xref: /openbmc/linux/mm/memcontrol.c (revision 48d54403)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <xemul@openvz.org>
9  *
10  * Memory thresholds
11  * Copyright (C) 2009 Nokia Corporation
12  * Author: Kirill A. Shutemov
13  *
14  * Kernel Memory Controller
15  * Copyright (C) 2012 Parallels Inc. and Google Inc.
16  * Authors: Glauber Costa and Suleiman Souhlal
17  *
18  * Native page reclaim
19  * Charge lifetime sanitation
20  * Lockless page tracking & accounting
21  * Unified hierarchy configuration model
22  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23  *
24  * Per memcg lru locking
25  * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26  */
27 
28 #include <linux/page_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/pagewalk.h>
32 #include <linux/sched/mm.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/hugetlb.h>
35 #include <linux/pagemap.h>
36 #include <linux/vm_event_item.h>
37 #include <linux/smp.h>
38 #include <linux/page-flags.h>
39 #include <linux/backing-dev.h>
40 #include <linux/bit_spinlock.h>
41 #include <linux/rcupdate.h>
42 #include <linux/limits.h>
43 #include <linux/export.h>
44 #include <linux/mutex.h>
45 #include <linux/rbtree.h>
46 #include <linux/slab.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/spinlock.h>
50 #include <linux/eventfd.h>
51 #include <linux/poll.h>
52 #include <linux/sort.h>
53 #include <linux/fs.h>
54 #include <linux/seq_file.h>
55 #include <linux/vmpressure.h>
56 #include <linux/mm_inline.h>
57 #include <linux/swap_cgroup.h>
58 #include <linux/cpu.h>
59 #include <linux/oom.h>
60 #include <linux/lockdep.h>
61 #include <linux/file.h>
62 #include <linux/tracehook.h>
63 #include <linux/psi.h>
64 #include <linux/seq_buf.h>
65 #include "internal.h"
66 #include <net/sock.h>
67 #include <net/ip.h>
68 #include "slab.h"
69 
70 #include <linux/uaccess.h>
71 
72 #include <trace/events/vmscan.h>
73 
74 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
75 EXPORT_SYMBOL(memory_cgrp_subsys);
76 
77 struct mem_cgroup *root_mem_cgroup __read_mostly;
78 
79 /* Active memory cgroup to use from an interrupt context */
80 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
81 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
82 
83 /* Socket memory accounting disabled? */
84 static bool cgroup_memory_nosocket __ro_after_init;
85 
86 /* Kernel memory accounting disabled? */
87 bool cgroup_memory_nokmem __ro_after_init;
88 
89 /* Whether the swap controller is active */
90 #ifdef CONFIG_MEMCG_SWAP
91 bool cgroup_memory_noswap __ro_after_init;
92 #else
93 #define cgroup_memory_noswap		1
94 #endif
95 
96 #ifdef CONFIG_CGROUP_WRITEBACK
97 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
98 #endif
99 
100 /* Whether legacy memory+swap accounting is active */
101 static bool do_memsw_account(void)
102 {
103 	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
104 }
105 
106 #define THRESHOLDS_EVENTS_TARGET 128
107 #define SOFTLIMIT_EVENTS_TARGET 1024
108 
109 /*
110  * Cgroups above their limits are maintained in a RB-Tree, independent of
111  * their hierarchy representation
112  */
113 
114 struct mem_cgroup_tree_per_node {
115 	struct rb_root rb_root;
116 	struct rb_node *rb_rightmost;
117 	spinlock_t lock;
118 };
119 
120 struct mem_cgroup_tree {
121 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
122 };
123 
124 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
125 
126 /* for OOM */
127 struct mem_cgroup_eventfd_list {
128 	struct list_head list;
129 	struct eventfd_ctx *eventfd;
130 };
131 
132 /*
133  * cgroup_event represents events which userspace want to receive.
134  */
135 struct mem_cgroup_event {
136 	/*
137 	 * memcg which the event belongs to.
138 	 */
139 	struct mem_cgroup *memcg;
140 	/*
141 	 * eventfd to signal userspace about the event.
142 	 */
143 	struct eventfd_ctx *eventfd;
144 	/*
145 	 * Each of these stored in a list by the cgroup.
146 	 */
147 	struct list_head list;
148 	/*
149 	 * register_event() callback will be used to add new userspace
150 	 * waiter for changes related to this event.  Use eventfd_signal()
151 	 * on eventfd to send notification to userspace.
152 	 */
153 	int (*register_event)(struct mem_cgroup *memcg,
154 			      struct eventfd_ctx *eventfd, const char *args);
155 	/*
156 	 * unregister_event() callback will be called when userspace closes
157 	 * the eventfd or on cgroup removing.  This callback must be set,
158 	 * if you want provide notification functionality.
159 	 */
160 	void (*unregister_event)(struct mem_cgroup *memcg,
161 				 struct eventfd_ctx *eventfd);
162 	/*
163 	 * All fields below needed to unregister event when
164 	 * userspace closes eventfd.
165 	 */
166 	poll_table pt;
167 	wait_queue_head_t *wqh;
168 	wait_queue_entry_t wait;
169 	struct work_struct remove;
170 };
171 
172 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
173 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
174 
175 /* Stuffs for move charges at task migration. */
176 /*
177  * Types of charges to be moved.
178  */
179 #define MOVE_ANON	0x1U
180 #define MOVE_FILE	0x2U
181 #define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
182 
183 /* "mc" and its members are protected by cgroup_mutex */
184 static struct move_charge_struct {
185 	spinlock_t	  lock; /* for from, to */
186 	struct mm_struct  *mm;
187 	struct mem_cgroup *from;
188 	struct mem_cgroup *to;
189 	unsigned long flags;
190 	unsigned long precharge;
191 	unsigned long moved_charge;
192 	unsigned long moved_swap;
193 	struct task_struct *moving_task;	/* a task moving charges */
194 	wait_queue_head_t waitq;		/* a waitq for other context */
195 } mc = {
196 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
197 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
198 };
199 
200 /*
201  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
202  * limit reclaim to prevent infinite loops, if they ever occur.
203  */
204 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
205 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
206 
207 /* for encoding cft->private value on file */
208 enum res_type {
209 	_MEM,
210 	_MEMSWAP,
211 	_OOM_TYPE,
212 	_KMEM,
213 	_TCP,
214 };
215 
216 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
217 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
218 #define MEMFILE_ATTR(val)	((val) & 0xffff)
219 /* Used for OOM notifier */
220 #define OOM_CONTROL		(0)
221 
222 /*
223  * Iteration constructs for visiting all cgroups (under a tree).  If
224  * loops are exited prematurely (break), mem_cgroup_iter_break() must
225  * be used for reference counting.
226  */
227 #define for_each_mem_cgroup_tree(iter, root)		\
228 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
229 	     iter != NULL;				\
230 	     iter = mem_cgroup_iter(root, iter, NULL))
231 
232 #define for_each_mem_cgroup(iter)			\
233 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
234 	     iter != NULL;				\
235 	     iter = mem_cgroup_iter(NULL, iter, NULL))
236 
237 static inline bool should_force_charge(void)
238 {
239 	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
240 		(current->flags & PF_EXITING);
241 }
242 
243 /* Some nice accessors for the vmpressure. */
244 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
245 {
246 	if (!memcg)
247 		memcg = root_mem_cgroup;
248 	return &memcg->vmpressure;
249 }
250 
251 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
252 {
253 	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
254 }
255 
256 #ifdef CONFIG_MEMCG_KMEM
257 extern spinlock_t css_set_lock;
258 
259 bool mem_cgroup_kmem_disabled(void)
260 {
261 	return cgroup_memory_nokmem;
262 }
263 
264 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
265 				      unsigned int nr_pages);
266 
267 static void obj_cgroup_release(struct percpu_ref *ref)
268 {
269 	struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
270 	unsigned int nr_bytes;
271 	unsigned int nr_pages;
272 	unsigned long flags;
273 
274 	/*
275 	 * At this point all allocated objects are freed, and
276 	 * objcg->nr_charged_bytes can't have an arbitrary byte value.
277 	 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
278 	 *
279 	 * The following sequence can lead to it:
280 	 * 1) CPU0: objcg == stock->cached_objcg
281 	 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
282 	 *          PAGE_SIZE bytes are charged
283 	 * 3) CPU1: a process from another memcg is allocating something,
284 	 *          the stock if flushed,
285 	 *          objcg->nr_charged_bytes = PAGE_SIZE - 92
286 	 * 5) CPU0: we do release this object,
287 	 *          92 bytes are added to stock->nr_bytes
288 	 * 6) CPU0: stock is flushed,
289 	 *          92 bytes are added to objcg->nr_charged_bytes
290 	 *
291 	 * In the result, nr_charged_bytes == PAGE_SIZE.
292 	 * This page will be uncharged in obj_cgroup_release().
293 	 */
294 	nr_bytes = atomic_read(&objcg->nr_charged_bytes);
295 	WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
296 	nr_pages = nr_bytes >> PAGE_SHIFT;
297 
298 	if (nr_pages)
299 		obj_cgroup_uncharge_pages(objcg, nr_pages);
300 
301 	spin_lock_irqsave(&css_set_lock, flags);
302 	list_del(&objcg->list);
303 	spin_unlock_irqrestore(&css_set_lock, flags);
304 
305 	percpu_ref_exit(ref);
306 	kfree_rcu(objcg, rcu);
307 }
308 
309 static struct obj_cgroup *obj_cgroup_alloc(void)
310 {
311 	struct obj_cgroup *objcg;
312 	int ret;
313 
314 	objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
315 	if (!objcg)
316 		return NULL;
317 
318 	ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
319 			      GFP_KERNEL);
320 	if (ret) {
321 		kfree(objcg);
322 		return NULL;
323 	}
324 	INIT_LIST_HEAD(&objcg->list);
325 	return objcg;
326 }
327 
328 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
329 				  struct mem_cgroup *parent)
330 {
331 	struct obj_cgroup *objcg, *iter;
332 
333 	objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
334 
335 	spin_lock_irq(&css_set_lock);
336 
337 	/* 1) Ready to reparent active objcg. */
338 	list_add(&objcg->list, &memcg->objcg_list);
339 	/* 2) Reparent active objcg and already reparented objcgs to parent. */
340 	list_for_each_entry(iter, &memcg->objcg_list, list)
341 		WRITE_ONCE(iter->memcg, parent);
342 	/* 3) Move already reparented objcgs to the parent's list */
343 	list_splice(&memcg->objcg_list, &parent->objcg_list);
344 
345 	spin_unlock_irq(&css_set_lock);
346 
347 	percpu_ref_kill(&objcg->refcnt);
348 }
349 
350 /*
351  * This will be used as a shrinker list's index.
352  * The main reason for not using cgroup id for this:
353  *  this works better in sparse environments, where we have a lot of memcgs,
354  *  but only a few kmem-limited. Or also, if we have, for instance, 200
355  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
356  *  200 entry array for that.
357  *
358  * The current size of the caches array is stored in memcg_nr_cache_ids. It
359  * will double each time we have to increase it.
360  */
361 static DEFINE_IDA(memcg_cache_ida);
362 int memcg_nr_cache_ids;
363 
364 /* Protects memcg_nr_cache_ids */
365 static DECLARE_RWSEM(memcg_cache_ids_sem);
366 
367 void memcg_get_cache_ids(void)
368 {
369 	down_read(&memcg_cache_ids_sem);
370 }
371 
372 void memcg_put_cache_ids(void)
373 {
374 	up_read(&memcg_cache_ids_sem);
375 }
376 
377 /*
378  * MIN_SIZE is different than 1, because we would like to avoid going through
379  * the alloc/free process all the time. In a small machine, 4 kmem-limited
380  * cgroups is a reasonable guess. In the future, it could be a parameter or
381  * tunable, but that is strictly not necessary.
382  *
383  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
384  * this constant directly from cgroup, but it is understandable that this is
385  * better kept as an internal representation in cgroup.c. In any case, the
386  * cgrp_id space is not getting any smaller, and we don't have to necessarily
387  * increase ours as well if it increases.
388  */
389 #define MEMCG_CACHES_MIN_SIZE 4
390 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
391 
392 /*
393  * A lot of the calls to the cache allocation functions are expected to be
394  * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
395  * conditional to this static branch, we'll have to allow modules that does
396  * kmem_cache_alloc and the such to see this symbol as well
397  */
398 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
399 EXPORT_SYMBOL(memcg_kmem_enabled_key);
400 #endif
401 
402 /**
403  * mem_cgroup_css_from_page - css of the memcg associated with a page
404  * @page: page of interest
405  *
406  * If memcg is bound to the default hierarchy, css of the memcg associated
407  * with @page is returned.  The returned css remains associated with @page
408  * until it is released.
409  *
410  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
411  * is returned.
412  */
413 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
414 {
415 	struct mem_cgroup *memcg;
416 
417 	memcg = page_memcg(page);
418 
419 	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
420 		memcg = root_mem_cgroup;
421 
422 	return &memcg->css;
423 }
424 
425 /**
426  * page_cgroup_ino - return inode number of the memcg a page is charged to
427  * @page: the page
428  *
429  * Look up the closest online ancestor of the memory cgroup @page is charged to
430  * and return its inode number or 0 if @page is not charged to any cgroup. It
431  * is safe to call this function without holding a reference to @page.
432  *
433  * Note, this function is inherently racy, because there is nothing to prevent
434  * the cgroup inode from getting torn down and potentially reallocated a moment
435  * after page_cgroup_ino() returns, so it only should be used by callers that
436  * do not care (such as procfs interfaces).
437  */
438 ino_t page_cgroup_ino(struct page *page)
439 {
440 	struct mem_cgroup *memcg;
441 	unsigned long ino = 0;
442 
443 	rcu_read_lock();
444 	memcg = page_memcg_check(page);
445 
446 	while (memcg && !(memcg->css.flags & CSS_ONLINE))
447 		memcg = parent_mem_cgroup(memcg);
448 	if (memcg)
449 		ino = cgroup_ino(memcg->css.cgroup);
450 	rcu_read_unlock();
451 	return ino;
452 }
453 
454 static struct mem_cgroup_per_node *
455 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
456 {
457 	int nid = page_to_nid(page);
458 
459 	return memcg->nodeinfo[nid];
460 }
461 
462 static struct mem_cgroup_tree_per_node *
463 soft_limit_tree_node(int nid)
464 {
465 	return soft_limit_tree.rb_tree_per_node[nid];
466 }
467 
468 static struct mem_cgroup_tree_per_node *
469 soft_limit_tree_from_page(struct page *page)
470 {
471 	int nid = page_to_nid(page);
472 
473 	return soft_limit_tree.rb_tree_per_node[nid];
474 }
475 
476 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
477 					 struct mem_cgroup_tree_per_node *mctz,
478 					 unsigned long new_usage_in_excess)
479 {
480 	struct rb_node **p = &mctz->rb_root.rb_node;
481 	struct rb_node *parent = NULL;
482 	struct mem_cgroup_per_node *mz_node;
483 	bool rightmost = true;
484 
485 	if (mz->on_tree)
486 		return;
487 
488 	mz->usage_in_excess = new_usage_in_excess;
489 	if (!mz->usage_in_excess)
490 		return;
491 	while (*p) {
492 		parent = *p;
493 		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
494 					tree_node);
495 		if (mz->usage_in_excess < mz_node->usage_in_excess) {
496 			p = &(*p)->rb_left;
497 			rightmost = false;
498 		} else {
499 			p = &(*p)->rb_right;
500 		}
501 	}
502 
503 	if (rightmost)
504 		mctz->rb_rightmost = &mz->tree_node;
505 
506 	rb_link_node(&mz->tree_node, parent, p);
507 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
508 	mz->on_tree = true;
509 }
510 
511 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
512 					 struct mem_cgroup_tree_per_node *mctz)
513 {
514 	if (!mz->on_tree)
515 		return;
516 
517 	if (&mz->tree_node == mctz->rb_rightmost)
518 		mctz->rb_rightmost = rb_prev(&mz->tree_node);
519 
520 	rb_erase(&mz->tree_node, &mctz->rb_root);
521 	mz->on_tree = false;
522 }
523 
524 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
525 				       struct mem_cgroup_tree_per_node *mctz)
526 {
527 	unsigned long flags;
528 
529 	spin_lock_irqsave(&mctz->lock, flags);
530 	__mem_cgroup_remove_exceeded(mz, mctz);
531 	spin_unlock_irqrestore(&mctz->lock, flags);
532 }
533 
534 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
535 {
536 	unsigned long nr_pages = page_counter_read(&memcg->memory);
537 	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
538 	unsigned long excess = 0;
539 
540 	if (nr_pages > soft_limit)
541 		excess = nr_pages - soft_limit;
542 
543 	return excess;
544 }
545 
546 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
547 {
548 	unsigned long excess;
549 	struct mem_cgroup_per_node *mz;
550 	struct mem_cgroup_tree_per_node *mctz;
551 
552 	mctz = soft_limit_tree_from_page(page);
553 	if (!mctz)
554 		return;
555 	/*
556 	 * Necessary to update all ancestors when hierarchy is used.
557 	 * because their event counter is not touched.
558 	 */
559 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
560 		mz = mem_cgroup_page_nodeinfo(memcg, page);
561 		excess = soft_limit_excess(memcg);
562 		/*
563 		 * We have to update the tree if mz is on RB-tree or
564 		 * mem is over its softlimit.
565 		 */
566 		if (excess || mz->on_tree) {
567 			unsigned long flags;
568 
569 			spin_lock_irqsave(&mctz->lock, flags);
570 			/* if on-tree, remove it */
571 			if (mz->on_tree)
572 				__mem_cgroup_remove_exceeded(mz, mctz);
573 			/*
574 			 * Insert again. mz->usage_in_excess will be updated.
575 			 * If excess is 0, no tree ops.
576 			 */
577 			__mem_cgroup_insert_exceeded(mz, mctz, excess);
578 			spin_unlock_irqrestore(&mctz->lock, flags);
579 		}
580 	}
581 }
582 
583 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
584 {
585 	struct mem_cgroup_tree_per_node *mctz;
586 	struct mem_cgroup_per_node *mz;
587 	int nid;
588 
589 	for_each_node(nid) {
590 		mz = memcg->nodeinfo[nid];
591 		mctz = soft_limit_tree_node(nid);
592 		if (mctz)
593 			mem_cgroup_remove_exceeded(mz, mctz);
594 	}
595 }
596 
597 static struct mem_cgroup_per_node *
598 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
599 {
600 	struct mem_cgroup_per_node *mz;
601 
602 retry:
603 	mz = NULL;
604 	if (!mctz->rb_rightmost)
605 		goto done;		/* Nothing to reclaim from */
606 
607 	mz = rb_entry(mctz->rb_rightmost,
608 		      struct mem_cgroup_per_node, tree_node);
609 	/*
610 	 * Remove the node now but someone else can add it back,
611 	 * we will to add it back at the end of reclaim to its correct
612 	 * position in the tree.
613 	 */
614 	__mem_cgroup_remove_exceeded(mz, mctz);
615 	if (!soft_limit_excess(mz->memcg) ||
616 	    !css_tryget(&mz->memcg->css))
617 		goto retry;
618 done:
619 	return mz;
620 }
621 
622 static struct mem_cgroup_per_node *
623 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
624 {
625 	struct mem_cgroup_per_node *mz;
626 
627 	spin_lock_irq(&mctz->lock);
628 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
629 	spin_unlock_irq(&mctz->lock);
630 	return mz;
631 }
632 
633 /**
634  * __mod_memcg_state - update cgroup memory statistics
635  * @memcg: the memory cgroup
636  * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
637  * @val: delta to add to the counter, can be negative
638  */
639 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
640 {
641 	if (mem_cgroup_disabled())
642 		return;
643 
644 	__this_cpu_add(memcg->vmstats_percpu->state[idx], val);
645 	cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
646 }
647 
648 /* idx can be of type enum memcg_stat_item or node_stat_item. */
649 static unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
650 {
651 	long x = READ_ONCE(memcg->vmstats.state[idx]);
652 #ifdef CONFIG_SMP
653 	if (x < 0)
654 		x = 0;
655 #endif
656 	return x;
657 }
658 
659 /* idx can be of type enum memcg_stat_item or node_stat_item. */
660 static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
661 {
662 	long x = 0;
663 	int cpu;
664 
665 	for_each_possible_cpu(cpu)
666 		x += per_cpu(memcg->vmstats_percpu->state[idx], cpu);
667 #ifdef CONFIG_SMP
668 	if (x < 0)
669 		x = 0;
670 #endif
671 	return x;
672 }
673 
674 static struct mem_cgroup_per_node *
675 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
676 {
677 	struct mem_cgroup *parent;
678 
679 	parent = parent_mem_cgroup(pn->memcg);
680 	if (!parent)
681 		return NULL;
682 	return parent->nodeinfo[nid];
683 }
684 
685 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
686 			      int val)
687 {
688 	struct mem_cgroup_per_node *pn;
689 	struct mem_cgroup *memcg;
690 	long x, threshold = MEMCG_CHARGE_BATCH;
691 
692 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
693 	memcg = pn->memcg;
694 
695 	/* Update memcg */
696 	__mod_memcg_state(memcg, idx, val);
697 
698 	/* Update lruvec */
699 	__this_cpu_add(pn->lruvec_stat_local->count[idx], val);
700 
701 	if (vmstat_item_in_bytes(idx))
702 		threshold <<= PAGE_SHIFT;
703 
704 	x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
705 	if (unlikely(abs(x) > threshold)) {
706 		pg_data_t *pgdat = lruvec_pgdat(lruvec);
707 		struct mem_cgroup_per_node *pi;
708 
709 		for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
710 			atomic_long_add(x, &pi->lruvec_stat[idx]);
711 		x = 0;
712 	}
713 	__this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
714 }
715 
716 /**
717  * __mod_lruvec_state - update lruvec memory statistics
718  * @lruvec: the lruvec
719  * @idx: the stat item
720  * @val: delta to add to the counter, can be negative
721  *
722  * The lruvec is the intersection of the NUMA node and a cgroup. This
723  * function updates the all three counters that are affected by a
724  * change of state at this level: per-node, per-cgroup, per-lruvec.
725  */
726 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
727 			int val)
728 {
729 	/* Update node */
730 	__mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
731 
732 	/* Update memcg and lruvec */
733 	if (!mem_cgroup_disabled())
734 		__mod_memcg_lruvec_state(lruvec, idx, val);
735 }
736 
737 void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
738 			     int val)
739 {
740 	struct page *head = compound_head(page); /* rmap on tail pages */
741 	struct mem_cgroup *memcg;
742 	pg_data_t *pgdat = page_pgdat(page);
743 	struct lruvec *lruvec;
744 
745 	rcu_read_lock();
746 	memcg = page_memcg(head);
747 	/* Untracked pages have no memcg, no lruvec. Update only the node */
748 	if (!memcg) {
749 		rcu_read_unlock();
750 		__mod_node_page_state(pgdat, idx, val);
751 		return;
752 	}
753 
754 	lruvec = mem_cgroup_lruvec(memcg, pgdat);
755 	__mod_lruvec_state(lruvec, idx, val);
756 	rcu_read_unlock();
757 }
758 EXPORT_SYMBOL(__mod_lruvec_page_state);
759 
760 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
761 {
762 	pg_data_t *pgdat = page_pgdat(virt_to_page(p));
763 	struct mem_cgroup *memcg;
764 	struct lruvec *lruvec;
765 
766 	rcu_read_lock();
767 	memcg = mem_cgroup_from_obj(p);
768 
769 	/*
770 	 * Untracked pages have no memcg, no lruvec. Update only the
771 	 * node. If we reparent the slab objects to the root memcg,
772 	 * when we free the slab object, we need to update the per-memcg
773 	 * vmstats to keep it correct for the root memcg.
774 	 */
775 	if (!memcg) {
776 		__mod_node_page_state(pgdat, idx, val);
777 	} else {
778 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
779 		__mod_lruvec_state(lruvec, idx, val);
780 	}
781 	rcu_read_unlock();
782 }
783 
784 /*
785  * mod_objcg_mlstate() may be called with irq enabled, so
786  * mod_memcg_lruvec_state() should be used.
787  */
788 static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
789 				     struct pglist_data *pgdat,
790 				     enum node_stat_item idx, int nr)
791 {
792 	struct mem_cgroup *memcg;
793 	struct lruvec *lruvec;
794 
795 	rcu_read_lock();
796 	memcg = obj_cgroup_memcg(objcg);
797 	lruvec = mem_cgroup_lruvec(memcg, pgdat);
798 	mod_memcg_lruvec_state(lruvec, idx, nr);
799 	rcu_read_unlock();
800 }
801 
802 /**
803  * __count_memcg_events - account VM events in a cgroup
804  * @memcg: the memory cgroup
805  * @idx: the event item
806  * @count: the number of events that occurred
807  */
808 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
809 			  unsigned long count)
810 {
811 	if (mem_cgroup_disabled())
812 		return;
813 
814 	__this_cpu_add(memcg->vmstats_percpu->events[idx], count);
815 	cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
816 }
817 
818 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
819 {
820 	return READ_ONCE(memcg->vmstats.events[event]);
821 }
822 
823 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
824 {
825 	long x = 0;
826 	int cpu;
827 
828 	for_each_possible_cpu(cpu)
829 		x += per_cpu(memcg->vmstats_percpu->events[event], cpu);
830 	return x;
831 }
832 
833 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
834 					 struct page *page,
835 					 int nr_pages)
836 {
837 	/* pagein of a big page is an event. So, ignore page size */
838 	if (nr_pages > 0)
839 		__count_memcg_events(memcg, PGPGIN, 1);
840 	else {
841 		__count_memcg_events(memcg, PGPGOUT, 1);
842 		nr_pages = -nr_pages; /* for event */
843 	}
844 
845 	__this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
846 }
847 
848 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
849 				       enum mem_cgroup_events_target target)
850 {
851 	unsigned long val, next;
852 
853 	val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
854 	next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
855 	/* from time_after() in jiffies.h */
856 	if ((long)(next - val) < 0) {
857 		switch (target) {
858 		case MEM_CGROUP_TARGET_THRESH:
859 			next = val + THRESHOLDS_EVENTS_TARGET;
860 			break;
861 		case MEM_CGROUP_TARGET_SOFTLIMIT:
862 			next = val + SOFTLIMIT_EVENTS_TARGET;
863 			break;
864 		default:
865 			break;
866 		}
867 		__this_cpu_write(memcg->vmstats_percpu->targets[target], next);
868 		return true;
869 	}
870 	return false;
871 }
872 
873 /*
874  * Check events in order.
875  *
876  */
877 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
878 {
879 	/* threshold event is triggered in finer grain than soft limit */
880 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
881 						MEM_CGROUP_TARGET_THRESH))) {
882 		bool do_softlimit;
883 
884 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
885 						MEM_CGROUP_TARGET_SOFTLIMIT);
886 		mem_cgroup_threshold(memcg);
887 		if (unlikely(do_softlimit))
888 			mem_cgroup_update_tree(memcg, page);
889 	}
890 }
891 
892 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
893 {
894 	/*
895 	 * mm_update_next_owner() may clear mm->owner to NULL
896 	 * if it races with swapoff, page migration, etc.
897 	 * So this can be called with p == NULL.
898 	 */
899 	if (unlikely(!p))
900 		return NULL;
901 
902 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
903 }
904 EXPORT_SYMBOL(mem_cgroup_from_task);
905 
906 static __always_inline struct mem_cgroup *active_memcg(void)
907 {
908 	if (in_interrupt())
909 		return this_cpu_read(int_active_memcg);
910 	else
911 		return current->active_memcg;
912 }
913 
914 /**
915  * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
916  * @mm: mm from which memcg should be extracted. It can be NULL.
917  *
918  * Obtain a reference on mm->memcg and returns it if successful. If mm
919  * is NULL, then the memcg is chosen as follows:
920  * 1) The active memcg, if set.
921  * 2) current->mm->memcg, if available
922  * 3) root memcg
923  * If mem_cgroup is disabled, NULL is returned.
924  */
925 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
926 {
927 	struct mem_cgroup *memcg;
928 
929 	if (mem_cgroup_disabled())
930 		return NULL;
931 
932 	/*
933 	 * Page cache insertions can happen without an
934 	 * actual mm context, e.g. during disk probing
935 	 * on boot, loopback IO, acct() writes etc.
936 	 *
937 	 * No need to css_get on root memcg as the reference
938 	 * counting is disabled on the root level in the
939 	 * cgroup core. See CSS_NO_REF.
940 	 */
941 	if (unlikely(!mm)) {
942 		memcg = active_memcg();
943 		if (unlikely(memcg)) {
944 			/* remote memcg must hold a ref */
945 			css_get(&memcg->css);
946 			return memcg;
947 		}
948 		mm = current->mm;
949 		if (unlikely(!mm))
950 			return root_mem_cgroup;
951 	}
952 
953 	rcu_read_lock();
954 	do {
955 		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
956 		if (unlikely(!memcg))
957 			memcg = root_mem_cgroup;
958 	} while (!css_tryget(&memcg->css));
959 	rcu_read_unlock();
960 	return memcg;
961 }
962 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
963 
964 static __always_inline bool memcg_kmem_bypass(void)
965 {
966 	/* Allow remote memcg charging from any context. */
967 	if (unlikely(active_memcg()))
968 		return false;
969 
970 	/* Memcg to charge can't be determined. */
971 	if (!in_task() || !current->mm || (current->flags & PF_KTHREAD))
972 		return true;
973 
974 	return false;
975 }
976 
977 /**
978  * mem_cgroup_iter - iterate over memory cgroup hierarchy
979  * @root: hierarchy root
980  * @prev: previously returned memcg, NULL on first invocation
981  * @reclaim: cookie for shared reclaim walks, NULL for full walks
982  *
983  * Returns references to children of the hierarchy below @root, or
984  * @root itself, or %NULL after a full round-trip.
985  *
986  * Caller must pass the return value in @prev on subsequent
987  * invocations for reference counting, or use mem_cgroup_iter_break()
988  * to cancel a hierarchy walk before the round-trip is complete.
989  *
990  * Reclaimers can specify a node in @reclaim to divide up the memcgs
991  * in the hierarchy among all concurrent reclaimers operating on the
992  * same node.
993  */
994 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
995 				   struct mem_cgroup *prev,
996 				   struct mem_cgroup_reclaim_cookie *reclaim)
997 {
998 	struct mem_cgroup_reclaim_iter *iter;
999 	struct cgroup_subsys_state *css = NULL;
1000 	struct mem_cgroup *memcg = NULL;
1001 	struct mem_cgroup *pos = NULL;
1002 
1003 	if (mem_cgroup_disabled())
1004 		return NULL;
1005 
1006 	if (!root)
1007 		root = root_mem_cgroup;
1008 
1009 	if (prev && !reclaim)
1010 		pos = prev;
1011 
1012 	rcu_read_lock();
1013 
1014 	if (reclaim) {
1015 		struct mem_cgroup_per_node *mz;
1016 
1017 		mz = root->nodeinfo[reclaim->pgdat->node_id];
1018 		iter = &mz->iter;
1019 
1020 		if (prev && reclaim->generation != iter->generation)
1021 			goto out_unlock;
1022 
1023 		while (1) {
1024 			pos = READ_ONCE(iter->position);
1025 			if (!pos || css_tryget(&pos->css))
1026 				break;
1027 			/*
1028 			 * css reference reached zero, so iter->position will
1029 			 * be cleared by ->css_released. However, we should not
1030 			 * rely on this happening soon, because ->css_released
1031 			 * is called from a work queue, and by busy-waiting we
1032 			 * might block it. So we clear iter->position right
1033 			 * away.
1034 			 */
1035 			(void)cmpxchg(&iter->position, pos, NULL);
1036 		}
1037 	}
1038 
1039 	if (pos)
1040 		css = &pos->css;
1041 
1042 	for (;;) {
1043 		css = css_next_descendant_pre(css, &root->css);
1044 		if (!css) {
1045 			/*
1046 			 * Reclaimers share the hierarchy walk, and a
1047 			 * new one might jump in right at the end of
1048 			 * the hierarchy - make sure they see at least
1049 			 * one group and restart from the beginning.
1050 			 */
1051 			if (!prev)
1052 				continue;
1053 			break;
1054 		}
1055 
1056 		/*
1057 		 * Verify the css and acquire a reference.  The root
1058 		 * is provided by the caller, so we know it's alive
1059 		 * and kicking, and don't take an extra reference.
1060 		 */
1061 		memcg = mem_cgroup_from_css(css);
1062 
1063 		if (css == &root->css)
1064 			break;
1065 
1066 		if (css_tryget(css))
1067 			break;
1068 
1069 		memcg = NULL;
1070 	}
1071 
1072 	if (reclaim) {
1073 		/*
1074 		 * The position could have already been updated by a competing
1075 		 * thread, so check that the value hasn't changed since we read
1076 		 * it to avoid reclaiming from the same cgroup twice.
1077 		 */
1078 		(void)cmpxchg(&iter->position, pos, memcg);
1079 
1080 		if (pos)
1081 			css_put(&pos->css);
1082 
1083 		if (!memcg)
1084 			iter->generation++;
1085 		else if (!prev)
1086 			reclaim->generation = iter->generation;
1087 	}
1088 
1089 out_unlock:
1090 	rcu_read_unlock();
1091 	if (prev && prev != root)
1092 		css_put(&prev->css);
1093 
1094 	return memcg;
1095 }
1096 
1097 /**
1098  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1099  * @root: hierarchy root
1100  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1101  */
1102 void mem_cgroup_iter_break(struct mem_cgroup *root,
1103 			   struct mem_cgroup *prev)
1104 {
1105 	if (!root)
1106 		root = root_mem_cgroup;
1107 	if (prev && prev != root)
1108 		css_put(&prev->css);
1109 }
1110 
1111 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1112 					struct mem_cgroup *dead_memcg)
1113 {
1114 	struct mem_cgroup_reclaim_iter *iter;
1115 	struct mem_cgroup_per_node *mz;
1116 	int nid;
1117 
1118 	for_each_node(nid) {
1119 		mz = from->nodeinfo[nid];
1120 		iter = &mz->iter;
1121 		cmpxchg(&iter->position, dead_memcg, NULL);
1122 	}
1123 }
1124 
1125 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1126 {
1127 	struct mem_cgroup *memcg = dead_memcg;
1128 	struct mem_cgroup *last;
1129 
1130 	do {
1131 		__invalidate_reclaim_iterators(memcg, dead_memcg);
1132 		last = memcg;
1133 	} while ((memcg = parent_mem_cgroup(memcg)));
1134 
1135 	/*
1136 	 * When cgruop1 non-hierarchy mode is used,
1137 	 * parent_mem_cgroup() does not walk all the way up to the
1138 	 * cgroup root (root_mem_cgroup). So we have to handle
1139 	 * dead_memcg from cgroup root separately.
1140 	 */
1141 	if (last != root_mem_cgroup)
1142 		__invalidate_reclaim_iterators(root_mem_cgroup,
1143 						dead_memcg);
1144 }
1145 
1146 /**
1147  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1148  * @memcg: hierarchy root
1149  * @fn: function to call for each task
1150  * @arg: argument passed to @fn
1151  *
1152  * This function iterates over tasks attached to @memcg or to any of its
1153  * descendants and calls @fn for each task. If @fn returns a non-zero
1154  * value, the function breaks the iteration loop and returns the value.
1155  * Otherwise, it will iterate over all tasks and return 0.
1156  *
1157  * This function must not be called for the root memory cgroup.
1158  */
1159 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1160 			  int (*fn)(struct task_struct *, void *), void *arg)
1161 {
1162 	struct mem_cgroup *iter;
1163 	int ret = 0;
1164 
1165 	BUG_ON(memcg == root_mem_cgroup);
1166 
1167 	for_each_mem_cgroup_tree(iter, memcg) {
1168 		struct css_task_iter it;
1169 		struct task_struct *task;
1170 
1171 		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1172 		while (!ret && (task = css_task_iter_next(&it)))
1173 			ret = fn(task, arg);
1174 		css_task_iter_end(&it);
1175 		if (ret) {
1176 			mem_cgroup_iter_break(memcg, iter);
1177 			break;
1178 		}
1179 	}
1180 	return ret;
1181 }
1182 
1183 #ifdef CONFIG_DEBUG_VM
1184 void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page)
1185 {
1186 	struct mem_cgroup *memcg;
1187 
1188 	if (mem_cgroup_disabled())
1189 		return;
1190 
1191 	memcg = page_memcg(page);
1192 
1193 	if (!memcg)
1194 		VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != root_mem_cgroup, page);
1195 	else
1196 		VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != memcg, page);
1197 }
1198 #endif
1199 
1200 /**
1201  * lock_page_lruvec - lock and return lruvec for a given page.
1202  * @page: the page
1203  *
1204  * These functions are safe to use under any of the following conditions:
1205  * - page locked
1206  * - PageLRU cleared
1207  * - lock_page_memcg()
1208  * - page->_refcount is zero
1209  */
1210 struct lruvec *lock_page_lruvec(struct page *page)
1211 {
1212 	struct lruvec *lruvec;
1213 
1214 	lruvec = mem_cgroup_page_lruvec(page);
1215 	spin_lock(&lruvec->lru_lock);
1216 
1217 	lruvec_memcg_debug(lruvec, page);
1218 
1219 	return lruvec;
1220 }
1221 
1222 struct lruvec *lock_page_lruvec_irq(struct page *page)
1223 {
1224 	struct lruvec *lruvec;
1225 
1226 	lruvec = mem_cgroup_page_lruvec(page);
1227 	spin_lock_irq(&lruvec->lru_lock);
1228 
1229 	lruvec_memcg_debug(lruvec, page);
1230 
1231 	return lruvec;
1232 }
1233 
1234 struct lruvec *lock_page_lruvec_irqsave(struct page *page, unsigned long *flags)
1235 {
1236 	struct lruvec *lruvec;
1237 
1238 	lruvec = mem_cgroup_page_lruvec(page);
1239 	spin_lock_irqsave(&lruvec->lru_lock, *flags);
1240 
1241 	lruvec_memcg_debug(lruvec, page);
1242 
1243 	return lruvec;
1244 }
1245 
1246 /**
1247  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1248  * @lruvec: mem_cgroup per zone lru vector
1249  * @lru: index of lru list the page is sitting on
1250  * @zid: zone id of the accounted pages
1251  * @nr_pages: positive when adding or negative when removing
1252  *
1253  * This function must be called under lru_lock, just before a page is added
1254  * to or just after a page is removed from an lru list (that ordering being
1255  * so as to allow it to check that lru_size 0 is consistent with list_empty).
1256  */
1257 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1258 				int zid, int nr_pages)
1259 {
1260 	struct mem_cgroup_per_node *mz;
1261 	unsigned long *lru_size;
1262 	long size;
1263 
1264 	if (mem_cgroup_disabled())
1265 		return;
1266 
1267 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1268 	lru_size = &mz->lru_zone_size[zid][lru];
1269 
1270 	if (nr_pages < 0)
1271 		*lru_size += nr_pages;
1272 
1273 	size = *lru_size;
1274 	if (WARN_ONCE(size < 0,
1275 		"%s(%p, %d, %d): lru_size %ld\n",
1276 		__func__, lruvec, lru, nr_pages, size)) {
1277 		VM_BUG_ON(1);
1278 		*lru_size = 0;
1279 	}
1280 
1281 	if (nr_pages > 0)
1282 		*lru_size += nr_pages;
1283 }
1284 
1285 /**
1286  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1287  * @memcg: the memory cgroup
1288  *
1289  * Returns the maximum amount of memory @mem can be charged with, in
1290  * pages.
1291  */
1292 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1293 {
1294 	unsigned long margin = 0;
1295 	unsigned long count;
1296 	unsigned long limit;
1297 
1298 	count = page_counter_read(&memcg->memory);
1299 	limit = READ_ONCE(memcg->memory.max);
1300 	if (count < limit)
1301 		margin = limit - count;
1302 
1303 	if (do_memsw_account()) {
1304 		count = page_counter_read(&memcg->memsw);
1305 		limit = READ_ONCE(memcg->memsw.max);
1306 		if (count < limit)
1307 			margin = min(margin, limit - count);
1308 		else
1309 			margin = 0;
1310 	}
1311 
1312 	return margin;
1313 }
1314 
1315 /*
1316  * A routine for checking "mem" is under move_account() or not.
1317  *
1318  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1319  * moving cgroups. This is for waiting at high-memory pressure
1320  * caused by "move".
1321  */
1322 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1323 {
1324 	struct mem_cgroup *from;
1325 	struct mem_cgroup *to;
1326 	bool ret = false;
1327 	/*
1328 	 * Unlike task_move routines, we access mc.to, mc.from not under
1329 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1330 	 */
1331 	spin_lock(&mc.lock);
1332 	from = mc.from;
1333 	to = mc.to;
1334 	if (!from)
1335 		goto unlock;
1336 
1337 	ret = mem_cgroup_is_descendant(from, memcg) ||
1338 		mem_cgroup_is_descendant(to, memcg);
1339 unlock:
1340 	spin_unlock(&mc.lock);
1341 	return ret;
1342 }
1343 
1344 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1345 {
1346 	if (mc.moving_task && current != mc.moving_task) {
1347 		if (mem_cgroup_under_move(memcg)) {
1348 			DEFINE_WAIT(wait);
1349 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1350 			/* moving charge context might have finished. */
1351 			if (mc.moving_task)
1352 				schedule();
1353 			finish_wait(&mc.waitq, &wait);
1354 			return true;
1355 		}
1356 	}
1357 	return false;
1358 }
1359 
1360 struct memory_stat {
1361 	const char *name;
1362 	unsigned int idx;
1363 };
1364 
1365 static const struct memory_stat memory_stats[] = {
1366 	{ "anon",			NR_ANON_MAPPED			},
1367 	{ "file",			NR_FILE_PAGES			},
1368 	{ "kernel_stack",		NR_KERNEL_STACK_KB		},
1369 	{ "pagetables",			NR_PAGETABLE			},
1370 	{ "percpu",			MEMCG_PERCPU_B			},
1371 	{ "sock",			MEMCG_SOCK			},
1372 	{ "shmem",			NR_SHMEM			},
1373 	{ "file_mapped",		NR_FILE_MAPPED			},
1374 	{ "file_dirty",			NR_FILE_DIRTY			},
1375 	{ "file_writeback",		NR_WRITEBACK			},
1376 #ifdef CONFIG_SWAP
1377 	{ "swapcached",			NR_SWAPCACHE			},
1378 #endif
1379 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1380 	{ "anon_thp",			NR_ANON_THPS			},
1381 	{ "file_thp",			NR_FILE_THPS			},
1382 	{ "shmem_thp",			NR_SHMEM_THPS			},
1383 #endif
1384 	{ "inactive_anon",		NR_INACTIVE_ANON		},
1385 	{ "active_anon",		NR_ACTIVE_ANON			},
1386 	{ "inactive_file",		NR_INACTIVE_FILE		},
1387 	{ "active_file",		NR_ACTIVE_FILE			},
1388 	{ "unevictable",		NR_UNEVICTABLE			},
1389 	{ "slab_reclaimable",		NR_SLAB_RECLAIMABLE_B		},
1390 	{ "slab_unreclaimable",		NR_SLAB_UNRECLAIMABLE_B		},
1391 
1392 	/* The memory events */
1393 	{ "workingset_refault_anon",	WORKINGSET_REFAULT_ANON		},
1394 	{ "workingset_refault_file",	WORKINGSET_REFAULT_FILE		},
1395 	{ "workingset_activate_anon",	WORKINGSET_ACTIVATE_ANON	},
1396 	{ "workingset_activate_file",	WORKINGSET_ACTIVATE_FILE	},
1397 	{ "workingset_restore_anon",	WORKINGSET_RESTORE_ANON		},
1398 	{ "workingset_restore_file",	WORKINGSET_RESTORE_FILE		},
1399 	{ "workingset_nodereclaim",	WORKINGSET_NODERECLAIM		},
1400 };
1401 
1402 /* Translate stat items to the correct unit for memory.stat output */
1403 static int memcg_page_state_unit(int item)
1404 {
1405 	switch (item) {
1406 	case MEMCG_PERCPU_B:
1407 	case NR_SLAB_RECLAIMABLE_B:
1408 	case NR_SLAB_UNRECLAIMABLE_B:
1409 	case WORKINGSET_REFAULT_ANON:
1410 	case WORKINGSET_REFAULT_FILE:
1411 	case WORKINGSET_ACTIVATE_ANON:
1412 	case WORKINGSET_ACTIVATE_FILE:
1413 	case WORKINGSET_RESTORE_ANON:
1414 	case WORKINGSET_RESTORE_FILE:
1415 	case WORKINGSET_NODERECLAIM:
1416 		return 1;
1417 	case NR_KERNEL_STACK_KB:
1418 		return SZ_1K;
1419 	default:
1420 		return PAGE_SIZE;
1421 	}
1422 }
1423 
1424 static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1425 						    int item)
1426 {
1427 	return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1428 }
1429 
1430 static char *memory_stat_format(struct mem_cgroup *memcg)
1431 {
1432 	struct seq_buf s;
1433 	int i;
1434 
1435 	seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1436 	if (!s.buffer)
1437 		return NULL;
1438 
1439 	/*
1440 	 * Provide statistics on the state of the memory subsystem as
1441 	 * well as cumulative event counters that show past behavior.
1442 	 *
1443 	 * This list is ordered following a combination of these gradients:
1444 	 * 1) generic big picture -> specifics and details
1445 	 * 2) reflecting userspace activity -> reflecting kernel heuristics
1446 	 *
1447 	 * Current memory state:
1448 	 */
1449 	cgroup_rstat_flush(memcg->css.cgroup);
1450 
1451 	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1452 		u64 size;
1453 
1454 		size = memcg_page_state_output(memcg, memory_stats[i].idx);
1455 		seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
1456 
1457 		if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1458 			size += memcg_page_state_output(memcg,
1459 							NR_SLAB_RECLAIMABLE_B);
1460 			seq_buf_printf(&s, "slab %llu\n", size);
1461 		}
1462 	}
1463 
1464 	/* Accumulated memory events */
1465 
1466 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1467 		       memcg_events(memcg, PGFAULT));
1468 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1469 		       memcg_events(memcg, PGMAJFAULT));
1470 	seq_buf_printf(&s, "%s %lu\n",  vm_event_name(PGREFILL),
1471 		       memcg_events(memcg, PGREFILL));
1472 	seq_buf_printf(&s, "pgscan %lu\n",
1473 		       memcg_events(memcg, PGSCAN_KSWAPD) +
1474 		       memcg_events(memcg, PGSCAN_DIRECT));
1475 	seq_buf_printf(&s, "pgsteal %lu\n",
1476 		       memcg_events(memcg, PGSTEAL_KSWAPD) +
1477 		       memcg_events(memcg, PGSTEAL_DIRECT));
1478 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1479 		       memcg_events(memcg, PGACTIVATE));
1480 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1481 		       memcg_events(memcg, PGDEACTIVATE));
1482 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1483 		       memcg_events(memcg, PGLAZYFREE));
1484 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1485 		       memcg_events(memcg, PGLAZYFREED));
1486 
1487 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1488 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1489 		       memcg_events(memcg, THP_FAULT_ALLOC));
1490 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1491 		       memcg_events(memcg, THP_COLLAPSE_ALLOC));
1492 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1493 
1494 	/* The above should easily fit into one page */
1495 	WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1496 
1497 	return s.buffer;
1498 }
1499 
1500 #define K(x) ((x) << (PAGE_SHIFT-10))
1501 /**
1502  * mem_cgroup_print_oom_context: Print OOM information relevant to
1503  * memory controller.
1504  * @memcg: The memory cgroup that went over limit
1505  * @p: Task that is going to be killed
1506  *
1507  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1508  * enabled
1509  */
1510 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1511 {
1512 	rcu_read_lock();
1513 
1514 	if (memcg) {
1515 		pr_cont(",oom_memcg=");
1516 		pr_cont_cgroup_path(memcg->css.cgroup);
1517 	} else
1518 		pr_cont(",global_oom");
1519 	if (p) {
1520 		pr_cont(",task_memcg=");
1521 		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1522 	}
1523 	rcu_read_unlock();
1524 }
1525 
1526 /**
1527  * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1528  * memory controller.
1529  * @memcg: The memory cgroup that went over limit
1530  */
1531 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1532 {
1533 	char *buf;
1534 
1535 	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1536 		K((u64)page_counter_read(&memcg->memory)),
1537 		K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1538 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1539 		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1540 			K((u64)page_counter_read(&memcg->swap)),
1541 			K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1542 	else {
1543 		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1544 			K((u64)page_counter_read(&memcg->memsw)),
1545 			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1546 		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1547 			K((u64)page_counter_read(&memcg->kmem)),
1548 			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1549 	}
1550 
1551 	pr_info("Memory cgroup stats for ");
1552 	pr_cont_cgroup_path(memcg->css.cgroup);
1553 	pr_cont(":");
1554 	buf = memory_stat_format(memcg);
1555 	if (!buf)
1556 		return;
1557 	pr_info("%s", buf);
1558 	kfree(buf);
1559 }
1560 
1561 /*
1562  * Return the memory (and swap, if configured) limit for a memcg.
1563  */
1564 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1565 {
1566 	unsigned long max = READ_ONCE(memcg->memory.max);
1567 
1568 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
1569 		if (mem_cgroup_swappiness(memcg))
1570 			max += min(READ_ONCE(memcg->swap.max),
1571 				   (unsigned long)total_swap_pages);
1572 	} else { /* v1 */
1573 		if (mem_cgroup_swappiness(memcg)) {
1574 			/* Calculate swap excess capacity from memsw limit */
1575 			unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1576 
1577 			max += min(swap, (unsigned long)total_swap_pages);
1578 		}
1579 	}
1580 	return max;
1581 }
1582 
1583 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1584 {
1585 	return page_counter_read(&memcg->memory);
1586 }
1587 
1588 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1589 				     int order)
1590 {
1591 	struct oom_control oc = {
1592 		.zonelist = NULL,
1593 		.nodemask = NULL,
1594 		.memcg = memcg,
1595 		.gfp_mask = gfp_mask,
1596 		.order = order,
1597 	};
1598 	bool ret = true;
1599 
1600 	if (mutex_lock_killable(&oom_lock))
1601 		return true;
1602 
1603 	if (mem_cgroup_margin(memcg) >= (1 << order))
1604 		goto unlock;
1605 
1606 	/*
1607 	 * A few threads which were not waiting at mutex_lock_killable() can
1608 	 * fail to bail out. Therefore, check again after holding oom_lock.
1609 	 */
1610 	ret = should_force_charge() || out_of_memory(&oc);
1611 
1612 unlock:
1613 	mutex_unlock(&oom_lock);
1614 	return ret;
1615 }
1616 
1617 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1618 				   pg_data_t *pgdat,
1619 				   gfp_t gfp_mask,
1620 				   unsigned long *total_scanned)
1621 {
1622 	struct mem_cgroup *victim = NULL;
1623 	int total = 0;
1624 	int loop = 0;
1625 	unsigned long excess;
1626 	unsigned long nr_scanned;
1627 	struct mem_cgroup_reclaim_cookie reclaim = {
1628 		.pgdat = pgdat,
1629 	};
1630 
1631 	excess = soft_limit_excess(root_memcg);
1632 
1633 	while (1) {
1634 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1635 		if (!victim) {
1636 			loop++;
1637 			if (loop >= 2) {
1638 				/*
1639 				 * If we have not been able to reclaim
1640 				 * anything, it might because there are
1641 				 * no reclaimable pages under this hierarchy
1642 				 */
1643 				if (!total)
1644 					break;
1645 				/*
1646 				 * We want to do more targeted reclaim.
1647 				 * excess >> 2 is not to excessive so as to
1648 				 * reclaim too much, nor too less that we keep
1649 				 * coming back to reclaim from this cgroup
1650 				 */
1651 				if (total >= (excess >> 2) ||
1652 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1653 					break;
1654 			}
1655 			continue;
1656 		}
1657 		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1658 					pgdat, &nr_scanned);
1659 		*total_scanned += nr_scanned;
1660 		if (!soft_limit_excess(root_memcg))
1661 			break;
1662 	}
1663 	mem_cgroup_iter_break(root_memcg, victim);
1664 	return total;
1665 }
1666 
1667 #ifdef CONFIG_LOCKDEP
1668 static struct lockdep_map memcg_oom_lock_dep_map = {
1669 	.name = "memcg_oom_lock",
1670 };
1671 #endif
1672 
1673 static DEFINE_SPINLOCK(memcg_oom_lock);
1674 
1675 /*
1676  * Check OOM-Killer is already running under our hierarchy.
1677  * If someone is running, return false.
1678  */
1679 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1680 {
1681 	struct mem_cgroup *iter, *failed = NULL;
1682 
1683 	spin_lock(&memcg_oom_lock);
1684 
1685 	for_each_mem_cgroup_tree(iter, memcg) {
1686 		if (iter->oom_lock) {
1687 			/*
1688 			 * this subtree of our hierarchy is already locked
1689 			 * so we cannot give a lock.
1690 			 */
1691 			failed = iter;
1692 			mem_cgroup_iter_break(memcg, iter);
1693 			break;
1694 		} else
1695 			iter->oom_lock = true;
1696 	}
1697 
1698 	if (failed) {
1699 		/*
1700 		 * OK, we failed to lock the whole subtree so we have
1701 		 * to clean up what we set up to the failing subtree
1702 		 */
1703 		for_each_mem_cgroup_tree(iter, memcg) {
1704 			if (iter == failed) {
1705 				mem_cgroup_iter_break(memcg, iter);
1706 				break;
1707 			}
1708 			iter->oom_lock = false;
1709 		}
1710 	} else
1711 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1712 
1713 	spin_unlock(&memcg_oom_lock);
1714 
1715 	return !failed;
1716 }
1717 
1718 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1719 {
1720 	struct mem_cgroup *iter;
1721 
1722 	spin_lock(&memcg_oom_lock);
1723 	mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1724 	for_each_mem_cgroup_tree(iter, memcg)
1725 		iter->oom_lock = false;
1726 	spin_unlock(&memcg_oom_lock);
1727 }
1728 
1729 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1730 {
1731 	struct mem_cgroup *iter;
1732 
1733 	spin_lock(&memcg_oom_lock);
1734 	for_each_mem_cgroup_tree(iter, memcg)
1735 		iter->under_oom++;
1736 	spin_unlock(&memcg_oom_lock);
1737 }
1738 
1739 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1740 {
1741 	struct mem_cgroup *iter;
1742 
1743 	/*
1744 	 * Be careful about under_oom underflows because a child memcg
1745 	 * could have been added after mem_cgroup_mark_under_oom.
1746 	 */
1747 	spin_lock(&memcg_oom_lock);
1748 	for_each_mem_cgroup_tree(iter, memcg)
1749 		if (iter->under_oom > 0)
1750 			iter->under_oom--;
1751 	spin_unlock(&memcg_oom_lock);
1752 }
1753 
1754 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1755 
1756 struct oom_wait_info {
1757 	struct mem_cgroup *memcg;
1758 	wait_queue_entry_t	wait;
1759 };
1760 
1761 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1762 	unsigned mode, int sync, void *arg)
1763 {
1764 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1765 	struct mem_cgroup *oom_wait_memcg;
1766 	struct oom_wait_info *oom_wait_info;
1767 
1768 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1769 	oom_wait_memcg = oom_wait_info->memcg;
1770 
1771 	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1772 	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1773 		return 0;
1774 	return autoremove_wake_function(wait, mode, sync, arg);
1775 }
1776 
1777 static void memcg_oom_recover(struct mem_cgroup *memcg)
1778 {
1779 	/*
1780 	 * For the following lockless ->under_oom test, the only required
1781 	 * guarantee is that it must see the state asserted by an OOM when
1782 	 * this function is called as a result of userland actions
1783 	 * triggered by the notification of the OOM.  This is trivially
1784 	 * achieved by invoking mem_cgroup_mark_under_oom() before
1785 	 * triggering notification.
1786 	 */
1787 	if (memcg && memcg->under_oom)
1788 		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1789 }
1790 
1791 enum oom_status {
1792 	OOM_SUCCESS,
1793 	OOM_FAILED,
1794 	OOM_ASYNC,
1795 	OOM_SKIPPED
1796 };
1797 
1798 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1799 {
1800 	enum oom_status ret;
1801 	bool locked;
1802 
1803 	if (order > PAGE_ALLOC_COSTLY_ORDER)
1804 		return OOM_SKIPPED;
1805 
1806 	memcg_memory_event(memcg, MEMCG_OOM);
1807 
1808 	/*
1809 	 * We are in the middle of the charge context here, so we
1810 	 * don't want to block when potentially sitting on a callstack
1811 	 * that holds all kinds of filesystem and mm locks.
1812 	 *
1813 	 * cgroup1 allows disabling the OOM killer and waiting for outside
1814 	 * handling until the charge can succeed; remember the context and put
1815 	 * the task to sleep at the end of the page fault when all locks are
1816 	 * released.
1817 	 *
1818 	 * On the other hand, in-kernel OOM killer allows for an async victim
1819 	 * memory reclaim (oom_reaper) and that means that we are not solely
1820 	 * relying on the oom victim to make a forward progress and we can
1821 	 * invoke the oom killer here.
1822 	 *
1823 	 * Please note that mem_cgroup_out_of_memory might fail to find a
1824 	 * victim and then we have to bail out from the charge path.
1825 	 */
1826 	if (memcg->oom_kill_disable) {
1827 		if (!current->in_user_fault)
1828 			return OOM_SKIPPED;
1829 		css_get(&memcg->css);
1830 		current->memcg_in_oom = memcg;
1831 		current->memcg_oom_gfp_mask = mask;
1832 		current->memcg_oom_order = order;
1833 
1834 		return OOM_ASYNC;
1835 	}
1836 
1837 	mem_cgroup_mark_under_oom(memcg);
1838 
1839 	locked = mem_cgroup_oom_trylock(memcg);
1840 
1841 	if (locked)
1842 		mem_cgroup_oom_notify(memcg);
1843 
1844 	mem_cgroup_unmark_under_oom(memcg);
1845 	if (mem_cgroup_out_of_memory(memcg, mask, order))
1846 		ret = OOM_SUCCESS;
1847 	else
1848 		ret = OOM_FAILED;
1849 
1850 	if (locked)
1851 		mem_cgroup_oom_unlock(memcg);
1852 
1853 	return ret;
1854 }
1855 
1856 /**
1857  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1858  * @handle: actually kill/wait or just clean up the OOM state
1859  *
1860  * This has to be called at the end of a page fault if the memcg OOM
1861  * handler was enabled.
1862  *
1863  * Memcg supports userspace OOM handling where failed allocations must
1864  * sleep on a waitqueue until the userspace task resolves the
1865  * situation.  Sleeping directly in the charge context with all kinds
1866  * of locks held is not a good idea, instead we remember an OOM state
1867  * in the task and mem_cgroup_oom_synchronize() has to be called at
1868  * the end of the page fault to complete the OOM handling.
1869  *
1870  * Returns %true if an ongoing memcg OOM situation was detected and
1871  * completed, %false otherwise.
1872  */
1873 bool mem_cgroup_oom_synchronize(bool handle)
1874 {
1875 	struct mem_cgroup *memcg = current->memcg_in_oom;
1876 	struct oom_wait_info owait;
1877 	bool locked;
1878 
1879 	/* OOM is global, do not handle */
1880 	if (!memcg)
1881 		return false;
1882 
1883 	if (!handle)
1884 		goto cleanup;
1885 
1886 	owait.memcg = memcg;
1887 	owait.wait.flags = 0;
1888 	owait.wait.func = memcg_oom_wake_function;
1889 	owait.wait.private = current;
1890 	INIT_LIST_HEAD(&owait.wait.entry);
1891 
1892 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1893 	mem_cgroup_mark_under_oom(memcg);
1894 
1895 	locked = mem_cgroup_oom_trylock(memcg);
1896 
1897 	if (locked)
1898 		mem_cgroup_oom_notify(memcg);
1899 
1900 	if (locked && !memcg->oom_kill_disable) {
1901 		mem_cgroup_unmark_under_oom(memcg);
1902 		finish_wait(&memcg_oom_waitq, &owait.wait);
1903 		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1904 					 current->memcg_oom_order);
1905 	} else {
1906 		schedule();
1907 		mem_cgroup_unmark_under_oom(memcg);
1908 		finish_wait(&memcg_oom_waitq, &owait.wait);
1909 	}
1910 
1911 	if (locked) {
1912 		mem_cgroup_oom_unlock(memcg);
1913 		/*
1914 		 * There is no guarantee that an OOM-lock contender
1915 		 * sees the wakeups triggered by the OOM kill
1916 		 * uncharges.  Wake any sleepers explicitly.
1917 		 */
1918 		memcg_oom_recover(memcg);
1919 	}
1920 cleanup:
1921 	current->memcg_in_oom = NULL;
1922 	css_put(&memcg->css);
1923 	return true;
1924 }
1925 
1926 /**
1927  * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1928  * @victim: task to be killed by the OOM killer
1929  * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1930  *
1931  * Returns a pointer to a memory cgroup, which has to be cleaned up
1932  * by killing all belonging OOM-killable tasks.
1933  *
1934  * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1935  */
1936 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1937 					    struct mem_cgroup *oom_domain)
1938 {
1939 	struct mem_cgroup *oom_group = NULL;
1940 	struct mem_cgroup *memcg;
1941 
1942 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1943 		return NULL;
1944 
1945 	if (!oom_domain)
1946 		oom_domain = root_mem_cgroup;
1947 
1948 	rcu_read_lock();
1949 
1950 	memcg = mem_cgroup_from_task(victim);
1951 	if (memcg == root_mem_cgroup)
1952 		goto out;
1953 
1954 	/*
1955 	 * If the victim task has been asynchronously moved to a different
1956 	 * memory cgroup, we might end up killing tasks outside oom_domain.
1957 	 * In this case it's better to ignore memory.group.oom.
1958 	 */
1959 	if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
1960 		goto out;
1961 
1962 	/*
1963 	 * Traverse the memory cgroup hierarchy from the victim task's
1964 	 * cgroup up to the OOMing cgroup (or root) to find the
1965 	 * highest-level memory cgroup with oom.group set.
1966 	 */
1967 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1968 		if (memcg->oom_group)
1969 			oom_group = memcg;
1970 
1971 		if (memcg == oom_domain)
1972 			break;
1973 	}
1974 
1975 	if (oom_group)
1976 		css_get(&oom_group->css);
1977 out:
1978 	rcu_read_unlock();
1979 
1980 	return oom_group;
1981 }
1982 
1983 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1984 {
1985 	pr_info("Tasks in ");
1986 	pr_cont_cgroup_path(memcg->css.cgroup);
1987 	pr_cont(" are going to be killed due to memory.oom.group set\n");
1988 }
1989 
1990 /**
1991  * lock_page_memcg - lock a page and memcg binding
1992  * @page: the page
1993  *
1994  * This function protects unlocked LRU pages from being moved to
1995  * another cgroup.
1996  *
1997  * It ensures lifetime of the locked memcg. Caller is responsible
1998  * for the lifetime of the page.
1999  */
2000 void lock_page_memcg(struct page *page)
2001 {
2002 	struct page *head = compound_head(page); /* rmap on tail pages */
2003 	struct mem_cgroup *memcg;
2004 	unsigned long flags;
2005 
2006 	/*
2007 	 * The RCU lock is held throughout the transaction.  The fast
2008 	 * path can get away without acquiring the memcg->move_lock
2009 	 * because page moving starts with an RCU grace period.
2010          */
2011 	rcu_read_lock();
2012 
2013 	if (mem_cgroup_disabled())
2014 		return;
2015 again:
2016 	memcg = page_memcg(head);
2017 	if (unlikely(!memcg))
2018 		return;
2019 
2020 #ifdef CONFIG_PROVE_LOCKING
2021 	local_irq_save(flags);
2022 	might_lock(&memcg->move_lock);
2023 	local_irq_restore(flags);
2024 #endif
2025 
2026 	if (atomic_read(&memcg->moving_account) <= 0)
2027 		return;
2028 
2029 	spin_lock_irqsave(&memcg->move_lock, flags);
2030 	if (memcg != page_memcg(head)) {
2031 		spin_unlock_irqrestore(&memcg->move_lock, flags);
2032 		goto again;
2033 	}
2034 
2035 	/*
2036 	 * When charge migration first begins, we can have multiple
2037 	 * critical sections holding the fast-path RCU lock and one
2038 	 * holding the slowpath move_lock. Track the task who has the
2039 	 * move_lock for unlock_page_memcg().
2040 	 */
2041 	memcg->move_lock_task = current;
2042 	memcg->move_lock_flags = flags;
2043 }
2044 EXPORT_SYMBOL(lock_page_memcg);
2045 
2046 static void __unlock_page_memcg(struct mem_cgroup *memcg)
2047 {
2048 	if (memcg && memcg->move_lock_task == current) {
2049 		unsigned long flags = memcg->move_lock_flags;
2050 
2051 		memcg->move_lock_task = NULL;
2052 		memcg->move_lock_flags = 0;
2053 
2054 		spin_unlock_irqrestore(&memcg->move_lock, flags);
2055 	}
2056 
2057 	rcu_read_unlock();
2058 }
2059 
2060 /**
2061  * unlock_page_memcg - unlock a page and memcg binding
2062  * @page: the page
2063  */
2064 void unlock_page_memcg(struct page *page)
2065 {
2066 	struct page *head = compound_head(page);
2067 
2068 	__unlock_page_memcg(page_memcg(head));
2069 }
2070 EXPORT_SYMBOL(unlock_page_memcg);
2071 
2072 struct obj_stock {
2073 #ifdef CONFIG_MEMCG_KMEM
2074 	struct obj_cgroup *cached_objcg;
2075 	struct pglist_data *cached_pgdat;
2076 	unsigned int nr_bytes;
2077 	int nr_slab_reclaimable_b;
2078 	int nr_slab_unreclaimable_b;
2079 #else
2080 	int dummy[0];
2081 #endif
2082 };
2083 
2084 struct memcg_stock_pcp {
2085 	struct mem_cgroup *cached; /* this never be root cgroup */
2086 	unsigned int nr_pages;
2087 	struct obj_stock task_obj;
2088 	struct obj_stock irq_obj;
2089 
2090 	struct work_struct work;
2091 	unsigned long flags;
2092 #define FLUSHING_CACHED_CHARGE	0
2093 };
2094 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2095 static DEFINE_MUTEX(percpu_charge_mutex);
2096 
2097 #ifdef CONFIG_MEMCG_KMEM
2098 static void drain_obj_stock(struct obj_stock *stock);
2099 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2100 				     struct mem_cgroup *root_memcg);
2101 
2102 #else
2103 static inline void drain_obj_stock(struct obj_stock *stock)
2104 {
2105 }
2106 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2107 				     struct mem_cgroup *root_memcg)
2108 {
2109 	return false;
2110 }
2111 #endif
2112 
2113 /*
2114  * Most kmem_cache_alloc() calls are from user context. The irq disable/enable
2115  * sequence used in this case to access content from object stock is slow.
2116  * To optimize for user context access, there are now two object stocks for
2117  * task context and interrupt context access respectively.
2118  *
2119  * The task context object stock can be accessed by disabling preemption only
2120  * which is cheap in non-preempt kernel. The interrupt context object stock
2121  * can only be accessed after disabling interrupt. User context code can
2122  * access interrupt object stock, but not vice versa.
2123  */
2124 static inline struct obj_stock *get_obj_stock(unsigned long *pflags)
2125 {
2126 	struct memcg_stock_pcp *stock;
2127 
2128 	if (likely(in_task())) {
2129 		*pflags = 0UL;
2130 		preempt_disable();
2131 		stock = this_cpu_ptr(&memcg_stock);
2132 		return &stock->task_obj;
2133 	}
2134 
2135 	local_irq_save(*pflags);
2136 	stock = this_cpu_ptr(&memcg_stock);
2137 	return &stock->irq_obj;
2138 }
2139 
2140 static inline void put_obj_stock(unsigned long flags)
2141 {
2142 	if (likely(in_task()))
2143 		preempt_enable();
2144 	else
2145 		local_irq_restore(flags);
2146 }
2147 
2148 /**
2149  * consume_stock: Try to consume stocked charge on this cpu.
2150  * @memcg: memcg to consume from.
2151  * @nr_pages: how many pages to charge.
2152  *
2153  * The charges will only happen if @memcg matches the current cpu's memcg
2154  * stock, and at least @nr_pages are available in that stock.  Failure to
2155  * service an allocation will refill the stock.
2156  *
2157  * returns true if successful, false otherwise.
2158  */
2159 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2160 {
2161 	struct memcg_stock_pcp *stock;
2162 	unsigned long flags;
2163 	bool ret = false;
2164 
2165 	if (nr_pages > MEMCG_CHARGE_BATCH)
2166 		return ret;
2167 
2168 	local_irq_save(flags);
2169 
2170 	stock = this_cpu_ptr(&memcg_stock);
2171 	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2172 		stock->nr_pages -= nr_pages;
2173 		ret = true;
2174 	}
2175 
2176 	local_irq_restore(flags);
2177 
2178 	return ret;
2179 }
2180 
2181 /*
2182  * Returns stocks cached in percpu and reset cached information.
2183  */
2184 static void drain_stock(struct memcg_stock_pcp *stock)
2185 {
2186 	struct mem_cgroup *old = stock->cached;
2187 
2188 	if (!old)
2189 		return;
2190 
2191 	if (stock->nr_pages) {
2192 		page_counter_uncharge(&old->memory, stock->nr_pages);
2193 		if (do_memsw_account())
2194 			page_counter_uncharge(&old->memsw, stock->nr_pages);
2195 		stock->nr_pages = 0;
2196 	}
2197 
2198 	css_put(&old->css);
2199 	stock->cached = NULL;
2200 }
2201 
2202 static void drain_local_stock(struct work_struct *dummy)
2203 {
2204 	struct memcg_stock_pcp *stock;
2205 	unsigned long flags;
2206 
2207 	/*
2208 	 * The only protection from memory hotplug vs. drain_stock races is
2209 	 * that we always operate on local CPU stock here with IRQ disabled
2210 	 */
2211 	local_irq_save(flags);
2212 
2213 	stock = this_cpu_ptr(&memcg_stock);
2214 	drain_obj_stock(&stock->irq_obj);
2215 	if (in_task())
2216 		drain_obj_stock(&stock->task_obj);
2217 	drain_stock(stock);
2218 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2219 
2220 	local_irq_restore(flags);
2221 }
2222 
2223 /*
2224  * Cache charges(val) to local per_cpu area.
2225  * This will be consumed by consume_stock() function, later.
2226  */
2227 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2228 {
2229 	struct memcg_stock_pcp *stock;
2230 	unsigned long flags;
2231 
2232 	local_irq_save(flags);
2233 
2234 	stock = this_cpu_ptr(&memcg_stock);
2235 	if (stock->cached != memcg) { /* reset if necessary */
2236 		drain_stock(stock);
2237 		css_get(&memcg->css);
2238 		stock->cached = memcg;
2239 	}
2240 	stock->nr_pages += nr_pages;
2241 
2242 	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2243 		drain_stock(stock);
2244 
2245 	local_irq_restore(flags);
2246 }
2247 
2248 /*
2249  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2250  * of the hierarchy under it.
2251  */
2252 static void drain_all_stock(struct mem_cgroup *root_memcg)
2253 {
2254 	int cpu, curcpu;
2255 
2256 	/* If someone's already draining, avoid adding running more workers. */
2257 	if (!mutex_trylock(&percpu_charge_mutex))
2258 		return;
2259 	/*
2260 	 * Notify other cpus that system-wide "drain" is running
2261 	 * We do not care about races with the cpu hotplug because cpu down
2262 	 * as well as workers from this path always operate on the local
2263 	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2264 	 */
2265 	curcpu = get_cpu();
2266 	for_each_online_cpu(cpu) {
2267 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2268 		struct mem_cgroup *memcg;
2269 		bool flush = false;
2270 
2271 		rcu_read_lock();
2272 		memcg = stock->cached;
2273 		if (memcg && stock->nr_pages &&
2274 		    mem_cgroup_is_descendant(memcg, root_memcg))
2275 			flush = true;
2276 		if (obj_stock_flush_required(stock, root_memcg))
2277 			flush = true;
2278 		rcu_read_unlock();
2279 
2280 		if (flush &&
2281 		    !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2282 			if (cpu == curcpu)
2283 				drain_local_stock(&stock->work);
2284 			else
2285 				schedule_work_on(cpu, &stock->work);
2286 		}
2287 	}
2288 	put_cpu();
2289 	mutex_unlock(&percpu_charge_mutex);
2290 }
2291 
2292 static void memcg_flush_lruvec_page_state(struct mem_cgroup *memcg, int cpu)
2293 {
2294 	int nid;
2295 
2296 	for_each_node(nid) {
2297 		struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
2298 		unsigned long stat[NR_VM_NODE_STAT_ITEMS];
2299 		struct batched_lruvec_stat *lstatc;
2300 		int i;
2301 
2302 		lstatc = per_cpu_ptr(pn->lruvec_stat_cpu, cpu);
2303 		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
2304 			stat[i] = lstatc->count[i];
2305 			lstatc->count[i] = 0;
2306 		}
2307 
2308 		do {
2309 			for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
2310 				atomic_long_add(stat[i], &pn->lruvec_stat[i]);
2311 		} while ((pn = parent_nodeinfo(pn, nid)));
2312 	}
2313 }
2314 
2315 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2316 {
2317 	struct memcg_stock_pcp *stock;
2318 	struct mem_cgroup *memcg;
2319 
2320 	stock = &per_cpu(memcg_stock, cpu);
2321 	drain_stock(stock);
2322 
2323 	for_each_mem_cgroup(memcg)
2324 		memcg_flush_lruvec_page_state(memcg, cpu);
2325 
2326 	return 0;
2327 }
2328 
2329 static unsigned long reclaim_high(struct mem_cgroup *memcg,
2330 				  unsigned int nr_pages,
2331 				  gfp_t gfp_mask)
2332 {
2333 	unsigned long nr_reclaimed = 0;
2334 
2335 	do {
2336 		unsigned long pflags;
2337 
2338 		if (page_counter_read(&memcg->memory) <=
2339 		    READ_ONCE(memcg->memory.high))
2340 			continue;
2341 
2342 		memcg_memory_event(memcg, MEMCG_HIGH);
2343 
2344 		psi_memstall_enter(&pflags);
2345 		nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2346 							     gfp_mask, true);
2347 		psi_memstall_leave(&pflags);
2348 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2349 		 !mem_cgroup_is_root(memcg));
2350 
2351 	return nr_reclaimed;
2352 }
2353 
2354 static void high_work_func(struct work_struct *work)
2355 {
2356 	struct mem_cgroup *memcg;
2357 
2358 	memcg = container_of(work, struct mem_cgroup, high_work);
2359 	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2360 }
2361 
2362 /*
2363  * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2364  * enough to still cause a significant slowdown in most cases, while still
2365  * allowing diagnostics and tracing to proceed without becoming stuck.
2366  */
2367 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2368 
2369 /*
2370  * When calculating the delay, we use these either side of the exponentiation to
2371  * maintain precision and scale to a reasonable number of jiffies (see the table
2372  * below.
2373  *
2374  * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2375  *   overage ratio to a delay.
2376  * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2377  *   proposed penalty in order to reduce to a reasonable number of jiffies, and
2378  *   to produce a reasonable delay curve.
2379  *
2380  * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2381  * reasonable delay curve compared to precision-adjusted overage, not
2382  * penalising heavily at first, but still making sure that growth beyond the
2383  * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2384  * example, with a high of 100 megabytes:
2385  *
2386  *  +-------+------------------------+
2387  *  | usage | time to allocate in ms |
2388  *  +-------+------------------------+
2389  *  | 100M  |                      0 |
2390  *  | 101M  |                      6 |
2391  *  | 102M  |                     25 |
2392  *  | 103M  |                     57 |
2393  *  | 104M  |                    102 |
2394  *  | 105M  |                    159 |
2395  *  | 106M  |                    230 |
2396  *  | 107M  |                    313 |
2397  *  | 108M  |                    409 |
2398  *  | 109M  |                    518 |
2399  *  | 110M  |                    639 |
2400  *  | 111M  |                    774 |
2401  *  | 112M  |                    921 |
2402  *  | 113M  |                   1081 |
2403  *  | 114M  |                   1254 |
2404  *  | 115M  |                   1439 |
2405  *  | 116M  |                   1638 |
2406  *  | 117M  |                   1849 |
2407  *  | 118M  |                   2000 |
2408  *  | 119M  |                   2000 |
2409  *  | 120M  |                   2000 |
2410  *  +-------+------------------------+
2411  */
2412  #define MEMCG_DELAY_PRECISION_SHIFT 20
2413  #define MEMCG_DELAY_SCALING_SHIFT 14
2414 
2415 static u64 calculate_overage(unsigned long usage, unsigned long high)
2416 {
2417 	u64 overage;
2418 
2419 	if (usage <= high)
2420 		return 0;
2421 
2422 	/*
2423 	 * Prevent division by 0 in overage calculation by acting as if
2424 	 * it was a threshold of 1 page
2425 	 */
2426 	high = max(high, 1UL);
2427 
2428 	overage = usage - high;
2429 	overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2430 	return div64_u64(overage, high);
2431 }
2432 
2433 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2434 {
2435 	u64 overage, max_overage = 0;
2436 
2437 	do {
2438 		overage = calculate_overage(page_counter_read(&memcg->memory),
2439 					    READ_ONCE(memcg->memory.high));
2440 		max_overage = max(overage, max_overage);
2441 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2442 		 !mem_cgroup_is_root(memcg));
2443 
2444 	return max_overage;
2445 }
2446 
2447 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2448 {
2449 	u64 overage, max_overage = 0;
2450 
2451 	do {
2452 		overage = calculate_overage(page_counter_read(&memcg->swap),
2453 					    READ_ONCE(memcg->swap.high));
2454 		if (overage)
2455 			memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2456 		max_overage = max(overage, max_overage);
2457 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2458 		 !mem_cgroup_is_root(memcg));
2459 
2460 	return max_overage;
2461 }
2462 
2463 /*
2464  * Get the number of jiffies that we should penalise a mischievous cgroup which
2465  * is exceeding its memory.high by checking both it and its ancestors.
2466  */
2467 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2468 					  unsigned int nr_pages,
2469 					  u64 max_overage)
2470 {
2471 	unsigned long penalty_jiffies;
2472 
2473 	if (!max_overage)
2474 		return 0;
2475 
2476 	/*
2477 	 * We use overage compared to memory.high to calculate the number of
2478 	 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2479 	 * fairly lenient on small overages, and increasingly harsh when the
2480 	 * memcg in question makes it clear that it has no intention of stopping
2481 	 * its crazy behaviour, so we exponentially increase the delay based on
2482 	 * overage amount.
2483 	 */
2484 	penalty_jiffies = max_overage * max_overage * HZ;
2485 	penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2486 	penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2487 
2488 	/*
2489 	 * Factor in the task's own contribution to the overage, such that four
2490 	 * N-sized allocations are throttled approximately the same as one
2491 	 * 4N-sized allocation.
2492 	 *
2493 	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2494 	 * larger the current charge patch is than that.
2495 	 */
2496 	return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2497 }
2498 
2499 /*
2500  * Scheduled by try_charge() to be executed from the userland return path
2501  * and reclaims memory over the high limit.
2502  */
2503 void mem_cgroup_handle_over_high(void)
2504 {
2505 	unsigned long penalty_jiffies;
2506 	unsigned long pflags;
2507 	unsigned long nr_reclaimed;
2508 	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2509 	int nr_retries = MAX_RECLAIM_RETRIES;
2510 	struct mem_cgroup *memcg;
2511 	bool in_retry = false;
2512 
2513 	if (likely(!nr_pages))
2514 		return;
2515 
2516 	memcg = get_mem_cgroup_from_mm(current->mm);
2517 	current->memcg_nr_pages_over_high = 0;
2518 
2519 retry_reclaim:
2520 	/*
2521 	 * The allocating task should reclaim at least the batch size, but for
2522 	 * subsequent retries we only want to do what's necessary to prevent oom
2523 	 * or breaching resource isolation.
2524 	 *
2525 	 * This is distinct from memory.max or page allocator behaviour because
2526 	 * memory.high is currently batched, whereas memory.max and the page
2527 	 * allocator run every time an allocation is made.
2528 	 */
2529 	nr_reclaimed = reclaim_high(memcg,
2530 				    in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2531 				    GFP_KERNEL);
2532 
2533 	/*
2534 	 * memory.high is breached and reclaim is unable to keep up. Throttle
2535 	 * allocators proactively to slow down excessive growth.
2536 	 */
2537 	penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2538 					       mem_find_max_overage(memcg));
2539 
2540 	penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2541 						swap_find_max_overage(memcg));
2542 
2543 	/*
2544 	 * Clamp the max delay per usermode return so as to still keep the
2545 	 * application moving forwards and also permit diagnostics, albeit
2546 	 * extremely slowly.
2547 	 */
2548 	penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2549 
2550 	/*
2551 	 * Don't sleep if the amount of jiffies this memcg owes us is so low
2552 	 * that it's not even worth doing, in an attempt to be nice to those who
2553 	 * go only a small amount over their memory.high value and maybe haven't
2554 	 * been aggressively reclaimed enough yet.
2555 	 */
2556 	if (penalty_jiffies <= HZ / 100)
2557 		goto out;
2558 
2559 	/*
2560 	 * If reclaim is making forward progress but we're still over
2561 	 * memory.high, we want to encourage that rather than doing allocator
2562 	 * throttling.
2563 	 */
2564 	if (nr_reclaimed || nr_retries--) {
2565 		in_retry = true;
2566 		goto retry_reclaim;
2567 	}
2568 
2569 	/*
2570 	 * If we exit early, we're guaranteed to die (since
2571 	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2572 	 * need to account for any ill-begotten jiffies to pay them off later.
2573 	 */
2574 	psi_memstall_enter(&pflags);
2575 	schedule_timeout_killable(penalty_jiffies);
2576 	psi_memstall_leave(&pflags);
2577 
2578 out:
2579 	css_put(&memcg->css);
2580 }
2581 
2582 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2583 			unsigned int nr_pages)
2584 {
2585 	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2586 	int nr_retries = MAX_RECLAIM_RETRIES;
2587 	struct mem_cgroup *mem_over_limit;
2588 	struct page_counter *counter;
2589 	enum oom_status oom_status;
2590 	unsigned long nr_reclaimed;
2591 	bool may_swap = true;
2592 	bool drained = false;
2593 	unsigned long pflags;
2594 
2595 retry:
2596 	if (consume_stock(memcg, nr_pages))
2597 		return 0;
2598 
2599 	if (!do_memsw_account() ||
2600 	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2601 		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2602 			goto done_restock;
2603 		if (do_memsw_account())
2604 			page_counter_uncharge(&memcg->memsw, batch);
2605 		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2606 	} else {
2607 		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2608 		may_swap = false;
2609 	}
2610 
2611 	if (batch > nr_pages) {
2612 		batch = nr_pages;
2613 		goto retry;
2614 	}
2615 
2616 	/*
2617 	 * Memcg doesn't have a dedicated reserve for atomic
2618 	 * allocations. But like the global atomic pool, we need to
2619 	 * put the burden of reclaim on regular allocation requests
2620 	 * and let these go through as privileged allocations.
2621 	 */
2622 	if (gfp_mask & __GFP_ATOMIC)
2623 		goto force;
2624 
2625 	/*
2626 	 * Unlike in global OOM situations, memcg is not in a physical
2627 	 * memory shortage.  Allow dying and OOM-killed tasks to
2628 	 * bypass the last charges so that they can exit quickly and
2629 	 * free their memory.
2630 	 */
2631 	if (unlikely(should_force_charge()))
2632 		goto force;
2633 
2634 	/*
2635 	 * Prevent unbounded recursion when reclaim operations need to
2636 	 * allocate memory. This might exceed the limits temporarily,
2637 	 * but we prefer facilitating memory reclaim and getting back
2638 	 * under the limit over triggering OOM kills in these cases.
2639 	 */
2640 	if (unlikely(current->flags & PF_MEMALLOC))
2641 		goto force;
2642 
2643 	if (unlikely(task_in_memcg_oom(current)))
2644 		goto nomem;
2645 
2646 	if (!gfpflags_allow_blocking(gfp_mask))
2647 		goto nomem;
2648 
2649 	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2650 
2651 	psi_memstall_enter(&pflags);
2652 	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2653 						    gfp_mask, may_swap);
2654 	psi_memstall_leave(&pflags);
2655 
2656 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2657 		goto retry;
2658 
2659 	if (!drained) {
2660 		drain_all_stock(mem_over_limit);
2661 		drained = true;
2662 		goto retry;
2663 	}
2664 
2665 	if (gfp_mask & __GFP_NORETRY)
2666 		goto nomem;
2667 	/*
2668 	 * Even though the limit is exceeded at this point, reclaim
2669 	 * may have been able to free some pages.  Retry the charge
2670 	 * before killing the task.
2671 	 *
2672 	 * Only for regular pages, though: huge pages are rather
2673 	 * unlikely to succeed so close to the limit, and we fall back
2674 	 * to regular pages anyway in case of failure.
2675 	 */
2676 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2677 		goto retry;
2678 	/*
2679 	 * At task move, charge accounts can be doubly counted. So, it's
2680 	 * better to wait until the end of task_move if something is going on.
2681 	 */
2682 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2683 		goto retry;
2684 
2685 	if (nr_retries--)
2686 		goto retry;
2687 
2688 	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2689 		goto nomem;
2690 
2691 	if (fatal_signal_pending(current))
2692 		goto force;
2693 
2694 	/*
2695 	 * keep retrying as long as the memcg oom killer is able to make
2696 	 * a forward progress or bypass the charge if the oom killer
2697 	 * couldn't make any progress.
2698 	 */
2699 	oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2700 		       get_order(nr_pages * PAGE_SIZE));
2701 	switch (oom_status) {
2702 	case OOM_SUCCESS:
2703 		nr_retries = MAX_RECLAIM_RETRIES;
2704 		goto retry;
2705 	case OOM_FAILED:
2706 		goto force;
2707 	default:
2708 		goto nomem;
2709 	}
2710 nomem:
2711 	if (!(gfp_mask & __GFP_NOFAIL))
2712 		return -ENOMEM;
2713 force:
2714 	/*
2715 	 * The allocation either can't fail or will lead to more memory
2716 	 * being freed very soon.  Allow memory usage go over the limit
2717 	 * temporarily by force charging it.
2718 	 */
2719 	page_counter_charge(&memcg->memory, nr_pages);
2720 	if (do_memsw_account())
2721 		page_counter_charge(&memcg->memsw, nr_pages);
2722 
2723 	return 0;
2724 
2725 done_restock:
2726 	if (batch > nr_pages)
2727 		refill_stock(memcg, batch - nr_pages);
2728 
2729 	/*
2730 	 * If the hierarchy is above the normal consumption range, schedule
2731 	 * reclaim on returning to userland.  We can perform reclaim here
2732 	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2733 	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2734 	 * not recorded as it most likely matches current's and won't
2735 	 * change in the meantime.  As high limit is checked again before
2736 	 * reclaim, the cost of mismatch is negligible.
2737 	 */
2738 	do {
2739 		bool mem_high, swap_high;
2740 
2741 		mem_high = page_counter_read(&memcg->memory) >
2742 			READ_ONCE(memcg->memory.high);
2743 		swap_high = page_counter_read(&memcg->swap) >
2744 			READ_ONCE(memcg->swap.high);
2745 
2746 		/* Don't bother a random interrupted task */
2747 		if (in_interrupt()) {
2748 			if (mem_high) {
2749 				schedule_work(&memcg->high_work);
2750 				break;
2751 			}
2752 			continue;
2753 		}
2754 
2755 		if (mem_high || swap_high) {
2756 			/*
2757 			 * The allocating tasks in this cgroup will need to do
2758 			 * reclaim or be throttled to prevent further growth
2759 			 * of the memory or swap footprints.
2760 			 *
2761 			 * Target some best-effort fairness between the tasks,
2762 			 * and distribute reclaim work and delay penalties
2763 			 * based on how much each task is actually allocating.
2764 			 */
2765 			current->memcg_nr_pages_over_high += batch;
2766 			set_notify_resume(current);
2767 			break;
2768 		}
2769 	} while ((memcg = parent_mem_cgroup(memcg)));
2770 
2771 	return 0;
2772 }
2773 
2774 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2775 			     unsigned int nr_pages)
2776 {
2777 	if (mem_cgroup_is_root(memcg))
2778 		return 0;
2779 
2780 	return try_charge_memcg(memcg, gfp_mask, nr_pages);
2781 }
2782 
2783 #if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
2784 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2785 {
2786 	if (mem_cgroup_is_root(memcg))
2787 		return;
2788 
2789 	page_counter_uncharge(&memcg->memory, nr_pages);
2790 	if (do_memsw_account())
2791 		page_counter_uncharge(&memcg->memsw, nr_pages);
2792 }
2793 #endif
2794 
2795 static void commit_charge(struct page *page, struct mem_cgroup *memcg)
2796 {
2797 	VM_BUG_ON_PAGE(page_memcg(page), page);
2798 	/*
2799 	 * Any of the following ensures page's memcg stability:
2800 	 *
2801 	 * - the page lock
2802 	 * - LRU isolation
2803 	 * - lock_page_memcg()
2804 	 * - exclusive reference
2805 	 */
2806 	page->memcg_data = (unsigned long)memcg;
2807 }
2808 
2809 static struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
2810 {
2811 	struct mem_cgroup *memcg;
2812 
2813 	rcu_read_lock();
2814 retry:
2815 	memcg = obj_cgroup_memcg(objcg);
2816 	if (unlikely(!css_tryget(&memcg->css)))
2817 		goto retry;
2818 	rcu_read_unlock();
2819 
2820 	return memcg;
2821 }
2822 
2823 #ifdef CONFIG_MEMCG_KMEM
2824 /*
2825  * The allocated objcg pointers array is not accounted directly.
2826  * Moreover, it should not come from DMA buffer and is not readily
2827  * reclaimable. So those GFP bits should be masked off.
2828  */
2829 #define OBJCGS_CLEAR_MASK	(__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT)
2830 
2831 int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
2832 				 gfp_t gfp, bool new_page)
2833 {
2834 	unsigned int objects = objs_per_slab_page(s, page);
2835 	unsigned long memcg_data;
2836 	void *vec;
2837 
2838 	gfp &= ~OBJCGS_CLEAR_MASK;
2839 	vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2840 			   page_to_nid(page));
2841 	if (!vec)
2842 		return -ENOMEM;
2843 
2844 	memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
2845 	if (new_page) {
2846 		/*
2847 		 * If the slab page is brand new and nobody can yet access
2848 		 * it's memcg_data, no synchronization is required and
2849 		 * memcg_data can be simply assigned.
2850 		 */
2851 		page->memcg_data = memcg_data;
2852 	} else if (cmpxchg(&page->memcg_data, 0, memcg_data)) {
2853 		/*
2854 		 * If the slab page is already in use, somebody can allocate
2855 		 * and assign obj_cgroups in parallel. In this case the existing
2856 		 * objcg vector should be reused.
2857 		 */
2858 		kfree(vec);
2859 		return 0;
2860 	}
2861 
2862 	kmemleak_not_leak(vec);
2863 	return 0;
2864 }
2865 
2866 /*
2867  * Returns a pointer to the memory cgroup to which the kernel object is charged.
2868  *
2869  * A passed kernel object can be a slab object or a generic kernel page, so
2870  * different mechanisms for getting the memory cgroup pointer should be used.
2871  * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2872  * can not know for sure how the kernel object is implemented.
2873  * mem_cgroup_from_obj() can be safely used in such cases.
2874  *
2875  * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2876  * cgroup_mutex, etc.
2877  */
2878 struct mem_cgroup *mem_cgroup_from_obj(void *p)
2879 {
2880 	struct page *page;
2881 
2882 	if (mem_cgroup_disabled())
2883 		return NULL;
2884 
2885 	page = virt_to_head_page(p);
2886 
2887 	/*
2888 	 * Slab objects are accounted individually, not per-page.
2889 	 * Memcg membership data for each individual object is saved in
2890 	 * the page->obj_cgroups.
2891 	 */
2892 	if (page_objcgs_check(page)) {
2893 		struct obj_cgroup *objcg;
2894 		unsigned int off;
2895 
2896 		off = obj_to_index(page->slab_cache, page, p);
2897 		objcg = page_objcgs(page)[off];
2898 		if (objcg)
2899 			return obj_cgroup_memcg(objcg);
2900 
2901 		return NULL;
2902 	}
2903 
2904 	/*
2905 	 * page_memcg_check() is used here, because page_has_obj_cgroups()
2906 	 * check above could fail because the object cgroups vector wasn't set
2907 	 * at that moment, but it can be set concurrently.
2908 	 * page_memcg_check(page) will guarantee that a proper memory
2909 	 * cgroup pointer or NULL will be returned.
2910 	 */
2911 	return page_memcg_check(page);
2912 }
2913 
2914 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
2915 {
2916 	struct obj_cgroup *objcg = NULL;
2917 	struct mem_cgroup *memcg;
2918 
2919 	if (memcg_kmem_bypass())
2920 		return NULL;
2921 
2922 	rcu_read_lock();
2923 	if (unlikely(active_memcg()))
2924 		memcg = active_memcg();
2925 	else
2926 		memcg = mem_cgroup_from_task(current);
2927 
2928 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
2929 		objcg = rcu_dereference(memcg->objcg);
2930 		if (objcg && obj_cgroup_tryget(objcg))
2931 			break;
2932 		objcg = NULL;
2933 	}
2934 	rcu_read_unlock();
2935 
2936 	return objcg;
2937 }
2938 
2939 static int memcg_alloc_cache_id(void)
2940 {
2941 	int id, size;
2942 	int err;
2943 
2944 	id = ida_simple_get(&memcg_cache_ida,
2945 			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2946 	if (id < 0)
2947 		return id;
2948 
2949 	if (id < memcg_nr_cache_ids)
2950 		return id;
2951 
2952 	/*
2953 	 * There's no space for the new id in memcg_caches arrays,
2954 	 * so we have to grow them.
2955 	 */
2956 	down_write(&memcg_cache_ids_sem);
2957 
2958 	size = 2 * (id + 1);
2959 	if (size < MEMCG_CACHES_MIN_SIZE)
2960 		size = MEMCG_CACHES_MIN_SIZE;
2961 	else if (size > MEMCG_CACHES_MAX_SIZE)
2962 		size = MEMCG_CACHES_MAX_SIZE;
2963 
2964 	err = memcg_update_all_list_lrus(size);
2965 	if (!err)
2966 		memcg_nr_cache_ids = size;
2967 
2968 	up_write(&memcg_cache_ids_sem);
2969 
2970 	if (err) {
2971 		ida_simple_remove(&memcg_cache_ida, id);
2972 		return err;
2973 	}
2974 	return id;
2975 }
2976 
2977 static void memcg_free_cache_id(int id)
2978 {
2979 	ida_simple_remove(&memcg_cache_ida, id);
2980 }
2981 
2982 /*
2983  * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
2984  * @objcg: object cgroup to uncharge
2985  * @nr_pages: number of pages to uncharge
2986  */
2987 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
2988 				      unsigned int nr_pages)
2989 {
2990 	struct mem_cgroup *memcg;
2991 
2992 	memcg = get_mem_cgroup_from_objcg(objcg);
2993 
2994 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2995 		page_counter_uncharge(&memcg->kmem, nr_pages);
2996 	refill_stock(memcg, nr_pages);
2997 
2998 	css_put(&memcg->css);
2999 }
3000 
3001 /*
3002  * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
3003  * @objcg: object cgroup to charge
3004  * @gfp: reclaim mode
3005  * @nr_pages: number of pages to charge
3006  *
3007  * Returns 0 on success, an error code on failure.
3008  */
3009 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
3010 				   unsigned int nr_pages)
3011 {
3012 	struct page_counter *counter;
3013 	struct mem_cgroup *memcg;
3014 	int ret;
3015 
3016 	memcg = get_mem_cgroup_from_objcg(objcg);
3017 
3018 	ret = try_charge_memcg(memcg, gfp, nr_pages);
3019 	if (ret)
3020 		goto out;
3021 
3022 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
3023 	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
3024 
3025 		/*
3026 		 * Enforce __GFP_NOFAIL allocation because callers are not
3027 		 * prepared to see failures and likely do not have any failure
3028 		 * handling code.
3029 		 */
3030 		if (gfp & __GFP_NOFAIL) {
3031 			page_counter_charge(&memcg->kmem, nr_pages);
3032 			goto out;
3033 		}
3034 		cancel_charge(memcg, nr_pages);
3035 		ret = -ENOMEM;
3036 	}
3037 out:
3038 	css_put(&memcg->css);
3039 
3040 	return ret;
3041 }
3042 
3043 /**
3044  * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3045  * @page: page to charge
3046  * @gfp: reclaim mode
3047  * @order: allocation order
3048  *
3049  * Returns 0 on success, an error code on failure.
3050  */
3051 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3052 {
3053 	struct obj_cgroup *objcg;
3054 	int ret = 0;
3055 
3056 	objcg = get_obj_cgroup_from_current();
3057 	if (objcg) {
3058 		ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
3059 		if (!ret) {
3060 			page->memcg_data = (unsigned long)objcg |
3061 				MEMCG_DATA_KMEM;
3062 			return 0;
3063 		}
3064 		obj_cgroup_put(objcg);
3065 	}
3066 	return ret;
3067 }
3068 
3069 /**
3070  * __memcg_kmem_uncharge_page: uncharge a kmem page
3071  * @page: page to uncharge
3072  * @order: allocation order
3073  */
3074 void __memcg_kmem_uncharge_page(struct page *page, int order)
3075 {
3076 	struct obj_cgroup *objcg;
3077 	unsigned int nr_pages = 1 << order;
3078 
3079 	if (!PageMemcgKmem(page))
3080 		return;
3081 
3082 	objcg = __page_objcg(page);
3083 	obj_cgroup_uncharge_pages(objcg, nr_pages);
3084 	page->memcg_data = 0;
3085 	obj_cgroup_put(objcg);
3086 }
3087 
3088 void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3089 		     enum node_stat_item idx, int nr)
3090 {
3091 	unsigned long flags;
3092 	struct obj_stock *stock = get_obj_stock(&flags);
3093 	int *bytes;
3094 
3095 	/*
3096 	 * Save vmstat data in stock and skip vmstat array update unless
3097 	 * accumulating over a page of vmstat data or when pgdat or idx
3098 	 * changes.
3099 	 */
3100 	if (stock->cached_objcg != objcg) {
3101 		drain_obj_stock(stock);
3102 		obj_cgroup_get(objcg);
3103 		stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3104 				? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3105 		stock->cached_objcg = objcg;
3106 		stock->cached_pgdat = pgdat;
3107 	} else if (stock->cached_pgdat != pgdat) {
3108 		/* Flush the existing cached vmstat data */
3109 		if (stock->nr_slab_reclaimable_b) {
3110 			mod_objcg_mlstate(objcg, pgdat, NR_SLAB_RECLAIMABLE_B,
3111 					  stock->nr_slab_reclaimable_b);
3112 			stock->nr_slab_reclaimable_b = 0;
3113 		}
3114 		if (stock->nr_slab_unreclaimable_b) {
3115 			mod_objcg_mlstate(objcg, pgdat, NR_SLAB_UNRECLAIMABLE_B,
3116 					  stock->nr_slab_unreclaimable_b);
3117 			stock->nr_slab_unreclaimable_b = 0;
3118 		}
3119 		stock->cached_pgdat = pgdat;
3120 	}
3121 
3122 	bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3123 					       : &stock->nr_slab_unreclaimable_b;
3124 	/*
3125 	 * Even for large object >= PAGE_SIZE, the vmstat data will still be
3126 	 * cached locally at least once before pushing it out.
3127 	 */
3128 	if (!*bytes) {
3129 		*bytes = nr;
3130 		nr = 0;
3131 	} else {
3132 		*bytes += nr;
3133 		if (abs(*bytes) > PAGE_SIZE) {
3134 			nr = *bytes;
3135 			*bytes = 0;
3136 		} else {
3137 			nr = 0;
3138 		}
3139 	}
3140 	if (nr)
3141 		mod_objcg_mlstate(objcg, pgdat, idx, nr);
3142 
3143 	put_obj_stock(flags);
3144 }
3145 
3146 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3147 {
3148 	unsigned long flags;
3149 	struct obj_stock *stock = get_obj_stock(&flags);
3150 	bool ret = false;
3151 
3152 	if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3153 		stock->nr_bytes -= nr_bytes;
3154 		ret = true;
3155 	}
3156 
3157 	put_obj_stock(flags);
3158 
3159 	return ret;
3160 }
3161 
3162 static void drain_obj_stock(struct obj_stock *stock)
3163 {
3164 	struct obj_cgroup *old = stock->cached_objcg;
3165 
3166 	if (!old)
3167 		return;
3168 
3169 	if (stock->nr_bytes) {
3170 		unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3171 		unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3172 
3173 		if (nr_pages)
3174 			obj_cgroup_uncharge_pages(old, nr_pages);
3175 
3176 		/*
3177 		 * The leftover is flushed to the centralized per-memcg value.
3178 		 * On the next attempt to refill obj stock it will be moved
3179 		 * to a per-cpu stock (probably, on an other CPU), see
3180 		 * refill_obj_stock().
3181 		 *
3182 		 * How often it's flushed is a trade-off between the memory
3183 		 * limit enforcement accuracy and potential CPU contention,
3184 		 * so it might be changed in the future.
3185 		 */
3186 		atomic_add(nr_bytes, &old->nr_charged_bytes);
3187 		stock->nr_bytes = 0;
3188 	}
3189 
3190 	/*
3191 	 * Flush the vmstat data in current stock
3192 	 */
3193 	if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3194 		if (stock->nr_slab_reclaimable_b) {
3195 			mod_objcg_mlstate(old, stock->cached_pgdat,
3196 					  NR_SLAB_RECLAIMABLE_B,
3197 					  stock->nr_slab_reclaimable_b);
3198 			stock->nr_slab_reclaimable_b = 0;
3199 		}
3200 		if (stock->nr_slab_unreclaimable_b) {
3201 			mod_objcg_mlstate(old, stock->cached_pgdat,
3202 					  NR_SLAB_UNRECLAIMABLE_B,
3203 					  stock->nr_slab_unreclaimable_b);
3204 			stock->nr_slab_unreclaimable_b = 0;
3205 		}
3206 		stock->cached_pgdat = NULL;
3207 	}
3208 
3209 	obj_cgroup_put(old);
3210 	stock->cached_objcg = NULL;
3211 }
3212 
3213 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3214 				     struct mem_cgroup *root_memcg)
3215 {
3216 	struct mem_cgroup *memcg;
3217 
3218 	if (in_task() && stock->task_obj.cached_objcg) {
3219 		memcg = obj_cgroup_memcg(stock->task_obj.cached_objcg);
3220 		if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3221 			return true;
3222 	}
3223 	if (stock->irq_obj.cached_objcg) {
3224 		memcg = obj_cgroup_memcg(stock->irq_obj.cached_objcg);
3225 		if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3226 			return true;
3227 	}
3228 
3229 	return false;
3230 }
3231 
3232 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3233 			     bool allow_uncharge)
3234 {
3235 	unsigned long flags;
3236 	struct obj_stock *stock = get_obj_stock(&flags);
3237 	unsigned int nr_pages = 0;
3238 
3239 	if (stock->cached_objcg != objcg) { /* reset if necessary */
3240 		drain_obj_stock(stock);
3241 		obj_cgroup_get(objcg);
3242 		stock->cached_objcg = objcg;
3243 		stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3244 				? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3245 		allow_uncharge = true;	/* Allow uncharge when objcg changes */
3246 	}
3247 	stock->nr_bytes += nr_bytes;
3248 
3249 	if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3250 		nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3251 		stock->nr_bytes &= (PAGE_SIZE - 1);
3252 	}
3253 
3254 	put_obj_stock(flags);
3255 
3256 	if (nr_pages)
3257 		obj_cgroup_uncharge_pages(objcg, nr_pages);
3258 }
3259 
3260 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3261 {
3262 	unsigned int nr_pages, nr_bytes;
3263 	int ret;
3264 
3265 	if (consume_obj_stock(objcg, size))
3266 		return 0;
3267 
3268 	/*
3269 	 * In theory, objcg->nr_charged_bytes can have enough
3270 	 * pre-charged bytes to satisfy the allocation. However,
3271 	 * flushing objcg->nr_charged_bytes requires two atomic
3272 	 * operations, and objcg->nr_charged_bytes can't be big.
3273 	 * The shared objcg->nr_charged_bytes can also become a
3274 	 * performance bottleneck if all tasks of the same memcg are
3275 	 * trying to update it. So it's better to ignore it and try
3276 	 * grab some new pages. The stock's nr_bytes will be flushed to
3277 	 * objcg->nr_charged_bytes later on when objcg changes.
3278 	 *
3279 	 * The stock's nr_bytes may contain enough pre-charged bytes
3280 	 * to allow one less page from being charged, but we can't rely
3281 	 * on the pre-charged bytes not being changed outside of
3282 	 * consume_obj_stock() or refill_obj_stock(). So ignore those
3283 	 * pre-charged bytes as well when charging pages. To avoid a
3284 	 * page uncharge right after a page charge, we set the
3285 	 * allow_uncharge flag to false when calling refill_obj_stock()
3286 	 * to temporarily allow the pre-charged bytes to exceed the page
3287 	 * size limit. The maximum reachable value of the pre-charged
3288 	 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3289 	 * race.
3290 	 */
3291 	nr_pages = size >> PAGE_SHIFT;
3292 	nr_bytes = size & (PAGE_SIZE - 1);
3293 
3294 	if (nr_bytes)
3295 		nr_pages += 1;
3296 
3297 	ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3298 	if (!ret && nr_bytes)
3299 		refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
3300 
3301 	return ret;
3302 }
3303 
3304 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3305 {
3306 	refill_obj_stock(objcg, size, true);
3307 }
3308 
3309 #endif /* CONFIG_MEMCG_KMEM */
3310 
3311 /*
3312  * Because page_memcg(head) is not set on tails, set it now.
3313  */
3314 void split_page_memcg(struct page *head, unsigned int nr)
3315 {
3316 	struct mem_cgroup *memcg = page_memcg(head);
3317 	int i;
3318 
3319 	if (mem_cgroup_disabled() || !memcg)
3320 		return;
3321 
3322 	for (i = 1; i < nr; i++)
3323 		head[i].memcg_data = head->memcg_data;
3324 
3325 	if (PageMemcgKmem(head))
3326 		obj_cgroup_get_many(__page_objcg(head), nr - 1);
3327 	else
3328 		css_get_many(&memcg->css, nr - 1);
3329 }
3330 
3331 #ifdef CONFIG_MEMCG_SWAP
3332 /**
3333  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3334  * @entry: swap entry to be moved
3335  * @from:  mem_cgroup which the entry is moved from
3336  * @to:  mem_cgroup which the entry is moved to
3337  *
3338  * It succeeds only when the swap_cgroup's record for this entry is the same
3339  * as the mem_cgroup's id of @from.
3340  *
3341  * Returns 0 on success, -EINVAL on failure.
3342  *
3343  * The caller must have charged to @to, IOW, called page_counter_charge() about
3344  * both res and memsw, and called css_get().
3345  */
3346 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3347 				struct mem_cgroup *from, struct mem_cgroup *to)
3348 {
3349 	unsigned short old_id, new_id;
3350 
3351 	old_id = mem_cgroup_id(from);
3352 	new_id = mem_cgroup_id(to);
3353 
3354 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3355 		mod_memcg_state(from, MEMCG_SWAP, -1);
3356 		mod_memcg_state(to, MEMCG_SWAP, 1);
3357 		return 0;
3358 	}
3359 	return -EINVAL;
3360 }
3361 #else
3362 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3363 				struct mem_cgroup *from, struct mem_cgroup *to)
3364 {
3365 	return -EINVAL;
3366 }
3367 #endif
3368 
3369 static DEFINE_MUTEX(memcg_max_mutex);
3370 
3371 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3372 				 unsigned long max, bool memsw)
3373 {
3374 	bool enlarge = false;
3375 	bool drained = false;
3376 	int ret;
3377 	bool limits_invariant;
3378 	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3379 
3380 	do {
3381 		if (signal_pending(current)) {
3382 			ret = -EINTR;
3383 			break;
3384 		}
3385 
3386 		mutex_lock(&memcg_max_mutex);
3387 		/*
3388 		 * Make sure that the new limit (memsw or memory limit) doesn't
3389 		 * break our basic invariant rule memory.max <= memsw.max.
3390 		 */
3391 		limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3392 					   max <= memcg->memsw.max;
3393 		if (!limits_invariant) {
3394 			mutex_unlock(&memcg_max_mutex);
3395 			ret = -EINVAL;
3396 			break;
3397 		}
3398 		if (max > counter->max)
3399 			enlarge = true;
3400 		ret = page_counter_set_max(counter, max);
3401 		mutex_unlock(&memcg_max_mutex);
3402 
3403 		if (!ret)
3404 			break;
3405 
3406 		if (!drained) {
3407 			drain_all_stock(memcg);
3408 			drained = true;
3409 			continue;
3410 		}
3411 
3412 		if (!try_to_free_mem_cgroup_pages(memcg, 1,
3413 					GFP_KERNEL, !memsw)) {
3414 			ret = -EBUSY;
3415 			break;
3416 		}
3417 	} while (true);
3418 
3419 	if (!ret && enlarge)
3420 		memcg_oom_recover(memcg);
3421 
3422 	return ret;
3423 }
3424 
3425 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3426 					    gfp_t gfp_mask,
3427 					    unsigned long *total_scanned)
3428 {
3429 	unsigned long nr_reclaimed = 0;
3430 	struct mem_cgroup_per_node *mz, *next_mz = NULL;
3431 	unsigned long reclaimed;
3432 	int loop = 0;
3433 	struct mem_cgroup_tree_per_node *mctz;
3434 	unsigned long excess;
3435 	unsigned long nr_scanned;
3436 
3437 	if (order > 0)
3438 		return 0;
3439 
3440 	mctz = soft_limit_tree_node(pgdat->node_id);
3441 
3442 	/*
3443 	 * Do not even bother to check the largest node if the root
3444 	 * is empty. Do it lockless to prevent lock bouncing. Races
3445 	 * are acceptable as soft limit is best effort anyway.
3446 	 */
3447 	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3448 		return 0;
3449 
3450 	/*
3451 	 * This loop can run a while, specially if mem_cgroup's continuously
3452 	 * keep exceeding their soft limit and putting the system under
3453 	 * pressure
3454 	 */
3455 	do {
3456 		if (next_mz)
3457 			mz = next_mz;
3458 		else
3459 			mz = mem_cgroup_largest_soft_limit_node(mctz);
3460 		if (!mz)
3461 			break;
3462 
3463 		nr_scanned = 0;
3464 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3465 						    gfp_mask, &nr_scanned);
3466 		nr_reclaimed += reclaimed;
3467 		*total_scanned += nr_scanned;
3468 		spin_lock_irq(&mctz->lock);
3469 		__mem_cgroup_remove_exceeded(mz, mctz);
3470 
3471 		/*
3472 		 * If we failed to reclaim anything from this memory cgroup
3473 		 * it is time to move on to the next cgroup
3474 		 */
3475 		next_mz = NULL;
3476 		if (!reclaimed)
3477 			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3478 
3479 		excess = soft_limit_excess(mz->memcg);
3480 		/*
3481 		 * One school of thought says that we should not add
3482 		 * back the node to the tree if reclaim returns 0.
3483 		 * But our reclaim could return 0, simply because due
3484 		 * to priority we are exposing a smaller subset of
3485 		 * memory to reclaim from. Consider this as a longer
3486 		 * term TODO.
3487 		 */
3488 		/* If excess == 0, no tree ops */
3489 		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3490 		spin_unlock_irq(&mctz->lock);
3491 		css_put(&mz->memcg->css);
3492 		loop++;
3493 		/*
3494 		 * Could not reclaim anything and there are no more
3495 		 * mem cgroups to try or we seem to be looping without
3496 		 * reclaiming anything.
3497 		 */
3498 		if (!nr_reclaimed &&
3499 			(next_mz == NULL ||
3500 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3501 			break;
3502 	} while (!nr_reclaimed);
3503 	if (next_mz)
3504 		css_put(&next_mz->memcg->css);
3505 	return nr_reclaimed;
3506 }
3507 
3508 /*
3509  * Reclaims as many pages from the given memcg as possible.
3510  *
3511  * Caller is responsible for holding css reference for memcg.
3512  */
3513 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3514 {
3515 	int nr_retries = MAX_RECLAIM_RETRIES;
3516 
3517 	/* we call try-to-free pages for make this cgroup empty */
3518 	lru_add_drain_all();
3519 
3520 	drain_all_stock(memcg);
3521 
3522 	/* try to free all pages in this cgroup */
3523 	while (nr_retries && page_counter_read(&memcg->memory)) {
3524 		int progress;
3525 
3526 		if (signal_pending(current))
3527 			return -EINTR;
3528 
3529 		progress = try_to_free_mem_cgroup_pages(memcg, 1,
3530 							GFP_KERNEL, true);
3531 		if (!progress) {
3532 			nr_retries--;
3533 			/* maybe some writeback is necessary */
3534 			congestion_wait(BLK_RW_ASYNC, HZ/10);
3535 		}
3536 
3537 	}
3538 
3539 	return 0;
3540 }
3541 
3542 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3543 					    char *buf, size_t nbytes,
3544 					    loff_t off)
3545 {
3546 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3547 
3548 	if (mem_cgroup_is_root(memcg))
3549 		return -EINVAL;
3550 	return mem_cgroup_force_empty(memcg) ?: nbytes;
3551 }
3552 
3553 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3554 				     struct cftype *cft)
3555 {
3556 	return 1;
3557 }
3558 
3559 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3560 				      struct cftype *cft, u64 val)
3561 {
3562 	if (val == 1)
3563 		return 0;
3564 
3565 	pr_warn_once("Non-hierarchical mode is deprecated. "
3566 		     "Please report your usecase to linux-mm@kvack.org if you "
3567 		     "depend on this functionality.\n");
3568 
3569 	return -EINVAL;
3570 }
3571 
3572 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3573 {
3574 	unsigned long val;
3575 
3576 	if (mem_cgroup_is_root(memcg)) {
3577 		cgroup_rstat_flush(memcg->css.cgroup);
3578 		val = memcg_page_state(memcg, NR_FILE_PAGES) +
3579 			memcg_page_state(memcg, NR_ANON_MAPPED);
3580 		if (swap)
3581 			val += memcg_page_state(memcg, MEMCG_SWAP);
3582 	} else {
3583 		if (!swap)
3584 			val = page_counter_read(&memcg->memory);
3585 		else
3586 			val = page_counter_read(&memcg->memsw);
3587 	}
3588 	return val;
3589 }
3590 
3591 enum {
3592 	RES_USAGE,
3593 	RES_LIMIT,
3594 	RES_MAX_USAGE,
3595 	RES_FAILCNT,
3596 	RES_SOFT_LIMIT,
3597 };
3598 
3599 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3600 			       struct cftype *cft)
3601 {
3602 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3603 	struct page_counter *counter;
3604 
3605 	switch (MEMFILE_TYPE(cft->private)) {
3606 	case _MEM:
3607 		counter = &memcg->memory;
3608 		break;
3609 	case _MEMSWAP:
3610 		counter = &memcg->memsw;
3611 		break;
3612 	case _KMEM:
3613 		counter = &memcg->kmem;
3614 		break;
3615 	case _TCP:
3616 		counter = &memcg->tcpmem;
3617 		break;
3618 	default:
3619 		BUG();
3620 	}
3621 
3622 	switch (MEMFILE_ATTR(cft->private)) {
3623 	case RES_USAGE:
3624 		if (counter == &memcg->memory)
3625 			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3626 		if (counter == &memcg->memsw)
3627 			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3628 		return (u64)page_counter_read(counter) * PAGE_SIZE;
3629 	case RES_LIMIT:
3630 		return (u64)counter->max * PAGE_SIZE;
3631 	case RES_MAX_USAGE:
3632 		return (u64)counter->watermark * PAGE_SIZE;
3633 	case RES_FAILCNT:
3634 		return counter->failcnt;
3635 	case RES_SOFT_LIMIT:
3636 		return (u64)memcg->soft_limit * PAGE_SIZE;
3637 	default:
3638 		BUG();
3639 	}
3640 }
3641 
3642 #ifdef CONFIG_MEMCG_KMEM
3643 static int memcg_online_kmem(struct mem_cgroup *memcg)
3644 {
3645 	struct obj_cgroup *objcg;
3646 	int memcg_id;
3647 
3648 	if (cgroup_memory_nokmem)
3649 		return 0;
3650 
3651 	BUG_ON(memcg->kmemcg_id >= 0);
3652 	BUG_ON(memcg->kmem_state);
3653 
3654 	memcg_id = memcg_alloc_cache_id();
3655 	if (memcg_id < 0)
3656 		return memcg_id;
3657 
3658 	objcg = obj_cgroup_alloc();
3659 	if (!objcg) {
3660 		memcg_free_cache_id(memcg_id);
3661 		return -ENOMEM;
3662 	}
3663 	objcg->memcg = memcg;
3664 	rcu_assign_pointer(memcg->objcg, objcg);
3665 
3666 	static_branch_enable(&memcg_kmem_enabled_key);
3667 
3668 	memcg->kmemcg_id = memcg_id;
3669 	memcg->kmem_state = KMEM_ONLINE;
3670 
3671 	return 0;
3672 }
3673 
3674 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3675 {
3676 	struct cgroup_subsys_state *css;
3677 	struct mem_cgroup *parent, *child;
3678 	int kmemcg_id;
3679 
3680 	if (memcg->kmem_state != KMEM_ONLINE)
3681 		return;
3682 
3683 	memcg->kmem_state = KMEM_ALLOCATED;
3684 
3685 	parent = parent_mem_cgroup(memcg);
3686 	if (!parent)
3687 		parent = root_mem_cgroup;
3688 
3689 	memcg_reparent_objcgs(memcg, parent);
3690 
3691 	kmemcg_id = memcg->kmemcg_id;
3692 	BUG_ON(kmemcg_id < 0);
3693 
3694 	/*
3695 	 * Change kmemcg_id of this cgroup and all its descendants to the
3696 	 * parent's id, and then move all entries from this cgroup's list_lrus
3697 	 * to ones of the parent. After we have finished, all list_lrus
3698 	 * corresponding to this cgroup are guaranteed to remain empty. The
3699 	 * ordering is imposed by list_lru_node->lock taken by
3700 	 * memcg_drain_all_list_lrus().
3701 	 */
3702 	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3703 	css_for_each_descendant_pre(css, &memcg->css) {
3704 		child = mem_cgroup_from_css(css);
3705 		BUG_ON(child->kmemcg_id != kmemcg_id);
3706 		child->kmemcg_id = parent->kmemcg_id;
3707 	}
3708 	rcu_read_unlock();
3709 
3710 	memcg_drain_all_list_lrus(kmemcg_id, parent);
3711 
3712 	memcg_free_cache_id(kmemcg_id);
3713 }
3714 
3715 static void memcg_free_kmem(struct mem_cgroup *memcg)
3716 {
3717 	/* css_alloc() failed, offlining didn't happen */
3718 	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3719 		memcg_offline_kmem(memcg);
3720 }
3721 #else
3722 static int memcg_online_kmem(struct mem_cgroup *memcg)
3723 {
3724 	return 0;
3725 }
3726 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3727 {
3728 }
3729 static void memcg_free_kmem(struct mem_cgroup *memcg)
3730 {
3731 }
3732 #endif /* CONFIG_MEMCG_KMEM */
3733 
3734 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3735 				 unsigned long max)
3736 {
3737 	int ret;
3738 
3739 	mutex_lock(&memcg_max_mutex);
3740 	ret = page_counter_set_max(&memcg->kmem, max);
3741 	mutex_unlock(&memcg_max_mutex);
3742 	return ret;
3743 }
3744 
3745 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3746 {
3747 	int ret;
3748 
3749 	mutex_lock(&memcg_max_mutex);
3750 
3751 	ret = page_counter_set_max(&memcg->tcpmem, max);
3752 	if (ret)
3753 		goto out;
3754 
3755 	if (!memcg->tcpmem_active) {
3756 		/*
3757 		 * The active flag needs to be written after the static_key
3758 		 * update. This is what guarantees that the socket activation
3759 		 * function is the last one to run. See mem_cgroup_sk_alloc()
3760 		 * for details, and note that we don't mark any socket as
3761 		 * belonging to this memcg until that flag is up.
3762 		 *
3763 		 * We need to do this, because static_keys will span multiple
3764 		 * sites, but we can't control their order. If we mark a socket
3765 		 * as accounted, but the accounting functions are not patched in
3766 		 * yet, we'll lose accounting.
3767 		 *
3768 		 * We never race with the readers in mem_cgroup_sk_alloc(),
3769 		 * because when this value change, the code to process it is not
3770 		 * patched in yet.
3771 		 */
3772 		static_branch_inc(&memcg_sockets_enabled_key);
3773 		memcg->tcpmem_active = true;
3774 	}
3775 out:
3776 	mutex_unlock(&memcg_max_mutex);
3777 	return ret;
3778 }
3779 
3780 /*
3781  * The user of this function is...
3782  * RES_LIMIT.
3783  */
3784 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3785 				char *buf, size_t nbytes, loff_t off)
3786 {
3787 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3788 	unsigned long nr_pages;
3789 	int ret;
3790 
3791 	buf = strstrip(buf);
3792 	ret = page_counter_memparse(buf, "-1", &nr_pages);
3793 	if (ret)
3794 		return ret;
3795 
3796 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3797 	case RES_LIMIT:
3798 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3799 			ret = -EINVAL;
3800 			break;
3801 		}
3802 		switch (MEMFILE_TYPE(of_cft(of)->private)) {
3803 		case _MEM:
3804 			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3805 			break;
3806 		case _MEMSWAP:
3807 			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3808 			break;
3809 		case _KMEM:
3810 			pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3811 				     "Please report your usecase to linux-mm@kvack.org if you "
3812 				     "depend on this functionality.\n");
3813 			ret = memcg_update_kmem_max(memcg, nr_pages);
3814 			break;
3815 		case _TCP:
3816 			ret = memcg_update_tcp_max(memcg, nr_pages);
3817 			break;
3818 		}
3819 		break;
3820 	case RES_SOFT_LIMIT:
3821 		memcg->soft_limit = nr_pages;
3822 		ret = 0;
3823 		break;
3824 	}
3825 	return ret ?: nbytes;
3826 }
3827 
3828 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3829 				size_t nbytes, loff_t off)
3830 {
3831 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3832 	struct page_counter *counter;
3833 
3834 	switch (MEMFILE_TYPE(of_cft(of)->private)) {
3835 	case _MEM:
3836 		counter = &memcg->memory;
3837 		break;
3838 	case _MEMSWAP:
3839 		counter = &memcg->memsw;
3840 		break;
3841 	case _KMEM:
3842 		counter = &memcg->kmem;
3843 		break;
3844 	case _TCP:
3845 		counter = &memcg->tcpmem;
3846 		break;
3847 	default:
3848 		BUG();
3849 	}
3850 
3851 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3852 	case RES_MAX_USAGE:
3853 		page_counter_reset_watermark(counter);
3854 		break;
3855 	case RES_FAILCNT:
3856 		counter->failcnt = 0;
3857 		break;
3858 	default:
3859 		BUG();
3860 	}
3861 
3862 	return nbytes;
3863 }
3864 
3865 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3866 					struct cftype *cft)
3867 {
3868 	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3869 }
3870 
3871 #ifdef CONFIG_MMU
3872 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3873 					struct cftype *cft, u64 val)
3874 {
3875 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3876 
3877 	if (val & ~MOVE_MASK)
3878 		return -EINVAL;
3879 
3880 	/*
3881 	 * No kind of locking is needed in here, because ->can_attach() will
3882 	 * check this value once in the beginning of the process, and then carry
3883 	 * on with stale data. This means that changes to this value will only
3884 	 * affect task migrations starting after the change.
3885 	 */
3886 	memcg->move_charge_at_immigrate = val;
3887 	return 0;
3888 }
3889 #else
3890 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3891 					struct cftype *cft, u64 val)
3892 {
3893 	return -ENOSYS;
3894 }
3895 #endif
3896 
3897 #ifdef CONFIG_NUMA
3898 
3899 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3900 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3901 #define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)
3902 
3903 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3904 				int nid, unsigned int lru_mask, bool tree)
3905 {
3906 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3907 	unsigned long nr = 0;
3908 	enum lru_list lru;
3909 
3910 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
3911 
3912 	for_each_lru(lru) {
3913 		if (!(BIT(lru) & lru_mask))
3914 			continue;
3915 		if (tree)
3916 			nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3917 		else
3918 			nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3919 	}
3920 	return nr;
3921 }
3922 
3923 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3924 					     unsigned int lru_mask,
3925 					     bool tree)
3926 {
3927 	unsigned long nr = 0;
3928 	enum lru_list lru;
3929 
3930 	for_each_lru(lru) {
3931 		if (!(BIT(lru) & lru_mask))
3932 			continue;
3933 		if (tree)
3934 			nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3935 		else
3936 			nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3937 	}
3938 	return nr;
3939 }
3940 
3941 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3942 {
3943 	struct numa_stat {
3944 		const char *name;
3945 		unsigned int lru_mask;
3946 	};
3947 
3948 	static const struct numa_stat stats[] = {
3949 		{ "total", LRU_ALL },
3950 		{ "file", LRU_ALL_FILE },
3951 		{ "anon", LRU_ALL_ANON },
3952 		{ "unevictable", BIT(LRU_UNEVICTABLE) },
3953 	};
3954 	const struct numa_stat *stat;
3955 	int nid;
3956 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3957 
3958 	cgroup_rstat_flush(memcg->css.cgroup);
3959 
3960 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3961 		seq_printf(m, "%s=%lu", stat->name,
3962 			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3963 						   false));
3964 		for_each_node_state(nid, N_MEMORY)
3965 			seq_printf(m, " N%d=%lu", nid,
3966 				   mem_cgroup_node_nr_lru_pages(memcg, nid,
3967 							stat->lru_mask, false));
3968 		seq_putc(m, '\n');
3969 	}
3970 
3971 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3972 
3973 		seq_printf(m, "hierarchical_%s=%lu", stat->name,
3974 			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3975 						   true));
3976 		for_each_node_state(nid, N_MEMORY)
3977 			seq_printf(m, " N%d=%lu", nid,
3978 				   mem_cgroup_node_nr_lru_pages(memcg, nid,
3979 							stat->lru_mask, true));
3980 		seq_putc(m, '\n');
3981 	}
3982 
3983 	return 0;
3984 }
3985 #endif /* CONFIG_NUMA */
3986 
3987 static const unsigned int memcg1_stats[] = {
3988 	NR_FILE_PAGES,
3989 	NR_ANON_MAPPED,
3990 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3991 	NR_ANON_THPS,
3992 #endif
3993 	NR_SHMEM,
3994 	NR_FILE_MAPPED,
3995 	NR_FILE_DIRTY,
3996 	NR_WRITEBACK,
3997 	MEMCG_SWAP,
3998 };
3999 
4000 static const char *const memcg1_stat_names[] = {
4001 	"cache",
4002 	"rss",
4003 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4004 	"rss_huge",
4005 #endif
4006 	"shmem",
4007 	"mapped_file",
4008 	"dirty",
4009 	"writeback",
4010 	"swap",
4011 };
4012 
4013 /* Universal VM events cgroup1 shows, original sort order */
4014 static const unsigned int memcg1_events[] = {
4015 	PGPGIN,
4016 	PGPGOUT,
4017 	PGFAULT,
4018 	PGMAJFAULT,
4019 };
4020 
4021 static int memcg_stat_show(struct seq_file *m, void *v)
4022 {
4023 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4024 	unsigned long memory, memsw;
4025 	struct mem_cgroup *mi;
4026 	unsigned int i;
4027 
4028 	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4029 
4030 	cgroup_rstat_flush(memcg->css.cgroup);
4031 
4032 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4033 		unsigned long nr;
4034 
4035 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4036 			continue;
4037 		nr = memcg_page_state_local(memcg, memcg1_stats[i]);
4038 		seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
4039 	}
4040 
4041 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4042 		seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
4043 			   memcg_events_local(memcg, memcg1_events[i]));
4044 
4045 	for (i = 0; i < NR_LRU_LISTS; i++)
4046 		seq_printf(m, "%s %lu\n", lru_list_name(i),
4047 			   memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4048 			   PAGE_SIZE);
4049 
4050 	/* Hierarchical information */
4051 	memory = memsw = PAGE_COUNTER_MAX;
4052 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4053 		memory = min(memory, READ_ONCE(mi->memory.max));
4054 		memsw = min(memsw, READ_ONCE(mi->memsw.max));
4055 	}
4056 	seq_printf(m, "hierarchical_memory_limit %llu\n",
4057 		   (u64)memory * PAGE_SIZE);
4058 	if (do_memsw_account())
4059 		seq_printf(m, "hierarchical_memsw_limit %llu\n",
4060 			   (u64)memsw * PAGE_SIZE);
4061 
4062 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4063 		unsigned long nr;
4064 
4065 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4066 			continue;
4067 		nr = memcg_page_state(memcg, memcg1_stats[i]);
4068 		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4069 						(u64)nr * PAGE_SIZE);
4070 	}
4071 
4072 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4073 		seq_printf(m, "total_%s %llu\n",
4074 			   vm_event_name(memcg1_events[i]),
4075 			   (u64)memcg_events(memcg, memcg1_events[i]));
4076 
4077 	for (i = 0; i < NR_LRU_LISTS; i++)
4078 		seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4079 			   (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4080 			   PAGE_SIZE);
4081 
4082 #ifdef CONFIG_DEBUG_VM
4083 	{
4084 		pg_data_t *pgdat;
4085 		struct mem_cgroup_per_node *mz;
4086 		unsigned long anon_cost = 0;
4087 		unsigned long file_cost = 0;
4088 
4089 		for_each_online_pgdat(pgdat) {
4090 			mz = memcg->nodeinfo[pgdat->node_id];
4091 
4092 			anon_cost += mz->lruvec.anon_cost;
4093 			file_cost += mz->lruvec.file_cost;
4094 		}
4095 		seq_printf(m, "anon_cost %lu\n", anon_cost);
4096 		seq_printf(m, "file_cost %lu\n", file_cost);
4097 	}
4098 #endif
4099 
4100 	return 0;
4101 }
4102 
4103 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4104 				      struct cftype *cft)
4105 {
4106 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4107 
4108 	return mem_cgroup_swappiness(memcg);
4109 }
4110 
4111 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4112 				       struct cftype *cft, u64 val)
4113 {
4114 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4115 
4116 	if (val > 100)
4117 		return -EINVAL;
4118 
4119 	if (!mem_cgroup_is_root(memcg))
4120 		memcg->swappiness = val;
4121 	else
4122 		vm_swappiness = val;
4123 
4124 	return 0;
4125 }
4126 
4127 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4128 {
4129 	struct mem_cgroup_threshold_ary *t;
4130 	unsigned long usage;
4131 	int i;
4132 
4133 	rcu_read_lock();
4134 	if (!swap)
4135 		t = rcu_dereference(memcg->thresholds.primary);
4136 	else
4137 		t = rcu_dereference(memcg->memsw_thresholds.primary);
4138 
4139 	if (!t)
4140 		goto unlock;
4141 
4142 	usage = mem_cgroup_usage(memcg, swap);
4143 
4144 	/*
4145 	 * current_threshold points to threshold just below or equal to usage.
4146 	 * If it's not true, a threshold was crossed after last
4147 	 * call of __mem_cgroup_threshold().
4148 	 */
4149 	i = t->current_threshold;
4150 
4151 	/*
4152 	 * Iterate backward over array of thresholds starting from
4153 	 * current_threshold and check if a threshold is crossed.
4154 	 * If none of thresholds below usage is crossed, we read
4155 	 * only one element of the array here.
4156 	 */
4157 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4158 		eventfd_signal(t->entries[i].eventfd, 1);
4159 
4160 	/* i = current_threshold + 1 */
4161 	i++;
4162 
4163 	/*
4164 	 * Iterate forward over array of thresholds starting from
4165 	 * current_threshold+1 and check if a threshold is crossed.
4166 	 * If none of thresholds above usage is crossed, we read
4167 	 * only one element of the array here.
4168 	 */
4169 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4170 		eventfd_signal(t->entries[i].eventfd, 1);
4171 
4172 	/* Update current_threshold */
4173 	t->current_threshold = i - 1;
4174 unlock:
4175 	rcu_read_unlock();
4176 }
4177 
4178 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4179 {
4180 	while (memcg) {
4181 		__mem_cgroup_threshold(memcg, false);
4182 		if (do_memsw_account())
4183 			__mem_cgroup_threshold(memcg, true);
4184 
4185 		memcg = parent_mem_cgroup(memcg);
4186 	}
4187 }
4188 
4189 static int compare_thresholds(const void *a, const void *b)
4190 {
4191 	const struct mem_cgroup_threshold *_a = a;
4192 	const struct mem_cgroup_threshold *_b = b;
4193 
4194 	if (_a->threshold > _b->threshold)
4195 		return 1;
4196 
4197 	if (_a->threshold < _b->threshold)
4198 		return -1;
4199 
4200 	return 0;
4201 }
4202 
4203 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4204 {
4205 	struct mem_cgroup_eventfd_list *ev;
4206 
4207 	spin_lock(&memcg_oom_lock);
4208 
4209 	list_for_each_entry(ev, &memcg->oom_notify, list)
4210 		eventfd_signal(ev->eventfd, 1);
4211 
4212 	spin_unlock(&memcg_oom_lock);
4213 	return 0;
4214 }
4215 
4216 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4217 {
4218 	struct mem_cgroup *iter;
4219 
4220 	for_each_mem_cgroup_tree(iter, memcg)
4221 		mem_cgroup_oom_notify_cb(iter);
4222 }
4223 
4224 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4225 	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4226 {
4227 	struct mem_cgroup_thresholds *thresholds;
4228 	struct mem_cgroup_threshold_ary *new;
4229 	unsigned long threshold;
4230 	unsigned long usage;
4231 	int i, size, ret;
4232 
4233 	ret = page_counter_memparse(args, "-1", &threshold);
4234 	if (ret)
4235 		return ret;
4236 
4237 	mutex_lock(&memcg->thresholds_lock);
4238 
4239 	if (type == _MEM) {
4240 		thresholds = &memcg->thresholds;
4241 		usage = mem_cgroup_usage(memcg, false);
4242 	} else if (type == _MEMSWAP) {
4243 		thresholds = &memcg->memsw_thresholds;
4244 		usage = mem_cgroup_usage(memcg, true);
4245 	} else
4246 		BUG();
4247 
4248 	/* Check if a threshold crossed before adding a new one */
4249 	if (thresholds->primary)
4250 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4251 
4252 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4253 
4254 	/* Allocate memory for new array of thresholds */
4255 	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4256 	if (!new) {
4257 		ret = -ENOMEM;
4258 		goto unlock;
4259 	}
4260 	new->size = size;
4261 
4262 	/* Copy thresholds (if any) to new array */
4263 	if (thresholds->primary)
4264 		memcpy(new->entries, thresholds->primary->entries,
4265 		       flex_array_size(new, entries, size - 1));
4266 
4267 	/* Add new threshold */
4268 	new->entries[size - 1].eventfd = eventfd;
4269 	new->entries[size - 1].threshold = threshold;
4270 
4271 	/* Sort thresholds. Registering of new threshold isn't time-critical */
4272 	sort(new->entries, size, sizeof(*new->entries),
4273 			compare_thresholds, NULL);
4274 
4275 	/* Find current threshold */
4276 	new->current_threshold = -1;
4277 	for (i = 0; i < size; i++) {
4278 		if (new->entries[i].threshold <= usage) {
4279 			/*
4280 			 * new->current_threshold will not be used until
4281 			 * rcu_assign_pointer(), so it's safe to increment
4282 			 * it here.
4283 			 */
4284 			++new->current_threshold;
4285 		} else
4286 			break;
4287 	}
4288 
4289 	/* Free old spare buffer and save old primary buffer as spare */
4290 	kfree(thresholds->spare);
4291 	thresholds->spare = thresholds->primary;
4292 
4293 	rcu_assign_pointer(thresholds->primary, new);
4294 
4295 	/* To be sure that nobody uses thresholds */
4296 	synchronize_rcu();
4297 
4298 unlock:
4299 	mutex_unlock(&memcg->thresholds_lock);
4300 
4301 	return ret;
4302 }
4303 
4304 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4305 	struct eventfd_ctx *eventfd, const char *args)
4306 {
4307 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4308 }
4309 
4310 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4311 	struct eventfd_ctx *eventfd, const char *args)
4312 {
4313 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4314 }
4315 
4316 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4317 	struct eventfd_ctx *eventfd, enum res_type type)
4318 {
4319 	struct mem_cgroup_thresholds *thresholds;
4320 	struct mem_cgroup_threshold_ary *new;
4321 	unsigned long usage;
4322 	int i, j, size, entries;
4323 
4324 	mutex_lock(&memcg->thresholds_lock);
4325 
4326 	if (type == _MEM) {
4327 		thresholds = &memcg->thresholds;
4328 		usage = mem_cgroup_usage(memcg, false);
4329 	} else if (type == _MEMSWAP) {
4330 		thresholds = &memcg->memsw_thresholds;
4331 		usage = mem_cgroup_usage(memcg, true);
4332 	} else
4333 		BUG();
4334 
4335 	if (!thresholds->primary)
4336 		goto unlock;
4337 
4338 	/* Check if a threshold crossed before removing */
4339 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4340 
4341 	/* Calculate new number of threshold */
4342 	size = entries = 0;
4343 	for (i = 0; i < thresholds->primary->size; i++) {
4344 		if (thresholds->primary->entries[i].eventfd != eventfd)
4345 			size++;
4346 		else
4347 			entries++;
4348 	}
4349 
4350 	new = thresholds->spare;
4351 
4352 	/* If no items related to eventfd have been cleared, nothing to do */
4353 	if (!entries)
4354 		goto unlock;
4355 
4356 	/* Set thresholds array to NULL if we don't have thresholds */
4357 	if (!size) {
4358 		kfree(new);
4359 		new = NULL;
4360 		goto swap_buffers;
4361 	}
4362 
4363 	new->size = size;
4364 
4365 	/* Copy thresholds and find current threshold */
4366 	new->current_threshold = -1;
4367 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4368 		if (thresholds->primary->entries[i].eventfd == eventfd)
4369 			continue;
4370 
4371 		new->entries[j] = thresholds->primary->entries[i];
4372 		if (new->entries[j].threshold <= usage) {
4373 			/*
4374 			 * new->current_threshold will not be used
4375 			 * until rcu_assign_pointer(), so it's safe to increment
4376 			 * it here.
4377 			 */
4378 			++new->current_threshold;
4379 		}
4380 		j++;
4381 	}
4382 
4383 swap_buffers:
4384 	/* Swap primary and spare array */
4385 	thresholds->spare = thresholds->primary;
4386 
4387 	rcu_assign_pointer(thresholds->primary, new);
4388 
4389 	/* To be sure that nobody uses thresholds */
4390 	synchronize_rcu();
4391 
4392 	/* If all events are unregistered, free the spare array */
4393 	if (!new) {
4394 		kfree(thresholds->spare);
4395 		thresholds->spare = NULL;
4396 	}
4397 unlock:
4398 	mutex_unlock(&memcg->thresholds_lock);
4399 }
4400 
4401 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4402 	struct eventfd_ctx *eventfd)
4403 {
4404 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4405 }
4406 
4407 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4408 	struct eventfd_ctx *eventfd)
4409 {
4410 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4411 }
4412 
4413 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4414 	struct eventfd_ctx *eventfd, const char *args)
4415 {
4416 	struct mem_cgroup_eventfd_list *event;
4417 
4418 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4419 	if (!event)
4420 		return -ENOMEM;
4421 
4422 	spin_lock(&memcg_oom_lock);
4423 
4424 	event->eventfd = eventfd;
4425 	list_add(&event->list, &memcg->oom_notify);
4426 
4427 	/* already in OOM ? */
4428 	if (memcg->under_oom)
4429 		eventfd_signal(eventfd, 1);
4430 	spin_unlock(&memcg_oom_lock);
4431 
4432 	return 0;
4433 }
4434 
4435 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4436 	struct eventfd_ctx *eventfd)
4437 {
4438 	struct mem_cgroup_eventfd_list *ev, *tmp;
4439 
4440 	spin_lock(&memcg_oom_lock);
4441 
4442 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4443 		if (ev->eventfd == eventfd) {
4444 			list_del(&ev->list);
4445 			kfree(ev);
4446 		}
4447 	}
4448 
4449 	spin_unlock(&memcg_oom_lock);
4450 }
4451 
4452 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4453 {
4454 	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4455 
4456 	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4457 	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4458 	seq_printf(sf, "oom_kill %lu\n",
4459 		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4460 	return 0;
4461 }
4462 
4463 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4464 	struct cftype *cft, u64 val)
4465 {
4466 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4467 
4468 	/* cannot set to root cgroup and only 0 and 1 are allowed */
4469 	if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
4470 		return -EINVAL;
4471 
4472 	memcg->oom_kill_disable = val;
4473 	if (!val)
4474 		memcg_oom_recover(memcg);
4475 
4476 	return 0;
4477 }
4478 
4479 #ifdef CONFIG_CGROUP_WRITEBACK
4480 
4481 #include <trace/events/writeback.h>
4482 
4483 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4484 {
4485 	return wb_domain_init(&memcg->cgwb_domain, gfp);
4486 }
4487 
4488 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4489 {
4490 	wb_domain_exit(&memcg->cgwb_domain);
4491 }
4492 
4493 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4494 {
4495 	wb_domain_size_changed(&memcg->cgwb_domain);
4496 }
4497 
4498 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4499 {
4500 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4501 
4502 	if (!memcg->css.parent)
4503 		return NULL;
4504 
4505 	return &memcg->cgwb_domain;
4506 }
4507 
4508 /**
4509  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4510  * @wb: bdi_writeback in question
4511  * @pfilepages: out parameter for number of file pages
4512  * @pheadroom: out parameter for number of allocatable pages according to memcg
4513  * @pdirty: out parameter for number of dirty pages
4514  * @pwriteback: out parameter for number of pages under writeback
4515  *
4516  * Determine the numbers of file, headroom, dirty, and writeback pages in
4517  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
4518  * is a bit more involved.
4519  *
4520  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
4521  * headroom is calculated as the lowest headroom of itself and the
4522  * ancestors.  Note that this doesn't consider the actual amount of
4523  * available memory in the system.  The caller should further cap
4524  * *@pheadroom accordingly.
4525  */
4526 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4527 			 unsigned long *pheadroom, unsigned long *pdirty,
4528 			 unsigned long *pwriteback)
4529 {
4530 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4531 	struct mem_cgroup *parent;
4532 
4533 	cgroup_rstat_flush_irqsafe(memcg->css.cgroup);
4534 
4535 	*pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4536 	*pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4537 	*pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4538 			memcg_page_state(memcg, NR_ACTIVE_FILE);
4539 
4540 	*pheadroom = PAGE_COUNTER_MAX;
4541 	while ((parent = parent_mem_cgroup(memcg))) {
4542 		unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4543 					    READ_ONCE(memcg->memory.high));
4544 		unsigned long used = page_counter_read(&memcg->memory);
4545 
4546 		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4547 		memcg = parent;
4548 	}
4549 }
4550 
4551 /*
4552  * Foreign dirty flushing
4553  *
4554  * There's an inherent mismatch between memcg and writeback.  The former
4555  * tracks ownership per-page while the latter per-inode.  This was a
4556  * deliberate design decision because honoring per-page ownership in the
4557  * writeback path is complicated, may lead to higher CPU and IO overheads
4558  * and deemed unnecessary given that write-sharing an inode across
4559  * different cgroups isn't a common use-case.
4560  *
4561  * Combined with inode majority-writer ownership switching, this works well
4562  * enough in most cases but there are some pathological cases.  For
4563  * example, let's say there are two cgroups A and B which keep writing to
4564  * different but confined parts of the same inode.  B owns the inode and
4565  * A's memory is limited far below B's.  A's dirty ratio can rise enough to
4566  * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4567  * triggering background writeback.  A will be slowed down without a way to
4568  * make writeback of the dirty pages happen.
4569  *
4570  * Conditions like the above can lead to a cgroup getting repeatedly and
4571  * severely throttled after making some progress after each
4572  * dirty_expire_interval while the underlying IO device is almost
4573  * completely idle.
4574  *
4575  * Solving this problem completely requires matching the ownership tracking
4576  * granularities between memcg and writeback in either direction.  However,
4577  * the more egregious behaviors can be avoided by simply remembering the
4578  * most recent foreign dirtying events and initiating remote flushes on
4579  * them when local writeback isn't enough to keep the memory clean enough.
4580  *
4581  * The following two functions implement such mechanism.  When a foreign
4582  * page - a page whose memcg and writeback ownerships don't match - is
4583  * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4584  * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
4585  * decides that the memcg needs to sleep due to high dirty ratio, it calls
4586  * mem_cgroup_flush_foreign() which queues writeback on the recorded
4587  * foreign bdi_writebacks which haven't expired.  Both the numbers of
4588  * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4589  * limited to MEMCG_CGWB_FRN_CNT.
4590  *
4591  * The mechanism only remembers IDs and doesn't hold any object references.
4592  * As being wrong occasionally doesn't matter, updates and accesses to the
4593  * records are lockless and racy.
4594  */
4595 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4596 					     struct bdi_writeback *wb)
4597 {
4598 	struct mem_cgroup *memcg = page_memcg(page);
4599 	struct memcg_cgwb_frn *frn;
4600 	u64 now = get_jiffies_64();
4601 	u64 oldest_at = now;
4602 	int oldest = -1;
4603 	int i;
4604 
4605 	trace_track_foreign_dirty(page, wb);
4606 
4607 	/*
4608 	 * Pick the slot to use.  If there is already a slot for @wb, keep
4609 	 * using it.  If not replace the oldest one which isn't being
4610 	 * written out.
4611 	 */
4612 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4613 		frn = &memcg->cgwb_frn[i];
4614 		if (frn->bdi_id == wb->bdi->id &&
4615 		    frn->memcg_id == wb->memcg_css->id)
4616 			break;
4617 		if (time_before64(frn->at, oldest_at) &&
4618 		    atomic_read(&frn->done.cnt) == 1) {
4619 			oldest = i;
4620 			oldest_at = frn->at;
4621 		}
4622 	}
4623 
4624 	if (i < MEMCG_CGWB_FRN_CNT) {
4625 		/*
4626 		 * Re-using an existing one.  Update timestamp lazily to
4627 		 * avoid making the cacheline hot.  We want them to be
4628 		 * reasonably up-to-date and significantly shorter than
4629 		 * dirty_expire_interval as that's what expires the record.
4630 		 * Use the shorter of 1s and dirty_expire_interval / 8.
4631 		 */
4632 		unsigned long update_intv =
4633 			min_t(unsigned long, HZ,
4634 			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4635 
4636 		if (time_before64(frn->at, now - update_intv))
4637 			frn->at = now;
4638 	} else if (oldest >= 0) {
4639 		/* replace the oldest free one */
4640 		frn = &memcg->cgwb_frn[oldest];
4641 		frn->bdi_id = wb->bdi->id;
4642 		frn->memcg_id = wb->memcg_css->id;
4643 		frn->at = now;
4644 	}
4645 }
4646 
4647 /* issue foreign writeback flushes for recorded foreign dirtying events */
4648 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4649 {
4650 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4651 	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4652 	u64 now = jiffies_64;
4653 	int i;
4654 
4655 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4656 		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4657 
4658 		/*
4659 		 * If the record is older than dirty_expire_interval,
4660 		 * writeback on it has already started.  No need to kick it
4661 		 * off again.  Also, don't start a new one if there's
4662 		 * already one in flight.
4663 		 */
4664 		if (time_after64(frn->at, now - intv) &&
4665 		    atomic_read(&frn->done.cnt) == 1) {
4666 			frn->at = 0;
4667 			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4668 			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4669 					       WB_REASON_FOREIGN_FLUSH,
4670 					       &frn->done);
4671 		}
4672 	}
4673 }
4674 
4675 #else	/* CONFIG_CGROUP_WRITEBACK */
4676 
4677 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4678 {
4679 	return 0;
4680 }
4681 
4682 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4683 {
4684 }
4685 
4686 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4687 {
4688 }
4689 
4690 #endif	/* CONFIG_CGROUP_WRITEBACK */
4691 
4692 /*
4693  * DO NOT USE IN NEW FILES.
4694  *
4695  * "cgroup.event_control" implementation.
4696  *
4697  * This is way over-engineered.  It tries to support fully configurable
4698  * events for each user.  Such level of flexibility is completely
4699  * unnecessary especially in the light of the planned unified hierarchy.
4700  *
4701  * Please deprecate this and replace with something simpler if at all
4702  * possible.
4703  */
4704 
4705 /*
4706  * Unregister event and free resources.
4707  *
4708  * Gets called from workqueue.
4709  */
4710 static void memcg_event_remove(struct work_struct *work)
4711 {
4712 	struct mem_cgroup_event *event =
4713 		container_of(work, struct mem_cgroup_event, remove);
4714 	struct mem_cgroup *memcg = event->memcg;
4715 
4716 	remove_wait_queue(event->wqh, &event->wait);
4717 
4718 	event->unregister_event(memcg, event->eventfd);
4719 
4720 	/* Notify userspace the event is going away. */
4721 	eventfd_signal(event->eventfd, 1);
4722 
4723 	eventfd_ctx_put(event->eventfd);
4724 	kfree(event);
4725 	css_put(&memcg->css);
4726 }
4727 
4728 /*
4729  * Gets called on EPOLLHUP on eventfd when user closes it.
4730  *
4731  * Called with wqh->lock held and interrupts disabled.
4732  */
4733 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4734 			    int sync, void *key)
4735 {
4736 	struct mem_cgroup_event *event =
4737 		container_of(wait, struct mem_cgroup_event, wait);
4738 	struct mem_cgroup *memcg = event->memcg;
4739 	__poll_t flags = key_to_poll(key);
4740 
4741 	if (flags & EPOLLHUP) {
4742 		/*
4743 		 * If the event has been detached at cgroup removal, we
4744 		 * can simply return knowing the other side will cleanup
4745 		 * for us.
4746 		 *
4747 		 * We can't race against event freeing since the other
4748 		 * side will require wqh->lock via remove_wait_queue(),
4749 		 * which we hold.
4750 		 */
4751 		spin_lock(&memcg->event_list_lock);
4752 		if (!list_empty(&event->list)) {
4753 			list_del_init(&event->list);
4754 			/*
4755 			 * We are in atomic context, but cgroup_event_remove()
4756 			 * may sleep, so we have to call it in workqueue.
4757 			 */
4758 			schedule_work(&event->remove);
4759 		}
4760 		spin_unlock(&memcg->event_list_lock);
4761 	}
4762 
4763 	return 0;
4764 }
4765 
4766 static void memcg_event_ptable_queue_proc(struct file *file,
4767 		wait_queue_head_t *wqh, poll_table *pt)
4768 {
4769 	struct mem_cgroup_event *event =
4770 		container_of(pt, struct mem_cgroup_event, pt);
4771 
4772 	event->wqh = wqh;
4773 	add_wait_queue(wqh, &event->wait);
4774 }
4775 
4776 /*
4777  * DO NOT USE IN NEW FILES.
4778  *
4779  * Parse input and register new cgroup event handler.
4780  *
4781  * Input must be in format '<event_fd> <control_fd> <args>'.
4782  * Interpretation of args is defined by control file implementation.
4783  */
4784 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4785 					 char *buf, size_t nbytes, loff_t off)
4786 {
4787 	struct cgroup_subsys_state *css = of_css(of);
4788 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4789 	struct mem_cgroup_event *event;
4790 	struct cgroup_subsys_state *cfile_css;
4791 	unsigned int efd, cfd;
4792 	struct fd efile;
4793 	struct fd cfile;
4794 	const char *name;
4795 	char *endp;
4796 	int ret;
4797 
4798 	buf = strstrip(buf);
4799 
4800 	efd = simple_strtoul(buf, &endp, 10);
4801 	if (*endp != ' ')
4802 		return -EINVAL;
4803 	buf = endp + 1;
4804 
4805 	cfd = simple_strtoul(buf, &endp, 10);
4806 	if ((*endp != ' ') && (*endp != '\0'))
4807 		return -EINVAL;
4808 	buf = endp + 1;
4809 
4810 	event = kzalloc(sizeof(*event), GFP_KERNEL);
4811 	if (!event)
4812 		return -ENOMEM;
4813 
4814 	event->memcg = memcg;
4815 	INIT_LIST_HEAD(&event->list);
4816 	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4817 	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4818 	INIT_WORK(&event->remove, memcg_event_remove);
4819 
4820 	efile = fdget(efd);
4821 	if (!efile.file) {
4822 		ret = -EBADF;
4823 		goto out_kfree;
4824 	}
4825 
4826 	event->eventfd = eventfd_ctx_fileget(efile.file);
4827 	if (IS_ERR(event->eventfd)) {
4828 		ret = PTR_ERR(event->eventfd);
4829 		goto out_put_efile;
4830 	}
4831 
4832 	cfile = fdget(cfd);
4833 	if (!cfile.file) {
4834 		ret = -EBADF;
4835 		goto out_put_eventfd;
4836 	}
4837 
4838 	/* the process need read permission on control file */
4839 	/* AV: shouldn't we check that it's been opened for read instead? */
4840 	ret = file_permission(cfile.file, MAY_READ);
4841 	if (ret < 0)
4842 		goto out_put_cfile;
4843 
4844 	/*
4845 	 * Determine the event callbacks and set them in @event.  This used
4846 	 * to be done via struct cftype but cgroup core no longer knows
4847 	 * about these events.  The following is crude but the whole thing
4848 	 * is for compatibility anyway.
4849 	 *
4850 	 * DO NOT ADD NEW FILES.
4851 	 */
4852 	name = cfile.file->f_path.dentry->d_name.name;
4853 
4854 	if (!strcmp(name, "memory.usage_in_bytes")) {
4855 		event->register_event = mem_cgroup_usage_register_event;
4856 		event->unregister_event = mem_cgroup_usage_unregister_event;
4857 	} else if (!strcmp(name, "memory.oom_control")) {
4858 		event->register_event = mem_cgroup_oom_register_event;
4859 		event->unregister_event = mem_cgroup_oom_unregister_event;
4860 	} else if (!strcmp(name, "memory.pressure_level")) {
4861 		event->register_event = vmpressure_register_event;
4862 		event->unregister_event = vmpressure_unregister_event;
4863 	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4864 		event->register_event = memsw_cgroup_usage_register_event;
4865 		event->unregister_event = memsw_cgroup_usage_unregister_event;
4866 	} else {
4867 		ret = -EINVAL;
4868 		goto out_put_cfile;
4869 	}
4870 
4871 	/*
4872 	 * Verify @cfile should belong to @css.  Also, remaining events are
4873 	 * automatically removed on cgroup destruction but the removal is
4874 	 * asynchronous, so take an extra ref on @css.
4875 	 */
4876 	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4877 					       &memory_cgrp_subsys);
4878 	ret = -EINVAL;
4879 	if (IS_ERR(cfile_css))
4880 		goto out_put_cfile;
4881 	if (cfile_css != css) {
4882 		css_put(cfile_css);
4883 		goto out_put_cfile;
4884 	}
4885 
4886 	ret = event->register_event(memcg, event->eventfd, buf);
4887 	if (ret)
4888 		goto out_put_css;
4889 
4890 	vfs_poll(efile.file, &event->pt);
4891 
4892 	spin_lock(&memcg->event_list_lock);
4893 	list_add(&event->list, &memcg->event_list);
4894 	spin_unlock(&memcg->event_list_lock);
4895 
4896 	fdput(cfile);
4897 	fdput(efile);
4898 
4899 	return nbytes;
4900 
4901 out_put_css:
4902 	css_put(css);
4903 out_put_cfile:
4904 	fdput(cfile);
4905 out_put_eventfd:
4906 	eventfd_ctx_put(event->eventfd);
4907 out_put_efile:
4908 	fdput(efile);
4909 out_kfree:
4910 	kfree(event);
4911 
4912 	return ret;
4913 }
4914 
4915 static struct cftype mem_cgroup_legacy_files[] = {
4916 	{
4917 		.name = "usage_in_bytes",
4918 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4919 		.read_u64 = mem_cgroup_read_u64,
4920 	},
4921 	{
4922 		.name = "max_usage_in_bytes",
4923 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4924 		.write = mem_cgroup_reset,
4925 		.read_u64 = mem_cgroup_read_u64,
4926 	},
4927 	{
4928 		.name = "limit_in_bytes",
4929 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4930 		.write = mem_cgroup_write,
4931 		.read_u64 = mem_cgroup_read_u64,
4932 	},
4933 	{
4934 		.name = "soft_limit_in_bytes",
4935 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4936 		.write = mem_cgroup_write,
4937 		.read_u64 = mem_cgroup_read_u64,
4938 	},
4939 	{
4940 		.name = "failcnt",
4941 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4942 		.write = mem_cgroup_reset,
4943 		.read_u64 = mem_cgroup_read_u64,
4944 	},
4945 	{
4946 		.name = "stat",
4947 		.seq_show = memcg_stat_show,
4948 	},
4949 	{
4950 		.name = "force_empty",
4951 		.write = mem_cgroup_force_empty_write,
4952 	},
4953 	{
4954 		.name = "use_hierarchy",
4955 		.write_u64 = mem_cgroup_hierarchy_write,
4956 		.read_u64 = mem_cgroup_hierarchy_read,
4957 	},
4958 	{
4959 		.name = "cgroup.event_control",		/* XXX: for compat */
4960 		.write = memcg_write_event_control,
4961 		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4962 	},
4963 	{
4964 		.name = "swappiness",
4965 		.read_u64 = mem_cgroup_swappiness_read,
4966 		.write_u64 = mem_cgroup_swappiness_write,
4967 	},
4968 	{
4969 		.name = "move_charge_at_immigrate",
4970 		.read_u64 = mem_cgroup_move_charge_read,
4971 		.write_u64 = mem_cgroup_move_charge_write,
4972 	},
4973 	{
4974 		.name = "oom_control",
4975 		.seq_show = mem_cgroup_oom_control_read,
4976 		.write_u64 = mem_cgroup_oom_control_write,
4977 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4978 	},
4979 	{
4980 		.name = "pressure_level",
4981 	},
4982 #ifdef CONFIG_NUMA
4983 	{
4984 		.name = "numa_stat",
4985 		.seq_show = memcg_numa_stat_show,
4986 	},
4987 #endif
4988 	{
4989 		.name = "kmem.limit_in_bytes",
4990 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4991 		.write = mem_cgroup_write,
4992 		.read_u64 = mem_cgroup_read_u64,
4993 	},
4994 	{
4995 		.name = "kmem.usage_in_bytes",
4996 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4997 		.read_u64 = mem_cgroup_read_u64,
4998 	},
4999 	{
5000 		.name = "kmem.failcnt",
5001 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5002 		.write = mem_cgroup_reset,
5003 		.read_u64 = mem_cgroup_read_u64,
5004 	},
5005 	{
5006 		.name = "kmem.max_usage_in_bytes",
5007 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5008 		.write = mem_cgroup_reset,
5009 		.read_u64 = mem_cgroup_read_u64,
5010 	},
5011 #if defined(CONFIG_MEMCG_KMEM) && \
5012 	(defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5013 	{
5014 		.name = "kmem.slabinfo",
5015 		.seq_show = memcg_slab_show,
5016 	},
5017 #endif
5018 	{
5019 		.name = "kmem.tcp.limit_in_bytes",
5020 		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5021 		.write = mem_cgroup_write,
5022 		.read_u64 = mem_cgroup_read_u64,
5023 	},
5024 	{
5025 		.name = "kmem.tcp.usage_in_bytes",
5026 		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5027 		.read_u64 = mem_cgroup_read_u64,
5028 	},
5029 	{
5030 		.name = "kmem.tcp.failcnt",
5031 		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5032 		.write = mem_cgroup_reset,
5033 		.read_u64 = mem_cgroup_read_u64,
5034 	},
5035 	{
5036 		.name = "kmem.tcp.max_usage_in_bytes",
5037 		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5038 		.write = mem_cgroup_reset,
5039 		.read_u64 = mem_cgroup_read_u64,
5040 	},
5041 	{ },	/* terminate */
5042 };
5043 
5044 /*
5045  * Private memory cgroup IDR
5046  *
5047  * Swap-out records and page cache shadow entries need to store memcg
5048  * references in constrained space, so we maintain an ID space that is
5049  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5050  * memory-controlled cgroups to 64k.
5051  *
5052  * However, there usually are many references to the offline CSS after
5053  * the cgroup has been destroyed, such as page cache or reclaimable
5054  * slab objects, that don't need to hang on to the ID. We want to keep
5055  * those dead CSS from occupying IDs, or we might quickly exhaust the
5056  * relatively small ID space and prevent the creation of new cgroups
5057  * even when there are much fewer than 64k cgroups - possibly none.
5058  *
5059  * Maintain a private 16-bit ID space for memcg, and allow the ID to
5060  * be freed and recycled when it's no longer needed, which is usually
5061  * when the CSS is offlined.
5062  *
5063  * The only exception to that are records of swapped out tmpfs/shmem
5064  * pages that need to be attributed to live ancestors on swapin. But
5065  * those references are manageable from userspace.
5066  */
5067 
5068 static DEFINE_IDR(mem_cgroup_idr);
5069 
5070 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5071 {
5072 	if (memcg->id.id > 0) {
5073 		idr_remove(&mem_cgroup_idr, memcg->id.id);
5074 		memcg->id.id = 0;
5075 	}
5076 }
5077 
5078 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5079 						  unsigned int n)
5080 {
5081 	refcount_add(n, &memcg->id.ref);
5082 }
5083 
5084 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5085 {
5086 	if (refcount_sub_and_test(n, &memcg->id.ref)) {
5087 		mem_cgroup_id_remove(memcg);
5088 
5089 		/* Memcg ID pins CSS */
5090 		css_put(&memcg->css);
5091 	}
5092 }
5093 
5094 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5095 {
5096 	mem_cgroup_id_put_many(memcg, 1);
5097 }
5098 
5099 /**
5100  * mem_cgroup_from_id - look up a memcg from a memcg id
5101  * @id: the memcg id to look up
5102  *
5103  * Caller must hold rcu_read_lock().
5104  */
5105 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5106 {
5107 	WARN_ON_ONCE(!rcu_read_lock_held());
5108 	return idr_find(&mem_cgroup_idr, id);
5109 }
5110 
5111 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5112 {
5113 	struct mem_cgroup_per_node *pn;
5114 	int tmp = node;
5115 	/*
5116 	 * This routine is called against possible nodes.
5117 	 * But it's BUG to call kmalloc() against offline node.
5118 	 *
5119 	 * TODO: this routine can waste much memory for nodes which will
5120 	 *       never be onlined. It's better to use memory hotplug callback
5121 	 *       function.
5122 	 */
5123 	if (!node_state(node, N_NORMAL_MEMORY))
5124 		tmp = -1;
5125 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5126 	if (!pn)
5127 		return 1;
5128 
5129 	pn->lruvec_stat_local = alloc_percpu_gfp(struct lruvec_stat,
5130 						 GFP_KERNEL_ACCOUNT);
5131 	if (!pn->lruvec_stat_local) {
5132 		kfree(pn);
5133 		return 1;
5134 	}
5135 
5136 	pn->lruvec_stat_cpu = alloc_percpu_gfp(struct batched_lruvec_stat,
5137 					       GFP_KERNEL_ACCOUNT);
5138 	if (!pn->lruvec_stat_cpu) {
5139 		free_percpu(pn->lruvec_stat_local);
5140 		kfree(pn);
5141 		return 1;
5142 	}
5143 
5144 	lruvec_init(&pn->lruvec);
5145 	pn->usage_in_excess = 0;
5146 	pn->on_tree = false;
5147 	pn->memcg = memcg;
5148 
5149 	memcg->nodeinfo[node] = pn;
5150 	return 0;
5151 }
5152 
5153 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5154 {
5155 	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5156 
5157 	if (!pn)
5158 		return;
5159 
5160 	free_percpu(pn->lruvec_stat_cpu);
5161 	free_percpu(pn->lruvec_stat_local);
5162 	kfree(pn);
5163 }
5164 
5165 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5166 {
5167 	int node;
5168 
5169 	for_each_node(node)
5170 		free_mem_cgroup_per_node_info(memcg, node);
5171 	free_percpu(memcg->vmstats_percpu);
5172 	kfree(memcg);
5173 }
5174 
5175 static void mem_cgroup_free(struct mem_cgroup *memcg)
5176 {
5177 	int cpu;
5178 
5179 	memcg_wb_domain_exit(memcg);
5180 	/*
5181 	 * Flush percpu lruvec stats to guarantee the value
5182 	 * correctness on parent's and all ancestor levels.
5183 	 */
5184 	for_each_online_cpu(cpu)
5185 		memcg_flush_lruvec_page_state(memcg, cpu);
5186 	__mem_cgroup_free(memcg);
5187 }
5188 
5189 static struct mem_cgroup *mem_cgroup_alloc(void)
5190 {
5191 	struct mem_cgroup *memcg;
5192 	unsigned int size;
5193 	int node;
5194 	int __maybe_unused i;
5195 	long error = -ENOMEM;
5196 
5197 	size = sizeof(struct mem_cgroup);
5198 	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5199 
5200 	memcg = kzalloc(size, GFP_KERNEL);
5201 	if (!memcg)
5202 		return ERR_PTR(error);
5203 
5204 	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5205 				 1, MEM_CGROUP_ID_MAX,
5206 				 GFP_KERNEL);
5207 	if (memcg->id.id < 0) {
5208 		error = memcg->id.id;
5209 		goto fail;
5210 	}
5211 
5212 	memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5213 						 GFP_KERNEL_ACCOUNT);
5214 	if (!memcg->vmstats_percpu)
5215 		goto fail;
5216 
5217 	for_each_node(node)
5218 		if (alloc_mem_cgroup_per_node_info(memcg, node))
5219 			goto fail;
5220 
5221 	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5222 		goto fail;
5223 
5224 	INIT_WORK(&memcg->high_work, high_work_func);
5225 	INIT_LIST_HEAD(&memcg->oom_notify);
5226 	mutex_init(&memcg->thresholds_lock);
5227 	spin_lock_init(&memcg->move_lock);
5228 	vmpressure_init(&memcg->vmpressure);
5229 	INIT_LIST_HEAD(&memcg->event_list);
5230 	spin_lock_init(&memcg->event_list_lock);
5231 	memcg->socket_pressure = jiffies;
5232 #ifdef CONFIG_MEMCG_KMEM
5233 	memcg->kmemcg_id = -1;
5234 	INIT_LIST_HEAD(&memcg->objcg_list);
5235 #endif
5236 #ifdef CONFIG_CGROUP_WRITEBACK
5237 	INIT_LIST_HEAD(&memcg->cgwb_list);
5238 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5239 		memcg->cgwb_frn[i].done =
5240 			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5241 #endif
5242 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5243 	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5244 	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5245 	memcg->deferred_split_queue.split_queue_len = 0;
5246 #endif
5247 	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5248 	return memcg;
5249 fail:
5250 	mem_cgroup_id_remove(memcg);
5251 	__mem_cgroup_free(memcg);
5252 	return ERR_PTR(error);
5253 }
5254 
5255 static struct cgroup_subsys_state * __ref
5256 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5257 {
5258 	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5259 	struct mem_cgroup *memcg, *old_memcg;
5260 	long error = -ENOMEM;
5261 
5262 	old_memcg = set_active_memcg(parent);
5263 	memcg = mem_cgroup_alloc();
5264 	set_active_memcg(old_memcg);
5265 	if (IS_ERR(memcg))
5266 		return ERR_CAST(memcg);
5267 
5268 	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5269 	memcg->soft_limit = PAGE_COUNTER_MAX;
5270 	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5271 	if (parent) {
5272 		memcg->swappiness = mem_cgroup_swappiness(parent);
5273 		memcg->oom_kill_disable = parent->oom_kill_disable;
5274 
5275 		page_counter_init(&memcg->memory, &parent->memory);
5276 		page_counter_init(&memcg->swap, &parent->swap);
5277 		page_counter_init(&memcg->kmem, &parent->kmem);
5278 		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5279 	} else {
5280 		page_counter_init(&memcg->memory, NULL);
5281 		page_counter_init(&memcg->swap, NULL);
5282 		page_counter_init(&memcg->kmem, NULL);
5283 		page_counter_init(&memcg->tcpmem, NULL);
5284 
5285 		root_mem_cgroup = memcg;
5286 		return &memcg->css;
5287 	}
5288 
5289 	/* The following stuff does not apply to the root */
5290 	error = memcg_online_kmem(memcg);
5291 	if (error)
5292 		goto fail;
5293 
5294 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5295 		static_branch_inc(&memcg_sockets_enabled_key);
5296 
5297 	return &memcg->css;
5298 fail:
5299 	mem_cgroup_id_remove(memcg);
5300 	mem_cgroup_free(memcg);
5301 	return ERR_PTR(error);
5302 }
5303 
5304 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5305 {
5306 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5307 
5308 	/*
5309 	 * A memcg must be visible for expand_shrinker_info()
5310 	 * by the time the maps are allocated. So, we allocate maps
5311 	 * here, when for_each_mem_cgroup() can't skip it.
5312 	 */
5313 	if (alloc_shrinker_info(memcg)) {
5314 		mem_cgroup_id_remove(memcg);
5315 		return -ENOMEM;
5316 	}
5317 
5318 	/* Online state pins memcg ID, memcg ID pins CSS */
5319 	refcount_set(&memcg->id.ref, 1);
5320 	css_get(css);
5321 	return 0;
5322 }
5323 
5324 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5325 {
5326 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5327 	struct mem_cgroup_event *event, *tmp;
5328 
5329 	/*
5330 	 * Unregister events and notify userspace.
5331 	 * Notify userspace about cgroup removing only after rmdir of cgroup
5332 	 * directory to avoid race between userspace and kernelspace.
5333 	 */
5334 	spin_lock(&memcg->event_list_lock);
5335 	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5336 		list_del_init(&event->list);
5337 		schedule_work(&event->remove);
5338 	}
5339 	spin_unlock(&memcg->event_list_lock);
5340 
5341 	page_counter_set_min(&memcg->memory, 0);
5342 	page_counter_set_low(&memcg->memory, 0);
5343 
5344 	memcg_offline_kmem(memcg);
5345 	reparent_shrinker_deferred(memcg);
5346 	wb_memcg_offline(memcg);
5347 
5348 	drain_all_stock(memcg);
5349 
5350 	mem_cgroup_id_put(memcg);
5351 }
5352 
5353 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5354 {
5355 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5356 
5357 	invalidate_reclaim_iterators(memcg);
5358 }
5359 
5360 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5361 {
5362 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5363 	int __maybe_unused i;
5364 
5365 #ifdef CONFIG_CGROUP_WRITEBACK
5366 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5367 		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5368 #endif
5369 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5370 		static_branch_dec(&memcg_sockets_enabled_key);
5371 
5372 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5373 		static_branch_dec(&memcg_sockets_enabled_key);
5374 
5375 	vmpressure_cleanup(&memcg->vmpressure);
5376 	cancel_work_sync(&memcg->high_work);
5377 	mem_cgroup_remove_from_trees(memcg);
5378 	free_shrinker_info(memcg);
5379 	memcg_free_kmem(memcg);
5380 	mem_cgroup_free(memcg);
5381 }
5382 
5383 /**
5384  * mem_cgroup_css_reset - reset the states of a mem_cgroup
5385  * @css: the target css
5386  *
5387  * Reset the states of the mem_cgroup associated with @css.  This is
5388  * invoked when the userland requests disabling on the default hierarchy
5389  * but the memcg is pinned through dependency.  The memcg should stop
5390  * applying policies and should revert to the vanilla state as it may be
5391  * made visible again.
5392  *
5393  * The current implementation only resets the essential configurations.
5394  * This needs to be expanded to cover all the visible parts.
5395  */
5396 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5397 {
5398 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5399 
5400 	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5401 	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5402 	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5403 	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5404 	page_counter_set_min(&memcg->memory, 0);
5405 	page_counter_set_low(&memcg->memory, 0);
5406 	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5407 	memcg->soft_limit = PAGE_COUNTER_MAX;
5408 	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5409 	memcg_wb_domain_size_changed(memcg);
5410 }
5411 
5412 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5413 {
5414 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5415 	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5416 	struct memcg_vmstats_percpu *statc;
5417 	long delta, v;
5418 	int i;
5419 
5420 	statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5421 
5422 	for (i = 0; i < MEMCG_NR_STAT; i++) {
5423 		/*
5424 		 * Collect the aggregated propagation counts of groups
5425 		 * below us. We're in a per-cpu loop here and this is
5426 		 * a global counter, so the first cycle will get them.
5427 		 */
5428 		delta = memcg->vmstats.state_pending[i];
5429 		if (delta)
5430 			memcg->vmstats.state_pending[i] = 0;
5431 
5432 		/* Add CPU changes on this level since the last flush */
5433 		v = READ_ONCE(statc->state[i]);
5434 		if (v != statc->state_prev[i]) {
5435 			delta += v - statc->state_prev[i];
5436 			statc->state_prev[i] = v;
5437 		}
5438 
5439 		if (!delta)
5440 			continue;
5441 
5442 		/* Aggregate counts on this level and propagate upwards */
5443 		memcg->vmstats.state[i] += delta;
5444 		if (parent)
5445 			parent->vmstats.state_pending[i] += delta;
5446 	}
5447 
5448 	for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
5449 		delta = memcg->vmstats.events_pending[i];
5450 		if (delta)
5451 			memcg->vmstats.events_pending[i] = 0;
5452 
5453 		v = READ_ONCE(statc->events[i]);
5454 		if (v != statc->events_prev[i]) {
5455 			delta += v - statc->events_prev[i];
5456 			statc->events_prev[i] = v;
5457 		}
5458 
5459 		if (!delta)
5460 			continue;
5461 
5462 		memcg->vmstats.events[i] += delta;
5463 		if (parent)
5464 			parent->vmstats.events_pending[i] += delta;
5465 	}
5466 }
5467 
5468 #ifdef CONFIG_MMU
5469 /* Handlers for move charge at task migration. */
5470 static int mem_cgroup_do_precharge(unsigned long count)
5471 {
5472 	int ret;
5473 
5474 	/* Try a single bulk charge without reclaim first, kswapd may wake */
5475 	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5476 	if (!ret) {
5477 		mc.precharge += count;
5478 		return ret;
5479 	}
5480 
5481 	/* Try charges one by one with reclaim, but do not retry */
5482 	while (count--) {
5483 		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5484 		if (ret)
5485 			return ret;
5486 		mc.precharge++;
5487 		cond_resched();
5488 	}
5489 	return 0;
5490 }
5491 
5492 union mc_target {
5493 	struct page	*page;
5494 	swp_entry_t	ent;
5495 };
5496 
5497 enum mc_target_type {
5498 	MC_TARGET_NONE = 0,
5499 	MC_TARGET_PAGE,
5500 	MC_TARGET_SWAP,
5501 	MC_TARGET_DEVICE,
5502 };
5503 
5504 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5505 						unsigned long addr, pte_t ptent)
5506 {
5507 	struct page *page = vm_normal_page(vma, addr, ptent);
5508 
5509 	if (!page || !page_mapped(page))
5510 		return NULL;
5511 	if (PageAnon(page)) {
5512 		if (!(mc.flags & MOVE_ANON))
5513 			return NULL;
5514 	} else {
5515 		if (!(mc.flags & MOVE_FILE))
5516 			return NULL;
5517 	}
5518 	if (!get_page_unless_zero(page))
5519 		return NULL;
5520 
5521 	return page;
5522 }
5523 
5524 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5525 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5526 			pte_t ptent, swp_entry_t *entry)
5527 {
5528 	struct page *page = NULL;
5529 	swp_entry_t ent = pte_to_swp_entry(ptent);
5530 
5531 	if (!(mc.flags & MOVE_ANON))
5532 		return NULL;
5533 
5534 	/*
5535 	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5536 	 * a device and because they are not accessible by CPU they are store
5537 	 * as special swap entry in the CPU page table.
5538 	 */
5539 	if (is_device_private_entry(ent)) {
5540 		page = pfn_swap_entry_to_page(ent);
5541 		/*
5542 		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5543 		 * a refcount of 1 when free (unlike normal page)
5544 		 */
5545 		if (!page_ref_add_unless(page, 1, 1))
5546 			return NULL;
5547 		return page;
5548 	}
5549 
5550 	if (non_swap_entry(ent))
5551 		return NULL;
5552 
5553 	/*
5554 	 * Because lookup_swap_cache() updates some statistics counter,
5555 	 * we call find_get_page() with swapper_space directly.
5556 	 */
5557 	page = find_get_page(swap_address_space(ent), swp_offset(ent));
5558 	entry->val = ent.val;
5559 
5560 	return page;
5561 }
5562 #else
5563 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5564 			pte_t ptent, swp_entry_t *entry)
5565 {
5566 	return NULL;
5567 }
5568 #endif
5569 
5570 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5571 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5572 {
5573 	if (!vma->vm_file) /* anonymous vma */
5574 		return NULL;
5575 	if (!(mc.flags & MOVE_FILE))
5576 		return NULL;
5577 
5578 	/* page is moved even if it's not RSS of this task(page-faulted). */
5579 	/* shmem/tmpfs may report page out on swap: account for that too. */
5580 	return find_get_incore_page(vma->vm_file->f_mapping,
5581 			linear_page_index(vma, addr));
5582 }
5583 
5584 /**
5585  * mem_cgroup_move_account - move account of the page
5586  * @page: the page
5587  * @compound: charge the page as compound or small page
5588  * @from: mem_cgroup which the page is moved from.
5589  * @to:	mem_cgroup which the page is moved to. @from != @to.
5590  *
5591  * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5592  *
5593  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5594  * from old cgroup.
5595  */
5596 static int mem_cgroup_move_account(struct page *page,
5597 				   bool compound,
5598 				   struct mem_cgroup *from,
5599 				   struct mem_cgroup *to)
5600 {
5601 	struct lruvec *from_vec, *to_vec;
5602 	struct pglist_data *pgdat;
5603 	unsigned int nr_pages = compound ? thp_nr_pages(page) : 1;
5604 	int ret;
5605 
5606 	VM_BUG_ON(from == to);
5607 	VM_BUG_ON_PAGE(PageLRU(page), page);
5608 	VM_BUG_ON(compound && !PageTransHuge(page));
5609 
5610 	/*
5611 	 * Prevent mem_cgroup_migrate() from looking at
5612 	 * page's memory cgroup of its source page while we change it.
5613 	 */
5614 	ret = -EBUSY;
5615 	if (!trylock_page(page))
5616 		goto out;
5617 
5618 	ret = -EINVAL;
5619 	if (page_memcg(page) != from)
5620 		goto out_unlock;
5621 
5622 	pgdat = page_pgdat(page);
5623 	from_vec = mem_cgroup_lruvec(from, pgdat);
5624 	to_vec = mem_cgroup_lruvec(to, pgdat);
5625 
5626 	lock_page_memcg(page);
5627 
5628 	if (PageAnon(page)) {
5629 		if (page_mapped(page)) {
5630 			__mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5631 			__mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5632 			if (PageTransHuge(page)) {
5633 				__mod_lruvec_state(from_vec, NR_ANON_THPS,
5634 						   -nr_pages);
5635 				__mod_lruvec_state(to_vec, NR_ANON_THPS,
5636 						   nr_pages);
5637 			}
5638 		}
5639 	} else {
5640 		__mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5641 		__mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5642 
5643 		if (PageSwapBacked(page)) {
5644 			__mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5645 			__mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5646 		}
5647 
5648 		if (page_mapped(page)) {
5649 			__mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5650 			__mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5651 		}
5652 
5653 		if (PageDirty(page)) {
5654 			struct address_space *mapping = page_mapping(page);
5655 
5656 			if (mapping_can_writeback(mapping)) {
5657 				__mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5658 						   -nr_pages);
5659 				__mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5660 						   nr_pages);
5661 			}
5662 		}
5663 	}
5664 
5665 	if (PageWriteback(page)) {
5666 		__mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5667 		__mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5668 	}
5669 
5670 	/*
5671 	 * All state has been migrated, let's switch to the new memcg.
5672 	 *
5673 	 * It is safe to change page's memcg here because the page
5674 	 * is referenced, charged, isolated, and locked: we can't race
5675 	 * with (un)charging, migration, LRU putback, or anything else
5676 	 * that would rely on a stable page's memory cgroup.
5677 	 *
5678 	 * Note that lock_page_memcg is a memcg lock, not a page lock,
5679 	 * to save space. As soon as we switch page's memory cgroup to a
5680 	 * new memcg that isn't locked, the above state can change
5681 	 * concurrently again. Make sure we're truly done with it.
5682 	 */
5683 	smp_mb();
5684 
5685 	css_get(&to->css);
5686 	css_put(&from->css);
5687 
5688 	page->memcg_data = (unsigned long)to;
5689 
5690 	__unlock_page_memcg(from);
5691 
5692 	ret = 0;
5693 
5694 	local_irq_disable();
5695 	mem_cgroup_charge_statistics(to, page, nr_pages);
5696 	memcg_check_events(to, page);
5697 	mem_cgroup_charge_statistics(from, page, -nr_pages);
5698 	memcg_check_events(from, page);
5699 	local_irq_enable();
5700 out_unlock:
5701 	unlock_page(page);
5702 out:
5703 	return ret;
5704 }
5705 
5706 /**
5707  * get_mctgt_type - get target type of moving charge
5708  * @vma: the vma the pte to be checked belongs
5709  * @addr: the address corresponding to the pte to be checked
5710  * @ptent: the pte to be checked
5711  * @target: the pointer the target page or swap ent will be stored(can be NULL)
5712  *
5713  * Returns
5714  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5715  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5716  *     move charge. if @target is not NULL, the page is stored in target->page
5717  *     with extra refcnt got(Callers should handle it).
5718  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5719  *     target for charge migration. if @target is not NULL, the entry is stored
5720  *     in target->ent.
5721  *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PRIVATE
5722  *     (so ZONE_DEVICE page and thus not on the lru).
5723  *     For now we such page is charge like a regular page would be as for all
5724  *     intent and purposes it is just special memory taking the place of a
5725  *     regular page.
5726  *
5727  *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5728  *
5729  * Called with pte lock held.
5730  */
5731 
5732 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5733 		unsigned long addr, pte_t ptent, union mc_target *target)
5734 {
5735 	struct page *page = NULL;
5736 	enum mc_target_type ret = MC_TARGET_NONE;
5737 	swp_entry_t ent = { .val = 0 };
5738 
5739 	if (pte_present(ptent))
5740 		page = mc_handle_present_pte(vma, addr, ptent);
5741 	else if (is_swap_pte(ptent))
5742 		page = mc_handle_swap_pte(vma, ptent, &ent);
5743 	else if (pte_none(ptent))
5744 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
5745 
5746 	if (!page && !ent.val)
5747 		return ret;
5748 	if (page) {
5749 		/*
5750 		 * Do only loose check w/o serialization.
5751 		 * mem_cgroup_move_account() checks the page is valid or
5752 		 * not under LRU exclusion.
5753 		 */
5754 		if (page_memcg(page) == mc.from) {
5755 			ret = MC_TARGET_PAGE;
5756 			if (is_device_private_page(page))
5757 				ret = MC_TARGET_DEVICE;
5758 			if (target)
5759 				target->page = page;
5760 		}
5761 		if (!ret || !target)
5762 			put_page(page);
5763 	}
5764 	/*
5765 	 * There is a swap entry and a page doesn't exist or isn't charged.
5766 	 * But we cannot move a tail-page in a THP.
5767 	 */
5768 	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5769 	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5770 		ret = MC_TARGET_SWAP;
5771 		if (target)
5772 			target->ent = ent;
5773 	}
5774 	return ret;
5775 }
5776 
5777 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5778 /*
5779  * We don't consider PMD mapped swapping or file mapped pages because THP does
5780  * not support them for now.
5781  * Caller should make sure that pmd_trans_huge(pmd) is true.
5782  */
5783 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5784 		unsigned long addr, pmd_t pmd, union mc_target *target)
5785 {
5786 	struct page *page = NULL;
5787 	enum mc_target_type ret = MC_TARGET_NONE;
5788 
5789 	if (unlikely(is_swap_pmd(pmd))) {
5790 		VM_BUG_ON(thp_migration_supported() &&
5791 				  !is_pmd_migration_entry(pmd));
5792 		return ret;
5793 	}
5794 	page = pmd_page(pmd);
5795 	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5796 	if (!(mc.flags & MOVE_ANON))
5797 		return ret;
5798 	if (page_memcg(page) == mc.from) {
5799 		ret = MC_TARGET_PAGE;
5800 		if (target) {
5801 			get_page(page);
5802 			target->page = page;
5803 		}
5804 	}
5805 	return ret;
5806 }
5807 #else
5808 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5809 		unsigned long addr, pmd_t pmd, union mc_target *target)
5810 {
5811 	return MC_TARGET_NONE;
5812 }
5813 #endif
5814 
5815 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5816 					unsigned long addr, unsigned long end,
5817 					struct mm_walk *walk)
5818 {
5819 	struct vm_area_struct *vma = walk->vma;
5820 	pte_t *pte;
5821 	spinlock_t *ptl;
5822 
5823 	ptl = pmd_trans_huge_lock(pmd, vma);
5824 	if (ptl) {
5825 		/*
5826 		 * Note their can not be MC_TARGET_DEVICE for now as we do not
5827 		 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5828 		 * this might change.
5829 		 */
5830 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5831 			mc.precharge += HPAGE_PMD_NR;
5832 		spin_unlock(ptl);
5833 		return 0;
5834 	}
5835 
5836 	if (pmd_trans_unstable(pmd))
5837 		return 0;
5838 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5839 	for (; addr != end; pte++, addr += PAGE_SIZE)
5840 		if (get_mctgt_type(vma, addr, *pte, NULL))
5841 			mc.precharge++;	/* increment precharge temporarily */
5842 	pte_unmap_unlock(pte - 1, ptl);
5843 	cond_resched();
5844 
5845 	return 0;
5846 }
5847 
5848 static const struct mm_walk_ops precharge_walk_ops = {
5849 	.pmd_entry	= mem_cgroup_count_precharge_pte_range,
5850 };
5851 
5852 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5853 {
5854 	unsigned long precharge;
5855 
5856 	mmap_read_lock(mm);
5857 	walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5858 	mmap_read_unlock(mm);
5859 
5860 	precharge = mc.precharge;
5861 	mc.precharge = 0;
5862 
5863 	return precharge;
5864 }
5865 
5866 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5867 {
5868 	unsigned long precharge = mem_cgroup_count_precharge(mm);
5869 
5870 	VM_BUG_ON(mc.moving_task);
5871 	mc.moving_task = current;
5872 	return mem_cgroup_do_precharge(precharge);
5873 }
5874 
5875 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5876 static void __mem_cgroup_clear_mc(void)
5877 {
5878 	struct mem_cgroup *from = mc.from;
5879 	struct mem_cgroup *to = mc.to;
5880 
5881 	/* we must uncharge all the leftover precharges from mc.to */
5882 	if (mc.precharge) {
5883 		cancel_charge(mc.to, mc.precharge);
5884 		mc.precharge = 0;
5885 	}
5886 	/*
5887 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5888 	 * we must uncharge here.
5889 	 */
5890 	if (mc.moved_charge) {
5891 		cancel_charge(mc.from, mc.moved_charge);
5892 		mc.moved_charge = 0;
5893 	}
5894 	/* we must fixup refcnts and charges */
5895 	if (mc.moved_swap) {
5896 		/* uncharge swap account from the old cgroup */
5897 		if (!mem_cgroup_is_root(mc.from))
5898 			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5899 
5900 		mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5901 
5902 		/*
5903 		 * we charged both to->memory and to->memsw, so we
5904 		 * should uncharge to->memory.
5905 		 */
5906 		if (!mem_cgroup_is_root(mc.to))
5907 			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5908 
5909 		mc.moved_swap = 0;
5910 	}
5911 	memcg_oom_recover(from);
5912 	memcg_oom_recover(to);
5913 	wake_up_all(&mc.waitq);
5914 }
5915 
5916 static void mem_cgroup_clear_mc(void)
5917 {
5918 	struct mm_struct *mm = mc.mm;
5919 
5920 	/*
5921 	 * we must clear moving_task before waking up waiters at the end of
5922 	 * task migration.
5923 	 */
5924 	mc.moving_task = NULL;
5925 	__mem_cgroup_clear_mc();
5926 	spin_lock(&mc.lock);
5927 	mc.from = NULL;
5928 	mc.to = NULL;
5929 	mc.mm = NULL;
5930 	spin_unlock(&mc.lock);
5931 
5932 	mmput(mm);
5933 }
5934 
5935 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5936 {
5937 	struct cgroup_subsys_state *css;
5938 	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5939 	struct mem_cgroup *from;
5940 	struct task_struct *leader, *p;
5941 	struct mm_struct *mm;
5942 	unsigned long move_flags;
5943 	int ret = 0;
5944 
5945 	/* charge immigration isn't supported on the default hierarchy */
5946 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5947 		return 0;
5948 
5949 	/*
5950 	 * Multi-process migrations only happen on the default hierarchy
5951 	 * where charge immigration is not used.  Perform charge
5952 	 * immigration if @tset contains a leader and whine if there are
5953 	 * multiple.
5954 	 */
5955 	p = NULL;
5956 	cgroup_taskset_for_each_leader(leader, css, tset) {
5957 		WARN_ON_ONCE(p);
5958 		p = leader;
5959 		memcg = mem_cgroup_from_css(css);
5960 	}
5961 	if (!p)
5962 		return 0;
5963 
5964 	/*
5965 	 * We are now committed to this value whatever it is. Changes in this
5966 	 * tunable will only affect upcoming migrations, not the current one.
5967 	 * So we need to save it, and keep it going.
5968 	 */
5969 	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5970 	if (!move_flags)
5971 		return 0;
5972 
5973 	from = mem_cgroup_from_task(p);
5974 
5975 	VM_BUG_ON(from == memcg);
5976 
5977 	mm = get_task_mm(p);
5978 	if (!mm)
5979 		return 0;
5980 	/* We move charges only when we move a owner of the mm */
5981 	if (mm->owner == p) {
5982 		VM_BUG_ON(mc.from);
5983 		VM_BUG_ON(mc.to);
5984 		VM_BUG_ON(mc.precharge);
5985 		VM_BUG_ON(mc.moved_charge);
5986 		VM_BUG_ON(mc.moved_swap);
5987 
5988 		spin_lock(&mc.lock);
5989 		mc.mm = mm;
5990 		mc.from = from;
5991 		mc.to = memcg;
5992 		mc.flags = move_flags;
5993 		spin_unlock(&mc.lock);
5994 		/* We set mc.moving_task later */
5995 
5996 		ret = mem_cgroup_precharge_mc(mm);
5997 		if (ret)
5998 			mem_cgroup_clear_mc();
5999 	} else {
6000 		mmput(mm);
6001 	}
6002 	return ret;
6003 }
6004 
6005 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6006 {
6007 	if (mc.to)
6008 		mem_cgroup_clear_mc();
6009 }
6010 
6011 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6012 				unsigned long addr, unsigned long end,
6013 				struct mm_walk *walk)
6014 {
6015 	int ret = 0;
6016 	struct vm_area_struct *vma = walk->vma;
6017 	pte_t *pte;
6018 	spinlock_t *ptl;
6019 	enum mc_target_type target_type;
6020 	union mc_target target;
6021 	struct page *page;
6022 
6023 	ptl = pmd_trans_huge_lock(pmd, vma);
6024 	if (ptl) {
6025 		if (mc.precharge < HPAGE_PMD_NR) {
6026 			spin_unlock(ptl);
6027 			return 0;
6028 		}
6029 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6030 		if (target_type == MC_TARGET_PAGE) {
6031 			page = target.page;
6032 			if (!isolate_lru_page(page)) {
6033 				if (!mem_cgroup_move_account(page, true,
6034 							     mc.from, mc.to)) {
6035 					mc.precharge -= HPAGE_PMD_NR;
6036 					mc.moved_charge += HPAGE_PMD_NR;
6037 				}
6038 				putback_lru_page(page);
6039 			}
6040 			put_page(page);
6041 		} else if (target_type == MC_TARGET_DEVICE) {
6042 			page = target.page;
6043 			if (!mem_cgroup_move_account(page, true,
6044 						     mc.from, mc.to)) {
6045 				mc.precharge -= HPAGE_PMD_NR;
6046 				mc.moved_charge += HPAGE_PMD_NR;
6047 			}
6048 			put_page(page);
6049 		}
6050 		spin_unlock(ptl);
6051 		return 0;
6052 	}
6053 
6054 	if (pmd_trans_unstable(pmd))
6055 		return 0;
6056 retry:
6057 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6058 	for (; addr != end; addr += PAGE_SIZE) {
6059 		pte_t ptent = *(pte++);
6060 		bool device = false;
6061 		swp_entry_t ent;
6062 
6063 		if (!mc.precharge)
6064 			break;
6065 
6066 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6067 		case MC_TARGET_DEVICE:
6068 			device = true;
6069 			fallthrough;
6070 		case MC_TARGET_PAGE:
6071 			page = target.page;
6072 			/*
6073 			 * We can have a part of the split pmd here. Moving it
6074 			 * can be done but it would be too convoluted so simply
6075 			 * ignore such a partial THP and keep it in original
6076 			 * memcg. There should be somebody mapping the head.
6077 			 */
6078 			if (PageTransCompound(page))
6079 				goto put;
6080 			if (!device && isolate_lru_page(page))
6081 				goto put;
6082 			if (!mem_cgroup_move_account(page, false,
6083 						mc.from, mc.to)) {
6084 				mc.precharge--;
6085 				/* we uncharge from mc.from later. */
6086 				mc.moved_charge++;
6087 			}
6088 			if (!device)
6089 				putback_lru_page(page);
6090 put:			/* get_mctgt_type() gets the page */
6091 			put_page(page);
6092 			break;
6093 		case MC_TARGET_SWAP:
6094 			ent = target.ent;
6095 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6096 				mc.precharge--;
6097 				mem_cgroup_id_get_many(mc.to, 1);
6098 				/* we fixup other refcnts and charges later. */
6099 				mc.moved_swap++;
6100 			}
6101 			break;
6102 		default:
6103 			break;
6104 		}
6105 	}
6106 	pte_unmap_unlock(pte - 1, ptl);
6107 	cond_resched();
6108 
6109 	if (addr != end) {
6110 		/*
6111 		 * We have consumed all precharges we got in can_attach().
6112 		 * We try charge one by one, but don't do any additional
6113 		 * charges to mc.to if we have failed in charge once in attach()
6114 		 * phase.
6115 		 */
6116 		ret = mem_cgroup_do_precharge(1);
6117 		if (!ret)
6118 			goto retry;
6119 	}
6120 
6121 	return ret;
6122 }
6123 
6124 static const struct mm_walk_ops charge_walk_ops = {
6125 	.pmd_entry	= mem_cgroup_move_charge_pte_range,
6126 };
6127 
6128 static void mem_cgroup_move_charge(void)
6129 {
6130 	lru_add_drain_all();
6131 	/*
6132 	 * Signal lock_page_memcg() to take the memcg's move_lock
6133 	 * while we're moving its pages to another memcg. Then wait
6134 	 * for already started RCU-only updates to finish.
6135 	 */
6136 	atomic_inc(&mc.from->moving_account);
6137 	synchronize_rcu();
6138 retry:
6139 	if (unlikely(!mmap_read_trylock(mc.mm))) {
6140 		/*
6141 		 * Someone who are holding the mmap_lock might be waiting in
6142 		 * waitq. So we cancel all extra charges, wake up all waiters,
6143 		 * and retry. Because we cancel precharges, we might not be able
6144 		 * to move enough charges, but moving charge is a best-effort
6145 		 * feature anyway, so it wouldn't be a big problem.
6146 		 */
6147 		__mem_cgroup_clear_mc();
6148 		cond_resched();
6149 		goto retry;
6150 	}
6151 	/*
6152 	 * When we have consumed all precharges and failed in doing
6153 	 * additional charge, the page walk just aborts.
6154 	 */
6155 	walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6156 			NULL);
6157 
6158 	mmap_read_unlock(mc.mm);
6159 	atomic_dec(&mc.from->moving_account);
6160 }
6161 
6162 static void mem_cgroup_move_task(void)
6163 {
6164 	if (mc.to) {
6165 		mem_cgroup_move_charge();
6166 		mem_cgroup_clear_mc();
6167 	}
6168 }
6169 #else	/* !CONFIG_MMU */
6170 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6171 {
6172 	return 0;
6173 }
6174 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6175 {
6176 }
6177 static void mem_cgroup_move_task(void)
6178 {
6179 }
6180 #endif
6181 
6182 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6183 {
6184 	if (value == PAGE_COUNTER_MAX)
6185 		seq_puts(m, "max\n");
6186 	else
6187 		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6188 
6189 	return 0;
6190 }
6191 
6192 static u64 memory_current_read(struct cgroup_subsys_state *css,
6193 			       struct cftype *cft)
6194 {
6195 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6196 
6197 	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6198 }
6199 
6200 static int memory_min_show(struct seq_file *m, void *v)
6201 {
6202 	return seq_puts_memcg_tunable(m,
6203 		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6204 }
6205 
6206 static ssize_t memory_min_write(struct kernfs_open_file *of,
6207 				char *buf, size_t nbytes, loff_t off)
6208 {
6209 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6210 	unsigned long min;
6211 	int err;
6212 
6213 	buf = strstrip(buf);
6214 	err = page_counter_memparse(buf, "max", &min);
6215 	if (err)
6216 		return err;
6217 
6218 	page_counter_set_min(&memcg->memory, min);
6219 
6220 	return nbytes;
6221 }
6222 
6223 static int memory_low_show(struct seq_file *m, void *v)
6224 {
6225 	return seq_puts_memcg_tunable(m,
6226 		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6227 }
6228 
6229 static ssize_t memory_low_write(struct kernfs_open_file *of,
6230 				char *buf, size_t nbytes, loff_t off)
6231 {
6232 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6233 	unsigned long low;
6234 	int err;
6235 
6236 	buf = strstrip(buf);
6237 	err = page_counter_memparse(buf, "max", &low);
6238 	if (err)
6239 		return err;
6240 
6241 	page_counter_set_low(&memcg->memory, low);
6242 
6243 	return nbytes;
6244 }
6245 
6246 static int memory_high_show(struct seq_file *m, void *v)
6247 {
6248 	return seq_puts_memcg_tunable(m,
6249 		READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6250 }
6251 
6252 static ssize_t memory_high_write(struct kernfs_open_file *of,
6253 				 char *buf, size_t nbytes, loff_t off)
6254 {
6255 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6256 	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6257 	bool drained = false;
6258 	unsigned long high;
6259 	int err;
6260 
6261 	buf = strstrip(buf);
6262 	err = page_counter_memparse(buf, "max", &high);
6263 	if (err)
6264 		return err;
6265 
6266 	page_counter_set_high(&memcg->memory, high);
6267 
6268 	for (;;) {
6269 		unsigned long nr_pages = page_counter_read(&memcg->memory);
6270 		unsigned long reclaimed;
6271 
6272 		if (nr_pages <= high)
6273 			break;
6274 
6275 		if (signal_pending(current))
6276 			break;
6277 
6278 		if (!drained) {
6279 			drain_all_stock(memcg);
6280 			drained = true;
6281 			continue;
6282 		}
6283 
6284 		reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6285 							 GFP_KERNEL, true);
6286 
6287 		if (!reclaimed && !nr_retries--)
6288 			break;
6289 	}
6290 
6291 	memcg_wb_domain_size_changed(memcg);
6292 	return nbytes;
6293 }
6294 
6295 static int memory_max_show(struct seq_file *m, void *v)
6296 {
6297 	return seq_puts_memcg_tunable(m,
6298 		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6299 }
6300 
6301 static ssize_t memory_max_write(struct kernfs_open_file *of,
6302 				char *buf, size_t nbytes, loff_t off)
6303 {
6304 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6305 	unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6306 	bool drained = false;
6307 	unsigned long max;
6308 	int err;
6309 
6310 	buf = strstrip(buf);
6311 	err = page_counter_memparse(buf, "max", &max);
6312 	if (err)
6313 		return err;
6314 
6315 	xchg(&memcg->memory.max, max);
6316 
6317 	for (;;) {
6318 		unsigned long nr_pages = page_counter_read(&memcg->memory);
6319 
6320 		if (nr_pages <= max)
6321 			break;
6322 
6323 		if (signal_pending(current))
6324 			break;
6325 
6326 		if (!drained) {
6327 			drain_all_stock(memcg);
6328 			drained = true;
6329 			continue;
6330 		}
6331 
6332 		if (nr_reclaims) {
6333 			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6334 							  GFP_KERNEL, true))
6335 				nr_reclaims--;
6336 			continue;
6337 		}
6338 
6339 		memcg_memory_event(memcg, MEMCG_OOM);
6340 		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6341 			break;
6342 	}
6343 
6344 	memcg_wb_domain_size_changed(memcg);
6345 	return nbytes;
6346 }
6347 
6348 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6349 {
6350 	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6351 	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6352 	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6353 	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6354 	seq_printf(m, "oom_kill %lu\n",
6355 		   atomic_long_read(&events[MEMCG_OOM_KILL]));
6356 }
6357 
6358 static int memory_events_show(struct seq_file *m, void *v)
6359 {
6360 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6361 
6362 	__memory_events_show(m, memcg->memory_events);
6363 	return 0;
6364 }
6365 
6366 static int memory_events_local_show(struct seq_file *m, void *v)
6367 {
6368 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6369 
6370 	__memory_events_show(m, memcg->memory_events_local);
6371 	return 0;
6372 }
6373 
6374 static int memory_stat_show(struct seq_file *m, void *v)
6375 {
6376 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6377 	char *buf;
6378 
6379 	buf = memory_stat_format(memcg);
6380 	if (!buf)
6381 		return -ENOMEM;
6382 	seq_puts(m, buf);
6383 	kfree(buf);
6384 	return 0;
6385 }
6386 
6387 #ifdef CONFIG_NUMA
6388 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6389 						     int item)
6390 {
6391 	return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6392 }
6393 
6394 static int memory_numa_stat_show(struct seq_file *m, void *v)
6395 {
6396 	int i;
6397 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6398 
6399 	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6400 		int nid;
6401 
6402 		if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6403 			continue;
6404 
6405 		seq_printf(m, "%s", memory_stats[i].name);
6406 		for_each_node_state(nid, N_MEMORY) {
6407 			u64 size;
6408 			struct lruvec *lruvec;
6409 
6410 			lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6411 			size = lruvec_page_state_output(lruvec,
6412 							memory_stats[i].idx);
6413 			seq_printf(m, " N%d=%llu", nid, size);
6414 		}
6415 		seq_putc(m, '\n');
6416 	}
6417 
6418 	return 0;
6419 }
6420 #endif
6421 
6422 static int memory_oom_group_show(struct seq_file *m, void *v)
6423 {
6424 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6425 
6426 	seq_printf(m, "%d\n", memcg->oom_group);
6427 
6428 	return 0;
6429 }
6430 
6431 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6432 				      char *buf, size_t nbytes, loff_t off)
6433 {
6434 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6435 	int ret, oom_group;
6436 
6437 	buf = strstrip(buf);
6438 	if (!buf)
6439 		return -EINVAL;
6440 
6441 	ret = kstrtoint(buf, 0, &oom_group);
6442 	if (ret)
6443 		return ret;
6444 
6445 	if (oom_group != 0 && oom_group != 1)
6446 		return -EINVAL;
6447 
6448 	memcg->oom_group = oom_group;
6449 
6450 	return nbytes;
6451 }
6452 
6453 static struct cftype memory_files[] = {
6454 	{
6455 		.name = "current",
6456 		.flags = CFTYPE_NOT_ON_ROOT,
6457 		.read_u64 = memory_current_read,
6458 	},
6459 	{
6460 		.name = "min",
6461 		.flags = CFTYPE_NOT_ON_ROOT,
6462 		.seq_show = memory_min_show,
6463 		.write = memory_min_write,
6464 	},
6465 	{
6466 		.name = "low",
6467 		.flags = CFTYPE_NOT_ON_ROOT,
6468 		.seq_show = memory_low_show,
6469 		.write = memory_low_write,
6470 	},
6471 	{
6472 		.name = "high",
6473 		.flags = CFTYPE_NOT_ON_ROOT,
6474 		.seq_show = memory_high_show,
6475 		.write = memory_high_write,
6476 	},
6477 	{
6478 		.name = "max",
6479 		.flags = CFTYPE_NOT_ON_ROOT,
6480 		.seq_show = memory_max_show,
6481 		.write = memory_max_write,
6482 	},
6483 	{
6484 		.name = "events",
6485 		.flags = CFTYPE_NOT_ON_ROOT,
6486 		.file_offset = offsetof(struct mem_cgroup, events_file),
6487 		.seq_show = memory_events_show,
6488 	},
6489 	{
6490 		.name = "events.local",
6491 		.flags = CFTYPE_NOT_ON_ROOT,
6492 		.file_offset = offsetof(struct mem_cgroup, events_local_file),
6493 		.seq_show = memory_events_local_show,
6494 	},
6495 	{
6496 		.name = "stat",
6497 		.seq_show = memory_stat_show,
6498 	},
6499 #ifdef CONFIG_NUMA
6500 	{
6501 		.name = "numa_stat",
6502 		.seq_show = memory_numa_stat_show,
6503 	},
6504 #endif
6505 	{
6506 		.name = "oom.group",
6507 		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6508 		.seq_show = memory_oom_group_show,
6509 		.write = memory_oom_group_write,
6510 	},
6511 	{ }	/* terminate */
6512 };
6513 
6514 struct cgroup_subsys memory_cgrp_subsys = {
6515 	.css_alloc = mem_cgroup_css_alloc,
6516 	.css_online = mem_cgroup_css_online,
6517 	.css_offline = mem_cgroup_css_offline,
6518 	.css_released = mem_cgroup_css_released,
6519 	.css_free = mem_cgroup_css_free,
6520 	.css_reset = mem_cgroup_css_reset,
6521 	.css_rstat_flush = mem_cgroup_css_rstat_flush,
6522 	.can_attach = mem_cgroup_can_attach,
6523 	.cancel_attach = mem_cgroup_cancel_attach,
6524 	.post_attach = mem_cgroup_move_task,
6525 	.dfl_cftypes = memory_files,
6526 	.legacy_cftypes = mem_cgroup_legacy_files,
6527 	.early_init = 0,
6528 };
6529 
6530 /*
6531  * This function calculates an individual cgroup's effective
6532  * protection which is derived from its own memory.min/low, its
6533  * parent's and siblings' settings, as well as the actual memory
6534  * distribution in the tree.
6535  *
6536  * The following rules apply to the effective protection values:
6537  *
6538  * 1. At the first level of reclaim, effective protection is equal to
6539  *    the declared protection in memory.min and memory.low.
6540  *
6541  * 2. To enable safe delegation of the protection configuration, at
6542  *    subsequent levels the effective protection is capped to the
6543  *    parent's effective protection.
6544  *
6545  * 3. To make complex and dynamic subtrees easier to configure, the
6546  *    user is allowed to overcommit the declared protection at a given
6547  *    level. If that is the case, the parent's effective protection is
6548  *    distributed to the children in proportion to how much protection
6549  *    they have declared and how much of it they are utilizing.
6550  *
6551  *    This makes distribution proportional, but also work-conserving:
6552  *    if one cgroup claims much more protection than it uses memory,
6553  *    the unused remainder is available to its siblings.
6554  *
6555  * 4. Conversely, when the declared protection is undercommitted at a
6556  *    given level, the distribution of the larger parental protection
6557  *    budget is NOT proportional. A cgroup's protection from a sibling
6558  *    is capped to its own memory.min/low setting.
6559  *
6560  * 5. However, to allow protecting recursive subtrees from each other
6561  *    without having to declare each individual cgroup's fixed share
6562  *    of the ancestor's claim to protection, any unutilized -
6563  *    "floating" - protection from up the tree is distributed in
6564  *    proportion to each cgroup's *usage*. This makes the protection
6565  *    neutral wrt sibling cgroups and lets them compete freely over
6566  *    the shared parental protection budget, but it protects the
6567  *    subtree as a whole from neighboring subtrees.
6568  *
6569  * Note that 4. and 5. are not in conflict: 4. is about protecting
6570  * against immediate siblings whereas 5. is about protecting against
6571  * neighboring subtrees.
6572  */
6573 static unsigned long effective_protection(unsigned long usage,
6574 					  unsigned long parent_usage,
6575 					  unsigned long setting,
6576 					  unsigned long parent_effective,
6577 					  unsigned long siblings_protected)
6578 {
6579 	unsigned long protected;
6580 	unsigned long ep;
6581 
6582 	protected = min(usage, setting);
6583 	/*
6584 	 * If all cgroups at this level combined claim and use more
6585 	 * protection then what the parent affords them, distribute
6586 	 * shares in proportion to utilization.
6587 	 *
6588 	 * We are using actual utilization rather than the statically
6589 	 * claimed protection in order to be work-conserving: claimed
6590 	 * but unused protection is available to siblings that would
6591 	 * otherwise get a smaller chunk than what they claimed.
6592 	 */
6593 	if (siblings_protected > parent_effective)
6594 		return protected * parent_effective / siblings_protected;
6595 
6596 	/*
6597 	 * Ok, utilized protection of all children is within what the
6598 	 * parent affords them, so we know whatever this child claims
6599 	 * and utilizes is effectively protected.
6600 	 *
6601 	 * If there is unprotected usage beyond this value, reclaim
6602 	 * will apply pressure in proportion to that amount.
6603 	 *
6604 	 * If there is unutilized protection, the cgroup will be fully
6605 	 * shielded from reclaim, but we do return a smaller value for
6606 	 * protection than what the group could enjoy in theory. This
6607 	 * is okay. With the overcommit distribution above, effective
6608 	 * protection is always dependent on how memory is actually
6609 	 * consumed among the siblings anyway.
6610 	 */
6611 	ep = protected;
6612 
6613 	/*
6614 	 * If the children aren't claiming (all of) the protection
6615 	 * afforded to them by the parent, distribute the remainder in
6616 	 * proportion to the (unprotected) memory of each cgroup. That
6617 	 * way, cgroups that aren't explicitly prioritized wrt each
6618 	 * other compete freely over the allowance, but they are
6619 	 * collectively protected from neighboring trees.
6620 	 *
6621 	 * We're using unprotected memory for the weight so that if
6622 	 * some cgroups DO claim explicit protection, we don't protect
6623 	 * the same bytes twice.
6624 	 *
6625 	 * Check both usage and parent_usage against the respective
6626 	 * protected values. One should imply the other, but they
6627 	 * aren't read atomically - make sure the division is sane.
6628 	 */
6629 	if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6630 		return ep;
6631 	if (parent_effective > siblings_protected &&
6632 	    parent_usage > siblings_protected &&
6633 	    usage > protected) {
6634 		unsigned long unclaimed;
6635 
6636 		unclaimed = parent_effective - siblings_protected;
6637 		unclaimed *= usage - protected;
6638 		unclaimed /= parent_usage - siblings_protected;
6639 
6640 		ep += unclaimed;
6641 	}
6642 
6643 	return ep;
6644 }
6645 
6646 /**
6647  * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
6648  * @root: the top ancestor of the sub-tree being checked
6649  * @memcg: the memory cgroup to check
6650  *
6651  * WARNING: This function is not stateless! It can only be used as part
6652  *          of a top-down tree iteration, not for isolated queries.
6653  */
6654 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6655 				     struct mem_cgroup *memcg)
6656 {
6657 	unsigned long usage, parent_usage;
6658 	struct mem_cgroup *parent;
6659 
6660 	if (mem_cgroup_disabled())
6661 		return;
6662 
6663 	if (!root)
6664 		root = root_mem_cgroup;
6665 
6666 	/*
6667 	 * Effective values of the reclaim targets are ignored so they
6668 	 * can be stale. Have a look at mem_cgroup_protection for more
6669 	 * details.
6670 	 * TODO: calculation should be more robust so that we do not need
6671 	 * that special casing.
6672 	 */
6673 	if (memcg == root)
6674 		return;
6675 
6676 	usage = page_counter_read(&memcg->memory);
6677 	if (!usage)
6678 		return;
6679 
6680 	parent = parent_mem_cgroup(memcg);
6681 	/* No parent means a non-hierarchical mode on v1 memcg */
6682 	if (!parent)
6683 		return;
6684 
6685 	if (parent == root) {
6686 		memcg->memory.emin = READ_ONCE(memcg->memory.min);
6687 		memcg->memory.elow = READ_ONCE(memcg->memory.low);
6688 		return;
6689 	}
6690 
6691 	parent_usage = page_counter_read(&parent->memory);
6692 
6693 	WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6694 			READ_ONCE(memcg->memory.min),
6695 			READ_ONCE(parent->memory.emin),
6696 			atomic_long_read(&parent->memory.children_min_usage)));
6697 
6698 	WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6699 			READ_ONCE(memcg->memory.low),
6700 			READ_ONCE(parent->memory.elow),
6701 			atomic_long_read(&parent->memory.children_low_usage)));
6702 }
6703 
6704 static int __mem_cgroup_charge(struct page *page, struct mem_cgroup *memcg,
6705 			       gfp_t gfp)
6706 {
6707 	unsigned int nr_pages = thp_nr_pages(page);
6708 	int ret;
6709 
6710 	ret = try_charge(memcg, gfp, nr_pages);
6711 	if (ret)
6712 		goto out;
6713 
6714 	css_get(&memcg->css);
6715 	commit_charge(page, memcg);
6716 
6717 	local_irq_disable();
6718 	mem_cgroup_charge_statistics(memcg, page, nr_pages);
6719 	memcg_check_events(memcg, page);
6720 	local_irq_enable();
6721 out:
6722 	return ret;
6723 }
6724 
6725 /**
6726  * mem_cgroup_charge - charge a newly allocated page to a cgroup
6727  * @page: page to charge
6728  * @mm: mm context of the victim
6729  * @gfp_mask: reclaim mode
6730  *
6731  * Try to charge @page to the memcg that @mm belongs to, reclaiming
6732  * pages according to @gfp_mask if necessary. if @mm is NULL, try to
6733  * charge to the active memcg.
6734  *
6735  * Do not use this for pages allocated for swapin.
6736  *
6737  * Returns 0 on success. Otherwise, an error code is returned.
6738  */
6739 int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
6740 {
6741 	struct mem_cgroup *memcg;
6742 	int ret;
6743 
6744 	if (mem_cgroup_disabled())
6745 		return 0;
6746 
6747 	memcg = get_mem_cgroup_from_mm(mm);
6748 	ret = __mem_cgroup_charge(page, memcg, gfp_mask);
6749 	css_put(&memcg->css);
6750 
6751 	return ret;
6752 }
6753 
6754 /**
6755  * mem_cgroup_swapin_charge_page - charge a newly allocated page for swapin
6756  * @page: page to charge
6757  * @mm: mm context of the victim
6758  * @gfp: reclaim mode
6759  * @entry: swap entry for which the page is allocated
6760  *
6761  * This function charges a page allocated for swapin. Please call this before
6762  * adding the page to the swapcache.
6763  *
6764  * Returns 0 on success. Otherwise, an error code is returned.
6765  */
6766 int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm,
6767 				  gfp_t gfp, swp_entry_t entry)
6768 {
6769 	struct mem_cgroup *memcg;
6770 	unsigned short id;
6771 	int ret;
6772 
6773 	if (mem_cgroup_disabled())
6774 		return 0;
6775 
6776 	id = lookup_swap_cgroup_id(entry);
6777 	rcu_read_lock();
6778 	memcg = mem_cgroup_from_id(id);
6779 	if (!memcg || !css_tryget_online(&memcg->css))
6780 		memcg = get_mem_cgroup_from_mm(mm);
6781 	rcu_read_unlock();
6782 
6783 	ret = __mem_cgroup_charge(page, memcg, gfp);
6784 
6785 	css_put(&memcg->css);
6786 	return ret;
6787 }
6788 
6789 /*
6790  * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
6791  * @entry: swap entry for which the page is charged
6792  *
6793  * Call this function after successfully adding the charged page to swapcache.
6794  *
6795  * Note: This function assumes the page for which swap slot is being uncharged
6796  * is order 0 page.
6797  */
6798 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
6799 {
6800 	/*
6801 	 * Cgroup1's unified memory+swap counter has been charged with the
6802 	 * new swapcache page, finish the transfer by uncharging the swap
6803 	 * slot. The swap slot would also get uncharged when it dies, but
6804 	 * it can stick around indefinitely and we'd count the page twice
6805 	 * the entire time.
6806 	 *
6807 	 * Cgroup2 has separate resource counters for memory and swap,
6808 	 * so this is a non-issue here. Memory and swap charge lifetimes
6809 	 * correspond 1:1 to page and swap slot lifetimes: we charge the
6810 	 * page to memory here, and uncharge swap when the slot is freed.
6811 	 */
6812 	if (!mem_cgroup_disabled() && do_memsw_account()) {
6813 		/*
6814 		 * The swap entry might not get freed for a long time,
6815 		 * let's not wait for it.  The page already received a
6816 		 * memory+swap charge, drop the swap entry duplicate.
6817 		 */
6818 		mem_cgroup_uncharge_swap(entry, 1);
6819 	}
6820 }
6821 
6822 struct uncharge_gather {
6823 	struct mem_cgroup *memcg;
6824 	unsigned long nr_memory;
6825 	unsigned long pgpgout;
6826 	unsigned long nr_kmem;
6827 	struct page *dummy_page;
6828 };
6829 
6830 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6831 {
6832 	memset(ug, 0, sizeof(*ug));
6833 }
6834 
6835 static void uncharge_batch(const struct uncharge_gather *ug)
6836 {
6837 	unsigned long flags;
6838 
6839 	if (ug->nr_memory) {
6840 		page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
6841 		if (do_memsw_account())
6842 			page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
6843 		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6844 			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6845 		memcg_oom_recover(ug->memcg);
6846 	}
6847 
6848 	local_irq_save(flags);
6849 	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6850 	__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
6851 	memcg_check_events(ug->memcg, ug->dummy_page);
6852 	local_irq_restore(flags);
6853 
6854 	/* drop reference from uncharge_page */
6855 	css_put(&ug->memcg->css);
6856 }
6857 
6858 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6859 {
6860 	unsigned long nr_pages;
6861 	struct mem_cgroup *memcg;
6862 	struct obj_cgroup *objcg;
6863 	bool use_objcg = PageMemcgKmem(page);
6864 
6865 	VM_BUG_ON_PAGE(PageLRU(page), page);
6866 
6867 	/*
6868 	 * Nobody should be changing or seriously looking at
6869 	 * page memcg or objcg at this point, we have fully
6870 	 * exclusive access to the page.
6871 	 */
6872 	if (use_objcg) {
6873 		objcg = __page_objcg(page);
6874 		/*
6875 		 * This get matches the put at the end of the function and
6876 		 * kmem pages do not hold memcg references anymore.
6877 		 */
6878 		memcg = get_mem_cgroup_from_objcg(objcg);
6879 	} else {
6880 		memcg = __page_memcg(page);
6881 	}
6882 
6883 	if (!memcg)
6884 		return;
6885 
6886 	if (ug->memcg != memcg) {
6887 		if (ug->memcg) {
6888 			uncharge_batch(ug);
6889 			uncharge_gather_clear(ug);
6890 		}
6891 		ug->memcg = memcg;
6892 		ug->dummy_page = page;
6893 
6894 		/* pairs with css_put in uncharge_batch */
6895 		css_get(&memcg->css);
6896 	}
6897 
6898 	nr_pages = compound_nr(page);
6899 
6900 	if (use_objcg) {
6901 		ug->nr_memory += nr_pages;
6902 		ug->nr_kmem += nr_pages;
6903 
6904 		page->memcg_data = 0;
6905 		obj_cgroup_put(objcg);
6906 	} else {
6907 		/* LRU pages aren't accounted at the root level */
6908 		if (!mem_cgroup_is_root(memcg))
6909 			ug->nr_memory += nr_pages;
6910 		ug->pgpgout++;
6911 
6912 		page->memcg_data = 0;
6913 	}
6914 
6915 	css_put(&memcg->css);
6916 }
6917 
6918 /**
6919  * mem_cgroup_uncharge - uncharge a page
6920  * @page: page to uncharge
6921  *
6922  * Uncharge a page previously charged with mem_cgroup_charge().
6923  */
6924 void mem_cgroup_uncharge(struct page *page)
6925 {
6926 	struct uncharge_gather ug;
6927 
6928 	if (mem_cgroup_disabled())
6929 		return;
6930 
6931 	/* Don't touch page->lru of any random page, pre-check: */
6932 	if (!page_memcg(page))
6933 		return;
6934 
6935 	uncharge_gather_clear(&ug);
6936 	uncharge_page(page, &ug);
6937 	uncharge_batch(&ug);
6938 }
6939 
6940 /**
6941  * mem_cgroup_uncharge_list - uncharge a list of page
6942  * @page_list: list of pages to uncharge
6943  *
6944  * Uncharge a list of pages previously charged with
6945  * mem_cgroup_charge().
6946  */
6947 void mem_cgroup_uncharge_list(struct list_head *page_list)
6948 {
6949 	struct uncharge_gather ug;
6950 	struct page *page;
6951 
6952 	if (mem_cgroup_disabled())
6953 		return;
6954 
6955 	uncharge_gather_clear(&ug);
6956 	list_for_each_entry(page, page_list, lru)
6957 		uncharge_page(page, &ug);
6958 	if (ug.memcg)
6959 		uncharge_batch(&ug);
6960 }
6961 
6962 /**
6963  * mem_cgroup_migrate - charge a page's replacement
6964  * @oldpage: currently circulating page
6965  * @newpage: replacement page
6966  *
6967  * Charge @newpage as a replacement page for @oldpage. @oldpage will
6968  * be uncharged upon free.
6969  *
6970  * Both pages must be locked, @newpage->mapping must be set up.
6971  */
6972 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6973 {
6974 	struct mem_cgroup *memcg;
6975 	unsigned int nr_pages;
6976 	unsigned long flags;
6977 
6978 	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6979 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6980 	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6981 	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6982 		       newpage);
6983 
6984 	if (mem_cgroup_disabled())
6985 		return;
6986 
6987 	/* Page cache replacement: new page already charged? */
6988 	if (page_memcg(newpage))
6989 		return;
6990 
6991 	memcg = page_memcg(oldpage);
6992 	VM_WARN_ON_ONCE_PAGE(!memcg, oldpage);
6993 	if (!memcg)
6994 		return;
6995 
6996 	/* Force-charge the new page. The old one will be freed soon */
6997 	nr_pages = thp_nr_pages(newpage);
6998 
6999 	if (!mem_cgroup_is_root(memcg)) {
7000 		page_counter_charge(&memcg->memory, nr_pages);
7001 		if (do_memsw_account())
7002 			page_counter_charge(&memcg->memsw, nr_pages);
7003 	}
7004 
7005 	css_get(&memcg->css);
7006 	commit_charge(newpage, memcg);
7007 
7008 	local_irq_save(flags);
7009 	mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
7010 	memcg_check_events(memcg, newpage);
7011 	local_irq_restore(flags);
7012 }
7013 
7014 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
7015 EXPORT_SYMBOL(memcg_sockets_enabled_key);
7016 
7017 void mem_cgroup_sk_alloc(struct sock *sk)
7018 {
7019 	struct mem_cgroup *memcg;
7020 
7021 	if (!mem_cgroup_sockets_enabled)
7022 		return;
7023 
7024 	/* Do not associate the sock with unrelated interrupted task's memcg. */
7025 	if (in_interrupt())
7026 		return;
7027 
7028 	rcu_read_lock();
7029 	memcg = mem_cgroup_from_task(current);
7030 	if (memcg == root_mem_cgroup)
7031 		goto out;
7032 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
7033 		goto out;
7034 	if (css_tryget(&memcg->css))
7035 		sk->sk_memcg = memcg;
7036 out:
7037 	rcu_read_unlock();
7038 }
7039 
7040 void mem_cgroup_sk_free(struct sock *sk)
7041 {
7042 	if (sk->sk_memcg)
7043 		css_put(&sk->sk_memcg->css);
7044 }
7045 
7046 /**
7047  * mem_cgroup_charge_skmem - charge socket memory
7048  * @memcg: memcg to charge
7049  * @nr_pages: number of pages to charge
7050  *
7051  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7052  * @memcg's configured limit, %false if the charge had to be forced.
7053  */
7054 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7055 {
7056 	gfp_t gfp_mask = GFP_KERNEL;
7057 
7058 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7059 		struct page_counter *fail;
7060 
7061 		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7062 			memcg->tcpmem_pressure = 0;
7063 			return true;
7064 		}
7065 		page_counter_charge(&memcg->tcpmem, nr_pages);
7066 		memcg->tcpmem_pressure = 1;
7067 		return false;
7068 	}
7069 
7070 	/* Don't block in the packet receive path */
7071 	if (in_softirq())
7072 		gfp_mask = GFP_NOWAIT;
7073 
7074 	mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7075 
7076 	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
7077 		return true;
7078 
7079 	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
7080 	return false;
7081 }
7082 
7083 /**
7084  * mem_cgroup_uncharge_skmem - uncharge socket memory
7085  * @memcg: memcg to uncharge
7086  * @nr_pages: number of pages to uncharge
7087  */
7088 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7089 {
7090 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7091 		page_counter_uncharge(&memcg->tcpmem, nr_pages);
7092 		return;
7093 	}
7094 
7095 	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7096 
7097 	refill_stock(memcg, nr_pages);
7098 }
7099 
7100 static int __init cgroup_memory(char *s)
7101 {
7102 	char *token;
7103 
7104 	while ((token = strsep(&s, ",")) != NULL) {
7105 		if (!*token)
7106 			continue;
7107 		if (!strcmp(token, "nosocket"))
7108 			cgroup_memory_nosocket = true;
7109 		if (!strcmp(token, "nokmem"))
7110 			cgroup_memory_nokmem = true;
7111 	}
7112 	return 0;
7113 }
7114 __setup("cgroup.memory=", cgroup_memory);
7115 
7116 /*
7117  * subsys_initcall() for memory controller.
7118  *
7119  * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7120  * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7121  * basically everything that doesn't depend on a specific mem_cgroup structure
7122  * should be initialized from here.
7123  */
7124 static int __init mem_cgroup_init(void)
7125 {
7126 	int cpu, node;
7127 
7128 	/*
7129 	 * Currently s32 type (can refer to struct batched_lruvec_stat) is
7130 	 * used for per-memcg-per-cpu caching of per-node statistics. In order
7131 	 * to work fine, we should make sure that the overfill threshold can't
7132 	 * exceed S32_MAX / PAGE_SIZE.
7133 	 */
7134 	BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7135 
7136 	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7137 				  memcg_hotplug_cpu_dead);
7138 
7139 	for_each_possible_cpu(cpu)
7140 		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7141 			  drain_local_stock);
7142 
7143 	for_each_node(node) {
7144 		struct mem_cgroup_tree_per_node *rtpn;
7145 
7146 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7147 				    node_online(node) ? node : NUMA_NO_NODE);
7148 
7149 		rtpn->rb_root = RB_ROOT;
7150 		rtpn->rb_rightmost = NULL;
7151 		spin_lock_init(&rtpn->lock);
7152 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
7153 	}
7154 
7155 	return 0;
7156 }
7157 subsys_initcall(mem_cgroup_init);
7158 
7159 #ifdef CONFIG_MEMCG_SWAP
7160 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7161 {
7162 	while (!refcount_inc_not_zero(&memcg->id.ref)) {
7163 		/*
7164 		 * The root cgroup cannot be destroyed, so it's refcount must
7165 		 * always be >= 1.
7166 		 */
7167 		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7168 			VM_BUG_ON(1);
7169 			break;
7170 		}
7171 		memcg = parent_mem_cgroup(memcg);
7172 		if (!memcg)
7173 			memcg = root_mem_cgroup;
7174 	}
7175 	return memcg;
7176 }
7177 
7178 /**
7179  * mem_cgroup_swapout - transfer a memsw charge to swap
7180  * @page: page whose memsw charge to transfer
7181  * @entry: swap entry to move the charge to
7182  *
7183  * Transfer the memsw charge of @page to @entry.
7184  */
7185 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
7186 {
7187 	struct mem_cgroup *memcg, *swap_memcg;
7188 	unsigned int nr_entries;
7189 	unsigned short oldid;
7190 
7191 	VM_BUG_ON_PAGE(PageLRU(page), page);
7192 	VM_BUG_ON_PAGE(page_count(page), page);
7193 
7194 	if (mem_cgroup_disabled())
7195 		return;
7196 
7197 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7198 		return;
7199 
7200 	memcg = page_memcg(page);
7201 
7202 	VM_WARN_ON_ONCE_PAGE(!memcg, page);
7203 	if (!memcg)
7204 		return;
7205 
7206 	/*
7207 	 * In case the memcg owning these pages has been offlined and doesn't
7208 	 * have an ID allocated to it anymore, charge the closest online
7209 	 * ancestor for the swap instead and transfer the memory+swap charge.
7210 	 */
7211 	swap_memcg = mem_cgroup_id_get_online(memcg);
7212 	nr_entries = thp_nr_pages(page);
7213 	/* Get references for the tail pages, too */
7214 	if (nr_entries > 1)
7215 		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7216 	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7217 				   nr_entries);
7218 	VM_BUG_ON_PAGE(oldid, page);
7219 	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7220 
7221 	page->memcg_data = 0;
7222 
7223 	if (!mem_cgroup_is_root(memcg))
7224 		page_counter_uncharge(&memcg->memory, nr_entries);
7225 
7226 	if (!cgroup_memory_noswap && memcg != swap_memcg) {
7227 		if (!mem_cgroup_is_root(swap_memcg))
7228 			page_counter_charge(&swap_memcg->memsw, nr_entries);
7229 		page_counter_uncharge(&memcg->memsw, nr_entries);
7230 	}
7231 
7232 	/*
7233 	 * Interrupts should be disabled here because the caller holds the
7234 	 * i_pages lock which is taken with interrupts-off. It is
7235 	 * important here to have the interrupts disabled because it is the
7236 	 * only synchronisation we have for updating the per-CPU variables.
7237 	 */
7238 	VM_BUG_ON(!irqs_disabled());
7239 	mem_cgroup_charge_statistics(memcg, page, -nr_entries);
7240 	memcg_check_events(memcg, page);
7241 
7242 	css_put(&memcg->css);
7243 }
7244 
7245 /**
7246  * mem_cgroup_try_charge_swap - try charging swap space for a page
7247  * @page: page being added to swap
7248  * @entry: swap entry to charge
7249  *
7250  * Try to charge @page's memcg for the swap space at @entry.
7251  *
7252  * Returns 0 on success, -ENOMEM on failure.
7253  */
7254 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7255 {
7256 	unsigned int nr_pages = thp_nr_pages(page);
7257 	struct page_counter *counter;
7258 	struct mem_cgroup *memcg;
7259 	unsigned short oldid;
7260 
7261 	if (mem_cgroup_disabled())
7262 		return 0;
7263 
7264 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7265 		return 0;
7266 
7267 	memcg = page_memcg(page);
7268 
7269 	VM_WARN_ON_ONCE_PAGE(!memcg, page);
7270 	if (!memcg)
7271 		return 0;
7272 
7273 	if (!entry.val) {
7274 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7275 		return 0;
7276 	}
7277 
7278 	memcg = mem_cgroup_id_get_online(memcg);
7279 
7280 	if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7281 	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7282 		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7283 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7284 		mem_cgroup_id_put(memcg);
7285 		return -ENOMEM;
7286 	}
7287 
7288 	/* Get references for the tail pages, too */
7289 	if (nr_pages > 1)
7290 		mem_cgroup_id_get_many(memcg, nr_pages - 1);
7291 	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7292 	VM_BUG_ON_PAGE(oldid, page);
7293 	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7294 
7295 	return 0;
7296 }
7297 
7298 /**
7299  * mem_cgroup_uncharge_swap - uncharge swap space
7300  * @entry: swap entry to uncharge
7301  * @nr_pages: the amount of swap space to uncharge
7302  */
7303 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7304 {
7305 	struct mem_cgroup *memcg;
7306 	unsigned short id;
7307 
7308 	id = swap_cgroup_record(entry, 0, nr_pages);
7309 	rcu_read_lock();
7310 	memcg = mem_cgroup_from_id(id);
7311 	if (memcg) {
7312 		if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7313 			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7314 				page_counter_uncharge(&memcg->swap, nr_pages);
7315 			else
7316 				page_counter_uncharge(&memcg->memsw, nr_pages);
7317 		}
7318 		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7319 		mem_cgroup_id_put_many(memcg, nr_pages);
7320 	}
7321 	rcu_read_unlock();
7322 }
7323 
7324 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7325 {
7326 	long nr_swap_pages = get_nr_swap_pages();
7327 
7328 	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7329 		return nr_swap_pages;
7330 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7331 		nr_swap_pages = min_t(long, nr_swap_pages,
7332 				      READ_ONCE(memcg->swap.max) -
7333 				      page_counter_read(&memcg->swap));
7334 	return nr_swap_pages;
7335 }
7336 
7337 bool mem_cgroup_swap_full(struct page *page)
7338 {
7339 	struct mem_cgroup *memcg;
7340 
7341 	VM_BUG_ON_PAGE(!PageLocked(page), page);
7342 
7343 	if (vm_swap_full())
7344 		return true;
7345 	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7346 		return false;
7347 
7348 	memcg = page_memcg(page);
7349 	if (!memcg)
7350 		return false;
7351 
7352 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7353 		unsigned long usage = page_counter_read(&memcg->swap);
7354 
7355 		if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7356 		    usage * 2 >= READ_ONCE(memcg->swap.max))
7357 			return true;
7358 	}
7359 
7360 	return false;
7361 }
7362 
7363 static int __init setup_swap_account(char *s)
7364 {
7365 	if (!strcmp(s, "1"))
7366 		cgroup_memory_noswap = false;
7367 	else if (!strcmp(s, "0"))
7368 		cgroup_memory_noswap = true;
7369 	return 1;
7370 }
7371 __setup("swapaccount=", setup_swap_account);
7372 
7373 static u64 swap_current_read(struct cgroup_subsys_state *css,
7374 			     struct cftype *cft)
7375 {
7376 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7377 
7378 	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7379 }
7380 
7381 static int swap_high_show(struct seq_file *m, void *v)
7382 {
7383 	return seq_puts_memcg_tunable(m,
7384 		READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7385 }
7386 
7387 static ssize_t swap_high_write(struct kernfs_open_file *of,
7388 			       char *buf, size_t nbytes, loff_t off)
7389 {
7390 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7391 	unsigned long high;
7392 	int err;
7393 
7394 	buf = strstrip(buf);
7395 	err = page_counter_memparse(buf, "max", &high);
7396 	if (err)
7397 		return err;
7398 
7399 	page_counter_set_high(&memcg->swap, high);
7400 
7401 	return nbytes;
7402 }
7403 
7404 static int swap_max_show(struct seq_file *m, void *v)
7405 {
7406 	return seq_puts_memcg_tunable(m,
7407 		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7408 }
7409 
7410 static ssize_t swap_max_write(struct kernfs_open_file *of,
7411 			      char *buf, size_t nbytes, loff_t off)
7412 {
7413 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7414 	unsigned long max;
7415 	int err;
7416 
7417 	buf = strstrip(buf);
7418 	err = page_counter_memparse(buf, "max", &max);
7419 	if (err)
7420 		return err;
7421 
7422 	xchg(&memcg->swap.max, max);
7423 
7424 	return nbytes;
7425 }
7426 
7427 static int swap_events_show(struct seq_file *m, void *v)
7428 {
7429 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7430 
7431 	seq_printf(m, "high %lu\n",
7432 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7433 	seq_printf(m, "max %lu\n",
7434 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7435 	seq_printf(m, "fail %lu\n",
7436 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7437 
7438 	return 0;
7439 }
7440 
7441 static struct cftype swap_files[] = {
7442 	{
7443 		.name = "swap.current",
7444 		.flags = CFTYPE_NOT_ON_ROOT,
7445 		.read_u64 = swap_current_read,
7446 	},
7447 	{
7448 		.name = "swap.high",
7449 		.flags = CFTYPE_NOT_ON_ROOT,
7450 		.seq_show = swap_high_show,
7451 		.write = swap_high_write,
7452 	},
7453 	{
7454 		.name = "swap.max",
7455 		.flags = CFTYPE_NOT_ON_ROOT,
7456 		.seq_show = swap_max_show,
7457 		.write = swap_max_write,
7458 	},
7459 	{
7460 		.name = "swap.events",
7461 		.flags = CFTYPE_NOT_ON_ROOT,
7462 		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
7463 		.seq_show = swap_events_show,
7464 	},
7465 	{ }	/* terminate */
7466 };
7467 
7468 static struct cftype memsw_files[] = {
7469 	{
7470 		.name = "memsw.usage_in_bytes",
7471 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7472 		.read_u64 = mem_cgroup_read_u64,
7473 	},
7474 	{
7475 		.name = "memsw.max_usage_in_bytes",
7476 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7477 		.write = mem_cgroup_reset,
7478 		.read_u64 = mem_cgroup_read_u64,
7479 	},
7480 	{
7481 		.name = "memsw.limit_in_bytes",
7482 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7483 		.write = mem_cgroup_write,
7484 		.read_u64 = mem_cgroup_read_u64,
7485 	},
7486 	{
7487 		.name = "memsw.failcnt",
7488 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7489 		.write = mem_cgroup_reset,
7490 		.read_u64 = mem_cgroup_read_u64,
7491 	},
7492 	{ },	/* terminate */
7493 };
7494 
7495 /*
7496  * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7497  * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7498  * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7499  * boot parameter. This may result in premature OOPS inside
7500  * mem_cgroup_get_nr_swap_pages() function in corner cases.
7501  */
7502 static int __init mem_cgroup_swap_init(void)
7503 {
7504 	/* No memory control -> no swap control */
7505 	if (mem_cgroup_disabled())
7506 		cgroup_memory_noswap = true;
7507 
7508 	if (cgroup_memory_noswap)
7509 		return 0;
7510 
7511 	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7512 	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7513 
7514 	return 0;
7515 }
7516 core_initcall(mem_cgroup_swap_init);
7517 
7518 #endif /* CONFIG_MEMCG_SWAP */
7519