xref: /openbmc/linux/mm/memcontrol.c (revision 56d06fa2)
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * Kernel Memory Controller
14  * Copyright (C) 2012 Parallels Inc. and Google Inc.
15  * Authors: Glauber Costa and Suleiman Souhlal
16  *
17  * Native page reclaim
18  * Charge lifetime sanitation
19  * Lockless page tracking & accounting
20  * Unified hierarchy configuration model
21  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22  *
23  * This program is free software; you can redistribute it and/or modify
24  * it under the terms of the GNU General Public License as published by
25  * the Free Software Foundation; either version 2 of the License, or
26  * (at your option) any later version.
27  *
28  * This program is distributed in the hope that it will be useful,
29  * but WITHOUT ANY WARRANTY; without even the implied warranty of
30  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
31  * GNU General Public License for more details.
32  */
33 
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/hugetlb.h>
39 #include <linux/pagemap.h>
40 #include <linux/smp.h>
41 #include <linux/page-flags.h>
42 #include <linux/backing-dev.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/limits.h>
46 #include <linux/export.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/spinlock.h>
53 #include <linux/eventfd.h>
54 #include <linux/poll.h>
55 #include <linux/sort.h>
56 #include <linux/fs.h>
57 #include <linux/seq_file.h>
58 #include <linux/vmpressure.h>
59 #include <linux/mm_inline.h>
60 #include <linux/swap_cgroup.h>
61 #include <linux/cpu.h>
62 #include <linux/oom.h>
63 #include <linux/lockdep.h>
64 #include <linux/file.h>
65 #include <linux/tracehook.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include "slab.h"
70 
71 #include <asm/uaccess.h>
72 
73 #include <trace/events/vmscan.h>
74 
75 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76 EXPORT_SYMBOL(memory_cgrp_subsys);
77 
78 struct mem_cgroup *root_mem_cgroup __read_mostly;
79 
80 #define MEM_CGROUP_RECLAIM_RETRIES	5
81 
82 /* Socket memory accounting disabled? */
83 static bool cgroup_memory_nosocket;
84 
85 /* Kernel memory accounting disabled? */
86 static bool cgroup_memory_nokmem;
87 
88 /* Whether the swap controller is active */
89 #ifdef CONFIG_MEMCG_SWAP
90 int do_swap_account __read_mostly;
91 #else
92 #define do_swap_account		0
93 #endif
94 
95 /* Whether legacy memory+swap accounting is active */
96 static bool do_memsw_account(void)
97 {
98 	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99 }
100 
101 static const char * const mem_cgroup_stat_names[] = {
102 	"cache",
103 	"rss",
104 	"rss_huge",
105 	"mapped_file",
106 	"dirty",
107 	"writeback",
108 	"swap",
109 };
110 
111 static const char * const mem_cgroup_events_names[] = {
112 	"pgpgin",
113 	"pgpgout",
114 	"pgfault",
115 	"pgmajfault",
116 };
117 
118 static const char * const mem_cgroup_lru_names[] = {
119 	"inactive_anon",
120 	"active_anon",
121 	"inactive_file",
122 	"active_file",
123 	"unevictable",
124 };
125 
126 #define THRESHOLDS_EVENTS_TARGET 128
127 #define SOFTLIMIT_EVENTS_TARGET 1024
128 #define NUMAINFO_EVENTS_TARGET	1024
129 
130 /*
131  * Cgroups above their limits are maintained in a RB-Tree, independent of
132  * their hierarchy representation
133  */
134 
135 struct mem_cgroup_tree_per_zone {
136 	struct rb_root rb_root;
137 	spinlock_t lock;
138 };
139 
140 struct mem_cgroup_tree_per_node {
141 	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
142 };
143 
144 struct mem_cgroup_tree {
145 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
146 };
147 
148 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
149 
150 /* for OOM */
151 struct mem_cgroup_eventfd_list {
152 	struct list_head list;
153 	struct eventfd_ctx *eventfd;
154 };
155 
156 /*
157  * cgroup_event represents events which userspace want to receive.
158  */
159 struct mem_cgroup_event {
160 	/*
161 	 * memcg which the event belongs to.
162 	 */
163 	struct mem_cgroup *memcg;
164 	/*
165 	 * eventfd to signal userspace about the event.
166 	 */
167 	struct eventfd_ctx *eventfd;
168 	/*
169 	 * Each of these stored in a list by the cgroup.
170 	 */
171 	struct list_head list;
172 	/*
173 	 * register_event() callback will be used to add new userspace
174 	 * waiter for changes related to this event.  Use eventfd_signal()
175 	 * on eventfd to send notification to userspace.
176 	 */
177 	int (*register_event)(struct mem_cgroup *memcg,
178 			      struct eventfd_ctx *eventfd, const char *args);
179 	/*
180 	 * unregister_event() callback will be called when userspace closes
181 	 * the eventfd or on cgroup removing.  This callback must be set,
182 	 * if you want provide notification functionality.
183 	 */
184 	void (*unregister_event)(struct mem_cgroup *memcg,
185 				 struct eventfd_ctx *eventfd);
186 	/*
187 	 * All fields below needed to unregister event when
188 	 * userspace closes eventfd.
189 	 */
190 	poll_table pt;
191 	wait_queue_head_t *wqh;
192 	wait_queue_t wait;
193 	struct work_struct remove;
194 };
195 
196 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
197 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
198 
199 /* Stuffs for move charges at task migration. */
200 /*
201  * Types of charges to be moved.
202  */
203 #define MOVE_ANON	0x1U
204 #define MOVE_FILE	0x2U
205 #define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
206 
207 /* "mc" and its members are protected by cgroup_mutex */
208 static struct move_charge_struct {
209 	spinlock_t	  lock; /* for from, to */
210 	struct mm_struct  *mm;
211 	struct mem_cgroup *from;
212 	struct mem_cgroup *to;
213 	unsigned long flags;
214 	unsigned long precharge;
215 	unsigned long moved_charge;
216 	unsigned long moved_swap;
217 	struct task_struct *moving_task;	/* a task moving charges */
218 	wait_queue_head_t waitq;		/* a waitq for other context */
219 } mc = {
220 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
221 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
222 };
223 
224 /*
225  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
226  * limit reclaim to prevent infinite loops, if they ever occur.
227  */
228 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
229 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
230 
231 enum charge_type {
232 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
233 	MEM_CGROUP_CHARGE_TYPE_ANON,
234 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
235 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
236 	NR_CHARGE_TYPE,
237 };
238 
239 /* for encoding cft->private value on file */
240 enum res_type {
241 	_MEM,
242 	_MEMSWAP,
243 	_OOM_TYPE,
244 	_KMEM,
245 	_TCP,
246 };
247 
248 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
249 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
250 #define MEMFILE_ATTR(val)	((val) & 0xffff)
251 /* Used for OOM nofiier */
252 #define OOM_CONTROL		(0)
253 
254 /* Some nice accessors for the vmpressure. */
255 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
256 {
257 	if (!memcg)
258 		memcg = root_mem_cgroup;
259 	return &memcg->vmpressure;
260 }
261 
262 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
263 {
264 	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
265 }
266 
267 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
268 {
269 	return (memcg == root_mem_cgroup);
270 }
271 
272 #ifndef CONFIG_SLOB
273 /*
274  * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
275  * The main reason for not using cgroup id for this:
276  *  this works better in sparse environments, where we have a lot of memcgs,
277  *  but only a few kmem-limited. Or also, if we have, for instance, 200
278  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
279  *  200 entry array for that.
280  *
281  * The current size of the caches array is stored in memcg_nr_cache_ids. It
282  * will double each time we have to increase it.
283  */
284 static DEFINE_IDA(memcg_cache_ida);
285 int memcg_nr_cache_ids;
286 
287 /* Protects memcg_nr_cache_ids */
288 static DECLARE_RWSEM(memcg_cache_ids_sem);
289 
290 void memcg_get_cache_ids(void)
291 {
292 	down_read(&memcg_cache_ids_sem);
293 }
294 
295 void memcg_put_cache_ids(void)
296 {
297 	up_read(&memcg_cache_ids_sem);
298 }
299 
300 /*
301  * MIN_SIZE is different than 1, because we would like to avoid going through
302  * the alloc/free process all the time. In a small machine, 4 kmem-limited
303  * cgroups is a reasonable guess. In the future, it could be a parameter or
304  * tunable, but that is strictly not necessary.
305  *
306  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
307  * this constant directly from cgroup, but it is understandable that this is
308  * better kept as an internal representation in cgroup.c. In any case, the
309  * cgrp_id space is not getting any smaller, and we don't have to necessarily
310  * increase ours as well if it increases.
311  */
312 #define MEMCG_CACHES_MIN_SIZE 4
313 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
314 
315 /*
316  * A lot of the calls to the cache allocation functions are expected to be
317  * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
318  * conditional to this static branch, we'll have to allow modules that does
319  * kmem_cache_alloc and the such to see this symbol as well
320  */
321 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
322 EXPORT_SYMBOL(memcg_kmem_enabled_key);
323 
324 #endif /* !CONFIG_SLOB */
325 
326 static struct mem_cgroup_per_zone *
327 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
328 {
329 	int nid = zone_to_nid(zone);
330 	int zid = zone_idx(zone);
331 
332 	return &memcg->nodeinfo[nid]->zoneinfo[zid];
333 }
334 
335 /**
336  * mem_cgroup_css_from_page - css of the memcg associated with a page
337  * @page: page of interest
338  *
339  * If memcg is bound to the default hierarchy, css of the memcg associated
340  * with @page is returned.  The returned css remains associated with @page
341  * until it is released.
342  *
343  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
344  * is returned.
345  */
346 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
347 {
348 	struct mem_cgroup *memcg;
349 
350 	memcg = page->mem_cgroup;
351 
352 	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
353 		memcg = root_mem_cgroup;
354 
355 	return &memcg->css;
356 }
357 
358 /**
359  * page_cgroup_ino - return inode number of the memcg a page is charged to
360  * @page: the page
361  *
362  * Look up the closest online ancestor of the memory cgroup @page is charged to
363  * and return its inode number or 0 if @page is not charged to any cgroup. It
364  * is safe to call this function without holding a reference to @page.
365  *
366  * Note, this function is inherently racy, because there is nothing to prevent
367  * the cgroup inode from getting torn down and potentially reallocated a moment
368  * after page_cgroup_ino() returns, so it only should be used by callers that
369  * do not care (such as procfs interfaces).
370  */
371 ino_t page_cgroup_ino(struct page *page)
372 {
373 	struct mem_cgroup *memcg;
374 	unsigned long ino = 0;
375 
376 	rcu_read_lock();
377 	memcg = READ_ONCE(page->mem_cgroup);
378 	while (memcg && !(memcg->css.flags & CSS_ONLINE))
379 		memcg = parent_mem_cgroup(memcg);
380 	if (memcg)
381 		ino = cgroup_ino(memcg->css.cgroup);
382 	rcu_read_unlock();
383 	return ino;
384 }
385 
386 static struct mem_cgroup_per_zone *
387 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
388 {
389 	int nid = page_to_nid(page);
390 	int zid = page_zonenum(page);
391 
392 	return &memcg->nodeinfo[nid]->zoneinfo[zid];
393 }
394 
395 static struct mem_cgroup_tree_per_zone *
396 soft_limit_tree_node_zone(int nid, int zid)
397 {
398 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
399 }
400 
401 static struct mem_cgroup_tree_per_zone *
402 soft_limit_tree_from_page(struct page *page)
403 {
404 	int nid = page_to_nid(page);
405 	int zid = page_zonenum(page);
406 
407 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
408 }
409 
410 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
411 					 struct mem_cgroup_tree_per_zone *mctz,
412 					 unsigned long new_usage_in_excess)
413 {
414 	struct rb_node **p = &mctz->rb_root.rb_node;
415 	struct rb_node *parent = NULL;
416 	struct mem_cgroup_per_zone *mz_node;
417 
418 	if (mz->on_tree)
419 		return;
420 
421 	mz->usage_in_excess = new_usage_in_excess;
422 	if (!mz->usage_in_excess)
423 		return;
424 	while (*p) {
425 		parent = *p;
426 		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
427 					tree_node);
428 		if (mz->usage_in_excess < mz_node->usage_in_excess)
429 			p = &(*p)->rb_left;
430 		/*
431 		 * We can't avoid mem cgroups that are over their soft
432 		 * limit by the same amount
433 		 */
434 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
435 			p = &(*p)->rb_right;
436 	}
437 	rb_link_node(&mz->tree_node, parent, p);
438 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
439 	mz->on_tree = true;
440 }
441 
442 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
443 					 struct mem_cgroup_tree_per_zone *mctz)
444 {
445 	if (!mz->on_tree)
446 		return;
447 	rb_erase(&mz->tree_node, &mctz->rb_root);
448 	mz->on_tree = false;
449 }
450 
451 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
452 				       struct mem_cgroup_tree_per_zone *mctz)
453 {
454 	unsigned long flags;
455 
456 	spin_lock_irqsave(&mctz->lock, flags);
457 	__mem_cgroup_remove_exceeded(mz, mctz);
458 	spin_unlock_irqrestore(&mctz->lock, flags);
459 }
460 
461 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
462 {
463 	unsigned long nr_pages = page_counter_read(&memcg->memory);
464 	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
465 	unsigned long excess = 0;
466 
467 	if (nr_pages > soft_limit)
468 		excess = nr_pages - soft_limit;
469 
470 	return excess;
471 }
472 
473 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
474 {
475 	unsigned long excess;
476 	struct mem_cgroup_per_zone *mz;
477 	struct mem_cgroup_tree_per_zone *mctz;
478 
479 	mctz = soft_limit_tree_from_page(page);
480 	/*
481 	 * Necessary to update all ancestors when hierarchy is used.
482 	 * because their event counter is not touched.
483 	 */
484 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
485 		mz = mem_cgroup_page_zoneinfo(memcg, page);
486 		excess = soft_limit_excess(memcg);
487 		/*
488 		 * We have to update the tree if mz is on RB-tree or
489 		 * mem is over its softlimit.
490 		 */
491 		if (excess || mz->on_tree) {
492 			unsigned long flags;
493 
494 			spin_lock_irqsave(&mctz->lock, flags);
495 			/* if on-tree, remove it */
496 			if (mz->on_tree)
497 				__mem_cgroup_remove_exceeded(mz, mctz);
498 			/*
499 			 * Insert again. mz->usage_in_excess will be updated.
500 			 * If excess is 0, no tree ops.
501 			 */
502 			__mem_cgroup_insert_exceeded(mz, mctz, excess);
503 			spin_unlock_irqrestore(&mctz->lock, flags);
504 		}
505 	}
506 }
507 
508 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
509 {
510 	struct mem_cgroup_tree_per_zone *mctz;
511 	struct mem_cgroup_per_zone *mz;
512 	int nid, zid;
513 
514 	for_each_node(nid) {
515 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
516 			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
517 			mctz = soft_limit_tree_node_zone(nid, zid);
518 			mem_cgroup_remove_exceeded(mz, mctz);
519 		}
520 	}
521 }
522 
523 static struct mem_cgroup_per_zone *
524 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
525 {
526 	struct rb_node *rightmost = NULL;
527 	struct mem_cgroup_per_zone *mz;
528 
529 retry:
530 	mz = NULL;
531 	rightmost = rb_last(&mctz->rb_root);
532 	if (!rightmost)
533 		goto done;		/* Nothing to reclaim from */
534 
535 	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
536 	/*
537 	 * Remove the node now but someone else can add it back,
538 	 * we will to add it back at the end of reclaim to its correct
539 	 * position in the tree.
540 	 */
541 	__mem_cgroup_remove_exceeded(mz, mctz);
542 	if (!soft_limit_excess(mz->memcg) ||
543 	    !css_tryget_online(&mz->memcg->css))
544 		goto retry;
545 done:
546 	return mz;
547 }
548 
549 static struct mem_cgroup_per_zone *
550 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
551 {
552 	struct mem_cgroup_per_zone *mz;
553 
554 	spin_lock_irq(&mctz->lock);
555 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
556 	spin_unlock_irq(&mctz->lock);
557 	return mz;
558 }
559 
560 /*
561  * Return page count for single (non recursive) @memcg.
562  *
563  * Implementation Note: reading percpu statistics for memcg.
564  *
565  * Both of vmstat[] and percpu_counter has threshold and do periodic
566  * synchronization to implement "quick" read. There are trade-off between
567  * reading cost and precision of value. Then, we may have a chance to implement
568  * a periodic synchronization of counter in memcg's counter.
569  *
570  * But this _read() function is used for user interface now. The user accounts
571  * memory usage by memory cgroup and he _always_ requires exact value because
572  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
573  * have to visit all online cpus and make sum. So, for now, unnecessary
574  * synchronization is not implemented. (just implemented for cpu hotplug)
575  *
576  * If there are kernel internal actions which can make use of some not-exact
577  * value, and reading all cpu value can be performance bottleneck in some
578  * common workload, threshold and synchronization as vmstat[] should be
579  * implemented.
580  */
581 static unsigned long
582 mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
583 {
584 	long val = 0;
585 	int cpu;
586 
587 	/* Per-cpu values can be negative, use a signed accumulator */
588 	for_each_possible_cpu(cpu)
589 		val += per_cpu(memcg->stat->count[idx], cpu);
590 	/*
591 	 * Summing races with updates, so val may be negative.  Avoid exposing
592 	 * transient negative values.
593 	 */
594 	if (val < 0)
595 		val = 0;
596 	return val;
597 }
598 
599 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
600 					    enum mem_cgroup_events_index idx)
601 {
602 	unsigned long val = 0;
603 	int cpu;
604 
605 	for_each_possible_cpu(cpu)
606 		val += per_cpu(memcg->stat->events[idx], cpu);
607 	return val;
608 }
609 
610 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
611 					 struct page *page,
612 					 bool compound, int nr_pages)
613 {
614 	/*
615 	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
616 	 * counted as CACHE even if it's on ANON LRU.
617 	 */
618 	if (PageAnon(page))
619 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
620 				nr_pages);
621 	else
622 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
623 				nr_pages);
624 
625 	if (compound) {
626 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
627 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
628 				nr_pages);
629 	}
630 
631 	/* pagein of a big page is an event. So, ignore page size */
632 	if (nr_pages > 0)
633 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
634 	else {
635 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
636 		nr_pages = -nr_pages; /* for event */
637 	}
638 
639 	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
640 }
641 
642 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
643 					   int nid, unsigned int lru_mask)
644 {
645 	unsigned long nr = 0;
646 	int zid;
647 
648 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
649 
650 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
651 		struct mem_cgroup_per_zone *mz;
652 		enum lru_list lru;
653 
654 		for_each_lru(lru) {
655 			if (!(BIT(lru) & lru_mask))
656 				continue;
657 			mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
658 			nr += mz->lru_size[lru];
659 		}
660 	}
661 	return nr;
662 }
663 
664 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
665 			unsigned int lru_mask)
666 {
667 	unsigned long nr = 0;
668 	int nid;
669 
670 	for_each_node_state(nid, N_MEMORY)
671 		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
672 	return nr;
673 }
674 
675 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
676 				       enum mem_cgroup_events_target target)
677 {
678 	unsigned long val, next;
679 
680 	val = __this_cpu_read(memcg->stat->nr_page_events);
681 	next = __this_cpu_read(memcg->stat->targets[target]);
682 	/* from time_after() in jiffies.h */
683 	if ((long)next - (long)val < 0) {
684 		switch (target) {
685 		case MEM_CGROUP_TARGET_THRESH:
686 			next = val + THRESHOLDS_EVENTS_TARGET;
687 			break;
688 		case MEM_CGROUP_TARGET_SOFTLIMIT:
689 			next = val + SOFTLIMIT_EVENTS_TARGET;
690 			break;
691 		case MEM_CGROUP_TARGET_NUMAINFO:
692 			next = val + NUMAINFO_EVENTS_TARGET;
693 			break;
694 		default:
695 			break;
696 		}
697 		__this_cpu_write(memcg->stat->targets[target], next);
698 		return true;
699 	}
700 	return false;
701 }
702 
703 /*
704  * Check events in order.
705  *
706  */
707 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
708 {
709 	/* threshold event is triggered in finer grain than soft limit */
710 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
711 						MEM_CGROUP_TARGET_THRESH))) {
712 		bool do_softlimit;
713 		bool do_numainfo __maybe_unused;
714 
715 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
716 						MEM_CGROUP_TARGET_SOFTLIMIT);
717 #if MAX_NUMNODES > 1
718 		do_numainfo = mem_cgroup_event_ratelimit(memcg,
719 						MEM_CGROUP_TARGET_NUMAINFO);
720 #endif
721 		mem_cgroup_threshold(memcg);
722 		if (unlikely(do_softlimit))
723 			mem_cgroup_update_tree(memcg, page);
724 #if MAX_NUMNODES > 1
725 		if (unlikely(do_numainfo))
726 			atomic_inc(&memcg->numainfo_events);
727 #endif
728 	}
729 }
730 
731 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
732 {
733 	/*
734 	 * mm_update_next_owner() may clear mm->owner to NULL
735 	 * if it races with swapoff, page migration, etc.
736 	 * So this can be called with p == NULL.
737 	 */
738 	if (unlikely(!p))
739 		return NULL;
740 
741 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
742 }
743 EXPORT_SYMBOL(mem_cgroup_from_task);
744 
745 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
746 {
747 	struct mem_cgroup *memcg = NULL;
748 
749 	rcu_read_lock();
750 	do {
751 		/*
752 		 * Page cache insertions can happen withou an
753 		 * actual mm context, e.g. during disk probing
754 		 * on boot, loopback IO, acct() writes etc.
755 		 */
756 		if (unlikely(!mm))
757 			memcg = root_mem_cgroup;
758 		else {
759 			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
760 			if (unlikely(!memcg))
761 				memcg = root_mem_cgroup;
762 		}
763 	} while (!css_tryget_online(&memcg->css));
764 	rcu_read_unlock();
765 	return memcg;
766 }
767 
768 /**
769  * mem_cgroup_iter - iterate over memory cgroup hierarchy
770  * @root: hierarchy root
771  * @prev: previously returned memcg, NULL on first invocation
772  * @reclaim: cookie for shared reclaim walks, NULL for full walks
773  *
774  * Returns references to children of the hierarchy below @root, or
775  * @root itself, or %NULL after a full round-trip.
776  *
777  * Caller must pass the return value in @prev on subsequent
778  * invocations for reference counting, or use mem_cgroup_iter_break()
779  * to cancel a hierarchy walk before the round-trip is complete.
780  *
781  * Reclaimers can specify a zone and a priority level in @reclaim to
782  * divide up the memcgs in the hierarchy among all concurrent
783  * reclaimers operating on the same zone and priority.
784  */
785 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
786 				   struct mem_cgroup *prev,
787 				   struct mem_cgroup_reclaim_cookie *reclaim)
788 {
789 	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
790 	struct cgroup_subsys_state *css = NULL;
791 	struct mem_cgroup *memcg = NULL;
792 	struct mem_cgroup *pos = NULL;
793 
794 	if (mem_cgroup_disabled())
795 		return NULL;
796 
797 	if (!root)
798 		root = root_mem_cgroup;
799 
800 	if (prev && !reclaim)
801 		pos = prev;
802 
803 	if (!root->use_hierarchy && root != root_mem_cgroup) {
804 		if (prev)
805 			goto out;
806 		return root;
807 	}
808 
809 	rcu_read_lock();
810 
811 	if (reclaim) {
812 		struct mem_cgroup_per_zone *mz;
813 
814 		mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
815 		iter = &mz->iter[reclaim->priority];
816 
817 		if (prev && reclaim->generation != iter->generation)
818 			goto out_unlock;
819 
820 		while (1) {
821 			pos = READ_ONCE(iter->position);
822 			if (!pos || css_tryget(&pos->css))
823 				break;
824 			/*
825 			 * css reference reached zero, so iter->position will
826 			 * be cleared by ->css_released. However, we should not
827 			 * rely on this happening soon, because ->css_released
828 			 * is called from a work queue, and by busy-waiting we
829 			 * might block it. So we clear iter->position right
830 			 * away.
831 			 */
832 			(void)cmpxchg(&iter->position, pos, NULL);
833 		}
834 	}
835 
836 	if (pos)
837 		css = &pos->css;
838 
839 	for (;;) {
840 		css = css_next_descendant_pre(css, &root->css);
841 		if (!css) {
842 			/*
843 			 * Reclaimers share the hierarchy walk, and a
844 			 * new one might jump in right at the end of
845 			 * the hierarchy - make sure they see at least
846 			 * one group and restart from the beginning.
847 			 */
848 			if (!prev)
849 				continue;
850 			break;
851 		}
852 
853 		/*
854 		 * Verify the css and acquire a reference.  The root
855 		 * is provided by the caller, so we know it's alive
856 		 * and kicking, and don't take an extra reference.
857 		 */
858 		memcg = mem_cgroup_from_css(css);
859 
860 		if (css == &root->css)
861 			break;
862 
863 		if (css_tryget(css))
864 			break;
865 
866 		memcg = NULL;
867 	}
868 
869 	if (reclaim) {
870 		/*
871 		 * The position could have already been updated by a competing
872 		 * thread, so check that the value hasn't changed since we read
873 		 * it to avoid reclaiming from the same cgroup twice.
874 		 */
875 		(void)cmpxchg(&iter->position, pos, memcg);
876 
877 		if (pos)
878 			css_put(&pos->css);
879 
880 		if (!memcg)
881 			iter->generation++;
882 		else if (!prev)
883 			reclaim->generation = iter->generation;
884 	}
885 
886 out_unlock:
887 	rcu_read_unlock();
888 out:
889 	if (prev && prev != root)
890 		css_put(&prev->css);
891 
892 	return memcg;
893 }
894 
895 /**
896  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
897  * @root: hierarchy root
898  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
899  */
900 void mem_cgroup_iter_break(struct mem_cgroup *root,
901 			   struct mem_cgroup *prev)
902 {
903 	if (!root)
904 		root = root_mem_cgroup;
905 	if (prev && prev != root)
906 		css_put(&prev->css);
907 }
908 
909 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
910 {
911 	struct mem_cgroup *memcg = dead_memcg;
912 	struct mem_cgroup_reclaim_iter *iter;
913 	struct mem_cgroup_per_zone *mz;
914 	int nid, zid;
915 	int i;
916 
917 	while ((memcg = parent_mem_cgroup(memcg))) {
918 		for_each_node(nid) {
919 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
920 				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
921 				for (i = 0; i <= DEF_PRIORITY; i++) {
922 					iter = &mz->iter[i];
923 					cmpxchg(&iter->position,
924 						dead_memcg, NULL);
925 				}
926 			}
927 		}
928 	}
929 }
930 
931 /*
932  * Iteration constructs for visiting all cgroups (under a tree).  If
933  * loops are exited prematurely (break), mem_cgroup_iter_break() must
934  * be used for reference counting.
935  */
936 #define for_each_mem_cgroup_tree(iter, root)		\
937 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
938 	     iter != NULL;				\
939 	     iter = mem_cgroup_iter(root, iter, NULL))
940 
941 #define for_each_mem_cgroup(iter)			\
942 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
943 	     iter != NULL;				\
944 	     iter = mem_cgroup_iter(NULL, iter, NULL))
945 
946 /**
947  * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
948  * @zone: zone of the wanted lruvec
949  * @memcg: memcg of the wanted lruvec
950  *
951  * Returns the lru list vector holding pages for the given @zone and
952  * @mem.  This can be the global zone lruvec, if the memory controller
953  * is disabled.
954  */
955 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
956 				      struct mem_cgroup *memcg)
957 {
958 	struct mem_cgroup_per_zone *mz;
959 	struct lruvec *lruvec;
960 
961 	if (mem_cgroup_disabled()) {
962 		lruvec = &zone->lruvec;
963 		goto out;
964 	}
965 
966 	mz = mem_cgroup_zone_zoneinfo(memcg, zone);
967 	lruvec = &mz->lruvec;
968 out:
969 	/*
970 	 * Since a node can be onlined after the mem_cgroup was created,
971 	 * we have to be prepared to initialize lruvec->zone here;
972 	 * and if offlined then reonlined, we need to reinitialize it.
973 	 */
974 	if (unlikely(lruvec->zone != zone))
975 		lruvec->zone = zone;
976 	return lruvec;
977 }
978 
979 /**
980  * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
981  * @page: the page
982  * @zone: zone of the page
983  *
984  * This function is only safe when following the LRU page isolation
985  * and putback protocol: the LRU lock must be held, and the page must
986  * either be PageLRU() or the caller must have isolated/allocated it.
987  */
988 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
989 {
990 	struct mem_cgroup_per_zone *mz;
991 	struct mem_cgroup *memcg;
992 	struct lruvec *lruvec;
993 
994 	if (mem_cgroup_disabled()) {
995 		lruvec = &zone->lruvec;
996 		goto out;
997 	}
998 
999 	memcg = page->mem_cgroup;
1000 	/*
1001 	 * Swapcache readahead pages are added to the LRU - and
1002 	 * possibly migrated - before they are charged.
1003 	 */
1004 	if (!memcg)
1005 		memcg = root_mem_cgroup;
1006 
1007 	mz = mem_cgroup_page_zoneinfo(memcg, page);
1008 	lruvec = &mz->lruvec;
1009 out:
1010 	/*
1011 	 * Since a node can be onlined after the mem_cgroup was created,
1012 	 * we have to be prepared to initialize lruvec->zone here;
1013 	 * and if offlined then reonlined, we need to reinitialize it.
1014 	 */
1015 	if (unlikely(lruvec->zone != zone))
1016 		lruvec->zone = zone;
1017 	return lruvec;
1018 }
1019 
1020 /**
1021  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1022  * @lruvec: mem_cgroup per zone lru vector
1023  * @lru: index of lru list the page is sitting on
1024  * @nr_pages: positive when adding or negative when removing
1025  *
1026  * This function must be called when a page is added to or removed from an
1027  * lru list.
1028  */
1029 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1030 				int nr_pages)
1031 {
1032 	struct mem_cgroup_per_zone *mz;
1033 	unsigned long *lru_size;
1034 
1035 	if (mem_cgroup_disabled())
1036 		return;
1037 
1038 	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1039 	lru_size = mz->lru_size + lru;
1040 	*lru_size += nr_pages;
1041 	VM_BUG_ON((long)(*lru_size) < 0);
1042 }
1043 
1044 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1045 {
1046 	struct mem_cgroup *task_memcg;
1047 	struct task_struct *p;
1048 	bool ret;
1049 
1050 	p = find_lock_task_mm(task);
1051 	if (p) {
1052 		task_memcg = get_mem_cgroup_from_mm(p->mm);
1053 		task_unlock(p);
1054 	} else {
1055 		/*
1056 		 * All threads may have already detached their mm's, but the oom
1057 		 * killer still needs to detect if they have already been oom
1058 		 * killed to prevent needlessly killing additional tasks.
1059 		 */
1060 		rcu_read_lock();
1061 		task_memcg = mem_cgroup_from_task(task);
1062 		css_get(&task_memcg->css);
1063 		rcu_read_unlock();
1064 	}
1065 	ret = mem_cgroup_is_descendant(task_memcg, memcg);
1066 	css_put(&task_memcg->css);
1067 	return ret;
1068 }
1069 
1070 /**
1071  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1072  * @memcg: the memory cgroup
1073  *
1074  * Returns the maximum amount of memory @mem can be charged with, in
1075  * pages.
1076  */
1077 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1078 {
1079 	unsigned long margin = 0;
1080 	unsigned long count;
1081 	unsigned long limit;
1082 
1083 	count = page_counter_read(&memcg->memory);
1084 	limit = READ_ONCE(memcg->memory.limit);
1085 	if (count < limit)
1086 		margin = limit - count;
1087 
1088 	if (do_memsw_account()) {
1089 		count = page_counter_read(&memcg->memsw);
1090 		limit = READ_ONCE(memcg->memsw.limit);
1091 		if (count <= limit)
1092 			margin = min(margin, limit - count);
1093 	}
1094 
1095 	return margin;
1096 }
1097 
1098 /*
1099  * A routine for checking "mem" is under move_account() or not.
1100  *
1101  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1102  * moving cgroups. This is for waiting at high-memory pressure
1103  * caused by "move".
1104  */
1105 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1106 {
1107 	struct mem_cgroup *from;
1108 	struct mem_cgroup *to;
1109 	bool ret = false;
1110 	/*
1111 	 * Unlike task_move routines, we access mc.to, mc.from not under
1112 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1113 	 */
1114 	spin_lock(&mc.lock);
1115 	from = mc.from;
1116 	to = mc.to;
1117 	if (!from)
1118 		goto unlock;
1119 
1120 	ret = mem_cgroup_is_descendant(from, memcg) ||
1121 		mem_cgroup_is_descendant(to, memcg);
1122 unlock:
1123 	spin_unlock(&mc.lock);
1124 	return ret;
1125 }
1126 
1127 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1128 {
1129 	if (mc.moving_task && current != mc.moving_task) {
1130 		if (mem_cgroup_under_move(memcg)) {
1131 			DEFINE_WAIT(wait);
1132 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1133 			/* moving charge context might have finished. */
1134 			if (mc.moving_task)
1135 				schedule();
1136 			finish_wait(&mc.waitq, &wait);
1137 			return true;
1138 		}
1139 	}
1140 	return false;
1141 }
1142 
1143 #define K(x) ((x) << (PAGE_SHIFT-10))
1144 /**
1145  * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1146  * @memcg: The memory cgroup that went over limit
1147  * @p: Task that is going to be killed
1148  *
1149  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1150  * enabled
1151  */
1152 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1153 {
1154 	struct mem_cgroup *iter;
1155 	unsigned int i;
1156 
1157 	rcu_read_lock();
1158 
1159 	if (p) {
1160 		pr_info("Task in ");
1161 		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1162 		pr_cont(" killed as a result of limit of ");
1163 	} else {
1164 		pr_info("Memory limit reached of cgroup ");
1165 	}
1166 
1167 	pr_cont_cgroup_path(memcg->css.cgroup);
1168 	pr_cont("\n");
1169 
1170 	rcu_read_unlock();
1171 
1172 	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1173 		K((u64)page_counter_read(&memcg->memory)),
1174 		K((u64)memcg->memory.limit), memcg->memory.failcnt);
1175 	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1176 		K((u64)page_counter_read(&memcg->memsw)),
1177 		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1178 	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1179 		K((u64)page_counter_read(&memcg->kmem)),
1180 		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1181 
1182 	for_each_mem_cgroup_tree(iter, memcg) {
1183 		pr_info("Memory cgroup stats for ");
1184 		pr_cont_cgroup_path(iter->css.cgroup);
1185 		pr_cont(":");
1186 
1187 		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1188 			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1189 				continue;
1190 			pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1191 				K(mem_cgroup_read_stat(iter, i)));
1192 		}
1193 
1194 		for (i = 0; i < NR_LRU_LISTS; i++)
1195 			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1196 				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1197 
1198 		pr_cont("\n");
1199 	}
1200 }
1201 
1202 /*
1203  * This function returns the number of memcg under hierarchy tree. Returns
1204  * 1(self count) if no children.
1205  */
1206 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1207 {
1208 	int num = 0;
1209 	struct mem_cgroup *iter;
1210 
1211 	for_each_mem_cgroup_tree(iter, memcg)
1212 		num++;
1213 	return num;
1214 }
1215 
1216 /*
1217  * Return the memory (and swap, if configured) limit for a memcg.
1218  */
1219 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1220 {
1221 	unsigned long limit;
1222 
1223 	limit = memcg->memory.limit;
1224 	if (mem_cgroup_swappiness(memcg)) {
1225 		unsigned long memsw_limit;
1226 		unsigned long swap_limit;
1227 
1228 		memsw_limit = memcg->memsw.limit;
1229 		swap_limit = memcg->swap.limit;
1230 		swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1231 		limit = min(limit + swap_limit, memsw_limit);
1232 	}
1233 	return limit;
1234 }
1235 
1236 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1237 				     int order)
1238 {
1239 	struct oom_control oc = {
1240 		.zonelist = NULL,
1241 		.nodemask = NULL,
1242 		.gfp_mask = gfp_mask,
1243 		.order = order,
1244 	};
1245 	struct mem_cgroup *iter;
1246 	unsigned long chosen_points = 0;
1247 	unsigned long totalpages;
1248 	unsigned int points = 0;
1249 	struct task_struct *chosen = NULL;
1250 
1251 	mutex_lock(&oom_lock);
1252 
1253 	/*
1254 	 * If current has a pending SIGKILL or is exiting, then automatically
1255 	 * select it.  The goal is to allow it to allocate so that it may
1256 	 * quickly exit and free its memory.
1257 	 */
1258 	if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1259 		mark_oom_victim(current);
1260 		goto unlock;
1261 	}
1262 
1263 	check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
1264 	totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1265 	for_each_mem_cgroup_tree(iter, memcg) {
1266 		struct css_task_iter it;
1267 		struct task_struct *task;
1268 
1269 		css_task_iter_start(&iter->css, &it);
1270 		while ((task = css_task_iter_next(&it))) {
1271 			switch (oom_scan_process_thread(&oc, task, totalpages)) {
1272 			case OOM_SCAN_SELECT:
1273 				if (chosen)
1274 					put_task_struct(chosen);
1275 				chosen = task;
1276 				chosen_points = ULONG_MAX;
1277 				get_task_struct(chosen);
1278 				/* fall through */
1279 			case OOM_SCAN_CONTINUE:
1280 				continue;
1281 			case OOM_SCAN_ABORT:
1282 				css_task_iter_end(&it);
1283 				mem_cgroup_iter_break(memcg, iter);
1284 				if (chosen)
1285 					put_task_struct(chosen);
1286 				goto unlock;
1287 			case OOM_SCAN_OK:
1288 				break;
1289 			};
1290 			points = oom_badness(task, memcg, NULL, totalpages);
1291 			if (!points || points < chosen_points)
1292 				continue;
1293 			/* Prefer thread group leaders for display purposes */
1294 			if (points == chosen_points &&
1295 			    thread_group_leader(chosen))
1296 				continue;
1297 
1298 			if (chosen)
1299 				put_task_struct(chosen);
1300 			chosen = task;
1301 			chosen_points = points;
1302 			get_task_struct(chosen);
1303 		}
1304 		css_task_iter_end(&it);
1305 	}
1306 
1307 	if (chosen) {
1308 		points = chosen_points * 1000 / totalpages;
1309 		oom_kill_process(&oc, chosen, points, totalpages, memcg,
1310 				 "Memory cgroup out of memory");
1311 	}
1312 unlock:
1313 	mutex_unlock(&oom_lock);
1314 	return chosen;
1315 }
1316 
1317 #if MAX_NUMNODES > 1
1318 
1319 /**
1320  * test_mem_cgroup_node_reclaimable
1321  * @memcg: the target memcg
1322  * @nid: the node ID to be checked.
1323  * @noswap : specify true here if the user wants flle only information.
1324  *
1325  * This function returns whether the specified memcg contains any
1326  * reclaimable pages on a node. Returns true if there are any reclaimable
1327  * pages in the node.
1328  */
1329 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1330 		int nid, bool noswap)
1331 {
1332 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1333 		return true;
1334 	if (noswap || !total_swap_pages)
1335 		return false;
1336 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1337 		return true;
1338 	return false;
1339 
1340 }
1341 
1342 /*
1343  * Always updating the nodemask is not very good - even if we have an empty
1344  * list or the wrong list here, we can start from some node and traverse all
1345  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1346  *
1347  */
1348 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1349 {
1350 	int nid;
1351 	/*
1352 	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1353 	 * pagein/pageout changes since the last update.
1354 	 */
1355 	if (!atomic_read(&memcg->numainfo_events))
1356 		return;
1357 	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1358 		return;
1359 
1360 	/* make a nodemask where this memcg uses memory from */
1361 	memcg->scan_nodes = node_states[N_MEMORY];
1362 
1363 	for_each_node_mask(nid, node_states[N_MEMORY]) {
1364 
1365 		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1366 			node_clear(nid, memcg->scan_nodes);
1367 	}
1368 
1369 	atomic_set(&memcg->numainfo_events, 0);
1370 	atomic_set(&memcg->numainfo_updating, 0);
1371 }
1372 
1373 /*
1374  * Selecting a node where we start reclaim from. Because what we need is just
1375  * reducing usage counter, start from anywhere is O,K. Considering
1376  * memory reclaim from current node, there are pros. and cons.
1377  *
1378  * Freeing memory from current node means freeing memory from a node which
1379  * we'll use or we've used. So, it may make LRU bad. And if several threads
1380  * hit limits, it will see a contention on a node. But freeing from remote
1381  * node means more costs for memory reclaim because of memory latency.
1382  *
1383  * Now, we use round-robin. Better algorithm is welcomed.
1384  */
1385 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1386 {
1387 	int node;
1388 
1389 	mem_cgroup_may_update_nodemask(memcg);
1390 	node = memcg->last_scanned_node;
1391 
1392 	node = next_node(node, memcg->scan_nodes);
1393 	if (node == MAX_NUMNODES)
1394 		node = first_node(memcg->scan_nodes);
1395 	/*
1396 	 * We call this when we hit limit, not when pages are added to LRU.
1397 	 * No LRU may hold pages because all pages are UNEVICTABLE or
1398 	 * memcg is too small and all pages are not on LRU. In that case,
1399 	 * we use curret node.
1400 	 */
1401 	if (unlikely(node == MAX_NUMNODES))
1402 		node = numa_node_id();
1403 
1404 	memcg->last_scanned_node = node;
1405 	return node;
1406 }
1407 #else
1408 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1409 {
1410 	return 0;
1411 }
1412 #endif
1413 
1414 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1415 				   struct zone *zone,
1416 				   gfp_t gfp_mask,
1417 				   unsigned long *total_scanned)
1418 {
1419 	struct mem_cgroup *victim = NULL;
1420 	int total = 0;
1421 	int loop = 0;
1422 	unsigned long excess;
1423 	unsigned long nr_scanned;
1424 	struct mem_cgroup_reclaim_cookie reclaim = {
1425 		.zone = zone,
1426 		.priority = 0,
1427 	};
1428 
1429 	excess = soft_limit_excess(root_memcg);
1430 
1431 	while (1) {
1432 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1433 		if (!victim) {
1434 			loop++;
1435 			if (loop >= 2) {
1436 				/*
1437 				 * If we have not been able to reclaim
1438 				 * anything, it might because there are
1439 				 * no reclaimable pages under this hierarchy
1440 				 */
1441 				if (!total)
1442 					break;
1443 				/*
1444 				 * We want to do more targeted reclaim.
1445 				 * excess >> 2 is not to excessive so as to
1446 				 * reclaim too much, nor too less that we keep
1447 				 * coming back to reclaim from this cgroup
1448 				 */
1449 				if (total >= (excess >> 2) ||
1450 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1451 					break;
1452 			}
1453 			continue;
1454 		}
1455 		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1456 						     zone, &nr_scanned);
1457 		*total_scanned += nr_scanned;
1458 		if (!soft_limit_excess(root_memcg))
1459 			break;
1460 	}
1461 	mem_cgroup_iter_break(root_memcg, victim);
1462 	return total;
1463 }
1464 
1465 #ifdef CONFIG_LOCKDEP
1466 static struct lockdep_map memcg_oom_lock_dep_map = {
1467 	.name = "memcg_oom_lock",
1468 };
1469 #endif
1470 
1471 static DEFINE_SPINLOCK(memcg_oom_lock);
1472 
1473 /*
1474  * Check OOM-Killer is already running under our hierarchy.
1475  * If someone is running, return false.
1476  */
1477 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1478 {
1479 	struct mem_cgroup *iter, *failed = NULL;
1480 
1481 	spin_lock(&memcg_oom_lock);
1482 
1483 	for_each_mem_cgroup_tree(iter, memcg) {
1484 		if (iter->oom_lock) {
1485 			/*
1486 			 * this subtree of our hierarchy is already locked
1487 			 * so we cannot give a lock.
1488 			 */
1489 			failed = iter;
1490 			mem_cgroup_iter_break(memcg, iter);
1491 			break;
1492 		} else
1493 			iter->oom_lock = true;
1494 	}
1495 
1496 	if (failed) {
1497 		/*
1498 		 * OK, we failed to lock the whole subtree so we have
1499 		 * to clean up what we set up to the failing subtree
1500 		 */
1501 		for_each_mem_cgroup_tree(iter, memcg) {
1502 			if (iter == failed) {
1503 				mem_cgroup_iter_break(memcg, iter);
1504 				break;
1505 			}
1506 			iter->oom_lock = false;
1507 		}
1508 	} else
1509 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1510 
1511 	spin_unlock(&memcg_oom_lock);
1512 
1513 	return !failed;
1514 }
1515 
1516 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1517 {
1518 	struct mem_cgroup *iter;
1519 
1520 	spin_lock(&memcg_oom_lock);
1521 	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1522 	for_each_mem_cgroup_tree(iter, memcg)
1523 		iter->oom_lock = false;
1524 	spin_unlock(&memcg_oom_lock);
1525 }
1526 
1527 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1528 {
1529 	struct mem_cgroup *iter;
1530 
1531 	spin_lock(&memcg_oom_lock);
1532 	for_each_mem_cgroup_tree(iter, memcg)
1533 		iter->under_oom++;
1534 	spin_unlock(&memcg_oom_lock);
1535 }
1536 
1537 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1538 {
1539 	struct mem_cgroup *iter;
1540 
1541 	/*
1542 	 * When a new child is created while the hierarchy is under oom,
1543 	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1544 	 */
1545 	spin_lock(&memcg_oom_lock);
1546 	for_each_mem_cgroup_tree(iter, memcg)
1547 		if (iter->under_oom > 0)
1548 			iter->under_oom--;
1549 	spin_unlock(&memcg_oom_lock);
1550 }
1551 
1552 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1553 
1554 struct oom_wait_info {
1555 	struct mem_cgroup *memcg;
1556 	wait_queue_t	wait;
1557 };
1558 
1559 static int memcg_oom_wake_function(wait_queue_t *wait,
1560 	unsigned mode, int sync, void *arg)
1561 {
1562 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1563 	struct mem_cgroup *oom_wait_memcg;
1564 	struct oom_wait_info *oom_wait_info;
1565 
1566 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1567 	oom_wait_memcg = oom_wait_info->memcg;
1568 
1569 	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1570 	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1571 		return 0;
1572 	return autoremove_wake_function(wait, mode, sync, arg);
1573 }
1574 
1575 static void memcg_oom_recover(struct mem_cgroup *memcg)
1576 {
1577 	/*
1578 	 * For the following lockless ->under_oom test, the only required
1579 	 * guarantee is that it must see the state asserted by an OOM when
1580 	 * this function is called as a result of userland actions
1581 	 * triggered by the notification of the OOM.  This is trivially
1582 	 * achieved by invoking mem_cgroup_mark_under_oom() before
1583 	 * triggering notification.
1584 	 */
1585 	if (memcg && memcg->under_oom)
1586 		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1587 }
1588 
1589 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1590 {
1591 	if (!current->memcg_may_oom)
1592 		return;
1593 	/*
1594 	 * We are in the middle of the charge context here, so we
1595 	 * don't want to block when potentially sitting on a callstack
1596 	 * that holds all kinds of filesystem and mm locks.
1597 	 *
1598 	 * Also, the caller may handle a failed allocation gracefully
1599 	 * (like optional page cache readahead) and so an OOM killer
1600 	 * invocation might not even be necessary.
1601 	 *
1602 	 * That's why we don't do anything here except remember the
1603 	 * OOM context and then deal with it at the end of the page
1604 	 * fault when the stack is unwound, the locks are released,
1605 	 * and when we know whether the fault was overall successful.
1606 	 */
1607 	css_get(&memcg->css);
1608 	current->memcg_in_oom = memcg;
1609 	current->memcg_oom_gfp_mask = mask;
1610 	current->memcg_oom_order = order;
1611 }
1612 
1613 /**
1614  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1615  * @handle: actually kill/wait or just clean up the OOM state
1616  *
1617  * This has to be called at the end of a page fault if the memcg OOM
1618  * handler was enabled.
1619  *
1620  * Memcg supports userspace OOM handling where failed allocations must
1621  * sleep on a waitqueue until the userspace task resolves the
1622  * situation.  Sleeping directly in the charge context with all kinds
1623  * of locks held is not a good idea, instead we remember an OOM state
1624  * in the task and mem_cgroup_oom_synchronize() has to be called at
1625  * the end of the page fault to complete the OOM handling.
1626  *
1627  * Returns %true if an ongoing memcg OOM situation was detected and
1628  * completed, %false otherwise.
1629  */
1630 bool mem_cgroup_oom_synchronize(bool handle)
1631 {
1632 	struct mem_cgroup *memcg = current->memcg_in_oom;
1633 	struct oom_wait_info owait;
1634 	bool locked;
1635 
1636 	/* OOM is global, do not handle */
1637 	if (!memcg)
1638 		return false;
1639 
1640 	if (!handle || oom_killer_disabled)
1641 		goto cleanup;
1642 
1643 	owait.memcg = memcg;
1644 	owait.wait.flags = 0;
1645 	owait.wait.func = memcg_oom_wake_function;
1646 	owait.wait.private = current;
1647 	INIT_LIST_HEAD(&owait.wait.task_list);
1648 
1649 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1650 	mem_cgroup_mark_under_oom(memcg);
1651 
1652 	locked = mem_cgroup_oom_trylock(memcg);
1653 
1654 	if (locked)
1655 		mem_cgroup_oom_notify(memcg);
1656 
1657 	if (locked && !memcg->oom_kill_disable) {
1658 		mem_cgroup_unmark_under_oom(memcg);
1659 		finish_wait(&memcg_oom_waitq, &owait.wait);
1660 		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1661 					 current->memcg_oom_order);
1662 	} else {
1663 		schedule();
1664 		mem_cgroup_unmark_under_oom(memcg);
1665 		finish_wait(&memcg_oom_waitq, &owait.wait);
1666 	}
1667 
1668 	if (locked) {
1669 		mem_cgroup_oom_unlock(memcg);
1670 		/*
1671 		 * There is no guarantee that an OOM-lock contender
1672 		 * sees the wakeups triggered by the OOM kill
1673 		 * uncharges.  Wake any sleepers explicitely.
1674 		 */
1675 		memcg_oom_recover(memcg);
1676 	}
1677 cleanup:
1678 	current->memcg_in_oom = NULL;
1679 	css_put(&memcg->css);
1680 	return true;
1681 }
1682 
1683 /**
1684  * lock_page_memcg - lock a page->mem_cgroup binding
1685  * @page: the page
1686  *
1687  * This function protects unlocked LRU pages from being moved to
1688  * another cgroup and stabilizes their page->mem_cgroup binding.
1689  */
1690 void lock_page_memcg(struct page *page)
1691 {
1692 	struct mem_cgroup *memcg;
1693 	unsigned long flags;
1694 
1695 	/*
1696 	 * The RCU lock is held throughout the transaction.  The fast
1697 	 * path can get away without acquiring the memcg->move_lock
1698 	 * because page moving starts with an RCU grace period.
1699 	 */
1700 	rcu_read_lock();
1701 
1702 	if (mem_cgroup_disabled())
1703 		return;
1704 again:
1705 	memcg = page->mem_cgroup;
1706 	if (unlikely(!memcg))
1707 		return;
1708 
1709 	if (atomic_read(&memcg->moving_account) <= 0)
1710 		return;
1711 
1712 	spin_lock_irqsave(&memcg->move_lock, flags);
1713 	if (memcg != page->mem_cgroup) {
1714 		spin_unlock_irqrestore(&memcg->move_lock, flags);
1715 		goto again;
1716 	}
1717 
1718 	/*
1719 	 * When charge migration first begins, we can have locked and
1720 	 * unlocked page stat updates happening concurrently.  Track
1721 	 * the task who has the lock for unlock_page_memcg().
1722 	 */
1723 	memcg->move_lock_task = current;
1724 	memcg->move_lock_flags = flags;
1725 
1726 	return;
1727 }
1728 EXPORT_SYMBOL(lock_page_memcg);
1729 
1730 /**
1731  * unlock_page_memcg - unlock a page->mem_cgroup binding
1732  * @page: the page
1733  */
1734 void unlock_page_memcg(struct page *page)
1735 {
1736 	struct mem_cgroup *memcg = page->mem_cgroup;
1737 
1738 	if (memcg && memcg->move_lock_task == current) {
1739 		unsigned long flags = memcg->move_lock_flags;
1740 
1741 		memcg->move_lock_task = NULL;
1742 		memcg->move_lock_flags = 0;
1743 
1744 		spin_unlock_irqrestore(&memcg->move_lock, flags);
1745 	}
1746 
1747 	rcu_read_unlock();
1748 }
1749 EXPORT_SYMBOL(unlock_page_memcg);
1750 
1751 /*
1752  * size of first charge trial. "32" comes from vmscan.c's magic value.
1753  * TODO: maybe necessary to use big numbers in big irons.
1754  */
1755 #define CHARGE_BATCH	32U
1756 struct memcg_stock_pcp {
1757 	struct mem_cgroup *cached; /* this never be root cgroup */
1758 	unsigned int nr_pages;
1759 	struct work_struct work;
1760 	unsigned long flags;
1761 #define FLUSHING_CACHED_CHARGE	0
1762 };
1763 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1764 static DEFINE_MUTEX(percpu_charge_mutex);
1765 
1766 /**
1767  * consume_stock: Try to consume stocked charge on this cpu.
1768  * @memcg: memcg to consume from.
1769  * @nr_pages: how many pages to charge.
1770  *
1771  * The charges will only happen if @memcg matches the current cpu's memcg
1772  * stock, and at least @nr_pages are available in that stock.  Failure to
1773  * service an allocation will refill the stock.
1774  *
1775  * returns true if successful, false otherwise.
1776  */
1777 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1778 {
1779 	struct memcg_stock_pcp *stock;
1780 	bool ret = false;
1781 
1782 	if (nr_pages > CHARGE_BATCH)
1783 		return ret;
1784 
1785 	stock = &get_cpu_var(memcg_stock);
1786 	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1787 		stock->nr_pages -= nr_pages;
1788 		ret = true;
1789 	}
1790 	put_cpu_var(memcg_stock);
1791 	return ret;
1792 }
1793 
1794 /*
1795  * Returns stocks cached in percpu and reset cached information.
1796  */
1797 static void drain_stock(struct memcg_stock_pcp *stock)
1798 {
1799 	struct mem_cgroup *old = stock->cached;
1800 
1801 	if (stock->nr_pages) {
1802 		page_counter_uncharge(&old->memory, stock->nr_pages);
1803 		if (do_memsw_account())
1804 			page_counter_uncharge(&old->memsw, stock->nr_pages);
1805 		css_put_many(&old->css, stock->nr_pages);
1806 		stock->nr_pages = 0;
1807 	}
1808 	stock->cached = NULL;
1809 }
1810 
1811 /*
1812  * This must be called under preempt disabled or must be called by
1813  * a thread which is pinned to local cpu.
1814  */
1815 static void drain_local_stock(struct work_struct *dummy)
1816 {
1817 	struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1818 	drain_stock(stock);
1819 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1820 }
1821 
1822 /*
1823  * Cache charges(val) to local per_cpu area.
1824  * This will be consumed by consume_stock() function, later.
1825  */
1826 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1827 {
1828 	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1829 
1830 	if (stock->cached != memcg) { /* reset if necessary */
1831 		drain_stock(stock);
1832 		stock->cached = memcg;
1833 	}
1834 	stock->nr_pages += nr_pages;
1835 	put_cpu_var(memcg_stock);
1836 }
1837 
1838 /*
1839  * Drains all per-CPU charge caches for given root_memcg resp. subtree
1840  * of the hierarchy under it.
1841  */
1842 static void drain_all_stock(struct mem_cgroup *root_memcg)
1843 {
1844 	int cpu, curcpu;
1845 
1846 	/* If someone's already draining, avoid adding running more workers. */
1847 	if (!mutex_trylock(&percpu_charge_mutex))
1848 		return;
1849 	/* Notify other cpus that system-wide "drain" is running */
1850 	get_online_cpus();
1851 	curcpu = get_cpu();
1852 	for_each_online_cpu(cpu) {
1853 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1854 		struct mem_cgroup *memcg;
1855 
1856 		memcg = stock->cached;
1857 		if (!memcg || !stock->nr_pages)
1858 			continue;
1859 		if (!mem_cgroup_is_descendant(memcg, root_memcg))
1860 			continue;
1861 		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1862 			if (cpu == curcpu)
1863 				drain_local_stock(&stock->work);
1864 			else
1865 				schedule_work_on(cpu, &stock->work);
1866 		}
1867 	}
1868 	put_cpu();
1869 	put_online_cpus();
1870 	mutex_unlock(&percpu_charge_mutex);
1871 }
1872 
1873 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1874 					unsigned long action,
1875 					void *hcpu)
1876 {
1877 	int cpu = (unsigned long)hcpu;
1878 	struct memcg_stock_pcp *stock;
1879 
1880 	if (action == CPU_ONLINE)
1881 		return NOTIFY_OK;
1882 
1883 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1884 		return NOTIFY_OK;
1885 
1886 	stock = &per_cpu(memcg_stock, cpu);
1887 	drain_stock(stock);
1888 	return NOTIFY_OK;
1889 }
1890 
1891 static void reclaim_high(struct mem_cgroup *memcg,
1892 			 unsigned int nr_pages,
1893 			 gfp_t gfp_mask)
1894 {
1895 	do {
1896 		if (page_counter_read(&memcg->memory) <= memcg->high)
1897 			continue;
1898 		mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1899 		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1900 	} while ((memcg = parent_mem_cgroup(memcg)));
1901 }
1902 
1903 static void high_work_func(struct work_struct *work)
1904 {
1905 	struct mem_cgroup *memcg;
1906 
1907 	memcg = container_of(work, struct mem_cgroup, high_work);
1908 	reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1909 }
1910 
1911 /*
1912  * Scheduled by try_charge() to be executed from the userland return path
1913  * and reclaims memory over the high limit.
1914  */
1915 void mem_cgroup_handle_over_high(void)
1916 {
1917 	unsigned int nr_pages = current->memcg_nr_pages_over_high;
1918 	struct mem_cgroup *memcg;
1919 
1920 	if (likely(!nr_pages))
1921 		return;
1922 
1923 	memcg = get_mem_cgroup_from_mm(current->mm);
1924 	reclaim_high(memcg, nr_pages, GFP_KERNEL);
1925 	css_put(&memcg->css);
1926 	current->memcg_nr_pages_over_high = 0;
1927 }
1928 
1929 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1930 		      unsigned int nr_pages)
1931 {
1932 	unsigned int batch = max(CHARGE_BATCH, nr_pages);
1933 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1934 	struct mem_cgroup *mem_over_limit;
1935 	struct page_counter *counter;
1936 	unsigned long nr_reclaimed;
1937 	bool may_swap = true;
1938 	bool drained = false;
1939 
1940 	if (mem_cgroup_is_root(memcg))
1941 		return 0;
1942 retry:
1943 	if (consume_stock(memcg, nr_pages))
1944 		return 0;
1945 
1946 	if (!do_memsw_account() ||
1947 	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1948 		if (page_counter_try_charge(&memcg->memory, batch, &counter))
1949 			goto done_restock;
1950 		if (do_memsw_account())
1951 			page_counter_uncharge(&memcg->memsw, batch);
1952 		mem_over_limit = mem_cgroup_from_counter(counter, memory);
1953 	} else {
1954 		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1955 		may_swap = false;
1956 	}
1957 
1958 	if (batch > nr_pages) {
1959 		batch = nr_pages;
1960 		goto retry;
1961 	}
1962 
1963 	/*
1964 	 * Unlike in global OOM situations, memcg is not in a physical
1965 	 * memory shortage.  Allow dying and OOM-killed tasks to
1966 	 * bypass the last charges so that they can exit quickly and
1967 	 * free their memory.
1968 	 */
1969 	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1970 		     fatal_signal_pending(current) ||
1971 		     current->flags & PF_EXITING))
1972 		goto force;
1973 
1974 	if (unlikely(task_in_memcg_oom(current)))
1975 		goto nomem;
1976 
1977 	if (!gfpflags_allow_blocking(gfp_mask))
1978 		goto nomem;
1979 
1980 	mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
1981 
1982 	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1983 						    gfp_mask, may_swap);
1984 
1985 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1986 		goto retry;
1987 
1988 	if (!drained) {
1989 		drain_all_stock(mem_over_limit);
1990 		drained = true;
1991 		goto retry;
1992 	}
1993 
1994 	if (gfp_mask & __GFP_NORETRY)
1995 		goto nomem;
1996 	/*
1997 	 * Even though the limit is exceeded at this point, reclaim
1998 	 * may have been able to free some pages.  Retry the charge
1999 	 * before killing the task.
2000 	 *
2001 	 * Only for regular pages, though: huge pages are rather
2002 	 * unlikely to succeed so close to the limit, and we fall back
2003 	 * to regular pages anyway in case of failure.
2004 	 */
2005 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2006 		goto retry;
2007 	/*
2008 	 * At task move, charge accounts can be doubly counted. So, it's
2009 	 * better to wait until the end of task_move if something is going on.
2010 	 */
2011 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2012 		goto retry;
2013 
2014 	if (nr_retries--)
2015 		goto retry;
2016 
2017 	if (gfp_mask & __GFP_NOFAIL)
2018 		goto force;
2019 
2020 	if (fatal_signal_pending(current))
2021 		goto force;
2022 
2023 	mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2024 
2025 	mem_cgroup_oom(mem_over_limit, gfp_mask,
2026 		       get_order(nr_pages * PAGE_SIZE));
2027 nomem:
2028 	if (!(gfp_mask & __GFP_NOFAIL))
2029 		return -ENOMEM;
2030 force:
2031 	/*
2032 	 * The allocation either can't fail or will lead to more memory
2033 	 * being freed very soon.  Allow memory usage go over the limit
2034 	 * temporarily by force charging it.
2035 	 */
2036 	page_counter_charge(&memcg->memory, nr_pages);
2037 	if (do_memsw_account())
2038 		page_counter_charge(&memcg->memsw, nr_pages);
2039 	css_get_many(&memcg->css, nr_pages);
2040 
2041 	return 0;
2042 
2043 done_restock:
2044 	css_get_many(&memcg->css, batch);
2045 	if (batch > nr_pages)
2046 		refill_stock(memcg, batch - nr_pages);
2047 
2048 	/*
2049 	 * If the hierarchy is above the normal consumption range, schedule
2050 	 * reclaim on returning to userland.  We can perform reclaim here
2051 	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2052 	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2053 	 * not recorded as it most likely matches current's and won't
2054 	 * change in the meantime.  As high limit is checked again before
2055 	 * reclaim, the cost of mismatch is negligible.
2056 	 */
2057 	do {
2058 		if (page_counter_read(&memcg->memory) > memcg->high) {
2059 			/* Don't bother a random interrupted task */
2060 			if (in_interrupt()) {
2061 				schedule_work(&memcg->high_work);
2062 				break;
2063 			}
2064 			current->memcg_nr_pages_over_high += batch;
2065 			set_notify_resume(current);
2066 			break;
2067 		}
2068 	} while ((memcg = parent_mem_cgroup(memcg)));
2069 
2070 	return 0;
2071 }
2072 
2073 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2074 {
2075 	if (mem_cgroup_is_root(memcg))
2076 		return;
2077 
2078 	page_counter_uncharge(&memcg->memory, nr_pages);
2079 	if (do_memsw_account())
2080 		page_counter_uncharge(&memcg->memsw, nr_pages);
2081 
2082 	css_put_many(&memcg->css, nr_pages);
2083 }
2084 
2085 static void lock_page_lru(struct page *page, int *isolated)
2086 {
2087 	struct zone *zone = page_zone(page);
2088 
2089 	spin_lock_irq(&zone->lru_lock);
2090 	if (PageLRU(page)) {
2091 		struct lruvec *lruvec;
2092 
2093 		lruvec = mem_cgroup_page_lruvec(page, zone);
2094 		ClearPageLRU(page);
2095 		del_page_from_lru_list(page, lruvec, page_lru(page));
2096 		*isolated = 1;
2097 	} else
2098 		*isolated = 0;
2099 }
2100 
2101 static void unlock_page_lru(struct page *page, int isolated)
2102 {
2103 	struct zone *zone = page_zone(page);
2104 
2105 	if (isolated) {
2106 		struct lruvec *lruvec;
2107 
2108 		lruvec = mem_cgroup_page_lruvec(page, zone);
2109 		VM_BUG_ON_PAGE(PageLRU(page), page);
2110 		SetPageLRU(page);
2111 		add_page_to_lru_list(page, lruvec, page_lru(page));
2112 	}
2113 	spin_unlock_irq(&zone->lru_lock);
2114 }
2115 
2116 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2117 			  bool lrucare)
2118 {
2119 	int isolated;
2120 
2121 	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2122 
2123 	/*
2124 	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2125 	 * may already be on some other mem_cgroup's LRU.  Take care of it.
2126 	 */
2127 	if (lrucare)
2128 		lock_page_lru(page, &isolated);
2129 
2130 	/*
2131 	 * Nobody should be changing or seriously looking at
2132 	 * page->mem_cgroup at this point:
2133 	 *
2134 	 * - the page is uncharged
2135 	 *
2136 	 * - the page is off-LRU
2137 	 *
2138 	 * - an anonymous fault has exclusive page access, except for
2139 	 *   a locked page table
2140 	 *
2141 	 * - a page cache insertion, a swapin fault, or a migration
2142 	 *   have the page locked
2143 	 */
2144 	page->mem_cgroup = memcg;
2145 
2146 	if (lrucare)
2147 		unlock_page_lru(page, isolated);
2148 }
2149 
2150 #ifndef CONFIG_SLOB
2151 static int memcg_alloc_cache_id(void)
2152 {
2153 	int id, size;
2154 	int err;
2155 
2156 	id = ida_simple_get(&memcg_cache_ida,
2157 			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2158 	if (id < 0)
2159 		return id;
2160 
2161 	if (id < memcg_nr_cache_ids)
2162 		return id;
2163 
2164 	/*
2165 	 * There's no space for the new id in memcg_caches arrays,
2166 	 * so we have to grow them.
2167 	 */
2168 	down_write(&memcg_cache_ids_sem);
2169 
2170 	size = 2 * (id + 1);
2171 	if (size < MEMCG_CACHES_MIN_SIZE)
2172 		size = MEMCG_CACHES_MIN_SIZE;
2173 	else if (size > MEMCG_CACHES_MAX_SIZE)
2174 		size = MEMCG_CACHES_MAX_SIZE;
2175 
2176 	err = memcg_update_all_caches(size);
2177 	if (!err)
2178 		err = memcg_update_all_list_lrus(size);
2179 	if (!err)
2180 		memcg_nr_cache_ids = size;
2181 
2182 	up_write(&memcg_cache_ids_sem);
2183 
2184 	if (err) {
2185 		ida_simple_remove(&memcg_cache_ida, id);
2186 		return err;
2187 	}
2188 	return id;
2189 }
2190 
2191 static void memcg_free_cache_id(int id)
2192 {
2193 	ida_simple_remove(&memcg_cache_ida, id);
2194 }
2195 
2196 struct memcg_kmem_cache_create_work {
2197 	struct mem_cgroup *memcg;
2198 	struct kmem_cache *cachep;
2199 	struct work_struct work;
2200 };
2201 
2202 static void memcg_kmem_cache_create_func(struct work_struct *w)
2203 {
2204 	struct memcg_kmem_cache_create_work *cw =
2205 		container_of(w, struct memcg_kmem_cache_create_work, work);
2206 	struct mem_cgroup *memcg = cw->memcg;
2207 	struct kmem_cache *cachep = cw->cachep;
2208 
2209 	memcg_create_kmem_cache(memcg, cachep);
2210 
2211 	css_put(&memcg->css);
2212 	kfree(cw);
2213 }
2214 
2215 /*
2216  * Enqueue the creation of a per-memcg kmem_cache.
2217  */
2218 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2219 					       struct kmem_cache *cachep)
2220 {
2221 	struct memcg_kmem_cache_create_work *cw;
2222 
2223 	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2224 	if (!cw)
2225 		return;
2226 
2227 	css_get(&memcg->css);
2228 
2229 	cw->memcg = memcg;
2230 	cw->cachep = cachep;
2231 	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2232 
2233 	schedule_work(&cw->work);
2234 }
2235 
2236 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2237 					     struct kmem_cache *cachep)
2238 {
2239 	/*
2240 	 * We need to stop accounting when we kmalloc, because if the
2241 	 * corresponding kmalloc cache is not yet created, the first allocation
2242 	 * in __memcg_schedule_kmem_cache_create will recurse.
2243 	 *
2244 	 * However, it is better to enclose the whole function. Depending on
2245 	 * the debugging options enabled, INIT_WORK(), for instance, can
2246 	 * trigger an allocation. This too, will make us recurse. Because at
2247 	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2248 	 * the safest choice is to do it like this, wrapping the whole function.
2249 	 */
2250 	current->memcg_kmem_skip_account = 1;
2251 	__memcg_schedule_kmem_cache_create(memcg, cachep);
2252 	current->memcg_kmem_skip_account = 0;
2253 }
2254 
2255 /*
2256  * Return the kmem_cache we're supposed to use for a slab allocation.
2257  * We try to use the current memcg's version of the cache.
2258  *
2259  * If the cache does not exist yet, if we are the first user of it,
2260  * we either create it immediately, if possible, or create it asynchronously
2261  * in a workqueue.
2262  * In the latter case, we will let the current allocation go through with
2263  * the original cache.
2264  *
2265  * Can't be called in interrupt context or from kernel threads.
2266  * This function needs to be called with rcu_read_lock() held.
2267  */
2268 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
2269 {
2270 	struct mem_cgroup *memcg;
2271 	struct kmem_cache *memcg_cachep;
2272 	int kmemcg_id;
2273 
2274 	VM_BUG_ON(!is_root_cache(cachep));
2275 
2276 	if (cachep->flags & SLAB_ACCOUNT)
2277 		gfp |= __GFP_ACCOUNT;
2278 
2279 	if (!(gfp & __GFP_ACCOUNT))
2280 		return cachep;
2281 
2282 	if (current->memcg_kmem_skip_account)
2283 		return cachep;
2284 
2285 	memcg = get_mem_cgroup_from_mm(current->mm);
2286 	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2287 	if (kmemcg_id < 0)
2288 		goto out;
2289 
2290 	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2291 	if (likely(memcg_cachep))
2292 		return memcg_cachep;
2293 
2294 	/*
2295 	 * If we are in a safe context (can wait, and not in interrupt
2296 	 * context), we could be be predictable and return right away.
2297 	 * This would guarantee that the allocation being performed
2298 	 * already belongs in the new cache.
2299 	 *
2300 	 * However, there are some clashes that can arrive from locking.
2301 	 * For instance, because we acquire the slab_mutex while doing
2302 	 * memcg_create_kmem_cache, this means no further allocation
2303 	 * could happen with the slab_mutex held. So it's better to
2304 	 * defer everything.
2305 	 */
2306 	memcg_schedule_kmem_cache_create(memcg, cachep);
2307 out:
2308 	css_put(&memcg->css);
2309 	return cachep;
2310 }
2311 
2312 void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2313 {
2314 	if (!is_root_cache(cachep))
2315 		css_put(&cachep->memcg_params.memcg->css);
2316 }
2317 
2318 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2319 			      struct mem_cgroup *memcg)
2320 {
2321 	unsigned int nr_pages = 1 << order;
2322 	struct page_counter *counter;
2323 	int ret;
2324 
2325 	ret = try_charge(memcg, gfp, nr_pages);
2326 	if (ret)
2327 		return ret;
2328 
2329 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2330 	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2331 		cancel_charge(memcg, nr_pages);
2332 		return -ENOMEM;
2333 	}
2334 
2335 	page->mem_cgroup = memcg;
2336 
2337 	return 0;
2338 }
2339 
2340 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2341 {
2342 	struct mem_cgroup *memcg;
2343 	int ret = 0;
2344 
2345 	memcg = get_mem_cgroup_from_mm(current->mm);
2346 	if (!mem_cgroup_is_root(memcg))
2347 		ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2348 	css_put(&memcg->css);
2349 	return ret;
2350 }
2351 
2352 void __memcg_kmem_uncharge(struct page *page, int order)
2353 {
2354 	struct mem_cgroup *memcg = page->mem_cgroup;
2355 	unsigned int nr_pages = 1 << order;
2356 
2357 	if (!memcg)
2358 		return;
2359 
2360 	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2361 
2362 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2363 		page_counter_uncharge(&memcg->kmem, nr_pages);
2364 
2365 	page_counter_uncharge(&memcg->memory, nr_pages);
2366 	if (do_memsw_account())
2367 		page_counter_uncharge(&memcg->memsw, nr_pages);
2368 
2369 	page->mem_cgroup = NULL;
2370 	css_put_many(&memcg->css, nr_pages);
2371 }
2372 #endif /* !CONFIG_SLOB */
2373 
2374 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2375 
2376 /*
2377  * Because tail pages are not marked as "used", set it. We're under
2378  * zone->lru_lock and migration entries setup in all page mappings.
2379  */
2380 void mem_cgroup_split_huge_fixup(struct page *head)
2381 {
2382 	int i;
2383 
2384 	if (mem_cgroup_disabled())
2385 		return;
2386 
2387 	for (i = 1; i < HPAGE_PMD_NR; i++)
2388 		head[i].mem_cgroup = head->mem_cgroup;
2389 
2390 	__this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2391 		       HPAGE_PMD_NR);
2392 }
2393 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2394 
2395 #ifdef CONFIG_MEMCG_SWAP
2396 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2397 					 bool charge)
2398 {
2399 	int val = (charge) ? 1 : -1;
2400 	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2401 }
2402 
2403 /**
2404  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2405  * @entry: swap entry to be moved
2406  * @from:  mem_cgroup which the entry is moved from
2407  * @to:  mem_cgroup which the entry is moved to
2408  *
2409  * It succeeds only when the swap_cgroup's record for this entry is the same
2410  * as the mem_cgroup's id of @from.
2411  *
2412  * Returns 0 on success, -EINVAL on failure.
2413  *
2414  * The caller must have charged to @to, IOW, called page_counter_charge() about
2415  * both res and memsw, and called css_get().
2416  */
2417 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2418 				struct mem_cgroup *from, struct mem_cgroup *to)
2419 {
2420 	unsigned short old_id, new_id;
2421 
2422 	old_id = mem_cgroup_id(from);
2423 	new_id = mem_cgroup_id(to);
2424 
2425 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2426 		mem_cgroup_swap_statistics(from, false);
2427 		mem_cgroup_swap_statistics(to, true);
2428 		return 0;
2429 	}
2430 	return -EINVAL;
2431 }
2432 #else
2433 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2434 				struct mem_cgroup *from, struct mem_cgroup *to)
2435 {
2436 	return -EINVAL;
2437 }
2438 #endif
2439 
2440 static DEFINE_MUTEX(memcg_limit_mutex);
2441 
2442 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2443 				   unsigned long limit)
2444 {
2445 	unsigned long curusage;
2446 	unsigned long oldusage;
2447 	bool enlarge = false;
2448 	int retry_count;
2449 	int ret;
2450 
2451 	/*
2452 	 * For keeping hierarchical_reclaim simple, how long we should retry
2453 	 * is depends on callers. We set our retry-count to be function
2454 	 * of # of children which we should visit in this loop.
2455 	 */
2456 	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2457 		      mem_cgroup_count_children(memcg);
2458 
2459 	oldusage = page_counter_read(&memcg->memory);
2460 
2461 	do {
2462 		if (signal_pending(current)) {
2463 			ret = -EINTR;
2464 			break;
2465 		}
2466 
2467 		mutex_lock(&memcg_limit_mutex);
2468 		if (limit > memcg->memsw.limit) {
2469 			mutex_unlock(&memcg_limit_mutex);
2470 			ret = -EINVAL;
2471 			break;
2472 		}
2473 		if (limit > memcg->memory.limit)
2474 			enlarge = true;
2475 		ret = page_counter_limit(&memcg->memory, limit);
2476 		mutex_unlock(&memcg_limit_mutex);
2477 
2478 		if (!ret)
2479 			break;
2480 
2481 		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2482 
2483 		curusage = page_counter_read(&memcg->memory);
2484 		/* Usage is reduced ? */
2485 		if (curusage >= oldusage)
2486 			retry_count--;
2487 		else
2488 			oldusage = curusage;
2489 	} while (retry_count);
2490 
2491 	if (!ret && enlarge)
2492 		memcg_oom_recover(memcg);
2493 
2494 	return ret;
2495 }
2496 
2497 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2498 					 unsigned long limit)
2499 {
2500 	unsigned long curusage;
2501 	unsigned long oldusage;
2502 	bool enlarge = false;
2503 	int retry_count;
2504 	int ret;
2505 
2506 	/* see mem_cgroup_resize_res_limit */
2507 	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2508 		      mem_cgroup_count_children(memcg);
2509 
2510 	oldusage = page_counter_read(&memcg->memsw);
2511 
2512 	do {
2513 		if (signal_pending(current)) {
2514 			ret = -EINTR;
2515 			break;
2516 		}
2517 
2518 		mutex_lock(&memcg_limit_mutex);
2519 		if (limit < memcg->memory.limit) {
2520 			mutex_unlock(&memcg_limit_mutex);
2521 			ret = -EINVAL;
2522 			break;
2523 		}
2524 		if (limit > memcg->memsw.limit)
2525 			enlarge = true;
2526 		ret = page_counter_limit(&memcg->memsw, limit);
2527 		mutex_unlock(&memcg_limit_mutex);
2528 
2529 		if (!ret)
2530 			break;
2531 
2532 		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2533 
2534 		curusage = page_counter_read(&memcg->memsw);
2535 		/* Usage is reduced ? */
2536 		if (curusage >= oldusage)
2537 			retry_count--;
2538 		else
2539 			oldusage = curusage;
2540 	} while (retry_count);
2541 
2542 	if (!ret && enlarge)
2543 		memcg_oom_recover(memcg);
2544 
2545 	return ret;
2546 }
2547 
2548 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2549 					    gfp_t gfp_mask,
2550 					    unsigned long *total_scanned)
2551 {
2552 	unsigned long nr_reclaimed = 0;
2553 	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2554 	unsigned long reclaimed;
2555 	int loop = 0;
2556 	struct mem_cgroup_tree_per_zone *mctz;
2557 	unsigned long excess;
2558 	unsigned long nr_scanned;
2559 
2560 	if (order > 0)
2561 		return 0;
2562 
2563 	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2564 	/*
2565 	 * This loop can run a while, specially if mem_cgroup's continuously
2566 	 * keep exceeding their soft limit and putting the system under
2567 	 * pressure
2568 	 */
2569 	do {
2570 		if (next_mz)
2571 			mz = next_mz;
2572 		else
2573 			mz = mem_cgroup_largest_soft_limit_node(mctz);
2574 		if (!mz)
2575 			break;
2576 
2577 		nr_scanned = 0;
2578 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2579 						    gfp_mask, &nr_scanned);
2580 		nr_reclaimed += reclaimed;
2581 		*total_scanned += nr_scanned;
2582 		spin_lock_irq(&mctz->lock);
2583 		__mem_cgroup_remove_exceeded(mz, mctz);
2584 
2585 		/*
2586 		 * If we failed to reclaim anything from this memory cgroup
2587 		 * it is time to move on to the next cgroup
2588 		 */
2589 		next_mz = NULL;
2590 		if (!reclaimed)
2591 			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2592 
2593 		excess = soft_limit_excess(mz->memcg);
2594 		/*
2595 		 * One school of thought says that we should not add
2596 		 * back the node to the tree if reclaim returns 0.
2597 		 * But our reclaim could return 0, simply because due
2598 		 * to priority we are exposing a smaller subset of
2599 		 * memory to reclaim from. Consider this as a longer
2600 		 * term TODO.
2601 		 */
2602 		/* If excess == 0, no tree ops */
2603 		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2604 		spin_unlock_irq(&mctz->lock);
2605 		css_put(&mz->memcg->css);
2606 		loop++;
2607 		/*
2608 		 * Could not reclaim anything and there are no more
2609 		 * mem cgroups to try or we seem to be looping without
2610 		 * reclaiming anything.
2611 		 */
2612 		if (!nr_reclaimed &&
2613 			(next_mz == NULL ||
2614 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2615 			break;
2616 	} while (!nr_reclaimed);
2617 	if (next_mz)
2618 		css_put(&next_mz->memcg->css);
2619 	return nr_reclaimed;
2620 }
2621 
2622 /*
2623  * Test whether @memcg has children, dead or alive.  Note that this
2624  * function doesn't care whether @memcg has use_hierarchy enabled and
2625  * returns %true if there are child csses according to the cgroup
2626  * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
2627  */
2628 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2629 {
2630 	bool ret;
2631 
2632 	rcu_read_lock();
2633 	ret = css_next_child(NULL, &memcg->css);
2634 	rcu_read_unlock();
2635 	return ret;
2636 }
2637 
2638 /*
2639  * Reclaims as many pages from the given memcg as possible and moves
2640  * the rest to the parent.
2641  *
2642  * Caller is responsible for holding css reference for memcg.
2643  */
2644 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2645 {
2646 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2647 
2648 	/* we call try-to-free pages for make this cgroup empty */
2649 	lru_add_drain_all();
2650 	/* try to free all pages in this cgroup */
2651 	while (nr_retries && page_counter_read(&memcg->memory)) {
2652 		int progress;
2653 
2654 		if (signal_pending(current))
2655 			return -EINTR;
2656 
2657 		progress = try_to_free_mem_cgroup_pages(memcg, 1,
2658 							GFP_KERNEL, true);
2659 		if (!progress) {
2660 			nr_retries--;
2661 			/* maybe some writeback is necessary */
2662 			congestion_wait(BLK_RW_ASYNC, HZ/10);
2663 		}
2664 
2665 	}
2666 
2667 	return 0;
2668 }
2669 
2670 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2671 					    char *buf, size_t nbytes,
2672 					    loff_t off)
2673 {
2674 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2675 
2676 	if (mem_cgroup_is_root(memcg))
2677 		return -EINVAL;
2678 	return mem_cgroup_force_empty(memcg) ?: nbytes;
2679 }
2680 
2681 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2682 				     struct cftype *cft)
2683 {
2684 	return mem_cgroup_from_css(css)->use_hierarchy;
2685 }
2686 
2687 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2688 				      struct cftype *cft, u64 val)
2689 {
2690 	int retval = 0;
2691 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2692 	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2693 
2694 	if (memcg->use_hierarchy == val)
2695 		return 0;
2696 
2697 	/*
2698 	 * If parent's use_hierarchy is set, we can't make any modifications
2699 	 * in the child subtrees. If it is unset, then the change can
2700 	 * occur, provided the current cgroup has no children.
2701 	 *
2702 	 * For the root cgroup, parent_mem is NULL, we allow value to be
2703 	 * set if there are no children.
2704 	 */
2705 	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2706 				(val == 1 || val == 0)) {
2707 		if (!memcg_has_children(memcg))
2708 			memcg->use_hierarchy = val;
2709 		else
2710 			retval = -EBUSY;
2711 	} else
2712 		retval = -EINVAL;
2713 
2714 	return retval;
2715 }
2716 
2717 static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2718 {
2719 	struct mem_cgroup *iter;
2720 	int i;
2721 
2722 	memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2723 
2724 	for_each_mem_cgroup_tree(iter, memcg) {
2725 		for (i = 0; i < MEMCG_NR_STAT; i++)
2726 			stat[i] += mem_cgroup_read_stat(iter, i);
2727 	}
2728 }
2729 
2730 static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2731 {
2732 	struct mem_cgroup *iter;
2733 	int i;
2734 
2735 	memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2736 
2737 	for_each_mem_cgroup_tree(iter, memcg) {
2738 		for (i = 0; i < MEMCG_NR_EVENTS; i++)
2739 			events[i] += mem_cgroup_read_events(iter, i);
2740 	}
2741 }
2742 
2743 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2744 {
2745 	unsigned long val = 0;
2746 
2747 	if (mem_cgroup_is_root(memcg)) {
2748 		struct mem_cgroup *iter;
2749 
2750 		for_each_mem_cgroup_tree(iter, memcg) {
2751 			val += mem_cgroup_read_stat(iter,
2752 					MEM_CGROUP_STAT_CACHE);
2753 			val += mem_cgroup_read_stat(iter,
2754 					MEM_CGROUP_STAT_RSS);
2755 			if (swap)
2756 				val += mem_cgroup_read_stat(iter,
2757 						MEM_CGROUP_STAT_SWAP);
2758 		}
2759 	} else {
2760 		if (!swap)
2761 			val = page_counter_read(&memcg->memory);
2762 		else
2763 			val = page_counter_read(&memcg->memsw);
2764 	}
2765 	return val;
2766 }
2767 
2768 enum {
2769 	RES_USAGE,
2770 	RES_LIMIT,
2771 	RES_MAX_USAGE,
2772 	RES_FAILCNT,
2773 	RES_SOFT_LIMIT,
2774 };
2775 
2776 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2777 			       struct cftype *cft)
2778 {
2779 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2780 	struct page_counter *counter;
2781 
2782 	switch (MEMFILE_TYPE(cft->private)) {
2783 	case _MEM:
2784 		counter = &memcg->memory;
2785 		break;
2786 	case _MEMSWAP:
2787 		counter = &memcg->memsw;
2788 		break;
2789 	case _KMEM:
2790 		counter = &memcg->kmem;
2791 		break;
2792 	case _TCP:
2793 		counter = &memcg->tcpmem;
2794 		break;
2795 	default:
2796 		BUG();
2797 	}
2798 
2799 	switch (MEMFILE_ATTR(cft->private)) {
2800 	case RES_USAGE:
2801 		if (counter == &memcg->memory)
2802 			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2803 		if (counter == &memcg->memsw)
2804 			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2805 		return (u64)page_counter_read(counter) * PAGE_SIZE;
2806 	case RES_LIMIT:
2807 		return (u64)counter->limit * PAGE_SIZE;
2808 	case RES_MAX_USAGE:
2809 		return (u64)counter->watermark * PAGE_SIZE;
2810 	case RES_FAILCNT:
2811 		return counter->failcnt;
2812 	case RES_SOFT_LIMIT:
2813 		return (u64)memcg->soft_limit * PAGE_SIZE;
2814 	default:
2815 		BUG();
2816 	}
2817 }
2818 
2819 #ifndef CONFIG_SLOB
2820 static int memcg_online_kmem(struct mem_cgroup *memcg)
2821 {
2822 	int memcg_id;
2823 
2824 	if (cgroup_memory_nokmem)
2825 		return 0;
2826 
2827 	BUG_ON(memcg->kmemcg_id >= 0);
2828 	BUG_ON(memcg->kmem_state);
2829 
2830 	memcg_id = memcg_alloc_cache_id();
2831 	if (memcg_id < 0)
2832 		return memcg_id;
2833 
2834 	static_branch_inc(&memcg_kmem_enabled_key);
2835 	/*
2836 	 * A memory cgroup is considered kmem-online as soon as it gets
2837 	 * kmemcg_id. Setting the id after enabling static branching will
2838 	 * guarantee no one starts accounting before all call sites are
2839 	 * patched.
2840 	 */
2841 	memcg->kmemcg_id = memcg_id;
2842 	memcg->kmem_state = KMEM_ONLINE;
2843 
2844 	return 0;
2845 }
2846 
2847 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2848 {
2849 	struct cgroup_subsys_state *css;
2850 	struct mem_cgroup *parent, *child;
2851 	int kmemcg_id;
2852 
2853 	if (memcg->kmem_state != KMEM_ONLINE)
2854 		return;
2855 	/*
2856 	 * Clear the online state before clearing memcg_caches array
2857 	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2858 	 * guarantees that no cache will be created for this cgroup
2859 	 * after we are done (see memcg_create_kmem_cache()).
2860 	 */
2861 	memcg->kmem_state = KMEM_ALLOCATED;
2862 
2863 	memcg_deactivate_kmem_caches(memcg);
2864 
2865 	kmemcg_id = memcg->kmemcg_id;
2866 	BUG_ON(kmemcg_id < 0);
2867 
2868 	parent = parent_mem_cgroup(memcg);
2869 	if (!parent)
2870 		parent = root_mem_cgroup;
2871 
2872 	/*
2873 	 * Change kmemcg_id of this cgroup and all its descendants to the
2874 	 * parent's id, and then move all entries from this cgroup's list_lrus
2875 	 * to ones of the parent. After we have finished, all list_lrus
2876 	 * corresponding to this cgroup are guaranteed to remain empty. The
2877 	 * ordering is imposed by list_lru_node->lock taken by
2878 	 * memcg_drain_all_list_lrus().
2879 	 */
2880 	css_for_each_descendant_pre(css, &memcg->css) {
2881 		child = mem_cgroup_from_css(css);
2882 		BUG_ON(child->kmemcg_id != kmemcg_id);
2883 		child->kmemcg_id = parent->kmemcg_id;
2884 		if (!memcg->use_hierarchy)
2885 			break;
2886 	}
2887 	memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2888 
2889 	memcg_free_cache_id(kmemcg_id);
2890 }
2891 
2892 static void memcg_free_kmem(struct mem_cgroup *memcg)
2893 {
2894 	/* css_alloc() failed, offlining didn't happen */
2895 	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2896 		memcg_offline_kmem(memcg);
2897 
2898 	if (memcg->kmem_state == KMEM_ALLOCATED) {
2899 		memcg_destroy_kmem_caches(memcg);
2900 		static_branch_dec(&memcg_kmem_enabled_key);
2901 		WARN_ON(page_counter_read(&memcg->kmem));
2902 	}
2903 }
2904 #else
2905 static int memcg_online_kmem(struct mem_cgroup *memcg)
2906 {
2907 	return 0;
2908 }
2909 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2910 {
2911 }
2912 static void memcg_free_kmem(struct mem_cgroup *memcg)
2913 {
2914 }
2915 #endif /* !CONFIG_SLOB */
2916 
2917 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2918 				   unsigned long limit)
2919 {
2920 	int ret;
2921 
2922 	mutex_lock(&memcg_limit_mutex);
2923 	ret = page_counter_limit(&memcg->kmem, limit);
2924 	mutex_unlock(&memcg_limit_mutex);
2925 	return ret;
2926 }
2927 
2928 static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2929 {
2930 	int ret;
2931 
2932 	mutex_lock(&memcg_limit_mutex);
2933 
2934 	ret = page_counter_limit(&memcg->tcpmem, limit);
2935 	if (ret)
2936 		goto out;
2937 
2938 	if (!memcg->tcpmem_active) {
2939 		/*
2940 		 * The active flag needs to be written after the static_key
2941 		 * update. This is what guarantees that the socket activation
2942 		 * function is the last one to run. See sock_update_memcg() for
2943 		 * details, and note that we don't mark any socket as belonging
2944 		 * to this memcg until that flag is up.
2945 		 *
2946 		 * We need to do this, because static_keys will span multiple
2947 		 * sites, but we can't control their order. If we mark a socket
2948 		 * as accounted, but the accounting functions are not patched in
2949 		 * yet, we'll lose accounting.
2950 		 *
2951 		 * We never race with the readers in sock_update_memcg(),
2952 		 * because when this value change, the code to process it is not
2953 		 * patched in yet.
2954 		 */
2955 		static_branch_inc(&memcg_sockets_enabled_key);
2956 		memcg->tcpmem_active = true;
2957 	}
2958 out:
2959 	mutex_unlock(&memcg_limit_mutex);
2960 	return ret;
2961 }
2962 
2963 /*
2964  * The user of this function is...
2965  * RES_LIMIT.
2966  */
2967 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2968 				char *buf, size_t nbytes, loff_t off)
2969 {
2970 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2971 	unsigned long nr_pages;
2972 	int ret;
2973 
2974 	buf = strstrip(buf);
2975 	ret = page_counter_memparse(buf, "-1", &nr_pages);
2976 	if (ret)
2977 		return ret;
2978 
2979 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
2980 	case RES_LIMIT:
2981 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2982 			ret = -EINVAL;
2983 			break;
2984 		}
2985 		switch (MEMFILE_TYPE(of_cft(of)->private)) {
2986 		case _MEM:
2987 			ret = mem_cgroup_resize_limit(memcg, nr_pages);
2988 			break;
2989 		case _MEMSWAP:
2990 			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
2991 			break;
2992 		case _KMEM:
2993 			ret = memcg_update_kmem_limit(memcg, nr_pages);
2994 			break;
2995 		case _TCP:
2996 			ret = memcg_update_tcp_limit(memcg, nr_pages);
2997 			break;
2998 		}
2999 		break;
3000 	case RES_SOFT_LIMIT:
3001 		memcg->soft_limit = nr_pages;
3002 		ret = 0;
3003 		break;
3004 	}
3005 	return ret ?: nbytes;
3006 }
3007 
3008 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3009 				size_t nbytes, loff_t off)
3010 {
3011 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3012 	struct page_counter *counter;
3013 
3014 	switch (MEMFILE_TYPE(of_cft(of)->private)) {
3015 	case _MEM:
3016 		counter = &memcg->memory;
3017 		break;
3018 	case _MEMSWAP:
3019 		counter = &memcg->memsw;
3020 		break;
3021 	case _KMEM:
3022 		counter = &memcg->kmem;
3023 		break;
3024 	case _TCP:
3025 		counter = &memcg->tcpmem;
3026 		break;
3027 	default:
3028 		BUG();
3029 	}
3030 
3031 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3032 	case RES_MAX_USAGE:
3033 		page_counter_reset_watermark(counter);
3034 		break;
3035 	case RES_FAILCNT:
3036 		counter->failcnt = 0;
3037 		break;
3038 	default:
3039 		BUG();
3040 	}
3041 
3042 	return nbytes;
3043 }
3044 
3045 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3046 					struct cftype *cft)
3047 {
3048 	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3049 }
3050 
3051 #ifdef CONFIG_MMU
3052 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3053 					struct cftype *cft, u64 val)
3054 {
3055 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3056 
3057 	if (val & ~MOVE_MASK)
3058 		return -EINVAL;
3059 
3060 	/*
3061 	 * No kind of locking is needed in here, because ->can_attach() will
3062 	 * check this value once in the beginning of the process, and then carry
3063 	 * on with stale data. This means that changes to this value will only
3064 	 * affect task migrations starting after the change.
3065 	 */
3066 	memcg->move_charge_at_immigrate = val;
3067 	return 0;
3068 }
3069 #else
3070 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3071 					struct cftype *cft, u64 val)
3072 {
3073 	return -ENOSYS;
3074 }
3075 #endif
3076 
3077 #ifdef CONFIG_NUMA
3078 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3079 {
3080 	struct numa_stat {
3081 		const char *name;
3082 		unsigned int lru_mask;
3083 	};
3084 
3085 	static const struct numa_stat stats[] = {
3086 		{ "total", LRU_ALL },
3087 		{ "file", LRU_ALL_FILE },
3088 		{ "anon", LRU_ALL_ANON },
3089 		{ "unevictable", BIT(LRU_UNEVICTABLE) },
3090 	};
3091 	const struct numa_stat *stat;
3092 	int nid;
3093 	unsigned long nr;
3094 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3095 
3096 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3097 		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3098 		seq_printf(m, "%s=%lu", stat->name, nr);
3099 		for_each_node_state(nid, N_MEMORY) {
3100 			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3101 							  stat->lru_mask);
3102 			seq_printf(m, " N%d=%lu", nid, nr);
3103 		}
3104 		seq_putc(m, '\n');
3105 	}
3106 
3107 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3108 		struct mem_cgroup *iter;
3109 
3110 		nr = 0;
3111 		for_each_mem_cgroup_tree(iter, memcg)
3112 			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3113 		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3114 		for_each_node_state(nid, N_MEMORY) {
3115 			nr = 0;
3116 			for_each_mem_cgroup_tree(iter, memcg)
3117 				nr += mem_cgroup_node_nr_lru_pages(
3118 					iter, nid, stat->lru_mask);
3119 			seq_printf(m, " N%d=%lu", nid, nr);
3120 		}
3121 		seq_putc(m, '\n');
3122 	}
3123 
3124 	return 0;
3125 }
3126 #endif /* CONFIG_NUMA */
3127 
3128 static int memcg_stat_show(struct seq_file *m, void *v)
3129 {
3130 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3131 	unsigned long memory, memsw;
3132 	struct mem_cgroup *mi;
3133 	unsigned int i;
3134 
3135 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3136 		     MEM_CGROUP_STAT_NSTATS);
3137 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3138 		     MEM_CGROUP_EVENTS_NSTATS);
3139 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3140 
3141 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3142 		if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3143 			continue;
3144 		seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3145 			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3146 	}
3147 
3148 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3149 		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3150 			   mem_cgroup_read_events(memcg, i));
3151 
3152 	for (i = 0; i < NR_LRU_LISTS; i++)
3153 		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3154 			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3155 
3156 	/* Hierarchical information */
3157 	memory = memsw = PAGE_COUNTER_MAX;
3158 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3159 		memory = min(memory, mi->memory.limit);
3160 		memsw = min(memsw, mi->memsw.limit);
3161 	}
3162 	seq_printf(m, "hierarchical_memory_limit %llu\n",
3163 		   (u64)memory * PAGE_SIZE);
3164 	if (do_memsw_account())
3165 		seq_printf(m, "hierarchical_memsw_limit %llu\n",
3166 			   (u64)memsw * PAGE_SIZE);
3167 
3168 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3169 		unsigned long long val = 0;
3170 
3171 		if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3172 			continue;
3173 		for_each_mem_cgroup_tree(mi, memcg)
3174 			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3175 		seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3176 	}
3177 
3178 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3179 		unsigned long long val = 0;
3180 
3181 		for_each_mem_cgroup_tree(mi, memcg)
3182 			val += mem_cgroup_read_events(mi, i);
3183 		seq_printf(m, "total_%s %llu\n",
3184 			   mem_cgroup_events_names[i], val);
3185 	}
3186 
3187 	for (i = 0; i < NR_LRU_LISTS; i++) {
3188 		unsigned long long val = 0;
3189 
3190 		for_each_mem_cgroup_tree(mi, memcg)
3191 			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3192 		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3193 	}
3194 
3195 #ifdef CONFIG_DEBUG_VM
3196 	{
3197 		int nid, zid;
3198 		struct mem_cgroup_per_zone *mz;
3199 		struct zone_reclaim_stat *rstat;
3200 		unsigned long recent_rotated[2] = {0, 0};
3201 		unsigned long recent_scanned[2] = {0, 0};
3202 
3203 		for_each_online_node(nid)
3204 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3205 				mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3206 				rstat = &mz->lruvec.reclaim_stat;
3207 
3208 				recent_rotated[0] += rstat->recent_rotated[0];
3209 				recent_rotated[1] += rstat->recent_rotated[1];
3210 				recent_scanned[0] += rstat->recent_scanned[0];
3211 				recent_scanned[1] += rstat->recent_scanned[1];
3212 			}
3213 		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3214 		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3215 		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3216 		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3217 	}
3218 #endif
3219 
3220 	return 0;
3221 }
3222 
3223 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3224 				      struct cftype *cft)
3225 {
3226 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3227 
3228 	return mem_cgroup_swappiness(memcg);
3229 }
3230 
3231 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3232 				       struct cftype *cft, u64 val)
3233 {
3234 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3235 
3236 	if (val > 100)
3237 		return -EINVAL;
3238 
3239 	if (css->parent)
3240 		memcg->swappiness = val;
3241 	else
3242 		vm_swappiness = val;
3243 
3244 	return 0;
3245 }
3246 
3247 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3248 {
3249 	struct mem_cgroup_threshold_ary *t;
3250 	unsigned long usage;
3251 	int i;
3252 
3253 	rcu_read_lock();
3254 	if (!swap)
3255 		t = rcu_dereference(memcg->thresholds.primary);
3256 	else
3257 		t = rcu_dereference(memcg->memsw_thresholds.primary);
3258 
3259 	if (!t)
3260 		goto unlock;
3261 
3262 	usage = mem_cgroup_usage(memcg, swap);
3263 
3264 	/*
3265 	 * current_threshold points to threshold just below or equal to usage.
3266 	 * If it's not true, a threshold was crossed after last
3267 	 * call of __mem_cgroup_threshold().
3268 	 */
3269 	i = t->current_threshold;
3270 
3271 	/*
3272 	 * Iterate backward over array of thresholds starting from
3273 	 * current_threshold and check if a threshold is crossed.
3274 	 * If none of thresholds below usage is crossed, we read
3275 	 * only one element of the array here.
3276 	 */
3277 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3278 		eventfd_signal(t->entries[i].eventfd, 1);
3279 
3280 	/* i = current_threshold + 1 */
3281 	i++;
3282 
3283 	/*
3284 	 * Iterate forward over array of thresholds starting from
3285 	 * current_threshold+1 and check if a threshold is crossed.
3286 	 * If none of thresholds above usage is crossed, we read
3287 	 * only one element of the array here.
3288 	 */
3289 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3290 		eventfd_signal(t->entries[i].eventfd, 1);
3291 
3292 	/* Update current_threshold */
3293 	t->current_threshold = i - 1;
3294 unlock:
3295 	rcu_read_unlock();
3296 }
3297 
3298 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3299 {
3300 	while (memcg) {
3301 		__mem_cgroup_threshold(memcg, false);
3302 		if (do_memsw_account())
3303 			__mem_cgroup_threshold(memcg, true);
3304 
3305 		memcg = parent_mem_cgroup(memcg);
3306 	}
3307 }
3308 
3309 static int compare_thresholds(const void *a, const void *b)
3310 {
3311 	const struct mem_cgroup_threshold *_a = a;
3312 	const struct mem_cgroup_threshold *_b = b;
3313 
3314 	if (_a->threshold > _b->threshold)
3315 		return 1;
3316 
3317 	if (_a->threshold < _b->threshold)
3318 		return -1;
3319 
3320 	return 0;
3321 }
3322 
3323 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3324 {
3325 	struct mem_cgroup_eventfd_list *ev;
3326 
3327 	spin_lock(&memcg_oom_lock);
3328 
3329 	list_for_each_entry(ev, &memcg->oom_notify, list)
3330 		eventfd_signal(ev->eventfd, 1);
3331 
3332 	spin_unlock(&memcg_oom_lock);
3333 	return 0;
3334 }
3335 
3336 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3337 {
3338 	struct mem_cgroup *iter;
3339 
3340 	for_each_mem_cgroup_tree(iter, memcg)
3341 		mem_cgroup_oom_notify_cb(iter);
3342 }
3343 
3344 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3345 	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3346 {
3347 	struct mem_cgroup_thresholds *thresholds;
3348 	struct mem_cgroup_threshold_ary *new;
3349 	unsigned long threshold;
3350 	unsigned long usage;
3351 	int i, size, ret;
3352 
3353 	ret = page_counter_memparse(args, "-1", &threshold);
3354 	if (ret)
3355 		return ret;
3356 
3357 	mutex_lock(&memcg->thresholds_lock);
3358 
3359 	if (type == _MEM) {
3360 		thresholds = &memcg->thresholds;
3361 		usage = mem_cgroup_usage(memcg, false);
3362 	} else if (type == _MEMSWAP) {
3363 		thresholds = &memcg->memsw_thresholds;
3364 		usage = mem_cgroup_usage(memcg, true);
3365 	} else
3366 		BUG();
3367 
3368 	/* Check if a threshold crossed before adding a new one */
3369 	if (thresholds->primary)
3370 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3371 
3372 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3373 
3374 	/* Allocate memory for new array of thresholds */
3375 	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3376 			GFP_KERNEL);
3377 	if (!new) {
3378 		ret = -ENOMEM;
3379 		goto unlock;
3380 	}
3381 	new->size = size;
3382 
3383 	/* Copy thresholds (if any) to new array */
3384 	if (thresholds->primary) {
3385 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3386 				sizeof(struct mem_cgroup_threshold));
3387 	}
3388 
3389 	/* Add new threshold */
3390 	new->entries[size - 1].eventfd = eventfd;
3391 	new->entries[size - 1].threshold = threshold;
3392 
3393 	/* Sort thresholds. Registering of new threshold isn't time-critical */
3394 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3395 			compare_thresholds, NULL);
3396 
3397 	/* Find current threshold */
3398 	new->current_threshold = -1;
3399 	for (i = 0; i < size; i++) {
3400 		if (new->entries[i].threshold <= usage) {
3401 			/*
3402 			 * new->current_threshold will not be used until
3403 			 * rcu_assign_pointer(), so it's safe to increment
3404 			 * it here.
3405 			 */
3406 			++new->current_threshold;
3407 		} else
3408 			break;
3409 	}
3410 
3411 	/* Free old spare buffer and save old primary buffer as spare */
3412 	kfree(thresholds->spare);
3413 	thresholds->spare = thresholds->primary;
3414 
3415 	rcu_assign_pointer(thresholds->primary, new);
3416 
3417 	/* To be sure that nobody uses thresholds */
3418 	synchronize_rcu();
3419 
3420 unlock:
3421 	mutex_unlock(&memcg->thresholds_lock);
3422 
3423 	return ret;
3424 }
3425 
3426 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3427 	struct eventfd_ctx *eventfd, const char *args)
3428 {
3429 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3430 }
3431 
3432 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3433 	struct eventfd_ctx *eventfd, const char *args)
3434 {
3435 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3436 }
3437 
3438 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3439 	struct eventfd_ctx *eventfd, enum res_type type)
3440 {
3441 	struct mem_cgroup_thresholds *thresholds;
3442 	struct mem_cgroup_threshold_ary *new;
3443 	unsigned long usage;
3444 	int i, j, size;
3445 
3446 	mutex_lock(&memcg->thresholds_lock);
3447 
3448 	if (type == _MEM) {
3449 		thresholds = &memcg->thresholds;
3450 		usage = mem_cgroup_usage(memcg, false);
3451 	} else if (type == _MEMSWAP) {
3452 		thresholds = &memcg->memsw_thresholds;
3453 		usage = mem_cgroup_usage(memcg, true);
3454 	} else
3455 		BUG();
3456 
3457 	if (!thresholds->primary)
3458 		goto unlock;
3459 
3460 	/* Check if a threshold crossed before removing */
3461 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3462 
3463 	/* Calculate new number of threshold */
3464 	size = 0;
3465 	for (i = 0; i < thresholds->primary->size; i++) {
3466 		if (thresholds->primary->entries[i].eventfd != eventfd)
3467 			size++;
3468 	}
3469 
3470 	new = thresholds->spare;
3471 
3472 	/* Set thresholds array to NULL if we don't have thresholds */
3473 	if (!size) {
3474 		kfree(new);
3475 		new = NULL;
3476 		goto swap_buffers;
3477 	}
3478 
3479 	new->size = size;
3480 
3481 	/* Copy thresholds and find current threshold */
3482 	new->current_threshold = -1;
3483 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3484 		if (thresholds->primary->entries[i].eventfd == eventfd)
3485 			continue;
3486 
3487 		new->entries[j] = thresholds->primary->entries[i];
3488 		if (new->entries[j].threshold <= usage) {
3489 			/*
3490 			 * new->current_threshold will not be used
3491 			 * until rcu_assign_pointer(), so it's safe to increment
3492 			 * it here.
3493 			 */
3494 			++new->current_threshold;
3495 		}
3496 		j++;
3497 	}
3498 
3499 swap_buffers:
3500 	/* Swap primary and spare array */
3501 	thresholds->spare = thresholds->primary;
3502 
3503 	rcu_assign_pointer(thresholds->primary, new);
3504 
3505 	/* To be sure that nobody uses thresholds */
3506 	synchronize_rcu();
3507 
3508 	/* If all events are unregistered, free the spare array */
3509 	if (!new) {
3510 		kfree(thresholds->spare);
3511 		thresholds->spare = NULL;
3512 	}
3513 unlock:
3514 	mutex_unlock(&memcg->thresholds_lock);
3515 }
3516 
3517 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3518 	struct eventfd_ctx *eventfd)
3519 {
3520 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3521 }
3522 
3523 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3524 	struct eventfd_ctx *eventfd)
3525 {
3526 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3527 }
3528 
3529 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3530 	struct eventfd_ctx *eventfd, const char *args)
3531 {
3532 	struct mem_cgroup_eventfd_list *event;
3533 
3534 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
3535 	if (!event)
3536 		return -ENOMEM;
3537 
3538 	spin_lock(&memcg_oom_lock);
3539 
3540 	event->eventfd = eventfd;
3541 	list_add(&event->list, &memcg->oom_notify);
3542 
3543 	/* already in OOM ? */
3544 	if (memcg->under_oom)
3545 		eventfd_signal(eventfd, 1);
3546 	spin_unlock(&memcg_oom_lock);
3547 
3548 	return 0;
3549 }
3550 
3551 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3552 	struct eventfd_ctx *eventfd)
3553 {
3554 	struct mem_cgroup_eventfd_list *ev, *tmp;
3555 
3556 	spin_lock(&memcg_oom_lock);
3557 
3558 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3559 		if (ev->eventfd == eventfd) {
3560 			list_del(&ev->list);
3561 			kfree(ev);
3562 		}
3563 	}
3564 
3565 	spin_unlock(&memcg_oom_lock);
3566 }
3567 
3568 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3569 {
3570 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3571 
3572 	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3573 	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3574 	return 0;
3575 }
3576 
3577 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3578 	struct cftype *cft, u64 val)
3579 {
3580 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3581 
3582 	/* cannot set to root cgroup and only 0 and 1 are allowed */
3583 	if (!css->parent || !((val == 0) || (val == 1)))
3584 		return -EINVAL;
3585 
3586 	memcg->oom_kill_disable = val;
3587 	if (!val)
3588 		memcg_oom_recover(memcg);
3589 
3590 	return 0;
3591 }
3592 
3593 #ifdef CONFIG_CGROUP_WRITEBACK
3594 
3595 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3596 {
3597 	return &memcg->cgwb_list;
3598 }
3599 
3600 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3601 {
3602 	return wb_domain_init(&memcg->cgwb_domain, gfp);
3603 }
3604 
3605 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3606 {
3607 	wb_domain_exit(&memcg->cgwb_domain);
3608 }
3609 
3610 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3611 {
3612 	wb_domain_size_changed(&memcg->cgwb_domain);
3613 }
3614 
3615 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3616 {
3617 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3618 
3619 	if (!memcg->css.parent)
3620 		return NULL;
3621 
3622 	return &memcg->cgwb_domain;
3623 }
3624 
3625 /**
3626  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3627  * @wb: bdi_writeback in question
3628  * @pfilepages: out parameter for number of file pages
3629  * @pheadroom: out parameter for number of allocatable pages according to memcg
3630  * @pdirty: out parameter for number of dirty pages
3631  * @pwriteback: out parameter for number of pages under writeback
3632  *
3633  * Determine the numbers of file, headroom, dirty, and writeback pages in
3634  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
3635  * is a bit more involved.
3636  *
3637  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
3638  * headroom is calculated as the lowest headroom of itself and the
3639  * ancestors.  Note that this doesn't consider the actual amount of
3640  * available memory in the system.  The caller should further cap
3641  * *@pheadroom accordingly.
3642  */
3643 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3644 			 unsigned long *pheadroom, unsigned long *pdirty,
3645 			 unsigned long *pwriteback)
3646 {
3647 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3648 	struct mem_cgroup *parent;
3649 
3650 	*pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3651 
3652 	/* this should eventually include NR_UNSTABLE_NFS */
3653 	*pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3654 	*pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3655 						     (1 << LRU_ACTIVE_FILE));
3656 	*pheadroom = PAGE_COUNTER_MAX;
3657 
3658 	while ((parent = parent_mem_cgroup(memcg))) {
3659 		unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3660 		unsigned long used = page_counter_read(&memcg->memory);
3661 
3662 		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3663 		memcg = parent;
3664 	}
3665 }
3666 
3667 #else	/* CONFIG_CGROUP_WRITEBACK */
3668 
3669 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3670 {
3671 	return 0;
3672 }
3673 
3674 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3675 {
3676 }
3677 
3678 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3679 {
3680 }
3681 
3682 #endif	/* CONFIG_CGROUP_WRITEBACK */
3683 
3684 /*
3685  * DO NOT USE IN NEW FILES.
3686  *
3687  * "cgroup.event_control" implementation.
3688  *
3689  * This is way over-engineered.  It tries to support fully configurable
3690  * events for each user.  Such level of flexibility is completely
3691  * unnecessary especially in the light of the planned unified hierarchy.
3692  *
3693  * Please deprecate this and replace with something simpler if at all
3694  * possible.
3695  */
3696 
3697 /*
3698  * Unregister event and free resources.
3699  *
3700  * Gets called from workqueue.
3701  */
3702 static void memcg_event_remove(struct work_struct *work)
3703 {
3704 	struct mem_cgroup_event *event =
3705 		container_of(work, struct mem_cgroup_event, remove);
3706 	struct mem_cgroup *memcg = event->memcg;
3707 
3708 	remove_wait_queue(event->wqh, &event->wait);
3709 
3710 	event->unregister_event(memcg, event->eventfd);
3711 
3712 	/* Notify userspace the event is going away. */
3713 	eventfd_signal(event->eventfd, 1);
3714 
3715 	eventfd_ctx_put(event->eventfd);
3716 	kfree(event);
3717 	css_put(&memcg->css);
3718 }
3719 
3720 /*
3721  * Gets called on POLLHUP on eventfd when user closes it.
3722  *
3723  * Called with wqh->lock held and interrupts disabled.
3724  */
3725 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3726 			    int sync, void *key)
3727 {
3728 	struct mem_cgroup_event *event =
3729 		container_of(wait, struct mem_cgroup_event, wait);
3730 	struct mem_cgroup *memcg = event->memcg;
3731 	unsigned long flags = (unsigned long)key;
3732 
3733 	if (flags & POLLHUP) {
3734 		/*
3735 		 * If the event has been detached at cgroup removal, we
3736 		 * can simply return knowing the other side will cleanup
3737 		 * for us.
3738 		 *
3739 		 * We can't race against event freeing since the other
3740 		 * side will require wqh->lock via remove_wait_queue(),
3741 		 * which we hold.
3742 		 */
3743 		spin_lock(&memcg->event_list_lock);
3744 		if (!list_empty(&event->list)) {
3745 			list_del_init(&event->list);
3746 			/*
3747 			 * We are in atomic context, but cgroup_event_remove()
3748 			 * may sleep, so we have to call it in workqueue.
3749 			 */
3750 			schedule_work(&event->remove);
3751 		}
3752 		spin_unlock(&memcg->event_list_lock);
3753 	}
3754 
3755 	return 0;
3756 }
3757 
3758 static void memcg_event_ptable_queue_proc(struct file *file,
3759 		wait_queue_head_t *wqh, poll_table *pt)
3760 {
3761 	struct mem_cgroup_event *event =
3762 		container_of(pt, struct mem_cgroup_event, pt);
3763 
3764 	event->wqh = wqh;
3765 	add_wait_queue(wqh, &event->wait);
3766 }
3767 
3768 /*
3769  * DO NOT USE IN NEW FILES.
3770  *
3771  * Parse input and register new cgroup event handler.
3772  *
3773  * Input must be in format '<event_fd> <control_fd> <args>'.
3774  * Interpretation of args is defined by control file implementation.
3775  */
3776 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3777 					 char *buf, size_t nbytes, loff_t off)
3778 {
3779 	struct cgroup_subsys_state *css = of_css(of);
3780 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3781 	struct mem_cgroup_event *event;
3782 	struct cgroup_subsys_state *cfile_css;
3783 	unsigned int efd, cfd;
3784 	struct fd efile;
3785 	struct fd cfile;
3786 	const char *name;
3787 	char *endp;
3788 	int ret;
3789 
3790 	buf = strstrip(buf);
3791 
3792 	efd = simple_strtoul(buf, &endp, 10);
3793 	if (*endp != ' ')
3794 		return -EINVAL;
3795 	buf = endp + 1;
3796 
3797 	cfd = simple_strtoul(buf, &endp, 10);
3798 	if ((*endp != ' ') && (*endp != '\0'))
3799 		return -EINVAL;
3800 	buf = endp + 1;
3801 
3802 	event = kzalloc(sizeof(*event), GFP_KERNEL);
3803 	if (!event)
3804 		return -ENOMEM;
3805 
3806 	event->memcg = memcg;
3807 	INIT_LIST_HEAD(&event->list);
3808 	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3809 	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3810 	INIT_WORK(&event->remove, memcg_event_remove);
3811 
3812 	efile = fdget(efd);
3813 	if (!efile.file) {
3814 		ret = -EBADF;
3815 		goto out_kfree;
3816 	}
3817 
3818 	event->eventfd = eventfd_ctx_fileget(efile.file);
3819 	if (IS_ERR(event->eventfd)) {
3820 		ret = PTR_ERR(event->eventfd);
3821 		goto out_put_efile;
3822 	}
3823 
3824 	cfile = fdget(cfd);
3825 	if (!cfile.file) {
3826 		ret = -EBADF;
3827 		goto out_put_eventfd;
3828 	}
3829 
3830 	/* the process need read permission on control file */
3831 	/* AV: shouldn't we check that it's been opened for read instead? */
3832 	ret = inode_permission(file_inode(cfile.file), MAY_READ);
3833 	if (ret < 0)
3834 		goto out_put_cfile;
3835 
3836 	/*
3837 	 * Determine the event callbacks and set them in @event.  This used
3838 	 * to be done via struct cftype but cgroup core no longer knows
3839 	 * about these events.  The following is crude but the whole thing
3840 	 * is for compatibility anyway.
3841 	 *
3842 	 * DO NOT ADD NEW FILES.
3843 	 */
3844 	name = cfile.file->f_path.dentry->d_name.name;
3845 
3846 	if (!strcmp(name, "memory.usage_in_bytes")) {
3847 		event->register_event = mem_cgroup_usage_register_event;
3848 		event->unregister_event = mem_cgroup_usage_unregister_event;
3849 	} else if (!strcmp(name, "memory.oom_control")) {
3850 		event->register_event = mem_cgroup_oom_register_event;
3851 		event->unregister_event = mem_cgroup_oom_unregister_event;
3852 	} else if (!strcmp(name, "memory.pressure_level")) {
3853 		event->register_event = vmpressure_register_event;
3854 		event->unregister_event = vmpressure_unregister_event;
3855 	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3856 		event->register_event = memsw_cgroup_usage_register_event;
3857 		event->unregister_event = memsw_cgroup_usage_unregister_event;
3858 	} else {
3859 		ret = -EINVAL;
3860 		goto out_put_cfile;
3861 	}
3862 
3863 	/*
3864 	 * Verify @cfile should belong to @css.  Also, remaining events are
3865 	 * automatically removed on cgroup destruction but the removal is
3866 	 * asynchronous, so take an extra ref on @css.
3867 	 */
3868 	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3869 					       &memory_cgrp_subsys);
3870 	ret = -EINVAL;
3871 	if (IS_ERR(cfile_css))
3872 		goto out_put_cfile;
3873 	if (cfile_css != css) {
3874 		css_put(cfile_css);
3875 		goto out_put_cfile;
3876 	}
3877 
3878 	ret = event->register_event(memcg, event->eventfd, buf);
3879 	if (ret)
3880 		goto out_put_css;
3881 
3882 	efile.file->f_op->poll(efile.file, &event->pt);
3883 
3884 	spin_lock(&memcg->event_list_lock);
3885 	list_add(&event->list, &memcg->event_list);
3886 	spin_unlock(&memcg->event_list_lock);
3887 
3888 	fdput(cfile);
3889 	fdput(efile);
3890 
3891 	return nbytes;
3892 
3893 out_put_css:
3894 	css_put(css);
3895 out_put_cfile:
3896 	fdput(cfile);
3897 out_put_eventfd:
3898 	eventfd_ctx_put(event->eventfd);
3899 out_put_efile:
3900 	fdput(efile);
3901 out_kfree:
3902 	kfree(event);
3903 
3904 	return ret;
3905 }
3906 
3907 static struct cftype mem_cgroup_legacy_files[] = {
3908 	{
3909 		.name = "usage_in_bytes",
3910 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3911 		.read_u64 = mem_cgroup_read_u64,
3912 	},
3913 	{
3914 		.name = "max_usage_in_bytes",
3915 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3916 		.write = mem_cgroup_reset,
3917 		.read_u64 = mem_cgroup_read_u64,
3918 	},
3919 	{
3920 		.name = "limit_in_bytes",
3921 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3922 		.write = mem_cgroup_write,
3923 		.read_u64 = mem_cgroup_read_u64,
3924 	},
3925 	{
3926 		.name = "soft_limit_in_bytes",
3927 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3928 		.write = mem_cgroup_write,
3929 		.read_u64 = mem_cgroup_read_u64,
3930 	},
3931 	{
3932 		.name = "failcnt",
3933 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3934 		.write = mem_cgroup_reset,
3935 		.read_u64 = mem_cgroup_read_u64,
3936 	},
3937 	{
3938 		.name = "stat",
3939 		.seq_show = memcg_stat_show,
3940 	},
3941 	{
3942 		.name = "force_empty",
3943 		.write = mem_cgroup_force_empty_write,
3944 	},
3945 	{
3946 		.name = "use_hierarchy",
3947 		.write_u64 = mem_cgroup_hierarchy_write,
3948 		.read_u64 = mem_cgroup_hierarchy_read,
3949 	},
3950 	{
3951 		.name = "cgroup.event_control",		/* XXX: for compat */
3952 		.write = memcg_write_event_control,
3953 		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3954 	},
3955 	{
3956 		.name = "swappiness",
3957 		.read_u64 = mem_cgroup_swappiness_read,
3958 		.write_u64 = mem_cgroup_swappiness_write,
3959 	},
3960 	{
3961 		.name = "move_charge_at_immigrate",
3962 		.read_u64 = mem_cgroup_move_charge_read,
3963 		.write_u64 = mem_cgroup_move_charge_write,
3964 	},
3965 	{
3966 		.name = "oom_control",
3967 		.seq_show = mem_cgroup_oom_control_read,
3968 		.write_u64 = mem_cgroup_oom_control_write,
3969 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3970 	},
3971 	{
3972 		.name = "pressure_level",
3973 	},
3974 #ifdef CONFIG_NUMA
3975 	{
3976 		.name = "numa_stat",
3977 		.seq_show = memcg_numa_stat_show,
3978 	},
3979 #endif
3980 	{
3981 		.name = "kmem.limit_in_bytes",
3982 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
3983 		.write = mem_cgroup_write,
3984 		.read_u64 = mem_cgroup_read_u64,
3985 	},
3986 	{
3987 		.name = "kmem.usage_in_bytes",
3988 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
3989 		.read_u64 = mem_cgroup_read_u64,
3990 	},
3991 	{
3992 		.name = "kmem.failcnt",
3993 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
3994 		.write = mem_cgroup_reset,
3995 		.read_u64 = mem_cgroup_read_u64,
3996 	},
3997 	{
3998 		.name = "kmem.max_usage_in_bytes",
3999 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4000 		.write = mem_cgroup_reset,
4001 		.read_u64 = mem_cgroup_read_u64,
4002 	},
4003 #ifdef CONFIG_SLABINFO
4004 	{
4005 		.name = "kmem.slabinfo",
4006 		.seq_start = slab_start,
4007 		.seq_next = slab_next,
4008 		.seq_stop = slab_stop,
4009 		.seq_show = memcg_slab_show,
4010 	},
4011 #endif
4012 	{
4013 		.name = "kmem.tcp.limit_in_bytes",
4014 		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4015 		.write = mem_cgroup_write,
4016 		.read_u64 = mem_cgroup_read_u64,
4017 	},
4018 	{
4019 		.name = "kmem.tcp.usage_in_bytes",
4020 		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4021 		.read_u64 = mem_cgroup_read_u64,
4022 	},
4023 	{
4024 		.name = "kmem.tcp.failcnt",
4025 		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4026 		.write = mem_cgroup_reset,
4027 		.read_u64 = mem_cgroup_read_u64,
4028 	},
4029 	{
4030 		.name = "kmem.tcp.max_usage_in_bytes",
4031 		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4032 		.write = mem_cgroup_reset,
4033 		.read_u64 = mem_cgroup_read_u64,
4034 	},
4035 	{ },	/* terminate */
4036 };
4037 
4038 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4039 {
4040 	struct mem_cgroup_per_node *pn;
4041 	struct mem_cgroup_per_zone *mz;
4042 	int zone, tmp = node;
4043 	/*
4044 	 * This routine is called against possible nodes.
4045 	 * But it's BUG to call kmalloc() against offline node.
4046 	 *
4047 	 * TODO: this routine can waste much memory for nodes which will
4048 	 *       never be onlined. It's better to use memory hotplug callback
4049 	 *       function.
4050 	 */
4051 	if (!node_state(node, N_NORMAL_MEMORY))
4052 		tmp = -1;
4053 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4054 	if (!pn)
4055 		return 1;
4056 
4057 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4058 		mz = &pn->zoneinfo[zone];
4059 		lruvec_init(&mz->lruvec);
4060 		mz->usage_in_excess = 0;
4061 		mz->on_tree = false;
4062 		mz->memcg = memcg;
4063 	}
4064 	memcg->nodeinfo[node] = pn;
4065 	return 0;
4066 }
4067 
4068 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4069 {
4070 	kfree(memcg->nodeinfo[node]);
4071 }
4072 
4073 static void mem_cgroup_free(struct mem_cgroup *memcg)
4074 {
4075 	int node;
4076 
4077 	memcg_wb_domain_exit(memcg);
4078 	for_each_node(node)
4079 		free_mem_cgroup_per_zone_info(memcg, node);
4080 	free_percpu(memcg->stat);
4081 	kfree(memcg);
4082 }
4083 
4084 static struct mem_cgroup *mem_cgroup_alloc(void)
4085 {
4086 	struct mem_cgroup *memcg;
4087 	size_t size;
4088 	int node;
4089 
4090 	size = sizeof(struct mem_cgroup);
4091 	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4092 
4093 	memcg = kzalloc(size, GFP_KERNEL);
4094 	if (!memcg)
4095 		return NULL;
4096 
4097 	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4098 	if (!memcg->stat)
4099 		goto fail;
4100 
4101 	for_each_node(node)
4102 		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4103 			goto fail;
4104 
4105 	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4106 		goto fail;
4107 
4108 	INIT_WORK(&memcg->high_work, high_work_func);
4109 	memcg->last_scanned_node = MAX_NUMNODES;
4110 	INIT_LIST_HEAD(&memcg->oom_notify);
4111 	mutex_init(&memcg->thresholds_lock);
4112 	spin_lock_init(&memcg->move_lock);
4113 	vmpressure_init(&memcg->vmpressure);
4114 	INIT_LIST_HEAD(&memcg->event_list);
4115 	spin_lock_init(&memcg->event_list_lock);
4116 	memcg->socket_pressure = jiffies;
4117 #ifndef CONFIG_SLOB
4118 	memcg->kmemcg_id = -1;
4119 #endif
4120 #ifdef CONFIG_CGROUP_WRITEBACK
4121 	INIT_LIST_HEAD(&memcg->cgwb_list);
4122 #endif
4123 	return memcg;
4124 fail:
4125 	mem_cgroup_free(memcg);
4126 	return NULL;
4127 }
4128 
4129 static struct cgroup_subsys_state * __ref
4130 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4131 {
4132 	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4133 	struct mem_cgroup *memcg;
4134 	long error = -ENOMEM;
4135 
4136 	memcg = mem_cgroup_alloc();
4137 	if (!memcg)
4138 		return ERR_PTR(error);
4139 
4140 	memcg->high = PAGE_COUNTER_MAX;
4141 	memcg->soft_limit = PAGE_COUNTER_MAX;
4142 	if (parent) {
4143 		memcg->swappiness = mem_cgroup_swappiness(parent);
4144 		memcg->oom_kill_disable = parent->oom_kill_disable;
4145 	}
4146 	if (parent && parent->use_hierarchy) {
4147 		memcg->use_hierarchy = true;
4148 		page_counter_init(&memcg->memory, &parent->memory);
4149 		page_counter_init(&memcg->swap, &parent->swap);
4150 		page_counter_init(&memcg->memsw, &parent->memsw);
4151 		page_counter_init(&memcg->kmem, &parent->kmem);
4152 		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4153 	} else {
4154 		page_counter_init(&memcg->memory, NULL);
4155 		page_counter_init(&memcg->swap, NULL);
4156 		page_counter_init(&memcg->memsw, NULL);
4157 		page_counter_init(&memcg->kmem, NULL);
4158 		page_counter_init(&memcg->tcpmem, NULL);
4159 		/*
4160 		 * Deeper hierachy with use_hierarchy == false doesn't make
4161 		 * much sense so let cgroup subsystem know about this
4162 		 * unfortunate state in our controller.
4163 		 */
4164 		if (parent != root_mem_cgroup)
4165 			memory_cgrp_subsys.broken_hierarchy = true;
4166 	}
4167 
4168 	/* The following stuff does not apply to the root */
4169 	if (!parent) {
4170 		root_mem_cgroup = memcg;
4171 		return &memcg->css;
4172 	}
4173 
4174 	error = memcg_online_kmem(memcg);
4175 	if (error)
4176 		goto fail;
4177 
4178 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4179 		static_branch_inc(&memcg_sockets_enabled_key);
4180 
4181 	return &memcg->css;
4182 fail:
4183 	mem_cgroup_free(memcg);
4184 	return NULL;
4185 }
4186 
4187 static int
4188 mem_cgroup_css_online(struct cgroup_subsys_state *css)
4189 {
4190 	if (css->id > MEM_CGROUP_ID_MAX)
4191 		return -ENOSPC;
4192 
4193 	return 0;
4194 }
4195 
4196 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4197 {
4198 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4199 	struct mem_cgroup_event *event, *tmp;
4200 
4201 	/*
4202 	 * Unregister events and notify userspace.
4203 	 * Notify userspace about cgroup removing only after rmdir of cgroup
4204 	 * directory to avoid race between userspace and kernelspace.
4205 	 */
4206 	spin_lock(&memcg->event_list_lock);
4207 	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4208 		list_del_init(&event->list);
4209 		schedule_work(&event->remove);
4210 	}
4211 	spin_unlock(&memcg->event_list_lock);
4212 
4213 	memcg_offline_kmem(memcg);
4214 	wb_memcg_offline(memcg);
4215 }
4216 
4217 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4218 {
4219 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4220 
4221 	invalidate_reclaim_iterators(memcg);
4222 }
4223 
4224 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4225 {
4226 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4227 
4228 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4229 		static_branch_dec(&memcg_sockets_enabled_key);
4230 
4231 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4232 		static_branch_dec(&memcg_sockets_enabled_key);
4233 
4234 	vmpressure_cleanup(&memcg->vmpressure);
4235 	cancel_work_sync(&memcg->high_work);
4236 	mem_cgroup_remove_from_trees(memcg);
4237 	memcg_free_kmem(memcg);
4238 	mem_cgroup_free(memcg);
4239 }
4240 
4241 /**
4242  * mem_cgroup_css_reset - reset the states of a mem_cgroup
4243  * @css: the target css
4244  *
4245  * Reset the states of the mem_cgroup associated with @css.  This is
4246  * invoked when the userland requests disabling on the default hierarchy
4247  * but the memcg is pinned through dependency.  The memcg should stop
4248  * applying policies and should revert to the vanilla state as it may be
4249  * made visible again.
4250  *
4251  * The current implementation only resets the essential configurations.
4252  * This needs to be expanded to cover all the visible parts.
4253  */
4254 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4255 {
4256 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4257 
4258 	page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4259 	page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4260 	page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4261 	page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4262 	page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4263 	memcg->low = 0;
4264 	memcg->high = PAGE_COUNTER_MAX;
4265 	memcg->soft_limit = PAGE_COUNTER_MAX;
4266 	memcg_wb_domain_size_changed(memcg);
4267 }
4268 
4269 #ifdef CONFIG_MMU
4270 /* Handlers for move charge at task migration. */
4271 static int mem_cgroup_do_precharge(unsigned long count)
4272 {
4273 	int ret;
4274 
4275 	/* Try a single bulk charge without reclaim first, kswapd may wake */
4276 	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4277 	if (!ret) {
4278 		mc.precharge += count;
4279 		return ret;
4280 	}
4281 
4282 	/* Try charges one by one with reclaim */
4283 	while (count--) {
4284 		ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4285 		if (ret)
4286 			return ret;
4287 		mc.precharge++;
4288 		cond_resched();
4289 	}
4290 	return 0;
4291 }
4292 
4293 /**
4294  * get_mctgt_type - get target type of moving charge
4295  * @vma: the vma the pte to be checked belongs
4296  * @addr: the address corresponding to the pte to be checked
4297  * @ptent: the pte to be checked
4298  * @target: the pointer the target page or swap ent will be stored(can be NULL)
4299  *
4300  * Returns
4301  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
4302  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4303  *     move charge. if @target is not NULL, the page is stored in target->page
4304  *     with extra refcnt got(Callers should handle it).
4305  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4306  *     target for charge migration. if @target is not NULL, the entry is stored
4307  *     in target->ent.
4308  *
4309  * Called with pte lock held.
4310  */
4311 union mc_target {
4312 	struct page	*page;
4313 	swp_entry_t	ent;
4314 };
4315 
4316 enum mc_target_type {
4317 	MC_TARGET_NONE = 0,
4318 	MC_TARGET_PAGE,
4319 	MC_TARGET_SWAP,
4320 };
4321 
4322 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4323 						unsigned long addr, pte_t ptent)
4324 {
4325 	struct page *page = vm_normal_page(vma, addr, ptent);
4326 
4327 	if (!page || !page_mapped(page))
4328 		return NULL;
4329 	if (PageAnon(page)) {
4330 		if (!(mc.flags & MOVE_ANON))
4331 			return NULL;
4332 	} else {
4333 		if (!(mc.flags & MOVE_FILE))
4334 			return NULL;
4335 	}
4336 	if (!get_page_unless_zero(page))
4337 		return NULL;
4338 
4339 	return page;
4340 }
4341 
4342 #ifdef CONFIG_SWAP
4343 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4344 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4345 {
4346 	struct page *page = NULL;
4347 	swp_entry_t ent = pte_to_swp_entry(ptent);
4348 
4349 	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4350 		return NULL;
4351 	/*
4352 	 * Because lookup_swap_cache() updates some statistics counter,
4353 	 * we call find_get_page() with swapper_space directly.
4354 	 */
4355 	page = find_get_page(swap_address_space(ent), ent.val);
4356 	if (do_memsw_account())
4357 		entry->val = ent.val;
4358 
4359 	return page;
4360 }
4361 #else
4362 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4363 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4364 {
4365 	return NULL;
4366 }
4367 #endif
4368 
4369 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4370 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4371 {
4372 	struct page *page = NULL;
4373 	struct address_space *mapping;
4374 	pgoff_t pgoff;
4375 
4376 	if (!vma->vm_file) /* anonymous vma */
4377 		return NULL;
4378 	if (!(mc.flags & MOVE_FILE))
4379 		return NULL;
4380 
4381 	mapping = vma->vm_file->f_mapping;
4382 	pgoff = linear_page_index(vma, addr);
4383 
4384 	/* page is moved even if it's not RSS of this task(page-faulted). */
4385 #ifdef CONFIG_SWAP
4386 	/* shmem/tmpfs may report page out on swap: account for that too. */
4387 	if (shmem_mapping(mapping)) {
4388 		page = find_get_entry(mapping, pgoff);
4389 		if (radix_tree_exceptional_entry(page)) {
4390 			swp_entry_t swp = radix_to_swp_entry(page);
4391 			if (do_memsw_account())
4392 				*entry = swp;
4393 			page = find_get_page(swap_address_space(swp), swp.val);
4394 		}
4395 	} else
4396 		page = find_get_page(mapping, pgoff);
4397 #else
4398 	page = find_get_page(mapping, pgoff);
4399 #endif
4400 	return page;
4401 }
4402 
4403 /**
4404  * mem_cgroup_move_account - move account of the page
4405  * @page: the page
4406  * @nr_pages: number of regular pages (>1 for huge pages)
4407  * @from: mem_cgroup which the page is moved from.
4408  * @to:	mem_cgroup which the page is moved to. @from != @to.
4409  *
4410  * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4411  *
4412  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4413  * from old cgroup.
4414  */
4415 static int mem_cgroup_move_account(struct page *page,
4416 				   bool compound,
4417 				   struct mem_cgroup *from,
4418 				   struct mem_cgroup *to)
4419 {
4420 	unsigned long flags;
4421 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4422 	int ret;
4423 	bool anon;
4424 
4425 	VM_BUG_ON(from == to);
4426 	VM_BUG_ON_PAGE(PageLRU(page), page);
4427 	VM_BUG_ON(compound && !PageTransHuge(page));
4428 
4429 	/*
4430 	 * Prevent mem_cgroup_migrate() from looking at
4431 	 * page->mem_cgroup of its source page while we change it.
4432 	 */
4433 	ret = -EBUSY;
4434 	if (!trylock_page(page))
4435 		goto out;
4436 
4437 	ret = -EINVAL;
4438 	if (page->mem_cgroup != from)
4439 		goto out_unlock;
4440 
4441 	anon = PageAnon(page);
4442 
4443 	spin_lock_irqsave(&from->move_lock, flags);
4444 
4445 	if (!anon && page_mapped(page)) {
4446 		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4447 			       nr_pages);
4448 		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4449 			       nr_pages);
4450 	}
4451 
4452 	/*
4453 	 * move_lock grabbed above and caller set from->moving_account, so
4454 	 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4455 	 * So mapping should be stable for dirty pages.
4456 	 */
4457 	if (!anon && PageDirty(page)) {
4458 		struct address_space *mapping = page_mapping(page);
4459 
4460 		if (mapping_cap_account_dirty(mapping)) {
4461 			__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4462 				       nr_pages);
4463 			__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4464 				       nr_pages);
4465 		}
4466 	}
4467 
4468 	if (PageWriteback(page)) {
4469 		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4470 			       nr_pages);
4471 		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4472 			       nr_pages);
4473 	}
4474 
4475 	/*
4476 	 * It is safe to change page->mem_cgroup here because the page
4477 	 * is referenced, charged, and isolated - we can't race with
4478 	 * uncharging, charging, migration, or LRU putback.
4479 	 */
4480 
4481 	/* caller should have done css_get */
4482 	page->mem_cgroup = to;
4483 	spin_unlock_irqrestore(&from->move_lock, flags);
4484 
4485 	ret = 0;
4486 
4487 	local_irq_disable();
4488 	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4489 	memcg_check_events(to, page);
4490 	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4491 	memcg_check_events(from, page);
4492 	local_irq_enable();
4493 out_unlock:
4494 	unlock_page(page);
4495 out:
4496 	return ret;
4497 }
4498 
4499 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4500 		unsigned long addr, pte_t ptent, union mc_target *target)
4501 {
4502 	struct page *page = NULL;
4503 	enum mc_target_type ret = MC_TARGET_NONE;
4504 	swp_entry_t ent = { .val = 0 };
4505 
4506 	if (pte_present(ptent))
4507 		page = mc_handle_present_pte(vma, addr, ptent);
4508 	else if (is_swap_pte(ptent))
4509 		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4510 	else if (pte_none(ptent))
4511 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
4512 
4513 	if (!page && !ent.val)
4514 		return ret;
4515 	if (page) {
4516 		/*
4517 		 * Do only loose check w/o serialization.
4518 		 * mem_cgroup_move_account() checks the page is valid or
4519 		 * not under LRU exclusion.
4520 		 */
4521 		if (page->mem_cgroup == mc.from) {
4522 			ret = MC_TARGET_PAGE;
4523 			if (target)
4524 				target->page = page;
4525 		}
4526 		if (!ret || !target)
4527 			put_page(page);
4528 	}
4529 	/* There is a swap entry and a page doesn't exist or isn't charged */
4530 	if (ent.val && !ret &&
4531 	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4532 		ret = MC_TARGET_SWAP;
4533 		if (target)
4534 			target->ent = ent;
4535 	}
4536 	return ret;
4537 }
4538 
4539 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4540 /*
4541  * We don't consider swapping or file mapped pages because THP does not
4542  * support them for now.
4543  * Caller should make sure that pmd_trans_huge(pmd) is true.
4544  */
4545 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4546 		unsigned long addr, pmd_t pmd, union mc_target *target)
4547 {
4548 	struct page *page = NULL;
4549 	enum mc_target_type ret = MC_TARGET_NONE;
4550 
4551 	page = pmd_page(pmd);
4552 	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4553 	if (!(mc.flags & MOVE_ANON))
4554 		return ret;
4555 	if (page->mem_cgroup == mc.from) {
4556 		ret = MC_TARGET_PAGE;
4557 		if (target) {
4558 			get_page(page);
4559 			target->page = page;
4560 		}
4561 	}
4562 	return ret;
4563 }
4564 #else
4565 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4566 		unsigned long addr, pmd_t pmd, union mc_target *target)
4567 {
4568 	return MC_TARGET_NONE;
4569 }
4570 #endif
4571 
4572 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4573 					unsigned long addr, unsigned long end,
4574 					struct mm_walk *walk)
4575 {
4576 	struct vm_area_struct *vma = walk->vma;
4577 	pte_t *pte;
4578 	spinlock_t *ptl;
4579 
4580 	ptl = pmd_trans_huge_lock(pmd, vma);
4581 	if (ptl) {
4582 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4583 			mc.precharge += HPAGE_PMD_NR;
4584 		spin_unlock(ptl);
4585 		return 0;
4586 	}
4587 
4588 	if (pmd_trans_unstable(pmd))
4589 		return 0;
4590 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4591 	for (; addr != end; pte++, addr += PAGE_SIZE)
4592 		if (get_mctgt_type(vma, addr, *pte, NULL))
4593 			mc.precharge++;	/* increment precharge temporarily */
4594 	pte_unmap_unlock(pte - 1, ptl);
4595 	cond_resched();
4596 
4597 	return 0;
4598 }
4599 
4600 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4601 {
4602 	unsigned long precharge;
4603 
4604 	struct mm_walk mem_cgroup_count_precharge_walk = {
4605 		.pmd_entry = mem_cgroup_count_precharge_pte_range,
4606 		.mm = mm,
4607 	};
4608 	down_read(&mm->mmap_sem);
4609 	walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4610 	up_read(&mm->mmap_sem);
4611 
4612 	precharge = mc.precharge;
4613 	mc.precharge = 0;
4614 
4615 	return precharge;
4616 }
4617 
4618 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4619 {
4620 	unsigned long precharge = mem_cgroup_count_precharge(mm);
4621 
4622 	VM_BUG_ON(mc.moving_task);
4623 	mc.moving_task = current;
4624 	return mem_cgroup_do_precharge(precharge);
4625 }
4626 
4627 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4628 static void __mem_cgroup_clear_mc(void)
4629 {
4630 	struct mem_cgroup *from = mc.from;
4631 	struct mem_cgroup *to = mc.to;
4632 
4633 	/* we must uncharge all the leftover precharges from mc.to */
4634 	if (mc.precharge) {
4635 		cancel_charge(mc.to, mc.precharge);
4636 		mc.precharge = 0;
4637 	}
4638 	/*
4639 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4640 	 * we must uncharge here.
4641 	 */
4642 	if (mc.moved_charge) {
4643 		cancel_charge(mc.from, mc.moved_charge);
4644 		mc.moved_charge = 0;
4645 	}
4646 	/* we must fixup refcnts and charges */
4647 	if (mc.moved_swap) {
4648 		/* uncharge swap account from the old cgroup */
4649 		if (!mem_cgroup_is_root(mc.from))
4650 			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4651 
4652 		/*
4653 		 * we charged both to->memory and to->memsw, so we
4654 		 * should uncharge to->memory.
4655 		 */
4656 		if (!mem_cgroup_is_root(mc.to))
4657 			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4658 
4659 		css_put_many(&mc.from->css, mc.moved_swap);
4660 
4661 		/* we've already done css_get(mc.to) */
4662 		mc.moved_swap = 0;
4663 	}
4664 	memcg_oom_recover(from);
4665 	memcg_oom_recover(to);
4666 	wake_up_all(&mc.waitq);
4667 }
4668 
4669 static void mem_cgroup_clear_mc(void)
4670 {
4671 	struct mm_struct *mm = mc.mm;
4672 
4673 	/*
4674 	 * we must clear moving_task before waking up waiters at the end of
4675 	 * task migration.
4676 	 */
4677 	mc.moving_task = NULL;
4678 	__mem_cgroup_clear_mc();
4679 	spin_lock(&mc.lock);
4680 	mc.from = NULL;
4681 	mc.to = NULL;
4682 	mc.mm = NULL;
4683 	spin_unlock(&mc.lock);
4684 
4685 	mmput(mm);
4686 }
4687 
4688 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4689 {
4690 	struct cgroup_subsys_state *css;
4691 	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4692 	struct mem_cgroup *from;
4693 	struct task_struct *leader, *p;
4694 	struct mm_struct *mm;
4695 	unsigned long move_flags;
4696 	int ret = 0;
4697 
4698 	/* charge immigration isn't supported on the default hierarchy */
4699 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4700 		return 0;
4701 
4702 	/*
4703 	 * Multi-process migrations only happen on the default hierarchy
4704 	 * where charge immigration is not used.  Perform charge
4705 	 * immigration if @tset contains a leader and whine if there are
4706 	 * multiple.
4707 	 */
4708 	p = NULL;
4709 	cgroup_taskset_for_each_leader(leader, css, tset) {
4710 		WARN_ON_ONCE(p);
4711 		p = leader;
4712 		memcg = mem_cgroup_from_css(css);
4713 	}
4714 	if (!p)
4715 		return 0;
4716 
4717 	/*
4718 	 * We are now commited to this value whatever it is. Changes in this
4719 	 * tunable will only affect upcoming migrations, not the current one.
4720 	 * So we need to save it, and keep it going.
4721 	 */
4722 	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4723 	if (!move_flags)
4724 		return 0;
4725 
4726 	from = mem_cgroup_from_task(p);
4727 
4728 	VM_BUG_ON(from == memcg);
4729 
4730 	mm = get_task_mm(p);
4731 	if (!mm)
4732 		return 0;
4733 	/* We move charges only when we move a owner of the mm */
4734 	if (mm->owner == p) {
4735 		VM_BUG_ON(mc.from);
4736 		VM_BUG_ON(mc.to);
4737 		VM_BUG_ON(mc.precharge);
4738 		VM_BUG_ON(mc.moved_charge);
4739 		VM_BUG_ON(mc.moved_swap);
4740 
4741 		spin_lock(&mc.lock);
4742 		mc.mm = mm;
4743 		mc.from = from;
4744 		mc.to = memcg;
4745 		mc.flags = move_flags;
4746 		spin_unlock(&mc.lock);
4747 		/* We set mc.moving_task later */
4748 
4749 		ret = mem_cgroup_precharge_mc(mm);
4750 		if (ret)
4751 			mem_cgroup_clear_mc();
4752 	} else {
4753 		mmput(mm);
4754 	}
4755 	return ret;
4756 }
4757 
4758 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4759 {
4760 	if (mc.to)
4761 		mem_cgroup_clear_mc();
4762 }
4763 
4764 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4765 				unsigned long addr, unsigned long end,
4766 				struct mm_walk *walk)
4767 {
4768 	int ret = 0;
4769 	struct vm_area_struct *vma = walk->vma;
4770 	pte_t *pte;
4771 	spinlock_t *ptl;
4772 	enum mc_target_type target_type;
4773 	union mc_target target;
4774 	struct page *page;
4775 
4776 	ptl = pmd_trans_huge_lock(pmd, vma);
4777 	if (ptl) {
4778 		if (mc.precharge < HPAGE_PMD_NR) {
4779 			spin_unlock(ptl);
4780 			return 0;
4781 		}
4782 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4783 		if (target_type == MC_TARGET_PAGE) {
4784 			page = target.page;
4785 			if (!isolate_lru_page(page)) {
4786 				if (!mem_cgroup_move_account(page, true,
4787 							     mc.from, mc.to)) {
4788 					mc.precharge -= HPAGE_PMD_NR;
4789 					mc.moved_charge += HPAGE_PMD_NR;
4790 				}
4791 				putback_lru_page(page);
4792 			}
4793 			put_page(page);
4794 		}
4795 		spin_unlock(ptl);
4796 		return 0;
4797 	}
4798 
4799 	if (pmd_trans_unstable(pmd))
4800 		return 0;
4801 retry:
4802 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4803 	for (; addr != end; addr += PAGE_SIZE) {
4804 		pte_t ptent = *(pte++);
4805 		swp_entry_t ent;
4806 
4807 		if (!mc.precharge)
4808 			break;
4809 
4810 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
4811 		case MC_TARGET_PAGE:
4812 			page = target.page;
4813 			/*
4814 			 * We can have a part of the split pmd here. Moving it
4815 			 * can be done but it would be too convoluted so simply
4816 			 * ignore such a partial THP and keep it in original
4817 			 * memcg. There should be somebody mapping the head.
4818 			 */
4819 			if (PageTransCompound(page))
4820 				goto put;
4821 			if (isolate_lru_page(page))
4822 				goto put;
4823 			if (!mem_cgroup_move_account(page, false,
4824 						mc.from, mc.to)) {
4825 				mc.precharge--;
4826 				/* we uncharge from mc.from later. */
4827 				mc.moved_charge++;
4828 			}
4829 			putback_lru_page(page);
4830 put:			/* get_mctgt_type() gets the page */
4831 			put_page(page);
4832 			break;
4833 		case MC_TARGET_SWAP:
4834 			ent = target.ent;
4835 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4836 				mc.precharge--;
4837 				/* we fixup refcnts and charges later. */
4838 				mc.moved_swap++;
4839 			}
4840 			break;
4841 		default:
4842 			break;
4843 		}
4844 	}
4845 	pte_unmap_unlock(pte - 1, ptl);
4846 	cond_resched();
4847 
4848 	if (addr != end) {
4849 		/*
4850 		 * We have consumed all precharges we got in can_attach().
4851 		 * We try charge one by one, but don't do any additional
4852 		 * charges to mc.to if we have failed in charge once in attach()
4853 		 * phase.
4854 		 */
4855 		ret = mem_cgroup_do_precharge(1);
4856 		if (!ret)
4857 			goto retry;
4858 	}
4859 
4860 	return ret;
4861 }
4862 
4863 static void mem_cgroup_move_charge(void)
4864 {
4865 	struct mm_walk mem_cgroup_move_charge_walk = {
4866 		.pmd_entry = mem_cgroup_move_charge_pte_range,
4867 		.mm = mc.mm,
4868 	};
4869 
4870 	lru_add_drain_all();
4871 	/*
4872 	 * Signal lock_page_memcg() to take the memcg's move_lock
4873 	 * while we're moving its pages to another memcg. Then wait
4874 	 * for already started RCU-only updates to finish.
4875 	 */
4876 	atomic_inc(&mc.from->moving_account);
4877 	synchronize_rcu();
4878 retry:
4879 	if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
4880 		/*
4881 		 * Someone who are holding the mmap_sem might be waiting in
4882 		 * waitq. So we cancel all extra charges, wake up all waiters,
4883 		 * and retry. Because we cancel precharges, we might not be able
4884 		 * to move enough charges, but moving charge is a best-effort
4885 		 * feature anyway, so it wouldn't be a big problem.
4886 		 */
4887 		__mem_cgroup_clear_mc();
4888 		cond_resched();
4889 		goto retry;
4890 	}
4891 	/*
4892 	 * When we have consumed all precharges and failed in doing
4893 	 * additional charge, the page walk just aborts.
4894 	 */
4895 	walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
4896 	up_read(&mc.mm->mmap_sem);
4897 	atomic_dec(&mc.from->moving_account);
4898 }
4899 
4900 static void mem_cgroup_move_task(void)
4901 {
4902 	if (mc.to) {
4903 		mem_cgroup_move_charge();
4904 		mem_cgroup_clear_mc();
4905 	}
4906 }
4907 #else	/* !CONFIG_MMU */
4908 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4909 {
4910 	return 0;
4911 }
4912 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4913 {
4914 }
4915 static void mem_cgroup_move_task(void)
4916 {
4917 }
4918 #endif
4919 
4920 /*
4921  * Cgroup retains root cgroups across [un]mount cycles making it necessary
4922  * to verify whether we're attached to the default hierarchy on each mount
4923  * attempt.
4924  */
4925 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
4926 {
4927 	/*
4928 	 * use_hierarchy is forced on the default hierarchy.  cgroup core
4929 	 * guarantees that @root doesn't have any children, so turning it
4930 	 * on for the root memcg is enough.
4931 	 */
4932 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4933 		root_mem_cgroup->use_hierarchy = true;
4934 	else
4935 		root_mem_cgroup->use_hierarchy = false;
4936 }
4937 
4938 static u64 memory_current_read(struct cgroup_subsys_state *css,
4939 			       struct cftype *cft)
4940 {
4941 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4942 
4943 	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
4944 }
4945 
4946 static int memory_low_show(struct seq_file *m, void *v)
4947 {
4948 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4949 	unsigned long low = READ_ONCE(memcg->low);
4950 
4951 	if (low == PAGE_COUNTER_MAX)
4952 		seq_puts(m, "max\n");
4953 	else
4954 		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
4955 
4956 	return 0;
4957 }
4958 
4959 static ssize_t memory_low_write(struct kernfs_open_file *of,
4960 				char *buf, size_t nbytes, loff_t off)
4961 {
4962 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4963 	unsigned long low;
4964 	int err;
4965 
4966 	buf = strstrip(buf);
4967 	err = page_counter_memparse(buf, "max", &low);
4968 	if (err)
4969 		return err;
4970 
4971 	memcg->low = low;
4972 
4973 	return nbytes;
4974 }
4975 
4976 static int memory_high_show(struct seq_file *m, void *v)
4977 {
4978 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4979 	unsigned long high = READ_ONCE(memcg->high);
4980 
4981 	if (high == PAGE_COUNTER_MAX)
4982 		seq_puts(m, "max\n");
4983 	else
4984 		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
4985 
4986 	return 0;
4987 }
4988 
4989 static ssize_t memory_high_write(struct kernfs_open_file *of,
4990 				 char *buf, size_t nbytes, loff_t off)
4991 {
4992 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4993 	unsigned long nr_pages;
4994 	unsigned long high;
4995 	int err;
4996 
4997 	buf = strstrip(buf);
4998 	err = page_counter_memparse(buf, "max", &high);
4999 	if (err)
5000 		return err;
5001 
5002 	memcg->high = high;
5003 
5004 	nr_pages = page_counter_read(&memcg->memory);
5005 	if (nr_pages > high)
5006 		try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5007 					     GFP_KERNEL, true);
5008 
5009 	memcg_wb_domain_size_changed(memcg);
5010 	return nbytes;
5011 }
5012 
5013 static int memory_max_show(struct seq_file *m, void *v)
5014 {
5015 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5016 	unsigned long max = READ_ONCE(memcg->memory.limit);
5017 
5018 	if (max == PAGE_COUNTER_MAX)
5019 		seq_puts(m, "max\n");
5020 	else
5021 		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5022 
5023 	return 0;
5024 }
5025 
5026 static ssize_t memory_max_write(struct kernfs_open_file *of,
5027 				char *buf, size_t nbytes, loff_t off)
5028 {
5029 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5030 	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5031 	bool drained = false;
5032 	unsigned long max;
5033 	int err;
5034 
5035 	buf = strstrip(buf);
5036 	err = page_counter_memparse(buf, "max", &max);
5037 	if (err)
5038 		return err;
5039 
5040 	xchg(&memcg->memory.limit, max);
5041 
5042 	for (;;) {
5043 		unsigned long nr_pages = page_counter_read(&memcg->memory);
5044 
5045 		if (nr_pages <= max)
5046 			break;
5047 
5048 		if (signal_pending(current)) {
5049 			err = -EINTR;
5050 			break;
5051 		}
5052 
5053 		if (!drained) {
5054 			drain_all_stock(memcg);
5055 			drained = true;
5056 			continue;
5057 		}
5058 
5059 		if (nr_reclaims) {
5060 			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5061 							  GFP_KERNEL, true))
5062 				nr_reclaims--;
5063 			continue;
5064 		}
5065 
5066 		mem_cgroup_events(memcg, MEMCG_OOM, 1);
5067 		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5068 			break;
5069 	}
5070 
5071 	memcg_wb_domain_size_changed(memcg);
5072 	return nbytes;
5073 }
5074 
5075 static int memory_events_show(struct seq_file *m, void *v)
5076 {
5077 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5078 
5079 	seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5080 	seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5081 	seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5082 	seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5083 
5084 	return 0;
5085 }
5086 
5087 static int memory_stat_show(struct seq_file *m, void *v)
5088 {
5089 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5090 	unsigned long stat[MEMCG_NR_STAT];
5091 	unsigned long events[MEMCG_NR_EVENTS];
5092 	int i;
5093 
5094 	/*
5095 	 * Provide statistics on the state of the memory subsystem as
5096 	 * well as cumulative event counters that show past behavior.
5097 	 *
5098 	 * This list is ordered following a combination of these gradients:
5099 	 * 1) generic big picture -> specifics and details
5100 	 * 2) reflecting userspace activity -> reflecting kernel heuristics
5101 	 *
5102 	 * Current memory state:
5103 	 */
5104 
5105 	tree_stat(memcg, stat);
5106 	tree_events(memcg, events);
5107 
5108 	seq_printf(m, "anon %llu\n",
5109 		   (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
5110 	seq_printf(m, "file %llu\n",
5111 		   (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
5112 	seq_printf(m, "kernel_stack %llu\n",
5113 		   (u64)stat[MEMCG_KERNEL_STACK] * PAGE_SIZE);
5114 	seq_printf(m, "slab %llu\n",
5115 		   (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
5116 			 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5117 	seq_printf(m, "sock %llu\n",
5118 		   (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5119 
5120 	seq_printf(m, "file_mapped %llu\n",
5121 		   (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
5122 	seq_printf(m, "file_dirty %llu\n",
5123 		   (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
5124 	seq_printf(m, "file_writeback %llu\n",
5125 		   (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
5126 
5127 	for (i = 0; i < NR_LRU_LISTS; i++) {
5128 		struct mem_cgroup *mi;
5129 		unsigned long val = 0;
5130 
5131 		for_each_mem_cgroup_tree(mi, memcg)
5132 			val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5133 		seq_printf(m, "%s %llu\n",
5134 			   mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5135 	}
5136 
5137 	seq_printf(m, "slab_reclaimable %llu\n",
5138 		   (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
5139 	seq_printf(m, "slab_unreclaimable %llu\n",
5140 		   (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5141 
5142 	/* Accumulated memory events */
5143 
5144 	seq_printf(m, "pgfault %lu\n",
5145 		   events[MEM_CGROUP_EVENTS_PGFAULT]);
5146 	seq_printf(m, "pgmajfault %lu\n",
5147 		   events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
5148 
5149 	return 0;
5150 }
5151 
5152 static struct cftype memory_files[] = {
5153 	{
5154 		.name = "current",
5155 		.flags = CFTYPE_NOT_ON_ROOT,
5156 		.read_u64 = memory_current_read,
5157 	},
5158 	{
5159 		.name = "low",
5160 		.flags = CFTYPE_NOT_ON_ROOT,
5161 		.seq_show = memory_low_show,
5162 		.write = memory_low_write,
5163 	},
5164 	{
5165 		.name = "high",
5166 		.flags = CFTYPE_NOT_ON_ROOT,
5167 		.seq_show = memory_high_show,
5168 		.write = memory_high_write,
5169 	},
5170 	{
5171 		.name = "max",
5172 		.flags = CFTYPE_NOT_ON_ROOT,
5173 		.seq_show = memory_max_show,
5174 		.write = memory_max_write,
5175 	},
5176 	{
5177 		.name = "events",
5178 		.flags = CFTYPE_NOT_ON_ROOT,
5179 		.file_offset = offsetof(struct mem_cgroup, events_file),
5180 		.seq_show = memory_events_show,
5181 	},
5182 	{
5183 		.name = "stat",
5184 		.flags = CFTYPE_NOT_ON_ROOT,
5185 		.seq_show = memory_stat_show,
5186 	},
5187 	{ }	/* terminate */
5188 };
5189 
5190 struct cgroup_subsys memory_cgrp_subsys = {
5191 	.css_alloc = mem_cgroup_css_alloc,
5192 	.css_online = mem_cgroup_css_online,
5193 	.css_offline = mem_cgroup_css_offline,
5194 	.css_released = mem_cgroup_css_released,
5195 	.css_free = mem_cgroup_css_free,
5196 	.css_reset = mem_cgroup_css_reset,
5197 	.can_attach = mem_cgroup_can_attach,
5198 	.cancel_attach = mem_cgroup_cancel_attach,
5199 	.post_attach = mem_cgroup_move_task,
5200 	.bind = mem_cgroup_bind,
5201 	.dfl_cftypes = memory_files,
5202 	.legacy_cftypes = mem_cgroup_legacy_files,
5203 	.early_init = 0,
5204 };
5205 
5206 /**
5207  * mem_cgroup_low - check if memory consumption is below the normal range
5208  * @root: the highest ancestor to consider
5209  * @memcg: the memory cgroup to check
5210  *
5211  * Returns %true if memory consumption of @memcg, and that of all
5212  * configurable ancestors up to @root, is below the normal range.
5213  */
5214 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5215 {
5216 	if (mem_cgroup_disabled())
5217 		return false;
5218 
5219 	/*
5220 	 * The toplevel group doesn't have a configurable range, so
5221 	 * it's never low when looked at directly, and it is not
5222 	 * considered an ancestor when assessing the hierarchy.
5223 	 */
5224 
5225 	if (memcg == root_mem_cgroup)
5226 		return false;
5227 
5228 	if (page_counter_read(&memcg->memory) >= memcg->low)
5229 		return false;
5230 
5231 	while (memcg != root) {
5232 		memcg = parent_mem_cgroup(memcg);
5233 
5234 		if (memcg == root_mem_cgroup)
5235 			break;
5236 
5237 		if (page_counter_read(&memcg->memory) >= memcg->low)
5238 			return false;
5239 	}
5240 	return true;
5241 }
5242 
5243 /**
5244  * mem_cgroup_try_charge - try charging a page
5245  * @page: page to charge
5246  * @mm: mm context of the victim
5247  * @gfp_mask: reclaim mode
5248  * @memcgp: charged memcg return
5249  *
5250  * Try to charge @page to the memcg that @mm belongs to, reclaiming
5251  * pages according to @gfp_mask if necessary.
5252  *
5253  * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5254  * Otherwise, an error code is returned.
5255  *
5256  * After page->mapping has been set up, the caller must finalize the
5257  * charge with mem_cgroup_commit_charge().  Or abort the transaction
5258  * with mem_cgroup_cancel_charge() in case page instantiation fails.
5259  */
5260 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5261 			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
5262 			  bool compound)
5263 {
5264 	struct mem_cgroup *memcg = NULL;
5265 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5266 	int ret = 0;
5267 
5268 	if (mem_cgroup_disabled())
5269 		goto out;
5270 
5271 	if (PageSwapCache(page)) {
5272 		/*
5273 		 * Every swap fault against a single page tries to charge the
5274 		 * page, bail as early as possible.  shmem_unuse() encounters
5275 		 * already charged pages, too.  The USED bit is protected by
5276 		 * the page lock, which serializes swap cache removal, which
5277 		 * in turn serializes uncharging.
5278 		 */
5279 		VM_BUG_ON_PAGE(!PageLocked(page), page);
5280 		if (page->mem_cgroup)
5281 			goto out;
5282 
5283 		if (do_swap_account) {
5284 			swp_entry_t ent = { .val = page_private(page), };
5285 			unsigned short id = lookup_swap_cgroup_id(ent);
5286 
5287 			rcu_read_lock();
5288 			memcg = mem_cgroup_from_id(id);
5289 			if (memcg && !css_tryget_online(&memcg->css))
5290 				memcg = NULL;
5291 			rcu_read_unlock();
5292 		}
5293 	}
5294 
5295 	if (!memcg)
5296 		memcg = get_mem_cgroup_from_mm(mm);
5297 
5298 	ret = try_charge(memcg, gfp_mask, nr_pages);
5299 
5300 	css_put(&memcg->css);
5301 out:
5302 	*memcgp = memcg;
5303 	return ret;
5304 }
5305 
5306 /**
5307  * mem_cgroup_commit_charge - commit a page charge
5308  * @page: page to charge
5309  * @memcg: memcg to charge the page to
5310  * @lrucare: page might be on LRU already
5311  *
5312  * Finalize a charge transaction started by mem_cgroup_try_charge(),
5313  * after page->mapping has been set up.  This must happen atomically
5314  * as part of the page instantiation, i.e. under the page table lock
5315  * for anonymous pages, under the page lock for page and swap cache.
5316  *
5317  * In addition, the page must not be on the LRU during the commit, to
5318  * prevent racing with task migration.  If it might be, use @lrucare.
5319  *
5320  * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5321  */
5322 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5323 			      bool lrucare, bool compound)
5324 {
5325 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5326 
5327 	VM_BUG_ON_PAGE(!page->mapping, page);
5328 	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5329 
5330 	if (mem_cgroup_disabled())
5331 		return;
5332 	/*
5333 	 * Swap faults will attempt to charge the same page multiple
5334 	 * times.  But reuse_swap_page() might have removed the page
5335 	 * from swapcache already, so we can't check PageSwapCache().
5336 	 */
5337 	if (!memcg)
5338 		return;
5339 
5340 	commit_charge(page, memcg, lrucare);
5341 
5342 	local_irq_disable();
5343 	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5344 	memcg_check_events(memcg, page);
5345 	local_irq_enable();
5346 
5347 	if (do_memsw_account() && PageSwapCache(page)) {
5348 		swp_entry_t entry = { .val = page_private(page) };
5349 		/*
5350 		 * The swap entry might not get freed for a long time,
5351 		 * let's not wait for it.  The page already received a
5352 		 * memory+swap charge, drop the swap entry duplicate.
5353 		 */
5354 		mem_cgroup_uncharge_swap(entry);
5355 	}
5356 }
5357 
5358 /**
5359  * mem_cgroup_cancel_charge - cancel a page charge
5360  * @page: page to charge
5361  * @memcg: memcg to charge the page to
5362  *
5363  * Cancel a charge transaction started by mem_cgroup_try_charge().
5364  */
5365 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5366 		bool compound)
5367 {
5368 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5369 
5370 	if (mem_cgroup_disabled())
5371 		return;
5372 	/*
5373 	 * Swap faults will attempt to charge the same page multiple
5374 	 * times.  But reuse_swap_page() might have removed the page
5375 	 * from swapcache already, so we can't check PageSwapCache().
5376 	 */
5377 	if (!memcg)
5378 		return;
5379 
5380 	cancel_charge(memcg, nr_pages);
5381 }
5382 
5383 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5384 			   unsigned long nr_anon, unsigned long nr_file,
5385 			   unsigned long nr_huge, struct page *dummy_page)
5386 {
5387 	unsigned long nr_pages = nr_anon + nr_file;
5388 	unsigned long flags;
5389 
5390 	if (!mem_cgroup_is_root(memcg)) {
5391 		page_counter_uncharge(&memcg->memory, nr_pages);
5392 		if (do_memsw_account())
5393 			page_counter_uncharge(&memcg->memsw, nr_pages);
5394 		memcg_oom_recover(memcg);
5395 	}
5396 
5397 	local_irq_save(flags);
5398 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5399 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5400 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5401 	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5402 	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5403 	memcg_check_events(memcg, dummy_page);
5404 	local_irq_restore(flags);
5405 
5406 	if (!mem_cgroup_is_root(memcg))
5407 		css_put_many(&memcg->css, nr_pages);
5408 }
5409 
5410 static void uncharge_list(struct list_head *page_list)
5411 {
5412 	struct mem_cgroup *memcg = NULL;
5413 	unsigned long nr_anon = 0;
5414 	unsigned long nr_file = 0;
5415 	unsigned long nr_huge = 0;
5416 	unsigned long pgpgout = 0;
5417 	struct list_head *next;
5418 	struct page *page;
5419 
5420 	/*
5421 	 * Note that the list can be a single page->lru; hence the
5422 	 * do-while loop instead of a simple list_for_each_entry().
5423 	 */
5424 	next = page_list->next;
5425 	do {
5426 		unsigned int nr_pages = 1;
5427 
5428 		page = list_entry(next, struct page, lru);
5429 		next = page->lru.next;
5430 
5431 		VM_BUG_ON_PAGE(PageLRU(page), page);
5432 		VM_BUG_ON_PAGE(page_count(page), page);
5433 
5434 		if (!page->mem_cgroup)
5435 			continue;
5436 
5437 		/*
5438 		 * Nobody should be changing or seriously looking at
5439 		 * page->mem_cgroup at this point, we have fully
5440 		 * exclusive access to the page.
5441 		 */
5442 
5443 		if (memcg != page->mem_cgroup) {
5444 			if (memcg) {
5445 				uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5446 					       nr_huge, page);
5447 				pgpgout = nr_anon = nr_file = nr_huge = 0;
5448 			}
5449 			memcg = page->mem_cgroup;
5450 		}
5451 
5452 		if (PageTransHuge(page)) {
5453 			nr_pages <<= compound_order(page);
5454 			VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5455 			nr_huge += nr_pages;
5456 		}
5457 
5458 		if (PageAnon(page))
5459 			nr_anon += nr_pages;
5460 		else
5461 			nr_file += nr_pages;
5462 
5463 		page->mem_cgroup = NULL;
5464 
5465 		pgpgout++;
5466 	} while (next != page_list);
5467 
5468 	if (memcg)
5469 		uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5470 			       nr_huge, page);
5471 }
5472 
5473 /**
5474  * mem_cgroup_uncharge - uncharge a page
5475  * @page: page to uncharge
5476  *
5477  * Uncharge a page previously charged with mem_cgroup_try_charge() and
5478  * mem_cgroup_commit_charge().
5479  */
5480 void mem_cgroup_uncharge(struct page *page)
5481 {
5482 	if (mem_cgroup_disabled())
5483 		return;
5484 
5485 	/* Don't touch page->lru of any random page, pre-check: */
5486 	if (!page->mem_cgroup)
5487 		return;
5488 
5489 	INIT_LIST_HEAD(&page->lru);
5490 	uncharge_list(&page->lru);
5491 }
5492 
5493 /**
5494  * mem_cgroup_uncharge_list - uncharge a list of page
5495  * @page_list: list of pages to uncharge
5496  *
5497  * Uncharge a list of pages previously charged with
5498  * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5499  */
5500 void mem_cgroup_uncharge_list(struct list_head *page_list)
5501 {
5502 	if (mem_cgroup_disabled())
5503 		return;
5504 
5505 	if (!list_empty(page_list))
5506 		uncharge_list(page_list);
5507 }
5508 
5509 /**
5510  * mem_cgroup_migrate - charge a page's replacement
5511  * @oldpage: currently circulating page
5512  * @newpage: replacement page
5513  *
5514  * Charge @newpage as a replacement page for @oldpage. @oldpage will
5515  * be uncharged upon free.
5516  *
5517  * Both pages must be locked, @newpage->mapping must be set up.
5518  */
5519 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5520 {
5521 	struct mem_cgroup *memcg;
5522 	unsigned int nr_pages;
5523 	bool compound;
5524 
5525 	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5526 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5527 	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5528 	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5529 		       newpage);
5530 
5531 	if (mem_cgroup_disabled())
5532 		return;
5533 
5534 	/* Page cache replacement: new page already charged? */
5535 	if (newpage->mem_cgroup)
5536 		return;
5537 
5538 	/* Swapcache readahead pages can get replaced before being charged */
5539 	memcg = oldpage->mem_cgroup;
5540 	if (!memcg)
5541 		return;
5542 
5543 	/* Force-charge the new page. The old one will be freed soon */
5544 	compound = PageTransHuge(newpage);
5545 	nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5546 
5547 	page_counter_charge(&memcg->memory, nr_pages);
5548 	if (do_memsw_account())
5549 		page_counter_charge(&memcg->memsw, nr_pages);
5550 	css_get_many(&memcg->css, nr_pages);
5551 
5552 	commit_charge(newpage, memcg, false);
5553 
5554 	local_irq_disable();
5555 	mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5556 	memcg_check_events(memcg, newpage);
5557 	local_irq_enable();
5558 }
5559 
5560 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5561 EXPORT_SYMBOL(memcg_sockets_enabled_key);
5562 
5563 void sock_update_memcg(struct sock *sk)
5564 {
5565 	struct mem_cgroup *memcg;
5566 
5567 	/* Socket cloning can throw us here with sk_cgrp already
5568 	 * filled. It won't however, necessarily happen from
5569 	 * process context. So the test for root memcg given
5570 	 * the current task's memcg won't help us in this case.
5571 	 *
5572 	 * Respecting the original socket's memcg is a better
5573 	 * decision in this case.
5574 	 */
5575 	if (sk->sk_memcg) {
5576 		BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5577 		css_get(&sk->sk_memcg->css);
5578 		return;
5579 	}
5580 
5581 	rcu_read_lock();
5582 	memcg = mem_cgroup_from_task(current);
5583 	if (memcg == root_mem_cgroup)
5584 		goto out;
5585 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5586 		goto out;
5587 	if (css_tryget_online(&memcg->css))
5588 		sk->sk_memcg = memcg;
5589 out:
5590 	rcu_read_unlock();
5591 }
5592 EXPORT_SYMBOL(sock_update_memcg);
5593 
5594 void sock_release_memcg(struct sock *sk)
5595 {
5596 	WARN_ON(!sk->sk_memcg);
5597 	css_put(&sk->sk_memcg->css);
5598 }
5599 
5600 /**
5601  * mem_cgroup_charge_skmem - charge socket memory
5602  * @memcg: memcg to charge
5603  * @nr_pages: number of pages to charge
5604  *
5605  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5606  * @memcg's configured limit, %false if the charge had to be forced.
5607  */
5608 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5609 {
5610 	gfp_t gfp_mask = GFP_KERNEL;
5611 
5612 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5613 		struct page_counter *fail;
5614 
5615 		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5616 			memcg->tcpmem_pressure = 0;
5617 			return true;
5618 		}
5619 		page_counter_charge(&memcg->tcpmem, nr_pages);
5620 		memcg->tcpmem_pressure = 1;
5621 		return false;
5622 	}
5623 
5624 	/* Don't block in the packet receive path */
5625 	if (in_softirq())
5626 		gfp_mask = GFP_NOWAIT;
5627 
5628 	this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5629 
5630 	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5631 		return true;
5632 
5633 	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5634 	return false;
5635 }
5636 
5637 /**
5638  * mem_cgroup_uncharge_skmem - uncharge socket memory
5639  * @memcg - memcg to uncharge
5640  * @nr_pages - number of pages to uncharge
5641  */
5642 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5643 {
5644 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5645 		page_counter_uncharge(&memcg->tcpmem, nr_pages);
5646 		return;
5647 	}
5648 
5649 	this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5650 
5651 	page_counter_uncharge(&memcg->memory, nr_pages);
5652 	css_put_many(&memcg->css, nr_pages);
5653 }
5654 
5655 static int __init cgroup_memory(char *s)
5656 {
5657 	char *token;
5658 
5659 	while ((token = strsep(&s, ",")) != NULL) {
5660 		if (!*token)
5661 			continue;
5662 		if (!strcmp(token, "nosocket"))
5663 			cgroup_memory_nosocket = true;
5664 		if (!strcmp(token, "nokmem"))
5665 			cgroup_memory_nokmem = true;
5666 	}
5667 	return 0;
5668 }
5669 __setup("cgroup.memory=", cgroup_memory);
5670 
5671 /*
5672  * subsys_initcall() for memory controller.
5673  *
5674  * Some parts like hotcpu_notifier() have to be initialized from this context
5675  * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5676  * everything that doesn't depend on a specific mem_cgroup structure should
5677  * be initialized from here.
5678  */
5679 static int __init mem_cgroup_init(void)
5680 {
5681 	int cpu, node;
5682 
5683 	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5684 
5685 	for_each_possible_cpu(cpu)
5686 		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5687 			  drain_local_stock);
5688 
5689 	for_each_node(node) {
5690 		struct mem_cgroup_tree_per_node *rtpn;
5691 		int zone;
5692 
5693 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5694 				    node_online(node) ? node : NUMA_NO_NODE);
5695 
5696 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5697 			struct mem_cgroup_tree_per_zone *rtpz;
5698 
5699 			rtpz = &rtpn->rb_tree_per_zone[zone];
5700 			rtpz->rb_root = RB_ROOT;
5701 			spin_lock_init(&rtpz->lock);
5702 		}
5703 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
5704 	}
5705 
5706 	return 0;
5707 }
5708 subsys_initcall(mem_cgroup_init);
5709 
5710 #ifdef CONFIG_MEMCG_SWAP
5711 /**
5712  * mem_cgroup_swapout - transfer a memsw charge to swap
5713  * @page: page whose memsw charge to transfer
5714  * @entry: swap entry to move the charge to
5715  *
5716  * Transfer the memsw charge of @page to @entry.
5717  */
5718 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5719 {
5720 	struct mem_cgroup *memcg;
5721 	unsigned short oldid;
5722 
5723 	VM_BUG_ON_PAGE(PageLRU(page), page);
5724 	VM_BUG_ON_PAGE(page_count(page), page);
5725 
5726 	if (!do_memsw_account())
5727 		return;
5728 
5729 	memcg = page->mem_cgroup;
5730 
5731 	/* Readahead page, never charged */
5732 	if (!memcg)
5733 		return;
5734 
5735 	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5736 	VM_BUG_ON_PAGE(oldid, page);
5737 	mem_cgroup_swap_statistics(memcg, true);
5738 
5739 	page->mem_cgroup = NULL;
5740 
5741 	if (!mem_cgroup_is_root(memcg))
5742 		page_counter_uncharge(&memcg->memory, 1);
5743 
5744 	/*
5745 	 * Interrupts should be disabled here because the caller holds the
5746 	 * mapping->tree_lock lock which is taken with interrupts-off. It is
5747 	 * important here to have the interrupts disabled because it is the
5748 	 * only synchronisation we have for udpating the per-CPU variables.
5749 	 */
5750 	VM_BUG_ON(!irqs_disabled());
5751 	mem_cgroup_charge_statistics(memcg, page, false, -1);
5752 	memcg_check_events(memcg, page);
5753 }
5754 
5755 /*
5756  * mem_cgroup_try_charge_swap - try charging a swap entry
5757  * @page: page being added to swap
5758  * @entry: swap entry to charge
5759  *
5760  * Try to charge @entry to the memcg that @page belongs to.
5761  *
5762  * Returns 0 on success, -ENOMEM on failure.
5763  */
5764 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5765 {
5766 	struct mem_cgroup *memcg;
5767 	struct page_counter *counter;
5768 	unsigned short oldid;
5769 
5770 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5771 		return 0;
5772 
5773 	memcg = page->mem_cgroup;
5774 
5775 	/* Readahead page, never charged */
5776 	if (!memcg)
5777 		return 0;
5778 
5779 	if (!mem_cgroup_is_root(memcg) &&
5780 	    !page_counter_try_charge(&memcg->swap, 1, &counter))
5781 		return -ENOMEM;
5782 
5783 	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5784 	VM_BUG_ON_PAGE(oldid, page);
5785 	mem_cgroup_swap_statistics(memcg, true);
5786 
5787 	css_get(&memcg->css);
5788 	return 0;
5789 }
5790 
5791 /**
5792  * mem_cgroup_uncharge_swap - uncharge a swap entry
5793  * @entry: swap entry to uncharge
5794  *
5795  * Drop the swap charge associated with @entry.
5796  */
5797 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5798 {
5799 	struct mem_cgroup *memcg;
5800 	unsigned short id;
5801 
5802 	if (!do_swap_account)
5803 		return;
5804 
5805 	id = swap_cgroup_record(entry, 0);
5806 	rcu_read_lock();
5807 	memcg = mem_cgroup_from_id(id);
5808 	if (memcg) {
5809 		if (!mem_cgroup_is_root(memcg)) {
5810 			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5811 				page_counter_uncharge(&memcg->swap, 1);
5812 			else
5813 				page_counter_uncharge(&memcg->memsw, 1);
5814 		}
5815 		mem_cgroup_swap_statistics(memcg, false);
5816 		css_put(&memcg->css);
5817 	}
5818 	rcu_read_unlock();
5819 }
5820 
5821 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5822 {
5823 	long nr_swap_pages = get_nr_swap_pages();
5824 
5825 	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5826 		return nr_swap_pages;
5827 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5828 		nr_swap_pages = min_t(long, nr_swap_pages,
5829 				      READ_ONCE(memcg->swap.limit) -
5830 				      page_counter_read(&memcg->swap));
5831 	return nr_swap_pages;
5832 }
5833 
5834 bool mem_cgroup_swap_full(struct page *page)
5835 {
5836 	struct mem_cgroup *memcg;
5837 
5838 	VM_BUG_ON_PAGE(!PageLocked(page), page);
5839 
5840 	if (vm_swap_full())
5841 		return true;
5842 	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5843 		return false;
5844 
5845 	memcg = page->mem_cgroup;
5846 	if (!memcg)
5847 		return false;
5848 
5849 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5850 		if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
5851 			return true;
5852 
5853 	return false;
5854 }
5855 
5856 /* for remember boot option*/
5857 #ifdef CONFIG_MEMCG_SWAP_ENABLED
5858 static int really_do_swap_account __initdata = 1;
5859 #else
5860 static int really_do_swap_account __initdata;
5861 #endif
5862 
5863 static int __init enable_swap_account(char *s)
5864 {
5865 	if (!strcmp(s, "1"))
5866 		really_do_swap_account = 1;
5867 	else if (!strcmp(s, "0"))
5868 		really_do_swap_account = 0;
5869 	return 1;
5870 }
5871 __setup("swapaccount=", enable_swap_account);
5872 
5873 static u64 swap_current_read(struct cgroup_subsys_state *css,
5874 			     struct cftype *cft)
5875 {
5876 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5877 
5878 	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
5879 }
5880 
5881 static int swap_max_show(struct seq_file *m, void *v)
5882 {
5883 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5884 	unsigned long max = READ_ONCE(memcg->swap.limit);
5885 
5886 	if (max == PAGE_COUNTER_MAX)
5887 		seq_puts(m, "max\n");
5888 	else
5889 		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5890 
5891 	return 0;
5892 }
5893 
5894 static ssize_t swap_max_write(struct kernfs_open_file *of,
5895 			      char *buf, size_t nbytes, loff_t off)
5896 {
5897 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5898 	unsigned long max;
5899 	int err;
5900 
5901 	buf = strstrip(buf);
5902 	err = page_counter_memparse(buf, "max", &max);
5903 	if (err)
5904 		return err;
5905 
5906 	mutex_lock(&memcg_limit_mutex);
5907 	err = page_counter_limit(&memcg->swap, max);
5908 	mutex_unlock(&memcg_limit_mutex);
5909 	if (err)
5910 		return err;
5911 
5912 	return nbytes;
5913 }
5914 
5915 static struct cftype swap_files[] = {
5916 	{
5917 		.name = "swap.current",
5918 		.flags = CFTYPE_NOT_ON_ROOT,
5919 		.read_u64 = swap_current_read,
5920 	},
5921 	{
5922 		.name = "swap.max",
5923 		.flags = CFTYPE_NOT_ON_ROOT,
5924 		.seq_show = swap_max_show,
5925 		.write = swap_max_write,
5926 	},
5927 	{ }	/* terminate */
5928 };
5929 
5930 static struct cftype memsw_cgroup_files[] = {
5931 	{
5932 		.name = "memsw.usage_in_bytes",
5933 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5934 		.read_u64 = mem_cgroup_read_u64,
5935 	},
5936 	{
5937 		.name = "memsw.max_usage_in_bytes",
5938 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5939 		.write = mem_cgroup_reset,
5940 		.read_u64 = mem_cgroup_read_u64,
5941 	},
5942 	{
5943 		.name = "memsw.limit_in_bytes",
5944 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5945 		.write = mem_cgroup_write,
5946 		.read_u64 = mem_cgroup_read_u64,
5947 	},
5948 	{
5949 		.name = "memsw.failcnt",
5950 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5951 		.write = mem_cgroup_reset,
5952 		.read_u64 = mem_cgroup_read_u64,
5953 	},
5954 	{ },	/* terminate */
5955 };
5956 
5957 static int __init mem_cgroup_swap_init(void)
5958 {
5959 	if (!mem_cgroup_disabled() && really_do_swap_account) {
5960 		do_swap_account = 1;
5961 		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
5962 					       swap_files));
5963 		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5964 						  memsw_cgroup_files));
5965 	}
5966 	return 0;
5967 }
5968 subsys_initcall(mem_cgroup_swap_init);
5969 
5970 #endif /* CONFIG_MEMCG_SWAP */
5971