &memcg->id.ref);
5157 }
5158 
5159 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5160 {
5161 	if (refcount_sub_and_test(n, &memcg->id.ref)) {
5162 		mem_cgroup_id_remove(memcg);
5163 
5164 		/* Memcg ID pins CSS */
5165 		css_put(&memcg->css);
5166 	}
5167 }
5168 
5169 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5170 {
5171 	mem_cgroup_id_put_many(memcg, 1);
5172 }
5173 
5174 /**
5175  * mem_cgroup_from_id - look up a memcg from a memcg id
5176  * @id: the memcg id to look up
5177  *
5178  * Caller must hold rcu_read_lock().
5179  */
5180 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5181 {
5182 	WARN_ON_ONCE(!rcu_read_lock_held());
5183 	return idr_find(&mem_cgroup_idr, id);
5184 }
5185 
5186 #ifdef CONFIG_SHRINKER_DEBUG
5187 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
5188 {
5189 	struct cgroup *cgrp;
5190 	struct cgroup_subsys_state *css;
5191 	struct mem_cgroup *memcg;
5192 
5193 	cgrp = cgroup_get_from_id(ino);
5194 	if (IS_ERR(cgrp))
5195 		return ERR_CAST(cgrp);
5196 
5197 	css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys);
5198 	if (css)
5199 		memcg = container_of(css, struct mem_cgroup, css);
5200 	else
5201 		memcg = ERR_PTR(-ENOENT);
5202 
5203 	cgroup_put(cgrp);
5204 
5205 	return memcg;
5206 }
5207 #endif
5208 
5209 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5210 {
5211 	struct mem_cgroup_per_node *pn;
5212 
5213 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node);
5214 	if (!pn)
5215 		return 1;
5216 
5217 	pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
5218 						   GFP_KERNEL_ACCOUNT);
5219 	if (!pn->lruvec_stats_percpu) {
5220 		kfree(pn);
5221 		return 1;
5222 	}
5223 
5224 	lruvec_init(&pn->lruvec);
5225 	pn->memcg = memcg;
5226 
5227 	memcg->nodeinfo[node] = pn;
5228 	return 0;
5229 }
5230 
5231 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5232 {
5233 	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5234 
5235 	if (!pn)
5236 		return;
5237 
5238 	free_percpu(pn->lruvec_stats_percpu);
5239 	kfree(pn);
5240 }
5241 
5242 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5243 {
5244 	int node;
5245 
5246 	for_each_node(node)
5247 		free_mem_cgroup_per_node_info(memcg, node);
5248 	kfree(memcg->vmstats);
5249 	free_percpu(memcg->vmstats_percpu);
5250 	kfree(memcg);
5251 }
5252 
5253 static void mem_cgroup_free(struct mem_cgroup *memcg)
5254 {
5255 	lru_gen_exit_memcg(memcg);
5256 	memcg_wb_domain_exit(memcg);
5257 	__mem_cgroup_free(memcg);
5258 }
5259 
5260 static struct mem_cgroup *mem_cgroup_alloc(void)
5261 {
5262 	struct mem_cgroup *memcg;
5263 	int node;
5264 	int __maybe_unused i;
5265 	long error = -ENOMEM;
5266 
5267 	memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL);
5268 	if (!memcg)
5269 		return ERR_PTR(error);
5270 
5271 	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5272 				 1, MEM_CGROUP_ID_MAX + 1, GFP_KERNEL);
5273 	if (memcg->id.id < 0) {
5274 		error = memcg->id.id;
5275 		goto fail;
5276 	}
5277 
5278 	memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats), GFP_KERNEL);
5279 	if (!memcg->vmstats)
5280 		goto fail;
5281 
5282 	memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5283 						 GFP_KERNEL_ACCOUNT);
5284 	if (!memcg->vmstats_percpu)
5285 		goto fail;
5286 
5287 	for_each_node(node)
5288 		if (alloc_mem_cgroup_per_node_info(memcg, node))
5289 			goto fail;
5290 
5291 	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5292 		goto fail;
5293 
5294 	INIT_WORK(&memcg->high_work, high_work_func);
5295 	INIT_LIST_HEAD(&memcg->oom_notify);
5296 	mutex_init(&memcg->thresholds_lock);
5297 	spin_lock_init(&memcg->move_lock);
5298 	vmpressure_init(&memcg->vmpressure);
5299 	INIT_LIST_HEAD(&memcg->event_list);
5300 	spin_lock_init(&memcg->event_list_lock);
5301 	memcg->socket_pressure = jiffies;
5302 #ifdef CONFIG_MEMCG_KMEM
5303 	memcg->kmemcg_id = -1;
5304 	INIT_LIST_HEAD(&memcg->objcg_list);
5305 #endif
5306 #ifdef CONFIG_CGROUP_WRITEBACK
5307 	INIT_LIST_HEAD(&memcg->cgwb_list);
5308 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5309 		memcg->cgwb_frn[i].done =
5310 			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5311 #endif
5312 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5313 	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5314 	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5315 	memcg->deferred_split_queue.split_queue_len = 0;
5316 #endif
5317 	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5318 	lru_gen_init_memcg(memcg);
5319 	return memcg;
5320 fail:
5321 	mem_cgroup_id_remove(memcg);
5322 	__mem_cgroup_free(memcg);
5323 	return ERR_PTR(error);
5324 }
5325 
5326 static struct cgroup_subsys_state * __ref
5327 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5328 {
5329 	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5330 	struct mem_cgroup *memcg, *old_memcg;
5331 
5332 	old_memcg = set_active_memcg(parent);
5333 	memcg = mem_cgroup_alloc();
5334 	set_active_memcg(old_memcg);
5335 	if (IS_ERR(memcg))
5336 		return ERR_CAST(memcg);
5337 
5338 	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5339 	memcg->soft_limit = PAGE_COUNTER_MAX;
5340 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
5341 	memcg->zswap_max = PAGE_COUNTER_MAX;
5342 #endif
5343 	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5344 	if (parent) {
5345 		memcg->swappiness = mem_cgroup_swappiness(parent);
5346 		memcg->oom_kill_disable = parent->oom_kill_disable;
5347 
5348 		page_counter_init(&memcg->memory, &parent->memory);
5349 		page_counter_init(&memcg->swap, &parent->swap);
5350 		page_counter_init(&memcg->kmem, &parent->kmem);
5351 		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5352 	} else {
5353 		init_memcg_events();
5354 		page_counter_init(&memcg->memory, NULL);
5355 		page_counter_init(&memcg->swap, NULL);
5356 		page_counter_init(&memcg->kmem, NULL);
5357 		page_counter_init(&memcg->tcpmem, NULL);
5358 
5359 		root_mem_cgroup = memcg;
5360 		return &memcg->css;
5361 	}
5362 
5363 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5364 		static_branch_inc(&memcg_sockets_enabled_key);
5365 
5366 #if defined(CONFIG_MEMCG_KMEM)
5367 	if (!cgroup_memory_nobpf)
5368 		static_branch_inc(&memcg_bpf_enabled_key);
5369 #endif
5370 
5371 	return &memcg->css;
5372 }
5373 
5374 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5375 {
5376 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5377 
5378 	if (memcg_online_kmem(memcg))
5379 		goto remove_id;
5380 
5381 	/*
5382 	 * A memcg must be visible for expand_shrinker_info()
5383 	 * by the time the maps are allocated. So, we allocate maps
5384 	 * here, when for_each_mem_cgroup() can't skip it.
5385 	 */
5386 	if (alloc_shrinker_info(memcg))
5387 		goto offline_kmem;
5388 
5389 	/* Online state pins memcg ID, memcg ID pins CSS */
5390 	refcount_set(&memcg->id.ref, 1);
5391 	css_get(css);
5392 
5393 	if (unlikely(mem_cgroup_is_root(memcg)))
5394 		queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
5395 				   2UL*HZ);
5396 	return 0;
5397 offline_kmem:
5398 	memcg_offline_kmem(memcg);
5399 remove_id:
5400 	mem_cgroup_id_remove(memcg);
5401 	return -ENOMEM;
5402 }
5403 
5404 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5405 {
5406 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5407 	struct mem_cgroup_event *event, *tmp;
5408 
5409 	/*
5410 	 * Unregister events and notify userspace.
5411 	 * Notify userspace about cgroup removing only after rmdir of cgroup
5412 	 * directory to avoid race between userspace and kernelspace.
5413 	 */
5414 	spin_lock_irq(&memcg->event_list_lock);
5415 	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5416 		list_del_init(&event->list);
5417 		schedule_work(&event->remove);
5418 	}
5419 	spin_unlock_irq(&memcg->event_list_lock);
5420 
5421 	page_counter_set_min(&memcg->memory, 0);
5422 	page_counter_set_low(&memcg->memory, 0);
5423 
5424 	memcg_offline_kmem(memcg);
5425 	reparent_shrinker_deferred(memcg);
5426 	wb_memcg_offline(memcg);
5427 
5428 	drain_all_stock(memcg);
5429 
5430 	mem_cgroup_id_put(memcg);
5431 }
5432 
5433 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5434 {
5435 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5436 
5437 	invalidate_reclaim_iterators(memcg);
5438 }
5439 
5440 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5441 {
5442 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5443 	int __maybe_unused i;
5444 
5445 #ifdef CONFIG_CGROUP_WRITEBACK
5446 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5447 		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5448 #endif
5449 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5450 		static_branch_dec(&memcg_sockets_enabled_key);
5451 
5452 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5453 		static_branch_dec(&memcg_sockets_enabled_key);
5454 
5455 #if defined(CONFIG_MEMCG_KMEM)
5456 	if (!cgroup_memory_nobpf)
5457 		static_branch_dec(&memcg_bpf_enabled_key);
5458 #endif
5459 
5460 	vmpressure_cleanup(&memcg->vmpressure);
5461 	cancel_work_sync(&memcg->high_work);
5462 	mem_cgroup_remove_from_trees(memcg);
5463 	free_shrinker_info(memcg);
5464 	mem_cgroup_free(memcg);
5465 }
5466 
5467 /**
5468  * mem_cgroup_css_reset - reset the states of a mem_cgroup
5469  * @css: the target css
5470  *
5471  * Reset the states of the mem_cgroup associated with @css.  This is
5472  * invoked when the userland requests disabling on the default hierarchy
5473  * but the memcg is pinned through dependency.  The memcg should stop
5474  * applying policies and should revert to the vanilla state as it may be
5475  * made visible again.
5476  *
5477  * The current implementation only resets the essential configurations.
5478  * This needs to be expanded to cover all the visible parts.
5479  */
5480 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5481 {
5482 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5483 
5484 	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5485 	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5486 	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5487 	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5488 	page_counter_set_min(&memcg->memory, 0);
5489 	page_counter_set_low(&memcg->memory, 0);
5490 	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5491 	memcg->soft_limit = PAGE_COUNTER_MAX;
5492 	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5493 	memcg_wb_domain_size_changed(memcg);
5494 }
5495 
5496 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5497 {
5498 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5499 	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5500 	struct memcg_vmstats_percpu *statc;
5501 	long delta, v;
5502 	int i, nid;
5503 
5504 	statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5505 
5506 	for (i = 0; i < MEMCG_NR_STAT; i++) {
5507 		/*
5508 		 * Collect the aggregated propagation counts of groups
5509 		 * below us. We're in a per-cpu loop here and this is
5510 		 * a global counter, so the first cycle will get them.
5511 		 */
5512 		delta = memcg->vmstats->state_pending[i];
5513 		if (delta)
5514 			memcg->vmstats->state_pending[i] = 0;
5515 
5516 		/* Add CPU changes on this level since the last flush */
5517 		v = READ_ONCE(statc->state[i]);
5518 		if (v != statc->state_prev[i]) {
5519 			delta += v - statc->state_prev[i];
5520 			statc->state_prev[i] = v;
5521 		}
5522 
5523 		if (!delta)
5524 			continue;
5525 
5526 		/* Aggregate counts on this level and propagate upwards */
5527 		memcg->vmstats->state[i] += delta;
5528 		if (parent)
5529 			parent->vmstats->state_pending[i] += delta;
5530 	}
5531 
5532 	for (i = 0; i < NR_MEMCG_EVENTS; i++) {
5533 		delta = memcg->vmstats->events_pending[i];
5534 		if (delta)
5535 			memcg->vmstats->events_pending[i] = 0;
5536 
5537 		v = READ_ONCE(statc->events[i]);
5538 		if (v != statc->events_prev[i]) {
5539 			delta += v - statc->events_prev[i];
5540 			statc->events_prev[i] = v;
5541 		}
5542 
5543 		if (!delta)
5544 			continue;
5545 
5546 		memcg->vmstats->events[i] += delta;
5547 		if (parent)
5548 			parent->vmstats->events_pending[i] += delta;
5549 	}
5550 
5551 	for_each_node_state(nid, N_MEMORY) {
5552 		struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
5553 		struct mem_cgroup_per_node *ppn = NULL;
5554 		struct lruvec_stats_percpu *lstatc;
5555 
5556 		if (parent)
5557 			ppn = parent->nodeinfo[nid];
5558 
5559 		lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
5560 
5561 		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
5562 			delta = pn->lruvec_stats.state_pending[i];
5563 			if (delta)
5564 				pn->lruvec_stats.state_pending[i] = 0;
5565 
5566 			v = READ_ONCE(lstatc->state[i]);
5567 			if (v != lstatc->state_prev[i]) {
5568 				delta += v - lstatc->state_prev[i];
5569 				lstatc->state_prev[i] = v;
5570 			}
5571 
5572 			if (!delta)
5573 				continue;
5574 
5575 			pn->lruvec_stats.state[i] += delta;
5576 			if (ppn)
5577 				ppn->lruvec_stats.state_pending[i] += delta;
5578 		}
5579 	}
5580 }
5581 
5582 #ifdef CONFIG_MMU
5583 /* Handlers for move charge at task migration. */
5584 static int mem_cgroup_do_precharge(unsigned long count)
5585 {
5586 	int ret;
5587 
5588 	/* Try a single bulk charge without reclaim first, kswapd may wake */
5589 	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5590 	if (!ret) {
5591 		mc.precharge += count;
5592 		return ret;
5593 	}
5594 
5595 	/* Try charges one by one with reclaim, but do not retry */
5596 	while (count--) {
5597 		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5598 		if (ret)
5599 			return ret;
5600 		mc.precharge++;
5601 		cond_resched();
5602 	}
5603 	return 0;
5604 }
5605 
5606 union mc_target {
5607 	struct page	*page;
5608 	swp_entry_t	ent;
5609 };
5610 
5611 enum mc_target_type {
5612 	MC_TARGET_NONE = 0,
5613 	MC_TARGET_PAGE,
5614 	MC_TARGET_SWAP,
5615 	MC_TARGET_DEVICE,
5616 };
5617 
5618 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5619 						unsigned long addr, pte_t ptent)
5620 {
5621 	struct page *page = vm_normal_page(vma, addr, ptent);
5622 
5623 	if (!page || !page_mapped(page))
5624 		return NULL;
5625 	if (PageAnon(page)) {
5626 		if (!(mc.flags & MOVE_ANON))
5627 			return NULL;
5628 	} else {
5629 		if (!(mc.flags & MOVE_FILE))
5630 			return NULL;
5631 	}
5632 	if (!get_page_unless_zero(page))
5633 		return NULL;
5634 
5635 	return page;
5636 }
5637 
5638 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5639 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5640 			pte_t ptent, swp_entry_t *entry)
5641 {
5642 	struct page *page = NULL;
5643 	swp_entry_t ent = pte_to_swp_entry(ptent);
5644 
5645 	if (!(mc.flags & MOVE_ANON))
5646 		return NULL;
5647 
5648 	/*
5649 	 * Handle device private pages that are not accessible by the CPU, but
5650 	 * stored as special swap entries in the page table.
5651 	 */
5652 	if (is_device_private_entry(ent)) {
5653 		page = pfn_swap_entry_to_page(ent);
5654 		if (!get_page_unless_zero(page))
5655 			return NULL;
5656 		return page;
5657 	}
5658 
5659 	if (non_swap_entry(ent))
5660 		return NULL;
5661 
5662 	/*
5663 	 * Because swap_cache_get_folio() updates some statistics counter,
5664 	 * we call find_get_page() with swapper_space directly.
5665 	 */
5666 	page = find_get_page(swap_address_space(ent), swp_offset(ent));
5667 	entry->val = ent.val;
5668 
5669 	return page;
5670 }
5671 #else
5672 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5673 			pte_t ptent, swp_entry_t *entry)
5674 {
5675 	return NULL;
5676 }
5677 #endif
5678 
5679 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5680 			unsigned long addr, pte_t ptent)
5681 {
5682 	unsigned long index;
5683 	struct folio *folio;
5684 
5685 	if (!vma->vm_file) /* anonymous vma */
5686 		return NULL;
5687 	if (!(mc.flags & MOVE_FILE))
5688 		return NULL;
5689 
5690 	/* folio is moved even if it's not RSS of this task(page-faulted). */
5691 	/* shmem/tmpfs may report page out on swap: account for that too. */
5692 	index = linear_page_index(vma, addr);
5693 	folio = filemap_get_incore_folio(vma->vm_file->f_mapping, index);
5694 	if (!folio)
5695 		return NULL;
5696 	return folio_file_page(folio, index);
5697 }
5698 
5699 /**
5700  * mem_cgroup_move_account - move account of the page
5701  * @page: the page
5702  * @compound: charge the page as compound or small page
5703  * @from: mem_cgroup which the page is moved from.
5704  * @to:	mem_cgroup which the page is moved to. @from != @to.
5705  *
5706  * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5707  *
5708  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5709  * from old cgroup.
5710  */
5711 static int mem_cgroup_move_account(struct page *page,
5712 				   bool compound,
5713 				   struct mem_cgroup *from,
5714 				   struct mem_cgroup *to)
5715 {
5716 	struct folio *folio = page_folio(page);
5717 	struct lruvec *from_vec, *to_vec;
5718 	struct pglist_data *pgdat;
5719 	unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1;
5720 	int nid, ret;
5721 
5722 	VM_BUG_ON(from == to);
5723 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
5724 	VM_BUG_ON(compound && !folio_test_large(folio));
5725 
5726 	/*
5727 	 * Prevent mem_cgroup_migrate() from looking at
5728 	 * page's memory cgroup of its source page while we change it.
5729 	 */
5730 	ret = -EBUSY;
5731 	if (!folio_trylock(folio))
5732 		goto out;
5733 
5734 	ret = -EINVAL;
5735 	if (folio_memcg(folio) != from)
5736 		goto out_unlock;
5737 
5738 	pgdat = folio_pgdat(folio);
5739 	from_vec = mem_cgroup_lruvec(from, pgdat);
5740 	to_vec = mem_cgroup_lruvec(to, pgdat);
5741 
5742 	folio_memcg_lock(folio);
5743 
5744 	if (folio_test_anon(folio)) {
5745 		if (folio_mapped(folio)) {
5746 			__mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5747 			__mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5748 			if (folio_test_transhuge(folio)) {
5749 				__mod_lruvec_state(from_vec, NR_ANON_THPS,
5750 						   -nr_pages);
5751 				__mod_lruvec_state(to_vec, NR_ANON_THPS,
5752 						   nr_pages);
5753 			}
5754 		}
5755 	} else {
5756 		__mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5757 		__mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5758 
5759 		if (folio_test_swapbacked(folio)) {
5760 			__mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5761 			__mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5762 		}
5763 
5764 		if (folio_mapped(folio)) {
5765 			__mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5766 			__mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5767 		}
5768 
5769 		if (folio_test_dirty(folio)) {
5770 			struct address_space *mapping = folio_mapping(folio);
5771 
5772 			if (mapping_can_writeback(mapping)) {
5773 				__mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5774 						   -nr_pages);
5775 				__mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5776 						   nr_pages);
5777 			}
5778 		}
5779 	}
5780 
5781 #ifdef CONFIG_SWAP
5782 	if (folio_test_swapcache(folio)) {
5783 		__mod_lruvec_state(from_vec, NR_SWAPCACHE, -nr_pages);
5784 		__mod_lruvec_state(to_vec, NR_SWAPCACHE, nr_pages);
5785 	}
5786 #endif
5787 	if (folio_test_writeback(folio)) {
5788 		__mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5789 		__mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5790 	}
5791 
5792 	/*
5793 	 * All state has been migrated, let's switch to the new memcg.
5794 	 *
5795 	 * It is safe to change page's memcg here because the page
5796 	 * is referenced, charged, isolated, and locked: we can't race
5797 	 * with (un)charging, migration, LRU putback, or anything else
5798 	 * that would rely on a stable page's memory cgroup.
5799 	 *
5800 	 * Note that lock_page_memcg is a memcg lock, not a page lock,
5801 	 * to save space. As soon as we switch page's memory cgroup to a
5802 	 * new memcg that isn't locked, the above state can change
5803 	 * concurrently again. Make sure we're truly done with it.
5804 	 */
5805 	smp_mb();
5806 
5807 	css_get(&to->css);
5808 	css_put(&from->css);
5809 
5810 	folio->memcg_data = (unsigned long)to;
5811 
5812 	__folio_memcg_unlock(from);
5813 
5814 	ret = 0;
5815 	nid = folio_nid(folio);
5816 
5817 	local_irq_disable();
5818 	mem_cgroup_charge_statistics(to, nr_pages);
5819 	memcg_check_events(to, nid);
5820 	mem_cgroup_charge_statistics(from, -nr_pages);
5821 	memcg_check_events(from, nid);
5822 	local_irq_enable();
5823 out_unlock:
5824 	folio_unlock(folio);
5825 out:
5826 	return ret;
5827 }
5828 
5829 /**
5830  * get_mctgt_type - get target type of moving charge
5831  * @vma: the vma the pte to be checked belongs
5832  * @addr: the address corresponding to the pte to be checked
5833  * @ptent: the pte to be checked
5834  * @target: the pointer the target page or swap ent will be stored(can be NULL)
5835  *
5836  * Returns
5837  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5838  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5839  *     move charge. if @target is not NULL, the page is stored in target->page
5840  *     with extra refcnt got(Callers should handle it).
5841  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5842  *     target for charge migration. if @target is not NULL, the entry is stored
5843  *     in target->ent.
5844  *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is device memory and
5845  *   thus not on the lru.
5846  *     For now we such page is charge like a regular page would be as for all
5847  *     intent and purposes it is just special memory taking the place of a
5848  *     regular page.
5849  *
5850  *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5851  *
5852  * Called with pte lock held.
5853  */
5854 
5855 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5856 		unsigned long addr, pte_t ptent, union mc_target *target)
5857 {
5858 	struct page *page = NULL;
5859 	enum mc_target_type ret = MC_TARGET_NONE;
5860 	swp_entry_t ent = { .val = 0 };
5861 
5862 	if (pte_present(ptent))
5863 		page = mc_handle_present_pte(vma, addr, ptent);
5864 	else if (pte_none_mostly(ptent))
5865 		/*
5866 		 * PTE markers should be treated as a none pte here, separated
5867 		 * from other swap handling below.
5868 		 */
5869 		page = mc_handle_file_pte(vma, addr, ptent);
5870 	else if (is_swap_pte(ptent))
5871 		page = mc_handle_swap_pte(vma, ptent, &ent);
5872 
5873 	if (!page && !ent.val)
5874 		return ret;
5875 	if (page) {
5876 		/*
5877 		 * Do only loose check w/o serialization.
5878 		 * mem_cgroup_move_account() checks the page is valid or
5879 		 * not under LRU exclusion.
5880 		 */
5881 		if (page_memcg(page) == mc.from) {
5882 			ret = MC_TARGET_PAGE;
5883 			if (is_device_private_page(page) ||
5884 			    is_device_coherent_page(page))
5885 				ret = MC_TARGET_DEVICE;
5886 			if (target)
5887 				target->page = page;
5888 		}
5889 		if (!ret || !target)
5890 			put_page(page);
5891 	}
5892 	/*
5893 	 * There is a swap entry and a page doesn't exist or isn't charged.
5894 	 * But we cannot move a tail-page in a THP.
5895 	 */
5896 	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5897 	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5898 		ret = MC_TARGET_SWAP;
5899 		if (target)
5900 			target->ent = ent;
5901 	}
5902 	return ret;
5903 }
5904 
5905 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5906 /*
5907  * We don't consider PMD mapped swapping or file mapped pages because THP does
5908  * not support them for now.
5909  * Caller should make sure that pmd_trans_huge(pmd) is true.
5910  */
5911 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5912 		unsigned long addr, pmd_t pmd, union mc_target *target)
5913 {
5914 	struct page *page = NULL;
5915 	enum mc_target_type ret = MC_TARGET_NONE;
5916 
5917 	if (unlikely(is_swap_pmd(pmd))) {
5918 		VM_BUG_ON(thp_migration_supported() &&
5919 				  !is_pmd_migration_entry(pmd));
5920 		return ret;
5921 	}
5922 	page = pmd_page(pmd);
5923 	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5924 	if (!(mc.flags & MOVE_ANON))
5925 		return ret;
5926 	if (page_memcg(page) == mc.from) {
5927 		ret = MC_TARGET_PAGE;
5928 		if (target) {
5929 			get_page(page);
5930 			target->page = page;
5931 		}
5932 	}
5933 	return ret;
5934 }
5935 #else
5936 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5937 		unsigned long addr, pmd_t pmd, union mc_target *target)
5938 {
5939 	return MC_TARGET_NONE;
5940 }
5941 #endif
5942 
5943 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5944 					unsigned long addr, unsigned long end,
5945 					struct mm_walk *walk)
5946 {
5947 	struct vm_area_struct *vma = walk->vma;
5948 	pte_t *pte;
5949 	spinlock_t *ptl;
5950 
5951 	ptl = pmd_trans_huge_lock(pmd, vma);
5952 	if (ptl) {
5953 		/*
5954 		 * Note their can not be MC_TARGET_DEVICE for now as we do not
5955 		 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5956 		 * this might change.
5957 		 */
5958 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5959 			mc.precharge += HPAGE_PMD_NR;
5960 		spin_unlock(ptl);
5961 		return 0;
5962 	}
5963 
5964 	if (pmd_trans_unstable(pmd))
5965 		return 0;
5966 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5967 	for (; addr != end; pte++, addr += PAGE_SIZE)
5968 		if (get_mctgt_type(vma, addr, *pte, NULL))
5969 			mc.precharge++;	/* increment precharge temporarily */
5970 	pte_unmap_unlock(pte - 1, ptl);
5971 	cond_resched();
5972 
5973 	return 0;
5974 }
5975 
5976 static const struct mm_walk_ops precharge_walk_ops = {
5977 	.pmd_entry	= mem_cgroup_count_precharge_pte_range,
5978 };
5979 
5980 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5981 {
5982 	unsigned long precharge;
5983 
5984 	mmap_read_lock(mm);
5985 	walk_page_range(mm, 0, ULONG_MAX, &precharge_walk_ops, NULL);
5986 	mmap_read_unlock(mm);
5987 
5988 	precharge = mc.precharge;
5989 	mc.precharge = 0;
5990 
5991 	return precharge;
5992 }
5993 
5994 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5995 {
5996 	unsigned long precharge = mem_cgroup_count_precharge(mm);
5997 
5998 	VM_BUG_ON(mc.moving_task);
5999 	mc.moving_task = current;
6000 	return mem_cgroup_do_precharge(precharge);
6001 }
6002 
6003 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6004 static void __mem_cgroup_clear_mc(void)
6005 {
6006 	struct mem_cgroup *from = mc.from;
6007 	struct mem_cgroup *to = mc.to;
6008 
6009 	/* we must uncharge all the leftover precharges from mc.to */
6010 	if (mc.precharge) {
6011 		cancel_charge(mc.to, mc.precharge);
6012 		mc.precharge = 0;
6013 	}
6014 	/*
6015 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6016 	 * we must uncharge here.
6017 	 */
6018 	if (mc.moved_charge) {
6019 		cancel_charge(mc.from, mc.moved_charge);
6020 		mc.moved_charge = 0;
6021 	}
6022 	/* we must fixup refcnts and charges */
6023 	if (mc.moved_swap) {
6024 		/* uncharge swap account from the old cgroup */
6025 		if (!mem_cgroup_is_root(mc.from))
6026 			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
6027 
6028 		mem_cgroup_id_put_many(mc.from, mc.moved_swap);
6029 
6030 		/*
6031 		 * we charged both to->memory and to->memsw, so we
6032 		 * should uncharge to->memory.
6033 		 */
6034 		if (!mem_cgroup_is_root(mc.to))
6035 			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
6036 
6037 		mc.moved_swap = 0;
6038 	}
6039 	memcg_oom_recover(from);
6040 	memcg_oom_recover(to);
6041 	wake_up_all(&mc.waitq);
6042 }
6043 
6044 static void mem_cgroup_clear_mc(void)
6045 {
6046 	struct mm_struct *mm = mc.mm;
6047 
6048 	/*
6049 	 * we must clear moving_task before waking up waiters at the end of
6050 	 * task migration.
6051 	 */
6052 	mc.moving_task = NULL;
6053 	__mem_cgroup_clear_mc();
6054 	spin_lock(&mc.lock);
6055 	mc.from = NULL;
6056 	mc.to = NULL;
6057 	mc.mm = NULL;
6058 	spin_unlock(&mc.lock);
6059 
6060 	mmput(mm);
6061 }
6062 
6063 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6064 {
6065 	struct cgroup_subsys_state *css;
6066 	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
6067 	struct mem_cgroup *from;
6068 	struct task_struct *leader, *p;
6069 	struct mm_struct *mm;
6070 	unsigned long move_flags;
6071 	int ret = 0;
6072 
6073 	/* charge immigration isn't supported on the default hierarchy */
6074 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6075 		return 0;
6076 
6077 	/*
6078 	 * Multi-process migrations only happen on the default hierarchy
6079 	 * where charge immigration is not used.  Perform charge
6080 	 * immigration if @tset contains a leader and whine if there are
6081 	 * multiple.
6082 	 */
6083 	p = NULL;
6084 	cgroup_taskset_for_each_leader(leader, css, tset) {
6085 		WARN_ON_ONCE(p);
6086 		p = leader;
6087 		memcg = mem_cgroup_from_css(css);
6088 	}
6089 	if (!p)
6090 		return 0;
6091 
6092 	/*
6093 	 * We are now committed to this value whatever it is. Changes in this
6094 	 * tunable will only affect upcoming migrations, not the current one.
6095 	 * So we need to save it, and keep it going.
6096 	 */
6097 	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
6098 	if (!move_flags)
6099 		return 0;
6100 
6101 	from = mem_cgroup_from_task(p);
6102 
6103 	VM_BUG_ON(from == memcg);
6104 
6105 	mm = get_task_mm(p);
6106 	if (!mm)
6107 		return 0;
6108 	/* We move charges only when we move a owner of the mm */
6109 	if (mm->owner == p) {
6110 		VM_BUG_ON(mc.from);
6111 		VM_BUG_ON(mc.to);
6112 		VM_BUG_ON(mc.precharge);
6113 		VM_BUG_ON(mc.moved_charge);
6114 		VM_BUG_ON(mc.moved_swap);
6115 
6116 		spin_lock(&mc.lock);
6117 		mc.mm = mm;
6118 		mc.from = from;
6119 		mc.to = memcg;
6120 		mc.flags = move_flags;
6121 		spin_unlock(&mc.lock);
6122 		/* We set mc.moving_task later */
6123 
6124 		ret = mem_cgroup_precharge_mc(mm);
6125 		if (ret)
6126 			mem_cgroup_clear_mc();
6127 	} else {
6128 		mmput(mm);
6129 	}
6130 	return ret;
6131 }
6132 
6133 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6134 {
6135 	if (mc.to)
6136 		mem_cgroup_clear_mc();
6137 }
6138 
6139 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6140 				unsigned long addr, unsigned long end,
6141 				struct mm_walk *walk)
6142 {
6143 	int ret = 0;
6144 	struct vm_area_struct *vma = walk->vma;
6145 	pte_t *pte;
6146 	spinlock_t *ptl;
6147 	enum mc_target_type target_type;
6148 	union mc_target target;
6149 	struct page *page;
6150 
6151 	ptl = pmd_trans_huge_lock(pmd, vma);
6152 	if (ptl) {
6153 		if (mc.precharge < HPAGE_PMD_NR) {
6154 			spin_unlock(ptl);
6155 			return 0;
6156 		}
6157 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6158 		if (target_type == MC_TARGET_PAGE) {
6159 			page = target.page;
6160 			if (!isolate_lru_page(page)) {
6161 				if (!mem_cgroup_move_account(page, true,
6162 							     mc.from, mc.to)) {
6163 					mc.precharge -= HPAGE_PMD_NR;
6164 					mc.moved_charge += HPAGE_PMD_NR;
6165 				}
6166 				putback_lru_page(page);
6167 			}
6168 			put_page(page);
6169 		} else if (target_type == MC_TARGET_DEVICE) {
6170 			page = target.page;
6171 			if (!mem_cgroup_move_account(page, true,
6172 						     mc.from, mc.to)) {
6173 				mc.precharge -= HPAGE_PMD_NR;
6174 				mc.moved_charge += HPAGE_PMD_NR;
6175 			}
6176 			put_page(page);
6177 		}
6178 		spin_unlock(ptl);
6179 		return 0;
6180 	}
6181 
6182 	if (pmd_trans_unstable(pmd))
6183 		return 0;
6184 retry:
6185 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6186 	for (; addr != end; addr += PAGE_SIZE) {
6187 		pte_t ptent = *(pte++);
6188 		bool device = false;
6189 		swp_entry_t ent;
6190 
6191 		if (!mc.precharge)
6192 			break;
6193 
6194 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6195 		case MC_TARGET_DEVICE:
6196 			device = true;
6197 			fallthrough;
6198 		case MC_TARGET_PAGE:
6199 			page = target.page;
6200 			/*
6201 			 * We can have a part of the split pmd here. Moving it
6202 			 * can be done but it would be too convoluted so simply
6203 			 * ignore such a partial THP and keep it in original
6204 			 * memcg. There should be somebody mapping the head.
6205 			 */
6206 			if (PageTransCompound(page))
6207 				goto put;
6208 			if (!device && isolate_lru_page(page))
6209 				goto put;
6210 			if (!mem_cgroup_move_account(page, false,
6211 						mc.from, mc.to)) {
6212 				mc.precharge--;
6213 				/* we uncharge from mc.from later. */
6214 				mc.moved_charge++;
6215 			}
6216 			if (!device)
6217 				putback_lru_page(page);
6218 put:			/* get_mctgt_type() gets the page */
6219 			put_page(page);
6220 			break;
6221 		case MC_TARGET_SWAP:
6222 			ent = target.ent;
6223 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6224 				mc.precharge--;
6225 				mem_cgroup_id_get_many(mc.to, 1);
6226 				/* we fixup other refcnts and charges later. */
6227 				mc.moved_swap++;
6228 			}
6229 			break;
6230 		default:
6231 			break;
6232 		}
6233 	}
6234 	pte_unmap_unlock(pte - 1, ptl);
6235 	cond_resched();
6236 
6237 	if (addr != end) {
6238 		/*
6239 		 * We have consumed all precharges we got in can_attach().
6240 		 * We try charge one by one, but don't do any additional
6241 		 * charges to mc.to if we have failed in charge once in attach()
6242 		 * phase.
6243 		 */
6244 		ret = mem_cgroup_do_precharge(1);
6245 		if (!ret)
6246 			goto retry;
6247 	}
6248 
6249 	return ret;
6250 }
6251 
6252 static const struct mm_walk_ops charge_walk_ops = {
6253 	.pmd_entry	= mem_cgroup_move_charge_pte_range,
6254 };
6255 
6256 static void mem_cgroup_move_charge(void)
6257 {
6258 	lru_add_drain_all();
6259 	/*
6260 	 * Signal lock_page_memcg() to take the memcg's move_lock
6261 	 * while we're moving its pages to another memcg. Then wait
6262 	 * for already started RCU-only updates to finish.
6263 	 */
6264 	atomic_inc(&mc.from->moving_account);
6265 	synchronize_rcu();
6266 retry:
6267 	if (unlikely(!mmap_read_trylock(mc.mm))) {
6268 		/*
6269 		 * Someone who are holding the mmap_lock might be waiting in
6270 		 * waitq. So we cancel all extra charges, wake up all waiters,
6271 		 * and retry. Because we cancel precharges, we might not be able
6272 		 * to move enough charges, but moving charge is a best-effort
6273 		 * feature anyway, so it wouldn't be a big problem.
6274 		 */
6275 		__mem_cgroup_clear_mc();
6276 		cond_resched();
6277 		goto retry;
6278 	}
6279 	/*
6280 	 * When we have consumed all precharges and failed in doing
6281 	 * additional charge, the page walk just aborts.
6282 	 */
6283 	walk_page_range(mc.mm, 0, ULONG_MAX, &charge_walk_ops, NULL);
6284 	mmap_read_unlock(mc.mm);
6285 	atomic_dec(&mc.from->moving_account);
6286 }
6287 
6288 static void mem_cgroup_move_task(void)
6289 {
6290 	if (mc.to) {
6291 		mem_cgroup_move_charge();
6292 		mem_cgroup_clear_mc();
6293 	}
6294 }
6295 #else	/* !CONFIG_MMU */
6296 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6297 {
6298 	return 0;
6299 }
6300 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6301 {
6302 }
6303 static void mem_cgroup_move_task(void)
6304 {
6305 }
6306 #endif
6307 
6308 #ifdef CONFIG_LRU_GEN
6309 static void mem_cgroup_attach(struct cgroup_taskset *tset)
6310 {
6311 	struct task_struct *task;
6312 	struct cgroup_subsys_state *css;
6313 
6314 	/* find the first leader if there is any */
6315 	cgroup_taskset_for_each_leader(task, css, tset)
6316 		break;
6317 
6318 	if (!task)
6319 		return;
6320 
6321 	task_lock(task);
6322 	if (task->mm && READ_ONCE(task->mm->owner) == task)
6323 		lru_gen_migrate_mm(task->mm);
6324 	task_unlock(task);
6325 }
6326 #else
6327 static void mem_cgroup_attach(struct cgroup_taskset *tset)
6328 {
6329 }
6330 #endif /* CONFIG_LRU_GEN */
6331 
6332 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6333 {
6334 	if (value == PAGE_COUNTER_MAX)
6335 		seq_puts(m, "max\n");
6336 	else
6337 		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6338 
6339 	return 0;
6340 }
6341 
6342 static u64 memory_current_read(struct cgroup_subsys_state *css,
6343 			       struct cftype *cft)
6344 {
6345 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6346 
6347 	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6348 }
6349 
6350 static u64 memory_peak_read(struct cgroup_subsys_state *css,
6351 			    struct cftype *cft)
6352 {
6353 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6354 
6355 	return (u64)memcg->memory.watermark * PAGE_SIZE;
6356 }
6357 
6358 static int memory_min_show(struct seq_file *m, void *v)
6359 {
6360 	return seq_puts_memcg_tunable(m,
6361 		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6362 }
6363 
6364 static ssize_t memory_min_write(struct kernfs_open_file *of,
6365 				char *buf, size_t nbytes, loff_t off)
6366 {
6367 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6368 	unsigned long min;
6369 	int err;
6370 
6371 	buf = strstrip(buf);
6372 	err = page_counter_memparse(buf, "max", &min);
6373 	if (err)
6374 		return err;
6375 
6376 	page_counter_set_min(&memcg->memory, min);
6377 
6378 	return nbytes;
6379 }
6380 
6381 static int memory_low_show(struct seq_file *m, void *v)
6382 {
6383 	return seq_puts_memcg_tunable(m,
6384 		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6385 }
6386 
6387 static ssize_t memory_low_write(struct kernfs_open_file *of,
6388 				char *buf, size_t nbytes, loff_t off)
6389 {
6390 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6391 	unsigned long low;
6392 	int err;
6393 
6394 	buf = strstrip(buf);
6395 	err = page_counter_memparse(buf, "max", &low);
6396 	if (err)
6397 		return err;
6398 
6399 	page_counter_set_low(&memcg->memory, low);
6400 
6401 	return nbytes;
6402 }
6403 
6404 static int memory_high_show(struct seq_file *m, void *v)
6405 {
6406 	return seq_puts_memcg_tunable(m,
6407 		READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6408 }
6409 
6410 static ssize_t memory_high_write(struct kernfs_open_file *of,
6411 				 char *buf, size_t nbytes, loff_t off)
6412 {
6413 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6414 	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6415 	bool drained = false;
6416 	unsigned long high;
6417 	int err;
6418 
6419 	buf = strstrip(buf);
6420 	err = page_counter_memparse(buf, "max", &high);
6421 	if (err)
6422 		return err;
6423 
6424 	page_counter_set_high(&memcg->memory, high);
6425 
6426 	for (;;) {
6427 		unsigned long nr_pages = page_counter_read(&memcg->memory);
6428 		unsigned long reclaimed;
6429 
6430 		if (nr_pages <= high)
6431 			break;
6432 
6433 		if (signal_pending(current))
6434 			break;
6435 
6436 		if (!drained) {
6437 			drain_all_stock(memcg);
6438 			drained = true;
6439 			continue;
6440 		}
6441 
6442 		reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6443 					GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP);
6444 
6445 		if (!reclaimed && !nr_retries--)
6446 			break;
6447 	}
6448 
6449 	memcg_wb_domain_size_changed(memcg);
6450 	return nbytes;
6451 }
6452 
6453 static int memory_max_show(struct seq_file *m, void *v)
6454 {
6455 	return seq_puts_memcg_tunable(m,
6456 		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6457 }
6458 
6459 static ssize_t memory_max_write(struct kernfs_open_file *of,
6460 				char *buf, size_t nbytes, loff_t off)
6461 {
6462 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6463 	unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6464 	bool drained = false;
6465 	unsigned long max;
6466 	int err;
6467 
6468 	buf = strstrip(buf);
6469 	err = page_counter_memparse(buf, "max", &max);
6470 	if (err)
6471 		return err;
6472 
6473 	xchg(&memcg->memory.max, max);
6474 
6475 	for (;;) {
6476 		unsigned long nr_pages = page_counter_read(&memcg->memory);
6477 
6478 		if (nr_pages <= max)
6479 			break;
6480 
6481 		if (signal_pending(current))
6482 			break;
6483 
6484 		if (!drained) {
6485 			drain_all_stock(memcg);
6486 			drained = true;
6487 			continue;
6488 		}
6489 
6490 		if (nr_reclaims) {
6491 			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6492 					GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP))
6493 				nr_reclaims--;
6494 			continue;
6495 		}
6496 
6497 		memcg_memory_event(memcg, MEMCG_OOM);
6498 		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6499 			break;
6500 	}
6501 
6502 	memcg_wb_domain_size_changed(memcg);
6503 	return nbytes;
6504 }
6505 
6506 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6507 {
6508 	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6509 	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6510 	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6511 	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6512 	seq_printf(m, "oom_kill %lu\n",
6513 		   atomic_long_read(&events[MEMCG_OOM_KILL]));
6514 	seq_printf(m, "oom_group_kill %lu\n",
6515 		   atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
6516 }
6517 
6518 static int memory_events_show(struct seq_file *m, void *v)
6519 {
6520 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6521 
6522 	__memory_events_show(m, memcg->memory_events);
6523 	return 0;
6524 }
6525 
6526 static int memory_events_local_show(struct seq_file *m, void *v)
6527 {
6528 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6529 
6530 	__memory_events_show(m, memcg->memory_events_local);
6531 	return 0;
6532 }
6533 
6534 static int memory_stat_show(struct seq_file *m, void *v)
6535 {
6536 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6537 	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
6538 
6539 	if (!buf)
6540 		return -ENOMEM;
6541 	memory_stat_format(memcg, buf, PAGE_SIZE);
6542 	seq_puts(m, buf);
6543 	kfree(buf);
6544 	return 0;
6545 }
6546 
6547 #ifdef CONFIG_NUMA
6548 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6549 						     int item)
6550 {
6551 	return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6552 }
6553 
6554 static int memory_numa_stat_show(struct seq_file *m, void *v)
6555 {
6556 	int i;
6557 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6558 
6559 	mem_cgroup_flush_stats();
6560 
6561 	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6562 		int nid;
6563 
6564 		if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6565 			continue;
6566 
6567 		seq_printf(m, "%s", memory_stats[i].name);
6568 		for_each_node_state(nid, N_MEMORY) {
6569 			u64 size;
6570 			struct lruvec *lruvec;
6571 
6572 			lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6573 			size = lruvec_page_state_output(lruvec,
6574 							memory_stats[i].idx);
6575 			seq_printf(m, " N%d=%llu", nid, size);
6576 		}
6577 		seq_putc(m, '\n');
6578 	}
6579 
6580 	return 0;
6581 }
6582 #endif
6583 
6584 static int memory_oom_group_show(struct seq_file *m, void *v)
6585 {
6586 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6587 
6588 	seq_printf(m, "%d\n", memcg->oom_group);
6589 
6590 	return 0;
6591 }
6592 
6593 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6594 				      char *buf, size_t nbytes, loff_t off)
6595 {
6596 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6597 	int ret, oom_group;
6598 
6599 	buf = strstrip(buf);
6600 	if (!buf)
6601 		return -EINVAL;
6602 
6603 	ret = kstrtoint(buf, 0, &oom_group);
6604 	if (ret)
6605 		return ret;
6606 
6607 	if (oom_group != 0 && oom_group != 1)
6608 		return -EINVAL;
6609 
6610 	memcg->oom_group = oom_group;
6611 
6612 	return nbytes;
6613 }
6614 
6615 static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf,
6616 			      size_t nbytes, loff_t off)
6617 {
6618 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6619 	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6620 	unsigned long nr_to_reclaim, nr_reclaimed = 0;
6621 	unsigned int reclaim_options;
6622 	int err;
6623 
6624 	buf = strstrip(buf);
6625 	err = page_counter_memparse(buf, "", &nr_to_reclaim);
6626 	if (err)
6627 		return err;
6628 
6629 	reclaim_options	= MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE;
6630 	while (nr_reclaimed < nr_to_reclaim) {
6631 		unsigned long reclaimed;
6632 
6633 		if (signal_pending(current))
6634 			return -EINTR;
6635 
6636 		/*
6637 		 * This is the final attempt, drain percpu lru caches in the
6638 		 * hope of introducing more evictable pages for
6639 		 * try_to_free_mem_cgroup_pages().
6640 		 */
6641 		if (!nr_retries)
6642 			lru_add_drain_all();
6643 
6644 		reclaimed = try_to_free_mem_cgroup_pages(memcg,
6645 						nr_to_reclaim - nr_reclaimed,
6646 						GFP_KERNEL, reclaim_options);
6647 
6648 		if (!reclaimed && !nr_retries--)
6649 			return -EAGAIN;
6650 
6651 		nr_reclaimed += reclaimed;
6652 	}
6653 
6654 	return nbytes;
6655 }
6656 
6657 static struct cftype memory_files[] = {
6658 	{
6659 		.name = "current",
6660 		.flags = CFTYPE_NOT_ON_ROOT,
6661 		.read_u64 = memory_current_read,
6662 	},
6663 	{
6664 		.name = "peak",
6665 		.flags = CFTYPE_NOT_ON_ROOT,
6666 		.read_u64 = memory_peak_read,
6667 	},
6668 	{
6669 		.name = "min",
6670 		.flags = CFTYPE_NOT_ON_ROOT,
6671 		.seq_show = memory_min_show,
6672 		.write = memory_min_write,
6673 	},
6674 	{
6675 		.name = "low",
6676 		.flags = CFTYPE_NOT_ON_ROOT,
6677 		.seq_show = memory_low_show,
6678 		.write = memory_low_write,
6679 	},
6680 	{
6681 		.name = "high",
6682 		.flags = CFTYPE_NOT_ON_ROOT,
6683 		.seq_show = memory_high_show,
6684 		.write = memory_high_write,
6685 	},
6686 	{
6687 		.name = "max",
6688 		.flags = CFTYPE_NOT_ON_ROOT,
6689 		.seq_show = memory_max_show,
6690 		.write = memory_max_write,
6691 	},
6692 	{
6693 		.name = "events",
6694 		.flags = CFTYPE_NOT_ON_ROOT,
6695 		.file_offset = offsetof(struct mem_cgroup, events_file),
6696 		.seq_show = memory_events_show,
6697 	},
6698 	{
6699 		.name = "events.local",
6700 		.flags = CFTYPE_NOT_ON_ROOT,
6701 		.file_offset = offsetof(struct mem_cgroup, events_local_file),
6702 		.seq_show = memory_events_local_show,
6703 	},
6704 	{
6705 		.name = "stat",
6706 		.seq_show = memory_stat_show,
6707 	},
6708 #ifdef CONFIG_NUMA
6709 	{
6710 		.name = "numa_stat",
6711 		.seq_show = memory_numa_stat_show,
6712 	},
6713 #endif
6714 	{
6715 		.name = "oom.group",
6716 		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6717 		.seq_show = memory_oom_group_show,
6718 		.write = memory_oom_group_write,
6719 	},
6720 	{
6721 		.name = "reclaim",
6722 		.flags = CFTYPE_NS_DELEGATABLE,
6723 		.write = memory_reclaim,
6724 	},
6725 	{ }	/* terminate */
6726 };
6727 
6728 struct cgroup_subsys memory_cgrp_subsys = {
6729 	.css_alloc = mem_cgroup_css_alloc,
6730 	.css_online = mem_cgroup_css_online,
6731 	.css_offline = mem_cgroup_css_offline,
6732 	.css_released = mem_cgroup_css_released,
6733 	.css_free = mem_cgroup_css_free,
6734 	.css_reset = mem_cgroup_css_reset,
6735 	.css_rstat_flush = mem_cgroup_css_rstat_flush,
6736 	.can_attach = mem_cgroup_can_attach,
6737 	.attach = mem_cgroup_attach,
6738 	.cancel_attach = mem_cgroup_cancel_attach,
6739 	.post_attach = mem_cgroup_move_task,
6740 	.dfl_cftypes = memory_files,
6741 	.legacy_cftypes = mem_cgroup_legacy_files,
6742 	.early_init = 0,
6743 };
6744 
6745 /*
6746  * This function calculates an individual cgroup's effective
6747  * protection which is derived from its own memory.min/low, its
6748  * parent's and siblings' settings, as well as the actual memory
6749  * distribution in the tree.
6750  *
6751  * The following rules apply to the effective protection values:
6752  *
6753  * 1. At the first level of reclaim, effective protection is equal to
6754  *    the declared protection in memory.min and memory.low.
6755  *
6756  * 2. To enable safe delegation of the protection configuration, at
6757  *    subsequent levels the effective protection is capped to the
6758  *    parent's effective protection.
6759  *
6760  * 3. To make complex and dynamic subtrees easier to configure, the
6761  *    user is allowed to overcommit the declared protection at a given
6762  *    level. If that is the case, the parent's effective protection is
6763  *    distributed to the children in proportion to how much protection
6764  *    they have declared and how much of it they are utilizing.
6765  *
6766  *    This makes distribution proportional, but also work-conserving:
6767  *    if one cgroup claims much more protection than it uses memory,
6768  *    the unused remainder is available to its siblings.
6769  *
6770  * 4. Conversely, when the declared protection is undercommitted at a
6771  *    given level, the distribution of the larger parental protection
6772  *    budget is NOT proportional. A cgroup's protection from a sibling
6773  *    is capped to its own memory.min/low setting.
6774  *
6775  * 5. However, to allow protecting recursive subtrees from each other
6776  *    without having to declare each individual cgroup's fixed share
6777  *    of the ancestor's claim to protection, any unutilized -
6778  *    "floating" - protection from up the tree is distributed in
6779  *    proportion to each cgroup's *usage*. This makes the protection
6780  *    neutral wrt sibling cgroups and lets them compete freely over
6781  *    the shared parental protection budget, but it protects the
6782  *    subtree as a whole from neighboring subtrees.
6783  *
6784  * Note that 4. and 5. are not in conflict: 4. is about protecting
6785  * against immediate siblings whereas 5. is about protecting against
6786  * neighboring subtrees.
6787  */
6788 static unsigned long effective_protection(unsigned long usage,
6789 					  unsigned long parent_usage,
6790 					  unsigned long setting,
6791 					  unsigned long parent_effective,
6792 					  unsigned long siblings_protected)
6793 {
6794 	unsigned long protected;
6795 	unsigned long ep;
6796 
6797 	protected = min(usage, setting);
6798 	/*
6799 	 * If all cgroups at this level combined claim and use more
6800 	 * protection then what the parent affords them, distribute
6801 	 * shares in proportion to utilization.
6802 	 *
6803 	 * We are using actual utilization rather than the statically
6804 	 * claimed protection in order to be work-conserving: claimed
6805 	 * but unused protection is available to siblings that would
6806 	 * otherwise get a smaller chunk than what they claimed.
6807 	 */
6808 	if (siblings_protected > parent_effective)
6809 		return protected * parent_effective / siblings_protected;
6810 
6811 	/*
6812 	 * Ok, utilized protection of all children is within what the
6813 	 * parent affords them, so we know whatever this child claims
6814 	 * and utilizes is effectively protected.
6815 	 *
6816 	 * If there is unprotected usage beyond this value, reclaim
6817 	 * will apply pressure in proportion to that amount.
6818 	 *
6819 	 * If there is unutilized protection, the cgroup will be fully
6820 	 * shielded from reclaim, but we do return a smaller value for
6821 	 * protection than what the group could enjoy in theory. This
6822 	 * is okay. With the overcommit distribution above, effective
6823 	 * protection is always dependent on how memory is actually
6824 	 * consumed among the siblings anyway.
6825 	 */
6826 	ep = protected;
6827 
6828 	/*
6829 	 * If the children aren't claiming (all of) the protection
6830 	 * afforded to them by the parent, distribute the remainder in
6831 	 * proportion to the (unprotected) memory of each cgroup. That
6832 	 * way, cgroups that aren't explicitly prioritized wrt each
6833 	 * other compete freely over the allowance, but they are
6834 	 * collectively protected from neighboring trees.
6835 	 *
6836 	 * We're using unprotected memory for the weight so that if
6837 	 * some cgroups DO claim explicit protection, we don't protect
6838 	 * the same bytes twice.
6839 	 *
6840 	 * Check both usage and parent_usage against the respective
6841 	 * protected values. One should imply the other, but they
6842 	 * aren't read atomically - make sure the division is sane.
6843 	 */
6844 	if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6845 		return ep;
6846 	if (parent_effective > siblings_protected &&
6847 	    parent_usage > siblings_protected &&
6848 	    usage > protected) {
6849 		unsigned long unclaimed;
6850 
6851 		unclaimed = parent_effective - siblings_protected;
6852 		unclaimed *= usage - protected;
6853 		unclaimed /= parent_usage - siblings_protected;
6854 
6855 		ep += unclaimed;
6856 	}
6857 
6858 	return ep;
6859 }
6860 
6861 /**
6862  * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
6863  * @root: the top ancestor of the sub-tree being checked
6864  * @memcg: the memory cgroup to check
6865  *
6866  * WARNING: This function is not stateless! It can only be used as part
6867  *          of a top-down tree iteration, not for isolated queries.
6868  */
6869 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6870 				     struct mem_cgroup *memcg)
6871 {
6872 	unsigned long usage, parent_usage;
6873 	struct mem_cgroup *parent;
6874 
6875 	if (mem_cgroup_disabled())
6876 		return;
6877 
6878 	if (!root)
6879 		root = root_mem_cgroup;
6880 
6881 	/*
6882 	 * Effective values of the reclaim targets are ignored so they
6883 	 * can be stale. Have a look at mem_cgroup_protection for more
6884 	 * details.
6885 	 * TODO: calculation should be more robust so that we do not need
6886 	 * that special casing.
6887 	 */
6888 	if (memcg == root)
6889 		return;
6890 
6891 	usage = page_counter_read(&memcg->memory);
6892 	if (!usage)
6893 		return;
6894 
6895 	parent = parent_mem_cgroup(memcg);
6896 
6897 	if (parent == root) {
6898 		memcg->memory.emin = READ_ONCE(memcg->memory.min);
6899 		memcg->memory.elow = READ_ONCE(memcg->memory.low);
6900 		return;
6901 	}
6902 
6903 	parent_usage = page_counter_read(&parent->memory);
6904 
6905 	WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6906 			READ_ONCE(memcg->memory.min),
6907 			READ_ONCE(parent->memory.emin),
6908 			atomic_long_read(&parent->memory.children_min_usage)));
6909 
6910 	WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6911 			READ_ONCE(memcg->memory.low),
6912 			READ_ONCE(parent->memory.elow),
6913 			atomic_long_read(&parent->memory.children_low_usage)));
6914 }
6915 
6916 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
6917 			gfp_t gfp)
6918 {
6919 	long nr_pages = folio_nr_pages(folio);
6920 	int ret;
6921 
6922 	ret = try_charge(memcg, gfp, nr_pages);
6923 	if (ret)
6924 		goto out;
6925 
6926 	css_get(&memcg->css);
6927 	commit_charge(folio, memcg);
6928 
6929 	local_irq_disable();
6930 	mem_cgroup_charge_statistics(memcg, nr_pages);
6931 	memcg_check_events(memcg, folio_nid(folio));
6932 	local_irq_enable();
6933 out:
6934 	return ret;
6935 }
6936 
6937 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
6938 {
6939 	struct mem_cgroup *memcg;
6940 	int ret;
6941 
6942 	memcg = get_mem_cgroup_from_mm(mm);
6943 	ret = charge_memcg(folio, memcg, gfp);
6944 	css_put(&memcg->css);
6945 
6946 	return ret;
6947 }
6948 
6949 /**
6950  * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin.
6951  * @folio: folio to charge.
6952  * @mm: mm context of the victim
6953  * @gfp: reclaim mode
6954  * @entry: swap entry for which the folio is allocated
6955  *
6956  * This function charges a folio allocated for swapin. Please call this before
6957  * adding the folio to the swapcache.
6958  *
6959  * Returns 0 on success. Otherwise, an error code is returned.
6960  */
6961 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
6962 				  gfp_t gfp, swp_entry_t entry)
6963 {
6964 	struct mem_cgroup *memcg;
6965 	unsigned short id;
6966 	int ret;
6967 
6968 	if (mem_cgroup_disabled())
6969 		return 0;
6970 
6971 	id = lookup_swap_cgroup_id(entry);
6972 	rcu_read_lock();
6973 	memcg = mem_cgroup_from_id(id);
6974 	if (!memcg || !css_tryget_online(&memcg->css))
6975 		memcg = get_mem_cgroup_from_mm(mm);
6976 	rcu_read_unlock();
6977 
6978 	ret = charge_memcg(folio, memcg, gfp);
6979 
6980 	css_put(&memcg->css);
6981 	return ret;
6982 }
6983 
6984 /*
6985  * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
6986  * @entry: swap entry for which the page is charged
6987  *
6988  * Call this function after successfully adding the charged page to swapcache.
6989  *
6990  * Note: This function assumes the page for which swap slot is being uncharged
6991  * is order 0 page.
6992  */
6993 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
6994 {
6995 	/*
6996 	 * Cgroup1's unified memory+swap counter has been charged with the
6997 	 * new swapcache page, finish the transfer by uncharging the swap
6998 	 * slot. The swap slot would also get uncharged when it dies, but
6999 	 * it can stick around indefinitely and we'd count the page twice
7000 	 * the entire time.
7001 	 *
7002 	 * Cgroup2 has separate resource counters for memory and swap,
7003 	 * so this is a non-issue here. Memory and swap charge lifetimes
7004 	 * correspond 1:1 to page and swap slot lifetimes: we charge the
7005 	 * page to memory here, and uncharge swap when the slot is freed.
7006 	 */
7007 	if (!mem_cgroup_disabled() && do_memsw_account()) {
7008 		/*
7009 		 * The swap entry might not get freed for a long time,
7010 		 * let's not wait for it.  The page already received a
7011 		 * memory+swap charge, drop the swap entry duplicate.
7012 		 */
7013 		mem_cgroup_uncharge_swap(entry, 1);
7014 	}
7015 }
7016 
7017 struct uncharge_gather {
7018 	struct mem_cgroup *memcg;
7019 	unsigned long nr_memory;
7020 	unsigned long pgpgout;
7021 	unsigned long nr_kmem;
7022 	int nid;
7023 };
7024 
7025 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
7026 {
7027 	memset(ug, 0, sizeof(*ug));
7028 }
7029 
7030 static void uncharge_batch(const struct uncharge_gather *ug)
7031 {
7032 	unsigned long flags;
7033 
7034 	if (ug->nr_memory) {
7035 		page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
7036 		if (do_memsw_account())
7037 			page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
7038 		if (ug->nr_kmem)
7039 			memcg_account_kmem(ug->memcg, -ug->nr_kmem);
7040 		memcg_oom_recover(ug->memcg);
7041 	}
7042 
7043 	local_irq_save(flags);
7044 	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
7045 	__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
7046 	memcg_check_events(ug->memcg, ug->nid);
7047 	local_irq_restore(flags);
7048 
7049 	/* drop reference from uncharge_folio */
7050 	css_put(&ug->memcg->css);
7051 }
7052 
7053 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
7054 {
7055 	long nr_pages;
7056 	struct mem_cgroup *memcg;
7057 	struct obj_cgroup *objcg;
7058 
7059 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7060 
7061 	/*
7062 	 * Nobody should be changing or seriously looking at
7063 	 * folio memcg or objcg at this point, we have fully
7064 	 * exclusive access to the folio.
7065 	 */
7066 	if (folio_memcg_kmem(folio)) {
7067 		objcg = __folio_objcg(folio);
7068 		/*
7069 		 * This get matches the put at the end of the function and
7070 		 * kmem pages do not hold memcg references anymore.
7071 		 */
7072 		memcg = get_mem_cgroup_from_objcg(objcg);
7073 	} else {
7074 		memcg = __folio_memcg(folio);
7075 	}
7076 
7077 	if (!memcg)
7078 		return;
7079 
7080 	if (ug->memcg != memcg) {
7081 		if (ug->memcg) {
7082 			uncharge_batch(ug);
7083 			uncharge_gather_clear(ug);
7084 		}
7085 		ug->memcg = memcg;
7086 		ug->nid = folio_nid(folio);
7087 
7088 		/* pairs with css_put in uncharge_batch */
7089 		css_get(&memcg->css);
7090 	}
7091 
7092 	nr_pages = folio_nr_pages(folio);
7093 
7094 	if (folio_memcg_kmem(folio)) {
7095 		ug->nr_memory += nr_pages;
7096 		ug->nr_kmem += nr_pages;
7097 
7098 		folio->memcg_data = 0;
7099 		obj_cgroup_put(objcg);
7100 	} else {
7101 		/* LRU pages aren't accounted at the root level */
7102 		if (!mem_cgroup_is_root(memcg))
7103 			ug->nr_memory += nr_pages;
7104 		ug->pgpgout++;
7105 
7106 		folio->memcg_data = 0;
7107 	}
7108 
7109 	css_put(&memcg->css);
7110 }
7111 
7112 void __mem_cgroup_uncharge(struct folio *folio)
7113 {
7114 	struct uncharge_gather ug;
7115 
7116 	/* Don't touch folio->lru of any random page, pre-check: */
7117 	if (!folio_memcg(folio))
7118 		return;
7119 
7120 	uncharge_gather_clear(&ug);
7121 	uncharge_folio(folio, &ug);
7122 	uncharge_batch(&ug);
7123 }
7124 
7125 /**
7126  * __mem_cgroup_uncharge_list - uncharge a list of page
7127  * @page_list: list of pages to uncharge
7128  *
7129  * Uncharge a list of pages previously charged with
7130  * __mem_cgroup_charge().
7131  */
7132 void __mem_cgroup_uncharge_list(struct list_head *page_list)
7133 {
7134 	struct uncharge_gather ug;
7135 	struct folio *folio;
7136 
7137 	uncharge_gather_clear(&ug);
7138 	list_for_each_entry(folio, page_list, lru)
7139 		uncharge_folio(folio, &ug);
7140 	if (ug.memcg)
7141 		uncharge_batch(&ug);
7142 }
7143 
7144 /**
7145  * mem_cgroup_migrate - Charge a folio's replacement.
7146  * @old: Currently circulating folio.
7147  * @new: Replacement folio.
7148  *
7149  * Charge @new as a replacement folio for @old. @old will
7150  * be uncharged upon free.
7151  *
7152  * Both folios must be locked, @new->mapping must be set up.
7153  */
7154 void mem_cgroup_migrate(struct folio *old, struct folio *new)
7155 {
7156 	struct mem_cgroup *memcg;
7157 	long nr_pages = folio_nr_pages(new);
7158 	unsigned long flags;
7159 
7160 	VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
7161 	VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
7162 	VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
7163 	VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
7164 
7165 	if (mem_cgroup_disabled())
7166 		return;
7167 
7168 	/* Page cache replacement: new folio already charged? */
7169 	if (folio_memcg(new))
7170 		return;
7171 
7172 	memcg = folio_memcg(old);
7173 	VM_WARN_ON_ONCE_FOLIO(!memcg, old);
7174 	if (!memcg)
7175 		return;
7176 
7177 	/* Force-charge the new page. The old one will be freed soon */
7178 	if (!mem_cgroup_is_root(memcg)) {
7179 		page_counter_charge(&memcg->memory, nr_pages);
7180 		if (do_memsw_account())
7181 			page_counter_charge(&memcg->memsw, nr_pages);
7182 	}
7183 
7184 	css_get(&memcg->css);
7185 	commit_charge(new, memcg);
7186 
7187 	local_irq_save(flags);
7188 	mem_cgroup_charge_statistics(memcg, nr_pages);
7189 	memcg_check_events(memcg, folio_nid(new));
7190 	local_irq_restore(flags);
7191 }
7192 
7193 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
7194 EXPORT_SYMBOL(memcg_sockets_enabled_key);
7195 
7196 void mem_cgroup_sk_alloc(struct sock *sk)
7197 {
7198 	struct mem_cgroup *memcg;
7199 
7200 	if (!mem_cgroup_sockets_enabled)
7201 		return;
7202 
7203 	/* Do not associate the sock with unrelated interrupted task's memcg. */
7204 	if (!in_task())
7205 		return;
7206 
7207 	rcu_read_lock();
7208 	memcg = mem_cgroup_from_task(current);
7209 	if (mem_cgroup_is_root(memcg))
7210 		goto out;
7211 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
7212 		goto out;
7213 	if (css_tryget(&memcg->css))
7214 		sk->sk_memcg = memcg;
7215 out:
7216 	rcu_read_unlock();
7217 }
7218 
7219 void mem_cgroup_sk_free(struct sock *sk)
7220 {
7221 	if (sk->sk_memcg)
7222 		css_put(&sk->sk_memcg->css);
7223 }
7224 
7225 /**
7226  * mem_cgroup_charge_skmem - charge socket memory
7227  * @memcg: memcg to charge
7228  * @nr_pages: number of pages to charge
7229  * @gfp_mask: reclaim mode
7230  *
7231  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7232  * @memcg's configured limit, %false if it doesn't.
7233  */
7234 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
7235 			     gfp_t gfp_mask)
7236 {
7237 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7238 		struct page_counter *fail;
7239 
7240 		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7241 			memcg->tcpmem_pressure = 0;
7242 			return true;
7243 		}
7244 		memcg->tcpmem_pressure = 1;
7245 		if (gfp_mask & __GFP_NOFAIL) {
7246 			page_counter_charge(&memcg->tcpmem, nr_pages);
7247 			return true;
7248 		}
7249 		return false;
7250 	}
7251 
7252 	if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
7253 		mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7254 		return true;
7255 	}
7256 
7257 	return false;
7258 }
7259 
7260 /**
7261  * mem_cgroup_uncharge_skmem - uncharge socket memory
7262  * @memcg: memcg to uncharge
7263  * @nr_pages: number of pages to uncharge
7264  */
7265 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7266 {
7267 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7268 		page_counter_uncharge(&memcg->tcpmem, nr_pages);
7269 		return;
7270 	}
7271 
7272 	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7273 
7274 	refill_stock(memcg, nr_pages);
7275 }
7276 
7277 static int __init cgroup_memory(char *s)
7278 {
7279 	char *token;
7280 
7281 	while ((token = strsep(&s, ",")) != NULL) {
7282 		if (!*token)
7283 			continue;
7284 		if (!strcmp(token, "nosocket"))
7285 			cgroup_memory_nosocket = true;
7286 		if (!strcmp(token, "nokmem"))
7287 			cgroup_memory_nokmem = true;
7288 		if (!strcmp(token, "nobpf"))
7289 			cgroup_memory_nobpf = true;
7290 	}
7291 	return 1;
7292 }
7293 __setup("cgroup.memory=", cgroup_memory);
7294 
7295 /*
7296  * subsys_initcall() for memory controller.
7297  *
7298  * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7299  * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7300  * basically everything that doesn't depend on a specific mem_cgroup structure
7301  * should be initialized from here.
7302  */
7303 static int __init mem_cgroup_init(void)
7304 {
7305 	int cpu, node;
7306 
7307 	/*
7308 	 * Currently s32 type (can refer to struct batched_lruvec_stat) is
7309 	 * used for per-memcg-per-cpu caching of per-node statistics. In order
7310 	 * to work fine, we should make sure that the overfill threshold can't
7311 	 * exceed S32_MAX / PAGE_SIZE.
7312 	 */
7313 	BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7314 
7315 	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7316 				  memcg_hotplug_cpu_dead);
7317 
7318 	for_each_possible_cpu(cpu)
7319 		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7320 			  drain_local_stock);
7321 
7322 	for_each_node(node) {
7323 		struct mem_cgroup_tree_per_node *rtpn;
7324 
7325 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7326 				    node_online(node) ? node : NUMA_NO_NODE);
7327 
7328 		rtpn->rb_root = RB_ROOT;
7329 		rtpn->rb_rightmost = NULL;
7330 		spin_lock_init(&rtpn->lock);
7331 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
7332 	}
7333 
7334 	return 0;
7335 }
7336 subsys_initcall(mem_cgroup_init);
7337 
7338 #ifdef CONFIG_SWAP
7339 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7340 {
7341 	while (!refcount_inc_not_zero(&memcg->id.ref)) {
7342 		/*
7343 		 * The root cgroup cannot be destroyed, so it's refcount must
7344 		 * always be >= 1.
7345 		 */
7346 		if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) {
7347 			VM_BUG_ON(1);
7348 			break;
7349 		}
7350 		memcg = parent_mem_cgroup(memcg);
7351 		if (!memcg)
7352 			memcg = root_mem_cgroup;
7353 	}
7354 	return memcg;
7355 }
7356 
7357 /**
7358  * mem_cgroup_swapout - transfer a memsw charge to swap
7359  * @folio: folio whose memsw charge to transfer
7360  * @entry: swap entry to move the charge to
7361  *
7362  * Transfer the memsw charge of @folio to @entry.
7363  */
7364 void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry)
7365 {
7366 	struct mem_cgroup *memcg, *swap_memcg;
7367 	unsigned int nr_entries;
7368 	unsigned short oldid;
7369 
7370 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7371 	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
7372 
7373 	if (mem_cgroup_disabled())
7374 		return;
7375 
7376 	if (!do_memsw_account())
7377 		return;
7378 
7379 	memcg = folio_memcg(folio);
7380 
7381 	VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7382 	if (!memcg)
7383 		return;
7384 
7385 	/*
7386 	 * In case the memcg owning these pages has been offlined and doesn't
7387 	 * have an ID allocated to it anymore, charge the closest online
7388 	 * ancestor for the swap instead and transfer the memory+swap charge.
7389 	 */
7390 	swap_memcg = mem_cgroup_id_get_online(memcg);
7391 	nr_entries = folio_nr_pages(folio);
7392 	/* Get references for the tail pages, too */
7393 	if (nr_entries > 1)
7394 		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7395 	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7396 				   nr_entries);
7397 	VM_BUG_ON_FOLIO(oldid, folio);
7398 	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7399 
7400 	folio->memcg_data = 0;
7401 
7402 	if (!mem_cgroup_is_root(memcg))
7403 		page_counter_uncharge(&memcg->memory, nr_entries);
7404 
7405 	if (memcg != swap_memcg) {
7406 		if (!mem_cgroup_is_root(swap_memcg))
7407 			page_counter_charge(&swap_memcg->memsw, nr_entries);
7408 		page_counter_uncharge(&memcg->memsw, nr_entries);
7409 	}
7410 
7411 	/*
7412 	 * Interrupts should be disabled here because the caller holds the
7413 	 * i_pages lock which is taken with interrupts-off. It is
7414 	 * important here to have the interrupts disabled because it is the
7415 	 * only synchronisation we have for updating the per-CPU variables.
7416 	 */
7417 	memcg_stats_lock();
7418 	mem_cgroup_charge_statistics(memcg, -nr_entries);
7419 	memcg_stats_unlock();
7420 	memcg_check_events(memcg, folio_nid(folio));
7421 
7422 	css_put(&memcg->css);
7423 }
7424 
7425 /**
7426  * __mem_cgroup_try_charge_swap - try charging swap space for a folio
7427  * @folio: folio being added to swap
7428  * @entry: swap entry to charge
7429  *
7430  * Try to charge @folio's memcg for the swap space at @entry.
7431  *
7432  * Returns 0 on success, -ENOMEM on failure.
7433  */
7434 int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry)
7435 {
7436 	unsigned int nr_pages = folio_nr_pages(folio);
7437 	struct page_counter *counter;
7438 	struct mem_cgroup *memcg;
7439 	unsigned short oldid;
7440 
7441 	if (do_memsw_account())
7442 		return 0;
7443 
7444 	memcg = folio_memcg(folio);
7445 
7446 	VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7447 	if (!memcg)
7448 		return 0;
7449 
7450 	if (!entry.val) {
7451 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7452 		return 0;
7453 	}
7454 
7455 	memcg = mem_cgroup_id_get_online(memcg);
7456 
7457 	if (!mem_cgroup_is_root(memcg) &&
7458 	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7459 		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7460 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7461 		mem_cgroup_id_put(memcg);
7462 		return -ENOMEM;
7463 	}
7464 
7465 	/* Get references for the tail pages, too */
7466 	if (nr_pages > 1)
7467 		mem_cgroup_id_get_many(memcg, nr_pages - 1);
7468 	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7469 	VM_BUG_ON_FOLIO(oldid, folio);
7470 	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7471 
7472 	return 0;
7473 }
7474 
7475 /**
7476  * __mem_cgroup_uncharge_swap - uncharge swap space
7477  * @entry: swap entry to uncharge
7478  * @nr_pages: the amount of swap space to uncharge
7479  */
7480 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7481 {
7482 	struct mem_cgroup *memcg;
7483 	unsigned short id;
7484 
7485 	if (mem_cgroup_disabled())
7486 		return;
7487 
7488 	id = swap_cgroup_record(entry, 0, nr_pages);
7489 	rcu_read_lock();
7490 	memcg = mem_cgroup_from_id(id);
7491 	if (memcg) {
7492 		if (!mem_cgroup_is_root(memcg)) {
7493 			if (do_memsw_account())
7494 				page_counter_uncharge(&memcg->memsw, nr_pages);
7495 			else
7496 				page_counter_uncharge(&memcg->swap, nr_pages);
7497 		}
7498 		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7499 		mem_cgroup_id_put_many(memcg, nr_pages);
7500 	}
7501 	rcu_read_unlock();
7502 }
7503 
7504 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7505 {
7506 	long nr_swap_pages = get_nr_swap_pages();
7507 
7508 	if (mem_cgroup_disabled() || do_memsw_account())
7509 		return nr_swap_pages;
7510 	for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg))
7511 		nr_swap_pages = min_t(long, nr_swap_pages,
7512 				      READ_ONCE(memcg->swap.max) -
7513 				      page_counter_read(&memcg->swap));
7514 	return nr_swap_pages;
7515 }
7516 
7517 bool mem_cgroup_swap_full(struct folio *folio)
7518 {
7519 	struct mem_cgroup *memcg;
7520 
7521 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
7522 
7523 	if (vm_swap_full())
7524 		return true;
7525 	if (do_memsw_account())
7526 		return false;
7527 
7528 	memcg = folio_memcg(folio);
7529 	if (!memcg)
7530 		return false;
7531 
7532 	for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
7533 		unsigned long usage = page_counter_read(&memcg->swap);
7534 
7535 		if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7536 		    usage * 2 >= READ_ONCE(memcg->swap.max))
7537 			return true;
7538 	}
7539 
7540 	return false;
7541 }
7542 
7543 static int __init setup_swap_account(char *s)
7544 {
7545 	pr_warn_once("The swapaccount= commandline option is deprecated. "
7546 		     "Please report your usecase to linux-mm@kvack.org if you "
7547 		     "depend on this functionality.\n");
7548 	return 1;
7549 }
7550 __setup("swapaccount=", setup_swap_account);
7551 
7552 static u64 swap_current_read(struct cgroup_subsys_state *css,
7553 			     struct cftype *cft)
7554 {
7555 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7556 
7557 	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7558 }
7559 
7560 static int swap_high_show(struct seq_file *m, void *v)
7561 {
7562 	return seq_puts_memcg_tunable(m,
7563 		READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7564 }
7565 
7566 static ssize_t swap_high_write(struct kernfs_open_file *of,
7567 			       char *buf, size_t nbytes, loff_t off)
7568 {
7569 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7570 	unsigned long high;
7571 	int err;
7572 
7573 	buf = strstrip(buf);
7574 	err = page_counter_memparse(buf, "max", &high);
7575 	if (err)
7576 		return err;
7577 
7578 	page_counter_set_high(&memcg->swap, high);
7579 
7580 	return nbytes;
7581 }
7582 
7583 static int swap_max_show(struct seq_file *m, void *v)
7584 {
7585 	return seq_puts_memcg_tunable(m,
7586 		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7587 }
7588 
7589 static ssize_t swap_max_write(struct kernfs_open_file *of,
7590 			      char *buf, size_t nbytes, loff_t off)
7591 {
7592 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7593 	unsigned long max;
7594 	int err;
7595 
7596 	buf = strstrip(buf);
7597 	err = page_counter_memparse(buf, "max", &max);
7598 	if (err)
7599 		return err;
7600 
7601 	xchg(&memcg->swap.max, max);
7602 
7603 	return nbytes;
7604 }
7605 
7606 static int swap_events_show(struct seq_file *m, void *v)
7607 {
7608 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7609 
7610 	seq_printf(m, "high %lu\n",
7611 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7612 	seq_printf(m, "max %lu\n",
7613 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7614 	seq_printf(m, "fail %lu\n",
7615 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7616 
7617 	return 0;
7618 }
7619 
7620 static struct cftype swap_files[] = {
7621 	{
7622 		.name = "swap.current",
7623 		.flags = CFTYPE_NOT_ON_ROOT,
7624 		.read_u64 = swap_current_read,
7625 	},
7626 	{
7627 		.name = "swap.high",
7628 		.flags = CFTYPE_NOT_ON_ROOT,
7629 		.seq_show = swap_high_show,
7630 		.write = swap_high_write,
7631 	},
7632 	{
7633 		.name = "swap.max",
7634 		.flags = CFTYPE_NOT_ON_ROOT,
7635 		.seq_show = swap_max_show,
7636 		.write = swap_max_write,
7637 	},
7638 	{
7639 		.name = "swap.events",
7640 		.flags = CFTYPE_NOT_ON_ROOT,
7641 		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
7642 		.seq_show = swap_events_show,
7643 	},
7644 	{ }	/* terminate */
7645 };
7646 
7647 static struct cftype memsw_files[] = {
7648 	{
7649 		.name = "memsw.usage_in_bytes",
7650 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7651 		.read_u64 = mem_cgroup_read_u64,
7652 	},
7653 	{
7654 		.name = "memsw.max_usage_in_bytes",
7655 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7656 		.write = mem_cgroup_reset,
7657 		.read_u64 = mem_cgroup_read_u64,
7658 	},
7659 	{
7660 		.name = "memsw.limit_in_bytes",
7661 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7662 		.write = mem_cgroup_write,
7663 		.read_u64 = mem_cgroup_read_u64,
7664 	},
7665 	{
7666 		.name = "memsw.failcnt",
7667 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7668 		.write = mem_cgroup_reset,
7669 		.read_u64 = mem_cgroup_read_u64,
7670 	},
7671 	{ },	/* terminate */
7672 };
7673 
7674 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
7675 /**
7676  * obj_cgroup_may_zswap - check if this cgroup can zswap
7677  * @objcg: the object cgroup
7678  *
7679  * Check if the hierarchical zswap limit has been reached.
7680  *
7681  * This doesn't check for specific headroom, and it is not atomic
7682  * either. But with zswap, the size of the allocation is only known
7683  * once compression has occured, and this optimistic pre-check avoids
7684  * spending cycles on compression when there is already no room left
7685  * or zswap is disabled altogether somewhere in the hierarchy.
7686  */
7687 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
7688 {
7689 	struct mem_cgroup *memcg, *original_memcg;
7690 	bool ret = true;
7691 
7692 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7693 		return true;
7694 
7695 	original_memcg = get_mem_cgroup_from_objcg(objcg);
7696 	for (memcg = original_memcg; !mem_cgroup_is_root(memcg);
7697 	     memcg = parent_mem_cgroup(memcg)) {
7698 		unsigned long max = READ_ONCE(memcg->zswap_max);
7699 		unsigned long pages;
7700 
7701 		if (max == PAGE_COUNTER_MAX)
7702 			continue;
7703 		if (max == 0) {
7704 			ret = false;
7705 			break;
7706 		}
7707 
7708 		cgroup_rstat_flush(memcg->css.cgroup);
7709 		pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE;
7710 		if (pages < max)
7711 			continue;
7712 		ret = false;
7713 		break;
7714 	}
7715 	mem_cgroup_put(original_memcg);
7716 	return ret;
7717 }
7718 
7719 /**
7720  * obj_cgroup_charge_zswap - charge compression backend memory
7721  * @objcg: the object cgroup
7722  * @size: size of compressed object
7723  *
7724  * This forces the charge after obj_cgroup_may_swap() allowed
7725  * compression and storage in zwap for this cgroup to go ahead.
7726  */
7727 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size)
7728 {
7729 	struct mem_cgroup *memcg;
7730 
7731 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7732 		return;
7733 
7734 	VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC));
7735 
7736 	/* PF_MEMALLOC context, charging must succeed */
7737 	if (obj_cgroup_charge(objcg, GFP_KERNEL, size))
7738 		VM_WARN_ON_ONCE(1);
7739 
7740 	rcu_read_lock();
7741 	memcg = obj_cgroup_memcg(objcg);
7742 	mod_memcg_state(memcg, MEMCG_ZSWAP_B, size);
7743 	mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1);
7744 	rcu_read_unlock();
7745 }
7746 
7747 /**
7748  * obj_cgroup_uncharge_zswap - uncharge compression backend memory
7749  * @objcg: the object cgroup
7750  * @size: size of compressed object
7751  *
7752  * Uncharges zswap memory on page in.
7753  */
7754 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size)
7755 {
7756 	struct mem_cgroup *memcg;
7757 
7758 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7759 		return;
7760 
7761 	obj_cgroup_uncharge(objcg, size);
7762 
7763 	rcu_read_lock();
7764 	memcg = obj_cgroup_memcg(objcg);
7765 	mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size);
7766 	mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1);
7767 	rcu_read_unlock();
7768 }
7769 
7770 static u64 zswap_current_read(struct cgroup_subsys_state *css,
7771 			      struct cftype *cft)
7772 {
7773 	cgroup_rstat_flush(css->cgroup);
7774 	return memcg_page_state(mem_cgroup_from_css(css), MEMCG_ZSWAP_B);
7775 }
7776 
7777 static int zswap_max_show(struct seq_file *m, void *v)
7778 {
7779 	return seq_puts_memcg_tunable(m,
7780 		READ_ONCE(mem_cgroup_from_seq(m)->zswap_max));
7781 }
7782 
7783 static ssize_t zswap_max_write(struct kernfs_open_file *of,
7784 			       char *buf, size_t nbytes, loff_t off)
7785 {
7786 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7787 	unsigned long max;
7788 	int err;
7789 
7790 	buf = strstrip(buf);
7791 	err = page_counter_memparse(buf, "max", &max);
7792 	if (err)
7793 		return err;
7794 
7795 	xchg(&memcg->zswap_max, max);
7796 
7797 	return nbytes;
7798 }
7799 
7800 static struct cftype zswap_files[] = {
7801 	{
7802 		.name = "zswap.current",
7803 		.flags = CFTYPE_NOT_ON_ROOT,
7804 		.read_u64 = zswap_current_read,
7805 	},
7806 	{
7807 		.name = "zswap.max",
7808 		.flags = CFTYPE_NOT_ON_ROOT,
7809 		.seq_show = zswap_max_show,
7810 		.write = zswap_max_write,
7811 	},
7812 	{ }	/* terminate */
7813 };
7814 #endif /* CONFIG_MEMCG_KMEM && CONFIG_ZSWAP */
7815 
7816 static int __init mem_cgroup_swap_init(void)
7817 {
7818 	if (mem_cgroup_disabled())
7819 		return 0;
7820 
7821 	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7822 	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7823 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
7824 	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files));
7825 #endif
7826 	return 0;
7827 }
7828 subsys_initcall(mem_cgroup_swap_init);
7829 
7830 #endif /* CONFIG_SWAP */
7831