1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* memcontrol.c - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <xemul@openvz.org> 9 * 10 * Memory thresholds 11 * Copyright (C) 2009 Nokia Corporation 12 * Author: Kirill A. Shutemov 13 * 14 * Kernel Memory Controller 15 * Copyright (C) 2012 Parallels Inc. and Google Inc. 16 * Authors: Glauber Costa and Suleiman Souhlal 17 * 18 * Native page reclaim 19 * Charge lifetime sanitation 20 * Lockless page tracking & accounting 21 * Unified hierarchy configuration model 22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner 23 * 24 * Per memcg lru locking 25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi 26 */ 27 28 #include <linux/page_counter.h> 29 #include <linux/memcontrol.h> 30 #include <linux/cgroup.h> 31 #include <linux/pagewalk.h> 32 #include <linux/sched/mm.h> 33 #include <linux/shmem_fs.h> 34 #include <linux/hugetlb.h> 35 #include <linux/pagemap.h> 36 #include <linux/vm_event_item.h> 37 #include <linux/smp.h> 38 #include <linux/page-flags.h> 39 #include <linux/backing-dev.h> 40 #include <linux/bit_spinlock.h> 41 #include <linux/rcupdate.h> 42 #include <linux/limits.h> 43 #include <linux/export.h> 44 #include <linux/mutex.h> 45 #include <linux/rbtree.h> 46 #include <linux/slab.h> 47 #include <linux/swap.h> 48 #include <linux/swapops.h> 49 #include <linux/spinlock.h> 50 #include <linux/eventfd.h> 51 #include <linux/poll.h> 52 #include <linux/sort.h> 53 #include <linux/fs.h> 54 #include <linux/seq_file.h> 55 #include <linux/vmpressure.h> 56 #include <linux/memremap.h> 57 #include <linux/mm_inline.h> 58 #include <linux/swap_cgroup.h> 59 #include <linux/cpu.h> 60 #include <linux/oom.h> 61 #include <linux/lockdep.h> 62 #include <linux/file.h> 63 #include <linux/resume_user_mode.h> 64 #include <linux/psi.h> 65 #include <linux/seq_buf.h> 66 #include "internal.h" 67 #include <net/sock.h> 68 #include <net/ip.h> 69 #include "slab.h" 70 #include "swap.h" 71 72 #include <linux/uaccess.h> 73 74 #include <trace/events/vmscan.h> 75 76 struct cgroup_subsys memory_cgrp_subsys __read_mostly; 77 EXPORT_SYMBOL(memory_cgrp_subsys); 78 79 struct mem_cgroup *root_mem_cgroup __read_mostly; 80 81 /* Active memory cgroup to use from an interrupt context */ 82 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg); 83 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg); 84 85 /* Socket memory accounting disabled? */ 86 static bool cgroup_memory_nosocket __ro_after_init; 87 88 /* Kernel memory accounting disabled? */ 89 static bool cgroup_memory_nokmem __ro_after_init; 90 91 /* BPF memory accounting disabled? */ 92 static bool cgroup_memory_nobpf __ro_after_init; 93 94 #ifdef CONFIG_CGROUP_WRITEBACK 95 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq); 96 #endif 97 98 /* Whether legacy memory+swap accounting is active */ 99 static bool do_memsw_account(void) 100 { 101 return !cgroup_subsys_on_dfl(memory_cgrp_subsys); 102 } 103 104 #define THRESHOLDS_EVENTS_TARGET 128 105 #define SOFTLIMIT_EVENTS_TARGET 1024 106 107 /* 108 * Cgroups above their limits are maintained in a RB-Tree, independent of 109 * their hierarchy representation 110 */ 111 112 struct mem_cgroup_tree_per_node { 113 struct rb_root rb_root; 114 struct rb_node *rb_rightmost; 115 spinlock_t lock; 116 }; 117 118 struct mem_cgroup_tree { 119 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 120 }; 121 122 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 123 124 /* for OOM */ 125 struct mem_cgroup_eventfd_list { 126 struct list_head list; 127 struct eventfd_ctx *eventfd; 128 }; 129 130 /* 131 * cgroup_event represents events which userspace want to receive. 132 */ 133 struct mem_cgroup_event { 134 /* 135 * memcg which the event belongs to. 136 */ 137 struct mem_cgroup *memcg; 138 /* 139 * eventfd to signal userspace about the event. 140 */ 141 struct eventfd_ctx *eventfd; 142 /* 143 * Each of these stored in a list by the cgroup. 144 */ 145 struct list_head list; 146 /* 147 * register_event() callback will be used to add new userspace 148 * waiter for changes related to this event. Use eventfd_signal() 149 * on eventfd to send notification to userspace. 150 */ 151 int (*register_event)(struct mem_cgroup *memcg, 152 struct eventfd_ctx *eventfd, const char *args); 153 /* 154 * unregister_event() callback will be called when userspace closes 155 * the eventfd or on cgroup removing. This callback must be set, 156 * if you want provide notification functionality. 157 */ 158 void (*unregister_event)(struct mem_cgroup *memcg, 159 struct eventfd_ctx *eventfd); 160 /* 161 * All fields below needed to unregister event when 162 * userspace closes eventfd. 163 */ 164 poll_table pt; 165 wait_queue_head_t *wqh; 166 wait_queue_entry_t wait; 167 struct work_struct remove; 168 }; 169 170 static void mem_cgroup_threshold(struct mem_cgroup *memcg); 171 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); 172 173 /* Stuffs for move charges at task migration. */ 174 /* 175 * Types of charges to be moved. 176 */ 177 #define MOVE_ANON 0x1U 178 #define MOVE_FILE 0x2U 179 #define MOVE_MASK (MOVE_ANON | MOVE_FILE) 180 181 /* "mc" and its members are protected by cgroup_mutex */ 182 static struct move_charge_struct { 183 spinlock_t lock; /* for from, to */ 184 struct mm_struct *mm; 185 struct mem_cgroup *from; 186 struct mem_cgroup *to; 187 unsigned long flags; 188 unsigned long precharge; 189 unsigned long moved_charge; 190 unsigned long moved_swap; 191 struct task_struct *moving_task; /* a task moving charges */ 192 wait_queue_head_t waitq; /* a waitq for other context */ 193 } mc = { 194 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 195 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 196 }; 197 198 /* 199 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft 200 * limit reclaim to prevent infinite loops, if they ever occur. 201 */ 202 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 203 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 204 205 /* for encoding cft->private value on file */ 206 enum res_type { 207 _MEM, 208 _MEMSWAP, 209 _KMEM, 210 _TCP, 211 }; 212 213 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) 214 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) 215 #define MEMFILE_ATTR(val) ((val) & 0xffff) 216 217 /* 218 * Iteration constructs for visiting all cgroups (under a tree). If 219 * loops are exited prematurely (break), mem_cgroup_iter_break() must 220 * be used for reference counting. 221 */ 222 #define for_each_mem_cgroup_tree(iter, root) \ 223 for (iter = mem_cgroup_iter(root, NULL, NULL); \ 224 iter != NULL; \ 225 iter = mem_cgroup_iter(root, iter, NULL)) 226 227 #define for_each_mem_cgroup(iter) \ 228 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ 229 iter != NULL; \ 230 iter = mem_cgroup_iter(NULL, iter, NULL)) 231 232 static inline bool task_is_dying(void) 233 { 234 return tsk_is_oom_victim(current) || fatal_signal_pending(current) || 235 (current->flags & PF_EXITING); 236 } 237 238 /* Some nice accessors for the vmpressure. */ 239 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 240 { 241 if (!memcg) 242 memcg = root_mem_cgroup; 243 return &memcg->vmpressure; 244 } 245 246 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr) 247 { 248 return container_of(vmpr, struct mem_cgroup, vmpressure); 249 } 250 251 #ifdef CONFIG_MEMCG_KMEM 252 static DEFINE_SPINLOCK(objcg_lock); 253 254 bool mem_cgroup_kmem_disabled(void) 255 { 256 return cgroup_memory_nokmem; 257 } 258 259 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg, 260 unsigned int nr_pages); 261 262 static void obj_cgroup_release(struct percpu_ref *ref) 263 { 264 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt); 265 unsigned int nr_bytes; 266 unsigned int nr_pages; 267 unsigned long flags; 268 269 /* 270 * At this point all allocated objects are freed, and 271 * objcg->nr_charged_bytes can't have an arbitrary byte value. 272 * However, it can be PAGE_SIZE or (x * PAGE_SIZE). 273 * 274 * The following sequence can lead to it: 275 * 1) CPU0: objcg == stock->cached_objcg 276 * 2) CPU1: we do a small allocation (e.g. 92 bytes), 277 * PAGE_SIZE bytes are charged 278 * 3) CPU1: a process from another memcg is allocating something, 279 * the stock if flushed, 280 * objcg->nr_charged_bytes = PAGE_SIZE - 92 281 * 5) CPU0: we do release this object, 282 * 92 bytes are added to stock->nr_bytes 283 * 6) CPU0: stock is flushed, 284 * 92 bytes are added to objcg->nr_charged_bytes 285 * 286 * In the result, nr_charged_bytes == PAGE_SIZE. 287 * This page will be uncharged in obj_cgroup_release(). 288 */ 289 nr_bytes = atomic_read(&objcg->nr_charged_bytes); 290 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1)); 291 nr_pages = nr_bytes >> PAGE_SHIFT; 292 293 if (nr_pages) 294 obj_cgroup_uncharge_pages(objcg, nr_pages); 295 296 spin_lock_irqsave(&objcg_lock, flags); 297 list_del(&objcg->list); 298 spin_unlock_irqrestore(&objcg_lock, flags); 299 300 percpu_ref_exit(ref); 301 kfree_rcu(objcg, rcu); 302 } 303 304 static struct obj_cgroup *obj_cgroup_alloc(void) 305 { 306 struct obj_cgroup *objcg; 307 int ret; 308 309 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL); 310 if (!objcg) 311 return NULL; 312 313 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0, 314 GFP_KERNEL); 315 if (ret) { 316 kfree(objcg); 317 return NULL; 318 } 319 INIT_LIST_HEAD(&objcg->list); 320 return objcg; 321 } 322 323 static void memcg_reparent_objcgs(struct mem_cgroup *memcg, 324 struct mem_cgroup *parent) 325 { 326 struct obj_cgroup *objcg, *iter; 327 328 objcg = rcu_replace_pointer(memcg->objcg, NULL, true); 329 330 spin_lock_irq(&objcg_lock); 331 332 /* 1) Ready to reparent active objcg. */ 333 list_add(&objcg->list, &memcg->objcg_list); 334 /* 2) Reparent active objcg and already reparented objcgs to parent. */ 335 list_for_each_entry(iter, &memcg->objcg_list, list) 336 WRITE_ONCE(iter->memcg, parent); 337 /* 3) Move already reparented objcgs to the parent's list */ 338 list_splice(&memcg->objcg_list, &parent->objcg_list); 339 340 spin_unlock_irq(&objcg_lock); 341 342 percpu_ref_kill(&objcg->refcnt); 343 } 344 345 /* 346 * A lot of the calls to the cache allocation functions are expected to be 347 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are 348 * conditional to this static branch, we'll have to allow modules that does 349 * kmem_cache_alloc and the such to see this symbol as well 350 */ 351 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key); 352 EXPORT_SYMBOL(memcg_kmem_enabled_key); 353 354 DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key); 355 EXPORT_SYMBOL(memcg_bpf_enabled_key); 356 #endif 357 358 /** 359 * mem_cgroup_css_from_page - css of the memcg associated with a page 360 * @page: page of interest 361 * 362 * If memcg is bound to the default hierarchy, css of the memcg associated 363 * with @page is returned. The returned css remains associated with @page 364 * until it is released. 365 * 366 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup 367 * is returned. 368 */ 369 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page) 370 { 371 struct mem_cgroup *memcg; 372 373 memcg = page_memcg(page); 374 375 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 376 memcg = root_mem_cgroup; 377 378 return &memcg->css; 379 } 380 381 /** 382 * page_cgroup_ino - return inode number of the memcg a page is charged to 383 * @page: the page 384 * 385 * Look up the closest online ancestor of the memory cgroup @page is charged to 386 * and return its inode number or 0 if @page is not charged to any cgroup. It 387 * is safe to call this function without holding a reference to @page. 388 * 389 * Note, this function is inherently racy, because there is nothing to prevent 390 * the cgroup inode from getting torn down and potentially reallocated a moment 391 * after page_cgroup_ino() returns, so it only should be used by callers that 392 * do not care (such as procfs interfaces). 393 */ 394 ino_t page_cgroup_ino(struct page *page) 395 { 396 struct mem_cgroup *memcg; 397 unsigned long ino = 0; 398 399 rcu_read_lock(); 400 memcg = page_memcg_check(page); 401 402 while (memcg && !(memcg->css.flags & CSS_ONLINE)) 403 memcg = parent_mem_cgroup(memcg); 404 if (memcg) 405 ino = cgroup_ino(memcg->css.cgroup); 406 rcu_read_unlock(); 407 return ino; 408 } 409 410 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz, 411 struct mem_cgroup_tree_per_node *mctz, 412 unsigned long new_usage_in_excess) 413 { 414 struct rb_node **p = &mctz->rb_root.rb_node; 415 struct rb_node *parent = NULL; 416 struct mem_cgroup_per_node *mz_node; 417 bool rightmost = true; 418 419 if (mz->on_tree) 420 return; 421 422 mz->usage_in_excess = new_usage_in_excess; 423 if (!mz->usage_in_excess) 424 return; 425 while (*p) { 426 parent = *p; 427 mz_node = rb_entry(parent, struct mem_cgroup_per_node, 428 tree_node); 429 if (mz->usage_in_excess < mz_node->usage_in_excess) { 430 p = &(*p)->rb_left; 431 rightmost = false; 432 } else { 433 p = &(*p)->rb_right; 434 } 435 } 436 437 if (rightmost) 438 mctz->rb_rightmost = &mz->tree_node; 439 440 rb_link_node(&mz->tree_node, parent, p); 441 rb_insert_color(&mz->tree_node, &mctz->rb_root); 442 mz->on_tree = true; 443 } 444 445 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 446 struct mem_cgroup_tree_per_node *mctz) 447 { 448 if (!mz->on_tree) 449 return; 450 451 if (&mz->tree_node == mctz->rb_rightmost) 452 mctz->rb_rightmost = rb_prev(&mz->tree_node); 453 454 rb_erase(&mz->tree_node, &mctz->rb_root); 455 mz->on_tree = false; 456 } 457 458 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 459 struct mem_cgroup_tree_per_node *mctz) 460 { 461 unsigned long flags; 462 463 spin_lock_irqsave(&mctz->lock, flags); 464 __mem_cgroup_remove_exceeded(mz, mctz); 465 spin_unlock_irqrestore(&mctz->lock, flags); 466 } 467 468 static unsigned long soft_limit_excess(struct mem_cgroup *memcg) 469 { 470 unsigned long nr_pages = page_counter_read(&memcg->memory); 471 unsigned long soft_limit = READ_ONCE(memcg->soft_limit); 472 unsigned long excess = 0; 473 474 if (nr_pages > soft_limit) 475 excess = nr_pages - soft_limit; 476 477 return excess; 478 } 479 480 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid) 481 { 482 unsigned long excess; 483 struct mem_cgroup_per_node *mz; 484 struct mem_cgroup_tree_per_node *mctz; 485 486 mctz = soft_limit_tree.rb_tree_per_node[nid]; 487 if (!mctz) 488 return; 489 /* 490 * Necessary to update all ancestors when hierarchy is used. 491 * because their event counter is not touched. 492 */ 493 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 494 mz = memcg->nodeinfo[nid]; 495 excess = soft_limit_excess(memcg); 496 /* 497 * We have to update the tree if mz is on RB-tree or 498 * mem is over its softlimit. 499 */ 500 if (excess || mz->on_tree) { 501 unsigned long flags; 502 503 spin_lock_irqsave(&mctz->lock, flags); 504 /* if on-tree, remove it */ 505 if (mz->on_tree) 506 __mem_cgroup_remove_exceeded(mz, mctz); 507 /* 508 * Insert again. mz->usage_in_excess will be updated. 509 * If excess is 0, no tree ops. 510 */ 511 __mem_cgroup_insert_exceeded(mz, mctz, excess); 512 spin_unlock_irqrestore(&mctz->lock, flags); 513 } 514 } 515 } 516 517 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) 518 { 519 struct mem_cgroup_tree_per_node *mctz; 520 struct mem_cgroup_per_node *mz; 521 int nid; 522 523 for_each_node(nid) { 524 mz = memcg->nodeinfo[nid]; 525 mctz = soft_limit_tree.rb_tree_per_node[nid]; 526 if (mctz) 527 mem_cgroup_remove_exceeded(mz, mctz); 528 } 529 } 530 531 static struct mem_cgroup_per_node * 532 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 533 { 534 struct mem_cgroup_per_node *mz; 535 536 retry: 537 mz = NULL; 538 if (!mctz->rb_rightmost) 539 goto done; /* Nothing to reclaim from */ 540 541 mz = rb_entry(mctz->rb_rightmost, 542 struct mem_cgroup_per_node, tree_node); 543 /* 544 * Remove the node now but someone else can add it back, 545 * we will to add it back at the end of reclaim to its correct 546 * position in the tree. 547 */ 548 __mem_cgroup_remove_exceeded(mz, mctz); 549 if (!soft_limit_excess(mz->memcg) || 550 !css_tryget(&mz->memcg->css)) 551 goto retry; 552 done: 553 return mz; 554 } 555 556 static struct mem_cgroup_per_node * 557 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 558 { 559 struct mem_cgroup_per_node *mz; 560 561 spin_lock_irq(&mctz->lock); 562 mz = __mem_cgroup_largest_soft_limit_node(mctz); 563 spin_unlock_irq(&mctz->lock); 564 return mz; 565 } 566 567 /* 568 * memcg and lruvec stats flushing 569 * 570 * Many codepaths leading to stats update or read are performance sensitive and 571 * adding stats flushing in such codepaths is not desirable. So, to optimize the 572 * flushing the kernel does: 573 * 574 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let 575 * rstat update tree grow unbounded. 576 * 577 * 2) Flush the stats synchronously on reader side only when there are more than 578 * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization 579 * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but 580 * only for 2 seconds due to (1). 581 */ 582 static void flush_memcg_stats_dwork(struct work_struct *w); 583 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork); 584 static DEFINE_SPINLOCK(stats_flush_lock); 585 static DEFINE_PER_CPU(unsigned int, stats_updates); 586 static atomic_t stats_flush_threshold = ATOMIC_INIT(0); 587 static u64 flush_next_time; 588 589 #define FLUSH_TIME (2UL*HZ) 590 591 /* 592 * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can 593 * not rely on this as part of an acquired spinlock_t lock. These functions are 594 * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion 595 * is sufficient. 596 */ 597 static void memcg_stats_lock(void) 598 { 599 preempt_disable_nested(); 600 VM_WARN_ON_IRQS_ENABLED(); 601 } 602 603 static void __memcg_stats_lock(void) 604 { 605 preempt_disable_nested(); 606 } 607 608 static void memcg_stats_unlock(void) 609 { 610 preempt_enable_nested(); 611 } 612 613 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val) 614 { 615 unsigned int x; 616 617 cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id()); 618 619 x = __this_cpu_add_return(stats_updates, abs(val)); 620 if (x > MEMCG_CHARGE_BATCH) { 621 /* 622 * If stats_flush_threshold exceeds the threshold 623 * (>num_online_cpus()), cgroup stats update will be triggered 624 * in __mem_cgroup_flush_stats(). Increasing this var further 625 * is redundant and simply adds overhead in atomic update. 626 */ 627 if (atomic_read(&stats_flush_threshold) <= num_online_cpus()) 628 atomic_add(x / MEMCG_CHARGE_BATCH, &stats_flush_threshold); 629 __this_cpu_write(stats_updates, 0); 630 } 631 } 632 633 static void __mem_cgroup_flush_stats(void) 634 { 635 unsigned long flag; 636 637 if (!spin_trylock_irqsave(&stats_flush_lock, flag)) 638 return; 639 640 flush_next_time = jiffies_64 + 2*FLUSH_TIME; 641 cgroup_rstat_flush_irqsafe(root_mem_cgroup->css.cgroup); 642 atomic_set(&stats_flush_threshold, 0); 643 spin_unlock_irqrestore(&stats_flush_lock, flag); 644 } 645 646 void mem_cgroup_flush_stats(void) 647 { 648 if (atomic_read(&stats_flush_threshold) > num_online_cpus()) 649 __mem_cgroup_flush_stats(); 650 } 651 652 void mem_cgroup_flush_stats_delayed(void) 653 { 654 if (time_after64(jiffies_64, flush_next_time)) 655 mem_cgroup_flush_stats(); 656 } 657 658 static void flush_memcg_stats_dwork(struct work_struct *w) 659 { 660 __mem_cgroup_flush_stats(); 661 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME); 662 } 663 664 /* Subset of vm_event_item to report for memcg event stats */ 665 static const unsigned int memcg_vm_event_stat[] = { 666 PGPGIN, 667 PGPGOUT, 668 PGSCAN_KSWAPD, 669 PGSCAN_DIRECT, 670 PGSCAN_KHUGEPAGED, 671 PGSTEAL_KSWAPD, 672 PGSTEAL_DIRECT, 673 PGSTEAL_KHUGEPAGED, 674 PGFAULT, 675 PGMAJFAULT, 676 PGREFILL, 677 PGACTIVATE, 678 PGDEACTIVATE, 679 PGLAZYFREE, 680 PGLAZYFREED, 681 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 682 ZSWPIN, 683 ZSWPOUT, 684 #endif 685 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 686 THP_FAULT_ALLOC, 687 THP_COLLAPSE_ALLOC, 688 #endif 689 }; 690 691 #define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat) 692 static int mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly; 693 694 static void init_memcg_events(void) 695 { 696 int i; 697 698 for (i = 0; i < NR_MEMCG_EVENTS; ++i) 699 mem_cgroup_events_index[memcg_vm_event_stat[i]] = i + 1; 700 } 701 702 static inline int memcg_events_index(enum vm_event_item idx) 703 { 704 return mem_cgroup_events_index[idx] - 1; 705 } 706 707 struct memcg_vmstats_percpu { 708 /* Local (CPU and cgroup) page state & events */ 709 long state[MEMCG_NR_STAT]; 710 unsigned long events[NR_MEMCG_EVENTS]; 711 712 /* Delta calculation for lockless upward propagation */ 713 long state_prev[MEMCG_NR_STAT]; 714 unsigned long events_prev[NR_MEMCG_EVENTS]; 715 716 /* Cgroup1: threshold notifications & softlimit tree updates */ 717 unsigned long nr_page_events; 718 unsigned long targets[MEM_CGROUP_NTARGETS]; 719 }; 720 721 struct memcg_vmstats { 722 /* Aggregated (CPU and subtree) page state & events */ 723 long state[MEMCG_NR_STAT]; 724 unsigned long events[NR_MEMCG_EVENTS]; 725 726 /* Pending child counts during tree propagation */ 727 long state_pending[MEMCG_NR_STAT]; 728 unsigned long events_pending[NR_MEMCG_EVENTS]; 729 }; 730 731 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) 732 { 733 long x = READ_ONCE(memcg->vmstats->state[idx]); 734 #ifdef CONFIG_SMP 735 if (x < 0) 736 x = 0; 737 #endif 738 return x; 739 } 740 741 /** 742 * __mod_memcg_state - update cgroup memory statistics 743 * @memcg: the memory cgroup 744 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item 745 * @val: delta to add to the counter, can be negative 746 */ 747 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val) 748 { 749 if (mem_cgroup_disabled()) 750 return; 751 752 __this_cpu_add(memcg->vmstats_percpu->state[idx], val); 753 memcg_rstat_updated(memcg, val); 754 } 755 756 /* idx can be of type enum memcg_stat_item or node_stat_item. */ 757 static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx) 758 { 759 long x = 0; 760 int cpu; 761 762 for_each_possible_cpu(cpu) 763 x += per_cpu(memcg->vmstats_percpu->state[idx], cpu); 764 #ifdef CONFIG_SMP 765 if (x < 0) 766 x = 0; 767 #endif 768 return x; 769 } 770 771 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 772 int val) 773 { 774 struct mem_cgroup_per_node *pn; 775 struct mem_cgroup *memcg; 776 777 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 778 memcg = pn->memcg; 779 780 /* 781 * The caller from rmap relay on disabled preemption becase they never 782 * update their counter from in-interrupt context. For these two 783 * counters we check that the update is never performed from an 784 * interrupt context while other caller need to have disabled interrupt. 785 */ 786 __memcg_stats_lock(); 787 if (IS_ENABLED(CONFIG_DEBUG_VM)) { 788 switch (idx) { 789 case NR_ANON_MAPPED: 790 case NR_FILE_MAPPED: 791 case NR_ANON_THPS: 792 case NR_SHMEM_PMDMAPPED: 793 case NR_FILE_PMDMAPPED: 794 WARN_ON_ONCE(!in_task()); 795 break; 796 default: 797 VM_WARN_ON_IRQS_ENABLED(); 798 } 799 } 800 801 /* Update memcg */ 802 __this_cpu_add(memcg->vmstats_percpu->state[idx], val); 803 804 /* Update lruvec */ 805 __this_cpu_add(pn->lruvec_stats_percpu->state[idx], val); 806 807 memcg_rstat_updated(memcg, val); 808 memcg_stats_unlock(); 809 } 810 811 /** 812 * __mod_lruvec_state - update lruvec memory statistics 813 * @lruvec: the lruvec 814 * @idx: the stat item 815 * @val: delta to add to the counter, can be negative 816 * 817 * The lruvec is the intersection of the NUMA node and a cgroup. This 818 * function updates the all three counters that are affected by a 819 * change of state at this level: per-node, per-cgroup, per-lruvec. 820 */ 821 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 822 int val) 823 { 824 /* Update node */ 825 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 826 827 /* Update memcg and lruvec */ 828 if (!mem_cgroup_disabled()) 829 __mod_memcg_lruvec_state(lruvec, idx, val); 830 } 831 832 void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx, 833 int val) 834 { 835 struct page *head = compound_head(page); /* rmap on tail pages */ 836 struct mem_cgroup *memcg; 837 pg_data_t *pgdat = page_pgdat(page); 838 struct lruvec *lruvec; 839 840 rcu_read_lock(); 841 memcg = page_memcg(head); 842 /* Untracked pages have no memcg, no lruvec. Update only the node */ 843 if (!memcg) { 844 rcu_read_unlock(); 845 __mod_node_page_state(pgdat, idx, val); 846 return; 847 } 848 849 lruvec = mem_cgroup_lruvec(memcg, pgdat); 850 __mod_lruvec_state(lruvec, idx, val); 851 rcu_read_unlock(); 852 } 853 EXPORT_SYMBOL(__mod_lruvec_page_state); 854 855 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val) 856 { 857 pg_data_t *pgdat = page_pgdat(virt_to_page(p)); 858 struct mem_cgroup *memcg; 859 struct lruvec *lruvec; 860 861 rcu_read_lock(); 862 memcg = mem_cgroup_from_slab_obj(p); 863 864 /* 865 * Untracked pages have no memcg, no lruvec. Update only the 866 * node. If we reparent the slab objects to the root memcg, 867 * when we free the slab object, we need to update the per-memcg 868 * vmstats to keep it correct for the root memcg. 869 */ 870 if (!memcg) { 871 __mod_node_page_state(pgdat, idx, val); 872 } else { 873 lruvec = mem_cgroup_lruvec(memcg, pgdat); 874 __mod_lruvec_state(lruvec, idx, val); 875 } 876 rcu_read_unlock(); 877 } 878 879 /** 880 * __count_memcg_events - account VM events in a cgroup 881 * @memcg: the memory cgroup 882 * @idx: the event item 883 * @count: the number of events that occurred 884 */ 885 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 886 unsigned long count) 887 { 888 int index = memcg_events_index(idx); 889 890 if (mem_cgroup_disabled() || index < 0) 891 return; 892 893 memcg_stats_lock(); 894 __this_cpu_add(memcg->vmstats_percpu->events[index], count); 895 memcg_rstat_updated(memcg, count); 896 memcg_stats_unlock(); 897 } 898 899 static unsigned long memcg_events(struct mem_cgroup *memcg, int event) 900 { 901 int index = memcg_events_index(event); 902 903 if (index < 0) 904 return 0; 905 return READ_ONCE(memcg->vmstats->events[index]); 906 } 907 908 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event) 909 { 910 long x = 0; 911 int cpu; 912 int index = memcg_events_index(event); 913 914 if (index < 0) 915 return 0; 916 917 for_each_possible_cpu(cpu) 918 x += per_cpu(memcg->vmstats_percpu->events[index], cpu); 919 return x; 920 } 921 922 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, 923 int nr_pages) 924 { 925 /* pagein of a big page is an event. So, ignore page size */ 926 if (nr_pages > 0) 927 __count_memcg_events(memcg, PGPGIN, 1); 928 else { 929 __count_memcg_events(memcg, PGPGOUT, 1); 930 nr_pages = -nr_pages; /* for event */ 931 } 932 933 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages); 934 } 935 936 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, 937 enum mem_cgroup_events_target target) 938 { 939 unsigned long val, next; 940 941 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events); 942 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]); 943 /* from time_after() in jiffies.h */ 944 if ((long)(next - val) < 0) { 945 switch (target) { 946 case MEM_CGROUP_TARGET_THRESH: 947 next = val + THRESHOLDS_EVENTS_TARGET; 948 break; 949 case MEM_CGROUP_TARGET_SOFTLIMIT: 950 next = val + SOFTLIMIT_EVENTS_TARGET; 951 break; 952 default: 953 break; 954 } 955 __this_cpu_write(memcg->vmstats_percpu->targets[target], next); 956 return true; 957 } 958 return false; 959 } 960 961 /* 962 * Check events in order. 963 * 964 */ 965 static void memcg_check_events(struct mem_cgroup *memcg, int nid) 966 { 967 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 968 return; 969 970 /* threshold event is triggered in finer grain than soft limit */ 971 if (unlikely(mem_cgroup_event_ratelimit(memcg, 972 MEM_CGROUP_TARGET_THRESH))) { 973 bool do_softlimit; 974 975 do_softlimit = mem_cgroup_event_ratelimit(memcg, 976 MEM_CGROUP_TARGET_SOFTLIMIT); 977 mem_cgroup_threshold(memcg); 978 if (unlikely(do_softlimit)) 979 mem_cgroup_update_tree(memcg, nid); 980 } 981 } 982 983 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 984 { 985 /* 986 * mm_update_next_owner() may clear mm->owner to NULL 987 * if it races with swapoff, page migration, etc. 988 * So this can be called with p == NULL. 989 */ 990 if (unlikely(!p)) 991 return NULL; 992 993 return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); 994 } 995 EXPORT_SYMBOL(mem_cgroup_from_task); 996 997 static __always_inline struct mem_cgroup *active_memcg(void) 998 { 999 if (!in_task()) 1000 return this_cpu_read(int_active_memcg); 1001 else 1002 return current->active_memcg; 1003 } 1004 1005 /** 1006 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg. 1007 * @mm: mm from which memcg should be extracted. It can be NULL. 1008 * 1009 * Obtain a reference on mm->memcg and returns it if successful. If mm 1010 * is NULL, then the memcg is chosen as follows: 1011 * 1) The active memcg, if set. 1012 * 2) current->mm->memcg, if available 1013 * 3) root memcg 1014 * If mem_cgroup is disabled, NULL is returned. 1015 */ 1016 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 1017 { 1018 struct mem_cgroup *memcg; 1019 1020 if (mem_cgroup_disabled()) 1021 return NULL; 1022 1023 /* 1024 * Page cache insertions can happen without an 1025 * actual mm context, e.g. during disk probing 1026 * on boot, loopback IO, acct() writes etc. 1027 * 1028 * No need to css_get on root memcg as the reference 1029 * counting is disabled on the root level in the 1030 * cgroup core. See CSS_NO_REF. 1031 */ 1032 if (unlikely(!mm)) { 1033 memcg = active_memcg(); 1034 if (unlikely(memcg)) { 1035 /* remote memcg must hold a ref */ 1036 css_get(&memcg->css); 1037 return memcg; 1038 } 1039 mm = current->mm; 1040 if (unlikely(!mm)) 1041 return root_mem_cgroup; 1042 } 1043 1044 rcu_read_lock(); 1045 do { 1046 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1047 if (unlikely(!memcg)) 1048 memcg = root_mem_cgroup; 1049 } while (!css_tryget(&memcg->css)); 1050 rcu_read_unlock(); 1051 return memcg; 1052 } 1053 EXPORT_SYMBOL(get_mem_cgroup_from_mm); 1054 1055 static __always_inline bool memcg_kmem_bypass(void) 1056 { 1057 /* Allow remote memcg charging from any context. */ 1058 if (unlikely(active_memcg())) 1059 return false; 1060 1061 /* Memcg to charge can't be determined. */ 1062 if (!in_task() || !current->mm || (current->flags & PF_KTHREAD)) 1063 return true; 1064 1065 return false; 1066 } 1067 1068 /** 1069 * mem_cgroup_iter - iterate over memory cgroup hierarchy 1070 * @root: hierarchy root 1071 * @prev: previously returned memcg, NULL on first invocation 1072 * @reclaim: cookie for shared reclaim walks, NULL for full walks 1073 * 1074 * Returns references to children of the hierarchy below @root, or 1075 * @root itself, or %NULL after a full round-trip. 1076 * 1077 * Caller must pass the return value in @prev on subsequent 1078 * invocations for reference counting, or use mem_cgroup_iter_break() 1079 * to cancel a hierarchy walk before the round-trip is complete. 1080 * 1081 * Reclaimers can specify a node in @reclaim to divide up the memcgs 1082 * in the hierarchy among all concurrent reclaimers operating on the 1083 * same node. 1084 */ 1085 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 1086 struct mem_cgroup *prev, 1087 struct mem_cgroup_reclaim_cookie *reclaim) 1088 { 1089 struct mem_cgroup_reclaim_iter *iter; 1090 struct cgroup_subsys_state *css = NULL; 1091 struct mem_cgroup *memcg = NULL; 1092 struct mem_cgroup *pos = NULL; 1093 1094 if (mem_cgroup_disabled()) 1095 return NULL; 1096 1097 if (!root) 1098 root = root_mem_cgroup; 1099 1100 rcu_read_lock(); 1101 1102 if (reclaim) { 1103 struct mem_cgroup_per_node *mz; 1104 1105 mz = root->nodeinfo[reclaim->pgdat->node_id]; 1106 iter = &mz->iter; 1107 1108 /* 1109 * On start, join the current reclaim iteration cycle. 1110 * Exit when a concurrent walker completes it. 1111 */ 1112 if (!prev) 1113 reclaim->generation = iter->generation; 1114 else if (reclaim->generation != iter->generation) 1115 goto out_unlock; 1116 1117 while (1) { 1118 pos = READ_ONCE(iter->position); 1119 if (!pos || css_tryget(&pos->css)) 1120 break; 1121 /* 1122 * css reference reached zero, so iter->position will 1123 * be cleared by ->css_released. However, we should not 1124 * rely on this happening soon, because ->css_released 1125 * is called from a work queue, and by busy-waiting we 1126 * might block it. So we clear iter->position right 1127 * away. 1128 */ 1129 (void)cmpxchg(&iter->position, pos, NULL); 1130 } 1131 } else if (prev) { 1132 pos = prev; 1133 } 1134 1135 if (pos) 1136 css = &pos->css; 1137 1138 for (;;) { 1139 css = css_next_descendant_pre(css, &root->css); 1140 if (!css) { 1141 /* 1142 * Reclaimers share the hierarchy walk, and a 1143 * new one might jump in right at the end of 1144 * the hierarchy - make sure they see at least 1145 * one group and restart from the beginning. 1146 */ 1147 if (!prev) 1148 continue; 1149 break; 1150 } 1151 1152 /* 1153 * Verify the css and acquire a reference. The root 1154 * is provided by the caller, so we know it's alive 1155 * and kicking, and don't take an extra reference. 1156 */ 1157 if (css == &root->css || css_tryget(css)) { 1158 memcg = mem_cgroup_from_css(css); 1159 break; 1160 } 1161 } 1162 1163 if (reclaim) { 1164 /* 1165 * The position could have already been updated by a competing 1166 * thread, so check that the value hasn't changed since we read 1167 * it to avoid reclaiming from the same cgroup twice. 1168 */ 1169 (void)cmpxchg(&iter->position, pos, memcg); 1170 1171 if (pos) 1172 css_put(&pos->css); 1173 1174 if (!memcg) 1175 iter->generation++; 1176 } 1177 1178 out_unlock: 1179 rcu_read_unlock(); 1180 if (prev && prev != root) 1181 css_put(&prev->css); 1182 1183 return memcg; 1184 } 1185 1186 /** 1187 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 1188 * @root: hierarchy root 1189 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 1190 */ 1191 void mem_cgroup_iter_break(struct mem_cgroup *root, 1192 struct mem_cgroup *prev) 1193 { 1194 if (!root) 1195 root = root_mem_cgroup; 1196 if (prev && prev != root) 1197 css_put(&prev->css); 1198 } 1199 1200 static void __invalidate_reclaim_iterators(struct mem_cgroup *from, 1201 struct mem_cgroup *dead_memcg) 1202 { 1203 struct mem_cgroup_reclaim_iter *iter; 1204 struct mem_cgroup_per_node *mz; 1205 int nid; 1206 1207 for_each_node(nid) { 1208 mz = from->nodeinfo[nid]; 1209 iter = &mz->iter; 1210 cmpxchg(&iter->position, dead_memcg, NULL); 1211 } 1212 } 1213 1214 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) 1215 { 1216 struct mem_cgroup *memcg = dead_memcg; 1217 struct mem_cgroup *last; 1218 1219 do { 1220 __invalidate_reclaim_iterators(memcg, dead_memcg); 1221 last = memcg; 1222 } while ((memcg = parent_mem_cgroup(memcg))); 1223 1224 /* 1225 * When cgroup1 non-hierarchy mode is used, 1226 * parent_mem_cgroup() does not walk all the way up to the 1227 * cgroup root (root_mem_cgroup). So we have to handle 1228 * dead_memcg from cgroup root separately. 1229 */ 1230 if (!mem_cgroup_is_root(last)) 1231 __invalidate_reclaim_iterators(root_mem_cgroup, 1232 dead_memcg); 1233 } 1234 1235 /** 1236 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy 1237 * @memcg: hierarchy root 1238 * @fn: function to call for each task 1239 * @arg: argument passed to @fn 1240 * 1241 * This function iterates over tasks attached to @memcg or to any of its 1242 * descendants and calls @fn for each task. If @fn returns a non-zero 1243 * value, the function breaks the iteration loop and returns the value. 1244 * Otherwise, it will iterate over all tasks and return 0. 1245 * 1246 * This function must not be called for the root memory cgroup. 1247 */ 1248 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1249 int (*fn)(struct task_struct *, void *), void *arg) 1250 { 1251 struct mem_cgroup *iter; 1252 int ret = 0; 1253 1254 BUG_ON(mem_cgroup_is_root(memcg)); 1255 1256 for_each_mem_cgroup_tree(iter, memcg) { 1257 struct css_task_iter it; 1258 struct task_struct *task; 1259 1260 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it); 1261 while (!ret && (task = css_task_iter_next(&it))) 1262 ret = fn(task, arg); 1263 css_task_iter_end(&it); 1264 if (ret) { 1265 mem_cgroup_iter_break(memcg, iter); 1266 break; 1267 } 1268 } 1269 return ret; 1270 } 1271 1272 #ifdef CONFIG_DEBUG_VM 1273 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio) 1274 { 1275 struct mem_cgroup *memcg; 1276 1277 if (mem_cgroup_disabled()) 1278 return; 1279 1280 memcg = folio_memcg(folio); 1281 1282 if (!memcg) 1283 VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio); 1284 else 1285 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio); 1286 } 1287 #endif 1288 1289 /** 1290 * folio_lruvec_lock - Lock the lruvec for a folio. 1291 * @folio: Pointer to the folio. 1292 * 1293 * These functions are safe to use under any of the following conditions: 1294 * - folio locked 1295 * - folio_test_lru false 1296 * - folio_memcg_lock() 1297 * - folio frozen (refcount of 0) 1298 * 1299 * Return: The lruvec this folio is on with its lock held. 1300 */ 1301 struct lruvec *folio_lruvec_lock(struct folio *folio) 1302 { 1303 struct lruvec *lruvec = folio_lruvec(folio); 1304 1305 spin_lock(&lruvec->lru_lock); 1306 lruvec_memcg_debug(lruvec, folio); 1307 1308 return lruvec; 1309 } 1310 1311 /** 1312 * folio_lruvec_lock_irq - Lock the lruvec for a folio. 1313 * @folio: Pointer to the folio. 1314 * 1315 * These functions are safe to use under any of the following conditions: 1316 * - folio locked 1317 * - folio_test_lru false 1318 * - folio_memcg_lock() 1319 * - folio frozen (refcount of 0) 1320 * 1321 * Return: The lruvec this folio is on with its lock held and interrupts 1322 * disabled. 1323 */ 1324 struct lruvec *folio_lruvec_lock_irq(struct folio *folio) 1325 { 1326 struct lruvec *lruvec = folio_lruvec(folio); 1327 1328 spin_lock_irq(&lruvec->lru_lock); 1329 lruvec_memcg_debug(lruvec, folio); 1330 1331 return lruvec; 1332 } 1333 1334 /** 1335 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio. 1336 * @folio: Pointer to the folio. 1337 * @flags: Pointer to irqsave flags. 1338 * 1339 * These functions are safe to use under any of the following conditions: 1340 * - folio locked 1341 * - folio_test_lru false 1342 * - folio_memcg_lock() 1343 * - folio frozen (refcount of 0) 1344 * 1345 * Return: The lruvec this folio is on with its lock held and interrupts 1346 * disabled. 1347 */ 1348 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio, 1349 unsigned long *flags) 1350 { 1351 struct lruvec *lruvec = folio_lruvec(folio); 1352 1353 spin_lock_irqsave(&lruvec->lru_lock, *flags); 1354 lruvec_memcg_debug(lruvec, folio); 1355 1356 return lruvec; 1357 } 1358 1359 /** 1360 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1361 * @lruvec: mem_cgroup per zone lru vector 1362 * @lru: index of lru list the page is sitting on 1363 * @zid: zone id of the accounted pages 1364 * @nr_pages: positive when adding or negative when removing 1365 * 1366 * This function must be called under lru_lock, just before a page is added 1367 * to or just after a page is removed from an lru list. 1368 */ 1369 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1370 int zid, int nr_pages) 1371 { 1372 struct mem_cgroup_per_node *mz; 1373 unsigned long *lru_size; 1374 long size; 1375 1376 if (mem_cgroup_disabled()) 1377 return; 1378 1379 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 1380 lru_size = &mz->lru_zone_size[zid][lru]; 1381 1382 if (nr_pages < 0) 1383 *lru_size += nr_pages; 1384 1385 size = *lru_size; 1386 if (WARN_ONCE(size < 0, 1387 "%s(%p, %d, %d): lru_size %ld\n", 1388 __func__, lruvec, lru, nr_pages, size)) { 1389 VM_BUG_ON(1); 1390 *lru_size = 0; 1391 } 1392 1393 if (nr_pages > 0) 1394 *lru_size += nr_pages; 1395 } 1396 1397 /** 1398 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1399 * @memcg: the memory cgroup 1400 * 1401 * Returns the maximum amount of memory @mem can be charged with, in 1402 * pages. 1403 */ 1404 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1405 { 1406 unsigned long margin = 0; 1407 unsigned long count; 1408 unsigned long limit; 1409 1410 count = page_counter_read(&memcg->memory); 1411 limit = READ_ONCE(memcg->memory.max); 1412 if (count < limit) 1413 margin = limit - count; 1414 1415 if (do_memsw_account()) { 1416 count = page_counter_read(&memcg->memsw); 1417 limit = READ_ONCE(memcg->memsw.max); 1418 if (count < limit) 1419 margin = min(margin, limit - count); 1420 else 1421 margin = 0; 1422 } 1423 1424 return margin; 1425 } 1426 1427 /* 1428 * A routine for checking "mem" is under move_account() or not. 1429 * 1430 * Checking a cgroup is mc.from or mc.to or under hierarchy of 1431 * moving cgroups. This is for waiting at high-memory pressure 1432 * caused by "move". 1433 */ 1434 static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 1435 { 1436 struct mem_cgroup *from; 1437 struct mem_cgroup *to; 1438 bool ret = false; 1439 /* 1440 * Unlike task_move routines, we access mc.to, mc.from not under 1441 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1442 */ 1443 spin_lock(&mc.lock); 1444 from = mc.from; 1445 to = mc.to; 1446 if (!from) 1447 goto unlock; 1448 1449 ret = mem_cgroup_is_descendant(from, memcg) || 1450 mem_cgroup_is_descendant(to, memcg); 1451 unlock: 1452 spin_unlock(&mc.lock); 1453 return ret; 1454 } 1455 1456 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) 1457 { 1458 if (mc.moving_task && current != mc.moving_task) { 1459 if (mem_cgroup_under_move(memcg)) { 1460 DEFINE_WAIT(wait); 1461 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1462 /* moving charge context might have finished. */ 1463 if (mc.moving_task) 1464 schedule(); 1465 finish_wait(&mc.waitq, &wait); 1466 return true; 1467 } 1468 } 1469 return false; 1470 } 1471 1472 struct memory_stat { 1473 const char *name; 1474 unsigned int idx; 1475 }; 1476 1477 static const struct memory_stat memory_stats[] = { 1478 { "anon", NR_ANON_MAPPED }, 1479 { "file", NR_FILE_PAGES }, 1480 { "kernel", MEMCG_KMEM }, 1481 { "kernel_stack", NR_KERNEL_STACK_KB }, 1482 { "pagetables", NR_PAGETABLE }, 1483 { "sec_pagetables", NR_SECONDARY_PAGETABLE }, 1484 { "percpu", MEMCG_PERCPU_B }, 1485 { "sock", MEMCG_SOCK }, 1486 { "vmalloc", MEMCG_VMALLOC }, 1487 { "shmem", NR_SHMEM }, 1488 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 1489 { "zswap", MEMCG_ZSWAP_B }, 1490 { "zswapped", MEMCG_ZSWAPPED }, 1491 #endif 1492 { "file_mapped", NR_FILE_MAPPED }, 1493 { "file_dirty", NR_FILE_DIRTY }, 1494 { "file_writeback", NR_WRITEBACK }, 1495 #ifdef CONFIG_SWAP 1496 { "swapcached", NR_SWAPCACHE }, 1497 #endif 1498 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1499 { "anon_thp", NR_ANON_THPS }, 1500 { "file_thp", NR_FILE_THPS }, 1501 { "shmem_thp", NR_SHMEM_THPS }, 1502 #endif 1503 { "inactive_anon", NR_INACTIVE_ANON }, 1504 { "active_anon", NR_ACTIVE_ANON }, 1505 { "inactive_file", NR_INACTIVE_FILE }, 1506 { "active_file", NR_ACTIVE_FILE }, 1507 { "unevictable", NR_UNEVICTABLE }, 1508 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B }, 1509 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B }, 1510 1511 /* The memory events */ 1512 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON }, 1513 { "workingset_refault_file", WORKINGSET_REFAULT_FILE }, 1514 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON }, 1515 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE }, 1516 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON }, 1517 { "workingset_restore_file", WORKINGSET_RESTORE_FILE }, 1518 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM }, 1519 }; 1520 1521 /* Translate stat items to the correct unit for memory.stat output */ 1522 static int memcg_page_state_unit(int item) 1523 { 1524 switch (item) { 1525 case MEMCG_PERCPU_B: 1526 case MEMCG_ZSWAP_B: 1527 case NR_SLAB_RECLAIMABLE_B: 1528 case NR_SLAB_UNRECLAIMABLE_B: 1529 case WORKINGSET_REFAULT_ANON: 1530 case WORKINGSET_REFAULT_FILE: 1531 case WORKINGSET_ACTIVATE_ANON: 1532 case WORKINGSET_ACTIVATE_FILE: 1533 case WORKINGSET_RESTORE_ANON: 1534 case WORKINGSET_RESTORE_FILE: 1535 case WORKINGSET_NODERECLAIM: 1536 return 1; 1537 case NR_KERNEL_STACK_KB: 1538 return SZ_1K; 1539 default: 1540 return PAGE_SIZE; 1541 } 1542 } 1543 1544 static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg, 1545 int item) 1546 { 1547 return memcg_page_state(memcg, item) * memcg_page_state_unit(item); 1548 } 1549 1550 static void memory_stat_format(struct mem_cgroup *memcg, char *buf, int bufsize) 1551 { 1552 struct seq_buf s; 1553 int i; 1554 1555 seq_buf_init(&s, buf, bufsize); 1556 1557 /* 1558 * Provide statistics on the state of the memory subsystem as 1559 * well as cumulative event counters that show past behavior. 1560 * 1561 * This list is ordered following a combination of these gradients: 1562 * 1) generic big picture -> specifics and details 1563 * 2) reflecting userspace activity -> reflecting kernel heuristics 1564 * 1565 * Current memory state: 1566 */ 1567 mem_cgroup_flush_stats(); 1568 1569 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 1570 u64 size; 1571 1572 size = memcg_page_state_output(memcg, memory_stats[i].idx); 1573 seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size); 1574 1575 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) { 1576 size += memcg_page_state_output(memcg, 1577 NR_SLAB_RECLAIMABLE_B); 1578 seq_buf_printf(&s, "slab %llu\n", size); 1579 } 1580 } 1581 1582 /* Accumulated memory events */ 1583 seq_buf_printf(&s, "pgscan %lu\n", 1584 memcg_events(memcg, PGSCAN_KSWAPD) + 1585 memcg_events(memcg, PGSCAN_DIRECT) + 1586 memcg_events(memcg, PGSCAN_KHUGEPAGED)); 1587 seq_buf_printf(&s, "pgsteal %lu\n", 1588 memcg_events(memcg, PGSTEAL_KSWAPD) + 1589 memcg_events(memcg, PGSTEAL_DIRECT) + 1590 memcg_events(memcg, PGSTEAL_KHUGEPAGED)); 1591 1592 for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) { 1593 if (memcg_vm_event_stat[i] == PGPGIN || 1594 memcg_vm_event_stat[i] == PGPGOUT) 1595 continue; 1596 1597 seq_buf_printf(&s, "%s %lu\n", 1598 vm_event_name(memcg_vm_event_stat[i]), 1599 memcg_events(memcg, memcg_vm_event_stat[i])); 1600 } 1601 1602 /* The above should easily fit into one page */ 1603 WARN_ON_ONCE(seq_buf_has_overflowed(&s)); 1604 } 1605 1606 #define K(x) ((x) << (PAGE_SHIFT-10)) 1607 /** 1608 * mem_cgroup_print_oom_context: Print OOM information relevant to 1609 * memory controller. 1610 * @memcg: The memory cgroup that went over limit 1611 * @p: Task that is going to be killed 1612 * 1613 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1614 * enabled 1615 */ 1616 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1617 { 1618 rcu_read_lock(); 1619 1620 if (memcg) { 1621 pr_cont(",oom_memcg="); 1622 pr_cont_cgroup_path(memcg->css.cgroup); 1623 } else 1624 pr_cont(",global_oom"); 1625 if (p) { 1626 pr_cont(",task_memcg="); 1627 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); 1628 } 1629 rcu_read_unlock(); 1630 } 1631 1632 /** 1633 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to 1634 * memory controller. 1635 * @memcg: The memory cgroup that went over limit 1636 */ 1637 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1638 { 1639 /* Use static buffer, for the caller is holding oom_lock. */ 1640 static char buf[PAGE_SIZE]; 1641 1642 lockdep_assert_held(&oom_lock); 1643 1644 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", 1645 K((u64)page_counter_read(&memcg->memory)), 1646 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt); 1647 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1648 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n", 1649 K((u64)page_counter_read(&memcg->swap)), 1650 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt); 1651 else { 1652 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", 1653 K((u64)page_counter_read(&memcg->memsw)), 1654 K((u64)memcg->memsw.max), memcg->memsw.failcnt); 1655 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", 1656 K((u64)page_counter_read(&memcg->kmem)), 1657 K((u64)memcg->kmem.max), memcg->kmem.failcnt); 1658 } 1659 1660 pr_info("Memory cgroup stats for "); 1661 pr_cont_cgroup_path(memcg->css.cgroup); 1662 pr_cont(":"); 1663 memory_stat_format(memcg, buf, sizeof(buf)); 1664 pr_info("%s", buf); 1665 } 1666 1667 /* 1668 * Return the memory (and swap, if configured) limit for a memcg. 1669 */ 1670 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1671 { 1672 unsigned long max = READ_ONCE(memcg->memory.max); 1673 1674 if (do_memsw_account()) { 1675 if (mem_cgroup_swappiness(memcg)) { 1676 /* Calculate swap excess capacity from memsw limit */ 1677 unsigned long swap = READ_ONCE(memcg->memsw.max) - max; 1678 1679 max += min(swap, (unsigned long)total_swap_pages); 1680 } 1681 } else { 1682 if (mem_cgroup_swappiness(memcg)) 1683 max += min(READ_ONCE(memcg->swap.max), 1684 (unsigned long)total_swap_pages); 1685 } 1686 return max; 1687 } 1688 1689 unsigned long mem_cgroup_size(struct mem_cgroup *memcg) 1690 { 1691 return page_counter_read(&memcg->memory); 1692 } 1693 1694 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1695 int order) 1696 { 1697 struct oom_control oc = { 1698 .zonelist = NULL, 1699 .nodemask = NULL, 1700 .memcg = memcg, 1701 .gfp_mask = gfp_mask, 1702 .order = order, 1703 }; 1704 bool ret = true; 1705 1706 if (mutex_lock_killable(&oom_lock)) 1707 return true; 1708 1709 if (mem_cgroup_margin(memcg) >= (1 << order)) 1710 goto unlock; 1711 1712 /* 1713 * A few threads which were not waiting at mutex_lock_killable() can 1714 * fail to bail out. Therefore, check again after holding oom_lock. 1715 */ 1716 ret = task_is_dying() || out_of_memory(&oc); 1717 1718 unlock: 1719 mutex_unlock(&oom_lock); 1720 return ret; 1721 } 1722 1723 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, 1724 pg_data_t *pgdat, 1725 gfp_t gfp_mask, 1726 unsigned long *total_scanned) 1727 { 1728 struct mem_cgroup *victim = NULL; 1729 int total = 0; 1730 int loop = 0; 1731 unsigned long excess; 1732 unsigned long nr_scanned; 1733 struct mem_cgroup_reclaim_cookie reclaim = { 1734 .pgdat = pgdat, 1735 }; 1736 1737 excess = soft_limit_excess(root_memcg); 1738 1739 while (1) { 1740 victim = mem_cgroup_iter(root_memcg, victim, &reclaim); 1741 if (!victim) { 1742 loop++; 1743 if (loop >= 2) { 1744 /* 1745 * If we have not been able to reclaim 1746 * anything, it might because there are 1747 * no reclaimable pages under this hierarchy 1748 */ 1749 if (!total) 1750 break; 1751 /* 1752 * We want to do more targeted reclaim. 1753 * excess >> 2 is not to excessive so as to 1754 * reclaim too much, nor too less that we keep 1755 * coming back to reclaim from this cgroup 1756 */ 1757 if (total >= (excess >> 2) || 1758 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) 1759 break; 1760 } 1761 continue; 1762 } 1763 total += mem_cgroup_shrink_node(victim, gfp_mask, false, 1764 pgdat, &nr_scanned); 1765 *total_scanned += nr_scanned; 1766 if (!soft_limit_excess(root_memcg)) 1767 break; 1768 } 1769 mem_cgroup_iter_break(root_memcg, victim); 1770 return total; 1771 } 1772 1773 #ifdef CONFIG_LOCKDEP 1774 static struct lockdep_map memcg_oom_lock_dep_map = { 1775 .name = "memcg_oom_lock", 1776 }; 1777 #endif 1778 1779 static DEFINE_SPINLOCK(memcg_oom_lock); 1780 1781 /* 1782 * Check OOM-Killer is already running under our hierarchy. 1783 * If someone is running, return false. 1784 */ 1785 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) 1786 { 1787 struct mem_cgroup *iter, *failed = NULL; 1788 1789 spin_lock(&memcg_oom_lock); 1790 1791 for_each_mem_cgroup_tree(iter, memcg) { 1792 if (iter->oom_lock) { 1793 /* 1794 * this subtree of our hierarchy is already locked 1795 * so we cannot give a lock. 1796 */ 1797 failed = iter; 1798 mem_cgroup_iter_break(memcg, iter); 1799 break; 1800 } else 1801 iter->oom_lock = true; 1802 } 1803 1804 if (failed) { 1805 /* 1806 * OK, we failed to lock the whole subtree so we have 1807 * to clean up what we set up to the failing subtree 1808 */ 1809 for_each_mem_cgroup_tree(iter, memcg) { 1810 if (iter == failed) { 1811 mem_cgroup_iter_break(memcg, iter); 1812 break; 1813 } 1814 iter->oom_lock = false; 1815 } 1816 } else 1817 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); 1818 1819 spin_unlock(&memcg_oom_lock); 1820 1821 return !failed; 1822 } 1823 1824 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 1825 { 1826 struct mem_cgroup *iter; 1827 1828 spin_lock(&memcg_oom_lock); 1829 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_); 1830 for_each_mem_cgroup_tree(iter, memcg) 1831 iter->oom_lock = false; 1832 spin_unlock(&memcg_oom_lock); 1833 } 1834 1835 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 1836 { 1837 struct mem_cgroup *iter; 1838 1839 spin_lock(&memcg_oom_lock); 1840 for_each_mem_cgroup_tree(iter, memcg) 1841 iter->under_oom++; 1842 spin_unlock(&memcg_oom_lock); 1843 } 1844 1845 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 1846 { 1847 struct mem_cgroup *iter; 1848 1849 /* 1850 * Be careful about under_oom underflows because a child memcg 1851 * could have been added after mem_cgroup_mark_under_oom. 1852 */ 1853 spin_lock(&memcg_oom_lock); 1854 for_each_mem_cgroup_tree(iter, memcg) 1855 if (iter->under_oom > 0) 1856 iter->under_oom--; 1857 spin_unlock(&memcg_oom_lock); 1858 } 1859 1860 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 1861 1862 struct oom_wait_info { 1863 struct mem_cgroup *memcg; 1864 wait_queue_entry_t wait; 1865 }; 1866 1867 static int memcg_oom_wake_function(wait_queue_entry_t *wait, 1868 unsigned mode, int sync, void *arg) 1869 { 1870 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; 1871 struct mem_cgroup *oom_wait_memcg; 1872 struct oom_wait_info *oom_wait_info; 1873 1874 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 1875 oom_wait_memcg = oom_wait_info->memcg; 1876 1877 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) && 1878 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg)) 1879 return 0; 1880 return autoremove_wake_function(wait, mode, sync, arg); 1881 } 1882 1883 static void memcg_oom_recover(struct mem_cgroup *memcg) 1884 { 1885 /* 1886 * For the following lockless ->under_oom test, the only required 1887 * guarantee is that it must see the state asserted by an OOM when 1888 * this function is called as a result of userland actions 1889 * triggered by the notification of the OOM. This is trivially 1890 * achieved by invoking mem_cgroup_mark_under_oom() before 1891 * triggering notification. 1892 */ 1893 if (memcg && memcg->under_oom) 1894 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 1895 } 1896 1897 /* 1898 * Returns true if successfully killed one or more processes. Though in some 1899 * corner cases it can return true even without killing any process. 1900 */ 1901 static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 1902 { 1903 bool locked, ret; 1904 1905 if (order > PAGE_ALLOC_COSTLY_ORDER) 1906 return false; 1907 1908 memcg_memory_event(memcg, MEMCG_OOM); 1909 1910 /* 1911 * We are in the middle of the charge context here, so we 1912 * don't want to block when potentially sitting on a callstack 1913 * that holds all kinds of filesystem and mm locks. 1914 * 1915 * cgroup1 allows disabling the OOM killer and waiting for outside 1916 * handling until the charge can succeed; remember the context and put 1917 * the task to sleep at the end of the page fault when all locks are 1918 * released. 1919 * 1920 * On the other hand, in-kernel OOM killer allows for an async victim 1921 * memory reclaim (oom_reaper) and that means that we are not solely 1922 * relying on the oom victim to make a forward progress and we can 1923 * invoke the oom killer here. 1924 * 1925 * Please note that mem_cgroup_out_of_memory might fail to find a 1926 * victim and then we have to bail out from the charge path. 1927 */ 1928 if (memcg->oom_kill_disable) { 1929 if (current->in_user_fault) { 1930 css_get(&memcg->css); 1931 current->memcg_in_oom = memcg; 1932 current->memcg_oom_gfp_mask = mask; 1933 current->memcg_oom_order = order; 1934 } 1935 return false; 1936 } 1937 1938 mem_cgroup_mark_under_oom(memcg); 1939 1940 locked = mem_cgroup_oom_trylock(memcg); 1941 1942 if (locked) 1943 mem_cgroup_oom_notify(memcg); 1944 1945 mem_cgroup_unmark_under_oom(memcg); 1946 ret = mem_cgroup_out_of_memory(memcg, mask, order); 1947 1948 if (locked) 1949 mem_cgroup_oom_unlock(memcg); 1950 1951 return ret; 1952 } 1953 1954 /** 1955 * mem_cgroup_oom_synchronize - complete memcg OOM handling 1956 * @handle: actually kill/wait or just clean up the OOM state 1957 * 1958 * This has to be called at the end of a page fault if the memcg OOM 1959 * handler was enabled. 1960 * 1961 * Memcg supports userspace OOM handling where failed allocations must 1962 * sleep on a waitqueue until the userspace task resolves the 1963 * situation. Sleeping directly in the charge context with all kinds 1964 * of locks held is not a good idea, instead we remember an OOM state 1965 * in the task and mem_cgroup_oom_synchronize() has to be called at 1966 * the end of the page fault to complete the OOM handling. 1967 * 1968 * Returns %true if an ongoing memcg OOM situation was detected and 1969 * completed, %false otherwise. 1970 */ 1971 bool mem_cgroup_oom_synchronize(bool handle) 1972 { 1973 struct mem_cgroup *memcg = current->memcg_in_oom; 1974 struct oom_wait_info owait; 1975 bool locked; 1976 1977 /* OOM is global, do not handle */ 1978 if (!memcg) 1979 return false; 1980 1981 if (!handle) 1982 goto cleanup; 1983 1984 owait.memcg = memcg; 1985 owait.wait.flags = 0; 1986 owait.wait.func = memcg_oom_wake_function; 1987 owait.wait.private = current; 1988 INIT_LIST_HEAD(&owait.wait.entry); 1989 1990 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 1991 mem_cgroup_mark_under_oom(memcg); 1992 1993 locked = mem_cgroup_oom_trylock(memcg); 1994 1995 if (locked) 1996 mem_cgroup_oom_notify(memcg); 1997 1998 if (locked && !memcg->oom_kill_disable) { 1999 mem_cgroup_unmark_under_oom(memcg); 2000 finish_wait(&memcg_oom_waitq, &owait.wait); 2001 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask, 2002 current->memcg_oom_order); 2003 } else { 2004 schedule(); 2005 mem_cgroup_unmark_under_oom(memcg); 2006 finish_wait(&memcg_oom_waitq, &owait.wait); 2007 } 2008 2009 if (locked) { 2010 mem_cgroup_oom_unlock(memcg); 2011 /* 2012 * There is no guarantee that an OOM-lock contender 2013 * sees the wakeups triggered by the OOM kill 2014 * uncharges. Wake any sleepers explicitly. 2015 */ 2016 memcg_oom_recover(memcg); 2017 } 2018 cleanup: 2019 current->memcg_in_oom = NULL; 2020 css_put(&memcg->css); 2021 return true; 2022 } 2023 2024 /** 2025 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM 2026 * @victim: task to be killed by the OOM killer 2027 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM 2028 * 2029 * Returns a pointer to a memory cgroup, which has to be cleaned up 2030 * by killing all belonging OOM-killable tasks. 2031 * 2032 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg. 2033 */ 2034 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 2035 struct mem_cgroup *oom_domain) 2036 { 2037 struct mem_cgroup *oom_group = NULL; 2038 struct mem_cgroup *memcg; 2039 2040 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 2041 return NULL; 2042 2043 if (!oom_domain) 2044 oom_domain = root_mem_cgroup; 2045 2046 rcu_read_lock(); 2047 2048 memcg = mem_cgroup_from_task(victim); 2049 if (mem_cgroup_is_root(memcg)) 2050 goto out; 2051 2052 /* 2053 * If the victim task has been asynchronously moved to a different 2054 * memory cgroup, we might end up killing tasks outside oom_domain. 2055 * In this case it's better to ignore memory.group.oom. 2056 */ 2057 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain))) 2058 goto out; 2059 2060 /* 2061 * Traverse the memory cgroup hierarchy from the victim task's 2062 * cgroup up to the OOMing cgroup (or root) to find the 2063 * highest-level memory cgroup with oom.group set. 2064 */ 2065 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 2066 if (memcg->oom_group) 2067 oom_group = memcg; 2068 2069 if (memcg == oom_domain) 2070 break; 2071 } 2072 2073 if (oom_group) 2074 css_get(&oom_group->css); 2075 out: 2076 rcu_read_unlock(); 2077 2078 return oom_group; 2079 } 2080 2081 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 2082 { 2083 pr_info("Tasks in "); 2084 pr_cont_cgroup_path(memcg->css.cgroup); 2085 pr_cont(" are going to be killed due to memory.oom.group set\n"); 2086 } 2087 2088 /** 2089 * folio_memcg_lock - Bind a folio to its memcg. 2090 * @folio: The folio. 2091 * 2092 * This function prevents unlocked LRU folios from being moved to 2093 * another cgroup. 2094 * 2095 * It ensures lifetime of the bound memcg. The caller is responsible 2096 * for the lifetime of the folio. 2097 */ 2098 void folio_memcg_lock(struct folio *folio) 2099 { 2100 struct mem_cgroup *memcg; 2101 unsigned long flags; 2102 2103 /* 2104 * The RCU lock is held throughout the transaction. The fast 2105 * path can get away without acquiring the memcg->move_lock 2106 * because page moving starts with an RCU grace period. 2107 */ 2108 rcu_read_lock(); 2109 2110 if (mem_cgroup_disabled()) 2111 return; 2112 again: 2113 memcg = folio_memcg(folio); 2114 if (unlikely(!memcg)) 2115 return; 2116 2117 #ifdef CONFIG_PROVE_LOCKING 2118 local_irq_save(flags); 2119 might_lock(&memcg->move_lock); 2120 local_irq_restore(flags); 2121 #endif 2122 2123 if (atomic_read(&memcg->moving_account) <= 0) 2124 return; 2125 2126 spin_lock_irqsave(&memcg->move_lock, flags); 2127 if (memcg != folio_memcg(folio)) { 2128 spin_unlock_irqrestore(&memcg->move_lock, flags); 2129 goto again; 2130 } 2131 2132 /* 2133 * When charge migration first begins, we can have multiple 2134 * critical sections holding the fast-path RCU lock and one 2135 * holding the slowpath move_lock. Track the task who has the 2136 * move_lock for unlock_page_memcg(). 2137 */ 2138 memcg->move_lock_task = current; 2139 memcg->move_lock_flags = flags; 2140 } 2141 2142 void lock_page_memcg(struct page *page) 2143 { 2144 folio_memcg_lock(page_folio(page)); 2145 } 2146 2147 static void __folio_memcg_unlock(struct mem_cgroup *memcg) 2148 { 2149 if (memcg && memcg->move_lock_task == current) { 2150 unsigned long flags = memcg->move_lock_flags; 2151 2152 memcg->move_lock_task = NULL; 2153 memcg->move_lock_flags = 0; 2154 2155 spin_unlock_irqrestore(&memcg->move_lock, flags); 2156 } 2157 2158 rcu_read_unlock(); 2159 } 2160 2161 /** 2162 * folio_memcg_unlock - Release the binding between a folio and its memcg. 2163 * @folio: The folio. 2164 * 2165 * This releases the binding created by folio_memcg_lock(). This does 2166 * not change the accounting of this folio to its memcg, but it does 2167 * permit others to change it. 2168 */ 2169 void folio_memcg_unlock(struct folio *folio) 2170 { 2171 __folio_memcg_unlock(folio_memcg(folio)); 2172 } 2173 2174 void unlock_page_memcg(struct page *page) 2175 { 2176 folio_memcg_unlock(page_folio(page)); 2177 } 2178 2179 struct memcg_stock_pcp { 2180 local_lock_t stock_lock; 2181 struct mem_cgroup *cached; /* this never be root cgroup */ 2182 unsigned int nr_pages; 2183 2184 #ifdef CONFIG_MEMCG_KMEM 2185 struct obj_cgroup *cached_objcg; 2186 struct pglist_data *cached_pgdat; 2187 unsigned int nr_bytes; 2188 int nr_slab_reclaimable_b; 2189 int nr_slab_unreclaimable_b; 2190 #endif 2191 2192 struct work_struct work; 2193 unsigned long flags; 2194 #define FLUSHING_CACHED_CHARGE 0 2195 }; 2196 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = { 2197 .stock_lock = INIT_LOCAL_LOCK(stock_lock), 2198 }; 2199 static DEFINE_MUTEX(percpu_charge_mutex); 2200 2201 #ifdef CONFIG_MEMCG_KMEM 2202 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock); 2203 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 2204 struct mem_cgroup *root_memcg); 2205 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages); 2206 2207 #else 2208 static inline struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock) 2209 { 2210 return NULL; 2211 } 2212 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 2213 struct mem_cgroup *root_memcg) 2214 { 2215 return false; 2216 } 2217 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages) 2218 { 2219 } 2220 #endif 2221 2222 /** 2223 * consume_stock: Try to consume stocked charge on this cpu. 2224 * @memcg: memcg to consume from. 2225 * @nr_pages: how many pages to charge. 2226 * 2227 * The charges will only happen if @memcg matches the current cpu's memcg 2228 * stock, and at least @nr_pages are available in that stock. Failure to 2229 * service an allocation will refill the stock. 2230 * 2231 * returns true if successful, false otherwise. 2232 */ 2233 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2234 { 2235 struct memcg_stock_pcp *stock; 2236 unsigned long flags; 2237 bool ret = false; 2238 2239 if (nr_pages > MEMCG_CHARGE_BATCH) 2240 return ret; 2241 2242 local_lock_irqsave(&memcg_stock.stock_lock, flags); 2243 2244 stock = this_cpu_ptr(&memcg_stock); 2245 if (memcg == stock->cached && stock->nr_pages >= nr_pages) { 2246 stock->nr_pages -= nr_pages; 2247 ret = true; 2248 } 2249 2250 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 2251 2252 return ret; 2253 } 2254 2255 /* 2256 * Returns stocks cached in percpu and reset cached information. 2257 */ 2258 static void drain_stock(struct memcg_stock_pcp *stock) 2259 { 2260 struct mem_cgroup *old = stock->cached; 2261 2262 if (!old) 2263 return; 2264 2265 if (stock->nr_pages) { 2266 page_counter_uncharge(&old->memory, stock->nr_pages); 2267 if (do_memsw_account()) 2268 page_counter_uncharge(&old->memsw, stock->nr_pages); 2269 stock->nr_pages = 0; 2270 } 2271 2272 css_put(&old->css); 2273 stock->cached = NULL; 2274 } 2275 2276 static void drain_local_stock(struct work_struct *dummy) 2277 { 2278 struct memcg_stock_pcp *stock; 2279 struct obj_cgroup *old = NULL; 2280 unsigned long flags; 2281 2282 /* 2283 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs. 2284 * drain_stock races is that we always operate on local CPU stock 2285 * here with IRQ disabled 2286 */ 2287 local_lock_irqsave(&memcg_stock.stock_lock, flags); 2288 2289 stock = this_cpu_ptr(&memcg_stock); 2290 old = drain_obj_stock(stock); 2291 drain_stock(stock); 2292 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 2293 2294 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 2295 if (old) 2296 obj_cgroup_put(old); 2297 } 2298 2299 /* 2300 * Cache charges(val) to local per_cpu area. 2301 * This will be consumed by consume_stock() function, later. 2302 */ 2303 static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2304 { 2305 struct memcg_stock_pcp *stock; 2306 2307 stock = this_cpu_ptr(&memcg_stock); 2308 if (stock->cached != memcg) { /* reset if necessary */ 2309 drain_stock(stock); 2310 css_get(&memcg->css); 2311 stock->cached = memcg; 2312 } 2313 stock->nr_pages += nr_pages; 2314 2315 if (stock->nr_pages > MEMCG_CHARGE_BATCH) 2316 drain_stock(stock); 2317 } 2318 2319 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2320 { 2321 unsigned long flags; 2322 2323 local_lock_irqsave(&memcg_stock.stock_lock, flags); 2324 __refill_stock(memcg, nr_pages); 2325 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 2326 } 2327 2328 /* 2329 * Drains all per-CPU charge caches for given root_memcg resp. subtree 2330 * of the hierarchy under it. 2331 */ 2332 static void drain_all_stock(struct mem_cgroup *root_memcg) 2333 { 2334 int cpu, curcpu; 2335 2336 /* If someone's already draining, avoid adding running more workers. */ 2337 if (!mutex_trylock(&percpu_charge_mutex)) 2338 return; 2339 /* 2340 * Notify other cpus that system-wide "drain" is running 2341 * We do not care about races with the cpu hotplug because cpu down 2342 * as well as workers from this path always operate on the local 2343 * per-cpu data. CPU up doesn't touch memcg_stock at all. 2344 */ 2345 migrate_disable(); 2346 curcpu = smp_processor_id(); 2347 for_each_online_cpu(cpu) { 2348 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2349 struct mem_cgroup *memcg; 2350 bool flush = false; 2351 2352 rcu_read_lock(); 2353 memcg = stock->cached; 2354 if (memcg && stock->nr_pages && 2355 mem_cgroup_is_descendant(memcg, root_memcg)) 2356 flush = true; 2357 else if (obj_stock_flush_required(stock, root_memcg)) 2358 flush = true; 2359 rcu_read_unlock(); 2360 2361 if (flush && 2362 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 2363 if (cpu == curcpu) 2364 drain_local_stock(&stock->work); 2365 else 2366 schedule_work_on(cpu, &stock->work); 2367 } 2368 } 2369 migrate_enable(); 2370 mutex_unlock(&percpu_charge_mutex); 2371 } 2372 2373 static int memcg_hotplug_cpu_dead(unsigned int cpu) 2374 { 2375 struct memcg_stock_pcp *stock; 2376 2377 stock = &per_cpu(memcg_stock, cpu); 2378 drain_stock(stock); 2379 2380 return 0; 2381 } 2382 2383 static unsigned long reclaim_high(struct mem_cgroup *memcg, 2384 unsigned int nr_pages, 2385 gfp_t gfp_mask) 2386 { 2387 unsigned long nr_reclaimed = 0; 2388 2389 do { 2390 unsigned long pflags; 2391 2392 if (page_counter_read(&memcg->memory) <= 2393 READ_ONCE(memcg->memory.high)) 2394 continue; 2395 2396 memcg_memory_event(memcg, MEMCG_HIGH); 2397 2398 psi_memstall_enter(&pflags); 2399 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages, 2400 gfp_mask, 2401 MEMCG_RECLAIM_MAY_SWAP); 2402 psi_memstall_leave(&pflags); 2403 } while ((memcg = parent_mem_cgroup(memcg)) && 2404 !mem_cgroup_is_root(memcg)); 2405 2406 return nr_reclaimed; 2407 } 2408 2409 static void high_work_func(struct work_struct *work) 2410 { 2411 struct mem_cgroup *memcg; 2412 2413 memcg = container_of(work, struct mem_cgroup, high_work); 2414 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL); 2415 } 2416 2417 /* 2418 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is 2419 * enough to still cause a significant slowdown in most cases, while still 2420 * allowing diagnostics and tracing to proceed without becoming stuck. 2421 */ 2422 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ) 2423 2424 /* 2425 * When calculating the delay, we use these either side of the exponentiation to 2426 * maintain precision and scale to a reasonable number of jiffies (see the table 2427 * below. 2428 * 2429 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the 2430 * overage ratio to a delay. 2431 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the 2432 * proposed penalty in order to reduce to a reasonable number of jiffies, and 2433 * to produce a reasonable delay curve. 2434 * 2435 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a 2436 * reasonable delay curve compared to precision-adjusted overage, not 2437 * penalising heavily at first, but still making sure that growth beyond the 2438 * limit penalises misbehaviour cgroups by slowing them down exponentially. For 2439 * example, with a high of 100 megabytes: 2440 * 2441 * +-------+------------------------+ 2442 * | usage | time to allocate in ms | 2443 * +-------+------------------------+ 2444 * | 100M | 0 | 2445 * | 101M | 6 | 2446 * | 102M | 25 | 2447 * | 103M | 57 | 2448 * | 104M | 102 | 2449 * | 105M | 159 | 2450 * | 106M | 230 | 2451 * | 107M | 313 | 2452 * | 108M | 409 | 2453 * | 109M | 518 | 2454 * | 110M | 639 | 2455 * | 111M | 774 | 2456 * | 112M | 921 | 2457 * | 113M | 1081 | 2458 * | 114M | 1254 | 2459 * | 115M | 1439 | 2460 * | 116M | 1638 | 2461 * | 117M | 1849 | 2462 * | 118M | 2000 | 2463 * | 119M | 2000 | 2464 * | 120M | 2000 | 2465 * +-------+------------------------+ 2466 */ 2467 #define MEMCG_DELAY_PRECISION_SHIFT 20 2468 #define MEMCG_DELAY_SCALING_SHIFT 14 2469 2470 static u64 calculate_overage(unsigned long usage, unsigned long high) 2471 { 2472 u64 overage; 2473 2474 if (usage <= high) 2475 return 0; 2476 2477 /* 2478 * Prevent division by 0 in overage calculation by acting as if 2479 * it was a threshold of 1 page 2480 */ 2481 high = max(high, 1UL); 2482 2483 overage = usage - high; 2484 overage <<= MEMCG_DELAY_PRECISION_SHIFT; 2485 return div64_u64(overage, high); 2486 } 2487 2488 static u64 mem_find_max_overage(struct mem_cgroup *memcg) 2489 { 2490 u64 overage, max_overage = 0; 2491 2492 do { 2493 overage = calculate_overage(page_counter_read(&memcg->memory), 2494 READ_ONCE(memcg->memory.high)); 2495 max_overage = max(overage, max_overage); 2496 } while ((memcg = parent_mem_cgroup(memcg)) && 2497 !mem_cgroup_is_root(memcg)); 2498 2499 return max_overage; 2500 } 2501 2502 static u64 swap_find_max_overage(struct mem_cgroup *memcg) 2503 { 2504 u64 overage, max_overage = 0; 2505 2506 do { 2507 overage = calculate_overage(page_counter_read(&memcg->swap), 2508 READ_ONCE(memcg->swap.high)); 2509 if (overage) 2510 memcg_memory_event(memcg, MEMCG_SWAP_HIGH); 2511 max_overage = max(overage, max_overage); 2512 } while ((memcg = parent_mem_cgroup(memcg)) && 2513 !mem_cgroup_is_root(memcg)); 2514 2515 return max_overage; 2516 } 2517 2518 /* 2519 * Get the number of jiffies that we should penalise a mischievous cgroup which 2520 * is exceeding its memory.high by checking both it and its ancestors. 2521 */ 2522 static unsigned long calculate_high_delay(struct mem_cgroup *memcg, 2523 unsigned int nr_pages, 2524 u64 max_overage) 2525 { 2526 unsigned long penalty_jiffies; 2527 2528 if (!max_overage) 2529 return 0; 2530 2531 /* 2532 * We use overage compared to memory.high to calculate the number of 2533 * jiffies to sleep (penalty_jiffies). Ideally this value should be 2534 * fairly lenient on small overages, and increasingly harsh when the 2535 * memcg in question makes it clear that it has no intention of stopping 2536 * its crazy behaviour, so we exponentially increase the delay based on 2537 * overage amount. 2538 */ 2539 penalty_jiffies = max_overage * max_overage * HZ; 2540 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT; 2541 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT; 2542 2543 /* 2544 * Factor in the task's own contribution to the overage, such that four 2545 * N-sized allocations are throttled approximately the same as one 2546 * 4N-sized allocation. 2547 * 2548 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or 2549 * larger the current charge patch is than that. 2550 */ 2551 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH; 2552 } 2553 2554 /* 2555 * Scheduled by try_charge() to be executed from the userland return path 2556 * and reclaims memory over the high limit. 2557 */ 2558 void mem_cgroup_handle_over_high(void) 2559 { 2560 unsigned long penalty_jiffies; 2561 unsigned long pflags; 2562 unsigned long nr_reclaimed; 2563 unsigned int nr_pages = current->memcg_nr_pages_over_high; 2564 int nr_retries = MAX_RECLAIM_RETRIES; 2565 struct mem_cgroup *memcg; 2566 bool in_retry = false; 2567 2568 if (likely(!nr_pages)) 2569 return; 2570 2571 memcg = get_mem_cgroup_from_mm(current->mm); 2572 current->memcg_nr_pages_over_high = 0; 2573 2574 retry_reclaim: 2575 /* 2576 * The allocating task should reclaim at least the batch size, but for 2577 * subsequent retries we only want to do what's necessary to prevent oom 2578 * or breaching resource isolation. 2579 * 2580 * This is distinct from memory.max or page allocator behaviour because 2581 * memory.high is currently batched, whereas memory.max and the page 2582 * allocator run every time an allocation is made. 2583 */ 2584 nr_reclaimed = reclaim_high(memcg, 2585 in_retry ? SWAP_CLUSTER_MAX : nr_pages, 2586 GFP_KERNEL); 2587 2588 /* 2589 * memory.high is breached and reclaim is unable to keep up. Throttle 2590 * allocators proactively to slow down excessive growth. 2591 */ 2592 penalty_jiffies = calculate_high_delay(memcg, nr_pages, 2593 mem_find_max_overage(memcg)); 2594 2595 penalty_jiffies += calculate_high_delay(memcg, nr_pages, 2596 swap_find_max_overage(memcg)); 2597 2598 /* 2599 * Clamp the max delay per usermode return so as to still keep the 2600 * application moving forwards and also permit diagnostics, albeit 2601 * extremely slowly. 2602 */ 2603 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES); 2604 2605 /* 2606 * Don't sleep if the amount of jiffies this memcg owes us is so low 2607 * that it's not even worth doing, in an attempt to be nice to those who 2608 * go only a small amount over their memory.high value and maybe haven't 2609 * been aggressively reclaimed enough yet. 2610 */ 2611 if (penalty_jiffies <= HZ / 100) 2612 goto out; 2613 2614 /* 2615 * If reclaim is making forward progress but we're still over 2616 * memory.high, we want to encourage that rather than doing allocator 2617 * throttling. 2618 */ 2619 if (nr_reclaimed || nr_retries--) { 2620 in_retry = true; 2621 goto retry_reclaim; 2622 } 2623 2624 /* 2625 * If we exit early, we're guaranteed to die (since 2626 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't 2627 * need to account for any ill-begotten jiffies to pay them off later. 2628 */ 2629 psi_memstall_enter(&pflags); 2630 schedule_timeout_killable(penalty_jiffies); 2631 psi_memstall_leave(&pflags); 2632 2633 out: 2634 css_put(&memcg->css); 2635 } 2636 2637 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask, 2638 unsigned int nr_pages) 2639 { 2640 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages); 2641 int nr_retries = MAX_RECLAIM_RETRIES; 2642 struct mem_cgroup *mem_over_limit; 2643 struct page_counter *counter; 2644 unsigned long nr_reclaimed; 2645 bool passed_oom = false; 2646 unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP; 2647 bool drained = false; 2648 bool raised_max_event = false; 2649 unsigned long pflags; 2650 2651 retry: 2652 if (consume_stock(memcg, nr_pages)) 2653 return 0; 2654 2655 if (!do_memsw_account() || 2656 page_counter_try_charge(&memcg->memsw, batch, &counter)) { 2657 if (page_counter_try_charge(&memcg->memory, batch, &counter)) 2658 goto done_restock; 2659 if (do_memsw_account()) 2660 page_counter_uncharge(&memcg->memsw, batch); 2661 mem_over_limit = mem_cgroup_from_counter(counter, memory); 2662 } else { 2663 mem_over_limit = mem_cgroup_from_counter(counter, memsw); 2664 reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP; 2665 } 2666 2667 if (batch > nr_pages) { 2668 batch = nr_pages; 2669 goto retry; 2670 } 2671 2672 /* 2673 * Prevent unbounded recursion when reclaim operations need to 2674 * allocate memory. This might exceed the limits temporarily, 2675 * but we prefer facilitating memory reclaim and getting back 2676 * under the limit over triggering OOM kills in these cases. 2677 */ 2678 if (unlikely(current->flags & PF_MEMALLOC)) 2679 goto force; 2680 2681 if (unlikely(task_in_memcg_oom(current))) 2682 goto nomem; 2683 2684 if (!gfpflags_allow_blocking(gfp_mask)) 2685 goto nomem; 2686 2687 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2688 raised_max_event = true; 2689 2690 psi_memstall_enter(&pflags); 2691 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, 2692 gfp_mask, reclaim_options); 2693 psi_memstall_leave(&pflags); 2694 2695 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2696 goto retry; 2697 2698 if (!drained) { 2699 drain_all_stock(mem_over_limit); 2700 drained = true; 2701 goto retry; 2702 } 2703 2704 if (gfp_mask & __GFP_NORETRY) 2705 goto nomem; 2706 /* 2707 * Even though the limit is exceeded at this point, reclaim 2708 * may have been able to free some pages. Retry the charge 2709 * before killing the task. 2710 * 2711 * Only for regular pages, though: huge pages are rather 2712 * unlikely to succeed so close to the limit, and we fall back 2713 * to regular pages anyway in case of failure. 2714 */ 2715 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) 2716 goto retry; 2717 /* 2718 * At task move, charge accounts can be doubly counted. So, it's 2719 * better to wait until the end of task_move if something is going on. 2720 */ 2721 if (mem_cgroup_wait_acct_move(mem_over_limit)) 2722 goto retry; 2723 2724 if (nr_retries--) 2725 goto retry; 2726 2727 if (gfp_mask & __GFP_RETRY_MAYFAIL) 2728 goto nomem; 2729 2730 /* Avoid endless loop for tasks bypassed by the oom killer */ 2731 if (passed_oom && task_is_dying()) 2732 goto nomem; 2733 2734 /* 2735 * keep retrying as long as the memcg oom killer is able to make 2736 * a forward progress or bypass the charge if the oom killer 2737 * couldn't make any progress. 2738 */ 2739 if (mem_cgroup_oom(mem_over_limit, gfp_mask, 2740 get_order(nr_pages * PAGE_SIZE))) { 2741 passed_oom = true; 2742 nr_retries = MAX_RECLAIM_RETRIES; 2743 goto retry; 2744 } 2745 nomem: 2746 /* 2747 * Memcg doesn't have a dedicated reserve for atomic 2748 * allocations. But like the global atomic pool, we need to 2749 * put the burden of reclaim on regular allocation requests 2750 * and let these go through as privileged allocations. 2751 */ 2752 if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH))) 2753 return -ENOMEM; 2754 force: 2755 /* 2756 * If the allocation has to be enforced, don't forget to raise 2757 * a MEMCG_MAX event. 2758 */ 2759 if (!raised_max_event) 2760 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2761 2762 /* 2763 * The allocation either can't fail or will lead to more memory 2764 * being freed very soon. Allow memory usage go over the limit 2765 * temporarily by force charging it. 2766 */ 2767 page_counter_charge(&memcg->memory, nr_pages); 2768 if (do_memsw_account()) 2769 page_counter_charge(&memcg->memsw, nr_pages); 2770 2771 return 0; 2772 2773 done_restock: 2774 if (batch > nr_pages) 2775 refill_stock(memcg, batch - nr_pages); 2776 2777 /* 2778 * If the hierarchy is above the normal consumption range, schedule 2779 * reclaim on returning to userland. We can perform reclaim here 2780 * if __GFP_RECLAIM but let's always punt for simplicity and so that 2781 * GFP_KERNEL can consistently be used during reclaim. @memcg is 2782 * not recorded as it most likely matches current's and won't 2783 * change in the meantime. As high limit is checked again before 2784 * reclaim, the cost of mismatch is negligible. 2785 */ 2786 do { 2787 bool mem_high, swap_high; 2788 2789 mem_high = page_counter_read(&memcg->memory) > 2790 READ_ONCE(memcg->memory.high); 2791 swap_high = page_counter_read(&memcg->swap) > 2792 READ_ONCE(memcg->swap.high); 2793 2794 /* Don't bother a random interrupted task */ 2795 if (!in_task()) { 2796 if (mem_high) { 2797 schedule_work(&memcg->high_work); 2798 break; 2799 } 2800 continue; 2801 } 2802 2803 if (mem_high || swap_high) { 2804 /* 2805 * The allocating tasks in this cgroup will need to do 2806 * reclaim or be throttled to prevent further growth 2807 * of the memory or swap footprints. 2808 * 2809 * Target some best-effort fairness between the tasks, 2810 * and distribute reclaim work and delay penalties 2811 * based on how much each task is actually allocating. 2812 */ 2813 current->memcg_nr_pages_over_high += batch; 2814 set_notify_resume(current); 2815 break; 2816 } 2817 } while ((memcg = parent_mem_cgroup(memcg))); 2818 2819 if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH && 2820 !(current->flags & PF_MEMALLOC) && 2821 gfpflags_allow_blocking(gfp_mask)) { 2822 mem_cgroup_handle_over_high(); 2823 } 2824 return 0; 2825 } 2826 2827 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 2828 unsigned int nr_pages) 2829 { 2830 if (mem_cgroup_is_root(memcg)) 2831 return 0; 2832 2833 return try_charge_memcg(memcg, gfp_mask, nr_pages); 2834 } 2835 2836 static inline void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages) 2837 { 2838 if (mem_cgroup_is_root(memcg)) 2839 return; 2840 2841 page_counter_uncharge(&memcg->memory, nr_pages); 2842 if (do_memsw_account()) 2843 page_counter_uncharge(&memcg->memsw, nr_pages); 2844 } 2845 2846 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg) 2847 { 2848 VM_BUG_ON_FOLIO(folio_memcg(folio), folio); 2849 /* 2850 * Any of the following ensures page's memcg stability: 2851 * 2852 * - the page lock 2853 * - LRU isolation 2854 * - lock_page_memcg() 2855 * - exclusive reference 2856 * - mem_cgroup_trylock_pages() 2857 */ 2858 folio->memcg_data = (unsigned long)memcg; 2859 } 2860 2861 #ifdef CONFIG_MEMCG_KMEM 2862 /* 2863 * The allocated objcg pointers array is not accounted directly. 2864 * Moreover, it should not come from DMA buffer and is not readily 2865 * reclaimable. So those GFP bits should be masked off. 2866 */ 2867 #define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT) 2868 2869 /* 2870 * mod_objcg_mlstate() may be called with irq enabled, so 2871 * mod_memcg_lruvec_state() should be used. 2872 */ 2873 static inline void mod_objcg_mlstate(struct obj_cgroup *objcg, 2874 struct pglist_data *pgdat, 2875 enum node_stat_item idx, int nr) 2876 { 2877 struct mem_cgroup *memcg; 2878 struct lruvec *lruvec; 2879 2880 rcu_read_lock(); 2881 memcg = obj_cgroup_memcg(objcg); 2882 lruvec = mem_cgroup_lruvec(memcg, pgdat); 2883 mod_memcg_lruvec_state(lruvec, idx, nr); 2884 rcu_read_unlock(); 2885 } 2886 2887 int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s, 2888 gfp_t gfp, bool new_slab) 2889 { 2890 unsigned int objects = objs_per_slab(s, slab); 2891 unsigned long memcg_data; 2892 void *vec; 2893 2894 gfp &= ~OBJCGS_CLEAR_MASK; 2895 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp, 2896 slab_nid(slab)); 2897 if (!vec) 2898 return -ENOMEM; 2899 2900 memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS; 2901 if (new_slab) { 2902 /* 2903 * If the slab is brand new and nobody can yet access its 2904 * memcg_data, no synchronization is required and memcg_data can 2905 * be simply assigned. 2906 */ 2907 slab->memcg_data = memcg_data; 2908 } else if (cmpxchg(&slab->memcg_data, 0, memcg_data)) { 2909 /* 2910 * If the slab is already in use, somebody can allocate and 2911 * assign obj_cgroups in parallel. In this case the existing 2912 * objcg vector should be reused. 2913 */ 2914 kfree(vec); 2915 return 0; 2916 } 2917 2918 kmemleak_not_leak(vec); 2919 return 0; 2920 } 2921 2922 static __always_inline 2923 struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p) 2924 { 2925 /* 2926 * Slab objects are accounted individually, not per-page. 2927 * Memcg membership data for each individual object is saved in 2928 * slab->memcg_data. 2929 */ 2930 if (folio_test_slab(folio)) { 2931 struct obj_cgroup **objcgs; 2932 struct slab *slab; 2933 unsigned int off; 2934 2935 slab = folio_slab(folio); 2936 objcgs = slab_objcgs(slab); 2937 if (!objcgs) 2938 return NULL; 2939 2940 off = obj_to_index(slab->slab_cache, slab, p); 2941 if (objcgs[off]) 2942 return obj_cgroup_memcg(objcgs[off]); 2943 2944 return NULL; 2945 } 2946 2947 /* 2948 * page_memcg_check() is used here, because in theory we can encounter 2949 * a folio where the slab flag has been cleared already, but 2950 * slab->memcg_data has not been freed yet 2951 * page_memcg_check(page) will guarantee that a proper memory 2952 * cgroup pointer or NULL will be returned. 2953 */ 2954 return page_memcg_check(folio_page(folio, 0)); 2955 } 2956 2957 /* 2958 * Returns a pointer to the memory cgroup to which the kernel object is charged. 2959 * 2960 * A passed kernel object can be a slab object, vmalloc object or a generic 2961 * kernel page, so different mechanisms for getting the memory cgroup pointer 2962 * should be used. 2963 * 2964 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller 2965 * can not know for sure how the kernel object is implemented. 2966 * mem_cgroup_from_obj() can be safely used in such cases. 2967 * 2968 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(), 2969 * cgroup_mutex, etc. 2970 */ 2971 struct mem_cgroup *mem_cgroup_from_obj(void *p) 2972 { 2973 struct folio *folio; 2974 2975 if (mem_cgroup_disabled()) 2976 return NULL; 2977 2978 if (unlikely(is_vmalloc_addr(p))) 2979 folio = page_folio(vmalloc_to_page(p)); 2980 else 2981 folio = virt_to_folio(p); 2982 2983 return mem_cgroup_from_obj_folio(folio, p); 2984 } 2985 2986 /* 2987 * Returns a pointer to the memory cgroup to which the kernel object is charged. 2988 * Similar to mem_cgroup_from_obj(), but faster and not suitable for objects, 2989 * allocated using vmalloc(). 2990 * 2991 * A passed kernel object must be a slab object or a generic kernel page. 2992 * 2993 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(), 2994 * cgroup_mutex, etc. 2995 */ 2996 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p) 2997 { 2998 if (mem_cgroup_disabled()) 2999 return NULL; 3000 3001 return mem_cgroup_from_obj_folio(virt_to_folio(p), p); 3002 } 3003 3004 static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg) 3005 { 3006 struct obj_cgroup *objcg = NULL; 3007 3008 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { 3009 objcg = rcu_dereference(memcg->objcg); 3010 if (objcg && obj_cgroup_tryget(objcg)) 3011 break; 3012 objcg = NULL; 3013 } 3014 return objcg; 3015 } 3016 3017 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void) 3018 { 3019 struct obj_cgroup *objcg = NULL; 3020 struct mem_cgroup *memcg; 3021 3022 if (memcg_kmem_bypass()) 3023 return NULL; 3024 3025 rcu_read_lock(); 3026 if (unlikely(active_memcg())) 3027 memcg = active_memcg(); 3028 else 3029 memcg = mem_cgroup_from_task(current); 3030 objcg = __get_obj_cgroup_from_memcg(memcg); 3031 rcu_read_unlock(); 3032 return objcg; 3033 } 3034 3035 struct obj_cgroup *get_obj_cgroup_from_page(struct page *page) 3036 { 3037 struct obj_cgroup *objcg; 3038 3039 if (!memcg_kmem_enabled()) 3040 return NULL; 3041 3042 if (PageMemcgKmem(page)) { 3043 objcg = __folio_objcg(page_folio(page)); 3044 obj_cgroup_get(objcg); 3045 } else { 3046 struct mem_cgroup *memcg; 3047 3048 rcu_read_lock(); 3049 memcg = __folio_memcg(page_folio(page)); 3050 if (memcg) 3051 objcg = __get_obj_cgroup_from_memcg(memcg); 3052 else 3053 objcg = NULL; 3054 rcu_read_unlock(); 3055 } 3056 return objcg; 3057 } 3058 3059 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages) 3060 { 3061 mod_memcg_state(memcg, MEMCG_KMEM, nr_pages); 3062 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 3063 if (nr_pages > 0) 3064 page_counter_charge(&memcg->kmem, nr_pages); 3065 else 3066 page_counter_uncharge(&memcg->kmem, -nr_pages); 3067 } 3068 } 3069 3070 3071 /* 3072 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg 3073 * @objcg: object cgroup to uncharge 3074 * @nr_pages: number of pages to uncharge 3075 */ 3076 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg, 3077 unsigned int nr_pages) 3078 { 3079 struct mem_cgroup *memcg; 3080 3081 memcg = get_mem_cgroup_from_objcg(objcg); 3082 3083 memcg_account_kmem(memcg, -nr_pages); 3084 refill_stock(memcg, nr_pages); 3085 3086 css_put(&memcg->css); 3087 } 3088 3089 /* 3090 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg 3091 * @objcg: object cgroup to charge 3092 * @gfp: reclaim mode 3093 * @nr_pages: number of pages to charge 3094 * 3095 * Returns 0 on success, an error code on failure. 3096 */ 3097 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp, 3098 unsigned int nr_pages) 3099 { 3100 struct mem_cgroup *memcg; 3101 int ret; 3102 3103 memcg = get_mem_cgroup_from_objcg(objcg); 3104 3105 ret = try_charge_memcg(memcg, gfp, nr_pages); 3106 if (ret) 3107 goto out; 3108 3109 memcg_account_kmem(memcg, nr_pages); 3110 out: 3111 css_put(&memcg->css); 3112 3113 return ret; 3114 } 3115 3116 /** 3117 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup 3118 * @page: page to charge 3119 * @gfp: reclaim mode 3120 * @order: allocation order 3121 * 3122 * Returns 0 on success, an error code on failure. 3123 */ 3124 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order) 3125 { 3126 struct obj_cgroup *objcg; 3127 int ret = 0; 3128 3129 objcg = get_obj_cgroup_from_current(); 3130 if (objcg) { 3131 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order); 3132 if (!ret) { 3133 page->memcg_data = (unsigned long)objcg | 3134 MEMCG_DATA_KMEM; 3135 return 0; 3136 } 3137 obj_cgroup_put(objcg); 3138 } 3139 return ret; 3140 } 3141 3142 /** 3143 * __memcg_kmem_uncharge_page: uncharge a kmem page 3144 * @page: page to uncharge 3145 * @order: allocation order 3146 */ 3147 void __memcg_kmem_uncharge_page(struct page *page, int order) 3148 { 3149 struct folio *folio = page_folio(page); 3150 struct obj_cgroup *objcg; 3151 unsigned int nr_pages = 1 << order; 3152 3153 if (!folio_memcg_kmem(folio)) 3154 return; 3155 3156 objcg = __folio_objcg(folio); 3157 obj_cgroup_uncharge_pages(objcg, nr_pages); 3158 folio->memcg_data = 0; 3159 obj_cgroup_put(objcg); 3160 } 3161 3162 void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat, 3163 enum node_stat_item idx, int nr) 3164 { 3165 struct memcg_stock_pcp *stock; 3166 struct obj_cgroup *old = NULL; 3167 unsigned long flags; 3168 int *bytes; 3169 3170 local_lock_irqsave(&memcg_stock.stock_lock, flags); 3171 stock = this_cpu_ptr(&memcg_stock); 3172 3173 /* 3174 * Save vmstat data in stock and skip vmstat array update unless 3175 * accumulating over a page of vmstat data or when pgdat or idx 3176 * changes. 3177 */ 3178 if (stock->cached_objcg != objcg) { 3179 old = drain_obj_stock(stock); 3180 obj_cgroup_get(objcg); 3181 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes) 3182 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0; 3183 stock->cached_objcg = objcg; 3184 stock->cached_pgdat = pgdat; 3185 } else if (stock->cached_pgdat != pgdat) { 3186 /* Flush the existing cached vmstat data */ 3187 struct pglist_data *oldpg = stock->cached_pgdat; 3188 3189 if (stock->nr_slab_reclaimable_b) { 3190 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B, 3191 stock->nr_slab_reclaimable_b); 3192 stock->nr_slab_reclaimable_b = 0; 3193 } 3194 if (stock->nr_slab_unreclaimable_b) { 3195 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B, 3196 stock->nr_slab_unreclaimable_b); 3197 stock->nr_slab_unreclaimable_b = 0; 3198 } 3199 stock->cached_pgdat = pgdat; 3200 } 3201 3202 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b 3203 : &stock->nr_slab_unreclaimable_b; 3204 /* 3205 * Even for large object >= PAGE_SIZE, the vmstat data will still be 3206 * cached locally at least once before pushing it out. 3207 */ 3208 if (!*bytes) { 3209 *bytes = nr; 3210 nr = 0; 3211 } else { 3212 *bytes += nr; 3213 if (abs(*bytes) > PAGE_SIZE) { 3214 nr = *bytes; 3215 *bytes = 0; 3216 } else { 3217 nr = 0; 3218 } 3219 } 3220 if (nr) 3221 mod_objcg_mlstate(objcg, pgdat, idx, nr); 3222 3223 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 3224 if (old) 3225 obj_cgroup_put(old); 3226 } 3227 3228 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes) 3229 { 3230 struct memcg_stock_pcp *stock; 3231 unsigned long flags; 3232 bool ret = false; 3233 3234 local_lock_irqsave(&memcg_stock.stock_lock, flags); 3235 3236 stock = this_cpu_ptr(&memcg_stock); 3237 if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) { 3238 stock->nr_bytes -= nr_bytes; 3239 ret = true; 3240 } 3241 3242 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 3243 3244 return ret; 3245 } 3246 3247 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock) 3248 { 3249 struct obj_cgroup *old = stock->cached_objcg; 3250 3251 if (!old) 3252 return NULL; 3253 3254 if (stock->nr_bytes) { 3255 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT; 3256 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1); 3257 3258 if (nr_pages) { 3259 struct mem_cgroup *memcg; 3260 3261 memcg = get_mem_cgroup_from_objcg(old); 3262 3263 memcg_account_kmem(memcg, -nr_pages); 3264 __refill_stock(memcg, nr_pages); 3265 3266 css_put(&memcg->css); 3267 } 3268 3269 /* 3270 * The leftover is flushed to the centralized per-memcg value. 3271 * On the next attempt to refill obj stock it will be moved 3272 * to a per-cpu stock (probably, on an other CPU), see 3273 * refill_obj_stock(). 3274 * 3275 * How often it's flushed is a trade-off between the memory 3276 * limit enforcement accuracy and potential CPU contention, 3277 * so it might be changed in the future. 3278 */ 3279 atomic_add(nr_bytes, &old->nr_charged_bytes); 3280 stock->nr_bytes = 0; 3281 } 3282 3283 /* 3284 * Flush the vmstat data in current stock 3285 */ 3286 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) { 3287 if (stock->nr_slab_reclaimable_b) { 3288 mod_objcg_mlstate(old, stock->cached_pgdat, 3289 NR_SLAB_RECLAIMABLE_B, 3290 stock->nr_slab_reclaimable_b); 3291 stock->nr_slab_reclaimable_b = 0; 3292 } 3293 if (stock->nr_slab_unreclaimable_b) { 3294 mod_objcg_mlstate(old, stock->cached_pgdat, 3295 NR_SLAB_UNRECLAIMABLE_B, 3296 stock->nr_slab_unreclaimable_b); 3297 stock->nr_slab_unreclaimable_b = 0; 3298 } 3299 stock->cached_pgdat = NULL; 3300 } 3301 3302 stock->cached_objcg = NULL; 3303 /* 3304 * The `old' objects needs to be released by the caller via 3305 * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock. 3306 */ 3307 return old; 3308 } 3309 3310 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 3311 struct mem_cgroup *root_memcg) 3312 { 3313 struct mem_cgroup *memcg; 3314 3315 if (stock->cached_objcg) { 3316 memcg = obj_cgroup_memcg(stock->cached_objcg); 3317 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg)) 3318 return true; 3319 } 3320 3321 return false; 3322 } 3323 3324 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes, 3325 bool allow_uncharge) 3326 { 3327 struct memcg_stock_pcp *stock; 3328 struct obj_cgroup *old = NULL; 3329 unsigned long flags; 3330 unsigned int nr_pages = 0; 3331 3332 local_lock_irqsave(&memcg_stock.stock_lock, flags); 3333 3334 stock = this_cpu_ptr(&memcg_stock); 3335 if (stock->cached_objcg != objcg) { /* reset if necessary */ 3336 old = drain_obj_stock(stock); 3337 obj_cgroup_get(objcg); 3338 stock->cached_objcg = objcg; 3339 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes) 3340 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0; 3341 allow_uncharge = true; /* Allow uncharge when objcg changes */ 3342 } 3343 stock->nr_bytes += nr_bytes; 3344 3345 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) { 3346 nr_pages = stock->nr_bytes >> PAGE_SHIFT; 3347 stock->nr_bytes &= (PAGE_SIZE - 1); 3348 } 3349 3350 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 3351 if (old) 3352 obj_cgroup_put(old); 3353 3354 if (nr_pages) 3355 obj_cgroup_uncharge_pages(objcg, nr_pages); 3356 } 3357 3358 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size) 3359 { 3360 unsigned int nr_pages, nr_bytes; 3361 int ret; 3362 3363 if (consume_obj_stock(objcg, size)) 3364 return 0; 3365 3366 /* 3367 * In theory, objcg->nr_charged_bytes can have enough 3368 * pre-charged bytes to satisfy the allocation. However, 3369 * flushing objcg->nr_charged_bytes requires two atomic 3370 * operations, and objcg->nr_charged_bytes can't be big. 3371 * The shared objcg->nr_charged_bytes can also become a 3372 * performance bottleneck if all tasks of the same memcg are 3373 * trying to update it. So it's better to ignore it and try 3374 * grab some new pages. The stock's nr_bytes will be flushed to 3375 * objcg->nr_charged_bytes later on when objcg changes. 3376 * 3377 * The stock's nr_bytes may contain enough pre-charged bytes 3378 * to allow one less page from being charged, but we can't rely 3379 * on the pre-charged bytes not being changed outside of 3380 * consume_obj_stock() or refill_obj_stock(). So ignore those 3381 * pre-charged bytes as well when charging pages. To avoid a 3382 * page uncharge right after a page charge, we set the 3383 * allow_uncharge flag to false when calling refill_obj_stock() 3384 * to temporarily allow the pre-charged bytes to exceed the page 3385 * size limit. The maximum reachable value of the pre-charged 3386 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data 3387 * race. 3388 */ 3389 nr_pages = size >> PAGE_SHIFT; 3390 nr_bytes = size & (PAGE_SIZE - 1); 3391 3392 if (nr_bytes) 3393 nr_pages += 1; 3394 3395 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages); 3396 if (!ret && nr_bytes) 3397 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false); 3398 3399 return ret; 3400 } 3401 3402 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size) 3403 { 3404 refill_obj_stock(objcg, size, true); 3405 } 3406 3407 #endif /* CONFIG_MEMCG_KMEM */ 3408 3409 /* 3410 * Because page_memcg(head) is not set on tails, set it now. 3411 */ 3412 void split_page_memcg(struct page *head, unsigned int nr) 3413 { 3414 struct folio *folio = page_folio(head); 3415 struct mem_cgroup *memcg = folio_memcg(folio); 3416 int i; 3417 3418 if (mem_cgroup_disabled() || !memcg) 3419 return; 3420 3421 for (i = 1; i < nr; i++) 3422 folio_page(folio, i)->memcg_data = folio->memcg_data; 3423 3424 if (folio_memcg_kmem(folio)) 3425 obj_cgroup_get_many(__folio_objcg(folio), nr - 1); 3426 else 3427 css_get_many(&memcg->css, nr - 1); 3428 } 3429 3430 #ifdef CONFIG_SWAP 3431 /** 3432 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 3433 * @entry: swap entry to be moved 3434 * @from: mem_cgroup which the entry is moved from 3435 * @to: mem_cgroup which the entry is moved to 3436 * 3437 * It succeeds only when the swap_cgroup's record for this entry is the same 3438 * as the mem_cgroup's id of @from. 3439 * 3440 * Returns 0 on success, -EINVAL on failure. 3441 * 3442 * The caller must have charged to @to, IOW, called page_counter_charge() about 3443 * both res and memsw, and called css_get(). 3444 */ 3445 static int mem_cgroup_move_swap_account(swp_entry_t entry, 3446 struct mem_cgroup *from, struct mem_cgroup *to) 3447 { 3448 unsigned short old_id, new_id; 3449 3450 old_id = mem_cgroup_id(from); 3451 new_id = mem_cgroup_id(to); 3452 3453 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 3454 mod_memcg_state(from, MEMCG_SWAP, -1); 3455 mod_memcg_state(to, MEMCG_SWAP, 1); 3456 return 0; 3457 } 3458 return -EINVAL; 3459 } 3460 #else 3461 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 3462 struct mem_cgroup *from, struct mem_cgroup *to) 3463 { 3464 return -EINVAL; 3465 } 3466 #endif 3467 3468 static DEFINE_MUTEX(memcg_max_mutex); 3469 3470 static int mem_cgroup_resize_max(struct mem_cgroup *memcg, 3471 unsigned long max, bool memsw) 3472 { 3473 bool enlarge = false; 3474 bool drained = false; 3475 int ret; 3476 bool limits_invariant; 3477 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory; 3478 3479 do { 3480 if (signal_pending(current)) { 3481 ret = -EINTR; 3482 break; 3483 } 3484 3485 mutex_lock(&memcg_max_mutex); 3486 /* 3487 * Make sure that the new limit (memsw or memory limit) doesn't 3488 * break our basic invariant rule memory.max <= memsw.max. 3489 */ 3490 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) : 3491 max <= memcg->memsw.max; 3492 if (!limits_invariant) { 3493 mutex_unlock(&memcg_max_mutex); 3494 ret = -EINVAL; 3495 break; 3496 } 3497 if (max > counter->max) 3498 enlarge = true; 3499 ret = page_counter_set_max(counter, max); 3500 mutex_unlock(&memcg_max_mutex); 3501 3502 if (!ret) 3503 break; 3504 3505 if (!drained) { 3506 drain_all_stock(memcg); 3507 drained = true; 3508 continue; 3509 } 3510 3511 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, 3512 memsw ? 0 : MEMCG_RECLAIM_MAY_SWAP)) { 3513 ret = -EBUSY; 3514 break; 3515 } 3516 } while (true); 3517 3518 if (!ret && enlarge) 3519 memcg_oom_recover(memcg); 3520 3521 return ret; 3522 } 3523 3524 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 3525 gfp_t gfp_mask, 3526 unsigned long *total_scanned) 3527 { 3528 unsigned long nr_reclaimed = 0; 3529 struct mem_cgroup_per_node *mz, *next_mz = NULL; 3530 unsigned long reclaimed; 3531 int loop = 0; 3532 struct mem_cgroup_tree_per_node *mctz; 3533 unsigned long excess; 3534 3535 if (order > 0) 3536 return 0; 3537 3538 mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id]; 3539 3540 /* 3541 * Do not even bother to check the largest node if the root 3542 * is empty. Do it lockless to prevent lock bouncing. Races 3543 * are acceptable as soft limit is best effort anyway. 3544 */ 3545 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root)) 3546 return 0; 3547 3548 /* 3549 * This loop can run a while, specially if mem_cgroup's continuously 3550 * keep exceeding their soft limit and putting the system under 3551 * pressure 3552 */ 3553 do { 3554 if (next_mz) 3555 mz = next_mz; 3556 else 3557 mz = mem_cgroup_largest_soft_limit_node(mctz); 3558 if (!mz) 3559 break; 3560 3561 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat, 3562 gfp_mask, total_scanned); 3563 nr_reclaimed += reclaimed; 3564 spin_lock_irq(&mctz->lock); 3565 3566 /* 3567 * If we failed to reclaim anything from this memory cgroup 3568 * it is time to move on to the next cgroup 3569 */ 3570 next_mz = NULL; 3571 if (!reclaimed) 3572 next_mz = __mem_cgroup_largest_soft_limit_node(mctz); 3573 3574 excess = soft_limit_excess(mz->memcg); 3575 /* 3576 * One school of thought says that we should not add 3577 * back the node to the tree if reclaim returns 0. 3578 * But our reclaim could return 0, simply because due 3579 * to priority we are exposing a smaller subset of 3580 * memory to reclaim from. Consider this as a longer 3581 * term TODO. 3582 */ 3583 /* If excess == 0, no tree ops */ 3584 __mem_cgroup_insert_exceeded(mz, mctz, excess); 3585 spin_unlock_irq(&mctz->lock); 3586 css_put(&mz->memcg->css); 3587 loop++; 3588 /* 3589 * Could not reclaim anything and there are no more 3590 * mem cgroups to try or we seem to be looping without 3591 * reclaiming anything. 3592 */ 3593 if (!nr_reclaimed && 3594 (next_mz == NULL || 3595 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 3596 break; 3597 } while (!nr_reclaimed); 3598 if (next_mz) 3599 css_put(&next_mz->memcg->css); 3600 return nr_reclaimed; 3601 } 3602 3603 /* 3604 * Reclaims as many pages from the given memcg as possible. 3605 * 3606 * Caller is responsible for holding css reference for memcg. 3607 */ 3608 static int mem_cgroup_force_empty(struct mem_cgroup *memcg) 3609 { 3610 int nr_retries = MAX_RECLAIM_RETRIES; 3611 3612 /* we call try-to-free pages for make this cgroup empty */ 3613 lru_add_drain_all(); 3614 3615 drain_all_stock(memcg); 3616 3617 /* try to free all pages in this cgroup */ 3618 while (nr_retries && page_counter_read(&memcg->memory)) { 3619 if (signal_pending(current)) 3620 return -EINTR; 3621 3622 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, 3623 MEMCG_RECLAIM_MAY_SWAP)) 3624 nr_retries--; 3625 } 3626 3627 return 0; 3628 } 3629 3630 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of, 3631 char *buf, size_t nbytes, 3632 loff_t off) 3633 { 3634 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3635 3636 if (mem_cgroup_is_root(memcg)) 3637 return -EINVAL; 3638 return mem_cgroup_force_empty(memcg) ?: nbytes; 3639 } 3640 3641 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, 3642 struct cftype *cft) 3643 { 3644 return 1; 3645 } 3646 3647 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, 3648 struct cftype *cft, u64 val) 3649 { 3650 if (val == 1) 3651 return 0; 3652 3653 pr_warn_once("Non-hierarchical mode is deprecated. " 3654 "Please report your usecase to linux-mm@kvack.org if you " 3655 "depend on this functionality.\n"); 3656 3657 return -EINVAL; 3658 } 3659 3660 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 3661 { 3662 unsigned long val; 3663 3664 if (mem_cgroup_is_root(memcg)) { 3665 mem_cgroup_flush_stats(); 3666 val = memcg_page_state(memcg, NR_FILE_PAGES) + 3667 memcg_page_state(memcg, NR_ANON_MAPPED); 3668 if (swap) 3669 val += memcg_page_state(memcg, MEMCG_SWAP); 3670 } else { 3671 if (!swap) 3672 val = page_counter_read(&memcg->memory); 3673 else 3674 val = page_counter_read(&memcg->memsw); 3675 } 3676 return val; 3677 } 3678 3679 enum { 3680 RES_USAGE, 3681 RES_LIMIT, 3682 RES_MAX_USAGE, 3683 RES_FAILCNT, 3684 RES_SOFT_LIMIT, 3685 }; 3686 3687 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css, 3688 struct cftype *cft) 3689 { 3690 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3691 struct page_counter *counter; 3692 3693 switch (MEMFILE_TYPE(cft->private)) { 3694 case _MEM: 3695 counter = &memcg->memory; 3696 break; 3697 case _MEMSWAP: 3698 counter = &memcg->memsw; 3699 break; 3700 case _KMEM: 3701 counter = &memcg->kmem; 3702 break; 3703 case _TCP: 3704 counter = &memcg->tcpmem; 3705 break; 3706 default: 3707 BUG(); 3708 } 3709 3710 switch (MEMFILE_ATTR(cft->private)) { 3711 case RES_USAGE: 3712 if (counter == &memcg->memory) 3713 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE; 3714 if (counter == &memcg->memsw) 3715 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE; 3716 return (u64)page_counter_read(counter) * PAGE_SIZE; 3717 case RES_LIMIT: 3718 return (u64)counter->max * PAGE_SIZE; 3719 case RES_MAX_USAGE: 3720 return (u64)counter->watermark * PAGE_SIZE; 3721 case RES_FAILCNT: 3722 return counter->failcnt; 3723 case RES_SOFT_LIMIT: 3724 return (u64)memcg->soft_limit * PAGE_SIZE; 3725 default: 3726 BUG(); 3727 } 3728 } 3729 3730 #ifdef CONFIG_MEMCG_KMEM 3731 static int memcg_online_kmem(struct mem_cgroup *memcg) 3732 { 3733 struct obj_cgroup *objcg; 3734 3735 if (mem_cgroup_kmem_disabled()) 3736 return 0; 3737 3738 if (unlikely(mem_cgroup_is_root(memcg))) 3739 return 0; 3740 3741 objcg = obj_cgroup_alloc(); 3742 if (!objcg) 3743 return -ENOMEM; 3744 3745 objcg->memcg = memcg; 3746 rcu_assign_pointer(memcg->objcg, objcg); 3747 3748 static_branch_enable(&memcg_kmem_enabled_key); 3749 3750 memcg->kmemcg_id = memcg->id.id; 3751 3752 return 0; 3753 } 3754 3755 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3756 { 3757 struct mem_cgroup *parent; 3758 3759 if (mem_cgroup_kmem_disabled()) 3760 return; 3761 3762 if (unlikely(mem_cgroup_is_root(memcg))) 3763 return; 3764 3765 parent = parent_mem_cgroup(memcg); 3766 if (!parent) 3767 parent = root_mem_cgroup; 3768 3769 memcg_reparent_objcgs(memcg, parent); 3770 3771 /* 3772 * After we have finished memcg_reparent_objcgs(), all list_lrus 3773 * corresponding to this cgroup are guaranteed to remain empty. 3774 * The ordering is imposed by list_lru_node->lock taken by 3775 * memcg_reparent_list_lrus(). 3776 */ 3777 memcg_reparent_list_lrus(memcg, parent); 3778 } 3779 #else 3780 static int memcg_online_kmem(struct mem_cgroup *memcg) 3781 { 3782 return 0; 3783 } 3784 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3785 { 3786 } 3787 #endif /* CONFIG_MEMCG_KMEM */ 3788 3789 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max) 3790 { 3791 int ret; 3792 3793 mutex_lock(&memcg_max_mutex); 3794 3795 ret = page_counter_set_max(&memcg->tcpmem, max); 3796 if (ret) 3797 goto out; 3798 3799 if (!memcg->tcpmem_active) { 3800 /* 3801 * The active flag needs to be written after the static_key 3802 * update. This is what guarantees that the socket activation 3803 * function is the last one to run. See mem_cgroup_sk_alloc() 3804 * for details, and note that we don't mark any socket as 3805 * belonging to this memcg until that flag is up. 3806 * 3807 * We need to do this, because static_keys will span multiple 3808 * sites, but we can't control their order. If we mark a socket 3809 * as accounted, but the accounting functions are not patched in 3810 * yet, we'll lose accounting. 3811 * 3812 * We never race with the readers in mem_cgroup_sk_alloc(), 3813 * because when this value change, the code to process it is not 3814 * patched in yet. 3815 */ 3816 static_branch_inc(&memcg_sockets_enabled_key); 3817 memcg->tcpmem_active = true; 3818 } 3819 out: 3820 mutex_unlock(&memcg_max_mutex); 3821 return ret; 3822 } 3823 3824 /* 3825 * The user of this function is... 3826 * RES_LIMIT. 3827 */ 3828 static ssize_t mem_cgroup_write(struct kernfs_open_file *of, 3829 char *buf, size_t nbytes, loff_t off) 3830 { 3831 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3832 unsigned long nr_pages; 3833 int ret; 3834 3835 buf = strstrip(buf); 3836 ret = page_counter_memparse(buf, "-1", &nr_pages); 3837 if (ret) 3838 return ret; 3839 3840 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3841 case RES_LIMIT: 3842 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 3843 ret = -EINVAL; 3844 break; 3845 } 3846 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3847 case _MEM: 3848 ret = mem_cgroup_resize_max(memcg, nr_pages, false); 3849 break; 3850 case _MEMSWAP: 3851 ret = mem_cgroup_resize_max(memcg, nr_pages, true); 3852 break; 3853 case _KMEM: 3854 /* kmem.limit_in_bytes is deprecated. */ 3855 ret = -EOPNOTSUPP; 3856 break; 3857 case _TCP: 3858 ret = memcg_update_tcp_max(memcg, nr_pages); 3859 break; 3860 } 3861 break; 3862 case RES_SOFT_LIMIT: 3863 if (IS_ENABLED(CONFIG_PREEMPT_RT)) { 3864 ret = -EOPNOTSUPP; 3865 } else { 3866 memcg->soft_limit = nr_pages; 3867 ret = 0; 3868 } 3869 break; 3870 } 3871 return ret ?: nbytes; 3872 } 3873 3874 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf, 3875 size_t nbytes, loff_t off) 3876 { 3877 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3878 struct page_counter *counter; 3879 3880 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3881 case _MEM: 3882 counter = &memcg->memory; 3883 break; 3884 case _MEMSWAP: 3885 counter = &memcg->memsw; 3886 break; 3887 case _KMEM: 3888 counter = &memcg->kmem; 3889 break; 3890 case _TCP: 3891 counter = &memcg->tcpmem; 3892 break; 3893 default: 3894 BUG(); 3895 } 3896 3897 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3898 case RES_MAX_USAGE: 3899 page_counter_reset_watermark(counter); 3900 break; 3901 case RES_FAILCNT: 3902 counter->failcnt = 0; 3903 break; 3904 default: 3905 BUG(); 3906 } 3907 3908 return nbytes; 3909 } 3910 3911 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, 3912 struct cftype *cft) 3913 { 3914 return mem_cgroup_from_css(css)->move_charge_at_immigrate; 3915 } 3916 3917 #ifdef CONFIG_MMU 3918 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3919 struct cftype *cft, u64 val) 3920 { 3921 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3922 3923 if (val & ~MOVE_MASK) 3924 return -EINVAL; 3925 3926 /* 3927 * No kind of locking is needed in here, because ->can_attach() will 3928 * check this value once in the beginning of the process, and then carry 3929 * on with stale data. This means that changes to this value will only 3930 * affect task migrations starting after the change. 3931 */ 3932 memcg->move_charge_at_immigrate = val; 3933 return 0; 3934 } 3935 #else 3936 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3937 struct cftype *cft, u64 val) 3938 { 3939 return -ENOSYS; 3940 } 3941 #endif 3942 3943 #ifdef CONFIG_NUMA 3944 3945 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE)) 3946 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON)) 3947 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1) 3948 3949 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 3950 int nid, unsigned int lru_mask, bool tree) 3951 { 3952 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); 3953 unsigned long nr = 0; 3954 enum lru_list lru; 3955 3956 VM_BUG_ON((unsigned)nid >= nr_node_ids); 3957 3958 for_each_lru(lru) { 3959 if (!(BIT(lru) & lru_mask)) 3960 continue; 3961 if (tree) 3962 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru); 3963 else 3964 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru); 3965 } 3966 return nr; 3967 } 3968 3969 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 3970 unsigned int lru_mask, 3971 bool tree) 3972 { 3973 unsigned long nr = 0; 3974 enum lru_list lru; 3975 3976 for_each_lru(lru) { 3977 if (!(BIT(lru) & lru_mask)) 3978 continue; 3979 if (tree) 3980 nr += memcg_page_state(memcg, NR_LRU_BASE + lru); 3981 else 3982 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru); 3983 } 3984 return nr; 3985 } 3986 3987 static int memcg_numa_stat_show(struct seq_file *m, void *v) 3988 { 3989 struct numa_stat { 3990 const char *name; 3991 unsigned int lru_mask; 3992 }; 3993 3994 static const struct numa_stat stats[] = { 3995 { "total", LRU_ALL }, 3996 { "file", LRU_ALL_FILE }, 3997 { "anon", LRU_ALL_ANON }, 3998 { "unevictable", BIT(LRU_UNEVICTABLE) }, 3999 }; 4000 const struct numa_stat *stat; 4001 int nid; 4002 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4003 4004 mem_cgroup_flush_stats(); 4005 4006 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 4007 seq_printf(m, "%s=%lu", stat->name, 4008 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask, 4009 false)); 4010 for_each_node_state(nid, N_MEMORY) 4011 seq_printf(m, " N%d=%lu", nid, 4012 mem_cgroup_node_nr_lru_pages(memcg, nid, 4013 stat->lru_mask, false)); 4014 seq_putc(m, '\n'); 4015 } 4016 4017 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 4018 4019 seq_printf(m, "hierarchical_%s=%lu", stat->name, 4020 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask, 4021 true)); 4022 for_each_node_state(nid, N_MEMORY) 4023 seq_printf(m, " N%d=%lu", nid, 4024 mem_cgroup_node_nr_lru_pages(memcg, nid, 4025 stat->lru_mask, true)); 4026 seq_putc(m, '\n'); 4027 } 4028 4029 return 0; 4030 } 4031 #endif /* CONFIG_NUMA */ 4032 4033 static const unsigned int memcg1_stats[] = { 4034 NR_FILE_PAGES, 4035 NR_ANON_MAPPED, 4036 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4037 NR_ANON_THPS, 4038 #endif 4039 NR_SHMEM, 4040 NR_FILE_MAPPED, 4041 NR_FILE_DIRTY, 4042 NR_WRITEBACK, 4043 WORKINGSET_REFAULT_ANON, 4044 WORKINGSET_REFAULT_FILE, 4045 MEMCG_SWAP, 4046 }; 4047 4048 static const char *const memcg1_stat_names[] = { 4049 "cache", 4050 "rss", 4051 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4052 "rss_huge", 4053 #endif 4054 "shmem", 4055 "mapped_file", 4056 "dirty", 4057 "writeback", 4058 "workingset_refault_anon", 4059 "workingset_refault_file", 4060 "swap", 4061 }; 4062 4063 /* Universal VM events cgroup1 shows, original sort order */ 4064 static const unsigned int memcg1_events[] = { 4065 PGPGIN, 4066 PGPGOUT, 4067 PGFAULT, 4068 PGMAJFAULT, 4069 }; 4070 4071 static int memcg_stat_show(struct seq_file *m, void *v) 4072 { 4073 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 4074 unsigned long memory, memsw; 4075 struct mem_cgroup *mi; 4076 unsigned int i; 4077 4078 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats)); 4079 4080 mem_cgroup_flush_stats(); 4081 4082 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 4083 unsigned long nr; 4084 4085 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 4086 continue; 4087 nr = memcg_page_state_local(memcg, memcg1_stats[i]); 4088 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], 4089 nr * memcg_page_state_unit(memcg1_stats[i])); 4090 } 4091 4092 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 4093 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]), 4094 memcg_events_local(memcg, memcg1_events[i])); 4095 4096 for (i = 0; i < NR_LRU_LISTS; i++) 4097 seq_printf(m, "%s %lu\n", lru_list_name(i), 4098 memcg_page_state_local(memcg, NR_LRU_BASE + i) * 4099 PAGE_SIZE); 4100 4101 /* Hierarchical information */ 4102 memory = memsw = PAGE_COUNTER_MAX; 4103 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) { 4104 memory = min(memory, READ_ONCE(mi->memory.max)); 4105 memsw = min(memsw, READ_ONCE(mi->memsw.max)); 4106 } 4107 seq_printf(m, "hierarchical_memory_limit %llu\n", 4108 (u64)memory * PAGE_SIZE); 4109 if (do_memsw_account()) 4110 seq_printf(m, "hierarchical_memsw_limit %llu\n", 4111 (u64)memsw * PAGE_SIZE); 4112 4113 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 4114 unsigned long nr; 4115 4116 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 4117 continue; 4118 nr = memcg_page_state(memcg, memcg1_stats[i]); 4119 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], 4120 (u64)nr * memcg_page_state_unit(memcg1_stats[i])); 4121 } 4122 4123 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 4124 seq_printf(m, "total_%s %llu\n", 4125 vm_event_name(memcg1_events[i]), 4126 (u64)memcg_events(memcg, memcg1_events[i])); 4127 4128 for (i = 0; i < NR_LRU_LISTS; i++) 4129 seq_printf(m, "total_%s %llu\n", lru_list_name(i), 4130 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) * 4131 PAGE_SIZE); 4132 4133 #ifdef CONFIG_DEBUG_VM 4134 { 4135 pg_data_t *pgdat; 4136 struct mem_cgroup_per_node *mz; 4137 unsigned long anon_cost = 0; 4138 unsigned long file_cost = 0; 4139 4140 for_each_online_pgdat(pgdat) { 4141 mz = memcg->nodeinfo[pgdat->node_id]; 4142 4143 anon_cost += mz->lruvec.anon_cost; 4144 file_cost += mz->lruvec.file_cost; 4145 } 4146 seq_printf(m, "anon_cost %lu\n", anon_cost); 4147 seq_printf(m, "file_cost %lu\n", file_cost); 4148 } 4149 #endif 4150 4151 return 0; 4152 } 4153 4154 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, 4155 struct cftype *cft) 4156 { 4157 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4158 4159 return mem_cgroup_swappiness(memcg); 4160 } 4161 4162 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, 4163 struct cftype *cft, u64 val) 4164 { 4165 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4166 4167 if (val > 200) 4168 return -EINVAL; 4169 4170 if (!mem_cgroup_is_root(memcg)) 4171 memcg->swappiness = val; 4172 else 4173 vm_swappiness = val; 4174 4175 return 0; 4176 } 4177 4178 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 4179 { 4180 struct mem_cgroup_threshold_ary *t; 4181 unsigned long usage; 4182 int i; 4183 4184 rcu_read_lock(); 4185 if (!swap) 4186 t = rcu_dereference(memcg->thresholds.primary); 4187 else 4188 t = rcu_dereference(memcg->memsw_thresholds.primary); 4189 4190 if (!t) 4191 goto unlock; 4192 4193 usage = mem_cgroup_usage(memcg, swap); 4194 4195 /* 4196 * current_threshold points to threshold just below or equal to usage. 4197 * If it's not true, a threshold was crossed after last 4198 * call of __mem_cgroup_threshold(). 4199 */ 4200 i = t->current_threshold; 4201 4202 /* 4203 * Iterate backward over array of thresholds starting from 4204 * current_threshold and check if a threshold is crossed. 4205 * If none of thresholds below usage is crossed, we read 4206 * only one element of the array here. 4207 */ 4208 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 4209 eventfd_signal(t->entries[i].eventfd, 1); 4210 4211 /* i = current_threshold + 1 */ 4212 i++; 4213 4214 /* 4215 * Iterate forward over array of thresholds starting from 4216 * current_threshold+1 and check if a threshold is crossed. 4217 * If none of thresholds above usage is crossed, we read 4218 * only one element of the array here. 4219 */ 4220 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 4221 eventfd_signal(t->entries[i].eventfd, 1); 4222 4223 /* Update current_threshold */ 4224 t->current_threshold = i - 1; 4225 unlock: 4226 rcu_read_unlock(); 4227 } 4228 4229 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 4230 { 4231 while (memcg) { 4232 __mem_cgroup_threshold(memcg, false); 4233 if (do_memsw_account()) 4234 __mem_cgroup_threshold(memcg, true); 4235 4236 memcg = parent_mem_cgroup(memcg); 4237 } 4238 } 4239 4240 static int compare_thresholds(const void *a, const void *b) 4241 { 4242 const struct mem_cgroup_threshold *_a = a; 4243 const struct mem_cgroup_threshold *_b = b; 4244 4245 if (_a->threshold > _b->threshold) 4246 return 1; 4247 4248 if (_a->threshold < _b->threshold) 4249 return -1; 4250 4251 return 0; 4252 } 4253 4254 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 4255 { 4256 struct mem_cgroup_eventfd_list *ev; 4257 4258 spin_lock(&memcg_oom_lock); 4259 4260 list_for_each_entry(ev, &memcg->oom_notify, list) 4261 eventfd_signal(ev->eventfd, 1); 4262 4263 spin_unlock(&memcg_oom_lock); 4264 return 0; 4265 } 4266 4267 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 4268 { 4269 struct mem_cgroup *iter; 4270 4271 for_each_mem_cgroup_tree(iter, memcg) 4272 mem_cgroup_oom_notify_cb(iter); 4273 } 4274 4275 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 4276 struct eventfd_ctx *eventfd, const char *args, enum res_type type) 4277 { 4278 struct mem_cgroup_thresholds *thresholds; 4279 struct mem_cgroup_threshold_ary *new; 4280 unsigned long threshold; 4281 unsigned long usage; 4282 int i, size, ret; 4283 4284 ret = page_counter_memparse(args, "-1", &threshold); 4285 if (ret) 4286 return ret; 4287 4288 mutex_lock(&memcg->thresholds_lock); 4289 4290 if (type == _MEM) { 4291 thresholds = &memcg->thresholds; 4292 usage = mem_cgroup_usage(memcg, false); 4293 } else if (type == _MEMSWAP) { 4294 thresholds = &memcg->memsw_thresholds; 4295 usage = mem_cgroup_usage(memcg, true); 4296 } else 4297 BUG(); 4298 4299 /* Check if a threshold crossed before adding a new one */ 4300 if (thresholds->primary) 4301 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4302 4303 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 4304 4305 /* Allocate memory for new array of thresholds */ 4306 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL); 4307 if (!new) { 4308 ret = -ENOMEM; 4309 goto unlock; 4310 } 4311 new->size = size; 4312 4313 /* Copy thresholds (if any) to new array */ 4314 if (thresholds->primary) 4315 memcpy(new->entries, thresholds->primary->entries, 4316 flex_array_size(new, entries, size - 1)); 4317 4318 /* Add new threshold */ 4319 new->entries[size - 1].eventfd = eventfd; 4320 new->entries[size - 1].threshold = threshold; 4321 4322 /* Sort thresholds. Registering of new threshold isn't time-critical */ 4323 sort(new->entries, size, sizeof(*new->entries), 4324 compare_thresholds, NULL); 4325 4326 /* Find current threshold */ 4327 new->current_threshold = -1; 4328 for (i = 0; i < size; i++) { 4329 if (new->entries[i].threshold <= usage) { 4330 /* 4331 * new->current_threshold will not be used until 4332 * rcu_assign_pointer(), so it's safe to increment 4333 * it here. 4334 */ 4335 ++new->current_threshold; 4336 } else 4337 break; 4338 } 4339 4340 /* Free old spare buffer and save old primary buffer as spare */ 4341 kfree(thresholds->spare); 4342 thresholds->spare = thresholds->primary; 4343 4344 rcu_assign_pointer(thresholds->primary, new); 4345 4346 /* To be sure that nobody uses thresholds */ 4347 synchronize_rcu(); 4348 4349 unlock: 4350 mutex_unlock(&memcg->thresholds_lock); 4351 4352 return ret; 4353 } 4354 4355 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 4356 struct eventfd_ctx *eventfd, const char *args) 4357 { 4358 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM); 4359 } 4360 4361 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg, 4362 struct eventfd_ctx *eventfd, const char *args) 4363 { 4364 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP); 4365 } 4366 4367 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4368 struct eventfd_ctx *eventfd, enum res_type type) 4369 { 4370 struct mem_cgroup_thresholds *thresholds; 4371 struct mem_cgroup_threshold_ary *new; 4372 unsigned long usage; 4373 int i, j, size, entries; 4374 4375 mutex_lock(&memcg->thresholds_lock); 4376 4377 if (type == _MEM) { 4378 thresholds = &memcg->thresholds; 4379 usage = mem_cgroup_usage(memcg, false); 4380 } else if (type == _MEMSWAP) { 4381 thresholds = &memcg->memsw_thresholds; 4382 usage = mem_cgroup_usage(memcg, true); 4383 } else 4384 BUG(); 4385 4386 if (!thresholds->primary) 4387 goto unlock; 4388 4389 /* Check if a threshold crossed before removing */ 4390 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4391 4392 /* Calculate new number of threshold */ 4393 size = entries = 0; 4394 for (i = 0; i < thresholds->primary->size; i++) { 4395 if (thresholds->primary->entries[i].eventfd != eventfd) 4396 size++; 4397 else 4398 entries++; 4399 } 4400 4401 new = thresholds->spare; 4402 4403 /* If no items related to eventfd have been cleared, nothing to do */ 4404 if (!entries) 4405 goto unlock; 4406 4407 /* Set thresholds array to NULL if we don't have thresholds */ 4408 if (!size) { 4409 kfree(new); 4410 new = NULL; 4411 goto swap_buffers; 4412 } 4413 4414 new->size = size; 4415 4416 /* Copy thresholds and find current threshold */ 4417 new->current_threshold = -1; 4418 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 4419 if (thresholds->primary->entries[i].eventfd == eventfd) 4420 continue; 4421 4422 new->entries[j] = thresholds->primary->entries[i]; 4423 if (new->entries[j].threshold <= usage) { 4424 /* 4425 * new->current_threshold will not be used 4426 * until rcu_assign_pointer(), so it's safe to increment 4427 * it here. 4428 */ 4429 ++new->current_threshold; 4430 } 4431 j++; 4432 } 4433 4434 swap_buffers: 4435 /* Swap primary and spare array */ 4436 thresholds->spare = thresholds->primary; 4437 4438 rcu_assign_pointer(thresholds->primary, new); 4439 4440 /* To be sure that nobody uses thresholds */ 4441 synchronize_rcu(); 4442 4443 /* If all events are unregistered, free the spare array */ 4444 if (!new) { 4445 kfree(thresholds->spare); 4446 thresholds->spare = NULL; 4447 } 4448 unlock: 4449 mutex_unlock(&memcg->thresholds_lock); 4450 } 4451 4452 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4453 struct eventfd_ctx *eventfd) 4454 { 4455 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM); 4456 } 4457 4458 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4459 struct eventfd_ctx *eventfd) 4460 { 4461 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP); 4462 } 4463 4464 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg, 4465 struct eventfd_ctx *eventfd, const char *args) 4466 { 4467 struct mem_cgroup_eventfd_list *event; 4468 4469 event = kmalloc(sizeof(*event), GFP_KERNEL); 4470 if (!event) 4471 return -ENOMEM; 4472 4473 spin_lock(&memcg_oom_lock); 4474 4475 event->eventfd = eventfd; 4476 list_add(&event->list, &memcg->oom_notify); 4477 4478 /* already in OOM ? */ 4479 if (memcg->under_oom) 4480 eventfd_signal(eventfd, 1); 4481 spin_unlock(&memcg_oom_lock); 4482 4483 return 0; 4484 } 4485 4486 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg, 4487 struct eventfd_ctx *eventfd) 4488 { 4489 struct mem_cgroup_eventfd_list *ev, *tmp; 4490 4491 spin_lock(&memcg_oom_lock); 4492 4493 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 4494 if (ev->eventfd == eventfd) { 4495 list_del(&ev->list); 4496 kfree(ev); 4497 } 4498 } 4499 4500 spin_unlock(&memcg_oom_lock); 4501 } 4502 4503 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v) 4504 { 4505 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf); 4506 4507 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable); 4508 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom); 4509 seq_printf(sf, "oom_kill %lu\n", 4510 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL])); 4511 return 0; 4512 } 4513 4514 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, 4515 struct cftype *cft, u64 val) 4516 { 4517 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4518 4519 /* cannot set to root cgroup and only 0 and 1 are allowed */ 4520 if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1))) 4521 return -EINVAL; 4522 4523 memcg->oom_kill_disable = val; 4524 if (!val) 4525 memcg_oom_recover(memcg); 4526 4527 return 0; 4528 } 4529 4530 #ifdef CONFIG_CGROUP_WRITEBACK 4531 4532 #include <trace/events/writeback.h> 4533 4534 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 4535 { 4536 return wb_domain_init(&memcg->cgwb_domain, gfp); 4537 } 4538 4539 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 4540 { 4541 wb_domain_exit(&memcg->cgwb_domain); 4542 } 4543 4544 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 4545 { 4546 wb_domain_size_changed(&memcg->cgwb_domain); 4547 } 4548 4549 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 4550 { 4551 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4552 4553 if (!memcg->css.parent) 4554 return NULL; 4555 4556 return &memcg->cgwb_domain; 4557 } 4558 4559 /** 4560 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg 4561 * @wb: bdi_writeback in question 4562 * @pfilepages: out parameter for number of file pages 4563 * @pheadroom: out parameter for number of allocatable pages according to memcg 4564 * @pdirty: out parameter for number of dirty pages 4565 * @pwriteback: out parameter for number of pages under writeback 4566 * 4567 * Determine the numbers of file, headroom, dirty, and writeback pages in 4568 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom 4569 * is a bit more involved. 4570 * 4571 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the 4572 * headroom is calculated as the lowest headroom of itself and the 4573 * ancestors. Note that this doesn't consider the actual amount of 4574 * available memory in the system. The caller should further cap 4575 * *@pheadroom accordingly. 4576 */ 4577 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 4578 unsigned long *pheadroom, unsigned long *pdirty, 4579 unsigned long *pwriteback) 4580 { 4581 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4582 struct mem_cgroup *parent; 4583 4584 mem_cgroup_flush_stats(); 4585 4586 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY); 4587 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK); 4588 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) + 4589 memcg_page_state(memcg, NR_ACTIVE_FILE); 4590 4591 *pheadroom = PAGE_COUNTER_MAX; 4592 while ((parent = parent_mem_cgroup(memcg))) { 4593 unsigned long ceiling = min(READ_ONCE(memcg->memory.max), 4594 READ_ONCE(memcg->memory.high)); 4595 unsigned long used = page_counter_read(&memcg->memory); 4596 4597 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); 4598 memcg = parent; 4599 } 4600 } 4601 4602 /* 4603 * Foreign dirty flushing 4604 * 4605 * There's an inherent mismatch between memcg and writeback. The former 4606 * tracks ownership per-page while the latter per-inode. This was a 4607 * deliberate design decision because honoring per-page ownership in the 4608 * writeback path is complicated, may lead to higher CPU and IO overheads 4609 * and deemed unnecessary given that write-sharing an inode across 4610 * different cgroups isn't a common use-case. 4611 * 4612 * Combined with inode majority-writer ownership switching, this works well 4613 * enough in most cases but there are some pathological cases. For 4614 * example, let's say there are two cgroups A and B which keep writing to 4615 * different but confined parts of the same inode. B owns the inode and 4616 * A's memory is limited far below B's. A's dirty ratio can rise enough to 4617 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid 4618 * triggering background writeback. A will be slowed down without a way to 4619 * make writeback of the dirty pages happen. 4620 * 4621 * Conditions like the above can lead to a cgroup getting repeatedly and 4622 * severely throttled after making some progress after each 4623 * dirty_expire_interval while the underlying IO device is almost 4624 * completely idle. 4625 * 4626 * Solving this problem completely requires matching the ownership tracking 4627 * granularities between memcg and writeback in either direction. However, 4628 * the more egregious behaviors can be avoided by simply remembering the 4629 * most recent foreign dirtying events and initiating remote flushes on 4630 * them when local writeback isn't enough to keep the memory clean enough. 4631 * 4632 * The following two functions implement such mechanism. When a foreign 4633 * page - a page whose memcg and writeback ownerships don't match - is 4634 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning 4635 * bdi_writeback on the page owning memcg. When balance_dirty_pages() 4636 * decides that the memcg needs to sleep due to high dirty ratio, it calls 4637 * mem_cgroup_flush_foreign() which queues writeback on the recorded 4638 * foreign bdi_writebacks which haven't expired. Both the numbers of 4639 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are 4640 * limited to MEMCG_CGWB_FRN_CNT. 4641 * 4642 * The mechanism only remembers IDs and doesn't hold any object references. 4643 * As being wrong occasionally doesn't matter, updates and accesses to the 4644 * records are lockless and racy. 4645 */ 4646 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio, 4647 struct bdi_writeback *wb) 4648 { 4649 struct mem_cgroup *memcg = folio_memcg(folio); 4650 struct memcg_cgwb_frn *frn; 4651 u64 now = get_jiffies_64(); 4652 u64 oldest_at = now; 4653 int oldest = -1; 4654 int i; 4655 4656 trace_track_foreign_dirty(folio, wb); 4657 4658 /* 4659 * Pick the slot to use. If there is already a slot for @wb, keep 4660 * using it. If not replace the oldest one which isn't being 4661 * written out. 4662 */ 4663 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 4664 frn = &memcg->cgwb_frn[i]; 4665 if (frn->bdi_id == wb->bdi->id && 4666 frn->memcg_id == wb->memcg_css->id) 4667 break; 4668 if (time_before64(frn->at, oldest_at) && 4669 atomic_read(&frn->done.cnt) == 1) { 4670 oldest = i; 4671 oldest_at = frn->at; 4672 } 4673 } 4674 4675 if (i < MEMCG_CGWB_FRN_CNT) { 4676 /* 4677 * Re-using an existing one. Update timestamp lazily to 4678 * avoid making the cacheline hot. We want them to be 4679 * reasonably up-to-date and significantly shorter than 4680 * dirty_expire_interval as that's what expires the record. 4681 * Use the shorter of 1s and dirty_expire_interval / 8. 4682 */ 4683 unsigned long update_intv = 4684 min_t(unsigned long, HZ, 4685 msecs_to_jiffies(dirty_expire_interval * 10) / 8); 4686 4687 if (time_before64(frn->at, now - update_intv)) 4688 frn->at = now; 4689 } else if (oldest >= 0) { 4690 /* replace the oldest free one */ 4691 frn = &memcg->cgwb_frn[oldest]; 4692 frn->bdi_id = wb->bdi->id; 4693 frn->memcg_id = wb->memcg_css->id; 4694 frn->at = now; 4695 } 4696 } 4697 4698 /* issue foreign writeback flushes for recorded foreign dirtying events */ 4699 void mem_cgroup_flush_foreign(struct bdi_writeback *wb) 4700 { 4701 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4702 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10); 4703 u64 now = jiffies_64; 4704 int i; 4705 4706 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 4707 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i]; 4708 4709 /* 4710 * If the record is older than dirty_expire_interval, 4711 * writeback on it has already started. No need to kick it 4712 * off again. Also, don't start a new one if there's 4713 * already one in flight. 4714 */ 4715 if (time_after64(frn->at, now - intv) && 4716 atomic_read(&frn->done.cnt) == 1) { 4717 frn->at = 0; 4718 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id); 4719 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 4720 WB_REASON_FOREIGN_FLUSH, 4721 &frn->done); 4722 } 4723 } 4724 } 4725 4726 #else /* CONFIG_CGROUP_WRITEBACK */ 4727 4728 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 4729 { 4730 return 0; 4731 } 4732 4733 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 4734 { 4735 } 4736 4737 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 4738 { 4739 } 4740 4741 #endif /* CONFIG_CGROUP_WRITEBACK */ 4742 4743 /* 4744 * DO NOT USE IN NEW FILES. 4745 * 4746 * "cgroup.event_control" implementation. 4747 * 4748 * This is way over-engineered. It tries to support fully configurable 4749 * events for each user. Such level of flexibility is completely 4750 * unnecessary especially in the light of the planned unified hierarchy. 4751 * 4752 * Please deprecate this and replace with something simpler if at all 4753 * possible. 4754 */ 4755 4756 /* 4757 * Unregister event and free resources. 4758 * 4759 * Gets called from workqueue. 4760 */ 4761 static void memcg_event_remove(struct work_struct *work) 4762 { 4763 struct mem_cgroup_event *event = 4764 container_of(work, struct mem_cgroup_event, remove); 4765 struct mem_cgroup *memcg = event->memcg; 4766 4767 remove_wait_queue(event->wqh, &event->wait); 4768 4769 event->unregister_event(memcg, event->eventfd); 4770 4771 /* Notify userspace the event is going away. */ 4772 eventfd_signal(event->eventfd, 1); 4773 4774 eventfd_ctx_put(event->eventfd); 4775 kfree(event); 4776 css_put(&memcg->css); 4777 } 4778 4779 /* 4780 * Gets called on EPOLLHUP on eventfd when user closes it. 4781 * 4782 * Called with wqh->lock held and interrupts disabled. 4783 */ 4784 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode, 4785 int sync, void *key) 4786 { 4787 struct mem_cgroup_event *event = 4788 container_of(wait, struct mem_cgroup_event, wait); 4789 struct mem_cgroup *memcg = event->memcg; 4790 __poll_t flags = key_to_poll(key); 4791 4792 if (flags & EPOLLHUP) { 4793 /* 4794 * If the event has been detached at cgroup removal, we 4795 * can simply return knowing the other side will cleanup 4796 * for us. 4797 * 4798 * We can't race against event freeing since the other 4799 * side will require wqh->lock via remove_wait_queue(), 4800 * which we hold. 4801 */ 4802 spin_lock(&memcg->event_list_lock); 4803 if (!list_empty(&event->list)) { 4804 list_del_init(&event->list); 4805 /* 4806 * We are in atomic context, but cgroup_event_remove() 4807 * may sleep, so we have to call it in workqueue. 4808 */ 4809 schedule_work(&event->remove); 4810 } 4811 spin_unlock(&memcg->event_list_lock); 4812 } 4813 4814 return 0; 4815 } 4816 4817 static void memcg_event_ptable_queue_proc(struct file *file, 4818 wait_queue_head_t *wqh, poll_table *pt) 4819 { 4820 struct mem_cgroup_event *event = 4821 container_of(pt, struct mem_cgroup_event, pt); 4822 4823 event->wqh = wqh; 4824 add_wait_queue(wqh, &event->wait); 4825 } 4826 4827 /* 4828 * DO NOT USE IN NEW FILES. 4829 * 4830 * Parse input and register new cgroup event handler. 4831 * 4832 * Input must be in format '<event_fd> <control_fd> <args>'. 4833 * Interpretation of args is defined by control file implementation. 4834 */ 4835 static ssize_t memcg_write_event_control(struct kernfs_open_file *of, 4836 char *buf, size_t nbytes, loff_t off) 4837 { 4838 struct cgroup_subsys_state *css = of_css(of); 4839 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4840 struct mem_cgroup_event *event; 4841 struct cgroup_subsys_state *cfile_css; 4842 unsigned int efd, cfd; 4843 struct fd efile; 4844 struct fd cfile; 4845 struct dentry *cdentry; 4846 const char *name; 4847 char *endp; 4848 int ret; 4849 4850 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 4851 return -EOPNOTSUPP; 4852 4853 buf = strstrip(buf); 4854 4855 efd = simple_strtoul(buf, &endp, 10); 4856 if (*endp != ' ') 4857 return -EINVAL; 4858 buf = endp + 1; 4859 4860 cfd = simple_strtoul(buf, &endp, 10); 4861 if ((*endp != ' ') && (*endp != '\0')) 4862 return -EINVAL; 4863 buf = endp + 1; 4864 4865 event = kzalloc(sizeof(*event), GFP_KERNEL); 4866 if (!event) 4867 return -ENOMEM; 4868 4869 event->memcg = memcg; 4870 INIT_LIST_HEAD(&event->list); 4871 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc); 4872 init_waitqueue_func_entry(&event->wait, memcg_event_wake); 4873 INIT_WORK(&event->remove, memcg_event_remove); 4874 4875 efile = fdget(efd); 4876 if (!efile.file) { 4877 ret = -EBADF; 4878 goto out_kfree; 4879 } 4880 4881 event->eventfd = eventfd_ctx_fileget(efile.file); 4882 if (IS_ERR(event->eventfd)) { 4883 ret = PTR_ERR(event->eventfd); 4884 goto out_put_efile; 4885 } 4886 4887 cfile = fdget(cfd); 4888 if (!cfile.file) { 4889 ret = -EBADF; 4890 goto out_put_eventfd; 4891 } 4892 4893 /* the process need read permission on control file */ 4894 /* AV: shouldn't we check that it's been opened for read instead? */ 4895 ret = file_permission(cfile.file, MAY_READ); 4896 if (ret < 0) 4897 goto out_put_cfile; 4898 4899 /* 4900 * The control file must be a regular cgroup1 file. As a regular cgroup 4901 * file can't be renamed, it's safe to access its name afterwards. 4902 */ 4903 cdentry = cfile.file->f_path.dentry; 4904 if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(cdentry)) { 4905 ret = -EINVAL; 4906 goto out_put_cfile; 4907 } 4908 4909 /* 4910 * Determine the event callbacks and set them in @event. This used 4911 * to be done via struct cftype but cgroup core no longer knows 4912 * about these events. The following is crude but the whole thing 4913 * is for compatibility anyway. 4914 * 4915 * DO NOT ADD NEW FILES. 4916 */ 4917 name = cdentry->d_name.name; 4918 4919 if (!strcmp(name, "memory.usage_in_bytes")) { 4920 event->register_event = mem_cgroup_usage_register_event; 4921 event->unregister_event = mem_cgroup_usage_unregister_event; 4922 } else if (!strcmp(name, "memory.oom_control")) { 4923 event->register_event = mem_cgroup_oom_register_event; 4924 event->unregister_event = mem_cgroup_oom_unregister_event; 4925 } else if (!strcmp(name, "memory.pressure_level")) { 4926 event->register_event = vmpressure_register_event; 4927 event->unregister_event = vmpressure_unregister_event; 4928 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) { 4929 event->register_event = memsw_cgroup_usage_register_event; 4930 event->unregister_event = memsw_cgroup_usage_unregister_event; 4931 } else { 4932 ret = -EINVAL; 4933 goto out_put_cfile; 4934 } 4935 4936 /* 4937 * Verify @cfile should belong to @css. Also, remaining events are 4938 * automatically removed on cgroup destruction but the removal is 4939 * asynchronous, so take an extra ref on @css. 4940 */ 4941 cfile_css = css_tryget_online_from_dir(cdentry->d_parent, 4942 &memory_cgrp_subsys); 4943 ret = -EINVAL; 4944 if (IS_ERR(cfile_css)) 4945 goto out_put_cfile; 4946 if (cfile_css != css) { 4947 css_put(cfile_css); 4948 goto out_put_cfile; 4949 } 4950 4951 ret = event->register_event(memcg, event->eventfd, buf); 4952 if (ret) 4953 goto out_put_css; 4954 4955 vfs_poll(efile.file, &event->pt); 4956 4957 spin_lock_irq(&memcg->event_list_lock); 4958 list_add(&event->list, &memcg->event_list); 4959 spin_unlock_irq(&memcg->event_list_lock); 4960 4961 fdput(cfile); 4962 fdput(efile); 4963 4964 return nbytes; 4965 4966 out_put_css: 4967 css_put(css); 4968 out_put_cfile: 4969 fdput(cfile); 4970 out_put_eventfd: 4971 eventfd_ctx_put(event->eventfd); 4972 out_put_efile: 4973 fdput(efile); 4974 out_kfree: 4975 kfree(event); 4976 4977 return ret; 4978 } 4979 4980 #if defined(CONFIG_MEMCG_KMEM) && (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)) 4981 static int mem_cgroup_slab_show(struct seq_file *m, void *p) 4982 { 4983 /* 4984 * Deprecated. 4985 * Please, take a look at tools/cgroup/memcg_slabinfo.py . 4986 */ 4987 return 0; 4988 } 4989 #endif 4990 4991 static struct cftype mem_cgroup_legacy_files[] = { 4992 { 4993 .name = "usage_in_bytes", 4994 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 4995 .read_u64 = mem_cgroup_read_u64, 4996 }, 4997 { 4998 .name = "max_usage_in_bytes", 4999 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 5000 .write = mem_cgroup_reset, 5001 .read_u64 = mem_cgroup_read_u64, 5002 }, 5003 { 5004 .name = "limit_in_bytes", 5005 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 5006 .write = mem_cgroup_write, 5007 .read_u64 = mem_cgroup_read_u64, 5008 }, 5009 { 5010 .name = "soft_limit_in_bytes", 5011 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 5012 .write = mem_cgroup_write, 5013 .read_u64 = mem_cgroup_read_u64, 5014 }, 5015 { 5016 .name = "failcnt", 5017 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 5018 .write = mem_cgroup_reset, 5019 .read_u64 = mem_cgroup_read_u64, 5020 }, 5021 { 5022 .name = "stat", 5023 .seq_show = memcg_stat_show, 5024 }, 5025 { 5026 .name = "force_empty", 5027 .write = mem_cgroup_force_empty_write, 5028 }, 5029 { 5030 .name = "use_hierarchy", 5031 .write_u64 = mem_cgroup_hierarchy_write, 5032 .read_u64 = mem_cgroup_hierarchy_read, 5033 }, 5034 { 5035 .name = "cgroup.event_control", /* XXX: for compat */ 5036 .write = memcg_write_event_control, 5037 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE, 5038 }, 5039 { 5040 .name = "swappiness", 5041 .read_u64 = mem_cgroup_swappiness_read, 5042 .write_u64 = mem_cgroup_swappiness_write, 5043 }, 5044 { 5045 .name = "move_charge_at_immigrate", 5046 .read_u64 = mem_cgroup_move_charge_read, 5047 .write_u64 = mem_cgroup_move_charge_write, 5048 }, 5049 { 5050 .name = "oom_control", 5051 .seq_show = mem_cgroup_oom_control_read, 5052 .write_u64 = mem_cgroup_oom_control_write, 5053 }, 5054 { 5055 .name = "pressure_level", 5056 }, 5057 #ifdef CONFIG_NUMA 5058 { 5059 .name = "numa_stat", 5060 .seq_show = memcg_numa_stat_show, 5061 }, 5062 #endif 5063 { 5064 .name = "kmem.limit_in_bytes", 5065 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), 5066 .write = mem_cgroup_write, 5067 .read_u64 = mem_cgroup_read_u64, 5068 }, 5069 { 5070 .name = "kmem.usage_in_bytes", 5071 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), 5072 .read_u64 = mem_cgroup_read_u64, 5073 }, 5074 { 5075 .name = "kmem.failcnt", 5076 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), 5077 .write = mem_cgroup_reset, 5078 .read_u64 = mem_cgroup_read_u64, 5079 }, 5080 { 5081 .name = "kmem.max_usage_in_bytes", 5082 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), 5083 .write = mem_cgroup_reset, 5084 .read_u64 = mem_cgroup_read_u64, 5085 }, 5086 #if defined(CONFIG_MEMCG_KMEM) && \ 5087 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)) 5088 { 5089 .name = "kmem.slabinfo", 5090 .seq_show = mem_cgroup_slab_show, 5091 }, 5092 #endif 5093 { 5094 .name = "kmem.tcp.limit_in_bytes", 5095 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT), 5096 .write = mem_cgroup_write, 5097 .read_u64 = mem_cgroup_read_u64, 5098 }, 5099 { 5100 .name = "kmem.tcp.usage_in_bytes", 5101 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE), 5102 .read_u64 = mem_cgroup_read_u64, 5103 }, 5104 { 5105 .name = "kmem.tcp.failcnt", 5106 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT), 5107 .write = mem_cgroup_reset, 5108 .read_u64 = mem_cgroup_read_u64, 5109 }, 5110 { 5111 .name = "kmem.tcp.max_usage_in_bytes", 5112 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE), 5113 .write = mem_cgroup_reset, 5114 .read_u64 = mem_cgroup_read_u64, 5115 }, 5116 { }, /* terminate */ 5117 }; 5118 5119 /* 5120 * Private memory cgroup IDR 5121 * 5122 * Swap-out records and page cache shadow entries need to store memcg 5123 * references in constrained space, so we maintain an ID space that is 5124 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of 5125 * memory-controlled cgroups to 64k. 5126 * 5127 * However, there usually are many references to the offline CSS after 5128 * the cgroup has been destroyed, such as page cache or reclaimable 5129 * slab objects, that don't need to hang on to the ID. We want to keep 5130 * those dead CSS from occupying IDs, or we might quickly exhaust the 5131 * relatively small ID space and prevent the creation of new cgroups 5132 * even when there are much fewer than 64k cgroups - possibly none. 5133 * 5134 * Maintain a private 16-bit ID space for memcg, and allow the ID to 5135 * be freed and recycled when it's no longer needed, which is usually 5136 * when the CSS is offlined. 5137 * 5138 * The only exception to that are records of swapped out tmpfs/shmem 5139 * pages that need to be attributed to live ancestors on swapin. But 5140 * those references are manageable from userspace. 5141 */ 5142 5143 static DEFINE_IDR(mem_cgroup_idr); 5144 5145 static void mem_cgroup_id_remove(struct mem_cgroup *memcg) 5146 { 5147 if (memcg->id.id > 0) { 5148 idr_remove(&mem_cgroup_idr, memcg->id.id); 5149 memcg->id.id = 0; 5150 } 5151 } 5152 5153 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg, 5154 unsigned int n) 5155 { 5156 refcount_add(n, &memcg->id.ref); 5157 } 5158 5159 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n) 5160 { 5161 if (refcount_sub_and_test(n, &memcg->id.ref)) { 5162 mem_cgroup_id_remove(memcg); 5163 5164 /* Memcg ID pins CSS */ 5165 css_put(&memcg->css); 5166 } 5167 } 5168 5169 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg) 5170 { 5171 mem_cgroup_id_put_many(memcg, 1); 5172 } 5173 5174 /** 5175 * mem_cgroup_from_id - look up a memcg from a memcg id 5176 * @id: the memcg id to look up 5177 * 5178 * Caller must hold rcu_read_lock(). 5179 */ 5180 struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 5181 { 5182 WARN_ON_ONCE(!rcu_read_lock_held()); 5183 return idr_find(&mem_cgroup_idr, id); 5184 } 5185 5186 #ifdef CONFIG_SHRINKER_DEBUG 5187 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino) 5188 { 5189 struct cgroup *cgrp; 5190 struct cgroup_subsys_state *css; 5191 struct mem_cgroup *memcg; 5192 5193 cgrp = cgroup_get_from_id(ino); 5194 if (IS_ERR(cgrp)) 5195 return ERR_CAST(cgrp); 5196 5197 css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys); 5198 if (css) 5199 memcg = container_of(css, struct mem_cgroup, css); 5200 else 5201 memcg = ERR_PTR(-ENOENT); 5202 5203 cgroup_put(cgrp); 5204 5205 return memcg; 5206 } 5207 #endif 5208 5209 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 5210 { 5211 struct mem_cgroup_per_node *pn; 5212 5213 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node); 5214 if (!pn) 5215 return 1; 5216 5217 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu, 5218 GFP_KERNEL_ACCOUNT); 5219 if (!pn->lruvec_stats_percpu) { 5220 kfree(pn); 5221 return 1; 5222 } 5223 5224 lruvec_init(&pn->lruvec); 5225 pn->memcg = memcg; 5226 5227 memcg->nodeinfo[node] = pn; 5228 return 0; 5229 } 5230 5231 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 5232 { 5233 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node]; 5234 5235 if (!pn) 5236 return; 5237 5238 free_percpu(pn->lruvec_stats_percpu); 5239 kfree(pn); 5240 } 5241 5242 static void __mem_cgroup_free(struct mem_cgroup *memcg) 5243 { 5244 int node; 5245 5246 for_each_node(node) 5247 free_mem_cgroup_per_node_info(memcg, node); 5248 kfree(memcg->vmstats); 5249 free_percpu(memcg->vmstats_percpu); 5250 kfree(memcg); 5251 } 5252 5253 static void mem_cgroup_free(struct mem_cgroup *memcg) 5254 { 5255 lru_gen_exit_memcg(memcg); 5256 memcg_wb_domain_exit(memcg); 5257 __mem_cgroup_free(memcg); 5258 } 5259 5260 static struct mem_cgroup *mem_cgroup_alloc(void) 5261 { 5262 struct mem_cgroup *memcg; 5263 int node; 5264 int __maybe_unused i; 5265 long error = -ENOMEM; 5266 5267 memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL); 5268 if (!memcg) 5269 return ERR_PTR(error); 5270 5271 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL, 5272 1, MEM_CGROUP_ID_MAX + 1, GFP_KERNEL); 5273 if (memcg->id.id < 0) { 5274 error = memcg->id.id; 5275 goto fail; 5276 } 5277 5278 memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats), GFP_KERNEL); 5279 if (!memcg->vmstats) 5280 goto fail; 5281 5282 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu, 5283 GFP_KERNEL_ACCOUNT); 5284 if (!memcg->vmstats_percpu) 5285 goto fail; 5286 5287 for_each_node(node) 5288 if (alloc_mem_cgroup_per_node_info(memcg, node)) 5289 goto fail; 5290 5291 if (memcg_wb_domain_init(memcg, GFP_KERNEL)) 5292 goto fail; 5293 5294 INIT_WORK(&memcg->high_work, high_work_func); 5295 INIT_LIST_HEAD(&memcg->oom_notify); 5296 mutex_init(&memcg->thresholds_lock); 5297 spin_lock_init(&memcg->move_lock); 5298 vmpressure_init(&memcg->vmpressure); 5299 INIT_LIST_HEAD(&memcg->event_list); 5300 spin_lock_init(&memcg->event_list_lock); 5301 memcg->socket_pressure = jiffies; 5302 #ifdef CONFIG_MEMCG_KMEM 5303 memcg->kmemcg_id = -1; 5304 INIT_LIST_HEAD(&memcg->objcg_list); 5305 #endif 5306 #ifdef CONFIG_CGROUP_WRITEBACK 5307 INIT_LIST_HEAD(&memcg->cgwb_list); 5308 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 5309 memcg->cgwb_frn[i].done = 5310 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq); 5311 #endif 5312 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5313 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock); 5314 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue); 5315 memcg->deferred_split_queue.split_queue_len = 0; 5316 #endif 5317 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id); 5318 lru_gen_init_memcg(memcg); 5319 return memcg; 5320 fail: 5321 mem_cgroup_id_remove(memcg); 5322 __mem_cgroup_free(memcg); 5323 return ERR_PTR(error); 5324 } 5325 5326 static struct cgroup_subsys_state * __ref 5327 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 5328 { 5329 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); 5330 struct mem_cgroup *memcg, *old_memcg; 5331 5332 old_memcg = set_active_memcg(parent); 5333 memcg = mem_cgroup_alloc(); 5334 set_active_memcg(old_memcg); 5335 if (IS_ERR(memcg)) 5336 return ERR_CAST(memcg); 5337 5338 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 5339 memcg->soft_limit = PAGE_COUNTER_MAX; 5340 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 5341 memcg->zswap_max = PAGE_COUNTER_MAX; 5342 #endif 5343 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 5344 if (parent) { 5345 memcg->swappiness = mem_cgroup_swappiness(parent); 5346 memcg->oom_kill_disable = parent->oom_kill_disable; 5347 5348 page_counter_init(&memcg->memory, &parent->memory); 5349 page_counter_init(&memcg->swap, &parent->swap); 5350 page_counter_init(&memcg->kmem, &parent->kmem); 5351 page_counter_init(&memcg->tcpmem, &parent->tcpmem); 5352 } else { 5353 init_memcg_events(); 5354 page_counter_init(&memcg->memory, NULL); 5355 page_counter_init(&memcg->swap, NULL); 5356 page_counter_init(&memcg->kmem, NULL); 5357 page_counter_init(&memcg->tcpmem, NULL); 5358 5359 root_mem_cgroup = memcg; 5360 return &memcg->css; 5361 } 5362 5363 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 5364 static_branch_inc(&memcg_sockets_enabled_key); 5365 5366 #if defined(CONFIG_MEMCG_KMEM) 5367 if (!cgroup_memory_nobpf) 5368 static_branch_inc(&memcg_bpf_enabled_key); 5369 #endif 5370 5371 return &memcg->css; 5372 } 5373 5374 static int mem_cgroup_css_online(struct cgroup_subsys_state *css) 5375 { 5376 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5377 5378 if (memcg_online_kmem(memcg)) 5379 goto remove_id; 5380 5381 /* 5382 * A memcg must be visible for expand_shrinker_info() 5383 * by the time the maps are allocated. So, we allocate maps 5384 * here, when for_each_mem_cgroup() can't skip it. 5385 */ 5386 if (alloc_shrinker_info(memcg)) 5387 goto offline_kmem; 5388 5389 /* Online state pins memcg ID, memcg ID pins CSS */ 5390 refcount_set(&memcg->id.ref, 1); 5391 css_get(css); 5392 5393 if (unlikely(mem_cgroup_is_root(memcg))) 5394 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, 5395 2UL*HZ); 5396 return 0; 5397 offline_kmem: 5398 memcg_offline_kmem(memcg); 5399 remove_id: 5400 mem_cgroup_id_remove(memcg); 5401 return -ENOMEM; 5402 } 5403 5404 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 5405 { 5406 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5407 struct mem_cgroup_event *event, *tmp; 5408 5409 /* 5410 * Unregister events and notify userspace. 5411 * Notify userspace about cgroup removing only after rmdir of cgroup 5412 * directory to avoid race between userspace and kernelspace. 5413 */ 5414 spin_lock_irq(&memcg->event_list_lock); 5415 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) { 5416 list_del_init(&event->list); 5417 schedule_work(&event->remove); 5418 } 5419 spin_unlock_irq(&memcg->event_list_lock); 5420 5421 page_counter_set_min(&memcg->memory, 0); 5422 page_counter_set_low(&memcg->memory, 0); 5423 5424 memcg_offline_kmem(memcg); 5425 reparent_shrinker_deferred(memcg); 5426 wb_memcg_offline(memcg); 5427 5428 drain_all_stock(memcg); 5429 5430 mem_cgroup_id_put(memcg); 5431 } 5432 5433 static void mem_cgroup_css_released(struct cgroup_subsys_state *css) 5434 { 5435 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5436 5437 invalidate_reclaim_iterators(memcg); 5438 } 5439 5440 static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 5441 { 5442 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5443 int __maybe_unused i; 5444 5445 #ifdef CONFIG_CGROUP_WRITEBACK 5446 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 5447 wb_wait_for_completion(&memcg->cgwb_frn[i].done); 5448 #endif 5449 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 5450 static_branch_dec(&memcg_sockets_enabled_key); 5451 5452 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active) 5453 static_branch_dec(&memcg_sockets_enabled_key); 5454 5455 #if defined(CONFIG_MEMCG_KMEM) 5456 if (!cgroup_memory_nobpf) 5457 static_branch_dec(&memcg_bpf_enabled_key); 5458 #endif 5459 5460 vmpressure_cleanup(&memcg->vmpressure); 5461 cancel_work_sync(&memcg->high_work); 5462 mem_cgroup_remove_from_trees(memcg); 5463 free_shrinker_info(memcg); 5464 mem_cgroup_free(memcg); 5465 } 5466 5467 /** 5468 * mem_cgroup_css_reset - reset the states of a mem_cgroup 5469 * @css: the target css 5470 * 5471 * Reset the states of the mem_cgroup associated with @css. This is 5472 * invoked when the userland requests disabling on the default hierarchy 5473 * but the memcg is pinned through dependency. The memcg should stop 5474 * applying policies and should revert to the vanilla state as it may be 5475 * made visible again. 5476 * 5477 * The current implementation only resets the essential configurations. 5478 * This needs to be expanded to cover all the visible parts. 5479 */ 5480 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) 5481 { 5482 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5483 5484 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX); 5485 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX); 5486 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX); 5487 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX); 5488 page_counter_set_min(&memcg->memory, 0); 5489 page_counter_set_low(&memcg->memory, 0); 5490 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 5491 memcg->soft_limit = PAGE_COUNTER_MAX; 5492 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 5493 memcg_wb_domain_size_changed(memcg); 5494 } 5495 5496 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu) 5497 { 5498 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5499 struct mem_cgroup *parent = parent_mem_cgroup(memcg); 5500 struct memcg_vmstats_percpu *statc; 5501 long delta, v; 5502 int i, nid; 5503 5504 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu); 5505 5506 for (i = 0; i < MEMCG_NR_STAT; i++) { 5507 /* 5508 * Collect the aggregated propagation counts of groups 5509 * below us. We're in a per-cpu loop here and this is 5510 * a global counter, so the first cycle will get them. 5511 */ 5512 delta = memcg->vmstats->state_pending[i]; 5513 if (delta) 5514 memcg->vmstats->state_pending[i] = 0; 5515 5516 /* Add CPU changes on this level since the last flush */ 5517 v = READ_ONCE(statc->state[i]); 5518 if (v != statc->state_prev[i]) { 5519 delta += v - statc->state_prev[i]; 5520 statc->state_prev[i] = v; 5521 } 5522 5523 if (!delta) 5524 continue; 5525 5526 /* Aggregate counts on this level and propagate upwards */ 5527 memcg->vmstats->state[i] += delta; 5528 if (parent) 5529 parent->vmstats->state_pending[i] += delta; 5530 } 5531 5532 for (i = 0; i < NR_MEMCG_EVENTS; i++) { 5533 delta = memcg->vmstats->events_pending[i]; 5534 if (delta) 5535 memcg->vmstats->events_pending[i] = 0; 5536 5537 v = READ_ONCE(statc->events[i]); 5538 if (v != statc->events_prev[i]) { 5539 delta += v - statc->events_prev[i]; 5540 statc->events_prev[i] = v; 5541 } 5542 5543 if (!delta) 5544 continue; 5545 5546 memcg->vmstats->events[i] += delta; 5547 if (parent) 5548 parent->vmstats->events_pending[i] += delta; 5549 } 5550 5551 for_each_node_state(nid, N_MEMORY) { 5552 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid]; 5553 struct mem_cgroup_per_node *ppn = NULL; 5554 struct lruvec_stats_percpu *lstatc; 5555 5556 if (parent) 5557 ppn = parent->nodeinfo[nid]; 5558 5559 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu); 5560 5561 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) { 5562 delta = pn->lruvec_stats.state_pending[i]; 5563 if (delta) 5564 pn->lruvec_stats.state_pending[i] = 0; 5565 5566 v = READ_ONCE(lstatc->state[i]); 5567 if (v != lstatc->state_prev[i]) { 5568 delta += v - lstatc->state_prev[i]; 5569 lstatc->state_prev[i] = v; 5570 } 5571 5572 if (!delta) 5573 continue; 5574 5575 pn->lruvec_stats.state[i] += delta; 5576 if (ppn) 5577 ppn->lruvec_stats.state_pending[i] += delta; 5578 } 5579 } 5580 } 5581 5582 #ifdef CONFIG_MMU 5583 /* Handlers for move charge at task migration. */ 5584 static int mem_cgroup_do_precharge(unsigned long count) 5585 { 5586 int ret; 5587 5588 /* Try a single bulk charge without reclaim first, kswapd may wake */ 5589 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count); 5590 if (!ret) { 5591 mc.precharge += count; 5592 return ret; 5593 } 5594 5595 /* Try charges one by one with reclaim, but do not retry */ 5596 while (count--) { 5597 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1); 5598 if (ret) 5599 return ret; 5600 mc.precharge++; 5601 cond_resched(); 5602 } 5603 return 0; 5604 } 5605 5606 union mc_target { 5607 struct page *page; 5608 swp_entry_t ent; 5609 }; 5610 5611 enum mc_target_type { 5612 MC_TARGET_NONE = 0, 5613 MC_TARGET_PAGE, 5614 MC_TARGET_SWAP, 5615 MC_TARGET_DEVICE, 5616 }; 5617 5618 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 5619 unsigned long addr, pte_t ptent) 5620 { 5621 struct page *page = vm_normal_page(vma, addr, ptent); 5622 5623 if (!page || !page_mapped(page)) 5624 return NULL; 5625 if (PageAnon(page)) { 5626 if (!(mc.flags & MOVE_ANON)) 5627 return NULL; 5628 } else { 5629 if (!(mc.flags & MOVE_FILE)) 5630 return NULL; 5631 } 5632 if (!get_page_unless_zero(page)) 5633 return NULL; 5634 5635 return page; 5636 } 5637 5638 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE) 5639 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5640 pte_t ptent, swp_entry_t *entry) 5641 { 5642 struct page *page = NULL; 5643 swp_entry_t ent = pte_to_swp_entry(ptent); 5644 5645 if (!(mc.flags & MOVE_ANON)) 5646 return NULL; 5647 5648 /* 5649 * Handle device private pages that are not accessible by the CPU, but 5650 * stored as special swap entries in the page table. 5651 */ 5652 if (is_device_private_entry(ent)) { 5653 page = pfn_swap_entry_to_page(ent); 5654 if (!get_page_unless_zero(page)) 5655 return NULL; 5656 return page; 5657 } 5658 5659 if (non_swap_entry(ent)) 5660 return NULL; 5661 5662 /* 5663 * Because swap_cache_get_folio() updates some statistics counter, 5664 * we call find_get_page() with swapper_space directly. 5665 */ 5666 page = find_get_page(swap_address_space(ent), swp_offset(ent)); 5667 entry->val = ent.val; 5668 5669 return page; 5670 } 5671 #else 5672 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5673 pte_t ptent, swp_entry_t *entry) 5674 { 5675 return NULL; 5676 } 5677 #endif 5678 5679 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 5680 unsigned long addr, pte_t ptent) 5681 { 5682 unsigned long index; 5683 struct folio *folio; 5684 5685 if (!vma->vm_file) /* anonymous vma */ 5686 return NULL; 5687 if (!(mc.flags & MOVE_FILE)) 5688 return NULL; 5689 5690 /* folio is moved even if it's not RSS of this task(page-faulted). */ 5691 /* shmem/tmpfs may report page out on swap: account for that too. */ 5692 index = linear_page_index(vma, addr); 5693 folio = filemap_get_incore_folio(vma->vm_file->f_mapping, index); 5694 if (!folio) 5695 return NULL; 5696 return folio_file_page(folio, index); 5697 } 5698 5699 /** 5700 * mem_cgroup_move_account - move account of the page 5701 * @page: the page 5702 * @compound: charge the page as compound or small page 5703 * @from: mem_cgroup which the page is moved from. 5704 * @to: mem_cgroup which the page is moved to. @from != @to. 5705 * 5706 * The caller must make sure the page is not on LRU (isolate_page() is useful.) 5707 * 5708 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" 5709 * from old cgroup. 5710 */ 5711 static int mem_cgroup_move_account(struct page *page, 5712 bool compound, 5713 struct mem_cgroup *from, 5714 struct mem_cgroup *to) 5715 { 5716 struct folio *folio = page_folio(page); 5717 struct lruvec *from_vec, *to_vec; 5718 struct pglist_data *pgdat; 5719 unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1; 5720 int nid, ret; 5721 5722 VM_BUG_ON(from == to); 5723 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 5724 VM_BUG_ON(compound && !folio_test_large(folio)); 5725 5726 /* 5727 * Prevent mem_cgroup_migrate() from looking at 5728 * page's memory cgroup of its source page while we change it. 5729 */ 5730 ret = -EBUSY; 5731 if (!folio_trylock(folio)) 5732 goto out; 5733 5734 ret = -EINVAL; 5735 if (folio_memcg(folio) != from) 5736 goto out_unlock; 5737 5738 pgdat = folio_pgdat(folio); 5739 from_vec = mem_cgroup_lruvec(from, pgdat); 5740 to_vec = mem_cgroup_lruvec(to, pgdat); 5741 5742 folio_memcg_lock(folio); 5743 5744 if (folio_test_anon(folio)) { 5745 if (folio_mapped(folio)) { 5746 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages); 5747 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages); 5748 if (folio_test_transhuge(folio)) { 5749 __mod_lruvec_state(from_vec, NR_ANON_THPS, 5750 -nr_pages); 5751 __mod_lruvec_state(to_vec, NR_ANON_THPS, 5752 nr_pages); 5753 } 5754 } 5755 } else { 5756 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages); 5757 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages); 5758 5759 if (folio_test_swapbacked(folio)) { 5760 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages); 5761 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages); 5762 } 5763 5764 if (folio_mapped(folio)) { 5765 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages); 5766 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages); 5767 } 5768 5769 if (folio_test_dirty(folio)) { 5770 struct address_space *mapping = folio_mapping(folio); 5771 5772 if (mapping_can_writeback(mapping)) { 5773 __mod_lruvec_state(from_vec, NR_FILE_DIRTY, 5774 -nr_pages); 5775 __mod_lruvec_state(to_vec, NR_FILE_DIRTY, 5776 nr_pages); 5777 } 5778 } 5779 } 5780 5781 #ifdef CONFIG_SWAP 5782 if (folio_test_swapcache(folio)) { 5783 __mod_lruvec_state(from_vec, NR_SWAPCACHE, -nr_pages); 5784 __mod_lruvec_state(to_vec, NR_SWAPCACHE, nr_pages); 5785 } 5786 #endif 5787 if (folio_test_writeback(folio)) { 5788 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages); 5789 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages); 5790 } 5791 5792 /* 5793 * All state has been migrated, let's switch to the new memcg. 5794 * 5795 * It is safe to change page's memcg here because the page 5796 * is referenced, charged, isolated, and locked: we can't race 5797 * with (un)charging, migration, LRU putback, or anything else 5798 * that would rely on a stable page's memory cgroup. 5799 * 5800 * Note that lock_page_memcg is a memcg lock, not a page lock, 5801 * to save space. As soon as we switch page's memory cgroup to a 5802 * new memcg that isn't locked, the above state can change 5803 * concurrently again. Make sure we're truly done with it. 5804 */ 5805 smp_mb(); 5806 5807 css_get(&to->css); 5808 css_put(&from->css); 5809 5810 folio->memcg_data = (unsigned long)to; 5811 5812 __folio_memcg_unlock(from); 5813 5814 ret = 0; 5815 nid = folio_nid(folio); 5816 5817 local_irq_disable(); 5818 mem_cgroup_charge_statistics(to, nr_pages); 5819 memcg_check_events(to, nid); 5820 mem_cgroup_charge_statistics(from, -nr_pages); 5821 memcg_check_events(from, nid); 5822 local_irq_enable(); 5823 out_unlock: 5824 folio_unlock(folio); 5825 out: 5826 return ret; 5827 } 5828 5829 /** 5830 * get_mctgt_type - get target type of moving charge 5831 * @vma: the vma the pte to be checked belongs 5832 * @addr: the address corresponding to the pte to be checked 5833 * @ptent: the pte to be checked 5834 * @target: the pointer the target page or swap ent will be stored(can be NULL) 5835 * 5836 * Returns 5837 * 0(MC_TARGET_NONE): if the pte is not a target for move charge. 5838 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for 5839 * move charge. if @target is not NULL, the page is stored in target->page 5840 * with extra refcnt got(Callers should handle it). 5841 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a 5842 * target for charge migration. if @target is not NULL, the entry is stored 5843 * in target->ent. 5844 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is device memory and 5845 * thus not on the lru. 5846 * For now we such page is charge like a regular page would be as for all 5847 * intent and purposes it is just special memory taking the place of a 5848 * regular page. 5849 * 5850 * See Documentations/vm/hmm.txt and include/linux/hmm.h 5851 * 5852 * Called with pte lock held. 5853 */ 5854 5855 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, 5856 unsigned long addr, pte_t ptent, union mc_target *target) 5857 { 5858 struct page *page = NULL; 5859 enum mc_target_type ret = MC_TARGET_NONE; 5860 swp_entry_t ent = { .val = 0 }; 5861 5862 if (pte_present(ptent)) 5863 page = mc_handle_present_pte(vma, addr, ptent); 5864 else if (pte_none_mostly(ptent)) 5865 /* 5866 * PTE markers should be treated as a none pte here, separated 5867 * from other swap handling below. 5868 */ 5869 page = mc_handle_file_pte(vma, addr, ptent); 5870 else if (is_swap_pte(ptent)) 5871 page = mc_handle_swap_pte(vma, ptent, &ent); 5872 5873 if (!page && !ent.val) 5874 return ret; 5875 if (page) { 5876 /* 5877 * Do only loose check w/o serialization. 5878 * mem_cgroup_move_account() checks the page is valid or 5879 * not under LRU exclusion. 5880 */ 5881 if (page_memcg(page) == mc.from) { 5882 ret = MC_TARGET_PAGE; 5883 if (is_device_private_page(page) || 5884 is_device_coherent_page(page)) 5885 ret = MC_TARGET_DEVICE; 5886 if (target) 5887 target->page = page; 5888 } 5889 if (!ret || !target) 5890 put_page(page); 5891 } 5892 /* 5893 * There is a swap entry and a page doesn't exist or isn't charged. 5894 * But we cannot move a tail-page in a THP. 5895 */ 5896 if (ent.val && !ret && (!page || !PageTransCompound(page)) && 5897 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) { 5898 ret = MC_TARGET_SWAP; 5899 if (target) 5900 target->ent = ent; 5901 } 5902 return ret; 5903 } 5904 5905 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5906 /* 5907 * We don't consider PMD mapped swapping or file mapped pages because THP does 5908 * not support them for now. 5909 * Caller should make sure that pmd_trans_huge(pmd) is true. 5910 */ 5911 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5912 unsigned long addr, pmd_t pmd, union mc_target *target) 5913 { 5914 struct page *page = NULL; 5915 enum mc_target_type ret = MC_TARGET_NONE; 5916 5917 if (unlikely(is_swap_pmd(pmd))) { 5918 VM_BUG_ON(thp_migration_supported() && 5919 !is_pmd_migration_entry(pmd)); 5920 return ret; 5921 } 5922 page = pmd_page(pmd); 5923 VM_BUG_ON_PAGE(!page || !PageHead(page), page); 5924 if (!(mc.flags & MOVE_ANON)) 5925 return ret; 5926 if (page_memcg(page) == mc.from) { 5927 ret = MC_TARGET_PAGE; 5928 if (target) { 5929 get_page(page); 5930 target->page = page; 5931 } 5932 } 5933 return ret; 5934 } 5935 #else 5936 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5937 unsigned long addr, pmd_t pmd, union mc_target *target) 5938 { 5939 return MC_TARGET_NONE; 5940 } 5941 #endif 5942 5943 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 5944 unsigned long addr, unsigned long end, 5945 struct mm_walk *walk) 5946 { 5947 struct vm_area_struct *vma = walk->vma; 5948 pte_t *pte; 5949 spinlock_t *ptl; 5950 5951 ptl = pmd_trans_huge_lock(pmd, vma); 5952 if (ptl) { 5953 /* 5954 * Note their can not be MC_TARGET_DEVICE for now as we do not 5955 * support transparent huge page with MEMORY_DEVICE_PRIVATE but 5956 * this might change. 5957 */ 5958 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) 5959 mc.precharge += HPAGE_PMD_NR; 5960 spin_unlock(ptl); 5961 return 0; 5962 } 5963 5964 if (pmd_trans_unstable(pmd)) 5965 return 0; 5966 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 5967 for (; addr != end; pte++, addr += PAGE_SIZE) 5968 if (get_mctgt_type(vma, addr, *pte, NULL)) 5969 mc.precharge++; /* increment precharge temporarily */ 5970 pte_unmap_unlock(pte - 1, ptl); 5971 cond_resched(); 5972 5973 return 0; 5974 } 5975 5976 static const struct mm_walk_ops precharge_walk_ops = { 5977 .pmd_entry = mem_cgroup_count_precharge_pte_range, 5978 }; 5979 5980 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 5981 { 5982 unsigned long precharge; 5983 5984 mmap_read_lock(mm); 5985 walk_page_range(mm, 0, ULONG_MAX, &precharge_walk_ops, NULL); 5986 mmap_read_unlock(mm); 5987 5988 precharge = mc.precharge; 5989 mc.precharge = 0; 5990 5991 return precharge; 5992 } 5993 5994 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 5995 { 5996 unsigned long precharge = mem_cgroup_count_precharge(mm); 5997 5998 VM_BUG_ON(mc.moving_task); 5999 mc.moving_task = current; 6000 return mem_cgroup_do_precharge(precharge); 6001 } 6002 6003 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 6004 static void __mem_cgroup_clear_mc(void) 6005 { 6006 struct mem_cgroup *from = mc.from; 6007 struct mem_cgroup *to = mc.to; 6008 6009 /* we must uncharge all the leftover precharges from mc.to */ 6010 if (mc.precharge) { 6011 cancel_charge(mc.to, mc.precharge); 6012 mc.precharge = 0; 6013 } 6014 /* 6015 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 6016 * we must uncharge here. 6017 */ 6018 if (mc.moved_charge) { 6019 cancel_charge(mc.from, mc.moved_charge); 6020 mc.moved_charge = 0; 6021 } 6022 /* we must fixup refcnts and charges */ 6023 if (mc.moved_swap) { 6024 /* uncharge swap account from the old cgroup */ 6025 if (!mem_cgroup_is_root(mc.from)) 6026 page_counter_uncharge(&mc.from->memsw, mc.moved_swap); 6027 6028 mem_cgroup_id_put_many(mc.from, mc.moved_swap); 6029 6030 /* 6031 * we charged both to->memory and to->memsw, so we 6032 * should uncharge to->memory. 6033 */ 6034 if (!mem_cgroup_is_root(mc.to)) 6035 page_counter_uncharge(&mc.to->memory, mc.moved_swap); 6036 6037 mc.moved_swap = 0; 6038 } 6039 memcg_oom_recover(from); 6040 memcg_oom_recover(to); 6041 wake_up_all(&mc.waitq); 6042 } 6043 6044 static void mem_cgroup_clear_mc(void) 6045 { 6046 struct mm_struct *mm = mc.mm; 6047 6048 /* 6049 * we must clear moving_task before waking up waiters at the end of 6050 * task migration. 6051 */ 6052 mc.moving_task = NULL; 6053 __mem_cgroup_clear_mc(); 6054 spin_lock(&mc.lock); 6055 mc.from = NULL; 6056 mc.to = NULL; 6057 mc.mm = NULL; 6058 spin_unlock(&mc.lock); 6059 6060 mmput(mm); 6061 } 6062 6063 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 6064 { 6065 struct cgroup_subsys_state *css; 6066 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */ 6067 struct mem_cgroup *from; 6068 struct task_struct *leader, *p; 6069 struct mm_struct *mm; 6070 unsigned long move_flags; 6071 int ret = 0; 6072 6073 /* charge immigration isn't supported on the default hierarchy */ 6074 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 6075 return 0; 6076 6077 /* 6078 * Multi-process migrations only happen on the default hierarchy 6079 * where charge immigration is not used. Perform charge 6080 * immigration if @tset contains a leader and whine if there are 6081 * multiple. 6082 */ 6083 p = NULL; 6084 cgroup_taskset_for_each_leader(leader, css, tset) { 6085 WARN_ON_ONCE(p); 6086 p = leader; 6087 memcg = mem_cgroup_from_css(css); 6088 } 6089 if (!p) 6090 return 0; 6091 6092 /* 6093 * We are now committed to this value whatever it is. Changes in this 6094 * tunable will only affect upcoming migrations, not the current one. 6095 * So we need to save it, and keep it going. 6096 */ 6097 move_flags = READ_ONCE(memcg->move_charge_at_immigrate); 6098 if (!move_flags) 6099 return 0; 6100 6101 from = mem_cgroup_from_task(p); 6102 6103 VM_BUG_ON(from == memcg); 6104 6105 mm = get_task_mm(p); 6106 if (!mm) 6107 return 0; 6108 /* We move charges only when we move a owner of the mm */ 6109 if (mm->owner == p) { 6110 VM_BUG_ON(mc.from); 6111 VM_BUG_ON(mc.to); 6112 VM_BUG_ON(mc.precharge); 6113 VM_BUG_ON(mc.moved_charge); 6114 VM_BUG_ON(mc.moved_swap); 6115 6116 spin_lock(&mc.lock); 6117 mc.mm = mm; 6118 mc.from = from; 6119 mc.to = memcg; 6120 mc.flags = move_flags; 6121 spin_unlock(&mc.lock); 6122 /* We set mc.moving_task later */ 6123 6124 ret = mem_cgroup_precharge_mc(mm); 6125 if (ret) 6126 mem_cgroup_clear_mc(); 6127 } else { 6128 mmput(mm); 6129 } 6130 return ret; 6131 } 6132 6133 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 6134 { 6135 if (mc.to) 6136 mem_cgroup_clear_mc(); 6137 } 6138 6139 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 6140 unsigned long addr, unsigned long end, 6141 struct mm_walk *walk) 6142 { 6143 int ret = 0; 6144 struct vm_area_struct *vma = walk->vma; 6145 pte_t *pte; 6146 spinlock_t *ptl; 6147 enum mc_target_type target_type; 6148 union mc_target target; 6149 struct page *page; 6150 6151 ptl = pmd_trans_huge_lock(pmd, vma); 6152 if (ptl) { 6153 if (mc.precharge < HPAGE_PMD_NR) { 6154 spin_unlock(ptl); 6155 return 0; 6156 } 6157 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); 6158 if (target_type == MC_TARGET_PAGE) { 6159 page = target.page; 6160 if (!isolate_lru_page(page)) { 6161 if (!mem_cgroup_move_account(page, true, 6162 mc.from, mc.to)) { 6163 mc.precharge -= HPAGE_PMD_NR; 6164 mc.moved_charge += HPAGE_PMD_NR; 6165 } 6166 putback_lru_page(page); 6167 } 6168 put_page(page); 6169 } else if (target_type == MC_TARGET_DEVICE) { 6170 page = target.page; 6171 if (!mem_cgroup_move_account(page, true, 6172 mc.from, mc.to)) { 6173 mc.precharge -= HPAGE_PMD_NR; 6174 mc.moved_charge += HPAGE_PMD_NR; 6175 } 6176 put_page(page); 6177 } 6178 spin_unlock(ptl); 6179 return 0; 6180 } 6181 6182 if (pmd_trans_unstable(pmd)) 6183 return 0; 6184 retry: 6185 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 6186 for (; addr != end; addr += PAGE_SIZE) { 6187 pte_t ptent = *(pte++); 6188 bool device = false; 6189 swp_entry_t ent; 6190 6191 if (!mc.precharge) 6192 break; 6193 6194 switch (get_mctgt_type(vma, addr, ptent, &target)) { 6195 case MC_TARGET_DEVICE: 6196 device = true; 6197 fallthrough; 6198 case MC_TARGET_PAGE: 6199 page = target.page; 6200 /* 6201 * We can have a part of the split pmd here. Moving it 6202 * can be done but it would be too convoluted so simply 6203 * ignore such a partial THP and keep it in original 6204 * memcg. There should be somebody mapping the head. 6205 */ 6206 if (PageTransCompound(page)) 6207 goto put; 6208 if (!device && isolate_lru_page(page)) 6209 goto put; 6210 if (!mem_cgroup_move_account(page, false, 6211 mc.from, mc.to)) { 6212 mc.precharge--; 6213 /* we uncharge from mc.from later. */ 6214 mc.moved_charge++; 6215 } 6216 if (!device) 6217 putback_lru_page(page); 6218 put: /* get_mctgt_type() gets the page */ 6219 put_page(page); 6220 break; 6221 case MC_TARGET_SWAP: 6222 ent = target.ent; 6223 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { 6224 mc.precharge--; 6225 mem_cgroup_id_get_many(mc.to, 1); 6226 /* we fixup other refcnts and charges later. */ 6227 mc.moved_swap++; 6228 } 6229 break; 6230 default: 6231 break; 6232 } 6233 } 6234 pte_unmap_unlock(pte - 1, ptl); 6235 cond_resched(); 6236 6237 if (addr != end) { 6238 /* 6239 * We have consumed all precharges we got in can_attach(). 6240 * We try charge one by one, but don't do any additional 6241 * charges to mc.to if we have failed in charge once in attach() 6242 * phase. 6243 */ 6244 ret = mem_cgroup_do_precharge(1); 6245 if (!ret) 6246 goto retry; 6247 } 6248 6249 return ret; 6250 } 6251 6252 static const struct mm_walk_ops charge_walk_ops = { 6253 .pmd_entry = mem_cgroup_move_charge_pte_range, 6254 }; 6255 6256 static void mem_cgroup_move_charge(void) 6257 { 6258 lru_add_drain_all(); 6259 /* 6260 * Signal lock_page_memcg() to take the memcg's move_lock 6261 * while we're moving its pages to another memcg. Then wait 6262 * for already started RCU-only updates to finish. 6263 */ 6264 atomic_inc(&mc.from->moving_account); 6265 synchronize_rcu(); 6266 retry: 6267 if (unlikely(!mmap_read_trylock(mc.mm))) { 6268 /* 6269 * Someone who are holding the mmap_lock might be waiting in 6270 * waitq. So we cancel all extra charges, wake up all waiters, 6271 * and retry. Because we cancel precharges, we might not be able 6272 * to move enough charges, but moving charge is a best-effort 6273 * feature anyway, so it wouldn't be a big problem. 6274 */ 6275 __mem_cgroup_clear_mc(); 6276 cond_resched(); 6277 goto retry; 6278 } 6279 /* 6280 * When we have consumed all precharges and failed in doing 6281 * additional charge, the page walk just aborts. 6282 */ 6283 walk_page_range(mc.mm, 0, ULONG_MAX, &charge_walk_ops, NULL); 6284 mmap_read_unlock(mc.mm); 6285 atomic_dec(&mc.from->moving_account); 6286 } 6287 6288 static void mem_cgroup_move_task(void) 6289 { 6290 if (mc.to) { 6291 mem_cgroup_move_charge(); 6292 mem_cgroup_clear_mc(); 6293 } 6294 } 6295 #else /* !CONFIG_MMU */ 6296 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 6297 { 6298 return 0; 6299 } 6300 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 6301 { 6302 } 6303 static void mem_cgroup_move_task(void) 6304 { 6305 } 6306 #endif 6307 6308 #ifdef CONFIG_LRU_GEN 6309 static void mem_cgroup_attach(struct cgroup_taskset *tset) 6310 { 6311 struct task_struct *task; 6312 struct cgroup_subsys_state *css; 6313 6314 /* find the first leader if there is any */ 6315 cgroup_taskset_for_each_leader(task, css, tset) 6316 break; 6317 6318 if (!task) 6319 return; 6320 6321 task_lock(task); 6322 if (task->mm && READ_ONCE(task->mm->owner) == task) 6323 lru_gen_migrate_mm(task->mm); 6324 task_unlock(task); 6325 } 6326 #else 6327 static void mem_cgroup_attach(struct cgroup_taskset *tset) 6328 { 6329 } 6330 #endif /* CONFIG_LRU_GEN */ 6331 6332 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value) 6333 { 6334 if (value == PAGE_COUNTER_MAX) 6335 seq_puts(m, "max\n"); 6336 else 6337 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE); 6338 6339 return 0; 6340 } 6341 6342 static u64 memory_current_read(struct cgroup_subsys_state *css, 6343 struct cftype *cft) 6344 { 6345 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6346 6347 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; 6348 } 6349 6350 static u64 memory_peak_read(struct cgroup_subsys_state *css, 6351 struct cftype *cft) 6352 { 6353 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6354 6355 return (u64)memcg->memory.watermark * PAGE_SIZE; 6356 } 6357 6358 static int memory_min_show(struct seq_file *m, void *v) 6359 { 6360 return seq_puts_memcg_tunable(m, 6361 READ_ONCE(mem_cgroup_from_seq(m)->memory.min)); 6362 } 6363 6364 static ssize_t memory_min_write(struct kernfs_open_file *of, 6365 char *buf, size_t nbytes, loff_t off) 6366 { 6367 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6368 unsigned long min; 6369 int err; 6370 6371 buf = strstrip(buf); 6372 err = page_counter_memparse(buf, "max", &min); 6373 if (err) 6374 return err; 6375 6376 page_counter_set_min(&memcg->memory, min); 6377 6378 return nbytes; 6379 } 6380 6381 static int memory_low_show(struct seq_file *m, void *v) 6382 { 6383 return seq_puts_memcg_tunable(m, 6384 READ_ONCE(mem_cgroup_from_seq(m)->memory.low)); 6385 } 6386 6387 static ssize_t memory_low_write(struct kernfs_open_file *of, 6388 char *buf, size_t nbytes, loff_t off) 6389 { 6390 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6391 unsigned long low; 6392 int err; 6393 6394 buf = strstrip(buf); 6395 err = page_counter_memparse(buf, "max", &low); 6396 if (err) 6397 return err; 6398 6399 page_counter_set_low(&memcg->memory, low); 6400 6401 return nbytes; 6402 } 6403 6404 static int memory_high_show(struct seq_file *m, void *v) 6405 { 6406 return seq_puts_memcg_tunable(m, 6407 READ_ONCE(mem_cgroup_from_seq(m)->memory.high)); 6408 } 6409 6410 static ssize_t memory_high_write(struct kernfs_open_file *of, 6411 char *buf, size_t nbytes, loff_t off) 6412 { 6413 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6414 unsigned int nr_retries = MAX_RECLAIM_RETRIES; 6415 bool drained = false; 6416 unsigned long high; 6417 int err; 6418 6419 buf = strstrip(buf); 6420 err = page_counter_memparse(buf, "max", &high); 6421 if (err) 6422 return err; 6423 6424 page_counter_set_high(&memcg->memory, high); 6425 6426 for (;;) { 6427 unsigned long nr_pages = page_counter_read(&memcg->memory); 6428 unsigned long reclaimed; 6429 6430 if (nr_pages <= high) 6431 break; 6432 6433 if (signal_pending(current)) 6434 break; 6435 6436 if (!drained) { 6437 drain_all_stock(memcg); 6438 drained = true; 6439 continue; 6440 } 6441 6442 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high, 6443 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP); 6444 6445 if (!reclaimed && !nr_retries--) 6446 break; 6447 } 6448 6449 memcg_wb_domain_size_changed(memcg); 6450 return nbytes; 6451 } 6452 6453 static int memory_max_show(struct seq_file *m, void *v) 6454 { 6455 return seq_puts_memcg_tunable(m, 6456 READ_ONCE(mem_cgroup_from_seq(m)->memory.max)); 6457 } 6458 6459 static ssize_t memory_max_write(struct kernfs_open_file *of, 6460 char *buf, size_t nbytes, loff_t off) 6461 { 6462 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6463 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES; 6464 bool drained = false; 6465 unsigned long max; 6466 int err; 6467 6468 buf = strstrip(buf); 6469 err = page_counter_memparse(buf, "max", &max); 6470 if (err) 6471 return err; 6472 6473 xchg(&memcg->memory.max, max); 6474 6475 for (;;) { 6476 unsigned long nr_pages = page_counter_read(&memcg->memory); 6477 6478 if (nr_pages <= max) 6479 break; 6480 6481 if (signal_pending(current)) 6482 break; 6483 6484 if (!drained) { 6485 drain_all_stock(memcg); 6486 drained = true; 6487 continue; 6488 } 6489 6490 if (nr_reclaims) { 6491 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max, 6492 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP)) 6493 nr_reclaims--; 6494 continue; 6495 } 6496 6497 memcg_memory_event(memcg, MEMCG_OOM); 6498 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0)) 6499 break; 6500 } 6501 6502 memcg_wb_domain_size_changed(memcg); 6503 return nbytes; 6504 } 6505 6506 static void __memory_events_show(struct seq_file *m, atomic_long_t *events) 6507 { 6508 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW])); 6509 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH])); 6510 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX])); 6511 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM])); 6512 seq_printf(m, "oom_kill %lu\n", 6513 atomic_long_read(&events[MEMCG_OOM_KILL])); 6514 seq_printf(m, "oom_group_kill %lu\n", 6515 atomic_long_read(&events[MEMCG_OOM_GROUP_KILL])); 6516 } 6517 6518 static int memory_events_show(struct seq_file *m, void *v) 6519 { 6520 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6521 6522 __memory_events_show(m, memcg->memory_events); 6523 return 0; 6524 } 6525 6526 static int memory_events_local_show(struct seq_file *m, void *v) 6527 { 6528 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6529 6530 __memory_events_show(m, memcg->memory_events_local); 6531 return 0; 6532 } 6533 6534 static int memory_stat_show(struct seq_file *m, void *v) 6535 { 6536 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6537 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 6538 6539 if (!buf) 6540 return -ENOMEM; 6541 memory_stat_format(memcg, buf, PAGE_SIZE); 6542 seq_puts(m, buf); 6543 kfree(buf); 6544 return 0; 6545 } 6546 6547 #ifdef CONFIG_NUMA 6548 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec, 6549 int item) 6550 { 6551 return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item); 6552 } 6553 6554 static int memory_numa_stat_show(struct seq_file *m, void *v) 6555 { 6556 int i; 6557 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6558 6559 mem_cgroup_flush_stats(); 6560 6561 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 6562 int nid; 6563 6564 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS) 6565 continue; 6566 6567 seq_printf(m, "%s", memory_stats[i].name); 6568 for_each_node_state(nid, N_MEMORY) { 6569 u64 size; 6570 struct lruvec *lruvec; 6571 6572 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); 6573 size = lruvec_page_state_output(lruvec, 6574 memory_stats[i].idx); 6575 seq_printf(m, " N%d=%llu", nid, size); 6576 } 6577 seq_putc(m, '\n'); 6578 } 6579 6580 return 0; 6581 } 6582 #endif 6583 6584 static int memory_oom_group_show(struct seq_file *m, void *v) 6585 { 6586 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6587 6588 seq_printf(m, "%d\n", memcg->oom_group); 6589 6590 return 0; 6591 } 6592 6593 static ssize_t memory_oom_group_write(struct kernfs_open_file *of, 6594 char *buf, size_t nbytes, loff_t off) 6595 { 6596 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6597 int ret, oom_group; 6598 6599 buf = strstrip(buf); 6600 if (!buf) 6601 return -EINVAL; 6602 6603 ret = kstrtoint(buf, 0, &oom_group); 6604 if (ret) 6605 return ret; 6606 6607 if (oom_group != 0 && oom_group != 1) 6608 return -EINVAL; 6609 6610 memcg->oom_group = oom_group; 6611 6612 return nbytes; 6613 } 6614 6615 static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf, 6616 size_t nbytes, loff_t off) 6617 { 6618 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6619 unsigned int nr_retries = MAX_RECLAIM_RETRIES; 6620 unsigned long nr_to_reclaim, nr_reclaimed = 0; 6621 unsigned int reclaim_options; 6622 int err; 6623 6624 buf = strstrip(buf); 6625 err = page_counter_memparse(buf, "", &nr_to_reclaim); 6626 if (err) 6627 return err; 6628 6629 reclaim_options = MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE; 6630 while (nr_reclaimed < nr_to_reclaim) { 6631 unsigned long reclaimed; 6632 6633 if (signal_pending(current)) 6634 return -EINTR; 6635 6636 /* 6637 * This is the final attempt, drain percpu lru caches in the 6638 * hope of introducing more evictable pages for 6639 * try_to_free_mem_cgroup_pages(). 6640 */ 6641 if (!nr_retries) 6642 lru_add_drain_all(); 6643 6644 reclaimed = try_to_free_mem_cgroup_pages(memcg, 6645 nr_to_reclaim - nr_reclaimed, 6646 GFP_KERNEL, reclaim_options); 6647 6648 if (!reclaimed && !nr_retries--) 6649 return -EAGAIN; 6650 6651 nr_reclaimed += reclaimed; 6652 } 6653 6654 return nbytes; 6655 } 6656 6657 static struct cftype memory_files[] = { 6658 { 6659 .name = "current", 6660 .flags = CFTYPE_NOT_ON_ROOT, 6661 .read_u64 = memory_current_read, 6662 }, 6663 { 6664 .name = "peak", 6665 .flags = CFTYPE_NOT_ON_ROOT, 6666 .read_u64 = memory_peak_read, 6667 }, 6668 { 6669 .name = "min", 6670 .flags = CFTYPE_NOT_ON_ROOT, 6671 .seq_show = memory_min_show, 6672 .write = memory_min_write, 6673 }, 6674 { 6675 .name = "low", 6676 .flags = CFTYPE_NOT_ON_ROOT, 6677 .seq_show = memory_low_show, 6678 .write = memory_low_write, 6679 }, 6680 { 6681 .name = "high", 6682 .flags = CFTYPE_NOT_ON_ROOT, 6683 .seq_show = memory_high_show, 6684 .write = memory_high_write, 6685 }, 6686 { 6687 .name = "max", 6688 .flags = CFTYPE_NOT_ON_ROOT, 6689 .seq_show = memory_max_show, 6690 .write = memory_max_write, 6691 }, 6692 { 6693 .name = "events", 6694 .flags = CFTYPE_NOT_ON_ROOT, 6695 .file_offset = offsetof(struct mem_cgroup, events_file), 6696 .seq_show = memory_events_show, 6697 }, 6698 { 6699 .name = "events.local", 6700 .flags = CFTYPE_NOT_ON_ROOT, 6701 .file_offset = offsetof(struct mem_cgroup, events_local_file), 6702 .seq_show = memory_events_local_show, 6703 }, 6704 { 6705 .name = "stat", 6706 .seq_show = memory_stat_show, 6707 }, 6708 #ifdef CONFIG_NUMA 6709 { 6710 .name = "numa_stat", 6711 .seq_show = memory_numa_stat_show, 6712 }, 6713 #endif 6714 { 6715 .name = "oom.group", 6716 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE, 6717 .seq_show = memory_oom_group_show, 6718 .write = memory_oom_group_write, 6719 }, 6720 { 6721 .name = "reclaim", 6722 .flags = CFTYPE_NS_DELEGATABLE, 6723 .write = memory_reclaim, 6724 }, 6725 { } /* terminate */ 6726 }; 6727 6728 struct cgroup_subsys memory_cgrp_subsys = { 6729 .css_alloc = mem_cgroup_css_alloc, 6730 .css_online = mem_cgroup_css_online, 6731 .css_offline = mem_cgroup_css_offline, 6732 .css_released = mem_cgroup_css_released, 6733 .css_free = mem_cgroup_css_free, 6734 .css_reset = mem_cgroup_css_reset, 6735 .css_rstat_flush = mem_cgroup_css_rstat_flush, 6736 .can_attach = mem_cgroup_can_attach, 6737 .attach = mem_cgroup_attach, 6738 .cancel_attach = mem_cgroup_cancel_attach, 6739 .post_attach = mem_cgroup_move_task, 6740 .dfl_cftypes = memory_files, 6741 .legacy_cftypes = mem_cgroup_legacy_files, 6742 .early_init = 0, 6743 }; 6744 6745 /* 6746 * This function calculates an individual cgroup's effective 6747 * protection which is derived from its own memory.min/low, its 6748 * parent's and siblings' settings, as well as the actual memory 6749 * distribution in the tree. 6750 * 6751 * The following rules apply to the effective protection values: 6752 * 6753 * 1. At the first level of reclaim, effective protection is equal to 6754 * the declared protection in memory.min and memory.low. 6755 * 6756 * 2. To enable safe delegation of the protection configuration, at 6757 * subsequent levels the effective protection is capped to the 6758 * parent's effective protection. 6759 * 6760 * 3. To make complex and dynamic subtrees easier to configure, the 6761 * user is allowed to overcommit the declared protection at a given 6762 * level. If that is the case, the parent's effective protection is 6763 * distributed to the children in proportion to how much protection 6764 * they have declared and how much of it they are utilizing. 6765 * 6766 * This makes distribution proportional, but also work-conserving: 6767 * if one cgroup claims much more protection than it uses memory, 6768 * the unused remainder is available to its siblings. 6769 * 6770 * 4. Conversely, when the declared protection is undercommitted at a 6771 * given level, the distribution of the larger parental protection 6772 * budget is NOT proportional. A cgroup's protection from a sibling 6773 * is capped to its own memory.min/low setting. 6774 * 6775 * 5. However, to allow protecting recursive subtrees from each other 6776 * without having to declare each individual cgroup's fixed share 6777 * of the ancestor's claim to protection, any unutilized - 6778 * "floating" - protection from up the tree is distributed in 6779 * proportion to each cgroup's *usage*. This makes the protection 6780 * neutral wrt sibling cgroups and lets them compete freely over 6781 * the shared parental protection budget, but it protects the 6782 * subtree as a whole from neighboring subtrees. 6783 * 6784 * Note that 4. and 5. are not in conflict: 4. is about protecting 6785 * against immediate siblings whereas 5. is about protecting against 6786 * neighboring subtrees. 6787 */ 6788 static unsigned long effective_protection(unsigned long usage, 6789 unsigned long parent_usage, 6790 unsigned long setting, 6791 unsigned long parent_effective, 6792 unsigned long siblings_protected) 6793 { 6794 unsigned long protected; 6795 unsigned long ep; 6796 6797 protected = min(usage, setting); 6798 /* 6799 * If all cgroups at this level combined claim and use more 6800 * protection then what the parent affords them, distribute 6801 * shares in proportion to utilization. 6802 * 6803 * We are using actual utilization rather than the statically 6804 * claimed protection in order to be work-conserving: claimed 6805 * but unused protection is available to siblings that would 6806 * otherwise get a smaller chunk than what they claimed. 6807 */ 6808 if (siblings_protected > parent_effective) 6809 return protected * parent_effective / siblings_protected; 6810 6811 /* 6812 * Ok, utilized protection of all children is within what the 6813 * parent affords them, so we know whatever this child claims 6814 * and utilizes is effectively protected. 6815 * 6816 * If there is unprotected usage beyond this value, reclaim 6817 * will apply pressure in proportion to that amount. 6818 * 6819 * If there is unutilized protection, the cgroup will be fully 6820 * shielded from reclaim, but we do return a smaller value for 6821 * protection than what the group could enjoy in theory. This 6822 * is okay. With the overcommit distribution above, effective 6823 * protection is always dependent on how memory is actually 6824 * consumed among the siblings anyway. 6825 */ 6826 ep = protected; 6827 6828 /* 6829 * If the children aren't claiming (all of) the protection 6830 * afforded to them by the parent, distribute the remainder in 6831 * proportion to the (unprotected) memory of each cgroup. That 6832 * way, cgroups that aren't explicitly prioritized wrt each 6833 * other compete freely over the allowance, but they are 6834 * collectively protected from neighboring trees. 6835 * 6836 * We're using unprotected memory for the weight so that if 6837 * some cgroups DO claim explicit protection, we don't protect 6838 * the same bytes twice. 6839 * 6840 * Check both usage and parent_usage against the respective 6841 * protected values. One should imply the other, but they 6842 * aren't read atomically - make sure the division is sane. 6843 */ 6844 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)) 6845 return ep; 6846 if (parent_effective > siblings_protected && 6847 parent_usage > siblings_protected && 6848 usage > protected) { 6849 unsigned long unclaimed; 6850 6851 unclaimed = parent_effective - siblings_protected; 6852 unclaimed *= usage - protected; 6853 unclaimed /= parent_usage - siblings_protected; 6854 6855 ep += unclaimed; 6856 } 6857 6858 return ep; 6859 } 6860 6861 /** 6862 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range 6863 * @root: the top ancestor of the sub-tree being checked 6864 * @memcg: the memory cgroup to check 6865 * 6866 * WARNING: This function is not stateless! It can only be used as part 6867 * of a top-down tree iteration, not for isolated queries. 6868 */ 6869 void mem_cgroup_calculate_protection(struct mem_cgroup *root, 6870 struct mem_cgroup *memcg) 6871 { 6872 unsigned long usage, parent_usage; 6873 struct mem_cgroup *parent; 6874 6875 if (mem_cgroup_disabled()) 6876 return; 6877 6878 if (!root) 6879 root = root_mem_cgroup; 6880 6881 /* 6882 * Effective values of the reclaim targets are ignored so they 6883 * can be stale. Have a look at mem_cgroup_protection for more 6884 * details. 6885 * TODO: calculation should be more robust so that we do not need 6886 * that special casing. 6887 */ 6888 if (memcg == root) 6889 return; 6890 6891 usage = page_counter_read(&memcg->memory); 6892 if (!usage) 6893 return; 6894 6895 parent = parent_mem_cgroup(memcg); 6896 6897 if (parent == root) { 6898 memcg->memory.emin = READ_ONCE(memcg->memory.min); 6899 memcg->memory.elow = READ_ONCE(memcg->memory.low); 6900 return; 6901 } 6902 6903 parent_usage = page_counter_read(&parent->memory); 6904 6905 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage, 6906 READ_ONCE(memcg->memory.min), 6907 READ_ONCE(parent->memory.emin), 6908 atomic_long_read(&parent->memory.children_min_usage))); 6909 6910 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage, 6911 READ_ONCE(memcg->memory.low), 6912 READ_ONCE(parent->memory.elow), 6913 atomic_long_read(&parent->memory.children_low_usage))); 6914 } 6915 6916 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg, 6917 gfp_t gfp) 6918 { 6919 long nr_pages = folio_nr_pages(folio); 6920 int ret; 6921 6922 ret = try_charge(memcg, gfp, nr_pages); 6923 if (ret) 6924 goto out; 6925 6926 css_get(&memcg->css); 6927 commit_charge(folio, memcg); 6928 6929 local_irq_disable(); 6930 mem_cgroup_charge_statistics(memcg, nr_pages); 6931 memcg_check_events(memcg, folio_nid(folio)); 6932 local_irq_enable(); 6933 out: 6934 return ret; 6935 } 6936 6937 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp) 6938 { 6939 struct mem_cgroup *memcg; 6940 int ret; 6941 6942 memcg = get_mem_cgroup_from_mm(mm); 6943 ret = charge_memcg(folio, memcg, gfp); 6944 css_put(&memcg->css); 6945 6946 return ret; 6947 } 6948 6949 /** 6950 * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin. 6951 * @folio: folio to charge. 6952 * @mm: mm context of the victim 6953 * @gfp: reclaim mode 6954 * @entry: swap entry for which the folio is allocated 6955 * 6956 * This function charges a folio allocated for swapin. Please call this before 6957 * adding the folio to the swapcache. 6958 * 6959 * Returns 0 on success. Otherwise, an error code is returned. 6960 */ 6961 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm, 6962 gfp_t gfp, swp_entry_t entry) 6963 { 6964 struct mem_cgroup *memcg; 6965 unsigned short id; 6966 int ret; 6967 6968 if (mem_cgroup_disabled()) 6969 return 0; 6970 6971 id = lookup_swap_cgroup_id(entry); 6972 rcu_read_lock(); 6973 memcg = mem_cgroup_from_id(id); 6974 if (!memcg || !css_tryget_online(&memcg->css)) 6975 memcg = get_mem_cgroup_from_mm(mm); 6976 rcu_read_unlock(); 6977 6978 ret = charge_memcg(folio, memcg, gfp); 6979 6980 css_put(&memcg->css); 6981 return ret; 6982 } 6983 6984 /* 6985 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot 6986 * @entry: swap entry for which the page is charged 6987 * 6988 * Call this function after successfully adding the charged page to swapcache. 6989 * 6990 * Note: This function assumes the page for which swap slot is being uncharged 6991 * is order 0 page. 6992 */ 6993 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry) 6994 { 6995 /* 6996 * Cgroup1's unified memory+swap counter has been charged with the 6997 * new swapcache page, finish the transfer by uncharging the swap 6998 * slot. The swap slot would also get uncharged when it dies, but 6999 * it can stick around indefinitely and we'd count the page twice 7000 * the entire time. 7001 * 7002 * Cgroup2 has separate resource counters for memory and swap, 7003 * so this is a non-issue here. Memory and swap charge lifetimes 7004 * correspond 1:1 to page and swap slot lifetimes: we charge the 7005 * page to memory here, and uncharge swap when the slot is freed. 7006 */ 7007 if (!mem_cgroup_disabled() && do_memsw_account()) { 7008 /* 7009 * The swap entry might not get freed for a long time, 7010 * let's not wait for it. The page already received a 7011 * memory+swap charge, drop the swap entry duplicate. 7012 */ 7013 mem_cgroup_uncharge_swap(entry, 1); 7014 } 7015 } 7016 7017 struct uncharge_gather { 7018 struct mem_cgroup *memcg; 7019 unsigned long nr_memory; 7020 unsigned long pgpgout; 7021 unsigned long nr_kmem; 7022 int nid; 7023 }; 7024 7025 static inline void uncharge_gather_clear(struct uncharge_gather *ug) 7026 { 7027 memset(ug, 0, sizeof(*ug)); 7028 } 7029 7030 static void uncharge_batch(const struct uncharge_gather *ug) 7031 { 7032 unsigned long flags; 7033 7034 if (ug->nr_memory) { 7035 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory); 7036 if (do_memsw_account()) 7037 page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory); 7038 if (ug->nr_kmem) 7039 memcg_account_kmem(ug->memcg, -ug->nr_kmem); 7040 memcg_oom_recover(ug->memcg); 7041 } 7042 7043 local_irq_save(flags); 7044 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout); 7045 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory); 7046 memcg_check_events(ug->memcg, ug->nid); 7047 local_irq_restore(flags); 7048 7049 /* drop reference from uncharge_folio */ 7050 css_put(&ug->memcg->css); 7051 } 7052 7053 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug) 7054 { 7055 long nr_pages; 7056 struct mem_cgroup *memcg; 7057 struct obj_cgroup *objcg; 7058 7059 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 7060 7061 /* 7062 * Nobody should be changing or seriously looking at 7063 * folio memcg or objcg at this point, we have fully 7064 * exclusive access to the folio. 7065 */ 7066 if (folio_memcg_kmem(folio)) { 7067 objcg = __folio_objcg(folio); 7068 /* 7069 * This get matches the put at the end of the function and 7070 * kmem pages do not hold memcg references anymore. 7071 */ 7072 memcg = get_mem_cgroup_from_objcg(objcg); 7073 } else { 7074 memcg = __folio_memcg(folio); 7075 } 7076 7077 if (!memcg) 7078 return; 7079 7080 if (ug->memcg != memcg) { 7081 if (ug->memcg) { 7082 uncharge_batch(ug); 7083 uncharge_gather_clear(ug); 7084 } 7085 ug->memcg = memcg; 7086 ug->nid = folio_nid(folio); 7087 7088 /* pairs with css_put in uncharge_batch */ 7089 css_get(&memcg->css); 7090 } 7091 7092 nr_pages = folio_nr_pages(folio); 7093 7094 if (folio_memcg_kmem(folio)) { 7095 ug->nr_memory += nr_pages; 7096 ug->nr_kmem += nr_pages; 7097 7098 folio->memcg_data = 0; 7099 obj_cgroup_put(objcg); 7100 } else { 7101 /* LRU pages aren't accounted at the root level */ 7102 if (!mem_cgroup_is_root(memcg)) 7103 ug->nr_memory += nr_pages; 7104 ug->pgpgout++; 7105 7106 folio->memcg_data = 0; 7107 } 7108 7109 css_put(&memcg->css); 7110 } 7111 7112 void __mem_cgroup_uncharge(struct folio *folio) 7113 { 7114 struct uncharge_gather ug; 7115 7116 /* Don't touch folio->lru of any random page, pre-check: */ 7117 if (!folio_memcg(folio)) 7118 return; 7119 7120 uncharge_gather_clear(&ug); 7121 uncharge_folio(folio, &ug); 7122 uncharge_batch(&ug); 7123 } 7124 7125 /** 7126 * __mem_cgroup_uncharge_list - uncharge a list of page 7127 * @page_list: list of pages to uncharge 7128 * 7129 * Uncharge a list of pages previously charged with 7130 * __mem_cgroup_charge(). 7131 */ 7132 void __mem_cgroup_uncharge_list(struct list_head *page_list) 7133 { 7134 struct uncharge_gather ug; 7135 struct folio *folio; 7136 7137 uncharge_gather_clear(&ug); 7138 list_for_each_entry(folio, page_list, lru) 7139 uncharge_folio(folio, &ug); 7140 if (ug.memcg) 7141 uncharge_batch(&ug); 7142 } 7143 7144 /** 7145 * mem_cgroup_migrate - Charge a folio's replacement. 7146 * @old: Currently circulating folio. 7147 * @new: Replacement folio. 7148 * 7149 * Charge @new as a replacement folio for @old. @old will 7150 * be uncharged upon free. 7151 * 7152 * Both folios must be locked, @new->mapping must be set up. 7153 */ 7154 void mem_cgroup_migrate(struct folio *old, struct folio *new) 7155 { 7156 struct mem_cgroup *memcg; 7157 long nr_pages = folio_nr_pages(new); 7158 unsigned long flags; 7159 7160 VM_BUG_ON_FOLIO(!folio_test_locked(old), old); 7161 VM_BUG_ON_FOLIO(!folio_test_locked(new), new); 7162 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new); 7163 VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new); 7164 7165 if (mem_cgroup_disabled()) 7166 return; 7167 7168 /* Page cache replacement: new folio already charged? */ 7169 if (folio_memcg(new)) 7170 return; 7171 7172 memcg = folio_memcg(old); 7173 VM_WARN_ON_ONCE_FOLIO(!memcg, old); 7174 if (!memcg) 7175 return; 7176 7177 /* Force-charge the new page. The old one will be freed soon */ 7178 if (!mem_cgroup_is_root(memcg)) { 7179 page_counter_charge(&memcg->memory, nr_pages); 7180 if (do_memsw_account()) 7181 page_counter_charge(&memcg->memsw, nr_pages); 7182 } 7183 7184 css_get(&memcg->css); 7185 commit_charge(new, memcg); 7186 7187 local_irq_save(flags); 7188 mem_cgroup_charge_statistics(memcg, nr_pages); 7189 memcg_check_events(memcg, folio_nid(new)); 7190 local_irq_restore(flags); 7191 } 7192 7193 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); 7194 EXPORT_SYMBOL(memcg_sockets_enabled_key); 7195 7196 void mem_cgroup_sk_alloc(struct sock *sk) 7197 { 7198 struct mem_cgroup *memcg; 7199 7200 if (!mem_cgroup_sockets_enabled) 7201 return; 7202 7203 /* Do not associate the sock with unrelated interrupted task's memcg. */ 7204 if (!in_task()) 7205 return; 7206 7207 rcu_read_lock(); 7208 memcg = mem_cgroup_from_task(current); 7209 if (mem_cgroup_is_root(memcg)) 7210 goto out; 7211 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active) 7212 goto out; 7213 if (css_tryget(&memcg->css)) 7214 sk->sk_memcg = memcg; 7215 out: 7216 rcu_read_unlock(); 7217 } 7218 7219 void mem_cgroup_sk_free(struct sock *sk) 7220 { 7221 if (sk->sk_memcg) 7222 css_put(&sk->sk_memcg->css); 7223 } 7224 7225 /** 7226 * mem_cgroup_charge_skmem - charge socket memory 7227 * @memcg: memcg to charge 7228 * @nr_pages: number of pages to charge 7229 * @gfp_mask: reclaim mode 7230 * 7231 * Charges @nr_pages to @memcg. Returns %true if the charge fit within 7232 * @memcg's configured limit, %false if it doesn't. 7233 */ 7234 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages, 7235 gfp_t gfp_mask) 7236 { 7237 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 7238 struct page_counter *fail; 7239 7240 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) { 7241 memcg->tcpmem_pressure = 0; 7242 return true; 7243 } 7244 memcg->tcpmem_pressure = 1; 7245 if (gfp_mask & __GFP_NOFAIL) { 7246 page_counter_charge(&memcg->tcpmem, nr_pages); 7247 return true; 7248 } 7249 return false; 7250 } 7251 7252 if (try_charge(memcg, gfp_mask, nr_pages) == 0) { 7253 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages); 7254 return true; 7255 } 7256 7257 return false; 7258 } 7259 7260 /** 7261 * mem_cgroup_uncharge_skmem - uncharge socket memory 7262 * @memcg: memcg to uncharge 7263 * @nr_pages: number of pages to uncharge 7264 */ 7265 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 7266 { 7267 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 7268 page_counter_uncharge(&memcg->tcpmem, nr_pages); 7269 return; 7270 } 7271 7272 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages); 7273 7274 refill_stock(memcg, nr_pages); 7275 } 7276 7277 static int __init cgroup_memory(char *s) 7278 { 7279 char *token; 7280 7281 while ((token = strsep(&s, ",")) != NULL) { 7282 if (!*token) 7283 continue; 7284 if (!strcmp(token, "nosocket")) 7285 cgroup_memory_nosocket = true; 7286 if (!strcmp(token, "nokmem")) 7287 cgroup_memory_nokmem = true; 7288 if (!strcmp(token, "nobpf")) 7289 cgroup_memory_nobpf = true; 7290 } 7291 return 1; 7292 } 7293 __setup("cgroup.memory=", cgroup_memory); 7294 7295 /* 7296 * subsys_initcall() for memory controller. 7297 * 7298 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this 7299 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but 7300 * basically everything that doesn't depend on a specific mem_cgroup structure 7301 * should be initialized from here. 7302 */ 7303 static int __init mem_cgroup_init(void) 7304 { 7305 int cpu, node; 7306 7307 /* 7308 * Currently s32 type (can refer to struct batched_lruvec_stat) is 7309 * used for per-memcg-per-cpu caching of per-node statistics. In order 7310 * to work fine, we should make sure that the overfill threshold can't 7311 * exceed S32_MAX / PAGE_SIZE. 7312 */ 7313 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE); 7314 7315 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL, 7316 memcg_hotplug_cpu_dead); 7317 7318 for_each_possible_cpu(cpu) 7319 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, 7320 drain_local_stock); 7321 7322 for_each_node(node) { 7323 struct mem_cgroup_tree_per_node *rtpn; 7324 7325 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, 7326 node_online(node) ? node : NUMA_NO_NODE); 7327 7328 rtpn->rb_root = RB_ROOT; 7329 rtpn->rb_rightmost = NULL; 7330 spin_lock_init(&rtpn->lock); 7331 soft_limit_tree.rb_tree_per_node[node] = rtpn; 7332 } 7333 7334 return 0; 7335 } 7336 subsys_initcall(mem_cgroup_init); 7337 7338 #ifdef CONFIG_SWAP 7339 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg) 7340 { 7341 while (!refcount_inc_not_zero(&memcg->id.ref)) { 7342 /* 7343 * The root cgroup cannot be destroyed, so it's refcount must 7344 * always be >= 1. 7345 */ 7346 if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) { 7347 VM_BUG_ON(1); 7348 break; 7349 } 7350 memcg = parent_mem_cgroup(memcg); 7351 if (!memcg) 7352 memcg = root_mem_cgroup; 7353 } 7354 return memcg; 7355 } 7356 7357 /** 7358 * mem_cgroup_swapout - transfer a memsw charge to swap 7359 * @folio: folio whose memsw charge to transfer 7360 * @entry: swap entry to move the charge to 7361 * 7362 * Transfer the memsw charge of @folio to @entry. 7363 */ 7364 void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry) 7365 { 7366 struct mem_cgroup *memcg, *swap_memcg; 7367 unsigned int nr_entries; 7368 unsigned short oldid; 7369 7370 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 7371 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); 7372 7373 if (mem_cgroup_disabled()) 7374 return; 7375 7376 if (!do_memsw_account()) 7377 return; 7378 7379 memcg = folio_memcg(folio); 7380 7381 VM_WARN_ON_ONCE_FOLIO(!memcg, folio); 7382 if (!memcg) 7383 return; 7384 7385 /* 7386 * In case the memcg owning these pages has been offlined and doesn't 7387 * have an ID allocated to it anymore, charge the closest online 7388 * ancestor for the swap instead and transfer the memory+swap charge. 7389 */ 7390 swap_memcg = mem_cgroup_id_get_online(memcg); 7391 nr_entries = folio_nr_pages(folio); 7392 /* Get references for the tail pages, too */ 7393 if (nr_entries > 1) 7394 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1); 7395 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg), 7396 nr_entries); 7397 VM_BUG_ON_FOLIO(oldid, folio); 7398 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries); 7399 7400 folio->memcg_data = 0; 7401 7402 if (!mem_cgroup_is_root(memcg)) 7403 page_counter_uncharge(&memcg->memory, nr_entries); 7404 7405 if (memcg != swap_memcg) { 7406 if (!mem_cgroup_is_root(swap_memcg)) 7407 page_counter_charge(&swap_memcg->memsw, nr_entries); 7408 page_counter_uncharge(&memcg->memsw, nr_entries); 7409 } 7410 7411 /* 7412 * Interrupts should be disabled here because the caller holds the 7413 * i_pages lock which is taken with interrupts-off. It is 7414 * important here to have the interrupts disabled because it is the 7415 * only synchronisation we have for updating the per-CPU variables. 7416 */ 7417 memcg_stats_lock(); 7418 mem_cgroup_charge_statistics(memcg, -nr_entries); 7419 memcg_stats_unlock(); 7420 memcg_check_events(memcg, folio_nid(folio)); 7421 7422 css_put(&memcg->css); 7423 } 7424 7425 /** 7426 * __mem_cgroup_try_charge_swap - try charging swap space for a folio 7427 * @folio: folio being added to swap 7428 * @entry: swap entry to charge 7429 * 7430 * Try to charge @folio's memcg for the swap space at @entry. 7431 * 7432 * Returns 0 on success, -ENOMEM on failure. 7433 */ 7434 int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry) 7435 { 7436 unsigned int nr_pages = folio_nr_pages(folio); 7437 struct page_counter *counter; 7438 struct mem_cgroup *memcg; 7439 unsigned short oldid; 7440 7441 if (do_memsw_account()) 7442 return 0; 7443 7444 memcg = folio_memcg(folio); 7445 7446 VM_WARN_ON_ONCE_FOLIO(!memcg, folio); 7447 if (!memcg) 7448 return 0; 7449 7450 if (!entry.val) { 7451 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 7452 return 0; 7453 } 7454 7455 memcg = mem_cgroup_id_get_online(memcg); 7456 7457 if (!mem_cgroup_is_root(memcg) && 7458 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) { 7459 memcg_memory_event(memcg, MEMCG_SWAP_MAX); 7460 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 7461 mem_cgroup_id_put(memcg); 7462 return -ENOMEM; 7463 } 7464 7465 /* Get references for the tail pages, too */ 7466 if (nr_pages > 1) 7467 mem_cgroup_id_get_many(memcg, nr_pages - 1); 7468 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages); 7469 VM_BUG_ON_FOLIO(oldid, folio); 7470 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages); 7471 7472 return 0; 7473 } 7474 7475 /** 7476 * __mem_cgroup_uncharge_swap - uncharge swap space 7477 * @entry: swap entry to uncharge 7478 * @nr_pages: the amount of swap space to uncharge 7479 */ 7480 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages) 7481 { 7482 struct mem_cgroup *memcg; 7483 unsigned short id; 7484 7485 if (mem_cgroup_disabled()) 7486 return; 7487 7488 id = swap_cgroup_record(entry, 0, nr_pages); 7489 rcu_read_lock(); 7490 memcg = mem_cgroup_from_id(id); 7491 if (memcg) { 7492 if (!mem_cgroup_is_root(memcg)) { 7493 if (do_memsw_account()) 7494 page_counter_uncharge(&memcg->memsw, nr_pages); 7495 else 7496 page_counter_uncharge(&memcg->swap, nr_pages); 7497 } 7498 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages); 7499 mem_cgroup_id_put_many(memcg, nr_pages); 7500 } 7501 rcu_read_unlock(); 7502 } 7503 7504 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) 7505 { 7506 long nr_swap_pages = get_nr_swap_pages(); 7507 7508 if (mem_cgroup_disabled() || do_memsw_account()) 7509 return nr_swap_pages; 7510 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) 7511 nr_swap_pages = min_t(long, nr_swap_pages, 7512 READ_ONCE(memcg->swap.max) - 7513 page_counter_read(&memcg->swap)); 7514 return nr_swap_pages; 7515 } 7516 7517 bool mem_cgroup_swap_full(struct folio *folio) 7518 { 7519 struct mem_cgroup *memcg; 7520 7521 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 7522 7523 if (vm_swap_full()) 7524 return true; 7525 if (do_memsw_account()) 7526 return false; 7527 7528 memcg = folio_memcg(folio); 7529 if (!memcg) 7530 return false; 7531 7532 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) { 7533 unsigned long usage = page_counter_read(&memcg->swap); 7534 7535 if (usage * 2 >= READ_ONCE(memcg->swap.high) || 7536 usage * 2 >= READ_ONCE(memcg->swap.max)) 7537 return true; 7538 } 7539 7540 return false; 7541 } 7542 7543 static int __init setup_swap_account(char *s) 7544 { 7545 pr_warn_once("The swapaccount= commandline option is deprecated. " 7546 "Please report your usecase to linux-mm@kvack.org if you " 7547 "depend on this functionality.\n"); 7548 return 1; 7549 } 7550 __setup("swapaccount=", setup_swap_account); 7551 7552 static u64 swap_current_read(struct cgroup_subsys_state *css, 7553 struct cftype *cft) 7554 { 7555 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 7556 7557 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; 7558 } 7559 7560 static int swap_high_show(struct seq_file *m, void *v) 7561 { 7562 return seq_puts_memcg_tunable(m, 7563 READ_ONCE(mem_cgroup_from_seq(m)->swap.high)); 7564 } 7565 7566 static ssize_t swap_high_write(struct kernfs_open_file *of, 7567 char *buf, size_t nbytes, loff_t off) 7568 { 7569 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 7570 unsigned long high; 7571 int err; 7572 7573 buf = strstrip(buf); 7574 err = page_counter_memparse(buf, "max", &high); 7575 if (err) 7576 return err; 7577 7578 page_counter_set_high(&memcg->swap, high); 7579 7580 return nbytes; 7581 } 7582 7583 static int swap_max_show(struct seq_file *m, void *v) 7584 { 7585 return seq_puts_memcg_tunable(m, 7586 READ_ONCE(mem_cgroup_from_seq(m)->swap.max)); 7587 } 7588 7589 static ssize_t swap_max_write(struct kernfs_open_file *of, 7590 char *buf, size_t nbytes, loff_t off) 7591 { 7592 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 7593 unsigned long max; 7594 int err; 7595 7596 buf = strstrip(buf); 7597 err = page_counter_memparse(buf, "max", &max); 7598 if (err) 7599 return err; 7600 7601 xchg(&memcg->swap.max, max); 7602 7603 return nbytes; 7604 } 7605 7606 static int swap_events_show(struct seq_file *m, void *v) 7607 { 7608 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 7609 7610 seq_printf(m, "high %lu\n", 7611 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH])); 7612 seq_printf(m, "max %lu\n", 7613 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX])); 7614 seq_printf(m, "fail %lu\n", 7615 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL])); 7616 7617 return 0; 7618 } 7619 7620 static struct cftype swap_files[] = { 7621 { 7622 .name = "swap.current", 7623 .flags = CFTYPE_NOT_ON_ROOT, 7624 .read_u64 = swap_current_read, 7625 }, 7626 { 7627 .name = "swap.high", 7628 .flags = CFTYPE_NOT_ON_ROOT, 7629 .seq_show = swap_high_show, 7630 .write = swap_high_write, 7631 }, 7632 { 7633 .name = "swap.max", 7634 .flags = CFTYPE_NOT_ON_ROOT, 7635 .seq_show = swap_max_show, 7636 .write = swap_max_write, 7637 }, 7638 { 7639 .name = "swap.events", 7640 .flags = CFTYPE_NOT_ON_ROOT, 7641 .file_offset = offsetof(struct mem_cgroup, swap_events_file), 7642 .seq_show = swap_events_show, 7643 }, 7644 { } /* terminate */ 7645 }; 7646 7647 static struct cftype memsw_files[] = { 7648 { 7649 .name = "memsw.usage_in_bytes", 7650 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 7651 .read_u64 = mem_cgroup_read_u64, 7652 }, 7653 { 7654 .name = "memsw.max_usage_in_bytes", 7655 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 7656 .write = mem_cgroup_reset, 7657 .read_u64 = mem_cgroup_read_u64, 7658 }, 7659 { 7660 .name = "memsw.limit_in_bytes", 7661 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 7662 .write = mem_cgroup_write, 7663 .read_u64 = mem_cgroup_read_u64, 7664 }, 7665 { 7666 .name = "memsw.failcnt", 7667 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 7668 .write = mem_cgroup_reset, 7669 .read_u64 = mem_cgroup_read_u64, 7670 }, 7671 { }, /* terminate */ 7672 }; 7673 7674 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 7675 /** 7676 * obj_cgroup_may_zswap - check if this cgroup can zswap 7677 * @objcg: the object cgroup 7678 * 7679 * Check if the hierarchical zswap limit has been reached. 7680 * 7681 * This doesn't check for specific headroom, and it is not atomic 7682 * either. But with zswap, the size of the allocation is only known 7683 * once compression has occured, and this optimistic pre-check avoids 7684 * spending cycles on compression when there is already no room left 7685 * or zswap is disabled altogether somewhere in the hierarchy. 7686 */ 7687 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg) 7688 { 7689 struct mem_cgroup *memcg, *original_memcg; 7690 bool ret = true; 7691 7692 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7693 return true; 7694 7695 original_memcg = get_mem_cgroup_from_objcg(objcg); 7696 for (memcg = original_memcg; !mem_cgroup_is_root(memcg); 7697 memcg = parent_mem_cgroup(memcg)) { 7698 unsigned long max = READ_ONCE(memcg->zswap_max); 7699 unsigned long pages; 7700 7701 if (max == PAGE_COUNTER_MAX) 7702 continue; 7703 if (max == 0) { 7704 ret = false; 7705 break; 7706 } 7707 7708 cgroup_rstat_flush(memcg->css.cgroup); 7709 pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE; 7710 if (pages < max) 7711 continue; 7712 ret = false; 7713 break; 7714 } 7715 mem_cgroup_put(original_memcg); 7716 return ret; 7717 } 7718 7719 /** 7720 * obj_cgroup_charge_zswap - charge compression backend memory 7721 * @objcg: the object cgroup 7722 * @size: size of compressed object 7723 * 7724 * This forces the charge after obj_cgroup_may_swap() allowed 7725 * compression and storage in zwap for this cgroup to go ahead. 7726 */ 7727 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size) 7728 { 7729 struct mem_cgroup *memcg; 7730 7731 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7732 return; 7733 7734 VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC)); 7735 7736 /* PF_MEMALLOC context, charging must succeed */ 7737 if (obj_cgroup_charge(objcg, GFP_KERNEL, size)) 7738 VM_WARN_ON_ONCE(1); 7739 7740 rcu_read_lock(); 7741 memcg = obj_cgroup_memcg(objcg); 7742 mod_memcg_state(memcg, MEMCG_ZSWAP_B, size); 7743 mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1); 7744 rcu_read_unlock(); 7745 } 7746 7747 /** 7748 * obj_cgroup_uncharge_zswap - uncharge compression backend memory 7749 * @objcg: the object cgroup 7750 * @size: size of compressed object 7751 * 7752 * Uncharges zswap memory on page in. 7753 */ 7754 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size) 7755 { 7756 struct mem_cgroup *memcg; 7757 7758 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7759 return; 7760 7761 obj_cgroup_uncharge(objcg, size); 7762 7763 rcu_read_lock(); 7764 memcg = obj_cgroup_memcg(objcg); 7765 mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size); 7766 mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1); 7767 rcu_read_unlock(); 7768 } 7769 7770 static u64 zswap_current_read(struct cgroup_subsys_state *css, 7771 struct cftype *cft) 7772 { 7773 cgroup_rstat_flush(css->cgroup); 7774 return memcg_page_state(mem_cgroup_from_css(css), MEMCG_ZSWAP_B); 7775 } 7776 7777 static int zswap_max_show(struct seq_file *m, void *v) 7778 { 7779 return seq_puts_memcg_tunable(m, 7780 READ_ONCE(mem_cgroup_from_seq(m)->zswap_max)); 7781 } 7782 7783 static ssize_t zswap_max_write(struct kernfs_open_file *of, 7784 char *buf, size_t nbytes, loff_t off) 7785 { 7786 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 7787 unsigned long max; 7788 int err; 7789 7790 buf = strstrip(buf); 7791 err = page_counter_memparse(buf, "max", &max); 7792 if (err) 7793 return err; 7794 7795 xchg(&memcg->zswap_max, max); 7796 7797 return nbytes; 7798 } 7799 7800 static struct cftype zswap_files[] = { 7801 { 7802 .name = "zswap.current", 7803 .flags = CFTYPE_NOT_ON_ROOT, 7804 .read_u64 = zswap_current_read, 7805 }, 7806 { 7807 .name = "zswap.max", 7808 .flags = CFTYPE_NOT_ON_ROOT, 7809 .seq_show = zswap_max_show, 7810 .write = zswap_max_write, 7811 }, 7812 { } /* terminate */ 7813 }; 7814 #endif /* CONFIG_MEMCG_KMEM && CONFIG_ZSWAP */ 7815 7816 static int __init mem_cgroup_swap_init(void) 7817 { 7818 if (mem_cgroup_disabled()) 7819 return 0; 7820 7821 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files)); 7822 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files)); 7823 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 7824 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files)); 7825 #endif 7826 return 0; 7827 } 7828 subsys_initcall(mem_cgroup_swap_init); 7829 7830 #endif /* CONFIG_SWAP */ 7831