xref: /openbmc/linux/mm/memcontrol.c (revision 4800cd83)
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  */
23 
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/mutex.h>
37 #include <linux/rbtree.h>
38 #include <linux/slab.h>
39 #include <linux/swap.h>
40 #include <linux/swapops.h>
41 #include <linux/spinlock.h>
42 #include <linux/eventfd.h>
43 #include <linux/sort.h>
44 #include <linux/fs.h>
45 #include <linux/seq_file.h>
46 #include <linux/vmalloc.h>
47 #include <linux/mm_inline.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/cpu.h>
50 #include <linux/oom.h>
51 #include "internal.h"
52 
53 #include <asm/uaccess.h>
54 
55 #include <trace/events/vmscan.h>
56 
57 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
58 #define MEM_CGROUP_RECLAIM_RETRIES	5
59 struct mem_cgroup *root_mem_cgroup __read_mostly;
60 
61 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
62 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
63 int do_swap_account __read_mostly;
64 
65 /* for remember boot option*/
66 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
67 static int really_do_swap_account __initdata = 1;
68 #else
69 static int really_do_swap_account __initdata = 0;
70 #endif
71 
72 #else
73 #define do_swap_account		(0)
74 #endif
75 
76 /*
77  * Per memcg event counter is incremented at every pagein/pageout. This counter
78  * is used for trigger some periodic events. This is straightforward and better
79  * than using jiffies etc. to handle periodic memcg event.
80  *
81  * These values will be used as !((event) & ((1 <<(thresh)) - 1))
82  */
83 #define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
84 #define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
85 
86 /*
87  * Statistics for memory cgroup.
88  */
89 enum mem_cgroup_stat_index {
90 	/*
91 	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
92 	 */
93 	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
94 	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
95 	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
96 	MEM_CGROUP_STAT_PGPGIN_COUNT,	/* # of pages paged in */
97 	MEM_CGROUP_STAT_PGPGOUT_COUNT,	/* # of pages paged out */
98 	MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
99 	MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
100 	/* incremented at every  pagein/pageout */
101 	MEM_CGROUP_EVENTS = MEM_CGROUP_STAT_DATA,
102 	MEM_CGROUP_ON_MOVE,	/* someone is moving account between groups */
103 
104 	MEM_CGROUP_STAT_NSTATS,
105 };
106 
107 struct mem_cgroup_stat_cpu {
108 	s64 count[MEM_CGROUP_STAT_NSTATS];
109 };
110 
111 /*
112  * per-zone information in memory controller.
113  */
114 struct mem_cgroup_per_zone {
115 	/*
116 	 * spin_lock to protect the per cgroup LRU
117 	 */
118 	struct list_head	lists[NR_LRU_LISTS];
119 	unsigned long		count[NR_LRU_LISTS];
120 
121 	struct zone_reclaim_stat reclaim_stat;
122 	struct rb_node		tree_node;	/* RB tree node */
123 	unsigned long long	usage_in_excess;/* Set to the value by which */
124 						/* the soft limit is exceeded*/
125 	bool			on_tree;
126 	struct mem_cgroup	*mem;		/* Back pointer, we cannot */
127 						/* use container_of	   */
128 };
129 /* Macro for accessing counter */
130 #define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])
131 
132 struct mem_cgroup_per_node {
133 	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
134 };
135 
136 struct mem_cgroup_lru_info {
137 	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
138 };
139 
140 /*
141  * Cgroups above their limits are maintained in a RB-Tree, independent of
142  * their hierarchy representation
143  */
144 
145 struct mem_cgroup_tree_per_zone {
146 	struct rb_root rb_root;
147 	spinlock_t lock;
148 };
149 
150 struct mem_cgroup_tree_per_node {
151 	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
152 };
153 
154 struct mem_cgroup_tree {
155 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
156 };
157 
158 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
159 
160 struct mem_cgroup_threshold {
161 	struct eventfd_ctx *eventfd;
162 	u64 threshold;
163 };
164 
165 /* For threshold */
166 struct mem_cgroup_threshold_ary {
167 	/* An array index points to threshold just below usage. */
168 	int current_threshold;
169 	/* Size of entries[] */
170 	unsigned int size;
171 	/* Array of thresholds */
172 	struct mem_cgroup_threshold entries[0];
173 };
174 
175 struct mem_cgroup_thresholds {
176 	/* Primary thresholds array */
177 	struct mem_cgroup_threshold_ary *primary;
178 	/*
179 	 * Spare threshold array.
180 	 * This is needed to make mem_cgroup_unregister_event() "never fail".
181 	 * It must be able to store at least primary->size - 1 entries.
182 	 */
183 	struct mem_cgroup_threshold_ary *spare;
184 };
185 
186 /* for OOM */
187 struct mem_cgroup_eventfd_list {
188 	struct list_head list;
189 	struct eventfd_ctx *eventfd;
190 };
191 
192 static void mem_cgroup_threshold(struct mem_cgroup *mem);
193 static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
194 
195 /*
196  * The memory controller data structure. The memory controller controls both
197  * page cache and RSS per cgroup. We would eventually like to provide
198  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
199  * to help the administrator determine what knobs to tune.
200  *
201  * TODO: Add a water mark for the memory controller. Reclaim will begin when
202  * we hit the water mark. May be even add a low water mark, such that
203  * no reclaim occurs from a cgroup at it's low water mark, this is
204  * a feature that will be implemented much later in the future.
205  */
206 struct mem_cgroup {
207 	struct cgroup_subsys_state css;
208 	/*
209 	 * the counter to account for memory usage
210 	 */
211 	struct res_counter res;
212 	/*
213 	 * the counter to account for mem+swap usage.
214 	 */
215 	struct res_counter memsw;
216 	/*
217 	 * Per cgroup active and inactive list, similar to the
218 	 * per zone LRU lists.
219 	 */
220 	struct mem_cgroup_lru_info info;
221 
222 	/*
223 	  protect against reclaim related member.
224 	*/
225 	spinlock_t reclaim_param_lock;
226 
227 	/*
228 	 * While reclaiming in a hierarchy, we cache the last child we
229 	 * reclaimed from.
230 	 */
231 	int last_scanned_child;
232 	/*
233 	 * Should the accounting and control be hierarchical, per subtree?
234 	 */
235 	bool use_hierarchy;
236 	atomic_t	oom_lock;
237 	atomic_t	refcnt;
238 
239 	unsigned int	swappiness;
240 	/* OOM-Killer disable */
241 	int		oom_kill_disable;
242 
243 	/* set when res.limit == memsw.limit */
244 	bool		memsw_is_minimum;
245 
246 	/* protect arrays of thresholds */
247 	struct mutex thresholds_lock;
248 
249 	/* thresholds for memory usage. RCU-protected */
250 	struct mem_cgroup_thresholds thresholds;
251 
252 	/* thresholds for mem+swap usage. RCU-protected */
253 	struct mem_cgroup_thresholds memsw_thresholds;
254 
255 	/* For oom notifier event fd */
256 	struct list_head oom_notify;
257 
258 	/*
259 	 * Should we move charges of a task when a task is moved into this
260 	 * mem_cgroup ? And what type of charges should we move ?
261 	 */
262 	unsigned long 	move_charge_at_immigrate;
263 	/*
264 	 * percpu counter.
265 	 */
266 	struct mem_cgroup_stat_cpu *stat;
267 	/*
268 	 * used when a cpu is offlined or other synchronizations
269 	 * See mem_cgroup_read_stat().
270 	 */
271 	struct mem_cgroup_stat_cpu nocpu_base;
272 	spinlock_t pcp_counter_lock;
273 };
274 
275 /* Stuffs for move charges at task migration. */
276 /*
277  * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
278  * left-shifted bitmap of these types.
279  */
280 enum move_type {
281 	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
282 	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
283 	NR_MOVE_TYPE,
284 };
285 
286 /* "mc" and its members are protected by cgroup_mutex */
287 static struct move_charge_struct {
288 	spinlock_t	  lock; /* for from, to */
289 	struct mem_cgroup *from;
290 	struct mem_cgroup *to;
291 	unsigned long precharge;
292 	unsigned long moved_charge;
293 	unsigned long moved_swap;
294 	struct task_struct *moving_task;	/* a task moving charges */
295 	wait_queue_head_t waitq;		/* a waitq for other context */
296 } mc = {
297 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
298 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
299 };
300 
301 static bool move_anon(void)
302 {
303 	return test_bit(MOVE_CHARGE_TYPE_ANON,
304 					&mc.to->move_charge_at_immigrate);
305 }
306 
307 static bool move_file(void)
308 {
309 	return test_bit(MOVE_CHARGE_TYPE_FILE,
310 					&mc.to->move_charge_at_immigrate);
311 }
312 
313 /*
314  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
315  * limit reclaim to prevent infinite loops, if they ever occur.
316  */
317 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		(100)
318 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	(2)
319 
320 enum charge_type {
321 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
322 	MEM_CGROUP_CHARGE_TYPE_MAPPED,
323 	MEM_CGROUP_CHARGE_TYPE_SHMEM,	/* used by page migration of shmem */
324 	MEM_CGROUP_CHARGE_TYPE_FORCE,	/* used by force_empty */
325 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
326 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
327 	NR_CHARGE_TYPE,
328 };
329 
330 /* only for here (for easy reading.) */
331 #define PCGF_CACHE	(1UL << PCG_CACHE)
332 #define PCGF_USED	(1UL << PCG_USED)
333 #define PCGF_LOCK	(1UL << PCG_LOCK)
334 /* Not used, but added here for completeness */
335 #define PCGF_ACCT	(1UL << PCG_ACCT)
336 
337 /* for encoding cft->private value on file */
338 #define _MEM			(0)
339 #define _MEMSWAP		(1)
340 #define _OOM_TYPE		(2)
341 #define MEMFILE_PRIVATE(x, val)	(((x) << 16) | (val))
342 #define MEMFILE_TYPE(val)	(((val) >> 16) & 0xffff)
343 #define MEMFILE_ATTR(val)	((val) & 0xffff)
344 /* Used for OOM nofiier */
345 #define OOM_CONTROL		(0)
346 
347 /*
348  * Reclaim flags for mem_cgroup_hierarchical_reclaim
349  */
350 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
351 #define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
352 #define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
353 #define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
354 #define MEM_CGROUP_RECLAIM_SOFT_BIT	0x2
355 #define MEM_CGROUP_RECLAIM_SOFT		(1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
356 
357 static void mem_cgroup_get(struct mem_cgroup *mem);
358 static void mem_cgroup_put(struct mem_cgroup *mem);
359 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
360 static void drain_all_stock_async(void);
361 
362 static struct mem_cgroup_per_zone *
363 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
364 {
365 	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
366 }
367 
368 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
369 {
370 	return &mem->css;
371 }
372 
373 static struct mem_cgroup_per_zone *
374 page_cgroup_zoneinfo(struct page_cgroup *pc)
375 {
376 	struct mem_cgroup *mem = pc->mem_cgroup;
377 	int nid = page_cgroup_nid(pc);
378 	int zid = page_cgroup_zid(pc);
379 
380 	if (!mem)
381 		return NULL;
382 
383 	return mem_cgroup_zoneinfo(mem, nid, zid);
384 }
385 
386 static struct mem_cgroup_tree_per_zone *
387 soft_limit_tree_node_zone(int nid, int zid)
388 {
389 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
390 }
391 
392 static struct mem_cgroup_tree_per_zone *
393 soft_limit_tree_from_page(struct page *page)
394 {
395 	int nid = page_to_nid(page);
396 	int zid = page_zonenum(page);
397 
398 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
399 }
400 
401 static void
402 __mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
403 				struct mem_cgroup_per_zone *mz,
404 				struct mem_cgroup_tree_per_zone *mctz,
405 				unsigned long long new_usage_in_excess)
406 {
407 	struct rb_node **p = &mctz->rb_root.rb_node;
408 	struct rb_node *parent = NULL;
409 	struct mem_cgroup_per_zone *mz_node;
410 
411 	if (mz->on_tree)
412 		return;
413 
414 	mz->usage_in_excess = new_usage_in_excess;
415 	if (!mz->usage_in_excess)
416 		return;
417 	while (*p) {
418 		parent = *p;
419 		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
420 					tree_node);
421 		if (mz->usage_in_excess < mz_node->usage_in_excess)
422 			p = &(*p)->rb_left;
423 		/*
424 		 * We can't avoid mem cgroups that are over their soft
425 		 * limit by the same amount
426 		 */
427 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
428 			p = &(*p)->rb_right;
429 	}
430 	rb_link_node(&mz->tree_node, parent, p);
431 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
432 	mz->on_tree = true;
433 }
434 
435 static void
436 __mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
437 				struct mem_cgroup_per_zone *mz,
438 				struct mem_cgroup_tree_per_zone *mctz)
439 {
440 	if (!mz->on_tree)
441 		return;
442 	rb_erase(&mz->tree_node, &mctz->rb_root);
443 	mz->on_tree = false;
444 }
445 
446 static void
447 mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
448 				struct mem_cgroup_per_zone *mz,
449 				struct mem_cgroup_tree_per_zone *mctz)
450 {
451 	spin_lock(&mctz->lock);
452 	__mem_cgroup_remove_exceeded(mem, mz, mctz);
453 	spin_unlock(&mctz->lock);
454 }
455 
456 
457 static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
458 {
459 	unsigned long long excess;
460 	struct mem_cgroup_per_zone *mz;
461 	struct mem_cgroup_tree_per_zone *mctz;
462 	int nid = page_to_nid(page);
463 	int zid = page_zonenum(page);
464 	mctz = soft_limit_tree_from_page(page);
465 
466 	/*
467 	 * Necessary to update all ancestors when hierarchy is used.
468 	 * because their event counter is not touched.
469 	 */
470 	for (; mem; mem = parent_mem_cgroup(mem)) {
471 		mz = mem_cgroup_zoneinfo(mem, nid, zid);
472 		excess = res_counter_soft_limit_excess(&mem->res);
473 		/*
474 		 * We have to update the tree if mz is on RB-tree or
475 		 * mem is over its softlimit.
476 		 */
477 		if (excess || mz->on_tree) {
478 			spin_lock(&mctz->lock);
479 			/* if on-tree, remove it */
480 			if (mz->on_tree)
481 				__mem_cgroup_remove_exceeded(mem, mz, mctz);
482 			/*
483 			 * Insert again. mz->usage_in_excess will be updated.
484 			 * If excess is 0, no tree ops.
485 			 */
486 			__mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
487 			spin_unlock(&mctz->lock);
488 		}
489 	}
490 }
491 
492 static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
493 {
494 	int node, zone;
495 	struct mem_cgroup_per_zone *mz;
496 	struct mem_cgroup_tree_per_zone *mctz;
497 
498 	for_each_node_state(node, N_POSSIBLE) {
499 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
500 			mz = mem_cgroup_zoneinfo(mem, node, zone);
501 			mctz = soft_limit_tree_node_zone(node, zone);
502 			mem_cgroup_remove_exceeded(mem, mz, mctz);
503 		}
504 	}
505 }
506 
507 static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
508 {
509 	return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
510 }
511 
512 static struct mem_cgroup_per_zone *
513 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
514 {
515 	struct rb_node *rightmost = NULL;
516 	struct mem_cgroup_per_zone *mz;
517 
518 retry:
519 	mz = NULL;
520 	rightmost = rb_last(&mctz->rb_root);
521 	if (!rightmost)
522 		goto done;		/* Nothing to reclaim from */
523 
524 	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
525 	/*
526 	 * Remove the node now but someone else can add it back,
527 	 * we will to add it back at the end of reclaim to its correct
528 	 * position in the tree.
529 	 */
530 	__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
531 	if (!res_counter_soft_limit_excess(&mz->mem->res) ||
532 		!css_tryget(&mz->mem->css))
533 		goto retry;
534 done:
535 	return mz;
536 }
537 
538 static struct mem_cgroup_per_zone *
539 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
540 {
541 	struct mem_cgroup_per_zone *mz;
542 
543 	spin_lock(&mctz->lock);
544 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
545 	spin_unlock(&mctz->lock);
546 	return mz;
547 }
548 
549 /*
550  * Implementation Note: reading percpu statistics for memcg.
551  *
552  * Both of vmstat[] and percpu_counter has threshold and do periodic
553  * synchronization to implement "quick" read. There are trade-off between
554  * reading cost and precision of value. Then, we may have a chance to implement
555  * a periodic synchronizion of counter in memcg's counter.
556  *
557  * But this _read() function is used for user interface now. The user accounts
558  * memory usage by memory cgroup and he _always_ requires exact value because
559  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
560  * have to visit all online cpus and make sum. So, for now, unnecessary
561  * synchronization is not implemented. (just implemented for cpu hotplug)
562  *
563  * If there are kernel internal actions which can make use of some not-exact
564  * value, and reading all cpu value can be performance bottleneck in some
565  * common workload, threashold and synchonization as vmstat[] should be
566  * implemented.
567  */
568 static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
569 		enum mem_cgroup_stat_index idx)
570 {
571 	int cpu;
572 	s64 val = 0;
573 
574 	get_online_cpus();
575 	for_each_online_cpu(cpu)
576 		val += per_cpu(mem->stat->count[idx], cpu);
577 #ifdef CONFIG_HOTPLUG_CPU
578 	spin_lock(&mem->pcp_counter_lock);
579 	val += mem->nocpu_base.count[idx];
580 	spin_unlock(&mem->pcp_counter_lock);
581 #endif
582 	put_online_cpus();
583 	return val;
584 }
585 
586 static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
587 {
588 	s64 ret;
589 
590 	ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
591 	ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
592 	return ret;
593 }
594 
595 static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
596 					 bool charge)
597 {
598 	int val = (charge) ? 1 : -1;
599 	this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
600 }
601 
602 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
603 					 bool file, int nr_pages)
604 {
605 	preempt_disable();
606 
607 	if (file)
608 		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages);
609 	else
610 		__this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages);
611 
612 	/* pagein of a big page is an event. So, ignore page size */
613 	if (nr_pages > 0)
614 		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]);
615 	else {
616 		__this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]);
617 		nr_pages = -nr_pages; /* for event */
618 	}
619 
620 	__this_cpu_add(mem->stat->count[MEM_CGROUP_EVENTS], nr_pages);
621 
622 	preempt_enable();
623 }
624 
625 static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
626 					enum lru_list idx)
627 {
628 	int nid, zid;
629 	struct mem_cgroup_per_zone *mz;
630 	u64 total = 0;
631 
632 	for_each_online_node(nid)
633 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
634 			mz = mem_cgroup_zoneinfo(mem, nid, zid);
635 			total += MEM_CGROUP_ZSTAT(mz, idx);
636 		}
637 	return total;
638 }
639 
640 static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift)
641 {
642 	s64 val;
643 
644 	val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]);
645 
646 	return !(val & ((1 << event_mask_shift) - 1));
647 }
648 
649 /*
650  * Check events in order.
651  *
652  */
653 static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
654 {
655 	/* threshold event is triggered in finer grain than soft limit */
656 	if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) {
657 		mem_cgroup_threshold(mem);
658 		if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH)))
659 			mem_cgroup_update_tree(mem, page);
660 	}
661 }
662 
663 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
664 {
665 	return container_of(cgroup_subsys_state(cont,
666 				mem_cgroup_subsys_id), struct mem_cgroup,
667 				css);
668 }
669 
670 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
671 {
672 	/*
673 	 * mm_update_next_owner() may clear mm->owner to NULL
674 	 * if it races with swapoff, page migration, etc.
675 	 * So this can be called with p == NULL.
676 	 */
677 	if (unlikely(!p))
678 		return NULL;
679 
680 	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
681 				struct mem_cgroup, css);
682 }
683 
684 static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
685 {
686 	struct mem_cgroup *mem = NULL;
687 
688 	if (!mm)
689 		return NULL;
690 	/*
691 	 * Because we have no locks, mm->owner's may be being moved to other
692 	 * cgroup. We use css_tryget() here even if this looks
693 	 * pessimistic (rather than adding locks here).
694 	 */
695 	rcu_read_lock();
696 	do {
697 		mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
698 		if (unlikely(!mem))
699 			break;
700 	} while (!css_tryget(&mem->css));
701 	rcu_read_unlock();
702 	return mem;
703 }
704 
705 /* The caller has to guarantee "mem" exists before calling this */
706 static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
707 {
708 	struct cgroup_subsys_state *css;
709 	int found;
710 
711 	if (!mem) /* ROOT cgroup has the smallest ID */
712 		return root_mem_cgroup; /*css_put/get against root is ignored*/
713 	if (!mem->use_hierarchy) {
714 		if (css_tryget(&mem->css))
715 			return mem;
716 		return NULL;
717 	}
718 	rcu_read_lock();
719 	/*
720 	 * searching a memory cgroup which has the smallest ID under given
721 	 * ROOT cgroup. (ID >= 1)
722 	 */
723 	css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
724 	if (css && css_tryget(css))
725 		mem = container_of(css, struct mem_cgroup, css);
726 	else
727 		mem = NULL;
728 	rcu_read_unlock();
729 	return mem;
730 }
731 
732 static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
733 					struct mem_cgroup *root,
734 					bool cond)
735 {
736 	int nextid = css_id(&iter->css) + 1;
737 	int found;
738 	int hierarchy_used;
739 	struct cgroup_subsys_state *css;
740 
741 	hierarchy_used = iter->use_hierarchy;
742 
743 	css_put(&iter->css);
744 	/* If no ROOT, walk all, ignore hierarchy */
745 	if (!cond || (root && !hierarchy_used))
746 		return NULL;
747 
748 	if (!root)
749 		root = root_mem_cgroup;
750 
751 	do {
752 		iter = NULL;
753 		rcu_read_lock();
754 
755 		css = css_get_next(&mem_cgroup_subsys, nextid,
756 				&root->css, &found);
757 		if (css && css_tryget(css))
758 			iter = container_of(css, struct mem_cgroup, css);
759 		rcu_read_unlock();
760 		/* If css is NULL, no more cgroups will be found */
761 		nextid = found + 1;
762 	} while (css && !iter);
763 
764 	return iter;
765 }
766 /*
767  * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
768  * be careful that "break" loop is not allowed. We have reference count.
769  * Instead of that modify "cond" to be false and "continue" to exit the loop.
770  */
771 #define for_each_mem_cgroup_tree_cond(iter, root, cond)	\
772 	for (iter = mem_cgroup_start_loop(root);\
773 	     iter != NULL;\
774 	     iter = mem_cgroup_get_next(iter, root, cond))
775 
776 #define for_each_mem_cgroup_tree(iter, root) \
777 	for_each_mem_cgroup_tree_cond(iter, root, true)
778 
779 #define for_each_mem_cgroup_all(iter) \
780 	for_each_mem_cgroup_tree_cond(iter, NULL, true)
781 
782 
783 static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
784 {
785 	return (mem == root_mem_cgroup);
786 }
787 
788 /*
789  * Following LRU functions are allowed to be used without PCG_LOCK.
790  * Operations are called by routine of global LRU independently from memcg.
791  * What we have to take care of here is validness of pc->mem_cgroup.
792  *
793  * Changes to pc->mem_cgroup happens when
794  * 1. charge
795  * 2. moving account
796  * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
797  * It is added to LRU before charge.
798  * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
799  * When moving account, the page is not on LRU. It's isolated.
800  */
801 
802 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
803 {
804 	struct page_cgroup *pc;
805 	struct mem_cgroup_per_zone *mz;
806 
807 	if (mem_cgroup_disabled())
808 		return;
809 	pc = lookup_page_cgroup(page);
810 	/* can happen while we handle swapcache. */
811 	if (!TestClearPageCgroupAcctLRU(pc))
812 		return;
813 	VM_BUG_ON(!pc->mem_cgroup);
814 	/*
815 	 * We don't check PCG_USED bit. It's cleared when the "page" is finally
816 	 * removed from global LRU.
817 	 */
818 	mz = page_cgroup_zoneinfo(pc);
819 	/* huge page split is done under lru_lock. so, we have no races. */
820 	MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
821 	if (mem_cgroup_is_root(pc->mem_cgroup))
822 		return;
823 	VM_BUG_ON(list_empty(&pc->lru));
824 	list_del_init(&pc->lru);
825 }
826 
827 void mem_cgroup_del_lru(struct page *page)
828 {
829 	mem_cgroup_del_lru_list(page, page_lru(page));
830 }
831 
832 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
833 {
834 	struct mem_cgroup_per_zone *mz;
835 	struct page_cgroup *pc;
836 
837 	if (mem_cgroup_disabled())
838 		return;
839 
840 	pc = lookup_page_cgroup(page);
841 	/* unused or root page is not rotated. */
842 	if (!PageCgroupUsed(pc))
843 		return;
844 	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
845 	smp_rmb();
846 	if (mem_cgroup_is_root(pc->mem_cgroup))
847 		return;
848 	mz = page_cgroup_zoneinfo(pc);
849 	list_move(&pc->lru, &mz->lists[lru]);
850 }
851 
852 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
853 {
854 	struct page_cgroup *pc;
855 	struct mem_cgroup_per_zone *mz;
856 
857 	if (mem_cgroup_disabled())
858 		return;
859 	pc = lookup_page_cgroup(page);
860 	VM_BUG_ON(PageCgroupAcctLRU(pc));
861 	if (!PageCgroupUsed(pc))
862 		return;
863 	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
864 	smp_rmb();
865 	mz = page_cgroup_zoneinfo(pc);
866 	/* huge page split is done under lru_lock. so, we have no races. */
867 	MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
868 	SetPageCgroupAcctLRU(pc);
869 	if (mem_cgroup_is_root(pc->mem_cgroup))
870 		return;
871 	list_add(&pc->lru, &mz->lists[lru]);
872 }
873 
874 /*
875  * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
876  * lru because the page may.be reused after it's fully uncharged (because of
877  * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
878  * it again. This function is only used to charge SwapCache. It's done under
879  * lock_page and expected that zone->lru_lock is never held.
880  */
881 static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
882 {
883 	unsigned long flags;
884 	struct zone *zone = page_zone(page);
885 	struct page_cgroup *pc = lookup_page_cgroup(page);
886 
887 	spin_lock_irqsave(&zone->lru_lock, flags);
888 	/*
889 	 * Forget old LRU when this page_cgroup is *not* used. This Used bit
890 	 * is guarded by lock_page() because the page is SwapCache.
891 	 */
892 	if (!PageCgroupUsed(pc))
893 		mem_cgroup_del_lru_list(page, page_lru(page));
894 	spin_unlock_irqrestore(&zone->lru_lock, flags);
895 }
896 
897 static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
898 {
899 	unsigned long flags;
900 	struct zone *zone = page_zone(page);
901 	struct page_cgroup *pc = lookup_page_cgroup(page);
902 
903 	spin_lock_irqsave(&zone->lru_lock, flags);
904 	/* link when the page is linked to LRU but page_cgroup isn't */
905 	if (PageLRU(page) && !PageCgroupAcctLRU(pc))
906 		mem_cgroup_add_lru_list(page, page_lru(page));
907 	spin_unlock_irqrestore(&zone->lru_lock, flags);
908 }
909 
910 
911 void mem_cgroup_move_lists(struct page *page,
912 			   enum lru_list from, enum lru_list to)
913 {
914 	if (mem_cgroup_disabled())
915 		return;
916 	mem_cgroup_del_lru_list(page, from);
917 	mem_cgroup_add_lru_list(page, to);
918 }
919 
920 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
921 {
922 	int ret;
923 	struct mem_cgroup *curr = NULL;
924 	struct task_struct *p;
925 
926 	p = find_lock_task_mm(task);
927 	if (!p)
928 		return 0;
929 	curr = try_get_mem_cgroup_from_mm(p->mm);
930 	task_unlock(p);
931 	if (!curr)
932 		return 0;
933 	/*
934 	 * We should check use_hierarchy of "mem" not "curr". Because checking
935 	 * use_hierarchy of "curr" here make this function true if hierarchy is
936 	 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
937 	 * hierarchy(even if use_hierarchy is disabled in "mem").
938 	 */
939 	if (mem->use_hierarchy)
940 		ret = css_is_ancestor(&curr->css, &mem->css);
941 	else
942 		ret = (curr == mem);
943 	css_put(&curr->css);
944 	return ret;
945 }
946 
947 static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
948 {
949 	unsigned long active;
950 	unsigned long inactive;
951 	unsigned long gb;
952 	unsigned long inactive_ratio;
953 
954 	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
955 	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
956 
957 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
958 	if (gb)
959 		inactive_ratio = int_sqrt(10 * gb);
960 	else
961 		inactive_ratio = 1;
962 
963 	if (present_pages) {
964 		present_pages[0] = inactive;
965 		present_pages[1] = active;
966 	}
967 
968 	return inactive_ratio;
969 }
970 
971 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
972 {
973 	unsigned long active;
974 	unsigned long inactive;
975 	unsigned long present_pages[2];
976 	unsigned long inactive_ratio;
977 
978 	inactive_ratio = calc_inactive_ratio(memcg, present_pages);
979 
980 	inactive = present_pages[0];
981 	active = present_pages[1];
982 
983 	if (inactive * inactive_ratio < active)
984 		return 1;
985 
986 	return 0;
987 }
988 
989 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
990 {
991 	unsigned long active;
992 	unsigned long inactive;
993 
994 	inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
995 	active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
996 
997 	return (active > inactive);
998 }
999 
1000 unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
1001 				       struct zone *zone,
1002 				       enum lru_list lru)
1003 {
1004 	int nid = zone_to_nid(zone);
1005 	int zid = zone_idx(zone);
1006 	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1007 
1008 	return MEM_CGROUP_ZSTAT(mz, lru);
1009 }
1010 
1011 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1012 						      struct zone *zone)
1013 {
1014 	int nid = zone_to_nid(zone);
1015 	int zid = zone_idx(zone);
1016 	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1017 
1018 	return &mz->reclaim_stat;
1019 }
1020 
1021 struct zone_reclaim_stat *
1022 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1023 {
1024 	struct page_cgroup *pc;
1025 	struct mem_cgroup_per_zone *mz;
1026 
1027 	if (mem_cgroup_disabled())
1028 		return NULL;
1029 
1030 	pc = lookup_page_cgroup(page);
1031 	if (!PageCgroupUsed(pc))
1032 		return NULL;
1033 	/* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1034 	smp_rmb();
1035 	mz = page_cgroup_zoneinfo(pc);
1036 	if (!mz)
1037 		return NULL;
1038 
1039 	return &mz->reclaim_stat;
1040 }
1041 
1042 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1043 					struct list_head *dst,
1044 					unsigned long *scanned, int order,
1045 					int mode, struct zone *z,
1046 					struct mem_cgroup *mem_cont,
1047 					int active, int file)
1048 {
1049 	unsigned long nr_taken = 0;
1050 	struct page *page;
1051 	unsigned long scan;
1052 	LIST_HEAD(pc_list);
1053 	struct list_head *src;
1054 	struct page_cgroup *pc, *tmp;
1055 	int nid = zone_to_nid(z);
1056 	int zid = zone_idx(z);
1057 	struct mem_cgroup_per_zone *mz;
1058 	int lru = LRU_FILE * file + active;
1059 	int ret;
1060 
1061 	BUG_ON(!mem_cont);
1062 	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1063 	src = &mz->lists[lru];
1064 
1065 	scan = 0;
1066 	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
1067 		if (scan >= nr_to_scan)
1068 			break;
1069 
1070 		page = pc->page;
1071 		if (unlikely(!PageCgroupUsed(pc)))
1072 			continue;
1073 		if (unlikely(!PageLRU(page)))
1074 			continue;
1075 
1076 		scan++;
1077 		ret = __isolate_lru_page(page, mode, file);
1078 		switch (ret) {
1079 		case 0:
1080 			list_move(&page->lru, dst);
1081 			mem_cgroup_del_lru(page);
1082 			nr_taken += hpage_nr_pages(page);
1083 			break;
1084 		case -EBUSY:
1085 			/* we don't affect global LRU but rotate in our LRU */
1086 			mem_cgroup_rotate_lru_list(page, page_lru(page));
1087 			break;
1088 		default:
1089 			break;
1090 		}
1091 	}
1092 
1093 	*scanned = scan;
1094 
1095 	trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1096 				      0, 0, 0, mode);
1097 
1098 	return nr_taken;
1099 }
1100 
1101 #define mem_cgroup_from_res_counter(counter, member)	\
1102 	container_of(counter, struct mem_cgroup, member)
1103 
1104 static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
1105 {
1106 	if (do_swap_account) {
1107 		if (res_counter_check_under_limit(&mem->res) &&
1108 			res_counter_check_under_limit(&mem->memsw))
1109 			return true;
1110 	} else
1111 		if (res_counter_check_under_limit(&mem->res))
1112 			return true;
1113 	return false;
1114 }
1115 
1116 /**
1117  * mem_cgroup_check_margin - check if the memory cgroup allows charging
1118  * @mem: memory cgroup to check
1119  * @bytes: the number of bytes the caller intends to charge
1120  *
1121  * Returns a boolean value on whether @mem can be charged @bytes or
1122  * whether this would exceed the limit.
1123  */
1124 static bool mem_cgroup_check_margin(struct mem_cgroup *mem, unsigned long bytes)
1125 {
1126 	if (!res_counter_check_margin(&mem->res, bytes))
1127 		return false;
1128 	if (do_swap_account && !res_counter_check_margin(&mem->memsw, bytes))
1129 		return false;
1130 	return true;
1131 }
1132 
1133 static unsigned int get_swappiness(struct mem_cgroup *memcg)
1134 {
1135 	struct cgroup *cgrp = memcg->css.cgroup;
1136 	unsigned int swappiness;
1137 
1138 	/* root ? */
1139 	if (cgrp->parent == NULL)
1140 		return vm_swappiness;
1141 
1142 	spin_lock(&memcg->reclaim_param_lock);
1143 	swappiness = memcg->swappiness;
1144 	spin_unlock(&memcg->reclaim_param_lock);
1145 
1146 	return swappiness;
1147 }
1148 
1149 static void mem_cgroup_start_move(struct mem_cgroup *mem)
1150 {
1151 	int cpu;
1152 
1153 	get_online_cpus();
1154 	spin_lock(&mem->pcp_counter_lock);
1155 	for_each_online_cpu(cpu)
1156 		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1157 	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1158 	spin_unlock(&mem->pcp_counter_lock);
1159 	put_online_cpus();
1160 
1161 	synchronize_rcu();
1162 }
1163 
1164 static void mem_cgroup_end_move(struct mem_cgroup *mem)
1165 {
1166 	int cpu;
1167 
1168 	if (!mem)
1169 		return;
1170 	get_online_cpus();
1171 	spin_lock(&mem->pcp_counter_lock);
1172 	for_each_online_cpu(cpu)
1173 		per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1174 	mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1175 	spin_unlock(&mem->pcp_counter_lock);
1176 	put_online_cpus();
1177 }
1178 /*
1179  * 2 routines for checking "mem" is under move_account() or not.
1180  *
1181  * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1182  *			  for avoiding race in accounting. If true,
1183  *			  pc->mem_cgroup may be overwritten.
1184  *
1185  * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1186  *			  under hierarchy of moving cgroups. This is for
1187  *			  waiting at hith-memory prressure caused by "move".
1188  */
1189 
1190 static bool mem_cgroup_stealed(struct mem_cgroup *mem)
1191 {
1192 	VM_BUG_ON(!rcu_read_lock_held());
1193 	return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1194 }
1195 
1196 static bool mem_cgroup_under_move(struct mem_cgroup *mem)
1197 {
1198 	struct mem_cgroup *from;
1199 	struct mem_cgroup *to;
1200 	bool ret = false;
1201 	/*
1202 	 * Unlike task_move routines, we access mc.to, mc.from not under
1203 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1204 	 */
1205 	spin_lock(&mc.lock);
1206 	from = mc.from;
1207 	to = mc.to;
1208 	if (!from)
1209 		goto unlock;
1210 	if (from == mem || to == mem
1211 	    || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
1212 	    || (mem->use_hierarchy && css_is_ancestor(&to->css,	&mem->css)))
1213 		ret = true;
1214 unlock:
1215 	spin_unlock(&mc.lock);
1216 	return ret;
1217 }
1218 
1219 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
1220 {
1221 	if (mc.moving_task && current != mc.moving_task) {
1222 		if (mem_cgroup_under_move(mem)) {
1223 			DEFINE_WAIT(wait);
1224 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1225 			/* moving charge context might have finished. */
1226 			if (mc.moving_task)
1227 				schedule();
1228 			finish_wait(&mc.waitq, &wait);
1229 			return true;
1230 		}
1231 	}
1232 	return false;
1233 }
1234 
1235 /**
1236  * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1237  * @memcg: The memory cgroup that went over limit
1238  * @p: Task that is going to be killed
1239  *
1240  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1241  * enabled
1242  */
1243 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1244 {
1245 	struct cgroup *task_cgrp;
1246 	struct cgroup *mem_cgrp;
1247 	/*
1248 	 * Need a buffer in BSS, can't rely on allocations. The code relies
1249 	 * on the assumption that OOM is serialized for memory controller.
1250 	 * If this assumption is broken, revisit this code.
1251 	 */
1252 	static char memcg_name[PATH_MAX];
1253 	int ret;
1254 
1255 	if (!memcg || !p)
1256 		return;
1257 
1258 
1259 	rcu_read_lock();
1260 
1261 	mem_cgrp = memcg->css.cgroup;
1262 	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1263 
1264 	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1265 	if (ret < 0) {
1266 		/*
1267 		 * Unfortunately, we are unable to convert to a useful name
1268 		 * But we'll still print out the usage information
1269 		 */
1270 		rcu_read_unlock();
1271 		goto done;
1272 	}
1273 	rcu_read_unlock();
1274 
1275 	printk(KERN_INFO "Task in %s killed", memcg_name);
1276 
1277 	rcu_read_lock();
1278 	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1279 	if (ret < 0) {
1280 		rcu_read_unlock();
1281 		goto done;
1282 	}
1283 	rcu_read_unlock();
1284 
1285 	/*
1286 	 * Continues from above, so we don't need an KERN_ level
1287 	 */
1288 	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1289 done:
1290 
1291 	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1292 		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1293 		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1294 		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1295 	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1296 		"failcnt %llu\n",
1297 		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1298 		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1299 		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1300 }
1301 
1302 /*
1303  * This function returns the number of memcg under hierarchy tree. Returns
1304  * 1(self count) if no children.
1305  */
1306 static int mem_cgroup_count_children(struct mem_cgroup *mem)
1307 {
1308 	int num = 0;
1309 	struct mem_cgroup *iter;
1310 
1311 	for_each_mem_cgroup_tree(iter, mem)
1312 		num++;
1313 	return num;
1314 }
1315 
1316 /*
1317  * Return the memory (and swap, if configured) limit for a memcg.
1318  */
1319 u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1320 {
1321 	u64 limit;
1322 	u64 memsw;
1323 
1324 	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1325 	limit += total_swap_pages << PAGE_SHIFT;
1326 
1327 	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1328 	/*
1329 	 * If memsw is finite and limits the amount of swap space available
1330 	 * to this memcg, return that limit.
1331 	 */
1332 	return min(limit, memsw);
1333 }
1334 
1335 /*
1336  * Visit the first child (need not be the first child as per the ordering
1337  * of the cgroup list, since we track last_scanned_child) of @mem and use
1338  * that to reclaim free pages from.
1339  */
1340 static struct mem_cgroup *
1341 mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1342 {
1343 	struct mem_cgroup *ret = NULL;
1344 	struct cgroup_subsys_state *css;
1345 	int nextid, found;
1346 
1347 	if (!root_mem->use_hierarchy) {
1348 		css_get(&root_mem->css);
1349 		ret = root_mem;
1350 	}
1351 
1352 	while (!ret) {
1353 		rcu_read_lock();
1354 		nextid = root_mem->last_scanned_child + 1;
1355 		css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1356 				   &found);
1357 		if (css && css_tryget(css))
1358 			ret = container_of(css, struct mem_cgroup, css);
1359 
1360 		rcu_read_unlock();
1361 		/* Updates scanning parameter */
1362 		spin_lock(&root_mem->reclaim_param_lock);
1363 		if (!css) {
1364 			/* this means start scan from ID:1 */
1365 			root_mem->last_scanned_child = 0;
1366 		} else
1367 			root_mem->last_scanned_child = found;
1368 		spin_unlock(&root_mem->reclaim_param_lock);
1369 	}
1370 
1371 	return ret;
1372 }
1373 
1374 /*
1375  * Scan the hierarchy if needed to reclaim memory. We remember the last child
1376  * we reclaimed from, so that we don't end up penalizing one child extensively
1377  * based on its position in the children list.
1378  *
1379  * root_mem is the original ancestor that we've been reclaim from.
1380  *
1381  * We give up and return to the caller when we visit root_mem twice.
1382  * (other groups can be removed while we're walking....)
1383  *
1384  * If shrink==true, for avoiding to free too much, this returns immedieately.
1385  */
1386 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1387 						struct zone *zone,
1388 						gfp_t gfp_mask,
1389 						unsigned long reclaim_options)
1390 {
1391 	struct mem_cgroup *victim;
1392 	int ret, total = 0;
1393 	int loop = 0;
1394 	bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1395 	bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1396 	bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1397 	unsigned long excess = mem_cgroup_get_excess(root_mem);
1398 
1399 	/* If memsw_is_minimum==1, swap-out is of-no-use. */
1400 	if (root_mem->memsw_is_minimum)
1401 		noswap = true;
1402 
1403 	while (1) {
1404 		victim = mem_cgroup_select_victim(root_mem);
1405 		if (victim == root_mem) {
1406 			loop++;
1407 			if (loop >= 1)
1408 				drain_all_stock_async();
1409 			if (loop >= 2) {
1410 				/*
1411 				 * If we have not been able to reclaim
1412 				 * anything, it might because there are
1413 				 * no reclaimable pages under this hierarchy
1414 				 */
1415 				if (!check_soft || !total) {
1416 					css_put(&victim->css);
1417 					break;
1418 				}
1419 				/*
1420 				 * We want to do more targetted reclaim.
1421 				 * excess >> 2 is not to excessive so as to
1422 				 * reclaim too much, nor too less that we keep
1423 				 * coming back to reclaim from this cgroup
1424 				 */
1425 				if (total >= (excess >> 2) ||
1426 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1427 					css_put(&victim->css);
1428 					break;
1429 				}
1430 			}
1431 		}
1432 		if (!mem_cgroup_local_usage(victim)) {
1433 			/* this cgroup's local usage == 0 */
1434 			css_put(&victim->css);
1435 			continue;
1436 		}
1437 		/* we use swappiness of local cgroup */
1438 		if (check_soft)
1439 			ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1440 				noswap, get_swappiness(victim), zone);
1441 		else
1442 			ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1443 						noswap, get_swappiness(victim));
1444 		css_put(&victim->css);
1445 		/*
1446 		 * At shrinking usage, we can't check we should stop here or
1447 		 * reclaim more. It's depends on callers. last_scanned_child
1448 		 * will work enough for keeping fairness under tree.
1449 		 */
1450 		if (shrink)
1451 			return ret;
1452 		total += ret;
1453 		if (check_soft) {
1454 			if (res_counter_check_under_soft_limit(&root_mem->res))
1455 				return total;
1456 		} else if (mem_cgroup_check_under_limit(root_mem))
1457 			return 1 + total;
1458 	}
1459 	return total;
1460 }
1461 
1462 /*
1463  * Check OOM-Killer is already running under our hierarchy.
1464  * If someone is running, return false.
1465  */
1466 static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1467 {
1468 	int x, lock_count = 0;
1469 	struct mem_cgroup *iter;
1470 
1471 	for_each_mem_cgroup_tree(iter, mem) {
1472 		x = atomic_inc_return(&iter->oom_lock);
1473 		lock_count = max(x, lock_count);
1474 	}
1475 
1476 	if (lock_count == 1)
1477 		return true;
1478 	return false;
1479 }
1480 
1481 static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1482 {
1483 	struct mem_cgroup *iter;
1484 
1485 	/*
1486 	 * When a new child is created while the hierarchy is under oom,
1487 	 * mem_cgroup_oom_lock() may not be called. We have to use
1488 	 * atomic_add_unless() here.
1489 	 */
1490 	for_each_mem_cgroup_tree(iter, mem)
1491 		atomic_add_unless(&iter->oom_lock, -1, 0);
1492 	return 0;
1493 }
1494 
1495 
1496 static DEFINE_MUTEX(memcg_oom_mutex);
1497 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1498 
1499 struct oom_wait_info {
1500 	struct mem_cgroup *mem;
1501 	wait_queue_t	wait;
1502 };
1503 
1504 static int memcg_oom_wake_function(wait_queue_t *wait,
1505 	unsigned mode, int sync, void *arg)
1506 {
1507 	struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
1508 	struct oom_wait_info *oom_wait_info;
1509 
1510 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1511 
1512 	if (oom_wait_info->mem == wake_mem)
1513 		goto wakeup;
1514 	/* if no hierarchy, no match */
1515 	if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
1516 		return 0;
1517 	/*
1518 	 * Both of oom_wait_info->mem and wake_mem are stable under us.
1519 	 * Then we can use css_is_ancestor without taking care of RCU.
1520 	 */
1521 	if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
1522 	    !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
1523 		return 0;
1524 
1525 wakeup:
1526 	return autoremove_wake_function(wait, mode, sync, arg);
1527 }
1528 
1529 static void memcg_wakeup_oom(struct mem_cgroup *mem)
1530 {
1531 	/* for filtering, pass "mem" as argument. */
1532 	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
1533 }
1534 
1535 static void memcg_oom_recover(struct mem_cgroup *mem)
1536 {
1537 	if (mem && atomic_read(&mem->oom_lock))
1538 		memcg_wakeup_oom(mem);
1539 }
1540 
1541 /*
1542  * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1543  */
1544 bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1545 {
1546 	struct oom_wait_info owait;
1547 	bool locked, need_to_kill;
1548 
1549 	owait.mem = mem;
1550 	owait.wait.flags = 0;
1551 	owait.wait.func = memcg_oom_wake_function;
1552 	owait.wait.private = current;
1553 	INIT_LIST_HEAD(&owait.wait.task_list);
1554 	need_to_kill = true;
1555 	/* At first, try to OOM lock hierarchy under mem.*/
1556 	mutex_lock(&memcg_oom_mutex);
1557 	locked = mem_cgroup_oom_lock(mem);
1558 	/*
1559 	 * Even if signal_pending(), we can't quit charge() loop without
1560 	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1561 	 * under OOM is always welcomed, use TASK_KILLABLE here.
1562 	 */
1563 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1564 	if (!locked || mem->oom_kill_disable)
1565 		need_to_kill = false;
1566 	if (locked)
1567 		mem_cgroup_oom_notify(mem);
1568 	mutex_unlock(&memcg_oom_mutex);
1569 
1570 	if (need_to_kill) {
1571 		finish_wait(&memcg_oom_waitq, &owait.wait);
1572 		mem_cgroup_out_of_memory(mem, mask);
1573 	} else {
1574 		schedule();
1575 		finish_wait(&memcg_oom_waitq, &owait.wait);
1576 	}
1577 	mutex_lock(&memcg_oom_mutex);
1578 	mem_cgroup_oom_unlock(mem);
1579 	memcg_wakeup_oom(mem);
1580 	mutex_unlock(&memcg_oom_mutex);
1581 
1582 	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1583 		return false;
1584 	/* Give chance to dying process */
1585 	schedule_timeout(1);
1586 	return true;
1587 }
1588 
1589 /*
1590  * Currently used to update mapped file statistics, but the routine can be
1591  * generalized to update other statistics as well.
1592  *
1593  * Notes: Race condition
1594  *
1595  * We usually use page_cgroup_lock() for accessing page_cgroup member but
1596  * it tends to be costly. But considering some conditions, we doesn't need
1597  * to do so _always_.
1598  *
1599  * Considering "charge", lock_page_cgroup() is not required because all
1600  * file-stat operations happen after a page is attached to radix-tree. There
1601  * are no race with "charge".
1602  *
1603  * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1604  * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1605  * if there are race with "uncharge". Statistics itself is properly handled
1606  * by flags.
1607  *
1608  * Considering "move", this is an only case we see a race. To make the race
1609  * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1610  * possibility of race condition. If there is, we take a lock.
1611  */
1612 
1613 void mem_cgroup_update_page_stat(struct page *page,
1614 				 enum mem_cgroup_page_stat_item idx, int val)
1615 {
1616 	struct mem_cgroup *mem;
1617 	struct page_cgroup *pc = lookup_page_cgroup(page);
1618 	bool need_unlock = false;
1619 	unsigned long uninitialized_var(flags);
1620 
1621 	if (unlikely(!pc))
1622 		return;
1623 
1624 	rcu_read_lock();
1625 	mem = pc->mem_cgroup;
1626 	if (unlikely(!mem || !PageCgroupUsed(pc)))
1627 		goto out;
1628 	/* pc->mem_cgroup is unstable ? */
1629 	if (unlikely(mem_cgroup_stealed(mem)) || PageTransHuge(page)) {
1630 		/* take a lock against to access pc->mem_cgroup */
1631 		move_lock_page_cgroup(pc, &flags);
1632 		need_unlock = true;
1633 		mem = pc->mem_cgroup;
1634 		if (!mem || !PageCgroupUsed(pc))
1635 			goto out;
1636 	}
1637 
1638 	switch (idx) {
1639 	case MEMCG_NR_FILE_MAPPED:
1640 		if (val > 0)
1641 			SetPageCgroupFileMapped(pc);
1642 		else if (!page_mapped(page))
1643 			ClearPageCgroupFileMapped(pc);
1644 		idx = MEM_CGROUP_STAT_FILE_MAPPED;
1645 		break;
1646 	default:
1647 		BUG();
1648 	}
1649 
1650 	this_cpu_add(mem->stat->count[idx], val);
1651 
1652 out:
1653 	if (unlikely(need_unlock))
1654 		move_unlock_page_cgroup(pc, &flags);
1655 	rcu_read_unlock();
1656 	return;
1657 }
1658 EXPORT_SYMBOL(mem_cgroup_update_page_stat);
1659 
1660 /*
1661  * size of first charge trial. "32" comes from vmscan.c's magic value.
1662  * TODO: maybe necessary to use big numbers in big irons.
1663  */
1664 #define CHARGE_SIZE	(32 * PAGE_SIZE)
1665 struct memcg_stock_pcp {
1666 	struct mem_cgroup *cached; /* this never be root cgroup */
1667 	int charge;
1668 	struct work_struct work;
1669 };
1670 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1671 static atomic_t memcg_drain_count;
1672 
1673 /*
1674  * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
1675  * from local stock and true is returned. If the stock is 0 or charges from a
1676  * cgroup which is not current target, returns false. This stock will be
1677  * refilled.
1678  */
1679 static bool consume_stock(struct mem_cgroup *mem)
1680 {
1681 	struct memcg_stock_pcp *stock;
1682 	bool ret = true;
1683 
1684 	stock = &get_cpu_var(memcg_stock);
1685 	if (mem == stock->cached && stock->charge)
1686 		stock->charge -= PAGE_SIZE;
1687 	else /* need to call res_counter_charge */
1688 		ret = false;
1689 	put_cpu_var(memcg_stock);
1690 	return ret;
1691 }
1692 
1693 /*
1694  * Returns stocks cached in percpu to res_counter and reset cached information.
1695  */
1696 static void drain_stock(struct memcg_stock_pcp *stock)
1697 {
1698 	struct mem_cgroup *old = stock->cached;
1699 
1700 	if (stock->charge) {
1701 		res_counter_uncharge(&old->res, stock->charge);
1702 		if (do_swap_account)
1703 			res_counter_uncharge(&old->memsw, stock->charge);
1704 	}
1705 	stock->cached = NULL;
1706 	stock->charge = 0;
1707 }
1708 
1709 /*
1710  * This must be called under preempt disabled or must be called by
1711  * a thread which is pinned to local cpu.
1712  */
1713 static void drain_local_stock(struct work_struct *dummy)
1714 {
1715 	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1716 	drain_stock(stock);
1717 }
1718 
1719 /*
1720  * Cache charges(val) which is from res_counter, to local per_cpu area.
1721  * This will be consumed by consume_stock() function, later.
1722  */
1723 static void refill_stock(struct mem_cgroup *mem, int val)
1724 {
1725 	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1726 
1727 	if (stock->cached != mem) { /* reset if necessary */
1728 		drain_stock(stock);
1729 		stock->cached = mem;
1730 	}
1731 	stock->charge += val;
1732 	put_cpu_var(memcg_stock);
1733 }
1734 
1735 /*
1736  * Tries to drain stocked charges in other cpus. This function is asynchronous
1737  * and just put a work per cpu for draining localy on each cpu. Caller can
1738  * expects some charges will be back to res_counter later but cannot wait for
1739  * it.
1740  */
1741 static void drain_all_stock_async(void)
1742 {
1743 	int cpu;
1744 	/* This function is for scheduling "drain" in asynchronous way.
1745 	 * The result of "drain" is not directly handled by callers. Then,
1746 	 * if someone is calling drain, we don't have to call drain more.
1747 	 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
1748 	 * there is a race. We just do loose check here.
1749 	 */
1750 	if (atomic_read(&memcg_drain_count))
1751 		return;
1752 	/* Notify other cpus that system-wide "drain" is running */
1753 	atomic_inc(&memcg_drain_count);
1754 	get_online_cpus();
1755 	for_each_online_cpu(cpu) {
1756 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1757 		schedule_work_on(cpu, &stock->work);
1758 	}
1759  	put_online_cpus();
1760 	atomic_dec(&memcg_drain_count);
1761 	/* We don't wait for flush_work */
1762 }
1763 
1764 /* This is a synchronous drain interface. */
1765 static void drain_all_stock_sync(void)
1766 {
1767 	/* called when force_empty is called */
1768 	atomic_inc(&memcg_drain_count);
1769 	schedule_on_each_cpu(drain_local_stock);
1770 	atomic_dec(&memcg_drain_count);
1771 }
1772 
1773 /*
1774  * This function drains percpu counter value from DEAD cpu and
1775  * move it to local cpu. Note that this function can be preempted.
1776  */
1777 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
1778 {
1779 	int i;
1780 
1781 	spin_lock(&mem->pcp_counter_lock);
1782 	for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
1783 		s64 x = per_cpu(mem->stat->count[i], cpu);
1784 
1785 		per_cpu(mem->stat->count[i], cpu) = 0;
1786 		mem->nocpu_base.count[i] += x;
1787 	}
1788 	/* need to clear ON_MOVE value, works as a kind of lock. */
1789 	per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
1790 	spin_unlock(&mem->pcp_counter_lock);
1791 }
1792 
1793 static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
1794 {
1795 	int idx = MEM_CGROUP_ON_MOVE;
1796 
1797 	spin_lock(&mem->pcp_counter_lock);
1798 	per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
1799 	spin_unlock(&mem->pcp_counter_lock);
1800 }
1801 
1802 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
1803 					unsigned long action,
1804 					void *hcpu)
1805 {
1806 	int cpu = (unsigned long)hcpu;
1807 	struct memcg_stock_pcp *stock;
1808 	struct mem_cgroup *iter;
1809 
1810 	if ((action == CPU_ONLINE)) {
1811 		for_each_mem_cgroup_all(iter)
1812 			synchronize_mem_cgroup_on_move(iter, cpu);
1813 		return NOTIFY_OK;
1814 	}
1815 
1816 	if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
1817 		return NOTIFY_OK;
1818 
1819 	for_each_mem_cgroup_all(iter)
1820 		mem_cgroup_drain_pcp_counter(iter, cpu);
1821 
1822 	stock = &per_cpu(memcg_stock, cpu);
1823 	drain_stock(stock);
1824 	return NOTIFY_OK;
1825 }
1826 
1827 
1828 /* See __mem_cgroup_try_charge() for details */
1829 enum {
1830 	CHARGE_OK,		/* success */
1831 	CHARGE_RETRY,		/* need to retry but retry is not bad */
1832 	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
1833 	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
1834 	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
1835 };
1836 
1837 static int __mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
1838 				int csize, bool oom_check)
1839 {
1840 	struct mem_cgroup *mem_over_limit;
1841 	struct res_counter *fail_res;
1842 	unsigned long flags = 0;
1843 	int ret;
1844 
1845 	ret = res_counter_charge(&mem->res, csize, &fail_res);
1846 
1847 	if (likely(!ret)) {
1848 		if (!do_swap_account)
1849 			return CHARGE_OK;
1850 		ret = res_counter_charge(&mem->memsw, csize, &fail_res);
1851 		if (likely(!ret))
1852 			return CHARGE_OK;
1853 
1854 		res_counter_uncharge(&mem->res, csize);
1855 		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
1856 		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1857 	} else
1858 		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
1859 	/*
1860 	 * csize can be either a huge page (HPAGE_SIZE), a batch of
1861 	 * regular pages (CHARGE_SIZE), or a single regular page
1862 	 * (PAGE_SIZE).
1863 	 *
1864 	 * Never reclaim on behalf of optional batching, retry with a
1865 	 * single page instead.
1866 	 */
1867 	if (csize == CHARGE_SIZE)
1868 		return CHARGE_RETRY;
1869 
1870 	if (!(gfp_mask & __GFP_WAIT))
1871 		return CHARGE_WOULDBLOCK;
1872 
1873 	ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
1874 					      gfp_mask, flags);
1875 	if (mem_cgroup_check_margin(mem_over_limit, csize))
1876 		return CHARGE_RETRY;
1877 	/*
1878 	 * Even though the limit is exceeded at this point, reclaim
1879 	 * may have been able to free some pages.  Retry the charge
1880 	 * before killing the task.
1881 	 *
1882 	 * Only for regular pages, though: huge pages are rather
1883 	 * unlikely to succeed so close to the limit, and we fall back
1884 	 * to regular pages anyway in case of failure.
1885 	 */
1886 	if (csize == PAGE_SIZE && ret)
1887 		return CHARGE_RETRY;
1888 
1889 	/*
1890 	 * At task move, charge accounts can be doubly counted. So, it's
1891 	 * better to wait until the end of task_move if something is going on.
1892 	 */
1893 	if (mem_cgroup_wait_acct_move(mem_over_limit))
1894 		return CHARGE_RETRY;
1895 
1896 	/* If we don't need to call oom-killer at el, return immediately */
1897 	if (!oom_check)
1898 		return CHARGE_NOMEM;
1899 	/* check OOM */
1900 	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
1901 		return CHARGE_OOM_DIE;
1902 
1903 	return CHARGE_RETRY;
1904 }
1905 
1906 /*
1907  * Unlike exported interface, "oom" parameter is added. if oom==true,
1908  * oom-killer can be invoked.
1909  */
1910 static int __mem_cgroup_try_charge(struct mm_struct *mm,
1911 				   gfp_t gfp_mask,
1912 				   struct mem_cgroup **memcg, bool oom,
1913 				   int page_size)
1914 {
1915 	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1916 	struct mem_cgroup *mem = NULL;
1917 	int ret;
1918 	int csize = max(CHARGE_SIZE, (unsigned long) page_size);
1919 
1920 	/*
1921 	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
1922 	 * in system level. So, allow to go ahead dying process in addition to
1923 	 * MEMDIE process.
1924 	 */
1925 	if (unlikely(test_thread_flag(TIF_MEMDIE)
1926 		     || fatal_signal_pending(current)))
1927 		goto bypass;
1928 
1929 	/*
1930 	 * We always charge the cgroup the mm_struct belongs to.
1931 	 * The mm_struct's mem_cgroup changes on task migration if the
1932 	 * thread group leader migrates. It's possible that mm is not
1933 	 * set, if so charge the init_mm (happens for pagecache usage).
1934 	 */
1935 	if (!*memcg && !mm)
1936 		goto bypass;
1937 again:
1938 	if (*memcg) { /* css should be a valid one */
1939 		mem = *memcg;
1940 		VM_BUG_ON(css_is_removed(&mem->css));
1941 		if (mem_cgroup_is_root(mem))
1942 			goto done;
1943 		if (page_size == PAGE_SIZE && consume_stock(mem))
1944 			goto done;
1945 		css_get(&mem->css);
1946 	} else {
1947 		struct task_struct *p;
1948 
1949 		rcu_read_lock();
1950 		p = rcu_dereference(mm->owner);
1951 		/*
1952 		 * Because we don't have task_lock(), "p" can exit.
1953 		 * In that case, "mem" can point to root or p can be NULL with
1954 		 * race with swapoff. Then, we have small risk of mis-accouning.
1955 		 * But such kind of mis-account by race always happens because
1956 		 * we don't have cgroup_mutex(). It's overkill and we allo that
1957 		 * small race, here.
1958 		 * (*) swapoff at el will charge against mm-struct not against
1959 		 * task-struct. So, mm->owner can be NULL.
1960 		 */
1961 		mem = mem_cgroup_from_task(p);
1962 		if (!mem || mem_cgroup_is_root(mem)) {
1963 			rcu_read_unlock();
1964 			goto done;
1965 		}
1966 		if (page_size == PAGE_SIZE && consume_stock(mem)) {
1967 			/*
1968 			 * It seems dagerous to access memcg without css_get().
1969 			 * But considering how consume_stok works, it's not
1970 			 * necessary. If consume_stock success, some charges
1971 			 * from this memcg are cached on this cpu. So, we
1972 			 * don't need to call css_get()/css_tryget() before
1973 			 * calling consume_stock().
1974 			 */
1975 			rcu_read_unlock();
1976 			goto done;
1977 		}
1978 		/* after here, we may be blocked. we need to get refcnt */
1979 		if (!css_tryget(&mem->css)) {
1980 			rcu_read_unlock();
1981 			goto again;
1982 		}
1983 		rcu_read_unlock();
1984 	}
1985 
1986 	do {
1987 		bool oom_check;
1988 
1989 		/* If killed, bypass charge */
1990 		if (fatal_signal_pending(current)) {
1991 			css_put(&mem->css);
1992 			goto bypass;
1993 		}
1994 
1995 		oom_check = false;
1996 		if (oom && !nr_oom_retries) {
1997 			oom_check = true;
1998 			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1999 		}
2000 
2001 		ret = __mem_cgroup_do_charge(mem, gfp_mask, csize, oom_check);
2002 
2003 		switch (ret) {
2004 		case CHARGE_OK:
2005 			break;
2006 		case CHARGE_RETRY: /* not in OOM situation but retry */
2007 			csize = page_size;
2008 			css_put(&mem->css);
2009 			mem = NULL;
2010 			goto again;
2011 		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2012 			css_put(&mem->css);
2013 			goto nomem;
2014 		case CHARGE_NOMEM: /* OOM routine works */
2015 			if (!oom) {
2016 				css_put(&mem->css);
2017 				goto nomem;
2018 			}
2019 			/* If oom, we never return -ENOMEM */
2020 			nr_oom_retries--;
2021 			break;
2022 		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2023 			css_put(&mem->css);
2024 			goto bypass;
2025 		}
2026 	} while (ret != CHARGE_OK);
2027 
2028 	if (csize > page_size)
2029 		refill_stock(mem, csize - page_size);
2030 	css_put(&mem->css);
2031 done:
2032 	*memcg = mem;
2033 	return 0;
2034 nomem:
2035 	*memcg = NULL;
2036 	return -ENOMEM;
2037 bypass:
2038 	*memcg = NULL;
2039 	return 0;
2040 }
2041 
2042 /*
2043  * Somemtimes we have to undo a charge we got by try_charge().
2044  * This function is for that and do uncharge, put css's refcnt.
2045  * gotten by try_charge().
2046  */
2047 static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2048 							unsigned long count)
2049 {
2050 	if (!mem_cgroup_is_root(mem)) {
2051 		res_counter_uncharge(&mem->res, PAGE_SIZE * count);
2052 		if (do_swap_account)
2053 			res_counter_uncharge(&mem->memsw, PAGE_SIZE * count);
2054 	}
2055 }
2056 
2057 static void mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2058 				     int page_size)
2059 {
2060 	__mem_cgroup_cancel_charge(mem, page_size >> PAGE_SHIFT);
2061 }
2062 
2063 /*
2064  * A helper function to get mem_cgroup from ID. must be called under
2065  * rcu_read_lock(). The caller must check css_is_removed() or some if
2066  * it's concern. (dropping refcnt from swap can be called against removed
2067  * memcg.)
2068  */
2069 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2070 {
2071 	struct cgroup_subsys_state *css;
2072 
2073 	/* ID 0 is unused ID */
2074 	if (!id)
2075 		return NULL;
2076 	css = css_lookup(&mem_cgroup_subsys, id);
2077 	if (!css)
2078 		return NULL;
2079 	return container_of(css, struct mem_cgroup, css);
2080 }
2081 
2082 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2083 {
2084 	struct mem_cgroup *mem = NULL;
2085 	struct page_cgroup *pc;
2086 	unsigned short id;
2087 	swp_entry_t ent;
2088 
2089 	VM_BUG_ON(!PageLocked(page));
2090 
2091 	pc = lookup_page_cgroup(page);
2092 	lock_page_cgroup(pc);
2093 	if (PageCgroupUsed(pc)) {
2094 		mem = pc->mem_cgroup;
2095 		if (mem && !css_tryget(&mem->css))
2096 			mem = NULL;
2097 	} else if (PageSwapCache(page)) {
2098 		ent.val = page_private(page);
2099 		id = lookup_swap_cgroup(ent);
2100 		rcu_read_lock();
2101 		mem = mem_cgroup_lookup(id);
2102 		if (mem && !css_tryget(&mem->css))
2103 			mem = NULL;
2104 		rcu_read_unlock();
2105 	}
2106 	unlock_page_cgroup(pc);
2107 	return mem;
2108 }
2109 
2110 static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
2111 				       struct page_cgroup *pc,
2112 				       enum charge_type ctype,
2113 				       int page_size)
2114 {
2115 	int nr_pages = page_size >> PAGE_SHIFT;
2116 
2117 	/* try_charge() can return NULL to *memcg, taking care of it. */
2118 	if (!mem)
2119 		return;
2120 
2121 	lock_page_cgroup(pc);
2122 	if (unlikely(PageCgroupUsed(pc))) {
2123 		unlock_page_cgroup(pc);
2124 		mem_cgroup_cancel_charge(mem, page_size);
2125 		return;
2126 	}
2127 	/*
2128 	 * we don't need page_cgroup_lock about tail pages, becase they are not
2129 	 * accessed by any other context at this point.
2130 	 */
2131 	pc->mem_cgroup = mem;
2132 	/*
2133 	 * We access a page_cgroup asynchronously without lock_page_cgroup().
2134 	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2135 	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2136 	 * before USED bit, we need memory barrier here.
2137 	 * See mem_cgroup_add_lru_list(), etc.
2138  	 */
2139 	smp_wmb();
2140 	switch (ctype) {
2141 	case MEM_CGROUP_CHARGE_TYPE_CACHE:
2142 	case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2143 		SetPageCgroupCache(pc);
2144 		SetPageCgroupUsed(pc);
2145 		break;
2146 	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2147 		ClearPageCgroupCache(pc);
2148 		SetPageCgroupUsed(pc);
2149 		break;
2150 	default:
2151 		break;
2152 	}
2153 
2154 	mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), nr_pages);
2155 	unlock_page_cgroup(pc);
2156 	/*
2157 	 * "charge_statistics" updated event counter. Then, check it.
2158 	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2159 	 * if they exceeds softlimit.
2160 	 */
2161 	memcg_check_events(mem, pc->page);
2162 }
2163 
2164 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2165 
2166 #define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2167 			(1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2168 /*
2169  * Because tail pages are not marked as "used", set it. We're under
2170  * zone->lru_lock, 'splitting on pmd' and compund_lock.
2171  */
2172 void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
2173 {
2174 	struct page_cgroup *head_pc = lookup_page_cgroup(head);
2175 	struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
2176 	unsigned long flags;
2177 
2178 	if (mem_cgroup_disabled())
2179 		return;
2180 	/*
2181 	 * We have no races with charge/uncharge but will have races with
2182 	 * page state accounting.
2183 	 */
2184 	move_lock_page_cgroup(head_pc, &flags);
2185 
2186 	tail_pc->mem_cgroup = head_pc->mem_cgroup;
2187 	smp_wmb(); /* see __commit_charge() */
2188 	if (PageCgroupAcctLRU(head_pc)) {
2189 		enum lru_list lru;
2190 		struct mem_cgroup_per_zone *mz;
2191 
2192 		/*
2193 		 * LRU flags cannot be copied because we need to add tail
2194 		 *.page to LRU by generic call and our hook will be called.
2195 		 * We hold lru_lock, then, reduce counter directly.
2196 		 */
2197 		lru = page_lru(head);
2198 		mz = page_cgroup_zoneinfo(head_pc);
2199 		MEM_CGROUP_ZSTAT(mz, lru) -= 1;
2200 	}
2201 	tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2202 	move_unlock_page_cgroup(head_pc, &flags);
2203 }
2204 #endif
2205 
2206 /**
2207  * __mem_cgroup_move_account - move account of the page
2208  * @pc:	page_cgroup of the page.
2209  * @from: mem_cgroup which the page is moved from.
2210  * @to:	mem_cgroup which the page is moved to. @from != @to.
2211  * @uncharge: whether we should call uncharge and css_put against @from.
2212  *
2213  * The caller must confirm following.
2214  * - page is not on LRU (isolate_page() is useful.)
2215  * - the pc is locked, used, and ->mem_cgroup points to @from.
2216  *
2217  * This function doesn't do "charge" nor css_get to new cgroup. It should be
2218  * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
2219  * true, this function does "uncharge" from old cgroup, but it doesn't if
2220  * @uncharge is false, so a caller should do "uncharge".
2221  */
2222 
2223 static void __mem_cgroup_move_account(struct page_cgroup *pc,
2224 	struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge,
2225 	int charge_size)
2226 {
2227 	int nr_pages = charge_size >> PAGE_SHIFT;
2228 
2229 	VM_BUG_ON(from == to);
2230 	VM_BUG_ON(PageLRU(pc->page));
2231 	VM_BUG_ON(!page_is_cgroup_locked(pc));
2232 	VM_BUG_ON(!PageCgroupUsed(pc));
2233 	VM_BUG_ON(pc->mem_cgroup != from);
2234 
2235 	if (PageCgroupFileMapped(pc)) {
2236 		/* Update mapped_file data for mem_cgroup */
2237 		preempt_disable();
2238 		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2239 		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2240 		preempt_enable();
2241 	}
2242 	mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2243 	if (uncharge)
2244 		/* This is not "cancel", but cancel_charge does all we need. */
2245 		mem_cgroup_cancel_charge(from, charge_size);
2246 
2247 	/* caller should have done css_get */
2248 	pc->mem_cgroup = to;
2249 	mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2250 	/*
2251 	 * We charges against "to" which may not have any tasks. Then, "to"
2252 	 * can be under rmdir(). But in current implementation, caller of
2253 	 * this function is just force_empty() and move charge, so it's
2254 	 * garanteed that "to" is never removed. So, we don't check rmdir
2255 	 * status here.
2256 	 */
2257 }
2258 
2259 /*
2260  * check whether the @pc is valid for moving account and call
2261  * __mem_cgroup_move_account()
2262  */
2263 static int mem_cgroup_move_account(struct page_cgroup *pc,
2264 		struct mem_cgroup *from, struct mem_cgroup *to,
2265 		bool uncharge, int charge_size)
2266 {
2267 	int ret = -EINVAL;
2268 	unsigned long flags;
2269 	/*
2270 	 * The page is isolated from LRU. So, collapse function
2271 	 * will not handle this page. But page splitting can happen.
2272 	 * Do this check under compound_page_lock(). The caller should
2273 	 * hold it.
2274 	 */
2275 	if ((charge_size > PAGE_SIZE) && !PageTransHuge(pc->page))
2276 		return -EBUSY;
2277 
2278 	lock_page_cgroup(pc);
2279 	if (PageCgroupUsed(pc) && pc->mem_cgroup == from) {
2280 		move_lock_page_cgroup(pc, &flags);
2281 		__mem_cgroup_move_account(pc, from, to, uncharge, charge_size);
2282 		move_unlock_page_cgroup(pc, &flags);
2283 		ret = 0;
2284 	}
2285 	unlock_page_cgroup(pc);
2286 	/*
2287 	 * check events
2288 	 */
2289 	memcg_check_events(to, pc->page);
2290 	memcg_check_events(from, pc->page);
2291 	return ret;
2292 }
2293 
2294 /*
2295  * move charges to its parent.
2296  */
2297 
2298 static int mem_cgroup_move_parent(struct page_cgroup *pc,
2299 				  struct mem_cgroup *child,
2300 				  gfp_t gfp_mask)
2301 {
2302 	struct page *page = pc->page;
2303 	struct cgroup *cg = child->css.cgroup;
2304 	struct cgroup *pcg = cg->parent;
2305 	struct mem_cgroup *parent;
2306 	int page_size = PAGE_SIZE;
2307 	unsigned long flags;
2308 	int ret;
2309 
2310 	/* Is ROOT ? */
2311 	if (!pcg)
2312 		return -EINVAL;
2313 
2314 	ret = -EBUSY;
2315 	if (!get_page_unless_zero(page))
2316 		goto out;
2317 	if (isolate_lru_page(page))
2318 		goto put;
2319 
2320 	if (PageTransHuge(page))
2321 		page_size = HPAGE_SIZE;
2322 
2323 	parent = mem_cgroup_from_cont(pcg);
2324 	ret = __mem_cgroup_try_charge(NULL, gfp_mask,
2325 				&parent, false, page_size);
2326 	if (ret || !parent)
2327 		goto put_back;
2328 
2329 	if (page_size > PAGE_SIZE)
2330 		flags = compound_lock_irqsave(page);
2331 
2332 	ret = mem_cgroup_move_account(pc, child, parent, true, page_size);
2333 	if (ret)
2334 		mem_cgroup_cancel_charge(parent, page_size);
2335 
2336 	if (page_size > PAGE_SIZE)
2337 		compound_unlock_irqrestore(page, flags);
2338 put_back:
2339 	putback_lru_page(page);
2340 put:
2341 	put_page(page);
2342 out:
2343 	return ret;
2344 }
2345 
2346 /*
2347  * Charge the memory controller for page usage.
2348  * Return
2349  * 0 if the charge was successful
2350  * < 0 if the cgroup is over its limit
2351  */
2352 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2353 				gfp_t gfp_mask, enum charge_type ctype)
2354 {
2355 	struct mem_cgroup *mem = NULL;
2356 	int page_size = PAGE_SIZE;
2357 	struct page_cgroup *pc;
2358 	bool oom = true;
2359 	int ret;
2360 
2361 	if (PageTransHuge(page)) {
2362 		page_size <<= compound_order(page);
2363 		VM_BUG_ON(!PageTransHuge(page));
2364 		/*
2365 		 * Never OOM-kill a process for a huge page.  The
2366 		 * fault handler will fall back to regular pages.
2367 		 */
2368 		oom = false;
2369 	}
2370 
2371 	pc = lookup_page_cgroup(page);
2372 	/* can happen at boot */
2373 	if (unlikely(!pc))
2374 		return 0;
2375 	prefetchw(pc);
2376 
2377 	ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, oom, page_size);
2378 	if (ret || !mem)
2379 		return ret;
2380 
2381 	__mem_cgroup_commit_charge(mem, pc, ctype, page_size);
2382 	return 0;
2383 }
2384 
2385 int mem_cgroup_newpage_charge(struct page *page,
2386 			      struct mm_struct *mm, gfp_t gfp_mask)
2387 {
2388 	if (mem_cgroup_disabled())
2389 		return 0;
2390 	/*
2391 	 * If already mapped, we don't have to account.
2392 	 * If page cache, page->mapping has address_space.
2393 	 * But page->mapping may have out-of-use anon_vma pointer,
2394 	 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2395 	 * is NULL.
2396   	 */
2397 	if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2398 		return 0;
2399 	if (unlikely(!mm))
2400 		mm = &init_mm;
2401 	return mem_cgroup_charge_common(page, mm, gfp_mask,
2402 				MEM_CGROUP_CHARGE_TYPE_MAPPED);
2403 }
2404 
2405 static void
2406 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2407 					enum charge_type ctype);
2408 
2409 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2410 				gfp_t gfp_mask)
2411 {
2412 	int ret;
2413 
2414 	if (mem_cgroup_disabled())
2415 		return 0;
2416 	if (PageCompound(page))
2417 		return 0;
2418 	/*
2419 	 * Corner case handling. This is called from add_to_page_cache()
2420 	 * in usual. But some FS (shmem) precharges this page before calling it
2421 	 * and call add_to_page_cache() with GFP_NOWAIT.
2422 	 *
2423 	 * For GFP_NOWAIT case, the page may be pre-charged before calling
2424 	 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
2425 	 * charge twice. (It works but has to pay a bit larger cost.)
2426 	 * And when the page is SwapCache, it should take swap information
2427 	 * into account. This is under lock_page() now.
2428 	 */
2429 	if (!(gfp_mask & __GFP_WAIT)) {
2430 		struct page_cgroup *pc;
2431 
2432 		pc = lookup_page_cgroup(page);
2433 		if (!pc)
2434 			return 0;
2435 		lock_page_cgroup(pc);
2436 		if (PageCgroupUsed(pc)) {
2437 			unlock_page_cgroup(pc);
2438 			return 0;
2439 		}
2440 		unlock_page_cgroup(pc);
2441 	}
2442 
2443 	if (unlikely(!mm))
2444 		mm = &init_mm;
2445 
2446 	if (page_is_file_cache(page))
2447 		return mem_cgroup_charge_common(page, mm, gfp_mask,
2448 				MEM_CGROUP_CHARGE_TYPE_CACHE);
2449 
2450 	/* shmem */
2451 	if (PageSwapCache(page)) {
2452 		struct mem_cgroup *mem = NULL;
2453 
2454 		ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2455 		if (!ret)
2456 			__mem_cgroup_commit_charge_swapin(page, mem,
2457 					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2458 	} else
2459 		ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2460 					MEM_CGROUP_CHARGE_TYPE_SHMEM);
2461 
2462 	return ret;
2463 }
2464 
2465 /*
2466  * While swap-in, try_charge -> commit or cancel, the page is locked.
2467  * And when try_charge() successfully returns, one refcnt to memcg without
2468  * struct page_cgroup is acquired. This refcnt will be consumed by
2469  * "commit()" or removed by "cancel()"
2470  */
2471 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2472 				 struct page *page,
2473 				 gfp_t mask, struct mem_cgroup **ptr)
2474 {
2475 	struct mem_cgroup *mem;
2476 	int ret;
2477 
2478 	if (mem_cgroup_disabled())
2479 		return 0;
2480 
2481 	if (!do_swap_account)
2482 		goto charge_cur_mm;
2483 	/*
2484 	 * A racing thread's fault, or swapoff, may have already updated
2485 	 * the pte, and even removed page from swap cache: in those cases
2486 	 * do_swap_page()'s pte_same() test will fail; but there's also a
2487 	 * KSM case which does need to charge the page.
2488 	 */
2489 	if (!PageSwapCache(page))
2490 		goto charge_cur_mm;
2491 	mem = try_get_mem_cgroup_from_page(page);
2492 	if (!mem)
2493 		goto charge_cur_mm;
2494 	*ptr = mem;
2495 	ret = __mem_cgroup_try_charge(NULL, mask, ptr, true, PAGE_SIZE);
2496 	css_put(&mem->css);
2497 	return ret;
2498 charge_cur_mm:
2499 	if (unlikely(!mm))
2500 		mm = &init_mm;
2501 	return __mem_cgroup_try_charge(mm, mask, ptr, true, PAGE_SIZE);
2502 }
2503 
2504 static void
2505 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2506 					enum charge_type ctype)
2507 {
2508 	struct page_cgroup *pc;
2509 
2510 	if (mem_cgroup_disabled())
2511 		return;
2512 	if (!ptr)
2513 		return;
2514 	cgroup_exclude_rmdir(&ptr->css);
2515 	pc = lookup_page_cgroup(page);
2516 	mem_cgroup_lru_del_before_commit_swapcache(page);
2517 	__mem_cgroup_commit_charge(ptr, pc, ctype, PAGE_SIZE);
2518 	mem_cgroup_lru_add_after_commit_swapcache(page);
2519 	/*
2520 	 * Now swap is on-memory. This means this page may be
2521 	 * counted both as mem and swap....double count.
2522 	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2523 	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2524 	 * may call delete_from_swap_cache() before reach here.
2525 	 */
2526 	if (do_swap_account && PageSwapCache(page)) {
2527 		swp_entry_t ent = {.val = page_private(page)};
2528 		unsigned short id;
2529 		struct mem_cgroup *memcg;
2530 
2531 		id = swap_cgroup_record(ent, 0);
2532 		rcu_read_lock();
2533 		memcg = mem_cgroup_lookup(id);
2534 		if (memcg) {
2535 			/*
2536 			 * This recorded memcg can be obsolete one. So, avoid
2537 			 * calling css_tryget
2538 			 */
2539 			if (!mem_cgroup_is_root(memcg))
2540 				res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2541 			mem_cgroup_swap_statistics(memcg, false);
2542 			mem_cgroup_put(memcg);
2543 		}
2544 		rcu_read_unlock();
2545 	}
2546 	/*
2547 	 * At swapin, we may charge account against cgroup which has no tasks.
2548 	 * So, rmdir()->pre_destroy() can be called while we do this charge.
2549 	 * In that case, we need to call pre_destroy() again. check it here.
2550 	 */
2551 	cgroup_release_and_wakeup_rmdir(&ptr->css);
2552 }
2553 
2554 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2555 {
2556 	__mem_cgroup_commit_charge_swapin(page, ptr,
2557 					MEM_CGROUP_CHARGE_TYPE_MAPPED);
2558 }
2559 
2560 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
2561 {
2562 	if (mem_cgroup_disabled())
2563 		return;
2564 	if (!mem)
2565 		return;
2566 	mem_cgroup_cancel_charge(mem, PAGE_SIZE);
2567 }
2568 
2569 static void
2570 __do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype,
2571 	      int page_size)
2572 {
2573 	struct memcg_batch_info *batch = NULL;
2574 	bool uncharge_memsw = true;
2575 	/* If swapout, usage of swap doesn't decrease */
2576 	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2577 		uncharge_memsw = false;
2578 
2579 	batch = &current->memcg_batch;
2580 	/*
2581 	 * In usual, we do css_get() when we remember memcg pointer.
2582 	 * But in this case, we keep res->usage until end of a series of
2583 	 * uncharges. Then, it's ok to ignore memcg's refcnt.
2584 	 */
2585 	if (!batch->memcg)
2586 		batch->memcg = mem;
2587 	/*
2588 	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2589 	 * In those cases, all pages freed continously can be expected to be in
2590 	 * the same cgroup and we have chance to coalesce uncharges.
2591 	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2592 	 * because we want to do uncharge as soon as possible.
2593 	 */
2594 
2595 	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2596 		goto direct_uncharge;
2597 
2598 	if (page_size != PAGE_SIZE)
2599 		goto direct_uncharge;
2600 
2601 	/*
2602 	 * In typical case, batch->memcg == mem. This means we can
2603 	 * merge a series of uncharges to an uncharge of res_counter.
2604 	 * If not, we uncharge res_counter ony by one.
2605 	 */
2606 	if (batch->memcg != mem)
2607 		goto direct_uncharge;
2608 	/* remember freed charge and uncharge it later */
2609 	batch->bytes += PAGE_SIZE;
2610 	if (uncharge_memsw)
2611 		batch->memsw_bytes += PAGE_SIZE;
2612 	return;
2613 direct_uncharge:
2614 	res_counter_uncharge(&mem->res, page_size);
2615 	if (uncharge_memsw)
2616 		res_counter_uncharge(&mem->memsw, page_size);
2617 	if (unlikely(batch->memcg != mem))
2618 		memcg_oom_recover(mem);
2619 	return;
2620 }
2621 
2622 /*
2623  * uncharge if !page_mapped(page)
2624  */
2625 static struct mem_cgroup *
2626 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2627 {
2628 	int count;
2629 	struct page_cgroup *pc;
2630 	struct mem_cgroup *mem = NULL;
2631 	int page_size = PAGE_SIZE;
2632 
2633 	if (mem_cgroup_disabled())
2634 		return NULL;
2635 
2636 	if (PageSwapCache(page))
2637 		return NULL;
2638 
2639 	if (PageTransHuge(page)) {
2640 		page_size <<= compound_order(page);
2641 		VM_BUG_ON(!PageTransHuge(page));
2642 	}
2643 
2644 	count = page_size >> PAGE_SHIFT;
2645 	/*
2646 	 * Check if our page_cgroup is valid
2647 	 */
2648 	pc = lookup_page_cgroup(page);
2649 	if (unlikely(!pc || !PageCgroupUsed(pc)))
2650 		return NULL;
2651 
2652 	lock_page_cgroup(pc);
2653 
2654 	mem = pc->mem_cgroup;
2655 
2656 	if (!PageCgroupUsed(pc))
2657 		goto unlock_out;
2658 
2659 	switch (ctype) {
2660 	case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2661 	case MEM_CGROUP_CHARGE_TYPE_DROP:
2662 		/* See mem_cgroup_prepare_migration() */
2663 		if (page_mapped(page) || PageCgroupMigration(pc))
2664 			goto unlock_out;
2665 		break;
2666 	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2667 		if (!PageAnon(page)) {	/* Shared memory */
2668 			if (page->mapping && !page_is_file_cache(page))
2669 				goto unlock_out;
2670 		} else if (page_mapped(page)) /* Anon */
2671 				goto unlock_out;
2672 		break;
2673 	default:
2674 		break;
2675 	}
2676 
2677 	mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -count);
2678 
2679 	ClearPageCgroupUsed(pc);
2680 	/*
2681 	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2682 	 * freed from LRU. This is safe because uncharged page is expected not
2683 	 * to be reused (freed soon). Exception is SwapCache, it's handled by
2684 	 * special functions.
2685 	 */
2686 
2687 	unlock_page_cgroup(pc);
2688 	/*
2689 	 * even after unlock, we have mem->res.usage here and this memcg
2690 	 * will never be freed.
2691 	 */
2692 	memcg_check_events(mem, page);
2693 	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
2694 		mem_cgroup_swap_statistics(mem, true);
2695 		mem_cgroup_get(mem);
2696 	}
2697 	if (!mem_cgroup_is_root(mem))
2698 		__do_uncharge(mem, ctype, page_size);
2699 
2700 	return mem;
2701 
2702 unlock_out:
2703 	unlock_page_cgroup(pc);
2704 	return NULL;
2705 }
2706 
2707 void mem_cgroup_uncharge_page(struct page *page)
2708 {
2709 	/* early check. */
2710 	if (page_mapped(page))
2711 		return;
2712 	if (page->mapping && !PageAnon(page))
2713 		return;
2714 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
2715 }
2716 
2717 void mem_cgroup_uncharge_cache_page(struct page *page)
2718 {
2719 	VM_BUG_ON(page_mapped(page));
2720 	VM_BUG_ON(page->mapping);
2721 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
2722 }
2723 
2724 /*
2725  * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2726  * In that cases, pages are freed continuously and we can expect pages
2727  * are in the same memcg. All these calls itself limits the number of
2728  * pages freed at once, then uncharge_start/end() is called properly.
2729  * This may be called prural(2) times in a context,
2730  */
2731 
2732 void mem_cgroup_uncharge_start(void)
2733 {
2734 	current->memcg_batch.do_batch++;
2735 	/* We can do nest. */
2736 	if (current->memcg_batch.do_batch == 1) {
2737 		current->memcg_batch.memcg = NULL;
2738 		current->memcg_batch.bytes = 0;
2739 		current->memcg_batch.memsw_bytes = 0;
2740 	}
2741 }
2742 
2743 void mem_cgroup_uncharge_end(void)
2744 {
2745 	struct memcg_batch_info *batch = &current->memcg_batch;
2746 
2747 	if (!batch->do_batch)
2748 		return;
2749 
2750 	batch->do_batch--;
2751 	if (batch->do_batch) /* If stacked, do nothing. */
2752 		return;
2753 
2754 	if (!batch->memcg)
2755 		return;
2756 	/*
2757 	 * This "batch->memcg" is valid without any css_get/put etc...
2758 	 * bacause we hide charges behind us.
2759 	 */
2760 	if (batch->bytes)
2761 		res_counter_uncharge(&batch->memcg->res, batch->bytes);
2762 	if (batch->memsw_bytes)
2763 		res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
2764 	memcg_oom_recover(batch->memcg);
2765 	/* forget this pointer (for sanity check) */
2766 	batch->memcg = NULL;
2767 }
2768 
2769 #ifdef CONFIG_SWAP
2770 /*
2771  * called after __delete_from_swap_cache() and drop "page" account.
2772  * memcg information is recorded to swap_cgroup of "ent"
2773  */
2774 void
2775 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
2776 {
2777 	struct mem_cgroup *memcg;
2778 	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
2779 
2780 	if (!swapout) /* this was a swap cache but the swap is unused ! */
2781 		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
2782 
2783 	memcg = __mem_cgroup_uncharge_common(page, ctype);
2784 
2785 	/*
2786 	 * record memcg information,  if swapout && memcg != NULL,
2787 	 * mem_cgroup_get() was called in uncharge().
2788 	 */
2789 	if (do_swap_account && swapout && memcg)
2790 		swap_cgroup_record(ent, css_id(&memcg->css));
2791 }
2792 #endif
2793 
2794 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2795 /*
2796  * called from swap_entry_free(). remove record in swap_cgroup and
2797  * uncharge "memsw" account.
2798  */
2799 void mem_cgroup_uncharge_swap(swp_entry_t ent)
2800 {
2801 	struct mem_cgroup *memcg;
2802 	unsigned short id;
2803 
2804 	if (!do_swap_account)
2805 		return;
2806 
2807 	id = swap_cgroup_record(ent, 0);
2808 	rcu_read_lock();
2809 	memcg = mem_cgroup_lookup(id);
2810 	if (memcg) {
2811 		/*
2812 		 * We uncharge this because swap is freed.
2813 		 * This memcg can be obsolete one. We avoid calling css_tryget
2814 		 */
2815 		if (!mem_cgroup_is_root(memcg))
2816 			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2817 		mem_cgroup_swap_statistics(memcg, false);
2818 		mem_cgroup_put(memcg);
2819 	}
2820 	rcu_read_unlock();
2821 }
2822 
2823 /**
2824  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2825  * @entry: swap entry to be moved
2826  * @from:  mem_cgroup which the entry is moved from
2827  * @to:  mem_cgroup which the entry is moved to
2828  * @need_fixup: whether we should fixup res_counters and refcounts.
2829  *
2830  * It succeeds only when the swap_cgroup's record for this entry is the same
2831  * as the mem_cgroup's id of @from.
2832  *
2833  * Returns 0 on success, -EINVAL on failure.
2834  *
2835  * The caller must have charged to @to, IOW, called res_counter_charge() about
2836  * both res and memsw, and called css_get().
2837  */
2838 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2839 		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2840 {
2841 	unsigned short old_id, new_id;
2842 
2843 	old_id = css_id(&from->css);
2844 	new_id = css_id(&to->css);
2845 
2846 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2847 		mem_cgroup_swap_statistics(from, false);
2848 		mem_cgroup_swap_statistics(to, true);
2849 		/*
2850 		 * This function is only called from task migration context now.
2851 		 * It postpones res_counter and refcount handling till the end
2852 		 * of task migration(mem_cgroup_clear_mc()) for performance
2853 		 * improvement. But we cannot postpone mem_cgroup_get(to)
2854 		 * because if the process that has been moved to @to does
2855 		 * swap-in, the refcount of @to might be decreased to 0.
2856 		 */
2857 		mem_cgroup_get(to);
2858 		if (need_fixup) {
2859 			if (!mem_cgroup_is_root(from))
2860 				res_counter_uncharge(&from->memsw, PAGE_SIZE);
2861 			mem_cgroup_put(from);
2862 			/*
2863 			 * we charged both to->res and to->memsw, so we should
2864 			 * uncharge to->res.
2865 			 */
2866 			if (!mem_cgroup_is_root(to))
2867 				res_counter_uncharge(&to->res, PAGE_SIZE);
2868 		}
2869 		return 0;
2870 	}
2871 	return -EINVAL;
2872 }
2873 #else
2874 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2875 		struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2876 {
2877 	return -EINVAL;
2878 }
2879 #endif
2880 
2881 /*
2882  * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
2883  * page belongs to.
2884  */
2885 int mem_cgroup_prepare_migration(struct page *page,
2886 	struct page *newpage, struct mem_cgroup **ptr)
2887 {
2888 	struct page_cgroup *pc;
2889 	struct mem_cgroup *mem = NULL;
2890 	enum charge_type ctype;
2891 	int ret = 0;
2892 
2893 	VM_BUG_ON(PageTransHuge(page));
2894 	if (mem_cgroup_disabled())
2895 		return 0;
2896 
2897 	pc = lookup_page_cgroup(page);
2898 	lock_page_cgroup(pc);
2899 	if (PageCgroupUsed(pc)) {
2900 		mem = pc->mem_cgroup;
2901 		css_get(&mem->css);
2902 		/*
2903 		 * At migrating an anonymous page, its mapcount goes down
2904 		 * to 0 and uncharge() will be called. But, even if it's fully
2905 		 * unmapped, migration may fail and this page has to be
2906 		 * charged again. We set MIGRATION flag here and delay uncharge
2907 		 * until end_migration() is called
2908 		 *
2909 		 * Corner Case Thinking
2910 		 * A)
2911 		 * When the old page was mapped as Anon and it's unmap-and-freed
2912 		 * while migration was ongoing.
2913 		 * If unmap finds the old page, uncharge() of it will be delayed
2914 		 * until end_migration(). If unmap finds a new page, it's
2915 		 * uncharged when it make mapcount to be 1->0. If unmap code
2916 		 * finds swap_migration_entry, the new page will not be mapped
2917 		 * and end_migration() will find it(mapcount==0).
2918 		 *
2919 		 * B)
2920 		 * When the old page was mapped but migraion fails, the kernel
2921 		 * remaps it. A charge for it is kept by MIGRATION flag even
2922 		 * if mapcount goes down to 0. We can do remap successfully
2923 		 * without charging it again.
2924 		 *
2925 		 * C)
2926 		 * The "old" page is under lock_page() until the end of
2927 		 * migration, so, the old page itself will not be swapped-out.
2928 		 * If the new page is swapped out before end_migraton, our
2929 		 * hook to usual swap-out path will catch the event.
2930 		 */
2931 		if (PageAnon(page))
2932 			SetPageCgroupMigration(pc);
2933 	}
2934 	unlock_page_cgroup(pc);
2935 	/*
2936 	 * If the page is not charged at this point,
2937 	 * we return here.
2938 	 */
2939 	if (!mem)
2940 		return 0;
2941 
2942 	*ptr = mem;
2943 	ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, ptr, false, PAGE_SIZE);
2944 	css_put(&mem->css);/* drop extra refcnt */
2945 	if (ret || *ptr == NULL) {
2946 		if (PageAnon(page)) {
2947 			lock_page_cgroup(pc);
2948 			ClearPageCgroupMigration(pc);
2949 			unlock_page_cgroup(pc);
2950 			/*
2951 			 * The old page may be fully unmapped while we kept it.
2952 			 */
2953 			mem_cgroup_uncharge_page(page);
2954 		}
2955 		return -ENOMEM;
2956 	}
2957 	/*
2958 	 * We charge new page before it's used/mapped. So, even if unlock_page()
2959 	 * is called before end_migration, we can catch all events on this new
2960 	 * page. In the case new page is migrated but not remapped, new page's
2961 	 * mapcount will be finally 0 and we call uncharge in end_migration().
2962 	 */
2963 	pc = lookup_page_cgroup(newpage);
2964 	if (PageAnon(page))
2965 		ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
2966 	else if (page_is_file_cache(page))
2967 		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
2968 	else
2969 		ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2970 	__mem_cgroup_commit_charge(mem, pc, ctype, PAGE_SIZE);
2971 	return ret;
2972 }
2973 
2974 /* remove redundant charge if migration failed*/
2975 void mem_cgroup_end_migration(struct mem_cgroup *mem,
2976 	struct page *oldpage, struct page *newpage, bool migration_ok)
2977 {
2978 	struct page *used, *unused;
2979 	struct page_cgroup *pc;
2980 
2981 	if (!mem)
2982 		return;
2983 	/* blocks rmdir() */
2984 	cgroup_exclude_rmdir(&mem->css);
2985 	if (!migration_ok) {
2986 		used = oldpage;
2987 		unused = newpage;
2988 	} else {
2989 		used = newpage;
2990 		unused = oldpage;
2991 	}
2992 	/*
2993 	 * We disallowed uncharge of pages under migration because mapcount
2994 	 * of the page goes down to zero, temporarly.
2995 	 * Clear the flag and check the page should be charged.
2996 	 */
2997 	pc = lookup_page_cgroup(oldpage);
2998 	lock_page_cgroup(pc);
2999 	ClearPageCgroupMigration(pc);
3000 	unlock_page_cgroup(pc);
3001 
3002 	__mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
3003 
3004 	/*
3005 	 * If a page is a file cache, radix-tree replacement is very atomic
3006 	 * and we can skip this check. When it was an Anon page, its mapcount
3007 	 * goes down to 0. But because we added MIGRATION flage, it's not
3008 	 * uncharged yet. There are several case but page->mapcount check
3009 	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3010 	 * check. (see prepare_charge() also)
3011 	 */
3012 	if (PageAnon(used))
3013 		mem_cgroup_uncharge_page(used);
3014 	/*
3015 	 * At migration, we may charge account against cgroup which has no
3016 	 * tasks.
3017 	 * So, rmdir()->pre_destroy() can be called while we do this charge.
3018 	 * In that case, we need to call pre_destroy() again. check it here.
3019 	 */
3020 	cgroup_release_and_wakeup_rmdir(&mem->css);
3021 }
3022 
3023 /*
3024  * A call to try to shrink memory usage on charge failure at shmem's swapin.
3025  * Calling hierarchical_reclaim is not enough because we should update
3026  * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
3027  * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
3028  * not from the memcg which this page would be charged to.
3029  * try_charge_swapin does all of these works properly.
3030  */
3031 int mem_cgroup_shmem_charge_fallback(struct page *page,
3032 			    struct mm_struct *mm,
3033 			    gfp_t gfp_mask)
3034 {
3035 	struct mem_cgroup *mem = NULL;
3036 	int ret;
3037 
3038 	if (mem_cgroup_disabled())
3039 		return 0;
3040 
3041 	ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
3042 	if (!ret)
3043 		mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
3044 
3045 	return ret;
3046 }
3047 
3048 static DEFINE_MUTEX(set_limit_mutex);
3049 
3050 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3051 				unsigned long long val)
3052 {
3053 	int retry_count;
3054 	u64 memswlimit, memlimit;
3055 	int ret = 0;
3056 	int children = mem_cgroup_count_children(memcg);
3057 	u64 curusage, oldusage;
3058 	int enlarge;
3059 
3060 	/*
3061 	 * For keeping hierarchical_reclaim simple, how long we should retry
3062 	 * is depends on callers. We set our retry-count to be function
3063 	 * of # of children which we should visit in this loop.
3064 	 */
3065 	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3066 
3067 	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3068 
3069 	enlarge = 0;
3070 	while (retry_count) {
3071 		if (signal_pending(current)) {
3072 			ret = -EINTR;
3073 			break;
3074 		}
3075 		/*
3076 		 * Rather than hide all in some function, I do this in
3077 		 * open coded manner. You see what this really does.
3078 		 * We have to guarantee mem->res.limit < mem->memsw.limit.
3079 		 */
3080 		mutex_lock(&set_limit_mutex);
3081 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3082 		if (memswlimit < val) {
3083 			ret = -EINVAL;
3084 			mutex_unlock(&set_limit_mutex);
3085 			break;
3086 		}
3087 
3088 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3089 		if (memlimit < val)
3090 			enlarge = 1;
3091 
3092 		ret = res_counter_set_limit(&memcg->res, val);
3093 		if (!ret) {
3094 			if (memswlimit == val)
3095 				memcg->memsw_is_minimum = true;
3096 			else
3097 				memcg->memsw_is_minimum = false;
3098 		}
3099 		mutex_unlock(&set_limit_mutex);
3100 
3101 		if (!ret)
3102 			break;
3103 
3104 		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3105 						MEM_CGROUP_RECLAIM_SHRINK);
3106 		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3107 		/* Usage is reduced ? */
3108   		if (curusage >= oldusage)
3109 			retry_count--;
3110 		else
3111 			oldusage = curusage;
3112 	}
3113 	if (!ret && enlarge)
3114 		memcg_oom_recover(memcg);
3115 
3116 	return ret;
3117 }
3118 
3119 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3120 					unsigned long long val)
3121 {
3122 	int retry_count;
3123 	u64 memlimit, memswlimit, oldusage, curusage;
3124 	int children = mem_cgroup_count_children(memcg);
3125 	int ret = -EBUSY;
3126 	int enlarge = 0;
3127 
3128 	/* see mem_cgroup_resize_res_limit */
3129  	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3130 	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3131 	while (retry_count) {
3132 		if (signal_pending(current)) {
3133 			ret = -EINTR;
3134 			break;
3135 		}
3136 		/*
3137 		 * Rather than hide all in some function, I do this in
3138 		 * open coded manner. You see what this really does.
3139 		 * We have to guarantee mem->res.limit < mem->memsw.limit.
3140 		 */
3141 		mutex_lock(&set_limit_mutex);
3142 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3143 		if (memlimit > val) {
3144 			ret = -EINVAL;
3145 			mutex_unlock(&set_limit_mutex);
3146 			break;
3147 		}
3148 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3149 		if (memswlimit < val)
3150 			enlarge = 1;
3151 		ret = res_counter_set_limit(&memcg->memsw, val);
3152 		if (!ret) {
3153 			if (memlimit == val)
3154 				memcg->memsw_is_minimum = true;
3155 			else
3156 				memcg->memsw_is_minimum = false;
3157 		}
3158 		mutex_unlock(&set_limit_mutex);
3159 
3160 		if (!ret)
3161 			break;
3162 
3163 		mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3164 						MEM_CGROUP_RECLAIM_NOSWAP |
3165 						MEM_CGROUP_RECLAIM_SHRINK);
3166 		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3167 		/* Usage is reduced ? */
3168 		if (curusage >= oldusage)
3169 			retry_count--;
3170 		else
3171 			oldusage = curusage;
3172 	}
3173 	if (!ret && enlarge)
3174 		memcg_oom_recover(memcg);
3175 	return ret;
3176 }
3177 
3178 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3179 					    gfp_t gfp_mask)
3180 {
3181 	unsigned long nr_reclaimed = 0;
3182 	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3183 	unsigned long reclaimed;
3184 	int loop = 0;
3185 	struct mem_cgroup_tree_per_zone *mctz;
3186 	unsigned long long excess;
3187 
3188 	if (order > 0)
3189 		return 0;
3190 
3191 	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3192 	/*
3193 	 * This loop can run a while, specially if mem_cgroup's continuously
3194 	 * keep exceeding their soft limit and putting the system under
3195 	 * pressure
3196 	 */
3197 	do {
3198 		if (next_mz)
3199 			mz = next_mz;
3200 		else
3201 			mz = mem_cgroup_largest_soft_limit_node(mctz);
3202 		if (!mz)
3203 			break;
3204 
3205 		reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
3206 						gfp_mask,
3207 						MEM_CGROUP_RECLAIM_SOFT);
3208 		nr_reclaimed += reclaimed;
3209 		spin_lock(&mctz->lock);
3210 
3211 		/*
3212 		 * If we failed to reclaim anything from this memory cgroup
3213 		 * it is time to move on to the next cgroup
3214 		 */
3215 		next_mz = NULL;
3216 		if (!reclaimed) {
3217 			do {
3218 				/*
3219 				 * Loop until we find yet another one.
3220 				 *
3221 				 * By the time we get the soft_limit lock
3222 				 * again, someone might have aded the
3223 				 * group back on the RB tree. Iterate to
3224 				 * make sure we get a different mem.
3225 				 * mem_cgroup_largest_soft_limit_node returns
3226 				 * NULL if no other cgroup is present on
3227 				 * the tree
3228 				 */
3229 				next_mz =
3230 				__mem_cgroup_largest_soft_limit_node(mctz);
3231 				if (next_mz == mz) {
3232 					css_put(&next_mz->mem->css);
3233 					next_mz = NULL;
3234 				} else /* next_mz == NULL or other memcg */
3235 					break;
3236 			} while (1);
3237 		}
3238 		__mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3239 		excess = res_counter_soft_limit_excess(&mz->mem->res);
3240 		/*
3241 		 * One school of thought says that we should not add
3242 		 * back the node to the tree if reclaim returns 0.
3243 		 * But our reclaim could return 0, simply because due
3244 		 * to priority we are exposing a smaller subset of
3245 		 * memory to reclaim from. Consider this as a longer
3246 		 * term TODO.
3247 		 */
3248 		/* If excess == 0, no tree ops */
3249 		__mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3250 		spin_unlock(&mctz->lock);
3251 		css_put(&mz->mem->css);
3252 		loop++;
3253 		/*
3254 		 * Could not reclaim anything and there are no more
3255 		 * mem cgroups to try or we seem to be looping without
3256 		 * reclaiming anything.
3257 		 */
3258 		if (!nr_reclaimed &&
3259 			(next_mz == NULL ||
3260 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3261 			break;
3262 	} while (!nr_reclaimed);
3263 	if (next_mz)
3264 		css_put(&next_mz->mem->css);
3265 	return nr_reclaimed;
3266 }
3267 
3268 /*
3269  * This routine traverse page_cgroup in given list and drop them all.
3270  * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3271  */
3272 static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
3273 				int node, int zid, enum lru_list lru)
3274 {
3275 	struct zone *zone;
3276 	struct mem_cgroup_per_zone *mz;
3277 	struct page_cgroup *pc, *busy;
3278 	unsigned long flags, loop;
3279 	struct list_head *list;
3280 	int ret = 0;
3281 
3282 	zone = &NODE_DATA(node)->node_zones[zid];
3283 	mz = mem_cgroup_zoneinfo(mem, node, zid);
3284 	list = &mz->lists[lru];
3285 
3286 	loop = MEM_CGROUP_ZSTAT(mz, lru);
3287 	/* give some margin against EBUSY etc...*/
3288 	loop += 256;
3289 	busy = NULL;
3290 	while (loop--) {
3291 		ret = 0;
3292 		spin_lock_irqsave(&zone->lru_lock, flags);
3293 		if (list_empty(list)) {
3294 			spin_unlock_irqrestore(&zone->lru_lock, flags);
3295 			break;
3296 		}
3297 		pc = list_entry(list->prev, struct page_cgroup, lru);
3298 		if (busy == pc) {
3299 			list_move(&pc->lru, list);
3300 			busy = NULL;
3301 			spin_unlock_irqrestore(&zone->lru_lock, flags);
3302 			continue;
3303 		}
3304 		spin_unlock_irqrestore(&zone->lru_lock, flags);
3305 
3306 		ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
3307 		if (ret == -ENOMEM)
3308 			break;
3309 
3310 		if (ret == -EBUSY || ret == -EINVAL) {
3311 			/* found lock contention or "pc" is obsolete. */
3312 			busy = pc;
3313 			cond_resched();
3314 		} else
3315 			busy = NULL;
3316 	}
3317 
3318 	if (!ret && !list_empty(list))
3319 		return -EBUSY;
3320 	return ret;
3321 }
3322 
3323 /*
3324  * make mem_cgroup's charge to be 0 if there is no task.
3325  * This enables deleting this mem_cgroup.
3326  */
3327 static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3328 {
3329 	int ret;
3330 	int node, zid, shrink;
3331 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3332 	struct cgroup *cgrp = mem->css.cgroup;
3333 
3334 	css_get(&mem->css);
3335 
3336 	shrink = 0;
3337 	/* should free all ? */
3338 	if (free_all)
3339 		goto try_to_free;
3340 move_account:
3341 	do {
3342 		ret = -EBUSY;
3343 		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3344 			goto out;
3345 		ret = -EINTR;
3346 		if (signal_pending(current))
3347 			goto out;
3348 		/* This is for making all *used* pages to be on LRU. */
3349 		lru_add_drain_all();
3350 		drain_all_stock_sync();
3351 		ret = 0;
3352 		mem_cgroup_start_move(mem);
3353 		for_each_node_state(node, N_HIGH_MEMORY) {
3354 			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3355 				enum lru_list l;
3356 				for_each_lru(l) {
3357 					ret = mem_cgroup_force_empty_list(mem,
3358 							node, zid, l);
3359 					if (ret)
3360 						break;
3361 				}
3362 			}
3363 			if (ret)
3364 				break;
3365 		}
3366 		mem_cgroup_end_move(mem);
3367 		memcg_oom_recover(mem);
3368 		/* it seems parent cgroup doesn't have enough mem */
3369 		if (ret == -ENOMEM)
3370 			goto try_to_free;
3371 		cond_resched();
3372 	/* "ret" should also be checked to ensure all lists are empty. */
3373 	} while (mem->res.usage > 0 || ret);
3374 out:
3375 	css_put(&mem->css);
3376 	return ret;
3377 
3378 try_to_free:
3379 	/* returns EBUSY if there is a task or if we come here twice. */
3380 	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3381 		ret = -EBUSY;
3382 		goto out;
3383 	}
3384 	/* we call try-to-free pages for make this cgroup empty */
3385 	lru_add_drain_all();
3386 	/* try to free all pages in this cgroup */
3387 	shrink = 1;
3388 	while (nr_retries && mem->res.usage > 0) {
3389 		int progress;
3390 
3391 		if (signal_pending(current)) {
3392 			ret = -EINTR;
3393 			goto out;
3394 		}
3395 		progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
3396 						false, get_swappiness(mem));
3397 		if (!progress) {
3398 			nr_retries--;
3399 			/* maybe some writeback is necessary */
3400 			congestion_wait(BLK_RW_ASYNC, HZ/10);
3401 		}
3402 
3403 	}
3404 	lru_add_drain();
3405 	/* try move_account...there may be some *locked* pages. */
3406 	goto move_account;
3407 }
3408 
3409 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3410 {
3411 	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3412 }
3413 
3414 
3415 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3416 {
3417 	return mem_cgroup_from_cont(cont)->use_hierarchy;
3418 }
3419 
3420 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3421 					u64 val)
3422 {
3423 	int retval = 0;
3424 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3425 	struct cgroup *parent = cont->parent;
3426 	struct mem_cgroup *parent_mem = NULL;
3427 
3428 	if (parent)
3429 		parent_mem = mem_cgroup_from_cont(parent);
3430 
3431 	cgroup_lock();
3432 	/*
3433 	 * If parent's use_hierarchy is set, we can't make any modifications
3434 	 * in the child subtrees. If it is unset, then the change can
3435 	 * occur, provided the current cgroup has no children.
3436 	 *
3437 	 * For the root cgroup, parent_mem is NULL, we allow value to be
3438 	 * set if there are no children.
3439 	 */
3440 	if ((!parent_mem || !parent_mem->use_hierarchy) &&
3441 				(val == 1 || val == 0)) {
3442 		if (list_empty(&cont->children))
3443 			mem->use_hierarchy = val;
3444 		else
3445 			retval = -EBUSY;
3446 	} else
3447 		retval = -EINVAL;
3448 	cgroup_unlock();
3449 
3450 	return retval;
3451 }
3452 
3453 
3454 static u64 mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
3455 				enum mem_cgroup_stat_index idx)
3456 {
3457 	struct mem_cgroup *iter;
3458 	s64 val = 0;
3459 
3460 	/* each per cpu's value can be minus.Then, use s64 */
3461 	for_each_mem_cgroup_tree(iter, mem)
3462 		val += mem_cgroup_read_stat(iter, idx);
3463 
3464 	if (val < 0) /* race ? */
3465 		val = 0;
3466 	return val;
3467 }
3468 
3469 static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
3470 {
3471 	u64 val;
3472 
3473 	if (!mem_cgroup_is_root(mem)) {
3474 		if (!swap)
3475 			return res_counter_read_u64(&mem->res, RES_USAGE);
3476 		else
3477 			return res_counter_read_u64(&mem->memsw, RES_USAGE);
3478 	}
3479 
3480 	val = mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE);
3481 	val += mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS);
3482 
3483 	if (swap)
3484 		val += mem_cgroup_get_recursive_idx_stat(mem,
3485 				MEM_CGROUP_STAT_SWAPOUT);
3486 
3487 	return val << PAGE_SHIFT;
3488 }
3489 
3490 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3491 {
3492 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3493 	u64 val;
3494 	int type, name;
3495 
3496 	type = MEMFILE_TYPE(cft->private);
3497 	name = MEMFILE_ATTR(cft->private);
3498 	switch (type) {
3499 	case _MEM:
3500 		if (name == RES_USAGE)
3501 			val = mem_cgroup_usage(mem, false);
3502 		else
3503 			val = res_counter_read_u64(&mem->res, name);
3504 		break;
3505 	case _MEMSWAP:
3506 		if (name == RES_USAGE)
3507 			val = mem_cgroup_usage(mem, true);
3508 		else
3509 			val = res_counter_read_u64(&mem->memsw, name);
3510 		break;
3511 	default:
3512 		BUG();
3513 		break;
3514 	}
3515 	return val;
3516 }
3517 /*
3518  * The user of this function is...
3519  * RES_LIMIT.
3520  */
3521 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3522 			    const char *buffer)
3523 {
3524 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3525 	int type, name;
3526 	unsigned long long val;
3527 	int ret;
3528 
3529 	type = MEMFILE_TYPE(cft->private);
3530 	name = MEMFILE_ATTR(cft->private);
3531 	switch (name) {
3532 	case RES_LIMIT:
3533 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3534 			ret = -EINVAL;
3535 			break;
3536 		}
3537 		/* This function does all necessary parse...reuse it */
3538 		ret = res_counter_memparse_write_strategy(buffer, &val);
3539 		if (ret)
3540 			break;
3541 		if (type == _MEM)
3542 			ret = mem_cgroup_resize_limit(memcg, val);
3543 		else
3544 			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3545 		break;
3546 	case RES_SOFT_LIMIT:
3547 		ret = res_counter_memparse_write_strategy(buffer, &val);
3548 		if (ret)
3549 			break;
3550 		/*
3551 		 * For memsw, soft limits are hard to implement in terms
3552 		 * of semantics, for now, we support soft limits for
3553 		 * control without swap
3554 		 */
3555 		if (type == _MEM)
3556 			ret = res_counter_set_soft_limit(&memcg->res, val);
3557 		else
3558 			ret = -EINVAL;
3559 		break;
3560 	default:
3561 		ret = -EINVAL; /* should be BUG() ? */
3562 		break;
3563 	}
3564 	return ret;
3565 }
3566 
3567 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3568 		unsigned long long *mem_limit, unsigned long long *memsw_limit)
3569 {
3570 	struct cgroup *cgroup;
3571 	unsigned long long min_limit, min_memsw_limit, tmp;
3572 
3573 	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3574 	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3575 	cgroup = memcg->css.cgroup;
3576 	if (!memcg->use_hierarchy)
3577 		goto out;
3578 
3579 	while (cgroup->parent) {
3580 		cgroup = cgroup->parent;
3581 		memcg = mem_cgroup_from_cont(cgroup);
3582 		if (!memcg->use_hierarchy)
3583 			break;
3584 		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3585 		min_limit = min(min_limit, tmp);
3586 		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3587 		min_memsw_limit = min(min_memsw_limit, tmp);
3588 	}
3589 out:
3590 	*mem_limit = min_limit;
3591 	*memsw_limit = min_memsw_limit;
3592 	return;
3593 }
3594 
3595 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3596 {
3597 	struct mem_cgroup *mem;
3598 	int type, name;
3599 
3600 	mem = mem_cgroup_from_cont(cont);
3601 	type = MEMFILE_TYPE(event);
3602 	name = MEMFILE_ATTR(event);
3603 	switch (name) {
3604 	case RES_MAX_USAGE:
3605 		if (type == _MEM)
3606 			res_counter_reset_max(&mem->res);
3607 		else
3608 			res_counter_reset_max(&mem->memsw);
3609 		break;
3610 	case RES_FAILCNT:
3611 		if (type == _MEM)
3612 			res_counter_reset_failcnt(&mem->res);
3613 		else
3614 			res_counter_reset_failcnt(&mem->memsw);
3615 		break;
3616 	}
3617 
3618 	return 0;
3619 }
3620 
3621 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3622 					struct cftype *cft)
3623 {
3624 	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3625 }
3626 
3627 #ifdef CONFIG_MMU
3628 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3629 					struct cftype *cft, u64 val)
3630 {
3631 	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3632 
3633 	if (val >= (1 << NR_MOVE_TYPE))
3634 		return -EINVAL;
3635 	/*
3636 	 * We check this value several times in both in can_attach() and
3637 	 * attach(), so we need cgroup lock to prevent this value from being
3638 	 * inconsistent.
3639 	 */
3640 	cgroup_lock();
3641 	mem->move_charge_at_immigrate = val;
3642 	cgroup_unlock();
3643 
3644 	return 0;
3645 }
3646 #else
3647 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3648 					struct cftype *cft, u64 val)
3649 {
3650 	return -ENOSYS;
3651 }
3652 #endif
3653 
3654 
3655 /* For read statistics */
3656 enum {
3657 	MCS_CACHE,
3658 	MCS_RSS,
3659 	MCS_FILE_MAPPED,
3660 	MCS_PGPGIN,
3661 	MCS_PGPGOUT,
3662 	MCS_SWAP,
3663 	MCS_INACTIVE_ANON,
3664 	MCS_ACTIVE_ANON,
3665 	MCS_INACTIVE_FILE,
3666 	MCS_ACTIVE_FILE,
3667 	MCS_UNEVICTABLE,
3668 	NR_MCS_STAT,
3669 };
3670 
3671 struct mcs_total_stat {
3672 	s64 stat[NR_MCS_STAT];
3673 };
3674 
3675 struct {
3676 	char *local_name;
3677 	char *total_name;
3678 } memcg_stat_strings[NR_MCS_STAT] = {
3679 	{"cache", "total_cache"},
3680 	{"rss", "total_rss"},
3681 	{"mapped_file", "total_mapped_file"},
3682 	{"pgpgin", "total_pgpgin"},
3683 	{"pgpgout", "total_pgpgout"},
3684 	{"swap", "total_swap"},
3685 	{"inactive_anon", "total_inactive_anon"},
3686 	{"active_anon", "total_active_anon"},
3687 	{"inactive_file", "total_inactive_file"},
3688 	{"active_file", "total_active_file"},
3689 	{"unevictable", "total_unevictable"}
3690 };
3691 
3692 
3693 static void
3694 mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3695 {
3696 	s64 val;
3697 
3698 	/* per cpu stat */
3699 	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
3700 	s->stat[MCS_CACHE] += val * PAGE_SIZE;
3701 	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
3702 	s->stat[MCS_RSS] += val * PAGE_SIZE;
3703 	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
3704 	s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
3705 	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT);
3706 	s->stat[MCS_PGPGIN] += val;
3707 	val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT);
3708 	s->stat[MCS_PGPGOUT] += val;
3709 	if (do_swap_account) {
3710 		val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3711 		s->stat[MCS_SWAP] += val * PAGE_SIZE;
3712 	}
3713 
3714 	/* per zone stat */
3715 	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
3716 	s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
3717 	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
3718 	s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
3719 	val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
3720 	s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
3721 	val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
3722 	s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
3723 	val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
3724 	s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
3725 }
3726 
3727 static void
3728 mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3729 {
3730 	struct mem_cgroup *iter;
3731 
3732 	for_each_mem_cgroup_tree(iter, mem)
3733 		mem_cgroup_get_local_stat(iter, s);
3734 }
3735 
3736 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
3737 				 struct cgroup_map_cb *cb)
3738 {
3739 	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
3740 	struct mcs_total_stat mystat;
3741 	int i;
3742 
3743 	memset(&mystat, 0, sizeof(mystat));
3744 	mem_cgroup_get_local_stat(mem_cont, &mystat);
3745 
3746 	for (i = 0; i < NR_MCS_STAT; i++) {
3747 		if (i == MCS_SWAP && !do_swap_account)
3748 			continue;
3749 		cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
3750 	}
3751 
3752 	/* Hierarchical information */
3753 	{
3754 		unsigned long long limit, memsw_limit;
3755 		memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
3756 		cb->fill(cb, "hierarchical_memory_limit", limit);
3757 		if (do_swap_account)
3758 			cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
3759 	}
3760 
3761 	memset(&mystat, 0, sizeof(mystat));
3762 	mem_cgroup_get_total_stat(mem_cont, &mystat);
3763 	for (i = 0; i < NR_MCS_STAT; i++) {
3764 		if (i == MCS_SWAP && !do_swap_account)
3765 			continue;
3766 		cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
3767 	}
3768 
3769 #ifdef CONFIG_DEBUG_VM
3770 	cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
3771 
3772 	{
3773 		int nid, zid;
3774 		struct mem_cgroup_per_zone *mz;
3775 		unsigned long recent_rotated[2] = {0, 0};
3776 		unsigned long recent_scanned[2] = {0, 0};
3777 
3778 		for_each_online_node(nid)
3779 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3780 				mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
3781 
3782 				recent_rotated[0] +=
3783 					mz->reclaim_stat.recent_rotated[0];
3784 				recent_rotated[1] +=
3785 					mz->reclaim_stat.recent_rotated[1];
3786 				recent_scanned[0] +=
3787 					mz->reclaim_stat.recent_scanned[0];
3788 				recent_scanned[1] +=
3789 					mz->reclaim_stat.recent_scanned[1];
3790 			}
3791 		cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
3792 		cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
3793 		cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
3794 		cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
3795 	}
3796 #endif
3797 
3798 	return 0;
3799 }
3800 
3801 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
3802 {
3803 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3804 
3805 	return get_swappiness(memcg);
3806 }
3807 
3808 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
3809 				       u64 val)
3810 {
3811 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3812 	struct mem_cgroup *parent;
3813 
3814 	if (val > 100)
3815 		return -EINVAL;
3816 
3817 	if (cgrp->parent == NULL)
3818 		return -EINVAL;
3819 
3820 	parent = mem_cgroup_from_cont(cgrp->parent);
3821 
3822 	cgroup_lock();
3823 
3824 	/* If under hierarchy, only empty-root can set this value */
3825 	if ((parent->use_hierarchy) ||
3826 	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3827 		cgroup_unlock();
3828 		return -EINVAL;
3829 	}
3830 
3831 	spin_lock(&memcg->reclaim_param_lock);
3832 	memcg->swappiness = val;
3833 	spin_unlock(&memcg->reclaim_param_lock);
3834 
3835 	cgroup_unlock();
3836 
3837 	return 0;
3838 }
3839 
3840 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3841 {
3842 	struct mem_cgroup_threshold_ary *t;
3843 	u64 usage;
3844 	int i;
3845 
3846 	rcu_read_lock();
3847 	if (!swap)
3848 		t = rcu_dereference(memcg->thresholds.primary);
3849 	else
3850 		t = rcu_dereference(memcg->memsw_thresholds.primary);
3851 
3852 	if (!t)
3853 		goto unlock;
3854 
3855 	usage = mem_cgroup_usage(memcg, swap);
3856 
3857 	/*
3858 	 * current_threshold points to threshold just below usage.
3859 	 * If it's not true, a threshold was crossed after last
3860 	 * call of __mem_cgroup_threshold().
3861 	 */
3862 	i = t->current_threshold;
3863 
3864 	/*
3865 	 * Iterate backward over array of thresholds starting from
3866 	 * current_threshold and check if a threshold is crossed.
3867 	 * If none of thresholds below usage is crossed, we read
3868 	 * only one element of the array here.
3869 	 */
3870 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3871 		eventfd_signal(t->entries[i].eventfd, 1);
3872 
3873 	/* i = current_threshold + 1 */
3874 	i++;
3875 
3876 	/*
3877 	 * Iterate forward over array of thresholds starting from
3878 	 * current_threshold+1 and check if a threshold is crossed.
3879 	 * If none of thresholds above usage is crossed, we read
3880 	 * only one element of the array here.
3881 	 */
3882 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3883 		eventfd_signal(t->entries[i].eventfd, 1);
3884 
3885 	/* Update current_threshold */
3886 	t->current_threshold = i - 1;
3887 unlock:
3888 	rcu_read_unlock();
3889 }
3890 
3891 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3892 {
3893 	while (memcg) {
3894 		__mem_cgroup_threshold(memcg, false);
3895 		if (do_swap_account)
3896 			__mem_cgroup_threshold(memcg, true);
3897 
3898 		memcg = parent_mem_cgroup(memcg);
3899 	}
3900 }
3901 
3902 static int compare_thresholds(const void *a, const void *b)
3903 {
3904 	const struct mem_cgroup_threshold *_a = a;
3905 	const struct mem_cgroup_threshold *_b = b;
3906 
3907 	return _a->threshold - _b->threshold;
3908 }
3909 
3910 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
3911 {
3912 	struct mem_cgroup_eventfd_list *ev;
3913 
3914 	list_for_each_entry(ev, &mem->oom_notify, list)
3915 		eventfd_signal(ev->eventfd, 1);
3916 	return 0;
3917 }
3918 
3919 static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
3920 {
3921 	struct mem_cgroup *iter;
3922 
3923 	for_each_mem_cgroup_tree(iter, mem)
3924 		mem_cgroup_oom_notify_cb(iter);
3925 }
3926 
3927 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
3928 	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
3929 {
3930 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3931 	struct mem_cgroup_thresholds *thresholds;
3932 	struct mem_cgroup_threshold_ary *new;
3933 	int type = MEMFILE_TYPE(cft->private);
3934 	u64 threshold, usage;
3935 	int i, size, ret;
3936 
3937 	ret = res_counter_memparse_write_strategy(args, &threshold);
3938 	if (ret)
3939 		return ret;
3940 
3941 	mutex_lock(&memcg->thresholds_lock);
3942 
3943 	if (type == _MEM)
3944 		thresholds = &memcg->thresholds;
3945 	else if (type == _MEMSWAP)
3946 		thresholds = &memcg->memsw_thresholds;
3947 	else
3948 		BUG();
3949 
3950 	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3951 
3952 	/* Check if a threshold crossed before adding a new one */
3953 	if (thresholds->primary)
3954 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3955 
3956 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3957 
3958 	/* Allocate memory for new array of thresholds */
3959 	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3960 			GFP_KERNEL);
3961 	if (!new) {
3962 		ret = -ENOMEM;
3963 		goto unlock;
3964 	}
3965 	new->size = size;
3966 
3967 	/* Copy thresholds (if any) to new array */
3968 	if (thresholds->primary) {
3969 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3970 				sizeof(struct mem_cgroup_threshold));
3971 	}
3972 
3973 	/* Add new threshold */
3974 	new->entries[size - 1].eventfd = eventfd;
3975 	new->entries[size - 1].threshold = threshold;
3976 
3977 	/* Sort thresholds. Registering of new threshold isn't time-critical */
3978 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3979 			compare_thresholds, NULL);
3980 
3981 	/* Find current threshold */
3982 	new->current_threshold = -1;
3983 	for (i = 0; i < size; i++) {
3984 		if (new->entries[i].threshold < usage) {
3985 			/*
3986 			 * new->current_threshold will not be used until
3987 			 * rcu_assign_pointer(), so it's safe to increment
3988 			 * it here.
3989 			 */
3990 			++new->current_threshold;
3991 		}
3992 	}
3993 
3994 	/* Free old spare buffer and save old primary buffer as spare */
3995 	kfree(thresholds->spare);
3996 	thresholds->spare = thresholds->primary;
3997 
3998 	rcu_assign_pointer(thresholds->primary, new);
3999 
4000 	/* To be sure that nobody uses thresholds */
4001 	synchronize_rcu();
4002 
4003 unlock:
4004 	mutex_unlock(&memcg->thresholds_lock);
4005 
4006 	return ret;
4007 }
4008 
4009 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4010 	struct cftype *cft, struct eventfd_ctx *eventfd)
4011 {
4012 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4013 	struct mem_cgroup_thresholds *thresholds;
4014 	struct mem_cgroup_threshold_ary *new;
4015 	int type = MEMFILE_TYPE(cft->private);
4016 	u64 usage;
4017 	int i, j, size;
4018 
4019 	mutex_lock(&memcg->thresholds_lock);
4020 	if (type == _MEM)
4021 		thresholds = &memcg->thresholds;
4022 	else if (type == _MEMSWAP)
4023 		thresholds = &memcg->memsw_thresholds;
4024 	else
4025 		BUG();
4026 
4027 	/*
4028 	 * Something went wrong if we trying to unregister a threshold
4029 	 * if we don't have thresholds
4030 	 */
4031 	BUG_ON(!thresholds);
4032 
4033 	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4034 
4035 	/* Check if a threshold crossed before removing */
4036 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4037 
4038 	/* Calculate new number of threshold */
4039 	size = 0;
4040 	for (i = 0; i < thresholds->primary->size; i++) {
4041 		if (thresholds->primary->entries[i].eventfd != eventfd)
4042 			size++;
4043 	}
4044 
4045 	new = thresholds->spare;
4046 
4047 	/* Set thresholds array to NULL if we don't have thresholds */
4048 	if (!size) {
4049 		kfree(new);
4050 		new = NULL;
4051 		goto swap_buffers;
4052 	}
4053 
4054 	new->size = size;
4055 
4056 	/* Copy thresholds and find current threshold */
4057 	new->current_threshold = -1;
4058 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4059 		if (thresholds->primary->entries[i].eventfd == eventfd)
4060 			continue;
4061 
4062 		new->entries[j] = thresholds->primary->entries[i];
4063 		if (new->entries[j].threshold < usage) {
4064 			/*
4065 			 * new->current_threshold will not be used
4066 			 * until rcu_assign_pointer(), so it's safe to increment
4067 			 * it here.
4068 			 */
4069 			++new->current_threshold;
4070 		}
4071 		j++;
4072 	}
4073 
4074 swap_buffers:
4075 	/* Swap primary and spare array */
4076 	thresholds->spare = thresholds->primary;
4077 	rcu_assign_pointer(thresholds->primary, new);
4078 
4079 	/* To be sure that nobody uses thresholds */
4080 	synchronize_rcu();
4081 
4082 	mutex_unlock(&memcg->thresholds_lock);
4083 }
4084 
4085 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4086 	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4087 {
4088 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4089 	struct mem_cgroup_eventfd_list *event;
4090 	int type = MEMFILE_TYPE(cft->private);
4091 
4092 	BUG_ON(type != _OOM_TYPE);
4093 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4094 	if (!event)
4095 		return -ENOMEM;
4096 
4097 	mutex_lock(&memcg_oom_mutex);
4098 
4099 	event->eventfd = eventfd;
4100 	list_add(&event->list, &memcg->oom_notify);
4101 
4102 	/* already in OOM ? */
4103 	if (atomic_read(&memcg->oom_lock))
4104 		eventfd_signal(eventfd, 1);
4105 	mutex_unlock(&memcg_oom_mutex);
4106 
4107 	return 0;
4108 }
4109 
4110 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4111 	struct cftype *cft, struct eventfd_ctx *eventfd)
4112 {
4113 	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4114 	struct mem_cgroup_eventfd_list *ev, *tmp;
4115 	int type = MEMFILE_TYPE(cft->private);
4116 
4117 	BUG_ON(type != _OOM_TYPE);
4118 
4119 	mutex_lock(&memcg_oom_mutex);
4120 
4121 	list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
4122 		if (ev->eventfd == eventfd) {
4123 			list_del(&ev->list);
4124 			kfree(ev);
4125 		}
4126 	}
4127 
4128 	mutex_unlock(&memcg_oom_mutex);
4129 }
4130 
4131 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4132 	struct cftype *cft,  struct cgroup_map_cb *cb)
4133 {
4134 	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4135 
4136 	cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
4137 
4138 	if (atomic_read(&mem->oom_lock))
4139 		cb->fill(cb, "under_oom", 1);
4140 	else
4141 		cb->fill(cb, "under_oom", 0);
4142 	return 0;
4143 }
4144 
4145 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4146 	struct cftype *cft, u64 val)
4147 {
4148 	struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4149 	struct mem_cgroup *parent;
4150 
4151 	/* cannot set to root cgroup and only 0 and 1 are allowed */
4152 	if (!cgrp->parent || !((val == 0) || (val == 1)))
4153 		return -EINVAL;
4154 
4155 	parent = mem_cgroup_from_cont(cgrp->parent);
4156 
4157 	cgroup_lock();
4158 	/* oom-kill-disable is a flag for subhierarchy. */
4159 	if ((parent->use_hierarchy) ||
4160 	    (mem->use_hierarchy && !list_empty(&cgrp->children))) {
4161 		cgroup_unlock();
4162 		return -EINVAL;
4163 	}
4164 	mem->oom_kill_disable = val;
4165 	if (!val)
4166 		memcg_oom_recover(mem);
4167 	cgroup_unlock();
4168 	return 0;
4169 }
4170 
4171 static struct cftype mem_cgroup_files[] = {
4172 	{
4173 		.name = "usage_in_bytes",
4174 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4175 		.read_u64 = mem_cgroup_read,
4176 		.register_event = mem_cgroup_usage_register_event,
4177 		.unregister_event = mem_cgroup_usage_unregister_event,
4178 	},
4179 	{
4180 		.name = "max_usage_in_bytes",
4181 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4182 		.trigger = mem_cgroup_reset,
4183 		.read_u64 = mem_cgroup_read,
4184 	},
4185 	{
4186 		.name = "limit_in_bytes",
4187 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4188 		.write_string = mem_cgroup_write,
4189 		.read_u64 = mem_cgroup_read,
4190 	},
4191 	{
4192 		.name = "soft_limit_in_bytes",
4193 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4194 		.write_string = mem_cgroup_write,
4195 		.read_u64 = mem_cgroup_read,
4196 	},
4197 	{
4198 		.name = "failcnt",
4199 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4200 		.trigger = mem_cgroup_reset,
4201 		.read_u64 = mem_cgroup_read,
4202 	},
4203 	{
4204 		.name = "stat",
4205 		.read_map = mem_control_stat_show,
4206 	},
4207 	{
4208 		.name = "force_empty",
4209 		.trigger = mem_cgroup_force_empty_write,
4210 	},
4211 	{
4212 		.name = "use_hierarchy",
4213 		.write_u64 = mem_cgroup_hierarchy_write,
4214 		.read_u64 = mem_cgroup_hierarchy_read,
4215 	},
4216 	{
4217 		.name = "swappiness",
4218 		.read_u64 = mem_cgroup_swappiness_read,
4219 		.write_u64 = mem_cgroup_swappiness_write,
4220 	},
4221 	{
4222 		.name = "move_charge_at_immigrate",
4223 		.read_u64 = mem_cgroup_move_charge_read,
4224 		.write_u64 = mem_cgroup_move_charge_write,
4225 	},
4226 	{
4227 		.name = "oom_control",
4228 		.read_map = mem_cgroup_oom_control_read,
4229 		.write_u64 = mem_cgroup_oom_control_write,
4230 		.register_event = mem_cgroup_oom_register_event,
4231 		.unregister_event = mem_cgroup_oom_unregister_event,
4232 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4233 	},
4234 };
4235 
4236 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4237 static struct cftype memsw_cgroup_files[] = {
4238 	{
4239 		.name = "memsw.usage_in_bytes",
4240 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4241 		.read_u64 = mem_cgroup_read,
4242 		.register_event = mem_cgroup_usage_register_event,
4243 		.unregister_event = mem_cgroup_usage_unregister_event,
4244 	},
4245 	{
4246 		.name = "memsw.max_usage_in_bytes",
4247 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4248 		.trigger = mem_cgroup_reset,
4249 		.read_u64 = mem_cgroup_read,
4250 	},
4251 	{
4252 		.name = "memsw.limit_in_bytes",
4253 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4254 		.write_string = mem_cgroup_write,
4255 		.read_u64 = mem_cgroup_read,
4256 	},
4257 	{
4258 		.name = "memsw.failcnt",
4259 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4260 		.trigger = mem_cgroup_reset,
4261 		.read_u64 = mem_cgroup_read,
4262 	},
4263 };
4264 
4265 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4266 {
4267 	if (!do_swap_account)
4268 		return 0;
4269 	return cgroup_add_files(cont, ss, memsw_cgroup_files,
4270 				ARRAY_SIZE(memsw_cgroup_files));
4271 };
4272 #else
4273 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4274 {
4275 	return 0;
4276 }
4277 #endif
4278 
4279 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4280 {
4281 	struct mem_cgroup_per_node *pn;
4282 	struct mem_cgroup_per_zone *mz;
4283 	enum lru_list l;
4284 	int zone, tmp = node;
4285 	/*
4286 	 * This routine is called against possible nodes.
4287 	 * But it's BUG to call kmalloc() against offline node.
4288 	 *
4289 	 * TODO: this routine can waste much memory for nodes which will
4290 	 *       never be onlined. It's better to use memory hotplug callback
4291 	 *       function.
4292 	 */
4293 	if (!node_state(node, N_NORMAL_MEMORY))
4294 		tmp = -1;
4295 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4296 	if (!pn)
4297 		return 1;
4298 
4299 	mem->info.nodeinfo[node] = pn;
4300 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4301 		mz = &pn->zoneinfo[zone];
4302 		for_each_lru(l)
4303 			INIT_LIST_HEAD(&mz->lists[l]);
4304 		mz->usage_in_excess = 0;
4305 		mz->on_tree = false;
4306 		mz->mem = mem;
4307 	}
4308 	return 0;
4309 }
4310 
4311 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4312 {
4313 	kfree(mem->info.nodeinfo[node]);
4314 }
4315 
4316 static struct mem_cgroup *mem_cgroup_alloc(void)
4317 {
4318 	struct mem_cgroup *mem;
4319 	int size = sizeof(struct mem_cgroup);
4320 
4321 	/* Can be very big if MAX_NUMNODES is very big */
4322 	if (size < PAGE_SIZE)
4323 		mem = kzalloc(size, GFP_KERNEL);
4324 	else
4325 		mem = vzalloc(size);
4326 
4327 	if (!mem)
4328 		return NULL;
4329 
4330 	mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4331 	if (!mem->stat)
4332 		goto out_free;
4333 	spin_lock_init(&mem->pcp_counter_lock);
4334 	return mem;
4335 
4336 out_free:
4337 	if (size < PAGE_SIZE)
4338 		kfree(mem);
4339 	else
4340 		vfree(mem);
4341 	return NULL;
4342 }
4343 
4344 /*
4345  * At destroying mem_cgroup, references from swap_cgroup can remain.
4346  * (scanning all at force_empty is too costly...)
4347  *
4348  * Instead of clearing all references at force_empty, we remember
4349  * the number of reference from swap_cgroup and free mem_cgroup when
4350  * it goes down to 0.
4351  *
4352  * Removal of cgroup itself succeeds regardless of refs from swap.
4353  */
4354 
4355 static void __mem_cgroup_free(struct mem_cgroup *mem)
4356 {
4357 	int node;
4358 
4359 	mem_cgroup_remove_from_trees(mem);
4360 	free_css_id(&mem_cgroup_subsys, &mem->css);
4361 
4362 	for_each_node_state(node, N_POSSIBLE)
4363 		free_mem_cgroup_per_zone_info(mem, node);
4364 
4365 	free_percpu(mem->stat);
4366 	if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4367 		kfree(mem);
4368 	else
4369 		vfree(mem);
4370 }
4371 
4372 static void mem_cgroup_get(struct mem_cgroup *mem)
4373 {
4374 	atomic_inc(&mem->refcnt);
4375 }
4376 
4377 static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
4378 {
4379 	if (atomic_sub_and_test(count, &mem->refcnt)) {
4380 		struct mem_cgroup *parent = parent_mem_cgroup(mem);
4381 		__mem_cgroup_free(mem);
4382 		if (parent)
4383 			mem_cgroup_put(parent);
4384 	}
4385 }
4386 
4387 static void mem_cgroup_put(struct mem_cgroup *mem)
4388 {
4389 	__mem_cgroup_put(mem, 1);
4390 }
4391 
4392 /*
4393  * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4394  */
4395 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
4396 {
4397 	if (!mem->res.parent)
4398 		return NULL;
4399 	return mem_cgroup_from_res_counter(mem->res.parent, res);
4400 }
4401 
4402 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4403 static void __init enable_swap_cgroup(void)
4404 {
4405 	if (!mem_cgroup_disabled() && really_do_swap_account)
4406 		do_swap_account = 1;
4407 }
4408 #else
4409 static void __init enable_swap_cgroup(void)
4410 {
4411 }
4412 #endif
4413 
4414 static int mem_cgroup_soft_limit_tree_init(void)
4415 {
4416 	struct mem_cgroup_tree_per_node *rtpn;
4417 	struct mem_cgroup_tree_per_zone *rtpz;
4418 	int tmp, node, zone;
4419 
4420 	for_each_node_state(node, N_POSSIBLE) {
4421 		tmp = node;
4422 		if (!node_state(node, N_NORMAL_MEMORY))
4423 			tmp = -1;
4424 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4425 		if (!rtpn)
4426 			return 1;
4427 
4428 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
4429 
4430 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4431 			rtpz = &rtpn->rb_tree_per_zone[zone];
4432 			rtpz->rb_root = RB_ROOT;
4433 			spin_lock_init(&rtpz->lock);
4434 		}
4435 	}
4436 	return 0;
4437 }
4438 
4439 static struct cgroup_subsys_state * __ref
4440 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4441 {
4442 	struct mem_cgroup *mem, *parent;
4443 	long error = -ENOMEM;
4444 	int node;
4445 
4446 	mem = mem_cgroup_alloc();
4447 	if (!mem)
4448 		return ERR_PTR(error);
4449 
4450 	for_each_node_state(node, N_POSSIBLE)
4451 		if (alloc_mem_cgroup_per_zone_info(mem, node))
4452 			goto free_out;
4453 
4454 	/* root ? */
4455 	if (cont->parent == NULL) {
4456 		int cpu;
4457 		enable_swap_cgroup();
4458 		parent = NULL;
4459 		root_mem_cgroup = mem;
4460 		if (mem_cgroup_soft_limit_tree_init())
4461 			goto free_out;
4462 		for_each_possible_cpu(cpu) {
4463 			struct memcg_stock_pcp *stock =
4464 						&per_cpu(memcg_stock, cpu);
4465 			INIT_WORK(&stock->work, drain_local_stock);
4466 		}
4467 		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4468 	} else {
4469 		parent = mem_cgroup_from_cont(cont->parent);
4470 		mem->use_hierarchy = parent->use_hierarchy;
4471 		mem->oom_kill_disable = parent->oom_kill_disable;
4472 	}
4473 
4474 	if (parent && parent->use_hierarchy) {
4475 		res_counter_init(&mem->res, &parent->res);
4476 		res_counter_init(&mem->memsw, &parent->memsw);
4477 		/*
4478 		 * We increment refcnt of the parent to ensure that we can
4479 		 * safely access it on res_counter_charge/uncharge.
4480 		 * This refcnt will be decremented when freeing this
4481 		 * mem_cgroup(see mem_cgroup_put).
4482 		 */
4483 		mem_cgroup_get(parent);
4484 	} else {
4485 		res_counter_init(&mem->res, NULL);
4486 		res_counter_init(&mem->memsw, NULL);
4487 	}
4488 	mem->last_scanned_child = 0;
4489 	spin_lock_init(&mem->reclaim_param_lock);
4490 	INIT_LIST_HEAD(&mem->oom_notify);
4491 
4492 	if (parent)
4493 		mem->swappiness = get_swappiness(parent);
4494 	atomic_set(&mem->refcnt, 1);
4495 	mem->move_charge_at_immigrate = 0;
4496 	mutex_init(&mem->thresholds_lock);
4497 	return &mem->css;
4498 free_out:
4499 	__mem_cgroup_free(mem);
4500 	root_mem_cgroup = NULL;
4501 	return ERR_PTR(error);
4502 }
4503 
4504 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4505 					struct cgroup *cont)
4506 {
4507 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4508 
4509 	return mem_cgroup_force_empty(mem, false);
4510 }
4511 
4512 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4513 				struct cgroup *cont)
4514 {
4515 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4516 
4517 	mem_cgroup_put(mem);
4518 }
4519 
4520 static int mem_cgroup_populate(struct cgroup_subsys *ss,
4521 				struct cgroup *cont)
4522 {
4523 	int ret;
4524 
4525 	ret = cgroup_add_files(cont, ss, mem_cgroup_files,
4526 				ARRAY_SIZE(mem_cgroup_files));
4527 
4528 	if (!ret)
4529 		ret = register_memsw_files(cont, ss);
4530 	return ret;
4531 }
4532 
4533 #ifdef CONFIG_MMU
4534 /* Handlers for move charge at task migration. */
4535 #define PRECHARGE_COUNT_AT_ONCE	256
4536 static int mem_cgroup_do_precharge(unsigned long count)
4537 {
4538 	int ret = 0;
4539 	int batch_count = PRECHARGE_COUNT_AT_ONCE;
4540 	struct mem_cgroup *mem = mc.to;
4541 
4542 	if (mem_cgroup_is_root(mem)) {
4543 		mc.precharge += count;
4544 		/* we don't need css_get for root */
4545 		return ret;
4546 	}
4547 	/* try to charge at once */
4548 	if (count > 1) {
4549 		struct res_counter *dummy;
4550 		/*
4551 		 * "mem" cannot be under rmdir() because we've already checked
4552 		 * by cgroup_lock_live_cgroup() that it is not removed and we
4553 		 * are still under the same cgroup_mutex. So we can postpone
4554 		 * css_get().
4555 		 */
4556 		if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
4557 			goto one_by_one;
4558 		if (do_swap_account && res_counter_charge(&mem->memsw,
4559 						PAGE_SIZE * count, &dummy)) {
4560 			res_counter_uncharge(&mem->res, PAGE_SIZE * count);
4561 			goto one_by_one;
4562 		}
4563 		mc.precharge += count;
4564 		return ret;
4565 	}
4566 one_by_one:
4567 	/* fall back to one by one charge */
4568 	while (count--) {
4569 		if (signal_pending(current)) {
4570 			ret = -EINTR;
4571 			break;
4572 		}
4573 		if (!batch_count--) {
4574 			batch_count = PRECHARGE_COUNT_AT_ONCE;
4575 			cond_resched();
4576 		}
4577 		ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false,
4578 					      PAGE_SIZE);
4579 		if (ret || !mem)
4580 			/* mem_cgroup_clear_mc() will do uncharge later */
4581 			return -ENOMEM;
4582 		mc.precharge++;
4583 	}
4584 	return ret;
4585 }
4586 
4587 /**
4588  * is_target_pte_for_mc - check a pte whether it is valid for move charge
4589  * @vma: the vma the pte to be checked belongs
4590  * @addr: the address corresponding to the pte to be checked
4591  * @ptent: the pte to be checked
4592  * @target: the pointer the target page or swap ent will be stored(can be NULL)
4593  *
4594  * Returns
4595  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
4596  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4597  *     move charge. if @target is not NULL, the page is stored in target->page
4598  *     with extra refcnt got(Callers should handle it).
4599  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4600  *     target for charge migration. if @target is not NULL, the entry is stored
4601  *     in target->ent.
4602  *
4603  * Called with pte lock held.
4604  */
4605 union mc_target {
4606 	struct page	*page;
4607 	swp_entry_t	ent;
4608 };
4609 
4610 enum mc_target_type {
4611 	MC_TARGET_NONE,	/* not used */
4612 	MC_TARGET_PAGE,
4613 	MC_TARGET_SWAP,
4614 };
4615 
4616 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4617 						unsigned long addr, pte_t ptent)
4618 {
4619 	struct page *page = vm_normal_page(vma, addr, ptent);
4620 
4621 	if (!page || !page_mapped(page))
4622 		return NULL;
4623 	if (PageAnon(page)) {
4624 		/* we don't move shared anon */
4625 		if (!move_anon() || page_mapcount(page) > 2)
4626 			return NULL;
4627 	} else if (!move_file())
4628 		/* we ignore mapcount for file pages */
4629 		return NULL;
4630 	if (!get_page_unless_zero(page))
4631 		return NULL;
4632 
4633 	return page;
4634 }
4635 
4636 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4637 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4638 {
4639 	int usage_count;
4640 	struct page *page = NULL;
4641 	swp_entry_t ent = pte_to_swp_entry(ptent);
4642 
4643 	if (!move_anon() || non_swap_entry(ent))
4644 		return NULL;
4645 	usage_count = mem_cgroup_count_swap_user(ent, &page);
4646 	if (usage_count > 1) { /* we don't move shared anon */
4647 		if (page)
4648 			put_page(page);
4649 		return NULL;
4650 	}
4651 	if (do_swap_account)
4652 		entry->val = ent.val;
4653 
4654 	return page;
4655 }
4656 
4657 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4658 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4659 {
4660 	struct page *page = NULL;
4661 	struct inode *inode;
4662 	struct address_space *mapping;
4663 	pgoff_t pgoff;
4664 
4665 	if (!vma->vm_file) /* anonymous vma */
4666 		return NULL;
4667 	if (!move_file())
4668 		return NULL;
4669 
4670 	inode = vma->vm_file->f_path.dentry->d_inode;
4671 	mapping = vma->vm_file->f_mapping;
4672 	if (pte_none(ptent))
4673 		pgoff = linear_page_index(vma, addr);
4674 	else /* pte_file(ptent) is true */
4675 		pgoff = pte_to_pgoff(ptent);
4676 
4677 	/* page is moved even if it's not RSS of this task(page-faulted). */
4678 	if (!mapping_cap_swap_backed(mapping)) { /* normal file */
4679 		page = find_get_page(mapping, pgoff);
4680 	} else { /* shmem/tmpfs file. we should take account of swap too. */
4681 		swp_entry_t ent;
4682 		mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
4683 		if (do_swap_account)
4684 			entry->val = ent.val;
4685 	}
4686 
4687 	return page;
4688 }
4689 
4690 static int is_target_pte_for_mc(struct vm_area_struct *vma,
4691 		unsigned long addr, pte_t ptent, union mc_target *target)
4692 {
4693 	struct page *page = NULL;
4694 	struct page_cgroup *pc;
4695 	int ret = 0;
4696 	swp_entry_t ent = { .val = 0 };
4697 
4698 	if (pte_present(ptent))
4699 		page = mc_handle_present_pte(vma, addr, ptent);
4700 	else if (is_swap_pte(ptent))
4701 		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4702 	else if (pte_none(ptent) || pte_file(ptent))
4703 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
4704 
4705 	if (!page && !ent.val)
4706 		return 0;
4707 	if (page) {
4708 		pc = lookup_page_cgroup(page);
4709 		/*
4710 		 * Do only loose check w/o page_cgroup lock.
4711 		 * mem_cgroup_move_account() checks the pc is valid or not under
4712 		 * the lock.
4713 		 */
4714 		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
4715 			ret = MC_TARGET_PAGE;
4716 			if (target)
4717 				target->page = page;
4718 		}
4719 		if (!ret || !target)
4720 			put_page(page);
4721 	}
4722 	/* There is a swap entry and a page doesn't exist or isn't charged */
4723 	if (ent.val && !ret &&
4724 			css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
4725 		ret = MC_TARGET_SWAP;
4726 		if (target)
4727 			target->ent = ent;
4728 	}
4729 	return ret;
4730 }
4731 
4732 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4733 					unsigned long addr, unsigned long end,
4734 					struct mm_walk *walk)
4735 {
4736 	struct vm_area_struct *vma = walk->private;
4737 	pte_t *pte;
4738 	spinlock_t *ptl;
4739 
4740 	VM_BUG_ON(pmd_trans_huge(*pmd));
4741 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4742 	for (; addr != end; pte++, addr += PAGE_SIZE)
4743 		if (is_target_pte_for_mc(vma, addr, *pte, NULL))
4744 			mc.precharge++;	/* increment precharge temporarily */
4745 	pte_unmap_unlock(pte - 1, ptl);
4746 	cond_resched();
4747 
4748 	return 0;
4749 }
4750 
4751 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4752 {
4753 	unsigned long precharge;
4754 	struct vm_area_struct *vma;
4755 
4756 	down_read(&mm->mmap_sem);
4757 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
4758 		struct mm_walk mem_cgroup_count_precharge_walk = {
4759 			.pmd_entry = mem_cgroup_count_precharge_pte_range,
4760 			.mm = mm,
4761 			.private = vma,
4762 		};
4763 		if (is_vm_hugetlb_page(vma))
4764 			continue;
4765 		walk_page_range(vma->vm_start, vma->vm_end,
4766 					&mem_cgroup_count_precharge_walk);
4767 	}
4768 	up_read(&mm->mmap_sem);
4769 
4770 	precharge = mc.precharge;
4771 	mc.precharge = 0;
4772 
4773 	return precharge;
4774 }
4775 
4776 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4777 {
4778 	unsigned long precharge = mem_cgroup_count_precharge(mm);
4779 
4780 	VM_BUG_ON(mc.moving_task);
4781 	mc.moving_task = current;
4782 	return mem_cgroup_do_precharge(precharge);
4783 }
4784 
4785 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4786 static void __mem_cgroup_clear_mc(void)
4787 {
4788 	struct mem_cgroup *from = mc.from;
4789 	struct mem_cgroup *to = mc.to;
4790 
4791 	/* we must uncharge all the leftover precharges from mc.to */
4792 	if (mc.precharge) {
4793 		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
4794 		mc.precharge = 0;
4795 	}
4796 	/*
4797 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4798 	 * we must uncharge here.
4799 	 */
4800 	if (mc.moved_charge) {
4801 		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
4802 		mc.moved_charge = 0;
4803 	}
4804 	/* we must fixup refcnts and charges */
4805 	if (mc.moved_swap) {
4806 		/* uncharge swap account from the old cgroup */
4807 		if (!mem_cgroup_is_root(mc.from))
4808 			res_counter_uncharge(&mc.from->memsw,
4809 						PAGE_SIZE * mc.moved_swap);
4810 		__mem_cgroup_put(mc.from, mc.moved_swap);
4811 
4812 		if (!mem_cgroup_is_root(mc.to)) {
4813 			/*
4814 			 * we charged both to->res and to->memsw, so we should
4815 			 * uncharge to->res.
4816 			 */
4817 			res_counter_uncharge(&mc.to->res,
4818 						PAGE_SIZE * mc.moved_swap);
4819 		}
4820 		/* we've already done mem_cgroup_get(mc.to) */
4821 		mc.moved_swap = 0;
4822 	}
4823 	memcg_oom_recover(from);
4824 	memcg_oom_recover(to);
4825 	wake_up_all(&mc.waitq);
4826 }
4827 
4828 static void mem_cgroup_clear_mc(void)
4829 {
4830 	struct mem_cgroup *from = mc.from;
4831 
4832 	/*
4833 	 * we must clear moving_task before waking up waiters at the end of
4834 	 * task migration.
4835 	 */
4836 	mc.moving_task = NULL;
4837 	__mem_cgroup_clear_mc();
4838 	spin_lock(&mc.lock);
4839 	mc.from = NULL;
4840 	mc.to = NULL;
4841 	spin_unlock(&mc.lock);
4842 	mem_cgroup_end_move(from);
4843 }
4844 
4845 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4846 				struct cgroup *cgroup,
4847 				struct task_struct *p,
4848 				bool threadgroup)
4849 {
4850 	int ret = 0;
4851 	struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
4852 
4853 	if (mem->move_charge_at_immigrate) {
4854 		struct mm_struct *mm;
4855 		struct mem_cgroup *from = mem_cgroup_from_task(p);
4856 
4857 		VM_BUG_ON(from == mem);
4858 
4859 		mm = get_task_mm(p);
4860 		if (!mm)
4861 			return 0;
4862 		/* We move charges only when we move a owner of the mm */
4863 		if (mm->owner == p) {
4864 			VM_BUG_ON(mc.from);
4865 			VM_BUG_ON(mc.to);
4866 			VM_BUG_ON(mc.precharge);
4867 			VM_BUG_ON(mc.moved_charge);
4868 			VM_BUG_ON(mc.moved_swap);
4869 			mem_cgroup_start_move(from);
4870 			spin_lock(&mc.lock);
4871 			mc.from = from;
4872 			mc.to = mem;
4873 			spin_unlock(&mc.lock);
4874 			/* We set mc.moving_task later */
4875 
4876 			ret = mem_cgroup_precharge_mc(mm);
4877 			if (ret)
4878 				mem_cgroup_clear_mc();
4879 		}
4880 		mmput(mm);
4881 	}
4882 	return ret;
4883 }
4884 
4885 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4886 				struct cgroup *cgroup,
4887 				struct task_struct *p,
4888 				bool threadgroup)
4889 {
4890 	mem_cgroup_clear_mc();
4891 }
4892 
4893 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4894 				unsigned long addr, unsigned long end,
4895 				struct mm_walk *walk)
4896 {
4897 	int ret = 0;
4898 	struct vm_area_struct *vma = walk->private;
4899 	pte_t *pte;
4900 	spinlock_t *ptl;
4901 
4902 retry:
4903 	VM_BUG_ON(pmd_trans_huge(*pmd));
4904 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4905 	for (; addr != end; addr += PAGE_SIZE) {
4906 		pte_t ptent = *(pte++);
4907 		union mc_target target;
4908 		int type;
4909 		struct page *page;
4910 		struct page_cgroup *pc;
4911 		swp_entry_t ent;
4912 
4913 		if (!mc.precharge)
4914 			break;
4915 
4916 		type = is_target_pte_for_mc(vma, addr, ptent, &target);
4917 		switch (type) {
4918 		case MC_TARGET_PAGE:
4919 			page = target.page;
4920 			if (isolate_lru_page(page))
4921 				goto put;
4922 			pc = lookup_page_cgroup(page);
4923 			if (!mem_cgroup_move_account(pc,
4924 					mc.from, mc.to, false, PAGE_SIZE)) {
4925 				mc.precharge--;
4926 				/* we uncharge from mc.from later. */
4927 				mc.moved_charge++;
4928 			}
4929 			putback_lru_page(page);
4930 put:			/* is_target_pte_for_mc() gets the page */
4931 			put_page(page);
4932 			break;
4933 		case MC_TARGET_SWAP:
4934 			ent = target.ent;
4935 			if (!mem_cgroup_move_swap_account(ent,
4936 						mc.from, mc.to, false)) {
4937 				mc.precharge--;
4938 				/* we fixup refcnts and charges later. */
4939 				mc.moved_swap++;
4940 			}
4941 			break;
4942 		default:
4943 			break;
4944 		}
4945 	}
4946 	pte_unmap_unlock(pte - 1, ptl);
4947 	cond_resched();
4948 
4949 	if (addr != end) {
4950 		/*
4951 		 * We have consumed all precharges we got in can_attach().
4952 		 * We try charge one by one, but don't do any additional
4953 		 * charges to mc.to if we have failed in charge once in attach()
4954 		 * phase.
4955 		 */
4956 		ret = mem_cgroup_do_precharge(1);
4957 		if (!ret)
4958 			goto retry;
4959 	}
4960 
4961 	return ret;
4962 }
4963 
4964 static void mem_cgroup_move_charge(struct mm_struct *mm)
4965 {
4966 	struct vm_area_struct *vma;
4967 
4968 	lru_add_drain_all();
4969 retry:
4970 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
4971 		/*
4972 		 * Someone who are holding the mmap_sem might be waiting in
4973 		 * waitq. So we cancel all extra charges, wake up all waiters,
4974 		 * and retry. Because we cancel precharges, we might not be able
4975 		 * to move enough charges, but moving charge is a best-effort
4976 		 * feature anyway, so it wouldn't be a big problem.
4977 		 */
4978 		__mem_cgroup_clear_mc();
4979 		cond_resched();
4980 		goto retry;
4981 	}
4982 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
4983 		int ret;
4984 		struct mm_walk mem_cgroup_move_charge_walk = {
4985 			.pmd_entry = mem_cgroup_move_charge_pte_range,
4986 			.mm = mm,
4987 			.private = vma,
4988 		};
4989 		if (is_vm_hugetlb_page(vma))
4990 			continue;
4991 		ret = walk_page_range(vma->vm_start, vma->vm_end,
4992 						&mem_cgroup_move_charge_walk);
4993 		if (ret)
4994 			/*
4995 			 * means we have consumed all precharges and failed in
4996 			 * doing additional charge. Just abandon here.
4997 			 */
4998 			break;
4999 	}
5000 	up_read(&mm->mmap_sem);
5001 }
5002 
5003 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5004 				struct cgroup *cont,
5005 				struct cgroup *old_cont,
5006 				struct task_struct *p,
5007 				bool threadgroup)
5008 {
5009 	struct mm_struct *mm;
5010 
5011 	if (!mc.to)
5012 		/* no need to move charge */
5013 		return;
5014 
5015 	mm = get_task_mm(p);
5016 	if (mm) {
5017 		mem_cgroup_move_charge(mm);
5018 		mmput(mm);
5019 	}
5020 	mem_cgroup_clear_mc();
5021 }
5022 #else	/* !CONFIG_MMU */
5023 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5024 				struct cgroup *cgroup,
5025 				struct task_struct *p,
5026 				bool threadgroup)
5027 {
5028 	return 0;
5029 }
5030 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5031 				struct cgroup *cgroup,
5032 				struct task_struct *p,
5033 				bool threadgroup)
5034 {
5035 }
5036 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5037 				struct cgroup *cont,
5038 				struct cgroup *old_cont,
5039 				struct task_struct *p,
5040 				bool threadgroup)
5041 {
5042 }
5043 #endif
5044 
5045 struct cgroup_subsys mem_cgroup_subsys = {
5046 	.name = "memory",
5047 	.subsys_id = mem_cgroup_subsys_id,
5048 	.create = mem_cgroup_create,
5049 	.pre_destroy = mem_cgroup_pre_destroy,
5050 	.destroy = mem_cgroup_destroy,
5051 	.populate = mem_cgroup_populate,
5052 	.can_attach = mem_cgroup_can_attach,
5053 	.cancel_attach = mem_cgroup_cancel_attach,
5054 	.attach = mem_cgroup_move_task,
5055 	.early_init = 0,
5056 	.use_id = 1,
5057 };
5058 
5059 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5060 static int __init enable_swap_account(char *s)
5061 {
5062 	/* consider enabled if no parameter or 1 is given */
5063 	if (!(*s) || !strcmp(s, "=1"))
5064 		really_do_swap_account = 1;
5065 	else if (!strcmp(s, "=0"))
5066 		really_do_swap_account = 0;
5067 	return 1;
5068 }
5069 __setup("swapaccount", enable_swap_account);
5070 
5071 static int __init disable_swap_account(char *s)
5072 {
5073 	printk_once("noswapaccount is deprecated and will be removed in 2.6.40. Use swapaccount=0 instead\n");
5074 	enable_swap_account("=0");
5075 	return 1;
5076 }
5077 __setup("noswapaccount", disable_swap_account);
5078 #endif
5079