1 /* memcontrol.c - Memory Controller 2 * 3 * Copyright IBM Corporation, 2007 4 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 5 * 6 * Copyright 2007 OpenVZ SWsoft Inc 7 * Author: Pavel Emelianov <xemul@openvz.org> 8 * 9 * Memory thresholds 10 * Copyright (C) 2009 Nokia Corporation 11 * Author: Kirill A. Shutemov 12 * 13 * Kernel Memory Controller 14 * Copyright (C) 2012 Parallels Inc. and Google Inc. 15 * Authors: Glauber Costa and Suleiman Souhlal 16 * 17 * Native page reclaim 18 * Charge lifetime sanitation 19 * Lockless page tracking & accounting 20 * Unified hierarchy configuration model 21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner 22 * 23 * This program is free software; you can redistribute it and/or modify 24 * it under the terms of the GNU General Public License as published by 25 * the Free Software Foundation; either version 2 of the License, or 26 * (at your option) any later version. 27 * 28 * This program is distributed in the hope that it will be useful, 29 * but WITHOUT ANY WARRANTY; without even the implied warranty of 30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 31 * GNU General Public License for more details. 32 */ 33 34 #include <linux/page_counter.h> 35 #include <linux/memcontrol.h> 36 #include <linux/cgroup.h> 37 #include <linux/mm.h> 38 #include <linux/sched/mm.h> 39 #include <linux/shmem_fs.h> 40 #include <linux/hugetlb.h> 41 #include <linux/pagemap.h> 42 #include <linux/smp.h> 43 #include <linux/page-flags.h> 44 #include <linux/backing-dev.h> 45 #include <linux/bit_spinlock.h> 46 #include <linux/rcupdate.h> 47 #include <linux/limits.h> 48 #include <linux/export.h> 49 #include <linux/mutex.h> 50 #include <linux/rbtree.h> 51 #include <linux/slab.h> 52 #include <linux/swap.h> 53 #include <linux/swapops.h> 54 #include <linux/spinlock.h> 55 #include <linux/eventfd.h> 56 #include <linux/poll.h> 57 #include <linux/sort.h> 58 #include <linux/fs.h> 59 #include <linux/seq_file.h> 60 #include <linux/vmpressure.h> 61 #include <linux/mm_inline.h> 62 #include <linux/swap_cgroup.h> 63 #include <linux/cpu.h> 64 #include <linux/oom.h> 65 #include <linux/lockdep.h> 66 #include <linux/file.h> 67 #include <linux/tracehook.h> 68 #include "internal.h" 69 #include <net/sock.h> 70 #include <net/ip.h> 71 #include "slab.h" 72 73 #include <linux/uaccess.h> 74 75 #include <trace/events/vmscan.h> 76 77 struct cgroup_subsys memory_cgrp_subsys __read_mostly; 78 EXPORT_SYMBOL(memory_cgrp_subsys); 79 80 struct mem_cgroup *root_mem_cgroup __read_mostly; 81 82 #define MEM_CGROUP_RECLAIM_RETRIES 5 83 84 /* Socket memory accounting disabled? */ 85 static bool cgroup_memory_nosocket; 86 87 /* Kernel memory accounting disabled? */ 88 static bool cgroup_memory_nokmem; 89 90 /* Whether the swap controller is active */ 91 #ifdef CONFIG_MEMCG_SWAP 92 int do_swap_account __read_mostly; 93 #else 94 #define do_swap_account 0 95 #endif 96 97 /* Whether legacy memory+swap accounting is active */ 98 static bool do_memsw_account(void) 99 { 100 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account; 101 } 102 103 static const char *const mem_cgroup_lru_names[] = { 104 "inactive_anon", 105 "active_anon", 106 "inactive_file", 107 "active_file", 108 "unevictable", 109 }; 110 111 #define THRESHOLDS_EVENTS_TARGET 128 112 #define SOFTLIMIT_EVENTS_TARGET 1024 113 #define NUMAINFO_EVENTS_TARGET 1024 114 115 /* 116 * Cgroups above their limits are maintained in a RB-Tree, independent of 117 * their hierarchy representation 118 */ 119 120 struct mem_cgroup_tree_per_node { 121 struct rb_root rb_root; 122 struct rb_node *rb_rightmost; 123 spinlock_t lock; 124 }; 125 126 struct mem_cgroup_tree { 127 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 128 }; 129 130 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 131 132 /* for OOM */ 133 struct mem_cgroup_eventfd_list { 134 struct list_head list; 135 struct eventfd_ctx *eventfd; 136 }; 137 138 /* 139 * cgroup_event represents events which userspace want to receive. 140 */ 141 struct mem_cgroup_event { 142 /* 143 * memcg which the event belongs to. 144 */ 145 struct mem_cgroup *memcg; 146 /* 147 * eventfd to signal userspace about the event. 148 */ 149 struct eventfd_ctx *eventfd; 150 /* 151 * Each of these stored in a list by the cgroup. 152 */ 153 struct list_head list; 154 /* 155 * register_event() callback will be used to add new userspace 156 * waiter for changes related to this event. Use eventfd_signal() 157 * on eventfd to send notification to userspace. 158 */ 159 int (*register_event)(struct mem_cgroup *memcg, 160 struct eventfd_ctx *eventfd, const char *args); 161 /* 162 * unregister_event() callback will be called when userspace closes 163 * the eventfd or on cgroup removing. This callback must be set, 164 * if you want provide notification functionality. 165 */ 166 void (*unregister_event)(struct mem_cgroup *memcg, 167 struct eventfd_ctx *eventfd); 168 /* 169 * All fields below needed to unregister event when 170 * userspace closes eventfd. 171 */ 172 poll_table pt; 173 wait_queue_head_t *wqh; 174 wait_queue_entry_t wait; 175 struct work_struct remove; 176 }; 177 178 static void mem_cgroup_threshold(struct mem_cgroup *memcg); 179 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); 180 181 /* Stuffs for move charges at task migration. */ 182 /* 183 * Types of charges to be moved. 184 */ 185 #define MOVE_ANON 0x1U 186 #define MOVE_FILE 0x2U 187 #define MOVE_MASK (MOVE_ANON | MOVE_FILE) 188 189 /* "mc" and its members are protected by cgroup_mutex */ 190 static struct move_charge_struct { 191 spinlock_t lock; /* for from, to */ 192 struct mm_struct *mm; 193 struct mem_cgroup *from; 194 struct mem_cgroup *to; 195 unsigned long flags; 196 unsigned long precharge; 197 unsigned long moved_charge; 198 unsigned long moved_swap; 199 struct task_struct *moving_task; /* a task moving charges */ 200 wait_queue_head_t waitq; /* a waitq for other context */ 201 } mc = { 202 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 203 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 204 }; 205 206 /* 207 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft 208 * limit reclaim to prevent infinite loops, if they ever occur. 209 */ 210 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 211 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 212 213 enum charge_type { 214 MEM_CGROUP_CHARGE_TYPE_CACHE = 0, 215 MEM_CGROUP_CHARGE_TYPE_ANON, 216 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */ 217 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */ 218 NR_CHARGE_TYPE, 219 }; 220 221 /* for encoding cft->private value on file */ 222 enum res_type { 223 _MEM, 224 _MEMSWAP, 225 _OOM_TYPE, 226 _KMEM, 227 _TCP, 228 }; 229 230 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) 231 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) 232 #define MEMFILE_ATTR(val) ((val) & 0xffff) 233 /* Used for OOM nofiier */ 234 #define OOM_CONTROL (0) 235 236 /* Some nice accessors for the vmpressure. */ 237 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 238 { 239 if (!memcg) 240 memcg = root_mem_cgroup; 241 return &memcg->vmpressure; 242 } 243 244 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr) 245 { 246 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css; 247 } 248 249 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 250 { 251 return (memcg == root_mem_cgroup); 252 } 253 254 #ifndef CONFIG_SLOB 255 /* 256 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches. 257 * The main reason for not using cgroup id for this: 258 * this works better in sparse environments, where we have a lot of memcgs, 259 * but only a few kmem-limited. Or also, if we have, for instance, 200 260 * memcgs, and none but the 200th is kmem-limited, we'd have to have a 261 * 200 entry array for that. 262 * 263 * The current size of the caches array is stored in memcg_nr_cache_ids. It 264 * will double each time we have to increase it. 265 */ 266 static DEFINE_IDA(memcg_cache_ida); 267 int memcg_nr_cache_ids; 268 269 /* Protects memcg_nr_cache_ids */ 270 static DECLARE_RWSEM(memcg_cache_ids_sem); 271 272 void memcg_get_cache_ids(void) 273 { 274 down_read(&memcg_cache_ids_sem); 275 } 276 277 void memcg_put_cache_ids(void) 278 { 279 up_read(&memcg_cache_ids_sem); 280 } 281 282 /* 283 * MIN_SIZE is different than 1, because we would like to avoid going through 284 * the alloc/free process all the time. In a small machine, 4 kmem-limited 285 * cgroups is a reasonable guess. In the future, it could be a parameter or 286 * tunable, but that is strictly not necessary. 287 * 288 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get 289 * this constant directly from cgroup, but it is understandable that this is 290 * better kept as an internal representation in cgroup.c. In any case, the 291 * cgrp_id space is not getting any smaller, and we don't have to necessarily 292 * increase ours as well if it increases. 293 */ 294 #define MEMCG_CACHES_MIN_SIZE 4 295 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX 296 297 /* 298 * A lot of the calls to the cache allocation functions are expected to be 299 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are 300 * conditional to this static branch, we'll have to allow modules that does 301 * kmem_cache_alloc and the such to see this symbol as well 302 */ 303 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key); 304 EXPORT_SYMBOL(memcg_kmem_enabled_key); 305 306 struct workqueue_struct *memcg_kmem_cache_wq; 307 308 #endif /* !CONFIG_SLOB */ 309 310 /** 311 * mem_cgroup_css_from_page - css of the memcg associated with a page 312 * @page: page of interest 313 * 314 * If memcg is bound to the default hierarchy, css of the memcg associated 315 * with @page is returned. The returned css remains associated with @page 316 * until it is released. 317 * 318 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup 319 * is returned. 320 */ 321 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page) 322 { 323 struct mem_cgroup *memcg; 324 325 memcg = page->mem_cgroup; 326 327 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 328 memcg = root_mem_cgroup; 329 330 return &memcg->css; 331 } 332 333 /** 334 * page_cgroup_ino - return inode number of the memcg a page is charged to 335 * @page: the page 336 * 337 * Look up the closest online ancestor of the memory cgroup @page is charged to 338 * and return its inode number or 0 if @page is not charged to any cgroup. It 339 * is safe to call this function without holding a reference to @page. 340 * 341 * Note, this function is inherently racy, because there is nothing to prevent 342 * the cgroup inode from getting torn down and potentially reallocated a moment 343 * after page_cgroup_ino() returns, so it only should be used by callers that 344 * do not care (such as procfs interfaces). 345 */ 346 ino_t page_cgroup_ino(struct page *page) 347 { 348 struct mem_cgroup *memcg; 349 unsigned long ino = 0; 350 351 rcu_read_lock(); 352 memcg = READ_ONCE(page->mem_cgroup); 353 while (memcg && !(memcg->css.flags & CSS_ONLINE)) 354 memcg = parent_mem_cgroup(memcg); 355 if (memcg) 356 ino = cgroup_ino(memcg->css.cgroup); 357 rcu_read_unlock(); 358 return ino; 359 } 360 361 static struct mem_cgroup_per_node * 362 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page) 363 { 364 int nid = page_to_nid(page); 365 366 return memcg->nodeinfo[nid]; 367 } 368 369 static struct mem_cgroup_tree_per_node * 370 soft_limit_tree_node(int nid) 371 { 372 return soft_limit_tree.rb_tree_per_node[nid]; 373 } 374 375 static struct mem_cgroup_tree_per_node * 376 soft_limit_tree_from_page(struct page *page) 377 { 378 int nid = page_to_nid(page); 379 380 return soft_limit_tree.rb_tree_per_node[nid]; 381 } 382 383 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz, 384 struct mem_cgroup_tree_per_node *mctz, 385 unsigned long new_usage_in_excess) 386 { 387 struct rb_node **p = &mctz->rb_root.rb_node; 388 struct rb_node *parent = NULL; 389 struct mem_cgroup_per_node *mz_node; 390 bool rightmost = true; 391 392 if (mz->on_tree) 393 return; 394 395 mz->usage_in_excess = new_usage_in_excess; 396 if (!mz->usage_in_excess) 397 return; 398 while (*p) { 399 parent = *p; 400 mz_node = rb_entry(parent, struct mem_cgroup_per_node, 401 tree_node); 402 if (mz->usage_in_excess < mz_node->usage_in_excess) { 403 p = &(*p)->rb_left; 404 rightmost = false; 405 } 406 407 /* 408 * We can't avoid mem cgroups that are over their soft 409 * limit by the same amount 410 */ 411 else if (mz->usage_in_excess >= mz_node->usage_in_excess) 412 p = &(*p)->rb_right; 413 } 414 415 if (rightmost) 416 mctz->rb_rightmost = &mz->tree_node; 417 418 rb_link_node(&mz->tree_node, parent, p); 419 rb_insert_color(&mz->tree_node, &mctz->rb_root); 420 mz->on_tree = true; 421 } 422 423 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 424 struct mem_cgroup_tree_per_node *mctz) 425 { 426 if (!mz->on_tree) 427 return; 428 429 if (&mz->tree_node == mctz->rb_rightmost) 430 mctz->rb_rightmost = rb_prev(&mz->tree_node); 431 432 rb_erase(&mz->tree_node, &mctz->rb_root); 433 mz->on_tree = false; 434 } 435 436 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 437 struct mem_cgroup_tree_per_node *mctz) 438 { 439 unsigned long flags; 440 441 spin_lock_irqsave(&mctz->lock, flags); 442 __mem_cgroup_remove_exceeded(mz, mctz); 443 spin_unlock_irqrestore(&mctz->lock, flags); 444 } 445 446 static unsigned long soft_limit_excess(struct mem_cgroup *memcg) 447 { 448 unsigned long nr_pages = page_counter_read(&memcg->memory); 449 unsigned long soft_limit = READ_ONCE(memcg->soft_limit); 450 unsigned long excess = 0; 451 452 if (nr_pages > soft_limit) 453 excess = nr_pages - soft_limit; 454 455 return excess; 456 } 457 458 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page) 459 { 460 unsigned long excess; 461 struct mem_cgroup_per_node *mz; 462 struct mem_cgroup_tree_per_node *mctz; 463 464 mctz = soft_limit_tree_from_page(page); 465 if (!mctz) 466 return; 467 /* 468 * Necessary to update all ancestors when hierarchy is used. 469 * because their event counter is not touched. 470 */ 471 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 472 mz = mem_cgroup_page_nodeinfo(memcg, page); 473 excess = soft_limit_excess(memcg); 474 /* 475 * We have to update the tree if mz is on RB-tree or 476 * mem is over its softlimit. 477 */ 478 if (excess || mz->on_tree) { 479 unsigned long flags; 480 481 spin_lock_irqsave(&mctz->lock, flags); 482 /* if on-tree, remove it */ 483 if (mz->on_tree) 484 __mem_cgroup_remove_exceeded(mz, mctz); 485 /* 486 * Insert again. mz->usage_in_excess will be updated. 487 * If excess is 0, no tree ops. 488 */ 489 __mem_cgroup_insert_exceeded(mz, mctz, excess); 490 spin_unlock_irqrestore(&mctz->lock, flags); 491 } 492 } 493 } 494 495 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) 496 { 497 struct mem_cgroup_tree_per_node *mctz; 498 struct mem_cgroup_per_node *mz; 499 int nid; 500 501 for_each_node(nid) { 502 mz = mem_cgroup_nodeinfo(memcg, nid); 503 mctz = soft_limit_tree_node(nid); 504 if (mctz) 505 mem_cgroup_remove_exceeded(mz, mctz); 506 } 507 } 508 509 static struct mem_cgroup_per_node * 510 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 511 { 512 struct mem_cgroup_per_node *mz; 513 514 retry: 515 mz = NULL; 516 if (!mctz->rb_rightmost) 517 goto done; /* Nothing to reclaim from */ 518 519 mz = rb_entry(mctz->rb_rightmost, 520 struct mem_cgroup_per_node, tree_node); 521 /* 522 * Remove the node now but someone else can add it back, 523 * we will to add it back at the end of reclaim to its correct 524 * position in the tree. 525 */ 526 __mem_cgroup_remove_exceeded(mz, mctz); 527 if (!soft_limit_excess(mz->memcg) || 528 !css_tryget_online(&mz->memcg->css)) 529 goto retry; 530 done: 531 return mz; 532 } 533 534 static struct mem_cgroup_per_node * 535 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 536 { 537 struct mem_cgroup_per_node *mz; 538 539 spin_lock_irq(&mctz->lock); 540 mz = __mem_cgroup_largest_soft_limit_node(mctz); 541 spin_unlock_irq(&mctz->lock); 542 return mz; 543 } 544 545 static unsigned long memcg_sum_events(struct mem_cgroup *memcg, 546 int event) 547 { 548 return atomic_long_read(&memcg->events[event]); 549 } 550 551 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, 552 struct page *page, 553 bool compound, int nr_pages) 554 { 555 /* 556 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is 557 * counted as CACHE even if it's on ANON LRU. 558 */ 559 if (PageAnon(page)) 560 __mod_memcg_state(memcg, MEMCG_RSS, nr_pages); 561 else { 562 __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages); 563 if (PageSwapBacked(page)) 564 __mod_memcg_state(memcg, NR_SHMEM, nr_pages); 565 } 566 567 if (compound) { 568 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 569 __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages); 570 } 571 572 /* pagein of a big page is an event. So, ignore page size */ 573 if (nr_pages > 0) 574 __count_memcg_events(memcg, PGPGIN, 1); 575 else { 576 __count_memcg_events(memcg, PGPGOUT, 1); 577 nr_pages = -nr_pages; /* for event */ 578 } 579 580 __this_cpu_add(memcg->stat_cpu->nr_page_events, nr_pages); 581 } 582 583 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 584 int nid, unsigned int lru_mask) 585 { 586 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg); 587 unsigned long nr = 0; 588 enum lru_list lru; 589 590 VM_BUG_ON((unsigned)nid >= nr_node_ids); 591 592 for_each_lru(lru) { 593 if (!(BIT(lru) & lru_mask)) 594 continue; 595 nr += mem_cgroup_get_lru_size(lruvec, lru); 596 } 597 return nr; 598 } 599 600 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 601 unsigned int lru_mask) 602 { 603 unsigned long nr = 0; 604 int nid; 605 606 for_each_node_state(nid, N_MEMORY) 607 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask); 608 return nr; 609 } 610 611 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, 612 enum mem_cgroup_events_target target) 613 { 614 unsigned long val, next; 615 616 val = __this_cpu_read(memcg->stat_cpu->nr_page_events); 617 next = __this_cpu_read(memcg->stat_cpu->targets[target]); 618 /* from time_after() in jiffies.h */ 619 if ((long)(next - val) < 0) { 620 switch (target) { 621 case MEM_CGROUP_TARGET_THRESH: 622 next = val + THRESHOLDS_EVENTS_TARGET; 623 break; 624 case MEM_CGROUP_TARGET_SOFTLIMIT: 625 next = val + SOFTLIMIT_EVENTS_TARGET; 626 break; 627 case MEM_CGROUP_TARGET_NUMAINFO: 628 next = val + NUMAINFO_EVENTS_TARGET; 629 break; 630 default: 631 break; 632 } 633 __this_cpu_write(memcg->stat_cpu->targets[target], next); 634 return true; 635 } 636 return false; 637 } 638 639 /* 640 * Check events in order. 641 * 642 */ 643 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) 644 { 645 /* threshold event is triggered in finer grain than soft limit */ 646 if (unlikely(mem_cgroup_event_ratelimit(memcg, 647 MEM_CGROUP_TARGET_THRESH))) { 648 bool do_softlimit; 649 bool do_numainfo __maybe_unused; 650 651 do_softlimit = mem_cgroup_event_ratelimit(memcg, 652 MEM_CGROUP_TARGET_SOFTLIMIT); 653 #if MAX_NUMNODES > 1 654 do_numainfo = mem_cgroup_event_ratelimit(memcg, 655 MEM_CGROUP_TARGET_NUMAINFO); 656 #endif 657 mem_cgroup_threshold(memcg); 658 if (unlikely(do_softlimit)) 659 mem_cgroup_update_tree(memcg, page); 660 #if MAX_NUMNODES > 1 661 if (unlikely(do_numainfo)) 662 atomic_inc(&memcg->numainfo_events); 663 #endif 664 } 665 } 666 667 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 668 { 669 /* 670 * mm_update_next_owner() may clear mm->owner to NULL 671 * if it races with swapoff, page migration, etc. 672 * So this can be called with p == NULL. 673 */ 674 if (unlikely(!p)) 675 return NULL; 676 677 return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); 678 } 679 EXPORT_SYMBOL(mem_cgroup_from_task); 680 681 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 682 { 683 struct mem_cgroup *memcg = NULL; 684 685 rcu_read_lock(); 686 do { 687 /* 688 * Page cache insertions can happen withou an 689 * actual mm context, e.g. during disk probing 690 * on boot, loopback IO, acct() writes etc. 691 */ 692 if (unlikely(!mm)) 693 memcg = root_mem_cgroup; 694 else { 695 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 696 if (unlikely(!memcg)) 697 memcg = root_mem_cgroup; 698 } 699 } while (!css_tryget_online(&memcg->css)); 700 rcu_read_unlock(); 701 return memcg; 702 } 703 704 /** 705 * mem_cgroup_iter - iterate over memory cgroup hierarchy 706 * @root: hierarchy root 707 * @prev: previously returned memcg, NULL on first invocation 708 * @reclaim: cookie for shared reclaim walks, NULL for full walks 709 * 710 * Returns references to children of the hierarchy below @root, or 711 * @root itself, or %NULL after a full round-trip. 712 * 713 * Caller must pass the return value in @prev on subsequent 714 * invocations for reference counting, or use mem_cgroup_iter_break() 715 * to cancel a hierarchy walk before the round-trip is complete. 716 * 717 * Reclaimers can specify a node and a priority level in @reclaim to 718 * divide up the memcgs in the hierarchy among all concurrent 719 * reclaimers operating on the same node and priority. 720 */ 721 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 722 struct mem_cgroup *prev, 723 struct mem_cgroup_reclaim_cookie *reclaim) 724 { 725 struct mem_cgroup_reclaim_iter *uninitialized_var(iter); 726 struct cgroup_subsys_state *css = NULL; 727 struct mem_cgroup *memcg = NULL; 728 struct mem_cgroup *pos = NULL; 729 730 if (mem_cgroup_disabled()) 731 return NULL; 732 733 if (!root) 734 root = root_mem_cgroup; 735 736 if (prev && !reclaim) 737 pos = prev; 738 739 if (!root->use_hierarchy && root != root_mem_cgroup) { 740 if (prev) 741 goto out; 742 return root; 743 } 744 745 rcu_read_lock(); 746 747 if (reclaim) { 748 struct mem_cgroup_per_node *mz; 749 750 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id); 751 iter = &mz->iter[reclaim->priority]; 752 753 if (prev && reclaim->generation != iter->generation) 754 goto out_unlock; 755 756 while (1) { 757 pos = READ_ONCE(iter->position); 758 if (!pos || css_tryget(&pos->css)) 759 break; 760 /* 761 * css reference reached zero, so iter->position will 762 * be cleared by ->css_released. However, we should not 763 * rely on this happening soon, because ->css_released 764 * is called from a work queue, and by busy-waiting we 765 * might block it. So we clear iter->position right 766 * away. 767 */ 768 (void)cmpxchg(&iter->position, pos, NULL); 769 } 770 } 771 772 if (pos) 773 css = &pos->css; 774 775 for (;;) { 776 css = css_next_descendant_pre(css, &root->css); 777 if (!css) { 778 /* 779 * Reclaimers share the hierarchy walk, and a 780 * new one might jump in right at the end of 781 * the hierarchy - make sure they see at least 782 * one group and restart from the beginning. 783 */ 784 if (!prev) 785 continue; 786 break; 787 } 788 789 /* 790 * Verify the css and acquire a reference. The root 791 * is provided by the caller, so we know it's alive 792 * and kicking, and don't take an extra reference. 793 */ 794 memcg = mem_cgroup_from_css(css); 795 796 if (css == &root->css) 797 break; 798 799 if (css_tryget(css)) 800 break; 801 802 memcg = NULL; 803 } 804 805 if (reclaim) { 806 /* 807 * The position could have already been updated by a competing 808 * thread, so check that the value hasn't changed since we read 809 * it to avoid reclaiming from the same cgroup twice. 810 */ 811 (void)cmpxchg(&iter->position, pos, memcg); 812 813 if (pos) 814 css_put(&pos->css); 815 816 if (!memcg) 817 iter->generation++; 818 else if (!prev) 819 reclaim->generation = iter->generation; 820 } 821 822 out_unlock: 823 rcu_read_unlock(); 824 out: 825 if (prev && prev != root) 826 css_put(&prev->css); 827 828 return memcg; 829 } 830 831 /** 832 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 833 * @root: hierarchy root 834 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 835 */ 836 void mem_cgroup_iter_break(struct mem_cgroup *root, 837 struct mem_cgroup *prev) 838 { 839 if (!root) 840 root = root_mem_cgroup; 841 if (prev && prev != root) 842 css_put(&prev->css); 843 } 844 845 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) 846 { 847 struct mem_cgroup *memcg = dead_memcg; 848 struct mem_cgroup_reclaim_iter *iter; 849 struct mem_cgroup_per_node *mz; 850 int nid; 851 int i; 852 853 while ((memcg = parent_mem_cgroup(memcg))) { 854 for_each_node(nid) { 855 mz = mem_cgroup_nodeinfo(memcg, nid); 856 for (i = 0; i <= DEF_PRIORITY; i++) { 857 iter = &mz->iter[i]; 858 cmpxchg(&iter->position, 859 dead_memcg, NULL); 860 } 861 } 862 } 863 } 864 865 /* 866 * Iteration constructs for visiting all cgroups (under a tree). If 867 * loops are exited prematurely (break), mem_cgroup_iter_break() must 868 * be used for reference counting. 869 */ 870 #define for_each_mem_cgroup_tree(iter, root) \ 871 for (iter = mem_cgroup_iter(root, NULL, NULL); \ 872 iter != NULL; \ 873 iter = mem_cgroup_iter(root, iter, NULL)) 874 875 #define for_each_mem_cgroup(iter) \ 876 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ 877 iter != NULL; \ 878 iter = mem_cgroup_iter(NULL, iter, NULL)) 879 880 /** 881 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy 882 * @memcg: hierarchy root 883 * @fn: function to call for each task 884 * @arg: argument passed to @fn 885 * 886 * This function iterates over tasks attached to @memcg or to any of its 887 * descendants and calls @fn for each task. If @fn returns a non-zero 888 * value, the function breaks the iteration loop and returns the value. 889 * Otherwise, it will iterate over all tasks and return 0. 890 * 891 * This function must not be called for the root memory cgroup. 892 */ 893 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 894 int (*fn)(struct task_struct *, void *), void *arg) 895 { 896 struct mem_cgroup *iter; 897 int ret = 0; 898 899 BUG_ON(memcg == root_mem_cgroup); 900 901 for_each_mem_cgroup_tree(iter, memcg) { 902 struct css_task_iter it; 903 struct task_struct *task; 904 905 css_task_iter_start(&iter->css, 0, &it); 906 while (!ret && (task = css_task_iter_next(&it))) 907 ret = fn(task, arg); 908 css_task_iter_end(&it); 909 if (ret) { 910 mem_cgroup_iter_break(memcg, iter); 911 break; 912 } 913 } 914 return ret; 915 } 916 917 /** 918 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page 919 * @page: the page 920 * @pgdat: pgdat of the page 921 * 922 * This function is only safe when following the LRU page isolation 923 * and putback protocol: the LRU lock must be held, and the page must 924 * either be PageLRU() or the caller must have isolated/allocated it. 925 */ 926 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat) 927 { 928 struct mem_cgroup_per_node *mz; 929 struct mem_cgroup *memcg; 930 struct lruvec *lruvec; 931 932 if (mem_cgroup_disabled()) { 933 lruvec = &pgdat->lruvec; 934 goto out; 935 } 936 937 memcg = page->mem_cgroup; 938 /* 939 * Swapcache readahead pages are added to the LRU - and 940 * possibly migrated - before they are charged. 941 */ 942 if (!memcg) 943 memcg = root_mem_cgroup; 944 945 mz = mem_cgroup_page_nodeinfo(memcg, page); 946 lruvec = &mz->lruvec; 947 out: 948 /* 949 * Since a node can be onlined after the mem_cgroup was created, 950 * we have to be prepared to initialize lruvec->zone here; 951 * and if offlined then reonlined, we need to reinitialize it. 952 */ 953 if (unlikely(lruvec->pgdat != pgdat)) 954 lruvec->pgdat = pgdat; 955 return lruvec; 956 } 957 958 /** 959 * mem_cgroup_update_lru_size - account for adding or removing an lru page 960 * @lruvec: mem_cgroup per zone lru vector 961 * @lru: index of lru list the page is sitting on 962 * @zid: zone id of the accounted pages 963 * @nr_pages: positive when adding or negative when removing 964 * 965 * This function must be called under lru_lock, just before a page is added 966 * to or just after a page is removed from an lru list (that ordering being 967 * so as to allow it to check that lru_size 0 is consistent with list_empty). 968 */ 969 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 970 int zid, int nr_pages) 971 { 972 struct mem_cgroup_per_node *mz; 973 unsigned long *lru_size; 974 long size; 975 976 if (mem_cgroup_disabled()) 977 return; 978 979 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 980 lru_size = &mz->lru_zone_size[zid][lru]; 981 982 if (nr_pages < 0) 983 *lru_size += nr_pages; 984 985 size = *lru_size; 986 if (WARN_ONCE(size < 0, 987 "%s(%p, %d, %d): lru_size %ld\n", 988 __func__, lruvec, lru, nr_pages, size)) { 989 VM_BUG_ON(1); 990 *lru_size = 0; 991 } 992 993 if (nr_pages > 0) 994 *lru_size += nr_pages; 995 } 996 997 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg) 998 { 999 struct mem_cgroup *task_memcg; 1000 struct task_struct *p; 1001 bool ret; 1002 1003 p = find_lock_task_mm(task); 1004 if (p) { 1005 task_memcg = get_mem_cgroup_from_mm(p->mm); 1006 task_unlock(p); 1007 } else { 1008 /* 1009 * All threads may have already detached their mm's, but the oom 1010 * killer still needs to detect if they have already been oom 1011 * killed to prevent needlessly killing additional tasks. 1012 */ 1013 rcu_read_lock(); 1014 task_memcg = mem_cgroup_from_task(task); 1015 css_get(&task_memcg->css); 1016 rcu_read_unlock(); 1017 } 1018 ret = mem_cgroup_is_descendant(task_memcg, memcg); 1019 css_put(&task_memcg->css); 1020 return ret; 1021 } 1022 1023 /** 1024 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1025 * @memcg: the memory cgroup 1026 * 1027 * Returns the maximum amount of memory @mem can be charged with, in 1028 * pages. 1029 */ 1030 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1031 { 1032 unsigned long margin = 0; 1033 unsigned long count; 1034 unsigned long limit; 1035 1036 count = page_counter_read(&memcg->memory); 1037 limit = READ_ONCE(memcg->memory.limit); 1038 if (count < limit) 1039 margin = limit - count; 1040 1041 if (do_memsw_account()) { 1042 count = page_counter_read(&memcg->memsw); 1043 limit = READ_ONCE(memcg->memsw.limit); 1044 if (count <= limit) 1045 margin = min(margin, limit - count); 1046 else 1047 margin = 0; 1048 } 1049 1050 return margin; 1051 } 1052 1053 /* 1054 * A routine for checking "mem" is under move_account() or not. 1055 * 1056 * Checking a cgroup is mc.from or mc.to or under hierarchy of 1057 * moving cgroups. This is for waiting at high-memory pressure 1058 * caused by "move". 1059 */ 1060 static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 1061 { 1062 struct mem_cgroup *from; 1063 struct mem_cgroup *to; 1064 bool ret = false; 1065 /* 1066 * Unlike task_move routines, we access mc.to, mc.from not under 1067 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1068 */ 1069 spin_lock(&mc.lock); 1070 from = mc.from; 1071 to = mc.to; 1072 if (!from) 1073 goto unlock; 1074 1075 ret = mem_cgroup_is_descendant(from, memcg) || 1076 mem_cgroup_is_descendant(to, memcg); 1077 unlock: 1078 spin_unlock(&mc.lock); 1079 return ret; 1080 } 1081 1082 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) 1083 { 1084 if (mc.moving_task && current != mc.moving_task) { 1085 if (mem_cgroup_under_move(memcg)) { 1086 DEFINE_WAIT(wait); 1087 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1088 /* moving charge context might have finished. */ 1089 if (mc.moving_task) 1090 schedule(); 1091 finish_wait(&mc.waitq, &wait); 1092 return true; 1093 } 1094 } 1095 return false; 1096 } 1097 1098 static const unsigned int memcg1_stats[] = { 1099 MEMCG_CACHE, 1100 MEMCG_RSS, 1101 MEMCG_RSS_HUGE, 1102 NR_SHMEM, 1103 NR_FILE_MAPPED, 1104 NR_FILE_DIRTY, 1105 NR_WRITEBACK, 1106 MEMCG_SWAP, 1107 }; 1108 1109 static const char *const memcg1_stat_names[] = { 1110 "cache", 1111 "rss", 1112 "rss_huge", 1113 "shmem", 1114 "mapped_file", 1115 "dirty", 1116 "writeback", 1117 "swap", 1118 }; 1119 1120 #define K(x) ((x) << (PAGE_SHIFT-10)) 1121 /** 1122 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller. 1123 * @memcg: The memory cgroup that went over limit 1124 * @p: Task that is going to be killed 1125 * 1126 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1127 * enabled 1128 */ 1129 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) 1130 { 1131 struct mem_cgroup *iter; 1132 unsigned int i; 1133 1134 rcu_read_lock(); 1135 1136 if (p) { 1137 pr_info("Task in "); 1138 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); 1139 pr_cont(" killed as a result of limit of "); 1140 } else { 1141 pr_info("Memory limit reached of cgroup "); 1142 } 1143 1144 pr_cont_cgroup_path(memcg->css.cgroup); 1145 pr_cont("\n"); 1146 1147 rcu_read_unlock(); 1148 1149 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", 1150 K((u64)page_counter_read(&memcg->memory)), 1151 K((u64)memcg->memory.limit), memcg->memory.failcnt); 1152 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", 1153 K((u64)page_counter_read(&memcg->memsw)), 1154 K((u64)memcg->memsw.limit), memcg->memsw.failcnt); 1155 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", 1156 K((u64)page_counter_read(&memcg->kmem)), 1157 K((u64)memcg->kmem.limit), memcg->kmem.failcnt); 1158 1159 for_each_mem_cgroup_tree(iter, memcg) { 1160 pr_info("Memory cgroup stats for "); 1161 pr_cont_cgroup_path(iter->css.cgroup); 1162 pr_cont(":"); 1163 1164 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 1165 if (memcg1_stats[i] == MEMCG_SWAP && !do_swap_account) 1166 continue; 1167 pr_cont(" %s:%luKB", memcg1_stat_names[i], 1168 K(memcg_page_state(iter, memcg1_stats[i]))); 1169 } 1170 1171 for (i = 0; i < NR_LRU_LISTS; i++) 1172 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i], 1173 K(mem_cgroup_nr_lru_pages(iter, BIT(i)))); 1174 1175 pr_cont("\n"); 1176 } 1177 } 1178 1179 /* 1180 * Return the memory (and swap, if configured) limit for a memcg. 1181 */ 1182 unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg) 1183 { 1184 unsigned long limit; 1185 1186 limit = memcg->memory.limit; 1187 if (mem_cgroup_swappiness(memcg)) { 1188 unsigned long memsw_limit; 1189 unsigned long swap_limit; 1190 1191 memsw_limit = memcg->memsw.limit; 1192 swap_limit = memcg->swap.limit; 1193 swap_limit = min(swap_limit, (unsigned long)total_swap_pages); 1194 limit = min(limit + swap_limit, memsw_limit); 1195 } 1196 return limit; 1197 } 1198 1199 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1200 int order) 1201 { 1202 struct oom_control oc = { 1203 .zonelist = NULL, 1204 .nodemask = NULL, 1205 .memcg = memcg, 1206 .gfp_mask = gfp_mask, 1207 .order = order, 1208 }; 1209 bool ret; 1210 1211 mutex_lock(&oom_lock); 1212 ret = out_of_memory(&oc); 1213 mutex_unlock(&oom_lock); 1214 return ret; 1215 } 1216 1217 #if MAX_NUMNODES > 1 1218 1219 /** 1220 * test_mem_cgroup_node_reclaimable 1221 * @memcg: the target memcg 1222 * @nid: the node ID to be checked. 1223 * @noswap : specify true here if the user wants flle only information. 1224 * 1225 * This function returns whether the specified memcg contains any 1226 * reclaimable pages on a node. Returns true if there are any reclaimable 1227 * pages in the node. 1228 */ 1229 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg, 1230 int nid, bool noswap) 1231 { 1232 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE)) 1233 return true; 1234 if (noswap || !total_swap_pages) 1235 return false; 1236 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON)) 1237 return true; 1238 return false; 1239 1240 } 1241 1242 /* 1243 * Always updating the nodemask is not very good - even if we have an empty 1244 * list or the wrong list here, we can start from some node and traverse all 1245 * nodes based on the zonelist. So update the list loosely once per 10 secs. 1246 * 1247 */ 1248 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg) 1249 { 1250 int nid; 1251 /* 1252 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET 1253 * pagein/pageout changes since the last update. 1254 */ 1255 if (!atomic_read(&memcg->numainfo_events)) 1256 return; 1257 if (atomic_inc_return(&memcg->numainfo_updating) > 1) 1258 return; 1259 1260 /* make a nodemask where this memcg uses memory from */ 1261 memcg->scan_nodes = node_states[N_MEMORY]; 1262 1263 for_each_node_mask(nid, node_states[N_MEMORY]) { 1264 1265 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false)) 1266 node_clear(nid, memcg->scan_nodes); 1267 } 1268 1269 atomic_set(&memcg->numainfo_events, 0); 1270 atomic_set(&memcg->numainfo_updating, 0); 1271 } 1272 1273 /* 1274 * Selecting a node where we start reclaim from. Because what we need is just 1275 * reducing usage counter, start from anywhere is O,K. Considering 1276 * memory reclaim from current node, there are pros. and cons. 1277 * 1278 * Freeing memory from current node means freeing memory from a node which 1279 * we'll use or we've used. So, it may make LRU bad. And if several threads 1280 * hit limits, it will see a contention on a node. But freeing from remote 1281 * node means more costs for memory reclaim because of memory latency. 1282 * 1283 * Now, we use round-robin. Better algorithm is welcomed. 1284 */ 1285 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1286 { 1287 int node; 1288 1289 mem_cgroup_may_update_nodemask(memcg); 1290 node = memcg->last_scanned_node; 1291 1292 node = next_node_in(node, memcg->scan_nodes); 1293 /* 1294 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages 1295 * last time it really checked all the LRUs due to rate limiting. 1296 * Fallback to the current node in that case for simplicity. 1297 */ 1298 if (unlikely(node == MAX_NUMNODES)) 1299 node = numa_node_id(); 1300 1301 memcg->last_scanned_node = node; 1302 return node; 1303 } 1304 #else 1305 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1306 { 1307 return 0; 1308 } 1309 #endif 1310 1311 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, 1312 pg_data_t *pgdat, 1313 gfp_t gfp_mask, 1314 unsigned long *total_scanned) 1315 { 1316 struct mem_cgroup *victim = NULL; 1317 int total = 0; 1318 int loop = 0; 1319 unsigned long excess; 1320 unsigned long nr_scanned; 1321 struct mem_cgroup_reclaim_cookie reclaim = { 1322 .pgdat = pgdat, 1323 .priority = 0, 1324 }; 1325 1326 excess = soft_limit_excess(root_memcg); 1327 1328 while (1) { 1329 victim = mem_cgroup_iter(root_memcg, victim, &reclaim); 1330 if (!victim) { 1331 loop++; 1332 if (loop >= 2) { 1333 /* 1334 * If we have not been able to reclaim 1335 * anything, it might because there are 1336 * no reclaimable pages under this hierarchy 1337 */ 1338 if (!total) 1339 break; 1340 /* 1341 * We want to do more targeted reclaim. 1342 * excess >> 2 is not to excessive so as to 1343 * reclaim too much, nor too less that we keep 1344 * coming back to reclaim from this cgroup 1345 */ 1346 if (total >= (excess >> 2) || 1347 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) 1348 break; 1349 } 1350 continue; 1351 } 1352 total += mem_cgroup_shrink_node(victim, gfp_mask, false, 1353 pgdat, &nr_scanned); 1354 *total_scanned += nr_scanned; 1355 if (!soft_limit_excess(root_memcg)) 1356 break; 1357 } 1358 mem_cgroup_iter_break(root_memcg, victim); 1359 return total; 1360 } 1361 1362 #ifdef CONFIG_LOCKDEP 1363 static struct lockdep_map memcg_oom_lock_dep_map = { 1364 .name = "memcg_oom_lock", 1365 }; 1366 #endif 1367 1368 static DEFINE_SPINLOCK(memcg_oom_lock); 1369 1370 /* 1371 * Check OOM-Killer is already running under our hierarchy. 1372 * If someone is running, return false. 1373 */ 1374 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) 1375 { 1376 struct mem_cgroup *iter, *failed = NULL; 1377 1378 spin_lock(&memcg_oom_lock); 1379 1380 for_each_mem_cgroup_tree(iter, memcg) { 1381 if (iter->oom_lock) { 1382 /* 1383 * this subtree of our hierarchy is already locked 1384 * so we cannot give a lock. 1385 */ 1386 failed = iter; 1387 mem_cgroup_iter_break(memcg, iter); 1388 break; 1389 } else 1390 iter->oom_lock = true; 1391 } 1392 1393 if (failed) { 1394 /* 1395 * OK, we failed to lock the whole subtree so we have 1396 * to clean up what we set up to the failing subtree 1397 */ 1398 for_each_mem_cgroup_tree(iter, memcg) { 1399 if (iter == failed) { 1400 mem_cgroup_iter_break(memcg, iter); 1401 break; 1402 } 1403 iter->oom_lock = false; 1404 } 1405 } else 1406 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); 1407 1408 spin_unlock(&memcg_oom_lock); 1409 1410 return !failed; 1411 } 1412 1413 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 1414 { 1415 struct mem_cgroup *iter; 1416 1417 spin_lock(&memcg_oom_lock); 1418 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_); 1419 for_each_mem_cgroup_tree(iter, memcg) 1420 iter->oom_lock = false; 1421 spin_unlock(&memcg_oom_lock); 1422 } 1423 1424 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 1425 { 1426 struct mem_cgroup *iter; 1427 1428 spin_lock(&memcg_oom_lock); 1429 for_each_mem_cgroup_tree(iter, memcg) 1430 iter->under_oom++; 1431 spin_unlock(&memcg_oom_lock); 1432 } 1433 1434 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 1435 { 1436 struct mem_cgroup *iter; 1437 1438 /* 1439 * When a new child is created while the hierarchy is under oom, 1440 * mem_cgroup_oom_lock() may not be called. Watch for underflow. 1441 */ 1442 spin_lock(&memcg_oom_lock); 1443 for_each_mem_cgroup_tree(iter, memcg) 1444 if (iter->under_oom > 0) 1445 iter->under_oom--; 1446 spin_unlock(&memcg_oom_lock); 1447 } 1448 1449 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 1450 1451 struct oom_wait_info { 1452 struct mem_cgroup *memcg; 1453 wait_queue_entry_t wait; 1454 }; 1455 1456 static int memcg_oom_wake_function(wait_queue_entry_t *wait, 1457 unsigned mode, int sync, void *arg) 1458 { 1459 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; 1460 struct mem_cgroup *oom_wait_memcg; 1461 struct oom_wait_info *oom_wait_info; 1462 1463 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 1464 oom_wait_memcg = oom_wait_info->memcg; 1465 1466 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) && 1467 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg)) 1468 return 0; 1469 return autoremove_wake_function(wait, mode, sync, arg); 1470 } 1471 1472 static void memcg_oom_recover(struct mem_cgroup *memcg) 1473 { 1474 /* 1475 * For the following lockless ->under_oom test, the only required 1476 * guarantee is that it must see the state asserted by an OOM when 1477 * this function is called as a result of userland actions 1478 * triggered by the notification of the OOM. This is trivially 1479 * achieved by invoking mem_cgroup_mark_under_oom() before 1480 * triggering notification. 1481 */ 1482 if (memcg && memcg->under_oom) 1483 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 1484 } 1485 1486 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 1487 { 1488 if (!current->memcg_may_oom || order > PAGE_ALLOC_COSTLY_ORDER) 1489 return; 1490 /* 1491 * We are in the middle of the charge context here, so we 1492 * don't want to block when potentially sitting on a callstack 1493 * that holds all kinds of filesystem and mm locks. 1494 * 1495 * Also, the caller may handle a failed allocation gracefully 1496 * (like optional page cache readahead) and so an OOM killer 1497 * invocation might not even be necessary. 1498 * 1499 * That's why we don't do anything here except remember the 1500 * OOM context and then deal with it at the end of the page 1501 * fault when the stack is unwound, the locks are released, 1502 * and when we know whether the fault was overall successful. 1503 */ 1504 css_get(&memcg->css); 1505 current->memcg_in_oom = memcg; 1506 current->memcg_oom_gfp_mask = mask; 1507 current->memcg_oom_order = order; 1508 } 1509 1510 /** 1511 * mem_cgroup_oom_synchronize - complete memcg OOM handling 1512 * @handle: actually kill/wait or just clean up the OOM state 1513 * 1514 * This has to be called at the end of a page fault if the memcg OOM 1515 * handler was enabled. 1516 * 1517 * Memcg supports userspace OOM handling where failed allocations must 1518 * sleep on a waitqueue until the userspace task resolves the 1519 * situation. Sleeping directly in the charge context with all kinds 1520 * of locks held is not a good idea, instead we remember an OOM state 1521 * in the task and mem_cgroup_oom_synchronize() has to be called at 1522 * the end of the page fault to complete the OOM handling. 1523 * 1524 * Returns %true if an ongoing memcg OOM situation was detected and 1525 * completed, %false otherwise. 1526 */ 1527 bool mem_cgroup_oom_synchronize(bool handle) 1528 { 1529 struct mem_cgroup *memcg = current->memcg_in_oom; 1530 struct oom_wait_info owait; 1531 bool locked; 1532 1533 /* OOM is global, do not handle */ 1534 if (!memcg) 1535 return false; 1536 1537 if (!handle) 1538 goto cleanup; 1539 1540 owait.memcg = memcg; 1541 owait.wait.flags = 0; 1542 owait.wait.func = memcg_oom_wake_function; 1543 owait.wait.private = current; 1544 INIT_LIST_HEAD(&owait.wait.entry); 1545 1546 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 1547 mem_cgroup_mark_under_oom(memcg); 1548 1549 locked = mem_cgroup_oom_trylock(memcg); 1550 1551 if (locked) 1552 mem_cgroup_oom_notify(memcg); 1553 1554 if (locked && !memcg->oom_kill_disable) { 1555 mem_cgroup_unmark_under_oom(memcg); 1556 finish_wait(&memcg_oom_waitq, &owait.wait); 1557 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask, 1558 current->memcg_oom_order); 1559 } else { 1560 schedule(); 1561 mem_cgroup_unmark_under_oom(memcg); 1562 finish_wait(&memcg_oom_waitq, &owait.wait); 1563 } 1564 1565 if (locked) { 1566 mem_cgroup_oom_unlock(memcg); 1567 /* 1568 * There is no guarantee that an OOM-lock contender 1569 * sees the wakeups triggered by the OOM kill 1570 * uncharges. Wake any sleepers explicitely. 1571 */ 1572 memcg_oom_recover(memcg); 1573 } 1574 cleanup: 1575 current->memcg_in_oom = NULL; 1576 css_put(&memcg->css); 1577 return true; 1578 } 1579 1580 /** 1581 * lock_page_memcg - lock a page->mem_cgroup binding 1582 * @page: the page 1583 * 1584 * This function protects unlocked LRU pages from being moved to 1585 * another cgroup. 1586 * 1587 * It ensures lifetime of the returned memcg. Caller is responsible 1588 * for the lifetime of the page; __unlock_page_memcg() is available 1589 * when @page might get freed inside the locked section. 1590 */ 1591 struct mem_cgroup *lock_page_memcg(struct page *page) 1592 { 1593 struct mem_cgroup *memcg; 1594 unsigned long flags; 1595 1596 /* 1597 * The RCU lock is held throughout the transaction. The fast 1598 * path can get away without acquiring the memcg->move_lock 1599 * because page moving starts with an RCU grace period. 1600 * 1601 * The RCU lock also protects the memcg from being freed when 1602 * the page state that is going to change is the only thing 1603 * preventing the page itself from being freed. E.g. writeback 1604 * doesn't hold a page reference and relies on PG_writeback to 1605 * keep off truncation, migration and so forth. 1606 */ 1607 rcu_read_lock(); 1608 1609 if (mem_cgroup_disabled()) 1610 return NULL; 1611 again: 1612 memcg = page->mem_cgroup; 1613 if (unlikely(!memcg)) 1614 return NULL; 1615 1616 if (atomic_read(&memcg->moving_account) <= 0) 1617 return memcg; 1618 1619 spin_lock_irqsave(&memcg->move_lock, flags); 1620 if (memcg != page->mem_cgroup) { 1621 spin_unlock_irqrestore(&memcg->move_lock, flags); 1622 goto again; 1623 } 1624 1625 /* 1626 * When charge migration first begins, we can have locked and 1627 * unlocked page stat updates happening concurrently. Track 1628 * the task who has the lock for unlock_page_memcg(). 1629 */ 1630 memcg->move_lock_task = current; 1631 memcg->move_lock_flags = flags; 1632 1633 return memcg; 1634 } 1635 EXPORT_SYMBOL(lock_page_memcg); 1636 1637 /** 1638 * __unlock_page_memcg - unlock and unpin a memcg 1639 * @memcg: the memcg 1640 * 1641 * Unlock and unpin a memcg returned by lock_page_memcg(). 1642 */ 1643 void __unlock_page_memcg(struct mem_cgroup *memcg) 1644 { 1645 if (memcg && memcg->move_lock_task == current) { 1646 unsigned long flags = memcg->move_lock_flags; 1647 1648 memcg->move_lock_task = NULL; 1649 memcg->move_lock_flags = 0; 1650 1651 spin_unlock_irqrestore(&memcg->move_lock, flags); 1652 } 1653 1654 rcu_read_unlock(); 1655 } 1656 1657 /** 1658 * unlock_page_memcg - unlock a page->mem_cgroup binding 1659 * @page: the page 1660 */ 1661 void unlock_page_memcg(struct page *page) 1662 { 1663 __unlock_page_memcg(page->mem_cgroup); 1664 } 1665 EXPORT_SYMBOL(unlock_page_memcg); 1666 1667 struct memcg_stock_pcp { 1668 struct mem_cgroup *cached; /* this never be root cgroup */ 1669 unsigned int nr_pages; 1670 struct work_struct work; 1671 unsigned long flags; 1672 #define FLUSHING_CACHED_CHARGE 0 1673 }; 1674 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); 1675 static DEFINE_MUTEX(percpu_charge_mutex); 1676 1677 /** 1678 * consume_stock: Try to consume stocked charge on this cpu. 1679 * @memcg: memcg to consume from. 1680 * @nr_pages: how many pages to charge. 1681 * 1682 * The charges will only happen if @memcg matches the current cpu's memcg 1683 * stock, and at least @nr_pages are available in that stock. Failure to 1684 * service an allocation will refill the stock. 1685 * 1686 * returns true if successful, false otherwise. 1687 */ 1688 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 1689 { 1690 struct memcg_stock_pcp *stock; 1691 unsigned long flags; 1692 bool ret = false; 1693 1694 if (nr_pages > MEMCG_CHARGE_BATCH) 1695 return ret; 1696 1697 local_irq_save(flags); 1698 1699 stock = this_cpu_ptr(&memcg_stock); 1700 if (memcg == stock->cached && stock->nr_pages >= nr_pages) { 1701 stock->nr_pages -= nr_pages; 1702 ret = true; 1703 } 1704 1705 local_irq_restore(flags); 1706 1707 return ret; 1708 } 1709 1710 /* 1711 * Returns stocks cached in percpu and reset cached information. 1712 */ 1713 static void drain_stock(struct memcg_stock_pcp *stock) 1714 { 1715 struct mem_cgroup *old = stock->cached; 1716 1717 if (stock->nr_pages) { 1718 page_counter_uncharge(&old->memory, stock->nr_pages); 1719 if (do_memsw_account()) 1720 page_counter_uncharge(&old->memsw, stock->nr_pages); 1721 css_put_many(&old->css, stock->nr_pages); 1722 stock->nr_pages = 0; 1723 } 1724 stock->cached = NULL; 1725 } 1726 1727 static void drain_local_stock(struct work_struct *dummy) 1728 { 1729 struct memcg_stock_pcp *stock; 1730 unsigned long flags; 1731 1732 /* 1733 * The only protection from memory hotplug vs. drain_stock races is 1734 * that we always operate on local CPU stock here with IRQ disabled 1735 */ 1736 local_irq_save(flags); 1737 1738 stock = this_cpu_ptr(&memcg_stock); 1739 drain_stock(stock); 1740 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 1741 1742 local_irq_restore(flags); 1743 } 1744 1745 /* 1746 * Cache charges(val) to local per_cpu area. 1747 * This will be consumed by consume_stock() function, later. 1748 */ 1749 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 1750 { 1751 struct memcg_stock_pcp *stock; 1752 unsigned long flags; 1753 1754 local_irq_save(flags); 1755 1756 stock = this_cpu_ptr(&memcg_stock); 1757 if (stock->cached != memcg) { /* reset if necessary */ 1758 drain_stock(stock); 1759 stock->cached = memcg; 1760 } 1761 stock->nr_pages += nr_pages; 1762 1763 if (stock->nr_pages > MEMCG_CHARGE_BATCH) 1764 drain_stock(stock); 1765 1766 local_irq_restore(flags); 1767 } 1768 1769 /* 1770 * Drains all per-CPU charge caches for given root_memcg resp. subtree 1771 * of the hierarchy under it. 1772 */ 1773 static void drain_all_stock(struct mem_cgroup *root_memcg) 1774 { 1775 int cpu, curcpu; 1776 1777 /* If someone's already draining, avoid adding running more workers. */ 1778 if (!mutex_trylock(&percpu_charge_mutex)) 1779 return; 1780 /* 1781 * Notify other cpus that system-wide "drain" is running 1782 * We do not care about races with the cpu hotplug because cpu down 1783 * as well as workers from this path always operate on the local 1784 * per-cpu data. CPU up doesn't touch memcg_stock at all. 1785 */ 1786 curcpu = get_cpu(); 1787 for_each_online_cpu(cpu) { 1788 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 1789 struct mem_cgroup *memcg; 1790 1791 memcg = stock->cached; 1792 if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css)) 1793 continue; 1794 if (!mem_cgroup_is_descendant(memcg, root_memcg)) { 1795 css_put(&memcg->css); 1796 continue; 1797 } 1798 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 1799 if (cpu == curcpu) 1800 drain_local_stock(&stock->work); 1801 else 1802 schedule_work_on(cpu, &stock->work); 1803 } 1804 css_put(&memcg->css); 1805 } 1806 put_cpu(); 1807 mutex_unlock(&percpu_charge_mutex); 1808 } 1809 1810 static int memcg_hotplug_cpu_dead(unsigned int cpu) 1811 { 1812 struct memcg_stock_pcp *stock; 1813 struct mem_cgroup *memcg; 1814 1815 stock = &per_cpu(memcg_stock, cpu); 1816 drain_stock(stock); 1817 1818 for_each_mem_cgroup(memcg) { 1819 int i; 1820 1821 for (i = 0; i < MEMCG_NR_STAT; i++) { 1822 int nid; 1823 long x; 1824 1825 x = this_cpu_xchg(memcg->stat_cpu->count[i], 0); 1826 if (x) 1827 atomic_long_add(x, &memcg->stat[i]); 1828 1829 if (i >= NR_VM_NODE_STAT_ITEMS) 1830 continue; 1831 1832 for_each_node(nid) { 1833 struct mem_cgroup_per_node *pn; 1834 1835 pn = mem_cgroup_nodeinfo(memcg, nid); 1836 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0); 1837 if (x) 1838 atomic_long_add(x, &pn->lruvec_stat[i]); 1839 } 1840 } 1841 1842 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) { 1843 long x; 1844 1845 x = this_cpu_xchg(memcg->stat_cpu->events[i], 0); 1846 if (x) 1847 atomic_long_add(x, &memcg->events[i]); 1848 } 1849 } 1850 1851 return 0; 1852 } 1853 1854 static void reclaim_high(struct mem_cgroup *memcg, 1855 unsigned int nr_pages, 1856 gfp_t gfp_mask) 1857 { 1858 do { 1859 if (page_counter_read(&memcg->memory) <= memcg->high) 1860 continue; 1861 memcg_memory_event(memcg, MEMCG_HIGH); 1862 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true); 1863 } while ((memcg = parent_mem_cgroup(memcg))); 1864 } 1865 1866 static void high_work_func(struct work_struct *work) 1867 { 1868 struct mem_cgroup *memcg; 1869 1870 memcg = container_of(work, struct mem_cgroup, high_work); 1871 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL); 1872 } 1873 1874 /* 1875 * Scheduled by try_charge() to be executed from the userland return path 1876 * and reclaims memory over the high limit. 1877 */ 1878 void mem_cgroup_handle_over_high(void) 1879 { 1880 unsigned int nr_pages = current->memcg_nr_pages_over_high; 1881 struct mem_cgroup *memcg; 1882 1883 if (likely(!nr_pages)) 1884 return; 1885 1886 memcg = get_mem_cgroup_from_mm(current->mm); 1887 reclaim_high(memcg, nr_pages, GFP_KERNEL); 1888 css_put(&memcg->css); 1889 current->memcg_nr_pages_over_high = 0; 1890 } 1891 1892 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 1893 unsigned int nr_pages) 1894 { 1895 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages); 1896 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 1897 struct mem_cgroup *mem_over_limit; 1898 struct page_counter *counter; 1899 unsigned long nr_reclaimed; 1900 bool may_swap = true; 1901 bool drained = false; 1902 1903 if (mem_cgroup_is_root(memcg)) 1904 return 0; 1905 retry: 1906 if (consume_stock(memcg, nr_pages)) 1907 return 0; 1908 1909 if (!do_memsw_account() || 1910 page_counter_try_charge(&memcg->memsw, batch, &counter)) { 1911 if (page_counter_try_charge(&memcg->memory, batch, &counter)) 1912 goto done_restock; 1913 if (do_memsw_account()) 1914 page_counter_uncharge(&memcg->memsw, batch); 1915 mem_over_limit = mem_cgroup_from_counter(counter, memory); 1916 } else { 1917 mem_over_limit = mem_cgroup_from_counter(counter, memsw); 1918 may_swap = false; 1919 } 1920 1921 if (batch > nr_pages) { 1922 batch = nr_pages; 1923 goto retry; 1924 } 1925 1926 /* 1927 * Unlike in global OOM situations, memcg is not in a physical 1928 * memory shortage. Allow dying and OOM-killed tasks to 1929 * bypass the last charges so that they can exit quickly and 1930 * free their memory. 1931 */ 1932 if (unlikely(tsk_is_oom_victim(current) || 1933 fatal_signal_pending(current) || 1934 current->flags & PF_EXITING)) 1935 goto force; 1936 1937 /* 1938 * Prevent unbounded recursion when reclaim operations need to 1939 * allocate memory. This might exceed the limits temporarily, 1940 * but we prefer facilitating memory reclaim and getting back 1941 * under the limit over triggering OOM kills in these cases. 1942 */ 1943 if (unlikely(current->flags & PF_MEMALLOC)) 1944 goto force; 1945 1946 if (unlikely(task_in_memcg_oom(current))) 1947 goto nomem; 1948 1949 if (!gfpflags_allow_blocking(gfp_mask)) 1950 goto nomem; 1951 1952 memcg_memory_event(mem_over_limit, MEMCG_MAX); 1953 1954 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, 1955 gfp_mask, may_swap); 1956 1957 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 1958 goto retry; 1959 1960 if (!drained) { 1961 drain_all_stock(mem_over_limit); 1962 drained = true; 1963 goto retry; 1964 } 1965 1966 if (gfp_mask & __GFP_NORETRY) 1967 goto nomem; 1968 /* 1969 * Even though the limit is exceeded at this point, reclaim 1970 * may have been able to free some pages. Retry the charge 1971 * before killing the task. 1972 * 1973 * Only for regular pages, though: huge pages are rather 1974 * unlikely to succeed so close to the limit, and we fall back 1975 * to regular pages anyway in case of failure. 1976 */ 1977 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) 1978 goto retry; 1979 /* 1980 * At task move, charge accounts can be doubly counted. So, it's 1981 * better to wait until the end of task_move if something is going on. 1982 */ 1983 if (mem_cgroup_wait_acct_move(mem_over_limit)) 1984 goto retry; 1985 1986 if (nr_retries--) 1987 goto retry; 1988 1989 if (gfp_mask & __GFP_NOFAIL) 1990 goto force; 1991 1992 if (fatal_signal_pending(current)) 1993 goto force; 1994 1995 memcg_memory_event(mem_over_limit, MEMCG_OOM); 1996 1997 mem_cgroup_oom(mem_over_limit, gfp_mask, 1998 get_order(nr_pages * PAGE_SIZE)); 1999 nomem: 2000 if (!(gfp_mask & __GFP_NOFAIL)) 2001 return -ENOMEM; 2002 force: 2003 /* 2004 * The allocation either can't fail or will lead to more memory 2005 * being freed very soon. Allow memory usage go over the limit 2006 * temporarily by force charging it. 2007 */ 2008 page_counter_charge(&memcg->memory, nr_pages); 2009 if (do_memsw_account()) 2010 page_counter_charge(&memcg->memsw, nr_pages); 2011 css_get_many(&memcg->css, nr_pages); 2012 2013 return 0; 2014 2015 done_restock: 2016 css_get_many(&memcg->css, batch); 2017 if (batch > nr_pages) 2018 refill_stock(memcg, batch - nr_pages); 2019 2020 /* 2021 * If the hierarchy is above the normal consumption range, schedule 2022 * reclaim on returning to userland. We can perform reclaim here 2023 * if __GFP_RECLAIM but let's always punt for simplicity and so that 2024 * GFP_KERNEL can consistently be used during reclaim. @memcg is 2025 * not recorded as it most likely matches current's and won't 2026 * change in the meantime. As high limit is checked again before 2027 * reclaim, the cost of mismatch is negligible. 2028 */ 2029 do { 2030 if (page_counter_read(&memcg->memory) > memcg->high) { 2031 /* Don't bother a random interrupted task */ 2032 if (in_interrupt()) { 2033 schedule_work(&memcg->high_work); 2034 break; 2035 } 2036 current->memcg_nr_pages_over_high += batch; 2037 set_notify_resume(current); 2038 break; 2039 } 2040 } while ((memcg = parent_mem_cgroup(memcg))); 2041 2042 return 0; 2043 } 2044 2045 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages) 2046 { 2047 if (mem_cgroup_is_root(memcg)) 2048 return; 2049 2050 page_counter_uncharge(&memcg->memory, nr_pages); 2051 if (do_memsw_account()) 2052 page_counter_uncharge(&memcg->memsw, nr_pages); 2053 2054 css_put_many(&memcg->css, nr_pages); 2055 } 2056 2057 static void lock_page_lru(struct page *page, int *isolated) 2058 { 2059 struct zone *zone = page_zone(page); 2060 2061 spin_lock_irq(zone_lru_lock(zone)); 2062 if (PageLRU(page)) { 2063 struct lruvec *lruvec; 2064 2065 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat); 2066 ClearPageLRU(page); 2067 del_page_from_lru_list(page, lruvec, page_lru(page)); 2068 *isolated = 1; 2069 } else 2070 *isolated = 0; 2071 } 2072 2073 static void unlock_page_lru(struct page *page, int isolated) 2074 { 2075 struct zone *zone = page_zone(page); 2076 2077 if (isolated) { 2078 struct lruvec *lruvec; 2079 2080 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat); 2081 VM_BUG_ON_PAGE(PageLRU(page), page); 2082 SetPageLRU(page); 2083 add_page_to_lru_list(page, lruvec, page_lru(page)); 2084 } 2085 spin_unlock_irq(zone_lru_lock(zone)); 2086 } 2087 2088 static void commit_charge(struct page *page, struct mem_cgroup *memcg, 2089 bool lrucare) 2090 { 2091 int isolated; 2092 2093 VM_BUG_ON_PAGE(page->mem_cgroup, page); 2094 2095 /* 2096 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page 2097 * may already be on some other mem_cgroup's LRU. Take care of it. 2098 */ 2099 if (lrucare) 2100 lock_page_lru(page, &isolated); 2101 2102 /* 2103 * Nobody should be changing or seriously looking at 2104 * page->mem_cgroup at this point: 2105 * 2106 * - the page is uncharged 2107 * 2108 * - the page is off-LRU 2109 * 2110 * - an anonymous fault has exclusive page access, except for 2111 * a locked page table 2112 * 2113 * - a page cache insertion, a swapin fault, or a migration 2114 * have the page locked 2115 */ 2116 page->mem_cgroup = memcg; 2117 2118 if (lrucare) 2119 unlock_page_lru(page, isolated); 2120 } 2121 2122 #ifndef CONFIG_SLOB 2123 static int memcg_alloc_cache_id(void) 2124 { 2125 int id, size; 2126 int err; 2127 2128 id = ida_simple_get(&memcg_cache_ida, 2129 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL); 2130 if (id < 0) 2131 return id; 2132 2133 if (id < memcg_nr_cache_ids) 2134 return id; 2135 2136 /* 2137 * There's no space for the new id in memcg_caches arrays, 2138 * so we have to grow them. 2139 */ 2140 down_write(&memcg_cache_ids_sem); 2141 2142 size = 2 * (id + 1); 2143 if (size < MEMCG_CACHES_MIN_SIZE) 2144 size = MEMCG_CACHES_MIN_SIZE; 2145 else if (size > MEMCG_CACHES_MAX_SIZE) 2146 size = MEMCG_CACHES_MAX_SIZE; 2147 2148 err = memcg_update_all_caches(size); 2149 if (!err) 2150 err = memcg_update_all_list_lrus(size); 2151 if (!err) 2152 memcg_nr_cache_ids = size; 2153 2154 up_write(&memcg_cache_ids_sem); 2155 2156 if (err) { 2157 ida_simple_remove(&memcg_cache_ida, id); 2158 return err; 2159 } 2160 return id; 2161 } 2162 2163 static void memcg_free_cache_id(int id) 2164 { 2165 ida_simple_remove(&memcg_cache_ida, id); 2166 } 2167 2168 struct memcg_kmem_cache_create_work { 2169 struct mem_cgroup *memcg; 2170 struct kmem_cache *cachep; 2171 struct work_struct work; 2172 }; 2173 2174 static void memcg_kmem_cache_create_func(struct work_struct *w) 2175 { 2176 struct memcg_kmem_cache_create_work *cw = 2177 container_of(w, struct memcg_kmem_cache_create_work, work); 2178 struct mem_cgroup *memcg = cw->memcg; 2179 struct kmem_cache *cachep = cw->cachep; 2180 2181 memcg_create_kmem_cache(memcg, cachep); 2182 2183 css_put(&memcg->css); 2184 kfree(cw); 2185 } 2186 2187 /* 2188 * Enqueue the creation of a per-memcg kmem_cache. 2189 */ 2190 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg, 2191 struct kmem_cache *cachep) 2192 { 2193 struct memcg_kmem_cache_create_work *cw; 2194 2195 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN); 2196 if (!cw) 2197 return; 2198 2199 css_get(&memcg->css); 2200 2201 cw->memcg = memcg; 2202 cw->cachep = cachep; 2203 INIT_WORK(&cw->work, memcg_kmem_cache_create_func); 2204 2205 queue_work(memcg_kmem_cache_wq, &cw->work); 2206 } 2207 2208 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg, 2209 struct kmem_cache *cachep) 2210 { 2211 /* 2212 * We need to stop accounting when we kmalloc, because if the 2213 * corresponding kmalloc cache is not yet created, the first allocation 2214 * in __memcg_schedule_kmem_cache_create will recurse. 2215 * 2216 * However, it is better to enclose the whole function. Depending on 2217 * the debugging options enabled, INIT_WORK(), for instance, can 2218 * trigger an allocation. This too, will make us recurse. Because at 2219 * this point we can't allow ourselves back into memcg_kmem_get_cache, 2220 * the safest choice is to do it like this, wrapping the whole function. 2221 */ 2222 current->memcg_kmem_skip_account = 1; 2223 __memcg_schedule_kmem_cache_create(memcg, cachep); 2224 current->memcg_kmem_skip_account = 0; 2225 } 2226 2227 static inline bool memcg_kmem_bypass(void) 2228 { 2229 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD)) 2230 return true; 2231 return false; 2232 } 2233 2234 /** 2235 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation 2236 * @cachep: the original global kmem cache 2237 * 2238 * Return the kmem_cache we're supposed to use for a slab allocation. 2239 * We try to use the current memcg's version of the cache. 2240 * 2241 * If the cache does not exist yet, if we are the first user of it, we 2242 * create it asynchronously in a workqueue and let the current allocation 2243 * go through with the original cache. 2244 * 2245 * This function takes a reference to the cache it returns to assure it 2246 * won't get destroyed while we are working with it. Once the caller is 2247 * done with it, memcg_kmem_put_cache() must be called to release the 2248 * reference. 2249 */ 2250 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep) 2251 { 2252 struct mem_cgroup *memcg; 2253 struct kmem_cache *memcg_cachep; 2254 int kmemcg_id; 2255 2256 VM_BUG_ON(!is_root_cache(cachep)); 2257 2258 if (memcg_kmem_bypass()) 2259 return cachep; 2260 2261 if (current->memcg_kmem_skip_account) 2262 return cachep; 2263 2264 memcg = get_mem_cgroup_from_mm(current->mm); 2265 kmemcg_id = READ_ONCE(memcg->kmemcg_id); 2266 if (kmemcg_id < 0) 2267 goto out; 2268 2269 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id); 2270 if (likely(memcg_cachep)) 2271 return memcg_cachep; 2272 2273 /* 2274 * If we are in a safe context (can wait, and not in interrupt 2275 * context), we could be be predictable and return right away. 2276 * This would guarantee that the allocation being performed 2277 * already belongs in the new cache. 2278 * 2279 * However, there are some clashes that can arrive from locking. 2280 * For instance, because we acquire the slab_mutex while doing 2281 * memcg_create_kmem_cache, this means no further allocation 2282 * could happen with the slab_mutex held. So it's better to 2283 * defer everything. 2284 */ 2285 memcg_schedule_kmem_cache_create(memcg, cachep); 2286 out: 2287 css_put(&memcg->css); 2288 return cachep; 2289 } 2290 2291 /** 2292 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache 2293 * @cachep: the cache returned by memcg_kmem_get_cache 2294 */ 2295 void memcg_kmem_put_cache(struct kmem_cache *cachep) 2296 { 2297 if (!is_root_cache(cachep)) 2298 css_put(&cachep->memcg_params.memcg->css); 2299 } 2300 2301 /** 2302 * memcg_kmem_charge_memcg: charge a kmem page 2303 * @page: page to charge 2304 * @gfp: reclaim mode 2305 * @order: allocation order 2306 * @memcg: memory cgroup to charge 2307 * 2308 * Returns 0 on success, an error code on failure. 2309 */ 2310 int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order, 2311 struct mem_cgroup *memcg) 2312 { 2313 unsigned int nr_pages = 1 << order; 2314 struct page_counter *counter; 2315 int ret; 2316 2317 ret = try_charge(memcg, gfp, nr_pages); 2318 if (ret) 2319 return ret; 2320 2321 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && 2322 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) { 2323 cancel_charge(memcg, nr_pages); 2324 return -ENOMEM; 2325 } 2326 2327 page->mem_cgroup = memcg; 2328 2329 return 0; 2330 } 2331 2332 /** 2333 * memcg_kmem_charge: charge a kmem page to the current memory cgroup 2334 * @page: page to charge 2335 * @gfp: reclaim mode 2336 * @order: allocation order 2337 * 2338 * Returns 0 on success, an error code on failure. 2339 */ 2340 int memcg_kmem_charge(struct page *page, gfp_t gfp, int order) 2341 { 2342 struct mem_cgroup *memcg; 2343 int ret = 0; 2344 2345 if (memcg_kmem_bypass()) 2346 return 0; 2347 2348 memcg = get_mem_cgroup_from_mm(current->mm); 2349 if (!mem_cgroup_is_root(memcg)) { 2350 ret = memcg_kmem_charge_memcg(page, gfp, order, memcg); 2351 if (!ret) 2352 __SetPageKmemcg(page); 2353 } 2354 css_put(&memcg->css); 2355 return ret; 2356 } 2357 /** 2358 * memcg_kmem_uncharge: uncharge a kmem page 2359 * @page: page to uncharge 2360 * @order: allocation order 2361 */ 2362 void memcg_kmem_uncharge(struct page *page, int order) 2363 { 2364 struct mem_cgroup *memcg = page->mem_cgroup; 2365 unsigned int nr_pages = 1 << order; 2366 2367 if (!memcg) 2368 return; 2369 2370 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page); 2371 2372 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 2373 page_counter_uncharge(&memcg->kmem, nr_pages); 2374 2375 page_counter_uncharge(&memcg->memory, nr_pages); 2376 if (do_memsw_account()) 2377 page_counter_uncharge(&memcg->memsw, nr_pages); 2378 2379 page->mem_cgroup = NULL; 2380 2381 /* slab pages do not have PageKmemcg flag set */ 2382 if (PageKmemcg(page)) 2383 __ClearPageKmemcg(page); 2384 2385 css_put_many(&memcg->css, nr_pages); 2386 } 2387 #endif /* !CONFIG_SLOB */ 2388 2389 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2390 2391 /* 2392 * Because tail pages are not marked as "used", set it. We're under 2393 * zone_lru_lock and migration entries setup in all page mappings. 2394 */ 2395 void mem_cgroup_split_huge_fixup(struct page *head) 2396 { 2397 int i; 2398 2399 if (mem_cgroup_disabled()) 2400 return; 2401 2402 for (i = 1; i < HPAGE_PMD_NR; i++) 2403 head[i].mem_cgroup = head->mem_cgroup; 2404 2405 __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR); 2406 } 2407 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 2408 2409 #ifdef CONFIG_MEMCG_SWAP 2410 /** 2411 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 2412 * @entry: swap entry to be moved 2413 * @from: mem_cgroup which the entry is moved from 2414 * @to: mem_cgroup which the entry is moved to 2415 * 2416 * It succeeds only when the swap_cgroup's record for this entry is the same 2417 * as the mem_cgroup's id of @from. 2418 * 2419 * Returns 0 on success, -EINVAL on failure. 2420 * 2421 * The caller must have charged to @to, IOW, called page_counter_charge() about 2422 * both res and memsw, and called css_get(). 2423 */ 2424 static int mem_cgroup_move_swap_account(swp_entry_t entry, 2425 struct mem_cgroup *from, struct mem_cgroup *to) 2426 { 2427 unsigned short old_id, new_id; 2428 2429 old_id = mem_cgroup_id(from); 2430 new_id = mem_cgroup_id(to); 2431 2432 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 2433 mod_memcg_state(from, MEMCG_SWAP, -1); 2434 mod_memcg_state(to, MEMCG_SWAP, 1); 2435 return 0; 2436 } 2437 return -EINVAL; 2438 } 2439 #else 2440 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 2441 struct mem_cgroup *from, struct mem_cgroup *to) 2442 { 2443 return -EINVAL; 2444 } 2445 #endif 2446 2447 static DEFINE_MUTEX(memcg_limit_mutex); 2448 2449 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg, 2450 unsigned long limit, bool memsw) 2451 { 2452 bool enlarge = false; 2453 int ret; 2454 bool limits_invariant; 2455 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory; 2456 2457 do { 2458 if (signal_pending(current)) { 2459 ret = -EINTR; 2460 break; 2461 } 2462 2463 mutex_lock(&memcg_limit_mutex); 2464 /* 2465 * Make sure that the new limit (memsw or memory limit) doesn't 2466 * break our basic invariant rule memory.limit <= memsw.limit. 2467 */ 2468 limits_invariant = memsw ? limit >= memcg->memory.limit : 2469 limit <= memcg->memsw.limit; 2470 if (!limits_invariant) { 2471 mutex_unlock(&memcg_limit_mutex); 2472 ret = -EINVAL; 2473 break; 2474 } 2475 if (limit > counter->limit) 2476 enlarge = true; 2477 ret = page_counter_limit(counter, limit); 2478 mutex_unlock(&memcg_limit_mutex); 2479 2480 if (!ret) 2481 break; 2482 2483 if (!try_to_free_mem_cgroup_pages(memcg, 1, 2484 GFP_KERNEL, !memsw)) { 2485 ret = -EBUSY; 2486 break; 2487 } 2488 } while (true); 2489 2490 if (!ret && enlarge) 2491 memcg_oom_recover(memcg); 2492 2493 return ret; 2494 } 2495 2496 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 2497 gfp_t gfp_mask, 2498 unsigned long *total_scanned) 2499 { 2500 unsigned long nr_reclaimed = 0; 2501 struct mem_cgroup_per_node *mz, *next_mz = NULL; 2502 unsigned long reclaimed; 2503 int loop = 0; 2504 struct mem_cgroup_tree_per_node *mctz; 2505 unsigned long excess; 2506 unsigned long nr_scanned; 2507 2508 if (order > 0) 2509 return 0; 2510 2511 mctz = soft_limit_tree_node(pgdat->node_id); 2512 2513 /* 2514 * Do not even bother to check the largest node if the root 2515 * is empty. Do it lockless to prevent lock bouncing. Races 2516 * are acceptable as soft limit is best effort anyway. 2517 */ 2518 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root)) 2519 return 0; 2520 2521 /* 2522 * This loop can run a while, specially if mem_cgroup's continuously 2523 * keep exceeding their soft limit and putting the system under 2524 * pressure 2525 */ 2526 do { 2527 if (next_mz) 2528 mz = next_mz; 2529 else 2530 mz = mem_cgroup_largest_soft_limit_node(mctz); 2531 if (!mz) 2532 break; 2533 2534 nr_scanned = 0; 2535 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat, 2536 gfp_mask, &nr_scanned); 2537 nr_reclaimed += reclaimed; 2538 *total_scanned += nr_scanned; 2539 spin_lock_irq(&mctz->lock); 2540 __mem_cgroup_remove_exceeded(mz, mctz); 2541 2542 /* 2543 * If we failed to reclaim anything from this memory cgroup 2544 * it is time to move on to the next cgroup 2545 */ 2546 next_mz = NULL; 2547 if (!reclaimed) 2548 next_mz = __mem_cgroup_largest_soft_limit_node(mctz); 2549 2550 excess = soft_limit_excess(mz->memcg); 2551 /* 2552 * One school of thought says that we should not add 2553 * back the node to the tree if reclaim returns 0. 2554 * But our reclaim could return 0, simply because due 2555 * to priority we are exposing a smaller subset of 2556 * memory to reclaim from. Consider this as a longer 2557 * term TODO. 2558 */ 2559 /* If excess == 0, no tree ops */ 2560 __mem_cgroup_insert_exceeded(mz, mctz, excess); 2561 spin_unlock_irq(&mctz->lock); 2562 css_put(&mz->memcg->css); 2563 loop++; 2564 /* 2565 * Could not reclaim anything and there are no more 2566 * mem cgroups to try or we seem to be looping without 2567 * reclaiming anything. 2568 */ 2569 if (!nr_reclaimed && 2570 (next_mz == NULL || 2571 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 2572 break; 2573 } while (!nr_reclaimed); 2574 if (next_mz) 2575 css_put(&next_mz->memcg->css); 2576 return nr_reclaimed; 2577 } 2578 2579 /* 2580 * Test whether @memcg has children, dead or alive. Note that this 2581 * function doesn't care whether @memcg has use_hierarchy enabled and 2582 * returns %true if there are child csses according to the cgroup 2583 * hierarchy. Testing use_hierarchy is the caller's responsiblity. 2584 */ 2585 static inline bool memcg_has_children(struct mem_cgroup *memcg) 2586 { 2587 bool ret; 2588 2589 rcu_read_lock(); 2590 ret = css_next_child(NULL, &memcg->css); 2591 rcu_read_unlock(); 2592 return ret; 2593 } 2594 2595 /* 2596 * Reclaims as many pages from the given memcg as possible. 2597 * 2598 * Caller is responsible for holding css reference for memcg. 2599 */ 2600 static int mem_cgroup_force_empty(struct mem_cgroup *memcg) 2601 { 2602 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 2603 2604 /* we call try-to-free pages for make this cgroup empty */ 2605 lru_add_drain_all(); 2606 /* try to free all pages in this cgroup */ 2607 while (nr_retries && page_counter_read(&memcg->memory)) { 2608 int progress; 2609 2610 if (signal_pending(current)) 2611 return -EINTR; 2612 2613 progress = try_to_free_mem_cgroup_pages(memcg, 1, 2614 GFP_KERNEL, true); 2615 if (!progress) { 2616 nr_retries--; 2617 /* maybe some writeback is necessary */ 2618 congestion_wait(BLK_RW_ASYNC, HZ/10); 2619 } 2620 2621 } 2622 2623 return 0; 2624 } 2625 2626 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of, 2627 char *buf, size_t nbytes, 2628 loff_t off) 2629 { 2630 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 2631 2632 if (mem_cgroup_is_root(memcg)) 2633 return -EINVAL; 2634 return mem_cgroup_force_empty(memcg) ?: nbytes; 2635 } 2636 2637 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, 2638 struct cftype *cft) 2639 { 2640 return mem_cgroup_from_css(css)->use_hierarchy; 2641 } 2642 2643 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, 2644 struct cftype *cft, u64 val) 2645 { 2646 int retval = 0; 2647 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 2648 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent); 2649 2650 if (memcg->use_hierarchy == val) 2651 return 0; 2652 2653 /* 2654 * If parent's use_hierarchy is set, we can't make any modifications 2655 * in the child subtrees. If it is unset, then the change can 2656 * occur, provided the current cgroup has no children. 2657 * 2658 * For the root cgroup, parent_mem is NULL, we allow value to be 2659 * set if there are no children. 2660 */ 2661 if ((!parent_memcg || !parent_memcg->use_hierarchy) && 2662 (val == 1 || val == 0)) { 2663 if (!memcg_has_children(memcg)) 2664 memcg->use_hierarchy = val; 2665 else 2666 retval = -EBUSY; 2667 } else 2668 retval = -EINVAL; 2669 2670 return retval; 2671 } 2672 2673 static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat) 2674 { 2675 struct mem_cgroup *iter; 2676 int i; 2677 2678 memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT); 2679 2680 for_each_mem_cgroup_tree(iter, memcg) { 2681 for (i = 0; i < MEMCG_NR_STAT; i++) 2682 stat[i] += memcg_page_state(iter, i); 2683 } 2684 } 2685 2686 static void tree_events(struct mem_cgroup *memcg, unsigned long *events) 2687 { 2688 struct mem_cgroup *iter; 2689 int i; 2690 2691 memset(events, 0, sizeof(*events) * NR_VM_EVENT_ITEMS); 2692 2693 for_each_mem_cgroup_tree(iter, memcg) { 2694 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) 2695 events[i] += memcg_sum_events(iter, i); 2696 } 2697 } 2698 2699 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 2700 { 2701 unsigned long val = 0; 2702 2703 if (mem_cgroup_is_root(memcg)) { 2704 struct mem_cgroup *iter; 2705 2706 for_each_mem_cgroup_tree(iter, memcg) { 2707 val += memcg_page_state(iter, MEMCG_CACHE); 2708 val += memcg_page_state(iter, MEMCG_RSS); 2709 if (swap) 2710 val += memcg_page_state(iter, MEMCG_SWAP); 2711 } 2712 } else { 2713 if (!swap) 2714 val = page_counter_read(&memcg->memory); 2715 else 2716 val = page_counter_read(&memcg->memsw); 2717 } 2718 return val; 2719 } 2720 2721 enum { 2722 RES_USAGE, 2723 RES_LIMIT, 2724 RES_MAX_USAGE, 2725 RES_FAILCNT, 2726 RES_SOFT_LIMIT, 2727 }; 2728 2729 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css, 2730 struct cftype *cft) 2731 { 2732 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 2733 struct page_counter *counter; 2734 2735 switch (MEMFILE_TYPE(cft->private)) { 2736 case _MEM: 2737 counter = &memcg->memory; 2738 break; 2739 case _MEMSWAP: 2740 counter = &memcg->memsw; 2741 break; 2742 case _KMEM: 2743 counter = &memcg->kmem; 2744 break; 2745 case _TCP: 2746 counter = &memcg->tcpmem; 2747 break; 2748 default: 2749 BUG(); 2750 } 2751 2752 switch (MEMFILE_ATTR(cft->private)) { 2753 case RES_USAGE: 2754 if (counter == &memcg->memory) 2755 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE; 2756 if (counter == &memcg->memsw) 2757 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE; 2758 return (u64)page_counter_read(counter) * PAGE_SIZE; 2759 case RES_LIMIT: 2760 return (u64)counter->limit * PAGE_SIZE; 2761 case RES_MAX_USAGE: 2762 return (u64)counter->watermark * PAGE_SIZE; 2763 case RES_FAILCNT: 2764 return counter->failcnt; 2765 case RES_SOFT_LIMIT: 2766 return (u64)memcg->soft_limit * PAGE_SIZE; 2767 default: 2768 BUG(); 2769 } 2770 } 2771 2772 #ifndef CONFIG_SLOB 2773 static int memcg_online_kmem(struct mem_cgroup *memcg) 2774 { 2775 int memcg_id; 2776 2777 if (cgroup_memory_nokmem) 2778 return 0; 2779 2780 BUG_ON(memcg->kmemcg_id >= 0); 2781 BUG_ON(memcg->kmem_state); 2782 2783 memcg_id = memcg_alloc_cache_id(); 2784 if (memcg_id < 0) 2785 return memcg_id; 2786 2787 static_branch_inc(&memcg_kmem_enabled_key); 2788 /* 2789 * A memory cgroup is considered kmem-online as soon as it gets 2790 * kmemcg_id. Setting the id after enabling static branching will 2791 * guarantee no one starts accounting before all call sites are 2792 * patched. 2793 */ 2794 memcg->kmemcg_id = memcg_id; 2795 memcg->kmem_state = KMEM_ONLINE; 2796 INIT_LIST_HEAD(&memcg->kmem_caches); 2797 2798 return 0; 2799 } 2800 2801 static void memcg_offline_kmem(struct mem_cgroup *memcg) 2802 { 2803 struct cgroup_subsys_state *css; 2804 struct mem_cgroup *parent, *child; 2805 int kmemcg_id; 2806 2807 if (memcg->kmem_state != KMEM_ONLINE) 2808 return; 2809 /* 2810 * Clear the online state before clearing memcg_caches array 2811 * entries. The slab_mutex in memcg_deactivate_kmem_caches() 2812 * guarantees that no cache will be created for this cgroup 2813 * after we are done (see memcg_create_kmem_cache()). 2814 */ 2815 memcg->kmem_state = KMEM_ALLOCATED; 2816 2817 memcg_deactivate_kmem_caches(memcg); 2818 2819 kmemcg_id = memcg->kmemcg_id; 2820 BUG_ON(kmemcg_id < 0); 2821 2822 parent = parent_mem_cgroup(memcg); 2823 if (!parent) 2824 parent = root_mem_cgroup; 2825 2826 /* 2827 * Change kmemcg_id of this cgroup and all its descendants to the 2828 * parent's id, and then move all entries from this cgroup's list_lrus 2829 * to ones of the parent. After we have finished, all list_lrus 2830 * corresponding to this cgroup are guaranteed to remain empty. The 2831 * ordering is imposed by list_lru_node->lock taken by 2832 * memcg_drain_all_list_lrus(). 2833 */ 2834 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */ 2835 css_for_each_descendant_pre(css, &memcg->css) { 2836 child = mem_cgroup_from_css(css); 2837 BUG_ON(child->kmemcg_id != kmemcg_id); 2838 child->kmemcg_id = parent->kmemcg_id; 2839 if (!memcg->use_hierarchy) 2840 break; 2841 } 2842 rcu_read_unlock(); 2843 2844 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id); 2845 2846 memcg_free_cache_id(kmemcg_id); 2847 } 2848 2849 static void memcg_free_kmem(struct mem_cgroup *memcg) 2850 { 2851 /* css_alloc() failed, offlining didn't happen */ 2852 if (unlikely(memcg->kmem_state == KMEM_ONLINE)) 2853 memcg_offline_kmem(memcg); 2854 2855 if (memcg->kmem_state == KMEM_ALLOCATED) { 2856 memcg_destroy_kmem_caches(memcg); 2857 static_branch_dec(&memcg_kmem_enabled_key); 2858 WARN_ON(page_counter_read(&memcg->kmem)); 2859 } 2860 } 2861 #else 2862 static int memcg_online_kmem(struct mem_cgroup *memcg) 2863 { 2864 return 0; 2865 } 2866 static void memcg_offline_kmem(struct mem_cgroup *memcg) 2867 { 2868 } 2869 static void memcg_free_kmem(struct mem_cgroup *memcg) 2870 { 2871 } 2872 #endif /* !CONFIG_SLOB */ 2873 2874 static int memcg_update_kmem_limit(struct mem_cgroup *memcg, 2875 unsigned long limit) 2876 { 2877 int ret; 2878 2879 mutex_lock(&memcg_limit_mutex); 2880 ret = page_counter_limit(&memcg->kmem, limit); 2881 mutex_unlock(&memcg_limit_mutex); 2882 return ret; 2883 } 2884 2885 static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit) 2886 { 2887 int ret; 2888 2889 mutex_lock(&memcg_limit_mutex); 2890 2891 ret = page_counter_limit(&memcg->tcpmem, limit); 2892 if (ret) 2893 goto out; 2894 2895 if (!memcg->tcpmem_active) { 2896 /* 2897 * The active flag needs to be written after the static_key 2898 * update. This is what guarantees that the socket activation 2899 * function is the last one to run. See mem_cgroup_sk_alloc() 2900 * for details, and note that we don't mark any socket as 2901 * belonging to this memcg until that flag is up. 2902 * 2903 * We need to do this, because static_keys will span multiple 2904 * sites, but we can't control their order. If we mark a socket 2905 * as accounted, but the accounting functions are not patched in 2906 * yet, we'll lose accounting. 2907 * 2908 * We never race with the readers in mem_cgroup_sk_alloc(), 2909 * because when this value change, the code to process it is not 2910 * patched in yet. 2911 */ 2912 static_branch_inc(&memcg_sockets_enabled_key); 2913 memcg->tcpmem_active = true; 2914 } 2915 out: 2916 mutex_unlock(&memcg_limit_mutex); 2917 return ret; 2918 } 2919 2920 /* 2921 * The user of this function is... 2922 * RES_LIMIT. 2923 */ 2924 static ssize_t mem_cgroup_write(struct kernfs_open_file *of, 2925 char *buf, size_t nbytes, loff_t off) 2926 { 2927 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 2928 unsigned long nr_pages; 2929 int ret; 2930 2931 buf = strstrip(buf); 2932 ret = page_counter_memparse(buf, "-1", &nr_pages); 2933 if (ret) 2934 return ret; 2935 2936 switch (MEMFILE_ATTR(of_cft(of)->private)) { 2937 case RES_LIMIT: 2938 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 2939 ret = -EINVAL; 2940 break; 2941 } 2942 switch (MEMFILE_TYPE(of_cft(of)->private)) { 2943 case _MEM: 2944 ret = mem_cgroup_resize_limit(memcg, nr_pages, false); 2945 break; 2946 case _MEMSWAP: 2947 ret = mem_cgroup_resize_limit(memcg, nr_pages, true); 2948 break; 2949 case _KMEM: 2950 ret = memcg_update_kmem_limit(memcg, nr_pages); 2951 break; 2952 case _TCP: 2953 ret = memcg_update_tcp_limit(memcg, nr_pages); 2954 break; 2955 } 2956 break; 2957 case RES_SOFT_LIMIT: 2958 memcg->soft_limit = nr_pages; 2959 ret = 0; 2960 break; 2961 } 2962 return ret ?: nbytes; 2963 } 2964 2965 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf, 2966 size_t nbytes, loff_t off) 2967 { 2968 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 2969 struct page_counter *counter; 2970 2971 switch (MEMFILE_TYPE(of_cft(of)->private)) { 2972 case _MEM: 2973 counter = &memcg->memory; 2974 break; 2975 case _MEMSWAP: 2976 counter = &memcg->memsw; 2977 break; 2978 case _KMEM: 2979 counter = &memcg->kmem; 2980 break; 2981 case _TCP: 2982 counter = &memcg->tcpmem; 2983 break; 2984 default: 2985 BUG(); 2986 } 2987 2988 switch (MEMFILE_ATTR(of_cft(of)->private)) { 2989 case RES_MAX_USAGE: 2990 page_counter_reset_watermark(counter); 2991 break; 2992 case RES_FAILCNT: 2993 counter->failcnt = 0; 2994 break; 2995 default: 2996 BUG(); 2997 } 2998 2999 return nbytes; 3000 } 3001 3002 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, 3003 struct cftype *cft) 3004 { 3005 return mem_cgroup_from_css(css)->move_charge_at_immigrate; 3006 } 3007 3008 #ifdef CONFIG_MMU 3009 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3010 struct cftype *cft, u64 val) 3011 { 3012 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3013 3014 if (val & ~MOVE_MASK) 3015 return -EINVAL; 3016 3017 /* 3018 * No kind of locking is needed in here, because ->can_attach() will 3019 * check this value once in the beginning of the process, and then carry 3020 * on with stale data. This means that changes to this value will only 3021 * affect task migrations starting after the change. 3022 */ 3023 memcg->move_charge_at_immigrate = val; 3024 return 0; 3025 } 3026 #else 3027 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3028 struct cftype *cft, u64 val) 3029 { 3030 return -ENOSYS; 3031 } 3032 #endif 3033 3034 #ifdef CONFIG_NUMA 3035 static int memcg_numa_stat_show(struct seq_file *m, void *v) 3036 { 3037 struct numa_stat { 3038 const char *name; 3039 unsigned int lru_mask; 3040 }; 3041 3042 static const struct numa_stat stats[] = { 3043 { "total", LRU_ALL }, 3044 { "file", LRU_ALL_FILE }, 3045 { "anon", LRU_ALL_ANON }, 3046 { "unevictable", BIT(LRU_UNEVICTABLE) }, 3047 }; 3048 const struct numa_stat *stat; 3049 int nid; 3050 unsigned long nr; 3051 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 3052 3053 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3054 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask); 3055 seq_printf(m, "%s=%lu", stat->name, nr); 3056 for_each_node_state(nid, N_MEMORY) { 3057 nr = mem_cgroup_node_nr_lru_pages(memcg, nid, 3058 stat->lru_mask); 3059 seq_printf(m, " N%d=%lu", nid, nr); 3060 } 3061 seq_putc(m, '\n'); 3062 } 3063 3064 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3065 struct mem_cgroup *iter; 3066 3067 nr = 0; 3068 for_each_mem_cgroup_tree(iter, memcg) 3069 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask); 3070 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr); 3071 for_each_node_state(nid, N_MEMORY) { 3072 nr = 0; 3073 for_each_mem_cgroup_tree(iter, memcg) 3074 nr += mem_cgroup_node_nr_lru_pages( 3075 iter, nid, stat->lru_mask); 3076 seq_printf(m, " N%d=%lu", nid, nr); 3077 } 3078 seq_putc(m, '\n'); 3079 } 3080 3081 return 0; 3082 } 3083 #endif /* CONFIG_NUMA */ 3084 3085 /* Universal VM events cgroup1 shows, original sort order */ 3086 unsigned int memcg1_events[] = { 3087 PGPGIN, 3088 PGPGOUT, 3089 PGFAULT, 3090 PGMAJFAULT, 3091 }; 3092 3093 static const char *const memcg1_event_names[] = { 3094 "pgpgin", 3095 "pgpgout", 3096 "pgfault", 3097 "pgmajfault", 3098 }; 3099 3100 static int memcg_stat_show(struct seq_file *m, void *v) 3101 { 3102 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 3103 unsigned long memory, memsw; 3104 struct mem_cgroup *mi; 3105 unsigned int i; 3106 3107 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats)); 3108 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS); 3109 3110 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 3111 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 3112 continue; 3113 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], 3114 memcg_page_state(memcg, memcg1_stats[i]) * 3115 PAGE_SIZE); 3116 } 3117 3118 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 3119 seq_printf(m, "%s %lu\n", memcg1_event_names[i], 3120 memcg_sum_events(memcg, memcg1_events[i])); 3121 3122 for (i = 0; i < NR_LRU_LISTS; i++) 3123 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i], 3124 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE); 3125 3126 /* Hierarchical information */ 3127 memory = memsw = PAGE_COUNTER_MAX; 3128 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) { 3129 memory = min(memory, mi->memory.limit); 3130 memsw = min(memsw, mi->memsw.limit); 3131 } 3132 seq_printf(m, "hierarchical_memory_limit %llu\n", 3133 (u64)memory * PAGE_SIZE); 3134 if (do_memsw_account()) 3135 seq_printf(m, "hierarchical_memsw_limit %llu\n", 3136 (u64)memsw * PAGE_SIZE); 3137 3138 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 3139 unsigned long long val = 0; 3140 3141 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 3142 continue; 3143 for_each_mem_cgroup_tree(mi, memcg) 3144 val += memcg_page_state(mi, memcg1_stats[i]) * 3145 PAGE_SIZE; 3146 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], val); 3147 } 3148 3149 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) { 3150 unsigned long long val = 0; 3151 3152 for_each_mem_cgroup_tree(mi, memcg) 3153 val += memcg_sum_events(mi, memcg1_events[i]); 3154 seq_printf(m, "total_%s %llu\n", memcg1_event_names[i], val); 3155 } 3156 3157 for (i = 0; i < NR_LRU_LISTS; i++) { 3158 unsigned long long val = 0; 3159 3160 for_each_mem_cgroup_tree(mi, memcg) 3161 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE; 3162 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val); 3163 } 3164 3165 #ifdef CONFIG_DEBUG_VM 3166 { 3167 pg_data_t *pgdat; 3168 struct mem_cgroup_per_node *mz; 3169 struct zone_reclaim_stat *rstat; 3170 unsigned long recent_rotated[2] = {0, 0}; 3171 unsigned long recent_scanned[2] = {0, 0}; 3172 3173 for_each_online_pgdat(pgdat) { 3174 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 3175 rstat = &mz->lruvec.reclaim_stat; 3176 3177 recent_rotated[0] += rstat->recent_rotated[0]; 3178 recent_rotated[1] += rstat->recent_rotated[1]; 3179 recent_scanned[0] += rstat->recent_scanned[0]; 3180 recent_scanned[1] += rstat->recent_scanned[1]; 3181 } 3182 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]); 3183 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]); 3184 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]); 3185 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]); 3186 } 3187 #endif 3188 3189 return 0; 3190 } 3191 3192 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, 3193 struct cftype *cft) 3194 { 3195 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3196 3197 return mem_cgroup_swappiness(memcg); 3198 } 3199 3200 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, 3201 struct cftype *cft, u64 val) 3202 { 3203 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3204 3205 if (val > 100) 3206 return -EINVAL; 3207 3208 if (css->parent) 3209 memcg->swappiness = val; 3210 else 3211 vm_swappiness = val; 3212 3213 return 0; 3214 } 3215 3216 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 3217 { 3218 struct mem_cgroup_threshold_ary *t; 3219 unsigned long usage; 3220 int i; 3221 3222 rcu_read_lock(); 3223 if (!swap) 3224 t = rcu_dereference(memcg->thresholds.primary); 3225 else 3226 t = rcu_dereference(memcg->memsw_thresholds.primary); 3227 3228 if (!t) 3229 goto unlock; 3230 3231 usage = mem_cgroup_usage(memcg, swap); 3232 3233 /* 3234 * current_threshold points to threshold just below or equal to usage. 3235 * If it's not true, a threshold was crossed after last 3236 * call of __mem_cgroup_threshold(). 3237 */ 3238 i = t->current_threshold; 3239 3240 /* 3241 * Iterate backward over array of thresholds starting from 3242 * current_threshold and check if a threshold is crossed. 3243 * If none of thresholds below usage is crossed, we read 3244 * only one element of the array here. 3245 */ 3246 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 3247 eventfd_signal(t->entries[i].eventfd, 1); 3248 3249 /* i = current_threshold + 1 */ 3250 i++; 3251 3252 /* 3253 * Iterate forward over array of thresholds starting from 3254 * current_threshold+1 and check if a threshold is crossed. 3255 * If none of thresholds above usage is crossed, we read 3256 * only one element of the array here. 3257 */ 3258 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 3259 eventfd_signal(t->entries[i].eventfd, 1); 3260 3261 /* Update current_threshold */ 3262 t->current_threshold = i - 1; 3263 unlock: 3264 rcu_read_unlock(); 3265 } 3266 3267 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 3268 { 3269 while (memcg) { 3270 __mem_cgroup_threshold(memcg, false); 3271 if (do_memsw_account()) 3272 __mem_cgroup_threshold(memcg, true); 3273 3274 memcg = parent_mem_cgroup(memcg); 3275 } 3276 } 3277 3278 static int compare_thresholds(const void *a, const void *b) 3279 { 3280 const struct mem_cgroup_threshold *_a = a; 3281 const struct mem_cgroup_threshold *_b = b; 3282 3283 if (_a->threshold > _b->threshold) 3284 return 1; 3285 3286 if (_a->threshold < _b->threshold) 3287 return -1; 3288 3289 return 0; 3290 } 3291 3292 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 3293 { 3294 struct mem_cgroup_eventfd_list *ev; 3295 3296 spin_lock(&memcg_oom_lock); 3297 3298 list_for_each_entry(ev, &memcg->oom_notify, list) 3299 eventfd_signal(ev->eventfd, 1); 3300 3301 spin_unlock(&memcg_oom_lock); 3302 return 0; 3303 } 3304 3305 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 3306 { 3307 struct mem_cgroup *iter; 3308 3309 for_each_mem_cgroup_tree(iter, memcg) 3310 mem_cgroup_oom_notify_cb(iter); 3311 } 3312 3313 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 3314 struct eventfd_ctx *eventfd, const char *args, enum res_type type) 3315 { 3316 struct mem_cgroup_thresholds *thresholds; 3317 struct mem_cgroup_threshold_ary *new; 3318 unsigned long threshold; 3319 unsigned long usage; 3320 int i, size, ret; 3321 3322 ret = page_counter_memparse(args, "-1", &threshold); 3323 if (ret) 3324 return ret; 3325 3326 mutex_lock(&memcg->thresholds_lock); 3327 3328 if (type == _MEM) { 3329 thresholds = &memcg->thresholds; 3330 usage = mem_cgroup_usage(memcg, false); 3331 } else if (type == _MEMSWAP) { 3332 thresholds = &memcg->memsw_thresholds; 3333 usage = mem_cgroup_usage(memcg, true); 3334 } else 3335 BUG(); 3336 3337 /* Check if a threshold crossed before adding a new one */ 3338 if (thresholds->primary) 3339 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 3340 3341 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 3342 3343 /* Allocate memory for new array of thresholds */ 3344 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold), 3345 GFP_KERNEL); 3346 if (!new) { 3347 ret = -ENOMEM; 3348 goto unlock; 3349 } 3350 new->size = size; 3351 3352 /* Copy thresholds (if any) to new array */ 3353 if (thresholds->primary) { 3354 memcpy(new->entries, thresholds->primary->entries, (size - 1) * 3355 sizeof(struct mem_cgroup_threshold)); 3356 } 3357 3358 /* Add new threshold */ 3359 new->entries[size - 1].eventfd = eventfd; 3360 new->entries[size - 1].threshold = threshold; 3361 3362 /* Sort thresholds. Registering of new threshold isn't time-critical */ 3363 sort(new->entries, size, sizeof(struct mem_cgroup_threshold), 3364 compare_thresholds, NULL); 3365 3366 /* Find current threshold */ 3367 new->current_threshold = -1; 3368 for (i = 0; i < size; i++) { 3369 if (new->entries[i].threshold <= usage) { 3370 /* 3371 * new->current_threshold will not be used until 3372 * rcu_assign_pointer(), so it's safe to increment 3373 * it here. 3374 */ 3375 ++new->current_threshold; 3376 } else 3377 break; 3378 } 3379 3380 /* Free old spare buffer and save old primary buffer as spare */ 3381 kfree(thresholds->spare); 3382 thresholds->spare = thresholds->primary; 3383 3384 rcu_assign_pointer(thresholds->primary, new); 3385 3386 /* To be sure that nobody uses thresholds */ 3387 synchronize_rcu(); 3388 3389 unlock: 3390 mutex_unlock(&memcg->thresholds_lock); 3391 3392 return ret; 3393 } 3394 3395 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 3396 struct eventfd_ctx *eventfd, const char *args) 3397 { 3398 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM); 3399 } 3400 3401 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg, 3402 struct eventfd_ctx *eventfd, const char *args) 3403 { 3404 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP); 3405 } 3406 3407 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 3408 struct eventfd_ctx *eventfd, enum res_type type) 3409 { 3410 struct mem_cgroup_thresholds *thresholds; 3411 struct mem_cgroup_threshold_ary *new; 3412 unsigned long usage; 3413 int i, j, size; 3414 3415 mutex_lock(&memcg->thresholds_lock); 3416 3417 if (type == _MEM) { 3418 thresholds = &memcg->thresholds; 3419 usage = mem_cgroup_usage(memcg, false); 3420 } else if (type == _MEMSWAP) { 3421 thresholds = &memcg->memsw_thresholds; 3422 usage = mem_cgroup_usage(memcg, true); 3423 } else 3424 BUG(); 3425 3426 if (!thresholds->primary) 3427 goto unlock; 3428 3429 /* Check if a threshold crossed before removing */ 3430 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 3431 3432 /* Calculate new number of threshold */ 3433 size = 0; 3434 for (i = 0; i < thresholds->primary->size; i++) { 3435 if (thresholds->primary->entries[i].eventfd != eventfd) 3436 size++; 3437 } 3438 3439 new = thresholds->spare; 3440 3441 /* Set thresholds array to NULL if we don't have thresholds */ 3442 if (!size) { 3443 kfree(new); 3444 new = NULL; 3445 goto swap_buffers; 3446 } 3447 3448 new->size = size; 3449 3450 /* Copy thresholds and find current threshold */ 3451 new->current_threshold = -1; 3452 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 3453 if (thresholds->primary->entries[i].eventfd == eventfd) 3454 continue; 3455 3456 new->entries[j] = thresholds->primary->entries[i]; 3457 if (new->entries[j].threshold <= usage) { 3458 /* 3459 * new->current_threshold will not be used 3460 * until rcu_assign_pointer(), so it's safe to increment 3461 * it here. 3462 */ 3463 ++new->current_threshold; 3464 } 3465 j++; 3466 } 3467 3468 swap_buffers: 3469 /* Swap primary and spare array */ 3470 thresholds->spare = thresholds->primary; 3471 3472 rcu_assign_pointer(thresholds->primary, new); 3473 3474 /* To be sure that nobody uses thresholds */ 3475 synchronize_rcu(); 3476 3477 /* If all events are unregistered, free the spare array */ 3478 if (!new) { 3479 kfree(thresholds->spare); 3480 thresholds->spare = NULL; 3481 } 3482 unlock: 3483 mutex_unlock(&memcg->thresholds_lock); 3484 } 3485 3486 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 3487 struct eventfd_ctx *eventfd) 3488 { 3489 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM); 3490 } 3491 3492 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 3493 struct eventfd_ctx *eventfd) 3494 { 3495 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP); 3496 } 3497 3498 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg, 3499 struct eventfd_ctx *eventfd, const char *args) 3500 { 3501 struct mem_cgroup_eventfd_list *event; 3502 3503 event = kmalloc(sizeof(*event), GFP_KERNEL); 3504 if (!event) 3505 return -ENOMEM; 3506 3507 spin_lock(&memcg_oom_lock); 3508 3509 event->eventfd = eventfd; 3510 list_add(&event->list, &memcg->oom_notify); 3511 3512 /* already in OOM ? */ 3513 if (memcg->under_oom) 3514 eventfd_signal(eventfd, 1); 3515 spin_unlock(&memcg_oom_lock); 3516 3517 return 0; 3518 } 3519 3520 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg, 3521 struct eventfd_ctx *eventfd) 3522 { 3523 struct mem_cgroup_eventfd_list *ev, *tmp; 3524 3525 spin_lock(&memcg_oom_lock); 3526 3527 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 3528 if (ev->eventfd == eventfd) { 3529 list_del(&ev->list); 3530 kfree(ev); 3531 } 3532 } 3533 3534 spin_unlock(&memcg_oom_lock); 3535 } 3536 3537 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v) 3538 { 3539 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf)); 3540 3541 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable); 3542 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom); 3543 seq_printf(sf, "oom_kill %lu\n", memcg_sum_events(memcg, OOM_KILL)); 3544 return 0; 3545 } 3546 3547 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, 3548 struct cftype *cft, u64 val) 3549 { 3550 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3551 3552 /* cannot set to root cgroup and only 0 and 1 are allowed */ 3553 if (!css->parent || !((val == 0) || (val == 1))) 3554 return -EINVAL; 3555 3556 memcg->oom_kill_disable = val; 3557 if (!val) 3558 memcg_oom_recover(memcg); 3559 3560 return 0; 3561 } 3562 3563 #ifdef CONFIG_CGROUP_WRITEBACK 3564 3565 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg) 3566 { 3567 return &memcg->cgwb_list; 3568 } 3569 3570 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 3571 { 3572 return wb_domain_init(&memcg->cgwb_domain, gfp); 3573 } 3574 3575 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 3576 { 3577 wb_domain_exit(&memcg->cgwb_domain); 3578 } 3579 3580 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 3581 { 3582 wb_domain_size_changed(&memcg->cgwb_domain); 3583 } 3584 3585 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 3586 { 3587 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3588 3589 if (!memcg->css.parent) 3590 return NULL; 3591 3592 return &memcg->cgwb_domain; 3593 } 3594 3595 /** 3596 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg 3597 * @wb: bdi_writeback in question 3598 * @pfilepages: out parameter for number of file pages 3599 * @pheadroom: out parameter for number of allocatable pages according to memcg 3600 * @pdirty: out parameter for number of dirty pages 3601 * @pwriteback: out parameter for number of pages under writeback 3602 * 3603 * Determine the numbers of file, headroom, dirty, and writeback pages in 3604 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom 3605 * is a bit more involved. 3606 * 3607 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the 3608 * headroom is calculated as the lowest headroom of itself and the 3609 * ancestors. Note that this doesn't consider the actual amount of 3610 * available memory in the system. The caller should further cap 3611 * *@pheadroom accordingly. 3612 */ 3613 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 3614 unsigned long *pheadroom, unsigned long *pdirty, 3615 unsigned long *pwriteback) 3616 { 3617 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3618 struct mem_cgroup *parent; 3619 3620 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY); 3621 3622 /* this should eventually include NR_UNSTABLE_NFS */ 3623 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK); 3624 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) | 3625 (1 << LRU_ACTIVE_FILE)); 3626 *pheadroom = PAGE_COUNTER_MAX; 3627 3628 while ((parent = parent_mem_cgroup(memcg))) { 3629 unsigned long ceiling = min(memcg->memory.limit, memcg->high); 3630 unsigned long used = page_counter_read(&memcg->memory); 3631 3632 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); 3633 memcg = parent; 3634 } 3635 } 3636 3637 #else /* CONFIG_CGROUP_WRITEBACK */ 3638 3639 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 3640 { 3641 return 0; 3642 } 3643 3644 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 3645 { 3646 } 3647 3648 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 3649 { 3650 } 3651 3652 #endif /* CONFIG_CGROUP_WRITEBACK */ 3653 3654 /* 3655 * DO NOT USE IN NEW FILES. 3656 * 3657 * "cgroup.event_control" implementation. 3658 * 3659 * This is way over-engineered. It tries to support fully configurable 3660 * events for each user. Such level of flexibility is completely 3661 * unnecessary especially in the light of the planned unified hierarchy. 3662 * 3663 * Please deprecate this and replace with something simpler if at all 3664 * possible. 3665 */ 3666 3667 /* 3668 * Unregister event and free resources. 3669 * 3670 * Gets called from workqueue. 3671 */ 3672 static void memcg_event_remove(struct work_struct *work) 3673 { 3674 struct mem_cgroup_event *event = 3675 container_of(work, struct mem_cgroup_event, remove); 3676 struct mem_cgroup *memcg = event->memcg; 3677 3678 remove_wait_queue(event->wqh, &event->wait); 3679 3680 event->unregister_event(memcg, event->eventfd); 3681 3682 /* Notify userspace the event is going away. */ 3683 eventfd_signal(event->eventfd, 1); 3684 3685 eventfd_ctx_put(event->eventfd); 3686 kfree(event); 3687 css_put(&memcg->css); 3688 } 3689 3690 /* 3691 * Gets called on EPOLLHUP on eventfd when user closes it. 3692 * 3693 * Called with wqh->lock held and interrupts disabled. 3694 */ 3695 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode, 3696 int sync, void *key) 3697 { 3698 struct mem_cgroup_event *event = 3699 container_of(wait, struct mem_cgroup_event, wait); 3700 struct mem_cgroup *memcg = event->memcg; 3701 __poll_t flags = key_to_poll(key); 3702 3703 if (flags & EPOLLHUP) { 3704 /* 3705 * If the event has been detached at cgroup removal, we 3706 * can simply return knowing the other side will cleanup 3707 * for us. 3708 * 3709 * We can't race against event freeing since the other 3710 * side will require wqh->lock via remove_wait_queue(), 3711 * which we hold. 3712 */ 3713 spin_lock(&memcg->event_list_lock); 3714 if (!list_empty(&event->list)) { 3715 list_del_init(&event->list); 3716 /* 3717 * We are in atomic context, but cgroup_event_remove() 3718 * may sleep, so we have to call it in workqueue. 3719 */ 3720 schedule_work(&event->remove); 3721 } 3722 spin_unlock(&memcg->event_list_lock); 3723 } 3724 3725 return 0; 3726 } 3727 3728 static void memcg_event_ptable_queue_proc(struct file *file, 3729 wait_queue_head_t *wqh, poll_table *pt) 3730 { 3731 struct mem_cgroup_event *event = 3732 container_of(pt, struct mem_cgroup_event, pt); 3733 3734 event->wqh = wqh; 3735 add_wait_queue(wqh, &event->wait); 3736 } 3737 3738 /* 3739 * DO NOT USE IN NEW FILES. 3740 * 3741 * Parse input and register new cgroup event handler. 3742 * 3743 * Input must be in format '<event_fd> <control_fd> <args>'. 3744 * Interpretation of args is defined by control file implementation. 3745 */ 3746 static ssize_t memcg_write_event_control(struct kernfs_open_file *of, 3747 char *buf, size_t nbytes, loff_t off) 3748 { 3749 struct cgroup_subsys_state *css = of_css(of); 3750 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3751 struct mem_cgroup_event *event; 3752 struct cgroup_subsys_state *cfile_css; 3753 unsigned int efd, cfd; 3754 struct fd efile; 3755 struct fd cfile; 3756 const char *name; 3757 char *endp; 3758 int ret; 3759 3760 buf = strstrip(buf); 3761 3762 efd = simple_strtoul(buf, &endp, 10); 3763 if (*endp != ' ') 3764 return -EINVAL; 3765 buf = endp + 1; 3766 3767 cfd = simple_strtoul(buf, &endp, 10); 3768 if ((*endp != ' ') && (*endp != '\0')) 3769 return -EINVAL; 3770 buf = endp + 1; 3771 3772 event = kzalloc(sizeof(*event), GFP_KERNEL); 3773 if (!event) 3774 return -ENOMEM; 3775 3776 event->memcg = memcg; 3777 INIT_LIST_HEAD(&event->list); 3778 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc); 3779 init_waitqueue_func_entry(&event->wait, memcg_event_wake); 3780 INIT_WORK(&event->remove, memcg_event_remove); 3781 3782 efile = fdget(efd); 3783 if (!efile.file) { 3784 ret = -EBADF; 3785 goto out_kfree; 3786 } 3787 3788 event->eventfd = eventfd_ctx_fileget(efile.file); 3789 if (IS_ERR(event->eventfd)) { 3790 ret = PTR_ERR(event->eventfd); 3791 goto out_put_efile; 3792 } 3793 3794 cfile = fdget(cfd); 3795 if (!cfile.file) { 3796 ret = -EBADF; 3797 goto out_put_eventfd; 3798 } 3799 3800 /* the process need read permission on control file */ 3801 /* AV: shouldn't we check that it's been opened for read instead? */ 3802 ret = inode_permission(file_inode(cfile.file), MAY_READ); 3803 if (ret < 0) 3804 goto out_put_cfile; 3805 3806 /* 3807 * Determine the event callbacks and set them in @event. This used 3808 * to be done via struct cftype but cgroup core no longer knows 3809 * about these events. The following is crude but the whole thing 3810 * is for compatibility anyway. 3811 * 3812 * DO NOT ADD NEW FILES. 3813 */ 3814 name = cfile.file->f_path.dentry->d_name.name; 3815 3816 if (!strcmp(name, "memory.usage_in_bytes")) { 3817 event->register_event = mem_cgroup_usage_register_event; 3818 event->unregister_event = mem_cgroup_usage_unregister_event; 3819 } else if (!strcmp(name, "memory.oom_control")) { 3820 event->register_event = mem_cgroup_oom_register_event; 3821 event->unregister_event = mem_cgroup_oom_unregister_event; 3822 } else if (!strcmp(name, "memory.pressure_level")) { 3823 event->register_event = vmpressure_register_event; 3824 event->unregister_event = vmpressure_unregister_event; 3825 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) { 3826 event->register_event = memsw_cgroup_usage_register_event; 3827 event->unregister_event = memsw_cgroup_usage_unregister_event; 3828 } else { 3829 ret = -EINVAL; 3830 goto out_put_cfile; 3831 } 3832 3833 /* 3834 * Verify @cfile should belong to @css. Also, remaining events are 3835 * automatically removed on cgroup destruction but the removal is 3836 * asynchronous, so take an extra ref on @css. 3837 */ 3838 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent, 3839 &memory_cgrp_subsys); 3840 ret = -EINVAL; 3841 if (IS_ERR(cfile_css)) 3842 goto out_put_cfile; 3843 if (cfile_css != css) { 3844 css_put(cfile_css); 3845 goto out_put_cfile; 3846 } 3847 3848 ret = event->register_event(memcg, event->eventfd, buf); 3849 if (ret) 3850 goto out_put_css; 3851 3852 efile.file->f_op->poll(efile.file, &event->pt); 3853 3854 spin_lock(&memcg->event_list_lock); 3855 list_add(&event->list, &memcg->event_list); 3856 spin_unlock(&memcg->event_list_lock); 3857 3858 fdput(cfile); 3859 fdput(efile); 3860 3861 return nbytes; 3862 3863 out_put_css: 3864 css_put(css); 3865 out_put_cfile: 3866 fdput(cfile); 3867 out_put_eventfd: 3868 eventfd_ctx_put(event->eventfd); 3869 out_put_efile: 3870 fdput(efile); 3871 out_kfree: 3872 kfree(event); 3873 3874 return ret; 3875 } 3876 3877 static struct cftype mem_cgroup_legacy_files[] = { 3878 { 3879 .name = "usage_in_bytes", 3880 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 3881 .read_u64 = mem_cgroup_read_u64, 3882 }, 3883 { 3884 .name = "max_usage_in_bytes", 3885 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 3886 .write = mem_cgroup_reset, 3887 .read_u64 = mem_cgroup_read_u64, 3888 }, 3889 { 3890 .name = "limit_in_bytes", 3891 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 3892 .write = mem_cgroup_write, 3893 .read_u64 = mem_cgroup_read_u64, 3894 }, 3895 { 3896 .name = "soft_limit_in_bytes", 3897 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 3898 .write = mem_cgroup_write, 3899 .read_u64 = mem_cgroup_read_u64, 3900 }, 3901 { 3902 .name = "failcnt", 3903 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 3904 .write = mem_cgroup_reset, 3905 .read_u64 = mem_cgroup_read_u64, 3906 }, 3907 { 3908 .name = "stat", 3909 .seq_show = memcg_stat_show, 3910 }, 3911 { 3912 .name = "force_empty", 3913 .write = mem_cgroup_force_empty_write, 3914 }, 3915 { 3916 .name = "use_hierarchy", 3917 .write_u64 = mem_cgroup_hierarchy_write, 3918 .read_u64 = mem_cgroup_hierarchy_read, 3919 }, 3920 { 3921 .name = "cgroup.event_control", /* XXX: for compat */ 3922 .write = memcg_write_event_control, 3923 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE, 3924 }, 3925 { 3926 .name = "swappiness", 3927 .read_u64 = mem_cgroup_swappiness_read, 3928 .write_u64 = mem_cgroup_swappiness_write, 3929 }, 3930 { 3931 .name = "move_charge_at_immigrate", 3932 .read_u64 = mem_cgroup_move_charge_read, 3933 .write_u64 = mem_cgroup_move_charge_write, 3934 }, 3935 { 3936 .name = "oom_control", 3937 .seq_show = mem_cgroup_oom_control_read, 3938 .write_u64 = mem_cgroup_oom_control_write, 3939 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), 3940 }, 3941 { 3942 .name = "pressure_level", 3943 }, 3944 #ifdef CONFIG_NUMA 3945 { 3946 .name = "numa_stat", 3947 .seq_show = memcg_numa_stat_show, 3948 }, 3949 #endif 3950 { 3951 .name = "kmem.limit_in_bytes", 3952 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), 3953 .write = mem_cgroup_write, 3954 .read_u64 = mem_cgroup_read_u64, 3955 }, 3956 { 3957 .name = "kmem.usage_in_bytes", 3958 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), 3959 .read_u64 = mem_cgroup_read_u64, 3960 }, 3961 { 3962 .name = "kmem.failcnt", 3963 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), 3964 .write = mem_cgroup_reset, 3965 .read_u64 = mem_cgroup_read_u64, 3966 }, 3967 { 3968 .name = "kmem.max_usage_in_bytes", 3969 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), 3970 .write = mem_cgroup_reset, 3971 .read_u64 = mem_cgroup_read_u64, 3972 }, 3973 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG) 3974 { 3975 .name = "kmem.slabinfo", 3976 .seq_start = memcg_slab_start, 3977 .seq_next = memcg_slab_next, 3978 .seq_stop = memcg_slab_stop, 3979 .seq_show = memcg_slab_show, 3980 }, 3981 #endif 3982 { 3983 .name = "kmem.tcp.limit_in_bytes", 3984 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT), 3985 .write = mem_cgroup_write, 3986 .read_u64 = mem_cgroup_read_u64, 3987 }, 3988 { 3989 .name = "kmem.tcp.usage_in_bytes", 3990 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE), 3991 .read_u64 = mem_cgroup_read_u64, 3992 }, 3993 { 3994 .name = "kmem.tcp.failcnt", 3995 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT), 3996 .write = mem_cgroup_reset, 3997 .read_u64 = mem_cgroup_read_u64, 3998 }, 3999 { 4000 .name = "kmem.tcp.max_usage_in_bytes", 4001 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE), 4002 .write = mem_cgroup_reset, 4003 .read_u64 = mem_cgroup_read_u64, 4004 }, 4005 { }, /* terminate */ 4006 }; 4007 4008 /* 4009 * Private memory cgroup IDR 4010 * 4011 * Swap-out records and page cache shadow entries need to store memcg 4012 * references in constrained space, so we maintain an ID space that is 4013 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of 4014 * memory-controlled cgroups to 64k. 4015 * 4016 * However, there usually are many references to the oflline CSS after 4017 * the cgroup has been destroyed, such as page cache or reclaimable 4018 * slab objects, that don't need to hang on to the ID. We want to keep 4019 * those dead CSS from occupying IDs, or we might quickly exhaust the 4020 * relatively small ID space and prevent the creation of new cgroups 4021 * even when there are much fewer than 64k cgroups - possibly none. 4022 * 4023 * Maintain a private 16-bit ID space for memcg, and allow the ID to 4024 * be freed and recycled when it's no longer needed, which is usually 4025 * when the CSS is offlined. 4026 * 4027 * The only exception to that are records of swapped out tmpfs/shmem 4028 * pages that need to be attributed to live ancestors on swapin. But 4029 * those references are manageable from userspace. 4030 */ 4031 4032 static DEFINE_IDR(mem_cgroup_idr); 4033 4034 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n) 4035 { 4036 VM_BUG_ON(atomic_read(&memcg->id.ref) <= 0); 4037 atomic_add(n, &memcg->id.ref); 4038 } 4039 4040 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n) 4041 { 4042 VM_BUG_ON(atomic_read(&memcg->id.ref) < n); 4043 if (atomic_sub_and_test(n, &memcg->id.ref)) { 4044 idr_remove(&mem_cgroup_idr, memcg->id.id); 4045 memcg->id.id = 0; 4046 4047 /* Memcg ID pins CSS */ 4048 css_put(&memcg->css); 4049 } 4050 } 4051 4052 static inline void mem_cgroup_id_get(struct mem_cgroup *memcg) 4053 { 4054 mem_cgroup_id_get_many(memcg, 1); 4055 } 4056 4057 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg) 4058 { 4059 mem_cgroup_id_put_many(memcg, 1); 4060 } 4061 4062 /** 4063 * mem_cgroup_from_id - look up a memcg from a memcg id 4064 * @id: the memcg id to look up 4065 * 4066 * Caller must hold rcu_read_lock(). 4067 */ 4068 struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 4069 { 4070 WARN_ON_ONCE(!rcu_read_lock_held()); 4071 return idr_find(&mem_cgroup_idr, id); 4072 } 4073 4074 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 4075 { 4076 struct mem_cgroup_per_node *pn; 4077 int tmp = node; 4078 /* 4079 * This routine is called against possible nodes. 4080 * But it's BUG to call kmalloc() against offline node. 4081 * 4082 * TODO: this routine can waste much memory for nodes which will 4083 * never be onlined. It's better to use memory hotplug callback 4084 * function. 4085 */ 4086 if (!node_state(node, N_NORMAL_MEMORY)) 4087 tmp = -1; 4088 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); 4089 if (!pn) 4090 return 1; 4091 4092 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat); 4093 if (!pn->lruvec_stat_cpu) { 4094 kfree(pn); 4095 return 1; 4096 } 4097 4098 lruvec_init(&pn->lruvec); 4099 pn->usage_in_excess = 0; 4100 pn->on_tree = false; 4101 pn->memcg = memcg; 4102 4103 memcg->nodeinfo[node] = pn; 4104 return 0; 4105 } 4106 4107 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 4108 { 4109 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node]; 4110 4111 if (!pn) 4112 return; 4113 4114 free_percpu(pn->lruvec_stat_cpu); 4115 kfree(pn); 4116 } 4117 4118 static void __mem_cgroup_free(struct mem_cgroup *memcg) 4119 { 4120 int node; 4121 4122 for_each_node(node) 4123 free_mem_cgroup_per_node_info(memcg, node); 4124 free_percpu(memcg->stat_cpu); 4125 kfree(memcg); 4126 } 4127 4128 static void mem_cgroup_free(struct mem_cgroup *memcg) 4129 { 4130 memcg_wb_domain_exit(memcg); 4131 __mem_cgroup_free(memcg); 4132 } 4133 4134 static struct mem_cgroup *mem_cgroup_alloc(void) 4135 { 4136 struct mem_cgroup *memcg; 4137 size_t size; 4138 int node; 4139 4140 size = sizeof(struct mem_cgroup); 4141 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *); 4142 4143 memcg = kzalloc(size, GFP_KERNEL); 4144 if (!memcg) 4145 return NULL; 4146 4147 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL, 4148 1, MEM_CGROUP_ID_MAX, 4149 GFP_KERNEL); 4150 if (memcg->id.id < 0) 4151 goto fail; 4152 4153 memcg->stat_cpu = alloc_percpu(struct mem_cgroup_stat_cpu); 4154 if (!memcg->stat_cpu) 4155 goto fail; 4156 4157 for_each_node(node) 4158 if (alloc_mem_cgroup_per_node_info(memcg, node)) 4159 goto fail; 4160 4161 if (memcg_wb_domain_init(memcg, GFP_KERNEL)) 4162 goto fail; 4163 4164 INIT_WORK(&memcg->high_work, high_work_func); 4165 memcg->last_scanned_node = MAX_NUMNODES; 4166 INIT_LIST_HEAD(&memcg->oom_notify); 4167 mutex_init(&memcg->thresholds_lock); 4168 spin_lock_init(&memcg->move_lock); 4169 vmpressure_init(&memcg->vmpressure); 4170 INIT_LIST_HEAD(&memcg->event_list); 4171 spin_lock_init(&memcg->event_list_lock); 4172 memcg->socket_pressure = jiffies; 4173 #ifndef CONFIG_SLOB 4174 memcg->kmemcg_id = -1; 4175 #endif 4176 #ifdef CONFIG_CGROUP_WRITEBACK 4177 INIT_LIST_HEAD(&memcg->cgwb_list); 4178 #endif 4179 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id); 4180 return memcg; 4181 fail: 4182 if (memcg->id.id > 0) 4183 idr_remove(&mem_cgroup_idr, memcg->id.id); 4184 __mem_cgroup_free(memcg); 4185 return NULL; 4186 } 4187 4188 static struct cgroup_subsys_state * __ref 4189 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 4190 { 4191 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); 4192 struct mem_cgroup *memcg; 4193 long error = -ENOMEM; 4194 4195 memcg = mem_cgroup_alloc(); 4196 if (!memcg) 4197 return ERR_PTR(error); 4198 4199 memcg->high = PAGE_COUNTER_MAX; 4200 memcg->soft_limit = PAGE_COUNTER_MAX; 4201 if (parent) { 4202 memcg->swappiness = mem_cgroup_swappiness(parent); 4203 memcg->oom_kill_disable = parent->oom_kill_disable; 4204 } 4205 if (parent && parent->use_hierarchy) { 4206 memcg->use_hierarchy = true; 4207 page_counter_init(&memcg->memory, &parent->memory); 4208 page_counter_init(&memcg->swap, &parent->swap); 4209 page_counter_init(&memcg->memsw, &parent->memsw); 4210 page_counter_init(&memcg->kmem, &parent->kmem); 4211 page_counter_init(&memcg->tcpmem, &parent->tcpmem); 4212 } else { 4213 page_counter_init(&memcg->memory, NULL); 4214 page_counter_init(&memcg->swap, NULL); 4215 page_counter_init(&memcg->memsw, NULL); 4216 page_counter_init(&memcg->kmem, NULL); 4217 page_counter_init(&memcg->tcpmem, NULL); 4218 /* 4219 * Deeper hierachy with use_hierarchy == false doesn't make 4220 * much sense so let cgroup subsystem know about this 4221 * unfortunate state in our controller. 4222 */ 4223 if (parent != root_mem_cgroup) 4224 memory_cgrp_subsys.broken_hierarchy = true; 4225 } 4226 4227 /* The following stuff does not apply to the root */ 4228 if (!parent) { 4229 root_mem_cgroup = memcg; 4230 return &memcg->css; 4231 } 4232 4233 error = memcg_online_kmem(memcg); 4234 if (error) 4235 goto fail; 4236 4237 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 4238 static_branch_inc(&memcg_sockets_enabled_key); 4239 4240 return &memcg->css; 4241 fail: 4242 mem_cgroup_free(memcg); 4243 return ERR_PTR(-ENOMEM); 4244 } 4245 4246 static int mem_cgroup_css_online(struct cgroup_subsys_state *css) 4247 { 4248 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4249 4250 /* Online state pins memcg ID, memcg ID pins CSS */ 4251 atomic_set(&memcg->id.ref, 1); 4252 css_get(css); 4253 return 0; 4254 } 4255 4256 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 4257 { 4258 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4259 struct mem_cgroup_event *event, *tmp; 4260 4261 /* 4262 * Unregister events and notify userspace. 4263 * Notify userspace about cgroup removing only after rmdir of cgroup 4264 * directory to avoid race between userspace and kernelspace. 4265 */ 4266 spin_lock(&memcg->event_list_lock); 4267 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) { 4268 list_del_init(&event->list); 4269 schedule_work(&event->remove); 4270 } 4271 spin_unlock(&memcg->event_list_lock); 4272 4273 memcg->low = 0; 4274 4275 memcg_offline_kmem(memcg); 4276 wb_memcg_offline(memcg); 4277 4278 mem_cgroup_id_put(memcg); 4279 } 4280 4281 static void mem_cgroup_css_released(struct cgroup_subsys_state *css) 4282 { 4283 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4284 4285 invalidate_reclaim_iterators(memcg); 4286 } 4287 4288 static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 4289 { 4290 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4291 4292 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 4293 static_branch_dec(&memcg_sockets_enabled_key); 4294 4295 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active) 4296 static_branch_dec(&memcg_sockets_enabled_key); 4297 4298 vmpressure_cleanup(&memcg->vmpressure); 4299 cancel_work_sync(&memcg->high_work); 4300 mem_cgroup_remove_from_trees(memcg); 4301 memcg_free_kmem(memcg); 4302 mem_cgroup_free(memcg); 4303 } 4304 4305 /** 4306 * mem_cgroup_css_reset - reset the states of a mem_cgroup 4307 * @css: the target css 4308 * 4309 * Reset the states of the mem_cgroup associated with @css. This is 4310 * invoked when the userland requests disabling on the default hierarchy 4311 * but the memcg is pinned through dependency. The memcg should stop 4312 * applying policies and should revert to the vanilla state as it may be 4313 * made visible again. 4314 * 4315 * The current implementation only resets the essential configurations. 4316 * This needs to be expanded to cover all the visible parts. 4317 */ 4318 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) 4319 { 4320 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4321 4322 page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX); 4323 page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX); 4324 page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX); 4325 page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX); 4326 page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX); 4327 memcg->low = 0; 4328 memcg->high = PAGE_COUNTER_MAX; 4329 memcg->soft_limit = PAGE_COUNTER_MAX; 4330 memcg_wb_domain_size_changed(memcg); 4331 } 4332 4333 #ifdef CONFIG_MMU 4334 /* Handlers for move charge at task migration. */ 4335 static int mem_cgroup_do_precharge(unsigned long count) 4336 { 4337 int ret; 4338 4339 /* Try a single bulk charge without reclaim first, kswapd may wake */ 4340 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count); 4341 if (!ret) { 4342 mc.precharge += count; 4343 return ret; 4344 } 4345 4346 /* Try charges one by one with reclaim, but do not retry */ 4347 while (count--) { 4348 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1); 4349 if (ret) 4350 return ret; 4351 mc.precharge++; 4352 cond_resched(); 4353 } 4354 return 0; 4355 } 4356 4357 union mc_target { 4358 struct page *page; 4359 swp_entry_t ent; 4360 }; 4361 4362 enum mc_target_type { 4363 MC_TARGET_NONE = 0, 4364 MC_TARGET_PAGE, 4365 MC_TARGET_SWAP, 4366 MC_TARGET_DEVICE, 4367 }; 4368 4369 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 4370 unsigned long addr, pte_t ptent) 4371 { 4372 struct page *page = _vm_normal_page(vma, addr, ptent, true); 4373 4374 if (!page || !page_mapped(page)) 4375 return NULL; 4376 if (PageAnon(page)) { 4377 if (!(mc.flags & MOVE_ANON)) 4378 return NULL; 4379 } else { 4380 if (!(mc.flags & MOVE_FILE)) 4381 return NULL; 4382 } 4383 if (!get_page_unless_zero(page)) 4384 return NULL; 4385 4386 return page; 4387 } 4388 4389 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE) 4390 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 4391 pte_t ptent, swp_entry_t *entry) 4392 { 4393 struct page *page = NULL; 4394 swp_entry_t ent = pte_to_swp_entry(ptent); 4395 4396 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent)) 4397 return NULL; 4398 4399 /* 4400 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to 4401 * a device and because they are not accessible by CPU they are store 4402 * as special swap entry in the CPU page table. 4403 */ 4404 if (is_device_private_entry(ent)) { 4405 page = device_private_entry_to_page(ent); 4406 /* 4407 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have 4408 * a refcount of 1 when free (unlike normal page) 4409 */ 4410 if (!page_ref_add_unless(page, 1, 1)) 4411 return NULL; 4412 return page; 4413 } 4414 4415 /* 4416 * Because lookup_swap_cache() updates some statistics counter, 4417 * we call find_get_page() with swapper_space directly. 4418 */ 4419 page = find_get_page(swap_address_space(ent), swp_offset(ent)); 4420 if (do_memsw_account()) 4421 entry->val = ent.val; 4422 4423 return page; 4424 } 4425 #else 4426 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 4427 pte_t ptent, swp_entry_t *entry) 4428 { 4429 return NULL; 4430 } 4431 #endif 4432 4433 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 4434 unsigned long addr, pte_t ptent, swp_entry_t *entry) 4435 { 4436 struct page *page = NULL; 4437 struct address_space *mapping; 4438 pgoff_t pgoff; 4439 4440 if (!vma->vm_file) /* anonymous vma */ 4441 return NULL; 4442 if (!(mc.flags & MOVE_FILE)) 4443 return NULL; 4444 4445 mapping = vma->vm_file->f_mapping; 4446 pgoff = linear_page_index(vma, addr); 4447 4448 /* page is moved even if it's not RSS of this task(page-faulted). */ 4449 #ifdef CONFIG_SWAP 4450 /* shmem/tmpfs may report page out on swap: account for that too. */ 4451 if (shmem_mapping(mapping)) { 4452 page = find_get_entry(mapping, pgoff); 4453 if (radix_tree_exceptional_entry(page)) { 4454 swp_entry_t swp = radix_to_swp_entry(page); 4455 if (do_memsw_account()) 4456 *entry = swp; 4457 page = find_get_page(swap_address_space(swp), 4458 swp_offset(swp)); 4459 } 4460 } else 4461 page = find_get_page(mapping, pgoff); 4462 #else 4463 page = find_get_page(mapping, pgoff); 4464 #endif 4465 return page; 4466 } 4467 4468 /** 4469 * mem_cgroup_move_account - move account of the page 4470 * @page: the page 4471 * @compound: charge the page as compound or small page 4472 * @from: mem_cgroup which the page is moved from. 4473 * @to: mem_cgroup which the page is moved to. @from != @to. 4474 * 4475 * The caller must make sure the page is not on LRU (isolate_page() is useful.) 4476 * 4477 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" 4478 * from old cgroup. 4479 */ 4480 static int mem_cgroup_move_account(struct page *page, 4481 bool compound, 4482 struct mem_cgroup *from, 4483 struct mem_cgroup *to) 4484 { 4485 unsigned long flags; 4486 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 4487 int ret; 4488 bool anon; 4489 4490 VM_BUG_ON(from == to); 4491 VM_BUG_ON_PAGE(PageLRU(page), page); 4492 VM_BUG_ON(compound && !PageTransHuge(page)); 4493 4494 /* 4495 * Prevent mem_cgroup_migrate() from looking at 4496 * page->mem_cgroup of its source page while we change it. 4497 */ 4498 ret = -EBUSY; 4499 if (!trylock_page(page)) 4500 goto out; 4501 4502 ret = -EINVAL; 4503 if (page->mem_cgroup != from) 4504 goto out_unlock; 4505 4506 anon = PageAnon(page); 4507 4508 spin_lock_irqsave(&from->move_lock, flags); 4509 4510 if (!anon && page_mapped(page)) { 4511 __mod_memcg_state(from, NR_FILE_MAPPED, -nr_pages); 4512 __mod_memcg_state(to, NR_FILE_MAPPED, nr_pages); 4513 } 4514 4515 /* 4516 * move_lock grabbed above and caller set from->moving_account, so 4517 * mod_memcg_page_state will serialize updates to PageDirty. 4518 * So mapping should be stable for dirty pages. 4519 */ 4520 if (!anon && PageDirty(page)) { 4521 struct address_space *mapping = page_mapping(page); 4522 4523 if (mapping_cap_account_dirty(mapping)) { 4524 __mod_memcg_state(from, NR_FILE_DIRTY, -nr_pages); 4525 __mod_memcg_state(to, NR_FILE_DIRTY, nr_pages); 4526 } 4527 } 4528 4529 if (PageWriteback(page)) { 4530 __mod_memcg_state(from, NR_WRITEBACK, -nr_pages); 4531 __mod_memcg_state(to, NR_WRITEBACK, nr_pages); 4532 } 4533 4534 /* 4535 * It is safe to change page->mem_cgroup here because the page 4536 * is referenced, charged, and isolated - we can't race with 4537 * uncharging, charging, migration, or LRU putback. 4538 */ 4539 4540 /* caller should have done css_get */ 4541 page->mem_cgroup = to; 4542 spin_unlock_irqrestore(&from->move_lock, flags); 4543 4544 ret = 0; 4545 4546 local_irq_disable(); 4547 mem_cgroup_charge_statistics(to, page, compound, nr_pages); 4548 memcg_check_events(to, page); 4549 mem_cgroup_charge_statistics(from, page, compound, -nr_pages); 4550 memcg_check_events(from, page); 4551 local_irq_enable(); 4552 out_unlock: 4553 unlock_page(page); 4554 out: 4555 return ret; 4556 } 4557 4558 /** 4559 * get_mctgt_type - get target type of moving charge 4560 * @vma: the vma the pte to be checked belongs 4561 * @addr: the address corresponding to the pte to be checked 4562 * @ptent: the pte to be checked 4563 * @target: the pointer the target page or swap ent will be stored(can be NULL) 4564 * 4565 * Returns 4566 * 0(MC_TARGET_NONE): if the pte is not a target for move charge. 4567 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for 4568 * move charge. if @target is not NULL, the page is stored in target->page 4569 * with extra refcnt got(Callers should handle it). 4570 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a 4571 * target for charge migration. if @target is not NULL, the entry is stored 4572 * in target->ent. 4573 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PUBLIC 4574 * or MEMORY_DEVICE_PRIVATE (so ZONE_DEVICE page and thus not on the lru). 4575 * For now we such page is charge like a regular page would be as for all 4576 * intent and purposes it is just special memory taking the place of a 4577 * regular page. 4578 * 4579 * See Documentations/vm/hmm.txt and include/linux/hmm.h 4580 * 4581 * Called with pte lock held. 4582 */ 4583 4584 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, 4585 unsigned long addr, pte_t ptent, union mc_target *target) 4586 { 4587 struct page *page = NULL; 4588 enum mc_target_type ret = MC_TARGET_NONE; 4589 swp_entry_t ent = { .val = 0 }; 4590 4591 if (pte_present(ptent)) 4592 page = mc_handle_present_pte(vma, addr, ptent); 4593 else if (is_swap_pte(ptent)) 4594 page = mc_handle_swap_pte(vma, ptent, &ent); 4595 else if (pte_none(ptent)) 4596 page = mc_handle_file_pte(vma, addr, ptent, &ent); 4597 4598 if (!page && !ent.val) 4599 return ret; 4600 if (page) { 4601 /* 4602 * Do only loose check w/o serialization. 4603 * mem_cgroup_move_account() checks the page is valid or 4604 * not under LRU exclusion. 4605 */ 4606 if (page->mem_cgroup == mc.from) { 4607 ret = MC_TARGET_PAGE; 4608 if (is_device_private_page(page) || 4609 is_device_public_page(page)) 4610 ret = MC_TARGET_DEVICE; 4611 if (target) 4612 target->page = page; 4613 } 4614 if (!ret || !target) 4615 put_page(page); 4616 } 4617 /* 4618 * There is a swap entry and a page doesn't exist or isn't charged. 4619 * But we cannot move a tail-page in a THP. 4620 */ 4621 if (ent.val && !ret && (!page || !PageTransCompound(page)) && 4622 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) { 4623 ret = MC_TARGET_SWAP; 4624 if (target) 4625 target->ent = ent; 4626 } 4627 return ret; 4628 } 4629 4630 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4631 /* 4632 * We don't consider PMD mapped swapping or file mapped pages because THP does 4633 * not support them for now. 4634 * Caller should make sure that pmd_trans_huge(pmd) is true. 4635 */ 4636 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 4637 unsigned long addr, pmd_t pmd, union mc_target *target) 4638 { 4639 struct page *page = NULL; 4640 enum mc_target_type ret = MC_TARGET_NONE; 4641 4642 if (unlikely(is_swap_pmd(pmd))) { 4643 VM_BUG_ON(thp_migration_supported() && 4644 !is_pmd_migration_entry(pmd)); 4645 return ret; 4646 } 4647 page = pmd_page(pmd); 4648 VM_BUG_ON_PAGE(!page || !PageHead(page), page); 4649 if (!(mc.flags & MOVE_ANON)) 4650 return ret; 4651 if (page->mem_cgroup == mc.from) { 4652 ret = MC_TARGET_PAGE; 4653 if (target) { 4654 get_page(page); 4655 target->page = page; 4656 } 4657 } 4658 return ret; 4659 } 4660 #else 4661 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 4662 unsigned long addr, pmd_t pmd, union mc_target *target) 4663 { 4664 return MC_TARGET_NONE; 4665 } 4666 #endif 4667 4668 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 4669 unsigned long addr, unsigned long end, 4670 struct mm_walk *walk) 4671 { 4672 struct vm_area_struct *vma = walk->vma; 4673 pte_t *pte; 4674 spinlock_t *ptl; 4675 4676 ptl = pmd_trans_huge_lock(pmd, vma); 4677 if (ptl) { 4678 /* 4679 * Note their can not be MC_TARGET_DEVICE for now as we do not 4680 * support transparent huge page with MEMORY_DEVICE_PUBLIC or 4681 * MEMORY_DEVICE_PRIVATE but this might change. 4682 */ 4683 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) 4684 mc.precharge += HPAGE_PMD_NR; 4685 spin_unlock(ptl); 4686 return 0; 4687 } 4688 4689 if (pmd_trans_unstable(pmd)) 4690 return 0; 4691 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 4692 for (; addr != end; pte++, addr += PAGE_SIZE) 4693 if (get_mctgt_type(vma, addr, *pte, NULL)) 4694 mc.precharge++; /* increment precharge temporarily */ 4695 pte_unmap_unlock(pte - 1, ptl); 4696 cond_resched(); 4697 4698 return 0; 4699 } 4700 4701 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 4702 { 4703 unsigned long precharge; 4704 4705 struct mm_walk mem_cgroup_count_precharge_walk = { 4706 .pmd_entry = mem_cgroup_count_precharge_pte_range, 4707 .mm = mm, 4708 }; 4709 down_read(&mm->mmap_sem); 4710 walk_page_range(0, mm->highest_vm_end, 4711 &mem_cgroup_count_precharge_walk); 4712 up_read(&mm->mmap_sem); 4713 4714 precharge = mc.precharge; 4715 mc.precharge = 0; 4716 4717 return precharge; 4718 } 4719 4720 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 4721 { 4722 unsigned long precharge = mem_cgroup_count_precharge(mm); 4723 4724 VM_BUG_ON(mc.moving_task); 4725 mc.moving_task = current; 4726 return mem_cgroup_do_precharge(precharge); 4727 } 4728 4729 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 4730 static void __mem_cgroup_clear_mc(void) 4731 { 4732 struct mem_cgroup *from = mc.from; 4733 struct mem_cgroup *to = mc.to; 4734 4735 /* we must uncharge all the leftover precharges from mc.to */ 4736 if (mc.precharge) { 4737 cancel_charge(mc.to, mc.precharge); 4738 mc.precharge = 0; 4739 } 4740 /* 4741 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 4742 * we must uncharge here. 4743 */ 4744 if (mc.moved_charge) { 4745 cancel_charge(mc.from, mc.moved_charge); 4746 mc.moved_charge = 0; 4747 } 4748 /* we must fixup refcnts and charges */ 4749 if (mc.moved_swap) { 4750 /* uncharge swap account from the old cgroup */ 4751 if (!mem_cgroup_is_root(mc.from)) 4752 page_counter_uncharge(&mc.from->memsw, mc.moved_swap); 4753 4754 mem_cgroup_id_put_many(mc.from, mc.moved_swap); 4755 4756 /* 4757 * we charged both to->memory and to->memsw, so we 4758 * should uncharge to->memory. 4759 */ 4760 if (!mem_cgroup_is_root(mc.to)) 4761 page_counter_uncharge(&mc.to->memory, mc.moved_swap); 4762 4763 mem_cgroup_id_get_many(mc.to, mc.moved_swap); 4764 css_put_many(&mc.to->css, mc.moved_swap); 4765 4766 mc.moved_swap = 0; 4767 } 4768 memcg_oom_recover(from); 4769 memcg_oom_recover(to); 4770 wake_up_all(&mc.waitq); 4771 } 4772 4773 static void mem_cgroup_clear_mc(void) 4774 { 4775 struct mm_struct *mm = mc.mm; 4776 4777 /* 4778 * we must clear moving_task before waking up waiters at the end of 4779 * task migration. 4780 */ 4781 mc.moving_task = NULL; 4782 __mem_cgroup_clear_mc(); 4783 spin_lock(&mc.lock); 4784 mc.from = NULL; 4785 mc.to = NULL; 4786 mc.mm = NULL; 4787 spin_unlock(&mc.lock); 4788 4789 mmput(mm); 4790 } 4791 4792 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 4793 { 4794 struct cgroup_subsys_state *css; 4795 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */ 4796 struct mem_cgroup *from; 4797 struct task_struct *leader, *p; 4798 struct mm_struct *mm; 4799 unsigned long move_flags; 4800 int ret = 0; 4801 4802 /* charge immigration isn't supported on the default hierarchy */ 4803 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 4804 return 0; 4805 4806 /* 4807 * Multi-process migrations only happen on the default hierarchy 4808 * where charge immigration is not used. Perform charge 4809 * immigration if @tset contains a leader and whine if there are 4810 * multiple. 4811 */ 4812 p = NULL; 4813 cgroup_taskset_for_each_leader(leader, css, tset) { 4814 WARN_ON_ONCE(p); 4815 p = leader; 4816 memcg = mem_cgroup_from_css(css); 4817 } 4818 if (!p) 4819 return 0; 4820 4821 /* 4822 * We are now commited to this value whatever it is. Changes in this 4823 * tunable will only affect upcoming migrations, not the current one. 4824 * So we need to save it, and keep it going. 4825 */ 4826 move_flags = READ_ONCE(memcg->move_charge_at_immigrate); 4827 if (!move_flags) 4828 return 0; 4829 4830 from = mem_cgroup_from_task(p); 4831 4832 VM_BUG_ON(from == memcg); 4833 4834 mm = get_task_mm(p); 4835 if (!mm) 4836 return 0; 4837 /* We move charges only when we move a owner of the mm */ 4838 if (mm->owner == p) { 4839 VM_BUG_ON(mc.from); 4840 VM_BUG_ON(mc.to); 4841 VM_BUG_ON(mc.precharge); 4842 VM_BUG_ON(mc.moved_charge); 4843 VM_BUG_ON(mc.moved_swap); 4844 4845 spin_lock(&mc.lock); 4846 mc.mm = mm; 4847 mc.from = from; 4848 mc.to = memcg; 4849 mc.flags = move_flags; 4850 spin_unlock(&mc.lock); 4851 /* We set mc.moving_task later */ 4852 4853 ret = mem_cgroup_precharge_mc(mm); 4854 if (ret) 4855 mem_cgroup_clear_mc(); 4856 } else { 4857 mmput(mm); 4858 } 4859 return ret; 4860 } 4861 4862 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 4863 { 4864 if (mc.to) 4865 mem_cgroup_clear_mc(); 4866 } 4867 4868 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 4869 unsigned long addr, unsigned long end, 4870 struct mm_walk *walk) 4871 { 4872 int ret = 0; 4873 struct vm_area_struct *vma = walk->vma; 4874 pte_t *pte; 4875 spinlock_t *ptl; 4876 enum mc_target_type target_type; 4877 union mc_target target; 4878 struct page *page; 4879 4880 ptl = pmd_trans_huge_lock(pmd, vma); 4881 if (ptl) { 4882 if (mc.precharge < HPAGE_PMD_NR) { 4883 spin_unlock(ptl); 4884 return 0; 4885 } 4886 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); 4887 if (target_type == MC_TARGET_PAGE) { 4888 page = target.page; 4889 if (!isolate_lru_page(page)) { 4890 if (!mem_cgroup_move_account(page, true, 4891 mc.from, mc.to)) { 4892 mc.precharge -= HPAGE_PMD_NR; 4893 mc.moved_charge += HPAGE_PMD_NR; 4894 } 4895 putback_lru_page(page); 4896 } 4897 put_page(page); 4898 } else if (target_type == MC_TARGET_DEVICE) { 4899 page = target.page; 4900 if (!mem_cgroup_move_account(page, true, 4901 mc.from, mc.to)) { 4902 mc.precharge -= HPAGE_PMD_NR; 4903 mc.moved_charge += HPAGE_PMD_NR; 4904 } 4905 put_page(page); 4906 } 4907 spin_unlock(ptl); 4908 return 0; 4909 } 4910 4911 if (pmd_trans_unstable(pmd)) 4912 return 0; 4913 retry: 4914 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 4915 for (; addr != end; addr += PAGE_SIZE) { 4916 pte_t ptent = *(pte++); 4917 bool device = false; 4918 swp_entry_t ent; 4919 4920 if (!mc.precharge) 4921 break; 4922 4923 switch (get_mctgt_type(vma, addr, ptent, &target)) { 4924 case MC_TARGET_DEVICE: 4925 device = true; 4926 /* fall through */ 4927 case MC_TARGET_PAGE: 4928 page = target.page; 4929 /* 4930 * We can have a part of the split pmd here. Moving it 4931 * can be done but it would be too convoluted so simply 4932 * ignore such a partial THP and keep it in original 4933 * memcg. There should be somebody mapping the head. 4934 */ 4935 if (PageTransCompound(page)) 4936 goto put; 4937 if (!device && isolate_lru_page(page)) 4938 goto put; 4939 if (!mem_cgroup_move_account(page, false, 4940 mc.from, mc.to)) { 4941 mc.precharge--; 4942 /* we uncharge from mc.from later. */ 4943 mc.moved_charge++; 4944 } 4945 if (!device) 4946 putback_lru_page(page); 4947 put: /* get_mctgt_type() gets the page */ 4948 put_page(page); 4949 break; 4950 case MC_TARGET_SWAP: 4951 ent = target.ent; 4952 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { 4953 mc.precharge--; 4954 /* we fixup refcnts and charges later. */ 4955 mc.moved_swap++; 4956 } 4957 break; 4958 default: 4959 break; 4960 } 4961 } 4962 pte_unmap_unlock(pte - 1, ptl); 4963 cond_resched(); 4964 4965 if (addr != end) { 4966 /* 4967 * We have consumed all precharges we got in can_attach(). 4968 * We try charge one by one, but don't do any additional 4969 * charges to mc.to if we have failed in charge once in attach() 4970 * phase. 4971 */ 4972 ret = mem_cgroup_do_precharge(1); 4973 if (!ret) 4974 goto retry; 4975 } 4976 4977 return ret; 4978 } 4979 4980 static void mem_cgroup_move_charge(void) 4981 { 4982 struct mm_walk mem_cgroup_move_charge_walk = { 4983 .pmd_entry = mem_cgroup_move_charge_pte_range, 4984 .mm = mc.mm, 4985 }; 4986 4987 lru_add_drain_all(); 4988 /* 4989 * Signal lock_page_memcg() to take the memcg's move_lock 4990 * while we're moving its pages to another memcg. Then wait 4991 * for already started RCU-only updates to finish. 4992 */ 4993 atomic_inc(&mc.from->moving_account); 4994 synchronize_rcu(); 4995 retry: 4996 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) { 4997 /* 4998 * Someone who are holding the mmap_sem might be waiting in 4999 * waitq. So we cancel all extra charges, wake up all waiters, 5000 * and retry. Because we cancel precharges, we might not be able 5001 * to move enough charges, but moving charge is a best-effort 5002 * feature anyway, so it wouldn't be a big problem. 5003 */ 5004 __mem_cgroup_clear_mc(); 5005 cond_resched(); 5006 goto retry; 5007 } 5008 /* 5009 * When we have consumed all precharges and failed in doing 5010 * additional charge, the page walk just aborts. 5011 */ 5012 walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk); 5013 5014 up_read(&mc.mm->mmap_sem); 5015 atomic_dec(&mc.from->moving_account); 5016 } 5017 5018 static void mem_cgroup_move_task(void) 5019 { 5020 if (mc.to) { 5021 mem_cgroup_move_charge(); 5022 mem_cgroup_clear_mc(); 5023 } 5024 } 5025 #else /* !CONFIG_MMU */ 5026 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 5027 { 5028 return 0; 5029 } 5030 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 5031 { 5032 } 5033 static void mem_cgroup_move_task(void) 5034 { 5035 } 5036 #endif 5037 5038 /* 5039 * Cgroup retains root cgroups across [un]mount cycles making it necessary 5040 * to verify whether we're attached to the default hierarchy on each mount 5041 * attempt. 5042 */ 5043 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css) 5044 { 5045 /* 5046 * use_hierarchy is forced on the default hierarchy. cgroup core 5047 * guarantees that @root doesn't have any children, so turning it 5048 * on for the root memcg is enough. 5049 */ 5050 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5051 root_mem_cgroup->use_hierarchy = true; 5052 else 5053 root_mem_cgroup->use_hierarchy = false; 5054 } 5055 5056 static u64 memory_current_read(struct cgroup_subsys_state *css, 5057 struct cftype *cft) 5058 { 5059 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5060 5061 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; 5062 } 5063 5064 static int memory_low_show(struct seq_file *m, void *v) 5065 { 5066 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5067 unsigned long low = READ_ONCE(memcg->low); 5068 5069 if (low == PAGE_COUNTER_MAX) 5070 seq_puts(m, "max\n"); 5071 else 5072 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE); 5073 5074 return 0; 5075 } 5076 5077 static ssize_t memory_low_write(struct kernfs_open_file *of, 5078 char *buf, size_t nbytes, loff_t off) 5079 { 5080 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5081 unsigned long low; 5082 int err; 5083 5084 buf = strstrip(buf); 5085 err = page_counter_memparse(buf, "max", &low); 5086 if (err) 5087 return err; 5088 5089 memcg->low = low; 5090 5091 return nbytes; 5092 } 5093 5094 static int memory_high_show(struct seq_file *m, void *v) 5095 { 5096 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5097 unsigned long high = READ_ONCE(memcg->high); 5098 5099 if (high == PAGE_COUNTER_MAX) 5100 seq_puts(m, "max\n"); 5101 else 5102 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE); 5103 5104 return 0; 5105 } 5106 5107 static ssize_t memory_high_write(struct kernfs_open_file *of, 5108 char *buf, size_t nbytes, loff_t off) 5109 { 5110 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5111 unsigned long nr_pages; 5112 unsigned long high; 5113 int err; 5114 5115 buf = strstrip(buf); 5116 err = page_counter_memparse(buf, "max", &high); 5117 if (err) 5118 return err; 5119 5120 memcg->high = high; 5121 5122 nr_pages = page_counter_read(&memcg->memory); 5123 if (nr_pages > high) 5124 try_to_free_mem_cgroup_pages(memcg, nr_pages - high, 5125 GFP_KERNEL, true); 5126 5127 memcg_wb_domain_size_changed(memcg); 5128 return nbytes; 5129 } 5130 5131 static int memory_max_show(struct seq_file *m, void *v) 5132 { 5133 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5134 unsigned long max = READ_ONCE(memcg->memory.limit); 5135 5136 if (max == PAGE_COUNTER_MAX) 5137 seq_puts(m, "max\n"); 5138 else 5139 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE); 5140 5141 return 0; 5142 } 5143 5144 static ssize_t memory_max_write(struct kernfs_open_file *of, 5145 char *buf, size_t nbytes, loff_t off) 5146 { 5147 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5148 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES; 5149 bool drained = false; 5150 unsigned long max; 5151 int err; 5152 5153 buf = strstrip(buf); 5154 err = page_counter_memparse(buf, "max", &max); 5155 if (err) 5156 return err; 5157 5158 xchg(&memcg->memory.limit, max); 5159 5160 for (;;) { 5161 unsigned long nr_pages = page_counter_read(&memcg->memory); 5162 5163 if (nr_pages <= max) 5164 break; 5165 5166 if (signal_pending(current)) { 5167 err = -EINTR; 5168 break; 5169 } 5170 5171 if (!drained) { 5172 drain_all_stock(memcg); 5173 drained = true; 5174 continue; 5175 } 5176 5177 if (nr_reclaims) { 5178 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max, 5179 GFP_KERNEL, true)) 5180 nr_reclaims--; 5181 continue; 5182 } 5183 5184 memcg_memory_event(memcg, MEMCG_OOM); 5185 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0)) 5186 break; 5187 } 5188 5189 memcg_wb_domain_size_changed(memcg); 5190 return nbytes; 5191 } 5192 5193 static int memory_events_show(struct seq_file *m, void *v) 5194 { 5195 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5196 5197 seq_printf(m, "low %lu\n", 5198 atomic_long_read(&memcg->memory_events[MEMCG_LOW])); 5199 seq_printf(m, "high %lu\n", 5200 atomic_long_read(&memcg->memory_events[MEMCG_HIGH])); 5201 seq_printf(m, "max %lu\n", 5202 atomic_long_read(&memcg->memory_events[MEMCG_MAX])); 5203 seq_printf(m, "oom %lu\n", 5204 atomic_long_read(&memcg->memory_events[MEMCG_OOM])); 5205 seq_printf(m, "oom_kill %lu\n", memcg_sum_events(memcg, OOM_KILL)); 5206 5207 return 0; 5208 } 5209 5210 static int memory_stat_show(struct seq_file *m, void *v) 5211 { 5212 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5213 unsigned long stat[MEMCG_NR_STAT]; 5214 unsigned long events[NR_VM_EVENT_ITEMS]; 5215 int i; 5216 5217 /* 5218 * Provide statistics on the state of the memory subsystem as 5219 * well as cumulative event counters that show past behavior. 5220 * 5221 * This list is ordered following a combination of these gradients: 5222 * 1) generic big picture -> specifics and details 5223 * 2) reflecting userspace activity -> reflecting kernel heuristics 5224 * 5225 * Current memory state: 5226 */ 5227 5228 tree_stat(memcg, stat); 5229 tree_events(memcg, events); 5230 5231 seq_printf(m, "anon %llu\n", 5232 (u64)stat[MEMCG_RSS] * PAGE_SIZE); 5233 seq_printf(m, "file %llu\n", 5234 (u64)stat[MEMCG_CACHE] * PAGE_SIZE); 5235 seq_printf(m, "kernel_stack %llu\n", 5236 (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024); 5237 seq_printf(m, "slab %llu\n", 5238 (u64)(stat[NR_SLAB_RECLAIMABLE] + 5239 stat[NR_SLAB_UNRECLAIMABLE]) * PAGE_SIZE); 5240 seq_printf(m, "sock %llu\n", 5241 (u64)stat[MEMCG_SOCK] * PAGE_SIZE); 5242 5243 seq_printf(m, "shmem %llu\n", 5244 (u64)stat[NR_SHMEM] * PAGE_SIZE); 5245 seq_printf(m, "file_mapped %llu\n", 5246 (u64)stat[NR_FILE_MAPPED] * PAGE_SIZE); 5247 seq_printf(m, "file_dirty %llu\n", 5248 (u64)stat[NR_FILE_DIRTY] * PAGE_SIZE); 5249 seq_printf(m, "file_writeback %llu\n", 5250 (u64)stat[NR_WRITEBACK] * PAGE_SIZE); 5251 5252 for (i = 0; i < NR_LRU_LISTS; i++) { 5253 struct mem_cgroup *mi; 5254 unsigned long val = 0; 5255 5256 for_each_mem_cgroup_tree(mi, memcg) 5257 val += mem_cgroup_nr_lru_pages(mi, BIT(i)); 5258 seq_printf(m, "%s %llu\n", 5259 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE); 5260 } 5261 5262 seq_printf(m, "slab_reclaimable %llu\n", 5263 (u64)stat[NR_SLAB_RECLAIMABLE] * PAGE_SIZE); 5264 seq_printf(m, "slab_unreclaimable %llu\n", 5265 (u64)stat[NR_SLAB_UNRECLAIMABLE] * PAGE_SIZE); 5266 5267 /* Accumulated memory events */ 5268 5269 seq_printf(m, "pgfault %lu\n", events[PGFAULT]); 5270 seq_printf(m, "pgmajfault %lu\n", events[PGMAJFAULT]); 5271 5272 seq_printf(m, "pgrefill %lu\n", events[PGREFILL]); 5273 seq_printf(m, "pgscan %lu\n", events[PGSCAN_KSWAPD] + 5274 events[PGSCAN_DIRECT]); 5275 seq_printf(m, "pgsteal %lu\n", events[PGSTEAL_KSWAPD] + 5276 events[PGSTEAL_DIRECT]); 5277 seq_printf(m, "pgactivate %lu\n", events[PGACTIVATE]); 5278 seq_printf(m, "pgdeactivate %lu\n", events[PGDEACTIVATE]); 5279 seq_printf(m, "pglazyfree %lu\n", events[PGLAZYFREE]); 5280 seq_printf(m, "pglazyfreed %lu\n", events[PGLAZYFREED]); 5281 5282 seq_printf(m, "workingset_refault %lu\n", 5283 stat[WORKINGSET_REFAULT]); 5284 seq_printf(m, "workingset_activate %lu\n", 5285 stat[WORKINGSET_ACTIVATE]); 5286 seq_printf(m, "workingset_nodereclaim %lu\n", 5287 stat[WORKINGSET_NODERECLAIM]); 5288 5289 return 0; 5290 } 5291 5292 static struct cftype memory_files[] = { 5293 { 5294 .name = "current", 5295 .flags = CFTYPE_NOT_ON_ROOT, 5296 .read_u64 = memory_current_read, 5297 }, 5298 { 5299 .name = "low", 5300 .flags = CFTYPE_NOT_ON_ROOT, 5301 .seq_show = memory_low_show, 5302 .write = memory_low_write, 5303 }, 5304 { 5305 .name = "high", 5306 .flags = CFTYPE_NOT_ON_ROOT, 5307 .seq_show = memory_high_show, 5308 .write = memory_high_write, 5309 }, 5310 { 5311 .name = "max", 5312 .flags = CFTYPE_NOT_ON_ROOT, 5313 .seq_show = memory_max_show, 5314 .write = memory_max_write, 5315 }, 5316 { 5317 .name = "events", 5318 .flags = CFTYPE_NOT_ON_ROOT, 5319 .file_offset = offsetof(struct mem_cgroup, events_file), 5320 .seq_show = memory_events_show, 5321 }, 5322 { 5323 .name = "stat", 5324 .flags = CFTYPE_NOT_ON_ROOT, 5325 .seq_show = memory_stat_show, 5326 }, 5327 { } /* terminate */ 5328 }; 5329 5330 struct cgroup_subsys memory_cgrp_subsys = { 5331 .css_alloc = mem_cgroup_css_alloc, 5332 .css_online = mem_cgroup_css_online, 5333 .css_offline = mem_cgroup_css_offline, 5334 .css_released = mem_cgroup_css_released, 5335 .css_free = mem_cgroup_css_free, 5336 .css_reset = mem_cgroup_css_reset, 5337 .can_attach = mem_cgroup_can_attach, 5338 .cancel_attach = mem_cgroup_cancel_attach, 5339 .post_attach = mem_cgroup_move_task, 5340 .bind = mem_cgroup_bind, 5341 .dfl_cftypes = memory_files, 5342 .legacy_cftypes = mem_cgroup_legacy_files, 5343 .early_init = 0, 5344 }; 5345 5346 /** 5347 * mem_cgroup_low - check if memory consumption is below the normal range 5348 * @root: the top ancestor of the sub-tree being checked 5349 * @memcg: the memory cgroup to check 5350 * 5351 * Returns %true if memory consumption of @memcg, and that of all 5352 * ancestors up to (but not including) @root, is below the normal range. 5353 * 5354 * @root is exclusive; it is never low when looked at directly and isn't 5355 * checked when traversing the hierarchy. 5356 * 5357 * Excluding @root enables using memory.low to prioritize memory usage 5358 * between cgroups within a subtree of the hierarchy that is limited by 5359 * memory.high or memory.max. 5360 * 5361 * For example, given cgroup A with children B and C: 5362 * 5363 * A 5364 * / \ 5365 * B C 5366 * 5367 * and 5368 * 5369 * 1. A/memory.current > A/memory.high 5370 * 2. A/B/memory.current < A/B/memory.low 5371 * 3. A/C/memory.current >= A/C/memory.low 5372 * 5373 * As 'A' is high, i.e. triggers reclaim from 'A', and 'B' is low, we 5374 * should reclaim from 'C' until 'A' is no longer high or until we can 5375 * no longer reclaim from 'C'. If 'A', i.e. @root, isn't excluded by 5376 * mem_cgroup_low when reclaming from 'A', then 'B' won't be considered 5377 * low and we will reclaim indiscriminately from both 'B' and 'C'. 5378 */ 5379 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg) 5380 { 5381 if (mem_cgroup_disabled()) 5382 return false; 5383 5384 if (!root) 5385 root = root_mem_cgroup; 5386 if (memcg == root) 5387 return false; 5388 5389 for (; memcg != root; memcg = parent_mem_cgroup(memcg)) { 5390 if (page_counter_read(&memcg->memory) >= memcg->low) 5391 return false; 5392 } 5393 5394 return true; 5395 } 5396 5397 /** 5398 * mem_cgroup_try_charge - try charging a page 5399 * @page: page to charge 5400 * @mm: mm context of the victim 5401 * @gfp_mask: reclaim mode 5402 * @memcgp: charged memcg return 5403 * @compound: charge the page as compound or small page 5404 * 5405 * Try to charge @page to the memcg that @mm belongs to, reclaiming 5406 * pages according to @gfp_mask if necessary. 5407 * 5408 * Returns 0 on success, with *@memcgp pointing to the charged memcg. 5409 * Otherwise, an error code is returned. 5410 * 5411 * After page->mapping has been set up, the caller must finalize the 5412 * charge with mem_cgroup_commit_charge(). Or abort the transaction 5413 * with mem_cgroup_cancel_charge() in case page instantiation fails. 5414 */ 5415 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, 5416 gfp_t gfp_mask, struct mem_cgroup **memcgp, 5417 bool compound) 5418 { 5419 struct mem_cgroup *memcg = NULL; 5420 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 5421 int ret = 0; 5422 5423 if (mem_cgroup_disabled()) 5424 goto out; 5425 5426 if (PageSwapCache(page)) { 5427 /* 5428 * Every swap fault against a single page tries to charge the 5429 * page, bail as early as possible. shmem_unuse() encounters 5430 * already charged pages, too. The USED bit is protected by 5431 * the page lock, which serializes swap cache removal, which 5432 * in turn serializes uncharging. 5433 */ 5434 VM_BUG_ON_PAGE(!PageLocked(page), page); 5435 if (compound_head(page)->mem_cgroup) 5436 goto out; 5437 5438 if (do_swap_account) { 5439 swp_entry_t ent = { .val = page_private(page), }; 5440 unsigned short id = lookup_swap_cgroup_id(ent); 5441 5442 rcu_read_lock(); 5443 memcg = mem_cgroup_from_id(id); 5444 if (memcg && !css_tryget_online(&memcg->css)) 5445 memcg = NULL; 5446 rcu_read_unlock(); 5447 } 5448 } 5449 5450 if (!memcg) 5451 memcg = get_mem_cgroup_from_mm(mm); 5452 5453 ret = try_charge(memcg, gfp_mask, nr_pages); 5454 5455 css_put(&memcg->css); 5456 out: 5457 *memcgp = memcg; 5458 return ret; 5459 } 5460 5461 /** 5462 * mem_cgroup_commit_charge - commit a page charge 5463 * @page: page to charge 5464 * @memcg: memcg to charge the page to 5465 * @lrucare: page might be on LRU already 5466 * @compound: charge the page as compound or small page 5467 * 5468 * Finalize a charge transaction started by mem_cgroup_try_charge(), 5469 * after page->mapping has been set up. This must happen atomically 5470 * as part of the page instantiation, i.e. under the page table lock 5471 * for anonymous pages, under the page lock for page and swap cache. 5472 * 5473 * In addition, the page must not be on the LRU during the commit, to 5474 * prevent racing with task migration. If it might be, use @lrucare. 5475 * 5476 * Use mem_cgroup_cancel_charge() to cancel the transaction instead. 5477 */ 5478 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg, 5479 bool lrucare, bool compound) 5480 { 5481 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 5482 5483 VM_BUG_ON_PAGE(!page->mapping, page); 5484 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page); 5485 5486 if (mem_cgroup_disabled()) 5487 return; 5488 /* 5489 * Swap faults will attempt to charge the same page multiple 5490 * times. But reuse_swap_page() might have removed the page 5491 * from swapcache already, so we can't check PageSwapCache(). 5492 */ 5493 if (!memcg) 5494 return; 5495 5496 commit_charge(page, memcg, lrucare); 5497 5498 local_irq_disable(); 5499 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages); 5500 memcg_check_events(memcg, page); 5501 local_irq_enable(); 5502 5503 if (do_memsw_account() && PageSwapCache(page)) { 5504 swp_entry_t entry = { .val = page_private(page) }; 5505 /* 5506 * The swap entry might not get freed for a long time, 5507 * let's not wait for it. The page already received a 5508 * memory+swap charge, drop the swap entry duplicate. 5509 */ 5510 mem_cgroup_uncharge_swap(entry, nr_pages); 5511 } 5512 } 5513 5514 /** 5515 * mem_cgroup_cancel_charge - cancel a page charge 5516 * @page: page to charge 5517 * @memcg: memcg to charge the page to 5518 * @compound: charge the page as compound or small page 5519 * 5520 * Cancel a charge transaction started by mem_cgroup_try_charge(). 5521 */ 5522 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg, 5523 bool compound) 5524 { 5525 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 5526 5527 if (mem_cgroup_disabled()) 5528 return; 5529 /* 5530 * Swap faults will attempt to charge the same page multiple 5531 * times. But reuse_swap_page() might have removed the page 5532 * from swapcache already, so we can't check PageSwapCache(). 5533 */ 5534 if (!memcg) 5535 return; 5536 5537 cancel_charge(memcg, nr_pages); 5538 } 5539 5540 struct uncharge_gather { 5541 struct mem_cgroup *memcg; 5542 unsigned long pgpgout; 5543 unsigned long nr_anon; 5544 unsigned long nr_file; 5545 unsigned long nr_kmem; 5546 unsigned long nr_huge; 5547 unsigned long nr_shmem; 5548 struct page *dummy_page; 5549 }; 5550 5551 static inline void uncharge_gather_clear(struct uncharge_gather *ug) 5552 { 5553 memset(ug, 0, sizeof(*ug)); 5554 } 5555 5556 static void uncharge_batch(const struct uncharge_gather *ug) 5557 { 5558 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem; 5559 unsigned long flags; 5560 5561 if (!mem_cgroup_is_root(ug->memcg)) { 5562 page_counter_uncharge(&ug->memcg->memory, nr_pages); 5563 if (do_memsw_account()) 5564 page_counter_uncharge(&ug->memcg->memsw, nr_pages); 5565 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem) 5566 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem); 5567 memcg_oom_recover(ug->memcg); 5568 } 5569 5570 local_irq_save(flags); 5571 __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon); 5572 __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file); 5573 __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge); 5574 __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem); 5575 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout); 5576 __this_cpu_add(ug->memcg->stat_cpu->nr_page_events, nr_pages); 5577 memcg_check_events(ug->memcg, ug->dummy_page); 5578 local_irq_restore(flags); 5579 5580 if (!mem_cgroup_is_root(ug->memcg)) 5581 css_put_many(&ug->memcg->css, nr_pages); 5582 } 5583 5584 static void uncharge_page(struct page *page, struct uncharge_gather *ug) 5585 { 5586 VM_BUG_ON_PAGE(PageLRU(page), page); 5587 VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) && 5588 !PageHWPoison(page) , page); 5589 5590 if (!page->mem_cgroup) 5591 return; 5592 5593 /* 5594 * Nobody should be changing or seriously looking at 5595 * page->mem_cgroup at this point, we have fully 5596 * exclusive access to the page. 5597 */ 5598 5599 if (ug->memcg != page->mem_cgroup) { 5600 if (ug->memcg) { 5601 uncharge_batch(ug); 5602 uncharge_gather_clear(ug); 5603 } 5604 ug->memcg = page->mem_cgroup; 5605 } 5606 5607 if (!PageKmemcg(page)) { 5608 unsigned int nr_pages = 1; 5609 5610 if (PageTransHuge(page)) { 5611 nr_pages <<= compound_order(page); 5612 ug->nr_huge += nr_pages; 5613 } 5614 if (PageAnon(page)) 5615 ug->nr_anon += nr_pages; 5616 else { 5617 ug->nr_file += nr_pages; 5618 if (PageSwapBacked(page)) 5619 ug->nr_shmem += nr_pages; 5620 } 5621 ug->pgpgout++; 5622 } else { 5623 ug->nr_kmem += 1 << compound_order(page); 5624 __ClearPageKmemcg(page); 5625 } 5626 5627 ug->dummy_page = page; 5628 page->mem_cgroup = NULL; 5629 } 5630 5631 static void uncharge_list(struct list_head *page_list) 5632 { 5633 struct uncharge_gather ug; 5634 struct list_head *next; 5635 5636 uncharge_gather_clear(&ug); 5637 5638 /* 5639 * Note that the list can be a single page->lru; hence the 5640 * do-while loop instead of a simple list_for_each_entry(). 5641 */ 5642 next = page_list->next; 5643 do { 5644 struct page *page; 5645 5646 page = list_entry(next, struct page, lru); 5647 next = page->lru.next; 5648 5649 uncharge_page(page, &ug); 5650 } while (next != page_list); 5651 5652 if (ug.memcg) 5653 uncharge_batch(&ug); 5654 } 5655 5656 /** 5657 * mem_cgroup_uncharge - uncharge a page 5658 * @page: page to uncharge 5659 * 5660 * Uncharge a page previously charged with mem_cgroup_try_charge() and 5661 * mem_cgroup_commit_charge(). 5662 */ 5663 void mem_cgroup_uncharge(struct page *page) 5664 { 5665 struct uncharge_gather ug; 5666 5667 if (mem_cgroup_disabled()) 5668 return; 5669 5670 /* Don't touch page->lru of any random page, pre-check: */ 5671 if (!page->mem_cgroup) 5672 return; 5673 5674 uncharge_gather_clear(&ug); 5675 uncharge_page(page, &ug); 5676 uncharge_batch(&ug); 5677 } 5678 5679 /** 5680 * mem_cgroup_uncharge_list - uncharge a list of page 5681 * @page_list: list of pages to uncharge 5682 * 5683 * Uncharge a list of pages previously charged with 5684 * mem_cgroup_try_charge() and mem_cgroup_commit_charge(). 5685 */ 5686 void mem_cgroup_uncharge_list(struct list_head *page_list) 5687 { 5688 if (mem_cgroup_disabled()) 5689 return; 5690 5691 if (!list_empty(page_list)) 5692 uncharge_list(page_list); 5693 } 5694 5695 /** 5696 * mem_cgroup_migrate - charge a page's replacement 5697 * @oldpage: currently circulating page 5698 * @newpage: replacement page 5699 * 5700 * Charge @newpage as a replacement page for @oldpage. @oldpage will 5701 * be uncharged upon free. 5702 * 5703 * Both pages must be locked, @newpage->mapping must be set up. 5704 */ 5705 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage) 5706 { 5707 struct mem_cgroup *memcg; 5708 unsigned int nr_pages; 5709 bool compound; 5710 unsigned long flags; 5711 5712 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage); 5713 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 5714 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage); 5715 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage), 5716 newpage); 5717 5718 if (mem_cgroup_disabled()) 5719 return; 5720 5721 /* Page cache replacement: new page already charged? */ 5722 if (newpage->mem_cgroup) 5723 return; 5724 5725 /* Swapcache readahead pages can get replaced before being charged */ 5726 memcg = oldpage->mem_cgroup; 5727 if (!memcg) 5728 return; 5729 5730 /* Force-charge the new page. The old one will be freed soon */ 5731 compound = PageTransHuge(newpage); 5732 nr_pages = compound ? hpage_nr_pages(newpage) : 1; 5733 5734 page_counter_charge(&memcg->memory, nr_pages); 5735 if (do_memsw_account()) 5736 page_counter_charge(&memcg->memsw, nr_pages); 5737 css_get_many(&memcg->css, nr_pages); 5738 5739 commit_charge(newpage, memcg, false); 5740 5741 local_irq_save(flags); 5742 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages); 5743 memcg_check_events(memcg, newpage); 5744 local_irq_restore(flags); 5745 } 5746 5747 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); 5748 EXPORT_SYMBOL(memcg_sockets_enabled_key); 5749 5750 void mem_cgroup_sk_alloc(struct sock *sk) 5751 { 5752 struct mem_cgroup *memcg; 5753 5754 if (!mem_cgroup_sockets_enabled) 5755 return; 5756 5757 /* 5758 * Socket cloning can throw us here with sk_memcg already 5759 * filled. It won't however, necessarily happen from 5760 * process context. So the test for root memcg given 5761 * the current task's memcg won't help us in this case. 5762 * 5763 * Respecting the original socket's memcg is a better 5764 * decision in this case. 5765 */ 5766 if (sk->sk_memcg) { 5767 css_get(&sk->sk_memcg->css); 5768 return; 5769 } 5770 5771 rcu_read_lock(); 5772 memcg = mem_cgroup_from_task(current); 5773 if (memcg == root_mem_cgroup) 5774 goto out; 5775 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active) 5776 goto out; 5777 if (css_tryget_online(&memcg->css)) 5778 sk->sk_memcg = memcg; 5779 out: 5780 rcu_read_unlock(); 5781 } 5782 5783 void mem_cgroup_sk_free(struct sock *sk) 5784 { 5785 if (sk->sk_memcg) 5786 css_put(&sk->sk_memcg->css); 5787 } 5788 5789 /** 5790 * mem_cgroup_charge_skmem - charge socket memory 5791 * @memcg: memcg to charge 5792 * @nr_pages: number of pages to charge 5793 * 5794 * Charges @nr_pages to @memcg. Returns %true if the charge fit within 5795 * @memcg's configured limit, %false if the charge had to be forced. 5796 */ 5797 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 5798 { 5799 gfp_t gfp_mask = GFP_KERNEL; 5800 5801 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 5802 struct page_counter *fail; 5803 5804 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) { 5805 memcg->tcpmem_pressure = 0; 5806 return true; 5807 } 5808 page_counter_charge(&memcg->tcpmem, nr_pages); 5809 memcg->tcpmem_pressure = 1; 5810 return false; 5811 } 5812 5813 /* Don't block in the packet receive path */ 5814 if (in_softirq()) 5815 gfp_mask = GFP_NOWAIT; 5816 5817 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages); 5818 5819 if (try_charge(memcg, gfp_mask, nr_pages) == 0) 5820 return true; 5821 5822 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages); 5823 return false; 5824 } 5825 5826 /** 5827 * mem_cgroup_uncharge_skmem - uncharge socket memory 5828 * @memcg: memcg to uncharge 5829 * @nr_pages: number of pages to uncharge 5830 */ 5831 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 5832 { 5833 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 5834 page_counter_uncharge(&memcg->tcpmem, nr_pages); 5835 return; 5836 } 5837 5838 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages); 5839 5840 refill_stock(memcg, nr_pages); 5841 } 5842 5843 static int __init cgroup_memory(char *s) 5844 { 5845 char *token; 5846 5847 while ((token = strsep(&s, ",")) != NULL) { 5848 if (!*token) 5849 continue; 5850 if (!strcmp(token, "nosocket")) 5851 cgroup_memory_nosocket = true; 5852 if (!strcmp(token, "nokmem")) 5853 cgroup_memory_nokmem = true; 5854 } 5855 return 0; 5856 } 5857 __setup("cgroup.memory=", cgroup_memory); 5858 5859 /* 5860 * subsys_initcall() for memory controller. 5861 * 5862 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this 5863 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but 5864 * basically everything that doesn't depend on a specific mem_cgroup structure 5865 * should be initialized from here. 5866 */ 5867 static int __init mem_cgroup_init(void) 5868 { 5869 int cpu, node; 5870 5871 #ifndef CONFIG_SLOB 5872 /* 5873 * Kmem cache creation is mostly done with the slab_mutex held, 5874 * so use a workqueue with limited concurrency to avoid stalling 5875 * all worker threads in case lots of cgroups are created and 5876 * destroyed simultaneously. 5877 */ 5878 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1); 5879 BUG_ON(!memcg_kmem_cache_wq); 5880 #endif 5881 5882 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL, 5883 memcg_hotplug_cpu_dead); 5884 5885 for_each_possible_cpu(cpu) 5886 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, 5887 drain_local_stock); 5888 5889 for_each_node(node) { 5890 struct mem_cgroup_tree_per_node *rtpn; 5891 5892 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, 5893 node_online(node) ? node : NUMA_NO_NODE); 5894 5895 rtpn->rb_root = RB_ROOT; 5896 rtpn->rb_rightmost = NULL; 5897 spin_lock_init(&rtpn->lock); 5898 soft_limit_tree.rb_tree_per_node[node] = rtpn; 5899 } 5900 5901 return 0; 5902 } 5903 subsys_initcall(mem_cgroup_init); 5904 5905 #ifdef CONFIG_MEMCG_SWAP 5906 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg) 5907 { 5908 while (!atomic_inc_not_zero(&memcg->id.ref)) { 5909 /* 5910 * The root cgroup cannot be destroyed, so it's refcount must 5911 * always be >= 1. 5912 */ 5913 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) { 5914 VM_BUG_ON(1); 5915 break; 5916 } 5917 memcg = parent_mem_cgroup(memcg); 5918 if (!memcg) 5919 memcg = root_mem_cgroup; 5920 } 5921 return memcg; 5922 } 5923 5924 /** 5925 * mem_cgroup_swapout - transfer a memsw charge to swap 5926 * @page: page whose memsw charge to transfer 5927 * @entry: swap entry to move the charge to 5928 * 5929 * Transfer the memsw charge of @page to @entry. 5930 */ 5931 void mem_cgroup_swapout(struct page *page, swp_entry_t entry) 5932 { 5933 struct mem_cgroup *memcg, *swap_memcg; 5934 unsigned int nr_entries; 5935 unsigned short oldid; 5936 5937 VM_BUG_ON_PAGE(PageLRU(page), page); 5938 VM_BUG_ON_PAGE(page_count(page), page); 5939 5940 if (!do_memsw_account()) 5941 return; 5942 5943 memcg = page->mem_cgroup; 5944 5945 /* Readahead page, never charged */ 5946 if (!memcg) 5947 return; 5948 5949 /* 5950 * In case the memcg owning these pages has been offlined and doesn't 5951 * have an ID allocated to it anymore, charge the closest online 5952 * ancestor for the swap instead and transfer the memory+swap charge. 5953 */ 5954 swap_memcg = mem_cgroup_id_get_online(memcg); 5955 nr_entries = hpage_nr_pages(page); 5956 /* Get references for the tail pages, too */ 5957 if (nr_entries > 1) 5958 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1); 5959 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg), 5960 nr_entries); 5961 VM_BUG_ON_PAGE(oldid, page); 5962 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries); 5963 5964 page->mem_cgroup = NULL; 5965 5966 if (!mem_cgroup_is_root(memcg)) 5967 page_counter_uncharge(&memcg->memory, nr_entries); 5968 5969 if (memcg != swap_memcg) { 5970 if (!mem_cgroup_is_root(swap_memcg)) 5971 page_counter_charge(&swap_memcg->memsw, nr_entries); 5972 page_counter_uncharge(&memcg->memsw, nr_entries); 5973 } 5974 5975 /* 5976 * Interrupts should be disabled here because the caller holds the 5977 * i_pages lock which is taken with interrupts-off. It is 5978 * important here to have the interrupts disabled because it is the 5979 * only synchronisation we have for updating the per-CPU variables. 5980 */ 5981 VM_BUG_ON(!irqs_disabled()); 5982 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page), 5983 -nr_entries); 5984 memcg_check_events(memcg, page); 5985 5986 if (!mem_cgroup_is_root(memcg)) 5987 css_put_many(&memcg->css, nr_entries); 5988 } 5989 5990 /** 5991 * mem_cgroup_try_charge_swap - try charging swap space for a page 5992 * @page: page being added to swap 5993 * @entry: swap entry to charge 5994 * 5995 * Try to charge @page's memcg for the swap space at @entry. 5996 * 5997 * Returns 0 on success, -ENOMEM on failure. 5998 */ 5999 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry) 6000 { 6001 unsigned int nr_pages = hpage_nr_pages(page); 6002 struct page_counter *counter; 6003 struct mem_cgroup *memcg; 6004 unsigned short oldid; 6005 6006 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account) 6007 return 0; 6008 6009 memcg = page->mem_cgroup; 6010 6011 /* Readahead page, never charged */ 6012 if (!memcg) 6013 return 0; 6014 6015 memcg = mem_cgroup_id_get_online(memcg); 6016 6017 if (!mem_cgroup_is_root(memcg) && 6018 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) { 6019 mem_cgroup_id_put(memcg); 6020 return -ENOMEM; 6021 } 6022 6023 /* Get references for the tail pages, too */ 6024 if (nr_pages > 1) 6025 mem_cgroup_id_get_many(memcg, nr_pages - 1); 6026 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages); 6027 VM_BUG_ON_PAGE(oldid, page); 6028 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages); 6029 6030 return 0; 6031 } 6032 6033 /** 6034 * mem_cgroup_uncharge_swap - uncharge swap space 6035 * @entry: swap entry to uncharge 6036 * @nr_pages: the amount of swap space to uncharge 6037 */ 6038 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages) 6039 { 6040 struct mem_cgroup *memcg; 6041 unsigned short id; 6042 6043 if (!do_swap_account) 6044 return; 6045 6046 id = swap_cgroup_record(entry, 0, nr_pages); 6047 rcu_read_lock(); 6048 memcg = mem_cgroup_from_id(id); 6049 if (memcg) { 6050 if (!mem_cgroup_is_root(memcg)) { 6051 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 6052 page_counter_uncharge(&memcg->swap, nr_pages); 6053 else 6054 page_counter_uncharge(&memcg->memsw, nr_pages); 6055 } 6056 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages); 6057 mem_cgroup_id_put_many(memcg, nr_pages); 6058 } 6059 rcu_read_unlock(); 6060 } 6061 6062 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) 6063 { 6064 long nr_swap_pages = get_nr_swap_pages(); 6065 6066 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 6067 return nr_swap_pages; 6068 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) 6069 nr_swap_pages = min_t(long, nr_swap_pages, 6070 READ_ONCE(memcg->swap.limit) - 6071 page_counter_read(&memcg->swap)); 6072 return nr_swap_pages; 6073 } 6074 6075 bool mem_cgroup_swap_full(struct page *page) 6076 { 6077 struct mem_cgroup *memcg; 6078 6079 VM_BUG_ON_PAGE(!PageLocked(page), page); 6080 6081 if (vm_swap_full()) 6082 return true; 6083 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 6084 return false; 6085 6086 memcg = page->mem_cgroup; 6087 if (!memcg) 6088 return false; 6089 6090 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) 6091 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit) 6092 return true; 6093 6094 return false; 6095 } 6096 6097 /* for remember boot option*/ 6098 #ifdef CONFIG_MEMCG_SWAP_ENABLED 6099 static int really_do_swap_account __initdata = 1; 6100 #else 6101 static int really_do_swap_account __initdata; 6102 #endif 6103 6104 static int __init enable_swap_account(char *s) 6105 { 6106 if (!strcmp(s, "1")) 6107 really_do_swap_account = 1; 6108 else if (!strcmp(s, "0")) 6109 really_do_swap_account = 0; 6110 return 1; 6111 } 6112 __setup("swapaccount=", enable_swap_account); 6113 6114 static u64 swap_current_read(struct cgroup_subsys_state *css, 6115 struct cftype *cft) 6116 { 6117 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6118 6119 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; 6120 } 6121 6122 static int swap_max_show(struct seq_file *m, void *v) 6123 { 6124 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 6125 unsigned long max = READ_ONCE(memcg->swap.limit); 6126 6127 if (max == PAGE_COUNTER_MAX) 6128 seq_puts(m, "max\n"); 6129 else 6130 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE); 6131 6132 return 0; 6133 } 6134 6135 static ssize_t swap_max_write(struct kernfs_open_file *of, 6136 char *buf, size_t nbytes, loff_t off) 6137 { 6138 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6139 unsigned long max; 6140 int err; 6141 6142 buf = strstrip(buf); 6143 err = page_counter_memparse(buf, "max", &max); 6144 if (err) 6145 return err; 6146 6147 mutex_lock(&memcg_limit_mutex); 6148 err = page_counter_limit(&memcg->swap, max); 6149 mutex_unlock(&memcg_limit_mutex); 6150 if (err) 6151 return err; 6152 6153 return nbytes; 6154 } 6155 6156 static struct cftype swap_files[] = { 6157 { 6158 .name = "swap.current", 6159 .flags = CFTYPE_NOT_ON_ROOT, 6160 .read_u64 = swap_current_read, 6161 }, 6162 { 6163 .name = "swap.max", 6164 .flags = CFTYPE_NOT_ON_ROOT, 6165 .seq_show = swap_max_show, 6166 .write = swap_max_write, 6167 }, 6168 { } /* terminate */ 6169 }; 6170 6171 static struct cftype memsw_cgroup_files[] = { 6172 { 6173 .name = "memsw.usage_in_bytes", 6174 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 6175 .read_u64 = mem_cgroup_read_u64, 6176 }, 6177 { 6178 .name = "memsw.max_usage_in_bytes", 6179 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 6180 .write = mem_cgroup_reset, 6181 .read_u64 = mem_cgroup_read_u64, 6182 }, 6183 { 6184 .name = "memsw.limit_in_bytes", 6185 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 6186 .write = mem_cgroup_write, 6187 .read_u64 = mem_cgroup_read_u64, 6188 }, 6189 { 6190 .name = "memsw.failcnt", 6191 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 6192 .write = mem_cgroup_reset, 6193 .read_u64 = mem_cgroup_read_u64, 6194 }, 6195 { }, /* terminate */ 6196 }; 6197 6198 static int __init mem_cgroup_swap_init(void) 6199 { 6200 if (!mem_cgroup_disabled() && really_do_swap_account) { 6201 do_swap_account = 1; 6202 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, 6203 swap_files)); 6204 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, 6205 memsw_cgroup_files)); 6206 } 6207 return 0; 6208 } 6209 subsys_initcall(mem_cgroup_swap_init); 6210 6211 #endif /* CONFIG_MEMCG_SWAP */ 6212