xref: /openbmc/linux/mm/memcontrol.c (revision 4ed91d48259d9ddd378424d008f2e6559f7e78f8)
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * Kernel Memory Controller
14  * Copyright (C) 2012 Parallels Inc. and Google Inc.
15  * Authors: Glauber Costa and Suleiman Souhlal
16  *
17  * Native page reclaim
18  * Charge lifetime sanitation
19  * Lockless page tracking & accounting
20  * Unified hierarchy configuration model
21  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22  *
23  * This program is free software; you can redistribute it and/or modify
24  * it under the terms of the GNU General Public License as published by
25  * the Free Software Foundation; either version 2 of the License, or
26  * (at your option) any later version.
27  *
28  * This program is distributed in the hope that it will be useful,
29  * but WITHOUT ANY WARRANTY; without even the implied warranty of
30  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
31  * GNU General Public License for more details.
32  */
33 
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/sched/mm.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/hugetlb.h>
41 #include <linux/pagemap.h>
42 #include <linux/smp.h>
43 #include <linux/page-flags.h>
44 #include <linux/backing-dev.h>
45 #include <linux/bit_spinlock.h>
46 #include <linux/rcupdate.h>
47 #include <linux/limits.h>
48 #include <linux/export.h>
49 #include <linux/mutex.h>
50 #include <linux/rbtree.h>
51 #include <linux/slab.h>
52 #include <linux/swap.h>
53 #include <linux/swapops.h>
54 #include <linux/spinlock.h>
55 #include <linux/eventfd.h>
56 #include <linux/poll.h>
57 #include <linux/sort.h>
58 #include <linux/fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/vmpressure.h>
61 #include <linux/mm_inline.h>
62 #include <linux/swap_cgroup.h>
63 #include <linux/cpu.h>
64 #include <linux/oom.h>
65 #include <linux/lockdep.h>
66 #include <linux/file.h>
67 #include <linux/tracehook.h>
68 #include "internal.h"
69 #include <net/sock.h>
70 #include <net/ip.h>
71 #include "slab.h"
72 
73 #include <linux/uaccess.h>
74 
75 #include <trace/events/vmscan.h>
76 
77 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
78 EXPORT_SYMBOL(memory_cgrp_subsys);
79 
80 struct mem_cgroup *root_mem_cgroup __read_mostly;
81 
82 #define MEM_CGROUP_RECLAIM_RETRIES	5
83 
84 /* Socket memory accounting disabled? */
85 static bool cgroup_memory_nosocket;
86 
87 /* Kernel memory accounting disabled? */
88 static bool cgroup_memory_nokmem;
89 
90 /* Whether the swap controller is active */
91 #ifdef CONFIG_MEMCG_SWAP
92 int do_swap_account __read_mostly;
93 #else
94 #define do_swap_account		0
95 #endif
96 
97 /* Whether legacy memory+swap accounting is active */
98 static bool do_memsw_account(void)
99 {
100 	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
101 }
102 
103 static const char * const mem_cgroup_stat_names[] = {
104 	"cache",
105 	"rss",
106 	"rss_huge",
107 	"mapped_file",
108 	"dirty",
109 	"writeback",
110 	"swap",
111 };
112 
113 static const char * const mem_cgroup_events_names[] = {
114 	"pgpgin",
115 	"pgpgout",
116 	"pgfault",
117 	"pgmajfault",
118 };
119 
120 static const char * const mem_cgroup_lru_names[] = {
121 	"inactive_anon",
122 	"active_anon",
123 	"inactive_file",
124 	"active_file",
125 	"unevictable",
126 };
127 
128 #define THRESHOLDS_EVENTS_TARGET 128
129 #define SOFTLIMIT_EVENTS_TARGET 1024
130 #define NUMAINFO_EVENTS_TARGET	1024
131 
132 /*
133  * Cgroups above their limits are maintained in a RB-Tree, independent of
134  * their hierarchy representation
135  */
136 
137 struct mem_cgroup_tree_per_node {
138 	struct rb_root rb_root;
139 	spinlock_t lock;
140 };
141 
142 struct mem_cgroup_tree {
143 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
144 };
145 
146 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
147 
148 /* for OOM */
149 struct mem_cgroup_eventfd_list {
150 	struct list_head list;
151 	struct eventfd_ctx *eventfd;
152 };
153 
154 /*
155  * cgroup_event represents events which userspace want to receive.
156  */
157 struct mem_cgroup_event {
158 	/*
159 	 * memcg which the event belongs to.
160 	 */
161 	struct mem_cgroup *memcg;
162 	/*
163 	 * eventfd to signal userspace about the event.
164 	 */
165 	struct eventfd_ctx *eventfd;
166 	/*
167 	 * Each of these stored in a list by the cgroup.
168 	 */
169 	struct list_head list;
170 	/*
171 	 * register_event() callback will be used to add new userspace
172 	 * waiter for changes related to this event.  Use eventfd_signal()
173 	 * on eventfd to send notification to userspace.
174 	 */
175 	int (*register_event)(struct mem_cgroup *memcg,
176 			      struct eventfd_ctx *eventfd, const char *args);
177 	/*
178 	 * unregister_event() callback will be called when userspace closes
179 	 * the eventfd or on cgroup removing.  This callback must be set,
180 	 * if you want provide notification functionality.
181 	 */
182 	void (*unregister_event)(struct mem_cgroup *memcg,
183 				 struct eventfd_ctx *eventfd);
184 	/*
185 	 * All fields below needed to unregister event when
186 	 * userspace closes eventfd.
187 	 */
188 	poll_table pt;
189 	wait_queue_head_t *wqh;
190 	wait_queue_t wait;
191 	struct work_struct remove;
192 };
193 
194 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
195 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
196 
197 /* Stuffs for move charges at task migration. */
198 /*
199  * Types of charges to be moved.
200  */
201 #define MOVE_ANON	0x1U
202 #define MOVE_FILE	0x2U
203 #define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
204 
205 /* "mc" and its members are protected by cgroup_mutex */
206 static struct move_charge_struct {
207 	spinlock_t	  lock; /* for from, to */
208 	struct mm_struct  *mm;
209 	struct mem_cgroup *from;
210 	struct mem_cgroup *to;
211 	unsigned long flags;
212 	unsigned long precharge;
213 	unsigned long moved_charge;
214 	unsigned long moved_swap;
215 	struct task_struct *moving_task;	/* a task moving charges */
216 	wait_queue_head_t waitq;		/* a waitq for other context */
217 } mc = {
218 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
219 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
220 };
221 
222 /*
223  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
224  * limit reclaim to prevent infinite loops, if they ever occur.
225  */
226 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
227 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
228 
229 enum charge_type {
230 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
231 	MEM_CGROUP_CHARGE_TYPE_ANON,
232 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
233 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
234 	NR_CHARGE_TYPE,
235 };
236 
237 /* for encoding cft->private value on file */
238 enum res_type {
239 	_MEM,
240 	_MEMSWAP,
241 	_OOM_TYPE,
242 	_KMEM,
243 	_TCP,
244 };
245 
246 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
247 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
248 #define MEMFILE_ATTR(val)	((val) & 0xffff)
249 /* Used for OOM nofiier */
250 #define OOM_CONTROL		(0)
251 
252 /* Some nice accessors for the vmpressure. */
253 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
254 {
255 	if (!memcg)
256 		memcg = root_mem_cgroup;
257 	return &memcg->vmpressure;
258 }
259 
260 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
261 {
262 	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
263 }
264 
265 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
266 {
267 	return (memcg == root_mem_cgroup);
268 }
269 
270 #ifndef CONFIG_SLOB
271 /*
272  * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
273  * The main reason for not using cgroup id for this:
274  *  this works better in sparse environments, where we have a lot of memcgs,
275  *  but only a few kmem-limited. Or also, if we have, for instance, 200
276  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
277  *  200 entry array for that.
278  *
279  * The current size of the caches array is stored in memcg_nr_cache_ids. It
280  * will double each time we have to increase it.
281  */
282 static DEFINE_IDA(memcg_cache_ida);
283 int memcg_nr_cache_ids;
284 
285 /* Protects memcg_nr_cache_ids */
286 static DECLARE_RWSEM(memcg_cache_ids_sem);
287 
288 void memcg_get_cache_ids(void)
289 {
290 	down_read(&memcg_cache_ids_sem);
291 }
292 
293 void memcg_put_cache_ids(void)
294 {
295 	up_read(&memcg_cache_ids_sem);
296 }
297 
298 /*
299  * MIN_SIZE is different than 1, because we would like to avoid going through
300  * the alloc/free process all the time. In a small machine, 4 kmem-limited
301  * cgroups is a reasonable guess. In the future, it could be a parameter or
302  * tunable, but that is strictly not necessary.
303  *
304  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
305  * this constant directly from cgroup, but it is understandable that this is
306  * better kept as an internal representation in cgroup.c. In any case, the
307  * cgrp_id space is not getting any smaller, and we don't have to necessarily
308  * increase ours as well if it increases.
309  */
310 #define MEMCG_CACHES_MIN_SIZE 4
311 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
312 
313 /*
314  * A lot of the calls to the cache allocation functions are expected to be
315  * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
316  * conditional to this static branch, we'll have to allow modules that does
317  * kmem_cache_alloc and the such to see this symbol as well
318  */
319 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
320 EXPORT_SYMBOL(memcg_kmem_enabled_key);
321 
322 struct workqueue_struct *memcg_kmem_cache_wq;
323 
324 #endif /* !CONFIG_SLOB */
325 
326 /**
327  * mem_cgroup_css_from_page - css of the memcg associated with a page
328  * @page: page of interest
329  *
330  * If memcg is bound to the default hierarchy, css of the memcg associated
331  * with @page is returned.  The returned css remains associated with @page
332  * until it is released.
333  *
334  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
335  * is returned.
336  */
337 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
338 {
339 	struct mem_cgroup *memcg;
340 
341 	memcg = page->mem_cgroup;
342 
343 	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
344 		memcg = root_mem_cgroup;
345 
346 	return &memcg->css;
347 }
348 
349 /**
350  * page_cgroup_ino - return inode number of the memcg a page is charged to
351  * @page: the page
352  *
353  * Look up the closest online ancestor of the memory cgroup @page is charged to
354  * and return its inode number or 0 if @page is not charged to any cgroup. It
355  * is safe to call this function without holding a reference to @page.
356  *
357  * Note, this function is inherently racy, because there is nothing to prevent
358  * the cgroup inode from getting torn down and potentially reallocated a moment
359  * after page_cgroup_ino() returns, so it only should be used by callers that
360  * do not care (such as procfs interfaces).
361  */
362 ino_t page_cgroup_ino(struct page *page)
363 {
364 	struct mem_cgroup *memcg;
365 	unsigned long ino = 0;
366 
367 	rcu_read_lock();
368 	memcg = READ_ONCE(page->mem_cgroup);
369 	while (memcg && !(memcg->css.flags & CSS_ONLINE))
370 		memcg = parent_mem_cgroup(memcg);
371 	if (memcg)
372 		ino = cgroup_ino(memcg->css.cgroup);
373 	rcu_read_unlock();
374 	return ino;
375 }
376 
377 static struct mem_cgroup_per_node *
378 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
379 {
380 	int nid = page_to_nid(page);
381 
382 	return memcg->nodeinfo[nid];
383 }
384 
385 static struct mem_cgroup_tree_per_node *
386 soft_limit_tree_node(int nid)
387 {
388 	return soft_limit_tree.rb_tree_per_node[nid];
389 }
390 
391 static struct mem_cgroup_tree_per_node *
392 soft_limit_tree_from_page(struct page *page)
393 {
394 	int nid = page_to_nid(page);
395 
396 	return soft_limit_tree.rb_tree_per_node[nid];
397 }
398 
399 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
400 					 struct mem_cgroup_tree_per_node *mctz,
401 					 unsigned long new_usage_in_excess)
402 {
403 	struct rb_node **p = &mctz->rb_root.rb_node;
404 	struct rb_node *parent = NULL;
405 	struct mem_cgroup_per_node *mz_node;
406 
407 	if (mz->on_tree)
408 		return;
409 
410 	mz->usage_in_excess = new_usage_in_excess;
411 	if (!mz->usage_in_excess)
412 		return;
413 	while (*p) {
414 		parent = *p;
415 		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
416 					tree_node);
417 		if (mz->usage_in_excess < mz_node->usage_in_excess)
418 			p = &(*p)->rb_left;
419 		/*
420 		 * We can't avoid mem cgroups that are over their soft
421 		 * limit by the same amount
422 		 */
423 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
424 			p = &(*p)->rb_right;
425 	}
426 	rb_link_node(&mz->tree_node, parent, p);
427 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
428 	mz->on_tree = true;
429 }
430 
431 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
432 					 struct mem_cgroup_tree_per_node *mctz)
433 {
434 	if (!mz->on_tree)
435 		return;
436 	rb_erase(&mz->tree_node, &mctz->rb_root);
437 	mz->on_tree = false;
438 }
439 
440 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
441 				       struct mem_cgroup_tree_per_node *mctz)
442 {
443 	unsigned long flags;
444 
445 	spin_lock_irqsave(&mctz->lock, flags);
446 	__mem_cgroup_remove_exceeded(mz, mctz);
447 	spin_unlock_irqrestore(&mctz->lock, flags);
448 }
449 
450 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
451 {
452 	unsigned long nr_pages = page_counter_read(&memcg->memory);
453 	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
454 	unsigned long excess = 0;
455 
456 	if (nr_pages > soft_limit)
457 		excess = nr_pages - soft_limit;
458 
459 	return excess;
460 }
461 
462 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
463 {
464 	unsigned long excess;
465 	struct mem_cgroup_per_node *mz;
466 	struct mem_cgroup_tree_per_node *mctz;
467 
468 	mctz = soft_limit_tree_from_page(page);
469 	if (!mctz)
470 		return;
471 	/*
472 	 * Necessary to update all ancestors when hierarchy is used.
473 	 * because their event counter is not touched.
474 	 */
475 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
476 		mz = mem_cgroup_page_nodeinfo(memcg, page);
477 		excess = soft_limit_excess(memcg);
478 		/*
479 		 * We have to update the tree if mz is on RB-tree or
480 		 * mem is over its softlimit.
481 		 */
482 		if (excess || mz->on_tree) {
483 			unsigned long flags;
484 
485 			spin_lock_irqsave(&mctz->lock, flags);
486 			/* if on-tree, remove it */
487 			if (mz->on_tree)
488 				__mem_cgroup_remove_exceeded(mz, mctz);
489 			/*
490 			 * Insert again. mz->usage_in_excess will be updated.
491 			 * If excess is 0, no tree ops.
492 			 */
493 			__mem_cgroup_insert_exceeded(mz, mctz, excess);
494 			spin_unlock_irqrestore(&mctz->lock, flags);
495 		}
496 	}
497 }
498 
499 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
500 {
501 	struct mem_cgroup_tree_per_node *mctz;
502 	struct mem_cgroup_per_node *mz;
503 	int nid;
504 
505 	for_each_node(nid) {
506 		mz = mem_cgroup_nodeinfo(memcg, nid);
507 		mctz = soft_limit_tree_node(nid);
508 		if (mctz)
509 			mem_cgroup_remove_exceeded(mz, mctz);
510 	}
511 }
512 
513 static struct mem_cgroup_per_node *
514 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
515 {
516 	struct rb_node *rightmost = NULL;
517 	struct mem_cgroup_per_node *mz;
518 
519 retry:
520 	mz = NULL;
521 	rightmost = rb_last(&mctz->rb_root);
522 	if (!rightmost)
523 		goto done;		/* Nothing to reclaim from */
524 
525 	mz = rb_entry(rightmost, struct mem_cgroup_per_node, tree_node);
526 	/*
527 	 * Remove the node now but someone else can add it back,
528 	 * we will to add it back at the end of reclaim to its correct
529 	 * position in the tree.
530 	 */
531 	__mem_cgroup_remove_exceeded(mz, mctz);
532 	if (!soft_limit_excess(mz->memcg) ||
533 	    !css_tryget_online(&mz->memcg->css))
534 		goto retry;
535 done:
536 	return mz;
537 }
538 
539 static struct mem_cgroup_per_node *
540 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
541 {
542 	struct mem_cgroup_per_node *mz;
543 
544 	spin_lock_irq(&mctz->lock);
545 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
546 	spin_unlock_irq(&mctz->lock);
547 	return mz;
548 }
549 
550 /*
551  * Return page count for single (non recursive) @memcg.
552  *
553  * Implementation Note: reading percpu statistics for memcg.
554  *
555  * Both of vmstat[] and percpu_counter has threshold and do periodic
556  * synchronization to implement "quick" read. There are trade-off between
557  * reading cost and precision of value. Then, we may have a chance to implement
558  * a periodic synchronization of counter in memcg's counter.
559  *
560  * But this _read() function is used for user interface now. The user accounts
561  * memory usage by memory cgroup and he _always_ requires exact value because
562  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
563  * have to visit all online cpus and make sum. So, for now, unnecessary
564  * synchronization is not implemented. (just implemented for cpu hotplug)
565  *
566  * If there are kernel internal actions which can make use of some not-exact
567  * value, and reading all cpu value can be performance bottleneck in some
568  * common workload, threshold and synchronization as vmstat[] should be
569  * implemented.
570  */
571 static unsigned long
572 mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
573 {
574 	long val = 0;
575 	int cpu;
576 
577 	/* Per-cpu values can be negative, use a signed accumulator */
578 	for_each_possible_cpu(cpu)
579 		val += per_cpu(memcg->stat->count[idx], cpu);
580 	/*
581 	 * Summing races with updates, so val may be negative.  Avoid exposing
582 	 * transient negative values.
583 	 */
584 	if (val < 0)
585 		val = 0;
586 	return val;
587 }
588 
589 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
590 					    enum mem_cgroup_events_index idx)
591 {
592 	unsigned long val = 0;
593 	int cpu;
594 
595 	for_each_possible_cpu(cpu)
596 		val += per_cpu(memcg->stat->events[idx], cpu);
597 	return val;
598 }
599 
600 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
601 					 struct page *page,
602 					 bool compound, int nr_pages)
603 {
604 	/*
605 	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
606 	 * counted as CACHE even if it's on ANON LRU.
607 	 */
608 	if (PageAnon(page))
609 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
610 				nr_pages);
611 	else
612 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
613 				nr_pages);
614 
615 	if (compound) {
616 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
617 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
618 				nr_pages);
619 	}
620 
621 	/* pagein of a big page is an event. So, ignore page size */
622 	if (nr_pages > 0)
623 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
624 	else {
625 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
626 		nr_pages = -nr_pages; /* for event */
627 	}
628 
629 	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
630 }
631 
632 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
633 					   int nid, unsigned int lru_mask)
634 {
635 	struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
636 	unsigned long nr = 0;
637 	enum lru_list lru;
638 
639 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
640 
641 	for_each_lru(lru) {
642 		if (!(BIT(lru) & lru_mask))
643 			continue;
644 		nr += mem_cgroup_get_lru_size(lruvec, lru);
645 	}
646 	return nr;
647 }
648 
649 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
650 			unsigned int lru_mask)
651 {
652 	unsigned long nr = 0;
653 	int nid;
654 
655 	for_each_node_state(nid, N_MEMORY)
656 		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
657 	return nr;
658 }
659 
660 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
661 				       enum mem_cgroup_events_target target)
662 {
663 	unsigned long val, next;
664 
665 	val = __this_cpu_read(memcg->stat->nr_page_events);
666 	next = __this_cpu_read(memcg->stat->targets[target]);
667 	/* from time_after() in jiffies.h */
668 	if ((long)next - (long)val < 0) {
669 		switch (target) {
670 		case MEM_CGROUP_TARGET_THRESH:
671 			next = val + THRESHOLDS_EVENTS_TARGET;
672 			break;
673 		case MEM_CGROUP_TARGET_SOFTLIMIT:
674 			next = val + SOFTLIMIT_EVENTS_TARGET;
675 			break;
676 		case MEM_CGROUP_TARGET_NUMAINFO:
677 			next = val + NUMAINFO_EVENTS_TARGET;
678 			break;
679 		default:
680 			break;
681 		}
682 		__this_cpu_write(memcg->stat->targets[target], next);
683 		return true;
684 	}
685 	return false;
686 }
687 
688 /*
689  * Check events in order.
690  *
691  */
692 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
693 {
694 	/* threshold event is triggered in finer grain than soft limit */
695 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
696 						MEM_CGROUP_TARGET_THRESH))) {
697 		bool do_softlimit;
698 		bool do_numainfo __maybe_unused;
699 
700 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
701 						MEM_CGROUP_TARGET_SOFTLIMIT);
702 #if MAX_NUMNODES > 1
703 		do_numainfo = mem_cgroup_event_ratelimit(memcg,
704 						MEM_CGROUP_TARGET_NUMAINFO);
705 #endif
706 		mem_cgroup_threshold(memcg);
707 		if (unlikely(do_softlimit))
708 			mem_cgroup_update_tree(memcg, page);
709 #if MAX_NUMNODES > 1
710 		if (unlikely(do_numainfo))
711 			atomic_inc(&memcg->numainfo_events);
712 #endif
713 	}
714 }
715 
716 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
717 {
718 	/*
719 	 * mm_update_next_owner() may clear mm->owner to NULL
720 	 * if it races with swapoff, page migration, etc.
721 	 * So this can be called with p == NULL.
722 	 */
723 	if (unlikely(!p))
724 		return NULL;
725 
726 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
727 }
728 EXPORT_SYMBOL(mem_cgroup_from_task);
729 
730 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
731 {
732 	struct mem_cgroup *memcg = NULL;
733 
734 	rcu_read_lock();
735 	do {
736 		/*
737 		 * Page cache insertions can happen withou an
738 		 * actual mm context, e.g. during disk probing
739 		 * on boot, loopback IO, acct() writes etc.
740 		 */
741 		if (unlikely(!mm))
742 			memcg = root_mem_cgroup;
743 		else {
744 			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
745 			if (unlikely(!memcg))
746 				memcg = root_mem_cgroup;
747 		}
748 	} while (!css_tryget_online(&memcg->css));
749 	rcu_read_unlock();
750 	return memcg;
751 }
752 
753 /**
754  * mem_cgroup_iter - iterate over memory cgroup hierarchy
755  * @root: hierarchy root
756  * @prev: previously returned memcg, NULL on first invocation
757  * @reclaim: cookie for shared reclaim walks, NULL for full walks
758  *
759  * Returns references to children of the hierarchy below @root, or
760  * @root itself, or %NULL after a full round-trip.
761  *
762  * Caller must pass the return value in @prev on subsequent
763  * invocations for reference counting, or use mem_cgroup_iter_break()
764  * to cancel a hierarchy walk before the round-trip is complete.
765  *
766  * Reclaimers can specify a zone and a priority level in @reclaim to
767  * divide up the memcgs in the hierarchy among all concurrent
768  * reclaimers operating on the same zone and priority.
769  */
770 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
771 				   struct mem_cgroup *prev,
772 				   struct mem_cgroup_reclaim_cookie *reclaim)
773 {
774 	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
775 	struct cgroup_subsys_state *css = NULL;
776 	struct mem_cgroup *memcg = NULL;
777 	struct mem_cgroup *pos = NULL;
778 
779 	if (mem_cgroup_disabled())
780 		return NULL;
781 
782 	if (!root)
783 		root = root_mem_cgroup;
784 
785 	if (prev && !reclaim)
786 		pos = prev;
787 
788 	if (!root->use_hierarchy && root != root_mem_cgroup) {
789 		if (prev)
790 			goto out;
791 		return root;
792 	}
793 
794 	rcu_read_lock();
795 
796 	if (reclaim) {
797 		struct mem_cgroup_per_node *mz;
798 
799 		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
800 		iter = &mz->iter[reclaim->priority];
801 
802 		if (prev && reclaim->generation != iter->generation)
803 			goto out_unlock;
804 
805 		while (1) {
806 			pos = READ_ONCE(iter->position);
807 			if (!pos || css_tryget(&pos->css))
808 				break;
809 			/*
810 			 * css reference reached zero, so iter->position will
811 			 * be cleared by ->css_released. However, we should not
812 			 * rely on this happening soon, because ->css_released
813 			 * is called from a work queue, and by busy-waiting we
814 			 * might block it. So we clear iter->position right
815 			 * away.
816 			 */
817 			(void)cmpxchg(&iter->position, pos, NULL);
818 		}
819 	}
820 
821 	if (pos)
822 		css = &pos->css;
823 
824 	for (;;) {
825 		css = css_next_descendant_pre(css, &root->css);
826 		if (!css) {
827 			/*
828 			 * Reclaimers share the hierarchy walk, and a
829 			 * new one might jump in right at the end of
830 			 * the hierarchy - make sure they see at least
831 			 * one group and restart from the beginning.
832 			 */
833 			if (!prev)
834 				continue;
835 			break;
836 		}
837 
838 		/*
839 		 * Verify the css and acquire a reference.  The root
840 		 * is provided by the caller, so we know it's alive
841 		 * and kicking, and don't take an extra reference.
842 		 */
843 		memcg = mem_cgroup_from_css(css);
844 
845 		if (css == &root->css)
846 			break;
847 
848 		if (css_tryget(css))
849 			break;
850 
851 		memcg = NULL;
852 	}
853 
854 	if (reclaim) {
855 		/*
856 		 * The position could have already been updated by a competing
857 		 * thread, so check that the value hasn't changed since we read
858 		 * it to avoid reclaiming from the same cgroup twice.
859 		 */
860 		(void)cmpxchg(&iter->position, pos, memcg);
861 
862 		if (pos)
863 			css_put(&pos->css);
864 
865 		if (!memcg)
866 			iter->generation++;
867 		else if (!prev)
868 			reclaim->generation = iter->generation;
869 	}
870 
871 out_unlock:
872 	rcu_read_unlock();
873 out:
874 	if (prev && prev != root)
875 		css_put(&prev->css);
876 
877 	return memcg;
878 }
879 
880 /**
881  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
882  * @root: hierarchy root
883  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
884  */
885 void mem_cgroup_iter_break(struct mem_cgroup *root,
886 			   struct mem_cgroup *prev)
887 {
888 	if (!root)
889 		root = root_mem_cgroup;
890 	if (prev && prev != root)
891 		css_put(&prev->css);
892 }
893 
894 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
895 {
896 	struct mem_cgroup *memcg = dead_memcg;
897 	struct mem_cgroup_reclaim_iter *iter;
898 	struct mem_cgroup_per_node *mz;
899 	int nid;
900 	int i;
901 
902 	while ((memcg = parent_mem_cgroup(memcg))) {
903 		for_each_node(nid) {
904 			mz = mem_cgroup_nodeinfo(memcg, nid);
905 			for (i = 0; i <= DEF_PRIORITY; i++) {
906 				iter = &mz->iter[i];
907 				cmpxchg(&iter->position,
908 					dead_memcg, NULL);
909 			}
910 		}
911 	}
912 }
913 
914 /*
915  * Iteration constructs for visiting all cgroups (under a tree).  If
916  * loops are exited prematurely (break), mem_cgroup_iter_break() must
917  * be used for reference counting.
918  */
919 #define for_each_mem_cgroup_tree(iter, root)		\
920 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
921 	     iter != NULL;				\
922 	     iter = mem_cgroup_iter(root, iter, NULL))
923 
924 #define for_each_mem_cgroup(iter)			\
925 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
926 	     iter != NULL;				\
927 	     iter = mem_cgroup_iter(NULL, iter, NULL))
928 
929 /**
930  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
931  * @memcg: hierarchy root
932  * @fn: function to call for each task
933  * @arg: argument passed to @fn
934  *
935  * This function iterates over tasks attached to @memcg or to any of its
936  * descendants and calls @fn for each task. If @fn returns a non-zero
937  * value, the function breaks the iteration loop and returns the value.
938  * Otherwise, it will iterate over all tasks and return 0.
939  *
940  * This function must not be called for the root memory cgroup.
941  */
942 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
943 			  int (*fn)(struct task_struct *, void *), void *arg)
944 {
945 	struct mem_cgroup *iter;
946 	int ret = 0;
947 
948 	BUG_ON(memcg == root_mem_cgroup);
949 
950 	for_each_mem_cgroup_tree(iter, memcg) {
951 		struct css_task_iter it;
952 		struct task_struct *task;
953 
954 		css_task_iter_start(&iter->css, &it);
955 		while (!ret && (task = css_task_iter_next(&it)))
956 			ret = fn(task, arg);
957 		css_task_iter_end(&it);
958 		if (ret) {
959 			mem_cgroup_iter_break(memcg, iter);
960 			break;
961 		}
962 	}
963 	return ret;
964 }
965 
966 /**
967  * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
968  * @page: the page
969  * @zone: zone of the page
970  *
971  * This function is only safe when following the LRU page isolation
972  * and putback protocol: the LRU lock must be held, and the page must
973  * either be PageLRU() or the caller must have isolated/allocated it.
974  */
975 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
976 {
977 	struct mem_cgroup_per_node *mz;
978 	struct mem_cgroup *memcg;
979 	struct lruvec *lruvec;
980 
981 	if (mem_cgroup_disabled()) {
982 		lruvec = &pgdat->lruvec;
983 		goto out;
984 	}
985 
986 	memcg = page->mem_cgroup;
987 	/*
988 	 * Swapcache readahead pages are added to the LRU - and
989 	 * possibly migrated - before they are charged.
990 	 */
991 	if (!memcg)
992 		memcg = root_mem_cgroup;
993 
994 	mz = mem_cgroup_page_nodeinfo(memcg, page);
995 	lruvec = &mz->lruvec;
996 out:
997 	/*
998 	 * Since a node can be onlined after the mem_cgroup was created,
999 	 * we have to be prepared to initialize lruvec->zone here;
1000 	 * and if offlined then reonlined, we need to reinitialize it.
1001 	 */
1002 	if (unlikely(lruvec->pgdat != pgdat))
1003 		lruvec->pgdat = pgdat;
1004 	return lruvec;
1005 }
1006 
1007 /**
1008  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1009  * @lruvec: mem_cgroup per zone lru vector
1010  * @lru: index of lru list the page is sitting on
1011  * @zid: zone id of the accounted pages
1012  * @nr_pages: positive when adding or negative when removing
1013  *
1014  * This function must be called under lru_lock, just before a page is added
1015  * to or just after a page is removed from an lru list (that ordering being
1016  * so as to allow it to check that lru_size 0 is consistent with list_empty).
1017  */
1018 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1019 				int zid, int nr_pages)
1020 {
1021 	struct mem_cgroup_per_node *mz;
1022 	unsigned long *lru_size;
1023 	long size;
1024 
1025 	if (mem_cgroup_disabled())
1026 		return;
1027 
1028 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1029 	lru_size = &mz->lru_zone_size[zid][lru];
1030 
1031 	if (nr_pages < 0)
1032 		*lru_size += nr_pages;
1033 
1034 	size = *lru_size;
1035 	if (WARN_ONCE(size < 0,
1036 		"%s(%p, %d, %d): lru_size %ld\n",
1037 		__func__, lruvec, lru, nr_pages, size)) {
1038 		VM_BUG_ON(1);
1039 		*lru_size = 0;
1040 	}
1041 
1042 	if (nr_pages > 0)
1043 		*lru_size += nr_pages;
1044 }
1045 
1046 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1047 {
1048 	struct mem_cgroup *task_memcg;
1049 	struct task_struct *p;
1050 	bool ret;
1051 
1052 	p = find_lock_task_mm(task);
1053 	if (p) {
1054 		task_memcg = get_mem_cgroup_from_mm(p->mm);
1055 		task_unlock(p);
1056 	} else {
1057 		/*
1058 		 * All threads may have already detached their mm's, but the oom
1059 		 * killer still needs to detect if they have already been oom
1060 		 * killed to prevent needlessly killing additional tasks.
1061 		 */
1062 		rcu_read_lock();
1063 		task_memcg = mem_cgroup_from_task(task);
1064 		css_get(&task_memcg->css);
1065 		rcu_read_unlock();
1066 	}
1067 	ret = mem_cgroup_is_descendant(task_memcg, memcg);
1068 	css_put(&task_memcg->css);
1069 	return ret;
1070 }
1071 
1072 /**
1073  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1074  * @memcg: the memory cgroup
1075  *
1076  * Returns the maximum amount of memory @mem can be charged with, in
1077  * pages.
1078  */
1079 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1080 {
1081 	unsigned long margin = 0;
1082 	unsigned long count;
1083 	unsigned long limit;
1084 
1085 	count = page_counter_read(&memcg->memory);
1086 	limit = READ_ONCE(memcg->memory.limit);
1087 	if (count < limit)
1088 		margin = limit - count;
1089 
1090 	if (do_memsw_account()) {
1091 		count = page_counter_read(&memcg->memsw);
1092 		limit = READ_ONCE(memcg->memsw.limit);
1093 		if (count <= limit)
1094 			margin = min(margin, limit - count);
1095 		else
1096 			margin = 0;
1097 	}
1098 
1099 	return margin;
1100 }
1101 
1102 /*
1103  * A routine for checking "mem" is under move_account() or not.
1104  *
1105  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1106  * moving cgroups. This is for waiting at high-memory pressure
1107  * caused by "move".
1108  */
1109 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1110 {
1111 	struct mem_cgroup *from;
1112 	struct mem_cgroup *to;
1113 	bool ret = false;
1114 	/*
1115 	 * Unlike task_move routines, we access mc.to, mc.from not under
1116 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1117 	 */
1118 	spin_lock(&mc.lock);
1119 	from = mc.from;
1120 	to = mc.to;
1121 	if (!from)
1122 		goto unlock;
1123 
1124 	ret = mem_cgroup_is_descendant(from, memcg) ||
1125 		mem_cgroup_is_descendant(to, memcg);
1126 unlock:
1127 	spin_unlock(&mc.lock);
1128 	return ret;
1129 }
1130 
1131 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1132 {
1133 	if (mc.moving_task && current != mc.moving_task) {
1134 		if (mem_cgroup_under_move(memcg)) {
1135 			DEFINE_WAIT(wait);
1136 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1137 			/* moving charge context might have finished. */
1138 			if (mc.moving_task)
1139 				schedule();
1140 			finish_wait(&mc.waitq, &wait);
1141 			return true;
1142 		}
1143 	}
1144 	return false;
1145 }
1146 
1147 #define K(x) ((x) << (PAGE_SHIFT-10))
1148 /**
1149  * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1150  * @memcg: The memory cgroup that went over limit
1151  * @p: Task that is going to be killed
1152  *
1153  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1154  * enabled
1155  */
1156 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1157 {
1158 	struct mem_cgroup *iter;
1159 	unsigned int i;
1160 
1161 	rcu_read_lock();
1162 
1163 	if (p) {
1164 		pr_info("Task in ");
1165 		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1166 		pr_cont(" killed as a result of limit of ");
1167 	} else {
1168 		pr_info("Memory limit reached of cgroup ");
1169 	}
1170 
1171 	pr_cont_cgroup_path(memcg->css.cgroup);
1172 	pr_cont("\n");
1173 
1174 	rcu_read_unlock();
1175 
1176 	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1177 		K((u64)page_counter_read(&memcg->memory)),
1178 		K((u64)memcg->memory.limit), memcg->memory.failcnt);
1179 	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1180 		K((u64)page_counter_read(&memcg->memsw)),
1181 		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1182 	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1183 		K((u64)page_counter_read(&memcg->kmem)),
1184 		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1185 
1186 	for_each_mem_cgroup_tree(iter, memcg) {
1187 		pr_info("Memory cgroup stats for ");
1188 		pr_cont_cgroup_path(iter->css.cgroup);
1189 		pr_cont(":");
1190 
1191 		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1192 			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1193 				continue;
1194 			pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1195 				K(mem_cgroup_read_stat(iter, i)));
1196 		}
1197 
1198 		for (i = 0; i < NR_LRU_LISTS; i++)
1199 			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1200 				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1201 
1202 		pr_cont("\n");
1203 	}
1204 }
1205 
1206 /*
1207  * This function returns the number of memcg under hierarchy tree. Returns
1208  * 1(self count) if no children.
1209  */
1210 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1211 {
1212 	int num = 0;
1213 	struct mem_cgroup *iter;
1214 
1215 	for_each_mem_cgroup_tree(iter, memcg)
1216 		num++;
1217 	return num;
1218 }
1219 
1220 /*
1221  * Return the memory (and swap, if configured) limit for a memcg.
1222  */
1223 unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1224 {
1225 	unsigned long limit;
1226 
1227 	limit = memcg->memory.limit;
1228 	if (mem_cgroup_swappiness(memcg)) {
1229 		unsigned long memsw_limit;
1230 		unsigned long swap_limit;
1231 
1232 		memsw_limit = memcg->memsw.limit;
1233 		swap_limit = memcg->swap.limit;
1234 		swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1235 		limit = min(limit + swap_limit, memsw_limit);
1236 	}
1237 	return limit;
1238 }
1239 
1240 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1241 				     int order)
1242 {
1243 	struct oom_control oc = {
1244 		.zonelist = NULL,
1245 		.nodemask = NULL,
1246 		.memcg = memcg,
1247 		.gfp_mask = gfp_mask,
1248 		.order = order,
1249 	};
1250 	bool ret;
1251 
1252 	mutex_lock(&oom_lock);
1253 	ret = out_of_memory(&oc);
1254 	mutex_unlock(&oom_lock);
1255 	return ret;
1256 }
1257 
1258 #if MAX_NUMNODES > 1
1259 
1260 /**
1261  * test_mem_cgroup_node_reclaimable
1262  * @memcg: the target memcg
1263  * @nid: the node ID to be checked.
1264  * @noswap : specify true here if the user wants flle only information.
1265  *
1266  * This function returns whether the specified memcg contains any
1267  * reclaimable pages on a node. Returns true if there are any reclaimable
1268  * pages in the node.
1269  */
1270 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1271 		int nid, bool noswap)
1272 {
1273 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1274 		return true;
1275 	if (noswap || !total_swap_pages)
1276 		return false;
1277 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1278 		return true;
1279 	return false;
1280 
1281 }
1282 
1283 /*
1284  * Always updating the nodemask is not very good - even if we have an empty
1285  * list or the wrong list here, we can start from some node and traverse all
1286  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1287  *
1288  */
1289 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1290 {
1291 	int nid;
1292 	/*
1293 	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1294 	 * pagein/pageout changes since the last update.
1295 	 */
1296 	if (!atomic_read(&memcg->numainfo_events))
1297 		return;
1298 	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1299 		return;
1300 
1301 	/* make a nodemask where this memcg uses memory from */
1302 	memcg->scan_nodes = node_states[N_MEMORY];
1303 
1304 	for_each_node_mask(nid, node_states[N_MEMORY]) {
1305 
1306 		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1307 			node_clear(nid, memcg->scan_nodes);
1308 	}
1309 
1310 	atomic_set(&memcg->numainfo_events, 0);
1311 	atomic_set(&memcg->numainfo_updating, 0);
1312 }
1313 
1314 /*
1315  * Selecting a node where we start reclaim from. Because what we need is just
1316  * reducing usage counter, start from anywhere is O,K. Considering
1317  * memory reclaim from current node, there are pros. and cons.
1318  *
1319  * Freeing memory from current node means freeing memory from a node which
1320  * we'll use or we've used. So, it may make LRU bad. And if several threads
1321  * hit limits, it will see a contention on a node. But freeing from remote
1322  * node means more costs for memory reclaim because of memory latency.
1323  *
1324  * Now, we use round-robin. Better algorithm is welcomed.
1325  */
1326 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1327 {
1328 	int node;
1329 
1330 	mem_cgroup_may_update_nodemask(memcg);
1331 	node = memcg->last_scanned_node;
1332 
1333 	node = next_node_in(node, memcg->scan_nodes);
1334 	/*
1335 	 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1336 	 * last time it really checked all the LRUs due to rate limiting.
1337 	 * Fallback to the current node in that case for simplicity.
1338 	 */
1339 	if (unlikely(node == MAX_NUMNODES))
1340 		node = numa_node_id();
1341 
1342 	memcg->last_scanned_node = node;
1343 	return node;
1344 }
1345 #else
1346 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1347 {
1348 	return 0;
1349 }
1350 #endif
1351 
1352 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1353 				   pg_data_t *pgdat,
1354 				   gfp_t gfp_mask,
1355 				   unsigned long *total_scanned)
1356 {
1357 	struct mem_cgroup *victim = NULL;
1358 	int total = 0;
1359 	int loop = 0;
1360 	unsigned long excess;
1361 	unsigned long nr_scanned;
1362 	struct mem_cgroup_reclaim_cookie reclaim = {
1363 		.pgdat = pgdat,
1364 		.priority = 0,
1365 	};
1366 
1367 	excess = soft_limit_excess(root_memcg);
1368 
1369 	while (1) {
1370 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1371 		if (!victim) {
1372 			loop++;
1373 			if (loop >= 2) {
1374 				/*
1375 				 * If we have not been able to reclaim
1376 				 * anything, it might because there are
1377 				 * no reclaimable pages under this hierarchy
1378 				 */
1379 				if (!total)
1380 					break;
1381 				/*
1382 				 * We want to do more targeted reclaim.
1383 				 * excess >> 2 is not to excessive so as to
1384 				 * reclaim too much, nor too less that we keep
1385 				 * coming back to reclaim from this cgroup
1386 				 */
1387 				if (total >= (excess >> 2) ||
1388 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1389 					break;
1390 			}
1391 			continue;
1392 		}
1393 		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1394 					pgdat, &nr_scanned);
1395 		*total_scanned += nr_scanned;
1396 		if (!soft_limit_excess(root_memcg))
1397 			break;
1398 	}
1399 	mem_cgroup_iter_break(root_memcg, victim);
1400 	return total;
1401 }
1402 
1403 #ifdef CONFIG_LOCKDEP
1404 static struct lockdep_map memcg_oom_lock_dep_map = {
1405 	.name = "memcg_oom_lock",
1406 };
1407 #endif
1408 
1409 static DEFINE_SPINLOCK(memcg_oom_lock);
1410 
1411 /*
1412  * Check OOM-Killer is already running under our hierarchy.
1413  * If someone is running, return false.
1414  */
1415 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1416 {
1417 	struct mem_cgroup *iter, *failed = NULL;
1418 
1419 	spin_lock(&memcg_oom_lock);
1420 
1421 	for_each_mem_cgroup_tree(iter, memcg) {
1422 		if (iter->oom_lock) {
1423 			/*
1424 			 * this subtree of our hierarchy is already locked
1425 			 * so we cannot give a lock.
1426 			 */
1427 			failed = iter;
1428 			mem_cgroup_iter_break(memcg, iter);
1429 			break;
1430 		} else
1431 			iter->oom_lock = true;
1432 	}
1433 
1434 	if (failed) {
1435 		/*
1436 		 * OK, we failed to lock the whole subtree so we have
1437 		 * to clean up what we set up to the failing subtree
1438 		 */
1439 		for_each_mem_cgroup_tree(iter, memcg) {
1440 			if (iter == failed) {
1441 				mem_cgroup_iter_break(memcg, iter);
1442 				break;
1443 			}
1444 			iter->oom_lock = false;
1445 		}
1446 	} else
1447 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1448 
1449 	spin_unlock(&memcg_oom_lock);
1450 
1451 	return !failed;
1452 }
1453 
1454 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1455 {
1456 	struct mem_cgroup *iter;
1457 
1458 	spin_lock(&memcg_oom_lock);
1459 	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1460 	for_each_mem_cgroup_tree(iter, memcg)
1461 		iter->oom_lock = false;
1462 	spin_unlock(&memcg_oom_lock);
1463 }
1464 
1465 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1466 {
1467 	struct mem_cgroup *iter;
1468 
1469 	spin_lock(&memcg_oom_lock);
1470 	for_each_mem_cgroup_tree(iter, memcg)
1471 		iter->under_oom++;
1472 	spin_unlock(&memcg_oom_lock);
1473 }
1474 
1475 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1476 {
1477 	struct mem_cgroup *iter;
1478 
1479 	/*
1480 	 * When a new child is created while the hierarchy is under oom,
1481 	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1482 	 */
1483 	spin_lock(&memcg_oom_lock);
1484 	for_each_mem_cgroup_tree(iter, memcg)
1485 		if (iter->under_oom > 0)
1486 			iter->under_oom--;
1487 	spin_unlock(&memcg_oom_lock);
1488 }
1489 
1490 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1491 
1492 struct oom_wait_info {
1493 	struct mem_cgroup *memcg;
1494 	wait_queue_t	wait;
1495 };
1496 
1497 static int memcg_oom_wake_function(wait_queue_t *wait,
1498 	unsigned mode, int sync, void *arg)
1499 {
1500 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1501 	struct mem_cgroup *oom_wait_memcg;
1502 	struct oom_wait_info *oom_wait_info;
1503 
1504 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1505 	oom_wait_memcg = oom_wait_info->memcg;
1506 
1507 	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1508 	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1509 		return 0;
1510 	return autoremove_wake_function(wait, mode, sync, arg);
1511 }
1512 
1513 static void memcg_oom_recover(struct mem_cgroup *memcg)
1514 {
1515 	/*
1516 	 * For the following lockless ->under_oom test, the only required
1517 	 * guarantee is that it must see the state asserted by an OOM when
1518 	 * this function is called as a result of userland actions
1519 	 * triggered by the notification of the OOM.  This is trivially
1520 	 * achieved by invoking mem_cgroup_mark_under_oom() before
1521 	 * triggering notification.
1522 	 */
1523 	if (memcg && memcg->under_oom)
1524 		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1525 }
1526 
1527 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1528 {
1529 	if (!current->memcg_may_oom)
1530 		return;
1531 	/*
1532 	 * We are in the middle of the charge context here, so we
1533 	 * don't want to block when potentially sitting on a callstack
1534 	 * that holds all kinds of filesystem and mm locks.
1535 	 *
1536 	 * Also, the caller may handle a failed allocation gracefully
1537 	 * (like optional page cache readahead) and so an OOM killer
1538 	 * invocation might not even be necessary.
1539 	 *
1540 	 * That's why we don't do anything here except remember the
1541 	 * OOM context and then deal with it at the end of the page
1542 	 * fault when the stack is unwound, the locks are released,
1543 	 * and when we know whether the fault was overall successful.
1544 	 */
1545 	css_get(&memcg->css);
1546 	current->memcg_in_oom = memcg;
1547 	current->memcg_oom_gfp_mask = mask;
1548 	current->memcg_oom_order = order;
1549 }
1550 
1551 /**
1552  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1553  * @handle: actually kill/wait or just clean up the OOM state
1554  *
1555  * This has to be called at the end of a page fault if the memcg OOM
1556  * handler was enabled.
1557  *
1558  * Memcg supports userspace OOM handling where failed allocations must
1559  * sleep on a waitqueue until the userspace task resolves the
1560  * situation.  Sleeping directly in the charge context with all kinds
1561  * of locks held is not a good idea, instead we remember an OOM state
1562  * in the task and mem_cgroup_oom_synchronize() has to be called at
1563  * the end of the page fault to complete the OOM handling.
1564  *
1565  * Returns %true if an ongoing memcg OOM situation was detected and
1566  * completed, %false otherwise.
1567  */
1568 bool mem_cgroup_oom_synchronize(bool handle)
1569 {
1570 	struct mem_cgroup *memcg = current->memcg_in_oom;
1571 	struct oom_wait_info owait;
1572 	bool locked;
1573 
1574 	/* OOM is global, do not handle */
1575 	if (!memcg)
1576 		return false;
1577 
1578 	if (!handle)
1579 		goto cleanup;
1580 
1581 	owait.memcg = memcg;
1582 	owait.wait.flags = 0;
1583 	owait.wait.func = memcg_oom_wake_function;
1584 	owait.wait.private = current;
1585 	INIT_LIST_HEAD(&owait.wait.task_list);
1586 
1587 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1588 	mem_cgroup_mark_under_oom(memcg);
1589 
1590 	locked = mem_cgroup_oom_trylock(memcg);
1591 
1592 	if (locked)
1593 		mem_cgroup_oom_notify(memcg);
1594 
1595 	if (locked && !memcg->oom_kill_disable) {
1596 		mem_cgroup_unmark_under_oom(memcg);
1597 		finish_wait(&memcg_oom_waitq, &owait.wait);
1598 		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1599 					 current->memcg_oom_order);
1600 	} else {
1601 		schedule();
1602 		mem_cgroup_unmark_under_oom(memcg);
1603 		finish_wait(&memcg_oom_waitq, &owait.wait);
1604 	}
1605 
1606 	if (locked) {
1607 		mem_cgroup_oom_unlock(memcg);
1608 		/*
1609 		 * There is no guarantee that an OOM-lock contender
1610 		 * sees the wakeups triggered by the OOM kill
1611 		 * uncharges.  Wake any sleepers explicitely.
1612 		 */
1613 		memcg_oom_recover(memcg);
1614 	}
1615 cleanup:
1616 	current->memcg_in_oom = NULL;
1617 	css_put(&memcg->css);
1618 	return true;
1619 }
1620 
1621 /**
1622  * lock_page_memcg - lock a page->mem_cgroup binding
1623  * @page: the page
1624  *
1625  * This function protects unlocked LRU pages from being moved to
1626  * another cgroup and stabilizes their page->mem_cgroup binding.
1627  */
1628 void lock_page_memcg(struct page *page)
1629 {
1630 	struct mem_cgroup *memcg;
1631 	unsigned long flags;
1632 
1633 	/*
1634 	 * The RCU lock is held throughout the transaction.  The fast
1635 	 * path can get away without acquiring the memcg->move_lock
1636 	 * because page moving starts with an RCU grace period.
1637 	 */
1638 	rcu_read_lock();
1639 
1640 	if (mem_cgroup_disabled())
1641 		return;
1642 again:
1643 	memcg = page->mem_cgroup;
1644 	if (unlikely(!memcg))
1645 		return;
1646 
1647 	if (atomic_read(&memcg->moving_account) <= 0)
1648 		return;
1649 
1650 	spin_lock_irqsave(&memcg->move_lock, flags);
1651 	if (memcg != page->mem_cgroup) {
1652 		spin_unlock_irqrestore(&memcg->move_lock, flags);
1653 		goto again;
1654 	}
1655 
1656 	/*
1657 	 * When charge migration first begins, we can have locked and
1658 	 * unlocked page stat updates happening concurrently.  Track
1659 	 * the task who has the lock for unlock_page_memcg().
1660 	 */
1661 	memcg->move_lock_task = current;
1662 	memcg->move_lock_flags = flags;
1663 
1664 	return;
1665 }
1666 EXPORT_SYMBOL(lock_page_memcg);
1667 
1668 /**
1669  * unlock_page_memcg - unlock a page->mem_cgroup binding
1670  * @page: the page
1671  */
1672 void unlock_page_memcg(struct page *page)
1673 {
1674 	struct mem_cgroup *memcg = page->mem_cgroup;
1675 
1676 	if (memcg && memcg->move_lock_task == current) {
1677 		unsigned long flags = memcg->move_lock_flags;
1678 
1679 		memcg->move_lock_task = NULL;
1680 		memcg->move_lock_flags = 0;
1681 
1682 		spin_unlock_irqrestore(&memcg->move_lock, flags);
1683 	}
1684 
1685 	rcu_read_unlock();
1686 }
1687 EXPORT_SYMBOL(unlock_page_memcg);
1688 
1689 /*
1690  * size of first charge trial. "32" comes from vmscan.c's magic value.
1691  * TODO: maybe necessary to use big numbers in big irons.
1692  */
1693 #define CHARGE_BATCH	32U
1694 struct memcg_stock_pcp {
1695 	struct mem_cgroup *cached; /* this never be root cgroup */
1696 	unsigned int nr_pages;
1697 	struct work_struct work;
1698 	unsigned long flags;
1699 #define FLUSHING_CACHED_CHARGE	0
1700 };
1701 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1702 static DEFINE_MUTEX(percpu_charge_mutex);
1703 
1704 /**
1705  * consume_stock: Try to consume stocked charge on this cpu.
1706  * @memcg: memcg to consume from.
1707  * @nr_pages: how many pages to charge.
1708  *
1709  * The charges will only happen if @memcg matches the current cpu's memcg
1710  * stock, and at least @nr_pages are available in that stock.  Failure to
1711  * service an allocation will refill the stock.
1712  *
1713  * returns true if successful, false otherwise.
1714  */
1715 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1716 {
1717 	struct memcg_stock_pcp *stock;
1718 	unsigned long flags;
1719 	bool ret = false;
1720 
1721 	if (nr_pages > CHARGE_BATCH)
1722 		return ret;
1723 
1724 	local_irq_save(flags);
1725 
1726 	stock = this_cpu_ptr(&memcg_stock);
1727 	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1728 		stock->nr_pages -= nr_pages;
1729 		ret = true;
1730 	}
1731 
1732 	local_irq_restore(flags);
1733 
1734 	return ret;
1735 }
1736 
1737 /*
1738  * Returns stocks cached in percpu and reset cached information.
1739  */
1740 static void drain_stock(struct memcg_stock_pcp *stock)
1741 {
1742 	struct mem_cgroup *old = stock->cached;
1743 
1744 	if (stock->nr_pages) {
1745 		page_counter_uncharge(&old->memory, stock->nr_pages);
1746 		if (do_memsw_account())
1747 			page_counter_uncharge(&old->memsw, stock->nr_pages);
1748 		css_put_many(&old->css, stock->nr_pages);
1749 		stock->nr_pages = 0;
1750 	}
1751 	stock->cached = NULL;
1752 }
1753 
1754 static void drain_local_stock(struct work_struct *dummy)
1755 {
1756 	struct memcg_stock_pcp *stock;
1757 	unsigned long flags;
1758 
1759 	local_irq_save(flags);
1760 
1761 	stock = this_cpu_ptr(&memcg_stock);
1762 	drain_stock(stock);
1763 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1764 
1765 	local_irq_restore(flags);
1766 }
1767 
1768 /*
1769  * Cache charges(val) to local per_cpu area.
1770  * This will be consumed by consume_stock() function, later.
1771  */
1772 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1773 {
1774 	struct memcg_stock_pcp *stock;
1775 	unsigned long flags;
1776 
1777 	local_irq_save(flags);
1778 
1779 	stock = this_cpu_ptr(&memcg_stock);
1780 	if (stock->cached != memcg) { /* reset if necessary */
1781 		drain_stock(stock);
1782 		stock->cached = memcg;
1783 	}
1784 	stock->nr_pages += nr_pages;
1785 
1786 	local_irq_restore(flags);
1787 }
1788 
1789 /*
1790  * Drains all per-CPU charge caches for given root_memcg resp. subtree
1791  * of the hierarchy under it.
1792  */
1793 static void drain_all_stock(struct mem_cgroup *root_memcg)
1794 {
1795 	int cpu, curcpu;
1796 
1797 	/* If someone's already draining, avoid adding running more workers. */
1798 	if (!mutex_trylock(&percpu_charge_mutex))
1799 		return;
1800 	/* Notify other cpus that system-wide "drain" is running */
1801 	get_online_cpus();
1802 	curcpu = get_cpu();
1803 	for_each_online_cpu(cpu) {
1804 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1805 		struct mem_cgroup *memcg;
1806 
1807 		memcg = stock->cached;
1808 		if (!memcg || !stock->nr_pages)
1809 			continue;
1810 		if (!mem_cgroup_is_descendant(memcg, root_memcg))
1811 			continue;
1812 		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1813 			if (cpu == curcpu)
1814 				drain_local_stock(&stock->work);
1815 			else
1816 				schedule_work_on(cpu, &stock->work);
1817 		}
1818 	}
1819 	put_cpu();
1820 	put_online_cpus();
1821 	mutex_unlock(&percpu_charge_mutex);
1822 }
1823 
1824 static int memcg_hotplug_cpu_dead(unsigned int cpu)
1825 {
1826 	struct memcg_stock_pcp *stock;
1827 
1828 	stock = &per_cpu(memcg_stock, cpu);
1829 	drain_stock(stock);
1830 	return 0;
1831 }
1832 
1833 static void reclaim_high(struct mem_cgroup *memcg,
1834 			 unsigned int nr_pages,
1835 			 gfp_t gfp_mask)
1836 {
1837 	do {
1838 		if (page_counter_read(&memcg->memory) <= memcg->high)
1839 			continue;
1840 		mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1841 		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1842 	} while ((memcg = parent_mem_cgroup(memcg)));
1843 }
1844 
1845 static void high_work_func(struct work_struct *work)
1846 {
1847 	struct mem_cgroup *memcg;
1848 
1849 	memcg = container_of(work, struct mem_cgroup, high_work);
1850 	reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1851 }
1852 
1853 /*
1854  * Scheduled by try_charge() to be executed from the userland return path
1855  * and reclaims memory over the high limit.
1856  */
1857 void mem_cgroup_handle_over_high(void)
1858 {
1859 	unsigned int nr_pages = current->memcg_nr_pages_over_high;
1860 	struct mem_cgroup *memcg;
1861 
1862 	if (likely(!nr_pages))
1863 		return;
1864 
1865 	memcg = get_mem_cgroup_from_mm(current->mm);
1866 	reclaim_high(memcg, nr_pages, GFP_KERNEL);
1867 	css_put(&memcg->css);
1868 	current->memcg_nr_pages_over_high = 0;
1869 }
1870 
1871 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1872 		      unsigned int nr_pages)
1873 {
1874 	unsigned int batch = max(CHARGE_BATCH, nr_pages);
1875 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1876 	struct mem_cgroup *mem_over_limit;
1877 	struct page_counter *counter;
1878 	unsigned long nr_reclaimed;
1879 	bool may_swap = true;
1880 	bool drained = false;
1881 
1882 	if (mem_cgroup_is_root(memcg))
1883 		return 0;
1884 retry:
1885 	if (consume_stock(memcg, nr_pages))
1886 		return 0;
1887 
1888 	if (!do_memsw_account() ||
1889 	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1890 		if (page_counter_try_charge(&memcg->memory, batch, &counter))
1891 			goto done_restock;
1892 		if (do_memsw_account())
1893 			page_counter_uncharge(&memcg->memsw, batch);
1894 		mem_over_limit = mem_cgroup_from_counter(counter, memory);
1895 	} else {
1896 		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1897 		may_swap = false;
1898 	}
1899 
1900 	if (batch > nr_pages) {
1901 		batch = nr_pages;
1902 		goto retry;
1903 	}
1904 
1905 	/*
1906 	 * Unlike in global OOM situations, memcg is not in a physical
1907 	 * memory shortage.  Allow dying and OOM-killed tasks to
1908 	 * bypass the last charges so that they can exit quickly and
1909 	 * free their memory.
1910 	 */
1911 	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1912 		     fatal_signal_pending(current) ||
1913 		     current->flags & PF_EXITING))
1914 		goto force;
1915 
1916 	/*
1917 	 * Prevent unbounded recursion when reclaim operations need to
1918 	 * allocate memory. This might exceed the limits temporarily,
1919 	 * but we prefer facilitating memory reclaim and getting back
1920 	 * under the limit over triggering OOM kills in these cases.
1921 	 */
1922 	if (unlikely(current->flags & PF_MEMALLOC))
1923 		goto force;
1924 
1925 	if (unlikely(task_in_memcg_oom(current)))
1926 		goto nomem;
1927 
1928 	if (!gfpflags_allow_blocking(gfp_mask))
1929 		goto nomem;
1930 
1931 	mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
1932 
1933 	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1934 						    gfp_mask, may_swap);
1935 
1936 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1937 		goto retry;
1938 
1939 	if (!drained) {
1940 		drain_all_stock(mem_over_limit);
1941 		drained = true;
1942 		goto retry;
1943 	}
1944 
1945 	if (gfp_mask & __GFP_NORETRY)
1946 		goto nomem;
1947 	/*
1948 	 * Even though the limit is exceeded at this point, reclaim
1949 	 * may have been able to free some pages.  Retry the charge
1950 	 * before killing the task.
1951 	 *
1952 	 * Only for regular pages, though: huge pages are rather
1953 	 * unlikely to succeed so close to the limit, and we fall back
1954 	 * to regular pages anyway in case of failure.
1955 	 */
1956 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
1957 		goto retry;
1958 	/*
1959 	 * At task move, charge accounts can be doubly counted. So, it's
1960 	 * better to wait until the end of task_move if something is going on.
1961 	 */
1962 	if (mem_cgroup_wait_acct_move(mem_over_limit))
1963 		goto retry;
1964 
1965 	if (nr_retries--)
1966 		goto retry;
1967 
1968 	if (gfp_mask & __GFP_NOFAIL)
1969 		goto force;
1970 
1971 	if (fatal_signal_pending(current))
1972 		goto force;
1973 
1974 	mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
1975 
1976 	mem_cgroup_oom(mem_over_limit, gfp_mask,
1977 		       get_order(nr_pages * PAGE_SIZE));
1978 nomem:
1979 	if (!(gfp_mask & __GFP_NOFAIL))
1980 		return -ENOMEM;
1981 force:
1982 	/*
1983 	 * The allocation either can't fail or will lead to more memory
1984 	 * being freed very soon.  Allow memory usage go over the limit
1985 	 * temporarily by force charging it.
1986 	 */
1987 	page_counter_charge(&memcg->memory, nr_pages);
1988 	if (do_memsw_account())
1989 		page_counter_charge(&memcg->memsw, nr_pages);
1990 	css_get_many(&memcg->css, nr_pages);
1991 
1992 	return 0;
1993 
1994 done_restock:
1995 	css_get_many(&memcg->css, batch);
1996 	if (batch > nr_pages)
1997 		refill_stock(memcg, batch - nr_pages);
1998 
1999 	/*
2000 	 * If the hierarchy is above the normal consumption range, schedule
2001 	 * reclaim on returning to userland.  We can perform reclaim here
2002 	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2003 	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2004 	 * not recorded as it most likely matches current's and won't
2005 	 * change in the meantime.  As high limit is checked again before
2006 	 * reclaim, the cost of mismatch is negligible.
2007 	 */
2008 	do {
2009 		if (page_counter_read(&memcg->memory) > memcg->high) {
2010 			/* Don't bother a random interrupted task */
2011 			if (in_interrupt()) {
2012 				schedule_work(&memcg->high_work);
2013 				break;
2014 			}
2015 			current->memcg_nr_pages_over_high += batch;
2016 			set_notify_resume(current);
2017 			break;
2018 		}
2019 	} while ((memcg = parent_mem_cgroup(memcg)));
2020 
2021 	return 0;
2022 }
2023 
2024 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2025 {
2026 	if (mem_cgroup_is_root(memcg))
2027 		return;
2028 
2029 	page_counter_uncharge(&memcg->memory, nr_pages);
2030 	if (do_memsw_account())
2031 		page_counter_uncharge(&memcg->memsw, nr_pages);
2032 
2033 	css_put_many(&memcg->css, nr_pages);
2034 }
2035 
2036 static void lock_page_lru(struct page *page, int *isolated)
2037 {
2038 	struct zone *zone = page_zone(page);
2039 
2040 	spin_lock_irq(zone_lru_lock(zone));
2041 	if (PageLRU(page)) {
2042 		struct lruvec *lruvec;
2043 
2044 		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2045 		ClearPageLRU(page);
2046 		del_page_from_lru_list(page, lruvec, page_lru(page));
2047 		*isolated = 1;
2048 	} else
2049 		*isolated = 0;
2050 }
2051 
2052 static void unlock_page_lru(struct page *page, int isolated)
2053 {
2054 	struct zone *zone = page_zone(page);
2055 
2056 	if (isolated) {
2057 		struct lruvec *lruvec;
2058 
2059 		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2060 		VM_BUG_ON_PAGE(PageLRU(page), page);
2061 		SetPageLRU(page);
2062 		add_page_to_lru_list(page, lruvec, page_lru(page));
2063 	}
2064 	spin_unlock_irq(zone_lru_lock(zone));
2065 }
2066 
2067 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2068 			  bool lrucare)
2069 {
2070 	int isolated;
2071 
2072 	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2073 
2074 	/*
2075 	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2076 	 * may already be on some other mem_cgroup's LRU.  Take care of it.
2077 	 */
2078 	if (lrucare)
2079 		lock_page_lru(page, &isolated);
2080 
2081 	/*
2082 	 * Nobody should be changing or seriously looking at
2083 	 * page->mem_cgroup at this point:
2084 	 *
2085 	 * - the page is uncharged
2086 	 *
2087 	 * - the page is off-LRU
2088 	 *
2089 	 * - an anonymous fault has exclusive page access, except for
2090 	 *   a locked page table
2091 	 *
2092 	 * - a page cache insertion, a swapin fault, or a migration
2093 	 *   have the page locked
2094 	 */
2095 	page->mem_cgroup = memcg;
2096 
2097 	if (lrucare)
2098 		unlock_page_lru(page, isolated);
2099 }
2100 
2101 #ifndef CONFIG_SLOB
2102 static int memcg_alloc_cache_id(void)
2103 {
2104 	int id, size;
2105 	int err;
2106 
2107 	id = ida_simple_get(&memcg_cache_ida,
2108 			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2109 	if (id < 0)
2110 		return id;
2111 
2112 	if (id < memcg_nr_cache_ids)
2113 		return id;
2114 
2115 	/*
2116 	 * There's no space for the new id in memcg_caches arrays,
2117 	 * so we have to grow them.
2118 	 */
2119 	down_write(&memcg_cache_ids_sem);
2120 
2121 	size = 2 * (id + 1);
2122 	if (size < MEMCG_CACHES_MIN_SIZE)
2123 		size = MEMCG_CACHES_MIN_SIZE;
2124 	else if (size > MEMCG_CACHES_MAX_SIZE)
2125 		size = MEMCG_CACHES_MAX_SIZE;
2126 
2127 	err = memcg_update_all_caches(size);
2128 	if (!err)
2129 		err = memcg_update_all_list_lrus(size);
2130 	if (!err)
2131 		memcg_nr_cache_ids = size;
2132 
2133 	up_write(&memcg_cache_ids_sem);
2134 
2135 	if (err) {
2136 		ida_simple_remove(&memcg_cache_ida, id);
2137 		return err;
2138 	}
2139 	return id;
2140 }
2141 
2142 static void memcg_free_cache_id(int id)
2143 {
2144 	ida_simple_remove(&memcg_cache_ida, id);
2145 }
2146 
2147 struct memcg_kmem_cache_create_work {
2148 	struct mem_cgroup *memcg;
2149 	struct kmem_cache *cachep;
2150 	struct work_struct work;
2151 };
2152 
2153 static void memcg_kmem_cache_create_func(struct work_struct *w)
2154 {
2155 	struct memcg_kmem_cache_create_work *cw =
2156 		container_of(w, struct memcg_kmem_cache_create_work, work);
2157 	struct mem_cgroup *memcg = cw->memcg;
2158 	struct kmem_cache *cachep = cw->cachep;
2159 
2160 	memcg_create_kmem_cache(memcg, cachep);
2161 
2162 	css_put(&memcg->css);
2163 	kfree(cw);
2164 }
2165 
2166 /*
2167  * Enqueue the creation of a per-memcg kmem_cache.
2168  */
2169 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2170 					       struct kmem_cache *cachep)
2171 {
2172 	struct memcg_kmem_cache_create_work *cw;
2173 
2174 	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2175 	if (!cw)
2176 		return;
2177 
2178 	css_get(&memcg->css);
2179 
2180 	cw->memcg = memcg;
2181 	cw->cachep = cachep;
2182 	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2183 
2184 	queue_work(memcg_kmem_cache_wq, &cw->work);
2185 }
2186 
2187 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2188 					     struct kmem_cache *cachep)
2189 {
2190 	/*
2191 	 * We need to stop accounting when we kmalloc, because if the
2192 	 * corresponding kmalloc cache is not yet created, the first allocation
2193 	 * in __memcg_schedule_kmem_cache_create will recurse.
2194 	 *
2195 	 * However, it is better to enclose the whole function. Depending on
2196 	 * the debugging options enabled, INIT_WORK(), for instance, can
2197 	 * trigger an allocation. This too, will make us recurse. Because at
2198 	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2199 	 * the safest choice is to do it like this, wrapping the whole function.
2200 	 */
2201 	current->memcg_kmem_skip_account = 1;
2202 	__memcg_schedule_kmem_cache_create(memcg, cachep);
2203 	current->memcg_kmem_skip_account = 0;
2204 }
2205 
2206 static inline bool memcg_kmem_bypass(void)
2207 {
2208 	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2209 		return true;
2210 	return false;
2211 }
2212 
2213 /**
2214  * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2215  * @cachep: the original global kmem cache
2216  *
2217  * Return the kmem_cache we're supposed to use for a slab allocation.
2218  * We try to use the current memcg's version of the cache.
2219  *
2220  * If the cache does not exist yet, if we are the first user of it, we
2221  * create it asynchronously in a workqueue and let the current allocation
2222  * go through with the original cache.
2223  *
2224  * This function takes a reference to the cache it returns to assure it
2225  * won't get destroyed while we are working with it. Once the caller is
2226  * done with it, memcg_kmem_put_cache() must be called to release the
2227  * reference.
2228  */
2229 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2230 {
2231 	struct mem_cgroup *memcg;
2232 	struct kmem_cache *memcg_cachep;
2233 	int kmemcg_id;
2234 
2235 	VM_BUG_ON(!is_root_cache(cachep));
2236 
2237 	if (memcg_kmem_bypass())
2238 		return cachep;
2239 
2240 	if (current->memcg_kmem_skip_account)
2241 		return cachep;
2242 
2243 	memcg = get_mem_cgroup_from_mm(current->mm);
2244 	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2245 	if (kmemcg_id < 0)
2246 		goto out;
2247 
2248 	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2249 	if (likely(memcg_cachep))
2250 		return memcg_cachep;
2251 
2252 	/*
2253 	 * If we are in a safe context (can wait, and not in interrupt
2254 	 * context), we could be be predictable and return right away.
2255 	 * This would guarantee that the allocation being performed
2256 	 * already belongs in the new cache.
2257 	 *
2258 	 * However, there are some clashes that can arrive from locking.
2259 	 * For instance, because we acquire the slab_mutex while doing
2260 	 * memcg_create_kmem_cache, this means no further allocation
2261 	 * could happen with the slab_mutex held. So it's better to
2262 	 * defer everything.
2263 	 */
2264 	memcg_schedule_kmem_cache_create(memcg, cachep);
2265 out:
2266 	css_put(&memcg->css);
2267 	return cachep;
2268 }
2269 
2270 /**
2271  * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2272  * @cachep: the cache returned by memcg_kmem_get_cache
2273  */
2274 void memcg_kmem_put_cache(struct kmem_cache *cachep)
2275 {
2276 	if (!is_root_cache(cachep))
2277 		css_put(&cachep->memcg_params.memcg->css);
2278 }
2279 
2280 /**
2281  * memcg_kmem_charge: charge a kmem page
2282  * @page: page to charge
2283  * @gfp: reclaim mode
2284  * @order: allocation order
2285  * @memcg: memory cgroup to charge
2286  *
2287  * Returns 0 on success, an error code on failure.
2288  */
2289 int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2290 			    struct mem_cgroup *memcg)
2291 {
2292 	unsigned int nr_pages = 1 << order;
2293 	struct page_counter *counter;
2294 	int ret;
2295 
2296 	ret = try_charge(memcg, gfp, nr_pages);
2297 	if (ret)
2298 		return ret;
2299 
2300 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2301 	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2302 		cancel_charge(memcg, nr_pages);
2303 		return -ENOMEM;
2304 	}
2305 
2306 	page->mem_cgroup = memcg;
2307 
2308 	return 0;
2309 }
2310 
2311 /**
2312  * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2313  * @page: page to charge
2314  * @gfp: reclaim mode
2315  * @order: allocation order
2316  *
2317  * Returns 0 on success, an error code on failure.
2318  */
2319 int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2320 {
2321 	struct mem_cgroup *memcg;
2322 	int ret = 0;
2323 
2324 	if (memcg_kmem_bypass())
2325 		return 0;
2326 
2327 	memcg = get_mem_cgroup_from_mm(current->mm);
2328 	if (!mem_cgroup_is_root(memcg)) {
2329 		ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
2330 		if (!ret)
2331 			__SetPageKmemcg(page);
2332 	}
2333 	css_put(&memcg->css);
2334 	return ret;
2335 }
2336 /**
2337  * memcg_kmem_uncharge: uncharge a kmem page
2338  * @page: page to uncharge
2339  * @order: allocation order
2340  */
2341 void memcg_kmem_uncharge(struct page *page, int order)
2342 {
2343 	struct mem_cgroup *memcg = page->mem_cgroup;
2344 	unsigned int nr_pages = 1 << order;
2345 
2346 	if (!memcg)
2347 		return;
2348 
2349 	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2350 
2351 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2352 		page_counter_uncharge(&memcg->kmem, nr_pages);
2353 
2354 	page_counter_uncharge(&memcg->memory, nr_pages);
2355 	if (do_memsw_account())
2356 		page_counter_uncharge(&memcg->memsw, nr_pages);
2357 
2358 	page->mem_cgroup = NULL;
2359 
2360 	/* slab pages do not have PageKmemcg flag set */
2361 	if (PageKmemcg(page))
2362 		__ClearPageKmemcg(page);
2363 
2364 	css_put_many(&memcg->css, nr_pages);
2365 }
2366 #endif /* !CONFIG_SLOB */
2367 
2368 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2369 
2370 /*
2371  * Because tail pages are not marked as "used", set it. We're under
2372  * zone_lru_lock and migration entries setup in all page mappings.
2373  */
2374 void mem_cgroup_split_huge_fixup(struct page *head)
2375 {
2376 	int i;
2377 
2378 	if (mem_cgroup_disabled())
2379 		return;
2380 
2381 	for (i = 1; i < HPAGE_PMD_NR; i++)
2382 		head[i].mem_cgroup = head->mem_cgroup;
2383 
2384 	__this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2385 		       HPAGE_PMD_NR);
2386 }
2387 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2388 
2389 #ifdef CONFIG_MEMCG_SWAP
2390 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2391 					 bool charge)
2392 {
2393 	int val = (charge) ? 1 : -1;
2394 	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2395 }
2396 
2397 /**
2398  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2399  * @entry: swap entry to be moved
2400  * @from:  mem_cgroup which the entry is moved from
2401  * @to:  mem_cgroup which the entry is moved to
2402  *
2403  * It succeeds only when the swap_cgroup's record for this entry is the same
2404  * as the mem_cgroup's id of @from.
2405  *
2406  * Returns 0 on success, -EINVAL on failure.
2407  *
2408  * The caller must have charged to @to, IOW, called page_counter_charge() about
2409  * both res and memsw, and called css_get().
2410  */
2411 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2412 				struct mem_cgroup *from, struct mem_cgroup *to)
2413 {
2414 	unsigned short old_id, new_id;
2415 
2416 	old_id = mem_cgroup_id(from);
2417 	new_id = mem_cgroup_id(to);
2418 
2419 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2420 		mem_cgroup_swap_statistics(from, false);
2421 		mem_cgroup_swap_statistics(to, true);
2422 		return 0;
2423 	}
2424 	return -EINVAL;
2425 }
2426 #else
2427 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2428 				struct mem_cgroup *from, struct mem_cgroup *to)
2429 {
2430 	return -EINVAL;
2431 }
2432 #endif
2433 
2434 static DEFINE_MUTEX(memcg_limit_mutex);
2435 
2436 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2437 				   unsigned long limit)
2438 {
2439 	unsigned long curusage;
2440 	unsigned long oldusage;
2441 	bool enlarge = false;
2442 	int retry_count;
2443 	int ret;
2444 
2445 	/*
2446 	 * For keeping hierarchical_reclaim simple, how long we should retry
2447 	 * is depends on callers. We set our retry-count to be function
2448 	 * of # of children which we should visit in this loop.
2449 	 */
2450 	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2451 		      mem_cgroup_count_children(memcg);
2452 
2453 	oldusage = page_counter_read(&memcg->memory);
2454 
2455 	do {
2456 		if (signal_pending(current)) {
2457 			ret = -EINTR;
2458 			break;
2459 		}
2460 
2461 		mutex_lock(&memcg_limit_mutex);
2462 		if (limit > memcg->memsw.limit) {
2463 			mutex_unlock(&memcg_limit_mutex);
2464 			ret = -EINVAL;
2465 			break;
2466 		}
2467 		if (limit > memcg->memory.limit)
2468 			enlarge = true;
2469 		ret = page_counter_limit(&memcg->memory, limit);
2470 		mutex_unlock(&memcg_limit_mutex);
2471 
2472 		if (!ret)
2473 			break;
2474 
2475 		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2476 
2477 		curusage = page_counter_read(&memcg->memory);
2478 		/* Usage is reduced ? */
2479 		if (curusage >= oldusage)
2480 			retry_count--;
2481 		else
2482 			oldusage = curusage;
2483 	} while (retry_count);
2484 
2485 	if (!ret && enlarge)
2486 		memcg_oom_recover(memcg);
2487 
2488 	return ret;
2489 }
2490 
2491 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2492 					 unsigned long limit)
2493 {
2494 	unsigned long curusage;
2495 	unsigned long oldusage;
2496 	bool enlarge = false;
2497 	int retry_count;
2498 	int ret;
2499 
2500 	/* see mem_cgroup_resize_res_limit */
2501 	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2502 		      mem_cgroup_count_children(memcg);
2503 
2504 	oldusage = page_counter_read(&memcg->memsw);
2505 
2506 	do {
2507 		if (signal_pending(current)) {
2508 			ret = -EINTR;
2509 			break;
2510 		}
2511 
2512 		mutex_lock(&memcg_limit_mutex);
2513 		if (limit < memcg->memory.limit) {
2514 			mutex_unlock(&memcg_limit_mutex);
2515 			ret = -EINVAL;
2516 			break;
2517 		}
2518 		if (limit > memcg->memsw.limit)
2519 			enlarge = true;
2520 		ret = page_counter_limit(&memcg->memsw, limit);
2521 		mutex_unlock(&memcg_limit_mutex);
2522 
2523 		if (!ret)
2524 			break;
2525 
2526 		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2527 
2528 		curusage = page_counter_read(&memcg->memsw);
2529 		/* Usage is reduced ? */
2530 		if (curusage >= oldusage)
2531 			retry_count--;
2532 		else
2533 			oldusage = curusage;
2534 	} while (retry_count);
2535 
2536 	if (!ret && enlarge)
2537 		memcg_oom_recover(memcg);
2538 
2539 	return ret;
2540 }
2541 
2542 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2543 					    gfp_t gfp_mask,
2544 					    unsigned long *total_scanned)
2545 {
2546 	unsigned long nr_reclaimed = 0;
2547 	struct mem_cgroup_per_node *mz, *next_mz = NULL;
2548 	unsigned long reclaimed;
2549 	int loop = 0;
2550 	struct mem_cgroup_tree_per_node *mctz;
2551 	unsigned long excess;
2552 	unsigned long nr_scanned;
2553 
2554 	if (order > 0)
2555 		return 0;
2556 
2557 	mctz = soft_limit_tree_node(pgdat->node_id);
2558 
2559 	/*
2560 	 * Do not even bother to check the largest node if the root
2561 	 * is empty. Do it lockless to prevent lock bouncing. Races
2562 	 * are acceptable as soft limit is best effort anyway.
2563 	 */
2564 	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
2565 		return 0;
2566 
2567 	/*
2568 	 * This loop can run a while, specially if mem_cgroup's continuously
2569 	 * keep exceeding their soft limit and putting the system under
2570 	 * pressure
2571 	 */
2572 	do {
2573 		if (next_mz)
2574 			mz = next_mz;
2575 		else
2576 			mz = mem_cgroup_largest_soft_limit_node(mctz);
2577 		if (!mz)
2578 			break;
2579 
2580 		nr_scanned = 0;
2581 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
2582 						    gfp_mask, &nr_scanned);
2583 		nr_reclaimed += reclaimed;
2584 		*total_scanned += nr_scanned;
2585 		spin_lock_irq(&mctz->lock);
2586 		__mem_cgroup_remove_exceeded(mz, mctz);
2587 
2588 		/*
2589 		 * If we failed to reclaim anything from this memory cgroup
2590 		 * it is time to move on to the next cgroup
2591 		 */
2592 		next_mz = NULL;
2593 		if (!reclaimed)
2594 			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2595 
2596 		excess = soft_limit_excess(mz->memcg);
2597 		/*
2598 		 * One school of thought says that we should not add
2599 		 * back the node to the tree if reclaim returns 0.
2600 		 * But our reclaim could return 0, simply because due
2601 		 * to priority we are exposing a smaller subset of
2602 		 * memory to reclaim from. Consider this as a longer
2603 		 * term TODO.
2604 		 */
2605 		/* If excess == 0, no tree ops */
2606 		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2607 		spin_unlock_irq(&mctz->lock);
2608 		css_put(&mz->memcg->css);
2609 		loop++;
2610 		/*
2611 		 * Could not reclaim anything and there are no more
2612 		 * mem cgroups to try or we seem to be looping without
2613 		 * reclaiming anything.
2614 		 */
2615 		if (!nr_reclaimed &&
2616 			(next_mz == NULL ||
2617 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2618 			break;
2619 	} while (!nr_reclaimed);
2620 	if (next_mz)
2621 		css_put(&next_mz->memcg->css);
2622 	return nr_reclaimed;
2623 }
2624 
2625 /*
2626  * Test whether @memcg has children, dead or alive.  Note that this
2627  * function doesn't care whether @memcg has use_hierarchy enabled and
2628  * returns %true if there are child csses according to the cgroup
2629  * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
2630  */
2631 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2632 {
2633 	bool ret;
2634 
2635 	rcu_read_lock();
2636 	ret = css_next_child(NULL, &memcg->css);
2637 	rcu_read_unlock();
2638 	return ret;
2639 }
2640 
2641 /*
2642  * Reclaims as many pages from the given memcg as possible.
2643  *
2644  * Caller is responsible for holding css reference for memcg.
2645  */
2646 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2647 {
2648 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2649 
2650 	/* we call try-to-free pages for make this cgroup empty */
2651 	lru_add_drain_all();
2652 	/* try to free all pages in this cgroup */
2653 	while (nr_retries && page_counter_read(&memcg->memory)) {
2654 		int progress;
2655 
2656 		if (signal_pending(current))
2657 			return -EINTR;
2658 
2659 		progress = try_to_free_mem_cgroup_pages(memcg, 1,
2660 							GFP_KERNEL, true);
2661 		if (!progress) {
2662 			nr_retries--;
2663 			/* maybe some writeback is necessary */
2664 			congestion_wait(BLK_RW_ASYNC, HZ/10);
2665 		}
2666 
2667 	}
2668 
2669 	return 0;
2670 }
2671 
2672 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2673 					    char *buf, size_t nbytes,
2674 					    loff_t off)
2675 {
2676 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2677 
2678 	if (mem_cgroup_is_root(memcg))
2679 		return -EINVAL;
2680 	return mem_cgroup_force_empty(memcg) ?: nbytes;
2681 }
2682 
2683 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2684 				     struct cftype *cft)
2685 {
2686 	return mem_cgroup_from_css(css)->use_hierarchy;
2687 }
2688 
2689 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2690 				      struct cftype *cft, u64 val)
2691 {
2692 	int retval = 0;
2693 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2694 	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2695 
2696 	if (memcg->use_hierarchy == val)
2697 		return 0;
2698 
2699 	/*
2700 	 * If parent's use_hierarchy is set, we can't make any modifications
2701 	 * in the child subtrees. If it is unset, then the change can
2702 	 * occur, provided the current cgroup has no children.
2703 	 *
2704 	 * For the root cgroup, parent_mem is NULL, we allow value to be
2705 	 * set if there are no children.
2706 	 */
2707 	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2708 				(val == 1 || val == 0)) {
2709 		if (!memcg_has_children(memcg))
2710 			memcg->use_hierarchy = val;
2711 		else
2712 			retval = -EBUSY;
2713 	} else
2714 		retval = -EINVAL;
2715 
2716 	return retval;
2717 }
2718 
2719 static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2720 {
2721 	struct mem_cgroup *iter;
2722 	int i;
2723 
2724 	memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2725 
2726 	for_each_mem_cgroup_tree(iter, memcg) {
2727 		for (i = 0; i < MEMCG_NR_STAT; i++)
2728 			stat[i] += mem_cgroup_read_stat(iter, i);
2729 	}
2730 }
2731 
2732 static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2733 {
2734 	struct mem_cgroup *iter;
2735 	int i;
2736 
2737 	memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2738 
2739 	for_each_mem_cgroup_tree(iter, memcg) {
2740 		for (i = 0; i < MEMCG_NR_EVENTS; i++)
2741 			events[i] += mem_cgroup_read_events(iter, i);
2742 	}
2743 }
2744 
2745 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2746 {
2747 	unsigned long val = 0;
2748 
2749 	if (mem_cgroup_is_root(memcg)) {
2750 		struct mem_cgroup *iter;
2751 
2752 		for_each_mem_cgroup_tree(iter, memcg) {
2753 			val += mem_cgroup_read_stat(iter,
2754 					MEM_CGROUP_STAT_CACHE);
2755 			val += mem_cgroup_read_stat(iter,
2756 					MEM_CGROUP_STAT_RSS);
2757 			if (swap)
2758 				val += mem_cgroup_read_stat(iter,
2759 						MEM_CGROUP_STAT_SWAP);
2760 		}
2761 	} else {
2762 		if (!swap)
2763 			val = page_counter_read(&memcg->memory);
2764 		else
2765 			val = page_counter_read(&memcg->memsw);
2766 	}
2767 	return val;
2768 }
2769 
2770 enum {
2771 	RES_USAGE,
2772 	RES_LIMIT,
2773 	RES_MAX_USAGE,
2774 	RES_FAILCNT,
2775 	RES_SOFT_LIMIT,
2776 };
2777 
2778 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2779 			       struct cftype *cft)
2780 {
2781 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2782 	struct page_counter *counter;
2783 
2784 	switch (MEMFILE_TYPE(cft->private)) {
2785 	case _MEM:
2786 		counter = &memcg->memory;
2787 		break;
2788 	case _MEMSWAP:
2789 		counter = &memcg->memsw;
2790 		break;
2791 	case _KMEM:
2792 		counter = &memcg->kmem;
2793 		break;
2794 	case _TCP:
2795 		counter = &memcg->tcpmem;
2796 		break;
2797 	default:
2798 		BUG();
2799 	}
2800 
2801 	switch (MEMFILE_ATTR(cft->private)) {
2802 	case RES_USAGE:
2803 		if (counter == &memcg->memory)
2804 			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2805 		if (counter == &memcg->memsw)
2806 			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2807 		return (u64)page_counter_read(counter) * PAGE_SIZE;
2808 	case RES_LIMIT:
2809 		return (u64)counter->limit * PAGE_SIZE;
2810 	case RES_MAX_USAGE:
2811 		return (u64)counter->watermark * PAGE_SIZE;
2812 	case RES_FAILCNT:
2813 		return counter->failcnt;
2814 	case RES_SOFT_LIMIT:
2815 		return (u64)memcg->soft_limit * PAGE_SIZE;
2816 	default:
2817 		BUG();
2818 	}
2819 }
2820 
2821 #ifndef CONFIG_SLOB
2822 static int memcg_online_kmem(struct mem_cgroup *memcg)
2823 {
2824 	int memcg_id;
2825 
2826 	if (cgroup_memory_nokmem)
2827 		return 0;
2828 
2829 	BUG_ON(memcg->kmemcg_id >= 0);
2830 	BUG_ON(memcg->kmem_state);
2831 
2832 	memcg_id = memcg_alloc_cache_id();
2833 	if (memcg_id < 0)
2834 		return memcg_id;
2835 
2836 	static_branch_inc(&memcg_kmem_enabled_key);
2837 	/*
2838 	 * A memory cgroup is considered kmem-online as soon as it gets
2839 	 * kmemcg_id. Setting the id after enabling static branching will
2840 	 * guarantee no one starts accounting before all call sites are
2841 	 * patched.
2842 	 */
2843 	memcg->kmemcg_id = memcg_id;
2844 	memcg->kmem_state = KMEM_ONLINE;
2845 	INIT_LIST_HEAD(&memcg->kmem_caches);
2846 
2847 	return 0;
2848 }
2849 
2850 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2851 {
2852 	struct cgroup_subsys_state *css;
2853 	struct mem_cgroup *parent, *child;
2854 	int kmemcg_id;
2855 
2856 	if (memcg->kmem_state != KMEM_ONLINE)
2857 		return;
2858 	/*
2859 	 * Clear the online state before clearing memcg_caches array
2860 	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2861 	 * guarantees that no cache will be created for this cgroup
2862 	 * after we are done (see memcg_create_kmem_cache()).
2863 	 */
2864 	memcg->kmem_state = KMEM_ALLOCATED;
2865 
2866 	memcg_deactivate_kmem_caches(memcg);
2867 
2868 	kmemcg_id = memcg->kmemcg_id;
2869 	BUG_ON(kmemcg_id < 0);
2870 
2871 	parent = parent_mem_cgroup(memcg);
2872 	if (!parent)
2873 		parent = root_mem_cgroup;
2874 
2875 	/*
2876 	 * Change kmemcg_id of this cgroup and all its descendants to the
2877 	 * parent's id, and then move all entries from this cgroup's list_lrus
2878 	 * to ones of the parent. After we have finished, all list_lrus
2879 	 * corresponding to this cgroup are guaranteed to remain empty. The
2880 	 * ordering is imposed by list_lru_node->lock taken by
2881 	 * memcg_drain_all_list_lrus().
2882 	 */
2883 	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
2884 	css_for_each_descendant_pre(css, &memcg->css) {
2885 		child = mem_cgroup_from_css(css);
2886 		BUG_ON(child->kmemcg_id != kmemcg_id);
2887 		child->kmemcg_id = parent->kmemcg_id;
2888 		if (!memcg->use_hierarchy)
2889 			break;
2890 	}
2891 	rcu_read_unlock();
2892 
2893 	memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2894 
2895 	memcg_free_cache_id(kmemcg_id);
2896 }
2897 
2898 static void memcg_free_kmem(struct mem_cgroup *memcg)
2899 {
2900 	/* css_alloc() failed, offlining didn't happen */
2901 	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2902 		memcg_offline_kmem(memcg);
2903 
2904 	if (memcg->kmem_state == KMEM_ALLOCATED) {
2905 		memcg_destroy_kmem_caches(memcg);
2906 		static_branch_dec(&memcg_kmem_enabled_key);
2907 		WARN_ON(page_counter_read(&memcg->kmem));
2908 	}
2909 }
2910 #else
2911 static int memcg_online_kmem(struct mem_cgroup *memcg)
2912 {
2913 	return 0;
2914 }
2915 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2916 {
2917 }
2918 static void memcg_free_kmem(struct mem_cgroup *memcg)
2919 {
2920 }
2921 #endif /* !CONFIG_SLOB */
2922 
2923 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2924 				   unsigned long limit)
2925 {
2926 	int ret;
2927 
2928 	mutex_lock(&memcg_limit_mutex);
2929 	ret = page_counter_limit(&memcg->kmem, limit);
2930 	mutex_unlock(&memcg_limit_mutex);
2931 	return ret;
2932 }
2933 
2934 static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2935 {
2936 	int ret;
2937 
2938 	mutex_lock(&memcg_limit_mutex);
2939 
2940 	ret = page_counter_limit(&memcg->tcpmem, limit);
2941 	if (ret)
2942 		goto out;
2943 
2944 	if (!memcg->tcpmem_active) {
2945 		/*
2946 		 * The active flag needs to be written after the static_key
2947 		 * update. This is what guarantees that the socket activation
2948 		 * function is the last one to run. See mem_cgroup_sk_alloc()
2949 		 * for details, and note that we don't mark any socket as
2950 		 * belonging to this memcg until that flag is up.
2951 		 *
2952 		 * We need to do this, because static_keys will span multiple
2953 		 * sites, but we can't control their order. If we mark a socket
2954 		 * as accounted, but the accounting functions are not patched in
2955 		 * yet, we'll lose accounting.
2956 		 *
2957 		 * We never race with the readers in mem_cgroup_sk_alloc(),
2958 		 * because when this value change, the code to process it is not
2959 		 * patched in yet.
2960 		 */
2961 		static_branch_inc(&memcg_sockets_enabled_key);
2962 		memcg->tcpmem_active = true;
2963 	}
2964 out:
2965 	mutex_unlock(&memcg_limit_mutex);
2966 	return ret;
2967 }
2968 
2969 /*
2970  * The user of this function is...
2971  * RES_LIMIT.
2972  */
2973 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2974 				char *buf, size_t nbytes, loff_t off)
2975 {
2976 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2977 	unsigned long nr_pages;
2978 	int ret;
2979 
2980 	buf = strstrip(buf);
2981 	ret = page_counter_memparse(buf, "-1", &nr_pages);
2982 	if (ret)
2983 		return ret;
2984 
2985 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
2986 	case RES_LIMIT:
2987 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2988 			ret = -EINVAL;
2989 			break;
2990 		}
2991 		switch (MEMFILE_TYPE(of_cft(of)->private)) {
2992 		case _MEM:
2993 			ret = mem_cgroup_resize_limit(memcg, nr_pages);
2994 			break;
2995 		case _MEMSWAP:
2996 			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
2997 			break;
2998 		case _KMEM:
2999 			ret = memcg_update_kmem_limit(memcg, nr_pages);
3000 			break;
3001 		case _TCP:
3002 			ret = memcg_update_tcp_limit(memcg, nr_pages);
3003 			break;
3004 		}
3005 		break;
3006 	case RES_SOFT_LIMIT:
3007 		memcg->soft_limit = nr_pages;
3008 		ret = 0;
3009 		break;
3010 	}
3011 	return ret ?: nbytes;
3012 }
3013 
3014 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3015 				size_t nbytes, loff_t off)
3016 {
3017 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3018 	struct page_counter *counter;
3019 
3020 	switch (MEMFILE_TYPE(of_cft(of)->private)) {
3021 	case _MEM:
3022 		counter = &memcg->memory;
3023 		break;
3024 	case _MEMSWAP:
3025 		counter = &memcg->memsw;
3026 		break;
3027 	case _KMEM:
3028 		counter = &memcg->kmem;
3029 		break;
3030 	case _TCP:
3031 		counter = &memcg->tcpmem;
3032 		break;
3033 	default:
3034 		BUG();
3035 	}
3036 
3037 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3038 	case RES_MAX_USAGE:
3039 		page_counter_reset_watermark(counter);
3040 		break;
3041 	case RES_FAILCNT:
3042 		counter->failcnt = 0;
3043 		break;
3044 	default:
3045 		BUG();
3046 	}
3047 
3048 	return nbytes;
3049 }
3050 
3051 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3052 					struct cftype *cft)
3053 {
3054 	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3055 }
3056 
3057 #ifdef CONFIG_MMU
3058 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3059 					struct cftype *cft, u64 val)
3060 {
3061 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3062 
3063 	if (val & ~MOVE_MASK)
3064 		return -EINVAL;
3065 
3066 	/*
3067 	 * No kind of locking is needed in here, because ->can_attach() will
3068 	 * check this value once in the beginning of the process, and then carry
3069 	 * on with stale data. This means that changes to this value will only
3070 	 * affect task migrations starting after the change.
3071 	 */
3072 	memcg->move_charge_at_immigrate = val;
3073 	return 0;
3074 }
3075 #else
3076 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3077 					struct cftype *cft, u64 val)
3078 {
3079 	return -ENOSYS;
3080 }
3081 #endif
3082 
3083 #ifdef CONFIG_NUMA
3084 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3085 {
3086 	struct numa_stat {
3087 		const char *name;
3088 		unsigned int lru_mask;
3089 	};
3090 
3091 	static const struct numa_stat stats[] = {
3092 		{ "total", LRU_ALL },
3093 		{ "file", LRU_ALL_FILE },
3094 		{ "anon", LRU_ALL_ANON },
3095 		{ "unevictable", BIT(LRU_UNEVICTABLE) },
3096 	};
3097 	const struct numa_stat *stat;
3098 	int nid;
3099 	unsigned long nr;
3100 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3101 
3102 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3103 		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3104 		seq_printf(m, "%s=%lu", stat->name, nr);
3105 		for_each_node_state(nid, N_MEMORY) {
3106 			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3107 							  stat->lru_mask);
3108 			seq_printf(m, " N%d=%lu", nid, nr);
3109 		}
3110 		seq_putc(m, '\n');
3111 	}
3112 
3113 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3114 		struct mem_cgroup *iter;
3115 
3116 		nr = 0;
3117 		for_each_mem_cgroup_tree(iter, memcg)
3118 			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3119 		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3120 		for_each_node_state(nid, N_MEMORY) {
3121 			nr = 0;
3122 			for_each_mem_cgroup_tree(iter, memcg)
3123 				nr += mem_cgroup_node_nr_lru_pages(
3124 					iter, nid, stat->lru_mask);
3125 			seq_printf(m, " N%d=%lu", nid, nr);
3126 		}
3127 		seq_putc(m, '\n');
3128 	}
3129 
3130 	return 0;
3131 }
3132 #endif /* CONFIG_NUMA */
3133 
3134 static int memcg_stat_show(struct seq_file *m, void *v)
3135 {
3136 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3137 	unsigned long memory, memsw;
3138 	struct mem_cgroup *mi;
3139 	unsigned int i;
3140 
3141 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3142 		     MEM_CGROUP_STAT_NSTATS);
3143 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3144 		     MEM_CGROUP_EVENTS_NSTATS);
3145 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3146 
3147 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3148 		if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3149 			continue;
3150 		seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3151 			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3152 	}
3153 
3154 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3155 		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3156 			   mem_cgroup_read_events(memcg, i));
3157 
3158 	for (i = 0; i < NR_LRU_LISTS; i++)
3159 		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3160 			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3161 
3162 	/* Hierarchical information */
3163 	memory = memsw = PAGE_COUNTER_MAX;
3164 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3165 		memory = min(memory, mi->memory.limit);
3166 		memsw = min(memsw, mi->memsw.limit);
3167 	}
3168 	seq_printf(m, "hierarchical_memory_limit %llu\n",
3169 		   (u64)memory * PAGE_SIZE);
3170 	if (do_memsw_account())
3171 		seq_printf(m, "hierarchical_memsw_limit %llu\n",
3172 			   (u64)memsw * PAGE_SIZE);
3173 
3174 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3175 		unsigned long long val = 0;
3176 
3177 		if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3178 			continue;
3179 		for_each_mem_cgroup_tree(mi, memcg)
3180 			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3181 		seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3182 	}
3183 
3184 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3185 		unsigned long long val = 0;
3186 
3187 		for_each_mem_cgroup_tree(mi, memcg)
3188 			val += mem_cgroup_read_events(mi, i);
3189 		seq_printf(m, "total_%s %llu\n",
3190 			   mem_cgroup_events_names[i], val);
3191 	}
3192 
3193 	for (i = 0; i < NR_LRU_LISTS; i++) {
3194 		unsigned long long val = 0;
3195 
3196 		for_each_mem_cgroup_tree(mi, memcg)
3197 			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3198 		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3199 	}
3200 
3201 #ifdef CONFIG_DEBUG_VM
3202 	{
3203 		pg_data_t *pgdat;
3204 		struct mem_cgroup_per_node *mz;
3205 		struct zone_reclaim_stat *rstat;
3206 		unsigned long recent_rotated[2] = {0, 0};
3207 		unsigned long recent_scanned[2] = {0, 0};
3208 
3209 		for_each_online_pgdat(pgdat) {
3210 			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3211 			rstat = &mz->lruvec.reclaim_stat;
3212 
3213 			recent_rotated[0] += rstat->recent_rotated[0];
3214 			recent_rotated[1] += rstat->recent_rotated[1];
3215 			recent_scanned[0] += rstat->recent_scanned[0];
3216 			recent_scanned[1] += rstat->recent_scanned[1];
3217 		}
3218 		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3219 		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3220 		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3221 		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3222 	}
3223 #endif
3224 
3225 	return 0;
3226 }
3227 
3228 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3229 				      struct cftype *cft)
3230 {
3231 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3232 
3233 	return mem_cgroup_swappiness(memcg);
3234 }
3235 
3236 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3237 				       struct cftype *cft, u64 val)
3238 {
3239 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3240 
3241 	if (val > 100)
3242 		return -EINVAL;
3243 
3244 	if (css->parent)
3245 		memcg->swappiness = val;
3246 	else
3247 		vm_swappiness = val;
3248 
3249 	return 0;
3250 }
3251 
3252 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3253 {
3254 	struct mem_cgroup_threshold_ary *t;
3255 	unsigned long usage;
3256 	int i;
3257 
3258 	rcu_read_lock();
3259 	if (!swap)
3260 		t = rcu_dereference(memcg->thresholds.primary);
3261 	else
3262 		t = rcu_dereference(memcg->memsw_thresholds.primary);
3263 
3264 	if (!t)
3265 		goto unlock;
3266 
3267 	usage = mem_cgroup_usage(memcg, swap);
3268 
3269 	/*
3270 	 * current_threshold points to threshold just below or equal to usage.
3271 	 * If it's not true, a threshold was crossed after last
3272 	 * call of __mem_cgroup_threshold().
3273 	 */
3274 	i = t->current_threshold;
3275 
3276 	/*
3277 	 * Iterate backward over array of thresholds starting from
3278 	 * current_threshold and check if a threshold is crossed.
3279 	 * If none of thresholds below usage is crossed, we read
3280 	 * only one element of the array here.
3281 	 */
3282 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3283 		eventfd_signal(t->entries[i].eventfd, 1);
3284 
3285 	/* i = current_threshold + 1 */
3286 	i++;
3287 
3288 	/*
3289 	 * Iterate forward over array of thresholds starting from
3290 	 * current_threshold+1 and check if a threshold is crossed.
3291 	 * If none of thresholds above usage is crossed, we read
3292 	 * only one element of the array here.
3293 	 */
3294 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3295 		eventfd_signal(t->entries[i].eventfd, 1);
3296 
3297 	/* Update current_threshold */
3298 	t->current_threshold = i - 1;
3299 unlock:
3300 	rcu_read_unlock();
3301 }
3302 
3303 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3304 {
3305 	while (memcg) {
3306 		__mem_cgroup_threshold(memcg, false);
3307 		if (do_memsw_account())
3308 			__mem_cgroup_threshold(memcg, true);
3309 
3310 		memcg = parent_mem_cgroup(memcg);
3311 	}
3312 }
3313 
3314 static int compare_thresholds(const void *a, const void *b)
3315 {
3316 	const struct mem_cgroup_threshold *_a = a;
3317 	const struct mem_cgroup_threshold *_b = b;
3318 
3319 	if (_a->threshold > _b->threshold)
3320 		return 1;
3321 
3322 	if (_a->threshold < _b->threshold)
3323 		return -1;
3324 
3325 	return 0;
3326 }
3327 
3328 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3329 {
3330 	struct mem_cgroup_eventfd_list *ev;
3331 
3332 	spin_lock(&memcg_oom_lock);
3333 
3334 	list_for_each_entry(ev, &memcg->oom_notify, list)
3335 		eventfd_signal(ev->eventfd, 1);
3336 
3337 	spin_unlock(&memcg_oom_lock);
3338 	return 0;
3339 }
3340 
3341 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3342 {
3343 	struct mem_cgroup *iter;
3344 
3345 	for_each_mem_cgroup_tree(iter, memcg)
3346 		mem_cgroup_oom_notify_cb(iter);
3347 }
3348 
3349 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3350 	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3351 {
3352 	struct mem_cgroup_thresholds *thresholds;
3353 	struct mem_cgroup_threshold_ary *new;
3354 	unsigned long threshold;
3355 	unsigned long usage;
3356 	int i, size, ret;
3357 
3358 	ret = page_counter_memparse(args, "-1", &threshold);
3359 	if (ret)
3360 		return ret;
3361 
3362 	mutex_lock(&memcg->thresholds_lock);
3363 
3364 	if (type == _MEM) {
3365 		thresholds = &memcg->thresholds;
3366 		usage = mem_cgroup_usage(memcg, false);
3367 	} else if (type == _MEMSWAP) {
3368 		thresholds = &memcg->memsw_thresholds;
3369 		usage = mem_cgroup_usage(memcg, true);
3370 	} else
3371 		BUG();
3372 
3373 	/* Check if a threshold crossed before adding a new one */
3374 	if (thresholds->primary)
3375 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3376 
3377 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3378 
3379 	/* Allocate memory for new array of thresholds */
3380 	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3381 			GFP_KERNEL);
3382 	if (!new) {
3383 		ret = -ENOMEM;
3384 		goto unlock;
3385 	}
3386 	new->size = size;
3387 
3388 	/* Copy thresholds (if any) to new array */
3389 	if (thresholds->primary) {
3390 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3391 				sizeof(struct mem_cgroup_threshold));
3392 	}
3393 
3394 	/* Add new threshold */
3395 	new->entries[size - 1].eventfd = eventfd;
3396 	new->entries[size - 1].threshold = threshold;
3397 
3398 	/* Sort thresholds. Registering of new threshold isn't time-critical */
3399 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3400 			compare_thresholds, NULL);
3401 
3402 	/* Find current threshold */
3403 	new->current_threshold = -1;
3404 	for (i = 0; i < size; i++) {
3405 		if (new->entries[i].threshold <= usage) {
3406 			/*
3407 			 * new->current_threshold will not be used until
3408 			 * rcu_assign_pointer(), so it's safe to increment
3409 			 * it here.
3410 			 */
3411 			++new->current_threshold;
3412 		} else
3413 			break;
3414 	}
3415 
3416 	/* Free old spare buffer and save old primary buffer as spare */
3417 	kfree(thresholds->spare);
3418 	thresholds->spare = thresholds->primary;
3419 
3420 	rcu_assign_pointer(thresholds->primary, new);
3421 
3422 	/* To be sure that nobody uses thresholds */
3423 	synchronize_rcu();
3424 
3425 unlock:
3426 	mutex_unlock(&memcg->thresholds_lock);
3427 
3428 	return ret;
3429 }
3430 
3431 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3432 	struct eventfd_ctx *eventfd, const char *args)
3433 {
3434 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3435 }
3436 
3437 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3438 	struct eventfd_ctx *eventfd, const char *args)
3439 {
3440 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3441 }
3442 
3443 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3444 	struct eventfd_ctx *eventfd, enum res_type type)
3445 {
3446 	struct mem_cgroup_thresholds *thresholds;
3447 	struct mem_cgroup_threshold_ary *new;
3448 	unsigned long usage;
3449 	int i, j, size;
3450 
3451 	mutex_lock(&memcg->thresholds_lock);
3452 
3453 	if (type == _MEM) {
3454 		thresholds = &memcg->thresholds;
3455 		usage = mem_cgroup_usage(memcg, false);
3456 	} else if (type == _MEMSWAP) {
3457 		thresholds = &memcg->memsw_thresholds;
3458 		usage = mem_cgroup_usage(memcg, true);
3459 	} else
3460 		BUG();
3461 
3462 	if (!thresholds->primary)
3463 		goto unlock;
3464 
3465 	/* Check if a threshold crossed before removing */
3466 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3467 
3468 	/* Calculate new number of threshold */
3469 	size = 0;
3470 	for (i = 0; i < thresholds->primary->size; i++) {
3471 		if (thresholds->primary->entries[i].eventfd != eventfd)
3472 			size++;
3473 	}
3474 
3475 	new = thresholds->spare;
3476 
3477 	/* Set thresholds array to NULL if we don't have thresholds */
3478 	if (!size) {
3479 		kfree(new);
3480 		new = NULL;
3481 		goto swap_buffers;
3482 	}
3483 
3484 	new->size = size;
3485 
3486 	/* Copy thresholds and find current threshold */
3487 	new->current_threshold = -1;
3488 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3489 		if (thresholds->primary->entries[i].eventfd == eventfd)
3490 			continue;
3491 
3492 		new->entries[j] = thresholds->primary->entries[i];
3493 		if (new->entries[j].threshold <= usage) {
3494 			/*
3495 			 * new->current_threshold will not be used
3496 			 * until rcu_assign_pointer(), so it's safe to increment
3497 			 * it here.
3498 			 */
3499 			++new->current_threshold;
3500 		}
3501 		j++;
3502 	}
3503 
3504 swap_buffers:
3505 	/* Swap primary and spare array */
3506 	thresholds->spare = thresholds->primary;
3507 
3508 	rcu_assign_pointer(thresholds->primary, new);
3509 
3510 	/* To be sure that nobody uses thresholds */
3511 	synchronize_rcu();
3512 
3513 	/* If all events are unregistered, free the spare array */
3514 	if (!new) {
3515 		kfree(thresholds->spare);
3516 		thresholds->spare = NULL;
3517 	}
3518 unlock:
3519 	mutex_unlock(&memcg->thresholds_lock);
3520 }
3521 
3522 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3523 	struct eventfd_ctx *eventfd)
3524 {
3525 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3526 }
3527 
3528 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3529 	struct eventfd_ctx *eventfd)
3530 {
3531 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3532 }
3533 
3534 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3535 	struct eventfd_ctx *eventfd, const char *args)
3536 {
3537 	struct mem_cgroup_eventfd_list *event;
3538 
3539 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
3540 	if (!event)
3541 		return -ENOMEM;
3542 
3543 	spin_lock(&memcg_oom_lock);
3544 
3545 	event->eventfd = eventfd;
3546 	list_add(&event->list, &memcg->oom_notify);
3547 
3548 	/* already in OOM ? */
3549 	if (memcg->under_oom)
3550 		eventfd_signal(eventfd, 1);
3551 	spin_unlock(&memcg_oom_lock);
3552 
3553 	return 0;
3554 }
3555 
3556 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3557 	struct eventfd_ctx *eventfd)
3558 {
3559 	struct mem_cgroup_eventfd_list *ev, *tmp;
3560 
3561 	spin_lock(&memcg_oom_lock);
3562 
3563 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3564 		if (ev->eventfd == eventfd) {
3565 			list_del(&ev->list);
3566 			kfree(ev);
3567 		}
3568 	}
3569 
3570 	spin_unlock(&memcg_oom_lock);
3571 }
3572 
3573 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3574 {
3575 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3576 
3577 	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3578 	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3579 	return 0;
3580 }
3581 
3582 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3583 	struct cftype *cft, u64 val)
3584 {
3585 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3586 
3587 	/* cannot set to root cgroup and only 0 and 1 are allowed */
3588 	if (!css->parent || !((val == 0) || (val == 1)))
3589 		return -EINVAL;
3590 
3591 	memcg->oom_kill_disable = val;
3592 	if (!val)
3593 		memcg_oom_recover(memcg);
3594 
3595 	return 0;
3596 }
3597 
3598 #ifdef CONFIG_CGROUP_WRITEBACK
3599 
3600 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3601 {
3602 	return &memcg->cgwb_list;
3603 }
3604 
3605 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3606 {
3607 	return wb_domain_init(&memcg->cgwb_domain, gfp);
3608 }
3609 
3610 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3611 {
3612 	wb_domain_exit(&memcg->cgwb_domain);
3613 }
3614 
3615 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3616 {
3617 	wb_domain_size_changed(&memcg->cgwb_domain);
3618 }
3619 
3620 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3621 {
3622 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3623 
3624 	if (!memcg->css.parent)
3625 		return NULL;
3626 
3627 	return &memcg->cgwb_domain;
3628 }
3629 
3630 /**
3631  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3632  * @wb: bdi_writeback in question
3633  * @pfilepages: out parameter for number of file pages
3634  * @pheadroom: out parameter for number of allocatable pages according to memcg
3635  * @pdirty: out parameter for number of dirty pages
3636  * @pwriteback: out parameter for number of pages under writeback
3637  *
3638  * Determine the numbers of file, headroom, dirty, and writeback pages in
3639  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
3640  * is a bit more involved.
3641  *
3642  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
3643  * headroom is calculated as the lowest headroom of itself and the
3644  * ancestors.  Note that this doesn't consider the actual amount of
3645  * available memory in the system.  The caller should further cap
3646  * *@pheadroom accordingly.
3647  */
3648 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3649 			 unsigned long *pheadroom, unsigned long *pdirty,
3650 			 unsigned long *pwriteback)
3651 {
3652 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3653 	struct mem_cgroup *parent;
3654 
3655 	*pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3656 
3657 	/* this should eventually include NR_UNSTABLE_NFS */
3658 	*pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3659 	*pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3660 						     (1 << LRU_ACTIVE_FILE));
3661 	*pheadroom = PAGE_COUNTER_MAX;
3662 
3663 	while ((parent = parent_mem_cgroup(memcg))) {
3664 		unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3665 		unsigned long used = page_counter_read(&memcg->memory);
3666 
3667 		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3668 		memcg = parent;
3669 	}
3670 }
3671 
3672 #else	/* CONFIG_CGROUP_WRITEBACK */
3673 
3674 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3675 {
3676 	return 0;
3677 }
3678 
3679 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3680 {
3681 }
3682 
3683 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3684 {
3685 }
3686 
3687 #endif	/* CONFIG_CGROUP_WRITEBACK */
3688 
3689 /*
3690  * DO NOT USE IN NEW FILES.
3691  *
3692  * "cgroup.event_control" implementation.
3693  *
3694  * This is way over-engineered.  It tries to support fully configurable
3695  * events for each user.  Such level of flexibility is completely
3696  * unnecessary especially in the light of the planned unified hierarchy.
3697  *
3698  * Please deprecate this and replace with something simpler if at all
3699  * possible.
3700  */
3701 
3702 /*
3703  * Unregister event and free resources.
3704  *
3705  * Gets called from workqueue.
3706  */
3707 static void memcg_event_remove(struct work_struct *work)
3708 {
3709 	struct mem_cgroup_event *event =
3710 		container_of(work, struct mem_cgroup_event, remove);
3711 	struct mem_cgroup *memcg = event->memcg;
3712 
3713 	remove_wait_queue(event->wqh, &event->wait);
3714 
3715 	event->unregister_event(memcg, event->eventfd);
3716 
3717 	/* Notify userspace the event is going away. */
3718 	eventfd_signal(event->eventfd, 1);
3719 
3720 	eventfd_ctx_put(event->eventfd);
3721 	kfree(event);
3722 	css_put(&memcg->css);
3723 }
3724 
3725 /*
3726  * Gets called on POLLHUP on eventfd when user closes it.
3727  *
3728  * Called with wqh->lock held and interrupts disabled.
3729  */
3730 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3731 			    int sync, void *key)
3732 {
3733 	struct mem_cgroup_event *event =
3734 		container_of(wait, struct mem_cgroup_event, wait);
3735 	struct mem_cgroup *memcg = event->memcg;
3736 	unsigned long flags = (unsigned long)key;
3737 
3738 	if (flags & POLLHUP) {
3739 		/*
3740 		 * If the event has been detached at cgroup removal, we
3741 		 * can simply return knowing the other side will cleanup
3742 		 * for us.
3743 		 *
3744 		 * We can't race against event freeing since the other
3745 		 * side will require wqh->lock via remove_wait_queue(),
3746 		 * which we hold.
3747 		 */
3748 		spin_lock(&memcg->event_list_lock);
3749 		if (!list_empty(&event->list)) {
3750 			list_del_init(&event->list);
3751 			/*
3752 			 * We are in atomic context, but cgroup_event_remove()
3753 			 * may sleep, so we have to call it in workqueue.
3754 			 */
3755 			schedule_work(&event->remove);
3756 		}
3757 		spin_unlock(&memcg->event_list_lock);
3758 	}
3759 
3760 	return 0;
3761 }
3762 
3763 static void memcg_event_ptable_queue_proc(struct file *file,
3764 		wait_queue_head_t *wqh, poll_table *pt)
3765 {
3766 	struct mem_cgroup_event *event =
3767 		container_of(pt, struct mem_cgroup_event, pt);
3768 
3769 	event->wqh = wqh;
3770 	add_wait_queue(wqh, &event->wait);
3771 }
3772 
3773 /*
3774  * DO NOT USE IN NEW FILES.
3775  *
3776  * Parse input and register new cgroup event handler.
3777  *
3778  * Input must be in format '<event_fd> <control_fd> <args>'.
3779  * Interpretation of args is defined by control file implementation.
3780  */
3781 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3782 					 char *buf, size_t nbytes, loff_t off)
3783 {
3784 	struct cgroup_subsys_state *css = of_css(of);
3785 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3786 	struct mem_cgroup_event *event;
3787 	struct cgroup_subsys_state *cfile_css;
3788 	unsigned int efd, cfd;
3789 	struct fd efile;
3790 	struct fd cfile;
3791 	const char *name;
3792 	char *endp;
3793 	int ret;
3794 
3795 	buf = strstrip(buf);
3796 
3797 	efd = simple_strtoul(buf, &endp, 10);
3798 	if (*endp != ' ')
3799 		return -EINVAL;
3800 	buf = endp + 1;
3801 
3802 	cfd = simple_strtoul(buf, &endp, 10);
3803 	if ((*endp != ' ') && (*endp != '\0'))
3804 		return -EINVAL;
3805 	buf = endp + 1;
3806 
3807 	event = kzalloc(sizeof(*event), GFP_KERNEL);
3808 	if (!event)
3809 		return -ENOMEM;
3810 
3811 	event->memcg = memcg;
3812 	INIT_LIST_HEAD(&event->list);
3813 	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3814 	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3815 	INIT_WORK(&event->remove, memcg_event_remove);
3816 
3817 	efile = fdget(efd);
3818 	if (!efile.file) {
3819 		ret = -EBADF;
3820 		goto out_kfree;
3821 	}
3822 
3823 	event->eventfd = eventfd_ctx_fileget(efile.file);
3824 	if (IS_ERR(event->eventfd)) {
3825 		ret = PTR_ERR(event->eventfd);
3826 		goto out_put_efile;
3827 	}
3828 
3829 	cfile = fdget(cfd);
3830 	if (!cfile.file) {
3831 		ret = -EBADF;
3832 		goto out_put_eventfd;
3833 	}
3834 
3835 	/* the process need read permission on control file */
3836 	/* AV: shouldn't we check that it's been opened for read instead? */
3837 	ret = inode_permission(file_inode(cfile.file), MAY_READ);
3838 	if (ret < 0)
3839 		goto out_put_cfile;
3840 
3841 	/*
3842 	 * Determine the event callbacks and set them in @event.  This used
3843 	 * to be done via struct cftype but cgroup core no longer knows
3844 	 * about these events.  The following is crude but the whole thing
3845 	 * is for compatibility anyway.
3846 	 *
3847 	 * DO NOT ADD NEW FILES.
3848 	 */
3849 	name = cfile.file->f_path.dentry->d_name.name;
3850 
3851 	if (!strcmp(name, "memory.usage_in_bytes")) {
3852 		event->register_event = mem_cgroup_usage_register_event;
3853 		event->unregister_event = mem_cgroup_usage_unregister_event;
3854 	} else if (!strcmp(name, "memory.oom_control")) {
3855 		event->register_event = mem_cgroup_oom_register_event;
3856 		event->unregister_event = mem_cgroup_oom_unregister_event;
3857 	} else if (!strcmp(name, "memory.pressure_level")) {
3858 		event->register_event = vmpressure_register_event;
3859 		event->unregister_event = vmpressure_unregister_event;
3860 	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3861 		event->register_event = memsw_cgroup_usage_register_event;
3862 		event->unregister_event = memsw_cgroup_usage_unregister_event;
3863 	} else {
3864 		ret = -EINVAL;
3865 		goto out_put_cfile;
3866 	}
3867 
3868 	/*
3869 	 * Verify @cfile should belong to @css.  Also, remaining events are
3870 	 * automatically removed on cgroup destruction but the removal is
3871 	 * asynchronous, so take an extra ref on @css.
3872 	 */
3873 	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3874 					       &memory_cgrp_subsys);
3875 	ret = -EINVAL;
3876 	if (IS_ERR(cfile_css))
3877 		goto out_put_cfile;
3878 	if (cfile_css != css) {
3879 		css_put(cfile_css);
3880 		goto out_put_cfile;
3881 	}
3882 
3883 	ret = event->register_event(memcg, event->eventfd, buf);
3884 	if (ret)
3885 		goto out_put_css;
3886 
3887 	efile.file->f_op->poll(efile.file, &event->pt);
3888 
3889 	spin_lock(&memcg->event_list_lock);
3890 	list_add(&event->list, &memcg->event_list);
3891 	spin_unlock(&memcg->event_list_lock);
3892 
3893 	fdput(cfile);
3894 	fdput(efile);
3895 
3896 	return nbytes;
3897 
3898 out_put_css:
3899 	css_put(css);
3900 out_put_cfile:
3901 	fdput(cfile);
3902 out_put_eventfd:
3903 	eventfd_ctx_put(event->eventfd);
3904 out_put_efile:
3905 	fdput(efile);
3906 out_kfree:
3907 	kfree(event);
3908 
3909 	return ret;
3910 }
3911 
3912 static struct cftype mem_cgroup_legacy_files[] = {
3913 	{
3914 		.name = "usage_in_bytes",
3915 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3916 		.read_u64 = mem_cgroup_read_u64,
3917 	},
3918 	{
3919 		.name = "max_usage_in_bytes",
3920 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3921 		.write = mem_cgroup_reset,
3922 		.read_u64 = mem_cgroup_read_u64,
3923 	},
3924 	{
3925 		.name = "limit_in_bytes",
3926 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3927 		.write = mem_cgroup_write,
3928 		.read_u64 = mem_cgroup_read_u64,
3929 	},
3930 	{
3931 		.name = "soft_limit_in_bytes",
3932 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3933 		.write = mem_cgroup_write,
3934 		.read_u64 = mem_cgroup_read_u64,
3935 	},
3936 	{
3937 		.name = "failcnt",
3938 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3939 		.write = mem_cgroup_reset,
3940 		.read_u64 = mem_cgroup_read_u64,
3941 	},
3942 	{
3943 		.name = "stat",
3944 		.seq_show = memcg_stat_show,
3945 	},
3946 	{
3947 		.name = "force_empty",
3948 		.write = mem_cgroup_force_empty_write,
3949 	},
3950 	{
3951 		.name = "use_hierarchy",
3952 		.write_u64 = mem_cgroup_hierarchy_write,
3953 		.read_u64 = mem_cgroup_hierarchy_read,
3954 	},
3955 	{
3956 		.name = "cgroup.event_control",		/* XXX: for compat */
3957 		.write = memcg_write_event_control,
3958 		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3959 	},
3960 	{
3961 		.name = "swappiness",
3962 		.read_u64 = mem_cgroup_swappiness_read,
3963 		.write_u64 = mem_cgroup_swappiness_write,
3964 	},
3965 	{
3966 		.name = "move_charge_at_immigrate",
3967 		.read_u64 = mem_cgroup_move_charge_read,
3968 		.write_u64 = mem_cgroup_move_charge_write,
3969 	},
3970 	{
3971 		.name = "oom_control",
3972 		.seq_show = mem_cgroup_oom_control_read,
3973 		.write_u64 = mem_cgroup_oom_control_write,
3974 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3975 	},
3976 	{
3977 		.name = "pressure_level",
3978 	},
3979 #ifdef CONFIG_NUMA
3980 	{
3981 		.name = "numa_stat",
3982 		.seq_show = memcg_numa_stat_show,
3983 	},
3984 #endif
3985 	{
3986 		.name = "kmem.limit_in_bytes",
3987 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
3988 		.write = mem_cgroup_write,
3989 		.read_u64 = mem_cgroup_read_u64,
3990 	},
3991 	{
3992 		.name = "kmem.usage_in_bytes",
3993 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
3994 		.read_u64 = mem_cgroup_read_u64,
3995 	},
3996 	{
3997 		.name = "kmem.failcnt",
3998 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
3999 		.write = mem_cgroup_reset,
4000 		.read_u64 = mem_cgroup_read_u64,
4001 	},
4002 	{
4003 		.name = "kmem.max_usage_in_bytes",
4004 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4005 		.write = mem_cgroup_reset,
4006 		.read_u64 = mem_cgroup_read_u64,
4007 	},
4008 #ifdef CONFIG_SLABINFO
4009 	{
4010 		.name = "kmem.slabinfo",
4011 		.seq_start = memcg_slab_start,
4012 		.seq_next = memcg_slab_next,
4013 		.seq_stop = memcg_slab_stop,
4014 		.seq_show = memcg_slab_show,
4015 	},
4016 #endif
4017 	{
4018 		.name = "kmem.tcp.limit_in_bytes",
4019 		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4020 		.write = mem_cgroup_write,
4021 		.read_u64 = mem_cgroup_read_u64,
4022 	},
4023 	{
4024 		.name = "kmem.tcp.usage_in_bytes",
4025 		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4026 		.read_u64 = mem_cgroup_read_u64,
4027 	},
4028 	{
4029 		.name = "kmem.tcp.failcnt",
4030 		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4031 		.write = mem_cgroup_reset,
4032 		.read_u64 = mem_cgroup_read_u64,
4033 	},
4034 	{
4035 		.name = "kmem.tcp.max_usage_in_bytes",
4036 		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4037 		.write = mem_cgroup_reset,
4038 		.read_u64 = mem_cgroup_read_u64,
4039 	},
4040 	{ },	/* terminate */
4041 };
4042 
4043 /*
4044  * Private memory cgroup IDR
4045  *
4046  * Swap-out records and page cache shadow entries need to store memcg
4047  * references in constrained space, so we maintain an ID space that is
4048  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4049  * memory-controlled cgroups to 64k.
4050  *
4051  * However, there usually are many references to the oflline CSS after
4052  * the cgroup has been destroyed, such as page cache or reclaimable
4053  * slab objects, that don't need to hang on to the ID. We want to keep
4054  * those dead CSS from occupying IDs, or we might quickly exhaust the
4055  * relatively small ID space and prevent the creation of new cgroups
4056  * even when there are much fewer than 64k cgroups - possibly none.
4057  *
4058  * Maintain a private 16-bit ID space for memcg, and allow the ID to
4059  * be freed and recycled when it's no longer needed, which is usually
4060  * when the CSS is offlined.
4061  *
4062  * The only exception to that are records of swapped out tmpfs/shmem
4063  * pages that need to be attributed to live ancestors on swapin. But
4064  * those references are manageable from userspace.
4065  */
4066 
4067 static DEFINE_IDR(mem_cgroup_idr);
4068 
4069 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4070 {
4071 	VM_BUG_ON(atomic_read(&memcg->id.ref) <= 0);
4072 	atomic_add(n, &memcg->id.ref);
4073 }
4074 
4075 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4076 {
4077 	VM_BUG_ON(atomic_read(&memcg->id.ref) < n);
4078 	if (atomic_sub_and_test(n, &memcg->id.ref)) {
4079 		idr_remove(&mem_cgroup_idr, memcg->id.id);
4080 		memcg->id.id = 0;
4081 
4082 		/* Memcg ID pins CSS */
4083 		css_put(&memcg->css);
4084 	}
4085 }
4086 
4087 static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4088 {
4089 	mem_cgroup_id_get_many(memcg, 1);
4090 }
4091 
4092 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4093 {
4094 	mem_cgroup_id_put_many(memcg, 1);
4095 }
4096 
4097 /**
4098  * mem_cgroup_from_id - look up a memcg from a memcg id
4099  * @id: the memcg id to look up
4100  *
4101  * Caller must hold rcu_read_lock().
4102  */
4103 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4104 {
4105 	WARN_ON_ONCE(!rcu_read_lock_held());
4106 	return idr_find(&mem_cgroup_idr, id);
4107 }
4108 
4109 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4110 {
4111 	struct mem_cgroup_per_node *pn;
4112 	int tmp = node;
4113 	/*
4114 	 * This routine is called against possible nodes.
4115 	 * But it's BUG to call kmalloc() against offline node.
4116 	 *
4117 	 * TODO: this routine can waste much memory for nodes which will
4118 	 *       never be onlined. It's better to use memory hotplug callback
4119 	 *       function.
4120 	 */
4121 	if (!node_state(node, N_NORMAL_MEMORY))
4122 		tmp = -1;
4123 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4124 	if (!pn)
4125 		return 1;
4126 
4127 	lruvec_init(&pn->lruvec);
4128 	pn->usage_in_excess = 0;
4129 	pn->on_tree = false;
4130 	pn->memcg = memcg;
4131 
4132 	memcg->nodeinfo[node] = pn;
4133 	return 0;
4134 }
4135 
4136 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4137 {
4138 	kfree(memcg->nodeinfo[node]);
4139 }
4140 
4141 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4142 {
4143 	int node;
4144 
4145 	for_each_node(node)
4146 		free_mem_cgroup_per_node_info(memcg, node);
4147 	free_percpu(memcg->stat);
4148 	kfree(memcg);
4149 }
4150 
4151 static void mem_cgroup_free(struct mem_cgroup *memcg)
4152 {
4153 	memcg_wb_domain_exit(memcg);
4154 	__mem_cgroup_free(memcg);
4155 }
4156 
4157 static struct mem_cgroup *mem_cgroup_alloc(void)
4158 {
4159 	struct mem_cgroup *memcg;
4160 	size_t size;
4161 	int node;
4162 
4163 	size = sizeof(struct mem_cgroup);
4164 	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4165 
4166 	memcg = kzalloc(size, GFP_KERNEL);
4167 	if (!memcg)
4168 		return NULL;
4169 
4170 	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4171 				 1, MEM_CGROUP_ID_MAX,
4172 				 GFP_KERNEL);
4173 	if (memcg->id.id < 0)
4174 		goto fail;
4175 
4176 	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4177 	if (!memcg->stat)
4178 		goto fail;
4179 
4180 	for_each_node(node)
4181 		if (alloc_mem_cgroup_per_node_info(memcg, node))
4182 			goto fail;
4183 
4184 	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4185 		goto fail;
4186 
4187 	INIT_WORK(&memcg->high_work, high_work_func);
4188 	memcg->last_scanned_node = MAX_NUMNODES;
4189 	INIT_LIST_HEAD(&memcg->oom_notify);
4190 	mutex_init(&memcg->thresholds_lock);
4191 	spin_lock_init(&memcg->move_lock);
4192 	vmpressure_init(&memcg->vmpressure);
4193 	INIT_LIST_HEAD(&memcg->event_list);
4194 	spin_lock_init(&memcg->event_list_lock);
4195 	memcg->socket_pressure = jiffies;
4196 #ifndef CONFIG_SLOB
4197 	memcg->kmemcg_id = -1;
4198 #endif
4199 #ifdef CONFIG_CGROUP_WRITEBACK
4200 	INIT_LIST_HEAD(&memcg->cgwb_list);
4201 #endif
4202 	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4203 	return memcg;
4204 fail:
4205 	if (memcg->id.id > 0)
4206 		idr_remove(&mem_cgroup_idr, memcg->id.id);
4207 	__mem_cgroup_free(memcg);
4208 	return NULL;
4209 }
4210 
4211 static struct cgroup_subsys_state * __ref
4212 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4213 {
4214 	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4215 	struct mem_cgroup *memcg;
4216 	long error = -ENOMEM;
4217 
4218 	memcg = mem_cgroup_alloc();
4219 	if (!memcg)
4220 		return ERR_PTR(error);
4221 
4222 	memcg->high = PAGE_COUNTER_MAX;
4223 	memcg->soft_limit = PAGE_COUNTER_MAX;
4224 	if (parent) {
4225 		memcg->swappiness = mem_cgroup_swappiness(parent);
4226 		memcg->oom_kill_disable = parent->oom_kill_disable;
4227 	}
4228 	if (parent && parent->use_hierarchy) {
4229 		memcg->use_hierarchy = true;
4230 		page_counter_init(&memcg->memory, &parent->memory);
4231 		page_counter_init(&memcg->swap, &parent->swap);
4232 		page_counter_init(&memcg->memsw, &parent->memsw);
4233 		page_counter_init(&memcg->kmem, &parent->kmem);
4234 		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4235 	} else {
4236 		page_counter_init(&memcg->memory, NULL);
4237 		page_counter_init(&memcg->swap, NULL);
4238 		page_counter_init(&memcg->memsw, NULL);
4239 		page_counter_init(&memcg->kmem, NULL);
4240 		page_counter_init(&memcg->tcpmem, NULL);
4241 		/*
4242 		 * Deeper hierachy with use_hierarchy == false doesn't make
4243 		 * much sense so let cgroup subsystem know about this
4244 		 * unfortunate state in our controller.
4245 		 */
4246 		if (parent != root_mem_cgroup)
4247 			memory_cgrp_subsys.broken_hierarchy = true;
4248 	}
4249 
4250 	/* The following stuff does not apply to the root */
4251 	if (!parent) {
4252 		root_mem_cgroup = memcg;
4253 		return &memcg->css;
4254 	}
4255 
4256 	error = memcg_online_kmem(memcg);
4257 	if (error)
4258 		goto fail;
4259 
4260 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4261 		static_branch_inc(&memcg_sockets_enabled_key);
4262 
4263 	return &memcg->css;
4264 fail:
4265 	mem_cgroup_free(memcg);
4266 	return ERR_PTR(-ENOMEM);
4267 }
4268 
4269 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4270 {
4271 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4272 
4273 	/* Online state pins memcg ID, memcg ID pins CSS */
4274 	atomic_set(&memcg->id.ref, 1);
4275 	css_get(css);
4276 	return 0;
4277 }
4278 
4279 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4280 {
4281 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4282 	struct mem_cgroup_event *event, *tmp;
4283 
4284 	/*
4285 	 * Unregister events and notify userspace.
4286 	 * Notify userspace about cgroup removing only after rmdir of cgroup
4287 	 * directory to avoid race between userspace and kernelspace.
4288 	 */
4289 	spin_lock(&memcg->event_list_lock);
4290 	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4291 		list_del_init(&event->list);
4292 		schedule_work(&event->remove);
4293 	}
4294 	spin_unlock(&memcg->event_list_lock);
4295 
4296 	memcg_offline_kmem(memcg);
4297 	wb_memcg_offline(memcg);
4298 
4299 	mem_cgroup_id_put(memcg);
4300 }
4301 
4302 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4303 {
4304 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4305 
4306 	invalidate_reclaim_iterators(memcg);
4307 }
4308 
4309 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4310 {
4311 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4312 
4313 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4314 		static_branch_dec(&memcg_sockets_enabled_key);
4315 
4316 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4317 		static_branch_dec(&memcg_sockets_enabled_key);
4318 
4319 	vmpressure_cleanup(&memcg->vmpressure);
4320 	cancel_work_sync(&memcg->high_work);
4321 	mem_cgroup_remove_from_trees(memcg);
4322 	memcg_free_kmem(memcg);
4323 	mem_cgroup_free(memcg);
4324 }
4325 
4326 /**
4327  * mem_cgroup_css_reset - reset the states of a mem_cgroup
4328  * @css: the target css
4329  *
4330  * Reset the states of the mem_cgroup associated with @css.  This is
4331  * invoked when the userland requests disabling on the default hierarchy
4332  * but the memcg is pinned through dependency.  The memcg should stop
4333  * applying policies and should revert to the vanilla state as it may be
4334  * made visible again.
4335  *
4336  * The current implementation only resets the essential configurations.
4337  * This needs to be expanded to cover all the visible parts.
4338  */
4339 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4340 {
4341 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4342 
4343 	page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4344 	page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4345 	page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4346 	page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4347 	page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4348 	memcg->low = 0;
4349 	memcg->high = PAGE_COUNTER_MAX;
4350 	memcg->soft_limit = PAGE_COUNTER_MAX;
4351 	memcg_wb_domain_size_changed(memcg);
4352 }
4353 
4354 #ifdef CONFIG_MMU
4355 /* Handlers for move charge at task migration. */
4356 static int mem_cgroup_do_precharge(unsigned long count)
4357 {
4358 	int ret;
4359 
4360 	/* Try a single bulk charge without reclaim first, kswapd may wake */
4361 	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4362 	if (!ret) {
4363 		mc.precharge += count;
4364 		return ret;
4365 	}
4366 
4367 	/* Try charges one by one with reclaim, but do not retry */
4368 	while (count--) {
4369 		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
4370 		if (ret)
4371 			return ret;
4372 		mc.precharge++;
4373 		cond_resched();
4374 	}
4375 	return 0;
4376 }
4377 
4378 union mc_target {
4379 	struct page	*page;
4380 	swp_entry_t	ent;
4381 };
4382 
4383 enum mc_target_type {
4384 	MC_TARGET_NONE = 0,
4385 	MC_TARGET_PAGE,
4386 	MC_TARGET_SWAP,
4387 };
4388 
4389 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4390 						unsigned long addr, pte_t ptent)
4391 {
4392 	struct page *page = vm_normal_page(vma, addr, ptent);
4393 
4394 	if (!page || !page_mapped(page))
4395 		return NULL;
4396 	if (PageAnon(page)) {
4397 		if (!(mc.flags & MOVE_ANON))
4398 			return NULL;
4399 	} else {
4400 		if (!(mc.flags & MOVE_FILE))
4401 			return NULL;
4402 	}
4403 	if (!get_page_unless_zero(page))
4404 		return NULL;
4405 
4406 	return page;
4407 }
4408 
4409 #ifdef CONFIG_SWAP
4410 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4411 			pte_t ptent, swp_entry_t *entry)
4412 {
4413 	struct page *page = NULL;
4414 	swp_entry_t ent = pte_to_swp_entry(ptent);
4415 
4416 	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4417 		return NULL;
4418 	/*
4419 	 * Because lookup_swap_cache() updates some statistics counter,
4420 	 * we call find_get_page() with swapper_space directly.
4421 	 */
4422 	page = find_get_page(swap_address_space(ent), swp_offset(ent));
4423 	if (do_memsw_account())
4424 		entry->val = ent.val;
4425 
4426 	return page;
4427 }
4428 #else
4429 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4430 			pte_t ptent, swp_entry_t *entry)
4431 {
4432 	return NULL;
4433 }
4434 #endif
4435 
4436 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4437 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4438 {
4439 	struct page *page = NULL;
4440 	struct address_space *mapping;
4441 	pgoff_t pgoff;
4442 
4443 	if (!vma->vm_file) /* anonymous vma */
4444 		return NULL;
4445 	if (!(mc.flags & MOVE_FILE))
4446 		return NULL;
4447 
4448 	mapping = vma->vm_file->f_mapping;
4449 	pgoff = linear_page_index(vma, addr);
4450 
4451 	/* page is moved even if it's not RSS of this task(page-faulted). */
4452 #ifdef CONFIG_SWAP
4453 	/* shmem/tmpfs may report page out on swap: account for that too. */
4454 	if (shmem_mapping(mapping)) {
4455 		page = find_get_entry(mapping, pgoff);
4456 		if (radix_tree_exceptional_entry(page)) {
4457 			swp_entry_t swp = radix_to_swp_entry(page);
4458 			if (do_memsw_account())
4459 				*entry = swp;
4460 			page = find_get_page(swap_address_space(swp),
4461 					     swp_offset(swp));
4462 		}
4463 	} else
4464 		page = find_get_page(mapping, pgoff);
4465 #else
4466 	page = find_get_page(mapping, pgoff);
4467 #endif
4468 	return page;
4469 }
4470 
4471 /**
4472  * mem_cgroup_move_account - move account of the page
4473  * @page: the page
4474  * @compound: charge the page as compound or small page
4475  * @from: mem_cgroup which the page is moved from.
4476  * @to:	mem_cgroup which the page is moved to. @from != @to.
4477  *
4478  * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4479  *
4480  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4481  * from old cgroup.
4482  */
4483 static int mem_cgroup_move_account(struct page *page,
4484 				   bool compound,
4485 				   struct mem_cgroup *from,
4486 				   struct mem_cgroup *to)
4487 {
4488 	unsigned long flags;
4489 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4490 	int ret;
4491 	bool anon;
4492 
4493 	VM_BUG_ON(from == to);
4494 	VM_BUG_ON_PAGE(PageLRU(page), page);
4495 	VM_BUG_ON(compound && !PageTransHuge(page));
4496 
4497 	/*
4498 	 * Prevent mem_cgroup_migrate() from looking at
4499 	 * page->mem_cgroup of its source page while we change it.
4500 	 */
4501 	ret = -EBUSY;
4502 	if (!trylock_page(page))
4503 		goto out;
4504 
4505 	ret = -EINVAL;
4506 	if (page->mem_cgroup != from)
4507 		goto out_unlock;
4508 
4509 	anon = PageAnon(page);
4510 
4511 	spin_lock_irqsave(&from->move_lock, flags);
4512 
4513 	if (!anon && page_mapped(page)) {
4514 		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4515 			       nr_pages);
4516 		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4517 			       nr_pages);
4518 	}
4519 
4520 	/*
4521 	 * move_lock grabbed above and caller set from->moving_account, so
4522 	 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4523 	 * So mapping should be stable for dirty pages.
4524 	 */
4525 	if (!anon && PageDirty(page)) {
4526 		struct address_space *mapping = page_mapping(page);
4527 
4528 		if (mapping_cap_account_dirty(mapping)) {
4529 			__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4530 				       nr_pages);
4531 			__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4532 				       nr_pages);
4533 		}
4534 	}
4535 
4536 	if (PageWriteback(page)) {
4537 		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4538 			       nr_pages);
4539 		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4540 			       nr_pages);
4541 	}
4542 
4543 	/*
4544 	 * It is safe to change page->mem_cgroup here because the page
4545 	 * is referenced, charged, and isolated - we can't race with
4546 	 * uncharging, charging, migration, or LRU putback.
4547 	 */
4548 
4549 	/* caller should have done css_get */
4550 	page->mem_cgroup = to;
4551 	spin_unlock_irqrestore(&from->move_lock, flags);
4552 
4553 	ret = 0;
4554 
4555 	local_irq_disable();
4556 	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4557 	memcg_check_events(to, page);
4558 	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4559 	memcg_check_events(from, page);
4560 	local_irq_enable();
4561 out_unlock:
4562 	unlock_page(page);
4563 out:
4564 	return ret;
4565 }
4566 
4567 /**
4568  * get_mctgt_type - get target type of moving charge
4569  * @vma: the vma the pte to be checked belongs
4570  * @addr: the address corresponding to the pte to be checked
4571  * @ptent: the pte to be checked
4572  * @target: the pointer the target page or swap ent will be stored(can be NULL)
4573  *
4574  * Returns
4575  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
4576  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4577  *     move charge. if @target is not NULL, the page is stored in target->page
4578  *     with extra refcnt got(Callers should handle it).
4579  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4580  *     target for charge migration. if @target is not NULL, the entry is stored
4581  *     in target->ent.
4582  *
4583  * Called with pte lock held.
4584  */
4585 
4586 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4587 		unsigned long addr, pte_t ptent, union mc_target *target)
4588 {
4589 	struct page *page = NULL;
4590 	enum mc_target_type ret = MC_TARGET_NONE;
4591 	swp_entry_t ent = { .val = 0 };
4592 
4593 	if (pte_present(ptent))
4594 		page = mc_handle_present_pte(vma, addr, ptent);
4595 	else if (is_swap_pte(ptent))
4596 		page = mc_handle_swap_pte(vma, ptent, &ent);
4597 	else if (pte_none(ptent))
4598 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
4599 
4600 	if (!page && !ent.val)
4601 		return ret;
4602 	if (page) {
4603 		/*
4604 		 * Do only loose check w/o serialization.
4605 		 * mem_cgroup_move_account() checks the page is valid or
4606 		 * not under LRU exclusion.
4607 		 */
4608 		if (page->mem_cgroup == mc.from) {
4609 			ret = MC_TARGET_PAGE;
4610 			if (target)
4611 				target->page = page;
4612 		}
4613 		if (!ret || !target)
4614 			put_page(page);
4615 	}
4616 	/* There is a swap entry and a page doesn't exist or isn't charged */
4617 	if (ent.val && !ret &&
4618 	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4619 		ret = MC_TARGET_SWAP;
4620 		if (target)
4621 			target->ent = ent;
4622 	}
4623 	return ret;
4624 }
4625 
4626 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4627 /*
4628  * We don't consider swapping or file mapped pages because THP does not
4629  * support them for now.
4630  * Caller should make sure that pmd_trans_huge(pmd) is true.
4631  */
4632 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4633 		unsigned long addr, pmd_t pmd, union mc_target *target)
4634 {
4635 	struct page *page = NULL;
4636 	enum mc_target_type ret = MC_TARGET_NONE;
4637 
4638 	page = pmd_page(pmd);
4639 	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4640 	if (!(mc.flags & MOVE_ANON))
4641 		return ret;
4642 	if (page->mem_cgroup == mc.from) {
4643 		ret = MC_TARGET_PAGE;
4644 		if (target) {
4645 			get_page(page);
4646 			target->page = page;
4647 		}
4648 	}
4649 	return ret;
4650 }
4651 #else
4652 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4653 		unsigned long addr, pmd_t pmd, union mc_target *target)
4654 {
4655 	return MC_TARGET_NONE;
4656 }
4657 #endif
4658 
4659 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4660 					unsigned long addr, unsigned long end,
4661 					struct mm_walk *walk)
4662 {
4663 	struct vm_area_struct *vma = walk->vma;
4664 	pte_t *pte;
4665 	spinlock_t *ptl;
4666 
4667 	ptl = pmd_trans_huge_lock(pmd, vma);
4668 	if (ptl) {
4669 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4670 			mc.precharge += HPAGE_PMD_NR;
4671 		spin_unlock(ptl);
4672 		return 0;
4673 	}
4674 
4675 	if (pmd_trans_unstable(pmd))
4676 		return 0;
4677 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4678 	for (; addr != end; pte++, addr += PAGE_SIZE)
4679 		if (get_mctgt_type(vma, addr, *pte, NULL))
4680 			mc.precharge++;	/* increment precharge temporarily */
4681 	pte_unmap_unlock(pte - 1, ptl);
4682 	cond_resched();
4683 
4684 	return 0;
4685 }
4686 
4687 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4688 {
4689 	unsigned long precharge;
4690 
4691 	struct mm_walk mem_cgroup_count_precharge_walk = {
4692 		.pmd_entry = mem_cgroup_count_precharge_pte_range,
4693 		.mm = mm,
4694 	};
4695 	down_read(&mm->mmap_sem);
4696 	walk_page_range(0, mm->highest_vm_end,
4697 			&mem_cgroup_count_precharge_walk);
4698 	up_read(&mm->mmap_sem);
4699 
4700 	precharge = mc.precharge;
4701 	mc.precharge = 0;
4702 
4703 	return precharge;
4704 }
4705 
4706 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4707 {
4708 	unsigned long precharge = mem_cgroup_count_precharge(mm);
4709 
4710 	VM_BUG_ON(mc.moving_task);
4711 	mc.moving_task = current;
4712 	return mem_cgroup_do_precharge(precharge);
4713 }
4714 
4715 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4716 static void __mem_cgroup_clear_mc(void)
4717 {
4718 	struct mem_cgroup *from = mc.from;
4719 	struct mem_cgroup *to = mc.to;
4720 
4721 	/* we must uncharge all the leftover precharges from mc.to */
4722 	if (mc.precharge) {
4723 		cancel_charge(mc.to, mc.precharge);
4724 		mc.precharge = 0;
4725 	}
4726 	/*
4727 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4728 	 * we must uncharge here.
4729 	 */
4730 	if (mc.moved_charge) {
4731 		cancel_charge(mc.from, mc.moved_charge);
4732 		mc.moved_charge = 0;
4733 	}
4734 	/* we must fixup refcnts and charges */
4735 	if (mc.moved_swap) {
4736 		/* uncharge swap account from the old cgroup */
4737 		if (!mem_cgroup_is_root(mc.from))
4738 			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4739 
4740 		mem_cgroup_id_put_many(mc.from, mc.moved_swap);
4741 
4742 		/*
4743 		 * we charged both to->memory and to->memsw, so we
4744 		 * should uncharge to->memory.
4745 		 */
4746 		if (!mem_cgroup_is_root(mc.to))
4747 			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4748 
4749 		mem_cgroup_id_get_many(mc.to, mc.moved_swap);
4750 		css_put_many(&mc.to->css, mc.moved_swap);
4751 
4752 		mc.moved_swap = 0;
4753 	}
4754 	memcg_oom_recover(from);
4755 	memcg_oom_recover(to);
4756 	wake_up_all(&mc.waitq);
4757 }
4758 
4759 static void mem_cgroup_clear_mc(void)
4760 {
4761 	struct mm_struct *mm = mc.mm;
4762 
4763 	/*
4764 	 * we must clear moving_task before waking up waiters at the end of
4765 	 * task migration.
4766 	 */
4767 	mc.moving_task = NULL;
4768 	__mem_cgroup_clear_mc();
4769 	spin_lock(&mc.lock);
4770 	mc.from = NULL;
4771 	mc.to = NULL;
4772 	mc.mm = NULL;
4773 	spin_unlock(&mc.lock);
4774 
4775 	mmput(mm);
4776 }
4777 
4778 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4779 {
4780 	struct cgroup_subsys_state *css;
4781 	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4782 	struct mem_cgroup *from;
4783 	struct task_struct *leader, *p;
4784 	struct mm_struct *mm;
4785 	unsigned long move_flags;
4786 	int ret = 0;
4787 
4788 	/* charge immigration isn't supported on the default hierarchy */
4789 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4790 		return 0;
4791 
4792 	/*
4793 	 * Multi-process migrations only happen on the default hierarchy
4794 	 * where charge immigration is not used.  Perform charge
4795 	 * immigration if @tset contains a leader and whine if there are
4796 	 * multiple.
4797 	 */
4798 	p = NULL;
4799 	cgroup_taskset_for_each_leader(leader, css, tset) {
4800 		WARN_ON_ONCE(p);
4801 		p = leader;
4802 		memcg = mem_cgroup_from_css(css);
4803 	}
4804 	if (!p)
4805 		return 0;
4806 
4807 	/*
4808 	 * We are now commited to this value whatever it is. Changes in this
4809 	 * tunable will only affect upcoming migrations, not the current one.
4810 	 * So we need to save it, and keep it going.
4811 	 */
4812 	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4813 	if (!move_flags)
4814 		return 0;
4815 
4816 	from = mem_cgroup_from_task(p);
4817 
4818 	VM_BUG_ON(from == memcg);
4819 
4820 	mm = get_task_mm(p);
4821 	if (!mm)
4822 		return 0;
4823 	/* We move charges only when we move a owner of the mm */
4824 	if (mm->owner == p) {
4825 		VM_BUG_ON(mc.from);
4826 		VM_BUG_ON(mc.to);
4827 		VM_BUG_ON(mc.precharge);
4828 		VM_BUG_ON(mc.moved_charge);
4829 		VM_BUG_ON(mc.moved_swap);
4830 
4831 		spin_lock(&mc.lock);
4832 		mc.mm = mm;
4833 		mc.from = from;
4834 		mc.to = memcg;
4835 		mc.flags = move_flags;
4836 		spin_unlock(&mc.lock);
4837 		/* We set mc.moving_task later */
4838 
4839 		ret = mem_cgroup_precharge_mc(mm);
4840 		if (ret)
4841 			mem_cgroup_clear_mc();
4842 	} else {
4843 		mmput(mm);
4844 	}
4845 	return ret;
4846 }
4847 
4848 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4849 {
4850 	if (mc.to)
4851 		mem_cgroup_clear_mc();
4852 }
4853 
4854 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4855 				unsigned long addr, unsigned long end,
4856 				struct mm_walk *walk)
4857 {
4858 	int ret = 0;
4859 	struct vm_area_struct *vma = walk->vma;
4860 	pte_t *pte;
4861 	spinlock_t *ptl;
4862 	enum mc_target_type target_type;
4863 	union mc_target target;
4864 	struct page *page;
4865 
4866 	ptl = pmd_trans_huge_lock(pmd, vma);
4867 	if (ptl) {
4868 		if (mc.precharge < HPAGE_PMD_NR) {
4869 			spin_unlock(ptl);
4870 			return 0;
4871 		}
4872 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4873 		if (target_type == MC_TARGET_PAGE) {
4874 			page = target.page;
4875 			if (!isolate_lru_page(page)) {
4876 				if (!mem_cgroup_move_account(page, true,
4877 							     mc.from, mc.to)) {
4878 					mc.precharge -= HPAGE_PMD_NR;
4879 					mc.moved_charge += HPAGE_PMD_NR;
4880 				}
4881 				putback_lru_page(page);
4882 			}
4883 			put_page(page);
4884 		}
4885 		spin_unlock(ptl);
4886 		return 0;
4887 	}
4888 
4889 	if (pmd_trans_unstable(pmd))
4890 		return 0;
4891 retry:
4892 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4893 	for (; addr != end; addr += PAGE_SIZE) {
4894 		pte_t ptent = *(pte++);
4895 		swp_entry_t ent;
4896 
4897 		if (!mc.precharge)
4898 			break;
4899 
4900 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
4901 		case MC_TARGET_PAGE:
4902 			page = target.page;
4903 			/*
4904 			 * We can have a part of the split pmd here. Moving it
4905 			 * can be done but it would be too convoluted so simply
4906 			 * ignore such a partial THP and keep it in original
4907 			 * memcg. There should be somebody mapping the head.
4908 			 */
4909 			if (PageTransCompound(page))
4910 				goto put;
4911 			if (isolate_lru_page(page))
4912 				goto put;
4913 			if (!mem_cgroup_move_account(page, false,
4914 						mc.from, mc.to)) {
4915 				mc.precharge--;
4916 				/* we uncharge from mc.from later. */
4917 				mc.moved_charge++;
4918 			}
4919 			putback_lru_page(page);
4920 put:			/* get_mctgt_type() gets the page */
4921 			put_page(page);
4922 			break;
4923 		case MC_TARGET_SWAP:
4924 			ent = target.ent;
4925 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4926 				mc.precharge--;
4927 				/* we fixup refcnts and charges later. */
4928 				mc.moved_swap++;
4929 			}
4930 			break;
4931 		default:
4932 			break;
4933 		}
4934 	}
4935 	pte_unmap_unlock(pte - 1, ptl);
4936 	cond_resched();
4937 
4938 	if (addr != end) {
4939 		/*
4940 		 * We have consumed all precharges we got in can_attach().
4941 		 * We try charge one by one, but don't do any additional
4942 		 * charges to mc.to if we have failed in charge once in attach()
4943 		 * phase.
4944 		 */
4945 		ret = mem_cgroup_do_precharge(1);
4946 		if (!ret)
4947 			goto retry;
4948 	}
4949 
4950 	return ret;
4951 }
4952 
4953 static void mem_cgroup_move_charge(void)
4954 {
4955 	struct mm_walk mem_cgroup_move_charge_walk = {
4956 		.pmd_entry = mem_cgroup_move_charge_pte_range,
4957 		.mm = mc.mm,
4958 	};
4959 
4960 	lru_add_drain_all();
4961 	/*
4962 	 * Signal lock_page_memcg() to take the memcg's move_lock
4963 	 * while we're moving its pages to another memcg. Then wait
4964 	 * for already started RCU-only updates to finish.
4965 	 */
4966 	atomic_inc(&mc.from->moving_account);
4967 	synchronize_rcu();
4968 retry:
4969 	if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
4970 		/*
4971 		 * Someone who are holding the mmap_sem might be waiting in
4972 		 * waitq. So we cancel all extra charges, wake up all waiters,
4973 		 * and retry. Because we cancel precharges, we might not be able
4974 		 * to move enough charges, but moving charge is a best-effort
4975 		 * feature anyway, so it wouldn't be a big problem.
4976 		 */
4977 		__mem_cgroup_clear_mc();
4978 		cond_resched();
4979 		goto retry;
4980 	}
4981 	/*
4982 	 * When we have consumed all precharges and failed in doing
4983 	 * additional charge, the page walk just aborts.
4984 	 */
4985 	walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
4986 
4987 	up_read(&mc.mm->mmap_sem);
4988 	atomic_dec(&mc.from->moving_account);
4989 }
4990 
4991 static void mem_cgroup_move_task(void)
4992 {
4993 	if (mc.to) {
4994 		mem_cgroup_move_charge();
4995 		mem_cgroup_clear_mc();
4996 	}
4997 }
4998 #else	/* !CONFIG_MMU */
4999 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5000 {
5001 	return 0;
5002 }
5003 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5004 {
5005 }
5006 static void mem_cgroup_move_task(void)
5007 {
5008 }
5009 #endif
5010 
5011 /*
5012  * Cgroup retains root cgroups across [un]mount cycles making it necessary
5013  * to verify whether we're attached to the default hierarchy on each mount
5014  * attempt.
5015  */
5016 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5017 {
5018 	/*
5019 	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5020 	 * guarantees that @root doesn't have any children, so turning it
5021 	 * on for the root memcg is enough.
5022 	 */
5023 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5024 		root_mem_cgroup->use_hierarchy = true;
5025 	else
5026 		root_mem_cgroup->use_hierarchy = false;
5027 }
5028 
5029 static u64 memory_current_read(struct cgroup_subsys_state *css,
5030 			       struct cftype *cft)
5031 {
5032 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5033 
5034 	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5035 }
5036 
5037 static int memory_low_show(struct seq_file *m, void *v)
5038 {
5039 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5040 	unsigned long low = READ_ONCE(memcg->low);
5041 
5042 	if (low == PAGE_COUNTER_MAX)
5043 		seq_puts(m, "max\n");
5044 	else
5045 		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5046 
5047 	return 0;
5048 }
5049 
5050 static ssize_t memory_low_write(struct kernfs_open_file *of,
5051 				char *buf, size_t nbytes, loff_t off)
5052 {
5053 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5054 	unsigned long low;
5055 	int err;
5056 
5057 	buf = strstrip(buf);
5058 	err = page_counter_memparse(buf, "max", &low);
5059 	if (err)
5060 		return err;
5061 
5062 	memcg->low = low;
5063 
5064 	return nbytes;
5065 }
5066 
5067 static int memory_high_show(struct seq_file *m, void *v)
5068 {
5069 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5070 	unsigned long high = READ_ONCE(memcg->high);
5071 
5072 	if (high == PAGE_COUNTER_MAX)
5073 		seq_puts(m, "max\n");
5074 	else
5075 		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5076 
5077 	return 0;
5078 }
5079 
5080 static ssize_t memory_high_write(struct kernfs_open_file *of,
5081 				 char *buf, size_t nbytes, loff_t off)
5082 {
5083 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5084 	unsigned long nr_pages;
5085 	unsigned long high;
5086 	int err;
5087 
5088 	buf = strstrip(buf);
5089 	err = page_counter_memparse(buf, "max", &high);
5090 	if (err)
5091 		return err;
5092 
5093 	memcg->high = high;
5094 
5095 	nr_pages = page_counter_read(&memcg->memory);
5096 	if (nr_pages > high)
5097 		try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5098 					     GFP_KERNEL, true);
5099 
5100 	memcg_wb_domain_size_changed(memcg);
5101 	return nbytes;
5102 }
5103 
5104 static int memory_max_show(struct seq_file *m, void *v)
5105 {
5106 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5107 	unsigned long max = READ_ONCE(memcg->memory.limit);
5108 
5109 	if (max == PAGE_COUNTER_MAX)
5110 		seq_puts(m, "max\n");
5111 	else
5112 		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5113 
5114 	return 0;
5115 }
5116 
5117 static ssize_t memory_max_write(struct kernfs_open_file *of,
5118 				char *buf, size_t nbytes, loff_t off)
5119 {
5120 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5121 	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5122 	bool drained = false;
5123 	unsigned long max;
5124 	int err;
5125 
5126 	buf = strstrip(buf);
5127 	err = page_counter_memparse(buf, "max", &max);
5128 	if (err)
5129 		return err;
5130 
5131 	xchg(&memcg->memory.limit, max);
5132 
5133 	for (;;) {
5134 		unsigned long nr_pages = page_counter_read(&memcg->memory);
5135 
5136 		if (nr_pages <= max)
5137 			break;
5138 
5139 		if (signal_pending(current)) {
5140 			err = -EINTR;
5141 			break;
5142 		}
5143 
5144 		if (!drained) {
5145 			drain_all_stock(memcg);
5146 			drained = true;
5147 			continue;
5148 		}
5149 
5150 		if (nr_reclaims) {
5151 			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5152 							  GFP_KERNEL, true))
5153 				nr_reclaims--;
5154 			continue;
5155 		}
5156 
5157 		mem_cgroup_events(memcg, MEMCG_OOM, 1);
5158 		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5159 			break;
5160 	}
5161 
5162 	memcg_wb_domain_size_changed(memcg);
5163 	return nbytes;
5164 }
5165 
5166 static int memory_events_show(struct seq_file *m, void *v)
5167 {
5168 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5169 
5170 	seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5171 	seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5172 	seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5173 	seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5174 
5175 	return 0;
5176 }
5177 
5178 static int memory_stat_show(struct seq_file *m, void *v)
5179 {
5180 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5181 	unsigned long stat[MEMCG_NR_STAT];
5182 	unsigned long events[MEMCG_NR_EVENTS];
5183 	int i;
5184 
5185 	/*
5186 	 * Provide statistics on the state of the memory subsystem as
5187 	 * well as cumulative event counters that show past behavior.
5188 	 *
5189 	 * This list is ordered following a combination of these gradients:
5190 	 * 1) generic big picture -> specifics and details
5191 	 * 2) reflecting userspace activity -> reflecting kernel heuristics
5192 	 *
5193 	 * Current memory state:
5194 	 */
5195 
5196 	tree_stat(memcg, stat);
5197 	tree_events(memcg, events);
5198 
5199 	seq_printf(m, "anon %llu\n",
5200 		   (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
5201 	seq_printf(m, "file %llu\n",
5202 		   (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
5203 	seq_printf(m, "kernel_stack %llu\n",
5204 		   (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024);
5205 	seq_printf(m, "slab %llu\n",
5206 		   (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
5207 			 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5208 	seq_printf(m, "sock %llu\n",
5209 		   (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5210 
5211 	seq_printf(m, "file_mapped %llu\n",
5212 		   (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
5213 	seq_printf(m, "file_dirty %llu\n",
5214 		   (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
5215 	seq_printf(m, "file_writeback %llu\n",
5216 		   (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
5217 
5218 	for (i = 0; i < NR_LRU_LISTS; i++) {
5219 		struct mem_cgroup *mi;
5220 		unsigned long val = 0;
5221 
5222 		for_each_mem_cgroup_tree(mi, memcg)
5223 			val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5224 		seq_printf(m, "%s %llu\n",
5225 			   mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5226 	}
5227 
5228 	seq_printf(m, "slab_reclaimable %llu\n",
5229 		   (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
5230 	seq_printf(m, "slab_unreclaimable %llu\n",
5231 		   (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5232 
5233 	/* Accumulated memory events */
5234 
5235 	seq_printf(m, "pgfault %lu\n",
5236 		   events[MEM_CGROUP_EVENTS_PGFAULT]);
5237 	seq_printf(m, "pgmajfault %lu\n",
5238 		   events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
5239 
5240 	return 0;
5241 }
5242 
5243 static struct cftype memory_files[] = {
5244 	{
5245 		.name = "current",
5246 		.flags = CFTYPE_NOT_ON_ROOT,
5247 		.read_u64 = memory_current_read,
5248 	},
5249 	{
5250 		.name = "low",
5251 		.flags = CFTYPE_NOT_ON_ROOT,
5252 		.seq_show = memory_low_show,
5253 		.write = memory_low_write,
5254 	},
5255 	{
5256 		.name = "high",
5257 		.flags = CFTYPE_NOT_ON_ROOT,
5258 		.seq_show = memory_high_show,
5259 		.write = memory_high_write,
5260 	},
5261 	{
5262 		.name = "max",
5263 		.flags = CFTYPE_NOT_ON_ROOT,
5264 		.seq_show = memory_max_show,
5265 		.write = memory_max_write,
5266 	},
5267 	{
5268 		.name = "events",
5269 		.flags = CFTYPE_NOT_ON_ROOT,
5270 		.file_offset = offsetof(struct mem_cgroup, events_file),
5271 		.seq_show = memory_events_show,
5272 	},
5273 	{
5274 		.name = "stat",
5275 		.flags = CFTYPE_NOT_ON_ROOT,
5276 		.seq_show = memory_stat_show,
5277 	},
5278 	{ }	/* terminate */
5279 };
5280 
5281 struct cgroup_subsys memory_cgrp_subsys = {
5282 	.css_alloc = mem_cgroup_css_alloc,
5283 	.css_online = mem_cgroup_css_online,
5284 	.css_offline = mem_cgroup_css_offline,
5285 	.css_released = mem_cgroup_css_released,
5286 	.css_free = mem_cgroup_css_free,
5287 	.css_reset = mem_cgroup_css_reset,
5288 	.can_attach = mem_cgroup_can_attach,
5289 	.cancel_attach = mem_cgroup_cancel_attach,
5290 	.post_attach = mem_cgroup_move_task,
5291 	.bind = mem_cgroup_bind,
5292 	.dfl_cftypes = memory_files,
5293 	.legacy_cftypes = mem_cgroup_legacy_files,
5294 	.early_init = 0,
5295 };
5296 
5297 /**
5298  * mem_cgroup_low - check if memory consumption is below the normal range
5299  * @root: the highest ancestor to consider
5300  * @memcg: the memory cgroup to check
5301  *
5302  * Returns %true if memory consumption of @memcg, and that of all
5303  * configurable ancestors up to @root, is below the normal range.
5304  */
5305 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5306 {
5307 	if (mem_cgroup_disabled())
5308 		return false;
5309 
5310 	/*
5311 	 * The toplevel group doesn't have a configurable range, so
5312 	 * it's never low when looked at directly, and it is not
5313 	 * considered an ancestor when assessing the hierarchy.
5314 	 */
5315 
5316 	if (memcg == root_mem_cgroup)
5317 		return false;
5318 
5319 	if (page_counter_read(&memcg->memory) >= memcg->low)
5320 		return false;
5321 
5322 	while (memcg != root) {
5323 		memcg = parent_mem_cgroup(memcg);
5324 
5325 		if (memcg == root_mem_cgroup)
5326 			break;
5327 
5328 		if (page_counter_read(&memcg->memory) >= memcg->low)
5329 			return false;
5330 	}
5331 	return true;
5332 }
5333 
5334 /**
5335  * mem_cgroup_try_charge - try charging a page
5336  * @page: page to charge
5337  * @mm: mm context of the victim
5338  * @gfp_mask: reclaim mode
5339  * @memcgp: charged memcg return
5340  * @compound: charge the page as compound or small page
5341  *
5342  * Try to charge @page to the memcg that @mm belongs to, reclaiming
5343  * pages according to @gfp_mask if necessary.
5344  *
5345  * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5346  * Otherwise, an error code is returned.
5347  *
5348  * After page->mapping has been set up, the caller must finalize the
5349  * charge with mem_cgroup_commit_charge().  Or abort the transaction
5350  * with mem_cgroup_cancel_charge() in case page instantiation fails.
5351  */
5352 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5353 			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
5354 			  bool compound)
5355 {
5356 	struct mem_cgroup *memcg = NULL;
5357 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5358 	int ret = 0;
5359 
5360 	if (mem_cgroup_disabled())
5361 		goto out;
5362 
5363 	if (PageSwapCache(page)) {
5364 		/*
5365 		 * Every swap fault against a single page tries to charge the
5366 		 * page, bail as early as possible.  shmem_unuse() encounters
5367 		 * already charged pages, too.  The USED bit is protected by
5368 		 * the page lock, which serializes swap cache removal, which
5369 		 * in turn serializes uncharging.
5370 		 */
5371 		VM_BUG_ON_PAGE(!PageLocked(page), page);
5372 		if (page->mem_cgroup)
5373 			goto out;
5374 
5375 		if (do_swap_account) {
5376 			swp_entry_t ent = { .val = page_private(page), };
5377 			unsigned short id = lookup_swap_cgroup_id(ent);
5378 
5379 			rcu_read_lock();
5380 			memcg = mem_cgroup_from_id(id);
5381 			if (memcg && !css_tryget_online(&memcg->css))
5382 				memcg = NULL;
5383 			rcu_read_unlock();
5384 		}
5385 	}
5386 
5387 	if (!memcg)
5388 		memcg = get_mem_cgroup_from_mm(mm);
5389 
5390 	ret = try_charge(memcg, gfp_mask, nr_pages);
5391 
5392 	css_put(&memcg->css);
5393 out:
5394 	*memcgp = memcg;
5395 	return ret;
5396 }
5397 
5398 /**
5399  * mem_cgroup_commit_charge - commit a page charge
5400  * @page: page to charge
5401  * @memcg: memcg to charge the page to
5402  * @lrucare: page might be on LRU already
5403  * @compound: charge the page as compound or small page
5404  *
5405  * Finalize a charge transaction started by mem_cgroup_try_charge(),
5406  * after page->mapping has been set up.  This must happen atomically
5407  * as part of the page instantiation, i.e. under the page table lock
5408  * for anonymous pages, under the page lock for page and swap cache.
5409  *
5410  * In addition, the page must not be on the LRU during the commit, to
5411  * prevent racing with task migration.  If it might be, use @lrucare.
5412  *
5413  * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5414  */
5415 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5416 			      bool lrucare, bool compound)
5417 {
5418 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5419 
5420 	VM_BUG_ON_PAGE(!page->mapping, page);
5421 	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5422 
5423 	if (mem_cgroup_disabled())
5424 		return;
5425 	/*
5426 	 * Swap faults will attempt to charge the same page multiple
5427 	 * times.  But reuse_swap_page() might have removed the page
5428 	 * from swapcache already, so we can't check PageSwapCache().
5429 	 */
5430 	if (!memcg)
5431 		return;
5432 
5433 	commit_charge(page, memcg, lrucare);
5434 
5435 	local_irq_disable();
5436 	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5437 	memcg_check_events(memcg, page);
5438 	local_irq_enable();
5439 
5440 	if (do_memsw_account() && PageSwapCache(page)) {
5441 		swp_entry_t entry = { .val = page_private(page) };
5442 		/*
5443 		 * The swap entry might not get freed for a long time,
5444 		 * let's not wait for it.  The page already received a
5445 		 * memory+swap charge, drop the swap entry duplicate.
5446 		 */
5447 		mem_cgroup_uncharge_swap(entry);
5448 	}
5449 }
5450 
5451 /**
5452  * mem_cgroup_cancel_charge - cancel a page charge
5453  * @page: page to charge
5454  * @memcg: memcg to charge the page to
5455  * @compound: charge the page as compound or small page
5456  *
5457  * Cancel a charge transaction started by mem_cgroup_try_charge().
5458  */
5459 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5460 		bool compound)
5461 {
5462 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5463 
5464 	if (mem_cgroup_disabled())
5465 		return;
5466 	/*
5467 	 * Swap faults will attempt to charge the same page multiple
5468 	 * times.  But reuse_swap_page() might have removed the page
5469 	 * from swapcache already, so we can't check PageSwapCache().
5470 	 */
5471 	if (!memcg)
5472 		return;
5473 
5474 	cancel_charge(memcg, nr_pages);
5475 }
5476 
5477 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5478 			   unsigned long nr_anon, unsigned long nr_file,
5479 			   unsigned long nr_huge, unsigned long nr_kmem,
5480 			   struct page *dummy_page)
5481 {
5482 	unsigned long nr_pages = nr_anon + nr_file + nr_kmem;
5483 	unsigned long flags;
5484 
5485 	if (!mem_cgroup_is_root(memcg)) {
5486 		page_counter_uncharge(&memcg->memory, nr_pages);
5487 		if (do_memsw_account())
5488 			page_counter_uncharge(&memcg->memsw, nr_pages);
5489 		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && nr_kmem)
5490 			page_counter_uncharge(&memcg->kmem, nr_kmem);
5491 		memcg_oom_recover(memcg);
5492 	}
5493 
5494 	local_irq_save(flags);
5495 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5496 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5497 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5498 	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5499 	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5500 	memcg_check_events(memcg, dummy_page);
5501 	local_irq_restore(flags);
5502 
5503 	if (!mem_cgroup_is_root(memcg))
5504 		css_put_many(&memcg->css, nr_pages);
5505 }
5506 
5507 static void uncharge_list(struct list_head *page_list)
5508 {
5509 	struct mem_cgroup *memcg = NULL;
5510 	unsigned long nr_anon = 0;
5511 	unsigned long nr_file = 0;
5512 	unsigned long nr_huge = 0;
5513 	unsigned long nr_kmem = 0;
5514 	unsigned long pgpgout = 0;
5515 	struct list_head *next;
5516 	struct page *page;
5517 
5518 	/*
5519 	 * Note that the list can be a single page->lru; hence the
5520 	 * do-while loop instead of a simple list_for_each_entry().
5521 	 */
5522 	next = page_list->next;
5523 	do {
5524 		page = list_entry(next, struct page, lru);
5525 		next = page->lru.next;
5526 
5527 		VM_BUG_ON_PAGE(PageLRU(page), page);
5528 		VM_BUG_ON_PAGE(page_count(page), page);
5529 
5530 		if (!page->mem_cgroup)
5531 			continue;
5532 
5533 		/*
5534 		 * Nobody should be changing or seriously looking at
5535 		 * page->mem_cgroup at this point, we have fully
5536 		 * exclusive access to the page.
5537 		 */
5538 
5539 		if (memcg != page->mem_cgroup) {
5540 			if (memcg) {
5541 				uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5542 					       nr_huge, nr_kmem, page);
5543 				pgpgout = nr_anon = nr_file =
5544 					nr_huge = nr_kmem = 0;
5545 			}
5546 			memcg = page->mem_cgroup;
5547 		}
5548 
5549 		if (!PageKmemcg(page)) {
5550 			unsigned int nr_pages = 1;
5551 
5552 			if (PageTransHuge(page)) {
5553 				nr_pages <<= compound_order(page);
5554 				nr_huge += nr_pages;
5555 			}
5556 			if (PageAnon(page))
5557 				nr_anon += nr_pages;
5558 			else
5559 				nr_file += nr_pages;
5560 			pgpgout++;
5561 		} else {
5562 			nr_kmem += 1 << compound_order(page);
5563 			__ClearPageKmemcg(page);
5564 		}
5565 
5566 		page->mem_cgroup = NULL;
5567 	} while (next != page_list);
5568 
5569 	if (memcg)
5570 		uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5571 			       nr_huge, nr_kmem, page);
5572 }
5573 
5574 /**
5575  * mem_cgroup_uncharge - uncharge a page
5576  * @page: page to uncharge
5577  *
5578  * Uncharge a page previously charged with mem_cgroup_try_charge() and
5579  * mem_cgroup_commit_charge().
5580  */
5581 void mem_cgroup_uncharge(struct page *page)
5582 {
5583 	if (mem_cgroup_disabled())
5584 		return;
5585 
5586 	/* Don't touch page->lru of any random page, pre-check: */
5587 	if (!page->mem_cgroup)
5588 		return;
5589 
5590 	INIT_LIST_HEAD(&page->lru);
5591 	uncharge_list(&page->lru);
5592 }
5593 
5594 /**
5595  * mem_cgroup_uncharge_list - uncharge a list of page
5596  * @page_list: list of pages to uncharge
5597  *
5598  * Uncharge a list of pages previously charged with
5599  * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5600  */
5601 void mem_cgroup_uncharge_list(struct list_head *page_list)
5602 {
5603 	if (mem_cgroup_disabled())
5604 		return;
5605 
5606 	if (!list_empty(page_list))
5607 		uncharge_list(page_list);
5608 }
5609 
5610 /**
5611  * mem_cgroup_migrate - charge a page's replacement
5612  * @oldpage: currently circulating page
5613  * @newpage: replacement page
5614  *
5615  * Charge @newpage as a replacement page for @oldpage. @oldpage will
5616  * be uncharged upon free.
5617  *
5618  * Both pages must be locked, @newpage->mapping must be set up.
5619  */
5620 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5621 {
5622 	struct mem_cgroup *memcg;
5623 	unsigned int nr_pages;
5624 	bool compound;
5625 	unsigned long flags;
5626 
5627 	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5628 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5629 	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5630 	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5631 		       newpage);
5632 
5633 	if (mem_cgroup_disabled())
5634 		return;
5635 
5636 	/* Page cache replacement: new page already charged? */
5637 	if (newpage->mem_cgroup)
5638 		return;
5639 
5640 	/* Swapcache readahead pages can get replaced before being charged */
5641 	memcg = oldpage->mem_cgroup;
5642 	if (!memcg)
5643 		return;
5644 
5645 	/* Force-charge the new page. The old one will be freed soon */
5646 	compound = PageTransHuge(newpage);
5647 	nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5648 
5649 	page_counter_charge(&memcg->memory, nr_pages);
5650 	if (do_memsw_account())
5651 		page_counter_charge(&memcg->memsw, nr_pages);
5652 	css_get_many(&memcg->css, nr_pages);
5653 
5654 	commit_charge(newpage, memcg, false);
5655 
5656 	local_irq_save(flags);
5657 	mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5658 	memcg_check_events(memcg, newpage);
5659 	local_irq_restore(flags);
5660 }
5661 
5662 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5663 EXPORT_SYMBOL(memcg_sockets_enabled_key);
5664 
5665 void mem_cgroup_sk_alloc(struct sock *sk)
5666 {
5667 	struct mem_cgroup *memcg;
5668 
5669 	if (!mem_cgroup_sockets_enabled)
5670 		return;
5671 
5672 	/*
5673 	 * Socket cloning can throw us here with sk_memcg already
5674 	 * filled. It won't however, necessarily happen from
5675 	 * process context. So the test for root memcg given
5676 	 * the current task's memcg won't help us in this case.
5677 	 *
5678 	 * Respecting the original socket's memcg is a better
5679 	 * decision in this case.
5680 	 */
5681 	if (sk->sk_memcg) {
5682 		BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5683 		css_get(&sk->sk_memcg->css);
5684 		return;
5685 	}
5686 
5687 	rcu_read_lock();
5688 	memcg = mem_cgroup_from_task(current);
5689 	if (memcg == root_mem_cgroup)
5690 		goto out;
5691 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5692 		goto out;
5693 	if (css_tryget_online(&memcg->css))
5694 		sk->sk_memcg = memcg;
5695 out:
5696 	rcu_read_unlock();
5697 }
5698 
5699 void mem_cgroup_sk_free(struct sock *sk)
5700 {
5701 	if (sk->sk_memcg)
5702 		css_put(&sk->sk_memcg->css);
5703 }
5704 
5705 /**
5706  * mem_cgroup_charge_skmem - charge socket memory
5707  * @memcg: memcg to charge
5708  * @nr_pages: number of pages to charge
5709  *
5710  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5711  * @memcg's configured limit, %false if the charge had to be forced.
5712  */
5713 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5714 {
5715 	gfp_t gfp_mask = GFP_KERNEL;
5716 
5717 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5718 		struct page_counter *fail;
5719 
5720 		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5721 			memcg->tcpmem_pressure = 0;
5722 			return true;
5723 		}
5724 		page_counter_charge(&memcg->tcpmem, nr_pages);
5725 		memcg->tcpmem_pressure = 1;
5726 		return false;
5727 	}
5728 
5729 	/* Don't block in the packet receive path */
5730 	if (in_softirq())
5731 		gfp_mask = GFP_NOWAIT;
5732 
5733 	this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5734 
5735 	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5736 		return true;
5737 
5738 	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5739 	return false;
5740 }
5741 
5742 /**
5743  * mem_cgroup_uncharge_skmem - uncharge socket memory
5744  * @memcg - memcg to uncharge
5745  * @nr_pages - number of pages to uncharge
5746  */
5747 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5748 {
5749 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5750 		page_counter_uncharge(&memcg->tcpmem, nr_pages);
5751 		return;
5752 	}
5753 
5754 	this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5755 
5756 	page_counter_uncharge(&memcg->memory, nr_pages);
5757 	css_put_many(&memcg->css, nr_pages);
5758 }
5759 
5760 static int __init cgroup_memory(char *s)
5761 {
5762 	char *token;
5763 
5764 	while ((token = strsep(&s, ",")) != NULL) {
5765 		if (!*token)
5766 			continue;
5767 		if (!strcmp(token, "nosocket"))
5768 			cgroup_memory_nosocket = true;
5769 		if (!strcmp(token, "nokmem"))
5770 			cgroup_memory_nokmem = true;
5771 	}
5772 	return 0;
5773 }
5774 __setup("cgroup.memory=", cgroup_memory);
5775 
5776 /*
5777  * subsys_initcall() for memory controller.
5778  *
5779  * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
5780  * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
5781  * basically everything that doesn't depend on a specific mem_cgroup structure
5782  * should be initialized from here.
5783  */
5784 static int __init mem_cgroup_init(void)
5785 {
5786 	int cpu, node;
5787 
5788 #ifndef CONFIG_SLOB
5789 	/*
5790 	 * Kmem cache creation is mostly done with the slab_mutex held,
5791 	 * so use a workqueue with limited concurrency to avoid stalling
5792 	 * all worker threads in case lots of cgroups are created and
5793 	 * destroyed simultaneously.
5794 	 */
5795 	memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
5796 	BUG_ON(!memcg_kmem_cache_wq);
5797 #endif
5798 
5799 	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
5800 				  memcg_hotplug_cpu_dead);
5801 
5802 	for_each_possible_cpu(cpu)
5803 		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5804 			  drain_local_stock);
5805 
5806 	for_each_node(node) {
5807 		struct mem_cgroup_tree_per_node *rtpn;
5808 
5809 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5810 				    node_online(node) ? node : NUMA_NO_NODE);
5811 
5812 		rtpn->rb_root = RB_ROOT;
5813 		spin_lock_init(&rtpn->lock);
5814 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
5815 	}
5816 
5817 	return 0;
5818 }
5819 subsys_initcall(mem_cgroup_init);
5820 
5821 #ifdef CONFIG_MEMCG_SWAP
5822 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
5823 {
5824 	while (!atomic_inc_not_zero(&memcg->id.ref)) {
5825 		/*
5826 		 * The root cgroup cannot be destroyed, so it's refcount must
5827 		 * always be >= 1.
5828 		 */
5829 		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
5830 			VM_BUG_ON(1);
5831 			break;
5832 		}
5833 		memcg = parent_mem_cgroup(memcg);
5834 		if (!memcg)
5835 			memcg = root_mem_cgroup;
5836 	}
5837 	return memcg;
5838 }
5839 
5840 /**
5841  * mem_cgroup_swapout - transfer a memsw charge to swap
5842  * @page: page whose memsw charge to transfer
5843  * @entry: swap entry to move the charge to
5844  *
5845  * Transfer the memsw charge of @page to @entry.
5846  */
5847 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5848 {
5849 	struct mem_cgroup *memcg, *swap_memcg;
5850 	unsigned short oldid;
5851 
5852 	VM_BUG_ON_PAGE(PageLRU(page), page);
5853 	VM_BUG_ON_PAGE(page_count(page), page);
5854 
5855 	if (!do_memsw_account())
5856 		return;
5857 
5858 	memcg = page->mem_cgroup;
5859 
5860 	/* Readahead page, never charged */
5861 	if (!memcg)
5862 		return;
5863 
5864 	/*
5865 	 * In case the memcg owning these pages has been offlined and doesn't
5866 	 * have an ID allocated to it anymore, charge the closest online
5867 	 * ancestor for the swap instead and transfer the memory+swap charge.
5868 	 */
5869 	swap_memcg = mem_cgroup_id_get_online(memcg);
5870 	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg));
5871 	VM_BUG_ON_PAGE(oldid, page);
5872 	mem_cgroup_swap_statistics(swap_memcg, true);
5873 
5874 	page->mem_cgroup = NULL;
5875 
5876 	if (!mem_cgroup_is_root(memcg))
5877 		page_counter_uncharge(&memcg->memory, 1);
5878 
5879 	if (memcg != swap_memcg) {
5880 		if (!mem_cgroup_is_root(swap_memcg))
5881 			page_counter_charge(&swap_memcg->memsw, 1);
5882 		page_counter_uncharge(&memcg->memsw, 1);
5883 	}
5884 
5885 	/*
5886 	 * Interrupts should be disabled here because the caller holds the
5887 	 * mapping->tree_lock lock which is taken with interrupts-off. It is
5888 	 * important here to have the interrupts disabled because it is the
5889 	 * only synchronisation we have for udpating the per-CPU variables.
5890 	 */
5891 	VM_BUG_ON(!irqs_disabled());
5892 	mem_cgroup_charge_statistics(memcg, page, false, -1);
5893 	memcg_check_events(memcg, page);
5894 
5895 	if (!mem_cgroup_is_root(memcg))
5896 		css_put(&memcg->css);
5897 }
5898 
5899 /*
5900  * mem_cgroup_try_charge_swap - try charging a swap entry
5901  * @page: page being added to swap
5902  * @entry: swap entry to charge
5903  *
5904  * Try to charge @entry to the memcg that @page belongs to.
5905  *
5906  * Returns 0 on success, -ENOMEM on failure.
5907  */
5908 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5909 {
5910 	struct mem_cgroup *memcg;
5911 	struct page_counter *counter;
5912 	unsigned short oldid;
5913 
5914 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5915 		return 0;
5916 
5917 	memcg = page->mem_cgroup;
5918 
5919 	/* Readahead page, never charged */
5920 	if (!memcg)
5921 		return 0;
5922 
5923 	memcg = mem_cgroup_id_get_online(memcg);
5924 
5925 	if (!mem_cgroup_is_root(memcg) &&
5926 	    !page_counter_try_charge(&memcg->swap, 1, &counter)) {
5927 		mem_cgroup_id_put(memcg);
5928 		return -ENOMEM;
5929 	}
5930 
5931 	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5932 	VM_BUG_ON_PAGE(oldid, page);
5933 	mem_cgroup_swap_statistics(memcg, true);
5934 
5935 	return 0;
5936 }
5937 
5938 /**
5939  * mem_cgroup_uncharge_swap - uncharge a swap entry
5940  * @entry: swap entry to uncharge
5941  *
5942  * Drop the swap charge associated with @entry.
5943  */
5944 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5945 {
5946 	struct mem_cgroup *memcg;
5947 	unsigned short id;
5948 
5949 	if (!do_swap_account)
5950 		return;
5951 
5952 	id = swap_cgroup_record(entry, 0);
5953 	rcu_read_lock();
5954 	memcg = mem_cgroup_from_id(id);
5955 	if (memcg) {
5956 		if (!mem_cgroup_is_root(memcg)) {
5957 			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5958 				page_counter_uncharge(&memcg->swap, 1);
5959 			else
5960 				page_counter_uncharge(&memcg->memsw, 1);
5961 		}
5962 		mem_cgroup_swap_statistics(memcg, false);
5963 		mem_cgroup_id_put(memcg);
5964 	}
5965 	rcu_read_unlock();
5966 }
5967 
5968 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5969 {
5970 	long nr_swap_pages = get_nr_swap_pages();
5971 
5972 	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5973 		return nr_swap_pages;
5974 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5975 		nr_swap_pages = min_t(long, nr_swap_pages,
5976 				      READ_ONCE(memcg->swap.limit) -
5977 				      page_counter_read(&memcg->swap));
5978 	return nr_swap_pages;
5979 }
5980 
5981 bool mem_cgroup_swap_full(struct page *page)
5982 {
5983 	struct mem_cgroup *memcg;
5984 
5985 	VM_BUG_ON_PAGE(!PageLocked(page), page);
5986 
5987 	if (vm_swap_full())
5988 		return true;
5989 	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5990 		return false;
5991 
5992 	memcg = page->mem_cgroup;
5993 	if (!memcg)
5994 		return false;
5995 
5996 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5997 		if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
5998 			return true;
5999 
6000 	return false;
6001 }
6002 
6003 /* for remember boot option*/
6004 #ifdef CONFIG_MEMCG_SWAP_ENABLED
6005 static int really_do_swap_account __initdata = 1;
6006 #else
6007 static int really_do_swap_account __initdata;
6008 #endif
6009 
6010 static int __init enable_swap_account(char *s)
6011 {
6012 	if (!strcmp(s, "1"))
6013 		really_do_swap_account = 1;
6014 	else if (!strcmp(s, "0"))
6015 		really_do_swap_account = 0;
6016 	return 1;
6017 }
6018 __setup("swapaccount=", enable_swap_account);
6019 
6020 static u64 swap_current_read(struct cgroup_subsys_state *css,
6021 			     struct cftype *cft)
6022 {
6023 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6024 
6025 	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6026 }
6027 
6028 static int swap_max_show(struct seq_file *m, void *v)
6029 {
6030 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
6031 	unsigned long max = READ_ONCE(memcg->swap.limit);
6032 
6033 	if (max == PAGE_COUNTER_MAX)
6034 		seq_puts(m, "max\n");
6035 	else
6036 		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
6037 
6038 	return 0;
6039 }
6040 
6041 static ssize_t swap_max_write(struct kernfs_open_file *of,
6042 			      char *buf, size_t nbytes, loff_t off)
6043 {
6044 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6045 	unsigned long max;
6046 	int err;
6047 
6048 	buf = strstrip(buf);
6049 	err = page_counter_memparse(buf, "max", &max);
6050 	if (err)
6051 		return err;
6052 
6053 	mutex_lock(&memcg_limit_mutex);
6054 	err = page_counter_limit(&memcg->swap, max);
6055 	mutex_unlock(&memcg_limit_mutex);
6056 	if (err)
6057 		return err;
6058 
6059 	return nbytes;
6060 }
6061 
6062 static struct cftype swap_files[] = {
6063 	{
6064 		.name = "swap.current",
6065 		.flags = CFTYPE_NOT_ON_ROOT,
6066 		.read_u64 = swap_current_read,
6067 	},
6068 	{
6069 		.name = "swap.max",
6070 		.flags = CFTYPE_NOT_ON_ROOT,
6071 		.seq_show = swap_max_show,
6072 		.write = swap_max_write,
6073 	},
6074 	{ }	/* terminate */
6075 };
6076 
6077 static struct cftype memsw_cgroup_files[] = {
6078 	{
6079 		.name = "memsw.usage_in_bytes",
6080 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6081 		.read_u64 = mem_cgroup_read_u64,
6082 	},
6083 	{
6084 		.name = "memsw.max_usage_in_bytes",
6085 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6086 		.write = mem_cgroup_reset,
6087 		.read_u64 = mem_cgroup_read_u64,
6088 	},
6089 	{
6090 		.name = "memsw.limit_in_bytes",
6091 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6092 		.write = mem_cgroup_write,
6093 		.read_u64 = mem_cgroup_read_u64,
6094 	},
6095 	{
6096 		.name = "memsw.failcnt",
6097 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6098 		.write = mem_cgroup_reset,
6099 		.read_u64 = mem_cgroup_read_u64,
6100 	},
6101 	{ },	/* terminate */
6102 };
6103 
6104 static int __init mem_cgroup_swap_init(void)
6105 {
6106 	if (!mem_cgroup_disabled() && really_do_swap_account) {
6107 		do_swap_account = 1;
6108 		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6109 					       swap_files));
6110 		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6111 						  memsw_cgroup_files));
6112 	}
6113 	return 0;
6114 }
6115 subsys_initcall(mem_cgroup_swap_init);
6116 
6117 #endif /* CONFIG_MEMCG_SWAP */
6118