xref: /openbmc/linux/mm/memcontrol.c (revision 47010c04)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <xemul@openvz.org>
9  *
10  * Memory thresholds
11  * Copyright (C) 2009 Nokia Corporation
12  * Author: Kirill A. Shutemov
13  *
14  * Kernel Memory Controller
15  * Copyright (C) 2012 Parallels Inc. and Google Inc.
16  * Authors: Glauber Costa and Suleiman Souhlal
17  *
18  * Native page reclaim
19  * Charge lifetime sanitation
20  * Lockless page tracking & accounting
21  * Unified hierarchy configuration model
22  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23  *
24  * Per memcg lru locking
25  * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26  */
27 
28 #include <linux/page_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/pagewalk.h>
32 #include <linux/sched/mm.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/hugetlb.h>
35 #include <linux/pagemap.h>
36 #include <linux/vm_event_item.h>
37 #include <linux/smp.h>
38 #include <linux/page-flags.h>
39 #include <linux/backing-dev.h>
40 #include <linux/bit_spinlock.h>
41 #include <linux/rcupdate.h>
42 #include <linux/limits.h>
43 #include <linux/export.h>
44 #include <linux/mutex.h>
45 #include <linux/rbtree.h>
46 #include <linux/slab.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/spinlock.h>
50 #include <linux/eventfd.h>
51 #include <linux/poll.h>
52 #include <linux/sort.h>
53 #include <linux/fs.h>
54 #include <linux/seq_file.h>
55 #include <linux/vmpressure.h>
56 #include <linux/memremap.h>
57 #include <linux/mm_inline.h>
58 #include <linux/swap_cgroup.h>
59 #include <linux/cpu.h>
60 #include <linux/oom.h>
61 #include <linux/lockdep.h>
62 #include <linux/file.h>
63 #include <linux/resume_user_mode.h>
64 #include <linux/psi.h>
65 #include <linux/seq_buf.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include "slab.h"
70 
71 #include <linux/uaccess.h>
72 
73 #include <trace/events/vmscan.h>
74 
75 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76 EXPORT_SYMBOL(memory_cgrp_subsys);
77 
78 struct mem_cgroup *root_mem_cgroup __read_mostly;
79 
80 /* Active memory cgroup to use from an interrupt context */
81 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
82 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
83 
84 /* Socket memory accounting disabled? */
85 static bool cgroup_memory_nosocket __ro_after_init;
86 
87 /* Kernel memory accounting disabled? */
88 static bool cgroup_memory_nokmem __ro_after_init;
89 
90 /* Whether the swap controller is active */
91 #ifdef CONFIG_MEMCG_SWAP
92 static bool cgroup_memory_noswap __ro_after_init;
93 #else
94 #define cgroup_memory_noswap		1
95 #endif
96 
97 #ifdef CONFIG_CGROUP_WRITEBACK
98 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
99 #endif
100 
101 /* Whether legacy memory+swap accounting is active */
102 static bool do_memsw_account(void)
103 {
104 	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
105 }
106 
107 #define THRESHOLDS_EVENTS_TARGET 128
108 #define SOFTLIMIT_EVENTS_TARGET 1024
109 
110 /*
111  * Cgroups above their limits are maintained in a RB-Tree, independent of
112  * their hierarchy representation
113  */
114 
115 struct mem_cgroup_tree_per_node {
116 	struct rb_root rb_root;
117 	struct rb_node *rb_rightmost;
118 	spinlock_t lock;
119 };
120 
121 struct mem_cgroup_tree {
122 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
123 };
124 
125 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
126 
127 /* for OOM */
128 struct mem_cgroup_eventfd_list {
129 	struct list_head list;
130 	struct eventfd_ctx *eventfd;
131 };
132 
133 /*
134  * cgroup_event represents events which userspace want to receive.
135  */
136 struct mem_cgroup_event {
137 	/*
138 	 * memcg which the event belongs to.
139 	 */
140 	struct mem_cgroup *memcg;
141 	/*
142 	 * eventfd to signal userspace about the event.
143 	 */
144 	struct eventfd_ctx *eventfd;
145 	/*
146 	 * Each of these stored in a list by the cgroup.
147 	 */
148 	struct list_head list;
149 	/*
150 	 * register_event() callback will be used to add new userspace
151 	 * waiter for changes related to this event.  Use eventfd_signal()
152 	 * on eventfd to send notification to userspace.
153 	 */
154 	int (*register_event)(struct mem_cgroup *memcg,
155 			      struct eventfd_ctx *eventfd, const char *args);
156 	/*
157 	 * unregister_event() callback will be called when userspace closes
158 	 * the eventfd or on cgroup removing.  This callback must be set,
159 	 * if you want provide notification functionality.
160 	 */
161 	void (*unregister_event)(struct mem_cgroup *memcg,
162 				 struct eventfd_ctx *eventfd);
163 	/*
164 	 * All fields below needed to unregister event when
165 	 * userspace closes eventfd.
166 	 */
167 	poll_table pt;
168 	wait_queue_head_t *wqh;
169 	wait_queue_entry_t wait;
170 	struct work_struct remove;
171 };
172 
173 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
174 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
175 
176 /* Stuffs for move charges at task migration. */
177 /*
178  * Types of charges to be moved.
179  */
180 #define MOVE_ANON	0x1U
181 #define MOVE_FILE	0x2U
182 #define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
183 
184 /* "mc" and its members are protected by cgroup_mutex */
185 static struct move_charge_struct {
186 	spinlock_t	  lock; /* for from, to */
187 	struct mm_struct  *mm;
188 	struct mem_cgroup *from;
189 	struct mem_cgroup *to;
190 	unsigned long flags;
191 	unsigned long precharge;
192 	unsigned long moved_charge;
193 	unsigned long moved_swap;
194 	struct task_struct *moving_task;	/* a task moving charges */
195 	wait_queue_head_t waitq;		/* a waitq for other context */
196 } mc = {
197 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
198 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
199 };
200 
201 /*
202  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
203  * limit reclaim to prevent infinite loops, if they ever occur.
204  */
205 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
206 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
207 
208 /* for encoding cft->private value on file */
209 enum res_type {
210 	_MEM,
211 	_MEMSWAP,
212 	_KMEM,
213 	_TCP,
214 };
215 
216 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
217 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
218 #define MEMFILE_ATTR(val)	((val) & 0xffff)
219 
220 /*
221  * Iteration constructs for visiting all cgroups (under a tree).  If
222  * loops are exited prematurely (break), mem_cgroup_iter_break() must
223  * be used for reference counting.
224  */
225 #define for_each_mem_cgroup_tree(iter, root)		\
226 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
227 	     iter != NULL;				\
228 	     iter = mem_cgroup_iter(root, iter, NULL))
229 
230 #define for_each_mem_cgroup(iter)			\
231 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
232 	     iter != NULL;				\
233 	     iter = mem_cgroup_iter(NULL, iter, NULL))
234 
235 static inline bool task_is_dying(void)
236 {
237 	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
238 		(current->flags & PF_EXITING);
239 }
240 
241 /* Some nice accessors for the vmpressure. */
242 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
243 {
244 	if (!memcg)
245 		memcg = root_mem_cgroup;
246 	return &memcg->vmpressure;
247 }
248 
249 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
250 {
251 	return container_of(vmpr, struct mem_cgroup, vmpressure);
252 }
253 
254 #ifdef CONFIG_MEMCG_KMEM
255 static DEFINE_SPINLOCK(objcg_lock);
256 
257 bool mem_cgroup_kmem_disabled(void)
258 {
259 	return cgroup_memory_nokmem;
260 }
261 
262 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
263 				      unsigned int nr_pages);
264 
265 static void obj_cgroup_release(struct percpu_ref *ref)
266 {
267 	struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
268 	unsigned int nr_bytes;
269 	unsigned int nr_pages;
270 	unsigned long flags;
271 
272 	/*
273 	 * At this point all allocated objects are freed, and
274 	 * objcg->nr_charged_bytes can't have an arbitrary byte value.
275 	 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
276 	 *
277 	 * The following sequence can lead to it:
278 	 * 1) CPU0: objcg == stock->cached_objcg
279 	 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
280 	 *          PAGE_SIZE bytes are charged
281 	 * 3) CPU1: a process from another memcg is allocating something,
282 	 *          the stock if flushed,
283 	 *          objcg->nr_charged_bytes = PAGE_SIZE - 92
284 	 * 5) CPU0: we do release this object,
285 	 *          92 bytes are added to stock->nr_bytes
286 	 * 6) CPU0: stock is flushed,
287 	 *          92 bytes are added to objcg->nr_charged_bytes
288 	 *
289 	 * In the result, nr_charged_bytes == PAGE_SIZE.
290 	 * This page will be uncharged in obj_cgroup_release().
291 	 */
292 	nr_bytes = atomic_read(&objcg->nr_charged_bytes);
293 	WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
294 	nr_pages = nr_bytes >> PAGE_SHIFT;
295 
296 	if (nr_pages)
297 		obj_cgroup_uncharge_pages(objcg, nr_pages);
298 
299 	spin_lock_irqsave(&objcg_lock, flags);
300 	list_del(&objcg->list);
301 	spin_unlock_irqrestore(&objcg_lock, flags);
302 
303 	percpu_ref_exit(ref);
304 	kfree_rcu(objcg, rcu);
305 }
306 
307 static struct obj_cgroup *obj_cgroup_alloc(void)
308 {
309 	struct obj_cgroup *objcg;
310 	int ret;
311 
312 	objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
313 	if (!objcg)
314 		return NULL;
315 
316 	ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
317 			      GFP_KERNEL);
318 	if (ret) {
319 		kfree(objcg);
320 		return NULL;
321 	}
322 	INIT_LIST_HEAD(&objcg->list);
323 	return objcg;
324 }
325 
326 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
327 				  struct mem_cgroup *parent)
328 {
329 	struct obj_cgroup *objcg, *iter;
330 
331 	objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
332 
333 	spin_lock_irq(&objcg_lock);
334 
335 	/* 1) Ready to reparent active objcg. */
336 	list_add(&objcg->list, &memcg->objcg_list);
337 	/* 2) Reparent active objcg and already reparented objcgs to parent. */
338 	list_for_each_entry(iter, &memcg->objcg_list, list)
339 		WRITE_ONCE(iter->memcg, parent);
340 	/* 3) Move already reparented objcgs to the parent's list */
341 	list_splice(&memcg->objcg_list, &parent->objcg_list);
342 
343 	spin_unlock_irq(&objcg_lock);
344 
345 	percpu_ref_kill(&objcg->refcnt);
346 }
347 
348 /*
349  * A lot of the calls to the cache allocation functions are expected to be
350  * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
351  * conditional to this static branch, we'll have to allow modules that does
352  * kmem_cache_alloc and the such to see this symbol as well
353  */
354 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
355 EXPORT_SYMBOL(memcg_kmem_enabled_key);
356 #endif
357 
358 /**
359  * mem_cgroup_css_from_page - css of the memcg associated with a page
360  * @page: page of interest
361  *
362  * If memcg is bound to the default hierarchy, css of the memcg associated
363  * with @page is returned.  The returned css remains associated with @page
364  * until it is released.
365  *
366  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
367  * is returned.
368  */
369 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
370 {
371 	struct mem_cgroup *memcg;
372 
373 	memcg = page_memcg(page);
374 
375 	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
376 		memcg = root_mem_cgroup;
377 
378 	return &memcg->css;
379 }
380 
381 /**
382  * page_cgroup_ino - return inode number of the memcg a page is charged to
383  * @page: the page
384  *
385  * Look up the closest online ancestor of the memory cgroup @page is charged to
386  * and return its inode number or 0 if @page is not charged to any cgroup. It
387  * is safe to call this function without holding a reference to @page.
388  *
389  * Note, this function is inherently racy, because there is nothing to prevent
390  * the cgroup inode from getting torn down and potentially reallocated a moment
391  * after page_cgroup_ino() returns, so it only should be used by callers that
392  * do not care (such as procfs interfaces).
393  */
394 ino_t page_cgroup_ino(struct page *page)
395 {
396 	struct mem_cgroup *memcg;
397 	unsigned long ino = 0;
398 
399 	rcu_read_lock();
400 	memcg = page_memcg_check(page);
401 
402 	while (memcg && !(memcg->css.flags & CSS_ONLINE))
403 		memcg = parent_mem_cgroup(memcg);
404 	if (memcg)
405 		ino = cgroup_ino(memcg->css.cgroup);
406 	rcu_read_unlock();
407 	return ino;
408 }
409 
410 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
411 					 struct mem_cgroup_tree_per_node *mctz,
412 					 unsigned long new_usage_in_excess)
413 {
414 	struct rb_node **p = &mctz->rb_root.rb_node;
415 	struct rb_node *parent = NULL;
416 	struct mem_cgroup_per_node *mz_node;
417 	bool rightmost = true;
418 
419 	if (mz->on_tree)
420 		return;
421 
422 	mz->usage_in_excess = new_usage_in_excess;
423 	if (!mz->usage_in_excess)
424 		return;
425 	while (*p) {
426 		parent = *p;
427 		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
428 					tree_node);
429 		if (mz->usage_in_excess < mz_node->usage_in_excess) {
430 			p = &(*p)->rb_left;
431 			rightmost = false;
432 		} else {
433 			p = &(*p)->rb_right;
434 		}
435 	}
436 
437 	if (rightmost)
438 		mctz->rb_rightmost = &mz->tree_node;
439 
440 	rb_link_node(&mz->tree_node, parent, p);
441 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
442 	mz->on_tree = true;
443 }
444 
445 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
446 					 struct mem_cgroup_tree_per_node *mctz)
447 {
448 	if (!mz->on_tree)
449 		return;
450 
451 	if (&mz->tree_node == mctz->rb_rightmost)
452 		mctz->rb_rightmost = rb_prev(&mz->tree_node);
453 
454 	rb_erase(&mz->tree_node, &mctz->rb_root);
455 	mz->on_tree = false;
456 }
457 
458 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
459 				       struct mem_cgroup_tree_per_node *mctz)
460 {
461 	unsigned long flags;
462 
463 	spin_lock_irqsave(&mctz->lock, flags);
464 	__mem_cgroup_remove_exceeded(mz, mctz);
465 	spin_unlock_irqrestore(&mctz->lock, flags);
466 }
467 
468 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
469 {
470 	unsigned long nr_pages = page_counter_read(&memcg->memory);
471 	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
472 	unsigned long excess = 0;
473 
474 	if (nr_pages > soft_limit)
475 		excess = nr_pages - soft_limit;
476 
477 	return excess;
478 }
479 
480 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid)
481 {
482 	unsigned long excess;
483 	struct mem_cgroup_per_node *mz;
484 	struct mem_cgroup_tree_per_node *mctz;
485 
486 	mctz = soft_limit_tree.rb_tree_per_node[nid];
487 	if (!mctz)
488 		return;
489 	/*
490 	 * Necessary to update all ancestors when hierarchy is used.
491 	 * because their event counter is not touched.
492 	 */
493 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
494 		mz = memcg->nodeinfo[nid];
495 		excess = soft_limit_excess(memcg);
496 		/*
497 		 * We have to update the tree if mz is on RB-tree or
498 		 * mem is over its softlimit.
499 		 */
500 		if (excess || mz->on_tree) {
501 			unsigned long flags;
502 
503 			spin_lock_irqsave(&mctz->lock, flags);
504 			/* if on-tree, remove it */
505 			if (mz->on_tree)
506 				__mem_cgroup_remove_exceeded(mz, mctz);
507 			/*
508 			 * Insert again. mz->usage_in_excess will be updated.
509 			 * If excess is 0, no tree ops.
510 			 */
511 			__mem_cgroup_insert_exceeded(mz, mctz, excess);
512 			spin_unlock_irqrestore(&mctz->lock, flags);
513 		}
514 	}
515 }
516 
517 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
518 {
519 	struct mem_cgroup_tree_per_node *mctz;
520 	struct mem_cgroup_per_node *mz;
521 	int nid;
522 
523 	for_each_node(nid) {
524 		mz = memcg->nodeinfo[nid];
525 		mctz = soft_limit_tree.rb_tree_per_node[nid];
526 		if (mctz)
527 			mem_cgroup_remove_exceeded(mz, mctz);
528 	}
529 }
530 
531 static struct mem_cgroup_per_node *
532 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
533 {
534 	struct mem_cgroup_per_node *mz;
535 
536 retry:
537 	mz = NULL;
538 	if (!mctz->rb_rightmost)
539 		goto done;		/* Nothing to reclaim from */
540 
541 	mz = rb_entry(mctz->rb_rightmost,
542 		      struct mem_cgroup_per_node, tree_node);
543 	/*
544 	 * Remove the node now but someone else can add it back,
545 	 * we will to add it back at the end of reclaim to its correct
546 	 * position in the tree.
547 	 */
548 	__mem_cgroup_remove_exceeded(mz, mctz);
549 	if (!soft_limit_excess(mz->memcg) ||
550 	    !css_tryget(&mz->memcg->css))
551 		goto retry;
552 done:
553 	return mz;
554 }
555 
556 static struct mem_cgroup_per_node *
557 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
558 {
559 	struct mem_cgroup_per_node *mz;
560 
561 	spin_lock_irq(&mctz->lock);
562 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
563 	spin_unlock_irq(&mctz->lock);
564 	return mz;
565 }
566 
567 /*
568  * memcg and lruvec stats flushing
569  *
570  * Many codepaths leading to stats update or read are performance sensitive and
571  * adding stats flushing in such codepaths is not desirable. So, to optimize the
572  * flushing the kernel does:
573  *
574  * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
575  *    rstat update tree grow unbounded.
576  *
577  * 2) Flush the stats synchronously on reader side only when there are more than
578  *    (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
579  *    will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
580  *    only for 2 seconds due to (1).
581  */
582 static void flush_memcg_stats_dwork(struct work_struct *w);
583 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
584 static DEFINE_SPINLOCK(stats_flush_lock);
585 static DEFINE_PER_CPU(unsigned int, stats_updates);
586 static atomic_t stats_flush_threshold = ATOMIC_INIT(0);
587 static u64 flush_next_time;
588 
589 #define FLUSH_TIME (2UL*HZ)
590 
591 /*
592  * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can
593  * not rely on this as part of an acquired spinlock_t lock. These functions are
594  * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion
595  * is sufficient.
596  */
597 static void memcg_stats_lock(void)
598 {
599 #ifdef CONFIG_PREEMPT_RT
600       preempt_disable();
601 #else
602       VM_BUG_ON(!irqs_disabled());
603 #endif
604 }
605 
606 static void __memcg_stats_lock(void)
607 {
608 #ifdef CONFIG_PREEMPT_RT
609       preempt_disable();
610 #endif
611 }
612 
613 static void memcg_stats_unlock(void)
614 {
615 #ifdef CONFIG_PREEMPT_RT
616       preempt_enable();
617 #endif
618 }
619 
620 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val)
621 {
622 	unsigned int x;
623 
624 	cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
625 
626 	x = __this_cpu_add_return(stats_updates, abs(val));
627 	if (x > MEMCG_CHARGE_BATCH) {
628 		atomic_add(x / MEMCG_CHARGE_BATCH, &stats_flush_threshold);
629 		__this_cpu_write(stats_updates, 0);
630 	}
631 }
632 
633 static void __mem_cgroup_flush_stats(void)
634 {
635 	unsigned long flag;
636 
637 	if (!spin_trylock_irqsave(&stats_flush_lock, flag))
638 		return;
639 
640 	flush_next_time = jiffies_64 + 2*FLUSH_TIME;
641 	cgroup_rstat_flush_irqsafe(root_mem_cgroup->css.cgroup);
642 	atomic_set(&stats_flush_threshold, 0);
643 	spin_unlock_irqrestore(&stats_flush_lock, flag);
644 }
645 
646 void mem_cgroup_flush_stats(void)
647 {
648 	if (atomic_read(&stats_flush_threshold) > num_online_cpus())
649 		__mem_cgroup_flush_stats();
650 }
651 
652 void mem_cgroup_flush_stats_delayed(void)
653 {
654 	if (time_after64(jiffies_64, flush_next_time))
655 		mem_cgroup_flush_stats();
656 }
657 
658 static void flush_memcg_stats_dwork(struct work_struct *w)
659 {
660 	__mem_cgroup_flush_stats();
661 	queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME);
662 }
663 
664 /**
665  * __mod_memcg_state - update cgroup memory statistics
666  * @memcg: the memory cgroup
667  * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
668  * @val: delta to add to the counter, can be negative
669  */
670 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
671 {
672 	if (mem_cgroup_disabled())
673 		return;
674 
675 	__this_cpu_add(memcg->vmstats_percpu->state[idx], val);
676 	memcg_rstat_updated(memcg, val);
677 }
678 
679 /* idx can be of type enum memcg_stat_item or node_stat_item. */
680 static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
681 {
682 	long x = 0;
683 	int cpu;
684 
685 	for_each_possible_cpu(cpu)
686 		x += per_cpu(memcg->vmstats_percpu->state[idx], cpu);
687 #ifdef CONFIG_SMP
688 	if (x < 0)
689 		x = 0;
690 #endif
691 	return x;
692 }
693 
694 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
695 			      int val)
696 {
697 	struct mem_cgroup_per_node *pn;
698 	struct mem_cgroup *memcg;
699 
700 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
701 	memcg = pn->memcg;
702 
703 	/*
704 	 * The caller from rmap relay on disabled preemption becase they never
705 	 * update their counter from in-interrupt context. For these two
706 	 * counters we check that the update is never performed from an
707 	 * interrupt context while other caller need to have disabled interrupt.
708 	 */
709 	__memcg_stats_lock();
710 	if (IS_ENABLED(CONFIG_DEBUG_VM) && !IS_ENABLED(CONFIG_PREEMPT_RT)) {
711 		switch (idx) {
712 		case NR_ANON_MAPPED:
713 		case NR_FILE_MAPPED:
714 		case NR_ANON_THPS:
715 		case NR_SHMEM_PMDMAPPED:
716 		case NR_FILE_PMDMAPPED:
717 			WARN_ON_ONCE(!in_task());
718 			break;
719 		default:
720 			WARN_ON_ONCE(!irqs_disabled());
721 		}
722 	}
723 
724 	/* Update memcg */
725 	__this_cpu_add(memcg->vmstats_percpu->state[idx], val);
726 
727 	/* Update lruvec */
728 	__this_cpu_add(pn->lruvec_stats_percpu->state[idx], val);
729 
730 	memcg_rstat_updated(memcg, val);
731 	memcg_stats_unlock();
732 }
733 
734 /**
735  * __mod_lruvec_state - update lruvec memory statistics
736  * @lruvec: the lruvec
737  * @idx: the stat item
738  * @val: delta to add to the counter, can be negative
739  *
740  * The lruvec is the intersection of the NUMA node and a cgroup. This
741  * function updates the all three counters that are affected by a
742  * change of state at this level: per-node, per-cgroup, per-lruvec.
743  */
744 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
745 			int val)
746 {
747 	/* Update node */
748 	__mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
749 
750 	/* Update memcg and lruvec */
751 	if (!mem_cgroup_disabled())
752 		__mod_memcg_lruvec_state(lruvec, idx, val);
753 }
754 
755 void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
756 			     int val)
757 {
758 	struct page *head = compound_head(page); /* rmap on tail pages */
759 	struct mem_cgroup *memcg;
760 	pg_data_t *pgdat = page_pgdat(page);
761 	struct lruvec *lruvec;
762 
763 	rcu_read_lock();
764 	memcg = page_memcg(head);
765 	/* Untracked pages have no memcg, no lruvec. Update only the node */
766 	if (!memcg) {
767 		rcu_read_unlock();
768 		__mod_node_page_state(pgdat, idx, val);
769 		return;
770 	}
771 
772 	lruvec = mem_cgroup_lruvec(memcg, pgdat);
773 	__mod_lruvec_state(lruvec, idx, val);
774 	rcu_read_unlock();
775 }
776 EXPORT_SYMBOL(__mod_lruvec_page_state);
777 
778 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
779 {
780 	pg_data_t *pgdat = page_pgdat(virt_to_page(p));
781 	struct mem_cgroup *memcg;
782 	struct lruvec *lruvec;
783 
784 	rcu_read_lock();
785 	memcg = mem_cgroup_from_obj(p);
786 
787 	/*
788 	 * Untracked pages have no memcg, no lruvec. Update only the
789 	 * node. If we reparent the slab objects to the root memcg,
790 	 * when we free the slab object, we need to update the per-memcg
791 	 * vmstats to keep it correct for the root memcg.
792 	 */
793 	if (!memcg) {
794 		__mod_node_page_state(pgdat, idx, val);
795 	} else {
796 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
797 		__mod_lruvec_state(lruvec, idx, val);
798 	}
799 	rcu_read_unlock();
800 }
801 
802 /**
803  * __count_memcg_events - account VM events in a cgroup
804  * @memcg: the memory cgroup
805  * @idx: the event item
806  * @count: the number of events that occurred
807  */
808 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
809 			  unsigned long count)
810 {
811 	if (mem_cgroup_disabled())
812 		return;
813 
814 	memcg_stats_lock();
815 	__this_cpu_add(memcg->vmstats_percpu->events[idx], count);
816 	memcg_rstat_updated(memcg, count);
817 	memcg_stats_unlock();
818 }
819 
820 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
821 {
822 	return READ_ONCE(memcg->vmstats.events[event]);
823 }
824 
825 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
826 {
827 	long x = 0;
828 	int cpu;
829 
830 	for_each_possible_cpu(cpu)
831 		x += per_cpu(memcg->vmstats_percpu->events[event], cpu);
832 	return x;
833 }
834 
835 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
836 					 int nr_pages)
837 {
838 	/* pagein of a big page is an event. So, ignore page size */
839 	if (nr_pages > 0)
840 		__count_memcg_events(memcg, PGPGIN, 1);
841 	else {
842 		__count_memcg_events(memcg, PGPGOUT, 1);
843 		nr_pages = -nr_pages; /* for event */
844 	}
845 
846 	__this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
847 }
848 
849 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
850 				       enum mem_cgroup_events_target target)
851 {
852 	unsigned long val, next;
853 
854 	val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
855 	next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
856 	/* from time_after() in jiffies.h */
857 	if ((long)(next - val) < 0) {
858 		switch (target) {
859 		case MEM_CGROUP_TARGET_THRESH:
860 			next = val + THRESHOLDS_EVENTS_TARGET;
861 			break;
862 		case MEM_CGROUP_TARGET_SOFTLIMIT:
863 			next = val + SOFTLIMIT_EVENTS_TARGET;
864 			break;
865 		default:
866 			break;
867 		}
868 		__this_cpu_write(memcg->vmstats_percpu->targets[target], next);
869 		return true;
870 	}
871 	return false;
872 }
873 
874 /*
875  * Check events in order.
876  *
877  */
878 static void memcg_check_events(struct mem_cgroup *memcg, int nid)
879 {
880 	if (IS_ENABLED(CONFIG_PREEMPT_RT))
881 		return;
882 
883 	/* threshold event is triggered in finer grain than soft limit */
884 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
885 						MEM_CGROUP_TARGET_THRESH))) {
886 		bool do_softlimit;
887 
888 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
889 						MEM_CGROUP_TARGET_SOFTLIMIT);
890 		mem_cgroup_threshold(memcg);
891 		if (unlikely(do_softlimit))
892 			mem_cgroup_update_tree(memcg, nid);
893 	}
894 }
895 
896 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
897 {
898 	/*
899 	 * mm_update_next_owner() may clear mm->owner to NULL
900 	 * if it races with swapoff, page migration, etc.
901 	 * So this can be called with p == NULL.
902 	 */
903 	if (unlikely(!p))
904 		return NULL;
905 
906 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
907 }
908 EXPORT_SYMBOL(mem_cgroup_from_task);
909 
910 static __always_inline struct mem_cgroup *active_memcg(void)
911 {
912 	if (!in_task())
913 		return this_cpu_read(int_active_memcg);
914 	else
915 		return current->active_memcg;
916 }
917 
918 /**
919  * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
920  * @mm: mm from which memcg should be extracted. It can be NULL.
921  *
922  * Obtain a reference on mm->memcg and returns it if successful. If mm
923  * is NULL, then the memcg is chosen as follows:
924  * 1) The active memcg, if set.
925  * 2) current->mm->memcg, if available
926  * 3) root memcg
927  * If mem_cgroup is disabled, NULL is returned.
928  */
929 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
930 {
931 	struct mem_cgroup *memcg;
932 
933 	if (mem_cgroup_disabled())
934 		return NULL;
935 
936 	/*
937 	 * Page cache insertions can happen without an
938 	 * actual mm context, e.g. during disk probing
939 	 * on boot, loopback IO, acct() writes etc.
940 	 *
941 	 * No need to css_get on root memcg as the reference
942 	 * counting is disabled on the root level in the
943 	 * cgroup core. See CSS_NO_REF.
944 	 */
945 	if (unlikely(!mm)) {
946 		memcg = active_memcg();
947 		if (unlikely(memcg)) {
948 			/* remote memcg must hold a ref */
949 			css_get(&memcg->css);
950 			return memcg;
951 		}
952 		mm = current->mm;
953 		if (unlikely(!mm))
954 			return root_mem_cgroup;
955 	}
956 
957 	rcu_read_lock();
958 	do {
959 		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
960 		if (unlikely(!memcg))
961 			memcg = root_mem_cgroup;
962 	} while (!css_tryget(&memcg->css));
963 	rcu_read_unlock();
964 	return memcg;
965 }
966 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
967 
968 static __always_inline bool memcg_kmem_bypass(void)
969 {
970 	/* Allow remote memcg charging from any context. */
971 	if (unlikely(active_memcg()))
972 		return false;
973 
974 	/* Memcg to charge can't be determined. */
975 	if (!in_task() || !current->mm || (current->flags & PF_KTHREAD))
976 		return true;
977 
978 	return false;
979 }
980 
981 /**
982  * mem_cgroup_iter - iterate over memory cgroup hierarchy
983  * @root: hierarchy root
984  * @prev: previously returned memcg, NULL on first invocation
985  * @reclaim: cookie for shared reclaim walks, NULL for full walks
986  *
987  * Returns references to children of the hierarchy below @root, or
988  * @root itself, or %NULL after a full round-trip.
989  *
990  * Caller must pass the return value in @prev on subsequent
991  * invocations for reference counting, or use mem_cgroup_iter_break()
992  * to cancel a hierarchy walk before the round-trip is complete.
993  *
994  * Reclaimers can specify a node in @reclaim to divide up the memcgs
995  * in the hierarchy among all concurrent reclaimers operating on the
996  * same node.
997  */
998 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
999 				   struct mem_cgroup *prev,
1000 				   struct mem_cgroup_reclaim_cookie *reclaim)
1001 {
1002 	struct mem_cgroup_reclaim_iter *iter;
1003 	struct cgroup_subsys_state *css = NULL;
1004 	struct mem_cgroup *memcg = NULL;
1005 	struct mem_cgroup *pos = NULL;
1006 
1007 	if (mem_cgroup_disabled())
1008 		return NULL;
1009 
1010 	if (!root)
1011 		root = root_mem_cgroup;
1012 
1013 	rcu_read_lock();
1014 
1015 	if (reclaim) {
1016 		struct mem_cgroup_per_node *mz;
1017 
1018 		mz = root->nodeinfo[reclaim->pgdat->node_id];
1019 		iter = &mz->iter;
1020 
1021 		/*
1022 		 * On start, join the current reclaim iteration cycle.
1023 		 * Exit when a concurrent walker completes it.
1024 		 */
1025 		if (!prev)
1026 			reclaim->generation = iter->generation;
1027 		else if (reclaim->generation != iter->generation)
1028 			goto out_unlock;
1029 
1030 		while (1) {
1031 			pos = READ_ONCE(iter->position);
1032 			if (!pos || css_tryget(&pos->css))
1033 				break;
1034 			/*
1035 			 * css reference reached zero, so iter->position will
1036 			 * be cleared by ->css_released. However, we should not
1037 			 * rely on this happening soon, because ->css_released
1038 			 * is called from a work queue, and by busy-waiting we
1039 			 * might block it. So we clear iter->position right
1040 			 * away.
1041 			 */
1042 			(void)cmpxchg(&iter->position, pos, NULL);
1043 		}
1044 	} else if (prev) {
1045 		pos = prev;
1046 	}
1047 
1048 	if (pos)
1049 		css = &pos->css;
1050 
1051 	for (;;) {
1052 		css = css_next_descendant_pre(css, &root->css);
1053 		if (!css) {
1054 			/*
1055 			 * Reclaimers share the hierarchy walk, and a
1056 			 * new one might jump in right at the end of
1057 			 * the hierarchy - make sure they see at least
1058 			 * one group and restart from the beginning.
1059 			 */
1060 			if (!prev)
1061 				continue;
1062 			break;
1063 		}
1064 
1065 		/*
1066 		 * Verify the css and acquire a reference.  The root
1067 		 * is provided by the caller, so we know it's alive
1068 		 * and kicking, and don't take an extra reference.
1069 		 */
1070 		if (css == &root->css || css_tryget(css)) {
1071 			memcg = mem_cgroup_from_css(css);
1072 			break;
1073 		}
1074 	}
1075 
1076 	if (reclaim) {
1077 		/*
1078 		 * The position could have already been updated by a competing
1079 		 * thread, so check that the value hasn't changed since we read
1080 		 * it to avoid reclaiming from the same cgroup twice.
1081 		 */
1082 		(void)cmpxchg(&iter->position, pos, memcg);
1083 
1084 		if (pos)
1085 			css_put(&pos->css);
1086 
1087 		if (!memcg)
1088 			iter->generation++;
1089 	}
1090 
1091 out_unlock:
1092 	rcu_read_unlock();
1093 	if (prev && prev != root)
1094 		css_put(&prev->css);
1095 
1096 	return memcg;
1097 }
1098 
1099 /**
1100  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1101  * @root: hierarchy root
1102  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1103  */
1104 void mem_cgroup_iter_break(struct mem_cgroup *root,
1105 			   struct mem_cgroup *prev)
1106 {
1107 	if (!root)
1108 		root = root_mem_cgroup;
1109 	if (prev && prev != root)
1110 		css_put(&prev->css);
1111 }
1112 
1113 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1114 					struct mem_cgroup *dead_memcg)
1115 {
1116 	struct mem_cgroup_reclaim_iter *iter;
1117 	struct mem_cgroup_per_node *mz;
1118 	int nid;
1119 
1120 	for_each_node(nid) {
1121 		mz = from->nodeinfo[nid];
1122 		iter = &mz->iter;
1123 		cmpxchg(&iter->position, dead_memcg, NULL);
1124 	}
1125 }
1126 
1127 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1128 {
1129 	struct mem_cgroup *memcg = dead_memcg;
1130 	struct mem_cgroup *last;
1131 
1132 	do {
1133 		__invalidate_reclaim_iterators(memcg, dead_memcg);
1134 		last = memcg;
1135 	} while ((memcg = parent_mem_cgroup(memcg)));
1136 
1137 	/*
1138 	 * When cgruop1 non-hierarchy mode is used,
1139 	 * parent_mem_cgroup() does not walk all the way up to the
1140 	 * cgroup root (root_mem_cgroup). So we have to handle
1141 	 * dead_memcg from cgroup root separately.
1142 	 */
1143 	if (last != root_mem_cgroup)
1144 		__invalidate_reclaim_iterators(root_mem_cgroup,
1145 						dead_memcg);
1146 }
1147 
1148 /**
1149  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1150  * @memcg: hierarchy root
1151  * @fn: function to call for each task
1152  * @arg: argument passed to @fn
1153  *
1154  * This function iterates over tasks attached to @memcg or to any of its
1155  * descendants and calls @fn for each task. If @fn returns a non-zero
1156  * value, the function breaks the iteration loop and returns the value.
1157  * Otherwise, it will iterate over all tasks and return 0.
1158  *
1159  * This function must not be called for the root memory cgroup.
1160  */
1161 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1162 			  int (*fn)(struct task_struct *, void *), void *arg)
1163 {
1164 	struct mem_cgroup *iter;
1165 	int ret = 0;
1166 
1167 	BUG_ON(memcg == root_mem_cgroup);
1168 
1169 	for_each_mem_cgroup_tree(iter, memcg) {
1170 		struct css_task_iter it;
1171 		struct task_struct *task;
1172 
1173 		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1174 		while (!ret && (task = css_task_iter_next(&it)))
1175 			ret = fn(task, arg);
1176 		css_task_iter_end(&it);
1177 		if (ret) {
1178 			mem_cgroup_iter_break(memcg, iter);
1179 			break;
1180 		}
1181 	}
1182 	return ret;
1183 }
1184 
1185 #ifdef CONFIG_DEBUG_VM
1186 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1187 {
1188 	struct mem_cgroup *memcg;
1189 
1190 	if (mem_cgroup_disabled())
1191 		return;
1192 
1193 	memcg = folio_memcg(folio);
1194 
1195 	if (!memcg)
1196 		VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != root_mem_cgroup, folio);
1197 	else
1198 		VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
1199 }
1200 #endif
1201 
1202 /**
1203  * folio_lruvec_lock - Lock the lruvec for a folio.
1204  * @folio: Pointer to the folio.
1205  *
1206  * These functions are safe to use under any of the following conditions:
1207  * - folio locked
1208  * - folio_test_lru false
1209  * - folio_memcg_lock()
1210  * - folio frozen (refcount of 0)
1211  *
1212  * Return: The lruvec this folio is on with its lock held.
1213  */
1214 struct lruvec *folio_lruvec_lock(struct folio *folio)
1215 {
1216 	struct lruvec *lruvec = folio_lruvec(folio);
1217 
1218 	spin_lock(&lruvec->lru_lock);
1219 	lruvec_memcg_debug(lruvec, folio);
1220 
1221 	return lruvec;
1222 }
1223 
1224 /**
1225  * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1226  * @folio: Pointer to the folio.
1227  *
1228  * These functions are safe to use under any of the following conditions:
1229  * - folio locked
1230  * - folio_test_lru false
1231  * - folio_memcg_lock()
1232  * - folio frozen (refcount of 0)
1233  *
1234  * Return: The lruvec this folio is on with its lock held and interrupts
1235  * disabled.
1236  */
1237 struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1238 {
1239 	struct lruvec *lruvec = folio_lruvec(folio);
1240 
1241 	spin_lock_irq(&lruvec->lru_lock);
1242 	lruvec_memcg_debug(lruvec, folio);
1243 
1244 	return lruvec;
1245 }
1246 
1247 /**
1248  * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1249  * @folio: Pointer to the folio.
1250  * @flags: Pointer to irqsave flags.
1251  *
1252  * These functions are safe to use under any of the following conditions:
1253  * - folio locked
1254  * - folio_test_lru false
1255  * - folio_memcg_lock()
1256  * - folio frozen (refcount of 0)
1257  *
1258  * Return: The lruvec this folio is on with its lock held and interrupts
1259  * disabled.
1260  */
1261 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1262 		unsigned long *flags)
1263 {
1264 	struct lruvec *lruvec = folio_lruvec(folio);
1265 
1266 	spin_lock_irqsave(&lruvec->lru_lock, *flags);
1267 	lruvec_memcg_debug(lruvec, folio);
1268 
1269 	return lruvec;
1270 }
1271 
1272 /**
1273  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1274  * @lruvec: mem_cgroup per zone lru vector
1275  * @lru: index of lru list the page is sitting on
1276  * @zid: zone id of the accounted pages
1277  * @nr_pages: positive when adding or negative when removing
1278  *
1279  * This function must be called under lru_lock, just before a page is added
1280  * to or just after a page is removed from an lru list.
1281  */
1282 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1283 				int zid, int nr_pages)
1284 {
1285 	struct mem_cgroup_per_node *mz;
1286 	unsigned long *lru_size;
1287 	long size;
1288 
1289 	if (mem_cgroup_disabled())
1290 		return;
1291 
1292 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1293 	lru_size = &mz->lru_zone_size[zid][lru];
1294 
1295 	if (nr_pages < 0)
1296 		*lru_size += nr_pages;
1297 
1298 	size = *lru_size;
1299 	if (WARN_ONCE(size < 0,
1300 		"%s(%p, %d, %d): lru_size %ld\n",
1301 		__func__, lruvec, lru, nr_pages, size)) {
1302 		VM_BUG_ON(1);
1303 		*lru_size = 0;
1304 	}
1305 
1306 	if (nr_pages > 0)
1307 		*lru_size += nr_pages;
1308 }
1309 
1310 /**
1311  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1312  * @memcg: the memory cgroup
1313  *
1314  * Returns the maximum amount of memory @mem can be charged with, in
1315  * pages.
1316  */
1317 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1318 {
1319 	unsigned long margin = 0;
1320 	unsigned long count;
1321 	unsigned long limit;
1322 
1323 	count = page_counter_read(&memcg->memory);
1324 	limit = READ_ONCE(memcg->memory.max);
1325 	if (count < limit)
1326 		margin = limit - count;
1327 
1328 	if (do_memsw_account()) {
1329 		count = page_counter_read(&memcg->memsw);
1330 		limit = READ_ONCE(memcg->memsw.max);
1331 		if (count < limit)
1332 			margin = min(margin, limit - count);
1333 		else
1334 			margin = 0;
1335 	}
1336 
1337 	return margin;
1338 }
1339 
1340 /*
1341  * A routine for checking "mem" is under move_account() or not.
1342  *
1343  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1344  * moving cgroups. This is for waiting at high-memory pressure
1345  * caused by "move".
1346  */
1347 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1348 {
1349 	struct mem_cgroup *from;
1350 	struct mem_cgroup *to;
1351 	bool ret = false;
1352 	/*
1353 	 * Unlike task_move routines, we access mc.to, mc.from not under
1354 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1355 	 */
1356 	spin_lock(&mc.lock);
1357 	from = mc.from;
1358 	to = mc.to;
1359 	if (!from)
1360 		goto unlock;
1361 
1362 	ret = mem_cgroup_is_descendant(from, memcg) ||
1363 		mem_cgroup_is_descendant(to, memcg);
1364 unlock:
1365 	spin_unlock(&mc.lock);
1366 	return ret;
1367 }
1368 
1369 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1370 {
1371 	if (mc.moving_task && current != mc.moving_task) {
1372 		if (mem_cgroup_under_move(memcg)) {
1373 			DEFINE_WAIT(wait);
1374 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1375 			/* moving charge context might have finished. */
1376 			if (mc.moving_task)
1377 				schedule();
1378 			finish_wait(&mc.waitq, &wait);
1379 			return true;
1380 		}
1381 	}
1382 	return false;
1383 }
1384 
1385 struct memory_stat {
1386 	const char *name;
1387 	unsigned int idx;
1388 };
1389 
1390 static const struct memory_stat memory_stats[] = {
1391 	{ "anon",			NR_ANON_MAPPED			},
1392 	{ "file",			NR_FILE_PAGES			},
1393 	{ "kernel",			MEMCG_KMEM			},
1394 	{ "kernel_stack",		NR_KERNEL_STACK_KB		},
1395 	{ "pagetables",			NR_PAGETABLE			},
1396 	{ "percpu",			MEMCG_PERCPU_B			},
1397 	{ "sock",			MEMCG_SOCK			},
1398 	{ "vmalloc",			MEMCG_VMALLOC			},
1399 	{ "shmem",			NR_SHMEM			},
1400 	{ "file_mapped",		NR_FILE_MAPPED			},
1401 	{ "file_dirty",			NR_FILE_DIRTY			},
1402 	{ "file_writeback",		NR_WRITEBACK			},
1403 #ifdef CONFIG_SWAP
1404 	{ "swapcached",			NR_SWAPCACHE			},
1405 #endif
1406 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1407 	{ "anon_thp",			NR_ANON_THPS			},
1408 	{ "file_thp",			NR_FILE_THPS			},
1409 	{ "shmem_thp",			NR_SHMEM_THPS			},
1410 #endif
1411 	{ "inactive_anon",		NR_INACTIVE_ANON		},
1412 	{ "active_anon",		NR_ACTIVE_ANON			},
1413 	{ "inactive_file",		NR_INACTIVE_FILE		},
1414 	{ "active_file",		NR_ACTIVE_FILE			},
1415 	{ "unevictable",		NR_UNEVICTABLE			},
1416 	{ "slab_reclaimable",		NR_SLAB_RECLAIMABLE_B		},
1417 	{ "slab_unreclaimable",		NR_SLAB_UNRECLAIMABLE_B		},
1418 
1419 	/* The memory events */
1420 	{ "workingset_refault_anon",	WORKINGSET_REFAULT_ANON		},
1421 	{ "workingset_refault_file",	WORKINGSET_REFAULT_FILE		},
1422 	{ "workingset_activate_anon",	WORKINGSET_ACTIVATE_ANON	},
1423 	{ "workingset_activate_file",	WORKINGSET_ACTIVATE_FILE	},
1424 	{ "workingset_restore_anon",	WORKINGSET_RESTORE_ANON		},
1425 	{ "workingset_restore_file",	WORKINGSET_RESTORE_FILE		},
1426 	{ "workingset_nodereclaim",	WORKINGSET_NODERECLAIM		},
1427 };
1428 
1429 /* Translate stat items to the correct unit for memory.stat output */
1430 static int memcg_page_state_unit(int item)
1431 {
1432 	switch (item) {
1433 	case MEMCG_PERCPU_B:
1434 	case NR_SLAB_RECLAIMABLE_B:
1435 	case NR_SLAB_UNRECLAIMABLE_B:
1436 	case WORKINGSET_REFAULT_ANON:
1437 	case WORKINGSET_REFAULT_FILE:
1438 	case WORKINGSET_ACTIVATE_ANON:
1439 	case WORKINGSET_ACTIVATE_FILE:
1440 	case WORKINGSET_RESTORE_ANON:
1441 	case WORKINGSET_RESTORE_FILE:
1442 	case WORKINGSET_NODERECLAIM:
1443 		return 1;
1444 	case NR_KERNEL_STACK_KB:
1445 		return SZ_1K;
1446 	default:
1447 		return PAGE_SIZE;
1448 	}
1449 }
1450 
1451 static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1452 						    int item)
1453 {
1454 	return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1455 }
1456 
1457 static char *memory_stat_format(struct mem_cgroup *memcg)
1458 {
1459 	struct seq_buf s;
1460 	int i;
1461 
1462 	seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1463 	if (!s.buffer)
1464 		return NULL;
1465 
1466 	/*
1467 	 * Provide statistics on the state of the memory subsystem as
1468 	 * well as cumulative event counters that show past behavior.
1469 	 *
1470 	 * This list is ordered following a combination of these gradients:
1471 	 * 1) generic big picture -> specifics and details
1472 	 * 2) reflecting userspace activity -> reflecting kernel heuristics
1473 	 *
1474 	 * Current memory state:
1475 	 */
1476 	mem_cgroup_flush_stats();
1477 
1478 	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1479 		u64 size;
1480 
1481 		size = memcg_page_state_output(memcg, memory_stats[i].idx);
1482 		seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
1483 
1484 		if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1485 			size += memcg_page_state_output(memcg,
1486 							NR_SLAB_RECLAIMABLE_B);
1487 			seq_buf_printf(&s, "slab %llu\n", size);
1488 		}
1489 	}
1490 
1491 	/* Accumulated memory events */
1492 
1493 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1494 		       memcg_events(memcg, PGFAULT));
1495 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1496 		       memcg_events(memcg, PGMAJFAULT));
1497 	seq_buf_printf(&s, "%s %lu\n",  vm_event_name(PGREFILL),
1498 		       memcg_events(memcg, PGREFILL));
1499 	seq_buf_printf(&s, "pgscan %lu\n",
1500 		       memcg_events(memcg, PGSCAN_KSWAPD) +
1501 		       memcg_events(memcg, PGSCAN_DIRECT));
1502 	seq_buf_printf(&s, "pgsteal %lu\n",
1503 		       memcg_events(memcg, PGSTEAL_KSWAPD) +
1504 		       memcg_events(memcg, PGSTEAL_DIRECT));
1505 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1506 		       memcg_events(memcg, PGACTIVATE));
1507 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1508 		       memcg_events(memcg, PGDEACTIVATE));
1509 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1510 		       memcg_events(memcg, PGLAZYFREE));
1511 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1512 		       memcg_events(memcg, PGLAZYFREED));
1513 
1514 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1515 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1516 		       memcg_events(memcg, THP_FAULT_ALLOC));
1517 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1518 		       memcg_events(memcg, THP_COLLAPSE_ALLOC));
1519 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1520 
1521 	/* The above should easily fit into one page */
1522 	WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1523 
1524 	return s.buffer;
1525 }
1526 
1527 #define K(x) ((x) << (PAGE_SHIFT-10))
1528 /**
1529  * mem_cgroup_print_oom_context: Print OOM information relevant to
1530  * memory controller.
1531  * @memcg: The memory cgroup that went over limit
1532  * @p: Task that is going to be killed
1533  *
1534  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1535  * enabled
1536  */
1537 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1538 {
1539 	rcu_read_lock();
1540 
1541 	if (memcg) {
1542 		pr_cont(",oom_memcg=");
1543 		pr_cont_cgroup_path(memcg->css.cgroup);
1544 	} else
1545 		pr_cont(",global_oom");
1546 	if (p) {
1547 		pr_cont(",task_memcg=");
1548 		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1549 	}
1550 	rcu_read_unlock();
1551 }
1552 
1553 /**
1554  * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1555  * memory controller.
1556  * @memcg: The memory cgroup that went over limit
1557  */
1558 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1559 {
1560 	char *buf;
1561 
1562 	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1563 		K((u64)page_counter_read(&memcg->memory)),
1564 		K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1565 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1566 		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1567 			K((u64)page_counter_read(&memcg->swap)),
1568 			K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1569 	else {
1570 		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1571 			K((u64)page_counter_read(&memcg->memsw)),
1572 			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1573 		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1574 			K((u64)page_counter_read(&memcg->kmem)),
1575 			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1576 	}
1577 
1578 	pr_info("Memory cgroup stats for ");
1579 	pr_cont_cgroup_path(memcg->css.cgroup);
1580 	pr_cont(":");
1581 	buf = memory_stat_format(memcg);
1582 	if (!buf)
1583 		return;
1584 	pr_info("%s", buf);
1585 	kfree(buf);
1586 }
1587 
1588 /*
1589  * Return the memory (and swap, if configured) limit for a memcg.
1590  */
1591 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1592 {
1593 	unsigned long max = READ_ONCE(memcg->memory.max);
1594 
1595 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
1596 		if (mem_cgroup_swappiness(memcg))
1597 			max += min(READ_ONCE(memcg->swap.max),
1598 				   (unsigned long)total_swap_pages);
1599 	} else { /* v1 */
1600 		if (mem_cgroup_swappiness(memcg)) {
1601 			/* Calculate swap excess capacity from memsw limit */
1602 			unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1603 
1604 			max += min(swap, (unsigned long)total_swap_pages);
1605 		}
1606 	}
1607 	return max;
1608 }
1609 
1610 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1611 {
1612 	return page_counter_read(&memcg->memory);
1613 }
1614 
1615 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1616 				     int order)
1617 {
1618 	struct oom_control oc = {
1619 		.zonelist = NULL,
1620 		.nodemask = NULL,
1621 		.memcg = memcg,
1622 		.gfp_mask = gfp_mask,
1623 		.order = order,
1624 	};
1625 	bool ret = true;
1626 
1627 	if (mutex_lock_killable(&oom_lock))
1628 		return true;
1629 
1630 	if (mem_cgroup_margin(memcg) >= (1 << order))
1631 		goto unlock;
1632 
1633 	/*
1634 	 * A few threads which were not waiting at mutex_lock_killable() can
1635 	 * fail to bail out. Therefore, check again after holding oom_lock.
1636 	 */
1637 	ret = task_is_dying() || out_of_memory(&oc);
1638 
1639 unlock:
1640 	mutex_unlock(&oom_lock);
1641 	return ret;
1642 }
1643 
1644 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1645 				   pg_data_t *pgdat,
1646 				   gfp_t gfp_mask,
1647 				   unsigned long *total_scanned)
1648 {
1649 	struct mem_cgroup *victim = NULL;
1650 	int total = 0;
1651 	int loop = 0;
1652 	unsigned long excess;
1653 	unsigned long nr_scanned;
1654 	struct mem_cgroup_reclaim_cookie reclaim = {
1655 		.pgdat = pgdat,
1656 	};
1657 
1658 	excess = soft_limit_excess(root_memcg);
1659 
1660 	while (1) {
1661 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1662 		if (!victim) {
1663 			loop++;
1664 			if (loop >= 2) {
1665 				/*
1666 				 * If we have not been able to reclaim
1667 				 * anything, it might because there are
1668 				 * no reclaimable pages under this hierarchy
1669 				 */
1670 				if (!total)
1671 					break;
1672 				/*
1673 				 * We want to do more targeted reclaim.
1674 				 * excess >> 2 is not to excessive so as to
1675 				 * reclaim too much, nor too less that we keep
1676 				 * coming back to reclaim from this cgroup
1677 				 */
1678 				if (total >= (excess >> 2) ||
1679 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1680 					break;
1681 			}
1682 			continue;
1683 		}
1684 		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1685 					pgdat, &nr_scanned);
1686 		*total_scanned += nr_scanned;
1687 		if (!soft_limit_excess(root_memcg))
1688 			break;
1689 	}
1690 	mem_cgroup_iter_break(root_memcg, victim);
1691 	return total;
1692 }
1693 
1694 #ifdef CONFIG_LOCKDEP
1695 static struct lockdep_map memcg_oom_lock_dep_map = {
1696 	.name = "memcg_oom_lock",
1697 };
1698 #endif
1699 
1700 static DEFINE_SPINLOCK(memcg_oom_lock);
1701 
1702 /*
1703  * Check OOM-Killer is already running under our hierarchy.
1704  * If someone is running, return false.
1705  */
1706 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1707 {
1708 	struct mem_cgroup *iter, *failed = NULL;
1709 
1710 	spin_lock(&memcg_oom_lock);
1711 
1712 	for_each_mem_cgroup_tree(iter, memcg) {
1713 		if (iter->oom_lock) {
1714 			/*
1715 			 * this subtree of our hierarchy is already locked
1716 			 * so we cannot give a lock.
1717 			 */
1718 			failed = iter;
1719 			mem_cgroup_iter_break(memcg, iter);
1720 			break;
1721 		} else
1722 			iter->oom_lock = true;
1723 	}
1724 
1725 	if (failed) {
1726 		/*
1727 		 * OK, we failed to lock the whole subtree so we have
1728 		 * to clean up what we set up to the failing subtree
1729 		 */
1730 		for_each_mem_cgroup_tree(iter, memcg) {
1731 			if (iter == failed) {
1732 				mem_cgroup_iter_break(memcg, iter);
1733 				break;
1734 			}
1735 			iter->oom_lock = false;
1736 		}
1737 	} else
1738 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1739 
1740 	spin_unlock(&memcg_oom_lock);
1741 
1742 	return !failed;
1743 }
1744 
1745 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1746 {
1747 	struct mem_cgroup *iter;
1748 
1749 	spin_lock(&memcg_oom_lock);
1750 	mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1751 	for_each_mem_cgroup_tree(iter, memcg)
1752 		iter->oom_lock = false;
1753 	spin_unlock(&memcg_oom_lock);
1754 }
1755 
1756 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1757 {
1758 	struct mem_cgroup *iter;
1759 
1760 	spin_lock(&memcg_oom_lock);
1761 	for_each_mem_cgroup_tree(iter, memcg)
1762 		iter->under_oom++;
1763 	spin_unlock(&memcg_oom_lock);
1764 }
1765 
1766 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1767 {
1768 	struct mem_cgroup *iter;
1769 
1770 	/*
1771 	 * Be careful about under_oom underflows because a child memcg
1772 	 * could have been added after mem_cgroup_mark_under_oom.
1773 	 */
1774 	spin_lock(&memcg_oom_lock);
1775 	for_each_mem_cgroup_tree(iter, memcg)
1776 		if (iter->under_oom > 0)
1777 			iter->under_oom--;
1778 	spin_unlock(&memcg_oom_lock);
1779 }
1780 
1781 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1782 
1783 struct oom_wait_info {
1784 	struct mem_cgroup *memcg;
1785 	wait_queue_entry_t	wait;
1786 };
1787 
1788 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1789 	unsigned mode, int sync, void *arg)
1790 {
1791 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1792 	struct mem_cgroup *oom_wait_memcg;
1793 	struct oom_wait_info *oom_wait_info;
1794 
1795 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1796 	oom_wait_memcg = oom_wait_info->memcg;
1797 
1798 	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1799 	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1800 		return 0;
1801 	return autoremove_wake_function(wait, mode, sync, arg);
1802 }
1803 
1804 static void memcg_oom_recover(struct mem_cgroup *memcg)
1805 {
1806 	/*
1807 	 * For the following lockless ->under_oom test, the only required
1808 	 * guarantee is that it must see the state asserted by an OOM when
1809 	 * this function is called as a result of userland actions
1810 	 * triggered by the notification of the OOM.  This is trivially
1811 	 * achieved by invoking mem_cgroup_mark_under_oom() before
1812 	 * triggering notification.
1813 	 */
1814 	if (memcg && memcg->under_oom)
1815 		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1816 }
1817 
1818 /*
1819  * Returns true if successfully killed one or more processes. Though in some
1820  * corner cases it can return true even without killing any process.
1821  */
1822 static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1823 {
1824 	bool locked, ret;
1825 
1826 	if (order > PAGE_ALLOC_COSTLY_ORDER)
1827 		return false;
1828 
1829 	memcg_memory_event(memcg, MEMCG_OOM);
1830 
1831 	/*
1832 	 * We are in the middle of the charge context here, so we
1833 	 * don't want to block when potentially sitting on a callstack
1834 	 * that holds all kinds of filesystem and mm locks.
1835 	 *
1836 	 * cgroup1 allows disabling the OOM killer and waiting for outside
1837 	 * handling until the charge can succeed; remember the context and put
1838 	 * the task to sleep at the end of the page fault when all locks are
1839 	 * released.
1840 	 *
1841 	 * On the other hand, in-kernel OOM killer allows for an async victim
1842 	 * memory reclaim (oom_reaper) and that means that we are not solely
1843 	 * relying on the oom victim to make a forward progress and we can
1844 	 * invoke the oom killer here.
1845 	 *
1846 	 * Please note that mem_cgroup_out_of_memory might fail to find a
1847 	 * victim and then we have to bail out from the charge path.
1848 	 */
1849 	if (memcg->oom_kill_disable) {
1850 		if (current->in_user_fault) {
1851 			css_get(&memcg->css);
1852 			current->memcg_in_oom = memcg;
1853 			current->memcg_oom_gfp_mask = mask;
1854 			current->memcg_oom_order = order;
1855 		}
1856 		return false;
1857 	}
1858 
1859 	mem_cgroup_mark_under_oom(memcg);
1860 
1861 	locked = mem_cgroup_oom_trylock(memcg);
1862 
1863 	if (locked)
1864 		mem_cgroup_oom_notify(memcg);
1865 
1866 	mem_cgroup_unmark_under_oom(memcg);
1867 	ret = mem_cgroup_out_of_memory(memcg, mask, order);
1868 
1869 	if (locked)
1870 		mem_cgroup_oom_unlock(memcg);
1871 
1872 	return ret;
1873 }
1874 
1875 /**
1876  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1877  * @handle: actually kill/wait or just clean up the OOM state
1878  *
1879  * This has to be called at the end of a page fault if the memcg OOM
1880  * handler was enabled.
1881  *
1882  * Memcg supports userspace OOM handling where failed allocations must
1883  * sleep on a waitqueue until the userspace task resolves the
1884  * situation.  Sleeping directly in the charge context with all kinds
1885  * of locks held is not a good idea, instead we remember an OOM state
1886  * in the task and mem_cgroup_oom_synchronize() has to be called at
1887  * the end of the page fault to complete the OOM handling.
1888  *
1889  * Returns %true if an ongoing memcg OOM situation was detected and
1890  * completed, %false otherwise.
1891  */
1892 bool mem_cgroup_oom_synchronize(bool handle)
1893 {
1894 	struct mem_cgroup *memcg = current->memcg_in_oom;
1895 	struct oom_wait_info owait;
1896 	bool locked;
1897 
1898 	/* OOM is global, do not handle */
1899 	if (!memcg)
1900 		return false;
1901 
1902 	if (!handle)
1903 		goto cleanup;
1904 
1905 	owait.memcg = memcg;
1906 	owait.wait.flags = 0;
1907 	owait.wait.func = memcg_oom_wake_function;
1908 	owait.wait.private = current;
1909 	INIT_LIST_HEAD(&owait.wait.entry);
1910 
1911 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1912 	mem_cgroup_mark_under_oom(memcg);
1913 
1914 	locked = mem_cgroup_oom_trylock(memcg);
1915 
1916 	if (locked)
1917 		mem_cgroup_oom_notify(memcg);
1918 
1919 	if (locked && !memcg->oom_kill_disable) {
1920 		mem_cgroup_unmark_under_oom(memcg);
1921 		finish_wait(&memcg_oom_waitq, &owait.wait);
1922 		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1923 					 current->memcg_oom_order);
1924 	} else {
1925 		schedule();
1926 		mem_cgroup_unmark_under_oom(memcg);
1927 		finish_wait(&memcg_oom_waitq, &owait.wait);
1928 	}
1929 
1930 	if (locked) {
1931 		mem_cgroup_oom_unlock(memcg);
1932 		/*
1933 		 * There is no guarantee that an OOM-lock contender
1934 		 * sees the wakeups triggered by the OOM kill
1935 		 * uncharges.  Wake any sleepers explicitly.
1936 		 */
1937 		memcg_oom_recover(memcg);
1938 	}
1939 cleanup:
1940 	current->memcg_in_oom = NULL;
1941 	css_put(&memcg->css);
1942 	return true;
1943 }
1944 
1945 /**
1946  * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1947  * @victim: task to be killed by the OOM killer
1948  * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1949  *
1950  * Returns a pointer to a memory cgroup, which has to be cleaned up
1951  * by killing all belonging OOM-killable tasks.
1952  *
1953  * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1954  */
1955 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1956 					    struct mem_cgroup *oom_domain)
1957 {
1958 	struct mem_cgroup *oom_group = NULL;
1959 	struct mem_cgroup *memcg;
1960 
1961 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1962 		return NULL;
1963 
1964 	if (!oom_domain)
1965 		oom_domain = root_mem_cgroup;
1966 
1967 	rcu_read_lock();
1968 
1969 	memcg = mem_cgroup_from_task(victim);
1970 	if (memcg == root_mem_cgroup)
1971 		goto out;
1972 
1973 	/*
1974 	 * If the victim task has been asynchronously moved to a different
1975 	 * memory cgroup, we might end up killing tasks outside oom_domain.
1976 	 * In this case it's better to ignore memory.group.oom.
1977 	 */
1978 	if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
1979 		goto out;
1980 
1981 	/*
1982 	 * Traverse the memory cgroup hierarchy from the victim task's
1983 	 * cgroup up to the OOMing cgroup (or root) to find the
1984 	 * highest-level memory cgroup with oom.group set.
1985 	 */
1986 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1987 		if (memcg->oom_group)
1988 			oom_group = memcg;
1989 
1990 		if (memcg == oom_domain)
1991 			break;
1992 	}
1993 
1994 	if (oom_group)
1995 		css_get(&oom_group->css);
1996 out:
1997 	rcu_read_unlock();
1998 
1999 	return oom_group;
2000 }
2001 
2002 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2003 {
2004 	pr_info("Tasks in ");
2005 	pr_cont_cgroup_path(memcg->css.cgroup);
2006 	pr_cont(" are going to be killed due to memory.oom.group set\n");
2007 }
2008 
2009 /**
2010  * folio_memcg_lock - Bind a folio to its memcg.
2011  * @folio: The folio.
2012  *
2013  * This function prevents unlocked LRU folios from being moved to
2014  * another cgroup.
2015  *
2016  * It ensures lifetime of the bound memcg.  The caller is responsible
2017  * for the lifetime of the folio.
2018  */
2019 void folio_memcg_lock(struct folio *folio)
2020 {
2021 	struct mem_cgroup *memcg;
2022 	unsigned long flags;
2023 
2024 	/*
2025 	 * The RCU lock is held throughout the transaction.  The fast
2026 	 * path can get away without acquiring the memcg->move_lock
2027 	 * because page moving starts with an RCU grace period.
2028          */
2029 	rcu_read_lock();
2030 
2031 	if (mem_cgroup_disabled())
2032 		return;
2033 again:
2034 	memcg = folio_memcg(folio);
2035 	if (unlikely(!memcg))
2036 		return;
2037 
2038 #ifdef CONFIG_PROVE_LOCKING
2039 	local_irq_save(flags);
2040 	might_lock(&memcg->move_lock);
2041 	local_irq_restore(flags);
2042 #endif
2043 
2044 	if (atomic_read(&memcg->moving_account) <= 0)
2045 		return;
2046 
2047 	spin_lock_irqsave(&memcg->move_lock, flags);
2048 	if (memcg != folio_memcg(folio)) {
2049 		spin_unlock_irqrestore(&memcg->move_lock, flags);
2050 		goto again;
2051 	}
2052 
2053 	/*
2054 	 * When charge migration first begins, we can have multiple
2055 	 * critical sections holding the fast-path RCU lock and one
2056 	 * holding the slowpath move_lock. Track the task who has the
2057 	 * move_lock for unlock_page_memcg().
2058 	 */
2059 	memcg->move_lock_task = current;
2060 	memcg->move_lock_flags = flags;
2061 }
2062 
2063 void lock_page_memcg(struct page *page)
2064 {
2065 	folio_memcg_lock(page_folio(page));
2066 }
2067 
2068 static void __folio_memcg_unlock(struct mem_cgroup *memcg)
2069 {
2070 	if (memcg && memcg->move_lock_task == current) {
2071 		unsigned long flags = memcg->move_lock_flags;
2072 
2073 		memcg->move_lock_task = NULL;
2074 		memcg->move_lock_flags = 0;
2075 
2076 		spin_unlock_irqrestore(&memcg->move_lock, flags);
2077 	}
2078 
2079 	rcu_read_unlock();
2080 }
2081 
2082 /**
2083  * folio_memcg_unlock - Release the binding between a folio and its memcg.
2084  * @folio: The folio.
2085  *
2086  * This releases the binding created by folio_memcg_lock().  This does
2087  * not change the accounting of this folio to its memcg, but it does
2088  * permit others to change it.
2089  */
2090 void folio_memcg_unlock(struct folio *folio)
2091 {
2092 	__folio_memcg_unlock(folio_memcg(folio));
2093 }
2094 
2095 void unlock_page_memcg(struct page *page)
2096 {
2097 	folio_memcg_unlock(page_folio(page));
2098 }
2099 
2100 struct memcg_stock_pcp {
2101 	local_lock_t stock_lock;
2102 	struct mem_cgroup *cached; /* this never be root cgroup */
2103 	unsigned int nr_pages;
2104 
2105 #ifdef CONFIG_MEMCG_KMEM
2106 	struct obj_cgroup *cached_objcg;
2107 	struct pglist_data *cached_pgdat;
2108 	unsigned int nr_bytes;
2109 	int nr_slab_reclaimable_b;
2110 	int nr_slab_unreclaimable_b;
2111 #endif
2112 
2113 	struct work_struct work;
2114 	unsigned long flags;
2115 #define FLUSHING_CACHED_CHARGE	0
2116 };
2117 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = {
2118 	.stock_lock = INIT_LOCAL_LOCK(stock_lock),
2119 };
2120 static DEFINE_MUTEX(percpu_charge_mutex);
2121 
2122 #ifdef CONFIG_MEMCG_KMEM
2123 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock);
2124 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2125 				     struct mem_cgroup *root_memcg);
2126 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages);
2127 
2128 #else
2129 static inline struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
2130 {
2131 	return NULL;
2132 }
2133 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2134 				     struct mem_cgroup *root_memcg)
2135 {
2136 	return false;
2137 }
2138 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
2139 {
2140 }
2141 #endif
2142 
2143 /**
2144  * consume_stock: Try to consume stocked charge on this cpu.
2145  * @memcg: memcg to consume from.
2146  * @nr_pages: how many pages to charge.
2147  *
2148  * The charges will only happen if @memcg matches the current cpu's memcg
2149  * stock, and at least @nr_pages are available in that stock.  Failure to
2150  * service an allocation will refill the stock.
2151  *
2152  * returns true if successful, false otherwise.
2153  */
2154 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2155 {
2156 	struct memcg_stock_pcp *stock;
2157 	unsigned long flags;
2158 	bool ret = false;
2159 
2160 	if (nr_pages > MEMCG_CHARGE_BATCH)
2161 		return ret;
2162 
2163 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
2164 
2165 	stock = this_cpu_ptr(&memcg_stock);
2166 	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2167 		stock->nr_pages -= nr_pages;
2168 		ret = true;
2169 	}
2170 
2171 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2172 
2173 	return ret;
2174 }
2175 
2176 /*
2177  * Returns stocks cached in percpu and reset cached information.
2178  */
2179 static void drain_stock(struct memcg_stock_pcp *stock)
2180 {
2181 	struct mem_cgroup *old = stock->cached;
2182 
2183 	if (!old)
2184 		return;
2185 
2186 	if (stock->nr_pages) {
2187 		page_counter_uncharge(&old->memory, stock->nr_pages);
2188 		if (do_memsw_account())
2189 			page_counter_uncharge(&old->memsw, stock->nr_pages);
2190 		stock->nr_pages = 0;
2191 	}
2192 
2193 	css_put(&old->css);
2194 	stock->cached = NULL;
2195 }
2196 
2197 static void drain_local_stock(struct work_struct *dummy)
2198 {
2199 	struct memcg_stock_pcp *stock;
2200 	struct obj_cgroup *old = NULL;
2201 	unsigned long flags;
2202 
2203 	/*
2204 	 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
2205 	 * drain_stock races is that we always operate on local CPU stock
2206 	 * here with IRQ disabled
2207 	 */
2208 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
2209 
2210 	stock = this_cpu_ptr(&memcg_stock);
2211 	old = drain_obj_stock(stock);
2212 	drain_stock(stock);
2213 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2214 
2215 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2216 	if (old)
2217 		obj_cgroup_put(old);
2218 }
2219 
2220 /*
2221  * Cache charges(val) to local per_cpu area.
2222  * This will be consumed by consume_stock() function, later.
2223  */
2224 static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2225 {
2226 	struct memcg_stock_pcp *stock;
2227 
2228 	stock = this_cpu_ptr(&memcg_stock);
2229 	if (stock->cached != memcg) { /* reset if necessary */
2230 		drain_stock(stock);
2231 		css_get(&memcg->css);
2232 		stock->cached = memcg;
2233 	}
2234 	stock->nr_pages += nr_pages;
2235 
2236 	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2237 		drain_stock(stock);
2238 }
2239 
2240 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2241 {
2242 	unsigned long flags;
2243 
2244 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
2245 	__refill_stock(memcg, nr_pages);
2246 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2247 }
2248 
2249 /*
2250  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2251  * of the hierarchy under it.
2252  */
2253 static void drain_all_stock(struct mem_cgroup *root_memcg)
2254 {
2255 	int cpu, curcpu;
2256 
2257 	/* If someone's already draining, avoid adding running more workers. */
2258 	if (!mutex_trylock(&percpu_charge_mutex))
2259 		return;
2260 	/*
2261 	 * Notify other cpus that system-wide "drain" is running
2262 	 * We do not care about races with the cpu hotplug because cpu down
2263 	 * as well as workers from this path always operate on the local
2264 	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2265 	 */
2266 	migrate_disable();
2267 	curcpu = smp_processor_id();
2268 	for_each_online_cpu(cpu) {
2269 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2270 		struct mem_cgroup *memcg;
2271 		bool flush = false;
2272 
2273 		rcu_read_lock();
2274 		memcg = stock->cached;
2275 		if (memcg && stock->nr_pages &&
2276 		    mem_cgroup_is_descendant(memcg, root_memcg))
2277 			flush = true;
2278 		else if (obj_stock_flush_required(stock, root_memcg))
2279 			flush = true;
2280 		rcu_read_unlock();
2281 
2282 		if (flush &&
2283 		    !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2284 			if (cpu == curcpu)
2285 				drain_local_stock(&stock->work);
2286 			else
2287 				schedule_work_on(cpu, &stock->work);
2288 		}
2289 	}
2290 	migrate_enable();
2291 	mutex_unlock(&percpu_charge_mutex);
2292 }
2293 
2294 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2295 {
2296 	struct memcg_stock_pcp *stock;
2297 
2298 	stock = &per_cpu(memcg_stock, cpu);
2299 	drain_stock(stock);
2300 
2301 	return 0;
2302 }
2303 
2304 static unsigned long reclaim_high(struct mem_cgroup *memcg,
2305 				  unsigned int nr_pages,
2306 				  gfp_t gfp_mask)
2307 {
2308 	unsigned long nr_reclaimed = 0;
2309 
2310 	do {
2311 		unsigned long pflags;
2312 
2313 		if (page_counter_read(&memcg->memory) <=
2314 		    READ_ONCE(memcg->memory.high))
2315 			continue;
2316 
2317 		memcg_memory_event(memcg, MEMCG_HIGH);
2318 
2319 		psi_memstall_enter(&pflags);
2320 		nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2321 							     gfp_mask, true);
2322 		psi_memstall_leave(&pflags);
2323 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2324 		 !mem_cgroup_is_root(memcg));
2325 
2326 	return nr_reclaimed;
2327 }
2328 
2329 static void high_work_func(struct work_struct *work)
2330 {
2331 	struct mem_cgroup *memcg;
2332 
2333 	memcg = container_of(work, struct mem_cgroup, high_work);
2334 	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2335 }
2336 
2337 /*
2338  * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2339  * enough to still cause a significant slowdown in most cases, while still
2340  * allowing diagnostics and tracing to proceed without becoming stuck.
2341  */
2342 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2343 
2344 /*
2345  * When calculating the delay, we use these either side of the exponentiation to
2346  * maintain precision and scale to a reasonable number of jiffies (see the table
2347  * below.
2348  *
2349  * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2350  *   overage ratio to a delay.
2351  * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2352  *   proposed penalty in order to reduce to a reasonable number of jiffies, and
2353  *   to produce a reasonable delay curve.
2354  *
2355  * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2356  * reasonable delay curve compared to precision-adjusted overage, not
2357  * penalising heavily at first, but still making sure that growth beyond the
2358  * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2359  * example, with a high of 100 megabytes:
2360  *
2361  *  +-------+------------------------+
2362  *  | usage | time to allocate in ms |
2363  *  +-------+------------------------+
2364  *  | 100M  |                      0 |
2365  *  | 101M  |                      6 |
2366  *  | 102M  |                     25 |
2367  *  | 103M  |                     57 |
2368  *  | 104M  |                    102 |
2369  *  | 105M  |                    159 |
2370  *  | 106M  |                    230 |
2371  *  | 107M  |                    313 |
2372  *  | 108M  |                    409 |
2373  *  | 109M  |                    518 |
2374  *  | 110M  |                    639 |
2375  *  | 111M  |                    774 |
2376  *  | 112M  |                    921 |
2377  *  | 113M  |                   1081 |
2378  *  | 114M  |                   1254 |
2379  *  | 115M  |                   1439 |
2380  *  | 116M  |                   1638 |
2381  *  | 117M  |                   1849 |
2382  *  | 118M  |                   2000 |
2383  *  | 119M  |                   2000 |
2384  *  | 120M  |                   2000 |
2385  *  +-------+------------------------+
2386  */
2387  #define MEMCG_DELAY_PRECISION_SHIFT 20
2388  #define MEMCG_DELAY_SCALING_SHIFT 14
2389 
2390 static u64 calculate_overage(unsigned long usage, unsigned long high)
2391 {
2392 	u64 overage;
2393 
2394 	if (usage <= high)
2395 		return 0;
2396 
2397 	/*
2398 	 * Prevent division by 0 in overage calculation by acting as if
2399 	 * it was a threshold of 1 page
2400 	 */
2401 	high = max(high, 1UL);
2402 
2403 	overage = usage - high;
2404 	overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2405 	return div64_u64(overage, high);
2406 }
2407 
2408 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2409 {
2410 	u64 overage, max_overage = 0;
2411 
2412 	do {
2413 		overage = calculate_overage(page_counter_read(&memcg->memory),
2414 					    READ_ONCE(memcg->memory.high));
2415 		max_overage = max(overage, max_overage);
2416 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2417 		 !mem_cgroup_is_root(memcg));
2418 
2419 	return max_overage;
2420 }
2421 
2422 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2423 {
2424 	u64 overage, max_overage = 0;
2425 
2426 	do {
2427 		overage = calculate_overage(page_counter_read(&memcg->swap),
2428 					    READ_ONCE(memcg->swap.high));
2429 		if (overage)
2430 			memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2431 		max_overage = max(overage, max_overage);
2432 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2433 		 !mem_cgroup_is_root(memcg));
2434 
2435 	return max_overage;
2436 }
2437 
2438 /*
2439  * Get the number of jiffies that we should penalise a mischievous cgroup which
2440  * is exceeding its memory.high by checking both it and its ancestors.
2441  */
2442 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2443 					  unsigned int nr_pages,
2444 					  u64 max_overage)
2445 {
2446 	unsigned long penalty_jiffies;
2447 
2448 	if (!max_overage)
2449 		return 0;
2450 
2451 	/*
2452 	 * We use overage compared to memory.high to calculate the number of
2453 	 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2454 	 * fairly lenient on small overages, and increasingly harsh when the
2455 	 * memcg in question makes it clear that it has no intention of stopping
2456 	 * its crazy behaviour, so we exponentially increase the delay based on
2457 	 * overage amount.
2458 	 */
2459 	penalty_jiffies = max_overage * max_overage * HZ;
2460 	penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2461 	penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2462 
2463 	/*
2464 	 * Factor in the task's own contribution to the overage, such that four
2465 	 * N-sized allocations are throttled approximately the same as one
2466 	 * 4N-sized allocation.
2467 	 *
2468 	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2469 	 * larger the current charge patch is than that.
2470 	 */
2471 	return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2472 }
2473 
2474 /*
2475  * Scheduled by try_charge() to be executed from the userland return path
2476  * and reclaims memory over the high limit.
2477  */
2478 void mem_cgroup_handle_over_high(void)
2479 {
2480 	unsigned long penalty_jiffies;
2481 	unsigned long pflags;
2482 	unsigned long nr_reclaimed;
2483 	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2484 	int nr_retries = MAX_RECLAIM_RETRIES;
2485 	struct mem_cgroup *memcg;
2486 	bool in_retry = false;
2487 
2488 	if (likely(!nr_pages))
2489 		return;
2490 
2491 	memcg = get_mem_cgroup_from_mm(current->mm);
2492 	current->memcg_nr_pages_over_high = 0;
2493 
2494 retry_reclaim:
2495 	/*
2496 	 * The allocating task should reclaim at least the batch size, but for
2497 	 * subsequent retries we only want to do what's necessary to prevent oom
2498 	 * or breaching resource isolation.
2499 	 *
2500 	 * This is distinct from memory.max or page allocator behaviour because
2501 	 * memory.high is currently batched, whereas memory.max and the page
2502 	 * allocator run every time an allocation is made.
2503 	 */
2504 	nr_reclaimed = reclaim_high(memcg,
2505 				    in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2506 				    GFP_KERNEL);
2507 
2508 	/*
2509 	 * memory.high is breached and reclaim is unable to keep up. Throttle
2510 	 * allocators proactively to slow down excessive growth.
2511 	 */
2512 	penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2513 					       mem_find_max_overage(memcg));
2514 
2515 	penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2516 						swap_find_max_overage(memcg));
2517 
2518 	/*
2519 	 * Clamp the max delay per usermode return so as to still keep the
2520 	 * application moving forwards and also permit diagnostics, albeit
2521 	 * extremely slowly.
2522 	 */
2523 	penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2524 
2525 	/*
2526 	 * Don't sleep if the amount of jiffies this memcg owes us is so low
2527 	 * that it's not even worth doing, in an attempt to be nice to those who
2528 	 * go only a small amount over their memory.high value and maybe haven't
2529 	 * been aggressively reclaimed enough yet.
2530 	 */
2531 	if (penalty_jiffies <= HZ / 100)
2532 		goto out;
2533 
2534 	/*
2535 	 * If reclaim is making forward progress but we're still over
2536 	 * memory.high, we want to encourage that rather than doing allocator
2537 	 * throttling.
2538 	 */
2539 	if (nr_reclaimed || nr_retries--) {
2540 		in_retry = true;
2541 		goto retry_reclaim;
2542 	}
2543 
2544 	/*
2545 	 * If we exit early, we're guaranteed to die (since
2546 	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2547 	 * need to account for any ill-begotten jiffies to pay them off later.
2548 	 */
2549 	psi_memstall_enter(&pflags);
2550 	schedule_timeout_killable(penalty_jiffies);
2551 	psi_memstall_leave(&pflags);
2552 
2553 out:
2554 	css_put(&memcg->css);
2555 }
2556 
2557 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2558 			unsigned int nr_pages)
2559 {
2560 	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2561 	int nr_retries = MAX_RECLAIM_RETRIES;
2562 	struct mem_cgroup *mem_over_limit;
2563 	struct page_counter *counter;
2564 	unsigned long nr_reclaimed;
2565 	bool passed_oom = false;
2566 	bool may_swap = true;
2567 	bool drained = false;
2568 	unsigned long pflags;
2569 
2570 retry:
2571 	if (consume_stock(memcg, nr_pages))
2572 		return 0;
2573 
2574 	if (!do_memsw_account() ||
2575 	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2576 		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2577 			goto done_restock;
2578 		if (do_memsw_account())
2579 			page_counter_uncharge(&memcg->memsw, batch);
2580 		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2581 	} else {
2582 		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2583 		may_swap = false;
2584 	}
2585 
2586 	if (batch > nr_pages) {
2587 		batch = nr_pages;
2588 		goto retry;
2589 	}
2590 
2591 	/*
2592 	 * Prevent unbounded recursion when reclaim operations need to
2593 	 * allocate memory. This might exceed the limits temporarily,
2594 	 * but we prefer facilitating memory reclaim and getting back
2595 	 * under the limit over triggering OOM kills in these cases.
2596 	 */
2597 	if (unlikely(current->flags & PF_MEMALLOC))
2598 		goto force;
2599 
2600 	if (unlikely(task_in_memcg_oom(current)))
2601 		goto nomem;
2602 
2603 	if (!gfpflags_allow_blocking(gfp_mask))
2604 		goto nomem;
2605 
2606 	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2607 
2608 	psi_memstall_enter(&pflags);
2609 	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2610 						    gfp_mask, may_swap);
2611 	psi_memstall_leave(&pflags);
2612 
2613 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2614 		goto retry;
2615 
2616 	if (!drained) {
2617 		drain_all_stock(mem_over_limit);
2618 		drained = true;
2619 		goto retry;
2620 	}
2621 
2622 	if (gfp_mask & __GFP_NORETRY)
2623 		goto nomem;
2624 	/*
2625 	 * Even though the limit is exceeded at this point, reclaim
2626 	 * may have been able to free some pages.  Retry the charge
2627 	 * before killing the task.
2628 	 *
2629 	 * Only for regular pages, though: huge pages are rather
2630 	 * unlikely to succeed so close to the limit, and we fall back
2631 	 * to regular pages anyway in case of failure.
2632 	 */
2633 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2634 		goto retry;
2635 	/*
2636 	 * At task move, charge accounts can be doubly counted. So, it's
2637 	 * better to wait until the end of task_move if something is going on.
2638 	 */
2639 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2640 		goto retry;
2641 
2642 	if (nr_retries--)
2643 		goto retry;
2644 
2645 	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2646 		goto nomem;
2647 
2648 	/* Avoid endless loop for tasks bypassed by the oom killer */
2649 	if (passed_oom && task_is_dying())
2650 		goto nomem;
2651 
2652 	/*
2653 	 * keep retrying as long as the memcg oom killer is able to make
2654 	 * a forward progress or bypass the charge if the oom killer
2655 	 * couldn't make any progress.
2656 	 */
2657 	if (mem_cgroup_oom(mem_over_limit, gfp_mask,
2658 			   get_order(nr_pages * PAGE_SIZE))) {
2659 		passed_oom = true;
2660 		nr_retries = MAX_RECLAIM_RETRIES;
2661 		goto retry;
2662 	}
2663 nomem:
2664 	/*
2665 	 * Memcg doesn't have a dedicated reserve for atomic
2666 	 * allocations. But like the global atomic pool, we need to
2667 	 * put the burden of reclaim on regular allocation requests
2668 	 * and let these go through as privileged allocations.
2669 	 */
2670 	if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH)))
2671 		return -ENOMEM;
2672 force:
2673 	/*
2674 	 * The allocation either can't fail or will lead to more memory
2675 	 * being freed very soon.  Allow memory usage go over the limit
2676 	 * temporarily by force charging it.
2677 	 */
2678 	page_counter_charge(&memcg->memory, nr_pages);
2679 	if (do_memsw_account())
2680 		page_counter_charge(&memcg->memsw, nr_pages);
2681 
2682 	return 0;
2683 
2684 done_restock:
2685 	if (batch > nr_pages)
2686 		refill_stock(memcg, batch - nr_pages);
2687 
2688 	/*
2689 	 * If the hierarchy is above the normal consumption range, schedule
2690 	 * reclaim on returning to userland.  We can perform reclaim here
2691 	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2692 	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2693 	 * not recorded as it most likely matches current's and won't
2694 	 * change in the meantime.  As high limit is checked again before
2695 	 * reclaim, the cost of mismatch is negligible.
2696 	 */
2697 	do {
2698 		bool mem_high, swap_high;
2699 
2700 		mem_high = page_counter_read(&memcg->memory) >
2701 			READ_ONCE(memcg->memory.high);
2702 		swap_high = page_counter_read(&memcg->swap) >
2703 			READ_ONCE(memcg->swap.high);
2704 
2705 		/* Don't bother a random interrupted task */
2706 		if (!in_task()) {
2707 			if (mem_high) {
2708 				schedule_work(&memcg->high_work);
2709 				break;
2710 			}
2711 			continue;
2712 		}
2713 
2714 		if (mem_high || swap_high) {
2715 			/*
2716 			 * The allocating tasks in this cgroup will need to do
2717 			 * reclaim or be throttled to prevent further growth
2718 			 * of the memory or swap footprints.
2719 			 *
2720 			 * Target some best-effort fairness between the tasks,
2721 			 * and distribute reclaim work and delay penalties
2722 			 * based on how much each task is actually allocating.
2723 			 */
2724 			current->memcg_nr_pages_over_high += batch;
2725 			set_notify_resume(current);
2726 			break;
2727 		}
2728 	} while ((memcg = parent_mem_cgroup(memcg)));
2729 
2730 	if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
2731 	    !(current->flags & PF_MEMALLOC) &&
2732 	    gfpflags_allow_blocking(gfp_mask)) {
2733 		mem_cgroup_handle_over_high();
2734 	}
2735 	return 0;
2736 }
2737 
2738 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2739 			     unsigned int nr_pages)
2740 {
2741 	if (mem_cgroup_is_root(memcg))
2742 		return 0;
2743 
2744 	return try_charge_memcg(memcg, gfp_mask, nr_pages);
2745 }
2746 
2747 static inline void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2748 {
2749 	if (mem_cgroup_is_root(memcg))
2750 		return;
2751 
2752 	page_counter_uncharge(&memcg->memory, nr_pages);
2753 	if (do_memsw_account())
2754 		page_counter_uncharge(&memcg->memsw, nr_pages);
2755 }
2756 
2757 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2758 {
2759 	VM_BUG_ON_FOLIO(folio_memcg(folio), folio);
2760 	/*
2761 	 * Any of the following ensures page's memcg stability:
2762 	 *
2763 	 * - the page lock
2764 	 * - LRU isolation
2765 	 * - lock_page_memcg()
2766 	 * - exclusive reference
2767 	 */
2768 	folio->memcg_data = (unsigned long)memcg;
2769 }
2770 
2771 #ifdef CONFIG_MEMCG_KMEM
2772 /*
2773  * The allocated objcg pointers array is not accounted directly.
2774  * Moreover, it should not come from DMA buffer and is not readily
2775  * reclaimable. So those GFP bits should be masked off.
2776  */
2777 #define OBJCGS_CLEAR_MASK	(__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT)
2778 
2779 /*
2780  * mod_objcg_mlstate() may be called with irq enabled, so
2781  * mod_memcg_lruvec_state() should be used.
2782  */
2783 static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
2784 				     struct pglist_data *pgdat,
2785 				     enum node_stat_item idx, int nr)
2786 {
2787 	struct mem_cgroup *memcg;
2788 	struct lruvec *lruvec;
2789 
2790 	rcu_read_lock();
2791 	memcg = obj_cgroup_memcg(objcg);
2792 	lruvec = mem_cgroup_lruvec(memcg, pgdat);
2793 	mod_memcg_lruvec_state(lruvec, idx, nr);
2794 	rcu_read_unlock();
2795 }
2796 
2797 int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s,
2798 				 gfp_t gfp, bool new_slab)
2799 {
2800 	unsigned int objects = objs_per_slab(s, slab);
2801 	unsigned long memcg_data;
2802 	void *vec;
2803 
2804 	gfp &= ~OBJCGS_CLEAR_MASK;
2805 	vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2806 			   slab_nid(slab));
2807 	if (!vec)
2808 		return -ENOMEM;
2809 
2810 	memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
2811 	if (new_slab) {
2812 		/*
2813 		 * If the slab is brand new and nobody can yet access its
2814 		 * memcg_data, no synchronization is required and memcg_data can
2815 		 * be simply assigned.
2816 		 */
2817 		slab->memcg_data = memcg_data;
2818 	} else if (cmpxchg(&slab->memcg_data, 0, memcg_data)) {
2819 		/*
2820 		 * If the slab is already in use, somebody can allocate and
2821 		 * assign obj_cgroups in parallel. In this case the existing
2822 		 * objcg vector should be reused.
2823 		 */
2824 		kfree(vec);
2825 		return 0;
2826 	}
2827 
2828 	kmemleak_not_leak(vec);
2829 	return 0;
2830 }
2831 
2832 /*
2833  * Returns a pointer to the memory cgroup to which the kernel object is charged.
2834  *
2835  * A passed kernel object can be a slab object or a generic kernel page, so
2836  * different mechanisms for getting the memory cgroup pointer should be used.
2837  * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2838  * can not know for sure how the kernel object is implemented.
2839  * mem_cgroup_from_obj() can be safely used in such cases.
2840  *
2841  * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2842  * cgroup_mutex, etc.
2843  */
2844 struct mem_cgroup *mem_cgroup_from_obj(void *p)
2845 {
2846 	struct folio *folio;
2847 
2848 	if (mem_cgroup_disabled())
2849 		return NULL;
2850 
2851 	folio = virt_to_folio(p);
2852 
2853 	/*
2854 	 * Slab objects are accounted individually, not per-page.
2855 	 * Memcg membership data for each individual object is saved in
2856 	 * slab->memcg_data.
2857 	 */
2858 	if (folio_test_slab(folio)) {
2859 		struct obj_cgroup **objcgs;
2860 		struct slab *slab;
2861 		unsigned int off;
2862 
2863 		slab = folio_slab(folio);
2864 		objcgs = slab_objcgs(slab);
2865 		if (!objcgs)
2866 			return NULL;
2867 
2868 		off = obj_to_index(slab->slab_cache, slab, p);
2869 		if (objcgs[off])
2870 			return obj_cgroup_memcg(objcgs[off]);
2871 
2872 		return NULL;
2873 	}
2874 
2875 	/*
2876 	 * page_memcg_check() is used here, because in theory we can encounter
2877 	 * a folio where the slab flag has been cleared already, but
2878 	 * slab->memcg_data has not been freed yet
2879 	 * page_memcg_check(page) will guarantee that a proper memory
2880 	 * cgroup pointer or NULL will be returned.
2881 	 */
2882 	return page_memcg_check(folio_page(folio, 0));
2883 }
2884 
2885 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
2886 {
2887 	struct obj_cgroup *objcg = NULL;
2888 	struct mem_cgroup *memcg;
2889 
2890 	if (memcg_kmem_bypass())
2891 		return NULL;
2892 
2893 	rcu_read_lock();
2894 	if (unlikely(active_memcg()))
2895 		memcg = active_memcg();
2896 	else
2897 		memcg = mem_cgroup_from_task(current);
2898 
2899 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
2900 		objcg = rcu_dereference(memcg->objcg);
2901 		if (objcg && obj_cgroup_tryget(objcg))
2902 			break;
2903 		objcg = NULL;
2904 	}
2905 	rcu_read_unlock();
2906 
2907 	return objcg;
2908 }
2909 
2910 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
2911 {
2912 	mod_memcg_state(memcg, MEMCG_KMEM, nr_pages);
2913 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
2914 		if (nr_pages > 0)
2915 			page_counter_charge(&memcg->kmem, nr_pages);
2916 		else
2917 			page_counter_uncharge(&memcg->kmem, -nr_pages);
2918 	}
2919 }
2920 
2921 
2922 /*
2923  * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
2924  * @objcg: object cgroup to uncharge
2925  * @nr_pages: number of pages to uncharge
2926  */
2927 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
2928 				      unsigned int nr_pages)
2929 {
2930 	struct mem_cgroup *memcg;
2931 
2932 	memcg = get_mem_cgroup_from_objcg(objcg);
2933 
2934 	memcg_account_kmem(memcg, -nr_pages);
2935 	refill_stock(memcg, nr_pages);
2936 
2937 	css_put(&memcg->css);
2938 }
2939 
2940 /*
2941  * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
2942  * @objcg: object cgroup to charge
2943  * @gfp: reclaim mode
2944  * @nr_pages: number of pages to charge
2945  *
2946  * Returns 0 on success, an error code on failure.
2947  */
2948 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
2949 				   unsigned int nr_pages)
2950 {
2951 	struct mem_cgroup *memcg;
2952 	int ret;
2953 
2954 	memcg = get_mem_cgroup_from_objcg(objcg);
2955 
2956 	ret = try_charge_memcg(memcg, gfp, nr_pages);
2957 	if (ret)
2958 		goto out;
2959 
2960 	memcg_account_kmem(memcg, nr_pages);
2961 out:
2962 	css_put(&memcg->css);
2963 
2964 	return ret;
2965 }
2966 
2967 /**
2968  * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
2969  * @page: page to charge
2970  * @gfp: reclaim mode
2971  * @order: allocation order
2972  *
2973  * Returns 0 on success, an error code on failure.
2974  */
2975 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
2976 {
2977 	struct obj_cgroup *objcg;
2978 	int ret = 0;
2979 
2980 	objcg = get_obj_cgroup_from_current();
2981 	if (objcg) {
2982 		ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
2983 		if (!ret) {
2984 			page->memcg_data = (unsigned long)objcg |
2985 				MEMCG_DATA_KMEM;
2986 			return 0;
2987 		}
2988 		obj_cgroup_put(objcg);
2989 	}
2990 	return ret;
2991 }
2992 
2993 /**
2994  * __memcg_kmem_uncharge_page: uncharge a kmem page
2995  * @page: page to uncharge
2996  * @order: allocation order
2997  */
2998 void __memcg_kmem_uncharge_page(struct page *page, int order)
2999 {
3000 	struct folio *folio = page_folio(page);
3001 	struct obj_cgroup *objcg;
3002 	unsigned int nr_pages = 1 << order;
3003 
3004 	if (!folio_memcg_kmem(folio))
3005 		return;
3006 
3007 	objcg = __folio_objcg(folio);
3008 	obj_cgroup_uncharge_pages(objcg, nr_pages);
3009 	folio->memcg_data = 0;
3010 	obj_cgroup_put(objcg);
3011 }
3012 
3013 void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3014 		     enum node_stat_item idx, int nr)
3015 {
3016 	struct memcg_stock_pcp *stock;
3017 	struct obj_cgroup *old = NULL;
3018 	unsigned long flags;
3019 	int *bytes;
3020 
3021 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
3022 	stock = this_cpu_ptr(&memcg_stock);
3023 
3024 	/*
3025 	 * Save vmstat data in stock and skip vmstat array update unless
3026 	 * accumulating over a page of vmstat data or when pgdat or idx
3027 	 * changes.
3028 	 */
3029 	if (stock->cached_objcg != objcg) {
3030 		old = drain_obj_stock(stock);
3031 		obj_cgroup_get(objcg);
3032 		stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3033 				? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3034 		stock->cached_objcg = objcg;
3035 		stock->cached_pgdat = pgdat;
3036 	} else if (stock->cached_pgdat != pgdat) {
3037 		/* Flush the existing cached vmstat data */
3038 		struct pglist_data *oldpg = stock->cached_pgdat;
3039 
3040 		if (stock->nr_slab_reclaimable_b) {
3041 			mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
3042 					  stock->nr_slab_reclaimable_b);
3043 			stock->nr_slab_reclaimable_b = 0;
3044 		}
3045 		if (stock->nr_slab_unreclaimable_b) {
3046 			mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
3047 					  stock->nr_slab_unreclaimable_b);
3048 			stock->nr_slab_unreclaimable_b = 0;
3049 		}
3050 		stock->cached_pgdat = pgdat;
3051 	}
3052 
3053 	bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3054 					       : &stock->nr_slab_unreclaimable_b;
3055 	/*
3056 	 * Even for large object >= PAGE_SIZE, the vmstat data will still be
3057 	 * cached locally at least once before pushing it out.
3058 	 */
3059 	if (!*bytes) {
3060 		*bytes = nr;
3061 		nr = 0;
3062 	} else {
3063 		*bytes += nr;
3064 		if (abs(*bytes) > PAGE_SIZE) {
3065 			nr = *bytes;
3066 			*bytes = 0;
3067 		} else {
3068 			nr = 0;
3069 		}
3070 	}
3071 	if (nr)
3072 		mod_objcg_mlstate(objcg, pgdat, idx, nr);
3073 
3074 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3075 	if (old)
3076 		obj_cgroup_put(old);
3077 }
3078 
3079 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3080 {
3081 	struct memcg_stock_pcp *stock;
3082 	unsigned long flags;
3083 	bool ret = false;
3084 
3085 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
3086 
3087 	stock = this_cpu_ptr(&memcg_stock);
3088 	if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3089 		stock->nr_bytes -= nr_bytes;
3090 		ret = true;
3091 	}
3092 
3093 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3094 
3095 	return ret;
3096 }
3097 
3098 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
3099 {
3100 	struct obj_cgroup *old = stock->cached_objcg;
3101 
3102 	if (!old)
3103 		return NULL;
3104 
3105 	if (stock->nr_bytes) {
3106 		unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3107 		unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3108 
3109 		if (nr_pages) {
3110 			struct mem_cgroup *memcg;
3111 
3112 			memcg = get_mem_cgroup_from_objcg(old);
3113 
3114 			memcg_account_kmem(memcg, -nr_pages);
3115 			__refill_stock(memcg, nr_pages);
3116 
3117 			css_put(&memcg->css);
3118 		}
3119 
3120 		/*
3121 		 * The leftover is flushed to the centralized per-memcg value.
3122 		 * On the next attempt to refill obj stock it will be moved
3123 		 * to a per-cpu stock (probably, on an other CPU), see
3124 		 * refill_obj_stock().
3125 		 *
3126 		 * How often it's flushed is a trade-off between the memory
3127 		 * limit enforcement accuracy and potential CPU contention,
3128 		 * so it might be changed in the future.
3129 		 */
3130 		atomic_add(nr_bytes, &old->nr_charged_bytes);
3131 		stock->nr_bytes = 0;
3132 	}
3133 
3134 	/*
3135 	 * Flush the vmstat data in current stock
3136 	 */
3137 	if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3138 		if (stock->nr_slab_reclaimable_b) {
3139 			mod_objcg_mlstate(old, stock->cached_pgdat,
3140 					  NR_SLAB_RECLAIMABLE_B,
3141 					  stock->nr_slab_reclaimable_b);
3142 			stock->nr_slab_reclaimable_b = 0;
3143 		}
3144 		if (stock->nr_slab_unreclaimable_b) {
3145 			mod_objcg_mlstate(old, stock->cached_pgdat,
3146 					  NR_SLAB_UNRECLAIMABLE_B,
3147 					  stock->nr_slab_unreclaimable_b);
3148 			stock->nr_slab_unreclaimable_b = 0;
3149 		}
3150 		stock->cached_pgdat = NULL;
3151 	}
3152 
3153 	stock->cached_objcg = NULL;
3154 	/*
3155 	 * The `old' objects needs to be released by the caller via
3156 	 * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock.
3157 	 */
3158 	return old;
3159 }
3160 
3161 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3162 				     struct mem_cgroup *root_memcg)
3163 {
3164 	struct mem_cgroup *memcg;
3165 
3166 	if (stock->cached_objcg) {
3167 		memcg = obj_cgroup_memcg(stock->cached_objcg);
3168 		if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3169 			return true;
3170 	}
3171 
3172 	return false;
3173 }
3174 
3175 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3176 			     bool allow_uncharge)
3177 {
3178 	struct memcg_stock_pcp *stock;
3179 	struct obj_cgroup *old = NULL;
3180 	unsigned long flags;
3181 	unsigned int nr_pages = 0;
3182 
3183 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
3184 
3185 	stock = this_cpu_ptr(&memcg_stock);
3186 	if (stock->cached_objcg != objcg) { /* reset if necessary */
3187 		old = drain_obj_stock(stock);
3188 		obj_cgroup_get(objcg);
3189 		stock->cached_objcg = objcg;
3190 		stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3191 				? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3192 		allow_uncharge = true;	/* Allow uncharge when objcg changes */
3193 	}
3194 	stock->nr_bytes += nr_bytes;
3195 
3196 	if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3197 		nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3198 		stock->nr_bytes &= (PAGE_SIZE - 1);
3199 	}
3200 
3201 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3202 	if (old)
3203 		obj_cgroup_put(old);
3204 
3205 	if (nr_pages)
3206 		obj_cgroup_uncharge_pages(objcg, nr_pages);
3207 }
3208 
3209 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3210 {
3211 	unsigned int nr_pages, nr_bytes;
3212 	int ret;
3213 
3214 	if (consume_obj_stock(objcg, size))
3215 		return 0;
3216 
3217 	/*
3218 	 * In theory, objcg->nr_charged_bytes can have enough
3219 	 * pre-charged bytes to satisfy the allocation. However,
3220 	 * flushing objcg->nr_charged_bytes requires two atomic
3221 	 * operations, and objcg->nr_charged_bytes can't be big.
3222 	 * The shared objcg->nr_charged_bytes can also become a
3223 	 * performance bottleneck if all tasks of the same memcg are
3224 	 * trying to update it. So it's better to ignore it and try
3225 	 * grab some new pages. The stock's nr_bytes will be flushed to
3226 	 * objcg->nr_charged_bytes later on when objcg changes.
3227 	 *
3228 	 * The stock's nr_bytes may contain enough pre-charged bytes
3229 	 * to allow one less page from being charged, but we can't rely
3230 	 * on the pre-charged bytes not being changed outside of
3231 	 * consume_obj_stock() or refill_obj_stock(). So ignore those
3232 	 * pre-charged bytes as well when charging pages. To avoid a
3233 	 * page uncharge right after a page charge, we set the
3234 	 * allow_uncharge flag to false when calling refill_obj_stock()
3235 	 * to temporarily allow the pre-charged bytes to exceed the page
3236 	 * size limit. The maximum reachable value of the pre-charged
3237 	 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3238 	 * race.
3239 	 */
3240 	nr_pages = size >> PAGE_SHIFT;
3241 	nr_bytes = size & (PAGE_SIZE - 1);
3242 
3243 	if (nr_bytes)
3244 		nr_pages += 1;
3245 
3246 	ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3247 	if (!ret && nr_bytes)
3248 		refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
3249 
3250 	return ret;
3251 }
3252 
3253 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3254 {
3255 	refill_obj_stock(objcg, size, true);
3256 }
3257 
3258 #endif /* CONFIG_MEMCG_KMEM */
3259 
3260 /*
3261  * Because page_memcg(head) is not set on tails, set it now.
3262  */
3263 void split_page_memcg(struct page *head, unsigned int nr)
3264 {
3265 	struct folio *folio = page_folio(head);
3266 	struct mem_cgroup *memcg = folio_memcg(folio);
3267 	int i;
3268 
3269 	if (mem_cgroup_disabled() || !memcg)
3270 		return;
3271 
3272 	for (i = 1; i < nr; i++)
3273 		folio_page(folio, i)->memcg_data = folio->memcg_data;
3274 
3275 	if (folio_memcg_kmem(folio))
3276 		obj_cgroup_get_many(__folio_objcg(folio), nr - 1);
3277 	else
3278 		css_get_many(&memcg->css, nr - 1);
3279 }
3280 
3281 #ifdef CONFIG_MEMCG_SWAP
3282 /**
3283  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3284  * @entry: swap entry to be moved
3285  * @from:  mem_cgroup which the entry is moved from
3286  * @to:  mem_cgroup which the entry is moved to
3287  *
3288  * It succeeds only when the swap_cgroup's record for this entry is the same
3289  * as the mem_cgroup's id of @from.
3290  *
3291  * Returns 0 on success, -EINVAL on failure.
3292  *
3293  * The caller must have charged to @to, IOW, called page_counter_charge() about
3294  * both res and memsw, and called css_get().
3295  */
3296 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3297 				struct mem_cgroup *from, struct mem_cgroup *to)
3298 {
3299 	unsigned short old_id, new_id;
3300 
3301 	old_id = mem_cgroup_id(from);
3302 	new_id = mem_cgroup_id(to);
3303 
3304 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3305 		mod_memcg_state(from, MEMCG_SWAP, -1);
3306 		mod_memcg_state(to, MEMCG_SWAP, 1);
3307 		return 0;
3308 	}
3309 	return -EINVAL;
3310 }
3311 #else
3312 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3313 				struct mem_cgroup *from, struct mem_cgroup *to)
3314 {
3315 	return -EINVAL;
3316 }
3317 #endif
3318 
3319 static DEFINE_MUTEX(memcg_max_mutex);
3320 
3321 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3322 				 unsigned long max, bool memsw)
3323 {
3324 	bool enlarge = false;
3325 	bool drained = false;
3326 	int ret;
3327 	bool limits_invariant;
3328 	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3329 
3330 	do {
3331 		if (signal_pending(current)) {
3332 			ret = -EINTR;
3333 			break;
3334 		}
3335 
3336 		mutex_lock(&memcg_max_mutex);
3337 		/*
3338 		 * Make sure that the new limit (memsw or memory limit) doesn't
3339 		 * break our basic invariant rule memory.max <= memsw.max.
3340 		 */
3341 		limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3342 					   max <= memcg->memsw.max;
3343 		if (!limits_invariant) {
3344 			mutex_unlock(&memcg_max_mutex);
3345 			ret = -EINVAL;
3346 			break;
3347 		}
3348 		if (max > counter->max)
3349 			enlarge = true;
3350 		ret = page_counter_set_max(counter, max);
3351 		mutex_unlock(&memcg_max_mutex);
3352 
3353 		if (!ret)
3354 			break;
3355 
3356 		if (!drained) {
3357 			drain_all_stock(memcg);
3358 			drained = true;
3359 			continue;
3360 		}
3361 
3362 		if (!try_to_free_mem_cgroup_pages(memcg, 1,
3363 					GFP_KERNEL, !memsw)) {
3364 			ret = -EBUSY;
3365 			break;
3366 		}
3367 	} while (true);
3368 
3369 	if (!ret && enlarge)
3370 		memcg_oom_recover(memcg);
3371 
3372 	return ret;
3373 }
3374 
3375 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3376 					    gfp_t gfp_mask,
3377 					    unsigned long *total_scanned)
3378 {
3379 	unsigned long nr_reclaimed = 0;
3380 	struct mem_cgroup_per_node *mz, *next_mz = NULL;
3381 	unsigned long reclaimed;
3382 	int loop = 0;
3383 	struct mem_cgroup_tree_per_node *mctz;
3384 	unsigned long excess;
3385 
3386 	if (order > 0)
3387 		return 0;
3388 
3389 	mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];
3390 
3391 	/*
3392 	 * Do not even bother to check the largest node if the root
3393 	 * is empty. Do it lockless to prevent lock bouncing. Races
3394 	 * are acceptable as soft limit is best effort anyway.
3395 	 */
3396 	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3397 		return 0;
3398 
3399 	/*
3400 	 * This loop can run a while, specially if mem_cgroup's continuously
3401 	 * keep exceeding their soft limit and putting the system under
3402 	 * pressure
3403 	 */
3404 	do {
3405 		if (next_mz)
3406 			mz = next_mz;
3407 		else
3408 			mz = mem_cgroup_largest_soft_limit_node(mctz);
3409 		if (!mz)
3410 			break;
3411 
3412 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3413 						    gfp_mask, total_scanned);
3414 		nr_reclaimed += reclaimed;
3415 		spin_lock_irq(&mctz->lock);
3416 
3417 		/*
3418 		 * If we failed to reclaim anything from this memory cgroup
3419 		 * it is time to move on to the next cgroup
3420 		 */
3421 		next_mz = NULL;
3422 		if (!reclaimed)
3423 			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3424 
3425 		excess = soft_limit_excess(mz->memcg);
3426 		/*
3427 		 * One school of thought says that we should not add
3428 		 * back the node to the tree if reclaim returns 0.
3429 		 * But our reclaim could return 0, simply because due
3430 		 * to priority we are exposing a smaller subset of
3431 		 * memory to reclaim from. Consider this as a longer
3432 		 * term TODO.
3433 		 */
3434 		/* If excess == 0, no tree ops */
3435 		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3436 		spin_unlock_irq(&mctz->lock);
3437 		css_put(&mz->memcg->css);
3438 		loop++;
3439 		/*
3440 		 * Could not reclaim anything and there are no more
3441 		 * mem cgroups to try or we seem to be looping without
3442 		 * reclaiming anything.
3443 		 */
3444 		if (!nr_reclaimed &&
3445 			(next_mz == NULL ||
3446 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3447 			break;
3448 	} while (!nr_reclaimed);
3449 	if (next_mz)
3450 		css_put(&next_mz->memcg->css);
3451 	return nr_reclaimed;
3452 }
3453 
3454 /*
3455  * Reclaims as many pages from the given memcg as possible.
3456  *
3457  * Caller is responsible for holding css reference for memcg.
3458  */
3459 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3460 {
3461 	int nr_retries = MAX_RECLAIM_RETRIES;
3462 
3463 	/* we call try-to-free pages for make this cgroup empty */
3464 	lru_add_drain_all();
3465 
3466 	drain_all_stock(memcg);
3467 
3468 	/* try to free all pages in this cgroup */
3469 	while (nr_retries && page_counter_read(&memcg->memory)) {
3470 		if (signal_pending(current))
3471 			return -EINTR;
3472 
3473 		if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true))
3474 			nr_retries--;
3475 	}
3476 
3477 	return 0;
3478 }
3479 
3480 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3481 					    char *buf, size_t nbytes,
3482 					    loff_t off)
3483 {
3484 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3485 
3486 	if (mem_cgroup_is_root(memcg))
3487 		return -EINVAL;
3488 	return mem_cgroup_force_empty(memcg) ?: nbytes;
3489 }
3490 
3491 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3492 				     struct cftype *cft)
3493 {
3494 	return 1;
3495 }
3496 
3497 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3498 				      struct cftype *cft, u64 val)
3499 {
3500 	if (val == 1)
3501 		return 0;
3502 
3503 	pr_warn_once("Non-hierarchical mode is deprecated. "
3504 		     "Please report your usecase to linux-mm@kvack.org if you "
3505 		     "depend on this functionality.\n");
3506 
3507 	return -EINVAL;
3508 }
3509 
3510 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3511 {
3512 	unsigned long val;
3513 
3514 	if (mem_cgroup_is_root(memcg)) {
3515 		mem_cgroup_flush_stats();
3516 		val = memcg_page_state(memcg, NR_FILE_PAGES) +
3517 			memcg_page_state(memcg, NR_ANON_MAPPED);
3518 		if (swap)
3519 			val += memcg_page_state(memcg, MEMCG_SWAP);
3520 	} else {
3521 		if (!swap)
3522 			val = page_counter_read(&memcg->memory);
3523 		else
3524 			val = page_counter_read(&memcg->memsw);
3525 	}
3526 	return val;
3527 }
3528 
3529 enum {
3530 	RES_USAGE,
3531 	RES_LIMIT,
3532 	RES_MAX_USAGE,
3533 	RES_FAILCNT,
3534 	RES_SOFT_LIMIT,
3535 };
3536 
3537 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3538 			       struct cftype *cft)
3539 {
3540 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3541 	struct page_counter *counter;
3542 
3543 	switch (MEMFILE_TYPE(cft->private)) {
3544 	case _MEM:
3545 		counter = &memcg->memory;
3546 		break;
3547 	case _MEMSWAP:
3548 		counter = &memcg->memsw;
3549 		break;
3550 	case _KMEM:
3551 		counter = &memcg->kmem;
3552 		break;
3553 	case _TCP:
3554 		counter = &memcg->tcpmem;
3555 		break;
3556 	default:
3557 		BUG();
3558 	}
3559 
3560 	switch (MEMFILE_ATTR(cft->private)) {
3561 	case RES_USAGE:
3562 		if (counter == &memcg->memory)
3563 			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3564 		if (counter == &memcg->memsw)
3565 			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3566 		return (u64)page_counter_read(counter) * PAGE_SIZE;
3567 	case RES_LIMIT:
3568 		return (u64)counter->max * PAGE_SIZE;
3569 	case RES_MAX_USAGE:
3570 		return (u64)counter->watermark * PAGE_SIZE;
3571 	case RES_FAILCNT:
3572 		return counter->failcnt;
3573 	case RES_SOFT_LIMIT:
3574 		return (u64)memcg->soft_limit * PAGE_SIZE;
3575 	default:
3576 		BUG();
3577 	}
3578 }
3579 
3580 #ifdef CONFIG_MEMCG_KMEM
3581 static int memcg_online_kmem(struct mem_cgroup *memcg)
3582 {
3583 	struct obj_cgroup *objcg;
3584 
3585 	if (cgroup_memory_nokmem)
3586 		return 0;
3587 
3588 	if (unlikely(mem_cgroup_is_root(memcg)))
3589 		return 0;
3590 
3591 	objcg = obj_cgroup_alloc();
3592 	if (!objcg)
3593 		return -ENOMEM;
3594 
3595 	objcg->memcg = memcg;
3596 	rcu_assign_pointer(memcg->objcg, objcg);
3597 
3598 	static_branch_enable(&memcg_kmem_enabled_key);
3599 
3600 	memcg->kmemcg_id = memcg->id.id;
3601 
3602 	return 0;
3603 }
3604 
3605 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3606 {
3607 	struct mem_cgroup *parent;
3608 
3609 	if (cgroup_memory_nokmem)
3610 		return;
3611 
3612 	if (unlikely(mem_cgroup_is_root(memcg)))
3613 		return;
3614 
3615 	parent = parent_mem_cgroup(memcg);
3616 	if (!parent)
3617 		parent = root_mem_cgroup;
3618 
3619 	memcg_reparent_objcgs(memcg, parent);
3620 
3621 	/*
3622 	 * After we have finished memcg_reparent_objcgs(), all list_lrus
3623 	 * corresponding to this cgroup are guaranteed to remain empty.
3624 	 * The ordering is imposed by list_lru_node->lock taken by
3625 	 * memcg_reparent_list_lrus().
3626 	 */
3627 	memcg_reparent_list_lrus(memcg, parent);
3628 }
3629 #else
3630 static int memcg_online_kmem(struct mem_cgroup *memcg)
3631 {
3632 	return 0;
3633 }
3634 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3635 {
3636 }
3637 #endif /* CONFIG_MEMCG_KMEM */
3638 
3639 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3640 {
3641 	int ret;
3642 
3643 	mutex_lock(&memcg_max_mutex);
3644 
3645 	ret = page_counter_set_max(&memcg->tcpmem, max);
3646 	if (ret)
3647 		goto out;
3648 
3649 	if (!memcg->tcpmem_active) {
3650 		/*
3651 		 * The active flag needs to be written after the static_key
3652 		 * update. This is what guarantees that the socket activation
3653 		 * function is the last one to run. See mem_cgroup_sk_alloc()
3654 		 * for details, and note that we don't mark any socket as
3655 		 * belonging to this memcg until that flag is up.
3656 		 *
3657 		 * We need to do this, because static_keys will span multiple
3658 		 * sites, but we can't control their order. If we mark a socket
3659 		 * as accounted, but the accounting functions are not patched in
3660 		 * yet, we'll lose accounting.
3661 		 *
3662 		 * We never race with the readers in mem_cgroup_sk_alloc(),
3663 		 * because when this value change, the code to process it is not
3664 		 * patched in yet.
3665 		 */
3666 		static_branch_inc(&memcg_sockets_enabled_key);
3667 		memcg->tcpmem_active = true;
3668 	}
3669 out:
3670 	mutex_unlock(&memcg_max_mutex);
3671 	return ret;
3672 }
3673 
3674 /*
3675  * The user of this function is...
3676  * RES_LIMIT.
3677  */
3678 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3679 				char *buf, size_t nbytes, loff_t off)
3680 {
3681 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3682 	unsigned long nr_pages;
3683 	int ret;
3684 
3685 	buf = strstrip(buf);
3686 	ret = page_counter_memparse(buf, "-1", &nr_pages);
3687 	if (ret)
3688 		return ret;
3689 
3690 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3691 	case RES_LIMIT:
3692 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3693 			ret = -EINVAL;
3694 			break;
3695 		}
3696 		switch (MEMFILE_TYPE(of_cft(of)->private)) {
3697 		case _MEM:
3698 			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3699 			break;
3700 		case _MEMSWAP:
3701 			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3702 			break;
3703 		case _KMEM:
3704 			/* kmem.limit_in_bytes is deprecated. */
3705 			ret = -EOPNOTSUPP;
3706 			break;
3707 		case _TCP:
3708 			ret = memcg_update_tcp_max(memcg, nr_pages);
3709 			break;
3710 		}
3711 		break;
3712 	case RES_SOFT_LIMIT:
3713 		if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
3714 			ret = -EOPNOTSUPP;
3715 		} else {
3716 			memcg->soft_limit = nr_pages;
3717 			ret = 0;
3718 		}
3719 		break;
3720 	}
3721 	return ret ?: nbytes;
3722 }
3723 
3724 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3725 				size_t nbytes, loff_t off)
3726 {
3727 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3728 	struct page_counter *counter;
3729 
3730 	switch (MEMFILE_TYPE(of_cft(of)->private)) {
3731 	case _MEM:
3732 		counter = &memcg->memory;
3733 		break;
3734 	case _MEMSWAP:
3735 		counter = &memcg->memsw;
3736 		break;
3737 	case _KMEM:
3738 		counter = &memcg->kmem;
3739 		break;
3740 	case _TCP:
3741 		counter = &memcg->tcpmem;
3742 		break;
3743 	default:
3744 		BUG();
3745 	}
3746 
3747 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3748 	case RES_MAX_USAGE:
3749 		page_counter_reset_watermark(counter);
3750 		break;
3751 	case RES_FAILCNT:
3752 		counter->failcnt = 0;
3753 		break;
3754 	default:
3755 		BUG();
3756 	}
3757 
3758 	return nbytes;
3759 }
3760 
3761 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3762 					struct cftype *cft)
3763 {
3764 	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3765 }
3766 
3767 #ifdef CONFIG_MMU
3768 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3769 					struct cftype *cft, u64 val)
3770 {
3771 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3772 
3773 	if (val & ~MOVE_MASK)
3774 		return -EINVAL;
3775 
3776 	/*
3777 	 * No kind of locking is needed in here, because ->can_attach() will
3778 	 * check this value once in the beginning of the process, and then carry
3779 	 * on with stale data. This means that changes to this value will only
3780 	 * affect task migrations starting after the change.
3781 	 */
3782 	memcg->move_charge_at_immigrate = val;
3783 	return 0;
3784 }
3785 #else
3786 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3787 					struct cftype *cft, u64 val)
3788 {
3789 	return -ENOSYS;
3790 }
3791 #endif
3792 
3793 #ifdef CONFIG_NUMA
3794 
3795 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3796 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3797 #define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)
3798 
3799 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3800 				int nid, unsigned int lru_mask, bool tree)
3801 {
3802 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3803 	unsigned long nr = 0;
3804 	enum lru_list lru;
3805 
3806 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
3807 
3808 	for_each_lru(lru) {
3809 		if (!(BIT(lru) & lru_mask))
3810 			continue;
3811 		if (tree)
3812 			nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3813 		else
3814 			nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3815 	}
3816 	return nr;
3817 }
3818 
3819 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3820 					     unsigned int lru_mask,
3821 					     bool tree)
3822 {
3823 	unsigned long nr = 0;
3824 	enum lru_list lru;
3825 
3826 	for_each_lru(lru) {
3827 		if (!(BIT(lru) & lru_mask))
3828 			continue;
3829 		if (tree)
3830 			nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3831 		else
3832 			nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3833 	}
3834 	return nr;
3835 }
3836 
3837 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3838 {
3839 	struct numa_stat {
3840 		const char *name;
3841 		unsigned int lru_mask;
3842 	};
3843 
3844 	static const struct numa_stat stats[] = {
3845 		{ "total", LRU_ALL },
3846 		{ "file", LRU_ALL_FILE },
3847 		{ "anon", LRU_ALL_ANON },
3848 		{ "unevictable", BIT(LRU_UNEVICTABLE) },
3849 	};
3850 	const struct numa_stat *stat;
3851 	int nid;
3852 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3853 
3854 	mem_cgroup_flush_stats();
3855 
3856 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3857 		seq_printf(m, "%s=%lu", stat->name,
3858 			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3859 						   false));
3860 		for_each_node_state(nid, N_MEMORY)
3861 			seq_printf(m, " N%d=%lu", nid,
3862 				   mem_cgroup_node_nr_lru_pages(memcg, nid,
3863 							stat->lru_mask, false));
3864 		seq_putc(m, '\n');
3865 	}
3866 
3867 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3868 
3869 		seq_printf(m, "hierarchical_%s=%lu", stat->name,
3870 			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3871 						   true));
3872 		for_each_node_state(nid, N_MEMORY)
3873 			seq_printf(m, " N%d=%lu", nid,
3874 				   mem_cgroup_node_nr_lru_pages(memcg, nid,
3875 							stat->lru_mask, true));
3876 		seq_putc(m, '\n');
3877 	}
3878 
3879 	return 0;
3880 }
3881 #endif /* CONFIG_NUMA */
3882 
3883 static const unsigned int memcg1_stats[] = {
3884 	NR_FILE_PAGES,
3885 	NR_ANON_MAPPED,
3886 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3887 	NR_ANON_THPS,
3888 #endif
3889 	NR_SHMEM,
3890 	NR_FILE_MAPPED,
3891 	NR_FILE_DIRTY,
3892 	NR_WRITEBACK,
3893 	MEMCG_SWAP,
3894 };
3895 
3896 static const char *const memcg1_stat_names[] = {
3897 	"cache",
3898 	"rss",
3899 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3900 	"rss_huge",
3901 #endif
3902 	"shmem",
3903 	"mapped_file",
3904 	"dirty",
3905 	"writeback",
3906 	"swap",
3907 };
3908 
3909 /* Universal VM events cgroup1 shows, original sort order */
3910 static const unsigned int memcg1_events[] = {
3911 	PGPGIN,
3912 	PGPGOUT,
3913 	PGFAULT,
3914 	PGMAJFAULT,
3915 };
3916 
3917 static int memcg_stat_show(struct seq_file *m, void *v)
3918 {
3919 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3920 	unsigned long memory, memsw;
3921 	struct mem_cgroup *mi;
3922 	unsigned int i;
3923 
3924 	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3925 
3926 	mem_cgroup_flush_stats();
3927 
3928 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3929 		unsigned long nr;
3930 
3931 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3932 			continue;
3933 		nr = memcg_page_state_local(memcg, memcg1_stats[i]);
3934 		seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
3935 	}
3936 
3937 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3938 		seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
3939 			   memcg_events_local(memcg, memcg1_events[i]));
3940 
3941 	for (i = 0; i < NR_LRU_LISTS; i++)
3942 		seq_printf(m, "%s %lu\n", lru_list_name(i),
3943 			   memcg_page_state_local(memcg, NR_LRU_BASE + i) *
3944 			   PAGE_SIZE);
3945 
3946 	/* Hierarchical information */
3947 	memory = memsw = PAGE_COUNTER_MAX;
3948 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3949 		memory = min(memory, READ_ONCE(mi->memory.max));
3950 		memsw = min(memsw, READ_ONCE(mi->memsw.max));
3951 	}
3952 	seq_printf(m, "hierarchical_memory_limit %llu\n",
3953 		   (u64)memory * PAGE_SIZE);
3954 	if (do_memsw_account())
3955 		seq_printf(m, "hierarchical_memsw_limit %llu\n",
3956 			   (u64)memsw * PAGE_SIZE);
3957 
3958 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3959 		unsigned long nr;
3960 
3961 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3962 			continue;
3963 		nr = memcg_page_state(memcg, memcg1_stats[i]);
3964 		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
3965 						(u64)nr * PAGE_SIZE);
3966 	}
3967 
3968 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3969 		seq_printf(m, "total_%s %llu\n",
3970 			   vm_event_name(memcg1_events[i]),
3971 			   (u64)memcg_events(memcg, memcg1_events[i]));
3972 
3973 	for (i = 0; i < NR_LRU_LISTS; i++)
3974 		seq_printf(m, "total_%s %llu\n", lru_list_name(i),
3975 			   (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
3976 			   PAGE_SIZE);
3977 
3978 #ifdef CONFIG_DEBUG_VM
3979 	{
3980 		pg_data_t *pgdat;
3981 		struct mem_cgroup_per_node *mz;
3982 		unsigned long anon_cost = 0;
3983 		unsigned long file_cost = 0;
3984 
3985 		for_each_online_pgdat(pgdat) {
3986 			mz = memcg->nodeinfo[pgdat->node_id];
3987 
3988 			anon_cost += mz->lruvec.anon_cost;
3989 			file_cost += mz->lruvec.file_cost;
3990 		}
3991 		seq_printf(m, "anon_cost %lu\n", anon_cost);
3992 		seq_printf(m, "file_cost %lu\n", file_cost);
3993 	}
3994 #endif
3995 
3996 	return 0;
3997 }
3998 
3999 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4000 				      struct cftype *cft)
4001 {
4002 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4003 
4004 	return mem_cgroup_swappiness(memcg);
4005 }
4006 
4007 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4008 				       struct cftype *cft, u64 val)
4009 {
4010 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4011 
4012 	if (val > 200)
4013 		return -EINVAL;
4014 
4015 	if (!mem_cgroup_is_root(memcg))
4016 		memcg->swappiness = val;
4017 	else
4018 		vm_swappiness = val;
4019 
4020 	return 0;
4021 }
4022 
4023 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4024 {
4025 	struct mem_cgroup_threshold_ary *t;
4026 	unsigned long usage;
4027 	int i;
4028 
4029 	rcu_read_lock();
4030 	if (!swap)
4031 		t = rcu_dereference(memcg->thresholds.primary);
4032 	else
4033 		t = rcu_dereference(memcg->memsw_thresholds.primary);
4034 
4035 	if (!t)
4036 		goto unlock;
4037 
4038 	usage = mem_cgroup_usage(memcg, swap);
4039 
4040 	/*
4041 	 * current_threshold points to threshold just below or equal to usage.
4042 	 * If it's not true, a threshold was crossed after last
4043 	 * call of __mem_cgroup_threshold().
4044 	 */
4045 	i = t->current_threshold;
4046 
4047 	/*
4048 	 * Iterate backward over array of thresholds starting from
4049 	 * current_threshold and check if a threshold is crossed.
4050 	 * If none of thresholds below usage is crossed, we read
4051 	 * only one element of the array here.
4052 	 */
4053 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4054 		eventfd_signal(t->entries[i].eventfd, 1);
4055 
4056 	/* i = current_threshold + 1 */
4057 	i++;
4058 
4059 	/*
4060 	 * Iterate forward over array of thresholds starting from
4061 	 * current_threshold+1 and check if a threshold is crossed.
4062 	 * If none of thresholds above usage is crossed, we read
4063 	 * only one element of the array here.
4064 	 */
4065 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4066 		eventfd_signal(t->entries[i].eventfd, 1);
4067 
4068 	/* Update current_threshold */
4069 	t->current_threshold = i - 1;
4070 unlock:
4071 	rcu_read_unlock();
4072 }
4073 
4074 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4075 {
4076 	while (memcg) {
4077 		__mem_cgroup_threshold(memcg, false);
4078 		if (do_memsw_account())
4079 			__mem_cgroup_threshold(memcg, true);
4080 
4081 		memcg = parent_mem_cgroup(memcg);
4082 	}
4083 }
4084 
4085 static int compare_thresholds(const void *a, const void *b)
4086 {
4087 	const struct mem_cgroup_threshold *_a = a;
4088 	const struct mem_cgroup_threshold *_b = b;
4089 
4090 	if (_a->threshold > _b->threshold)
4091 		return 1;
4092 
4093 	if (_a->threshold < _b->threshold)
4094 		return -1;
4095 
4096 	return 0;
4097 }
4098 
4099 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4100 {
4101 	struct mem_cgroup_eventfd_list *ev;
4102 
4103 	spin_lock(&memcg_oom_lock);
4104 
4105 	list_for_each_entry(ev, &memcg->oom_notify, list)
4106 		eventfd_signal(ev->eventfd, 1);
4107 
4108 	spin_unlock(&memcg_oom_lock);
4109 	return 0;
4110 }
4111 
4112 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4113 {
4114 	struct mem_cgroup *iter;
4115 
4116 	for_each_mem_cgroup_tree(iter, memcg)
4117 		mem_cgroup_oom_notify_cb(iter);
4118 }
4119 
4120 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4121 	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4122 {
4123 	struct mem_cgroup_thresholds *thresholds;
4124 	struct mem_cgroup_threshold_ary *new;
4125 	unsigned long threshold;
4126 	unsigned long usage;
4127 	int i, size, ret;
4128 
4129 	ret = page_counter_memparse(args, "-1", &threshold);
4130 	if (ret)
4131 		return ret;
4132 
4133 	mutex_lock(&memcg->thresholds_lock);
4134 
4135 	if (type == _MEM) {
4136 		thresholds = &memcg->thresholds;
4137 		usage = mem_cgroup_usage(memcg, false);
4138 	} else if (type == _MEMSWAP) {
4139 		thresholds = &memcg->memsw_thresholds;
4140 		usage = mem_cgroup_usage(memcg, true);
4141 	} else
4142 		BUG();
4143 
4144 	/* Check if a threshold crossed before adding a new one */
4145 	if (thresholds->primary)
4146 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4147 
4148 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4149 
4150 	/* Allocate memory for new array of thresholds */
4151 	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4152 	if (!new) {
4153 		ret = -ENOMEM;
4154 		goto unlock;
4155 	}
4156 	new->size = size;
4157 
4158 	/* Copy thresholds (if any) to new array */
4159 	if (thresholds->primary)
4160 		memcpy(new->entries, thresholds->primary->entries,
4161 		       flex_array_size(new, entries, size - 1));
4162 
4163 	/* Add new threshold */
4164 	new->entries[size - 1].eventfd = eventfd;
4165 	new->entries[size - 1].threshold = threshold;
4166 
4167 	/* Sort thresholds. Registering of new threshold isn't time-critical */
4168 	sort(new->entries, size, sizeof(*new->entries),
4169 			compare_thresholds, NULL);
4170 
4171 	/* Find current threshold */
4172 	new->current_threshold = -1;
4173 	for (i = 0; i < size; i++) {
4174 		if (new->entries[i].threshold <= usage) {
4175 			/*
4176 			 * new->current_threshold will not be used until
4177 			 * rcu_assign_pointer(), so it's safe to increment
4178 			 * it here.
4179 			 */
4180 			++new->current_threshold;
4181 		} else
4182 			break;
4183 	}
4184 
4185 	/* Free old spare buffer and save old primary buffer as spare */
4186 	kfree(thresholds->spare);
4187 	thresholds->spare = thresholds->primary;
4188 
4189 	rcu_assign_pointer(thresholds->primary, new);
4190 
4191 	/* To be sure that nobody uses thresholds */
4192 	synchronize_rcu();
4193 
4194 unlock:
4195 	mutex_unlock(&memcg->thresholds_lock);
4196 
4197 	return ret;
4198 }
4199 
4200 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4201 	struct eventfd_ctx *eventfd, const char *args)
4202 {
4203 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4204 }
4205 
4206 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4207 	struct eventfd_ctx *eventfd, const char *args)
4208 {
4209 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4210 }
4211 
4212 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4213 	struct eventfd_ctx *eventfd, enum res_type type)
4214 {
4215 	struct mem_cgroup_thresholds *thresholds;
4216 	struct mem_cgroup_threshold_ary *new;
4217 	unsigned long usage;
4218 	int i, j, size, entries;
4219 
4220 	mutex_lock(&memcg->thresholds_lock);
4221 
4222 	if (type == _MEM) {
4223 		thresholds = &memcg->thresholds;
4224 		usage = mem_cgroup_usage(memcg, false);
4225 	} else if (type == _MEMSWAP) {
4226 		thresholds = &memcg->memsw_thresholds;
4227 		usage = mem_cgroup_usage(memcg, true);
4228 	} else
4229 		BUG();
4230 
4231 	if (!thresholds->primary)
4232 		goto unlock;
4233 
4234 	/* Check if a threshold crossed before removing */
4235 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4236 
4237 	/* Calculate new number of threshold */
4238 	size = entries = 0;
4239 	for (i = 0; i < thresholds->primary->size; i++) {
4240 		if (thresholds->primary->entries[i].eventfd != eventfd)
4241 			size++;
4242 		else
4243 			entries++;
4244 	}
4245 
4246 	new = thresholds->spare;
4247 
4248 	/* If no items related to eventfd have been cleared, nothing to do */
4249 	if (!entries)
4250 		goto unlock;
4251 
4252 	/* Set thresholds array to NULL if we don't have thresholds */
4253 	if (!size) {
4254 		kfree(new);
4255 		new = NULL;
4256 		goto swap_buffers;
4257 	}
4258 
4259 	new->size = size;
4260 
4261 	/* Copy thresholds and find current threshold */
4262 	new->current_threshold = -1;
4263 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4264 		if (thresholds->primary->entries[i].eventfd == eventfd)
4265 			continue;
4266 
4267 		new->entries[j] = thresholds->primary->entries[i];
4268 		if (new->entries[j].threshold <= usage) {
4269 			/*
4270 			 * new->current_threshold will not be used
4271 			 * until rcu_assign_pointer(), so it's safe to increment
4272 			 * it here.
4273 			 */
4274 			++new->current_threshold;
4275 		}
4276 		j++;
4277 	}
4278 
4279 swap_buffers:
4280 	/* Swap primary and spare array */
4281 	thresholds->spare = thresholds->primary;
4282 
4283 	rcu_assign_pointer(thresholds->primary, new);
4284 
4285 	/* To be sure that nobody uses thresholds */
4286 	synchronize_rcu();
4287 
4288 	/* If all events are unregistered, free the spare array */
4289 	if (!new) {
4290 		kfree(thresholds->spare);
4291 		thresholds->spare = NULL;
4292 	}
4293 unlock:
4294 	mutex_unlock(&memcg->thresholds_lock);
4295 }
4296 
4297 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4298 	struct eventfd_ctx *eventfd)
4299 {
4300 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4301 }
4302 
4303 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4304 	struct eventfd_ctx *eventfd)
4305 {
4306 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4307 }
4308 
4309 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4310 	struct eventfd_ctx *eventfd, const char *args)
4311 {
4312 	struct mem_cgroup_eventfd_list *event;
4313 
4314 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4315 	if (!event)
4316 		return -ENOMEM;
4317 
4318 	spin_lock(&memcg_oom_lock);
4319 
4320 	event->eventfd = eventfd;
4321 	list_add(&event->list, &memcg->oom_notify);
4322 
4323 	/* already in OOM ? */
4324 	if (memcg->under_oom)
4325 		eventfd_signal(eventfd, 1);
4326 	spin_unlock(&memcg_oom_lock);
4327 
4328 	return 0;
4329 }
4330 
4331 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4332 	struct eventfd_ctx *eventfd)
4333 {
4334 	struct mem_cgroup_eventfd_list *ev, *tmp;
4335 
4336 	spin_lock(&memcg_oom_lock);
4337 
4338 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4339 		if (ev->eventfd == eventfd) {
4340 			list_del(&ev->list);
4341 			kfree(ev);
4342 		}
4343 	}
4344 
4345 	spin_unlock(&memcg_oom_lock);
4346 }
4347 
4348 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4349 {
4350 	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4351 
4352 	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4353 	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4354 	seq_printf(sf, "oom_kill %lu\n",
4355 		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4356 	return 0;
4357 }
4358 
4359 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4360 	struct cftype *cft, u64 val)
4361 {
4362 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4363 
4364 	/* cannot set to root cgroup and only 0 and 1 are allowed */
4365 	if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
4366 		return -EINVAL;
4367 
4368 	memcg->oom_kill_disable = val;
4369 	if (!val)
4370 		memcg_oom_recover(memcg);
4371 
4372 	return 0;
4373 }
4374 
4375 #ifdef CONFIG_CGROUP_WRITEBACK
4376 
4377 #include <trace/events/writeback.h>
4378 
4379 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4380 {
4381 	return wb_domain_init(&memcg->cgwb_domain, gfp);
4382 }
4383 
4384 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4385 {
4386 	wb_domain_exit(&memcg->cgwb_domain);
4387 }
4388 
4389 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4390 {
4391 	wb_domain_size_changed(&memcg->cgwb_domain);
4392 }
4393 
4394 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4395 {
4396 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4397 
4398 	if (!memcg->css.parent)
4399 		return NULL;
4400 
4401 	return &memcg->cgwb_domain;
4402 }
4403 
4404 /**
4405  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4406  * @wb: bdi_writeback in question
4407  * @pfilepages: out parameter for number of file pages
4408  * @pheadroom: out parameter for number of allocatable pages according to memcg
4409  * @pdirty: out parameter for number of dirty pages
4410  * @pwriteback: out parameter for number of pages under writeback
4411  *
4412  * Determine the numbers of file, headroom, dirty, and writeback pages in
4413  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
4414  * is a bit more involved.
4415  *
4416  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
4417  * headroom is calculated as the lowest headroom of itself and the
4418  * ancestors.  Note that this doesn't consider the actual amount of
4419  * available memory in the system.  The caller should further cap
4420  * *@pheadroom accordingly.
4421  */
4422 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4423 			 unsigned long *pheadroom, unsigned long *pdirty,
4424 			 unsigned long *pwriteback)
4425 {
4426 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4427 	struct mem_cgroup *parent;
4428 
4429 	mem_cgroup_flush_stats();
4430 
4431 	*pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4432 	*pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4433 	*pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4434 			memcg_page_state(memcg, NR_ACTIVE_FILE);
4435 
4436 	*pheadroom = PAGE_COUNTER_MAX;
4437 	while ((parent = parent_mem_cgroup(memcg))) {
4438 		unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4439 					    READ_ONCE(memcg->memory.high));
4440 		unsigned long used = page_counter_read(&memcg->memory);
4441 
4442 		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4443 		memcg = parent;
4444 	}
4445 }
4446 
4447 /*
4448  * Foreign dirty flushing
4449  *
4450  * There's an inherent mismatch between memcg and writeback.  The former
4451  * tracks ownership per-page while the latter per-inode.  This was a
4452  * deliberate design decision because honoring per-page ownership in the
4453  * writeback path is complicated, may lead to higher CPU and IO overheads
4454  * and deemed unnecessary given that write-sharing an inode across
4455  * different cgroups isn't a common use-case.
4456  *
4457  * Combined with inode majority-writer ownership switching, this works well
4458  * enough in most cases but there are some pathological cases.  For
4459  * example, let's say there are two cgroups A and B which keep writing to
4460  * different but confined parts of the same inode.  B owns the inode and
4461  * A's memory is limited far below B's.  A's dirty ratio can rise enough to
4462  * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4463  * triggering background writeback.  A will be slowed down without a way to
4464  * make writeback of the dirty pages happen.
4465  *
4466  * Conditions like the above can lead to a cgroup getting repeatedly and
4467  * severely throttled after making some progress after each
4468  * dirty_expire_interval while the underlying IO device is almost
4469  * completely idle.
4470  *
4471  * Solving this problem completely requires matching the ownership tracking
4472  * granularities between memcg and writeback in either direction.  However,
4473  * the more egregious behaviors can be avoided by simply remembering the
4474  * most recent foreign dirtying events and initiating remote flushes on
4475  * them when local writeback isn't enough to keep the memory clean enough.
4476  *
4477  * The following two functions implement such mechanism.  When a foreign
4478  * page - a page whose memcg and writeback ownerships don't match - is
4479  * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4480  * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
4481  * decides that the memcg needs to sleep due to high dirty ratio, it calls
4482  * mem_cgroup_flush_foreign() which queues writeback on the recorded
4483  * foreign bdi_writebacks which haven't expired.  Both the numbers of
4484  * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4485  * limited to MEMCG_CGWB_FRN_CNT.
4486  *
4487  * The mechanism only remembers IDs and doesn't hold any object references.
4488  * As being wrong occasionally doesn't matter, updates and accesses to the
4489  * records are lockless and racy.
4490  */
4491 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
4492 					     struct bdi_writeback *wb)
4493 {
4494 	struct mem_cgroup *memcg = folio_memcg(folio);
4495 	struct memcg_cgwb_frn *frn;
4496 	u64 now = get_jiffies_64();
4497 	u64 oldest_at = now;
4498 	int oldest = -1;
4499 	int i;
4500 
4501 	trace_track_foreign_dirty(folio, wb);
4502 
4503 	/*
4504 	 * Pick the slot to use.  If there is already a slot for @wb, keep
4505 	 * using it.  If not replace the oldest one which isn't being
4506 	 * written out.
4507 	 */
4508 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4509 		frn = &memcg->cgwb_frn[i];
4510 		if (frn->bdi_id == wb->bdi->id &&
4511 		    frn->memcg_id == wb->memcg_css->id)
4512 			break;
4513 		if (time_before64(frn->at, oldest_at) &&
4514 		    atomic_read(&frn->done.cnt) == 1) {
4515 			oldest = i;
4516 			oldest_at = frn->at;
4517 		}
4518 	}
4519 
4520 	if (i < MEMCG_CGWB_FRN_CNT) {
4521 		/*
4522 		 * Re-using an existing one.  Update timestamp lazily to
4523 		 * avoid making the cacheline hot.  We want them to be
4524 		 * reasonably up-to-date and significantly shorter than
4525 		 * dirty_expire_interval as that's what expires the record.
4526 		 * Use the shorter of 1s and dirty_expire_interval / 8.
4527 		 */
4528 		unsigned long update_intv =
4529 			min_t(unsigned long, HZ,
4530 			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4531 
4532 		if (time_before64(frn->at, now - update_intv))
4533 			frn->at = now;
4534 	} else if (oldest >= 0) {
4535 		/* replace the oldest free one */
4536 		frn = &memcg->cgwb_frn[oldest];
4537 		frn->bdi_id = wb->bdi->id;
4538 		frn->memcg_id = wb->memcg_css->id;
4539 		frn->at = now;
4540 	}
4541 }
4542 
4543 /* issue foreign writeback flushes for recorded foreign dirtying events */
4544 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4545 {
4546 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4547 	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4548 	u64 now = jiffies_64;
4549 	int i;
4550 
4551 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4552 		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4553 
4554 		/*
4555 		 * If the record is older than dirty_expire_interval,
4556 		 * writeback on it has already started.  No need to kick it
4557 		 * off again.  Also, don't start a new one if there's
4558 		 * already one in flight.
4559 		 */
4560 		if (time_after64(frn->at, now - intv) &&
4561 		    atomic_read(&frn->done.cnt) == 1) {
4562 			frn->at = 0;
4563 			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4564 			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
4565 					       WB_REASON_FOREIGN_FLUSH,
4566 					       &frn->done);
4567 		}
4568 	}
4569 }
4570 
4571 #else	/* CONFIG_CGROUP_WRITEBACK */
4572 
4573 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4574 {
4575 	return 0;
4576 }
4577 
4578 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4579 {
4580 }
4581 
4582 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4583 {
4584 }
4585 
4586 #endif	/* CONFIG_CGROUP_WRITEBACK */
4587 
4588 /*
4589  * DO NOT USE IN NEW FILES.
4590  *
4591  * "cgroup.event_control" implementation.
4592  *
4593  * This is way over-engineered.  It tries to support fully configurable
4594  * events for each user.  Such level of flexibility is completely
4595  * unnecessary especially in the light of the planned unified hierarchy.
4596  *
4597  * Please deprecate this and replace with something simpler if at all
4598  * possible.
4599  */
4600 
4601 /*
4602  * Unregister event and free resources.
4603  *
4604  * Gets called from workqueue.
4605  */
4606 static void memcg_event_remove(struct work_struct *work)
4607 {
4608 	struct mem_cgroup_event *event =
4609 		container_of(work, struct mem_cgroup_event, remove);
4610 	struct mem_cgroup *memcg = event->memcg;
4611 
4612 	remove_wait_queue(event->wqh, &event->wait);
4613 
4614 	event->unregister_event(memcg, event->eventfd);
4615 
4616 	/* Notify userspace the event is going away. */
4617 	eventfd_signal(event->eventfd, 1);
4618 
4619 	eventfd_ctx_put(event->eventfd);
4620 	kfree(event);
4621 	css_put(&memcg->css);
4622 }
4623 
4624 /*
4625  * Gets called on EPOLLHUP on eventfd when user closes it.
4626  *
4627  * Called with wqh->lock held and interrupts disabled.
4628  */
4629 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4630 			    int sync, void *key)
4631 {
4632 	struct mem_cgroup_event *event =
4633 		container_of(wait, struct mem_cgroup_event, wait);
4634 	struct mem_cgroup *memcg = event->memcg;
4635 	__poll_t flags = key_to_poll(key);
4636 
4637 	if (flags & EPOLLHUP) {
4638 		/*
4639 		 * If the event has been detached at cgroup removal, we
4640 		 * can simply return knowing the other side will cleanup
4641 		 * for us.
4642 		 *
4643 		 * We can't race against event freeing since the other
4644 		 * side will require wqh->lock via remove_wait_queue(),
4645 		 * which we hold.
4646 		 */
4647 		spin_lock(&memcg->event_list_lock);
4648 		if (!list_empty(&event->list)) {
4649 			list_del_init(&event->list);
4650 			/*
4651 			 * We are in atomic context, but cgroup_event_remove()
4652 			 * may sleep, so we have to call it in workqueue.
4653 			 */
4654 			schedule_work(&event->remove);
4655 		}
4656 		spin_unlock(&memcg->event_list_lock);
4657 	}
4658 
4659 	return 0;
4660 }
4661 
4662 static void memcg_event_ptable_queue_proc(struct file *file,
4663 		wait_queue_head_t *wqh, poll_table *pt)
4664 {
4665 	struct mem_cgroup_event *event =
4666 		container_of(pt, struct mem_cgroup_event, pt);
4667 
4668 	event->wqh = wqh;
4669 	add_wait_queue(wqh, &event->wait);
4670 }
4671 
4672 /*
4673  * DO NOT USE IN NEW FILES.
4674  *
4675  * Parse input and register new cgroup event handler.
4676  *
4677  * Input must be in format '<event_fd> <control_fd> <args>'.
4678  * Interpretation of args is defined by control file implementation.
4679  */
4680 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4681 					 char *buf, size_t nbytes, loff_t off)
4682 {
4683 	struct cgroup_subsys_state *css = of_css(of);
4684 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4685 	struct mem_cgroup_event *event;
4686 	struct cgroup_subsys_state *cfile_css;
4687 	unsigned int efd, cfd;
4688 	struct fd efile;
4689 	struct fd cfile;
4690 	const char *name;
4691 	char *endp;
4692 	int ret;
4693 
4694 	if (IS_ENABLED(CONFIG_PREEMPT_RT))
4695 		return -EOPNOTSUPP;
4696 
4697 	buf = strstrip(buf);
4698 
4699 	efd = simple_strtoul(buf, &endp, 10);
4700 	if (*endp != ' ')
4701 		return -EINVAL;
4702 	buf = endp + 1;
4703 
4704 	cfd = simple_strtoul(buf, &endp, 10);
4705 	if ((*endp != ' ') && (*endp != '\0'))
4706 		return -EINVAL;
4707 	buf = endp + 1;
4708 
4709 	event = kzalloc(sizeof(*event), GFP_KERNEL);
4710 	if (!event)
4711 		return -ENOMEM;
4712 
4713 	event->memcg = memcg;
4714 	INIT_LIST_HEAD(&event->list);
4715 	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4716 	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4717 	INIT_WORK(&event->remove, memcg_event_remove);
4718 
4719 	efile = fdget(efd);
4720 	if (!efile.file) {
4721 		ret = -EBADF;
4722 		goto out_kfree;
4723 	}
4724 
4725 	event->eventfd = eventfd_ctx_fileget(efile.file);
4726 	if (IS_ERR(event->eventfd)) {
4727 		ret = PTR_ERR(event->eventfd);
4728 		goto out_put_efile;
4729 	}
4730 
4731 	cfile = fdget(cfd);
4732 	if (!cfile.file) {
4733 		ret = -EBADF;
4734 		goto out_put_eventfd;
4735 	}
4736 
4737 	/* the process need read permission on control file */
4738 	/* AV: shouldn't we check that it's been opened for read instead? */
4739 	ret = file_permission(cfile.file, MAY_READ);
4740 	if (ret < 0)
4741 		goto out_put_cfile;
4742 
4743 	/*
4744 	 * Determine the event callbacks and set them in @event.  This used
4745 	 * to be done via struct cftype but cgroup core no longer knows
4746 	 * about these events.  The following is crude but the whole thing
4747 	 * is for compatibility anyway.
4748 	 *
4749 	 * DO NOT ADD NEW FILES.
4750 	 */
4751 	name = cfile.file->f_path.dentry->d_name.name;
4752 
4753 	if (!strcmp(name, "memory.usage_in_bytes")) {
4754 		event->register_event = mem_cgroup_usage_register_event;
4755 		event->unregister_event = mem_cgroup_usage_unregister_event;
4756 	} else if (!strcmp(name, "memory.oom_control")) {
4757 		event->register_event = mem_cgroup_oom_register_event;
4758 		event->unregister_event = mem_cgroup_oom_unregister_event;
4759 	} else if (!strcmp(name, "memory.pressure_level")) {
4760 		event->register_event = vmpressure_register_event;
4761 		event->unregister_event = vmpressure_unregister_event;
4762 	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4763 		event->register_event = memsw_cgroup_usage_register_event;
4764 		event->unregister_event = memsw_cgroup_usage_unregister_event;
4765 	} else {
4766 		ret = -EINVAL;
4767 		goto out_put_cfile;
4768 	}
4769 
4770 	/*
4771 	 * Verify @cfile should belong to @css.  Also, remaining events are
4772 	 * automatically removed on cgroup destruction but the removal is
4773 	 * asynchronous, so take an extra ref on @css.
4774 	 */
4775 	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4776 					       &memory_cgrp_subsys);
4777 	ret = -EINVAL;
4778 	if (IS_ERR(cfile_css))
4779 		goto out_put_cfile;
4780 	if (cfile_css != css) {
4781 		css_put(cfile_css);
4782 		goto out_put_cfile;
4783 	}
4784 
4785 	ret = event->register_event(memcg, event->eventfd, buf);
4786 	if (ret)
4787 		goto out_put_css;
4788 
4789 	vfs_poll(efile.file, &event->pt);
4790 
4791 	spin_lock_irq(&memcg->event_list_lock);
4792 	list_add(&event->list, &memcg->event_list);
4793 	spin_unlock_irq(&memcg->event_list_lock);
4794 
4795 	fdput(cfile);
4796 	fdput(efile);
4797 
4798 	return nbytes;
4799 
4800 out_put_css:
4801 	css_put(css);
4802 out_put_cfile:
4803 	fdput(cfile);
4804 out_put_eventfd:
4805 	eventfd_ctx_put(event->eventfd);
4806 out_put_efile:
4807 	fdput(efile);
4808 out_kfree:
4809 	kfree(event);
4810 
4811 	return ret;
4812 }
4813 
4814 #if defined(CONFIG_MEMCG_KMEM) && (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
4815 static int mem_cgroup_slab_show(struct seq_file *m, void *p)
4816 {
4817 	/*
4818 	 * Deprecated.
4819 	 * Please, take a look at tools/cgroup/slabinfo.py .
4820 	 */
4821 	return 0;
4822 }
4823 #endif
4824 
4825 static struct cftype mem_cgroup_legacy_files[] = {
4826 	{
4827 		.name = "usage_in_bytes",
4828 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4829 		.read_u64 = mem_cgroup_read_u64,
4830 	},
4831 	{
4832 		.name = "max_usage_in_bytes",
4833 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4834 		.write = mem_cgroup_reset,
4835 		.read_u64 = mem_cgroup_read_u64,
4836 	},
4837 	{
4838 		.name = "limit_in_bytes",
4839 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4840 		.write = mem_cgroup_write,
4841 		.read_u64 = mem_cgroup_read_u64,
4842 	},
4843 	{
4844 		.name = "soft_limit_in_bytes",
4845 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4846 		.write = mem_cgroup_write,
4847 		.read_u64 = mem_cgroup_read_u64,
4848 	},
4849 	{
4850 		.name = "failcnt",
4851 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4852 		.write = mem_cgroup_reset,
4853 		.read_u64 = mem_cgroup_read_u64,
4854 	},
4855 	{
4856 		.name = "stat",
4857 		.seq_show = memcg_stat_show,
4858 	},
4859 	{
4860 		.name = "force_empty",
4861 		.write = mem_cgroup_force_empty_write,
4862 	},
4863 	{
4864 		.name = "use_hierarchy",
4865 		.write_u64 = mem_cgroup_hierarchy_write,
4866 		.read_u64 = mem_cgroup_hierarchy_read,
4867 	},
4868 	{
4869 		.name = "cgroup.event_control",		/* XXX: for compat */
4870 		.write = memcg_write_event_control,
4871 		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4872 	},
4873 	{
4874 		.name = "swappiness",
4875 		.read_u64 = mem_cgroup_swappiness_read,
4876 		.write_u64 = mem_cgroup_swappiness_write,
4877 	},
4878 	{
4879 		.name = "move_charge_at_immigrate",
4880 		.read_u64 = mem_cgroup_move_charge_read,
4881 		.write_u64 = mem_cgroup_move_charge_write,
4882 	},
4883 	{
4884 		.name = "oom_control",
4885 		.seq_show = mem_cgroup_oom_control_read,
4886 		.write_u64 = mem_cgroup_oom_control_write,
4887 	},
4888 	{
4889 		.name = "pressure_level",
4890 	},
4891 #ifdef CONFIG_NUMA
4892 	{
4893 		.name = "numa_stat",
4894 		.seq_show = memcg_numa_stat_show,
4895 	},
4896 #endif
4897 	{
4898 		.name = "kmem.limit_in_bytes",
4899 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4900 		.write = mem_cgroup_write,
4901 		.read_u64 = mem_cgroup_read_u64,
4902 	},
4903 	{
4904 		.name = "kmem.usage_in_bytes",
4905 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4906 		.read_u64 = mem_cgroup_read_u64,
4907 	},
4908 	{
4909 		.name = "kmem.failcnt",
4910 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4911 		.write = mem_cgroup_reset,
4912 		.read_u64 = mem_cgroup_read_u64,
4913 	},
4914 	{
4915 		.name = "kmem.max_usage_in_bytes",
4916 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4917 		.write = mem_cgroup_reset,
4918 		.read_u64 = mem_cgroup_read_u64,
4919 	},
4920 #if defined(CONFIG_MEMCG_KMEM) && \
4921 	(defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
4922 	{
4923 		.name = "kmem.slabinfo",
4924 		.seq_show = mem_cgroup_slab_show,
4925 	},
4926 #endif
4927 	{
4928 		.name = "kmem.tcp.limit_in_bytes",
4929 		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4930 		.write = mem_cgroup_write,
4931 		.read_u64 = mem_cgroup_read_u64,
4932 	},
4933 	{
4934 		.name = "kmem.tcp.usage_in_bytes",
4935 		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4936 		.read_u64 = mem_cgroup_read_u64,
4937 	},
4938 	{
4939 		.name = "kmem.tcp.failcnt",
4940 		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4941 		.write = mem_cgroup_reset,
4942 		.read_u64 = mem_cgroup_read_u64,
4943 	},
4944 	{
4945 		.name = "kmem.tcp.max_usage_in_bytes",
4946 		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4947 		.write = mem_cgroup_reset,
4948 		.read_u64 = mem_cgroup_read_u64,
4949 	},
4950 	{ },	/* terminate */
4951 };
4952 
4953 /*
4954  * Private memory cgroup IDR
4955  *
4956  * Swap-out records and page cache shadow entries need to store memcg
4957  * references in constrained space, so we maintain an ID space that is
4958  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4959  * memory-controlled cgroups to 64k.
4960  *
4961  * However, there usually are many references to the offline CSS after
4962  * the cgroup has been destroyed, such as page cache or reclaimable
4963  * slab objects, that don't need to hang on to the ID. We want to keep
4964  * those dead CSS from occupying IDs, or we might quickly exhaust the
4965  * relatively small ID space and prevent the creation of new cgroups
4966  * even when there are much fewer than 64k cgroups - possibly none.
4967  *
4968  * Maintain a private 16-bit ID space for memcg, and allow the ID to
4969  * be freed and recycled when it's no longer needed, which is usually
4970  * when the CSS is offlined.
4971  *
4972  * The only exception to that are records of swapped out tmpfs/shmem
4973  * pages that need to be attributed to live ancestors on swapin. But
4974  * those references are manageable from userspace.
4975  */
4976 
4977 static DEFINE_IDR(mem_cgroup_idr);
4978 
4979 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4980 {
4981 	if (memcg->id.id > 0) {
4982 		idr_remove(&mem_cgroup_idr, memcg->id.id);
4983 		memcg->id.id = 0;
4984 	}
4985 }
4986 
4987 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
4988 						  unsigned int n)
4989 {
4990 	refcount_add(n, &memcg->id.ref);
4991 }
4992 
4993 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4994 {
4995 	if (refcount_sub_and_test(n, &memcg->id.ref)) {
4996 		mem_cgroup_id_remove(memcg);
4997 
4998 		/* Memcg ID pins CSS */
4999 		css_put(&memcg->css);
5000 	}
5001 }
5002 
5003 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5004 {
5005 	mem_cgroup_id_put_many(memcg, 1);
5006 }
5007 
5008 /**
5009  * mem_cgroup_from_id - look up a memcg from a memcg id
5010  * @id: the memcg id to look up
5011  *
5012  * Caller must hold rcu_read_lock().
5013  */
5014 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5015 {
5016 	WARN_ON_ONCE(!rcu_read_lock_held());
5017 	return idr_find(&mem_cgroup_idr, id);
5018 }
5019 
5020 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5021 {
5022 	struct mem_cgroup_per_node *pn;
5023 
5024 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node);
5025 	if (!pn)
5026 		return 1;
5027 
5028 	pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
5029 						   GFP_KERNEL_ACCOUNT);
5030 	if (!pn->lruvec_stats_percpu) {
5031 		kfree(pn);
5032 		return 1;
5033 	}
5034 
5035 	lruvec_init(&pn->lruvec);
5036 	pn->memcg = memcg;
5037 
5038 	memcg->nodeinfo[node] = pn;
5039 	return 0;
5040 }
5041 
5042 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5043 {
5044 	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5045 
5046 	if (!pn)
5047 		return;
5048 
5049 	free_percpu(pn->lruvec_stats_percpu);
5050 	kfree(pn);
5051 }
5052 
5053 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5054 {
5055 	int node;
5056 
5057 	for_each_node(node)
5058 		free_mem_cgroup_per_node_info(memcg, node);
5059 	free_percpu(memcg->vmstats_percpu);
5060 	kfree(memcg);
5061 }
5062 
5063 static void mem_cgroup_free(struct mem_cgroup *memcg)
5064 {
5065 	memcg_wb_domain_exit(memcg);
5066 	__mem_cgroup_free(memcg);
5067 }
5068 
5069 static struct mem_cgroup *mem_cgroup_alloc(void)
5070 {
5071 	struct mem_cgroup *memcg;
5072 	int node;
5073 	int __maybe_unused i;
5074 	long error = -ENOMEM;
5075 
5076 	memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL);
5077 	if (!memcg)
5078 		return ERR_PTR(error);
5079 
5080 	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5081 				 1, MEM_CGROUP_ID_MAX + 1, GFP_KERNEL);
5082 	if (memcg->id.id < 0) {
5083 		error = memcg->id.id;
5084 		goto fail;
5085 	}
5086 
5087 	memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5088 						 GFP_KERNEL_ACCOUNT);
5089 	if (!memcg->vmstats_percpu)
5090 		goto fail;
5091 
5092 	for_each_node(node)
5093 		if (alloc_mem_cgroup_per_node_info(memcg, node))
5094 			goto fail;
5095 
5096 	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5097 		goto fail;
5098 
5099 	INIT_WORK(&memcg->high_work, high_work_func);
5100 	INIT_LIST_HEAD(&memcg->oom_notify);
5101 	mutex_init(&memcg->thresholds_lock);
5102 	spin_lock_init(&memcg->move_lock);
5103 	vmpressure_init(&memcg->vmpressure);
5104 	INIT_LIST_HEAD(&memcg->event_list);
5105 	spin_lock_init(&memcg->event_list_lock);
5106 	memcg->socket_pressure = jiffies;
5107 #ifdef CONFIG_MEMCG_KMEM
5108 	memcg->kmemcg_id = -1;
5109 	INIT_LIST_HEAD(&memcg->objcg_list);
5110 #endif
5111 #ifdef CONFIG_CGROUP_WRITEBACK
5112 	INIT_LIST_HEAD(&memcg->cgwb_list);
5113 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5114 		memcg->cgwb_frn[i].done =
5115 			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5116 #endif
5117 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5118 	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5119 	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5120 	memcg->deferred_split_queue.split_queue_len = 0;
5121 #endif
5122 	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5123 	return memcg;
5124 fail:
5125 	mem_cgroup_id_remove(memcg);
5126 	__mem_cgroup_free(memcg);
5127 	return ERR_PTR(error);
5128 }
5129 
5130 static struct cgroup_subsys_state * __ref
5131 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5132 {
5133 	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5134 	struct mem_cgroup *memcg, *old_memcg;
5135 
5136 	old_memcg = set_active_memcg(parent);
5137 	memcg = mem_cgroup_alloc();
5138 	set_active_memcg(old_memcg);
5139 	if (IS_ERR(memcg))
5140 		return ERR_CAST(memcg);
5141 
5142 	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5143 	memcg->soft_limit = PAGE_COUNTER_MAX;
5144 	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5145 	if (parent) {
5146 		memcg->swappiness = mem_cgroup_swappiness(parent);
5147 		memcg->oom_kill_disable = parent->oom_kill_disable;
5148 
5149 		page_counter_init(&memcg->memory, &parent->memory);
5150 		page_counter_init(&memcg->swap, &parent->swap);
5151 		page_counter_init(&memcg->kmem, &parent->kmem);
5152 		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5153 	} else {
5154 		page_counter_init(&memcg->memory, NULL);
5155 		page_counter_init(&memcg->swap, NULL);
5156 		page_counter_init(&memcg->kmem, NULL);
5157 		page_counter_init(&memcg->tcpmem, NULL);
5158 
5159 		root_mem_cgroup = memcg;
5160 		return &memcg->css;
5161 	}
5162 
5163 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5164 		static_branch_inc(&memcg_sockets_enabled_key);
5165 
5166 	return &memcg->css;
5167 }
5168 
5169 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5170 {
5171 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5172 
5173 	if (memcg_online_kmem(memcg))
5174 		goto remove_id;
5175 
5176 	/*
5177 	 * A memcg must be visible for expand_shrinker_info()
5178 	 * by the time the maps are allocated. So, we allocate maps
5179 	 * here, when for_each_mem_cgroup() can't skip it.
5180 	 */
5181 	if (alloc_shrinker_info(memcg))
5182 		goto offline_kmem;
5183 
5184 	/* Online state pins memcg ID, memcg ID pins CSS */
5185 	refcount_set(&memcg->id.ref, 1);
5186 	css_get(css);
5187 
5188 	if (unlikely(mem_cgroup_is_root(memcg)))
5189 		queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
5190 				   2UL*HZ);
5191 	return 0;
5192 offline_kmem:
5193 	memcg_offline_kmem(memcg);
5194 remove_id:
5195 	mem_cgroup_id_remove(memcg);
5196 	return -ENOMEM;
5197 }
5198 
5199 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5200 {
5201 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5202 	struct mem_cgroup_event *event, *tmp;
5203 
5204 	/*
5205 	 * Unregister events and notify userspace.
5206 	 * Notify userspace about cgroup removing only after rmdir of cgroup
5207 	 * directory to avoid race between userspace and kernelspace.
5208 	 */
5209 	spin_lock_irq(&memcg->event_list_lock);
5210 	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5211 		list_del_init(&event->list);
5212 		schedule_work(&event->remove);
5213 	}
5214 	spin_unlock_irq(&memcg->event_list_lock);
5215 
5216 	page_counter_set_min(&memcg->memory, 0);
5217 	page_counter_set_low(&memcg->memory, 0);
5218 
5219 	memcg_offline_kmem(memcg);
5220 	reparent_shrinker_deferred(memcg);
5221 	wb_memcg_offline(memcg);
5222 
5223 	drain_all_stock(memcg);
5224 
5225 	mem_cgroup_id_put(memcg);
5226 }
5227 
5228 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5229 {
5230 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5231 
5232 	invalidate_reclaim_iterators(memcg);
5233 }
5234 
5235 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5236 {
5237 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5238 	int __maybe_unused i;
5239 
5240 #ifdef CONFIG_CGROUP_WRITEBACK
5241 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5242 		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5243 #endif
5244 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5245 		static_branch_dec(&memcg_sockets_enabled_key);
5246 
5247 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5248 		static_branch_dec(&memcg_sockets_enabled_key);
5249 
5250 	vmpressure_cleanup(&memcg->vmpressure);
5251 	cancel_work_sync(&memcg->high_work);
5252 	mem_cgroup_remove_from_trees(memcg);
5253 	free_shrinker_info(memcg);
5254 	mem_cgroup_free(memcg);
5255 }
5256 
5257 /**
5258  * mem_cgroup_css_reset - reset the states of a mem_cgroup
5259  * @css: the target css
5260  *
5261  * Reset the states of the mem_cgroup associated with @css.  This is
5262  * invoked when the userland requests disabling on the default hierarchy
5263  * but the memcg is pinned through dependency.  The memcg should stop
5264  * applying policies and should revert to the vanilla state as it may be
5265  * made visible again.
5266  *
5267  * The current implementation only resets the essential configurations.
5268  * This needs to be expanded to cover all the visible parts.
5269  */
5270 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5271 {
5272 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5273 
5274 	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5275 	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5276 	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5277 	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5278 	page_counter_set_min(&memcg->memory, 0);
5279 	page_counter_set_low(&memcg->memory, 0);
5280 	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5281 	memcg->soft_limit = PAGE_COUNTER_MAX;
5282 	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5283 	memcg_wb_domain_size_changed(memcg);
5284 }
5285 
5286 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5287 {
5288 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5289 	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5290 	struct memcg_vmstats_percpu *statc;
5291 	long delta, v;
5292 	int i, nid;
5293 
5294 	statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5295 
5296 	for (i = 0; i < MEMCG_NR_STAT; i++) {
5297 		/*
5298 		 * Collect the aggregated propagation counts of groups
5299 		 * below us. We're in a per-cpu loop here and this is
5300 		 * a global counter, so the first cycle will get them.
5301 		 */
5302 		delta = memcg->vmstats.state_pending[i];
5303 		if (delta)
5304 			memcg->vmstats.state_pending[i] = 0;
5305 
5306 		/* Add CPU changes on this level since the last flush */
5307 		v = READ_ONCE(statc->state[i]);
5308 		if (v != statc->state_prev[i]) {
5309 			delta += v - statc->state_prev[i];
5310 			statc->state_prev[i] = v;
5311 		}
5312 
5313 		if (!delta)
5314 			continue;
5315 
5316 		/* Aggregate counts on this level and propagate upwards */
5317 		memcg->vmstats.state[i] += delta;
5318 		if (parent)
5319 			parent->vmstats.state_pending[i] += delta;
5320 	}
5321 
5322 	for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
5323 		delta = memcg->vmstats.events_pending[i];
5324 		if (delta)
5325 			memcg->vmstats.events_pending[i] = 0;
5326 
5327 		v = READ_ONCE(statc->events[i]);
5328 		if (v != statc->events_prev[i]) {
5329 			delta += v - statc->events_prev[i];
5330 			statc->events_prev[i] = v;
5331 		}
5332 
5333 		if (!delta)
5334 			continue;
5335 
5336 		memcg->vmstats.events[i] += delta;
5337 		if (parent)
5338 			parent->vmstats.events_pending[i] += delta;
5339 	}
5340 
5341 	for_each_node_state(nid, N_MEMORY) {
5342 		struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
5343 		struct mem_cgroup_per_node *ppn = NULL;
5344 		struct lruvec_stats_percpu *lstatc;
5345 
5346 		if (parent)
5347 			ppn = parent->nodeinfo[nid];
5348 
5349 		lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
5350 
5351 		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
5352 			delta = pn->lruvec_stats.state_pending[i];
5353 			if (delta)
5354 				pn->lruvec_stats.state_pending[i] = 0;
5355 
5356 			v = READ_ONCE(lstatc->state[i]);
5357 			if (v != lstatc->state_prev[i]) {
5358 				delta += v - lstatc->state_prev[i];
5359 				lstatc->state_prev[i] = v;
5360 			}
5361 
5362 			if (!delta)
5363 				continue;
5364 
5365 			pn->lruvec_stats.state[i] += delta;
5366 			if (ppn)
5367 				ppn->lruvec_stats.state_pending[i] += delta;
5368 		}
5369 	}
5370 }
5371 
5372 #ifdef CONFIG_MMU
5373 /* Handlers for move charge at task migration. */
5374 static int mem_cgroup_do_precharge(unsigned long count)
5375 {
5376 	int ret;
5377 
5378 	/* Try a single bulk charge without reclaim first, kswapd may wake */
5379 	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5380 	if (!ret) {
5381 		mc.precharge += count;
5382 		return ret;
5383 	}
5384 
5385 	/* Try charges one by one with reclaim, but do not retry */
5386 	while (count--) {
5387 		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5388 		if (ret)
5389 			return ret;
5390 		mc.precharge++;
5391 		cond_resched();
5392 	}
5393 	return 0;
5394 }
5395 
5396 union mc_target {
5397 	struct page	*page;
5398 	swp_entry_t	ent;
5399 };
5400 
5401 enum mc_target_type {
5402 	MC_TARGET_NONE = 0,
5403 	MC_TARGET_PAGE,
5404 	MC_TARGET_SWAP,
5405 	MC_TARGET_DEVICE,
5406 };
5407 
5408 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5409 						unsigned long addr, pte_t ptent)
5410 {
5411 	struct page *page = vm_normal_page(vma, addr, ptent);
5412 
5413 	if (!page || !page_mapped(page))
5414 		return NULL;
5415 	if (PageAnon(page)) {
5416 		if (!(mc.flags & MOVE_ANON))
5417 			return NULL;
5418 	} else {
5419 		if (!(mc.flags & MOVE_FILE))
5420 			return NULL;
5421 	}
5422 	if (!get_page_unless_zero(page))
5423 		return NULL;
5424 
5425 	return page;
5426 }
5427 
5428 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5429 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5430 			pte_t ptent, swp_entry_t *entry)
5431 {
5432 	struct page *page = NULL;
5433 	swp_entry_t ent = pte_to_swp_entry(ptent);
5434 
5435 	if (!(mc.flags & MOVE_ANON))
5436 		return NULL;
5437 
5438 	/*
5439 	 * Handle device private pages that are not accessible by the CPU, but
5440 	 * stored as special swap entries in the page table.
5441 	 */
5442 	if (is_device_private_entry(ent)) {
5443 		page = pfn_swap_entry_to_page(ent);
5444 		if (!get_page_unless_zero(page))
5445 			return NULL;
5446 		return page;
5447 	}
5448 
5449 	if (non_swap_entry(ent))
5450 		return NULL;
5451 
5452 	/*
5453 	 * Because lookup_swap_cache() updates some statistics counter,
5454 	 * we call find_get_page() with swapper_space directly.
5455 	 */
5456 	page = find_get_page(swap_address_space(ent), swp_offset(ent));
5457 	entry->val = ent.val;
5458 
5459 	return page;
5460 }
5461 #else
5462 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5463 			pte_t ptent, swp_entry_t *entry)
5464 {
5465 	return NULL;
5466 }
5467 #endif
5468 
5469 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5470 			unsigned long addr, pte_t ptent)
5471 {
5472 	if (!vma->vm_file) /* anonymous vma */
5473 		return NULL;
5474 	if (!(mc.flags & MOVE_FILE))
5475 		return NULL;
5476 
5477 	/* page is moved even if it's not RSS of this task(page-faulted). */
5478 	/* shmem/tmpfs may report page out on swap: account for that too. */
5479 	return find_get_incore_page(vma->vm_file->f_mapping,
5480 			linear_page_index(vma, addr));
5481 }
5482 
5483 /**
5484  * mem_cgroup_move_account - move account of the page
5485  * @page: the page
5486  * @compound: charge the page as compound or small page
5487  * @from: mem_cgroup which the page is moved from.
5488  * @to:	mem_cgroup which the page is moved to. @from != @to.
5489  *
5490  * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5491  *
5492  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5493  * from old cgroup.
5494  */
5495 static int mem_cgroup_move_account(struct page *page,
5496 				   bool compound,
5497 				   struct mem_cgroup *from,
5498 				   struct mem_cgroup *to)
5499 {
5500 	struct folio *folio = page_folio(page);
5501 	struct lruvec *from_vec, *to_vec;
5502 	struct pglist_data *pgdat;
5503 	unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1;
5504 	int nid, ret;
5505 
5506 	VM_BUG_ON(from == to);
5507 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
5508 	VM_BUG_ON(compound && !folio_test_large(folio));
5509 
5510 	/*
5511 	 * Prevent mem_cgroup_migrate() from looking at
5512 	 * page's memory cgroup of its source page while we change it.
5513 	 */
5514 	ret = -EBUSY;
5515 	if (!folio_trylock(folio))
5516 		goto out;
5517 
5518 	ret = -EINVAL;
5519 	if (folio_memcg(folio) != from)
5520 		goto out_unlock;
5521 
5522 	pgdat = folio_pgdat(folio);
5523 	from_vec = mem_cgroup_lruvec(from, pgdat);
5524 	to_vec = mem_cgroup_lruvec(to, pgdat);
5525 
5526 	folio_memcg_lock(folio);
5527 
5528 	if (folio_test_anon(folio)) {
5529 		if (folio_mapped(folio)) {
5530 			__mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5531 			__mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5532 			if (folio_test_transhuge(folio)) {
5533 				__mod_lruvec_state(from_vec, NR_ANON_THPS,
5534 						   -nr_pages);
5535 				__mod_lruvec_state(to_vec, NR_ANON_THPS,
5536 						   nr_pages);
5537 			}
5538 		}
5539 	} else {
5540 		__mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5541 		__mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5542 
5543 		if (folio_test_swapbacked(folio)) {
5544 			__mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5545 			__mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5546 		}
5547 
5548 		if (folio_mapped(folio)) {
5549 			__mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5550 			__mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5551 		}
5552 
5553 		if (folio_test_dirty(folio)) {
5554 			struct address_space *mapping = folio_mapping(folio);
5555 
5556 			if (mapping_can_writeback(mapping)) {
5557 				__mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5558 						   -nr_pages);
5559 				__mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5560 						   nr_pages);
5561 			}
5562 		}
5563 	}
5564 
5565 	if (folio_test_writeback(folio)) {
5566 		__mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5567 		__mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5568 	}
5569 
5570 	/*
5571 	 * All state has been migrated, let's switch to the new memcg.
5572 	 *
5573 	 * It is safe to change page's memcg here because the page
5574 	 * is referenced, charged, isolated, and locked: we can't race
5575 	 * with (un)charging, migration, LRU putback, or anything else
5576 	 * that would rely on a stable page's memory cgroup.
5577 	 *
5578 	 * Note that lock_page_memcg is a memcg lock, not a page lock,
5579 	 * to save space. As soon as we switch page's memory cgroup to a
5580 	 * new memcg that isn't locked, the above state can change
5581 	 * concurrently again. Make sure we're truly done with it.
5582 	 */
5583 	smp_mb();
5584 
5585 	css_get(&to->css);
5586 	css_put(&from->css);
5587 
5588 	folio->memcg_data = (unsigned long)to;
5589 
5590 	__folio_memcg_unlock(from);
5591 
5592 	ret = 0;
5593 	nid = folio_nid(folio);
5594 
5595 	local_irq_disable();
5596 	mem_cgroup_charge_statistics(to, nr_pages);
5597 	memcg_check_events(to, nid);
5598 	mem_cgroup_charge_statistics(from, -nr_pages);
5599 	memcg_check_events(from, nid);
5600 	local_irq_enable();
5601 out_unlock:
5602 	folio_unlock(folio);
5603 out:
5604 	return ret;
5605 }
5606 
5607 /**
5608  * get_mctgt_type - get target type of moving charge
5609  * @vma: the vma the pte to be checked belongs
5610  * @addr: the address corresponding to the pte to be checked
5611  * @ptent: the pte to be checked
5612  * @target: the pointer the target page or swap ent will be stored(can be NULL)
5613  *
5614  * Returns
5615  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5616  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5617  *     move charge. if @target is not NULL, the page is stored in target->page
5618  *     with extra refcnt got(Callers should handle it).
5619  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5620  *     target for charge migration. if @target is not NULL, the entry is stored
5621  *     in target->ent.
5622  *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PRIVATE
5623  *     (so ZONE_DEVICE page and thus not on the lru).
5624  *     For now we such page is charge like a regular page would be as for all
5625  *     intent and purposes it is just special memory taking the place of a
5626  *     regular page.
5627  *
5628  *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5629  *
5630  * Called with pte lock held.
5631  */
5632 
5633 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5634 		unsigned long addr, pte_t ptent, union mc_target *target)
5635 {
5636 	struct page *page = NULL;
5637 	enum mc_target_type ret = MC_TARGET_NONE;
5638 	swp_entry_t ent = { .val = 0 };
5639 
5640 	if (pte_present(ptent))
5641 		page = mc_handle_present_pte(vma, addr, ptent);
5642 	else if (is_swap_pte(ptent))
5643 		page = mc_handle_swap_pte(vma, ptent, &ent);
5644 	else if (pte_none(ptent))
5645 		page = mc_handle_file_pte(vma, addr, ptent);
5646 
5647 	if (!page && !ent.val)
5648 		return ret;
5649 	if (page) {
5650 		/*
5651 		 * Do only loose check w/o serialization.
5652 		 * mem_cgroup_move_account() checks the page is valid or
5653 		 * not under LRU exclusion.
5654 		 */
5655 		if (page_memcg(page) == mc.from) {
5656 			ret = MC_TARGET_PAGE;
5657 			if (is_device_private_page(page))
5658 				ret = MC_TARGET_DEVICE;
5659 			if (target)
5660 				target->page = page;
5661 		}
5662 		if (!ret || !target)
5663 			put_page(page);
5664 	}
5665 	/*
5666 	 * There is a swap entry and a page doesn't exist or isn't charged.
5667 	 * But we cannot move a tail-page in a THP.
5668 	 */
5669 	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5670 	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5671 		ret = MC_TARGET_SWAP;
5672 		if (target)
5673 			target->ent = ent;
5674 	}
5675 	return ret;
5676 }
5677 
5678 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5679 /*
5680  * We don't consider PMD mapped swapping or file mapped pages because THP does
5681  * not support them for now.
5682  * Caller should make sure that pmd_trans_huge(pmd) is true.
5683  */
5684 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5685 		unsigned long addr, pmd_t pmd, union mc_target *target)
5686 {
5687 	struct page *page = NULL;
5688 	enum mc_target_type ret = MC_TARGET_NONE;
5689 
5690 	if (unlikely(is_swap_pmd(pmd))) {
5691 		VM_BUG_ON(thp_migration_supported() &&
5692 				  !is_pmd_migration_entry(pmd));
5693 		return ret;
5694 	}
5695 	page = pmd_page(pmd);
5696 	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5697 	if (!(mc.flags & MOVE_ANON))
5698 		return ret;
5699 	if (page_memcg(page) == mc.from) {
5700 		ret = MC_TARGET_PAGE;
5701 		if (target) {
5702 			get_page(page);
5703 			target->page = page;
5704 		}
5705 	}
5706 	return ret;
5707 }
5708 #else
5709 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5710 		unsigned long addr, pmd_t pmd, union mc_target *target)
5711 {
5712 	return MC_TARGET_NONE;
5713 }
5714 #endif
5715 
5716 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5717 					unsigned long addr, unsigned long end,
5718 					struct mm_walk *walk)
5719 {
5720 	struct vm_area_struct *vma = walk->vma;
5721 	pte_t *pte;
5722 	spinlock_t *ptl;
5723 
5724 	ptl = pmd_trans_huge_lock(pmd, vma);
5725 	if (ptl) {
5726 		/*
5727 		 * Note their can not be MC_TARGET_DEVICE for now as we do not
5728 		 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5729 		 * this might change.
5730 		 */
5731 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5732 			mc.precharge += HPAGE_PMD_NR;
5733 		spin_unlock(ptl);
5734 		return 0;
5735 	}
5736 
5737 	if (pmd_trans_unstable(pmd))
5738 		return 0;
5739 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5740 	for (; addr != end; pte++, addr += PAGE_SIZE)
5741 		if (get_mctgt_type(vma, addr, *pte, NULL))
5742 			mc.precharge++;	/* increment precharge temporarily */
5743 	pte_unmap_unlock(pte - 1, ptl);
5744 	cond_resched();
5745 
5746 	return 0;
5747 }
5748 
5749 static const struct mm_walk_ops precharge_walk_ops = {
5750 	.pmd_entry	= mem_cgroup_count_precharge_pte_range,
5751 };
5752 
5753 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5754 {
5755 	unsigned long precharge;
5756 
5757 	mmap_read_lock(mm);
5758 	walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5759 	mmap_read_unlock(mm);
5760 
5761 	precharge = mc.precharge;
5762 	mc.precharge = 0;
5763 
5764 	return precharge;
5765 }
5766 
5767 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5768 {
5769 	unsigned long precharge = mem_cgroup_count_precharge(mm);
5770 
5771 	VM_BUG_ON(mc.moving_task);
5772 	mc.moving_task = current;
5773 	return mem_cgroup_do_precharge(precharge);
5774 }
5775 
5776 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5777 static void __mem_cgroup_clear_mc(void)
5778 {
5779 	struct mem_cgroup *from = mc.from;
5780 	struct mem_cgroup *to = mc.to;
5781 
5782 	/* we must uncharge all the leftover precharges from mc.to */
5783 	if (mc.precharge) {
5784 		cancel_charge(mc.to, mc.precharge);
5785 		mc.precharge = 0;
5786 	}
5787 	/*
5788 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5789 	 * we must uncharge here.
5790 	 */
5791 	if (mc.moved_charge) {
5792 		cancel_charge(mc.from, mc.moved_charge);
5793 		mc.moved_charge = 0;
5794 	}
5795 	/* we must fixup refcnts and charges */
5796 	if (mc.moved_swap) {
5797 		/* uncharge swap account from the old cgroup */
5798 		if (!mem_cgroup_is_root(mc.from))
5799 			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5800 
5801 		mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5802 
5803 		/*
5804 		 * we charged both to->memory and to->memsw, so we
5805 		 * should uncharge to->memory.
5806 		 */
5807 		if (!mem_cgroup_is_root(mc.to))
5808 			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5809 
5810 		mc.moved_swap = 0;
5811 	}
5812 	memcg_oom_recover(from);
5813 	memcg_oom_recover(to);
5814 	wake_up_all(&mc.waitq);
5815 }
5816 
5817 static void mem_cgroup_clear_mc(void)
5818 {
5819 	struct mm_struct *mm = mc.mm;
5820 
5821 	/*
5822 	 * we must clear moving_task before waking up waiters at the end of
5823 	 * task migration.
5824 	 */
5825 	mc.moving_task = NULL;
5826 	__mem_cgroup_clear_mc();
5827 	spin_lock(&mc.lock);
5828 	mc.from = NULL;
5829 	mc.to = NULL;
5830 	mc.mm = NULL;
5831 	spin_unlock(&mc.lock);
5832 
5833 	mmput(mm);
5834 }
5835 
5836 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5837 {
5838 	struct cgroup_subsys_state *css;
5839 	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5840 	struct mem_cgroup *from;
5841 	struct task_struct *leader, *p;
5842 	struct mm_struct *mm;
5843 	unsigned long move_flags;
5844 	int ret = 0;
5845 
5846 	/* charge immigration isn't supported on the default hierarchy */
5847 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5848 		return 0;
5849 
5850 	/*
5851 	 * Multi-process migrations only happen on the default hierarchy
5852 	 * where charge immigration is not used.  Perform charge
5853 	 * immigration if @tset contains a leader and whine if there are
5854 	 * multiple.
5855 	 */
5856 	p = NULL;
5857 	cgroup_taskset_for_each_leader(leader, css, tset) {
5858 		WARN_ON_ONCE(p);
5859 		p = leader;
5860 		memcg = mem_cgroup_from_css(css);
5861 	}
5862 	if (!p)
5863 		return 0;
5864 
5865 	/*
5866 	 * We are now committed to this value whatever it is. Changes in this
5867 	 * tunable will only affect upcoming migrations, not the current one.
5868 	 * So we need to save it, and keep it going.
5869 	 */
5870 	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5871 	if (!move_flags)
5872 		return 0;
5873 
5874 	from = mem_cgroup_from_task(p);
5875 
5876 	VM_BUG_ON(from == memcg);
5877 
5878 	mm = get_task_mm(p);
5879 	if (!mm)
5880 		return 0;
5881 	/* We move charges only when we move a owner of the mm */
5882 	if (mm->owner == p) {
5883 		VM_BUG_ON(mc.from);
5884 		VM_BUG_ON(mc.to);
5885 		VM_BUG_ON(mc.precharge);
5886 		VM_BUG_ON(mc.moved_charge);
5887 		VM_BUG_ON(mc.moved_swap);
5888 
5889 		spin_lock(&mc.lock);
5890 		mc.mm = mm;
5891 		mc.from = from;
5892 		mc.to = memcg;
5893 		mc.flags = move_flags;
5894 		spin_unlock(&mc.lock);
5895 		/* We set mc.moving_task later */
5896 
5897 		ret = mem_cgroup_precharge_mc(mm);
5898 		if (ret)
5899 			mem_cgroup_clear_mc();
5900 	} else {
5901 		mmput(mm);
5902 	}
5903 	return ret;
5904 }
5905 
5906 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5907 {
5908 	if (mc.to)
5909 		mem_cgroup_clear_mc();
5910 }
5911 
5912 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5913 				unsigned long addr, unsigned long end,
5914 				struct mm_walk *walk)
5915 {
5916 	int ret = 0;
5917 	struct vm_area_struct *vma = walk->vma;
5918 	pte_t *pte;
5919 	spinlock_t *ptl;
5920 	enum mc_target_type target_type;
5921 	union mc_target target;
5922 	struct page *page;
5923 
5924 	ptl = pmd_trans_huge_lock(pmd, vma);
5925 	if (ptl) {
5926 		if (mc.precharge < HPAGE_PMD_NR) {
5927 			spin_unlock(ptl);
5928 			return 0;
5929 		}
5930 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5931 		if (target_type == MC_TARGET_PAGE) {
5932 			page = target.page;
5933 			if (!isolate_lru_page(page)) {
5934 				if (!mem_cgroup_move_account(page, true,
5935 							     mc.from, mc.to)) {
5936 					mc.precharge -= HPAGE_PMD_NR;
5937 					mc.moved_charge += HPAGE_PMD_NR;
5938 				}
5939 				putback_lru_page(page);
5940 			}
5941 			put_page(page);
5942 		} else if (target_type == MC_TARGET_DEVICE) {
5943 			page = target.page;
5944 			if (!mem_cgroup_move_account(page, true,
5945 						     mc.from, mc.to)) {
5946 				mc.precharge -= HPAGE_PMD_NR;
5947 				mc.moved_charge += HPAGE_PMD_NR;
5948 			}
5949 			put_page(page);
5950 		}
5951 		spin_unlock(ptl);
5952 		return 0;
5953 	}
5954 
5955 	if (pmd_trans_unstable(pmd))
5956 		return 0;
5957 retry:
5958 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5959 	for (; addr != end; addr += PAGE_SIZE) {
5960 		pte_t ptent = *(pte++);
5961 		bool device = false;
5962 		swp_entry_t ent;
5963 
5964 		if (!mc.precharge)
5965 			break;
5966 
5967 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5968 		case MC_TARGET_DEVICE:
5969 			device = true;
5970 			fallthrough;
5971 		case MC_TARGET_PAGE:
5972 			page = target.page;
5973 			/*
5974 			 * We can have a part of the split pmd here. Moving it
5975 			 * can be done but it would be too convoluted so simply
5976 			 * ignore such a partial THP and keep it in original
5977 			 * memcg. There should be somebody mapping the head.
5978 			 */
5979 			if (PageTransCompound(page))
5980 				goto put;
5981 			if (!device && isolate_lru_page(page))
5982 				goto put;
5983 			if (!mem_cgroup_move_account(page, false,
5984 						mc.from, mc.to)) {
5985 				mc.precharge--;
5986 				/* we uncharge from mc.from later. */
5987 				mc.moved_charge++;
5988 			}
5989 			if (!device)
5990 				putback_lru_page(page);
5991 put:			/* get_mctgt_type() gets the page */
5992 			put_page(page);
5993 			break;
5994 		case MC_TARGET_SWAP:
5995 			ent = target.ent;
5996 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5997 				mc.precharge--;
5998 				mem_cgroup_id_get_many(mc.to, 1);
5999 				/* we fixup other refcnts and charges later. */
6000 				mc.moved_swap++;
6001 			}
6002 			break;
6003 		default:
6004 			break;
6005 		}
6006 	}
6007 	pte_unmap_unlock(pte - 1, ptl);
6008 	cond_resched();
6009 
6010 	if (addr != end) {
6011 		/*
6012 		 * We have consumed all precharges we got in can_attach().
6013 		 * We try charge one by one, but don't do any additional
6014 		 * charges to mc.to if we have failed in charge once in attach()
6015 		 * phase.
6016 		 */
6017 		ret = mem_cgroup_do_precharge(1);
6018 		if (!ret)
6019 			goto retry;
6020 	}
6021 
6022 	return ret;
6023 }
6024 
6025 static const struct mm_walk_ops charge_walk_ops = {
6026 	.pmd_entry	= mem_cgroup_move_charge_pte_range,
6027 };
6028 
6029 static void mem_cgroup_move_charge(void)
6030 {
6031 	lru_add_drain_all();
6032 	/*
6033 	 * Signal lock_page_memcg() to take the memcg's move_lock
6034 	 * while we're moving its pages to another memcg. Then wait
6035 	 * for already started RCU-only updates to finish.
6036 	 */
6037 	atomic_inc(&mc.from->moving_account);
6038 	synchronize_rcu();
6039 retry:
6040 	if (unlikely(!mmap_read_trylock(mc.mm))) {
6041 		/*
6042 		 * Someone who are holding the mmap_lock might be waiting in
6043 		 * waitq. So we cancel all extra charges, wake up all waiters,
6044 		 * and retry. Because we cancel precharges, we might not be able
6045 		 * to move enough charges, but moving charge is a best-effort
6046 		 * feature anyway, so it wouldn't be a big problem.
6047 		 */
6048 		__mem_cgroup_clear_mc();
6049 		cond_resched();
6050 		goto retry;
6051 	}
6052 	/*
6053 	 * When we have consumed all precharges and failed in doing
6054 	 * additional charge, the page walk just aborts.
6055 	 */
6056 	walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6057 			NULL);
6058 
6059 	mmap_read_unlock(mc.mm);
6060 	atomic_dec(&mc.from->moving_account);
6061 }
6062 
6063 static void mem_cgroup_move_task(void)
6064 {
6065 	if (mc.to) {
6066 		mem_cgroup_move_charge();
6067 		mem_cgroup_clear_mc();
6068 	}
6069 }
6070 #else	/* !CONFIG_MMU */
6071 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6072 {
6073 	return 0;
6074 }
6075 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6076 {
6077 }
6078 static void mem_cgroup_move_task(void)
6079 {
6080 }
6081 #endif
6082 
6083 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6084 {
6085 	if (value == PAGE_COUNTER_MAX)
6086 		seq_puts(m, "max\n");
6087 	else
6088 		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6089 
6090 	return 0;
6091 }
6092 
6093 static u64 memory_current_read(struct cgroup_subsys_state *css,
6094 			       struct cftype *cft)
6095 {
6096 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6097 
6098 	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6099 }
6100 
6101 static int memory_min_show(struct seq_file *m, void *v)
6102 {
6103 	return seq_puts_memcg_tunable(m,
6104 		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6105 }
6106 
6107 static ssize_t memory_min_write(struct kernfs_open_file *of,
6108 				char *buf, size_t nbytes, loff_t off)
6109 {
6110 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6111 	unsigned long min;
6112 	int err;
6113 
6114 	buf = strstrip(buf);
6115 	err = page_counter_memparse(buf, "max", &min);
6116 	if (err)
6117 		return err;
6118 
6119 	page_counter_set_min(&memcg->memory, min);
6120 
6121 	return nbytes;
6122 }
6123 
6124 static int memory_low_show(struct seq_file *m, void *v)
6125 {
6126 	return seq_puts_memcg_tunable(m,
6127 		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6128 }
6129 
6130 static ssize_t memory_low_write(struct kernfs_open_file *of,
6131 				char *buf, size_t nbytes, loff_t off)
6132 {
6133 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6134 	unsigned long low;
6135 	int err;
6136 
6137 	buf = strstrip(buf);
6138 	err = page_counter_memparse(buf, "max", &low);
6139 	if (err)
6140 		return err;
6141 
6142 	page_counter_set_low(&memcg->memory, low);
6143 
6144 	return nbytes;
6145 }
6146 
6147 static int memory_high_show(struct seq_file *m, void *v)
6148 {
6149 	return seq_puts_memcg_tunable(m,
6150 		READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6151 }
6152 
6153 static ssize_t memory_high_write(struct kernfs_open_file *of,
6154 				 char *buf, size_t nbytes, loff_t off)
6155 {
6156 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6157 	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6158 	bool drained = false;
6159 	unsigned long high;
6160 	int err;
6161 
6162 	buf = strstrip(buf);
6163 	err = page_counter_memparse(buf, "max", &high);
6164 	if (err)
6165 		return err;
6166 
6167 	page_counter_set_high(&memcg->memory, high);
6168 
6169 	for (;;) {
6170 		unsigned long nr_pages = page_counter_read(&memcg->memory);
6171 		unsigned long reclaimed;
6172 
6173 		if (nr_pages <= high)
6174 			break;
6175 
6176 		if (signal_pending(current))
6177 			break;
6178 
6179 		if (!drained) {
6180 			drain_all_stock(memcg);
6181 			drained = true;
6182 			continue;
6183 		}
6184 
6185 		reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6186 							 GFP_KERNEL, true);
6187 
6188 		if (!reclaimed && !nr_retries--)
6189 			break;
6190 	}
6191 
6192 	memcg_wb_domain_size_changed(memcg);
6193 	return nbytes;
6194 }
6195 
6196 static int memory_max_show(struct seq_file *m, void *v)
6197 {
6198 	return seq_puts_memcg_tunable(m,
6199 		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6200 }
6201 
6202 static ssize_t memory_max_write(struct kernfs_open_file *of,
6203 				char *buf, size_t nbytes, loff_t off)
6204 {
6205 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6206 	unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6207 	bool drained = false;
6208 	unsigned long max;
6209 	int err;
6210 
6211 	buf = strstrip(buf);
6212 	err = page_counter_memparse(buf, "max", &max);
6213 	if (err)
6214 		return err;
6215 
6216 	xchg(&memcg->memory.max, max);
6217 
6218 	for (;;) {
6219 		unsigned long nr_pages = page_counter_read(&memcg->memory);
6220 
6221 		if (nr_pages <= max)
6222 			break;
6223 
6224 		if (signal_pending(current))
6225 			break;
6226 
6227 		if (!drained) {
6228 			drain_all_stock(memcg);
6229 			drained = true;
6230 			continue;
6231 		}
6232 
6233 		if (nr_reclaims) {
6234 			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6235 							  GFP_KERNEL, true))
6236 				nr_reclaims--;
6237 			continue;
6238 		}
6239 
6240 		memcg_memory_event(memcg, MEMCG_OOM);
6241 		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6242 			break;
6243 	}
6244 
6245 	memcg_wb_domain_size_changed(memcg);
6246 	return nbytes;
6247 }
6248 
6249 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6250 {
6251 	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6252 	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6253 	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6254 	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6255 	seq_printf(m, "oom_kill %lu\n",
6256 		   atomic_long_read(&events[MEMCG_OOM_KILL]));
6257 	seq_printf(m, "oom_group_kill %lu\n",
6258 		   atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
6259 }
6260 
6261 static int memory_events_show(struct seq_file *m, void *v)
6262 {
6263 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6264 
6265 	__memory_events_show(m, memcg->memory_events);
6266 	return 0;
6267 }
6268 
6269 static int memory_events_local_show(struct seq_file *m, void *v)
6270 {
6271 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6272 
6273 	__memory_events_show(m, memcg->memory_events_local);
6274 	return 0;
6275 }
6276 
6277 static int memory_stat_show(struct seq_file *m, void *v)
6278 {
6279 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6280 	char *buf;
6281 
6282 	buf = memory_stat_format(memcg);
6283 	if (!buf)
6284 		return -ENOMEM;
6285 	seq_puts(m, buf);
6286 	kfree(buf);
6287 	return 0;
6288 }
6289 
6290 #ifdef CONFIG_NUMA
6291 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6292 						     int item)
6293 {
6294 	return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6295 }
6296 
6297 static int memory_numa_stat_show(struct seq_file *m, void *v)
6298 {
6299 	int i;
6300 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6301 
6302 	mem_cgroup_flush_stats();
6303 
6304 	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6305 		int nid;
6306 
6307 		if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6308 			continue;
6309 
6310 		seq_printf(m, "%s", memory_stats[i].name);
6311 		for_each_node_state(nid, N_MEMORY) {
6312 			u64 size;
6313 			struct lruvec *lruvec;
6314 
6315 			lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6316 			size = lruvec_page_state_output(lruvec,
6317 							memory_stats[i].idx);
6318 			seq_printf(m, " N%d=%llu", nid, size);
6319 		}
6320 		seq_putc(m, '\n');
6321 	}
6322 
6323 	return 0;
6324 }
6325 #endif
6326 
6327 static int memory_oom_group_show(struct seq_file *m, void *v)
6328 {
6329 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6330 
6331 	seq_printf(m, "%d\n", memcg->oom_group);
6332 
6333 	return 0;
6334 }
6335 
6336 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6337 				      char *buf, size_t nbytes, loff_t off)
6338 {
6339 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6340 	int ret, oom_group;
6341 
6342 	buf = strstrip(buf);
6343 	if (!buf)
6344 		return -EINVAL;
6345 
6346 	ret = kstrtoint(buf, 0, &oom_group);
6347 	if (ret)
6348 		return ret;
6349 
6350 	if (oom_group != 0 && oom_group != 1)
6351 		return -EINVAL;
6352 
6353 	memcg->oom_group = oom_group;
6354 
6355 	return nbytes;
6356 }
6357 
6358 static struct cftype memory_files[] = {
6359 	{
6360 		.name = "current",
6361 		.flags = CFTYPE_NOT_ON_ROOT,
6362 		.read_u64 = memory_current_read,
6363 	},
6364 	{
6365 		.name = "min",
6366 		.flags = CFTYPE_NOT_ON_ROOT,
6367 		.seq_show = memory_min_show,
6368 		.write = memory_min_write,
6369 	},
6370 	{
6371 		.name = "low",
6372 		.flags = CFTYPE_NOT_ON_ROOT,
6373 		.seq_show = memory_low_show,
6374 		.write = memory_low_write,
6375 	},
6376 	{
6377 		.name = "high",
6378 		.flags = CFTYPE_NOT_ON_ROOT,
6379 		.seq_show = memory_high_show,
6380 		.write = memory_high_write,
6381 	},
6382 	{
6383 		.name = "max",
6384 		.flags = CFTYPE_NOT_ON_ROOT,
6385 		.seq_show = memory_max_show,
6386 		.write = memory_max_write,
6387 	},
6388 	{
6389 		.name = "events",
6390 		.flags = CFTYPE_NOT_ON_ROOT,
6391 		.file_offset = offsetof(struct mem_cgroup, events_file),
6392 		.seq_show = memory_events_show,
6393 	},
6394 	{
6395 		.name = "events.local",
6396 		.flags = CFTYPE_NOT_ON_ROOT,
6397 		.file_offset = offsetof(struct mem_cgroup, events_local_file),
6398 		.seq_show = memory_events_local_show,
6399 	},
6400 	{
6401 		.name = "stat",
6402 		.seq_show = memory_stat_show,
6403 	},
6404 #ifdef CONFIG_NUMA
6405 	{
6406 		.name = "numa_stat",
6407 		.seq_show = memory_numa_stat_show,
6408 	},
6409 #endif
6410 	{
6411 		.name = "oom.group",
6412 		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6413 		.seq_show = memory_oom_group_show,
6414 		.write = memory_oom_group_write,
6415 	},
6416 	{ }	/* terminate */
6417 };
6418 
6419 struct cgroup_subsys memory_cgrp_subsys = {
6420 	.css_alloc = mem_cgroup_css_alloc,
6421 	.css_online = mem_cgroup_css_online,
6422 	.css_offline = mem_cgroup_css_offline,
6423 	.css_released = mem_cgroup_css_released,
6424 	.css_free = mem_cgroup_css_free,
6425 	.css_reset = mem_cgroup_css_reset,
6426 	.css_rstat_flush = mem_cgroup_css_rstat_flush,
6427 	.can_attach = mem_cgroup_can_attach,
6428 	.cancel_attach = mem_cgroup_cancel_attach,
6429 	.post_attach = mem_cgroup_move_task,
6430 	.dfl_cftypes = memory_files,
6431 	.legacy_cftypes = mem_cgroup_legacy_files,
6432 	.early_init = 0,
6433 };
6434 
6435 /*
6436  * This function calculates an individual cgroup's effective
6437  * protection which is derived from its own memory.min/low, its
6438  * parent's and siblings' settings, as well as the actual memory
6439  * distribution in the tree.
6440  *
6441  * The following rules apply to the effective protection values:
6442  *
6443  * 1. At the first level of reclaim, effective protection is equal to
6444  *    the declared protection in memory.min and memory.low.
6445  *
6446  * 2. To enable safe delegation of the protection configuration, at
6447  *    subsequent levels the effective protection is capped to the
6448  *    parent's effective protection.
6449  *
6450  * 3. To make complex and dynamic subtrees easier to configure, the
6451  *    user is allowed to overcommit the declared protection at a given
6452  *    level. If that is the case, the parent's effective protection is
6453  *    distributed to the children in proportion to how much protection
6454  *    they have declared and how much of it they are utilizing.
6455  *
6456  *    This makes distribution proportional, but also work-conserving:
6457  *    if one cgroup claims much more protection than it uses memory,
6458  *    the unused remainder is available to its siblings.
6459  *
6460  * 4. Conversely, when the declared protection is undercommitted at a
6461  *    given level, the distribution of the larger parental protection
6462  *    budget is NOT proportional. A cgroup's protection from a sibling
6463  *    is capped to its own memory.min/low setting.
6464  *
6465  * 5. However, to allow protecting recursive subtrees from each other
6466  *    without having to declare each individual cgroup's fixed share
6467  *    of the ancestor's claim to protection, any unutilized -
6468  *    "floating" - protection from up the tree is distributed in
6469  *    proportion to each cgroup's *usage*. This makes the protection
6470  *    neutral wrt sibling cgroups and lets them compete freely over
6471  *    the shared parental protection budget, but it protects the
6472  *    subtree as a whole from neighboring subtrees.
6473  *
6474  * Note that 4. and 5. are not in conflict: 4. is about protecting
6475  * against immediate siblings whereas 5. is about protecting against
6476  * neighboring subtrees.
6477  */
6478 static unsigned long effective_protection(unsigned long usage,
6479 					  unsigned long parent_usage,
6480 					  unsigned long setting,
6481 					  unsigned long parent_effective,
6482 					  unsigned long siblings_protected)
6483 {
6484 	unsigned long protected;
6485 	unsigned long ep;
6486 
6487 	protected = min(usage, setting);
6488 	/*
6489 	 * If all cgroups at this level combined claim and use more
6490 	 * protection then what the parent affords them, distribute
6491 	 * shares in proportion to utilization.
6492 	 *
6493 	 * We are using actual utilization rather than the statically
6494 	 * claimed protection in order to be work-conserving: claimed
6495 	 * but unused protection is available to siblings that would
6496 	 * otherwise get a smaller chunk than what they claimed.
6497 	 */
6498 	if (siblings_protected > parent_effective)
6499 		return protected * parent_effective / siblings_protected;
6500 
6501 	/*
6502 	 * Ok, utilized protection of all children is within what the
6503 	 * parent affords them, so we know whatever this child claims
6504 	 * and utilizes is effectively protected.
6505 	 *
6506 	 * If there is unprotected usage beyond this value, reclaim
6507 	 * will apply pressure in proportion to that amount.
6508 	 *
6509 	 * If there is unutilized protection, the cgroup will be fully
6510 	 * shielded from reclaim, but we do return a smaller value for
6511 	 * protection than what the group could enjoy in theory. This
6512 	 * is okay. With the overcommit distribution above, effective
6513 	 * protection is always dependent on how memory is actually
6514 	 * consumed among the siblings anyway.
6515 	 */
6516 	ep = protected;
6517 
6518 	/*
6519 	 * If the children aren't claiming (all of) the protection
6520 	 * afforded to them by the parent, distribute the remainder in
6521 	 * proportion to the (unprotected) memory of each cgroup. That
6522 	 * way, cgroups that aren't explicitly prioritized wrt each
6523 	 * other compete freely over the allowance, but they are
6524 	 * collectively protected from neighboring trees.
6525 	 *
6526 	 * We're using unprotected memory for the weight so that if
6527 	 * some cgroups DO claim explicit protection, we don't protect
6528 	 * the same bytes twice.
6529 	 *
6530 	 * Check both usage and parent_usage against the respective
6531 	 * protected values. One should imply the other, but they
6532 	 * aren't read atomically - make sure the division is sane.
6533 	 */
6534 	if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6535 		return ep;
6536 	if (parent_effective > siblings_protected &&
6537 	    parent_usage > siblings_protected &&
6538 	    usage > protected) {
6539 		unsigned long unclaimed;
6540 
6541 		unclaimed = parent_effective - siblings_protected;
6542 		unclaimed *= usage - protected;
6543 		unclaimed /= parent_usage - siblings_protected;
6544 
6545 		ep += unclaimed;
6546 	}
6547 
6548 	return ep;
6549 }
6550 
6551 /**
6552  * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
6553  * @root: the top ancestor of the sub-tree being checked
6554  * @memcg: the memory cgroup to check
6555  *
6556  * WARNING: This function is not stateless! It can only be used as part
6557  *          of a top-down tree iteration, not for isolated queries.
6558  */
6559 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6560 				     struct mem_cgroup *memcg)
6561 {
6562 	unsigned long usage, parent_usage;
6563 	struct mem_cgroup *parent;
6564 
6565 	if (mem_cgroup_disabled())
6566 		return;
6567 
6568 	if (!root)
6569 		root = root_mem_cgroup;
6570 
6571 	/*
6572 	 * Effective values of the reclaim targets are ignored so they
6573 	 * can be stale. Have a look at mem_cgroup_protection for more
6574 	 * details.
6575 	 * TODO: calculation should be more robust so that we do not need
6576 	 * that special casing.
6577 	 */
6578 	if (memcg == root)
6579 		return;
6580 
6581 	usage = page_counter_read(&memcg->memory);
6582 	if (!usage)
6583 		return;
6584 
6585 	parent = parent_mem_cgroup(memcg);
6586 
6587 	if (parent == root) {
6588 		memcg->memory.emin = READ_ONCE(memcg->memory.min);
6589 		memcg->memory.elow = READ_ONCE(memcg->memory.low);
6590 		return;
6591 	}
6592 
6593 	parent_usage = page_counter_read(&parent->memory);
6594 
6595 	WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6596 			READ_ONCE(memcg->memory.min),
6597 			READ_ONCE(parent->memory.emin),
6598 			atomic_long_read(&parent->memory.children_min_usage)));
6599 
6600 	WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6601 			READ_ONCE(memcg->memory.low),
6602 			READ_ONCE(parent->memory.elow),
6603 			atomic_long_read(&parent->memory.children_low_usage)));
6604 }
6605 
6606 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
6607 			gfp_t gfp)
6608 {
6609 	long nr_pages = folio_nr_pages(folio);
6610 	int ret;
6611 
6612 	ret = try_charge(memcg, gfp, nr_pages);
6613 	if (ret)
6614 		goto out;
6615 
6616 	css_get(&memcg->css);
6617 	commit_charge(folio, memcg);
6618 
6619 	local_irq_disable();
6620 	mem_cgroup_charge_statistics(memcg, nr_pages);
6621 	memcg_check_events(memcg, folio_nid(folio));
6622 	local_irq_enable();
6623 out:
6624 	return ret;
6625 }
6626 
6627 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
6628 {
6629 	struct mem_cgroup *memcg;
6630 	int ret;
6631 
6632 	memcg = get_mem_cgroup_from_mm(mm);
6633 	ret = charge_memcg(folio, memcg, gfp);
6634 	css_put(&memcg->css);
6635 
6636 	return ret;
6637 }
6638 
6639 /**
6640  * mem_cgroup_swapin_charge_page - charge a newly allocated page for swapin
6641  * @page: page to charge
6642  * @mm: mm context of the victim
6643  * @gfp: reclaim mode
6644  * @entry: swap entry for which the page is allocated
6645  *
6646  * This function charges a page allocated for swapin. Please call this before
6647  * adding the page to the swapcache.
6648  *
6649  * Returns 0 on success. Otherwise, an error code is returned.
6650  */
6651 int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm,
6652 				  gfp_t gfp, swp_entry_t entry)
6653 {
6654 	struct folio *folio = page_folio(page);
6655 	struct mem_cgroup *memcg;
6656 	unsigned short id;
6657 	int ret;
6658 
6659 	if (mem_cgroup_disabled())
6660 		return 0;
6661 
6662 	id = lookup_swap_cgroup_id(entry);
6663 	rcu_read_lock();
6664 	memcg = mem_cgroup_from_id(id);
6665 	if (!memcg || !css_tryget_online(&memcg->css))
6666 		memcg = get_mem_cgroup_from_mm(mm);
6667 	rcu_read_unlock();
6668 
6669 	ret = charge_memcg(folio, memcg, gfp);
6670 
6671 	css_put(&memcg->css);
6672 	return ret;
6673 }
6674 
6675 /*
6676  * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
6677  * @entry: swap entry for which the page is charged
6678  *
6679  * Call this function after successfully adding the charged page to swapcache.
6680  *
6681  * Note: This function assumes the page for which swap slot is being uncharged
6682  * is order 0 page.
6683  */
6684 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
6685 {
6686 	/*
6687 	 * Cgroup1's unified memory+swap counter has been charged with the
6688 	 * new swapcache page, finish the transfer by uncharging the swap
6689 	 * slot. The swap slot would also get uncharged when it dies, but
6690 	 * it can stick around indefinitely and we'd count the page twice
6691 	 * the entire time.
6692 	 *
6693 	 * Cgroup2 has separate resource counters for memory and swap,
6694 	 * so this is a non-issue here. Memory and swap charge lifetimes
6695 	 * correspond 1:1 to page and swap slot lifetimes: we charge the
6696 	 * page to memory here, and uncharge swap when the slot is freed.
6697 	 */
6698 	if (!mem_cgroup_disabled() && do_memsw_account()) {
6699 		/*
6700 		 * The swap entry might not get freed for a long time,
6701 		 * let's not wait for it.  The page already received a
6702 		 * memory+swap charge, drop the swap entry duplicate.
6703 		 */
6704 		mem_cgroup_uncharge_swap(entry, 1);
6705 	}
6706 }
6707 
6708 struct uncharge_gather {
6709 	struct mem_cgroup *memcg;
6710 	unsigned long nr_memory;
6711 	unsigned long pgpgout;
6712 	unsigned long nr_kmem;
6713 	int nid;
6714 };
6715 
6716 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6717 {
6718 	memset(ug, 0, sizeof(*ug));
6719 }
6720 
6721 static void uncharge_batch(const struct uncharge_gather *ug)
6722 {
6723 	unsigned long flags;
6724 
6725 	if (ug->nr_memory) {
6726 		page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
6727 		if (do_memsw_account())
6728 			page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
6729 		if (ug->nr_kmem)
6730 			memcg_account_kmem(ug->memcg, -ug->nr_kmem);
6731 		memcg_oom_recover(ug->memcg);
6732 	}
6733 
6734 	local_irq_save(flags);
6735 	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6736 	__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
6737 	memcg_check_events(ug->memcg, ug->nid);
6738 	local_irq_restore(flags);
6739 
6740 	/* drop reference from uncharge_folio */
6741 	css_put(&ug->memcg->css);
6742 }
6743 
6744 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
6745 {
6746 	long nr_pages;
6747 	struct mem_cgroup *memcg;
6748 	struct obj_cgroup *objcg;
6749 
6750 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
6751 
6752 	/*
6753 	 * Nobody should be changing or seriously looking at
6754 	 * folio memcg or objcg at this point, we have fully
6755 	 * exclusive access to the folio.
6756 	 */
6757 	if (folio_memcg_kmem(folio)) {
6758 		objcg = __folio_objcg(folio);
6759 		/*
6760 		 * This get matches the put at the end of the function and
6761 		 * kmem pages do not hold memcg references anymore.
6762 		 */
6763 		memcg = get_mem_cgroup_from_objcg(objcg);
6764 	} else {
6765 		memcg = __folio_memcg(folio);
6766 	}
6767 
6768 	if (!memcg)
6769 		return;
6770 
6771 	if (ug->memcg != memcg) {
6772 		if (ug->memcg) {
6773 			uncharge_batch(ug);
6774 			uncharge_gather_clear(ug);
6775 		}
6776 		ug->memcg = memcg;
6777 		ug->nid = folio_nid(folio);
6778 
6779 		/* pairs with css_put in uncharge_batch */
6780 		css_get(&memcg->css);
6781 	}
6782 
6783 	nr_pages = folio_nr_pages(folio);
6784 
6785 	if (folio_memcg_kmem(folio)) {
6786 		ug->nr_memory += nr_pages;
6787 		ug->nr_kmem += nr_pages;
6788 
6789 		folio->memcg_data = 0;
6790 		obj_cgroup_put(objcg);
6791 	} else {
6792 		/* LRU pages aren't accounted at the root level */
6793 		if (!mem_cgroup_is_root(memcg))
6794 			ug->nr_memory += nr_pages;
6795 		ug->pgpgout++;
6796 
6797 		folio->memcg_data = 0;
6798 	}
6799 
6800 	css_put(&memcg->css);
6801 }
6802 
6803 void __mem_cgroup_uncharge(struct folio *folio)
6804 {
6805 	struct uncharge_gather ug;
6806 
6807 	/* Don't touch folio->lru of any random page, pre-check: */
6808 	if (!folio_memcg(folio))
6809 		return;
6810 
6811 	uncharge_gather_clear(&ug);
6812 	uncharge_folio(folio, &ug);
6813 	uncharge_batch(&ug);
6814 }
6815 
6816 /**
6817  * __mem_cgroup_uncharge_list - uncharge a list of page
6818  * @page_list: list of pages to uncharge
6819  *
6820  * Uncharge a list of pages previously charged with
6821  * __mem_cgroup_charge().
6822  */
6823 void __mem_cgroup_uncharge_list(struct list_head *page_list)
6824 {
6825 	struct uncharge_gather ug;
6826 	struct folio *folio;
6827 
6828 	uncharge_gather_clear(&ug);
6829 	list_for_each_entry(folio, page_list, lru)
6830 		uncharge_folio(folio, &ug);
6831 	if (ug.memcg)
6832 		uncharge_batch(&ug);
6833 }
6834 
6835 /**
6836  * mem_cgroup_migrate - Charge a folio's replacement.
6837  * @old: Currently circulating folio.
6838  * @new: Replacement folio.
6839  *
6840  * Charge @new as a replacement folio for @old. @old will
6841  * be uncharged upon free.
6842  *
6843  * Both folios must be locked, @new->mapping must be set up.
6844  */
6845 void mem_cgroup_migrate(struct folio *old, struct folio *new)
6846 {
6847 	struct mem_cgroup *memcg;
6848 	long nr_pages = folio_nr_pages(new);
6849 	unsigned long flags;
6850 
6851 	VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
6852 	VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
6853 	VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
6854 	VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
6855 
6856 	if (mem_cgroup_disabled())
6857 		return;
6858 
6859 	/* Page cache replacement: new folio already charged? */
6860 	if (folio_memcg(new))
6861 		return;
6862 
6863 	memcg = folio_memcg(old);
6864 	VM_WARN_ON_ONCE_FOLIO(!memcg, old);
6865 	if (!memcg)
6866 		return;
6867 
6868 	/* Force-charge the new page. The old one will be freed soon */
6869 	if (!mem_cgroup_is_root(memcg)) {
6870 		page_counter_charge(&memcg->memory, nr_pages);
6871 		if (do_memsw_account())
6872 			page_counter_charge(&memcg->memsw, nr_pages);
6873 	}
6874 
6875 	css_get(&memcg->css);
6876 	commit_charge(new, memcg);
6877 
6878 	local_irq_save(flags);
6879 	mem_cgroup_charge_statistics(memcg, nr_pages);
6880 	memcg_check_events(memcg, folio_nid(new));
6881 	local_irq_restore(flags);
6882 }
6883 
6884 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6885 EXPORT_SYMBOL(memcg_sockets_enabled_key);
6886 
6887 void mem_cgroup_sk_alloc(struct sock *sk)
6888 {
6889 	struct mem_cgroup *memcg;
6890 
6891 	if (!mem_cgroup_sockets_enabled)
6892 		return;
6893 
6894 	/* Do not associate the sock with unrelated interrupted task's memcg. */
6895 	if (!in_task())
6896 		return;
6897 
6898 	rcu_read_lock();
6899 	memcg = mem_cgroup_from_task(current);
6900 	if (memcg == root_mem_cgroup)
6901 		goto out;
6902 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6903 		goto out;
6904 	if (css_tryget(&memcg->css))
6905 		sk->sk_memcg = memcg;
6906 out:
6907 	rcu_read_unlock();
6908 }
6909 
6910 void mem_cgroup_sk_free(struct sock *sk)
6911 {
6912 	if (sk->sk_memcg)
6913 		css_put(&sk->sk_memcg->css);
6914 }
6915 
6916 /**
6917  * mem_cgroup_charge_skmem - charge socket memory
6918  * @memcg: memcg to charge
6919  * @nr_pages: number of pages to charge
6920  * @gfp_mask: reclaim mode
6921  *
6922  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6923  * @memcg's configured limit, %false if it doesn't.
6924  */
6925 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
6926 			     gfp_t gfp_mask)
6927 {
6928 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6929 		struct page_counter *fail;
6930 
6931 		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6932 			memcg->tcpmem_pressure = 0;
6933 			return true;
6934 		}
6935 		memcg->tcpmem_pressure = 1;
6936 		if (gfp_mask & __GFP_NOFAIL) {
6937 			page_counter_charge(&memcg->tcpmem, nr_pages);
6938 			return true;
6939 		}
6940 		return false;
6941 	}
6942 
6943 	if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
6944 		mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6945 		return true;
6946 	}
6947 
6948 	return false;
6949 }
6950 
6951 /**
6952  * mem_cgroup_uncharge_skmem - uncharge socket memory
6953  * @memcg: memcg to uncharge
6954  * @nr_pages: number of pages to uncharge
6955  */
6956 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6957 {
6958 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6959 		page_counter_uncharge(&memcg->tcpmem, nr_pages);
6960 		return;
6961 	}
6962 
6963 	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
6964 
6965 	refill_stock(memcg, nr_pages);
6966 }
6967 
6968 static int __init cgroup_memory(char *s)
6969 {
6970 	char *token;
6971 
6972 	while ((token = strsep(&s, ",")) != NULL) {
6973 		if (!*token)
6974 			continue;
6975 		if (!strcmp(token, "nosocket"))
6976 			cgroup_memory_nosocket = true;
6977 		if (!strcmp(token, "nokmem"))
6978 			cgroup_memory_nokmem = true;
6979 	}
6980 	return 1;
6981 }
6982 __setup("cgroup.memory=", cgroup_memory);
6983 
6984 /*
6985  * subsys_initcall() for memory controller.
6986  *
6987  * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6988  * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6989  * basically everything that doesn't depend on a specific mem_cgroup structure
6990  * should be initialized from here.
6991  */
6992 static int __init mem_cgroup_init(void)
6993 {
6994 	int cpu, node;
6995 
6996 	/*
6997 	 * Currently s32 type (can refer to struct batched_lruvec_stat) is
6998 	 * used for per-memcg-per-cpu caching of per-node statistics. In order
6999 	 * to work fine, we should make sure that the overfill threshold can't
7000 	 * exceed S32_MAX / PAGE_SIZE.
7001 	 */
7002 	BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7003 
7004 	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7005 				  memcg_hotplug_cpu_dead);
7006 
7007 	for_each_possible_cpu(cpu)
7008 		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7009 			  drain_local_stock);
7010 
7011 	for_each_node(node) {
7012 		struct mem_cgroup_tree_per_node *rtpn;
7013 
7014 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7015 				    node_online(node) ? node : NUMA_NO_NODE);
7016 
7017 		rtpn->rb_root = RB_ROOT;
7018 		rtpn->rb_rightmost = NULL;
7019 		spin_lock_init(&rtpn->lock);
7020 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
7021 	}
7022 
7023 	return 0;
7024 }
7025 subsys_initcall(mem_cgroup_init);
7026 
7027 #ifdef CONFIG_MEMCG_SWAP
7028 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7029 {
7030 	while (!refcount_inc_not_zero(&memcg->id.ref)) {
7031 		/*
7032 		 * The root cgroup cannot be destroyed, so it's refcount must
7033 		 * always be >= 1.
7034 		 */
7035 		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7036 			VM_BUG_ON(1);
7037 			break;
7038 		}
7039 		memcg = parent_mem_cgroup(memcg);
7040 		if (!memcg)
7041 			memcg = root_mem_cgroup;
7042 	}
7043 	return memcg;
7044 }
7045 
7046 /**
7047  * mem_cgroup_swapout - transfer a memsw charge to swap
7048  * @folio: folio whose memsw charge to transfer
7049  * @entry: swap entry to move the charge to
7050  *
7051  * Transfer the memsw charge of @folio to @entry.
7052  */
7053 void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry)
7054 {
7055 	struct mem_cgroup *memcg, *swap_memcg;
7056 	unsigned int nr_entries;
7057 	unsigned short oldid;
7058 
7059 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7060 	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
7061 
7062 	if (mem_cgroup_disabled())
7063 		return;
7064 
7065 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7066 		return;
7067 
7068 	memcg = folio_memcg(folio);
7069 
7070 	VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7071 	if (!memcg)
7072 		return;
7073 
7074 	/*
7075 	 * In case the memcg owning these pages has been offlined and doesn't
7076 	 * have an ID allocated to it anymore, charge the closest online
7077 	 * ancestor for the swap instead and transfer the memory+swap charge.
7078 	 */
7079 	swap_memcg = mem_cgroup_id_get_online(memcg);
7080 	nr_entries = folio_nr_pages(folio);
7081 	/* Get references for the tail pages, too */
7082 	if (nr_entries > 1)
7083 		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7084 	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7085 				   nr_entries);
7086 	VM_BUG_ON_FOLIO(oldid, folio);
7087 	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7088 
7089 	folio->memcg_data = 0;
7090 
7091 	if (!mem_cgroup_is_root(memcg))
7092 		page_counter_uncharge(&memcg->memory, nr_entries);
7093 
7094 	if (!cgroup_memory_noswap && memcg != swap_memcg) {
7095 		if (!mem_cgroup_is_root(swap_memcg))
7096 			page_counter_charge(&swap_memcg->memsw, nr_entries);
7097 		page_counter_uncharge(&memcg->memsw, nr_entries);
7098 	}
7099 
7100 	/*
7101 	 * Interrupts should be disabled here because the caller holds the
7102 	 * i_pages lock which is taken with interrupts-off. It is
7103 	 * important here to have the interrupts disabled because it is the
7104 	 * only synchronisation we have for updating the per-CPU variables.
7105 	 */
7106 	memcg_stats_lock();
7107 	mem_cgroup_charge_statistics(memcg, -nr_entries);
7108 	memcg_stats_unlock();
7109 	memcg_check_events(memcg, folio_nid(folio));
7110 
7111 	css_put(&memcg->css);
7112 }
7113 
7114 /**
7115  * __mem_cgroup_try_charge_swap - try charging swap space for a page
7116  * @page: page being added to swap
7117  * @entry: swap entry to charge
7118  *
7119  * Try to charge @page's memcg for the swap space at @entry.
7120  *
7121  * Returns 0 on success, -ENOMEM on failure.
7122  */
7123 int __mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7124 {
7125 	unsigned int nr_pages = thp_nr_pages(page);
7126 	struct page_counter *counter;
7127 	struct mem_cgroup *memcg;
7128 	unsigned short oldid;
7129 
7130 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7131 		return 0;
7132 
7133 	memcg = page_memcg(page);
7134 
7135 	VM_WARN_ON_ONCE_PAGE(!memcg, page);
7136 	if (!memcg)
7137 		return 0;
7138 
7139 	if (!entry.val) {
7140 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7141 		return 0;
7142 	}
7143 
7144 	memcg = mem_cgroup_id_get_online(memcg);
7145 
7146 	if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7147 	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7148 		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7149 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7150 		mem_cgroup_id_put(memcg);
7151 		return -ENOMEM;
7152 	}
7153 
7154 	/* Get references for the tail pages, too */
7155 	if (nr_pages > 1)
7156 		mem_cgroup_id_get_many(memcg, nr_pages - 1);
7157 	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7158 	VM_BUG_ON_PAGE(oldid, page);
7159 	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7160 
7161 	return 0;
7162 }
7163 
7164 /**
7165  * __mem_cgroup_uncharge_swap - uncharge swap space
7166  * @entry: swap entry to uncharge
7167  * @nr_pages: the amount of swap space to uncharge
7168  */
7169 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7170 {
7171 	struct mem_cgroup *memcg;
7172 	unsigned short id;
7173 
7174 	id = swap_cgroup_record(entry, 0, nr_pages);
7175 	rcu_read_lock();
7176 	memcg = mem_cgroup_from_id(id);
7177 	if (memcg) {
7178 		if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7179 			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7180 				page_counter_uncharge(&memcg->swap, nr_pages);
7181 			else
7182 				page_counter_uncharge(&memcg->memsw, nr_pages);
7183 		}
7184 		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7185 		mem_cgroup_id_put_many(memcg, nr_pages);
7186 	}
7187 	rcu_read_unlock();
7188 }
7189 
7190 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7191 {
7192 	long nr_swap_pages = get_nr_swap_pages();
7193 
7194 	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7195 		return nr_swap_pages;
7196 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7197 		nr_swap_pages = min_t(long, nr_swap_pages,
7198 				      READ_ONCE(memcg->swap.max) -
7199 				      page_counter_read(&memcg->swap));
7200 	return nr_swap_pages;
7201 }
7202 
7203 bool mem_cgroup_swap_full(struct page *page)
7204 {
7205 	struct mem_cgroup *memcg;
7206 
7207 	VM_BUG_ON_PAGE(!PageLocked(page), page);
7208 
7209 	if (vm_swap_full())
7210 		return true;
7211 	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7212 		return false;
7213 
7214 	memcg = page_memcg(page);
7215 	if (!memcg)
7216 		return false;
7217 
7218 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7219 		unsigned long usage = page_counter_read(&memcg->swap);
7220 
7221 		if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7222 		    usage * 2 >= READ_ONCE(memcg->swap.max))
7223 			return true;
7224 	}
7225 
7226 	return false;
7227 }
7228 
7229 static int __init setup_swap_account(char *s)
7230 {
7231 	if (!strcmp(s, "1"))
7232 		cgroup_memory_noswap = false;
7233 	else if (!strcmp(s, "0"))
7234 		cgroup_memory_noswap = true;
7235 	return 1;
7236 }
7237 __setup("swapaccount=", setup_swap_account);
7238 
7239 static u64 swap_current_read(struct cgroup_subsys_state *css,
7240 			     struct cftype *cft)
7241 {
7242 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7243 
7244 	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7245 }
7246 
7247 static int swap_high_show(struct seq_file *m, void *v)
7248 {
7249 	return seq_puts_memcg_tunable(m,
7250 		READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7251 }
7252 
7253 static ssize_t swap_high_write(struct kernfs_open_file *of,
7254 			       char *buf, size_t nbytes, loff_t off)
7255 {
7256 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7257 	unsigned long high;
7258 	int err;
7259 
7260 	buf = strstrip(buf);
7261 	err = page_counter_memparse(buf, "max", &high);
7262 	if (err)
7263 		return err;
7264 
7265 	page_counter_set_high(&memcg->swap, high);
7266 
7267 	return nbytes;
7268 }
7269 
7270 static int swap_max_show(struct seq_file *m, void *v)
7271 {
7272 	return seq_puts_memcg_tunable(m,
7273 		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7274 }
7275 
7276 static ssize_t swap_max_write(struct kernfs_open_file *of,
7277 			      char *buf, size_t nbytes, loff_t off)
7278 {
7279 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7280 	unsigned long max;
7281 	int err;
7282 
7283 	buf = strstrip(buf);
7284 	err = page_counter_memparse(buf, "max", &max);
7285 	if (err)
7286 		return err;
7287 
7288 	xchg(&memcg->swap.max, max);
7289 
7290 	return nbytes;
7291 }
7292 
7293 static int swap_events_show(struct seq_file *m, void *v)
7294 {
7295 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7296 
7297 	seq_printf(m, "high %lu\n",
7298 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7299 	seq_printf(m, "max %lu\n",
7300 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7301 	seq_printf(m, "fail %lu\n",
7302 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7303 
7304 	return 0;
7305 }
7306 
7307 static struct cftype swap_files[] = {
7308 	{
7309 		.name = "swap.current",
7310 		.flags = CFTYPE_NOT_ON_ROOT,
7311 		.read_u64 = swap_current_read,
7312 	},
7313 	{
7314 		.name = "swap.high",
7315 		.flags = CFTYPE_NOT_ON_ROOT,
7316 		.seq_show = swap_high_show,
7317 		.write = swap_high_write,
7318 	},
7319 	{
7320 		.name = "swap.max",
7321 		.flags = CFTYPE_NOT_ON_ROOT,
7322 		.seq_show = swap_max_show,
7323 		.write = swap_max_write,
7324 	},
7325 	{
7326 		.name = "swap.events",
7327 		.flags = CFTYPE_NOT_ON_ROOT,
7328 		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
7329 		.seq_show = swap_events_show,
7330 	},
7331 	{ }	/* terminate */
7332 };
7333 
7334 static struct cftype memsw_files[] = {
7335 	{
7336 		.name = "memsw.usage_in_bytes",
7337 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7338 		.read_u64 = mem_cgroup_read_u64,
7339 	},
7340 	{
7341 		.name = "memsw.max_usage_in_bytes",
7342 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7343 		.write = mem_cgroup_reset,
7344 		.read_u64 = mem_cgroup_read_u64,
7345 	},
7346 	{
7347 		.name = "memsw.limit_in_bytes",
7348 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7349 		.write = mem_cgroup_write,
7350 		.read_u64 = mem_cgroup_read_u64,
7351 	},
7352 	{
7353 		.name = "memsw.failcnt",
7354 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7355 		.write = mem_cgroup_reset,
7356 		.read_u64 = mem_cgroup_read_u64,
7357 	},
7358 	{ },	/* terminate */
7359 };
7360 
7361 /*
7362  * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7363  * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7364  * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7365  * boot parameter. This may result in premature OOPS inside
7366  * mem_cgroup_get_nr_swap_pages() function in corner cases.
7367  */
7368 static int __init mem_cgroup_swap_init(void)
7369 {
7370 	/* No memory control -> no swap control */
7371 	if (mem_cgroup_disabled())
7372 		cgroup_memory_noswap = true;
7373 
7374 	if (cgroup_memory_noswap)
7375 		return 0;
7376 
7377 	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7378 	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7379 
7380 	return 0;
7381 }
7382 core_initcall(mem_cgroup_swap_init);
7383 
7384 #endif /* CONFIG_MEMCG_SWAP */
7385