xref: /openbmc/linux/mm/memcontrol.c (revision 483eb062)
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * Kernel Memory Controller
14  * Copyright (C) 2012 Parallels Inc. and Google Inc.
15  * Authors: Glauber Costa and Suleiman Souhlal
16  *
17  * This program is free software; you can redistribute it and/or modify
18  * it under the terms of the GNU General Public License as published by
19  * the Free Software Foundation; either version 2 of the License, or
20  * (at your option) any later version.
21  *
22  * This program is distributed in the hope that it will be useful,
23  * but WITHOUT ANY WARRANTY; without even the implied warranty of
24  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
25  * GNU General Public License for more details.
26  */
27 
28 #include <linux/res_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/mm.h>
32 #include <linux/hugetlb.h>
33 #include <linux/pagemap.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
50 #include <linux/fs.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/page_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include "internal.h"
60 #include <net/sock.h>
61 #include <net/ip.h>
62 #include <net/tcp_memcontrol.h>
63 #include "slab.h"
64 
65 #include <asm/uaccess.h>
66 
67 #include <trace/events/vmscan.h>
68 
69 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
70 EXPORT_SYMBOL(mem_cgroup_subsys);
71 
72 #define MEM_CGROUP_RECLAIM_RETRIES	5
73 static struct mem_cgroup *root_mem_cgroup __read_mostly;
74 
75 #ifdef CONFIG_MEMCG_SWAP
76 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
77 int do_swap_account __read_mostly;
78 
79 /* for remember boot option*/
80 #ifdef CONFIG_MEMCG_SWAP_ENABLED
81 static int really_do_swap_account __initdata = 1;
82 #else
83 static int really_do_swap_account __initdata = 0;
84 #endif
85 
86 #else
87 #define do_swap_account		0
88 #endif
89 
90 
91 static const char * const mem_cgroup_stat_names[] = {
92 	"cache",
93 	"rss",
94 	"rss_huge",
95 	"mapped_file",
96 	"writeback",
97 	"swap",
98 };
99 
100 enum mem_cgroup_events_index {
101 	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
102 	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
103 	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
104 	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
105 	MEM_CGROUP_EVENTS_NSTATS,
106 };
107 
108 static const char * const mem_cgroup_events_names[] = {
109 	"pgpgin",
110 	"pgpgout",
111 	"pgfault",
112 	"pgmajfault",
113 };
114 
115 static const char * const mem_cgroup_lru_names[] = {
116 	"inactive_anon",
117 	"active_anon",
118 	"inactive_file",
119 	"active_file",
120 	"unevictable",
121 };
122 
123 /*
124  * Per memcg event counter is incremented at every pagein/pageout. With THP,
125  * it will be incremated by the number of pages. This counter is used for
126  * for trigger some periodic events. This is straightforward and better
127  * than using jiffies etc. to handle periodic memcg event.
128  */
129 enum mem_cgroup_events_target {
130 	MEM_CGROUP_TARGET_THRESH,
131 	MEM_CGROUP_TARGET_SOFTLIMIT,
132 	MEM_CGROUP_TARGET_NUMAINFO,
133 	MEM_CGROUP_NTARGETS,
134 };
135 #define THRESHOLDS_EVENTS_TARGET 128
136 #define SOFTLIMIT_EVENTS_TARGET 1024
137 #define NUMAINFO_EVENTS_TARGET	1024
138 
139 struct mem_cgroup_stat_cpu {
140 	long count[MEM_CGROUP_STAT_NSTATS];
141 	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
142 	unsigned long nr_page_events;
143 	unsigned long targets[MEM_CGROUP_NTARGETS];
144 };
145 
146 struct mem_cgroup_reclaim_iter {
147 	/*
148 	 * last scanned hierarchy member. Valid only if last_dead_count
149 	 * matches memcg->dead_count of the hierarchy root group.
150 	 */
151 	struct mem_cgroup *last_visited;
152 	int last_dead_count;
153 
154 	/* scan generation, increased every round-trip */
155 	unsigned int generation;
156 };
157 
158 /*
159  * per-zone information in memory controller.
160  */
161 struct mem_cgroup_per_zone {
162 	struct lruvec		lruvec;
163 	unsigned long		lru_size[NR_LRU_LISTS];
164 
165 	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
166 
167 	struct rb_node		tree_node;	/* RB tree node */
168 	unsigned long long	usage_in_excess;/* Set to the value by which */
169 						/* the soft limit is exceeded*/
170 	bool			on_tree;
171 	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
172 						/* use container_of	   */
173 };
174 
175 struct mem_cgroup_per_node {
176 	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
177 };
178 
179 /*
180  * Cgroups above their limits are maintained in a RB-Tree, independent of
181  * their hierarchy representation
182  */
183 
184 struct mem_cgroup_tree_per_zone {
185 	struct rb_root rb_root;
186 	spinlock_t lock;
187 };
188 
189 struct mem_cgroup_tree_per_node {
190 	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
191 };
192 
193 struct mem_cgroup_tree {
194 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
195 };
196 
197 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
198 
199 struct mem_cgroup_threshold {
200 	struct eventfd_ctx *eventfd;
201 	u64 threshold;
202 };
203 
204 /* For threshold */
205 struct mem_cgroup_threshold_ary {
206 	/* An array index points to threshold just below or equal to usage. */
207 	int current_threshold;
208 	/* Size of entries[] */
209 	unsigned int size;
210 	/* Array of thresholds */
211 	struct mem_cgroup_threshold entries[0];
212 };
213 
214 struct mem_cgroup_thresholds {
215 	/* Primary thresholds array */
216 	struct mem_cgroup_threshold_ary *primary;
217 	/*
218 	 * Spare threshold array.
219 	 * This is needed to make mem_cgroup_unregister_event() "never fail".
220 	 * It must be able to store at least primary->size - 1 entries.
221 	 */
222 	struct mem_cgroup_threshold_ary *spare;
223 };
224 
225 /* for OOM */
226 struct mem_cgroup_eventfd_list {
227 	struct list_head list;
228 	struct eventfd_ctx *eventfd;
229 };
230 
231 /*
232  * cgroup_event represents events which userspace want to receive.
233  */
234 struct mem_cgroup_event {
235 	/*
236 	 * memcg which the event belongs to.
237 	 */
238 	struct mem_cgroup *memcg;
239 	/*
240 	 * eventfd to signal userspace about the event.
241 	 */
242 	struct eventfd_ctx *eventfd;
243 	/*
244 	 * Each of these stored in a list by the cgroup.
245 	 */
246 	struct list_head list;
247 	/*
248 	 * register_event() callback will be used to add new userspace
249 	 * waiter for changes related to this event.  Use eventfd_signal()
250 	 * on eventfd to send notification to userspace.
251 	 */
252 	int (*register_event)(struct mem_cgroup *memcg,
253 			      struct eventfd_ctx *eventfd, const char *args);
254 	/*
255 	 * unregister_event() callback will be called when userspace closes
256 	 * the eventfd or on cgroup removing.  This callback must be set,
257 	 * if you want provide notification functionality.
258 	 */
259 	void (*unregister_event)(struct mem_cgroup *memcg,
260 				 struct eventfd_ctx *eventfd);
261 	/*
262 	 * All fields below needed to unregister event when
263 	 * userspace closes eventfd.
264 	 */
265 	poll_table pt;
266 	wait_queue_head_t *wqh;
267 	wait_queue_t wait;
268 	struct work_struct remove;
269 };
270 
271 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
272 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
273 
274 /*
275  * The memory controller data structure. The memory controller controls both
276  * page cache and RSS per cgroup. We would eventually like to provide
277  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
278  * to help the administrator determine what knobs to tune.
279  *
280  * TODO: Add a water mark for the memory controller. Reclaim will begin when
281  * we hit the water mark. May be even add a low water mark, such that
282  * no reclaim occurs from a cgroup at it's low water mark, this is
283  * a feature that will be implemented much later in the future.
284  */
285 struct mem_cgroup {
286 	struct cgroup_subsys_state css;
287 	/*
288 	 * the counter to account for memory usage
289 	 */
290 	struct res_counter res;
291 
292 	/* vmpressure notifications */
293 	struct vmpressure vmpressure;
294 
295 	/*
296 	 * the counter to account for mem+swap usage.
297 	 */
298 	struct res_counter memsw;
299 
300 	/*
301 	 * the counter to account for kernel memory usage.
302 	 */
303 	struct res_counter kmem;
304 	/*
305 	 * Should the accounting and control be hierarchical, per subtree?
306 	 */
307 	bool use_hierarchy;
308 	unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
309 
310 	bool		oom_lock;
311 	atomic_t	under_oom;
312 	atomic_t	oom_wakeups;
313 
314 	int	swappiness;
315 	/* OOM-Killer disable */
316 	int		oom_kill_disable;
317 
318 	/* set when res.limit == memsw.limit */
319 	bool		memsw_is_minimum;
320 
321 	/* protect arrays of thresholds */
322 	struct mutex thresholds_lock;
323 
324 	/* thresholds for memory usage. RCU-protected */
325 	struct mem_cgroup_thresholds thresholds;
326 
327 	/* thresholds for mem+swap usage. RCU-protected */
328 	struct mem_cgroup_thresholds memsw_thresholds;
329 
330 	/* For oom notifier event fd */
331 	struct list_head oom_notify;
332 
333 	/*
334 	 * Should we move charges of a task when a task is moved into this
335 	 * mem_cgroup ? And what type of charges should we move ?
336 	 */
337 	unsigned long move_charge_at_immigrate;
338 	/*
339 	 * set > 0 if pages under this cgroup are moving to other cgroup.
340 	 */
341 	atomic_t	moving_account;
342 	/* taken only while moving_account > 0 */
343 	spinlock_t	move_lock;
344 	/*
345 	 * percpu counter.
346 	 */
347 	struct mem_cgroup_stat_cpu __percpu *stat;
348 	/*
349 	 * used when a cpu is offlined or other synchronizations
350 	 * See mem_cgroup_read_stat().
351 	 */
352 	struct mem_cgroup_stat_cpu nocpu_base;
353 	spinlock_t pcp_counter_lock;
354 
355 	atomic_t	dead_count;
356 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
357 	struct cg_proto tcp_mem;
358 #endif
359 #if defined(CONFIG_MEMCG_KMEM)
360 	/* analogous to slab_common's slab_caches list. per-memcg */
361 	struct list_head memcg_slab_caches;
362 	/* Not a spinlock, we can take a lot of time walking the list */
363 	struct mutex slab_caches_mutex;
364         /* Index in the kmem_cache->memcg_params->memcg_caches array */
365 	int kmemcg_id;
366 #endif
367 
368 	int last_scanned_node;
369 #if MAX_NUMNODES > 1
370 	nodemask_t	scan_nodes;
371 	atomic_t	numainfo_events;
372 	atomic_t	numainfo_updating;
373 #endif
374 
375 	/* List of events which userspace want to receive */
376 	struct list_head event_list;
377 	spinlock_t event_list_lock;
378 
379 	struct mem_cgroup_per_node *nodeinfo[0];
380 	/* WARNING: nodeinfo must be the last member here */
381 };
382 
383 /* internal only representation about the status of kmem accounting. */
384 enum {
385 	KMEM_ACCOUNTED_ACTIVE, /* accounted by this cgroup itself */
386 	KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
387 };
388 
389 #ifdef CONFIG_MEMCG_KMEM
390 static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
391 {
392 	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
393 }
394 
395 static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
396 {
397 	return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
398 }
399 
400 static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
401 {
402 	/*
403 	 * Our caller must use css_get() first, because memcg_uncharge_kmem()
404 	 * will call css_put() if it sees the memcg is dead.
405 	 */
406 	smp_wmb();
407 	if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
408 		set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
409 }
410 
411 static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
412 {
413 	return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
414 				  &memcg->kmem_account_flags);
415 }
416 #endif
417 
418 /* Stuffs for move charges at task migration. */
419 /*
420  * Types of charges to be moved. "move_charge_at_immitgrate" and
421  * "immigrate_flags" are treated as a left-shifted bitmap of these types.
422  */
423 enum move_type {
424 	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
425 	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
426 	NR_MOVE_TYPE,
427 };
428 
429 /* "mc" and its members are protected by cgroup_mutex */
430 static struct move_charge_struct {
431 	spinlock_t	  lock; /* for from, to */
432 	struct mem_cgroup *from;
433 	struct mem_cgroup *to;
434 	unsigned long immigrate_flags;
435 	unsigned long precharge;
436 	unsigned long moved_charge;
437 	unsigned long moved_swap;
438 	struct task_struct *moving_task;	/* a task moving charges */
439 	wait_queue_head_t waitq;		/* a waitq for other context */
440 } mc = {
441 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
442 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
443 };
444 
445 static bool move_anon(void)
446 {
447 	return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
448 }
449 
450 static bool move_file(void)
451 {
452 	return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
453 }
454 
455 /*
456  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
457  * limit reclaim to prevent infinite loops, if they ever occur.
458  */
459 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
460 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
461 
462 enum charge_type {
463 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
464 	MEM_CGROUP_CHARGE_TYPE_ANON,
465 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
466 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
467 	NR_CHARGE_TYPE,
468 };
469 
470 /* for encoding cft->private value on file */
471 enum res_type {
472 	_MEM,
473 	_MEMSWAP,
474 	_OOM_TYPE,
475 	_KMEM,
476 };
477 
478 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
479 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
480 #define MEMFILE_ATTR(val)	((val) & 0xffff)
481 /* Used for OOM nofiier */
482 #define OOM_CONTROL		(0)
483 
484 /*
485  * Reclaim flags for mem_cgroup_hierarchical_reclaim
486  */
487 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
488 #define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
489 #define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
490 #define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
491 
492 /*
493  * The memcg_create_mutex will be held whenever a new cgroup is created.
494  * As a consequence, any change that needs to protect against new child cgroups
495  * appearing has to hold it as well.
496  */
497 static DEFINE_MUTEX(memcg_create_mutex);
498 
499 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
500 {
501 	return s ? container_of(s, struct mem_cgroup, css) : NULL;
502 }
503 
504 /* Some nice accessors for the vmpressure. */
505 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
506 {
507 	if (!memcg)
508 		memcg = root_mem_cgroup;
509 	return &memcg->vmpressure;
510 }
511 
512 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
513 {
514 	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
515 }
516 
517 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
518 {
519 	return (memcg == root_mem_cgroup);
520 }
521 
522 /*
523  * We restrict the id in the range of [1, 65535], so it can fit into
524  * an unsigned short.
525  */
526 #define MEM_CGROUP_ID_MAX	USHRT_MAX
527 
528 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
529 {
530 	/*
531 	 * The ID of the root cgroup is 0, but memcg treat 0 as an
532 	 * invalid ID, so we return (cgroup_id + 1).
533 	 */
534 	return memcg->css.cgroup->id + 1;
535 }
536 
537 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
538 {
539 	struct cgroup_subsys_state *css;
540 
541 	css = css_from_id(id - 1, &mem_cgroup_subsys);
542 	return mem_cgroup_from_css(css);
543 }
544 
545 /* Writing them here to avoid exposing memcg's inner layout */
546 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
547 
548 void sock_update_memcg(struct sock *sk)
549 {
550 	if (mem_cgroup_sockets_enabled) {
551 		struct mem_cgroup *memcg;
552 		struct cg_proto *cg_proto;
553 
554 		BUG_ON(!sk->sk_prot->proto_cgroup);
555 
556 		/* Socket cloning can throw us here with sk_cgrp already
557 		 * filled. It won't however, necessarily happen from
558 		 * process context. So the test for root memcg given
559 		 * the current task's memcg won't help us in this case.
560 		 *
561 		 * Respecting the original socket's memcg is a better
562 		 * decision in this case.
563 		 */
564 		if (sk->sk_cgrp) {
565 			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
566 			css_get(&sk->sk_cgrp->memcg->css);
567 			return;
568 		}
569 
570 		rcu_read_lock();
571 		memcg = mem_cgroup_from_task(current);
572 		cg_proto = sk->sk_prot->proto_cgroup(memcg);
573 		if (!mem_cgroup_is_root(memcg) &&
574 		    memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
575 			sk->sk_cgrp = cg_proto;
576 		}
577 		rcu_read_unlock();
578 	}
579 }
580 EXPORT_SYMBOL(sock_update_memcg);
581 
582 void sock_release_memcg(struct sock *sk)
583 {
584 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
585 		struct mem_cgroup *memcg;
586 		WARN_ON(!sk->sk_cgrp->memcg);
587 		memcg = sk->sk_cgrp->memcg;
588 		css_put(&sk->sk_cgrp->memcg->css);
589 	}
590 }
591 
592 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
593 {
594 	if (!memcg || mem_cgroup_is_root(memcg))
595 		return NULL;
596 
597 	return &memcg->tcp_mem;
598 }
599 EXPORT_SYMBOL(tcp_proto_cgroup);
600 
601 static void disarm_sock_keys(struct mem_cgroup *memcg)
602 {
603 	if (!memcg_proto_activated(&memcg->tcp_mem))
604 		return;
605 	static_key_slow_dec(&memcg_socket_limit_enabled);
606 }
607 #else
608 static void disarm_sock_keys(struct mem_cgroup *memcg)
609 {
610 }
611 #endif
612 
613 #ifdef CONFIG_MEMCG_KMEM
614 /*
615  * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
616  * The main reason for not using cgroup id for this:
617  *  this works better in sparse environments, where we have a lot of memcgs,
618  *  but only a few kmem-limited. Or also, if we have, for instance, 200
619  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
620  *  200 entry array for that.
621  *
622  * The current size of the caches array is stored in
623  * memcg_limited_groups_array_size.  It will double each time we have to
624  * increase it.
625  */
626 static DEFINE_IDA(kmem_limited_groups);
627 int memcg_limited_groups_array_size;
628 
629 /*
630  * MIN_SIZE is different than 1, because we would like to avoid going through
631  * the alloc/free process all the time. In a small machine, 4 kmem-limited
632  * cgroups is a reasonable guess. In the future, it could be a parameter or
633  * tunable, but that is strictly not necessary.
634  *
635  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
636  * this constant directly from cgroup, but it is understandable that this is
637  * better kept as an internal representation in cgroup.c. In any case, the
638  * cgrp_id space is not getting any smaller, and we don't have to necessarily
639  * increase ours as well if it increases.
640  */
641 #define MEMCG_CACHES_MIN_SIZE 4
642 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
643 
644 /*
645  * A lot of the calls to the cache allocation functions are expected to be
646  * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
647  * conditional to this static branch, we'll have to allow modules that does
648  * kmem_cache_alloc and the such to see this symbol as well
649  */
650 struct static_key memcg_kmem_enabled_key;
651 EXPORT_SYMBOL(memcg_kmem_enabled_key);
652 
653 static void disarm_kmem_keys(struct mem_cgroup *memcg)
654 {
655 	if (memcg_kmem_is_active(memcg)) {
656 		static_key_slow_dec(&memcg_kmem_enabled_key);
657 		ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
658 	}
659 	/*
660 	 * This check can't live in kmem destruction function,
661 	 * since the charges will outlive the cgroup
662 	 */
663 	WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
664 }
665 #else
666 static void disarm_kmem_keys(struct mem_cgroup *memcg)
667 {
668 }
669 #endif /* CONFIG_MEMCG_KMEM */
670 
671 static void disarm_static_keys(struct mem_cgroup *memcg)
672 {
673 	disarm_sock_keys(memcg);
674 	disarm_kmem_keys(memcg);
675 }
676 
677 static void drain_all_stock_async(struct mem_cgroup *memcg);
678 
679 static struct mem_cgroup_per_zone *
680 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
681 {
682 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
683 	return &memcg->nodeinfo[nid]->zoneinfo[zid];
684 }
685 
686 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
687 {
688 	return &memcg->css;
689 }
690 
691 static struct mem_cgroup_per_zone *
692 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
693 {
694 	int nid = page_to_nid(page);
695 	int zid = page_zonenum(page);
696 
697 	return mem_cgroup_zoneinfo(memcg, nid, zid);
698 }
699 
700 static struct mem_cgroup_tree_per_zone *
701 soft_limit_tree_node_zone(int nid, int zid)
702 {
703 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
704 }
705 
706 static struct mem_cgroup_tree_per_zone *
707 soft_limit_tree_from_page(struct page *page)
708 {
709 	int nid = page_to_nid(page);
710 	int zid = page_zonenum(page);
711 
712 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
713 }
714 
715 static void
716 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
717 				struct mem_cgroup_per_zone *mz,
718 				struct mem_cgroup_tree_per_zone *mctz,
719 				unsigned long long new_usage_in_excess)
720 {
721 	struct rb_node **p = &mctz->rb_root.rb_node;
722 	struct rb_node *parent = NULL;
723 	struct mem_cgroup_per_zone *mz_node;
724 
725 	if (mz->on_tree)
726 		return;
727 
728 	mz->usage_in_excess = new_usage_in_excess;
729 	if (!mz->usage_in_excess)
730 		return;
731 	while (*p) {
732 		parent = *p;
733 		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
734 					tree_node);
735 		if (mz->usage_in_excess < mz_node->usage_in_excess)
736 			p = &(*p)->rb_left;
737 		/*
738 		 * We can't avoid mem cgroups that are over their soft
739 		 * limit by the same amount
740 		 */
741 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
742 			p = &(*p)->rb_right;
743 	}
744 	rb_link_node(&mz->tree_node, parent, p);
745 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
746 	mz->on_tree = true;
747 }
748 
749 static void
750 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
751 				struct mem_cgroup_per_zone *mz,
752 				struct mem_cgroup_tree_per_zone *mctz)
753 {
754 	if (!mz->on_tree)
755 		return;
756 	rb_erase(&mz->tree_node, &mctz->rb_root);
757 	mz->on_tree = false;
758 }
759 
760 static void
761 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
762 				struct mem_cgroup_per_zone *mz,
763 				struct mem_cgroup_tree_per_zone *mctz)
764 {
765 	spin_lock(&mctz->lock);
766 	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
767 	spin_unlock(&mctz->lock);
768 }
769 
770 
771 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
772 {
773 	unsigned long long excess;
774 	struct mem_cgroup_per_zone *mz;
775 	struct mem_cgroup_tree_per_zone *mctz;
776 	int nid = page_to_nid(page);
777 	int zid = page_zonenum(page);
778 	mctz = soft_limit_tree_from_page(page);
779 
780 	/*
781 	 * Necessary to update all ancestors when hierarchy is used.
782 	 * because their event counter is not touched.
783 	 */
784 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
785 		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
786 		excess = res_counter_soft_limit_excess(&memcg->res);
787 		/*
788 		 * We have to update the tree if mz is on RB-tree or
789 		 * mem is over its softlimit.
790 		 */
791 		if (excess || mz->on_tree) {
792 			spin_lock(&mctz->lock);
793 			/* if on-tree, remove it */
794 			if (mz->on_tree)
795 				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
796 			/*
797 			 * Insert again. mz->usage_in_excess will be updated.
798 			 * If excess is 0, no tree ops.
799 			 */
800 			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
801 			spin_unlock(&mctz->lock);
802 		}
803 	}
804 }
805 
806 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
807 {
808 	int node, zone;
809 	struct mem_cgroup_per_zone *mz;
810 	struct mem_cgroup_tree_per_zone *mctz;
811 
812 	for_each_node(node) {
813 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
814 			mz = mem_cgroup_zoneinfo(memcg, node, zone);
815 			mctz = soft_limit_tree_node_zone(node, zone);
816 			mem_cgroup_remove_exceeded(memcg, mz, mctz);
817 		}
818 	}
819 }
820 
821 static struct mem_cgroup_per_zone *
822 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
823 {
824 	struct rb_node *rightmost = NULL;
825 	struct mem_cgroup_per_zone *mz;
826 
827 retry:
828 	mz = NULL;
829 	rightmost = rb_last(&mctz->rb_root);
830 	if (!rightmost)
831 		goto done;		/* Nothing to reclaim from */
832 
833 	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
834 	/*
835 	 * Remove the node now but someone else can add it back,
836 	 * we will to add it back at the end of reclaim to its correct
837 	 * position in the tree.
838 	 */
839 	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
840 	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
841 		!css_tryget(&mz->memcg->css))
842 		goto retry;
843 done:
844 	return mz;
845 }
846 
847 static struct mem_cgroup_per_zone *
848 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
849 {
850 	struct mem_cgroup_per_zone *mz;
851 
852 	spin_lock(&mctz->lock);
853 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
854 	spin_unlock(&mctz->lock);
855 	return mz;
856 }
857 
858 /*
859  * Implementation Note: reading percpu statistics for memcg.
860  *
861  * Both of vmstat[] and percpu_counter has threshold and do periodic
862  * synchronization to implement "quick" read. There are trade-off between
863  * reading cost and precision of value. Then, we may have a chance to implement
864  * a periodic synchronizion of counter in memcg's counter.
865  *
866  * But this _read() function is used for user interface now. The user accounts
867  * memory usage by memory cgroup and he _always_ requires exact value because
868  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
869  * have to visit all online cpus and make sum. So, for now, unnecessary
870  * synchronization is not implemented. (just implemented for cpu hotplug)
871  *
872  * If there are kernel internal actions which can make use of some not-exact
873  * value, and reading all cpu value can be performance bottleneck in some
874  * common workload, threashold and synchonization as vmstat[] should be
875  * implemented.
876  */
877 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
878 				 enum mem_cgroup_stat_index idx)
879 {
880 	long val = 0;
881 	int cpu;
882 
883 	get_online_cpus();
884 	for_each_online_cpu(cpu)
885 		val += per_cpu(memcg->stat->count[idx], cpu);
886 #ifdef CONFIG_HOTPLUG_CPU
887 	spin_lock(&memcg->pcp_counter_lock);
888 	val += memcg->nocpu_base.count[idx];
889 	spin_unlock(&memcg->pcp_counter_lock);
890 #endif
891 	put_online_cpus();
892 	return val;
893 }
894 
895 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
896 					 bool charge)
897 {
898 	int val = (charge) ? 1 : -1;
899 	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
900 }
901 
902 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
903 					    enum mem_cgroup_events_index idx)
904 {
905 	unsigned long val = 0;
906 	int cpu;
907 
908 	get_online_cpus();
909 	for_each_online_cpu(cpu)
910 		val += per_cpu(memcg->stat->events[idx], cpu);
911 #ifdef CONFIG_HOTPLUG_CPU
912 	spin_lock(&memcg->pcp_counter_lock);
913 	val += memcg->nocpu_base.events[idx];
914 	spin_unlock(&memcg->pcp_counter_lock);
915 #endif
916 	put_online_cpus();
917 	return val;
918 }
919 
920 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
921 					 struct page *page,
922 					 bool anon, int nr_pages)
923 {
924 	preempt_disable();
925 
926 	/*
927 	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
928 	 * counted as CACHE even if it's on ANON LRU.
929 	 */
930 	if (anon)
931 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
932 				nr_pages);
933 	else
934 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
935 				nr_pages);
936 
937 	if (PageTransHuge(page))
938 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
939 				nr_pages);
940 
941 	/* pagein of a big page is an event. So, ignore page size */
942 	if (nr_pages > 0)
943 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
944 	else {
945 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
946 		nr_pages = -nr_pages; /* for event */
947 	}
948 
949 	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
950 
951 	preempt_enable();
952 }
953 
954 unsigned long
955 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
956 {
957 	struct mem_cgroup_per_zone *mz;
958 
959 	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
960 	return mz->lru_size[lru];
961 }
962 
963 static unsigned long
964 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
965 			unsigned int lru_mask)
966 {
967 	struct mem_cgroup_per_zone *mz;
968 	enum lru_list lru;
969 	unsigned long ret = 0;
970 
971 	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
972 
973 	for_each_lru(lru) {
974 		if (BIT(lru) & lru_mask)
975 			ret += mz->lru_size[lru];
976 	}
977 	return ret;
978 }
979 
980 static unsigned long
981 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
982 			int nid, unsigned int lru_mask)
983 {
984 	u64 total = 0;
985 	int zid;
986 
987 	for (zid = 0; zid < MAX_NR_ZONES; zid++)
988 		total += mem_cgroup_zone_nr_lru_pages(memcg,
989 						nid, zid, lru_mask);
990 
991 	return total;
992 }
993 
994 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
995 			unsigned int lru_mask)
996 {
997 	int nid;
998 	u64 total = 0;
999 
1000 	for_each_node_state(nid, N_MEMORY)
1001 		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
1002 	return total;
1003 }
1004 
1005 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
1006 				       enum mem_cgroup_events_target target)
1007 {
1008 	unsigned long val, next;
1009 
1010 	val = __this_cpu_read(memcg->stat->nr_page_events);
1011 	next = __this_cpu_read(memcg->stat->targets[target]);
1012 	/* from time_after() in jiffies.h */
1013 	if ((long)next - (long)val < 0) {
1014 		switch (target) {
1015 		case MEM_CGROUP_TARGET_THRESH:
1016 			next = val + THRESHOLDS_EVENTS_TARGET;
1017 			break;
1018 		case MEM_CGROUP_TARGET_SOFTLIMIT:
1019 			next = val + SOFTLIMIT_EVENTS_TARGET;
1020 			break;
1021 		case MEM_CGROUP_TARGET_NUMAINFO:
1022 			next = val + NUMAINFO_EVENTS_TARGET;
1023 			break;
1024 		default:
1025 			break;
1026 		}
1027 		__this_cpu_write(memcg->stat->targets[target], next);
1028 		return true;
1029 	}
1030 	return false;
1031 }
1032 
1033 /*
1034  * Check events in order.
1035  *
1036  */
1037 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1038 {
1039 	preempt_disable();
1040 	/* threshold event is triggered in finer grain than soft limit */
1041 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
1042 						MEM_CGROUP_TARGET_THRESH))) {
1043 		bool do_softlimit;
1044 		bool do_numainfo __maybe_unused;
1045 
1046 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
1047 						MEM_CGROUP_TARGET_SOFTLIMIT);
1048 #if MAX_NUMNODES > 1
1049 		do_numainfo = mem_cgroup_event_ratelimit(memcg,
1050 						MEM_CGROUP_TARGET_NUMAINFO);
1051 #endif
1052 		preempt_enable();
1053 
1054 		mem_cgroup_threshold(memcg);
1055 		if (unlikely(do_softlimit))
1056 			mem_cgroup_update_tree(memcg, page);
1057 #if MAX_NUMNODES > 1
1058 		if (unlikely(do_numainfo))
1059 			atomic_inc(&memcg->numainfo_events);
1060 #endif
1061 	} else
1062 		preempt_enable();
1063 }
1064 
1065 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1066 {
1067 	/*
1068 	 * mm_update_next_owner() may clear mm->owner to NULL
1069 	 * if it races with swapoff, page migration, etc.
1070 	 * So this can be called with p == NULL.
1071 	 */
1072 	if (unlikely(!p))
1073 		return NULL;
1074 
1075 	return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id));
1076 }
1077 
1078 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
1079 {
1080 	struct mem_cgroup *memcg = NULL;
1081 
1082 	if (!mm)
1083 		return NULL;
1084 	/*
1085 	 * Because we have no locks, mm->owner's may be being moved to other
1086 	 * cgroup. We use css_tryget() here even if this looks
1087 	 * pessimistic (rather than adding locks here).
1088 	 */
1089 	rcu_read_lock();
1090 	do {
1091 		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1092 		if (unlikely(!memcg))
1093 			break;
1094 	} while (!css_tryget(&memcg->css));
1095 	rcu_read_unlock();
1096 	return memcg;
1097 }
1098 
1099 /*
1100  * Returns a next (in a pre-order walk) alive memcg (with elevated css
1101  * ref. count) or NULL if the whole root's subtree has been visited.
1102  *
1103  * helper function to be used by mem_cgroup_iter
1104  */
1105 static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1106 		struct mem_cgroup *last_visited)
1107 {
1108 	struct cgroup_subsys_state *prev_css, *next_css;
1109 
1110 	prev_css = last_visited ? &last_visited->css : NULL;
1111 skip_node:
1112 	next_css = css_next_descendant_pre(prev_css, &root->css);
1113 
1114 	/*
1115 	 * Even if we found a group we have to make sure it is
1116 	 * alive. css && !memcg means that the groups should be
1117 	 * skipped and we should continue the tree walk.
1118 	 * last_visited css is safe to use because it is
1119 	 * protected by css_get and the tree walk is rcu safe.
1120 	 *
1121 	 * We do not take a reference on the root of the tree walk
1122 	 * because we might race with the root removal when it would
1123 	 * be the only node in the iterated hierarchy and mem_cgroup_iter
1124 	 * would end up in an endless loop because it expects that at
1125 	 * least one valid node will be returned. Root cannot disappear
1126 	 * because caller of the iterator should hold it already so
1127 	 * skipping css reference should be safe.
1128 	 */
1129 	if (next_css) {
1130 		if ((next_css->flags & CSS_ONLINE) &&
1131 				(next_css == &root->css || css_tryget(next_css)))
1132 			return mem_cgroup_from_css(next_css);
1133 
1134 		prev_css = next_css;
1135 		goto skip_node;
1136 	}
1137 
1138 	return NULL;
1139 }
1140 
1141 static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1142 {
1143 	/*
1144 	 * When a group in the hierarchy below root is destroyed, the
1145 	 * hierarchy iterator can no longer be trusted since it might
1146 	 * have pointed to the destroyed group.  Invalidate it.
1147 	 */
1148 	atomic_inc(&root->dead_count);
1149 }
1150 
1151 static struct mem_cgroup *
1152 mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1153 		     struct mem_cgroup *root,
1154 		     int *sequence)
1155 {
1156 	struct mem_cgroup *position = NULL;
1157 	/*
1158 	 * A cgroup destruction happens in two stages: offlining and
1159 	 * release.  They are separated by a RCU grace period.
1160 	 *
1161 	 * If the iterator is valid, we may still race with an
1162 	 * offlining.  The RCU lock ensures the object won't be
1163 	 * released, tryget will fail if we lost the race.
1164 	 */
1165 	*sequence = atomic_read(&root->dead_count);
1166 	if (iter->last_dead_count == *sequence) {
1167 		smp_rmb();
1168 		position = iter->last_visited;
1169 
1170 		/*
1171 		 * We cannot take a reference to root because we might race
1172 		 * with root removal and returning NULL would end up in
1173 		 * an endless loop on the iterator user level when root
1174 		 * would be returned all the time.
1175 		 */
1176 		if (position && position != root &&
1177 				!css_tryget(&position->css))
1178 			position = NULL;
1179 	}
1180 	return position;
1181 }
1182 
1183 static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1184 				   struct mem_cgroup *last_visited,
1185 				   struct mem_cgroup *new_position,
1186 				   struct mem_cgroup *root,
1187 				   int sequence)
1188 {
1189 	/* root reference counting symmetric to mem_cgroup_iter_load */
1190 	if (last_visited && last_visited != root)
1191 		css_put(&last_visited->css);
1192 	/*
1193 	 * We store the sequence count from the time @last_visited was
1194 	 * loaded successfully instead of rereading it here so that we
1195 	 * don't lose destruction events in between.  We could have
1196 	 * raced with the destruction of @new_position after all.
1197 	 */
1198 	iter->last_visited = new_position;
1199 	smp_wmb();
1200 	iter->last_dead_count = sequence;
1201 }
1202 
1203 /**
1204  * mem_cgroup_iter - iterate over memory cgroup hierarchy
1205  * @root: hierarchy root
1206  * @prev: previously returned memcg, NULL on first invocation
1207  * @reclaim: cookie for shared reclaim walks, NULL for full walks
1208  *
1209  * Returns references to children of the hierarchy below @root, or
1210  * @root itself, or %NULL after a full round-trip.
1211  *
1212  * Caller must pass the return value in @prev on subsequent
1213  * invocations for reference counting, or use mem_cgroup_iter_break()
1214  * to cancel a hierarchy walk before the round-trip is complete.
1215  *
1216  * Reclaimers can specify a zone and a priority level in @reclaim to
1217  * divide up the memcgs in the hierarchy among all concurrent
1218  * reclaimers operating on the same zone and priority.
1219  */
1220 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1221 				   struct mem_cgroup *prev,
1222 				   struct mem_cgroup_reclaim_cookie *reclaim)
1223 {
1224 	struct mem_cgroup *memcg = NULL;
1225 	struct mem_cgroup *last_visited = NULL;
1226 
1227 	if (mem_cgroup_disabled())
1228 		return NULL;
1229 
1230 	if (!root)
1231 		root = root_mem_cgroup;
1232 
1233 	if (prev && !reclaim)
1234 		last_visited = prev;
1235 
1236 	if (!root->use_hierarchy && root != root_mem_cgroup) {
1237 		if (prev)
1238 			goto out_css_put;
1239 		return root;
1240 	}
1241 
1242 	rcu_read_lock();
1243 	while (!memcg) {
1244 		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1245 		int uninitialized_var(seq);
1246 
1247 		if (reclaim) {
1248 			int nid = zone_to_nid(reclaim->zone);
1249 			int zid = zone_idx(reclaim->zone);
1250 			struct mem_cgroup_per_zone *mz;
1251 
1252 			mz = mem_cgroup_zoneinfo(root, nid, zid);
1253 			iter = &mz->reclaim_iter[reclaim->priority];
1254 			if (prev && reclaim->generation != iter->generation) {
1255 				iter->last_visited = NULL;
1256 				goto out_unlock;
1257 			}
1258 
1259 			last_visited = mem_cgroup_iter_load(iter, root, &seq);
1260 		}
1261 
1262 		memcg = __mem_cgroup_iter_next(root, last_visited);
1263 
1264 		if (reclaim) {
1265 			mem_cgroup_iter_update(iter, last_visited, memcg, root,
1266 					seq);
1267 
1268 			if (!memcg)
1269 				iter->generation++;
1270 			else if (!prev && memcg)
1271 				reclaim->generation = iter->generation;
1272 		}
1273 
1274 		if (prev && !memcg)
1275 			goto out_unlock;
1276 	}
1277 out_unlock:
1278 	rcu_read_unlock();
1279 out_css_put:
1280 	if (prev && prev != root)
1281 		css_put(&prev->css);
1282 
1283 	return memcg;
1284 }
1285 
1286 /**
1287  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1288  * @root: hierarchy root
1289  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1290  */
1291 void mem_cgroup_iter_break(struct mem_cgroup *root,
1292 			   struct mem_cgroup *prev)
1293 {
1294 	if (!root)
1295 		root = root_mem_cgroup;
1296 	if (prev && prev != root)
1297 		css_put(&prev->css);
1298 }
1299 
1300 /*
1301  * Iteration constructs for visiting all cgroups (under a tree).  If
1302  * loops are exited prematurely (break), mem_cgroup_iter_break() must
1303  * be used for reference counting.
1304  */
1305 #define for_each_mem_cgroup_tree(iter, root)		\
1306 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1307 	     iter != NULL;				\
1308 	     iter = mem_cgroup_iter(root, iter, NULL))
1309 
1310 #define for_each_mem_cgroup(iter)			\
1311 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1312 	     iter != NULL;				\
1313 	     iter = mem_cgroup_iter(NULL, iter, NULL))
1314 
1315 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1316 {
1317 	struct mem_cgroup *memcg;
1318 
1319 	rcu_read_lock();
1320 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1321 	if (unlikely(!memcg))
1322 		goto out;
1323 
1324 	switch (idx) {
1325 	case PGFAULT:
1326 		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1327 		break;
1328 	case PGMAJFAULT:
1329 		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1330 		break;
1331 	default:
1332 		BUG();
1333 	}
1334 out:
1335 	rcu_read_unlock();
1336 }
1337 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1338 
1339 /**
1340  * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1341  * @zone: zone of the wanted lruvec
1342  * @memcg: memcg of the wanted lruvec
1343  *
1344  * Returns the lru list vector holding pages for the given @zone and
1345  * @mem.  This can be the global zone lruvec, if the memory controller
1346  * is disabled.
1347  */
1348 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1349 				      struct mem_cgroup *memcg)
1350 {
1351 	struct mem_cgroup_per_zone *mz;
1352 	struct lruvec *lruvec;
1353 
1354 	if (mem_cgroup_disabled()) {
1355 		lruvec = &zone->lruvec;
1356 		goto out;
1357 	}
1358 
1359 	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1360 	lruvec = &mz->lruvec;
1361 out:
1362 	/*
1363 	 * Since a node can be onlined after the mem_cgroup was created,
1364 	 * we have to be prepared to initialize lruvec->zone here;
1365 	 * and if offlined then reonlined, we need to reinitialize it.
1366 	 */
1367 	if (unlikely(lruvec->zone != zone))
1368 		lruvec->zone = zone;
1369 	return lruvec;
1370 }
1371 
1372 /*
1373  * Following LRU functions are allowed to be used without PCG_LOCK.
1374  * Operations are called by routine of global LRU independently from memcg.
1375  * What we have to take care of here is validness of pc->mem_cgroup.
1376  *
1377  * Changes to pc->mem_cgroup happens when
1378  * 1. charge
1379  * 2. moving account
1380  * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1381  * It is added to LRU before charge.
1382  * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1383  * When moving account, the page is not on LRU. It's isolated.
1384  */
1385 
1386 /**
1387  * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1388  * @page: the page
1389  * @zone: zone of the page
1390  */
1391 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1392 {
1393 	struct mem_cgroup_per_zone *mz;
1394 	struct mem_cgroup *memcg;
1395 	struct page_cgroup *pc;
1396 	struct lruvec *lruvec;
1397 
1398 	if (mem_cgroup_disabled()) {
1399 		lruvec = &zone->lruvec;
1400 		goto out;
1401 	}
1402 
1403 	pc = lookup_page_cgroup(page);
1404 	memcg = pc->mem_cgroup;
1405 
1406 	/*
1407 	 * Surreptitiously switch any uncharged offlist page to root:
1408 	 * an uncharged page off lru does nothing to secure
1409 	 * its former mem_cgroup from sudden removal.
1410 	 *
1411 	 * Our caller holds lru_lock, and PageCgroupUsed is updated
1412 	 * under page_cgroup lock: between them, they make all uses
1413 	 * of pc->mem_cgroup safe.
1414 	 */
1415 	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1416 		pc->mem_cgroup = memcg = root_mem_cgroup;
1417 
1418 	mz = page_cgroup_zoneinfo(memcg, page);
1419 	lruvec = &mz->lruvec;
1420 out:
1421 	/*
1422 	 * Since a node can be onlined after the mem_cgroup was created,
1423 	 * we have to be prepared to initialize lruvec->zone here;
1424 	 * and if offlined then reonlined, we need to reinitialize it.
1425 	 */
1426 	if (unlikely(lruvec->zone != zone))
1427 		lruvec->zone = zone;
1428 	return lruvec;
1429 }
1430 
1431 /**
1432  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1433  * @lruvec: mem_cgroup per zone lru vector
1434  * @lru: index of lru list the page is sitting on
1435  * @nr_pages: positive when adding or negative when removing
1436  *
1437  * This function must be called when a page is added to or removed from an
1438  * lru list.
1439  */
1440 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1441 				int nr_pages)
1442 {
1443 	struct mem_cgroup_per_zone *mz;
1444 	unsigned long *lru_size;
1445 
1446 	if (mem_cgroup_disabled())
1447 		return;
1448 
1449 	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1450 	lru_size = mz->lru_size + lru;
1451 	*lru_size += nr_pages;
1452 	VM_BUG_ON((long)(*lru_size) < 0);
1453 }
1454 
1455 /*
1456  * Checks whether given mem is same or in the root_mem_cgroup's
1457  * hierarchy subtree
1458  */
1459 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1460 				  struct mem_cgroup *memcg)
1461 {
1462 	if (root_memcg == memcg)
1463 		return true;
1464 	if (!root_memcg->use_hierarchy || !memcg)
1465 		return false;
1466 	return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
1467 }
1468 
1469 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1470 				       struct mem_cgroup *memcg)
1471 {
1472 	bool ret;
1473 
1474 	rcu_read_lock();
1475 	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1476 	rcu_read_unlock();
1477 	return ret;
1478 }
1479 
1480 bool task_in_mem_cgroup(struct task_struct *task,
1481 			const struct mem_cgroup *memcg)
1482 {
1483 	struct mem_cgroup *curr = NULL;
1484 	struct task_struct *p;
1485 	bool ret;
1486 
1487 	p = find_lock_task_mm(task);
1488 	if (p) {
1489 		curr = try_get_mem_cgroup_from_mm(p->mm);
1490 		task_unlock(p);
1491 	} else {
1492 		/*
1493 		 * All threads may have already detached their mm's, but the oom
1494 		 * killer still needs to detect if they have already been oom
1495 		 * killed to prevent needlessly killing additional tasks.
1496 		 */
1497 		rcu_read_lock();
1498 		curr = mem_cgroup_from_task(task);
1499 		if (curr)
1500 			css_get(&curr->css);
1501 		rcu_read_unlock();
1502 	}
1503 	if (!curr)
1504 		return false;
1505 	/*
1506 	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1507 	 * use_hierarchy of "curr" here make this function true if hierarchy is
1508 	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1509 	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1510 	 */
1511 	ret = mem_cgroup_same_or_subtree(memcg, curr);
1512 	css_put(&curr->css);
1513 	return ret;
1514 }
1515 
1516 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1517 {
1518 	unsigned long inactive_ratio;
1519 	unsigned long inactive;
1520 	unsigned long active;
1521 	unsigned long gb;
1522 
1523 	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1524 	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1525 
1526 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
1527 	if (gb)
1528 		inactive_ratio = int_sqrt(10 * gb);
1529 	else
1530 		inactive_ratio = 1;
1531 
1532 	return inactive * inactive_ratio < active;
1533 }
1534 
1535 #define mem_cgroup_from_res_counter(counter, member)	\
1536 	container_of(counter, struct mem_cgroup, member)
1537 
1538 /**
1539  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1540  * @memcg: the memory cgroup
1541  *
1542  * Returns the maximum amount of memory @mem can be charged with, in
1543  * pages.
1544  */
1545 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1546 {
1547 	unsigned long long margin;
1548 
1549 	margin = res_counter_margin(&memcg->res);
1550 	if (do_swap_account)
1551 		margin = min(margin, res_counter_margin(&memcg->memsw));
1552 	return margin >> PAGE_SHIFT;
1553 }
1554 
1555 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1556 {
1557 	/* root ? */
1558 	if (!css_parent(&memcg->css))
1559 		return vm_swappiness;
1560 
1561 	return memcg->swappiness;
1562 }
1563 
1564 /*
1565  * memcg->moving_account is used for checking possibility that some thread is
1566  * calling move_account(). When a thread on CPU-A starts moving pages under
1567  * a memcg, other threads should check memcg->moving_account under
1568  * rcu_read_lock(), like this:
1569  *
1570  *         CPU-A                                    CPU-B
1571  *                                              rcu_read_lock()
1572  *         memcg->moving_account+1              if (memcg->mocing_account)
1573  *                                                   take heavy locks.
1574  *         synchronize_rcu()                    update something.
1575  *                                              rcu_read_unlock()
1576  *         start move here.
1577  */
1578 
1579 /* for quick checking without looking up memcg */
1580 atomic_t memcg_moving __read_mostly;
1581 
1582 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1583 {
1584 	atomic_inc(&memcg_moving);
1585 	atomic_inc(&memcg->moving_account);
1586 	synchronize_rcu();
1587 }
1588 
1589 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1590 {
1591 	/*
1592 	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1593 	 * We check NULL in callee rather than caller.
1594 	 */
1595 	if (memcg) {
1596 		atomic_dec(&memcg_moving);
1597 		atomic_dec(&memcg->moving_account);
1598 	}
1599 }
1600 
1601 /*
1602  * 2 routines for checking "mem" is under move_account() or not.
1603  *
1604  * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
1605  *			  is used for avoiding races in accounting.  If true,
1606  *			  pc->mem_cgroup may be overwritten.
1607  *
1608  * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1609  *			  under hierarchy of moving cgroups. This is for
1610  *			  waiting at hith-memory prressure caused by "move".
1611  */
1612 
1613 static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1614 {
1615 	VM_BUG_ON(!rcu_read_lock_held());
1616 	return atomic_read(&memcg->moving_account) > 0;
1617 }
1618 
1619 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1620 {
1621 	struct mem_cgroup *from;
1622 	struct mem_cgroup *to;
1623 	bool ret = false;
1624 	/*
1625 	 * Unlike task_move routines, we access mc.to, mc.from not under
1626 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1627 	 */
1628 	spin_lock(&mc.lock);
1629 	from = mc.from;
1630 	to = mc.to;
1631 	if (!from)
1632 		goto unlock;
1633 
1634 	ret = mem_cgroup_same_or_subtree(memcg, from)
1635 		|| mem_cgroup_same_or_subtree(memcg, to);
1636 unlock:
1637 	spin_unlock(&mc.lock);
1638 	return ret;
1639 }
1640 
1641 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1642 {
1643 	if (mc.moving_task && current != mc.moving_task) {
1644 		if (mem_cgroup_under_move(memcg)) {
1645 			DEFINE_WAIT(wait);
1646 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1647 			/* moving charge context might have finished. */
1648 			if (mc.moving_task)
1649 				schedule();
1650 			finish_wait(&mc.waitq, &wait);
1651 			return true;
1652 		}
1653 	}
1654 	return false;
1655 }
1656 
1657 /*
1658  * Take this lock when
1659  * - a code tries to modify page's memcg while it's USED.
1660  * - a code tries to modify page state accounting in a memcg.
1661  * see mem_cgroup_stolen(), too.
1662  */
1663 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1664 				  unsigned long *flags)
1665 {
1666 	spin_lock_irqsave(&memcg->move_lock, *flags);
1667 }
1668 
1669 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1670 				unsigned long *flags)
1671 {
1672 	spin_unlock_irqrestore(&memcg->move_lock, *flags);
1673 }
1674 
1675 #define K(x) ((x) << (PAGE_SHIFT-10))
1676 /**
1677  * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1678  * @memcg: The memory cgroup that went over limit
1679  * @p: Task that is going to be killed
1680  *
1681  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1682  * enabled
1683  */
1684 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1685 {
1686 	/*
1687 	 * protects memcg_name and makes sure that parallel ooms do not
1688 	 * interleave
1689 	 */
1690 	static DEFINE_SPINLOCK(oom_info_lock);
1691 	struct cgroup *task_cgrp;
1692 	struct cgroup *mem_cgrp;
1693 	static char memcg_name[PATH_MAX];
1694 	int ret;
1695 	struct mem_cgroup *iter;
1696 	unsigned int i;
1697 
1698 	if (!p)
1699 		return;
1700 
1701 	spin_lock(&oom_info_lock);
1702 	rcu_read_lock();
1703 
1704 	mem_cgrp = memcg->css.cgroup;
1705 	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1706 
1707 	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1708 	if (ret < 0) {
1709 		/*
1710 		 * Unfortunately, we are unable to convert to a useful name
1711 		 * But we'll still print out the usage information
1712 		 */
1713 		rcu_read_unlock();
1714 		goto done;
1715 	}
1716 	rcu_read_unlock();
1717 
1718 	pr_info("Task in %s killed", memcg_name);
1719 
1720 	rcu_read_lock();
1721 	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1722 	if (ret < 0) {
1723 		rcu_read_unlock();
1724 		goto done;
1725 	}
1726 	rcu_read_unlock();
1727 
1728 	/*
1729 	 * Continues from above, so we don't need an KERN_ level
1730 	 */
1731 	pr_cont(" as a result of limit of %s\n", memcg_name);
1732 done:
1733 
1734 	pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1735 		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1736 		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1737 		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1738 	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1739 		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1740 		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1741 		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1742 	pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1743 		res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1744 		res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1745 		res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1746 
1747 	for_each_mem_cgroup_tree(iter, memcg) {
1748 		pr_info("Memory cgroup stats");
1749 
1750 		rcu_read_lock();
1751 		ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
1752 		if (!ret)
1753 			pr_cont(" for %s", memcg_name);
1754 		rcu_read_unlock();
1755 		pr_cont(":");
1756 
1757 		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1758 			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1759 				continue;
1760 			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1761 				K(mem_cgroup_read_stat(iter, i)));
1762 		}
1763 
1764 		for (i = 0; i < NR_LRU_LISTS; i++)
1765 			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1766 				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1767 
1768 		pr_cont("\n");
1769 	}
1770 	spin_unlock(&oom_info_lock);
1771 }
1772 
1773 /*
1774  * This function returns the number of memcg under hierarchy tree. Returns
1775  * 1(self count) if no children.
1776  */
1777 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1778 {
1779 	int num = 0;
1780 	struct mem_cgroup *iter;
1781 
1782 	for_each_mem_cgroup_tree(iter, memcg)
1783 		num++;
1784 	return num;
1785 }
1786 
1787 /*
1788  * Return the memory (and swap, if configured) limit for a memcg.
1789  */
1790 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1791 {
1792 	u64 limit;
1793 
1794 	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1795 
1796 	/*
1797 	 * Do not consider swap space if we cannot swap due to swappiness
1798 	 */
1799 	if (mem_cgroup_swappiness(memcg)) {
1800 		u64 memsw;
1801 
1802 		limit += total_swap_pages << PAGE_SHIFT;
1803 		memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1804 
1805 		/*
1806 		 * If memsw is finite and limits the amount of swap space
1807 		 * available to this memcg, return that limit.
1808 		 */
1809 		limit = min(limit, memsw);
1810 	}
1811 
1812 	return limit;
1813 }
1814 
1815 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1816 				     int order)
1817 {
1818 	struct mem_cgroup *iter;
1819 	unsigned long chosen_points = 0;
1820 	unsigned long totalpages;
1821 	unsigned int points = 0;
1822 	struct task_struct *chosen = NULL;
1823 
1824 	/*
1825 	 * If current has a pending SIGKILL or is exiting, then automatically
1826 	 * select it.  The goal is to allow it to allocate so that it may
1827 	 * quickly exit and free its memory.
1828 	 */
1829 	if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1830 		set_thread_flag(TIF_MEMDIE);
1831 		return;
1832 	}
1833 
1834 	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1835 	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1836 	for_each_mem_cgroup_tree(iter, memcg) {
1837 		struct css_task_iter it;
1838 		struct task_struct *task;
1839 
1840 		css_task_iter_start(&iter->css, &it);
1841 		while ((task = css_task_iter_next(&it))) {
1842 			switch (oom_scan_process_thread(task, totalpages, NULL,
1843 							false)) {
1844 			case OOM_SCAN_SELECT:
1845 				if (chosen)
1846 					put_task_struct(chosen);
1847 				chosen = task;
1848 				chosen_points = ULONG_MAX;
1849 				get_task_struct(chosen);
1850 				/* fall through */
1851 			case OOM_SCAN_CONTINUE:
1852 				continue;
1853 			case OOM_SCAN_ABORT:
1854 				css_task_iter_end(&it);
1855 				mem_cgroup_iter_break(memcg, iter);
1856 				if (chosen)
1857 					put_task_struct(chosen);
1858 				return;
1859 			case OOM_SCAN_OK:
1860 				break;
1861 			};
1862 			points = oom_badness(task, memcg, NULL, totalpages);
1863 			if (!points || points < chosen_points)
1864 				continue;
1865 			/* Prefer thread group leaders for display purposes */
1866 			if (points == chosen_points &&
1867 			    thread_group_leader(chosen))
1868 				continue;
1869 
1870 			if (chosen)
1871 				put_task_struct(chosen);
1872 			chosen = task;
1873 			chosen_points = points;
1874 			get_task_struct(chosen);
1875 		}
1876 		css_task_iter_end(&it);
1877 	}
1878 
1879 	if (!chosen)
1880 		return;
1881 	points = chosen_points * 1000 / totalpages;
1882 	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1883 			 NULL, "Memory cgroup out of memory");
1884 }
1885 
1886 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1887 					gfp_t gfp_mask,
1888 					unsigned long flags)
1889 {
1890 	unsigned long total = 0;
1891 	bool noswap = false;
1892 	int loop;
1893 
1894 	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1895 		noswap = true;
1896 	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1897 		noswap = true;
1898 
1899 	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1900 		if (loop)
1901 			drain_all_stock_async(memcg);
1902 		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1903 		/*
1904 		 * Allow limit shrinkers, which are triggered directly
1905 		 * by userspace, to catch signals and stop reclaim
1906 		 * after minimal progress, regardless of the margin.
1907 		 */
1908 		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1909 			break;
1910 		if (mem_cgroup_margin(memcg))
1911 			break;
1912 		/*
1913 		 * If nothing was reclaimed after two attempts, there
1914 		 * may be no reclaimable pages in this hierarchy.
1915 		 */
1916 		if (loop && !total)
1917 			break;
1918 	}
1919 	return total;
1920 }
1921 
1922 /**
1923  * test_mem_cgroup_node_reclaimable
1924  * @memcg: the target memcg
1925  * @nid: the node ID to be checked.
1926  * @noswap : specify true here if the user wants flle only information.
1927  *
1928  * This function returns whether the specified memcg contains any
1929  * reclaimable pages on a node. Returns true if there are any reclaimable
1930  * pages in the node.
1931  */
1932 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1933 		int nid, bool noswap)
1934 {
1935 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1936 		return true;
1937 	if (noswap || !total_swap_pages)
1938 		return false;
1939 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1940 		return true;
1941 	return false;
1942 
1943 }
1944 #if MAX_NUMNODES > 1
1945 
1946 /*
1947  * Always updating the nodemask is not very good - even if we have an empty
1948  * list or the wrong list here, we can start from some node and traverse all
1949  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1950  *
1951  */
1952 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1953 {
1954 	int nid;
1955 	/*
1956 	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1957 	 * pagein/pageout changes since the last update.
1958 	 */
1959 	if (!atomic_read(&memcg->numainfo_events))
1960 		return;
1961 	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1962 		return;
1963 
1964 	/* make a nodemask where this memcg uses memory from */
1965 	memcg->scan_nodes = node_states[N_MEMORY];
1966 
1967 	for_each_node_mask(nid, node_states[N_MEMORY]) {
1968 
1969 		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1970 			node_clear(nid, memcg->scan_nodes);
1971 	}
1972 
1973 	atomic_set(&memcg->numainfo_events, 0);
1974 	atomic_set(&memcg->numainfo_updating, 0);
1975 }
1976 
1977 /*
1978  * Selecting a node where we start reclaim from. Because what we need is just
1979  * reducing usage counter, start from anywhere is O,K. Considering
1980  * memory reclaim from current node, there are pros. and cons.
1981  *
1982  * Freeing memory from current node means freeing memory from a node which
1983  * we'll use or we've used. So, it may make LRU bad. And if several threads
1984  * hit limits, it will see a contention on a node. But freeing from remote
1985  * node means more costs for memory reclaim because of memory latency.
1986  *
1987  * Now, we use round-robin. Better algorithm is welcomed.
1988  */
1989 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1990 {
1991 	int node;
1992 
1993 	mem_cgroup_may_update_nodemask(memcg);
1994 	node = memcg->last_scanned_node;
1995 
1996 	node = next_node(node, memcg->scan_nodes);
1997 	if (node == MAX_NUMNODES)
1998 		node = first_node(memcg->scan_nodes);
1999 	/*
2000 	 * We call this when we hit limit, not when pages are added to LRU.
2001 	 * No LRU may hold pages because all pages are UNEVICTABLE or
2002 	 * memcg is too small and all pages are not on LRU. In that case,
2003 	 * we use curret node.
2004 	 */
2005 	if (unlikely(node == MAX_NUMNODES))
2006 		node = numa_node_id();
2007 
2008 	memcg->last_scanned_node = node;
2009 	return node;
2010 }
2011 
2012 /*
2013  * Check all nodes whether it contains reclaimable pages or not.
2014  * For quick scan, we make use of scan_nodes. This will allow us to skip
2015  * unused nodes. But scan_nodes is lazily updated and may not cotain
2016  * enough new information. We need to do double check.
2017  */
2018 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
2019 {
2020 	int nid;
2021 
2022 	/*
2023 	 * quick check...making use of scan_node.
2024 	 * We can skip unused nodes.
2025 	 */
2026 	if (!nodes_empty(memcg->scan_nodes)) {
2027 		for (nid = first_node(memcg->scan_nodes);
2028 		     nid < MAX_NUMNODES;
2029 		     nid = next_node(nid, memcg->scan_nodes)) {
2030 
2031 			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
2032 				return true;
2033 		}
2034 	}
2035 	/*
2036 	 * Check rest of nodes.
2037 	 */
2038 	for_each_node_state(nid, N_MEMORY) {
2039 		if (node_isset(nid, memcg->scan_nodes))
2040 			continue;
2041 		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
2042 			return true;
2043 	}
2044 	return false;
2045 }
2046 
2047 #else
2048 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
2049 {
2050 	return 0;
2051 }
2052 
2053 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
2054 {
2055 	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
2056 }
2057 #endif
2058 
2059 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
2060 				   struct zone *zone,
2061 				   gfp_t gfp_mask,
2062 				   unsigned long *total_scanned)
2063 {
2064 	struct mem_cgroup *victim = NULL;
2065 	int total = 0;
2066 	int loop = 0;
2067 	unsigned long excess;
2068 	unsigned long nr_scanned;
2069 	struct mem_cgroup_reclaim_cookie reclaim = {
2070 		.zone = zone,
2071 		.priority = 0,
2072 	};
2073 
2074 	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
2075 
2076 	while (1) {
2077 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2078 		if (!victim) {
2079 			loop++;
2080 			if (loop >= 2) {
2081 				/*
2082 				 * If we have not been able to reclaim
2083 				 * anything, it might because there are
2084 				 * no reclaimable pages under this hierarchy
2085 				 */
2086 				if (!total)
2087 					break;
2088 				/*
2089 				 * We want to do more targeted reclaim.
2090 				 * excess >> 2 is not to excessive so as to
2091 				 * reclaim too much, nor too less that we keep
2092 				 * coming back to reclaim from this cgroup
2093 				 */
2094 				if (total >= (excess >> 2) ||
2095 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2096 					break;
2097 			}
2098 			continue;
2099 		}
2100 		if (!mem_cgroup_reclaimable(victim, false))
2101 			continue;
2102 		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2103 						     zone, &nr_scanned);
2104 		*total_scanned += nr_scanned;
2105 		if (!res_counter_soft_limit_excess(&root_memcg->res))
2106 			break;
2107 	}
2108 	mem_cgroup_iter_break(root_memcg, victim);
2109 	return total;
2110 }
2111 
2112 #ifdef CONFIG_LOCKDEP
2113 static struct lockdep_map memcg_oom_lock_dep_map = {
2114 	.name = "memcg_oom_lock",
2115 };
2116 #endif
2117 
2118 static DEFINE_SPINLOCK(memcg_oom_lock);
2119 
2120 /*
2121  * Check OOM-Killer is already running under our hierarchy.
2122  * If someone is running, return false.
2123  */
2124 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
2125 {
2126 	struct mem_cgroup *iter, *failed = NULL;
2127 
2128 	spin_lock(&memcg_oom_lock);
2129 
2130 	for_each_mem_cgroup_tree(iter, memcg) {
2131 		if (iter->oom_lock) {
2132 			/*
2133 			 * this subtree of our hierarchy is already locked
2134 			 * so we cannot give a lock.
2135 			 */
2136 			failed = iter;
2137 			mem_cgroup_iter_break(memcg, iter);
2138 			break;
2139 		} else
2140 			iter->oom_lock = true;
2141 	}
2142 
2143 	if (failed) {
2144 		/*
2145 		 * OK, we failed to lock the whole subtree so we have
2146 		 * to clean up what we set up to the failing subtree
2147 		 */
2148 		for_each_mem_cgroup_tree(iter, memcg) {
2149 			if (iter == failed) {
2150 				mem_cgroup_iter_break(memcg, iter);
2151 				break;
2152 			}
2153 			iter->oom_lock = false;
2154 		}
2155 	} else
2156 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
2157 
2158 	spin_unlock(&memcg_oom_lock);
2159 
2160 	return !failed;
2161 }
2162 
2163 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2164 {
2165 	struct mem_cgroup *iter;
2166 
2167 	spin_lock(&memcg_oom_lock);
2168 	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
2169 	for_each_mem_cgroup_tree(iter, memcg)
2170 		iter->oom_lock = false;
2171 	spin_unlock(&memcg_oom_lock);
2172 }
2173 
2174 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2175 {
2176 	struct mem_cgroup *iter;
2177 
2178 	for_each_mem_cgroup_tree(iter, memcg)
2179 		atomic_inc(&iter->under_oom);
2180 }
2181 
2182 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2183 {
2184 	struct mem_cgroup *iter;
2185 
2186 	/*
2187 	 * When a new child is created while the hierarchy is under oom,
2188 	 * mem_cgroup_oom_lock() may not be called. We have to use
2189 	 * atomic_add_unless() here.
2190 	 */
2191 	for_each_mem_cgroup_tree(iter, memcg)
2192 		atomic_add_unless(&iter->under_oom, -1, 0);
2193 }
2194 
2195 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2196 
2197 struct oom_wait_info {
2198 	struct mem_cgroup *memcg;
2199 	wait_queue_t	wait;
2200 };
2201 
2202 static int memcg_oom_wake_function(wait_queue_t *wait,
2203 	unsigned mode, int sync, void *arg)
2204 {
2205 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2206 	struct mem_cgroup *oom_wait_memcg;
2207 	struct oom_wait_info *oom_wait_info;
2208 
2209 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2210 	oom_wait_memcg = oom_wait_info->memcg;
2211 
2212 	/*
2213 	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
2214 	 * Then we can use css_is_ancestor without taking care of RCU.
2215 	 */
2216 	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2217 		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
2218 		return 0;
2219 	return autoremove_wake_function(wait, mode, sync, arg);
2220 }
2221 
2222 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
2223 {
2224 	atomic_inc(&memcg->oom_wakeups);
2225 	/* for filtering, pass "memcg" as argument. */
2226 	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
2227 }
2228 
2229 static void memcg_oom_recover(struct mem_cgroup *memcg)
2230 {
2231 	if (memcg && atomic_read(&memcg->under_oom))
2232 		memcg_wakeup_oom(memcg);
2233 }
2234 
2235 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
2236 {
2237 	if (!current->memcg_oom.may_oom)
2238 		return;
2239 	/*
2240 	 * We are in the middle of the charge context here, so we
2241 	 * don't want to block when potentially sitting on a callstack
2242 	 * that holds all kinds of filesystem and mm locks.
2243 	 *
2244 	 * Also, the caller may handle a failed allocation gracefully
2245 	 * (like optional page cache readahead) and so an OOM killer
2246 	 * invocation might not even be necessary.
2247 	 *
2248 	 * That's why we don't do anything here except remember the
2249 	 * OOM context and then deal with it at the end of the page
2250 	 * fault when the stack is unwound, the locks are released,
2251 	 * and when we know whether the fault was overall successful.
2252 	 */
2253 	css_get(&memcg->css);
2254 	current->memcg_oom.memcg = memcg;
2255 	current->memcg_oom.gfp_mask = mask;
2256 	current->memcg_oom.order = order;
2257 }
2258 
2259 /**
2260  * mem_cgroup_oom_synchronize - complete memcg OOM handling
2261  * @handle: actually kill/wait or just clean up the OOM state
2262  *
2263  * This has to be called at the end of a page fault if the memcg OOM
2264  * handler was enabled.
2265  *
2266  * Memcg supports userspace OOM handling where failed allocations must
2267  * sleep on a waitqueue until the userspace task resolves the
2268  * situation.  Sleeping directly in the charge context with all kinds
2269  * of locks held is not a good idea, instead we remember an OOM state
2270  * in the task and mem_cgroup_oom_synchronize() has to be called at
2271  * the end of the page fault to complete the OOM handling.
2272  *
2273  * Returns %true if an ongoing memcg OOM situation was detected and
2274  * completed, %false otherwise.
2275  */
2276 bool mem_cgroup_oom_synchronize(bool handle)
2277 {
2278 	struct mem_cgroup *memcg = current->memcg_oom.memcg;
2279 	struct oom_wait_info owait;
2280 	bool locked;
2281 
2282 	/* OOM is global, do not handle */
2283 	if (!memcg)
2284 		return false;
2285 
2286 	if (!handle)
2287 		goto cleanup;
2288 
2289 	owait.memcg = memcg;
2290 	owait.wait.flags = 0;
2291 	owait.wait.func = memcg_oom_wake_function;
2292 	owait.wait.private = current;
2293 	INIT_LIST_HEAD(&owait.wait.task_list);
2294 
2295 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2296 	mem_cgroup_mark_under_oom(memcg);
2297 
2298 	locked = mem_cgroup_oom_trylock(memcg);
2299 
2300 	if (locked)
2301 		mem_cgroup_oom_notify(memcg);
2302 
2303 	if (locked && !memcg->oom_kill_disable) {
2304 		mem_cgroup_unmark_under_oom(memcg);
2305 		finish_wait(&memcg_oom_waitq, &owait.wait);
2306 		mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
2307 					 current->memcg_oom.order);
2308 	} else {
2309 		schedule();
2310 		mem_cgroup_unmark_under_oom(memcg);
2311 		finish_wait(&memcg_oom_waitq, &owait.wait);
2312 	}
2313 
2314 	if (locked) {
2315 		mem_cgroup_oom_unlock(memcg);
2316 		/*
2317 		 * There is no guarantee that an OOM-lock contender
2318 		 * sees the wakeups triggered by the OOM kill
2319 		 * uncharges.  Wake any sleepers explicitely.
2320 		 */
2321 		memcg_oom_recover(memcg);
2322 	}
2323 cleanup:
2324 	current->memcg_oom.memcg = NULL;
2325 	css_put(&memcg->css);
2326 	return true;
2327 }
2328 
2329 /*
2330  * Currently used to update mapped file statistics, but the routine can be
2331  * generalized to update other statistics as well.
2332  *
2333  * Notes: Race condition
2334  *
2335  * We usually use page_cgroup_lock() for accessing page_cgroup member but
2336  * it tends to be costly. But considering some conditions, we doesn't need
2337  * to do so _always_.
2338  *
2339  * Considering "charge", lock_page_cgroup() is not required because all
2340  * file-stat operations happen after a page is attached to radix-tree. There
2341  * are no race with "charge".
2342  *
2343  * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2344  * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2345  * if there are race with "uncharge". Statistics itself is properly handled
2346  * by flags.
2347  *
2348  * Considering "move", this is an only case we see a race. To make the race
2349  * small, we check mm->moving_account and detect there are possibility of race
2350  * If there is, we take a lock.
2351  */
2352 
2353 void __mem_cgroup_begin_update_page_stat(struct page *page,
2354 				bool *locked, unsigned long *flags)
2355 {
2356 	struct mem_cgroup *memcg;
2357 	struct page_cgroup *pc;
2358 
2359 	pc = lookup_page_cgroup(page);
2360 again:
2361 	memcg = pc->mem_cgroup;
2362 	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2363 		return;
2364 	/*
2365 	 * If this memory cgroup is not under account moving, we don't
2366 	 * need to take move_lock_mem_cgroup(). Because we already hold
2367 	 * rcu_read_lock(), any calls to move_account will be delayed until
2368 	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2369 	 */
2370 	if (!mem_cgroup_stolen(memcg))
2371 		return;
2372 
2373 	move_lock_mem_cgroup(memcg, flags);
2374 	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2375 		move_unlock_mem_cgroup(memcg, flags);
2376 		goto again;
2377 	}
2378 	*locked = true;
2379 }
2380 
2381 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2382 {
2383 	struct page_cgroup *pc = lookup_page_cgroup(page);
2384 
2385 	/*
2386 	 * It's guaranteed that pc->mem_cgroup never changes while
2387 	 * lock is held because a routine modifies pc->mem_cgroup
2388 	 * should take move_lock_mem_cgroup().
2389 	 */
2390 	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2391 }
2392 
2393 void mem_cgroup_update_page_stat(struct page *page,
2394 				 enum mem_cgroup_stat_index idx, int val)
2395 {
2396 	struct mem_cgroup *memcg;
2397 	struct page_cgroup *pc = lookup_page_cgroup(page);
2398 	unsigned long uninitialized_var(flags);
2399 
2400 	if (mem_cgroup_disabled())
2401 		return;
2402 
2403 	VM_BUG_ON(!rcu_read_lock_held());
2404 	memcg = pc->mem_cgroup;
2405 	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2406 		return;
2407 
2408 	this_cpu_add(memcg->stat->count[idx], val);
2409 }
2410 
2411 /*
2412  * size of first charge trial. "32" comes from vmscan.c's magic value.
2413  * TODO: maybe necessary to use big numbers in big irons.
2414  */
2415 #define CHARGE_BATCH	32U
2416 struct memcg_stock_pcp {
2417 	struct mem_cgroup *cached; /* this never be root cgroup */
2418 	unsigned int nr_pages;
2419 	struct work_struct work;
2420 	unsigned long flags;
2421 #define FLUSHING_CACHED_CHARGE	0
2422 };
2423 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2424 static DEFINE_MUTEX(percpu_charge_mutex);
2425 
2426 /**
2427  * consume_stock: Try to consume stocked charge on this cpu.
2428  * @memcg: memcg to consume from.
2429  * @nr_pages: how many pages to charge.
2430  *
2431  * The charges will only happen if @memcg matches the current cpu's memcg
2432  * stock, and at least @nr_pages are available in that stock.  Failure to
2433  * service an allocation will refill the stock.
2434  *
2435  * returns true if successful, false otherwise.
2436  */
2437 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2438 {
2439 	struct memcg_stock_pcp *stock;
2440 	bool ret = true;
2441 
2442 	if (nr_pages > CHARGE_BATCH)
2443 		return false;
2444 
2445 	stock = &get_cpu_var(memcg_stock);
2446 	if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2447 		stock->nr_pages -= nr_pages;
2448 	else /* need to call res_counter_charge */
2449 		ret = false;
2450 	put_cpu_var(memcg_stock);
2451 	return ret;
2452 }
2453 
2454 /*
2455  * Returns stocks cached in percpu to res_counter and reset cached information.
2456  */
2457 static void drain_stock(struct memcg_stock_pcp *stock)
2458 {
2459 	struct mem_cgroup *old = stock->cached;
2460 
2461 	if (stock->nr_pages) {
2462 		unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2463 
2464 		res_counter_uncharge(&old->res, bytes);
2465 		if (do_swap_account)
2466 			res_counter_uncharge(&old->memsw, bytes);
2467 		stock->nr_pages = 0;
2468 	}
2469 	stock->cached = NULL;
2470 }
2471 
2472 /*
2473  * This must be called under preempt disabled or must be called by
2474  * a thread which is pinned to local cpu.
2475  */
2476 static void drain_local_stock(struct work_struct *dummy)
2477 {
2478 	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2479 	drain_stock(stock);
2480 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2481 }
2482 
2483 static void __init memcg_stock_init(void)
2484 {
2485 	int cpu;
2486 
2487 	for_each_possible_cpu(cpu) {
2488 		struct memcg_stock_pcp *stock =
2489 					&per_cpu(memcg_stock, cpu);
2490 		INIT_WORK(&stock->work, drain_local_stock);
2491 	}
2492 }
2493 
2494 /*
2495  * Cache charges(val) which is from res_counter, to local per_cpu area.
2496  * This will be consumed by consume_stock() function, later.
2497  */
2498 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2499 {
2500 	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2501 
2502 	if (stock->cached != memcg) { /* reset if necessary */
2503 		drain_stock(stock);
2504 		stock->cached = memcg;
2505 	}
2506 	stock->nr_pages += nr_pages;
2507 	put_cpu_var(memcg_stock);
2508 }
2509 
2510 /*
2511  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2512  * of the hierarchy under it. sync flag says whether we should block
2513  * until the work is done.
2514  */
2515 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2516 {
2517 	int cpu, curcpu;
2518 
2519 	/* Notify other cpus that system-wide "drain" is running */
2520 	get_online_cpus();
2521 	curcpu = get_cpu();
2522 	for_each_online_cpu(cpu) {
2523 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2524 		struct mem_cgroup *memcg;
2525 
2526 		memcg = stock->cached;
2527 		if (!memcg || !stock->nr_pages)
2528 			continue;
2529 		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2530 			continue;
2531 		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2532 			if (cpu == curcpu)
2533 				drain_local_stock(&stock->work);
2534 			else
2535 				schedule_work_on(cpu, &stock->work);
2536 		}
2537 	}
2538 	put_cpu();
2539 
2540 	if (!sync)
2541 		goto out;
2542 
2543 	for_each_online_cpu(cpu) {
2544 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2545 		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2546 			flush_work(&stock->work);
2547 	}
2548 out:
2549 	put_online_cpus();
2550 }
2551 
2552 /*
2553  * Tries to drain stocked charges in other cpus. This function is asynchronous
2554  * and just put a work per cpu for draining localy on each cpu. Caller can
2555  * expects some charges will be back to res_counter later but cannot wait for
2556  * it.
2557  */
2558 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2559 {
2560 	/*
2561 	 * If someone calls draining, avoid adding more kworker runs.
2562 	 */
2563 	if (!mutex_trylock(&percpu_charge_mutex))
2564 		return;
2565 	drain_all_stock(root_memcg, false);
2566 	mutex_unlock(&percpu_charge_mutex);
2567 }
2568 
2569 /* This is a synchronous drain interface. */
2570 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2571 {
2572 	/* called when force_empty is called */
2573 	mutex_lock(&percpu_charge_mutex);
2574 	drain_all_stock(root_memcg, true);
2575 	mutex_unlock(&percpu_charge_mutex);
2576 }
2577 
2578 /*
2579  * This function drains percpu counter value from DEAD cpu and
2580  * move it to local cpu. Note that this function can be preempted.
2581  */
2582 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2583 {
2584 	int i;
2585 
2586 	spin_lock(&memcg->pcp_counter_lock);
2587 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2588 		long x = per_cpu(memcg->stat->count[i], cpu);
2589 
2590 		per_cpu(memcg->stat->count[i], cpu) = 0;
2591 		memcg->nocpu_base.count[i] += x;
2592 	}
2593 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2594 		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2595 
2596 		per_cpu(memcg->stat->events[i], cpu) = 0;
2597 		memcg->nocpu_base.events[i] += x;
2598 	}
2599 	spin_unlock(&memcg->pcp_counter_lock);
2600 }
2601 
2602 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2603 					unsigned long action,
2604 					void *hcpu)
2605 {
2606 	int cpu = (unsigned long)hcpu;
2607 	struct memcg_stock_pcp *stock;
2608 	struct mem_cgroup *iter;
2609 
2610 	if (action == CPU_ONLINE)
2611 		return NOTIFY_OK;
2612 
2613 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2614 		return NOTIFY_OK;
2615 
2616 	for_each_mem_cgroup(iter)
2617 		mem_cgroup_drain_pcp_counter(iter, cpu);
2618 
2619 	stock = &per_cpu(memcg_stock, cpu);
2620 	drain_stock(stock);
2621 	return NOTIFY_OK;
2622 }
2623 
2624 
2625 /* See __mem_cgroup_try_charge() for details */
2626 enum {
2627 	CHARGE_OK,		/* success */
2628 	CHARGE_RETRY,		/* need to retry but retry is not bad */
2629 	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
2630 	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
2631 };
2632 
2633 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2634 				unsigned int nr_pages, unsigned int min_pages,
2635 				bool invoke_oom)
2636 {
2637 	unsigned long csize = nr_pages * PAGE_SIZE;
2638 	struct mem_cgroup *mem_over_limit;
2639 	struct res_counter *fail_res;
2640 	unsigned long flags = 0;
2641 	int ret;
2642 
2643 	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2644 
2645 	if (likely(!ret)) {
2646 		if (!do_swap_account)
2647 			return CHARGE_OK;
2648 		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2649 		if (likely(!ret))
2650 			return CHARGE_OK;
2651 
2652 		res_counter_uncharge(&memcg->res, csize);
2653 		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2654 		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2655 	} else
2656 		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2657 	/*
2658 	 * Never reclaim on behalf of optional batching, retry with a
2659 	 * single page instead.
2660 	 */
2661 	if (nr_pages > min_pages)
2662 		return CHARGE_RETRY;
2663 
2664 	if (!(gfp_mask & __GFP_WAIT))
2665 		return CHARGE_WOULDBLOCK;
2666 
2667 	if (gfp_mask & __GFP_NORETRY)
2668 		return CHARGE_NOMEM;
2669 
2670 	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2671 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2672 		return CHARGE_RETRY;
2673 	/*
2674 	 * Even though the limit is exceeded at this point, reclaim
2675 	 * may have been able to free some pages.  Retry the charge
2676 	 * before killing the task.
2677 	 *
2678 	 * Only for regular pages, though: huge pages are rather
2679 	 * unlikely to succeed so close to the limit, and we fall back
2680 	 * to regular pages anyway in case of failure.
2681 	 */
2682 	if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2683 		return CHARGE_RETRY;
2684 
2685 	/*
2686 	 * At task move, charge accounts can be doubly counted. So, it's
2687 	 * better to wait until the end of task_move if something is going on.
2688 	 */
2689 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2690 		return CHARGE_RETRY;
2691 
2692 	if (invoke_oom)
2693 		mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize));
2694 
2695 	return CHARGE_NOMEM;
2696 }
2697 
2698 /*
2699  * __mem_cgroup_try_charge() does
2700  * 1. detect memcg to be charged against from passed *mm and *ptr,
2701  * 2. update res_counter
2702  * 3. call memory reclaim if necessary.
2703  *
2704  * In some special case, if the task is fatal, fatal_signal_pending() or
2705  * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2706  * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2707  * as possible without any hazards. 2: all pages should have a valid
2708  * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2709  * pointer, that is treated as a charge to root_mem_cgroup.
2710  *
2711  * So __mem_cgroup_try_charge() will return
2712  *  0       ...  on success, filling *ptr with a valid memcg pointer.
2713  *  -ENOMEM ...  charge failure because of resource limits.
2714  *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
2715  *
2716  * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2717  * the oom-killer can be invoked.
2718  */
2719 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2720 				   gfp_t gfp_mask,
2721 				   unsigned int nr_pages,
2722 				   struct mem_cgroup **ptr,
2723 				   bool oom)
2724 {
2725 	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2726 	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2727 	struct mem_cgroup *memcg = NULL;
2728 	int ret;
2729 
2730 	/*
2731 	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2732 	 * in system level. So, allow to go ahead dying process in addition to
2733 	 * MEMDIE process.
2734 	 */
2735 	if (unlikely(test_thread_flag(TIF_MEMDIE)
2736 		     || fatal_signal_pending(current)))
2737 		goto bypass;
2738 
2739 	if (unlikely(task_in_memcg_oom(current)))
2740 		goto nomem;
2741 
2742 	if (gfp_mask & __GFP_NOFAIL)
2743 		oom = false;
2744 
2745 	/*
2746 	 * We always charge the cgroup the mm_struct belongs to.
2747 	 * The mm_struct's mem_cgroup changes on task migration if the
2748 	 * thread group leader migrates. It's possible that mm is not
2749 	 * set, if so charge the root memcg (happens for pagecache usage).
2750 	 */
2751 	if (!*ptr && !mm)
2752 		*ptr = root_mem_cgroup;
2753 again:
2754 	if (*ptr) { /* css should be a valid one */
2755 		memcg = *ptr;
2756 		if (mem_cgroup_is_root(memcg))
2757 			goto done;
2758 		if (consume_stock(memcg, nr_pages))
2759 			goto done;
2760 		css_get(&memcg->css);
2761 	} else {
2762 		struct task_struct *p;
2763 
2764 		rcu_read_lock();
2765 		p = rcu_dereference(mm->owner);
2766 		/*
2767 		 * Because we don't have task_lock(), "p" can exit.
2768 		 * In that case, "memcg" can point to root or p can be NULL with
2769 		 * race with swapoff. Then, we have small risk of mis-accouning.
2770 		 * But such kind of mis-account by race always happens because
2771 		 * we don't have cgroup_mutex(). It's overkill and we allo that
2772 		 * small race, here.
2773 		 * (*) swapoff at el will charge against mm-struct not against
2774 		 * task-struct. So, mm->owner can be NULL.
2775 		 */
2776 		memcg = mem_cgroup_from_task(p);
2777 		if (!memcg)
2778 			memcg = root_mem_cgroup;
2779 		if (mem_cgroup_is_root(memcg)) {
2780 			rcu_read_unlock();
2781 			goto done;
2782 		}
2783 		if (consume_stock(memcg, nr_pages)) {
2784 			/*
2785 			 * It seems dagerous to access memcg without css_get().
2786 			 * But considering how consume_stok works, it's not
2787 			 * necessary. If consume_stock success, some charges
2788 			 * from this memcg are cached on this cpu. So, we
2789 			 * don't need to call css_get()/css_tryget() before
2790 			 * calling consume_stock().
2791 			 */
2792 			rcu_read_unlock();
2793 			goto done;
2794 		}
2795 		/* after here, we may be blocked. we need to get refcnt */
2796 		if (!css_tryget(&memcg->css)) {
2797 			rcu_read_unlock();
2798 			goto again;
2799 		}
2800 		rcu_read_unlock();
2801 	}
2802 
2803 	do {
2804 		bool invoke_oom = oom && !nr_oom_retries;
2805 
2806 		/* If killed, bypass charge */
2807 		if (fatal_signal_pending(current)) {
2808 			css_put(&memcg->css);
2809 			goto bypass;
2810 		}
2811 
2812 		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch,
2813 					   nr_pages, invoke_oom);
2814 		switch (ret) {
2815 		case CHARGE_OK:
2816 			break;
2817 		case CHARGE_RETRY: /* not in OOM situation but retry */
2818 			batch = nr_pages;
2819 			css_put(&memcg->css);
2820 			memcg = NULL;
2821 			goto again;
2822 		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2823 			css_put(&memcg->css);
2824 			goto nomem;
2825 		case CHARGE_NOMEM: /* OOM routine works */
2826 			if (!oom || invoke_oom) {
2827 				css_put(&memcg->css);
2828 				goto nomem;
2829 			}
2830 			nr_oom_retries--;
2831 			break;
2832 		}
2833 	} while (ret != CHARGE_OK);
2834 
2835 	if (batch > nr_pages)
2836 		refill_stock(memcg, batch - nr_pages);
2837 	css_put(&memcg->css);
2838 done:
2839 	*ptr = memcg;
2840 	return 0;
2841 nomem:
2842 	if (!(gfp_mask & __GFP_NOFAIL)) {
2843 		*ptr = NULL;
2844 		return -ENOMEM;
2845 	}
2846 bypass:
2847 	*ptr = root_mem_cgroup;
2848 	return -EINTR;
2849 }
2850 
2851 /*
2852  * Somemtimes we have to undo a charge we got by try_charge().
2853  * This function is for that and do uncharge, put css's refcnt.
2854  * gotten by try_charge().
2855  */
2856 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2857 				       unsigned int nr_pages)
2858 {
2859 	if (!mem_cgroup_is_root(memcg)) {
2860 		unsigned long bytes = nr_pages * PAGE_SIZE;
2861 
2862 		res_counter_uncharge(&memcg->res, bytes);
2863 		if (do_swap_account)
2864 			res_counter_uncharge(&memcg->memsw, bytes);
2865 	}
2866 }
2867 
2868 /*
2869  * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2870  * This is useful when moving usage to parent cgroup.
2871  */
2872 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2873 					unsigned int nr_pages)
2874 {
2875 	unsigned long bytes = nr_pages * PAGE_SIZE;
2876 
2877 	if (mem_cgroup_is_root(memcg))
2878 		return;
2879 
2880 	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2881 	if (do_swap_account)
2882 		res_counter_uncharge_until(&memcg->memsw,
2883 						memcg->memsw.parent, bytes);
2884 }
2885 
2886 /*
2887  * A helper function to get mem_cgroup from ID. must be called under
2888  * rcu_read_lock().  The caller is responsible for calling css_tryget if
2889  * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2890  * called against removed memcg.)
2891  */
2892 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2893 {
2894 	/* ID 0 is unused ID */
2895 	if (!id)
2896 		return NULL;
2897 	return mem_cgroup_from_id(id);
2898 }
2899 
2900 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2901 {
2902 	struct mem_cgroup *memcg = NULL;
2903 	struct page_cgroup *pc;
2904 	unsigned short id;
2905 	swp_entry_t ent;
2906 
2907 	VM_BUG_ON_PAGE(!PageLocked(page), page);
2908 
2909 	pc = lookup_page_cgroup(page);
2910 	lock_page_cgroup(pc);
2911 	if (PageCgroupUsed(pc)) {
2912 		memcg = pc->mem_cgroup;
2913 		if (memcg && !css_tryget(&memcg->css))
2914 			memcg = NULL;
2915 	} else if (PageSwapCache(page)) {
2916 		ent.val = page_private(page);
2917 		id = lookup_swap_cgroup_id(ent);
2918 		rcu_read_lock();
2919 		memcg = mem_cgroup_lookup(id);
2920 		if (memcg && !css_tryget(&memcg->css))
2921 			memcg = NULL;
2922 		rcu_read_unlock();
2923 	}
2924 	unlock_page_cgroup(pc);
2925 	return memcg;
2926 }
2927 
2928 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2929 				       struct page *page,
2930 				       unsigned int nr_pages,
2931 				       enum charge_type ctype,
2932 				       bool lrucare)
2933 {
2934 	struct page_cgroup *pc = lookup_page_cgroup(page);
2935 	struct zone *uninitialized_var(zone);
2936 	struct lruvec *lruvec;
2937 	bool was_on_lru = false;
2938 	bool anon;
2939 
2940 	lock_page_cgroup(pc);
2941 	VM_BUG_ON_PAGE(PageCgroupUsed(pc), page);
2942 	/*
2943 	 * we don't need page_cgroup_lock about tail pages, becase they are not
2944 	 * accessed by any other context at this point.
2945 	 */
2946 
2947 	/*
2948 	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2949 	 * may already be on some other mem_cgroup's LRU.  Take care of it.
2950 	 */
2951 	if (lrucare) {
2952 		zone = page_zone(page);
2953 		spin_lock_irq(&zone->lru_lock);
2954 		if (PageLRU(page)) {
2955 			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2956 			ClearPageLRU(page);
2957 			del_page_from_lru_list(page, lruvec, page_lru(page));
2958 			was_on_lru = true;
2959 		}
2960 	}
2961 
2962 	pc->mem_cgroup = memcg;
2963 	/*
2964 	 * We access a page_cgroup asynchronously without lock_page_cgroup().
2965 	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2966 	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2967 	 * before USED bit, we need memory barrier here.
2968 	 * See mem_cgroup_add_lru_list(), etc.
2969 	 */
2970 	smp_wmb();
2971 	SetPageCgroupUsed(pc);
2972 
2973 	if (lrucare) {
2974 		if (was_on_lru) {
2975 			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2976 			VM_BUG_ON_PAGE(PageLRU(page), page);
2977 			SetPageLRU(page);
2978 			add_page_to_lru_list(page, lruvec, page_lru(page));
2979 		}
2980 		spin_unlock_irq(&zone->lru_lock);
2981 	}
2982 
2983 	if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2984 		anon = true;
2985 	else
2986 		anon = false;
2987 
2988 	mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2989 	unlock_page_cgroup(pc);
2990 
2991 	/*
2992 	 * "charge_statistics" updated event counter. Then, check it.
2993 	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2994 	 * if they exceeds softlimit.
2995 	 */
2996 	memcg_check_events(memcg, page);
2997 }
2998 
2999 static DEFINE_MUTEX(set_limit_mutex);
3000 
3001 #ifdef CONFIG_MEMCG_KMEM
3002 static DEFINE_MUTEX(activate_kmem_mutex);
3003 
3004 static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
3005 {
3006 	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
3007 		memcg_kmem_is_active(memcg);
3008 }
3009 
3010 /*
3011  * This is a bit cumbersome, but it is rarely used and avoids a backpointer
3012  * in the memcg_cache_params struct.
3013  */
3014 static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
3015 {
3016 	struct kmem_cache *cachep;
3017 
3018 	VM_BUG_ON(p->is_root_cache);
3019 	cachep = p->root_cache;
3020 	return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
3021 }
3022 
3023 #ifdef CONFIG_SLABINFO
3024 static int mem_cgroup_slabinfo_read(struct seq_file *m, void *v)
3025 {
3026 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3027 	struct memcg_cache_params *params;
3028 
3029 	if (!memcg_can_account_kmem(memcg))
3030 		return -EIO;
3031 
3032 	print_slabinfo_header(m);
3033 
3034 	mutex_lock(&memcg->slab_caches_mutex);
3035 	list_for_each_entry(params, &memcg->memcg_slab_caches, list)
3036 		cache_show(memcg_params_to_cache(params), m);
3037 	mutex_unlock(&memcg->slab_caches_mutex);
3038 
3039 	return 0;
3040 }
3041 #endif
3042 
3043 static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
3044 {
3045 	struct res_counter *fail_res;
3046 	struct mem_cgroup *_memcg;
3047 	int ret = 0;
3048 
3049 	ret = res_counter_charge(&memcg->kmem, size, &fail_res);
3050 	if (ret)
3051 		return ret;
3052 
3053 	_memcg = memcg;
3054 	ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
3055 				      &_memcg, oom_gfp_allowed(gfp));
3056 
3057 	if (ret == -EINTR)  {
3058 		/*
3059 		 * __mem_cgroup_try_charge() chosed to bypass to root due to
3060 		 * OOM kill or fatal signal.  Since our only options are to
3061 		 * either fail the allocation or charge it to this cgroup, do
3062 		 * it as a temporary condition. But we can't fail. From a
3063 		 * kmem/slab perspective, the cache has already been selected,
3064 		 * by mem_cgroup_kmem_get_cache(), so it is too late to change
3065 		 * our minds.
3066 		 *
3067 		 * This condition will only trigger if the task entered
3068 		 * memcg_charge_kmem in a sane state, but was OOM-killed during
3069 		 * __mem_cgroup_try_charge() above. Tasks that were already
3070 		 * dying when the allocation triggers should have been already
3071 		 * directed to the root cgroup in memcontrol.h
3072 		 */
3073 		res_counter_charge_nofail(&memcg->res, size, &fail_res);
3074 		if (do_swap_account)
3075 			res_counter_charge_nofail(&memcg->memsw, size,
3076 						  &fail_res);
3077 		ret = 0;
3078 	} else if (ret)
3079 		res_counter_uncharge(&memcg->kmem, size);
3080 
3081 	return ret;
3082 }
3083 
3084 static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
3085 {
3086 	res_counter_uncharge(&memcg->res, size);
3087 	if (do_swap_account)
3088 		res_counter_uncharge(&memcg->memsw, size);
3089 
3090 	/* Not down to 0 */
3091 	if (res_counter_uncharge(&memcg->kmem, size))
3092 		return;
3093 
3094 	/*
3095 	 * Releases a reference taken in kmem_cgroup_css_offline in case
3096 	 * this last uncharge is racing with the offlining code or it is
3097 	 * outliving the memcg existence.
3098 	 *
3099 	 * The memory barrier imposed by test&clear is paired with the
3100 	 * explicit one in memcg_kmem_mark_dead().
3101 	 */
3102 	if (memcg_kmem_test_and_clear_dead(memcg))
3103 		css_put(&memcg->css);
3104 }
3105 
3106 /*
3107  * helper for acessing a memcg's index. It will be used as an index in the
3108  * child cache array in kmem_cache, and also to derive its name. This function
3109  * will return -1 when this is not a kmem-limited memcg.
3110  */
3111 int memcg_cache_id(struct mem_cgroup *memcg)
3112 {
3113 	return memcg ? memcg->kmemcg_id : -1;
3114 }
3115 
3116 static size_t memcg_caches_array_size(int num_groups)
3117 {
3118 	ssize_t size;
3119 	if (num_groups <= 0)
3120 		return 0;
3121 
3122 	size = 2 * num_groups;
3123 	if (size < MEMCG_CACHES_MIN_SIZE)
3124 		size = MEMCG_CACHES_MIN_SIZE;
3125 	else if (size > MEMCG_CACHES_MAX_SIZE)
3126 		size = MEMCG_CACHES_MAX_SIZE;
3127 
3128 	return size;
3129 }
3130 
3131 /*
3132  * We should update the current array size iff all caches updates succeed. This
3133  * can only be done from the slab side. The slab mutex needs to be held when
3134  * calling this.
3135  */
3136 void memcg_update_array_size(int num)
3137 {
3138 	if (num > memcg_limited_groups_array_size)
3139 		memcg_limited_groups_array_size = memcg_caches_array_size(num);
3140 }
3141 
3142 static void kmem_cache_destroy_work_func(struct work_struct *w);
3143 
3144 int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3145 {
3146 	struct memcg_cache_params *cur_params = s->memcg_params;
3147 
3148 	VM_BUG_ON(!is_root_cache(s));
3149 
3150 	if (num_groups > memcg_limited_groups_array_size) {
3151 		int i;
3152 		struct memcg_cache_params *new_params;
3153 		ssize_t size = memcg_caches_array_size(num_groups);
3154 
3155 		size *= sizeof(void *);
3156 		size += offsetof(struct memcg_cache_params, memcg_caches);
3157 
3158 		new_params = kzalloc(size, GFP_KERNEL);
3159 		if (!new_params)
3160 			return -ENOMEM;
3161 
3162 		new_params->is_root_cache = true;
3163 
3164 		/*
3165 		 * There is the chance it will be bigger than
3166 		 * memcg_limited_groups_array_size, if we failed an allocation
3167 		 * in a cache, in which case all caches updated before it, will
3168 		 * have a bigger array.
3169 		 *
3170 		 * But if that is the case, the data after
3171 		 * memcg_limited_groups_array_size is certainly unused
3172 		 */
3173 		for (i = 0; i < memcg_limited_groups_array_size; i++) {
3174 			if (!cur_params->memcg_caches[i])
3175 				continue;
3176 			new_params->memcg_caches[i] =
3177 						cur_params->memcg_caches[i];
3178 		}
3179 
3180 		/*
3181 		 * Ideally, we would wait until all caches succeed, and only
3182 		 * then free the old one. But this is not worth the extra
3183 		 * pointer per-cache we'd have to have for this.
3184 		 *
3185 		 * It is not a big deal if some caches are left with a size
3186 		 * bigger than the others. And all updates will reset this
3187 		 * anyway.
3188 		 */
3189 		rcu_assign_pointer(s->memcg_params, new_params);
3190 		if (cur_params)
3191 			kfree_rcu(cur_params, rcu_head);
3192 	}
3193 	return 0;
3194 }
3195 
3196 int memcg_alloc_cache_params(struct mem_cgroup *memcg, struct kmem_cache *s,
3197 			     struct kmem_cache *root_cache)
3198 {
3199 	size_t size;
3200 
3201 	if (!memcg_kmem_enabled())
3202 		return 0;
3203 
3204 	if (!memcg) {
3205 		size = offsetof(struct memcg_cache_params, memcg_caches);
3206 		size += memcg_limited_groups_array_size * sizeof(void *);
3207 	} else
3208 		size = sizeof(struct memcg_cache_params);
3209 
3210 	s->memcg_params = kzalloc(size, GFP_KERNEL);
3211 	if (!s->memcg_params)
3212 		return -ENOMEM;
3213 
3214 	if (memcg) {
3215 		s->memcg_params->memcg = memcg;
3216 		s->memcg_params->root_cache = root_cache;
3217 		INIT_WORK(&s->memcg_params->destroy,
3218 				kmem_cache_destroy_work_func);
3219 	} else
3220 		s->memcg_params->is_root_cache = true;
3221 
3222 	return 0;
3223 }
3224 
3225 void memcg_free_cache_params(struct kmem_cache *s)
3226 {
3227 	kfree(s->memcg_params);
3228 }
3229 
3230 void memcg_register_cache(struct kmem_cache *s)
3231 {
3232 	struct kmem_cache *root;
3233 	struct mem_cgroup *memcg;
3234 	int id;
3235 
3236 	if (is_root_cache(s))
3237 		return;
3238 
3239 	/*
3240 	 * Holding the slab_mutex assures nobody will touch the memcg_caches
3241 	 * array while we are modifying it.
3242 	 */
3243 	lockdep_assert_held(&slab_mutex);
3244 
3245 	root = s->memcg_params->root_cache;
3246 	memcg = s->memcg_params->memcg;
3247 	id = memcg_cache_id(memcg);
3248 
3249 	css_get(&memcg->css);
3250 
3251 
3252 	/*
3253 	 * Since readers won't lock (see cache_from_memcg_idx()), we need a
3254 	 * barrier here to ensure nobody will see the kmem_cache partially
3255 	 * initialized.
3256 	 */
3257 	smp_wmb();
3258 
3259 	/*
3260 	 * Initialize the pointer to this cache in its parent's memcg_params
3261 	 * before adding it to the memcg_slab_caches list, otherwise we can
3262 	 * fail to convert memcg_params_to_cache() while traversing the list.
3263 	 */
3264 	VM_BUG_ON(root->memcg_params->memcg_caches[id]);
3265 	root->memcg_params->memcg_caches[id] = s;
3266 
3267 	mutex_lock(&memcg->slab_caches_mutex);
3268 	list_add(&s->memcg_params->list, &memcg->memcg_slab_caches);
3269 	mutex_unlock(&memcg->slab_caches_mutex);
3270 }
3271 
3272 void memcg_unregister_cache(struct kmem_cache *s)
3273 {
3274 	struct kmem_cache *root;
3275 	struct mem_cgroup *memcg;
3276 	int id;
3277 
3278 	if (is_root_cache(s))
3279 		return;
3280 
3281 	/*
3282 	 * Holding the slab_mutex assures nobody will touch the memcg_caches
3283 	 * array while we are modifying it.
3284 	 */
3285 	lockdep_assert_held(&slab_mutex);
3286 
3287 	root = s->memcg_params->root_cache;
3288 	memcg = s->memcg_params->memcg;
3289 	id = memcg_cache_id(memcg);
3290 
3291 	mutex_lock(&memcg->slab_caches_mutex);
3292 	list_del(&s->memcg_params->list);
3293 	mutex_unlock(&memcg->slab_caches_mutex);
3294 
3295 	/*
3296 	 * Clear the pointer to this cache in its parent's memcg_params only
3297 	 * after removing it from the memcg_slab_caches list, otherwise we can
3298 	 * fail to convert memcg_params_to_cache() while traversing the list.
3299 	 */
3300 	VM_BUG_ON(!root->memcg_params->memcg_caches[id]);
3301 	root->memcg_params->memcg_caches[id] = NULL;
3302 
3303 	css_put(&memcg->css);
3304 }
3305 
3306 /*
3307  * During the creation a new cache, we need to disable our accounting mechanism
3308  * altogether. This is true even if we are not creating, but rather just
3309  * enqueing new caches to be created.
3310  *
3311  * This is because that process will trigger allocations; some visible, like
3312  * explicit kmallocs to auxiliary data structures, name strings and internal
3313  * cache structures; some well concealed, like INIT_WORK() that can allocate
3314  * objects during debug.
3315  *
3316  * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3317  * to it. This may not be a bounded recursion: since the first cache creation
3318  * failed to complete (waiting on the allocation), we'll just try to create the
3319  * cache again, failing at the same point.
3320  *
3321  * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3322  * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3323  * inside the following two functions.
3324  */
3325 static inline void memcg_stop_kmem_account(void)
3326 {
3327 	VM_BUG_ON(!current->mm);
3328 	current->memcg_kmem_skip_account++;
3329 }
3330 
3331 static inline void memcg_resume_kmem_account(void)
3332 {
3333 	VM_BUG_ON(!current->mm);
3334 	current->memcg_kmem_skip_account--;
3335 }
3336 
3337 static void kmem_cache_destroy_work_func(struct work_struct *w)
3338 {
3339 	struct kmem_cache *cachep;
3340 	struct memcg_cache_params *p;
3341 
3342 	p = container_of(w, struct memcg_cache_params, destroy);
3343 
3344 	cachep = memcg_params_to_cache(p);
3345 
3346 	/*
3347 	 * If we get down to 0 after shrink, we could delete right away.
3348 	 * However, memcg_release_pages() already puts us back in the workqueue
3349 	 * in that case. If we proceed deleting, we'll get a dangling
3350 	 * reference, and removing the object from the workqueue in that case
3351 	 * is unnecessary complication. We are not a fast path.
3352 	 *
3353 	 * Note that this case is fundamentally different from racing with
3354 	 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3355 	 * kmem_cache_shrink, not only we would be reinserting a dead cache
3356 	 * into the queue, but doing so from inside the worker racing to
3357 	 * destroy it.
3358 	 *
3359 	 * So if we aren't down to zero, we'll just schedule a worker and try
3360 	 * again
3361 	 */
3362 	if (atomic_read(&cachep->memcg_params->nr_pages) != 0)
3363 		kmem_cache_shrink(cachep);
3364 	else
3365 		kmem_cache_destroy(cachep);
3366 }
3367 
3368 void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3369 {
3370 	if (!cachep->memcg_params->dead)
3371 		return;
3372 
3373 	/*
3374 	 * There are many ways in which we can get here.
3375 	 *
3376 	 * We can get to a memory-pressure situation while the delayed work is
3377 	 * still pending to run. The vmscan shrinkers can then release all
3378 	 * cache memory and get us to destruction. If this is the case, we'll
3379 	 * be executed twice, which is a bug (the second time will execute over
3380 	 * bogus data). In this case, cancelling the work should be fine.
3381 	 *
3382 	 * But we can also get here from the worker itself, if
3383 	 * kmem_cache_shrink is enough to shake all the remaining objects and
3384 	 * get the page count to 0. In this case, we'll deadlock if we try to
3385 	 * cancel the work (the worker runs with an internal lock held, which
3386 	 * is the same lock we would hold for cancel_work_sync().)
3387 	 *
3388 	 * Since we can't possibly know who got us here, just refrain from
3389 	 * running if there is already work pending
3390 	 */
3391 	if (work_pending(&cachep->memcg_params->destroy))
3392 		return;
3393 	/*
3394 	 * We have to defer the actual destroying to a workqueue, because
3395 	 * we might currently be in a context that cannot sleep.
3396 	 */
3397 	schedule_work(&cachep->memcg_params->destroy);
3398 }
3399 
3400 static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
3401 						  struct kmem_cache *s)
3402 {
3403 	struct kmem_cache *new = NULL;
3404 	static char *tmp_name = NULL;
3405 	static DEFINE_MUTEX(mutex);	/* protects tmp_name */
3406 
3407 	BUG_ON(!memcg_can_account_kmem(memcg));
3408 
3409 	mutex_lock(&mutex);
3410 	/*
3411 	 * kmem_cache_create_memcg duplicates the given name and
3412 	 * cgroup_name for this name requires RCU context.
3413 	 * This static temporary buffer is used to prevent from
3414 	 * pointless shortliving allocation.
3415 	 */
3416 	if (!tmp_name) {
3417 		tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
3418 		if (!tmp_name)
3419 			goto out;
3420 	}
3421 
3422 	rcu_read_lock();
3423 	snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
3424 			 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
3425 	rcu_read_unlock();
3426 
3427 	new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
3428 				      (s->flags & ~SLAB_PANIC), s->ctor, s);
3429 	if (new)
3430 		new->allocflags |= __GFP_KMEMCG;
3431 	else
3432 		new = s;
3433 out:
3434 	mutex_unlock(&mutex);
3435 	return new;
3436 }
3437 
3438 void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3439 {
3440 	struct kmem_cache *c;
3441 	int i;
3442 
3443 	if (!s->memcg_params)
3444 		return;
3445 	if (!s->memcg_params->is_root_cache)
3446 		return;
3447 
3448 	/*
3449 	 * If the cache is being destroyed, we trust that there is no one else
3450 	 * requesting objects from it. Even if there are, the sanity checks in
3451 	 * kmem_cache_destroy should caught this ill-case.
3452 	 *
3453 	 * Still, we don't want anyone else freeing memcg_caches under our
3454 	 * noses, which can happen if a new memcg comes to life. As usual,
3455 	 * we'll take the activate_kmem_mutex to protect ourselves against
3456 	 * this.
3457 	 */
3458 	mutex_lock(&activate_kmem_mutex);
3459 	for_each_memcg_cache_index(i) {
3460 		c = cache_from_memcg_idx(s, i);
3461 		if (!c)
3462 			continue;
3463 
3464 		/*
3465 		 * We will now manually delete the caches, so to avoid races
3466 		 * we need to cancel all pending destruction workers and
3467 		 * proceed with destruction ourselves.
3468 		 *
3469 		 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3470 		 * and that could spawn the workers again: it is likely that
3471 		 * the cache still have active pages until this very moment.
3472 		 * This would lead us back to mem_cgroup_destroy_cache.
3473 		 *
3474 		 * But that will not execute at all if the "dead" flag is not
3475 		 * set, so flip it down to guarantee we are in control.
3476 		 */
3477 		c->memcg_params->dead = false;
3478 		cancel_work_sync(&c->memcg_params->destroy);
3479 		kmem_cache_destroy(c);
3480 	}
3481 	mutex_unlock(&activate_kmem_mutex);
3482 }
3483 
3484 struct create_work {
3485 	struct mem_cgroup *memcg;
3486 	struct kmem_cache *cachep;
3487 	struct work_struct work;
3488 };
3489 
3490 static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3491 {
3492 	struct kmem_cache *cachep;
3493 	struct memcg_cache_params *params;
3494 
3495 	if (!memcg_kmem_is_active(memcg))
3496 		return;
3497 
3498 	mutex_lock(&memcg->slab_caches_mutex);
3499 	list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3500 		cachep = memcg_params_to_cache(params);
3501 		cachep->memcg_params->dead = true;
3502 		schedule_work(&cachep->memcg_params->destroy);
3503 	}
3504 	mutex_unlock(&memcg->slab_caches_mutex);
3505 }
3506 
3507 static void memcg_create_cache_work_func(struct work_struct *w)
3508 {
3509 	struct create_work *cw;
3510 
3511 	cw = container_of(w, struct create_work, work);
3512 	memcg_create_kmem_cache(cw->memcg, cw->cachep);
3513 	css_put(&cw->memcg->css);
3514 	kfree(cw);
3515 }
3516 
3517 /*
3518  * Enqueue the creation of a per-memcg kmem_cache.
3519  */
3520 static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3521 					 struct kmem_cache *cachep)
3522 {
3523 	struct create_work *cw;
3524 
3525 	cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3526 	if (cw == NULL) {
3527 		css_put(&memcg->css);
3528 		return;
3529 	}
3530 
3531 	cw->memcg = memcg;
3532 	cw->cachep = cachep;
3533 
3534 	INIT_WORK(&cw->work, memcg_create_cache_work_func);
3535 	schedule_work(&cw->work);
3536 }
3537 
3538 static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3539 				       struct kmem_cache *cachep)
3540 {
3541 	/*
3542 	 * We need to stop accounting when we kmalloc, because if the
3543 	 * corresponding kmalloc cache is not yet created, the first allocation
3544 	 * in __memcg_create_cache_enqueue will recurse.
3545 	 *
3546 	 * However, it is better to enclose the whole function. Depending on
3547 	 * the debugging options enabled, INIT_WORK(), for instance, can
3548 	 * trigger an allocation. This too, will make us recurse. Because at
3549 	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3550 	 * the safest choice is to do it like this, wrapping the whole function.
3551 	 */
3552 	memcg_stop_kmem_account();
3553 	__memcg_create_cache_enqueue(memcg, cachep);
3554 	memcg_resume_kmem_account();
3555 }
3556 /*
3557  * Return the kmem_cache we're supposed to use for a slab allocation.
3558  * We try to use the current memcg's version of the cache.
3559  *
3560  * If the cache does not exist yet, if we are the first user of it,
3561  * we either create it immediately, if possible, or create it asynchronously
3562  * in a workqueue.
3563  * In the latter case, we will let the current allocation go through with
3564  * the original cache.
3565  *
3566  * Can't be called in interrupt context or from kernel threads.
3567  * This function needs to be called with rcu_read_lock() held.
3568  */
3569 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3570 					  gfp_t gfp)
3571 {
3572 	struct mem_cgroup *memcg;
3573 	struct kmem_cache *memcg_cachep;
3574 
3575 	VM_BUG_ON(!cachep->memcg_params);
3576 	VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3577 
3578 	if (!current->mm || current->memcg_kmem_skip_account)
3579 		return cachep;
3580 
3581 	rcu_read_lock();
3582 	memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
3583 
3584 	if (!memcg_can_account_kmem(memcg))
3585 		goto out;
3586 
3587 	memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
3588 	if (likely(memcg_cachep)) {
3589 		cachep = memcg_cachep;
3590 		goto out;
3591 	}
3592 
3593 	/* The corresponding put will be done in the workqueue. */
3594 	if (!css_tryget(&memcg->css))
3595 		goto out;
3596 	rcu_read_unlock();
3597 
3598 	/*
3599 	 * If we are in a safe context (can wait, and not in interrupt
3600 	 * context), we could be be predictable and return right away.
3601 	 * This would guarantee that the allocation being performed
3602 	 * already belongs in the new cache.
3603 	 *
3604 	 * However, there are some clashes that can arrive from locking.
3605 	 * For instance, because we acquire the slab_mutex while doing
3606 	 * kmem_cache_dup, this means no further allocation could happen
3607 	 * with the slab_mutex held.
3608 	 *
3609 	 * Also, because cache creation issue get_online_cpus(), this
3610 	 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3611 	 * that ends up reversed during cpu hotplug. (cpuset allocates
3612 	 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3613 	 * better to defer everything.
3614 	 */
3615 	memcg_create_cache_enqueue(memcg, cachep);
3616 	return cachep;
3617 out:
3618 	rcu_read_unlock();
3619 	return cachep;
3620 }
3621 EXPORT_SYMBOL(__memcg_kmem_get_cache);
3622 
3623 /*
3624  * We need to verify if the allocation against current->mm->owner's memcg is
3625  * possible for the given order. But the page is not allocated yet, so we'll
3626  * need a further commit step to do the final arrangements.
3627  *
3628  * It is possible for the task to switch cgroups in this mean time, so at
3629  * commit time, we can't rely on task conversion any longer.  We'll then use
3630  * the handle argument to return to the caller which cgroup we should commit
3631  * against. We could also return the memcg directly and avoid the pointer
3632  * passing, but a boolean return value gives better semantics considering
3633  * the compiled-out case as well.
3634  *
3635  * Returning true means the allocation is possible.
3636  */
3637 bool
3638 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3639 {
3640 	struct mem_cgroup *memcg;
3641 	int ret;
3642 
3643 	*_memcg = NULL;
3644 
3645 	/*
3646 	 * Disabling accounting is only relevant for some specific memcg
3647 	 * internal allocations. Therefore we would initially not have such
3648 	 * check here, since direct calls to the page allocator that are marked
3649 	 * with GFP_KMEMCG only happen outside memcg core. We are mostly
3650 	 * concerned with cache allocations, and by having this test at
3651 	 * memcg_kmem_get_cache, we are already able to relay the allocation to
3652 	 * the root cache and bypass the memcg cache altogether.
3653 	 *
3654 	 * There is one exception, though: the SLUB allocator does not create
3655 	 * large order caches, but rather service large kmallocs directly from
3656 	 * the page allocator. Therefore, the following sequence when backed by
3657 	 * the SLUB allocator:
3658 	 *
3659 	 *	memcg_stop_kmem_account();
3660 	 *	kmalloc(<large_number>)
3661 	 *	memcg_resume_kmem_account();
3662 	 *
3663 	 * would effectively ignore the fact that we should skip accounting,
3664 	 * since it will drive us directly to this function without passing
3665 	 * through the cache selector memcg_kmem_get_cache. Such large
3666 	 * allocations are extremely rare but can happen, for instance, for the
3667 	 * cache arrays. We bring this test here.
3668 	 */
3669 	if (!current->mm || current->memcg_kmem_skip_account)
3670 		return true;
3671 
3672 	memcg = try_get_mem_cgroup_from_mm(current->mm);
3673 
3674 	/*
3675 	 * very rare case described in mem_cgroup_from_task. Unfortunately there
3676 	 * isn't much we can do without complicating this too much, and it would
3677 	 * be gfp-dependent anyway. Just let it go
3678 	 */
3679 	if (unlikely(!memcg))
3680 		return true;
3681 
3682 	if (!memcg_can_account_kmem(memcg)) {
3683 		css_put(&memcg->css);
3684 		return true;
3685 	}
3686 
3687 	ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3688 	if (!ret)
3689 		*_memcg = memcg;
3690 
3691 	css_put(&memcg->css);
3692 	return (ret == 0);
3693 }
3694 
3695 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3696 			      int order)
3697 {
3698 	struct page_cgroup *pc;
3699 
3700 	VM_BUG_ON(mem_cgroup_is_root(memcg));
3701 
3702 	/* The page allocation failed. Revert */
3703 	if (!page) {
3704 		memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3705 		return;
3706 	}
3707 
3708 	pc = lookup_page_cgroup(page);
3709 	lock_page_cgroup(pc);
3710 	pc->mem_cgroup = memcg;
3711 	SetPageCgroupUsed(pc);
3712 	unlock_page_cgroup(pc);
3713 }
3714 
3715 void __memcg_kmem_uncharge_pages(struct page *page, int order)
3716 {
3717 	struct mem_cgroup *memcg = NULL;
3718 	struct page_cgroup *pc;
3719 
3720 
3721 	pc = lookup_page_cgroup(page);
3722 	/*
3723 	 * Fast unlocked return. Theoretically might have changed, have to
3724 	 * check again after locking.
3725 	 */
3726 	if (!PageCgroupUsed(pc))
3727 		return;
3728 
3729 	lock_page_cgroup(pc);
3730 	if (PageCgroupUsed(pc)) {
3731 		memcg = pc->mem_cgroup;
3732 		ClearPageCgroupUsed(pc);
3733 	}
3734 	unlock_page_cgroup(pc);
3735 
3736 	/*
3737 	 * We trust that only if there is a memcg associated with the page, it
3738 	 * is a valid allocation
3739 	 */
3740 	if (!memcg)
3741 		return;
3742 
3743 	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3744 	memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3745 }
3746 #else
3747 static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3748 {
3749 }
3750 #endif /* CONFIG_MEMCG_KMEM */
3751 
3752 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3753 
3754 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3755 /*
3756  * Because tail pages are not marked as "used", set it. We're under
3757  * zone->lru_lock, 'splitting on pmd' and compound_lock.
3758  * charge/uncharge will be never happen and move_account() is done under
3759  * compound_lock(), so we don't have to take care of races.
3760  */
3761 void mem_cgroup_split_huge_fixup(struct page *head)
3762 {
3763 	struct page_cgroup *head_pc = lookup_page_cgroup(head);
3764 	struct page_cgroup *pc;
3765 	struct mem_cgroup *memcg;
3766 	int i;
3767 
3768 	if (mem_cgroup_disabled())
3769 		return;
3770 
3771 	memcg = head_pc->mem_cgroup;
3772 	for (i = 1; i < HPAGE_PMD_NR; i++) {
3773 		pc = head_pc + i;
3774 		pc->mem_cgroup = memcg;
3775 		smp_wmb();/* see __commit_charge() */
3776 		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3777 	}
3778 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3779 		       HPAGE_PMD_NR);
3780 }
3781 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3782 
3783 static inline
3784 void mem_cgroup_move_account_page_stat(struct mem_cgroup *from,
3785 					struct mem_cgroup *to,
3786 					unsigned int nr_pages,
3787 					enum mem_cgroup_stat_index idx)
3788 {
3789 	/* Update stat data for mem_cgroup */
3790 	preempt_disable();
3791 	__this_cpu_sub(from->stat->count[idx], nr_pages);
3792 	__this_cpu_add(to->stat->count[idx], nr_pages);
3793 	preempt_enable();
3794 }
3795 
3796 /**
3797  * mem_cgroup_move_account - move account of the page
3798  * @page: the page
3799  * @nr_pages: number of regular pages (>1 for huge pages)
3800  * @pc:	page_cgroup of the page.
3801  * @from: mem_cgroup which the page is moved from.
3802  * @to:	mem_cgroup which the page is moved to. @from != @to.
3803  *
3804  * The caller must confirm following.
3805  * - page is not on LRU (isolate_page() is useful.)
3806  * - compound_lock is held when nr_pages > 1
3807  *
3808  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3809  * from old cgroup.
3810  */
3811 static int mem_cgroup_move_account(struct page *page,
3812 				   unsigned int nr_pages,
3813 				   struct page_cgroup *pc,
3814 				   struct mem_cgroup *from,
3815 				   struct mem_cgroup *to)
3816 {
3817 	unsigned long flags;
3818 	int ret;
3819 	bool anon = PageAnon(page);
3820 
3821 	VM_BUG_ON(from == to);
3822 	VM_BUG_ON_PAGE(PageLRU(page), page);
3823 	/*
3824 	 * The page is isolated from LRU. So, collapse function
3825 	 * will not handle this page. But page splitting can happen.
3826 	 * Do this check under compound_page_lock(). The caller should
3827 	 * hold it.
3828 	 */
3829 	ret = -EBUSY;
3830 	if (nr_pages > 1 && !PageTransHuge(page))
3831 		goto out;
3832 
3833 	lock_page_cgroup(pc);
3834 
3835 	ret = -EINVAL;
3836 	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3837 		goto unlock;
3838 
3839 	move_lock_mem_cgroup(from, &flags);
3840 
3841 	if (!anon && page_mapped(page))
3842 		mem_cgroup_move_account_page_stat(from, to, nr_pages,
3843 			MEM_CGROUP_STAT_FILE_MAPPED);
3844 
3845 	if (PageWriteback(page))
3846 		mem_cgroup_move_account_page_stat(from, to, nr_pages,
3847 			MEM_CGROUP_STAT_WRITEBACK);
3848 
3849 	mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3850 
3851 	/* caller should have done css_get */
3852 	pc->mem_cgroup = to;
3853 	mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3854 	move_unlock_mem_cgroup(from, &flags);
3855 	ret = 0;
3856 unlock:
3857 	unlock_page_cgroup(pc);
3858 	/*
3859 	 * check events
3860 	 */
3861 	memcg_check_events(to, page);
3862 	memcg_check_events(from, page);
3863 out:
3864 	return ret;
3865 }
3866 
3867 /**
3868  * mem_cgroup_move_parent - moves page to the parent group
3869  * @page: the page to move
3870  * @pc: page_cgroup of the page
3871  * @child: page's cgroup
3872  *
3873  * move charges to its parent or the root cgroup if the group has no
3874  * parent (aka use_hierarchy==0).
3875  * Although this might fail (get_page_unless_zero, isolate_lru_page or
3876  * mem_cgroup_move_account fails) the failure is always temporary and
3877  * it signals a race with a page removal/uncharge or migration. In the
3878  * first case the page is on the way out and it will vanish from the LRU
3879  * on the next attempt and the call should be retried later.
3880  * Isolation from the LRU fails only if page has been isolated from
3881  * the LRU since we looked at it and that usually means either global
3882  * reclaim or migration going on. The page will either get back to the
3883  * LRU or vanish.
3884  * Finaly mem_cgroup_move_account fails only if the page got uncharged
3885  * (!PageCgroupUsed) or moved to a different group. The page will
3886  * disappear in the next attempt.
3887  */
3888 static int mem_cgroup_move_parent(struct page *page,
3889 				  struct page_cgroup *pc,
3890 				  struct mem_cgroup *child)
3891 {
3892 	struct mem_cgroup *parent;
3893 	unsigned int nr_pages;
3894 	unsigned long uninitialized_var(flags);
3895 	int ret;
3896 
3897 	VM_BUG_ON(mem_cgroup_is_root(child));
3898 
3899 	ret = -EBUSY;
3900 	if (!get_page_unless_zero(page))
3901 		goto out;
3902 	if (isolate_lru_page(page))
3903 		goto put;
3904 
3905 	nr_pages = hpage_nr_pages(page);
3906 
3907 	parent = parent_mem_cgroup(child);
3908 	/*
3909 	 * If no parent, move charges to root cgroup.
3910 	 */
3911 	if (!parent)
3912 		parent = root_mem_cgroup;
3913 
3914 	if (nr_pages > 1) {
3915 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3916 		flags = compound_lock_irqsave(page);
3917 	}
3918 
3919 	ret = mem_cgroup_move_account(page, nr_pages,
3920 				pc, child, parent);
3921 	if (!ret)
3922 		__mem_cgroup_cancel_local_charge(child, nr_pages);
3923 
3924 	if (nr_pages > 1)
3925 		compound_unlock_irqrestore(page, flags);
3926 	putback_lru_page(page);
3927 put:
3928 	put_page(page);
3929 out:
3930 	return ret;
3931 }
3932 
3933 /*
3934  * Charge the memory controller for page usage.
3935  * Return
3936  * 0 if the charge was successful
3937  * < 0 if the cgroup is over its limit
3938  */
3939 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3940 				gfp_t gfp_mask, enum charge_type ctype)
3941 {
3942 	struct mem_cgroup *memcg = NULL;
3943 	unsigned int nr_pages = 1;
3944 	bool oom = true;
3945 	int ret;
3946 
3947 	if (PageTransHuge(page)) {
3948 		nr_pages <<= compound_order(page);
3949 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3950 		/*
3951 		 * Never OOM-kill a process for a huge page.  The
3952 		 * fault handler will fall back to regular pages.
3953 		 */
3954 		oom = false;
3955 	}
3956 
3957 	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3958 	if (ret == -ENOMEM)
3959 		return ret;
3960 	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3961 	return 0;
3962 }
3963 
3964 int mem_cgroup_newpage_charge(struct page *page,
3965 			      struct mm_struct *mm, gfp_t gfp_mask)
3966 {
3967 	if (mem_cgroup_disabled())
3968 		return 0;
3969 	VM_BUG_ON_PAGE(page_mapped(page), page);
3970 	VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page);
3971 	VM_BUG_ON(!mm);
3972 	return mem_cgroup_charge_common(page, mm, gfp_mask,
3973 					MEM_CGROUP_CHARGE_TYPE_ANON);
3974 }
3975 
3976 /*
3977  * While swap-in, try_charge -> commit or cancel, the page is locked.
3978  * And when try_charge() successfully returns, one refcnt to memcg without
3979  * struct page_cgroup is acquired. This refcnt will be consumed by
3980  * "commit()" or removed by "cancel()"
3981  */
3982 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
3983 					  struct page *page,
3984 					  gfp_t mask,
3985 					  struct mem_cgroup **memcgp)
3986 {
3987 	struct mem_cgroup *memcg;
3988 	struct page_cgroup *pc;
3989 	int ret;
3990 
3991 	pc = lookup_page_cgroup(page);
3992 	/*
3993 	 * Every swap fault against a single page tries to charge the
3994 	 * page, bail as early as possible.  shmem_unuse() encounters
3995 	 * already charged pages, too.  The USED bit is protected by
3996 	 * the page lock, which serializes swap cache removal, which
3997 	 * in turn serializes uncharging.
3998 	 */
3999 	if (PageCgroupUsed(pc))
4000 		return 0;
4001 	if (!do_swap_account)
4002 		goto charge_cur_mm;
4003 	memcg = try_get_mem_cgroup_from_page(page);
4004 	if (!memcg)
4005 		goto charge_cur_mm;
4006 	*memcgp = memcg;
4007 	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
4008 	css_put(&memcg->css);
4009 	if (ret == -EINTR)
4010 		ret = 0;
4011 	return ret;
4012 charge_cur_mm:
4013 	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
4014 	if (ret == -EINTR)
4015 		ret = 0;
4016 	return ret;
4017 }
4018 
4019 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
4020 				 gfp_t gfp_mask, struct mem_cgroup **memcgp)
4021 {
4022 	*memcgp = NULL;
4023 	if (mem_cgroup_disabled())
4024 		return 0;
4025 	/*
4026 	 * A racing thread's fault, or swapoff, may have already
4027 	 * updated the pte, and even removed page from swap cache: in
4028 	 * those cases unuse_pte()'s pte_same() test will fail; but
4029 	 * there's also a KSM case which does need to charge the page.
4030 	 */
4031 	if (!PageSwapCache(page)) {
4032 		int ret;
4033 
4034 		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
4035 		if (ret == -EINTR)
4036 			ret = 0;
4037 		return ret;
4038 	}
4039 	return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
4040 }
4041 
4042 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
4043 {
4044 	if (mem_cgroup_disabled())
4045 		return;
4046 	if (!memcg)
4047 		return;
4048 	__mem_cgroup_cancel_charge(memcg, 1);
4049 }
4050 
4051 static void
4052 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
4053 					enum charge_type ctype)
4054 {
4055 	if (mem_cgroup_disabled())
4056 		return;
4057 	if (!memcg)
4058 		return;
4059 
4060 	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
4061 	/*
4062 	 * Now swap is on-memory. This means this page may be
4063 	 * counted both as mem and swap....double count.
4064 	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
4065 	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
4066 	 * may call delete_from_swap_cache() before reach here.
4067 	 */
4068 	if (do_swap_account && PageSwapCache(page)) {
4069 		swp_entry_t ent = {.val = page_private(page)};
4070 		mem_cgroup_uncharge_swap(ent);
4071 	}
4072 }
4073 
4074 void mem_cgroup_commit_charge_swapin(struct page *page,
4075 				     struct mem_cgroup *memcg)
4076 {
4077 	__mem_cgroup_commit_charge_swapin(page, memcg,
4078 					  MEM_CGROUP_CHARGE_TYPE_ANON);
4079 }
4080 
4081 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
4082 				gfp_t gfp_mask)
4083 {
4084 	struct mem_cgroup *memcg = NULL;
4085 	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4086 	int ret;
4087 
4088 	if (mem_cgroup_disabled())
4089 		return 0;
4090 	if (PageCompound(page))
4091 		return 0;
4092 
4093 	if (!PageSwapCache(page))
4094 		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
4095 	else { /* page is swapcache/shmem */
4096 		ret = __mem_cgroup_try_charge_swapin(mm, page,
4097 						     gfp_mask, &memcg);
4098 		if (!ret)
4099 			__mem_cgroup_commit_charge_swapin(page, memcg, type);
4100 	}
4101 	return ret;
4102 }
4103 
4104 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
4105 				   unsigned int nr_pages,
4106 				   const enum charge_type ctype)
4107 {
4108 	struct memcg_batch_info *batch = NULL;
4109 	bool uncharge_memsw = true;
4110 
4111 	/* If swapout, usage of swap doesn't decrease */
4112 	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
4113 		uncharge_memsw = false;
4114 
4115 	batch = &current->memcg_batch;
4116 	/*
4117 	 * In usual, we do css_get() when we remember memcg pointer.
4118 	 * But in this case, we keep res->usage until end of a series of
4119 	 * uncharges. Then, it's ok to ignore memcg's refcnt.
4120 	 */
4121 	if (!batch->memcg)
4122 		batch->memcg = memcg;
4123 	/*
4124 	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
4125 	 * In those cases, all pages freed continuously can be expected to be in
4126 	 * the same cgroup and we have chance to coalesce uncharges.
4127 	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
4128 	 * because we want to do uncharge as soon as possible.
4129 	 */
4130 
4131 	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
4132 		goto direct_uncharge;
4133 
4134 	if (nr_pages > 1)
4135 		goto direct_uncharge;
4136 
4137 	/*
4138 	 * In typical case, batch->memcg == mem. This means we can
4139 	 * merge a series of uncharges to an uncharge of res_counter.
4140 	 * If not, we uncharge res_counter ony by one.
4141 	 */
4142 	if (batch->memcg != memcg)
4143 		goto direct_uncharge;
4144 	/* remember freed charge and uncharge it later */
4145 	batch->nr_pages++;
4146 	if (uncharge_memsw)
4147 		batch->memsw_nr_pages++;
4148 	return;
4149 direct_uncharge:
4150 	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
4151 	if (uncharge_memsw)
4152 		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
4153 	if (unlikely(batch->memcg != memcg))
4154 		memcg_oom_recover(memcg);
4155 }
4156 
4157 /*
4158  * uncharge if !page_mapped(page)
4159  */
4160 static struct mem_cgroup *
4161 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
4162 			     bool end_migration)
4163 {
4164 	struct mem_cgroup *memcg = NULL;
4165 	unsigned int nr_pages = 1;
4166 	struct page_cgroup *pc;
4167 	bool anon;
4168 
4169 	if (mem_cgroup_disabled())
4170 		return NULL;
4171 
4172 	if (PageTransHuge(page)) {
4173 		nr_pages <<= compound_order(page);
4174 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
4175 	}
4176 	/*
4177 	 * Check if our page_cgroup is valid
4178 	 */
4179 	pc = lookup_page_cgroup(page);
4180 	if (unlikely(!PageCgroupUsed(pc)))
4181 		return NULL;
4182 
4183 	lock_page_cgroup(pc);
4184 
4185 	memcg = pc->mem_cgroup;
4186 
4187 	if (!PageCgroupUsed(pc))
4188 		goto unlock_out;
4189 
4190 	anon = PageAnon(page);
4191 
4192 	switch (ctype) {
4193 	case MEM_CGROUP_CHARGE_TYPE_ANON:
4194 		/*
4195 		 * Generally PageAnon tells if it's the anon statistics to be
4196 		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4197 		 * used before page reached the stage of being marked PageAnon.
4198 		 */
4199 		anon = true;
4200 		/* fallthrough */
4201 	case MEM_CGROUP_CHARGE_TYPE_DROP:
4202 		/* See mem_cgroup_prepare_migration() */
4203 		if (page_mapped(page))
4204 			goto unlock_out;
4205 		/*
4206 		 * Pages under migration may not be uncharged.  But
4207 		 * end_migration() /must/ be the one uncharging the
4208 		 * unused post-migration page and so it has to call
4209 		 * here with the migration bit still set.  See the
4210 		 * res_counter handling below.
4211 		 */
4212 		if (!end_migration && PageCgroupMigration(pc))
4213 			goto unlock_out;
4214 		break;
4215 	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
4216 		if (!PageAnon(page)) {	/* Shared memory */
4217 			if (page->mapping && !page_is_file_cache(page))
4218 				goto unlock_out;
4219 		} else if (page_mapped(page)) /* Anon */
4220 				goto unlock_out;
4221 		break;
4222 	default:
4223 		break;
4224 	}
4225 
4226 	mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
4227 
4228 	ClearPageCgroupUsed(pc);
4229 	/*
4230 	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4231 	 * freed from LRU. This is safe because uncharged page is expected not
4232 	 * to be reused (freed soon). Exception is SwapCache, it's handled by
4233 	 * special functions.
4234 	 */
4235 
4236 	unlock_page_cgroup(pc);
4237 	/*
4238 	 * even after unlock, we have memcg->res.usage here and this memcg
4239 	 * will never be freed, so it's safe to call css_get().
4240 	 */
4241 	memcg_check_events(memcg, page);
4242 	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4243 		mem_cgroup_swap_statistics(memcg, true);
4244 		css_get(&memcg->css);
4245 	}
4246 	/*
4247 	 * Migration does not charge the res_counter for the
4248 	 * replacement page, so leave it alone when phasing out the
4249 	 * page that is unused after the migration.
4250 	 */
4251 	if (!end_migration && !mem_cgroup_is_root(memcg))
4252 		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4253 
4254 	return memcg;
4255 
4256 unlock_out:
4257 	unlock_page_cgroup(pc);
4258 	return NULL;
4259 }
4260 
4261 void mem_cgroup_uncharge_page(struct page *page)
4262 {
4263 	/* early check. */
4264 	if (page_mapped(page))
4265 		return;
4266 	VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page);
4267 	/*
4268 	 * If the page is in swap cache, uncharge should be deferred
4269 	 * to the swap path, which also properly accounts swap usage
4270 	 * and handles memcg lifetime.
4271 	 *
4272 	 * Note that this check is not stable and reclaim may add the
4273 	 * page to swap cache at any time after this.  However, if the
4274 	 * page is not in swap cache by the time page->mapcount hits
4275 	 * 0, there won't be any page table references to the swap
4276 	 * slot, and reclaim will free it and not actually write the
4277 	 * page to disk.
4278 	 */
4279 	if (PageSwapCache(page))
4280 		return;
4281 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4282 }
4283 
4284 void mem_cgroup_uncharge_cache_page(struct page *page)
4285 {
4286 	VM_BUG_ON_PAGE(page_mapped(page), page);
4287 	VM_BUG_ON_PAGE(page->mapping, page);
4288 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4289 }
4290 
4291 /*
4292  * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4293  * In that cases, pages are freed continuously and we can expect pages
4294  * are in the same memcg. All these calls itself limits the number of
4295  * pages freed at once, then uncharge_start/end() is called properly.
4296  * This may be called prural(2) times in a context,
4297  */
4298 
4299 void mem_cgroup_uncharge_start(void)
4300 {
4301 	current->memcg_batch.do_batch++;
4302 	/* We can do nest. */
4303 	if (current->memcg_batch.do_batch == 1) {
4304 		current->memcg_batch.memcg = NULL;
4305 		current->memcg_batch.nr_pages = 0;
4306 		current->memcg_batch.memsw_nr_pages = 0;
4307 	}
4308 }
4309 
4310 void mem_cgroup_uncharge_end(void)
4311 {
4312 	struct memcg_batch_info *batch = &current->memcg_batch;
4313 
4314 	if (!batch->do_batch)
4315 		return;
4316 
4317 	batch->do_batch--;
4318 	if (batch->do_batch) /* If stacked, do nothing. */
4319 		return;
4320 
4321 	if (!batch->memcg)
4322 		return;
4323 	/*
4324 	 * This "batch->memcg" is valid without any css_get/put etc...
4325 	 * bacause we hide charges behind us.
4326 	 */
4327 	if (batch->nr_pages)
4328 		res_counter_uncharge(&batch->memcg->res,
4329 				     batch->nr_pages * PAGE_SIZE);
4330 	if (batch->memsw_nr_pages)
4331 		res_counter_uncharge(&batch->memcg->memsw,
4332 				     batch->memsw_nr_pages * PAGE_SIZE);
4333 	memcg_oom_recover(batch->memcg);
4334 	/* forget this pointer (for sanity check) */
4335 	batch->memcg = NULL;
4336 }
4337 
4338 #ifdef CONFIG_SWAP
4339 /*
4340  * called after __delete_from_swap_cache() and drop "page" account.
4341  * memcg information is recorded to swap_cgroup of "ent"
4342  */
4343 void
4344 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4345 {
4346 	struct mem_cgroup *memcg;
4347 	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4348 
4349 	if (!swapout) /* this was a swap cache but the swap is unused ! */
4350 		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4351 
4352 	memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4353 
4354 	/*
4355 	 * record memcg information,  if swapout && memcg != NULL,
4356 	 * css_get() was called in uncharge().
4357 	 */
4358 	if (do_swap_account && swapout && memcg)
4359 		swap_cgroup_record(ent, mem_cgroup_id(memcg));
4360 }
4361 #endif
4362 
4363 #ifdef CONFIG_MEMCG_SWAP
4364 /*
4365  * called from swap_entry_free(). remove record in swap_cgroup and
4366  * uncharge "memsw" account.
4367  */
4368 void mem_cgroup_uncharge_swap(swp_entry_t ent)
4369 {
4370 	struct mem_cgroup *memcg;
4371 	unsigned short id;
4372 
4373 	if (!do_swap_account)
4374 		return;
4375 
4376 	id = swap_cgroup_record(ent, 0);
4377 	rcu_read_lock();
4378 	memcg = mem_cgroup_lookup(id);
4379 	if (memcg) {
4380 		/*
4381 		 * We uncharge this because swap is freed.
4382 		 * This memcg can be obsolete one. We avoid calling css_tryget
4383 		 */
4384 		if (!mem_cgroup_is_root(memcg))
4385 			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4386 		mem_cgroup_swap_statistics(memcg, false);
4387 		css_put(&memcg->css);
4388 	}
4389 	rcu_read_unlock();
4390 }
4391 
4392 /**
4393  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4394  * @entry: swap entry to be moved
4395  * @from:  mem_cgroup which the entry is moved from
4396  * @to:  mem_cgroup which the entry is moved to
4397  *
4398  * It succeeds only when the swap_cgroup's record for this entry is the same
4399  * as the mem_cgroup's id of @from.
4400  *
4401  * Returns 0 on success, -EINVAL on failure.
4402  *
4403  * The caller must have charged to @to, IOW, called res_counter_charge() about
4404  * both res and memsw, and called css_get().
4405  */
4406 static int mem_cgroup_move_swap_account(swp_entry_t entry,
4407 				struct mem_cgroup *from, struct mem_cgroup *to)
4408 {
4409 	unsigned short old_id, new_id;
4410 
4411 	old_id = mem_cgroup_id(from);
4412 	new_id = mem_cgroup_id(to);
4413 
4414 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
4415 		mem_cgroup_swap_statistics(from, false);
4416 		mem_cgroup_swap_statistics(to, true);
4417 		/*
4418 		 * This function is only called from task migration context now.
4419 		 * It postpones res_counter and refcount handling till the end
4420 		 * of task migration(mem_cgroup_clear_mc()) for performance
4421 		 * improvement. But we cannot postpone css_get(to)  because if
4422 		 * the process that has been moved to @to does swap-in, the
4423 		 * refcount of @to might be decreased to 0.
4424 		 *
4425 		 * We are in attach() phase, so the cgroup is guaranteed to be
4426 		 * alive, so we can just call css_get().
4427 		 */
4428 		css_get(&to->css);
4429 		return 0;
4430 	}
4431 	return -EINVAL;
4432 }
4433 #else
4434 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4435 				struct mem_cgroup *from, struct mem_cgroup *to)
4436 {
4437 	return -EINVAL;
4438 }
4439 #endif
4440 
4441 /*
4442  * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4443  * page belongs to.
4444  */
4445 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4446 				  struct mem_cgroup **memcgp)
4447 {
4448 	struct mem_cgroup *memcg = NULL;
4449 	unsigned int nr_pages = 1;
4450 	struct page_cgroup *pc;
4451 	enum charge_type ctype;
4452 
4453 	*memcgp = NULL;
4454 
4455 	if (mem_cgroup_disabled())
4456 		return;
4457 
4458 	if (PageTransHuge(page))
4459 		nr_pages <<= compound_order(page);
4460 
4461 	pc = lookup_page_cgroup(page);
4462 	lock_page_cgroup(pc);
4463 	if (PageCgroupUsed(pc)) {
4464 		memcg = pc->mem_cgroup;
4465 		css_get(&memcg->css);
4466 		/*
4467 		 * At migrating an anonymous page, its mapcount goes down
4468 		 * to 0 and uncharge() will be called. But, even if it's fully
4469 		 * unmapped, migration may fail and this page has to be
4470 		 * charged again. We set MIGRATION flag here and delay uncharge
4471 		 * until end_migration() is called
4472 		 *
4473 		 * Corner Case Thinking
4474 		 * A)
4475 		 * When the old page was mapped as Anon and it's unmap-and-freed
4476 		 * while migration was ongoing.
4477 		 * If unmap finds the old page, uncharge() of it will be delayed
4478 		 * until end_migration(). If unmap finds a new page, it's
4479 		 * uncharged when it make mapcount to be 1->0. If unmap code
4480 		 * finds swap_migration_entry, the new page will not be mapped
4481 		 * and end_migration() will find it(mapcount==0).
4482 		 *
4483 		 * B)
4484 		 * When the old page was mapped but migraion fails, the kernel
4485 		 * remaps it. A charge for it is kept by MIGRATION flag even
4486 		 * if mapcount goes down to 0. We can do remap successfully
4487 		 * without charging it again.
4488 		 *
4489 		 * C)
4490 		 * The "old" page is under lock_page() until the end of
4491 		 * migration, so, the old page itself will not be swapped-out.
4492 		 * If the new page is swapped out before end_migraton, our
4493 		 * hook to usual swap-out path will catch the event.
4494 		 */
4495 		if (PageAnon(page))
4496 			SetPageCgroupMigration(pc);
4497 	}
4498 	unlock_page_cgroup(pc);
4499 	/*
4500 	 * If the page is not charged at this point,
4501 	 * we return here.
4502 	 */
4503 	if (!memcg)
4504 		return;
4505 
4506 	*memcgp = memcg;
4507 	/*
4508 	 * We charge new page before it's used/mapped. So, even if unlock_page()
4509 	 * is called before end_migration, we can catch all events on this new
4510 	 * page. In the case new page is migrated but not remapped, new page's
4511 	 * mapcount will be finally 0 and we call uncharge in end_migration().
4512 	 */
4513 	if (PageAnon(page))
4514 		ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4515 	else
4516 		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4517 	/*
4518 	 * The page is committed to the memcg, but it's not actually
4519 	 * charged to the res_counter since we plan on replacing the
4520 	 * old one and only one page is going to be left afterwards.
4521 	 */
4522 	__mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4523 }
4524 
4525 /* remove redundant charge if migration failed*/
4526 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4527 	struct page *oldpage, struct page *newpage, bool migration_ok)
4528 {
4529 	struct page *used, *unused;
4530 	struct page_cgroup *pc;
4531 	bool anon;
4532 
4533 	if (!memcg)
4534 		return;
4535 
4536 	if (!migration_ok) {
4537 		used = oldpage;
4538 		unused = newpage;
4539 	} else {
4540 		used = newpage;
4541 		unused = oldpage;
4542 	}
4543 	anon = PageAnon(used);
4544 	__mem_cgroup_uncharge_common(unused,
4545 				     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4546 				     : MEM_CGROUP_CHARGE_TYPE_CACHE,
4547 				     true);
4548 	css_put(&memcg->css);
4549 	/*
4550 	 * We disallowed uncharge of pages under migration because mapcount
4551 	 * of the page goes down to zero, temporarly.
4552 	 * Clear the flag and check the page should be charged.
4553 	 */
4554 	pc = lookup_page_cgroup(oldpage);
4555 	lock_page_cgroup(pc);
4556 	ClearPageCgroupMigration(pc);
4557 	unlock_page_cgroup(pc);
4558 
4559 	/*
4560 	 * If a page is a file cache, radix-tree replacement is very atomic
4561 	 * and we can skip this check. When it was an Anon page, its mapcount
4562 	 * goes down to 0. But because we added MIGRATION flage, it's not
4563 	 * uncharged yet. There are several case but page->mapcount check
4564 	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4565 	 * check. (see prepare_charge() also)
4566 	 */
4567 	if (anon)
4568 		mem_cgroup_uncharge_page(used);
4569 }
4570 
4571 /*
4572  * At replace page cache, newpage is not under any memcg but it's on
4573  * LRU. So, this function doesn't touch res_counter but handles LRU
4574  * in correct way. Both pages are locked so we cannot race with uncharge.
4575  */
4576 void mem_cgroup_replace_page_cache(struct page *oldpage,
4577 				  struct page *newpage)
4578 {
4579 	struct mem_cgroup *memcg = NULL;
4580 	struct page_cgroup *pc;
4581 	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4582 
4583 	if (mem_cgroup_disabled())
4584 		return;
4585 
4586 	pc = lookup_page_cgroup(oldpage);
4587 	/* fix accounting on old pages */
4588 	lock_page_cgroup(pc);
4589 	if (PageCgroupUsed(pc)) {
4590 		memcg = pc->mem_cgroup;
4591 		mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4592 		ClearPageCgroupUsed(pc);
4593 	}
4594 	unlock_page_cgroup(pc);
4595 
4596 	/*
4597 	 * When called from shmem_replace_page(), in some cases the
4598 	 * oldpage has already been charged, and in some cases not.
4599 	 */
4600 	if (!memcg)
4601 		return;
4602 	/*
4603 	 * Even if newpage->mapping was NULL before starting replacement,
4604 	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4605 	 * LRU while we overwrite pc->mem_cgroup.
4606 	 */
4607 	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4608 }
4609 
4610 #ifdef CONFIG_DEBUG_VM
4611 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4612 {
4613 	struct page_cgroup *pc;
4614 
4615 	pc = lookup_page_cgroup(page);
4616 	/*
4617 	 * Can be NULL while feeding pages into the page allocator for
4618 	 * the first time, i.e. during boot or memory hotplug;
4619 	 * or when mem_cgroup_disabled().
4620 	 */
4621 	if (likely(pc) && PageCgroupUsed(pc))
4622 		return pc;
4623 	return NULL;
4624 }
4625 
4626 bool mem_cgroup_bad_page_check(struct page *page)
4627 {
4628 	if (mem_cgroup_disabled())
4629 		return false;
4630 
4631 	return lookup_page_cgroup_used(page) != NULL;
4632 }
4633 
4634 void mem_cgroup_print_bad_page(struct page *page)
4635 {
4636 	struct page_cgroup *pc;
4637 
4638 	pc = lookup_page_cgroup_used(page);
4639 	if (pc) {
4640 		pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4641 			 pc, pc->flags, pc->mem_cgroup);
4642 	}
4643 }
4644 #endif
4645 
4646 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4647 				unsigned long long val)
4648 {
4649 	int retry_count;
4650 	u64 memswlimit, memlimit;
4651 	int ret = 0;
4652 	int children = mem_cgroup_count_children(memcg);
4653 	u64 curusage, oldusage;
4654 	int enlarge;
4655 
4656 	/*
4657 	 * For keeping hierarchical_reclaim simple, how long we should retry
4658 	 * is depends on callers. We set our retry-count to be function
4659 	 * of # of children which we should visit in this loop.
4660 	 */
4661 	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4662 
4663 	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4664 
4665 	enlarge = 0;
4666 	while (retry_count) {
4667 		if (signal_pending(current)) {
4668 			ret = -EINTR;
4669 			break;
4670 		}
4671 		/*
4672 		 * Rather than hide all in some function, I do this in
4673 		 * open coded manner. You see what this really does.
4674 		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4675 		 */
4676 		mutex_lock(&set_limit_mutex);
4677 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4678 		if (memswlimit < val) {
4679 			ret = -EINVAL;
4680 			mutex_unlock(&set_limit_mutex);
4681 			break;
4682 		}
4683 
4684 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4685 		if (memlimit < val)
4686 			enlarge = 1;
4687 
4688 		ret = res_counter_set_limit(&memcg->res, val);
4689 		if (!ret) {
4690 			if (memswlimit == val)
4691 				memcg->memsw_is_minimum = true;
4692 			else
4693 				memcg->memsw_is_minimum = false;
4694 		}
4695 		mutex_unlock(&set_limit_mutex);
4696 
4697 		if (!ret)
4698 			break;
4699 
4700 		mem_cgroup_reclaim(memcg, GFP_KERNEL,
4701 				   MEM_CGROUP_RECLAIM_SHRINK);
4702 		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4703 		/* Usage is reduced ? */
4704 		if (curusage >= oldusage)
4705 			retry_count--;
4706 		else
4707 			oldusage = curusage;
4708 	}
4709 	if (!ret && enlarge)
4710 		memcg_oom_recover(memcg);
4711 
4712 	return ret;
4713 }
4714 
4715 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4716 					unsigned long long val)
4717 {
4718 	int retry_count;
4719 	u64 memlimit, memswlimit, oldusage, curusage;
4720 	int children = mem_cgroup_count_children(memcg);
4721 	int ret = -EBUSY;
4722 	int enlarge = 0;
4723 
4724 	/* see mem_cgroup_resize_res_limit */
4725 	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4726 	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4727 	while (retry_count) {
4728 		if (signal_pending(current)) {
4729 			ret = -EINTR;
4730 			break;
4731 		}
4732 		/*
4733 		 * Rather than hide all in some function, I do this in
4734 		 * open coded manner. You see what this really does.
4735 		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4736 		 */
4737 		mutex_lock(&set_limit_mutex);
4738 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4739 		if (memlimit > val) {
4740 			ret = -EINVAL;
4741 			mutex_unlock(&set_limit_mutex);
4742 			break;
4743 		}
4744 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4745 		if (memswlimit < val)
4746 			enlarge = 1;
4747 		ret = res_counter_set_limit(&memcg->memsw, val);
4748 		if (!ret) {
4749 			if (memlimit == val)
4750 				memcg->memsw_is_minimum = true;
4751 			else
4752 				memcg->memsw_is_minimum = false;
4753 		}
4754 		mutex_unlock(&set_limit_mutex);
4755 
4756 		if (!ret)
4757 			break;
4758 
4759 		mem_cgroup_reclaim(memcg, GFP_KERNEL,
4760 				   MEM_CGROUP_RECLAIM_NOSWAP |
4761 				   MEM_CGROUP_RECLAIM_SHRINK);
4762 		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4763 		/* Usage is reduced ? */
4764 		if (curusage >= oldusage)
4765 			retry_count--;
4766 		else
4767 			oldusage = curusage;
4768 	}
4769 	if (!ret && enlarge)
4770 		memcg_oom_recover(memcg);
4771 	return ret;
4772 }
4773 
4774 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4775 					    gfp_t gfp_mask,
4776 					    unsigned long *total_scanned)
4777 {
4778 	unsigned long nr_reclaimed = 0;
4779 	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4780 	unsigned long reclaimed;
4781 	int loop = 0;
4782 	struct mem_cgroup_tree_per_zone *mctz;
4783 	unsigned long long excess;
4784 	unsigned long nr_scanned;
4785 
4786 	if (order > 0)
4787 		return 0;
4788 
4789 	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4790 	/*
4791 	 * This loop can run a while, specially if mem_cgroup's continuously
4792 	 * keep exceeding their soft limit and putting the system under
4793 	 * pressure
4794 	 */
4795 	do {
4796 		if (next_mz)
4797 			mz = next_mz;
4798 		else
4799 			mz = mem_cgroup_largest_soft_limit_node(mctz);
4800 		if (!mz)
4801 			break;
4802 
4803 		nr_scanned = 0;
4804 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4805 						    gfp_mask, &nr_scanned);
4806 		nr_reclaimed += reclaimed;
4807 		*total_scanned += nr_scanned;
4808 		spin_lock(&mctz->lock);
4809 
4810 		/*
4811 		 * If we failed to reclaim anything from this memory cgroup
4812 		 * it is time to move on to the next cgroup
4813 		 */
4814 		next_mz = NULL;
4815 		if (!reclaimed) {
4816 			do {
4817 				/*
4818 				 * Loop until we find yet another one.
4819 				 *
4820 				 * By the time we get the soft_limit lock
4821 				 * again, someone might have aded the
4822 				 * group back on the RB tree. Iterate to
4823 				 * make sure we get a different mem.
4824 				 * mem_cgroup_largest_soft_limit_node returns
4825 				 * NULL if no other cgroup is present on
4826 				 * the tree
4827 				 */
4828 				next_mz =
4829 				__mem_cgroup_largest_soft_limit_node(mctz);
4830 				if (next_mz == mz)
4831 					css_put(&next_mz->memcg->css);
4832 				else /* next_mz == NULL or other memcg */
4833 					break;
4834 			} while (1);
4835 		}
4836 		__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
4837 		excess = res_counter_soft_limit_excess(&mz->memcg->res);
4838 		/*
4839 		 * One school of thought says that we should not add
4840 		 * back the node to the tree if reclaim returns 0.
4841 		 * But our reclaim could return 0, simply because due
4842 		 * to priority we are exposing a smaller subset of
4843 		 * memory to reclaim from. Consider this as a longer
4844 		 * term TODO.
4845 		 */
4846 		/* If excess == 0, no tree ops */
4847 		__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4848 		spin_unlock(&mctz->lock);
4849 		css_put(&mz->memcg->css);
4850 		loop++;
4851 		/*
4852 		 * Could not reclaim anything and there are no more
4853 		 * mem cgroups to try or we seem to be looping without
4854 		 * reclaiming anything.
4855 		 */
4856 		if (!nr_reclaimed &&
4857 			(next_mz == NULL ||
4858 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4859 			break;
4860 	} while (!nr_reclaimed);
4861 	if (next_mz)
4862 		css_put(&next_mz->memcg->css);
4863 	return nr_reclaimed;
4864 }
4865 
4866 /**
4867  * mem_cgroup_force_empty_list - clears LRU of a group
4868  * @memcg: group to clear
4869  * @node: NUMA node
4870  * @zid: zone id
4871  * @lru: lru to to clear
4872  *
4873  * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
4874  * reclaim the pages page themselves - pages are moved to the parent (or root)
4875  * group.
4876  */
4877 static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
4878 				int node, int zid, enum lru_list lru)
4879 {
4880 	struct lruvec *lruvec;
4881 	unsigned long flags;
4882 	struct list_head *list;
4883 	struct page *busy;
4884 	struct zone *zone;
4885 
4886 	zone = &NODE_DATA(node)->node_zones[zid];
4887 	lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4888 	list = &lruvec->lists[lru];
4889 
4890 	busy = NULL;
4891 	do {
4892 		struct page_cgroup *pc;
4893 		struct page *page;
4894 
4895 		spin_lock_irqsave(&zone->lru_lock, flags);
4896 		if (list_empty(list)) {
4897 			spin_unlock_irqrestore(&zone->lru_lock, flags);
4898 			break;
4899 		}
4900 		page = list_entry(list->prev, struct page, lru);
4901 		if (busy == page) {
4902 			list_move(&page->lru, list);
4903 			busy = NULL;
4904 			spin_unlock_irqrestore(&zone->lru_lock, flags);
4905 			continue;
4906 		}
4907 		spin_unlock_irqrestore(&zone->lru_lock, flags);
4908 
4909 		pc = lookup_page_cgroup(page);
4910 
4911 		if (mem_cgroup_move_parent(page, pc, memcg)) {
4912 			/* found lock contention or "pc" is obsolete. */
4913 			busy = page;
4914 			cond_resched();
4915 		} else
4916 			busy = NULL;
4917 	} while (!list_empty(list));
4918 }
4919 
4920 /*
4921  * make mem_cgroup's charge to be 0 if there is no task by moving
4922  * all the charges and pages to the parent.
4923  * This enables deleting this mem_cgroup.
4924  *
4925  * Caller is responsible for holding css reference on the memcg.
4926  */
4927 static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4928 {
4929 	int node, zid;
4930 	u64 usage;
4931 
4932 	do {
4933 		/* This is for making all *used* pages to be on LRU. */
4934 		lru_add_drain_all();
4935 		drain_all_stock_sync(memcg);
4936 		mem_cgroup_start_move(memcg);
4937 		for_each_node_state(node, N_MEMORY) {
4938 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4939 				enum lru_list lru;
4940 				for_each_lru(lru) {
4941 					mem_cgroup_force_empty_list(memcg,
4942 							node, zid, lru);
4943 				}
4944 			}
4945 		}
4946 		mem_cgroup_end_move(memcg);
4947 		memcg_oom_recover(memcg);
4948 		cond_resched();
4949 
4950 		/*
4951 		 * Kernel memory may not necessarily be trackable to a specific
4952 		 * process. So they are not migrated, and therefore we can't
4953 		 * expect their value to drop to 0 here.
4954 		 * Having res filled up with kmem only is enough.
4955 		 *
4956 		 * This is a safety check because mem_cgroup_force_empty_list
4957 		 * could have raced with mem_cgroup_replace_page_cache callers
4958 		 * so the lru seemed empty but the page could have been added
4959 		 * right after the check. RES_USAGE should be safe as we always
4960 		 * charge before adding to the LRU.
4961 		 */
4962 		usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4963 			res_counter_read_u64(&memcg->kmem, RES_USAGE);
4964 	} while (usage > 0);
4965 }
4966 
4967 static inline bool memcg_has_children(struct mem_cgroup *memcg)
4968 {
4969 	lockdep_assert_held(&memcg_create_mutex);
4970 	/*
4971 	 * The lock does not prevent addition or deletion to the list
4972 	 * of children, but it prevents a new child from being
4973 	 * initialized based on this parent in css_online(), so it's
4974 	 * enough to decide whether hierarchically inherited
4975 	 * attributes can still be changed or not.
4976 	 */
4977 	return memcg->use_hierarchy &&
4978 		!list_empty(&memcg->css.cgroup->children);
4979 }
4980 
4981 /*
4982  * Reclaims as many pages from the given memcg as possible and moves
4983  * the rest to the parent.
4984  *
4985  * Caller is responsible for holding css reference for memcg.
4986  */
4987 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4988 {
4989 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4990 	struct cgroup *cgrp = memcg->css.cgroup;
4991 
4992 	/* returns EBUSY if there is a task or if we come here twice. */
4993 	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
4994 		return -EBUSY;
4995 
4996 	/* we call try-to-free pages for make this cgroup empty */
4997 	lru_add_drain_all();
4998 	/* try to free all pages in this cgroup */
4999 	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
5000 		int progress;
5001 
5002 		if (signal_pending(current))
5003 			return -EINTR;
5004 
5005 		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
5006 						false);
5007 		if (!progress) {
5008 			nr_retries--;
5009 			/* maybe some writeback is necessary */
5010 			congestion_wait(BLK_RW_ASYNC, HZ/10);
5011 		}
5012 
5013 	}
5014 	lru_add_drain();
5015 	mem_cgroup_reparent_charges(memcg);
5016 
5017 	return 0;
5018 }
5019 
5020 static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
5021 					unsigned int event)
5022 {
5023 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5024 
5025 	if (mem_cgroup_is_root(memcg))
5026 		return -EINVAL;
5027 	return mem_cgroup_force_empty(memcg);
5028 }
5029 
5030 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
5031 				     struct cftype *cft)
5032 {
5033 	return mem_cgroup_from_css(css)->use_hierarchy;
5034 }
5035 
5036 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
5037 				      struct cftype *cft, u64 val)
5038 {
5039 	int retval = 0;
5040 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5041 	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5042 
5043 	mutex_lock(&memcg_create_mutex);
5044 
5045 	if (memcg->use_hierarchy == val)
5046 		goto out;
5047 
5048 	/*
5049 	 * If parent's use_hierarchy is set, we can't make any modifications
5050 	 * in the child subtrees. If it is unset, then the change can
5051 	 * occur, provided the current cgroup has no children.
5052 	 *
5053 	 * For the root cgroup, parent_mem is NULL, we allow value to be
5054 	 * set if there are no children.
5055 	 */
5056 	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
5057 				(val == 1 || val == 0)) {
5058 		if (list_empty(&memcg->css.cgroup->children))
5059 			memcg->use_hierarchy = val;
5060 		else
5061 			retval = -EBUSY;
5062 	} else
5063 		retval = -EINVAL;
5064 
5065 out:
5066 	mutex_unlock(&memcg_create_mutex);
5067 
5068 	return retval;
5069 }
5070 
5071 
5072 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
5073 					       enum mem_cgroup_stat_index idx)
5074 {
5075 	struct mem_cgroup *iter;
5076 	long val = 0;
5077 
5078 	/* Per-cpu values can be negative, use a signed accumulator */
5079 	for_each_mem_cgroup_tree(iter, memcg)
5080 		val += mem_cgroup_read_stat(iter, idx);
5081 
5082 	if (val < 0) /* race ? */
5083 		val = 0;
5084 	return val;
5085 }
5086 
5087 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
5088 {
5089 	u64 val;
5090 
5091 	if (!mem_cgroup_is_root(memcg)) {
5092 		if (!swap)
5093 			return res_counter_read_u64(&memcg->res, RES_USAGE);
5094 		else
5095 			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
5096 	}
5097 
5098 	/*
5099 	 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
5100 	 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
5101 	 */
5102 	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
5103 	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
5104 
5105 	if (swap)
5106 		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
5107 
5108 	return val << PAGE_SHIFT;
5109 }
5110 
5111 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
5112 				   struct cftype *cft)
5113 {
5114 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5115 	u64 val;
5116 	int name;
5117 	enum res_type type;
5118 
5119 	type = MEMFILE_TYPE(cft->private);
5120 	name = MEMFILE_ATTR(cft->private);
5121 
5122 	switch (type) {
5123 	case _MEM:
5124 		if (name == RES_USAGE)
5125 			val = mem_cgroup_usage(memcg, false);
5126 		else
5127 			val = res_counter_read_u64(&memcg->res, name);
5128 		break;
5129 	case _MEMSWAP:
5130 		if (name == RES_USAGE)
5131 			val = mem_cgroup_usage(memcg, true);
5132 		else
5133 			val = res_counter_read_u64(&memcg->memsw, name);
5134 		break;
5135 	case _KMEM:
5136 		val = res_counter_read_u64(&memcg->kmem, name);
5137 		break;
5138 	default:
5139 		BUG();
5140 	}
5141 
5142 	return val;
5143 }
5144 
5145 #ifdef CONFIG_MEMCG_KMEM
5146 /* should be called with activate_kmem_mutex held */
5147 static int __memcg_activate_kmem(struct mem_cgroup *memcg,
5148 				 unsigned long long limit)
5149 {
5150 	int err = 0;
5151 	int memcg_id;
5152 
5153 	if (memcg_kmem_is_active(memcg))
5154 		return 0;
5155 
5156 	/*
5157 	 * We are going to allocate memory for data shared by all memory
5158 	 * cgroups so let's stop accounting here.
5159 	 */
5160 	memcg_stop_kmem_account();
5161 
5162 	/*
5163 	 * For simplicity, we won't allow this to be disabled.  It also can't
5164 	 * be changed if the cgroup has children already, or if tasks had
5165 	 * already joined.
5166 	 *
5167 	 * If tasks join before we set the limit, a person looking at
5168 	 * kmem.usage_in_bytes will have no way to determine when it took
5169 	 * place, which makes the value quite meaningless.
5170 	 *
5171 	 * After it first became limited, changes in the value of the limit are
5172 	 * of course permitted.
5173 	 */
5174 	mutex_lock(&memcg_create_mutex);
5175 	if (cgroup_task_count(memcg->css.cgroup) || memcg_has_children(memcg))
5176 		err = -EBUSY;
5177 	mutex_unlock(&memcg_create_mutex);
5178 	if (err)
5179 		goto out;
5180 
5181 	memcg_id = ida_simple_get(&kmem_limited_groups,
5182 				  0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
5183 	if (memcg_id < 0) {
5184 		err = memcg_id;
5185 		goto out;
5186 	}
5187 
5188 	/*
5189 	 * Make sure we have enough space for this cgroup in each root cache's
5190 	 * memcg_params.
5191 	 */
5192 	err = memcg_update_all_caches(memcg_id + 1);
5193 	if (err)
5194 		goto out_rmid;
5195 
5196 	memcg->kmemcg_id = memcg_id;
5197 	INIT_LIST_HEAD(&memcg->memcg_slab_caches);
5198 	mutex_init(&memcg->slab_caches_mutex);
5199 
5200 	/*
5201 	 * We couldn't have accounted to this cgroup, because it hasn't got the
5202 	 * active bit set yet, so this should succeed.
5203 	 */
5204 	err = res_counter_set_limit(&memcg->kmem, limit);
5205 	VM_BUG_ON(err);
5206 
5207 	static_key_slow_inc(&memcg_kmem_enabled_key);
5208 	/*
5209 	 * Setting the active bit after enabling static branching will
5210 	 * guarantee no one starts accounting before all call sites are
5211 	 * patched.
5212 	 */
5213 	memcg_kmem_set_active(memcg);
5214 out:
5215 	memcg_resume_kmem_account();
5216 	return err;
5217 
5218 out_rmid:
5219 	ida_simple_remove(&kmem_limited_groups, memcg_id);
5220 	goto out;
5221 }
5222 
5223 static int memcg_activate_kmem(struct mem_cgroup *memcg,
5224 			       unsigned long long limit)
5225 {
5226 	int ret;
5227 
5228 	mutex_lock(&activate_kmem_mutex);
5229 	ret = __memcg_activate_kmem(memcg, limit);
5230 	mutex_unlock(&activate_kmem_mutex);
5231 	return ret;
5232 }
5233 
5234 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
5235 				   unsigned long long val)
5236 {
5237 	int ret;
5238 
5239 	if (!memcg_kmem_is_active(memcg))
5240 		ret = memcg_activate_kmem(memcg, val);
5241 	else
5242 		ret = res_counter_set_limit(&memcg->kmem, val);
5243 	return ret;
5244 }
5245 
5246 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5247 {
5248 	int ret = 0;
5249 	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5250 
5251 	if (!parent)
5252 		return 0;
5253 
5254 	mutex_lock(&activate_kmem_mutex);
5255 	/*
5256 	 * If the parent cgroup is not kmem-active now, it cannot be activated
5257 	 * after this point, because it has at least one child already.
5258 	 */
5259 	if (memcg_kmem_is_active(parent))
5260 		ret = __memcg_activate_kmem(memcg, RES_COUNTER_MAX);
5261 	mutex_unlock(&activate_kmem_mutex);
5262 	return ret;
5263 }
5264 #else
5265 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
5266 				   unsigned long long val)
5267 {
5268 	return -EINVAL;
5269 }
5270 #endif /* CONFIG_MEMCG_KMEM */
5271 
5272 /*
5273  * The user of this function is...
5274  * RES_LIMIT.
5275  */
5276 static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
5277 			    const char *buffer)
5278 {
5279 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5280 	enum res_type type;
5281 	int name;
5282 	unsigned long long val;
5283 	int ret;
5284 
5285 	type = MEMFILE_TYPE(cft->private);
5286 	name = MEMFILE_ATTR(cft->private);
5287 
5288 	switch (name) {
5289 	case RES_LIMIT:
5290 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5291 			ret = -EINVAL;
5292 			break;
5293 		}
5294 		/* This function does all necessary parse...reuse it */
5295 		ret = res_counter_memparse_write_strategy(buffer, &val);
5296 		if (ret)
5297 			break;
5298 		if (type == _MEM)
5299 			ret = mem_cgroup_resize_limit(memcg, val);
5300 		else if (type == _MEMSWAP)
5301 			ret = mem_cgroup_resize_memsw_limit(memcg, val);
5302 		else if (type == _KMEM)
5303 			ret = memcg_update_kmem_limit(memcg, val);
5304 		else
5305 			return -EINVAL;
5306 		break;
5307 	case RES_SOFT_LIMIT:
5308 		ret = res_counter_memparse_write_strategy(buffer, &val);
5309 		if (ret)
5310 			break;
5311 		/*
5312 		 * For memsw, soft limits are hard to implement in terms
5313 		 * of semantics, for now, we support soft limits for
5314 		 * control without swap
5315 		 */
5316 		if (type == _MEM)
5317 			ret = res_counter_set_soft_limit(&memcg->res, val);
5318 		else
5319 			ret = -EINVAL;
5320 		break;
5321 	default:
5322 		ret = -EINVAL; /* should be BUG() ? */
5323 		break;
5324 	}
5325 	return ret;
5326 }
5327 
5328 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5329 		unsigned long long *mem_limit, unsigned long long *memsw_limit)
5330 {
5331 	unsigned long long min_limit, min_memsw_limit, tmp;
5332 
5333 	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5334 	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5335 	if (!memcg->use_hierarchy)
5336 		goto out;
5337 
5338 	while (css_parent(&memcg->css)) {
5339 		memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5340 		if (!memcg->use_hierarchy)
5341 			break;
5342 		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5343 		min_limit = min(min_limit, tmp);
5344 		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5345 		min_memsw_limit = min(min_memsw_limit, tmp);
5346 	}
5347 out:
5348 	*mem_limit = min_limit;
5349 	*memsw_limit = min_memsw_limit;
5350 }
5351 
5352 static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
5353 {
5354 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5355 	int name;
5356 	enum res_type type;
5357 
5358 	type = MEMFILE_TYPE(event);
5359 	name = MEMFILE_ATTR(event);
5360 
5361 	switch (name) {
5362 	case RES_MAX_USAGE:
5363 		if (type == _MEM)
5364 			res_counter_reset_max(&memcg->res);
5365 		else if (type == _MEMSWAP)
5366 			res_counter_reset_max(&memcg->memsw);
5367 		else if (type == _KMEM)
5368 			res_counter_reset_max(&memcg->kmem);
5369 		else
5370 			return -EINVAL;
5371 		break;
5372 	case RES_FAILCNT:
5373 		if (type == _MEM)
5374 			res_counter_reset_failcnt(&memcg->res);
5375 		else if (type == _MEMSWAP)
5376 			res_counter_reset_failcnt(&memcg->memsw);
5377 		else if (type == _KMEM)
5378 			res_counter_reset_failcnt(&memcg->kmem);
5379 		else
5380 			return -EINVAL;
5381 		break;
5382 	}
5383 
5384 	return 0;
5385 }
5386 
5387 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
5388 					struct cftype *cft)
5389 {
5390 	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
5391 }
5392 
5393 #ifdef CONFIG_MMU
5394 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5395 					struct cftype *cft, u64 val)
5396 {
5397 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5398 
5399 	if (val >= (1 << NR_MOVE_TYPE))
5400 		return -EINVAL;
5401 
5402 	/*
5403 	 * No kind of locking is needed in here, because ->can_attach() will
5404 	 * check this value once in the beginning of the process, and then carry
5405 	 * on with stale data. This means that changes to this value will only
5406 	 * affect task migrations starting after the change.
5407 	 */
5408 	memcg->move_charge_at_immigrate = val;
5409 	return 0;
5410 }
5411 #else
5412 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5413 					struct cftype *cft, u64 val)
5414 {
5415 	return -ENOSYS;
5416 }
5417 #endif
5418 
5419 #ifdef CONFIG_NUMA
5420 static int memcg_numa_stat_show(struct seq_file *m, void *v)
5421 {
5422 	struct numa_stat {
5423 		const char *name;
5424 		unsigned int lru_mask;
5425 	};
5426 
5427 	static const struct numa_stat stats[] = {
5428 		{ "total", LRU_ALL },
5429 		{ "file", LRU_ALL_FILE },
5430 		{ "anon", LRU_ALL_ANON },
5431 		{ "unevictable", BIT(LRU_UNEVICTABLE) },
5432 	};
5433 	const struct numa_stat *stat;
5434 	int nid;
5435 	unsigned long nr;
5436 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5437 
5438 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
5439 		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
5440 		seq_printf(m, "%s=%lu", stat->name, nr);
5441 		for_each_node_state(nid, N_MEMORY) {
5442 			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5443 							  stat->lru_mask);
5444 			seq_printf(m, " N%d=%lu", nid, nr);
5445 		}
5446 		seq_putc(m, '\n');
5447 	}
5448 
5449 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
5450 		struct mem_cgroup *iter;
5451 
5452 		nr = 0;
5453 		for_each_mem_cgroup_tree(iter, memcg)
5454 			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
5455 		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
5456 		for_each_node_state(nid, N_MEMORY) {
5457 			nr = 0;
5458 			for_each_mem_cgroup_tree(iter, memcg)
5459 				nr += mem_cgroup_node_nr_lru_pages(
5460 					iter, nid, stat->lru_mask);
5461 			seq_printf(m, " N%d=%lu", nid, nr);
5462 		}
5463 		seq_putc(m, '\n');
5464 	}
5465 
5466 	return 0;
5467 }
5468 #endif /* CONFIG_NUMA */
5469 
5470 static inline void mem_cgroup_lru_names_not_uptodate(void)
5471 {
5472 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5473 }
5474 
5475 static int memcg_stat_show(struct seq_file *m, void *v)
5476 {
5477 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5478 	struct mem_cgroup *mi;
5479 	unsigned int i;
5480 
5481 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5482 		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5483 			continue;
5484 		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5485 			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5486 	}
5487 
5488 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5489 		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5490 			   mem_cgroup_read_events(memcg, i));
5491 
5492 	for (i = 0; i < NR_LRU_LISTS; i++)
5493 		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5494 			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5495 
5496 	/* Hierarchical information */
5497 	{
5498 		unsigned long long limit, memsw_limit;
5499 		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5500 		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5501 		if (do_swap_account)
5502 			seq_printf(m, "hierarchical_memsw_limit %llu\n",
5503 				   memsw_limit);
5504 	}
5505 
5506 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5507 		long long val = 0;
5508 
5509 		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5510 			continue;
5511 		for_each_mem_cgroup_tree(mi, memcg)
5512 			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5513 		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5514 	}
5515 
5516 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5517 		unsigned long long val = 0;
5518 
5519 		for_each_mem_cgroup_tree(mi, memcg)
5520 			val += mem_cgroup_read_events(mi, i);
5521 		seq_printf(m, "total_%s %llu\n",
5522 			   mem_cgroup_events_names[i], val);
5523 	}
5524 
5525 	for (i = 0; i < NR_LRU_LISTS; i++) {
5526 		unsigned long long val = 0;
5527 
5528 		for_each_mem_cgroup_tree(mi, memcg)
5529 			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5530 		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5531 	}
5532 
5533 #ifdef CONFIG_DEBUG_VM
5534 	{
5535 		int nid, zid;
5536 		struct mem_cgroup_per_zone *mz;
5537 		struct zone_reclaim_stat *rstat;
5538 		unsigned long recent_rotated[2] = {0, 0};
5539 		unsigned long recent_scanned[2] = {0, 0};
5540 
5541 		for_each_online_node(nid)
5542 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5543 				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5544 				rstat = &mz->lruvec.reclaim_stat;
5545 
5546 				recent_rotated[0] += rstat->recent_rotated[0];
5547 				recent_rotated[1] += rstat->recent_rotated[1];
5548 				recent_scanned[0] += rstat->recent_scanned[0];
5549 				recent_scanned[1] += rstat->recent_scanned[1];
5550 			}
5551 		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5552 		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5553 		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5554 		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
5555 	}
5556 #endif
5557 
5558 	return 0;
5559 }
5560 
5561 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
5562 				      struct cftype *cft)
5563 {
5564 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5565 
5566 	return mem_cgroup_swappiness(memcg);
5567 }
5568 
5569 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
5570 				       struct cftype *cft, u64 val)
5571 {
5572 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5573 	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5574 
5575 	if (val > 100 || !parent)
5576 		return -EINVAL;
5577 
5578 	mutex_lock(&memcg_create_mutex);
5579 
5580 	/* If under hierarchy, only empty-root can set this value */
5581 	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5582 		mutex_unlock(&memcg_create_mutex);
5583 		return -EINVAL;
5584 	}
5585 
5586 	memcg->swappiness = val;
5587 
5588 	mutex_unlock(&memcg_create_mutex);
5589 
5590 	return 0;
5591 }
5592 
5593 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5594 {
5595 	struct mem_cgroup_threshold_ary *t;
5596 	u64 usage;
5597 	int i;
5598 
5599 	rcu_read_lock();
5600 	if (!swap)
5601 		t = rcu_dereference(memcg->thresholds.primary);
5602 	else
5603 		t = rcu_dereference(memcg->memsw_thresholds.primary);
5604 
5605 	if (!t)
5606 		goto unlock;
5607 
5608 	usage = mem_cgroup_usage(memcg, swap);
5609 
5610 	/*
5611 	 * current_threshold points to threshold just below or equal to usage.
5612 	 * If it's not true, a threshold was crossed after last
5613 	 * call of __mem_cgroup_threshold().
5614 	 */
5615 	i = t->current_threshold;
5616 
5617 	/*
5618 	 * Iterate backward over array of thresholds starting from
5619 	 * current_threshold and check if a threshold is crossed.
5620 	 * If none of thresholds below usage is crossed, we read
5621 	 * only one element of the array here.
5622 	 */
5623 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5624 		eventfd_signal(t->entries[i].eventfd, 1);
5625 
5626 	/* i = current_threshold + 1 */
5627 	i++;
5628 
5629 	/*
5630 	 * Iterate forward over array of thresholds starting from
5631 	 * current_threshold+1 and check if a threshold is crossed.
5632 	 * If none of thresholds above usage is crossed, we read
5633 	 * only one element of the array here.
5634 	 */
5635 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5636 		eventfd_signal(t->entries[i].eventfd, 1);
5637 
5638 	/* Update current_threshold */
5639 	t->current_threshold = i - 1;
5640 unlock:
5641 	rcu_read_unlock();
5642 }
5643 
5644 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5645 {
5646 	while (memcg) {
5647 		__mem_cgroup_threshold(memcg, false);
5648 		if (do_swap_account)
5649 			__mem_cgroup_threshold(memcg, true);
5650 
5651 		memcg = parent_mem_cgroup(memcg);
5652 	}
5653 }
5654 
5655 static int compare_thresholds(const void *a, const void *b)
5656 {
5657 	const struct mem_cgroup_threshold *_a = a;
5658 	const struct mem_cgroup_threshold *_b = b;
5659 
5660 	if (_a->threshold > _b->threshold)
5661 		return 1;
5662 
5663 	if (_a->threshold < _b->threshold)
5664 		return -1;
5665 
5666 	return 0;
5667 }
5668 
5669 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
5670 {
5671 	struct mem_cgroup_eventfd_list *ev;
5672 
5673 	list_for_each_entry(ev, &memcg->oom_notify, list)
5674 		eventfd_signal(ev->eventfd, 1);
5675 	return 0;
5676 }
5677 
5678 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
5679 {
5680 	struct mem_cgroup *iter;
5681 
5682 	for_each_mem_cgroup_tree(iter, memcg)
5683 		mem_cgroup_oom_notify_cb(iter);
5684 }
5685 
5686 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
5687 	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
5688 {
5689 	struct mem_cgroup_thresholds *thresholds;
5690 	struct mem_cgroup_threshold_ary *new;
5691 	u64 threshold, usage;
5692 	int i, size, ret;
5693 
5694 	ret = res_counter_memparse_write_strategy(args, &threshold);
5695 	if (ret)
5696 		return ret;
5697 
5698 	mutex_lock(&memcg->thresholds_lock);
5699 
5700 	if (type == _MEM)
5701 		thresholds = &memcg->thresholds;
5702 	else if (type == _MEMSWAP)
5703 		thresholds = &memcg->memsw_thresholds;
5704 	else
5705 		BUG();
5706 
5707 	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5708 
5709 	/* Check if a threshold crossed before adding a new one */
5710 	if (thresholds->primary)
5711 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
5712 
5713 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5714 
5715 	/* Allocate memory for new array of thresholds */
5716 	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5717 			GFP_KERNEL);
5718 	if (!new) {
5719 		ret = -ENOMEM;
5720 		goto unlock;
5721 	}
5722 	new->size = size;
5723 
5724 	/* Copy thresholds (if any) to new array */
5725 	if (thresholds->primary) {
5726 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5727 				sizeof(struct mem_cgroup_threshold));
5728 	}
5729 
5730 	/* Add new threshold */
5731 	new->entries[size - 1].eventfd = eventfd;
5732 	new->entries[size - 1].threshold = threshold;
5733 
5734 	/* Sort thresholds. Registering of new threshold isn't time-critical */
5735 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5736 			compare_thresholds, NULL);
5737 
5738 	/* Find current threshold */
5739 	new->current_threshold = -1;
5740 	for (i = 0; i < size; i++) {
5741 		if (new->entries[i].threshold <= usage) {
5742 			/*
5743 			 * new->current_threshold will not be used until
5744 			 * rcu_assign_pointer(), so it's safe to increment
5745 			 * it here.
5746 			 */
5747 			++new->current_threshold;
5748 		} else
5749 			break;
5750 	}
5751 
5752 	/* Free old spare buffer and save old primary buffer as spare */
5753 	kfree(thresholds->spare);
5754 	thresholds->spare = thresholds->primary;
5755 
5756 	rcu_assign_pointer(thresholds->primary, new);
5757 
5758 	/* To be sure that nobody uses thresholds */
5759 	synchronize_rcu();
5760 
5761 unlock:
5762 	mutex_unlock(&memcg->thresholds_lock);
5763 
5764 	return ret;
5765 }
5766 
5767 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
5768 	struct eventfd_ctx *eventfd, const char *args)
5769 {
5770 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
5771 }
5772 
5773 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
5774 	struct eventfd_ctx *eventfd, const char *args)
5775 {
5776 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
5777 }
5778 
5779 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
5780 	struct eventfd_ctx *eventfd, enum res_type type)
5781 {
5782 	struct mem_cgroup_thresholds *thresholds;
5783 	struct mem_cgroup_threshold_ary *new;
5784 	u64 usage;
5785 	int i, j, size;
5786 
5787 	mutex_lock(&memcg->thresholds_lock);
5788 	if (type == _MEM)
5789 		thresholds = &memcg->thresholds;
5790 	else if (type == _MEMSWAP)
5791 		thresholds = &memcg->memsw_thresholds;
5792 	else
5793 		BUG();
5794 
5795 	if (!thresholds->primary)
5796 		goto unlock;
5797 
5798 	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5799 
5800 	/* Check if a threshold crossed before removing */
5801 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
5802 
5803 	/* Calculate new number of threshold */
5804 	size = 0;
5805 	for (i = 0; i < thresholds->primary->size; i++) {
5806 		if (thresholds->primary->entries[i].eventfd != eventfd)
5807 			size++;
5808 	}
5809 
5810 	new = thresholds->spare;
5811 
5812 	/* Set thresholds array to NULL if we don't have thresholds */
5813 	if (!size) {
5814 		kfree(new);
5815 		new = NULL;
5816 		goto swap_buffers;
5817 	}
5818 
5819 	new->size = size;
5820 
5821 	/* Copy thresholds and find current threshold */
5822 	new->current_threshold = -1;
5823 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5824 		if (thresholds->primary->entries[i].eventfd == eventfd)
5825 			continue;
5826 
5827 		new->entries[j] = thresholds->primary->entries[i];
5828 		if (new->entries[j].threshold <= usage) {
5829 			/*
5830 			 * new->current_threshold will not be used
5831 			 * until rcu_assign_pointer(), so it's safe to increment
5832 			 * it here.
5833 			 */
5834 			++new->current_threshold;
5835 		}
5836 		j++;
5837 	}
5838 
5839 swap_buffers:
5840 	/* Swap primary and spare array */
5841 	thresholds->spare = thresholds->primary;
5842 	/* If all events are unregistered, free the spare array */
5843 	if (!new) {
5844 		kfree(thresholds->spare);
5845 		thresholds->spare = NULL;
5846 	}
5847 
5848 	rcu_assign_pointer(thresholds->primary, new);
5849 
5850 	/* To be sure that nobody uses thresholds */
5851 	synchronize_rcu();
5852 unlock:
5853 	mutex_unlock(&memcg->thresholds_lock);
5854 }
5855 
5856 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
5857 	struct eventfd_ctx *eventfd)
5858 {
5859 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
5860 }
5861 
5862 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
5863 	struct eventfd_ctx *eventfd)
5864 {
5865 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
5866 }
5867 
5868 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
5869 	struct eventfd_ctx *eventfd, const char *args)
5870 {
5871 	struct mem_cgroup_eventfd_list *event;
5872 
5873 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
5874 	if (!event)
5875 		return -ENOMEM;
5876 
5877 	spin_lock(&memcg_oom_lock);
5878 
5879 	event->eventfd = eventfd;
5880 	list_add(&event->list, &memcg->oom_notify);
5881 
5882 	/* already in OOM ? */
5883 	if (atomic_read(&memcg->under_oom))
5884 		eventfd_signal(eventfd, 1);
5885 	spin_unlock(&memcg_oom_lock);
5886 
5887 	return 0;
5888 }
5889 
5890 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
5891 	struct eventfd_ctx *eventfd)
5892 {
5893 	struct mem_cgroup_eventfd_list *ev, *tmp;
5894 
5895 	spin_lock(&memcg_oom_lock);
5896 
5897 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
5898 		if (ev->eventfd == eventfd) {
5899 			list_del(&ev->list);
5900 			kfree(ev);
5901 		}
5902 	}
5903 
5904 	spin_unlock(&memcg_oom_lock);
5905 }
5906 
5907 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
5908 {
5909 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
5910 
5911 	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
5912 	seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
5913 	return 0;
5914 }
5915 
5916 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
5917 	struct cftype *cft, u64 val)
5918 {
5919 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5920 	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5921 
5922 	/* cannot set to root cgroup and only 0 and 1 are allowed */
5923 	if (!parent || !((val == 0) || (val == 1)))
5924 		return -EINVAL;
5925 
5926 	mutex_lock(&memcg_create_mutex);
5927 	/* oom-kill-disable is a flag for subhierarchy. */
5928 	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5929 		mutex_unlock(&memcg_create_mutex);
5930 		return -EINVAL;
5931 	}
5932 	memcg->oom_kill_disable = val;
5933 	if (!val)
5934 		memcg_oom_recover(memcg);
5935 	mutex_unlock(&memcg_create_mutex);
5936 	return 0;
5937 }
5938 
5939 #ifdef CONFIG_MEMCG_KMEM
5940 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5941 {
5942 	int ret;
5943 
5944 	memcg->kmemcg_id = -1;
5945 	ret = memcg_propagate_kmem(memcg);
5946 	if (ret)
5947 		return ret;
5948 
5949 	return mem_cgroup_sockets_init(memcg, ss);
5950 }
5951 
5952 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5953 {
5954 	mem_cgroup_sockets_destroy(memcg);
5955 }
5956 
5957 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5958 {
5959 	if (!memcg_kmem_is_active(memcg))
5960 		return;
5961 
5962 	/*
5963 	 * kmem charges can outlive the cgroup. In the case of slab
5964 	 * pages, for instance, a page contain objects from various
5965 	 * processes. As we prevent from taking a reference for every
5966 	 * such allocation we have to be careful when doing uncharge
5967 	 * (see memcg_uncharge_kmem) and here during offlining.
5968 	 *
5969 	 * The idea is that that only the _last_ uncharge which sees
5970 	 * the dead memcg will drop the last reference. An additional
5971 	 * reference is taken here before the group is marked dead
5972 	 * which is then paired with css_put during uncharge resp. here.
5973 	 *
5974 	 * Although this might sound strange as this path is called from
5975 	 * css_offline() when the referencemight have dropped down to 0
5976 	 * and shouldn't be incremented anymore (css_tryget would fail)
5977 	 * we do not have other options because of the kmem allocations
5978 	 * lifetime.
5979 	 */
5980 	css_get(&memcg->css);
5981 
5982 	memcg_kmem_mark_dead(memcg);
5983 
5984 	if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5985 		return;
5986 
5987 	if (memcg_kmem_test_and_clear_dead(memcg))
5988 		css_put(&memcg->css);
5989 }
5990 #else
5991 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5992 {
5993 	return 0;
5994 }
5995 
5996 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5997 {
5998 }
5999 
6000 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
6001 {
6002 }
6003 #endif
6004 
6005 /*
6006  * DO NOT USE IN NEW FILES.
6007  *
6008  * "cgroup.event_control" implementation.
6009  *
6010  * This is way over-engineered.  It tries to support fully configurable
6011  * events for each user.  Such level of flexibility is completely
6012  * unnecessary especially in the light of the planned unified hierarchy.
6013  *
6014  * Please deprecate this and replace with something simpler if at all
6015  * possible.
6016  */
6017 
6018 /*
6019  * Unregister event and free resources.
6020  *
6021  * Gets called from workqueue.
6022  */
6023 static void memcg_event_remove(struct work_struct *work)
6024 {
6025 	struct mem_cgroup_event *event =
6026 		container_of(work, struct mem_cgroup_event, remove);
6027 	struct mem_cgroup *memcg = event->memcg;
6028 
6029 	remove_wait_queue(event->wqh, &event->wait);
6030 
6031 	event->unregister_event(memcg, event->eventfd);
6032 
6033 	/* Notify userspace the event is going away. */
6034 	eventfd_signal(event->eventfd, 1);
6035 
6036 	eventfd_ctx_put(event->eventfd);
6037 	kfree(event);
6038 	css_put(&memcg->css);
6039 }
6040 
6041 /*
6042  * Gets called on POLLHUP on eventfd when user closes it.
6043  *
6044  * Called with wqh->lock held and interrupts disabled.
6045  */
6046 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
6047 			    int sync, void *key)
6048 {
6049 	struct mem_cgroup_event *event =
6050 		container_of(wait, struct mem_cgroup_event, wait);
6051 	struct mem_cgroup *memcg = event->memcg;
6052 	unsigned long flags = (unsigned long)key;
6053 
6054 	if (flags & POLLHUP) {
6055 		/*
6056 		 * If the event has been detached at cgroup removal, we
6057 		 * can simply return knowing the other side will cleanup
6058 		 * for us.
6059 		 *
6060 		 * We can't race against event freeing since the other
6061 		 * side will require wqh->lock via remove_wait_queue(),
6062 		 * which we hold.
6063 		 */
6064 		spin_lock(&memcg->event_list_lock);
6065 		if (!list_empty(&event->list)) {
6066 			list_del_init(&event->list);
6067 			/*
6068 			 * We are in atomic context, but cgroup_event_remove()
6069 			 * may sleep, so we have to call it in workqueue.
6070 			 */
6071 			schedule_work(&event->remove);
6072 		}
6073 		spin_unlock(&memcg->event_list_lock);
6074 	}
6075 
6076 	return 0;
6077 }
6078 
6079 static void memcg_event_ptable_queue_proc(struct file *file,
6080 		wait_queue_head_t *wqh, poll_table *pt)
6081 {
6082 	struct mem_cgroup_event *event =
6083 		container_of(pt, struct mem_cgroup_event, pt);
6084 
6085 	event->wqh = wqh;
6086 	add_wait_queue(wqh, &event->wait);
6087 }
6088 
6089 /*
6090  * DO NOT USE IN NEW FILES.
6091  *
6092  * Parse input and register new cgroup event handler.
6093  *
6094  * Input must be in format '<event_fd> <control_fd> <args>'.
6095  * Interpretation of args is defined by control file implementation.
6096  */
6097 static int memcg_write_event_control(struct cgroup_subsys_state *css,
6098 				     struct cftype *cft, const char *buffer)
6099 {
6100 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6101 	struct mem_cgroup_event *event;
6102 	struct cgroup_subsys_state *cfile_css;
6103 	unsigned int efd, cfd;
6104 	struct fd efile;
6105 	struct fd cfile;
6106 	const char *name;
6107 	char *endp;
6108 	int ret;
6109 
6110 	efd = simple_strtoul(buffer, &endp, 10);
6111 	if (*endp != ' ')
6112 		return -EINVAL;
6113 	buffer = endp + 1;
6114 
6115 	cfd = simple_strtoul(buffer, &endp, 10);
6116 	if ((*endp != ' ') && (*endp != '\0'))
6117 		return -EINVAL;
6118 	buffer = endp + 1;
6119 
6120 	event = kzalloc(sizeof(*event), GFP_KERNEL);
6121 	if (!event)
6122 		return -ENOMEM;
6123 
6124 	event->memcg = memcg;
6125 	INIT_LIST_HEAD(&event->list);
6126 	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
6127 	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
6128 	INIT_WORK(&event->remove, memcg_event_remove);
6129 
6130 	efile = fdget(efd);
6131 	if (!efile.file) {
6132 		ret = -EBADF;
6133 		goto out_kfree;
6134 	}
6135 
6136 	event->eventfd = eventfd_ctx_fileget(efile.file);
6137 	if (IS_ERR(event->eventfd)) {
6138 		ret = PTR_ERR(event->eventfd);
6139 		goto out_put_efile;
6140 	}
6141 
6142 	cfile = fdget(cfd);
6143 	if (!cfile.file) {
6144 		ret = -EBADF;
6145 		goto out_put_eventfd;
6146 	}
6147 
6148 	/* the process need read permission on control file */
6149 	/* AV: shouldn't we check that it's been opened for read instead? */
6150 	ret = inode_permission(file_inode(cfile.file), MAY_READ);
6151 	if (ret < 0)
6152 		goto out_put_cfile;
6153 
6154 	/*
6155 	 * Determine the event callbacks and set them in @event.  This used
6156 	 * to be done via struct cftype but cgroup core no longer knows
6157 	 * about these events.  The following is crude but the whole thing
6158 	 * is for compatibility anyway.
6159 	 *
6160 	 * DO NOT ADD NEW FILES.
6161 	 */
6162 	name = cfile.file->f_dentry->d_name.name;
6163 
6164 	if (!strcmp(name, "memory.usage_in_bytes")) {
6165 		event->register_event = mem_cgroup_usage_register_event;
6166 		event->unregister_event = mem_cgroup_usage_unregister_event;
6167 	} else if (!strcmp(name, "memory.oom_control")) {
6168 		event->register_event = mem_cgroup_oom_register_event;
6169 		event->unregister_event = mem_cgroup_oom_unregister_event;
6170 	} else if (!strcmp(name, "memory.pressure_level")) {
6171 		event->register_event = vmpressure_register_event;
6172 		event->unregister_event = vmpressure_unregister_event;
6173 	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
6174 		event->register_event = memsw_cgroup_usage_register_event;
6175 		event->unregister_event = memsw_cgroup_usage_unregister_event;
6176 	} else {
6177 		ret = -EINVAL;
6178 		goto out_put_cfile;
6179 	}
6180 
6181 	/*
6182 	 * Verify @cfile should belong to @css.  Also, remaining events are
6183 	 * automatically removed on cgroup destruction but the removal is
6184 	 * asynchronous, so take an extra ref on @css.
6185 	 */
6186 	rcu_read_lock();
6187 
6188 	ret = -EINVAL;
6189 	cfile_css = css_from_dir(cfile.file->f_dentry->d_parent,
6190 				 &mem_cgroup_subsys);
6191 	if (cfile_css == css && css_tryget(css))
6192 		ret = 0;
6193 
6194 	rcu_read_unlock();
6195 	if (ret)
6196 		goto out_put_cfile;
6197 
6198 	ret = event->register_event(memcg, event->eventfd, buffer);
6199 	if (ret)
6200 		goto out_put_css;
6201 
6202 	efile.file->f_op->poll(efile.file, &event->pt);
6203 
6204 	spin_lock(&memcg->event_list_lock);
6205 	list_add(&event->list, &memcg->event_list);
6206 	spin_unlock(&memcg->event_list_lock);
6207 
6208 	fdput(cfile);
6209 	fdput(efile);
6210 
6211 	return 0;
6212 
6213 out_put_css:
6214 	css_put(css);
6215 out_put_cfile:
6216 	fdput(cfile);
6217 out_put_eventfd:
6218 	eventfd_ctx_put(event->eventfd);
6219 out_put_efile:
6220 	fdput(efile);
6221 out_kfree:
6222 	kfree(event);
6223 
6224 	return ret;
6225 }
6226 
6227 static struct cftype mem_cgroup_files[] = {
6228 	{
6229 		.name = "usage_in_bytes",
6230 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
6231 		.read_u64 = mem_cgroup_read_u64,
6232 	},
6233 	{
6234 		.name = "max_usage_in_bytes",
6235 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6236 		.trigger = mem_cgroup_reset,
6237 		.read_u64 = mem_cgroup_read_u64,
6238 	},
6239 	{
6240 		.name = "limit_in_bytes",
6241 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
6242 		.write_string = mem_cgroup_write,
6243 		.read_u64 = mem_cgroup_read_u64,
6244 	},
6245 	{
6246 		.name = "soft_limit_in_bytes",
6247 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
6248 		.write_string = mem_cgroup_write,
6249 		.read_u64 = mem_cgroup_read_u64,
6250 	},
6251 	{
6252 		.name = "failcnt",
6253 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6254 		.trigger = mem_cgroup_reset,
6255 		.read_u64 = mem_cgroup_read_u64,
6256 	},
6257 	{
6258 		.name = "stat",
6259 		.seq_show = memcg_stat_show,
6260 	},
6261 	{
6262 		.name = "force_empty",
6263 		.trigger = mem_cgroup_force_empty_write,
6264 	},
6265 	{
6266 		.name = "use_hierarchy",
6267 		.flags = CFTYPE_INSANE,
6268 		.write_u64 = mem_cgroup_hierarchy_write,
6269 		.read_u64 = mem_cgroup_hierarchy_read,
6270 	},
6271 	{
6272 		.name = "cgroup.event_control",		/* XXX: for compat */
6273 		.write_string = memcg_write_event_control,
6274 		.flags = CFTYPE_NO_PREFIX,
6275 		.mode = S_IWUGO,
6276 	},
6277 	{
6278 		.name = "swappiness",
6279 		.read_u64 = mem_cgroup_swappiness_read,
6280 		.write_u64 = mem_cgroup_swappiness_write,
6281 	},
6282 	{
6283 		.name = "move_charge_at_immigrate",
6284 		.read_u64 = mem_cgroup_move_charge_read,
6285 		.write_u64 = mem_cgroup_move_charge_write,
6286 	},
6287 	{
6288 		.name = "oom_control",
6289 		.seq_show = mem_cgroup_oom_control_read,
6290 		.write_u64 = mem_cgroup_oom_control_write,
6291 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
6292 	},
6293 	{
6294 		.name = "pressure_level",
6295 	},
6296 #ifdef CONFIG_NUMA
6297 	{
6298 		.name = "numa_stat",
6299 		.seq_show = memcg_numa_stat_show,
6300 	},
6301 #endif
6302 #ifdef CONFIG_MEMCG_KMEM
6303 	{
6304 		.name = "kmem.limit_in_bytes",
6305 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
6306 		.write_string = mem_cgroup_write,
6307 		.read_u64 = mem_cgroup_read_u64,
6308 	},
6309 	{
6310 		.name = "kmem.usage_in_bytes",
6311 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
6312 		.read_u64 = mem_cgroup_read_u64,
6313 	},
6314 	{
6315 		.name = "kmem.failcnt",
6316 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6317 		.trigger = mem_cgroup_reset,
6318 		.read_u64 = mem_cgroup_read_u64,
6319 	},
6320 	{
6321 		.name = "kmem.max_usage_in_bytes",
6322 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6323 		.trigger = mem_cgroup_reset,
6324 		.read_u64 = mem_cgroup_read_u64,
6325 	},
6326 #ifdef CONFIG_SLABINFO
6327 	{
6328 		.name = "kmem.slabinfo",
6329 		.seq_show = mem_cgroup_slabinfo_read,
6330 	},
6331 #endif
6332 #endif
6333 	{ },	/* terminate */
6334 };
6335 
6336 #ifdef CONFIG_MEMCG_SWAP
6337 static struct cftype memsw_cgroup_files[] = {
6338 	{
6339 		.name = "memsw.usage_in_bytes",
6340 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6341 		.read_u64 = mem_cgroup_read_u64,
6342 	},
6343 	{
6344 		.name = "memsw.max_usage_in_bytes",
6345 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6346 		.trigger = mem_cgroup_reset,
6347 		.read_u64 = mem_cgroup_read_u64,
6348 	},
6349 	{
6350 		.name = "memsw.limit_in_bytes",
6351 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6352 		.write_string = mem_cgroup_write,
6353 		.read_u64 = mem_cgroup_read_u64,
6354 	},
6355 	{
6356 		.name = "memsw.failcnt",
6357 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6358 		.trigger = mem_cgroup_reset,
6359 		.read_u64 = mem_cgroup_read_u64,
6360 	},
6361 	{ },	/* terminate */
6362 };
6363 #endif
6364 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6365 {
6366 	struct mem_cgroup_per_node *pn;
6367 	struct mem_cgroup_per_zone *mz;
6368 	int zone, tmp = node;
6369 	/*
6370 	 * This routine is called against possible nodes.
6371 	 * But it's BUG to call kmalloc() against offline node.
6372 	 *
6373 	 * TODO: this routine can waste much memory for nodes which will
6374 	 *       never be onlined. It's better to use memory hotplug callback
6375 	 *       function.
6376 	 */
6377 	if (!node_state(node, N_NORMAL_MEMORY))
6378 		tmp = -1;
6379 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6380 	if (!pn)
6381 		return 1;
6382 
6383 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6384 		mz = &pn->zoneinfo[zone];
6385 		lruvec_init(&mz->lruvec);
6386 		mz->usage_in_excess = 0;
6387 		mz->on_tree = false;
6388 		mz->memcg = memcg;
6389 	}
6390 	memcg->nodeinfo[node] = pn;
6391 	return 0;
6392 }
6393 
6394 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6395 {
6396 	kfree(memcg->nodeinfo[node]);
6397 }
6398 
6399 static struct mem_cgroup *mem_cgroup_alloc(void)
6400 {
6401 	struct mem_cgroup *memcg;
6402 	size_t size;
6403 
6404 	size = sizeof(struct mem_cgroup);
6405 	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
6406 
6407 	memcg = kzalloc(size, GFP_KERNEL);
6408 	if (!memcg)
6409 		return NULL;
6410 
6411 	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
6412 	if (!memcg->stat)
6413 		goto out_free;
6414 	spin_lock_init(&memcg->pcp_counter_lock);
6415 	return memcg;
6416 
6417 out_free:
6418 	kfree(memcg);
6419 	return NULL;
6420 }
6421 
6422 /*
6423  * At destroying mem_cgroup, references from swap_cgroup can remain.
6424  * (scanning all at force_empty is too costly...)
6425  *
6426  * Instead of clearing all references at force_empty, we remember
6427  * the number of reference from swap_cgroup and free mem_cgroup when
6428  * it goes down to 0.
6429  *
6430  * Removal of cgroup itself succeeds regardless of refs from swap.
6431  */
6432 
6433 static void __mem_cgroup_free(struct mem_cgroup *memcg)
6434 {
6435 	int node;
6436 
6437 	mem_cgroup_remove_from_trees(memcg);
6438 
6439 	for_each_node(node)
6440 		free_mem_cgroup_per_zone_info(memcg, node);
6441 
6442 	free_percpu(memcg->stat);
6443 
6444 	/*
6445 	 * We need to make sure that (at least for now), the jump label
6446 	 * destruction code runs outside of the cgroup lock. This is because
6447 	 * get_online_cpus(), which is called from the static_branch update,
6448 	 * can't be called inside the cgroup_lock. cpusets are the ones
6449 	 * enforcing this dependency, so if they ever change, we might as well.
6450 	 *
6451 	 * schedule_work() will guarantee this happens. Be careful if you need
6452 	 * to move this code around, and make sure it is outside
6453 	 * the cgroup_lock.
6454 	 */
6455 	disarm_static_keys(memcg);
6456 	kfree(memcg);
6457 }
6458 
6459 /*
6460  * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6461  */
6462 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6463 {
6464 	if (!memcg->res.parent)
6465 		return NULL;
6466 	return mem_cgroup_from_res_counter(memcg->res.parent, res);
6467 }
6468 EXPORT_SYMBOL(parent_mem_cgroup);
6469 
6470 static void __init mem_cgroup_soft_limit_tree_init(void)
6471 {
6472 	struct mem_cgroup_tree_per_node *rtpn;
6473 	struct mem_cgroup_tree_per_zone *rtpz;
6474 	int tmp, node, zone;
6475 
6476 	for_each_node(node) {
6477 		tmp = node;
6478 		if (!node_state(node, N_NORMAL_MEMORY))
6479 			tmp = -1;
6480 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6481 		BUG_ON(!rtpn);
6482 
6483 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
6484 
6485 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6486 			rtpz = &rtpn->rb_tree_per_zone[zone];
6487 			rtpz->rb_root = RB_ROOT;
6488 			spin_lock_init(&rtpz->lock);
6489 		}
6490 	}
6491 }
6492 
6493 static struct cgroup_subsys_state * __ref
6494 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6495 {
6496 	struct mem_cgroup *memcg;
6497 	long error = -ENOMEM;
6498 	int node;
6499 
6500 	memcg = mem_cgroup_alloc();
6501 	if (!memcg)
6502 		return ERR_PTR(error);
6503 
6504 	for_each_node(node)
6505 		if (alloc_mem_cgroup_per_zone_info(memcg, node))
6506 			goto free_out;
6507 
6508 	/* root ? */
6509 	if (parent_css == NULL) {
6510 		root_mem_cgroup = memcg;
6511 		res_counter_init(&memcg->res, NULL);
6512 		res_counter_init(&memcg->memsw, NULL);
6513 		res_counter_init(&memcg->kmem, NULL);
6514 	}
6515 
6516 	memcg->last_scanned_node = MAX_NUMNODES;
6517 	INIT_LIST_HEAD(&memcg->oom_notify);
6518 	memcg->move_charge_at_immigrate = 0;
6519 	mutex_init(&memcg->thresholds_lock);
6520 	spin_lock_init(&memcg->move_lock);
6521 	vmpressure_init(&memcg->vmpressure);
6522 	INIT_LIST_HEAD(&memcg->event_list);
6523 	spin_lock_init(&memcg->event_list_lock);
6524 
6525 	return &memcg->css;
6526 
6527 free_out:
6528 	__mem_cgroup_free(memcg);
6529 	return ERR_PTR(error);
6530 }
6531 
6532 static int
6533 mem_cgroup_css_online(struct cgroup_subsys_state *css)
6534 {
6535 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6536 	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
6537 
6538 	if (css->cgroup->id > MEM_CGROUP_ID_MAX)
6539 		return -ENOSPC;
6540 
6541 	if (!parent)
6542 		return 0;
6543 
6544 	mutex_lock(&memcg_create_mutex);
6545 
6546 	memcg->use_hierarchy = parent->use_hierarchy;
6547 	memcg->oom_kill_disable = parent->oom_kill_disable;
6548 	memcg->swappiness = mem_cgroup_swappiness(parent);
6549 
6550 	if (parent->use_hierarchy) {
6551 		res_counter_init(&memcg->res, &parent->res);
6552 		res_counter_init(&memcg->memsw, &parent->memsw);
6553 		res_counter_init(&memcg->kmem, &parent->kmem);
6554 
6555 		/*
6556 		 * No need to take a reference to the parent because cgroup
6557 		 * core guarantees its existence.
6558 		 */
6559 	} else {
6560 		res_counter_init(&memcg->res, NULL);
6561 		res_counter_init(&memcg->memsw, NULL);
6562 		res_counter_init(&memcg->kmem, NULL);
6563 		/*
6564 		 * Deeper hierachy with use_hierarchy == false doesn't make
6565 		 * much sense so let cgroup subsystem know about this
6566 		 * unfortunate state in our controller.
6567 		 */
6568 		if (parent != root_mem_cgroup)
6569 			mem_cgroup_subsys.broken_hierarchy = true;
6570 	}
6571 	mutex_unlock(&memcg_create_mutex);
6572 
6573 	return memcg_init_kmem(memcg, &mem_cgroup_subsys);
6574 }
6575 
6576 /*
6577  * Announce all parents that a group from their hierarchy is gone.
6578  */
6579 static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6580 {
6581 	struct mem_cgroup *parent = memcg;
6582 
6583 	while ((parent = parent_mem_cgroup(parent)))
6584 		mem_cgroup_iter_invalidate(parent);
6585 
6586 	/*
6587 	 * if the root memcg is not hierarchical we have to check it
6588 	 * explicitely.
6589 	 */
6590 	if (!root_mem_cgroup->use_hierarchy)
6591 		mem_cgroup_iter_invalidate(root_mem_cgroup);
6592 }
6593 
6594 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
6595 {
6596 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6597 	struct mem_cgroup_event *event, *tmp;
6598 
6599 	/*
6600 	 * Unregister events and notify userspace.
6601 	 * Notify userspace about cgroup removing only after rmdir of cgroup
6602 	 * directory to avoid race between userspace and kernelspace.
6603 	 */
6604 	spin_lock(&memcg->event_list_lock);
6605 	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
6606 		list_del_init(&event->list);
6607 		schedule_work(&event->remove);
6608 	}
6609 	spin_unlock(&memcg->event_list_lock);
6610 
6611 	kmem_cgroup_css_offline(memcg);
6612 
6613 	mem_cgroup_invalidate_reclaim_iterators(memcg);
6614 	mem_cgroup_reparent_charges(memcg);
6615 	mem_cgroup_destroy_all_caches(memcg);
6616 	vmpressure_cleanup(&memcg->vmpressure);
6617 }
6618 
6619 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
6620 {
6621 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6622 	/*
6623 	 * XXX: css_offline() would be where we should reparent all
6624 	 * memory to prepare the cgroup for destruction.  However,
6625 	 * memcg does not do css_tryget() and res_counter charging
6626 	 * under the same RCU lock region, which means that charging
6627 	 * could race with offlining.  Offlining only happens to
6628 	 * cgroups with no tasks in them but charges can show up
6629 	 * without any tasks from the swapin path when the target
6630 	 * memcg is looked up from the swapout record and not from the
6631 	 * current task as it usually is.  A race like this can leak
6632 	 * charges and put pages with stale cgroup pointers into
6633 	 * circulation:
6634 	 *
6635 	 * #0                        #1
6636 	 *                           lookup_swap_cgroup_id()
6637 	 *                           rcu_read_lock()
6638 	 *                           mem_cgroup_lookup()
6639 	 *                           css_tryget()
6640 	 *                           rcu_read_unlock()
6641 	 * disable css_tryget()
6642 	 * call_rcu()
6643 	 *   offline_css()
6644 	 *     reparent_charges()
6645 	 *                           res_counter_charge()
6646 	 *                           css_put()
6647 	 *                             css_free()
6648 	 *                           pc->mem_cgroup = dead memcg
6649 	 *                           add page to lru
6650 	 *
6651 	 * The bulk of the charges are still moved in offline_css() to
6652 	 * avoid pinning a lot of pages in case a long-term reference
6653 	 * like a swapout record is deferring the css_free() to long
6654 	 * after offlining.  But this makes sure we catch any charges
6655 	 * made after offlining:
6656 	 */
6657 	mem_cgroup_reparent_charges(memcg);
6658 
6659 	memcg_destroy_kmem(memcg);
6660 	__mem_cgroup_free(memcg);
6661 }
6662 
6663 #ifdef CONFIG_MMU
6664 /* Handlers for move charge at task migration. */
6665 #define PRECHARGE_COUNT_AT_ONCE	256
6666 static int mem_cgroup_do_precharge(unsigned long count)
6667 {
6668 	int ret = 0;
6669 	int batch_count = PRECHARGE_COUNT_AT_ONCE;
6670 	struct mem_cgroup *memcg = mc.to;
6671 
6672 	if (mem_cgroup_is_root(memcg)) {
6673 		mc.precharge += count;
6674 		/* we don't need css_get for root */
6675 		return ret;
6676 	}
6677 	/* try to charge at once */
6678 	if (count > 1) {
6679 		struct res_counter *dummy;
6680 		/*
6681 		 * "memcg" cannot be under rmdir() because we've already checked
6682 		 * by cgroup_lock_live_cgroup() that it is not removed and we
6683 		 * are still under the same cgroup_mutex. So we can postpone
6684 		 * css_get().
6685 		 */
6686 		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6687 			goto one_by_one;
6688 		if (do_swap_account && res_counter_charge(&memcg->memsw,
6689 						PAGE_SIZE * count, &dummy)) {
6690 			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6691 			goto one_by_one;
6692 		}
6693 		mc.precharge += count;
6694 		return ret;
6695 	}
6696 one_by_one:
6697 	/* fall back to one by one charge */
6698 	while (count--) {
6699 		if (signal_pending(current)) {
6700 			ret = -EINTR;
6701 			break;
6702 		}
6703 		if (!batch_count--) {
6704 			batch_count = PRECHARGE_COUNT_AT_ONCE;
6705 			cond_resched();
6706 		}
6707 		ret = __mem_cgroup_try_charge(NULL,
6708 					GFP_KERNEL, 1, &memcg, false);
6709 		if (ret)
6710 			/* mem_cgroup_clear_mc() will do uncharge later */
6711 			return ret;
6712 		mc.precharge++;
6713 	}
6714 	return ret;
6715 }
6716 
6717 /**
6718  * get_mctgt_type - get target type of moving charge
6719  * @vma: the vma the pte to be checked belongs
6720  * @addr: the address corresponding to the pte to be checked
6721  * @ptent: the pte to be checked
6722  * @target: the pointer the target page or swap ent will be stored(can be NULL)
6723  *
6724  * Returns
6725  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
6726  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6727  *     move charge. if @target is not NULL, the page is stored in target->page
6728  *     with extra refcnt got(Callers should handle it).
6729  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6730  *     target for charge migration. if @target is not NULL, the entry is stored
6731  *     in target->ent.
6732  *
6733  * Called with pte lock held.
6734  */
6735 union mc_target {
6736 	struct page	*page;
6737 	swp_entry_t	ent;
6738 };
6739 
6740 enum mc_target_type {
6741 	MC_TARGET_NONE = 0,
6742 	MC_TARGET_PAGE,
6743 	MC_TARGET_SWAP,
6744 };
6745 
6746 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6747 						unsigned long addr, pte_t ptent)
6748 {
6749 	struct page *page = vm_normal_page(vma, addr, ptent);
6750 
6751 	if (!page || !page_mapped(page))
6752 		return NULL;
6753 	if (PageAnon(page)) {
6754 		/* we don't move shared anon */
6755 		if (!move_anon())
6756 			return NULL;
6757 	} else if (!move_file())
6758 		/* we ignore mapcount for file pages */
6759 		return NULL;
6760 	if (!get_page_unless_zero(page))
6761 		return NULL;
6762 
6763 	return page;
6764 }
6765 
6766 #ifdef CONFIG_SWAP
6767 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6768 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
6769 {
6770 	struct page *page = NULL;
6771 	swp_entry_t ent = pte_to_swp_entry(ptent);
6772 
6773 	if (!move_anon() || non_swap_entry(ent))
6774 		return NULL;
6775 	/*
6776 	 * Because lookup_swap_cache() updates some statistics counter,
6777 	 * we call find_get_page() with swapper_space directly.
6778 	 */
6779 	page = find_get_page(swap_address_space(ent), ent.val);
6780 	if (do_swap_account)
6781 		entry->val = ent.val;
6782 
6783 	return page;
6784 }
6785 #else
6786 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6787 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
6788 {
6789 	return NULL;
6790 }
6791 #endif
6792 
6793 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6794 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
6795 {
6796 	struct page *page = NULL;
6797 	struct address_space *mapping;
6798 	pgoff_t pgoff;
6799 
6800 	if (!vma->vm_file) /* anonymous vma */
6801 		return NULL;
6802 	if (!move_file())
6803 		return NULL;
6804 
6805 	mapping = vma->vm_file->f_mapping;
6806 	if (pte_none(ptent))
6807 		pgoff = linear_page_index(vma, addr);
6808 	else /* pte_file(ptent) is true */
6809 		pgoff = pte_to_pgoff(ptent);
6810 
6811 	/* page is moved even if it's not RSS of this task(page-faulted). */
6812 	page = find_get_page(mapping, pgoff);
6813 
6814 #ifdef CONFIG_SWAP
6815 	/* shmem/tmpfs may report page out on swap: account for that too. */
6816 	if (radix_tree_exceptional_entry(page)) {
6817 		swp_entry_t swap = radix_to_swp_entry(page);
6818 		if (do_swap_account)
6819 			*entry = swap;
6820 		page = find_get_page(swap_address_space(swap), swap.val);
6821 	}
6822 #endif
6823 	return page;
6824 }
6825 
6826 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
6827 		unsigned long addr, pte_t ptent, union mc_target *target)
6828 {
6829 	struct page *page = NULL;
6830 	struct page_cgroup *pc;
6831 	enum mc_target_type ret = MC_TARGET_NONE;
6832 	swp_entry_t ent = { .val = 0 };
6833 
6834 	if (pte_present(ptent))
6835 		page = mc_handle_present_pte(vma, addr, ptent);
6836 	else if (is_swap_pte(ptent))
6837 		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6838 	else if (pte_none(ptent) || pte_file(ptent))
6839 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
6840 
6841 	if (!page && !ent.val)
6842 		return ret;
6843 	if (page) {
6844 		pc = lookup_page_cgroup(page);
6845 		/*
6846 		 * Do only loose check w/o page_cgroup lock.
6847 		 * mem_cgroup_move_account() checks the pc is valid or not under
6848 		 * the lock.
6849 		 */
6850 		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6851 			ret = MC_TARGET_PAGE;
6852 			if (target)
6853 				target->page = page;
6854 		}
6855 		if (!ret || !target)
6856 			put_page(page);
6857 	}
6858 	/* There is a swap entry and a page doesn't exist or isn't charged */
6859 	if (ent.val && !ret &&
6860 	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
6861 		ret = MC_TARGET_SWAP;
6862 		if (target)
6863 			target->ent = ent;
6864 	}
6865 	return ret;
6866 }
6867 
6868 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6869 /*
6870  * We don't consider swapping or file mapped pages because THP does not
6871  * support them for now.
6872  * Caller should make sure that pmd_trans_huge(pmd) is true.
6873  */
6874 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6875 		unsigned long addr, pmd_t pmd, union mc_target *target)
6876 {
6877 	struct page *page = NULL;
6878 	struct page_cgroup *pc;
6879 	enum mc_target_type ret = MC_TARGET_NONE;
6880 
6881 	page = pmd_page(pmd);
6882 	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
6883 	if (!move_anon())
6884 		return ret;
6885 	pc = lookup_page_cgroup(page);
6886 	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6887 		ret = MC_TARGET_PAGE;
6888 		if (target) {
6889 			get_page(page);
6890 			target->page = page;
6891 		}
6892 	}
6893 	return ret;
6894 }
6895 #else
6896 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6897 		unsigned long addr, pmd_t pmd, union mc_target *target)
6898 {
6899 	return MC_TARGET_NONE;
6900 }
6901 #endif
6902 
6903 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6904 					unsigned long addr, unsigned long end,
6905 					struct mm_walk *walk)
6906 {
6907 	struct vm_area_struct *vma = walk->private;
6908 	pte_t *pte;
6909 	spinlock_t *ptl;
6910 
6911 	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
6912 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6913 			mc.precharge += HPAGE_PMD_NR;
6914 		spin_unlock(ptl);
6915 		return 0;
6916 	}
6917 
6918 	if (pmd_trans_unstable(pmd))
6919 		return 0;
6920 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6921 	for (; addr != end; pte++, addr += PAGE_SIZE)
6922 		if (get_mctgt_type(vma, addr, *pte, NULL))
6923 			mc.precharge++;	/* increment precharge temporarily */
6924 	pte_unmap_unlock(pte - 1, ptl);
6925 	cond_resched();
6926 
6927 	return 0;
6928 }
6929 
6930 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6931 {
6932 	unsigned long precharge;
6933 	struct vm_area_struct *vma;
6934 
6935 	down_read(&mm->mmap_sem);
6936 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
6937 		struct mm_walk mem_cgroup_count_precharge_walk = {
6938 			.pmd_entry = mem_cgroup_count_precharge_pte_range,
6939 			.mm = mm,
6940 			.private = vma,
6941 		};
6942 		if (is_vm_hugetlb_page(vma))
6943 			continue;
6944 		walk_page_range(vma->vm_start, vma->vm_end,
6945 					&mem_cgroup_count_precharge_walk);
6946 	}
6947 	up_read(&mm->mmap_sem);
6948 
6949 	precharge = mc.precharge;
6950 	mc.precharge = 0;
6951 
6952 	return precharge;
6953 }
6954 
6955 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6956 {
6957 	unsigned long precharge = mem_cgroup_count_precharge(mm);
6958 
6959 	VM_BUG_ON(mc.moving_task);
6960 	mc.moving_task = current;
6961 	return mem_cgroup_do_precharge(precharge);
6962 }
6963 
6964 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6965 static void __mem_cgroup_clear_mc(void)
6966 {
6967 	struct mem_cgroup *from = mc.from;
6968 	struct mem_cgroup *to = mc.to;
6969 	int i;
6970 
6971 	/* we must uncharge all the leftover precharges from mc.to */
6972 	if (mc.precharge) {
6973 		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
6974 		mc.precharge = 0;
6975 	}
6976 	/*
6977 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6978 	 * we must uncharge here.
6979 	 */
6980 	if (mc.moved_charge) {
6981 		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6982 		mc.moved_charge = 0;
6983 	}
6984 	/* we must fixup refcnts and charges */
6985 	if (mc.moved_swap) {
6986 		/* uncharge swap account from the old cgroup */
6987 		if (!mem_cgroup_is_root(mc.from))
6988 			res_counter_uncharge(&mc.from->memsw,
6989 						PAGE_SIZE * mc.moved_swap);
6990 
6991 		for (i = 0; i < mc.moved_swap; i++)
6992 			css_put(&mc.from->css);
6993 
6994 		if (!mem_cgroup_is_root(mc.to)) {
6995 			/*
6996 			 * we charged both to->res and to->memsw, so we should
6997 			 * uncharge to->res.
6998 			 */
6999 			res_counter_uncharge(&mc.to->res,
7000 						PAGE_SIZE * mc.moved_swap);
7001 		}
7002 		/* we've already done css_get(mc.to) */
7003 		mc.moved_swap = 0;
7004 	}
7005 	memcg_oom_recover(from);
7006 	memcg_oom_recover(to);
7007 	wake_up_all(&mc.waitq);
7008 }
7009 
7010 static void mem_cgroup_clear_mc(void)
7011 {
7012 	struct mem_cgroup *from = mc.from;
7013 
7014 	/*
7015 	 * we must clear moving_task before waking up waiters at the end of
7016 	 * task migration.
7017 	 */
7018 	mc.moving_task = NULL;
7019 	__mem_cgroup_clear_mc();
7020 	spin_lock(&mc.lock);
7021 	mc.from = NULL;
7022 	mc.to = NULL;
7023 	spin_unlock(&mc.lock);
7024 	mem_cgroup_end_move(from);
7025 }
7026 
7027 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
7028 				 struct cgroup_taskset *tset)
7029 {
7030 	struct task_struct *p = cgroup_taskset_first(tset);
7031 	int ret = 0;
7032 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7033 	unsigned long move_charge_at_immigrate;
7034 
7035 	/*
7036 	 * We are now commited to this value whatever it is. Changes in this
7037 	 * tunable will only affect upcoming migrations, not the current one.
7038 	 * So we need to save it, and keep it going.
7039 	 */
7040 	move_charge_at_immigrate  = memcg->move_charge_at_immigrate;
7041 	if (move_charge_at_immigrate) {
7042 		struct mm_struct *mm;
7043 		struct mem_cgroup *from = mem_cgroup_from_task(p);
7044 
7045 		VM_BUG_ON(from == memcg);
7046 
7047 		mm = get_task_mm(p);
7048 		if (!mm)
7049 			return 0;
7050 		/* We move charges only when we move a owner of the mm */
7051 		if (mm->owner == p) {
7052 			VM_BUG_ON(mc.from);
7053 			VM_BUG_ON(mc.to);
7054 			VM_BUG_ON(mc.precharge);
7055 			VM_BUG_ON(mc.moved_charge);
7056 			VM_BUG_ON(mc.moved_swap);
7057 			mem_cgroup_start_move(from);
7058 			spin_lock(&mc.lock);
7059 			mc.from = from;
7060 			mc.to = memcg;
7061 			mc.immigrate_flags = move_charge_at_immigrate;
7062 			spin_unlock(&mc.lock);
7063 			/* We set mc.moving_task later */
7064 
7065 			ret = mem_cgroup_precharge_mc(mm);
7066 			if (ret)
7067 				mem_cgroup_clear_mc();
7068 		}
7069 		mmput(mm);
7070 	}
7071 	return ret;
7072 }
7073 
7074 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
7075 				     struct cgroup_taskset *tset)
7076 {
7077 	mem_cgroup_clear_mc();
7078 }
7079 
7080 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
7081 				unsigned long addr, unsigned long end,
7082 				struct mm_walk *walk)
7083 {
7084 	int ret = 0;
7085 	struct vm_area_struct *vma = walk->private;
7086 	pte_t *pte;
7087 	spinlock_t *ptl;
7088 	enum mc_target_type target_type;
7089 	union mc_target target;
7090 	struct page *page;
7091 	struct page_cgroup *pc;
7092 
7093 	/*
7094 	 * We don't take compound_lock() here but no race with splitting thp
7095 	 * happens because:
7096 	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
7097 	 *    under splitting, which means there's no concurrent thp split,
7098 	 *  - if another thread runs into split_huge_page() just after we
7099 	 *    entered this if-block, the thread must wait for page table lock
7100 	 *    to be unlocked in __split_huge_page_splitting(), where the main
7101 	 *    part of thp split is not executed yet.
7102 	 */
7103 	if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
7104 		if (mc.precharge < HPAGE_PMD_NR) {
7105 			spin_unlock(ptl);
7106 			return 0;
7107 		}
7108 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
7109 		if (target_type == MC_TARGET_PAGE) {
7110 			page = target.page;
7111 			if (!isolate_lru_page(page)) {
7112 				pc = lookup_page_cgroup(page);
7113 				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
7114 							pc, mc.from, mc.to)) {
7115 					mc.precharge -= HPAGE_PMD_NR;
7116 					mc.moved_charge += HPAGE_PMD_NR;
7117 				}
7118 				putback_lru_page(page);
7119 			}
7120 			put_page(page);
7121 		}
7122 		spin_unlock(ptl);
7123 		return 0;
7124 	}
7125 
7126 	if (pmd_trans_unstable(pmd))
7127 		return 0;
7128 retry:
7129 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
7130 	for (; addr != end; addr += PAGE_SIZE) {
7131 		pte_t ptent = *(pte++);
7132 		swp_entry_t ent;
7133 
7134 		if (!mc.precharge)
7135 			break;
7136 
7137 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
7138 		case MC_TARGET_PAGE:
7139 			page = target.page;
7140 			if (isolate_lru_page(page))
7141 				goto put;
7142 			pc = lookup_page_cgroup(page);
7143 			if (!mem_cgroup_move_account(page, 1, pc,
7144 						     mc.from, mc.to)) {
7145 				mc.precharge--;
7146 				/* we uncharge from mc.from later. */
7147 				mc.moved_charge++;
7148 			}
7149 			putback_lru_page(page);
7150 put:			/* get_mctgt_type() gets the page */
7151 			put_page(page);
7152 			break;
7153 		case MC_TARGET_SWAP:
7154 			ent = target.ent;
7155 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
7156 				mc.precharge--;
7157 				/* we fixup refcnts and charges later. */
7158 				mc.moved_swap++;
7159 			}
7160 			break;
7161 		default:
7162 			break;
7163 		}
7164 	}
7165 	pte_unmap_unlock(pte - 1, ptl);
7166 	cond_resched();
7167 
7168 	if (addr != end) {
7169 		/*
7170 		 * We have consumed all precharges we got in can_attach().
7171 		 * We try charge one by one, but don't do any additional
7172 		 * charges to mc.to if we have failed in charge once in attach()
7173 		 * phase.
7174 		 */
7175 		ret = mem_cgroup_do_precharge(1);
7176 		if (!ret)
7177 			goto retry;
7178 	}
7179 
7180 	return ret;
7181 }
7182 
7183 static void mem_cgroup_move_charge(struct mm_struct *mm)
7184 {
7185 	struct vm_area_struct *vma;
7186 
7187 	lru_add_drain_all();
7188 retry:
7189 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
7190 		/*
7191 		 * Someone who are holding the mmap_sem might be waiting in
7192 		 * waitq. So we cancel all extra charges, wake up all waiters,
7193 		 * and retry. Because we cancel precharges, we might not be able
7194 		 * to move enough charges, but moving charge is a best-effort
7195 		 * feature anyway, so it wouldn't be a big problem.
7196 		 */
7197 		__mem_cgroup_clear_mc();
7198 		cond_resched();
7199 		goto retry;
7200 	}
7201 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
7202 		int ret;
7203 		struct mm_walk mem_cgroup_move_charge_walk = {
7204 			.pmd_entry = mem_cgroup_move_charge_pte_range,
7205 			.mm = mm,
7206 			.private = vma,
7207 		};
7208 		if (is_vm_hugetlb_page(vma))
7209 			continue;
7210 		ret = walk_page_range(vma->vm_start, vma->vm_end,
7211 						&mem_cgroup_move_charge_walk);
7212 		if (ret)
7213 			/*
7214 			 * means we have consumed all precharges and failed in
7215 			 * doing additional charge. Just abandon here.
7216 			 */
7217 			break;
7218 	}
7219 	up_read(&mm->mmap_sem);
7220 }
7221 
7222 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
7223 				 struct cgroup_taskset *tset)
7224 {
7225 	struct task_struct *p = cgroup_taskset_first(tset);
7226 	struct mm_struct *mm = get_task_mm(p);
7227 
7228 	if (mm) {
7229 		if (mc.to)
7230 			mem_cgroup_move_charge(mm);
7231 		mmput(mm);
7232 	}
7233 	if (mc.to)
7234 		mem_cgroup_clear_mc();
7235 }
7236 #else	/* !CONFIG_MMU */
7237 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
7238 				 struct cgroup_taskset *tset)
7239 {
7240 	return 0;
7241 }
7242 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
7243 				     struct cgroup_taskset *tset)
7244 {
7245 }
7246 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
7247 				 struct cgroup_taskset *tset)
7248 {
7249 }
7250 #endif
7251 
7252 /*
7253  * Cgroup retains root cgroups across [un]mount cycles making it necessary
7254  * to verify sane_behavior flag on each mount attempt.
7255  */
7256 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
7257 {
7258 	/*
7259 	 * use_hierarchy is forced with sane_behavior.  cgroup core
7260 	 * guarantees that @root doesn't have any children, so turning it
7261 	 * on for the root memcg is enough.
7262 	 */
7263 	if (cgroup_sane_behavior(root_css->cgroup))
7264 		mem_cgroup_from_css(root_css)->use_hierarchy = true;
7265 }
7266 
7267 struct cgroup_subsys mem_cgroup_subsys = {
7268 	.name = "memory",
7269 	.subsys_id = mem_cgroup_subsys_id,
7270 	.css_alloc = mem_cgroup_css_alloc,
7271 	.css_online = mem_cgroup_css_online,
7272 	.css_offline = mem_cgroup_css_offline,
7273 	.css_free = mem_cgroup_css_free,
7274 	.can_attach = mem_cgroup_can_attach,
7275 	.cancel_attach = mem_cgroup_cancel_attach,
7276 	.attach = mem_cgroup_move_task,
7277 	.bind = mem_cgroup_bind,
7278 	.base_cftypes = mem_cgroup_files,
7279 	.early_init = 0,
7280 };
7281 
7282 #ifdef CONFIG_MEMCG_SWAP
7283 static int __init enable_swap_account(char *s)
7284 {
7285 	if (!strcmp(s, "1"))
7286 		really_do_swap_account = 1;
7287 	else if (!strcmp(s, "0"))
7288 		really_do_swap_account = 0;
7289 	return 1;
7290 }
7291 __setup("swapaccount=", enable_swap_account);
7292 
7293 static void __init memsw_file_init(void)
7294 {
7295 	WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
7296 }
7297 
7298 static void __init enable_swap_cgroup(void)
7299 {
7300 	if (!mem_cgroup_disabled() && really_do_swap_account) {
7301 		do_swap_account = 1;
7302 		memsw_file_init();
7303 	}
7304 }
7305 
7306 #else
7307 static void __init enable_swap_cgroup(void)
7308 {
7309 }
7310 #endif
7311 
7312 /*
7313  * subsys_initcall() for memory controller.
7314  *
7315  * Some parts like hotcpu_notifier() have to be initialized from this context
7316  * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
7317  * everything that doesn't depend on a specific mem_cgroup structure should
7318  * be initialized from here.
7319  */
7320 static int __init mem_cgroup_init(void)
7321 {
7322 	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
7323 	enable_swap_cgroup();
7324 	mem_cgroup_soft_limit_tree_init();
7325 	memcg_stock_init();
7326 	return 0;
7327 }
7328 subsys_initcall(mem_cgroup_init);
7329