1 /* memcontrol.c - Memory Controller 2 * 3 * Copyright IBM Corporation, 2007 4 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 5 * 6 * Copyright 2007 OpenVZ SWsoft Inc 7 * Author: Pavel Emelianov <xemul@openvz.org> 8 * 9 * Memory thresholds 10 * Copyright (C) 2009 Nokia Corporation 11 * Author: Kirill A. Shutemov 12 * 13 * Kernel Memory Controller 14 * Copyright (C) 2012 Parallels Inc. and Google Inc. 15 * Authors: Glauber Costa and Suleiman Souhlal 16 * 17 * Native page reclaim 18 * Charge lifetime sanitation 19 * Lockless page tracking & accounting 20 * Unified hierarchy configuration model 21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner 22 * 23 * This program is free software; you can redistribute it and/or modify 24 * it under the terms of the GNU General Public License as published by 25 * the Free Software Foundation; either version 2 of the License, or 26 * (at your option) any later version. 27 * 28 * This program is distributed in the hope that it will be useful, 29 * but WITHOUT ANY WARRANTY; without even the implied warranty of 30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 31 * GNU General Public License for more details. 32 */ 33 34 #include <linux/page_counter.h> 35 #include <linux/memcontrol.h> 36 #include <linux/cgroup.h> 37 #include <linux/mm.h> 38 #include <linux/sched/mm.h> 39 #include <linux/shmem_fs.h> 40 #include <linux/hugetlb.h> 41 #include <linux/pagemap.h> 42 #include <linux/smp.h> 43 #include <linux/page-flags.h> 44 #include <linux/backing-dev.h> 45 #include <linux/bit_spinlock.h> 46 #include <linux/rcupdate.h> 47 #include <linux/limits.h> 48 #include <linux/export.h> 49 #include <linux/mutex.h> 50 #include <linux/rbtree.h> 51 #include <linux/slab.h> 52 #include <linux/swap.h> 53 #include <linux/swapops.h> 54 #include <linux/spinlock.h> 55 #include <linux/eventfd.h> 56 #include <linux/poll.h> 57 #include <linux/sort.h> 58 #include <linux/fs.h> 59 #include <linux/seq_file.h> 60 #include <linux/vmpressure.h> 61 #include <linux/mm_inline.h> 62 #include <linux/swap_cgroup.h> 63 #include <linux/cpu.h> 64 #include <linux/oom.h> 65 #include <linux/lockdep.h> 66 #include <linux/file.h> 67 #include <linux/tracehook.h> 68 #include "internal.h" 69 #include <net/sock.h> 70 #include <net/ip.h> 71 #include "slab.h" 72 73 #include <linux/uaccess.h> 74 75 #include <trace/events/vmscan.h> 76 77 struct cgroup_subsys memory_cgrp_subsys __read_mostly; 78 EXPORT_SYMBOL(memory_cgrp_subsys); 79 80 struct mem_cgroup *root_mem_cgroup __read_mostly; 81 82 #define MEM_CGROUP_RECLAIM_RETRIES 5 83 84 /* Socket memory accounting disabled? */ 85 static bool cgroup_memory_nosocket; 86 87 /* Kernel memory accounting disabled? */ 88 static bool cgroup_memory_nokmem; 89 90 /* Whether the swap controller is active */ 91 #ifdef CONFIG_MEMCG_SWAP 92 int do_swap_account __read_mostly; 93 #else 94 #define do_swap_account 0 95 #endif 96 97 /* Whether legacy memory+swap accounting is active */ 98 static bool do_memsw_account(void) 99 { 100 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account; 101 } 102 103 static const char *const mem_cgroup_lru_names[] = { 104 "inactive_anon", 105 "active_anon", 106 "inactive_file", 107 "active_file", 108 "unevictable", 109 }; 110 111 #define THRESHOLDS_EVENTS_TARGET 128 112 #define SOFTLIMIT_EVENTS_TARGET 1024 113 #define NUMAINFO_EVENTS_TARGET 1024 114 115 /* 116 * Cgroups above their limits are maintained in a RB-Tree, independent of 117 * their hierarchy representation 118 */ 119 120 struct mem_cgroup_tree_per_node { 121 struct rb_root rb_root; 122 struct rb_node *rb_rightmost; 123 spinlock_t lock; 124 }; 125 126 struct mem_cgroup_tree { 127 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 128 }; 129 130 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 131 132 /* for OOM */ 133 struct mem_cgroup_eventfd_list { 134 struct list_head list; 135 struct eventfd_ctx *eventfd; 136 }; 137 138 /* 139 * cgroup_event represents events which userspace want to receive. 140 */ 141 struct mem_cgroup_event { 142 /* 143 * memcg which the event belongs to. 144 */ 145 struct mem_cgroup *memcg; 146 /* 147 * eventfd to signal userspace about the event. 148 */ 149 struct eventfd_ctx *eventfd; 150 /* 151 * Each of these stored in a list by the cgroup. 152 */ 153 struct list_head list; 154 /* 155 * register_event() callback will be used to add new userspace 156 * waiter for changes related to this event. Use eventfd_signal() 157 * on eventfd to send notification to userspace. 158 */ 159 int (*register_event)(struct mem_cgroup *memcg, 160 struct eventfd_ctx *eventfd, const char *args); 161 /* 162 * unregister_event() callback will be called when userspace closes 163 * the eventfd or on cgroup removing. This callback must be set, 164 * if you want provide notification functionality. 165 */ 166 void (*unregister_event)(struct mem_cgroup *memcg, 167 struct eventfd_ctx *eventfd); 168 /* 169 * All fields below needed to unregister event when 170 * userspace closes eventfd. 171 */ 172 poll_table pt; 173 wait_queue_head_t *wqh; 174 wait_queue_entry_t wait; 175 struct work_struct remove; 176 }; 177 178 static void mem_cgroup_threshold(struct mem_cgroup *memcg); 179 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); 180 181 /* Stuffs for move charges at task migration. */ 182 /* 183 * Types of charges to be moved. 184 */ 185 #define MOVE_ANON 0x1U 186 #define MOVE_FILE 0x2U 187 #define MOVE_MASK (MOVE_ANON | MOVE_FILE) 188 189 /* "mc" and its members are protected by cgroup_mutex */ 190 static struct move_charge_struct { 191 spinlock_t lock; /* for from, to */ 192 struct mm_struct *mm; 193 struct mem_cgroup *from; 194 struct mem_cgroup *to; 195 unsigned long flags; 196 unsigned long precharge; 197 unsigned long moved_charge; 198 unsigned long moved_swap; 199 struct task_struct *moving_task; /* a task moving charges */ 200 wait_queue_head_t waitq; /* a waitq for other context */ 201 } mc = { 202 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 203 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 204 }; 205 206 /* 207 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft 208 * limit reclaim to prevent infinite loops, if they ever occur. 209 */ 210 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 211 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 212 213 enum charge_type { 214 MEM_CGROUP_CHARGE_TYPE_CACHE = 0, 215 MEM_CGROUP_CHARGE_TYPE_ANON, 216 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */ 217 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */ 218 NR_CHARGE_TYPE, 219 }; 220 221 /* for encoding cft->private value on file */ 222 enum res_type { 223 _MEM, 224 _MEMSWAP, 225 _OOM_TYPE, 226 _KMEM, 227 _TCP, 228 }; 229 230 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) 231 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) 232 #define MEMFILE_ATTR(val) ((val) & 0xffff) 233 /* Used for OOM nofiier */ 234 #define OOM_CONTROL (0) 235 236 /* Some nice accessors for the vmpressure. */ 237 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 238 { 239 if (!memcg) 240 memcg = root_mem_cgroup; 241 return &memcg->vmpressure; 242 } 243 244 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr) 245 { 246 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css; 247 } 248 249 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 250 { 251 return (memcg == root_mem_cgroup); 252 } 253 254 #ifndef CONFIG_SLOB 255 /* 256 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches. 257 * The main reason for not using cgroup id for this: 258 * this works better in sparse environments, where we have a lot of memcgs, 259 * but only a few kmem-limited. Or also, if we have, for instance, 200 260 * memcgs, and none but the 200th is kmem-limited, we'd have to have a 261 * 200 entry array for that. 262 * 263 * The current size of the caches array is stored in memcg_nr_cache_ids. It 264 * will double each time we have to increase it. 265 */ 266 static DEFINE_IDA(memcg_cache_ida); 267 int memcg_nr_cache_ids; 268 269 /* Protects memcg_nr_cache_ids */ 270 static DECLARE_RWSEM(memcg_cache_ids_sem); 271 272 void memcg_get_cache_ids(void) 273 { 274 down_read(&memcg_cache_ids_sem); 275 } 276 277 void memcg_put_cache_ids(void) 278 { 279 up_read(&memcg_cache_ids_sem); 280 } 281 282 /* 283 * MIN_SIZE is different than 1, because we would like to avoid going through 284 * the alloc/free process all the time. In a small machine, 4 kmem-limited 285 * cgroups is a reasonable guess. In the future, it could be a parameter or 286 * tunable, but that is strictly not necessary. 287 * 288 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get 289 * this constant directly from cgroup, but it is understandable that this is 290 * better kept as an internal representation in cgroup.c. In any case, the 291 * cgrp_id space is not getting any smaller, and we don't have to necessarily 292 * increase ours as well if it increases. 293 */ 294 #define MEMCG_CACHES_MIN_SIZE 4 295 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX 296 297 /* 298 * A lot of the calls to the cache allocation functions are expected to be 299 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are 300 * conditional to this static branch, we'll have to allow modules that does 301 * kmem_cache_alloc and the such to see this symbol as well 302 */ 303 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key); 304 EXPORT_SYMBOL(memcg_kmem_enabled_key); 305 306 struct workqueue_struct *memcg_kmem_cache_wq; 307 308 #endif /* !CONFIG_SLOB */ 309 310 /** 311 * mem_cgroup_css_from_page - css of the memcg associated with a page 312 * @page: page of interest 313 * 314 * If memcg is bound to the default hierarchy, css of the memcg associated 315 * with @page is returned. The returned css remains associated with @page 316 * until it is released. 317 * 318 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup 319 * is returned. 320 */ 321 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page) 322 { 323 struct mem_cgroup *memcg; 324 325 memcg = page->mem_cgroup; 326 327 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 328 memcg = root_mem_cgroup; 329 330 return &memcg->css; 331 } 332 333 /** 334 * page_cgroup_ino - return inode number of the memcg a page is charged to 335 * @page: the page 336 * 337 * Look up the closest online ancestor of the memory cgroup @page is charged to 338 * and return its inode number or 0 if @page is not charged to any cgroup. It 339 * is safe to call this function without holding a reference to @page. 340 * 341 * Note, this function is inherently racy, because there is nothing to prevent 342 * the cgroup inode from getting torn down and potentially reallocated a moment 343 * after page_cgroup_ino() returns, so it only should be used by callers that 344 * do not care (such as procfs interfaces). 345 */ 346 ino_t page_cgroup_ino(struct page *page) 347 { 348 struct mem_cgroup *memcg; 349 unsigned long ino = 0; 350 351 rcu_read_lock(); 352 memcg = READ_ONCE(page->mem_cgroup); 353 while (memcg && !(memcg->css.flags & CSS_ONLINE)) 354 memcg = parent_mem_cgroup(memcg); 355 if (memcg) 356 ino = cgroup_ino(memcg->css.cgroup); 357 rcu_read_unlock(); 358 return ino; 359 } 360 361 static struct mem_cgroup_per_node * 362 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page) 363 { 364 int nid = page_to_nid(page); 365 366 return memcg->nodeinfo[nid]; 367 } 368 369 static struct mem_cgroup_tree_per_node * 370 soft_limit_tree_node(int nid) 371 { 372 return soft_limit_tree.rb_tree_per_node[nid]; 373 } 374 375 static struct mem_cgroup_tree_per_node * 376 soft_limit_tree_from_page(struct page *page) 377 { 378 int nid = page_to_nid(page); 379 380 return soft_limit_tree.rb_tree_per_node[nid]; 381 } 382 383 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz, 384 struct mem_cgroup_tree_per_node *mctz, 385 unsigned long new_usage_in_excess) 386 { 387 struct rb_node **p = &mctz->rb_root.rb_node; 388 struct rb_node *parent = NULL; 389 struct mem_cgroup_per_node *mz_node; 390 bool rightmost = true; 391 392 if (mz->on_tree) 393 return; 394 395 mz->usage_in_excess = new_usage_in_excess; 396 if (!mz->usage_in_excess) 397 return; 398 while (*p) { 399 parent = *p; 400 mz_node = rb_entry(parent, struct mem_cgroup_per_node, 401 tree_node); 402 if (mz->usage_in_excess < mz_node->usage_in_excess) { 403 p = &(*p)->rb_left; 404 rightmost = false; 405 } 406 407 /* 408 * We can't avoid mem cgroups that are over their soft 409 * limit by the same amount 410 */ 411 else if (mz->usage_in_excess >= mz_node->usage_in_excess) 412 p = &(*p)->rb_right; 413 } 414 415 if (rightmost) 416 mctz->rb_rightmost = &mz->tree_node; 417 418 rb_link_node(&mz->tree_node, parent, p); 419 rb_insert_color(&mz->tree_node, &mctz->rb_root); 420 mz->on_tree = true; 421 } 422 423 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 424 struct mem_cgroup_tree_per_node *mctz) 425 { 426 if (!mz->on_tree) 427 return; 428 429 if (&mz->tree_node == mctz->rb_rightmost) 430 mctz->rb_rightmost = rb_prev(&mz->tree_node); 431 432 rb_erase(&mz->tree_node, &mctz->rb_root); 433 mz->on_tree = false; 434 } 435 436 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 437 struct mem_cgroup_tree_per_node *mctz) 438 { 439 unsigned long flags; 440 441 spin_lock_irqsave(&mctz->lock, flags); 442 __mem_cgroup_remove_exceeded(mz, mctz); 443 spin_unlock_irqrestore(&mctz->lock, flags); 444 } 445 446 static unsigned long soft_limit_excess(struct mem_cgroup *memcg) 447 { 448 unsigned long nr_pages = page_counter_read(&memcg->memory); 449 unsigned long soft_limit = READ_ONCE(memcg->soft_limit); 450 unsigned long excess = 0; 451 452 if (nr_pages > soft_limit) 453 excess = nr_pages - soft_limit; 454 455 return excess; 456 } 457 458 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page) 459 { 460 unsigned long excess; 461 struct mem_cgroup_per_node *mz; 462 struct mem_cgroup_tree_per_node *mctz; 463 464 mctz = soft_limit_tree_from_page(page); 465 if (!mctz) 466 return; 467 /* 468 * Necessary to update all ancestors when hierarchy is used. 469 * because their event counter is not touched. 470 */ 471 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 472 mz = mem_cgroup_page_nodeinfo(memcg, page); 473 excess = soft_limit_excess(memcg); 474 /* 475 * We have to update the tree if mz is on RB-tree or 476 * mem is over its softlimit. 477 */ 478 if (excess || mz->on_tree) { 479 unsigned long flags; 480 481 spin_lock_irqsave(&mctz->lock, flags); 482 /* if on-tree, remove it */ 483 if (mz->on_tree) 484 __mem_cgroup_remove_exceeded(mz, mctz); 485 /* 486 * Insert again. mz->usage_in_excess will be updated. 487 * If excess is 0, no tree ops. 488 */ 489 __mem_cgroup_insert_exceeded(mz, mctz, excess); 490 spin_unlock_irqrestore(&mctz->lock, flags); 491 } 492 } 493 } 494 495 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) 496 { 497 struct mem_cgroup_tree_per_node *mctz; 498 struct mem_cgroup_per_node *mz; 499 int nid; 500 501 for_each_node(nid) { 502 mz = mem_cgroup_nodeinfo(memcg, nid); 503 mctz = soft_limit_tree_node(nid); 504 if (mctz) 505 mem_cgroup_remove_exceeded(mz, mctz); 506 } 507 } 508 509 static struct mem_cgroup_per_node * 510 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 511 { 512 struct mem_cgroup_per_node *mz; 513 514 retry: 515 mz = NULL; 516 if (!mctz->rb_rightmost) 517 goto done; /* Nothing to reclaim from */ 518 519 mz = rb_entry(mctz->rb_rightmost, 520 struct mem_cgroup_per_node, tree_node); 521 /* 522 * Remove the node now but someone else can add it back, 523 * we will to add it back at the end of reclaim to its correct 524 * position in the tree. 525 */ 526 __mem_cgroup_remove_exceeded(mz, mctz); 527 if (!soft_limit_excess(mz->memcg) || 528 !css_tryget_online(&mz->memcg->css)) 529 goto retry; 530 done: 531 return mz; 532 } 533 534 static struct mem_cgroup_per_node * 535 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 536 { 537 struct mem_cgroup_per_node *mz; 538 539 spin_lock_irq(&mctz->lock); 540 mz = __mem_cgroup_largest_soft_limit_node(mctz); 541 spin_unlock_irq(&mctz->lock); 542 return mz; 543 } 544 545 /* 546 * Return page count for single (non recursive) @memcg. 547 * 548 * Implementation Note: reading percpu statistics for memcg. 549 * 550 * Both of vmstat[] and percpu_counter has threshold and do periodic 551 * synchronization to implement "quick" read. There are trade-off between 552 * reading cost and precision of value. Then, we may have a chance to implement 553 * a periodic synchronization of counter in memcg's counter. 554 * 555 * But this _read() function is used for user interface now. The user accounts 556 * memory usage by memory cgroup and he _always_ requires exact value because 557 * he accounts memory. Even if we provide quick-and-fuzzy read, we always 558 * have to visit all online cpus and make sum. So, for now, unnecessary 559 * synchronization is not implemented. (just implemented for cpu hotplug) 560 * 561 * If there are kernel internal actions which can make use of some not-exact 562 * value, and reading all cpu value can be performance bottleneck in some 563 * common workload, threshold and synchronization as vmstat[] should be 564 * implemented. 565 * 566 * The parameter idx can be of type enum memcg_event_item or vm_event_item. 567 */ 568 569 static unsigned long memcg_sum_events(struct mem_cgroup *memcg, 570 int event) 571 { 572 unsigned long val = 0; 573 int cpu; 574 575 for_each_possible_cpu(cpu) 576 val += per_cpu(memcg->stat->events[event], cpu); 577 return val; 578 } 579 580 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, 581 struct page *page, 582 bool compound, int nr_pages) 583 { 584 /* 585 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is 586 * counted as CACHE even if it's on ANON LRU. 587 */ 588 if (PageAnon(page)) 589 __this_cpu_add(memcg->stat->count[MEMCG_RSS], nr_pages); 590 else { 591 __this_cpu_add(memcg->stat->count[MEMCG_CACHE], nr_pages); 592 if (PageSwapBacked(page)) 593 __this_cpu_add(memcg->stat->count[NR_SHMEM], nr_pages); 594 } 595 596 if (compound) { 597 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 598 __this_cpu_add(memcg->stat->count[MEMCG_RSS_HUGE], nr_pages); 599 } 600 601 /* pagein of a big page is an event. So, ignore page size */ 602 if (nr_pages > 0) 603 __this_cpu_inc(memcg->stat->events[PGPGIN]); 604 else { 605 __this_cpu_inc(memcg->stat->events[PGPGOUT]); 606 nr_pages = -nr_pages; /* for event */ 607 } 608 609 __this_cpu_add(memcg->stat->nr_page_events, nr_pages); 610 } 611 612 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 613 int nid, unsigned int lru_mask) 614 { 615 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg); 616 unsigned long nr = 0; 617 enum lru_list lru; 618 619 VM_BUG_ON((unsigned)nid >= nr_node_ids); 620 621 for_each_lru(lru) { 622 if (!(BIT(lru) & lru_mask)) 623 continue; 624 nr += mem_cgroup_get_lru_size(lruvec, lru); 625 } 626 return nr; 627 } 628 629 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 630 unsigned int lru_mask) 631 { 632 unsigned long nr = 0; 633 int nid; 634 635 for_each_node_state(nid, N_MEMORY) 636 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask); 637 return nr; 638 } 639 640 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, 641 enum mem_cgroup_events_target target) 642 { 643 unsigned long val, next; 644 645 val = __this_cpu_read(memcg->stat->nr_page_events); 646 next = __this_cpu_read(memcg->stat->targets[target]); 647 /* from time_after() in jiffies.h */ 648 if ((long)(next - val) < 0) { 649 switch (target) { 650 case MEM_CGROUP_TARGET_THRESH: 651 next = val + THRESHOLDS_EVENTS_TARGET; 652 break; 653 case MEM_CGROUP_TARGET_SOFTLIMIT: 654 next = val + SOFTLIMIT_EVENTS_TARGET; 655 break; 656 case MEM_CGROUP_TARGET_NUMAINFO: 657 next = val + NUMAINFO_EVENTS_TARGET; 658 break; 659 default: 660 break; 661 } 662 __this_cpu_write(memcg->stat->targets[target], next); 663 return true; 664 } 665 return false; 666 } 667 668 /* 669 * Check events in order. 670 * 671 */ 672 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) 673 { 674 /* threshold event is triggered in finer grain than soft limit */ 675 if (unlikely(mem_cgroup_event_ratelimit(memcg, 676 MEM_CGROUP_TARGET_THRESH))) { 677 bool do_softlimit; 678 bool do_numainfo __maybe_unused; 679 680 do_softlimit = mem_cgroup_event_ratelimit(memcg, 681 MEM_CGROUP_TARGET_SOFTLIMIT); 682 #if MAX_NUMNODES > 1 683 do_numainfo = mem_cgroup_event_ratelimit(memcg, 684 MEM_CGROUP_TARGET_NUMAINFO); 685 #endif 686 mem_cgroup_threshold(memcg); 687 if (unlikely(do_softlimit)) 688 mem_cgroup_update_tree(memcg, page); 689 #if MAX_NUMNODES > 1 690 if (unlikely(do_numainfo)) 691 atomic_inc(&memcg->numainfo_events); 692 #endif 693 } 694 } 695 696 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 697 { 698 /* 699 * mm_update_next_owner() may clear mm->owner to NULL 700 * if it races with swapoff, page migration, etc. 701 * So this can be called with p == NULL. 702 */ 703 if (unlikely(!p)) 704 return NULL; 705 706 return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); 707 } 708 EXPORT_SYMBOL(mem_cgroup_from_task); 709 710 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 711 { 712 struct mem_cgroup *memcg = NULL; 713 714 rcu_read_lock(); 715 do { 716 /* 717 * Page cache insertions can happen withou an 718 * actual mm context, e.g. during disk probing 719 * on boot, loopback IO, acct() writes etc. 720 */ 721 if (unlikely(!mm)) 722 memcg = root_mem_cgroup; 723 else { 724 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 725 if (unlikely(!memcg)) 726 memcg = root_mem_cgroup; 727 } 728 } while (!css_tryget_online(&memcg->css)); 729 rcu_read_unlock(); 730 return memcg; 731 } 732 733 /** 734 * mem_cgroup_iter - iterate over memory cgroup hierarchy 735 * @root: hierarchy root 736 * @prev: previously returned memcg, NULL on first invocation 737 * @reclaim: cookie for shared reclaim walks, NULL for full walks 738 * 739 * Returns references to children of the hierarchy below @root, or 740 * @root itself, or %NULL after a full round-trip. 741 * 742 * Caller must pass the return value in @prev on subsequent 743 * invocations for reference counting, or use mem_cgroup_iter_break() 744 * to cancel a hierarchy walk before the round-trip is complete. 745 * 746 * Reclaimers can specify a zone and a priority level in @reclaim to 747 * divide up the memcgs in the hierarchy among all concurrent 748 * reclaimers operating on the same zone and priority. 749 */ 750 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 751 struct mem_cgroup *prev, 752 struct mem_cgroup_reclaim_cookie *reclaim) 753 { 754 struct mem_cgroup_reclaim_iter *uninitialized_var(iter); 755 struct cgroup_subsys_state *css = NULL; 756 struct mem_cgroup *memcg = NULL; 757 struct mem_cgroup *pos = NULL; 758 759 if (mem_cgroup_disabled()) 760 return NULL; 761 762 if (!root) 763 root = root_mem_cgroup; 764 765 if (prev && !reclaim) 766 pos = prev; 767 768 if (!root->use_hierarchy && root != root_mem_cgroup) { 769 if (prev) 770 goto out; 771 return root; 772 } 773 774 rcu_read_lock(); 775 776 if (reclaim) { 777 struct mem_cgroup_per_node *mz; 778 779 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id); 780 iter = &mz->iter[reclaim->priority]; 781 782 if (prev && reclaim->generation != iter->generation) 783 goto out_unlock; 784 785 while (1) { 786 pos = READ_ONCE(iter->position); 787 if (!pos || css_tryget(&pos->css)) 788 break; 789 /* 790 * css reference reached zero, so iter->position will 791 * be cleared by ->css_released. However, we should not 792 * rely on this happening soon, because ->css_released 793 * is called from a work queue, and by busy-waiting we 794 * might block it. So we clear iter->position right 795 * away. 796 */ 797 (void)cmpxchg(&iter->position, pos, NULL); 798 } 799 } 800 801 if (pos) 802 css = &pos->css; 803 804 for (;;) { 805 css = css_next_descendant_pre(css, &root->css); 806 if (!css) { 807 /* 808 * Reclaimers share the hierarchy walk, and a 809 * new one might jump in right at the end of 810 * the hierarchy - make sure they see at least 811 * one group and restart from the beginning. 812 */ 813 if (!prev) 814 continue; 815 break; 816 } 817 818 /* 819 * Verify the css and acquire a reference. The root 820 * is provided by the caller, so we know it's alive 821 * and kicking, and don't take an extra reference. 822 */ 823 memcg = mem_cgroup_from_css(css); 824 825 if (css == &root->css) 826 break; 827 828 if (css_tryget(css)) 829 break; 830 831 memcg = NULL; 832 } 833 834 if (reclaim) { 835 /* 836 * The position could have already been updated by a competing 837 * thread, so check that the value hasn't changed since we read 838 * it to avoid reclaiming from the same cgroup twice. 839 */ 840 (void)cmpxchg(&iter->position, pos, memcg); 841 842 if (pos) 843 css_put(&pos->css); 844 845 if (!memcg) 846 iter->generation++; 847 else if (!prev) 848 reclaim->generation = iter->generation; 849 } 850 851 out_unlock: 852 rcu_read_unlock(); 853 out: 854 if (prev && prev != root) 855 css_put(&prev->css); 856 857 return memcg; 858 } 859 860 /** 861 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 862 * @root: hierarchy root 863 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 864 */ 865 void mem_cgroup_iter_break(struct mem_cgroup *root, 866 struct mem_cgroup *prev) 867 { 868 if (!root) 869 root = root_mem_cgroup; 870 if (prev && prev != root) 871 css_put(&prev->css); 872 } 873 874 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) 875 { 876 struct mem_cgroup *memcg = dead_memcg; 877 struct mem_cgroup_reclaim_iter *iter; 878 struct mem_cgroup_per_node *mz; 879 int nid; 880 int i; 881 882 while ((memcg = parent_mem_cgroup(memcg))) { 883 for_each_node(nid) { 884 mz = mem_cgroup_nodeinfo(memcg, nid); 885 for (i = 0; i <= DEF_PRIORITY; i++) { 886 iter = &mz->iter[i]; 887 cmpxchg(&iter->position, 888 dead_memcg, NULL); 889 } 890 } 891 } 892 } 893 894 /* 895 * Iteration constructs for visiting all cgroups (under a tree). If 896 * loops are exited prematurely (break), mem_cgroup_iter_break() must 897 * be used for reference counting. 898 */ 899 #define for_each_mem_cgroup_tree(iter, root) \ 900 for (iter = mem_cgroup_iter(root, NULL, NULL); \ 901 iter != NULL; \ 902 iter = mem_cgroup_iter(root, iter, NULL)) 903 904 #define for_each_mem_cgroup(iter) \ 905 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ 906 iter != NULL; \ 907 iter = mem_cgroup_iter(NULL, iter, NULL)) 908 909 /** 910 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy 911 * @memcg: hierarchy root 912 * @fn: function to call for each task 913 * @arg: argument passed to @fn 914 * 915 * This function iterates over tasks attached to @memcg or to any of its 916 * descendants and calls @fn for each task. If @fn returns a non-zero 917 * value, the function breaks the iteration loop and returns the value. 918 * Otherwise, it will iterate over all tasks and return 0. 919 * 920 * This function must not be called for the root memory cgroup. 921 */ 922 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 923 int (*fn)(struct task_struct *, void *), void *arg) 924 { 925 struct mem_cgroup *iter; 926 int ret = 0; 927 928 BUG_ON(memcg == root_mem_cgroup); 929 930 for_each_mem_cgroup_tree(iter, memcg) { 931 struct css_task_iter it; 932 struct task_struct *task; 933 934 css_task_iter_start(&iter->css, 0, &it); 935 while (!ret && (task = css_task_iter_next(&it))) 936 ret = fn(task, arg); 937 css_task_iter_end(&it); 938 if (ret) { 939 mem_cgroup_iter_break(memcg, iter); 940 break; 941 } 942 } 943 return ret; 944 } 945 946 /** 947 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page 948 * @page: the page 949 * @zone: zone of the page 950 * 951 * This function is only safe when following the LRU page isolation 952 * and putback protocol: the LRU lock must be held, and the page must 953 * either be PageLRU() or the caller must have isolated/allocated it. 954 */ 955 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat) 956 { 957 struct mem_cgroup_per_node *mz; 958 struct mem_cgroup *memcg; 959 struct lruvec *lruvec; 960 961 if (mem_cgroup_disabled()) { 962 lruvec = &pgdat->lruvec; 963 goto out; 964 } 965 966 memcg = page->mem_cgroup; 967 /* 968 * Swapcache readahead pages are added to the LRU - and 969 * possibly migrated - before they are charged. 970 */ 971 if (!memcg) 972 memcg = root_mem_cgroup; 973 974 mz = mem_cgroup_page_nodeinfo(memcg, page); 975 lruvec = &mz->lruvec; 976 out: 977 /* 978 * Since a node can be onlined after the mem_cgroup was created, 979 * we have to be prepared to initialize lruvec->zone here; 980 * and if offlined then reonlined, we need to reinitialize it. 981 */ 982 if (unlikely(lruvec->pgdat != pgdat)) 983 lruvec->pgdat = pgdat; 984 return lruvec; 985 } 986 987 /** 988 * mem_cgroup_update_lru_size - account for adding or removing an lru page 989 * @lruvec: mem_cgroup per zone lru vector 990 * @lru: index of lru list the page is sitting on 991 * @zid: zone id of the accounted pages 992 * @nr_pages: positive when adding or negative when removing 993 * 994 * This function must be called under lru_lock, just before a page is added 995 * to or just after a page is removed from an lru list (that ordering being 996 * so as to allow it to check that lru_size 0 is consistent with list_empty). 997 */ 998 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 999 int zid, int nr_pages) 1000 { 1001 struct mem_cgroup_per_node *mz; 1002 unsigned long *lru_size; 1003 long size; 1004 1005 if (mem_cgroup_disabled()) 1006 return; 1007 1008 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 1009 lru_size = &mz->lru_zone_size[zid][lru]; 1010 1011 if (nr_pages < 0) 1012 *lru_size += nr_pages; 1013 1014 size = *lru_size; 1015 if (WARN_ONCE(size < 0, 1016 "%s(%p, %d, %d): lru_size %ld\n", 1017 __func__, lruvec, lru, nr_pages, size)) { 1018 VM_BUG_ON(1); 1019 *lru_size = 0; 1020 } 1021 1022 if (nr_pages > 0) 1023 *lru_size += nr_pages; 1024 } 1025 1026 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg) 1027 { 1028 struct mem_cgroup *task_memcg; 1029 struct task_struct *p; 1030 bool ret; 1031 1032 p = find_lock_task_mm(task); 1033 if (p) { 1034 task_memcg = get_mem_cgroup_from_mm(p->mm); 1035 task_unlock(p); 1036 } else { 1037 /* 1038 * All threads may have already detached their mm's, but the oom 1039 * killer still needs to detect if they have already been oom 1040 * killed to prevent needlessly killing additional tasks. 1041 */ 1042 rcu_read_lock(); 1043 task_memcg = mem_cgroup_from_task(task); 1044 css_get(&task_memcg->css); 1045 rcu_read_unlock(); 1046 } 1047 ret = mem_cgroup_is_descendant(task_memcg, memcg); 1048 css_put(&task_memcg->css); 1049 return ret; 1050 } 1051 1052 /** 1053 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1054 * @memcg: the memory cgroup 1055 * 1056 * Returns the maximum amount of memory @mem can be charged with, in 1057 * pages. 1058 */ 1059 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1060 { 1061 unsigned long margin = 0; 1062 unsigned long count; 1063 unsigned long limit; 1064 1065 count = page_counter_read(&memcg->memory); 1066 limit = READ_ONCE(memcg->memory.limit); 1067 if (count < limit) 1068 margin = limit - count; 1069 1070 if (do_memsw_account()) { 1071 count = page_counter_read(&memcg->memsw); 1072 limit = READ_ONCE(memcg->memsw.limit); 1073 if (count <= limit) 1074 margin = min(margin, limit - count); 1075 else 1076 margin = 0; 1077 } 1078 1079 return margin; 1080 } 1081 1082 /* 1083 * A routine for checking "mem" is under move_account() or not. 1084 * 1085 * Checking a cgroup is mc.from or mc.to or under hierarchy of 1086 * moving cgroups. This is for waiting at high-memory pressure 1087 * caused by "move". 1088 */ 1089 static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 1090 { 1091 struct mem_cgroup *from; 1092 struct mem_cgroup *to; 1093 bool ret = false; 1094 /* 1095 * Unlike task_move routines, we access mc.to, mc.from not under 1096 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1097 */ 1098 spin_lock(&mc.lock); 1099 from = mc.from; 1100 to = mc.to; 1101 if (!from) 1102 goto unlock; 1103 1104 ret = mem_cgroup_is_descendant(from, memcg) || 1105 mem_cgroup_is_descendant(to, memcg); 1106 unlock: 1107 spin_unlock(&mc.lock); 1108 return ret; 1109 } 1110 1111 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) 1112 { 1113 if (mc.moving_task && current != mc.moving_task) { 1114 if (mem_cgroup_under_move(memcg)) { 1115 DEFINE_WAIT(wait); 1116 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1117 /* moving charge context might have finished. */ 1118 if (mc.moving_task) 1119 schedule(); 1120 finish_wait(&mc.waitq, &wait); 1121 return true; 1122 } 1123 } 1124 return false; 1125 } 1126 1127 unsigned int memcg1_stats[] = { 1128 MEMCG_CACHE, 1129 MEMCG_RSS, 1130 MEMCG_RSS_HUGE, 1131 NR_SHMEM, 1132 NR_FILE_MAPPED, 1133 NR_FILE_DIRTY, 1134 NR_WRITEBACK, 1135 MEMCG_SWAP, 1136 }; 1137 1138 static const char *const memcg1_stat_names[] = { 1139 "cache", 1140 "rss", 1141 "rss_huge", 1142 "shmem", 1143 "mapped_file", 1144 "dirty", 1145 "writeback", 1146 "swap", 1147 }; 1148 1149 #define K(x) ((x) << (PAGE_SHIFT-10)) 1150 /** 1151 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller. 1152 * @memcg: The memory cgroup that went over limit 1153 * @p: Task that is going to be killed 1154 * 1155 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1156 * enabled 1157 */ 1158 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) 1159 { 1160 struct mem_cgroup *iter; 1161 unsigned int i; 1162 1163 rcu_read_lock(); 1164 1165 if (p) { 1166 pr_info("Task in "); 1167 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); 1168 pr_cont(" killed as a result of limit of "); 1169 } else { 1170 pr_info("Memory limit reached of cgroup "); 1171 } 1172 1173 pr_cont_cgroup_path(memcg->css.cgroup); 1174 pr_cont("\n"); 1175 1176 rcu_read_unlock(); 1177 1178 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", 1179 K((u64)page_counter_read(&memcg->memory)), 1180 K((u64)memcg->memory.limit), memcg->memory.failcnt); 1181 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", 1182 K((u64)page_counter_read(&memcg->memsw)), 1183 K((u64)memcg->memsw.limit), memcg->memsw.failcnt); 1184 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", 1185 K((u64)page_counter_read(&memcg->kmem)), 1186 K((u64)memcg->kmem.limit), memcg->kmem.failcnt); 1187 1188 for_each_mem_cgroup_tree(iter, memcg) { 1189 pr_info("Memory cgroup stats for "); 1190 pr_cont_cgroup_path(iter->css.cgroup); 1191 pr_cont(":"); 1192 1193 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 1194 if (memcg1_stats[i] == MEMCG_SWAP && !do_swap_account) 1195 continue; 1196 pr_cont(" %s:%luKB", memcg1_stat_names[i], 1197 K(memcg_page_state(iter, memcg1_stats[i]))); 1198 } 1199 1200 for (i = 0; i < NR_LRU_LISTS; i++) 1201 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i], 1202 K(mem_cgroup_nr_lru_pages(iter, BIT(i)))); 1203 1204 pr_cont("\n"); 1205 } 1206 } 1207 1208 /* 1209 * This function returns the number of memcg under hierarchy tree. Returns 1210 * 1(self count) if no children. 1211 */ 1212 static int mem_cgroup_count_children(struct mem_cgroup *memcg) 1213 { 1214 int num = 0; 1215 struct mem_cgroup *iter; 1216 1217 for_each_mem_cgroup_tree(iter, memcg) 1218 num++; 1219 return num; 1220 } 1221 1222 /* 1223 * Return the memory (and swap, if configured) limit for a memcg. 1224 */ 1225 unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg) 1226 { 1227 unsigned long limit; 1228 1229 limit = memcg->memory.limit; 1230 if (mem_cgroup_swappiness(memcg)) { 1231 unsigned long memsw_limit; 1232 unsigned long swap_limit; 1233 1234 memsw_limit = memcg->memsw.limit; 1235 swap_limit = memcg->swap.limit; 1236 swap_limit = min(swap_limit, (unsigned long)total_swap_pages); 1237 limit = min(limit + swap_limit, memsw_limit); 1238 } 1239 return limit; 1240 } 1241 1242 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1243 int order) 1244 { 1245 struct oom_control oc = { 1246 .zonelist = NULL, 1247 .nodemask = NULL, 1248 .memcg = memcg, 1249 .gfp_mask = gfp_mask, 1250 .order = order, 1251 }; 1252 bool ret; 1253 1254 mutex_lock(&oom_lock); 1255 ret = out_of_memory(&oc); 1256 mutex_unlock(&oom_lock); 1257 return ret; 1258 } 1259 1260 #if MAX_NUMNODES > 1 1261 1262 /** 1263 * test_mem_cgroup_node_reclaimable 1264 * @memcg: the target memcg 1265 * @nid: the node ID to be checked. 1266 * @noswap : specify true here if the user wants flle only information. 1267 * 1268 * This function returns whether the specified memcg contains any 1269 * reclaimable pages on a node. Returns true if there are any reclaimable 1270 * pages in the node. 1271 */ 1272 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg, 1273 int nid, bool noswap) 1274 { 1275 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE)) 1276 return true; 1277 if (noswap || !total_swap_pages) 1278 return false; 1279 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON)) 1280 return true; 1281 return false; 1282 1283 } 1284 1285 /* 1286 * Always updating the nodemask is not very good - even if we have an empty 1287 * list or the wrong list here, we can start from some node and traverse all 1288 * nodes based on the zonelist. So update the list loosely once per 10 secs. 1289 * 1290 */ 1291 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg) 1292 { 1293 int nid; 1294 /* 1295 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET 1296 * pagein/pageout changes since the last update. 1297 */ 1298 if (!atomic_read(&memcg->numainfo_events)) 1299 return; 1300 if (atomic_inc_return(&memcg->numainfo_updating) > 1) 1301 return; 1302 1303 /* make a nodemask where this memcg uses memory from */ 1304 memcg->scan_nodes = node_states[N_MEMORY]; 1305 1306 for_each_node_mask(nid, node_states[N_MEMORY]) { 1307 1308 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false)) 1309 node_clear(nid, memcg->scan_nodes); 1310 } 1311 1312 atomic_set(&memcg->numainfo_events, 0); 1313 atomic_set(&memcg->numainfo_updating, 0); 1314 } 1315 1316 /* 1317 * Selecting a node where we start reclaim from. Because what we need is just 1318 * reducing usage counter, start from anywhere is O,K. Considering 1319 * memory reclaim from current node, there are pros. and cons. 1320 * 1321 * Freeing memory from current node means freeing memory from a node which 1322 * we'll use or we've used. So, it may make LRU bad. And if several threads 1323 * hit limits, it will see a contention on a node. But freeing from remote 1324 * node means more costs for memory reclaim because of memory latency. 1325 * 1326 * Now, we use round-robin. Better algorithm is welcomed. 1327 */ 1328 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1329 { 1330 int node; 1331 1332 mem_cgroup_may_update_nodemask(memcg); 1333 node = memcg->last_scanned_node; 1334 1335 node = next_node_in(node, memcg->scan_nodes); 1336 /* 1337 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages 1338 * last time it really checked all the LRUs due to rate limiting. 1339 * Fallback to the current node in that case for simplicity. 1340 */ 1341 if (unlikely(node == MAX_NUMNODES)) 1342 node = numa_node_id(); 1343 1344 memcg->last_scanned_node = node; 1345 return node; 1346 } 1347 #else 1348 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1349 { 1350 return 0; 1351 } 1352 #endif 1353 1354 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, 1355 pg_data_t *pgdat, 1356 gfp_t gfp_mask, 1357 unsigned long *total_scanned) 1358 { 1359 struct mem_cgroup *victim = NULL; 1360 int total = 0; 1361 int loop = 0; 1362 unsigned long excess; 1363 unsigned long nr_scanned; 1364 struct mem_cgroup_reclaim_cookie reclaim = { 1365 .pgdat = pgdat, 1366 .priority = 0, 1367 }; 1368 1369 excess = soft_limit_excess(root_memcg); 1370 1371 while (1) { 1372 victim = mem_cgroup_iter(root_memcg, victim, &reclaim); 1373 if (!victim) { 1374 loop++; 1375 if (loop >= 2) { 1376 /* 1377 * If we have not been able to reclaim 1378 * anything, it might because there are 1379 * no reclaimable pages under this hierarchy 1380 */ 1381 if (!total) 1382 break; 1383 /* 1384 * We want to do more targeted reclaim. 1385 * excess >> 2 is not to excessive so as to 1386 * reclaim too much, nor too less that we keep 1387 * coming back to reclaim from this cgroup 1388 */ 1389 if (total >= (excess >> 2) || 1390 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) 1391 break; 1392 } 1393 continue; 1394 } 1395 total += mem_cgroup_shrink_node(victim, gfp_mask, false, 1396 pgdat, &nr_scanned); 1397 *total_scanned += nr_scanned; 1398 if (!soft_limit_excess(root_memcg)) 1399 break; 1400 } 1401 mem_cgroup_iter_break(root_memcg, victim); 1402 return total; 1403 } 1404 1405 #ifdef CONFIG_LOCKDEP 1406 static struct lockdep_map memcg_oom_lock_dep_map = { 1407 .name = "memcg_oom_lock", 1408 }; 1409 #endif 1410 1411 static DEFINE_SPINLOCK(memcg_oom_lock); 1412 1413 /* 1414 * Check OOM-Killer is already running under our hierarchy. 1415 * If someone is running, return false. 1416 */ 1417 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) 1418 { 1419 struct mem_cgroup *iter, *failed = NULL; 1420 1421 spin_lock(&memcg_oom_lock); 1422 1423 for_each_mem_cgroup_tree(iter, memcg) { 1424 if (iter->oom_lock) { 1425 /* 1426 * this subtree of our hierarchy is already locked 1427 * so we cannot give a lock. 1428 */ 1429 failed = iter; 1430 mem_cgroup_iter_break(memcg, iter); 1431 break; 1432 } else 1433 iter->oom_lock = true; 1434 } 1435 1436 if (failed) { 1437 /* 1438 * OK, we failed to lock the whole subtree so we have 1439 * to clean up what we set up to the failing subtree 1440 */ 1441 for_each_mem_cgroup_tree(iter, memcg) { 1442 if (iter == failed) { 1443 mem_cgroup_iter_break(memcg, iter); 1444 break; 1445 } 1446 iter->oom_lock = false; 1447 } 1448 } else 1449 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); 1450 1451 spin_unlock(&memcg_oom_lock); 1452 1453 return !failed; 1454 } 1455 1456 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 1457 { 1458 struct mem_cgroup *iter; 1459 1460 spin_lock(&memcg_oom_lock); 1461 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_); 1462 for_each_mem_cgroup_tree(iter, memcg) 1463 iter->oom_lock = false; 1464 spin_unlock(&memcg_oom_lock); 1465 } 1466 1467 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 1468 { 1469 struct mem_cgroup *iter; 1470 1471 spin_lock(&memcg_oom_lock); 1472 for_each_mem_cgroup_tree(iter, memcg) 1473 iter->under_oom++; 1474 spin_unlock(&memcg_oom_lock); 1475 } 1476 1477 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 1478 { 1479 struct mem_cgroup *iter; 1480 1481 /* 1482 * When a new child is created while the hierarchy is under oom, 1483 * mem_cgroup_oom_lock() may not be called. Watch for underflow. 1484 */ 1485 spin_lock(&memcg_oom_lock); 1486 for_each_mem_cgroup_tree(iter, memcg) 1487 if (iter->under_oom > 0) 1488 iter->under_oom--; 1489 spin_unlock(&memcg_oom_lock); 1490 } 1491 1492 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 1493 1494 struct oom_wait_info { 1495 struct mem_cgroup *memcg; 1496 wait_queue_entry_t wait; 1497 }; 1498 1499 static int memcg_oom_wake_function(wait_queue_entry_t *wait, 1500 unsigned mode, int sync, void *arg) 1501 { 1502 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; 1503 struct mem_cgroup *oom_wait_memcg; 1504 struct oom_wait_info *oom_wait_info; 1505 1506 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 1507 oom_wait_memcg = oom_wait_info->memcg; 1508 1509 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) && 1510 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg)) 1511 return 0; 1512 return autoremove_wake_function(wait, mode, sync, arg); 1513 } 1514 1515 static void memcg_oom_recover(struct mem_cgroup *memcg) 1516 { 1517 /* 1518 * For the following lockless ->under_oom test, the only required 1519 * guarantee is that it must see the state asserted by an OOM when 1520 * this function is called as a result of userland actions 1521 * triggered by the notification of the OOM. This is trivially 1522 * achieved by invoking mem_cgroup_mark_under_oom() before 1523 * triggering notification. 1524 */ 1525 if (memcg && memcg->under_oom) 1526 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 1527 } 1528 1529 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 1530 { 1531 if (!current->memcg_may_oom) 1532 return; 1533 /* 1534 * We are in the middle of the charge context here, so we 1535 * don't want to block when potentially sitting on a callstack 1536 * that holds all kinds of filesystem and mm locks. 1537 * 1538 * Also, the caller may handle a failed allocation gracefully 1539 * (like optional page cache readahead) and so an OOM killer 1540 * invocation might not even be necessary. 1541 * 1542 * That's why we don't do anything here except remember the 1543 * OOM context and then deal with it at the end of the page 1544 * fault when the stack is unwound, the locks are released, 1545 * and when we know whether the fault was overall successful. 1546 */ 1547 css_get(&memcg->css); 1548 current->memcg_in_oom = memcg; 1549 current->memcg_oom_gfp_mask = mask; 1550 current->memcg_oom_order = order; 1551 } 1552 1553 /** 1554 * mem_cgroup_oom_synchronize - complete memcg OOM handling 1555 * @handle: actually kill/wait or just clean up the OOM state 1556 * 1557 * This has to be called at the end of a page fault if the memcg OOM 1558 * handler was enabled. 1559 * 1560 * Memcg supports userspace OOM handling where failed allocations must 1561 * sleep on a waitqueue until the userspace task resolves the 1562 * situation. Sleeping directly in the charge context with all kinds 1563 * of locks held is not a good idea, instead we remember an OOM state 1564 * in the task and mem_cgroup_oom_synchronize() has to be called at 1565 * the end of the page fault to complete the OOM handling. 1566 * 1567 * Returns %true if an ongoing memcg OOM situation was detected and 1568 * completed, %false otherwise. 1569 */ 1570 bool mem_cgroup_oom_synchronize(bool handle) 1571 { 1572 struct mem_cgroup *memcg = current->memcg_in_oom; 1573 struct oom_wait_info owait; 1574 bool locked; 1575 1576 /* OOM is global, do not handle */ 1577 if (!memcg) 1578 return false; 1579 1580 if (!handle) 1581 goto cleanup; 1582 1583 owait.memcg = memcg; 1584 owait.wait.flags = 0; 1585 owait.wait.func = memcg_oom_wake_function; 1586 owait.wait.private = current; 1587 INIT_LIST_HEAD(&owait.wait.entry); 1588 1589 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 1590 mem_cgroup_mark_under_oom(memcg); 1591 1592 locked = mem_cgroup_oom_trylock(memcg); 1593 1594 if (locked) 1595 mem_cgroup_oom_notify(memcg); 1596 1597 if (locked && !memcg->oom_kill_disable) { 1598 mem_cgroup_unmark_under_oom(memcg); 1599 finish_wait(&memcg_oom_waitq, &owait.wait); 1600 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask, 1601 current->memcg_oom_order); 1602 } else { 1603 schedule(); 1604 mem_cgroup_unmark_under_oom(memcg); 1605 finish_wait(&memcg_oom_waitq, &owait.wait); 1606 } 1607 1608 if (locked) { 1609 mem_cgroup_oom_unlock(memcg); 1610 /* 1611 * There is no guarantee that an OOM-lock contender 1612 * sees the wakeups triggered by the OOM kill 1613 * uncharges. Wake any sleepers explicitely. 1614 */ 1615 memcg_oom_recover(memcg); 1616 } 1617 cleanup: 1618 current->memcg_in_oom = NULL; 1619 css_put(&memcg->css); 1620 return true; 1621 } 1622 1623 /** 1624 * lock_page_memcg - lock a page->mem_cgroup binding 1625 * @page: the page 1626 * 1627 * This function protects unlocked LRU pages from being moved to 1628 * another cgroup. 1629 * 1630 * It ensures lifetime of the returned memcg. Caller is responsible 1631 * for the lifetime of the page; __unlock_page_memcg() is available 1632 * when @page might get freed inside the locked section. 1633 */ 1634 struct mem_cgroup *lock_page_memcg(struct page *page) 1635 { 1636 struct mem_cgroup *memcg; 1637 unsigned long flags; 1638 1639 /* 1640 * The RCU lock is held throughout the transaction. The fast 1641 * path can get away without acquiring the memcg->move_lock 1642 * because page moving starts with an RCU grace period. 1643 * 1644 * The RCU lock also protects the memcg from being freed when 1645 * the page state that is going to change is the only thing 1646 * preventing the page itself from being freed. E.g. writeback 1647 * doesn't hold a page reference and relies on PG_writeback to 1648 * keep off truncation, migration and so forth. 1649 */ 1650 rcu_read_lock(); 1651 1652 if (mem_cgroup_disabled()) 1653 return NULL; 1654 again: 1655 memcg = page->mem_cgroup; 1656 if (unlikely(!memcg)) 1657 return NULL; 1658 1659 if (atomic_read(&memcg->moving_account) <= 0) 1660 return memcg; 1661 1662 spin_lock_irqsave(&memcg->move_lock, flags); 1663 if (memcg != page->mem_cgroup) { 1664 spin_unlock_irqrestore(&memcg->move_lock, flags); 1665 goto again; 1666 } 1667 1668 /* 1669 * When charge migration first begins, we can have locked and 1670 * unlocked page stat updates happening concurrently. Track 1671 * the task who has the lock for unlock_page_memcg(). 1672 */ 1673 memcg->move_lock_task = current; 1674 memcg->move_lock_flags = flags; 1675 1676 return memcg; 1677 } 1678 EXPORT_SYMBOL(lock_page_memcg); 1679 1680 /** 1681 * __unlock_page_memcg - unlock and unpin a memcg 1682 * @memcg: the memcg 1683 * 1684 * Unlock and unpin a memcg returned by lock_page_memcg(). 1685 */ 1686 void __unlock_page_memcg(struct mem_cgroup *memcg) 1687 { 1688 if (memcg && memcg->move_lock_task == current) { 1689 unsigned long flags = memcg->move_lock_flags; 1690 1691 memcg->move_lock_task = NULL; 1692 memcg->move_lock_flags = 0; 1693 1694 spin_unlock_irqrestore(&memcg->move_lock, flags); 1695 } 1696 1697 rcu_read_unlock(); 1698 } 1699 1700 /** 1701 * unlock_page_memcg - unlock a page->mem_cgroup binding 1702 * @page: the page 1703 */ 1704 void unlock_page_memcg(struct page *page) 1705 { 1706 __unlock_page_memcg(page->mem_cgroup); 1707 } 1708 EXPORT_SYMBOL(unlock_page_memcg); 1709 1710 /* 1711 * size of first charge trial. "32" comes from vmscan.c's magic value. 1712 * TODO: maybe necessary to use big numbers in big irons. 1713 */ 1714 #define CHARGE_BATCH 32U 1715 struct memcg_stock_pcp { 1716 struct mem_cgroup *cached; /* this never be root cgroup */ 1717 unsigned int nr_pages; 1718 struct work_struct work; 1719 unsigned long flags; 1720 #define FLUSHING_CACHED_CHARGE 0 1721 }; 1722 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); 1723 static DEFINE_MUTEX(percpu_charge_mutex); 1724 1725 /** 1726 * consume_stock: Try to consume stocked charge on this cpu. 1727 * @memcg: memcg to consume from. 1728 * @nr_pages: how many pages to charge. 1729 * 1730 * The charges will only happen if @memcg matches the current cpu's memcg 1731 * stock, and at least @nr_pages are available in that stock. Failure to 1732 * service an allocation will refill the stock. 1733 * 1734 * returns true if successful, false otherwise. 1735 */ 1736 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 1737 { 1738 struct memcg_stock_pcp *stock; 1739 unsigned long flags; 1740 bool ret = false; 1741 1742 if (nr_pages > CHARGE_BATCH) 1743 return ret; 1744 1745 local_irq_save(flags); 1746 1747 stock = this_cpu_ptr(&memcg_stock); 1748 if (memcg == stock->cached && stock->nr_pages >= nr_pages) { 1749 stock->nr_pages -= nr_pages; 1750 ret = true; 1751 } 1752 1753 local_irq_restore(flags); 1754 1755 return ret; 1756 } 1757 1758 /* 1759 * Returns stocks cached in percpu and reset cached information. 1760 */ 1761 static void drain_stock(struct memcg_stock_pcp *stock) 1762 { 1763 struct mem_cgroup *old = stock->cached; 1764 1765 if (stock->nr_pages) { 1766 page_counter_uncharge(&old->memory, stock->nr_pages); 1767 if (do_memsw_account()) 1768 page_counter_uncharge(&old->memsw, stock->nr_pages); 1769 css_put_many(&old->css, stock->nr_pages); 1770 stock->nr_pages = 0; 1771 } 1772 stock->cached = NULL; 1773 } 1774 1775 static void drain_local_stock(struct work_struct *dummy) 1776 { 1777 struct memcg_stock_pcp *stock; 1778 unsigned long flags; 1779 1780 /* 1781 * The only protection from memory hotplug vs. drain_stock races is 1782 * that we always operate on local CPU stock here with IRQ disabled 1783 */ 1784 local_irq_save(flags); 1785 1786 stock = this_cpu_ptr(&memcg_stock); 1787 drain_stock(stock); 1788 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 1789 1790 local_irq_restore(flags); 1791 } 1792 1793 /* 1794 * Cache charges(val) to local per_cpu area. 1795 * This will be consumed by consume_stock() function, later. 1796 */ 1797 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 1798 { 1799 struct memcg_stock_pcp *stock; 1800 unsigned long flags; 1801 1802 local_irq_save(flags); 1803 1804 stock = this_cpu_ptr(&memcg_stock); 1805 if (stock->cached != memcg) { /* reset if necessary */ 1806 drain_stock(stock); 1807 stock->cached = memcg; 1808 } 1809 stock->nr_pages += nr_pages; 1810 1811 if (stock->nr_pages > CHARGE_BATCH) 1812 drain_stock(stock); 1813 1814 local_irq_restore(flags); 1815 } 1816 1817 /* 1818 * Drains all per-CPU charge caches for given root_memcg resp. subtree 1819 * of the hierarchy under it. 1820 */ 1821 static void drain_all_stock(struct mem_cgroup *root_memcg) 1822 { 1823 int cpu, curcpu; 1824 1825 /* If someone's already draining, avoid adding running more workers. */ 1826 if (!mutex_trylock(&percpu_charge_mutex)) 1827 return; 1828 /* 1829 * Notify other cpus that system-wide "drain" is running 1830 * We do not care about races with the cpu hotplug because cpu down 1831 * as well as workers from this path always operate on the local 1832 * per-cpu data. CPU up doesn't touch memcg_stock at all. 1833 */ 1834 curcpu = get_cpu(); 1835 for_each_online_cpu(cpu) { 1836 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 1837 struct mem_cgroup *memcg; 1838 1839 memcg = stock->cached; 1840 if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css)) 1841 continue; 1842 if (!mem_cgroup_is_descendant(memcg, root_memcg)) { 1843 css_put(&memcg->css); 1844 continue; 1845 } 1846 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 1847 if (cpu == curcpu) 1848 drain_local_stock(&stock->work); 1849 else 1850 schedule_work_on(cpu, &stock->work); 1851 } 1852 css_put(&memcg->css); 1853 } 1854 put_cpu(); 1855 mutex_unlock(&percpu_charge_mutex); 1856 } 1857 1858 static int memcg_hotplug_cpu_dead(unsigned int cpu) 1859 { 1860 struct memcg_stock_pcp *stock; 1861 1862 stock = &per_cpu(memcg_stock, cpu); 1863 drain_stock(stock); 1864 return 0; 1865 } 1866 1867 static void reclaim_high(struct mem_cgroup *memcg, 1868 unsigned int nr_pages, 1869 gfp_t gfp_mask) 1870 { 1871 do { 1872 if (page_counter_read(&memcg->memory) <= memcg->high) 1873 continue; 1874 mem_cgroup_event(memcg, MEMCG_HIGH); 1875 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true); 1876 } while ((memcg = parent_mem_cgroup(memcg))); 1877 } 1878 1879 static void high_work_func(struct work_struct *work) 1880 { 1881 struct mem_cgroup *memcg; 1882 1883 memcg = container_of(work, struct mem_cgroup, high_work); 1884 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL); 1885 } 1886 1887 /* 1888 * Scheduled by try_charge() to be executed from the userland return path 1889 * and reclaims memory over the high limit. 1890 */ 1891 void mem_cgroup_handle_over_high(void) 1892 { 1893 unsigned int nr_pages = current->memcg_nr_pages_over_high; 1894 struct mem_cgroup *memcg; 1895 1896 if (likely(!nr_pages)) 1897 return; 1898 1899 memcg = get_mem_cgroup_from_mm(current->mm); 1900 reclaim_high(memcg, nr_pages, GFP_KERNEL); 1901 css_put(&memcg->css); 1902 current->memcg_nr_pages_over_high = 0; 1903 } 1904 1905 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 1906 unsigned int nr_pages) 1907 { 1908 unsigned int batch = max(CHARGE_BATCH, nr_pages); 1909 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 1910 struct mem_cgroup *mem_over_limit; 1911 struct page_counter *counter; 1912 unsigned long nr_reclaimed; 1913 bool may_swap = true; 1914 bool drained = false; 1915 1916 if (mem_cgroup_is_root(memcg)) 1917 return 0; 1918 retry: 1919 if (consume_stock(memcg, nr_pages)) 1920 return 0; 1921 1922 if (!do_memsw_account() || 1923 page_counter_try_charge(&memcg->memsw, batch, &counter)) { 1924 if (page_counter_try_charge(&memcg->memory, batch, &counter)) 1925 goto done_restock; 1926 if (do_memsw_account()) 1927 page_counter_uncharge(&memcg->memsw, batch); 1928 mem_over_limit = mem_cgroup_from_counter(counter, memory); 1929 } else { 1930 mem_over_limit = mem_cgroup_from_counter(counter, memsw); 1931 may_swap = false; 1932 } 1933 1934 if (batch > nr_pages) { 1935 batch = nr_pages; 1936 goto retry; 1937 } 1938 1939 /* 1940 * Unlike in global OOM situations, memcg is not in a physical 1941 * memory shortage. Allow dying and OOM-killed tasks to 1942 * bypass the last charges so that they can exit quickly and 1943 * free their memory. 1944 */ 1945 if (unlikely(tsk_is_oom_victim(current) || 1946 fatal_signal_pending(current) || 1947 current->flags & PF_EXITING)) 1948 goto force; 1949 1950 /* 1951 * Prevent unbounded recursion when reclaim operations need to 1952 * allocate memory. This might exceed the limits temporarily, 1953 * but we prefer facilitating memory reclaim and getting back 1954 * under the limit over triggering OOM kills in these cases. 1955 */ 1956 if (unlikely(current->flags & PF_MEMALLOC)) 1957 goto force; 1958 1959 if (unlikely(task_in_memcg_oom(current))) 1960 goto nomem; 1961 1962 if (!gfpflags_allow_blocking(gfp_mask)) 1963 goto nomem; 1964 1965 mem_cgroup_event(mem_over_limit, MEMCG_MAX); 1966 1967 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, 1968 gfp_mask, may_swap); 1969 1970 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 1971 goto retry; 1972 1973 if (!drained) { 1974 drain_all_stock(mem_over_limit); 1975 drained = true; 1976 goto retry; 1977 } 1978 1979 if (gfp_mask & __GFP_NORETRY) 1980 goto nomem; 1981 /* 1982 * Even though the limit is exceeded at this point, reclaim 1983 * may have been able to free some pages. Retry the charge 1984 * before killing the task. 1985 * 1986 * Only for regular pages, though: huge pages are rather 1987 * unlikely to succeed so close to the limit, and we fall back 1988 * to regular pages anyway in case of failure. 1989 */ 1990 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) 1991 goto retry; 1992 /* 1993 * At task move, charge accounts can be doubly counted. So, it's 1994 * better to wait until the end of task_move if something is going on. 1995 */ 1996 if (mem_cgroup_wait_acct_move(mem_over_limit)) 1997 goto retry; 1998 1999 if (nr_retries--) 2000 goto retry; 2001 2002 if (gfp_mask & __GFP_NOFAIL) 2003 goto force; 2004 2005 if (fatal_signal_pending(current)) 2006 goto force; 2007 2008 mem_cgroup_event(mem_over_limit, MEMCG_OOM); 2009 2010 mem_cgroup_oom(mem_over_limit, gfp_mask, 2011 get_order(nr_pages * PAGE_SIZE)); 2012 nomem: 2013 if (!(gfp_mask & __GFP_NOFAIL)) 2014 return -ENOMEM; 2015 force: 2016 /* 2017 * The allocation either can't fail or will lead to more memory 2018 * being freed very soon. Allow memory usage go over the limit 2019 * temporarily by force charging it. 2020 */ 2021 page_counter_charge(&memcg->memory, nr_pages); 2022 if (do_memsw_account()) 2023 page_counter_charge(&memcg->memsw, nr_pages); 2024 css_get_many(&memcg->css, nr_pages); 2025 2026 return 0; 2027 2028 done_restock: 2029 css_get_many(&memcg->css, batch); 2030 if (batch > nr_pages) 2031 refill_stock(memcg, batch - nr_pages); 2032 2033 /* 2034 * If the hierarchy is above the normal consumption range, schedule 2035 * reclaim on returning to userland. We can perform reclaim here 2036 * if __GFP_RECLAIM but let's always punt for simplicity and so that 2037 * GFP_KERNEL can consistently be used during reclaim. @memcg is 2038 * not recorded as it most likely matches current's and won't 2039 * change in the meantime. As high limit is checked again before 2040 * reclaim, the cost of mismatch is negligible. 2041 */ 2042 do { 2043 if (page_counter_read(&memcg->memory) > memcg->high) { 2044 /* Don't bother a random interrupted task */ 2045 if (in_interrupt()) { 2046 schedule_work(&memcg->high_work); 2047 break; 2048 } 2049 current->memcg_nr_pages_over_high += batch; 2050 set_notify_resume(current); 2051 break; 2052 } 2053 } while ((memcg = parent_mem_cgroup(memcg))); 2054 2055 return 0; 2056 } 2057 2058 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages) 2059 { 2060 if (mem_cgroup_is_root(memcg)) 2061 return; 2062 2063 page_counter_uncharge(&memcg->memory, nr_pages); 2064 if (do_memsw_account()) 2065 page_counter_uncharge(&memcg->memsw, nr_pages); 2066 2067 css_put_many(&memcg->css, nr_pages); 2068 } 2069 2070 static void lock_page_lru(struct page *page, int *isolated) 2071 { 2072 struct zone *zone = page_zone(page); 2073 2074 spin_lock_irq(zone_lru_lock(zone)); 2075 if (PageLRU(page)) { 2076 struct lruvec *lruvec; 2077 2078 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat); 2079 ClearPageLRU(page); 2080 del_page_from_lru_list(page, lruvec, page_lru(page)); 2081 *isolated = 1; 2082 } else 2083 *isolated = 0; 2084 } 2085 2086 static void unlock_page_lru(struct page *page, int isolated) 2087 { 2088 struct zone *zone = page_zone(page); 2089 2090 if (isolated) { 2091 struct lruvec *lruvec; 2092 2093 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat); 2094 VM_BUG_ON_PAGE(PageLRU(page), page); 2095 SetPageLRU(page); 2096 add_page_to_lru_list(page, lruvec, page_lru(page)); 2097 } 2098 spin_unlock_irq(zone_lru_lock(zone)); 2099 } 2100 2101 static void commit_charge(struct page *page, struct mem_cgroup *memcg, 2102 bool lrucare) 2103 { 2104 int isolated; 2105 2106 VM_BUG_ON_PAGE(page->mem_cgroup, page); 2107 2108 /* 2109 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page 2110 * may already be on some other mem_cgroup's LRU. Take care of it. 2111 */ 2112 if (lrucare) 2113 lock_page_lru(page, &isolated); 2114 2115 /* 2116 * Nobody should be changing or seriously looking at 2117 * page->mem_cgroup at this point: 2118 * 2119 * - the page is uncharged 2120 * 2121 * - the page is off-LRU 2122 * 2123 * - an anonymous fault has exclusive page access, except for 2124 * a locked page table 2125 * 2126 * - a page cache insertion, a swapin fault, or a migration 2127 * have the page locked 2128 */ 2129 page->mem_cgroup = memcg; 2130 2131 if (lrucare) 2132 unlock_page_lru(page, isolated); 2133 } 2134 2135 #ifndef CONFIG_SLOB 2136 static int memcg_alloc_cache_id(void) 2137 { 2138 int id, size; 2139 int err; 2140 2141 id = ida_simple_get(&memcg_cache_ida, 2142 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL); 2143 if (id < 0) 2144 return id; 2145 2146 if (id < memcg_nr_cache_ids) 2147 return id; 2148 2149 /* 2150 * There's no space for the new id in memcg_caches arrays, 2151 * so we have to grow them. 2152 */ 2153 down_write(&memcg_cache_ids_sem); 2154 2155 size = 2 * (id + 1); 2156 if (size < MEMCG_CACHES_MIN_SIZE) 2157 size = MEMCG_CACHES_MIN_SIZE; 2158 else if (size > MEMCG_CACHES_MAX_SIZE) 2159 size = MEMCG_CACHES_MAX_SIZE; 2160 2161 err = memcg_update_all_caches(size); 2162 if (!err) 2163 err = memcg_update_all_list_lrus(size); 2164 if (!err) 2165 memcg_nr_cache_ids = size; 2166 2167 up_write(&memcg_cache_ids_sem); 2168 2169 if (err) { 2170 ida_simple_remove(&memcg_cache_ida, id); 2171 return err; 2172 } 2173 return id; 2174 } 2175 2176 static void memcg_free_cache_id(int id) 2177 { 2178 ida_simple_remove(&memcg_cache_ida, id); 2179 } 2180 2181 struct memcg_kmem_cache_create_work { 2182 struct mem_cgroup *memcg; 2183 struct kmem_cache *cachep; 2184 struct work_struct work; 2185 }; 2186 2187 static void memcg_kmem_cache_create_func(struct work_struct *w) 2188 { 2189 struct memcg_kmem_cache_create_work *cw = 2190 container_of(w, struct memcg_kmem_cache_create_work, work); 2191 struct mem_cgroup *memcg = cw->memcg; 2192 struct kmem_cache *cachep = cw->cachep; 2193 2194 memcg_create_kmem_cache(memcg, cachep); 2195 2196 css_put(&memcg->css); 2197 kfree(cw); 2198 } 2199 2200 /* 2201 * Enqueue the creation of a per-memcg kmem_cache. 2202 */ 2203 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg, 2204 struct kmem_cache *cachep) 2205 { 2206 struct memcg_kmem_cache_create_work *cw; 2207 2208 cw = kmalloc(sizeof(*cw), GFP_NOWAIT); 2209 if (!cw) 2210 return; 2211 2212 css_get(&memcg->css); 2213 2214 cw->memcg = memcg; 2215 cw->cachep = cachep; 2216 INIT_WORK(&cw->work, memcg_kmem_cache_create_func); 2217 2218 queue_work(memcg_kmem_cache_wq, &cw->work); 2219 } 2220 2221 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg, 2222 struct kmem_cache *cachep) 2223 { 2224 /* 2225 * We need to stop accounting when we kmalloc, because if the 2226 * corresponding kmalloc cache is not yet created, the first allocation 2227 * in __memcg_schedule_kmem_cache_create will recurse. 2228 * 2229 * However, it is better to enclose the whole function. Depending on 2230 * the debugging options enabled, INIT_WORK(), for instance, can 2231 * trigger an allocation. This too, will make us recurse. Because at 2232 * this point we can't allow ourselves back into memcg_kmem_get_cache, 2233 * the safest choice is to do it like this, wrapping the whole function. 2234 */ 2235 current->memcg_kmem_skip_account = 1; 2236 __memcg_schedule_kmem_cache_create(memcg, cachep); 2237 current->memcg_kmem_skip_account = 0; 2238 } 2239 2240 static inline bool memcg_kmem_bypass(void) 2241 { 2242 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD)) 2243 return true; 2244 return false; 2245 } 2246 2247 /** 2248 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation 2249 * @cachep: the original global kmem cache 2250 * 2251 * Return the kmem_cache we're supposed to use for a slab allocation. 2252 * We try to use the current memcg's version of the cache. 2253 * 2254 * If the cache does not exist yet, if we are the first user of it, we 2255 * create it asynchronously in a workqueue and let the current allocation 2256 * go through with the original cache. 2257 * 2258 * This function takes a reference to the cache it returns to assure it 2259 * won't get destroyed while we are working with it. Once the caller is 2260 * done with it, memcg_kmem_put_cache() must be called to release the 2261 * reference. 2262 */ 2263 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep) 2264 { 2265 struct mem_cgroup *memcg; 2266 struct kmem_cache *memcg_cachep; 2267 int kmemcg_id; 2268 2269 VM_BUG_ON(!is_root_cache(cachep)); 2270 2271 if (memcg_kmem_bypass()) 2272 return cachep; 2273 2274 if (current->memcg_kmem_skip_account) 2275 return cachep; 2276 2277 memcg = get_mem_cgroup_from_mm(current->mm); 2278 kmemcg_id = READ_ONCE(memcg->kmemcg_id); 2279 if (kmemcg_id < 0) 2280 goto out; 2281 2282 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id); 2283 if (likely(memcg_cachep)) 2284 return memcg_cachep; 2285 2286 /* 2287 * If we are in a safe context (can wait, and not in interrupt 2288 * context), we could be be predictable and return right away. 2289 * This would guarantee that the allocation being performed 2290 * already belongs in the new cache. 2291 * 2292 * However, there are some clashes that can arrive from locking. 2293 * For instance, because we acquire the slab_mutex while doing 2294 * memcg_create_kmem_cache, this means no further allocation 2295 * could happen with the slab_mutex held. So it's better to 2296 * defer everything. 2297 */ 2298 memcg_schedule_kmem_cache_create(memcg, cachep); 2299 out: 2300 css_put(&memcg->css); 2301 return cachep; 2302 } 2303 2304 /** 2305 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache 2306 * @cachep: the cache returned by memcg_kmem_get_cache 2307 */ 2308 void memcg_kmem_put_cache(struct kmem_cache *cachep) 2309 { 2310 if (!is_root_cache(cachep)) 2311 css_put(&cachep->memcg_params.memcg->css); 2312 } 2313 2314 /** 2315 * memcg_kmem_charge: charge a kmem page 2316 * @page: page to charge 2317 * @gfp: reclaim mode 2318 * @order: allocation order 2319 * @memcg: memory cgroup to charge 2320 * 2321 * Returns 0 on success, an error code on failure. 2322 */ 2323 int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order, 2324 struct mem_cgroup *memcg) 2325 { 2326 unsigned int nr_pages = 1 << order; 2327 struct page_counter *counter; 2328 int ret; 2329 2330 ret = try_charge(memcg, gfp, nr_pages); 2331 if (ret) 2332 return ret; 2333 2334 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && 2335 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) { 2336 cancel_charge(memcg, nr_pages); 2337 return -ENOMEM; 2338 } 2339 2340 page->mem_cgroup = memcg; 2341 2342 return 0; 2343 } 2344 2345 /** 2346 * memcg_kmem_charge: charge a kmem page to the current memory cgroup 2347 * @page: page to charge 2348 * @gfp: reclaim mode 2349 * @order: allocation order 2350 * 2351 * Returns 0 on success, an error code on failure. 2352 */ 2353 int memcg_kmem_charge(struct page *page, gfp_t gfp, int order) 2354 { 2355 struct mem_cgroup *memcg; 2356 int ret = 0; 2357 2358 if (memcg_kmem_bypass()) 2359 return 0; 2360 2361 memcg = get_mem_cgroup_from_mm(current->mm); 2362 if (!mem_cgroup_is_root(memcg)) { 2363 ret = memcg_kmem_charge_memcg(page, gfp, order, memcg); 2364 if (!ret) 2365 __SetPageKmemcg(page); 2366 } 2367 css_put(&memcg->css); 2368 return ret; 2369 } 2370 /** 2371 * memcg_kmem_uncharge: uncharge a kmem page 2372 * @page: page to uncharge 2373 * @order: allocation order 2374 */ 2375 void memcg_kmem_uncharge(struct page *page, int order) 2376 { 2377 struct mem_cgroup *memcg = page->mem_cgroup; 2378 unsigned int nr_pages = 1 << order; 2379 2380 if (!memcg) 2381 return; 2382 2383 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page); 2384 2385 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 2386 page_counter_uncharge(&memcg->kmem, nr_pages); 2387 2388 page_counter_uncharge(&memcg->memory, nr_pages); 2389 if (do_memsw_account()) 2390 page_counter_uncharge(&memcg->memsw, nr_pages); 2391 2392 page->mem_cgroup = NULL; 2393 2394 /* slab pages do not have PageKmemcg flag set */ 2395 if (PageKmemcg(page)) 2396 __ClearPageKmemcg(page); 2397 2398 css_put_many(&memcg->css, nr_pages); 2399 } 2400 #endif /* !CONFIG_SLOB */ 2401 2402 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2403 2404 /* 2405 * Because tail pages are not marked as "used", set it. We're under 2406 * zone_lru_lock and migration entries setup in all page mappings. 2407 */ 2408 void mem_cgroup_split_huge_fixup(struct page *head) 2409 { 2410 int i; 2411 2412 if (mem_cgroup_disabled()) 2413 return; 2414 2415 for (i = 1; i < HPAGE_PMD_NR; i++) 2416 head[i].mem_cgroup = head->mem_cgroup; 2417 2418 __this_cpu_sub(head->mem_cgroup->stat->count[MEMCG_RSS_HUGE], 2419 HPAGE_PMD_NR); 2420 } 2421 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 2422 2423 #ifdef CONFIG_MEMCG_SWAP 2424 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg, 2425 int nr_entries) 2426 { 2427 this_cpu_add(memcg->stat->count[MEMCG_SWAP], nr_entries); 2428 } 2429 2430 /** 2431 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 2432 * @entry: swap entry to be moved 2433 * @from: mem_cgroup which the entry is moved from 2434 * @to: mem_cgroup which the entry is moved to 2435 * 2436 * It succeeds only when the swap_cgroup's record for this entry is the same 2437 * as the mem_cgroup's id of @from. 2438 * 2439 * Returns 0 on success, -EINVAL on failure. 2440 * 2441 * The caller must have charged to @to, IOW, called page_counter_charge() about 2442 * both res and memsw, and called css_get(). 2443 */ 2444 static int mem_cgroup_move_swap_account(swp_entry_t entry, 2445 struct mem_cgroup *from, struct mem_cgroup *to) 2446 { 2447 unsigned short old_id, new_id; 2448 2449 old_id = mem_cgroup_id(from); 2450 new_id = mem_cgroup_id(to); 2451 2452 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 2453 mem_cgroup_swap_statistics(from, -1); 2454 mem_cgroup_swap_statistics(to, 1); 2455 return 0; 2456 } 2457 return -EINVAL; 2458 } 2459 #else 2460 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 2461 struct mem_cgroup *from, struct mem_cgroup *to) 2462 { 2463 return -EINVAL; 2464 } 2465 #endif 2466 2467 static DEFINE_MUTEX(memcg_limit_mutex); 2468 2469 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg, 2470 unsigned long limit) 2471 { 2472 unsigned long curusage; 2473 unsigned long oldusage; 2474 bool enlarge = false; 2475 int retry_count; 2476 int ret; 2477 2478 /* 2479 * For keeping hierarchical_reclaim simple, how long we should retry 2480 * is depends on callers. We set our retry-count to be function 2481 * of # of children which we should visit in this loop. 2482 */ 2483 retry_count = MEM_CGROUP_RECLAIM_RETRIES * 2484 mem_cgroup_count_children(memcg); 2485 2486 oldusage = page_counter_read(&memcg->memory); 2487 2488 do { 2489 if (signal_pending(current)) { 2490 ret = -EINTR; 2491 break; 2492 } 2493 2494 mutex_lock(&memcg_limit_mutex); 2495 if (limit > memcg->memsw.limit) { 2496 mutex_unlock(&memcg_limit_mutex); 2497 ret = -EINVAL; 2498 break; 2499 } 2500 if (limit > memcg->memory.limit) 2501 enlarge = true; 2502 ret = page_counter_limit(&memcg->memory, limit); 2503 mutex_unlock(&memcg_limit_mutex); 2504 2505 if (!ret) 2506 break; 2507 2508 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true); 2509 2510 curusage = page_counter_read(&memcg->memory); 2511 /* Usage is reduced ? */ 2512 if (curusage >= oldusage) 2513 retry_count--; 2514 else 2515 oldusage = curusage; 2516 } while (retry_count); 2517 2518 if (!ret && enlarge) 2519 memcg_oom_recover(memcg); 2520 2521 return ret; 2522 } 2523 2524 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg, 2525 unsigned long limit) 2526 { 2527 unsigned long curusage; 2528 unsigned long oldusage; 2529 bool enlarge = false; 2530 int retry_count; 2531 int ret; 2532 2533 /* see mem_cgroup_resize_res_limit */ 2534 retry_count = MEM_CGROUP_RECLAIM_RETRIES * 2535 mem_cgroup_count_children(memcg); 2536 2537 oldusage = page_counter_read(&memcg->memsw); 2538 2539 do { 2540 if (signal_pending(current)) { 2541 ret = -EINTR; 2542 break; 2543 } 2544 2545 mutex_lock(&memcg_limit_mutex); 2546 if (limit < memcg->memory.limit) { 2547 mutex_unlock(&memcg_limit_mutex); 2548 ret = -EINVAL; 2549 break; 2550 } 2551 if (limit > memcg->memsw.limit) 2552 enlarge = true; 2553 ret = page_counter_limit(&memcg->memsw, limit); 2554 mutex_unlock(&memcg_limit_mutex); 2555 2556 if (!ret) 2557 break; 2558 2559 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false); 2560 2561 curusage = page_counter_read(&memcg->memsw); 2562 /* Usage is reduced ? */ 2563 if (curusage >= oldusage) 2564 retry_count--; 2565 else 2566 oldusage = curusage; 2567 } while (retry_count); 2568 2569 if (!ret && enlarge) 2570 memcg_oom_recover(memcg); 2571 2572 return ret; 2573 } 2574 2575 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 2576 gfp_t gfp_mask, 2577 unsigned long *total_scanned) 2578 { 2579 unsigned long nr_reclaimed = 0; 2580 struct mem_cgroup_per_node *mz, *next_mz = NULL; 2581 unsigned long reclaimed; 2582 int loop = 0; 2583 struct mem_cgroup_tree_per_node *mctz; 2584 unsigned long excess; 2585 unsigned long nr_scanned; 2586 2587 if (order > 0) 2588 return 0; 2589 2590 mctz = soft_limit_tree_node(pgdat->node_id); 2591 2592 /* 2593 * Do not even bother to check the largest node if the root 2594 * is empty. Do it lockless to prevent lock bouncing. Races 2595 * are acceptable as soft limit is best effort anyway. 2596 */ 2597 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root)) 2598 return 0; 2599 2600 /* 2601 * This loop can run a while, specially if mem_cgroup's continuously 2602 * keep exceeding their soft limit and putting the system under 2603 * pressure 2604 */ 2605 do { 2606 if (next_mz) 2607 mz = next_mz; 2608 else 2609 mz = mem_cgroup_largest_soft_limit_node(mctz); 2610 if (!mz) 2611 break; 2612 2613 nr_scanned = 0; 2614 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat, 2615 gfp_mask, &nr_scanned); 2616 nr_reclaimed += reclaimed; 2617 *total_scanned += nr_scanned; 2618 spin_lock_irq(&mctz->lock); 2619 __mem_cgroup_remove_exceeded(mz, mctz); 2620 2621 /* 2622 * If we failed to reclaim anything from this memory cgroup 2623 * it is time to move on to the next cgroup 2624 */ 2625 next_mz = NULL; 2626 if (!reclaimed) 2627 next_mz = __mem_cgroup_largest_soft_limit_node(mctz); 2628 2629 excess = soft_limit_excess(mz->memcg); 2630 /* 2631 * One school of thought says that we should not add 2632 * back the node to the tree if reclaim returns 0. 2633 * But our reclaim could return 0, simply because due 2634 * to priority we are exposing a smaller subset of 2635 * memory to reclaim from. Consider this as a longer 2636 * term TODO. 2637 */ 2638 /* If excess == 0, no tree ops */ 2639 __mem_cgroup_insert_exceeded(mz, mctz, excess); 2640 spin_unlock_irq(&mctz->lock); 2641 css_put(&mz->memcg->css); 2642 loop++; 2643 /* 2644 * Could not reclaim anything and there are no more 2645 * mem cgroups to try or we seem to be looping without 2646 * reclaiming anything. 2647 */ 2648 if (!nr_reclaimed && 2649 (next_mz == NULL || 2650 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 2651 break; 2652 } while (!nr_reclaimed); 2653 if (next_mz) 2654 css_put(&next_mz->memcg->css); 2655 return nr_reclaimed; 2656 } 2657 2658 /* 2659 * Test whether @memcg has children, dead or alive. Note that this 2660 * function doesn't care whether @memcg has use_hierarchy enabled and 2661 * returns %true if there are child csses according to the cgroup 2662 * hierarchy. Testing use_hierarchy is the caller's responsiblity. 2663 */ 2664 static inline bool memcg_has_children(struct mem_cgroup *memcg) 2665 { 2666 bool ret; 2667 2668 rcu_read_lock(); 2669 ret = css_next_child(NULL, &memcg->css); 2670 rcu_read_unlock(); 2671 return ret; 2672 } 2673 2674 /* 2675 * Reclaims as many pages from the given memcg as possible. 2676 * 2677 * Caller is responsible for holding css reference for memcg. 2678 */ 2679 static int mem_cgroup_force_empty(struct mem_cgroup *memcg) 2680 { 2681 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 2682 2683 /* we call try-to-free pages for make this cgroup empty */ 2684 lru_add_drain_all(); 2685 /* try to free all pages in this cgroup */ 2686 while (nr_retries && page_counter_read(&memcg->memory)) { 2687 int progress; 2688 2689 if (signal_pending(current)) 2690 return -EINTR; 2691 2692 progress = try_to_free_mem_cgroup_pages(memcg, 1, 2693 GFP_KERNEL, true); 2694 if (!progress) { 2695 nr_retries--; 2696 /* maybe some writeback is necessary */ 2697 congestion_wait(BLK_RW_ASYNC, HZ/10); 2698 } 2699 2700 } 2701 2702 return 0; 2703 } 2704 2705 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of, 2706 char *buf, size_t nbytes, 2707 loff_t off) 2708 { 2709 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 2710 2711 if (mem_cgroup_is_root(memcg)) 2712 return -EINVAL; 2713 return mem_cgroup_force_empty(memcg) ?: nbytes; 2714 } 2715 2716 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, 2717 struct cftype *cft) 2718 { 2719 return mem_cgroup_from_css(css)->use_hierarchy; 2720 } 2721 2722 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, 2723 struct cftype *cft, u64 val) 2724 { 2725 int retval = 0; 2726 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 2727 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent); 2728 2729 if (memcg->use_hierarchy == val) 2730 return 0; 2731 2732 /* 2733 * If parent's use_hierarchy is set, we can't make any modifications 2734 * in the child subtrees. If it is unset, then the change can 2735 * occur, provided the current cgroup has no children. 2736 * 2737 * For the root cgroup, parent_mem is NULL, we allow value to be 2738 * set if there are no children. 2739 */ 2740 if ((!parent_memcg || !parent_memcg->use_hierarchy) && 2741 (val == 1 || val == 0)) { 2742 if (!memcg_has_children(memcg)) 2743 memcg->use_hierarchy = val; 2744 else 2745 retval = -EBUSY; 2746 } else 2747 retval = -EINVAL; 2748 2749 return retval; 2750 } 2751 2752 static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat) 2753 { 2754 struct mem_cgroup *iter; 2755 int i; 2756 2757 memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT); 2758 2759 for_each_mem_cgroup_tree(iter, memcg) { 2760 for (i = 0; i < MEMCG_NR_STAT; i++) 2761 stat[i] += memcg_page_state(iter, i); 2762 } 2763 } 2764 2765 static void tree_events(struct mem_cgroup *memcg, unsigned long *events) 2766 { 2767 struct mem_cgroup *iter; 2768 int i; 2769 2770 memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS); 2771 2772 for_each_mem_cgroup_tree(iter, memcg) { 2773 for (i = 0; i < MEMCG_NR_EVENTS; i++) 2774 events[i] += memcg_sum_events(iter, i); 2775 } 2776 } 2777 2778 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 2779 { 2780 unsigned long val = 0; 2781 2782 if (mem_cgroup_is_root(memcg)) { 2783 struct mem_cgroup *iter; 2784 2785 for_each_mem_cgroup_tree(iter, memcg) { 2786 val += memcg_page_state(iter, MEMCG_CACHE); 2787 val += memcg_page_state(iter, MEMCG_RSS); 2788 if (swap) 2789 val += memcg_page_state(iter, MEMCG_SWAP); 2790 } 2791 } else { 2792 if (!swap) 2793 val = page_counter_read(&memcg->memory); 2794 else 2795 val = page_counter_read(&memcg->memsw); 2796 } 2797 return val; 2798 } 2799 2800 enum { 2801 RES_USAGE, 2802 RES_LIMIT, 2803 RES_MAX_USAGE, 2804 RES_FAILCNT, 2805 RES_SOFT_LIMIT, 2806 }; 2807 2808 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css, 2809 struct cftype *cft) 2810 { 2811 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 2812 struct page_counter *counter; 2813 2814 switch (MEMFILE_TYPE(cft->private)) { 2815 case _MEM: 2816 counter = &memcg->memory; 2817 break; 2818 case _MEMSWAP: 2819 counter = &memcg->memsw; 2820 break; 2821 case _KMEM: 2822 counter = &memcg->kmem; 2823 break; 2824 case _TCP: 2825 counter = &memcg->tcpmem; 2826 break; 2827 default: 2828 BUG(); 2829 } 2830 2831 switch (MEMFILE_ATTR(cft->private)) { 2832 case RES_USAGE: 2833 if (counter == &memcg->memory) 2834 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE; 2835 if (counter == &memcg->memsw) 2836 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE; 2837 return (u64)page_counter_read(counter) * PAGE_SIZE; 2838 case RES_LIMIT: 2839 return (u64)counter->limit * PAGE_SIZE; 2840 case RES_MAX_USAGE: 2841 return (u64)counter->watermark * PAGE_SIZE; 2842 case RES_FAILCNT: 2843 return counter->failcnt; 2844 case RES_SOFT_LIMIT: 2845 return (u64)memcg->soft_limit * PAGE_SIZE; 2846 default: 2847 BUG(); 2848 } 2849 } 2850 2851 #ifndef CONFIG_SLOB 2852 static int memcg_online_kmem(struct mem_cgroup *memcg) 2853 { 2854 int memcg_id; 2855 2856 if (cgroup_memory_nokmem) 2857 return 0; 2858 2859 BUG_ON(memcg->kmemcg_id >= 0); 2860 BUG_ON(memcg->kmem_state); 2861 2862 memcg_id = memcg_alloc_cache_id(); 2863 if (memcg_id < 0) 2864 return memcg_id; 2865 2866 static_branch_inc(&memcg_kmem_enabled_key); 2867 /* 2868 * A memory cgroup is considered kmem-online as soon as it gets 2869 * kmemcg_id. Setting the id after enabling static branching will 2870 * guarantee no one starts accounting before all call sites are 2871 * patched. 2872 */ 2873 memcg->kmemcg_id = memcg_id; 2874 memcg->kmem_state = KMEM_ONLINE; 2875 INIT_LIST_HEAD(&memcg->kmem_caches); 2876 2877 return 0; 2878 } 2879 2880 static void memcg_offline_kmem(struct mem_cgroup *memcg) 2881 { 2882 struct cgroup_subsys_state *css; 2883 struct mem_cgroup *parent, *child; 2884 int kmemcg_id; 2885 2886 if (memcg->kmem_state != KMEM_ONLINE) 2887 return; 2888 /* 2889 * Clear the online state before clearing memcg_caches array 2890 * entries. The slab_mutex in memcg_deactivate_kmem_caches() 2891 * guarantees that no cache will be created for this cgroup 2892 * after we are done (see memcg_create_kmem_cache()). 2893 */ 2894 memcg->kmem_state = KMEM_ALLOCATED; 2895 2896 memcg_deactivate_kmem_caches(memcg); 2897 2898 kmemcg_id = memcg->kmemcg_id; 2899 BUG_ON(kmemcg_id < 0); 2900 2901 parent = parent_mem_cgroup(memcg); 2902 if (!parent) 2903 parent = root_mem_cgroup; 2904 2905 /* 2906 * Change kmemcg_id of this cgroup and all its descendants to the 2907 * parent's id, and then move all entries from this cgroup's list_lrus 2908 * to ones of the parent. After we have finished, all list_lrus 2909 * corresponding to this cgroup are guaranteed to remain empty. The 2910 * ordering is imposed by list_lru_node->lock taken by 2911 * memcg_drain_all_list_lrus(). 2912 */ 2913 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */ 2914 css_for_each_descendant_pre(css, &memcg->css) { 2915 child = mem_cgroup_from_css(css); 2916 BUG_ON(child->kmemcg_id != kmemcg_id); 2917 child->kmemcg_id = parent->kmemcg_id; 2918 if (!memcg->use_hierarchy) 2919 break; 2920 } 2921 rcu_read_unlock(); 2922 2923 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id); 2924 2925 memcg_free_cache_id(kmemcg_id); 2926 } 2927 2928 static void memcg_free_kmem(struct mem_cgroup *memcg) 2929 { 2930 /* css_alloc() failed, offlining didn't happen */ 2931 if (unlikely(memcg->kmem_state == KMEM_ONLINE)) 2932 memcg_offline_kmem(memcg); 2933 2934 if (memcg->kmem_state == KMEM_ALLOCATED) { 2935 memcg_destroy_kmem_caches(memcg); 2936 static_branch_dec(&memcg_kmem_enabled_key); 2937 WARN_ON(page_counter_read(&memcg->kmem)); 2938 } 2939 } 2940 #else 2941 static int memcg_online_kmem(struct mem_cgroup *memcg) 2942 { 2943 return 0; 2944 } 2945 static void memcg_offline_kmem(struct mem_cgroup *memcg) 2946 { 2947 } 2948 static void memcg_free_kmem(struct mem_cgroup *memcg) 2949 { 2950 } 2951 #endif /* !CONFIG_SLOB */ 2952 2953 static int memcg_update_kmem_limit(struct mem_cgroup *memcg, 2954 unsigned long limit) 2955 { 2956 int ret; 2957 2958 mutex_lock(&memcg_limit_mutex); 2959 ret = page_counter_limit(&memcg->kmem, limit); 2960 mutex_unlock(&memcg_limit_mutex); 2961 return ret; 2962 } 2963 2964 static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit) 2965 { 2966 int ret; 2967 2968 mutex_lock(&memcg_limit_mutex); 2969 2970 ret = page_counter_limit(&memcg->tcpmem, limit); 2971 if (ret) 2972 goto out; 2973 2974 if (!memcg->tcpmem_active) { 2975 /* 2976 * The active flag needs to be written after the static_key 2977 * update. This is what guarantees that the socket activation 2978 * function is the last one to run. See mem_cgroup_sk_alloc() 2979 * for details, and note that we don't mark any socket as 2980 * belonging to this memcg until that flag is up. 2981 * 2982 * We need to do this, because static_keys will span multiple 2983 * sites, but we can't control their order. If we mark a socket 2984 * as accounted, but the accounting functions are not patched in 2985 * yet, we'll lose accounting. 2986 * 2987 * We never race with the readers in mem_cgroup_sk_alloc(), 2988 * because when this value change, the code to process it is not 2989 * patched in yet. 2990 */ 2991 static_branch_inc(&memcg_sockets_enabled_key); 2992 memcg->tcpmem_active = true; 2993 } 2994 out: 2995 mutex_unlock(&memcg_limit_mutex); 2996 return ret; 2997 } 2998 2999 /* 3000 * The user of this function is... 3001 * RES_LIMIT. 3002 */ 3003 static ssize_t mem_cgroup_write(struct kernfs_open_file *of, 3004 char *buf, size_t nbytes, loff_t off) 3005 { 3006 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3007 unsigned long nr_pages; 3008 int ret; 3009 3010 buf = strstrip(buf); 3011 ret = page_counter_memparse(buf, "-1", &nr_pages); 3012 if (ret) 3013 return ret; 3014 3015 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3016 case RES_LIMIT: 3017 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 3018 ret = -EINVAL; 3019 break; 3020 } 3021 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3022 case _MEM: 3023 ret = mem_cgroup_resize_limit(memcg, nr_pages); 3024 break; 3025 case _MEMSWAP: 3026 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages); 3027 break; 3028 case _KMEM: 3029 ret = memcg_update_kmem_limit(memcg, nr_pages); 3030 break; 3031 case _TCP: 3032 ret = memcg_update_tcp_limit(memcg, nr_pages); 3033 break; 3034 } 3035 break; 3036 case RES_SOFT_LIMIT: 3037 memcg->soft_limit = nr_pages; 3038 ret = 0; 3039 break; 3040 } 3041 return ret ?: nbytes; 3042 } 3043 3044 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf, 3045 size_t nbytes, loff_t off) 3046 { 3047 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3048 struct page_counter *counter; 3049 3050 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3051 case _MEM: 3052 counter = &memcg->memory; 3053 break; 3054 case _MEMSWAP: 3055 counter = &memcg->memsw; 3056 break; 3057 case _KMEM: 3058 counter = &memcg->kmem; 3059 break; 3060 case _TCP: 3061 counter = &memcg->tcpmem; 3062 break; 3063 default: 3064 BUG(); 3065 } 3066 3067 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3068 case RES_MAX_USAGE: 3069 page_counter_reset_watermark(counter); 3070 break; 3071 case RES_FAILCNT: 3072 counter->failcnt = 0; 3073 break; 3074 default: 3075 BUG(); 3076 } 3077 3078 return nbytes; 3079 } 3080 3081 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, 3082 struct cftype *cft) 3083 { 3084 return mem_cgroup_from_css(css)->move_charge_at_immigrate; 3085 } 3086 3087 #ifdef CONFIG_MMU 3088 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3089 struct cftype *cft, u64 val) 3090 { 3091 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3092 3093 if (val & ~MOVE_MASK) 3094 return -EINVAL; 3095 3096 /* 3097 * No kind of locking is needed in here, because ->can_attach() will 3098 * check this value once in the beginning of the process, and then carry 3099 * on with stale data. This means that changes to this value will only 3100 * affect task migrations starting after the change. 3101 */ 3102 memcg->move_charge_at_immigrate = val; 3103 return 0; 3104 } 3105 #else 3106 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3107 struct cftype *cft, u64 val) 3108 { 3109 return -ENOSYS; 3110 } 3111 #endif 3112 3113 #ifdef CONFIG_NUMA 3114 static int memcg_numa_stat_show(struct seq_file *m, void *v) 3115 { 3116 struct numa_stat { 3117 const char *name; 3118 unsigned int lru_mask; 3119 }; 3120 3121 static const struct numa_stat stats[] = { 3122 { "total", LRU_ALL }, 3123 { "file", LRU_ALL_FILE }, 3124 { "anon", LRU_ALL_ANON }, 3125 { "unevictable", BIT(LRU_UNEVICTABLE) }, 3126 }; 3127 const struct numa_stat *stat; 3128 int nid; 3129 unsigned long nr; 3130 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 3131 3132 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3133 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask); 3134 seq_printf(m, "%s=%lu", stat->name, nr); 3135 for_each_node_state(nid, N_MEMORY) { 3136 nr = mem_cgroup_node_nr_lru_pages(memcg, nid, 3137 stat->lru_mask); 3138 seq_printf(m, " N%d=%lu", nid, nr); 3139 } 3140 seq_putc(m, '\n'); 3141 } 3142 3143 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3144 struct mem_cgroup *iter; 3145 3146 nr = 0; 3147 for_each_mem_cgroup_tree(iter, memcg) 3148 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask); 3149 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr); 3150 for_each_node_state(nid, N_MEMORY) { 3151 nr = 0; 3152 for_each_mem_cgroup_tree(iter, memcg) 3153 nr += mem_cgroup_node_nr_lru_pages( 3154 iter, nid, stat->lru_mask); 3155 seq_printf(m, " N%d=%lu", nid, nr); 3156 } 3157 seq_putc(m, '\n'); 3158 } 3159 3160 return 0; 3161 } 3162 #endif /* CONFIG_NUMA */ 3163 3164 /* Universal VM events cgroup1 shows, original sort order */ 3165 unsigned int memcg1_events[] = { 3166 PGPGIN, 3167 PGPGOUT, 3168 PGFAULT, 3169 PGMAJFAULT, 3170 }; 3171 3172 static const char *const memcg1_event_names[] = { 3173 "pgpgin", 3174 "pgpgout", 3175 "pgfault", 3176 "pgmajfault", 3177 }; 3178 3179 static int memcg_stat_show(struct seq_file *m, void *v) 3180 { 3181 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 3182 unsigned long memory, memsw; 3183 struct mem_cgroup *mi; 3184 unsigned int i; 3185 3186 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats)); 3187 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS); 3188 3189 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 3190 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 3191 continue; 3192 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], 3193 memcg_page_state(memcg, memcg1_stats[i]) * 3194 PAGE_SIZE); 3195 } 3196 3197 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 3198 seq_printf(m, "%s %lu\n", memcg1_event_names[i], 3199 memcg_sum_events(memcg, memcg1_events[i])); 3200 3201 for (i = 0; i < NR_LRU_LISTS; i++) 3202 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i], 3203 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE); 3204 3205 /* Hierarchical information */ 3206 memory = memsw = PAGE_COUNTER_MAX; 3207 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) { 3208 memory = min(memory, mi->memory.limit); 3209 memsw = min(memsw, mi->memsw.limit); 3210 } 3211 seq_printf(m, "hierarchical_memory_limit %llu\n", 3212 (u64)memory * PAGE_SIZE); 3213 if (do_memsw_account()) 3214 seq_printf(m, "hierarchical_memsw_limit %llu\n", 3215 (u64)memsw * PAGE_SIZE); 3216 3217 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 3218 unsigned long long val = 0; 3219 3220 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 3221 continue; 3222 for_each_mem_cgroup_tree(mi, memcg) 3223 val += memcg_page_state(mi, memcg1_stats[i]) * 3224 PAGE_SIZE; 3225 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], val); 3226 } 3227 3228 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) { 3229 unsigned long long val = 0; 3230 3231 for_each_mem_cgroup_tree(mi, memcg) 3232 val += memcg_sum_events(mi, memcg1_events[i]); 3233 seq_printf(m, "total_%s %llu\n", memcg1_event_names[i], val); 3234 } 3235 3236 for (i = 0; i < NR_LRU_LISTS; i++) { 3237 unsigned long long val = 0; 3238 3239 for_each_mem_cgroup_tree(mi, memcg) 3240 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE; 3241 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val); 3242 } 3243 3244 #ifdef CONFIG_DEBUG_VM 3245 { 3246 pg_data_t *pgdat; 3247 struct mem_cgroup_per_node *mz; 3248 struct zone_reclaim_stat *rstat; 3249 unsigned long recent_rotated[2] = {0, 0}; 3250 unsigned long recent_scanned[2] = {0, 0}; 3251 3252 for_each_online_pgdat(pgdat) { 3253 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 3254 rstat = &mz->lruvec.reclaim_stat; 3255 3256 recent_rotated[0] += rstat->recent_rotated[0]; 3257 recent_rotated[1] += rstat->recent_rotated[1]; 3258 recent_scanned[0] += rstat->recent_scanned[0]; 3259 recent_scanned[1] += rstat->recent_scanned[1]; 3260 } 3261 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]); 3262 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]); 3263 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]); 3264 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]); 3265 } 3266 #endif 3267 3268 return 0; 3269 } 3270 3271 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, 3272 struct cftype *cft) 3273 { 3274 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3275 3276 return mem_cgroup_swappiness(memcg); 3277 } 3278 3279 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, 3280 struct cftype *cft, u64 val) 3281 { 3282 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3283 3284 if (val > 100) 3285 return -EINVAL; 3286 3287 if (css->parent) 3288 memcg->swappiness = val; 3289 else 3290 vm_swappiness = val; 3291 3292 return 0; 3293 } 3294 3295 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 3296 { 3297 struct mem_cgroup_threshold_ary *t; 3298 unsigned long usage; 3299 int i; 3300 3301 rcu_read_lock(); 3302 if (!swap) 3303 t = rcu_dereference(memcg->thresholds.primary); 3304 else 3305 t = rcu_dereference(memcg->memsw_thresholds.primary); 3306 3307 if (!t) 3308 goto unlock; 3309 3310 usage = mem_cgroup_usage(memcg, swap); 3311 3312 /* 3313 * current_threshold points to threshold just below or equal to usage. 3314 * If it's not true, a threshold was crossed after last 3315 * call of __mem_cgroup_threshold(). 3316 */ 3317 i = t->current_threshold; 3318 3319 /* 3320 * Iterate backward over array of thresholds starting from 3321 * current_threshold and check if a threshold is crossed. 3322 * If none of thresholds below usage is crossed, we read 3323 * only one element of the array here. 3324 */ 3325 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 3326 eventfd_signal(t->entries[i].eventfd, 1); 3327 3328 /* i = current_threshold + 1 */ 3329 i++; 3330 3331 /* 3332 * Iterate forward over array of thresholds starting from 3333 * current_threshold+1 and check if a threshold is crossed. 3334 * If none of thresholds above usage is crossed, we read 3335 * only one element of the array here. 3336 */ 3337 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 3338 eventfd_signal(t->entries[i].eventfd, 1); 3339 3340 /* Update current_threshold */ 3341 t->current_threshold = i - 1; 3342 unlock: 3343 rcu_read_unlock(); 3344 } 3345 3346 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 3347 { 3348 while (memcg) { 3349 __mem_cgroup_threshold(memcg, false); 3350 if (do_memsw_account()) 3351 __mem_cgroup_threshold(memcg, true); 3352 3353 memcg = parent_mem_cgroup(memcg); 3354 } 3355 } 3356 3357 static int compare_thresholds(const void *a, const void *b) 3358 { 3359 const struct mem_cgroup_threshold *_a = a; 3360 const struct mem_cgroup_threshold *_b = b; 3361 3362 if (_a->threshold > _b->threshold) 3363 return 1; 3364 3365 if (_a->threshold < _b->threshold) 3366 return -1; 3367 3368 return 0; 3369 } 3370 3371 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 3372 { 3373 struct mem_cgroup_eventfd_list *ev; 3374 3375 spin_lock(&memcg_oom_lock); 3376 3377 list_for_each_entry(ev, &memcg->oom_notify, list) 3378 eventfd_signal(ev->eventfd, 1); 3379 3380 spin_unlock(&memcg_oom_lock); 3381 return 0; 3382 } 3383 3384 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 3385 { 3386 struct mem_cgroup *iter; 3387 3388 for_each_mem_cgroup_tree(iter, memcg) 3389 mem_cgroup_oom_notify_cb(iter); 3390 } 3391 3392 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 3393 struct eventfd_ctx *eventfd, const char *args, enum res_type type) 3394 { 3395 struct mem_cgroup_thresholds *thresholds; 3396 struct mem_cgroup_threshold_ary *new; 3397 unsigned long threshold; 3398 unsigned long usage; 3399 int i, size, ret; 3400 3401 ret = page_counter_memparse(args, "-1", &threshold); 3402 if (ret) 3403 return ret; 3404 3405 mutex_lock(&memcg->thresholds_lock); 3406 3407 if (type == _MEM) { 3408 thresholds = &memcg->thresholds; 3409 usage = mem_cgroup_usage(memcg, false); 3410 } else if (type == _MEMSWAP) { 3411 thresholds = &memcg->memsw_thresholds; 3412 usage = mem_cgroup_usage(memcg, true); 3413 } else 3414 BUG(); 3415 3416 /* Check if a threshold crossed before adding a new one */ 3417 if (thresholds->primary) 3418 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 3419 3420 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 3421 3422 /* Allocate memory for new array of thresholds */ 3423 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold), 3424 GFP_KERNEL); 3425 if (!new) { 3426 ret = -ENOMEM; 3427 goto unlock; 3428 } 3429 new->size = size; 3430 3431 /* Copy thresholds (if any) to new array */ 3432 if (thresholds->primary) { 3433 memcpy(new->entries, thresholds->primary->entries, (size - 1) * 3434 sizeof(struct mem_cgroup_threshold)); 3435 } 3436 3437 /* Add new threshold */ 3438 new->entries[size - 1].eventfd = eventfd; 3439 new->entries[size - 1].threshold = threshold; 3440 3441 /* Sort thresholds. Registering of new threshold isn't time-critical */ 3442 sort(new->entries, size, sizeof(struct mem_cgroup_threshold), 3443 compare_thresholds, NULL); 3444 3445 /* Find current threshold */ 3446 new->current_threshold = -1; 3447 for (i = 0; i < size; i++) { 3448 if (new->entries[i].threshold <= usage) { 3449 /* 3450 * new->current_threshold will not be used until 3451 * rcu_assign_pointer(), so it's safe to increment 3452 * it here. 3453 */ 3454 ++new->current_threshold; 3455 } else 3456 break; 3457 } 3458 3459 /* Free old spare buffer and save old primary buffer as spare */ 3460 kfree(thresholds->spare); 3461 thresholds->spare = thresholds->primary; 3462 3463 rcu_assign_pointer(thresholds->primary, new); 3464 3465 /* To be sure that nobody uses thresholds */ 3466 synchronize_rcu(); 3467 3468 unlock: 3469 mutex_unlock(&memcg->thresholds_lock); 3470 3471 return ret; 3472 } 3473 3474 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 3475 struct eventfd_ctx *eventfd, const char *args) 3476 { 3477 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM); 3478 } 3479 3480 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg, 3481 struct eventfd_ctx *eventfd, const char *args) 3482 { 3483 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP); 3484 } 3485 3486 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 3487 struct eventfd_ctx *eventfd, enum res_type type) 3488 { 3489 struct mem_cgroup_thresholds *thresholds; 3490 struct mem_cgroup_threshold_ary *new; 3491 unsigned long usage; 3492 int i, j, size; 3493 3494 mutex_lock(&memcg->thresholds_lock); 3495 3496 if (type == _MEM) { 3497 thresholds = &memcg->thresholds; 3498 usage = mem_cgroup_usage(memcg, false); 3499 } else if (type == _MEMSWAP) { 3500 thresholds = &memcg->memsw_thresholds; 3501 usage = mem_cgroup_usage(memcg, true); 3502 } else 3503 BUG(); 3504 3505 if (!thresholds->primary) 3506 goto unlock; 3507 3508 /* Check if a threshold crossed before removing */ 3509 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 3510 3511 /* Calculate new number of threshold */ 3512 size = 0; 3513 for (i = 0; i < thresholds->primary->size; i++) { 3514 if (thresholds->primary->entries[i].eventfd != eventfd) 3515 size++; 3516 } 3517 3518 new = thresholds->spare; 3519 3520 /* Set thresholds array to NULL if we don't have thresholds */ 3521 if (!size) { 3522 kfree(new); 3523 new = NULL; 3524 goto swap_buffers; 3525 } 3526 3527 new->size = size; 3528 3529 /* Copy thresholds and find current threshold */ 3530 new->current_threshold = -1; 3531 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 3532 if (thresholds->primary->entries[i].eventfd == eventfd) 3533 continue; 3534 3535 new->entries[j] = thresholds->primary->entries[i]; 3536 if (new->entries[j].threshold <= usage) { 3537 /* 3538 * new->current_threshold will not be used 3539 * until rcu_assign_pointer(), so it's safe to increment 3540 * it here. 3541 */ 3542 ++new->current_threshold; 3543 } 3544 j++; 3545 } 3546 3547 swap_buffers: 3548 /* Swap primary and spare array */ 3549 thresholds->spare = thresholds->primary; 3550 3551 rcu_assign_pointer(thresholds->primary, new); 3552 3553 /* To be sure that nobody uses thresholds */ 3554 synchronize_rcu(); 3555 3556 /* If all events are unregistered, free the spare array */ 3557 if (!new) { 3558 kfree(thresholds->spare); 3559 thresholds->spare = NULL; 3560 } 3561 unlock: 3562 mutex_unlock(&memcg->thresholds_lock); 3563 } 3564 3565 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 3566 struct eventfd_ctx *eventfd) 3567 { 3568 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM); 3569 } 3570 3571 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 3572 struct eventfd_ctx *eventfd) 3573 { 3574 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP); 3575 } 3576 3577 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg, 3578 struct eventfd_ctx *eventfd, const char *args) 3579 { 3580 struct mem_cgroup_eventfd_list *event; 3581 3582 event = kmalloc(sizeof(*event), GFP_KERNEL); 3583 if (!event) 3584 return -ENOMEM; 3585 3586 spin_lock(&memcg_oom_lock); 3587 3588 event->eventfd = eventfd; 3589 list_add(&event->list, &memcg->oom_notify); 3590 3591 /* already in OOM ? */ 3592 if (memcg->under_oom) 3593 eventfd_signal(eventfd, 1); 3594 spin_unlock(&memcg_oom_lock); 3595 3596 return 0; 3597 } 3598 3599 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg, 3600 struct eventfd_ctx *eventfd) 3601 { 3602 struct mem_cgroup_eventfd_list *ev, *tmp; 3603 3604 spin_lock(&memcg_oom_lock); 3605 3606 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 3607 if (ev->eventfd == eventfd) { 3608 list_del(&ev->list); 3609 kfree(ev); 3610 } 3611 } 3612 3613 spin_unlock(&memcg_oom_lock); 3614 } 3615 3616 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v) 3617 { 3618 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf)); 3619 3620 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable); 3621 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom); 3622 seq_printf(sf, "oom_kill %lu\n", memcg_sum_events(memcg, OOM_KILL)); 3623 return 0; 3624 } 3625 3626 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, 3627 struct cftype *cft, u64 val) 3628 { 3629 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3630 3631 /* cannot set to root cgroup and only 0 and 1 are allowed */ 3632 if (!css->parent || !((val == 0) || (val == 1))) 3633 return -EINVAL; 3634 3635 memcg->oom_kill_disable = val; 3636 if (!val) 3637 memcg_oom_recover(memcg); 3638 3639 return 0; 3640 } 3641 3642 #ifdef CONFIG_CGROUP_WRITEBACK 3643 3644 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg) 3645 { 3646 return &memcg->cgwb_list; 3647 } 3648 3649 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 3650 { 3651 return wb_domain_init(&memcg->cgwb_domain, gfp); 3652 } 3653 3654 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 3655 { 3656 wb_domain_exit(&memcg->cgwb_domain); 3657 } 3658 3659 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 3660 { 3661 wb_domain_size_changed(&memcg->cgwb_domain); 3662 } 3663 3664 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 3665 { 3666 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3667 3668 if (!memcg->css.parent) 3669 return NULL; 3670 3671 return &memcg->cgwb_domain; 3672 } 3673 3674 /** 3675 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg 3676 * @wb: bdi_writeback in question 3677 * @pfilepages: out parameter for number of file pages 3678 * @pheadroom: out parameter for number of allocatable pages according to memcg 3679 * @pdirty: out parameter for number of dirty pages 3680 * @pwriteback: out parameter for number of pages under writeback 3681 * 3682 * Determine the numbers of file, headroom, dirty, and writeback pages in 3683 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom 3684 * is a bit more involved. 3685 * 3686 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the 3687 * headroom is calculated as the lowest headroom of itself and the 3688 * ancestors. Note that this doesn't consider the actual amount of 3689 * available memory in the system. The caller should further cap 3690 * *@pheadroom accordingly. 3691 */ 3692 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 3693 unsigned long *pheadroom, unsigned long *pdirty, 3694 unsigned long *pwriteback) 3695 { 3696 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3697 struct mem_cgroup *parent; 3698 3699 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY); 3700 3701 /* this should eventually include NR_UNSTABLE_NFS */ 3702 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK); 3703 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) | 3704 (1 << LRU_ACTIVE_FILE)); 3705 *pheadroom = PAGE_COUNTER_MAX; 3706 3707 while ((parent = parent_mem_cgroup(memcg))) { 3708 unsigned long ceiling = min(memcg->memory.limit, memcg->high); 3709 unsigned long used = page_counter_read(&memcg->memory); 3710 3711 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); 3712 memcg = parent; 3713 } 3714 } 3715 3716 #else /* CONFIG_CGROUP_WRITEBACK */ 3717 3718 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 3719 { 3720 return 0; 3721 } 3722 3723 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 3724 { 3725 } 3726 3727 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 3728 { 3729 } 3730 3731 #endif /* CONFIG_CGROUP_WRITEBACK */ 3732 3733 /* 3734 * DO NOT USE IN NEW FILES. 3735 * 3736 * "cgroup.event_control" implementation. 3737 * 3738 * This is way over-engineered. It tries to support fully configurable 3739 * events for each user. Such level of flexibility is completely 3740 * unnecessary especially in the light of the planned unified hierarchy. 3741 * 3742 * Please deprecate this and replace with something simpler if at all 3743 * possible. 3744 */ 3745 3746 /* 3747 * Unregister event and free resources. 3748 * 3749 * Gets called from workqueue. 3750 */ 3751 static void memcg_event_remove(struct work_struct *work) 3752 { 3753 struct mem_cgroup_event *event = 3754 container_of(work, struct mem_cgroup_event, remove); 3755 struct mem_cgroup *memcg = event->memcg; 3756 3757 remove_wait_queue(event->wqh, &event->wait); 3758 3759 event->unregister_event(memcg, event->eventfd); 3760 3761 /* Notify userspace the event is going away. */ 3762 eventfd_signal(event->eventfd, 1); 3763 3764 eventfd_ctx_put(event->eventfd); 3765 kfree(event); 3766 css_put(&memcg->css); 3767 } 3768 3769 /* 3770 * Gets called on POLLHUP on eventfd when user closes it. 3771 * 3772 * Called with wqh->lock held and interrupts disabled. 3773 */ 3774 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode, 3775 int sync, void *key) 3776 { 3777 struct mem_cgroup_event *event = 3778 container_of(wait, struct mem_cgroup_event, wait); 3779 struct mem_cgroup *memcg = event->memcg; 3780 unsigned long flags = (unsigned long)key; 3781 3782 if (flags & POLLHUP) { 3783 /* 3784 * If the event has been detached at cgroup removal, we 3785 * can simply return knowing the other side will cleanup 3786 * for us. 3787 * 3788 * We can't race against event freeing since the other 3789 * side will require wqh->lock via remove_wait_queue(), 3790 * which we hold. 3791 */ 3792 spin_lock(&memcg->event_list_lock); 3793 if (!list_empty(&event->list)) { 3794 list_del_init(&event->list); 3795 /* 3796 * We are in atomic context, but cgroup_event_remove() 3797 * may sleep, so we have to call it in workqueue. 3798 */ 3799 schedule_work(&event->remove); 3800 } 3801 spin_unlock(&memcg->event_list_lock); 3802 } 3803 3804 return 0; 3805 } 3806 3807 static void memcg_event_ptable_queue_proc(struct file *file, 3808 wait_queue_head_t *wqh, poll_table *pt) 3809 { 3810 struct mem_cgroup_event *event = 3811 container_of(pt, struct mem_cgroup_event, pt); 3812 3813 event->wqh = wqh; 3814 add_wait_queue(wqh, &event->wait); 3815 } 3816 3817 /* 3818 * DO NOT USE IN NEW FILES. 3819 * 3820 * Parse input and register new cgroup event handler. 3821 * 3822 * Input must be in format '<event_fd> <control_fd> <args>'. 3823 * Interpretation of args is defined by control file implementation. 3824 */ 3825 static ssize_t memcg_write_event_control(struct kernfs_open_file *of, 3826 char *buf, size_t nbytes, loff_t off) 3827 { 3828 struct cgroup_subsys_state *css = of_css(of); 3829 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3830 struct mem_cgroup_event *event; 3831 struct cgroup_subsys_state *cfile_css; 3832 unsigned int efd, cfd; 3833 struct fd efile; 3834 struct fd cfile; 3835 const char *name; 3836 char *endp; 3837 int ret; 3838 3839 buf = strstrip(buf); 3840 3841 efd = simple_strtoul(buf, &endp, 10); 3842 if (*endp != ' ') 3843 return -EINVAL; 3844 buf = endp + 1; 3845 3846 cfd = simple_strtoul(buf, &endp, 10); 3847 if ((*endp != ' ') && (*endp != '\0')) 3848 return -EINVAL; 3849 buf = endp + 1; 3850 3851 event = kzalloc(sizeof(*event), GFP_KERNEL); 3852 if (!event) 3853 return -ENOMEM; 3854 3855 event->memcg = memcg; 3856 INIT_LIST_HEAD(&event->list); 3857 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc); 3858 init_waitqueue_func_entry(&event->wait, memcg_event_wake); 3859 INIT_WORK(&event->remove, memcg_event_remove); 3860 3861 efile = fdget(efd); 3862 if (!efile.file) { 3863 ret = -EBADF; 3864 goto out_kfree; 3865 } 3866 3867 event->eventfd = eventfd_ctx_fileget(efile.file); 3868 if (IS_ERR(event->eventfd)) { 3869 ret = PTR_ERR(event->eventfd); 3870 goto out_put_efile; 3871 } 3872 3873 cfile = fdget(cfd); 3874 if (!cfile.file) { 3875 ret = -EBADF; 3876 goto out_put_eventfd; 3877 } 3878 3879 /* the process need read permission on control file */ 3880 /* AV: shouldn't we check that it's been opened for read instead? */ 3881 ret = inode_permission(file_inode(cfile.file), MAY_READ); 3882 if (ret < 0) 3883 goto out_put_cfile; 3884 3885 /* 3886 * Determine the event callbacks and set them in @event. This used 3887 * to be done via struct cftype but cgroup core no longer knows 3888 * about these events. The following is crude but the whole thing 3889 * is for compatibility anyway. 3890 * 3891 * DO NOT ADD NEW FILES. 3892 */ 3893 name = cfile.file->f_path.dentry->d_name.name; 3894 3895 if (!strcmp(name, "memory.usage_in_bytes")) { 3896 event->register_event = mem_cgroup_usage_register_event; 3897 event->unregister_event = mem_cgroup_usage_unregister_event; 3898 } else if (!strcmp(name, "memory.oom_control")) { 3899 event->register_event = mem_cgroup_oom_register_event; 3900 event->unregister_event = mem_cgroup_oom_unregister_event; 3901 } else if (!strcmp(name, "memory.pressure_level")) { 3902 event->register_event = vmpressure_register_event; 3903 event->unregister_event = vmpressure_unregister_event; 3904 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) { 3905 event->register_event = memsw_cgroup_usage_register_event; 3906 event->unregister_event = memsw_cgroup_usage_unregister_event; 3907 } else { 3908 ret = -EINVAL; 3909 goto out_put_cfile; 3910 } 3911 3912 /* 3913 * Verify @cfile should belong to @css. Also, remaining events are 3914 * automatically removed on cgroup destruction but the removal is 3915 * asynchronous, so take an extra ref on @css. 3916 */ 3917 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent, 3918 &memory_cgrp_subsys); 3919 ret = -EINVAL; 3920 if (IS_ERR(cfile_css)) 3921 goto out_put_cfile; 3922 if (cfile_css != css) { 3923 css_put(cfile_css); 3924 goto out_put_cfile; 3925 } 3926 3927 ret = event->register_event(memcg, event->eventfd, buf); 3928 if (ret) 3929 goto out_put_css; 3930 3931 efile.file->f_op->poll(efile.file, &event->pt); 3932 3933 spin_lock(&memcg->event_list_lock); 3934 list_add(&event->list, &memcg->event_list); 3935 spin_unlock(&memcg->event_list_lock); 3936 3937 fdput(cfile); 3938 fdput(efile); 3939 3940 return nbytes; 3941 3942 out_put_css: 3943 css_put(css); 3944 out_put_cfile: 3945 fdput(cfile); 3946 out_put_eventfd: 3947 eventfd_ctx_put(event->eventfd); 3948 out_put_efile: 3949 fdput(efile); 3950 out_kfree: 3951 kfree(event); 3952 3953 return ret; 3954 } 3955 3956 static struct cftype mem_cgroup_legacy_files[] = { 3957 { 3958 .name = "usage_in_bytes", 3959 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 3960 .read_u64 = mem_cgroup_read_u64, 3961 }, 3962 { 3963 .name = "max_usage_in_bytes", 3964 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 3965 .write = mem_cgroup_reset, 3966 .read_u64 = mem_cgroup_read_u64, 3967 }, 3968 { 3969 .name = "limit_in_bytes", 3970 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 3971 .write = mem_cgroup_write, 3972 .read_u64 = mem_cgroup_read_u64, 3973 }, 3974 { 3975 .name = "soft_limit_in_bytes", 3976 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 3977 .write = mem_cgroup_write, 3978 .read_u64 = mem_cgroup_read_u64, 3979 }, 3980 { 3981 .name = "failcnt", 3982 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 3983 .write = mem_cgroup_reset, 3984 .read_u64 = mem_cgroup_read_u64, 3985 }, 3986 { 3987 .name = "stat", 3988 .seq_show = memcg_stat_show, 3989 }, 3990 { 3991 .name = "force_empty", 3992 .write = mem_cgroup_force_empty_write, 3993 }, 3994 { 3995 .name = "use_hierarchy", 3996 .write_u64 = mem_cgroup_hierarchy_write, 3997 .read_u64 = mem_cgroup_hierarchy_read, 3998 }, 3999 { 4000 .name = "cgroup.event_control", /* XXX: for compat */ 4001 .write = memcg_write_event_control, 4002 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE, 4003 }, 4004 { 4005 .name = "swappiness", 4006 .read_u64 = mem_cgroup_swappiness_read, 4007 .write_u64 = mem_cgroup_swappiness_write, 4008 }, 4009 { 4010 .name = "move_charge_at_immigrate", 4011 .read_u64 = mem_cgroup_move_charge_read, 4012 .write_u64 = mem_cgroup_move_charge_write, 4013 }, 4014 { 4015 .name = "oom_control", 4016 .seq_show = mem_cgroup_oom_control_read, 4017 .write_u64 = mem_cgroup_oom_control_write, 4018 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), 4019 }, 4020 { 4021 .name = "pressure_level", 4022 }, 4023 #ifdef CONFIG_NUMA 4024 { 4025 .name = "numa_stat", 4026 .seq_show = memcg_numa_stat_show, 4027 }, 4028 #endif 4029 { 4030 .name = "kmem.limit_in_bytes", 4031 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), 4032 .write = mem_cgroup_write, 4033 .read_u64 = mem_cgroup_read_u64, 4034 }, 4035 { 4036 .name = "kmem.usage_in_bytes", 4037 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), 4038 .read_u64 = mem_cgroup_read_u64, 4039 }, 4040 { 4041 .name = "kmem.failcnt", 4042 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), 4043 .write = mem_cgroup_reset, 4044 .read_u64 = mem_cgroup_read_u64, 4045 }, 4046 { 4047 .name = "kmem.max_usage_in_bytes", 4048 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), 4049 .write = mem_cgroup_reset, 4050 .read_u64 = mem_cgroup_read_u64, 4051 }, 4052 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG) 4053 { 4054 .name = "kmem.slabinfo", 4055 .seq_start = memcg_slab_start, 4056 .seq_next = memcg_slab_next, 4057 .seq_stop = memcg_slab_stop, 4058 .seq_show = memcg_slab_show, 4059 }, 4060 #endif 4061 { 4062 .name = "kmem.tcp.limit_in_bytes", 4063 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT), 4064 .write = mem_cgroup_write, 4065 .read_u64 = mem_cgroup_read_u64, 4066 }, 4067 { 4068 .name = "kmem.tcp.usage_in_bytes", 4069 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE), 4070 .read_u64 = mem_cgroup_read_u64, 4071 }, 4072 { 4073 .name = "kmem.tcp.failcnt", 4074 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT), 4075 .write = mem_cgroup_reset, 4076 .read_u64 = mem_cgroup_read_u64, 4077 }, 4078 { 4079 .name = "kmem.tcp.max_usage_in_bytes", 4080 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE), 4081 .write = mem_cgroup_reset, 4082 .read_u64 = mem_cgroup_read_u64, 4083 }, 4084 { }, /* terminate */ 4085 }; 4086 4087 /* 4088 * Private memory cgroup IDR 4089 * 4090 * Swap-out records and page cache shadow entries need to store memcg 4091 * references in constrained space, so we maintain an ID space that is 4092 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of 4093 * memory-controlled cgroups to 64k. 4094 * 4095 * However, there usually are many references to the oflline CSS after 4096 * the cgroup has been destroyed, such as page cache or reclaimable 4097 * slab objects, that don't need to hang on to the ID. We want to keep 4098 * those dead CSS from occupying IDs, or we might quickly exhaust the 4099 * relatively small ID space and prevent the creation of new cgroups 4100 * even when there are much fewer than 64k cgroups - possibly none. 4101 * 4102 * Maintain a private 16-bit ID space for memcg, and allow the ID to 4103 * be freed and recycled when it's no longer needed, which is usually 4104 * when the CSS is offlined. 4105 * 4106 * The only exception to that are records of swapped out tmpfs/shmem 4107 * pages that need to be attributed to live ancestors on swapin. But 4108 * those references are manageable from userspace. 4109 */ 4110 4111 static DEFINE_IDR(mem_cgroup_idr); 4112 4113 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n) 4114 { 4115 VM_BUG_ON(atomic_read(&memcg->id.ref) <= 0); 4116 atomic_add(n, &memcg->id.ref); 4117 } 4118 4119 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n) 4120 { 4121 VM_BUG_ON(atomic_read(&memcg->id.ref) < n); 4122 if (atomic_sub_and_test(n, &memcg->id.ref)) { 4123 idr_remove(&mem_cgroup_idr, memcg->id.id); 4124 memcg->id.id = 0; 4125 4126 /* Memcg ID pins CSS */ 4127 css_put(&memcg->css); 4128 } 4129 } 4130 4131 static inline void mem_cgroup_id_get(struct mem_cgroup *memcg) 4132 { 4133 mem_cgroup_id_get_many(memcg, 1); 4134 } 4135 4136 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg) 4137 { 4138 mem_cgroup_id_put_many(memcg, 1); 4139 } 4140 4141 /** 4142 * mem_cgroup_from_id - look up a memcg from a memcg id 4143 * @id: the memcg id to look up 4144 * 4145 * Caller must hold rcu_read_lock(). 4146 */ 4147 struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 4148 { 4149 WARN_ON_ONCE(!rcu_read_lock_held()); 4150 return idr_find(&mem_cgroup_idr, id); 4151 } 4152 4153 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 4154 { 4155 struct mem_cgroup_per_node *pn; 4156 int tmp = node; 4157 /* 4158 * This routine is called against possible nodes. 4159 * But it's BUG to call kmalloc() against offline node. 4160 * 4161 * TODO: this routine can waste much memory for nodes which will 4162 * never be onlined. It's better to use memory hotplug callback 4163 * function. 4164 */ 4165 if (!node_state(node, N_NORMAL_MEMORY)) 4166 tmp = -1; 4167 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); 4168 if (!pn) 4169 return 1; 4170 4171 pn->lruvec_stat = alloc_percpu(struct lruvec_stat); 4172 if (!pn->lruvec_stat) { 4173 kfree(pn); 4174 return 1; 4175 } 4176 4177 lruvec_init(&pn->lruvec); 4178 pn->usage_in_excess = 0; 4179 pn->on_tree = false; 4180 pn->memcg = memcg; 4181 4182 memcg->nodeinfo[node] = pn; 4183 return 0; 4184 } 4185 4186 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 4187 { 4188 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node]; 4189 4190 free_percpu(pn->lruvec_stat); 4191 kfree(pn); 4192 } 4193 4194 static void __mem_cgroup_free(struct mem_cgroup *memcg) 4195 { 4196 int node; 4197 4198 for_each_node(node) 4199 free_mem_cgroup_per_node_info(memcg, node); 4200 free_percpu(memcg->stat); 4201 kfree(memcg); 4202 } 4203 4204 static void mem_cgroup_free(struct mem_cgroup *memcg) 4205 { 4206 memcg_wb_domain_exit(memcg); 4207 __mem_cgroup_free(memcg); 4208 } 4209 4210 static struct mem_cgroup *mem_cgroup_alloc(void) 4211 { 4212 struct mem_cgroup *memcg; 4213 size_t size; 4214 int node; 4215 4216 size = sizeof(struct mem_cgroup); 4217 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *); 4218 4219 memcg = kzalloc(size, GFP_KERNEL); 4220 if (!memcg) 4221 return NULL; 4222 4223 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL, 4224 1, MEM_CGROUP_ID_MAX, 4225 GFP_KERNEL); 4226 if (memcg->id.id < 0) 4227 goto fail; 4228 4229 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu); 4230 if (!memcg->stat) 4231 goto fail; 4232 4233 for_each_node(node) 4234 if (alloc_mem_cgroup_per_node_info(memcg, node)) 4235 goto fail; 4236 4237 if (memcg_wb_domain_init(memcg, GFP_KERNEL)) 4238 goto fail; 4239 4240 INIT_WORK(&memcg->high_work, high_work_func); 4241 memcg->last_scanned_node = MAX_NUMNODES; 4242 INIT_LIST_HEAD(&memcg->oom_notify); 4243 mutex_init(&memcg->thresholds_lock); 4244 spin_lock_init(&memcg->move_lock); 4245 vmpressure_init(&memcg->vmpressure); 4246 INIT_LIST_HEAD(&memcg->event_list); 4247 spin_lock_init(&memcg->event_list_lock); 4248 memcg->socket_pressure = jiffies; 4249 #ifndef CONFIG_SLOB 4250 memcg->kmemcg_id = -1; 4251 #endif 4252 #ifdef CONFIG_CGROUP_WRITEBACK 4253 INIT_LIST_HEAD(&memcg->cgwb_list); 4254 #endif 4255 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id); 4256 return memcg; 4257 fail: 4258 if (memcg->id.id > 0) 4259 idr_remove(&mem_cgroup_idr, memcg->id.id); 4260 __mem_cgroup_free(memcg); 4261 return NULL; 4262 } 4263 4264 static struct cgroup_subsys_state * __ref 4265 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 4266 { 4267 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); 4268 struct mem_cgroup *memcg; 4269 long error = -ENOMEM; 4270 4271 memcg = mem_cgroup_alloc(); 4272 if (!memcg) 4273 return ERR_PTR(error); 4274 4275 memcg->high = PAGE_COUNTER_MAX; 4276 memcg->soft_limit = PAGE_COUNTER_MAX; 4277 if (parent) { 4278 memcg->swappiness = mem_cgroup_swappiness(parent); 4279 memcg->oom_kill_disable = parent->oom_kill_disable; 4280 } 4281 if (parent && parent->use_hierarchy) { 4282 memcg->use_hierarchy = true; 4283 page_counter_init(&memcg->memory, &parent->memory); 4284 page_counter_init(&memcg->swap, &parent->swap); 4285 page_counter_init(&memcg->memsw, &parent->memsw); 4286 page_counter_init(&memcg->kmem, &parent->kmem); 4287 page_counter_init(&memcg->tcpmem, &parent->tcpmem); 4288 } else { 4289 page_counter_init(&memcg->memory, NULL); 4290 page_counter_init(&memcg->swap, NULL); 4291 page_counter_init(&memcg->memsw, NULL); 4292 page_counter_init(&memcg->kmem, NULL); 4293 page_counter_init(&memcg->tcpmem, NULL); 4294 /* 4295 * Deeper hierachy with use_hierarchy == false doesn't make 4296 * much sense so let cgroup subsystem know about this 4297 * unfortunate state in our controller. 4298 */ 4299 if (parent != root_mem_cgroup) 4300 memory_cgrp_subsys.broken_hierarchy = true; 4301 } 4302 4303 /* The following stuff does not apply to the root */ 4304 if (!parent) { 4305 root_mem_cgroup = memcg; 4306 return &memcg->css; 4307 } 4308 4309 error = memcg_online_kmem(memcg); 4310 if (error) 4311 goto fail; 4312 4313 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 4314 static_branch_inc(&memcg_sockets_enabled_key); 4315 4316 return &memcg->css; 4317 fail: 4318 mem_cgroup_free(memcg); 4319 return ERR_PTR(-ENOMEM); 4320 } 4321 4322 static int mem_cgroup_css_online(struct cgroup_subsys_state *css) 4323 { 4324 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4325 4326 /* Online state pins memcg ID, memcg ID pins CSS */ 4327 atomic_set(&memcg->id.ref, 1); 4328 css_get(css); 4329 return 0; 4330 } 4331 4332 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 4333 { 4334 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4335 struct mem_cgroup_event *event, *tmp; 4336 4337 /* 4338 * Unregister events and notify userspace. 4339 * Notify userspace about cgroup removing only after rmdir of cgroup 4340 * directory to avoid race between userspace and kernelspace. 4341 */ 4342 spin_lock(&memcg->event_list_lock); 4343 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) { 4344 list_del_init(&event->list); 4345 schedule_work(&event->remove); 4346 } 4347 spin_unlock(&memcg->event_list_lock); 4348 4349 memcg->low = 0; 4350 4351 memcg_offline_kmem(memcg); 4352 wb_memcg_offline(memcg); 4353 4354 mem_cgroup_id_put(memcg); 4355 } 4356 4357 static void mem_cgroup_css_released(struct cgroup_subsys_state *css) 4358 { 4359 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4360 4361 invalidate_reclaim_iterators(memcg); 4362 } 4363 4364 static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 4365 { 4366 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4367 4368 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 4369 static_branch_dec(&memcg_sockets_enabled_key); 4370 4371 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active) 4372 static_branch_dec(&memcg_sockets_enabled_key); 4373 4374 vmpressure_cleanup(&memcg->vmpressure); 4375 cancel_work_sync(&memcg->high_work); 4376 mem_cgroup_remove_from_trees(memcg); 4377 memcg_free_kmem(memcg); 4378 mem_cgroup_free(memcg); 4379 } 4380 4381 /** 4382 * mem_cgroup_css_reset - reset the states of a mem_cgroup 4383 * @css: the target css 4384 * 4385 * Reset the states of the mem_cgroup associated with @css. This is 4386 * invoked when the userland requests disabling on the default hierarchy 4387 * but the memcg is pinned through dependency. The memcg should stop 4388 * applying policies and should revert to the vanilla state as it may be 4389 * made visible again. 4390 * 4391 * The current implementation only resets the essential configurations. 4392 * This needs to be expanded to cover all the visible parts. 4393 */ 4394 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) 4395 { 4396 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4397 4398 page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX); 4399 page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX); 4400 page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX); 4401 page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX); 4402 page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX); 4403 memcg->low = 0; 4404 memcg->high = PAGE_COUNTER_MAX; 4405 memcg->soft_limit = PAGE_COUNTER_MAX; 4406 memcg_wb_domain_size_changed(memcg); 4407 } 4408 4409 #ifdef CONFIG_MMU 4410 /* Handlers for move charge at task migration. */ 4411 static int mem_cgroup_do_precharge(unsigned long count) 4412 { 4413 int ret; 4414 4415 /* Try a single bulk charge without reclaim first, kswapd may wake */ 4416 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count); 4417 if (!ret) { 4418 mc.precharge += count; 4419 return ret; 4420 } 4421 4422 /* Try charges one by one with reclaim, but do not retry */ 4423 while (count--) { 4424 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1); 4425 if (ret) 4426 return ret; 4427 mc.precharge++; 4428 cond_resched(); 4429 } 4430 return 0; 4431 } 4432 4433 union mc_target { 4434 struct page *page; 4435 swp_entry_t ent; 4436 }; 4437 4438 enum mc_target_type { 4439 MC_TARGET_NONE = 0, 4440 MC_TARGET_PAGE, 4441 MC_TARGET_SWAP, 4442 MC_TARGET_DEVICE, 4443 }; 4444 4445 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 4446 unsigned long addr, pte_t ptent) 4447 { 4448 struct page *page = _vm_normal_page(vma, addr, ptent, true); 4449 4450 if (!page || !page_mapped(page)) 4451 return NULL; 4452 if (PageAnon(page)) { 4453 if (!(mc.flags & MOVE_ANON)) 4454 return NULL; 4455 } else { 4456 if (!(mc.flags & MOVE_FILE)) 4457 return NULL; 4458 } 4459 if (!get_page_unless_zero(page)) 4460 return NULL; 4461 4462 return page; 4463 } 4464 4465 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE) 4466 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 4467 pte_t ptent, swp_entry_t *entry) 4468 { 4469 struct page *page = NULL; 4470 swp_entry_t ent = pte_to_swp_entry(ptent); 4471 4472 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent)) 4473 return NULL; 4474 4475 /* 4476 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to 4477 * a device and because they are not accessible by CPU they are store 4478 * as special swap entry in the CPU page table. 4479 */ 4480 if (is_device_private_entry(ent)) { 4481 page = device_private_entry_to_page(ent); 4482 /* 4483 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have 4484 * a refcount of 1 when free (unlike normal page) 4485 */ 4486 if (!page_ref_add_unless(page, 1, 1)) 4487 return NULL; 4488 return page; 4489 } 4490 4491 /* 4492 * Because lookup_swap_cache() updates some statistics counter, 4493 * we call find_get_page() with swapper_space directly. 4494 */ 4495 page = find_get_page(swap_address_space(ent), swp_offset(ent)); 4496 if (do_memsw_account()) 4497 entry->val = ent.val; 4498 4499 return page; 4500 } 4501 #else 4502 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 4503 pte_t ptent, swp_entry_t *entry) 4504 { 4505 return NULL; 4506 } 4507 #endif 4508 4509 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 4510 unsigned long addr, pte_t ptent, swp_entry_t *entry) 4511 { 4512 struct page *page = NULL; 4513 struct address_space *mapping; 4514 pgoff_t pgoff; 4515 4516 if (!vma->vm_file) /* anonymous vma */ 4517 return NULL; 4518 if (!(mc.flags & MOVE_FILE)) 4519 return NULL; 4520 4521 mapping = vma->vm_file->f_mapping; 4522 pgoff = linear_page_index(vma, addr); 4523 4524 /* page is moved even if it's not RSS of this task(page-faulted). */ 4525 #ifdef CONFIG_SWAP 4526 /* shmem/tmpfs may report page out on swap: account for that too. */ 4527 if (shmem_mapping(mapping)) { 4528 page = find_get_entry(mapping, pgoff); 4529 if (radix_tree_exceptional_entry(page)) { 4530 swp_entry_t swp = radix_to_swp_entry(page); 4531 if (do_memsw_account()) 4532 *entry = swp; 4533 page = find_get_page(swap_address_space(swp), 4534 swp_offset(swp)); 4535 } 4536 } else 4537 page = find_get_page(mapping, pgoff); 4538 #else 4539 page = find_get_page(mapping, pgoff); 4540 #endif 4541 return page; 4542 } 4543 4544 /** 4545 * mem_cgroup_move_account - move account of the page 4546 * @page: the page 4547 * @compound: charge the page as compound or small page 4548 * @from: mem_cgroup which the page is moved from. 4549 * @to: mem_cgroup which the page is moved to. @from != @to. 4550 * 4551 * The caller must make sure the page is not on LRU (isolate_page() is useful.) 4552 * 4553 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" 4554 * from old cgroup. 4555 */ 4556 static int mem_cgroup_move_account(struct page *page, 4557 bool compound, 4558 struct mem_cgroup *from, 4559 struct mem_cgroup *to) 4560 { 4561 unsigned long flags; 4562 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 4563 int ret; 4564 bool anon; 4565 4566 VM_BUG_ON(from == to); 4567 VM_BUG_ON_PAGE(PageLRU(page), page); 4568 VM_BUG_ON(compound && !PageTransHuge(page)); 4569 4570 /* 4571 * Prevent mem_cgroup_migrate() from looking at 4572 * page->mem_cgroup of its source page while we change it. 4573 */ 4574 ret = -EBUSY; 4575 if (!trylock_page(page)) 4576 goto out; 4577 4578 ret = -EINVAL; 4579 if (page->mem_cgroup != from) 4580 goto out_unlock; 4581 4582 anon = PageAnon(page); 4583 4584 spin_lock_irqsave(&from->move_lock, flags); 4585 4586 if (!anon && page_mapped(page)) { 4587 __this_cpu_sub(from->stat->count[NR_FILE_MAPPED], nr_pages); 4588 __this_cpu_add(to->stat->count[NR_FILE_MAPPED], nr_pages); 4589 } 4590 4591 /* 4592 * move_lock grabbed above and caller set from->moving_account, so 4593 * mod_memcg_page_state will serialize updates to PageDirty. 4594 * So mapping should be stable for dirty pages. 4595 */ 4596 if (!anon && PageDirty(page)) { 4597 struct address_space *mapping = page_mapping(page); 4598 4599 if (mapping_cap_account_dirty(mapping)) { 4600 __this_cpu_sub(from->stat->count[NR_FILE_DIRTY], 4601 nr_pages); 4602 __this_cpu_add(to->stat->count[NR_FILE_DIRTY], 4603 nr_pages); 4604 } 4605 } 4606 4607 if (PageWriteback(page)) { 4608 __this_cpu_sub(from->stat->count[NR_WRITEBACK], nr_pages); 4609 __this_cpu_add(to->stat->count[NR_WRITEBACK], nr_pages); 4610 } 4611 4612 /* 4613 * It is safe to change page->mem_cgroup here because the page 4614 * is referenced, charged, and isolated - we can't race with 4615 * uncharging, charging, migration, or LRU putback. 4616 */ 4617 4618 /* caller should have done css_get */ 4619 page->mem_cgroup = to; 4620 spin_unlock_irqrestore(&from->move_lock, flags); 4621 4622 ret = 0; 4623 4624 local_irq_disable(); 4625 mem_cgroup_charge_statistics(to, page, compound, nr_pages); 4626 memcg_check_events(to, page); 4627 mem_cgroup_charge_statistics(from, page, compound, -nr_pages); 4628 memcg_check_events(from, page); 4629 local_irq_enable(); 4630 out_unlock: 4631 unlock_page(page); 4632 out: 4633 return ret; 4634 } 4635 4636 /** 4637 * get_mctgt_type - get target type of moving charge 4638 * @vma: the vma the pte to be checked belongs 4639 * @addr: the address corresponding to the pte to be checked 4640 * @ptent: the pte to be checked 4641 * @target: the pointer the target page or swap ent will be stored(can be NULL) 4642 * 4643 * Returns 4644 * 0(MC_TARGET_NONE): if the pte is not a target for move charge. 4645 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for 4646 * move charge. if @target is not NULL, the page is stored in target->page 4647 * with extra refcnt got(Callers should handle it). 4648 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a 4649 * target for charge migration. if @target is not NULL, the entry is stored 4650 * in target->ent. 4651 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PUBLIC 4652 * or MEMORY_DEVICE_PRIVATE (so ZONE_DEVICE page and thus not on the lru). 4653 * For now we such page is charge like a regular page would be as for all 4654 * intent and purposes it is just special memory taking the place of a 4655 * regular page. 4656 * 4657 * See Documentations/vm/hmm.txt and include/linux/hmm.h 4658 * 4659 * Called with pte lock held. 4660 */ 4661 4662 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, 4663 unsigned long addr, pte_t ptent, union mc_target *target) 4664 { 4665 struct page *page = NULL; 4666 enum mc_target_type ret = MC_TARGET_NONE; 4667 swp_entry_t ent = { .val = 0 }; 4668 4669 if (pte_present(ptent)) 4670 page = mc_handle_present_pte(vma, addr, ptent); 4671 else if (is_swap_pte(ptent)) 4672 page = mc_handle_swap_pte(vma, ptent, &ent); 4673 else if (pte_none(ptent)) 4674 page = mc_handle_file_pte(vma, addr, ptent, &ent); 4675 4676 if (!page && !ent.val) 4677 return ret; 4678 if (page) { 4679 /* 4680 * Do only loose check w/o serialization. 4681 * mem_cgroup_move_account() checks the page is valid or 4682 * not under LRU exclusion. 4683 */ 4684 if (page->mem_cgroup == mc.from) { 4685 ret = MC_TARGET_PAGE; 4686 if (is_device_private_page(page) || 4687 is_device_public_page(page)) 4688 ret = MC_TARGET_DEVICE; 4689 if (target) 4690 target->page = page; 4691 } 4692 if (!ret || !target) 4693 put_page(page); 4694 } 4695 /* 4696 * There is a swap entry and a page doesn't exist or isn't charged. 4697 * But we cannot move a tail-page in a THP. 4698 */ 4699 if (ent.val && !ret && (!page || !PageTransCompound(page)) && 4700 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) { 4701 ret = MC_TARGET_SWAP; 4702 if (target) 4703 target->ent = ent; 4704 } 4705 return ret; 4706 } 4707 4708 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4709 /* 4710 * We don't consider PMD mapped swapping or file mapped pages because THP does 4711 * not support them for now. 4712 * Caller should make sure that pmd_trans_huge(pmd) is true. 4713 */ 4714 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 4715 unsigned long addr, pmd_t pmd, union mc_target *target) 4716 { 4717 struct page *page = NULL; 4718 enum mc_target_type ret = MC_TARGET_NONE; 4719 4720 if (unlikely(is_swap_pmd(pmd))) { 4721 VM_BUG_ON(thp_migration_supported() && 4722 !is_pmd_migration_entry(pmd)); 4723 return ret; 4724 } 4725 page = pmd_page(pmd); 4726 VM_BUG_ON_PAGE(!page || !PageHead(page), page); 4727 if (!(mc.flags & MOVE_ANON)) 4728 return ret; 4729 if (page->mem_cgroup == mc.from) { 4730 ret = MC_TARGET_PAGE; 4731 if (target) { 4732 get_page(page); 4733 target->page = page; 4734 } 4735 } 4736 return ret; 4737 } 4738 #else 4739 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 4740 unsigned long addr, pmd_t pmd, union mc_target *target) 4741 { 4742 return MC_TARGET_NONE; 4743 } 4744 #endif 4745 4746 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 4747 unsigned long addr, unsigned long end, 4748 struct mm_walk *walk) 4749 { 4750 struct vm_area_struct *vma = walk->vma; 4751 pte_t *pte; 4752 spinlock_t *ptl; 4753 4754 ptl = pmd_trans_huge_lock(pmd, vma); 4755 if (ptl) { 4756 /* 4757 * Note their can not be MC_TARGET_DEVICE for now as we do not 4758 * support transparent huge page with MEMORY_DEVICE_PUBLIC or 4759 * MEMORY_DEVICE_PRIVATE but this might change. 4760 */ 4761 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) 4762 mc.precharge += HPAGE_PMD_NR; 4763 spin_unlock(ptl); 4764 return 0; 4765 } 4766 4767 if (pmd_trans_unstable(pmd)) 4768 return 0; 4769 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 4770 for (; addr != end; pte++, addr += PAGE_SIZE) 4771 if (get_mctgt_type(vma, addr, *pte, NULL)) 4772 mc.precharge++; /* increment precharge temporarily */ 4773 pte_unmap_unlock(pte - 1, ptl); 4774 cond_resched(); 4775 4776 return 0; 4777 } 4778 4779 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 4780 { 4781 unsigned long precharge; 4782 4783 struct mm_walk mem_cgroup_count_precharge_walk = { 4784 .pmd_entry = mem_cgroup_count_precharge_pte_range, 4785 .mm = mm, 4786 }; 4787 down_read(&mm->mmap_sem); 4788 walk_page_range(0, mm->highest_vm_end, 4789 &mem_cgroup_count_precharge_walk); 4790 up_read(&mm->mmap_sem); 4791 4792 precharge = mc.precharge; 4793 mc.precharge = 0; 4794 4795 return precharge; 4796 } 4797 4798 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 4799 { 4800 unsigned long precharge = mem_cgroup_count_precharge(mm); 4801 4802 VM_BUG_ON(mc.moving_task); 4803 mc.moving_task = current; 4804 return mem_cgroup_do_precharge(precharge); 4805 } 4806 4807 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 4808 static void __mem_cgroup_clear_mc(void) 4809 { 4810 struct mem_cgroup *from = mc.from; 4811 struct mem_cgroup *to = mc.to; 4812 4813 /* we must uncharge all the leftover precharges from mc.to */ 4814 if (mc.precharge) { 4815 cancel_charge(mc.to, mc.precharge); 4816 mc.precharge = 0; 4817 } 4818 /* 4819 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 4820 * we must uncharge here. 4821 */ 4822 if (mc.moved_charge) { 4823 cancel_charge(mc.from, mc.moved_charge); 4824 mc.moved_charge = 0; 4825 } 4826 /* we must fixup refcnts and charges */ 4827 if (mc.moved_swap) { 4828 /* uncharge swap account from the old cgroup */ 4829 if (!mem_cgroup_is_root(mc.from)) 4830 page_counter_uncharge(&mc.from->memsw, mc.moved_swap); 4831 4832 mem_cgroup_id_put_many(mc.from, mc.moved_swap); 4833 4834 /* 4835 * we charged both to->memory and to->memsw, so we 4836 * should uncharge to->memory. 4837 */ 4838 if (!mem_cgroup_is_root(mc.to)) 4839 page_counter_uncharge(&mc.to->memory, mc.moved_swap); 4840 4841 mem_cgroup_id_get_many(mc.to, mc.moved_swap); 4842 css_put_many(&mc.to->css, mc.moved_swap); 4843 4844 mc.moved_swap = 0; 4845 } 4846 memcg_oom_recover(from); 4847 memcg_oom_recover(to); 4848 wake_up_all(&mc.waitq); 4849 } 4850 4851 static void mem_cgroup_clear_mc(void) 4852 { 4853 struct mm_struct *mm = mc.mm; 4854 4855 /* 4856 * we must clear moving_task before waking up waiters at the end of 4857 * task migration. 4858 */ 4859 mc.moving_task = NULL; 4860 __mem_cgroup_clear_mc(); 4861 spin_lock(&mc.lock); 4862 mc.from = NULL; 4863 mc.to = NULL; 4864 mc.mm = NULL; 4865 spin_unlock(&mc.lock); 4866 4867 mmput(mm); 4868 } 4869 4870 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 4871 { 4872 struct cgroup_subsys_state *css; 4873 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */ 4874 struct mem_cgroup *from; 4875 struct task_struct *leader, *p; 4876 struct mm_struct *mm; 4877 unsigned long move_flags; 4878 int ret = 0; 4879 4880 /* charge immigration isn't supported on the default hierarchy */ 4881 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 4882 return 0; 4883 4884 /* 4885 * Multi-process migrations only happen on the default hierarchy 4886 * where charge immigration is not used. Perform charge 4887 * immigration if @tset contains a leader and whine if there are 4888 * multiple. 4889 */ 4890 p = NULL; 4891 cgroup_taskset_for_each_leader(leader, css, tset) { 4892 WARN_ON_ONCE(p); 4893 p = leader; 4894 memcg = mem_cgroup_from_css(css); 4895 } 4896 if (!p) 4897 return 0; 4898 4899 /* 4900 * We are now commited to this value whatever it is. Changes in this 4901 * tunable will only affect upcoming migrations, not the current one. 4902 * So we need to save it, and keep it going. 4903 */ 4904 move_flags = READ_ONCE(memcg->move_charge_at_immigrate); 4905 if (!move_flags) 4906 return 0; 4907 4908 from = mem_cgroup_from_task(p); 4909 4910 VM_BUG_ON(from == memcg); 4911 4912 mm = get_task_mm(p); 4913 if (!mm) 4914 return 0; 4915 /* We move charges only when we move a owner of the mm */ 4916 if (mm->owner == p) { 4917 VM_BUG_ON(mc.from); 4918 VM_BUG_ON(mc.to); 4919 VM_BUG_ON(mc.precharge); 4920 VM_BUG_ON(mc.moved_charge); 4921 VM_BUG_ON(mc.moved_swap); 4922 4923 spin_lock(&mc.lock); 4924 mc.mm = mm; 4925 mc.from = from; 4926 mc.to = memcg; 4927 mc.flags = move_flags; 4928 spin_unlock(&mc.lock); 4929 /* We set mc.moving_task later */ 4930 4931 ret = mem_cgroup_precharge_mc(mm); 4932 if (ret) 4933 mem_cgroup_clear_mc(); 4934 } else { 4935 mmput(mm); 4936 } 4937 return ret; 4938 } 4939 4940 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 4941 { 4942 if (mc.to) 4943 mem_cgroup_clear_mc(); 4944 } 4945 4946 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 4947 unsigned long addr, unsigned long end, 4948 struct mm_walk *walk) 4949 { 4950 int ret = 0; 4951 struct vm_area_struct *vma = walk->vma; 4952 pte_t *pte; 4953 spinlock_t *ptl; 4954 enum mc_target_type target_type; 4955 union mc_target target; 4956 struct page *page; 4957 4958 ptl = pmd_trans_huge_lock(pmd, vma); 4959 if (ptl) { 4960 if (mc.precharge < HPAGE_PMD_NR) { 4961 spin_unlock(ptl); 4962 return 0; 4963 } 4964 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); 4965 if (target_type == MC_TARGET_PAGE) { 4966 page = target.page; 4967 if (!isolate_lru_page(page)) { 4968 if (!mem_cgroup_move_account(page, true, 4969 mc.from, mc.to)) { 4970 mc.precharge -= HPAGE_PMD_NR; 4971 mc.moved_charge += HPAGE_PMD_NR; 4972 } 4973 putback_lru_page(page); 4974 } 4975 put_page(page); 4976 } else if (target_type == MC_TARGET_DEVICE) { 4977 page = target.page; 4978 if (!mem_cgroup_move_account(page, true, 4979 mc.from, mc.to)) { 4980 mc.precharge -= HPAGE_PMD_NR; 4981 mc.moved_charge += HPAGE_PMD_NR; 4982 } 4983 put_page(page); 4984 } 4985 spin_unlock(ptl); 4986 return 0; 4987 } 4988 4989 if (pmd_trans_unstable(pmd)) 4990 return 0; 4991 retry: 4992 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 4993 for (; addr != end; addr += PAGE_SIZE) { 4994 pte_t ptent = *(pte++); 4995 bool device = false; 4996 swp_entry_t ent; 4997 4998 if (!mc.precharge) 4999 break; 5000 5001 switch (get_mctgt_type(vma, addr, ptent, &target)) { 5002 case MC_TARGET_DEVICE: 5003 device = true; 5004 /* fall through */ 5005 case MC_TARGET_PAGE: 5006 page = target.page; 5007 /* 5008 * We can have a part of the split pmd here. Moving it 5009 * can be done but it would be too convoluted so simply 5010 * ignore such a partial THP and keep it in original 5011 * memcg. There should be somebody mapping the head. 5012 */ 5013 if (PageTransCompound(page)) 5014 goto put; 5015 if (!device && isolate_lru_page(page)) 5016 goto put; 5017 if (!mem_cgroup_move_account(page, false, 5018 mc.from, mc.to)) { 5019 mc.precharge--; 5020 /* we uncharge from mc.from later. */ 5021 mc.moved_charge++; 5022 } 5023 if (!device) 5024 putback_lru_page(page); 5025 put: /* get_mctgt_type() gets the page */ 5026 put_page(page); 5027 break; 5028 case MC_TARGET_SWAP: 5029 ent = target.ent; 5030 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { 5031 mc.precharge--; 5032 /* we fixup refcnts and charges later. */ 5033 mc.moved_swap++; 5034 } 5035 break; 5036 default: 5037 break; 5038 } 5039 } 5040 pte_unmap_unlock(pte - 1, ptl); 5041 cond_resched(); 5042 5043 if (addr != end) { 5044 /* 5045 * We have consumed all precharges we got in can_attach(). 5046 * We try charge one by one, but don't do any additional 5047 * charges to mc.to if we have failed in charge once in attach() 5048 * phase. 5049 */ 5050 ret = mem_cgroup_do_precharge(1); 5051 if (!ret) 5052 goto retry; 5053 } 5054 5055 return ret; 5056 } 5057 5058 static void mem_cgroup_move_charge(void) 5059 { 5060 struct mm_walk mem_cgroup_move_charge_walk = { 5061 .pmd_entry = mem_cgroup_move_charge_pte_range, 5062 .mm = mc.mm, 5063 }; 5064 5065 lru_add_drain_all(); 5066 /* 5067 * Signal lock_page_memcg() to take the memcg's move_lock 5068 * while we're moving its pages to another memcg. Then wait 5069 * for already started RCU-only updates to finish. 5070 */ 5071 atomic_inc(&mc.from->moving_account); 5072 synchronize_rcu(); 5073 retry: 5074 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) { 5075 /* 5076 * Someone who are holding the mmap_sem might be waiting in 5077 * waitq. So we cancel all extra charges, wake up all waiters, 5078 * and retry. Because we cancel precharges, we might not be able 5079 * to move enough charges, but moving charge is a best-effort 5080 * feature anyway, so it wouldn't be a big problem. 5081 */ 5082 __mem_cgroup_clear_mc(); 5083 cond_resched(); 5084 goto retry; 5085 } 5086 /* 5087 * When we have consumed all precharges and failed in doing 5088 * additional charge, the page walk just aborts. 5089 */ 5090 walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk); 5091 5092 up_read(&mc.mm->mmap_sem); 5093 atomic_dec(&mc.from->moving_account); 5094 } 5095 5096 static void mem_cgroup_move_task(void) 5097 { 5098 if (mc.to) { 5099 mem_cgroup_move_charge(); 5100 mem_cgroup_clear_mc(); 5101 } 5102 } 5103 #else /* !CONFIG_MMU */ 5104 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 5105 { 5106 return 0; 5107 } 5108 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 5109 { 5110 } 5111 static void mem_cgroup_move_task(void) 5112 { 5113 } 5114 #endif 5115 5116 /* 5117 * Cgroup retains root cgroups across [un]mount cycles making it necessary 5118 * to verify whether we're attached to the default hierarchy on each mount 5119 * attempt. 5120 */ 5121 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css) 5122 { 5123 /* 5124 * use_hierarchy is forced on the default hierarchy. cgroup core 5125 * guarantees that @root doesn't have any children, so turning it 5126 * on for the root memcg is enough. 5127 */ 5128 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5129 root_mem_cgroup->use_hierarchy = true; 5130 else 5131 root_mem_cgroup->use_hierarchy = false; 5132 } 5133 5134 static u64 memory_current_read(struct cgroup_subsys_state *css, 5135 struct cftype *cft) 5136 { 5137 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5138 5139 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; 5140 } 5141 5142 static int memory_low_show(struct seq_file *m, void *v) 5143 { 5144 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5145 unsigned long low = READ_ONCE(memcg->low); 5146 5147 if (low == PAGE_COUNTER_MAX) 5148 seq_puts(m, "max\n"); 5149 else 5150 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE); 5151 5152 return 0; 5153 } 5154 5155 static ssize_t memory_low_write(struct kernfs_open_file *of, 5156 char *buf, size_t nbytes, loff_t off) 5157 { 5158 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5159 unsigned long low; 5160 int err; 5161 5162 buf = strstrip(buf); 5163 err = page_counter_memparse(buf, "max", &low); 5164 if (err) 5165 return err; 5166 5167 memcg->low = low; 5168 5169 return nbytes; 5170 } 5171 5172 static int memory_high_show(struct seq_file *m, void *v) 5173 { 5174 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5175 unsigned long high = READ_ONCE(memcg->high); 5176 5177 if (high == PAGE_COUNTER_MAX) 5178 seq_puts(m, "max\n"); 5179 else 5180 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE); 5181 5182 return 0; 5183 } 5184 5185 static ssize_t memory_high_write(struct kernfs_open_file *of, 5186 char *buf, size_t nbytes, loff_t off) 5187 { 5188 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5189 unsigned long nr_pages; 5190 unsigned long high; 5191 int err; 5192 5193 buf = strstrip(buf); 5194 err = page_counter_memparse(buf, "max", &high); 5195 if (err) 5196 return err; 5197 5198 memcg->high = high; 5199 5200 nr_pages = page_counter_read(&memcg->memory); 5201 if (nr_pages > high) 5202 try_to_free_mem_cgroup_pages(memcg, nr_pages - high, 5203 GFP_KERNEL, true); 5204 5205 memcg_wb_domain_size_changed(memcg); 5206 return nbytes; 5207 } 5208 5209 static int memory_max_show(struct seq_file *m, void *v) 5210 { 5211 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5212 unsigned long max = READ_ONCE(memcg->memory.limit); 5213 5214 if (max == PAGE_COUNTER_MAX) 5215 seq_puts(m, "max\n"); 5216 else 5217 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE); 5218 5219 return 0; 5220 } 5221 5222 static ssize_t memory_max_write(struct kernfs_open_file *of, 5223 char *buf, size_t nbytes, loff_t off) 5224 { 5225 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5226 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES; 5227 bool drained = false; 5228 unsigned long max; 5229 int err; 5230 5231 buf = strstrip(buf); 5232 err = page_counter_memparse(buf, "max", &max); 5233 if (err) 5234 return err; 5235 5236 xchg(&memcg->memory.limit, max); 5237 5238 for (;;) { 5239 unsigned long nr_pages = page_counter_read(&memcg->memory); 5240 5241 if (nr_pages <= max) 5242 break; 5243 5244 if (signal_pending(current)) { 5245 err = -EINTR; 5246 break; 5247 } 5248 5249 if (!drained) { 5250 drain_all_stock(memcg); 5251 drained = true; 5252 continue; 5253 } 5254 5255 if (nr_reclaims) { 5256 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max, 5257 GFP_KERNEL, true)) 5258 nr_reclaims--; 5259 continue; 5260 } 5261 5262 mem_cgroup_event(memcg, MEMCG_OOM); 5263 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0)) 5264 break; 5265 } 5266 5267 memcg_wb_domain_size_changed(memcg); 5268 return nbytes; 5269 } 5270 5271 static int memory_events_show(struct seq_file *m, void *v) 5272 { 5273 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5274 5275 seq_printf(m, "low %lu\n", memcg_sum_events(memcg, MEMCG_LOW)); 5276 seq_printf(m, "high %lu\n", memcg_sum_events(memcg, MEMCG_HIGH)); 5277 seq_printf(m, "max %lu\n", memcg_sum_events(memcg, MEMCG_MAX)); 5278 seq_printf(m, "oom %lu\n", memcg_sum_events(memcg, MEMCG_OOM)); 5279 seq_printf(m, "oom_kill %lu\n", memcg_sum_events(memcg, OOM_KILL)); 5280 5281 return 0; 5282 } 5283 5284 static int memory_stat_show(struct seq_file *m, void *v) 5285 { 5286 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5287 unsigned long stat[MEMCG_NR_STAT]; 5288 unsigned long events[MEMCG_NR_EVENTS]; 5289 int i; 5290 5291 /* 5292 * Provide statistics on the state of the memory subsystem as 5293 * well as cumulative event counters that show past behavior. 5294 * 5295 * This list is ordered following a combination of these gradients: 5296 * 1) generic big picture -> specifics and details 5297 * 2) reflecting userspace activity -> reflecting kernel heuristics 5298 * 5299 * Current memory state: 5300 */ 5301 5302 tree_stat(memcg, stat); 5303 tree_events(memcg, events); 5304 5305 seq_printf(m, "anon %llu\n", 5306 (u64)stat[MEMCG_RSS] * PAGE_SIZE); 5307 seq_printf(m, "file %llu\n", 5308 (u64)stat[MEMCG_CACHE] * PAGE_SIZE); 5309 seq_printf(m, "kernel_stack %llu\n", 5310 (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024); 5311 seq_printf(m, "slab %llu\n", 5312 (u64)(stat[NR_SLAB_RECLAIMABLE] + 5313 stat[NR_SLAB_UNRECLAIMABLE]) * PAGE_SIZE); 5314 seq_printf(m, "sock %llu\n", 5315 (u64)stat[MEMCG_SOCK] * PAGE_SIZE); 5316 5317 seq_printf(m, "shmem %llu\n", 5318 (u64)stat[NR_SHMEM] * PAGE_SIZE); 5319 seq_printf(m, "file_mapped %llu\n", 5320 (u64)stat[NR_FILE_MAPPED] * PAGE_SIZE); 5321 seq_printf(m, "file_dirty %llu\n", 5322 (u64)stat[NR_FILE_DIRTY] * PAGE_SIZE); 5323 seq_printf(m, "file_writeback %llu\n", 5324 (u64)stat[NR_WRITEBACK] * PAGE_SIZE); 5325 5326 for (i = 0; i < NR_LRU_LISTS; i++) { 5327 struct mem_cgroup *mi; 5328 unsigned long val = 0; 5329 5330 for_each_mem_cgroup_tree(mi, memcg) 5331 val += mem_cgroup_nr_lru_pages(mi, BIT(i)); 5332 seq_printf(m, "%s %llu\n", 5333 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE); 5334 } 5335 5336 seq_printf(m, "slab_reclaimable %llu\n", 5337 (u64)stat[NR_SLAB_RECLAIMABLE] * PAGE_SIZE); 5338 seq_printf(m, "slab_unreclaimable %llu\n", 5339 (u64)stat[NR_SLAB_UNRECLAIMABLE] * PAGE_SIZE); 5340 5341 /* Accumulated memory events */ 5342 5343 seq_printf(m, "pgfault %lu\n", events[PGFAULT]); 5344 seq_printf(m, "pgmajfault %lu\n", events[PGMAJFAULT]); 5345 5346 seq_printf(m, "pgrefill %lu\n", events[PGREFILL]); 5347 seq_printf(m, "pgscan %lu\n", events[PGSCAN_KSWAPD] + 5348 events[PGSCAN_DIRECT]); 5349 seq_printf(m, "pgsteal %lu\n", events[PGSTEAL_KSWAPD] + 5350 events[PGSTEAL_DIRECT]); 5351 seq_printf(m, "pgactivate %lu\n", events[PGACTIVATE]); 5352 seq_printf(m, "pgdeactivate %lu\n", events[PGDEACTIVATE]); 5353 seq_printf(m, "pglazyfree %lu\n", events[PGLAZYFREE]); 5354 seq_printf(m, "pglazyfreed %lu\n", events[PGLAZYFREED]); 5355 5356 seq_printf(m, "workingset_refault %lu\n", 5357 stat[WORKINGSET_REFAULT]); 5358 seq_printf(m, "workingset_activate %lu\n", 5359 stat[WORKINGSET_ACTIVATE]); 5360 seq_printf(m, "workingset_nodereclaim %lu\n", 5361 stat[WORKINGSET_NODERECLAIM]); 5362 5363 return 0; 5364 } 5365 5366 static struct cftype memory_files[] = { 5367 { 5368 .name = "current", 5369 .flags = CFTYPE_NOT_ON_ROOT, 5370 .read_u64 = memory_current_read, 5371 }, 5372 { 5373 .name = "low", 5374 .flags = CFTYPE_NOT_ON_ROOT, 5375 .seq_show = memory_low_show, 5376 .write = memory_low_write, 5377 }, 5378 { 5379 .name = "high", 5380 .flags = CFTYPE_NOT_ON_ROOT, 5381 .seq_show = memory_high_show, 5382 .write = memory_high_write, 5383 }, 5384 { 5385 .name = "max", 5386 .flags = CFTYPE_NOT_ON_ROOT, 5387 .seq_show = memory_max_show, 5388 .write = memory_max_write, 5389 }, 5390 { 5391 .name = "events", 5392 .flags = CFTYPE_NOT_ON_ROOT, 5393 .file_offset = offsetof(struct mem_cgroup, events_file), 5394 .seq_show = memory_events_show, 5395 }, 5396 { 5397 .name = "stat", 5398 .flags = CFTYPE_NOT_ON_ROOT, 5399 .seq_show = memory_stat_show, 5400 }, 5401 { } /* terminate */ 5402 }; 5403 5404 struct cgroup_subsys memory_cgrp_subsys = { 5405 .css_alloc = mem_cgroup_css_alloc, 5406 .css_online = mem_cgroup_css_online, 5407 .css_offline = mem_cgroup_css_offline, 5408 .css_released = mem_cgroup_css_released, 5409 .css_free = mem_cgroup_css_free, 5410 .css_reset = mem_cgroup_css_reset, 5411 .can_attach = mem_cgroup_can_attach, 5412 .cancel_attach = mem_cgroup_cancel_attach, 5413 .post_attach = mem_cgroup_move_task, 5414 .bind = mem_cgroup_bind, 5415 .dfl_cftypes = memory_files, 5416 .legacy_cftypes = mem_cgroup_legacy_files, 5417 .early_init = 0, 5418 }; 5419 5420 /** 5421 * mem_cgroup_low - check if memory consumption is below the normal range 5422 * @root: the top ancestor of the sub-tree being checked 5423 * @memcg: the memory cgroup to check 5424 * 5425 * Returns %true if memory consumption of @memcg, and that of all 5426 * ancestors up to (but not including) @root, is below the normal range. 5427 * 5428 * @root is exclusive; it is never low when looked at directly and isn't 5429 * checked when traversing the hierarchy. 5430 * 5431 * Excluding @root enables using memory.low to prioritize memory usage 5432 * between cgroups within a subtree of the hierarchy that is limited by 5433 * memory.high or memory.max. 5434 * 5435 * For example, given cgroup A with children B and C: 5436 * 5437 * A 5438 * / \ 5439 * B C 5440 * 5441 * and 5442 * 5443 * 1. A/memory.current > A/memory.high 5444 * 2. A/B/memory.current < A/B/memory.low 5445 * 3. A/C/memory.current >= A/C/memory.low 5446 * 5447 * As 'A' is high, i.e. triggers reclaim from 'A', and 'B' is low, we 5448 * should reclaim from 'C' until 'A' is no longer high or until we can 5449 * no longer reclaim from 'C'. If 'A', i.e. @root, isn't excluded by 5450 * mem_cgroup_low when reclaming from 'A', then 'B' won't be considered 5451 * low and we will reclaim indiscriminately from both 'B' and 'C'. 5452 */ 5453 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg) 5454 { 5455 if (mem_cgroup_disabled()) 5456 return false; 5457 5458 if (!root) 5459 root = root_mem_cgroup; 5460 if (memcg == root) 5461 return false; 5462 5463 for (; memcg != root; memcg = parent_mem_cgroup(memcg)) { 5464 if (page_counter_read(&memcg->memory) >= memcg->low) 5465 return false; 5466 } 5467 5468 return true; 5469 } 5470 5471 /** 5472 * mem_cgroup_try_charge - try charging a page 5473 * @page: page to charge 5474 * @mm: mm context of the victim 5475 * @gfp_mask: reclaim mode 5476 * @memcgp: charged memcg return 5477 * @compound: charge the page as compound or small page 5478 * 5479 * Try to charge @page to the memcg that @mm belongs to, reclaiming 5480 * pages according to @gfp_mask if necessary. 5481 * 5482 * Returns 0 on success, with *@memcgp pointing to the charged memcg. 5483 * Otherwise, an error code is returned. 5484 * 5485 * After page->mapping has been set up, the caller must finalize the 5486 * charge with mem_cgroup_commit_charge(). Or abort the transaction 5487 * with mem_cgroup_cancel_charge() in case page instantiation fails. 5488 */ 5489 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, 5490 gfp_t gfp_mask, struct mem_cgroup **memcgp, 5491 bool compound) 5492 { 5493 struct mem_cgroup *memcg = NULL; 5494 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 5495 int ret = 0; 5496 5497 if (mem_cgroup_disabled()) 5498 goto out; 5499 5500 if (PageSwapCache(page)) { 5501 /* 5502 * Every swap fault against a single page tries to charge the 5503 * page, bail as early as possible. shmem_unuse() encounters 5504 * already charged pages, too. The USED bit is protected by 5505 * the page lock, which serializes swap cache removal, which 5506 * in turn serializes uncharging. 5507 */ 5508 VM_BUG_ON_PAGE(!PageLocked(page), page); 5509 if (compound_head(page)->mem_cgroup) 5510 goto out; 5511 5512 if (do_swap_account) { 5513 swp_entry_t ent = { .val = page_private(page), }; 5514 unsigned short id = lookup_swap_cgroup_id(ent); 5515 5516 rcu_read_lock(); 5517 memcg = mem_cgroup_from_id(id); 5518 if (memcg && !css_tryget_online(&memcg->css)) 5519 memcg = NULL; 5520 rcu_read_unlock(); 5521 } 5522 } 5523 5524 if (!memcg) 5525 memcg = get_mem_cgroup_from_mm(mm); 5526 5527 ret = try_charge(memcg, gfp_mask, nr_pages); 5528 5529 css_put(&memcg->css); 5530 out: 5531 *memcgp = memcg; 5532 return ret; 5533 } 5534 5535 /** 5536 * mem_cgroup_commit_charge - commit a page charge 5537 * @page: page to charge 5538 * @memcg: memcg to charge the page to 5539 * @lrucare: page might be on LRU already 5540 * @compound: charge the page as compound or small page 5541 * 5542 * Finalize a charge transaction started by mem_cgroup_try_charge(), 5543 * after page->mapping has been set up. This must happen atomically 5544 * as part of the page instantiation, i.e. under the page table lock 5545 * for anonymous pages, under the page lock for page and swap cache. 5546 * 5547 * In addition, the page must not be on the LRU during the commit, to 5548 * prevent racing with task migration. If it might be, use @lrucare. 5549 * 5550 * Use mem_cgroup_cancel_charge() to cancel the transaction instead. 5551 */ 5552 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg, 5553 bool lrucare, bool compound) 5554 { 5555 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 5556 5557 VM_BUG_ON_PAGE(!page->mapping, page); 5558 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page); 5559 5560 if (mem_cgroup_disabled()) 5561 return; 5562 /* 5563 * Swap faults will attempt to charge the same page multiple 5564 * times. But reuse_swap_page() might have removed the page 5565 * from swapcache already, so we can't check PageSwapCache(). 5566 */ 5567 if (!memcg) 5568 return; 5569 5570 commit_charge(page, memcg, lrucare); 5571 5572 local_irq_disable(); 5573 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages); 5574 memcg_check_events(memcg, page); 5575 local_irq_enable(); 5576 5577 if (do_memsw_account() && PageSwapCache(page)) { 5578 swp_entry_t entry = { .val = page_private(page) }; 5579 /* 5580 * The swap entry might not get freed for a long time, 5581 * let's not wait for it. The page already received a 5582 * memory+swap charge, drop the swap entry duplicate. 5583 */ 5584 mem_cgroup_uncharge_swap(entry, nr_pages); 5585 } 5586 } 5587 5588 /** 5589 * mem_cgroup_cancel_charge - cancel a page charge 5590 * @page: page to charge 5591 * @memcg: memcg to charge the page to 5592 * @compound: charge the page as compound or small page 5593 * 5594 * Cancel a charge transaction started by mem_cgroup_try_charge(). 5595 */ 5596 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg, 5597 bool compound) 5598 { 5599 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 5600 5601 if (mem_cgroup_disabled()) 5602 return; 5603 /* 5604 * Swap faults will attempt to charge the same page multiple 5605 * times. But reuse_swap_page() might have removed the page 5606 * from swapcache already, so we can't check PageSwapCache(). 5607 */ 5608 if (!memcg) 5609 return; 5610 5611 cancel_charge(memcg, nr_pages); 5612 } 5613 5614 struct uncharge_gather { 5615 struct mem_cgroup *memcg; 5616 unsigned long pgpgout; 5617 unsigned long nr_anon; 5618 unsigned long nr_file; 5619 unsigned long nr_kmem; 5620 unsigned long nr_huge; 5621 unsigned long nr_shmem; 5622 struct page *dummy_page; 5623 }; 5624 5625 static inline void uncharge_gather_clear(struct uncharge_gather *ug) 5626 { 5627 memset(ug, 0, sizeof(*ug)); 5628 } 5629 5630 static void uncharge_batch(const struct uncharge_gather *ug) 5631 { 5632 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem; 5633 unsigned long flags; 5634 5635 if (!mem_cgroup_is_root(ug->memcg)) { 5636 page_counter_uncharge(&ug->memcg->memory, nr_pages); 5637 if (do_memsw_account()) 5638 page_counter_uncharge(&ug->memcg->memsw, nr_pages); 5639 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem) 5640 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem); 5641 memcg_oom_recover(ug->memcg); 5642 } 5643 5644 local_irq_save(flags); 5645 __this_cpu_sub(ug->memcg->stat->count[MEMCG_RSS], ug->nr_anon); 5646 __this_cpu_sub(ug->memcg->stat->count[MEMCG_CACHE], ug->nr_file); 5647 __this_cpu_sub(ug->memcg->stat->count[MEMCG_RSS_HUGE], ug->nr_huge); 5648 __this_cpu_sub(ug->memcg->stat->count[NR_SHMEM], ug->nr_shmem); 5649 __this_cpu_add(ug->memcg->stat->events[PGPGOUT], ug->pgpgout); 5650 __this_cpu_add(ug->memcg->stat->nr_page_events, nr_pages); 5651 memcg_check_events(ug->memcg, ug->dummy_page); 5652 local_irq_restore(flags); 5653 5654 if (!mem_cgroup_is_root(ug->memcg)) 5655 css_put_many(&ug->memcg->css, nr_pages); 5656 } 5657 5658 static void uncharge_page(struct page *page, struct uncharge_gather *ug) 5659 { 5660 VM_BUG_ON_PAGE(PageLRU(page), page); 5661 VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) && 5662 !PageHWPoison(page) , page); 5663 5664 if (!page->mem_cgroup) 5665 return; 5666 5667 /* 5668 * Nobody should be changing or seriously looking at 5669 * page->mem_cgroup at this point, we have fully 5670 * exclusive access to the page. 5671 */ 5672 5673 if (ug->memcg != page->mem_cgroup) { 5674 if (ug->memcg) { 5675 uncharge_batch(ug); 5676 uncharge_gather_clear(ug); 5677 } 5678 ug->memcg = page->mem_cgroup; 5679 } 5680 5681 if (!PageKmemcg(page)) { 5682 unsigned int nr_pages = 1; 5683 5684 if (PageTransHuge(page)) { 5685 nr_pages <<= compound_order(page); 5686 ug->nr_huge += nr_pages; 5687 } 5688 if (PageAnon(page)) 5689 ug->nr_anon += nr_pages; 5690 else { 5691 ug->nr_file += nr_pages; 5692 if (PageSwapBacked(page)) 5693 ug->nr_shmem += nr_pages; 5694 } 5695 ug->pgpgout++; 5696 } else { 5697 ug->nr_kmem += 1 << compound_order(page); 5698 __ClearPageKmemcg(page); 5699 } 5700 5701 ug->dummy_page = page; 5702 page->mem_cgroup = NULL; 5703 } 5704 5705 static void uncharge_list(struct list_head *page_list) 5706 { 5707 struct uncharge_gather ug; 5708 struct list_head *next; 5709 5710 uncharge_gather_clear(&ug); 5711 5712 /* 5713 * Note that the list can be a single page->lru; hence the 5714 * do-while loop instead of a simple list_for_each_entry(). 5715 */ 5716 next = page_list->next; 5717 do { 5718 struct page *page; 5719 5720 page = list_entry(next, struct page, lru); 5721 next = page->lru.next; 5722 5723 uncharge_page(page, &ug); 5724 } while (next != page_list); 5725 5726 if (ug.memcg) 5727 uncharge_batch(&ug); 5728 } 5729 5730 /** 5731 * mem_cgroup_uncharge - uncharge a page 5732 * @page: page to uncharge 5733 * 5734 * Uncharge a page previously charged with mem_cgroup_try_charge() and 5735 * mem_cgroup_commit_charge(). 5736 */ 5737 void mem_cgroup_uncharge(struct page *page) 5738 { 5739 struct uncharge_gather ug; 5740 5741 if (mem_cgroup_disabled()) 5742 return; 5743 5744 /* Don't touch page->lru of any random page, pre-check: */ 5745 if (!page->mem_cgroup) 5746 return; 5747 5748 uncharge_gather_clear(&ug); 5749 uncharge_page(page, &ug); 5750 uncharge_batch(&ug); 5751 } 5752 5753 /** 5754 * mem_cgroup_uncharge_list - uncharge a list of page 5755 * @page_list: list of pages to uncharge 5756 * 5757 * Uncharge a list of pages previously charged with 5758 * mem_cgroup_try_charge() and mem_cgroup_commit_charge(). 5759 */ 5760 void mem_cgroup_uncharge_list(struct list_head *page_list) 5761 { 5762 if (mem_cgroup_disabled()) 5763 return; 5764 5765 if (!list_empty(page_list)) 5766 uncharge_list(page_list); 5767 } 5768 5769 /** 5770 * mem_cgroup_migrate - charge a page's replacement 5771 * @oldpage: currently circulating page 5772 * @newpage: replacement page 5773 * 5774 * Charge @newpage as a replacement page for @oldpage. @oldpage will 5775 * be uncharged upon free. 5776 * 5777 * Both pages must be locked, @newpage->mapping must be set up. 5778 */ 5779 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage) 5780 { 5781 struct mem_cgroup *memcg; 5782 unsigned int nr_pages; 5783 bool compound; 5784 unsigned long flags; 5785 5786 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage); 5787 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 5788 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage); 5789 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage), 5790 newpage); 5791 5792 if (mem_cgroup_disabled()) 5793 return; 5794 5795 /* Page cache replacement: new page already charged? */ 5796 if (newpage->mem_cgroup) 5797 return; 5798 5799 /* Swapcache readahead pages can get replaced before being charged */ 5800 memcg = oldpage->mem_cgroup; 5801 if (!memcg) 5802 return; 5803 5804 /* Force-charge the new page. The old one will be freed soon */ 5805 compound = PageTransHuge(newpage); 5806 nr_pages = compound ? hpage_nr_pages(newpage) : 1; 5807 5808 page_counter_charge(&memcg->memory, nr_pages); 5809 if (do_memsw_account()) 5810 page_counter_charge(&memcg->memsw, nr_pages); 5811 css_get_many(&memcg->css, nr_pages); 5812 5813 commit_charge(newpage, memcg, false); 5814 5815 local_irq_save(flags); 5816 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages); 5817 memcg_check_events(memcg, newpage); 5818 local_irq_restore(flags); 5819 } 5820 5821 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); 5822 EXPORT_SYMBOL(memcg_sockets_enabled_key); 5823 5824 void mem_cgroup_sk_alloc(struct sock *sk) 5825 { 5826 struct mem_cgroup *memcg; 5827 5828 if (!mem_cgroup_sockets_enabled) 5829 return; 5830 5831 rcu_read_lock(); 5832 memcg = mem_cgroup_from_task(current); 5833 if (memcg == root_mem_cgroup) 5834 goto out; 5835 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active) 5836 goto out; 5837 if (css_tryget_online(&memcg->css)) 5838 sk->sk_memcg = memcg; 5839 out: 5840 rcu_read_unlock(); 5841 } 5842 5843 void mem_cgroup_sk_free(struct sock *sk) 5844 { 5845 if (sk->sk_memcg) 5846 css_put(&sk->sk_memcg->css); 5847 } 5848 5849 /** 5850 * mem_cgroup_charge_skmem - charge socket memory 5851 * @memcg: memcg to charge 5852 * @nr_pages: number of pages to charge 5853 * 5854 * Charges @nr_pages to @memcg. Returns %true if the charge fit within 5855 * @memcg's configured limit, %false if the charge had to be forced. 5856 */ 5857 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 5858 { 5859 gfp_t gfp_mask = GFP_KERNEL; 5860 5861 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 5862 struct page_counter *fail; 5863 5864 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) { 5865 memcg->tcpmem_pressure = 0; 5866 return true; 5867 } 5868 page_counter_charge(&memcg->tcpmem, nr_pages); 5869 memcg->tcpmem_pressure = 1; 5870 return false; 5871 } 5872 5873 /* Don't block in the packet receive path */ 5874 if (in_softirq()) 5875 gfp_mask = GFP_NOWAIT; 5876 5877 this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages); 5878 5879 if (try_charge(memcg, gfp_mask, nr_pages) == 0) 5880 return true; 5881 5882 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages); 5883 return false; 5884 } 5885 5886 /** 5887 * mem_cgroup_uncharge_skmem - uncharge socket memory 5888 * @memcg - memcg to uncharge 5889 * @nr_pages - number of pages to uncharge 5890 */ 5891 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 5892 { 5893 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 5894 page_counter_uncharge(&memcg->tcpmem, nr_pages); 5895 return; 5896 } 5897 5898 this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages); 5899 5900 refill_stock(memcg, nr_pages); 5901 } 5902 5903 static int __init cgroup_memory(char *s) 5904 { 5905 char *token; 5906 5907 while ((token = strsep(&s, ",")) != NULL) { 5908 if (!*token) 5909 continue; 5910 if (!strcmp(token, "nosocket")) 5911 cgroup_memory_nosocket = true; 5912 if (!strcmp(token, "nokmem")) 5913 cgroup_memory_nokmem = true; 5914 } 5915 return 0; 5916 } 5917 __setup("cgroup.memory=", cgroup_memory); 5918 5919 /* 5920 * subsys_initcall() for memory controller. 5921 * 5922 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this 5923 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but 5924 * basically everything that doesn't depend on a specific mem_cgroup structure 5925 * should be initialized from here. 5926 */ 5927 static int __init mem_cgroup_init(void) 5928 { 5929 int cpu, node; 5930 5931 #ifndef CONFIG_SLOB 5932 /* 5933 * Kmem cache creation is mostly done with the slab_mutex held, 5934 * so use a workqueue with limited concurrency to avoid stalling 5935 * all worker threads in case lots of cgroups are created and 5936 * destroyed simultaneously. 5937 */ 5938 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1); 5939 BUG_ON(!memcg_kmem_cache_wq); 5940 #endif 5941 5942 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL, 5943 memcg_hotplug_cpu_dead); 5944 5945 for_each_possible_cpu(cpu) 5946 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, 5947 drain_local_stock); 5948 5949 for_each_node(node) { 5950 struct mem_cgroup_tree_per_node *rtpn; 5951 5952 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, 5953 node_online(node) ? node : NUMA_NO_NODE); 5954 5955 rtpn->rb_root = RB_ROOT; 5956 rtpn->rb_rightmost = NULL; 5957 spin_lock_init(&rtpn->lock); 5958 soft_limit_tree.rb_tree_per_node[node] = rtpn; 5959 } 5960 5961 return 0; 5962 } 5963 subsys_initcall(mem_cgroup_init); 5964 5965 #ifdef CONFIG_MEMCG_SWAP 5966 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg) 5967 { 5968 while (!atomic_inc_not_zero(&memcg->id.ref)) { 5969 /* 5970 * The root cgroup cannot be destroyed, so it's refcount must 5971 * always be >= 1. 5972 */ 5973 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) { 5974 VM_BUG_ON(1); 5975 break; 5976 } 5977 memcg = parent_mem_cgroup(memcg); 5978 if (!memcg) 5979 memcg = root_mem_cgroup; 5980 } 5981 return memcg; 5982 } 5983 5984 /** 5985 * mem_cgroup_swapout - transfer a memsw charge to swap 5986 * @page: page whose memsw charge to transfer 5987 * @entry: swap entry to move the charge to 5988 * 5989 * Transfer the memsw charge of @page to @entry. 5990 */ 5991 void mem_cgroup_swapout(struct page *page, swp_entry_t entry) 5992 { 5993 struct mem_cgroup *memcg, *swap_memcg; 5994 unsigned int nr_entries; 5995 unsigned short oldid; 5996 5997 VM_BUG_ON_PAGE(PageLRU(page), page); 5998 VM_BUG_ON_PAGE(page_count(page), page); 5999 6000 if (!do_memsw_account()) 6001 return; 6002 6003 memcg = page->mem_cgroup; 6004 6005 /* Readahead page, never charged */ 6006 if (!memcg) 6007 return; 6008 6009 /* 6010 * In case the memcg owning these pages has been offlined and doesn't 6011 * have an ID allocated to it anymore, charge the closest online 6012 * ancestor for the swap instead and transfer the memory+swap charge. 6013 */ 6014 swap_memcg = mem_cgroup_id_get_online(memcg); 6015 nr_entries = hpage_nr_pages(page); 6016 /* Get references for the tail pages, too */ 6017 if (nr_entries > 1) 6018 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1); 6019 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg), 6020 nr_entries); 6021 VM_BUG_ON_PAGE(oldid, page); 6022 mem_cgroup_swap_statistics(swap_memcg, nr_entries); 6023 6024 page->mem_cgroup = NULL; 6025 6026 if (!mem_cgroup_is_root(memcg)) 6027 page_counter_uncharge(&memcg->memory, nr_entries); 6028 6029 if (memcg != swap_memcg) { 6030 if (!mem_cgroup_is_root(swap_memcg)) 6031 page_counter_charge(&swap_memcg->memsw, nr_entries); 6032 page_counter_uncharge(&memcg->memsw, nr_entries); 6033 } 6034 6035 /* 6036 * Interrupts should be disabled here because the caller holds the 6037 * mapping->tree_lock lock which is taken with interrupts-off. It is 6038 * important here to have the interrupts disabled because it is the 6039 * only synchronisation we have for udpating the per-CPU variables. 6040 */ 6041 VM_BUG_ON(!irqs_disabled()); 6042 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page), 6043 -nr_entries); 6044 memcg_check_events(memcg, page); 6045 6046 if (!mem_cgroup_is_root(memcg)) 6047 css_put_many(&memcg->css, nr_entries); 6048 } 6049 6050 /** 6051 * mem_cgroup_try_charge_swap - try charging swap space for a page 6052 * @page: page being added to swap 6053 * @entry: swap entry to charge 6054 * 6055 * Try to charge @page's memcg for the swap space at @entry. 6056 * 6057 * Returns 0 on success, -ENOMEM on failure. 6058 */ 6059 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry) 6060 { 6061 unsigned int nr_pages = hpage_nr_pages(page); 6062 struct page_counter *counter; 6063 struct mem_cgroup *memcg; 6064 unsigned short oldid; 6065 6066 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account) 6067 return 0; 6068 6069 memcg = page->mem_cgroup; 6070 6071 /* Readahead page, never charged */ 6072 if (!memcg) 6073 return 0; 6074 6075 memcg = mem_cgroup_id_get_online(memcg); 6076 6077 if (!mem_cgroup_is_root(memcg) && 6078 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) { 6079 mem_cgroup_id_put(memcg); 6080 return -ENOMEM; 6081 } 6082 6083 /* Get references for the tail pages, too */ 6084 if (nr_pages > 1) 6085 mem_cgroup_id_get_many(memcg, nr_pages - 1); 6086 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages); 6087 VM_BUG_ON_PAGE(oldid, page); 6088 mem_cgroup_swap_statistics(memcg, nr_pages); 6089 6090 return 0; 6091 } 6092 6093 /** 6094 * mem_cgroup_uncharge_swap - uncharge swap space 6095 * @entry: swap entry to uncharge 6096 * @nr_pages: the amount of swap space to uncharge 6097 */ 6098 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages) 6099 { 6100 struct mem_cgroup *memcg; 6101 unsigned short id; 6102 6103 if (!do_swap_account) 6104 return; 6105 6106 id = swap_cgroup_record(entry, 0, nr_pages); 6107 rcu_read_lock(); 6108 memcg = mem_cgroup_from_id(id); 6109 if (memcg) { 6110 if (!mem_cgroup_is_root(memcg)) { 6111 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 6112 page_counter_uncharge(&memcg->swap, nr_pages); 6113 else 6114 page_counter_uncharge(&memcg->memsw, nr_pages); 6115 } 6116 mem_cgroup_swap_statistics(memcg, -nr_pages); 6117 mem_cgroup_id_put_many(memcg, nr_pages); 6118 } 6119 rcu_read_unlock(); 6120 } 6121 6122 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) 6123 { 6124 long nr_swap_pages = get_nr_swap_pages(); 6125 6126 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 6127 return nr_swap_pages; 6128 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) 6129 nr_swap_pages = min_t(long, nr_swap_pages, 6130 READ_ONCE(memcg->swap.limit) - 6131 page_counter_read(&memcg->swap)); 6132 return nr_swap_pages; 6133 } 6134 6135 bool mem_cgroup_swap_full(struct page *page) 6136 { 6137 struct mem_cgroup *memcg; 6138 6139 VM_BUG_ON_PAGE(!PageLocked(page), page); 6140 6141 if (vm_swap_full()) 6142 return true; 6143 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 6144 return false; 6145 6146 memcg = page->mem_cgroup; 6147 if (!memcg) 6148 return false; 6149 6150 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) 6151 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit) 6152 return true; 6153 6154 return false; 6155 } 6156 6157 /* for remember boot option*/ 6158 #ifdef CONFIG_MEMCG_SWAP_ENABLED 6159 static int really_do_swap_account __initdata = 1; 6160 #else 6161 static int really_do_swap_account __initdata; 6162 #endif 6163 6164 static int __init enable_swap_account(char *s) 6165 { 6166 if (!strcmp(s, "1")) 6167 really_do_swap_account = 1; 6168 else if (!strcmp(s, "0")) 6169 really_do_swap_account = 0; 6170 return 1; 6171 } 6172 __setup("swapaccount=", enable_swap_account); 6173 6174 static u64 swap_current_read(struct cgroup_subsys_state *css, 6175 struct cftype *cft) 6176 { 6177 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6178 6179 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; 6180 } 6181 6182 static int swap_max_show(struct seq_file *m, void *v) 6183 { 6184 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 6185 unsigned long max = READ_ONCE(memcg->swap.limit); 6186 6187 if (max == PAGE_COUNTER_MAX) 6188 seq_puts(m, "max\n"); 6189 else 6190 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE); 6191 6192 return 0; 6193 } 6194 6195 static ssize_t swap_max_write(struct kernfs_open_file *of, 6196 char *buf, size_t nbytes, loff_t off) 6197 { 6198 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6199 unsigned long max; 6200 int err; 6201 6202 buf = strstrip(buf); 6203 err = page_counter_memparse(buf, "max", &max); 6204 if (err) 6205 return err; 6206 6207 mutex_lock(&memcg_limit_mutex); 6208 err = page_counter_limit(&memcg->swap, max); 6209 mutex_unlock(&memcg_limit_mutex); 6210 if (err) 6211 return err; 6212 6213 return nbytes; 6214 } 6215 6216 static struct cftype swap_files[] = { 6217 { 6218 .name = "swap.current", 6219 .flags = CFTYPE_NOT_ON_ROOT, 6220 .read_u64 = swap_current_read, 6221 }, 6222 { 6223 .name = "swap.max", 6224 .flags = CFTYPE_NOT_ON_ROOT, 6225 .seq_show = swap_max_show, 6226 .write = swap_max_write, 6227 }, 6228 { } /* terminate */ 6229 }; 6230 6231 static struct cftype memsw_cgroup_files[] = { 6232 { 6233 .name = "memsw.usage_in_bytes", 6234 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 6235 .read_u64 = mem_cgroup_read_u64, 6236 }, 6237 { 6238 .name = "memsw.max_usage_in_bytes", 6239 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 6240 .write = mem_cgroup_reset, 6241 .read_u64 = mem_cgroup_read_u64, 6242 }, 6243 { 6244 .name = "memsw.limit_in_bytes", 6245 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 6246 .write = mem_cgroup_write, 6247 .read_u64 = mem_cgroup_read_u64, 6248 }, 6249 { 6250 .name = "memsw.failcnt", 6251 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 6252 .write = mem_cgroup_reset, 6253 .read_u64 = mem_cgroup_read_u64, 6254 }, 6255 { }, /* terminate */ 6256 }; 6257 6258 static int __init mem_cgroup_swap_init(void) 6259 { 6260 if (!mem_cgroup_disabled() && really_do_swap_account) { 6261 do_swap_account = 1; 6262 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, 6263 swap_files)); 6264 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, 6265 memsw_cgroup_files)); 6266 } 6267 return 0; 6268 } 6269 subsys_initcall(mem_cgroup_swap_init); 6270 6271 #endif /* CONFIG_MEMCG_SWAP */ 6272