1 /* memcontrol.c - Memory Controller 2 * 3 * Copyright IBM Corporation, 2007 4 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 5 * 6 * Copyright 2007 OpenVZ SWsoft Inc 7 * Author: Pavel Emelianov <xemul@openvz.org> 8 * 9 * Memory thresholds 10 * Copyright (C) 2009 Nokia Corporation 11 * Author: Kirill A. Shutemov 12 * 13 * Kernel Memory Controller 14 * Copyright (C) 2012 Parallels Inc. and Google Inc. 15 * Authors: Glauber Costa and Suleiman Souhlal 16 * 17 * This program is free software; you can redistribute it and/or modify 18 * it under the terms of the GNU General Public License as published by 19 * the Free Software Foundation; either version 2 of the License, or 20 * (at your option) any later version. 21 * 22 * This program is distributed in the hope that it will be useful, 23 * but WITHOUT ANY WARRANTY; without even the implied warranty of 24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 25 * GNU General Public License for more details. 26 */ 27 28 #include <linux/res_counter.h> 29 #include <linux/memcontrol.h> 30 #include <linux/cgroup.h> 31 #include <linux/mm.h> 32 #include <linux/hugetlb.h> 33 #include <linux/pagemap.h> 34 #include <linux/smp.h> 35 #include <linux/page-flags.h> 36 #include <linux/backing-dev.h> 37 #include <linux/bit_spinlock.h> 38 #include <linux/rcupdate.h> 39 #include <linux/limits.h> 40 #include <linux/export.h> 41 #include <linux/mutex.h> 42 #include <linux/slab.h> 43 #include <linux/swap.h> 44 #include <linux/swapops.h> 45 #include <linux/spinlock.h> 46 #include <linux/eventfd.h> 47 #include <linux/sort.h> 48 #include <linux/fs.h> 49 #include <linux/seq_file.h> 50 #include <linux/vmalloc.h> 51 #include <linux/vmpressure.h> 52 #include <linux/mm_inline.h> 53 #include <linux/page_cgroup.h> 54 #include <linux/cpu.h> 55 #include <linux/oom.h> 56 #include "internal.h" 57 #include <net/sock.h> 58 #include <net/ip.h> 59 #include <net/tcp_memcontrol.h> 60 61 #include <asm/uaccess.h> 62 63 #include <trace/events/vmscan.h> 64 65 struct cgroup_subsys mem_cgroup_subsys __read_mostly; 66 EXPORT_SYMBOL(mem_cgroup_subsys); 67 68 #define MEM_CGROUP_RECLAIM_RETRIES 5 69 static struct mem_cgroup *root_mem_cgroup __read_mostly; 70 71 #ifdef CONFIG_MEMCG_SWAP 72 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */ 73 int do_swap_account __read_mostly; 74 75 /* for remember boot option*/ 76 #ifdef CONFIG_MEMCG_SWAP_ENABLED 77 static int really_do_swap_account __initdata = 1; 78 #else 79 static int really_do_swap_account __initdata = 0; 80 #endif 81 82 #else 83 #define do_swap_account 0 84 #endif 85 86 87 static const char * const mem_cgroup_stat_names[] = { 88 "cache", 89 "rss", 90 "rss_huge", 91 "mapped_file", 92 "writeback", 93 "swap", 94 }; 95 96 enum mem_cgroup_events_index { 97 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */ 98 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */ 99 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */ 100 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */ 101 MEM_CGROUP_EVENTS_NSTATS, 102 }; 103 104 static const char * const mem_cgroup_events_names[] = { 105 "pgpgin", 106 "pgpgout", 107 "pgfault", 108 "pgmajfault", 109 }; 110 111 static const char * const mem_cgroup_lru_names[] = { 112 "inactive_anon", 113 "active_anon", 114 "inactive_file", 115 "active_file", 116 "unevictable", 117 }; 118 119 /* 120 * Per memcg event counter is incremented at every pagein/pageout. With THP, 121 * it will be incremated by the number of pages. This counter is used for 122 * for trigger some periodic events. This is straightforward and better 123 * than using jiffies etc. to handle periodic memcg event. 124 */ 125 enum mem_cgroup_events_target { 126 MEM_CGROUP_TARGET_THRESH, 127 MEM_CGROUP_TARGET_SOFTLIMIT, 128 MEM_CGROUP_TARGET_NUMAINFO, 129 MEM_CGROUP_NTARGETS, 130 }; 131 #define THRESHOLDS_EVENTS_TARGET 128 132 #define SOFTLIMIT_EVENTS_TARGET 1024 133 #define NUMAINFO_EVENTS_TARGET 1024 134 135 struct mem_cgroup_stat_cpu { 136 long count[MEM_CGROUP_STAT_NSTATS]; 137 unsigned long events[MEM_CGROUP_EVENTS_NSTATS]; 138 unsigned long nr_page_events; 139 unsigned long targets[MEM_CGROUP_NTARGETS]; 140 }; 141 142 struct mem_cgroup_reclaim_iter { 143 /* 144 * last scanned hierarchy member. Valid only if last_dead_count 145 * matches memcg->dead_count of the hierarchy root group. 146 */ 147 struct mem_cgroup *last_visited; 148 unsigned long last_dead_count; 149 150 /* scan generation, increased every round-trip */ 151 unsigned int generation; 152 }; 153 154 /* 155 * per-zone information in memory controller. 156 */ 157 struct mem_cgroup_per_zone { 158 struct lruvec lruvec; 159 unsigned long lru_size[NR_LRU_LISTS]; 160 161 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1]; 162 163 struct mem_cgroup *memcg; /* Back pointer, we cannot */ 164 /* use container_of */ 165 }; 166 167 struct mem_cgroup_per_node { 168 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES]; 169 }; 170 171 struct mem_cgroup_threshold { 172 struct eventfd_ctx *eventfd; 173 u64 threshold; 174 }; 175 176 /* For threshold */ 177 struct mem_cgroup_threshold_ary { 178 /* An array index points to threshold just below or equal to usage. */ 179 int current_threshold; 180 /* Size of entries[] */ 181 unsigned int size; 182 /* Array of thresholds */ 183 struct mem_cgroup_threshold entries[0]; 184 }; 185 186 struct mem_cgroup_thresholds { 187 /* Primary thresholds array */ 188 struct mem_cgroup_threshold_ary *primary; 189 /* 190 * Spare threshold array. 191 * This is needed to make mem_cgroup_unregister_event() "never fail". 192 * It must be able to store at least primary->size - 1 entries. 193 */ 194 struct mem_cgroup_threshold_ary *spare; 195 }; 196 197 /* for OOM */ 198 struct mem_cgroup_eventfd_list { 199 struct list_head list; 200 struct eventfd_ctx *eventfd; 201 }; 202 203 static void mem_cgroup_threshold(struct mem_cgroup *memcg); 204 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); 205 206 /* 207 * The memory controller data structure. The memory controller controls both 208 * page cache and RSS per cgroup. We would eventually like to provide 209 * statistics based on the statistics developed by Rik Van Riel for clock-pro, 210 * to help the administrator determine what knobs to tune. 211 * 212 * TODO: Add a water mark for the memory controller. Reclaim will begin when 213 * we hit the water mark. May be even add a low water mark, such that 214 * no reclaim occurs from a cgroup at it's low water mark, this is 215 * a feature that will be implemented much later in the future. 216 */ 217 struct mem_cgroup { 218 struct cgroup_subsys_state css; 219 /* 220 * the counter to account for memory usage 221 */ 222 struct res_counter res; 223 224 /* vmpressure notifications */ 225 struct vmpressure vmpressure; 226 227 /* 228 * the counter to account for mem+swap usage. 229 */ 230 struct res_counter memsw; 231 232 /* 233 * the counter to account for kernel memory usage. 234 */ 235 struct res_counter kmem; 236 /* 237 * Should the accounting and control be hierarchical, per subtree? 238 */ 239 bool use_hierarchy; 240 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */ 241 242 bool oom_lock; 243 atomic_t under_oom; 244 atomic_t oom_wakeups; 245 246 int swappiness; 247 /* OOM-Killer disable */ 248 int oom_kill_disable; 249 250 /* set when res.limit == memsw.limit */ 251 bool memsw_is_minimum; 252 253 /* protect arrays of thresholds */ 254 struct mutex thresholds_lock; 255 256 /* thresholds for memory usage. RCU-protected */ 257 struct mem_cgroup_thresholds thresholds; 258 259 /* thresholds for mem+swap usage. RCU-protected */ 260 struct mem_cgroup_thresholds memsw_thresholds; 261 262 /* For oom notifier event fd */ 263 struct list_head oom_notify; 264 265 /* 266 * Should we move charges of a task when a task is moved into this 267 * mem_cgroup ? And what type of charges should we move ? 268 */ 269 unsigned long move_charge_at_immigrate; 270 /* 271 * set > 0 if pages under this cgroup are moving to other cgroup. 272 */ 273 atomic_t moving_account; 274 /* taken only while moving_account > 0 */ 275 spinlock_t move_lock; 276 /* 277 * percpu counter. 278 */ 279 struct mem_cgroup_stat_cpu __percpu *stat; 280 /* 281 * used when a cpu is offlined or other synchronizations 282 * See mem_cgroup_read_stat(). 283 */ 284 struct mem_cgroup_stat_cpu nocpu_base; 285 spinlock_t pcp_counter_lock; 286 287 atomic_t dead_count; 288 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET) 289 struct tcp_memcontrol tcp_mem; 290 #endif 291 #if defined(CONFIG_MEMCG_KMEM) 292 /* analogous to slab_common's slab_caches list. per-memcg */ 293 struct list_head memcg_slab_caches; 294 /* Not a spinlock, we can take a lot of time walking the list */ 295 struct mutex slab_caches_mutex; 296 /* Index in the kmem_cache->memcg_params->memcg_caches array */ 297 int kmemcg_id; 298 #endif 299 300 int last_scanned_node; 301 #if MAX_NUMNODES > 1 302 nodemask_t scan_nodes; 303 atomic_t numainfo_events; 304 atomic_t numainfo_updating; 305 #endif 306 /* 307 * Protects soft_contributed transitions. 308 * See mem_cgroup_update_soft_limit 309 */ 310 spinlock_t soft_lock; 311 312 /* 313 * If true then this group has increased parents' children_in_excess 314 * when it got over the soft limit. 315 * When a group falls bellow the soft limit, parents' children_in_excess 316 * is decreased and soft_contributed changed to false. 317 */ 318 bool soft_contributed; 319 320 /* Number of children that are in soft limit excess */ 321 atomic_t children_in_excess; 322 323 struct mem_cgroup_per_node *nodeinfo[0]; 324 /* WARNING: nodeinfo must be the last member here */ 325 }; 326 327 static size_t memcg_size(void) 328 { 329 return sizeof(struct mem_cgroup) + 330 nr_node_ids * sizeof(struct mem_cgroup_per_node); 331 } 332 333 /* internal only representation about the status of kmem accounting. */ 334 enum { 335 KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */ 336 KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */ 337 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */ 338 }; 339 340 /* We account when limit is on, but only after call sites are patched */ 341 #define KMEM_ACCOUNTED_MASK \ 342 ((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED)) 343 344 #ifdef CONFIG_MEMCG_KMEM 345 static inline void memcg_kmem_set_active(struct mem_cgroup *memcg) 346 { 347 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags); 348 } 349 350 static bool memcg_kmem_is_active(struct mem_cgroup *memcg) 351 { 352 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags); 353 } 354 355 static void memcg_kmem_set_activated(struct mem_cgroup *memcg) 356 { 357 set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags); 358 } 359 360 static void memcg_kmem_clear_activated(struct mem_cgroup *memcg) 361 { 362 clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags); 363 } 364 365 static void memcg_kmem_mark_dead(struct mem_cgroup *memcg) 366 { 367 /* 368 * Our caller must use css_get() first, because memcg_uncharge_kmem() 369 * will call css_put() if it sees the memcg is dead. 370 */ 371 smp_wmb(); 372 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags)) 373 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags); 374 } 375 376 static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg) 377 { 378 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD, 379 &memcg->kmem_account_flags); 380 } 381 #endif 382 383 /* Stuffs for move charges at task migration. */ 384 /* 385 * Types of charges to be moved. "move_charge_at_immitgrate" and 386 * "immigrate_flags" are treated as a left-shifted bitmap of these types. 387 */ 388 enum move_type { 389 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */ 390 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */ 391 NR_MOVE_TYPE, 392 }; 393 394 /* "mc" and its members are protected by cgroup_mutex */ 395 static struct move_charge_struct { 396 spinlock_t lock; /* for from, to */ 397 struct mem_cgroup *from; 398 struct mem_cgroup *to; 399 unsigned long immigrate_flags; 400 unsigned long precharge; 401 unsigned long moved_charge; 402 unsigned long moved_swap; 403 struct task_struct *moving_task; /* a task moving charges */ 404 wait_queue_head_t waitq; /* a waitq for other context */ 405 } mc = { 406 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 407 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 408 }; 409 410 static bool move_anon(void) 411 { 412 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags); 413 } 414 415 static bool move_file(void) 416 { 417 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags); 418 } 419 420 /* 421 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft 422 * limit reclaim to prevent infinite loops, if they ever occur. 423 */ 424 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 425 426 enum charge_type { 427 MEM_CGROUP_CHARGE_TYPE_CACHE = 0, 428 MEM_CGROUP_CHARGE_TYPE_ANON, 429 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */ 430 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */ 431 NR_CHARGE_TYPE, 432 }; 433 434 /* for encoding cft->private value on file */ 435 enum res_type { 436 _MEM, 437 _MEMSWAP, 438 _OOM_TYPE, 439 _KMEM, 440 }; 441 442 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) 443 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) 444 #define MEMFILE_ATTR(val) ((val) & 0xffff) 445 /* Used for OOM nofiier */ 446 #define OOM_CONTROL (0) 447 448 /* 449 * Reclaim flags for mem_cgroup_hierarchical_reclaim 450 */ 451 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0 452 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT) 453 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1 454 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT) 455 456 /* 457 * The memcg_create_mutex will be held whenever a new cgroup is created. 458 * As a consequence, any change that needs to protect against new child cgroups 459 * appearing has to hold it as well. 460 */ 461 static DEFINE_MUTEX(memcg_create_mutex); 462 463 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s) 464 { 465 return s ? container_of(s, struct mem_cgroup, css) : NULL; 466 } 467 468 /* Some nice accessors for the vmpressure. */ 469 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 470 { 471 if (!memcg) 472 memcg = root_mem_cgroup; 473 return &memcg->vmpressure; 474 } 475 476 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr) 477 { 478 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css; 479 } 480 481 struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css) 482 { 483 return &mem_cgroup_from_css(css)->vmpressure; 484 } 485 486 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 487 { 488 return (memcg == root_mem_cgroup); 489 } 490 491 /* Writing them here to avoid exposing memcg's inner layout */ 492 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM) 493 494 void sock_update_memcg(struct sock *sk) 495 { 496 if (mem_cgroup_sockets_enabled) { 497 struct mem_cgroup *memcg; 498 struct cg_proto *cg_proto; 499 500 BUG_ON(!sk->sk_prot->proto_cgroup); 501 502 /* Socket cloning can throw us here with sk_cgrp already 503 * filled. It won't however, necessarily happen from 504 * process context. So the test for root memcg given 505 * the current task's memcg won't help us in this case. 506 * 507 * Respecting the original socket's memcg is a better 508 * decision in this case. 509 */ 510 if (sk->sk_cgrp) { 511 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg)); 512 css_get(&sk->sk_cgrp->memcg->css); 513 return; 514 } 515 516 rcu_read_lock(); 517 memcg = mem_cgroup_from_task(current); 518 cg_proto = sk->sk_prot->proto_cgroup(memcg); 519 if (!mem_cgroup_is_root(memcg) && 520 memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) { 521 sk->sk_cgrp = cg_proto; 522 } 523 rcu_read_unlock(); 524 } 525 } 526 EXPORT_SYMBOL(sock_update_memcg); 527 528 void sock_release_memcg(struct sock *sk) 529 { 530 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 531 struct mem_cgroup *memcg; 532 WARN_ON(!sk->sk_cgrp->memcg); 533 memcg = sk->sk_cgrp->memcg; 534 css_put(&sk->sk_cgrp->memcg->css); 535 } 536 } 537 538 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg) 539 { 540 if (!memcg || mem_cgroup_is_root(memcg)) 541 return NULL; 542 543 return &memcg->tcp_mem.cg_proto; 544 } 545 EXPORT_SYMBOL(tcp_proto_cgroup); 546 547 static void disarm_sock_keys(struct mem_cgroup *memcg) 548 { 549 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto)) 550 return; 551 static_key_slow_dec(&memcg_socket_limit_enabled); 552 } 553 #else 554 static void disarm_sock_keys(struct mem_cgroup *memcg) 555 { 556 } 557 #endif 558 559 #ifdef CONFIG_MEMCG_KMEM 560 /* 561 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches. 562 * There are two main reasons for not using the css_id for this: 563 * 1) this works better in sparse environments, where we have a lot of memcgs, 564 * but only a few kmem-limited. Or also, if we have, for instance, 200 565 * memcgs, and none but the 200th is kmem-limited, we'd have to have a 566 * 200 entry array for that. 567 * 568 * 2) In order not to violate the cgroup API, we would like to do all memory 569 * allocation in ->create(). At that point, we haven't yet allocated the 570 * css_id. Having a separate index prevents us from messing with the cgroup 571 * core for this 572 * 573 * The current size of the caches array is stored in 574 * memcg_limited_groups_array_size. It will double each time we have to 575 * increase it. 576 */ 577 static DEFINE_IDA(kmem_limited_groups); 578 int memcg_limited_groups_array_size; 579 580 /* 581 * MIN_SIZE is different than 1, because we would like to avoid going through 582 * the alloc/free process all the time. In a small machine, 4 kmem-limited 583 * cgroups is a reasonable guess. In the future, it could be a parameter or 584 * tunable, but that is strictly not necessary. 585 * 586 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get 587 * this constant directly from cgroup, but it is understandable that this is 588 * better kept as an internal representation in cgroup.c. In any case, the 589 * css_id space is not getting any smaller, and we don't have to necessarily 590 * increase ours as well if it increases. 591 */ 592 #define MEMCG_CACHES_MIN_SIZE 4 593 #define MEMCG_CACHES_MAX_SIZE 65535 594 595 /* 596 * A lot of the calls to the cache allocation functions are expected to be 597 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are 598 * conditional to this static branch, we'll have to allow modules that does 599 * kmem_cache_alloc and the such to see this symbol as well 600 */ 601 struct static_key memcg_kmem_enabled_key; 602 EXPORT_SYMBOL(memcg_kmem_enabled_key); 603 604 static void disarm_kmem_keys(struct mem_cgroup *memcg) 605 { 606 if (memcg_kmem_is_active(memcg)) { 607 static_key_slow_dec(&memcg_kmem_enabled_key); 608 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id); 609 } 610 /* 611 * This check can't live in kmem destruction function, 612 * since the charges will outlive the cgroup 613 */ 614 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0); 615 } 616 #else 617 static void disarm_kmem_keys(struct mem_cgroup *memcg) 618 { 619 } 620 #endif /* CONFIG_MEMCG_KMEM */ 621 622 static void disarm_static_keys(struct mem_cgroup *memcg) 623 { 624 disarm_sock_keys(memcg); 625 disarm_kmem_keys(memcg); 626 } 627 628 static void drain_all_stock_async(struct mem_cgroup *memcg); 629 630 static struct mem_cgroup_per_zone * 631 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid) 632 { 633 VM_BUG_ON((unsigned)nid >= nr_node_ids); 634 return &memcg->nodeinfo[nid]->zoneinfo[zid]; 635 } 636 637 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg) 638 { 639 return &memcg->css; 640 } 641 642 static struct mem_cgroup_per_zone * 643 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page) 644 { 645 int nid = page_to_nid(page); 646 int zid = page_zonenum(page); 647 648 return mem_cgroup_zoneinfo(memcg, nid, zid); 649 } 650 651 /* 652 * Implementation Note: reading percpu statistics for memcg. 653 * 654 * Both of vmstat[] and percpu_counter has threshold and do periodic 655 * synchronization to implement "quick" read. There are trade-off between 656 * reading cost and precision of value. Then, we may have a chance to implement 657 * a periodic synchronizion of counter in memcg's counter. 658 * 659 * But this _read() function is used for user interface now. The user accounts 660 * memory usage by memory cgroup and he _always_ requires exact value because 661 * he accounts memory. Even if we provide quick-and-fuzzy read, we always 662 * have to visit all online cpus and make sum. So, for now, unnecessary 663 * synchronization is not implemented. (just implemented for cpu hotplug) 664 * 665 * If there are kernel internal actions which can make use of some not-exact 666 * value, and reading all cpu value can be performance bottleneck in some 667 * common workload, threashold and synchonization as vmstat[] should be 668 * implemented. 669 */ 670 static long mem_cgroup_read_stat(struct mem_cgroup *memcg, 671 enum mem_cgroup_stat_index idx) 672 { 673 long val = 0; 674 int cpu; 675 676 get_online_cpus(); 677 for_each_online_cpu(cpu) 678 val += per_cpu(memcg->stat->count[idx], cpu); 679 #ifdef CONFIG_HOTPLUG_CPU 680 spin_lock(&memcg->pcp_counter_lock); 681 val += memcg->nocpu_base.count[idx]; 682 spin_unlock(&memcg->pcp_counter_lock); 683 #endif 684 put_online_cpus(); 685 return val; 686 } 687 688 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg, 689 bool charge) 690 { 691 int val = (charge) ? 1 : -1; 692 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val); 693 } 694 695 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg, 696 enum mem_cgroup_events_index idx) 697 { 698 unsigned long val = 0; 699 int cpu; 700 701 for_each_online_cpu(cpu) 702 val += per_cpu(memcg->stat->events[idx], cpu); 703 #ifdef CONFIG_HOTPLUG_CPU 704 spin_lock(&memcg->pcp_counter_lock); 705 val += memcg->nocpu_base.events[idx]; 706 spin_unlock(&memcg->pcp_counter_lock); 707 #endif 708 return val; 709 } 710 711 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, 712 struct page *page, 713 bool anon, int nr_pages) 714 { 715 preempt_disable(); 716 717 /* 718 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is 719 * counted as CACHE even if it's on ANON LRU. 720 */ 721 if (anon) 722 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS], 723 nr_pages); 724 else 725 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE], 726 nr_pages); 727 728 if (PageTransHuge(page)) 729 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], 730 nr_pages); 731 732 /* pagein of a big page is an event. So, ignore page size */ 733 if (nr_pages > 0) 734 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]); 735 else { 736 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]); 737 nr_pages = -nr_pages; /* for event */ 738 } 739 740 __this_cpu_add(memcg->stat->nr_page_events, nr_pages); 741 742 preempt_enable(); 743 } 744 745 unsigned long 746 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru) 747 { 748 struct mem_cgroup_per_zone *mz; 749 750 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec); 751 return mz->lru_size[lru]; 752 } 753 754 static unsigned long 755 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid, 756 unsigned int lru_mask) 757 { 758 struct mem_cgroup_per_zone *mz; 759 enum lru_list lru; 760 unsigned long ret = 0; 761 762 mz = mem_cgroup_zoneinfo(memcg, nid, zid); 763 764 for_each_lru(lru) { 765 if (BIT(lru) & lru_mask) 766 ret += mz->lru_size[lru]; 767 } 768 return ret; 769 } 770 771 static unsigned long 772 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 773 int nid, unsigned int lru_mask) 774 { 775 u64 total = 0; 776 int zid; 777 778 for (zid = 0; zid < MAX_NR_ZONES; zid++) 779 total += mem_cgroup_zone_nr_lru_pages(memcg, 780 nid, zid, lru_mask); 781 782 return total; 783 } 784 785 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 786 unsigned int lru_mask) 787 { 788 int nid; 789 u64 total = 0; 790 791 for_each_node_state(nid, N_MEMORY) 792 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask); 793 return total; 794 } 795 796 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, 797 enum mem_cgroup_events_target target) 798 { 799 unsigned long val, next; 800 801 val = __this_cpu_read(memcg->stat->nr_page_events); 802 next = __this_cpu_read(memcg->stat->targets[target]); 803 /* from time_after() in jiffies.h */ 804 if ((long)next - (long)val < 0) { 805 switch (target) { 806 case MEM_CGROUP_TARGET_THRESH: 807 next = val + THRESHOLDS_EVENTS_TARGET; 808 break; 809 case MEM_CGROUP_TARGET_SOFTLIMIT: 810 next = val + SOFTLIMIT_EVENTS_TARGET; 811 break; 812 case MEM_CGROUP_TARGET_NUMAINFO: 813 next = val + NUMAINFO_EVENTS_TARGET; 814 break; 815 default: 816 break; 817 } 818 __this_cpu_write(memcg->stat->targets[target], next); 819 return true; 820 } 821 return false; 822 } 823 824 /* 825 * Called from rate-limited memcg_check_events when enough 826 * MEM_CGROUP_TARGET_SOFTLIMIT events are accumulated and it makes sure 827 * that all the parents up the hierarchy will be notified that this group 828 * is in excess or that it is not in excess anymore. mmecg->soft_contributed 829 * makes the transition a single action whenever the state flips from one to 830 * the other. 831 */ 832 static void mem_cgroup_update_soft_limit(struct mem_cgroup *memcg) 833 { 834 unsigned long long excess = res_counter_soft_limit_excess(&memcg->res); 835 struct mem_cgroup *parent = memcg; 836 int delta = 0; 837 838 spin_lock(&memcg->soft_lock); 839 if (excess) { 840 if (!memcg->soft_contributed) { 841 delta = 1; 842 memcg->soft_contributed = true; 843 } 844 } else { 845 if (memcg->soft_contributed) { 846 delta = -1; 847 memcg->soft_contributed = false; 848 } 849 } 850 851 /* 852 * Necessary to update all ancestors when hierarchy is used 853 * because their event counter is not touched. 854 * We track children even outside the hierarchy for the root 855 * cgroup because tree walk starting at root should visit 856 * all cgroups and we want to prevent from pointless tree 857 * walk if no children is below the limit. 858 */ 859 while (delta && (parent = parent_mem_cgroup(parent))) 860 atomic_add(delta, &parent->children_in_excess); 861 if (memcg != root_mem_cgroup && !root_mem_cgroup->use_hierarchy) 862 atomic_add(delta, &root_mem_cgroup->children_in_excess); 863 spin_unlock(&memcg->soft_lock); 864 } 865 866 /* 867 * Check events in order. 868 * 869 */ 870 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) 871 { 872 preempt_disable(); 873 /* threshold event is triggered in finer grain than soft limit */ 874 if (unlikely(mem_cgroup_event_ratelimit(memcg, 875 MEM_CGROUP_TARGET_THRESH))) { 876 bool do_softlimit; 877 bool do_numainfo __maybe_unused; 878 879 do_softlimit = mem_cgroup_event_ratelimit(memcg, 880 MEM_CGROUP_TARGET_SOFTLIMIT); 881 #if MAX_NUMNODES > 1 882 do_numainfo = mem_cgroup_event_ratelimit(memcg, 883 MEM_CGROUP_TARGET_NUMAINFO); 884 #endif 885 preempt_enable(); 886 887 mem_cgroup_threshold(memcg); 888 if (unlikely(do_softlimit)) 889 mem_cgroup_update_soft_limit(memcg); 890 #if MAX_NUMNODES > 1 891 if (unlikely(do_numainfo)) 892 atomic_inc(&memcg->numainfo_events); 893 #endif 894 } else 895 preempt_enable(); 896 } 897 898 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 899 { 900 /* 901 * mm_update_next_owner() may clear mm->owner to NULL 902 * if it races with swapoff, page migration, etc. 903 * So this can be called with p == NULL. 904 */ 905 if (unlikely(!p)) 906 return NULL; 907 908 return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id)); 909 } 910 911 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm) 912 { 913 struct mem_cgroup *memcg = NULL; 914 915 if (!mm) 916 return NULL; 917 /* 918 * Because we have no locks, mm->owner's may be being moved to other 919 * cgroup. We use css_tryget() here even if this looks 920 * pessimistic (rather than adding locks here). 921 */ 922 rcu_read_lock(); 923 do { 924 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 925 if (unlikely(!memcg)) 926 break; 927 } while (!css_tryget(&memcg->css)); 928 rcu_read_unlock(); 929 return memcg; 930 } 931 932 static enum mem_cgroup_filter_t 933 mem_cgroup_filter(struct mem_cgroup *memcg, struct mem_cgroup *root, 934 mem_cgroup_iter_filter cond) 935 { 936 if (!cond) 937 return VISIT; 938 return cond(memcg, root); 939 } 940 941 /* 942 * Returns a next (in a pre-order walk) alive memcg (with elevated css 943 * ref. count) or NULL if the whole root's subtree has been visited. 944 * 945 * helper function to be used by mem_cgroup_iter 946 */ 947 static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root, 948 struct mem_cgroup *last_visited, mem_cgroup_iter_filter cond) 949 { 950 struct cgroup_subsys_state *prev_css, *next_css; 951 952 prev_css = last_visited ? &last_visited->css : NULL; 953 skip_node: 954 next_css = css_next_descendant_pre(prev_css, &root->css); 955 956 /* 957 * Even if we found a group we have to make sure it is 958 * alive. css && !memcg means that the groups should be 959 * skipped and we should continue the tree walk. 960 * last_visited css is safe to use because it is 961 * protected by css_get and the tree walk is rcu safe. 962 */ 963 if (next_css) { 964 struct mem_cgroup *mem = mem_cgroup_from_css(next_css); 965 966 switch (mem_cgroup_filter(mem, root, cond)) { 967 case SKIP: 968 prev_css = next_css; 969 goto skip_node; 970 case SKIP_TREE: 971 if (mem == root) 972 return NULL; 973 /* 974 * css_rightmost_descendant is not an optimal way to 975 * skip through a subtree (especially for imbalanced 976 * trees leaning to right) but that's what we have right 977 * now. More effective solution would be traversing 978 * right-up for first non-NULL without calling 979 * css_next_descendant_pre afterwards. 980 */ 981 prev_css = css_rightmost_descendant(next_css); 982 goto skip_node; 983 case VISIT: 984 if (css_tryget(&mem->css)) 985 return mem; 986 else { 987 prev_css = next_css; 988 goto skip_node; 989 } 990 break; 991 } 992 } 993 994 return NULL; 995 } 996 997 static void mem_cgroup_iter_invalidate(struct mem_cgroup *root) 998 { 999 /* 1000 * When a group in the hierarchy below root is destroyed, the 1001 * hierarchy iterator can no longer be trusted since it might 1002 * have pointed to the destroyed group. Invalidate it. 1003 */ 1004 atomic_inc(&root->dead_count); 1005 } 1006 1007 static struct mem_cgroup * 1008 mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter, 1009 struct mem_cgroup *root, 1010 int *sequence) 1011 { 1012 struct mem_cgroup *position = NULL; 1013 /* 1014 * A cgroup destruction happens in two stages: offlining and 1015 * release. They are separated by a RCU grace period. 1016 * 1017 * If the iterator is valid, we may still race with an 1018 * offlining. The RCU lock ensures the object won't be 1019 * released, tryget will fail if we lost the race. 1020 */ 1021 *sequence = atomic_read(&root->dead_count); 1022 if (iter->last_dead_count == *sequence) { 1023 smp_rmb(); 1024 position = iter->last_visited; 1025 if (position && !css_tryget(&position->css)) 1026 position = NULL; 1027 } 1028 return position; 1029 } 1030 1031 static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter, 1032 struct mem_cgroup *last_visited, 1033 struct mem_cgroup *new_position, 1034 int sequence) 1035 { 1036 if (last_visited) 1037 css_put(&last_visited->css); 1038 /* 1039 * We store the sequence count from the time @last_visited was 1040 * loaded successfully instead of rereading it here so that we 1041 * don't lose destruction events in between. We could have 1042 * raced with the destruction of @new_position after all. 1043 */ 1044 iter->last_visited = new_position; 1045 smp_wmb(); 1046 iter->last_dead_count = sequence; 1047 } 1048 1049 /** 1050 * mem_cgroup_iter - iterate over memory cgroup hierarchy 1051 * @root: hierarchy root 1052 * @prev: previously returned memcg, NULL on first invocation 1053 * @reclaim: cookie for shared reclaim walks, NULL for full walks 1054 * @cond: filter for visited nodes, NULL for no filter 1055 * 1056 * Returns references to children of the hierarchy below @root, or 1057 * @root itself, or %NULL after a full round-trip. 1058 * 1059 * Caller must pass the return value in @prev on subsequent 1060 * invocations for reference counting, or use mem_cgroup_iter_break() 1061 * to cancel a hierarchy walk before the round-trip is complete. 1062 * 1063 * Reclaimers can specify a zone and a priority level in @reclaim to 1064 * divide up the memcgs in the hierarchy among all concurrent 1065 * reclaimers operating on the same zone and priority. 1066 */ 1067 struct mem_cgroup *mem_cgroup_iter_cond(struct mem_cgroup *root, 1068 struct mem_cgroup *prev, 1069 struct mem_cgroup_reclaim_cookie *reclaim, 1070 mem_cgroup_iter_filter cond) 1071 { 1072 struct mem_cgroup *memcg = NULL; 1073 struct mem_cgroup *last_visited = NULL; 1074 1075 if (mem_cgroup_disabled()) { 1076 /* first call must return non-NULL, second return NULL */ 1077 return (struct mem_cgroup *)(unsigned long)!prev; 1078 } 1079 1080 if (!root) 1081 root = root_mem_cgroup; 1082 1083 if (prev && !reclaim) 1084 last_visited = prev; 1085 1086 if (!root->use_hierarchy && root != root_mem_cgroup) { 1087 if (prev) 1088 goto out_css_put; 1089 if (mem_cgroup_filter(root, root, cond) == VISIT) 1090 return root; 1091 return NULL; 1092 } 1093 1094 rcu_read_lock(); 1095 while (!memcg) { 1096 struct mem_cgroup_reclaim_iter *uninitialized_var(iter); 1097 int uninitialized_var(seq); 1098 1099 if (reclaim) { 1100 int nid = zone_to_nid(reclaim->zone); 1101 int zid = zone_idx(reclaim->zone); 1102 struct mem_cgroup_per_zone *mz; 1103 1104 mz = mem_cgroup_zoneinfo(root, nid, zid); 1105 iter = &mz->reclaim_iter[reclaim->priority]; 1106 if (prev && reclaim->generation != iter->generation) { 1107 iter->last_visited = NULL; 1108 goto out_unlock; 1109 } 1110 1111 last_visited = mem_cgroup_iter_load(iter, root, &seq); 1112 } 1113 1114 memcg = __mem_cgroup_iter_next(root, last_visited, cond); 1115 1116 if (reclaim) { 1117 mem_cgroup_iter_update(iter, last_visited, memcg, seq); 1118 1119 if (!memcg) 1120 iter->generation++; 1121 else if (!prev && memcg) 1122 reclaim->generation = iter->generation; 1123 } 1124 1125 /* 1126 * We have finished the whole tree walk or no group has been 1127 * visited because filter told us to skip the root node. 1128 */ 1129 if (!memcg && (prev || (cond && !last_visited))) 1130 goto out_unlock; 1131 } 1132 out_unlock: 1133 rcu_read_unlock(); 1134 out_css_put: 1135 if (prev && prev != root) 1136 css_put(&prev->css); 1137 1138 return memcg; 1139 } 1140 1141 /** 1142 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 1143 * @root: hierarchy root 1144 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 1145 */ 1146 void mem_cgroup_iter_break(struct mem_cgroup *root, 1147 struct mem_cgroup *prev) 1148 { 1149 if (!root) 1150 root = root_mem_cgroup; 1151 if (prev && prev != root) 1152 css_put(&prev->css); 1153 } 1154 1155 /* 1156 * Iteration constructs for visiting all cgroups (under a tree). If 1157 * loops are exited prematurely (break), mem_cgroup_iter_break() must 1158 * be used for reference counting. 1159 */ 1160 #define for_each_mem_cgroup_tree(iter, root) \ 1161 for (iter = mem_cgroup_iter(root, NULL, NULL); \ 1162 iter != NULL; \ 1163 iter = mem_cgroup_iter(root, iter, NULL)) 1164 1165 #define for_each_mem_cgroup(iter) \ 1166 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ 1167 iter != NULL; \ 1168 iter = mem_cgroup_iter(NULL, iter, NULL)) 1169 1170 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx) 1171 { 1172 struct mem_cgroup *memcg; 1173 1174 rcu_read_lock(); 1175 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1176 if (unlikely(!memcg)) 1177 goto out; 1178 1179 switch (idx) { 1180 case PGFAULT: 1181 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]); 1182 break; 1183 case PGMAJFAULT: 1184 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]); 1185 break; 1186 default: 1187 BUG(); 1188 } 1189 out: 1190 rcu_read_unlock(); 1191 } 1192 EXPORT_SYMBOL(__mem_cgroup_count_vm_event); 1193 1194 /** 1195 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg 1196 * @zone: zone of the wanted lruvec 1197 * @memcg: memcg of the wanted lruvec 1198 * 1199 * Returns the lru list vector holding pages for the given @zone and 1200 * @mem. This can be the global zone lruvec, if the memory controller 1201 * is disabled. 1202 */ 1203 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone, 1204 struct mem_cgroup *memcg) 1205 { 1206 struct mem_cgroup_per_zone *mz; 1207 struct lruvec *lruvec; 1208 1209 if (mem_cgroup_disabled()) { 1210 lruvec = &zone->lruvec; 1211 goto out; 1212 } 1213 1214 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone)); 1215 lruvec = &mz->lruvec; 1216 out: 1217 /* 1218 * Since a node can be onlined after the mem_cgroup was created, 1219 * we have to be prepared to initialize lruvec->zone here; 1220 * and if offlined then reonlined, we need to reinitialize it. 1221 */ 1222 if (unlikely(lruvec->zone != zone)) 1223 lruvec->zone = zone; 1224 return lruvec; 1225 } 1226 1227 /* 1228 * Following LRU functions are allowed to be used without PCG_LOCK. 1229 * Operations are called by routine of global LRU independently from memcg. 1230 * What we have to take care of here is validness of pc->mem_cgroup. 1231 * 1232 * Changes to pc->mem_cgroup happens when 1233 * 1. charge 1234 * 2. moving account 1235 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache. 1236 * It is added to LRU before charge. 1237 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU. 1238 * When moving account, the page is not on LRU. It's isolated. 1239 */ 1240 1241 /** 1242 * mem_cgroup_page_lruvec - return lruvec for adding an lru page 1243 * @page: the page 1244 * @zone: zone of the page 1245 */ 1246 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone) 1247 { 1248 struct mem_cgroup_per_zone *mz; 1249 struct mem_cgroup *memcg; 1250 struct page_cgroup *pc; 1251 struct lruvec *lruvec; 1252 1253 if (mem_cgroup_disabled()) { 1254 lruvec = &zone->lruvec; 1255 goto out; 1256 } 1257 1258 pc = lookup_page_cgroup(page); 1259 memcg = pc->mem_cgroup; 1260 1261 /* 1262 * Surreptitiously switch any uncharged offlist page to root: 1263 * an uncharged page off lru does nothing to secure 1264 * its former mem_cgroup from sudden removal. 1265 * 1266 * Our caller holds lru_lock, and PageCgroupUsed is updated 1267 * under page_cgroup lock: between them, they make all uses 1268 * of pc->mem_cgroup safe. 1269 */ 1270 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup) 1271 pc->mem_cgroup = memcg = root_mem_cgroup; 1272 1273 mz = page_cgroup_zoneinfo(memcg, page); 1274 lruvec = &mz->lruvec; 1275 out: 1276 /* 1277 * Since a node can be onlined after the mem_cgroup was created, 1278 * we have to be prepared to initialize lruvec->zone here; 1279 * and if offlined then reonlined, we need to reinitialize it. 1280 */ 1281 if (unlikely(lruvec->zone != zone)) 1282 lruvec->zone = zone; 1283 return lruvec; 1284 } 1285 1286 /** 1287 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1288 * @lruvec: mem_cgroup per zone lru vector 1289 * @lru: index of lru list the page is sitting on 1290 * @nr_pages: positive when adding or negative when removing 1291 * 1292 * This function must be called when a page is added to or removed from an 1293 * lru list. 1294 */ 1295 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1296 int nr_pages) 1297 { 1298 struct mem_cgroup_per_zone *mz; 1299 unsigned long *lru_size; 1300 1301 if (mem_cgroup_disabled()) 1302 return; 1303 1304 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec); 1305 lru_size = mz->lru_size + lru; 1306 *lru_size += nr_pages; 1307 VM_BUG_ON((long)(*lru_size) < 0); 1308 } 1309 1310 /* 1311 * Checks whether given mem is same or in the root_mem_cgroup's 1312 * hierarchy subtree 1313 */ 1314 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg, 1315 struct mem_cgroup *memcg) 1316 { 1317 if (root_memcg == memcg) 1318 return true; 1319 if (!root_memcg->use_hierarchy || !memcg) 1320 return false; 1321 return css_is_ancestor(&memcg->css, &root_memcg->css); 1322 } 1323 1324 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg, 1325 struct mem_cgroup *memcg) 1326 { 1327 bool ret; 1328 1329 rcu_read_lock(); 1330 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg); 1331 rcu_read_unlock(); 1332 return ret; 1333 } 1334 1335 bool task_in_mem_cgroup(struct task_struct *task, 1336 const struct mem_cgroup *memcg) 1337 { 1338 struct mem_cgroup *curr = NULL; 1339 struct task_struct *p; 1340 bool ret; 1341 1342 p = find_lock_task_mm(task); 1343 if (p) { 1344 curr = try_get_mem_cgroup_from_mm(p->mm); 1345 task_unlock(p); 1346 } else { 1347 /* 1348 * All threads may have already detached their mm's, but the oom 1349 * killer still needs to detect if they have already been oom 1350 * killed to prevent needlessly killing additional tasks. 1351 */ 1352 rcu_read_lock(); 1353 curr = mem_cgroup_from_task(task); 1354 if (curr) 1355 css_get(&curr->css); 1356 rcu_read_unlock(); 1357 } 1358 if (!curr) 1359 return false; 1360 /* 1361 * We should check use_hierarchy of "memcg" not "curr". Because checking 1362 * use_hierarchy of "curr" here make this function true if hierarchy is 1363 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup* 1364 * hierarchy(even if use_hierarchy is disabled in "memcg"). 1365 */ 1366 ret = mem_cgroup_same_or_subtree(memcg, curr); 1367 css_put(&curr->css); 1368 return ret; 1369 } 1370 1371 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec) 1372 { 1373 unsigned long inactive_ratio; 1374 unsigned long inactive; 1375 unsigned long active; 1376 unsigned long gb; 1377 1378 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON); 1379 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON); 1380 1381 gb = (inactive + active) >> (30 - PAGE_SHIFT); 1382 if (gb) 1383 inactive_ratio = int_sqrt(10 * gb); 1384 else 1385 inactive_ratio = 1; 1386 1387 return inactive * inactive_ratio < active; 1388 } 1389 1390 #define mem_cgroup_from_res_counter(counter, member) \ 1391 container_of(counter, struct mem_cgroup, member) 1392 1393 /** 1394 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1395 * @memcg: the memory cgroup 1396 * 1397 * Returns the maximum amount of memory @mem can be charged with, in 1398 * pages. 1399 */ 1400 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1401 { 1402 unsigned long long margin; 1403 1404 margin = res_counter_margin(&memcg->res); 1405 if (do_swap_account) 1406 margin = min(margin, res_counter_margin(&memcg->memsw)); 1407 return margin >> PAGE_SHIFT; 1408 } 1409 1410 int mem_cgroup_swappiness(struct mem_cgroup *memcg) 1411 { 1412 /* root ? */ 1413 if (!css_parent(&memcg->css)) 1414 return vm_swappiness; 1415 1416 return memcg->swappiness; 1417 } 1418 1419 /* 1420 * memcg->moving_account is used for checking possibility that some thread is 1421 * calling move_account(). When a thread on CPU-A starts moving pages under 1422 * a memcg, other threads should check memcg->moving_account under 1423 * rcu_read_lock(), like this: 1424 * 1425 * CPU-A CPU-B 1426 * rcu_read_lock() 1427 * memcg->moving_account+1 if (memcg->mocing_account) 1428 * take heavy locks. 1429 * synchronize_rcu() update something. 1430 * rcu_read_unlock() 1431 * start move here. 1432 */ 1433 1434 /* for quick checking without looking up memcg */ 1435 atomic_t memcg_moving __read_mostly; 1436 1437 static void mem_cgroup_start_move(struct mem_cgroup *memcg) 1438 { 1439 atomic_inc(&memcg_moving); 1440 atomic_inc(&memcg->moving_account); 1441 synchronize_rcu(); 1442 } 1443 1444 static void mem_cgroup_end_move(struct mem_cgroup *memcg) 1445 { 1446 /* 1447 * Now, mem_cgroup_clear_mc() may call this function with NULL. 1448 * We check NULL in callee rather than caller. 1449 */ 1450 if (memcg) { 1451 atomic_dec(&memcg_moving); 1452 atomic_dec(&memcg->moving_account); 1453 } 1454 } 1455 1456 /* 1457 * 2 routines for checking "mem" is under move_account() or not. 1458 * 1459 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This 1460 * is used for avoiding races in accounting. If true, 1461 * pc->mem_cgroup may be overwritten. 1462 * 1463 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or 1464 * under hierarchy of moving cgroups. This is for 1465 * waiting at hith-memory prressure caused by "move". 1466 */ 1467 1468 static bool mem_cgroup_stolen(struct mem_cgroup *memcg) 1469 { 1470 VM_BUG_ON(!rcu_read_lock_held()); 1471 return atomic_read(&memcg->moving_account) > 0; 1472 } 1473 1474 static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 1475 { 1476 struct mem_cgroup *from; 1477 struct mem_cgroup *to; 1478 bool ret = false; 1479 /* 1480 * Unlike task_move routines, we access mc.to, mc.from not under 1481 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1482 */ 1483 spin_lock(&mc.lock); 1484 from = mc.from; 1485 to = mc.to; 1486 if (!from) 1487 goto unlock; 1488 1489 ret = mem_cgroup_same_or_subtree(memcg, from) 1490 || mem_cgroup_same_or_subtree(memcg, to); 1491 unlock: 1492 spin_unlock(&mc.lock); 1493 return ret; 1494 } 1495 1496 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) 1497 { 1498 if (mc.moving_task && current != mc.moving_task) { 1499 if (mem_cgroup_under_move(memcg)) { 1500 DEFINE_WAIT(wait); 1501 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1502 /* moving charge context might have finished. */ 1503 if (mc.moving_task) 1504 schedule(); 1505 finish_wait(&mc.waitq, &wait); 1506 return true; 1507 } 1508 } 1509 return false; 1510 } 1511 1512 /* 1513 * Take this lock when 1514 * - a code tries to modify page's memcg while it's USED. 1515 * - a code tries to modify page state accounting in a memcg. 1516 * see mem_cgroup_stolen(), too. 1517 */ 1518 static void move_lock_mem_cgroup(struct mem_cgroup *memcg, 1519 unsigned long *flags) 1520 { 1521 spin_lock_irqsave(&memcg->move_lock, *flags); 1522 } 1523 1524 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg, 1525 unsigned long *flags) 1526 { 1527 spin_unlock_irqrestore(&memcg->move_lock, *flags); 1528 } 1529 1530 #define K(x) ((x) << (PAGE_SHIFT-10)) 1531 /** 1532 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller. 1533 * @memcg: The memory cgroup that went over limit 1534 * @p: Task that is going to be killed 1535 * 1536 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1537 * enabled 1538 */ 1539 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) 1540 { 1541 struct cgroup *task_cgrp; 1542 struct cgroup *mem_cgrp; 1543 /* 1544 * Need a buffer in BSS, can't rely on allocations. The code relies 1545 * on the assumption that OOM is serialized for memory controller. 1546 * If this assumption is broken, revisit this code. 1547 */ 1548 static char memcg_name[PATH_MAX]; 1549 int ret; 1550 struct mem_cgroup *iter; 1551 unsigned int i; 1552 1553 if (!p) 1554 return; 1555 1556 rcu_read_lock(); 1557 1558 mem_cgrp = memcg->css.cgroup; 1559 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id); 1560 1561 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX); 1562 if (ret < 0) { 1563 /* 1564 * Unfortunately, we are unable to convert to a useful name 1565 * But we'll still print out the usage information 1566 */ 1567 rcu_read_unlock(); 1568 goto done; 1569 } 1570 rcu_read_unlock(); 1571 1572 pr_info("Task in %s killed", memcg_name); 1573 1574 rcu_read_lock(); 1575 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX); 1576 if (ret < 0) { 1577 rcu_read_unlock(); 1578 goto done; 1579 } 1580 rcu_read_unlock(); 1581 1582 /* 1583 * Continues from above, so we don't need an KERN_ level 1584 */ 1585 pr_cont(" as a result of limit of %s\n", memcg_name); 1586 done: 1587 1588 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n", 1589 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10, 1590 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10, 1591 res_counter_read_u64(&memcg->res, RES_FAILCNT)); 1592 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n", 1593 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10, 1594 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10, 1595 res_counter_read_u64(&memcg->memsw, RES_FAILCNT)); 1596 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n", 1597 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10, 1598 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10, 1599 res_counter_read_u64(&memcg->kmem, RES_FAILCNT)); 1600 1601 for_each_mem_cgroup_tree(iter, memcg) { 1602 pr_info("Memory cgroup stats"); 1603 1604 rcu_read_lock(); 1605 ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX); 1606 if (!ret) 1607 pr_cont(" for %s", memcg_name); 1608 rcu_read_unlock(); 1609 pr_cont(":"); 1610 1611 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 1612 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) 1613 continue; 1614 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i], 1615 K(mem_cgroup_read_stat(iter, i))); 1616 } 1617 1618 for (i = 0; i < NR_LRU_LISTS; i++) 1619 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i], 1620 K(mem_cgroup_nr_lru_pages(iter, BIT(i)))); 1621 1622 pr_cont("\n"); 1623 } 1624 } 1625 1626 /* 1627 * This function returns the number of memcg under hierarchy tree. Returns 1628 * 1(self count) if no children. 1629 */ 1630 static int mem_cgroup_count_children(struct mem_cgroup *memcg) 1631 { 1632 int num = 0; 1633 struct mem_cgroup *iter; 1634 1635 for_each_mem_cgroup_tree(iter, memcg) 1636 num++; 1637 return num; 1638 } 1639 1640 /* 1641 * Return the memory (and swap, if configured) limit for a memcg. 1642 */ 1643 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg) 1644 { 1645 u64 limit; 1646 1647 limit = res_counter_read_u64(&memcg->res, RES_LIMIT); 1648 1649 /* 1650 * Do not consider swap space if we cannot swap due to swappiness 1651 */ 1652 if (mem_cgroup_swappiness(memcg)) { 1653 u64 memsw; 1654 1655 limit += total_swap_pages << PAGE_SHIFT; 1656 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 1657 1658 /* 1659 * If memsw is finite and limits the amount of swap space 1660 * available to this memcg, return that limit. 1661 */ 1662 limit = min(limit, memsw); 1663 } 1664 1665 return limit; 1666 } 1667 1668 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1669 int order) 1670 { 1671 struct mem_cgroup *iter; 1672 unsigned long chosen_points = 0; 1673 unsigned long totalpages; 1674 unsigned int points = 0; 1675 struct task_struct *chosen = NULL; 1676 1677 /* 1678 * If current has a pending SIGKILL or is exiting, then automatically 1679 * select it. The goal is to allow it to allocate so that it may 1680 * quickly exit and free its memory. 1681 */ 1682 if (fatal_signal_pending(current) || current->flags & PF_EXITING) { 1683 set_thread_flag(TIF_MEMDIE); 1684 return; 1685 } 1686 1687 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL); 1688 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1; 1689 for_each_mem_cgroup_tree(iter, memcg) { 1690 struct css_task_iter it; 1691 struct task_struct *task; 1692 1693 css_task_iter_start(&iter->css, &it); 1694 while ((task = css_task_iter_next(&it))) { 1695 switch (oom_scan_process_thread(task, totalpages, NULL, 1696 false)) { 1697 case OOM_SCAN_SELECT: 1698 if (chosen) 1699 put_task_struct(chosen); 1700 chosen = task; 1701 chosen_points = ULONG_MAX; 1702 get_task_struct(chosen); 1703 /* fall through */ 1704 case OOM_SCAN_CONTINUE: 1705 continue; 1706 case OOM_SCAN_ABORT: 1707 css_task_iter_end(&it); 1708 mem_cgroup_iter_break(memcg, iter); 1709 if (chosen) 1710 put_task_struct(chosen); 1711 return; 1712 case OOM_SCAN_OK: 1713 break; 1714 }; 1715 points = oom_badness(task, memcg, NULL, totalpages); 1716 if (points > chosen_points) { 1717 if (chosen) 1718 put_task_struct(chosen); 1719 chosen = task; 1720 chosen_points = points; 1721 get_task_struct(chosen); 1722 } 1723 } 1724 css_task_iter_end(&it); 1725 } 1726 1727 if (!chosen) 1728 return; 1729 points = chosen_points * 1000 / totalpages; 1730 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg, 1731 NULL, "Memory cgroup out of memory"); 1732 } 1733 1734 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg, 1735 gfp_t gfp_mask, 1736 unsigned long flags) 1737 { 1738 unsigned long total = 0; 1739 bool noswap = false; 1740 int loop; 1741 1742 if (flags & MEM_CGROUP_RECLAIM_NOSWAP) 1743 noswap = true; 1744 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum) 1745 noswap = true; 1746 1747 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) { 1748 if (loop) 1749 drain_all_stock_async(memcg); 1750 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap); 1751 /* 1752 * Allow limit shrinkers, which are triggered directly 1753 * by userspace, to catch signals and stop reclaim 1754 * after minimal progress, regardless of the margin. 1755 */ 1756 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK)) 1757 break; 1758 if (mem_cgroup_margin(memcg)) 1759 break; 1760 /* 1761 * If nothing was reclaimed after two attempts, there 1762 * may be no reclaimable pages in this hierarchy. 1763 */ 1764 if (loop && !total) 1765 break; 1766 } 1767 return total; 1768 } 1769 1770 #if MAX_NUMNODES > 1 1771 /** 1772 * test_mem_cgroup_node_reclaimable 1773 * @memcg: the target memcg 1774 * @nid: the node ID to be checked. 1775 * @noswap : specify true here if the user wants flle only information. 1776 * 1777 * This function returns whether the specified memcg contains any 1778 * reclaimable pages on a node. Returns true if there are any reclaimable 1779 * pages in the node. 1780 */ 1781 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg, 1782 int nid, bool noswap) 1783 { 1784 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE)) 1785 return true; 1786 if (noswap || !total_swap_pages) 1787 return false; 1788 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON)) 1789 return true; 1790 return false; 1791 1792 } 1793 1794 /* 1795 * Always updating the nodemask is not very good - even if we have an empty 1796 * list or the wrong list here, we can start from some node and traverse all 1797 * nodes based on the zonelist. So update the list loosely once per 10 secs. 1798 * 1799 */ 1800 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg) 1801 { 1802 int nid; 1803 /* 1804 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET 1805 * pagein/pageout changes since the last update. 1806 */ 1807 if (!atomic_read(&memcg->numainfo_events)) 1808 return; 1809 if (atomic_inc_return(&memcg->numainfo_updating) > 1) 1810 return; 1811 1812 /* make a nodemask where this memcg uses memory from */ 1813 memcg->scan_nodes = node_states[N_MEMORY]; 1814 1815 for_each_node_mask(nid, node_states[N_MEMORY]) { 1816 1817 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false)) 1818 node_clear(nid, memcg->scan_nodes); 1819 } 1820 1821 atomic_set(&memcg->numainfo_events, 0); 1822 atomic_set(&memcg->numainfo_updating, 0); 1823 } 1824 1825 /* 1826 * Selecting a node where we start reclaim from. Because what we need is just 1827 * reducing usage counter, start from anywhere is O,K. Considering 1828 * memory reclaim from current node, there are pros. and cons. 1829 * 1830 * Freeing memory from current node means freeing memory from a node which 1831 * we'll use or we've used. So, it may make LRU bad. And if several threads 1832 * hit limits, it will see a contention on a node. But freeing from remote 1833 * node means more costs for memory reclaim because of memory latency. 1834 * 1835 * Now, we use round-robin. Better algorithm is welcomed. 1836 */ 1837 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1838 { 1839 int node; 1840 1841 mem_cgroup_may_update_nodemask(memcg); 1842 node = memcg->last_scanned_node; 1843 1844 node = next_node(node, memcg->scan_nodes); 1845 if (node == MAX_NUMNODES) 1846 node = first_node(memcg->scan_nodes); 1847 /* 1848 * We call this when we hit limit, not when pages are added to LRU. 1849 * No LRU may hold pages because all pages are UNEVICTABLE or 1850 * memcg is too small and all pages are not on LRU. In that case, 1851 * we use curret node. 1852 */ 1853 if (unlikely(node == MAX_NUMNODES)) 1854 node = numa_node_id(); 1855 1856 memcg->last_scanned_node = node; 1857 return node; 1858 } 1859 1860 #else 1861 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1862 { 1863 return 0; 1864 } 1865 1866 #endif 1867 1868 /* 1869 * A group is eligible for the soft limit reclaim under the given root 1870 * hierarchy if 1871 * a) it is over its soft limit 1872 * b) any parent up the hierarchy is over its soft limit 1873 * 1874 * If the given group doesn't have any children over the limit then it 1875 * doesn't make any sense to iterate its subtree. 1876 */ 1877 enum mem_cgroup_filter_t 1878 mem_cgroup_soft_reclaim_eligible(struct mem_cgroup *memcg, 1879 struct mem_cgroup *root) 1880 { 1881 struct mem_cgroup *parent; 1882 1883 if (!memcg) 1884 memcg = root_mem_cgroup; 1885 parent = memcg; 1886 1887 if (res_counter_soft_limit_excess(&memcg->res)) 1888 return VISIT; 1889 1890 /* 1891 * If any parent up to the root in the hierarchy is over its soft limit 1892 * then we have to obey and reclaim from this group as well. 1893 */ 1894 while ((parent = parent_mem_cgroup(parent))) { 1895 if (res_counter_soft_limit_excess(&parent->res)) 1896 return VISIT; 1897 if (parent == root) 1898 break; 1899 } 1900 1901 if (!atomic_read(&memcg->children_in_excess)) 1902 return SKIP_TREE; 1903 return SKIP; 1904 } 1905 1906 static DEFINE_SPINLOCK(memcg_oom_lock); 1907 1908 /* 1909 * Check OOM-Killer is already running under our hierarchy. 1910 * If someone is running, return false. 1911 */ 1912 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) 1913 { 1914 struct mem_cgroup *iter, *failed = NULL; 1915 1916 spin_lock(&memcg_oom_lock); 1917 1918 for_each_mem_cgroup_tree(iter, memcg) { 1919 if (iter->oom_lock) { 1920 /* 1921 * this subtree of our hierarchy is already locked 1922 * so we cannot give a lock. 1923 */ 1924 failed = iter; 1925 mem_cgroup_iter_break(memcg, iter); 1926 break; 1927 } else 1928 iter->oom_lock = true; 1929 } 1930 1931 if (failed) { 1932 /* 1933 * OK, we failed to lock the whole subtree so we have 1934 * to clean up what we set up to the failing subtree 1935 */ 1936 for_each_mem_cgroup_tree(iter, memcg) { 1937 if (iter == failed) { 1938 mem_cgroup_iter_break(memcg, iter); 1939 break; 1940 } 1941 iter->oom_lock = false; 1942 } 1943 } 1944 1945 spin_unlock(&memcg_oom_lock); 1946 1947 return !failed; 1948 } 1949 1950 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 1951 { 1952 struct mem_cgroup *iter; 1953 1954 spin_lock(&memcg_oom_lock); 1955 for_each_mem_cgroup_tree(iter, memcg) 1956 iter->oom_lock = false; 1957 spin_unlock(&memcg_oom_lock); 1958 } 1959 1960 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 1961 { 1962 struct mem_cgroup *iter; 1963 1964 for_each_mem_cgroup_tree(iter, memcg) 1965 atomic_inc(&iter->under_oom); 1966 } 1967 1968 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 1969 { 1970 struct mem_cgroup *iter; 1971 1972 /* 1973 * When a new child is created while the hierarchy is under oom, 1974 * mem_cgroup_oom_lock() may not be called. We have to use 1975 * atomic_add_unless() here. 1976 */ 1977 for_each_mem_cgroup_tree(iter, memcg) 1978 atomic_add_unless(&iter->under_oom, -1, 0); 1979 } 1980 1981 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 1982 1983 struct oom_wait_info { 1984 struct mem_cgroup *memcg; 1985 wait_queue_t wait; 1986 }; 1987 1988 static int memcg_oom_wake_function(wait_queue_t *wait, 1989 unsigned mode, int sync, void *arg) 1990 { 1991 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; 1992 struct mem_cgroup *oom_wait_memcg; 1993 struct oom_wait_info *oom_wait_info; 1994 1995 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 1996 oom_wait_memcg = oom_wait_info->memcg; 1997 1998 /* 1999 * Both of oom_wait_info->memcg and wake_memcg are stable under us. 2000 * Then we can use css_is_ancestor without taking care of RCU. 2001 */ 2002 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg) 2003 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg)) 2004 return 0; 2005 return autoremove_wake_function(wait, mode, sync, arg); 2006 } 2007 2008 static void memcg_wakeup_oom(struct mem_cgroup *memcg) 2009 { 2010 atomic_inc(&memcg->oom_wakeups); 2011 /* for filtering, pass "memcg" as argument. */ 2012 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 2013 } 2014 2015 static void memcg_oom_recover(struct mem_cgroup *memcg) 2016 { 2017 if (memcg && atomic_read(&memcg->under_oom)) 2018 memcg_wakeup_oom(memcg); 2019 } 2020 2021 /* 2022 * try to call OOM killer 2023 */ 2024 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 2025 { 2026 bool locked; 2027 int wakeups; 2028 2029 if (!current->memcg_oom.may_oom) 2030 return; 2031 2032 current->memcg_oom.in_memcg_oom = 1; 2033 2034 /* 2035 * As with any blocking lock, a contender needs to start 2036 * listening for wakeups before attempting the trylock, 2037 * otherwise it can miss the wakeup from the unlock and sleep 2038 * indefinitely. This is just open-coded because our locking 2039 * is so particular to memcg hierarchies. 2040 */ 2041 wakeups = atomic_read(&memcg->oom_wakeups); 2042 mem_cgroup_mark_under_oom(memcg); 2043 2044 locked = mem_cgroup_oom_trylock(memcg); 2045 2046 if (locked) 2047 mem_cgroup_oom_notify(memcg); 2048 2049 if (locked && !memcg->oom_kill_disable) { 2050 mem_cgroup_unmark_under_oom(memcg); 2051 mem_cgroup_out_of_memory(memcg, mask, order); 2052 mem_cgroup_oom_unlock(memcg); 2053 /* 2054 * There is no guarantee that an OOM-lock contender 2055 * sees the wakeups triggered by the OOM kill 2056 * uncharges. Wake any sleepers explicitely. 2057 */ 2058 memcg_oom_recover(memcg); 2059 } else { 2060 /* 2061 * A system call can just return -ENOMEM, but if this 2062 * is a page fault and somebody else is handling the 2063 * OOM already, we need to sleep on the OOM waitqueue 2064 * for this memcg until the situation is resolved. 2065 * Which can take some time because it might be 2066 * handled by a userspace task. 2067 * 2068 * However, this is the charge context, which means 2069 * that we may sit on a large call stack and hold 2070 * various filesystem locks, the mmap_sem etc. and we 2071 * don't want the OOM handler to deadlock on them 2072 * while we sit here and wait. Store the current OOM 2073 * context in the task_struct, then return -ENOMEM. 2074 * At the end of the page fault handler, with the 2075 * stack unwound, pagefault_out_of_memory() will check 2076 * back with us by calling 2077 * mem_cgroup_oom_synchronize(), possibly putting the 2078 * task to sleep. 2079 */ 2080 current->memcg_oom.oom_locked = locked; 2081 current->memcg_oom.wakeups = wakeups; 2082 css_get(&memcg->css); 2083 current->memcg_oom.wait_on_memcg = memcg; 2084 } 2085 } 2086 2087 /** 2088 * mem_cgroup_oom_synchronize - complete memcg OOM handling 2089 * 2090 * This has to be called at the end of a page fault if the the memcg 2091 * OOM handler was enabled and the fault is returning %VM_FAULT_OOM. 2092 * 2093 * Memcg supports userspace OOM handling, so failed allocations must 2094 * sleep on a waitqueue until the userspace task resolves the 2095 * situation. Sleeping directly in the charge context with all kinds 2096 * of locks held is not a good idea, instead we remember an OOM state 2097 * in the task and mem_cgroup_oom_synchronize() has to be called at 2098 * the end of the page fault to put the task to sleep and clean up the 2099 * OOM state. 2100 * 2101 * Returns %true if an ongoing memcg OOM situation was detected and 2102 * finalized, %false otherwise. 2103 */ 2104 bool mem_cgroup_oom_synchronize(void) 2105 { 2106 struct oom_wait_info owait; 2107 struct mem_cgroup *memcg; 2108 2109 /* OOM is global, do not handle */ 2110 if (!current->memcg_oom.in_memcg_oom) 2111 return false; 2112 2113 /* 2114 * We invoked the OOM killer but there is a chance that a kill 2115 * did not free up any charges. Everybody else might already 2116 * be sleeping, so restart the fault and keep the rampage 2117 * going until some charges are released. 2118 */ 2119 memcg = current->memcg_oom.wait_on_memcg; 2120 if (!memcg) 2121 goto out; 2122 2123 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current)) 2124 goto out_memcg; 2125 2126 owait.memcg = memcg; 2127 owait.wait.flags = 0; 2128 owait.wait.func = memcg_oom_wake_function; 2129 owait.wait.private = current; 2130 INIT_LIST_HEAD(&owait.wait.task_list); 2131 2132 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 2133 /* Only sleep if we didn't miss any wakeups since OOM */ 2134 if (atomic_read(&memcg->oom_wakeups) == current->memcg_oom.wakeups) 2135 schedule(); 2136 finish_wait(&memcg_oom_waitq, &owait.wait); 2137 out_memcg: 2138 mem_cgroup_unmark_under_oom(memcg); 2139 if (current->memcg_oom.oom_locked) { 2140 mem_cgroup_oom_unlock(memcg); 2141 /* 2142 * There is no guarantee that an OOM-lock contender 2143 * sees the wakeups triggered by the OOM kill 2144 * uncharges. Wake any sleepers explicitely. 2145 */ 2146 memcg_oom_recover(memcg); 2147 } 2148 css_put(&memcg->css); 2149 current->memcg_oom.wait_on_memcg = NULL; 2150 out: 2151 current->memcg_oom.in_memcg_oom = 0; 2152 return true; 2153 } 2154 2155 /* 2156 * Currently used to update mapped file statistics, but the routine can be 2157 * generalized to update other statistics as well. 2158 * 2159 * Notes: Race condition 2160 * 2161 * We usually use page_cgroup_lock() for accessing page_cgroup member but 2162 * it tends to be costly. But considering some conditions, we doesn't need 2163 * to do so _always_. 2164 * 2165 * Considering "charge", lock_page_cgroup() is not required because all 2166 * file-stat operations happen after a page is attached to radix-tree. There 2167 * are no race with "charge". 2168 * 2169 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup 2170 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even 2171 * if there are race with "uncharge". Statistics itself is properly handled 2172 * by flags. 2173 * 2174 * Considering "move", this is an only case we see a race. To make the race 2175 * small, we check mm->moving_account and detect there are possibility of race 2176 * If there is, we take a lock. 2177 */ 2178 2179 void __mem_cgroup_begin_update_page_stat(struct page *page, 2180 bool *locked, unsigned long *flags) 2181 { 2182 struct mem_cgroup *memcg; 2183 struct page_cgroup *pc; 2184 2185 pc = lookup_page_cgroup(page); 2186 again: 2187 memcg = pc->mem_cgroup; 2188 if (unlikely(!memcg || !PageCgroupUsed(pc))) 2189 return; 2190 /* 2191 * If this memory cgroup is not under account moving, we don't 2192 * need to take move_lock_mem_cgroup(). Because we already hold 2193 * rcu_read_lock(), any calls to move_account will be delayed until 2194 * rcu_read_unlock() if mem_cgroup_stolen() == true. 2195 */ 2196 if (!mem_cgroup_stolen(memcg)) 2197 return; 2198 2199 move_lock_mem_cgroup(memcg, flags); 2200 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) { 2201 move_unlock_mem_cgroup(memcg, flags); 2202 goto again; 2203 } 2204 *locked = true; 2205 } 2206 2207 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags) 2208 { 2209 struct page_cgroup *pc = lookup_page_cgroup(page); 2210 2211 /* 2212 * It's guaranteed that pc->mem_cgroup never changes while 2213 * lock is held because a routine modifies pc->mem_cgroup 2214 * should take move_lock_mem_cgroup(). 2215 */ 2216 move_unlock_mem_cgroup(pc->mem_cgroup, flags); 2217 } 2218 2219 void mem_cgroup_update_page_stat(struct page *page, 2220 enum mem_cgroup_stat_index idx, int val) 2221 { 2222 struct mem_cgroup *memcg; 2223 struct page_cgroup *pc = lookup_page_cgroup(page); 2224 unsigned long uninitialized_var(flags); 2225 2226 if (mem_cgroup_disabled()) 2227 return; 2228 2229 VM_BUG_ON(!rcu_read_lock_held()); 2230 memcg = pc->mem_cgroup; 2231 if (unlikely(!memcg || !PageCgroupUsed(pc))) 2232 return; 2233 2234 this_cpu_add(memcg->stat->count[idx], val); 2235 } 2236 2237 /* 2238 * size of first charge trial. "32" comes from vmscan.c's magic value. 2239 * TODO: maybe necessary to use big numbers in big irons. 2240 */ 2241 #define CHARGE_BATCH 32U 2242 struct memcg_stock_pcp { 2243 struct mem_cgroup *cached; /* this never be root cgroup */ 2244 unsigned int nr_pages; 2245 struct work_struct work; 2246 unsigned long flags; 2247 #define FLUSHING_CACHED_CHARGE 0 2248 }; 2249 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); 2250 static DEFINE_MUTEX(percpu_charge_mutex); 2251 2252 /** 2253 * consume_stock: Try to consume stocked charge on this cpu. 2254 * @memcg: memcg to consume from. 2255 * @nr_pages: how many pages to charge. 2256 * 2257 * The charges will only happen if @memcg matches the current cpu's memcg 2258 * stock, and at least @nr_pages are available in that stock. Failure to 2259 * service an allocation will refill the stock. 2260 * 2261 * returns true if successful, false otherwise. 2262 */ 2263 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2264 { 2265 struct memcg_stock_pcp *stock; 2266 bool ret = true; 2267 2268 if (nr_pages > CHARGE_BATCH) 2269 return false; 2270 2271 stock = &get_cpu_var(memcg_stock); 2272 if (memcg == stock->cached && stock->nr_pages >= nr_pages) 2273 stock->nr_pages -= nr_pages; 2274 else /* need to call res_counter_charge */ 2275 ret = false; 2276 put_cpu_var(memcg_stock); 2277 return ret; 2278 } 2279 2280 /* 2281 * Returns stocks cached in percpu to res_counter and reset cached information. 2282 */ 2283 static void drain_stock(struct memcg_stock_pcp *stock) 2284 { 2285 struct mem_cgroup *old = stock->cached; 2286 2287 if (stock->nr_pages) { 2288 unsigned long bytes = stock->nr_pages * PAGE_SIZE; 2289 2290 res_counter_uncharge(&old->res, bytes); 2291 if (do_swap_account) 2292 res_counter_uncharge(&old->memsw, bytes); 2293 stock->nr_pages = 0; 2294 } 2295 stock->cached = NULL; 2296 } 2297 2298 /* 2299 * This must be called under preempt disabled or must be called by 2300 * a thread which is pinned to local cpu. 2301 */ 2302 static void drain_local_stock(struct work_struct *dummy) 2303 { 2304 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock); 2305 drain_stock(stock); 2306 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 2307 } 2308 2309 static void __init memcg_stock_init(void) 2310 { 2311 int cpu; 2312 2313 for_each_possible_cpu(cpu) { 2314 struct memcg_stock_pcp *stock = 2315 &per_cpu(memcg_stock, cpu); 2316 INIT_WORK(&stock->work, drain_local_stock); 2317 } 2318 } 2319 2320 /* 2321 * Cache charges(val) which is from res_counter, to local per_cpu area. 2322 * This will be consumed by consume_stock() function, later. 2323 */ 2324 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2325 { 2326 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock); 2327 2328 if (stock->cached != memcg) { /* reset if necessary */ 2329 drain_stock(stock); 2330 stock->cached = memcg; 2331 } 2332 stock->nr_pages += nr_pages; 2333 put_cpu_var(memcg_stock); 2334 } 2335 2336 /* 2337 * Drains all per-CPU charge caches for given root_memcg resp. subtree 2338 * of the hierarchy under it. sync flag says whether we should block 2339 * until the work is done. 2340 */ 2341 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync) 2342 { 2343 int cpu, curcpu; 2344 2345 /* Notify other cpus that system-wide "drain" is running */ 2346 get_online_cpus(); 2347 curcpu = get_cpu(); 2348 for_each_online_cpu(cpu) { 2349 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2350 struct mem_cgroup *memcg; 2351 2352 memcg = stock->cached; 2353 if (!memcg || !stock->nr_pages) 2354 continue; 2355 if (!mem_cgroup_same_or_subtree(root_memcg, memcg)) 2356 continue; 2357 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 2358 if (cpu == curcpu) 2359 drain_local_stock(&stock->work); 2360 else 2361 schedule_work_on(cpu, &stock->work); 2362 } 2363 } 2364 put_cpu(); 2365 2366 if (!sync) 2367 goto out; 2368 2369 for_each_online_cpu(cpu) { 2370 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2371 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) 2372 flush_work(&stock->work); 2373 } 2374 out: 2375 put_online_cpus(); 2376 } 2377 2378 /* 2379 * Tries to drain stocked charges in other cpus. This function is asynchronous 2380 * and just put a work per cpu for draining localy on each cpu. Caller can 2381 * expects some charges will be back to res_counter later but cannot wait for 2382 * it. 2383 */ 2384 static void drain_all_stock_async(struct mem_cgroup *root_memcg) 2385 { 2386 /* 2387 * If someone calls draining, avoid adding more kworker runs. 2388 */ 2389 if (!mutex_trylock(&percpu_charge_mutex)) 2390 return; 2391 drain_all_stock(root_memcg, false); 2392 mutex_unlock(&percpu_charge_mutex); 2393 } 2394 2395 /* This is a synchronous drain interface. */ 2396 static void drain_all_stock_sync(struct mem_cgroup *root_memcg) 2397 { 2398 /* called when force_empty is called */ 2399 mutex_lock(&percpu_charge_mutex); 2400 drain_all_stock(root_memcg, true); 2401 mutex_unlock(&percpu_charge_mutex); 2402 } 2403 2404 /* 2405 * This function drains percpu counter value from DEAD cpu and 2406 * move it to local cpu. Note that this function can be preempted. 2407 */ 2408 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu) 2409 { 2410 int i; 2411 2412 spin_lock(&memcg->pcp_counter_lock); 2413 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 2414 long x = per_cpu(memcg->stat->count[i], cpu); 2415 2416 per_cpu(memcg->stat->count[i], cpu) = 0; 2417 memcg->nocpu_base.count[i] += x; 2418 } 2419 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) { 2420 unsigned long x = per_cpu(memcg->stat->events[i], cpu); 2421 2422 per_cpu(memcg->stat->events[i], cpu) = 0; 2423 memcg->nocpu_base.events[i] += x; 2424 } 2425 spin_unlock(&memcg->pcp_counter_lock); 2426 } 2427 2428 static int memcg_cpu_hotplug_callback(struct notifier_block *nb, 2429 unsigned long action, 2430 void *hcpu) 2431 { 2432 int cpu = (unsigned long)hcpu; 2433 struct memcg_stock_pcp *stock; 2434 struct mem_cgroup *iter; 2435 2436 if (action == CPU_ONLINE) 2437 return NOTIFY_OK; 2438 2439 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 2440 return NOTIFY_OK; 2441 2442 for_each_mem_cgroup(iter) 2443 mem_cgroup_drain_pcp_counter(iter, cpu); 2444 2445 stock = &per_cpu(memcg_stock, cpu); 2446 drain_stock(stock); 2447 return NOTIFY_OK; 2448 } 2449 2450 2451 /* See __mem_cgroup_try_charge() for details */ 2452 enum { 2453 CHARGE_OK, /* success */ 2454 CHARGE_RETRY, /* need to retry but retry is not bad */ 2455 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */ 2456 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */ 2457 }; 2458 2459 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 2460 unsigned int nr_pages, unsigned int min_pages, 2461 bool invoke_oom) 2462 { 2463 unsigned long csize = nr_pages * PAGE_SIZE; 2464 struct mem_cgroup *mem_over_limit; 2465 struct res_counter *fail_res; 2466 unsigned long flags = 0; 2467 int ret; 2468 2469 ret = res_counter_charge(&memcg->res, csize, &fail_res); 2470 2471 if (likely(!ret)) { 2472 if (!do_swap_account) 2473 return CHARGE_OK; 2474 ret = res_counter_charge(&memcg->memsw, csize, &fail_res); 2475 if (likely(!ret)) 2476 return CHARGE_OK; 2477 2478 res_counter_uncharge(&memcg->res, csize); 2479 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw); 2480 flags |= MEM_CGROUP_RECLAIM_NOSWAP; 2481 } else 2482 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res); 2483 /* 2484 * Never reclaim on behalf of optional batching, retry with a 2485 * single page instead. 2486 */ 2487 if (nr_pages > min_pages) 2488 return CHARGE_RETRY; 2489 2490 if (!(gfp_mask & __GFP_WAIT)) 2491 return CHARGE_WOULDBLOCK; 2492 2493 if (gfp_mask & __GFP_NORETRY) 2494 return CHARGE_NOMEM; 2495 2496 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags); 2497 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2498 return CHARGE_RETRY; 2499 /* 2500 * Even though the limit is exceeded at this point, reclaim 2501 * may have been able to free some pages. Retry the charge 2502 * before killing the task. 2503 * 2504 * Only for regular pages, though: huge pages are rather 2505 * unlikely to succeed so close to the limit, and we fall back 2506 * to regular pages anyway in case of failure. 2507 */ 2508 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret) 2509 return CHARGE_RETRY; 2510 2511 /* 2512 * At task move, charge accounts can be doubly counted. So, it's 2513 * better to wait until the end of task_move if something is going on. 2514 */ 2515 if (mem_cgroup_wait_acct_move(mem_over_limit)) 2516 return CHARGE_RETRY; 2517 2518 if (invoke_oom) 2519 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize)); 2520 2521 return CHARGE_NOMEM; 2522 } 2523 2524 /* 2525 * __mem_cgroup_try_charge() does 2526 * 1. detect memcg to be charged against from passed *mm and *ptr, 2527 * 2. update res_counter 2528 * 3. call memory reclaim if necessary. 2529 * 2530 * In some special case, if the task is fatal, fatal_signal_pending() or 2531 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup 2532 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon 2533 * as possible without any hazards. 2: all pages should have a valid 2534 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg 2535 * pointer, that is treated as a charge to root_mem_cgroup. 2536 * 2537 * So __mem_cgroup_try_charge() will return 2538 * 0 ... on success, filling *ptr with a valid memcg pointer. 2539 * -ENOMEM ... charge failure because of resource limits. 2540 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup. 2541 * 2542 * Unlike the exported interface, an "oom" parameter is added. if oom==true, 2543 * the oom-killer can be invoked. 2544 */ 2545 static int __mem_cgroup_try_charge(struct mm_struct *mm, 2546 gfp_t gfp_mask, 2547 unsigned int nr_pages, 2548 struct mem_cgroup **ptr, 2549 bool oom) 2550 { 2551 unsigned int batch = max(CHARGE_BATCH, nr_pages); 2552 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES; 2553 struct mem_cgroup *memcg = NULL; 2554 int ret; 2555 2556 /* 2557 * Unlike gloval-vm's OOM-kill, we're not in memory shortage 2558 * in system level. So, allow to go ahead dying process in addition to 2559 * MEMDIE process. 2560 */ 2561 if (unlikely(test_thread_flag(TIF_MEMDIE) 2562 || fatal_signal_pending(current))) 2563 goto bypass; 2564 2565 /* 2566 * We always charge the cgroup the mm_struct belongs to. 2567 * The mm_struct's mem_cgroup changes on task migration if the 2568 * thread group leader migrates. It's possible that mm is not 2569 * set, if so charge the root memcg (happens for pagecache usage). 2570 */ 2571 if (!*ptr && !mm) 2572 *ptr = root_mem_cgroup; 2573 again: 2574 if (*ptr) { /* css should be a valid one */ 2575 memcg = *ptr; 2576 if (mem_cgroup_is_root(memcg)) 2577 goto done; 2578 if (consume_stock(memcg, nr_pages)) 2579 goto done; 2580 css_get(&memcg->css); 2581 } else { 2582 struct task_struct *p; 2583 2584 rcu_read_lock(); 2585 p = rcu_dereference(mm->owner); 2586 /* 2587 * Because we don't have task_lock(), "p" can exit. 2588 * In that case, "memcg" can point to root or p can be NULL with 2589 * race with swapoff. Then, we have small risk of mis-accouning. 2590 * But such kind of mis-account by race always happens because 2591 * we don't have cgroup_mutex(). It's overkill and we allo that 2592 * small race, here. 2593 * (*) swapoff at el will charge against mm-struct not against 2594 * task-struct. So, mm->owner can be NULL. 2595 */ 2596 memcg = mem_cgroup_from_task(p); 2597 if (!memcg) 2598 memcg = root_mem_cgroup; 2599 if (mem_cgroup_is_root(memcg)) { 2600 rcu_read_unlock(); 2601 goto done; 2602 } 2603 if (consume_stock(memcg, nr_pages)) { 2604 /* 2605 * It seems dagerous to access memcg without css_get(). 2606 * But considering how consume_stok works, it's not 2607 * necessary. If consume_stock success, some charges 2608 * from this memcg are cached on this cpu. So, we 2609 * don't need to call css_get()/css_tryget() before 2610 * calling consume_stock(). 2611 */ 2612 rcu_read_unlock(); 2613 goto done; 2614 } 2615 /* after here, we may be blocked. we need to get refcnt */ 2616 if (!css_tryget(&memcg->css)) { 2617 rcu_read_unlock(); 2618 goto again; 2619 } 2620 rcu_read_unlock(); 2621 } 2622 2623 do { 2624 bool invoke_oom = oom && !nr_oom_retries; 2625 2626 /* If killed, bypass charge */ 2627 if (fatal_signal_pending(current)) { 2628 css_put(&memcg->css); 2629 goto bypass; 2630 } 2631 2632 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, 2633 nr_pages, invoke_oom); 2634 switch (ret) { 2635 case CHARGE_OK: 2636 break; 2637 case CHARGE_RETRY: /* not in OOM situation but retry */ 2638 batch = nr_pages; 2639 css_put(&memcg->css); 2640 memcg = NULL; 2641 goto again; 2642 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */ 2643 css_put(&memcg->css); 2644 goto nomem; 2645 case CHARGE_NOMEM: /* OOM routine works */ 2646 if (!oom || invoke_oom) { 2647 css_put(&memcg->css); 2648 goto nomem; 2649 } 2650 nr_oom_retries--; 2651 break; 2652 } 2653 } while (ret != CHARGE_OK); 2654 2655 if (batch > nr_pages) 2656 refill_stock(memcg, batch - nr_pages); 2657 css_put(&memcg->css); 2658 done: 2659 *ptr = memcg; 2660 return 0; 2661 nomem: 2662 *ptr = NULL; 2663 return -ENOMEM; 2664 bypass: 2665 *ptr = root_mem_cgroup; 2666 return -EINTR; 2667 } 2668 2669 /* 2670 * Somemtimes we have to undo a charge we got by try_charge(). 2671 * This function is for that and do uncharge, put css's refcnt. 2672 * gotten by try_charge(). 2673 */ 2674 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg, 2675 unsigned int nr_pages) 2676 { 2677 if (!mem_cgroup_is_root(memcg)) { 2678 unsigned long bytes = nr_pages * PAGE_SIZE; 2679 2680 res_counter_uncharge(&memcg->res, bytes); 2681 if (do_swap_account) 2682 res_counter_uncharge(&memcg->memsw, bytes); 2683 } 2684 } 2685 2686 /* 2687 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup. 2688 * This is useful when moving usage to parent cgroup. 2689 */ 2690 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg, 2691 unsigned int nr_pages) 2692 { 2693 unsigned long bytes = nr_pages * PAGE_SIZE; 2694 2695 if (mem_cgroup_is_root(memcg)) 2696 return; 2697 2698 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes); 2699 if (do_swap_account) 2700 res_counter_uncharge_until(&memcg->memsw, 2701 memcg->memsw.parent, bytes); 2702 } 2703 2704 /* 2705 * A helper function to get mem_cgroup from ID. must be called under 2706 * rcu_read_lock(). The caller is responsible for calling css_tryget if 2707 * the mem_cgroup is used for charging. (dropping refcnt from swap can be 2708 * called against removed memcg.) 2709 */ 2710 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id) 2711 { 2712 struct cgroup_subsys_state *css; 2713 2714 /* ID 0 is unused ID */ 2715 if (!id) 2716 return NULL; 2717 css = css_lookup(&mem_cgroup_subsys, id); 2718 if (!css) 2719 return NULL; 2720 return mem_cgroup_from_css(css); 2721 } 2722 2723 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page) 2724 { 2725 struct mem_cgroup *memcg = NULL; 2726 struct page_cgroup *pc; 2727 unsigned short id; 2728 swp_entry_t ent; 2729 2730 VM_BUG_ON(!PageLocked(page)); 2731 2732 pc = lookup_page_cgroup(page); 2733 lock_page_cgroup(pc); 2734 if (PageCgroupUsed(pc)) { 2735 memcg = pc->mem_cgroup; 2736 if (memcg && !css_tryget(&memcg->css)) 2737 memcg = NULL; 2738 } else if (PageSwapCache(page)) { 2739 ent.val = page_private(page); 2740 id = lookup_swap_cgroup_id(ent); 2741 rcu_read_lock(); 2742 memcg = mem_cgroup_lookup(id); 2743 if (memcg && !css_tryget(&memcg->css)) 2744 memcg = NULL; 2745 rcu_read_unlock(); 2746 } 2747 unlock_page_cgroup(pc); 2748 return memcg; 2749 } 2750 2751 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg, 2752 struct page *page, 2753 unsigned int nr_pages, 2754 enum charge_type ctype, 2755 bool lrucare) 2756 { 2757 struct page_cgroup *pc = lookup_page_cgroup(page); 2758 struct zone *uninitialized_var(zone); 2759 struct lruvec *lruvec; 2760 bool was_on_lru = false; 2761 bool anon; 2762 2763 lock_page_cgroup(pc); 2764 VM_BUG_ON(PageCgroupUsed(pc)); 2765 /* 2766 * we don't need page_cgroup_lock about tail pages, becase they are not 2767 * accessed by any other context at this point. 2768 */ 2769 2770 /* 2771 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page 2772 * may already be on some other mem_cgroup's LRU. Take care of it. 2773 */ 2774 if (lrucare) { 2775 zone = page_zone(page); 2776 spin_lock_irq(&zone->lru_lock); 2777 if (PageLRU(page)) { 2778 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup); 2779 ClearPageLRU(page); 2780 del_page_from_lru_list(page, lruvec, page_lru(page)); 2781 was_on_lru = true; 2782 } 2783 } 2784 2785 pc->mem_cgroup = memcg; 2786 /* 2787 * We access a page_cgroup asynchronously without lock_page_cgroup(). 2788 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup 2789 * is accessed after testing USED bit. To make pc->mem_cgroup visible 2790 * before USED bit, we need memory barrier here. 2791 * See mem_cgroup_add_lru_list(), etc. 2792 */ 2793 smp_wmb(); 2794 SetPageCgroupUsed(pc); 2795 2796 if (lrucare) { 2797 if (was_on_lru) { 2798 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup); 2799 VM_BUG_ON(PageLRU(page)); 2800 SetPageLRU(page); 2801 add_page_to_lru_list(page, lruvec, page_lru(page)); 2802 } 2803 spin_unlock_irq(&zone->lru_lock); 2804 } 2805 2806 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON) 2807 anon = true; 2808 else 2809 anon = false; 2810 2811 mem_cgroup_charge_statistics(memcg, page, anon, nr_pages); 2812 unlock_page_cgroup(pc); 2813 2814 /* 2815 * "charge_statistics" updated event counter. 2816 */ 2817 memcg_check_events(memcg, page); 2818 } 2819 2820 static DEFINE_MUTEX(set_limit_mutex); 2821 2822 #ifdef CONFIG_MEMCG_KMEM 2823 static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg) 2824 { 2825 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) && 2826 (memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK); 2827 } 2828 2829 /* 2830 * This is a bit cumbersome, but it is rarely used and avoids a backpointer 2831 * in the memcg_cache_params struct. 2832 */ 2833 static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p) 2834 { 2835 struct kmem_cache *cachep; 2836 2837 VM_BUG_ON(p->is_root_cache); 2838 cachep = p->root_cache; 2839 return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)]; 2840 } 2841 2842 #ifdef CONFIG_SLABINFO 2843 static int mem_cgroup_slabinfo_read(struct cgroup_subsys_state *css, 2844 struct cftype *cft, struct seq_file *m) 2845 { 2846 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 2847 struct memcg_cache_params *params; 2848 2849 if (!memcg_can_account_kmem(memcg)) 2850 return -EIO; 2851 2852 print_slabinfo_header(m); 2853 2854 mutex_lock(&memcg->slab_caches_mutex); 2855 list_for_each_entry(params, &memcg->memcg_slab_caches, list) 2856 cache_show(memcg_params_to_cache(params), m); 2857 mutex_unlock(&memcg->slab_caches_mutex); 2858 2859 return 0; 2860 } 2861 #endif 2862 2863 static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size) 2864 { 2865 struct res_counter *fail_res; 2866 struct mem_cgroup *_memcg; 2867 int ret = 0; 2868 bool may_oom; 2869 2870 ret = res_counter_charge(&memcg->kmem, size, &fail_res); 2871 if (ret) 2872 return ret; 2873 2874 /* 2875 * Conditions under which we can wait for the oom_killer. Those are 2876 * the same conditions tested by the core page allocator 2877 */ 2878 may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY); 2879 2880 _memcg = memcg; 2881 ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT, 2882 &_memcg, may_oom); 2883 2884 if (ret == -EINTR) { 2885 /* 2886 * __mem_cgroup_try_charge() chosed to bypass to root due to 2887 * OOM kill or fatal signal. Since our only options are to 2888 * either fail the allocation or charge it to this cgroup, do 2889 * it as a temporary condition. But we can't fail. From a 2890 * kmem/slab perspective, the cache has already been selected, 2891 * by mem_cgroup_kmem_get_cache(), so it is too late to change 2892 * our minds. 2893 * 2894 * This condition will only trigger if the task entered 2895 * memcg_charge_kmem in a sane state, but was OOM-killed during 2896 * __mem_cgroup_try_charge() above. Tasks that were already 2897 * dying when the allocation triggers should have been already 2898 * directed to the root cgroup in memcontrol.h 2899 */ 2900 res_counter_charge_nofail(&memcg->res, size, &fail_res); 2901 if (do_swap_account) 2902 res_counter_charge_nofail(&memcg->memsw, size, 2903 &fail_res); 2904 ret = 0; 2905 } else if (ret) 2906 res_counter_uncharge(&memcg->kmem, size); 2907 2908 return ret; 2909 } 2910 2911 static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size) 2912 { 2913 res_counter_uncharge(&memcg->res, size); 2914 if (do_swap_account) 2915 res_counter_uncharge(&memcg->memsw, size); 2916 2917 /* Not down to 0 */ 2918 if (res_counter_uncharge(&memcg->kmem, size)) 2919 return; 2920 2921 /* 2922 * Releases a reference taken in kmem_cgroup_css_offline in case 2923 * this last uncharge is racing with the offlining code or it is 2924 * outliving the memcg existence. 2925 * 2926 * The memory barrier imposed by test&clear is paired with the 2927 * explicit one in memcg_kmem_mark_dead(). 2928 */ 2929 if (memcg_kmem_test_and_clear_dead(memcg)) 2930 css_put(&memcg->css); 2931 } 2932 2933 void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep) 2934 { 2935 if (!memcg) 2936 return; 2937 2938 mutex_lock(&memcg->slab_caches_mutex); 2939 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches); 2940 mutex_unlock(&memcg->slab_caches_mutex); 2941 } 2942 2943 /* 2944 * helper for acessing a memcg's index. It will be used as an index in the 2945 * child cache array in kmem_cache, and also to derive its name. This function 2946 * will return -1 when this is not a kmem-limited memcg. 2947 */ 2948 int memcg_cache_id(struct mem_cgroup *memcg) 2949 { 2950 return memcg ? memcg->kmemcg_id : -1; 2951 } 2952 2953 /* 2954 * This ends up being protected by the set_limit mutex, during normal 2955 * operation, because that is its main call site. 2956 * 2957 * But when we create a new cache, we can call this as well if its parent 2958 * is kmem-limited. That will have to hold set_limit_mutex as well. 2959 */ 2960 int memcg_update_cache_sizes(struct mem_cgroup *memcg) 2961 { 2962 int num, ret; 2963 2964 num = ida_simple_get(&kmem_limited_groups, 2965 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL); 2966 if (num < 0) 2967 return num; 2968 /* 2969 * After this point, kmem_accounted (that we test atomically in 2970 * the beginning of this conditional), is no longer 0. This 2971 * guarantees only one process will set the following boolean 2972 * to true. We don't need test_and_set because we're protected 2973 * by the set_limit_mutex anyway. 2974 */ 2975 memcg_kmem_set_activated(memcg); 2976 2977 ret = memcg_update_all_caches(num+1); 2978 if (ret) { 2979 ida_simple_remove(&kmem_limited_groups, num); 2980 memcg_kmem_clear_activated(memcg); 2981 return ret; 2982 } 2983 2984 memcg->kmemcg_id = num; 2985 INIT_LIST_HEAD(&memcg->memcg_slab_caches); 2986 mutex_init(&memcg->slab_caches_mutex); 2987 return 0; 2988 } 2989 2990 static size_t memcg_caches_array_size(int num_groups) 2991 { 2992 ssize_t size; 2993 if (num_groups <= 0) 2994 return 0; 2995 2996 size = 2 * num_groups; 2997 if (size < MEMCG_CACHES_MIN_SIZE) 2998 size = MEMCG_CACHES_MIN_SIZE; 2999 else if (size > MEMCG_CACHES_MAX_SIZE) 3000 size = MEMCG_CACHES_MAX_SIZE; 3001 3002 return size; 3003 } 3004 3005 /* 3006 * We should update the current array size iff all caches updates succeed. This 3007 * can only be done from the slab side. The slab mutex needs to be held when 3008 * calling this. 3009 */ 3010 void memcg_update_array_size(int num) 3011 { 3012 if (num > memcg_limited_groups_array_size) 3013 memcg_limited_groups_array_size = memcg_caches_array_size(num); 3014 } 3015 3016 static void kmem_cache_destroy_work_func(struct work_struct *w); 3017 3018 int memcg_update_cache_size(struct kmem_cache *s, int num_groups) 3019 { 3020 struct memcg_cache_params *cur_params = s->memcg_params; 3021 3022 VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache); 3023 3024 if (num_groups > memcg_limited_groups_array_size) { 3025 int i; 3026 ssize_t size = memcg_caches_array_size(num_groups); 3027 3028 size *= sizeof(void *); 3029 size += offsetof(struct memcg_cache_params, memcg_caches); 3030 3031 s->memcg_params = kzalloc(size, GFP_KERNEL); 3032 if (!s->memcg_params) { 3033 s->memcg_params = cur_params; 3034 return -ENOMEM; 3035 } 3036 3037 s->memcg_params->is_root_cache = true; 3038 3039 /* 3040 * There is the chance it will be bigger than 3041 * memcg_limited_groups_array_size, if we failed an allocation 3042 * in a cache, in which case all caches updated before it, will 3043 * have a bigger array. 3044 * 3045 * But if that is the case, the data after 3046 * memcg_limited_groups_array_size is certainly unused 3047 */ 3048 for (i = 0; i < memcg_limited_groups_array_size; i++) { 3049 if (!cur_params->memcg_caches[i]) 3050 continue; 3051 s->memcg_params->memcg_caches[i] = 3052 cur_params->memcg_caches[i]; 3053 } 3054 3055 /* 3056 * Ideally, we would wait until all caches succeed, and only 3057 * then free the old one. But this is not worth the extra 3058 * pointer per-cache we'd have to have for this. 3059 * 3060 * It is not a big deal if some caches are left with a size 3061 * bigger than the others. And all updates will reset this 3062 * anyway. 3063 */ 3064 kfree(cur_params); 3065 } 3066 return 0; 3067 } 3068 3069 int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s, 3070 struct kmem_cache *root_cache) 3071 { 3072 size_t size; 3073 3074 if (!memcg_kmem_enabled()) 3075 return 0; 3076 3077 if (!memcg) { 3078 size = offsetof(struct memcg_cache_params, memcg_caches); 3079 size += memcg_limited_groups_array_size * sizeof(void *); 3080 } else 3081 size = sizeof(struct memcg_cache_params); 3082 3083 s->memcg_params = kzalloc(size, GFP_KERNEL); 3084 if (!s->memcg_params) 3085 return -ENOMEM; 3086 3087 if (memcg) { 3088 s->memcg_params->memcg = memcg; 3089 s->memcg_params->root_cache = root_cache; 3090 INIT_WORK(&s->memcg_params->destroy, 3091 kmem_cache_destroy_work_func); 3092 } else 3093 s->memcg_params->is_root_cache = true; 3094 3095 return 0; 3096 } 3097 3098 void memcg_release_cache(struct kmem_cache *s) 3099 { 3100 struct kmem_cache *root; 3101 struct mem_cgroup *memcg; 3102 int id; 3103 3104 /* 3105 * This happens, for instance, when a root cache goes away before we 3106 * add any memcg. 3107 */ 3108 if (!s->memcg_params) 3109 return; 3110 3111 if (s->memcg_params->is_root_cache) 3112 goto out; 3113 3114 memcg = s->memcg_params->memcg; 3115 id = memcg_cache_id(memcg); 3116 3117 root = s->memcg_params->root_cache; 3118 root->memcg_params->memcg_caches[id] = NULL; 3119 3120 mutex_lock(&memcg->slab_caches_mutex); 3121 list_del(&s->memcg_params->list); 3122 mutex_unlock(&memcg->slab_caches_mutex); 3123 3124 css_put(&memcg->css); 3125 out: 3126 kfree(s->memcg_params); 3127 } 3128 3129 /* 3130 * During the creation a new cache, we need to disable our accounting mechanism 3131 * altogether. This is true even if we are not creating, but rather just 3132 * enqueing new caches to be created. 3133 * 3134 * This is because that process will trigger allocations; some visible, like 3135 * explicit kmallocs to auxiliary data structures, name strings and internal 3136 * cache structures; some well concealed, like INIT_WORK() that can allocate 3137 * objects during debug. 3138 * 3139 * If any allocation happens during memcg_kmem_get_cache, we will recurse back 3140 * to it. This may not be a bounded recursion: since the first cache creation 3141 * failed to complete (waiting on the allocation), we'll just try to create the 3142 * cache again, failing at the same point. 3143 * 3144 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of 3145 * memcg_kmem_skip_account. So we enclose anything that might allocate memory 3146 * inside the following two functions. 3147 */ 3148 static inline void memcg_stop_kmem_account(void) 3149 { 3150 VM_BUG_ON(!current->mm); 3151 current->memcg_kmem_skip_account++; 3152 } 3153 3154 static inline void memcg_resume_kmem_account(void) 3155 { 3156 VM_BUG_ON(!current->mm); 3157 current->memcg_kmem_skip_account--; 3158 } 3159 3160 static void kmem_cache_destroy_work_func(struct work_struct *w) 3161 { 3162 struct kmem_cache *cachep; 3163 struct memcg_cache_params *p; 3164 3165 p = container_of(w, struct memcg_cache_params, destroy); 3166 3167 cachep = memcg_params_to_cache(p); 3168 3169 /* 3170 * If we get down to 0 after shrink, we could delete right away. 3171 * However, memcg_release_pages() already puts us back in the workqueue 3172 * in that case. If we proceed deleting, we'll get a dangling 3173 * reference, and removing the object from the workqueue in that case 3174 * is unnecessary complication. We are not a fast path. 3175 * 3176 * Note that this case is fundamentally different from racing with 3177 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in 3178 * kmem_cache_shrink, not only we would be reinserting a dead cache 3179 * into the queue, but doing so from inside the worker racing to 3180 * destroy it. 3181 * 3182 * So if we aren't down to zero, we'll just schedule a worker and try 3183 * again 3184 */ 3185 if (atomic_read(&cachep->memcg_params->nr_pages) != 0) { 3186 kmem_cache_shrink(cachep); 3187 if (atomic_read(&cachep->memcg_params->nr_pages) == 0) 3188 return; 3189 } else 3190 kmem_cache_destroy(cachep); 3191 } 3192 3193 void mem_cgroup_destroy_cache(struct kmem_cache *cachep) 3194 { 3195 if (!cachep->memcg_params->dead) 3196 return; 3197 3198 /* 3199 * There are many ways in which we can get here. 3200 * 3201 * We can get to a memory-pressure situation while the delayed work is 3202 * still pending to run. The vmscan shrinkers can then release all 3203 * cache memory and get us to destruction. If this is the case, we'll 3204 * be executed twice, which is a bug (the second time will execute over 3205 * bogus data). In this case, cancelling the work should be fine. 3206 * 3207 * But we can also get here from the worker itself, if 3208 * kmem_cache_shrink is enough to shake all the remaining objects and 3209 * get the page count to 0. In this case, we'll deadlock if we try to 3210 * cancel the work (the worker runs with an internal lock held, which 3211 * is the same lock we would hold for cancel_work_sync().) 3212 * 3213 * Since we can't possibly know who got us here, just refrain from 3214 * running if there is already work pending 3215 */ 3216 if (work_pending(&cachep->memcg_params->destroy)) 3217 return; 3218 /* 3219 * We have to defer the actual destroying to a workqueue, because 3220 * we might currently be in a context that cannot sleep. 3221 */ 3222 schedule_work(&cachep->memcg_params->destroy); 3223 } 3224 3225 /* 3226 * This lock protects updaters, not readers. We want readers to be as fast as 3227 * they can, and they will either see NULL or a valid cache value. Our model 3228 * allow them to see NULL, in which case the root memcg will be selected. 3229 * 3230 * We need this lock because multiple allocations to the same cache from a non 3231 * will span more than one worker. Only one of them can create the cache. 3232 */ 3233 static DEFINE_MUTEX(memcg_cache_mutex); 3234 3235 /* 3236 * Called with memcg_cache_mutex held 3237 */ 3238 static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg, 3239 struct kmem_cache *s) 3240 { 3241 struct kmem_cache *new; 3242 static char *tmp_name = NULL; 3243 3244 lockdep_assert_held(&memcg_cache_mutex); 3245 3246 /* 3247 * kmem_cache_create_memcg duplicates the given name and 3248 * cgroup_name for this name requires RCU context. 3249 * This static temporary buffer is used to prevent from 3250 * pointless shortliving allocation. 3251 */ 3252 if (!tmp_name) { 3253 tmp_name = kmalloc(PATH_MAX, GFP_KERNEL); 3254 if (!tmp_name) 3255 return NULL; 3256 } 3257 3258 rcu_read_lock(); 3259 snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name, 3260 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup)); 3261 rcu_read_unlock(); 3262 3263 new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align, 3264 (s->flags & ~SLAB_PANIC), s->ctor, s); 3265 3266 if (new) 3267 new->allocflags |= __GFP_KMEMCG; 3268 3269 return new; 3270 } 3271 3272 static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg, 3273 struct kmem_cache *cachep) 3274 { 3275 struct kmem_cache *new_cachep; 3276 int idx; 3277 3278 BUG_ON(!memcg_can_account_kmem(memcg)); 3279 3280 idx = memcg_cache_id(memcg); 3281 3282 mutex_lock(&memcg_cache_mutex); 3283 new_cachep = cachep->memcg_params->memcg_caches[idx]; 3284 if (new_cachep) { 3285 css_put(&memcg->css); 3286 goto out; 3287 } 3288 3289 new_cachep = kmem_cache_dup(memcg, cachep); 3290 if (new_cachep == NULL) { 3291 new_cachep = cachep; 3292 css_put(&memcg->css); 3293 goto out; 3294 } 3295 3296 atomic_set(&new_cachep->memcg_params->nr_pages , 0); 3297 3298 cachep->memcg_params->memcg_caches[idx] = new_cachep; 3299 /* 3300 * the readers won't lock, make sure everybody sees the updated value, 3301 * so they won't put stuff in the queue again for no reason 3302 */ 3303 wmb(); 3304 out: 3305 mutex_unlock(&memcg_cache_mutex); 3306 return new_cachep; 3307 } 3308 3309 void kmem_cache_destroy_memcg_children(struct kmem_cache *s) 3310 { 3311 struct kmem_cache *c; 3312 int i; 3313 3314 if (!s->memcg_params) 3315 return; 3316 if (!s->memcg_params->is_root_cache) 3317 return; 3318 3319 /* 3320 * If the cache is being destroyed, we trust that there is no one else 3321 * requesting objects from it. Even if there are, the sanity checks in 3322 * kmem_cache_destroy should caught this ill-case. 3323 * 3324 * Still, we don't want anyone else freeing memcg_caches under our 3325 * noses, which can happen if a new memcg comes to life. As usual, 3326 * we'll take the set_limit_mutex to protect ourselves against this. 3327 */ 3328 mutex_lock(&set_limit_mutex); 3329 for (i = 0; i < memcg_limited_groups_array_size; i++) { 3330 c = s->memcg_params->memcg_caches[i]; 3331 if (!c) 3332 continue; 3333 3334 /* 3335 * We will now manually delete the caches, so to avoid races 3336 * we need to cancel all pending destruction workers and 3337 * proceed with destruction ourselves. 3338 * 3339 * kmem_cache_destroy() will call kmem_cache_shrink internally, 3340 * and that could spawn the workers again: it is likely that 3341 * the cache still have active pages until this very moment. 3342 * This would lead us back to mem_cgroup_destroy_cache. 3343 * 3344 * But that will not execute at all if the "dead" flag is not 3345 * set, so flip it down to guarantee we are in control. 3346 */ 3347 c->memcg_params->dead = false; 3348 cancel_work_sync(&c->memcg_params->destroy); 3349 kmem_cache_destroy(c); 3350 } 3351 mutex_unlock(&set_limit_mutex); 3352 } 3353 3354 struct create_work { 3355 struct mem_cgroup *memcg; 3356 struct kmem_cache *cachep; 3357 struct work_struct work; 3358 }; 3359 3360 static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg) 3361 { 3362 struct kmem_cache *cachep; 3363 struct memcg_cache_params *params; 3364 3365 if (!memcg_kmem_is_active(memcg)) 3366 return; 3367 3368 mutex_lock(&memcg->slab_caches_mutex); 3369 list_for_each_entry(params, &memcg->memcg_slab_caches, list) { 3370 cachep = memcg_params_to_cache(params); 3371 cachep->memcg_params->dead = true; 3372 schedule_work(&cachep->memcg_params->destroy); 3373 } 3374 mutex_unlock(&memcg->slab_caches_mutex); 3375 } 3376 3377 static void memcg_create_cache_work_func(struct work_struct *w) 3378 { 3379 struct create_work *cw; 3380 3381 cw = container_of(w, struct create_work, work); 3382 memcg_create_kmem_cache(cw->memcg, cw->cachep); 3383 kfree(cw); 3384 } 3385 3386 /* 3387 * Enqueue the creation of a per-memcg kmem_cache. 3388 */ 3389 static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg, 3390 struct kmem_cache *cachep) 3391 { 3392 struct create_work *cw; 3393 3394 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT); 3395 if (cw == NULL) { 3396 css_put(&memcg->css); 3397 return; 3398 } 3399 3400 cw->memcg = memcg; 3401 cw->cachep = cachep; 3402 3403 INIT_WORK(&cw->work, memcg_create_cache_work_func); 3404 schedule_work(&cw->work); 3405 } 3406 3407 static void memcg_create_cache_enqueue(struct mem_cgroup *memcg, 3408 struct kmem_cache *cachep) 3409 { 3410 /* 3411 * We need to stop accounting when we kmalloc, because if the 3412 * corresponding kmalloc cache is not yet created, the first allocation 3413 * in __memcg_create_cache_enqueue will recurse. 3414 * 3415 * However, it is better to enclose the whole function. Depending on 3416 * the debugging options enabled, INIT_WORK(), for instance, can 3417 * trigger an allocation. This too, will make us recurse. Because at 3418 * this point we can't allow ourselves back into memcg_kmem_get_cache, 3419 * the safest choice is to do it like this, wrapping the whole function. 3420 */ 3421 memcg_stop_kmem_account(); 3422 __memcg_create_cache_enqueue(memcg, cachep); 3423 memcg_resume_kmem_account(); 3424 } 3425 /* 3426 * Return the kmem_cache we're supposed to use for a slab allocation. 3427 * We try to use the current memcg's version of the cache. 3428 * 3429 * If the cache does not exist yet, if we are the first user of it, 3430 * we either create it immediately, if possible, or create it asynchronously 3431 * in a workqueue. 3432 * In the latter case, we will let the current allocation go through with 3433 * the original cache. 3434 * 3435 * Can't be called in interrupt context or from kernel threads. 3436 * This function needs to be called with rcu_read_lock() held. 3437 */ 3438 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, 3439 gfp_t gfp) 3440 { 3441 struct mem_cgroup *memcg; 3442 int idx; 3443 3444 VM_BUG_ON(!cachep->memcg_params); 3445 VM_BUG_ON(!cachep->memcg_params->is_root_cache); 3446 3447 if (!current->mm || current->memcg_kmem_skip_account) 3448 return cachep; 3449 3450 rcu_read_lock(); 3451 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner)); 3452 3453 if (!memcg_can_account_kmem(memcg)) 3454 goto out; 3455 3456 idx = memcg_cache_id(memcg); 3457 3458 /* 3459 * barrier to mare sure we're always seeing the up to date value. The 3460 * code updating memcg_caches will issue a write barrier to match this. 3461 */ 3462 read_barrier_depends(); 3463 if (likely(cachep->memcg_params->memcg_caches[idx])) { 3464 cachep = cachep->memcg_params->memcg_caches[idx]; 3465 goto out; 3466 } 3467 3468 /* The corresponding put will be done in the workqueue. */ 3469 if (!css_tryget(&memcg->css)) 3470 goto out; 3471 rcu_read_unlock(); 3472 3473 /* 3474 * If we are in a safe context (can wait, and not in interrupt 3475 * context), we could be be predictable and return right away. 3476 * This would guarantee that the allocation being performed 3477 * already belongs in the new cache. 3478 * 3479 * However, there are some clashes that can arrive from locking. 3480 * For instance, because we acquire the slab_mutex while doing 3481 * kmem_cache_dup, this means no further allocation could happen 3482 * with the slab_mutex held. 3483 * 3484 * Also, because cache creation issue get_online_cpus(), this 3485 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex, 3486 * that ends up reversed during cpu hotplug. (cpuset allocates 3487 * a bunch of GFP_KERNEL memory during cpuup). Due to all that, 3488 * better to defer everything. 3489 */ 3490 memcg_create_cache_enqueue(memcg, cachep); 3491 return cachep; 3492 out: 3493 rcu_read_unlock(); 3494 return cachep; 3495 } 3496 EXPORT_SYMBOL(__memcg_kmem_get_cache); 3497 3498 /* 3499 * We need to verify if the allocation against current->mm->owner's memcg is 3500 * possible for the given order. But the page is not allocated yet, so we'll 3501 * need a further commit step to do the final arrangements. 3502 * 3503 * It is possible for the task to switch cgroups in this mean time, so at 3504 * commit time, we can't rely on task conversion any longer. We'll then use 3505 * the handle argument to return to the caller which cgroup we should commit 3506 * against. We could also return the memcg directly and avoid the pointer 3507 * passing, but a boolean return value gives better semantics considering 3508 * the compiled-out case as well. 3509 * 3510 * Returning true means the allocation is possible. 3511 */ 3512 bool 3513 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order) 3514 { 3515 struct mem_cgroup *memcg; 3516 int ret; 3517 3518 *_memcg = NULL; 3519 3520 /* 3521 * Disabling accounting is only relevant for some specific memcg 3522 * internal allocations. Therefore we would initially not have such 3523 * check here, since direct calls to the page allocator that are marked 3524 * with GFP_KMEMCG only happen outside memcg core. We are mostly 3525 * concerned with cache allocations, and by having this test at 3526 * memcg_kmem_get_cache, we are already able to relay the allocation to 3527 * the root cache and bypass the memcg cache altogether. 3528 * 3529 * There is one exception, though: the SLUB allocator does not create 3530 * large order caches, but rather service large kmallocs directly from 3531 * the page allocator. Therefore, the following sequence when backed by 3532 * the SLUB allocator: 3533 * 3534 * memcg_stop_kmem_account(); 3535 * kmalloc(<large_number>) 3536 * memcg_resume_kmem_account(); 3537 * 3538 * would effectively ignore the fact that we should skip accounting, 3539 * since it will drive us directly to this function without passing 3540 * through the cache selector memcg_kmem_get_cache. Such large 3541 * allocations are extremely rare but can happen, for instance, for the 3542 * cache arrays. We bring this test here. 3543 */ 3544 if (!current->mm || current->memcg_kmem_skip_account) 3545 return true; 3546 3547 memcg = try_get_mem_cgroup_from_mm(current->mm); 3548 3549 /* 3550 * very rare case described in mem_cgroup_from_task. Unfortunately there 3551 * isn't much we can do without complicating this too much, and it would 3552 * be gfp-dependent anyway. Just let it go 3553 */ 3554 if (unlikely(!memcg)) 3555 return true; 3556 3557 if (!memcg_can_account_kmem(memcg)) { 3558 css_put(&memcg->css); 3559 return true; 3560 } 3561 3562 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order); 3563 if (!ret) 3564 *_memcg = memcg; 3565 3566 css_put(&memcg->css); 3567 return (ret == 0); 3568 } 3569 3570 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, 3571 int order) 3572 { 3573 struct page_cgroup *pc; 3574 3575 VM_BUG_ON(mem_cgroup_is_root(memcg)); 3576 3577 /* The page allocation failed. Revert */ 3578 if (!page) { 3579 memcg_uncharge_kmem(memcg, PAGE_SIZE << order); 3580 return; 3581 } 3582 3583 pc = lookup_page_cgroup(page); 3584 lock_page_cgroup(pc); 3585 pc->mem_cgroup = memcg; 3586 SetPageCgroupUsed(pc); 3587 unlock_page_cgroup(pc); 3588 } 3589 3590 void __memcg_kmem_uncharge_pages(struct page *page, int order) 3591 { 3592 struct mem_cgroup *memcg = NULL; 3593 struct page_cgroup *pc; 3594 3595 3596 pc = lookup_page_cgroup(page); 3597 /* 3598 * Fast unlocked return. Theoretically might have changed, have to 3599 * check again after locking. 3600 */ 3601 if (!PageCgroupUsed(pc)) 3602 return; 3603 3604 lock_page_cgroup(pc); 3605 if (PageCgroupUsed(pc)) { 3606 memcg = pc->mem_cgroup; 3607 ClearPageCgroupUsed(pc); 3608 } 3609 unlock_page_cgroup(pc); 3610 3611 /* 3612 * We trust that only if there is a memcg associated with the page, it 3613 * is a valid allocation 3614 */ 3615 if (!memcg) 3616 return; 3617 3618 VM_BUG_ON(mem_cgroup_is_root(memcg)); 3619 memcg_uncharge_kmem(memcg, PAGE_SIZE << order); 3620 } 3621 #else 3622 static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg) 3623 { 3624 } 3625 #endif /* CONFIG_MEMCG_KMEM */ 3626 3627 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3628 3629 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION) 3630 /* 3631 * Because tail pages are not marked as "used", set it. We're under 3632 * zone->lru_lock, 'splitting on pmd' and compound_lock. 3633 * charge/uncharge will be never happen and move_account() is done under 3634 * compound_lock(), so we don't have to take care of races. 3635 */ 3636 void mem_cgroup_split_huge_fixup(struct page *head) 3637 { 3638 struct page_cgroup *head_pc = lookup_page_cgroup(head); 3639 struct page_cgroup *pc; 3640 struct mem_cgroup *memcg; 3641 int i; 3642 3643 if (mem_cgroup_disabled()) 3644 return; 3645 3646 memcg = head_pc->mem_cgroup; 3647 for (i = 1; i < HPAGE_PMD_NR; i++) { 3648 pc = head_pc + i; 3649 pc->mem_cgroup = memcg; 3650 smp_wmb();/* see __commit_charge() */ 3651 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT; 3652 } 3653 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], 3654 HPAGE_PMD_NR); 3655 } 3656 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 3657 3658 static inline 3659 void mem_cgroup_move_account_page_stat(struct mem_cgroup *from, 3660 struct mem_cgroup *to, 3661 unsigned int nr_pages, 3662 enum mem_cgroup_stat_index idx) 3663 { 3664 /* Update stat data for mem_cgroup */ 3665 preempt_disable(); 3666 WARN_ON_ONCE(from->stat->count[idx] < nr_pages); 3667 __this_cpu_add(from->stat->count[idx], -nr_pages); 3668 __this_cpu_add(to->stat->count[idx], nr_pages); 3669 preempt_enable(); 3670 } 3671 3672 /** 3673 * mem_cgroup_move_account - move account of the page 3674 * @page: the page 3675 * @nr_pages: number of regular pages (>1 for huge pages) 3676 * @pc: page_cgroup of the page. 3677 * @from: mem_cgroup which the page is moved from. 3678 * @to: mem_cgroup which the page is moved to. @from != @to. 3679 * 3680 * The caller must confirm following. 3681 * - page is not on LRU (isolate_page() is useful.) 3682 * - compound_lock is held when nr_pages > 1 3683 * 3684 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" 3685 * from old cgroup. 3686 */ 3687 static int mem_cgroup_move_account(struct page *page, 3688 unsigned int nr_pages, 3689 struct page_cgroup *pc, 3690 struct mem_cgroup *from, 3691 struct mem_cgroup *to) 3692 { 3693 unsigned long flags; 3694 int ret; 3695 bool anon = PageAnon(page); 3696 3697 VM_BUG_ON(from == to); 3698 VM_BUG_ON(PageLRU(page)); 3699 /* 3700 * The page is isolated from LRU. So, collapse function 3701 * will not handle this page. But page splitting can happen. 3702 * Do this check under compound_page_lock(). The caller should 3703 * hold it. 3704 */ 3705 ret = -EBUSY; 3706 if (nr_pages > 1 && !PageTransHuge(page)) 3707 goto out; 3708 3709 lock_page_cgroup(pc); 3710 3711 ret = -EINVAL; 3712 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from) 3713 goto unlock; 3714 3715 move_lock_mem_cgroup(from, &flags); 3716 3717 if (!anon && page_mapped(page)) 3718 mem_cgroup_move_account_page_stat(from, to, nr_pages, 3719 MEM_CGROUP_STAT_FILE_MAPPED); 3720 3721 if (PageWriteback(page)) 3722 mem_cgroup_move_account_page_stat(from, to, nr_pages, 3723 MEM_CGROUP_STAT_WRITEBACK); 3724 3725 mem_cgroup_charge_statistics(from, page, anon, -nr_pages); 3726 3727 /* caller should have done css_get */ 3728 pc->mem_cgroup = to; 3729 mem_cgroup_charge_statistics(to, page, anon, nr_pages); 3730 move_unlock_mem_cgroup(from, &flags); 3731 ret = 0; 3732 unlock: 3733 unlock_page_cgroup(pc); 3734 /* 3735 * check events 3736 */ 3737 memcg_check_events(to, page); 3738 memcg_check_events(from, page); 3739 out: 3740 return ret; 3741 } 3742 3743 /** 3744 * mem_cgroup_move_parent - moves page to the parent group 3745 * @page: the page to move 3746 * @pc: page_cgroup of the page 3747 * @child: page's cgroup 3748 * 3749 * move charges to its parent or the root cgroup if the group has no 3750 * parent (aka use_hierarchy==0). 3751 * Although this might fail (get_page_unless_zero, isolate_lru_page or 3752 * mem_cgroup_move_account fails) the failure is always temporary and 3753 * it signals a race with a page removal/uncharge or migration. In the 3754 * first case the page is on the way out and it will vanish from the LRU 3755 * on the next attempt and the call should be retried later. 3756 * Isolation from the LRU fails only if page has been isolated from 3757 * the LRU since we looked at it and that usually means either global 3758 * reclaim or migration going on. The page will either get back to the 3759 * LRU or vanish. 3760 * Finaly mem_cgroup_move_account fails only if the page got uncharged 3761 * (!PageCgroupUsed) or moved to a different group. The page will 3762 * disappear in the next attempt. 3763 */ 3764 static int mem_cgroup_move_parent(struct page *page, 3765 struct page_cgroup *pc, 3766 struct mem_cgroup *child) 3767 { 3768 struct mem_cgroup *parent; 3769 unsigned int nr_pages; 3770 unsigned long uninitialized_var(flags); 3771 int ret; 3772 3773 VM_BUG_ON(mem_cgroup_is_root(child)); 3774 3775 ret = -EBUSY; 3776 if (!get_page_unless_zero(page)) 3777 goto out; 3778 if (isolate_lru_page(page)) 3779 goto put; 3780 3781 nr_pages = hpage_nr_pages(page); 3782 3783 parent = parent_mem_cgroup(child); 3784 /* 3785 * If no parent, move charges to root cgroup. 3786 */ 3787 if (!parent) 3788 parent = root_mem_cgroup; 3789 3790 if (nr_pages > 1) { 3791 VM_BUG_ON(!PageTransHuge(page)); 3792 flags = compound_lock_irqsave(page); 3793 } 3794 3795 ret = mem_cgroup_move_account(page, nr_pages, 3796 pc, child, parent); 3797 if (!ret) 3798 __mem_cgroup_cancel_local_charge(child, nr_pages); 3799 3800 if (nr_pages > 1) 3801 compound_unlock_irqrestore(page, flags); 3802 putback_lru_page(page); 3803 put: 3804 put_page(page); 3805 out: 3806 return ret; 3807 } 3808 3809 /* 3810 * Charge the memory controller for page usage. 3811 * Return 3812 * 0 if the charge was successful 3813 * < 0 if the cgroup is over its limit 3814 */ 3815 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm, 3816 gfp_t gfp_mask, enum charge_type ctype) 3817 { 3818 struct mem_cgroup *memcg = NULL; 3819 unsigned int nr_pages = 1; 3820 bool oom = true; 3821 int ret; 3822 3823 if (PageTransHuge(page)) { 3824 nr_pages <<= compound_order(page); 3825 VM_BUG_ON(!PageTransHuge(page)); 3826 /* 3827 * Never OOM-kill a process for a huge page. The 3828 * fault handler will fall back to regular pages. 3829 */ 3830 oom = false; 3831 } 3832 3833 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom); 3834 if (ret == -ENOMEM) 3835 return ret; 3836 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false); 3837 return 0; 3838 } 3839 3840 int mem_cgroup_newpage_charge(struct page *page, 3841 struct mm_struct *mm, gfp_t gfp_mask) 3842 { 3843 if (mem_cgroup_disabled()) 3844 return 0; 3845 VM_BUG_ON(page_mapped(page)); 3846 VM_BUG_ON(page->mapping && !PageAnon(page)); 3847 VM_BUG_ON(!mm); 3848 return mem_cgroup_charge_common(page, mm, gfp_mask, 3849 MEM_CGROUP_CHARGE_TYPE_ANON); 3850 } 3851 3852 /* 3853 * While swap-in, try_charge -> commit or cancel, the page is locked. 3854 * And when try_charge() successfully returns, one refcnt to memcg without 3855 * struct page_cgroup is acquired. This refcnt will be consumed by 3856 * "commit()" or removed by "cancel()" 3857 */ 3858 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm, 3859 struct page *page, 3860 gfp_t mask, 3861 struct mem_cgroup **memcgp) 3862 { 3863 struct mem_cgroup *memcg; 3864 struct page_cgroup *pc; 3865 int ret; 3866 3867 pc = lookup_page_cgroup(page); 3868 /* 3869 * Every swap fault against a single page tries to charge the 3870 * page, bail as early as possible. shmem_unuse() encounters 3871 * already charged pages, too. The USED bit is protected by 3872 * the page lock, which serializes swap cache removal, which 3873 * in turn serializes uncharging. 3874 */ 3875 if (PageCgroupUsed(pc)) 3876 return 0; 3877 if (!do_swap_account) 3878 goto charge_cur_mm; 3879 memcg = try_get_mem_cgroup_from_page(page); 3880 if (!memcg) 3881 goto charge_cur_mm; 3882 *memcgp = memcg; 3883 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true); 3884 css_put(&memcg->css); 3885 if (ret == -EINTR) 3886 ret = 0; 3887 return ret; 3888 charge_cur_mm: 3889 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true); 3890 if (ret == -EINTR) 3891 ret = 0; 3892 return ret; 3893 } 3894 3895 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page, 3896 gfp_t gfp_mask, struct mem_cgroup **memcgp) 3897 { 3898 *memcgp = NULL; 3899 if (mem_cgroup_disabled()) 3900 return 0; 3901 /* 3902 * A racing thread's fault, or swapoff, may have already 3903 * updated the pte, and even removed page from swap cache: in 3904 * those cases unuse_pte()'s pte_same() test will fail; but 3905 * there's also a KSM case which does need to charge the page. 3906 */ 3907 if (!PageSwapCache(page)) { 3908 int ret; 3909 3910 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true); 3911 if (ret == -EINTR) 3912 ret = 0; 3913 return ret; 3914 } 3915 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp); 3916 } 3917 3918 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg) 3919 { 3920 if (mem_cgroup_disabled()) 3921 return; 3922 if (!memcg) 3923 return; 3924 __mem_cgroup_cancel_charge(memcg, 1); 3925 } 3926 3927 static void 3928 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg, 3929 enum charge_type ctype) 3930 { 3931 if (mem_cgroup_disabled()) 3932 return; 3933 if (!memcg) 3934 return; 3935 3936 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true); 3937 /* 3938 * Now swap is on-memory. This means this page may be 3939 * counted both as mem and swap....double count. 3940 * Fix it by uncharging from memsw. Basically, this SwapCache is stable 3941 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page() 3942 * may call delete_from_swap_cache() before reach here. 3943 */ 3944 if (do_swap_account && PageSwapCache(page)) { 3945 swp_entry_t ent = {.val = page_private(page)}; 3946 mem_cgroup_uncharge_swap(ent); 3947 } 3948 } 3949 3950 void mem_cgroup_commit_charge_swapin(struct page *page, 3951 struct mem_cgroup *memcg) 3952 { 3953 __mem_cgroup_commit_charge_swapin(page, memcg, 3954 MEM_CGROUP_CHARGE_TYPE_ANON); 3955 } 3956 3957 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm, 3958 gfp_t gfp_mask) 3959 { 3960 struct mem_cgroup *memcg = NULL; 3961 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE; 3962 int ret; 3963 3964 if (mem_cgroup_disabled()) 3965 return 0; 3966 if (PageCompound(page)) 3967 return 0; 3968 3969 if (!PageSwapCache(page)) 3970 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type); 3971 else { /* page is swapcache/shmem */ 3972 ret = __mem_cgroup_try_charge_swapin(mm, page, 3973 gfp_mask, &memcg); 3974 if (!ret) 3975 __mem_cgroup_commit_charge_swapin(page, memcg, type); 3976 } 3977 return ret; 3978 } 3979 3980 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg, 3981 unsigned int nr_pages, 3982 const enum charge_type ctype) 3983 { 3984 struct memcg_batch_info *batch = NULL; 3985 bool uncharge_memsw = true; 3986 3987 /* If swapout, usage of swap doesn't decrease */ 3988 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) 3989 uncharge_memsw = false; 3990 3991 batch = ¤t->memcg_batch; 3992 /* 3993 * In usual, we do css_get() when we remember memcg pointer. 3994 * But in this case, we keep res->usage until end of a series of 3995 * uncharges. Then, it's ok to ignore memcg's refcnt. 3996 */ 3997 if (!batch->memcg) 3998 batch->memcg = memcg; 3999 /* 4000 * do_batch > 0 when unmapping pages or inode invalidate/truncate. 4001 * In those cases, all pages freed continuously can be expected to be in 4002 * the same cgroup and we have chance to coalesce uncharges. 4003 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE) 4004 * because we want to do uncharge as soon as possible. 4005 */ 4006 4007 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE)) 4008 goto direct_uncharge; 4009 4010 if (nr_pages > 1) 4011 goto direct_uncharge; 4012 4013 /* 4014 * In typical case, batch->memcg == mem. This means we can 4015 * merge a series of uncharges to an uncharge of res_counter. 4016 * If not, we uncharge res_counter ony by one. 4017 */ 4018 if (batch->memcg != memcg) 4019 goto direct_uncharge; 4020 /* remember freed charge and uncharge it later */ 4021 batch->nr_pages++; 4022 if (uncharge_memsw) 4023 batch->memsw_nr_pages++; 4024 return; 4025 direct_uncharge: 4026 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE); 4027 if (uncharge_memsw) 4028 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE); 4029 if (unlikely(batch->memcg != memcg)) 4030 memcg_oom_recover(memcg); 4031 } 4032 4033 /* 4034 * uncharge if !page_mapped(page) 4035 */ 4036 static struct mem_cgroup * 4037 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype, 4038 bool end_migration) 4039 { 4040 struct mem_cgroup *memcg = NULL; 4041 unsigned int nr_pages = 1; 4042 struct page_cgroup *pc; 4043 bool anon; 4044 4045 if (mem_cgroup_disabled()) 4046 return NULL; 4047 4048 if (PageTransHuge(page)) { 4049 nr_pages <<= compound_order(page); 4050 VM_BUG_ON(!PageTransHuge(page)); 4051 } 4052 /* 4053 * Check if our page_cgroup is valid 4054 */ 4055 pc = lookup_page_cgroup(page); 4056 if (unlikely(!PageCgroupUsed(pc))) 4057 return NULL; 4058 4059 lock_page_cgroup(pc); 4060 4061 memcg = pc->mem_cgroup; 4062 4063 if (!PageCgroupUsed(pc)) 4064 goto unlock_out; 4065 4066 anon = PageAnon(page); 4067 4068 switch (ctype) { 4069 case MEM_CGROUP_CHARGE_TYPE_ANON: 4070 /* 4071 * Generally PageAnon tells if it's the anon statistics to be 4072 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is 4073 * used before page reached the stage of being marked PageAnon. 4074 */ 4075 anon = true; 4076 /* fallthrough */ 4077 case MEM_CGROUP_CHARGE_TYPE_DROP: 4078 /* See mem_cgroup_prepare_migration() */ 4079 if (page_mapped(page)) 4080 goto unlock_out; 4081 /* 4082 * Pages under migration may not be uncharged. But 4083 * end_migration() /must/ be the one uncharging the 4084 * unused post-migration page and so it has to call 4085 * here with the migration bit still set. See the 4086 * res_counter handling below. 4087 */ 4088 if (!end_migration && PageCgroupMigration(pc)) 4089 goto unlock_out; 4090 break; 4091 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT: 4092 if (!PageAnon(page)) { /* Shared memory */ 4093 if (page->mapping && !page_is_file_cache(page)) 4094 goto unlock_out; 4095 } else if (page_mapped(page)) /* Anon */ 4096 goto unlock_out; 4097 break; 4098 default: 4099 break; 4100 } 4101 4102 mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages); 4103 4104 ClearPageCgroupUsed(pc); 4105 /* 4106 * pc->mem_cgroup is not cleared here. It will be accessed when it's 4107 * freed from LRU. This is safe because uncharged page is expected not 4108 * to be reused (freed soon). Exception is SwapCache, it's handled by 4109 * special functions. 4110 */ 4111 4112 unlock_page_cgroup(pc); 4113 /* 4114 * even after unlock, we have memcg->res.usage here and this memcg 4115 * will never be freed, so it's safe to call css_get(). 4116 */ 4117 memcg_check_events(memcg, page); 4118 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) { 4119 mem_cgroup_swap_statistics(memcg, true); 4120 css_get(&memcg->css); 4121 } 4122 /* 4123 * Migration does not charge the res_counter for the 4124 * replacement page, so leave it alone when phasing out the 4125 * page that is unused after the migration. 4126 */ 4127 if (!end_migration && !mem_cgroup_is_root(memcg)) 4128 mem_cgroup_do_uncharge(memcg, nr_pages, ctype); 4129 4130 return memcg; 4131 4132 unlock_out: 4133 unlock_page_cgroup(pc); 4134 return NULL; 4135 } 4136 4137 void mem_cgroup_uncharge_page(struct page *page) 4138 { 4139 /* early check. */ 4140 if (page_mapped(page)) 4141 return; 4142 VM_BUG_ON(page->mapping && !PageAnon(page)); 4143 /* 4144 * If the page is in swap cache, uncharge should be deferred 4145 * to the swap path, which also properly accounts swap usage 4146 * and handles memcg lifetime. 4147 * 4148 * Note that this check is not stable and reclaim may add the 4149 * page to swap cache at any time after this. However, if the 4150 * page is not in swap cache by the time page->mapcount hits 4151 * 0, there won't be any page table references to the swap 4152 * slot, and reclaim will free it and not actually write the 4153 * page to disk. 4154 */ 4155 if (PageSwapCache(page)) 4156 return; 4157 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false); 4158 } 4159 4160 void mem_cgroup_uncharge_cache_page(struct page *page) 4161 { 4162 VM_BUG_ON(page_mapped(page)); 4163 VM_BUG_ON(page->mapping); 4164 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false); 4165 } 4166 4167 /* 4168 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate. 4169 * In that cases, pages are freed continuously and we can expect pages 4170 * are in the same memcg. All these calls itself limits the number of 4171 * pages freed at once, then uncharge_start/end() is called properly. 4172 * This may be called prural(2) times in a context, 4173 */ 4174 4175 void mem_cgroup_uncharge_start(void) 4176 { 4177 current->memcg_batch.do_batch++; 4178 /* We can do nest. */ 4179 if (current->memcg_batch.do_batch == 1) { 4180 current->memcg_batch.memcg = NULL; 4181 current->memcg_batch.nr_pages = 0; 4182 current->memcg_batch.memsw_nr_pages = 0; 4183 } 4184 } 4185 4186 void mem_cgroup_uncharge_end(void) 4187 { 4188 struct memcg_batch_info *batch = ¤t->memcg_batch; 4189 4190 if (!batch->do_batch) 4191 return; 4192 4193 batch->do_batch--; 4194 if (batch->do_batch) /* If stacked, do nothing. */ 4195 return; 4196 4197 if (!batch->memcg) 4198 return; 4199 /* 4200 * This "batch->memcg" is valid without any css_get/put etc... 4201 * bacause we hide charges behind us. 4202 */ 4203 if (batch->nr_pages) 4204 res_counter_uncharge(&batch->memcg->res, 4205 batch->nr_pages * PAGE_SIZE); 4206 if (batch->memsw_nr_pages) 4207 res_counter_uncharge(&batch->memcg->memsw, 4208 batch->memsw_nr_pages * PAGE_SIZE); 4209 memcg_oom_recover(batch->memcg); 4210 /* forget this pointer (for sanity check) */ 4211 batch->memcg = NULL; 4212 } 4213 4214 #ifdef CONFIG_SWAP 4215 /* 4216 * called after __delete_from_swap_cache() and drop "page" account. 4217 * memcg information is recorded to swap_cgroup of "ent" 4218 */ 4219 void 4220 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout) 4221 { 4222 struct mem_cgroup *memcg; 4223 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT; 4224 4225 if (!swapout) /* this was a swap cache but the swap is unused ! */ 4226 ctype = MEM_CGROUP_CHARGE_TYPE_DROP; 4227 4228 memcg = __mem_cgroup_uncharge_common(page, ctype, false); 4229 4230 /* 4231 * record memcg information, if swapout && memcg != NULL, 4232 * css_get() was called in uncharge(). 4233 */ 4234 if (do_swap_account && swapout && memcg) 4235 swap_cgroup_record(ent, css_id(&memcg->css)); 4236 } 4237 #endif 4238 4239 #ifdef CONFIG_MEMCG_SWAP 4240 /* 4241 * called from swap_entry_free(). remove record in swap_cgroup and 4242 * uncharge "memsw" account. 4243 */ 4244 void mem_cgroup_uncharge_swap(swp_entry_t ent) 4245 { 4246 struct mem_cgroup *memcg; 4247 unsigned short id; 4248 4249 if (!do_swap_account) 4250 return; 4251 4252 id = swap_cgroup_record(ent, 0); 4253 rcu_read_lock(); 4254 memcg = mem_cgroup_lookup(id); 4255 if (memcg) { 4256 /* 4257 * We uncharge this because swap is freed. 4258 * This memcg can be obsolete one. We avoid calling css_tryget 4259 */ 4260 if (!mem_cgroup_is_root(memcg)) 4261 res_counter_uncharge(&memcg->memsw, PAGE_SIZE); 4262 mem_cgroup_swap_statistics(memcg, false); 4263 css_put(&memcg->css); 4264 } 4265 rcu_read_unlock(); 4266 } 4267 4268 /** 4269 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 4270 * @entry: swap entry to be moved 4271 * @from: mem_cgroup which the entry is moved from 4272 * @to: mem_cgroup which the entry is moved to 4273 * 4274 * It succeeds only when the swap_cgroup's record for this entry is the same 4275 * as the mem_cgroup's id of @from. 4276 * 4277 * Returns 0 on success, -EINVAL on failure. 4278 * 4279 * The caller must have charged to @to, IOW, called res_counter_charge() about 4280 * both res and memsw, and called css_get(). 4281 */ 4282 static int mem_cgroup_move_swap_account(swp_entry_t entry, 4283 struct mem_cgroup *from, struct mem_cgroup *to) 4284 { 4285 unsigned short old_id, new_id; 4286 4287 old_id = css_id(&from->css); 4288 new_id = css_id(&to->css); 4289 4290 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 4291 mem_cgroup_swap_statistics(from, false); 4292 mem_cgroup_swap_statistics(to, true); 4293 /* 4294 * This function is only called from task migration context now. 4295 * It postpones res_counter and refcount handling till the end 4296 * of task migration(mem_cgroup_clear_mc()) for performance 4297 * improvement. But we cannot postpone css_get(to) because if 4298 * the process that has been moved to @to does swap-in, the 4299 * refcount of @to might be decreased to 0. 4300 * 4301 * We are in attach() phase, so the cgroup is guaranteed to be 4302 * alive, so we can just call css_get(). 4303 */ 4304 css_get(&to->css); 4305 return 0; 4306 } 4307 return -EINVAL; 4308 } 4309 #else 4310 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 4311 struct mem_cgroup *from, struct mem_cgroup *to) 4312 { 4313 return -EINVAL; 4314 } 4315 #endif 4316 4317 /* 4318 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old 4319 * page belongs to. 4320 */ 4321 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage, 4322 struct mem_cgroup **memcgp) 4323 { 4324 struct mem_cgroup *memcg = NULL; 4325 unsigned int nr_pages = 1; 4326 struct page_cgroup *pc; 4327 enum charge_type ctype; 4328 4329 *memcgp = NULL; 4330 4331 if (mem_cgroup_disabled()) 4332 return; 4333 4334 if (PageTransHuge(page)) 4335 nr_pages <<= compound_order(page); 4336 4337 pc = lookup_page_cgroup(page); 4338 lock_page_cgroup(pc); 4339 if (PageCgroupUsed(pc)) { 4340 memcg = pc->mem_cgroup; 4341 css_get(&memcg->css); 4342 /* 4343 * At migrating an anonymous page, its mapcount goes down 4344 * to 0 and uncharge() will be called. But, even if it's fully 4345 * unmapped, migration may fail and this page has to be 4346 * charged again. We set MIGRATION flag here and delay uncharge 4347 * until end_migration() is called 4348 * 4349 * Corner Case Thinking 4350 * A) 4351 * When the old page was mapped as Anon and it's unmap-and-freed 4352 * while migration was ongoing. 4353 * If unmap finds the old page, uncharge() of it will be delayed 4354 * until end_migration(). If unmap finds a new page, it's 4355 * uncharged when it make mapcount to be 1->0. If unmap code 4356 * finds swap_migration_entry, the new page will not be mapped 4357 * and end_migration() will find it(mapcount==0). 4358 * 4359 * B) 4360 * When the old page was mapped but migraion fails, the kernel 4361 * remaps it. A charge for it is kept by MIGRATION flag even 4362 * if mapcount goes down to 0. We can do remap successfully 4363 * without charging it again. 4364 * 4365 * C) 4366 * The "old" page is under lock_page() until the end of 4367 * migration, so, the old page itself will not be swapped-out. 4368 * If the new page is swapped out before end_migraton, our 4369 * hook to usual swap-out path will catch the event. 4370 */ 4371 if (PageAnon(page)) 4372 SetPageCgroupMigration(pc); 4373 } 4374 unlock_page_cgroup(pc); 4375 /* 4376 * If the page is not charged at this point, 4377 * we return here. 4378 */ 4379 if (!memcg) 4380 return; 4381 4382 *memcgp = memcg; 4383 /* 4384 * We charge new page before it's used/mapped. So, even if unlock_page() 4385 * is called before end_migration, we can catch all events on this new 4386 * page. In the case new page is migrated but not remapped, new page's 4387 * mapcount will be finally 0 and we call uncharge in end_migration(). 4388 */ 4389 if (PageAnon(page)) 4390 ctype = MEM_CGROUP_CHARGE_TYPE_ANON; 4391 else 4392 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE; 4393 /* 4394 * The page is committed to the memcg, but it's not actually 4395 * charged to the res_counter since we plan on replacing the 4396 * old one and only one page is going to be left afterwards. 4397 */ 4398 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false); 4399 } 4400 4401 /* remove redundant charge if migration failed*/ 4402 void mem_cgroup_end_migration(struct mem_cgroup *memcg, 4403 struct page *oldpage, struct page *newpage, bool migration_ok) 4404 { 4405 struct page *used, *unused; 4406 struct page_cgroup *pc; 4407 bool anon; 4408 4409 if (!memcg) 4410 return; 4411 4412 if (!migration_ok) { 4413 used = oldpage; 4414 unused = newpage; 4415 } else { 4416 used = newpage; 4417 unused = oldpage; 4418 } 4419 anon = PageAnon(used); 4420 __mem_cgroup_uncharge_common(unused, 4421 anon ? MEM_CGROUP_CHARGE_TYPE_ANON 4422 : MEM_CGROUP_CHARGE_TYPE_CACHE, 4423 true); 4424 css_put(&memcg->css); 4425 /* 4426 * We disallowed uncharge of pages under migration because mapcount 4427 * of the page goes down to zero, temporarly. 4428 * Clear the flag and check the page should be charged. 4429 */ 4430 pc = lookup_page_cgroup(oldpage); 4431 lock_page_cgroup(pc); 4432 ClearPageCgroupMigration(pc); 4433 unlock_page_cgroup(pc); 4434 4435 /* 4436 * If a page is a file cache, radix-tree replacement is very atomic 4437 * and we can skip this check. When it was an Anon page, its mapcount 4438 * goes down to 0. But because we added MIGRATION flage, it's not 4439 * uncharged yet. There are several case but page->mapcount check 4440 * and USED bit check in mem_cgroup_uncharge_page() will do enough 4441 * check. (see prepare_charge() also) 4442 */ 4443 if (anon) 4444 mem_cgroup_uncharge_page(used); 4445 } 4446 4447 /* 4448 * At replace page cache, newpage is not under any memcg but it's on 4449 * LRU. So, this function doesn't touch res_counter but handles LRU 4450 * in correct way. Both pages are locked so we cannot race with uncharge. 4451 */ 4452 void mem_cgroup_replace_page_cache(struct page *oldpage, 4453 struct page *newpage) 4454 { 4455 struct mem_cgroup *memcg = NULL; 4456 struct page_cgroup *pc; 4457 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE; 4458 4459 if (mem_cgroup_disabled()) 4460 return; 4461 4462 pc = lookup_page_cgroup(oldpage); 4463 /* fix accounting on old pages */ 4464 lock_page_cgroup(pc); 4465 if (PageCgroupUsed(pc)) { 4466 memcg = pc->mem_cgroup; 4467 mem_cgroup_charge_statistics(memcg, oldpage, false, -1); 4468 ClearPageCgroupUsed(pc); 4469 } 4470 unlock_page_cgroup(pc); 4471 4472 /* 4473 * When called from shmem_replace_page(), in some cases the 4474 * oldpage has already been charged, and in some cases not. 4475 */ 4476 if (!memcg) 4477 return; 4478 /* 4479 * Even if newpage->mapping was NULL before starting replacement, 4480 * the newpage may be on LRU(or pagevec for LRU) already. We lock 4481 * LRU while we overwrite pc->mem_cgroup. 4482 */ 4483 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true); 4484 } 4485 4486 #ifdef CONFIG_DEBUG_VM 4487 static struct page_cgroup *lookup_page_cgroup_used(struct page *page) 4488 { 4489 struct page_cgroup *pc; 4490 4491 pc = lookup_page_cgroup(page); 4492 /* 4493 * Can be NULL while feeding pages into the page allocator for 4494 * the first time, i.e. during boot or memory hotplug; 4495 * or when mem_cgroup_disabled(). 4496 */ 4497 if (likely(pc) && PageCgroupUsed(pc)) 4498 return pc; 4499 return NULL; 4500 } 4501 4502 bool mem_cgroup_bad_page_check(struct page *page) 4503 { 4504 if (mem_cgroup_disabled()) 4505 return false; 4506 4507 return lookup_page_cgroup_used(page) != NULL; 4508 } 4509 4510 void mem_cgroup_print_bad_page(struct page *page) 4511 { 4512 struct page_cgroup *pc; 4513 4514 pc = lookup_page_cgroup_used(page); 4515 if (pc) { 4516 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n", 4517 pc, pc->flags, pc->mem_cgroup); 4518 } 4519 } 4520 #endif 4521 4522 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg, 4523 unsigned long long val) 4524 { 4525 int retry_count; 4526 u64 memswlimit, memlimit; 4527 int ret = 0; 4528 int children = mem_cgroup_count_children(memcg); 4529 u64 curusage, oldusage; 4530 int enlarge; 4531 4532 /* 4533 * For keeping hierarchical_reclaim simple, how long we should retry 4534 * is depends on callers. We set our retry-count to be function 4535 * of # of children which we should visit in this loop. 4536 */ 4537 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children; 4538 4539 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE); 4540 4541 enlarge = 0; 4542 while (retry_count) { 4543 if (signal_pending(current)) { 4544 ret = -EINTR; 4545 break; 4546 } 4547 /* 4548 * Rather than hide all in some function, I do this in 4549 * open coded manner. You see what this really does. 4550 * We have to guarantee memcg->res.limit <= memcg->memsw.limit. 4551 */ 4552 mutex_lock(&set_limit_mutex); 4553 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 4554 if (memswlimit < val) { 4555 ret = -EINVAL; 4556 mutex_unlock(&set_limit_mutex); 4557 break; 4558 } 4559 4560 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT); 4561 if (memlimit < val) 4562 enlarge = 1; 4563 4564 ret = res_counter_set_limit(&memcg->res, val); 4565 if (!ret) { 4566 if (memswlimit == val) 4567 memcg->memsw_is_minimum = true; 4568 else 4569 memcg->memsw_is_minimum = false; 4570 } 4571 mutex_unlock(&set_limit_mutex); 4572 4573 if (!ret) 4574 break; 4575 4576 mem_cgroup_reclaim(memcg, GFP_KERNEL, 4577 MEM_CGROUP_RECLAIM_SHRINK); 4578 curusage = res_counter_read_u64(&memcg->res, RES_USAGE); 4579 /* Usage is reduced ? */ 4580 if (curusage >= oldusage) 4581 retry_count--; 4582 else 4583 oldusage = curusage; 4584 } 4585 if (!ret && enlarge) 4586 memcg_oom_recover(memcg); 4587 4588 return ret; 4589 } 4590 4591 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg, 4592 unsigned long long val) 4593 { 4594 int retry_count; 4595 u64 memlimit, memswlimit, oldusage, curusage; 4596 int children = mem_cgroup_count_children(memcg); 4597 int ret = -EBUSY; 4598 int enlarge = 0; 4599 4600 /* see mem_cgroup_resize_res_limit */ 4601 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES; 4602 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); 4603 while (retry_count) { 4604 if (signal_pending(current)) { 4605 ret = -EINTR; 4606 break; 4607 } 4608 /* 4609 * Rather than hide all in some function, I do this in 4610 * open coded manner. You see what this really does. 4611 * We have to guarantee memcg->res.limit <= memcg->memsw.limit. 4612 */ 4613 mutex_lock(&set_limit_mutex); 4614 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT); 4615 if (memlimit > val) { 4616 ret = -EINVAL; 4617 mutex_unlock(&set_limit_mutex); 4618 break; 4619 } 4620 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 4621 if (memswlimit < val) 4622 enlarge = 1; 4623 ret = res_counter_set_limit(&memcg->memsw, val); 4624 if (!ret) { 4625 if (memlimit == val) 4626 memcg->memsw_is_minimum = true; 4627 else 4628 memcg->memsw_is_minimum = false; 4629 } 4630 mutex_unlock(&set_limit_mutex); 4631 4632 if (!ret) 4633 break; 4634 4635 mem_cgroup_reclaim(memcg, GFP_KERNEL, 4636 MEM_CGROUP_RECLAIM_NOSWAP | 4637 MEM_CGROUP_RECLAIM_SHRINK); 4638 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); 4639 /* Usage is reduced ? */ 4640 if (curusage >= oldusage) 4641 retry_count--; 4642 else 4643 oldusage = curusage; 4644 } 4645 if (!ret && enlarge) 4646 memcg_oom_recover(memcg); 4647 return ret; 4648 } 4649 4650 /** 4651 * mem_cgroup_force_empty_list - clears LRU of a group 4652 * @memcg: group to clear 4653 * @node: NUMA node 4654 * @zid: zone id 4655 * @lru: lru to to clear 4656 * 4657 * Traverse a specified page_cgroup list and try to drop them all. This doesn't 4658 * reclaim the pages page themselves - pages are moved to the parent (or root) 4659 * group. 4660 */ 4661 static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg, 4662 int node, int zid, enum lru_list lru) 4663 { 4664 struct lruvec *lruvec; 4665 unsigned long flags; 4666 struct list_head *list; 4667 struct page *busy; 4668 struct zone *zone; 4669 4670 zone = &NODE_DATA(node)->node_zones[zid]; 4671 lruvec = mem_cgroup_zone_lruvec(zone, memcg); 4672 list = &lruvec->lists[lru]; 4673 4674 busy = NULL; 4675 do { 4676 struct page_cgroup *pc; 4677 struct page *page; 4678 4679 spin_lock_irqsave(&zone->lru_lock, flags); 4680 if (list_empty(list)) { 4681 spin_unlock_irqrestore(&zone->lru_lock, flags); 4682 break; 4683 } 4684 page = list_entry(list->prev, struct page, lru); 4685 if (busy == page) { 4686 list_move(&page->lru, list); 4687 busy = NULL; 4688 spin_unlock_irqrestore(&zone->lru_lock, flags); 4689 continue; 4690 } 4691 spin_unlock_irqrestore(&zone->lru_lock, flags); 4692 4693 pc = lookup_page_cgroup(page); 4694 4695 if (mem_cgroup_move_parent(page, pc, memcg)) { 4696 /* found lock contention or "pc" is obsolete. */ 4697 busy = page; 4698 cond_resched(); 4699 } else 4700 busy = NULL; 4701 } while (!list_empty(list)); 4702 } 4703 4704 /* 4705 * make mem_cgroup's charge to be 0 if there is no task by moving 4706 * all the charges and pages to the parent. 4707 * This enables deleting this mem_cgroup. 4708 * 4709 * Caller is responsible for holding css reference on the memcg. 4710 */ 4711 static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg) 4712 { 4713 int node, zid; 4714 u64 usage; 4715 4716 do { 4717 /* This is for making all *used* pages to be on LRU. */ 4718 lru_add_drain_all(); 4719 drain_all_stock_sync(memcg); 4720 mem_cgroup_start_move(memcg); 4721 for_each_node_state(node, N_MEMORY) { 4722 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 4723 enum lru_list lru; 4724 for_each_lru(lru) { 4725 mem_cgroup_force_empty_list(memcg, 4726 node, zid, lru); 4727 } 4728 } 4729 } 4730 mem_cgroup_end_move(memcg); 4731 memcg_oom_recover(memcg); 4732 cond_resched(); 4733 4734 /* 4735 * Kernel memory may not necessarily be trackable to a specific 4736 * process. So they are not migrated, and therefore we can't 4737 * expect their value to drop to 0 here. 4738 * Having res filled up with kmem only is enough. 4739 * 4740 * This is a safety check because mem_cgroup_force_empty_list 4741 * could have raced with mem_cgroup_replace_page_cache callers 4742 * so the lru seemed empty but the page could have been added 4743 * right after the check. RES_USAGE should be safe as we always 4744 * charge before adding to the LRU. 4745 */ 4746 usage = res_counter_read_u64(&memcg->res, RES_USAGE) - 4747 res_counter_read_u64(&memcg->kmem, RES_USAGE); 4748 } while (usage > 0); 4749 } 4750 4751 /* 4752 * This mainly exists for tests during the setting of set of use_hierarchy. 4753 * Since this is the very setting we are changing, the current hierarchy value 4754 * is meaningless 4755 */ 4756 static inline bool __memcg_has_children(struct mem_cgroup *memcg) 4757 { 4758 struct cgroup_subsys_state *pos; 4759 4760 /* bounce at first found */ 4761 css_for_each_child(pos, &memcg->css) 4762 return true; 4763 return false; 4764 } 4765 4766 /* 4767 * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed 4768 * to be already dead (as in mem_cgroup_force_empty, for instance). This is 4769 * from mem_cgroup_count_children(), in the sense that we don't really care how 4770 * many children we have; we only need to know if we have any. It also counts 4771 * any memcg without hierarchy as infertile. 4772 */ 4773 static inline bool memcg_has_children(struct mem_cgroup *memcg) 4774 { 4775 return memcg->use_hierarchy && __memcg_has_children(memcg); 4776 } 4777 4778 /* 4779 * Reclaims as many pages from the given memcg as possible and moves 4780 * the rest to the parent. 4781 * 4782 * Caller is responsible for holding css reference for memcg. 4783 */ 4784 static int mem_cgroup_force_empty(struct mem_cgroup *memcg) 4785 { 4786 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 4787 struct cgroup *cgrp = memcg->css.cgroup; 4788 4789 /* returns EBUSY if there is a task or if we come here twice. */ 4790 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children)) 4791 return -EBUSY; 4792 4793 /* we call try-to-free pages for make this cgroup empty */ 4794 lru_add_drain_all(); 4795 /* try to free all pages in this cgroup */ 4796 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) { 4797 int progress; 4798 4799 if (signal_pending(current)) 4800 return -EINTR; 4801 4802 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL, 4803 false); 4804 if (!progress) { 4805 nr_retries--; 4806 /* maybe some writeback is necessary */ 4807 congestion_wait(BLK_RW_ASYNC, HZ/10); 4808 } 4809 4810 } 4811 lru_add_drain(); 4812 mem_cgroup_reparent_charges(memcg); 4813 4814 return 0; 4815 } 4816 4817 static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css, 4818 unsigned int event) 4819 { 4820 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4821 4822 if (mem_cgroup_is_root(memcg)) 4823 return -EINVAL; 4824 return mem_cgroup_force_empty(memcg); 4825 } 4826 4827 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, 4828 struct cftype *cft) 4829 { 4830 return mem_cgroup_from_css(css)->use_hierarchy; 4831 } 4832 4833 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, 4834 struct cftype *cft, u64 val) 4835 { 4836 int retval = 0; 4837 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4838 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css)); 4839 4840 mutex_lock(&memcg_create_mutex); 4841 4842 if (memcg->use_hierarchy == val) 4843 goto out; 4844 4845 /* 4846 * If parent's use_hierarchy is set, we can't make any modifications 4847 * in the child subtrees. If it is unset, then the change can 4848 * occur, provided the current cgroup has no children. 4849 * 4850 * For the root cgroup, parent_mem is NULL, we allow value to be 4851 * set if there are no children. 4852 */ 4853 if ((!parent_memcg || !parent_memcg->use_hierarchy) && 4854 (val == 1 || val == 0)) { 4855 if (!__memcg_has_children(memcg)) 4856 memcg->use_hierarchy = val; 4857 else 4858 retval = -EBUSY; 4859 } else 4860 retval = -EINVAL; 4861 4862 out: 4863 mutex_unlock(&memcg_create_mutex); 4864 4865 return retval; 4866 } 4867 4868 4869 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg, 4870 enum mem_cgroup_stat_index idx) 4871 { 4872 struct mem_cgroup *iter; 4873 long val = 0; 4874 4875 /* Per-cpu values can be negative, use a signed accumulator */ 4876 for_each_mem_cgroup_tree(iter, memcg) 4877 val += mem_cgroup_read_stat(iter, idx); 4878 4879 if (val < 0) /* race ? */ 4880 val = 0; 4881 return val; 4882 } 4883 4884 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 4885 { 4886 u64 val; 4887 4888 if (!mem_cgroup_is_root(memcg)) { 4889 if (!swap) 4890 return res_counter_read_u64(&memcg->res, RES_USAGE); 4891 else 4892 return res_counter_read_u64(&memcg->memsw, RES_USAGE); 4893 } 4894 4895 /* 4896 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS 4897 * as well as in MEM_CGROUP_STAT_RSS_HUGE. 4898 */ 4899 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE); 4900 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS); 4901 4902 if (swap) 4903 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP); 4904 4905 return val << PAGE_SHIFT; 4906 } 4907 4908 static ssize_t mem_cgroup_read(struct cgroup_subsys_state *css, 4909 struct cftype *cft, struct file *file, 4910 char __user *buf, size_t nbytes, loff_t *ppos) 4911 { 4912 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4913 char str[64]; 4914 u64 val; 4915 int name, len; 4916 enum res_type type; 4917 4918 type = MEMFILE_TYPE(cft->private); 4919 name = MEMFILE_ATTR(cft->private); 4920 4921 switch (type) { 4922 case _MEM: 4923 if (name == RES_USAGE) 4924 val = mem_cgroup_usage(memcg, false); 4925 else 4926 val = res_counter_read_u64(&memcg->res, name); 4927 break; 4928 case _MEMSWAP: 4929 if (name == RES_USAGE) 4930 val = mem_cgroup_usage(memcg, true); 4931 else 4932 val = res_counter_read_u64(&memcg->memsw, name); 4933 break; 4934 case _KMEM: 4935 val = res_counter_read_u64(&memcg->kmem, name); 4936 break; 4937 default: 4938 BUG(); 4939 } 4940 4941 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val); 4942 return simple_read_from_buffer(buf, nbytes, ppos, str, len); 4943 } 4944 4945 static int memcg_update_kmem_limit(struct cgroup_subsys_state *css, u64 val) 4946 { 4947 int ret = -EINVAL; 4948 #ifdef CONFIG_MEMCG_KMEM 4949 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4950 /* 4951 * For simplicity, we won't allow this to be disabled. It also can't 4952 * be changed if the cgroup has children already, or if tasks had 4953 * already joined. 4954 * 4955 * If tasks join before we set the limit, a person looking at 4956 * kmem.usage_in_bytes will have no way to determine when it took 4957 * place, which makes the value quite meaningless. 4958 * 4959 * After it first became limited, changes in the value of the limit are 4960 * of course permitted. 4961 */ 4962 mutex_lock(&memcg_create_mutex); 4963 mutex_lock(&set_limit_mutex); 4964 if (!memcg->kmem_account_flags && val != RES_COUNTER_MAX) { 4965 if (cgroup_task_count(css->cgroup) || memcg_has_children(memcg)) { 4966 ret = -EBUSY; 4967 goto out; 4968 } 4969 ret = res_counter_set_limit(&memcg->kmem, val); 4970 VM_BUG_ON(ret); 4971 4972 ret = memcg_update_cache_sizes(memcg); 4973 if (ret) { 4974 res_counter_set_limit(&memcg->kmem, RES_COUNTER_MAX); 4975 goto out; 4976 } 4977 static_key_slow_inc(&memcg_kmem_enabled_key); 4978 /* 4979 * setting the active bit after the inc will guarantee no one 4980 * starts accounting before all call sites are patched 4981 */ 4982 memcg_kmem_set_active(memcg); 4983 } else 4984 ret = res_counter_set_limit(&memcg->kmem, val); 4985 out: 4986 mutex_unlock(&set_limit_mutex); 4987 mutex_unlock(&memcg_create_mutex); 4988 #endif 4989 return ret; 4990 } 4991 4992 #ifdef CONFIG_MEMCG_KMEM 4993 static int memcg_propagate_kmem(struct mem_cgroup *memcg) 4994 { 4995 int ret = 0; 4996 struct mem_cgroup *parent = parent_mem_cgroup(memcg); 4997 if (!parent) 4998 goto out; 4999 5000 memcg->kmem_account_flags = parent->kmem_account_flags; 5001 /* 5002 * When that happen, we need to disable the static branch only on those 5003 * memcgs that enabled it. To achieve this, we would be forced to 5004 * complicate the code by keeping track of which memcgs were the ones 5005 * that actually enabled limits, and which ones got it from its 5006 * parents. 5007 * 5008 * It is a lot simpler just to do static_key_slow_inc() on every child 5009 * that is accounted. 5010 */ 5011 if (!memcg_kmem_is_active(memcg)) 5012 goto out; 5013 5014 /* 5015 * __mem_cgroup_free() will issue static_key_slow_dec() because this 5016 * memcg is active already. If the later initialization fails then the 5017 * cgroup core triggers the cleanup so we do not have to do it here. 5018 */ 5019 static_key_slow_inc(&memcg_kmem_enabled_key); 5020 5021 mutex_lock(&set_limit_mutex); 5022 memcg_stop_kmem_account(); 5023 ret = memcg_update_cache_sizes(memcg); 5024 memcg_resume_kmem_account(); 5025 mutex_unlock(&set_limit_mutex); 5026 out: 5027 return ret; 5028 } 5029 #endif /* CONFIG_MEMCG_KMEM */ 5030 5031 /* 5032 * The user of this function is... 5033 * RES_LIMIT. 5034 */ 5035 static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft, 5036 const char *buffer) 5037 { 5038 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5039 enum res_type type; 5040 int name; 5041 unsigned long long val; 5042 int ret; 5043 5044 type = MEMFILE_TYPE(cft->private); 5045 name = MEMFILE_ATTR(cft->private); 5046 5047 switch (name) { 5048 case RES_LIMIT: 5049 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 5050 ret = -EINVAL; 5051 break; 5052 } 5053 /* This function does all necessary parse...reuse it */ 5054 ret = res_counter_memparse_write_strategy(buffer, &val); 5055 if (ret) 5056 break; 5057 if (type == _MEM) 5058 ret = mem_cgroup_resize_limit(memcg, val); 5059 else if (type == _MEMSWAP) 5060 ret = mem_cgroup_resize_memsw_limit(memcg, val); 5061 else if (type == _KMEM) 5062 ret = memcg_update_kmem_limit(css, val); 5063 else 5064 return -EINVAL; 5065 break; 5066 case RES_SOFT_LIMIT: 5067 ret = res_counter_memparse_write_strategy(buffer, &val); 5068 if (ret) 5069 break; 5070 /* 5071 * For memsw, soft limits are hard to implement in terms 5072 * of semantics, for now, we support soft limits for 5073 * control without swap 5074 */ 5075 if (type == _MEM) 5076 ret = res_counter_set_soft_limit(&memcg->res, val); 5077 else 5078 ret = -EINVAL; 5079 break; 5080 default: 5081 ret = -EINVAL; /* should be BUG() ? */ 5082 break; 5083 } 5084 return ret; 5085 } 5086 5087 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg, 5088 unsigned long long *mem_limit, unsigned long long *memsw_limit) 5089 { 5090 unsigned long long min_limit, min_memsw_limit, tmp; 5091 5092 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT); 5093 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 5094 if (!memcg->use_hierarchy) 5095 goto out; 5096 5097 while (css_parent(&memcg->css)) { 5098 memcg = mem_cgroup_from_css(css_parent(&memcg->css)); 5099 if (!memcg->use_hierarchy) 5100 break; 5101 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT); 5102 min_limit = min(min_limit, tmp); 5103 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 5104 min_memsw_limit = min(min_memsw_limit, tmp); 5105 } 5106 out: 5107 *mem_limit = min_limit; 5108 *memsw_limit = min_memsw_limit; 5109 } 5110 5111 static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event) 5112 { 5113 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5114 int name; 5115 enum res_type type; 5116 5117 type = MEMFILE_TYPE(event); 5118 name = MEMFILE_ATTR(event); 5119 5120 switch (name) { 5121 case RES_MAX_USAGE: 5122 if (type == _MEM) 5123 res_counter_reset_max(&memcg->res); 5124 else if (type == _MEMSWAP) 5125 res_counter_reset_max(&memcg->memsw); 5126 else if (type == _KMEM) 5127 res_counter_reset_max(&memcg->kmem); 5128 else 5129 return -EINVAL; 5130 break; 5131 case RES_FAILCNT: 5132 if (type == _MEM) 5133 res_counter_reset_failcnt(&memcg->res); 5134 else if (type == _MEMSWAP) 5135 res_counter_reset_failcnt(&memcg->memsw); 5136 else if (type == _KMEM) 5137 res_counter_reset_failcnt(&memcg->kmem); 5138 else 5139 return -EINVAL; 5140 break; 5141 } 5142 5143 return 0; 5144 } 5145 5146 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, 5147 struct cftype *cft) 5148 { 5149 return mem_cgroup_from_css(css)->move_charge_at_immigrate; 5150 } 5151 5152 #ifdef CONFIG_MMU 5153 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 5154 struct cftype *cft, u64 val) 5155 { 5156 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5157 5158 if (val >= (1 << NR_MOVE_TYPE)) 5159 return -EINVAL; 5160 5161 /* 5162 * No kind of locking is needed in here, because ->can_attach() will 5163 * check this value once in the beginning of the process, and then carry 5164 * on with stale data. This means that changes to this value will only 5165 * affect task migrations starting after the change. 5166 */ 5167 memcg->move_charge_at_immigrate = val; 5168 return 0; 5169 } 5170 #else 5171 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 5172 struct cftype *cft, u64 val) 5173 { 5174 return -ENOSYS; 5175 } 5176 #endif 5177 5178 #ifdef CONFIG_NUMA 5179 static int memcg_numa_stat_show(struct cgroup_subsys_state *css, 5180 struct cftype *cft, struct seq_file *m) 5181 { 5182 int nid; 5183 unsigned long total_nr, file_nr, anon_nr, unevictable_nr; 5184 unsigned long node_nr; 5185 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5186 5187 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL); 5188 seq_printf(m, "total=%lu", total_nr); 5189 for_each_node_state(nid, N_MEMORY) { 5190 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL); 5191 seq_printf(m, " N%d=%lu", nid, node_nr); 5192 } 5193 seq_putc(m, '\n'); 5194 5195 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE); 5196 seq_printf(m, "file=%lu", file_nr); 5197 for_each_node_state(nid, N_MEMORY) { 5198 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, 5199 LRU_ALL_FILE); 5200 seq_printf(m, " N%d=%lu", nid, node_nr); 5201 } 5202 seq_putc(m, '\n'); 5203 5204 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON); 5205 seq_printf(m, "anon=%lu", anon_nr); 5206 for_each_node_state(nid, N_MEMORY) { 5207 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, 5208 LRU_ALL_ANON); 5209 seq_printf(m, " N%d=%lu", nid, node_nr); 5210 } 5211 seq_putc(m, '\n'); 5212 5213 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE)); 5214 seq_printf(m, "unevictable=%lu", unevictable_nr); 5215 for_each_node_state(nid, N_MEMORY) { 5216 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, 5217 BIT(LRU_UNEVICTABLE)); 5218 seq_printf(m, " N%d=%lu", nid, node_nr); 5219 } 5220 seq_putc(m, '\n'); 5221 return 0; 5222 } 5223 #endif /* CONFIG_NUMA */ 5224 5225 static inline void mem_cgroup_lru_names_not_uptodate(void) 5226 { 5227 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS); 5228 } 5229 5230 static int memcg_stat_show(struct cgroup_subsys_state *css, struct cftype *cft, 5231 struct seq_file *m) 5232 { 5233 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5234 struct mem_cgroup *mi; 5235 unsigned int i; 5236 5237 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 5238 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) 5239 continue; 5240 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i], 5241 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE); 5242 } 5243 5244 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) 5245 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i], 5246 mem_cgroup_read_events(memcg, i)); 5247 5248 for (i = 0; i < NR_LRU_LISTS; i++) 5249 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i], 5250 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE); 5251 5252 /* Hierarchical information */ 5253 { 5254 unsigned long long limit, memsw_limit; 5255 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit); 5256 seq_printf(m, "hierarchical_memory_limit %llu\n", limit); 5257 if (do_swap_account) 5258 seq_printf(m, "hierarchical_memsw_limit %llu\n", 5259 memsw_limit); 5260 } 5261 5262 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 5263 long long val = 0; 5264 5265 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) 5266 continue; 5267 for_each_mem_cgroup_tree(mi, memcg) 5268 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE; 5269 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val); 5270 } 5271 5272 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) { 5273 unsigned long long val = 0; 5274 5275 for_each_mem_cgroup_tree(mi, memcg) 5276 val += mem_cgroup_read_events(mi, i); 5277 seq_printf(m, "total_%s %llu\n", 5278 mem_cgroup_events_names[i], val); 5279 } 5280 5281 for (i = 0; i < NR_LRU_LISTS; i++) { 5282 unsigned long long val = 0; 5283 5284 for_each_mem_cgroup_tree(mi, memcg) 5285 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE; 5286 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val); 5287 } 5288 5289 #ifdef CONFIG_DEBUG_VM 5290 { 5291 int nid, zid; 5292 struct mem_cgroup_per_zone *mz; 5293 struct zone_reclaim_stat *rstat; 5294 unsigned long recent_rotated[2] = {0, 0}; 5295 unsigned long recent_scanned[2] = {0, 0}; 5296 5297 for_each_online_node(nid) 5298 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 5299 mz = mem_cgroup_zoneinfo(memcg, nid, zid); 5300 rstat = &mz->lruvec.reclaim_stat; 5301 5302 recent_rotated[0] += rstat->recent_rotated[0]; 5303 recent_rotated[1] += rstat->recent_rotated[1]; 5304 recent_scanned[0] += rstat->recent_scanned[0]; 5305 recent_scanned[1] += rstat->recent_scanned[1]; 5306 } 5307 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]); 5308 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]); 5309 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]); 5310 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]); 5311 } 5312 #endif 5313 5314 return 0; 5315 } 5316 5317 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, 5318 struct cftype *cft) 5319 { 5320 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5321 5322 return mem_cgroup_swappiness(memcg); 5323 } 5324 5325 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, 5326 struct cftype *cft, u64 val) 5327 { 5328 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5329 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css)); 5330 5331 if (val > 100 || !parent) 5332 return -EINVAL; 5333 5334 mutex_lock(&memcg_create_mutex); 5335 5336 /* If under hierarchy, only empty-root can set this value */ 5337 if ((parent->use_hierarchy) || memcg_has_children(memcg)) { 5338 mutex_unlock(&memcg_create_mutex); 5339 return -EINVAL; 5340 } 5341 5342 memcg->swappiness = val; 5343 5344 mutex_unlock(&memcg_create_mutex); 5345 5346 return 0; 5347 } 5348 5349 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 5350 { 5351 struct mem_cgroup_threshold_ary *t; 5352 u64 usage; 5353 int i; 5354 5355 rcu_read_lock(); 5356 if (!swap) 5357 t = rcu_dereference(memcg->thresholds.primary); 5358 else 5359 t = rcu_dereference(memcg->memsw_thresholds.primary); 5360 5361 if (!t) 5362 goto unlock; 5363 5364 usage = mem_cgroup_usage(memcg, swap); 5365 5366 /* 5367 * current_threshold points to threshold just below or equal to usage. 5368 * If it's not true, a threshold was crossed after last 5369 * call of __mem_cgroup_threshold(). 5370 */ 5371 i = t->current_threshold; 5372 5373 /* 5374 * Iterate backward over array of thresholds starting from 5375 * current_threshold and check if a threshold is crossed. 5376 * If none of thresholds below usage is crossed, we read 5377 * only one element of the array here. 5378 */ 5379 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 5380 eventfd_signal(t->entries[i].eventfd, 1); 5381 5382 /* i = current_threshold + 1 */ 5383 i++; 5384 5385 /* 5386 * Iterate forward over array of thresholds starting from 5387 * current_threshold+1 and check if a threshold is crossed. 5388 * If none of thresholds above usage is crossed, we read 5389 * only one element of the array here. 5390 */ 5391 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 5392 eventfd_signal(t->entries[i].eventfd, 1); 5393 5394 /* Update current_threshold */ 5395 t->current_threshold = i - 1; 5396 unlock: 5397 rcu_read_unlock(); 5398 } 5399 5400 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 5401 { 5402 while (memcg) { 5403 __mem_cgroup_threshold(memcg, false); 5404 if (do_swap_account) 5405 __mem_cgroup_threshold(memcg, true); 5406 5407 memcg = parent_mem_cgroup(memcg); 5408 } 5409 } 5410 5411 static int compare_thresholds(const void *a, const void *b) 5412 { 5413 const struct mem_cgroup_threshold *_a = a; 5414 const struct mem_cgroup_threshold *_b = b; 5415 5416 if (_a->threshold > _b->threshold) 5417 return 1; 5418 5419 if (_a->threshold < _b->threshold) 5420 return -1; 5421 5422 return 0; 5423 } 5424 5425 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 5426 { 5427 struct mem_cgroup_eventfd_list *ev; 5428 5429 list_for_each_entry(ev, &memcg->oom_notify, list) 5430 eventfd_signal(ev->eventfd, 1); 5431 return 0; 5432 } 5433 5434 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 5435 { 5436 struct mem_cgroup *iter; 5437 5438 for_each_mem_cgroup_tree(iter, memcg) 5439 mem_cgroup_oom_notify_cb(iter); 5440 } 5441 5442 static int mem_cgroup_usage_register_event(struct cgroup_subsys_state *css, 5443 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args) 5444 { 5445 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5446 struct mem_cgroup_thresholds *thresholds; 5447 struct mem_cgroup_threshold_ary *new; 5448 enum res_type type = MEMFILE_TYPE(cft->private); 5449 u64 threshold, usage; 5450 int i, size, ret; 5451 5452 ret = res_counter_memparse_write_strategy(args, &threshold); 5453 if (ret) 5454 return ret; 5455 5456 mutex_lock(&memcg->thresholds_lock); 5457 5458 if (type == _MEM) 5459 thresholds = &memcg->thresholds; 5460 else if (type == _MEMSWAP) 5461 thresholds = &memcg->memsw_thresholds; 5462 else 5463 BUG(); 5464 5465 usage = mem_cgroup_usage(memcg, type == _MEMSWAP); 5466 5467 /* Check if a threshold crossed before adding a new one */ 5468 if (thresholds->primary) 5469 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 5470 5471 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 5472 5473 /* Allocate memory for new array of thresholds */ 5474 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold), 5475 GFP_KERNEL); 5476 if (!new) { 5477 ret = -ENOMEM; 5478 goto unlock; 5479 } 5480 new->size = size; 5481 5482 /* Copy thresholds (if any) to new array */ 5483 if (thresholds->primary) { 5484 memcpy(new->entries, thresholds->primary->entries, (size - 1) * 5485 sizeof(struct mem_cgroup_threshold)); 5486 } 5487 5488 /* Add new threshold */ 5489 new->entries[size - 1].eventfd = eventfd; 5490 new->entries[size - 1].threshold = threshold; 5491 5492 /* Sort thresholds. Registering of new threshold isn't time-critical */ 5493 sort(new->entries, size, sizeof(struct mem_cgroup_threshold), 5494 compare_thresholds, NULL); 5495 5496 /* Find current threshold */ 5497 new->current_threshold = -1; 5498 for (i = 0; i < size; i++) { 5499 if (new->entries[i].threshold <= usage) { 5500 /* 5501 * new->current_threshold will not be used until 5502 * rcu_assign_pointer(), so it's safe to increment 5503 * it here. 5504 */ 5505 ++new->current_threshold; 5506 } else 5507 break; 5508 } 5509 5510 /* Free old spare buffer and save old primary buffer as spare */ 5511 kfree(thresholds->spare); 5512 thresholds->spare = thresholds->primary; 5513 5514 rcu_assign_pointer(thresholds->primary, new); 5515 5516 /* To be sure that nobody uses thresholds */ 5517 synchronize_rcu(); 5518 5519 unlock: 5520 mutex_unlock(&memcg->thresholds_lock); 5521 5522 return ret; 5523 } 5524 5525 static void mem_cgroup_usage_unregister_event(struct cgroup_subsys_state *css, 5526 struct cftype *cft, struct eventfd_ctx *eventfd) 5527 { 5528 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5529 struct mem_cgroup_thresholds *thresholds; 5530 struct mem_cgroup_threshold_ary *new; 5531 enum res_type type = MEMFILE_TYPE(cft->private); 5532 u64 usage; 5533 int i, j, size; 5534 5535 mutex_lock(&memcg->thresholds_lock); 5536 if (type == _MEM) 5537 thresholds = &memcg->thresholds; 5538 else if (type == _MEMSWAP) 5539 thresholds = &memcg->memsw_thresholds; 5540 else 5541 BUG(); 5542 5543 if (!thresholds->primary) 5544 goto unlock; 5545 5546 usage = mem_cgroup_usage(memcg, type == _MEMSWAP); 5547 5548 /* Check if a threshold crossed before removing */ 5549 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 5550 5551 /* Calculate new number of threshold */ 5552 size = 0; 5553 for (i = 0; i < thresholds->primary->size; i++) { 5554 if (thresholds->primary->entries[i].eventfd != eventfd) 5555 size++; 5556 } 5557 5558 new = thresholds->spare; 5559 5560 /* Set thresholds array to NULL if we don't have thresholds */ 5561 if (!size) { 5562 kfree(new); 5563 new = NULL; 5564 goto swap_buffers; 5565 } 5566 5567 new->size = size; 5568 5569 /* Copy thresholds and find current threshold */ 5570 new->current_threshold = -1; 5571 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 5572 if (thresholds->primary->entries[i].eventfd == eventfd) 5573 continue; 5574 5575 new->entries[j] = thresholds->primary->entries[i]; 5576 if (new->entries[j].threshold <= usage) { 5577 /* 5578 * new->current_threshold will not be used 5579 * until rcu_assign_pointer(), so it's safe to increment 5580 * it here. 5581 */ 5582 ++new->current_threshold; 5583 } 5584 j++; 5585 } 5586 5587 swap_buffers: 5588 /* Swap primary and spare array */ 5589 thresholds->spare = thresholds->primary; 5590 /* If all events are unregistered, free the spare array */ 5591 if (!new) { 5592 kfree(thresholds->spare); 5593 thresholds->spare = NULL; 5594 } 5595 5596 rcu_assign_pointer(thresholds->primary, new); 5597 5598 /* To be sure that nobody uses thresholds */ 5599 synchronize_rcu(); 5600 unlock: 5601 mutex_unlock(&memcg->thresholds_lock); 5602 } 5603 5604 static int mem_cgroup_oom_register_event(struct cgroup_subsys_state *css, 5605 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args) 5606 { 5607 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5608 struct mem_cgroup_eventfd_list *event; 5609 enum res_type type = MEMFILE_TYPE(cft->private); 5610 5611 BUG_ON(type != _OOM_TYPE); 5612 event = kmalloc(sizeof(*event), GFP_KERNEL); 5613 if (!event) 5614 return -ENOMEM; 5615 5616 spin_lock(&memcg_oom_lock); 5617 5618 event->eventfd = eventfd; 5619 list_add(&event->list, &memcg->oom_notify); 5620 5621 /* already in OOM ? */ 5622 if (atomic_read(&memcg->under_oom)) 5623 eventfd_signal(eventfd, 1); 5624 spin_unlock(&memcg_oom_lock); 5625 5626 return 0; 5627 } 5628 5629 static void mem_cgroup_oom_unregister_event(struct cgroup_subsys_state *css, 5630 struct cftype *cft, struct eventfd_ctx *eventfd) 5631 { 5632 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5633 struct mem_cgroup_eventfd_list *ev, *tmp; 5634 enum res_type type = MEMFILE_TYPE(cft->private); 5635 5636 BUG_ON(type != _OOM_TYPE); 5637 5638 spin_lock(&memcg_oom_lock); 5639 5640 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 5641 if (ev->eventfd == eventfd) { 5642 list_del(&ev->list); 5643 kfree(ev); 5644 } 5645 } 5646 5647 spin_unlock(&memcg_oom_lock); 5648 } 5649 5650 static int mem_cgroup_oom_control_read(struct cgroup_subsys_state *css, 5651 struct cftype *cft, struct cgroup_map_cb *cb) 5652 { 5653 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5654 5655 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable); 5656 5657 if (atomic_read(&memcg->under_oom)) 5658 cb->fill(cb, "under_oom", 1); 5659 else 5660 cb->fill(cb, "under_oom", 0); 5661 return 0; 5662 } 5663 5664 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, 5665 struct cftype *cft, u64 val) 5666 { 5667 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5668 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css)); 5669 5670 /* cannot set to root cgroup and only 0 and 1 are allowed */ 5671 if (!parent || !((val == 0) || (val == 1))) 5672 return -EINVAL; 5673 5674 mutex_lock(&memcg_create_mutex); 5675 /* oom-kill-disable is a flag for subhierarchy. */ 5676 if ((parent->use_hierarchy) || memcg_has_children(memcg)) { 5677 mutex_unlock(&memcg_create_mutex); 5678 return -EINVAL; 5679 } 5680 memcg->oom_kill_disable = val; 5681 if (!val) 5682 memcg_oom_recover(memcg); 5683 mutex_unlock(&memcg_create_mutex); 5684 return 0; 5685 } 5686 5687 #ifdef CONFIG_MEMCG_KMEM 5688 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss) 5689 { 5690 int ret; 5691 5692 memcg->kmemcg_id = -1; 5693 ret = memcg_propagate_kmem(memcg); 5694 if (ret) 5695 return ret; 5696 5697 return mem_cgroup_sockets_init(memcg, ss); 5698 } 5699 5700 static void memcg_destroy_kmem(struct mem_cgroup *memcg) 5701 { 5702 mem_cgroup_sockets_destroy(memcg); 5703 } 5704 5705 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg) 5706 { 5707 if (!memcg_kmem_is_active(memcg)) 5708 return; 5709 5710 /* 5711 * kmem charges can outlive the cgroup. In the case of slab 5712 * pages, for instance, a page contain objects from various 5713 * processes. As we prevent from taking a reference for every 5714 * such allocation we have to be careful when doing uncharge 5715 * (see memcg_uncharge_kmem) and here during offlining. 5716 * 5717 * The idea is that that only the _last_ uncharge which sees 5718 * the dead memcg will drop the last reference. An additional 5719 * reference is taken here before the group is marked dead 5720 * which is then paired with css_put during uncharge resp. here. 5721 * 5722 * Although this might sound strange as this path is called from 5723 * css_offline() when the referencemight have dropped down to 0 5724 * and shouldn't be incremented anymore (css_tryget would fail) 5725 * we do not have other options because of the kmem allocations 5726 * lifetime. 5727 */ 5728 css_get(&memcg->css); 5729 5730 memcg_kmem_mark_dead(memcg); 5731 5732 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0) 5733 return; 5734 5735 if (memcg_kmem_test_and_clear_dead(memcg)) 5736 css_put(&memcg->css); 5737 } 5738 #else 5739 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss) 5740 { 5741 return 0; 5742 } 5743 5744 static void memcg_destroy_kmem(struct mem_cgroup *memcg) 5745 { 5746 } 5747 5748 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg) 5749 { 5750 } 5751 #endif 5752 5753 static struct cftype mem_cgroup_files[] = { 5754 { 5755 .name = "usage_in_bytes", 5756 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 5757 .read = mem_cgroup_read, 5758 .register_event = mem_cgroup_usage_register_event, 5759 .unregister_event = mem_cgroup_usage_unregister_event, 5760 }, 5761 { 5762 .name = "max_usage_in_bytes", 5763 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 5764 .trigger = mem_cgroup_reset, 5765 .read = mem_cgroup_read, 5766 }, 5767 { 5768 .name = "limit_in_bytes", 5769 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 5770 .write_string = mem_cgroup_write, 5771 .read = mem_cgroup_read, 5772 }, 5773 { 5774 .name = "soft_limit_in_bytes", 5775 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 5776 .write_string = mem_cgroup_write, 5777 .read = mem_cgroup_read, 5778 }, 5779 { 5780 .name = "failcnt", 5781 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 5782 .trigger = mem_cgroup_reset, 5783 .read = mem_cgroup_read, 5784 }, 5785 { 5786 .name = "stat", 5787 .read_seq_string = memcg_stat_show, 5788 }, 5789 { 5790 .name = "force_empty", 5791 .trigger = mem_cgroup_force_empty_write, 5792 }, 5793 { 5794 .name = "use_hierarchy", 5795 .flags = CFTYPE_INSANE, 5796 .write_u64 = mem_cgroup_hierarchy_write, 5797 .read_u64 = mem_cgroup_hierarchy_read, 5798 }, 5799 { 5800 .name = "swappiness", 5801 .read_u64 = mem_cgroup_swappiness_read, 5802 .write_u64 = mem_cgroup_swappiness_write, 5803 }, 5804 { 5805 .name = "move_charge_at_immigrate", 5806 .read_u64 = mem_cgroup_move_charge_read, 5807 .write_u64 = mem_cgroup_move_charge_write, 5808 }, 5809 { 5810 .name = "oom_control", 5811 .read_map = mem_cgroup_oom_control_read, 5812 .write_u64 = mem_cgroup_oom_control_write, 5813 .register_event = mem_cgroup_oom_register_event, 5814 .unregister_event = mem_cgroup_oom_unregister_event, 5815 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), 5816 }, 5817 { 5818 .name = "pressure_level", 5819 .register_event = vmpressure_register_event, 5820 .unregister_event = vmpressure_unregister_event, 5821 }, 5822 #ifdef CONFIG_NUMA 5823 { 5824 .name = "numa_stat", 5825 .read_seq_string = memcg_numa_stat_show, 5826 }, 5827 #endif 5828 #ifdef CONFIG_MEMCG_KMEM 5829 { 5830 .name = "kmem.limit_in_bytes", 5831 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), 5832 .write_string = mem_cgroup_write, 5833 .read = mem_cgroup_read, 5834 }, 5835 { 5836 .name = "kmem.usage_in_bytes", 5837 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), 5838 .read = mem_cgroup_read, 5839 }, 5840 { 5841 .name = "kmem.failcnt", 5842 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), 5843 .trigger = mem_cgroup_reset, 5844 .read = mem_cgroup_read, 5845 }, 5846 { 5847 .name = "kmem.max_usage_in_bytes", 5848 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), 5849 .trigger = mem_cgroup_reset, 5850 .read = mem_cgroup_read, 5851 }, 5852 #ifdef CONFIG_SLABINFO 5853 { 5854 .name = "kmem.slabinfo", 5855 .read_seq_string = mem_cgroup_slabinfo_read, 5856 }, 5857 #endif 5858 #endif 5859 { }, /* terminate */ 5860 }; 5861 5862 #ifdef CONFIG_MEMCG_SWAP 5863 static struct cftype memsw_cgroup_files[] = { 5864 { 5865 .name = "memsw.usage_in_bytes", 5866 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 5867 .read = mem_cgroup_read, 5868 .register_event = mem_cgroup_usage_register_event, 5869 .unregister_event = mem_cgroup_usage_unregister_event, 5870 }, 5871 { 5872 .name = "memsw.max_usage_in_bytes", 5873 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 5874 .trigger = mem_cgroup_reset, 5875 .read = mem_cgroup_read, 5876 }, 5877 { 5878 .name = "memsw.limit_in_bytes", 5879 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 5880 .write_string = mem_cgroup_write, 5881 .read = mem_cgroup_read, 5882 }, 5883 { 5884 .name = "memsw.failcnt", 5885 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 5886 .trigger = mem_cgroup_reset, 5887 .read = mem_cgroup_read, 5888 }, 5889 { }, /* terminate */ 5890 }; 5891 #endif 5892 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) 5893 { 5894 struct mem_cgroup_per_node *pn; 5895 struct mem_cgroup_per_zone *mz; 5896 int zone, tmp = node; 5897 /* 5898 * This routine is called against possible nodes. 5899 * But it's BUG to call kmalloc() against offline node. 5900 * 5901 * TODO: this routine can waste much memory for nodes which will 5902 * never be onlined. It's better to use memory hotplug callback 5903 * function. 5904 */ 5905 if (!node_state(node, N_NORMAL_MEMORY)) 5906 tmp = -1; 5907 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); 5908 if (!pn) 5909 return 1; 5910 5911 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 5912 mz = &pn->zoneinfo[zone]; 5913 lruvec_init(&mz->lruvec); 5914 mz->memcg = memcg; 5915 } 5916 memcg->nodeinfo[node] = pn; 5917 return 0; 5918 } 5919 5920 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) 5921 { 5922 kfree(memcg->nodeinfo[node]); 5923 } 5924 5925 static struct mem_cgroup *mem_cgroup_alloc(void) 5926 { 5927 struct mem_cgroup *memcg; 5928 size_t size = memcg_size(); 5929 5930 /* Can be very big if nr_node_ids is very big */ 5931 if (size < PAGE_SIZE) 5932 memcg = kzalloc(size, GFP_KERNEL); 5933 else 5934 memcg = vzalloc(size); 5935 5936 if (!memcg) 5937 return NULL; 5938 5939 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu); 5940 if (!memcg->stat) 5941 goto out_free; 5942 spin_lock_init(&memcg->pcp_counter_lock); 5943 return memcg; 5944 5945 out_free: 5946 if (size < PAGE_SIZE) 5947 kfree(memcg); 5948 else 5949 vfree(memcg); 5950 return NULL; 5951 } 5952 5953 /* 5954 * At destroying mem_cgroup, references from swap_cgroup can remain. 5955 * (scanning all at force_empty is too costly...) 5956 * 5957 * Instead of clearing all references at force_empty, we remember 5958 * the number of reference from swap_cgroup and free mem_cgroup when 5959 * it goes down to 0. 5960 * 5961 * Removal of cgroup itself succeeds regardless of refs from swap. 5962 */ 5963 5964 static void __mem_cgroup_free(struct mem_cgroup *memcg) 5965 { 5966 int node; 5967 size_t size = memcg_size(); 5968 5969 free_css_id(&mem_cgroup_subsys, &memcg->css); 5970 5971 for_each_node(node) 5972 free_mem_cgroup_per_zone_info(memcg, node); 5973 5974 free_percpu(memcg->stat); 5975 5976 /* 5977 * We need to make sure that (at least for now), the jump label 5978 * destruction code runs outside of the cgroup lock. This is because 5979 * get_online_cpus(), which is called from the static_branch update, 5980 * can't be called inside the cgroup_lock. cpusets are the ones 5981 * enforcing this dependency, so if they ever change, we might as well. 5982 * 5983 * schedule_work() will guarantee this happens. Be careful if you need 5984 * to move this code around, and make sure it is outside 5985 * the cgroup_lock. 5986 */ 5987 disarm_static_keys(memcg); 5988 if (size < PAGE_SIZE) 5989 kfree(memcg); 5990 else 5991 vfree(memcg); 5992 } 5993 5994 /* 5995 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled. 5996 */ 5997 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 5998 { 5999 if (!memcg->res.parent) 6000 return NULL; 6001 return mem_cgroup_from_res_counter(memcg->res.parent, res); 6002 } 6003 EXPORT_SYMBOL(parent_mem_cgroup); 6004 6005 static struct cgroup_subsys_state * __ref 6006 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 6007 { 6008 struct mem_cgroup *memcg; 6009 long error = -ENOMEM; 6010 int node; 6011 6012 memcg = mem_cgroup_alloc(); 6013 if (!memcg) 6014 return ERR_PTR(error); 6015 6016 for_each_node(node) 6017 if (alloc_mem_cgroup_per_zone_info(memcg, node)) 6018 goto free_out; 6019 6020 /* root ? */ 6021 if (parent_css == NULL) { 6022 root_mem_cgroup = memcg; 6023 res_counter_init(&memcg->res, NULL); 6024 res_counter_init(&memcg->memsw, NULL); 6025 res_counter_init(&memcg->kmem, NULL); 6026 } 6027 6028 memcg->last_scanned_node = MAX_NUMNODES; 6029 INIT_LIST_HEAD(&memcg->oom_notify); 6030 memcg->move_charge_at_immigrate = 0; 6031 mutex_init(&memcg->thresholds_lock); 6032 spin_lock_init(&memcg->move_lock); 6033 vmpressure_init(&memcg->vmpressure); 6034 spin_lock_init(&memcg->soft_lock); 6035 6036 return &memcg->css; 6037 6038 free_out: 6039 __mem_cgroup_free(memcg); 6040 return ERR_PTR(error); 6041 } 6042 6043 static int 6044 mem_cgroup_css_online(struct cgroup_subsys_state *css) 6045 { 6046 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6047 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css)); 6048 int error = 0; 6049 6050 if (!parent) 6051 return 0; 6052 6053 mutex_lock(&memcg_create_mutex); 6054 6055 memcg->use_hierarchy = parent->use_hierarchy; 6056 memcg->oom_kill_disable = parent->oom_kill_disable; 6057 memcg->swappiness = mem_cgroup_swappiness(parent); 6058 6059 if (parent->use_hierarchy) { 6060 res_counter_init(&memcg->res, &parent->res); 6061 res_counter_init(&memcg->memsw, &parent->memsw); 6062 res_counter_init(&memcg->kmem, &parent->kmem); 6063 6064 /* 6065 * No need to take a reference to the parent because cgroup 6066 * core guarantees its existence. 6067 */ 6068 } else { 6069 res_counter_init(&memcg->res, NULL); 6070 res_counter_init(&memcg->memsw, NULL); 6071 res_counter_init(&memcg->kmem, NULL); 6072 /* 6073 * Deeper hierachy with use_hierarchy == false doesn't make 6074 * much sense so let cgroup subsystem know about this 6075 * unfortunate state in our controller. 6076 */ 6077 if (parent != root_mem_cgroup) 6078 mem_cgroup_subsys.broken_hierarchy = true; 6079 } 6080 6081 error = memcg_init_kmem(memcg, &mem_cgroup_subsys); 6082 mutex_unlock(&memcg_create_mutex); 6083 return error; 6084 } 6085 6086 /* 6087 * Announce all parents that a group from their hierarchy is gone. 6088 */ 6089 static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg) 6090 { 6091 struct mem_cgroup *parent = memcg; 6092 6093 while ((parent = parent_mem_cgroup(parent))) 6094 mem_cgroup_iter_invalidate(parent); 6095 6096 /* 6097 * if the root memcg is not hierarchical we have to check it 6098 * explicitely. 6099 */ 6100 if (!root_mem_cgroup->use_hierarchy) 6101 mem_cgroup_iter_invalidate(root_mem_cgroup); 6102 } 6103 6104 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 6105 { 6106 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6107 6108 kmem_cgroup_css_offline(memcg); 6109 6110 mem_cgroup_invalidate_reclaim_iterators(memcg); 6111 mem_cgroup_reparent_charges(memcg); 6112 if (memcg->soft_contributed) { 6113 while ((memcg = parent_mem_cgroup(memcg))) 6114 atomic_dec(&memcg->children_in_excess); 6115 6116 if (memcg != root_mem_cgroup && !root_mem_cgroup->use_hierarchy) 6117 atomic_dec(&root_mem_cgroup->children_in_excess); 6118 } 6119 mem_cgroup_destroy_all_caches(memcg); 6120 vmpressure_cleanup(&memcg->vmpressure); 6121 } 6122 6123 static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 6124 { 6125 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6126 6127 memcg_destroy_kmem(memcg); 6128 __mem_cgroup_free(memcg); 6129 } 6130 6131 #ifdef CONFIG_MMU 6132 /* Handlers for move charge at task migration. */ 6133 #define PRECHARGE_COUNT_AT_ONCE 256 6134 static int mem_cgroup_do_precharge(unsigned long count) 6135 { 6136 int ret = 0; 6137 int batch_count = PRECHARGE_COUNT_AT_ONCE; 6138 struct mem_cgroup *memcg = mc.to; 6139 6140 if (mem_cgroup_is_root(memcg)) { 6141 mc.precharge += count; 6142 /* we don't need css_get for root */ 6143 return ret; 6144 } 6145 /* try to charge at once */ 6146 if (count > 1) { 6147 struct res_counter *dummy; 6148 /* 6149 * "memcg" cannot be under rmdir() because we've already checked 6150 * by cgroup_lock_live_cgroup() that it is not removed and we 6151 * are still under the same cgroup_mutex. So we can postpone 6152 * css_get(). 6153 */ 6154 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy)) 6155 goto one_by_one; 6156 if (do_swap_account && res_counter_charge(&memcg->memsw, 6157 PAGE_SIZE * count, &dummy)) { 6158 res_counter_uncharge(&memcg->res, PAGE_SIZE * count); 6159 goto one_by_one; 6160 } 6161 mc.precharge += count; 6162 return ret; 6163 } 6164 one_by_one: 6165 /* fall back to one by one charge */ 6166 while (count--) { 6167 if (signal_pending(current)) { 6168 ret = -EINTR; 6169 break; 6170 } 6171 if (!batch_count--) { 6172 batch_count = PRECHARGE_COUNT_AT_ONCE; 6173 cond_resched(); 6174 } 6175 ret = __mem_cgroup_try_charge(NULL, 6176 GFP_KERNEL, 1, &memcg, false); 6177 if (ret) 6178 /* mem_cgroup_clear_mc() will do uncharge later */ 6179 return ret; 6180 mc.precharge++; 6181 } 6182 return ret; 6183 } 6184 6185 /** 6186 * get_mctgt_type - get target type of moving charge 6187 * @vma: the vma the pte to be checked belongs 6188 * @addr: the address corresponding to the pte to be checked 6189 * @ptent: the pte to be checked 6190 * @target: the pointer the target page or swap ent will be stored(can be NULL) 6191 * 6192 * Returns 6193 * 0(MC_TARGET_NONE): if the pte is not a target for move charge. 6194 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for 6195 * move charge. if @target is not NULL, the page is stored in target->page 6196 * with extra refcnt got(Callers should handle it). 6197 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a 6198 * target for charge migration. if @target is not NULL, the entry is stored 6199 * in target->ent. 6200 * 6201 * Called with pte lock held. 6202 */ 6203 union mc_target { 6204 struct page *page; 6205 swp_entry_t ent; 6206 }; 6207 6208 enum mc_target_type { 6209 MC_TARGET_NONE = 0, 6210 MC_TARGET_PAGE, 6211 MC_TARGET_SWAP, 6212 }; 6213 6214 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 6215 unsigned long addr, pte_t ptent) 6216 { 6217 struct page *page = vm_normal_page(vma, addr, ptent); 6218 6219 if (!page || !page_mapped(page)) 6220 return NULL; 6221 if (PageAnon(page)) { 6222 /* we don't move shared anon */ 6223 if (!move_anon()) 6224 return NULL; 6225 } else if (!move_file()) 6226 /* we ignore mapcount for file pages */ 6227 return NULL; 6228 if (!get_page_unless_zero(page)) 6229 return NULL; 6230 6231 return page; 6232 } 6233 6234 #ifdef CONFIG_SWAP 6235 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 6236 unsigned long addr, pte_t ptent, swp_entry_t *entry) 6237 { 6238 struct page *page = NULL; 6239 swp_entry_t ent = pte_to_swp_entry(ptent); 6240 6241 if (!move_anon() || non_swap_entry(ent)) 6242 return NULL; 6243 /* 6244 * Because lookup_swap_cache() updates some statistics counter, 6245 * we call find_get_page() with swapper_space directly. 6246 */ 6247 page = find_get_page(swap_address_space(ent), ent.val); 6248 if (do_swap_account) 6249 entry->val = ent.val; 6250 6251 return page; 6252 } 6253 #else 6254 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 6255 unsigned long addr, pte_t ptent, swp_entry_t *entry) 6256 { 6257 return NULL; 6258 } 6259 #endif 6260 6261 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 6262 unsigned long addr, pte_t ptent, swp_entry_t *entry) 6263 { 6264 struct page *page = NULL; 6265 struct address_space *mapping; 6266 pgoff_t pgoff; 6267 6268 if (!vma->vm_file) /* anonymous vma */ 6269 return NULL; 6270 if (!move_file()) 6271 return NULL; 6272 6273 mapping = vma->vm_file->f_mapping; 6274 if (pte_none(ptent)) 6275 pgoff = linear_page_index(vma, addr); 6276 else /* pte_file(ptent) is true */ 6277 pgoff = pte_to_pgoff(ptent); 6278 6279 /* page is moved even if it's not RSS of this task(page-faulted). */ 6280 page = find_get_page(mapping, pgoff); 6281 6282 #ifdef CONFIG_SWAP 6283 /* shmem/tmpfs may report page out on swap: account for that too. */ 6284 if (radix_tree_exceptional_entry(page)) { 6285 swp_entry_t swap = radix_to_swp_entry(page); 6286 if (do_swap_account) 6287 *entry = swap; 6288 page = find_get_page(swap_address_space(swap), swap.val); 6289 } 6290 #endif 6291 return page; 6292 } 6293 6294 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, 6295 unsigned long addr, pte_t ptent, union mc_target *target) 6296 { 6297 struct page *page = NULL; 6298 struct page_cgroup *pc; 6299 enum mc_target_type ret = MC_TARGET_NONE; 6300 swp_entry_t ent = { .val = 0 }; 6301 6302 if (pte_present(ptent)) 6303 page = mc_handle_present_pte(vma, addr, ptent); 6304 else if (is_swap_pte(ptent)) 6305 page = mc_handle_swap_pte(vma, addr, ptent, &ent); 6306 else if (pte_none(ptent) || pte_file(ptent)) 6307 page = mc_handle_file_pte(vma, addr, ptent, &ent); 6308 6309 if (!page && !ent.val) 6310 return ret; 6311 if (page) { 6312 pc = lookup_page_cgroup(page); 6313 /* 6314 * Do only loose check w/o page_cgroup lock. 6315 * mem_cgroup_move_account() checks the pc is valid or not under 6316 * the lock. 6317 */ 6318 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) { 6319 ret = MC_TARGET_PAGE; 6320 if (target) 6321 target->page = page; 6322 } 6323 if (!ret || !target) 6324 put_page(page); 6325 } 6326 /* There is a swap entry and a page doesn't exist or isn't charged */ 6327 if (ent.val && !ret && 6328 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) { 6329 ret = MC_TARGET_SWAP; 6330 if (target) 6331 target->ent = ent; 6332 } 6333 return ret; 6334 } 6335 6336 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6337 /* 6338 * We don't consider swapping or file mapped pages because THP does not 6339 * support them for now. 6340 * Caller should make sure that pmd_trans_huge(pmd) is true. 6341 */ 6342 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 6343 unsigned long addr, pmd_t pmd, union mc_target *target) 6344 { 6345 struct page *page = NULL; 6346 struct page_cgroup *pc; 6347 enum mc_target_type ret = MC_TARGET_NONE; 6348 6349 page = pmd_page(pmd); 6350 VM_BUG_ON(!page || !PageHead(page)); 6351 if (!move_anon()) 6352 return ret; 6353 pc = lookup_page_cgroup(page); 6354 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) { 6355 ret = MC_TARGET_PAGE; 6356 if (target) { 6357 get_page(page); 6358 target->page = page; 6359 } 6360 } 6361 return ret; 6362 } 6363 #else 6364 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 6365 unsigned long addr, pmd_t pmd, union mc_target *target) 6366 { 6367 return MC_TARGET_NONE; 6368 } 6369 #endif 6370 6371 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 6372 unsigned long addr, unsigned long end, 6373 struct mm_walk *walk) 6374 { 6375 struct vm_area_struct *vma = walk->private; 6376 pte_t *pte; 6377 spinlock_t *ptl; 6378 6379 if (pmd_trans_huge_lock(pmd, vma) == 1) { 6380 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) 6381 mc.precharge += HPAGE_PMD_NR; 6382 spin_unlock(&vma->vm_mm->page_table_lock); 6383 return 0; 6384 } 6385 6386 if (pmd_trans_unstable(pmd)) 6387 return 0; 6388 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 6389 for (; addr != end; pte++, addr += PAGE_SIZE) 6390 if (get_mctgt_type(vma, addr, *pte, NULL)) 6391 mc.precharge++; /* increment precharge temporarily */ 6392 pte_unmap_unlock(pte - 1, ptl); 6393 cond_resched(); 6394 6395 return 0; 6396 } 6397 6398 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 6399 { 6400 unsigned long precharge; 6401 struct vm_area_struct *vma; 6402 6403 down_read(&mm->mmap_sem); 6404 for (vma = mm->mmap; vma; vma = vma->vm_next) { 6405 struct mm_walk mem_cgroup_count_precharge_walk = { 6406 .pmd_entry = mem_cgroup_count_precharge_pte_range, 6407 .mm = mm, 6408 .private = vma, 6409 }; 6410 if (is_vm_hugetlb_page(vma)) 6411 continue; 6412 walk_page_range(vma->vm_start, vma->vm_end, 6413 &mem_cgroup_count_precharge_walk); 6414 } 6415 up_read(&mm->mmap_sem); 6416 6417 precharge = mc.precharge; 6418 mc.precharge = 0; 6419 6420 return precharge; 6421 } 6422 6423 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 6424 { 6425 unsigned long precharge = mem_cgroup_count_precharge(mm); 6426 6427 VM_BUG_ON(mc.moving_task); 6428 mc.moving_task = current; 6429 return mem_cgroup_do_precharge(precharge); 6430 } 6431 6432 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 6433 static void __mem_cgroup_clear_mc(void) 6434 { 6435 struct mem_cgroup *from = mc.from; 6436 struct mem_cgroup *to = mc.to; 6437 int i; 6438 6439 /* we must uncharge all the leftover precharges from mc.to */ 6440 if (mc.precharge) { 6441 __mem_cgroup_cancel_charge(mc.to, mc.precharge); 6442 mc.precharge = 0; 6443 } 6444 /* 6445 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 6446 * we must uncharge here. 6447 */ 6448 if (mc.moved_charge) { 6449 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge); 6450 mc.moved_charge = 0; 6451 } 6452 /* we must fixup refcnts and charges */ 6453 if (mc.moved_swap) { 6454 /* uncharge swap account from the old cgroup */ 6455 if (!mem_cgroup_is_root(mc.from)) 6456 res_counter_uncharge(&mc.from->memsw, 6457 PAGE_SIZE * mc.moved_swap); 6458 6459 for (i = 0; i < mc.moved_swap; i++) 6460 css_put(&mc.from->css); 6461 6462 if (!mem_cgroup_is_root(mc.to)) { 6463 /* 6464 * we charged both to->res and to->memsw, so we should 6465 * uncharge to->res. 6466 */ 6467 res_counter_uncharge(&mc.to->res, 6468 PAGE_SIZE * mc.moved_swap); 6469 } 6470 /* we've already done css_get(mc.to) */ 6471 mc.moved_swap = 0; 6472 } 6473 memcg_oom_recover(from); 6474 memcg_oom_recover(to); 6475 wake_up_all(&mc.waitq); 6476 } 6477 6478 static void mem_cgroup_clear_mc(void) 6479 { 6480 struct mem_cgroup *from = mc.from; 6481 6482 /* 6483 * we must clear moving_task before waking up waiters at the end of 6484 * task migration. 6485 */ 6486 mc.moving_task = NULL; 6487 __mem_cgroup_clear_mc(); 6488 spin_lock(&mc.lock); 6489 mc.from = NULL; 6490 mc.to = NULL; 6491 spin_unlock(&mc.lock); 6492 mem_cgroup_end_move(from); 6493 } 6494 6495 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css, 6496 struct cgroup_taskset *tset) 6497 { 6498 struct task_struct *p = cgroup_taskset_first(tset); 6499 int ret = 0; 6500 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6501 unsigned long move_charge_at_immigrate; 6502 6503 /* 6504 * We are now commited to this value whatever it is. Changes in this 6505 * tunable will only affect upcoming migrations, not the current one. 6506 * So we need to save it, and keep it going. 6507 */ 6508 move_charge_at_immigrate = memcg->move_charge_at_immigrate; 6509 if (move_charge_at_immigrate) { 6510 struct mm_struct *mm; 6511 struct mem_cgroup *from = mem_cgroup_from_task(p); 6512 6513 VM_BUG_ON(from == memcg); 6514 6515 mm = get_task_mm(p); 6516 if (!mm) 6517 return 0; 6518 /* We move charges only when we move a owner of the mm */ 6519 if (mm->owner == p) { 6520 VM_BUG_ON(mc.from); 6521 VM_BUG_ON(mc.to); 6522 VM_BUG_ON(mc.precharge); 6523 VM_BUG_ON(mc.moved_charge); 6524 VM_BUG_ON(mc.moved_swap); 6525 mem_cgroup_start_move(from); 6526 spin_lock(&mc.lock); 6527 mc.from = from; 6528 mc.to = memcg; 6529 mc.immigrate_flags = move_charge_at_immigrate; 6530 spin_unlock(&mc.lock); 6531 /* We set mc.moving_task later */ 6532 6533 ret = mem_cgroup_precharge_mc(mm); 6534 if (ret) 6535 mem_cgroup_clear_mc(); 6536 } 6537 mmput(mm); 6538 } 6539 return ret; 6540 } 6541 6542 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css, 6543 struct cgroup_taskset *tset) 6544 { 6545 mem_cgroup_clear_mc(); 6546 } 6547 6548 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 6549 unsigned long addr, unsigned long end, 6550 struct mm_walk *walk) 6551 { 6552 int ret = 0; 6553 struct vm_area_struct *vma = walk->private; 6554 pte_t *pte; 6555 spinlock_t *ptl; 6556 enum mc_target_type target_type; 6557 union mc_target target; 6558 struct page *page; 6559 struct page_cgroup *pc; 6560 6561 /* 6562 * We don't take compound_lock() here but no race with splitting thp 6563 * happens because: 6564 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not 6565 * under splitting, which means there's no concurrent thp split, 6566 * - if another thread runs into split_huge_page() just after we 6567 * entered this if-block, the thread must wait for page table lock 6568 * to be unlocked in __split_huge_page_splitting(), where the main 6569 * part of thp split is not executed yet. 6570 */ 6571 if (pmd_trans_huge_lock(pmd, vma) == 1) { 6572 if (mc.precharge < HPAGE_PMD_NR) { 6573 spin_unlock(&vma->vm_mm->page_table_lock); 6574 return 0; 6575 } 6576 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); 6577 if (target_type == MC_TARGET_PAGE) { 6578 page = target.page; 6579 if (!isolate_lru_page(page)) { 6580 pc = lookup_page_cgroup(page); 6581 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR, 6582 pc, mc.from, mc.to)) { 6583 mc.precharge -= HPAGE_PMD_NR; 6584 mc.moved_charge += HPAGE_PMD_NR; 6585 } 6586 putback_lru_page(page); 6587 } 6588 put_page(page); 6589 } 6590 spin_unlock(&vma->vm_mm->page_table_lock); 6591 return 0; 6592 } 6593 6594 if (pmd_trans_unstable(pmd)) 6595 return 0; 6596 retry: 6597 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 6598 for (; addr != end; addr += PAGE_SIZE) { 6599 pte_t ptent = *(pte++); 6600 swp_entry_t ent; 6601 6602 if (!mc.precharge) 6603 break; 6604 6605 switch (get_mctgt_type(vma, addr, ptent, &target)) { 6606 case MC_TARGET_PAGE: 6607 page = target.page; 6608 if (isolate_lru_page(page)) 6609 goto put; 6610 pc = lookup_page_cgroup(page); 6611 if (!mem_cgroup_move_account(page, 1, pc, 6612 mc.from, mc.to)) { 6613 mc.precharge--; 6614 /* we uncharge from mc.from later. */ 6615 mc.moved_charge++; 6616 } 6617 putback_lru_page(page); 6618 put: /* get_mctgt_type() gets the page */ 6619 put_page(page); 6620 break; 6621 case MC_TARGET_SWAP: 6622 ent = target.ent; 6623 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { 6624 mc.precharge--; 6625 /* we fixup refcnts and charges later. */ 6626 mc.moved_swap++; 6627 } 6628 break; 6629 default: 6630 break; 6631 } 6632 } 6633 pte_unmap_unlock(pte - 1, ptl); 6634 cond_resched(); 6635 6636 if (addr != end) { 6637 /* 6638 * We have consumed all precharges we got in can_attach(). 6639 * We try charge one by one, but don't do any additional 6640 * charges to mc.to if we have failed in charge once in attach() 6641 * phase. 6642 */ 6643 ret = mem_cgroup_do_precharge(1); 6644 if (!ret) 6645 goto retry; 6646 } 6647 6648 return ret; 6649 } 6650 6651 static void mem_cgroup_move_charge(struct mm_struct *mm) 6652 { 6653 struct vm_area_struct *vma; 6654 6655 lru_add_drain_all(); 6656 retry: 6657 if (unlikely(!down_read_trylock(&mm->mmap_sem))) { 6658 /* 6659 * Someone who are holding the mmap_sem might be waiting in 6660 * waitq. So we cancel all extra charges, wake up all waiters, 6661 * and retry. Because we cancel precharges, we might not be able 6662 * to move enough charges, but moving charge is a best-effort 6663 * feature anyway, so it wouldn't be a big problem. 6664 */ 6665 __mem_cgroup_clear_mc(); 6666 cond_resched(); 6667 goto retry; 6668 } 6669 for (vma = mm->mmap; vma; vma = vma->vm_next) { 6670 int ret; 6671 struct mm_walk mem_cgroup_move_charge_walk = { 6672 .pmd_entry = mem_cgroup_move_charge_pte_range, 6673 .mm = mm, 6674 .private = vma, 6675 }; 6676 if (is_vm_hugetlb_page(vma)) 6677 continue; 6678 ret = walk_page_range(vma->vm_start, vma->vm_end, 6679 &mem_cgroup_move_charge_walk); 6680 if (ret) 6681 /* 6682 * means we have consumed all precharges and failed in 6683 * doing additional charge. Just abandon here. 6684 */ 6685 break; 6686 } 6687 up_read(&mm->mmap_sem); 6688 } 6689 6690 static void mem_cgroup_move_task(struct cgroup_subsys_state *css, 6691 struct cgroup_taskset *tset) 6692 { 6693 struct task_struct *p = cgroup_taskset_first(tset); 6694 struct mm_struct *mm = get_task_mm(p); 6695 6696 if (mm) { 6697 if (mc.to) 6698 mem_cgroup_move_charge(mm); 6699 mmput(mm); 6700 } 6701 if (mc.to) 6702 mem_cgroup_clear_mc(); 6703 } 6704 #else /* !CONFIG_MMU */ 6705 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css, 6706 struct cgroup_taskset *tset) 6707 { 6708 return 0; 6709 } 6710 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css, 6711 struct cgroup_taskset *tset) 6712 { 6713 } 6714 static void mem_cgroup_move_task(struct cgroup_subsys_state *css, 6715 struct cgroup_taskset *tset) 6716 { 6717 } 6718 #endif 6719 6720 /* 6721 * Cgroup retains root cgroups across [un]mount cycles making it necessary 6722 * to verify sane_behavior flag on each mount attempt. 6723 */ 6724 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css) 6725 { 6726 /* 6727 * use_hierarchy is forced with sane_behavior. cgroup core 6728 * guarantees that @root doesn't have any children, so turning it 6729 * on for the root memcg is enough. 6730 */ 6731 if (cgroup_sane_behavior(root_css->cgroup)) 6732 mem_cgroup_from_css(root_css)->use_hierarchy = true; 6733 } 6734 6735 struct cgroup_subsys mem_cgroup_subsys = { 6736 .name = "memory", 6737 .subsys_id = mem_cgroup_subsys_id, 6738 .css_alloc = mem_cgroup_css_alloc, 6739 .css_online = mem_cgroup_css_online, 6740 .css_offline = mem_cgroup_css_offline, 6741 .css_free = mem_cgroup_css_free, 6742 .can_attach = mem_cgroup_can_attach, 6743 .cancel_attach = mem_cgroup_cancel_attach, 6744 .attach = mem_cgroup_move_task, 6745 .bind = mem_cgroup_bind, 6746 .base_cftypes = mem_cgroup_files, 6747 .early_init = 0, 6748 .use_id = 1, 6749 }; 6750 6751 #ifdef CONFIG_MEMCG_SWAP 6752 static int __init enable_swap_account(char *s) 6753 { 6754 if (!strcmp(s, "1")) 6755 really_do_swap_account = 1; 6756 else if (!strcmp(s, "0")) 6757 really_do_swap_account = 0; 6758 return 1; 6759 } 6760 __setup("swapaccount=", enable_swap_account); 6761 6762 static void __init memsw_file_init(void) 6763 { 6764 WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files)); 6765 } 6766 6767 static void __init enable_swap_cgroup(void) 6768 { 6769 if (!mem_cgroup_disabled() && really_do_swap_account) { 6770 do_swap_account = 1; 6771 memsw_file_init(); 6772 } 6773 } 6774 6775 #else 6776 static void __init enable_swap_cgroup(void) 6777 { 6778 } 6779 #endif 6780 6781 /* 6782 * subsys_initcall() for memory controller. 6783 * 6784 * Some parts like hotcpu_notifier() have to be initialized from this context 6785 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically 6786 * everything that doesn't depend on a specific mem_cgroup structure should 6787 * be initialized from here. 6788 */ 6789 static int __init mem_cgroup_init(void) 6790 { 6791 hotcpu_notifier(memcg_cpu_hotplug_callback, 0); 6792 enable_swap_cgroup(); 6793 memcg_stock_init(); 6794 return 0; 6795 } 6796 subsys_initcall(mem_cgroup_init); 6797