1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* memcontrol.c - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <xemul@openvz.org> 9 * 10 * Memory thresholds 11 * Copyright (C) 2009 Nokia Corporation 12 * Author: Kirill A. Shutemov 13 * 14 * Kernel Memory Controller 15 * Copyright (C) 2012 Parallels Inc. and Google Inc. 16 * Authors: Glauber Costa and Suleiman Souhlal 17 * 18 * Native page reclaim 19 * Charge lifetime sanitation 20 * Lockless page tracking & accounting 21 * Unified hierarchy configuration model 22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner 23 * 24 * Per memcg lru locking 25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi 26 */ 27 28 #include <linux/page_counter.h> 29 #include <linux/memcontrol.h> 30 #include <linux/cgroup.h> 31 #include <linux/pagewalk.h> 32 #include <linux/sched/mm.h> 33 #include <linux/shmem_fs.h> 34 #include <linux/hugetlb.h> 35 #include <linux/pagemap.h> 36 #include <linux/vm_event_item.h> 37 #include <linux/smp.h> 38 #include <linux/page-flags.h> 39 #include <linux/backing-dev.h> 40 #include <linux/bit_spinlock.h> 41 #include <linux/rcupdate.h> 42 #include <linux/limits.h> 43 #include <linux/export.h> 44 #include <linux/mutex.h> 45 #include <linux/rbtree.h> 46 #include <linux/slab.h> 47 #include <linux/swap.h> 48 #include <linux/swapops.h> 49 #include <linux/spinlock.h> 50 #include <linux/eventfd.h> 51 #include <linux/poll.h> 52 #include <linux/sort.h> 53 #include <linux/fs.h> 54 #include <linux/seq_file.h> 55 #include <linux/vmpressure.h> 56 #include <linux/memremap.h> 57 #include <linux/mm_inline.h> 58 #include <linux/swap_cgroup.h> 59 #include <linux/cpu.h> 60 #include <linux/oom.h> 61 #include <linux/lockdep.h> 62 #include <linux/file.h> 63 #include <linux/resume_user_mode.h> 64 #include <linux/psi.h> 65 #include <linux/seq_buf.h> 66 #include "internal.h" 67 #include <net/sock.h> 68 #include <net/ip.h> 69 #include "slab.h" 70 71 #include <linux/uaccess.h> 72 73 #include <trace/events/vmscan.h> 74 75 struct cgroup_subsys memory_cgrp_subsys __read_mostly; 76 EXPORT_SYMBOL(memory_cgrp_subsys); 77 78 struct mem_cgroup *root_mem_cgroup __read_mostly; 79 80 /* Active memory cgroup to use from an interrupt context */ 81 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg); 82 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg); 83 84 /* Socket memory accounting disabled? */ 85 static bool cgroup_memory_nosocket __ro_after_init; 86 87 /* Kernel memory accounting disabled? */ 88 static bool cgroup_memory_nokmem __ro_after_init; 89 90 /* Whether the swap controller is active */ 91 #ifdef CONFIG_MEMCG_SWAP 92 static bool cgroup_memory_noswap __ro_after_init; 93 #else 94 #define cgroup_memory_noswap 1 95 #endif 96 97 #ifdef CONFIG_CGROUP_WRITEBACK 98 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq); 99 #endif 100 101 /* Whether legacy memory+swap accounting is active */ 102 static bool do_memsw_account(void) 103 { 104 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap; 105 } 106 107 #define THRESHOLDS_EVENTS_TARGET 128 108 #define SOFTLIMIT_EVENTS_TARGET 1024 109 110 /* 111 * Cgroups above their limits are maintained in a RB-Tree, independent of 112 * their hierarchy representation 113 */ 114 115 struct mem_cgroup_tree_per_node { 116 struct rb_root rb_root; 117 struct rb_node *rb_rightmost; 118 spinlock_t lock; 119 }; 120 121 struct mem_cgroup_tree { 122 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 123 }; 124 125 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 126 127 /* for OOM */ 128 struct mem_cgroup_eventfd_list { 129 struct list_head list; 130 struct eventfd_ctx *eventfd; 131 }; 132 133 /* 134 * cgroup_event represents events which userspace want to receive. 135 */ 136 struct mem_cgroup_event { 137 /* 138 * memcg which the event belongs to. 139 */ 140 struct mem_cgroup *memcg; 141 /* 142 * eventfd to signal userspace about the event. 143 */ 144 struct eventfd_ctx *eventfd; 145 /* 146 * Each of these stored in a list by the cgroup. 147 */ 148 struct list_head list; 149 /* 150 * register_event() callback will be used to add new userspace 151 * waiter for changes related to this event. Use eventfd_signal() 152 * on eventfd to send notification to userspace. 153 */ 154 int (*register_event)(struct mem_cgroup *memcg, 155 struct eventfd_ctx *eventfd, const char *args); 156 /* 157 * unregister_event() callback will be called when userspace closes 158 * the eventfd or on cgroup removing. This callback must be set, 159 * if you want provide notification functionality. 160 */ 161 void (*unregister_event)(struct mem_cgroup *memcg, 162 struct eventfd_ctx *eventfd); 163 /* 164 * All fields below needed to unregister event when 165 * userspace closes eventfd. 166 */ 167 poll_table pt; 168 wait_queue_head_t *wqh; 169 wait_queue_entry_t wait; 170 struct work_struct remove; 171 }; 172 173 static void mem_cgroup_threshold(struct mem_cgroup *memcg); 174 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); 175 176 /* Stuffs for move charges at task migration. */ 177 /* 178 * Types of charges to be moved. 179 */ 180 #define MOVE_ANON 0x1U 181 #define MOVE_FILE 0x2U 182 #define MOVE_MASK (MOVE_ANON | MOVE_FILE) 183 184 /* "mc" and its members are protected by cgroup_mutex */ 185 static struct move_charge_struct { 186 spinlock_t lock; /* for from, to */ 187 struct mm_struct *mm; 188 struct mem_cgroup *from; 189 struct mem_cgroup *to; 190 unsigned long flags; 191 unsigned long precharge; 192 unsigned long moved_charge; 193 unsigned long moved_swap; 194 struct task_struct *moving_task; /* a task moving charges */ 195 wait_queue_head_t waitq; /* a waitq for other context */ 196 } mc = { 197 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 198 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 199 }; 200 201 /* 202 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft 203 * limit reclaim to prevent infinite loops, if they ever occur. 204 */ 205 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 206 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 207 208 /* for encoding cft->private value on file */ 209 enum res_type { 210 _MEM, 211 _MEMSWAP, 212 _KMEM, 213 _TCP, 214 }; 215 216 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) 217 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) 218 #define MEMFILE_ATTR(val) ((val) & 0xffff) 219 220 /* 221 * Iteration constructs for visiting all cgroups (under a tree). If 222 * loops are exited prematurely (break), mem_cgroup_iter_break() must 223 * be used for reference counting. 224 */ 225 #define for_each_mem_cgroup_tree(iter, root) \ 226 for (iter = mem_cgroup_iter(root, NULL, NULL); \ 227 iter != NULL; \ 228 iter = mem_cgroup_iter(root, iter, NULL)) 229 230 #define for_each_mem_cgroup(iter) \ 231 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ 232 iter != NULL; \ 233 iter = mem_cgroup_iter(NULL, iter, NULL)) 234 235 static inline bool task_is_dying(void) 236 { 237 return tsk_is_oom_victim(current) || fatal_signal_pending(current) || 238 (current->flags & PF_EXITING); 239 } 240 241 /* Some nice accessors for the vmpressure. */ 242 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 243 { 244 if (!memcg) 245 memcg = root_mem_cgroup; 246 return &memcg->vmpressure; 247 } 248 249 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr) 250 { 251 return container_of(vmpr, struct mem_cgroup, vmpressure); 252 } 253 254 #ifdef CONFIG_MEMCG_KMEM 255 static DEFINE_SPINLOCK(objcg_lock); 256 257 bool mem_cgroup_kmem_disabled(void) 258 { 259 return cgroup_memory_nokmem; 260 } 261 262 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg, 263 unsigned int nr_pages); 264 265 static void obj_cgroup_release(struct percpu_ref *ref) 266 { 267 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt); 268 unsigned int nr_bytes; 269 unsigned int nr_pages; 270 unsigned long flags; 271 272 /* 273 * At this point all allocated objects are freed, and 274 * objcg->nr_charged_bytes can't have an arbitrary byte value. 275 * However, it can be PAGE_SIZE or (x * PAGE_SIZE). 276 * 277 * The following sequence can lead to it: 278 * 1) CPU0: objcg == stock->cached_objcg 279 * 2) CPU1: we do a small allocation (e.g. 92 bytes), 280 * PAGE_SIZE bytes are charged 281 * 3) CPU1: a process from another memcg is allocating something, 282 * the stock if flushed, 283 * objcg->nr_charged_bytes = PAGE_SIZE - 92 284 * 5) CPU0: we do release this object, 285 * 92 bytes are added to stock->nr_bytes 286 * 6) CPU0: stock is flushed, 287 * 92 bytes are added to objcg->nr_charged_bytes 288 * 289 * In the result, nr_charged_bytes == PAGE_SIZE. 290 * This page will be uncharged in obj_cgroup_release(). 291 */ 292 nr_bytes = atomic_read(&objcg->nr_charged_bytes); 293 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1)); 294 nr_pages = nr_bytes >> PAGE_SHIFT; 295 296 if (nr_pages) 297 obj_cgroup_uncharge_pages(objcg, nr_pages); 298 299 spin_lock_irqsave(&objcg_lock, flags); 300 list_del(&objcg->list); 301 spin_unlock_irqrestore(&objcg_lock, flags); 302 303 percpu_ref_exit(ref); 304 kfree_rcu(objcg, rcu); 305 } 306 307 static struct obj_cgroup *obj_cgroup_alloc(void) 308 { 309 struct obj_cgroup *objcg; 310 int ret; 311 312 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL); 313 if (!objcg) 314 return NULL; 315 316 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0, 317 GFP_KERNEL); 318 if (ret) { 319 kfree(objcg); 320 return NULL; 321 } 322 INIT_LIST_HEAD(&objcg->list); 323 return objcg; 324 } 325 326 static void memcg_reparent_objcgs(struct mem_cgroup *memcg, 327 struct mem_cgroup *parent) 328 { 329 struct obj_cgroup *objcg, *iter; 330 331 objcg = rcu_replace_pointer(memcg->objcg, NULL, true); 332 333 spin_lock_irq(&objcg_lock); 334 335 /* 1) Ready to reparent active objcg. */ 336 list_add(&objcg->list, &memcg->objcg_list); 337 /* 2) Reparent active objcg and already reparented objcgs to parent. */ 338 list_for_each_entry(iter, &memcg->objcg_list, list) 339 WRITE_ONCE(iter->memcg, parent); 340 /* 3) Move already reparented objcgs to the parent's list */ 341 list_splice(&memcg->objcg_list, &parent->objcg_list); 342 343 spin_unlock_irq(&objcg_lock); 344 345 percpu_ref_kill(&objcg->refcnt); 346 } 347 348 /* 349 * A lot of the calls to the cache allocation functions are expected to be 350 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are 351 * conditional to this static branch, we'll have to allow modules that does 352 * kmem_cache_alloc and the such to see this symbol as well 353 */ 354 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key); 355 EXPORT_SYMBOL(memcg_kmem_enabled_key); 356 #endif 357 358 /** 359 * mem_cgroup_css_from_page - css of the memcg associated with a page 360 * @page: page of interest 361 * 362 * If memcg is bound to the default hierarchy, css of the memcg associated 363 * with @page is returned. The returned css remains associated with @page 364 * until it is released. 365 * 366 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup 367 * is returned. 368 */ 369 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page) 370 { 371 struct mem_cgroup *memcg; 372 373 memcg = page_memcg(page); 374 375 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 376 memcg = root_mem_cgroup; 377 378 return &memcg->css; 379 } 380 381 /** 382 * page_cgroup_ino - return inode number of the memcg a page is charged to 383 * @page: the page 384 * 385 * Look up the closest online ancestor of the memory cgroup @page is charged to 386 * and return its inode number or 0 if @page is not charged to any cgroup. It 387 * is safe to call this function without holding a reference to @page. 388 * 389 * Note, this function is inherently racy, because there is nothing to prevent 390 * the cgroup inode from getting torn down and potentially reallocated a moment 391 * after page_cgroup_ino() returns, so it only should be used by callers that 392 * do not care (such as procfs interfaces). 393 */ 394 ino_t page_cgroup_ino(struct page *page) 395 { 396 struct mem_cgroup *memcg; 397 unsigned long ino = 0; 398 399 rcu_read_lock(); 400 memcg = page_memcg_check(page); 401 402 while (memcg && !(memcg->css.flags & CSS_ONLINE)) 403 memcg = parent_mem_cgroup(memcg); 404 if (memcg) 405 ino = cgroup_ino(memcg->css.cgroup); 406 rcu_read_unlock(); 407 return ino; 408 } 409 410 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz, 411 struct mem_cgroup_tree_per_node *mctz, 412 unsigned long new_usage_in_excess) 413 { 414 struct rb_node **p = &mctz->rb_root.rb_node; 415 struct rb_node *parent = NULL; 416 struct mem_cgroup_per_node *mz_node; 417 bool rightmost = true; 418 419 if (mz->on_tree) 420 return; 421 422 mz->usage_in_excess = new_usage_in_excess; 423 if (!mz->usage_in_excess) 424 return; 425 while (*p) { 426 parent = *p; 427 mz_node = rb_entry(parent, struct mem_cgroup_per_node, 428 tree_node); 429 if (mz->usage_in_excess < mz_node->usage_in_excess) { 430 p = &(*p)->rb_left; 431 rightmost = false; 432 } else { 433 p = &(*p)->rb_right; 434 } 435 } 436 437 if (rightmost) 438 mctz->rb_rightmost = &mz->tree_node; 439 440 rb_link_node(&mz->tree_node, parent, p); 441 rb_insert_color(&mz->tree_node, &mctz->rb_root); 442 mz->on_tree = true; 443 } 444 445 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 446 struct mem_cgroup_tree_per_node *mctz) 447 { 448 if (!mz->on_tree) 449 return; 450 451 if (&mz->tree_node == mctz->rb_rightmost) 452 mctz->rb_rightmost = rb_prev(&mz->tree_node); 453 454 rb_erase(&mz->tree_node, &mctz->rb_root); 455 mz->on_tree = false; 456 } 457 458 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 459 struct mem_cgroup_tree_per_node *mctz) 460 { 461 unsigned long flags; 462 463 spin_lock_irqsave(&mctz->lock, flags); 464 __mem_cgroup_remove_exceeded(mz, mctz); 465 spin_unlock_irqrestore(&mctz->lock, flags); 466 } 467 468 static unsigned long soft_limit_excess(struct mem_cgroup *memcg) 469 { 470 unsigned long nr_pages = page_counter_read(&memcg->memory); 471 unsigned long soft_limit = READ_ONCE(memcg->soft_limit); 472 unsigned long excess = 0; 473 474 if (nr_pages > soft_limit) 475 excess = nr_pages - soft_limit; 476 477 return excess; 478 } 479 480 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid) 481 { 482 unsigned long excess; 483 struct mem_cgroup_per_node *mz; 484 struct mem_cgroup_tree_per_node *mctz; 485 486 mctz = soft_limit_tree.rb_tree_per_node[nid]; 487 if (!mctz) 488 return; 489 /* 490 * Necessary to update all ancestors when hierarchy is used. 491 * because their event counter is not touched. 492 */ 493 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 494 mz = memcg->nodeinfo[nid]; 495 excess = soft_limit_excess(memcg); 496 /* 497 * We have to update the tree if mz is on RB-tree or 498 * mem is over its softlimit. 499 */ 500 if (excess || mz->on_tree) { 501 unsigned long flags; 502 503 spin_lock_irqsave(&mctz->lock, flags); 504 /* if on-tree, remove it */ 505 if (mz->on_tree) 506 __mem_cgroup_remove_exceeded(mz, mctz); 507 /* 508 * Insert again. mz->usage_in_excess will be updated. 509 * If excess is 0, no tree ops. 510 */ 511 __mem_cgroup_insert_exceeded(mz, mctz, excess); 512 spin_unlock_irqrestore(&mctz->lock, flags); 513 } 514 } 515 } 516 517 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) 518 { 519 struct mem_cgroup_tree_per_node *mctz; 520 struct mem_cgroup_per_node *mz; 521 int nid; 522 523 for_each_node(nid) { 524 mz = memcg->nodeinfo[nid]; 525 mctz = soft_limit_tree.rb_tree_per_node[nid]; 526 if (mctz) 527 mem_cgroup_remove_exceeded(mz, mctz); 528 } 529 } 530 531 static struct mem_cgroup_per_node * 532 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 533 { 534 struct mem_cgroup_per_node *mz; 535 536 retry: 537 mz = NULL; 538 if (!mctz->rb_rightmost) 539 goto done; /* Nothing to reclaim from */ 540 541 mz = rb_entry(mctz->rb_rightmost, 542 struct mem_cgroup_per_node, tree_node); 543 /* 544 * Remove the node now but someone else can add it back, 545 * we will to add it back at the end of reclaim to its correct 546 * position in the tree. 547 */ 548 __mem_cgroup_remove_exceeded(mz, mctz); 549 if (!soft_limit_excess(mz->memcg) || 550 !css_tryget(&mz->memcg->css)) 551 goto retry; 552 done: 553 return mz; 554 } 555 556 static struct mem_cgroup_per_node * 557 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 558 { 559 struct mem_cgroup_per_node *mz; 560 561 spin_lock_irq(&mctz->lock); 562 mz = __mem_cgroup_largest_soft_limit_node(mctz); 563 spin_unlock_irq(&mctz->lock); 564 return mz; 565 } 566 567 /* 568 * memcg and lruvec stats flushing 569 * 570 * Many codepaths leading to stats update or read are performance sensitive and 571 * adding stats flushing in such codepaths is not desirable. So, to optimize the 572 * flushing the kernel does: 573 * 574 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let 575 * rstat update tree grow unbounded. 576 * 577 * 2) Flush the stats synchronously on reader side only when there are more than 578 * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization 579 * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but 580 * only for 2 seconds due to (1). 581 */ 582 static void flush_memcg_stats_dwork(struct work_struct *w); 583 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork); 584 static DEFINE_SPINLOCK(stats_flush_lock); 585 static DEFINE_PER_CPU(unsigned int, stats_updates); 586 static atomic_t stats_flush_threshold = ATOMIC_INIT(0); 587 static u64 flush_next_time; 588 589 #define FLUSH_TIME (2UL*HZ) 590 591 /* 592 * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can 593 * not rely on this as part of an acquired spinlock_t lock. These functions are 594 * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion 595 * is sufficient. 596 */ 597 static void memcg_stats_lock(void) 598 { 599 #ifdef CONFIG_PREEMPT_RT 600 preempt_disable(); 601 #else 602 VM_BUG_ON(!irqs_disabled()); 603 #endif 604 } 605 606 static void __memcg_stats_lock(void) 607 { 608 #ifdef CONFIG_PREEMPT_RT 609 preempt_disable(); 610 #endif 611 } 612 613 static void memcg_stats_unlock(void) 614 { 615 #ifdef CONFIG_PREEMPT_RT 616 preempt_enable(); 617 #endif 618 } 619 620 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val) 621 { 622 unsigned int x; 623 624 cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id()); 625 626 x = __this_cpu_add_return(stats_updates, abs(val)); 627 if (x > MEMCG_CHARGE_BATCH) { 628 atomic_add(x / MEMCG_CHARGE_BATCH, &stats_flush_threshold); 629 __this_cpu_write(stats_updates, 0); 630 } 631 } 632 633 static void __mem_cgroup_flush_stats(void) 634 { 635 unsigned long flag; 636 637 if (!spin_trylock_irqsave(&stats_flush_lock, flag)) 638 return; 639 640 flush_next_time = jiffies_64 + 2*FLUSH_TIME; 641 cgroup_rstat_flush_irqsafe(root_mem_cgroup->css.cgroup); 642 atomic_set(&stats_flush_threshold, 0); 643 spin_unlock_irqrestore(&stats_flush_lock, flag); 644 } 645 646 void mem_cgroup_flush_stats(void) 647 { 648 if (atomic_read(&stats_flush_threshold) > num_online_cpus()) 649 __mem_cgroup_flush_stats(); 650 } 651 652 void mem_cgroup_flush_stats_delayed(void) 653 { 654 if (time_after64(jiffies_64, flush_next_time)) 655 mem_cgroup_flush_stats(); 656 } 657 658 static void flush_memcg_stats_dwork(struct work_struct *w) 659 { 660 __mem_cgroup_flush_stats(); 661 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME); 662 } 663 664 /** 665 * __mod_memcg_state - update cgroup memory statistics 666 * @memcg: the memory cgroup 667 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item 668 * @val: delta to add to the counter, can be negative 669 */ 670 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val) 671 { 672 if (mem_cgroup_disabled()) 673 return; 674 675 __this_cpu_add(memcg->vmstats_percpu->state[idx], val); 676 memcg_rstat_updated(memcg, val); 677 } 678 679 /* idx can be of type enum memcg_stat_item or node_stat_item. */ 680 static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx) 681 { 682 long x = 0; 683 int cpu; 684 685 for_each_possible_cpu(cpu) 686 x += per_cpu(memcg->vmstats_percpu->state[idx], cpu); 687 #ifdef CONFIG_SMP 688 if (x < 0) 689 x = 0; 690 #endif 691 return x; 692 } 693 694 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 695 int val) 696 { 697 struct mem_cgroup_per_node *pn; 698 struct mem_cgroup *memcg; 699 700 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 701 memcg = pn->memcg; 702 703 /* 704 * The caller from rmap relay on disabled preemption becase they never 705 * update their counter from in-interrupt context. For these two 706 * counters we check that the update is never performed from an 707 * interrupt context while other caller need to have disabled interrupt. 708 */ 709 __memcg_stats_lock(); 710 if (IS_ENABLED(CONFIG_DEBUG_VM) && !IS_ENABLED(CONFIG_PREEMPT_RT)) { 711 switch (idx) { 712 case NR_ANON_MAPPED: 713 case NR_FILE_MAPPED: 714 case NR_ANON_THPS: 715 case NR_SHMEM_PMDMAPPED: 716 case NR_FILE_PMDMAPPED: 717 WARN_ON_ONCE(!in_task()); 718 break; 719 default: 720 WARN_ON_ONCE(!irqs_disabled()); 721 } 722 } 723 724 /* Update memcg */ 725 __this_cpu_add(memcg->vmstats_percpu->state[idx], val); 726 727 /* Update lruvec */ 728 __this_cpu_add(pn->lruvec_stats_percpu->state[idx], val); 729 730 memcg_rstat_updated(memcg, val); 731 memcg_stats_unlock(); 732 } 733 734 /** 735 * __mod_lruvec_state - update lruvec memory statistics 736 * @lruvec: the lruvec 737 * @idx: the stat item 738 * @val: delta to add to the counter, can be negative 739 * 740 * The lruvec is the intersection of the NUMA node and a cgroup. This 741 * function updates the all three counters that are affected by a 742 * change of state at this level: per-node, per-cgroup, per-lruvec. 743 */ 744 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 745 int val) 746 { 747 /* Update node */ 748 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 749 750 /* Update memcg and lruvec */ 751 if (!mem_cgroup_disabled()) 752 __mod_memcg_lruvec_state(lruvec, idx, val); 753 } 754 755 void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx, 756 int val) 757 { 758 struct page *head = compound_head(page); /* rmap on tail pages */ 759 struct mem_cgroup *memcg; 760 pg_data_t *pgdat = page_pgdat(page); 761 struct lruvec *lruvec; 762 763 rcu_read_lock(); 764 memcg = page_memcg(head); 765 /* Untracked pages have no memcg, no lruvec. Update only the node */ 766 if (!memcg) { 767 rcu_read_unlock(); 768 __mod_node_page_state(pgdat, idx, val); 769 return; 770 } 771 772 lruvec = mem_cgroup_lruvec(memcg, pgdat); 773 __mod_lruvec_state(lruvec, idx, val); 774 rcu_read_unlock(); 775 } 776 EXPORT_SYMBOL(__mod_lruvec_page_state); 777 778 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val) 779 { 780 pg_data_t *pgdat = page_pgdat(virt_to_page(p)); 781 struct mem_cgroup *memcg; 782 struct lruvec *lruvec; 783 784 rcu_read_lock(); 785 memcg = mem_cgroup_from_obj(p); 786 787 /* 788 * Untracked pages have no memcg, no lruvec. Update only the 789 * node. If we reparent the slab objects to the root memcg, 790 * when we free the slab object, we need to update the per-memcg 791 * vmstats to keep it correct for the root memcg. 792 */ 793 if (!memcg) { 794 __mod_node_page_state(pgdat, idx, val); 795 } else { 796 lruvec = mem_cgroup_lruvec(memcg, pgdat); 797 __mod_lruvec_state(lruvec, idx, val); 798 } 799 rcu_read_unlock(); 800 } 801 802 /** 803 * __count_memcg_events - account VM events in a cgroup 804 * @memcg: the memory cgroup 805 * @idx: the event item 806 * @count: the number of events that occurred 807 */ 808 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 809 unsigned long count) 810 { 811 if (mem_cgroup_disabled()) 812 return; 813 814 memcg_stats_lock(); 815 __this_cpu_add(memcg->vmstats_percpu->events[idx], count); 816 memcg_rstat_updated(memcg, count); 817 memcg_stats_unlock(); 818 } 819 820 static unsigned long memcg_events(struct mem_cgroup *memcg, int event) 821 { 822 return READ_ONCE(memcg->vmstats.events[event]); 823 } 824 825 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event) 826 { 827 long x = 0; 828 int cpu; 829 830 for_each_possible_cpu(cpu) 831 x += per_cpu(memcg->vmstats_percpu->events[event], cpu); 832 return x; 833 } 834 835 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, 836 int nr_pages) 837 { 838 /* pagein of a big page is an event. So, ignore page size */ 839 if (nr_pages > 0) 840 __count_memcg_events(memcg, PGPGIN, 1); 841 else { 842 __count_memcg_events(memcg, PGPGOUT, 1); 843 nr_pages = -nr_pages; /* for event */ 844 } 845 846 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages); 847 } 848 849 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, 850 enum mem_cgroup_events_target target) 851 { 852 unsigned long val, next; 853 854 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events); 855 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]); 856 /* from time_after() in jiffies.h */ 857 if ((long)(next - val) < 0) { 858 switch (target) { 859 case MEM_CGROUP_TARGET_THRESH: 860 next = val + THRESHOLDS_EVENTS_TARGET; 861 break; 862 case MEM_CGROUP_TARGET_SOFTLIMIT: 863 next = val + SOFTLIMIT_EVENTS_TARGET; 864 break; 865 default: 866 break; 867 } 868 __this_cpu_write(memcg->vmstats_percpu->targets[target], next); 869 return true; 870 } 871 return false; 872 } 873 874 /* 875 * Check events in order. 876 * 877 */ 878 static void memcg_check_events(struct mem_cgroup *memcg, int nid) 879 { 880 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 881 return; 882 883 /* threshold event is triggered in finer grain than soft limit */ 884 if (unlikely(mem_cgroup_event_ratelimit(memcg, 885 MEM_CGROUP_TARGET_THRESH))) { 886 bool do_softlimit; 887 888 do_softlimit = mem_cgroup_event_ratelimit(memcg, 889 MEM_CGROUP_TARGET_SOFTLIMIT); 890 mem_cgroup_threshold(memcg); 891 if (unlikely(do_softlimit)) 892 mem_cgroup_update_tree(memcg, nid); 893 } 894 } 895 896 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 897 { 898 /* 899 * mm_update_next_owner() may clear mm->owner to NULL 900 * if it races with swapoff, page migration, etc. 901 * So this can be called with p == NULL. 902 */ 903 if (unlikely(!p)) 904 return NULL; 905 906 return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); 907 } 908 EXPORT_SYMBOL(mem_cgroup_from_task); 909 910 static __always_inline struct mem_cgroup *active_memcg(void) 911 { 912 if (!in_task()) 913 return this_cpu_read(int_active_memcg); 914 else 915 return current->active_memcg; 916 } 917 918 /** 919 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg. 920 * @mm: mm from which memcg should be extracted. It can be NULL. 921 * 922 * Obtain a reference on mm->memcg and returns it if successful. If mm 923 * is NULL, then the memcg is chosen as follows: 924 * 1) The active memcg, if set. 925 * 2) current->mm->memcg, if available 926 * 3) root memcg 927 * If mem_cgroup is disabled, NULL is returned. 928 */ 929 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 930 { 931 struct mem_cgroup *memcg; 932 933 if (mem_cgroup_disabled()) 934 return NULL; 935 936 /* 937 * Page cache insertions can happen without an 938 * actual mm context, e.g. during disk probing 939 * on boot, loopback IO, acct() writes etc. 940 * 941 * No need to css_get on root memcg as the reference 942 * counting is disabled on the root level in the 943 * cgroup core. See CSS_NO_REF. 944 */ 945 if (unlikely(!mm)) { 946 memcg = active_memcg(); 947 if (unlikely(memcg)) { 948 /* remote memcg must hold a ref */ 949 css_get(&memcg->css); 950 return memcg; 951 } 952 mm = current->mm; 953 if (unlikely(!mm)) 954 return root_mem_cgroup; 955 } 956 957 rcu_read_lock(); 958 do { 959 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 960 if (unlikely(!memcg)) 961 memcg = root_mem_cgroup; 962 } while (!css_tryget(&memcg->css)); 963 rcu_read_unlock(); 964 return memcg; 965 } 966 EXPORT_SYMBOL(get_mem_cgroup_from_mm); 967 968 static __always_inline bool memcg_kmem_bypass(void) 969 { 970 /* Allow remote memcg charging from any context. */ 971 if (unlikely(active_memcg())) 972 return false; 973 974 /* Memcg to charge can't be determined. */ 975 if (!in_task() || !current->mm || (current->flags & PF_KTHREAD)) 976 return true; 977 978 return false; 979 } 980 981 /** 982 * mem_cgroup_iter - iterate over memory cgroup hierarchy 983 * @root: hierarchy root 984 * @prev: previously returned memcg, NULL on first invocation 985 * @reclaim: cookie for shared reclaim walks, NULL for full walks 986 * 987 * Returns references to children of the hierarchy below @root, or 988 * @root itself, or %NULL after a full round-trip. 989 * 990 * Caller must pass the return value in @prev on subsequent 991 * invocations for reference counting, or use mem_cgroup_iter_break() 992 * to cancel a hierarchy walk before the round-trip is complete. 993 * 994 * Reclaimers can specify a node in @reclaim to divide up the memcgs 995 * in the hierarchy among all concurrent reclaimers operating on the 996 * same node. 997 */ 998 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 999 struct mem_cgroup *prev, 1000 struct mem_cgroup_reclaim_cookie *reclaim) 1001 { 1002 struct mem_cgroup_reclaim_iter *iter; 1003 struct cgroup_subsys_state *css = NULL; 1004 struct mem_cgroup *memcg = NULL; 1005 struct mem_cgroup *pos = NULL; 1006 1007 if (mem_cgroup_disabled()) 1008 return NULL; 1009 1010 if (!root) 1011 root = root_mem_cgroup; 1012 1013 rcu_read_lock(); 1014 1015 if (reclaim) { 1016 struct mem_cgroup_per_node *mz; 1017 1018 mz = root->nodeinfo[reclaim->pgdat->node_id]; 1019 iter = &mz->iter; 1020 1021 /* 1022 * On start, join the current reclaim iteration cycle. 1023 * Exit when a concurrent walker completes it. 1024 */ 1025 if (!prev) 1026 reclaim->generation = iter->generation; 1027 else if (reclaim->generation != iter->generation) 1028 goto out_unlock; 1029 1030 while (1) { 1031 pos = READ_ONCE(iter->position); 1032 if (!pos || css_tryget(&pos->css)) 1033 break; 1034 /* 1035 * css reference reached zero, so iter->position will 1036 * be cleared by ->css_released. However, we should not 1037 * rely on this happening soon, because ->css_released 1038 * is called from a work queue, and by busy-waiting we 1039 * might block it. So we clear iter->position right 1040 * away. 1041 */ 1042 (void)cmpxchg(&iter->position, pos, NULL); 1043 } 1044 } else if (prev) { 1045 pos = prev; 1046 } 1047 1048 if (pos) 1049 css = &pos->css; 1050 1051 for (;;) { 1052 css = css_next_descendant_pre(css, &root->css); 1053 if (!css) { 1054 /* 1055 * Reclaimers share the hierarchy walk, and a 1056 * new one might jump in right at the end of 1057 * the hierarchy - make sure they see at least 1058 * one group and restart from the beginning. 1059 */ 1060 if (!prev) 1061 continue; 1062 break; 1063 } 1064 1065 /* 1066 * Verify the css and acquire a reference. The root 1067 * is provided by the caller, so we know it's alive 1068 * and kicking, and don't take an extra reference. 1069 */ 1070 if (css == &root->css || css_tryget(css)) { 1071 memcg = mem_cgroup_from_css(css); 1072 break; 1073 } 1074 } 1075 1076 if (reclaim) { 1077 /* 1078 * The position could have already been updated by a competing 1079 * thread, so check that the value hasn't changed since we read 1080 * it to avoid reclaiming from the same cgroup twice. 1081 */ 1082 (void)cmpxchg(&iter->position, pos, memcg); 1083 1084 if (pos) 1085 css_put(&pos->css); 1086 1087 if (!memcg) 1088 iter->generation++; 1089 } 1090 1091 out_unlock: 1092 rcu_read_unlock(); 1093 if (prev && prev != root) 1094 css_put(&prev->css); 1095 1096 return memcg; 1097 } 1098 1099 /** 1100 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 1101 * @root: hierarchy root 1102 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 1103 */ 1104 void mem_cgroup_iter_break(struct mem_cgroup *root, 1105 struct mem_cgroup *prev) 1106 { 1107 if (!root) 1108 root = root_mem_cgroup; 1109 if (prev && prev != root) 1110 css_put(&prev->css); 1111 } 1112 1113 static void __invalidate_reclaim_iterators(struct mem_cgroup *from, 1114 struct mem_cgroup *dead_memcg) 1115 { 1116 struct mem_cgroup_reclaim_iter *iter; 1117 struct mem_cgroup_per_node *mz; 1118 int nid; 1119 1120 for_each_node(nid) { 1121 mz = from->nodeinfo[nid]; 1122 iter = &mz->iter; 1123 cmpxchg(&iter->position, dead_memcg, NULL); 1124 } 1125 } 1126 1127 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) 1128 { 1129 struct mem_cgroup *memcg = dead_memcg; 1130 struct mem_cgroup *last; 1131 1132 do { 1133 __invalidate_reclaim_iterators(memcg, dead_memcg); 1134 last = memcg; 1135 } while ((memcg = parent_mem_cgroup(memcg))); 1136 1137 /* 1138 * When cgruop1 non-hierarchy mode is used, 1139 * parent_mem_cgroup() does not walk all the way up to the 1140 * cgroup root (root_mem_cgroup). So we have to handle 1141 * dead_memcg from cgroup root separately. 1142 */ 1143 if (last != root_mem_cgroup) 1144 __invalidate_reclaim_iterators(root_mem_cgroup, 1145 dead_memcg); 1146 } 1147 1148 /** 1149 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy 1150 * @memcg: hierarchy root 1151 * @fn: function to call for each task 1152 * @arg: argument passed to @fn 1153 * 1154 * This function iterates over tasks attached to @memcg or to any of its 1155 * descendants and calls @fn for each task. If @fn returns a non-zero 1156 * value, the function breaks the iteration loop and returns the value. 1157 * Otherwise, it will iterate over all tasks and return 0. 1158 * 1159 * This function must not be called for the root memory cgroup. 1160 */ 1161 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1162 int (*fn)(struct task_struct *, void *), void *arg) 1163 { 1164 struct mem_cgroup *iter; 1165 int ret = 0; 1166 1167 BUG_ON(memcg == root_mem_cgroup); 1168 1169 for_each_mem_cgroup_tree(iter, memcg) { 1170 struct css_task_iter it; 1171 struct task_struct *task; 1172 1173 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it); 1174 while (!ret && (task = css_task_iter_next(&it))) 1175 ret = fn(task, arg); 1176 css_task_iter_end(&it); 1177 if (ret) { 1178 mem_cgroup_iter_break(memcg, iter); 1179 break; 1180 } 1181 } 1182 return ret; 1183 } 1184 1185 #ifdef CONFIG_DEBUG_VM 1186 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio) 1187 { 1188 struct mem_cgroup *memcg; 1189 1190 if (mem_cgroup_disabled()) 1191 return; 1192 1193 memcg = folio_memcg(folio); 1194 1195 if (!memcg) 1196 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != root_mem_cgroup, folio); 1197 else 1198 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio); 1199 } 1200 #endif 1201 1202 /** 1203 * folio_lruvec_lock - Lock the lruvec for a folio. 1204 * @folio: Pointer to the folio. 1205 * 1206 * These functions are safe to use under any of the following conditions: 1207 * - folio locked 1208 * - folio_test_lru false 1209 * - folio_memcg_lock() 1210 * - folio frozen (refcount of 0) 1211 * 1212 * Return: The lruvec this folio is on with its lock held. 1213 */ 1214 struct lruvec *folio_lruvec_lock(struct folio *folio) 1215 { 1216 struct lruvec *lruvec = folio_lruvec(folio); 1217 1218 spin_lock(&lruvec->lru_lock); 1219 lruvec_memcg_debug(lruvec, folio); 1220 1221 return lruvec; 1222 } 1223 1224 /** 1225 * folio_lruvec_lock_irq - Lock the lruvec for a folio. 1226 * @folio: Pointer to the folio. 1227 * 1228 * These functions are safe to use under any of the following conditions: 1229 * - folio locked 1230 * - folio_test_lru false 1231 * - folio_memcg_lock() 1232 * - folio frozen (refcount of 0) 1233 * 1234 * Return: The lruvec this folio is on with its lock held and interrupts 1235 * disabled. 1236 */ 1237 struct lruvec *folio_lruvec_lock_irq(struct folio *folio) 1238 { 1239 struct lruvec *lruvec = folio_lruvec(folio); 1240 1241 spin_lock_irq(&lruvec->lru_lock); 1242 lruvec_memcg_debug(lruvec, folio); 1243 1244 return lruvec; 1245 } 1246 1247 /** 1248 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio. 1249 * @folio: Pointer to the folio. 1250 * @flags: Pointer to irqsave flags. 1251 * 1252 * These functions are safe to use under any of the following conditions: 1253 * - folio locked 1254 * - folio_test_lru false 1255 * - folio_memcg_lock() 1256 * - folio frozen (refcount of 0) 1257 * 1258 * Return: The lruvec this folio is on with its lock held and interrupts 1259 * disabled. 1260 */ 1261 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio, 1262 unsigned long *flags) 1263 { 1264 struct lruvec *lruvec = folio_lruvec(folio); 1265 1266 spin_lock_irqsave(&lruvec->lru_lock, *flags); 1267 lruvec_memcg_debug(lruvec, folio); 1268 1269 return lruvec; 1270 } 1271 1272 /** 1273 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1274 * @lruvec: mem_cgroup per zone lru vector 1275 * @lru: index of lru list the page is sitting on 1276 * @zid: zone id of the accounted pages 1277 * @nr_pages: positive when adding or negative when removing 1278 * 1279 * This function must be called under lru_lock, just before a page is added 1280 * to or just after a page is removed from an lru list. 1281 */ 1282 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1283 int zid, int nr_pages) 1284 { 1285 struct mem_cgroup_per_node *mz; 1286 unsigned long *lru_size; 1287 long size; 1288 1289 if (mem_cgroup_disabled()) 1290 return; 1291 1292 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 1293 lru_size = &mz->lru_zone_size[zid][lru]; 1294 1295 if (nr_pages < 0) 1296 *lru_size += nr_pages; 1297 1298 size = *lru_size; 1299 if (WARN_ONCE(size < 0, 1300 "%s(%p, %d, %d): lru_size %ld\n", 1301 __func__, lruvec, lru, nr_pages, size)) { 1302 VM_BUG_ON(1); 1303 *lru_size = 0; 1304 } 1305 1306 if (nr_pages > 0) 1307 *lru_size += nr_pages; 1308 } 1309 1310 /** 1311 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1312 * @memcg: the memory cgroup 1313 * 1314 * Returns the maximum amount of memory @mem can be charged with, in 1315 * pages. 1316 */ 1317 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1318 { 1319 unsigned long margin = 0; 1320 unsigned long count; 1321 unsigned long limit; 1322 1323 count = page_counter_read(&memcg->memory); 1324 limit = READ_ONCE(memcg->memory.max); 1325 if (count < limit) 1326 margin = limit - count; 1327 1328 if (do_memsw_account()) { 1329 count = page_counter_read(&memcg->memsw); 1330 limit = READ_ONCE(memcg->memsw.max); 1331 if (count < limit) 1332 margin = min(margin, limit - count); 1333 else 1334 margin = 0; 1335 } 1336 1337 return margin; 1338 } 1339 1340 /* 1341 * A routine for checking "mem" is under move_account() or not. 1342 * 1343 * Checking a cgroup is mc.from or mc.to or under hierarchy of 1344 * moving cgroups. This is for waiting at high-memory pressure 1345 * caused by "move". 1346 */ 1347 static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 1348 { 1349 struct mem_cgroup *from; 1350 struct mem_cgroup *to; 1351 bool ret = false; 1352 /* 1353 * Unlike task_move routines, we access mc.to, mc.from not under 1354 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1355 */ 1356 spin_lock(&mc.lock); 1357 from = mc.from; 1358 to = mc.to; 1359 if (!from) 1360 goto unlock; 1361 1362 ret = mem_cgroup_is_descendant(from, memcg) || 1363 mem_cgroup_is_descendant(to, memcg); 1364 unlock: 1365 spin_unlock(&mc.lock); 1366 return ret; 1367 } 1368 1369 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) 1370 { 1371 if (mc.moving_task && current != mc.moving_task) { 1372 if (mem_cgroup_under_move(memcg)) { 1373 DEFINE_WAIT(wait); 1374 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1375 /* moving charge context might have finished. */ 1376 if (mc.moving_task) 1377 schedule(); 1378 finish_wait(&mc.waitq, &wait); 1379 return true; 1380 } 1381 } 1382 return false; 1383 } 1384 1385 struct memory_stat { 1386 const char *name; 1387 unsigned int idx; 1388 }; 1389 1390 static const struct memory_stat memory_stats[] = { 1391 { "anon", NR_ANON_MAPPED }, 1392 { "file", NR_FILE_PAGES }, 1393 { "kernel", MEMCG_KMEM }, 1394 { "kernel_stack", NR_KERNEL_STACK_KB }, 1395 { "pagetables", NR_PAGETABLE }, 1396 { "percpu", MEMCG_PERCPU_B }, 1397 { "sock", MEMCG_SOCK }, 1398 { "vmalloc", MEMCG_VMALLOC }, 1399 { "shmem", NR_SHMEM }, 1400 { "file_mapped", NR_FILE_MAPPED }, 1401 { "file_dirty", NR_FILE_DIRTY }, 1402 { "file_writeback", NR_WRITEBACK }, 1403 #ifdef CONFIG_SWAP 1404 { "swapcached", NR_SWAPCACHE }, 1405 #endif 1406 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1407 { "anon_thp", NR_ANON_THPS }, 1408 { "file_thp", NR_FILE_THPS }, 1409 { "shmem_thp", NR_SHMEM_THPS }, 1410 #endif 1411 { "inactive_anon", NR_INACTIVE_ANON }, 1412 { "active_anon", NR_ACTIVE_ANON }, 1413 { "inactive_file", NR_INACTIVE_FILE }, 1414 { "active_file", NR_ACTIVE_FILE }, 1415 { "unevictable", NR_UNEVICTABLE }, 1416 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B }, 1417 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B }, 1418 1419 /* The memory events */ 1420 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON }, 1421 { "workingset_refault_file", WORKINGSET_REFAULT_FILE }, 1422 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON }, 1423 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE }, 1424 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON }, 1425 { "workingset_restore_file", WORKINGSET_RESTORE_FILE }, 1426 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM }, 1427 }; 1428 1429 /* Translate stat items to the correct unit for memory.stat output */ 1430 static int memcg_page_state_unit(int item) 1431 { 1432 switch (item) { 1433 case MEMCG_PERCPU_B: 1434 case NR_SLAB_RECLAIMABLE_B: 1435 case NR_SLAB_UNRECLAIMABLE_B: 1436 case WORKINGSET_REFAULT_ANON: 1437 case WORKINGSET_REFAULT_FILE: 1438 case WORKINGSET_ACTIVATE_ANON: 1439 case WORKINGSET_ACTIVATE_FILE: 1440 case WORKINGSET_RESTORE_ANON: 1441 case WORKINGSET_RESTORE_FILE: 1442 case WORKINGSET_NODERECLAIM: 1443 return 1; 1444 case NR_KERNEL_STACK_KB: 1445 return SZ_1K; 1446 default: 1447 return PAGE_SIZE; 1448 } 1449 } 1450 1451 static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg, 1452 int item) 1453 { 1454 return memcg_page_state(memcg, item) * memcg_page_state_unit(item); 1455 } 1456 1457 static char *memory_stat_format(struct mem_cgroup *memcg) 1458 { 1459 struct seq_buf s; 1460 int i; 1461 1462 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE); 1463 if (!s.buffer) 1464 return NULL; 1465 1466 /* 1467 * Provide statistics on the state of the memory subsystem as 1468 * well as cumulative event counters that show past behavior. 1469 * 1470 * This list is ordered following a combination of these gradients: 1471 * 1) generic big picture -> specifics and details 1472 * 2) reflecting userspace activity -> reflecting kernel heuristics 1473 * 1474 * Current memory state: 1475 */ 1476 mem_cgroup_flush_stats(); 1477 1478 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 1479 u64 size; 1480 1481 size = memcg_page_state_output(memcg, memory_stats[i].idx); 1482 seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size); 1483 1484 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) { 1485 size += memcg_page_state_output(memcg, 1486 NR_SLAB_RECLAIMABLE_B); 1487 seq_buf_printf(&s, "slab %llu\n", size); 1488 } 1489 } 1490 1491 /* Accumulated memory events */ 1492 1493 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT), 1494 memcg_events(memcg, PGFAULT)); 1495 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT), 1496 memcg_events(memcg, PGMAJFAULT)); 1497 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL), 1498 memcg_events(memcg, PGREFILL)); 1499 seq_buf_printf(&s, "pgscan %lu\n", 1500 memcg_events(memcg, PGSCAN_KSWAPD) + 1501 memcg_events(memcg, PGSCAN_DIRECT)); 1502 seq_buf_printf(&s, "pgsteal %lu\n", 1503 memcg_events(memcg, PGSTEAL_KSWAPD) + 1504 memcg_events(memcg, PGSTEAL_DIRECT)); 1505 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE), 1506 memcg_events(memcg, PGACTIVATE)); 1507 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE), 1508 memcg_events(memcg, PGDEACTIVATE)); 1509 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE), 1510 memcg_events(memcg, PGLAZYFREE)); 1511 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED), 1512 memcg_events(memcg, PGLAZYFREED)); 1513 1514 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1515 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC), 1516 memcg_events(memcg, THP_FAULT_ALLOC)); 1517 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC), 1518 memcg_events(memcg, THP_COLLAPSE_ALLOC)); 1519 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1520 1521 /* The above should easily fit into one page */ 1522 WARN_ON_ONCE(seq_buf_has_overflowed(&s)); 1523 1524 return s.buffer; 1525 } 1526 1527 #define K(x) ((x) << (PAGE_SHIFT-10)) 1528 /** 1529 * mem_cgroup_print_oom_context: Print OOM information relevant to 1530 * memory controller. 1531 * @memcg: The memory cgroup that went over limit 1532 * @p: Task that is going to be killed 1533 * 1534 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1535 * enabled 1536 */ 1537 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1538 { 1539 rcu_read_lock(); 1540 1541 if (memcg) { 1542 pr_cont(",oom_memcg="); 1543 pr_cont_cgroup_path(memcg->css.cgroup); 1544 } else 1545 pr_cont(",global_oom"); 1546 if (p) { 1547 pr_cont(",task_memcg="); 1548 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); 1549 } 1550 rcu_read_unlock(); 1551 } 1552 1553 /** 1554 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to 1555 * memory controller. 1556 * @memcg: The memory cgroup that went over limit 1557 */ 1558 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1559 { 1560 char *buf; 1561 1562 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", 1563 K((u64)page_counter_read(&memcg->memory)), 1564 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt); 1565 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1566 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n", 1567 K((u64)page_counter_read(&memcg->swap)), 1568 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt); 1569 else { 1570 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", 1571 K((u64)page_counter_read(&memcg->memsw)), 1572 K((u64)memcg->memsw.max), memcg->memsw.failcnt); 1573 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", 1574 K((u64)page_counter_read(&memcg->kmem)), 1575 K((u64)memcg->kmem.max), memcg->kmem.failcnt); 1576 } 1577 1578 pr_info("Memory cgroup stats for "); 1579 pr_cont_cgroup_path(memcg->css.cgroup); 1580 pr_cont(":"); 1581 buf = memory_stat_format(memcg); 1582 if (!buf) 1583 return; 1584 pr_info("%s", buf); 1585 kfree(buf); 1586 } 1587 1588 /* 1589 * Return the memory (and swap, if configured) limit for a memcg. 1590 */ 1591 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1592 { 1593 unsigned long max = READ_ONCE(memcg->memory.max); 1594 1595 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 1596 if (mem_cgroup_swappiness(memcg)) 1597 max += min(READ_ONCE(memcg->swap.max), 1598 (unsigned long)total_swap_pages); 1599 } else { /* v1 */ 1600 if (mem_cgroup_swappiness(memcg)) { 1601 /* Calculate swap excess capacity from memsw limit */ 1602 unsigned long swap = READ_ONCE(memcg->memsw.max) - max; 1603 1604 max += min(swap, (unsigned long)total_swap_pages); 1605 } 1606 } 1607 return max; 1608 } 1609 1610 unsigned long mem_cgroup_size(struct mem_cgroup *memcg) 1611 { 1612 return page_counter_read(&memcg->memory); 1613 } 1614 1615 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1616 int order) 1617 { 1618 struct oom_control oc = { 1619 .zonelist = NULL, 1620 .nodemask = NULL, 1621 .memcg = memcg, 1622 .gfp_mask = gfp_mask, 1623 .order = order, 1624 }; 1625 bool ret = true; 1626 1627 if (mutex_lock_killable(&oom_lock)) 1628 return true; 1629 1630 if (mem_cgroup_margin(memcg) >= (1 << order)) 1631 goto unlock; 1632 1633 /* 1634 * A few threads which were not waiting at mutex_lock_killable() can 1635 * fail to bail out. Therefore, check again after holding oom_lock. 1636 */ 1637 ret = task_is_dying() || out_of_memory(&oc); 1638 1639 unlock: 1640 mutex_unlock(&oom_lock); 1641 return ret; 1642 } 1643 1644 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, 1645 pg_data_t *pgdat, 1646 gfp_t gfp_mask, 1647 unsigned long *total_scanned) 1648 { 1649 struct mem_cgroup *victim = NULL; 1650 int total = 0; 1651 int loop = 0; 1652 unsigned long excess; 1653 unsigned long nr_scanned; 1654 struct mem_cgroup_reclaim_cookie reclaim = { 1655 .pgdat = pgdat, 1656 }; 1657 1658 excess = soft_limit_excess(root_memcg); 1659 1660 while (1) { 1661 victim = mem_cgroup_iter(root_memcg, victim, &reclaim); 1662 if (!victim) { 1663 loop++; 1664 if (loop >= 2) { 1665 /* 1666 * If we have not been able to reclaim 1667 * anything, it might because there are 1668 * no reclaimable pages under this hierarchy 1669 */ 1670 if (!total) 1671 break; 1672 /* 1673 * We want to do more targeted reclaim. 1674 * excess >> 2 is not to excessive so as to 1675 * reclaim too much, nor too less that we keep 1676 * coming back to reclaim from this cgroup 1677 */ 1678 if (total >= (excess >> 2) || 1679 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) 1680 break; 1681 } 1682 continue; 1683 } 1684 total += mem_cgroup_shrink_node(victim, gfp_mask, false, 1685 pgdat, &nr_scanned); 1686 *total_scanned += nr_scanned; 1687 if (!soft_limit_excess(root_memcg)) 1688 break; 1689 } 1690 mem_cgroup_iter_break(root_memcg, victim); 1691 return total; 1692 } 1693 1694 #ifdef CONFIG_LOCKDEP 1695 static struct lockdep_map memcg_oom_lock_dep_map = { 1696 .name = "memcg_oom_lock", 1697 }; 1698 #endif 1699 1700 static DEFINE_SPINLOCK(memcg_oom_lock); 1701 1702 /* 1703 * Check OOM-Killer is already running under our hierarchy. 1704 * If someone is running, return false. 1705 */ 1706 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) 1707 { 1708 struct mem_cgroup *iter, *failed = NULL; 1709 1710 spin_lock(&memcg_oom_lock); 1711 1712 for_each_mem_cgroup_tree(iter, memcg) { 1713 if (iter->oom_lock) { 1714 /* 1715 * this subtree of our hierarchy is already locked 1716 * so we cannot give a lock. 1717 */ 1718 failed = iter; 1719 mem_cgroup_iter_break(memcg, iter); 1720 break; 1721 } else 1722 iter->oom_lock = true; 1723 } 1724 1725 if (failed) { 1726 /* 1727 * OK, we failed to lock the whole subtree so we have 1728 * to clean up what we set up to the failing subtree 1729 */ 1730 for_each_mem_cgroup_tree(iter, memcg) { 1731 if (iter == failed) { 1732 mem_cgroup_iter_break(memcg, iter); 1733 break; 1734 } 1735 iter->oom_lock = false; 1736 } 1737 } else 1738 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); 1739 1740 spin_unlock(&memcg_oom_lock); 1741 1742 return !failed; 1743 } 1744 1745 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 1746 { 1747 struct mem_cgroup *iter; 1748 1749 spin_lock(&memcg_oom_lock); 1750 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_); 1751 for_each_mem_cgroup_tree(iter, memcg) 1752 iter->oom_lock = false; 1753 spin_unlock(&memcg_oom_lock); 1754 } 1755 1756 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 1757 { 1758 struct mem_cgroup *iter; 1759 1760 spin_lock(&memcg_oom_lock); 1761 for_each_mem_cgroup_tree(iter, memcg) 1762 iter->under_oom++; 1763 spin_unlock(&memcg_oom_lock); 1764 } 1765 1766 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 1767 { 1768 struct mem_cgroup *iter; 1769 1770 /* 1771 * Be careful about under_oom underflows because a child memcg 1772 * could have been added after mem_cgroup_mark_under_oom. 1773 */ 1774 spin_lock(&memcg_oom_lock); 1775 for_each_mem_cgroup_tree(iter, memcg) 1776 if (iter->under_oom > 0) 1777 iter->under_oom--; 1778 spin_unlock(&memcg_oom_lock); 1779 } 1780 1781 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 1782 1783 struct oom_wait_info { 1784 struct mem_cgroup *memcg; 1785 wait_queue_entry_t wait; 1786 }; 1787 1788 static int memcg_oom_wake_function(wait_queue_entry_t *wait, 1789 unsigned mode, int sync, void *arg) 1790 { 1791 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; 1792 struct mem_cgroup *oom_wait_memcg; 1793 struct oom_wait_info *oom_wait_info; 1794 1795 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 1796 oom_wait_memcg = oom_wait_info->memcg; 1797 1798 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) && 1799 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg)) 1800 return 0; 1801 return autoremove_wake_function(wait, mode, sync, arg); 1802 } 1803 1804 static void memcg_oom_recover(struct mem_cgroup *memcg) 1805 { 1806 /* 1807 * For the following lockless ->under_oom test, the only required 1808 * guarantee is that it must see the state asserted by an OOM when 1809 * this function is called as a result of userland actions 1810 * triggered by the notification of the OOM. This is trivially 1811 * achieved by invoking mem_cgroup_mark_under_oom() before 1812 * triggering notification. 1813 */ 1814 if (memcg && memcg->under_oom) 1815 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 1816 } 1817 1818 /* 1819 * Returns true if successfully killed one or more processes. Though in some 1820 * corner cases it can return true even without killing any process. 1821 */ 1822 static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 1823 { 1824 bool locked, ret; 1825 1826 if (order > PAGE_ALLOC_COSTLY_ORDER) 1827 return false; 1828 1829 memcg_memory_event(memcg, MEMCG_OOM); 1830 1831 /* 1832 * We are in the middle of the charge context here, so we 1833 * don't want to block when potentially sitting on a callstack 1834 * that holds all kinds of filesystem and mm locks. 1835 * 1836 * cgroup1 allows disabling the OOM killer and waiting for outside 1837 * handling until the charge can succeed; remember the context and put 1838 * the task to sleep at the end of the page fault when all locks are 1839 * released. 1840 * 1841 * On the other hand, in-kernel OOM killer allows for an async victim 1842 * memory reclaim (oom_reaper) and that means that we are not solely 1843 * relying on the oom victim to make a forward progress and we can 1844 * invoke the oom killer here. 1845 * 1846 * Please note that mem_cgroup_out_of_memory might fail to find a 1847 * victim and then we have to bail out from the charge path. 1848 */ 1849 if (memcg->oom_kill_disable) { 1850 if (current->in_user_fault) { 1851 css_get(&memcg->css); 1852 current->memcg_in_oom = memcg; 1853 current->memcg_oom_gfp_mask = mask; 1854 current->memcg_oom_order = order; 1855 } 1856 return false; 1857 } 1858 1859 mem_cgroup_mark_under_oom(memcg); 1860 1861 locked = mem_cgroup_oom_trylock(memcg); 1862 1863 if (locked) 1864 mem_cgroup_oom_notify(memcg); 1865 1866 mem_cgroup_unmark_under_oom(memcg); 1867 ret = mem_cgroup_out_of_memory(memcg, mask, order); 1868 1869 if (locked) 1870 mem_cgroup_oom_unlock(memcg); 1871 1872 return ret; 1873 } 1874 1875 /** 1876 * mem_cgroup_oom_synchronize - complete memcg OOM handling 1877 * @handle: actually kill/wait or just clean up the OOM state 1878 * 1879 * This has to be called at the end of a page fault if the memcg OOM 1880 * handler was enabled. 1881 * 1882 * Memcg supports userspace OOM handling where failed allocations must 1883 * sleep on a waitqueue until the userspace task resolves the 1884 * situation. Sleeping directly in the charge context with all kinds 1885 * of locks held is not a good idea, instead we remember an OOM state 1886 * in the task and mem_cgroup_oom_synchronize() has to be called at 1887 * the end of the page fault to complete the OOM handling. 1888 * 1889 * Returns %true if an ongoing memcg OOM situation was detected and 1890 * completed, %false otherwise. 1891 */ 1892 bool mem_cgroup_oom_synchronize(bool handle) 1893 { 1894 struct mem_cgroup *memcg = current->memcg_in_oom; 1895 struct oom_wait_info owait; 1896 bool locked; 1897 1898 /* OOM is global, do not handle */ 1899 if (!memcg) 1900 return false; 1901 1902 if (!handle) 1903 goto cleanup; 1904 1905 owait.memcg = memcg; 1906 owait.wait.flags = 0; 1907 owait.wait.func = memcg_oom_wake_function; 1908 owait.wait.private = current; 1909 INIT_LIST_HEAD(&owait.wait.entry); 1910 1911 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 1912 mem_cgroup_mark_under_oom(memcg); 1913 1914 locked = mem_cgroup_oom_trylock(memcg); 1915 1916 if (locked) 1917 mem_cgroup_oom_notify(memcg); 1918 1919 if (locked && !memcg->oom_kill_disable) { 1920 mem_cgroup_unmark_under_oom(memcg); 1921 finish_wait(&memcg_oom_waitq, &owait.wait); 1922 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask, 1923 current->memcg_oom_order); 1924 } else { 1925 schedule(); 1926 mem_cgroup_unmark_under_oom(memcg); 1927 finish_wait(&memcg_oom_waitq, &owait.wait); 1928 } 1929 1930 if (locked) { 1931 mem_cgroup_oom_unlock(memcg); 1932 /* 1933 * There is no guarantee that an OOM-lock contender 1934 * sees the wakeups triggered by the OOM kill 1935 * uncharges. Wake any sleepers explicitly. 1936 */ 1937 memcg_oom_recover(memcg); 1938 } 1939 cleanup: 1940 current->memcg_in_oom = NULL; 1941 css_put(&memcg->css); 1942 return true; 1943 } 1944 1945 /** 1946 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM 1947 * @victim: task to be killed by the OOM killer 1948 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM 1949 * 1950 * Returns a pointer to a memory cgroup, which has to be cleaned up 1951 * by killing all belonging OOM-killable tasks. 1952 * 1953 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg. 1954 */ 1955 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 1956 struct mem_cgroup *oom_domain) 1957 { 1958 struct mem_cgroup *oom_group = NULL; 1959 struct mem_cgroup *memcg; 1960 1961 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1962 return NULL; 1963 1964 if (!oom_domain) 1965 oom_domain = root_mem_cgroup; 1966 1967 rcu_read_lock(); 1968 1969 memcg = mem_cgroup_from_task(victim); 1970 if (memcg == root_mem_cgroup) 1971 goto out; 1972 1973 /* 1974 * If the victim task has been asynchronously moved to a different 1975 * memory cgroup, we might end up killing tasks outside oom_domain. 1976 * In this case it's better to ignore memory.group.oom. 1977 */ 1978 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain))) 1979 goto out; 1980 1981 /* 1982 * Traverse the memory cgroup hierarchy from the victim task's 1983 * cgroup up to the OOMing cgroup (or root) to find the 1984 * highest-level memory cgroup with oom.group set. 1985 */ 1986 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 1987 if (memcg->oom_group) 1988 oom_group = memcg; 1989 1990 if (memcg == oom_domain) 1991 break; 1992 } 1993 1994 if (oom_group) 1995 css_get(&oom_group->css); 1996 out: 1997 rcu_read_unlock(); 1998 1999 return oom_group; 2000 } 2001 2002 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 2003 { 2004 pr_info("Tasks in "); 2005 pr_cont_cgroup_path(memcg->css.cgroup); 2006 pr_cont(" are going to be killed due to memory.oom.group set\n"); 2007 } 2008 2009 /** 2010 * folio_memcg_lock - Bind a folio to its memcg. 2011 * @folio: The folio. 2012 * 2013 * This function prevents unlocked LRU folios from being moved to 2014 * another cgroup. 2015 * 2016 * It ensures lifetime of the bound memcg. The caller is responsible 2017 * for the lifetime of the folio. 2018 */ 2019 void folio_memcg_lock(struct folio *folio) 2020 { 2021 struct mem_cgroup *memcg; 2022 unsigned long flags; 2023 2024 /* 2025 * The RCU lock is held throughout the transaction. The fast 2026 * path can get away without acquiring the memcg->move_lock 2027 * because page moving starts with an RCU grace period. 2028 */ 2029 rcu_read_lock(); 2030 2031 if (mem_cgroup_disabled()) 2032 return; 2033 again: 2034 memcg = folio_memcg(folio); 2035 if (unlikely(!memcg)) 2036 return; 2037 2038 #ifdef CONFIG_PROVE_LOCKING 2039 local_irq_save(flags); 2040 might_lock(&memcg->move_lock); 2041 local_irq_restore(flags); 2042 #endif 2043 2044 if (atomic_read(&memcg->moving_account) <= 0) 2045 return; 2046 2047 spin_lock_irqsave(&memcg->move_lock, flags); 2048 if (memcg != folio_memcg(folio)) { 2049 spin_unlock_irqrestore(&memcg->move_lock, flags); 2050 goto again; 2051 } 2052 2053 /* 2054 * When charge migration first begins, we can have multiple 2055 * critical sections holding the fast-path RCU lock and one 2056 * holding the slowpath move_lock. Track the task who has the 2057 * move_lock for unlock_page_memcg(). 2058 */ 2059 memcg->move_lock_task = current; 2060 memcg->move_lock_flags = flags; 2061 } 2062 2063 void lock_page_memcg(struct page *page) 2064 { 2065 folio_memcg_lock(page_folio(page)); 2066 } 2067 2068 static void __folio_memcg_unlock(struct mem_cgroup *memcg) 2069 { 2070 if (memcg && memcg->move_lock_task == current) { 2071 unsigned long flags = memcg->move_lock_flags; 2072 2073 memcg->move_lock_task = NULL; 2074 memcg->move_lock_flags = 0; 2075 2076 spin_unlock_irqrestore(&memcg->move_lock, flags); 2077 } 2078 2079 rcu_read_unlock(); 2080 } 2081 2082 /** 2083 * folio_memcg_unlock - Release the binding between a folio and its memcg. 2084 * @folio: The folio. 2085 * 2086 * This releases the binding created by folio_memcg_lock(). This does 2087 * not change the accounting of this folio to its memcg, but it does 2088 * permit others to change it. 2089 */ 2090 void folio_memcg_unlock(struct folio *folio) 2091 { 2092 __folio_memcg_unlock(folio_memcg(folio)); 2093 } 2094 2095 void unlock_page_memcg(struct page *page) 2096 { 2097 folio_memcg_unlock(page_folio(page)); 2098 } 2099 2100 struct memcg_stock_pcp { 2101 local_lock_t stock_lock; 2102 struct mem_cgroup *cached; /* this never be root cgroup */ 2103 unsigned int nr_pages; 2104 2105 #ifdef CONFIG_MEMCG_KMEM 2106 struct obj_cgroup *cached_objcg; 2107 struct pglist_data *cached_pgdat; 2108 unsigned int nr_bytes; 2109 int nr_slab_reclaimable_b; 2110 int nr_slab_unreclaimable_b; 2111 #endif 2112 2113 struct work_struct work; 2114 unsigned long flags; 2115 #define FLUSHING_CACHED_CHARGE 0 2116 }; 2117 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = { 2118 .stock_lock = INIT_LOCAL_LOCK(stock_lock), 2119 }; 2120 static DEFINE_MUTEX(percpu_charge_mutex); 2121 2122 #ifdef CONFIG_MEMCG_KMEM 2123 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock); 2124 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 2125 struct mem_cgroup *root_memcg); 2126 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages); 2127 2128 #else 2129 static inline struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock) 2130 { 2131 return NULL; 2132 } 2133 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 2134 struct mem_cgroup *root_memcg) 2135 { 2136 return false; 2137 } 2138 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages) 2139 { 2140 } 2141 #endif 2142 2143 /** 2144 * consume_stock: Try to consume stocked charge on this cpu. 2145 * @memcg: memcg to consume from. 2146 * @nr_pages: how many pages to charge. 2147 * 2148 * The charges will only happen if @memcg matches the current cpu's memcg 2149 * stock, and at least @nr_pages are available in that stock. Failure to 2150 * service an allocation will refill the stock. 2151 * 2152 * returns true if successful, false otherwise. 2153 */ 2154 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2155 { 2156 struct memcg_stock_pcp *stock; 2157 unsigned long flags; 2158 bool ret = false; 2159 2160 if (nr_pages > MEMCG_CHARGE_BATCH) 2161 return ret; 2162 2163 local_lock_irqsave(&memcg_stock.stock_lock, flags); 2164 2165 stock = this_cpu_ptr(&memcg_stock); 2166 if (memcg == stock->cached && stock->nr_pages >= nr_pages) { 2167 stock->nr_pages -= nr_pages; 2168 ret = true; 2169 } 2170 2171 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 2172 2173 return ret; 2174 } 2175 2176 /* 2177 * Returns stocks cached in percpu and reset cached information. 2178 */ 2179 static void drain_stock(struct memcg_stock_pcp *stock) 2180 { 2181 struct mem_cgroup *old = stock->cached; 2182 2183 if (!old) 2184 return; 2185 2186 if (stock->nr_pages) { 2187 page_counter_uncharge(&old->memory, stock->nr_pages); 2188 if (do_memsw_account()) 2189 page_counter_uncharge(&old->memsw, stock->nr_pages); 2190 stock->nr_pages = 0; 2191 } 2192 2193 css_put(&old->css); 2194 stock->cached = NULL; 2195 } 2196 2197 static void drain_local_stock(struct work_struct *dummy) 2198 { 2199 struct memcg_stock_pcp *stock; 2200 struct obj_cgroup *old = NULL; 2201 unsigned long flags; 2202 2203 /* 2204 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs. 2205 * drain_stock races is that we always operate on local CPU stock 2206 * here with IRQ disabled 2207 */ 2208 local_lock_irqsave(&memcg_stock.stock_lock, flags); 2209 2210 stock = this_cpu_ptr(&memcg_stock); 2211 old = drain_obj_stock(stock); 2212 drain_stock(stock); 2213 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 2214 2215 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 2216 if (old) 2217 obj_cgroup_put(old); 2218 } 2219 2220 /* 2221 * Cache charges(val) to local per_cpu area. 2222 * This will be consumed by consume_stock() function, later. 2223 */ 2224 static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2225 { 2226 struct memcg_stock_pcp *stock; 2227 2228 stock = this_cpu_ptr(&memcg_stock); 2229 if (stock->cached != memcg) { /* reset if necessary */ 2230 drain_stock(stock); 2231 css_get(&memcg->css); 2232 stock->cached = memcg; 2233 } 2234 stock->nr_pages += nr_pages; 2235 2236 if (stock->nr_pages > MEMCG_CHARGE_BATCH) 2237 drain_stock(stock); 2238 } 2239 2240 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2241 { 2242 unsigned long flags; 2243 2244 local_lock_irqsave(&memcg_stock.stock_lock, flags); 2245 __refill_stock(memcg, nr_pages); 2246 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 2247 } 2248 2249 /* 2250 * Drains all per-CPU charge caches for given root_memcg resp. subtree 2251 * of the hierarchy under it. 2252 */ 2253 static void drain_all_stock(struct mem_cgroup *root_memcg) 2254 { 2255 int cpu, curcpu; 2256 2257 /* If someone's already draining, avoid adding running more workers. */ 2258 if (!mutex_trylock(&percpu_charge_mutex)) 2259 return; 2260 /* 2261 * Notify other cpus that system-wide "drain" is running 2262 * We do not care about races with the cpu hotplug because cpu down 2263 * as well as workers from this path always operate on the local 2264 * per-cpu data. CPU up doesn't touch memcg_stock at all. 2265 */ 2266 migrate_disable(); 2267 curcpu = smp_processor_id(); 2268 for_each_online_cpu(cpu) { 2269 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2270 struct mem_cgroup *memcg; 2271 bool flush = false; 2272 2273 rcu_read_lock(); 2274 memcg = stock->cached; 2275 if (memcg && stock->nr_pages && 2276 mem_cgroup_is_descendant(memcg, root_memcg)) 2277 flush = true; 2278 else if (obj_stock_flush_required(stock, root_memcg)) 2279 flush = true; 2280 rcu_read_unlock(); 2281 2282 if (flush && 2283 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 2284 if (cpu == curcpu) 2285 drain_local_stock(&stock->work); 2286 else 2287 schedule_work_on(cpu, &stock->work); 2288 } 2289 } 2290 migrate_enable(); 2291 mutex_unlock(&percpu_charge_mutex); 2292 } 2293 2294 static int memcg_hotplug_cpu_dead(unsigned int cpu) 2295 { 2296 struct memcg_stock_pcp *stock; 2297 2298 stock = &per_cpu(memcg_stock, cpu); 2299 drain_stock(stock); 2300 2301 return 0; 2302 } 2303 2304 static unsigned long reclaim_high(struct mem_cgroup *memcg, 2305 unsigned int nr_pages, 2306 gfp_t gfp_mask) 2307 { 2308 unsigned long nr_reclaimed = 0; 2309 2310 do { 2311 unsigned long pflags; 2312 2313 if (page_counter_read(&memcg->memory) <= 2314 READ_ONCE(memcg->memory.high)) 2315 continue; 2316 2317 memcg_memory_event(memcg, MEMCG_HIGH); 2318 2319 psi_memstall_enter(&pflags); 2320 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages, 2321 gfp_mask, true); 2322 psi_memstall_leave(&pflags); 2323 } while ((memcg = parent_mem_cgroup(memcg)) && 2324 !mem_cgroup_is_root(memcg)); 2325 2326 return nr_reclaimed; 2327 } 2328 2329 static void high_work_func(struct work_struct *work) 2330 { 2331 struct mem_cgroup *memcg; 2332 2333 memcg = container_of(work, struct mem_cgroup, high_work); 2334 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL); 2335 } 2336 2337 /* 2338 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is 2339 * enough to still cause a significant slowdown in most cases, while still 2340 * allowing diagnostics and tracing to proceed without becoming stuck. 2341 */ 2342 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ) 2343 2344 /* 2345 * When calculating the delay, we use these either side of the exponentiation to 2346 * maintain precision and scale to a reasonable number of jiffies (see the table 2347 * below. 2348 * 2349 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the 2350 * overage ratio to a delay. 2351 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the 2352 * proposed penalty in order to reduce to a reasonable number of jiffies, and 2353 * to produce a reasonable delay curve. 2354 * 2355 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a 2356 * reasonable delay curve compared to precision-adjusted overage, not 2357 * penalising heavily at first, but still making sure that growth beyond the 2358 * limit penalises misbehaviour cgroups by slowing them down exponentially. For 2359 * example, with a high of 100 megabytes: 2360 * 2361 * +-------+------------------------+ 2362 * | usage | time to allocate in ms | 2363 * +-------+------------------------+ 2364 * | 100M | 0 | 2365 * | 101M | 6 | 2366 * | 102M | 25 | 2367 * | 103M | 57 | 2368 * | 104M | 102 | 2369 * | 105M | 159 | 2370 * | 106M | 230 | 2371 * | 107M | 313 | 2372 * | 108M | 409 | 2373 * | 109M | 518 | 2374 * | 110M | 639 | 2375 * | 111M | 774 | 2376 * | 112M | 921 | 2377 * | 113M | 1081 | 2378 * | 114M | 1254 | 2379 * | 115M | 1439 | 2380 * | 116M | 1638 | 2381 * | 117M | 1849 | 2382 * | 118M | 2000 | 2383 * | 119M | 2000 | 2384 * | 120M | 2000 | 2385 * +-------+------------------------+ 2386 */ 2387 #define MEMCG_DELAY_PRECISION_SHIFT 20 2388 #define MEMCG_DELAY_SCALING_SHIFT 14 2389 2390 static u64 calculate_overage(unsigned long usage, unsigned long high) 2391 { 2392 u64 overage; 2393 2394 if (usage <= high) 2395 return 0; 2396 2397 /* 2398 * Prevent division by 0 in overage calculation by acting as if 2399 * it was a threshold of 1 page 2400 */ 2401 high = max(high, 1UL); 2402 2403 overage = usage - high; 2404 overage <<= MEMCG_DELAY_PRECISION_SHIFT; 2405 return div64_u64(overage, high); 2406 } 2407 2408 static u64 mem_find_max_overage(struct mem_cgroup *memcg) 2409 { 2410 u64 overage, max_overage = 0; 2411 2412 do { 2413 overage = calculate_overage(page_counter_read(&memcg->memory), 2414 READ_ONCE(memcg->memory.high)); 2415 max_overage = max(overage, max_overage); 2416 } while ((memcg = parent_mem_cgroup(memcg)) && 2417 !mem_cgroup_is_root(memcg)); 2418 2419 return max_overage; 2420 } 2421 2422 static u64 swap_find_max_overage(struct mem_cgroup *memcg) 2423 { 2424 u64 overage, max_overage = 0; 2425 2426 do { 2427 overage = calculate_overage(page_counter_read(&memcg->swap), 2428 READ_ONCE(memcg->swap.high)); 2429 if (overage) 2430 memcg_memory_event(memcg, MEMCG_SWAP_HIGH); 2431 max_overage = max(overage, max_overage); 2432 } while ((memcg = parent_mem_cgroup(memcg)) && 2433 !mem_cgroup_is_root(memcg)); 2434 2435 return max_overage; 2436 } 2437 2438 /* 2439 * Get the number of jiffies that we should penalise a mischievous cgroup which 2440 * is exceeding its memory.high by checking both it and its ancestors. 2441 */ 2442 static unsigned long calculate_high_delay(struct mem_cgroup *memcg, 2443 unsigned int nr_pages, 2444 u64 max_overage) 2445 { 2446 unsigned long penalty_jiffies; 2447 2448 if (!max_overage) 2449 return 0; 2450 2451 /* 2452 * We use overage compared to memory.high to calculate the number of 2453 * jiffies to sleep (penalty_jiffies). Ideally this value should be 2454 * fairly lenient on small overages, and increasingly harsh when the 2455 * memcg in question makes it clear that it has no intention of stopping 2456 * its crazy behaviour, so we exponentially increase the delay based on 2457 * overage amount. 2458 */ 2459 penalty_jiffies = max_overage * max_overage * HZ; 2460 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT; 2461 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT; 2462 2463 /* 2464 * Factor in the task's own contribution to the overage, such that four 2465 * N-sized allocations are throttled approximately the same as one 2466 * 4N-sized allocation. 2467 * 2468 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or 2469 * larger the current charge patch is than that. 2470 */ 2471 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH; 2472 } 2473 2474 /* 2475 * Scheduled by try_charge() to be executed from the userland return path 2476 * and reclaims memory over the high limit. 2477 */ 2478 void mem_cgroup_handle_over_high(void) 2479 { 2480 unsigned long penalty_jiffies; 2481 unsigned long pflags; 2482 unsigned long nr_reclaimed; 2483 unsigned int nr_pages = current->memcg_nr_pages_over_high; 2484 int nr_retries = MAX_RECLAIM_RETRIES; 2485 struct mem_cgroup *memcg; 2486 bool in_retry = false; 2487 2488 if (likely(!nr_pages)) 2489 return; 2490 2491 memcg = get_mem_cgroup_from_mm(current->mm); 2492 current->memcg_nr_pages_over_high = 0; 2493 2494 retry_reclaim: 2495 /* 2496 * The allocating task should reclaim at least the batch size, but for 2497 * subsequent retries we only want to do what's necessary to prevent oom 2498 * or breaching resource isolation. 2499 * 2500 * This is distinct from memory.max or page allocator behaviour because 2501 * memory.high is currently batched, whereas memory.max and the page 2502 * allocator run every time an allocation is made. 2503 */ 2504 nr_reclaimed = reclaim_high(memcg, 2505 in_retry ? SWAP_CLUSTER_MAX : nr_pages, 2506 GFP_KERNEL); 2507 2508 /* 2509 * memory.high is breached and reclaim is unable to keep up. Throttle 2510 * allocators proactively to slow down excessive growth. 2511 */ 2512 penalty_jiffies = calculate_high_delay(memcg, nr_pages, 2513 mem_find_max_overage(memcg)); 2514 2515 penalty_jiffies += calculate_high_delay(memcg, nr_pages, 2516 swap_find_max_overage(memcg)); 2517 2518 /* 2519 * Clamp the max delay per usermode return so as to still keep the 2520 * application moving forwards and also permit diagnostics, albeit 2521 * extremely slowly. 2522 */ 2523 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES); 2524 2525 /* 2526 * Don't sleep if the amount of jiffies this memcg owes us is so low 2527 * that it's not even worth doing, in an attempt to be nice to those who 2528 * go only a small amount over their memory.high value and maybe haven't 2529 * been aggressively reclaimed enough yet. 2530 */ 2531 if (penalty_jiffies <= HZ / 100) 2532 goto out; 2533 2534 /* 2535 * If reclaim is making forward progress but we're still over 2536 * memory.high, we want to encourage that rather than doing allocator 2537 * throttling. 2538 */ 2539 if (nr_reclaimed || nr_retries--) { 2540 in_retry = true; 2541 goto retry_reclaim; 2542 } 2543 2544 /* 2545 * If we exit early, we're guaranteed to die (since 2546 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't 2547 * need to account for any ill-begotten jiffies to pay them off later. 2548 */ 2549 psi_memstall_enter(&pflags); 2550 schedule_timeout_killable(penalty_jiffies); 2551 psi_memstall_leave(&pflags); 2552 2553 out: 2554 css_put(&memcg->css); 2555 } 2556 2557 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask, 2558 unsigned int nr_pages) 2559 { 2560 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages); 2561 int nr_retries = MAX_RECLAIM_RETRIES; 2562 struct mem_cgroup *mem_over_limit; 2563 struct page_counter *counter; 2564 unsigned long nr_reclaimed; 2565 bool passed_oom = false; 2566 bool may_swap = true; 2567 bool drained = false; 2568 unsigned long pflags; 2569 2570 retry: 2571 if (consume_stock(memcg, nr_pages)) 2572 return 0; 2573 2574 if (!do_memsw_account() || 2575 page_counter_try_charge(&memcg->memsw, batch, &counter)) { 2576 if (page_counter_try_charge(&memcg->memory, batch, &counter)) 2577 goto done_restock; 2578 if (do_memsw_account()) 2579 page_counter_uncharge(&memcg->memsw, batch); 2580 mem_over_limit = mem_cgroup_from_counter(counter, memory); 2581 } else { 2582 mem_over_limit = mem_cgroup_from_counter(counter, memsw); 2583 may_swap = false; 2584 } 2585 2586 if (batch > nr_pages) { 2587 batch = nr_pages; 2588 goto retry; 2589 } 2590 2591 /* 2592 * Prevent unbounded recursion when reclaim operations need to 2593 * allocate memory. This might exceed the limits temporarily, 2594 * but we prefer facilitating memory reclaim and getting back 2595 * under the limit over triggering OOM kills in these cases. 2596 */ 2597 if (unlikely(current->flags & PF_MEMALLOC)) 2598 goto force; 2599 2600 if (unlikely(task_in_memcg_oom(current))) 2601 goto nomem; 2602 2603 if (!gfpflags_allow_blocking(gfp_mask)) 2604 goto nomem; 2605 2606 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2607 2608 psi_memstall_enter(&pflags); 2609 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, 2610 gfp_mask, may_swap); 2611 psi_memstall_leave(&pflags); 2612 2613 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2614 goto retry; 2615 2616 if (!drained) { 2617 drain_all_stock(mem_over_limit); 2618 drained = true; 2619 goto retry; 2620 } 2621 2622 if (gfp_mask & __GFP_NORETRY) 2623 goto nomem; 2624 /* 2625 * Even though the limit is exceeded at this point, reclaim 2626 * may have been able to free some pages. Retry the charge 2627 * before killing the task. 2628 * 2629 * Only for regular pages, though: huge pages are rather 2630 * unlikely to succeed so close to the limit, and we fall back 2631 * to regular pages anyway in case of failure. 2632 */ 2633 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) 2634 goto retry; 2635 /* 2636 * At task move, charge accounts can be doubly counted. So, it's 2637 * better to wait until the end of task_move if something is going on. 2638 */ 2639 if (mem_cgroup_wait_acct_move(mem_over_limit)) 2640 goto retry; 2641 2642 if (nr_retries--) 2643 goto retry; 2644 2645 if (gfp_mask & __GFP_RETRY_MAYFAIL) 2646 goto nomem; 2647 2648 /* Avoid endless loop for tasks bypassed by the oom killer */ 2649 if (passed_oom && task_is_dying()) 2650 goto nomem; 2651 2652 /* 2653 * keep retrying as long as the memcg oom killer is able to make 2654 * a forward progress or bypass the charge if the oom killer 2655 * couldn't make any progress. 2656 */ 2657 if (mem_cgroup_oom(mem_over_limit, gfp_mask, 2658 get_order(nr_pages * PAGE_SIZE))) { 2659 passed_oom = true; 2660 nr_retries = MAX_RECLAIM_RETRIES; 2661 goto retry; 2662 } 2663 nomem: 2664 /* 2665 * Memcg doesn't have a dedicated reserve for atomic 2666 * allocations. But like the global atomic pool, we need to 2667 * put the burden of reclaim on regular allocation requests 2668 * and let these go through as privileged allocations. 2669 */ 2670 if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH))) 2671 return -ENOMEM; 2672 force: 2673 /* 2674 * The allocation either can't fail or will lead to more memory 2675 * being freed very soon. Allow memory usage go over the limit 2676 * temporarily by force charging it. 2677 */ 2678 page_counter_charge(&memcg->memory, nr_pages); 2679 if (do_memsw_account()) 2680 page_counter_charge(&memcg->memsw, nr_pages); 2681 2682 return 0; 2683 2684 done_restock: 2685 if (batch > nr_pages) 2686 refill_stock(memcg, batch - nr_pages); 2687 2688 /* 2689 * If the hierarchy is above the normal consumption range, schedule 2690 * reclaim on returning to userland. We can perform reclaim here 2691 * if __GFP_RECLAIM but let's always punt for simplicity and so that 2692 * GFP_KERNEL can consistently be used during reclaim. @memcg is 2693 * not recorded as it most likely matches current's and won't 2694 * change in the meantime. As high limit is checked again before 2695 * reclaim, the cost of mismatch is negligible. 2696 */ 2697 do { 2698 bool mem_high, swap_high; 2699 2700 mem_high = page_counter_read(&memcg->memory) > 2701 READ_ONCE(memcg->memory.high); 2702 swap_high = page_counter_read(&memcg->swap) > 2703 READ_ONCE(memcg->swap.high); 2704 2705 /* Don't bother a random interrupted task */ 2706 if (!in_task()) { 2707 if (mem_high) { 2708 schedule_work(&memcg->high_work); 2709 break; 2710 } 2711 continue; 2712 } 2713 2714 if (mem_high || swap_high) { 2715 /* 2716 * The allocating tasks in this cgroup will need to do 2717 * reclaim or be throttled to prevent further growth 2718 * of the memory or swap footprints. 2719 * 2720 * Target some best-effort fairness between the tasks, 2721 * and distribute reclaim work and delay penalties 2722 * based on how much each task is actually allocating. 2723 */ 2724 current->memcg_nr_pages_over_high += batch; 2725 set_notify_resume(current); 2726 break; 2727 } 2728 } while ((memcg = parent_mem_cgroup(memcg))); 2729 2730 if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH && 2731 !(current->flags & PF_MEMALLOC) && 2732 gfpflags_allow_blocking(gfp_mask)) { 2733 mem_cgroup_handle_over_high(); 2734 } 2735 return 0; 2736 } 2737 2738 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 2739 unsigned int nr_pages) 2740 { 2741 if (mem_cgroup_is_root(memcg)) 2742 return 0; 2743 2744 return try_charge_memcg(memcg, gfp_mask, nr_pages); 2745 } 2746 2747 static inline void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages) 2748 { 2749 if (mem_cgroup_is_root(memcg)) 2750 return; 2751 2752 page_counter_uncharge(&memcg->memory, nr_pages); 2753 if (do_memsw_account()) 2754 page_counter_uncharge(&memcg->memsw, nr_pages); 2755 } 2756 2757 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg) 2758 { 2759 VM_BUG_ON_FOLIO(folio_memcg(folio), folio); 2760 /* 2761 * Any of the following ensures page's memcg stability: 2762 * 2763 * - the page lock 2764 * - LRU isolation 2765 * - lock_page_memcg() 2766 * - exclusive reference 2767 */ 2768 folio->memcg_data = (unsigned long)memcg; 2769 } 2770 2771 #ifdef CONFIG_MEMCG_KMEM 2772 /* 2773 * The allocated objcg pointers array is not accounted directly. 2774 * Moreover, it should not come from DMA buffer and is not readily 2775 * reclaimable. So those GFP bits should be masked off. 2776 */ 2777 #define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT) 2778 2779 /* 2780 * mod_objcg_mlstate() may be called with irq enabled, so 2781 * mod_memcg_lruvec_state() should be used. 2782 */ 2783 static inline void mod_objcg_mlstate(struct obj_cgroup *objcg, 2784 struct pglist_data *pgdat, 2785 enum node_stat_item idx, int nr) 2786 { 2787 struct mem_cgroup *memcg; 2788 struct lruvec *lruvec; 2789 2790 rcu_read_lock(); 2791 memcg = obj_cgroup_memcg(objcg); 2792 lruvec = mem_cgroup_lruvec(memcg, pgdat); 2793 mod_memcg_lruvec_state(lruvec, idx, nr); 2794 rcu_read_unlock(); 2795 } 2796 2797 int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s, 2798 gfp_t gfp, bool new_slab) 2799 { 2800 unsigned int objects = objs_per_slab(s, slab); 2801 unsigned long memcg_data; 2802 void *vec; 2803 2804 gfp &= ~OBJCGS_CLEAR_MASK; 2805 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp, 2806 slab_nid(slab)); 2807 if (!vec) 2808 return -ENOMEM; 2809 2810 memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS; 2811 if (new_slab) { 2812 /* 2813 * If the slab is brand new and nobody can yet access its 2814 * memcg_data, no synchronization is required and memcg_data can 2815 * be simply assigned. 2816 */ 2817 slab->memcg_data = memcg_data; 2818 } else if (cmpxchg(&slab->memcg_data, 0, memcg_data)) { 2819 /* 2820 * If the slab is already in use, somebody can allocate and 2821 * assign obj_cgroups in parallel. In this case the existing 2822 * objcg vector should be reused. 2823 */ 2824 kfree(vec); 2825 return 0; 2826 } 2827 2828 kmemleak_not_leak(vec); 2829 return 0; 2830 } 2831 2832 /* 2833 * Returns a pointer to the memory cgroup to which the kernel object is charged. 2834 * 2835 * A passed kernel object can be a slab object or a generic kernel page, so 2836 * different mechanisms for getting the memory cgroup pointer should be used. 2837 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller 2838 * can not know for sure how the kernel object is implemented. 2839 * mem_cgroup_from_obj() can be safely used in such cases. 2840 * 2841 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(), 2842 * cgroup_mutex, etc. 2843 */ 2844 struct mem_cgroup *mem_cgroup_from_obj(void *p) 2845 { 2846 struct folio *folio; 2847 2848 if (mem_cgroup_disabled()) 2849 return NULL; 2850 2851 folio = virt_to_folio(p); 2852 2853 /* 2854 * Slab objects are accounted individually, not per-page. 2855 * Memcg membership data for each individual object is saved in 2856 * slab->memcg_data. 2857 */ 2858 if (folio_test_slab(folio)) { 2859 struct obj_cgroup **objcgs; 2860 struct slab *slab; 2861 unsigned int off; 2862 2863 slab = folio_slab(folio); 2864 objcgs = slab_objcgs(slab); 2865 if (!objcgs) 2866 return NULL; 2867 2868 off = obj_to_index(slab->slab_cache, slab, p); 2869 if (objcgs[off]) 2870 return obj_cgroup_memcg(objcgs[off]); 2871 2872 return NULL; 2873 } 2874 2875 /* 2876 * page_memcg_check() is used here, because in theory we can encounter 2877 * a folio where the slab flag has been cleared already, but 2878 * slab->memcg_data has not been freed yet 2879 * page_memcg_check(page) will guarantee that a proper memory 2880 * cgroup pointer or NULL will be returned. 2881 */ 2882 return page_memcg_check(folio_page(folio, 0)); 2883 } 2884 2885 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void) 2886 { 2887 struct obj_cgroup *objcg = NULL; 2888 struct mem_cgroup *memcg; 2889 2890 if (memcg_kmem_bypass()) 2891 return NULL; 2892 2893 rcu_read_lock(); 2894 if (unlikely(active_memcg())) 2895 memcg = active_memcg(); 2896 else 2897 memcg = mem_cgroup_from_task(current); 2898 2899 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) { 2900 objcg = rcu_dereference(memcg->objcg); 2901 if (objcg && obj_cgroup_tryget(objcg)) 2902 break; 2903 objcg = NULL; 2904 } 2905 rcu_read_unlock(); 2906 2907 return objcg; 2908 } 2909 2910 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages) 2911 { 2912 mod_memcg_state(memcg, MEMCG_KMEM, nr_pages); 2913 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 2914 if (nr_pages > 0) 2915 page_counter_charge(&memcg->kmem, nr_pages); 2916 else 2917 page_counter_uncharge(&memcg->kmem, -nr_pages); 2918 } 2919 } 2920 2921 2922 /* 2923 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg 2924 * @objcg: object cgroup to uncharge 2925 * @nr_pages: number of pages to uncharge 2926 */ 2927 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg, 2928 unsigned int nr_pages) 2929 { 2930 struct mem_cgroup *memcg; 2931 2932 memcg = get_mem_cgroup_from_objcg(objcg); 2933 2934 memcg_account_kmem(memcg, -nr_pages); 2935 refill_stock(memcg, nr_pages); 2936 2937 css_put(&memcg->css); 2938 } 2939 2940 /* 2941 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg 2942 * @objcg: object cgroup to charge 2943 * @gfp: reclaim mode 2944 * @nr_pages: number of pages to charge 2945 * 2946 * Returns 0 on success, an error code on failure. 2947 */ 2948 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp, 2949 unsigned int nr_pages) 2950 { 2951 struct mem_cgroup *memcg; 2952 int ret; 2953 2954 memcg = get_mem_cgroup_from_objcg(objcg); 2955 2956 ret = try_charge_memcg(memcg, gfp, nr_pages); 2957 if (ret) 2958 goto out; 2959 2960 memcg_account_kmem(memcg, nr_pages); 2961 out: 2962 css_put(&memcg->css); 2963 2964 return ret; 2965 } 2966 2967 /** 2968 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup 2969 * @page: page to charge 2970 * @gfp: reclaim mode 2971 * @order: allocation order 2972 * 2973 * Returns 0 on success, an error code on failure. 2974 */ 2975 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order) 2976 { 2977 struct obj_cgroup *objcg; 2978 int ret = 0; 2979 2980 objcg = get_obj_cgroup_from_current(); 2981 if (objcg) { 2982 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order); 2983 if (!ret) { 2984 page->memcg_data = (unsigned long)objcg | 2985 MEMCG_DATA_KMEM; 2986 return 0; 2987 } 2988 obj_cgroup_put(objcg); 2989 } 2990 return ret; 2991 } 2992 2993 /** 2994 * __memcg_kmem_uncharge_page: uncharge a kmem page 2995 * @page: page to uncharge 2996 * @order: allocation order 2997 */ 2998 void __memcg_kmem_uncharge_page(struct page *page, int order) 2999 { 3000 struct folio *folio = page_folio(page); 3001 struct obj_cgroup *objcg; 3002 unsigned int nr_pages = 1 << order; 3003 3004 if (!folio_memcg_kmem(folio)) 3005 return; 3006 3007 objcg = __folio_objcg(folio); 3008 obj_cgroup_uncharge_pages(objcg, nr_pages); 3009 folio->memcg_data = 0; 3010 obj_cgroup_put(objcg); 3011 } 3012 3013 void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat, 3014 enum node_stat_item idx, int nr) 3015 { 3016 struct memcg_stock_pcp *stock; 3017 struct obj_cgroup *old = NULL; 3018 unsigned long flags; 3019 int *bytes; 3020 3021 local_lock_irqsave(&memcg_stock.stock_lock, flags); 3022 stock = this_cpu_ptr(&memcg_stock); 3023 3024 /* 3025 * Save vmstat data in stock and skip vmstat array update unless 3026 * accumulating over a page of vmstat data or when pgdat or idx 3027 * changes. 3028 */ 3029 if (stock->cached_objcg != objcg) { 3030 old = drain_obj_stock(stock); 3031 obj_cgroup_get(objcg); 3032 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes) 3033 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0; 3034 stock->cached_objcg = objcg; 3035 stock->cached_pgdat = pgdat; 3036 } else if (stock->cached_pgdat != pgdat) { 3037 /* Flush the existing cached vmstat data */ 3038 struct pglist_data *oldpg = stock->cached_pgdat; 3039 3040 if (stock->nr_slab_reclaimable_b) { 3041 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B, 3042 stock->nr_slab_reclaimable_b); 3043 stock->nr_slab_reclaimable_b = 0; 3044 } 3045 if (stock->nr_slab_unreclaimable_b) { 3046 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B, 3047 stock->nr_slab_unreclaimable_b); 3048 stock->nr_slab_unreclaimable_b = 0; 3049 } 3050 stock->cached_pgdat = pgdat; 3051 } 3052 3053 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b 3054 : &stock->nr_slab_unreclaimable_b; 3055 /* 3056 * Even for large object >= PAGE_SIZE, the vmstat data will still be 3057 * cached locally at least once before pushing it out. 3058 */ 3059 if (!*bytes) { 3060 *bytes = nr; 3061 nr = 0; 3062 } else { 3063 *bytes += nr; 3064 if (abs(*bytes) > PAGE_SIZE) { 3065 nr = *bytes; 3066 *bytes = 0; 3067 } else { 3068 nr = 0; 3069 } 3070 } 3071 if (nr) 3072 mod_objcg_mlstate(objcg, pgdat, idx, nr); 3073 3074 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 3075 if (old) 3076 obj_cgroup_put(old); 3077 } 3078 3079 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes) 3080 { 3081 struct memcg_stock_pcp *stock; 3082 unsigned long flags; 3083 bool ret = false; 3084 3085 local_lock_irqsave(&memcg_stock.stock_lock, flags); 3086 3087 stock = this_cpu_ptr(&memcg_stock); 3088 if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) { 3089 stock->nr_bytes -= nr_bytes; 3090 ret = true; 3091 } 3092 3093 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 3094 3095 return ret; 3096 } 3097 3098 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock) 3099 { 3100 struct obj_cgroup *old = stock->cached_objcg; 3101 3102 if (!old) 3103 return NULL; 3104 3105 if (stock->nr_bytes) { 3106 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT; 3107 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1); 3108 3109 if (nr_pages) { 3110 struct mem_cgroup *memcg; 3111 3112 memcg = get_mem_cgroup_from_objcg(old); 3113 3114 memcg_account_kmem(memcg, -nr_pages); 3115 __refill_stock(memcg, nr_pages); 3116 3117 css_put(&memcg->css); 3118 } 3119 3120 /* 3121 * The leftover is flushed to the centralized per-memcg value. 3122 * On the next attempt to refill obj stock it will be moved 3123 * to a per-cpu stock (probably, on an other CPU), see 3124 * refill_obj_stock(). 3125 * 3126 * How often it's flushed is a trade-off between the memory 3127 * limit enforcement accuracy and potential CPU contention, 3128 * so it might be changed in the future. 3129 */ 3130 atomic_add(nr_bytes, &old->nr_charged_bytes); 3131 stock->nr_bytes = 0; 3132 } 3133 3134 /* 3135 * Flush the vmstat data in current stock 3136 */ 3137 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) { 3138 if (stock->nr_slab_reclaimable_b) { 3139 mod_objcg_mlstate(old, stock->cached_pgdat, 3140 NR_SLAB_RECLAIMABLE_B, 3141 stock->nr_slab_reclaimable_b); 3142 stock->nr_slab_reclaimable_b = 0; 3143 } 3144 if (stock->nr_slab_unreclaimable_b) { 3145 mod_objcg_mlstate(old, stock->cached_pgdat, 3146 NR_SLAB_UNRECLAIMABLE_B, 3147 stock->nr_slab_unreclaimable_b); 3148 stock->nr_slab_unreclaimable_b = 0; 3149 } 3150 stock->cached_pgdat = NULL; 3151 } 3152 3153 stock->cached_objcg = NULL; 3154 /* 3155 * The `old' objects needs to be released by the caller via 3156 * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock. 3157 */ 3158 return old; 3159 } 3160 3161 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 3162 struct mem_cgroup *root_memcg) 3163 { 3164 struct mem_cgroup *memcg; 3165 3166 if (stock->cached_objcg) { 3167 memcg = obj_cgroup_memcg(stock->cached_objcg); 3168 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg)) 3169 return true; 3170 } 3171 3172 return false; 3173 } 3174 3175 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes, 3176 bool allow_uncharge) 3177 { 3178 struct memcg_stock_pcp *stock; 3179 struct obj_cgroup *old = NULL; 3180 unsigned long flags; 3181 unsigned int nr_pages = 0; 3182 3183 local_lock_irqsave(&memcg_stock.stock_lock, flags); 3184 3185 stock = this_cpu_ptr(&memcg_stock); 3186 if (stock->cached_objcg != objcg) { /* reset if necessary */ 3187 old = drain_obj_stock(stock); 3188 obj_cgroup_get(objcg); 3189 stock->cached_objcg = objcg; 3190 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes) 3191 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0; 3192 allow_uncharge = true; /* Allow uncharge when objcg changes */ 3193 } 3194 stock->nr_bytes += nr_bytes; 3195 3196 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) { 3197 nr_pages = stock->nr_bytes >> PAGE_SHIFT; 3198 stock->nr_bytes &= (PAGE_SIZE - 1); 3199 } 3200 3201 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 3202 if (old) 3203 obj_cgroup_put(old); 3204 3205 if (nr_pages) 3206 obj_cgroup_uncharge_pages(objcg, nr_pages); 3207 } 3208 3209 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size) 3210 { 3211 unsigned int nr_pages, nr_bytes; 3212 int ret; 3213 3214 if (consume_obj_stock(objcg, size)) 3215 return 0; 3216 3217 /* 3218 * In theory, objcg->nr_charged_bytes can have enough 3219 * pre-charged bytes to satisfy the allocation. However, 3220 * flushing objcg->nr_charged_bytes requires two atomic 3221 * operations, and objcg->nr_charged_bytes can't be big. 3222 * The shared objcg->nr_charged_bytes can also become a 3223 * performance bottleneck if all tasks of the same memcg are 3224 * trying to update it. So it's better to ignore it and try 3225 * grab some new pages. The stock's nr_bytes will be flushed to 3226 * objcg->nr_charged_bytes later on when objcg changes. 3227 * 3228 * The stock's nr_bytes may contain enough pre-charged bytes 3229 * to allow one less page from being charged, but we can't rely 3230 * on the pre-charged bytes not being changed outside of 3231 * consume_obj_stock() or refill_obj_stock(). So ignore those 3232 * pre-charged bytes as well when charging pages. To avoid a 3233 * page uncharge right after a page charge, we set the 3234 * allow_uncharge flag to false when calling refill_obj_stock() 3235 * to temporarily allow the pre-charged bytes to exceed the page 3236 * size limit. The maximum reachable value of the pre-charged 3237 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data 3238 * race. 3239 */ 3240 nr_pages = size >> PAGE_SHIFT; 3241 nr_bytes = size & (PAGE_SIZE - 1); 3242 3243 if (nr_bytes) 3244 nr_pages += 1; 3245 3246 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages); 3247 if (!ret && nr_bytes) 3248 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false); 3249 3250 return ret; 3251 } 3252 3253 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size) 3254 { 3255 refill_obj_stock(objcg, size, true); 3256 } 3257 3258 #endif /* CONFIG_MEMCG_KMEM */ 3259 3260 /* 3261 * Because page_memcg(head) is not set on tails, set it now. 3262 */ 3263 void split_page_memcg(struct page *head, unsigned int nr) 3264 { 3265 struct folio *folio = page_folio(head); 3266 struct mem_cgroup *memcg = folio_memcg(folio); 3267 int i; 3268 3269 if (mem_cgroup_disabled() || !memcg) 3270 return; 3271 3272 for (i = 1; i < nr; i++) 3273 folio_page(folio, i)->memcg_data = folio->memcg_data; 3274 3275 if (folio_memcg_kmem(folio)) 3276 obj_cgroup_get_many(__folio_objcg(folio), nr - 1); 3277 else 3278 css_get_many(&memcg->css, nr - 1); 3279 } 3280 3281 #ifdef CONFIG_MEMCG_SWAP 3282 /** 3283 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 3284 * @entry: swap entry to be moved 3285 * @from: mem_cgroup which the entry is moved from 3286 * @to: mem_cgroup which the entry is moved to 3287 * 3288 * It succeeds only when the swap_cgroup's record for this entry is the same 3289 * as the mem_cgroup's id of @from. 3290 * 3291 * Returns 0 on success, -EINVAL on failure. 3292 * 3293 * The caller must have charged to @to, IOW, called page_counter_charge() about 3294 * both res and memsw, and called css_get(). 3295 */ 3296 static int mem_cgroup_move_swap_account(swp_entry_t entry, 3297 struct mem_cgroup *from, struct mem_cgroup *to) 3298 { 3299 unsigned short old_id, new_id; 3300 3301 old_id = mem_cgroup_id(from); 3302 new_id = mem_cgroup_id(to); 3303 3304 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 3305 mod_memcg_state(from, MEMCG_SWAP, -1); 3306 mod_memcg_state(to, MEMCG_SWAP, 1); 3307 return 0; 3308 } 3309 return -EINVAL; 3310 } 3311 #else 3312 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 3313 struct mem_cgroup *from, struct mem_cgroup *to) 3314 { 3315 return -EINVAL; 3316 } 3317 #endif 3318 3319 static DEFINE_MUTEX(memcg_max_mutex); 3320 3321 static int mem_cgroup_resize_max(struct mem_cgroup *memcg, 3322 unsigned long max, bool memsw) 3323 { 3324 bool enlarge = false; 3325 bool drained = false; 3326 int ret; 3327 bool limits_invariant; 3328 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory; 3329 3330 do { 3331 if (signal_pending(current)) { 3332 ret = -EINTR; 3333 break; 3334 } 3335 3336 mutex_lock(&memcg_max_mutex); 3337 /* 3338 * Make sure that the new limit (memsw or memory limit) doesn't 3339 * break our basic invariant rule memory.max <= memsw.max. 3340 */ 3341 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) : 3342 max <= memcg->memsw.max; 3343 if (!limits_invariant) { 3344 mutex_unlock(&memcg_max_mutex); 3345 ret = -EINVAL; 3346 break; 3347 } 3348 if (max > counter->max) 3349 enlarge = true; 3350 ret = page_counter_set_max(counter, max); 3351 mutex_unlock(&memcg_max_mutex); 3352 3353 if (!ret) 3354 break; 3355 3356 if (!drained) { 3357 drain_all_stock(memcg); 3358 drained = true; 3359 continue; 3360 } 3361 3362 if (!try_to_free_mem_cgroup_pages(memcg, 1, 3363 GFP_KERNEL, !memsw)) { 3364 ret = -EBUSY; 3365 break; 3366 } 3367 } while (true); 3368 3369 if (!ret && enlarge) 3370 memcg_oom_recover(memcg); 3371 3372 return ret; 3373 } 3374 3375 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 3376 gfp_t gfp_mask, 3377 unsigned long *total_scanned) 3378 { 3379 unsigned long nr_reclaimed = 0; 3380 struct mem_cgroup_per_node *mz, *next_mz = NULL; 3381 unsigned long reclaimed; 3382 int loop = 0; 3383 struct mem_cgroup_tree_per_node *mctz; 3384 unsigned long excess; 3385 3386 if (order > 0) 3387 return 0; 3388 3389 mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id]; 3390 3391 /* 3392 * Do not even bother to check the largest node if the root 3393 * is empty. Do it lockless to prevent lock bouncing. Races 3394 * are acceptable as soft limit is best effort anyway. 3395 */ 3396 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root)) 3397 return 0; 3398 3399 /* 3400 * This loop can run a while, specially if mem_cgroup's continuously 3401 * keep exceeding their soft limit and putting the system under 3402 * pressure 3403 */ 3404 do { 3405 if (next_mz) 3406 mz = next_mz; 3407 else 3408 mz = mem_cgroup_largest_soft_limit_node(mctz); 3409 if (!mz) 3410 break; 3411 3412 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat, 3413 gfp_mask, total_scanned); 3414 nr_reclaimed += reclaimed; 3415 spin_lock_irq(&mctz->lock); 3416 3417 /* 3418 * If we failed to reclaim anything from this memory cgroup 3419 * it is time to move on to the next cgroup 3420 */ 3421 next_mz = NULL; 3422 if (!reclaimed) 3423 next_mz = __mem_cgroup_largest_soft_limit_node(mctz); 3424 3425 excess = soft_limit_excess(mz->memcg); 3426 /* 3427 * One school of thought says that we should not add 3428 * back the node to the tree if reclaim returns 0. 3429 * But our reclaim could return 0, simply because due 3430 * to priority we are exposing a smaller subset of 3431 * memory to reclaim from. Consider this as a longer 3432 * term TODO. 3433 */ 3434 /* If excess == 0, no tree ops */ 3435 __mem_cgroup_insert_exceeded(mz, mctz, excess); 3436 spin_unlock_irq(&mctz->lock); 3437 css_put(&mz->memcg->css); 3438 loop++; 3439 /* 3440 * Could not reclaim anything and there are no more 3441 * mem cgroups to try or we seem to be looping without 3442 * reclaiming anything. 3443 */ 3444 if (!nr_reclaimed && 3445 (next_mz == NULL || 3446 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 3447 break; 3448 } while (!nr_reclaimed); 3449 if (next_mz) 3450 css_put(&next_mz->memcg->css); 3451 return nr_reclaimed; 3452 } 3453 3454 /* 3455 * Reclaims as many pages from the given memcg as possible. 3456 * 3457 * Caller is responsible for holding css reference for memcg. 3458 */ 3459 static int mem_cgroup_force_empty(struct mem_cgroup *memcg) 3460 { 3461 int nr_retries = MAX_RECLAIM_RETRIES; 3462 3463 /* we call try-to-free pages for make this cgroup empty */ 3464 lru_add_drain_all(); 3465 3466 drain_all_stock(memcg); 3467 3468 /* try to free all pages in this cgroup */ 3469 while (nr_retries && page_counter_read(&memcg->memory)) { 3470 if (signal_pending(current)) 3471 return -EINTR; 3472 3473 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true)) 3474 nr_retries--; 3475 } 3476 3477 return 0; 3478 } 3479 3480 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of, 3481 char *buf, size_t nbytes, 3482 loff_t off) 3483 { 3484 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3485 3486 if (mem_cgroup_is_root(memcg)) 3487 return -EINVAL; 3488 return mem_cgroup_force_empty(memcg) ?: nbytes; 3489 } 3490 3491 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, 3492 struct cftype *cft) 3493 { 3494 return 1; 3495 } 3496 3497 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, 3498 struct cftype *cft, u64 val) 3499 { 3500 if (val == 1) 3501 return 0; 3502 3503 pr_warn_once("Non-hierarchical mode is deprecated. " 3504 "Please report your usecase to linux-mm@kvack.org if you " 3505 "depend on this functionality.\n"); 3506 3507 return -EINVAL; 3508 } 3509 3510 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 3511 { 3512 unsigned long val; 3513 3514 if (mem_cgroup_is_root(memcg)) { 3515 mem_cgroup_flush_stats(); 3516 val = memcg_page_state(memcg, NR_FILE_PAGES) + 3517 memcg_page_state(memcg, NR_ANON_MAPPED); 3518 if (swap) 3519 val += memcg_page_state(memcg, MEMCG_SWAP); 3520 } else { 3521 if (!swap) 3522 val = page_counter_read(&memcg->memory); 3523 else 3524 val = page_counter_read(&memcg->memsw); 3525 } 3526 return val; 3527 } 3528 3529 enum { 3530 RES_USAGE, 3531 RES_LIMIT, 3532 RES_MAX_USAGE, 3533 RES_FAILCNT, 3534 RES_SOFT_LIMIT, 3535 }; 3536 3537 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css, 3538 struct cftype *cft) 3539 { 3540 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3541 struct page_counter *counter; 3542 3543 switch (MEMFILE_TYPE(cft->private)) { 3544 case _MEM: 3545 counter = &memcg->memory; 3546 break; 3547 case _MEMSWAP: 3548 counter = &memcg->memsw; 3549 break; 3550 case _KMEM: 3551 counter = &memcg->kmem; 3552 break; 3553 case _TCP: 3554 counter = &memcg->tcpmem; 3555 break; 3556 default: 3557 BUG(); 3558 } 3559 3560 switch (MEMFILE_ATTR(cft->private)) { 3561 case RES_USAGE: 3562 if (counter == &memcg->memory) 3563 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE; 3564 if (counter == &memcg->memsw) 3565 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE; 3566 return (u64)page_counter_read(counter) * PAGE_SIZE; 3567 case RES_LIMIT: 3568 return (u64)counter->max * PAGE_SIZE; 3569 case RES_MAX_USAGE: 3570 return (u64)counter->watermark * PAGE_SIZE; 3571 case RES_FAILCNT: 3572 return counter->failcnt; 3573 case RES_SOFT_LIMIT: 3574 return (u64)memcg->soft_limit * PAGE_SIZE; 3575 default: 3576 BUG(); 3577 } 3578 } 3579 3580 #ifdef CONFIG_MEMCG_KMEM 3581 static int memcg_online_kmem(struct mem_cgroup *memcg) 3582 { 3583 struct obj_cgroup *objcg; 3584 3585 if (cgroup_memory_nokmem) 3586 return 0; 3587 3588 if (unlikely(mem_cgroup_is_root(memcg))) 3589 return 0; 3590 3591 objcg = obj_cgroup_alloc(); 3592 if (!objcg) 3593 return -ENOMEM; 3594 3595 objcg->memcg = memcg; 3596 rcu_assign_pointer(memcg->objcg, objcg); 3597 3598 static_branch_enable(&memcg_kmem_enabled_key); 3599 3600 memcg->kmemcg_id = memcg->id.id; 3601 3602 return 0; 3603 } 3604 3605 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3606 { 3607 struct mem_cgroup *parent; 3608 3609 if (cgroup_memory_nokmem) 3610 return; 3611 3612 if (unlikely(mem_cgroup_is_root(memcg))) 3613 return; 3614 3615 parent = parent_mem_cgroup(memcg); 3616 if (!parent) 3617 parent = root_mem_cgroup; 3618 3619 memcg_reparent_objcgs(memcg, parent); 3620 3621 /* 3622 * After we have finished memcg_reparent_objcgs(), all list_lrus 3623 * corresponding to this cgroup are guaranteed to remain empty. 3624 * The ordering is imposed by list_lru_node->lock taken by 3625 * memcg_reparent_list_lrus(). 3626 */ 3627 memcg_reparent_list_lrus(memcg, parent); 3628 } 3629 #else 3630 static int memcg_online_kmem(struct mem_cgroup *memcg) 3631 { 3632 return 0; 3633 } 3634 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3635 { 3636 } 3637 #endif /* CONFIG_MEMCG_KMEM */ 3638 3639 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max) 3640 { 3641 int ret; 3642 3643 mutex_lock(&memcg_max_mutex); 3644 3645 ret = page_counter_set_max(&memcg->tcpmem, max); 3646 if (ret) 3647 goto out; 3648 3649 if (!memcg->tcpmem_active) { 3650 /* 3651 * The active flag needs to be written after the static_key 3652 * update. This is what guarantees that the socket activation 3653 * function is the last one to run. See mem_cgroup_sk_alloc() 3654 * for details, and note that we don't mark any socket as 3655 * belonging to this memcg until that flag is up. 3656 * 3657 * We need to do this, because static_keys will span multiple 3658 * sites, but we can't control their order. If we mark a socket 3659 * as accounted, but the accounting functions are not patched in 3660 * yet, we'll lose accounting. 3661 * 3662 * We never race with the readers in mem_cgroup_sk_alloc(), 3663 * because when this value change, the code to process it is not 3664 * patched in yet. 3665 */ 3666 static_branch_inc(&memcg_sockets_enabled_key); 3667 memcg->tcpmem_active = true; 3668 } 3669 out: 3670 mutex_unlock(&memcg_max_mutex); 3671 return ret; 3672 } 3673 3674 /* 3675 * The user of this function is... 3676 * RES_LIMIT. 3677 */ 3678 static ssize_t mem_cgroup_write(struct kernfs_open_file *of, 3679 char *buf, size_t nbytes, loff_t off) 3680 { 3681 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3682 unsigned long nr_pages; 3683 int ret; 3684 3685 buf = strstrip(buf); 3686 ret = page_counter_memparse(buf, "-1", &nr_pages); 3687 if (ret) 3688 return ret; 3689 3690 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3691 case RES_LIMIT: 3692 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 3693 ret = -EINVAL; 3694 break; 3695 } 3696 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3697 case _MEM: 3698 ret = mem_cgroup_resize_max(memcg, nr_pages, false); 3699 break; 3700 case _MEMSWAP: 3701 ret = mem_cgroup_resize_max(memcg, nr_pages, true); 3702 break; 3703 case _KMEM: 3704 /* kmem.limit_in_bytes is deprecated. */ 3705 ret = -EOPNOTSUPP; 3706 break; 3707 case _TCP: 3708 ret = memcg_update_tcp_max(memcg, nr_pages); 3709 break; 3710 } 3711 break; 3712 case RES_SOFT_LIMIT: 3713 if (IS_ENABLED(CONFIG_PREEMPT_RT)) { 3714 ret = -EOPNOTSUPP; 3715 } else { 3716 memcg->soft_limit = nr_pages; 3717 ret = 0; 3718 } 3719 break; 3720 } 3721 return ret ?: nbytes; 3722 } 3723 3724 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf, 3725 size_t nbytes, loff_t off) 3726 { 3727 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3728 struct page_counter *counter; 3729 3730 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3731 case _MEM: 3732 counter = &memcg->memory; 3733 break; 3734 case _MEMSWAP: 3735 counter = &memcg->memsw; 3736 break; 3737 case _KMEM: 3738 counter = &memcg->kmem; 3739 break; 3740 case _TCP: 3741 counter = &memcg->tcpmem; 3742 break; 3743 default: 3744 BUG(); 3745 } 3746 3747 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3748 case RES_MAX_USAGE: 3749 page_counter_reset_watermark(counter); 3750 break; 3751 case RES_FAILCNT: 3752 counter->failcnt = 0; 3753 break; 3754 default: 3755 BUG(); 3756 } 3757 3758 return nbytes; 3759 } 3760 3761 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, 3762 struct cftype *cft) 3763 { 3764 return mem_cgroup_from_css(css)->move_charge_at_immigrate; 3765 } 3766 3767 #ifdef CONFIG_MMU 3768 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3769 struct cftype *cft, u64 val) 3770 { 3771 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3772 3773 if (val & ~MOVE_MASK) 3774 return -EINVAL; 3775 3776 /* 3777 * No kind of locking is needed in here, because ->can_attach() will 3778 * check this value once in the beginning of the process, and then carry 3779 * on with stale data. This means that changes to this value will only 3780 * affect task migrations starting after the change. 3781 */ 3782 memcg->move_charge_at_immigrate = val; 3783 return 0; 3784 } 3785 #else 3786 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3787 struct cftype *cft, u64 val) 3788 { 3789 return -ENOSYS; 3790 } 3791 #endif 3792 3793 #ifdef CONFIG_NUMA 3794 3795 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE)) 3796 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON)) 3797 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1) 3798 3799 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 3800 int nid, unsigned int lru_mask, bool tree) 3801 { 3802 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); 3803 unsigned long nr = 0; 3804 enum lru_list lru; 3805 3806 VM_BUG_ON((unsigned)nid >= nr_node_ids); 3807 3808 for_each_lru(lru) { 3809 if (!(BIT(lru) & lru_mask)) 3810 continue; 3811 if (tree) 3812 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru); 3813 else 3814 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru); 3815 } 3816 return nr; 3817 } 3818 3819 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 3820 unsigned int lru_mask, 3821 bool tree) 3822 { 3823 unsigned long nr = 0; 3824 enum lru_list lru; 3825 3826 for_each_lru(lru) { 3827 if (!(BIT(lru) & lru_mask)) 3828 continue; 3829 if (tree) 3830 nr += memcg_page_state(memcg, NR_LRU_BASE + lru); 3831 else 3832 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru); 3833 } 3834 return nr; 3835 } 3836 3837 static int memcg_numa_stat_show(struct seq_file *m, void *v) 3838 { 3839 struct numa_stat { 3840 const char *name; 3841 unsigned int lru_mask; 3842 }; 3843 3844 static const struct numa_stat stats[] = { 3845 { "total", LRU_ALL }, 3846 { "file", LRU_ALL_FILE }, 3847 { "anon", LRU_ALL_ANON }, 3848 { "unevictable", BIT(LRU_UNEVICTABLE) }, 3849 }; 3850 const struct numa_stat *stat; 3851 int nid; 3852 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 3853 3854 mem_cgroup_flush_stats(); 3855 3856 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3857 seq_printf(m, "%s=%lu", stat->name, 3858 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask, 3859 false)); 3860 for_each_node_state(nid, N_MEMORY) 3861 seq_printf(m, " N%d=%lu", nid, 3862 mem_cgroup_node_nr_lru_pages(memcg, nid, 3863 stat->lru_mask, false)); 3864 seq_putc(m, '\n'); 3865 } 3866 3867 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3868 3869 seq_printf(m, "hierarchical_%s=%lu", stat->name, 3870 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask, 3871 true)); 3872 for_each_node_state(nid, N_MEMORY) 3873 seq_printf(m, " N%d=%lu", nid, 3874 mem_cgroup_node_nr_lru_pages(memcg, nid, 3875 stat->lru_mask, true)); 3876 seq_putc(m, '\n'); 3877 } 3878 3879 return 0; 3880 } 3881 #endif /* CONFIG_NUMA */ 3882 3883 static const unsigned int memcg1_stats[] = { 3884 NR_FILE_PAGES, 3885 NR_ANON_MAPPED, 3886 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3887 NR_ANON_THPS, 3888 #endif 3889 NR_SHMEM, 3890 NR_FILE_MAPPED, 3891 NR_FILE_DIRTY, 3892 NR_WRITEBACK, 3893 MEMCG_SWAP, 3894 }; 3895 3896 static const char *const memcg1_stat_names[] = { 3897 "cache", 3898 "rss", 3899 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3900 "rss_huge", 3901 #endif 3902 "shmem", 3903 "mapped_file", 3904 "dirty", 3905 "writeback", 3906 "swap", 3907 }; 3908 3909 /* Universal VM events cgroup1 shows, original sort order */ 3910 static const unsigned int memcg1_events[] = { 3911 PGPGIN, 3912 PGPGOUT, 3913 PGFAULT, 3914 PGMAJFAULT, 3915 }; 3916 3917 static int memcg_stat_show(struct seq_file *m, void *v) 3918 { 3919 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 3920 unsigned long memory, memsw; 3921 struct mem_cgroup *mi; 3922 unsigned int i; 3923 3924 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats)); 3925 3926 mem_cgroup_flush_stats(); 3927 3928 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 3929 unsigned long nr; 3930 3931 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 3932 continue; 3933 nr = memcg_page_state_local(memcg, memcg1_stats[i]); 3934 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE); 3935 } 3936 3937 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 3938 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]), 3939 memcg_events_local(memcg, memcg1_events[i])); 3940 3941 for (i = 0; i < NR_LRU_LISTS; i++) 3942 seq_printf(m, "%s %lu\n", lru_list_name(i), 3943 memcg_page_state_local(memcg, NR_LRU_BASE + i) * 3944 PAGE_SIZE); 3945 3946 /* Hierarchical information */ 3947 memory = memsw = PAGE_COUNTER_MAX; 3948 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) { 3949 memory = min(memory, READ_ONCE(mi->memory.max)); 3950 memsw = min(memsw, READ_ONCE(mi->memsw.max)); 3951 } 3952 seq_printf(m, "hierarchical_memory_limit %llu\n", 3953 (u64)memory * PAGE_SIZE); 3954 if (do_memsw_account()) 3955 seq_printf(m, "hierarchical_memsw_limit %llu\n", 3956 (u64)memsw * PAGE_SIZE); 3957 3958 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 3959 unsigned long nr; 3960 3961 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 3962 continue; 3963 nr = memcg_page_state(memcg, memcg1_stats[i]); 3964 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], 3965 (u64)nr * PAGE_SIZE); 3966 } 3967 3968 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 3969 seq_printf(m, "total_%s %llu\n", 3970 vm_event_name(memcg1_events[i]), 3971 (u64)memcg_events(memcg, memcg1_events[i])); 3972 3973 for (i = 0; i < NR_LRU_LISTS; i++) 3974 seq_printf(m, "total_%s %llu\n", lru_list_name(i), 3975 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) * 3976 PAGE_SIZE); 3977 3978 #ifdef CONFIG_DEBUG_VM 3979 { 3980 pg_data_t *pgdat; 3981 struct mem_cgroup_per_node *mz; 3982 unsigned long anon_cost = 0; 3983 unsigned long file_cost = 0; 3984 3985 for_each_online_pgdat(pgdat) { 3986 mz = memcg->nodeinfo[pgdat->node_id]; 3987 3988 anon_cost += mz->lruvec.anon_cost; 3989 file_cost += mz->lruvec.file_cost; 3990 } 3991 seq_printf(m, "anon_cost %lu\n", anon_cost); 3992 seq_printf(m, "file_cost %lu\n", file_cost); 3993 } 3994 #endif 3995 3996 return 0; 3997 } 3998 3999 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, 4000 struct cftype *cft) 4001 { 4002 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4003 4004 return mem_cgroup_swappiness(memcg); 4005 } 4006 4007 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, 4008 struct cftype *cft, u64 val) 4009 { 4010 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4011 4012 if (val > 200) 4013 return -EINVAL; 4014 4015 if (!mem_cgroup_is_root(memcg)) 4016 memcg->swappiness = val; 4017 else 4018 vm_swappiness = val; 4019 4020 return 0; 4021 } 4022 4023 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 4024 { 4025 struct mem_cgroup_threshold_ary *t; 4026 unsigned long usage; 4027 int i; 4028 4029 rcu_read_lock(); 4030 if (!swap) 4031 t = rcu_dereference(memcg->thresholds.primary); 4032 else 4033 t = rcu_dereference(memcg->memsw_thresholds.primary); 4034 4035 if (!t) 4036 goto unlock; 4037 4038 usage = mem_cgroup_usage(memcg, swap); 4039 4040 /* 4041 * current_threshold points to threshold just below or equal to usage. 4042 * If it's not true, a threshold was crossed after last 4043 * call of __mem_cgroup_threshold(). 4044 */ 4045 i = t->current_threshold; 4046 4047 /* 4048 * Iterate backward over array of thresholds starting from 4049 * current_threshold and check if a threshold is crossed. 4050 * If none of thresholds below usage is crossed, we read 4051 * only one element of the array here. 4052 */ 4053 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 4054 eventfd_signal(t->entries[i].eventfd, 1); 4055 4056 /* i = current_threshold + 1 */ 4057 i++; 4058 4059 /* 4060 * Iterate forward over array of thresholds starting from 4061 * current_threshold+1 and check if a threshold is crossed. 4062 * If none of thresholds above usage is crossed, we read 4063 * only one element of the array here. 4064 */ 4065 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 4066 eventfd_signal(t->entries[i].eventfd, 1); 4067 4068 /* Update current_threshold */ 4069 t->current_threshold = i - 1; 4070 unlock: 4071 rcu_read_unlock(); 4072 } 4073 4074 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 4075 { 4076 while (memcg) { 4077 __mem_cgroup_threshold(memcg, false); 4078 if (do_memsw_account()) 4079 __mem_cgroup_threshold(memcg, true); 4080 4081 memcg = parent_mem_cgroup(memcg); 4082 } 4083 } 4084 4085 static int compare_thresholds(const void *a, const void *b) 4086 { 4087 const struct mem_cgroup_threshold *_a = a; 4088 const struct mem_cgroup_threshold *_b = b; 4089 4090 if (_a->threshold > _b->threshold) 4091 return 1; 4092 4093 if (_a->threshold < _b->threshold) 4094 return -1; 4095 4096 return 0; 4097 } 4098 4099 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 4100 { 4101 struct mem_cgroup_eventfd_list *ev; 4102 4103 spin_lock(&memcg_oom_lock); 4104 4105 list_for_each_entry(ev, &memcg->oom_notify, list) 4106 eventfd_signal(ev->eventfd, 1); 4107 4108 spin_unlock(&memcg_oom_lock); 4109 return 0; 4110 } 4111 4112 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 4113 { 4114 struct mem_cgroup *iter; 4115 4116 for_each_mem_cgroup_tree(iter, memcg) 4117 mem_cgroup_oom_notify_cb(iter); 4118 } 4119 4120 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 4121 struct eventfd_ctx *eventfd, const char *args, enum res_type type) 4122 { 4123 struct mem_cgroup_thresholds *thresholds; 4124 struct mem_cgroup_threshold_ary *new; 4125 unsigned long threshold; 4126 unsigned long usage; 4127 int i, size, ret; 4128 4129 ret = page_counter_memparse(args, "-1", &threshold); 4130 if (ret) 4131 return ret; 4132 4133 mutex_lock(&memcg->thresholds_lock); 4134 4135 if (type == _MEM) { 4136 thresholds = &memcg->thresholds; 4137 usage = mem_cgroup_usage(memcg, false); 4138 } else if (type == _MEMSWAP) { 4139 thresholds = &memcg->memsw_thresholds; 4140 usage = mem_cgroup_usage(memcg, true); 4141 } else 4142 BUG(); 4143 4144 /* Check if a threshold crossed before adding a new one */ 4145 if (thresholds->primary) 4146 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4147 4148 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 4149 4150 /* Allocate memory for new array of thresholds */ 4151 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL); 4152 if (!new) { 4153 ret = -ENOMEM; 4154 goto unlock; 4155 } 4156 new->size = size; 4157 4158 /* Copy thresholds (if any) to new array */ 4159 if (thresholds->primary) 4160 memcpy(new->entries, thresholds->primary->entries, 4161 flex_array_size(new, entries, size - 1)); 4162 4163 /* Add new threshold */ 4164 new->entries[size - 1].eventfd = eventfd; 4165 new->entries[size - 1].threshold = threshold; 4166 4167 /* Sort thresholds. Registering of new threshold isn't time-critical */ 4168 sort(new->entries, size, sizeof(*new->entries), 4169 compare_thresholds, NULL); 4170 4171 /* Find current threshold */ 4172 new->current_threshold = -1; 4173 for (i = 0; i < size; i++) { 4174 if (new->entries[i].threshold <= usage) { 4175 /* 4176 * new->current_threshold will not be used until 4177 * rcu_assign_pointer(), so it's safe to increment 4178 * it here. 4179 */ 4180 ++new->current_threshold; 4181 } else 4182 break; 4183 } 4184 4185 /* Free old spare buffer and save old primary buffer as spare */ 4186 kfree(thresholds->spare); 4187 thresholds->spare = thresholds->primary; 4188 4189 rcu_assign_pointer(thresholds->primary, new); 4190 4191 /* To be sure that nobody uses thresholds */ 4192 synchronize_rcu(); 4193 4194 unlock: 4195 mutex_unlock(&memcg->thresholds_lock); 4196 4197 return ret; 4198 } 4199 4200 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 4201 struct eventfd_ctx *eventfd, const char *args) 4202 { 4203 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM); 4204 } 4205 4206 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg, 4207 struct eventfd_ctx *eventfd, const char *args) 4208 { 4209 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP); 4210 } 4211 4212 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4213 struct eventfd_ctx *eventfd, enum res_type type) 4214 { 4215 struct mem_cgroup_thresholds *thresholds; 4216 struct mem_cgroup_threshold_ary *new; 4217 unsigned long usage; 4218 int i, j, size, entries; 4219 4220 mutex_lock(&memcg->thresholds_lock); 4221 4222 if (type == _MEM) { 4223 thresholds = &memcg->thresholds; 4224 usage = mem_cgroup_usage(memcg, false); 4225 } else if (type == _MEMSWAP) { 4226 thresholds = &memcg->memsw_thresholds; 4227 usage = mem_cgroup_usage(memcg, true); 4228 } else 4229 BUG(); 4230 4231 if (!thresholds->primary) 4232 goto unlock; 4233 4234 /* Check if a threshold crossed before removing */ 4235 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4236 4237 /* Calculate new number of threshold */ 4238 size = entries = 0; 4239 for (i = 0; i < thresholds->primary->size; i++) { 4240 if (thresholds->primary->entries[i].eventfd != eventfd) 4241 size++; 4242 else 4243 entries++; 4244 } 4245 4246 new = thresholds->spare; 4247 4248 /* If no items related to eventfd have been cleared, nothing to do */ 4249 if (!entries) 4250 goto unlock; 4251 4252 /* Set thresholds array to NULL if we don't have thresholds */ 4253 if (!size) { 4254 kfree(new); 4255 new = NULL; 4256 goto swap_buffers; 4257 } 4258 4259 new->size = size; 4260 4261 /* Copy thresholds and find current threshold */ 4262 new->current_threshold = -1; 4263 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 4264 if (thresholds->primary->entries[i].eventfd == eventfd) 4265 continue; 4266 4267 new->entries[j] = thresholds->primary->entries[i]; 4268 if (new->entries[j].threshold <= usage) { 4269 /* 4270 * new->current_threshold will not be used 4271 * until rcu_assign_pointer(), so it's safe to increment 4272 * it here. 4273 */ 4274 ++new->current_threshold; 4275 } 4276 j++; 4277 } 4278 4279 swap_buffers: 4280 /* Swap primary and spare array */ 4281 thresholds->spare = thresholds->primary; 4282 4283 rcu_assign_pointer(thresholds->primary, new); 4284 4285 /* To be sure that nobody uses thresholds */ 4286 synchronize_rcu(); 4287 4288 /* If all events are unregistered, free the spare array */ 4289 if (!new) { 4290 kfree(thresholds->spare); 4291 thresholds->spare = NULL; 4292 } 4293 unlock: 4294 mutex_unlock(&memcg->thresholds_lock); 4295 } 4296 4297 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4298 struct eventfd_ctx *eventfd) 4299 { 4300 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM); 4301 } 4302 4303 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4304 struct eventfd_ctx *eventfd) 4305 { 4306 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP); 4307 } 4308 4309 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg, 4310 struct eventfd_ctx *eventfd, const char *args) 4311 { 4312 struct mem_cgroup_eventfd_list *event; 4313 4314 event = kmalloc(sizeof(*event), GFP_KERNEL); 4315 if (!event) 4316 return -ENOMEM; 4317 4318 spin_lock(&memcg_oom_lock); 4319 4320 event->eventfd = eventfd; 4321 list_add(&event->list, &memcg->oom_notify); 4322 4323 /* already in OOM ? */ 4324 if (memcg->under_oom) 4325 eventfd_signal(eventfd, 1); 4326 spin_unlock(&memcg_oom_lock); 4327 4328 return 0; 4329 } 4330 4331 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg, 4332 struct eventfd_ctx *eventfd) 4333 { 4334 struct mem_cgroup_eventfd_list *ev, *tmp; 4335 4336 spin_lock(&memcg_oom_lock); 4337 4338 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 4339 if (ev->eventfd == eventfd) { 4340 list_del(&ev->list); 4341 kfree(ev); 4342 } 4343 } 4344 4345 spin_unlock(&memcg_oom_lock); 4346 } 4347 4348 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v) 4349 { 4350 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf); 4351 4352 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable); 4353 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom); 4354 seq_printf(sf, "oom_kill %lu\n", 4355 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL])); 4356 return 0; 4357 } 4358 4359 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, 4360 struct cftype *cft, u64 val) 4361 { 4362 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4363 4364 /* cannot set to root cgroup and only 0 and 1 are allowed */ 4365 if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1))) 4366 return -EINVAL; 4367 4368 memcg->oom_kill_disable = val; 4369 if (!val) 4370 memcg_oom_recover(memcg); 4371 4372 return 0; 4373 } 4374 4375 #ifdef CONFIG_CGROUP_WRITEBACK 4376 4377 #include <trace/events/writeback.h> 4378 4379 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 4380 { 4381 return wb_domain_init(&memcg->cgwb_domain, gfp); 4382 } 4383 4384 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 4385 { 4386 wb_domain_exit(&memcg->cgwb_domain); 4387 } 4388 4389 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 4390 { 4391 wb_domain_size_changed(&memcg->cgwb_domain); 4392 } 4393 4394 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 4395 { 4396 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4397 4398 if (!memcg->css.parent) 4399 return NULL; 4400 4401 return &memcg->cgwb_domain; 4402 } 4403 4404 /** 4405 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg 4406 * @wb: bdi_writeback in question 4407 * @pfilepages: out parameter for number of file pages 4408 * @pheadroom: out parameter for number of allocatable pages according to memcg 4409 * @pdirty: out parameter for number of dirty pages 4410 * @pwriteback: out parameter for number of pages under writeback 4411 * 4412 * Determine the numbers of file, headroom, dirty, and writeback pages in 4413 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom 4414 * is a bit more involved. 4415 * 4416 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the 4417 * headroom is calculated as the lowest headroom of itself and the 4418 * ancestors. Note that this doesn't consider the actual amount of 4419 * available memory in the system. The caller should further cap 4420 * *@pheadroom accordingly. 4421 */ 4422 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 4423 unsigned long *pheadroom, unsigned long *pdirty, 4424 unsigned long *pwriteback) 4425 { 4426 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4427 struct mem_cgroup *parent; 4428 4429 mem_cgroup_flush_stats(); 4430 4431 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY); 4432 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK); 4433 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) + 4434 memcg_page_state(memcg, NR_ACTIVE_FILE); 4435 4436 *pheadroom = PAGE_COUNTER_MAX; 4437 while ((parent = parent_mem_cgroup(memcg))) { 4438 unsigned long ceiling = min(READ_ONCE(memcg->memory.max), 4439 READ_ONCE(memcg->memory.high)); 4440 unsigned long used = page_counter_read(&memcg->memory); 4441 4442 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); 4443 memcg = parent; 4444 } 4445 } 4446 4447 /* 4448 * Foreign dirty flushing 4449 * 4450 * There's an inherent mismatch between memcg and writeback. The former 4451 * tracks ownership per-page while the latter per-inode. This was a 4452 * deliberate design decision because honoring per-page ownership in the 4453 * writeback path is complicated, may lead to higher CPU and IO overheads 4454 * and deemed unnecessary given that write-sharing an inode across 4455 * different cgroups isn't a common use-case. 4456 * 4457 * Combined with inode majority-writer ownership switching, this works well 4458 * enough in most cases but there are some pathological cases. For 4459 * example, let's say there are two cgroups A and B which keep writing to 4460 * different but confined parts of the same inode. B owns the inode and 4461 * A's memory is limited far below B's. A's dirty ratio can rise enough to 4462 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid 4463 * triggering background writeback. A will be slowed down without a way to 4464 * make writeback of the dirty pages happen. 4465 * 4466 * Conditions like the above can lead to a cgroup getting repeatedly and 4467 * severely throttled after making some progress after each 4468 * dirty_expire_interval while the underlying IO device is almost 4469 * completely idle. 4470 * 4471 * Solving this problem completely requires matching the ownership tracking 4472 * granularities between memcg and writeback in either direction. However, 4473 * the more egregious behaviors can be avoided by simply remembering the 4474 * most recent foreign dirtying events and initiating remote flushes on 4475 * them when local writeback isn't enough to keep the memory clean enough. 4476 * 4477 * The following two functions implement such mechanism. When a foreign 4478 * page - a page whose memcg and writeback ownerships don't match - is 4479 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning 4480 * bdi_writeback on the page owning memcg. When balance_dirty_pages() 4481 * decides that the memcg needs to sleep due to high dirty ratio, it calls 4482 * mem_cgroup_flush_foreign() which queues writeback on the recorded 4483 * foreign bdi_writebacks which haven't expired. Both the numbers of 4484 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are 4485 * limited to MEMCG_CGWB_FRN_CNT. 4486 * 4487 * The mechanism only remembers IDs and doesn't hold any object references. 4488 * As being wrong occasionally doesn't matter, updates and accesses to the 4489 * records are lockless and racy. 4490 */ 4491 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio, 4492 struct bdi_writeback *wb) 4493 { 4494 struct mem_cgroup *memcg = folio_memcg(folio); 4495 struct memcg_cgwb_frn *frn; 4496 u64 now = get_jiffies_64(); 4497 u64 oldest_at = now; 4498 int oldest = -1; 4499 int i; 4500 4501 trace_track_foreign_dirty(folio, wb); 4502 4503 /* 4504 * Pick the slot to use. If there is already a slot for @wb, keep 4505 * using it. If not replace the oldest one which isn't being 4506 * written out. 4507 */ 4508 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 4509 frn = &memcg->cgwb_frn[i]; 4510 if (frn->bdi_id == wb->bdi->id && 4511 frn->memcg_id == wb->memcg_css->id) 4512 break; 4513 if (time_before64(frn->at, oldest_at) && 4514 atomic_read(&frn->done.cnt) == 1) { 4515 oldest = i; 4516 oldest_at = frn->at; 4517 } 4518 } 4519 4520 if (i < MEMCG_CGWB_FRN_CNT) { 4521 /* 4522 * Re-using an existing one. Update timestamp lazily to 4523 * avoid making the cacheline hot. We want them to be 4524 * reasonably up-to-date and significantly shorter than 4525 * dirty_expire_interval as that's what expires the record. 4526 * Use the shorter of 1s and dirty_expire_interval / 8. 4527 */ 4528 unsigned long update_intv = 4529 min_t(unsigned long, HZ, 4530 msecs_to_jiffies(dirty_expire_interval * 10) / 8); 4531 4532 if (time_before64(frn->at, now - update_intv)) 4533 frn->at = now; 4534 } else if (oldest >= 0) { 4535 /* replace the oldest free one */ 4536 frn = &memcg->cgwb_frn[oldest]; 4537 frn->bdi_id = wb->bdi->id; 4538 frn->memcg_id = wb->memcg_css->id; 4539 frn->at = now; 4540 } 4541 } 4542 4543 /* issue foreign writeback flushes for recorded foreign dirtying events */ 4544 void mem_cgroup_flush_foreign(struct bdi_writeback *wb) 4545 { 4546 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4547 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10); 4548 u64 now = jiffies_64; 4549 int i; 4550 4551 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 4552 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i]; 4553 4554 /* 4555 * If the record is older than dirty_expire_interval, 4556 * writeback on it has already started. No need to kick it 4557 * off again. Also, don't start a new one if there's 4558 * already one in flight. 4559 */ 4560 if (time_after64(frn->at, now - intv) && 4561 atomic_read(&frn->done.cnt) == 1) { 4562 frn->at = 0; 4563 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id); 4564 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 4565 WB_REASON_FOREIGN_FLUSH, 4566 &frn->done); 4567 } 4568 } 4569 } 4570 4571 #else /* CONFIG_CGROUP_WRITEBACK */ 4572 4573 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 4574 { 4575 return 0; 4576 } 4577 4578 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 4579 { 4580 } 4581 4582 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 4583 { 4584 } 4585 4586 #endif /* CONFIG_CGROUP_WRITEBACK */ 4587 4588 /* 4589 * DO NOT USE IN NEW FILES. 4590 * 4591 * "cgroup.event_control" implementation. 4592 * 4593 * This is way over-engineered. It tries to support fully configurable 4594 * events for each user. Such level of flexibility is completely 4595 * unnecessary especially in the light of the planned unified hierarchy. 4596 * 4597 * Please deprecate this and replace with something simpler if at all 4598 * possible. 4599 */ 4600 4601 /* 4602 * Unregister event and free resources. 4603 * 4604 * Gets called from workqueue. 4605 */ 4606 static void memcg_event_remove(struct work_struct *work) 4607 { 4608 struct mem_cgroup_event *event = 4609 container_of(work, struct mem_cgroup_event, remove); 4610 struct mem_cgroup *memcg = event->memcg; 4611 4612 remove_wait_queue(event->wqh, &event->wait); 4613 4614 event->unregister_event(memcg, event->eventfd); 4615 4616 /* Notify userspace the event is going away. */ 4617 eventfd_signal(event->eventfd, 1); 4618 4619 eventfd_ctx_put(event->eventfd); 4620 kfree(event); 4621 css_put(&memcg->css); 4622 } 4623 4624 /* 4625 * Gets called on EPOLLHUP on eventfd when user closes it. 4626 * 4627 * Called with wqh->lock held and interrupts disabled. 4628 */ 4629 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode, 4630 int sync, void *key) 4631 { 4632 struct mem_cgroup_event *event = 4633 container_of(wait, struct mem_cgroup_event, wait); 4634 struct mem_cgroup *memcg = event->memcg; 4635 __poll_t flags = key_to_poll(key); 4636 4637 if (flags & EPOLLHUP) { 4638 /* 4639 * If the event has been detached at cgroup removal, we 4640 * can simply return knowing the other side will cleanup 4641 * for us. 4642 * 4643 * We can't race against event freeing since the other 4644 * side will require wqh->lock via remove_wait_queue(), 4645 * which we hold. 4646 */ 4647 spin_lock(&memcg->event_list_lock); 4648 if (!list_empty(&event->list)) { 4649 list_del_init(&event->list); 4650 /* 4651 * We are in atomic context, but cgroup_event_remove() 4652 * may sleep, so we have to call it in workqueue. 4653 */ 4654 schedule_work(&event->remove); 4655 } 4656 spin_unlock(&memcg->event_list_lock); 4657 } 4658 4659 return 0; 4660 } 4661 4662 static void memcg_event_ptable_queue_proc(struct file *file, 4663 wait_queue_head_t *wqh, poll_table *pt) 4664 { 4665 struct mem_cgroup_event *event = 4666 container_of(pt, struct mem_cgroup_event, pt); 4667 4668 event->wqh = wqh; 4669 add_wait_queue(wqh, &event->wait); 4670 } 4671 4672 /* 4673 * DO NOT USE IN NEW FILES. 4674 * 4675 * Parse input and register new cgroup event handler. 4676 * 4677 * Input must be in format '<event_fd> <control_fd> <args>'. 4678 * Interpretation of args is defined by control file implementation. 4679 */ 4680 static ssize_t memcg_write_event_control(struct kernfs_open_file *of, 4681 char *buf, size_t nbytes, loff_t off) 4682 { 4683 struct cgroup_subsys_state *css = of_css(of); 4684 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4685 struct mem_cgroup_event *event; 4686 struct cgroup_subsys_state *cfile_css; 4687 unsigned int efd, cfd; 4688 struct fd efile; 4689 struct fd cfile; 4690 const char *name; 4691 char *endp; 4692 int ret; 4693 4694 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 4695 return -EOPNOTSUPP; 4696 4697 buf = strstrip(buf); 4698 4699 efd = simple_strtoul(buf, &endp, 10); 4700 if (*endp != ' ') 4701 return -EINVAL; 4702 buf = endp + 1; 4703 4704 cfd = simple_strtoul(buf, &endp, 10); 4705 if ((*endp != ' ') && (*endp != '\0')) 4706 return -EINVAL; 4707 buf = endp + 1; 4708 4709 event = kzalloc(sizeof(*event), GFP_KERNEL); 4710 if (!event) 4711 return -ENOMEM; 4712 4713 event->memcg = memcg; 4714 INIT_LIST_HEAD(&event->list); 4715 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc); 4716 init_waitqueue_func_entry(&event->wait, memcg_event_wake); 4717 INIT_WORK(&event->remove, memcg_event_remove); 4718 4719 efile = fdget(efd); 4720 if (!efile.file) { 4721 ret = -EBADF; 4722 goto out_kfree; 4723 } 4724 4725 event->eventfd = eventfd_ctx_fileget(efile.file); 4726 if (IS_ERR(event->eventfd)) { 4727 ret = PTR_ERR(event->eventfd); 4728 goto out_put_efile; 4729 } 4730 4731 cfile = fdget(cfd); 4732 if (!cfile.file) { 4733 ret = -EBADF; 4734 goto out_put_eventfd; 4735 } 4736 4737 /* the process need read permission on control file */ 4738 /* AV: shouldn't we check that it's been opened for read instead? */ 4739 ret = file_permission(cfile.file, MAY_READ); 4740 if (ret < 0) 4741 goto out_put_cfile; 4742 4743 /* 4744 * Determine the event callbacks and set them in @event. This used 4745 * to be done via struct cftype but cgroup core no longer knows 4746 * about these events. The following is crude but the whole thing 4747 * is for compatibility anyway. 4748 * 4749 * DO NOT ADD NEW FILES. 4750 */ 4751 name = cfile.file->f_path.dentry->d_name.name; 4752 4753 if (!strcmp(name, "memory.usage_in_bytes")) { 4754 event->register_event = mem_cgroup_usage_register_event; 4755 event->unregister_event = mem_cgroup_usage_unregister_event; 4756 } else if (!strcmp(name, "memory.oom_control")) { 4757 event->register_event = mem_cgroup_oom_register_event; 4758 event->unregister_event = mem_cgroup_oom_unregister_event; 4759 } else if (!strcmp(name, "memory.pressure_level")) { 4760 event->register_event = vmpressure_register_event; 4761 event->unregister_event = vmpressure_unregister_event; 4762 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) { 4763 event->register_event = memsw_cgroup_usage_register_event; 4764 event->unregister_event = memsw_cgroup_usage_unregister_event; 4765 } else { 4766 ret = -EINVAL; 4767 goto out_put_cfile; 4768 } 4769 4770 /* 4771 * Verify @cfile should belong to @css. Also, remaining events are 4772 * automatically removed on cgroup destruction but the removal is 4773 * asynchronous, so take an extra ref on @css. 4774 */ 4775 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent, 4776 &memory_cgrp_subsys); 4777 ret = -EINVAL; 4778 if (IS_ERR(cfile_css)) 4779 goto out_put_cfile; 4780 if (cfile_css != css) { 4781 css_put(cfile_css); 4782 goto out_put_cfile; 4783 } 4784 4785 ret = event->register_event(memcg, event->eventfd, buf); 4786 if (ret) 4787 goto out_put_css; 4788 4789 vfs_poll(efile.file, &event->pt); 4790 4791 spin_lock_irq(&memcg->event_list_lock); 4792 list_add(&event->list, &memcg->event_list); 4793 spin_unlock_irq(&memcg->event_list_lock); 4794 4795 fdput(cfile); 4796 fdput(efile); 4797 4798 return nbytes; 4799 4800 out_put_css: 4801 css_put(css); 4802 out_put_cfile: 4803 fdput(cfile); 4804 out_put_eventfd: 4805 eventfd_ctx_put(event->eventfd); 4806 out_put_efile: 4807 fdput(efile); 4808 out_kfree: 4809 kfree(event); 4810 4811 return ret; 4812 } 4813 4814 #if defined(CONFIG_MEMCG_KMEM) && (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)) 4815 static int mem_cgroup_slab_show(struct seq_file *m, void *p) 4816 { 4817 /* 4818 * Deprecated. 4819 * Please, take a look at tools/cgroup/slabinfo.py . 4820 */ 4821 return 0; 4822 } 4823 #endif 4824 4825 static struct cftype mem_cgroup_legacy_files[] = { 4826 { 4827 .name = "usage_in_bytes", 4828 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 4829 .read_u64 = mem_cgroup_read_u64, 4830 }, 4831 { 4832 .name = "max_usage_in_bytes", 4833 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 4834 .write = mem_cgroup_reset, 4835 .read_u64 = mem_cgroup_read_u64, 4836 }, 4837 { 4838 .name = "limit_in_bytes", 4839 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 4840 .write = mem_cgroup_write, 4841 .read_u64 = mem_cgroup_read_u64, 4842 }, 4843 { 4844 .name = "soft_limit_in_bytes", 4845 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 4846 .write = mem_cgroup_write, 4847 .read_u64 = mem_cgroup_read_u64, 4848 }, 4849 { 4850 .name = "failcnt", 4851 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 4852 .write = mem_cgroup_reset, 4853 .read_u64 = mem_cgroup_read_u64, 4854 }, 4855 { 4856 .name = "stat", 4857 .seq_show = memcg_stat_show, 4858 }, 4859 { 4860 .name = "force_empty", 4861 .write = mem_cgroup_force_empty_write, 4862 }, 4863 { 4864 .name = "use_hierarchy", 4865 .write_u64 = mem_cgroup_hierarchy_write, 4866 .read_u64 = mem_cgroup_hierarchy_read, 4867 }, 4868 { 4869 .name = "cgroup.event_control", /* XXX: for compat */ 4870 .write = memcg_write_event_control, 4871 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE, 4872 }, 4873 { 4874 .name = "swappiness", 4875 .read_u64 = mem_cgroup_swappiness_read, 4876 .write_u64 = mem_cgroup_swappiness_write, 4877 }, 4878 { 4879 .name = "move_charge_at_immigrate", 4880 .read_u64 = mem_cgroup_move_charge_read, 4881 .write_u64 = mem_cgroup_move_charge_write, 4882 }, 4883 { 4884 .name = "oom_control", 4885 .seq_show = mem_cgroup_oom_control_read, 4886 .write_u64 = mem_cgroup_oom_control_write, 4887 }, 4888 { 4889 .name = "pressure_level", 4890 }, 4891 #ifdef CONFIG_NUMA 4892 { 4893 .name = "numa_stat", 4894 .seq_show = memcg_numa_stat_show, 4895 }, 4896 #endif 4897 { 4898 .name = "kmem.limit_in_bytes", 4899 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), 4900 .write = mem_cgroup_write, 4901 .read_u64 = mem_cgroup_read_u64, 4902 }, 4903 { 4904 .name = "kmem.usage_in_bytes", 4905 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), 4906 .read_u64 = mem_cgroup_read_u64, 4907 }, 4908 { 4909 .name = "kmem.failcnt", 4910 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), 4911 .write = mem_cgroup_reset, 4912 .read_u64 = mem_cgroup_read_u64, 4913 }, 4914 { 4915 .name = "kmem.max_usage_in_bytes", 4916 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), 4917 .write = mem_cgroup_reset, 4918 .read_u64 = mem_cgroup_read_u64, 4919 }, 4920 #if defined(CONFIG_MEMCG_KMEM) && \ 4921 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)) 4922 { 4923 .name = "kmem.slabinfo", 4924 .seq_show = mem_cgroup_slab_show, 4925 }, 4926 #endif 4927 { 4928 .name = "kmem.tcp.limit_in_bytes", 4929 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT), 4930 .write = mem_cgroup_write, 4931 .read_u64 = mem_cgroup_read_u64, 4932 }, 4933 { 4934 .name = "kmem.tcp.usage_in_bytes", 4935 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE), 4936 .read_u64 = mem_cgroup_read_u64, 4937 }, 4938 { 4939 .name = "kmem.tcp.failcnt", 4940 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT), 4941 .write = mem_cgroup_reset, 4942 .read_u64 = mem_cgroup_read_u64, 4943 }, 4944 { 4945 .name = "kmem.tcp.max_usage_in_bytes", 4946 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE), 4947 .write = mem_cgroup_reset, 4948 .read_u64 = mem_cgroup_read_u64, 4949 }, 4950 { }, /* terminate */ 4951 }; 4952 4953 /* 4954 * Private memory cgroup IDR 4955 * 4956 * Swap-out records and page cache shadow entries need to store memcg 4957 * references in constrained space, so we maintain an ID space that is 4958 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of 4959 * memory-controlled cgroups to 64k. 4960 * 4961 * However, there usually are many references to the offline CSS after 4962 * the cgroup has been destroyed, such as page cache or reclaimable 4963 * slab objects, that don't need to hang on to the ID. We want to keep 4964 * those dead CSS from occupying IDs, or we might quickly exhaust the 4965 * relatively small ID space and prevent the creation of new cgroups 4966 * even when there are much fewer than 64k cgroups - possibly none. 4967 * 4968 * Maintain a private 16-bit ID space for memcg, and allow the ID to 4969 * be freed and recycled when it's no longer needed, which is usually 4970 * when the CSS is offlined. 4971 * 4972 * The only exception to that are records of swapped out tmpfs/shmem 4973 * pages that need to be attributed to live ancestors on swapin. But 4974 * those references are manageable from userspace. 4975 */ 4976 4977 static DEFINE_IDR(mem_cgroup_idr); 4978 4979 static void mem_cgroup_id_remove(struct mem_cgroup *memcg) 4980 { 4981 if (memcg->id.id > 0) { 4982 idr_remove(&mem_cgroup_idr, memcg->id.id); 4983 memcg->id.id = 0; 4984 } 4985 } 4986 4987 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg, 4988 unsigned int n) 4989 { 4990 refcount_add(n, &memcg->id.ref); 4991 } 4992 4993 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n) 4994 { 4995 if (refcount_sub_and_test(n, &memcg->id.ref)) { 4996 mem_cgroup_id_remove(memcg); 4997 4998 /* Memcg ID pins CSS */ 4999 css_put(&memcg->css); 5000 } 5001 } 5002 5003 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg) 5004 { 5005 mem_cgroup_id_put_many(memcg, 1); 5006 } 5007 5008 /** 5009 * mem_cgroup_from_id - look up a memcg from a memcg id 5010 * @id: the memcg id to look up 5011 * 5012 * Caller must hold rcu_read_lock(). 5013 */ 5014 struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 5015 { 5016 WARN_ON_ONCE(!rcu_read_lock_held()); 5017 return idr_find(&mem_cgroup_idr, id); 5018 } 5019 5020 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 5021 { 5022 struct mem_cgroup_per_node *pn; 5023 5024 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node); 5025 if (!pn) 5026 return 1; 5027 5028 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu, 5029 GFP_KERNEL_ACCOUNT); 5030 if (!pn->lruvec_stats_percpu) { 5031 kfree(pn); 5032 return 1; 5033 } 5034 5035 lruvec_init(&pn->lruvec); 5036 pn->memcg = memcg; 5037 5038 memcg->nodeinfo[node] = pn; 5039 return 0; 5040 } 5041 5042 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 5043 { 5044 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node]; 5045 5046 if (!pn) 5047 return; 5048 5049 free_percpu(pn->lruvec_stats_percpu); 5050 kfree(pn); 5051 } 5052 5053 static void __mem_cgroup_free(struct mem_cgroup *memcg) 5054 { 5055 int node; 5056 5057 for_each_node(node) 5058 free_mem_cgroup_per_node_info(memcg, node); 5059 free_percpu(memcg->vmstats_percpu); 5060 kfree(memcg); 5061 } 5062 5063 static void mem_cgroup_free(struct mem_cgroup *memcg) 5064 { 5065 memcg_wb_domain_exit(memcg); 5066 __mem_cgroup_free(memcg); 5067 } 5068 5069 static struct mem_cgroup *mem_cgroup_alloc(void) 5070 { 5071 struct mem_cgroup *memcg; 5072 int node; 5073 int __maybe_unused i; 5074 long error = -ENOMEM; 5075 5076 memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL); 5077 if (!memcg) 5078 return ERR_PTR(error); 5079 5080 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL, 5081 1, MEM_CGROUP_ID_MAX + 1, GFP_KERNEL); 5082 if (memcg->id.id < 0) { 5083 error = memcg->id.id; 5084 goto fail; 5085 } 5086 5087 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu, 5088 GFP_KERNEL_ACCOUNT); 5089 if (!memcg->vmstats_percpu) 5090 goto fail; 5091 5092 for_each_node(node) 5093 if (alloc_mem_cgroup_per_node_info(memcg, node)) 5094 goto fail; 5095 5096 if (memcg_wb_domain_init(memcg, GFP_KERNEL)) 5097 goto fail; 5098 5099 INIT_WORK(&memcg->high_work, high_work_func); 5100 INIT_LIST_HEAD(&memcg->oom_notify); 5101 mutex_init(&memcg->thresholds_lock); 5102 spin_lock_init(&memcg->move_lock); 5103 vmpressure_init(&memcg->vmpressure); 5104 INIT_LIST_HEAD(&memcg->event_list); 5105 spin_lock_init(&memcg->event_list_lock); 5106 memcg->socket_pressure = jiffies; 5107 #ifdef CONFIG_MEMCG_KMEM 5108 memcg->kmemcg_id = -1; 5109 INIT_LIST_HEAD(&memcg->objcg_list); 5110 #endif 5111 #ifdef CONFIG_CGROUP_WRITEBACK 5112 INIT_LIST_HEAD(&memcg->cgwb_list); 5113 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 5114 memcg->cgwb_frn[i].done = 5115 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq); 5116 #endif 5117 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5118 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock); 5119 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue); 5120 memcg->deferred_split_queue.split_queue_len = 0; 5121 #endif 5122 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id); 5123 return memcg; 5124 fail: 5125 mem_cgroup_id_remove(memcg); 5126 __mem_cgroup_free(memcg); 5127 return ERR_PTR(error); 5128 } 5129 5130 static struct cgroup_subsys_state * __ref 5131 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 5132 { 5133 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); 5134 struct mem_cgroup *memcg, *old_memcg; 5135 5136 old_memcg = set_active_memcg(parent); 5137 memcg = mem_cgroup_alloc(); 5138 set_active_memcg(old_memcg); 5139 if (IS_ERR(memcg)) 5140 return ERR_CAST(memcg); 5141 5142 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 5143 memcg->soft_limit = PAGE_COUNTER_MAX; 5144 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 5145 if (parent) { 5146 memcg->swappiness = mem_cgroup_swappiness(parent); 5147 memcg->oom_kill_disable = parent->oom_kill_disable; 5148 5149 page_counter_init(&memcg->memory, &parent->memory); 5150 page_counter_init(&memcg->swap, &parent->swap); 5151 page_counter_init(&memcg->kmem, &parent->kmem); 5152 page_counter_init(&memcg->tcpmem, &parent->tcpmem); 5153 } else { 5154 page_counter_init(&memcg->memory, NULL); 5155 page_counter_init(&memcg->swap, NULL); 5156 page_counter_init(&memcg->kmem, NULL); 5157 page_counter_init(&memcg->tcpmem, NULL); 5158 5159 root_mem_cgroup = memcg; 5160 return &memcg->css; 5161 } 5162 5163 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 5164 static_branch_inc(&memcg_sockets_enabled_key); 5165 5166 return &memcg->css; 5167 } 5168 5169 static int mem_cgroup_css_online(struct cgroup_subsys_state *css) 5170 { 5171 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5172 5173 if (memcg_online_kmem(memcg)) 5174 goto remove_id; 5175 5176 /* 5177 * A memcg must be visible for expand_shrinker_info() 5178 * by the time the maps are allocated. So, we allocate maps 5179 * here, when for_each_mem_cgroup() can't skip it. 5180 */ 5181 if (alloc_shrinker_info(memcg)) 5182 goto offline_kmem; 5183 5184 /* Online state pins memcg ID, memcg ID pins CSS */ 5185 refcount_set(&memcg->id.ref, 1); 5186 css_get(css); 5187 5188 if (unlikely(mem_cgroup_is_root(memcg))) 5189 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, 5190 2UL*HZ); 5191 return 0; 5192 offline_kmem: 5193 memcg_offline_kmem(memcg); 5194 remove_id: 5195 mem_cgroup_id_remove(memcg); 5196 return -ENOMEM; 5197 } 5198 5199 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 5200 { 5201 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5202 struct mem_cgroup_event *event, *tmp; 5203 5204 /* 5205 * Unregister events and notify userspace. 5206 * Notify userspace about cgroup removing only after rmdir of cgroup 5207 * directory to avoid race between userspace and kernelspace. 5208 */ 5209 spin_lock_irq(&memcg->event_list_lock); 5210 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) { 5211 list_del_init(&event->list); 5212 schedule_work(&event->remove); 5213 } 5214 spin_unlock_irq(&memcg->event_list_lock); 5215 5216 page_counter_set_min(&memcg->memory, 0); 5217 page_counter_set_low(&memcg->memory, 0); 5218 5219 memcg_offline_kmem(memcg); 5220 reparent_shrinker_deferred(memcg); 5221 wb_memcg_offline(memcg); 5222 5223 drain_all_stock(memcg); 5224 5225 mem_cgroup_id_put(memcg); 5226 } 5227 5228 static void mem_cgroup_css_released(struct cgroup_subsys_state *css) 5229 { 5230 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5231 5232 invalidate_reclaim_iterators(memcg); 5233 } 5234 5235 static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 5236 { 5237 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5238 int __maybe_unused i; 5239 5240 #ifdef CONFIG_CGROUP_WRITEBACK 5241 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 5242 wb_wait_for_completion(&memcg->cgwb_frn[i].done); 5243 #endif 5244 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 5245 static_branch_dec(&memcg_sockets_enabled_key); 5246 5247 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active) 5248 static_branch_dec(&memcg_sockets_enabled_key); 5249 5250 vmpressure_cleanup(&memcg->vmpressure); 5251 cancel_work_sync(&memcg->high_work); 5252 mem_cgroup_remove_from_trees(memcg); 5253 free_shrinker_info(memcg); 5254 mem_cgroup_free(memcg); 5255 } 5256 5257 /** 5258 * mem_cgroup_css_reset - reset the states of a mem_cgroup 5259 * @css: the target css 5260 * 5261 * Reset the states of the mem_cgroup associated with @css. This is 5262 * invoked when the userland requests disabling on the default hierarchy 5263 * but the memcg is pinned through dependency. The memcg should stop 5264 * applying policies and should revert to the vanilla state as it may be 5265 * made visible again. 5266 * 5267 * The current implementation only resets the essential configurations. 5268 * This needs to be expanded to cover all the visible parts. 5269 */ 5270 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) 5271 { 5272 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5273 5274 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX); 5275 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX); 5276 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX); 5277 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX); 5278 page_counter_set_min(&memcg->memory, 0); 5279 page_counter_set_low(&memcg->memory, 0); 5280 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 5281 memcg->soft_limit = PAGE_COUNTER_MAX; 5282 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 5283 memcg_wb_domain_size_changed(memcg); 5284 } 5285 5286 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu) 5287 { 5288 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5289 struct mem_cgroup *parent = parent_mem_cgroup(memcg); 5290 struct memcg_vmstats_percpu *statc; 5291 long delta, v; 5292 int i, nid; 5293 5294 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu); 5295 5296 for (i = 0; i < MEMCG_NR_STAT; i++) { 5297 /* 5298 * Collect the aggregated propagation counts of groups 5299 * below us. We're in a per-cpu loop here and this is 5300 * a global counter, so the first cycle will get them. 5301 */ 5302 delta = memcg->vmstats.state_pending[i]; 5303 if (delta) 5304 memcg->vmstats.state_pending[i] = 0; 5305 5306 /* Add CPU changes on this level since the last flush */ 5307 v = READ_ONCE(statc->state[i]); 5308 if (v != statc->state_prev[i]) { 5309 delta += v - statc->state_prev[i]; 5310 statc->state_prev[i] = v; 5311 } 5312 5313 if (!delta) 5314 continue; 5315 5316 /* Aggregate counts on this level and propagate upwards */ 5317 memcg->vmstats.state[i] += delta; 5318 if (parent) 5319 parent->vmstats.state_pending[i] += delta; 5320 } 5321 5322 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) { 5323 delta = memcg->vmstats.events_pending[i]; 5324 if (delta) 5325 memcg->vmstats.events_pending[i] = 0; 5326 5327 v = READ_ONCE(statc->events[i]); 5328 if (v != statc->events_prev[i]) { 5329 delta += v - statc->events_prev[i]; 5330 statc->events_prev[i] = v; 5331 } 5332 5333 if (!delta) 5334 continue; 5335 5336 memcg->vmstats.events[i] += delta; 5337 if (parent) 5338 parent->vmstats.events_pending[i] += delta; 5339 } 5340 5341 for_each_node_state(nid, N_MEMORY) { 5342 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid]; 5343 struct mem_cgroup_per_node *ppn = NULL; 5344 struct lruvec_stats_percpu *lstatc; 5345 5346 if (parent) 5347 ppn = parent->nodeinfo[nid]; 5348 5349 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu); 5350 5351 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) { 5352 delta = pn->lruvec_stats.state_pending[i]; 5353 if (delta) 5354 pn->lruvec_stats.state_pending[i] = 0; 5355 5356 v = READ_ONCE(lstatc->state[i]); 5357 if (v != lstatc->state_prev[i]) { 5358 delta += v - lstatc->state_prev[i]; 5359 lstatc->state_prev[i] = v; 5360 } 5361 5362 if (!delta) 5363 continue; 5364 5365 pn->lruvec_stats.state[i] += delta; 5366 if (ppn) 5367 ppn->lruvec_stats.state_pending[i] += delta; 5368 } 5369 } 5370 } 5371 5372 #ifdef CONFIG_MMU 5373 /* Handlers for move charge at task migration. */ 5374 static int mem_cgroup_do_precharge(unsigned long count) 5375 { 5376 int ret; 5377 5378 /* Try a single bulk charge without reclaim first, kswapd may wake */ 5379 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count); 5380 if (!ret) { 5381 mc.precharge += count; 5382 return ret; 5383 } 5384 5385 /* Try charges one by one with reclaim, but do not retry */ 5386 while (count--) { 5387 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1); 5388 if (ret) 5389 return ret; 5390 mc.precharge++; 5391 cond_resched(); 5392 } 5393 return 0; 5394 } 5395 5396 union mc_target { 5397 struct page *page; 5398 swp_entry_t ent; 5399 }; 5400 5401 enum mc_target_type { 5402 MC_TARGET_NONE = 0, 5403 MC_TARGET_PAGE, 5404 MC_TARGET_SWAP, 5405 MC_TARGET_DEVICE, 5406 }; 5407 5408 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 5409 unsigned long addr, pte_t ptent) 5410 { 5411 struct page *page = vm_normal_page(vma, addr, ptent); 5412 5413 if (!page || !page_mapped(page)) 5414 return NULL; 5415 if (PageAnon(page)) { 5416 if (!(mc.flags & MOVE_ANON)) 5417 return NULL; 5418 } else { 5419 if (!(mc.flags & MOVE_FILE)) 5420 return NULL; 5421 } 5422 if (!get_page_unless_zero(page)) 5423 return NULL; 5424 5425 return page; 5426 } 5427 5428 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE) 5429 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5430 pte_t ptent, swp_entry_t *entry) 5431 { 5432 struct page *page = NULL; 5433 swp_entry_t ent = pte_to_swp_entry(ptent); 5434 5435 if (!(mc.flags & MOVE_ANON)) 5436 return NULL; 5437 5438 /* 5439 * Handle device private pages that are not accessible by the CPU, but 5440 * stored as special swap entries in the page table. 5441 */ 5442 if (is_device_private_entry(ent)) { 5443 page = pfn_swap_entry_to_page(ent); 5444 if (!get_page_unless_zero(page)) 5445 return NULL; 5446 return page; 5447 } 5448 5449 if (non_swap_entry(ent)) 5450 return NULL; 5451 5452 /* 5453 * Because lookup_swap_cache() updates some statistics counter, 5454 * we call find_get_page() with swapper_space directly. 5455 */ 5456 page = find_get_page(swap_address_space(ent), swp_offset(ent)); 5457 entry->val = ent.val; 5458 5459 return page; 5460 } 5461 #else 5462 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5463 pte_t ptent, swp_entry_t *entry) 5464 { 5465 return NULL; 5466 } 5467 #endif 5468 5469 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 5470 unsigned long addr, pte_t ptent) 5471 { 5472 if (!vma->vm_file) /* anonymous vma */ 5473 return NULL; 5474 if (!(mc.flags & MOVE_FILE)) 5475 return NULL; 5476 5477 /* page is moved even if it's not RSS of this task(page-faulted). */ 5478 /* shmem/tmpfs may report page out on swap: account for that too. */ 5479 return find_get_incore_page(vma->vm_file->f_mapping, 5480 linear_page_index(vma, addr)); 5481 } 5482 5483 /** 5484 * mem_cgroup_move_account - move account of the page 5485 * @page: the page 5486 * @compound: charge the page as compound or small page 5487 * @from: mem_cgroup which the page is moved from. 5488 * @to: mem_cgroup which the page is moved to. @from != @to. 5489 * 5490 * The caller must make sure the page is not on LRU (isolate_page() is useful.) 5491 * 5492 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" 5493 * from old cgroup. 5494 */ 5495 static int mem_cgroup_move_account(struct page *page, 5496 bool compound, 5497 struct mem_cgroup *from, 5498 struct mem_cgroup *to) 5499 { 5500 struct folio *folio = page_folio(page); 5501 struct lruvec *from_vec, *to_vec; 5502 struct pglist_data *pgdat; 5503 unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1; 5504 int nid, ret; 5505 5506 VM_BUG_ON(from == to); 5507 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 5508 VM_BUG_ON(compound && !folio_test_large(folio)); 5509 5510 /* 5511 * Prevent mem_cgroup_migrate() from looking at 5512 * page's memory cgroup of its source page while we change it. 5513 */ 5514 ret = -EBUSY; 5515 if (!folio_trylock(folio)) 5516 goto out; 5517 5518 ret = -EINVAL; 5519 if (folio_memcg(folio) != from) 5520 goto out_unlock; 5521 5522 pgdat = folio_pgdat(folio); 5523 from_vec = mem_cgroup_lruvec(from, pgdat); 5524 to_vec = mem_cgroup_lruvec(to, pgdat); 5525 5526 folio_memcg_lock(folio); 5527 5528 if (folio_test_anon(folio)) { 5529 if (folio_mapped(folio)) { 5530 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages); 5531 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages); 5532 if (folio_test_transhuge(folio)) { 5533 __mod_lruvec_state(from_vec, NR_ANON_THPS, 5534 -nr_pages); 5535 __mod_lruvec_state(to_vec, NR_ANON_THPS, 5536 nr_pages); 5537 } 5538 } 5539 } else { 5540 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages); 5541 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages); 5542 5543 if (folio_test_swapbacked(folio)) { 5544 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages); 5545 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages); 5546 } 5547 5548 if (folio_mapped(folio)) { 5549 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages); 5550 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages); 5551 } 5552 5553 if (folio_test_dirty(folio)) { 5554 struct address_space *mapping = folio_mapping(folio); 5555 5556 if (mapping_can_writeback(mapping)) { 5557 __mod_lruvec_state(from_vec, NR_FILE_DIRTY, 5558 -nr_pages); 5559 __mod_lruvec_state(to_vec, NR_FILE_DIRTY, 5560 nr_pages); 5561 } 5562 } 5563 } 5564 5565 if (folio_test_writeback(folio)) { 5566 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages); 5567 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages); 5568 } 5569 5570 /* 5571 * All state has been migrated, let's switch to the new memcg. 5572 * 5573 * It is safe to change page's memcg here because the page 5574 * is referenced, charged, isolated, and locked: we can't race 5575 * with (un)charging, migration, LRU putback, or anything else 5576 * that would rely on a stable page's memory cgroup. 5577 * 5578 * Note that lock_page_memcg is a memcg lock, not a page lock, 5579 * to save space. As soon as we switch page's memory cgroup to a 5580 * new memcg that isn't locked, the above state can change 5581 * concurrently again. Make sure we're truly done with it. 5582 */ 5583 smp_mb(); 5584 5585 css_get(&to->css); 5586 css_put(&from->css); 5587 5588 folio->memcg_data = (unsigned long)to; 5589 5590 __folio_memcg_unlock(from); 5591 5592 ret = 0; 5593 nid = folio_nid(folio); 5594 5595 local_irq_disable(); 5596 mem_cgroup_charge_statistics(to, nr_pages); 5597 memcg_check_events(to, nid); 5598 mem_cgroup_charge_statistics(from, -nr_pages); 5599 memcg_check_events(from, nid); 5600 local_irq_enable(); 5601 out_unlock: 5602 folio_unlock(folio); 5603 out: 5604 return ret; 5605 } 5606 5607 /** 5608 * get_mctgt_type - get target type of moving charge 5609 * @vma: the vma the pte to be checked belongs 5610 * @addr: the address corresponding to the pte to be checked 5611 * @ptent: the pte to be checked 5612 * @target: the pointer the target page or swap ent will be stored(can be NULL) 5613 * 5614 * Returns 5615 * 0(MC_TARGET_NONE): if the pte is not a target for move charge. 5616 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for 5617 * move charge. if @target is not NULL, the page is stored in target->page 5618 * with extra refcnt got(Callers should handle it). 5619 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a 5620 * target for charge migration. if @target is not NULL, the entry is stored 5621 * in target->ent. 5622 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE 5623 * (so ZONE_DEVICE page and thus not on the lru). 5624 * For now we such page is charge like a regular page would be as for all 5625 * intent and purposes it is just special memory taking the place of a 5626 * regular page. 5627 * 5628 * See Documentations/vm/hmm.txt and include/linux/hmm.h 5629 * 5630 * Called with pte lock held. 5631 */ 5632 5633 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, 5634 unsigned long addr, pte_t ptent, union mc_target *target) 5635 { 5636 struct page *page = NULL; 5637 enum mc_target_type ret = MC_TARGET_NONE; 5638 swp_entry_t ent = { .val = 0 }; 5639 5640 if (pte_present(ptent)) 5641 page = mc_handle_present_pte(vma, addr, ptent); 5642 else if (is_swap_pte(ptent)) 5643 page = mc_handle_swap_pte(vma, ptent, &ent); 5644 else if (pte_none(ptent)) 5645 page = mc_handle_file_pte(vma, addr, ptent); 5646 5647 if (!page && !ent.val) 5648 return ret; 5649 if (page) { 5650 /* 5651 * Do only loose check w/o serialization. 5652 * mem_cgroup_move_account() checks the page is valid or 5653 * not under LRU exclusion. 5654 */ 5655 if (page_memcg(page) == mc.from) { 5656 ret = MC_TARGET_PAGE; 5657 if (is_device_private_page(page)) 5658 ret = MC_TARGET_DEVICE; 5659 if (target) 5660 target->page = page; 5661 } 5662 if (!ret || !target) 5663 put_page(page); 5664 } 5665 /* 5666 * There is a swap entry and a page doesn't exist or isn't charged. 5667 * But we cannot move a tail-page in a THP. 5668 */ 5669 if (ent.val && !ret && (!page || !PageTransCompound(page)) && 5670 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) { 5671 ret = MC_TARGET_SWAP; 5672 if (target) 5673 target->ent = ent; 5674 } 5675 return ret; 5676 } 5677 5678 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5679 /* 5680 * We don't consider PMD mapped swapping or file mapped pages because THP does 5681 * not support them for now. 5682 * Caller should make sure that pmd_trans_huge(pmd) is true. 5683 */ 5684 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5685 unsigned long addr, pmd_t pmd, union mc_target *target) 5686 { 5687 struct page *page = NULL; 5688 enum mc_target_type ret = MC_TARGET_NONE; 5689 5690 if (unlikely(is_swap_pmd(pmd))) { 5691 VM_BUG_ON(thp_migration_supported() && 5692 !is_pmd_migration_entry(pmd)); 5693 return ret; 5694 } 5695 page = pmd_page(pmd); 5696 VM_BUG_ON_PAGE(!page || !PageHead(page), page); 5697 if (!(mc.flags & MOVE_ANON)) 5698 return ret; 5699 if (page_memcg(page) == mc.from) { 5700 ret = MC_TARGET_PAGE; 5701 if (target) { 5702 get_page(page); 5703 target->page = page; 5704 } 5705 } 5706 return ret; 5707 } 5708 #else 5709 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5710 unsigned long addr, pmd_t pmd, union mc_target *target) 5711 { 5712 return MC_TARGET_NONE; 5713 } 5714 #endif 5715 5716 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 5717 unsigned long addr, unsigned long end, 5718 struct mm_walk *walk) 5719 { 5720 struct vm_area_struct *vma = walk->vma; 5721 pte_t *pte; 5722 spinlock_t *ptl; 5723 5724 ptl = pmd_trans_huge_lock(pmd, vma); 5725 if (ptl) { 5726 /* 5727 * Note their can not be MC_TARGET_DEVICE for now as we do not 5728 * support transparent huge page with MEMORY_DEVICE_PRIVATE but 5729 * this might change. 5730 */ 5731 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) 5732 mc.precharge += HPAGE_PMD_NR; 5733 spin_unlock(ptl); 5734 return 0; 5735 } 5736 5737 if (pmd_trans_unstable(pmd)) 5738 return 0; 5739 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 5740 for (; addr != end; pte++, addr += PAGE_SIZE) 5741 if (get_mctgt_type(vma, addr, *pte, NULL)) 5742 mc.precharge++; /* increment precharge temporarily */ 5743 pte_unmap_unlock(pte - 1, ptl); 5744 cond_resched(); 5745 5746 return 0; 5747 } 5748 5749 static const struct mm_walk_ops precharge_walk_ops = { 5750 .pmd_entry = mem_cgroup_count_precharge_pte_range, 5751 }; 5752 5753 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 5754 { 5755 unsigned long precharge; 5756 5757 mmap_read_lock(mm); 5758 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL); 5759 mmap_read_unlock(mm); 5760 5761 precharge = mc.precharge; 5762 mc.precharge = 0; 5763 5764 return precharge; 5765 } 5766 5767 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 5768 { 5769 unsigned long precharge = mem_cgroup_count_precharge(mm); 5770 5771 VM_BUG_ON(mc.moving_task); 5772 mc.moving_task = current; 5773 return mem_cgroup_do_precharge(precharge); 5774 } 5775 5776 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 5777 static void __mem_cgroup_clear_mc(void) 5778 { 5779 struct mem_cgroup *from = mc.from; 5780 struct mem_cgroup *to = mc.to; 5781 5782 /* we must uncharge all the leftover precharges from mc.to */ 5783 if (mc.precharge) { 5784 cancel_charge(mc.to, mc.precharge); 5785 mc.precharge = 0; 5786 } 5787 /* 5788 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 5789 * we must uncharge here. 5790 */ 5791 if (mc.moved_charge) { 5792 cancel_charge(mc.from, mc.moved_charge); 5793 mc.moved_charge = 0; 5794 } 5795 /* we must fixup refcnts and charges */ 5796 if (mc.moved_swap) { 5797 /* uncharge swap account from the old cgroup */ 5798 if (!mem_cgroup_is_root(mc.from)) 5799 page_counter_uncharge(&mc.from->memsw, mc.moved_swap); 5800 5801 mem_cgroup_id_put_many(mc.from, mc.moved_swap); 5802 5803 /* 5804 * we charged both to->memory and to->memsw, so we 5805 * should uncharge to->memory. 5806 */ 5807 if (!mem_cgroup_is_root(mc.to)) 5808 page_counter_uncharge(&mc.to->memory, mc.moved_swap); 5809 5810 mc.moved_swap = 0; 5811 } 5812 memcg_oom_recover(from); 5813 memcg_oom_recover(to); 5814 wake_up_all(&mc.waitq); 5815 } 5816 5817 static void mem_cgroup_clear_mc(void) 5818 { 5819 struct mm_struct *mm = mc.mm; 5820 5821 /* 5822 * we must clear moving_task before waking up waiters at the end of 5823 * task migration. 5824 */ 5825 mc.moving_task = NULL; 5826 __mem_cgroup_clear_mc(); 5827 spin_lock(&mc.lock); 5828 mc.from = NULL; 5829 mc.to = NULL; 5830 mc.mm = NULL; 5831 spin_unlock(&mc.lock); 5832 5833 mmput(mm); 5834 } 5835 5836 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 5837 { 5838 struct cgroup_subsys_state *css; 5839 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */ 5840 struct mem_cgroup *from; 5841 struct task_struct *leader, *p; 5842 struct mm_struct *mm; 5843 unsigned long move_flags; 5844 int ret = 0; 5845 5846 /* charge immigration isn't supported on the default hierarchy */ 5847 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5848 return 0; 5849 5850 /* 5851 * Multi-process migrations only happen on the default hierarchy 5852 * where charge immigration is not used. Perform charge 5853 * immigration if @tset contains a leader and whine if there are 5854 * multiple. 5855 */ 5856 p = NULL; 5857 cgroup_taskset_for_each_leader(leader, css, tset) { 5858 WARN_ON_ONCE(p); 5859 p = leader; 5860 memcg = mem_cgroup_from_css(css); 5861 } 5862 if (!p) 5863 return 0; 5864 5865 /* 5866 * We are now committed to this value whatever it is. Changes in this 5867 * tunable will only affect upcoming migrations, not the current one. 5868 * So we need to save it, and keep it going. 5869 */ 5870 move_flags = READ_ONCE(memcg->move_charge_at_immigrate); 5871 if (!move_flags) 5872 return 0; 5873 5874 from = mem_cgroup_from_task(p); 5875 5876 VM_BUG_ON(from == memcg); 5877 5878 mm = get_task_mm(p); 5879 if (!mm) 5880 return 0; 5881 /* We move charges only when we move a owner of the mm */ 5882 if (mm->owner == p) { 5883 VM_BUG_ON(mc.from); 5884 VM_BUG_ON(mc.to); 5885 VM_BUG_ON(mc.precharge); 5886 VM_BUG_ON(mc.moved_charge); 5887 VM_BUG_ON(mc.moved_swap); 5888 5889 spin_lock(&mc.lock); 5890 mc.mm = mm; 5891 mc.from = from; 5892 mc.to = memcg; 5893 mc.flags = move_flags; 5894 spin_unlock(&mc.lock); 5895 /* We set mc.moving_task later */ 5896 5897 ret = mem_cgroup_precharge_mc(mm); 5898 if (ret) 5899 mem_cgroup_clear_mc(); 5900 } else { 5901 mmput(mm); 5902 } 5903 return ret; 5904 } 5905 5906 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 5907 { 5908 if (mc.to) 5909 mem_cgroup_clear_mc(); 5910 } 5911 5912 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 5913 unsigned long addr, unsigned long end, 5914 struct mm_walk *walk) 5915 { 5916 int ret = 0; 5917 struct vm_area_struct *vma = walk->vma; 5918 pte_t *pte; 5919 spinlock_t *ptl; 5920 enum mc_target_type target_type; 5921 union mc_target target; 5922 struct page *page; 5923 5924 ptl = pmd_trans_huge_lock(pmd, vma); 5925 if (ptl) { 5926 if (mc.precharge < HPAGE_PMD_NR) { 5927 spin_unlock(ptl); 5928 return 0; 5929 } 5930 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); 5931 if (target_type == MC_TARGET_PAGE) { 5932 page = target.page; 5933 if (!isolate_lru_page(page)) { 5934 if (!mem_cgroup_move_account(page, true, 5935 mc.from, mc.to)) { 5936 mc.precharge -= HPAGE_PMD_NR; 5937 mc.moved_charge += HPAGE_PMD_NR; 5938 } 5939 putback_lru_page(page); 5940 } 5941 put_page(page); 5942 } else if (target_type == MC_TARGET_DEVICE) { 5943 page = target.page; 5944 if (!mem_cgroup_move_account(page, true, 5945 mc.from, mc.to)) { 5946 mc.precharge -= HPAGE_PMD_NR; 5947 mc.moved_charge += HPAGE_PMD_NR; 5948 } 5949 put_page(page); 5950 } 5951 spin_unlock(ptl); 5952 return 0; 5953 } 5954 5955 if (pmd_trans_unstable(pmd)) 5956 return 0; 5957 retry: 5958 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 5959 for (; addr != end; addr += PAGE_SIZE) { 5960 pte_t ptent = *(pte++); 5961 bool device = false; 5962 swp_entry_t ent; 5963 5964 if (!mc.precharge) 5965 break; 5966 5967 switch (get_mctgt_type(vma, addr, ptent, &target)) { 5968 case MC_TARGET_DEVICE: 5969 device = true; 5970 fallthrough; 5971 case MC_TARGET_PAGE: 5972 page = target.page; 5973 /* 5974 * We can have a part of the split pmd here. Moving it 5975 * can be done but it would be too convoluted so simply 5976 * ignore such a partial THP and keep it in original 5977 * memcg. There should be somebody mapping the head. 5978 */ 5979 if (PageTransCompound(page)) 5980 goto put; 5981 if (!device && isolate_lru_page(page)) 5982 goto put; 5983 if (!mem_cgroup_move_account(page, false, 5984 mc.from, mc.to)) { 5985 mc.precharge--; 5986 /* we uncharge from mc.from later. */ 5987 mc.moved_charge++; 5988 } 5989 if (!device) 5990 putback_lru_page(page); 5991 put: /* get_mctgt_type() gets the page */ 5992 put_page(page); 5993 break; 5994 case MC_TARGET_SWAP: 5995 ent = target.ent; 5996 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { 5997 mc.precharge--; 5998 mem_cgroup_id_get_many(mc.to, 1); 5999 /* we fixup other refcnts and charges later. */ 6000 mc.moved_swap++; 6001 } 6002 break; 6003 default: 6004 break; 6005 } 6006 } 6007 pte_unmap_unlock(pte - 1, ptl); 6008 cond_resched(); 6009 6010 if (addr != end) { 6011 /* 6012 * We have consumed all precharges we got in can_attach(). 6013 * We try charge one by one, but don't do any additional 6014 * charges to mc.to if we have failed in charge once in attach() 6015 * phase. 6016 */ 6017 ret = mem_cgroup_do_precharge(1); 6018 if (!ret) 6019 goto retry; 6020 } 6021 6022 return ret; 6023 } 6024 6025 static const struct mm_walk_ops charge_walk_ops = { 6026 .pmd_entry = mem_cgroup_move_charge_pte_range, 6027 }; 6028 6029 static void mem_cgroup_move_charge(void) 6030 { 6031 lru_add_drain_all(); 6032 /* 6033 * Signal lock_page_memcg() to take the memcg's move_lock 6034 * while we're moving its pages to another memcg. Then wait 6035 * for already started RCU-only updates to finish. 6036 */ 6037 atomic_inc(&mc.from->moving_account); 6038 synchronize_rcu(); 6039 retry: 6040 if (unlikely(!mmap_read_trylock(mc.mm))) { 6041 /* 6042 * Someone who are holding the mmap_lock might be waiting in 6043 * waitq. So we cancel all extra charges, wake up all waiters, 6044 * and retry. Because we cancel precharges, we might not be able 6045 * to move enough charges, but moving charge is a best-effort 6046 * feature anyway, so it wouldn't be a big problem. 6047 */ 6048 __mem_cgroup_clear_mc(); 6049 cond_resched(); 6050 goto retry; 6051 } 6052 /* 6053 * When we have consumed all precharges and failed in doing 6054 * additional charge, the page walk just aborts. 6055 */ 6056 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops, 6057 NULL); 6058 6059 mmap_read_unlock(mc.mm); 6060 atomic_dec(&mc.from->moving_account); 6061 } 6062 6063 static void mem_cgroup_move_task(void) 6064 { 6065 if (mc.to) { 6066 mem_cgroup_move_charge(); 6067 mem_cgroup_clear_mc(); 6068 } 6069 } 6070 #else /* !CONFIG_MMU */ 6071 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 6072 { 6073 return 0; 6074 } 6075 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 6076 { 6077 } 6078 static void mem_cgroup_move_task(void) 6079 { 6080 } 6081 #endif 6082 6083 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value) 6084 { 6085 if (value == PAGE_COUNTER_MAX) 6086 seq_puts(m, "max\n"); 6087 else 6088 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE); 6089 6090 return 0; 6091 } 6092 6093 static u64 memory_current_read(struct cgroup_subsys_state *css, 6094 struct cftype *cft) 6095 { 6096 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6097 6098 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; 6099 } 6100 6101 static int memory_min_show(struct seq_file *m, void *v) 6102 { 6103 return seq_puts_memcg_tunable(m, 6104 READ_ONCE(mem_cgroup_from_seq(m)->memory.min)); 6105 } 6106 6107 static ssize_t memory_min_write(struct kernfs_open_file *of, 6108 char *buf, size_t nbytes, loff_t off) 6109 { 6110 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6111 unsigned long min; 6112 int err; 6113 6114 buf = strstrip(buf); 6115 err = page_counter_memparse(buf, "max", &min); 6116 if (err) 6117 return err; 6118 6119 page_counter_set_min(&memcg->memory, min); 6120 6121 return nbytes; 6122 } 6123 6124 static int memory_low_show(struct seq_file *m, void *v) 6125 { 6126 return seq_puts_memcg_tunable(m, 6127 READ_ONCE(mem_cgroup_from_seq(m)->memory.low)); 6128 } 6129 6130 static ssize_t memory_low_write(struct kernfs_open_file *of, 6131 char *buf, size_t nbytes, loff_t off) 6132 { 6133 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6134 unsigned long low; 6135 int err; 6136 6137 buf = strstrip(buf); 6138 err = page_counter_memparse(buf, "max", &low); 6139 if (err) 6140 return err; 6141 6142 page_counter_set_low(&memcg->memory, low); 6143 6144 return nbytes; 6145 } 6146 6147 static int memory_high_show(struct seq_file *m, void *v) 6148 { 6149 return seq_puts_memcg_tunable(m, 6150 READ_ONCE(mem_cgroup_from_seq(m)->memory.high)); 6151 } 6152 6153 static ssize_t memory_high_write(struct kernfs_open_file *of, 6154 char *buf, size_t nbytes, loff_t off) 6155 { 6156 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6157 unsigned int nr_retries = MAX_RECLAIM_RETRIES; 6158 bool drained = false; 6159 unsigned long high; 6160 int err; 6161 6162 buf = strstrip(buf); 6163 err = page_counter_memparse(buf, "max", &high); 6164 if (err) 6165 return err; 6166 6167 page_counter_set_high(&memcg->memory, high); 6168 6169 for (;;) { 6170 unsigned long nr_pages = page_counter_read(&memcg->memory); 6171 unsigned long reclaimed; 6172 6173 if (nr_pages <= high) 6174 break; 6175 6176 if (signal_pending(current)) 6177 break; 6178 6179 if (!drained) { 6180 drain_all_stock(memcg); 6181 drained = true; 6182 continue; 6183 } 6184 6185 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high, 6186 GFP_KERNEL, true); 6187 6188 if (!reclaimed && !nr_retries--) 6189 break; 6190 } 6191 6192 memcg_wb_domain_size_changed(memcg); 6193 return nbytes; 6194 } 6195 6196 static int memory_max_show(struct seq_file *m, void *v) 6197 { 6198 return seq_puts_memcg_tunable(m, 6199 READ_ONCE(mem_cgroup_from_seq(m)->memory.max)); 6200 } 6201 6202 static ssize_t memory_max_write(struct kernfs_open_file *of, 6203 char *buf, size_t nbytes, loff_t off) 6204 { 6205 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6206 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES; 6207 bool drained = false; 6208 unsigned long max; 6209 int err; 6210 6211 buf = strstrip(buf); 6212 err = page_counter_memparse(buf, "max", &max); 6213 if (err) 6214 return err; 6215 6216 xchg(&memcg->memory.max, max); 6217 6218 for (;;) { 6219 unsigned long nr_pages = page_counter_read(&memcg->memory); 6220 6221 if (nr_pages <= max) 6222 break; 6223 6224 if (signal_pending(current)) 6225 break; 6226 6227 if (!drained) { 6228 drain_all_stock(memcg); 6229 drained = true; 6230 continue; 6231 } 6232 6233 if (nr_reclaims) { 6234 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max, 6235 GFP_KERNEL, true)) 6236 nr_reclaims--; 6237 continue; 6238 } 6239 6240 memcg_memory_event(memcg, MEMCG_OOM); 6241 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0)) 6242 break; 6243 } 6244 6245 memcg_wb_domain_size_changed(memcg); 6246 return nbytes; 6247 } 6248 6249 static void __memory_events_show(struct seq_file *m, atomic_long_t *events) 6250 { 6251 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW])); 6252 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH])); 6253 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX])); 6254 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM])); 6255 seq_printf(m, "oom_kill %lu\n", 6256 atomic_long_read(&events[MEMCG_OOM_KILL])); 6257 seq_printf(m, "oom_group_kill %lu\n", 6258 atomic_long_read(&events[MEMCG_OOM_GROUP_KILL])); 6259 } 6260 6261 static int memory_events_show(struct seq_file *m, void *v) 6262 { 6263 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6264 6265 __memory_events_show(m, memcg->memory_events); 6266 return 0; 6267 } 6268 6269 static int memory_events_local_show(struct seq_file *m, void *v) 6270 { 6271 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6272 6273 __memory_events_show(m, memcg->memory_events_local); 6274 return 0; 6275 } 6276 6277 static int memory_stat_show(struct seq_file *m, void *v) 6278 { 6279 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6280 char *buf; 6281 6282 buf = memory_stat_format(memcg); 6283 if (!buf) 6284 return -ENOMEM; 6285 seq_puts(m, buf); 6286 kfree(buf); 6287 return 0; 6288 } 6289 6290 #ifdef CONFIG_NUMA 6291 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec, 6292 int item) 6293 { 6294 return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item); 6295 } 6296 6297 static int memory_numa_stat_show(struct seq_file *m, void *v) 6298 { 6299 int i; 6300 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6301 6302 mem_cgroup_flush_stats(); 6303 6304 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 6305 int nid; 6306 6307 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS) 6308 continue; 6309 6310 seq_printf(m, "%s", memory_stats[i].name); 6311 for_each_node_state(nid, N_MEMORY) { 6312 u64 size; 6313 struct lruvec *lruvec; 6314 6315 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); 6316 size = lruvec_page_state_output(lruvec, 6317 memory_stats[i].idx); 6318 seq_printf(m, " N%d=%llu", nid, size); 6319 } 6320 seq_putc(m, '\n'); 6321 } 6322 6323 return 0; 6324 } 6325 #endif 6326 6327 static int memory_oom_group_show(struct seq_file *m, void *v) 6328 { 6329 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6330 6331 seq_printf(m, "%d\n", memcg->oom_group); 6332 6333 return 0; 6334 } 6335 6336 static ssize_t memory_oom_group_write(struct kernfs_open_file *of, 6337 char *buf, size_t nbytes, loff_t off) 6338 { 6339 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6340 int ret, oom_group; 6341 6342 buf = strstrip(buf); 6343 if (!buf) 6344 return -EINVAL; 6345 6346 ret = kstrtoint(buf, 0, &oom_group); 6347 if (ret) 6348 return ret; 6349 6350 if (oom_group != 0 && oom_group != 1) 6351 return -EINVAL; 6352 6353 memcg->oom_group = oom_group; 6354 6355 return nbytes; 6356 } 6357 6358 static struct cftype memory_files[] = { 6359 { 6360 .name = "current", 6361 .flags = CFTYPE_NOT_ON_ROOT, 6362 .read_u64 = memory_current_read, 6363 }, 6364 { 6365 .name = "min", 6366 .flags = CFTYPE_NOT_ON_ROOT, 6367 .seq_show = memory_min_show, 6368 .write = memory_min_write, 6369 }, 6370 { 6371 .name = "low", 6372 .flags = CFTYPE_NOT_ON_ROOT, 6373 .seq_show = memory_low_show, 6374 .write = memory_low_write, 6375 }, 6376 { 6377 .name = "high", 6378 .flags = CFTYPE_NOT_ON_ROOT, 6379 .seq_show = memory_high_show, 6380 .write = memory_high_write, 6381 }, 6382 { 6383 .name = "max", 6384 .flags = CFTYPE_NOT_ON_ROOT, 6385 .seq_show = memory_max_show, 6386 .write = memory_max_write, 6387 }, 6388 { 6389 .name = "events", 6390 .flags = CFTYPE_NOT_ON_ROOT, 6391 .file_offset = offsetof(struct mem_cgroup, events_file), 6392 .seq_show = memory_events_show, 6393 }, 6394 { 6395 .name = "events.local", 6396 .flags = CFTYPE_NOT_ON_ROOT, 6397 .file_offset = offsetof(struct mem_cgroup, events_local_file), 6398 .seq_show = memory_events_local_show, 6399 }, 6400 { 6401 .name = "stat", 6402 .seq_show = memory_stat_show, 6403 }, 6404 #ifdef CONFIG_NUMA 6405 { 6406 .name = "numa_stat", 6407 .seq_show = memory_numa_stat_show, 6408 }, 6409 #endif 6410 { 6411 .name = "oom.group", 6412 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE, 6413 .seq_show = memory_oom_group_show, 6414 .write = memory_oom_group_write, 6415 }, 6416 { } /* terminate */ 6417 }; 6418 6419 struct cgroup_subsys memory_cgrp_subsys = { 6420 .css_alloc = mem_cgroup_css_alloc, 6421 .css_online = mem_cgroup_css_online, 6422 .css_offline = mem_cgroup_css_offline, 6423 .css_released = mem_cgroup_css_released, 6424 .css_free = mem_cgroup_css_free, 6425 .css_reset = mem_cgroup_css_reset, 6426 .css_rstat_flush = mem_cgroup_css_rstat_flush, 6427 .can_attach = mem_cgroup_can_attach, 6428 .cancel_attach = mem_cgroup_cancel_attach, 6429 .post_attach = mem_cgroup_move_task, 6430 .dfl_cftypes = memory_files, 6431 .legacy_cftypes = mem_cgroup_legacy_files, 6432 .early_init = 0, 6433 }; 6434 6435 /* 6436 * This function calculates an individual cgroup's effective 6437 * protection which is derived from its own memory.min/low, its 6438 * parent's and siblings' settings, as well as the actual memory 6439 * distribution in the tree. 6440 * 6441 * The following rules apply to the effective protection values: 6442 * 6443 * 1. At the first level of reclaim, effective protection is equal to 6444 * the declared protection in memory.min and memory.low. 6445 * 6446 * 2. To enable safe delegation of the protection configuration, at 6447 * subsequent levels the effective protection is capped to the 6448 * parent's effective protection. 6449 * 6450 * 3. To make complex and dynamic subtrees easier to configure, the 6451 * user is allowed to overcommit the declared protection at a given 6452 * level. If that is the case, the parent's effective protection is 6453 * distributed to the children in proportion to how much protection 6454 * they have declared and how much of it they are utilizing. 6455 * 6456 * This makes distribution proportional, but also work-conserving: 6457 * if one cgroup claims much more protection than it uses memory, 6458 * the unused remainder is available to its siblings. 6459 * 6460 * 4. Conversely, when the declared protection is undercommitted at a 6461 * given level, the distribution of the larger parental protection 6462 * budget is NOT proportional. A cgroup's protection from a sibling 6463 * is capped to its own memory.min/low setting. 6464 * 6465 * 5. However, to allow protecting recursive subtrees from each other 6466 * without having to declare each individual cgroup's fixed share 6467 * of the ancestor's claim to protection, any unutilized - 6468 * "floating" - protection from up the tree is distributed in 6469 * proportion to each cgroup's *usage*. This makes the protection 6470 * neutral wrt sibling cgroups and lets them compete freely over 6471 * the shared parental protection budget, but it protects the 6472 * subtree as a whole from neighboring subtrees. 6473 * 6474 * Note that 4. and 5. are not in conflict: 4. is about protecting 6475 * against immediate siblings whereas 5. is about protecting against 6476 * neighboring subtrees. 6477 */ 6478 static unsigned long effective_protection(unsigned long usage, 6479 unsigned long parent_usage, 6480 unsigned long setting, 6481 unsigned long parent_effective, 6482 unsigned long siblings_protected) 6483 { 6484 unsigned long protected; 6485 unsigned long ep; 6486 6487 protected = min(usage, setting); 6488 /* 6489 * If all cgroups at this level combined claim and use more 6490 * protection then what the parent affords them, distribute 6491 * shares in proportion to utilization. 6492 * 6493 * We are using actual utilization rather than the statically 6494 * claimed protection in order to be work-conserving: claimed 6495 * but unused protection is available to siblings that would 6496 * otherwise get a smaller chunk than what they claimed. 6497 */ 6498 if (siblings_protected > parent_effective) 6499 return protected * parent_effective / siblings_protected; 6500 6501 /* 6502 * Ok, utilized protection of all children is within what the 6503 * parent affords them, so we know whatever this child claims 6504 * and utilizes is effectively protected. 6505 * 6506 * If there is unprotected usage beyond this value, reclaim 6507 * will apply pressure in proportion to that amount. 6508 * 6509 * If there is unutilized protection, the cgroup will be fully 6510 * shielded from reclaim, but we do return a smaller value for 6511 * protection than what the group could enjoy in theory. This 6512 * is okay. With the overcommit distribution above, effective 6513 * protection is always dependent on how memory is actually 6514 * consumed among the siblings anyway. 6515 */ 6516 ep = protected; 6517 6518 /* 6519 * If the children aren't claiming (all of) the protection 6520 * afforded to them by the parent, distribute the remainder in 6521 * proportion to the (unprotected) memory of each cgroup. That 6522 * way, cgroups that aren't explicitly prioritized wrt each 6523 * other compete freely over the allowance, but they are 6524 * collectively protected from neighboring trees. 6525 * 6526 * We're using unprotected memory for the weight so that if 6527 * some cgroups DO claim explicit protection, we don't protect 6528 * the same bytes twice. 6529 * 6530 * Check both usage and parent_usage against the respective 6531 * protected values. One should imply the other, but they 6532 * aren't read atomically - make sure the division is sane. 6533 */ 6534 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)) 6535 return ep; 6536 if (parent_effective > siblings_protected && 6537 parent_usage > siblings_protected && 6538 usage > protected) { 6539 unsigned long unclaimed; 6540 6541 unclaimed = parent_effective - siblings_protected; 6542 unclaimed *= usage - protected; 6543 unclaimed /= parent_usage - siblings_protected; 6544 6545 ep += unclaimed; 6546 } 6547 6548 return ep; 6549 } 6550 6551 /** 6552 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range 6553 * @root: the top ancestor of the sub-tree being checked 6554 * @memcg: the memory cgroup to check 6555 * 6556 * WARNING: This function is not stateless! It can only be used as part 6557 * of a top-down tree iteration, not for isolated queries. 6558 */ 6559 void mem_cgroup_calculate_protection(struct mem_cgroup *root, 6560 struct mem_cgroup *memcg) 6561 { 6562 unsigned long usage, parent_usage; 6563 struct mem_cgroup *parent; 6564 6565 if (mem_cgroup_disabled()) 6566 return; 6567 6568 if (!root) 6569 root = root_mem_cgroup; 6570 6571 /* 6572 * Effective values of the reclaim targets are ignored so they 6573 * can be stale. Have a look at mem_cgroup_protection for more 6574 * details. 6575 * TODO: calculation should be more robust so that we do not need 6576 * that special casing. 6577 */ 6578 if (memcg == root) 6579 return; 6580 6581 usage = page_counter_read(&memcg->memory); 6582 if (!usage) 6583 return; 6584 6585 parent = parent_mem_cgroup(memcg); 6586 6587 if (parent == root) { 6588 memcg->memory.emin = READ_ONCE(memcg->memory.min); 6589 memcg->memory.elow = READ_ONCE(memcg->memory.low); 6590 return; 6591 } 6592 6593 parent_usage = page_counter_read(&parent->memory); 6594 6595 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage, 6596 READ_ONCE(memcg->memory.min), 6597 READ_ONCE(parent->memory.emin), 6598 atomic_long_read(&parent->memory.children_min_usage))); 6599 6600 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage, 6601 READ_ONCE(memcg->memory.low), 6602 READ_ONCE(parent->memory.elow), 6603 atomic_long_read(&parent->memory.children_low_usage))); 6604 } 6605 6606 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg, 6607 gfp_t gfp) 6608 { 6609 long nr_pages = folio_nr_pages(folio); 6610 int ret; 6611 6612 ret = try_charge(memcg, gfp, nr_pages); 6613 if (ret) 6614 goto out; 6615 6616 css_get(&memcg->css); 6617 commit_charge(folio, memcg); 6618 6619 local_irq_disable(); 6620 mem_cgroup_charge_statistics(memcg, nr_pages); 6621 memcg_check_events(memcg, folio_nid(folio)); 6622 local_irq_enable(); 6623 out: 6624 return ret; 6625 } 6626 6627 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp) 6628 { 6629 struct mem_cgroup *memcg; 6630 int ret; 6631 6632 memcg = get_mem_cgroup_from_mm(mm); 6633 ret = charge_memcg(folio, memcg, gfp); 6634 css_put(&memcg->css); 6635 6636 return ret; 6637 } 6638 6639 /** 6640 * mem_cgroup_swapin_charge_page - charge a newly allocated page for swapin 6641 * @page: page to charge 6642 * @mm: mm context of the victim 6643 * @gfp: reclaim mode 6644 * @entry: swap entry for which the page is allocated 6645 * 6646 * This function charges a page allocated for swapin. Please call this before 6647 * adding the page to the swapcache. 6648 * 6649 * Returns 0 on success. Otherwise, an error code is returned. 6650 */ 6651 int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm, 6652 gfp_t gfp, swp_entry_t entry) 6653 { 6654 struct folio *folio = page_folio(page); 6655 struct mem_cgroup *memcg; 6656 unsigned short id; 6657 int ret; 6658 6659 if (mem_cgroup_disabled()) 6660 return 0; 6661 6662 id = lookup_swap_cgroup_id(entry); 6663 rcu_read_lock(); 6664 memcg = mem_cgroup_from_id(id); 6665 if (!memcg || !css_tryget_online(&memcg->css)) 6666 memcg = get_mem_cgroup_from_mm(mm); 6667 rcu_read_unlock(); 6668 6669 ret = charge_memcg(folio, memcg, gfp); 6670 6671 css_put(&memcg->css); 6672 return ret; 6673 } 6674 6675 /* 6676 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot 6677 * @entry: swap entry for which the page is charged 6678 * 6679 * Call this function after successfully adding the charged page to swapcache. 6680 * 6681 * Note: This function assumes the page for which swap slot is being uncharged 6682 * is order 0 page. 6683 */ 6684 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry) 6685 { 6686 /* 6687 * Cgroup1's unified memory+swap counter has been charged with the 6688 * new swapcache page, finish the transfer by uncharging the swap 6689 * slot. The swap slot would also get uncharged when it dies, but 6690 * it can stick around indefinitely and we'd count the page twice 6691 * the entire time. 6692 * 6693 * Cgroup2 has separate resource counters for memory and swap, 6694 * so this is a non-issue here. Memory and swap charge lifetimes 6695 * correspond 1:1 to page and swap slot lifetimes: we charge the 6696 * page to memory here, and uncharge swap when the slot is freed. 6697 */ 6698 if (!mem_cgroup_disabled() && do_memsw_account()) { 6699 /* 6700 * The swap entry might not get freed for a long time, 6701 * let's not wait for it. The page already received a 6702 * memory+swap charge, drop the swap entry duplicate. 6703 */ 6704 mem_cgroup_uncharge_swap(entry, 1); 6705 } 6706 } 6707 6708 struct uncharge_gather { 6709 struct mem_cgroup *memcg; 6710 unsigned long nr_memory; 6711 unsigned long pgpgout; 6712 unsigned long nr_kmem; 6713 int nid; 6714 }; 6715 6716 static inline void uncharge_gather_clear(struct uncharge_gather *ug) 6717 { 6718 memset(ug, 0, sizeof(*ug)); 6719 } 6720 6721 static void uncharge_batch(const struct uncharge_gather *ug) 6722 { 6723 unsigned long flags; 6724 6725 if (ug->nr_memory) { 6726 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory); 6727 if (do_memsw_account()) 6728 page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory); 6729 if (ug->nr_kmem) 6730 memcg_account_kmem(ug->memcg, -ug->nr_kmem); 6731 memcg_oom_recover(ug->memcg); 6732 } 6733 6734 local_irq_save(flags); 6735 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout); 6736 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory); 6737 memcg_check_events(ug->memcg, ug->nid); 6738 local_irq_restore(flags); 6739 6740 /* drop reference from uncharge_folio */ 6741 css_put(&ug->memcg->css); 6742 } 6743 6744 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug) 6745 { 6746 long nr_pages; 6747 struct mem_cgroup *memcg; 6748 struct obj_cgroup *objcg; 6749 6750 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 6751 6752 /* 6753 * Nobody should be changing or seriously looking at 6754 * folio memcg or objcg at this point, we have fully 6755 * exclusive access to the folio. 6756 */ 6757 if (folio_memcg_kmem(folio)) { 6758 objcg = __folio_objcg(folio); 6759 /* 6760 * This get matches the put at the end of the function and 6761 * kmem pages do not hold memcg references anymore. 6762 */ 6763 memcg = get_mem_cgroup_from_objcg(objcg); 6764 } else { 6765 memcg = __folio_memcg(folio); 6766 } 6767 6768 if (!memcg) 6769 return; 6770 6771 if (ug->memcg != memcg) { 6772 if (ug->memcg) { 6773 uncharge_batch(ug); 6774 uncharge_gather_clear(ug); 6775 } 6776 ug->memcg = memcg; 6777 ug->nid = folio_nid(folio); 6778 6779 /* pairs with css_put in uncharge_batch */ 6780 css_get(&memcg->css); 6781 } 6782 6783 nr_pages = folio_nr_pages(folio); 6784 6785 if (folio_memcg_kmem(folio)) { 6786 ug->nr_memory += nr_pages; 6787 ug->nr_kmem += nr_pages; 6788 6789 folio->memcg_data = 0; 6790 obj_cgroup_put(objcg); 6791 } else { 6792 /* LRU pages aren't accounted at the root level */ 6793 if (!mem_cgroup_is_root(memcg)) 6794 ug->nr_memory += nr_pages; 6795 ug->pgpgout++; 6796 6797 folio->memcg_data = 0; 6798 } 6799 6800 css_put(&memcg->css); 6801 } 6802 6803 void __mem_cgroup_uncharge(struct folio *folio) 6804 { 6805 struct uncharge_gather ug; 6806 6807 /* Don't touch folio->lru of any random page, pre-check: */ 6808 if (!folio_memcg(folio)) 6809 return; 6810 6811 uncharge_gather_clear(&ug); 6812 uncharge_folio(folio, &ug); 6813 uncharge_batch(&ug); 6814 } 6815 6816 /** 6817 * __mem_cgroup_uncharge_list - uncharge a list of page 6818 * @page_list: list of pages to uncharge 6819 * 6820 * Uncharge a list of pages previously charged with 6821 * __mem_cgroup_charge(). 6822 */ 6823 void __mem_cgroup_uncharge_list(struct list_head *page_list) 6824 { 6825 struct uncharge_gather ug; 6826 struct folio *folio; 6827 6828 uncharge_gather_clear(&ug); 6829 list_for_each_entry(folio, page_list, lru) 6830 uncharge_folio(folio, &ug); 6831 if (ug.memcg) 6832 uncharge_batch(&ug); 6833 } 6834 6835 /** 6836 * mem_cgroup_migrate - Charge a folio's replacement. 6837 * @old: Currently circulating folio. 6838 * @new: Replacement folio. 6839 * 6840 * Charge @new as a replacement folio for @old. @old will 6841 * be uncharged upon free. 6842 * 6843 * Both folios must be locked, @new->mapping must be set up. 6844 */ 6845 void mem_cgroup_migrate(struct folio *old, struct folio *new) 6846 { 6847 struct mem_cgroup *memcg; 6848 long nr_pages = folio_nr_pages(new); 6849 unsigned long flags; 6850 6851 VM_BUG_ON_FOLIO(!folio_test_locked(old), old); 6852 VM_BUG_ON_FOLIO(!folio_test_locked(new), new); 6853 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new); 6854 VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new); 6855 6856 if (mem_cgroup_disabled()) 6857 return; 6858 6859 /* Page cache replacement: new folio already charged? */ 6860 if (folio_memcg(new)) 6861 return; 6862 6863 memcg = folio_memcg(old); 6864 VM_WARN_ON_ONCE_FOLIO(!memcg, old); 6865 if (!memcg) 6866 return; 6867 6868 /* Force-charge the new page. The old one will be freed soon */ 6869 if (!mem_cgroup_is_root(memcg)) { 6870 page_counter_charge(&memcg->memory, nr_pages); 6871 if (do_memsw_account()) 6872 page_counter_charge(&memcg->memsw, nr_pages); 6873 } 6874 6875 css_get(&memcg->css); 6876 commit_charge(new, memcg); 6877 6878 local_irq_save(flags); 6879 mem_cgroup_charge_statistics(memcg, nr_pages); 6880 memcg_check_events(memcg, folio_nid(new)); 6881 local_irq_restore(flags); 6882 } 6883 6884 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); 6885 EXPORT_SYMBOL(memcg_sockets_enabled_key); 6886 6887 void mem_cgroup_sk_alloc(struct sock *sk) 6888 { 6889 struct mem_cgroup *memcg; 6890 6891 if (!mem_cgroup_sockets_enabled) 6892 return; 6893 6894 /* Do not associate the sock with unrelated interrupted task's memcg. */ 6895 if (!in_task()) 6896 return; 6897 6898 rcu_read_lock(); 6899 memcg = mem_cgroup_from_task(current); 6900 if (memcg == root_mem_cgroup) 6901 goto out; 6902 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active) 6903 goto out; 6904 if (css_tryget(&memcg->css)) 6905 sk->sk_memcg = memcg; 6906 out: 6907 rcu_read_unlock(); 6908 } 6909 6910 void mem_cgroup_sk_free(struct sock *sk) 6911 { 6912 if (sk->sk_memcg) 6913 css_put(&sk->sk_memcg->css); 6914 } 6915 6916 /** 6917 * mem_cgroup_charge_skmem - charge socket memory 6918 * @memcg: memcg to charge 6919 * @nr_pages: number of pages to charge 6920 * @gfp_mask: reclaim mode 6921 * 6922 * Charges @nr_pages to @memcg. Returns %true if the charge fit within 6923 * @memcg's configured limit, %false if it doesn't. 6924 */ 6925 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages, 6926 gfp_t gfp_mask) 6927 { 6928 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 6929 struct page_counter *fail; 6930 6931 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) { 6932 memcg->tcpmem_pressure = 0; 6933 return true; 6934 } 6935 memcg->tcpmem_pressure = 1; 6936 if (gfp_mask & __GFP_NOFAIL) { 6937 page_counter_charge(&memcg->tcpmem, nr_pages); 6938 return true; 6939 } 6940 return false; 6941 } 6942 6943 if (try_charge(memcg, gfp_mask, nr_pages) == 0) { 6944 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages); 6945 return true; 6946 } 6947 6948 return false; 6949 } 6950 6951 /** 6952 * mem_cgroup_uncharge_skmem - uncharge socket memory 6953 * @memcg: memcg to uncharge 6954 * @nr_pages: number of pages to uncharge 6955 */ 6956 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 6957 { 6958 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 6959 page_counter_uncharge(&memcg->tcpmem, nr_pages); 6960 return; 6961 } 6962 6963 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages); 6964 6965 refill_stock(memcg, nr_pages); 6966 } 6967 6968 static int __init cgroup_memory(char *s) 6969 { 6970 char *token; 6971 6972 while ((token = strsep(&s, ",")) != NULL) { 6973 if (!*token) 6974 continue; 6975 if (!strcmp(token, "nosocket")) 6976 cgroup_memory_nosocket = true; 6977 if (!strcmp(token, "nokmem")) 6978 cgroup_memory_nokmem = true; 6979 } 6980 return 1; 6981 } 6982 __setup("cgroup.memory=", cgroup_memory); 6983 6984 /* 6985 * subsys_initcall() for memory controller. 6986 * 6987 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this 6988 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but 6989 * basically everything that doesn't depend on a specific mem_cgroup structure 6990 * should be initialized from here. 6991 */ 6992 static int __init mem_cgroup_init(void) 6993 { 6994 int cpu, node; 6995 6996 /* 6997 * Currently s32 type (can refer to struct batched_lruvec_stat) is 6998 * used for per-memcg-per-cpu caching of per-node statistics. In order 6999 * to work fine, we should make sure that the overfill threshold can't 7000 * exceed S32_MAX / PAGE_SIZE. 7001 */ 7002 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE); 7003 7004 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL, 7005 memcg_hotplug_cpu_dead); 7006 7007 for_each_possible_cpu(cpu) 7008 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, 7009 drain_local_stock); 7010 7011 for_each_node(node) { 7012 struct mem_cgroup_tree_per_node *rtpn; 7013 7014 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, 7015 node_online(node) ? node : NUMA_NO_NODE); 7016 7017 rtpn->rb_root = RB_ROOT; 7018 rtpn->rb_rightmost = NULL; 7019 spin_lock_init(&rtpn->lock); 7020 soft_limit_tree.rb_tree_per_node[node] = rtpn; 7021 } 7022 7023 return 0; 7024 } 7025 subsys_initcall(mem_cgroup_init); 7026 7027 #ifdef CONFIG_MEMCG_SWAP 7028 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg) 7029 { 7030 while (!refcount_inc_not_zero(&memcg->id.ref)) { 7031 /* 7032 * The root cgroup cannot be destroyed, so it's refcount must 7033 * always be >= 1. 7034 */ 7035 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) { 7036 VM_BUG_ON(1); 7037 break; 7038 } 7039 memcg = parent_mem_cgroup(memcg); 7040 if (!memcg) 7041 memcg = root_mem_cgroup; 7042 } 7043 return memcg; 7044 } 7045 7046 /** 7047 * mem_cgroup_swapout - transfer a memsw charge to swap 7048 * @folio: folio whose memsw charge to transfer 7049 * @entry: swap entry to move the charge to 7050 * 7051 * Transfer the memsw charge of @folio to @entry. 7052 */ 7053 void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry) 7054 { 7055 struct mem_cgroup *memcg, *swap_memcg; 7056 unsigned int nr_entries; 7057 unsigned short oldid; 7058 7059 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 7060 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); 7061 7062 if (mem_cgroup_disabled()) 7063 return; 7064 7065 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7066 return; 7067 7068 memcg = folio_memcg(folio); 7069 7070 VM_WARN_ON_ONCE_FOLIO(!memcg, folio); 7071 if (!memcg) 7072 return; 7073 7074 /* 7075 * In case the memcg owning these pages has been offlined and doesn't 7076 * have an ID allocated to it anymore, charge the closest online 7077 * ancestor for the swap instead and transfer the memory+swap charge. 7078 */ 7079 swap_memcg = mem_cgroup_id_get_online(memcg); 7080 nr_entries = folio_nr_pages(folio); 7081 /* Get references for the tail pages, too */ 7082 if (nr_entries > 1) 7083 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1); 7084 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg), 7085 nr_entries); 7086 VM_BUG_ON_FOLIO(oldid, folio); 7087 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries); 7088 7089 folio->memcg_data = 0; 7090 7091 if (!mem_cgroup_is_root(memcg)) 7092 page_counter_uncharge(&memcg->memory, nr_entries); 7093 7094 if (!cgroup_memory_noswap && memcg != swap_memcg) { 7095 if (!mem_cgroup_is_root(swap_memcg)) 7096 page_counter_charge(&swap_memcg->memsw, nr_entries); 7097 page_counter_uncharge(&memcg->memsw, nr_entries); 7098 } 7099 7100 /* 7101 * Interrupts should be disabled here because the caller holds the 7102 * i_pages lock which is taken with interrupts-off. It is 7103 * important here to have the interrupts disabled because it is the 7104 * only synchronisation we have for updating the per-CPU variables. 7105 */ 7106 memcg_stats_lock(); 7107 mem_cgroup_charge_statistics(memcg, -nr_entries); 7108 memcg_stats_unlock(); 7109 memcg_check_events(memcg, folio_nid(folio)); 7110 7111 css_put(&memcg->css); 7112 } 7113 7114 /** 7115 * __mem_cgroup_try_charge_swap - try charging swap space for a page 7116 * @page: page being added to swap 7117 * @entry: swap entry to charge 7118 * 7119 * Try to charge @page's memcg for the swap space at @entry. 7120 * 7121 * Returns 0 on success, -ENOMEM on failure. 7122 */ 7123 int __mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry) 7124 { 7125 unsigned int nr_pages = thp_nr_pages(page); 7126 struct page_counter *counter; 7127 struct mem_cgroup *memcg; 7128 unsigned short oldid; 7129 7130 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7131 return 0; 7132 7133 memcg = page_memcg(page); 7134 7135 VM_WARN_ON_ONCE_PAGE(!memcg, page); 7136 if (!memcg) 7137 return 0; 7138 7139 if (!entry.val) { 7140 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 7141 return 0; 7142 } 7143 7144 memcg = mem_cgroup_id_get_online(memcg); 7145 7146 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) && 7147 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) { 7148 memcg_memory_event(memcg, MEMCG_SWAP_MAX); 7149 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 7150 mem_cgroup_id_put(memcg); 7151 return -ENOMEM; 7152 } 7153 7154 /* Get references for the tail pages, too */ 7155 if (nr_pages > 1) 7156 mem_cgroup_id_get_many(memcg, nr_pages - 1); 7157 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages); 7158 VM_BUG_ON_PAGE(oldid, page); 7159 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages); 7160 7161 return 0; 7162 } 7163 7164 /** 7165 * __mem_cgroup_uncharge_swap - uncharge swap space 7166 * @entry: swap entry to uncharge 7167 * @nr_pages: the amount of swap space to uncharge 7168 */ 7169 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages) 7170 { 7171 struct mem_cgroup *memcg; 7172 unsigned short id; 7173 7174 id = swap_cgroup_record(entry, 0, nr_pages); 7175 rcu_read_lock(); 7176 memcg = mem_cgroup_from_id(id); 7177 if (memcg) { 7178 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) { 7179 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7180 page_counter_uncharge(&memcg->swap, nr_pages); 7181 else 7182 page_counter_uncharge(&memcg->memsw, nr_pages); 7183 } 7184 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages); 7185 mem_cgroup_id_put_many(memcg, nr_pages); 7186 } 7187 rcu_read_unlock(); 7188 } 7189 7190 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) 7191 { 7192 long nr_swap_pages = get_nr_swap_pages(); 7193 7194 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7195 return nr_swap_pages; 7196 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) 7197 nr_swap_pages = min_t(long, nr_swap_pages, 7198 READ_ONCE(memcg->swap.max) - 7199 page_counter_read(&memcg->swap)); 7200 return nr_swap_pages; 7201 } 7202 7203 bool mem_cgroup_swap_full(struct page *page) 7204 { 7205 struct mem_cgroup *memcg; 7206 7207 VM_BUG_ON_PAGE(!PageLocked(page), page); 7208 7209 if (vm_swap_full()) 7210 return true; 7211 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7212 return false; 7213 7214 memcg = page_memcg(page); 7215 if (!memcg) 7216 return false; 7217 7218 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) { 7219 unsigned long usage = page_counter_read(&memcg->swap); 7220 7221 if (usage * 2 >= READ_ONCE(memcg->swap.high) || 7222 usage * 2 >= READ_ONCE(memcg->swap.max)) 7223 return true; 7224 } 7225 7226 return false; 7227 } 7228 7229 static int __init setup_swap_account(char *s) 7230 { 7231 if (!strcmp(s, "1")) 7232 cgroup_memory_noswap = false; 7233 else if (!strcmp(s, "0")) 7234 cgroup_memory_noswap = true; 7235 return 1; 7236 } 7237 __setup("swapaccount=", setup_swap_account); 7238 7239 static u64 swap_current_read(struct cgroup_subsys_state *css, 7240 struct cftype *cft) 7241 { 7242 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 7243 7244 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; 7245 } 7246 7247 static int swap_high_show(struct seq_file *m, void *v) 7248 { 7249 return seq_puts_memcg_tunable(m, 7250 READ_ONCE(mem_cgroup_from_seq(m)->swap.high)); 7251 } 7252 7253 static ssize_t swap_high_write(struct kernfs_open_file *of, 7254 char *buf, size_t nbytes, loff_t off) 7255 { 7256 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 7257 unsigned long high; 7258 int err; 7259 7260 buf = strstrip(buf); 7261 err = page_counter_memparse(buf, "max", &high); 7262 if (err) 7263 return err; 7264 7265 page_counter_set_high(&memcg->swap, high); 7266 7267 return nbytes; 7268 } 7269 7270 static int swap_max_show(struct seq_file *m, void *v) 7271 { 7272 return seq_puts_memcg_tunable(m, 7273 READ_ONCE(mem_cgroup_from_seq(m)->swap.max)); 7274 } 7275 7276 static ssize_t swap_max_write(struct kernfs_open_file *of, 7277 char *buf, size_t nbytes, loff_t off) 7278 { 7279 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 7280 unsigned long max; 7281 int err; 7282 7283 buf = strstrip(buf); 7284 err = page_counter_memparse(buf, "max", &max); 7285 if (err) 7286 return err; 7287 7288 xchg(&memcg->swap.max, max); 7289 7290 return nbytes; 7291 } 7292 7293 static int swap_events_show(struct seq_file *m, void *v) 7294 { 7295 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 7296 7297 seq_printf(m, "high %lu\n", 7298 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH])); 7299 seq_printf(m, "max %lu\n", 7300 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX])); 7301 seq_printf(m, "fail %lu\n", 7302 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL])); 7303 7304 return 0; 7305 } 7306 7307 static struct cftype swap_files[] = { 7308 { 7309 .name = "swap.current", 7310 .flags = CFTYPE_NOT_ON_ROOT, 7311 .read_u64 = swap_current_read, 7312 }, 7313 { 7314 .name = "swap.high", 7315 .flags = CFTYPE_NOT_ON_ROOT, 7316 .seq_show = swap_high_show, 7317 .write = swap_high_write, 7318 }, 7319 { 7320 .name = "swap.max", 7321 .flags = CFTYPE_NOT_ON_ROOT, 7322 .seq_show = swap_max_show, 7323 .write = swap_max_write, 7324 }, 7325 { 7326 .name = "swap.events", 7327 .flags = CFTYPE_NOT_ON_ROOT, 7328 .file_offset = offsetof(struct mem_cgroup, swap_events_file), 7329 .seq_show = swap_events_show, 7330 }, 7331 { } /* terminate */ 7332 }; 7333 7334 static struct cftype memsw_files[] = { 7335 { 7336 .name = "memsw.usage_in_bytes", 7337 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 7338 .read_u64 = mem_cgroup_read_u64, 7339 }, 7340 { 7341 .name = "memsw.max_usage_in_bytes", 7342 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 7343 .write = mem_cgroup_reset, 7344 .read_u64 = mem_cgroup_read_u64, 7345 }, 7346 { 7347 .name = "memsw.limit_in_bytes", 7348 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 7349 .write = mem_cgroup_write, 7350 .read_u64 = mem_cgroup_read_u64, 7351 }, 7352 { 7353 .name = "memsw.failcnt", 7354 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 7355 .write = mem_cgroup_reset, 7356 .read_u64 = mem_cgroup_read_u64, 7357 }, 7358 { }, /* terminate */ 7359 }; 7360 7361 /* 7362 * If mem_cgroup_swap_init() is implemented as a subsys_initcall() 7363 * instead of a core_initcall(), this could mean cgroup_memory_noswap still 7364 * remains set to false even when memcg is disabled via "cgroup_disable=memory" 7365 * boot parameter. This may result in premature OOPS inside 7366 * mem_cgroup_get_nr_swap_pages() function in corner cases. 7367 */ 7368 static int __init mem_cgroup_swap_init(void) 7369 { 7370 /* No memory control -> no swap control */ 7371 if (mem_cgroup_disabled()) 7372 cgroup_memory_noswap = true; 7373 7374 if (cgroup_memory_noswap) 7375 return 0; 7376 7377 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files)); 7378 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files)); 7379 7380 return 0; 7381 } 7382 core_initcall(mem_cgroup_swap_init); 7383 7384 #endif /* CONFIG_MEMCG_SWAP */ 7385