xref: /openbmc/linux/mm/memcontrol.c (revision 609e478b)
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * Kernel Memory Controller
14  * Copyright (C) 2012 Parallels Inc. and Google Inc.
15  * Authors: Glauber Costa and Suleiman Souhlal
16  *
17  * This program is free software; you can redistribute it and/or modify
18  * it under the terms of the GNU General Public License as published by
19  * the Free Software Foundation; either version 2 of the License, or
20  * (at your option) any later version.
21  *
22  * This program is distributed in the hope that it will be useful,
23  * but WITHOUT ANY WARRANTY; without even the implied warranty of
24  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
25  * GNU General Public License for more details.
26  */
27 
28 #include <linux/res_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/mm.h>
32 #include <linux/hugetlb.h>
33 #include <linux/pagemap.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
50 #include <linux/fs.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/page_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include "internal.h"
60 #include <net/sock.h>
61 #include <net/ip.h>
62 #include <net/tcp_memcontrol.h>
63 #include "slab.h"
64 
65 #include <asm/uaccess.h>
66 
67 #include <trace/events/vmscan.h>
68 
69 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
70 EXPORT_SYMBOL(memory_cgrp_subsys);
71 
72 #define MEM_CGROUP_RECLAIM_RETRIES	5
73 static struct mem_cgroup *root_mem_cgroup __read_mostly;
74 
75 #ifdef CONFIG_MEMCG_SWAP
76 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
77 int do_swap_account __read_mostly;
78 
79 /* for remember boot option*/
80 #ifdef CONFIG_MEMCG_SWAP_ENABLED
81 static int really_do_swap_account __initdata = 1;
82 #else
83 static int really_do_swap_account __initdata;
84 #endif
85 
86 #else
87 #define do_swap_account		0
88 #endif
89 
90 
91 static const char * const mem_cgroup_stat_names[] = {
92 	"cache",
93 	"rss",
94 	"rss_huge",
95 	"mapped_file",
96 	"writeback",
97 	"swap",
98 };
99 
100 enum mem_cgroup_events_index {
101 	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
102 	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
103 	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
104 	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
105 	MEM_CGROUP_EVENTS_NSTATS,
106 };
107 
108 static const char * const mem_cgroup_events_names[] = {
109 	"pgpgin",
110 	"pgpgout",
111 	"pgfault",
112 	"pgmajfault",
113 };
114 
115 static const char * const mem_cgroup_lru_names[] = {
116 	"inactive_anon",
117 	"active_anon",
118 	"inactive_file",
119 	"active_file",
120 	"unevictable",
121 };
122 
123 /*
124  * Per memcg event counter is incremented at every pagein/pageout. With THP,
125  * it will be incremated by the number of pages. This counter is used for
126  * for trigger some periodic events. This is straightforward and better
127  * than using jiffies etc. to handle periodic memcg event.
128  */
129 enum mem_cgroup_events_target {
130 	MEM_CGROUP_TARGET_THRESH,
131 	MEM_CGROUP_TARGET_SOFTLIMIT,
132 	MEM_CGROUP_TARGET_NUMAINFO,
133 	MEM_CGROUP_NTARGETS,
134 };
135 #define THRESHOLDS_EVENTS_TARGET 128
136 #define SOFTLIMIT_EVENTS_TARGET 1024
137 #define NUMAINFO_EVENTS_TARGET	1024
138 
139 struct mem_cgroup_stat_cpu {
140 	long count[MEM_CGROUP_STAT_NSTATS];
141 	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
142 	unsigned long nr_page_events;
143 	unsigned long targets[MEM_CGROUP_NTARGETS];
144 };
145 
146 struct mem_cgroup_reclaim_iter {
147 	/*
148 	 * last scanned hierarchy member. Valid only if last_dead_count
149 	 * matches memcg->dead_count of the hierarchy root group.
150 	 */
151 	struct mem_cgroup *last_visited;
152 	int last_dead_count;
153 
154 	/* scan generation, increased every round-trip */
155 	unsigned int generation;
156 };
157 
158 /*
159  * per-zone information in memory controller.
160  */
161 struct mem_cgroup_per_zone {
162 	struct lruvec		lruvec;
163 	unsigned long		lru_size[NR_LRU_LISTS];
164 
165 	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
166 
167 	struct rb_node		tree_node;	/* RB tree node */
168 	unsigned long long	usage_in_excess;/* Set to the value by which */
169 						/* the soft limit is exceeded*/
170 	bool			on_tree;
171 	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
172 						/* use container_of	   */
173 };
174 
175 struct mem_cgroup_per_node {
176 	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
177 };
178 
179 /*
180  * Cgroups above their limits are maintained in a RB-Tree, independent of
181  * their hierarchy representation
182  */
183 
184 struct mem_cgroup_tree_per_zone {
185 	struct rb_root rb_root;
186 	spinlock_t lock;
187 };
188 
189 struct mem_cgroup_tree_per_node {
190 	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
191 };
192 
193 struct mem_cgroup_tree {
194 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
195 };
196 
197 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
198 
199 struct mem_cgroup_threshold {
200 	struct eventfd_ctx *eventfd;
201 	u64 threshold;
202 };
203 
204 /* For threshold */
205 struct mem_cgroup_threshold_ary {
206 	/* An array index points to threshold just below or equal to usage. */
207 	int current_threshold;
208 	/* Size of entries[] */
209 	unsigned int size;
210 	/* Array of thresholds */
211 	struct mem_cgroup_threshold entries[0];
212 };
213 
214 struct mem_cgroup_thresholds {
215 	/* Primary thresholds array */
216 	struct mem_cgroup_threshold_ary *primary;
217 	/*
218 	 * Spare threshold array.
219 	 * This is needed to make mem_cgroup_unregister_event() "never fail".
220 	 * It must be able to store at least primary->size - 1 entries.
221 	 */
222 	struct mem_cgroup_threshold_ary *spare;
223 };
224 
225 /* for OOM */
226 struct mem_cgroup_eventfd_list {
227 	struct list_head list;
228 	struct eventfd_ctx *eventfd;
229 };
230 
231 /*
232  * cgroup_event represents events which userspace want to receive.
233  */
234 struct mem_cgroup_event {
235 	/*
236 	 * memcg which the event belongs to.
237 	 */
238 	struct mem_cgroup *memcg;
239 	/*
240 	 * eventfd to signal userspace about the event.
241 	 */
242 	struct eventfd_ctx *eventfd;
243 	/*
244 	 * Each of these stored in a list by the cgroup.
245 	 */
246 	struct list_head list;
247 	/*
248 	 * register_event() callback will be used to add new userspace
249 	 * waiter for changes related to this event.  Use eventfd_signal()
250 	 * on eventfd to send notification to userspace.
251 	 */
252 	int (*register_event)(struct mem_cgroup *memcg,
253 			      struct eventfd_ctx *eventfd, const char *args);
254 	/*
255 	 * unregister_event() callback will be called when userspace closes
256 	 * the eventfd or on cgroup removing.  This callback must be set,
257 	 * if you want provide notification functionality.
258 	 */
259 	void (*unregister_event)(struct mem_cgroup *memcg,
260 				 struct eventfd_ctx *eventfd);
261 	/*
262 	 * All fields below needed to unregister event when
263 	 * userspace closes eventfd.
264 	 */
265 	poll_table pt;
266 	wait_queue_head_t *wqh;
267 	wait_queue_t wait;
268 	struct work_struct remove;
269 };
270 
271 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
272 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
273 
274 /*
275  * The memory controller data structure. The memory controller controls both
276  * page cache and RSS per cgroup. We would eventually like to provide
277  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
278  * to help the administrator determine what knobs to tune.
279  *
280  * TODO: Add a water mark for the memory controller. Reclaim will begin when
281  * we hit the water mark. May be even add a low water mark, such that
282  * no reclaim occurs from a cgroup at it's low water mark, this is
283  * a feature that will be implemented much later in the future.
284  */
285 struct mem_cgroup {
286 	struct cgroup_subsys_state css;
287 	/*
288 	 * the counter to account for memory usage
289 	 */
290 	struct res_counter res;
291 
292 	/* vmpressure notifications */
293 	struct vmpressure vmpressure;
294 
295 	/* css_online() has been completed */
296 	int initialized;
297 
298 	/*
299 	 * the counter to account for mem+swap usage.
300 	 */
301 	struct res_counter memsw;
302 
303 	/*
304 	 * the counter to account for kernel memory usage.
305 	 */
306 	struct res_counter kmem;
307 	/*
308 	 * Should the accounting and control be hierarchical, per subtree?
309 	 */
310 	bool use_hierarchy;
311 	unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
312 
313 	bool		oom_lock;
314 	atomic_t	under_oom;
315 	atomic_t	oom_wakeups;
316 
317 	int	swappiness;
318 	/* OOM-Killer disable */
319 	int		oom_kill_disable;
320 
321 	/* protect arrays of thresholds */
322 	struct mutex thresholds_lock;
323 
324 	/* thresholds for memory usage. RCU-protected */
325 	struct mem_cgroup_thresholds thresholds;
326 
327 	/* thresholds for mem+swap usage. RCU-protected */
328 	struct mem_cgroup_thresholds memsw_thresholds;
329 
330 	/* For oom notifier event fd */
331 	struct list_head oom_notify;
332 
333 	/*
334 	 * Should we move charges of a task when a task is moved into this
335 	 * mem_cgroup ? And what type of charges should we move ?
336 	 */
337 	unsigned long move_charge_at_immigrate;
338 	/*
339 	 * set > 0 if pages under this cgroup are moving to other cgroup.
340 	 */
341 	atomic_t	moving_account;
342 	/* taken only while moving_account > 0 */
343 	spinlock_t	move_lock;
344 	/*
345 	 * percpu counter.
346 	 */
347 	struct mem_cgroup_stat_cpu __percpu *stat;
348 	/*
349 	 * used when a cpu is offlined or other synchronizations
350 	 * See mem_cgroup_read_stat().
351 	 */
352 	struct mem_cgroup_stat_cpu nocpu_base;
353 	spinlock_t pcp_counter_lock;
354 
355 	atomic_t	dead_count;
356 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
357 	struct cg_proto tcp_mem;
358 #endif
359 #if defined(CONFIG_MEMCG_KMEM)
360 	/* analogous to slab_common's slab_caches list, but per-memcg;
361 	 * protected by memcg_slab_mutex */
362 	struct list_head memcg_slab_caches;
363         /* Index in the kmem_cache->memcg_params->memcg_caches array */
364 	int kmemcg_id;
365 #endif
366 
367 	int last_scanned_node;
368 #if MAX_NUMNODES > 1
369 	nodemask_t	scan_nodes;
370 	atomic_t	numainfo_events;
371 	atomic_t	numainfo_updating;
372 #endif
373 
374 	/* List of events which userspace want to receive */
375 	struct list_head event_list;
376 	spinlock_t event_list_lock;
377 
378 	struct mem_cgroup_per_node *nodeinfo[0];
379 	/* WARNING: nodeinfo must be the last member here */
380 };
381 
382 /* internal only representation about the status of kmem accounting. */
383 enum {
384 	KMEM_ACCOUNTED_ACTIVE, /* accounted by this cgroup itself */
385 	KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
386 };
387 
388 #ifdef CONFIG_MEMCG_KMEM
389 static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
390 {
391 	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
392 }
393 
394 static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
395 {
396 	return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
397 }
398 
399 static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
400 {
401 	/*
402 	 * Our caller must use css_get() first, because memcg_uncharge_kmem()
403 	 * will call css_put() if it sees the memcg is dead.
404 	 */
405 	smp_wmb();
406 	if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
407 		set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
408 }
409 
410 static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
411 {
412 	return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
413 				  &memcg->kmem_account_flags);
414 }
415 #endif
416 
417 /* Stuffs for move charges at task migration. */
418 /*
419  * Types of charges to be moved. "move_charge_at_immitgrate" and
420  * "immigrate_flags" are treated as a left-shifted bitmap of these types.
421  */
422 enum move_type {
423 	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
424 	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
425 	NR_MOVE_TYPE,
426 };
427 
428 /* "mc" and its members are protected by cgroup_mutex */
429 static struct move_charge_struct {
430 	spinlock_t	  lock; /* for from, to */
431 	struct mem_cgroup *from;
432 	struct mem_cgroup *to;
433 	unsigned long immigrate_flags;
434 	unsigned long precharge;
435 	unsigned long moved_charge;
436 	unsigned long moved_swap;
437 	struct task_struct *moving_task;	/* a task moving charges */
438 	wait_queue_head_t waitq;		/* a waitq for other context */
439 } mc = {
440 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
441 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
442 };
443 
444 static bool move_anon(void)
445 {
446 	return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
447 }
448 
449 static bool move_file(void)
450 {
451 	return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
452 }
453 
454 /*
455  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
456  * limit reclaim to prevent infinite loops, if they ever occur.
457  */
458 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
459 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
460 
461 enum charge_type {
462 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
463 	MEM_CGROUP_CHARGE_TYPE_ANON,
464 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
465 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
466 	NR_CHARGE_TYPE,
467 };
468 
469 /* for encoding cft->private value on file */
470 enum res_type {
471 	_MEM,
472 	_MEMSWAP,
473 	_OOM_TYPE,
474 	_KMEM,
475 };
476 
477 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
478 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
479 #define MEMFILE_ATTR(val)	((val) & 0xffff)
480 /* Used for OOM nofiier */
481 #define OOM_CONTROL		(0)
482 
483 /*
484  * The memcg_create_mutex will be held whenever a new cgroup is created.
485  * As a consequence, any change that needs to protect against new child cgroups
486  * appearing has to hold it as well.
487  */
488 static DEFINE_MUTEX(memcg_create_mutex);
489 
490 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
491 {
492 	return s ? container_of(s, struct mem_cgroup, css) : NULL;
493 }
494 
495 /* Some nice accessors for the vmpressure. */
496 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
497 {
498 	if (!memcg)
499 		memcg = root_mem_cgroup;
500 	return &memcg->vmpressure;
501 }
502 
503 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
504 {
505 	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
506 }
507 
508 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
509 {
510 	return (memcg == root_mem_cgroup);
511 }
512 
513 /*
514  * We restrict the id in the range of [1, 65535], so it can fit into
515  * an unsigned short.
516  */
517 #define MEM_CGROUP_ID_MAX	USHRT_MAX
518 
519 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
520 {
521 	return memcg->css.id;
522 }
523 
524 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
525 {
526 	struct cgroup_subsys_state *css;
527 
528 	css = css_from_id(id, &memory_cgrp_subsys);
529 	return mem_cgroup_from_css(css);
530 }
531 
532 /* Writing them here to avoid exposing memcg's inner layout */
533 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
534 
535 void sock_update_memcg(struct sock *sk)
536 {
537 	if (mem_cgroup_sockets_enabled) {
538 		struct mem_cgroup *memcg;
539 		struct cg_proto *cg_proto;
540 
541 		BUG_ON(!sk->sk_prot->proto_cgroup);
542 
543 		/* Socket cloning can throw us here with sk_cgrp already
544 		 * filled. It won't however, necessarily happen from
545 		 * process context. So the test for root memcg given
546 		 * the current task's memcg won't help us in this case.
547 		 *
548 		 * Respecting the original socket's memcg is a better
549 		 * decision in this case.
550 		 */
551 		if (sk->sk_cgrp) {
552 			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
553 			css_get(&sk->sk_cgrp->memcg->css);
554 			return;
555 		}
556 
557 		rcu_read_lock();
558 		memcg = mem_cgroup_from_task(current);
559 		cg_proto = sk->sk_prot->proto_cgroup(memcg);
560 		if (!mem_cgroup_is_root(memcg) &&
561 		    memcg_proto_active(cg_proto) &&
562 		    css_tryget_online(&memcg->css)) {
563 			sk->sk_cgrp = cg_proto;
564 		}
565 		rcu_read_unlock();
566 	}
567 }
568 EXPORT_SYMBOL(sock_update_memcg);
569 
570 void sock_release_memcg(struct sock *sk)
571 {
572 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
573 		struct mem_cgroup *memcg;
574 		WARN_ON(!sk->sk_cgrp->memcg);
575 		memcg = sk->sk_cgrp->memcg;
576 		css_put(&sk->sk_cgrp->memcg->css);
577 	}
578 }
579 
580 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
581 {
582 	if (!memcg || mem_cgroup_is_root(memcg))
583 		return NULL;
584 
585 	return &memcg->tcp_mem;
586 }
587 EXPORT_SYMBOL(tcp_proto_cgroup);
588 
589 static void disarm_sock_keys(struct mem_cgroup *memcg)
590 {
591 	if (!memcg_proto_activated(&memcg->tcp_mem))
592 		return;
593 	static_key_slow_dec(&memcg_socket_limit_enabled);
594 }
595 #else
596 static void disarm_sock_keys(struct mem_cgroup *memcg)
597 {
598 }
599 #endif
600 
601 #ifdef CONFIG_MEMCG_KMEM
602 /*
603  * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
604  * The main reason for not using cgroup id for this:
605  *  this works better in sparse environments, where we have a lot of memcgs,
606  *  but only a few kmem-limited. Or also, if we have, for instance, 200
607  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
608  *  200 entry array for that.
609  *
610  * The current size of the caches array is stored in
611  * memcg_limited_groups_array_size.  It will double each time we have to
612  * increase it.
613  */
614 static DEFINE_IDA(kmem_limited_groups);
615 int memcg_limited_groups_array_size;
616 
617 /*
618  * MIN_SIZE is different than 1, because we would like to avoid going through
619  * the alloc/free process all the time. In a small machine, 4 kmem-limited
620  * cgroups is a reasonable guess. In the future, it could be a parameter or
621  * tunable, but that is strictly not necessary.
622  *
623  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
624  * this constant directly from cgroup, but it is understandable that this is
625  * better kept as an internal representation in cgroup.c. In any case, the
626  * cgrp_id space is not getting any smaller, and we don't have to necessarily
627  * increase ours as well if it increases.
628  */
629 #define MEMCG_CACHES_MIN_SIZE 4
630 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
631 
632 /*
633  * A lot of the calls to the cache allocation functions are expected to be
634  * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
635  * conditional to this static branch, we'll have to allow modules that does
636  * kmem_cache_alloc and the such to see this symbol as well
637  */
638 struct static_key memcg_kmem_enabled_key;
639 EXPORT_SYMBOL(memcg_kmem_enabled_key);
640 
641 static void memcg_free_cache_id(int id);
642 
643 static void disarm_kmem_keys(struct mem_cgroup *memcg)
644 {
645 	if (memcg_kmem_is_active(memcg)) {
646 		static_key_slow_dec(&memcg_kmem_enabled_key);
647 		memcg_free_cache_id(memcg->kmemcg_id);
648 	}
649 	/*
650 	 * This check can't live in kmem destruction function,
651 	 * since the charges will outlive the cgroup
652 	 */
653 	WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
654 }
655 #else
656 static void disarm_kmem_keys(struct mem_cgroup *memcg)
657 {
658 }
659 #endif /* CONFIG_MEMCG_KMEM */
660 
661 static void disarm_static_keys(struct mem_cgroup *memcg)
662 {
663 	disarm_sock_keys(memcg);
664 	disarm_kmem_keys(memcg);
665 }
666 
667 static void drain_all_stock_async(struct mem_cgroup *memcg);
668 
669 static struct mem_cgroup_per_zone *
670 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
671 {
672 	int nid = zone_to_nid(zone);
673 	int zid = zone_idx(zone);
674 
675 	return &memcg->nodeinfo[nid]->zoneinfo[zid];
676 }
677 
678 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
679 {
680 	return &memcg->css;
681 }
682 
683 static struct mem_cgroup_per_zone *
684 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
685 {
686 	int nid = page_to_nid(page);
687 	int zid = page_zonenum(page);
688 
689 	return &memcg->nodeinfo[nid]->zoneinfo[zid];
690 }
691 
692 static struct mem_cgroup_tree_per_zone *
693 soft_limit_tree_node_zone(int nid, int zid)
694 {
695 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
696 }
697 
698 static struct mem_cgroup_tree_per_zone *
699 soft_limit_tree_from_page(struct page *page)
700 {
701 	int nid = page_to_nid(page);
702 	int zid = page_zonenum(page);
703 
704 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
705 }
706 
707 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
708 					 struct mem_cgroup_tree_per_zone *mctz,
709 					 unsigned long long new_usage_in_excess)
710 {
711 	struct rb_node **p = &mctz->rb_root.rb_node;
712 	struct rb_node *parent = NULL;
713 	struct mem_cgroup_per_zone *mz_node;
714 
715 	if (mz->on_tree)
716 		return;
717 
718 	mz->usage_in_excess = new_usage_in_excess;
719 	if (!mz->usage_in_excess)
720 		return;
721 	while (*p) {
722 		parent = *p;
723 		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
724 					tree_node);
725 		if (mz->usage_in_excess < mz_node->usage_in_excess)
726 			p = &(*p)->rb_left;
727 		/*
728 		 * We can't avoid mem cgroups that are over their soft
729 		 * limit by the same amount
730 		 */
731 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
732 			p = &(*p)->rb_right;
733 	}
734 	rb_link_node(&mz->tree_node, parent, p);
735 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
736 	mz->on_tree = true;
737 }
738 
739 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
740 					 struct mem_cgroup_tree_per_zone *mctz)
741 {
742 	if (!mz->on_tree)
743 		return;
744 	rb_erase(&mz->tree_node, &mctz->rb_root);
745 	mz->on_tree = false;
746 }
747 
748 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
749 				       struct mem_cgroup_tree_per_zone *mctz)
750 {
751 	unsigned long flags;
752 
753 	spin_lock_irqsave(&mctz->lock, flags);
754 	__mem_cgroup_remove_exceeded(mz, mctz);
755 	spin_unlock_irqrestore(&mctz->lock, flags);
756 }
757 
758 
759 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
760 {
761 	unsigned long long excess;
762 	struct mem_cgroup_per_zone *mz;
763 	struct mem_cgroup_tree_per_zone *mctz;
764 
765 	mctz = soft_limit_tree_from_page(page);
766 	/*
767 	 * Necessary to update all ancestors when hierarchy is used.
768 	 * because their event counter is not touched.
769 	 */
770 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
771 		mz = mem_cgroup_page_zoneinfo(memcg, page);
772 		excess = res_counter_soft_limit_excess(&memcg->res);
773 		/*
774 		 * We have to update the tree if mz is on RB-tree or
775 		 * mem is over its softlimit.
776 		 */
777 		if (excess || mz->on_tree) {
778 			unsigned long flags;
779 
780 			spin_lock_irqsave(&mctz->lock, flags);
781 			/* if on-tree, remove it */
782 			if (mz->on_tree)
783 				__mem_cgroup_remove_exceeded(mz, mctz);
784 			/*
785 			 * Insert again. mz->usage_in_excess will be updated.
786 			 * If excess is 0, no tree ops.
787 			 */
788 			__mem_cgroup_insert_exceeded(mz, mctz, excess);
789 			spin_unlock_irqrestore(&mctz->lock, flags);
790 		}
791 	}
792 }
793 
794 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
795 {
796 	struct mem_cgroup_tree_per_zone *mctz;
797 	struct mem_cgroup_per_zone *mz;
798 	int nid, zid;
799 
800 	for_each_node(nid) {
801 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
802 			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
803 			mctz = soft_limit_tree_node_zone(nid, zid);
804 			mem_cgroup_remove_exceeded(mz, mctz);
805 		}
806 	}
807 }
808 
809 static struct mem_cgroup_per_zone *
810 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
811 {
812 	struct rb_node *rightmost = NULL;
813 	struct mem_cgroup_per_zone *mz;
814 
815 retry:
816 	mz = NULL;
817 	rightmost = rb_last(&mctz->rb_root);
818 	if (!rightmost)
819 		goto done;		/* Nothing to reclaim from */
820 
821 	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
822 	/*
823 	 * Remove the node now but someone else can add it back,
824 	 * we will to add it back at the end of reclaim to its correct
825 	 * position in the tree.
826 	 */
827 	__mem_cgroup_remove_exceeded(mz, mctz);
828 	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
829 	    !css_tryget_online(&mz->memcg->css))
830 		goto retry;
831 done:
832 	return mz;
833 }
834 
835 static struct mem_cgroup_per_zone *
836 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
837 {
838 	struct mem_cgroup_per_zone *mz;
839 
840 	spin_lock_irq(&mctz->lock);
841 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
842 	spin_unlock_irq(&mctz->lock);
843 	return mz;
844 }
845 
846 /*
847  * Implementation Note: reading percpu statistics for memcg.
848  *
849  * Both of vmstat[] and percpu_counter has threshold and do periodic
850  * synchronization to implement "quick" read. There are trade-off between
851  * reading cost and precision of value. Then, we may have a chance to implement
852  * a periodic synchronizion of counter in memcg's counter.
853  *
854  * But this _read() function is used for user interface now. The user accounts
855  * memory usage by memory cgroup and he _always_ requires exact value because
856  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
857  * have to visit all online cpus and make sum. So, for now, unnecessary
858  * synchronization is not implemented. (just implemented for cpu hotplug)
859  *
860  * If there are kernel internal actions which can make use of some not-exact
861  * value, and reading all cpu value can be performance bottleneck in some
862  * common workload, threashold and synchonization as vmstat[] should be
863  * implemented.
864  */
865 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
866 				 enum mem_cgroup_stat_index idx)
867 {
868 	long val = 0;
869 	int cpu;
870 
871 	get_online_cpus();
872 	for_each_online_cpu(cpu)
873 		val += per_cpu(memcg->stat->count[idx], cpu);
874 #ifdef CONFIG_HOTPLUG_CPU
875 	spin_lock(&memcg->pcp_counter_lock);
876 	val += memcg->nocpu_base.count[idx];
877 	spin_unlock(&memcg->pcp_counter_lock);
878 #endif
879 	put_online_cpus();
880 	return val;
881 }
882 
883 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
884 					    enum mem_cgroup_events_index idx)
885 {
886 	unsigned long val = 0;
887 	int cpu;
888 
889 	get_online_cpus();
890 	for_each_online_cpu(cpu)
891 		val += per_cpu(memcg->stat->events[idx], cpu);
892 #ifdef CONFIG_HOTPLUG_CPU
893 	spin_lock(&memcg->pcp_counter_lock);
894 	val += memcg->nocpu_base.events[idx];
895 	spin_unlock(&memcg->pcp_counter_lock);
896 #endif
897 	put_online_cpus();
898 	return val;
899 }
900 
901 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
902 					 struct page *page,
903 					 int nr_pages)
904 {
905 	/*
906 	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
907 	 * counted as CACHE even if it's on ANON LRU.
908 	 */
909 	if (PageAnon(page))
910 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
911 				nr_pages);
912 	else
913 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
914 				nr_pages);
915 
916 	if (PageTransHuge(page))
917 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
918 				nr_pages);
919 
920 	/* pagein of a big page is an event. So, ignore page size */
921 	if (nr_pages > 0)
922 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
923 	else {
924 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
925 		nr_pages = -nr_pages; /* for event */
926 	}
927 
928 	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
929 }
930 
931 unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
932 {
933 	struct mem_cgroup_per_zone *mz;
934 
935 	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
936 	return mz->lru_size[lru];
937 }
938 
939 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
940 						  int nid,
941 						  unsigned int lru_mask)
942 {
943 	unsigned long nr = 0;
944 	int zid;
945 
946 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
947 
948 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
949 		struct mem_cgroup_per_zone *mz;
950 		enum lru_list lru;
951 
952 		for_each_lru(lru) {
953 			if (!(BIT(lru) & lru_mask))
954 				continue;
955 			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
956 			nr += mz->lru_size[lru];
957 		}
958 	}
959 	return nr;
960 }
961 
962 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
963 			unsigned int lru_mask)
964 {
965 	unsigned long nr = 0;
966 	int nid;
967 
968 	for_each_node_state(nid, N_MEMORY)
969 		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
970 	return nr;
971 }
972 
973 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
974 				       enum mem_cgroup_events_target target)
975 {
976 	unsigned long val, next;
977 
978 	val = __this_cpu_read(memcg->stat->nr_page_events);
979 	next = __this_cpu_read(memcg->stat->targets[target]);
980 	/* from time_after() in jiffies.h */
981 	if ((long)next - (long)val < 0) {
982 		switch (target) {
983 		case MEM_CGROUP_TARGET_THRESH:
984 			next = val + THRESHOLDS_EVENTS_TARGET;
985 			break;
986 		case MEM_CGROUP_TARGET_SOFTLIMIT:
987 			next = val + SOFTLIMIT_EVENTS_TARGET;
988 			break;
989 		case MEM_CGROUP_TARGET_NUMAINFO:
990 			next = val + NUMAINFO_EVENTS_TARGET;
991 			break;
992 		default:
993 			break;
994 		}
995 		__this_cpu_write(memcg->stat->targets[target], next);
996 		return true;
997 	}
998 	return false;
999 }
1000 
1001 /*
1002  * Check events in order.
1003  *
1004  */
1005 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1006 {
1007 	/* threshold event is triggered in finer grain than soft limit */
1008 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
1009 						MEM_CGROUP_TARGET_THRESH))) {
1010 		bool do_softlimit;
1011 		bool do_numainfo __maybe_unused;
1012 
1013 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
1014 						MEM_CGROUP_TARGET_SOFTLIMIT);
1015 #if MAX_NUMNODES > 1
1016 		do_numainfo = mem_cgroup_event_ratelimit(memcg,
1017 						MEM_CGROUP_TARGET_NUMAINFO);
1018 #endif
1019 		mem_cgroup_threshold(memcg);
1020 		if (unlikely(do_softlimit))
1021 			mem_cgroup_update_tree(memcg, page);
1022 #if MAX_NUMNODES > 1
1023 		if (unlikely(do_numainfo))
1024 			atomic_inc(&memcg->numainfo_events);
1025 #endif
1026 	}
1027 }
1028 
1029 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1030 {
1031 	/*
1032 	 * mm_update_next_owner() may clear mm->owner to NULL
1033 	 * if it races with swapoff, page migration, etc.
1034 	 * So this can be called with p == NULL.
1035 	 */
1036 	if (unlikely(!p))
1037 		return NULL;
1038 
1039 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1040 }
1041 
1042 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1043 {
1044 	struct mem_cgroup *memcg = NULL;
1045 
1046 	rcu_read_lock();
1047 	do {
1048 		/*
1049 		 * Page cache insertions can happen withou an
1050 		 * actual mm context, e.g. during disk probing
1051 		 * on boot, loopback IO, acct() writes etc.
1052 		 */
1053 		if (unlikely(!mm))
1054 			memcg = root_mem_cgroup;
1055 		else {
1056 			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1057 			if (unlikely(!memcg))
1058 				memcg = root_mem_cgroup;
1059 		}
1060 	} while (!css_tryget_online(&memcg->css));
1061 	rcu_read_unlock();
1062 	return memcg;
1063 }
1064 
1065 /*
1066  * Returns a next (in a pre-order walk) alive memcg (with elevated css
1067  * ref. count) or NULL if the whole root's subtree has been visited.
1068  *
1069  * helper function to be used by mem_cgroup_iter
1070  */
1071 static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1072 		struct mem_cgroup *last_visited)
1073 {
1074 	struct cgroup_subsys_state *prev_css, *next_css;
1075 
1076 	prev_css = last_visited ? &last_visited->css : NULL;
1077 skip_node:
1078 	next_css = css_next_descendant_pre(prev_css, &root->css);
1079 
1080 	/*
1081 	 * Even if we found a group we have to make sure it is
1082 	 * alive. css && !memcg means that the groups should be
1083 	 * skipped and we should continue the tree walk.
1084 	 * last_visited css is safe to use because it is
1085 	 * protected by css_get and the tree walk is rcu safe.
1086 	 *
1087 	 * We do not take a reference on the root of the tree walk
1088 	 * because we might race with the root removal when it would
1089 	 * be the only node in the iterated hierarchy and mem_cgroup_iter
1090 	 * would end up in an endless loop because it expects that at
1091 	 * least one valid node will be returned. Root cannot disappear
1092 	 * because caller of the iterator should hold it already so
1093 	 * skipping css reference should be safe.
1094 	 */
1095 	if (next_css) {
1096 		struct mem_cgroup *memcg = mem_cgroup_from_css(next_css);
1097 
1098 		if (next_css == &root->css)
1099 			return memcg;
1100 
1101 		if (css_tryget_online(next_css)) {
1102 			/*
1103 			 * Make sure the memcg is initialized:
1104 			 * mem_cgroup_css_online() orders the the
1105 			 * initialization against setting the flag.
1106 			 */
1107 			if (smp_load_acquire(&memcg->initialized))
1108 				return memcg;
1109 			css_put(next_css);
1110 		}
1111 
1112 		prev_css = next_css;
1113 		goto skip_node;
1114 	}
1115 
1116 	return NULL;
1117 }
1118 
1119 static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1120 {
1121 	/*
1122 	 * When a group in the hierarchy below root is destroyed, the
1123 	 * hierarchy iterator can no longer be trusted since it might
1124 	 * have pointed to the destroyed group.  Invalidate it.
1125 	 */
1126 	atomic_inc(&root->dead_count);
1127 }
1128 
1129 static struct mem_cgroup *
1130 mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1131 		     struct mem_cgroup *root,
1132 		     int *sequence)
1133 {
1134 	struct mem_cgroup *position = NULL;
1135 	/*
1136 	 * A cgroup destruction happens in two stages: offlining and
1137 	 * release.  They are separated by a RCU grace period.
1138 	 *
1139 	 * If the iterator is valid, we may still race with an
1140 	 * offlining.  The RCU lock ensures the object won't be
1141 	 * released, tryget will fail if we lost the race.
1142 	 */
1143 	*sequence = atomic_read(&root->dead_count);
1144 	if (iter->last_dead_count == *sequence) {
1145 		smp_rmb();
1146 		position = iter->last_visited;
1147 
1148 		/*
1149 		 * We cannot take a reference to root because we might race
1150 		 * with root removal and returning NULL would end up in
1151 		 * an endless loop on the iterator user level when root
1152 		 * would be returned all the time.
1153 		 */
1154 		if (position && position != root &&
1155 		    !css_tryget_online(&position->css))
1156 			position = NULL;
1157 	}
1158 	return position;
1159 }
1160 
1161 static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1162 				   struct mem_cgroup *last_visited,
1163 				   struct mem_cgroup *new_position,
1164 				   struct mem_cgroup *root,
1165 				   int sequence)
1166 {
1167 	/* root reference counting symmetric to mem_cgroup_iter_load */
1168 	if (last_visited && last_visited != root)
1169 		css_put(&last_visited->css);
1170 	/*
1171 	 * We store the sequence count from the time @last_visited was
1172 	 * loaded successfully instead of rereading it here so that we
1173 	 * don't lose destruction events in between.  We could have
1174 	 * raced with the destruction of @new_position after all.
1175 	 */
1176 	iter->last_visited = new_position;
1177 	smp_wmb();
1178 	iter->last_dead_count = sequence;
1179 }
1180 
1181 /**
1182  * mem_cgroup_iter - iterate over memory cgroup hierarchy
1183  * @root: hierarchy root
1184  * @prev: previously returned memcg, NULL on first invocation
1185  * @reclaim: cookie for shared reclaim walks, NULL for full walks
1186  *
1187  * Returns references to children of the hierarchy below @root, or
1188  * @root itself, or %NULL after a full round-trip.
1189  *
1190  * Caller must pass the return value in @prev on subsequent
1191  * invocations for reference counting, or use mem_cgroup_iter_break()
1192  * to cancel a hierarchy walk before the round-trip is complete.
1193  *
1194  * Reclaimers can specify a zone and a priority level in @reclaim to
1195  * divide up the memcgs in the hierarchy among all concurrent
1196  * reclaimers operating on the same zone and priority.
1197  */
1198 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1199 				   struct mem_cgroup *prev,
1200 				   struct mem_cgroup_reclaim_cookie *reclaim)
1201 {
1202 	struct mem_cgroup *memcg = NULL;
1203 	struct mem_cgroup *last_visited = NULL;
1204 
1205 	if (mem_cgroup_disabled())
1206 		return NULL;
1207 
1208 	if (!root)
1209 		root = root_mem_cgroup;
1210 
1211 	if (prev && !reclaim)
1212 		last_visited = prev;
1213 
1214 	if (!root->use_hierarchy && root != root_mem_cgroup) {
1215 		if (prev)
1216 			goto out_css_put;
1217 		return root;
1218 	}
1219 
1220 	rcu_read_lock();
1221 	while (!memcg) {
1222 		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1223 		int uninitialized_var(seq);
1224 
1225 		if (reclaim) {
1226 			struct mem_cgroup_per_zone *mz;
1227 
1228 			mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
1229 			iter = &mz->reclaim_iter[reclaim->priority];
1230 			if (prev && reclaim->generation != iter->generation) {
1231 				iter->last_visited = NULL;
1232 				goto out_unlock;
1233 			}
1234 
1235 			last_visited = mem_cgroup_iter_load(iter, root, &seq);
1236 		}
1237 
1238 		memcg = __mem_cgroup_iter_next(root, last_visited);
1239 
1240 		if (reclaim) {
1241 			mem_cgroup_iter_update(iter, last_visited, memcg, root,
1242 					seq);
1243 
1244 			if (!memcg)
1245 				iter->generation++;
1246 			else if (!prev && memcg)
1247 				reclaim->generation = iter->generation;
1248 		}
1249 
1250 		if (prev && !memcg)
1251 			goto out_unlock;
1252 	}
1253 out_unlock:
1254 	rcu_read_unlock();
1255 out_css_put:
1256 	if (prev && prev != root)
1257 		css_put(&prev->css);
1258 
1259 	return memcg;
1260 }
1261 
1262 /**
1263  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1264  * @root: hierarchy root
1265  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1266  */
1267 void mem_cgroup_iter_break(struct mem_cgroup *root,
1268 			   struct mem_cgroup *prev)
1269 {
1270 	if (!root)
1271 		root = root_mem_cgroup;
1272 	if (prev && prev != root)
1273 		css_put(&prev->css);
1274 }
1275 
1276 /*
1277  * Iteration constructs for visiting all cgroups (under a tree).  If
1278  * loops are exited prematurely (break), mem_cgroup_iter_break() must
1279  * be used for reference counting.
1280  */
1281 #define for_each_mem_cgroup_tree(iter, root)		\
1282 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1283 	     iter != NULL;				\
1284 	     iter = mem_cgroup_iter(root, iter, NULL))
1285 
1286 #define for_each_mem_cgroup(iter)			\
1287 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1288 	     iter != NULL;				\
1289 	     iter = mem_cgroup_iter(NULL, iter, NULL))
1290 
1291 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1292 {
1293 	struct mem_cgroup *memcg;
1294 
1295 	rcu_read_lock();
1296 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1297 	if (unlikely(!memcg))
1298 		goto out;
1299 
1300 	switch (idx) {
1301 	case PGFAULT:
1302 		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1303 		break;
1304 	case PGMAJFAULT:
1305 		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1306 		break;
1307 	default:
1308 		BUG();
1309 	}
1310 out:
1311 	rcu_read_unlock();
1312 }
1313 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1314 
1315 /**
1316  * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1317  * @zone: zone of the wanted lruvec
1318  * @memcg: memcg of the wanted lruvec
1319  *
1320  * Returns the lru list vector holding pages for the given @zone and
1321  * @mem.  This can be the global zone lruvec, if the memory controller
1322  * is disabled.
1323  */
1324 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1325 				      struct mem_cgroup *memcg)
1326 {
1327 	struct mem_cgroup_per_zone *mz;
1328 	struct lruvec *lruvec;
1329 
1330 	if (mem_cgroup_disabled()) {
1331 		lruvec = &zone->lruvec;
1332 		goto out;
1333 	}
1334 
1335 	mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1336 	lruvec = &mz->lruvec;
1337 out:
1338 	/*
1339 	 * Since a node can be onlined after the mem_cgroup was created,
1340 	 * we have to be prepared to initialize lruvec->zone here;
1341 	 * and if offlined then reonlined, we need to reinitialize it.
1342 	 */
1343 	if (unlikely(lruvec->zone != zone))
1344 		lruvec->zone = zone;
1345 	return lruvec;
1346 }
1347 
1348 /**
1349  * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1350  * @page: the page
1351  * @zone: zone of the page
1352  */
1353 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1354 {
1355 	struct mem_cgroup_per_zone *mz;
1356 	struct mem_cgroup *memcg;
1357 	struct page_cgroup *pc;
1358 	struct lruvec *lruvec;
1359 
1360 	if (mem_cgroup_disabled()) {
1361 		lruvec = &zone->lruvec;
1362 		goto out;
1363 	}
1364 
1365 	pc = lookup_page_cgroup(page);
1366 	memcg = pc->mem_cgroup;
1367 
1368 	/*
1369 	 * Surreptitiously switch any uncharged offlist page to root:
1370 	 * an uncharged page off lru does nothing to secure
1371 	 * its former mem_cgroup from sudden removal.
1372 	 *
1373 	 * Our caller holds lru_lock, and PageCgroupUsed is updated
1374 	 * under page_cgroup lock: between them, they make all uses
1375 	 * of pc->mem_cgroup safe.
1376 	 */
1377 	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1378 		pc->mem_cgroup = memcg = root_mem_cgroup;
1379 
1380 	mz = mem_cgroup_page_zoneinfo(memcg, page);
1381 	lruvec = &mz->lruvec;
1382 out:
1383 	/*
1384 	 * Since a node can be onlined after the mem_cgroup was created,
1385 	 * we have to be prepared to initialize lruvec->zone here;
1386 	 * and if offlined then reonlined, we need to reinitialize it.
1387 	 */
1388 	if (unlikely(lruvec->zone != zone))
1389 		lruvec->zone = zone;
1390 	return lruvec;
1391 }
1392 
1393 /**
1394  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1395  * @lruvec: mem_cgroup per zone lru vector
1396  * @lru: index of lru list the page is sitting on
1397  * @nr_pages: positive when adding or negative when removing
1398  *
1399  * This function must be called when a page is added to or removed from an
1400  * lru list.
1401  */
1402 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1403 				int nr_pages)
1404 {
1405 	struct mem_cgroup_per_zone *mz;
1406 	unsigned long *lru_size;
1407 
1408 	if (mem_cgroup_disabled())
1409 		return;
1410 
1411 	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1412 	lru_size = mz->lru_size + lru;
1413 	*lru_size += nr_pages;
1414 	VM_BUG_ON((long)(*lru_size) < 0);
1415 }
1416 
1417 /*
1418  * Checks whether given mem is same or in the root_mem_cgroup's
1419  * hierarchy subtree
1420  */
1421 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1422 				  struct mem_cgroup *memcg)
1423 {
1424 	if (root_memcg == memcg)
1425 		return true;
1426 	if (!root_memcg->use_hierarchy || !memcg)
1427 		return false;
1428 	return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
1429 }
1430 
1431 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1432 				       struct mem_cgroup *memcg)
1433 {
1434 	bool ret;
1435 
1436 	rcu_read_lock();
1437 	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1438 	rcu_read_unlock();
1439 	return ret;
1440 }
1441 
1442 bool task_in_mem_cgroup(struct task_struct *task,
1443 			const struct mem_cgroup *memcg)
1444 {
1445 	struct mem_cgroup *curr = NULL;
1446 	struct task_struct *p;
1447 	bool ret;
1448 
1449 	p = find_lock_task_mm(task);
1450 	if (p) {
1451 		curr = get_mem_cgroup_from_mm(p->mm);
1452 		task_unlock(p);
1453 	} else {
1454 		/*
1455 		 * All threads may have already detached their mm's, but the oom
1456 		 * killer still needs to detect if they have already been oom
1457 		 * killed to prevent needlessly killing additional tasks.
1458 		 */
1459 		rcu_read_lock();
1460 		curr = mem_cgroup_from_task(task);
1461 		if (curr)
1462 			css_get(&curr->css);
1463 		rcu_read_unlock();
1464 	}
1465 	/*
1466 	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1467 	 * use_hierarchy of "curr" here make this function true if hierarchy is
1468 	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1469 	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1470 	 */
1471 	ret = mem_cgroup_same_or_subtree(memcg, curr);
1472 	css_put(&curr->css);
1473 	return ret;
1474 }
1475 
1476 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1477 {
1478 	unsigned long inactive_ratio;
1479 	unsigned long inactive;
1480 	unsigned long active;
1481 	unsigned long gb;
1482 
1483 	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1484 	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1485 
1486 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
1487 	if (gb)
1488 		inactive_ratio = int_sqrt(10 * gb);
1489 	else
1490 		inactive_ratio = 1;
1491 
1492 	return inactive * inactive_ratio < active;
1493 }
1494 
1495 #define mem_cgroup_from_res_counter(counter, member)	\
1496 	container_of(counter, struct mem_cgroup, member)
1497 
1498 /**
1499  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1500  * @memcg: the memory cgroup
1501  *
1502  * Returns the maximum amount of memory @mem can be charged with, in
1503  * pages.
1504  */
1505 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1506 {
1507 	unsigned long long margin;
1508 
1509 	margin = res_counter_margin(&memcg->res);
1510 	if (do_swap_account)
1511 		margin = min(margin, res_counter_margin(&memcg->memsw));
1512 	return margin >> PAGE_SHIFT;
1513 }
1514 
1515 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1516 {
1517 	/* root ? */
1518 	if (mem_cgroup_disabled() || !memcg->css.parent)
1519 		return vm_swappiness;
1520 
1521 	return memcg->swappiness;
1522 }
1523 
1524 /*
1525  * memcg->moving_account is used for checking possibility that some thread is
1526  * calling move_account(). When a thread on CPU-A starts moving pages under
1527  * a memcg, other threads should check memcg->moving_account under
1528  * rcu_read_lock(), like this:
1529  *
1530  *         CPU-A                                    CPU-B
1531  *                                              rcu_read_lock()
1532  *         memcg->moving_account+1              if (memcg->mocing_account)
1533  *                                                   take heavy locks.
1534  *         synchronize_rcu()                    update something.
1535  *                                              rcu_read_unlock()
1536  *         start move here.
1537  */
1538 
1539 /* for quick checking without looking up memcg */
1540 atomic_t memcg_moving __read_mostly;
1541 
1542 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1543 {
1544 	atomic_inc(&memcg_moving);
1545 	atomic_inc(&memcg->moving_account);
1546 	synchronize_rcu();
1547 }
1548 
1549 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1550 {
1551 	/*
1552 	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1553 	 * We check NULL in callee rather than caller.
1554 	 */
1555 	if (memcg) {
1556 		atomic_dec(&memcg_moving);
1557 		atomic_dec(&memcg->moving_account);
1558 	}
1559 }
1560 
1561 /*
1562  * A routine for checking "mem" is under move_account() or not.
1563  *
1564  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1565  * moving cgroups. This is for waiting at high-memory pressure
1566  * caused by "move".
1567  */
1568 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1569 {
1570 	struct mem_cgroup *from;
1571 	struct mem_cgroup *to;
1572 	bool ret = false;
1573 	/*
1574 	 * Unlike task_move routines, we access mc.to, mc.from not under
1575 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1576 	 */
1577 	spin_lock(&mc.lock);
1578 	from = mc.from;
1579 	to = mc.to;
1580 	if (!from)
1581 		goto unlock;
1582 
1583 	ret = mem_cgroup_same_or_subtree(memcg, from)
1584 		|| mem_cgroup_same_or_subtree(memcg, to);
1585 unlock:
1586 	spin_unlock(&mc.lock);
1587 	return ret;
1588 }
1589 
1590 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1591 {
1592 	if (mc.moving_task && current != mc.moving_task) {
1593 		if (mem_cgroup_under_move(memcg)) {
1594 			DEFINE_WAIT(wait);
1595 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1596 			/* moving charge context might have finished. */
1597 			if (mc.moving_task)
1598 				schedule();
1599 			finish_wait(&mc.waitq, &wait);
1600 			return true;
1601 		}
1602 	}
1603 	return false;
1604 }
1605 
1606 /*
1607  * Take this lock when
1608  * - a code tries to modify page's memcg while it's USED.
1609  * - a code tries to modify page state accounting in a memcg.
1610  */
1611 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1612 				  unsigned long *flags)
1613 {
1614 	spin_lock_irqsave(&memcg->move_lock, *flags);
1615 }
1616 
1617 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1618 				unsigned long *flags)
1619 {
1620 	spin_unlock_irqrestore(&memcg->move_lock, *flags);
1621 }
1622 
1623 #define K(x) ((x) << (PAGE_SHIFT-10))
1624 /**
1625  * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1626  * @memcg: The memory cgroup that went over limit
1627  * @p: Task that is going to be killed
1628  *
1629  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1630  * enabled
1631  */
1632 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1633 {
1634 	/* oom_info_lock ensures that parallel ooms do not interleave */
1635 	static DEFINE_MUTEX(oom_info_lock);
1636 	struct mem_cgroup *iter;
1637 	unsigned int i;
1638 
1639 	if (!p)
1640 		return;
1641 
1642 	mutex_lock(&oom_info_lock);
1643 	rcu_read_lock();
1644 
1645 	pr_info("Task in ");
1646 	pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1647 	pr_info(" killed as a result of limit of ");
1648 	pr_cont_cgroup_path(memcg->css.cgroup);
1649 	pr_info("\n");
1650 
1651 	rcu_read_unlock();
1652 
1653 	pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1654 		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1655 		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1656 		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1657 	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1658 		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1659 		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1660 		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1661 	pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1662 		res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1663 		res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1664 		res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1665 
1666 	for_each_mem_cgroup_tree(iter, memcg) {
1667 		pr_info("Memory cgroup stats for ");
1668 		pr_cont_cgroup_path(iter->css.cgroup);
1669 		pr_cont(":");
1670 
1671 		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1672 			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1673 				continue;
1674 			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1675 				K(mem_cgroup_read_stat(iter, i)));
1676 		}
1677 
1678 		for (i = 0; i < NR_LRU_LISTS; i++)
1679 			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1680 				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1681 
1682 		pr_cont("\n");
1683 	}
1684 	mutex_unlock(&oom_info_lock);
1685 }
1686 
1687 /*
1688  * This function returns the number of memcg under hierarchy tree. Returns
1689  * 1(self count) if no children.
1690  */
1691 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1692 {
1693 	int num = 0;
1694 	struct mem_cgroup *iter;
1695 
1696 	for_each_mem_cgroup_tree(iter, memcg)
1697 		num++;
1698 	return num;
1699 }
1700 
1701 /*
1702  * Return the memory (and swap, if configured) limit for a memcg.
1703  */
1704 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1705 {
1706 	u64 limit;
1707 
1708 	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1709 
1710 	/*
1711 	 * Do not consider swap space if we cannot swap due to swappiness
1712 	 */
1713 	if (mem_cgroup_swappiness(memcg)) {
1714 		u64 memsw;
1715 
1716 		limit += total_swap_pages << PAGE_SHIFT;
1717 		memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1718 
1719 		/*
1720 		 * If memsw is finite and limits the amount of swap space
1721 		 * available to this memcg, return that limit.
1722 		 */
1723 		limit = min(limit, memsw);
1724 	}
1725 
1726 	return limit;
1727 }
1728 
1729 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1730 				     int order)
1731 {
1732 	struct mem_cgroup *iter;
1733 	unsigned long chosen_points = 0;
1734 	unsigned long totalpages;
1735 	unsigned int points = 0;
1736 	struct task_struct *chosen = NULL;
1737 
1738 	/*
1739 	 * If current has a pending SIGKILL or is exiting, then automatically
1740 	 * select it.  The goal is to allow it to allocate so that it may
1741 	 * quickly exit and free its memory.
1742 	 */
1743 	if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1744 		set_thread_flag(TIF_MEMDIE);
1745 		return;
1746 	}
1747 
1748 	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1749 	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1750 	for_each_mem_cgroup_tree(iter, memcg) {
1751 		struct css_task_iter it;
1752 		struct task_struct *task;
1753 
1754 		css_task_iter_start(&iter->css, &it);
1755 		while ((task = css_task_iter_next(&it))) {
1756 			switch (oom_scan_process_thread(task, totalpages, NULL,
1757 							false)) {
1758 			case OOM_SCAN_SELECT:
1759 				if (chosen)
1760 					put_task_struct(chosen);
1761 				chosen = task;
1762 				chosen_points = ULONG_MAX;
1763 				get_task_struct(chosen);
1764 				/* fall through */
1765 			case OOM_SCAN_CONTINUE:
1766 				continue;
1767 			case OOM_SCAN_ABORT:
1768 				css_task_iter_end(&it);
1769 				mem_cgroup_iter_break(memcg, iter);
1770 				if (chosen)
1771 					put_task_struct(chosen);
1772 				return;
1773 			case OOM_SCAN_OK:
1774 				break;
1775 			};
1776 			points = oom_badness(task, memcg, NULL, totalpages);
1777 			if (!points || points < chosen_points)
1778 				continue;
1779 			/* Prefer thread group leaders for display purposes */
1780 			if (points == chosen_points &&
1781 			    thread_group_leader(chosen))
1782 				continue;
1783 
1784 			if (chosen)
1785 				put_task_struct(chosen);
1786 			chosen = task;
1787 			chosen_points = points;
1788 			get_task_struct(chosen);
1789 		}
1790 		css_task_iter_end(&it);
1791 	}
1792 
1793 	if (!chosen)
1794 		return;
1795 	points = chosen_points * 1000 / totalpages;
1796 	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1797 			 NULL, "Memory cgroup out of memory");
1798 }
1799 
1800 /**
1801  * test_mem_cgroup_node_reclaimable
1802  * @memcg: the target memcg
1803  * @nid: the node ID to be checked.
1804  * @noswap : specify true here if the user wants flle only information.
1805  *
1806  * This function returns whether the specified memcg contains any
1807  * reclaimable pages on a node. Returns true if there are any reclaimable
1808  * pages in the node.
1809  */
1810 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1811 		int nid, bool noswap)
1812 {
1813 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1814 		return true;
1815 	if (noswap || !total_swap_pages)
1816 		return false;
1817 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1818 		return true;
1819 	return false;
1820 
1821 }
1822 #if MAX_NUMNODES > 1
1823 
1824 /*
1825  * Always updating the nodemask is not very good - even if we have an empty
1826  * list or the wrong list here, we can start from some node and traverse all
1827  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1828  *
1829  */
1830 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1831 {
1832 	int nid;
1833 	/*
1834 	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1835 	 * pagein/pageout changes since the last update.
1836 	 */
1837 	if (!atomic_read(&memcg->numainfo_events))
1838 		return;
1839 	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1840 		return;
1841 
1842 	/* make a nodemask where this memcg uses memory from */
1843 	memcg->scan_nodes = node_states[N_MEMORY];
1844 
1845 	for_each_node_mask(nid, node_states[N_MEMORY]) {
1846 
1847 		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1848 			node_clear(nid, memcg->scan_nodes);
1849 	}
1850 
1851 	atomic_set(&memcg->numainfo_events, 0);
1852 	atomic_set(&memcg->numainfo_updating, 0);
1853 }
1854 
1855 /*
1856  * Selecting a node where we start reclaim from. Because what we need is just
1857  * reducing usage counter, start from anywhere is O,K. Considering
1858  * memory reclaim from current node, there are pros. and cons.
1859  *
1860  * Freeing memory from current node means freeing memory from a node which
1861  * we'll use or we've used. So, it may make LRU bad. And if several threads
1862  * hit limits, it will see a contention on a node. But freeing from remote
1863  * node means more costs for memory reclaim because of memory latency.
1864  *
1865  * Now, we use round-robin. Better algorithm is welcomed.
1866  */
1867 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1868 {
1869 	int node;
1870 
1871 	mem_cgroup_may_update_nodemask(memcg);
1872 	node = memcg->last_scanned_node;
1873 
1874 	node = next_node(node, memcg->scan_nodes);
1875 	if (node == MAX_NUMNODES)
1876 		node = first_node(memcg->scan_nodes);
1877 	/*
1878 	 * We call this when we hit limit, not when pages are added to LRU.
1879 	 * No LRU may hold pages because all pages are UNEVICTABLE or
1880 	 * memcg is too small and all pages are not on LRU. In that case,
1881 	 * we use curret node.
1882 	 */
1883 	if (unlikely(node == MAX_NUMNODES))
1884 		node = numa_node_id();
1885 
1886 	memcg->last_scanned_node = node;
1887 	return node;
1888 }
1889 
1890 /*
1891  * Check all nodes whether it contains reclaimable pages or not.
1892  * For quick scan, we make use of scan_nodes. This will allow us to skip
1893  * unused nodes. But scan_nodes is lazily updated and may not cotain
1894  * enough new information. We need to do double check.
1895  */
1896 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1897 {
1898 	int nid;
1899 
1900 	/*
1901 	 * quick check...making use of scan_node.
1902 	 * We can skip unused nodes.
1903 	 */
1904 	if (!nodes_empty(memcg->scan_nodes)) {
1905 		for (nid = first_node(memcg->scan_nodes);
1906 		     nid < MAX_NUMNODES;
1907 		     nid = next_node(nid, memcg->scan_nodes)) {
1908 
1909 			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1910 				return true;
1911 		}
1912 	}
1913 	/*
1914 	 * Check rest of nodes.
1915 	 */
1916 	for_each_node_state(nid, N_MEMORY) {
1917 		if (node_isset(nid, memcg->scan_nodes))
1918 			continue;
1919 		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1920 			return true;
1921 	}
1922 	return false;
1923 }
1924 
1925 #else
1926 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1927 {
1928 	return 0;
1929 }
1930 
1931 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1932 {
1933 	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1934 }
1935 #endif
1936 
1937 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1938 				   struct zone *zone,
1939 				   gfp_t gfp_mask,
1940 				   unsigned long *total_scanned)
1941 {
1942 	struct mem_cgroup *victim = NULL;
1943 	int total = 0;
1944 	int loop = 0;
1945 	unsigned long excess;
1946 	unsigned long nr_scanned;
1947 	struct mem_cgroup_reclaim_cookie reclaim = {
1948 		.zone = zone,
1949 		.priority = 0,
1950 	};
1951 
1952 	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
1953 
1954 	while (1) {
1955 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1956 		if (!victim) {
1957 			loop++;
1958 			if (loop >= 2) {
1959 				/*
1960 				 * If we have not been able to reclaim
1961 				 * anything, it might because there are
1962 				 * no reclaimable pages under this hierarchy
1963 				 */
1964 				if (!total)
1965 					break;
1966 				/*
1967 				 * We want to do more targeted reclaim.
1968 				 * excess >> 2 is not to excessive so as to
1969 				 * reclaim too much, nor too less that we keep
1970 				 * coming back to reclaim from this cgroup
1971 				 */
1972 				if (total >= (excess >> 2) ||
1973 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1974 					break;
1975 			}
1976 			continue;
1977 		}
1978 		if (!mem_cgroup_reclaimable(victim, false))
1979 			continue;
1980 		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1981 						     zone, &nr_scanned);
1982 		*total_scanned += nr_scanned;
1983 		if (!res_counter_soft_limit_excess(&root_memcg->res))
1984 			break;
1985 	}
1986 	mem_cgroup_iter_break(root_memcg, victim);
1987 	return total;
1988 }
1989 
1990 #ifdef CONFIG_LOCKDEP
1991 static struct lockdep_map memcg_oom_lock_dep_map = {
1992 	.name = "memcg_oom_lock",
1993 };
1994 #endif
1995 
1996 static DEFINE_SPINLOCK(memcg_oom_lock);
1997 
1998 /*
1999  * Check OOM-Killer is already running under our hierarchy.
2000  * If someone is running, return false.
2001  */
2002 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
2003 {
2004 	struct mem_cgroup *iter, *failed = NULL;
2005 
2006 	spin_lock(&memcg_oom_lock);
2007 
2008 	for_each_mem_cgroup_tree(iter, memcg) {
2009 		if (iter->oom_lock) {
2010 			/*
2011 			 * this subtree of our hierarchy is already locked
2012 			 * so we cannot give a lock.
2013 			 */
2014 			failed = iter;
2015 			mem_cgroup_iter_break(memcg, iter);
2016 			break;
2017 		} else
2018 			iter->oom_lock = true;
2019 	}
2020 
2021 	if (failed) {
2022 		/*
2023 		 * OK, we failed to lock the whole subtree so we have
2024 		 * to clean up what we set up to the failing subtree
2025 		 */
2026 		for_each_mem_cgroup_tree(iter, memcg) {
2027 			if (iter == failed) {
2028 				mem_cgroup_iter_break(memcg, iter);
2029 				break;
2030 			}
2031 			iter->oom_lock = false;
2032 		}
2033 	} else
2034 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
2035 
2036 	spin_unlock(&memcg_oom_lock);
2037 
2038 	return !failed;
2039 }
2040 
2041 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2042 {
2043 	struct mem_cgroup *iter;
2044 
2045 	spin_lock(&memcg_oom_lock);
2046 	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
2047 	for_each_mem_cgroup_tree(iter, memcg)
2048 		iter->oom_lock = false;
2049 	spin_unlock(&memcg_oom_lock);
2050 }
2051 
2052 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2053 {
2054 	struct mem_cgroup *iter;
2055 
2056 	for_each_mem_cgroup_tree(iter, memcg)
2057 		atomic_inc(&iter->under_oom);
2058 }
2059 
2060 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2061 {
2062 	struct mem_cgroup *iter;
2063 
2064 	/*
2065 	 * When a new child is created while the hierarchy is under oom,
2066 	 * mem_cgroup_oom_lock() may not be called. We have to use
2067 	 * atomic_add_unless() here.
2068 	 */
2069 	for_each_mem_cgroup_tree(iter, memcg)
2070 		atomic_add_unless(&iter->under_oom, -1, 0);
2071 }
2072 
2073 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2074 
2075 struct oom_wait_info {
2076 	struct mem_cgroup *memcg;
2077 	wait_queue_t	wait;
2078 };
2079 
2080 static int memcg_oom_wake_function(wait_queue_t *wait,
2081 	unsigned mode, int sync, void *arg)
2082 {
2083 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2084 	struct mem_cgroup *oom_wait_memcg;
2085 	struct oom_wait_info *oom_wait_info;
2086 
2087 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2088 	oom_wait_memcg = oom_wait_info->memcg;
2089 
2090 	/*
2091 	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
2092 	 * Then we can use css_is_ancestor without taking care of RCU.
2093 	 */
2094 	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2095 		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
2096 		return 0;
2097 	return autoremove_wake_function(wait, mode, sync, arg);
2098 }
2099 
2100 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
2101 {
2102 	atomic_inc(&memcg->oom_wakeups);
2103 	/* for filtering, pass "memcg" as argument. */
2104 	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
2105 }
2106 
2107 static void memcg_oom_recover(struct mem_cgroup *memcg)
2108 {
2109 	if (memcg && atomic_read(&memcg->under_oom))
2110 		memcg_wakeup_oom(memcg);
2111 }
2112 
2113 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
2114 {
2115 	if (!current->memcg_oom.may_oom)
2116 		return;
2117 	/*
2118 	 * We are in the middle of the charge context here, so we
2119 	 * don't want to block when potentially sitting on a callstack
2120 	 * that holds all kinds of filesystem and mm locks.
2121 	 *
2122 	 * Also, the caller may handle a failed allocation gracefully
2123 	 * (like optional page cache readahead) and so an OOM killer
2124 	 * invocation might not even be necessary.
2125 	 *
2126 	 * That's why we don't do anything here except remember the
2127 	 * OOM context and then deal with it at the end of the page
2128 	 * fault when the stack is unwound, the locks are released,
2129 	 * and when we know whether the fault was overall successful.
2130 	 */
2131 	css_get(&memcg->css);
2132 	current->memcg_oom.memcg = memcg;
2133 	current->memcg_oom.gfp_mask = mask;
2134 	current->memcg_oom.order = order;
2135 }
2136 
2137 /**
2138  * mem_cgroup_oom_synchronize - complete memcg OOM handling
2139  * @handle: actually kill/wait or just clean up the OOM state
2140  *
2141  * This has to be called at the end of a page fault if the memcg OOM
2142  * handler was enabled.
2143  *
2144  * Memcg supports userspace OOM handling where failed allocations must
2145  * sleep on a waitqueue until the userspace task resolves the
2146  * situation.  Sleeping directly in the charge context with all kinds
2147  * of locks held is not a good idea, instead we remember an OOM state
2148  * in the task and mem_cgroup_oom_synchronize() has to be called at
2149  * the end of the page fault to complete the OOM handling.
2150  *
2151  * Returns %true if an ongoing memcg OOM situation was detected and
2152  * completed, %false otherwise.
2153  */
2154 bool mem_cgroup_oom_synchronize(bool handle)
2155 {
2156 	struct mem_cgroup *memcg = current->memcg_oom.memcg;
2157 	struct oom_wait_info owait;
2158 	bool locked;
2159 
2160 	/* OOM is global, do not handle */
2161 	if (!memcg)
2162 		return false;
2163 
2164 	if (!handle)
2165 		goto cleanup;
2166 
2167 	owait.memcg = memcg;
2168 	owait.wait.flags = 0;
2169 	owait.wait.func = memcg_oom_wake_function;
2170 	owait.wait.private = current;
2171 	INIT_LIST_HEAD(&owait.wait.task_list);
2172 
2173 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2174 	mem_cgroup_mark_under_oom(memcg);
2175 
2176 	locked = mem_cgroup_oom_trylock(memcg);
2177 
2178 	if (locked)
2179 		mem_cgroup_oom_notify(memcg);
2180 
2181 	if (locked && !memcg->oom_kill_disable) {
2182 		mem_cgroup_unmark_under_oom(memcg);
2183 		finish_wait(&memcg_oom_waitq, &owait.wait);
2184 		mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
2185 					 current->memcg_oom.order);
2186 	} else {
2187 		schedule();
2188 		mem_cgroup_unmark_under_oom(memcg);
2189 		finish_wait(&memcg_oom_waitq, &owait.wait);
2190 	}
2191 
2192 	if (locked) {
2193 		mem_cgroup_oom_unlock(memcg);
2194 		/*
2195 		 * There is no guarantee that an OOM-lock contender
2196 		 * sees the wakeups triggered by the OOM kill
2197 		 * uncharges.  Wake any sleepers explicitely.
2198 		 */
2199 		memcg_oom_recover(memcg);
2200 	}
2201 cleanup:
2202 	current->memcg_oom.memcg = NULL;
2203 	css_put(&memcg->css);
2204 	return true;
2205 }
2206 
2207 /*
2208  * Used to update mapped file or writeback or other statistics.
2209  *
2210  * Notes: Race condition
2211  *
2212  * Charging occurs during page instantiation, while the page is
2213  * unmapped and locked in page migration, or while the page table is
2214  * locked in THP migration.  No race is possible.
2215  *
2216  * Uncharge happens to pages with zero references, no race possible.
2217  *
2218  * Charge moving between groups is protected by checking mm->moving
2219  * account and taking the move_lock in the slowpath.
2220  */
2221 
2222 void __mem_cgroup_begin_update_page_stat(struct page *page,
2223 				bool *locked, unsigned long *flags)
2224 {
2225 	struct mem_cgroup *memcg;
2226 	struct page_cgroup *pc;
2227 
2228 	pc = lookup_page_cgroup(page);
2229 again:
2230 	memcg = pc->mem_cgroup;
2231 	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2232 		return;
2233 	/*
2234 	 * If this memory cgroup is not under account moving, we don't
2235 	 * need to take move_lock_mem_cgroup(). Because we already hold
2236 	 * rcu_read_lock(), any calls to move_account will be delayed until
2237 	 * rcu_read_unlock().
2238 	 */
2239 	VM_BUG_ON(!rcu_read_lock_held());
2240 	if (atomic_read(&memcg->moving_account) <= 0)
2241 		return;
2242 
2243 	move_lock_mem_cgroup(memcg, flags);
2244 	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2245 		move_unlock_mem_cgroup(memcg, flags);
2246 		goto again;
2247 	}
2248 	*locked = true;
2249 }
2250 
2251 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2252 {
2253 	struct page_cgroup *pc = lookup_page_cgroup(page);
2254 
2255 	/*
2256 	 * It's guaranteed that pc->mem_cgroup never changes while
2257 	 * lock is held because a routine modifies pc->mem_cgroup
2258 	 * should take move_lock_mem_cgroup().
2259 	 */
2260 	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2261 }
2262 
2263 void mem_cgroup_update_page_stat(struct page *page,
2264 				 enum mem_cgroup_stat_index idx, int val)
2265 {
2266 	struct mem_cgroup *memcg;
2267 	struct page_cgroup *pc = lookup_page_cgroup(page);
2268 	unsigned long uninitialized_var(flags);
2269 
2270 	if (mem_cgroup_disabled())
2271 		return;
2272 
2273 	VM_BUG_ON(!rcu_read_lock_held());
2274 	memcg = pc->mem_cgroup;
2275 	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2276 		return;
2277 
2278 	this_cpu_add(memcg->stat->count[idx], val);
2279 }
2280 
2281 /*
2282  * size of first charge trial. "32" comes from vmscan.c's magic value.
2283  * TODO: maybe necessary to use big numbers in big irons.
2284  */
2285 #define CHARGE_BATCH	32U
2286 struct memcg_stock_pcp {
2287 	struct mem_cgroup *cached; /* this never be root cgroup */
2288 	unsigned int nr_pages;
2289 	struct work_struct work;
2290 	unsigned long flags;
2291 #define FLUSHING_CACHED_CHARGE	0
2292 };
2293 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2294 static DEFINE_MUTEX(percpu_charge_mutex);
2295 
2296 /**
2297  * consume_stock: Try to consume stocked charge on this cpu.
2298  * @memcg: memcg to consume from.
2299  * @nr_pages: how many pages to charge.
2300  *
2301  * The charges will only happen if @memcg matches the current cpu's memcg
2302  * stock, and at least @nr_pages are available in that stock.  Failure to
2303  * service an allocation will refill the stock.
2304  *
2305  * returns true if successful, false otherwise.
2306  */
2307 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2308 {
2309 	struct memcg_stock_pcp *stock;
2310 	bool ret = true;
2311 
2312 	if (nr_pages > CHARGE_BATCH)
2313 		return false;
2314 
2315 	stock = &get_cpu_var(memcg_stock);
2316 	if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2317 		stock->nr_pages -= nr_pages;
2318 	else /* need to call res_counter_charge */
2319 		ret = false;
2320 	put_cpu_var(memcg_stock);
2321 	return ret;
2322 }
2323 
2324 /*
2325  * Returns stocks cached in percpu to res_counter and reset cached information.
2326  */
2327 static void drain_stock(struct memcg_stock_pcp *stock)
2328 {
2329 	struct mem_cgroup *old = stock->cached;
2330 
2331 	if (stock->nr_pages) {
2332 		unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2333 
2334 		res_counter_uncharge(&old->res, bytes);
2335 		if (do_swap_account)
2336 			res_counter_uncharge(&old->memsw, bytes);
2337 		stock->nr_pages = 0;
2338 	}
2339 	stock->cached = NULL;
2340 }
2341 
2342 /*
2343  * This must be called under preempt disabled or must be called by
2344  * a thread which is pinned to local cpu.
2345  */
2346 static void drain_local_stock(struct work_struct *dummy)
2347 {
2348 	struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
2349 	drain_stock(stock);
2350 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2351 }
2352 
2353 static void __init memcg_stock_init(void)
2354 {
2355 	int cpu;
2356 
2357 	for_each_possible_cpu(cpu) {
2358 		struct memcg_stock_pcp *stock =
2359 					&per_cpu(memcg_stock, cpu);
2360 		INIT_WORK(&stock->work, drain_local_stock);
2361 	}
2362 }
2363 
2364 /*
2365  * Cache charges(val) which is from res_counter, to local per_cpu area.
2366  * This will be consumed by consume_stock() function, later.
2367  */
2368 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2369 {
2370 	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2371 
2372 	if (stock->cached != memcg) { /* reset if necessary */
2373 		drain_stock(stock);
2374 		stock->cached = memcg;
2375 	}
2376 	stock->nr_pages += nr_pages;
2377 	put_cpu_var(memcg_stock);
2378 }
2379 
2380 /*
2381  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2382  * of the hierarchy under it. sync flag says whether we should block
2383  * until the work is done.
2384  */
2385 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2386 {
2387 	int cpu, curcpu;
2388 
2389 	/* Notify other cpus that system-wide "drain" is running */
2390 	get_online_cpus();
2391 	curcpu = get_cpu();
2392 	for_each_online_cpu(cpu) {
2393 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2394 		struct mem_cgroup *memcg;
2395 
2396 		memcg = stock->cached;
2397 		if (!memcg || !stock->nr_pages)
2398 			continue;
2399 		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2400 			continue;
2401 		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2402 			if (cpu == curcpu)
2403 				drain_local_stock(&stock->work);
2404 			else
2405 				schedule_work_on(cpu, &stock->work);
2406 		}
2407 	}
2408 	put_cpu();
2409 
2410 	if (!sync)
2411 		goto out;
2412 
2413 	for_each_online_cpu(cpu) {
2414 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2415 		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2416 			flush_work(&stock->work);
2417 	}
2418 out:
2419 	put_online_cpus();
2420 }
2421 
2422 /*
2423  * Tries to drain stocked charges in other cpus. This function is asynchronous
2424  * and just put a work per cpu for draining localy on each cpu. Caller can
2425  * expects some charges will be back to res_counter later but cannot wait for
2426  * it.
2427  */
2428 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2429 {
2430 	/*
2431 	 * If someone calls draining, avoid adding more kworker runs.
2432 	 */
2433 	if (!mutex_trylock(&percpu_charge_mutex))
2434 		return;
2435 	drain_all_stock(root_memcg, false);
2436 	mutex_unlock(&percpu_charge_mutex);
2437 }
2438 
2439 /* This is a synchronous drain interface. */
2440 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2441 {
2442 	/* called when force_empty is called */
2443 	mutex_lock(&percpu_charge_mutex);
2444 	drain_all_stock(root_memcg, true);
2445 	mutex_unlock(&percpu_charge_mutex);
2446 }
2447 
2448 /*
2449  * This function drains percpu counter value from DEAD cpu and
2450  * move it to local cpu. Note that this function can be preempted.
2451  */
2452 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2453 {
2454 	int i;
2455 
2456 	spin_lock(&memcg->pcp_counter_lock);
2457 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2458 		long x = per_cpu(memcg->stat->count[i], cpu);
2459 
2460 		per_cpu(memcg->stat->count[i], cpu) = 0;
2461 		memcg->nocpu_base.count[i] += x;
2462 	}
2463 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2464 		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2465 
2466 		per_cpu(memcg->stat->events[i], cpu) = 0;
2467 		memcg->nocpu_base.events[i] += x;
2468 	}
2469 	spin_unlock(&memcg->pcp_counter_lock);
2470 }
2471 
2472 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2473 					unsigned long action,
2474 					void *hcpu)
2475 {
2476 	int cpu = (unsigned long)hcpu;
2477 	struct memcg_stock_pcp *stock;
2478 	struct mem_cgroup *iter;
2479 
2480 	if (action == CPU_ONLINE)
2481 		return NOTIFY_OK;
2482 
2483 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2484 		return NOTIFY_OK;
2485 
2486 	for_each_mem_cgroup(iter)
2487 		mem_cgroup_drain_pcp_counter(iter, cpu);
2488 
2489 	stock = &per_cpu(memcg_stock, cpu);
2490 	drain_stock(stock);
2491 	return NOTIFY_OK;
2492 }
2493 
2494 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2495 		      unsigned int nr_pages)
2496 {
2497 	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2498 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2499 	struct mem_cgroup *mem_over_limit;
2500 	struct res_counter *fail_res;
2501 	unsigned long nr_reclaimed;
2502 	unsigned long long size;
2503 	bool may_swap = true;
2504 	bool drained = false;
2505 	int ret = 0;
2506 
2507 	if (mem_cgroup_is_root(memcg))
2508 		goto done;
2509 retry:
2510 	if (consume_stock(memcg, nr_pages))
2511 		goto done;
2512 
2513 	size = batch * PAGE_SIZE;
2514 	if (!do_swap_account ||
2515 	    !res_counter_charge(&memcg->memsw, size, &fail_res)) {
2516 		if (!res_counter_charge(&memcg->res, size, &fail_res))
2517 			goto done_restock;
2518 		if (do_swap_account)
2519 			res_counter_uncharge(&memcg->memsw, size);
2520 		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2521 	} else {
2522 		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2523 		may_swap = false;
2524 	}
2525 
2526 	if (batch > nr_pages) {
2527 		batch = nr_pages;
2528 		goto retry;
2529 	}
2530 
2531 	/*
2532 	 * Unlike in global OOM situations, memcg is not in a physical
2533 	 * memory shortage.  Allow dying and OOM-killed tasks to
2534 	 * bypass the last charges so that they can exit quickly and
2535 	 * free their memory.
2536 	 */
2537 	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2538 		     fatal_signal_pending(current) ||
2539 		     current->flags & PF_EXITING))
2540 		goto bypass;
2541 
2542 	if (unlikely(task_in_memcg_oom(current)))
2543 		goto nomem;
2544 
2545 	if (!(gfp_mask & __GFP_WAIT))
2546 		goto nomem;
2547 
2548 	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2549 						    gfp_mask, may_swap);
2550 
2551 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2552 		goto retry;
2553 
2554 	if (!drained) {
2555 		drain_all_stock_async(mem_over_limit);
2556 		drained = true;
2557 		goto retry;
2558 	}
2559 
2560 	if (gfp_mask & __GFP_NORETRY)
2561 		goto nomem;
2562 	/*
2563 	 * Even though the limit is exceeded at this point, reclaim
2564 	 * may have been able to free some pages.  Retry the charge
2565 	 * before killing the task.
2566 	 *
2567 	 * Only for regular pages, though: huge pages are rather
2568 	 * unlikely to succeed so close to the limit, and we fall back
2569 	 * to regular pages anyway in case of failure.
2570 	 */
2571 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2572 		goto retry;
2573 	/*
2574 	 * At task move, charge accounts can be doubly counted. So, it's
2575 	 * better to wait until the end of task_move if something is going on.
2576 	 */
2577 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2578 		goto retry;
2579 
2580 	if (nr_retries--)
2581 		goto retry;
2582 
2583 	if (gfp_mask & __GFP_NOFAIL)
2584 		goto bypass;
2585 
2586 	if (fatal_signal_pending(current))
2587 		goto bypass;
2588 
2589 	mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
2590 nomem:
2591 	if (!(gfp_mask & __GFP_NOFAIL))
2592 		return -ENOMEM;
2593 bypass:
2594 	return -EINTR;
2595 
2596 done_restock:
2597 	if (batch > nr_pages)
2598 		refill_stock(memcg, batch - nr_pages);
2599 done:
2600 	return ret;
2601 }
2602 
2603 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2604 {
2605 	unsigned long bytes = nr_pages * PAGE_SIZE;
2606 
2607 	if (mem_cgroup_is_root(memcg))
2608 		return;
2609 
2610 	res_counter_uncharge(&memcg->res, bytes);
2611 	if (do_swap_account)
2612 		res_counter_uncharge(&memcg->memsw, bytes);
2613 }
2614 
2615 /*
2616  * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2617  * This is useful when moving usage to parent cgroup.
2618  */
2619 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2620 					unsigned int nr_pages)
2621 {
2622 	unsigned long bytes = nr_pages * PAGE_SIZE;
2623 
2624 	if (mem_cgroup_is_root(memcg))
2625 		return;
2626 
2627 	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2628 	if (do_swap_account)
2629 		res_counter_uncharge_until(&memcg->memsw,
2630 						memcg->memsw.parent, bytes);
2631 }
2632 
2633 /*
2634  * A helper function to get mem_cgroup from ID. must be called under
2635  * rcu_read_lock().  The caller is responsible for calling
2636  * css_tryget_online() if the mem_cgroup is used for charging. (dropping
2637  * refcnt from swap can be called against removed memcg.)
2638  */
2639 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2640 {
2641 	/* ID 0 is unused ID */
2642 	if (!id)
2643 		return NULL;
2644 	return mem_cgroup_from_id(id);
2645 }
2646 
2647 /*
2648  * try_get_mem_cgroup_from_page - look up page's memcg association
2649  * @page: the page
2650  *
2651  * Look up, get a css reference, and return the memcg that owns @page.
2652  *
2653  * The page must be locked to prevent racing with swap-in and page
2654  * cache charges.  If coming from an unlocked page table, the caller
2655  * must ensure the page is on the LRU or this can race with charging.
2656  */
2657 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2658 {
2659 	struct mem_cgroup *memcg = NULL;
2660 	struct page_cgroup *pc;
2661 	unsigned short id;
2662 	swp_entry_t ent;
2663 
2664 	VM_BUG_ON_PAGE(!PageLocked(page), page);
2665 
2666 	pc = lookup_page_cgroup(page);
2667 	if (PageCgroupUsed(pc)) {
2668 		memcg = pc->mem_cgroup;
2669 		if (memcg && !css_tryget_online(&memcg->css))
2670 			memcg = NULL;
2671 	} else if (PageSwapCache(page)) {
2672 		ent.val = page_private(page);
2673 		id = lookup_swap_cgroup_id(ent);
2674 		rcu_read_lock();
2675 		memcg = mem_cgroup_lookup(id);
2676 		if (memcg && !css_tryget_online(&memcg->css))
2677 			memcg = NULL;
2678 		rcu_read_unlock();
2679 	}
2680 	return memcg;
2681 }
2682 
2683 static void lock_page_lru(struct page *page, int *isolated)
2684 {
2685 	struct zone *zone = page_zone(page);
2686 
2687 	spin_lock_irq(&zone->lru_lock);
2688 	if (PageLRU(page)) {
2689 		struct lruvec *lruvec;
2690 
2691 		lruvec = mem_cgroup_page_lruvec(page, zone);
2692 		ClearPageLRU(page);
2693 		del_page_from_lru_list(page, lruvec, page_lru(page));
2694 		*isolated = 1;
2695 	} else
2696 		*isolated = 0;
2697 }
2698 
2699 static void unlock_page_lru(struct page *page, int isolated)
2700 {
2701 	struct zone *zone = page_zone(page);
2702 
2703 	if (isolated) {
2704 		struct lruvec *lruvec;
2705 
2706 		lruvec = mem_cgroup_page_lruvec(page, zone);
2707 		VM_BUG_ON_PAGE(PageLRU(page), page);
2708 		SetPageLRU(page);
2709 		add_page_to_lru_list(page, lruvec, page_lru(page));
2710 	}
2711 	spin_unlock_irq(&zone->lru_lock);
2712 }
2713 
2714 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2715 			  bool lrucare)
2716 {
2717 	struct page_cgroup *pc = lookup_page_cgroup(page);
2718 	int isolated;
2719 
2720 	VM_BUG_ON_PAGE(PageCgroupUsed(pc), page);
2721 	/*
2722 	 * we don't need page_cgroup_lock about tail pages, becase they are not
2723 	 * accessed by any other context at this point.
2724 	 */
2725 
2726 	/*
2727 	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2728 	 * may already be on some other mem_cgroup's LRU.  Take care of it.
2729 	 */
2730 	if (lrucare)
2731 		lock_page_lru(page, &isolated);
2732 
2733 	/*
2734 	 * Nobody should be changing or seriously looking at
2735 	 * pc->mem_cgroup and pc->flags at this point:
2736 	 *
2737 	 * - the page is uncharged
2738 	 *
2739 	 * - the page is off-LRU
2740 	 *
2741 	 * - an anonymous fault has exclusive page access, except for
2742 	 *   a locked page table
2743 	 *
2744 	 * - a page cache insertion, a swapin fault, or a migration
2745 	 *   have the page locked
2746 	 */
2747 	pc->mem_cgroup = memcg;
2748 	pc->flags = PCG_USED | PCG_MEM | (do_swap_account ? PCG_MEMSW : 0);
2749 
2750 	if (lrucare)
2751 		unlock_page_lru(page, isolated);
2752 }
2753 
2754 static DEFINE_MUTEX(set_limit_mutex);
2755 
2756 #ifdef CONFIG_MEMCG_KMEM
2757 /*
2758  * The memcg_slab_mutex is held whenever a per memcg kmem cache is created or
2759  * destroyed. It protects memcg_caches arrays and memcg_slab_caches lists.
2760  */
2761 static DEFINE_MUTEX(memcg_slab_mutex);
2762 
2763 static DEFINE_MUTEX(activate_kmem_mutex);
2764 
2765 /*
2766  * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2767  * in the memcg_cache_params struct.
2768  */
2769 static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2770 {
2771 	struct kmem_cache *cachep;
2772 
2773 	VM_BUG_ON(p->is_root_cache);
2774 	cachep = p->root_cache;
2775 	return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
2776 }
2777 
2778 #ifdef CONFIG_SLABINFO
2779 static int mem_cgroup_slabinfo_read(struct seq_file *m, void *v)
2780 {
2781 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
2782 	struct memcg_cache_params *params;
2783 
2784 	if (!memcg_kmem_is_active(memcg))
2785 		return -EIO;
2786 
2787 	print_slabinfo_header(m);
2788 
2789 	mutex_lock(&memcg_slab_mutex);
2790 	list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2791 		cache_show(memcg_params_to_cache(params), m);
2792 	mutex_unlock(&memcg_slab_mutex);
2793 
2794 	return 0;
2795 }
2796 #endif
2797 
2798 static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
2799 {
2800 	struct res_counter *fail_res;
2801 	int ret = 0;
2802 
2803 	ret = res_counter_charge(&memcg->kmem, size, &fail_res);
2804 	if (ret)
2805 		return ret;
2806 
2807 	ret = try_charge(memcg, gfp, size >> PAGE_SHIFT);
2808 	if (ret == -EINTR)  {
2809 		/*
2810 		 * try_charge() chose to bypass to root due to OOM kill or
2811 		 * fatal signal.  Since our only options are to either fail
2812 		 * the allocation or charge it to this cgroup, do it as a
2813 		 * temporary condition. But we can't fail. From a kmem/slab
2814 		 * perspective, the cache has already been selected, by
2815 		 * mem_cgroup_kmem_get_cache(), so it is too late to change
2816 		 * our minds.
2817 		 *
2818 		 * This condition will only trigger if the task entered
2819 		 * memcg_charge_kmem in a sane state, but was OOM-killed
2820 		 * during try_charge() above. Tasks that were already dying
2821 		 * when the allocation triggers should have been already
2822 		 * directed to the root cgroup in memcontrol.h
2823 		 */
2824 		res_counter_charge_nofail(&memcg->res, size, &fail_res);
2825 		if (do_swap_account)
2826 			res_counter_charge_nofail(&memcg->memsw, size,
2827 						  &fail_res);
2828 		ret = 0;
2829 	} else if (ret)
2830 		res_counter_uncharge(&memcg->kmem, size);
2831 
2832 	return ret;
2833 }
2834 
2835 static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
2836 {
2837 	res_counter_uncharge(&memcg->res, size);
2838 	if (do_swap_account)
2839 		res_counter_uncharge(&memcg->memsw, size);
2840 
2841 	/* Not down to 0 */
2842 	if (res_counter_uncharge(&memcg->kmem, size))
2843 		return;
2844 
2845 	/*
2846 	 * Releases a reference taken in kmem_cgroup_css_offline in case
2847 	 * this last uncharge is racing with the offlining code or it is
2848 	 * outliving the memcg existence.
2849 	 *
2850 	 * The memory barrier imposed by test&clear is paired with the
2851 	 * explicit one in memcg_kmem_mark_dead().
2852 	 */
2853 	if (memcg_kmem_test_and_clear_dead(memcg))
2854 		css_put(&memcg->css);
2855 }
2856 
2857 /*
2858  * helper for acessing a memcg's index. It will be used as an index in the
2859  * child cache array in kmem_cache, and also to derive its name. This function
2860  * will return -1 when this is not a kmem-limited memcg.
2861  */
2862 int memcg_cache_id(struct mem_cgroup *memcg)
2863 {
2864 	return memcg ? memcg->kmemcg_id : -1;
2865 }
2866 
2867 static int memcg_alloc_cache_id(void)
2868 {
2869 	int id, size;
2870 	int err;
2871 
2872 	id = ida_simple_get(&kmem_limited_groups,
2873 			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2874 	if (id < 0)
2875 		return id;
2876 
2877 	if (id < memcg_limited_groups_array_size)
2878 		return id;
2879 
2880 	/*
2881 	 * There's no space for the new id in memcg_caches arrays,
2882 	 * so we have to grow them.
2883 	 */
2884 
2885 	size = 2 * (id + 1);
2886 	if (size < MEMCG_CACHES_MIN_SIZE)
2887 		size = MEMCG_CACHES_MIN_SIZE;
2888 	else if (size > MEMCG_CACHES_MAX_SIZE)
2889 		size = MEMCG_CACHES_MAX_SIZE;
2890 
2891 	mutex_lock(&memcg_slab_mutex);
2892 	err = memcg_update_all_caches(size);
2893 	mutex_unlock(&memcg_slab_mutex);
2894 
2895 	if (err) {
2896 		ida_simple_remove(&kmem_limited_groups, id);
2897 		return err;
2898 	}
2899 	return id;
2900 }
2901 
2902 static void memcg_free_cache_id(int id)
2903 {
2904 	ida_simple_remove(&kmem_limited_groups, id);
2905 }
2906 
2907 /*
2908  * We should update the current array size iff all caches updates succeed. This
2909  * can only be done from the slab side. The slab mutex needs to be held when
2910  * calling this.
2911  */
2912 void memcg_update_array_size(int num)
2913 {
2914 	memcg_limited_groups_array_size = num;
2915 }
2916 
2917 static void memcg_register_cache(struct mem_cgroup *memcg,
2918 				 struct kmem_cache *root_cache)
2919 {
2920 	static char memcg_name_buf[NAME_MAX + 1]; /* protected by
2921 						     memcg_slab_mutex */
2922 	struct kmem_cache *cachep;
2923 	int id;
2924 
2925 	lockdep_assert_held(&memcg_slab_mutex);
2926 
2927 	id = memcg_cache_id(memcg);
2928 
2929 	/*
2930 	 * Since per-memcg caches are created asynchronously on first
2931 	 * allocation (see memcg_kmem_get_cache()), several threads can try to
2932 	 * create the same cache, but only one of them may succeed.
2933 	 */
2934 	if (cache_from_memcg_idx(root_cache, id))
2935 		return;
2936 
2937 	cgroup_name(memcg->css.cgroup, memcg_name_buf, NAME_MAX + 1);
2938 	cachep = memcg_create_kmem_cache(memcg, root_cache, memcg_name_buf);
2939 	/*
2940 	 * If we could not create a memcg cache, do not complain, because
2941 	 * that's not critical at all as we can always proceed with the root
2942 	 * cache.
2943 	 */
2944 	if (!cachep)
2945 		return;
2946 
2947 	css_get(&memcg->css);
2948 	list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
2949 
2950 	/*
2951 	 * Since readers won't lock (see cache_from_memcg_idx()), we need a
2952 	 * barrier here to ensure nobody will see the kmem_cache partially
2953 	 * initialized.
2954 	 */
2955 	smp_wmb();
2956 
2957 	BUG_ON(root_cache->memcg_params->memcg_caches[id]);
2958 	root_cache->memcg_params->memcg_caches[id] = cachep;
2959 }
2960 
2961 static void memcg_unregister_cache(struct kmem_cache *cachep)
2962 {
2963 	struct kmem_cache *root_cache;
2964 	struct mem_cgroup *memcg;
2965 	int id;
2966 
2967 	lockdep_assert_held(&memcg_slab_mutex);
2968 
2969 	BUG_ON(is_root_cache(cachep));
2970 
2971 	root_cache = cachep->memcg_params->root_cache;
2972 	memcg = cachep->memcg_params->memcg;
2973 	id = memcg_cache_id(memcg);
2974 
2975 	BUG_ON(root_cache->memcg_params->memcg_caches[id] != cachep);
2976 	root_cache->memcg_params->memcg_caches[id] = NULL;
2977 
2978 	list_del(&cachep->memcg_params->list);
2979 
2980 	kmem_cache_destroy(cachep);
2981 
2982 	/* drop the reference taken in memcg_register_cache */
2983 	css_put(&memcg->css);
2984 }
2985 
2986 /*
2987  * During the creation a new cache, we need to disable our accounting mechanism
2988  * altogether. This is true even if we are not creating, but rather just
2989  * enqueing new caches to be created.
2990  *
2991  * This is because that process will trigger allocations; some visible, like
2992  * explicit kmallocs to auxiliary data structures, name strings and internal
2993  * cache structures; some well concealed, like INIT_WORK() that can allocate
2994  * objects during debug.
2995  *
2996  * If any allocation happens during memcg_kmem_get_cache, we will recurse back
2997  * to it. This may not be a bounded recursion: since the first cache creation
2998  * failed to complete (waiting on the allocation), we'll just try to create the
2999  * cache again, failing at the same point.
3000  *
3001  * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3002  * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3003  * inside the following two functions.
3004  */
3005 static inline void memcg_stop_kmem_account(void)
3006 {
3007 	VM_BUG_ON(!current->mm);
3008 	current->memcg_kmem_skip_account++;
3009 }
3010 
3011 static inline void memcg_resume_kmem_account(void)
3012 {
3013 	VM_BUG_ON(!current->mm);
3014 	current->memcg_kmem_skip_account--;
3015 }
3016 
3017 int __memcg_cleanup_cache_params(struct kmem_cache *s)
3018 {
3019 	struct kmem_cache *c;
3020 	int i, failed = 0;
3021 
3022 	mutex_lock(&memcg_slab_mutex);
3023 	for_each_memcg_cache_index(i) {
3024 		c = cache_from_memcg_idx(s, i);
3025 		if (!c)
3026 			continue;
3027 
3028 		memcg_unregister_cache(c);
3029 
3030 		if (cache_from_memcg_idx(s, i))
3031 			failed++;
3032 	}
3033 	mutex_unlock(&memcg_slab_mutex);
3034 	return failed;
3035 }
3036 
3037 static void memcg_unregister_all_caches(struct mem_cgroup *memcg)
3038 {
3039 	struct kmem_cache *cachep;
3040 	struct memcg_cache_params *params, *tmp;
3041 
3042 	if (!memcg_kmem_is_active(memcg))
3043 		return;
3044 
3045 	mutex_lock(&memcg_slab_mutex);
3046 	list_for_each_entry_safe(params, tmp, &memcg->memcg_slab_caches, list) {
3047 		cachep = memcg_params_to_cache(params);
3048 		kmem_cache_shrink(cachep);
3049 		if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3050 			memcg_unregister_cache(cachep);
3051 	}
3052 	mutex_unlock(&memcg_slab_mutex);
3053 }
3054 
3055 struct memcg_register_cache_work {
3056 	struct mem_cgroup *memcg;
3057 	struct kmem_cache *cachep;
3058 	struct work_struct work;
3059 };
3060 
3061 static void memcg_register_cache_func(struct work_struct *w)
3062 {
3063 	struct memcg_register_cache_work *cw =
3064 		container_of(w, struct memcg_register_cache_work, work);
3065 	struct mem_cgroup *memcg = cw->memcg;
3066 	struct kmem_cache *cachep = cw->cachep;
3067 
3068 	mutex_lock(&memcg_slab_mutex);
3069 	memcg_register_cache(memcg, cachep);
3070 	mutex_unlock(&memcg_slab_mutex);
3071 
3072 	css_put(&memcg->css);
3073 	kfree(cw);
3074 }
3075 
3076 /*
3077  * Enqueue the creation of a per-memcg kmem_cache.
3078  */
3079 static void __memcg_schedule_register_cache(struct mem_cgroup *memcg,
3080 					    struct kmem_cache *cachep)
3081 {
3082 	struct memcg_register_cache_work *cw;
3083 
3084 	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
3085 	if (cw == NULL) {
3086 		css_put(&memcg->css);
3087 		return;
3088 	}
3089 
3090 	cw->memcg = memcg;
3091 	cw->cachep = cachep;
3092 
3093 	INIT_WORK(&cw->work, memcg_register_cache_func);
3094 	schedule_work(&cw->work);
3095 }
3096 
3097 static void memcg_schedule_register_cache(struct mem_cgroup *memcg,
3098 					  struct kmem_cache *cachep)
3099 {
3100 	/*
3101 	 * We need to stop accounting when we kmalloc, because if the
3102 	 * corresponding kmalloc cache is not yet created, the first allocation
3103 	 * in __memcg_schedule_register_cache will recurse.
3104 	 *
3105 	 * However, it is better to enclose the whole function. Depending on
3106 	 * the debugging options enabled, INIT_WORK(), for instance, can
3107 	 * trigger an allocation. This too, will make us recurse. Because at
3108 	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3109 	 * the safest choice is to do it like this, wrapping the whole function.
3110 	 */
3111 	memcg_stop_kmem_account();
3112 	__memcg_schedule_register_cache(memcg, cachep);
3113 	memcg_resume_kmem_account();
3114 }
3115 
3116 int __memcg_charge_slab(struct kmem_cache *cachep, gfp_t gfp, int order)
3117 {
3118 	int res;
3119 
3120 	res = memcg_charge_kmem(cachep->memcg_params->memcg, gfp,
3121 				PAGE_SIZE << order);
3122 	if (!res)
3123 		atomic_add(1 << order, &cachep->memcg_params->nr_pages);
3124 	return res;
3125 }
3126 
3127 void __memcg_uncharge_slab(struct kmem_cache *cachep, int order)
3128 {
3129 	memcg_uncharge_kmem(cachep->memcg_params->memcg, PAGE_SIZE << order);
3130 	atomic_sub(1 << order, &cachep->memcg_params->nr_pages);
3131 }
3132 
3133 /*
3134  * Return the kmem_cache we're supposed to use for a slab allocation.
3135  * We try to use the current memcg's version of the cache.
3136  *
3137  * If the cache does not exist yet, if we are the first user of it,
3138  * we either create it immediately, if possible, or create it asynchronously
3139  * in a workqueue.
3140  * In the latter case, we will let the current allocation go through with
3141  * the original cache.
3142  *
3143  * Can't be called in interrupt context or from kernel threads.
3144  * This function needs to be called with rcu_read_lock() held.
3145  */
3146 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3147 					  gfp_t gfp)
3148 {
3149 	struct mem_cgroup *memcg;
3150 	struct kmem_cache *memcg_cachep;
3151 
3152 	VM_BUG_ON(!cachep->memcg_params);
3153 	VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3154 
3155 	if (!current->mm || current->memcg_kmem_skip_account)
3156 		return cachep;
3157 
3158 	rcu_read_lock();
3159 	memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
3160 
3161 	if (!memcg_kmem_is_active(memcg))
3162 		goto out;
3163 
3164 	memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
3165 	if (likely(memcg_cachep)) {
3166 		cachep = memcg_cachep;
3167 		goto out;
3168 	}
3169 
3170 	/* The corresponding put will be done in the workqueue. */
3171 	if (!css_tryget_online(&memcg->css))
3172 		goto out;
3173 	rcu_read_unlock();
3174 
3175 	/*
3176 	 * If we are in a safe context (can wait, and not in interrupt
3177 	 * context), we could be be predictable and return right away.
3178 	 * This would guarantee that the allocation being performed
3179 	 * already belongs in the new cache.
3180 	 *
3181 	 * However, there are some clashes that can arrive from locking.
3182 	 * For instance, because we acquire the slab_mutex while doing
3183 	 * memcg_create_kmem_cache, this means no further allocation
3184 	 * could happen with the slab_mutex held. So it's better to
3185 	 * defer everything.
3186 	 */
3187 	memcg_schedule_register_cache(memcg, cachep);
3188 	return cachep;
3189 out:
3190 	rcu_read_unlock();
3191 	return cachep;
3192 }
3193 
3194 /*
3195  * We need to verify if the allocation against current->mm->owner's memcg is
3196  * possible for the given order. But the page is not allocated yet, so we'll
3197  * need a further commit step to do the final arrangements.
3198  *
3199  * It is possible for the task to switch cgroups in this mean time, so at
3200  * commit time, we can't rely on task conversion any longer.  We'll then use
3201  * the handle argument to return to the caller which cgroup we should commit
3202  * against. We could also return the memcg directly and avoid the pointer
3203  * passing, but a boolean return value gives better semantics considering
3204  * the compiled-out case as well.
3205  *
3206  * Returning true means the allocation is possible.
3207  */
3208 bool
3209 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3210 {
3211 	struct mem_cgroup *memcg;
3212 	int ret;
3213 
3214 	*_memcg = NULL;
3215 
3216 	/*
3217 	 * Disabling accounting is only relevant for some specific memcg
3218 	 * internal allocations. Therefore we would initially not have such
3219 	 * check here, since direct calls to the page allocator that are
3220 	 * accounted to kmemcg (alloc_kmem_pages and friends) only happen
3221 	 * outside memcg core. We are mostly concerned with cache allocations,
3222 	 * and by having this test at memcg_kmem_get_cache, we are already able
3223 	 * to relay the allocation to the root cache and bypass the memcg cache
3224 	 * altogether.
3225 	 *
3226 	 * There is one exception, though: the SLUB allocator does not create
3227 	 * large order caches, but rather service large kmallocs directly from
3228 	 * the page allocator. Therefore, the following sequence when backed by
3229 	 * the SLUB allocator:
3230 	 *
3231 	 *	memcg_stop_kmem_account();
3232 	 *	kmalloc(<large_number>)
3233 	 *	memcg_resume_kmem_account();
3234 	 *
3235 	 * would effectively ignore the fact that we should skip accounting,
3236 	 * since it will drive us directly to this function without passing
3237 	 * through the cache selector memcg_kmem_get_cache. Such large
3238 	 * allocations are extremely rare but can happen, for instance, for the
3239 	 * cache arrays. We bring this test here.
3240 	 */
3241 	if (!current->mm || current->memcg_kmem_skip_account)
3242 		return true;
3243 
3244 	memcg = get_mem_cgroup_from_mm(current->mm);
3245 
3246 	if (!memcg_kmem_is_active(memcg)) {
3247 		css_put(&memcg->css);
3248 		return true;
3249 	}
3250 
3251 	ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3252 	if (!ret)
3253 		*_memcg = memcg;
3254 
3255 	css_put(&memcg->css);
3256 	return (ret == 0);
3257 }
3258 
3259 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3260 			      int order)
3261 {
3262 	struct page_cgroup *pc;
3263 
3264 	VM_BUG_ON(mem_cgroup_is_root(memcg));
3265 
3266 	/* The page allocation failed. Revert */
3267 	if (!page) {
3268 		memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3269 		return;
3270 	}
3271 	/*
3272 	 * The page is freshly allocated and not visible to any
3273 	 * outside callers yet.  Set up pc non-atomically.
3274 	 */
3275 	pc = lookup_page_cgroup(page);
3276 	pc->mem_cgroup = memcg;
3277 	pc->flags = PCG_USED;
3278 }
3279 
3280 void __memcg_kmem_uncharge_pages(struct page *page, int order)
3281 {
3282 	struct mem_cgroup *memcg = NULL;
3283 	struct page_cgroup *pc;
3284 
3285 
3286 	pc = lookup_page_cgroup(page);
3287 	if (!PageCgroupUsed(pc))
3288 		return;
3289 
3290 	memcg = pc->mem_cgroup;
3291 	pc->flags = 0;
3292 
3293 	/*
3294 	 * We trust that only if there is a memcg associated with the page, it
3295 	 * is a valid allocation
3296 	 */
3297 	if (!memcg)
3298 		return;
3299 
3300 	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3301 	memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3302 }
3303 #else
3304 static inline void memcg_unregister_all_caches(struct mem_cgroup *memcg)
3305 {
3306 }
3307 #endif /* CONFIG_MEMCG_KMEM */
3308 
3309 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3310 
3311 /*
3312  * Because tail pages are not marked as "used", set it. We're under
3313  * zone->lru_lock, 'splitting on pmd' and compound_lock.
3314  * charge/uncharge will be never happen and move_account() is done under
3315  * compound_lock(), so we don't have to take care of races.
3316  */
3317 void mem_cgroup_split_huge_fixup(struct page *head)
3318 {
3319 	struct page_cgroup *head_pc = lookup_page_cgroup(head);
3320 	struct page_cgroup *pc;
3321 	struct mem_cgroup *memcg;
3322 	int i;
3323 
3324 	if (mem_cgroup_disabled())
3325 		return;
3326 
3327 	memcg = head_pc->mem_cgroup;
3328 	for (i = 1; i < HPAGE_PMD_NR; i++) {
3329 		pc = head_pc + i;
3330 		pc->mem_cgroup = memcg;
3331 		pc->flags = head_pc->flags;
3332 	}
3333 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3334 		       HPAGE_PMD_NR);
3335 }
3336 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3337 
3338 /**
3339  * mem_cgroup_move_account - move account of the page
3340  * @page: the page
3341  * @nr_pages: number of regular pages (>1 for huge pages)
3342  * @pc:	page_cgroup of the page.
3343  * @from: mem_cgroup which the page is moved from.
3344  * @to:	mem_cgroup which the page is moved to. @from != @to.
3345  *
3346  * The caller must confirm following.
3347  * - page is not on LRU (isolate_page() is useful.)
3348  * - compound_lock is held when nr_pages > 1
3349  *
3350  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3351  * from old cgroup.
3352  */
3353 static int mem_cgroup_move_account(struct page *page,
3354 				   unsigned int nr_pages,
3355 				   struct page_cgroup *pc,
3356 				   struct mem_cgroup *from,
3357 				   struct mem_cgroup *to)
3358 {
3359 	unsigned long flags;
3360 	int ret;
3361 
3362 	VM_BUG_ON(from == to);
3363 	VM_BUG_ON_PAGE(PageLRU(page), page);
3364 	/*
3365 	 * The page is isolated from LRU. So, collapse function
3366 	 * will not handle this page. But page splitting can happen.
3367 	 * Do this check under compound_page_lock(). The caller should
3368 	 * hold it.
3369 	 */
3370 	ret = -EBUSY;
3371 	if (nr_pages > 1 && !PageTransHuge(page))
3372 		goto out;
3373 
3374 	/*
3375 	 * Prevent mem_cgroup_migrate() from looking at pc->mem_cgroup
3376 	 * of its source page while we change it: page migration takes
3377 	 * both pages off the LRU, but page cache replacement doesn't.
3378 	 */
3379 	if (!trylock_page(page))
3380 		goto out;
3381 
3382 	ret = -EINVAL;
3383 	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3384 		goto out_unlock;
3385 
3386 	move_lock_mem_cgroup(from, &flags);
3387 
3388 	if (!PageAnon(page) && page_mapped(page)) {
3389 		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3390 			       nr_pages);
3391 		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3392 			       nr_pages);
3393 	}
3394 
3395 	if (PageWriteback(page)) {
3396 		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3397 			       nr_pages);
3398 		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3399 			       nr_pages);
3400 	}
3401 
3402 	/*
3403 	 * It is safe to change pc->mem_cgroup here because the page
3404 	 * is referenced, charged, and isolated - we can't race with
3405 	 * uncharging, charging, migration, or LRU putback.
3406 	 */
3407 
3408 	/* caller should have done css_get */
3409 	pc->mem_cgroup = to;
3410 	move_unlock_mem_cgroup(from, &flags);
3411 	ret = 0;
3412 
3413 	local_irq_disable();
3414 	mem_cgroup_charge_statistics(to, page, nr_pages);
3415 	memcg_check_events(to, page);
3416 	mem_cgroup_charge_statistics(from, page, -nr_pages);
3417 	memcg_check_events(from, page);
3418 	local_irq_enable();
3419 out_unlock:
3420 	unlock_page(page);
3421 out:
3422 	return ret;
3423 }
3424 
3425 /**
3426  * mem_cgroup_move_parent - moves page to the parent group
3427  * @page: the page to move
3428  * @pc: page_cgroup of the page
3429  * @child: page's cgroup
3430  *
3431  * move charges to its parent or the root cgroup if the group has no
3432  * parent (aka use_hierarchy==0).
3433  * Although this might fail (get_page_unless_zero, isolate_lru_page or
3434  * mem_cgroup_move_account fails) the failure is always temporary and
3435  * it signals a race with a page removal/uncharge or migration. In the
3436  * first case the page is on the way out and it will vanish from the LRU
3437  * on the next attempt and the call should be retried later.
3438  * Isolation from the LRU fails only if page has been isolated from
3439  * the LRU since we looked at it and that usually means either global
3440  * reclaim or migration going on. The page will either get back to the
3441  * LRU or vanish.
3442  * Finaly mem_cgroup_move_account fails only if the page got uncharged
3443  * (!PageCgroupUsed) or moved to a different group. The page will
3444  * disappear in the next attempt.
3445  */
3446 static int mem_cgroup_move_parent(struct page *page,
3447 				  struct page_cgroup *pc,
3448 				  struct mem_cgroup *child)
3449 {
3450 	struct mem_cgroup *parent;
3451 	unsigned int nr_pages;
3452 	unsigned long uninitialized_var(flags);
3453 	int ret;
3454 
3455 	VM_BUG_ON(mem_cgroup_is_root(child));
3456 
3457 	ret = -EBUSY;
3458 	if (!get_page_unless_zero(page))
3459 		goto out;
3460 	if (isolate_lru_page(page))
3461 		goto put;
3462 
3463 	nr_pages = hpage_nr_pages(page);
3464 
3465 	parent = parent_mem_cgroup(child);
3466 	/*
3467 	 * If no parent, move charges to root cgroup.
3468 	 */
3469 	if (!parent)
3470 		parent = root_mem_cgroup;
3471 
3472 	if (nr_pages > 1) {
3473 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3474 		flags = compound_lock_irqsave(page);
3475 	}
3476 
3477 	ret = mem_cgroup_move_account(page, nr_pages,
3478 				pc, child, parent);
3479 	if (!ret)
3480 		__mem_cgroup_cancel_local_charge(child, nr_pages);
3481 
3482 	if (nr_pages > 1)
3483 		compound_unlock_irqrestore(page, flags);
3484 	putback_lru_page(page);
3485 put:
3486 	put_page(page);
3487 out:
3488 	return ret;
3489 }
3490 
3491 #ifdef CONFIG_MEMCG_SWAP
3492 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
3493 					 bool charge)
3494 {
3495 	int val = (charge) ? 1 : -1;
3496 	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
3497 }
3498 
3499 /**
3500  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3501  * @entry: swap entry to be moved
3502  * @from:  mem_cgroup which the entry is moved from
3503  * @to:  mem_cgroup which the entry is moved to
3504  *
3505  * It succeeds only when the swap_cgroup's record for this entry is the same
3506  * as the mem_cgroup's id of @from.
3507  *
3508  * Returns 0 on success, -EINVAL on failure.
3509  *
3510  * The caller must have charged to @to, IOW, called res_counter_charge() about
3511  * both res and memsw, and called css_get().
3512  */
3513 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3514 				struct mem_cgroup *from, struct mem_cgroup *to)
3515 {
3516 	unsigned short old_id, new_id;
3517 
3518 	old_id = mem_cgroup_id(from);
3519 	new_id = mem_cgroup_id(to);
3520 
3521 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3522 		mem_cgroup_swap_statistics(from, false);
3523 		mem_cgroup_swap_statistics(to, true);
3524 		/*
3525 		 * This function is only called from task migration context now.
3526 		 * It postpones res_counter and refcount handling till the end
3527 		 * of task migration(mem_cgroup_clear_mc()) for performance
3528 		 * improvement. But we cannot postpone css_get(to)  because if
3529 		 * the process that has been moved to @to does swap-in, the
3530 		 * refcount of @to might be decreased to 0.
3531 		 *
3532 		 * We are in attach() phase, so the cgroup is guaranteed to be
3533 		 * alive, so we can just call css_get().
3534 		 */
3535 		css_get(&to->css);
3536 		return 0;
3537 	}
3538 	return -EINVAL;
3539 }
3540 #else
3541 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3542 				struct mem_cgroup *from, struct mem_cgroup *to)
3543 {
3544 	return -EINVAL;
3545 }
3546 #endif
3547 
3548 #ifdef CONFIG_DEBUG_VM
3549 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3550 {
3551 	struct page_cgroup *pc;
3552 
3553 	pc = lookup_page_cgroup(page);
3554 	/*
3555 	 * Can be NULL while feeding pages into the page allocator for
3556 	 * the first time, i.e. during boot or memory hotplug;
3557 	 * or when mem_cgroup_disabled().
3558 	 */
3559 	if (likely(pc) && PageCgroupUsed(pc))
3560 		return pc;
3561 	return NULL;
3562 }
3563 
3564 bool mem_cgroup_bad_page_check(struct page *page)
3565 {
3566 	if (mem_cgroup_disabled())
3567 		return false;
3568 
3569 	return lookup_page_cgroup_used(page) != NULL;
3570 }
3571 
3572 void mem_cgroup_print_bad_page(struct page *page)
3573 {
3574 	struct page_cgroup *pc;
3575 
3576 	pc = lookup_page_cgroup_used(page);
3577 	if (pc) {
3578 		pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3579 			 pc, pc->flags, pc->mem_cgroup);
3580 	}
3581 }
3582 #endif
3583 
3584 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3585 				unsigned long long val)
3586 {
3587 	int retry_count;
3588 	int ret = 0;
3589 	int children = mem_cgroup_count_children(memcg);
3590 	u64 curusage, oldusage;
3591 	int enlarge;
3592 
3593 	/*
3594 	 * For keeping hierarchical_reclaim simple, how long we should retry
3595 	 * is depends on callers. We set our retry-count to be function
3596 	 * of # of children which we should visit in this loop.
3597 	 */
3598 	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3599 
3600 	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3601 
3602 	enlarge = 0;
3603 	while (retry_count) {
3604 		if (signal_pending(current)) {
3605 			ret = -EINTR;
3606 			break;
3607 		}
3608 		/*
3609 		 * Rather than hide all in some function, I do this in
3610 		 * open coded manner. You see what this really does.
3611 		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3612 		 */
3613 		mutex_lock(&set_limit_mutex);
3614 		if (res_counter_read_u64(&memcg->memsw, RES_LIMIT) < val) {
3615 			ret = -EINVAL;
3616 			mutex_unlock(&set_limit_mutex);
3617 			break;
3618 		}
3619 
3620 		if (res_counter_read_u64(&memcg->res, RES_LIMIT) < val)
3621 			enlarge = 1;
3622 
3623 		ret = res_counter_set_limit(&memcg->res, val);
3624 		mutex_unlock(&set_limit_mutex);
3625 
3626 		if (!ret)
3627 			break;
3628 
3629 		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
3630 
3631 		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3632 		/* Usage is reduced ? */
3633 		if (curusage >= oldusage)
3634 			retry_count--;
3635 		else
3636 			oldusage = curusage;
3637 	}
3638 	if (!ret && enlarge)
3639 		memcg_oom_recover(memcg);
3640 
3641 	return ret;
3642 }
3643 
3644 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3645 					unsigned long long val)
3646 {
3647 	int retry_count;
3648 	u64 oldusage, curusage;
3649 	int children = mem_cgroup_count_children(memcg);
3650 	int ret = -EBUSY;
3651 	int enlarge = 0;
3652 
3653 	/* see mem_cgroup_resize_res_limit */
3654 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3655 	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3656 	while (retry_count) {
3657 		if (signal_pending(current)) {
3658 			ret = -EINTR;
3659 			break;
3660 		}
3661 		/*
3662 		 * Rather than hide all in some function, I do this in
3663 		 * open coded manner. You see what this really does.
3664 		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3665 		 */
3666 		mutex_lock(&set_limit_mutex);
3667 		if (res_counter_read_u64(&memcg->res, RES_LIMIT) > val) {
3668 			ret = -EINVAL;
3669 			mutex_unlock(&set_limit_mutex);
3670 			break;
3671 		}
3672 		if (res_counter_read_u64(&memcg->memsw, RES_LIMIT) < val)
3673 			enlarge = 1;
3674 		ret = res_counter_set_limit(&memcg->memsw, val);
3675 		mutex_unlock(&set_limit_mutex);
3676 
3677 		if (!ret)
3678 			break;
3679 
3680 		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
3681 
3682 		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3683 		/* Usage is reduced ? */
3684 		if (curusage >= oldusage)
3685 			retry_count--;
3686 		else
3687 			oldusage = curusage;
3688 	}
3689 	if (!ret && enlarge)
3690 		memcg_oom_recover(memcg);
3691 	return ret;
3692 }
3693 
3694 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3695 					    gfp_t gfp_mask,
3696 					    unsigned long *total_scanned)
3697 {
3698 	unsigned long nr_reclaimed = 0;
3699 	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3700 	unsigned long reclaimed;
3701 	int loop = 0;
3702 	struct mem_cgroup_tree_per_zone *mctz;
3703 	unsigned long long excess;
3704 	unsigned long nr_scanned;
3705 
3706 	if (order > 0)
3707 		return 0;
3708 
3709 	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3710 	/*
3711 	 * This loop can run a while, specially if mem_cgroup's continuously
3712 	 * keep exceeding their soft limit and putting the system under
3713 	 * pressure
3714 	 */
3715 	do {
3716 		if (next_mz)
3717 			mz = next_mz;
3718 		else
3719 			mz = mem_cgroup_largest_soft_limit_node(mctz);
3720 		if (!mz)
3721 			break;
3722 
3723 		nr_scanned = 0;
3724 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3725 						    gfp_mask, &nr_scanned);
3726 		nr_reclaimed += reclaimed;
3727 		*total_scanned += nr_scanned;
3728 		spin_lock_irq(&mctz->lock);
3729 
3730 		/*
3731 		 * If we failed to reclaim anything from this memory cgroup
3732 		 * it is time to move on to the next cgroup
3733 		 */
3734 		next_mz = NULL;
3735 		if (!reclaimed) {
3736 			do {
3737 				/*
3738 				 * Loop until we find yet another one.
3739 				 *
3740 				 * By the time we get the soft_limit lock
3741 				 * again, someone might have aded the
3742 				 * group back on the RB tree. Iterate to
3743 				 * make sure we get a different mem.
3744 				 * mem_cgroup_largest_soft_limit_node returns
3745 				 * NULL if no other cgroup is present on
3746 				 * the tree
3747 				 */
3748 				next_mz =
3749 				__mem_cgroup_largest_soft_limit_node(mctz);
3750 				if (next_mz == mz)
3751 					css_put(&next_mz->memcg->css);
3752 				else /* next_mz == NULL or other memcg */
3753 					break;
3754 			} while (1);
3755 		}
3756 		__mem_cgroup_remove_exceeded(mz, mctz);
3757 		excess = res_counter_soft_limit_excess(&mz->memcg->res);
3758 		/*
3759 		 * One school of thought says that we should not add
3760 		 * back the node to the tree if reclaim returns 0.
3761 		 * But our reclaim could return 0, simply because due
3762 		 * to priority we are exposing a smaller subset of
3763 		 * memory to reclaim from. Consider this as a longer
3764 		 * term TODO.
3765 		 */
3766 		/* If excess == 0, no tree ops */
3767 		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3768 		spin_unlock_irq(&mctz->lock);
3769 		css_put(&mz->memcg->css);
3770 		loop++;
3771 		/*
3772 		 * Could not reclaim anything and there are no more
3773 		 * mem cgroups to try or we seem to be looping without
3774 		 * reclaiming anything.
3775 		 */
3776 		if (!nr_reclaimed &&
3777 			(next_mz == NULL ||
3778 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3779 			break;
3780 	} while (!nr_reclaimed);
3781 	if (next_mz)
3782 		css_put(&next_mz->memcg->css);
3783 	return nr_reclaimed;
3784 }
3785 
3786 /**
3787  * mem_cgroup_force_empty_list - clears LRU of a group
3788  * @memcg: group to clear
3789  * @node: NUMA node
3790  * @zid: zone id
3791  * @lru: lru to to clear
3792  *
3793  * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
3794  * reclaim the pages page themselves - pages are moved to the parent (or root)
3795  * group.
3796  */
3797 static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
3798 				int node, int zid, enum lru_list lru)
3799 {
3800 	struct lruvec *lruvec;
3801 	unsigned long flags;
3802 	struct list_head *list;
3803 	struct page *busy;
3804 	struct zone *zone;
3805 
3806 	zone = &NODE_DATA(node)->node_zones[zid];
3807 	lruvec = mem_cgroup_zone_lruvec(zone, memcg);
3808 	list = &lruvec->lists[lru];
3809 
3810 	busy = NULL;
3811 	do {
3812 		struct page_cgroup *pc;
3813 		struct page *page;
3814 
3815 		spin_lock_irqsave(&zone->lru_lock, flags);
3816 		if (list_empty(list)) {
3817 			spin_unlock_irqrestore(&zone->lru_lock, flags);
3818 			break;
3819 		}
3820 		page = list_entry(list->prev, struct page, lru);
3821 		if (busy == page) {
3822 			list_move(&page->lru, list);
3823 			busy = NULL;
3824 			spin_unlock_irqrestore(&zone->lru_lock, flags);
3825 			continue;
3826 		}
3827 		spin_unlock_irqrestore(&zone->lru_lock, flags);
3828 
3829 		pc = lookup_page_cgroup(page);
3830 
3831 		if (mem_cgroup_move_parent(page, pc, memcg)) {
3832 			/* found lock contention or "pc" is obsolete. */
3833 			busy = page;
3834 		} else
3835 			busy = NULL;
3836 		cond_resched();
3837 	} while (!list_empty(list));
3838 }
3839 
3840 /*
3841  * make mem_cgroup's charge to be 0 if there is no task by moving
3842  * all the charges and pages to the parent.
3843  * This enables deleting this mem_cgroup.
3844  *
3845  * Caller is responsible for holding css reference on the memcg.
3846  */
3847 static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
3848 {
3849 	int node, zid;
3850 	u64 usage;
3851 
3852 	do {
3853 		/* This is for making all *used* pages to be on LRU. */
3854 		lru_add_drain_all();
3855 		drain_all_stock_sync(memcg);
3856 		mem_cgroup_start_move(memcg);
3857 		for_each_node_state(node, N_MEMORY) {
3858 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3859 				enum lru_list lru;
3860 				for_each_lru(lru) {
3861 					mem_cgroup_force_empty_list(memcg,
3862 							node, zid, lru);
3863 				}
3864 			}
3865 		}
3866 		mem_cgroup_end_move(memcg);
3867 		memcg_oom_recover(memcg);
3868 		cond_resched();
3869 
3870 		/*
3871 		 * Kernel memory may not necessarily be trackable to a specific
3872 		 * process. So they are not migrated, and therefore we can't
3873 		 * expect their value to drop to 0 here.
3874 		 * Having res filled up with kmem only is enough.
3875 		 *
3876 		 * This is a safety check because mem_cgroup_force_empty_list
3877 		 * could have raced with mem_cgroup_replace_page_cache callers
3878 		 * so the lru seemed empty but the page could have been added
3879 		 * right after the check. RES_USAGE should be safe as we always
3880 		 * charge before adding to the LRU.
3881 		 */
3882 		usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
3883 			res_counter_read_u64(&memcg->kmem, RES_USAGE);
3884 	} while (usage > 0);
3885 }
3886 
3887 /*
3888  * Test whether @memcg has children, dead or alive.  Note that this
3889  * function doesn't care whether @memcg has use_hierarchy enabled and
3890  * returns %true if there are child csses according to the cgroup
3891  * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
3892  */
3893 static inline bool memcg_has_children(struct mem_cgroup *memcg)
3894 {
3895 	bool ret;
3896 
3897 	/*
3898 	 * The lock does not prevent addition or deletion of children, but
3899 	 * it prevents a new child from being initialized based on this
3900 	 * parent in css_online(), so it's enough to decide whether
3901 	 * hierarchically inherited attributes can still be changed or not.
3902 	 */
3903 	lockdep_assert_held(&memcg_create_mutex);
3904 
3905 	rcu_read_lock();
3906 	ret = css_next_child(NULL, &memcg->css);
3907 	rcu_read_unlock();
3908 	return ret;
3909 }
3910 
3911 /*
3912  * Reclaims as many pages from the given memcg as possible and moves
3913  * the rest to the parent.
3914  *
3915  * Caller is responsible for holding css reference for memcg.
3916  */
3917 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3918 {
3919 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3920 
3921 	/* we call try-to-free pages for make this cgroup empty */
3922 	lru_add_drain_all();
3923 	/* try to free all pages in this cgroup */
3924 	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
3925 		int progress;
3926 
3927 		if (signal_pending(current))
3928 			return -EINTR;
3929 
3930 		progress = try_to_free_mem_cgroup_pages(memcg, 1,
3931 							GFP_KERNEL, true);
3932 		if (!progress) {
3933 			nr_retries--;
3934 			/* maybe some writeback is necessary */
3935 			congestion_wait(BLK_RW_ASYNC, HZ/10);
3936 		}
3937 
3938 	}
3939 
3940 	return 0;
3941 }
3942 
3943 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3944 					    char *buf, size_t nbytes,
3945 					    loff_t off)
3946 {
3947 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3948 
3949 	if (mem_cgroup_is_root(memcg))
3950 		return -EINVAL;
3951 	return mem_cgroup_force_empty(memcg) ?: nbytes;
3952 }
3953 
3954 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3955 				     struct cftype *cft)
3956 {
3957 	return mem_cgroup_from_css(css)->use_hierarchy;
3958 }
3959 
3960 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3961 				      struct cftype *cft, u64 val)
3962 {
3963 	int retval = 0;
3964 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3965 	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3966 
3967 	mutex_lock(&memcg_create_mutex);
3968 
3969 	if (memcg->use_hierarchy == val)
3970 		goto out;
3971 
3972 	/*
3973 	 * If parent's use_hierarchy is set, we can't make any modifications
3974 	 * in the child subtrees. If it is unset, then the change can
3975 	 * occur, provided the current cgroup has no children.
3976 	 *
3977 	 * For the root cgroup, parent_mem is NULL, we allow value to be
3978 	 * set if there are no children.
3979 	 */
3980 	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3981 				(val == 1 || val == 0)) {
3982 		if (!memcg_has_children(memcg))
3983 			memcg->use_hierarchy = val;
3984 		else
3985 			retval = -EBUSY;
3986 	} else
3987 		retval = -EINVAL;
3988 
3989 out:
3990 	mutex_unlock(&memcg_create_mutex);
3991 
3992 	return retval;
3993 }
3994 
3995 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3996 					       enum mem_cgroup_stat_index idx)
3997 {
3998 	struct mem_cgroup *iter;
3999 	long val = 0;
4000 
4001 	/* Per-cpu values can be negative, use a signed accumulator */
4002 	for_each_mem_cgroup_tree(iter, memcg)
4003 		val += mem_cgroup_read_stat(iter, idx);
4004 
4005 	if (val < 0) /* race ? */
4006 		val = 0;
4007 	return val;
4008 }
4009 
4010 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
4011 {
4012 	u64 val;
4013 
4014 	if (!mem_cgroup_is_root(memcg)) {
4015 		if (!swap)
4016 			return res_counter_read_u64(&memcg->res, RES_USAGE);
4017 		else
4018 			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
4019 	}
4020 
4021 	/*
4022 	 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
4023 	 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
4024 	 */
4025 	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
4026 	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
4027 
4028 	if (swap)
4029 		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
4030 
4031 	return val << PAGE_SHIFT;
4032 }
4033 
4034 
4035 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
4036 			       struct cftype *cft)
4037 {
4038 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4039 	enum res_type type = MEMFILE_TYPE(cft->private);
4040 	int name = MEMFILE_ATTR(cft->private);
4041 
4042 	switch (type) {
4043 	case _MEM:
4044 		if (name == RES_USAGE)
4045 			return mem_cgroup_usage(memcg, false);
4046 		return res_counter_read_u64(&memcg->res, name);
4047 	case _MEMSWAP:
4048 		if (name == RES_USAGE)
4049 			return mem_cgroup_usage(memcg, true);
4050 		return res_counter_read_u64(&memcg->memsw, name);
4051 	case _KMEM:
4052 		return res_counter_read_u64(&memcg->kmem, name);
4053 		break;
4054 	default:
4055 		BUG();
4056 	}
4057 }
4058 
4059 #ifdef CONFIG_MEMCG_KMEM
4060 /* should be called with activate_kmem_mutex held */
4061 static int __memcg_activate_kmem(struct mem_cgroup *memcg,
4062 				 unsigned long long limit)
4063 {
4064 	int err = 0;
4065 	int memcg_id;
4066 
4067 	if (memcg_kmem_is_active(memcg))
4068 		return 0;
4069 
4070 	/*
4071 	 * We are going to allocate memory for data shared by all memory
4072 	 * cgroups so let's stop accounting here.
4073 	 */
4074 	memcg_stop_kmem_account();
4075 
4076 	/*
4077 	 * For simplicity, we won't allow this to be disabled.  It also can't
4078 	 * be changed if the cgroup has children already, or if tasks had
4079 	 * already joined.
4080 	 *
4081 	 * If tasks join before we set the limit, a person looking at
4082 	 * kmem.usage_in_bytes will have no way to determine when it took
4083 	 * place, which makes the value quite meaningless.
4084 	 *
4085 	 * After it first became limited, changes in the value of the limit are
4086 	 * of course permitted.
4087 	 */
4088 	mutex_lock(&memcg_create_mutex);
4089 	if (cgroup_has_tasks(memcg->css.cgroup) ||
4090 	    (memcg->use_hierarchy && memcg_has_children(memcg)))
4091 		err = -EBUSY;
4092 	mutex_unlock(&memcg_create_mutex);
4093 	if (err)
4094 		goto out;
4095 
4096 	memcg_id = memcg_alloc_cache_id();
4097 	if (memcg_id < 0) {
4098 		err = memcg_id;
4099 		goto out;
4100 	}
4101 
4102 	memcg->kmemcg_id = memcg_id;
4103 	INIT_LIST_HEAD(&memcg->memcg_slab_caches);
4104 
4105 	/*
4106 	 * We couldn't have accounted to this cgroup, because it hasn't got the
4107 	 * active bit set yet, so this should succeed.
4108 	 */
4109 	err = res_counter_set_limit(&memcg->kmem, limit);
4110 	VM_BUG_ON(err);
4111 
4112 	static_key_slow_inc(&memcg_kmem_enabled_key);
4113 	/*
4114 	 * Setting the active bit after enabling static branching will
4115 	 * guarantee no one starts accounting before all call sites are
4116 	 * patched.
4117 	 */
4118 	memcg_kmem_set_active(memcg);
4119 out:
4120 	memcg_resume_kmem_account();
4121 	return err;
4122 }
4123 
4124 static int memcg_activate_kmem(struct mem_cgroup *memcg,
4125 			       unsigned long long limit)
4126 {
4127 	int ret;
4128 
4129 	mutex_lock(&activate_kmem_mutex);
4130 	ret = __memcg_activate_kmem(memcg, limit);
4131 	mutex_unlock(&activate_kmem_mutex);
4132 	return ret;
4133 }
4134 
4135 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
4136 				   unsigned long long val)
4137 {
4138 	int ret;
4139 
4140 	if (!memcg_kmem_is_active(memcg))
4141 		ret = memcg_activate_kmem(memcg, val);
4142 	else
4143 		ret = res_counter_set_limit(&memcg->kmem, val);
4144 	return ret;
4145 }
4146 
4147 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
4148 {
4149 	int ret = 0;
4150 	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4151 
4152 	if (!parent)
4153 		return 0;
4154 
4155 	mutex_lock(&activate_kmem_mutex);
4156 	/*
4157 	 * If the parent cgroup is not kmem-active now, it cannot be activated
4158 	 * after this point, because it has at least one child already.
4159 	 */
4160 	if (memcg_kmem_is_active(parent))
4161 		ret = __memcg_activate_kmem(memcg, RES_COUNTER_MAX);
4162 	mutex_unlock(&activate_kmem_mutex);
4163 	return ret;
4164 }
4165 #else
4166 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
4167 				   unsigned long long val)
4168 {
4169 	return -EINVAL;
4170 }
4171 #endif /* CONFIG_MEMCG_KMEM */
4172 
4173 /*
4174  * The user of this function is...
4175  * RES_LIMIT.
4176  */
4177 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
4178 				char *buf, size_t nbytes, loff_t off)
4179 {
4180 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4181 	enum res_type type;
4182 	int name;
4183 	unsigned long long val;
4184 	int ret;
4185 
4186 	buf = strstrip(buf);
4187 	type = MEMFILE_TYPE(of_cft(of)->private);
4188 	name = MEMFILE_ATTR(of_cft(of)->private);
4189 
4190 	switch (name) {
4191 	case RES_LIMIT:
4192 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
4193 			ret = -EINVAL;
4194 			break;
4195 		}
4196 		/* This function does all necessary parse...reuse it */
4197 		ret = res_counter_memparse_write_strategy(buf, &val);
4198 		if (ret)
4199 			break;
4200 		if (type == _MEM)
4201 			ret = mem_cgroup_resize_limit(memcg, val);
4202 		else if (type == _MEMSWAP)
4203 			ret = mem_cgroup_resize_memsw_limit(memcg, val);
4204 		else if (type == _KMEM)
4205 			ret = memcg_update_kmem_limit(memcg, val);
4206 		else
4207 			return -EINVAL;
4208 		break;
4209 	case RES_SOFT_LIMIT:
4210 		ret = res_counter_memparse_write_strategy(buf, &val);
4211 		if (ret)
4212 			break;
4213 		/*
4214 		 * For memsw, soft limits are hard to implement in terms
4215 		 * of semantics, for now, we support soft limits for
4216 		 * control without swap
4217 		 */
4218 		if (type == _MEM)
4219 			ret = res_counter_set_soft_limit(&memcg->res, val);
4220 		else
4221 			ret = -EINVAL;
4222 		break;
4223 	default:
4224 		ret = -EINVAL; /* should be BUG() ? */
4225 		break;
4226 	}
4227 	return ret ?: nbytes;
4228 }
4229 
4230 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
4231 		unsigned long long *mem_limit, unsigned long long *memsw_limit)
4232 {
4233 	unsigned long long min_limit, min_memsw_limit, tmp;
4234 
4235 	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4236 	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4237 	if (!memcg->use_hierarchy)
4238 		goto out;
4239 
4240 	while (memcg->css.parent) {
4241 		memcg = mem_cgroup_from_css(memcg->css.parent);
4242 		if (!memcg->use_hierarchy)
4243 			break;
4244 		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
4245 		min_limit = min(min_limit, tmp);
4246 		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4247 		min_memsw_limit = min(min_memsw_limit, tmp);
4248 	}
4249 out:
4250 	*mem_limit = min_limit;
4251 	*memsw_limit = min_memsw_limit;
4252 }
4253 
4254 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
4255 				size_t nbytes, loff_t off)
4256 {
4257 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4258 	int name;
4259 	enum res_type type;
4260 
4261 	type = MEMFILE_TYPE(of_cft(of)->private);
4262 	name = MEMFILE_ATTR(of_cft(of)->private);
4263 
4264 	switch (name) {
4265 	case RES_MAX_USAGE:
4266 		if (type == _MEM)
4267 			res_counter_reset_max(&memcg->res);
4268 		else if (type == _MEMSWAP)
4269 			res_counter_reset_max(&memcg->memsw);
4270 		else if (type == _KMEM)
4271 			res_counter_reset_max(&memcg->kmem);
4272 		else
4273 			return -EINVAL;
4274 		break;
4275 	case RES_FAILCNT:
4276 		if (type == _MEM)
4277 			res_counter_reset_failcnt(&memcg->res);
4278 		else if (type == _MEMSWAP)
4279 			res_counter_reset_failcnt(&memcg->memsw);
4280 		else if (type == _KMEM)
4281 			res_counter_reset_failcnt(&memcg->kmem);
4282 		else
4283 			return -EINVAL;
4284 		break;
4285 	}
4286 
4287 	return nbytes;
4288 }
4289 
4290 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
4291 					struct cftype *cft)
4292 {
4293 	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
4294 }
4295 
4296 #ifdef CONFIG_MMU
4297 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
4298 					struct cftype *cft, u64 val)
4299 {
4300 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4301 
4302 	if (val >= (1 << NR_MOVE_TYPE))
4303 		return -EINVAL;
4304 
4305 	/*
4306 	 * No kind of locking is needed in here, because ->can_attach() will
4307 	 * check this value once in the beginning of the process, and then carry
4308 	 * on with stale data. This means that changes to this value will only
4309 	 * affect task migrations starting after the change.
4310 	 */
4311 	memcg->move_charge_at_immigrate = val;
4312 	return 0;
4313 }
4314 #else
4315 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
4316 					struct cftype *cft, u64 val)
4317 {
4318 	return -ENOSYS;
4319 }
4320 #endif
4321 
4322 #ifdef CONFIG_NUMA
4323 static int memcg_numa_stat_show(struct seq_file *m, void *v)
4324 {
4325 	struct numa_stat {
4326 		const char *name;
4327 		unsigned int lru_mask;
4328 	};
4329 
4330 	static const struct numa_stat stats[] = {
4331 		{ "total", LRU_ALL },
4332 		{ "file", LRU_ALL_FILE },
4333 		{ "anon", LRU_ALL_ANON },
4334 		{ "unevictable", BIT(LRU_UNEVICTABLE) },
4335 	};
4336 	const struct numa_stat *stat;
4337 	int nid;
4338 	unsigned long nr;
4339 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4340 
4341 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4342 		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
4343 		seq_printf(m, "%s=%lu", stat->name, nr);
4344 		for_each_node_state(nid, N_MEMORY) {
4345 			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4346 							  stat->lru_mask);
4347 			seq_printf(m, " N%d=%lu", nid, nr);
4348 		}
4349 		seq_putc(m, '\n');
4350 	}
4351 
4352 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4353 		struct mem_cgroup *iter;
4354 
4355 		nr = 0;
4356 		for_each_mem_cgroup_tree(iter, memcg)
4357 			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
4358 		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
4359 		for_each_node_state(nid, N_MEMORY) {
4360 			nr = 0;
4361 			for_each_mem_cgroup_tree(iter, memcg)
4362 				nr += mem_cgroup_node_nr_lru_pages(
4363 					iter, nid, stat->lru_mask);
4364 			seq_printf(m, " N%d=%lu", nid, nr);
4365 		}
4366 		seq_putc(m, '\n');
4367 	}
4368 
4369 	return 0;
4370 }
4371 #endif /* CONFIG_NUMA */
4372 
4373 static inline void mem_cgroup_lru_names_not_uptodate(void)
4374 {
4375 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
4376 }
4377 
4378 static int memcg_stat_show(struct seq_file *m, void *v)
4379 {
4380 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4381 	struct mem_cgroup *mi;
4382 	unsigned int i;
4383 
4384 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4385 		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4386 			continue;
4387 		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
4388 			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
4389 	}
4390 
4391 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
4392 		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
4393 			   mem_cgroup_read_events(memcg, i));
4394 
4395 	for (i = 0; i < NR_LRU_LISTS; i++)
4396 		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
4397 			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
4398 
4399 	/* Hierarchical information */
4400 	{
4401 		unsigned long long limit, memsw_limit;
4402 		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
4403 		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
4404 		if (do_swap_account)
4405 			seq_printf(m, "hierarchical_memsw_limit %llu\n",
4406 				   memsw_limit);
4407 	}
4408 
4409 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4410 		long long val = 0;
4411 
4412 		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4413 			continue;
4414 		for_each_mem_cgroup_tree(mi, memcg)
4415 			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
4416 		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
4417 	}
4418 
4419 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
4420 		unsigned long long val = 0;
4421 
4422 		for_each_mem_cgroup_tree(mi, memcg)
4423 			val += mem_cgroup_read_events(mi, i);
4424 		seq_printf(m, "total_%s %llu\n",
4425 			   mem_cgroup_events_names[i], val);
4426 	}
4427 
4428 	for (i = 0; i < NR_LRU_LISTS; i++) {
4429 		unsigned long long val = 0;
4430 
4431 		for_each_mem_cgroup_tree(mi, memcg)
4432 			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
4433 		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
4434 	}
4435 
4436 #ifdef CONFIG_DEBUG_VM
4437 	{
4438 		int nid, zid;
4439 		struct mem_cgroup_per_zone *mz;
4440 		struct zone_reclaim_stat *rstat;
4441 		unsigned long recent_rotated[2] = {0, 0};
4442 		unsigned long recent_scanned[2] = {0, 0};
4443 
4444 		for_each_online_node(nid)
4445 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4446 				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
4447 				rstat = &mz->lruvec.reclaim_stat;
4448 
4449 				recent_rotated[0] += rstat->recent_rotated[0];
4450 				recent_rotated[1] += rstat->recent_rotated[1];
4451 				recent_scanned[0] += rstat->recent_scanned[0];
4452 				recent_scanned[1] += rstat->recent_scanned[1];
4453 			}
4454 		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
4455 		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
4456 		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
4457 		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
4458 	}
4459 #endif
4460 
4461 	return 0;
4462 }
4463 
4464 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4465 				      struct cftype *cft)
4466 {
4467 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4468 
4469 	return mem_cgroup_swappiness(memcg);
4470 }
4471 
4472 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4473 				       struct cftype *cft, u64 val)
4474 {
4475 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4476 
4477 	if (val > 100)
4478 		return -EINVAL;
4479 
4480 	if (css->parent)
4481 		memcg->swappiness = val;
4482 	else
4483 		vm_swappiness = val;
4484 
4485 	return 0;
4486 }
4487 
4488 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4489 {
4490 	struct mem_cgroup_threshold_ary *t;
4491 	u64 usage;
4492 	int i;
4493 
4494 	rcu_read_lock();
4495 	if (!swap)
4496 		t = rcu_dereference(memcg->thresholds.primary);
4497 	else
4498 		t = rcu_dereference(memcg->memsw_thresholds.primary);
4499 
4500 	if (!t)
4501 		goto unlock;
4502 
4503 	usage = mem_cgroup_usage(memcg, swap);
4504 
4505 	/*
4506 	 * current_threshold points to threshold just below or equal to usage.
4507 	 * If it's not true, a threshold was crossed after last
4508 	 * call of __mem_cgroup_threshold().
4509 	 */
4510 	i = t->current_threshold;
4511 
4512 	/*
4513 	 * Iterate backward over array of thresholds starting from
4514 	 * current_threshold and check if a threshold is crossed.
4515 	 * If none of thresholds below usage is crossed, we read
4516 	 * only one element of the array here.
4517 	 */
4518 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4519 		eventfd_signal(t->entries[i].eventfd, 1);
4520 
4521 	/* i = current_threshold + 1 */
4522 	i++;
4523 
4524 	/*
4525 	 * Iterate forward over array of thresholds starting from
4526 	 * current_threshold+1 and check if a threshold is crossed.
4527 	 * If none of thresholds above usage is crossed, we read
4528 	 * only one element of the array here.
4529 	 */
4530 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4531 		eventfd_signal(t->entries[i].eventfd, 1);
4532 
4533 	/* Update current_threshold */
4534 	t->current_threshold = i - 1;
4535 unlock:
4536 	rcu_read_unlock();
4537 }
4538 
4539 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4540 {
4541 	while (memcg) {
4542 		__mem_cgroup_threshold(memcg, false);
4543 		if (do_swap_account)
4544 			__mem_cgroup_threshold(memcg, true);
4545 
4546 		memcg = parent_mem_cgroup(memcg);
4547 	}
4548 }
4549 
4550 static int compare_thresholds(const void *a, const void *b)
4551 {
4552 	const struct mem_cgroup_threshold *_a = a;
4553 	const struct mem_cgroup_threshold *_b = b;
4554 
4555 	if (_a->threshold > _b->threshold)
4556 		return 1;
4557 
4558 	if (_a->threshold < _b->threshold)
4559 		return -1;
4560 
4561 	return 0;
4562 }
4563 
4564 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4565 {
4566 	struct mem_cgroup_eventfd_list *ev;
4567 
4568 	spin_lock(&memcg_oom_lock);
4569 
4570 	list_for_each_entry(ev, &memcg->oom_notify, list)
4571 		eventfd_signal(ev->eventfd, 1);
4572 
4573 	spin_unlock(&memcg_oom_lock);
4574 	return 0;
4575 }
4576 
4577 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4578 {
4579 	struct mem_cgroup *iter;
4580 
4581 	for_each_mem_cgroup_tree(iter, memcg)
4582 		mem_cgroup_oom_notify_cb(iter);
4583 }
4584 
4585 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4586 	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4587 {
4588 	struct mem_cgroup_thresholds *thresholds;
4589 	struct mem_cgroup_threshold_ary *new;
4590 	u64 threshold, usage;
4591 	int i, size, ret;
4592 
4593 	ret = res_counter_memparse_write_strategy(args, &threshold);
4594 	if (ret)
4595 		return ret;
4596 
4597 	mutex_lock(&memcg->thresholds_lock);
4598 
4599 	if (type == _MEM) {
4600 		thresholds = &memcg->thresholds;
4601 		usage = mem_cgroup_usage(memcg, false);
4602 	} else if (type == _MEMSWAP) {
4603 		thresholds = &memcg->memsw_thresholds;
4604 		usage = mem_cgroup_usage(memcg, true);
4605 	} else
4606 		BUG();
4607 
4608 	/* Check if a threshold crossed before adding a new one */
4609 	if (thresholds->primary)
4610 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4611 
4612 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4613 
4614 	/* Allocate memory for new array of thresholds */
4615 	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4616 			GFP_KERNEL);
4617 	if (!new) {
4618 		ret = -ENOMEM;
4619 		goto unlock;
4620 	}
4621 	new->size = size;
4622 
4623 	/* Copy thresholds (if any) to new array */
4624 	if (thresholds->primary) {
4625 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4626 				sizeof(struct mem_cgroup_threshold));
4627 	}
4628 
4629 	/* Add new threshold */
4630 	new->entries[size - 1].eventfd = eventfd;
4631 	new->entries[size - 1].threshold = threshold;
4632 
4633 	/* Sort thresholds. Registering of new threshold isn't time-critical */
4634 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4635 			compare_thresholds, NULL);
4636 
4637 	/* Find current threshold */
4638 	new->current_threshold = -1;
4639 	for (i = 0; i < size; i++) {
4640 		if (new->entries[i].threshold <= usage) {
4641 			/*
4642 			 * new->current_threshold will not be used until
4643 			 * rcu_assign_pointer(), so it's safe to increment
4644 			 * it here.
4645 			 */
4646 			++new->current_threshold;
4647 		} else
4648 			break;
4649 	}
4650 
4651 	/* Free old spare buffer and save old primary buffer as spare */
4652 	kfree(thresholds->spare);
4653 	thresholds->spare = thresholds->primary;
4654 
4655 	rcu_assign_pointer(thresholds->primary, new);
4656 
4657 	/* To be sure that nobody uses thresholds */
4658 	synchronize_rcu();
4659 
4660 unlock:
4661 	mutex_unlock(&memcg->thresholds_lock);
4662 
4663 	return ret;
4664 }
4665 
4666 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4667 	struct eventfd_ctx *eventfd, const char *args)
4668 {
4669 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4670 }
4671 
4672 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4673 	struct eventfd_ctx *eventfd, const char *args)
4674 {
4675 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4676 }
4677 
4678 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4679 	struct eventfd_ctx *eventfd, enum res_type type)
4680 {
4681 	struct mem_cgroup_thresholds *thresholds;
4682 	struct mem_cgroup_threshold_ary *new;
4683 	u64 usage;
4684 	int i, j, size;
4685 
4686 	mutex_lock(&memcg->thresholds_lock);
4687 
4688 	if (type == _MEM) {
4689 		thresholds = &memcg->thresholds;
4690 		usage = mem_cgroup_usage(memcg, false);
4691 	} else if (type == _MEMSWAP) {
4692 		thresholds = &memcg->memsw_thresholds;
4693 		usage = mem_cgroup_usage(memcg, true);
4694 	} else
4695 		BUG();
4696 
4697 	if (!thresholds->primary)
4698 		goto unlock;
4699 
4700 	/* Check if a threshold crossed before removing */
4701 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4702 
4703 	/* Calculate new number of threshold */
4704 	size = 0;
4705 	for (i = 0; i < thresholds->primary->size; i++) {
4706 		if (thresholds->primary->entries[i].eventfd != eventfd)
4707 			size++;
4708 	}
4709 
4710 	new = thresholds->spare;
4711 
4712 	/* Set thresholds array to NULL if we don't have thresholds */
4713 	if (!size) {
4714 		kfree(new);
4715 		new = NULL;
4716 		goto swap_buffers;
4717 	}
4718 
4719 	new->size = size;
4720 
4721 	/* Copy thresholds and find current threshold */
4722 	new->current_threshold = -1;
4723 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4724 		if (thresholds->primary->entries[i].eventfd == eventfd)
4725 			continue;
4726 
4727 		new->entries[j] = thresholds->primary->entries[i];
4728 		if (new->entries[j].threshold <= usage) {
4729 			/*
4730 			 * new->current_threshold will not be used
4731 			 * until rcu_assign_pointer(), so it's safe to increment
4732 			 * it here.
4733 			 */
4734 			++new->current_threshold;
4735 		}
4736 		j++;
4737 	}
4738 
4739 swap_buffers:
4740 	/* Swap primary and spare array */
4741 	thresholds->spare = thresholds->primary;
4742 	/* If all events are unregistered, free the spare array */
4743 	if (!new) {
4744 		kfree(thresholds->spare);
4745 		thresholds->spare = NULL;
4746 	}
4747 
4748 	rcu_assign_pointer(thresholds->primary, new);
4749 
4750 	/* To be sure that nobody uses thresholds */
4751 	synchronize_rcu();
4752 unlock:
4753 	mutex_unlock(&memcg->thresholds_lock);
4754 }
4755 
4756 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4757 	struct eventfd_ctx *eventfd)
4758 {
4759 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4760 }
4761 
4762 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4763 	struct eventfd_ctx *eventfd)
4764 {
4765 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4766 }
4767 
4768 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4769 	struct eventfd_ctx *eventfd, const char *args)
4770 {
4771 	struct mem_cgroup_eventfd_list *event;
4772 
4773 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4774 	if (!event)
4775 		return -ENOMEM;
4776 
4777 	spin_lock(&memcg_oom_lock);
4778 
4779 	event->eventfd = eventfd;
4780 	list_add(&event->list, &memcg->oom_notify);
4781 
4782 	/* already in OOM ? */
4783 	if (atomic_read(&memcg->under_oom))
4784 		eventfd_signal(eventfd, 1);
4785 	spin_unlock(&memcg_oom_lock);
4786 
4787 	return 0;
4788 }
4789 
4790 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4791 	struct eventfd_ctx *eventfd)
4792 {
4793 	struct mem_cgroup_eventfd_list *ev, *tmp;
4794 
4795 	spin_lock(&memcg_oom_lock);
4796 
4797 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4798 		if (ev->eventfd == eventfd) {
4799 			list_del(&ev->list);
4800 			kfree(ev);
4801 		}
4802 	}
4803 
4804 	spin_unlock(&memcg_oom_lock);
4805 }
4806 
4807 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4808 {
4809 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
4810 
4811 	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4812 	seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
4813 	return 0;
4814 }
4815 
4816 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4817 	struct cftype *cft, u64 val)
4818 {
4819 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4820 
4821 	/* cannot set to root cgroup and only 0 and 1 are allowed */
4822 	if (!css->parent || !((val == 0) || (val == 1)))
4823 		return -EINVAL;
4824 
4825 	memcg->oom_kill_disable = val;
4826 	if (!val)
4827 		memcg_oom_recover(memcg);
4828 
4829 	return 0;
4830 }
4831 
4832 #ifdef CONFIG_MEMCG_KMEM
4833 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4834 {
4835 	int ret;
4836 
4837 	memcg->kmemcg_id = -1;
4838 	ret = memcg_propagate_kmem(memcg);
4839 	if (ret)
4840 		return ret;
4841 
4842 	return mem_cgroup_sockets_init(memcg, ss);
4843 }
4844 
4845 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
4846 {
4847 	mem_cgroup_sockets_destroy(memcg);
4848 }
4849 
4850 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
4851 {
4852 	if (!memcg_kmem_is_active(memcg))
4853 		return;
4854 
4855 	/*
4856 	 * kmem charges can outlive the cgroup. In the case of slab
4857 	 * pages, for instance, a page contain objects from various
4858 	 * processes. As we prevent from taking a reference for every
4859 	 * such allocation we have to be careful when doing uncharge
4860 	 * (see memcg_uncharge_kmem) and here during offlining.
4861 	 *
4862 	 * The idea is that that only the _last_ uncharge which sees
4863 	 * the dead memcg will drop the last reference. An additional
4864 	 * reference is taken here before the group is marked dead
4865 	 * which is then paired with css_put during uncharge resp. here.
4866 	 *
4867 	 * Although this might sound strange as this path is called from
4868 	 * css_offline() when the referencemight have dropped down to 0 and
4869 	 * shouldn't be incremented anymore (css_tryget_online() would
4870 	 * fail) we do not have other options because of the kmem
4871 	 * allocations lifetime.
4872 	 */
4873 	css_get(&memcg->css);
4874 
4875 	memcg_kmem_mark_dead(memcg);
4876 
4877 	if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
4878 		return;
4879 
4880 	if (memcg_kmem_test_and_clear_dead(memcg))
4881 		css_put(&memcg->css);
4882 }
4883 #else
4884 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4885 {
4886 	return 0;
4887 }
4888 
4889 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
4890 {
4891 }
4892 
4893 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
4894 {
4895 }
4896 #endif
4897 
4898 /*
4899  * DO NOT USE IN NEW FILES.
4900  *
4901  * "cgroup.event_control" implementation.
4902  *
4903  * This is way over-engineered.  It tries to support fully configurable
4904  * events for each user.  Such level of flexibility is completely
4905  * unnecessary especially in the light of the planned unified hierarchy.
4906  *
4907  * Please deprecate this and replace with something simpler if at all
4908  * possible.
4909  */
4910 
4911 /*
4912  * Unregister event and free resources.
4913  *
4914  * Gets called from workqueue.
4915  */
4916 static void memcg_event_remove(struct work_struct *work)
4917 {
4918 	struct mem_cgroup_event *event =
4919 		container_of(work, struct mem_cgroup_event, remove);
4920 	struct mem_cgroup *memcg = event->memcg;
4921 
4922 	remove_wait_queue(event->wqh, &event->wait);
4923 
4924 	event->unregister_event(memcg, event->eventfd);
4925 
4926 	/* Notify userspace the event is going away. */
4927 	eventfd_signal(event->eventfd, 1);
4928 
4929 	eventfd_ctx_put(event->eventfd);
4930 	kfree(event);
4931 	css_put(&memcg->css);
4932 }
4933 
4934 /*
4935  * Gets called on POLLHUP on eventfd when user closes it.
4936  *
4937  * Called with wqh->lock held and interrupts disabled.
4938  */
4939 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
4940 			    int sync, void *key)
4941 {
4942 	struct mem_cgroup_event *event =
4943 		container_of(wait, struct mem_cgroup_event, wait);
4944 	struct mem_cgroup *memcg = event->memcg;
4945 	unsigned long flags = (unsigned long)key;
4946 
4947 	if (flags & POLLHUP) {
4948 		/*
4949 		 * If the event has been detached at cgroup removal, we
4950 		 * can simply return knowing the other side will cleanup
4951 		 * for us.
4952 		 *
4953 		 * We can't race against event freeing since the other
4954 		 * side will require wqh->lock via remove_wait_queue(),
4955 		 * which we hold.
4956 		 */
4957 		spin_lock(&memcg->event_list_lock);
4958 		if (!list_empty(&event->list)) {
4959 			list_del_init(&event->list);
4960 			/*
4961 			 * We are in atomic context, but cgroup_event_remove()
4962 			 * may sleep, so we have to call it in workqueue.
4963 			 */
4964 			schedule_work(&event->remove);
4965 		}
4966 		spin_unlock(&memcg->event_list_lock);
4967 	}
4968 
4969 	return 0;
4970 }
4971 
4972 static void memcg_event_ptable_queue_proc(struct file *file,
4973 		wait_queue_head_t *wqh, poll_table *pt)
4974 {
4975 	struct mem_cgroup_event *event =
4976 		container_of(pt, struct mem_cgroup_event, pt);
4977 
4978 	event->wqh = wqh;
4979 	add_wait_queue(wqh, &event->wait);
4980 }
4981 
4982 /*
4983  * DO NOT USE IN NEW FILES.
4984  *
4985  * Parse input and register new cgroup event handler.
4986  *
4987  * Input must be in format '<event_fd> <control_fd> <args>'.
4988  * Interpretation of args is defined by control file implementation.
4989  */
4990 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4991 					 char *buf, size_t nbytes, loff_t off)
4992 {
4993 	struct cgroup_subsys_state *css = of_css(of);
4994 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4995 	struct mem_cgroup_event *event;
4996 	struct cgroup_subsys_state *cfile_css;
4997 	unsigned int efd, cfd;
4998 	struct fd efile;
4999 	struct fd cfile;
5000 	const char *name;
5001 	char *endp;
5002 	int ret;
5003 
5004 	buf = strstrip(buf);
5005 
5006 	efd = simple_strtoul(buf, &endp, 10);
5007 	if (*endp != ' ')
5008 		return -EINVAL;
5009 	buf = endp + 1;
5010 
5011 	cfd = simple_strtoul(buf, &endp, 10);
5012 	if ((*endp != ' ') && (*endp != '\0'))
5013 		return -EINVAL;
5014 	buf = endp + 1;
5015 
5016 	event = kzalloc(sizeof(*event), GFP_KERNEL);
5017 	if (!event)
5018 		return -ENOMEM;
5019 
5020 	event->memcg = memcg;
5021 	INIT_LIST_HEAD(&event->list);
5022 	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
5023 	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
5024 	INIT_WORK(&event->remove, memcg_event_remove);
5025 
5026 	efile = fdget(efd);
5027 	if (!efile.file) {
5028 		ret = -EBADF;
5029 		goto out_kfree;
5030 	}
5031 
5032 	event->eventfd = eventfd_ctx_fileget(efile.file);
5033 	if (IS_ERR(event->eventfd)) {
5034 		ret = PTR_ERR(event->eventfd);
5035 		goto out_put_efile;
5036 	}
5037 
5038 	cfile = fdget(cfd);
5039 	if (!cfile.file) {
5040 		ret = -EBADF;
5041 		goto out_put_eventfd;
5042 	}
5043 
5044 	/* the process need read permission on control file */
5045 	/* AV: shouldn't we check that it's been opened for read instead? */
5046 	ret = inode_permission(file_inode(cfile.file), MAY_READ);
5047 	if (ret < 0)
5048 		goto out_put_cfile;
5049 
5050 	/*
5051 	 * Determine the event callbacks and set them in @event.  This used
5052 	 * to be done via struct cftype but cgroup core no longer knows
5053 	 * about these events.  The following is crude but the whole thing
5054 	 * is for compatibility anyway.
5055 	 *
5056 	 * DO NOT ADD NEW FILES.
5057 	 */
5058 	name = cfile.file->f_dentry->d_name.name;
5059 
5060 	if (!strcmp(name, "memory.usage_in_bytes")) {
5061 		event->register_event = mem_cgroup_usage_register_event;
5062 		event->unregister_event = mem_cgroup_usage_unregister_event;
5063 	} else if (!strcmp(name, "memory.oom_control")) {
5064 		event->register_event = mem_cgroup_oom_register_event;
5065 		event->unregister_event = mem_cgroup_oom_unregister_event;
5066 	} else if (!strcmp(name, "memory.pressure_level")) {
5067 		event->register_event = vmpressure_register_event;
5068 		event->unregister_event = vmpressure_unregister_event;
5069 	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
5070 		event->register_event = memsw_cgroup_usage_register_event;
5071 		event->unregister_event = memsw_cgroup_usage_unregister_event;
5072 	} else {
5073 		ret = -EINVAL;
5074 		goto out_put_cfile;
5075 	}
5076 
5077 	/*
5078 	 * Verify @cfile should belong to @css.  Also, remaining events are
5079 	 * automatically removed on cgroup destruction but the removal is
5080 	 * asynchronous, so take an extra ref on @css.
5081 	 */
5082 	cfile_css = css_tryget_online_from_dir(cfile.file->f_dentry->d_parent,
5083 					       &memory_cgrp_subsys);
5084 	ret = -EINVAL;
5085 	if (IS_ERR(cfile_css))
5086 		goto out_put_cfile;
5087 	if (cfile_css != css) {
5088 		css_put(cfile_css);
5089 		goto out_put_cfile;
5090 	}
5091 
5092 	ret = event->register_event(memcg, event->eventfd, buf);
5093 	if (ret)
5094 		goto out_put_css;
5095 
5096 	efile.file->f_op->poll(efile.file, &event->pt);
5097 
5098 	spin_lock(&memcg->event_list_lock);
5099 	list_add(&event->list, &memcg->event_list);
5100 	spin_unlock(&memcg->event_list_lock);
5101 
5102 	fdput(cfile);
5103 	fdput(efile);
5104 
5105 	return nbytes;
5106 
5107 out_put_css:
5108 	css_put(css);
5109 out_put_cfile:
5110 	fdput(cfile);
5111 out_put_eventfd:
5112 	eventfd_ctx_put(event->eventfd);
5113 out_put_efile:
5114 	fdput(efile);
5115 out_kfree:
5116 	kfree(event);
5117 
5118 	return ret;
5119 }
5120 
5121 static struct cftype mem_cgroup_files[] = {
5122 	{
5123 		.name = "usage_in_bytes",
5124 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5125 		.read_u64 = mem_cgroup_read_u64,
5126 	},
5127 	{
5128 		.name = "max_usage_in_bytes",
5129 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5130 		.write = mem_cgroup_reset,
5131 		.read_u64 = mem_cgroup_read_u64,
5132 	},
5133 	{
5134 		.name = "limit_in_bytes",
5135 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5136 		.write = mem_cgroup_write,
5137 		.read_u64 = mem_cgroup_read_u64,
5138 	},
5139 	{
5140 		.name = "soft_limit_in_bytes",
5141 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5142 		.write = mem_cgroup_write,
5143 		.read_u64 = mem_cgroup_read_u64,
5144 	},
5145 	{
5146 		.name = "failcnt",
5147 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5148 		.write = mem_cgroup_reset,
5149 		.read_u64 = mem_cgroup_read_u64,
5150 	},
5151 	{
5152 		.name = "stat",
5153 		.seq_show = memcg_stat_show,
5154 	},
5155 	{
5156 		.name = "force_empty",
5157 		.write = mem_cgroup_force_empty_write,
5158 	},
5159 	{
5160 		.name = "use_hierarchy",
5161 		.write_u64 = mem_cgroup_hierarchy_write,
5162 		.read_u64 = mem_cgroup_hierarchy_read,
5163 	},
5164 	{
5165 		.name = "cgroup.event_control",		/* XXX: for compat */
5166 		.write = memcg_write_event_control,
5167 		.flags = CFTYPE_NO_PREFIX,
5168 		.mode = S_IWUGO,
5169 	},
5170 	{
5171 		.name = "swappiness",
5172 		.read_u64 = mem_cgroup_swappiness_read,
5173 		.write_u64 = mem_cgroup_swappiness_write,
5174 	},
5175 	{
5176 		.name = "move_charge_at_immigrate",
5177 		.read_u64 = mem_cgroup_move_charge_read,
5178 		.write_u64 = mem_cgroup_move_charge_write,
5179 	},
5180 	{
5181 		.name = "oom_control",
5182 		.seq_show = mem_cgroup_oom_control_read,
5183 		.write_u64 = mem_cgroup_oom_control_write,
5184 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5185 	},
5186 	{
5187 		.name = "pressure_level",
5188 	},
5189 #ifdef CONFIG_NUMA
5190 	{
5191 		.name = "numa_stat",
5192 		.seq_show = memcg_numa_stat_show,
5193 	},
5194 #endif
5195 #ifdef CONFIG_MEMCG_KMEM
5196 	{
5197 		.name = "kmem.limit_in_bytes",
5198 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5199 		.write = mem_cgroup_write,
5200 		.read_u64 = mem_cgroup_read_u64,
5201 	},
5202 	{
5203 		.name = "kmem.usage_in_bytes",
5204 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5205 		.read_u64 = mem_cgroup_read_u64,
5206 	},
5207 	{
5208 		.name = "kmem.failcnt",
5209 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5210 		.write = mem_cgroup_reset,
5211 		.read_u64 = mem_cgroup_read_u64,
5212 	},
5213 	{
5214 		.name = "kmem.max_usage_in_bytes",
5215 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5216 		.write = mem_cgroup_reset,
5217 		.read_u64 = mem_cgroup_read_u64,
5218 	},
5219 #ifdef CONFIG_SLABINFO
5220 	{
5221 		.name = "kmem.slabinfo",
5222 		.seq_show = mem_cgroup_slabinfo_read,
5223 	},
5224 #endif
5225 #endif
5226 	{ },	/* terminate */
5227 };
5228 
5229 #ifdef CONFIG_MEMCG_SWAP
5230 static struct cftype memsw_cgroup_files[] = {
5231 	{
5232 		.name = "memsw.usage_in_bytes",
5233 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5234 		.read_u64 = mem_cgroup_read_u64,
5235 	},
5236 	{
5237 		.name = "memsw.max_usage_in_bytes",
5238 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5239 		.write = mem_cgroup_reset,
5240 		.read_u64 = mem_cgroup_read_u64,
5241 	},
5242 	{
5243 		.name = "memsw.limit_in_bytes",
5244 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5245 		.write = mem_cgroup_write,
5246 		.read_u64 = mem_cgroup_read_u64,
5247 	},
5248 	{
5249 		.name = "memsw.failcnt",
5250 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5251 		.write = mem_cgroup_reset,
5252 		.read_u64 = mem_cgroup_read_u64,
5253 	},
5254 	{ },	/* terminate */
5255 };
5256 #endif
5257 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5258 {
5259 	struct mem_cgroup_per_node *pn;
5260 	struct mem_cgroup_per_zone *mz;
5261 	int zone, tmp = node;
5262 	/*
5263 	 * This routine is called against possible nodes.
5264 	 * But it's BUG to call kmalloc() against offline node.
5265 	 *
5266 	 * TODO: this routine can waste much memory for nodes which will
5267 	 *       never be onlined. It's better to use memory hotplug callback
5268 	 *       function.
5269 	 */
5270 	if (!node_state(node, N_NORMAL_MEMORY))
5271 		tmp = -1;
5272 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5273 	if (!pn)
5274 		return 1;
5275 
5276 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5277 		mz = &pn->zoneinfo[zone];
5278 		lruvec_init(&mz->lruvec);
5279 		mz->usage_in_excess = 0;
5280 		mz->on_tree = false;
5281 		mz->memcg = memcg;
5282 	}
5283 	memcg->nodeinfo[node] = pn;
5284 	return 0;
5285 }
5286 
5287 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5288 {
5289 	kfree(memcg->nodeinfo[node]);
5290 }
5291 
5292 static struct mem_cgroup *mem_cgroup_alloc(void)
5293 {
5294 	struct mem_cgroup *memcg;
5295 	size_t size;
5296 
5297 	size = sizeof(struct mem_cgroup);
5298 	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5299 
5300 	memcg = kzalloc(size, GFP_KERNEL);
5301 	if (!memcg)
5302 		return NULL;
5303 
5304 	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
5305 	if (!memcg->stat)
5306 		goto out_free;
5307 	spin_lock_init(&memcg->pcp_counter_lock);
5308 	return memcg;
5309 
5310 out_free:
5311 	kfree(memcg);
5312 	return NULL;
5313 }
5314 
5315 /*
5316  * At destroying mem_cgroup, references from swap_cgroup can remain.
5317  * (scanning all at force_empty is too costly...)
5318  *
5319  * Instead of clearing all references at force_empty, we remember
5320  * the number of reference from swap_cgroup and free mem_cgroup when
5321  * it goes down to 0.
5322  *
5323  * Removal of cgroup itself succeeds regardless of refs from swap.
5324  */
5325 
5326 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5327 {
5328 	int node;
5329 
5330 	mem_cgroup_remove_from_trees(memcg);
5331 
5332 	for_each_node(node)
5333 		free_mem_cgroup_per_zone_info(memcg, node);
5334 
5335 	free_percpu(memcg->stat);
5336 
5337 	/*
5338 	 * We need to make sure that (at least for now), the jump label
5339 	 * destruction code runs outside of the cgroup lock. This is because
5340 	 * get_online_cpus(), which is called from the static_branch update,
5341 	 * can't be called inside the cgroup_lock. cpusets are the ones
5342 	 * enforcing this dependency, so if they ever change, we might as well.
5343 	 *
5344 	 * schedule_work() will guarantee this happens. Be careful if you need
5345 	 * to move this code around, and make sure it is outside
5346 	 * the cgroup_lock.
5347 	 */
5348 	disarm_static_keys(memcg);
5349 	kfree(memcg);
5350 }
5351 
5352 /*
5353  * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
5354  */
5355 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
5356 {
5357 	if (!memcg->res.parent)
5358 		return NULL;
5359 	return mem_cgroup_from_res_counter(memcg->res.parent, res);
5360 }
5361 EXPORT_SYMBOL(parent_mem_cgroup);
5362 
5363 static void __init mem_cgroup_soft_limit_tree_init(void)
5364 {
5365 	struct mem_cgroup_tree_per_node *rtpn;
5366 	struct mem_cgroup_tree_per_zone *rtpz;
5367 	int tmp, node, zone;
5368 
5369 	for_each_node(node) {
5370 		tmp = node;
5371 		if (!node_state(node, N_NORMAL_MEMORY))
5372 			tmp = -1;
5373 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
5374 		BUG_ON(!rtpn);
5375 
5376 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
5377 
5378 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5379 			rtpz = &rtpn->rb_tree_per_zone[zone];
5380 			rtpz->rb_root = RB_ROOT;
5381 			spin_lock_init(&rtpz->lock);
5382 		}
5383 	}
5384 }
5385 
5386 static struct cgroup_subsys_state * __ref
5387 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5388 {
5389 	struct mem_cgroup *memcg;
5390 	long error = -ENOMEM;
5391 	int node;
5392 
5393 	memcg = mem_cgroup_alloc();
5394 	if (!memcg)
5395 		return ERR_PTR(error);
5396 
5397 	for_each_node(node)
5398 		if (alloc_mem_cgroup_per_zone_info(memcg, node))
5399 			goto free_out;
5400 
5401 	/* root ? */
5402 	if (parent_css == NULL) {
5403 		root_mem_cgroup = memcg;
5404 		res_counter_init(&memcg->res, NULL);
5405 		res_counter_init(&memcg->memsw, NULL);
5406 		res_counter_init(&memcg->kmem, NULL);
5407 	}
5408 
5409 	memcg->last_scanned_node = MAX_NUMNODES;
5410 	INIT_LIST_HEAD(&memcg->oom_notify);
5411 	memcg->move_charge_at_immigrate = 0;
5412 	mutex_init(&memcg->thresholds_lock);
5413 	spin_lock_init(&memcg->move_lock);
5414 	vmpressure_init(&memcg->vmpressure);
5415 	INIT_LIST_HEAD(&memcg->event_list);
5416 	spin_lock_init(&memcg->event_list_lock);
5417 
5418 	return &memcg->css;
5419 
5420 free_out:
5421 	__mem_cgroup_free(memcg);
5422 	return ERR_PTR(error);
5423 }
5424 
5425 static int
5426 mem_cgroup_css_online(struct cgroup_subsys_state *css)
5427 {
5428 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5429 	struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
5430 	int ret;
5431 
5432 	if (css->id > MEM_CGROUP_ID_MAX)
5433 		return -ENOSPC;
5434 
5435 	if (!parent)
5436 		return 0;
5437 
5438 	mutex_lock(&memcg_create_mutex);
5439 
5440 	memcg->use_hierarchy = parent->use_hierarchy;
5441 	memcg->oom_kill_disable = parent->oom_kill_disable;
5442 	memcg->swappiness = mem_cgroup_swappiness(parent);
5443 
5444 	if (parent->use_hierarchy) {
5445 		res_counter_init(&memcg->res, &parent->res);
5446 		res_counter_init(&memcg->memsw, &parent->memsw);
5447 		res_counter_init(&memcg->kmem, &parent->kmem);
5448 
5449 		/*
5450 		 * No need to take a reference to the parent because cgroup
5451 		 * core guarantees its existence.
5452 		 */
5453 	} else {
5454 		res_counter_init(&memcg->res, NULL);
5455 		res_counter_init(&memcg->memsw, NULL);
5456 		res_counter_init(&memcg->kmem, NULL);
5457 		/*
5458 		 * Deeper hierachy with use_hierarchy == false doesn't make
5459 		 * much sense so let cgroup subsystem know about this
5460 		 * unfortunate state in our controller.
5461 		 */
5462 		if (parent != root_mem_cgroup)
5463 			memory_cgrp_subsys.broken_hierarchy = true;
5464 	}
5465 	mutex_unlock(&memcg_create_mutex);
5466 
5467 	ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
5468 	if (ret)
5469 		return ret;
5470 
5471 	/*
5472 	 * Make sure the memcg is initialized: mem_cgroup_iter()
5473 	 * orders reading memcg->initialized against its callers
5474 	 * reading the memcg members.
5475 	 */
5476 	smp_store_release(&memcg->initialized, 1);
5477 
5478 	return 0;
5479 }
5480 
5481 /*
5482  * Announce all parents that a group from their hierarchy is gone.
5483  */
5484 static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
5485 {
5486 	struct mem_cgroup *parent = memcg;
5487 
5488 	while ((parent = parent_mem_cgroup(parent)))
5489 		mem_cgroup_iter_invalidate(parent);
5490 
5491 	/*
5492 	 * if the root memcg is not hierarchical we have to check it
5493 	 * explicitely.
5494 	 */
5495 	if (!root_mem_cgroup->use_hierarchy)
5496 		mem_cgroup_iter_invalidate(root_mem_cgroup);
5497 }
5498 
5499 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5500 {
5501 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5502 	struct mem_cgroup_event *event, *tmp;
5503 	struct cgroup_subsys_state *iter;
5504 
5505 	/*
5506 	 * Unregister events and notify userspace.
5507 	 * Notify userspace about cgroup removing only after rmdir of cgroup
5508 	 * directory to avoid race between userspace and kernelspace.
5509 	 */
5510 	spin_lock(&memcg->event_list_lock);
5511 	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5512 		list_del_init(&event->list);
5513 		schedule_work(&event->remove);
5514 	}
5515 	spin_unlock(&memcg->event_list_lock);
5516 
5517 	kmem_cgroup_css_offline(memcg);
5518 
5519 	mem_cgroup_invalidate_reclaim_iterators(memcg);
5520 
5521 	/*
5522 	 * This requires that offlining is serialized.  Right now that is
5523 	 * guaranteed because css_killed_work_fn() holds the cgroup_mutex.
5524 	 */
5525 	css_for_each_descendant_post(iter, css)
5526 		mem_cgroup_reparent_charges(mem_cgroup_from_css(iter));
5527 
5528 	memcg_unregister_all_caches(memcg);
5529 	vmpressure_cleanup(&memcg->vmpressure);
5530 }
5531 
5532 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5533 {
5534 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5535 	/*
5536 	 * XXX: css_offline() would be where we should reparent all
5537 	 * memory to prepare the cgroup for destruction.  However,
5538 	 * memcg does not do css_tryget_online() and res_counter charging
5539 	 * under the same RCU lock region, which means that charging
5540 	 * could race with offlining.  Offlining only happens to
5541 	 * cgroups with no tasks in them but charges can show up
5542 	 * without any tasks from the swapin path when the target
5543 	 * memcg is looked up from the swapout record and not from the
5544 	 * current task as it usually is.  A race like this can leak
5545 	 * charges and put pages with stale cgroup pointers into
5546 	 * circulation:
5547 	 *
5548 	 * #0                        #1
5549 	 *                           lookup_swap_cgroup_id()
5550 	 *                           rcu_read_lock()
5551 	 *                           mem_cgroup_lookup()
5552 	 *                           css_tryget_online()
5553 	 *                           rcu_read_unlock()
5554 	 * disable css_tryget_online()
5555 	 * call_rcu()
5556 	 *   offline_css()
5557 	 *     reparent_charges()
5558 	 *                           res_counter_charge()
5559 	 *                           css_put()
5560 	 *                             css_free()
5561 	 *                           pc->mem_cgroup = dead memcg
5562 	 *                           add page to lru
5563 	 *
5564 	 * The bulk of the charges are still moved in offline_css() to
5565 	 * avoid pinning a lot of pages in case a long-term reference
5566 	 * like a swapout record is deferring the css_free() to long
5567 	 * after offlining.  But this makes sure we catch any charges
5568 	 * made after offlining:
5569 	 */
5570 	mem_cgroup_reparent_charges(memcg);
5571 
5572 	memcg_destroy_kmem(memcg);
5573 	__mem_cgroup_free(memcg);
5574 }
5575 
5576 /**
5577  * mem_cgroup_css_reset - reset the states of a mem_cgroup
5578  * @css: the target css
5579  *
5580  * Reset the states of the mem_cgroup associated with @css.  This is
5581  * invoked when the userland requests disabling on the default hierarchy
5582  * but the memcg is pinned through dependency.  The memcg should stop
5583  * applying policies and should revert to the vanilla state as it may be
5584  * made visible again.
5585  *
5586  * The current implementation only resets the essential configurations.
5587  * This needs to be expanded to cover all the visible parts.
5588  */
5589 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5590 {
5591 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5592 
5593 	mem_cgroup_resize_limit(memcg, ULLONG_MAX);
5594 	mem_cgroup_resize_memsw_limit(memcg, ULLONG_MAX);
5595 	memcg_update_kmem_limit(memcg, ULLONG_MAX);
5596 	res_counter_set_soft_limit(&memcg->res, ULLONG_MAX);
5597 }
5598 
5599 #ifdef CONFIG_MMU
5600 /* Handlers for move charge at task migration. */
5601 static int mem_cgroup_do_precharge(unsigned long count)
5602 {
5603 	int ret;
5604 
5605 	/* Try a single bulk charge without reclaim first */
5606 	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
5607 	if (!ret) {
5608 		mc.precharge += count;
5609 		return ret;
5610 	}
5611 	if (ret == -EINTR) {
5612 		cancel_charge(root_mem_cgroup, count);
5613 		return ret;
5614 	}
5615 
5616 	/* Try charges one by one with reclaim */
5617 	while (count--) {
5618 		ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
5619 		/*
5620 		 * In case of failure, any residual charges against
5621 		 * mc.to will be dropped by mem_cgroup_clear_mc()
5622 		 * later on.  However, cancel any charges that are
5623 		 * bypassed to root right away or they'll be lost.
5624 		 */
5625 		if (ret == -EINTR)
5626 			cancel_charge(root_mem_cgroup, 1);
5627 		if (ret)
5628 			return ret;
5629 		mc.precharge++;
5630 		cond_resched();
5631 	}
5632 	return 0;
5633 }
5634 
5635 /**
5636  * get_mctgt_type - get target type of moving charge
5637  * @vma: the vma the pte to be checked belongs
5638  * @addr: the address corresponding to the pte to be checked
5639  * @ptent: the pte to be checked
5640  * @target: the pointer the target page or swap ent will be stored(can be NULL)
5641  *
5642  * Returns
5643  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5644  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5645  *     move charge. if @target is not NULL, the page is stored in target->page
5646  *     with extra refcnt got(Callers should handle it).
5647  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5648  *     target for charge migration. if @target is not NULL, the entry is stored
5649  *     in target->ent.
5650  *
5651  * Called with pte lock held.
5652  */
5653 union mc_target {
5654 	struct page	*page;
5655 	swp_entry_t	ent;
5656 };
5657 
5658 enum mc_target_type {
5659 	MC_TARGET_NONE = 0,
5660 	MC_TARGET_PAGE,
5661 	MC_TARGET_SWAP,
5662 };
5663 
5664 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5665 						unsigned long addr, pte_t ptent)
5666 {
5667 	struct page *page = vm_normal_page(vma, addr, ptent);
5668 
5669 	if (!page || !page_mapped(page))
5670 		return NULL;
5671 	if (PageAnon(page)) {
5672 		/* we don't move shared anon */
5673 		if (!move_anon())
5674 			return NULL;
5675 	} else if (!move_file())
5676 		/* we ignore mapcount for file pages */
5677 		return NULL;
5678 	if (!get_page_unless_zero(page))
5679 		return NULL;
5680 
5681 	return page;
5682 }
5683 
5684 #ifdef CONFIG_SWAP
5685 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5686 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5687 {
5688 	struct page *page = NULL;
5689 	swp_entry_t ent = pte_to_swp_entry(ptent);
5690 
5691 	if (!move_anon() || non_swap_entry(ent))
5692 		return NULL;
5693 	/*
5694 	 * Because lookup_swap_cache() updates some statistics counter,
5695 	 * we call find_get_page() with swapper_space directly.
5696 	 */
5697 	page = find_get_page(swap_address_space(ent), ent.val);
5698 	if (do_swap_account)
5699 		entry->val = ent.val;
5700 
5701 	return page;
5702 }
5703 #else
5704 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5705 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5706 {
5707 	return NULL;
5708 }
5709 #endif
5710 
5711 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5712 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5713 {
5714 	struct page *page = NULL;
5715 	struct address_space *mapping;
5716 	pgoff_t pgoff;
5717 
5718 	if (!vma->vm_file) /* anonymous vma */
5719 		return NULL;
5720 	if (!move_file())
5721 		return NULL;
5722 
5723 	mapping = vma->vm_file->f_mapping;
5724 	if (pte_none(ptent))
5725 		pgoff = linear_page_index(vma, addr);
5726 	else /* pte_file(ptent) is true */
5727 		pgoff = pte_to_pgoff(ptent);
5728 
5729 	/* page is moved even if it's not RSS of this task(page-faulted). */
5730 #ifdef CONFIG_SWAP
5731 	/* shmem/tmpfs may report page out on swap: account for that too. */
5732 	if (shmem_mapping(mapping)) {
5733 		page = find_get_entry(mapping, pgoff);
5734 		if (radix_tree_exceptional_entry(page)) {
5735 			swp_entry_t swp = radix_to_swp_entry(page);
5736 			if (do_swap_account)
5737 				*entry = swp;
5738 			page = find_get_page(swap_address_space(swp), swp.val);
5739 		}
5740 	} else
5741 		page = find_get_page(mapping, pgoff);
5742 #else
5743 	page = find_get_page(mapping, pgoff);
5744 #endif
5745 	return page;
5746 }
5747 
5748 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5749 		unsigned long addr, pte_t ptent, union mc_target *target)
5750 {
5751 	struct page *page = NULL;
5752 	struct page_cgroup *pc;
5753 	enum mc_target_type ret = MC_TARGET_NONE;
5754 	swp_entry_t ent = { .val = 0 };
5755 
5756 	if (pte_present(ptent))
5757 		page = mc_handle_present_pte(vma, addr, ptent);
5758 	else if (is_swap_pte(ptent))
5759 		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5760 	else if (pte_none(ptent) || pte_file(ptent))
5761 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
5762 
5763 	if (!page && !ent.val)
5764 		return ret;
5765 	if (page) {
5766 		pc = lookup_page_cgroup(page);
5767 		/*
5768 		 * Do only loose check w/o serialization.
5769 		 * mem_cgroup_move_account() checks the pc is valid or
5770 		 * not under LRU exclusion.
5771 		 */
5772 		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5773 			ret = MC_TARGET_PAGE;
5774 			if (target)
5775 				target->page = page;
5776 		}
5777 		if (!ret || !target)
5778 			put_page(page);
5779 	}
5780 	/* There is a swap entry and a page doesn't exist or isn't charged */
5781 	if (ent.val && !ret &&
5782 	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5783 		ret = MC_TARGET_SWAP;
5784 		if (target)
5785 			target->ent = ent;
5786 	}
5787 	return ret;
5788 }
5789 
5790 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5791 /*
5792  * We don't consider swapping or file mapped pages because THP does not
5793  * support them for now.
5794  * Caller should make sure that pmd_trans_huge(pmd) is true.
5795  */
5796 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5797 		unsigned long addr, pmd_t pmd, union mc_target *target)
5798 {
5799 	struct page *page = NULL;
5800 	struct page_cgroup *pc;
5801 	enum mc_target_type ret = MC_TARGET_NONE;
5802 
5803 	page = pmd_page(pmd);
5804 	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5805 	if (!move_anon())
5806 		return ret;
5807 	pc = lookup_page_cgroup(page);
5808 	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5809 		ret = MC_TARGET_PAGE;
5810 		if (target) {
5811 			get_page(page);
5812 			target->page = page;
5813 		}
5814 	}
5815 	return ret;
5816 }
5817 #else
5818 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5819 		unsigned long addr, pmd_t pmd, union mc_target *target)
5820 {
5821 	return MC_TARGET_NONE;
5822 }
5823 #endif
5824 
5825 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5826 					unsigned long addr, unsigned long end,
5827 					struct mm_walk *walk)
5828 {
5829 	struct vm_area_struct *vma = walk->private;
5830 	pte_t *pte;
5831 	spinlock_t *ptl;
5832 
5833 	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
5834 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5835 			mc.precharge += HPAGE_PMD_NR;
5836 		spin_unlock(ptl);
5837 		return 0;
5838 	}
5839 
5840 	if (pmd_trans_unstable(pmd))
5841 		return 0;
5842 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5843 	for (; addr != end; pte++, addr += PAGE_SIZE)
5844 		if (get_mctgt_type(vma, addr, *pte, NULL))
5845 			mc.precharge++;	/* increment precharge temporarily */
5846 	pte_unmap_unlock(pte - 1, ptl);
5847 	cond_resched();
5848 
5849 	return 0;
5850 }
5851 
5852 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5853 {
5854 	unsigned long precharge;
5855 	struct vm_area_struct *vma;
5856 
5857 	down_read(&mm->mmap_sem);
5858 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
5859 		struct mm_walk mem_cgroup_count_precharge_walk = {
5860 			.pmd_entry = mem_cgroup_count_precharge_pte_range,
5861 			.mm = mm,
5862 			.private = vma,
5863 		};
5864 		if (is_vm_hugetlb_page(vma))
5865 			continue;
5866 		walk_page_range(vma->vm_start, vma->vm_end,
5867 					&mem_cgroup_count_precharge_walk);
5868 	}
5869 	up_read(&mm->mmap_sem);
5870 
5871 	precharge = mc.precharge;
5872 	mc.precharge = 0;
5873 
5874 	return precharge;
5875 }
5876 
5877 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5878 {
5879 	unsigned long precharge = mem_cgroup_count_precharge(mm);
5880 
5881 	VM_BUG_ON(mc.moving_task);
5882 	mc.moving_task = current;
5883 	return mem_cgroup_do_precharge(precharge);
5884 }
5885 
5886 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5887 static void __mem_cgroup_clear_mc(void)
5888 {
5889 	struct mem_cgroup *from = mc.from;
5890 	struct mem_cgroup *to = mc.to;
5891 	int i;
5892 
5893 	/* we must uncharge all the leftover precharges from mc.to */
5894 	if (mc.precharge) {
5895 		cancel_charge(mc.to, mc.precharge);
5896 		mc.precharge = 0;
5897 	}
5898 	/*
5899 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5900 	 * we must uncharge here.
5901 	 */
5902 	if (mc.moved_charge) {
5903 		cancel_charge(mc.from, mc.moved_charge);
5904 		mc.moved_charge = 0;
5905 	}
5906 	/* we must fixup refcnts and charges */
5907 	if (mc.moved_swap) {
5908 		/* uncharge swap account from the old cgroup */
5909 		if (!mem_cgroup_is_root(mc.from))
5910 			res_counter_uncharge(&mc.from->memsw,
5911 					     PAGE_SIZE * mc.moved_swap);
5912 
5913 		for (i = 0; i < mc.moved_swap; i++)
5914 			css_put(&mc.from->css);
5915 
5916 		/*
5917 		 * we charged both to->res and to->memsw, so we should
5918 		 * uncharge to->res.
5919 		 */
5920 		if (!mem_cgroup_is_root(mc.to))
5921 			res_counter_uncharge(&mc.to->res,
5922 					     PAGE_SIZE * mc.moved_swap);
5923 		/* we've already done css_get(mc.to) */
5924 		mc.moved_swap = 0;
5925 	}
5926 	memcg_oom_recover(from);
5927 	memcg_oom_recover(to);
5928 	wake_up_all(&mc.waitq);
5929 }
5930 
5931 static void mem_cgroup_clear_mc(void)
5932 {
5933 	struct mem_cgroup *from = mc.from;
5934 
5935 	/*
5936 	 * we must clear moving_task before waking up waiters at the end of
5937 	 * task migration.
5938 	 */
5939 	mc.moving_task = NULL;
5940 	__mem_cgroup_clear_mc();
5941 	spin_lock(&mc.lock);
5942 	mc.from = NULL;
5943 	mc.to = NULL;
5944 	spin_unlock(&mc.lock);
5945 	mem_cgroup_end_move(from);
5946 }
5947 
5948 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5949 				 struct cgroup_taskset *tset)
5950 {
5951 	struct task_struct *p = cgroup_taskset_first(tset);
5952 	int ret = 0;
5953 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5954 	unsigned long move_charge_at_immigrate;
5955 
5956 	/*
5957 	 * We are now commited to this value whatever it is. Changes in this
5958 	 * tunable will only affect upcoming migrations, not the current one.
5959 	 * So we need to save it, and keep it going.
5960 	 */
5961 	move_charge_at_immigrate  = memcg->move_charge_at_immigrate;
5962 	if (move_charge_at_immigrate) {
5963 		struct mm_struct *mm;
5964 		struct mem_cgroup *from = mem_cgroup_from_task(p);
5965 
5966 		VM_BUG_ON(from == memcg);
5967 
5968 		mm = get_task_mm(p);
5969 		if (!mm)
5970 			return 0;
5971 		/* We move charges only when we move a owner of the mm */
5972 		if (mm->owner == p) {
5973 			VM_BUG_ON(mc.from);
5974 			VM_BUG_ON(mc.to);
5975 			VM_BUG_ON(mc.precharge);
5976 			VM_BUG_ON(mc.moved_charge);
5977 			VM_BUG_ON(mc.moved_swap);
5978 			mem_cgroup_start_move(from);
5979 			spin_lock(&mc.lock);
5980 			mc.from = from;
5981 			mc.to = memcg;
5982 			mc.immigrate_flags = move_charge_at_immigrate;
5983 			spin_unlock(&mc.lock);
5984 			/* We set mc.moving_task later */
5985 
5986 			ret = mem_cgroup_precharge_mc(mm);
5987 			if (ret)
5988 				mem_cgroup_clear_mc();
5989 		}
5990 		mmput(mm);
5991 	}
5992 	return ret;
5993 }
5994 
5995 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5996 				     struct cgroup_taskset *tset)
5997 {
5998 	mem_cgroup_clear_mc();
5999 }
6000 
6001 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6002 				unsigned long addr, unsigned long end,
6003 				struct mm_walk *walk)
6004 {
6005 	int ret = 0;
6006 	struct vm_area_struct *vma = walk->private;
6007 	pte_t *pte;
6008 	spinlock_t *ptl;
6009 	enum mc_target_type target_type;
6010 	union mc_target target;
6011 	struct page *page;
6012 	struct page_cgroup *pc;
6013 
6014 	/*
6015 	 * We don't take compound_lock() here but no race with splitting thp
6016 	 * happens because:
6017 	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6018 	 *    under splitting, which means there's no concurrent thp split,
6019 	 *  - if another thread runs into split_huge_page() just after we
6020 	 *    entered this if-block, the thread must wait for page table lock
6021 	 *    to be unlocked in __split_huge_page_splitting(), where the main
6022 	 *    part of thp split is not executed yet.
6023 	 */
6024 	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
6025 		if (mc.precharge < HPAGE_PMD_NR) {
6026 			spin_unlock(ptl);
6027 			return 0;
6028 		}
6029 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6030 		if (target_type == MC_TARGET_PAGE) {
6031 			page = target.page;
6032 			if (!isolate_lru_page(page)) {
6033 				pc = lookup_page_cgroup(page);
6034 				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6035 							pc, mc.from, mc.to)) {
6036 					mc.precharge -= HPAGE_PMD_NR;
6037 					mc.moved_charge += HPAGE_PMD_NR;
6038 				}
6039 				putback_lru_page(page);
6040 			}
6041 			put_page(page);
6042 		}
6043 		spin_unlock(ptl);
6044 		return 0;
6045 	}
6046 
6047 	if (pmd_trans_unstable(pmd))
6048 		return 0;
6049 retry:
6050 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6051 	for (; addr != end; addr += PAGE_SIZE) {
6052 		pte_t ptent = *(pte++);
6053 		swp_entry_t ent;
6054 
6055 		if (!mc.precharge)
6056 			break;
6057 
6058 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6059 		case MC_TARGET_PAGE:
6060 			page = target.page;
6061 			if (isolate_lru_page(page))
6062 				goto put;
6063 			pc = lookup_page_cgroup(page);
6064 			if (!mem_cgroup_move_account(page, 1, pc,
6065 						     mc.from, mc.to)) {
6066 				mc.precharge--;
6067 				/* we uncharge from mc.from later. */
6068 				mc.moved_charge++;
6069 			}
6070 			putback_lru_page(page);
6071 put:			/* get_mctgt_type() gets the page */
6072 			put_page(page);
6073 			break;
6074 		case MC_TARGET_SWAP:
6075 			ent = target.ent;
6076 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6077 				mc.precharge--;
6078 				/* we fixup refcnts and charges later. */
6079 				mc.moved_swap++;
6080 			}
6081 			break;
6082 		default:
6083 			break;
6084 		}
6085 	}
6086 	pte_unmap_unlock(pte - 1, ptl);
6087 	cond_resched();
6088 
6089 	if (addr != end) {
6090 		/*
6091 		 * We have consumed all precharges we got in can_attach().
6092 		 * We try charge one by one, but don't do any additional
6093 		 * charges to mc.to if we have failed in charge once in attach()
6094 		 * phase.
6095 		 */
6096 		ret = mem_cgroup_do_precharge(1);
6097 		if (!ret)
6098 			goto retry;
6099 	}
6100 
6101 	return ret;
6102 }
6103 
6104 static void mem_cgroup_move_charge(struct mm_struct *mm)
6105 {
6106 	struct vm_area_struct *vma;
6107 
6108 	lru_add_drain_all();
6109 retry:
6110 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
6111 		/*
6112 		 * Someone who are holding the mmap_sem might be waiting in
6113 		 * waitq. So we cancel all extra charges, wake up all waiters,
6114 		 * and retry. Because we cancel precharges, we might not be able
6115 		 * to move enough charges, but moving charge is a best-effort
6116 		 * feature anyway, so it wouldn't be a big problem.
6117 		 */
6118 		__mem_cgroup_clear_mc();
6119 		cond_resched();
6120 		goto retry;
6121 	}
6122 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
6123 		int ret;
6124 		struct mm_walk mem_cgroup_move_charge_walk = {
6125 			.pmd_entry = mem_cgroup_move_charge_pte_range,
6126 			.mm = mm,
6127 			.private = vma,
6128 		};
6129 		if (is_vm_hugetlb_page(vma))
6130 			continue;
6131 		ret = walk_page_range(vma->vm_start, vma->vm_end,
6132 						&mem_cgroup_move_charge_walk);
6133 		if (ret)
6134 			/*
6135 			 * means we have consumed all precharges and failed in
6136 			 * doing additional charge. Just abandon here.
6137 			 */
6138 			break;
6139 	}
6140 	up_read(&mm->mmap_sem);
6141 }
6142 
6143 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6144 				 struct cgroup_taskset *tset)
6145 {
6146 	struct task_struct *p = cgroup_taskset_first(tset);
6147 	struct mm_struct *mm = get_task_mm(p);
6148 
6149 	if (mm) {
6150 		if (mc.to)
6151 			mem_cgroup_move_charge(mm);
6152 		mmput(mm);
6153 	}
6154 	if (mc.to)
6155 		mem_cgroup_clear_mc();
6156 }
6157 #else	/* !CONFIG_MMU */
6158 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6159 				 struct cgroup_taskset *tset)
6160 {
6161 	return 0;
6162 }
6163 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6164 				     struct cgroup_taskset *tset)
6165 {
6166 }
6167 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6168 				 struct cgroup_taskset *tset)
6169 {
6170 }
6171 #endif
6172 
6173 /*
6174  * Cgroup retains root cgroups across [un]mount cycles making it necessary
6175  * to verify whether we're attached to the default hierarchy on each mount
6176  * attempt.
6177  */
6178 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6179 {
6180 	/*
6181 	 * use_hierarchy is forced on the default hierarchy.  cgroup core
6182 	 * guarantees that @root doesn't have any children, so turning it
6183 	 * on for the root memcg is enough.
6184 	 */
6185 	if (cgroup_on_dfl(root_css->cgroup))
6186 		mem_cgroup_from_css(root_css)->use_hierarchy = true;
6187 }
6188 
6189 struct cgroup_subsys memory_cgrp_subsys = {
6190 	.css_alloc = mem_cgroup_css_alloc,
6191 	.css_online = mem_cgroup_css_online,
6192 	.css_offline = mem_cgroup_css_offline,
6193 	.css_free = mem_cgroup_css_free,
6194 	.css_reset = mem_cgroup_css_reset,
6195 	.can_attach = mem_cgroup_can_attach,
6196 	.cancel_attach = mem_cgroup_cancel_attach,
6197 	.attach = mem_cgroup_move_task,
6198 	.bind = mem_cgroup_bind,
6199 	.legacy_cftypes = mem_cgroup_files,
6200 	.early_init = 0,
6201 };
6202 
6203 #ifdef CONFIG_MEMCG_SWAP
6204 static int __init enable_swap_account(char *s)
6205 {
6206 	if (!strcmp(s, "1"))
6207 		really_do_swap_account = 1;
6208 	else if (!strcmp(s, "0"))
6209 		really_do_swap_account = 0;
6210 	return 1;
6211 }
6212 __setup("swapaccount=", enable_swap_account);
6213 
6214 static void __init memsw_file_init(void)
6215 {
6216 	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6217 					  memsw_cgroup_files));
6218 }
6219 
6220 static void __init enable_swap_cgroup(void)
6221 {
6222 	if (!mem_cgroup_disabled() && really_do_swap_account) {
6223 		do_swap_account = 1;
6224 		memsw_file_init();
6225 	}
6226 }
6227 
6228 #else
6229 static void __init enable_swap_cgroup(void)
6230 {
6231 }
6232 #endif
6233 
6234 #ifdef CONFIG_MEMCG_SWAP
6235 /**
6236  * mem_cgroup_swapout - transfer a memsw charge to swap
6237  * @page: page whose memsw charge to transfer
6238  * @entry: swap entry to move the charge to
6239  *
6240  * Transfer the memsw charge of @page to @entry.
6241  */
6242 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6243 {
6244 	struct page_cgroup *pc;
6245 	unsigned short oldid;
6246 
6247 	VM_BUG_ON_PAGE(PageLRU(page), page);
6248 	VM_BUG_ON_PAGE(page_count(page), page);
6249 
6250 	if (!do_swap_account)
6251 		return;
6252 
6253 	pc = lookup_page_cgroup(page);
6254 
6255 	/* Readahead page, never charged */
6256 	if (!PageCgroupUsed(pc))
6257 		return;
6258 
6259 	VM_BUG_ON_PAGE(!(pc->flags & PCG_MEMSW), page);
6260 
6261 	oldid = swap_cgroup_record(entry, mem_cgroup_id(pc->mem_cgroup));
6262 	VM_BUG_ON_PAGE(oldid, page);
6263 
6264 	pc->flags &= ~PCG_MEMSW;
6265 	css_get(&pc->mem_cgroup->css);
6266 	mem_cgroup_swap_statistics(pc->mem_cgroup, true);
6267 }
6268 
6269 /**
6270  * mem_cgroup_uncharge_swap - uncharge a swap entry
6271  * @entry: swap entry to uncharge
6272  *
6273  * Drop the memsw charge associated with @entry.
6274  */
6275 void mem_cgroup_uncharge_swap(swp_entry_t entry)
6276 {
6277 	struct mem_cgroup *memcg;
6278 	unsigned short id;
6279 
6280 	if (!do_swap_account)
6281 		return;
6282 
6283 	id = swap_cgroup_record(entry, 0);
6284 	rcu_read_lock();
6285 	memcg = mem_cgroup_lookup(id);
6286 	if (memcg) {
6287 		if (!mem_cgroup_is_root(memcg))
6288 			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
6289 		mem_cgroup_swap_statistics(memcg, false);
6290 		css_put(&memcg->css);
6291 	}
6292 	rcu_read_unlock();
6293 }
6294 #endif
6295 
6296 /**
6297  * mem_cgroup_try_charge - try charging a page
6298  * @page: page to charge
6299  * @mm: mm context of the victim
6300  * @gfp_mask: reclaim mode
6301  * @memcgp: charged memcg return
6302  *
6303  * Try to charge @page to the memcg that @mm belongs to, reclaiming
6304  * pages according to @gfp_mask if necessary.
6305  *
6306  * Returns 0 on success, with *@memcgp pointing to the charged memcg.
6307  * Otherwise, an error code is returned.
6308  *
6309  * After page->mapping has been set up, the caller must finalize the
6310  * charge with mem_cgroup_commit_charge().  Or abort the transaction
6311  * with mem_cgroup_cancel_charge() in case page instantiation fails.
6312  */
6313 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
6314 			  gfp_t gfp_mask, struct mem_cgroup **memcgp)
6315 {
6316 	struct mem_cgroup *memcg = NULL;
6317 	unsigned int nr_pages = 1;
6318 	int ret = 0;
6319 
6320 	if (mem_cgroup_disabled())
6321 		goto out;
6322 
6323 	if (PageSwapCache(page)) {
6324 		struct page_cgroup *pc = lookup_page_cgroup(page);
6325 		/*
6326 		 * Every swap fault against a single page tries to charge the
6327 		 * page, bail as early as possible.  shmem_unuse() encounters
6328 		 * already charged pages, too.  The USED bit is protected by
6329 		 * the page lock, which serializes swap cache removal, which
6330 		 * in turn serializes uncharging.
6331 		 */
6332 		if (PageCgroupUsed(pc))
6333 			goto out;
6334 	}
6335 
6336 	if (PageTransHuge(page)) {
6337 		nr_pages <<= compound_order(page);
6338 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
6339 	}
6340 
6341 	if (do_swap_account && PageSwapCache(page))
6342 		memcg = try_get_mem_cgroup_from_page(page);
6343 	if (!memcg)
6344 		memcg = get_mem_cgroup_from_mm(mm);
6345 
6346 	ret = try_charge(memcg, gfp_mask, nr_pages);
6347 
6348 	css_put(&memcg->css);
6349 
6350 	if (ret == -EINTR) {
6351 		memcg = root_mem_cgroup;
6352 		ret = 0;
6353 	}
6354 out:
6355 	*memcgp = memcg;
6356 	return ret;
6357 }
6358 
6359 /**
6360  * mem_cgroup_commit_charge - commit a page charge
6361  * @page: page to charge
6362  * @memcg: memcg to charge the page to
6363  * @lrucare: page might be on LRU already
6364  *
6365  * Finalize a charge transaction started by mem_cgroup_try_charge(),
6366  * after page->mapping has been set up.  This must happen atomically
6367  * as part of the page instantiation, i.e. under the page table lock
6368  * for anonymous pages, under the page lock for page and swap cache.
6369  *
6370  * In addition, the page must not be on the LRU during the commit, to
6371  * prevent racing with task migration.  If it might be, use @lrucare.
6372  *
6373  * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
6374  */
6375 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
6376 			      bool lrucare)
6377 {
6378 	unsigned int nr_pages = 1;
6379 
6380 	VM_BUG_ON_PAGE(!page->mapping, page);
6381 	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
6382 
6383 	if (mem_cgroup_disabled())
6384 		return;
6385 	/*
6386 	 * Swap faults will attempt to charge the same page multiple
6387 	 * times.  But reuse_swap_page() might have removed the page
6388 	 * from swapcache already, so we can't check PageSwapCache().
6389 	 */
6390 	if (!memcg)
6391 		return;
6392 
6393 	commit_charge(page, memcg, lrucare);
6394 
6395 	if (PageTransHuge(page)) {
6396 		nr_pages <<= compound_order(page);
6397 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
6398 	}
6399 
6400 	local_irq_disable();
6401 	mem_cgroup_charge_statistics(memcg, page, nr_pages);
6402 	memcg_check_events(memcg, page);
6403 	local_irq_enable();
6404 
6405 	if (do_swap_account && PageSwapCache(page)) {
6406 		swp_entry_t entry = { .val = page_private(page) };
6407 		/*
6408 		 * The swap entry might not get freed for a long time,
6409 		 * let's not wait for it.  The page already received a
6410 		 * memory+swap charge, drop the swap entry duplicate.
6411 		 */
6412 		mem_cgroup_uncharge_swap(entry);
6413 	}
6414 }
6415 
6416 /**
6417  * mem_cgroup_cancel_charge - cancel a page charge
6418  * @page: page to charge
6419  * @memcg: memcg to charge the page to
6420  *
6421  * Cancel a charge transaction started by mem_cgroup_try_charge().
6422  */
6423 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
6424 {
6425 	unsigned int nr_pages = 1;
6426 
6427 	if (mem_cgroup_disabled())
6428 		return;
6429 	/*
6430 	 * Swap faults will attempt to charge the same page multiple
6431 	 * times.  But reuse_swap_page() might have removed the page
6432 	 * from swapcache already, so we can't check PageSwapCache().
6433 	 */
6434 	if (!memcg)
6435 		return;
6436 
6437 	if (PageTransHuge(page)) {
6438 		nr_pages <<= compound_order(page);
6439 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
6440 	}
6441 
6442 	cancel_charge(memcg, nr_pages);
6443 }
6444 
6445 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
6446 			   unsigned long nr_mem, unsigned long nr_memsw,
6447 			   unsigned long nr_anon, unsigned long nr_file,
6448 			   unsigned long nr_huge, struct page *dummy_page)
6449 {
6450 	unsigned long flags;
6451 
6452 	if (!mem_cgroup_is_root(memcg)) {
6453 		if (nr_mem)
6454 			res_counter_uncharge(&memcg->res,
6455 					     nr_mem * PAGE_SIZE);
6456 		if (nr_memsw)
6457 			res_counter_uncharge(&memcg->memsw,
6458 					     nr_memsw * PAGE_SIZE);
6459 		memcg_oom_recover(memcg);
6460 	}
6461 
6462 	local_irq_save(flags);
6463 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
6464 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
6465 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
6466 	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
6467 	__this_cpu_add(memcg->stat->nr_page_events, nr_anon + nr_file);
6468 	memcg_check_events(memcg, dummy_page);
6469 	local_irq_restore(flags);
6470 }
6471 
6472 static void uncharge_list(struct list_head *page_list)
6473 {
6474 	struct mem_cgroup *memcg = NULL;
6475 	unsigned long nr_memsw = 0;
6476 	unsigned long nr_anon = 0;
6477 	unsigned long nr_file = 0;
6478 	unsigned long nr_huge = 0;
6479 	unsigned long pgpgout = 0;
6480 	unsigned long nr_mem = 0;
6481 	struct list_head *next;
6482 	struct page *page;
6483 
6484 	next = page_list->next;
6485 	do {
6486 		unsigned int nr_pages = 1;
6487 		struct page_cgroup *pc;
6488 
6489 		page = list_entry(next, struct page, lru);
6490 		next = page->lru.next;
6491 
6492 		VM_BUG_ON_PAGE(PageLRU(page), page);
6493 		VM_BUG_ON_PAGE(page_count(page), page);
6494 
6495 		pc = lookup_page_cgroup(page);
6496 		if (!PageCgroupUsed(pc))
6497 			continue;
6498 
6499 		/*
6500 		 * Nobody should be changing or seriously looking at
6501 		 * pc->mem_cgroup and pc->flags at this point, we have
6502 		 * fully exclusive access to the page.
6503 		 */
6504 
6505 		if (memcg != pc->mem_cgroup) {
6506 			if (memcg) {
6507 				uncharge_batch(memcg, pgpgout, nr_mem, nr_memsw,
6508 					       nr_anon, nr_file, nr_huge, page);
6509 				pgpgout = nr_mem = nr_memsw = 0;
6510 				nr_anon = nr_file = nr_huge = 0;
6511 			}
6512 			memcg = pc->mem_cgroup;
6513 		}
6514 
6515 		if (PageTransHuge(page)) {
6516 			nr_pages <<= compound_order(page);
6517 			VM_BUG_ON_PAGE(!PageTransHuge(page), page);
6518 			nr_huge += nr_pages;
6519 		}
6520 
6521 		if (PageAnon(page))
6522 			nr_anon += nr_pages;
6523 		else
6524 			nr_file += nr_pages;
6525 
6526 		if (pc->flags & PCG_MEM)
6527 			nr_mem += nr_pages;
6528 		if (pc->flags & PCG_MEMSW)
6529 			nr_memsw += nr_pages;
6530 		pc->flags = 0;
6531 
6532 		pgpgout++;
6533 	} while (next != page_list);
6534 
6535 	if (memcg)
6536 		uncharge_batch(memcg, pgpgout, nr_mem, nr_memsw,
6537 			       nr_anon, nr_file, nr_huge, page);
6538 }
6539 
6540 /**
6541  * mem_cgroup_uncharge - uncharge a page
6542  * @page: page to uncharge
6543  *
6544  * Uncharge a page previously charged with mem_cgroup_try_charge() and
6545  * mem_cgroup_commit_charge().
6546  */
6547 void mem_cgroup_uncharge(struct page *page)
6548 {
6549 	struct page_cgroup *pc;
6550 
6551 	if (mem_cgroup_disabled())
6552 		return;
6553 
6554 	/* Don't touch page->lru of any random page, pre-check: */
6555 	pc = lookup_page_cgroup(page);
6556 	if (!PageCgroupUsed(pc))
6557 		return;
6558 
6559 	INIT_LIST_HEAD(&page->lru);
6560 	uncharge_list(&page->lru);
6561 }
6562 
6563 /**
6564  * mem_cgroup_uncharge_list - uncharge a list of page
6565  * @page_list: list of pages to uncharge
6566  *
6567  * Uncharge a list of pages previously charged with
6568  * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6569  */
6570 void mem_cgroup_uncharge_list(struct list_head *page_list)
6571 {
6572 	if (mem_cgroup_disabled())
6573 		return;
6574 
6575 	if (!list_empty(page_list))
6576 		uncharge_list(page_list);
6577 }
6578 
6579 /**
6580  * mem_cgroup_migrate - migrate a charge to another page
6581  * @oldpage: currently charged page
6582  * @newpage: page to transfer the charge to
6583  * @lrucare: both pages might be on the LRU already
6584  *
6585  * Migrate the charge from @oldpage to @newpage.
6586  *
6587  * Both pages must be locked, @newpage->mapping must be set up.
6588  */
6589 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
6590 			bool lrucare)
6591 {
6592 	struct page_cgroup *pc;
6593 	int isolated;
6594 
6595 	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6596 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6597 	VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
6598 	VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
6599 	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6600 	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6601 		       newpage);
6602 
6603 	if (mem_cgroup_disabled())
6604 		return;
6605 
6606 	/* Page cache replacement: new page already charged? */
6607 	pc = lookup_page_cgroup(newpage);
6608 	if (PageCgroupUsed(pc))
6609 		return;
6610 
6611 	/* Re-entrant migration: old page already uncharged? */
6612 	pc = lookup_page_cgroup(oldpage);
6613 	if (!PageCgroupUsed(pc))
6614 		return;
6615 
6616 	VM_BUG_ON_PAGE(!(pc->flags & PCG_MEM), oldpage);
6617 	VM_BUG_ON_PAGE(do_swap_account && !(pc->flags & PCG_MEMSW), oldpage);
6618 
6619 	if (lrucare)
6620 		lock_page_lru(oldpage, &isolated);
6621 
6622 	pc->flags = 0;
6623 
6624 	if (lrucare)
6625 		unlock_page_lru(oldpage, isolated);
6626 
6627 	commit_charge(newpage, pc->mem_cgroup, lrucare);
6628 }
6629 
6630 /*
6631  * subsys_initcall() for memory controller.
6632  *
6633  * Some parts like hotcpu_notifier() have to be initialized from this context
6634  * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
6635  * everything that doesn't depend on a specific mem_cgroup structure should
6636  * be initialized from here.
6637  */
6638 static int __init mem_cgroup_init(void)
6639 {
6640 	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6641 	enable_swap_cgroup();
6642 	mem_cgroup_soft_limit_tree_init();
6643 	memcg_stock_init();
6644 	return 0;
6645 }
6646 subsys_initcall(mem_cgroup_init);
6647