xref: /openbmc/linux/mm/memcontrol.c (revision 5bd8e16d)
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * Kernel Memory Controller
14  * Copyright (C) 2012 Parallels Inc. and Google Inc.
15  * Authors: Glauber Costa and Suleiman Souhlal
16  *
17  * This program is free software; you can redistribute it and/or modify
18  * it under the terms of the GNU General Public License as published by
19  * the Free Software Foundation; either version 2 of the License, or
20  * (at your option) any later version.
21  *
22  * This program is distributed in the hope that it will be useful,
23  * but WITHOUT ANY WARRANTY; without even the implied warranty of
24  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
25  * GNU General Public License for more details.
26  */
27 
28 #include <linux/res_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/mm.h>
32 #include <linux/hugetlb.h>
33 #include <linux/pagemap.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/slab.h>
43 #include <linux/swap.h>
44 #include <linux/swapops.h>
45 #include <linux/spinlock.h>
46 #include <linux/eventfd.h>
47 #include <linux/sort.h>
48 #include <linux/fs.h>
49 #include <linux/seq_file.h>
50 #include <linux/vmalloc.h>
51 #include <linux/vmpressure.h>
52 #include <linux/mm_inline.h>
53 #include <linux/page_cgroup.h>
54 #include <linux/cpu.h>
55 #include <linux/oom.h>
56 #include "internal.h"
57 #include <net/sock.h>
58 #include <net/ip.h>
59 #include <net/tcp_memcontrol.h>
60 
61 #include <asm/uaccess.h>
62 
63 #include <trace/events/vmscan.h>
64 
65 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
66 EXPORT_SYMBOL(mem_cgroup_subsys);
67 
68 #define MEM_CGROUP_RECLAIM_RETRIES	5
69 static struct mem_cgroup *root_mem_cgroup __read_mostly;
70 
71 #ifdef CONFIG_MEMCG_SWAP
72 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
73 int do_swap_account __read_mostly;
74 
75 /* for remember boot option*/
76 #ifdef CONFIG_MEMCG_SWAP_ENABLED
77 static int really_do_swap_account __initdata = 1;
78 #else
79 static int really_do_swap_account __initdata = 0;
80 #endif
81 
82 #else
83 #define do_swap_account		0
84 #endif
85 
86 
87 static const char * const mem_cgroup_stat_names[] = {
88 	"cache",
89 	"rss",
90 	"rss_huge",
91 	"mapped_file",
92 	"writeback",
93 	"swap",
94 };
95 
96 enum mem_cgroup_events_index {
97 	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
98 	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
99 	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
100 	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
101 	MEM_CGROUP_EVENTS_NSTATS,
102 };
103 
104 static const char * const mem_cgroup_events_names[] = {
105 	"pgpgin",
106 	"pgpgout",
107 	"pgfault",
108 	"pgmajfault",
109 };
110 
111 static const char * const mem_cgroup_lru_names[] = {
112 	"inactive_anon",
113 	"active_anon",
114 	"inactive_file",
115 	"active_file",
116 	"unevictable",
117 };
118 
119 /*
120  * Per memcg event counter is incremented at every pagein/pageout. With THP,
121  * it will be incremated by the number of pages. This counter is used for
122  * for trigger some periodic events. This is straightforward and better
123  * than using jiffies etc. to handle periodic memcg event.
124  */
125 enum mem_cgroup_events_target {
126 	MEM_CGROUP_TARGET_THRESH,
127 	MEM_CGROUP_TARGET_SOFTLIMIT,
128 	MEM_CGROUP_TARGET_NUMAINFO,
129 	MEM_CGROUP_NTARGETS,
130 };
131 #define THRESHOLDS_EVENTS_TARGET 128
132 #define SOFTLIMIT_EVENTS_TARGET 1024
133 #define NUMAINFO_EVENTS_TARGET	1024
134 
135 struct mem_cgroup_stat_cpu {
136 	long count[MEM_CGROUP_STAT_NSTATS];
137 	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
138 	unsigned long nr_page_events;
139 	unsigned long targets[MEM_CGROUP_NTARGETS];
140 };
141 
142 struct mem_cgroup_reclaim_iter {
143 	/*
144 	 * last scanned hierarchy member. Valid only if last_dead_count
145 	 * matches memcg->dead_count of the hierarchy root group.
146 	 */
147 	struct mem_cgroup *last_visited;
148 	unsigned long last_dead_count;
149 
150 	/* scan generation, increased every round-trip */
151 	unsigned int generation;
152 };
153 
154 /*
155  * per-zone information in memory controller.
156  */
157 struct mem_cgroup_per_zone {
158 	struct lruvec		lruvec;
159 	unsigned long		lru_size[NR_LRU_LISTS];
160 
161 	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
162 
163 	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
164 						/* use container_of	   */
165 };
166 
167 struct mem_cgroup_per_node {
168 	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
169 };
170 
171 struct mem_cgroup_threshold {
172 	struct eventfd_ctx *eventfd;
173 	u64 threshold;
174 };
175 
176 /* For threshold */
177 struct mem_cgroup_threshold_ary {
178 	/* An array index points to threshold just below or equal to usage. */
179 	int current_threshold;
180 	/* Size of entries[] */
181 	unsigned int size;
182 	/* Array of thresholds */
183 	struct mem_cgroup_threshold entries[0];
184 };
185 
186 struct mem_cgroup_thresholds {
187 	/* Primary thresholds array */
188 	struct mem_cgroup_threshold_ary *primary;
189 	/*
190 	 * Spare threshold array.
191 	 * This is needed to make mem_cgroup_unregister_event() "never fail".
192 	 * It must be able to store at least primary->size - 1 entries.
193 	 */
194 	struct mem_cgroup_threshold_ary *spare;
195 };
196 
197 /* for OOM */
198 struct mem_cgroup_eventfd_list {
199 	struct list_head list;
200 	struct eventfd_ctx *eventfd;
201 };
202 
203 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
204 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
205 
206 /*
207  * The memory controller data structure. The memory controller controls both
208  * page cache and RSS per cgroup. We would eventually like to provide
209  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
210  * to help the administrator determine what knobs to tune.
211  *
212  * TODO: Add a water mark for the memory controller. Reclaim will begin when
213  * we hit the water mark. May be even add a low water mark, such that
214  * no reclaim occurs from a cgroup at it's low water mark, this is
215  * a feature that will be implemented much later in the future.
216  */
217 struct mem_cgroup {
218 	struct cgroup_subsys_state css;
219 	/*
220 	 * the counter to account for memory usage
221 	 */
222 	struct res_counter res;
223 
224 	/* vmpressure notifications */
225 	struct vmpressure vmpressure;
226 
227 	/*
228 	 * the counter to account for mem+swap usage.
229 	 */
230 	struct res_counter memsw;
231 
232 	/*
233 	 * the counter to account for kernel memory usage.
234 	 */
235 	struct res_counter kmem;
236 	/*
237 	 * Should the accounting and control be hierarchical, per subtree?
238 	 */
239 	bool use_hierarchy;
240 	unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
241 
242 	bool		oom_lock;
243 	atomic_t	under_oom;
244 	atomic_t	oom_wakeups;
245 
246 	int	swappiness;
247 	/* OOM-Killer disable */
248 	int		oom_kill_disable;
249 
250 	/* set when res.limit == memsw.limit */
251 	bool		memsw_is_minimum;
252 
253 	/* protect arrays of thresholds */
254 	struct mutex thresholds_lock;
255 
256 	/* thresholds for memory usage. RCU-protected */
257 	struct mem_cgroup_thresholds thresholds;
258 
259 	/* thresholds for mem+swap usage. RCU-protected */
260 	struct mem_cgroup_thresholds memsw_thresholds;
261 
262 	/* For oom notifier event fd */
263 	struct list_head oom_notify;
264 
265 	/*
266 	 * Should we move charges of a task when a task is moved into this
267 	 * mem_cgroup ? And what type of charges should we move ?
268 	 */
269 	unsigned long move_charge_at_immigrate;
270 	/*
271 	 * set > 0 if pages under this cgroup are moving to other cgroup.
272 	 */
273 	atomic_t	moving_account;
274 	/* taken only while moving_account > 0 */
275 	spinlock_t	move_lock;
276 	/*
277 	 * percpu counter.
278 	 */
279 	struct mem_cgroup_stat_cpu __percpu *stat;
280 	/*
281 	 * used when a cpu is offlined or other synchronizations
282 	 * See mem_cgroup_read_stat().
283 	 */
284 	struct mem_cgroup_stat_cpu nocpu_base;
285 	spinlock_t pcp_counter_lock;
286 
287 	atomic_t	dead_count;
288 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
289 	struct tcp_memcontrol tcp_mem;
290 #endif
291 #if defined(CONFIG_MEMCG_KMEM)
292 	/* analogous to slab_common's slab_caches list. per-memcg */
293 	struct list_head memcg_slab_caches;
294 	/* Not a spinlock, we can take a lot of time walking the list */
295 	struct mutex slab_caches_mutex;
296         /* Index in the kmem_cache->memcg_params->memcg_caches array */
297 	int kmemcg_id;
298 #endif
299 
300 	int last_scanned_node;
301 #if MAX_NUMNODES > 1
302 	nodemask_t	scan_nodes;
303 	atomic_t	numainfo_events;
304 	atomic_t	numainfo_updating;
305 #endif
306 	/*
307 	 * Protects soft_contributed transitions.
308 	 * See mem_cgroup_update_soft_limit
309 	 */
310 	spinlock_t soft_lock;
311 
312 	/*
313 	 * If true then this group has increased parents' children_in_excess
314 	 * when it got over the soft limit.
315 	 * When a group falls bellow the soft limit, parents' children_in_excess
316 	 * is decreased and soft_contributed changed to false.
317 	 */
318 	bool soft_contributed;
319 
320 	/* Number of children that are in soft limit excess */
321 	atomic_t children_in_excess;
322 
323 	struct mem_cgroup_per_node *nodeinfo[0];
324 	/* WARNING: nodeinfo must be the last member here */
325 };
326 
327 static size_t memcg_size(void)
328 {
329 	return sizeof(struct mem_cgroup) +
330 		nr_node_ids * sizeof(struct mem_cgroup_per_node);
331 }
332 
333 /* internal only representation about the status of kmem accounting. */
334 enum {
335 	KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
336 	KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
337 	KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
338 };
339 
340 /* We account when limit is on, but only after call sites are patched */
341 #define KMEM_ACCOUNTED_MASK \
342 		((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
343 
344 #ifdef CONFIG_MEMCG_KMEM
345 static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
346 {
347 	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
348 }
349 
350 static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
351 {
352 	return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
353 }
354 
355 static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
356 {
357 	set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
358 }
359 
360 static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
361 {
362 	clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
363 }
364 
365 static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
366 {
367 	/*
368 	 * Our caller must use css_get() first, because memcg_uncharge_kmem()
369 	 * will call css_put() if it sees the memcg is dead.
370 	 */
371 	smp_wmb();
372 	if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
373 		set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
374 }
375 
376 static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
377 {
378 	return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
379 				  &memcg->kmem_account_flags);
380 }
381 #endif
382 
383 /* Stuffs for move charges at task migration. */
384 /*
385  * Types of charges to be moved. "move_charge_at_immitgrate" and
386  * "immigrate_flags" are treated as a left-shifted bitmap of these types.
387  */
388 enum move_type {
389 	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
390 	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
391 	NR_MOVE_TYPE,
392 };
393 
394 /* "mc" and its members are protected by cgroup_mutex */
395 static struct move_charge_struct {
396 	spinlock_t	  lock; /* for from, to */
397 	struct mem_cgroup *from;
398 	struct mem_cgroup *to;
399 	unsigned long immigrate_flags;
400 	unsigned long precharge;
401 	unsigned long moved_charge;
402 	unsigned long moved_swap;
403 	struct task_struct *moving_task;	/* a task moving charges */
404 	wait_queue_head_t waitq;		/* a waitq for other context */
405 } mc = {
406 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
407 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
408 };
409 
410 static bool move_anon(void)
411 {
412 	return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
413 }
414 
415 static bool move_file(void)
416 {
417 	return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
418 }
419 
420 /*
421  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
422  * limit reclaim to prevent infinite loops, if they ever occur.
423  */
424 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
425 
426 enum charge_type {
427 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
428 	MEM_CGROUP_CHARGE_TYPE_ANON,
429 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
430 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
431 	NR_CHARGE_TYPE,
432 };
433 
434 /* for encoding cft->private value on file */
435 enum res_type {
436 	_MEM,
437 	_MEMSWAP,
438 	_OOM_TYPE,
439 	_KMEM,
440 };
441 
442 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
443 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
444 #define MEMFILE_ATTR(val)	((val) & 0xffff)
445 /* Used for OOM nofiier */
446 #define OOM_CONTROL		(0)
447 
448 /*
449  * Reclaim flags for mem_cgroup_hierarchical_reclaim
450  */
451 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
452 #define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
453 #define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
454 #define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
455 
456 /*
457  * The memcg_create_mutex will be held whenever a new cgroup is created.
458  * As a consequence, any change that needs to protect against new child cgroups
459  * appearing has to hold it as well.
460  */
461 static DEFINE_MUTEX(memcg_create_mutex);
462 
463 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
464 {
465 	return s ? container_of(s, struct mem_cgroup, css) : NULL;
466 }
467 
468 /* Some nice accessors for the vmpressure. */
469 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
470 {
471 	if (!memcg)
472 		memcg = root_mem_cgroup;
473 	return &memcg->vmpressure;
474 }
475 
476 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
477 {
478 	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
479 }
480 
481 struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css)
482 {
483 	return &mem_cgroup_from_css(css)->vmpressure;
484 }
485 
486 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
487 {
488 	return (memcg == root_mem_cgroup);
489 }
490 
491 /* Writing them here to avoid exposing memcg's inner layout */
492 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
493 
494 void sock_update_memcg(struct sock *sk)
495 {
496 	if (mem_cgroup_sockets_enabled) {
497 		struct mem_cgroup *memcg;
498 		struct cg_proto *cg_proto;
499 
500 		BUG_ON(!sk->sk_prot->proto_cgroup);
501 
502 		/* Socket cloning can throw us here with sk_cgrp already
503 		 * filled. It won't however, necessarily happen from
504 		 * process context. So the test for root memcg given
505 		 * the current task's memcg won't help us in this case.
506 		 *
507 		 * Respecting the original socket's memcg is a better
508 		 * decision in this case.
509 		 */
510 		if (sk->sk_cgrp) {
511 			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
512 			css_get(&sk->sk_cgrp->memcg->css);
513 			return;
514 		}
515 
516 		rcu_read_lock();
517 		memcg = mem_cgroup_from_task(current);
518 		cg_proto = sk->sk_prot->proto_cgroup(memcg);
519 		if (!mem_cgroup_is_root(memcg) &&
520 		    memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
521 			sk->sk_cgrp = cg_proto;
522 		}
523 		rcu_read_unlock();
524 	}
525 }
526 EXPORT_SYMBOL(sock_update_memcg);
527 
528 void sock_release_memcg(struct sock *sk)
529 {
530 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
531 		struct mem_cgroup *memcg;
532 		WARN_ON(!sk->sk_cgrp->memcg);
533 		memcg = sk->sk_cgrp->memcg;
534 		css_put(&sk->sk_cgrp->memcg->css);
535 	}
536 }
537 
538 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
539 {
540 	if (!memcg || mem_cgroup_is_root(memcg))
541 		return NULL;
542 
543 	return &memcg->tcp_mem.cg_proto;
544 }
545 EXPORT_SYMBOL(tcp_proto_cgroup);
546 
547 static void disarm_sock_keys(struct mem_cgroup *memcg)
548 {
549 	if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
550 		return;
551 	static_key_slow_dec(&memcg_socket_limit_enabled);
552 }
553 #else
554 static void disarm_sock_keys(struct mem_cgroup *memcg)
555 {
556 }
557 #endif
558 
559 #ifdef CONFIG_MEMCG_KMEM
560 /*
561  * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
562  * There are two main reasons for not using the css_id for this:
563  *  1) this works better in sparse environments, where we have a lot of memcgs,
564  *     but only a few kmem-limited. Or also, if we have, for instance, 200
565  *     memcgs, and none but the 200th is kmem-limited, we'd have to have a
566  *     200 entry array for that.
567  *
568  *  2) In order not to violate the cgroup API, we would like to do all memory
569  *     allocation in ->create(). At that point, we haven't yet allocated the
570  *     css_id. Having a separate index prevents us from messing with the cgroup
571  *     core for this
572  *
573  * The current size of the caches array is stored in
574  * memcg_limited_groups_array_size.  It will double each time we have to
575  * increase it.
576  */
577 static DEFINE_IDA(kmem_limited_groups);
578 int memcg_limited_groups_array_size;
579 
580 /*
581  * MIN_SIZE is different than 1, because we would like to avoid going through
582  * the alloc/free process all the time. In a small machine, 4 kmem-limited
583  * cgroups is a reasonable guess. In the future, it could be a parameter or
584  * tunable, but that is strictly not necessary.
585  *
586  * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
587  * this constant directly from cgroup, but it is understandable that this is
588  * better kept as an internal representation in cgroup.c. In any case, the
589  * css_id space is not getting any smaller, and we don't have to necessarily
590  * increase ours as well if it increases.
591  */
592 #define MEMCG_CACHES_MIN_SIZE 4
593 #define MEMCG_CACHES_MAX_SIZE 65535
594 
595 /*
596  * A lot of the calls to the cache allocation functions are expected to be
597  * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
598  * conditional to this static branch, we'll have to allow modules that does
599  * kmem_cache_alloc and the such to see this symbol as well
600  */
601 struct static_key memcg_kmem_enabled_key;
602 EXPORT_SYMBOL(memcg_kmem_enabled_key);
603 
604 static void disarm_kmem_keys(struct mem_cgroup *memcg)
605 {
606 	if (memcg_kmem_is_active(memcg)) {
607 		static_key_slow_dec(&memcg_kmem_enabled_key);
608 		ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
609 	}
610 	/*
611 	 * This check can't live in kmem destruction function,
612 	 * since the charges will outlive the cgroup
613 	 */
614 	WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
615 }
616 #else
617 static void disarm_kmem_keys(struct mem_cgroup *memcg)
618 {
619 }
620 #endif /* CONFIG_MEMCG_KMEM */
621 
622 static void disarm_static_keys(struct mem_cgroup *memcg)
623 {
624 	disarm_sock_keys(memcg);
625 	disarm_kmem_keys(memcg);
626 }
627 
628 static void drain_all_stock_async(struct mem_cgroup *memcg);
629 
630 static struct mem_cgroup_per_zone *
631 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
632 {
633 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
634 	return &memcg->nodeinfo[nid]->zoneinfo[zid];
635 }
636 
637 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
638 {
639 	return &memcg->css;
640 }
641 
642 static struct mem_cgroup_per_zone *
643 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
644 {
645 	int nid = page_to_nid(page);
646 	int zid = page_zonenum(page);
647 
648 	return mem_cgroup_zoneinfo(memcg, nid, zid);
649 }
650 
651 /*
652  * Implementation Note: reading percpu statistics for memcg.
653  *
654  * Both of vmstat[] and percpu_counter has threshold and do periodic
655  * synchronization to implement "quick" read. There are trade-off between
656  * reading cost and precision of value. Then, we may have a chance to implement
657  * a periodic synchronizion of counter in memcg's counter.
658  *
659  * But this _read() function is used for user interface now. The user accounts
660  * memory usage by memory cgroup and he _always_ requires exact value because
661  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
662  * have to visit all online cpus and make sum. So, for now, unnecessary
663  * synchronization is not implemented. (just implemented for cpu hotplug)
664  *
665  * If there are kernel internal actions which can make use of some not-exact
666  * value, and reading all cpu value can be performance bottleneck in some
667  * common workload, threashold and synchonization as vmstat[] should be
668  * implemented.
669  */
670 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
671 				 enum mem_cgroup_stat_index idx)
672 {
673 	long val = 0;
674 	int cpu;
675 
676 	get_online_cpus();
677 	for_each_online_cpu(cpu)
678 		val += per_cpu(memcg->stat->count[idx], cpu);
679 #ifdef CONFIG_HOTPLUG_CPU
680 	spin_lock(&memcg->pcp_counter_lock);
681 	val += memcg->nocpu_base.count[idx];
682 	spin_unlock(&memcg->pcp_counter_lock);
683 #endif
684 	put_online_cpus();
685 	return val;
686 }
687 
688 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
689 					 bool charge)
690 {
691 	int val = (charge) ? 1 : -1;
692 	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
693 }
694 
695 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
696 					    enum mem_cgroup_events_index idx)
697 {
698 	unsigned long val = 0;
699 	int cpu;
700 
701 	for_each_online_cpu(cpu)
702 		val += per_cpu(memcg->stat->events[idx], cpu);
703 #ifdef CONFIG_HOTPLUG_CPU
704 	spin_lock(&memcg->pcp_counter_lock);
705 	val += memcg->nocpu_base.events[idx];
706 	spin_unlock(&memcg->pcp_counter_lock);
707 #endif
708 	return val;
709 }
710 
711 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
712 					 struct page *page,
713 					 bool anon, int nr_pages)
714 {
715 	preempt_disable();
716 
717 	/*
718 	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
719 	 * counted as CACHE even if it's on ANON LRU.
720 	 */
721 	if (anon)
722 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
723 				nr_pages);
724 	else
725 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
726 				nr_pages);
727 
728 	if (PageTransHuge(page))
729 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
730 				nr_pages);
731 
732 	/* pagein of a big page is an event. So, ignore page size */
733 	if (nr_pages > 0)
734 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
735 	else {
736 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
737 		nr_pages = -nr_pages; /* for event */
738 	}
739 
740 	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
741 
742 	preempt_enable();
743 }
744 
745 unsigned long
746 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
747 {
748 	struct mem_cgroup_per_zone *mz;
749 
750 	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
751 	return mz->lru_size[lru];
752 }
753 
754 static unsigned long
755 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
756 			unsigned int lru_mask)
757 {
758 	struct mem_cgroup_per_zone *mz;
759 	enum lru_list lru;
760 	unsigned long ret = 0;
761 
762 	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
763 
764 	for_each_lru(lru) {
765 		if (BIT(lru) & lru_mask)
766 			ret += mz->lru_size[lru];
767 	}
768 	return ret;
769 }
770 
771 static unsigned long
772 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
773 			int nid, unsigned int lru_mask)
774 {
775 	u64 total = 0;
776 	int zid;
777 
778 	for (zid = 0; zid < MAX_NR_ZONES; zid++)
779 		total += mem_cgroup_zone_nr_lru_pages(memcg,
780 						nid, zid, lru_mask);
781 
782 	return total;
783 }
784 
785 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
786 			unsigned int lru_mask)
787 {
788 	int nid;
789 	u64 total = 0;
790 
791 	for_each_node_state(nid, N_MEMORY)
792 		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
793 	return total;
794 }
795 
796 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
797 				       enum mem_cgroup_events_target target)
798 {
799 	unsigned long val, next;
800 
801 	val = __this_cpu_read(memcg->stat->nr_page_events);
802 	next = __this_cpu_read(memcg->stat->targets[target]);
803 	/* from time_after() in jiffies.h */
804 	if ((long)next - (long)val < 0) {
805 		switch (target) {
806 		case MEM_CGROUP_TARGET_THRESH:
807 			next = val + THRESHOLDS_EVENTS_TARGET;
808 			break;
809 		case MEM_CGROUP_TARGET_SOFTLIMIT:
810 			next = val + SOFTLIMIT_EVENTS_TARGET;
811 			break;
812 		case MEM_CGROUP_TARGET_NUMAINFO:
813 			next = val + NUMAINFO_EVENTS_TARGET;
814 			break;
815 		default:
816 			break;
817 		}
818 		__this_cpu_write(memcg->stat->targets[target], next);
819 		return true;
820 	}
821 	return false;
822 }
823 
824 /*
825  * Called from rate-limited memcg_check_events when enough
826  * MEM_CGROUP_TARGET_SOFTLIMIT events are accumulated and it makes sure
827  * that all the parents up the hierarchy will be notified that this group
828  * is in excess or that it is not in excess anymore. mmecg->soft_contributed
829  * makes the transition a single action whenever the state flips from one to
830  * the other.
831  */
832 static void mem_cgroup_update_soft_limit(struct mem_cgroup *memcg)
833 {
834 	unsigned long long excess = res_counter_soft_limit_excess(&memcg->res);
835 	struct mem_cgroup *parent = memcg;
836 	int delta = 0;
837 
838 	spin_lock(&memcg->soft_lock);
839 	if (excess) {
840 		if (!memcg->soft_contributed) {
841 			delta = 1;
842 			memcg->soft_contributed = true;
843 		}
844 	} else {
845 		if (memcg->soft_contributed) {
846 			delta = -1;
847 			memcg->soft_contributed = false;
848 		}
849 	}
850 
851 	/*
852 	 * Necessary to update all ancestors when hierarchy is used
853 	 * because their event counter is not touched.
854 	 * We track children even outside the hierarchy for the root
855 	 * cgroup because tree walk starting at root should visit
856 	 * all cgroups and we want to prevent from pointless tree
857 	 * walk if no children is below the limit.
858 	 */
859 	while (delta && (parent = parent_mem_cgroup(parent)))
860 		atomic_add(delta, &parent->children_in_excess);
861 	if (memcg != root_mem_cgroup && !root_mem_cgroup->use_hierarchy)
862 		atomic_add(delta, &root_mem_cgroup->children_in_excess);
863 	spin_unlock(&memcg->soft_lock);
864 }
865 
866 /*
867  * Check events in order.
868  *
869  */
870 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
871 {
872 	preempt_disable();
873 	/* threshold event is triggered in finer grain than soft limit */
874 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
875 						MEM_CGROUP_TARGET_THRESH))) {
876 		bool do_softlimit;
877 		bool do_numainfo __maybe_unused;
878 
879 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
880 						MEM_CGROUP_TARGET_SOFTLIMIT);
881 #if MAX_NUMNODES > 1
882 		do_numainfo = mem_cgroup_event_ratelimit(memcg,
883 						MEM_CGROUP_TARGET_NUMAINFO);
884 #endif
885 		preempt_enable();
886 
887 		mem_cgroup_threshold(memcg);
888 		if (unlikely(do_softlimit))
889 			mem_cgroup_update_soft_limit(memcg);
890 #if MAX_NUMNODES > 1
891 		if (unlikely(do_numainfo))
892 			atomic_inc(&memcg->numainfo_events);
893 #endif
894 	} else
895 		preempt_enable();
896 }
897 
898 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
899 {
900 	/*
901 	 * mm_update_next_owner() may clear mm->owner to NULL
902 	 * if it races with swapoff, page migration, etc.
903 	 * So this can be called with p == NULL.
904 	 */
905 	if (unlikely(!p))
906 		return NULL;
907 
908 	return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id));
909 }
910 
911 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
912 {
913 	struct mem_cgroup *memcg = NULL;
914 
915 	if (!mm)
916 		return NULL;
917 	/*
918 	 * Because we have no locks, mm->owner's may be being moved to other
919 	 * cgroup. We use css_tryget() here even if this looks
920 	 * pessimistic (rather than adding locks here).
921 	 */
922 	rcu_read_lock();
923 	do {
924 		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
925 		if (unlikely(!memcg))
926 			break;
927 	} while (!css_tryget(&memcg->css));
928 	rcu_read_unlock();
929 	return memcg;
930 }
931 
932 static enum mem_cgroup_filter_t
933 mem_cgroup_filter(struct mem_cgroup *memcg, struct mem_cgroup *root,
934 		mem_cgroup_iter_filter cond)
935 {
936 	if (!cond)
937 		return VISIT;
938 	return cond(memcg, root);
939 }
940 
941 /*
942  * Returns a next (in a pre-order walk) alive memcg (with elevated css
943  * ref. count) or NULL if the whole root's subtree has been visited.
944  *
945  * helper function to be used by mem_cgroup_iter
946  */
947 static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
948 		struct mem_cgroup *last_visited, mem_cgroup_iter_filter cond)
949 {
950 	struct cgroup_subsys_state *prev_css, *next_css;
951 
952 	prev_css = last_visited ? &last_visited->css : NULL;
953 skip_node:
954 	next_css = css_next_descendant_pre(prev_css, &root->css);
955 
956 	/*
957 	 * Even if we found a group we have to make sure it is
958 	 * alive. css && !memcg means that the groups should be
959 	 * skipped and we should continue the tree walk.
960 	 * last_visited css is safe to use because it is
961 	 * protected by css_get and the tree walk is rcu safe.
962 	 */
963 	if (next_css) {
964 		struct mem_cgroup *mem = mem_cgroup_from_css(next_css);
965 
966 		switch (mem_cgroup_filter(mem, root, cond)) {
967 		case SKIP:
968 			prev_css = next_css;
969 			goto skip_node;
970 		case SKIP_TREE:
971 			if (mem == root)
972 				return NULL;
973 			/*
974 			 * css_rightmost_descendant is not an optimal way to
975 			 * skip through a subtree (especially for imbalanced
976 			 * trees leaning to right) but that's what we have right
977 			 * now. More effective solution would be traversing
978 			 * right-up for first non-NULL without calling
979 			 * css_next_descendant_pre afterwards.
980 			 */
981 			prev_css = css_rightmost_descendant(next_css);
982 			goto skip_node;
983 		case VISIT:
984 			if (css_tryget(&mem->css))
985 				return mem;
986 			else {
987 				prev_css = next_css;
988 				goto skip_node;
989 			}
990 			break;
991 		}
992 	}
993 
994 	return NULL;
995 }
996 
997 static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
998 {
999 	/*
1000 	 * When a group in the hierarchy below root is destroyed, the
1001 	 * hierarchy iterator can no longer be trusted since it might
1002 	 * have pointed to the destroyed group.  Invalidate it.
1003 	 */
1004 	atomic_inc(&root->dead_count);
1005 }
1006 
1007 static struct mem_cgroup *
1008 mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1009 		     struct mem_cgroup *root,
1010 		     int *sequence)
1011 {
1012 	struct mem_cgroup *position = NULL;
1013 	/*
1014 	 * A cgroup destruction happens in two stages: offlining and
1015 	 * release.  They are separated by a RCU grace period.
1016 	 *
1017 	 * If the iterator is valid, we may still race with an
1018 	 * offlining.  The RCU lock ensures the object won't be
1019 	 * released, tryget will fail if we lost the race.
1020 	 */
1021 	*sequence = atomic_read(&root->dead_count);
1022 	if (iter->last_dead_count == *sequence) {
1023 		smp_rmb();
1024 		position = iter->last_visited;
1025 		if (position && !css_tryget(&position->css))
1026 			position = NULL;
1027 	}
1028 	return position;
1029 }
1030 
1031 static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1032 				   struct mem_cgroup *last_visited,
1033 				   struct mem_cgroup *new_position,
1034 				   int sequence)
1035 {
1036 	if (last_visited)
1037 		css_put(&last_visited->css);
1038 	/*
1039 	 * We store the sequence count from the time @last_visited was
1040 	 * loaded successfully instead of rereading it here so that we
1041 	 * don't lose destruction events in between.  We could have
1042 	 * raced with the destruction of @new_position after all.
1043 	 */
1044 	iter->last_visited = new_position;
1045 	smp_wmb();
1046 	iter->last_dead_count = sequence;
1047 }
1048 
1049 /**
1050  * mem_cgroup_iter - iterate over memory cgroup hierarchy
1051  * @root: hierarchy root
1052  * @prev: previously returned memcg, NULL on first invocation
1053  * @reclaim: cookie for shared reclaim walks, NULL for full walks
1054  * @cond: filter for visited nodes, NULL for no filter
1055  *
1056  * Returns references to children of the hierarchy below @root, or
1057  * @root itself, or %NULL after a full round-trip.
1058  *
1059  * Caller must pass the return value in @prev on subsequent
1060  * invocations for reference counting, or use mem_cgroup_iter_break()
1061  * to cancel a hierarchy walk before the round-trip is complete.
1062  *
1063  * Reclaimers can specify a zone and a priority level in @reclaim to
1064  * divide up the memcgs in the hierarchy among all concurrent
1065  * reclaimers operating on the same zone and priority.
1066  */
1067 struct mem_cgroup *mem_cgroup_iter_cond(struct mem_cgroup *root,
1068 				   struct mem_cgroup *prev,
1069 				   struct mem_cgroup_reclaim_cookie *reclaim,
1070 				   mem_cgroup_iter_filter cond)
1071 {
1072 	struct mem_cgroup *memcg = NULL;
1073 	struct mem_cgroup *last_visited = NULL;
1074 
1075 	if (mem_cgroup_disabled()) {
1076 		/* first call must return non-NULL, second return NULL */
1077 		return (struct mem_cgroup *)(unsigned long)!prev;
1078 	}
1079 
1080 	if (!root)
1081 		root = root_mem_cgroup;
1082 
1083 	if (prev && !reclaim)
1084 		last_visited = prev;
1085 
1086 	if (!root->use_hierarchy && root != root_mem_cgroup) {
1087 		if (prev)
1088 			goto out_css_put;
1089 		if (mem_cgroup_filter(root, root, cond) == VISIT)
1090 			return root;
1091 		return NULL;
1092 	}
1093 
1094 	rcu_read_lock();
1095 	while (!memcg) {
1096 		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1097 		int uninitialized_var(seq);
1098 
1099 		if (reclaim) {
1100 			int nid = zone_to_nid(reclaim->zone);
1101 			int zid = zone_idx(reclaim->zone);
1102 			struct mem_cgroup_per_zone *mz;
1103 
1104 			mz = mem_cgroup_zoneinfo(root, nid, zid);
1105 			iter = &mz->reclaim_iter[reclaim->priority];
1106 			if (prev && reclaim->generation != iter->generation) {
1107 				iter->last_visited = NULL;
1108 				goto out_unlock;
1109 			}
1110 
1111 			last_visited = mem_cgroup_iter_load(iter, root, &seq);
1112 		}
1113 
1114 		memcg = __mem_cgroup_iter_next(root, last_visited, cond);
1115 
1116 		if (reclaim) {
1117 			mem_cgroup_iter_update(iter, last_visited, memcg, seq);
1118 
1119 			if (!memcg)
1120 				iter->generation++;
1121 			else if (!prev && memcg)
1122 				reclaim->generation = iter->generation;
1123 		}
1124 
1125 		/*
1126 		 * We have finished the whole tree walk or no group has been
1127 		 * visited because filter told us to skip the root node.
1128 		 */
1129 		if (!memcg && (prev || (cond && !last_visited)))
1130 			goto out_unlock;
1131 	}
1132 out_unlock:
1133 	rcu_read_unlock();
1134 out_css_put:
1135 	if (prev && prev != root)
1136 		css_put(&prev->css);
1137 
1138 	return memcg;
1139 }
1140 
1141 /**
1142  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1143  * @root: hierarchy root
1144  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1145  */
1146 void mem_cgroup_iter_break(struct mem_cgroup *root,
1147 			   struct mem_cgroup *prev)
1148 {
1149 	if (!root)
1150 		root = root_mem_cgroup;
1151 	if (prev && prev != root)
1152 		css_put(&prev->css);
1153 }
1154 
1155 /*
1156  * Iteration constructs for visiting all cgroups (under a tree).  If
1157  * loops are exited prematurely (break), mem_cgroup_iter_break() must
1158  * be used for reference counting.
1159  */
1160 #define for_each_mem_cgroup_tree(iter, root)		\
1161 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1162 	     iter != NULL;				\
1163 	     iter = mem_cgroup_iter(root, iter, NULL))
1164 
1165 #define for_each_mem_cgroup(iter)			\
1166 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1167 	     iter != NULL;				\
1168 	     iter = mem_cgroup_iter(NULL, iter, NULL))
1169 
1170 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1171 {
1172 	struct mem_cgroup *memcg;
1173 
1174 	rcu_read_lock();
1175 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1176 	if (unlikely(!memcg))
1177 		goto out;
1178 
1179 	switch (idx) {
1180 	case PGFAULT:
1181 		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1182 		break;
1183 	case PGMAJFAULT:
1184 		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1185 		break;
1186 	default:
1187 		BUG();
1188 	}
1189 out:
1190 	rcu_read_unlock();
1191 }
1192 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1193 
1194 /**
1195  * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1196  * @zone: zone of the wanted lruvec
1197  * @memcg: memcg of the wanted lruvec
1198  *
1199  * Returns the lru list vector holding pages for the given @zone and
1200  * @mem.  This can be the global zone lruvec, if the memory controller
1201  * is disabled.
1202  */
1203 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1204 				      struct mem_cgroup *memcg)
1205 {
1206 	struct mem_cgroup_per_zone *mz;
1207 	struct lruvec *lruvec;
1208 
1209 	if (mem_cgroup_disabled()) {
1210 		lruvec = &zone->lruvec;
1211 		goto out;
1212 	}
1213 
1214 	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1215 	lruvec = &mz->lruvec;
1216 out:
1217 	/*
1218 	 * Since a node can be onlined after the mem_cgroup was created,
1219 	 * we have to be prepared to initialize lruvec->zone here;
1220 	 * and if offlined then reonlined, we need to reinitialize it.
1221 	 */
1222 	if (unlikely(lruvec->zone != zone))
1223 		lruvec->zone = zone;
1224 	return lruvec;
1225 }
1226 
1227 /*
1228  * Following LRU functions are allowed to be used without PCG_LOCK.
1229  * Operations are called by routine of global LRU independently from memcg.
1230  * What we have to take care of here is validness of pc->mem_cgroup.
1231  *
1232  * Changes to pc->mem_cgroup happens when
1233  * 1. charge
1234  * 2. moving account
1235  * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1236  * It is added to LRU before charge.
1237  * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1238  * When moving account, the page is not on LRU. It's isolated.
1239  */
1240 
1241 /**
1242  * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1243  * @page: the page
1244  * @zone: zone of the page
1245  */
1246 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1247 {
1248 	struct mem_cgroup_per_zone *mz;
1249 	struct mem_cgroup *memcg;
1250 	struct page_cgroup *pc;
1251 	struct lruvec *lruvec;
1252 
1253 	if (mem_cgroup_disabled()) {
1254 		lruvec = &zone->lruvec;
1255 		goto out;
1256 	}
1257 
1258 	pc = lookup_page_cgroup(page);
1259 	memcg = pc->mem_cgroup;
1260 
1261 	/*
1262 	 * Surreptitiously switch any uncharged offlist page to root:
1263 	 * an uncharged page off lru does nothing to secure
1264 	 * its former mem_cgroup from sudden removal.
1265 	 *
1266 	 * Our caller holds lru_lock, and PageCgroupUsed is updated
1267 	 * under page_cgroup lock: between them, they make all uses
1268 	 * of pc->mem_cgroup safe.
1269 	 */
1270 	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1271 		pc->mem_cgroup = memcg = root_mem_cgroup;
1272 
1273 	mz = page_cgroup_zoneinfo(memcg, page);
1274 	lruvec = &mz->lruvec;
1275 out:
1276 	/*
1277 	 * Since a node can be onlined after the mem_cgroup was created,
1278 	 * we have to be prepared to initialize lruvec->zone here;
1279 	 * and if offlined then reonlined, we need to reinitialize it.
1280 	 */
1281 	if (unlikely(lruvec->zone != zone))
1282 		lruvec->zone = zone;
1283 	return lruvec;
1284 }
1285 
1286 /**
1287  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1288  * @lruvec: mem_cgroup per zone lru vector
1289  * @lru: index of lru list the page is sitting on
1290  * @nr_pages: positive when adding or negative when removing
1291  *
1292  * This function must be called when a page is added to or removed from an
1293  * lru list.
1294  */
1295 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1296 				int nr_pages)
1297 {
1298 	struct mem_cgroup_per_zone *mz;
1299 	unsigned long *lru_size;
1300 
1301 	if (mem_cgroup_disabled())
1302 		return;
1303 
1304 	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1305 	lru_size = mz->lru_size + lru;
1306 	*lru_size += nr_pages;
1307 	VM_BUG_ON((long)(*lru_size) < 0);
1308 }
1309 
1310 /*
1311  * Checks whether given mem is same or in the root_mem_cgroup's
1312  * hierarchy subtree
1313  */
1314 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1315 				  struct mem_cgroup *memcg)
1316 {
1317 	if (root_memcg == memcg)
1318 		return true;
1319 	if (!root_memcg->use_hierarchy || !memcg)
1320 		return false;
1321 	return css_is_ancestor(&memcg->css, &root_memcg->css);
1322 }
1323 
1324 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1325 				       struct mem_cgroup *memcg)
1326 {
1327 	bool ret;
1328 
1329 	rcu_read_lock();
1330 	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1331 	rcu_read_unlock();
1332 	return ret;
1333 }
1334 
1335 bool task_in_mem_cgroup(struct task_struct *task,
1336 			const struct mem_cgroup *memcg)
1337 {
1338 	struct mem_cgroup *curr = NULL;
1339 	struct task_struct *p;
1340 	bool ret;
1341 
1342 	p = find_lock_task_mm(task);
1343 	if (p) {
1344 		curr = try_get_mem_cgroup_from_mm(p->mm);
1345 		task_unlock(p);
1346 	} else {
1347 		/*
1348 		 * All threads may have already detached their mm's, but the oom
1349 		 * killer still needs to detect if they have already been oom
1350 		 * killed to prevent needlessly killing additional tasks.
1351 		 */
1352 		rcu_read_lock();
1353 		curr = mem_cgroup_from_task(task);
1354 		if (curr)
1355 			css_get(&curr->css);
1356 		rcu_read_unlock();
1357 	}
1358 	if (!curr)
1359 		return false;
1360 	/*
1361 	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1362 	 * use_hierarchy of "curr" here make this function true if hierarchy is
1363 	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1364 	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1365 	 */
1366 	ret = mem_cgroup_same_or_subtree(memcg, curr);
1367 	css_put(&curr->css);
1368 	return ret;
1369 }
1370 
1371 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1372 {
1373 	unsigned long inactive_ratio;
1374 	unsigned long inactive;
1375 	unsigned long active;
1376 	unsigned long gb;
1377 
1378 	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1379 	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1380 
1381 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
1382 	if (gb)
1383 		inactive_ratio = int_sqrt(10 * gb);
1384 	else
1385 		inactive_ratio = 1;
1386 
1387 	return inactive * inactive_ratio < active;
1388 }
1389 
1390 #define mem_cgroup_from_res_counter(counter, member)	\
1391 	container_of(counter, struct mem_cgroup, member)
1392 
1393 /**
1394  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1395  * @memcg: the memory cgroup
1396  *
1397  * Returns the maximum amount of memory @mem can be charged with, in
1398  * pages.
1399  */
1400 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1401 {
1402 	unsigned long long margin;
1403 
1404 	margin = res_counter_margin(&memcg->res);
1405 	if (do_swap_account)
1406 		margin = min(margin, res_counter_margin(&memcg->memsw));
1407 	return margin >> PAGE_SHIFT;
1408 }
1409 
1410 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1411 {
1412 	/* root ? */
1413 	if (!css_parent(&memcg->css))
1414 		return vm_swappiness;
1415 
1416 	return memcg->swappiness;
1417 }
1418 
1419 /*
1420  * memcg->moving_account is used for checking possibility that some thread is
1421  * calling move_account(). When a thread on CPU-A starts moving pages under
1422  * a memcg, other threads should check memcg->moving_account under
1423  * rcu_read_lock(), like this:
1424  *
1425  *         CPU-A                                    CPU-B
1426  *                                              rcu_read_lock()
1427  *         memcg->moving_account+1              if (memcg->mocing_account)
1428  *                                                   take heavy locks.
1429  *         synchronize_rcu()                    update something.
1430  *                                              rcu_read_unlock()
1431  *         start move here.
1432  */
1433 
1434 /* for quick checking without looking up memcg */
1435 atomic_t memcg_moving __read_mostly;
1436 
1437 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1438 {
1439 	atomic_inc(&memcg_moving);
1440 	atomic_inc(&memcg->moving_account);
1441 	synchronize_rcu();
1442 }
1443 
1444 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1445 {
1446 	/*
1447 	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1448 	 * We check NULL in callee rather than caller.
1449 	 */
1450 	if (memcg) {
1451 		atomic_dec(&memcg_moving);
1452 		atomic_dec(&memcg->moving_account);
1453 	}
1454 }
1455 
1456 /*
1457  * 2 routines for checking "mem" is under move_account() or not.
1458  *
1459  * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
1460  *			  is used for avoiding races in accounting.  If true,
1461  *			  pc->mem_cgroup may be overwritten.
1462  *
1463  * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1464  *			  under hierarchy of moving cgroups. This is for
1465  *			  waiting at hith-memory prressure caused by "move".
1466  */
1467 
1468 static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1469 {
1470 	VM_BUG_ON(!rcu_read_lock_held());
1471 	return atomic_read(&memcg->moving_account) > 0;
1472 }
1473 
1474 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1475 {
1476 	struct mem_cgroup *from;
1477 	struct mem_cgroup *to;
1478 	bool ret = false;
1479 	/*
1480 	 * Unlike task_move routines, we access mc.to, mc.from not under
1481 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1482 	 */
1483 	spin_lock(&mc.lock);
1484 	from = mc.from;
1485 	to = mc.to;
1486 	if (!from)
1487 		goto unlock;
1488 
1489 	ret = mem_cgroup_same_or_subtree(memcg, from)
1490 		|| mem_cgroup_same_or_subtree(memcg, to);
1491 unlock:
1492 	spin_unlock(&mc.lock);
1493 	return ret;
1494 }
1495 
1496 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1497 {
1498 	if (mc.moving_task && current != mc.moving_task) {
1499 		if (mem_cgroup_under_move(memcg)) {
1500 			DEFINE_WAIT(wait);
1501 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1502 			/* moving charge context might have finished. */
1503 			if (mc.moving_task)
1504 				schedule();
1505 			finish_wait(&mc.waitq, &wait);
1506 			return true;
1507 		}
1508 	}
1509 	return false;
1510 }
1511 
1512 /*
1513  * Take this lock when
1514  * - a code tries to modify page's memcg while it's USED.
1515  * - a code tries to modify page state accounting in a memcg.
1516  * see mem_cgroup_stolen(), too.
1517  */
1518 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1519 				  unsigned long *flags)
1520 {
1521 	spin_lock_irqsave(&memcg->move_lock, *flags);
1522 }
1523 
1524 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1525 				unsigned long *flags)
1526 {
1527 	spin_unlock_irqrestore(&memcg->move_lock, *flags);
1528 }
1529 
1530 #define K(x) ((x) << (PAGE_SHIFT-10))
1531 /**
1532  * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1533  * @memcg: The memory cgroup that went over limit
1534  * @p: Task that is going to be killed
1535  *
1536  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1537  * enabled
1538  */
1539 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1540 {
1541 	struct cgroup *task_cgrp;
1542 	struct cgroup *mem_cgrp;
1543 	/*
1544 	 * Need a buffer in BSS, can't rely on allocations. The code relies
1545 	 * on the assumption that OOM is serialized for memory controller.
1546 	 * If this assumption is broken, revisit this code.
1547 	 */
1548 	static char memcg_name[PATH_MAX];
1549 	int ret;
1550 	struct mem_cgroup *iter;
1551 	unsigned int i;
1552 
1553 	if (!p)
1554 		return;
1555 
1556 	rcu_read_lock();
1557 
1558 	mem_cgrp = memcg->css.cgroup;
1559 	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1560 
1561 	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1562 	if (ret < 0) {
1563 		/*
1564 		 * Unfortunately, we are unable to convert to a useful name
1565 		 * But we'll still print out the usage information
1566 		 */
1567 		rcu_read_unlock();
1568 		goto done;
1569 	}
1570 	rcu_read_unlock();
1571 
1572 	pr_info("Task in %s killed", memcg_name);
1573 
1574 	rcu_read_lock();
1575 	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1576 	if (ret < 0) {
1577 		rcu_read_unlock();
1578 		goto done;
1579 	}
1580 	rcu_read_unlock();
1581 
1582 	/*
1583 	 * Continues from above, so we don't need an KERN_ level
1584 	 */
1585 	pr_cont(" as a result of limit of %s\n", memcg_name);
1586 done:
1587 
1588 	pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1589 		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1590 		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1591 		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1592 	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1593 		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1594 		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1595 		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1596 	pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1597 		res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1598 		res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1599 		res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1600 
1601 	for_each_mem_cgroup_tree(iter, memcg) {
1602 		pr_info("Memory cgroup stats");
1603 
1604 		rcu_read_lock();
1605 		ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
1606 		if (!ret)
1607 			pr_cont(" for %s", memcg_name);
1608 		rcu_read_unlock();
1609 		pr_cont(":");
1610 
1611 		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1612 			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1613 				continue;
1614 			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1615 				K(mem_cgroup_read_stat(iter, i)));
1616 		}
1617 
1618 		for (i = 0; i < NR_LRU_LISTS; i++)
1619 			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1620 				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1621 
1622 		pr_cont("\n");
1623 	}
1624 }
1625 
1626 /*
1627  * This function returns the number of memcg under hierarchy tree. Returns
1628  * 1(self count) if no children.
1629  */
1630 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1631 {
1632 	int num = 0;
1633 	struct mem_cgroup *iter;
1634 
1635 	for_each_mem_cgroup_tree(iter, memcg)
1636 		num++;
1637 	return num;
1638 }
1639 
1640 /*
1641  * Return the memory (and swap, if configured) limit for a memcg.
1642  */
1643 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1644 {
1645 	u64 limit;
1646 
1647 	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1648 
1649 	/*
1650 	 * Do not consider swap space if we cannot swap due to swappiness
1651 	 */
1652 	if (mem_cgroup_swappiness(memcg)) {
1653 		u64 memsw;
1654 
1655 		limit += total_swap_pages << PAGE_SHIFT;
1656 		memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1657 
1658 		/*
1659 		 * If memsw is finite and limits the amount of swap space
1660 		 * available to this memcg, return that limit.
1661 		 */
1662 		limit = min(limit, memsw);
1663 	}
1664 
1665 	return limit;
1666 }
1667 
1668 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1669 				     int order)
1670 {
1671 	struct mem_cgroup *iter;
1672 	unsigned long chosen_points = 0;
1673 	unsigned long totalpages;
1674 	unsigned int points = 0;
1675 	struct task_struct *chosen = NULL;
1676 
1677 	/*
1678 	 * If current has a pending SIGKILL or is exiting, then automatically
1679 	 * select it.  The goal is to allow it to allocate so that it may
1680 	 * quickly exit and free its memory.
1681 	 */
1682 	if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1683 		set_thread_flag(TIF_MEMDIE);
1684 		return;
1685 	}
1686 
1687 	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1688 	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1689 	for_each_mem_cgroup_tree(iter, memcg) {
1690 		struct css_task_iter it;
1691 		struct task_struct *task;
1692 
1693 		css_task_iter_start(&iter->css, &it);
1694 		while ((task = css_task_iter_next(&it))) {
1695 			switch (oom_scan_process_thread(task, totalpages, NULL,
1696 							false)) {
1697 			case OOM_SCAN_SELECT:
1698 				if (chosen)
1699 					put_task_struct(chosen);
1700 				chosen = task;
1701 				chosen_points = ULONG_MAX;
1702 				get_task_struct(chosen);
1703 				/* fall through */
1704 			case OOM_SCAN_CONTINUE:
1705 				continue;
1706 			case OOM_SCAN_ABORT:
1707 				css_task_iter_end(&it);
1708 				mem_cgroup_iter_break(memcg, iter);
1709 				if (chosen)
1710 					put_task_struct(chosen);
1711 				return;
1712 			case OOM_SCAN_OK:
1713 				break;
1714 			};
1715 			points = oom_badness(task, memcg, NULL, totalpages);
1716 			if (points > chosen_points) {
1717 				if (chosen)
1718 					put_task_struct(chosen);
1719 				chosen = task;
1720 				chosen_points = points;
1721 				get_task_struct(chosen);
1722 			}
1723 		}
1724 		css_task_iter_end(&it);
1725 	}
1726 
1727 	if (!chosen)
1728 		return;
1729 	points = chosen_points * 1000 / totalpages;
1730 	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1731 			 NULL, "Memory cgroup out of memory");
1732 }
1733 
1734 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1735 					gfp_t gfp_mask,
1736 					unsigned long flags)
1737 {
1738 	unsigned long total = 0;
1739 	bool noswap = false;
1740 	int loop;
1741 
1742 	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1743 		noswap = true;
1744 	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1745 		noswap = true;
1746 
1747 	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1748 		if (loop)
1749 			drain_all_stock_async(memcg);
1750 		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1751 		/*
1752 		 * Allow limit shrinkers, which are triggered directly
1753 		 * by userspace, to catch signals and stop reclaim
1754 		 * after minimal progress, regardless of the margin.
1755 		 */
1756 		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1757 			break;
1758 		if (mem_cgroup_margin(memcg))
1759 			break;
1760 		/*
1761 		 * If nothing was reclaimed after two attempts, there
1762 		 * may be no reclaimable pages in this hierarchy.
1763 		 */
1764 		if (loop && !total)
1765 			break;
1766 	}
1767 	return total;
1768 }
1769 
1770 #if MAX_NUMNODES > 1
1771 /**
1772  * test_mem_cgroup_node_reclaimable
1773  * @memcg: the target memcg
1774  * @nid: the node ID to be checked.
1775  * @noswap : specify true here if the user wants flle only information.
1776  *
1777  * This function returns whether the specified memcg contains any
1778  * reclaimable pages on a node. Returns true if there are any reclaimable
1779  * pages in the node.
1780  */
1781 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1782 		int nid, bool noswap)
1783 {
1784 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1785 		return true;
1786 	if (noswap || !total_swap_pages)
1787 		return false;
1788 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1789 		return true;
1790 	return false;
1791 
1792 }
1793 
1794 /*
1795  * Always updating the nodemask is not very good - even if we have an empty
1796  * list or the wrong list here, we can start from some node and traverse all
1797  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1798  *
1799  */
1800 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1801 {
1802 	int nid;
1803 	/*
1804 	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1805 	 * pagein/pageout changes since the last update.
1806 	 */
1807 	if (!atomic_read(&memcg->numainfo_events))
1808 		return;
1809 	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1810 		return;
1811 
1812 	/* make a nodemask where this memcg uses memory from */
1813 	memcg->scan_nodes = node_states[N_MEMORY];
1814 
1815 	for_each_node_mask(nid, node_states[N_MEMORY]) {
1816 
1817 		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1818 			node_clear(nid, memcg->scan_nodes);
1819 	}
1820 
1821 	atomic_set(&memcg->numainfo_events, 0);
1822 	atomic_set(&memcg->numainfo_updating, 0);
1823 }
1824 
1825 /*
1826  * Selecting a node where we start reclaim from. Because what we need is just
1827  * reducing usage counter, start from anywhere is O,K. Considering
1828  * memory reclaim from current node, there are pros. and cons.
1829  *
1830  * Freeing memory from current node means freeing memory from a node which
1831  * we'll use or we've used. So, it may make LRU bad. And if several threads
1832  * hit limits, it will see a contention on a node. But freeing from remote
1833  * node means more costs for memory reclaim because of memory latency.
1834  *
1835  * Now, we use round-robin. Better algorithm is welcomed.
1836  */
1837 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1838 {
1839 	int node;
1840 
1841 	mem_cgroup_may_update_nodemask(memcg);
1842 	node = memcg->last_scanned_node;
1843 
1844 	node = next_node(node, memcg->scan_nodes);
1845 	if (node == MAX_NUMNODES)
1846 		node = first_node(memcg->scan_nodes);
1847 	/*
1848 	 * We call this when we hit limit, not when pages are added to LRU.
1849 	 * No LRU may hold pages because all pages are UNEVICTABLE or
1850 	 * memcg is too small and all pages are not on LRU. In that case,
1851 	 * we use curret node.
1852 	 */
1853 	if (unlikely(node == MAX_NUMNODES))
1854 		node = numa_node_id();
1855 
1856 	memcg->last_scanned_node = node;
1857 	return node;
1858 }
1859 
1860 #else
1861 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1862 {
1863 	return 0;
1864 }
1865 
1866 #endif
1867 
1868 /*
1869  * A group is eligible for the soft limit reclaim under the given root
1870  * hierarchy if
1871  *	a) it is over its soft limit
1872  *	b) any parent up the hierarchy is over its soft limit
1873  *
1874  * If the given group doesn't have any children over the limit then it
1875  * doesn't make any sense to iterate its subtree.
1876  */
1877 enum mem_cgroup_filter_t
1878 mem_cgroup_soft_reclaim_eligible(struct mem_cgroup *memcg,
1879 		struct mem_cgroup *root)
1880 {
1881 	struct mem_cgroup *parent;
1882 
1883 	if (!memcg)
1884 		memcg = root_mem_cgroup;
1885 	parent = memcg;
1886 
1887 	if (res_counter_soft_limit_excess(&memcg->res))
1888 		return VISIT;
1889 
1890 	/*
1891 	 * If any parent up to the root in the hierarchy is over its soft limit
1892 	 * then we have to obey and reclaim from this group as well.
1893 	 */
1894 	while ((parent = parent_mem_cgroup(parent))) {
1895 		if (res_counter_soft_limit_excess(&parent->res))
1896 			return VISIT;
1897 		if (parent == root)
1898 			break;
1899 	}
1900 
1901 	if (!atomic_read(&memcg->children_in_excess))
1902 		return SKIP_TREE;
1903 	return SKIP;
1904 }
1905 
1906 static DEFINE_SPINLOCK(memcg_oom_lock);
1907 
1908 /*
1909  * Check OOM-Killer is already running under our hierarchy.
1910  * If someone is running, return false.
1911  */
1912 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1913 {
1914 	struct mem_cgroup *iter, *failed = NULL;
1915 
1916 	spin_lock(&memcg_oom_lock);
1917 
1918 	for_each_mem_cgroup_tree(iter, memcg) {
1919 		if (iter->oom_lock) {
1920 			/*
1921 			 * this subtree of our hierarchy is already locked
1922 			 * so we cannot give a lock.
1923 			 */
1924 			failed = iter;
1925 			mem_cgroup_iter_break(memcg, iter);
1926 			break;
1927 		} else
1928 			iter->oom_lock = true;
1929 	}
1930 
1931 	if (failed) {
1932 		/*
1933 		 * OK, we failed to lock the whole subtree so we have
1934 		 * to clean up what we set up to the failing subtree
1935 		 */
1936 		for_each_mem_cgroup_tree(iter, memcg) {
1937 			if (iter == failed) {
1938 				mem_cgroup_iter_break(memcg, iter);
1939 				break;
1940 			}
1941 			iter->oom_lock = false;
1942 		}
1943 	}
1944 
1945 	spin_unlock(&memcg_oom_lock);
1946 
1947 	return !failed;
1948 }
1949 
1950 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1951 {
1952 	struct mem_cgroup *iter;
1953 
1954 	spin_lock(&memcg_oom_lock);
1955 	for_each_mem_cgroup_tree(iter, memcg)
1956 		iter->oom_lock = false;
1957 	spin_unlock(&memcg_oom_lock);
1958 }
1959 
1960 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1961 {
1962 	struct mem_cgroup *iter;
1963 
1964 	for_each_mem_cgroup_tree(iter, memcg)
1965 		atomic_inc(&iter->under_oom);
1966 }
1967 
1968 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1969 {
1970 	struct mem_cgroup *iter;
1971 
1972 	/*
1973 	 * When a new child is created while the hierarchy is under oom,
1974 	 * mem_cgroup_oom_lock() may not be called. We have to use
1975 	 * atomic_add_unless() here.
1976 	 */
1977 	for_each_mem_cgroup_tree(iter, memcg)
1978 		atomic_add_unless(&iter->under_oom, -1, 0);
1979 }
1980 
1981 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1982 
1983 struct oom_wait_info {
1984 	struct mem_cgroup *memcg;
1985 	wait_queue_t	wait;
1986 };
1987 
1988 static int memcg_oom_wake_function(wait_queue_t *wait,
1989 	unsigned mode, int sync, void *arg)
1990 {
1991 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1992 	struct mem_cgroup *oom_wait_memcg;
1993 	struct oom_wait_info *oom_wait_info;
1994 
1995 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1996 	oom_wait_memcg = oom_wait_info->memcg;
1997 
1998 	/*
1999 	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
2000 	 * Then we can use css_is_ancestor without taking care of RCU.
2001 	 */
2002 	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2003 		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
2004 		return 0;
2005 	return autoremove_wake_function(wait, mode, sync, arg);
2006 }
2007 
2008 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
2009 {
2010 	atomic_inc(&memcg->oom_wakeups);
2011 	/* for filtering, pass "memcg" as argument. */
2012 	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
2013 }
2014 
2015 static void memcg_oom_recover(struct mem_cgroup *memcg)
2016 {
2017 	if (memcg && atomic_read(&memcg->under_oom))
2018 		memcg_wakeup_oom(memcg);
2019 }
2020 
2021 /*
2022  * try to call OOM killer
2023  */
2024 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
2025 {
2026 	bool locked;
2027 	int wakeups;
2028 
2029 	if (!current->memcg_oom.may_oom)
2030 		return;
2031 
2032 	current->memcg_oom.in_memcg_oom = 1;
2033 
2034 	/*
2035 	 * As with any blocking lock, a contender needs to start
2036 	 * listening for wakeups before attempting the trylock,
2037 	 * otherwise it can miss the wakeup from the unlock and sleep
2038 	 * indefinitely.  This is just open-coded because our locking
2039 	 * is so particular to memcg hierarchies.
2040 	 */
2041 	wakeups = atomic_read(&memcg->oom_wakeups);
2042 	mem_cgroup_mark_under_oom(memcg);
2043 
2044 	locked = mem_cgroup_oom_trylock(memcg);
2045 
2046 	if (locked)
2047 		mem_cgroup_oom_notify(memcg);
2048 
2049 	if (locked && !memcg->oom_kill_disable) {
2050 		mem_cgroup_unmark_under_oom(memcg);
2051 		mem_cgroup_out_of_memory(memcg, mask, order);
2052 		mem_cgroup_oom_unlock(memcg);
2053 		/*
2054 		 * There is no guarantee that an OOM-lock contender
2055 		 * sees the wakeups triggered by the OOM kill
2056 		 * uncharges.  Wake any sleepers explicitely.
2057 		 */
2058 		memcg_oom_recover(memcg);
2059 	} else {
2060 		/*
2061 		 * A system call can just return -ENOMEM, but if this
2062 		 * is a page fault and somebody else is handling the
2063 		 * OOM already, we need to sleep on the OOM waitqueue
2064 		 * for this memcg until the situation is resolved.
2065 		 * Which can take some time because it might be
2066 		 * handled by a userspace task.
2067 		 *
2068 		 * However, this is the charge context, which means
2069 		 * that we may sit on a large call stack and hold
2070 		 * various filesystem locks, the mmap_sem etc. and we
2071 		 * don't want the OOM handler to deadlock on them
2072 		 * while we sit here and wait.  Store the current OOM
2073 		 * context in the task_struct, then return -ENOMEM.
2074 		 * At the end of the page fault handler, with the
2075 		 * stack unwound, pagefault_out_of_memory() will check
2076 		 * back with us by calling
2077 		 * mem_cgroup_oom_synchronize(), possibly putting the
2078 		 * task to sleep.
2079 		 */
2080 		current->memcg_oom.oom_locked = locked;
2081 		current->memcg_oom.wakeups = wakeups;
2082 		css_get(&memcg->css);
2083 		current->memcg_oom.wait_on_memcg = memcg;
2084 	}
2085 }
2086 
2087 /**
2088  * mem_cgroup_oom_synchronize - complete memcg OOM handling
2089  *
2090  * This has to be called at the end of a page fault if the the memcg
2091  * OOM handler was enabled and the fault is returning %VM_FAULT_OOM.
2092  *
2093  * Memcg supports userspace OOM handling, so failed allocations must
2094  * sleep on a waitqueue until the userspace task resolves the
2095  * situation.  Sleeping directly in the charge context with all kinds
2096  * of locks held is not a good idea, instead we remember an OOM state
2097  * in the task and mem_cgroup_oom_synchronize() has to be called at
2098  * the end of the page fault to put the task to sleep and clean up the
2099  * OOM state.
2100  *
2101  * Returns %true if an ongoing memcg OOM situation was detected and
2102  * finalized, %false otherwise.
2103  */
2104 bool mem_cgroup_oom_synchronize(void)
2105 {
2106 	struct oom_wait_info owait;
2107 	struct mem_cgroup *memcg;
2108 
2109 	/* OOM is global, do not handle */
2110 	if (!current->memcg_oom.in_memcg_oom)
2111 		return false;
2112 
2113 	/*
2114 	 * We invoked the OOM killer but there is a chance that a kill
2115 	 * did not free up any charges.  Everybody else might already
2116 	 * be sleeping, so restart the fault and keep the rampage
2117 	 * going until some charges are released.
2118 	 */
2119 	memcg = current->memcg_oom.wait_on_memcg;
2120 	if (!memcg)
2121 		goto out;
2122 
2123 	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
2124 		goto out_memcg;
2125 
2126 	owait.memcg = memcg;
2127 	owait.wait.flags = 0;
2128 	owait.wait.func = memcg_oom_wake_function;
2129 	owait.wait.private = current;
2130 	INIT_LIST_HEAD(&owait.wait.task_list);
2131 
2132 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2133 	/* Only sleep if we didn't miss any wakeups since OOM */
2134 	if (atomic_read(&memcg->oom_wakeups) == current->memcg_oom.wakeups)
2135 		schedule();
2136 	finish_wait(&memcg_oom_waitq, &owait.wait);
2137 out_memcg:
2138 	mem_cgroup_unmark_under_oom(memcg);
2139 	if (current->memcg_oom.oom_locked) {
2140 		mem_cgroup_oom_unlock(memcg);
2141 		/*
2142 		 * There is no guarantee that an OOM-lock contender
2143 		 * sees the wakeups triggered by the OOM kill
2144 		 * uncharges.  Wake any sleepers explicitely.
2145 		 */
2146 		memcg_oom_recover(memcg);
2147 	}
2148 	css_put(&memcg->css);
2149 	current->memcg_oom.wait_on_memcg = NULL;
2150 out:
2151 	current->memcg_oom.in_memcg_oom = 0;
2152 	return true;
2153 }
2154 
2155 /*
2156  * Currently used to update mapped file statistics, but the routine can be
2157  * generalized to update other statistics as well.
2158  *
2159  * Notes: Race condition
2160  *
2161  * We usually use page_cgroup_lock() for accessing page_cgroup member but
2162  * it tends to be costly. But considering some conditions, we doesn't need
2163  * to do so _always_.
2164  *
2165  * Considering "charge", lock_page_cgroup() is not required because all
2166  * file-stat operations happen after a page is attached to radix-tree. There
2167  * are no race with "charge".
2168  *
2169  * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2170  * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2171  * if there are race with "uncharge". Statistics itself is properly handled
2172  * by flags.
2173  *
2174  * Considering "move", this is an only case we see a race. To make the race
2175  * small, we check mm->moving_account and detect there are possibility of race
2176  * If there is, we take a lock.
2177  */
2178 
2179 void __mem_cgroup_begin_update_page_stat(struct page *page,
2180 				bool *locked, unsigned long *flags)
2181 {
2182 	struct mem_cgroup *memcg;
2183 	struct page_cgroup *pc;
2184 
2185 	pc = lookup_page_cgroup(page);
2186 again:
2187 	memcg = pc->mem_cgroup;
2188 	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2189 		return;
2190 	/*
2191 	 * If this memory cgroup is not under account moving, we don't
2192 	 * need to take move_lock_mem_cgroup(). Because we already hold
2193 	 * rcu_read_lock(), any calls to move_account will be delayed until
2194 	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2195 	 */
2196 	if (!mem_cgroup_stolen(memcg))
2197 		return;
2198 
2199 	move_lock_mem_cgroup(memcg, flags);
2200 	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2201 		move_unlock_mem_cgroup(memcg, flags);
2202 		goto again;
2203 	}
2204 	*locked = true;
2205 }
2206 
2207 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2208 {
2209 	struct page_cgroup *pc = lookup_page_cgroup(page);
2210 
2211 	/*
2212 	 * It's guaranteed that pc->mem_cgroup never changes while
2213 	 * lock is held because a routine modifies pc->mem_cgroup
2214 	 * should take move_lock_mem_cgroup().
2215 	 */
2216 	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2217 }
2218 
2219 void mem_cgroup_update_page_stat(struct page *page,
2220 				 enum mem_cgroup_stat_index idx, int val)
2221 {
2222 	struct mem_cgroup *memcg;
2223 	struct page_cgroup *pc = lookup_page_cgroup(page);
2224 	unsigned long uninitialized_var(flags);
2225 
2226 	if (mem_cgroup_disabled())
2227 		return;
2228 
2229 	VM_BUG_ON(!rcu_read_lock_held());
2230 	memcg = pc->mem_cgroup;
2231 	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2232 		return;
2233 
2234 	this_cpu_add(memcg->stat->count[idx], val);
2235 }
2236 
2237 /*
2238  * size of first charge trial. "32" comes from vmscan.c's magic value.
2239  * TODO: maybe necessary to use big numbers in big irons.
2240  */
2241 #define CHARGE_BATCH	32U
2242 struct memcg_stock_pcp {
2243 	struct mem_cgroup *cached; /* this never be root cgroup */
2244 	unsigned int nr_pages;
2245 	struct work_struct work;
2246 	unsigned long flags;
2247 #define FLUSHING_CACHED_CHARGE	0
2248 };
2249 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2250 static DEFINE_MUTEX(percpu_charge_mutex);
2251 
2252 /**
2253  * consume_stock: Try to consume stocked charge on this cpu.
2254  * @memcg: memcg to consume from.
2255  * @nr_pages: how many pages to charge.
2256  *
2257  * The charges will only happen if @memcg matches the current cpu's memcg
2258  * stock, and at least @nr_pages are available in that stock.  Failure to
2259  * service an allocation will refill the stock.
2260  *
2261  * returns true if successful, false otherwise.
2262  */
2263 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2264 {
2265 	struct memcg_stock_pcp *stock;
2266 	bool ret = true;
2267 
2268 	if (nr_pages > CHARGE_BATCH)
2269 		return false;
2270 
2271 	stock = &get_cpu_var(memcg_stock);
2272 	if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2273 		stock->nr_pages -= nr_pages;
2274 	else /* need to call res_counter_charge */
2275 		ret = false;
2276 	put_cpu_var(memcg_stock);
2277 	return ret;
2278 }
2279 
2280 /*
2281  * Returns stocks cached in percpu to res_counter and reset cached information.
2282  */
2283 static void drain_stock(struct memcg_stock_pcp *stock)
2284 {
2285 	struct mem_cgroup *old = stock->cached;
2286 
2287 	if (stock->nr_pages) {
2288 		unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2289 
2290 		res_counter_uncharge(&old->res, bytes);
2291 		if (do_swap_account)
2292 			res_counter_uncharge(&old->memsw, bytes);
2293 		stock->nr_pages = 0;
2294 	}
2295 	stock->cached = NULL;
2296 }
2297 
2298 /*
2299  * This must be called under preempt disabled or must be called by
2300  * a thread which is pinned to local cpu.
2301  */
2302 static void drain_local_stock(struct work_struct *dummy)
2303 {
2304 	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2305 	drain_stock(stock);
2306 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2307 }
2308 
2309 static void __init memcg_stock_init(void)
2310 {
2311 	int cpu;
2312 
2313 	for_each_possible_cpu(cpu) {
2314 		struct memcg_stock_pcp *stock =
2315 					&per_cpu(memcg_stock, cpu);
2316 		INIT_WORK(&stock->work, drain_local_stock);
2317 	}
2318 }
2319 
2320 /*
2321  * Cache charges(val) which is from res_counter, to local per_cpu area.
2322  * This will be consumed by consume_stock() function, later.
2323  */
2324 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2325 {
2326 	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2327 
2328 	if (stock->cached != memcg) { /* reset if necessary */
2329 		drain_stock(stock);
2330 		stock->cached = memcg;
2331 	}
2332 	stock->nr_pages += nr_pages;
2333 	put_cpu_var(memcg_stock);
2334 }
2335 
2336 /*
2337  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2338  * of the hierarchy under it. sync flag says whether we should block
2339  * until the work is done.
2340  */
2341 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2342 {
2343 	int cpu, curcpu;
2344 
2345 	/* Notify other cpus that system-wide "drain" is running */
2346 	get_online_cpus();
2347 	curcpu = get_cpu();
2348 	for_each_online_cpu(cpu) {
2349 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2350 		struct mem_cgroup *memcg;
2351 
2352 		memcg = stock->cached;
2353 		if (!memcg || !stock->nr_pages)
2354 			continue;
2355 		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2356 			continue;
2357 		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2358 			if (cpu == curcpu)
2359 				drain_local_stock(&stock->work);
2360 			else
2361 				schedule_work_on(cpu, &stock->work);
2362 		}
2363 	}
2364 	put_cpu();
2365 
2366 	if (!sync)
2367 		goto out;
2368 
2369 	for_each_online_cpu(cpu) {
2370 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2371 		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2372 			flush_work(&stock->work);
2373 	}
2374 out:
2375 	put_online_cpus();
2376 }
2377 
2378 /*
2379  * Tries to drain stocked charges in other cpus. This function is asynchronous
2380  * and just put a work per cpu for draining localy on each cpu. Caller can
2381  * expects some charges will be back to res_counter later but cannot wait for
2382  * it.
2383  */
2384 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2385 {
2386 	/*
2387 	 * If someone calls draining, avoid adding more kworker runs.
2388 	 */
2389 	if (!mutex_trylock(&percpu_charge_mutex))
2390 		return;
2391 	drain_all_stock(root_memcg, false);
2392 	mutex_unlock(&percpu_charge_mutex);
2393 }
2394 
2395 /* This is a synchronous drain interface. */
2396 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2397 {
2398 	/* called when force_empty is called */
2399 	mutex_lock(&percpu_charge_mutex);
2400 	drain_all_stock(root_memcg, true);
2401 	mutex_unlock(&percpu_charge_mutex);
2402 }
2403 
2404 /*
2405  * This function drains percpu counter value from DEAD cpu and
2406  * move it to local cpu. Note that this function can be preempted.
2407  */
2408 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2409 {
2410 	int i;
2411 
2412 	spin_lock(&memcg->pcp_counter_lock);
2413 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2414 		long x = per_cpu(memcg->stat->count[i], cpu);
2415 
2416 		per_cpu(memcg->stat->count[i], cpu) = 0;
2417 		memcg->nocpu_base.count[i] += x;
2418 	}
2419 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2420 		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2421 
2422 		per_cpu(memcg->stat->events[i], cpu) = 0;
2423 		memcg->nocpu_base.events[i] += x;
2424 	}
2425 	spin_unlock(&memcg->pcp_counter_lock);
2426 }
2427 
2428 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2429 					unsigned long action,
2430 					void *hcpu)
2431 {
2432 	int cpu = (unsigned long)hcpu;
2433 	struct memcg_stock_pcp *stock;
2434 	struct mem_cgroup *iter;
2435 
2436 	if (action == CPU_ONLINE)
2437 		return NOTIFY_OK;
2438 
2439 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2440 		return NOTIFY_OK;
2441 
2442 	for_each_mem_cgroup(iter)
2443 		mem_cgroup_drain_pcp_counter(iter, cpu);
2444 
2445 	stock = &per_cpu(memcg_stock, cpu);
2446 	drain_stock(stock);
2447 	return NOTIFY_OK;
2448 }
2449 
2450 
2451 /* See __mem_cgroup_try_charge() for details */
2452 enum {
2453 	CHARGE_OK,		/* success */
2454 	CHARGE_RETRY,		/* need to retry but retry is not bad */
2455 	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
2456 	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
2457 };
2458 
2459 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2460 				unsigned int nr_pages, unsigned int min_pages,
2461 				bool invoke_oom)
2462 {
2463 	unsigned long csize = nr_pages * PAGE_SIZE;
2464 	struct mem_cgroup *mem_over_limit;
2465 	struct res_counter *fail_res;
2466 	unsigned long flags = 0;
2467 	int ret;
2468 
2469 	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2470 
2471 	if (likely(!ret)) {
2472 		if (!do_swap_account)
2473 			return CHARGE_OK;
2474 		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2475 		if (likely(!ret))
2476 			return CHARGE_OK;
2477 
2478 		res_counter_uncharge(&memcg->res, csize);
2479 		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2480 		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2481 	} else
2482 		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2483 	/*
2484 	 * Never reclaim on behalf of optional batching, retry with a
2485 	 * single page instead.
2486 	 */
2487 	if (nr_pages > min_pages)
2488 		return CHARGE_RETRY;
2489 
2490 	if (!(gfp_mask & __GFP_WAIT))
2491 		return CHARGE_WOULDBLOCK;
2492 
2493 	if (gfp_mask & __GFP_NORETRY)
2494 		return CHARGE_NOMEM;
2495 
2496 	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2497 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2498 		return CHARGE_RETRY;
2499 	/*
2500 	 * Even though the limit is exceeded at this point, reclaim
2501 	 * may have been able to free some pages.  Retry the charge
2502 	 * before killing the task.
2503 	 *
2504 	 * Only for regular pages, though: huge pages are rather
2505 	 * unlikely to succeed so close to the limit, and we fall back
2506 	 * to regular pages anyway in case of failure.
2507 	 */
2508 	if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2509 		return CHARGE_RETRY;
2510 
2511 	/*
2512 	 * At task move, charge accounts can be doubly counted. So, it's
2513 	 * better to wait until the end of task_move if something is going on.
2514 	 */
2515 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2516 		return CHARGE_RETRY;
2517 
2518 	if (invoke_oom)
2519 		mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize));
2520 
2521 	return CHARGE_NOMEM;
2522 }
2523 
2524 /*
2525  * __mem_cgroup_try_charge() does
2526  * 1. detect memcg to be charged against from passed *mm and *ptr,
2527  * 2. update res_counter
2528  * 3. call memory reclaim if necessary.
2529  *
2530  * In some special case, if the task is fatal, fatal_signal_pending() or
2531  * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2532  * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2533  * as possible without any hazards. 2: all pages should have a valid
2534  * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2535  * pointer, that is treated as a charge to root_mem_cgroup.
2536  *
2537  * So __mem_cgroup_try_charge() will return
2538  *  0       ...  on success, filling *ptr with a valid memcg pointer.
2539  *  -ENOMEM ...  charge failure because of resource limits.
2540  *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
2541  *
2542  * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2543  * the oom-killer can be invoked.
2544  */
2545 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2546 				   gfp_t gfp_mask,
2547 				   unsigned int nr_pages,
2548 				   struct mem_cgroup **ptr,
2549 				   bool oom)
2550 {
2551 	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2552 	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2553 	struct mem_cgroup *memcg = NULL;
2554 	int ret;
2555 
2556 	/*
2557 	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2558 	 * in system level. So, allow to go ahead dying process in addition to
2559 	 * MEMDIE process.
2560 	 */
2561 	if (unlikely(test_thread_flag(TIF_MEMDIE)
2562 		     || fatal_signal_pending(current)))
2563 		goto bypass;
2564 
2565 	/*
2566 	 * We always charge the cgroup the mm_struct belongs to.
2567 	 * The mm_struct's mem_cgroup changes on task migration if the
2568 	 * thread group leader migrates. It's possible that mm is not
2569 	 * set, if so charge the root memcg (happens for pagecache usage).
2570 	 */
2571 	if (!*ptr && !mm)
2572 		*ptr = root_mem_cgroup;
2573 again:
2574 	if (*ptr) { /* css should be a valid one */
2575 		memcg = *ptr;
2576 		if (mem_cgroup_is_root(memcg))
2577 			goto done;
2578 		if (consume_stock(memcg, nr_pages))
2579 			goto done;
2580 		css_get(&memcg->css);
2581 	} else {
2582 		struct task_struct *p;
2583 
2584 		rcu_read_lock();
2585 		p = rcu_dereference(mm->owner);
2586 		/*
2587 		 * Because we don't have task_lock(), "p" can exit.
2588 		 * In that case, "memcg" can point to root or p can be NULL with
2589 		 * race with swapoff. Then, we have small risk of mis-accouning.
2590 		 * But such kind of mis-account by race always happens because
2591 		 * we don't have cgroup_mutex(). It's overkill and we allo that
2592 		 * small race, here.
2593 		 * (*) swapoff at el will charge against mm-struct not against
2594 		 * task-struct. So, mm->owner can be NULL.
2595 		 */
2596 		memcg = mem_cgroup_from_task(p);
2597 		if (!memcg)
2598 			memcg = root_mem_cgroup;
2599 		if (mem_cgroup_is_root(memcg)) {
2600 			rcu_read_unlock();
2601 			goto done;
2602 		}
2603 		if (consume_stock(memcg, nr_pages)) {
2604 			/*
2605 			 * It seems dagerous to access memcg without css_get().
2606 			 * But considering how consume_stok works, it's not
2607 			 * necessary. If consume_stock success, some charges
2608 			 * from this memcg are cached on this cpu. So, we
2609 			 * don't need to call css_get()/css_tryget() before
2610 			 * calling consume_stock().
2611 			 */
2612 			rcu_read_unlock();
2613 			goto done;
2614 		}
2615 		/* after here, we may be blocked. we need to get refcnt */
2616 		if (!css_tryget(&memcg->css)) {
2617 			rcu_read_unlock();
2618 			goto again;
2619 		}
2620 		rcu_read_unlock();
2621 	}
2622 
2623 	do {
2624 		bool invoke_oom = oom && !nr_oom_retries;
2625 
2626 		/* If killed, bypass charge */
2627 		if (fatal_signal_pending(current)) {
2628 			css_put(&memcg->css);
2629 			goto bypass;
2630 		}
2631 
2632 		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch,
2633 					   nr_pages, invoke_oom);
2634 		switch (ret) {
2635 		case CHARGE_OK:
2636 			break;
2637 		case CHARGE_RETRY: /* not in OOM situation but retry */
2638 			batch = nr_pages;
2639 			css_put(&memcg->css);
2640 			memcg = NULL;
2641 			goto again;
2642 		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2643 			css_put(&memcg->css);
2644 			goto nomem;
2645 		case CHARGE_NOMEM: /* OOM routine works */
2646 			if (!oom || invoke_oom) {
2647 				css_put(&memcg->css);
2648 				goto nomem;
2649 			}
2650 			nr_oom_retries--;
2651 			break;
2652 		}
2653 	} while (ret != CHARGE_OK);
2654 
2655 	if (batch > nr_pages)
2656 		refill_stock(memcg, batch - nr_pages);
2657 	css_put(&memcg->css);
2658 done:
2659 	*ptr = memcg;
2660 	return 0;
2661 nomem:
2662 	*ptr = NULL;
2663 	return -ENOMEM;
2664 bypass:
2665 	*ptr = root_mem_cgroup;
2666 	return -EINTR;
2667 }
2668 
2669 /*
2670  * Somemtimes we have to undo a charge we got by try_charge().
2671  * This function is for that and do uncharge, put css's refcnt.
2672  * gotten by try_charge().
2673  */
2674 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2675 				       unsigned int nr_pages)
2676 {
2677 	if (!mem_cgroup_is_root(memcg)) {
2678 		unsigned long bytes = nr_pages * PAGE_SIZE;
2679 
2680 		res_counter_uncharge(&memcg->res, bytes);
2681 		if (do_swap_account)
2682 			res_counter_uncharge(&memcg->memsw, bytes);
2683 	}
2684 }
2685 
2686 /*
2687  * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2688  * This is useful when moving usage to parent cgroup.
2689  */
2690 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2691 					unsigned int nr_pages)
2692 {
2693 	unsigned long bytes = nr_pages * PAGE_SIZE;
2694 
2695 	if (mem_cgroup_is_root(memcg))
2696 		return;
2697 
2698 	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2699 	if (do_swap_account)
2700 		res_counter_uncharge_until(&memcg->memsw,
2701 						memcg->memsw.parent, bytes);
2702 }
2703 
2704 /*
2705  * A helper function to get mem_cgroup from ID. must be called under
2706  * rcu_read_lock().  The caller is responsible for calling css_tryget if
2707  * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2708  * called against removed memcg.)
2709  */
2710 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2711 {
2712 	struct cgroup_subsys_state *css;
2713 
2714 	/* ID 0 is unused ID */
2715 	if (!id)
2716 		return NULL;
2717 	css = css_lookup(&mem_cgroup_subsys, id);
2718 	if (!css)
2719 		return NULL;
2720 	return mem_cgroup_from_css(css);
2721 }
2722 
2723 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2724 {
2725 	struct mem_cgroup *memcg = NULL;
2726 	struct page_cgroup *pc;
2727 	unsigned short id;
2728 	swp_entry_t ent;
2729 
2730 	VM_BUG_ON(!PageLocked(page));
2731 
2732 	pc = lookup_page_cgroup(page);
2733 	lock_page_cgroup(pc);
2734 	if (PageCgroupUsed(pc)) {
2735 		memcg = pc->mem_cgroup;
2736 		if (memcg && !css_tryget(&memcg->css))
2737 			memcg = NULL;
2738 	} else if (PageSwapCache(page)) {
2739 		ent.val = page_private(page);
2740 		id = lookup_swap_cgroup_id(ent);
2741 		rcu_read_lock();
2742 		memcg = mem_cgroup_lookup(id);
2743 		if (memcg && !css_tryget(&memcg->css))
2744 			memcg = NULL;
2745 		rcu_read_unlock();
2746 	}
2747 	unlock_page_cgroup(pc);
2748 	return memcg;
2749 }
2750 
2751 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2752 				       struct page *page,
2753 				       unsigned int nr_pages,
2754 				       enum charge_type ctype,
2755 				       bool lrucare)
2756 {
2757 	struct page_cgroup *pc = lookup_page_cgroup(page);
2758 	struct zone *uninitialized_var(zone);
2759 	struct lruvec *lruvec;
2760 	bool was_on_lru = false;
2761 	bool anon;
2762 
2763 	lock_page_cgroup(pc);
2764 	VM_BUG_ON(PageCgroupUsed(pc));
2765 	/*
2766 	 * we don't need page_cgroup_lock about tail pages, becase they are not
2767 	 * accessed by any other context at this point.
2768 	 */
2769 
2770 	/*
2771 	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2772 	 * may already be on some other mem_cgroup's LRU.  Take care of it.
2773 	 */
2774 	if (lrucare) {
2775 		zone = page_zone(page);
2776 		spin_lock_irq(&zone->lru_lock);
2777 		if (PageLRU(page)) {
2778 			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2779 			ClearPageLRU(page);
2780 			del_page_from_lru_list(page, lruvec, page_lru(page));
2781 			was_on_lru = true;
2782 		}
2783 	}
2784 
2785 	pc->mem_cgroup = memcg;
2786 	/*
2787 	 * We access a page_cgroup asynchronously without lock_page_cgroup().
2788 	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2789 	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2790 	 * before USED bit, we need memory barrier here.
2791 	 * See mem_cgroup_add_lru_list(), etc.
2792 	 */
2793 	smp_wmb();
2794 	SetPageCgroupUsed(pc);
2795 
2796 	if (lrucare) {
2797 		if (was_on_lru) {
2798 			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2799 			VM_BUG_ON(PageLRU(page));
2800 			SetPageLRU(page);
2801 			add_page_to_lru_list(page, lruvec, page_lru(page));
2802 		}
2803 		spin_unlock_irq(&zone->lru_lock);
2804 	}
2805 
2806 	if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2807 		anon = true;
2808 	else
2809 		anon = false;
2810 
2811 	mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2812 	unlock_page_cgroup(pc);
2813 
2814 	/*
2815 	 * "charge_statistics" updated event counter.
2816 	 */
2817 	memcg_check_events(memcg, page);
2818 }
2819 
2820 static DEFINE_MUTEX(set_limit_mutex);
2821 
2822 #ifdef CONFIG_MEMCG_KMEM
2823 static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2824 {
2825 	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2826 		(memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
2827 }
2828 
2829 /*
2830  * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2831  * in the memcg_cache_params struct.
2832  */
2833 static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2834 {
2835 	struct kmem_cache *cachep;
2836 
2837 	VM_BUG_ON(p->is_root_cache);
2838 	cachep = p->root_cache;
2839 	return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
2840 }
2841 
2842 #ifdef CONFIG_SLABINFO
2843 static int mem_cgroup_slabinfo_read(struct cgroup_subsys_state *css,
2844 				    struct cftype *cft, struct seq_file *m)
2845 {
2846 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2847 	struct memcg_cache_params *params;
2848 
2849 	if (!memcg_can_account_kmem(memcg))
2850 		return -EIO;
2851 
2852 	print_slabinfo_header(m);
2853 
2854 	mutex_lock(&memcg->slab_caches_mutex);
2855 	list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2856 		cache_show(memcg_params_to_cache(params), m);
2857 	mutex_unlock(&memcg->slab_caches_mutex);
2858 
2859 	return 0;
2860 }
2861 #endif
2862 
2863 static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
2864 {
2865 	struct res_counter *fail_res;
2866 	struct mem_cgroup *_memcg;
2867 	int ret = 0;
2868 	bool may_oom;
2869 
2870 	ret = res_counter_charge(&memcg->kmem, size, &fail_res);
2871 	if (ret)
2872 		return ret;
2873 
2874 	/*
2875 	 * Conditions under which we can wait for the oom_killer. Those are
2876 	 * the same conditions tested by the core page allocator
2877 	 */
2878 	may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);
2879 
2880 	_memcg = memcg;
2881 	ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
2882 				      &_memcg, may_oom);
2883 
2884 	if (ret == -EINTR)  {
2885 		/*
2886 		 * __mem_cgroup_try_charge() chosed to bypass to root due to
2887 		 * OOM kill or fatal signal.  Since our only options are to
2888 		 * either fail the allocation or charge it to this cgroup, do
2889 		 * it as a temporary condition. But we can't fail. From a
2890 		 * kmem/slab perspective, the cache has already been selected,
2891 		 * by mem_cgroup_kmem_get_cache(), so it is too late to change
2892 		 * our minds.
2893 		 *
2894 		 * This condition will only trigger if the task entered
2895 		 * memcg_charge_kmem in a sane state, but was OOM-killed during
2896 		 * __mem_cgroup_try_charge() above. Tasks that were already
2897 		 * dying when the allocation triggers should have been already
2898 		 * directed to the root cgroup in memcontrol.h
2899 		 */
2900 		res_counter_charge_nofail(&memcg->res, size, &fail_res);
2901 		if (do_swap_account)
2902 			res_counter_charge_nofail(&memcg->memsw, size,
2903 						  &fail_res);
2904 		ret = 0;
2905 	} else if (ret)
2906 		res_counter_uncharge(&memcg->kmem, size);
2907 
2908 	return ret;
2909 }
2910 
2911 static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
2912 {
2913 	res_counter_uncharge(&memcg->res, size);
2914 	if (do_swap_account)
2915 		res_counter_uncharge(&memcg->memsw, size);
2916 
2917 	/* Not down to 0 */
2918 	if (res_counter_uncharge(&memcg->kmem, size))
2919 		return;
2920 
2921 	/*
2922 	 * Releases a reference taken in kmem_cgroup_css_offline in case
2923 	 * this last uncharge is racing with the offlining code or it is
2924 	 * outliving the memcg existence.
2925 	 *
2926 	 * The memory barrier imposed by test&clear is paired with the
2927 	 * explicit one in memcg_kmem_mark_dead().
2928 	 */
2929 	if (memcg_kmem_test_and_clear_dead(memcg))
2930 		css_put(&memcg->css);
2931 }
2932 
2933 void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
2934 {
2935 	if (!memcg)
2936 		return;
2937 
2938 	mutex_lock(&memcg->slab_caches_mutex);
2939 	list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
2940 	mutex_unlock(&memcg->slab_caches_mutex);
2941 }
2942 
2943 /*
2944  * helper for acessing a memcg's index. It will be used as an index in the
2945  * child cache array in kmem_cache, and also to derive its name. This function
2946  * will return -1 when this is not a kmem-limited memcg.
2947  */
2948 int memcg_cache_id(struct mem_cgroup *memcg)
2949 {
2950 	return memcg ? memcg->kmemcg_id : -1;
2951 }
2952 
2953 /*
2954  * This ends up being protected by the set_limit mutex, during normal
2955  * operation, because that is its main call site.
2956  *
2957  * But when we create a new cache, we can call this as well if its parent
2958  * is kmem-limited. That will have to hold set_limit_mutex as well.
2959  */
2960 int memcg_update_cache_sizes(struct mem_cgroup *memcg)
2961 {
2962 	int num, ret;
2963 
2964 	num = ida_simple_get(&kmem_limited_groups,
2965 				0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2966 	if (num < 0)
2967 		return num;
2968 	/*
2969 	 * After this point, kmem_accounted (that we test atomically in
2970 	 * the beginning of this conditional), is no longer 0. This
2971 	 * guarantees only one process will set the following boolean
2972 	 * to true. We don't need test_and_set because we're protected
2973 	 * by the set_limit_mutex anyway.
2974 	 */
2975 	memcg_kmem_set_activated(memcg);
2976 
2977 	ret = memcg_update_all_caches(num+1);
2978 	if (ret) {
2979 		ida_simple_remove(&kmem_limited_groups, num);
2980 		memcg_kmem_clear_activated(memcg);
2981 		return ret;
2982 	}
2983 
2984 	memcg->kmemcg_id = num;
2985 	INIT_LIST_HEAD(&memcg->memcg_slab_caches);
2986 	mutex_init(&memcg->slab_caches_mutex);
2987 	return 0;
2988 }
2989 
2990 static size_t memcg_caches_array_size(int num_groups)
2991 {
2992 	ssize_t size;
2993 	if (num_groups <= 0)
2994 		return 0;
2995 
2996 	size = 2 * num_groups;
2997 	if (size < MEMCG_CACHES_MIN_SIZE)
2998 		size = MEMCG_CACHES_MIN_SIZE;
2999 	else if (size > MEMCG_CACHES_MAX_SIZE)
3000 		size = MEMCG_CACHES_MAX_SIZE;
3001 
3002 	return size;
3003 }
3004 
3005 /*
3006  * We should update the current array size iff all caches updates succeed. This
3007  * can only be done from the slab side. The slab mutex needs to be held when
3008  * calling this.
3009  */
3010 void memcg_update_array_size(int num)
3011 {
3012 	if (num > memcg_limited_groups_array_size)
3013 		memcg_limited_groups_array_size = memcg_caches_array_size(num);
3014 }
3015 
3016 static void kmem_cache_destroy_work_func(struct work_struct *w);
3017 
3018 int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3019 {
3020 	struct memcg_cache_params *cur_params = s->memcg_params;
3021 
3022 	VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);
3023 
3024 	if (num_groups > memcg_limited_groups_array_size) {
3025 		int i;
3026 		ssize_t size = memcg_caches_array_size(num_groups);
3027 
3028 		size *= sizeof(void *);
3029 		size += offsetof(struct memcg_cache_params, memcg_caches);
3030 
3031 		s->memcg_params = kzalloc(size, GFP_KERNEL);
3032 		if (!s->memcg_params) {
3033 			s->memcg_params = cur_params;
3034 			return -ENOMEM;
3035 		}
3036 
3037 		s->memcg_params->is_root_cache = true;
3038 
3039 		/*
3040 		 * There is the chance it will be bigger than
3041 		 * memcg_limited_groups_array_size, if we failed an allocation
3042 		 * in a cache, in which case all caches updated before it, will
3043 		 * have a bigger array.
3044 		 *
3045 		 * But if that is the case, the data after
3046 		 * memcg_limited_groups_array_size is certainly unused
3047 		 */
3048 		for (i = 0; i < memcg_limited_groups_array_size; i++) {
3049 			if (!cur_params->memcg_caches[i])
3050 				continue;
3051 			s->memcg_params->memcg_caches[i] =
3052 						cur_params->memcg_caches[i];
3053 		}
3054 
3055 		/*
3056 		 * Ideally, we would wait until all caches succeed, and only
3057 		 * then free the old one. But this is not worth the extra
3058 		 * pointer per-cache we'd have to have for this.
3059 		 *
3060 		 * It is not a big deal if some caches are left with a size
3061 		 * bigger than the others. And all updates will reset this
3062 		 * anyway.
3063 		 */
3064 		kfree(cur_params);
3065 	}
3066 	return 0;
3067 }
3068 
3069 int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
3070 			 struct kmem_cache *root_cache)
3071 {
3072 	size_t size;
3073 
3074 	if (!memcg_kmem_enabled())
3075 		return 0;
3076 
3077 	if (!memcg) {
3078 		size = offsetof(struct memcg_cache_params, memcg_caches);
3079 		size += memcg_limited_groups_array_size * sizeof(void *);
3080 	} else
3081 		size = sizeof(struct memcg_cache_params);
3082 
3083 	s->memcg_params = kzalloc(size, GFP_KERNEL);
3084 	if (!s->memcg_params)
3085 		return -ENOMEM;
3086 
3087 	if (memcg) {
3088 		s->memcg_params->memcg = memcg;
3089 		s->memcg_params->root_cache = root_cache;
3090 		INIT_WORK(&s->memcg_params->destroy,
3091 				kmem_cache_destroy_work_func);
3092 	} else
3093 		s->memcg_params->is_root_cache = true;
3094 
3095 	return 0;
3096 }
3097 
3098 void memcg_release_cache(struct kmem_cache *s)
3099 {
3100 	struct kmem_cache *root;
3101 	struct mem_cgroup *memcg;
3102 	int id;
3103 
3104 	/*
3105 	 * This happens, for instance, when a root cache goes away before we
3106 	 * add any memcg.
3107 	 */
3108 	if (!s->memcg_params)
3109 		return;
3110 
3111 	if (s->memcg_params->is_root_cache)
3112 		goto out;
3113 
3114 	memcg = s->memcg_params->memcg;
3115 	id  = memcg_cache_id(memcg);
3116 
3117 	root = s->memcg_params->root_cache;
3118 	root->memcg_params->memcg_caches[id] = NULL;
3119 
3120 	mutex_lock(&memcg->slab_caches_mutex);
3121 	list_del(&s->memcg_params->list);
3122 	mutex_unlock(&memcg->slab_caches_mutex);
3123 
3124 	css_put(&memcg->css);
3125 out:
3126 	kfree(s->memcg_params);
3127 }
3128 
3129 /*
3130  * During the creation a new cache, we need to disable our accounting mechanism
3131  * altogether. This is true even if we are not creating, but rather just
3132  * enqueing new caches to be created.
3133  *
3134  * This is because that process will trigger allocations; some visible, like
3135  * explicit kmallocs to auxiliary data structures, name strings and internal
3136  * cache structures; some well concealed, like INIT_WORK() that can allocate
3137  * objects during debug.
3138  *
3139  * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3140  * to it. This may not be a bounded recursion: since the first cache creation
3141  * failed to complete (waiting on the allocation), we'll just try to create the
3142  * cache again, failing at the same point.
3143  *
3144  * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3145  * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3146  * inside the following two functions.
3147  */
3148 static inline void memcg_stop_kmem_account(void)
3149 {
3150 	VM_BUG_ON(!current->mm);
3151 	current->memcg_kmem_skip_account++;
3152 }
3153 
3154 static inline void memcg_resume_kmem_account(void)
3155 {
3156 	VM_BUG_ON(!current->mm);
3157 	current->memcg_kmem_skip_account--;
3158 }
3159 
3160 static void kmem_cache_destroy_work_func(struct work_struct *w)
3161 {
3162 	struct kmem_cache *cachep;
3163 	struct memcg_cache_params *p;
3164 
3165 	p = container_of(w, struct memcg_cache_params, destroy);
3166 
3167 	cachep = memcg_params_to_cache(p);
3168 
3169 	/*
3170 	 * If we get down to 0 after shrink, we could delete right away.
3171 	 * However, memcg_release_pages() already puts us back in the workqueue
3172 	 * in that case. If we proceed deleting, we'll get a dangling
3173 	 * reference, and removing the object from the workqueue in that case
3174 	 * is unnecessary complication. We are not a fast path.
3175 	 *
3176 	 * Note that this case is fundamentally different from racing with
3177 	 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3178 	 * kmem_cache_shrink, not only we would be reinserting a dead cache
3179 	 * into the queue, but doing so from inside the worker racing to
3180 	 * destroy it.
3181 	 *
3182 	 * So if we aren't down to zero, we'll just schedule a worker and try
3183 	 * again
3184 	 */
3185 	if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
3186 		kmem_cache_shrink(cachep);
3187 		if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3188 			return;
3189 	} else
3190 		kmem_cache_destroy(cachep);
3191 }
3192 
3193 void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3194 {
3195 	if (!cachep->memcg_params->dead)
3196 		return;
3197 
3198 	/*
3199 	 * There are many ways in which we can get here.
3200 	 *
3201 	 * We can get to a memory-pressure situation while the delayed work is
3202 	 * still pending to run. The vmscan shrinkers can then release all
3203 	 * cache memory and get us to destruction. If this is the case, we'll
3204 	 * be executed twice, which is a bug (the second time will execute over
3205 	 * bogus data). In this case, cancelling the work should be fine.
3206 	 *
3207 	 * But we can also get here from the worker itself, if
3208 	 * kmem_cache_shrink is enough to shake all the remaining objects and
3209 	 * get the page count to 0. In this case, we'll deadlock if we try to
3210 	 * cancel the work (the worker runs with an internal lock held, which
3211 	 * is the same lock we would hold for cancel_work_sync().)
3212 	 *
3213 	 * Since we can't possibly know who got us here, just refrain from
3214 	 * running if there is already work pending
3215 	 */
3216 	if (work_pending(&cachep->memcg_params->destroy))
3217 		return;
3218 	/*
3219 	 * We have to defer the actual destroying to a workqueue, because
3220 	 * we might currently be in a context that cannot sleep.
3221 	 */
3222 	schedule_work(&cachep->memcg_params->destroy);
3223 }
3224 
3225 /*
3226  * This lock protects updaters, not readers. We want readers to be as fast as
3227  * they can, and they will either see NULL or a valid cache value. Our model
3228  * allow them to see NULL, in which case the root memcg will be selected.
3229  *
3230  * We need this lock because multiple allocations to the same cache from a non
3231  * will span more than one worker. Only one of them can create the cache.
3232  */
3233 static DEFINE_MUTEX(memcg_cache_mutex);
3234 
3235 /*
3236  * Called with memcg_cache_mutex held
3237  */
3238 static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
3239 					 struct kmem_cache *s)
3240 {
3241 	struct kmem_cache *new;
3242 	static char *tmp_name = NULL;
3243 
3244 	lockdep_assert_held(&memcg_cache_mutex);
3245 
3246 	/*
3247 	 * kmem_cache_create_memcg duplicates the given name and
3248 	 * cgroup_name for this name requires RCU context.
3249 	 * This static temporary buffer is used to prevent from
3250 	 * pointless shortliving allocation.
3251 	 */
3252 	if (!tmp_name) {
3253 		tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
3254 		if (!tmp_name)
3255 			return NULL;
3256 	}
3257 
3258 	rcu_read_lock();
3259 	snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
3260 			 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
3261 	rcu_read_unlock();
3262 
3263 	new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
3264 				      (s->flags & ~SLAB_PANIC), s->ctor, s);
3265 
3266 	if (new)
3267 		new->allocflags |= __GFP_KMEMCG;
3268 
3269 	return new;
3270 }
3271 
3272 static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
3273 						  struct kmem_cache *cachep)
3274 {
3275 	struct kmem_cache *new_cachep;
3276 	int idx;
3277 
3278 	BUG_ON(!memcg_can_account_kmem(memcg));
3279 
3280 	idx = memcg_cache_id(memcg);
3281 
3282 	mutex_lock(&memcg_cache_mutex);
3283 	new_cachep = cachep->memcg_params->memcg_caches[idx];
3284 	if (new_cachep) {
3285 		css_put(&memcg->css);
3286 		goto out;
3287 	}
3288 
3289 	new_cachep = kmem_cache_dup(memcg, cachep);
3290 	if (new_cachep == NULL) {
3291 		new_cachep = cachep;
3292 		css_put(&memcg->css);
3293 		goto out;
3294 	}
3295 
3296 	atomic_set(&new_cachep->memcg_params->nr_pages , 0);
3297 
3298 	cachep->memcg_params->memcg_caches[idx] = new_cachep;
3299 	/*
3300 	 * the readers won't lock, make sure everybody sees the updated value,
3301 	 * so they won't put stuff in the queue again for no reason
3302 	 */
3303 	wmb();
3304 out:
3305 	mutex_unlock(&memcg_cache_mutex);
3306 	return new_cachep;
3307 }
3308 
3309 void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3310 {
3311 	struct kmem_cache *c;
3312 	int i;
3313 
3314 	if (!s->memcg_params)
3315 		return;
3316 	if (!s->memcg_params->is_root_cache)
3317 		return;
3318 
3319 	/*
3320 	 * If the cache is being destroyed, we trust that there is no one else
3321 	 * requesting objects from it. Even if there are, the sanity checks in
3322 	 * kmem_cache_destroy should caught this ill-case.
3323 	 *
3324 	 * Still, we don't want anyone else freeing memcg_caches under our
3325 	 * noses, which can happen if a new memcg comes to life. As usual,
3326 	 * we'll take the set_limit_mutex to protect ourselves against this.
3327 	 */
3328 	mutex_lock(&set_limit_mutex);
3329 	for (i = 0; i < memcg_limited_groups_array_size; i++) {
3330 		c = s->memcg_params->memcg_caches[i];
3331 		if (!c)
3332 			continue;
3333 
3334 		/*
3335 		 * We will now manually delete the caches, so to avoid races
3336 		 * we need to cancel all pending destruction workers and
3337 		 * proceed with destruction ourselves.
3338 		 *
3339 		 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3340 		 * and that could spawn the workers again: it is likely that
3341 		 * the cache still have active pages until this very moment.
3342 		 * This would lead us back to mem_cgroup_destroy_cache.
3343 		 *
3344 		 * But that will not execute at all if the "dead" flag is not
3345 		 * set, so flip it down to guarantee we are in control.
3346 		 */
3347 		c->memcg_params->dead = false;
3348 		cancel_work_sync(&c->memcg_params->destroy);
3349 		kmem_cache_destroy(c);
3350 	}
3351 	mutex_unlock(&set_limit_mutex);
3352 }
3353 
3354 struct create_work {
3355 	struct mem_cgroup *memcg;
3356 	struct kmem_cache *cachep;
3357 	struct work_struct work;
3358 };
3359 
3360 static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3361 {
3362 	struct kmem_cache *cachep;
3363 	struct memcg_cache_params *params;
3364 
3365 	if (!memcg_kmem_is_active(memcg))
3366 		return;
3367 
3368 	mutex_lock(&memcg->slab_caches_mutex);
3369 	list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3370 		cachep = memcg_params_to_cache(params);
3371 		cachep->memcg_params->dead = true;
3372 		schedule_work(&cachep->memcg_params->destroy);
3373 	}
3374 	mutex_unlock(&memcg->slab_caches_mutex);
3375 }
3376 
3377 static void memcg_create_cache_work_func(struct work_struct *w)
3378 {
3379 	struct create_work *cw;
3380 
3381 	cw = container_of(w, struct create_work, work);
3382 	memcg_create_kmem_cache(cw->memcg, cw->cachep);
3383 	kfree(cw);
3384 }
3385 
3386 /*
3387  * Enqueue the creation of a per-memcg kmem_cache.
3388  */
3389 static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3390 					 struct kmem_cache *cachep)
3391 {
3392 	struct create_work *cw;
3393 
3394 	cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3395 	if (cw == NULL) {
3396 		css_put(&memcg->css);
3397 		return;
3398 	}
3399 
3400 	cw->memcg = memcg;
3401 	cw->cachep = cachep;
3402 
3403 	INIT_WORK(&cw->work, memcg_create_cache_work_func);
3404 	schedule_work(&cw->work);
3405 }
3406 
3407 static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3408 				       struct kmem_cache *cachep)
3409 {
3410 	/*
3411 	 * We need to stop accounting when we kmalloc, because if the
3412 	 * corresponding kmalloc cache is not yet created, the first allocation
3413 	 * in __memcg_create_cache_enqueue will recurse.
3414 	 *
3415 	 * However, it is better to enclose the whole function. Depending on
3416 	 * the debugging options enabled, INIT_WORK(), for instance, can
3417 	 * trigger an allocation. This too, will make us recurse. Because at
3418 	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3419 	 * the safest choice is to do it like this, wrapping the whole function.
3420 	 */
3421 	memcg_stop_kmem_account();
3422 	__memcg_create_cache_enqueue(memcg, cachep);
3423 	memcg_resume_kmem_account();
3424 }
3425 /*
3426  * Return the kmem_cache we're supposed to use for a slab allocation.
3427  * We try to use the current memcg's version of the cache.
3428  *
3429  * If the cache does not exist yet, if we are the first user of it,
3430  * we either create it immediately, if possible, or create it asynchronously
3431  * in a workqueue.
3432  * In the latter case, we will let the current allocation go through with
3433  * the original cache.
3434  *
3435  * Can't be called in interrupt context or from kernel threads.
3436  * This function needs to be called with rcu_read_lock() held.
3437  */
3438 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3439 					  gfp_t gfp)
3440 {
3441 	struct mem_cgroup *memcg;
3442 	int idx;
3443 
3444 	VM_BUG_ON(!cachep->memcg_params);
3445 	VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3446 
3447 	if (!current->mm || current->memcg_kmem_skip_account)
3448 		return cachep;
3449 
3450 	rcu_read_lock();
3451 	memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
3452 
3453 	if (!memcg_can_account_kmem(memcg))
3454 		goto out;
3455 
3456 	idx = memcg_cache_id(memcg);
3457 
3458 	/*
3459 	 * barrier to mare sure we're always seeing the up to date value.  The
3460 	 * code updating memcg_caches will issue a write barrier to match this.
3461 	 */
3462 	read_barrier_depends();
3463 	if (likely(cachep->memcg_params->memcg_caches[idx])) {
3464 		cachep = cachep->memcg_params->memcg_caches[idx];
3465 		goto out;
3466 	}
3467 
3468 	/* The corresponding put will be done in the workqueue. */
3469 	if (!css_tryget(&memcg->css))
3470 		goto out;
3471 	rcu_read_unlock();
3472 
3473 	/*
3474 	 * If we are in a safe context (can wait, and not in interrupt
3475 	 * context), we could be be predictable and return right away.
3476 	 * This would guarantee that the allocation being performed
3477 	 * already belongs in the new cache.
3478 	 *
3479 	 * However, there are some clashes that can arrive from locking.
3480 	 * For instance, because we acquire the slab_mutex while doing
3481 	 * kmem_cache_dup, this means no further allocation could happen
3482 	 * with the slab_mutex held.
3483 	 *
3484 	 * Also, because cache creation issue get_online_cpus(), this
3485 	 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3486 	 * that ends up reversed during cpu hotplug. (cpuset allocates
3487 	 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3488 	 * better to defer everything.
3489 	 */
3490 	memcg_create_cache_enqueue(memcg, cachep);
3491 	return cachep;
3492 out:
3493 	rcu_read_unlock();
3494 	return cachep;
3495 }
3496 EXPORT_SYMBOL(__memcg_kmem_get_cache);
3497 
3498 /*
3499  * We need to verify if the allocation against current->mm->owner's memcg is
3500  * possible for the given order. But the page is not allocated yet, so we'll
3501  * need a further commit step to do the final arrangements.
3502  *
3503  * It is possible for the task to switch cgroups in this mean time, so at
3504  * commit time, we can't rely on task conversion any longer.  We'll then use
3505  * the handle argument to return to the caller which cgroup we should commit
3506  * against. We could also return the memcg directly and avoid the pointer
3507  * passing, but a boolean return value gives better semantics considering
3508  * the compiled-out case as well.
3509  *
3510  * Returning true means the allocation is possible.
3511  */
3512 bool
3513 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3514 {
3515 	struct mem_cgroup *memcg;
3516 	int ret;
3517 
3518 	*_memcg = NULL;
3519 
3520 	/*
3521 	 * Disabling accounting is only relevant for some specific memcg
3522 	 * internal allocations. Therefore we would initially not have such
3523 	 * check here, since direct calls to the page allocator that are marked
3524 	 * with GFP_KMEMCG only happen outside memcg core. We are mostly
3525 	 * concerned with cache allocations, and by having this test at
3526 	 * memcg_kmem_get_cache, we are already able to relay the allocation to
3527 	 * the root cache and bypass the memcg cache altogether.
3528 	 *
3529 	 * There is one exception, though: the SLUB allocator does not create
3530 	 * large order caches, but rather service large kmallocs directly from
3531 	 * the page allocator. Therefore, the following sequence when backed by
3532 	 * the SLUB allocator:
3533 	 *
3534 	 *	memcg_stop_kmem_account();
3535 	 *	kmalloc(<large_number>)
3536 	 *	memcg_resume_kmem_account();
3537 	 *
3538 	 * would effectively ignore the fact that we should skip accounting,
3539 	 * since it will drive us directly to this function without passing
3540 	 * through the cache selector memcg_kmem_get_cache. Such large
3541 	 * allocations are extremely rare but can happen, for instance, for the
3542 	 * cache arrays. We bring this test here.
3543 	 */
3544 	if (!current->mm || current->memcg_kmem_skip_account)
3545 		return true;
3546 
3547 	memcg = try_get_mem_cgroup_from_mm(current->mm);
3548 
3549 	/*
3550 	 * very rare case described in mem_cgroup_from_task. Unfortunately there
3551 	 * isn't much we can do without complicating this too much, and it would
3552 	 * be gfp-dependent anyway. Just let it go
3553 	 */
3554 	if (unlikely(!memcg))
3555 		return true;
3556 
3557 	if (!memcg_can_account_kmem(memcg)) {
3558 		css_put(&memcg->css);
3559 		return true;
3560 	}
3561 
3562 	ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3563 	if (!ret)
3564 		*_memcg = memcg;
3565 
3566 	css_put(&memcg->css);
3567 	return (ret == 0);
3568 }
3569 
3570 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3571 			      int order)
3572 {
3573 	struct page_cgroup *pc;
3574 
3575 	VM_BUG_ON(mem_cgroup_is_root(memcg));
3576 
3577 	/* The page allocation failed. Revert */
3578 	if (!page) {
3579 		memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3580 		return;
3581 	}
3582 
3583 	pc = lookup_page_cgroup(page);
3584 	lock_page_cgroup(pc);
3585 	pc->mem_cgroup = memcg;
3586 	SetPageCgroupUsed(pc);
3587 	unlock_page_cgroup(pc);
3588 }
3589 
3590 void __memcg_kmem_uncharge_pages(struct page *page, int order)
3591 {
3592 	struct mem_cgroup *memcg = NULL;
3593 	struct page_cgroup *pc;
3594 
3595 
3596 	pc = lookup_page_cgroup(page);
3597 	/*
3598 	 * Fast unlocked return. Theoretically might have changed, have to
3599 	 * check again after locking.
3600 	 */
3601 	if (!PageCgroupUsed(pc))
3602 		return;
3603 
3604 	lock_page_cgroup(pc);
3605 	if (PageCgroupUsed(pc)) {
3606 		memcg = pc->mem_cgroup;
3607 		ClearPageCgroupUsed(pc);
3608 	}
3609 	unlock_page_cgroup(pc);
3610 
3611 	/*
3612 	 * We trust that only if there is a memcg associated with the page, it
3613 	 * is a valid allocation
3614 	 */
3615 	if (!memcg)
3616 		return;
3617 
3618 	VM_BUG_ON(mem_cgroup_is_root(memcg));
3619 	memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3620 }
3621 #else
3622 static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3623 {
3624 }
3625 #endif /* CONFIG_MEMCG_KMEM */
3626 
3627 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3628 
3629 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3630 /*
3631  * Because tail pages are not marked as "used", set it. We're under
3632  * zone->lru_lock, 'splitting on pmd' and compound_lock.
3633  * charge/uncharge will be never happen and move_account() is done under
3634  * compound_lock(), so we don't have to take care of races.
3635  */
3636 void mem_cgroup_split_huge_fixup(struct page *head)
3637 {
3638 	struct page_cgroup *head_pc = lookup_page_cgroup(head);
3639 	struct page_cgroup *pc;
3640 	struct mem_cgroup *memcg;
3641 	int i;
3642 
3643 	if (mem_cgroup_disabled())
3644 		return;
3645 
3646 	memcg = head_pc->mem_cgroup;
3647 	for (i = 1; i < HPAGE_PMD_NR; i++) {
3648 		pc = head_pc + i;
3649 		pc->mem_cgroup = memcg;
3650 		smp_wmb();/* see __commit_charge() */
3651 		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3652 	}
3653 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3654 		       HPAGE_PMD_NR);
3655 }
3656 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3657 
3658 static inline
3659 void mem_cgroup_move_account_page_stat(struct mem_cgroup *from,
3660 					struct mem_cgroup *to,
3661 					unsigned int nr_pages,
3662 					enum mem_cgroup_stat_index idx)
3663 {
3664 	/* Update stat data for mem_cgroup */
3665 	preempt_disable();
3666 	WARN_ON_ONCE(from->stat->count[idx] < nr_pages);
3667 	__this_cpu_add(from->stat->count[idx], -nr_pages);
3668 	__this_cpu_add(to->stat->count[idx], nr_pages);
3669 	preempt_enable();
3670 }
3671 
3672 /**
3673  * mem_cgroup_move_account - move account of the page
3674  * @page: the page
3675  * @nr_pages: number of regular pages (>1 for huge pages)
3676  * @pc:	page_cgroup of the page.
3677  * @from: mem_cgroup which the page is moved from.
3678  * @to:	mem_cgroup which the page is moved to. @from != @to.
3679  *
3680  * The caller must confirm following.
3681  * - page is not on LRU (isolate_page() is useful.)
3682  * - compound_lock is held when nr_pages > 1
3683  *
3684  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3685  * from old cgroup.
3686  */
3687 static int mem_cgroup_move_account(struct page *page,
3688 				   unsigned int nr_pages,
3689 				   struct page_cgroup *pc,
3690 				   struct mem_cgroup *from,
3691 				   struct mem_cgroup *to)
3692 {
3693 	unsigned long flags;
3694 	int ret;
3695 	bool anon = PageAnon(page);
3696 
3697 	VM_BUG_ON(from == to);
3698 	VM_BUG_ON(PageLRU(page));
3699 	/*
3700 	 * The page is isolated from LRU. So, collapse function
3701 	 * will not handle this page. But page splitting can happen.
3702 	 * Do this check under compound_page_lock(). The caller should
3703 	 * hold it.
3704 	 */
3705 	ret = -EBUSY;
3706 	if (nr_pages > 1 && !PageTransHuge(page))
3707 		goto out;
3708 
3709 	lock_page_cgroup(pc);
3710 
3711 	ret = -EINVAL;
3712 	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3713 		goto unlock;
3714 
3715 	move_lock_mem_cgroup(from, &flags);
3716 
3717 	if (!anon && page_mapped(page))
3718 		mem_cgroup_move_account_page_stat(from, to, nr_pages,
3719 			MEM_CGROUP_STAT_FILE_MAPPED);
3720 
3721 	if (PageWriteback(page))
3722 		mem_cgroup_move_account_page_stat(from, to, nr_pages,
3723 			MEM_CGROUP_STAT_WRITEBACK);
3724 
3725 	mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3726 
3727 	/* caller should have done css_get */
3728 	pc->mem_cgroup = to;
3729 	mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3730 	move_unlock_mem_cgroup(from, &flags);
3731 	ret = 0;
3732 unlock:
3733 	unlock_page_cgroup(pc);
3734 	/*
3735 	 * check events
3736 	 */
3737 	memcg_check_events(to, page);
3738 	memcg_check_events(from, page);
3739 out:
3740 	return ret;
3741 }
3742 
3743 /**
3744  * mem_cgroup_move_parent - moves page to the parent group
3745  * @page: the page to move
3746  * @pc: page_cgroup of the page
3747  * @child: page's cgroup
3748  *
3749  * move charges to its parent or the root cgroup if the group has no
3750  * parent (aka use_hierarchy==0).
3751  * Although this might fail (get_page_unless_zero, isolate_lru_page or
3752  * mem_cgroup_move_account fails) the failure is always temporary and
3753  * it signals a race with a page removal/uncharge or migration. In the
3754  * first case the page is on the way out and it will vanish from the LRU
3755  * on the next attempt and the call should be retried later.
3756  * Isolation from the LRU fails only if page has been isolated from
3757  * the LRU since we looked at it and that usually means either global
3758  * reclaim or migration going on. The page will either get back to the
3759  * LRU or vanish.
3760  * Finaly mem_cgroup_move_account fails only if the page got uncharged
3761  * (!PageCgroupUsed) or moved to a different group. The page will
3762  * disappear in the next attempt.
3763  */
3764 static int mem_cgroup_move_parent(struct page *page,
3765 				  struct page_cgroup *pc,
3766 				  struct mem_cgroup *child)
3767 {
3768 	struct mem_cgroup *parent;
3769 	unsigned int nr_pages;
3770 	unsigned long uninitialized_var(flags);
3771 	int ret;
3772 
3773 	VM_BUG_ON(mem_cgroup_is_root(child));
3774 
3775 	ret = -EBUSY;
3776 	if (!get_page_unless_zero(page))
3777 		goto out;
3778 	if (isolate_lru_page(page))
3779 		goto put;
3780 
3781 	nr_pages = hpage_nr_pages(page);
3782 
3783 	parent = parent_mem_cgroup(child);
3784 	/*
3785 	 * If no parent, move charges to root cgroup.
3786 	 */
3787 	if (!parent)
3788 		parent = root_mem_cgroup;
3789 
3790 	if (nr_pages > 1) {
3791 		VM_BUG_ON(!PageTransHuge(page));
3792 		flags = compound_lock_irqsave(page);
3793 	}
3794 
3795 	ret = mem_cgroup_move_account(page, nr_pages,
3796 				pc, child, parent);
3797 	if (!ret)
3798 		__mem_cgroup_cancel_local_charge(child, nr_pages);
3799 
3800 	if (nr_pages > 1)
3801 		compound_unlock_irqrestore(page, flags);
3802 	putback_lru_page(page);
3803 put:
3804 	put_page(page);
3805 out:
3806 	return ret;
3807 }
3808 
3809 /*
3810  * Charge the memory controller for page usage.
3811  * Return
3812  * 0 if the charge was successful
3813  * < 0 if the cgroup is over its limit
3814  */
3815 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3816 				gfp_t gfp_mask, enum charge_type ctype)
3817 {
3818 	struct mem_cgroup *memcg = NULL;
3819 	unsigned int nr_pages = 1;
3820 	bool oom = true;
3821 	int ret;
3822 
3823 	if (PageTransHuge(page)) {
3824 		nr_pages <<= compound_order(page);
3825 		VM_BUG_ON(!PageTransHuge(page));
3826 		/*
3827 		 * Never OOM-kill a process for a huge page.  The
3828 		 * fault handler will fall back to regular pages.
3829 		 */
3830 		oom = false;
3831 	}
3832 
3833 	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3834 	if (ret == -ENOMEM)
3835 		return ret;
3836 	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3837 	return 0;
3838 }
3839 
3840 int mem_cgroup_newpage_charge(struct page *page,
3841 			      struct mm_struct *mm, gfp_t gfp_mask)
3842 {
3843 	if (mem_cgroup_disabled())
3844 		return 0;
3845 	VM_BUG_ON(page_mapped(page));
3846 	VM_BUG_ON(page->mapping && !PageAnon(page));
3847 	VM_BUG_ON(!mm);
3848 	return mem_cgroup_charge_common(page, mm, gfp_mask,
3849 					MEM_CGROUP_CHARGE_TYPE_ANON);
3850 }
3851 
3852 /*
3853  * While swap-in, try_charge -> commit or cancel, the page is locked.
3854  * And when try_charge() successfully returns, one refcnt to memcg without
3855  * struct page_cgroup is acquired. This refcnt will be consumed by
3856  * "commit()" or removed by "cancel()"
3857  */
3858 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
3859 					  struct page *page,
3860 					  gfp_t mask,
3861 					  struct mem_cgroup **memcgp)
3862 {
3863 	struct mem_cgroup *memcg;
3864 	struct page_cgroup *pc;
3865 	int ret;
3866 
3867 	pc = lookup_page_cgroup(page);
3868 	/*
3869 	 * Every swap fault against a single page tries to charge the
3870 	 * page, bail as early as possible.  shmem_unuse() encounters
3871 	 * already charged pages, too.  The USED bit is protected by
3872 	 * the page lock, which serializes swap cache removal, which
3873 	 * in turn serializes uncharging.
3874 	 */
3875 	if (PageCgroupUsed(pc))
3876 		return 0;
3877 	if (!do_swap_account)
3878 		goto charge_cur_mm;
3879 	memcg = try_get_mem_cgroup_from_page(page);
3880 	if (!memcg)
3881 		goto charge_cur_mm;
3882 	*memcgp = memcg;
3883 	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
3884 	css_put(&memcg->css);
3885 	if (ret == -EINTR)
3886 		ret = 0;
3887 	return ret;
3888 charge_cur_mm:
3889 	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
3890 	if (ret == -EINTR)
3891 		ret = 0;
3892 	return ret;
3893 }
3894 
3895 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
3896 				 gfp_t gfp_mask, struct mem_cgroup **memcgp)
3897 {
3898 	*memcgp = NULL;
3899 	if (mem_cgroup_disabled())
3900 		return 0;
3901 	/*
3902 	 * A racing thread's fault, or swapoff, may have already
3903 	 * updated the pte, and even removed page from swap cache: in
3904 	 * those cases unuse_pte()'s pte_same() test will fail; but
3905 	 * there's also a KSM case which does need to charge the page.
3906 	 */
3907 	if (!PageSwapCache(page)) {
3908 		int ret;
3909 
3910 		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
3911 		if (ret == -EINTR)
3912 			ret = 0;
3913 		return ret;
3914 	}
3915 	return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
3916 }
3917 
3918 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
3919 {
3920 	if (mem_cgroup_disabled())
3921 		return;
3922 	if (!memcg)
3923 		return;
3924 	__mem_cgroup_cancel_charge(memcg, 1);
3925 }
3926 
3927 static void
3928 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
3929 					enum charge_type ctype)
3930 {
3931 	if (mem_cgroup_disabled())
3932 		return;
3933 	if (!memcg)
3934 		return;
3935 
3936 	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
3937 	/*
3938 	 * Now swap is on-memory. This means this page may be
3939 	 * counted both as mem and swap....double count.
3940 	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
3941 	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
3942 	 * may call delete_from_swap_cache() before reach here.
3943 	 */
3944 	if (do_swap_account && PageSwapCache(page)) {
3945 		swp_entry_t ent = {.val = page_private(page)};
3946 		mem_cgroup_uncharge_swap(ent);
3947 	}
3948 }
3949 
3950 void mem_cgroup_commit_charge_swapin(struct page *page,
3951 				     struct mem_cgroup *memcg)
3952 {
3953 	__mem_cgroup_commit_charge_swapin(page, memcg,
3954 					  MEM_CGROUP_CHARGE_TYPE_ANON);
3955 }
3956 
3957 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
3958 				gfp_t gfp_mask)
3959 {
3960 	struct mem_cgroup *memcg = NULL;
3961 	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3962 	int ret;
3963 
3964 	if (mem_cgroup_disabled())
3965 		return 0;
3966 	if (PageCompound(page))
3967 		return 0;
3968 
3969 	if (!PageSwapCache(page))
3970 		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
3971 	else { /* page is swapcache/shmem */
3972 		ret = __mem_cgroup_try_charge_swapin(mm, page,
3973 						     gfp_mask, &memcg);
3974 		if (!ret)
3975 			__mem_cgroup_commit_charge_swapin(page, memcg, type);
3976 	}
3977 	return ret;
3978 }
3979 
3980 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
3981 				   unsigned int nr_pages,
3982 				   const enum charge_type ctype)
3983 {
3984 	struct memcg_batch_info *batch = NULL;
3985 	bool uncharge_memsw = true;
3986 
3987 	/* If swapout, usage of swap doesn't decrease */
3988 	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
3989 		uncharge_memsw = false;
3990 
3991 	batch = &current->memcg_batch;
3992 	/*
3993 	 * In usual, we do css_get() when we remember memcg pointer.
3994 	 * But in this case, we keep res->usage until end of a series of
3995 	 * uncharges. Then, it's ok to ignore memcg's refcnt.
3996 	 */
3997 	if (!batch->memcg)
3998 		batch->memcg = memcg;
3999 	/*
4000 	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
4001 	 * In those cases, all pages freed continuously can be expected to be in
4002 	 * the same cgroup and we have chance to coalesce uncharges.
4003 	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
4004 	 * because we want to do uncharge as soon as possible.
4005 	 */
4006 
4007 	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
4008 		goto direct_uncharge;
4009 
4010 	if (nr_pages > 1)
4011 		goto direct_uncharge;
4012 
4013 	/*
4014 	 * In typical case, batch->memcg == mem. This means we can
4015 	 * merge a series of uncharges to an uncharge of res_counter.
4016 	 * If not, we uncharge res_counter ony by one.
4017 	 */
4018 	if (batch->memcg != memcg)
4019 		goto direct_uncharge;
4020 	/* remember freed charge and uncharge it later */
4021 	batch->nr_pages++;
4022 	if (uncharge_memsw)
4023 		batch->memsw_nr_pages++;
4024 	return;
4025 direct_uncharge:
4026 	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
4027 	if (uncharge_memsw)
4028 		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
4029 	if (unlikely(batch->memcg != memcg))
4030 		memcg_oom_recover(memcg);
4031 }
4032 
4033 /*
4034  * uncharge if !page_mapped(page)
4035  */
4036 static struct mem_cgroup *
4037 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
4038 			     bool end_migration)
4039 {
4040 	struct mem_cgroup *memcg = NULL;
4041 	unsigned int nr_pages = 1;
4042 	struct page_cgroup *pc;
4043 	bool anon;
4044 
4045 	if (mem_cgroup_disabled())
4046 		return NULL;
4047 
4048 	if (PageTransHuge(page)) {
4049 		nr_pages <<= compound_order(page);
4050 		VM_BUG_ON(!PageTransHuge(page));
4051 	}
4052 	/*
4053 	 * Check if our page_cgroup is valid
4054 	 */
4055 	pc = lookup_page_cgroup(page);
4056 	if (unlikely(!PageCgroupUsed(pc)))
4057 		return NULL;
4058 
4059 	lock_page_cgroup(pc);
4060 
4061 	memcg = pc->mem_cgroup;
4062 
4063 	if (!PageCgroupUsed(pc))
4064 		goto unlock_out;
4065 
4066 	anon = PageAnon(page);
4067 
4068 	switch (ctype) {
4069 	case MEM_CGROUP_CHARGE_TYPE_ANON:
4070 		/*
4071 		 * Generally PageAnon tells if it's the anon statistics to be
4072 		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4073 		 * used before page reached the stage of being marked PageAnon.
4074 		 */
4075 		anon = true;
4076 		/* fallthrough */
4077 	case MEM_CGROUP_CHARGE_TYPE_DROP:
4078 		/* See mem_cgroup_prepare_migration() */
4079 		if (page_mapped(page))
4080 			goto unlock_out;
4081 		/*
4082 		 * Pages under migration may not be uncharged.  But
4083 		 * end_migration() /must/ be the one uncharging the
4084 		 * unused post-migration page and so it has to call
4085 		 * here with the migration bit still set.  See the
4086 		 * res_counter handling below.
4087 		 */
4088 		if (!end_migration && PageCgroupMigration(pc))
4089 			goto unlock_out;
4090 		break;
4091 	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
4092 		if (!PageAnon(page)) {	/* Shared memory */
4093 			if (page->mapping && !page_is_file_cache(page))
4094 				goto unlock_out;
4095 		} else if (page_mapped(page)) /* Anon */
4096 				goto unlock_out;
4097 		break;
4098 	default:
4099 		break;
4100 	}
4101 
4102 	mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
4103 
4104 	ClearPageCgroupUsed(pc);
4105 	/*
4106 	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4107 	 * freed from LRU. This is safe because uncharged page is expected not
4108 	 * to be reused (freed soon). Exception is SwapCache, it's handled by
4109 	 * special functions.
4110 	 */
4111 
4112 	unlock_page_cgroup(pc);
4113 	/*
4114 	 * even after unlock, we have memcg->res.usage here and this memcg
4115 	 * will never be freed, so it's safe to call css_get().
4116 	 */
4117 	memcg_check_events(memcg, page);
4118 	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4119 		mem_cgroup_swap_statistics(memcg, true);
4120 		css_get(&memcg->css);
4121 	}
4122 	/*
4123 	 * Migration does not charge the res_counter for the
4124 	 * replacement page, so leave it alone when phasing out the
4125 	 * page that is unused after the migration.
4126 	 */
4127 	if (!end_migration && !mem_cgroup_is_root(memcg))
4128 		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4129 
4130 	return memcg;
4131 
4132 unlock_out:
4133 	unlock_page_cgroup(pc);
4134 	return NULL;
4135 }
4136 
4137 void mem_cgroup_uncharge_page(struct page *page)
4138 {
4139 	/* early check. */
4140 	if (page_mapped(page))
4141 		return;
4142 	VM_BUG_ON(page->mapping && !PageAnon(page));
4143 	/*
4144 	 * If the page is in swap cache, uncharge should be deferred
4145 	 * to the swap path, which also properly accounts swap usage
4146 	 * and handles memcg lifetime.
4147 	 *
4148 	 * Note that this check is not stable and reclaim may add the
4149 	 * page to swap cache at any time after this.  However, if the
4150 	 * page is not in swap cache by the time page->mapcount hits
4151 	 * 0, there won't be any page table references to the swap
4152 	 * slot, and reclaim will free it and not actually write the
4153 	 * page to disk.
4154 	 */
4155 	if (PageSwapCache(page))
4156 		return;
4157 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4158 }
4159 
4160 void mem_cgroup_uncharge_cache_page(struct page *page)
4161 {
4162 	VM_BUG_ON(page_mapped(page));
4163 	VM_BUG_ON(page->mapping);
4164 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4165 }
4166 
4167 /*
4168  * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4169  * In that cases, pages are freed continuously and we can expect pages
4170  * are in the same memcg. All these calls itself limits the number of
4171  * pages freed at once, then uncharge_start/end() is called properly.
4172  * This may be called prural(2) times in a context,
4173  */
4174 
4175 void mem_cgroup_uncharge_start(void)
4176 {
4177 	current->memcg_batch.do_batch++;
4178 	/* We can do nest. */
4179 	if (current->memcg_batch.do_batch == 1) {
4180 		current->memcg_batch.memcg = NULL;
4181 		current->memcg_batch.nr_pages = 0;
4182 		current->memcg_batch.memsw_nr_pages = 0;
4183 	}
4184 }
4185 
4186 void mem_cgroup_uncharge_end(void)
4187 {
4188 	struct memcg_batch_info *batch = &current->memcg_batch;
4189 
4190 	if (!batch->do_batch)
4191 		return;
4192 
4193 	batch->do_batch--;
4194 	if (batch->do_batch) /* If stacked, do nothing. */
4195 		return;
4196 
4197 	if (!batch->memcg)
4198 		return;
4199 	/*
4200 	 * This "batch->memcg" is valid without any css_get/put etc...
4201 	 * bacause we hide charges behind us.
4202 	 */
4203 	if (batch->nr_pages)
4204 		res_counter_uncharge(&batch->memcg->res,
4205 				     batch->nr_pages * PAGE_SIZE);
4206 	if (batch->memsw_nr_pages)
4207 		res_counter_uncharge(&batch->memcg->memsw,
4208 				     batch->memsw_nr_pages * PAGE_SIZE);
4209 	memcg_oom_recover(batch->memcg);
4210 	/* forget this pointer (for sanity check) */
4211 	batch->memcg = NULL;
4212 }
4213 
4214 #ifdef CONFIG_SWAP
4215 /*
4216  * called after __delete_from_swap_cache() and drop "page" account.
4217  * memcg information is recorded to swap_cgroup of "ent"
4218  */
4219 void
4220 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4221 {
4222 	struct mem_cgroup *memcg;
4223 	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4224 
4225 	if (!swapout) /* this was a swap cache but the swap is unused ! */
4226 		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4227 
4228 	memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4229 
4230 	/*
4231 	 * record memcg information,  if swapout && memcg != NULL,
4232 	 * css_get() was called in uncharge().
4233 	 */
4234 	if (do_swap_account && swapout && memcg)
4235 		swap_cgroup_record(ent, css_id(&memcg->css));
4236 }
4237 #endif
4238 
4239 #ifdef CONFIG_MEMCG_SWAP
4240 /*
4241  * called from swap_entry_free(). remove record in swap_cgroup and
4242  * uncharge "memsw" account.
4243  */
4244 void mem_cgroup_uncharge_swap(swp_entry_t ent)
4245 {
4246 	struct mem_cgroup *memcg;
4247 	unsigned short id;
4248 
4249 	if (!do_swap_account)
4250 		return;
4251 
4252 	id = swap_cgroup_record(ent, 0);
4253 	rcu_read_lock();
4254 	memcg = mem_cgroup_lookup(id);
4255 	if (memcg) {
4256 		/*
4257 		 * We uncharge this because swap is freed.
4258 		 * This memcg can be obsolete one. We avoid calling css_tryget
4259 		 */
4260 		if (!mem_cgroup_is_root(memcg))
4261 			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4262 		mem_cgroup_swap_statistics(memcg, false);
4263 		css_put(&memcg->css);
4264 	}
4265 	rcu_read_unlock();
4266 }
4267 
4268 /**
4269  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4270  * @entry: swap entry to be moved
4271  * @from:  mem_cgroup which the entry is moved from
4272  * @to:  mem_cgroup which the entry is moved to
4273  *
4274  * It succeeds only when the swap_cgroup's record for this entry is the same
4275  * as the mem_cgroup's id of @from.
4276  *
4277  * Returns 0 on success, -EINVAL on failure.
4278  *
4279  * The caller must have charged to @to, IOW, called res_counter_charge() about
4280  * both res and memsw, and called css_get().
4281  */
4282 static int mem_cgroup_move_swap_account(swp_entry_t entry,
4283 				struct mem_cgroup *from, struct mem_cgroup *to)
4284 {
4285 	unsigned short old_id, new_id;
4286 
4287 	old_id = css_id(&from->css);
4288 	new_id = css_id(&to->css);
4289 
4290 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
4291 		mem_cgroup_swap_statistics(from, false);
4292 		mem_cgroup_swap_statistics(to, true);
4293 		/*
4294 		 * This function is only called from task migration context now.
4295 		 * It postpones res_counter and refcount handling till the end
4296 		 * of task migration(mem_cgroup_clear_mc()) for performance
4297 		 * improvement. But we cannot postpone css_get(to)  because if
4298 		 * the process that has been moved to @to does swap-in, the
4299 		 * refcount of @to might be decreased to 0.
4300 		 *
4301 		 * We are in attach() phase, so the cgroup is guaranteed to be
4302 		 * alive, so we can just call css_get().
4303 		 */
4304 		css_get(&to->css);
4305 		return 0;
4306 	}
4307 	return -EINVAL;
4308 }
4309 #else
4310 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4311 				struct mem_cgroup *from, struct mem_cgroup *to)
4312 {
4313 	return -EINVAL;
4314 }
4315 #endif
4316 
4317 /*
4318  * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4319  * page belongs to.
4320  */
4321 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4322 				  struct mem_cgroup **memcgp)
4323 {
4324 	struct mem_cgroup *memcg = NULL;
4325 	unsigned int nr_pages = 1;
4326 	struct page_cgroup *pc;
4327 	enum charge_type ctype;
4328 
4329 	*memcgp = NULL;
4330 
4331 	if (mem_cgroup_disabled())
4332 		return;
4333 
4334 	if (PageTransHuge(page))
4335 		nr_pages <<= compound_order(page);
4336 
4337 	pc = lookup_page_cgroup(page);
4338 	lock_page_cgroup(pc);
4339 	if (PageCgroupUsed(pc)) {
4340 		memcg = pc->mem_cgroup;
4341 		css_get(&memcg->css);
4342 		/*
4343 		 * At migrating an anonymous page, its mapcount goes down
4344 		 * to 0 and uncharge() will be called. But, even if it's fully
4345 		 * unmapped, migration may fail and this page has to be
4346 		 * charged again. We set MIGRATION flag here and delay uncharge
4347 		 * until end_migration() is called
4348 		 *
4349 		 * Corner Case Thinking
4350 		 * A)
4351 		 * When the old page was mapped as Anon and it's unmap-and-freed
4352 		 * while migration was ongoing.
4353 		 * If unmap finds the old page, uncharge() of it will be delayed
4354 		 * until end_migration(). If unmap finds a new page, it's
4355 		 * uncharged when it make mapcount to be 1->0. If unmap code
4356 		 * finds swap_migration_entry, the new page will not be mapped
4357 		 * and end_migration() will find it(mapcount==0).
4358 		 *
4359 		 * B)
4360 		 * When the old page was mapped but migraion fails, the kernel
4361 		 * remaps it. A charge for it is kept by MIGRATION flag even
4362 		 * if mapcount goes down to 0. We can do remap successfully
4363 		 * without charging it again.
4364 		 *
4365 		 * C)
4366 		 * The "old" page is under lock_page() until the end of
4367 		 * migration, so, the old page itself will not be swapped-out.
4368 		 * If the new page is swapped out before end_migraton, our
4369 		 * hook to usual swap-out path will catch the event.
4370 		 */
4371 		if (PageAnon(page))
4372 			SetPageCgroupMigration(pc);
4373 	}
4374 	unlock_page_cgroup(pc);
4375 	/*
4376 	 * If the page is not charged at this point,
4377 	 * we return here.
4378 	 */
4379 	if (!memcg)
4380 		return;
4381 
4382 	*memcgp = memcg;
4383 	/*
4384 	 * We charge new page before it's used/mapped. So, even if unlock_page()
4385 	 * is called before end_migration, we can catch all events on this new
4386 	 * page. In the case new page is migrated but not remapped, new page's
4387 	 * mapcount will be finally 0 and we call uncharge in end_migration().
4388 	 */
4389 	if (PageAnon(page))
4390 		ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4391 	else
4392 		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4393 	/*
4394 	 * The page is committed to the memcg, but it's not actually
4395 	 * charged to the res_counter since we plan on replacing the
4396 	 * old one and only one page is going to be left afterwards.
4397 	 */
4398 	__mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4399 }
4400 
4401 /* remove redundant charge if migration failed*/
4402 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4403 	struct page *oldpage, struct page *newpage, bool migration_ok)
4404 {
4405 	struct page *used, *unused;
4406 	struct page_cgroup *pc;
4407 	bool anon;
4408 
4409 	if (!memcg)
4410 		return;
4411 
4412 	if (!migration_ok) {
4413 		used = oldpage;
4414 		unused = newpage;
4415 	} else {
4416 		used = newpage;
4417 		unused = oldpage;
4418 	}
4419 	anon = PageAnon(used);
4420 	__mem_cgroup_uncharge_common(unused,
4421 				     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4422 				     : MEM_CGROUP_CHARGE_TYPE_CACHE,
4423 				     true);
4424 	css_put(&memcg->css);
4425 	/*
4426 	 * We disallowed uncharge of pages under migration because mapcount
4427 	 * of the page goes down to zero, temporarly.
4428 	 * Clear the flag and check the page should be charged.
4429 	 */
4430 	pc = lookup_page_cgroup(oldpage);
4431 	lock_page_cgroup(pc);
4432 	ClearPageCgroupMigration(pc);
4433 	unlock_page_cgroup(pc);
4434 
4435 	/*
4436 	 * If a page is a file cache, radix-tree replacement is very atomic
4437 	 * and we can skip this check. When it was an Anon page, its mapcount
4438 	 * goes down to 0. But because we added MIGRATION flage, it's not
4439 	 * uncharged yet. There are several case but page->mapcount check
4440 	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4441 	 * check. (see prepare_charge() also)
4442 	 */
4443 	if (anon)
4444 		mem_cgroup_uncharge_page(used);
4445 }
4446 
4447 /*
4448  * At replace page cache, newpage is not under any memcg but it's on
4449  * LRU. So, this function doesn't touch res_counter but handles LRU
4450  * in correct way. Both pages are locked so we cannot race with uncharge.
4451  */
4452 void mem_cgroup_replace_page_cache(struct page *oldpage,
4453 				  struct page *newpage)
4454 {
4455 	struct mem_cgroup *memcg = NULL;
4456 	struct page_cgroup *pc;
4457 	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4458 
4459 	if (mem_cgroup_disabled())
4460 		return;
4461 
4462 	pc = lookup_page_cgroup(oldpage);
4463 	/* fix accounting on old pages */
4464 	lock_page_cgroup(pc);
4465 	if (PageCgroupUsed(pc)) {
4466 		memcg = pc->mem_cgroup;
4467 		mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4468 		ClearPageCgroupUsed(pc);
4469 	}
4470 	unlock_page_cgroup(pc);
4471 
4472 	/*
4473 	 * When called from shmem_replace_page(), in some cases the
4474 	 * oldpage has already been charged, and in some cases not.
4475 	 */
4476 	if (!memcg)
4477 		return;
4478 	/*
4479 	 * Even if newpage->mapping was NULL before starting replacement,
4480 	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4481 	 * LRU while we overwrite pc->mem_cgroup.
4482 	 */
4483 	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4484 }
4485 
4486 #ifdef CONFIG_DEBUG_VM
4487 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4488 {
4489 	struct page_cgroup *pc;
4490 
4491 	pc = lookup_page_cgroup(page);
4492 	/*
4493 	 * Can be NULL while feeding pages into the page allocator for
4494 	 * the first time, i.e. during boot or memory hotplug;
4495 	 * or when mem_cgroup_disabled().
4496 	 */
4497 	if (likely(pc) && PageCgroupUsed(pc))
4498 		return pc;
4499 	return NULL;
4500 }
4501 
4502 bool mem_cgroup_bad_page_check(struct page *page)
4503 {
4504 	if (mem_cgroup_disabled())
4505 		return false;
4506 
4507 	return lookup_page_cgroup_used(page) != NULL;
4508 }
4509 
4510 void mem_cgroup_print_bad_page(struct page *page)
4511 {
4512 	struct page_cgroup *pc;
4513 
4514 	pc = lookup_page_cgroup_used(page);
4515 	if (pc) {
4516 		pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4517 			 pc, pc->flags, pc->mem_cgroup);
4518 	}
4519 }
4520 #endif
4521 
4522 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4523 				unsigned long long val)
4524 {
4525 	int retry_count;
4526 	u64 memswlimit, memlimit;
4527 	int ret = 0;
4528 	int children = mem_cgroup_count_children(memcg);
4529 	u64 curusage, oldusage;
4530 	int enlarge;
4531 
4532 	/*
4533 	 * For keeping hierarchical_reclaim simple, how long we should retry
4534 	 * is depends on callers. We set our retry-count to be function
4535 	 * of # of children which we should visit in this loop.
4536 	 */
4537 	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4538 
4539 	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4540 
4541 	enlarge = 0;
4542 	while (retry_count) {
4543 		if (signal_pending(current)) {
4544 			ret = -EINTR;
4545 			break;
4546 		}
4547 		/*
4548 		 * Rather than hide all in some function, I do this in
4549 		 * open coded manner. You see what this really does.
4550 		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4551 		 */
4552 		mutex_lock(&set_limit_mutex);
4553 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4554 		if (memswlimit < val) {
4555 			ret = -EINVAL;
4556 			mutex_unlock(&set_limit_mutex);
4557 			break;
4558 		}
4559 
4560 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4561 		if (memlimit < val)
4562 			enlarge = 1;
4563 
4564 		ret = res_counter_set_limit(&memcg->res, val);
4565 		if (!ret) {
4566 			if (memswlimit == val)
4567 				memcg->memsw_is_minimum = true;
4568 			else
4569 				memcg->memsw_is_minimum = false;
4570 		}
4571 		mutex_unlock(&set_limit_mutex);
4572 
4573 		if (!ret)
4574 			break;
4575 
4576 		mem_cgroup_reclaim(memcg, GFP_KERNEL,
4577 				   MEM_CGROUP_RECLAIM_SHRINK);
4578 		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4579 		/* Usage is reduced ? */
4580 		if (curusage >= oldusage)
4581 			retry_count--;
4582 		else
4583 			oldusage = curusage;
4584 	}
4585 	if (!ret && enlarge)
4586 		memcg_oom_recover(memcg);
4587 
4588 	return ret;
4589 }
4590 
4591 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4592 					unsigned long long val)
4593 {
4594 	int retry_count;
4595 	u64 memlimit, memswlimit, oldusage, curusage;
4596 	int children = mem_cgroup_count_children(memcg);
4597 	int ret = -EBUSY;
4598 	int enlarge = 0;
4599 
4600 	/* see mem_cgroup_resize_res_limit */
4601 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4602 	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4603 	while (retry_count) {
4604 		if (signal_pending(current)) {
4605 			ret = -EINTR;
4606 			break;
4607 		}
4608 		/*
4609 		 * Rather than hide all in some function, I do this in
4610 		 * open coded manner. You see what this really does.
4611 		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4612 		 */
4613 		mutex_lock(&set_limit_mutex);
4614 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4615 		if (memlimit > val) {
4616 			ret = -EINVAL;
4617 			mutex_unlock(&set_limit_mutex);
4618 			break;
4619 		}
4620 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4621 		if (memswlimit < val)
4622 			enlarge = 1;
4623 		ret = res_counter_set_limit(&memcg->memsw, val);
4624 		if (!ret) {
4625 			if (memlimit == val)
4626 				memcg->memsw_is_minimum = true;
4627 			else
4628 				memcg->memsw_is_minimum = false;
4629 		}
4630 		mutex_unlock(&set_limit_mutex);
4631 
4632 		if (!ret)
4633 			break;
4634 
4635 		mem_cgroup_reclaim(memcg, GFP_KERNEL,
4636 				   MEM_CGROUP_RECLAIM_NOSWAP |
4637 				   MEM_CGROUP_RECLAIM_SHRINK);
4638 		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4639 		/* Usage is reduced ? */
4640 		if (curusage >= oldusage)
4641 			retry_count--;
4642 		else
4643 			oldusage = curusage;
4644 	}
4645 	if (!ret && enlarge)
4646 		memcg_oom_recover(memcg);
4647 	return ret;
4648 }
4649 
4650 /**
4651  * mem_cgroup_force_empty_list - clears LRU of a group
4652  * @memcg: group to clear
4653  * @node: NUMA node
4654  * @zid: zone id
4655  * @lru: lru to to clear
4656  *
4657  * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
4658  * reclaim the pages page themselves - pages are moved to the parent (or root)
4659  * group.
4660  */
4661 static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
4662 				int node, int zid, enum lru_list lru)
4663 {
4664 	struct lruvec *lruvec;
4665 	unsigned long flags;
4666 	struct list_head *list;
4667 	struct page *busy;
4668 	struct zone *zone;
4669 
4670 	zone = &NODE_DATA(node)->node_zones[zid];
4671 	lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4672 	list = &lruvec->lists[lru];
4673 
4674 	busy = NULL;
4675 	do {
4676 		struct page_cgroup *pc;
4677 		struct page *page;
4678 
4679 		spin_lock_irqsave(&zone->lru_lock, flags);
4680 		if (list_empty(list)) {
4681 			spin_unlock_irqrestore(&zone->lru_lock, flags);
4682 			break;
4683 		}
4684 		page = list_entry(list->prev, struct page, lru);
4685 		if (busy == page) {
4686 			list_move(&page->lru, list);
4687 			busy = NULL;
4688 			spin_unlock_irqrestore(&zone->lru_lock, flags);
4689 			continue;
4690 		}
4691 		spin_unlock_irqrestore(&zone->lru_lock, flags);
4692 
4693 		pc = lookup_page_cgroup(page);
4694 
4695 		if (mem_cgroup_move_parent(page, pc, memcg)) {
4696 			/* found lock contention or "pc" is obsolete. */
4697 			busy = page;
4698 			cond_resched();
4699 		} else
4700 			busy = NULL;
4701 	} while (!list_empty(list));
4702 }
4703 
4704 /*
4705  * make mem_cgroup's charge to be 0 if there is no task by moving
4706  * all the charges and pages to the parent.
4707  * This enables deleting this mem_cgroup.
4708  *
4709  * Caller is responsible for holding css reference on the memcg.
4710  */
4711 static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4712 {
4713 	int node, zid;
4714 	u64 usage;
4715 
4716 	do {
4717 		/* This is for making all *used* pages to be on LRU. */
4718 		lru_add_drain_all();
4719 		drain_all_stock_sync(memcg);
4720 		mem_cgroup_start_move(memcg);
4721 		for_each_node_state(node, N_MEMORY) {
4722 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4723 				enum lru_list lru;
4724 				for_each_lru(lru) {
4725 					mem_cgroup_force_empty_list(memcg,
4726 							node, zid, lru);
4727 				}
4728 			}
4729 		}
4730 		mem_cgroup_end_move(memcg);
4731 		memcg_oom_recover(memcg);
4732 		cond_resched();
4733 
4734 		/*
4735 		 * Kernel memory may not necessarily be trackable to a specific
4736 		 * process. So they are not migrated, and therefore we can't
4737 		 * expect their value to drop to 0 here.
4738 		 * Having res filled up with kmem only is enough.
4739 		 *
4740 		 * This is a safety check because mem_cgroup_force_empty_list
4741 		 * could have raced with mem_cgroup_replace_page_cache callers
4742 		 * so the lru seemed empty but the page could have been added
4743 		 * right after the check. RES_USAGE should be safe as we always
4744 		 * charge before adding to the LRU.
4745 		 */
4746 		usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4747 			res_counter_read_u64(&memcg->kmem, RES_USAGE);
4748 	} while (usage > 0);
4749 }
4750 
4751 /*
4752  * This mainly exists for tests during the setting of set of use_hierarchy.
4753  * Since this is the very setting we are changing, the current hierarchy value
4754  * is meaningless
4755  */
4756 static inline bool __memcg_has_children(struct mem_cgroup *memcg)
4757 {
4758 	struct cgroup_subsys_state *pos;
4759 
4760 	/* bounce at first found */
4761 	css_for_each_child(pos, &memcg->css)
4762 		return true;
4763 	return false;
4764 }
4765 
4766 /*
4767  * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed
4768  * to be already dead (as in mem_cgroup_force_empty, for instance).  This is
4769  * from mem_cgroup_count_children(), in the sense that we don't really care how
4770  * many children we have; we only need to know if we have any.  It also counts
4771  * any memcg without hierarchy as infertile.
4772  */
4773 static inline bool memcg_has_children(struct mem_cgroup *memcg)
4774 {
4775 	return memcg->use_hierarchy && __memcg_has_children(memcg);
4776 }
4777 
4778 /*
4779  * Reclaims as many pages from the given memcg as possible and moves
4780  * the rest to the parent.
4781  *
4782  * Caller is responsible for holding css reference for memcg.
4783  */
4784 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4785 {
4786 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4787 	struct cgroup *cgrp = memcg->css.cgroup;
4788 
4789 	/* returns EBUSY if there is a task or if we come here twice. */
4790 	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
4791 		return -EBUSY;
4792 
4793 	/* we call try-to-free pages for make this cgroup empty */
4794 	lru_add_drain_all();
4795 	/* try to free all pages in this cgroup */
4796 	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4797 		int progress;
4798 
4799 		if (signal_pending(current))
4800 			return -EINTR;
4801 
4802 		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4803 						false);
4804 		if (!progress) {
4805 			nr_retries--;
4806 			/* maybe some writeback is necessary */
4807 			congestion_wait(BLK_RW_ASYNC, HZ/10);
4808 		}
4809 
4810 	}
4811 	lru_add_drain();
4812 	mem_cgroup_reparent_charges(memcg);
4813 
4814 	return 0;
4815 }
4816 
4817 static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
4818 					unsigned int event)
4819 {
4820 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4821 
4822 	if (mem_cgroup_is_root(memcg))
4823 		return -EINVAL;
4824 	return mem_cgroup_force_empty(memcg);
4825 }
4826 
4827 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
4828 				     struct cftype *cft)
4829 {
4830 	return mem_cgroup_from_css(css)->use_hierarchy;
4831 }
4832 
4833 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
4834 				      struct cftype *cft, u64 val)
4835 {
4836 	int retval = 0;
4837 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4838 	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
4839 
4840 	mutex_lock(&memcg_create_mutex);
4841 
4842 	if (memcg->use_hierarchy == val)
4843 		goto out;
4844 
4845 	/*
4846 	 * If parent's use_hierarchy is set, we can't make any modifications
4847 	 * in the child subtrees. If it is unset, then the change can
4848 	 * occur, provided the current cgroup has no children.
4849 	 *
4850 	 * For the root cgroup, parent_mem is NULL, we allow value to be
4851 	 * set if there are no children.
4852 	 */
4853 	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
4854 				(val == 1 || val == 0)) {
4855 		if (!__memcg_has_children(memcg))
4856 			memcg->use_hierarchy = val;
4857 		else
4858 			retval = -EBUSY;
4859 	} else
4860 		retval = -EINVAL;
4861 
4862 out:
4863 	mutex_unlock(&memcg_create_mutex);
4864 
4865 	return retval;
4866 }
4867 
4868 
4869 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
4870 					       enum mem_cgroup_stat_index idx)
4871 {
4872 	struct mem_cgroup *iter;
4873 	long val = 0;
4874 
4875 	/* Per-cpu values can be negative, use a signed accumulator */
4876 	for_each_mem_cgroup_tree(iter, memcg)
4877 		val += mem_cgroup_read_stat(iter, idx);
4878 
4879 	if (val < 0) /* race ? */
4880 		val = 0;
4881 	return val;
4882 }
4883 
4884 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
4885 {
4886 	u64 val;
4887 
4888 	if (!mem_cgroup_is_root(memcg)) {
4889 		if (!swap)
4890 			return res_counter_read_u64(&memcg->res, RES_USAGE);
4891 		else
4892 			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
4893 	}
4894 
4895 	/*
4896 	 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
4897 	 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
4898 	 */
4899 	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
4900 	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
4901 
4902 	if (swap)
4903 		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
4904 
4905 	return val << PAGE_SHIFT;
4906 }
4907 
4908 static ssize_t mem_cgroup_read(struct cgroup_subsys_state *css,
4909 			       struct cftype *cft, struct file *file,
4910 			       char __user *buf, size_t nbytes, loff_t *ppos)
4911 {
4912 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4913 	char str[64];
4914 	u64 val;
4915 	int name, len;
4916 	enum res_type type;
4917 
4918 	type = MEMFILE_TYPE(cft->private);
4919 	name = MEMFILE_ATTR(cft->private);
4920 
4921 	switch (type) {
4922 	case _MEM:
4923 		if (name == RES_USAGE)
4924 			val = mem_cgroup_usage(memcg, false);
4925 		else
4926 			val = res_counter_read_u64(&memcg->res, name);
4927 		break;
4928 	case _MEMSWAP:
4929 		if (name == RES_USAGE)
4930 			val = mem_cgroup_usage(memcg, true);
4931 		else
4932 			val = res_counter_read_u64(&memcg->memsw, name);
4933 		break;
4934 	case _KMEM:
4935 		val = res_counter_read_u64(&memcg->kmem, name);
4936 		break;
4937 	default:
4938 		BUG();
4939 	}
4940 
4941 	len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
4942 	return simple_read_from_buffer(buf, nbytes, ppos, str, len);
4943 }
4944 
4945 static int memcg_update_kmem_limit(struct cgroup_subsys_state *css, u64 val)
4946 {
4947 	int ret = -EINVAL;
4948 #ifdef CONFIG_MEMCG_KMEM
4949 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4950 	/*
4951 	 * For simplicity, we won't allow this to be disabled.  It also can't
4952 	 * be changed if the cgroup has children already, or if tasks had
4953 	 * already joined.
4954 	 *
4955 	 * If tasks join before we set the limit, a person looking at
4956 	 * kmem.usage_in_bytes will have no way to determine when it took
4957 	 * place, which makes the value quite meaningless.
4958 	 *
4959 	 * After it first became limited, changes in the value of the limit are
4960 	 * of course permitted.
4961 	 */
4962 	mutex_lock(&memcg_create_mutex);
4963 	mutex_lock(&set_limit_mutex);
4964 	if (!memcg->kmem_account_flags && val != RES_COUNTER_MAX) {
4965 		if (cgroup_task_count(css->cgroup) || memcg_has_children(memcg)) {
4966 			ret = -EBUSY;
4967 			goto out;
4968 		}
4969 		ret = res_counter_set_limit(&memcg->kmem, val);
4970 		VM_BUG_ON(ret);
4971 
4972 		ret = memcg_update_cache_sizes(memcg);
4973 		if (ret) {
4974 			res_counter_set_limit(&memcg->kmem, RES_COUNTER_MAX);
4975 			goto out;
4976 		}
4977 		static_key_slow_inc(&memcg_kmem_enabled_key);
4978 		/*
4979 		 * setting the active bit after the inc will guarantee no one
4980 		 * starts accounting before all call sites are patched
4981 		 */
4982 		memcg_kmem_set_active(memcg);
4983 	} else
4984 		ret = res_counter_set_limit(&memcg->kmem, val);
4985 out:
4986 	mutex_unlock(&set_limit_mutex);
4987 	mutex_unlock(&memcg_create_mutex);
4988 #endif
4989 	return ret;
4990 }
4991 
4992 #ifdef CONFIG_MEMCG_KMEM
4993 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
4994 {
4995 	int ret = 0;
4996 	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4997 	if (!parent)
4998 		goto out;
4999 
5000 	memcg->kmem_account_flags = parent->kmem_account_flags;
5001 	/*
5002 	 * When that happen, we need to disable the static branch only on those
5003 	 * memcgs that enabled it. To achieve this, we would be forced to
5004 	 * complicate the code by keeping track of which memcgs were the ones
5005 	 * that actually enabled limits, and which ones got it from its
5006 	 * parents.
5007 	 *
5008 	 * It is a lot simpler just to do static_key_slow_inc() on every child
5009 	 * that is accounted.
5010 	 */
5011 	if (!memcg_kmem_is_active(memcg))
5012 		goto out;
5013 
5014 	/*
5015 	 * __mem_cgroup_free() will issue static_key_slow_dec() because this
5016 	 * memcg is active already. If the later initialization fails then the
5017 	 * cgroup core triggers the cleanup so we do not have to do it here.
5018 	 */
5019 	static_key_slow_inc(&memcg_kmem_enabled_key);
5020 
5021 	mutex_lock(&set_limit_mutex);
5022 	memcg_stop_kmem_account();
5023 	ret = memcg_update_cache_sizes(memcg);
5024 	memcg_resume_kmem_account();
5025 	mutex_unlock(&set_limit_mutex);
5026 out:
5027 	return ret;
5028 }
5029 #endif /* CONFIG_MEMCG_KMEM */
5030 
5031 /*
5032  * The user of this function is...
5033  * RES_LIMIT.
5034  */
5035 static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
5036 			    const char *buffer)
5037 {
5038 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5039 	enum res_type type;
5040 	int name;
5041 	unsigned long long val;
5042 	int ret;
5043 
5044 	type = MEMFILE_TYPE(cft->private);
5045 	name = MEMFILE_ATTR(cft->private);
5046 
5047 	switch (name) {
5048 	case RES_LIMIT:
5049 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5050 			ret = -EINVAL;
5051 			break;
5052 		}
5053 		/* This function does all necessary parse...reuse it */
5054 		ret = res_counter_memparse_write_strategy(buffer, &val);
5055 		if (ret)
5056 			break;
5057 		if (type == _MEM)
5058 			ret = mem_cgroup_resize_limit(memcg, val);
5059 		else if (type == _MEMSWAP)
5060 			ret = mem_cgroup_resize_memsw_limit(memcg, val);
5061 		else if (type == _KMEM)
5062 			ret = memcg_update_kmem_limit(css, val);
5063 		else
5064 			return -EINVAL;
5065 		break;
5066 	case RES_SOFT_LIMIT:
5067 		ret = res_counter_memparse_write_strategy(buffer, &val);
5068 		if (ret)
5069 			break;
5070 		/*
5071 		 * For memsw, soft limits are hard to implement in terms
5072 		 * of semantics, for now, we support soft limits for
5073 		 * control without swap
5074 		 */
5075 		if (type == _MEM)
5076 			ret = res_counter_set_soft_limit(&memcg->res, val);
5077 		else
5078 			ret = -EINVAL;
5079 		break;
5080 	default:
5081 		ret = -EINVAL; /* should be BUG() ? */
5082 		break;
5083 	}
5084 	return ret;
5085 }
5086 
5087 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5088 		unsigned long long *mem_limit, unsigned long long *memsw_limit)
5089 {
5090 	unsigned long long min_limit, min_memsw_limit, tmp;
5091 
5092 	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5093 	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5094 	if (!memcg->use_hierarchy)
5095 		goto out;
5096 
5097 	while (css_parent(&memcg->css)) {
5098 		memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5099 		if (!memcg->use_hierarchy)
5100 			break;
5101 		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5102 		min_limit = min(min_limit, tmp);
5103 		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5104 		min_memsw_limit = min(min_memsw_limit, tmp);
5105 	}
5106 out:
5107 	*mem_limit = min_limit;
5108 	*memsw_limit = min_memsw_limit;
5109 }
5110 
5111 static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
5112 {
5113 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5114 	int name;
5115 	enum res_type type;
5116 
5117 	type = MEMFILE_TYPE(event);
5118 	name = MEMFILE_ATTR(event);
5119 
5120 	switch (name) {
5121 	case RES_MAX_USAGE:
5122 		if (type == _MEM)
5123 			res_counter_reset_max(&memcg->res);
5124 		else if (type == _MEMSWAP)
5125 			res_counter_reset_max(&memcg->memsw);
5126 		else if (type == _KMEM)
5127 			res_counter_reset_max(&memcg->kmem);
5128 		else
5129 			return -EINVAL;
5130 		break;
5131 	case RES_FAILCNT:
5132 		if (type == _MEM)
5133 			res_counter_reset_failcnt(&memcg->res);
5134 		else if (type == _MEMSWAP)
5135 			res_counter_reset_failcnt(&memcg->memsw);
5136 		else if (type == _KMEM)
5137 			res_counter_reset_failcnt(&memcg->kmem);
5138 		else
5139 			return -EINVAL;
5140 		break;
5141 	}
5142 
5143 	return 0;
5144 }
5145 
5146 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
5147 					struct cftype *cft)
5148 {
5149 	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
5150 }
5151 
5152 #ifdef CONFIG_MMU
5153 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5154 					struct cftype *cft, u64 val)
5155 {
5156 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5157 
5158 	if (val >= (1 << NR_MOVE_TYPE))
5159 		return -EINVAL;
5160 
5161 	/*
5162 	 * No kind of locking is needed in here, because ->can_attach() will
5163 	 * check this value once in the beginning of the process, and then carry
5164 	 * on with stale data. This means that changes to this value will only
5165 	 * affect task migrations starting after the change.
5166 	 */
5167 	memcg->move_charge_at_immigrate = val;
5168 	return 0;
5169 }
5170 #else
5171 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5172 					struct cftype *cft, u64 val)
5173 {
5174 	return -ENOSYS;
5175 }
5176 #endif
5177 
5178 #ifdef CONFIG_NUMA
5179 static int memcg_numa_stat_show(struct cgroup_subsys_state *css,
5180 				struct cftype *cft, struct seq_file *m)
5181 {
5182 	int nid;
5183 	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
5184 	unsigned long node_nr;
5185 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5186 
5187 	total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
5188 	seq_printf(m, "total=%lu", total_nr);
5189 	for_each_node_state(nid, N_MEMORY) {
5190 		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
5191 		seq_printf(m, " N%d=%lu", nid, node_nr);
5192 	}
5193 	seq_putc(m, '\n');
5194 
5195 	file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
5196 	seq_printf(m, "file=%lu", file_nr);
5197 	for_each_node_state(nid, N_MEMORY) {
5198 		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5199 				LRU_ALL_FILE);
5200 		seq_printf(m, " N%d=%lu", nid, node_nr);
5201 	}
5202 	seq_putc(m, '\n');
5203 
5204 	anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
5205 	seq_printf(m, "anon=%lu", anon_nr);
5206 	for_each_node_state(nid, N_MEMORY) {
5207 		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5208 				LRU_ALL_ANON);
5209 		seq_printf(m, " N%d=%lu", nid, node_nr);
5210 	}
5211 	seq_putc(m, '\n');
5212 
5213 	unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
5214 	seq_printf(m, "unevictable=%lu", unevictable_nr);
5215 	for_each_node_state(nid, N_MEMORY) {
5216 		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5217 				BIT(LRU_UNEVICTABLE));
5218 		seq_printf(m, " N%d=%lu", nid, node_nr);
5219 	}
5220 	seq_putc(m, '\n');
5221 	return 0;
5222 }
5223 #endif /* CONFIG_NUMA */
5224 
5225 static inline void mem_cgroup_lru_names_not_uptodate(void)
5226 {
5227 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5228 }
5229 
5230 static int memcg_stat_show(struct cgroup_subsys_state *css, struct cftype *cft,
5231 				 struct seq_file *m)
5232 {
5233 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5234 	struct mem_cgroup *mi;
5235 	unsigned int i;
5236 
5237 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5238 		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5239 			continue;
5240 		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5241 			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5242 	}
5243 
5244 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5245 		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5246 			   mem_cgroup_read_events(memcg, i));
5247 
5248 	for (i = 0; i < NR_LRU_LISTS; i++)
5249 		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5250 			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5251 
5252 	/* Hierarchical information */
5253 	{
5254 		unsigned long long limit, memsw_limit;
5255 		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5256 		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5257 		if (do_swap_account)
5258 			seq_printf(m, "hierarchical_memsw_limit %llu\n",
5259 				   memsw_limit);
5260 	}
5261 
5262 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5263 		long long val = 0;
5264 
5265 		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5266 			continue;
5267 		for_each_mem_cgroup_tree(mi, memcg)
5268 			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5269 		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5270 	}
5271 
5272 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5273 		unsigned long long val = 0;
5274 
5275 		for_each_mem_cgroup_tree(mi, memcg)
5276 			val += mem_cgroup_read_events(mi, i);
5277 		seq_printf(m, "total_%s %llu\n",
5278 			   mem_cgroup_events_names[i], val);
5279 	}
5280 
5281 	for (i = 0; i < NR_LRU_LISTS; i++) {
5282 		unsigned long long val = 0;
5283 
5284 		for_each_mem_cgroup_tree(mi, memcg)
5285 			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5286 		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5287 	}
5288 
5289 #ifdef CONFIG_DEBUG_VM
5290 	{
5291 		int nid, zid;
5292 		struct mem_cgroup_per_zone *mz;
5293 		struct zone_reclaim_stat *rstat;
5294 		unsigned long recent_rotated[2] = {0, 0};
5295 		unsigned long recent_scanned[2] = {0, 0};
5296 
5297 		for_each_online_node(nid)
5298 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5299 				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5300 				rstat = &mz->lruvec.reclaim_stat;
5301 
5302 				recent_rotated[0] += rstat->recent_rotated[0];
5303 				recent_rotated[1] += rstat->recent_rotated[1];
5304 				recent_scanned[0] += rstat->recent_scanned[0];
5305 				recent_scanned[1] += rstat->recent_scanned[1];
5306 			}
5307 		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5308 		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5309 		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5310 		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
5311 	}
5312 #endif
5313 
5314 	return 0;
5315 }
5316 
5317 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
5318 				      struct cftype *cft)
5319 {
5320 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5321 
5322 	return mem_cgroup_swappiness(memcg);
5323 }
5324 
5325 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
5326 				       struct cftype *cft, u64 val)
5327 {
5328 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5329 	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5330 
5331 	if (val > 100 || !parent)
5332 		return -EINVAL;
5333 
5334 	mutex_lock(&memcg_create_mutex);
5335 
5336 	/* If under hierarchy, only empty-root can set this value */
5337 	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5338 		mutex_unlock(&memcg_create_mutex);
5339 		return -EINVAL;
5340 	}
5341 
5342 	memcg->swappiness = val;
5343 
5344 	mutex_unlock(&memcg_create_mutex);
5345 
5346 	return 0;
5347 }
5348 
5349 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5350 {
5351 	struct mem_cgroup_threshold_ary *t;
5352 	u64 usage;
5353 	int i;
5354 
5355 	rcu_read_lock();
5356 	if (!swap)
5357 		t = rcu_dereference(memcg->thresholds.primary);
5358 	else
5359 		t = rcu_dereference(memcg->memsw_thresholds.primary);
5360 
5361 	if (!t)
5362 		goto unlock;
5363 
5364 	usage = mem_cgroup_usage(memcg, swap);
5365 
5366 	/*
5367 	 * current_threshold points to threshold just below or equal to usage.
5368 	 * If it's not true, a threshold was crossed after last
5369 	 * call of __mem_cgroup_threshold().
5370 	 */
5371 	i = t->current_threshold;
5372 
5373 	/*
5374 	 * Iterate backward over array of thresholds starting from
5375 	 * current_threshold and check if a threshold is crossed.
5376 	 * If none of thresholds below usage is crossed, we read
5377 	 * only one element of the array here.
5378 	 */
5379 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5380 		eventfd_signal(t->entries[i].eventfd, 1);
5381 
5382 	/* i = current_threshold + 1 */
5383 	i++;
5384 
5385 	/*
5386 	 * Iterate forward over array of thresholds starting from
5387 	 * current_threshold+1 and check if a threshold is crossed.
5388 	 * If none of thresholds above usage is crossed, we read
5389 	 * only one element of the array here.
5390 	 */
5391 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5392 		eventfd_signal(t->entries[i].eventfd, 1);
5393 
5394 	/* Update current_threshold */
5395 	t->current_threshold = i - 1;
5396 unlock:
5397 	rcu_read_unlock();
5398 }
5399 
5400 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5401 {
5402 	while (memcg) {
5403 		__mem_cgroup_threshold(memcg, false);
5404 		if (do_swap_account)
5405 			__mem_cgroup_threshold(memcg, true);
5406 
5407 		memcg = parent_mem_cgroup(memcg);
5408 	}
5409 }
5410 
5411 static int compare_thresholds(const void *a, const void *b)
5412 {
5413 	const struct mem_cgroup_threshold *_a = a;
5414 	const struct mem_cgroup_threshold *_b = b;
5415 
5416 	if (_a->threshold > _b->threshold)
5417 		return 1;
5418 
5419 	if (_a->threshold < _b->threshold)
5420 		return -1;
5421 
5422 	return 0;
5423 }
5424 
5425 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
5426 {
5427 	struct mem_cgroup_eventfd_list *ev;
5428 
5429 	list_for_each_entry(ev, &memcg->oom_notify, list)
5430 		eventfd_signal(ev->eventfd, 1);
5431 	return 0;
5432 }
5433 
5434 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
5435 {
5436 	struct mem_cgroup *iter;
5437 
5438 	for_each_mem_cgroup_tree(iter, memcg)
5439 		mem_cgroup_oom_notify_cb(iter);
5440 }
5441 
5442 static int mem_cgroup_usage_register_event(struct cgroup_subsys_state *css,
5443 	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5444 {
5445 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5446 	struct mem_cgroup_thresholds *thresholds;
5447 	struct mem_cgroup_threshold_ary *new;
5448 	enum res_type type = MEMFILE_TYPE(cft->private);
5449 	u64 threshold, usage;
5450 	int i, size, ret;
5451 
5452 	ret = res_counter_memparse_write_strategy(args, &threshold);
5453 	if (ret)
5454 		return ret;
5455 
5456 	mutex_lock(&memcg->thresholds_lock);
5457 
5458 	if (type == _MEM)
5459 		thresholds = &memcg->thresholds;
5460 	else if (type == _MEMSWAP)
5461 		thresholds = &memcg->memsw_thresholds;
5462 	else
5463 		BUG();
5464 
5465 	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5466 
5467 	/* Check if a threshold crossed before adding a new one */
5468 	if (thresholds->primary)
5469 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
5470 
5471 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5472 
5473 	/* Allocate memory for new array of thresholds */
5474 	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5475 			GFP_KERNEL);
5476 	if (!new) {
5477 		ret = -ENOMEM;
5478 		goto unlock;
5479 	}
5480 	new->size = size;
5481 
5482 	/* Copy thresholds (if any) to new array */
5483 	if (thresholds->primary) {
5484 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5485 				sizeof(struct mem_cgroup_threshold));
5486 	}
5487 
5488 	/* Add new threshold */
5489 	new->entries[size - 1].eventfd = eventfd;
5490 	new->entries[size - 1].threshold = threshold;
5491 
5492 	/* Sort thresholds. Registering of new threshold isn't time-critical */
5493 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5494 			compare_thresholds, NULL);
5495 
5496 	/* Find current threshold */
5497 	new->current_threshold = -1;
5498 	for (i = 0; i < size; i++) {
5499 		if (new->entries[i].threshold <= usage) {
5500 			/*
5501 			 * new->current_threshold will not be used until
5502 			 * rcu_assign_pointer(), so it's safe to increment
5503 			 * it here.
5504 			 */
5505 			++new->current_threshold;
5506 		} else
5507 			break;
5508 	}
5509 
5510 	/* Free old spare buffer and save old primary buffer as spare */
5511 	kfree(thresholds->spare);
5512 	thresholds->spare = thresholds->primary;
5513 
5514 	rcu_assign_pointer(thresholds->primary, new);
5515 
5516 	/* To be sure that nobody uses thresholds */
5517 	synchronize_rcu();
5518 
5519 unlock:
5520 	mutex_unlock(&memcg->thresholds_lock);
5521 
5522 	return ret;
5523 }
5524 
5525 static void mem_cgroup_usage_unregister_event(struct cgroup_subsys_state *css,
5526 	struct cftype *cft, struct eventfd_ctx *eventfd)
5527 {
5528 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5529 	struct mem_cgroup_thresholds *thresholds;
5530 	struct mem_cgroup_threshold_ary *new;
5531 	enum res_type type = MEMFILE_TYPE(cft->private);
5532 	u64 usage;
5533 	int i, j, size;
5534 
5535 	mutex_lock(&memcg->thresholds_lock);
5536 	if (type == _MEM)
5537 		thresholds = &memcg->thresholds;
5538 	else if (type == _MEMSWAP)
5539 		thresholds = &memcg->memsw_thresholds;
5540 	else
5541 		BUG();
5542 
5543 	if (!thresholds->primary)
5544 		goto unlock;
5545 
5546 	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5547 
5548 	/* Check if a threshold crossed before removing */
5549 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
5550 
5551 	/* Calculate new number of threshold */
5552 	size = 0;
5553 	for (i = 0; i < thresholds->primary->size; i++) {
5554 		if (thresholds->primary->entries[i].eventfd != eventfd)
5555 			size++;
5556 	}
5557 
5558 	new = thresholds->spare;
5559 
5560 	/* Set thresholds array to NULL if we don't have thresholds */
5561 	if (!size) {
5562 		kfree(new);
5563 		new = NULL;
5564 		goto swap_buffers;
5565 	}
5566 
5567 	new->size = size;
5568 
5569 	/* Copy thresholds and find current threshold */
5570 	new->current_threshold = -1;
5571 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5572 		if (thresholds->primary->entries[i].eventfd == eventfd)
5573 			continue;
5574 
5575 		new->entries[j] = thresholds->primary->entries[i];
5576 		if (new->entries[j].threshold <= usage) {
5577 			/*
5578 			 * new->current_threshold will not be used
5579 			 * until rcu_assign_pointer(), so it's safe to increment
5580 			 * it here.
5581 			 */
5582 			++new->current_threshold;
5583 		}
5584 		j++;
5585 	}
5586 
5587 swap_buffers:
5588 	/* Swap primary and spare array */
5589 	thresholds->spare = thresholds->primary;
5590 	/* If all events are unregistered, free the spare array */
5591 	if (!new) {
5592 		kfree(thresholds->spare);
5593 		thresholds->spare = NULL;
5594 	}
5595 
5596 	rcu_assign_pointer(thresholds->primary, new);
5597 
5598 	/* To be sure that nobody uses thresholds */
5599 	synchronize_rcu();
5600 unlock:
5601 	mutex_unlock(&memcg->thresholds_lock);
5602 }
5603 
5604 static int mem_cgroup_oom_register_event(struct cgroup_subsys_state *css,
5605 	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5606 {
5607 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5608 	struct mem_cgroup_eventfd_list *event;
5609 	enum res_type type = MEMFILE_TYPE(cft->private);
5610 
5611 	BUG_ON(type != _OOM_TYPE);
5612 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
5613 	if (!event)
5614 		return -ENOMEM;
5615 
5616 	spin_lock(&memcg_oom_lock);
5617 
5618 	event->eventfd = eventfd;
5619 	list_add(&event->list, &memcg->oom_notify);
5620 
5621 	/* already in OOM ? */
5622 	if (atomic_read(&memcg->under_oom))
5623 		eventfd_signal(eventfd, 1);
5624 	spin_unlock(&memcg_oom_lock);
5625 
5626 	return 0;
5627 }
5628 
5629 static void mem_cgroup_oom_unregister_event(struct cgroup_subsys_state *css,
5630 	struct cftype *cft, struct eventfd_ctx *eventfd)
5631 {
5632 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5633 	struct mem_cgroup_eventfd_list *ev, *tmp;
5634 	enum res_type type = MEMFILE_TYPE(cft->private);
5635 
5636 	BUG_ON(type != _OOM_TYPE);
5637 
5638 	spin_lock(&memcg_oom_lock);
5639 
5640 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
5641 		if (ev->eventfd == eventfd) {
5642 			list_del(&ev->list);
5643 			kfree(ev);
5644 		}
5645 	}
5646 
5647 	spin_unlock(&memcg_oom_lock);
5648 }
5649 
5650 static int mem_cgroup_oom_control_read(struct cgroup_subsys_state *css,
5651 	struct cftype *cft,  struct cgroup_map_cb *cb)
5652 {
5653 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5654 
5655 	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
5656 
5657 	if (atomic_read(&memcg->under_oom))
5658 		cb->fill(cb, "under_oom", 1);
5659 	else
5660 		cb->fill(cb, "under_oom", 0);
5661 	return 0;
5662 }
5663 
5664 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
5665 	struct cftype *cft, u64 val)
5666 {
5667 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5668 	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5669 
5670 	/* cannot set to root cgroup and only 0 and 1 are allowed */
5671 	if (!parent || !((val == 0) || (val == 1)))
5672 		return -EINVAL;
5673 
5674 	mutex_lock(&memcg_create_mutex);
5675 	/* oom-kill-disable is a flag for subhierarchy. */
5676 	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5677 		mutex_unlock(&memcg_create_mutex);
5678 		return -EINVAL;
5679 	}
5680 	memcg->oom_kill_disable = val;
5681 	if (!val)
5682 		memcg_oom_recover(memcg);
5683 	mutex_unlock(&memcg_create_mutex);
5684 	return 0;
5685 }
5686 
5687 #ifdef CONFIG_MEMCG_KMEM
5688 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5689 {
5690 	int ret;
5691 
5692 	memcg->kmemcg_id = -1;
5693 	ret = memcg_propagate_kmem(memcg);
5694 	if (ret)
5695 		return ret;
5696 
5697 	return mem_cgroup_sockets_init(memcg, ss);
5698 }
5699 
5700 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5701 {
5702 	mem_cgroup_sockets_destroy(memcg);
5703 }
5704 
5705 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5706 {
5707 	if (!memcg_kmem_is_active(memcg))
5708 		return;
5709 
5710 	/*
5711 	 * kmem charges can outlive the cgroup. In the case of slab
5712 	 * pages, for instance, a page contain objects from various
5713 	 * processes. As we prevent from taking a reference for every
5714 	 * such allocation we have to be careful when doing uncharge
5715 	 * (see memcg_uncharge_kmem) and here during offlining.
5716 	 *
5717 	 * The idea is that that only the _last_ uncharge which sees
5718 	 * the dead memcg will drop the last reference. An additional
5719 	 * reference is taken here before the group is marked dead
5720 	 * which is then paired with css_put during uncharge resp. here.
5721 	 *
5722 	 * Although this might sound strange as this path is called from
5723 	 * css_offline() when the referencemight have dropped down to 0
5724 	 * and shouldn't be incremented anymore (css_tryget would fail)
5725 	 * we do not have other options because of the kmem allocations
5726 	 * lifetime.
5727 	 */
5728 	css_get(&memcg->css);
5729 
5730 	memcg_kmem_mark_dead(memcg);
5731 
5732 	if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5733 		return;
5734 
5735 	if (memcg_kmem_test_and_clear_dead(memcg))
5736 		css_put(&memcg->css);
5737 }
5738 #else
5739 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5740 {
5741 	return 0;
5742 }
5743 
5744 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5745 {
5746 }
5747 
5748 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5749 {
5750 }
5751 #endif
5752 
5753 static struct cftype mem_cgroup_files[] = {
5754 	{
5755 		.name = "usage_in_bytes",
5756 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5757 		.read = mem_cgroup_read,
5758 		.register_event = mem_cgroup_usage_register_event,
5759 		.unregister_event = mem_cgroup_usage_unregister_event,
5760 	},
5761 	{
5762 		.name = "max_usage_in_bytes",
5763 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5764 		.trigger = mem_cgroup_reset,
5765 		.read = mem_cgroup_read,
5766 	},
5767 	{
5768 		.name = "limit_in_bytes",
5769 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5770 		.write_string = mem_cgroup_write,
5771 		.read = mem_cgroup_read,
5772 	},
5773 	{
5774 		.name = "soft_limit_in_bytes",
5775 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5776 		.write_string = mem_cgroup_write,
5777 		.read = mem_cgroup_read,
5778 	},
5779 	{
5780 		.name = "failcnt",
5781 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5782 		.trigger = mem_cgroup_reset,
5783 		.read = mem_cgroup_read,
5784 	},
5785 	{
5786 		.name = "stat",
5787 		.read_seq_string = memcg_stat_show,
5788 	},
5789 	{
5790 		.name = "force_empty",
5791 		.trigger = mem_cgroup_force_empty_write,
5792 	},
5793 	{
5794 		.name = "use_hierarchy",
5795 		.flags = CFTYPE_INSANE,
5796 		.write_u64 = mem_cgroup_hierarchy_write,
5797 		.read_u64 = mem_cgroup_hierarchy_read,
5798 	},
5799 	{
5800 		.name = "swappiness",
5801 		.read_u64 = mem_cgroup_swappiness_read,
5802 		.write_u64 = mem_cgroup_swappiness_write,
5803 	},
5804 	{
5805 		.name = "move_charge_at_immigrate",
5806 		.read_u64 = mem_cgroup_move_charge_read,
5807 		.write_u64 = mem_cgroup_move_charge_write,
5808 	},
5809 	{
5810 		.name = "oom_control",
5811 		.read_map = mem_cgroup_oom_control_read,
5812 		.write_u64 = mem_cgroup_oom_control_write,
5813 		.register_event = mem_cgroup_oom_register_event,
5814 		.unregister_event = mem_cgroup_oom_unregister_event,
5815 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5816 	},
5817 	{
5818 		.name = "pressure_level",
5819 		.register_event = vmpressure_register_event,
5820 		.unregister_event = vmpressure_unregister_event,
5821 	},
5822 #ifdef CONFIG_NUMA
5823 	{
5824 		.name = "numa_stat",
5825 		.read_seq_string = memcg_numa_stat_show,
5826 	},
5827 #endif
5828 #ifdef CONFIG_MEMCG_KMEM
5829 	{
5830 		.name = "kmem.limit_in_bytes",
5831 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5832 		.write_string = mem_cgroup_write,
5833 		.read = mem_cgroup_read,
5834 	},
5835 	{
5836 		.name = "kmem.usage_in_bytes",
5837 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5838 		.read = mem_cgroup_read,
5839 	},
5840 	{
5841 		.name = "kmem.failcnt",
5842 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5843 		.trigger = mem_cgroup_reset,
5844 		.read = mem_cgroup_read,
5845 	},
5846 	{
5847 		.name = "kmem.max_usage_in_bytes",
5848 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5849 		.trigger = mem_cgroup_reset,
5850 		.read = mem_cgroup_read,
5851 	},
5852 #ifdef CONFIG_SLABINFO
5853 	{
5854 		.name = "kmem.slabinfo",
5855 		.read_seq_string = mem_cgroup_slabinfo_read,
5856 	},
5857 #endif
5858 #endif
5859 	{ },	/* terminate */
5860 };
5861 
5862 #ifdef CONFIG_MEMCG_SWAP
5863 static struct cftype memsw_cgroup_files[] = {
5864 	{
5865 		.name = "memsw.usage_in_bytes",
5866 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5867 		.read = mem_cgroup_read,
5868 		.register_event = mem_cgroup_usage_register_event,
5869 		.unregister_event = mem_cgroup_usage_unregister_event,
5870 	},
5871 	{
5872 		.name = "memsw.max_usage_in_bytes",
5873 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5874 		.trigger = mem_cgroup_reset,
5875 		.read = mem_cgroup_read,
5876 	},
5877 	{
5878 		.name = "memsw.limit_in_bytes",
5879 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5880 		.write_string = mem_cgroup_write,
5881 		.read = mem_cgroup_read,
5882 	},
5883 	{
5884 		.name = "memsw.failcnt",
5885 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5886 		.trigger = mem_cgroup_reset,
5887 		.read = mem_cgroup_read,
5888 	},
5889 	{ },	/* terminate */
5890 };
5891 #endif
5892 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5893 {
5894 	struct mem_cgroup_per_node *pn;
5895 	struct mem_cgroup_per_zone *mz;
5896 	int zone, tmp = node;
5897 	/*
5898 	 * This routine is called against possible nodes.
5899 	 * But it's BUG to call kmalloc() against offline node.
5900 	 *
5901 	 * TODO: this routine can waste much memory for nodes which will
5902 	 *       never be onlined. It's better to use memory hotplug callback
5903 	 *       function.
5904 	 */
5905 	if (!node_state(node, N_NORMAL_MEMORY))
5906 		tmp = -1;
5907 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5908 	if (!pn)
5909 		return 1;
5910 
5911 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5912 		mz = &pn->zoneinfo[zone];
5913 		lruvec_init(&mz->lruvec);
5914 		mz->memcg = memcg;
5915 	}
5916 	memcg->nodeinfo[node] = pn;
5917 	return 0;
5918 }
5919 
5920 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5921 {
5922 	kfree(memcg->nodeinfo[node]);
5923 }
5924 
5925 static struct mem_cgroup *mem_cgroup_alloc(void)
5926 {
5927 	struct mem_cgroup *memcg;
5928 	size_t size = memcg_size();
5929 
5930 	/* Can be very big if nr_node_ids is very big */
5931 	if (size < PAGE_SIZE)
5932 		memcg = kzalloc(size, GFP_KERNEL);
5933 	else
5934 		memcg = vzalloc(size);
5935 
5936 	if (!memcg)
5937 		return NULL;
5938 
5939 	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
5940 	if (!memcg->stat)
5941 		goto out_free;
5942 	spin_lock_init(&memcg->pcp_counter_lock);
5943 	return memcg;
5944 
5945 out_free:
5946 	if (size < PAGE_SIZE)
5947 		kfree(memcg);
5948 	else
5949 		vfree(memcg);
5950 	return NULL;
5951 }
5952 
5953 /*
5954  * At destroying mem_cgroup, references from swap_cgroup can remain.
5955  * (scanning all at force_empty is too costly...)
5956  *
5957  * Instead of clearing all references at force_empty, we remember
5958  * the number of reference from swap_cgroup and free mem_cgroup when
5959  * it goes down to 0.
5960  *
5961  * Removal of cgroup itself succeeds regardless of refs from swap.
5962  */
5963 
5964 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5965 {
5966 	int node;
5967 	size_t size = memcg_size();
5968 
5969 	free_css_id(&mem_cgroup_subsys, &memcg->css);
5970 
5971 	for_each_node(node)
5972 		free_mem_cgroup_per_zone_info(memcg, node);
5973 
5974 	free_percpu(memcg->stat);
5975 
5976 	/*
5977 	 * We need to make sure that (at least for now), the jump label
5978 	 * destruction code runs outside of the cgroup lock. This is because
5979 	 * get_online_cpus(), which is called from the static_branch update,
5980 	 * can't be called inside the cgroup_lock. cpusets are the ones
5981 	 * enforcing this dependency, so if they ever change, we might as well.
5982 	 *
5983 	 * schedule_work() will guarantee this happens. Be careful if you need
5984 	 * to move this code around, and make sure it is outside
5985 	 * the cgroup_lock.
5986 	 */
5987 	disarm_static_keys(memcg);
5988 	if (size < PAGE_SIZE)
5989 		kfree(memcg);
5990 	else
5991 		vfree(memcg);
5992 }
5993 
5994 /*
5995  * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
5996  */
5997 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
5998 {
5999 	if (!memcg->res.parent)
6000 		return NULL;
6001 	return mem_cgroup_from_res_counter(memcg->res.parent, res);
6002 }
6003 EXPORT_SYMBOL(parent_mem_cgroup);
6004 
6005 static struct cgroup_subsys_state * __ref
6006 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6007 {
6008 	struct mem_cgroup *memcg;
6009 	long error = -ENOMEM;
6010 	int node;
6011 
6012 	memcg = mem_cgroup_alloc();
6013 	if (!memcg)
6014 		return ERR_PTR(error);
6015 
6016 	for_each_node(node)
6017 		if (alloc_mem_cgroup_per_zone_info(memcg, node))
6018 			goto free_out;
6019 
6020 	/* root ? */
6021 	if (parent_css == NULL) {
6022 		root_mem_cgroup = memcg;
6023 		res_counter_init(&memcg->res, NULL);
6024 		res_counter_init(&memcg->memsw, NULL);
6025 		res_counter_init(&memcg->kmem, NULL);
6026 	}
6027 
6028 	memcg->last_scanned_node = MAX_NUMNODES;
6029 	INIT_LIST_HEAD(&memcg->oom_notify);
6030 	memcg->move_charge_at_immigrate = 0;
6031 	mutex_init(&memcg->thresholds_lock);
6032 	spin_lock_init(&memcg->move_lock);
6033 	vmpressure_init(&memcg->vmpressure);
6034 	spin_lock_init(&memcg->soft_lock);
6035 
6036 	return &memcg->css;
6037 
6038 free_out:
6039 	__mem_cgroup_free(memcg);
6040 	return ERR_PTR(error);
6041 }
6042 
6043 static int
6044 mem_cgroup_css_online(struct cgroup_subsys_state *css)
6045 {
6046 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6047 	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
6048 	int error = 0;
6049 
6050 	if (!parent)
6051 		return 0;
6052 
6053 	mutex_lock(&memcg_create_mutex);
6054 
6055 	memcg->use_hierarchy = parent->use_hierarchy;
6056 	memcg->oom_kill_disable = parent->oom_kill_disable;
6057 	memcg->swappiness = mem_cgroup_swappiness(parent);
6058 
6059 	if (parent->use_hierarchy) {
6060 		res_counter_init(&memcg->res, &parent->res);
6061 		res_counter_init(&memcg->memsw, &parent->memsw);
6062 		res_counter_init(&memcg->kmem, &parent->kmem);
6063 
6064 		/*
6065 		 * No need to take a reference to the parent because cgroup
6066 		 * core guarantees its existence.
6067 		 */
6068 	} else {
6069 		res_counter_init(&memcg->res, NULL);
6070 		res_counter_init(&memcg->memsw, NULL);
6071 		res_counter_init(&memcg->kmem, NULL);
6072 		/*
6073 		 * Deeper hierachy with use_hierarchy == false doesn't make
6074 		 * much sense so let cgroup subsystem know about this
6075 		 * unfortunate state in our controller.
6076 		 */
6077 		if (parent != root_mem_cgroup)
6078 			mem_cgroup_subsys.broken_hierarchy = true;
6079 	}
6080 
6081 	error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
6082 	mutex_unlock(&memcg_create_mutex);
6083 	return error;
6084 }
6085 
6086 /*
6087  * Announce all parents that a group from their hierarchy is gone.
6088  */
6089 static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6090 {
6091 	struct mem_cgroup *parent = memcg;
6092 
6093 	while ((parent = parent_mem_cgroup(parent)))
6094 		mem_cgroup_iter_invalidate(parent);
6095 
6096 	/*
6097 	 * if the root memcg is not hierarchical we have to check it
6098 	 * explicitely.
6099 	 */
6100 	if (!root_mem_cgroup->use_hierarchy)
6101 		mem_cgroup_iter_invalidate(root_mem_cgroup);
6102 }
6103 
6104 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
6105 {
6106 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6107 
6108 	kmem_cgroup_css_offline(memcg);
6109 
6110 	mem_cgroup_invalidate_reclaim_iterators(memcg);
6111 	mem_cgroup_reparent_charges(memcg);
6112 	if (memcg->soft_contributed) {
6113 		while ((memcg = parent_mem_cgroup(memcg)))
6114 			atomic_dec(&memcg->children_in_excess);
6115 
6116 		if (memcg != root_mem_cgroup && !root_mem_cgroup->use_hierarchy)
6117 			atomic_dec(&root_mem_cgroup->children_in_excess);
6118 	}
6119 	mem_cgroup_destroy_all_caches(memcg);
6120 	vmpressure_cleanup(&memcg->vmpressure);
6121 }
6122 
6123 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
6124 {
6125 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6126 
6127 	memcg_destroy_kmem(memcg);
6128 	__mem_cgroup_free(memcg);
6129 }
6130 
6131 #ifdef CONFIG_MMU
6132 /* Handlers for move charge at task migration. */
6133 #define PRECHARGE_COUNT_AT_ONCE	256
6134 static int mem_cgroup_do_precharge(unsigned long count)
6135 {
6136 	int ret = 0;
6137 	int batch_count = PRECHARGE_COUNT_AT_ONCE;
6138 	struct mem_cgroup *memcg = mc.to;
6139 
6140 	if (mem_cgroup_is_root(memcg)) {
6141 		mc.precharge += count;
6142 		/* we don't need css_get for root */
6143 		return ret;
6144 	}
6145 	/* try to charge at once */
6146 	if (count > 1) {
6147 		struct res_counter *dummy;
6148 		/*
6149 		 * "memcg" cannot be under rmdir() because we've already checked
6150 		 * by cgroup_lock_live_cgroup() that it is not removed and we
6151 		 * are still under the same cgroup_mutex. So we can postpone
6152 		 * css_get().
6153 		 */
6154 		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6155 			goto one_by_one;
6156 		if (do_swap_account && res_counter_charge(&memcg->memsw,
6157 						PAGE_SIZE * count, &dummy)) {
6158 			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6159 			goto one_by_one;
6160 		}
6161 		mc.precharge += count;
6162 		return ret;
6163 	}
6164 one_by_one:
6165 	/* fall back to one by one charge */
6166 	while (count--) {
6167 		if (signal_pending(current)) {
6168 			ret = -EINTR;
6169 			break;
6170 		}
6171 		if (!batch_count--) {
6172 			batch_count = PRECHARGE_COUNT_AT_ONCE;
6173 			cond_resched();
6174 		}
6175 		ret = __mem_cgroup_try_charge(NULL,
6176 					GFP_KERNEL, 1, &memcg, false);
6177 		if (ret)
6178 			/* mem_cgroup_clear_mc() will do uncharge later */
6179 			return ret;
6180 		mc.precharge++;
6181 	}
6182 	return ret;
6183 }
6184 
6185 /**
6186  * get_mctgt_type - get target type of moving charge
6187  * @vma: the vma the pte to be checked belongs
6188  * @addr: the address corresponding to the pte to be checked
6189  * @ptent: the pte to be checked
6190  * @target: the pointer the target page or swap ent will be stored(can be NULL)
6191  *
6192  * Returns
6193  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
6194  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6195  *     move charge. if @target is not NULL, the page is stored in target->page
6196  *     with extra refcnt got(Callers should handle it).
6197  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6198  *     target for charge migration. if @target is not NULL, the entry is stored
6199  *     in target->ent.
6200  *
6201  * Called with pte lock held.
6202  */
6203 union mc_target {
6204 	struct page	*page;
6205 	swp_entry_t	ent;
6206 };
6207 
6208 enum mc_target_type {
6209 	MC_TARGET_NONE = 0,
6210 	MC_TARGET_PAGE,
6211 	MC_TARGET_SWAP,
6212 };
6213 
6214 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6215 						unsigned long addr, pte_t ptent)
6216 {
6217 	struct page *page = vm_normal_page(vma, addr, ptent);
6218 
6219 	if (!page || !page_mapped(page))
6220 		return NULL;
6221 	if (PageAnon(page)) {
6222 		/* we don't move shared anon */
6223 		if (!move_anon())
6224 			return NULL;
6225 	} else if (!move_file())
6226 		/* we ignore mapcount for file pages */
6227 		return NULL;
6228 	if (!get_page_unless_zero(page))
6229 		return NULL;
6230 
6231 	return page;
6232 }
6233 
6234 #ifdef CONFIG_SWAP
6235 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6236 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
6237 {
6238 	struct page *page = NULL;
6239 	swp_entry_t ent = pte_to_swp_entry(ptent);
6240 
6241 	if (!move_anon() || non_swap_entry(ent))
6242 		return NULL;
6243 	/*
6244 	 * Because lookup_swap_cache() updates some statistics counter,
6245 	 * we call find_get_page() with swapper_space directly.
6246 	 */
6247 	page = find_get_page(swap_address_space(ent), ent.val);
6248 	if (do_swap_account)
6249 		entry->val = ent.val;
6250 
6251 	return page;
6252 }
6253 #else
6254 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6255 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
6256 {
6257 	return NULL;
6258 }
6259 #endif
6260 
6261 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6262 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
6263 {
6264 	struct page *page = NULL;
6265 	struct address_space *mapping;
6266 	pgoff_t pgoff;
6267 
6268 	if (!vma->vm_file) /* anonymous vma */
6269 		return NULL;
6270 	if (!move_file())
6271 		return NULL;
6272 
6273 	mapping = vma->vm_file->f_mapping;
6274 	if (pte_none(ptent))
6275 		pgoff = linear_page_index(vma, addr);
6276 	else /* pte_file(ptent) is true */
6277 		pgoff = pte_to_pgoff(ptent);
6278 
6279 	/* page is moved even if it's not RSS of this task(page-faulted). */
6280 	page = find_get_page(mapping, pgoff);
6281 
6282 #ifdef CONFIG_SWAP
6283 	/* shmem/tmpfs may report page out on swap: account for that too. */
6284 	if (radix_tree_exceptional_entry(page)) {
6285 		swp_entry_t swap = radix_to_swp_entry(page);
6286 		if (do_swap_account)
6287 			*entry = swap;
6288 		page = find_get_page(swap_address_space(swap), swap.val);
6289 	}
6290 #endif
6291 	return page;
6292 }
6293 
6294 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
6295 		unsigned long addr, pte_t ptent, union mc_target *target)
6296 {
6297 	struct page *page = NULL;
6298 	struct page_cgroup *pc;
6299 	enum mc_target_type ret = MC_TARGET_NONE;
6300 	swp_entry_t ent = { .val = 0 };
6301 
6302 	if (pte_present(ptent))
6303 		page = mc_handle_present_pte(vma, addr, ptent);
6304 	else if (is_swap_pte(ptent))
6305 		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6306 	else if (pte_none(ptent) || pte_file(ptent))
6307 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
6308 
6309 	if (!page && !ent.val)
6310 		return ret;
6311 	if (page) {
6312 		pc = lookup_page_cgroup(page);
6313 		/*
6314 		 * Do only loose check w/o page_cgroup lock.
6315 		 * mem_cgroup_move_account() checks the pc is valid or not under
6316 		 * the lock.
6317 		 */
6318 		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6319 			ret = MC_TARGET_PAGE;
6320 			if (target)
6321 				target->page = page;
6322 		}
6323 		if (!ret || !target)
6324 			put_page(page);
6325 	}
6326 	/* There is a swap entry and a page doesn't exist or isn't charged */
6327 	if (ent.val && !ret &&
6328 			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
6329 		ret = MC_TARGET_SWAP;
6330 		if (target)
6331 			target->ent = ent;
6332 	}
6333 	return ret;
6334 }
6335 
6336 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6337 /*
6338  * We don't consider swapping or file mapped pages because THP does not
6339  * support them for now.
6340  * Caller should make sure that pmd_trans_huge(pmd) is true.
6341  */
6342 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6343 		unsigned long addr, pmd_t pmd, union mc_target *target)
6344 {
6345 	struct page *page = NULL;
6346 	struct page_cgroup *pc;
6347 	enum mc_target_type ret = MC_TARGET_NONE;
6348 
6349 	page = pmd_page(pmd);
6350 	VM_BUG_ON(!page || !PageHead(page));
6351 	if (!move_anon())
6352 		return ret;
6353 	pc = lookup_page_cgroup(page);
6354 	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6355 		ret = MC_TARGET_PAGE;
6356 		if (target) {
6357 			get_page(page);
6358 			target->page = page;
6359 		}
6360 	}
6361 	return ret;
6362 }
6363 #else
6364 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6365 		unsigned long addr, pmd_t pmd, union mc_target *target)
6366 {
6367 	return MC_TARGET_NONE;
6368 }
6369 #endif
6370 
6371 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6372 					unsigned long addr, unsigned long end,
6373 					struct mm_walk *walk)
6374 {
6375 	struct vm_area_struct *vma = walk->private;
6376 	pte_t *pte;
6377 	spinlock_t *ptl;
6378 
6379 	if (pmd_trans_huge_lock(pmd, vma) == 1) {
6380 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6381 			mc.precharge += HPAGE_PMD_NR;
6382 		spin_unlock(&vma->vm_mm->page_table_lock);
6383 		return 0;
6384 	}
6385 
6386 	if (pmd_trans_unstable(pmd))
6387 		return 0;
6388 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6389 	for (; addr != end; pte++, addr += PAGE_SIZE)
6390 		if (get_mctgt_type(vma, addr, *pte, NULL))
6391 			mc.precharge++;	/* increment precharge temporarily */
6392 	pte_unmap_unlock(pte - 1, ptl);
6393 	cond_resched();
6394 
6395 	return 0;
6396 }
6397 
6398 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6399 {
6400 	unsigned long precharge;
6401 	struct vm_area_struct *vma;
6402 
6403 	down_read(&mm->mmap_sem);
6404 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
6405 		struct mm_walk mem_cgroup_count_precharge_walk = {
6406 			.pmd_entry = mem_cgroup_count_precharge_pte_range,
6407 			.mm = mm,
6408 			.private = vma,
6409 		};
6410 		if (is_vm_hugetlb_page(vma))
6411 			continue;
6412 		walk_page_range(vma->vm_start, vma->vm_end,
6413 					&mem_cgroup_count_precharge_walk);
6414 	}
6415 	up_read(&mm->mmap_sem);
6416 
6417 	precharge = mc.precharge;
6418 	mc.precharge = 0;
6419 
6420 	return precharge;
6421 }
6422 
6423 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6424 {
6425 	unsigned long precharge = mem_cgroup_count_precharge(mm);
6426 
6427 	VM_BUG_ON(mc.moving_task);
6428 	mc.moving_task = current;
6429 	return mem_cgroup_do_precharge(precharge);
6430 }
6431 
6432 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6433 static void __mem_cgroup_clear_mc(void)
6434 {
6435 	struct mem_cgroup *from = mc.from;
6436 	struct mem_cgroup *to = mc.to;
6437 	int i;
6438 
6439 	/* we must uncharge all the leftover precharges from mc.to */
6440 	if (mc.precharge) {
6441 		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
6442 		mc.precharge = 0;
6443 	}
6444 	/*
6445 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6446 	 * we must uncharge here.
6447 	 */
6448 	if (mc.moved_charge) {
6449 		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6450 		mc.moved_charge = 0;
6451 	}
6452 	/* we must fixup refcnts and charges */
6453 	if (mc.moved_swap) {
6454 		/* uncharge swap account from the old cgroup */
6455 		if (!mem_cgroup_is_root(mc.from))
6456 			res_counter_uncharge(&mc.from->memsw,
6457 						PAGE_SIZE * mc.moved_swap);
6458 
6459 		for (i = 0; i < mc.moved_swap; i++)
6460 			css_put(&mc.from->css);
6461 
6462 		if (!mem_cgroup_is_root(mc.to)) {
6463 			/*
6464 			 * we charged both to->res and to->memsw, so we should
6465 			 * uncharge to->res.
6466 			 */
6467 			res_counter_uncharge(&mc.to->res,
6468 						PAGE_SIZE * mc.moved_swap);
6469 		}
6470 		/* we've already done css_get(mc.to) */
6471 		mc.moved_swap = 0;
6472 	}
6473 	memcg_oom_recover(from);
6474 	memcg_oom_recover(to);
6475 	wake_up_all(&mc.waitq);
6476 }
6477 
6478 static void mem_cgroup_clear_mc(void)
6479 {
6480 	struct mem_cgroup *from = mc.from;
6481 
6482 	/*
6483 	 * we must clear moving_task before waking up waiters at the end of
6484 	 * task migration.
6485 	 */
6486 	mc.moving_task = NULL;
6487 	__mem_cgroup_clear_mc();
6488 	spin_lock(&mc.lock);
6489 	mc.from = NULL;
6490 	mc.to = NULL;
6491 	spin_unlock(&mc.lock);
6492 	mem_cgroup_end_move(from);
6493 }
6494 
6495 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6496 				 struct cgroup_taskset *tset)
6497 {
6498 	struct task_struct *p = cgroup_taskset_first(tset);
6499 	int ret = 0;
6500 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6501 	unsigned long move_charge_at_immigrate;
6502 
6503 	/*
6504 	 * We are now commited to this value whatever it is. Changes in this
6505 	 * tunable will only affect upcoming migrations, not the current one.
6506 	 * So we need to save it, and keep it going.
6507 	 */
6508 	move_charge_at_immigrate  = memcg->move_charge_at_immigrate;
6509 	if (move_charge_at_immigrate) {
6510 		struct mm_struct *mm;
6511 		struct mem_cgroup *from = mem_cgroup_from_task(p);
6512 
6513 		VM_BUG_ON(from == memcg);
6514 
6515 		mm = get_task_mm(p);
6516 		if (!mm)
6517 			return 0;
6518 		/* We move charges only when we move a owner of the mm */
6519 		if (mm->owner == p) {
6520 			VM_BUG_ON(mc.from);
6521 			VM_BUG_ON(mc.to);
6522 			VM_BUG_ON(mc.precharge);
6523 			VM_BUG_ON(mc.moved_charge);
6524 			VM_BUG_ON(mc.moved_swap);
6525 			mem_cgroup_start_move(from);
6526 			spin_lock(&mc.lock);
6527 			mc.from = from;
6528 			mc.to = memcg;
6529 			mc.immigrate_flags = move_charge_at_immigrate;
6530 			spin_unlock(&mc.lock);
6531 			/* We set mc.moving_task later */
6532 
6533 			ret = mem_cgroup_precharge_mc(mm);
6534 			if (ret)
6535 				mem_cgroup_clear_mc();
6536 		}
6537 		mmput(mm);
6538 	}
6539 	return ret;
6540 }
6541 
6542 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6543 				     struct cgroup_taskset *tset)
6544 {
6545 	mem_cgroup_clear_mc();
6546 }
6547 
6548 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6549 				unsigned long addr, unsigned long end,
6550 				struct mm_walk *walk)
6551 {
6552 	int ret = 0;
6553 	struct vm_area_struct *vma = walk->private;
6554 	pte_t *pte;
6555 	spinlock_t *ptl;
6556 	enum mc_target_type target_type;
6557 	union mc_target target;
6558 	struct page *page;
6559 	struct page_cgroup *pc;
6560 
6561 	/*
6562 	 * We don't take compound_lock() here but no race with splitting thp
6563 	 * happens because:
6564 	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6565 	 *    under splitting, which means there's no concurrent thp split,
6566 	 *  - if another thread runs into split_huge_page() just after we
6567 	 *    entered this if-block, the thread must wait for page table lock
6568 	 *    to be unlocked in __split_huge_page_splitting(), where the main
6569 	 *    part of thp split is not executed yet.
6570 	 */
6571 	if (pmd_trans_huge_lock(pmd, vma) == 1) {
6572 		if (mc.precharge < HPAGE_PMD_NR) {
6573 			spin_unlock(&vma->vm_mm->page_table_lock);
6574 			return 0;
6575 		}
6576 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6577 		if (target_type == MC_TARGET_PAGE) {
6578 			page = target.page;
6579 			if (!isolate_lru_page(page)) {
6580 				pc = lookup_page_cgroup(page);
6581 				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6582 							pc, mc.from, mc.to)) {
6583 					mc.precharge -= HPAGE_PMD_NR;
6584 					mc.moved_charge += HPAGE_PMD_NR;
6585 				}
6586 				putback_lru_page(page);
6587 			}
6588 			put_page(page);
6589 		}
6590 		spin_unlock(&vma->vm_mm->page_table_lock);
6591 		return 0;
6592 	}
6593 
6594 	if (pmd_trans_unstable(pmd))
6595 		return 0;
6596 retry:
6597 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6598 	for (; addr != end; addr += PAGE_SIZE) {
6599 		pte_t ptent = *(pte++);
6600 		swp_entry_t ent;
6601 
6602 		if (!mc.precharge)
6603 			break;
6604 
6605 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6606 		case MC_TARGET_PAGE:
6607 			page = target.page;
6608 			if (isolate_lru_page(page))
6609 				goto put;
6610 			pc = lookup_page_cgroup(page);
6611 			if (!mem_cgroup_move_account(page, 1, pc,
6612 						     mc.from, mc.to)) {
6613 				mc.precharge--;
6614 				/* we uncharge from mc.from later. */
6615 				mc.moved_charge++;
6616 			}
6617 			putback_lru_page(page);
6618 put:			/* get_mctgt_type() gets the page */
6619 			put_page(page);
6620 			break;
6621 		case MC_TARGET_SWAP:
6622 			ent = target.ent;
6623 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6624 				mc.precharge--;
6625 				/* we fixup refcnts and charges later. */
6626 				mc.moved_swap++;
6627 			}
6628 			break;
6629 		default:
6630 			break;
6631 		}
6632 	}
6633 	pte_unmap_unlock(pte - 1, ptl);
6634 	cond_resched();
6635 
6636 	if (addr != end) {
6637 		/*
6638 		 * We have consumed all precharges we got in can_attach().
6639 		 * We try charge one by one, but don't do any additional
6640 		 * charges to mc.to if we have failed in charge once in attach()
6641 		 * phase.
6642 		 */
6643 		ret = mem_cgroup_do_precharge(1);
6644 		if (!ret)
6645 			goto retry;
6646 	}
6647 
6648 	return ret;
6649 }
6650 
6651 static void mem_cgroup_move_charge(struct mm_struct *mm)
6652 {
6653 	struct vm_area_struct *vma;
6654 
6655 	lru_add_drain_all();
6656 retry:
6657 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
6658 		/*
6659 		 * Someone who are holding the mmap_sem might be waiting in
6660 		 * waitq. So we cancel all extra charges, wake up all waiters,
6661 		 * and retry. Because we cancel precharges, we might not be able
6662 		 * to move enough charges, but moving charge is a best-effort
6663 		 * feature anyway, so it wouldn't be a big problem.
6664 		 */
6665 		__mem_cgroup_clear_mc();
6666 		cond_resched();
6667 		goto retry;
6668 	}
6669 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
6670 		int ret;
6671 		struct mm_walk mem_cgroup_move_charge_walk = {
6672 			.pmd_entry = mem_cgroup_move_charge_pte_range,
6673 			.mm = mm,
6674 			.private = vma,
6675 		};
6676 		if (is_vm_hugetlb_page(vma))
6677 			continue;
6678 		ret = walk_page_range(vma->vm_start, vma->vm_end,
6679 						&mem_cgroup_move_charge_walk);
6680 		if (ret)
6681 			/*
6682 			 * means we have consumed all precharges and failed in
6683 			 * doing additional charge. Just abandon here.
6684 			 */
6685 			break;
6686 	}
6687 	up_read(&mm->mmap_sem);
6688 }
6689 
6690 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6691 				 struct cgroup_taskset *tset)
6692 {
6693 	struct task_struct *p = cgroup_taskset_first(tset);
6694 	struct mm_struct *mm = get_task_mm(p);
6695 
6696 	if (mm) {
6697 		if (mc.to)
6698 			mem_cgroup_move_charge(mm);
6699 		mmput(mm);
6700 	}
6701 	if (mc.to)
6702 		mem_cgroup_clear_mc();
6703 }
6704 #else	/* !CONFIG_MMU */
6705 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6706 				 struct cgroup_taskset *tset)
6707 {
6708 	return 0;
6709 }
6710 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6711 				     struct cgroup_taskset *tset)
6712 {
6713 }
6714 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6715 				 struct cgroup_taskset *tset)
6716 {
6717 }
6718 #endif
6719 
6720 /*
6721  * Cgroup retains root cgroups across [un]mount cycles making it necessary
6722  * to verify sane_behavior flag on each mount attempt.
6723  */
6724 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6725 {
6726 	/*
6727 	 * use_hierarchy is forced with sane_behavior.  cgroup core
6728 	 * guarantees that @root doesn't have any children, so turning it
6729 	 * on for the root memcg is enough.
6730 	 */
6731 	if (cgroup_sane_behavior(root_css->cgroup))
6732 		mem_cgroup_from_css(root_css)->use_hierarchy = true;
6733 }
6734 
6735 struct cgroup_subsys mem_cgroup_subsys = {
6736 	.name = "memory",
6737 	.subsys_id = mem_cgroup_subsys_id,
6738 	.css_alloc = mem_cgroup_css_alloc,
6739 	.css_online = mem_cgroup_css_online,
6740 	.css_offline = mem_cgroup_css_offline,
6741 	.css_free = mem_cgroup_css_free,
6742 	.can_attach = mem_cgroup_can_attach,
6743 	.cancel_attach = mem_cgroup_cancel_attach,
6744 	.attach = mem_cgroup_move_task,
6745 	.bind = mem_cgroup_bind,
6746 	.base_cftypes = mem_cgroup_files,
6747 	.early_init = 0,
6748 	.use_id = 1,
6749 };
6750 
6751 #ifdef CONFIG_MEMCG_SWAP
6752 static int __init enable_swap_account(char *s)
6753 {
6754 	if (!strcmp(s, "1"))
6755 		really_do_swap_account = 1;
6756 	else if (!strcmp(s, "0"))
6757 		really_do_swap_account = 0;
6758 	return 1;
6759 }
6760 __setup("swapaccount=", enable_swap_account);
6761 
6762 static void __init memsw_file_init(void)
6763 {
6764 	WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
6765 }
6766 
6767 static void __init enable_swap_cgroup(void)
6768 {
6769 	if (!mem_cgroup_disabled() && really_do_swap_account) {
6770 		do_swap_account = 1;
6771 		memsw_file_init();
6772 	}
6773 }
6774 
6775 #else
6776 static void __init enable_swap_cgroup(void)
6777 {
6778 }
6779 #endif
6780 
6781 /*
6782  * subsys_initcall() for memory controller.
6783  *
6784  * Some parts like hotcpu_notifier() have to be initialized from this context
6785  * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
6786  * everything that doesn't depend on a specific mem_cgroup structure should
6787  * be initialized from here.
6788  */
6789 static int __init mem_cgroup_init(void)
6790 {
6791 	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6792 	enable_swap_cgroup();
6793 	memcg_stock_init();
6794 	return 0;
6795 }
6796 subsys_initcall(mem_cgroup_init);
6797