xref: /openbmc/linux/mm/memcontrol.c (revision 4dc7ccf7)
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  */
23 
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/mutex.h>
37 #include <linux/rbtree.h>
38 #include <linux/slab.h>
39 #include <linux/swap.h>
40 #include <linux/swapops.h>
41 #include <linux/spinlock.h>
42 #include <linux/eventfd.h>
43 #include <linux/sort.h>
44 #include <linux/fs.h>
45 #include <linux/seq_file.h>
46 #include <linux/vmalloc.h>
47 #include <linux/mm_inline.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/cpu.h>
50 #include "internal.h"
51 
52 #include <asm/uaccess.h>
53 
54 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
55 #define MEM_CGROUP_RECLAIM_RETRIES	5
56 struct mem_cgroup *root_mem_cgroup __read_mostly;
57 
58 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
59 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
60 int do_swap_account __read_mostly;
61 static int really_do_swap_account __initdata = 1; /* for remember boot option*/
62 #else
63 #define do_swap_account		(0)
64 #endif
65 
66 /*
67  * Per memcg event counter is incremented at every pagein/pageout. This counter
68  * is used for trigger some periodic events. This is straightforward and better
69  * than using jiffies etc. to handle periodic memcg event.
70  *
71  * These values will be used as !((event) & ((1 <<(thresh)) - 1))
72  */
73 #define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
74 #define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
75 
76 /*
77  * Statistics for memory cgroup.
78  */
79 enum mem_cgroup_stat_index {
80 	/*
81 	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
82 	 */
83 	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
84 	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
85 	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
86 	MEM_CGROUP_STAT_PGPGIN_COUNT,	/* # of pages paged in */
87 	MEM_CGROUP_STAT_PGPGOUT_COUNT,	/* # of pages paged out */
88 	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
89 	MEM_CGROUP_EVENTS,	/* incremented at every  pagein/pageout */
90 
91 	MEM_CGROUP_STAT_NSTATS,
92 };
93 
94 struct mem_cgroup_stat_cpu {
95 	s64 count[MEM_CGROUP_STAT_NSTATS];
96 };
97 
98 /*
99  * per-zone information in memory controller.
100  */
101 struct mem_cgroup_per_zone {
102 	/*
103 	 * spin_lock to protect the per cgroup LRU
104 	 */
105 	struct list_head	lists[NR_LRU_LISTS];
106 	unsigned long		count[NR_LRU_LISTS];
107 
108 	struct zone_reclaim_stat reclaim_stat;
109 	struct rb_node		tree_node;	/* RB tree node */
110 	unsigned long long	usage_in_excess;/* Set to the value by which */
111 						/* the soft limit is exceeded*/
112 	bool			on_tree;
113 	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
114 						/* use container_of	   */
115 };
116 /* Macro for accessing counter */
117 #define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])
118 
119 struct mem_cgroup_per_node {
120 	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
121 };
122 
123 struct mem_cgroup_lru_info {
124 	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
125 };
126 
127 /*
128  * Cgroups above their limits are maintained in a RB-Tree, independent of
129  * their hierarchy representation
130  */
131 
132 struct mem_cgroup_tree_per_zone {
133 	struct rb_root rb_root;
134 	spinlock_t lock;
135 };
136 
137 struct mem_cgroup_tree_per_node {
138 	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
139 };
140 
141 struct mem_cgroup_tree {
142 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
143 };
144 
145 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
146 
147 struct mem_cgroup_threshold {
148 	struct eventfd_ctx *eventfd;
149 	u64 threshold;
150 };
151 
152 struct mem_cgroup_threshold_ary {
153 	/* An array index points to threshold just below usage. */
154 	atomic_t current_threshold;
155 	/* Size of entries[] */
156 	unsigned int size;
157 	/* Array of thresholds */
158 	struct mem_cgroup_threshold entries[0];
159 };
160 
161 static void mem_cgroup_threshold(struct mem_cgroup *mem);
162 
163 /*
164  * The memory controller data structure. The memory controller controls both
165  * page cache and RSS per cgroup. We would eventually like to provide
166  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
167  * to help the administrator determine what knobs to tune.
168  *
169  * TODO: Add a water mark for the memory controller. Reclaim will begin when
170  * we hit the water mark. May be even add a low water mark, such that
171  * no reclaim occurs from a cgroup at it's low water mark, this is
172  * a feature that will be implemented much later in the future.
173  */
174 struct mem_cgroup {
175 	struct cgroup_subsys_state css;
176 	/*
177 	 * the counter to account for memory usage
178 	 */
179 	struct res_counter res;
180 	/*
181 	 * the counter to account for mem+swap usage.
182 	 */
183 	struct res_counter memsw;
184 	/*
185 	 * Per cgroup active and inactive list, similar to the
186 	 * per zone LRU lists.
187 	 */
188 	struct mem_cgroup_lru_info info;
189 
190 	/*
191 	  protect against reclaim related member.
192 	*/
193 	spinlock_t reclaim_param_lock;
194 
195 	int	prev_priority;	/* for recording reclaim priority */
196 
197 	/*
198 	 * While reclaiming in a hierarchy, we cache the last child we
199 	 * reclaimed from.
200 	 */
201 	int last_scanned_child;
202 	/*
203 	 * Should the accounting and control be hierarchical, per subtree?
204 	 */
205 	bool use_hierarchy;
206 	atomic_t	oom_lock;
207 	atomic_t	refcnt;
208 
209 	unsigned int	swappiness;
210 
211 	/* set when res.limit == memsw.limit */
212 	bool		memsw_is_minimum;
213 
214 	/* protect arrays of thresholds */
215 	struct mutex thresholds_lock;
216 
217 	/* thresholds for memory usage. RCU-protected */
218 	struct mem_cgroup_threshold_ary *thresholds;
219 
220 	/* thresholds for mem+swap usage. RCU-protected */
221 	struct mem_cgroup_threshold_ary *memsw_thresholds;
222 
223 	/*
224 	 * Should we move charges of a task when a task is moved into this
225 	 * mem_cgroup ? And what type of charges should we move ?
226 	 */
227 	unsigned long 	move_charge_at_immigrate;
228 
229 	/*
230 	 * percpu counter.
231 	 */
232 	struct mem_cgroup_stat_cpu *stat;
233 };
234 
235 /* Stuffs for move charges at task migration. */
236 /*
237  * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
238  * left-shifted bitmap of these types.
239  */
240 enum move_type {
241 	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
242 	NR_MOVE_TYPE,
243 };
244 
245 /* "mc" and its members are protected by cgroup_mutex */
246 static struct move_charge_struct {
247 	struct mem_cgroup *from;
248 	struct mem_cgroup *to;
249 	unsigned long precharge;
250 	unsigned long moved_charge;
251 	unsigned long moved_swap;
252 	struct task_struct *moving_task;	/* a task moving charges */
253 	wait_queue_head_t waitq;		/* a waitq for other context */
254 } mc = {
255 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
256 };
257 
258 /*
259  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
260  * limit reclaim to prevent infinite loops, if they ever occur.
261  */
262 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
263 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)
264 
265 enum charge_type {
266 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
267 	MEM_CGROUP_CHARGE_TYPE_MAPPED,
268 	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
269 	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
270 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
271 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
272 	NR_CHARGE_TYPE,
273 };
274 
275 /* only for here (for easy reading.) */
276 #define PCGF_CACHE	(1UL << PCG_CACHE)
277 #define PCGF_USED	(1UL << PCG_USED)
278 #define PCGF_LOCK	(1UL << PCG_LOCK)
279 /* Not used, but added here for completeness */
280 #define PCGF_ACCT	(1UL << PCG_ACCT)
281 
282 /* for encoding cft->private value on file */
283 #define _MEM			(0)
284 #define _MEMSWAP		(1)
285 #define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
286 #define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
287 #define MEMFILE_ATTR(val)	((val) & 0xffff)
288 
289 /*
290  * Reclaim flags for mem_cgroup_hierarchical_reclaim
291  */
292 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
293 #define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
294 #define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
295 #define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
296 #define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2
297 #define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
298 
299 static void mem_cgroup_get(struct mem_cgroup *mem);
300 static void mem_cgroup_put(struct mem_cgroup *mem);
301 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
302 static void drain_all_stock_async(void);
303 
304 static struct mem_cgroup_per_zone *
305 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
306 {
307 	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
308 }
309 
310 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
311 {
312 	return &mem->css;
313 }
314 
315 static struct mem_cgroup_per_zone *
316 page_cgroup_zoneinfo(struct page_cgroup *pc)
317 {
318 	struct mem_cgroup *mem = pc->mem_cgroup;
319 	int nid = page_cgroup_nid(pc);
320 	int zid = page_cgroup_zid(pc);
321 
322 	if (!mem)
323 		return NULL;
324 
325 	return mem_cgroup_zoneinfo(mem, nid, zid);
326 }
327 
328 static struct mem_cgroup_tree_per_zone *
329 soft_limit_tree_node_zone(int nid, int zid)
330 {
331 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
332 }
333 
334 static struct mem_cgroup_tree_per_zone *
335 soft_limit_tree_from_page(struct page *page)
336 {
337 	int nid = page_to_nid(page);
338 	int zid = page_zonenum(page);
339 
340 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
341 }
342 
343 static void
344 __mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
345 				struct mem_cgroup_per_zone *mz,
346 				struct mem_cgroup_tree_per_zone *mctz,
347 				unsigned long long new_usage_in_excess)
348 {
349 	struct rb_node **p = &mctz->rb_root.rb_node;
350 	struct rb_node *parent = NULL;
351 	struct mem_cgroup_per_zone *mz_node;
352 
353 	if (mz->on_tree)
354 		return;
355 
356 	mz->usage_in_excess = new_usage_in_excess;
357 	if (!mz->usage_in_excess)
358 		return;
359 	while (*p) {
360 		parent = *p;
361 		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
362 					tree_node);
363 		if (mz->usage_in_excess < mz_node->usage_in_excess)
364 			p = &(*p)->rb_left;
365 		/*
366 		 * We can't avoid mem cgroups that are over their soft
367 		 * limit by the same amount
368 		 */
369 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
370 			p = &(*p)->rb_right;
371 	}
372 	rb_link_node(&mz->tree_node, parent, p);
373 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
374 	mz->on_tree = true;
375 }
376 
377 static void
378 __mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
379 				struct mem_cgroup_per_zone *mz,
380 				struct mem_cgroup_tree_per_zone *mctz)
381 {
382 	if (!mz->on_tree)
383 		return;
384 	rb_erase(&mz->tree_node, &mctz->rb_root);
385 	mz->on_tree = false;
386 }
387 
388 static void
389 mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
390 				struct mem_cgroup_per_zone *mz,
391 				struct mem_cgroup_tree_per_zone *mctz)
392 {
393 	spin_lock(&mctz->lock);
394 	__mem_cgroup_remove_exceeded(mem, mz, mctz);
395 	spin_unlock(&mctz->lock);
396 }
397 
398 
399 static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
400 {
401 	unsigned long long excess;
402 	struct mem_cgroup_per_zone *mz;
403 	struct mem_cgroup_tree_per_zone *mctz;
404 	int nid = page_to_nid(page);
405 	int zid = page_zonenum(page);
406 	mctz = soft_limit_tree_from_page(page);
407 
408 	/*
409 	 * Necessary to update all ancestors when hierarchy is used.
410 	 * because their event counter is not touched.
411 	 */
412 	for (; mem; mem = parent_mem_cgroup(mem)) {
413 		mz = mem_cgroup_zoneinfo(mem, nid, zid);
414 		excess = res_counter_soft_limit_excess(&mem->res);
415 		/*
416 		 * We have to update the tree if mz is on RB-tree or
417 		 * mem is over its softlimit.
418 		 */
419 		if (excess || mz->on_tree) {
420 			spin_lock(&mctz->lock);
421 			/* if on-tree, remove it */
422 			if (mz->on_tree)
423 				__mem_cgroup_remove_exceeded(mem, mz, mctz);
424 			/*
425 			 * Insert again. mz->usage_in_excess will be updated.
426 			 * If excess is 0, no tree ops.
427 			 */
428 			__mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
429 			spin_unlock(&mctz->lock);
430 		}
431 	}
432 }
433 
434 static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
435 {
436 	int node, zone;
437 	struct mem_cgroup_per_zone *mz;
438 	struct mem_cgroup_tree_per_zone *mctz;
439 
440 	for_each_node_state(node, N_POSSIBLE) {
441 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
442 			mz = mem_cgroup_zoneinfo(mem, node, zone);
443 			mctz = soft_limit_tree_node_zone(node, zone);
444 			mem_cgroup_remove_exceeded(mem, mz, mctz);
445 		}
446 	}
447 }
448 
449 static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
450 {
451 	return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
452 }
453 
454 static struct mem_cgroup_per_zone *
455 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
456 {
457 	struct rb_node *rightmost = NULL;
458 	struct mem_cgroup_per_zone *mz;
459 
460 retry:
461 	mz = NULL;
462 	rightmost = rb_last(&mctz->rb_root);
463 	if (!rightmost)
464 		goto done;		/* Nothing to reclaim from */
465 
466 	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
467 	/*
468 	 * Remove the node now but someone else can add it back,
469 	 * we will to add it back at the end of reclaim to its correct
470 	 * position in the tree.
471 	 */
472 	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
473 	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
474 		!css_tryget(&mz->mem->css))
475 		goto retry;
476 done:
477 	return mz;
478 }
479 
480 static struct mem_cgroup_per_zone *
481 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
482 {
483 	struct mem_cgroup_per_zone *mz;
484 
485 	spin_lock(&mctz->lock);
486 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
487 	spin_unlock(&mctz->lock);
488 	return mz;
489 }
490 
491 static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
492 		enum mem_cgroup_stat_index idx)
493 {
494 	int cpu;
495 	s64 val = 0;
496 
497 	for_each_possible_cpu(cpu)
498 		val += per_cpu(mem->stat->count[idx], cpu);
499 	return val;
500 }
501 
502 static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
503 {
504 	s64 ret;
505 
506 	ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
507 	ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
508 	return ret;
509 }
510 
511 static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
512 					 bool charge)
513 {
514 	int val = (charge) ? 1 : -1;
515 	this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
516 }
517 
518 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
519 					 struct page_cgroup *pc,
520 					 bool charge)
521 {
522 	int val = (charge) ? 1 : -1;
523 
524 	preempt_disable();
525 
526 	if (PageCgroupCache(pc))
527 		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], val);
528 	else
529 		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], val);
530 
531 	if (charge)
532 		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]);
533 	else
534 		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]);
535 	__this_cpu_inc(mem->stat->count[MEM_CGROUP_EVENTS]);
536 
537 	preempt_enable();
538 }
539 
540 static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
541 					enum lru_list idx)
542 {
543 	int nid, zid;
544 	struct mem_cgroup_per_zone *mz;
545 	u64 total = 0;
546 
547 	for_each_online_node(nid)
548 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
549 			mz = mem_cgroup_zoneinfo(mem, nid, zid);
550 			total += MEM_CGROUP_ZSTAT(mz, idx);
551 		}
552 	return total;
553 }
554 
555 static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift)
556 {
557 	s64 val;
558 
559 	val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]);
560 
561 	return !(val & ((1 << event_mask_shift) - 1));
562 }
563 
564 /*
565  * Check events in order.
566  *
567  */
568 static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
569 {
570 	/* threshold event is triggered in finer grain than soft limit */
571 	if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) {
572 		mem_cgroup_threshold(mem);
573 		if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH)))
574 			mem_cgroup_update_tree(mem, page);
575 	}
576 }
577 
578 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
579 {
580 	return container_of(cgroup_subsys_state(cont,
581 				mem_cgroup_subsys_id), struct mem_cgroup,
582 				css);
583 }
584 
585 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
586 {
587 	/*
588 	 * mm_update_next_owner() may clear mm->owner to NULL
589 	 * if it races with swapoff, page migration, etc.
590 	 * So this can be called with p == NULL.
591 	 */
592 	if (unlikely(!p))
593 		return NULL;
594 
595 	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
596 				struct mem_cgroup, css);
597 }
598 
599 static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
600 {
601 	struct mem_cgroup *mem = NULL;
602 
603 	if (!mm)
604 		return NULL;
605 	/*
606 	 * Because we have no locks, mm->owner's may be being moved to other
607 	 * cgroup. We use css_tryget() here even if this looks
608 	 * pessimistic (rather than adding locks here).
609 	 */
610 	rcu_read_lock();
611 	do {
612 		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
613 		if (unlikely(!mem))
614 			break;
615 	} while (!css_tryget(&mem->css));
616 	rcu_read_unlock();
617 	return mem;
618 }
619 
620 /*
621  * Call callback function against all cgroup under hierarchy tree.
622  */
623 static int mem_cgroup_walk_tree(struct mem_cgroup *root, void *data,
624 			  int (*func)(struct mem_cgroup *, void *))
625 {
626 	int found, ret, nextid;
627 	struct cgroup_subsys_state *css;
628 	struct mem_cgroup *mem;
629 
630 	if (!root->use_hierarchy)
631 		return (*func)(root, data);
632 
633 	nextid = 1;
634 	do {
635 		ret = 0;
636 		mem = NULL;
637 
638 		rcu_read_lock();
639 		css = css_get_next(&mem_cgroup_subsys, nextid, &root->css,
640 				   &found);
641 		if (css && css_tryget(css))
642 			mem = container_of(css, struct mem_cgroup, css);
643 		rcu_read_unlock();
644 
645 		if (mem) {
646 			ret = (*func)(mem, data);
647 			css_put(&mem->css);
648 		}
649 		nextid = found + 1;
650 	} while (!ret && css);
651 
652 	return ret;
653 }
654 
655 static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
656 {
657 	return (mem == root_mem_cgroup);
658 }
659 
660 /*
661  * Following LRU functions are allowed to be used without PCG_LOCK.
662  * Operations are called by routine of global LRU independently from memcg.
663  * What we have to take care of here is validness of pc->mem_cgroup.
664  *
665  * Changes to pc->mem_cgroup happens when
666  * 1. charge
667  * 2. moving account
668  * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
669  * It is added to LRU before charge.
670  * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
671  * When moving account, the page is not on LRU. It's isolated.
672  */
673 
674 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
675 {
676 	struct page_cgroup *pc;
677 	struct mem_cgroup_per_zone *mz;
678 
679 	if (mem_cgroup_disabled())
680 		return;
681 	pc = lookup_page_cgroup(page);
682 	/* can happen while we handle swapcache. */
683 	if (!TestClearPageCgroupAcctLRU(pc))
684 		return;
685 	VM_BUG_ON(!pc->mem_cgroup);
686 	/*
687 	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
688 	 * removed from global LRU.
689 	 */
690 	mz = page_cgroup_zoneinfo(pc);
691 	MEM_CGROUP_ZSTAT(mz, lru) -= 1;
692 	if (mem_cgroup_is_root(pc->mem_cgroup))
693 		return;
694 	VM_BUG_ON(list_empty(&pc->lru));
695 	list_del_init(&pc->lru);
696 	return;
697 }
698 
699 void mem_cgroup_del_lru(struct page *page)
700 {
701 	mem_cgroup_del_lru_list(page, page_lru(page));
702 }
703 
704 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
705 {
706 	struct mem_cgroup_per_zone *mz;
707 	struct page_cgroup *pc;
708 
709 	if (mem_cgroup_disabled())
710 		return;
711 
712 	pc = lookup_page_cgroup(page);
713 	/*
714 	 * Used bit is set without atomic ops but after smp_wmb().
715 	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
716 	 */
717 	smp_rmb();
718 	/* unused or root page is not rotated. */
719 	if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup))
720 		return;
721 	mz = page_cgroup_zoneinfo(pc);
722 	list_move(&pc->lru, &mz->lists[lru]);
723 }
724 
725 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
726 {
727 	struct page_cgroup *pc;
728 	struct mem_cgroup_per_zone *mz;
729 
730 	if (mem_cgroup_disabled())
731 		return;
732 	pc = lookup_page_cgroup(page);
733 	VM_BUG_ON(PageCgroupAcctLRU(pc));
734 	/*
735 	 * Used bit is set without atomic ops but after smp_wmb().
736 	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
737 	 */
738 	smp_rmb();
739 	if (!PageCgroupUsed(pc))
740 		return;
741 
742 	mz = page_cgroup_zoneinfo(pc);
743 	MEM_CGROUP_ZSTAT(mz, lru) += 1;
744 	SetPageCgroupAcctLRU(pc);
745 	if (mem_cgroup_is_root(pc->mem_cgroup))
746 		return;
747 	list_add(&pc->lru, &mz->lists[lru]);
748 }
749 
750 /*
751  * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
752  * lru because the page may.be reused after it's fully uncharged (because of
753  * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
754  * it again. This function is only used to charge SwapCache. It's done under
755  * lock_page and expected that zone->lru_lock is never held.
756  */
757 static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
758 {
759 	unsigned long flags;
760 	struct zone *zone = page_zone(page);
761 	struct page_cgroup *pc = lookup_page_cgroup(page);
762 
763 	spin_lock_irqsave(&zone->lru_lock, flags);
764 	/*
765 	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
766 	 * is guarded by lock_page() because the page is SwapCache.
767 	 */
768 	if (!PageCgroupUsed(pc))
769 		mem_cgroup_del_lru_list(page, page_lru(page));
770 	spin_unlock_irqrestore(&zone->lru_lock, flags);
771 }
772 
773 static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
774 {
775 	unsigned long flags;
776 	struct zone *zone = page_zone(page);
777 	struct page_cgroup *pc = lookup_page_cgroup(page);
778 
779 	spin_lock_irqsave(&zone->lru_lock, flags);
780 	/* link when the page is linked to LRU but page_cgroup isn't */
781 	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
782 		mem_cgroup_add_lru_list(page, page_lru(page));
783 	spin_unlock_irqrestore(&zone->lru_lock, flags);
784 }
785 
786 
787 void mem_cgroup_move_lists(struct page *page,
788 			   enum lru_list from, enum lru_list to)
789 {
790 	if (mem_cgroup_disabled())
791 		return;
792 	mem_cgroup_del_lru_list(page, from);
793 	mem_cgroup_add_lru_list(page, to);
794 }
795 
796 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
797 {
798 	int ret;
799 	struct mem_cgroup *curr = NULL;
800 
801 	task_lock(task);
802 	rcu_read_lock();
803 	curr = try_get_mem_cgroup_from_mm(task->mm);
804 	rcu_read_unlock();
805 	task_unlock(task);
806 	if (!curr)
807 		return 0;
808 	/*
809 	 * We should check use_hierarchy of "mem" not "curr". Because checking
810 	 * use_hierarchy of "curr" here make this function true if hierarchy is
811 	 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
812 	 * hierarchy(even if use_hierarchy is disabled in "mem").
813 	 */
814 	if (mem->use_hierarchy)
815 		ret = css_is_ancestor(&curr->css, &mem->css);
816 	else
817 		ret = (curr == mem);
818 	css_put(&curr->css);
819 	return ret;
820 }
821 
822 /*
823  * prev_priority control...this will be used in memory reclaim path.
824  */
825 int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
826 {
827 	int prev_priority;
828 
829 	spin_lock(&mem->reclaim_param_lock);
830 	prev_priority = mem->prev_priority;
831 	spin_unlock(&mem->reclaim_param_lock);
832 
833 	return prev_priority;
834 }
835 
836 void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
837 {
838 	spin_lock(&mem->reclaim_param_lock);
839 	if (priority < mem->prev_priority)
840 		mem->prev_priority = priority;
841 	spin_unlock(&mem->reclaim_param_lock);
842 }
843 
844 void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
845 {
846 	spin_lock(&mem->reclaim_param_lock);
847 	mem->prev_priority = priority;
848 	spin_unlock(&mem->reclaim_param_lock);
849 }
850 
851 static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
852 {
853 	unsigned long active;
854 	unsigned long inactive;
855 	unsigned long gb;
856 	unsigned long inactive_ratio;
857 
858 	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
859 	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
860 
861 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
862 	if (gb)
863 		inactive_ratio = int_sqrt(10 * gb);
864 	else
865 		inactive_ratio = 1;
866 
867 	if (present_pages) {
868 		present_pages[0] = inactive;
869 		present_pages[1] = active;
870 	}
871 
872 	return inactive_ratio;
873 }
874 
875 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
876 {
877 	unsigned long active;
878 	unsigned long inactive;
879 	unsigned long present_pages[2];
880 	unsigned long inactive_ratio;
881 
882 	inactive_ratio = calc_inactive_ratio(memcg, present_pages);
883 
884 	inactive = present_pages[0];
885 	active = present_pages[1];
886 
887 	if (inactive * inactive_ratio < active)
888 		return 1;
889 
890 	return 0;
891 }
892 
893 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
894 {
895 	unsigned long active;
896 	unsigned long inactive;
897 
898 	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
899 	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
900 
901 	return (active > inactive);
902 }
903 
904 unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
905 				       struct zone *zone,
906 				       enum lru_list lru)
907 {
908 	int nid = zone->zone_pgdat->node_id;
909 	int zid = zone_idx(zone);
910 	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
911 
912 	return MEM_CGROUP_ZSTAT(mz, lru);
913 }
914 
915 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
916 						      struct zone *zone)
917 {
918 	int nid = zone->zone_pgdat->node_id;
919 	int zid = zone_idx(zone);
920 	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
921 
922 	return &mz->reclaim_stat;
923 }
924 
925 struct zone_reclaim_stat *
926 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
927 {
928 	struct page_cgroup *pc;
929 	struct mem_cgroup_per_zone *mz;
930 
931 	if (mem_cgroup_disabled())
932 		return NULL;
933 
934 	pc = lookup_page_cgroup(page);
935 	/*
936 	 * Used bit is set without atomic ops but after smp_wmb().
937 	 * For making pc->mem_cgroup visible, insert smp_rmb() here.
938 	 */
939 	smp_rmb();
940 	if (!PageCgroupUsed(pc))
941 		return NULL;
942 
943 	mz = page_cgroup_zoneinfo(pc);
944 	if (!mz)
945 		return NULL;
946 
947 	return &mz->reclaim_stat;
948 }
949 
950 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
951 					struct list_head *dst,
952 					unsigned long *scanned, int order,
953 					int mode, struct zone *z,
954 					struct mem_cgroup *mem_cont,
955 					int active, int file)
956 {
957 	unsigned long nr_taken = 0;
958 	struct page *page;
959 	unsigned long scan;
960 	LIST_HEAD(pc_list);
961 	struct list_head *src;
962 	struct page_cgroup *pc, *tmp;
963 	int nid = z->zone_pgdat->node_id;
964 	int zid = zone_idx(z);
965 	struct mem_cgroup_per_zone *mz;
966 	int lru = LRU_FILE * file + active;
967 	int ret;
968 
969 	BUG_ON(!mem_cont);
970 	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
971 	src = &mz->lists[lru];
972 
973 	scan = 0;
974 	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
975 		if (scan >= nr_to_scan)
976 			break;
977 
978 		page = pc->page;
979 		if (unlikely(!PageCgroupUsed(pc)))
980 			continue;
981 		if (unlikely(!PageLRU(page)))
982 			continue;
983 
984 		scan++;
985 		ret = __isolate_lru_page(page, mode, file);
986 		switch (ret) {
987 		case 0:
988 			list_move(&page->lru, dst);
989 			mem_cgroup_del_lru(page);
990 			nr_taken++;
991 			break;
992 		case -EBUSY:
993 			/* we don't affect global LRU but rotate in our LRU */
994 			mem_cgroup_rotate_lru_list(page, page_lru(page));
995 			break;
996 		default:
997 			break;
998 		}
999 	}
1000 
1001 	*scanned = scan;
1002 	return nr_taken;
1003 }
1004 
1005 #define mem_cgroup_from_res_counter(counter, member)	\
1006 	container_of(counter, struct mem_cgroup, member)
1007 
1008 static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
1009 {
1010 	if (do_swap_account) {
1011 		if (res_counter_check_under_limit(&mem->res) &&
1012 			res_counter_check_under_limit(&mem->memsw))
1013 			return true;
1014 	} else
1015 		if (res_counter_check_under_limit(&mem->res))
1016 			return true;
1017 	return false;
1018 }
1019 
1020 static unsigned int get_swappiness(struct mem_cgroup *memcg)
1021 {
1022 	struct cgroup *cgrp = memcg->css.cgroup;
1023 	unsigned int swappiness;
1024 
1025 	/* root ? */
1026 	if (cgrp->parent == NULL)
1027 		return vm_swappiness;
1028 
1029 	spin_lock(&memcg->reclaim_param_lock);
1030 	swappiness = memcg->swappiness;
1031 	spin_unlock(&memcg->reclaim_param_lock);
1032 
1033 	return swappiness;
1034 }
1035 
1036 static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data)
1037 {
1038 	int *val = data;
1039 	(*val)++;
1040 	return 0;
1041 }
1042 
1043 /**
1044  * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1045  * @memcg: The memory cgroup that went over limit
1046  * @p: Task that is going to be killed
1047  *
1048  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1049  * enabled
1050  */
1051 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1052 {
1053 	struct cgroup *task_cgrp;
1054 	struct cgroup *mem_cgrp;
1055 	/*
1056 	 * Need a buffer in BSS, can't rely on allocations. The code relies
1057 	 * on the assumption that OOM is serialized for memory controller.
1058 	 * If this assumption is broken, revisit this code.
1059 	 */
1060 	static char memcg_name[PATH_MAX];
1061 	int ret;
1062 
1063 	if (!memcg || !p)
1064 		return;
1065 
1066 
1067 	rcu_read_lock();
1068 
1069 	mem_cgrp = memcg->css.cgroup;
1070 	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1071 
1072 	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1073 	if (ret < 0) {
1074 		/*
1075 		 * Unfortunately, we are unable to convert to a useful name
1076 		 * But we'll still print out the usage information
1077 		 */
1078 		rcu_read_unlock();
1079 		goto done;
1080 	}
1081 	rcu_read_unlock();
1082 
1083 	printk(KERN_INFO "Task in %s killed", memcg_name);
1084 
1085 	rcu_read_lock();
1086 	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1087 	if (ret < 0) {
1088 		rcu_read_unlock();
1089 		goto done;
1090 	}
1091 	rcu_read_unlock();
1092 
1093 	/*
1094 	 * Continues from above, so we don't need an KERN_ level
1095 	 */
1096 	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1097 done:
1098 
1099 	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1100 		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1101 		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1102 		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1103 	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1104 		"failcnt %llu\n",
1105 		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1106 		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1107 		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1108 }
1109 
1110 /*
1111  * This function returns the number of memcg under hierarchy tree. Returns
1112  * 1(self count) if no children.
1113  */
1114 static int mem_cgroup_count_children(struct mem_cgroup *mem)
1115 {
1116 	int num = 0;
1117  	mem_cgroup_walk_tree(mem, &num, mem_cgroup_count_children_cb);
1118 	return num;
1119 }
1120 
1121 /*
1122  * Visit the first child (need not be the first child as per the ordering
1123  * of the cgroup list, since we track last_scanned_child) of @mem and use
1124  * that to reclaim free pages from.
1125  */
1126 static struct mem_cgroup *
1127 mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1128 {
1129 	struct mem_cgroup *ret = NULL;
1130 	struct cgroup_subsys_state *css;
1131 	int nextid, found;
1132 
1133 	if (!root_mem->use_hierarchy) {
1134 		css_get(&root_mem->css);
1135 		ret = root_mem;
1136 	}
1137 
1138 	while (!ret) {
1139 		rcu_read_lock();
1140 		nextid = root_mem->last_scanned_child + 1;
1141 		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1142 				   &found);
1143 		if (css && css_tryget(css))
1144 			ret = container_of(css, struct mem_cgroup, css);
1145 
1146 		rcu_read_unlock();
1147 		/* Updates scanning parameter */
1148 		spin_lock(&root_mem->reclaim_param_lock);
1149 		if (!css) {
1150 			/* this means start scan from ID:1 */
1151 			root_mem->last_scanned_child = 0;
1152 		} else
1153 			root_mem->last_scanned_child = found;
1154 		spin_unlock(&root_mem->reclaim_param_lock);
1155 	}
1156 
1157 	return ret;
1158 }
1159 
1160 /*
1161  * Scan the hierarchy if needed to reclaim memory. We remember the last child
1162  * we reclaimed from, so that we don't end up penalizing one child extensively
1163  * based on its position in the children list.
1164  *
1165  * root_mem is the original ancestor that we've been reclaim from.
1166  *
1167  * We give up and return to the caller when we visit root_mem twice.
1168  * (other groups can be removed while we're walking....)
1169  *
1170  * If shrink==true, for avoiding to free too much, this returns immedieately.
1171  */
1172 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1173 						struct zone *zone,
1174 						gfp_t gfp_mask,
1175 						unsigned long reclaim_options)
1176 {
1177 	struct mem_cgroup *victim;
1178 	int ret, total = 0;
1179 	int loop = 0;
1180 	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1181 	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1182 	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1183 	unsigned long excess = mem_cgroup_get_excess(root_mem);
1184 
1185 	/* If memsw_is_minimum==1, swap-out is of-no-use. */
1186 	if (root_mem->memsw_is_minimum)
1187 		noswap = true;
1188 
1189 	while (1) {
1190 		victim = mem_cgroup_select_victim(root_mem);
1191 		if (victim == root_mem) {
1192 			loop++;
1193 			if (loop >= 1)
1194 				drain_all_stock_async();
1195 			if (loop >= 2) {
1196 				/*
1197 				 * If we have not been able to reclaim
1198 				 * anything, it might because there are
1199 				 * no reclaimable pages under this hierarchy
1200 				 */
1201 				if (!check_soft || !total) {
1202 					css_put(&victim->css);
1203 					break;
1204 				}
1205 				/*
1206 				 * We want to do more targetted reclaim.
1207 				 * excess >> 2 is not to excessive so as to
1208 				 * reclaim too much, nor too less that we keep
1209 				 * coming back to reclaim from this cgroup
1210 				 */
1211 				if (total >= (excess >> 2) ||
1212 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1213 					css_put(&victim->css);
1214 					break;
1215 				}
1216 			}
1217 		}
1218 		if (!mem_cgroup_local_usage(victim)) {
1219 			/* this cgroup's local usage == 0 */
1220 			css_put(&victim->css);
1221 			continue;
1222 		}
1223 		/* we use swappiness of local cgroup */
1224 		if (check_soft)
1225 			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1226 				noswap, get_swappiness(victim), zone,
1227 				zone->zone_pgdat->node_id);
1228 		else
1229 			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1230 						noswap, get_swappiness(victim));
1231 		css_put(&victim->css);
1232 		/*
1233 		 * At shrinking usage, we can't check we should stop here or
1234 		 * reclaim more. It's depends on callers. last_scanned_child
1235 		 * will work enough for keeping fairness under tree.
1236 		 */
1237 		if (shrink)
1238 			return ret;
1239 		total += ret;
1240 		if (check_soft) {
1241 			if (res_counter_check_under_soft_limit(&root_mem->res))
1242 				return total;
1243 		} else if (mem_cgroup_check_under_limit(root_mem))
1244 			return 1 + total;
1245 	}
1246 	return total;
1247 }
1248 
1249 static int mem_cgroup_oom_lock_cb(struct mem_cgroup *mem, void *data)
1250 {
1251 	int *val = (int *)data;
1252 	int x;
1253 	/*
1254 	 * Logically, we can stop scanning immediately when we find
1255 	 * a memcg is already locked. But condidering unlock ops and
1256 	 * creation/removal of memcg, scan-all is simple operation.
1257 	 */
1258 	x = atomic_inc_return(&mem->oom_lock);
1259 	*val = max(x, *val);
1260 	return 0;
1261 }
1262 /*
1263  * Check OOM-Killer is already running under our hierarchy.
1264  * If someone is running, return false.
1265  */
1266 static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1267 {
1268 	int lock_count = 0;
1269 
1270 	mem_cgroup_walk_tree(mem, &lock_count, mem_cgroup_oom_lock_cb);
1271 
1272 	if (lock_count == 1)
1273 		return true;
1274 	return false;
1275 }
1276 
1277 static int mem_cgroup_oom_unlock_cb(struct mem_cgroup *mem, void *data)
1278 {
1279 	/*
1280 	 * When a new child is created while the hierarchy is under oom,
1281 	 * mem_cgroup_oom_lock() may not be called. We have to use
1282 	 * atomic_add_unless() here.
1283 	 */
1284 	atomic_add_unless(&mem->oom_lock, -1, 0);
1285 	return 0;
1286 }
1287 
1288 static void mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1289 {
1290 	mem_cgroup_walk_tree(mem, NULL,	mem_cgroup_oom_unlock_cb);
1291 }
1292 
1293 static DEFINE_MUTEX(memcg_oom_mutex);
1294 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1295 
1296 /*
1297  * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1298  */
1299 bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1300 {
1301 	DEFINE_WAIT(wait);
1302 	bool locked;
1303 
1304 	/* At first, try to OOM lock hierarchy under mem.*/
1305 	mutex_lock(&memcg_oom_mutex);
1306 	locked = mem_cgroup_oom_lock(mem);
1307 	/*
1308 	 * Even if signal_pending(), we can't quit charge() loop without
1309 	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1310 	 * under OOM is always welcomed, use TASK_KILLABLE here.
1311 	 */
1312 	if (!locked)
1313 		prepare_to_wait(&memcg_oom_waitq, &wait, TASK_KILLABLE);
1314 	mutex_unlock(&memcg_oom_mutex);
1315 
1316 	if (locked)
1317 		mem_cgroup_out_of_memory(mem, mask);
1318 	else {
1319 		schedule();
1320 		finish_wait(&memcg_oom_waitq, &wait);
1321 	}
1322 	mutex_lock(&memcg_oom_mutex);
1323 	mem_cgroup_oom_unlock(mem);
1324 	/*
1325 	 * Here, we use global waitq .....more fine grained waitq ?
1326 	 * Assume following hierarchy.
1327 	 * A/
1328 	 *   01
1329 	 *   02
1330 	 * assume OOM happens both in A and 01 at the same time. Tthey are
1331 	 * mutually exclusive by lock. (kill in 01 helps A.)
1332 	 * When we use per memcg waitq, we have to wake up waiters on A and 02
1333 	 * in addtion to waiters on 01. We use global waitq for avoiding mess.
1334 	 * It will not be a big problem.
1335 	 * (And a task may be moved to other groups while it's waiting for OOM.)
1336 	 */
1337 	wake_up_all(&memcg_oom_waitq);
1338 	mutex_unlock(&memcg_oom_mutex);
1339 
1340 	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1341 		return false;
1342 	/* Give chance to dying process */
1343 	schedule_timeout(1);
1344 	return true;
1345 }
1346 
1347 /*
1348  * Currently used to update mapped file statistics, but the routine can be
1349  * generalized to update other statistics as well.
1350  */
1351 void mem_cgroup_update_file_mapped(struct page *page, int val)
1352 {
1353 	struct mem_cgroup *mem;
1354 	struct page_cgroup *pc;
1355 
1356 	pc = lookup_page_cgroup(page);
1357 	if (unlikely(!pc))
1358 		return;
1359 
1360 	lock_page_cgroup(pc);
1361 	mem = pc->mem_cgroup;
1362 	if (!mem || !PageCgroupUsed(pc))
1363 		goto done;
1364 
1365 	/*
1366 	 * Preemption is already disabled. We can use __this_cpu_xxx
1367 	 */
1368 	if (val > 0) {
1369 		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
1370 		SetPageCgroupFileMapped(pc);
1371 	} else {
1372 		__this_cpu_dec(mem->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
1373 		ClearPageCgroupFileMapped(pc);
1374 	}
1375 
1376 done:
1377 	unlock_page_cgroup(pc);
1378 }
1379 
1380 /*
1381  * size of first charge trial. "32" comes from vmscan.c's magic value.
1382  * TODO: maybe necessary to use big numbers in big irons.
1383  */
1384 #define CHARGE_SIZE	(32 * PAGE_SIZE)
1385 struct memcg_stock_pcp {
1386 	struct mem_cgroup *cached; /* this never be root cgroup */
1387 	int charge;
1388 	struct work_struct work;
1389 };
1390 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1391 static atomic_t memcg_drain_count;
1392 
1393 /*
1394  * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
1395  * from local stock and true is returned. If the stock is 0 or charges from a
1396  * cgroup which is not current target, returns false. This stock will be
1397  * refilled.
1398  */
1399 static bool consume_stock(struct mem_cgroup *mem)
1400 {
1401 	struct memcg_stock_pcp *stock;
1402 	bool ret = true;
1403 
1404 	stock = &get_cpu_var(memcg_stock);
1405 	if (mem == stock->cached && stock->charge)
1406 		stock->charge -= PAGE_SIZE;
1407 	else /* need to call res_counter_charge */
1408 		ret = false;
1409 	put_cpu_var(memcg_stock);
1410 	return ret;
1411 }
1412 
1413 /*
1414  * Returns stocks cached in percpu to res_counter and reset cached information.
1415  */
1416 static void drain_stock(struct memcg_stock_pcp *stock)
1417 {
1418 	struct mem_cgroup *old = stock->cached;
1419 
1420 	if (stock->charge) {
1421 		res_counter_uncharge(&old->res, stock->charge);
1422 		if (do_swap_account)
1423 			res_counter_uncharge(&old->memsw, stock->charge);
1424 	}
1425 	stock->cached = NULL;
1426 	stock->charge = 0;
1427 }
1428 
1429 /*
1430  * This must be called under preempt disabled or must be called by
1431  * a thread which is pinned to local cpu.
1432  */
1433 static void drain_local_stock(struct work_struct *dummy)
1434 {
1435 	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1436 	drain_stock(stock);
1437 }
1438 
1439 /*
1440  * Cache charges(val) which is from res_counter, to local per_cpu area.
1441  * This will be consumed by consumt_stock() function, later.
1442  */
1443 static void refill_stock(struct mem_cgroup *mem, int val)
1444 {
1445 	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1446 
1447 	if (stock->cached != mem) { /* reset if necessary */
1448 		drain_stock(stock);
1449 		stock->cached = mem;
1450 	}
1451 	stock->charge += val;
1452 	put_cpu_var(memcg_stock);
1453 }
1454 
1455 /*
1456  * Tries to drain stocked charges in other cpus. This function is asynchronous
1457  * and just put a work per cpu for draining localy on each cpu. Caller can
1458  * expects some charges will be back to res_counter later but cannot wait for
1459  * it.
1460  */
1461 static void drain_all_stock_async(void)
1462 {
1463 	int cpu;
1464 	/* This function is for scheduling "drain" in asynchronous way.
1465 	 * The result of "drain" is not directly handled by callers. Then,
1466 	 * if someone is calling drain, we don't have to call drain more.
1467 	 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
1468 	 * there is a race. We just do loose check here.
1469 	 */
1470 	if (atomic_read(&memcg_drain_count))
1471 		return;
1472 	/* Notify other cpus that system-wide "drain" is running */
1473 	atomic_inc(&memcg_drain_count);
1474 	get_online_cpus();
1475 	for_each_online_cpu(cpu) {
1476 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1477 		schedule_work_on(cpu, &stock->work);
1478 	}
1479  	put_online_cpus();
1480 	atomic_dec(&memcg_drain_count);
1481 	/* We don't wait for flush_work */
1482 }
1483 
1484 /* This is a synchronous drain interface. */
1485 static void drain_all_stock_sync(void)
1486 {
1487 	/* called when force_empty is called */
1488 	atomic_inc(&memcg_drain_count);
1489 	schedule_on_each_cpu(drain_local_stock);
1490 	atomic_dec(&memcg_drain_count);
1491 }
1492 
1493 static int __cpuinit memcg_stock_cpu_callback(struct notifier_block *nb,
1494 					unsigned long action,
1495 					void *hcpu)
1496 {
1497 	int cpu = (unsigned long)hcpu;
1498 	struct memcg_stock_pcp *stock;
1499 
1500 	if (action != CPU_DEAD)
1501 		return NOTIFY_OK;
1502 	stock = &per_cpu(memcg_stock, cpu);
1503 	drain_stock(stock);
1504 	return NOTIFY_OK;
1505 }
1506 
1507 /*
1508  * Unlike exported interface, "oom" parameter is added. if oom==true,
1509  * oom-killer can be invoked.
1510  */
1511 static int __mem_cgroup_try_charge(struct mm_struct *mm,
1512 			gfp_t gfp_mask, struct mem_cgroup **memcg, bool oom)
1513 {
1514 	struct mem_cgroup *mem, *mem_over_limit;
1515 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1516 	struct res_counter *fail_res;
1517 	int csize = CHARGE_SIZE;
1518 
1519 	/*
1520 	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
1521 	 * in system level. So, allow to go ahead dying process in addition to
1522 	 * MEMDIE process.
1523 	 */
1524 	if (unlikely(test_thread_flag(TIF_MEMDIE)
1525 		     || fatal_signal_pending(current)))
1526 		goto bypass;
1527 
1528 	/*
1529 	 * We always charge the cgroup the mm_struct belongs to.
1530 	 * The mm_struct's mem_cgroup changes on task migration if the
1531 	 * thread group leader migrates. It's possible that mm is not
1532 	 * set, if so charge the init_mm (happens for pagecache usage).
1533 	 */
1534 	mem = *memcg;
1535 	if (likely(!mem)) {
1536 		mem = try_get_mem_cgroup_from_mm(mm);
1537 		*memcg = mem;
1538 	} else {
1539 		css_get(&mem->css);
1540 	}
1541 	if (unlikely(!mem))
1542 		return 0;
1543 
1544 	VM_BUG_ON(css_is_removed(&mem->css));
1545 	if (mem_cgroup_is_root(mem))
1546 		goto done;
1547 
1548 	while (1) {
1549 		int ret = 0;
1550 		unsigned long flags = 0;
1551 
1552 		if (consume_stock(mem))
1553 			goto done;
1554 
1555 		ret = res_counter_charge(&mem->res, csize, &fail_res);
1556 		if (likely(!ret)) {
1557 			if (!do_swap_account)
1558 				break;
1559 			ret = res_counter_charge(&mem->memsw, csize, &fail_res);
1560 			if (likely(!ret))
1561 				break;
1562 			/* mem+swap counter fails */
1563 			res_counter_uncharge(&mem->res, csize);
1564 			flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1565 			mem_over_limit = mem_cgroup_from_res_counter(fail_res,
1566 									memsw);
1567 		} else
1568 			/* mem counter fails */
1569 			mem_over_limit = mem_cgroup_from_res_counter(fail_res,
1570 									res);
1571 
1572 		/* reduce request size and retry */
1573 		if (csize > PAGE_SIZE) {
1574 			csize = PAGE_SIZE;
1575 			continue;
1576 		}
1577 		if (!(gfp_mask & __GFP_WAIT))
1578 			goto nomem;
1579 
1580 		ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
1581 						gfp_mask, flags);
1582 		if (ret)
1583 			continue;
1584 
1585 		/*
1586 		 * try_to_free_mem_cgroup_pages() might not give us a full
1587 		 * picture of reclaim. Some pages are reclaimed and might be
1588 		 * moved to swap cache or just unmapped from the cgroup.
1589 		 * Check the limit again to see if the reclaim reduced the
1590 		 * current usage of the cgroup before giving up
1591 		 *
1592 		 */
1593 		if (mem_cgroup_check_under_limit(mem_over_limit))
1594 			continue;
1595 
1596 		/* try to avoid oom while someone is moving charge */
1597 		if (mc.moving_task && current != mc.moving_task) {
1598 			struct mem_cgroup *from, *to;
1599 			bool do_continue = false;
1600 			/*
1601 			 * There is a small race that "from" or "to" can be
1602 			 * freed by rmdir, so we use css_tryget().
1603 			 */
1604 			rcu_read_lock();
1605 			from = mc.from;
1606 			to = mc.to;
1607 			if (from && css_tryget(&from->css)) {
1608 				if (mem_over_limit->use_hierarchy)
1609 					do_continue = css_is_ancestor(
1610 							&from->css,
1611 							&mem_over_limit->css);
1612 				else
1613 					do_continue = (from == mem_over_limit);
1614 				css_put(&from->css);
1615 			}
1616 			if (!do_continue && to && css_tryget(&to->css)) {
1617 				if (mem_over_limit->use_hierarchy)
1618 					do_continue = css_is_ancestor(
1619 							&to->css,
1620 							&mem_over_limit->css);
1621 				else
1622 					do_continue = (to == mem_over_limit);
1623 				css_put(&to->css);
1624 			}
1625 			rcu_read_unlock();
1626 			if (do_continue) {
1627 				DEFINE_WAIT(wait);
1628 				prepare_to_wait(&mc.waitq, &wait,
1629 							TASK_INTERRUPTIBLE);
1630 				/* moving charge context might have finished. */
1631 				if (mc.moving_task)
1632 					schedule();
1633 				finish_wait(&mc.waitq, &wait);
1634 				continue;
1635 			}
1636 		}
1637 
1638 		if (!nr_retries--) {
1639 			if (!oom)
1640 				goto nomem;
1641 			if (mem_cgroup_handle_oom(mem_over_limit, gfp_mask)) {
1642 				nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1643 				continue;
1644 			}
1645 			/* When we reach here, current task is dying .*/
1646 			css_put(&mem->css);
1647 			goto bypass;
1648 		}
1649 	}
1650 	if (csize > PAGE_SIZE)
1651 		refill_stock(mem, csize - PAGE_SIZE);
1652 done:
1653 	return 0;
1654 nomem:
1655 	css_put(&mem->css);
1656 	return -ENOMEM;
1657 bypass:
1658 	*memcg = NULL;
1659 	return 0;
1660 }
1661 
1662 /*
1663  * Somemtimes we have to undo a charge we got by try_charge().
1664  * This function is for that and do uncharge, put css's refcnt.
1665  * gotten by try_charge().
1666  */
1667 static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
1668 							unsigned long count)
1669 {
1670 	if (!mem_cgroup_is_root(mem)) {
1671 		res_counter_uncharge(&mem->res, PAGE_SIZE * count);
1672 		if (do_swap_account)
1673 			res_counter_uncharge(&mem->memsw, PAGE_SIZE * count);
1674 		VM_BUG_ON(test_bit(CSS_ROOT, &mem->css.flags));
1675 		WARN_ON_ONCE(count > INT_MAX);
1676 		__css_put(&mem->css, (int)count);
1677 	}
1678 	/* we don't need css_put for root */
1679 }
1680 
1681 static void mem_cgroup_cancel_charge(struct mem_cgroup *mem)
1682 {
1683 	__mem_cgroup_cancel_charge(mem, 1);
1684 }
1685 
1686 /*
1687  * A helper function to get mem_cgroup from ID. must be called under
1688  * rcu_read_lock(). The caller must check css_is_removed() or some if
1689  * it's concern. (dropping refcnt from swap can be called against removed
1690  * memcg.)
1691  */
1692 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
1693 {
1694 	struct cgroup_subsys_state *css;
1695 
1696 	/* ID 0 is unused ID */
1697 	if (!id)
1698 		return NULL;
1699 	css = css_lookup(&mem_cgroup_subsys, id);
1700 	if (!css)
1701 		return NULL;
1702 	return container_of(css, struct mem_cgroup, css);
1703 }
1704 
1705 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
1706 {
1707 	struct mem_cgroup *mem = NULL;
1708 	struct page_cgroup *pc;
1709 	unsigned short id;
1710 	swp_entry_t ent;
1711 
1712 	VM_BUG_ON(!PageLocked(page));
1713 
1714 	pc = lookup_page_cgroup(page);
1715 	lock_page_cgroup(pc);
1716 	if (PageCgroupUsed(pc)) {
1717 		mem = pc->mem_cgroup;
1718 		if (mem && !css_tryget(&mem->css))
1719 			mem = NULL;
1720 	} else if (PageSwapCache(page)) {
1721 		ent.val = page_private(page);
1722 		id = lookup_swap_cgroup(ent);
1723 		rcu_read_lock();
1724 		mem = mem_cgroup_lookup(id);
1725 		if (mem && !css_tryget(&mem->css))
1726 			mem = NULL;
1727 		rcu_read_unlock();
1728 	}
1729 	unlock_page_cgroup(pc);
1730 	return mem;
1731 }
1732 
1733 /*
1734  * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
1735  * USED state. If already USED, uncharge and return.
1736  */
1737 
1738 static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
1739 				     struct page_cgroup *pc,
1740 				     enum charge_type ctype)
1741 {
1742 	/* try_charge() can return NULL to *memcg, taking care of it. */
1743 	if (!mem)
1744 		return;
1745 
1746 	lock_page_cgroup(pc);
1747 	if (unlikely(PageCgroupUsed(pc))) {
1748 		unlock_page_cgroup(pc);
1749 		mem_cgroup_cancel_charge(mem);
1750 		return;
1751 	}
1752 
1753 	pc->mem_cgroup = mem;
1754 	/*
1755 	 * We access a page_cgroup asynchronously without lock_page_cgroup().
1756 	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
1757 	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
1758 	 * before USED bit, we need memory barrier here.
1759 	 * See mem_cgroup_add_lru_list(), etc.
1760  	 */
1761 	smp_wmb();
1762 	switch (ctype) {
1763 	case MEM_CGROUP_CHARGE_TYPE_CACHE:
1764 	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
1765 		SetPageCgroupCache(pc);
1766 		SetPageCgroupUsed(pc);
1767 		break;
1768 	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
1769 		ClearPageCgroupCache(pc);
1770 		SetPageCgroupUsed(pc);
1771 		break;
1772 	default:
1773 		break;
1774 	}
1775 
1776 	mem_cgroup_charge_statistics(mem, pc, true);
1777 
1778 	unlock_page_cgroup(pc);
1779 	/*
1780 	 * "charge_statistics" updated event counter. Then, check it.
1781 	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
1782 	 * if they exceeds softlimit.
1783 	 */
1784 	memcg_check_events(mem, pc->page);
1785 }
1786 
1787 /**
1788  * __mem_cgroup_move_account - move account of the page
1789  * @pc:	page_cgroup of the page.
1790  * @from: mem_cgroup which the page is moved from.
1791  * @to:	mem_cgroup which the page is moved to. @from != @to.
1792  * @uncharge: whether we should call uncharge and css_put against @from.
1793  *
1794  * The caller must confirm following.
1795  * - page is not on LRU (isolate_page() is useful.)
1796  * - the pc is locked, used, and ->mem_cgroup points to @from.
1797  *
1798  * This function doesn't do "charge" nor css_get to new cgroup. It should be
1799  * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
1800  * true, this function does "uncharge" from old cgroup, but it doesn't if
1801  * @uncharge is false, so a caller should do "uncharge".
1802  */
1803 
1804 static void __mem_cgroup_move_account(struct page_cgroup *pc,
1805 	struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
1806 {
1807 	VM_BUG_ON(from == to);
1808 	VM_BUG_ON(PageLRU(pc->page));
1809 	VM_BUG_ON(!PageCgroupLocked(pc));
1810 	VM_BUG_ON(!PageCgroupUsed(pc));
1811 	VM_BUG_ON(pc->mem_cgroup != from);
1812 
1813 	if (PageCgroupFileMapped(pc)) {
1814 		/* Update mapped_file data for mem_cgroup */
1815 		preempt_disable();
1816 		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
1817 		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
1818 		preempt_enable();
1819 	}
1820 	mem_cgroup_charge_statistics(from, pc, false);
1821 	if (uncharge)
1822 		/* This is not "cancel", but cancel_charge does all we need. */
1823 		mem_cgroup_cancel_charge(from);
1824 
1825 	/* caller should have done css_get */
1826 	pc->mem_cgroup = to;
1827 	mem_cgroup_charge_statistics(to, pc, true);
1828 	/*
1829 	 * We charges against "to" which may not have any tasks. Then, "to"
1830 	 * can be under rmdir(). But in current implementation, caller of
1831 	 * this function is just force_empty() and move charge, so it's
1832 	 * garanteed that "to" is never removed. So, we don't check rmdir
1833 	 * status here.
1834 	 */
1835 }
1836 
1837 /*
1838  * check whether the @pc is valid for moving account and call
1839  * __mem_cgroup_move_account()
1840  */
1841 static int mem_cgroup_move_account(struct page_cgroup *pc,
1842 		struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
1843 {
1844 	int ret = -EINVAL;
1845 	lock_page_cgroup(pc);
1846 	if (PageCgroupUsed(pc) && pc->mem_cgroup == from) {
1847 		__mem_cgroup_move_account(pc, from, to, uncharge);
1848 		ret = 0;
1849 	}
1850 	unlock_page_cgroup(pc);
1851 	/*
1852 	 * check events
1853 	 */
1854 	memcg_check_events(to, pc->page);
1855 	memcg_check_events(from, pc->page);
1856 	return ret;
1857 }
1858 
1859 /*
1860  * move charges to its parent.
1861  */
1862 
1863 static int mem_cgroup_move_parent(struct page_cgroup *pc,
1864 				  struct mem_cgroup *child,
1865 				  gfp_t gfp_mask)
1866 {
1867 	struct page *page = pc->page;
1868 	struct cgroup *cg = child->css.cgroup;
1869 	struct cgroup *pcg = cg->parent;
1870 	struct mem_cgroup *parent;
1871 	int ret;
1872 
1873 	/* Is ROOT ? */
1874 	if (!pcg)
1875 		return -EINVAL;
1876 
1877 	ret = -EBUSY;
1878 	if (!get_page_unless_zero(page))
1879 		goto out;
1880 	if (isolate_lru_page(page))
1881 		goto put;
1882 
1883 	parent = mem_cgroup_from_cont(pcg);
1884 	ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
1885 	if (ret || !parent)
1886 		goto put_back;
1887 
1888 	ret = mem_cgroup_move_account(pc, child, parent, true);
1889 	if (ret)
1890 		mem_cgroup_cancel_charge(parent);
1891 put_back:
1892 	putback_lru_page(page);
1893 put:
1894 	put_page(page);
1895 out:
1896 	return ret;
1897 }
1898 
1899 /*
1900  * Charge the memory controller for page usage.
1901  * Return
1902  * 0 if the charge was successful
1903  * < 0 if the cgroup is over its limit
1904  */
1905 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
1906 				gfp_t gfp_mask, enum charge_type ctype,
1907 				struct mem_cgroup *memcg)
1908 {
1909 	struct mem_cgroup *mem;
1910 	struct page_cgroup *pc;
1911 	int ret;
1912 
1913 	pc = lookup_page_cgroup(page);
1914 	/* can happen at boot */
1915 	if (unlikely(!pc))
1916 		return 0;
1917 	prefetchw(pc);
1918 
1919 	mem = memcg;
1920 	ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
1921 	if (ret || !mem)
1922 		return ret;
1923 
1924 	__mem_cgroup_commit_charge(mem, pc, ctype);
1925 	return 0;
1926 }
1927 
1928 int mem_cgroup_newpage_charge(struct page *page,
1929 			      struct mm_struct *mm, gfp_t gfp_mask)
1930 {
1931 	if (mem_cgroup_disabled())
1932 		return 0;
1933 	if (PageCompound(page))
1934 		return 0;
1935 	/*
1936 	 * If already mapped, we don't have to account.
1937 	 * If page cache, page->mapping has address_space.
1938 	 * But page->mapping may have out-of-use anon_vma pointer,
1939 	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
1940 	 * is NULL.
1941   	 */
1942 	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
1943 		return 0;
1944 	if (unlikely(!mm))
1945 		mm = &init_mm;
1946 	return mem_cgroup_charge_common(page, mm, gfp_mask,
1947 				MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
1948 }
1949 
1950 static void
1951 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
1952 					enum charge_type ctype);
1953 
1954 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
1955 				gfp_t gfp_mask)
1956 {
1957 	struct mem_cgroup *mem = NULL;
1958 	int ret;
1959 
1960 	if (mem_cgroup_disabled())
1961 		return 0;
1962 	if (PageCompound(page))
1963 		return 0;
1964 	/*
1965 	 * Corner case handling. This is called from add_to_page_cache()
1966 	 * in usual. But some FS (shmem) precharges this page before calling it
1967 	 * and call add_to_page_cache() with GFP_NOWAIT.
1968 	 *
1969 	 * For GFP_NOWAIT case, the page may be pre-charged before calling
1970 	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
1971 	 * charge twice. (It works but has to pay a bit larger cost.)
1972 	 * And when the page is SwapCache, it should take swap information
1973 	 * into account. This is under lock_page() now.
1974 	 */
1975 	if (!(gfp_mask & __GFP_WAIT)) {
1976 		struct page_cgroup *pc;
1977 
1978 
1979 		pc = lookup_page_cgroup(page);
1980 		if (!pc)
1981 			return 0;
1982 		lock_page_cgroup(pc);
1983 		if (PageCgroupUsed(pc)) {
1984 			unlock_page_cgroup(pc);
1985 			return 0;
1986 		}
1987 		unlock_page_cgroup(pc);
1988 	}
1989 
1990 	if (unlikely(!mm && !mem))
1991 		mm = &init_mm;
1992 
1993 	if (page_is_file_cache(page))
1994 		return mem_cgroup_charge_common(page, mm, gfp_mask,
1995 				MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
1996 
1997 	/* shmem */
1998 	if (PageSwapCache(page)) {
1999 		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2000 		if (!ret)
2001 			__mem_cgroup_commit_charge_swapin(page, mem,
2002 					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2003 	} else
2004 		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2005 					MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
2006 
2007 	return ret;
2008 }
2009 
2010 /*
2011  * While swap-in, try_charge -> commit or cancel, the page is locked.
2012  * And when try_charge() successfully returns, one refcnt to memcg without
2013  * struct page_cgroup is acquired. This refcnt will be consumed by
2014  * "commit()" or removed by "cancel()"
2015  */
2016 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2017 				 struct page *page,
2018 				 gfp_t mask, struct mem_cgroup **ptr)
2019 {
2020 	struct mem_cgroup *mem;
2021 	int ret;
2022 
2023 	if (mem_cgroup_disabled())
2024 		return 0;
2025 
2026 	if (!do_swap_account)
2027 		goto charge_cur_mm;
2028 	/*
2029 	 * A racing thread's fault, or swapoff, may have already updated
2030 	 * the pte, and even removed page from swap cache: in those cases
2031 	 * do_swap_page()'s pte_same() test will fail; but there's also a
2032 	 * KSM case which does need to charge the page.
2033 	 */
2034 	if (!PageSwapCache(page))
2035 		goto charge_cur_mm;
2036 	mem = try_get_mem_cgroup_from_page(page);
2037 	if (!mem)
2038 		goto charge_cur_mm;
2039 	*ptr = mem;
2040 	ret = __mem_cgroup_try_charge(NULL, mask, ptr, true);
2041 	/* drop extra refcnt from tryget */
2042 	css_put(&mem->css);
2043 	return ret;
2044 charge_cur_mm:
2045 	if (unlikely(!mm))
2046 		mm = &init_mm;
2047 	return __mem_cgroup_try_charge(mm, mask, ptr, true);
2048 }
2049 
2050 static void
2051 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2052 					enum charge_type ctype)
2053 {
2054 	struct page_cgroup *pc;
2055 
2056 	if (mem_cgroup_disabled())
2057 		return;
2058 	if (!ptr)
2059 		return;
2060 	cgroup_exclude_rmdir(&ptr->css);
2061 	pc = lookup_page_cgroup(page);
2062 	mem_cgroup_lru_del_before_commit_swapcache(page);
2063 	__mem_cgroup_commit_charge(ptr, pc, ctype);
2064 	mem_cgroup_lru_add_after_commit_swapcache(page);
2065 	/*
2066 	 * Now swap is on-memory. This means this page may be
2067 	 * counted both as mem and swap....double count.
2068 	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2069 	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2070 	 * may call delete_from_swap_cache() before reach here.
2071 	 */
2072 	if (do_swap_account && PageSwapCache(page)) {
2073 		swp_entry_t ent = {.val = page_private(page)};
2074 		unsigned short id;
2075 		struct mem_cgroup *memcg;
2076 
2077 		id = swap_cgroup_record(ent, 0);
2078 		rcu_read_lock();
2079 		memcg = mem_cgroup_lookup(id);
2080 		if (memcg) {
2081 			/*
2082 			 * This recorded memcg can be obsolete one. So, avoid
2083 			 * calling css_tryget
2084 			 */
2085 			if (!mem_cgroup_is_root(memcg))
2086 				res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2087 			mem_cgroup_swap_statistics(memcg, false);
2088 			mem_cgroup_put(memcg);
2089 		}
2090 		rcu_read_unlock();
2091 	}
2092 	/*
2093 	 * At swapin, we may charge account against cgroup which has no tasks.
2094 	 * So, rmdir()->pre_destroy() can be called while we do this charge.
2095 	 * In that case, we need to call pre_destroy() again. check it here.
2096 	 */
2097 	cgroup_release_and_wakeup_rmdir(&ptr->css);
2098 }
2099 
2100 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2101 {
2102 	__mem_cgroup_commit_charge_swapin(page, ptr,
2103 					MEM_CGROUP_CHARGE_TYPE_MAPPED);
2104 }
2105 
2106 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
2107 {
2108 	if (mem_cgroup_disabled())
2109 		return;
2110 	if (!mem)
2111 		return;
2112 	mem_cgroup_cancel_charge(mem);
2113 }
2114 
2115 static void
2116 __do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype)
2117 {
2118 	struct memcg_batch_info *batch = NULL;
2119 	bool uncharge_memsw = true;
2120 	/* If swapout, usage of swap doesn't decrease */
2121 	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2122 		uncharge_memsw = false;
2123 	/*
2124 	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2125 	 * In those cases, all pages freed continously can be expected to be in
2126 	 * the same cgroup and we have chance to coalesce uncharges.
2127 	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2128 	 * because we want to do uncharge as soon as possible.
2129 	 */
2130 	if (!current->memcg_batch.do_batch || test_thread_flag(TIF_MEMDIE))
2131 		goto direct_uncharge;
2132 
2133 	batch = &current->memcg_batch;
2134 	/*
2135 	 * In usual, we do css_get() when we remember memcg pointer.
2136 	 * But in this case, we keep res->usage until end of a series of
2137 	 * uncharges. Then, it's ok to ignore memcg's refcnt.
2138 	 */
2139 	if (!batch->memcg)
2140 		batch->memcg = mem;
2141 	/*
2142 	 * In typical case, batch->memcg == mem. This means we can
2143 	 * merge a series of uncharges to an uncharge of res_counter.
2144 	 * If not, we uncharge res_counter ony by one.
2145 	 */
2146 	if (batch->memcg != mem)
2147 		goto direct_uncharge;
2148 	/* remember freed charge and uncharge it later */
2149 	batch->bytes += PAGE_SIZE;
2150 	if (uncharge_memsw)
2151 		batch->memsw_bytes += PAGE_SIZE;
2152 	return;
2153 direct_uncharge:
2154 	res_counter_uncharge(&mem->res, PAGE_SIZE);
2155 	if (uncharge_memsw)
2156 		res_counter_uncharge(&mem->memsw, PAGE_SIZE);
2157 	return;
2158 }
2159 
2160 /*
2161  * uncharge if !page_mapped(page)
2162  */
2163 static struct mem_cgroup *
2164 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2165 {
2166 	struct page_cgroup *pc;
2167 	struct mem_cgroup *mem = NULL;
2168 	struct mem_cgroup_per_zone *mz;
2169 
2170 	if (mem_cgroup_disabled())
2171 		return NULL;
2172 
2173 	if (PageSwapCache(page))
2174 		return NULL;
2175 
2176 	/*
2177 	 * Check if our page_cgroup is valid
2178 	 */
2179 	pc = lookup_page_cgroup(page);
2180 	if (unlikely(!pc || !PageCgroupUsed(pc)))
2181 		return NULL;
2182 
2183 	lock_page_cgroup(pc);
2184 
2185 	mem = pc->mem_cgroup;
2186 
2187 	if (!PageCgroupUsed(pc))
2188 		goto unlock_out;
2189 
2190 	switch (ctype) {
2191 	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2192 	case MEM_CGROUP_CHARGE_TYPE_DROP:
2193 		if (page_mapped(page))
2194 			goto unlock_out;
2195 		break;
2196 	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2197 		if (!PageAnon(page)) {	/* Shared memory */
2198 			if (page->mapping && !page_is_file_cache(page))
2199 				goto unlock_out;
2200 		} else if (page_mapped(page)) /* Anon */
2201 				goto unlock_out;
2202 		break;
2203 	default:
2204 		break;
2205 	}
2206 
2207 	if (!mem_cgroup_is_root(mem))
2208 		__do_uncharge(mem, ctype);
2209 	if (ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2210 		mem_cgroup_swap_statistics(mem, true);
2211 	mem_cgroup_charge_statistics(mem, pc, false);
2212 
2213 	ClearPageCgroupUsed(pc);
2214 	/*
2215 	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2216 	 * freed from LRU. This is safe because uncharged page is expected not
2217 	 * to be reused (freed soon). Exception is SwapCache, it's handled by
2218 	 * special functions.
2219 	 */
2220 
2221 	mz = page_cgroup_zoneinfo(pc);
2222 	unlock_page_cgroup(pc);
2223 
2224 	memcg_check_events(mem, page);
2225 	/* at swapout, this memcg will be accessed to record to swap */
2226 	if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2227 		css_put(&mem->css);
2228 
2229 	return mem;
2230 
2231 unlock_out:
2232 	unlock_page_cgroup(pc);
2233 	return NULL;
2234 }
2235 
2236 void mem_cgroup_uncharge_page(struct page *page)
2237 {
2238 	/* early check. */
2239 	if (page_mapped(page))
2240 		return;
2241 	if (page->mapping && !PageAnon(page))
2242 		return;
2243 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
2244 }
2245 
2246 void mem_cgroup_uncharge_cache_page(struct page *page)
2247 {
2248 	VM_BUG_ON(page_mapped(page));
2249 	VM_BUG_ON(page->mapping);
2250 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
2251 }
2252 
2253 /*
2254  * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2255  * In that cases, pages are freed continuously and we can expect pages
2256  * are in the same memcg. All these calls itself limits the number of
2257  * pages freed at once, then uncharge_start/end() is called properly.
2258  * This may be called prural(2) times in a context,
2259  */
2260 
2261 void mem_cgroup_uncharge_start(void)
2262 {
2263 	current->memcg_batch.do_batch++;
2264 	/* We can do nest. */
2265 	if (current->memcg_batch.do_batch == 1) {
2266 		current->memcg_batch.memcg = NULL;
2267 		current->memcg_batch.bytes = 0;
2268 		current->memcg_batch.memsw_bytes = 0;
2269 	}
2270 }
2271 
2272 void mem_cgroup_uncharge_end(void)
2273 {
2274 	struct memcg_batch_info *batch = &current->memcg_batch;
2275 
2276 	if (!batch->do_batch)
2277 		return;
2278 
2279 	batch->do_batch--;
2280 	if (batch->do_batch) /* If stacked, do nothing. */
2281 		return;
2282 
2283 	if (!batch->memcg)
2284 		return;
2285 	/*
2286 	 * This "batch->memcg" is valid without any css_get/put etc...
2287 	 * bacause we hide charges behind us.
2288 	 */
2289 	if (batch->bytes)
2290 		res_counter_uncharge(&batch->memcg->res, batch->bytes);
2291 	if (batch->memsw_bytes)
2292 		res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
2293 	/* forget this pointer (for sanity check) */
2294 	batch->memcg = NULL;
2295 }
2296 
2297 #ifdef CONFIG_SWAP
2298 /*
2299  * called after __delete_from_swap_cache() and drop "page" account.
2300  * memcg information is recorded to swap_cgroup of "ent"
2301  */
2302 void
2303 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
2304 {
2305 	struct mem_cgroup *memcg;
2306 	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
2307 
2308 	if (!swapout) /* this was a swap cache but the swap is unused ! */
2309 		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
2310 
2311 	memcg = __mem_cgroup_uncharge_common(page, ctype);
2312 
2313 	/* record memcg information */
2314 	if (do_swap_account && swapout && memcg) {
2315 		swap_cgroup_record(ent, css_id(&memcg->css));
2316 		mem_cgroup_get(memcg);
2317 	}
2318 	if (swapout && memcg)
2319 		css_put(&memcg->css);
2320 }
2321 #endif
2322 
2323 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2324 /*
2325  * called from swap_entry_free(). remove record in swap_cgroup and
2326  * uncharge "memsw" account.
2327  */
2328 void mem_cgroup_uncharge_swap(swp_entry_t ent)
2329 {
2330 	struct mem_cgroup *memcg;
2331 	unsigned short id;
2332 
2333 	if (!do_swap_account)
2334 		return;
2335 
2336 	id = swap_cgroup_record(ent, 0);
2337 	rcu_read_lock();
2338 	memcg = mem_cgroup_lookup(id);
2339 	if (memcg) {
2340 		/*
2341 		 * We uncharge this because swap is freed.
2342 		 * This memcg can be obsolete one. We avoid calling css_tryget
2343 		 */
2344 		if (!mem_cgroup_is_root(memcg))
2345 			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2346 		mem_cgroup_swap_statistics(memcg, false);
2347 		mem_cgroup_put(memcg);
2348 	}
2349 	rcu_read_unlock();
2350 }
2351 
2352 /**
2353  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2354  * @entry: swap entry to be moved
2355  * @from:  mem_cgroup which the entry is moved from
2356  * @to:  mem_cgroup which the entry is moved to
2357  * @need_fixup: whether we should fixup res_counters and refcounts.
2358  *
2359  * It succeeds only when the swap_cgroup's record for this entry is the same
2360  * as the mem_cgroup's id of @from.
2361  *
2362  * Returns 0 on success, -EINVAL on failure.
2363  *
2364  * The caller must have charged to @to, IOW, called res_counter_charge() about
2365  * both res and memsw, and called css_get().
2366  */
2367 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2368 		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2369 {
2370 	unsigned short old_id, new_id;
2371 
2372 	old_id = css_id(&from->css);
2373 	new_id = css_id(&to->css);
2374 
2375 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2376 		mem_cgroup_swap_statistics(from, false);
2377 		mem_cgroup_swap_statistics(to, true);
2378 		/*
2379 		 * This function is only called from task migration context now.
2380 		 * It postpones res_counter and refcount handling till the end
2381 		 * of task migration(mem_cgroup_clear_mc()) for performance
2382 		 * improvement. But we cannot postpone mem_cgroup_get(to)
2383 		 * because if the process that has been moved to @to does
2384 		 * swap-in, the refcount of @to might be decreased to 0.
2385 		 */
2386 		mem_cgroup_get(to);
2387 		if (need_fixup) {
2388 			if (!mem_cgroup_is_root(from))
2389 				res_counter_uncharge(&from->memsw, PAGE_SIZE);
2390 			mem_cgroup_put(from);
2391 			/*
2392 			 * we charged both to->res and to->memsw, so we should
2393 			 * uncharge to->res.
2394 			 */
2395 			if (!mem_cgroup_is_root(to))
2396 				res_counter_uncharge(&to->res, PAGE_SIZE);
2397 			css_put(&to->css);
2398 		}
2399 		return 0;
2400 	}
2401 	return -EINVAL;
2402 }
2403 #else
2404 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2405 		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2406 {
2407 	return -EINVAL;
2408 }
2409 #endif
2410 
2411 /*
2412  * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
2413  * page belongs to.
2414  */
2415 int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
2416 {
2417 	struct page_cgroup *pc;
2418 	struct mem_cgroup *mem = NULL;
2419 	int ret = 0;
2420 
2421 	if (mem_cgroup_disabled())
2422 		return 0;
2423 
2424 	pc = lookup_page_cgroup(page);
2425 	lock_page_cgroup(pc);
2426 	if (PageCgroupUsed(pc)) {
2427 		mem = pc->mem_cgroup;
2428 		css_get(&mem->css);
2429 	}
2430 	unlock_page_cgroup(pc);
2431 
2432 	if (mem) {
2433 		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false);
2434 		css_put(&mem->css);
2435 	}
2436 	*ptr = mem;
2437 	return ret;
2438 }
2439 
2440 /* remove redundant charge if migration failed*/
2441 void mem_cgroup_end_migration(struct mem_cgroup *mem,
2442 		struct page *oldpage, struct page *newpage)
2443 {
2444 	struct page *target, *unused;
2445 	struct page_cgroup *pc;
2446 	enum charge_type ctype;
2447 
2448 	if (!mem)
2449 		return;
2450 	cgroup_exclude_rmdir(&mem->css);
2451 	/* at migration success, oldpage->mapping is NULL. */
2452 	if (oldpage->mapping) {
2453 		target = oldpage;
2454 		unused = NULL;
2455 	} else {
2456 		target = newpage;
2457 		unused = oldpage;
2458 	}
2459 
2460 	if (PageAnon(target))
2461 		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
2462 	else if (page_is_file_cache(target))
2463 		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
2464 	else
2465 		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2466 
2467 	/* unused page is not on radix-tree now. */
2468 	if (unused)
2469 		__mem_cgroup_uncharge_common(unused, ctype);
2470 
2471 	pc = lookup_page_cgroup(target);
2472 	/*
2473 	 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
2474 	 * So, double-counting is effectively avoided.
2475 	 */
2476 	__mem_cgroup_commit_charge(mem, pc, ctype);
2477 
2478 	/*
2479 	 * Both of oldpage and newpage are still under lock_page().
2480 	 * Then, we don't have to care about race in radix-tree.
2481 	 * But we have to be careful that this page is unmapped or not.
2482 	 *
2483 	 * There is a case for !page_mapped(). At the start of
2484 	 * migration, oldpage was mapped. But now, it's zapped.
2485 	 * But we know *target* page is not freed/reused under us.
2486 	 * mem_cgroup_uncharge_page() does all necessary checks.
2487 	 */
2488 	if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
2489 		mem_cgroup_uncharge_page(target);
2490 	/*
2491 	 * At migration, we may charge account against cgroup which has no tasks
2492 	 * So, rmdir()->pre_destroy() can be called while we do this charge.
2493 	 * In that case, we need to call pre_destroy() again. check it here.
2494 	 */
2495 	cgroup_release_and_wakeup_rmdir(&mem->css);
2496 }
2497 
2498 /*
2499  * A call to try to shrink memory usage on charge failure at shmem's swapin.
2500  * Calling hierarchical_reclaim is not enough because we should update
2501  * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
2502  * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
2503  * not from the memcg which this page would be charged to.
2504  * try_charge_swapin does all of these works properly.
2505  */
2506 int mem_cgroup_shmem_charge_fallback(struct page *page,
2507 			    struct mm_struct *mm,
2508 			    gfp_t gfp_mask)
2509 {
2510 	struct mem_cgroup *mem = NULL;
2511 	int ret;
2512 
2513 	if (mem_cgroup_disabled())
2514 		return 0;
2515 
2516 	ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2517 	if (!ret)
2518 		mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
2519 
2520 	return ret;
2521 }
2522 
2523 static DEFINE_MUTEX(set_limit_mutex);
2524 
2525 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2526 				unsigned long long val)
2527 {
2528 	int retry_count;
2529 	u64 memswlimit;
2530 	int ret = 0;
2531 	int children = mem_cgroup_count_children(memcg);
2532 	u64 curusage, oldusage;
2533 
2534 	/*
2535 	 * For keeping hierarchical_reclaim simple, how long we should retry
2536 	 * is depends on callers. We set our retry-count to be function
2537 	 * of # of children which we should visit in this loop.
2538 	 */
2539 	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
2540 
2541 	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2542 
2543 	while (retry_count) {
2544 		if (signal_pending(current)) {
2545 			ret = -EINTR;
2546 			break;
2547 		}
2548 		/*
2549 		 * Rather than hide all in some function, I do this in
2550 		 * open coded manner. You see what this really does.
2551 		 * We have to guarantee mem->res.limit < mem->memsw.limit.
2552 		 */
2553 		mutex_lock(&set_limit_mutex);
2554 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2555 		if (memswlimit < val) {
2556 			ret = -EINVAL;
2557 			mutex_unlock(&set_limit_mutex);
2558 			break;
2559 		}
2560 		ret = res_counter_set_limit(&memcg->res, val);
2561 		if (!ret) {
2562 			if (memswlimit == val)
2563 				memcg->memsw_is_minimum = true;
2564 			else
2565 				memcg->memsw_is_minimum = false;
2566 		}
2567 		mutex_unlock(&set_limit_mutex);
2568 
2569 		if (!ret)
2570 			break;
2571 
2572 		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
2573 						MEM_CGROUP_RECLAIM_SHRINK);
2574 		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2575 		/* Usage is reduced ? */
2576   		if (curusage >= oldusage)
2577 			retry_count--;
2578 		else
2579 			oldusage = curusage;
2580 	}
2581 
2582 	return ret;
2583 }
2584 
2585 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2586 					unsigned long long val)
2587 {
2588 	int retry_count;
2589 	u64 memlimit, oldusage, curusage;
2590 	int children = mem_cgroup_count_children(memcg);
2591 	int ret = -EBUSY;
2592 
2593 	/* see mem_cgroup_resize_res_limit */
2594  	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
2595 	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2596 	while (retry_count) {
2597 		if (signal_pending(current)) {
2598 			ret = -EINTR;
2599 			break;
2600 		}
2601 		/*
2602 		 * Rather than hide all in some function, I do this in
2603 		 * open coded manner. You see what this really does.
2604 		 * We have to guarantee mem->res.limit < mem->memsw.limit.
2605 		 */
2606 		mutex_lock(&set_limit_mutex);
2607 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
2608 		if (memlimit > val) {
2609 			ret = -EINVAL;
2610 			mutex_unlock(&set_limit_mutex);
2611 			break;
2612 		}
2613 		ret = res_counter_set_limit(&memcg->memsw, val);
2614 		if (!ret) {
2615 			if (memlimit == val)
2616 				memcg->memsw_is_minimum = true;
2617 			else
2618 				memcg->memsw_is_minimum = false;
2619 		}
2620 		mutex_unlock(&set_limit_mutex);
2621 
2622 		if (!ret)
2623 			break;
2624 
2625 		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
2626 						MEM_CGROUP_RECLAIM_NOSWAP |
2627 						MEM_CGROUP_RECLAIM_SHRINK);
2628 		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2629 		/* Usage is reduced ? */
2630 		if (curusage >= oldusage)
2631 			retry_count--;
2632 		else
2633 			oldusage = curusage;
2634 	}
2635 	return ret;
2636 }
2637 
2638 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2639 						gfp_t gfp_mask, int nid,
2640 						int zid)
2641 {
2642 	unsigned long nr_reclaimed = 0;
2643 	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2644 	unsigned long reclaimed;
2645 	int loop = 0;
2646 	struct mem_cgroup_tree_per_zone *mctz;
2647 	unsigned long long excess;
2648 
2649 	if (order > 0)
2650 		return 0;
2651 
2652 	mctz = soft_limit_tree_node_zone(nid, zid);
2653 	/*
2654 	 * This loop can run a while, specially if mem_cgroup's continuously
2655 	 * keep exceeding their soft limit and putting the system under
2656 	 * pressure
2657 	 */
2658 	do {
2659 		if (next_mz)
2660 			mz = next_mz;
2661 		else
2662 			mz = mem_cgroup_largest_soft_limit_node(mctz);
2663 		if (!mz)
2664 			break;
2665 
2666 		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
2667 						gfp_mask,
2668 						MEM_CGROUP_RECLAIM_SOFT);
2669 		nr_reclaimed += reclaimed;
2670 		spin_lock(&mctz->lock);
2671 
2672 		/*
2673 		 * If we failed to reclaim anything from this memory cgroup
2674 		 * it is time to move on to the next cgroup
2675 		 */
2676 		next_mz = NULL;
2677 		if (!reclaimed) {
2678 			do {
2679 				/*
2680 				 * Loop until we find yet another one.
2681 				 *
2682 				 * By the time we get the soft_limit lock
2683 				 * again, someone might have aded the
2684 				 * group back on the RB tree. Iterate to
2685 				 * make sure we get a different mem.
2686 				 * mem_cgroup_largest_soft_limit_node returns
2687 				 * NULL if no other cgroup is present on
2688 				 * the tree
2689 				 */
2690 				next_mz =
2691 				__mem_cgroup_largest_soft_limit_node(mctz);
2692 				if (next_mz == mz) {
2693 					css_put(&next_mz->mem->css);
2694 					next_mz = NULL;
2695 				} else /* next_mz == NULL or other memcg */
2696 					break;
2697 			} while (1);
2698 		}
2699 		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
2700 		excess = res_counter_soft_limit_excess(&mz->mem->res);
2701 		/*
2702 		 * One school of thought says that we should not add
2703 		 * back the node to the tree if reclaim returns 0.
2704 		 * But our reclaim could return 0, simply because due
2705 		 * to priority we are exposing a smaller subset of
2706 		 * memory to reclaim from. Consider this as a longer
2707 		 * term TODO.
2708 		 */
2709 		/* If excess == 0, no tree ops */
2710 		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
2711 		spin_unlock(&mctz->lock);
2712 		css_put(&mz->mem->css);
2713 		loop++;
2714 		/*
2715 		 * Could not reclaim anything and there are no more
2716 		 * mem cgroups to try or we seem to be looping without
2717 		 * reclaiming anything.
2718 		 */
2719 		if (!nr_reclaimed &&
2720 			(next_mz == NULL ||
2721 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2722 			break;
2723 	} while (!nr_reclaimed);
2724 	if (next_mz)
2725 		css_put(&next_mz->mem->css);
2726 	return nr_reclaimed;
2727 }
2728 
2729 /*
2730  * This routine traverse page_cgroup in given list and drop them all.
2731  * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
2732  */
2733 static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
2734 				int node, int zid, enum lru_list lru)
2735 {
2736 	struct zone *zone;
2737 	struct mem_cgroup_per_zone *mz;
2738 	struct page_cgroup *pc, *busy;
2739 	unsigned long flags, loop;
2740 	struct list_head *list;
2741 	int ret = 0;
2742 
2743 	zone = &NODE_DATA(node)->node_zones[zid];
2744 	mz = mem_cgroup_zoneinfo(mem, node, zid);
2745 	list = &mz->lists[lru];
2746 
2747 	loop = MEM_CGROUP_ZSTAT(mz, lru);
2748 	/* give some margin against EBUSY etc...*/
2749 	loop += 256;
2750 	busy = NULL;
2751 	while (loop--) {
2752 		ret = 0;
2753 		spin_lock_irqsave(&zone->lru_lock, flags);
2754 		if (list_empty(list)) {
2755 			spin_unlock_irqrestore(&zone->lru_lock, flags);
2756 			break;
2757 		}
2758 		pc = list_entry(list->prev, struct page_cgroup, lru);
2759 		if (busy == pc) {
2760 			list_move(&pc->lru, list);
2761 			busy = NULL;
2762 			spin_unlock_irqrestore(&zone->lru_lock, flags);
2763 			continue;
2764 		}
2765 		spin_unlock_irqrestore(&zone->lru_lock, flags);
2766 
2767 		ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
2768 		if (ret == -ENOMEM)
2769 			break;
2770 
2771 		if (ret == -EBUSY || ret == -EINVAL) {
2772 			/* found lock contention or "pc" is obsolete. */
2773 			busy = pc;
2774 			cond_resched();
2775 		} else
2776 			busy = NULL;
2777 	}
2778 
2779 	if (!ret && !list_empty(list))
2780 		return -EBUSY;
2781 	return ret;
2782 }
2783 
2784 /*
2785  * make mem_cgroup's charge to be 0 if there is no task.
2786  * This enables deleting this mem_cgroup.
2787  */
2788 static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
2789 {
2790 	int ret;
2791 	int node, zid, shrink;
2792 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2793 	struct cgroup *cgrp = mem->css.cgroup;
2794 
2795 	css_get(&mem->css);
2796 
2797 	shrink = 0;
2798 	/* should free all ? */
2799 	if (free_all)
2800 		goto try_to_free;
2801 move_account:
2802 	do {
2803 		ret = -EBUSY;
2804 		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
2805 			goto out;
2806 		ret = -EINTR;
2807 		if (signal_pending(current))
2808 			goto out;
2809 		/* This is for making all *used* pages to be on LRU. */
2810 		lru_add_drain_all();
2811 		drain_all_stock_sync();
2812 		ret = 0;
2813 		for_each_node_state(node, N_HIGH_MEMORY) {
2814 			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
2815 				enum lru_list l;
2816 				for_each_lru(l) {
2817 					ret = mem_cgroup_force_empty_list(mem,
2818 							node, zid, l);
2819 					if (ret)
2820 						break;
2821 				}
2822 			}
2823 			if (ret)
2824 				break;
2825 		}
2826 		/* it seems parent cgroup doesn't have enough mem */
2827 		if (ret == -ENOMEM)
2828 			goto try_to_free;
2829 		cond_resched();
2830 	/* "ret" should also be checked to ensure all lists are empty. */
2831 	} while (mem->res.usage > 0 || ret);
2832 out:
2833 	css_put(&mem->css);
2834 	return ret;
2835 
2836 try_to_free:
2837 	/* returns EBUSY if there is a task or if we come here twice. */
2838 	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
2839 		ret = -EBUSY;
2840 		goto out;
2841 	}
2842 	/* we call try-to-free pages for make this cgroup empty */
2843 	lru_add_drain_all();
2844 	/* try to free all pages in this cgroup */
2845 	shrink = 1;
2846 	while (nr_retries && mem->res.usage > 0) {
2847 		int progress;
2848 
2849 		if (signal_pending(current)) {
2850 			ret = -EINTR;
2851 			goto out;
2852 		}
2853 		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
2854 						false, get_swappiness(mem));
2855 		if (!progress) {
2856 			nr_retries--;
2857 			/* maybe some writeback is necessary */
2858 			congestion_wait(BLK_RW_ASYNC, HZ/10);
2859 		}
2860 
2861 	}
2862 	lru_add_drain();
2863 	/* try move_account...there may be some *locked* pages. */
2864 	goto move_account;
2865 }
2866 
2867 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
2868 {
2869 	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
2870 }
2871 
2872 
2873 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
2874 {
2875 	return mem_cgroup_from_cont(cont)->use_hierarchy;
2876 }
2877 
2878 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
2879 					u64 val)
2880 {
2881 	int retval = 0;
2882 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2883 	struct cgroup *parent = cont->parent;
2884 	struct mem_cgroup *parent_mem = NULL;
2885 
2886 	if (parent)
2887 		parent_mem = mem_cgroup_from_cont(parent);
2888 
2889 	cgroup_lock();
2890 	/*
2891 	 * If parent's use_hierarchy is set, we can't make any modifications
2892 	 * in the child subtrees. If it is unset, then the change can
2893 	 * occur, provided the current cgroup has no children.
2894 	 *
2895 	 * For the root cgroup, parent_mem is NULL, we allow value to be
2896 	 * set if there are no children.
2897 	 */
2898 	if ((!parent_mem || !parent_mem->use_hierarchy) &&
2899 				(val == 1 || val == 0)) {
2900 		if (list_empty(&cont->children))
2901 			mem->use_hierarchy = val;
2902 		else
2903 			retval = -EBUSY;
2904 	} else
2905 		retval = -EINVAL;
2906 	cgroup_unlock();
2907 
2908 	return retval;
2909 }
2910 
2911 struct mem_cgroup_idx_data {
2912 	s64 val;
2913 	enum mem_cgroup_stat_index idx;
2914 };
2915 
2916 static int
2917 mem_cgroup_get_idx_stat(struct mem_cgroup *mem, void *data)
2918 {
2919 	struct mem_cgroup_idx_data *d = data;
2920 	d->val += mem_cgroup_read_stat(mem, d->idx);
2921 	return 0;
2922 }
2923 
2924 static void
2925 mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
2926 				enum mem_cgroup_stat_index idx, s64 *val)
2927 {
2928 	struct mem_cgroup_idx_data d;
2929 	d.idx = idx;
2930 	d.val = 0;
2931 	mem_cgroup_walk_tree(mem, &d, mem_cgroup_get_idx_stat);
2932 	*val = d.val;
2933 }
2934 
2935 static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
2936 {
2937 	u64 idx_val, val;
2938 
2939 	if (!mem_cgroup_is_root(mem)) {
2940 		if (!swap)
2941 			return res_counter_read_u64(&mem->res, RES_USAGE);
2942 		else
2943 			return res_counter_read_u64(&mem->memsw, RES_USAGE);
2944 	}
2945 
2946 	mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE, &idx_val);
2947 	val = idx_val;
2948 	mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS, &idx_val);
2949 	val += idx_val;
2950 
2951 	if (swap) {
2952 		mem_cgroup_get_recursive_idx_stat(mem,
2953 				MEM_CGROUP_STAT_SWAPOUT, &idx_val);
2954 		val += idx_val;
2955 	}
2956 
2957 	return val << PAGE_SHIFT;
2958 }
2959 
2960 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
2961 {
2962 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2963 	u64 val;
2964 	int type, name;
2965 
2966 	type = MEMFILE_TYPE(cft->private);
2967 	name = MEMFILE_ATTR(cft->private);
2968 	switch (type) {
2969 	case _MEM:
2970 		if (name == RES_USAGE)
2971 			val = mem_cgroup_usage(mem, false);
2972 		else
2973 			val = res_counter_read_u64(&mem->res, name);
2974 		break;
2975 	case _MEMSWAP:
2976 		if (name == RES_USAGE)
2977 			val = mem_cgroup_usage(mem, true);
2978 		else
2979 			val = res_counter_read_u64(&mem->memsw, name);
2980 		break;
2981 	default:
2982 		BUG();
2983 		break;
2984 	}
2985 	return val;
2986 }
2987 /*
2988  * The user of this function is...
2989  * RES_LIMIT.
2990  */
2991 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
2992 			    const char *buffer)
2993 {
2994 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
2995 	int type, name;
2996 	unsigned long long val;
2997 	int ret;
2998 
2999 	type = MEMFILE_TYPE(cft->private);
3000 	name = MEMFILE_ATTR(cft->private);
3001 	switch (name) {
3002 	case RES_LIMIT:
3003 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3004 			ret = -EINVAL;
3005 			break;
3006 		}
3007 		/* This function does all necessary parse...reuse it */
3008 		ret = res_counter_memparse_write_strategy(buffer, &val);
3009 		if (ret)
3010 			break;
3011 		if (type == _MEM)
3012 			ret = mem_cgroup_resize_limit(memcg, val);
3013 		else
3014 			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3015 		break;
3016 	case RES_SOFT_LIMIT:
3017 		ret = res_counter_memparse_write_strategy(buffer, &val);
3018 		if (ret)
3019 			break;
3020 		/*
3021 		 * For memsw, soft limits are hard to implement in terms
3022 		 * of semantics, for now, we support soft limits for
3023 		 * control without swap
3024 		 */
3025 		if (type == _MEM)
3026 			ret = res_counter_set_soft_limit(&memcg->res, val);
3027 		else
3028 			ret = -EINVAL;
3029 		break;
3030 	default:
3031 		ret = -EINVAL; /* should be BUG() ? */
3032 		break;
3033 	}
3034 	return ret;
3035 }
3036 
3037 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3038 		unsigned long long *mem_limit, unsigned long long *memsw_limit)
3039 {
3040 	struct cgroup *cgroup;
3041 	unsigned long long min_limit, min_memsw_limit, tmp;
3042 
3043 	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3044 	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3045 	cgroup = memcg->css.cgroup;
3046 	if (!memcg->use_hierarchy)
3047 		goto out;
3048 
3049 	while (cgroup->parent) {
3050 		cgroup = cgroup->parent;
3051 		memcg = mem_cgroup_from_cont(cgroup);
3052 		if (!memcg->use_hierarchy)
3053 			break;
3054 		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3055 		min_limit = min(min_limit, tmp);
3056 		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3057 		min_memsw_limit = min(min_memsw_limit, tmp);
3058 	}
3059 out:
3060 	*mem_limit = min_limit;
3061 	*memsw_limit = min_memsw_limit;
3062 	return;
3063 }
3064 
3065 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3066 {
3067 	struct mem_cgroup *mem;
3068 	int type, name;
3069 
3070 	mem = mem_cgroup_from_cont(cont);
3071 	type = MEMFILE_TYPE(event);
3072 	name = MEMFILE_ATTR(event);
3073 	switch (name) {
3074 	case RES_MAX_USAGE:
3075 		if (type == _MEM)
3076 			res_counter_reset_max(&mem->res);
3077 		else
3078 			res_counter_reset_max(&mem->memsw);
3079 		break;
3080 	case RES_FAILCNT:
3081 		if (type == _MEM)
3082 			res_counter_reset_failcnt(&mem->res);
3083 		else
3084 			res_counter_reset_failcnt(&mem->memsw);
3085 		break;
3086 	}
3087 
3088 	return 0;
3089 }
3090 
3091 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3092 					struct cftype *cft)
3093 {
3094 	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3095 }
3096 
3097 #ifdef CONFIG_MMU
3098 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3099 					struct cftype *cft, u64 val)
3100 {
3101 	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3102 
3103 	if (val >= (1 << NR_MOVE_TYPE))
3104 		return -EINVAL;
3105 	/*
3106 	 * We check this value several times in both in can_attach() and
3107 	 * attach(), so we need cgroup lock to prevent this value from being
3108 	 * inconsistent.
3109 	 */
3110 	cgroup_lock();
3111 	mem->move_charge_at_immigrate = val;
3112 	cgroup_unlock();
3113 
3114 	return 0;
3115 }
3116 #else
3117 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3118 					struct cftype *cft, u64 val)
3119 {
3120 	return -ENOSYS;
3121 }
3122 #endif
3123 
3124 
3125 /* For read statistics */
3126 enum {
3127 	MCS_CACHE,
3128 	MCS_RSS,
3129 	MCS_FILE_MAPPED,
3130 	MCS_PGPGIN,
3131 	MCS_PGPGOUT,
3132 	MCS_SWAP,
3133 	MCS_INACTIVE_ANON,
3134 	MCS_ACTIVE_ANON,
3135 	MCS_INACTIVE_FILE,
3136 	MCS_ACTIVE_FILE,
3137 	MCS_UNEVICTABLE,
3138 	NR_MCS_STAT,
3139 };
3140 
3141 struct mcs_total_stat {
3142 	s64 stat[NR_MCS_STAT];
3143 };
3144 
3145 struct {
3146 	char *local_name;
3147 	char *total_name;
3148 } memcg_stat_strings[NR_MCS_STAT] = {
3149 	{"cache", "total_cache"},
3150 	{"rss", "total_rss"},
3151 	{"mapped_file", "total_mapped_file"},
3152 	{"pgpgin", "total_pgpgin"},
3153 	{"pgpgout", "total_pgpgout"},
3154 	{"swap", "total_swap"},
3155 	{"inactive_anon", "total_inactive_anon"},
3156 	{"active_anon", "total_active_anon"},
3157 	{"inactive_file", "total_inactive_file"},
3158 	{"active_file", "total_active_file"},
3159 	{"unevictable", "total_unevictable"}
3160 };
3161 
3162 
3163 static int mem_cgroup_get_local_stat(struct mem_cgroup *mem, void *data)
3164 {
3165 	struct mcs_total_stat *s = data;
3166 	s64 val;
3167 
3168 	/* per cpu stat */
3169 	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
3170 	s->stat[MCS_CACHE] += val * PAGE_SIZE;
3171 	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
3172 	s->stat[MCS_RSS] += val * PAGE_SIZE;
3173 	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
3174 	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
3175 	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT);
3176 	s->stat[MCS_PGPGIN] += val;
3177 	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT);
3178 	s->stat[MCS_PGPGOUT] += val;
3179 	if (do_swap_account) {
3180 		val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3181 		s->stat[MCS_SWAP] += val * PAGE_SIZE;
3182 	}
3183 
3184 	/* per zone stat */
3185 	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
3186 	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
3187 	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
3188 	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
3189 	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
3190 	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
3191 	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
3192 	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
3193 	val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
3194 	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
3195 	return 0;
3196 }
3197 
3198 static void
3199 mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3200 {
3201 	mem_cgroup_walk_tree(mem, s, mem_cgroup_get_local_stat);
3202 }
3203 
3204 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
3205 				 struct cgroup_map_cb *cb)
3206 {
3207 	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
3208 	struct mcs_total_stat mystat;
3209 	int i;
3210 
3211 	memset(&mystat, 0, sizeof(mystat));
3212 	mem_cgroup_get_local_stat(mem_cont, &mystat);
3213 
3214 	for (i = 0; i < NR_MCS_STAT; i++) {
3215 		if (i == MCS_SWAP && !do_swap_account)
3216 			continue;
3217 		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
3218 	}
3219 
3220 	/* Hierarchical information */
3221 	{
3222 		unsigned long long limit, memsw_limit;
3223 		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
3224 		cb->fill(cb, "hierarchical_memory_limit", limit);
3225 		if (do_swap_account)
3226 			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
3227 	}
3228 
3229 	memset(&mystat, 0, sizeof(mystat));
3230 	mem_cgroup_get_total_stat(mem_cont, &mystat);
3231 	for (i = 0; i < NR_MCS_STAT; i++) {
3232 		if (i == MCS_SWAP && !do_swap_account)
3233 			continue;
3234 		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
3235 	}
3236 
3237 #ifdef CONFIG_DEBUG_VM
3238 	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
3239 
3240 	{
3241 		int nid, zid;
3242 		struct mem_cgroup_per_zone *mz;
3243 		unsigned long recent_rotated[2] = {0, 0};
3244 		unsigned long recent_scanned[2] = {0, 0};
3245 
3246 		for_each_online_node(nid)
3247 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3248 				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
3249 
3250 				recent_rotated[0] +=
3251 					mz->reclaim_stat.recent_rotated[0];
3252 				recent_rotated[1] +=
3253 					mz->reclaim_stat.recent_rotated[1];
3254 				recent_scanned[0] +=
3255 					mz->reclaim_stat.recent_scanned[0];
3256 				recent_scanned[1] +=
3257 					mz->reclaim_stat.recent_scanned[1];
3258 			}
3259 		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
3260 		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
3261 		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
3262 		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
3263 	}
3264 #endif
3265 
3266 	return 0;
3267 }
3268 
3269 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
3270 {
3271 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3272 
3273 	return get_swappiness(memcg);
3274 }
3275 
3276 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
3277 				       u64 val)
3278 {
3279 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3280 	struct mem_cgroup *parent;
3281 
3282 	if (val > 100)
3283 		return -EINVAL;
3284 
3285 	if (cgrp->parent == NULL)
3286 		return -EINVAL;
3287 
3288 	parent = mem_cgroup_from_cont(cgrp->parent);
3289 
3290 	cgroup_lock();
3291 
3292 	/* If under hierarchy, only empty-root can set this value */
3293 	if ((parent->use_hierarchy) ||
3294 	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3295 		cgroup_unlock();
3296 		return -EINVAL;
3297 	}
3298 
3299 	spin_lock(&memcg->reclaim_param_lock);
3300 	memcg->swappiness = val;
3301 	spin_unlock(&memcg->reclaim_param_lock);
3302 
3303 	cgroup_unlock();
3304 
3305 	return 0;
3306 }
3307 
3308 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3309 {
3310 	struct mem_cgroup_threshold_ary *t;
3311 	u64 usage;
3312 	int i;
3313 
3314 	rcu_read_lock();
3315 	if (!swap)
3316 		t = rcu_dereference(memcg->thresholds);
3317 	else
3318 		t = rcu_dereference(memcg->memsw_thresholds);
3319 
3320 	if (!t)
3321 		goto unlock;
3322 
3323 	usage = mem_cgroup_usage(memcg, swap);
3324 
3325 	/*
3326 	 * current_threshold points to threshold just below usage.
3327 	 * If it's not true, a threshold was crossed after last
3328 	 * call of __mem_cgroup_threshold().
3329 	 */
3330 	i = atomic_read(&t->current_threshold);
3331 
3332 	/*
3333 	 * Iterate backward over array of thresholds starting from
3334 	 * current_threshold and check if a threshold is crossed.
3335 	 * If none of thresholds below usage is crossed, we read
3336 	 * only one element of the array here.
3337 	 */
3338 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3339 		eventfd_signal(t->entries[i].eventfd, 1);
3340 
3341 	/* i = current_threshold + 1 */
3342 	i++;
3343 
3344 	/*
3345 	 * Iterate forward over array of thresholds starting from
3346 	 * current_threshold+1 and check if a threshold is crossed.
3347 	 * If none of thresholds above usage is crossed, we read
3348 	 * only one element of the array here.
3349 	 */
3350 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3351 		eventfd_signal(t->entries[i].eventfd, 1);
3352 
3353 	/* Update current_threshold */
3354 	atomic_set(&t->current_threshold, i - 1);
3355 unlock:
3356 	rcu_read_unlock();
3357 }
3358 
3359 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3360 {
3361 	__mem_cgroup_threshold(memcg, false);
3362 	if (do_swap_account)
3363 		__mem_cgroup_threshold(memcg, true);
3364 }
3365 
3366 static int compare_thresholds(const void *a, const void *b)
3367 {
3368 	const struct mem_cgroup_threshold *_a = a;
3369 	const struct mem_cgroup_threshold *_b = b;
3370 
3371 	return _a->threshold - _b->threshold;
3372 }
3373 
3374 static int mem_cgroup_register_event(struct cgroup *cgrp, struct cftype *cft,
3375 		struct eventfd_ctx *eventfd, const char *args)
3376 {
3377 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3378 	struct mem_cgroup_threshold_ary *thresholds, *thresholds_new;
3379 	int type = MEMFILE_TYPE(cft->private);
3380 	u64 threshold, usage;
3381 	int size;
3382 	int i, ret;
3383 
3384 	ret = res_counter_memparse_write_strategy(args, &threshold);
3385 	if (ret)
3386 		return ret;
3387 
3388 	mutex_lock(&memcg->thresholds_lock);
3389 	if (type == _MEM)
3390 		thresholds = memcg->thresholds;
3391 	else if (type == _MEMSWAP)
3392 		thresholds = memcg->memsw_thresholds;
3393 	else
3394 		BUG();
3395 
3396 	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3397 
3398 	/* Check if a threshold crossed before adding a new one */
3399 	if (thresholds)
3400 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3401 
3402 	if (thresholds)
3403 		size = thresholds->size + 1;
3404 	else
3405 		size = 1;
3406 
3407 	/* Allocate memory for new array of thresholds */
3408 	thresholds_new = kmalloc(sizeof(*thresholds_new) +
3409 			size * sizeof(struct mem_cgroup_threshold),
3410 			GFP_KERNEL);
3411 	if (!thresholds_new) {
3412 		ret = -ENOMEM;
3413 		goto unlock;
3414 	}
3415 	thresholds_new->size = size;
3416 
3417 	/* Copy thresholds (if any) to new array */
3418 	if (thresholds)
3419 		memcpy(thresholds_new->entries, thresholds->entries,
3420 				thresholds->size *
3421 				sizeof(struct mem_cgroup_threshold));
3422 	/* Add new threshold */
3423 	thresholds_new->entries[size - 1].eventfd = eventfd;
3424 	thresholds_new->entries[size - 1].threshold = threshold;
3425 
3426 	/* Sort thresholds. Registering of new threshold isn't time-critical */
3427 	sort(thresholds_new->entries, size,
3428 			sizeof(struct mem_cgroup_threshold),
3429 			compare_thresholds, NULL);
3430 
3431 	/* Find current threshold */
3432 	atomic_set(&thresholds_new->current_threshold, -1);
3433 	for (i = 0; i < size; i++) {
3434 		if (thresholds_new->entries[i].threshold < usage) {
3435 			/*
3436 			 * thresholds_new->current_threshold will not be used
3437 			 * until rcu_assign_pointer(), so it's safe to increment
3438 			 * it here.
3439 			 */
3440 			atomic_inc(&thresholds_new->current_threshold);
3441 		}
3442 	}
3443 
3444 	if (type == _MEM)
3445 		rcu_assign_pointer(memcg->thresholds, thresholds_new);
3446 	else
3447 		rcu_assign_pointer(memcg->memsw_thresholds, thresholds_new);
3448 
3449 	/* To be sure that nobody uses thresholds before freeing it */
3450 	synchronize_rcu();
3451 
3452 	kfree(thresholds);
3453 unlock:
3454 	mutex_unlock(&memcg->thresholds_lock);
3455 
3456 	return ret;
3457 }
3458 
3459 static int mem_cgroup_unregister_event(struct cgroup *cgrp, struct cftype *cft,
3460 		struct eventfd_ctx *eventfd)
3461 {
3462 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3463 	struct mem_cgroup_threshold_ary *thresholds, *thresholds_new;
3464 	int type = MEMFILE_TYPE(cft->private);
3465 	u64 usage;
3466 	int size = 0;
3467 	int i, j, ret;
3468 
3469 	mutex_lock(&memcg->thresholds_lock);
3470 	if (type == _MEM)
3471 		thresholds = memcg->thresholds;
3472 	else if (type == _MEMSWAP)
3473 		thresholds = memcg->memsw_thresholds;
3474 	else
3475 		BUG();
3476 
3477 	/*
3478 	 * Something went wrong if we trying to unregister a threshold
3479 	 * if we don't have thresholds
3480 	 */
3481 	BUG_ON(!thresholds);
3482 
3483 	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3484 
3485 	/* Check if a threshold crossed before removing */
3486 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3487 
3488 	/* Calculate new number of threshold */
3489 	for (i = 0; i < thresholds->size; i++) {
3490 		if (thresholds->entries[i].eventfd != eventfd)
3491 			size++;
3492 	}
3493 
3494 	/* Set thresholds array to NULL if we don't have thresholds */
3495 	if (!size) {
3496 		thresholds_new = NULL;
3497 		goto assign;
3498 	}
3499 
3500 	/* Allocate memory for new array of thresholds */
3501 	thresholds_new = kmalloc(sizeof(*thresholds_new) +
3502 			size * sizeof(struct mem_cgroup_threshold),
3503 			GFP_KERNEL);
3504 	if (!thresholds_new) {
3505 		ret = -ENOMEM;
3506 		goto unlock;
3507 	}
3508 	thresholds_new->size = size;
3509 
3510 	/* Copy thresholds and find current threshold */
3511 	atomic_set(&thresholds_new->current_threshold, -1);
3512 	for (i = 0, j = 0; i < thresholds->size; i++) {
3513 		if (thresholds->entries[i].eventfd == eventfd)
3514 			continue;
3515 
3516 		thresholds_new->entries[j] = thresholds->entries[i];
3517 		if (thresholds_new->entries[j].threshold < usage) {
3518 			/*
3519 			 * thresholds_new->current_threshold will not be used
3520 			 * until rcu_assign_pointer(), so it's safe to increment
3521 			 * it here.
3522 			 */
3523 			atomic_inc(&thresholds_new->current_threshold);
3524 		}
3525 		j++;
3526 	}
3527 
3528 assign:
3529 	if (type == _MEM)
3530 		rcu_assign_pointer(memcg->thresholds, thresholds_new);
3531 	else
3532 		rcu_assign_pointer(memcg->memsw_thresholds, thresholds_new);
3533 
3534 	/* To be sure that nobody uses thresholds before freeing it */
3535 	synchronize_rcu();
3536 
3537 	kfree(thresholds);
3538 unlock:
3539 	mutex_unlock(&memcg->thresholds_lock);
3540 
3541 	return ret;
3542 }
3543 
3544 static struct cftype mem_cgroup_files[] = {
3545 	{
3546 		.name = "usage_in_bytes",
3547 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3548 		.read_u64 = mem_cgroup_read,
3549 		.register_event = mem_cgroup_register_event,
3550 		.unregister_event = mem_cgroup_unregister_event,
3551 	},
3552 	{
3553 		.name = "max_usage_in_bytes",
3554 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3555 		.trigger = mem_cgroup_reset,
3556 		.read_u64 = mem_cgroup_read,
3557 	},
3558 	{
3559 		.name = "limit_in_bytes",
3560 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3561 		.write_string = mem_cgroup_write,
3562 		.read_u64 = mem_cgroup_read,
3563 	},
3564 	{
3565 		.name = "soft_limit_in_bytes",
3566 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3567 		.write_string = mem_cgroup_write,
3568 		.read_u64 = mem_cgroup_read,
3569 	},
3570 	{
3571 		.name = "failcnt",
3572 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3573 		.trigger = mem_cgroup_reset,
3574 		.read_u64 = mem_cgroup_read,
3575 	},
3576 	{
3577 		.name = "stat",
3578 		.read_map = mem_control_stat_show,
3579 	},
3580 	{
3581 		.name = "force_empty",
3582 		.trigger = mem_cgroup_force_empty_write,
3583 	},
3584 	{
3585 		.name = "use_hierarchy",
3586 		.write_u64 = mem_cgroup_hierarchy_write,
3587 		.read_u64 = mem_cgroup_hierarchy_read,
3588 	},
3589 	{
3590 		.name = "swappiness",
3591 		.read_u64 = mem_cgroup_swappiness_read,
3592 		.write_u64 = mem_cgroup_swappiness_write,
3593 	},
3594 	{
3595 		.name = "move_charge_at_immigrate",
3596 		.read_u64 = mem_cgroup_move_charge_read,
3597 		.write_u64 = mem_cgroup_move_charge_write,
3598 	},
3599 };
3600 
3601 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3602 static struct cftype memsw_cgroup_files[] = {
3603 	{
3604 		.name = "memsw.usage_in_bytes",
3605 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
3606 		.read_u64 = mem_cgroup_read,
3607 		.register_event = mem_cgroup_register_event,
3608 		.unregister_event = mem_cgroup_unregister_event,
3609 	},
3610 	{
3611 		.name = "memsw.max_usage_in_bytes",
3612 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
3613 		.trigger = mem_cgroup_reset,
3614 		.read_u64 = mem_cgroup_read,
3615 	},
3616 	{
3617 		.name = "memsw.limit_in_bytes",
3618 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
3619 		.write_string = mem_cgroup_write,
3620 		.read_u64 = mem_cgroup_read,
3621 	},
3622 	{
3623 		.name = "memsw.failcnt",
3624 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
3625 		.trigger = mem_cgroup_reset,
3626 		.read_u64 = mem_cgroup_read,
3627 	},
3628 };
3629 
3630 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
3631 {
3632 	if (!do_swap_account)
3633 		return 0;
3634 	return cgroup_add_files(cont, ss, memsw_cgroup_files,
3635 				ARRAY_SIZE(memsw_cgroup_files));
3636 };
3637 #else
3638 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
3639 {
3640 	return 0;
3641 }
3642 #endif
3643 
3644 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
3645 {
3646 	struct mem_cgroup_per_node *pn;
3647 	struct mem_cgroup_per_zone *mz;
3648 	enum lru_list l;
3649 	int zone, tmp = node;
3650 	/*
3651 	 * This routine is called against possible nodes.
3652 	 * But it's BUG to call kmalloc() against offline node.
3653 	 *
3654 	 * TODO: this routine can waste much memory for nodes which will
3655 	 *       never be onlined. It's better to use memory hotplug callback
3656 	 *       function.
3657 	 */
3658 	if (!node_state(node, N_NORMAL_MEMORY))
3659 		tmp = -1;
3660 	pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
3661 	if (!pn)
3662 		return 1;
3663 
3664 	mem->info.nodeinfo[node] = pn;
3665 	memset(pn, 0, sizeof(*pn));
3666 
3667 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3668 		mz = &pn->zoneinfo[zone];
3669 		for_each_lru(l)
3670 			INIT_LIST_HEAD(&mz->lists[l]);
3671 		mz->usage_in_excess = 0;
3672 		mz->on_tree = false;
3673 		mz->mem = mem;
3674 	}
3675 	return 0;
3676 }
3677 
3678 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
3679 {
3680 	kfree(mem->info.nodeinfo[node]);
3681 }
3682 
3683 static struct mem_cgroup *mem_cgroup_alloc(void)
3684 {
3685 	struct mem_cgroup *mem;
3686 	int size = sizeof(struct mem_cgroup);
3687 
3688 	/* Can be very big if MAX_NUMNODES is very big */
3689 	if (size < PAGE_SIZE)
3690 		mem = kmalloc(size, GFP_KERNEL);
3691 	else
3692 		mem = vmalloc(size);
3693 
3694 	if (!mem)
3695 		return NULL;
3696 
3697 	memset(mem, 0, size);
3698 	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
3699 	if (!mem->stat) {
3700 		if (size < PAGE_SIZE)
3701 			kfree(mem);
3702 		else
3703 			vfree(mem);
3704 		mem = NULL;
3705 	}
3706 	return mem;
3707 }
3708 
3709 /*
3710  * At destroying mem_cgroup, references from swap_cgroup can remain.
3711  * (scanning all at force_empty is too costly...)
3712  *
3713  * Instead of clearing all references at force_empty, we remember
3714  * the number of reference from swap_cgroup and free mem_cgroup when
3715  * it goes down to 0.
3716  *
3717  * Removal of cgroup itself succeeds regardless of refs from swap.
3718  */
3719 
3720 static void __mem_cgroup_free(struct mem_cgroup *mem)
3721 {
3722 	int node;
3723 
3724 	mem_cgroup_remove_from_trees(mem);
3725 	free_css_id(&mem_cgroup_subsys, &mem->css);
3726 
3727 	for_each_node_state(node, N_POSSIBLE)
3728 		free_mem_cgroup_per_zone_info(mem, node);
3729 
3730 	free_percpu(mem->stat);
3731 	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
3732 		kfree(mem);
3733 	else
3734 		vfree(mem);
3735 }
3736 
3737 static void mem_cgroup_get(struct mem_cgroup *mem)
3738 {
3739 	atomic_inc(&mem->refcnt);
3740 }
3741 
3742 static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
3743 {
3744 	if (atomic_sub_and_test(count, &mem->refcnt)) {
3745 		struct mem_cgroup *parent = parent_mem_cgroup(mem);
3746 		__mem_cgroup_free(mem);
3747 		if (parent)
3748 			mem_cgroup_put(parent);
3749 	}
3750 }
3751 
3752 static void mem_cgroup_put(struct mem_cgroup *mem)
3753 {
3754 	__mem_cgroup_put(mem, 1);
3755 }
3756 
3757 /*
3758  * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
3759  */
3760 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
3761 {
3762 	if (!mem->res.parent)
3763 		return NULL;
3764 	return mem_cgroup_from_res_counter(mem->res.parent, res);
3765 }
3766 
3767 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3768 static void __init enable_swap_cgroup(void)
3769 {
3770 	if (!mem_cgroup_disabled() && really_do_swap_account)
3771 		do_swap_account = 1;
3772 }
3773 #else
3774 static void __init enable_swap_cgroup(void)
3775 {
3776 }
3777 #endif
3778 
3779 static int mem_cgroup_soft_limit_tree_init(void)
3780 {
3781 	struct mem_cgroup_tree_per_node *rtpn;
3782 	struct mem_cgroup_tree_per_zone *rtpz;
3783 	int tmp, node, zone;
3784 
3785 	for_each_node_state(node, N_POSSIBLE) {
3786 		tmp = node;
3787 		if (!node_state(node, N_NORMAL_MEMORY))
3788 			tmp = -1;
3789 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
3790 		if (!rtpn)
3791 			return 1;
3792 
3793 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
3794 
3795 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3796 			rtpz = &rtpn->rb_tree_per_zone[zone];
3797 			rtpz->rb_root = RB_ROOT;
3798 			spin_lock_init(&rtpz->lock);
3799 		}
3800 	}
3801 	return 0;
3802 }
3803 
3804 static struct cgroup_subsys_state * __ref
3805 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
3806 {
3807 	struct mem_cgroup *mem, *parent;
3808 	long error = -ENOMEM;
3809 	int node;
3810 
3811 	mem = mem_cgroup_alloc();
3812 	if (!mem)
3813 		return ERR_PTR(error);
3814 
3815 	for_each_node_state(node, N_POSSIBLE)
3816 		if (alloc_mem_cgroup_per_zone_info(mem, node))
3817 			goto free_out;
3818 
3819 	/* root ? */
3820 	if (cont->parent == NULL) {
3821 		int cpu;
3822 		enable_swap_cgroup();
3823 		parent = NULL;
3824 		root_mem_cgroup = mem;
3825 		if (mem_cgroup_soft_limit_tree_init())
3826 			goto free_out;
3827 		for_each_possible_cpu(cpu) {
3828 			struct memcg_stock_pcp *stock =
3829 						&per_cpu(memcg_stock, cpu);
3830 			INIT_WORK(&stock->work, drain_local_stock);
3831 		}
3832 		hotcpu_notifier(memcg_stock_cpu_callback, 0);
3833 	} else {
3834 		parent = mem_cgroup_from_cont(cont->parent);
3835 		mem->use_hierarchy = parent->use_hierarchy;
3836 	}
3837 
3838 	if (parent && parent->use_hierarchy) {
3839 		res_counter_init(&mem->res, &parent->res);
3840 		res_counter_init(&mem->memsw, &parent->memsw);
3841 		/*
3842 		 * We increment refcnt of the parent to ensure that we can
3843 		 * safely access it on res_counter_charge/uncharge.
3844 		 * This refcnt will be decremented when freeing this
3845 		 * mem_cgroup(see mem_cgroup_put).
3846 		 */
3847 		mem_cgroup_get(parent);
3848 	} else {
3849 		res_counter_init(&mem->res, NULL);
3850 		res_counter_init(&mem->memsw, NULL);
3851 	}
3852 	mem->last_scanned_child = 0;
3853 	spin_lock_init(&mem->reclaim_param_lock);
3854 
3855 	if (parent)
3856 		mem->swappiness = get_swappiness(parent);
3857 	atomic_set(&mem->refcnt, 1);
3858 	mem->move_charge_at_immigrate = 0;
3859 	mutex_init(&mem->thresholds_lock);
3860 	return &mem->css;
3861 free_out:
3862 	__mem_cgroup_free(mem);
3863 	root_mem_cgroup = NULL;
3864 	return ERR_PTR(error);
3865 }
3866 
3867 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
3868 					struct cgroup *cont)
3869 {
3870 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3871 
3872 	return mem_cgroup_force_empty(mem, false);
3873 }
3874 
3875 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
3876 				struct cgroup *cont)
3877 {
3878 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3879 
3880 	mem_cgroup_put(mem);
3881 }
3882 
3883 static int mem_cgroup_populate(struct cgroup_subsys *ss,
3884 				struct cgroup *cont)
3885 {
3886 	int ret;
3887 
3888 	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
3889 				ARRAY_SIZE(mem_cgroup_files));
3890 
3891 	if (!ret)
3892 		ret = register_memsw_files(cont, ss);
3893 	return ret;
3894 }
3895 
3896 #ifdef CONFIG_MMU
3897 /* Handlers for move charge at task migration. */
3898 #define PRECHARGE_COUNT_AT_ONCE	256
3899 static int mem_cgroup_do_precharge(unsigned long count)
3900 {
3901 	int ret = 0;
3902 	int batch_count = PRECHARGE_COUNT_AT_ONCE;
3903 	struct mem_cgroup *mem = mc.to;
3904 
3905 	if (mem_cgroup_is_root(mem)) {
3906 		mc.precharge += count;
3907 		/* we don't need css_get for root */
3908 		return ret;
3909 	}
3910 	/* try to charge at once */
3911 	if (count > 1) {
3912 		struct res_counter *dummy;
3913 		/*
3914 		 * "mem" cannot be under rmdir() because we've already checked
3915 		 * by cgroup_lock_live_cgroup() that it is not removed and we
3916 		 * are still under the same cgroup_mutex. So we can postpone
3917 		 * css_get().
3918 		 */
3919 		if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
3920 			goto one_by_one;
3921 		if (do_swap_account && res_counter_charge(&mem->memsw,
3922 						PAGE_SIZE * count, &dummy)) {
3923 			res_counter_uncharge(&mem->res, PAGE_SIZE * count);
3924 			goto one_by_one;
3925 		}
3926 		mc.precharge += count;
3927 		VM_BUG_ON(test_bit(CSS_ROOT, &mem->css.flags));
3928 		WARN_ON_ONCE(count > INT_MAX);
3929 		__css_get(&mem->css, (int)count);
3930 		return ret;
3931 	}
3932 one_by_one:
3933 	/* fall back to one by one charge */
3934 	while (count--) {
3935 		if (signal_pending(current)) {
3936 			ret = -EINTR;
3937 			break;
3938 		}
3939 		if (!batch_count--) {
3940 			batch_count = PRECHARGE_COUNT_AT_ONCE;
3941 			cond_resched();
3942 		}
3943 		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false);
3944 		if (ret || !mem)
3945 			/* mem_cgroup_clear_mc() will do uncharge later */
3946 			return -ENOMEM;
3947 		mc.precharge++;
3948 	}
3949 	return ret;
3950 }
3951 
3952 /**
3953  * is_target_pte_for_mc - check a pte whether it is valid for move charge
3954  * @vma: the vma the pte to be checked belongs
3955  * @addr: the address corresponding to the pte to be checked
3956  * @ptent: the pte to be checked
3957  * @target: the pointer the target page or swap ent will be stored(can be NULL)
3958  *
3959  * Returns
3960  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
3961  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
3962  *     move charge. if @target is not NULL, the page is stored in target->page
3963  *     with extra refcnt got(Callers should handle it).
3964  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
3965  *     target for charge migration. if @target is not NULL, the entry is stored
3966  *     in target->ent.
3967  *
3968  * Called with pte lock held.
3969  */
3970 union mc_target {
3971 	struct page	*page;
3972 	swp_entry_t	ent;
3973 };
3974 
3975 enum mc_target_type {
3976 	MC_TARGET_NONE,	/* not used */
3977 	MC_TARGET_PAGE,
3978 	MC_TARGET_SWAP,
3979 };
3980 
3981 static int is_target_pte_for_mc(struct vm_area_struct *vma,
3982 		unsigned long addr, pte_t ptent, union mc_target *target)
3983 {
3984 	struct page *page = NULL;
3985 	struct page_cgroup *pc;
3986 	int ret = 0;
3987 	swp_entry_t ent = { .val = 0 };
3988 	int usage_count = 0;
3989 	bool move_anon = test_bit(MOVE_CHARGE_TYPE_ANON,
3990 					&mc.to->move_charge_at_immigrate);
3991 
3992 	if (!pte_present(ptent)) {
3993 		/* TODO: handle swap of shmes/tmpfs */
3994 		if (pte_none(ptent) || pte_file(ptent))
3995 			return 0;
3996 		else if (is_swap_pte(ptent)) {
3997 			ent = pte_to_swp_entry(ptent);
3998 			if (!move_anon || non_swap_entry(ent))
3999 				return 0;
4000 			usage_count = mem_cgroup_count_swap_user(ent, &page);
4001 		}
4002 	} else {
4003 		page = vm_normal_page(vma, addr, ptent);
4004 		if (!page || !page_mapped(page))
4005 			return 0;
4006 		/*
4007 		 * TODO: We don't move charges of file(including shmem/tmpfs)
4008 		 * pages for now.
4009 		 */
4010 		if (!move_anon || !PageAnon(page))
4011 			return 0;
4012 		if (!get_page_unless_zero(page))
4013 			return 0;
4014 		usage_count = page_mapcount(page);
4015 	}
4016 	if (usage_count > 1) {
4017 		/*
4018 		 * TODO: We don't move charges of shared(used by multiple
4019 		 * processes) pages for now.
4020 		 */
4021 		if (page)
4022 			put_page(page);
4023 		return 0;
4024 	}
4025 	if (page) {
4026 		pc = lookup_page_cgroup(page);
4027 		/*
4028 		 * Do only loose check w/o page_cgroup lock.
4029 		 * mem_cgroup_move_account() checks the pc is valid or not under
4030 		 * the lock.
4031 		 */
4032 		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
4033 			ret = MC_TARGET_PAGE;
4034 			if (target)
4035 				target->page = page;
4036 		}
4037 		if (!ret || !target)
4038 			put_page(page);
4039 	}
4040 	/* throught */
4041 	if (ent.val && do_swap_account && !ret &&
4042 			css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
4043 		ret = MC_TARGET_SWAP;
4044 		if (target)
4045 			target->ent = ent;
4046 	}
4047 	return ret;
4048 }
4049 
4050 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4051 					unsigned long addr, unsigned long end,
4052 					struct mm_walk *walk)
4053 {
4054 	struct vm_area_struct *vma = walk->private;
4055 	pte_t *pte;
4056 	spinlock_t *ptl;
4057 
4058 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4059 	for (; addr != end; pte++, addr += PAGE_SIZE)
4060 		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
4061 			mc.precharge++;	/* increment precharge temporarily */
4062 	pte_unmap_unlock(pte - 1, ptl);
4063 	cond_resched();
4064 
4065 	return 0;
4066 }
4067 
4068 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4069 {
4070 	unsigned long precharge;
4071 	struct vm_area_struct *vma;
4072 
4073 	down_read(&mm->mmap_sem);
4074 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
4075 		struct mm_walk mem_cgroup_count_precharge_walk = {
4076 			.pmd_entry = mem_cgroup_count_precharge_pte_range,
4077 			.mm = mm,
4078 			.private = vma,
4079 		};
4080 		if (is_vm_hugetlb_page(vma))
4081 			continue;
4082 		/* TODO: We don't move charges of shmem/tmpfs pages for now. */
4083 		if (vma->vm_flags & VM_SHARED)
4084 			continue;
4085 		walk_page_range(vma->vm_start, vma->vm_end,
4086 					&mem_cgroup_count_precharge_walk);
4087 	}
4088 	up_read(&mm->mmap_sem);
4089 
4090 	precharge = mc.precharge;
4091 	mc.precharge = 0;
4092 
4093 	return precharge;
4094 }
4095 
4096 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4097 {
4098 	return mem_cgroup_do_precharge(mem_cgroup_count_precharge(mm));
4099 }
4100 
4101 static void mem_cgroup_clear_mc(void)
4102 {
4103 	/* we must uncharge all the leftover precharges from mc.to */
4104 	if (mc.precharge) {
4105 		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
4106 		mc.precharge = 0;
4107 	}
4108 	/*
4109 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4110 	 * we must uncharge here.
4111 	 */
4112 	if (mc.moved_charge) {
4113 		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
4114 		mc.moved_charge = 0;
4115 	}
4116 	/* we must fixup refcnts and charges */
4117 	if (mc.moved_swap) {
4118 		WARN_ON_ONCE(mc.moved_swap > INT_MAX);
4119 		/* uncharge swap account from the old cgroup */
4120 		if (!mem_cgroup_is_root(mc.from))
4121 			res_counter_uncharge(&mc.from->memsw,
4122 						PAGE_SIZE * mc.moved_swap);
4123 		__mem_cgroup_put(mc.from, mc.moved_swap);
4124 
4125 		if (!mem_cgroup_is_root(mc.to)) {
4126 			/*
4127 			 * we charged both to->res and to->memsw, so we should
4128 			 * uncharge to->res.
4129 			 */
4130 			res_counter_uncharge(&mc.to->res,
4131 						PAGE_SIZE * mc.moved_swap);
4132 			VM_BUG_ON(test_bit(CSS_ROOT, &mc.to->css.flags));
4133 			__css_put(&mc.to->css, mc.moved_swap);
4134 		}
4135 		/* we've already done mem_cgroup_get(mc.to) */
4136 
4137 		mc.moved_swap = 0;
4138 	}
4139 	mc.from = NULL;
4140 	mc.to = NULL;
4141 	mc.moving_task = NULL;
4142 	wake_up_all(&mc.waitq);
4143 }
4144 
4145 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4146 				struct cgroup *cgroup,
4147 				struct task_struct *p,
4148 				bool threadgroup)
4149 {
4150 	int ret = 0;
4151 	struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
4152 
4153 	if (mem->move_charge_at_immigrate) {
4154 		struct mm_struct *mm;
4155 		struct mem_cgroup *from = mem_cgroup_from_task(p);
4156 
4157 		VM_BUG_ON(from == mem);
4158 
4159 		mm = get_task_mm(p);
4160 		if (!mm)
4161 			return 0;
4162 		/* We move charges only when we move a owner of the mm */
4163 		if (mm->owner == p) {
4164 			VM_BUG_ON(mc.from);
4165 			VM_BUG_ON(mc.to);
4166 			VM_BUG_ON(mc.precharge);
4167 			VM_BUG_ON(mc.moved_charge);
4168 			VM_BUG_ON(mc.moved_swap);
4169 			VM_BUG_ON(mc.moving_task);
4170 			mc.from = from;
4171 			mc.to = mem;
4172 			mc.precharge = 0;
4173 			mc.moved_charge = 0;
4174 			mc.moved_swap = 0;
4175 			mc.moving_task = current;
4176 
4177 			ret = mem_cgroup_precharge_mc(mm);
4178 			if (ret)
4179 				mem_cgroup_clear_mc();
4180 		}
4181 		mmput(mm);
4182 	}
4183 	return ret;
4184 }
4185 
4186 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4187 				struct cgroup *cgroup,
4188 				struct task_struct *p,
4189 				bool threadgroup)
4190 {
4191 	mem_cgroup_clear_mc();
4192 }
4193 
4194 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4195 				unsigned long addr, unsigned long end,
4196 				struct mm_walk *walk)
4197 {
4198 	int ret = 0;
4199 	struct vm_area_struct *vma = walk->private;
4200 	pte_t *pte;
4201 	spinlock_t *ptl;
4202 
4203 retry:
4204 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4205 	for (; addr != end; addr += PAGE_SIZE) {
4206 		pte_t ptent = *(pte++);
4207 		union mc_target target;
4208 		int type;
4209 		struct page *page;
4210 		struct page_cgroup *pc;
4211 		swp_entry_t ent;
4212 
4213 		if (!mc.precharge)
4214 			break;
4215 
4216 		type = is_target_pte_for_mc(vma, addr, ptent, &target);
4217 		switch (type) {
4218 		case MC_TARGET_PAGE:
4219 			page = target.page;
4220 			if (isolate_lru_page(page))
4221 				goto put;
4222 			pc = lookup_page_cgroup(page);
4223 			if (!mem_cgroup_move_account(pc,
4224 						mc.from, mc.to, false)) {
4225 				mc.precharge--;
4226 				/* we uncharge from mc.from later. */
4227 				mc.moved_charge++;
4228 			}
4229 			putback_lru_page(page);
4230 put:			/* is_target_pte_for_mc() gets the page */
4231 			put_page(page);
4232 			break;
4233 		case MC_TARGET_SWAP:
4234 			ent = target.ent;
4235 			if (!mem_cgroup_move_swap_account(ent,
4236 						mc.from, mc.to, false)) {
4237 				mc.precharge--;
4238 				/* we fixup refcnts and charges later. */
4239 				mc.moved_swap++;
4240 			}
4241 			break;
4242 		default:
4243 			break;
4244 		}
4245 	}
4246 	pte_unmap_unlock(pte - 1, ptl);
4247 	cond_resched();
4248 
4249 	if (addr != end) {
4250 		/*
4251 		 * We have consumed all precharges we got in can_attach().
4252 		 * We try charge one by one, but don't do any additional
4253 		 * charges to mc.to if we have failed in charge once in attach()
4254 		 * phase.
4255 		 */
4256 		ret = mem_cgroup_do_precharge(1);
4257 		if (!ret)
4258 			goto retry;
4259 	}
4260 
4261 	return ret;
4262 }
4263 
4264 static void mem_cgroup_move_charge(struct mm_struct *mm)
4265 {
4266 	struct vm_area_struct *vma;
4267 
4268 	lru_add_drain_all();
4269 	down_read(&mm->mmap_sem);
4270 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
4271 		int ret;
4272 		struct mm_walk mem_cgroup_move_charge_walk = {
4273 			.pmd_entry = mem_cgroup_move_charge_pte_range,
4274 			.mm = mm,
4275 			.private = vma,
4276 		};
4277 		if (is_vm_hugetlb_page(vma))
4278 			continue;
4279 		/* TODO: We don't move charges of shmem/tmpfs pages for now. */
4280 		if (vma->vm_flags & VM_SHARED)
4281 			continue;
4282 		ret = walk_page_range(vma->vm_start, vma->vm_end,
4283 						&mem_cgroup_move_charge_walk);
4284 		if (ret)
4285 			/*
4286 			 * means we have consumed all precharges and failed in
4287 			 * doing additional charge. Just abandon here.
4288 			 */
4289 			break;
4290 	}
4291 	up_read(&mm->mmap_sem);
4292 }
4293 
4294 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
4295 				struct cgroup *cont,
4296 				struct cgroup *old_cont,
4297 				struct task_struct *p,
4298 				bool threadgroup)
4299 {
4300 	struct mm_struct *mm;
4301 
4302 	if (!mc.to)
4303 		/* no need to move charge */
4304 		return;
4305 
4306 	mm = get_task_mm(p);
4307 	if (mm) {
4308 		mem_cgroup_move_charge(mm);
4309 		mmput(mm);
4310 	}
4311 	mem_cgroup_clear_mc();
4312 }
4313 #else	/* !CONFIG_MMU */
4314 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4315 				struct cgroup *cgroup,
4316 				struct task_struct *p,
4317 				bool threadgroup)
4318 {
4319 	return 0;
4320 }
4321 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4322 				struct cgroup *cgroup,
4323 				struct task_struct *p,
4324 				bool threadgroup)
4325 {
4326 }
4327 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
4328 				struct cgroup *cont,
4329 				struct cgroup *old_cont,
4330 				struct task_struct *p,
4331 				bool threadgroup)
4332 {
4333 }
4334 #endif
4335 
4336 struct cgroup_subsys mem_cgroup_subsys = {
4337 	.name = "memory",
4338 	.subsys_id = mem_cgroup_subsys_id,
4339 	.create = mem_cgroup_create,
4340 	.pre_destroy = mem_cgroup_pre_destroy,
4341 	.destroy = mem_cgroup_destroy,
4342 	.populate = mem_cgroup_populate,
4343 	.can_attach = mem_cgroup_can_attach,
4344 	.cancel_attach = mem_cgroup_cancel_attach,
4345 	.attach = mem_cgroup_move_task,
4346 	.early_init = 0,
4347 	.use_id = 1,
4348 };
4349 
4350 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4351 
4352 static int __init disable_swap_account(char *s)
4353 {
4354 	really_do_swap_account = 0;
4355 	return 1;
4356 }
4357 __setup("noswapaccount", disable_swap_account);
4358 #endif
4359