xref: /openbmc/linux/mm/memcontrol.c (revision 5e012745)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <xemul@openvz.org>
9  *
10  * Memory thresholds
11  * Copyright (C) 2009 Nokia Corporation
12  * Author: Kirill A. Shutemov
13  *
14  * Kernel Memory Controller
15  * Copyright (C) 2012 Parallels Inc. and Google Inc.
16  * Authors: Glauber Costa and Suleiman Souhlal
17  *
18  * Native page reclaim
19  * Charge lifetime sanitation
20  * Lockless page tracking & accounting
21  * Unified hierarchy configuration model
22  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23  */
24 
25 #include <linux/page_counter.h>
26 #include <linux/memcontrol.h>
27 #include <linux/cgroup.h>
28 #include <linux/mm.h>
29 #include <linux/sched/mm.h>
30 #include <linux/shmem_fs.h>
31 #include <linux/hugetlb.h>
32 #include <linux/pagemap.h>
33 #include <linux/vm_event_item.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
50 #include <linux/fs.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/swap_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include <linux/tracehook.h>
60 #include <linux/seq_buf.h>
61 #include "internal.h"
62 #include <net/sock.h>
63 #include <net/ip.h>
64 #include "slab.h"
65 
66 #include <linux/uaccess.h>
67 
68 #include <trace/events/vmscan.h>
69 
70 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
71 EXPORT_SYMBOL(memory_cgrp_subsys);
72 
73 struct mem_cgroup *root_mem_cgroup __read_mostly;
74 
75 #define MEM_CGROUP_RECLAIM_RETRIES	5
76 
77 /* Socket memory accounting disabled? */
78 static bool cgroup_memory_nosocket;
79 
80 /* Kernel memory accounting disabled? */
81 static bool cgroup_memory_nokmem;
82 
83 /* Whether the swap controller is active */
84 #ifdef CONFIG_MEMCG_SWAP
85 int do_swap_account __read_mostly;
86 #else
87 #define do_swap_account		0
88 #endif
89 
90 /* Whether legacy memory+swap accounting is active */
91 static bool do_memsw_account(void)
92 {
93 	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
94 }
95 
96 static const char *const mem_cgroup_lru_names[] = {
97 	"inactive_anon",
98 	"active_anon",
99 	"inactive_file",
100 	"active_file",
101 	"unevictable",
102 };
103 
104 #define THRESHOLDS_EVENTS_TARGET 128
105 #define SOFTLIMIT_EVENTS_TARGET 1024
106 #define NUMAINFO_EVENTS_TARGET	1024
107 
108 /*
109  * Cgroups above their limits are maintained in a RB-Tree, independent of
110  * their hierarchy representation
111  */
112 
113 struct mem_cgroup_tree_per_node {
114 	struct rb_root rb_root;
115 	struct rb_node *rb_rightmost;
116 	spinlock_t lock;
117 };
118 
119 struct mem_cgroup_tree {
120 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
121 };
122 
123 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
124 
125 /* for OOM */
126 struct mem_cgroup_eventfd_list {
127 	struct list_head list;
128 	struct eventfd_ctx *eventfd;
129 };
130 
131 /*
132  * cgroup_event represents events which userspace want to receive.
133  */
134 struct mem_cgroup_event {
135 	/*
136 	 * memcg which the event belongs to.
137 	 */
138 	struct mem_cgroup *memcg;
139 	/*
140 	 * eventfd to signal userspace about the event.
141 	 */
142 	struct eventfd_ctx *eventfd;
143 	/*
144 	 * Each of these stored in a list by the cgroup.
145 	 */
146 	struct list_head list;
147 	/*
148 	 * register_event() callback will be used to add new userspace
149 	 * waiter for changes related to this event.  Use eventfd_signal()
150 	 * on eventfd to send notification to userspace.
151 	 */
152 	int (*register_event)(struct mem_cgroup *memcg,
153 			      struct eventfd_ctx *eventfd, const char *args);
154 	/*
155 	 * unregister_event() callback will be called when userspace closes
156 	 * the eventfd or on cgroup removing.  This callback must be set,
157 	 * if you want provide notification functionality.
158 	 */
159 	void (*unregister_event)(struct mem_cgroup *memcg,
160 				 struct eventfd_ctx *eventfd);
161 	/*
162 	 * All fields below needed to unregister event when
163 	 * userspace closes eventfd.
164 	 */
165 	poll_table pt;
166 	wait_queue_head_t *wqh;
167 	wait_queue_entry_t wait;
168 	struct work_struct remove;
169 };
170 
171 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
172 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
173 
174 /* Stuffs for move charges at task migration. */
175 /*
176  * Types of charges to be moved.
177  */
178 #define MOVE_ANON	0x1U
179 #define MOVE_FILE	0x2U
180 #define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
181 
182 /* "mc" and its members are protected by cgroup_mutex */
183 static struct move_charge_struct {
184 	spinlock_t	  lock; /* for from, to */
185 	struct mm_struct  *mm;
186 	struct mem_cgroup *from;
187 	struct mem_cgroup *to;
188 	unsigned long flags;
189 	unsigned long precharge;
190 	unsigned long moved_charge;
191 	unsigned long moved_swap;
192 	struct task_struct *moving_task;	/* a task moving charges */
193 	wait_queue_head_t waitq;		/* a waitq for other context */
194 } mc = {
195 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
196 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
197 };
198 
199 /*
200  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
201  * limit reclaim to prevent infinite loops, if they ever occur.
202  */
203 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
204 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
205 
206 enum charge_type {
207 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
208 	MEM_CGROUP_CHARGE_TYPE_ANON,
209 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
210 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
211 	NR_CHARGE_TYPE,
212 };
213 
214 /* for encoding cft->private value on file */
215 enum res_type {
216 	_MEM,
217 	_MEMSWAP,
218 	_OOM_TYPE,
219 	_KMEM,
220 	_TCP,
221 };
222 
223 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
224 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
225 #define MEMFILE_ATTR(val)	((val) & 0xffff)
226 /* Used for OOM nofiier */
227 #define OOM_CONTROL		(0)
228 
229 /*
230  * Iteration constructs for visiting all cgroups (under a tree).  If
231  * loops are exited prematurely (break), mem_cgroup_iter_break() must
232  * be used for reference counting.
233  */
234 #define for_each_mem_cgroup_tree(iter, root)		\
235 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
236 	     iter != NULL;				\
237 	     iter = mem_cgroup_iter(root, iter, NULL))
238 
239 #define for_each_mem_cgroup(iter)			\
240 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
241 	     iter != NULL;				\
242 	     iter = mem_cgroup_iter(NULL, iter, NULL))
243 
244 static inline bool should_force_charge(void)
245 {
246 	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
247 		(current->flags & PF_EXITING);
248 }
249 
250 /* Some nice accessors for the vmpressure. */
251 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
252 {
253 	if (!memcg)
254 		memcg = root_mem_cgroup;
255 	return &memcg->vmpressure;
256 }
257 
258 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
259 {
260 	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
261 }
262 
263 #ifdef CONFIG_MEMCG_KMEM
264 /*
265  * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
266  * The main reason for not using cgroup id for this:
267  *  this works better in sparse environments, where we have a lot of memcgs,
268  *  but only a few kmem-limited. Or also, if we have, for instance, 200
269  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
270  *  200 entry array for that.
271  *
272  * The current size of the caches array is stored in memcg_nr_cache_ids. It
273  * will double each time we have to increase it.
274  */
275 static DEFINE_IDA(memcg_cache_ida);
276 int memcg_nr_cache_ids;
277 
278 /* Protects memcg_nr_cache_ids */
279 static DECLARE_RWSEM(memcg_cache_ids_sem);
280 
281 void memcg_get_cache_ids(void)
282 {
283 	down_read(&memcg_cache_ids_sem);
284 }
285 
286 void memcg_put_cache_ids(void)
287 {
288 	up_read(&memcg_cache_ids_sem);
289 }
290 
291 /*
292  * MIN_SIZE is different than 1, because we would like to avoid going through
293  * the alloc/free process all the time. In a small machine, 4 kmem-limited
294  * cgroups is a reasonable guess. In the future, it could be a parameter or
295  * tunable, but that is strictly not necessary.
296  *
297  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
298  * this constant directly from cgroup, but it is understandable that this is
299  * better kept as an internal representation in cgroup.c. In any case, the
300  * cgrp_id space is not getting any smaller, and we don't have to necessarily
301  * increase ours as well if it increases.
302  */
303 #define MEMCG_CACHES_MIN_SIZE 4
304 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
305 
306 /*
307  * A lot of the calls to the cache allocation functions are expected to be
308  * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
309  * conditional to this static branch, we'll have to allow modules that does
310  * kmem_cache_alloc and the such to see this symbol as well
311  */
312 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
313 EXPORT_SYMBOL(memcg_kmem_enabled_key);
314 
315 struct workqueue_struct *memcg_kmem_cache_wq;
316 
317 static int memcg_shrinker_map_size;
318 static DEFINE_MUTEX(memcg_shrinker_map_mutex);
319 
320 static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
321 {
322 	kvfree(container_of(head, struct memcg_shrinker_map, rcu));
323 }
324 
325 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
326 					 int size, int old_size)
327 {
328 	struct memcg_shrinker_map *new, *old;
329 	int nid;
330 
331 	lockdep_assert_held(&memcg_shrinker_map_mutex);
332 
333 	for_each_node(nid) {
334 		old = rcu_dereference_protected(
335 			mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
336 		/* Not yet online memcg */
337 		if (!old)
338 			return 0;
339 
340 		new = kvmalloc(sizeof(*new) + size, GFP_KERNEL);
341 		if (!new)
342 			return -ENOMEM;
343 
344 		/* Set all old bits, clear all new bits */
345 		memset(new->map, (int)0xff, old_size);
346 		memset((void *)new->map + old_size, 0, size - old_size);
347 
348 		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
349 		call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
350 	}
351 
352 	return 0;
353 }
354 
355 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
356 {
357 	struct mem_cgroup_per_node *pn;
358 	struct memcg_shrinker_map *map;
359 	int nid;
360 
361 	if (mem_cgroup_is_root(memcg))
362 		return;
363 
364 	for_each_node(nid) {
365 		pn = mem_cgroup_nodeinfo(memcg, nid);
366 		map = rcu_dereference_protected(pn->shrinker_map, true);
367 		if (map)
368 			kvfree(map);
369 		rcu_assign_pointer(pn->shrinker_map, NULL);
370 	}
371 }
372 
373 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
374 {
375 	struct memcg_shrinker_map *map;
376 	int nid, size, ret = 0;
377 
378 	if (mem_cgroup_is_root(memcg))
379 		return 0;
380 
381 	mutex_lock(&memcg_shrinker_map_mutex);
382 	size = memcg_shrinker_map_size;
383 	for_each_node(nid) {
384 		map = kvzalloc(sizeof(*map) + size, GFP_KERNEL);
385 		if (!map) {
386 			memcg_free_shrinker_maps(memcg);
387 			ret = -ENOMEM;
388 			break;
389 		}
390 		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
391 	}
392 	mutex_unlock(&memcg_shrinker_map_mutex);
393 
394 	return ret;
395 }
396 
397 int memcg_expand_shrinker_maps(int new_id)
398 {
399 	int size, old_size, ret = 0;
400 	struct mem_cgroup *memcg;
401 
402 	size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
403 	old_size = memcg_shrinker_map_size;
404 	if (size <= old_size)
405 		return 0;
406 
407 	mutex_lock(&memcg_shrinker_map_mutex);
408 	if (!root_mem_cgroup)
409 		goto unlock;
410 
411 	for_each_mem_cgroup(memcg) {
412 		if (mem_cgroup_is_root(memcg))
413 			continue;
414 		ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
415 		if (ret)
416 			goto unlock;
417 	}
418 unlock:
419 	if (!ret)
420 		memcg_shrinker_map_size = size;
421 	mutex_unlock(&memcg_shrinker_map_mutex);
422 	return ret;
423 }
424 
425 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
426 {
427 	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
428 		struct memcg_shrinker_map *map;
429 
430 		rcu_read_lock();
431 		map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
432 		/* Pairs with smp mb in shrink_slab() */
433 		smp_mb__before_atomic();
434 		set_bit(shrinker_id, map->map);
435 		rcu_read_unlock();
436 	}
437 }
438 
439 #else /* CONFIG_MEMCG_KMEM */
440 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
441 {
442 	return 0;
443 }
444 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) { }
445 #endif /* CONFIG_MEMCG_KMEM */
446 
447 /**
448  * mem_cgroup_css_from_page - css of the memcg associated with a page
449  * @page: page of interest
450  *
451  * If memcg is bound to the default hierarchy, css of the memcg associated
452  * with @page is returned.  The returned css remains associated with @page
453  * until it is released.
454  *
455  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
456  * is returned.
457  */
458 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
459 {
460 	struct mem_cgroup *memcg;
461 
462 	memcg = page->mem_cgroup;
463 
464 	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
465 		memcg = root_mem_cgroup;
466 
467 	return &memcg->css;
468 }
469 
470 /**
471  * page_cgroup_ino - return inode number of the memcg a page is charged to
472  * @page: the page
473  *
474  * Look up the closest online ancestor of the memory cgroup @page is charged to
475  * and return its inode number or 0 if @page is not charged to any cgroup. It
476  * is safe to call this function without holding a reference to @page.
477  *
478  * Note, this function is inherently racy, because there is nothing to prevent
479  * the cgroup inode from getting torn down and potentially reallocated a moment
480  * after page_cgroup_ino() returns, so it only should be used by callers that
481  * do not care (such as procfs interfaces).
482  */
483 ino_t page_cgroup_ino(struct page *page)
484 {
485 	struct mem_cgroup *memcg;
486 	unsigned long ino = 0;
487 
488 	rcu_read_lock();
489 	if (PageHead(page) && PageSlab(page))
490 		memcg = memcg_from_slab_page(page);
491 	else
492 		memcg = READ_ONCE(page->mem_cgroup);
493 	while (memcg && !(memcg->css.flags & CSS_ONLINE))
494 		memcg = parent_mem_cgroup(memcg);
495 	if (memcg)
496 		ino = cgroup_ino(memcg->css.cgroup);
497 	rcu_read_unlock();
498 	return ino;
499 }
500 
501 static struct mem_cgroup_per_node *
502 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
503 {
504 	int nid = page_to_nid(page);
505 
506 	return memcg->nodeinfo[nid];
507 }
508 
509 static struct mem_cgroup_tree_per_node *
510 soft_limit_tree_node(int nid)
511 {
512 	return soft_limit_tree.rb_tree_per_node[nid];
513 }
514 
515 static struct mem_cgroup_tree_per_node *
516 soft_limit_tree_from_page(struct page *page)
517 {
518 	int nid = page_to_nid(page);
519 
520 	return soft_limit_tree.rb_tree_per_node[nid];
521 }
522 
523 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
524 					 struct mem_cgroup_tree_per_node *mctz,
525 					 unsigned long new_usage_in_excess)
526 {
527 	struct rb_node **p = &mctz->rb_root.rb_node;
528 	struct rb_node *parent = NULL;
529 	struct mem_cgroup_per_node *mz_node;
530 	bool rightmost = true;
531 
532 	if (mz->on_tree)
533 		return;
534 
535 	mz->usage_in_excess = new_usage_in_excess;
536 	if (!mz->usage_in_excess)
537 		return;
538 	while (*p) {
539 		parent = *p;
540 		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
541 					tree_node);
542 		if (mz->usage_in_excess < mz_node->usage_in_excess) {
543 			p = &(*p)->rb_left;
544 			rightmost = false;
545 		}
546 
547 		/*
548 		 * We can't avoid mem cgroups that are over their soft
549 		 * limit by the same amount
550 		 */
551 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
552 			p = &(*p)->rb_right;
553 	}
554 
555 	if (rightmost)
556 		mctz->rb_rightmost = &mz->tree_node;
557 
558 	rb_link_node(&mz->tree_node, parent, p);
559 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
560 	mz->on_tree = true;
561 }
562 
563 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
564 					 struct mem_cgroup_tree_per_node *mctz)
565 {
566 	if (!mz->on_tree)
567 		return;
568 
569 	if (&mz->tree_node == mctz->rb_rightmost)
570 		mctz->rb_rightmost = rb_prev(&mz->tree_node);
571 
572 	rb_erase(&mz->tree_node, &mctz->rb_root);
573 	mz->on_tree = false;
574 }
575 
576 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
577 				       struct mem_cgroup_tree_per_node *mctz)
578 {
579 	unsigned long flags;
580 
581 	spin_lock_irqsave(&mctz->lock, flags);
582 	__mem_cgroup_remove_exceeded(mz, mctz);
583 	spin_unlock_irqrestore(&mctz->lock, flags);
584 }
585 
586 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
587 {
588 	unsigned long nr_pages = page_counter_read(&memcg->memory);
589 	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
590 	unsigned long excess = 0;
591 
592 	if (nr_pages > soft_limit)
593 		excess = nr_pages - soft_limit;
594 
595 	return excess;
596 }
597 
598 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
599 {
600 	unsigned long excess;
601 	struct mem_cgroup_per_node *mz;
602 	struct mem_cgroup_tree_per_node *mctz;
603 
604 	mctz = soft_limit_tree_from_page(page);
605 	if (!mctz)
606 		return;
607 	/*
608 	 * Necessary to update all ancestors when hierarchy is used.
609 	 * because their event counter is not touched.
610 	 */
611 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
612 		mz = mem_cgroup_page_nodeinfo(memcg, page);
613 		excess = soft_limit_excess(memcg);
614 		/*
615 		 * We have to update the tree if mz is on RB-tree or
616 		 * mem is over its softlimit.
617 		 */
618 		if (excess || mz->on_tree) {
619 			unsigned long flags;
620 
621 			spin_lock_irqsave(&mctz->lock, flags);
622 			/* if on-tree, remove it */
623 			if (mz->on_tree)
624 				__mem_cgroup_remove_exceeded(mz, mctz);
625 			/*
626 			 * Insert again. mz->usage_in_excess will be updated.
627 			 * If excess is 0, no tree ops.
628 			 */
629 			__mem_cgroup_insert_exceeded(mz, mctz, excess);
630 			spin_unlock_irqrestore(&mctz->lock, flags);
631 		}
632 	}
633 }
634 
635 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
636 {
637 	struct mem_cgroup_tree_per_node *mctz;
638 	struct mem_cgroup_per_node *mz;
639 	int nid;
640 
641 	for_each_node(nid) {
642 		mz = mem_cgroup_nodeinfo(memcg, nid);
643 		mctz = soft_limit_tree_node(nid);
644 		if (mctz)
645 			mem_cgroup_remove_exceeded(mz, mctz);
646 	}
647 }
648 
649 static struct mem_cgroup_per_node *
650 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
651 {
652 	struct mem_cgroup_per_node *mz;
653 
654 retry:
655 	mz = NULL;
656 	if (!mctz->rb_rightmost)
657 		goto done;		/* Nothing to reclaim from */
658 
659 	mz = rb_entry(mctz->rb_rightmost,
660 		      struct mem_cgroup_per_node, tree_node);
661 	/*
662 	 * Remove the node now but someone else can add it back,
663 	 * we will to add it back at the end of reclaim to its correct
664 	 * position in the tree.
665 	 */
666 	__mem_cgroup_remove_exceeded(mz, mctz);
667 	if (!soft_limit_excess(mz->memcg) ||
668 	    !css_tryget_online(&mz->memcg->css))
669 		goto retry;
670 done:
671 	return mz;
672 }
673 
674 static struct mem_cgroup_per_node *
675 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
676 {
677 	struct mem_cgroup_per_node *mz;
678 
679 	spin_lock_irq(&mctz->lock);
680 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
681 	spin_unlock_irq(&mctz->lock);
682 	return mz;
683 }
684 
685 /**
686  * __mod_memcg_state - update cgroup memory statistics
687  * @memcg: the memory cgroup
688  * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
689  * @val: delta to add to the counter, can be negative
690  */
691 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
692 {
693 	long x;
694 
695 	if (mem_cgroup_disabled())
696 		return;
697 
698 	x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
699 	if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
700 		struct mem_cgroup *mi;
701 
702 		/*
703 		 * Batch local counters to keep them in sync with
704 		 * the hierarchical ones.
705 		 */
706 		__this_cpu_add(memcg->vmstats_local->stat[idx], x);
707 		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
708 			atomic_long_add(x, &mi->vmstats[idx]);
709 		x = 0;
710 	}
711 	__this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
712 }
713 
714 static struct mem_cgroup_per_node *
715 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
716 {
717 	struct mem_cgroup *parent;
718 
719 	parent = parent_mem_cgroup(pn->memcg);
720 	if (!parent)
721 		return NULL;
722 	return mem_cgroup_nodeinfo(parent, nid);
723 }
724 
725 /**
726  * __mod_lruvec_state - update lruvec memory statistics
727  * @lruvec: the lruvec
728  * @idx: the stat item
729  * @val: delta to add to the counter, can be negative
730  *
731  * The lruvec is the intersection of the NUMA node and a cgroup. This
732  * function updates the all three counters that are affected by a
733  * change of state at this level: per-node, per-cgroup, per-lruvec.
734  */
735 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
736 			int val)
737 {
738 	pg_data_t *pgdat = lruvec_pgdat(lruvec);
739 	struct mem_cgroup_per_node *pn;
740 	struct mem_cgroup *memcg;
741 	long x;
742 
743 	/* Update node */
744 	__mod_node_page_state(pgdat, idx, val);
745 
746 	if (mem_cgroup_disabled())
747 		return;
748 
749 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
750 	memcg = pn->memcg;
751 
752 	/* Update memcg */
753 	__mod_memcg_state(memcg, idx, val);
754 
755 	x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
756 	if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
757 		struct mem_cgroup_per_node *pi;
758 
759 		/*
760 		 * Batch local counters to keep them in sync with
761 		 * the hierarchical ones.
762 		 */
763 		__this_cpu_add(pn->lruvec_stat_local->count[idx], x);
764 		for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
765 			atomic_long_add(x, &pi->lruvec_stat[idx]);
766 		x = 0;
767 	}
768 	__this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
769 }
770 
771 void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
772 {
773 	struct page *page = virt_to_head_page(p);
774 	pg_data_t *pgdat = page_pgdat(page);
775 	struct mem_cgroup *memcg;
776 	struct lruvec *lruvec;
777 
778 	rcu_read_lock();
779 	memcg = memcg_from_slab_page(page);
780 
781 	/* Untracked pages have no memcg, no lruvec. Update only the node */
782 	if (!memcg || memcg == root_mem_cgroup) {
783 		__mod_node_page_state(pgdat, idx, val);
784 	} else {
785 		lruvec = mem_cgroup_lruvec(pgdat, memcg);
786 		__mod_lruvec_state(lruvec, idx, val);
787 	}
788 	rcu_read_unlock();
789 }
790 
791 /**
792  * __count_memcg_events - account VM events in a cgroup
793  * @memcg: the memory cgroup
794  * @idx: the event item
795  * @count: the number of events that occured
796  */
797 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
798 			  unsigned long count)
799 {
800 	unsigned long x;
801 
802 	if (mem_cgroup_disabled())
803 		return;
804 
805 	x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
806 	if (unlikely(x > MEMCG_CHARGE_BATCH)) {
807 		struct mem_cgroup *mi;
808 
809 		/*
810 		 * Batch local counters to keep them in sync with
811 		 * the hierarchical ones.
812 		 */
813 		__this_cpu_add(memcg->vmstats_local->events[idx], x);
814 		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
815 			atomic_long_add(x, &mi->vmevents[idx]);
816 		x = 0;
817 	}
818 	__this_cpu_write(memcg->vmstats_percpu->events[idx], x);
819 }
820 
821 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
822 {
823 	return atomic_long_read(&memcg->vmevents[event]);
824 }
825 
826 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
827 {
828 	long x = 0;
829 	int cpu;
830 
831 	for_each_possible_cpu(cpu)
832 		x += per_cpu(memcg->vmstats_local->events[event], cpu);
833 	return x;
834 }
835 
836 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
837 					 struct page *page,
838 					 bool compound, int nr_pages)
839 {
840 	/*
841 	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
842 	 * counted as CACHE even if it's on ANON LRU.
843 	 */
844 	if (PageAnon(page))
845 		__mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
846 	else {
847 		__mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
848 		if (PageSwapBacked(page))
849 			__mod_memcg_state(memcg, NR_SHMEM, nr_pages);
850 	}
851 
852 	if (compound) {
853 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
854 		__mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
855 	}
856 
857 	/* pagein of a big page is an event. So, ignore page size */
858 	if (nr_pages > 0)
859 		__count_memcg_events(memcg, PGPGIN, 1);
860 	else {
861 		__count_memcg_events(memcg, PGPGOUT, 1);
862 		nr_pages = -nr_pages; /* for event */
863 	}
864 
865 	__this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
866 }
867 
868 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
869 				       enum mem_cgroup_events_target target)
870 {
871 	unsigned long val, next;
872 
873 	val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
874 	next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
875 	/* from time_after() in jiffies.h */
876 	if ((long)(next - val) < 0) {
877 		switch (target) {
878 		case MEM_CGROUP_TARGET_THRESH:
879 			next = val + THRESHOLDS_EVENTS_TARGET;
880 			break;
881 		case MEM_CGROUP_TARGET_SOFTLIMIT:
882 			next = val + SOFTLIMIT_EVENTS_TARGET;
883 			break;
884 		case MEM_CGROUP_TARGET_NUMAINFO:
885 			next = val + NUMAINFO_EVENTS_TARGET;
886 			break;
887 		default:
888 			break;
889 		}
890 		__this_cpu_write(memcg->vmstats_percpu->targets[target], next);
891 		return true;
892 	}
893 	return false;
894 }
895 
896 /*
897  * Check events in order.
898  *
899  */
900 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
901 {
902 	/* threshold event is triggered in finer grain than soft limit */
903 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
904 						MEM_CGROUP_TARGET_THRESH))) {
905 		bool do_softlimit;
906 		bool do_numainfo __maybe_unused;
907 
908 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
909 						MEM_CGROUP_TARGET_SOFTLIMIT);
910 #if MAX_NUMNODES > 1
911 		do_numainfo = mem_cgroup_event_ratelimit(memcg,
912 						MEM_CGROUP_TARGET_NUMAINFO);
913 #endif
914 		mem_cgroup_threshold(memcg);
915 		if (unlikely(do_softlimit))
916 			mem_cgroup_update_tree(memcg, page);
917 #if MAX_NUMNODES > 1
918 		if (unlikely(do_numainfo))
919 			atomic_inc(&memcg->numainfo_events);
920 #endif
921 	}
922 }
923 
924 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
925 {
926 	/*
927 	 * mm_update_next_owner() may clear mm->owner to NULL
928 	 * if it races with swapoff, page migration, etc.
929 	 * So this can be called with p == NULL.
930 	 */
931 	if (unlikely(!p))
932 		return NULL;
933 
934 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
935 }
936 EXPORT_SYMBOL(mem_cgroup_from_task);
937 
938 /**
939  * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
940  * @mm: mm from which memcg should be extracted. It can be NULL.
941  *
942  * Obtain a reference on mm->memcg and returns it if successful. Otherwise
943  * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
944  * returned.
945  */
946 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
947 {
948 	struct mem_cgroup *memcg;
949 
950 	if (mem_cgroup_disabled())
951 		return NULL;
952 
953 	rcu_read_lock();
954 	do {
955 		/*
956 		 * Page cache insertions can happen withou an
957 		 * actual mm context, e.g. during disk probing
958 		 * on boot, loopback IO, acct() writes etc.
959 		 */
960 		if (unlikely(!mm))
961 			memcg = root_mem_cgroup;
962 		else {
963 			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
964 			if (unlikely(!memcg))
965 				memcg = root_mem_cgroup;
966 		}
967 	} while (!css_tryget_online(&memcg->css));
968 	rcu_read_unlock();
969 	return memcg;
970 }
971 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
972 
973 /**
974  * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
975  * @page: page from which memcg should be extracted.
976  *
977  * Obtain a reference on page->memcg and returns it if successful. Otherwise
978  * root_mem_cgroup is returned.
979  */
980 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
981 {
982 	struct mem_cgroup *memcg = page->mem_cgroup;
983 
984 	if (mem_cgroup_disabled())
985 		return NULL;
986 
987 	rcu_read_lock();
988 	if (!memcg || !css_tryget_online(&memcg->css))
989 		memcg = root_mem_cgroup;
990 	rcu_read_unlock();
991 	return memcg;
992 }
993 EXPORT_SYMBOL(get_mem_cgroup_from_page);
994 
995 /**
996  * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
997  */
998 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
999 {
1000 	if (unlikely(current->active_memcg)) {
1001 		struct mem_cgroup *memcg = root_mem_cgroup;
1002 
1003 		rcu_read_lock();
1004 		if (css_tryget_online(&current->active_memcg->css))
1005 			memcg = current->active_memcg;
1006 		rcu_read_unlock();
1007 		return memcg;
1008 	}
1009 	return get_mem_cgroup_from_mm(current->mm);
1010 }
1011 
1012 /**
1013  * mem_cgroup_iter - iterate over memory cgroup hierarchy
1014  * @root: hierarchy root
1015  * @prev: previously returned memcg, NULL on first invocation
1016  * @reclaim: cookie for shared reclaim walks, NULL for full walks
1017  *
1018  * Returns references to children of the hierarchy below @root, or
1019  * @root itself, or %NULL after a full round-trip.
1020  *
1021  * Caller must pass the return value in @prev on subsequent
1022  * invocations for reference counting, or use mem_cgroup_iter_break()
1023  * to cancel a hierarchy walk before the round-trip is complete.
1024  *
1025  * Reclaimers can specify a node and a priority level in @reclaim to
1026  * divide up the memcgs in the hierarchy among all concurrent
1027  * reclaimers operating on the same node and priority.
1028  */
1029 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1030 				   struct mem_cgroup *prev,
1031 				   struct mem_cgroup_reclaim_cookie *reclaim)
1032 {
1033 	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1034 	struct cgroup_subsys_state *css = NULL;
1035 	struct mem_cgroup *memcg = NULL;
1036 	struct mem_cgroup *pos = NULL;
1037 
1038 	if (mem_cgroup_disabled())
1039 		return NULL;
1040 
1041 	if (!root)
1042 		root = root_mem_cgroup;
1043 
1044 	if (prev && !reclaim)
1045 		pos = prev;
1046 
1047 	if (!root->use_hierarchy && root != root_mem_cgroup) {
1048 		if (prev)
1049 			goto out;
1050 		return root;
1051 	}
1052 
1053 	rcu_read_lock();
1054 
1055 	if (reclaim) {
1056 		struct mem_cgroup_per_node *mz;
1057 
1058 		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1059 		iter = &mz->iter[reclaim->priority];
1060 
1061 		if (prev && reclaim->generation != iter->generation)
1062 			goto out_unlock;
1063 
1064 		while (1) {
1065 			pos = READ_ONCE(iter->position);
1066 			if (!pos || css_tryget(&pos->css))
1067 				break;
1068 			/*
1069 			 * css reference reached zero, so iter->position will
1070 			 * be cleared by ->css_released. However, we should not
1071 			 * rely on this happening soon, because ->css_released
1072 			 * is called from a work queue, and by busy-waiting we
1073 			 * might block it. So we clear iter->position right
1074 			 * away.
1075 			 */
1076 			(void)cmpxchg(&iter->position, pos, NULL);
1077 		}
1078 	}
1079 
1080 	if (pos)
1081 		css = &pos->css;
1082 
1083 	for (;;) {
1084 		css = css_next_descendant_pre(css, &root->css);
1085 		if (!css) {
1086 			/*
1087 			 * Reclaimers share the hierarchy walk, and a
1088 			 * new one might jump in right at the end of
1089 			 * the hierarchy - make sure they see at least
1090 			 * one group and restart from the beginning.
1091 			 */
1092 			if (!prev)
1093 				continue;
1094 			break;
1095 		}
1096 
1097 		/*
1098 		 * Verify the css and acquire a reference.  The root
1099 		 * is provided by the caller, so we know it's alive
1100 		 * and kicking, and don't take an extra reference.
1101 		 */
1102 		memcg = mem_cgroup_from_css(css);
1103 
1104 		if (css == &root->css)
1105 			break;
1106 
1107 		if (css_tryget(css))
1108 			break;
1109 
1110 		memcg = NULL;
1111 	}
1112 
1113 	if (reclaim) {
1114 		/*
1115 		 * The position could have already been updated by a competing
1116 		 * thread, so check that the value hasn't changed since we read
1117 		 * it to avoid reclaiming from the same cgroup twice.
1118 		 */
1119 		(void)cmpxchg(&iter->position, pos, memcg);
1120 
1121 		if (pos)
1122 			css_put(&pos->css);
1123 
1124 		if (!memcg)
1125 			iter->generation++;
1126 		else if (!prev)
1127 			reclaim->generation = iter->generation;
1128 	}
1129 
1130 out_unlock:
1131 	rcu_read_unlock();
1132 out:
1133 	if (prev && prev != root)
1134 		css_put(&prev->css);
1135 
1136 	return memcg;
1137 }
1138 
1139 /**
1140  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1141  * @root: hierarchy root
1142  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1143  */
1144 void mem_cgroup_iter_break(struct mem_cgroup *root,
1145 			   struct mem_cgroup *prev)
1146 {
1147 	if (!root)
1148 		root = root_mem_cgroup;
1149 	if (prev && prev != root)
1150 		css_put(&prev->css);
1151 }
1152 
1153 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1154 					struct mem_cgroup *dead_memcg)
1155 {
1156 	struct mem_cgroup_reclaim_iter *iter;
1157 	struct mem_cgroup_per_node *mz;
1158 	int nid;
1159 	int i;
1160 
1161 	for_each_node(nid) {
1162 		mz = mem_cgroup_nodeinfo(from, nid);
1163 		for (i = 0; i <= DEF_PRIORITY; i++) {
1164 			iter = &mz->iter[i];
1165 			cmpxchg(&iter->position,
1166 				dead_memcg, NULL);
1167 		}
1168 	}
1169 }
1170 
1171 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1172 {
1173 	struct mem_cgroup *memcg = dead_memcg;
1174 	struct mem_cgroup *last;
1175 
1176 	do {
1177 		__invalidate_reclaim_iterators(memcg, dead_memcg);
1178 		last = memcg;
1179 	} while ((memcg = parent_mem_cgroup(memcg)));
1180 
1181 	/*
1182 	 * When cgruop1 non-hierarchy mode is used,
1183 	 * parent_mem_cgroup() does not walk all the way up to the
1184 	 * cgroup root (root_mem_cgroup). So we have to handle
1185 	 * dead_memcg from cgroup root separately.
1186 	 */
1187 	if (last != root_mem_cgroup)
1188 		__invalidate_reclaim_iterators(root_mem_cgroup,
1189 						dead_memcg);
1190 }
1191 
1192 /**
1193  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1194  * @memcg: hierarchy root
1195  * @fn: function to call for each task
1196  * @arg: argument passed to @fn
1197  *
1198  * This function iterates over tasks attached to @memcg or to any of its
1199  * descendants and calls @fn for each task. If @fn returns a non-zero
1200  * value, the function breaks the iteration loop and returns the value.
1201  * Otherwise, it will iterate over all tasks and return 0.
1202  *
1203  * This function must not be called for the root memory cgroup.
1204  */
1205 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1206 			  int (*fn)(struct task_struct *, void *), void *arg)
1207 {
1208 	struct mem_cgroup *iter;
1209 	int ret = 0;
1210 
1211 	BUG_ON(memcg == root_mem_cgroup);
1212 
1213 	for_each_mem_cgroup_tree(iter, memcg) {
1214 		struct css_task_iter it;
1215 		struct task_struct *task;
1216 
1217 		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1218 		while (!ret && (task = css_task_iter_next(&it)))
1219 			ret = fn(task, arg);
1220 		css_task_iter_end(&it);
1221 		if (ret) {
1222 			mem_cgroup_iter_break(memcg, iter);
1223 			break;
1224 		}
1225 	}
1226 	return ret;
1227 }
1228 
1229 /**
1230  * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1231  * @page: the page
1232  * @pgdat: pgdat of the page
1233  *
1234  * This function is only safe when following the LRU page isolation
1235  * and putback protocol: the LRU lock must be held, and the page must
1236  * either be PageLRU() or the caller must have isolated/allocated it.
1237  */
1238 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
1239 {
1240 	struct mem_cgroup_per_node *mz;
1241 	struct mem_cgroup *memcg;
1242 	struct lruvec *lruvec;
1243 
1244 	if (mem_cgroup_disabled()) {
1245 		lruvec = &pgdat->lruvec;
1246 		goto out;
1247 	}
1248 
1249 	memcg = page->mem_cgroup;
1250 	/*
1251 	 * Swapcache readahead pages are added to the LRU - and
1252 	 * possibly migrated - before they are charged.
1253 	 */
1254 	if (!memcg)
1255 		memcg = root_mem_cgroup;
1256 
1257 	mz = mem_cgroup_page_nodeinfo(memcg, page);
1258 	lruvec = &mz->lruvec;
1259 out:
1260 	/*
1261 	 * Since a node can be onlined after the mem_cgroup was created,
1262 	 * we have to be prepared to initialize lruvec->zone here;
1263 	 * and if offlined then reonlined, we need to reinitialize it.
1264 	 */
1265 	if (unlikely(lruvec->pgdat != pgdat))
1266 		lruvec->pgdat = pgdat;
1267 	return lruvec;
1268 }
1269 
1270 /**
1271  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1272  * @lruvec: mem_cgroup per zone lru vector
1273  * @lru: index of lru list the page is sitting on
1274  * @zid: zone id of the accounted pages
1275  * @nr_pages: positive when adding or negative when removing
1276  *
1277  * This function must be called under lru_lock, just before a page is added
1278  * to or just after a page is removed from an lru list (that ordering being
1279  * so as to allow it to check that lru_size 0 is consistent with list_empty).
1280  */
1281 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1282 				int zid, int nr_pages)
1283 {
1284 	struct mem_cgroup_per_node *mz;
1285 	unsigned long *lru_size;
1286 	long size;
1287 
1288 	if (mem_cgroup_disabled())
1289 		return;
1290 
1291 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1292 	lru_size = &mz->lru_zone_size[zid][lru];
1293 
1294 	if (nr_pages < 0)
1295 		*lru_size += nr_pages;
1296 
1297 	size = *lru_size;
1298 	if (WARN_ONCE(size < 0,
1299 		"%s(%p, %d, %d): lru_size %ld\n",
1300 		__func__, lruvec, lru, nr_pages, size)) {
1301 		VM_BUG_ON(1);
1302 		*lru_size = 0;
1303 	}
1304 
1305 	if (nr_pages > 0)
1306 		*lru_size += nr_pages;
1307 }
1308 
1309 /**
1310  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1311  * @memcg: the memory cgroup
1312  *
1313  * Returns the maximum amount of memory @mem can be charged with, in
1314  * pages.
1315  */
1316 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1317 {
1318 	unsigned long margin = 0;
1319 	unsigned long count;
1320 	unsigned long limit;
1321 
1322 	count = page_counter_read(&memcg->memory);
1323 	limit = READ_ONCE(memcg->memory.max);
1324 	if (count < limit)
1325 		margin = limit - count;
1326 
1327 	if (do_memsw_account()) {
1328 		count = page_counter_read(&memcg->memsw);
1329 		limit = READ_ONCE(memcg->memsw.max);
1330 		if (count <= limit)
1331 			margin = min(margin, limit - count);
1332 		else
1333 			margin = 0;
1334 	}
1335 
1336 	return margin;
1337 }
1338 
1339 /*
1340  * A routine for checking "mem" is under move_account() or not.
1341  *
1342  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1343  * moving cgroups. This is for waiting at high-memory pressure
1344  * caused by "move".
1345  */
1346 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1347 {
1348 	struct mem_cgroup *from;
1349 	struct mem_cgroup *to;
1350 	bool ret = false;
1351 	/*
1352 	 * Unlike task_move routines, we access mc.to, mc.from not under
1353 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1354 	 */
1355 	spin_lock(&mc.lock);
1356 	from = mc.from;
1357 	to = mc.to;
1358 	if (!from)
1359 		goto unlock;
1360 
1361 	ret = mem_cgroup_is_descendant(from, memcg) ||
1362 		mem_cgroup_is_descendant(to, memcg);
1363 unlock:
1364 	spin_unlock(&mc.lock);
1365 	return ret;
1366 }
1367 
1368 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1369 {
1370 	if (mc.moving_task && current != mc.moving_task) {
1371 		if (mem_cgroup_under_move(memcg)) {
1372 			DEFINE_WAIT(wait);
1373 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1374 			/* moving charge context might have finished. */
1375 			if (mc.moving_task)
1376 				schedule();
1377 			finish_wait(&mc.waitq, &wait);
1378 			return true;
1379 		}
1380 	}
1381 	return false;
1382 }
1383 
1384 static char *memory_stat_format(struct mem_cgroup *memcg)
1385 {
1386 	struct seq_buf s;
1387 	int i;
1388 
1389 	seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1390 	if (!s.buffer)
1391 		return NULL;
1392 
1393 	/*
1394 	 * Provide statistics on the state of the memory subsystem as
1395 	 * well as cumulative event counters that show past behavior.
1396 	 *
1397 	 * This list is ordered following a combination of these gradients:
1398 	 * 1) generic big picture -> specifics and details
1399 	 * 2) reflecting userspace activity -> reflecting kernel heuristics
1400 	 *
1401 	 * Current memory state:
1402 	 */
1403 
1404 	seq_buf_printf(&s, "anon %llu\n",
1405 		       (u64)memcg_page_state(memcg, MEMCG_RSS) *
1406 		       PAGE_SIZE);
1407 	seq_buf_printf(&s, "file %llu\n",
1408 		       (u64)memcg_page_state(memcg, MEMCG_CACHE) *
1409 		       PAGE_SIZE);
1410 	seq_buf_printf(&s, "kernel_stack %llu\n",
1411 		       (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) *
1412 		       1024);
1413 	seq_buf_printf(&s, "slab %llu\n",
1414 		       (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) +
1415 			     memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) *
1416 		       PAGE_SIZE);
1417 	seq_buf_printf(&s, "sock %llu\n",
1418 		       (u64)memcg_page_state(memcg, MEMCG_SOCK) *
1419 		       PAGE_SIZE);
1420 
1421 	seq_buf_printf(&s, "shmem %llu\n",
1422 		       (u64)memcg_page_state(memcg, NR_SHMEM) *
1423 		       PAGE_SIZE);
1424 	seq_buf_printf(&s, "file_mapped %llu\n",
1425 		       (u64)memcg_page_state(memcg, NR_FILE_MAPPED) *
1426 		       PAGE_SIZE);
1427 	seq_buf_printf(&s, "file_dirty %llu\n",
1428 		       (u64)memcg_page_state(memcg, NR_FILE_DIRTY) *
1429 		       PAGE_SIZE);
1430 	seq_buf_printf(&s, "file_writeback %llu\n",
1431 		       (u64)memcg_page_state(memcg, NR_WRITEBACK) *
1432 		       PAGE_SIZE);
1433 
1434 	/*
1435 	 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter
1436 	 * with the NR_ANON_THP vm counter, but right now it's a pain in the
1437 	 * arse because it requires migrating the work out of rmap to a place
1438 	 * where the page->mem_cgroup is set up and stable.
1439 	 */
1440 	seq_buf_printf(&s, "anon_thp %llu\n",
1441 		       (u64)memcg_page_state(memcg, MEMCG_RSS_HUGE) *
1442 		       PAGE_SIZE);
1443 
1444 	for (i = 0; i < NR_LRU_LISTS; i++)
1445 		seq_buf_printf(&s, "%s %llu\n", mem_cgroup_lru_names[i],
1446 			       (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
1447 			       PAGE_SIZE);
1448 
1449 	seq_buf_printf(&s, "slab_reclaimable %llu\n",
1450 		       (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) *
1451 		       PAGE_SIZE);
1452 	seq_buf_printf(&s, "slab_unreclaimable %llu\n",
1453 		       (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) *
1454 		       PAGE_SIZE);
1455 
1456 	/* Accumulated memory events */
1457 
1458 	seq_buf_printf(&s, "pgfault %lu\n", memcg_events(memcg, PGFAULT));
1459 	seq_buf_printf(&s, "pgmajfault %lu\n", memcg_events(memcg, PGMAJFAULT));
1460 
1461 	seq_buf_printf(&s, "workingset_refault %lu\n",
1462 		       memcg_page_state(memcg, WORKINGSET_REFAULT));
1463 	seq_buf_printf(&s, "workingset_activate %lu\n",
1464 		       memcg_page_state(memcg, WORKINGSET_ACTIVATE));
1465 	seq_buf_printf(&s, "workingset_nodereclaim %lu\n",
1466 		       memcg_page_state(memcg, WORKINGSET_NODERECLAIM));
1467 
1468 	seq_buf_printf(&s, "pgrefill %lu\n", memcg_events(memcg, PGREFILL));
1469 	seq_buf_printf(&s, "pgscan %lu\n",
1470 		       memcg_events(memcg, PGSCAN_KSWAPD) +
1471 		       memcg_events(memcg, PGSCAN_DIRECT));
1472 	seq_buf_printf(&s, "pgsteal %lu\n",
1473 		       memcg_events(memcg, PGSTEAL_KSWAPD) +
1474 		       memcg_events(memcg, PGSTEAL_DIRECT));
1475 	seq_buf_printf(&s, "pgactivate %lu\n", memcg_events(memcg, PGACTIVATE));
1476 	seq_buf_printf(&s, "pgdeactivate %lu\n", memcg_events(memcg, PGDEACTIVATE));
1477 	seq_buf_printf(&s, "pglazyfree %lu\n", memcg_events(memcg, PGLAZYFREE));
1478 	seq_buf_printf(&s, "pglazyfreed %lu\n", memcg_events(memcg, PGLAZYFREED));
1479 
1480 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1481 	seq_buf_printf(&s, "thp_fault_alloc %lu\n",
1482 		       memcg_events(memcg, THP_FAULT_ALLOC));
1483 	seq_buf_printf(&s, "thp_collapse_alloc %lu\n",
1484 		       memcg_events(memcg, THP_COLLAPSE_ALLOC));
1485 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1486 
1487 	/* The above should easily fit into one page */
1488 	WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1489 
1490 	return s.buffer;
1491 }
1492 
1493 #define K(x) ((x) << (PAGE_SHIFT-10))
1494 /**
1495  * mem_cgroup_print_oom_context: Print OOM information relevant to
1496  * memory controller.
1497  * @memcg: The memory cgroup that went over limit
1498  * @p: Task that is going to be killed
1499  *
1500  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1501  * enabled
1502  */
1503 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1504 {
1505 	rcu_read_lock();
1506 
1507 	if (memcg) {
1508 		pr_cont(",oom_memcg=");
1509 		pr_cont_cgroup_path(memcg->css.cgroup);
1510 	} else
1511 		pr_cont(",global_oom");
1512 	if (p) {
1513 		pr_cont(",task_memcg=");
1514 		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1515 	}
1516 	rcu_read_unlock();
1517 }
1518 
1519 /**
1520  * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1521  * memory controller.
1522  * @memcg: The memory cgroup that went over limit
1523  */
1524 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1525 {
1526 	char *buf;
1527 
1528 	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1529 		K((u64)page_counter_read(&memcg->memory)),
1530 		K((u64)memcg->memory.max), memcg->memory.failcnt);
1531 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1532 		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1533 			K((u64)page_counter_read(&memcg->swap)),
1534 			K((u64)memcg->swap.max), memcg->swap.failcnt);
1535 	else {
1536 		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1537 			K((u64)page_counter_read(&memcg->memsw)),
1538 			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1539 		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1540 			K((u64)page_counter_read(&memcg->kmem)),
1541 			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1542 	}
1543 
1544 	pr_info("Memory cgroup stats for ");
1545 	pr_cont_cgroup_path(memcg->css.cgroup);
1546 	pr_cont(":");
1547 	buf = memory_stat_format(memcg);
1548 	if (!buf)
1549 		return;
1550 	pr_info("%s", buf);
1551 	kfree(buf);
1552 }
1553 
1554 /*
1555  * Return the memory (and swap, if configured) limit for a memcg.
1556  */
1557 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1558 {
1559 	unsigned long max;
1560 
1561 	max = memcg->memory.max;
1562 	if (mem_cgroup_swappiness(memcg)) {
1563 		unsigned long memsw_max;
1564 		unsigned long swap_max;
1565 
1566 		memsw_max = memcg->memsw.max;
1567 		swap_max = memcg->swap.max;
1568 		swap_max = min(swap_max, (unsigned long)total_swap_pages);
1569 		max = min(max + swap_max, memsw_max);
1570 	}
1571 	return max;
1572 }
1573 
1574 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1575 				     int order)
1576 {
1577 	struct oom_control oc = {
1578 		.zonelist = NULL,
1579 		.nodemask = NULL,
1580 		.memcg = memcg,
1581 		.gfp_mask = gfp_mask,
1582 		.order = order,
1583 	};
1584 	bool ret;
1585 
1586 	if (mutex_lock_killable(&oom_lock))
1587 		return true;
1588 	/*
1589 	 * A few threads which were not waiting at mutex_lock_killable() can
1590 	 * fail to bail out. Therefore, check again after holding oom_lock.
1591 	 */
1592 	ret = should_force_charge() || out_of_memory(&oc);
1593 	mutex_unlock(&oom_lock);
1594 	return ret;
1595 }
1596 
1597 #if MAX_NUMNODES > 1
1598 
1599 /**
1600  * test_mem_cgroup_node_reclaimable
1601  * @memcg: the target memcg
1602  * @nid: the node ID to be checked.
1603  * @noswap : specify true here if the user wants flle only information.
1604  *
1605  * This function returns whether the specified memcg contains any
1606  * reclaimable pages on a node. Returns true if there are any reclaimable
1607  * pages in the node.
1608  */
1609 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1610 		int nid, bool noswap)
1611 {
1612 	struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
1613 
1614 	if (lruvec_page_state(lruvec, NR_INACTIVE_FILE) ||
1615 	    lruvec_page_state(lruvec, NR_ACTIVE_FILE))
1616 		return true;
1617 	if (noswap || !total_swap_pages)
1618 		return false;
1619 	if (lruvec_page_state(lruvec, NR_INACTIVE_ANON) ||
1620 	    lruvec_page_state(lruvec, NR_ACTIVE_ANON))
1621 		return true;
1622 	return false;
1623 
1624 }
1625 
1626 /*
1627  * Always updating the nodemask is not very good - even if we have an empty
1628  * list or the wrong list here, we can start from some node and traverse all
1629  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1630  *
1631  */
1632 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1633 {
1634 	int nid;
1635 	/*
1636 	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1637 	 * pagein/pageout changes since the last update.
1638 	 */
1639 	if (!atomic_read(&memcg->numainfo_events))
1640 		return;
1641 	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1642 		return;
1643 
1644 	/* make a nodemask where this memcg uses memory from */
1645 	memcg->scan_nodes = node_states[N_MEMORY];
1646 
1647 	for_each_node_mask(nid, node_states[N_MEMORY]) {
1648 
1649 		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1650 			node_clear(nid, memcg->scan_nodes);
1651 	}
1652 
1653 	atomic_set(&memcg->numainfo_events, 0);
1654 	atomic_set(&memcg->numainfo_updating, 0);
1655 }
1656 
1657 /*
1658  * Selecting a node where we start reclaim from. Because what we need is just
1659  * reducing usage counter, start from anywhere is O,K. Considering
1660  * memory reclaim from current node, there are pros. and cons.
1661  *
1662  * Freeing memory from current node means freeing memory from a node which
1663  * we'll use or we've used. So, it may make LRU bad. And if several threads
1664  * hit limits, it will see a contention on a node. But freeing from remote
1665  * node means more costs for memory reclaim because of memory latency.
1666  *
1667  * Now, we use round-robin. Better algorithm is welcomed.
1668  */
1669 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1670 {
1671 	int node;
1672 
1673 	mem_cgroup_may_update_nodemask(memcg);
1674 	node = memcg->last_scanned_node;
1675 
1676 	node = next_node_in(node, memcg->scan_nodes);
1677 	/*
1678 	 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1679 	 * last time it really checked all the LRUs due to rate limiting.
1680 	 * Fallback to the current node in that case for simplicity.
1681 	 */
1682 	if (unlikely(node == MAX_NUMNODES))
1683 		node = numa_node_id();
1684 
1685 	memcg->last_scanned_node = node;
1686 	return node;
1687 }
1688 #else
1689 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1690 {
1691 	return 0;
1692 }
1693 #endif
1694 
1695 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1696 				   pg_data_t *pgdat,
1697 				   gfp_t gfp_mask,
1698 				   unsigned long *total_scanned)
1699 {
1700 	struct mem_cgroup *victim = NULL;
1701 	int total = 0;
1702 	int loop = 0;
1703 	unsigned long excess;
1704 	unsigned long nr_scanned;
1705 	struct mem_cgroup_reclaim_cookie reclaim = {
1706 		.pgdat = pgdat,
1707 		.priority = 0,
1708 	};
1709 
1710 	excess = soft_limit_excess(root_memcg);
1711 
1712 	while (1) {
1713 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1714 		if (!victim) {
1715 			loop++;
1716 			if (loop >= 2) {
1717 				/*
1718 				 * If we have not been able to reclaim
1719 				 * anything, it might because there are
1720 				 * no reclaimable pages under this hierarchy
1721 				 */
1722 				if (!total)
1723 					break;
1724 				/*
1725 				 * We want to do more targeted reclaim.
1726 				 * excess >> 2 is not to excessive so as to
1727 				 * reclaim too much, nor too less that we keep
1728 				 * coming back to reclaim from this cgroup
1729 				 */
1730 				if (total >= (excess >> 2) ||
1731 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1732 					break;
1733 			}
1734 			continue;
1735 		}
1736 		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1737 					pgdat, &nr_scanned);
1738 		*total_scanned += nr_scanned;
1739 		if (!soft_limit_excess(root_memcg))
1740 			break;
1741 	}
1742 	mem_cgroup_iter_break(root_memcg, victim);
1743 	return total;
1744 }
1745 
1746 #ifdef CONFIG_LOCKDEP
1747 static struct lockdep_map memcg_oom_lock_dep_map = {
1748 	.name = "memcg_oom_lock",
1749 };
1750 #endif
1751 
1752 static DEFINE_SPINLOCK(memcg_oom_lock);
1753 
1754 /*
1755  * Check OOM-Killer is already running under our hierarchy.
1756  * If someone is running, return false.
1757  */
1758 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1759 {
1760 	struct mem_cgroup *iter, *failed = NULL;
1761 
1762 	spin_lock(&memcg_oom_lock);
1763 
1764 	for_each_mem_cgroup_tree(iter, memcg) {
1765 		if (iter->oom_lock) {
1766 			/*
1767 			 * this subtree of our hierarchy is already locked
1768 			 * so we cannot give a lock.
1769 			 */
1770 			failed = iter;
1771 			mem_cgroup_iter_break(memcg, iter);
1772 			break;
1773 		} else
1774 			iter->oom_lock = true;
1775 	}
1776 
1777 	if (failed) {
1778 		/*
1779 		 * OK, we failed to lock the whole subtree so we have
1780 		 * to clean up what we set up to the failing subtree
1781 		 */
1782 		for_each_mem_cgroup_tree(iter, memcg) {
1783 			if (iter == failed) {
1784 				mem_cgroup_iter_break(memcg, iter);
1785 				break;
1786 			}
1787 			iter->oom_lock = false;
1788 		}
1789 	} else
1790 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1791 
1792 	spin_unlock(&memcg_oom_lock);
1793 
1794 	return !failed;
1795 }
1796 
1797 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1798 {
1799 	struct mem_cgroup *iter;
1800 
1801 	spin_lock(&memcg_oom_lock);
1802 	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1803 	for_each_mem_cgroup_tree(iter, memcg)
1804 		iter->oom_lock = false;
1805 	spin_unlock(&memcg_oom_lock);
1806 }
1807 
1808 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1809 {
1810 	struct mem_cgroup *iter;
1811 
1812 	spin_lock(&memcg_oom_lock);
1813 	for_each_mem_cgroup_tree(iter, memcg)
1814 		iter->under_oom++;
1815 	spin_unlock(&memcg_oom_lock);
1816 }
1817 
1818 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1819 {
1820 	struct mem_cgroup *iter;
1821 
1822 	/*
1823 	 * When a new child is created while the hierarchy is under oom,
1824 	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1825 	 */
1826 	spin_lock(&memcg_oom_lock);
1827 	for_each_mem_cgroup_tree(iter, memcg)
1828 		if (iter->under_oom > 0)
1829 			iter->under_oom--;
1830 	spin_unlock(&memcg_oom_lock);
1831 }
1832 
1833 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1834 
1835 struct oom_wait_info {
1836 	struct mem_cgroup *memcg;
1837 	wait_queue_entry_t	wait;
1838 };
1839 
1840 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1841 	unsigned mode, int sync, void *arg)
1842 {
1843 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1844 	struct mem_cgroup *oom_wait_memcg;
1845 	struct oom_wait_info *oom_wait_info;
1846 
1847 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1848 	oom_wait_memcg = oom_wait_info->memcg;
1849 
1850 	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1851 	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1852 		return 0;
1853 	return autoremove_wake_function(wait, mode, sync, arg);
1854 }
1855 
1856 static void memcg_oom_recover(struct mem_cgroup *memcg)
1857 {
1858 	/*
1859 	 * For the following lockless ->under_oom test, the only required
1860 	 * guarantee is that it must see the state asserted by an OOM when
1861 	 * this function is called as a result of userland actions
1862 	 * triggered by the notification of the OOM.  This is trivially
1863 	 * achieved by invoking mem_cgroup_mark_under_oom() before
1864 	 * triggering notification.
1865 	 */
1866 	if (memcg && memcg->under_oom)
1867 		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1868 }
1869 
1870 enum oom_status {
1871 	OOM_SUCCESS,
1872 	OOM_FAILED,
1873 	OOM_ASYNC,
1874 	OOM_SKIPPED
1875 };
1876 
1877 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1878 {
1879 	enum oom_status ret;
1880 	bool locked;
1881 
1882 	if (order > PAGE_ALLOC_COSTLY_ORDER)
1883 		return OOM_SKIPPED;
1884 
1885 	memcg_memory_event(memcg, MEMCG_OOM);
1886 
1887 	/*
1888 	 * We are in the middle of the charge context here, so we
1889 	 * don't want to block when potentially sitting on a callstack
1890 	 * that holds all kinds of filesystem and mm locks.
1891 	 *
1892 	 * cgroup1 allows disabling the OOM killer and waiting for outside
1893 	 * handling until the charge can succeed; remember the context and put
1894 	 * the task to sleep at the end of the page fault when all locks are
1895 	 * released.
1896 	 *
1897 	 * On the other hand, in-kernel OOM killer allows for an async victim
1898 	 * memory reclaim (oom_reaper) and that means that we are not solely
1899 	 * relying on the oom victim to make a forward progress and we can
1900 	 * invoke the oom killer here.
1901 	 *
1902 	 * Please note that mem_cgroup_out_of_memory might fail to find a
1903 	 * victim and then we have to bail out from the charge path.
1904 	 */
1905 	if (memcg->oom_kill_disable) {
1906 		if (!current->in_user_fault)
1907 			return OOM_SKIPPED;
1908 		css_get(&memcg->css);
1909 		current->memcg_in_oom = memcg;
1910 		current->memcg_oom_gfp_mask = mask;
1911 		current->memcg_oom_order = order;
1912 
1913 		return OOM_ASYNC;
1914 	}
1915 
1916 	mem_cgroup_mark_under_oom(memcg);
1917 
1918 	locked = mem_cgroup_oom_trylock(memcg);
1919 
1920 	if (locked)
1921 		mem_cgroup_oom_notify(memcg);
1922 
1923 	mem_cgroup_unmark_under_oom(memcg);
1924 	if (mem_cgroup_out_of_memory(memcg, mask, order))
1925 		ret = OOM_SUCCESS;
1926 	else
1927 		ret = OOM_FAILED;
1928 
1929 	if (locked)
1930 		mem_cgroup_oom_unlock(memcg);
1931 
1932 	return ret;
1933 }
1934 
1935 /**
1936  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1937  * @handle: actually kill/wait or just clean up the OOM state
1938  *
1939  * This has to be called at the end of a page fault if the memcg OOM
1940  * handler was enabled.
1941  *
1942  * Memcg supports userspace OOM handling where failed allocations must
1943  * sleep on a waitqueue until the userspace task resolves the
1944  * situation.  Sleeping directly in the charge context with all kinds
1945  * of locks held is not a good idea, instead we remember an OOM state
1946  * in the task and mem_cgroup_oom_synchronize() has to be called at
1947  * the end of the page fault to complete the OOM handling.
1948  *
1949  * Returns %true if an ongoing memcg OOM situation was detected and
1950  * completed, %false otherwise.
1951  */
1952 bool mem_cgroup_oom_synchronize(bool handle)
1953 {
1954 	struct mem_cgroup *memcg = current->memcg_in_oom;
1955 	struct oom_wait_info owait;
1956 	bool locked;
1957 
1958 	/* OOM is global, do not handle */
1959 	if (!memcg)
1960 		return false;
1961 
1962 	if (!handle)
1963 		goto cleanup;
1964 
1965 	owait.memcg = memcg;
1966 	owait.wait.flags = 0;
1967 	owait.wait.func = memcg_oom_wake_function;
1968 	owait.wait.private = current;
1969 	INIT_LIST_HEAD(&owait.wait.entry);
1970 
1971 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1972 	mem_cgroup_mark_under_oom(memcg);
1973 
1974 	locked = mem_cgroup_oom_trylock(memcg);
1975 
1976 	if (locked)
1977 		mem_cgroup_oom_notify(memcg);
1978 
1979 	if (locked && !memcg->oom_kill_disable) {
1980 		mem_cgroup_unmark_under_oom(memcg);
1981 		finish_wait(&memcg_oom_waitq, &owait.wait);
1982 		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1983 					 current->memcg_oom_order);
1984 	} else {
1985 		schedule();
1986 		mem_cgroup_unmark_under_oom(memcg);
1987 		finish_wait(&memcg_oom_waitq, &owait.wait);
1988 	}
1989 
1990 	if (locked) {
1991 		mem_cgroup_oom_unlock(memcg);
1992 		/*
1993 		 * There is no guarantee that an OOM-lock contender
1994 		 * sees the wakeups triggered by the OOM kill
1995 		 * uncharges.  Wake any sleepers explicitely.
1996 		 */
1997 		memcg_oom_recover(memcg);
1998 	}
1999 cleanup:
2000 	current->memcg_in_oom = NULL;
2001 	css_put(&memcg->css);
2002 	return true;
2003 }
2004 
2005 /**
2006  * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2007  * @victim: task to be killed by the OOM killer
2008  * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2009  *
2010  * Returns a pointer to a memory cgroup, which has to be cleaned up
2011  * by killing all belonging OOM-killable tasks.
2012  *
2013  * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2014  */
2015 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2016 					    struct mem_cgroup *oom_domain)
2017 {
2018 	struct mem_cgroup *oom_group = NULL;
2019 	struct mem_cgroup *memcg;
2020 
2021 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2022 		return NULL;
2023 
2024 	if (!oom_domain)
2025 		oom_domain = root_mem_cgroup;
2026 
2027 	rcu_read_lock();
2028 
2029 	memcg = mem_cgroup_from_task(victim);
2030 	if (memcg == root_mem_cgroup)
2031 		goto out;
2032 
2033 	/*
2034 	 * Traverse the memory cgroup hierarchy from the victim task's
2035 	 * cgroup up to the OOMing cgroup (or root) to find the
2036 	 * highest-level memory cgroup with oom.group set.
2037 	 */
2038 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2039 		if (memcg->oom_group)
2040 			oom_group = memcg;
2041 
2042 		if (memcg == oom_domain)
2043 			break;
2044 	}
2045 
2046 	if (oom_group)
2047 		css_get(&oom_group->css);
2048 out:
2049 	rcu_read_unlock();
2050 
2051 	return oom_group;
2052 }
2053 
2054 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2055 {
2056 	pr_info("Tasks in ");
2057 	pr_cont_cgroup_path(memcg->css.cgroup);
2058 	pr_cont(" are going to be killed due to memory.oom.group set\n");
2059 }
2060 
2061 /**
2062  * lock_page_memcg - lock a page->mem_cgroup binding
2063  * @page: the page
2064  *
2065  * This function protects unlocked LRU pages from being moved to
2066  * another cgroup.
2067  *
2068  * It ensures lifetime of the returned memcg. Caller is responsible
2069  * for the lifetime of the page; __unlock_page_memcg() is available
2070  * when @page might get freed inside the locked section.
2071  */
2072 struct mem_cgroup *lock_page_memcg(struct page *page)
2073 {
2074 	struct mem_cgroup *memcg;
2075 	unsigned long flags;
2076 
2077 	/*
2078 	 * The RCU lock is held throughout the transaction.  The fast
2079 	 * path can get away without acquiring the memcg->move_lock
2080 	 * because page moving starts with an RCU grace period.
2081 	 *
2082 	 * The RCU lock also protects the memcg from being freed when
2083 	 * the page state that is going to change is the only thing
2084 	 * preventing the page itself from being freed. E.g. writeback
2085 	 * doesn't hold a page reference and relies on PG_writeback to
2086 	 * keep off truncation, migration and so forth.
2087          */
2088 	rcu_read_lock();
2089 
2090 	if (mem_cgroup_disabled())
2091 		return NULL;
2092 again:
2093 	memcg = page->mem_cgroup;
2094 	if (unlikely(!memcg))
2095 		return NULL;
2096 
2097 	if (atomic_read(&memcg->moving_account) <= 0)
2098 		return memcg;
2099 
2100 	spin_lock_irqsave(&memcg->move_lock, flags);
2101 	if (memcg != page->mem_cgroup) {
2102 		spin_unlock_irqrestore(&memcg->move_lock, flags);
2103 		goto again;
2104 	}
2105 
2106 	/*
2107 	 * When charge migration first begins, we can have locked and
2108 	 * unlocked page stat updates happening concurrently.  Track
2109 	 * the task who has the lock for unlock_page_memcg().
2110 	 */
2111 	memcg->move_lock_task = current;
2112 	memcg->move_lock_flags = flags;
2113 
2114 	return memcg;
2115 }
2116 EXPORT_SYMBOL(lock_page_memcg);
2117 
2118 /**
2119  * __unlock_page_memcg - unlock and unpin a memcg
2120  * @memcg: the memcg
2121  *
2122  * Unlock and unpin a memcg returned by lock_page_memcg().
2123  */
2124 void __unlock_page_memcg(struct mem_cgroup *memcg)
2125 {
2126 	if (memcg && memcg->move_lock_task == current) {
2127 		unsigned long flags = memcg->move_lock_flags;
2128 
2129 		memcg->move_lock_task = NULL;
2130 		memcg->move_lock_flags = 0;
2131 
2132 		spin_unlock_irqrestore(&memcg->move_lock, flags);
2133 	}
2134 
2135 	rcu_read_unlock();
2136 }
2137 
2138 /**
2139  * unlock_page_memcg - unlock a page->mem_cgroup binding
2140  * @page: the page
2141  */
2142 void unlock_page_memcg(struct page *page)
2143 {
2144 	__unlock_page_memcg(page->mem_cgroup);
2145 }
2146 EXPORT_SYMBOL(unlock_page_memcg);
2147 
2148 struct memcg_stock_pcp {
2149 	struct mem_cgroup *cached; /* this never be root cgroup */
2150 	unsigned int nr_pages;
2151 	struct work_struct work;
2152 	unsigned long flags;
2153 #define FLUSHING_CACHED_CHARGE	0
2154 };
2155 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2156 static DEFINE_MUTEX(percpu_charge_mutex);
2157 
2158 /**
2159  * consume_stock: Try to consume stocked charge on this cpu.
2160  * @memcg: memcg to consume from.
2161  * @nr_pages: how many pages to charge.
2162  *
2163  * The charges will only happen if @memcg matches the current cpu's memcg
2164  * stock, and at least @nr_pages are available in that stock.  Failure to
2165  * service an allocation will refill the stock.
2166  *
2167  * returns true if successful, false otherwise.
2168  */
2169 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2170 {
2171 	struct memcg_stock_pcp *stock;
2172 	unsigned long flags;
2173 	bool ret = false;
2174 
2175 	if (nr_pages > MEMCG_CHARGE_BATCH)
2176 		return ret;
2177 
2178 	local_irq_save(flags);
2179 
2180 	stock = this_cpu_ptr(&memcg_stock);
2181 	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2182 		stock->nr_pages -= nr_pages;
2183 		ret = true;
2184 	}
2185 
2186 	local_irq_restore(flags);
2187 
2188 	return ret;
2189 }
2190 
2191 /*
2192  * Returns stocks cached in percpu and reset cached information.
2193  */
2194 static void drain_stock(struct memcg_stock_pcp *stock)
2195 {
2196 	struct mem_cgroup *old = stock->cached;
2197 
2198 	if (stock->nr_pages) {
2199 		page_counter_uncharge(&old->memory, stock->nr_pages);
2200 		if (do_memsw_account())
2201 			page_counter_uncharge(&old->memsw, stock->nr_pages);
2202 		css_put_many(&old->css, stock->nr_pages);
2203 		stock->nr_pages = 0;
2204 	}
2205 	stock->cached = NULL;
2206 }
2207 
2208 static void drain_local_stock(struct work_struct *dummy)
2209 {
2210 	struct memcg_stock_pcp *stock;
2211 	unsigned long flags;
2212 
2213 	/*
2214 	 * The only protection from memory hotplug vs. drain_stock races is
2215 	 * that we always operate on local CPU stock here with IRQ disabled
2216 	 */
2217 	local_irq_save(flags);
2218 
2219 	stock = this_cpu_ptr(&memcg_stock);
2220 	drain_stock(stock);
2221 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2222 
2223 	local_irq_restore(flags);
2224 }
2225 
2226 /*
2227  * Cache charges(val) to local per_cpu area.
2228  * This will be consumed by consume_stock() function, later.
2229  */
2230 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2231 {
2232 	struct memcg_stock_pcp *stock;
2233 	unsigned long flags;
2234 
2235 	local_irq_save(flags);
2236 
2237 	stock = this_cpu_ptr(&memcg_stock);
2238 	if (stock->cached != memcg) { /* reset if necessary */
2239 		drain_stock(stock);
2240 		stock->cached = memcg;
2241 	}
2242 	stock->nr_pages += nr_pages;
2243 
2244 	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2245 		drain_stock(stock);
2246 
2247 	local_irq_restore(flags);
2248 }
2249 
2250 /*
2251  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2252  * of the hierarchy under it.
2253  */
2254 static void drain_all_stock(struct mem_cgroup *root_memcg)
2255 {
2256 	int cpu, curcpu;
2257 
2258 	/* If someone's already draining, avoid adding running more workers. */
2259 	if (!mutex_trylock(&percpu_charge_mutex))
2260 		return;
2261 	/*
2262 	 * Notify other cpus that system-wide "drain" is running
2263 	 * We do not care about races with the cpu hotplug because cpu down
2264 	 * as well as workers from this path always operate on the local
2265 	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2266 	 */
2267 	curcpu = get_cpu();
2268 	for_each_online_cpu(cpu) {
2269 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2270 		struct mem_cgroup *memcg;
2271 
2272 		memcg = stock->cached;
2273 		if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css))
2274 			continue;
2275 		if (!mem_cgroup_is_descendant(memcg, root_memcg)) {
2276 			css_put(&memcg->css);
2277 			continue;
2278 		}
2279 		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2280 			if (cpu == curcpu)
2281 				drain_local_stock(&stock->work);
2282 			else
2283 				schedule_work_on(cpu, &stock->work);
2284 		}
2285 		css_put(&memcg->css);
2286 	}
2287 	put_cpu();
2288 	mutex_unlock(&percpu_charge_mutex);
2289 }
2290 
2291 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2292 {
2293 	struct memcg_stock_pcp *stock;
2294 	struct mem_cgroup *memcg, *mi;
2295 
2296 	stock = &per_cpu(memcg_stock, cpu);
2297 	drain_stock(stock);
2298 
2299 	for_each_mem_cgroup(memcg) {
2300 		int i;
2301 
2302 		for (i = 0; i < MEMCG_NR_STAT; i++) {
2303 			int nid;
2304 			long x;
2305 
2306 			x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2307 			if (x)
2308 				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2309 					atomic_long_add(x, &memcg->vmstats[i]);
2310 
2311 			if (i >= NR_VM_NODE_STAT_ITEMS)
2312 				continue;
2313 
2314 			for_each_node(nid) {
2315 				struct mem_cgroup_per_node *pn;
2316 
2317 				pn = mem_cgroup_nodeinfo(memcg, nid);
2318 				x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2319 				if (x)
2320 					do {
2321 						atomic_long_add(x, &pn->lruvec_stat[i]);
2322 					} while ((pn = parent_nodeinfo(pn, nid)));
2323 			}
2324 		}
2325 
2326 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2327 			long x;
2328 
2329 			x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2330 			if (x)
2331 				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2332 					atomic_long_add(x, &memcg->vmevents[i]);
2333 		}
2334 	}
2335 
2336 	return 0;
2337 }
2338 
2339 static void reclaim_high(struct mem_cgroup *memcg,
2340 			 unsigned int nr_pages,
2341 			 gfp_t gfp_mask)
2342 {
2343 	do {
2344 		if (page_counter_read(&memcg->memory) <= memcg->high)
2345 			continue;
2346 		memcg_memory_event(memcg, MEMCG_HIGH);
2347 		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2348 	} while ((memcg = parent_mem_cgroup(memcg)));
2349 }
2350 
2351 static void high_work_func(struct work_struct *work)
2352 {
2353 	struct mem_cgroup *memcg;
2354 
2355 	memcg = container_of(work, struct mem_cgroup, high_work);
2356 	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2357 }
2358 
2359 /*
2360  * Scheduled by try_charge() to be executed from the userland return path
2361  * and reclaims memory over the high limit.
2362  */
2363 void mem_cgroup_handle_over_high(void)
2364 {
2365 	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2366 	struct mem_cgroup *memcg;
2367 
2368 	if (likely(!nr_pages))
2369 		return;
2370 
2371 	memcg = get_mem_cgroup_from_mm(current->mm);
2372 	reclaim_high(memcg, nr_pages, GFP_KERNEL);
2373 	css_put(&memcg->css);
2374 	current->memcg_nr_pages_over_high = 0;
2375 }
2376 
2377 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2378 		      unsigned int nr_pages)
2379 {
2380 	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2381 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2382 	struct mem_cgroup *mem_over_limit;
2383 	struct page_counter *counter;
2384 	unsigned long nr_reclaimed;
2385 	bool may_swap = true;
2386 	bool drained = false;
2387 	enum oom_status oom_status;
2388 
2389 	if (mem_cgroup_is_root(memcg))
2390 		return 0;
2391 retry:
2392 	if (consume_stock(memcg, nr_pages))
2393 		return 0;
2394 
2395 	if (!do_memsw_account() ||
2396 	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2397 		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2398 			goto done_restock;
2399 		if (do_memsw_account())
2400 			page_counter_uncharge(&memcg->memsw, batch);
2401 		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2402 	} else {
2403 		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2404 		may_swap = false;
2405 	}
2406 
2407 	if (batch > nr_pages) {
2408 		batch = nr_pages;
2409 		goto retry;
2410 	}
2411 
2412 	/*
2413 	 * Unlike in global OOM situations, memcg is not in a physical
2414 	 * memory shortage.  Allow dying and OOM-killed tasks to
2415 	 * bypass the last charges so that they can exit quickly and
2416 	 * free their memory.
2417 	 */
2418 	if (unlikely(should_force_charge()))
2419 		goto force;
2420 
2421 	/*
2422 	 * Prevent unbounded recursion when reclaim operations need to
2423 	 * allocate memory. This might exceed the limits temporarily,
2424 	 * but we prefer facilitating memory reclaim and getting back
2425 	 * under the limit over triggering OOM kills in these cases.
2426 	 */
2427 	if (unlikely(current->flags & PF_MEMALLOC))
2428 		goto force;
2429 
2430 	if (unlikely(task_in_memcg_oom(current)))
2431 		goto nomem;
2432 
2433 	if (!gfpflags_allow_blocking(gfp_mask))
2434 		goto nomem;
2435 
2436 	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2437 
2438 	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2439 						    gfp_mask, may_swap);
2440 
2441 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2442 		goto retry;
2443 
2444 	if (!drained) {
2445 		drain_all_stock(mem_over_limit);
2446 		drained = true;
2447 		goto retry;
2448 	}
2449 
2450 	if (gfp_mask & __GFP_NORETRY)
2451 		goto nomem;
2452 	/*
2453 	 * Even though the limit is exceeded at this point, reclaim
2454 	 * may have been able to free some pages.  Retry the charge
2455 	 * before killing the task.
2456 	 *
2457 	 * Only for regular pages, though: huge pages are rather
2458 	 * unlikely to succeed so close to the limit, and we fall back
2459 	 * to regular pages anyway in case of failure.
2460 	 */
2461 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2462 		goto retry;
2463 	/*
2464 	 * At task move, charge accounts can be doubly counted. So, it's
2465 	 * better to wait until the end of task_move if something is going on.
2466 	 */
2467 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2468 		goto retry;
2469 
2470 	if (nr_retries--)
2471 		goto retry;
2472 
2473 	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2474 		goto nomem;
2475 
2476 	if (gfp_mask & __GFP_NOFAIL)
2477 		goto force;
2478 
2479 	if (fatal_signal_pending(current))
2480 		goto force;
2481 
2482 	/*
2483 	 * keep retrying as long as the memcg oom killer is able to make
2484 	 * a forward progress or bypass the charge if the oom killer
2485 	 * couldn't make any progress.
2486 	 */
2487 	oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2488 		       get_order(nr_pages * PAGE_SIZE));
2489 	switch (oom_status) {
2490 	case OOM_SUCCESS:
2491 		nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2492 		goto retry;
2493 	case OOM_FAILED:
2494 		goto force;
2495 	default:
2496 		goto nomem;
2497 	}
2498 nomem:
2499 	if (!(gfp_mask & __GFP_NOFAIL))
2500 		return -ENOMEM;
2501 force:
2502 	/*
2503 	 * The allocation either can't fail or will lead to more memory
2504 	 * being freed very soon.  Allow memory usage go over the limit
2505 	 * temporarily by force charging it.
2506 	 */
2507 	page_counter_charge(&memcg->memory, nr_pages);
2508 	if (do_memsw_account())
2509 		page_counter_charge(&memcg->memsw, nr_pages);
2510 	css_get_many(&memcg->css, nr_pages);
2511 
2512 	return 0;
2513 
2514 done_restock:
2515 	css_get_many(&memcg->css, batch);
2516 	if (batch > nr_pages)
2517 		refill_stock(memcg, batch - nr_pages);
2518 
2519 	/*
2520 	 * If the hierarchy is above the normal consumption range, schedule
2521 	 * reclaim on returning to userland.  We can perform reclaim here
2522 	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2523 	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2524 	 * not recorded as it most likely matches current's and won't
2525 	 * change in the meantime.  As high limit is checked again before
2526 	 * reclaim, the cost of mismatch is negligible.
2527 	 */
2528 	do {
2529 		if (page_counter_read(&memcg->memory) > memcg->high) {
2530 			/* Don't bother a random interrupted task */
2531 			if (in_interrupt()) {
2532 				schedule_work(&memcg->high_work);
2533 				break;
2534 			}
2535 			current->memcg_nr_pages_over_high += batch;
2536 			set_notify_resume(current);
2537 			break;
2538 		}
2539 	} while ((memcg = parent_mem_cgroup(memcg)));
2540 
2541 	return 0;
2542 }
2543 
2544 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2545 {
2546 	if (mem_cgroup_is_root(memcg))
2547 		return;
2548 
2549 	page_counter_uncharge(&memcg->memory, nr_pages);
2550 	if (do_memsw_account())
2551 		page_counter_uncharge(&memcg->memsw, nr_pages);
2552 
2553 	css_put_many(&memcg->css, nr_pages);
2554 }
2555 
2556 static void lock_page_lru(struct page *page, int *isolated)
2557 {
2558 	pg_data_t *pgdat = page_pgdat(page);
2559 
2560 	spin_lock_irq(&pgdat->lru_lock);
2561 	if (PageLRU(page)) {
2562 		struct lruvec *lruvec;
2563 
2564 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
2565 		ClearPageLRU(page);
2566 		del_page_from_lru_list(page, lruvec, page_lru(page));
2567 		*isolated = 1;
2568 	} else
2569 		*isolated = 0;
2570 }
2571 
2572 static void unlock_page_lru(struct page *page, int isolated)
2573 {
2574 	pg_data_t *pgdat = page_pgdat(page);
2575 
2576 	if (isolated) {
2577 		struct lruvec *lruvec;
2578 
2579 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
2580 		VM_BUG_ON_PAGE(PageLRU(page), page);
2581 		SetPageLRU(page);
2582 		add_page_to_lru_list(page, lruvec, page_lru(page));
2583 	}
2584 	spin_unlock_irq(&pgdat->lru_lock);
2585 }
2586 
2587 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2588 			  bool lrucare)
2589 {
2590 	int isolated;
2591 
2592 	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2593 
2594 	/*
2595 	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2596 	 * may already be on some other mem_cgroup's LRU.  Take care of it.
2597 	 */
2598 	if (lrucare)
2599 		lock_page_lru(page, &isolated);
2600 
2601 	/*
2602 	 * Nobody should be changing or seriously looking at
2603 	 * page->mem_cgroup at this point:
2604 	 *
2605 	 * - the page is uncharged
2606 	 *
2607 	 * - the page is off-LRU
2608 	 *
2609 	 * - an anonymous fault has exclusive page access, except for
2610 	 *   a locked page table
2611 	 *
2612 	 * - a page cache insertion, a swapin fault, or a migration
2613 	 *   have the page locked
2614 	 */
2615 	page->mem_cgroup = memcg;
2616 
2617 	if (lrucare)
2618 		unlock_page_lru(page, isolated);
2619 }
2620 
2621 #ifdef CONFIG_MEMCG_KMEM
2622 static int memcg_alloc_cache_id(void)
2623 {
2624 	int id, size;
2625 	int err;
2626 
2627 	id = ida_simple_get(&memcg_cache_ida,
2628 			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2629 	if (id < 0)
2630 		return id;
2631 
2632 	if (id < memcg_nr_cache_ids)
2633 		return id;
2634 
2635 	/*
2636 	 * There's no space for the new id in memcg_caches arrays,
2637 	 * so we have to grow them.
2638 	 */
2639 	down_write(&memcg_cache_ids_sem);
2640 
2641 	size = 2 * (id + 1);
2642 	if (size < MEMCG_CACHES_MIN_SIZE)
2643 		size = MEMCG_CACHES_MIN_SIZE;
2644 	else if (size > MEMCG_CACHES_MAX_SIZE)
2645 		size = MEMCG_CACHES_MAX_SIZE;
2646 
2647 	err = memcg_update_all_caches(size);
2648 	if (!err)
2649 		err = memcg_update_all_list_lrus(size);
2650 	if (!err)
2651 		memcg_nr_cache_ids = size;
2652 
2653 	up_write(&memcg_cache_ids_sem);
2654 
2655 	if (err) {
2656 		ida_simple_remove(&memcg_cache_ida, id);
2657 		return err;
2658 	}
2659 	return id;
2660 }
2661 
2662 static void memcg_free_cache_id(int id)
2663 {
2664 	ida_simple_remove(&memcg_cache_ida, id);
2665 }
2666 
2667 struct memcg_kmem_cache_create_work {
2668 	struct mem_cgroup *memcg;
2669 	struct kmem_cache *cachep;
2670 	struct work_struct work;
2671 };
2672 
2673 static void memcg_kmem_cache_create_func(struct work_struct *w)
2674 {
2675 	struct memcg_kmem_cache_create_work *cw =
2676 		container_of(w, struct memcg_kmem_cache_create_work, work);
2677 	struct mem_cgroup *memcg = cw->memcg;
2678 	struct kmem_cache *cachep = cw->cachep;
2679 
2680 	memcg_create_kmem_cache(memcg, cachep);
2681 
2682 	css_put(&memcg->css);
2683 	kfree(cw);
2684 }
2685 
2686 /*
2687  * Enqueue the creation of a per-memcg kmem_cache.
2688  */
2689 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2690 					       struct kmem_cache *cachep)
2691 {
2692 	struct memcg_kmem_cache_create_work *cw;
2693 
2694 	if (!css_tryget_online(&memcg->css))
2695 		return;
2696 
2697 	cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
2698 	if (!cw)
2699 		return;
2700 
2701 	cw->memcg = memcg;
2702 	cw->cachep = cachep;
2703 	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2704 
2705 	queue_work(memcg_kmem_cache_wq, &cw->work);
2706 }
2707 
2708 static inline bool memcg_kmem_bypass(void)
2709 {
2710 	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2711 		return true;
2712 	return false;
2713 }
2714 
2715 /**
2716  * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2717  * @cachep: the original global kmem cache
2718  *
2719  * Return the kmem_cache we're supposed to use for a slab allocation.
2720  * We try to use the current memcg's version of the cache.
2721  *
2722  * If the cache does not exist yet, if we are the first user of it, we
2723  * create it asynchronously in a workqueue and let the current allocation
2724  * go through with the original cache.
2725  *
2726  * This function takes a reference to the cache it returns to assure it
2727  * won't get destroyed while we are working with it. Once the caller is
2728  * done with it, memcg_kmem_put_cache() must be called to release the
2729  * reference.
2730  */
2731 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2732 {
2733 	struct mem_cgroup *memcg;
2734 	struct kmem_cache *memcg_cachep;
2735 	struct memcg_cache_array *arr;
2736 	int kmemcg_id;
2737 
2738 	VM_BUG_ON(!is_root_cache(cachep));
2739 
2740 	if (memcg_kmem_bypass())
2741 		return cachep;
2742 
2743 	rcu_read_lock();
2744 
2745 	if (unlikely(current->active_memcg))
2746 		memcg = current->active_memcg;
2747 	else
2748 		memcg = mem_cgroup_from_task(current);
2749 
2750 	if (!memcg || memcg == root_mem_cgroup)
2751 		goto out_unlock;
2752 
2753 	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2754 	if (kmemcg_id < 0)
2755 		goto out_unlock;
2756 
2757 	arr = rcu_dereference(cachep->memcg_params.memcg_caches);
2758 
2759 	/*
2760 	 * Make sure we will access the up-to-date value. The code updating
2761 	 * memcg_caches issues a write barrier to match the data dependency
2762 	 * barrier inside READ_ONCE() (see memcg_create_kmem_cache()).
2763 	 */
2764 	memcg_cachep = READ_ONCE(arr->entries[kmemcg_id]);
2765 
2766 	/*
2767 	 * If we are in a safe context (can wait, and not in interrupt
2768 	 * context), we could be be predictable and return right away.
2769 	 * This would guarantee that the allocation being performed
2770 	 * already belongs in the new cache.
2771 	 *
2772 	 * However, there are some clashes that can arrive from locking.
2773 	 * For instance, because we acquire the slab_mutex while doing
2774 	 * memcg_create_kmem_cache, this means no further allocation
2775 	 * could happen with the slab_mutex held. So it's better to
2776 	 * defer everything.
2777 	 *
2778 	 * If the memcg is dying or memcg_cache is about to be released,
2779 	 * don't bother creating new kmem_caches. Because memcg_cachep
2780 	 * is ZEROed as the fist step of kmem offlining, we don't need
2781 	 * percpu_ref_tryget_live() here. css_tryget_online() check in
2782 	 * memcg_schedule_kmem_cache_create() will prevent us from
2783 	 * creation of a new kmem_cache.
2784 	 */
2785 	if (unlikely(!memcg_cachep))
2786 		memcg_schedule_kmem_cache_create(memcg, cachep);
2787 	else if (percpu_ref_tryget(&memcg_cachep->memcg_params.refcnt))
2788 		cachep = memcg_cachep;
2789 out_unlock:
2790 	rcu_read_unlock();
2791 	return cachep;
2792 }
2793 
2794 /**
2795  * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2796  * @cachep: the cache returned by memcg_kmem_get_cache
2797  */
2798 void memcg_kmem_put_cache(struct kmem_cache *cachep)
2799 {
2800 	if (!is_root_cache(cachep))
2801 		percpu_ref_put(&cachep->memcg_params.refcnt);
2802 }
2803 
2804 /**
2805  * __memcg_kmem_charge_memcg: charge a kmem page
2806  * @page: page to charge
2807  * @gfp: reclaim mode
2808  * @order: allocation order
2809  * @memcg: memory cgroup to charge
2810  *
2811  * Returns 0 on success, an error code on failure.
2812  */
2813 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2814 			    struct mem_cgroup *memcg)
2815 {
2816 	unsigned int nr_pages = 1 << order;
2817 	struct page_counter *counter;
2818 	int ret;
2819 
2820 	ret = try_charge(memcg, gfp, nr_pages);
2821 	if (ret)
2822 		return ret;
2823 
2824 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2825 	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2826 		cancel_charge(memcg, nr_pages);
2827 		return -ENOMEM;
2828 	}
2829 	return 0;
2830 }
2831 
2832 /**
2833  * __memcg_kmem_charge: charge a kmem page to the current memory cgroup
2834  * @page: page to charge
2835  * @gfp: reclaim mode
2836  * @order: allocation order
2837  *
2838  * Returns 0 on success, an error code on failure.
2839  */
2840 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2841 {
2842 	struct mem_cgroup *memcg;
2843 	int ret = 0;
2844 
2845 	if (memcg_kmem_bypass())
2846 		return 0;
2847 
2848 	memcg = get_mem_cgroup_from_current();
2849 	if (!mem_cgroup_is_root(memcg)) {
2850 		ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2851 		if (!ret) {
2852 			page->mem_cgroup = memcg;
2853 			__SetPageKmemcg(page);
2854 		}
2855 	}
2856 	css_put(&memcg->css);
2857 	return ret;
2858 }
2859 
2860 /**
2861  * __memcg_kmem_uncharge_memcg: uncharge a kmem page
2862  * @memcg: memcg to uncharge
2863  * @nr_pages: number of pages to uncharge
2864  */
2865 void __memcg_kmem_uncharge_memcg(struct mem_cgroup *memcg,
2866 				 unsigned int nr_pages)
2867 {
2868 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2869 		page_counter_uncharge(&memcg->kmem, nr_pages);
2870 
2871 	page_counter_uncharge(&memcg->memory, nr_pages);
2872 	if (do_memsw_account())
2873 		page_counter_uncharge(&memcg->memsw, nr_pages);
2874 }
2875 /**
2876  * __memcg_kmem_uncharge: uncharge a kmem page
2877  * @page: page to uncharge
2878  * @order: allocation order
2879  */
2880 void __memcg_kmem_uncharge(struct page *page, int order)
2881 {
2882 	struct mem_cgroup *memcg = page->mem_cgroup;
2883 	unsigned int nr_pages = 1 << order;
2884 
2885 	if (!memcg)
2886 		return;
2887 
2888 	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2889 	__memcg_kmem_uncharge_memcg(memcg, nr_pages);
2890 	page->mem_cgroup = NULL;
2891 
2892 	/* slab pages do not have PageKmemcg flag set */
2893 	if (PageKmemcg(page))
2894 		__ClearPageKmemcg(page);
2895 
2896 	css_put_many(&memcg->css, nr_pages);
2897 }
2898 #endif /* CONFIG_MEMCG_KMEM */
2899 
2900 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2901 
2902 /*
2903  * Because tail pages are not marked as "used", set it. We're under
2904  * pgdat->lru_lock and migration entries setup in all page mappings.
2905  */
2906 void mem_cgroup_split_huge_fixup(struct page *head)
2907 {
2908 	int i;
2909 
2910 	if (mem_cgroup_disabled())
2911 		return;
2912 
2913 	for (i = 1; i < HPAGE_PMD_NR; i++)
2914 		head[i].mem_cgroup = head->mem_cgroup;
2915 
2916 	__mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
2917 }
2918 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2919 
2920 #ifdef CONFIG_MEMCG_SWAP
2921 /**
2922  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2923  * @entry: swap entry to be moved
2924  * @from:  mem_cgroup which the entry is moved from
2925  * @to:  mem_cgroup which the entry is moved to
2926  *
2927  * It succeeds only when the swap_cgroup's record for this entry is the same
2928  * as the mem_cgroup's id of @from.
2929  *
2930  * Returns 0 on success, -EINVAL on failure.
2931  *
2932  * The caller must have charged to @to, IOW, called page_counter_charge() about
2933  * both res and memsw, and called css_get().
2934  */
2935 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2936 				struct mem_cgroup *from, struct mem_cgroup *to)
2937 {
2938 	unsigned short old_id, new_id;
2939 
2940 	old_id = mem_cgroup_id(from);
2941 	new_id = mem_cgroup_id(to);
2942 
2943 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2944 		mod_memcg_state(from, MEMCG_SWAP, -1);
2945 		mod_memcg_state(to, MEMCG_SWAP, 1);
2946 		return 0;
2947 	}
2948 	return -EINVAL;
2949 }
2950 #else
2951 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2952 				struct mem_cgroup *from, struct mem_cgroup *to)
2953 {
2954 	return -EINVAL;
2955 }
2956 #endif
2957 
2958 static DEFINE_MUTEX(memcg_max_mutex);
2959 
2960 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
2961 				 unsigned long max, bool memsw)
2962 {
2963 	bool enlarge = false;
2964 	bool drained = false;
2965 	int ret;
2966 	bool limits_invariant;
2967 	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
2968 
2969 	do {
2970 		if (signal_pending(current)) {
2971 			ret = -EINTR;
2972 			break;
2973 		}
2974 
2975 		mutex_lock(&memcg_max_mutex);
2976 		/*
2977 		 * Make sure that the new limit (memsw or memory limit) doesn't
2978 		 * break our basic invariant rule memory.max <= memsw.max.
2979 		 */
2980 		limits_invariant = memsw ? max >= memcg->memory.max :
2981 					   max <= memcg->memsw.max;
2982 		if (!limits_invariant) {
2983 			mutex_unlock(&memcg_max_mutex);
2984 			ret = -EINVAL;
2985 			break;
2986 		}
2987 		if (max > counter->max)
2988 			enlarge = true;
2989 		ret = page_counter_set_max(counter, max);
2990 		mutex_unlock(&memcg_max_mutex);
2991 
2992 		if (!ret)
2993 			break;
2994 
2995 		if (!drained) {
2996 			drain_all_stock(memcg);
2997 			drained = true;
2998 			continue;
2999 		}
3000 
3001 		if (!try_to_free_mem_cgroup_pages(memcg, 1,
3002 					GFP_KERNEL, !memsw)) {
3003 			ret = -EBUSY;
3004 			break;
3005 		}
3006 	} while (true);
3007 
3008 	if (!ret && enlarge)
3009 		memcg_oom_recover(memcg);
3010 
3011 	return ret;
3012 }
3013 
3014 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3015 					    gfp_t gfp_mask,
3016 					    unsigned long *total_scanned)
3017 {
3018 	unsigned long nr_reclaimed = 0;
3019 	struct mem_cgroup_per_node *mz, *next_mz = NULL;
3020 	unsigned long reclaimed;
3021 	int loop = 0;
3022 	struct mem_cgroup_tree_per_node *mctz;
3023 	unsigned long excess;
3024 	unsigned long nr_scanned;
3025 
3026 	if (order > 0)
3027 		return 0;
3028 
3029 	mctz = soft_limit_tree_node(pgdat->node_id);
3030 
3031 	/*
3032 	 * Do not even bother to check the largest node if the root
3033 	 * is empty. Do it lockless to prevent lock bouncing. Races
3034 	 * are acceptable as soft limit is best effort anyway.
3035 	 */
3036 	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3037 		return 0;
3038 
3039 	/*
3040 	 * This loop can run a while, specially if mem_cgroup's continuously
3041 	 * keep exceeding their soft limit and putting the system under
3042 	 * pressure
3043 	 */
3044 	do {
3045 		if (next_mz)
3046 			mz = next_mz;
3047 		else
3048 			mz = mem_cgroup_largest_soft_limit_node(mctz);
3049 		if (!mz)
3050 			break;
3051 
3052 		nr_scanned = 0;
3053 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3054 						    gfp_mask, &nr_scanned);
3055 		nr_reclaimed += reclaimed;
3056 		*total_scanned += nr_scanned;
3057 		spin_lock_irq(&mctz->lock);
3058 		__mem_cgroup_remove_exceeded(mz, mctz);
3059 
3060 		/*
3061 		 * If we failed to reclaim anything from this memory cgroup
3062 		 * it is time to move on to the next cgroup
3063 		 */
3064 		next_mz = NULL;
3065 		if (!reclaimed)
3066 			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3067 
3068 		excess = soft_limit_excess(mz->memcg);
3069 		/*
3070 		 * One school of thought says that we should not add
3071 		 * back the node to the tree if reclaim returns 0.
3072 		 * But our reclaim could return 0, simply because due
3073 		 * to priority we are exposing a smaller subset of
3074 		 * memory to reclaim from. Consider this as a longer
3075 		 * term TODO.
3076 		 */
3077 		/* If excess == 0, no tree ops */
3078 		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3079 		spin_unlock_irq(&mctz->lock);
3080 		css_put(&mz->memcg->css);
3081 		loop++;
3082 		/*
3083 		 * Could not reclaim anything and there are no more
3084 		 * mem cgroups to try or we seem to be looping without
3085 		 * reclaiming anything.
3086 		 */
3087 		if (!nr_reclaimed &&
3088 			(next_mz == NULL ||
3089 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3090 			break;
3091 	} while (!nr_reclaimed);
3092 	if (next_mz)
3093 		css_put(&next_mz->memcg->css);
3094 	return nr_reclaimed;
3095 }
3096 
3097 /*
3098  * Test whether @memcg has children, dead or alive.  Note that this
3099  * function doesn't care whether @memcg has use_hierarchy enabled and
3100  * returns %true if there are child csses according to the cgroup
3101  * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
3102  */
3103 static inline bool memcg_has_children(struct mem_cgroup *memcg)
3104 {
3105 	bool ret;
3106 
3107 	rcu_read_lock();
3108 	ret = css_next_child(NULL, &memcg->css);
3109 	rcu_read_unlock();
3110 	return ret;
3111 }
3112 
3113 /*
3114  * Reclaims as many pages from the given memcg as possible.
3115  *
3116  * Caller is responsible for holding css reference for memcg.
3117  */
3118 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3119 {
3120 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3121 
3122 	/* we call try-to-free pages for make this cgroup empty */
3123 	lru_add_drain_all();
3124 
3125 	drain_all_stock(memcg);
3126 
3127 	/* try to free all pages in this cgroup */
3128 	while (nr_retries && page_counter_read(&memcg->memory)) {
3129 		int progress;
3130 
3131 		if (signal_pending(current))
3132 			return -EINTR;
3133 
3134 		progress = try_to_free_mem_cgroup_pages(memcg, 1,
3135 							GFP_KERNEL, true);
3136 		if (!progress) {
3137 			nr_retries--;
3138 			/* maybe some writeback is necessary */
3139 			congestion_wait(BLK_RW_ASYNC, HZ/10);
3140 		}
3141 
3142 	}
3143 
3144 	return 0;
3145 }
3146 
3147 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3148 					    char *buf, size_t nbytes,
3149 					    loff_t off)
3150 {
3151 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3152 
3153 	if (mem_cgroup_is_root(memcg))
3154 		return -EINVAL;
3155 	return mem_cgroup_force_empty(memcg) ?: nbytes;
3156 }
3157 
3158 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3159 				     struct cftype *cft)
3160 {
3161 	return mem_cgroup_from_css(css)->use_hierarchy;
3162 }
3163 
3164 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3165 				      struct cftype *cft, u64 val)
3166 {
3167 	int retval = 0;
3168 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3169 	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3170 
3171 	if (memcg->use_hierarchy == val)
3172 		return 0;
3173 
3174 	/*
3175 	 * If parent's use_hierarchy is set, we can't make any modifications
3176 	 * in the child subtrees. If it is unset, then the change can
3177 	 * occur, provided the current cgroup has no children.
3178 	 *
3179 	 * For the root cgroup, parent_mem is NULL, we allow value to be
3180 	 * set if there are no children.
3181 	 */
3182 	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3183 				(val == 1 || val == 0)) {
3184 		if (!memcg_has_children(memcg))
3185 			memcg->use_hierarchy = val;
3186 		else
3187 			retval = -EBUSY;
3188 	} else
3189 		retval = -EINVAL;
3190 
3191 	return retval;
3192 }
3193 
3194 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3195 {
3196 	unsigned long val;
3197 
3198 	if (mem_cgroup_is_root(memcg)) {
3199 		val = memcg_page_state(memcg, MEMCG_CACHE) +
3200 			memcg_page_state(memcg, MEMCG_RSS);
3201 		if (swap)
3202 			val += memcg_page_state(memcg, MEMCG_SWAP);
3203 	} else {
3204 		if (!swap)
3205 			val = page_counter_read(&memcg->memory);
3206 		else
3207 			val = page_counter_read(&memcg->memsw);
3208 	}
3209 	return val;
3210 }
3211 
3212 enum {
3213 	RES_USAGE,
3214 	RES_LIMIT,
3215 	RES_MAX_USAGE,
3216 	RES_FAILCNT,
3217 	RES_SOFT_LIMIT,
3218 };
3219 
3220 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3221 			       struct cftype *cft)
3222 {
3223 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3224 	struct page_counter *counter;
3225 
3226 	switch (MEMFILE_TYPE(cft->private)) {
3227 	case _MEM:
3228 		counter = &memcg->memory;
3229 		break;
3230 	case _MEMSWAP:
3231 		counter = &memcg->memsw;
3232 		break;
3233 	case _KMEM:
3234 		counter = &memcg->kmem;
3235 		break;
3236 	case _TCP:
3237 		counter = &memcg->tcpmem;
3238 		break;
3239 	default:
3240 		BUG();
3241 	}
3242 
3243 	switch (MEMFILE_ATTR(cft->private)) {
3244 	case RES_USAGE:
3245 		if (counter == &memcg->memory)
3246 			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3247 		if (counter == &memcg->memsw)
3248 			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3249 		return (u64)page_counter_read(counter) * PAGE_SIZE;
3250 	case RES_LIMIT:
3251 		return (u64)counter->max * PAGE_SIZE;
3252 	case RES_MAX_USAGE:
3253 		return (u64)counter->watermark * PAGE_SIZE;
3254 	case RES_FAILCNT:
3255 		return counter->failcnt;
3256 	case RES_SOFT_LIMIT:
3257 		return (u64)memcg->soft_limit * PAGE_SIZE;
3258 	default:
3259 		BUG();
3260 	}
3261 }
3262 
3263 #ifdef CONFIG_MEMCG_KMEM
3264 static int memcg_online_kmem(struct mem_cgroup *memcg)
3265 {
3266 	int memcg_id;
3267 
3268 	if (cgroup_memory_nokmem)
3269 		return 0;
3270 
3271 	BUG_ON(memcg->kmemcg_id >= 0);
3272 	BUG_ON(memcg->kmem_state);
3273 
3274 	memcg_id = memcg_alloc_cache_id();
3275 	if (memcg_id < 0)
3276 		return memcg_id;
3277 
3278 	static_branch_inc(&memcg_kmem_enabled_key);
3279 	/*
3280 	 * A memory cgroup is considered kmem-online as soon as it gets
3281 	 * kmemcg_id. Setting the id after enabling static branching will
3282 	 * guarantee no one starts accounting before all call sites are
3283 	 * patched.
3284 	 */
3285 	memcg->kmemcg_id = memcg_id;
3286 	memcg->kmem_state = KMEM_ONLINE;
3287 	INIT_LIST_HEAD(&memcg->kmem_caches);
3288 
3289 	return 0;
3290 }
3291 
3292 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3293 {
3294 	struct cgroup_subsys_state *css;
3295 	struct mem_cgroup *parent, *child;
3296 	int kmemcg_id;
3297 
3298 	if (memcg->kmem_state != KMEM_ONLINE)
3299 		return;
3300 	/*
3301 	 * Clear the online state before clearing memcg_caches array
3302 	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
3303 	 * guarantees that no cache will be created for this cgroup
3304 	 * after we are done (see memcg_create_kmem_cache()).
3305 	 */
3306 	memcg->kmem_state = KMEM_ALLOCATED;
3307 
3308 	parent = parent_mem_cgroup(memcg);
3309 	if (!parent)
3310 		parent = root_mem_cgroup;
3311 
3312 	memcg_deactivate_kmem_caches(memcg, parent);
3313 
3314 	kmemcg_id = memcg->kmemcg_id;
3315 	BUG_ON(kmemcg_id < 0);
3316 
3317 	/*
3318 	 * Change kmemcg_id of this cgroup and all its descendants to the
3319 	 * parent's id, and then move all entries from this cgroup's list_lrus
3320 	 * to ones of the parent. After we have finished, all list_lrus
3321 	 * corresponding to this cgroup are guaranteed to remain empty. The
3322 	 * ordering is imposed by list_lru_node->lock taken by
3323 	 * memcg_drain_all_list_lrus().
3324 	 */
3325 	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3326 	css_for_each_descendant_pre(css, &memcg->css) {
3327 		child = mem_cgroup_from_css(css);
3328 		BUG_ON(child->kmemcg_id != kmemcg_id);
3329 		child->kmemcg_id = parent->kmemcg_id;
3330 		if (!memcg->use_hierarchy)
3331 			break;
3332 	}
3333 	rcu_read_unlock();
3334 
3335 	memcg_drain_all_list_lrus(kmemcg_id, parent);
3336 
3337 	memcg_free_cache_id(kmemcg_id);
3338 }
3339 
3340 static void memcg_free_kmem(struct mem_cgroup *memcg)
3341 {
3342 	/* css_alloc() failed, offlining didn't happen */
3343 	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3344 		memcg_offline_kmem(memcg);
3345 
3346 	if (memcg->kmem_state == KMEM_ALLOCATED) {
3347 		WARN_ON(!list_empty(&memcg->kmem_caches));
3348 		static_branch_dec(&memcg_kmem_enabled_key);
3349 	}
3350 }
3351 #else
3352 static int memcg_online_kmem(struct mem_cgroup *memcg)
3353 {
3354 	return 0;
3355 }
3356 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3357 {
3358 }
3359 static void memcg_free_kmem(struct mem_cgroup *memcg)
3360 {
3361 }
3362 #endif /* CONFIG_MEMCG_KMEM */
3363 
3364 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3365 				 unsigned long max)
3366 {
3367 	int ret;
3368 
3369 	mutex_lock(&memcg_max_mutex);
3370 	ret = page_counter_set_max(&memcg->kmem, max);
3371 	mutex_unlock(&memcg_max_mutex);
3372 	return ret;
3373 }
3374 
3375 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3376 {
3377 	int ret;
3378 
3379 	mutex_lock(&memcg_max_mutex);
3380 
3381 	ret = page_counter_set_max(&memcg->tcpmem, max);
3382 	if (ret)
3383 		goto out;
3384 
3385 	if (!memcg->tcpmem_active) {
3386 		/*
3387 		 * The active flag needs to be written after the static_key
3388 		 * update. This is what guarantees that the socket activation
3389 		 * function is the last one to run. See mem_cgroup_sk_alloc()
3390 		 * for details, and note that we don't mark any socket as
3391 		 * belonging to this memcg until that flag is up.
3392 		 *
3393 		 * We need to do this, because static_keys will span multiple
3394 		 * sites, but we can't control their order. If we mark a socket
3395 		 * as accounted, but the accounting functions are not patched in
3396 		 * yet, we'll lose accounting.
3397 		 *
3398 		 * We never race with the readers in mem_cgroup_sk_alloc(),
3399 		 * because when this value change, the code to process it is not
3400 		 * patched in yet.
3401 		 */
3402 		static_branch_inc(&memcg_sockets_enabled_key);
3403 		memcg->tcpmem_active = true;
3404 	}
3405 out:
3406 	mutex_unlock(&memcg_max_mutex);
3407 	return ret;
3408 }
3409 
3410 /*
3411  * The user of this function is...
3412  * RES_LIMIT.
3413  */
3414 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3415 				char *buf, size_t nbytes, loff_t off)
3416 {
3417 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3418 	unsigned long nr_pages;
3419 	int ret;
3420 
3421 	buf = strstrip(buf);
3422 	ret = page_counter_memparse(buf, "-1", &nr_pages);
3423 	if (ret)
3424 		return ret;
3425 
3426 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3427 	case RES_LIMIT:
3428 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3429 			ret = -EINVAL;
3430 			break;
3431 		}
3432 		switch (MEMFILE_TYPE(of_cft(of)->private)) {
3433 		case _MEM:
3434 			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3435 			break;
3436 		case _MEMSWAP:
3437 			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3438 			break;
3439 		case _KMEM:
3440 			ret = memcg_update_kmem_max(memcg, nr_pages);
3441 			break;
3442 		case _TCP:
3443 			ret = memcg_update_tcp_max(memcg, nr_pages);
3444 			break;
3445 		}
3446 		break;
3447 	case RES_SOFT_LIMIT:
3448 		memcg->soft_limit = nr_pages;
3449 		ret = 0;
3450 		break;
3451 	}
3452 	return ret ?: nbytes;
3453 }
3454 
3455 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3456 				size_t nbytes, loff_t off)
3457 {
3458 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3459 	struct page_counter *counter;
3460 
3461 	switch (MEMFILE_TYPE(of_cft(of)->private)) {
3462 	case _MEM:
3463 		counter = &memcg->memory;
3464 		break;
3465 	case _MEMSWAP:
3466 		counter = &memcg->memsw;
3467 		break;
3468 	case _KMEM:
3469 		counter = &memcg->kmem;
3470 		break;
3471 	case _TCP:
3472 		counter = &memcg->tcpmem;
3473 		break;
3474 	default:
3475 		BUG();
3476 	}
3477 
3478 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3479 	case RES_MAX_USAGE:
3480 		page_counter_reset_watermark(counter);
3481 		break;
3482 	case RES_FAILCNT:
3483 		counter->failcnt = 0;
3484 		break;
3485 	default:
3486 		BUG();
3487 	}
3488 
3489 	return nbytes;
3490 }
3491 
3492 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3493 					struct cftype *cft)
3494 {
3495 	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3496 }
3497 
3498 #ifdef CONFIG_MMU
3499 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3500 					struct cftype *cft, u64 val)
3501 {
3502 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3503 
3504 	if (val & ~MOVE_MASK)
3505 		return -EINVAL;
3506 
3507 	/*
3508 	 * No kind of locking is needed in here, because ->can_attach() will
3509 	 * check this value once in the beginning of the process, and then carry
3510 	 * on with stale data. This means that changes to this value will only
3511 	 * affect task migrations starting after the change.
3512 	 */
3513 	memcg->move_charge_at_immigrate = val;
3514 	return 0;
3515 }
3516 #else
3517 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3518 					struct cftype *cft, u64 val)
3519 {
3520 	return -ENOSYS;
3521 }
3522 #endif
3523 
3524 #ifdef CONFIG_NUMA
3525 
3526 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3527 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3528 #define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)
3529 
3530 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3531 					   int nid, unsigned int lru_mask)
3532 {
3533 	struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
3534 	unsigned long nr = 0;
3535 	enum lru_list lru;
3536 
3537 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
3538 
3539 	for_each_lru(lru) {
3540 		if (!(BIT(lru) & lru_mask))
3541 			continue;
3542 		nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3543 	}
3544 	return nr;
3545 }
3546 
3547 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3548 					     unsigned int lru_mask)
3549 {
3550 	unsigned long nr = 0;
3551 	enum lru_list lru;
3552 
3553 	for_each_lru(lru) {
3554 		if (!(BIT(lru) & lru_mask))
3555 			continue;
3556 		nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3557 	}
3558 	return nr;
3559 }
3560 
3561 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3562 {
3563 	struct numa_stat {
3564 		const char *name;
3565 		unsigned int lru_mask;
3566 	};
3567 
3568 	static const struct numa_stat stats[] = {
3569 		{ "total", LRU_ALL },
3570 		{ "file", LRU_ALL_FILE },
3571 		{ "anon", LRU_ALL_ANON },
3572 		{ "unevictable", BIT(LRU_UNEVICTABLE) },
3573 	};
3574 	const struct numa_stat *stat;
3575 	int nid;
3576 	unsigned long nr;
3577 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3578 
3579 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3580 		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3581 		seq_printf(m, "%s=%lu", stat->name, nr);
3582 		for_each_node_state(nid, N_MEMORY) {
3583 			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3584 							  stat->lru_mask);
3585 			seq_printf(m, " N%d=%lu", nid, nr);
3586 		}
3587 		seq_putc(m, '\n');
3588 	}
3589 
3590 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3591 		struct mem_cgroup *iter;
3592 
3593 		nr = 0;
3594 		for_each_mem_cgroup_tree(iter, memcg)
3595 			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3596 		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3597 		for_each_node_state(nid, N_MEMORY) {
3598 			nr = 0;
3599 			for_each_mem_cgroup_tree(iter, memcg)
3600 				nr += mem_cgroup_node_nr_lru_pages(
3601 					iter, nid, stat->lru_mask);
3602 			seq_printf(m, " N%d=%lu", nid, nr);
3603 		}
3604 		seq_putc(m, '\n');
3605 	}
3606 
3607 	return 0;
3608 }
3609 #endif /* CONFIG_NUMA */
3610 
3611 static const unsigned int memcg1_stats[] = {
3612 	MEMCG_CACHE,
3613 	MEMCG_RSS,
3614 	MEMCG_RSS_HUGE,
3615 	NR_SHMEM,
3616 	NR_FILE_MAPPED,
3617 	NR_FILE_DIRTY,
3618 	NR_WRITEBACK,
3619 	MEMCG_SWAP,
3620 };
3621 
3622 static const char *const memcg1_stat_names[] = {
3623 	"cache",
3624 	"rss",
3625 	"rss_huge",
3626 	"shmem",
3627 	"mapped_file",
3628 	"dirty",
3629 	"writeback",
3630 	"swap",
3631 };
3632 
3633 /* Universal VM events cgroup1 shows, original sort order */
3634 static const unsigned int memcg1_events[] = {
3635 	PGPGIN,
3636 	PGPGOUT,
3637 	PGFAULT,
3638 	PGMAJFAULT,
3639 };
3640 
3641 static const char *const memcg1_event_names[] = {
3642 	"pgpgin",
3643 	"pgpgout",
3644 	"pgfault",
3645 	"pgmajfault",
3646 };
3647 
3648 static int memcg_stat_show(struct seq_file *m, void *v)
3649 {
3650 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3651 	unsigned long memory, memsw;
3652 	struct mem_cgroup *mi;
3653 	unsigned int i;
3654 
3655 	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3656 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3657 
3658 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3659 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3660 			continue;
3661 		seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3662 			   memcg_page_state_local(memcg, memcg1_stats[i]) *
3663 			   PAGE_SIZE);
3664 	}
3665 
3666 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3667 		seq_printf(m, "%s %lu\n", memcg1_event_names[i],
3668 			   memcg_events_local(memcg, memcg1_events[i]));
3669 
3670 	for (i = 0; i < NR_LRU_LISTS; i++)
3671 		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3672 			   memcg_page_state_local(memcg, NR_LRU_BASE + i) *
3673 			   PAGE_SIZE);
3674 
3675 	/* Hierarchical information */
3676 	memory = memsw = PAGE_COUNTER_MAX;
3677 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3678 		memory = min(memory, mi->memory.max);
3679 		memsw = min(memsw, mi->memsw.max);
3680 	}
3681 	seq_printf(m, "hierarchical_memory_limit %llu\n",
3682 		   (u64)memory * PAGE_SIZE);
3683 	if (do_memsw_account())
3684 		seq_printf(m, "hierarchical_memsw_limit %llu\n",
3685 			   (u64)memsw * PAGE_SIZE);
3686 
3687 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3688 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3689 			continue;
3690 		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
3691 			   (u64)memcg_page_state(memcg, memcg1_stats[i]) *
3692 			   PAGE_SIZE);
3693 	}
3694 
3695 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3696 		seq_printf(m, "total_%s %llu\n", memcg1_event_names[i],
3697 			   (u64)memcg_events(memcg, memcg1_events[i]));
3698 
3699 	for (i = 0; i < NR_LRU_LISTS; i++)
3700 		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i],
3701 			   (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
3702 			   PAGE_SIZE);
3703 
3704 #ifdef CONFIG_DEBUG_VM
3705 	{
3706 		pg_data_t *pgdat;
3707 		struct mem_cgroup_per_node *mz;
3708 		struct zone_reclaim_stat *rstat;
3709 		unsigned long recent_rotated[2] = {0, 0};
3710 		unsigned long recent_scanned[2] = {0, 0};
3711 
3712 		for_each_online_pgdat(pgdat) {
3713 			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3714 			rstat = &mz->lruvec.reclaim_stat;
3715 
3716 			recent_rotated[0] += rstat->recent_rotated[0];
3717 			recent_rotated[1] += rstat->recent_rotated[1];
3718 			recent_scanned[0] += rstat->recent_scanned[0];
3719 			recent_scanned[1] += rstat->recent_scanned[1];
3720 		}
3721 		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3722 		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3723 		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3724 		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3725 	}
3726 #endif
3727 
3728 	return 0;
3729 }
3730 
3731 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3732 				      struct cftype *cft)
3733 {
3734 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3735 
3736 	return mem_cgroup_swappiness(memcg);
3737 }
3738 
3739 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3740 				       struct cftype *cft, u64 val)
3741 {
3742 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3743 
3744 	if (val > 100)
3745 		return -EINVAL;
3746 
3747 	if (css->parent)
3748 		memcg->swappiness = val;
3749 	else
3750 		vm_swappiness = val;
3751 
3752 	return 0;
3753 }
3754 
3755 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3756 {
3757 	struct mem_cgroup_threshold_ary *t;
3758 	unsigned long usage;
3759 	int i;
3760 
3761 	rcu_read_lock();
3762 	if (!swap)
3763 		t = rcu_dereference(memcg->thresholds.primary);
3764 	else
3765 		t = rcu_dereference(memcg->memsw_thresholds.primary);
3766 
3767 	if (!t)
3768 		goto unlock;
3769 
3770 	usage = mem_cgroup_usage(memcg, swap);
3771 
3772 	/*
3773 	 * current_threshold points to threshold just below or equal to usage.
3774 	 * If it's not true, a threshold was crossed after last
3775 	 * call of __mem_cgroup_threshold().
3776 	 */
3777 	i = t->current_threshold;
3778 
3779 	/*
3780 	 * Iterate backward over array of thresholds starting from
3781 	 * current_threshold and check if a threshold is crossed.
3782 	 * If none of thresholds below usage is crossed, we read
3783 	 * only one element of the array here.
3784 	 */
3785 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3786 		eventfd_signal(t->entries[i].eventfd, 1);
3787 
3788 	/* i = current_threshold + 1 */
3789 	i++;
3790 
3791 	/*
3792 	 * Iterate forward over array of thresholds starting from
3793 	 * current_threshold+1 and check if a threshold is crossed.
3794 	 * If none of thresholds above usage is crossed, we read
3795 	 * only one element of the array here.
3796 	 */
3797 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3798 		eventfd_signal(t->entries[i].eventfd, 1);
3799 
3800 	/* Update current_threshold */
3801 	t->current_threshold = i - 1;
3802 unlock:
3803 	rcu_read_unlock();
3804 }
3805 
3806 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3807 {
3808 	while (memcg) {
3809 		__mem_cgroup_threshold(memcg, false);
3810 		if (do_memsw_account())
3811 			__mem_cgroup_threshold(memcg, true);
3812 
3813 		memcg = parent_mem_cgroup(memcg);
3814 	}
3815 }
3816 
3817 static int compare_thresholds(const void *a, const void *b)
3818 {
3819 	const struct mem_cgroup_threshold *_a = a;
3820 	const struct mem_cgroup_threshold *_b = b;
3821 
3822 	if (_a->threshold > _b->threshold)
3823 		return 1;
3824 
3825 	if (_a->threshold < _b->threshold)
3826 		return -1;
3827 
3828 	return 0;
3829 }
3830 
3831 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3832 {
3833 	struct mem_cgroup_eventfd_list *ev;
3834 
3835 	spin_lock(&memcg_oom_lock);
3836 
3837 	list_for_each_entry(ev, &memcg->oom_notify, list)
3838 		eventfd_signal(ev->eventfd, 1);
3839 
3840 	spin_unlock(&memcg_oom_lock);
3841 	return 0;
3842 }
3843 
3844 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3845 {
3846 	struct mem_cgroup *iter;
3847 
3848 	for_each_mem_cgroup_tree(iter, memcg)
3849 		mem_cgroup_oom_notify_cb(iter);
3850 }
3851 
3852 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3853 	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3854 {
3855 	struct mem_cgroup_thresholds *thresholds;
3856 	struct mem_cgroup_threshold_ary *new;
3857 	unsigned long threshold;
3858 	unsigned long usage;
3859 	int i, size, ret;
3860 
3861 	ret = page_counter_memparse(args, "-1", &threshold);
3862 	if (ret)
3863 		return ret;
3864 
3865 	mutex_lock(&memcg->thresholds_lock);
3866 
3867 	if (type == _MEM) {
3868 		thresholds = &memcg->thresholds;
3869 		usage = mem_cgroup_usage(memcg, false);
3870 	} else if (type == _MEMSWAP) {
3871 		thresholds = &memcg->memsw_thresholds;
3872 		usage = mem_cgroup_usage(memcg, true);
3873 	} else
3874 		BUG();
3875 
3876 	/* Check if a threshold crossed before adding a new one */
3877 	if (thresholds->primary)
3878 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3879 
3880 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3881 
3882 	/* Allocate memory for new array of thresholds */
3883 	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
3884 	if (!new) {
3885 		ret = -ENOMEM;
3886 		goto unlock;
3887 	}
3888 	new->size = size;
3889 
3890 	/* Copy thresholds (if any) to new array */
3891 	if (thresholds->primary) {
3892 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3893 				sizeof(struct mem_cgroup_threshold));
3894 	}
3895 
3896 	/* Add new threshold */
3897 	new->entries[size - 1].eventfd = eventfd;
3898 	new->entries[size - 1].threshold = threshold;
3899 
3900 	/* Sort thresholds. Registering of new threshold isn't time-critical */
3901 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3902 			compare_thresholds, NULL);
3903 
3904 	/* Find current threshold */
3905 	new->current_threshold = -1;
3906 	for (i = 0; i < size; i++) {
3907 		if (new->entries[i].threshold <= usage) {
3908 			/*
3909 			 * new->current_threshold will not be used until
3910 			 * rcu_assign_pointer(), so it's safe to increment
3911 			 * it here.
3912 			 */
3913 			++new->current_threshold;
3914 		} else
3915 			break;
3916 	}
3917 
3918 	/* Free old spare buffer and save old primary buffer as spare */
3919 	kfree(thresholds->spare);
3920 	thresholds->spare = thresholds->primary;
3921 
3922 	rcu_assign_pointer(thresholds->primary, new);
3923 
3924 	/* To be sure that nobody uses thresholds */
3925 	synchronize_rcu();
3926 
3927 unlock:
3928 	mutex_unlock(&memcg->thresholds_lock);
3929 
3930 	return ret;
3931 }
3932 
3933 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3934 	struct eventfd_ctx *eventfd, const char *args)
3935 {
3936 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3937 }
3938 
3939 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3940 	struct eventfd_ctx *eventfd, const char *args)
3941 {
3942 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3943 }
3944 
3945 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3946 	struct eventfd_ctx *eventfd, enum res_type type)
3947 {
3948 	struct mem_cgroup_thresholds *thresholds;
3949 	struct mem_cgroup_threshold_ary *new;
3950 	unsigned long usage;
3951 	int i, j, size;
3952 
3953 	mutex_lock(&memcg->thresholds_lock);
3954 
3955 	if (type == _MEM) {
3956 		thresholds = &memcg->thresholds;
3957 		usage = mem_cgroup_usage(memcg, false);
3958 	} else if (type == _MEMSWAP) {
3959 		thresholds = &memcg->memsw_thresholds;
3960 		usage = mem_cgroup_usage(memcg, true);
3961 	} else
3962 		BUG();
3963 
3964 	if (!thresholds->primary)
3965 		goto unlock;
3966 
3967 	/* Check if a threshold crossed before removing */
3968 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3969 
3970 	/* Calculate new number of threshold */
3971 	size = 0;
3972 	for (i = 0; i < thresholds->primary->size; i++) {
3973 		if (thresholds->primary->entries[i].eventfd != eventfd)
3974 			size++;
3975 	}
3976 
3977 	new = thresholds->spare;
3978 
3979 	/* Set thresholds array to NULL if we don't have thresholds */
3980 	if (!size) {
3981 		kfree(new);
3982 		new = NULL;
3983 		goto swap_buffers;
3984 	}
3985 
3986 	new->size = size;
3987 
3988 	/* Copy thresholds and find current threshold */
3989 	new->current_threshold = -1;
3990 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3991 		if (thresholds->primary->entries[i].eventfd == eventfd)
3992 			continue;
3993 
3994 		new->entries[j] = thresholds->primary->entries[i];
3995 		if (new->entries[j].threshold <= usage) {
3996 			/*
3997 			 * new->current_threshold will not be used
3998 			 * until rcu_assign_pointer(), so it's safe to increment
3999 			 * it here.
4000 			 */
4001 			++new->current_threshold;
4002 		}
4003 		j++;
4004 	}
4005 
4006 swap_buffers:
4007 	/* Swap primary and spare array */
4008 	thresholds->spare = thresholds->primary;
4009 
4010 	rcu_assign_pointer(thresholds->primary, new);
4011 
4012 	/* To be sure that nobody uses thresholds */
4013 	synchronize_rcu();
4014 
4015 	/* If all events are unregistered, free the spare array */
4016 	if (!new) {
4017 		kfree(thresholds->spare);
4018 		thresholds->spare = NULL;
4019 	}
4020 unlock:
4021 	mutex_unlock(&memcg->thresholds_lock);
4022 }
4023 
4024 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4025 	struct eventfd_ctx *eventfd)
4026 {
4027 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4028 }
4029 
4030 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4031 	struct eventfd_ctx *eventfd)
4032 {
4033 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4034 }
4035 
4036 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4037 	struct eventfd_ctx *eventfd, const char *args)
4038 {
4039 	struct mem_cgroup_eventfd_list *event;
4040 
4041 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4042 	if (!event)
4043 		return -ENOMEM;
4044 
4045 	spin_lock(&memcg_oom_lock);
4046 
4047 	event->eventfd = eventfd;
4048 	list_add(&event->list, &memcg->oom_notify);
4049 
4050 	/* already in OOM ? */
4051 	if (memcg->under_oom)
4052 		eventfd_signal(eventfd, 1);
4053 	spin_unlock(&memcg_oom_lock);
4054 
4055 	return 0;
4056 }
4057 
4058 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4059 	struct eventfd_ctx *eventfd)
4060 {
4061 	struct mem_cgroup_eventfd_list *ev, *tmp;
4062 
4063 	spin_lock(&memcg_oom_lock);
4064 
4065 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4066 		if (ev->eventfd == eventfd) {
4067 			list_del(&ev->list);
4068 			kfree(ev);
4069 		}
4070 	}
4071 
4072 	spin_unlock(&memcg_oom_lock);
4073 }
4074 
4075 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4076 {
4077 	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4078 
4079 	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4080 	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4081 	seq_printf(sf, "oom_kill %lu\n",
4082 		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4083 	return 0;
4084 }
4085 
4086 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4087 	struct cftype *cft, u64 val)
4088 {
4089 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4090 
4091 	/* cannot set to root cgroup and only 0 and 1 are allowed */
4092 	if (!css->parent || !((val == 0) || (val == 1)))
4093 		return -EINVAL;
4094 
4095 	memcg->oom_kill_disable = val;
4096 	if (!val)
4097 		memcg_oom_recover(memcg);
4098 
4099 	return 0;
4100 }
4101 
4102 #ifdef CONFIG_CGROUP_WRITEBACK
4103 
4104 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4105 {
4106 	return wb_domain_init(&memcg->cgwb_domain, gfp);
4107 }
4108 
4109 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4110 {
4111 	wb_domain_exit(&memcg->cgwb_domain);
4112 }
4113 
4114 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4115 {
4116 	wb_domain_size_changed(&memcg->cgwb_domain);
4117 }
4118 
4119 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4120 {
4121 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4122 
4123 	if (!memcg->css.parent)
4124 		return NULL;
4125 
4126 	return &memcg->cgwb_domain;
4127 }
4128 
4129 /*
4130  * idx can be of type enum memcg_stat_item or node_stat_item.
4131  * Keep in sync with memcg_exact_page().
4132  */
4133 static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4134 {
4135 	long x = atomic_long_read(&memcg->vmstats[idx]);
4136 	int cpu;
4137 
4138 	for_each_online_cpu(cpu)
4139 		x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4140 	if (x < 0)
4141 		x = 0;
4142 	return x;
4143 }
4144 
4145 /**
4146  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4147  * @wb: bdi_writeback in question
4148  * @pfilepages: out parameter for number of file pages
4149  * @pheadroom: out parameter for number of allocatable pages according to memcg
4150  * @pdirty: out parameter for number of dirty pages
4151  * @pwriteback: out parameter for number of pages under writeback
4152  *
4153  * Determine the numbers of file, headroom, dirty, and writeback pages in
4154  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
4155  * is a bit more involved.
4156  *
4157  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
4158  * headroom is calculated as the lowest headroom of itself and the
4159  * ancestors.  Note that this doesn't consider the actual amount of
4160  * available memory in the system.  The caller should further cap
4161  * *@pheadroom accordingly.
4162  */
4163 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4164 			 unsigned long *pheadroom, unsigned long *pdirty,
4165 			 unsigned long *pwriteback)
4166 {
4167 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4168 	struct mem_cgroup *parent;
4169 
4170 	*pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4171 
4172 	/* this should eventually include NR_UNSTABLE_NFS */
4173 	*pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4174 	*pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4175 			memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4176 	*pheadroom = PAGE_COUNTER_MAX;
4177 
4178 	while ((parent = parent_mem_cgroup(memcg))) {
4179 		unsigned long ceiling = min(memcg->memory.max, memcg->high);
4180 		unsigned long used = page_counter_read(&memcg->memory);
4181 
4182 		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4183 		memcg = parent;
4184 	}
4185 }
4186 
4187 #else	/* CONFIG_CGROUP_WRITEBACK */
4188 
4189 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4190 {
4191 	return 0;
4192 }
4193 
4194 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4195 {
4196 }
4197 
4198 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4199 {
4200 }
4201 
4202 #endif	/* CONFIG_CGROUP_WRITEBACK */
4203 
4204 /*
4205  * DO NOT USE IN NEW FILES.
4206  *
4207  * "cgroup.event_control" implementation.
4208  *
4209  * This is way over-engineered.  It tries to support fully configurable
4210  * events for each user.  Such level of flexibility is completely
4211  * unnecessary especially in the light of the planned unified hierarchy.
4212  *
4213  * Please deprecate this and replace with something simpler if at all
4214  * possible.
4215  */
4216 
4217 /*
4218  * Unregister event and free resources.
4219  *
4220  * Gets called from workqueue.
4221  */
4222 static void memcg_event_remove(struct work_struct *work)
4223 {
4224 	struct mem_cgroup_event *event =
4225 		container_of(work, struct mem_cgroup_event, remove);
4226 	struct mem_cgroup *memcg = event->memcg;
4227 
4228 	remove_wait_queue(event->wqh, &event->wait);
4229 
4230 	event->unregister_event(memcg, event->eventfd);
4231 
4232 	/* Notify userspace the event is going away. */
4233 	eventfd_signal(event->eventfd, 1);
4234 
4235 	eventfd_ctx_put(event->eventfd);
4236 	kfree(event);
4237 	css_put(&memcg->css);
4238 }
4239 
4240 /*
4241  * Gets called on EPOLLHUP on eventfd when user closes it.
4242  *
4243  * Called with wqh->lock held and interrupts disabled.
4244  */
4245 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4246 			    int sync, void *key)
4247 {
4248 	struct mem_cgroup_event *event =
4249 		container_of(wait, struct mem_cgroup_event, wait);
4250 	struct mem_cgroup *memcg = event->memcg;
4251 	__poll_t flags = key_to_poll(key);
4252 
4253 	if (flags & EPOLLHUP) {
4254 		/*
4255 		 * If the event has been detached at cgroup removal, we
4256 		 * can simply return knowing the other side will cleanup
4257 		 * for us.
4258 		 *
4259 		 * We can't race against event freeing since the other
4260 		 * side will require wqh->lock via remove_wait_queue(),
4261 		 * which we hold.
4262 		 */
4263 		spin_lock(&memcg->event_list_lock);
4264 		if (!list_empty(&event->list)) {
4265 			list_del_init(&event->list);
4266 			/*
4267 			 * We are in atomic context, but cgroup_event_remove()
4268 			 * may sleep, so we have to call it in workqueue.
4269 			 */
4270 			schedule_work(&event->remove);
4271 		}
4272 		spin_unlock(&memcg->event_list_lock);
4273 	}
4274 
4275 	return 0;
4276 }
4277 
4278 static void memcg_event_ptable_queue_proc(struct file *file,
4279 		wait_queue_head_t *wqh, poll_table *pt)
4280 {
4281 	struct mem_cgroup_event *event =
4282 		container_of(pt, struct mem_cgroup_event, pt);
4283 
4284 	event->wqh = wqh;
4285 	add_wait_queue(wqh, &event->wait);
4286 }
4287 
4288 /*
4289  * DO NOT USE IN NEW FILES.
4290  *
4291  * Parse input and register new cgroup event handler.
4292  *
4293  * Input must be in format '<event_fd> <control_fd> <args>'.
4294  * Interpretation of args is defined by control file implementation.
4295  */
4296 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4297 					 char *buf, size_t nbytes, loff_t off)
4298 {
4299 	struct cgroup_subsys_state *css = of_css(of);
4300 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4301 	struct mem_cgroup_event *event;
4302 	struct cgroup_subsys_state *cfile_css;
4303 	unsigned int efd, cfd;
4304 	struct fd efile;
4305 	struct fd cfile;
4306 	const char *name;
4307 	char *endp;
4308 	int ret;
4309 
4310 	buf = strstrip(buf);
4311 
4312 	efd = simple_strtoul(buf, &endp, 10);
4313 	if (*endp != ' ')
4314 		return -EINVAL;
4315 	buf = endp + 1;
4316 
4317 	cfd = simple_strtoul(buf, &endp, 10);
4318 	if ((*endp != ' ') && (*endp != '\0'))
4319 		return -EINVAL;
4320 	buf = endp + 1;
4321 
4322 	event = kzalloc(sizeof(*event), GFP_KERNEL);
4323 	if (!event)
4324 		return -ENOMEM;
4325 
4326 	event->memcg = memcg;
4327 	INIT_LIST_HEAD(&event->list);
4328 	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4329 	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4330 	INIT_WORK(&event->remove, memcg_event_remove);
4331 
4332 	efile = fdget(efd);
4333 	if (!efile.file) {
4334 		ret = -EBADF;
4335 		goto out_kfree;
4336 	}
4337 
4338 	event->eventfd = eventfd_ctx_fileget(efile.file);
4339 	if (IS_ERR(event->eventfd)) {
4340 		ret = PTR_ERR(event->eventfd);
4341 		goto out_put_efile;
4342 	}
4343 
4344 	cfile = fdget(cfd);
4345 	if (!cfile.file) {
4346 		ret = -EBADF;
4347 		goto out_put_eventfd;
4348 	}
4349 
4350 	/* the process need read permission on control file */
4351 	/* AV: shouldn't we check that it's been opened for read instead? */
4352 	ret = inode_permission(file_inode(cfile.file), MAY_READ);
4353 	if (ret < 0)
4354 		goto out_put_cfile;
4355 
4356 	/*
4357 	 * Determine the event callbacks and set them in @event.  This used
4358 	 * to be done via struct cftype but cgroup core no longer knows
4359 	 * about these events.  The following is crude but the whole thing
4360 	 * is for compatibility anyway.
4361 	 *
4362 	 * DO NOT ADD NEW FILES.
4363 	 */
4364 	name = cfile.file->f_path.dentry->d_name.name;
4365 
4366 	if (!strcmp(name, "memory.usage_in_bytes")) {
4367 		event->register_event = mem_cgroup_usage_register_event;
4368 		event->unregister_event = mem_cgroup_usage_unregister_event;
4369 	} else if (!strcmp(name, "memory.oom_control")) {
4370 		event->register_event = mem_cgroup_oom_register_event;
4371 		event->unregister_event = mem_cgroup_oom_unregister_event;
4372 	} else if (!strcmp(name, "memory.pressure_level")) {
4373 		event->register_event = vmpressure_register_event;
4374 		event->unregister_event = vmpressure_unregister_event;
4375 	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4376 		event->register_event = memsw_cgroup_usage_register_event;
4377 		event->unregister_event = memsw_cgroup_usage_unregister_event;
4378 	} else {
4379 		ret = -EINVAL;
4380 		goto out_put_cfile;
4381 	}
4382 
4383 	/*
4384 	 * Verify @cfile should belong to @css.  Also, remaining events are
4385 	 * automatically removed on cgroup destruction but the removal is
4386 	 * asynchronous, so take an extra ref on @css.
4387 	 */
4388 	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4389 					       &memory_cgrp_subsys);
4390 	ret = -EINVAL;
4391 	if (IS_ERR(cfile_css))
4392 		goto out_put_cfile;
4393 	if (cfile_css != css) {
4394 		css_put(cfile_css);
4395 		goto out_put_cfile;
4396 	}
4397 
4398 	ret = event->register_event(memcg, event->eventfd, buf);
4399 	if (ret)
4400 		goto out_put_css;
4401 
4402 	vfs_poll(efile.file, &event->pt);
4403 
4404 	spin_lock(&memcg->event_list_lock);
4405 	list_add(&event->list, &memcg->event_list);
4406 	spin_unlock(&memcg->event_list_lock);
4407 
4408 	fdput(cfile);
4409 	fdput(efile);
4410 
4411 	return nbytes;
4412 
4413 out_put_css:
4414 	css_put(css);
4415 out_put_cfile:
4416 	fdput(cfile);
4417 out_put_eventfd:
4418 	eventfd_ctx_put(event->eventfd);
4419 out_put_efile:
4420 	fdput(efile);
4421 out_kfree:
4422 	kfree(event);
4423 
4424 	return ret;
4425 }
4426 
4427 static struct cftype mem_cgroup_legacy_files[] = {
4428 	{
4429 		.name = "usage_in_bytes",
4430 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4431 		.read_u64 = mem_cgroup_read_u64,
4432 	},
4433 	{
4434 		.name = "max_usage_in_bytes",
4435 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4436 		.write = mem_cgroup_reset,
4437 		.read_u64 = mem_cgroup_read_u64,
4438 	},
4439 	{
4440 		.name = "limit_in_bytes",
4441 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4442 		.write = mem_cgroup_write,
4443 		.read_u64 = mem_cgroup_read_u64,
4444 	},
4445 	{
4446 		.name = "soft_limit_in_bytes",
4447 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4448 		.write = mem_cgroup_write,
4449 		.read_u64 = mem_cgroup_read_u64,
4450 	},
4451 	{
4452 		.name = "failcnt",
4453 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4454 		.write = mem_cgroup_reset,
4455 		.read_u64 = mem_cgroup_read_u64,
4456 	},
4457 	{
4458 		.name = "stat",
4459 		.seq_show = memcg_stat_show,
4460 	},
4461 	{
4462 		.name = "force_empty",
4463 		.write = mem_cgroup_force_empty_write,
4464 	},
4465 	{
4466 		.name = "use_hierarchy",
4467 		.write_u64 = mem_cgroup_hierarchy_write,
4468 		.read_u64 = mem_cgroup_hierarchy_read,
4469 	},
4470 	{
4471 		.name = "cgroup.event_control",		/* XXX: for compat */
4472 		.write = memcg_write_event_control,
4473 		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4474 	},
4475 	{
4476 		.name = "swappiness",
4477 		.read_u64 = mem_cgroup_swappiness_read,
4478 		.write_u64 = mem_cgroup_swappiness_write,
4479 	},
4480 	{
4481 		.name = "move_charge_at_immigrate",
4482 		.read_u64 = mem_cgroup_move_charge_read,
4483 		.write_u64 = mem_cgroup_move_charge_write,
4484 	},
4485 	{
4486 		.name = "oom_control",
4487 		.seq_show = mem_cgroup_oom_control_read,
4488 		.write_u64 = mem_cgroup_oom_control_write,
4489 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4490 	},
4491 	{
4492 		.name = "pressure_level",
4493 	},
4494 #ifdef CONFIG_NUMA
4495 	{
4496 		.name = "numa_stat",
4497 		.seq_show = memcg_numa_stat_show,
4498 	},
4499 #endif
4500 	{
4501 		.name = "kmem.limit_in_bytes",
4502 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4503 		.write = mem_cgroup_write,
4504 		.read_u64 = mem_cgroup_read_u64,
4505 	},
4506 	{
4507 		.name = "kmem.usage_in_bytes",
4508 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4509 		.read_u64 = mem_cgroup_read_u64,
4510 	},
4511 	{
4512 		.name = "kmem.failcnt",
4513 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4514 		.write = mem_cgroup_reset,
4515 		.read_u64 = mem_cgroup_read_u64,
4516 	},
4517 	{
4518 		.name = "kmem.max_usage_in_bytes",
4519 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4520 		.write = mem_cgroup_reset,
4521 		.read_u64 = mem_cgroup_read_u64,
4522 	},
4523 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
4524 	{
4525 		.name = "kmem.slabinfo",
4526 		.seq_start = memcg_slab_start,
4527 		.seq_next = memcg_slab_next,
4528 		.seq_stop = memcg_slab_stop,
4529 		.seq_show = memcg_slab_show,
4530 	},
4531 #endif
4532 	{
4533 		.name = "kmem.tcp.limit_in_bytes",
4534 		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4535 		.write = mem_cgroup_write,
4536 		.read_u64 = mem_cgroup_read_u64,
4537 	},
4538 	{
4539 		.name = "kmem.tcp.usage_in_bytes",
4540 		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4541 		.read_u64 = mem_cgroup_read_u64,
4542 	},
4543 	{
4544 		.name = "kmem.tcp.failcnt",
4545 		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4546 		.write = mem_cgroup_reset,
4547 		.read_u64 = mem_cgroup_read_u64,
4548 	},
4549 	{
4550 		.name = "kmem.tcp.max_usage_in_bytes",
4551 		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4552 		.write = mem_cgroup_reset,
4553 		.read_u64 = mem_cgroup_read_u64,
4554 	},
4555 	{ },	/* terminate */
4556 };
4557 
4558 /*
4559  * Private memory cgroup IDR
4560  *
4561  * Swap-out records and page cache shadow entries need to store memcg
4562  * references in constrained space, so we maintain an ID space that is
4563  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4564  * memory-controlled cgroups to 64k.
4565  *
4566  * However, there usually are many references to the oflline CSS after
4567  * the cgroup has been destroyed, such as page cache or reclaimable
4568  * slab objects, that don't need to hang on to the ID. We want to keep
4569  * those dead CSS from occupying IDs, or we might quickly exhaust the
4570  * relatively small ID space and prevent the creation of new cgroups
4571  * even when there are much fewer than 64k cgroups - possibly none.
4572  *
4573  * Maintain a private 16-bit ID space for memcg, and allow the ID to
4574  * be freed and recycled when it's no longer needed, which is usually
4575  * when the CSS is offlined.
4576  *
4577  * The only exception to that are records of swapped out tmpfs/shmem
4578  * pages that need to be attributed to live ancestors on swapin. But
4579  * those references are manageable from userspace.
4580  */
4581 
4582 static DEFINE_IDR(mem_cgroup_idr);
4583 
4584 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4585 {
4586 	if (memcg->id.id > 0) {
4587 		idr_remove(&mem_cgroup_idr, memcg->id.id);
4588 		memcg->id.id = 0;
4589 	}
4590 }
4591 
4592 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4593 {
4594 	refcount_add(n, &memcg->id.ref);
4595 }
4596 
4597 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4598 {
4599 	if (refcount_sub_and_test(n, &memcg->id.ref)) {
4600 		mem_cgroup_id_remove(memcg);
4601 
4602 		/* Memcg ID pins CSS */
4603 		css_put(&memcg->css);
4604 	}
4605 }
4606 
4607 static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4608 {
4609 	mem_cgroup_id_get_many(memcg, 1);
4610 }
4611 
4612 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4613 {
4614 	mem_cgroup_id_put_many(memcg, 1);
4615 }
4616 
4617 /**
4618  * mem_cgroup_from_id - look up a memcg from a memcg id
4619  * @id: the memcg id to look up
4620  *
4621  * Caller must hold rcu_read_lock().
4622  */
4623 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4624 {
4625 	WARN_ON_ONCE(!rcu_read_lock_held());
4626 	return idr_find(&mem_cgroup_idr, id);
4627 }
4628 
4629 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4630 {
4631 	struct mem_cgroup_per_node *pn;
4632 	int tmp = node;
4633 	/*
4634 	 * This routine is called against possible nodes.
4635 	 * But it's BUG to call kmalloc() against offline node.
4636 	 *
4637 	 * TODO: this routine can waste much memory for nodes which will
4638 	 *       never be onlined. It's better to use memory hotplug callback
4639 	 *       function.
4640 	 */
4641 	if (!node_state(node, N_NORMAL_MEMORY))
4642 		tmp = -1;
4643 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4644 	if (!pn)
4645 		return 1;
4646 
4647 	pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat);
4648 	if (!pn->lruvec_stat_local) {
4649 		kfree(pn);
4650 		return 1;
4651 	}
4652 
4653 	pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
4654 	if (!pn->lruvec_stat_cpu) {
4655 		free_percpu(pn->lruvec_stat_local);
4656 		kfree(pn);
4657 		return 1;
4658 	}
4659 
4660 	lruvec_init(&pn->lruvec);
4661 	pn->usage_in_excess = 0;
4662 	pn->on_tree = false;
4663 	pn->memcg = memcg;
4664 
4665 	memcg->nodeinfo[node] = pn;
4666 	return 0;
4667 }
4668 
4669 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4670 {
4671 	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4672 
4673 	if (!pn)
4674 		return;
4675 
4676 	free_percpu(pn->lruvec_stat_cpu);
4677 	free_percpu(pn->lruvec_stat_local);
4678 	kfree(pn);
4679 }
4680 
4681 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4682 {
4683 	int node;
4684 
4685 	for_each_node(node)
4686 		free_mem_cgroup_per_node_info(memcg, node);
4687 	free_percpu(memcg->vmstats_percpu);
4688 	free_percpu(memcg->vmstats_local);
4689 	kfree(memcg);
4690 }
4691 
4692 static void mem_cgroup_free(struct mem_cgroup *memcg)
4693 {
4694 	memcg_wb_domain_exit(memcg);
4695 	__mem_cgroup_free(memcg);
4696 }
4697 
4698 static struct mem_cgroup *mem_cgroup_alloc(void)
4699 {
4700 	struct mem_cgroup *memcg;
4701 	unsigned int size;
4702 	int node;
4703 
4704 	size = sizeof(struct mem_cgroup);
4705 	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4706 
4707 	memcg = kzalloc(size, GFP_KERNEL);
4708 	if (!memcg)
4709 		return NULL;
4710 
4711 	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4712 				 1, MEM_CGROUP_ID_MAX,
4713 				 GFP_KERNEL);
4714 	if (memcg->id.id < 0)
4715 		goto fail;
4716 
4717 	memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu);
4718 	if (!memcg->vmstats_local)
4719 		goto fail;
4720 
4721 	memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu);
4722 	if (!memcg->vmstats_percpu)
4723 		goto fail;
4724 
4725 	for_each_node(node)
4726 		if (alloc_mem_cgroup_per_node_info(memcg, node))
4727 			goto fail;
4728 
4729 	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4730 		goto fail;
4731 
4732 	INIT_WORK(&memcg->high_work, high_work_func);
4733 	memcg->last_scanned_node = MAX_NUMNODES;
4734 	INIT_LIST_HEAD(&memcg->oom_notify);
4735 	mutex_init(&memcg->thresholds_lock);
4736 	spin_lock_init(&memcg->move_lock);
4737 	vmpressure_init(&memcg->vmpressure);
4738 	INIT_LIST_HEAD(&memcg->event_list);
4739 	spin_lock_init(&memcg->event_list_lock);
4740 	memcg->socket_pressure = jiffies;
4741 #ifdef CONFIG_MEMCG_KMEM
4742 	memcg->kmemcg_id = -1;
4743 #endif
4744 #ifdef CONFIG_CGROUP_WRITEBACK
4745 	INIT_LIST_HEAD(&memcg->cgwb_list);
4746 #endif
4747 	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4748 	return memcg;
4749 fail:
4750 	mem_cgroup_id_remove(memcg);
4751 	__mem_cgroup_free(memcg);
4752 	return NULL;
4753 }
4754 
4755 static struct cgroup_subsys_state * __ref
4756 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4757 {
4758 	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4759 	struct mem_cgroup *memcg;
4760 	long error = -ENOMEM;
4761 
4762 	memcg = mem_cgroup_alloc();
4763 	if (!memcg)
4764 		return ERR_PTR(error);
4765 
4766 	memcg->high = PAGE_COUNTER_MAX;
4767 	memcg->soft_limit = PAGE_COUNTER_MAX;
4768 	if (parent) {
4769 		memcg->swappiness = mem_cgroup_swappiness(parent);
4770 		memcg->oom_kill_disable = parent->oom_kill_disable;
4771 	}
4772 	if (parent && parent->use_hierarchy) {
4773 		memcg->use_hierarchy = true;
4774 		page_counter_init(&memcg->memory, &parent->memory);
4775 		page_counter_init(&memcg->swap, &parent->swap);
4776 		page_counter_init(&memcg->memsw, &parent->memsw);
4777 		page_counter_init(&memcg->kmem, &parent->kmem);
4778 		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4779 	} else {
4780 		page_counter_init(&memcg->memory, NULL);
4781 		page_counter_init(&memcg->swap, NULL);
4782 		page_counter_init(&memcg->memsw, NULL);
4783 		page_counter_init(&memcg->kmem, NULL);
4784 		page_counter_init(&memcg->tcpmem, NULL);
4785 		/*
4786 		 * Deeper hierachy with use_hierarchy == false doesn't make
4787 		 * much sense so let cgroup subsystem know about this
4788 		 * unfortunate state in our controller.
4789 		 */
4790 		if (parent != root_mem_cgroup)
4791 			memory_cgrp_subsys.broken_hierarchy = true;
4792 	}
4793 
4794 	/* The following stuff does not apply to the root */
4795 	if (!parent) {
4796 #ifdef CONFIG_MEMCG_KMEM
4797 		INIT_LIST_HEAD(&memcg->kmem_caches);
4798 #endif
4799 		root_mem_cgroup = memcg;
4800 		return &memcg->css;
4801 	}
4802 
4803 	error = memcg_online_kmem(memcg);
4804 	if (error)
4805 		goto fail;
4806 
4807 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4808 		static_branch_inc(&memcg_sockets_enabled_key);
4809 
4810 	return &memcg->css;
4811 fail:
4812 	mem_cgroup_id_remove(memcg);
4813 	mem_cgroup_free(memcg);
4814 	return ERR_PTR(-ENOMEM);
4815 }
4816 
4817 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4818 {
4819 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4820 
4821 	/*
4822 	 * A memcg must be visible for memcg_expand_shrinker_maps()
4823 	 * by the time the maps are allocated. So, we allocate maps
4824 	 * here, when for_each_mem_cgroup() can't skip it.
4825 	 */
4826 	if (memcg_alloc_shrinker_maps(memcg)) {
4827 		mem_cgroup_id_remove(memcg);
4828 		return -ENOMEM;
4829 	}
4830 
4831 	/* Online state pins memcg ID, memcg ID pins CSS */
4832 	refcount_set(&memcg->id.ref, 1);
4833 	css_get(css);
4834 	return 0;
4835 }
4836 
4837 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4838 {
4839 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4840 	struct mem_cgroup_event *event, *tmp;
4841 
4842 	/*
4843 	 * Unregister events and notify userspace.
4844 	 * Notify userspace about cgroup removing only after rmdir of cgroup
4845 	 * directory to avoid race between userspace and kernelspace.
4846 	 */
4847 	spin_lock(&memcg->event_list_lock);
4848 	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4849 		list_del_init(&event->list);
4850 		schedule_work(&event->remove);
4851 	}
4852 	spin_unlock(&memcg->event_list_lock);
4853 
4854 	page_counter_set_min(&memcg->memory, 0);
4855 	page_counter_set_low(&memcg->memory, 0);
4856 
4857 	memcg_offline_kmem(memcg);
4858 	wb_memcg_offline(memcg);
4859 
4860 	drain_all_stock(memcg);
4861 
4862 	mem_cgroup_id_put(memcg);
4863 }
4864 
4865 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4866 {
4867 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4868 
4869 	invalidate_reclaim_iterators(memcg);
4870 }
4871 
4872 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4873 {
4874 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4875 
4876 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4877 		static_branch_dec(&memcg_sockets_enabled_key);
4878 
4879 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4880 		static_branch_dec(&memcg_sockets_enabled_key);
4881 
4882 	vmpressure_cleanup(&memcg->vmpressure);
4883 	cancel_work_sync(&memcg->high_work);
4884 	mem_cgroup_remove_from_trees(memcg);
4885 	memcg_free_shrinker_maps(memcg);
4886 	memcg_free_kmem(memcg);
4887 	mem_cgroup_free(memcg);
4888 }
4889 
4890 /**
4891  * mem_cgroup_css_reset - reset the states of a mem_cgroup
4892  * @css: the target css
4893  *
4894  * Reset the states of the mem_cgroup associated with @css.  This is
4895  * invoked when the userland requests disabling on the default hierarchy
4896  * but the memcg is pinned through dependency.  The memcg should stop
4897  * applying policies and should revert to the vanilla state as it may be
4898  * made visible again.
4899  *
4900  * The current implementation only resets the essential configurations.
4901  * This needs to be expanded to cover all the visible parts.
4902  */
4903 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4904 {
4905 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4906 
4907 	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
4908 	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
4909 	page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
4910 	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
4911 	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
4912 	page_counter_set_min(&memcg->memory, 0);
4913 	page_counter_set_low(&memcg->memory, 0);
4914 	memcg->high = PAGE_COUNTER_MAX;
4915 	memcg->soft_limit = PAGE_COUNTER_MAX;
4916 	memcg_wb_domain_size_changed(memcg);
4917 }
4918 
4919 #ifdef CONFIG_MMU
4920 /* Handlers for move charge at task migration. */
4921 static int mem_cgroup_do_precharge(unsigned long count)
4922 {
4923 	int ret;
4924 
4925 	/* Try a single bulk charge without reclaim first, kswapd may wake */
4926 	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4927 	if (!ret) {
4928 		mc.precharge += count;
4929 		return ret;
4930 	}
4931 
4932 	/* Try charges one by one with reclaim, but do not retry */
4933 	while (count--) {
4934 		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
4935 		if (ret)
4936 			return ret;
4937 		mc.precharge++;
4938 		cond_resched();
4939 	}
4940 	return 0;
4941 }
4942 
4943 union mc_target {
4944 	struct page	*page;
4945 	swp_entry_t	ent;
4946 };
4947 
4948 enum mc_target_type {
4949 	MC_TARGET_NONE = 0,
4950 	MC_TARGET_PAGE,
4951 	MC_TARGET_SWAP,
4952 	MC_TARGET_DEVICE,
4953 };
4954 
4955 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4956 						unsigned long addr, pte_t ptent)
4957 {
4958 	struct page *page = vm_normal_page(vma, addr, ptent);
4959 
4960 	if (!page || !page_mapped(page))
4961 		return NULL;
4962 	if (PageAnon(page)) {
4963 		if (!(mc.flags & MOVE_ANON))
4964 			return NULL;
4965 	} else {
4966 		if (!(mc.flags & MOVE_FILE))
4967 			return NULL;
4968 	}
4969 	if (!get_page_unless_zero(page))
4970 		return NULL;
4971 
4972 	return page;
4973 }
4974 
4975 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
4976 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4977 			pte_t ptent, swp_entry_t *entry)
4978 {
4979 	struct page *page = NULL;
4980 	swp_entry_t ent = pte_to_swp_entry(ptent);
4981 
4982 	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4983 		return NULL;
4984 
4985 	/*
4986 	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
4987 	 * a device and because they are not accessible by CPU they are store
4988 	 * as special swap entry in the CPU page table.
4989 	 */
4990 	if (is_device_private_entry(ent)) {
4991 		page = device_private_entry_to_page(ent);
4992 		/*
4993 		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
4994 		 * a refcount of 1 when free (unlike normal page)
4995 		 */
4996 		if (!page_ref_add_unless(page, 1, 1))
4997 			return NULL;
4998 		return page;
4999 	}
5000 
5001 	/*
5002 	 * Because lookup_swap_cache() updates some statistics counter,
5003 	 * we call find_get_page() with swapper_space directly.
5004 	 */
5005 	page = find_get_page(swap_address_space(ent), swp_offset(ent));
5006 	if (do_memsw_account())
5007 		entry->val = ent.val;
5008 
5009 	return page;
5010 }
5011 #else
5012 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5013 			pte_t ptent, swp_entry_t *entry)
5014 {
5015 	return NULL;
5016 }
5017 #endif
5018 
5019 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5020 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5021 {
5022 	struct page *page = NULL;
5023 	struct address_space *mapping;
5024 	pgoff_t pgoff;
5025 
5026 	if (!vma->vm_file) /* anonymous vma */
5027 		return NULL;
5028 	if (!(mc.flags & MOVE_FILE))
5029 		return NULL;
5030 
5031 	mapping = vma->vm_file->f_mapping;
5032 	pgoff = linear_page_index(vma, addr);
5033 
5034 	/* page is moved even if it's not RSS of this task(page-faulted). */
5035 #ifdef CONFIG_SWAP
5036 	/* shmem/tmpfs may report page out on swap: account for that too. */
5037 	if (shmem_mapping(mapping)) {
5038 		page = find_get_entry(mapping, pgoff);
5039 		if (xa_is_value(page)) {
5040 			swp_entry_t swp = radix_to_swp_entry(page);
5041 			if (do_memsw_account())
5042 				*entry = swp;
5043 			page = find_get_page(swap_address_space(swp),
5044 					     swp_offset(swp));
5045 		}
5046 	} else
5047 		page = find_get_page(mapping, pgoff);
5048 #else
5049 	page = find_get_page(mapping, pgoff);
5050 #endif
5051 	return page;
5052 }
5053 
5054 /**
5055  * mem_cgroup_move_account - move account of the page
5056  * @page: the page
5057  * @compound: charge the page as compound or small page
5058  * @from: mem_cgroup which the page is moved from.
5059  * @to:	mem_cgroup which the page is moved to. @from != @to.
5060  *
5061  * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5062  *
5063  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5064  * from old cgroup.
5065  */
5066 static int mem_cgroup_move_account(struct page *page,
5067 				   bool compound,
5068 				   struct mem_cgroup *from,
5069 				   struct mem_cgroup *to)
5070 {
5071 	unsigned long flags;
5072 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5073 	int ret;
5074 	bool anon;
5075 
5076 	VM_BUG_ON(from == to);
5077 	VM_BUG_ON_PAGE(PageLRU(page), page);
5078 	VM_BUG_ON(compound && !PageTransHuge(page));
5079 
5080 	/*
5081 	 * Prevent mem_cgroup_migrate() from looking at
5082 	 * page->mem_cgroup of its source page while we change it.
5083 	 */
5084 	ret = -EBUSY;
5085 	if (!trylock_page(page))
5086 		goto out;
5087 
5088 	ret = -EINVAL;
5089 	if (page->mem_cgroup != from)
5090 		goto out_unlock;
5091 
5092 	anon = PageAnon(page);
5093 
5094 	spin_lock_irqsave(&from->move_lock, flags);
5095 
5096 	if (!anon && page_mapped(page)) {
5097 		__mod_memcg_state(from, NR_FILE_MAPPED, -nr_pages);
5098 		__mod_memcg_state(to, NR_FILE_MAPPED, nr_pages);
5099 	}
5100 
5101 	/*
5102 	 * move_lock grabbed above and caller set from->moving_account, so
5103 	 * mod_memcg_page_state will serialize updates to PageDirty.
5104 	 * So mapping should be stable for dirty pages.
5105 	 */
5106 	if (!anon && PageDirty(page)) {
5107 		struct address_space *mapping = page_mapping(page);
5108 
5109 		if (mapping_cap_account_dirty(mapping)) {
5110 			__mod_memcg_state(from, NR_FILE_DIRTY, -nr_pages);
5111 			__mod_memcg_state(to, NR_FILE_DIRTY, nr_pages);
5112 		}
5113 	}
5114 
5115 	if (PageWriteback(page)) {
5116 		__mod_memcg_state(from, NR_WRITEBACK, -nr_pages);
5117 		__mod_memcg_state(to, NR_WRITEBACK, nr_pages);
5118 	}
5119 
5120 	/*
5121 	 * It is safe to change page->mem_cgroup here because the page
5122 	 * is referenced, charged, and isolated - we can't race with
5123 	 * uncharging, charging, migration, or LRU putback.
5124 	 */
5125 
5126 	/* caller should have done css_get */
5127 	page->mem_cgroup = to;
5128 	spin_unlock_irqrestore(&from->move_lock, flags);
5129 
5130 	ret = 0;
5131 
5132 	local_irq_disable();
5133 	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
5134 	memcg_check_events(to, page);
5135 	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
5136 	memcg_check_events(from, page);
5137 	local_irq_enable();
5138 out_unlock:
5139 	unlock_page(page);
5140 out:
5141 	return ret;
5142 }
5143 
5144 /**
5145  * get_mctgt_type - get target type of moving charge
5146  * @vma: the vma the pte to be checked belongs
5147  * @addr: the address corresponding to the pte to be checked
5148  * @ptent: the pte to be checked
5149  * @target: the pointer the target page or swap ent will be stored(can be NULL)
5150  *
5151  * Returns
5152  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5153  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5154  *     move charge. if @target is not NULL, the page is stored in target->page
5155  *     with extra refcnt got(Callers should handle it).
5156  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5157  *     target for charge migration. if @target is not NULL, the entry is stored
5158  *     in target->ent.
5159  *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PRIVATE
5160  *     (so ZONE_DEVICE page and thus not on the lru).
5161  *     For now we such page is charge like a regular page would be as for all
5162  *     intent and purposes it is just special memory taking the place of a
5163  *     regular page.
5164  *
5165  *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5166  *
5167  * Called with pte lock held.
5168  */
5169 
5170 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5171 		unsigned long addr, pte_t ptent, union mc_target *target)
5172 {
5173 	struct page *page = NULL;
5174 	enum mc_target_type ret = MC_TARGET_NONE;
5175 	swp_entry_t ent = { .val = 0 };
5176 
5177 	if (pte_present(ptent))
5178 		page = mc_handle_present_pte(vma, addr, ptent);
5179 	else if (is_swap_pte(ptent))
5180 		page = mc_handle_swap_pte(vma, ptent, &ent);
5181 	else if (pte_none(ptent))
5182 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
5183 
5184 	if (!page && !ent.val)
5185 		return ret;
5186 	if (page) {
5187 		/*
5188 		 * Do only loose check w/o serialization.
5189 		 * mem_cgroup_move_account() checks the page is valid or
5190 		 * not under LRU exclusion.
5191 		 */
5192 		if (page->mem_cgroup == mc.from) {
5193 			ret = MC_TARGET_PAGE;
5194 			if (is_device_private_page(page))
5195 				ret = MC_TARGET_DEVICE;
5196 			if (target)
5197 				target->page = page;
5198 		}
5199 		if (!ret || !target)
5200 			put_page(page);
5201 	}
5202 	/*
5203 	 * There is a swap entry and a page doesn't exist or isn't charged.
5204 	 * But we cannot move a tail-page in a THP.
5205 	 */
5206 	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5207 	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5208 		ret = MC_TARGET_SWAP;
5209 		if (target)
5210 			target->ent = ent;
5211 	}
5212 	return ret;
5213 }
5214 
5215 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5216 /*
5217  * We don't consider PMD mapped swapping or file mapped pages because THP does
5218  * not support them for now.
5219  * Caller should make sure that pmd_trans_huge(pmd) is true.
5220  */
5221 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5222 		unsigned long addr, pmd_t pmd, union mc_target *target)
5223 {
5224 	struct page *page = NULL;
5225 	enum mc_target_type ret = MC_TARGET_NONE;
5226 
5227 	if (unlikely(is_swap_pmd(pmd))) {
5228 		VM_BUG_ON(thp_migration_supported() &&
5229 				  !is_pmd_migration_entry(pmd));
5230 		return ret;
5231 	}
5232 	page = pmd_page(pmd);
5233 	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5234 	if (!(mc.flags & MOVE_ANON))
5235 		return ret;
5236 	if (page->mem_cgroup == mc.from) {
5237 		ret = MC_TARGET_PAGE;
5238 		if (target) {
5239 			get_page(page);
5240 			target->page = page;
5241 		}
5242 	}
5243 	return ret;
5244 }
5245 #else
5246 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5247 		unsigned long addr, pmd_t pmd, union mc_target *target)
5248 {
5249 	return MC_TARGET_NONE;
5250 }
5251 #endif
5252 
5253 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5254 					unsigned long addr, unsigned long end,
5255 					struct mm_walk *walk)
5256 {
5257 	struct vm_area_struct *vma = walk->vma;
5258 	pte_t *pte;
5259 	spinlock_t *ptl;
5260 
5261 	ptl = pmd_trans_huge_lock(pmd, vma);
5262 	if (ptl) {
5263 		/*
5264 		 * Note their can not be MC_TARGET_DEVICE for now as we do not
5265 		 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5266 		 * this might change.
5267 		 */
5268 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5269 			mc.precharge += HPAGE_PMD_NR;
5270 		spin_unlock(ptl);
5271 		return 0;
5272 	}
5273 
5274 	if (pmd_trans_unstable(pmd))
5275 		return 0;
5276 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5277 	for (; addr != end; pte++, addr += PAGE_SIZE)
5278 		if (get_mctgt_type(vma, addr, *pte, NULL))
5279 			mc.precharge++;	/* increment precharge temporarily */
5280 	pte_unmap_unlock(pte - 1, ptl);
5281 	cond_resched();
5282 
5283 	return 0;
5284 }
5285 
5286 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5287 {
5288 	unsigned long precharge;
5289 
5290 	struct mm_walk mem_cgroup_count_precharge_walk = {
5291 		.pmd_entry = mem_cgroup_count_precharge_pte_range,
5292 		.mm = mm,
5293 	};
5294 	down_read(&mm->mmap_sem);
5295 	walk_page_range(0, mm->highest_vm_end,
5296 			&mem_cgroup_count_precharge_walk);
5297 	up_read(&mm->mmap_sem);
5298 
5299 	precharge = mc.precharge;
5300 	mc.precharge = 0;
5301 
5302 	return precharge;
5303 }
5304 
5305 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5306 {
5307 	unsigned long precharge = mem_cgroup_count_precharge(mm);
5308 
5309 	VM_BUG_ON(mc.moving_task);
5310 	mc.moving_task = current;
5311 	return mem_cgroup_do_precharge(precharge);
5312 }
5313 
5314 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5315 static void __mem_cgroup_clear_mc(void)
5316 {
5317 	struct mem_cgroup *from = mc.from;
5318 	struct mem_cgroup *to = mc.to;
5319 
5320 	/* we must uncharge all the leftover precharges from mc.to */
5321 	if (mc.precharge) {
5322 		cancel_charge(mc.to, mc.precharge);
5323 		mc.precharge = 0;
5324 	}
5325 	/*
5326 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5327 	 * we must uncharge here.
5328 	 */
5329 	if (mc.moved_charge) {
5330 		cancel_charge(mc.from, mc.moved_charge);
5331 		mc.moved_charge = 0;
5332 	}
5333 	/* we must fixup refcnts and charges */
5334 	if (mc.moved_swap) {
5335 		/* uncharge swap account from the old cgroup */
5336 		if (!mem_cgroup_is_root(mc.from))
5337 			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5338 
5339 		mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5340 
5341 		/*
5342 		 * we charged both to->memory and to->memsw, so we
5343 		 * should uncharge to->memory.
5344 		 */
5345 		if (!mem_cgroup_is_root(mc.to))
5346 			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5347 
5348 		mem_cgroup_id_get_many(mc.to, mc.moved_swap);
5349 		css_put_many(&mc.to->css, mc.moved_swap);
5350 
5351 		mc.moved_swap = 0;
5352 	}
5353 	memcg_oom_recover(from);
5354 	memcg_oom_recover(to);
5355 	wake_up_all(&mc.waitq);
5356 }
5357 
5358 static void mem_cgroup_clear_mc(void)
5359 {
5360 	struct mm_struct *mm = mc.mm;
5361 
5362 	/*
5363 	 * we must clear moving_task before waking up waiters at the end of
5364 	 * task migration.
5365 	 */
5366 	mc.moving_task = NULL;
5367 	__mem_cgroup_clear_mc();
5368 	spin_lock(&mc.lock);
5369 	mc.from = NULL;
5370 	mc.to = NULL;
5371 	mc.mm = NULL;
5372 	spin_unlock(&mc.lock);
5373 
5374 	mmput(mm);
5375 }
5376 
5377 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5378 {
5379 	struct cgroup_subsys_state *css;
5380 	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5381 	struct mem_cgroup *from;
5382 	struct task_struct *leader, *p;
5383 	struct mm_struct *mm;
5384 	unsigned long move_flags;
5385 	int ret = 0;
5386 
5387 	/* charge immigration isn't supported on the default hierarchy */
5388 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5389 		return 0;
5390 
5391 	/*
5392 	 * Multi-process migrations only happen on the default hierarchy
5393 	 * where charge immigration is not used.  Perform charge
5394 	 * immigration if @tset contains a leader and whine if there are
5395 	 * multiple.
5396 	 */
5397 	p = NULL;
5398 	cgroup_taskset_for_each_leader(leader, css, tset) {
5399 		WARN_ON_ONCE(p);
5400 		p = leader;
5401 		memcg = mem_cgroup_from_css(css);
5402 	}
5403 	if (!p)
5404 		return 0;
5405 
5406 	/*
5407 	 * We are now commited to this value whatever it is. Changes in this
5408 	 * tunable will only affect upcoming migrations, not the current one.
5409 	 * So we need to save it, and keep it going.
5410 	 */
5411 	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5412 	if (!move_flags)
5413 		return 0;
5414 
5415 	from = mem_cgroup_from_task(p);
5416 
5417 	VM_BUG_ON(from == memcg);
5418 
5419 	mm = get_task_mm(p);
5420 	if (!mm)
5421 		return 0;
5422 	/* We move charges only when we move a owner of the mm */
5423 	if (mm->owner == p) {
5424 		VM_BUG_ON(mc.from);
5425 		VM_BUG_ON(mc.to);
5426 		VM_BUG_ON(mc.precharge);
5427 		VM_BUG_ON(mc.moved_charge);
5428 		VM_BUG_ON(mc.moved_swap);
5429 
5430 		spin_lock(&mc.lock);
5431 		mc.mm = mm;
5432 		mc.from = from;
5433 		mc.to = memcg;
5434 		mc.flags = move_flags;
5435 		spin_unlock(&mc.lock);
5436 		/* We set mc.moving_task later */
5437 
5438 		ret = mem_cgroup_precharge_mc(mm);
5439 		if (ret)
5440 			mem_cgroup_clear_mc();
5441 	} else {
5442 		mmput(mm);
5443 	}
5444 	return ret;
5445 }
5446 
5447 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5448 {
5449 	if (mc.to)
5450 		mem_cgroup_clear_mc();
5451 }
5452 
5453 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5454 				unsigned long addr, unsigned long end,
5455 				struct mm_walk *walk)
5456 {
5457 	int ret = 0;
5458 	struct vm_area_struct *vma = walk->vma;
5459 	pte_t *pte;
5460 	spinlock_t *ptl;
5461 	enum mc_target_type target_type;
5462 	union mc_target target;
5463 	struct page *page;
5464 
5465 	ptl = pmd_trans_huge_lock(pmd, vma);
5466 	if (ptl) {
5467 		if (mc.precharge < HPAGE_PMD_NR) {
5468 			spin_unlock(ptl);
5469 			return 0;
5470 		}
5471 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5472 		if (target_type == MC_TARGET_PAGE) {
5473 			page = target.page;
5474 			if (!isolate_lru_page(page)) {
5475 				if (!mem_cgroup_move_account(page, true,
5476 							     mc.from, mc.to)) {
5477 					mc.precharge -= HPAGE_PMD_NR;
5478 					mc.moved_charge += HPAGE_PMD_NR;
5479 				}
5480 				putback_lru_page(page);
5481 			}
5482 			put_page(page);
5483 		} else if (target_type == MC_TARGET_DEVICE) {
5484 			page = target.page;
5485 			if (!mem_cgroup_move_account(page, true,
5486 						     mc.from, mc.to)) {
5487 				mc.precharge -= HPAGE_PMD_NR;
5488 				mc.moved_charge += HPAGE_PMD_NR;
5489 			}
5490 			put_page(page);
5491 		}
5492 		spin_unlock(ptl);
5493 		return 0;
5494 	}
5495 
5496 	if (pmd_trans_unstable(pmd))
5497 		return 0;
5498 retry:
5499 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5500 	for (; addr != end; addr += PAGE_SIZE) {
5501 		pte_t ptent = *(pte++);
5502 		bool device = false;
5503 		swp_entry_t ent;
5504 
5505 		if (!mc.precharge)
5506 			break;
5507 
5508 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5509 		case MC_TARGET_DEVICE:
5510 			device = true;
5511 			/* fall through */
5512 		case MC_TARGET_PAGE:
5513 			page = target.page;
5514 			/*
5515 			 * We can have a part of the split pmd here. Moving it
5516 			 * can be done but it would be too convoluted so simply
5517 			 * ignore such a partial THP and keep it in original
5518 			 * memcg. There should be somebody mapping the head.
5519 			 */
5520 			if (PageTransCompound(page))
5521 				goto put;
5522 			if (!device && isolate_lru_page(page))
5523 				goto put;
5524 			if (!mem_cgroup_move_account(page, false,
5525 						mc.from, mc.to)) {
5526 				mc.precharge--;
5527 				/* we uncharge from mc.from later. */
5528 				mc.moved_charge++;
5529 			}
5530 			if (!device)
5531 				putback_lru_page(page);
5532 put:			/* get_mctgt_type() gets the page */
5533 			put_page(page);
5534 			break;
5535 		case MC_TARGET_SWAP:
5536 			ent = target.ent;
5537 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5538 				mc.precharge--;
5539 				/* we fixup refcnts and charges later. */
5540 				mc.moved_swap++;
5541 			}
5542 			break;
5543 		default:
5544 			break;
5545 		}
5546 	}
5547 	pte_unmap_unlock(pte - 1, ptl);
5548 	cond_resched();
5549 
5550 	if (addr != end) {
5551 		/*
5552 		 * We have consumed all precharges we got in can_attach().
5553 		 * We try charge one by one, but don't do any additional
5554 		 * charges to mc.to if we have failed in charge once in attach()
5555 		 * phase.
5556 		 */
5557 		ret = mem_cgroup_do_precharge(1);
5558 		if (!ret)
5559 			goto retry;
5560 	}
5561 
5562 	return ret;
5563 }
5564 
5565 static void mem_cgroup_move_charge(void)
5566 {
5567 	struct mm_walk mem_cgroup_move_charge_walk = {
5568 		.pmd_entry = mem_cgroup_move_charge_pte_range,
5569 		.mm = mc.mm,
5570 	};
5571 
5572 	lru_add_drain_all();
5573 	/*
5574 	 * Signal lock_page_memcg() to take the memcg's move_lock
5575 	 * while we're moving its pages to another memcg. Then wait
5576 	 * for already started RCU-only updates to finish.
5577 	 */
5578 	atomic_inc(&mc.from->moving_account);
5579 	synchronize_rcu();
5580 retry:
5581 	if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
5582 		/*
5583 		 * Someone who are holding the mmap_sem might be waiting in
5584 		 * waitq. So we cancel all extra charges, wake up all waiters,
5585 		 * and retry. Because we cancel precharges, we might not be able
5586 		 * to move enough charges, but moving charge is a best-effort
5587 		 * feature anyway, so it wouldn't be a big problem.
5588 		 */
5589 		__mem_cgroup_clear_mc();
5590 		cond_resched();
5591 		goto retry;
5592 	}
5593 	/*
5594 	 * When we have consumed all precharges and failed in doing
5595 	 * additional charge, the page walk just aborts.
5596 	 */
5597 	walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
5598 
5599 	up_read(&mc.mm->mmap_sem);
5600 	atomic_dec(&mc.from->moving_account);
5601 }
5602 
5603 static void mem_cgroup_move_task(void)
5604 {
5605 	if (mc.to) {
5606 		mem_cgroup_move_charge();
5607 		mem_cgroup_clear_mc();
5608 	}
5609 }
5610 #else	/* !CONFIG_MMU */
5611 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5612 {
5613 	return 0;
5614 }
5615 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5616 {
5617 }
5618 static void mem_cgroup_move_task(void)
5619 {
5620 }
5621 #endif
5622 
5623 /*
5624  * Cgroup retains root cgroups across [un]mount cycles making it necessary
5625  * to verify whether we're attached to the default hierarchy on each mount
5626  * attempt.
5627  */
5628 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5629 {
5630 	/*
5631 	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5632 	 * guarantees that @root doesn't have any children, so turning it
5633 	 * on for the root memcg is enough.
5634 	 */
5635 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5636 		root_mem_cgroup->use_hierarchy = true;
5637 	else
5638 		root_mem_cgroup->use_hierarchy = false;
5639 }
5640 
5641 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
5642 {
5643 	if (value == PAGE_COUNTER_MAX)
5644 		seq_puts(m, "max\n");
5645 	else
5646 		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
5647 
5648 	return 0;
5649 }
5650 
5651 static u64 memory_current_read(struct cgroup_subsys_state *css,
5652 			       struct cftype *cft)
5653 {
5654 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5655 
5656 	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5657 }
5658 
5659 static int memory_min_show(struct seq_file *m, void *v)
5660 {
5661 	return seq_puts_memcg_tunable(m,
5662 		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
5663 }
5664 
5665 static ssize_t memory_min_write(struct kernfs_open_file *of,
5666 				char *buf, size_t nbytes, loff_t off)
5667 {
5668 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5669 	unsigned long min;
5670 	int err;
5671 
5672 	buf = strstrip(buf);
5673 	err = page_counter_memparse(buf, "max", &min);
5674 	if (err)
5675 		return err;
5676 
5677 	page_counter_set_min(&memcg->memory, min);
5678 
5679 	return nbytes;
5680 }
5681 
5682 static int memory_low_show(struct seq_file *m, void *v)
5683 {
5684 	return seq_puts_memcg_tunable(m,
5685 		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
5686 }
5687 
5688 static ssize_t memory_low_write(struct kernfs_open_file *of,
5689 				char *buf, size_t nbytes, loff_t off)
5690 {
5691 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5692 	unsigned long low;
5693 	int err;
5694 
5695 	buf = strstrip(buf);
5696 	err = page_counter_memparse(buf, "max", &low);
5697 	if (err)
5698 		return err;
5699 
5700 	page_counter_set_low(&memcg->memory, low);
5701 
5702 	return nbytes;
5703 }
5704 
5705 static int memory_high_show(struct seq_file *m, void *v)
5706 {
5707 	return seq_puts_memcg_tunable(m, READ_ONCE(mem_cgroup_from_seq(m)->high));
5708 }
5709 
5710 static ssize_t memory_high_write(struct kernfs_open_file *of,
5711 				 char *buf, size_t nbytes, loff_t off)
5712 {
5713 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5714 	unsigned long nr_pages;
5715 	unsigned long high;
5716 	int err;
5717 
5718 	buf = strstrip(buf);
5719 	err = page_counter_memparse(buf, "max", &high);
5720 	if (err)
5721 		return err;
5722 
5723 	memcg->high = high;
5724 
5725 	nr_pages = page_counter_read(&memcg->memory);
5726 	if (nr_pages > high)
5727 		try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5728 					     GFP_KERNEL, true);
5729 
5730 	memcg_wb_domain_size_changed(memcg);
5731 	return nbytes;
5732 }
5733 
5734 static int memory_max_show(struct seq_file *m, void *v)
5735 {
5736 	return seq_puts_memcg_tunable(m,
5737 		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
5738 }
5739 
5740 static ssize_t memory_max_write(struct kernfs_open_file *of,
5741 				char *buf, size_t nbytes, loff_t off)
5742 {
5743 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5744 	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5745 	bool drained = false;
5746 	unsigned long max;
5747 	int err;
5748 
5749 	buf = strstrip(buf);
5750 	err = page_counter_memparse(buf, "max", &max);
5751 	if (err)
5752 		return err;
5753 
5754 	xchg(&memcg->memory.max, max);
5755 
5756 	for (;;) {
5757 		unsigned long nr_pages = page_counter_read(&memcg->memory);
5758 
5759 		if (nr_pages <= max)
5760 			break;
5761 
5762 		if (signal_pending(current)) {
5763 			err = -EINTR;
5764 			break;
5765 		}
5766 
5767 		if (!drained) {
5768 			drain_all_stock(memcg);
5769 			drained = true;
5770 			continue;
5771 		}
5772 
5773 		if (nr_reclaims) {
5774 			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5775 							  GFP_KERNEL, true))
5776 				nr_reclaims--;
5777 			continue;
5778 		}
5779 
5780 		memcg_memory_event(memcg, MEMCG_OOM);
5781 		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5782 			break;
5783 	}
5784 
5785 	memcg_wb_domain_size_changed(memcg);
5786 	return nbytes;
5787 }
5788 
5789 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
5790 {
5791 	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
5792 	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
5793 	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
5794 	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
5795 	seq_printf(m, "oom_kill %lu\n",
5796 		   atomic_long_read(&events[MEMCG_OOM_KILL]));
5797 }
5798 
5799 static int memory_events_show(struct seq_file *m, void *v)
5800 {
5801 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5802 
5803 	__memory_events_show(m, memcg->memory_events);
5804 	return 0;
5805 }
5806 
5807 static int memory_events_local_show(struct seq_file *m, void *v)
5808 {
5809 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5810 
5811 	__memory_events_show(m, memcg->memory_events_local);
5812 	return 0;
5813 }
5814 
5815 static int memory_stat_show(struct seq_file *m, void *v)
5816 {
5817 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5818 	char *buf;
5819 
5820 	buf = memory_stat_format(memcg);
5821 	if (!buf)
5822 		return -ENOMEM;
5823 	seq_puts(m, buf);
5824 	kfree(buf);
5825 	return 0;
5826 }
5827 
5828 static int memory_oom_group_show(struct seq_file *m, void *v)
5829 {
5830 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5831 
5832 	seq_printf(m, "%d\n", memcg->oom_group);
5833 
5834 	return 0;
5835 }
5836 
5837 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
5838 				      char *buf, size_t nbytes, loff_t off)
5839 {
5840 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5841 	int ret, oom_group;
5842 
5843 	buf = strstrip(buf);
5844 	if (!buf)
5845 		return -EINVAL;
5846 
5847 	ret = kstrtoint(buf, 0, &oom_group);
5848 	if (ret)
5849 		return ret;
5850 
5851 	if (oom_group != 0 && oom_group != 1)
5852 		return -EINVAL;
5853 
5854 	memcg->oom_group = oom_group;
5855 
5856 	return nbytes;
5857 }
5858 
5859 static struct cftype memory_files[] = {
5860 	{
5861 		.name = "current",
5862 		.flags = CFTYPE_NOT_ON_ROOT,
5863 		.read_u64 = memory_current_read,
5864 	},
5865 	{
5866 		.name = "min",
5867 		.flags = CFTYPE_NOT_ON_ROOT,
5868 		.seq_show = memory_min_show,
5869 		.write = memory_min_write,
5870 	},
5871 	{
5872 		.name = "low",
5873 		.flags = CFTYPE_NOT_ON_ROOT,
5874 		.seq_show = memory_low_show,
5875 		.write = memory_low_write,
5876 	},
5877 	{
5878 		.name = "high",
5879 		.flags = CFTYPE_NOT_ON_ROOT,
5880 		.seq_show = memory_high_show,
5881 		.write = memory_high_write,
5882 	},
5883 	{
5884 		.name = "max",
5885 		.flags = CFTYPE_NOT_ON_ROOT,
5886 		.seq_show = memory_max_show,
5887 		.write = memory_max_write,
5888 	},
5889 	{
5890 		.name = "events",
5891 		.flags = CFTYPE_NOT_ON_ROOT,
5892 		.file_offset = offsetof(struct mem_cgroup, events_file),
5893 		.seq_show = memory_events_show,
5894 	},
5895 	{
5896 		.name = "events.local",
5897 		.flags = CFTYPE_NOT_ON_ROOT,
5898 		.file_offset = offsetof(struct mem_cgroup, events_local_file),
5899 		.seq_show = memory_events_local_show,
5900 	},
5901 	{
5902 		.name = "stat",
5903 		.flags = CFTYPE_NOT_ON_ROOT,
5904 		.seq_show = memory_stat_show,
5905 	},
5906 	{
5907 		.name = "oom.group",
5908 		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
5909 		.seq_show = memory_oom_group_show,
5910 		.write = memory_oom_group_write,
5911 	},
5912 	{ }	/* terminate */
5913 };
5914 
5915 struct cgroup_subsys memory_cgrp_subsys = {
5916 	.css_alloc = mem_cgroup_css_alloc,
5917 	.css_online = mem_cgroup_css_online,
5918 	.css_offline = mem_cgroup_css_offline,
5919 	.css_released = mem_cgroup_css_released,
5920 	.css_free = mem_cgroup_css_free,
5921 	.css_reset = mem_cgroup_css_reset,
5922 	.can_attach = mem_cgroup_can_attach,
5923 	.cancel_attach = mem_cgroup_cancel_attach,
5924 	.post_attach = mem_cgroup_move_task,
5925 	.bind = mem_cgroup_bind,
5926 	.dfl_cftypes = memory_files,
5927 	.legacy_cftypes = mem_cgroup_legacy_files,
5928 	.early_init = 0,
5929 };
5930 
5931 /**
5932  * mem_cgroup_protected - check if memory consumption is in the normal range
5933  * @root: the top ancestor of the sub-tree being checked
5934  * @memcg: the memory cgroup to check
5935  *
5936  * WARNING: This function is not stateless! It can only be used as part
5937  *          of a top-down tree iteration, not for isolated queries.
5938  *
5939  * Returns one of the following:
5940  *   MEMCG_PROT_NONE: cgroup memory is not protected
5941  *   MEMCG_PROT_LOW: cgroup memory is protected as long there is
5942  *     an unprotected supply of reclaimable memory from other cgroups.
5943  *   MEMCG_PROT_MIN: cgroup memory is protected
5944  *
5945  * @root is exclusive; it is never protected when looked at directly
5946  *
5947  * To provide a proper hierarchical behavior, effective memory.min/low values
5948  * are used. Below is the description of how effective memory.low is calculated.
5949  * Effective memory.min values is calculated in the same way.
5950  *
5951  * Effective memory.low is always equal or less than the original memory.low.
5952  * If there is no memory.low overcommittment (which is always true for
5953  * top-level memory cgroups), these two values are equal.
5954  * Otherwise, it's a part of parent's effective memory.low,
5955  * calculated as a cgroup's memory.low usage divided by sum of sibling's
5956  * memory.low usages, where memory.low usage is the size of actually
5957  * protected memory.
5958  *
5959  *                                             low_usage
5960  * elow = min( memory.low, parent->elow * ------------------ ),
5961  *                                        siblings_low_usage
5962  *
5963  *             | memory.current, if memory.current < memory.low
5964  * low_usage = |
5965  *	       | 0, otherwise.
5966  *
5967  *
5968  * Such definition of the effective memory.low provides the expected
5969  * hierarchical behavior: parent's memory.low value is limiting
5970  * children, unprotected memory is reclaimed first and cgroups,
5971  * which are not using their guarantee do not affect actual memory
5972  * distribution.
5973  *
5974  * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
5975  *
5976  *     A      A/memory.low = 2G, A/memory.current = 6G
5977  *    //\\
5978  *   BC  DE   B/memory.low = 3G  B/memory.current = 2G
5979  *            C/memory.low = 1G  C/memory.current = 2G
5980  *            D/memory.low = 0   D/memory.current = 2G
5981  *            E/memory.low = 10G E/memory.current = 0
5982  *
5983  * and the memory pressure is applied, the following memory distribution
5984  * is expected (approximately):
5985  *
5986  *     A/memory.current = 2G
5987  *
5988  *     B/memory.current = 1.3G
5989  *     C/memory.current = 0.6G
5990  *     D/memory.current = 0
5991  *     E/memory.current = 0
5992  *
5993  * These calculations require constant tracking of the actual low usages
5994  * (see propagate_protected_usage()), as well as recursive calculation of
5995  * effective memory.low values. But as we do call mem_cgroup_protected()
5996  * path for each memory cgroup top-down from the reclaim,
5997  * it's possible to optimize this part, and save calculated elow
5998  * for next usage. This part is intentionally racy, but it's ok,
5999  * as memory.low is a best-effort mechanism.
6000  */
6001 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
6002 						struct mem_cgroup *memcg)
6003 {
6004 	struct mem_cgroup *parent;
6005 	unsigned long emin, parent_emin;
6006 	unsigned long elow, parent_elow;
6007 	unsigned long usage;
6008 
6009 	if (mem_cgroup_disabled())
6010 		return MEMCG_PROT_NONE;
6011 
6012 	if (!root)
6013 		root = root_mem_cgroup;
6014 	if (memcg == root)
6015 		return MEMCG_PROT_NONE;
6016 
6017 	usage = page_counter_read(&memcg->memory);
6018 	if (!usage)
6019 		return MEMCG_PROT_NONE;
6020 
6021 	emin = memcg->memory.min;
6022 	elow = memcg->memory.low;
6023 
6024 	parent = parent_mem_cgroup(memcg);
6025 	/* No parent means a non-hierarchical mode on v1 memcg */
6026 	if (!parent)
6027 		return MEMCG_PROT_NONE;
6028 
6029 	if (parent == root)
6030 		goto exit;
6031 
6032 	parent_emin = READ_ONCE(parent->memory.emin);
6033 	emin = min(emin, parent_emin);
6034 	if (emin && parent_emin) {
6035 		unsigned long min_usage, siblings_min_usage;
6036 
6037 		min_usage = min(usage, memcg->memory.min);
6038 		siblings_min_usage = atomic_long_read(
6039 			&parent->memory.children_min_usage);
6040 
6041 		if (min_usage && siblings_min_usage)
6042 			emin = min(emin, parent_emin * min_usage /
6043 				   siblings_min_usage);
6044 	}
6045 
6046 	parent_elow = READ_ONCE(parent->memory.elow);
6047 	elow = min(elow, parent_elow);
6048 	if (elow && parent_elow) {
6049 		unsigned long low_usage, siblings_low_usage;
6050 
6051 		low_usage = min(usage, memcg->memory.low);
6052 		siblings_low_usage = atomic_long_read(
6053 			&parent->memory.children_low_usage);
6054 
6055 		if (low_usage && siblings_low_usage)
6056 			elow = min(elow, parent_elow * low_usage /
6057 				   siblings_low_usage);
6058 	}
6059 
6060 exit:
6061 	memcg->memory.emin = emin;
6062 	memcg->memory.elow = elow;
6063 
6064 	if (usage <= emin)
6065 		return MEMCG_PROT_MIN;
6066 	else if (usage <= elow)
6067 		return MEMCG_PROT_LOW;
6068 	else
6069 		return MEMCG_PROT_NONE;
6070 }
6071 
6072 /**
6073  * mem_cgroup_try_charge - try charging a page
6074  * @page: page to charge
6075  * @mm: mm context of the victim
6076  * @gfp_mask: reclaim mode
6077  * @memcgp: charged memcg return
6078  * @compound: charge the page as compound or small page
6079  *
6080  * Try to charge @page to the memcg that @mm belongs to, reclaiming
6081  * pages according to @gfp_mask if necessary.
6082  *
6083  * Returns 0 on success, with *@memcgp pointing to the charged memcg.
6084  * Otherwise, an error code is returned.
6085  *
6086  * After page->mapping has been set up, the caller must finalize the
6087  * charge with mem_cgroup_commit_charge().  Or abort the transaction
6088  * with mem_cgroup_cancel_charge() in case page instantiation fails.
6089  */
6090 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
6091 			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
6092 			  bool compound)
6093 {
6094 	struct mem_cgroup *memcg = NULL;
6095 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6096 	int ret = 0;
6097 
6098 	if (mem_cgroup_disabled())
6099 		goto out;
6100 
6101 	if (PageSwapCache(page)) {
6102 		/*
6103 		 * Every swap fault against a single page tries to charge the
6104 		 * page, bail as early as possible.  shmem_unuse() encounters
6105 		 * already charged pages, too.  The USED bit is protected by
6106 		 * the page lock, which serializes swap cache removal, which
6107 		 * in turn serializes uncharging.
6108 		 */
6109 		VM_BUG_ON_PAGE(!PageLocked(page), page);
6110 		if (compound_head(page)->mem_cgroup)
6111 			goto out;
6112 
6113 		if (do_swap_account) {
6114 			swp_entry_t ent = { .val = page_private(page), };
6115 			unsigned short id = lookup_swap_cgroup_id(ent);
6116 
6117 			rcu_read_lock();
6118 			memcg = mem_cgroup_from_id(id);
6119 			if (memcg && !css_tryget_online(&memcg->css))
6120 				memcg = NULL;
6121 			rcu_read_unlock();
6122 		}
6123 	}
6124 
6125 	if (!memcg)
6126 		memcg = get_mem_cgroup_from_mm(mm);
6127 
6128 	ret = try_charge(memcg, gfp_mask, nr_pages);
6129 
6130 	css_put(&memcg->css);
6131 out:
6132 	*memcgp = memcg;
6133 	return ret;
6134 }
6135 
6136 int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
6137 			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
6138 			  bool compound)
6139 {
6140 	struct mem_cgroup *memcg;
6141 	int ret;
6142 
6143 	ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
6144 	memcg = *memcgp;
6145 	mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
6146 	return ret;
6147 }
6148 
6149 /**
6150  * mem_cgroup_commit_charge - commit a page charge
6151  * @page: page to charge
6152  * @memcg: memcg to charge the page to
6153  * @lrucare: page might be on LRU already
6154  * @compound: charge the page as compound or small page
6155  *
6156  * Finalize a charge transaction started by mem_cgroup_try_charge(),
6157  * after page->mapping has been set up.  This must happen atomically
6158  * as part of the page instantiation, i.e. under the page table lock
6159  * for anonymous pages, under the page lock for page and swap cache.
6160  *
6161  * In addition, the page must not be on the LRU during the commit, to
6162  * prevent racing with task migration.  If it might be, use @lrucare.
6163  *
6164  * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
6165  */
6166 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
6167 			      bool lrucare, bool compound)
6168 {
6169 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6170 
6171 	VM_BUG_ON_PAGE(!page->mapping, page);
6172 	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
6173 
6174 	if (mem_cgroup_disabled())
6175 		return;
6176 	/*
6177 	 * Swap faults will attempt to charge the same page multiple
6178 	 * times.  But reuse_swap_page() might have removed the page
6179 	 * from swapcache already, so we can't check PageSwapCache().
6180 	 */
6181 	if (!memcg)
6182 		return;
6183 
6184 	commit_charge(page, memcg, lrucare);
6185 
6186 	local_irq_disable();
6187 	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6188 	memcg_check_events(memcg, page);
6189 	local_irq_enable();
6190 
6191 	if (do_memsw_account() && PageSwapCache(page)) {
6192 		swp_entry_t entry = { .val = page_private(page) };
6193 		/*
6194 		 * The swap entry might not get freed for a long time,
6195 		 * let's not wait for it.  The page already received a
6196 		 * memory+swap charge, drop the swap entry duplicate.
6197 		 */
6198 		mem_cgroup_uncharge_swap(entry, nr_pages);
6199 	}
6200 }
6201 
6202 /**
6203  * mem_cgroup_cancel_charge - cancel a page charge
6204  * @page: page to charge
6205  * @memcg: memcg to charge the page to
6206  * @compound: charge the page as compound or small page
6207  *
6208  * Cancel a charge transaction started by mem_cgroup_try_charge().
6209  */
6210 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
6211 		bool compound)
6212 {
6213 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6214 
6215 	if (mem_cgroup_disabled())
6216 		return;
6217 	/*
6218 	 * Swap faults will attempt to charge the same page multiple
6219 	 * times.  But reuse_swap_page() might have removed the page
6220 	 * from swapcache already, so we can't check PageSwapCache().
6221 	 */
6222 	if (!memcg)
6223 		return;
6224 
6225 	cancel_charge(memcg, nr_pages);
6226 }
6227 
6228 struct uncharge_gather {
6229 	struct mem_cgroup *memcg;
6230 	unsigned long pgpgout;
6231 	unsigned long nr_anon;
6232 	unsigned long nr_file;
6233 	unsigned long nr_kmem;
6234 	unsigned long nr_huge;
6235 	unsigned long nr_shmem;
6236 	struct page *dummy_page;
6237 };
6238 
6239 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6240 {
6241 	memset(ug, 0, sizeof(*ug));
6242 }
6243 
6244 static void uncharge_batch(const struct uncharge_gather *ug)
6245 {
6246 	unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
6247 	unsigned long flags;
6248 
6249 	if (!mem_cgroup_is_root(ug->memcg)) {
6250 		page_counter_uncharge(&ug->memcg->memory, nr_pages);
6251 		if (do_memsw_account())
6252 			page_counter_uncharge(&ug->memcg->memsw, nr_pages);
6253 		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6254 			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6255 		memcg_oom_recover(ug->memcg);
6256 	}
6257 
6258 	local_irq_save(flags);
6259 	__mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
6260 	__mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
6261 	__mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
6262 	__mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
6263 	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6264 	__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, nr_pages);
6265 	memcg_check_events(ug->memcg, ug->dummy_page);
6266 	local_irq_restore(flags);
6267 
6268 	if (!mem_cgroup_is_root(ug->memcg))
6269 		css_put_many(&ug->memcg->css, nr_pages);
6270 }
6271 
6272 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6273 {
6274 	VM_BUG_ON_PAGE(PageLRU(page), page);
6275 	VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
6276 			!PageHWPoison(page) , page);
6277 
6278 	if (!page->mem_cgroup)
6279 		return;
6280 
6281 	/*
6282 	 * Nobody should be changing or seriously looking at
6283 	 * page->mem_cgroup at this point, we have fully
6284 	 * exclusive access to the page.
6285 	 */
6286 
6287 	if (ug->memcg != page->mem_cgroup) {
6288 		if (ug->memcg) {
6289 			uncharge_batch(ug);
6290 			uncharge_gather_clear(ug);
6291 		}
6292 		ug->memcg = page->mem_cgroup;
6293 	}
6294 
6295 	if (!PageKmemcg(page)) {
6296 		unsigned int nr_pages = 1;
6297 
6298 		if (PageTransHuge(page)) {
6299 			nr_pages <<= compound_order(page);
6300 			ug->nr_huge += nr_pages;
6301 		}
6302 		if (PageAnon(page))
6303 			ug->nr_anon += nr_pages;
6304 		else {
6305 			ug->nr_file += nr_pages;
6306 			if (PageSwapBacked(page))
6307 				ug->nr_shmem += nr_pages;
6308 		}
6309 		ug->pgpgout++;
6310 	} else {
6311 		ug->nr_kmem += 1 << compound_order(page);
6312 		__ClearPageKmemcg(page);
6313 	}
6314 
6315 	ug->dummy_page = page;
6316 	page->mem_cgroup = NULL;
6317 }
6318 
6319 static void uncharge_list(struct list_head *page_list)
6320 {
6321 	struct uncharge_gather ug;
6322 	struct list_head *next;
6323 
6324 	uncharge_gather_clear(&ug);
6325 
6326 	/*
6327 	 * Note that the list can be a single page->lru; hence the
6328 	 * do-while loop instead of a simple list_for_each_entry().
6329 	 */
6330 	next = page_list->next;
6331 	do {
6332 		struct page *page;
6333 
6334 		page = list_entry(next, struct page, lru);
6335 		next = page->lru.next;
6336 
6337 		uncharge_page(page, &ug);
6338 	} while (next != page_list);
6339 
6340 	if (ug.memcg)
6341 		uncharge_batch(&ug);
6342 }
6343 
6344 /**
6345  * mem_cgroup_uncharge - uncharge a page
6346  * @page: page to uncharge
6347  *
6348  * Uncharge a page previously charged with mem_cgroup_try_charge() and
6349  * mem_cgroup_commit_charge().
6350  */
6351 void mem_cgroup_uncharge(struct page *page)
6352 {
6353 	struct uncharge_gather ug;
6354 
6355 	if (mem_cgroup_disabled())
6356 		return;
6357 
6358 	/* Don't touch page->lru of any random page, pre-check: */
6359 	if (!page->mem_cgroup)
6360 		return;
6361 
6362 	uncharge_gather_clear(&ug);
6363 	uncharge_page(page, &ug);
6364 	uncharge_batch(&ug);
6365 }
6366 
6367 /**
6368  * mem_cgroup_uncharge_list - uncharge a list of page
6369  * @page_list: list of pages to uncharge
6370  *
6371  * Uncharge a list of pages previously charged with
6372  * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6373  */
6374 void mem_cgroup_uncharge_list(struct list_head *page_list)
6375 {
6376 	if (mem_cgroup_disabled())
6377 		return;
6378 
6379 	if (!list_empty(page_list))
6380 		uncharge_list(page_list);
6381 }
6382 
6383 /**
6384  * mem_cgroup_migrate - charge a page's replacement
6385  * @oldpage: currently circulating page
6386  * @newpage: replacement page
6387  *
6388  * Charge @newpage as a replacement page for @oldpage. @oldpage will
6389  * be uncharged upon free.
6390  *
6391  * Both pages must be locked, @newpage->mapping must be set up.
6392  */
6393 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6394 {
6395 	struct mem_cgroup *memcg;
6396 	unsigned int nr_pages;
6397 	bool compound;
6398 	unsigned long flags;
6399 
6400 	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6401 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6402 	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6403 	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6404 		       newpage);
6405 
6406 	if (mem_cgroup_disabled())
6407 		return;
6408 
6409 	/* Page cache replacement: new page already charged? */
6410 	if (newpage->mem_cgroup)
6411 		return;
6412 
6413 	/* Swapcache readahead pages can get replaced before being charged */
6414 	memcg = oldpage->mem_cgroup;
6415 	if (!memcg)
6416 		return;
6417 
6418 	/* Force-charge the new page. The old one will be freed soon */
6419 	compound = PageTransHuge(newpage);
6420 	nr_pages = compound ? hpage_nr_pages(newpage) : 1;
6421 
6422 	page_counter_charge(&memcg->memory, nr_pages);
6423 	if (do_memsw_account())
6424 		page_counter_charge(&memcg->memsw, nr_pages);
6425 	css_get_many(&memcg->css, nr_pages);
6426 
6427 	commit_charge(newpage, memcg, false);
6428 
6429 	local_irq_save(flags);
6430 	mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
6431 	memcg_check_events(memcg, newpage);
6432 	local_irq_restore(flags);
6433 }
6434 
6435 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6436 EXPORT_SYMBOL(memcg_sockets_enabled_key);
6437 
6438 void mem_cgroup_sk_alloc(struct sock *sk)
6439 {
6440 	struct mem_cgroup *memcg;
6441 
6442 	if (!mem_cgroup_sockets_enabled)
6443 		return;
6444 
6445 	/*
6446 	 * Socket cloning can throw us here with sk_memcg already
6447 	 * filled. It won't however, necessarily happen from
6448 	 * process context. So the test for root memcg given
6449 	 * the current task's memcg won't help us in this case.
6450 	 *
6451 	 * Respecting the original socket's memcg is a better
6452 	 * decision in this case.
6453 	 */
6454 	if (sk->sk_memcg) {
6455 		css_get(&sk->sk_memcg->css);
6456 		return;
6457 	}
6458 
6459 	rcu_read_lock();
6460 	memcg = mem_cgroup_from_task(current);
6461 	if (memcg == root_mem_cgroup)
6462 		goto out;
6463 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6464 		goto out;
6465 	if (css_tryget_online(&memcg->css))
6466 		sk->sk_memcg = memcg;
6467 out:
6468 	rcu_read_unlock();
6469 }
6470 
6471 void mem_cgroup_sk_free(struct sock *sk)
6472 {
6473 	if (sk->sk_memcg)
6474 		css_put(&sk->sk_memcg->css);
6475 }
6476 
6477 /**
6478  * mem_cgroup_charge_skmem - charge socket memory
6479  * @memcg: memcg to charge
6480  * @nr_pages: number of pages to charge
6481  *
6482  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6483  * @memcg's configured limit, %false if the charge had to be forced.
6484  */
6485 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6486 {
6487 	gfp_t gfp_mask = GFP_KERNEL;
6488 
6489 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6490 		struct page_counter *fail;
6491 
6492 		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6493 			memcg->tcpmem_pressure = 0;
6494 			return true;
6495 		}
6496 		page_counter_charge(&memcg->tcpmem, nr_pages);
6497 		memcg->tcpmem_pressure = 1;
6498 		return false;
6499 	}
6500 
6501 	/* Don't block in the packet receive path */
6502 	if (in_softirq())
6503 		gfp_mask = GFP_NOWAIT;
6504 
6505 	mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6506 
6507 	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6508 		return true;
6509 
6510 	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
6511 	return false;
6512 }
6513 
6514 /**
6515  * mem_cgroup_uncharge_skmem - uncharge socket memory
6516  * @memcg: memcg to uncharge
6517  * @nr_pages: number of pages to uncharge
6518  */
6519 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6520 {
6521 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6522 		page_counter_uncharge(&memcg->tcpmem, nr_pages);
6523 		return;
6524 	}
6525 
6526 	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
6527 
6528 	refill_stock(memcg, nr_pages);
6529 }
6530 
6531 static int __init cgroup_memory(char *s)
6532 {
6533 	char *token;
6534 
6535 	while ((token = strsep(&s, ",")) != NULL) {
6536 		if (!*token)
6537 			continue;
6538 		if (!strcmp(token, "nosocket"))
6539 			cgroup_memory_nosocket = true;
6540 		if (!strcmp(token, "nokmem"))
6541 			cgroup_memory_nokmem = true;
6542 	}
6543 	return 0;
6544 }
6545 __setup("cgroup.memory=", cgroup_memory);
6546 
6547 /*
6548  * subsys_initcall() for memory controller.
6549  *
6550  * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6551  * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6552  * basically everything that doesn't depend on a specific mem_cgroup structure
6553  * should be initialized from here.
6554  */
6555 static int __init mem_cgroup_init(void)
6556 {
6557 	int cpu, node;
6558 
6559 #ifdef CONFIG_MEMCG_KMEM
6560 	/*
6561 	 * Kmem cache creation is mostly done with the slab_mutex held,
6562 	 * so use a workqueue with limited concurrency to avoid stalling
6563 	 * all worker threads in case lots of cgroups are created and
6564 	 * destroyed simultaneously.
6565 	 */
6566 	memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
6567 	BUG_ON(!memcg_kmem_cache_wq);
6568 #endif
6569 
6570 	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
6571 				  memcg_hotplug_cpu_dead);
6572 
6573 	for_each_possible_cpu(cpu)
6574 		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
6575 			  drain_local_stock);
6576 
6577 	for_each_node(node) {
6578 		struct mem_cgroup_tree_per_node *rtpn;
6579 
6580 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
6581 				    node_online(node) ? node : NUMA_NO_NODE);
6582 
6583 		rtpn->rb_root = RB_ROOT;
6584 		rtpn->rb_rightmost = NULL;
6585 		spin_lock_init(&rtpn->lock);
6586 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
6587 	}
6588 
6589 	return 0;
6590 }
6591 subsys_initcall(mem_cgroup_init);
6592 
6593 #ifdef CONFIG_MEMCG_SWAP
6594 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6595 {
6596 	while (!refcount_inc_not_zero(&memcg->id.ref)) {
6597 		/*
6598 		 * The root cgroup cannot be destroyed, so it's refcount must
6599 		 * always be >= 1.
6600 		 */
6601 		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
6602 			VM_BUG_ON(1);
6603 			break;
6604 		}
6605 		memcg = parent_mem_cgroup(memcg);
6606 		if (!memcg)
6607 			memcg = root_mem_cgroup;
6608 	}
6609 	return memcg;
6610 }
6611 
6612 /**
6613  * mem_cgroup_swapout - transfer a memsw charge to swap
6614  * @page: page whose memsw charge to transfer
6615  * @entry: swap entry to move the charge to
6616  *
6617  * Transfer the memsw charge of @page to @entry.
6618  */
6619 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6620 {
6621 	struct mem_cgroup *memcg, *swap_memcg;
6622 	unsigned int nr_entries;
6623 	unsigned short oldid;
6624 
6625 	VM_BUG_ON_PAGE(PageLRU(page), page);
6626 	VM_BUG_ON_PAGE(page_count(page), page);
6627 
6628 	if (!do_memsw_account())
6629 		return;
6630 
6631 	memcg = page->mem_cgroup;
6632 
6633 	/* Readahead page, never charged */
6634 	if (!memcg)
6635 		return;
6636 
6637 	/*
6638 	 * In case the memcg owning these pages has been offlined and doesn't
6639 	 * have an ID allocated to it anymore, charge the closest online
6640 	 * ancestor for the swap instead and transfer the memory+swap charge.
6641 	 */
6642 	swap_memcg = mem_cgroup_id_get_online(memcg);
6643 	nr_entries = hpage_nr_pages(page);
6644 	/* Get references for the tail pages, too */
6645 	if (nr_entries > 1)
6646 		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
6647 	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
6648 				   nr_entries);
6649 	VM_BUG_ON_PAGE(oldid, page);
6650 	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
6651 
6652 	page->mem_cgroup = NULL;
6653 
6654 	if (!mem_cgroup_is_root(memcg))
6655 		page_counter_uncharge(&memcg->memory, nr_entries);
6656 
6657 	if (memcg != swap_memcg) {
6658 		if (!mem_cgroup_is_root(swap_memcg))
6659 			page_counter_charge(&swap_memcg->memsw, nr_entries);
6660 		page_counter_uncharge(&memcg->memsw, nr_entries);
6661 	}
6662 
6663 	/*
6664 	 * Interrupts should be disabled here because the caller holds the
6665 	 * i_pages lock which is taken with interrupts-off. It is
6666 	 * important here to have the interrupts disabled because it is the
6667 	 * only synchronisation we have for updating the per-CPU variables.
6668 	 */
6669 	VM_BUG_ON(!irqs_disabled());
6670 	mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
6671 				     -nr_entries);
6672 	memcg_check_events(memcg, page);
6673 
6674 	if (!mem_cgroup_is_root(memcg))
6675 		css_put_many(&memcg->css, nr_entries);
6676 }
6677 
6678 /**
6679  * mem_cgroup_try_charge_swap - try charging swap space for a page
6680  * @page: page being added to swap
6681  * @entry: swap entry to charge
6682  *
6683  * Try to charge @page's memcg for the swap space at @entry.
6684  *
6685  * Returns 0 on success, -ENOMEM on failure.
6686  */
6687 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
6688 {
6689 	unsigned int nr_pages = hpage_nr_pages(page);
6690 	struct page_counter *counter;
6691 	struct mem_cgroup *memcg;
6692 	unsigned short oldid;
6693 
6694 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
6695 		return 0;
6696 
6697 	memcg = page->mem_cgroup;
6698 
6699 	/* Readahead page, never charged */
6700 	if (!memcg)
6701 		return 0;
6702 
6703 	if (!entry.val) {
6704 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6705 		return 0;
6706 	}
6707 
6708 	memcg = mem_cgroup_id_get_online(memcg);
6709 
6710 	if (!mem_cgroup_is_root(memcg) &&
6711 	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
6712 		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
6713 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6714 		mem_cgroup_id_put(memcg);
6715 		return -ENOMEM;
6716 	}
6717 
6718 	/* Get references for the tail pages, too */
6719 	if (nr_pages > 1)
6720 		mem_cgroup_id_get_many(memcg, nr_pages - 1);
6721 	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
6722 	VM_BUG_ON_PAGE(oldid, page);
6723 	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
6724 
6725 	return 0;
6726 }
6727 
6728 /**
6729  * mem_cgroup_uncharge_swap - uncharge swap space
6730  * @entry: swap entry to uncharge
6731  * @nr_pages: the amount of swap space to uncharge
6732  */
6733 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
6734 {
6735 	struct mem_cgroup *memcg;
6736 	unsigned short id;
6737 
6738 	if (!do_swap_account)
6739 		return;
6740 
6741 	id = swap_cgroup_record(entry, 0, nr_pages);
6742 	rcu_read_lock();
6743 	memcg = mem_cgroup_from_id(id);
6744 	if (memcg) {
6745 		if (!mem_cgroup_is_root(memcg)) {
6746 			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6747 				page_counter_uncharge(&memcg->swap, nr_pages);
6748 			else
6749 				page_counter_uncharge(&memcg->memsw, nr_pages);
6750 		}
6751 		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
6752 		mem_cgroup_id_put_many(memcg, nr_pages);
6753 	}
6754 	rcu_read_unlock();
6755 }
6756 
6757 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
6758 {
6759 	long nr_swap_pages = get_nr_swap_pages();
6760 
6761 	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6762 		return nr_swap_pages;
6763 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6764 		nr_swap_pages = min_t(long, nr_swap_pages,
6765 				      READ_ONCE(memcg->swap.max) -
6766 				      page_counter_read(&memcg->swap));
6767 	return nr_swap_pages;
6768 }
6769 
6770 bool mem_cgroup_swap_full(struct page *page)
6771 {
6772 	struct mem_cgroup *memcg;
6773 
6774 	VM_BUG_ON_PAGE(!PageLocked(page), page);
6775 
6776 	if (vm_swap_full())
6777 		return true;
6778 	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6779 		return false;
6780 
6781 	memcg = page->mem_cgroup;
6782 	if (!memcg)
6783 		return false;
6784 
6785 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6786 		if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
6787 			return true;
6788 
6789 	return false;
6790 }
6791 
6792 /* for remember boot option*/
6793 #ifdef CONFIG_MEMCG_SWAP_ENABLED
6794 static int really_do_swap_account __initdata = 1;
6795 #else
6796 static int really_do_swap_account __initdata;
6797 #endif
6798 
6799 static int __init enable_swap_account(char *s)
6800 {
6801 	if (!strcmp(s, "1"))
6802 		really_do_swap_account = 1;
6803 	else if (!strcmp(s, "0"))
6804 		really_do_swap_account = 0;
6805 	return 1;
6806 }
6807 __setup("swapaccount=", enable_swap_account);
6808 
6809 static u64 swap_current_read(struct cgroup_subsys_state *css,
6810 			     struct cftype *cft)
6811 {
6812 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6813 
6814 	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6815 }
6816 
6817 static int swap_max_show(struct seq_file *m, void *v)
6818 {
6819 	return seq_puts_memcg_tunable(m,
6820 		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
6821 }
6822 
6823 static ssize_t swap_max_write(struct kernfs_open_file *of,
6824 			      char *buf, size_t nbytes, loff_t off)
6825 {
6826 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6827 	unsigned long max;
6828 	int err;
6829 
6830 	buf = strstrip(buf);
6831 	err = page_counter_memparse(buf, "max", &max);
6832 	if (err)
6833 		return err;
6834 
6835 	xchg(&memcg->swap.max, max);
6836 
6837 	return nbytes;
6838 }
6839 
6840 static int swap_events_show(struct seq_file *m, void *v)
6841 {
6842 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6843 
6844 	seq_printf(m, "max %lu\n",
6845 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
6846 	seq_printf(m, "fail %lu\n",
6847 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
6848 
6849 	return 0;
6850 }
6851 
6852 static struct cftype swap_files[] = {
6853 	{
6854 		.name = "swap.current",
6855 		.flags = CFTYPE_NOT_ON_ROOT,
6856 		.read_u64 = swap_current_read,
6857 	},
6858 	{
6859 		.name = "swap.max",
6860 		.flags = CFTYPE_NOT_ON_ROOT,
6861 		.seq_show = swap_max_show,
6862 		.write = swap_max_write,
6863 	},
6864 	{
6865 		.name = "swap.events",
6866 		.flags = CFTYPE_NOT_ON_ROOT,
6867 		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
6868 		.seq_show = swap_events_show,
6869 	},
6870 	{ }	/* terminate */
6871 };
6872 
6873 static struct cftype memsw_cgroup_files[] = {
6874 	{
6875 		.name = "memsw.usage_in_bytes",
6876 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6877 		.read_u64 = mem_cgroup_read_u64,
6878 	},
6879 	{
6880 		.name = "memsw.max_usage_in_bytes",
6881 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6882 		.write = mem_cgroup_reset,
6883 		.read_u64 = mem_cgroup_read_u64,
6884 	},
6885 	{
6886 		.name = "memsw.limit_in_bytes",
6887 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6888 		.write = mem_cgroup_write,
6889 		.read_u64 = mem_cgroup_read_u64,
6890 	},
6891 	{
6892 		.name = "memsw.failcnt",
6893 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6894 		.write = mem_cgroup_reset,
6895 		.read_u64 = mem_cgroup_read_u64,
6896 	},
6897 	{ },	/* terminate */
6898 };
6899 
6900 static int __init mem_cgroup_swap_init(void)
6901 {
6902 	if (!mem_cgroup_disabled() && really_do_swap_account) {
6903 		do_swap_account = 1;
6904 		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6905 					       swap_files));
6906 		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6907 						  memsw_cgroup_files));
6908 	}
6909 	return 0;
6910 }
6911 subsys_initcall(mem_cgroup_swap_init);
6912 
6913 #endif /* CONFIG_MEMCG_SWAP */
6914