1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* memcontrol.c - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <xemul@openvz.org> 9 * 10 * Memory thresholds 11 * Copyright (C) 2009 Nokia Corporation 12 * Author: Kirill A. Shutemov 13 * 14 * Kernel Memory Controller 15 * Copyright (C) 2012 Parallels Inc. and Google Inc. 16 * Authors: Glauber Costa and Suleiman Souhlal 17 * 18 * Native page reclaim 19 * Charge lifetime sanitation 20 * Lockless page tracking & accounting 21 * Unified hierarchy configuration model 22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner 23 */ 24 25 #include <linux/page_counter.h> 26 #include <linux/memcontrol.h> 27 #include <linux/cgroup.h> 28 #include <linux/pagewalk.h> 29 #include <linux/sched/mm.h> 30 #include <linux/shmem_fs.h> 31 #include <linux/hugetlb.h> 32 #include <linux/pagemap.h> 33 #include <linux/vm_event_item.h> 34 #include <linux/smp.h> 35 #include <linux/page-flags.h> 36 #include <linux/backing-dev.h> 37 #include <linux/bit_spinlock.h> 38 #include <linux/rcupdate.h> 39 #include <linux/limits.h> 40 #include <linux/export.h> 41 #include <linux/mutex.h> 42 #include <linux/rbtree.h> 43 #include <linux/slab.h> 44 #include <linux/swap.h> 45 #include <linux/swapops.h> 46 #include <linux/spinlock.h> 47 #include <linux/eventfd.h> 48 #include <linux/poll.h> 49 #include <linux/sort.h> 50 #include <linux/fs.h> 51 #include <linux/seq_file.h> 52 #include <linux/vmpressure.h> 53 #include <linux/mm_inline.h> 54 #include <linux/swap_cgroup.h> 55 #include <linux/cpu.h> 56 #include <linux/oom.h> 57 #include <linux/lockdep.h> 58 #include <linux/file.h> 59 #include <linux/tracehook.h> 60 #include <linux/psi.h> 61 #include <linux/seq_buf.h> 62 #include "internal.h" 63 #include <net/sock.h> 64 #include <net/ip.h> 65 #include "slab.h" 66 67 #include <linux/uaccess.h> 68 69 #include <trace/events/vmscan.h> 70 71 struct cgroup_subsys memory_cgrp_subsys __read_mostly; 72 EXPORT_SYMBOL(memory_cgrp_subsys); 73 74 struct mem_cgroup *root_mem_cgroup __read_mostly; 75 76 #define MEM_CGROUP_RECLAIM_RETRIES 5 77 78 /* Socket memory accounting disabled? */ 79 static bool cgroup_memory_nosocket; 80 81 /* Kernel memory accounting disabled? */ 82 static bool cgroup_memory_nokmem; 83 84 /* Whether the swap controller is active */ 85 #ifdef CONFIG_MEMCG_SWAP 86 int do_swap_account __read_mostly; 87 #else 88 #define do_swap_account 0 89 #endif 90 91 #ifdef CONFIG_CGROUP_WRITEBACK 92 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq); 93 #endif 94 95 /* Whether legacy memory+swap accounting is active */ 96 static bool do_memsw_account(void) 97 { 98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account; 99 } 100 101 #define THRESHOLDS_EVENTS_TARGET 128 102 #define SOFTLIMIT_EVENTS_TARGET 1024 103 104 /* 105 * Cgroups above their limits are maintained in a RB-Tree, independent of 106 * their hierarchy representation 107 */ 108 109 struct mem_cgroup_tree_per_node { 110 struct rb_root rb_root; 111 struct rb_node *rb_rightmost; 112 spinlock_t lock; 113 }; 114 115 struct mem_cgroup_tree { 116 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 117 }; 118 119 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 120 121 /* for OOM */ 122 struct mem_cgroup_eventfd_list { 123 struct list_head list; 124 struct eventfd_ctx *eventfd; 125 }; 126 127 /* 128 * cgroup_event represents events which userspace want to receive. 129 */ 130 struct mem_cgroup_event { 131 /* 132 * memcg which the event belongs to. 133 */ 134 struct mem_cgroup *memcg; 135 /* 136 * eventfd to signal userspace about the event. 137 */ 138 struct eventfd_ctx *eventfd; 139 /* 140 * Each of these stored in a list by the cgroup. 141 */ 142 struct list_head list; 143 /* 144 * register_event() callback will be used to add new userspace 145 * waiter for changes related to this event. Use eventfd_signal() 146 * on eventfd to send notification to userspace. 147 */ 148 int (*register_event)(struct mem_cgroup *memcg, 149 struct eventfd_ctx *eventfd, const char *args); 150 /* 151 * unregister_event() callback will be called when userspace closes 152 * the eventfd or on cgroup removing. This callback must be set, 153 * if you want provide notification functionality. 154 */ 155 void (*unregister_event)(struct mem_cgroup *memcg, 156 struct eventfd_ctx *eventfd); 157 /* 158 * All fields below needed to unregister event when 159 * userspace closes eventfd. 160 */ 161 poll_table pt; 162 wait_queue_head_t *wqh; 163 wait_queue_entry_t wait; 164 struct work_struct remove; 165 }; 166 167 static void mem_cgroup_threshold(struct mem_cgroup *memcg); 168 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); 169 170 /* Stuffs for move charges at task migration. */ 171 /* 172 * Types of charges to be moved. 173 */ 174 #define MOVE_ANON 0x1U 175 #define MOVE_FILE 0x2U 176 #define MOVE_MASK (MOVE_ANON | MOVE_FILE) 177 178 /* "mc" and its members are protected by cgroup_mutex */ 179 static struct move_charge_struct { 180 spinlock_t lock; /* for from, to */ 181 struct mm_struct *mm; 182 struct mem_cgroup *from; 183 struct mem_cgroup *to; 184 unsigned long flags; 185 unsigned long precharge; 186 unsigned long moved_charge; 187 unsigned long moved_swap; 188 struct task_struct *moving_task; /* a task moving charges */ 189 wait_queue_head_t waitq; /* a waitq for other context */ 190 } mc = { 191 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 192 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 193 }; 194 195 /* 196 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft 197 * limit reclaim to prevent infinite loops, if they ever occur. 198 */ 199 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 200 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 201 202 enum charge_type { 203 MEM_CGROUP_CHARGE_TYPE_CACHE = 0, 204 MEM_CGROUP_CHARGE_TYPE_ANON, 205 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */ 206 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */ 207 NR_CHARGE_TYPE, 208 }; 209 210 /* for encoding cft->private value on file */ 211 enum res_type { 212 _MEM, 213 _MEMSWAP, 214 _OOM_TYPE, 215 _KMEM, 216 _TCP, 217 }; 218 219 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) 220 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) 221 #define MEMFILE_ATTR(val) ((val) & 0xffff) 222 /* Used for OOM nofiier */ 223 #define OOM_CONTROL (0) 224 225 /* 226 * Iteration constructs for visiting all cgroups (under a tree). If 227 * loops are exited prematurely (break), mem_cgroup_iter_break() must 228 * be used for reference counting. 229 */ 230 #define for_each_mem_cgroup_tree(iter, root) \ 231 for (iter = mem_cgroup_iter(root, NULL, NULL); \ 232 iter != NULL; \ 233 iter = mem_cgroup_iter(root, iter, NULL)) 234 235 #define for_each_mem_cgroup(iter) \ 236 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ 237 iter != NULL; \ 238 iter = mem_cgroup_iter(NULL, iter, NULL)) 239 240 static inline bool should_force_charge(void) 241 { 242 return tsk_is_oom_victim(current) || fatal_signal_pending(current) || 243 (current->flags & PF_EXITING); 244 } 245 246 /* Some nice accessors for the vmpressure. */ 247 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 248 { 249 if (!memcg) 250 memcg = root_mem_cgroup; 251 return &memcg->vmpressure; 252 } 253 254 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr) 255 { 256 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css; 257 } 258 259 #ifdef CONFIG_MEMCG_KMEM 260 /* 261 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches. 262 * The main reason for not using cgroup id for this: 263 * this works better in sparse environments, where we have a lot of memcgs, 264 * but only a few kmem-limited. Or also, if we have, for instance, 200 265 * memcgs, and none but the 200th is kmem-limited, we'd have to have a 266 * 200 entry array for that. 267 * 268 * The current size of the caches array is stored in memcg_nr_cache_ids. It 269 * will double each time we have to increase it. 270 */ 271 static DEFINE_IDA(memcg_cache_ida); 272 int memcg_nr_cache_ids; 273 274 /* Protects memcg_nr_cache_ids */ 275 static DECLARE_RWSEM(memcg_cache_ids_sem); 276 277 void memcg_get_cache_ids(void) 278 { 279 down_read(&memcg_cache_ids_sem); 280 } 281 282 void memcg_put_cache_ids(void) 283 { 284 up_read(&memcg_cache_ids_sem); 285 } 286 287 /* 288 * MIN_SIZE is different than 1, because we would like to avoid going through 289 * the alloc/free process all the time. In a small machine, 4 kmem-limited 290 * cgroups is a reasonable guess. In the future, it could be a parameter or 291 * tunable, but that is strictly not necessary. 292 * 293 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get 294 * this constant directly from cgroup, but it is understandable that this is 295 * better kept as an internal representation in cgroup.c. In any case, the 296 * cgrp_id space is not getting any smaller, and we don't have to necessarily 297 * increase ours as well if it increases. 298 */ 299 #define MEMCG_CACHES_MIN_SIZE 4 300 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX 301 302 /* 303 * A lot of the calls to the cache allocation functions are expected to be 304 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are 305 * conditional to this static branch, we'll have to allow modules that does 306 * kmem_cache_alloc and the such to see this symbol as well 307 */ 308 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key); 309 EXPORT_SYMBOL(memcg_kmem_enabled_key); 310 311 struct workqueue_struct *memcg_kmem_cache_wq; 312 #endif 313 314 static int memcg_shrinker_map_size; 315 static DEFINE_MUTEX(memcg_shrinker_map_mutex); 316 317 static void memcg_free_shrinker_map_rcu(struct rcu_head *head) 318 { 319 kvfree(container_of(head, struct memcg_shrinker_map, rcu)); 320 } 321 322 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg, 323 int size, int old_size) 324 { 325 struct memcg_shrinker_map *new, *old; 326 int nid; 327 328 lockdep_assert_held(&memcg_shrinker_map_mutex); 329 330 for_each_node(nid) { 331 old = rcu_dereference_protected( 332 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true); 333 /* Not yet online memcg */ 334 if (!old) 335 return 0; 336 337 new = kvmalloc(sizeof(*new) + size, GFP_KERNEL); 338 if (!new) 339 return -ENOMEM; 340 341 /* Set all old bits, clear all new bits */ 342 memset(new->map, (int)0xff, old_size); 343 memset((void *)new->map + old_size, 0, size - old_size); 344 345 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new); 346 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu); 347 } 348 349 return 0; 350 } 351 352 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) 353 { 354 struct mem_cgroup_per_node *pn; 355 struct memcg_shrinker_map *map; 356 int nid; 357 358 if (mem_cgroup_is_root(memcg)) 359 return; 360 361 for_each_node(nid) { 362 pn = mem_cgroup_nodeinfo(memcg, nid); 363 map = rcu_dereference_protected(pn->shrinker_map, true); 364 if (map) 365 kvfree(map); 366 rcu_assign_pointer(pn->shrinker_map, NULL); 367 } 368 } 369 370 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg) 371 { 372 struct memcg_shrinker_map *map; 373 int nid, size, ret = 0; 374 375 if (mem_cgroup_is_root(memcg)) 376 return 0; 377 378 mutex_lock(&memcg_shrinker_map_mutex); 379 size = memcg_shrinker_map_size; 380 for_each_node(nid) { 381 map = kvzalloc(sizeof(*map) + size, GFP_KERNEL); 382 if (!map) { 383 memcg_free_shrinker_maps(memcg); 384 ret = -ENOMEM; 385 break; 386 } 387 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map); 388 } 389 mutex_unlock(&memcg_shrinker_map_mutex); 390 391 return ret; 392 } 393 394 int memcg_expand_shrinker_maps(int new_id) 395 { 396 int size, old_size, ret = 0; 397 struct mem_cgroup *memcg; 398 399 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long); 400 old_size = memcg_shrinker_map_size; 401 if (size <= old_size) 402 return 0; 403 404 mutex_lock(&memcg_shrinker_map_mutex); 405 if (!root_mem_cgroup) 406 goto unlock; 407 408 for_each_mem_cgroup(memcg) { 409 if (mem_cgroup_is_root(memcg)) 410 continue; 411 ret = memcg_expand_one_shrinker_map(memcg, size, old_size); 412 if (ret) 413 goto unlock; 414 } 415 unlock: 416 if (!ret) 417 memcg_shrinker_map_size = size; 418 mutex_unlock(&memcg_shrinker_map_mutex); 419 return ret; 420 } 421 422 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id) 423 { 424 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) { 425 struct memcg_shrinker_map *map; 426 427 rcu_read_lock(); 428 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map); 429 /* Pairs with smp mb in shrink_slab() */ 430 smp_mb__before_atomic(); 431 set_bit(shrinker_id, map->map); 432 rcu_read_unlock(); 433 } 434 } 435 436 /** 437 * mem_cgroup_css_from_page - css of the memcg associated with a page 438 * @page: page of interest 439 * 440 * If memcg is bound to the default hierarchy, css of the memcg associated 441 * with @page is returned. The returned css remains associated with @page 442 * until it is released. 443 * 444 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup 445 * is returned. 446 */ 447 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page) 448 { 449 struct mem_cgroup *memcg; 450 451 memcg = page->mem_cgroup; 452 453 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 454 memcg = root_mem_cgroup; 455 456 return &memcg->css; 457 } 458 459 /** 460 * page_cgroup_ino - return inode number of the memcg a page is charged to 461 * @page: the page 462 * 463 * Look up the closest online ancestor of the memory cgroup @page is charged to 464 * and return its inode number or 0 if @page is not charged to any cgroup. It 465 * is safe to call this function without holding a reference to @page. 466 * 467 * Note, this function is inherently racy, because there is nothing to prevent 468 * the cgroup inode from getting torn down and potentially reallocated a moment 469 * after page_cgroup_ino() returns, so it only should be used by callers that 470 * do not care (such as procfs interfaces). 471 */ 472 ino_t page_cgroup_ino(struct page *page) 473 { 474 struct mem_cgroup *memcg; 475 unsigned long ino = 0; 476 477 rcu_read_lock(); 478 if (PageSlab(page) && !PageTail(page)) 479 memcg = memcg_from_slab_page(page); 480 else 481 memcg = READ_ONCE(page->mem_cgroup); 482 while (memcg && !(memcg->css.flags & CSS_ONLINE)) 483 memcg = parent_mem_cgroup(memcg); 484 if (memcg) 485 ino = cgroup_ino(memcg->css.cgroup); 486 rcu_read_unlock(); 487 return ino; 488 } 489 490 static struct mem_cgroup_per_node * 491 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page) 492 { 493 int nid = page_to_nid(page); 494 495 return memcg->nodeinfo[nid]; 496 } 497 498 static struct mem_cgroup_tree_per_node * 499 soft_limit_tree_node(int nid) 500 { 501 return soft_limit_tree.rb_tree_per_node[nid]; 502 } 503 504 static struct mem_cgroup_tree_per_node * 505 soft_limit_tree_from_page(struct page *page) 506 { 507 int nid = page_to_nid(page); 508 509 return soft_limit_tree.rb_tree_per_node[nid]; 510 } 511 512 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz, 513 struct mem_cgroup_tree_per_node *mctz, 514 unsigned long new_usage_in_excess) 515 { 516 struct rb_node **p = &mctz->rb_root.rb_node; 517 struct rb_node *parent = NULL; 518 struct mem_cgroup_per_node *mz_node; 519 bool rightmost = true; 520 521 if (mz->on_tree) 522 return; 523 524 mz->usage_in_excess = new_usage_in_excess; 525 if (!mz->usage_in_excess) 526 return; 527 while (*p) { 528 parent = *p; 529 mz_node = rb_entry(parent, struct mem_cgroup_per_node, 530 tree_node); 531 if (mz->usage_in_excess < mz_node->usage_in_excess) { 532 p = &(*p)->rb_left; 533 rightmost = false; 534 } 535 536 /* 537 * We can't avoid mem cgroups that are over their soft 538 * limit by the same amount 539 */ 540 else if (mz->usage_in_excess >= mz_node->usage_in_excess) 541 p = &(*p)->rb_right; 542 } 543 544 if (rightmost) 545 mctz->rb_rightmost = &mz->tree_node; 546 547 rb_link_node(&mz->tree_node, parent, p); 548 rb_insert_color(&mz->tree_node, &mctz->rb_root); 549 mz->on_tree = true; 550 } 551 552 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 553 struct mem_cgroup_tree_per_node *mctz) 554 { 555 if (!mz->on_tree) 556 return; 557 558 if (&mz->tree_node == mctz->rb_rightmost) 559 mctz->rb_rightmost = rb_prev(&mz->tree_node); 560 561 rb_erase(&mz->tree_node, &mctz->rb_root); 562 mz->on_tree = false; 563 } 564 565 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 566 struct mem_cgroup_tree_per_node *mctz) 567 { 568 unsigned long flags; 569 570 spin_lock_irqsave(&mctz->lock, flags); 571 __mem_cgroup_remove_exceeded(mz, mctz); 572 spin_unlock_irqrestore(&mctz->lock, flags); 573 } 574 575 static unsigned long soft_limit_excess(struct mem_cgroup *memcg) 576 { 577 unsigned long nr_pages = page_counter_read(&memcg->memory); 578 unsigned long soft_limit = READ_ONCE(memcg->soft_limit); 579 unsigned long excess = 0; 580 581 if (nr_pages > soft_limit) 582 excess = nr_pages - soft_limit; 583 584 return excess; 585 } 586 587 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page) 588 { 589 unsigned long excess; 590 struct mem_cgroup_per_node *mz; 591 struct mem_cgroup_tree_per_node *mctz; 592 593 mctz = soft_limit_tree_from_page(page); 594 if (!mctz) 595 return; 596 /* 597 * Necessary to update all ancestors when hierarchy is used. 598 * because their event counter is not touched. 599 */ 600 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 601 mz = mem_cgroup_page_nodeinfo(memcg, page); 602 excess = soft_limit_excess(memcg); 603 /* 604 * We have to update the tree if mz is on RB-tree or 605 * mem is over its softlimit. 606 */ 607 if (excess || mz->on_tree) { 608 unsigned long flags; 609 610 spin_lock_irqsave(&mctz->lock, flags); 611 /* if on-tree, remove it */ 612 if (mz->on_tree) 613 __mem_cgroup_remove_exceeded(mz, mctz); 614 /* 615 * Insert again. mz->usage_in_excess will be updated. 616 * If excess is 0, no tree ops. 617 */ 618 __mem_cgroup_insert_exceeded(mz, mctz, excess); 619 spin_unlock_irqrestore(&mctz->lock, flags); 620 } 621 } 622 } 623 624 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) 625 { 626 struct mem_cgroup_tree_per_node *mctz; 627 struct mem_cgroup_per_node *mz; 628 int nid; 629 630 for_each_node(nid) { 631 mz = mem_cgroup_nodeinfo(memcg, nid); 632 mctz = soft_limit_tree_node(nid); 633 if (mctz) 634 mem_cgroup_remove_exceeded(mz, mctz); 635 } 636 } 637 638 static struct mem_cgroup_per_node * 639 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 640 { 641 struct mem_cgroup_per_node *mz; 642 643 retry: 644 mz = NULL; 645 if (!mctz->rb_rightmost) 646 goto done; /* Nothing to reclaim from */ 647 648 mz = rb_entry(mctz->rb_rightmost, 649 struct mem_cgroup_per_node, tree_node); 650 /* 651 * Remove the node now but someone else can add it back, 652 * we will to add it back at the end of reclaim to its correct 653 * position in the tree. 654 */ 655 __mem_cgroup_remove_exceeded(mz, mctz); 656 if (!soft_limit_excess(mz->memcg) || 657 !css_tryget_online(&mz->memcg->css)) 658 goto retry; 659 done: 660 return mz; 661 } 662 663 static struct mem_cgroup_per_node * 664 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 665 { 666 struct mem_cgroup_per_node *mz; 667 668 spin_lock_irq(&mctz->lock); 669 mz = __mem_cgroup_largest_soft_limit_node(mctz); 670 spin_unlock_irq(&mctz->lock); 671 return mz; 672 } 673 674 /** 675 * __mod_memcg_state - update cgroup memory statistics 676 * @memcg: the memory cgroup 677 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item 678 * @val: delta to add to the counter, can be negative 679 */ 680 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val) 681 { 682 long x; 683 684 if (mem_cgroup_disabled()) 685 return; 686 687 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]); 688 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) { 689 struct mem_cgroup *mi; 690 691 /* 692 * Batch local counters to keep them in sync with 693 * the hierarchical ones. 694 */ 695 __this_cpu_add(memcg->vmstats_local->stat[idx], x); 696 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 697 atomic_long_add(x, &mi->vmstats[idx]); 698 x = 0; 699 } 700 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x); 701 } 702 703 static struct mem_cgroup_per_node * 704 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid) 705 { 706 struct mem_cgroup *parent; 707 708 parent = parent_mem_cgroup(pn->memcg); 709 if (!parent) 710 return NULL; 711 return mem_cgroup_nodeinfo(parent, nid); 712 } 713 714 /** 715 * __mod_lruvec_state - update lruvec memory statistics 716 * @lruvec: the lruvec 717 * @idx: the stat item 718 * @val: delta to add to the counter, can be negative 719 * 720 * The lruvec is the intersection of the NUMA node and a cgroup. This 721 * function updates the all three counters that are affected by a 722 * change of state at this level: per-node, per-cgroup, per-lruvec. 723 */ 724 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 725 int val) 726 { 727 pg_data_t *pgdat = lruvec_pgdat(lruvec); 728 struct mem_cgroup_per_node *pn; 729 struct mem_cgroup *memcg; 730 long x; 731 732 /* Update node */ 733 __mod_node_page_state(pgdat, idx, val); 734 735 if (mem_cgroup_disabled()) 736 return; 737 738 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 739 memcg = pn->memcg; 740 741 /* Update memcg */ 742 __mod_memcg_state(memcg, idx, val); 743 744 /* Update lruvec */ 745 __this_cpu_add(pn->lruvec_stat_local->count[idx], val); 746 747 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]); 748 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) { 749 struct mem_cgroup_per_node *pi; 750 751 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id)) 752 atomic_long_add(x, &pi->lruvec_stat[idx]); 753 x = 0; 754 } 755 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x); 756 } 757 758 void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val) 759 { 760 struct page *page = virt_to_head_page(p); 761 pg_data_t *pgdat = page_pgdat(page); 762 struct mem_cgroup *memcg; 763 struct lruvec *lruvec; 764 765 rcu_read_lock(); 766 memcg = memcg_from_slab_page(page); 767 768 /* Untracked pages have no memcg, no lruvec. Update only the node */ 769 if (!memcg || memcg == root_mem_cgroup) { 770 __mod_node_page_state(pgdat, idx, val); 771 } else { 772 lruvec = mem_cgroup_lruvec(memcg, pgdat); 773 __mod_lruvec_state(lruvec, idx, val); 774 } 775 rcu_read_unlock(); 776 } 777 778 /** 779 * __count_memcg_events - account VM events in a cgroup 780 * @memcg: the memory cgroup 781 * @idx: the event item 782 * @count: the number of events that occured 783 */ 784 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 785 unsigned long count) 786 { 787 unsigned long x; 788 789 if (mem_cgroup_disabled()) 790 return; 791 792 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]); 793 if (unlikely(x > MEMCG_CHARGE_BATCH)) { 794 struct mem_cgroup *mi; 795 796 /* 797 * Batch local counters to keep them in sync with 798 * the hierarchical ones. 799 */ 800 __this_cpu_add(memcg->vmstats_local->events[idx], x); 801 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 802 atomic_long_add(x, &mi->vmevents[idx]); 803 x = 0; 804 } 805 __this_cpu_write(memcg->vmstats_percpu->events[idx], x); 806 } 807 808 static unsigned long memcg_events(struct mem_cgroup *memcg, int event) 809 { 810 return atomic_long_read(&memcg->vmevents[event]); 811 } 812 813 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event) 814 { 815 long x = 0; 816 int cpu; 817 818 for_each_possible_cpu(cpu) 819 x += per_cpu(memcg->vmstats_local->events[event], cpu); 820 return x; 821 } 822 823 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, 824 struct page *page, 825 bool compound, int nr_pages) 826 { 827 /* 828 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is 829 * counted as CACHE even if it's on ANON LRU. 830 */ 831 if (PageAnon(page)) 832 __mod_memcg_state(memcg, MEMCG_RSS, nr_pages); 833 else { 834 __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages); 835 if (PageSwapBacked(page)) 836 __mod_memcg_state(memcg, NR_SHMEM, nr_pages); 837 } 838 839 if (compound) { 840 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 841 __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages); 842 } 843 844 /* pagein of a big page is an event. So, ignore page size */ 845 if (nr_pages > 0) 846 __count_memcg_events(memcg, PGPGIN, 1); 847 else { 848 __count_memcg_events(memcg, PGPGOUT, 1); 849 nr_pages = -nr_pages; /* for event */ 850 } 851 852 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages); 853 } 854 855 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, 856 enum mem_cgroup_events_target target) 857 { 858 unsigned long val, next; 859 860 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events); 861 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]); 862 /* from time_after() in jiffies.h */ 863 if ((long)(next - val) < 0) { 864 switch (target) { 865 case MEM_CGROUP_TARGET_THRESH: 866 next = val + THRESHOLDS_EVENTS_TARGET; 867 break; 868 case MEM_CGROUP_TARGET_SOFTLIMIT: 869 next = val + SOFTLIMIT_EVENTS_TARGET; 870 break; 871 default: 872 break; 873 } 874 __this_cpu_write(memcg->vmstats_percpu->targets[target], next); 875 return true; 876 } 877 return false; 878 } 879 880 /* 881 * Check events in order. 882 * 883 */ 884 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) 885 { 886 /* threshold event is triggered in finer grain than soft limit */ 887 if (unlikely(mem_cgroup_event_ratelimit(memcg, 888 MEM_CGROUP_TARGET_THRESH))) { 889 bool do_softlimit; 890 891 do_softlimit = mem_cgroup_event_ratelimit(memcg, 892 MEM_CGROUP_TARGET_SOFTLIMIT); 893 mem_cgroup_threshold(memcg); 894 if (unlikely(do_softlimit)) 895 mem_cgroup_update_tree(memcg, page); 896 } 897 } 898 899 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 900 { 901 /* 902 * mm_update_next_owner() may clear mm->owner to NULL 903 * if it races with swapoff, page migration, etc. 904 * So this can be called with p == NULL. 905 */ 906 if (unlikely(!p)) 907 return NULL; 908 909 return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); 910 } 911 EXPORT_SYMBOL(mem_cgroup_from_task); 912 913 /** 914 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg. 915 * @mm: mm from which memcg should be extracted. It can be NULL. 916 * 917 * Obtain a reference on mm->memcg and returns it if successful. Otherwise 918 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is 919 * returned. 920 */ 921 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 922 { 923 struct mem_cgroup *memcg; 924 925 if (mem_cgroup_disabled()) 926 return NULL; 927 928 rcu_read_lock(); 929 do { 930 /* 931 * Page cache insertions can happen withou an 932 * actual mm context, e.g. during disk probing 933 * on boot, loopback IO, acct() writes etc. 934 */ 935 if (unlikely(!mm)) 936 memcg = root_mem_cgroup; 937 else { 938 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 939 if (unlikely(!memcg)) 940 memcg = root_mem_cgroup; 941 } 942 } while (!css_tryget(&memcg->css)); 943 rcu_read_unlock(); 944 return memcg; 945 } 946 EXPORT_SYMBOL(get_mem_cgroup_from_mm); 947 948 /** 949 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg. 950 * @page: page from which memcg should be extracted. 951 * 952 * Obtain a reference on page->memcg and returns it if successful. Otherwise 953 * root_mem_cgroup is returned. 954 */ 955 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page) 956 { 957 struct mem_cgroup *memcg = page->mem_cgroup; 958 959 if (mem_cgroup_disabled()) 960 return NULL; 961 962 rcu_read_lock(); 963 if (!memcg || !css_tryget_online(&memcg->css)) 964 memcg = root_mem_cgroup; 965 rcu_read_unlock(); 966 return memcg; 967 } 968 EXPORT_SYMBOL(get_mem_cgroup_from_page); 969 970 /** 971 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg. 972 */ 973 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void) 974 { 975 if (unlikely(current->active_memcg)) { 976 struct mem_cgroup *memcg = root_mem_cgroup; 977 978 rcu_read_lock(); 979 if (css_tryget_online(¤t->active_memcg->css)) 980 memcg = current->active_memcg; 981 rcu_read_unlock(); 982 return memcg; 983 } 984 return get_mem_cgroup_from_mm(current->mm); 985 } 986 987 /** 988 * mem_cgroup_iter - iterate over memory cgroup hierarchy 989 * @root: hierarchy root 990 * @prev: previously returned memcg, NULL on first invocation 991 * @reclaim: cookie for shared reclaim walks, NULL for full walks 992 * 993 * Returns references to children of the hierarchy below @root, or 994 * @root itself, or %NULL after a full round-trip. 995 * 996 * Caller must pass the return value in @prev on subsequent 997 * invocations for reference counting, or use mem_cgroup_iter_break() 998 * to cancel a hierarchy walk before the round-trip is complete. 999 * 1000 * Reclaimers can specify a node and a priority level in @reclaim to 1001 * divide up the memcgs in the hierarchy among all concurrent 1002 * reclaimers operating on the same node and priority. 1003 */ 1004 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 1005 struct mem_cgroup *prev, 1006 struct mem_cgroup_reclaim_cookie *reclaim) 1007 { 1008 struct mem_cgroup_reclaim_iter *uninitialized_var(iter); 1009 struct cgroup_subsys_state *css = NULL; 1010 struct mem_cgroup *memcg = NULL; 1011 struct mem_cgroup *pos = NULL; 1012 1013 if (mem_cgroup_disabled()) 1014 return NULL; 1015 1016 if (!root) 1017 root = root_mem_cgroup; 1018 1019 if (prev && !reclaim) 1020 pos = prev; 1021 1022 if (!root->use_hierarchy && root != root_mem_cgroup) { 1023 if (prev) 1024 goto out; 1025 return root; 1026 } 1027 1028 rcu_read_lock(); 1029 1030 if (reclaim) { 1031 struct mem_cgroup_per_node *mz; 1032 1033 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id); 1034 iter = &mz->iter; 1035 1036 if (prev && reclaim->generation != iter->generation) 1037 goto out_unlock; 1038 1039 while (1) { 1040 pos = READ_ONCE(iter->position); 1041 if (!pos || css_tryget(&pos->css)) 1042 break; 1043 /* 1044 * css reference reached zero, so iter->position will 1045 * be cleared by ->css_released. However, we should not 1046 * rely on this happening soon, because ->css_released 1047 * is called from a work queue, and by busy-waiting we 1048 * might block it. So we clear iter->position right 1049 * away. 1050 */ 1051 (void)cmpxchg(&iter->position, pos, NULL); 1052 } 1053 } 1054 1055 if (pos) 1056 css = &pos->css; 1057 1058 for (;;) { 1059 css = css_next_descendant_pre(css, &root->css); 1060 if (!css) { 1061 /* 1062 * Reclaimers share the hierarchy walk, and a 1063 * new one might jump in right at the end of 1064 * the hierarchy - make sure they see at least 1065 * one group and restart from the beginning. 1066 */ 1067 if (!prev) 1068 continue; 1069 break; 1070 } 1071 1072 /* 1073 * Verify the css and acquire a reference. The root 1074 * is provided by the caller, so we know it's alive 1075 * and kicking, and don't take an extra reference. 1076 */ 1077 memcg = mem_cgroup_from_css(css); 1078 1079 if (css == &root->css) 1080 break; 1081 1082 if (css_tryget(css)) 1083 break; 1084 1085 memcg = NULL; 1086 } 1087 1088 if (reclaim) { 1089 /* 1090 * The position could have already been updated by a competing 1091 * thread, so check that the value hasn't changed since we read 1092 * it to avoid reclaiming from the same cgroup twice. 1093 */ 1094 (void)cmpxchg(&iter->position, pos, memcg); 1095 1096 if (pos) 1097 css_put(&pos->css); 1098 1099 if (!memcg) 1100 iter->generation++; 1101 else if (!prev) 1102 reclaim->generation = iter->generation; 1103 } 1104 1105 out_unlock: 1106 rcu_read_unlock(); 1107 out: 1108 if (prev && prev != root) 1109 css_put(&prev->css); 1110 1111 return memcg; 1112 } 1113 1114 /** 1115 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 1116 * @root: hierarchy root 1117 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 1118 */ 1119 void mem_cgroup_iter_break(struct mem_cgroup *root, 1120 struct mem_cgroup *prev) 1121 { 1122 if (!root) 1123 root = root_mem_cgroup; 1124 if (prev && prev != root) 1125 css_put(&prev->css); 1126 } 1127 1128 static void __invalidate_reclaim_iterators(struct mem_cgroup *from, 1129 struct mem_cgroup *dead_memcg) 1130 { 1131 struct mem_cgroup_reclaim_iter *iter; 1132 struct mem_cgroup_per_node *mz; 1133 int nid; 1134 1135 for_each_node(nid) { 1136 mz = mem_cgroup_nodeinfo(from, nid); 1137 iter = &mz->iter; 1138 cmpxchg(&iter->position, dead_memcg, NULL); 1139 } 1140 } 1141 1142 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) 1143 { 1144 struct mem_cgroup *memcg = dead_memcg; 1145 struct mem_cgroup *last; 1146 1147 do { 1148 __invalidate_reclaim_iterators(memcg, dead_memcg); 1149 last = memcg; 1150 } while ((memcg = parent_mem_cgroup(memcg))); 1151 1152 /* 1153 * When cgruop1 non-hierarchy mode is used, 1154 * parent_mem_cgroup() does not walk all the way up to the 1155 * cgroup root (root_mem_cgroup). So we have to handle 1156 * dead_memcg from cgroup root separately. 1157 */ 1158 if (last != root_mem_cgroup) 1159 __invalidate_reclaim_iterators(root_mem_cgroup, 1160 dead_memcg); 1161 } 1162 1163 /** 1164 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy 1165 * @memcg: hierarchy root 1166 * @fn: function to call for each task 1167 * @arg: argument passed to @fn 1168 * 1169 * This function iterates over tasks attached to @memcg or to any of its 1170 * descendants and calls @fn for each task. If @fn returns a non-zero 1171 * value, the function breaks the iteration loop and returns the value. 1172 * Otherwise, it will iterate over all tasks and return 0. 1173 * 1174 * This function must not be called for the root memory cgroup. 1175 */ 1176 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1177 int (*fn)(struct task_struct *, void *), void *arg) 1178 { 1179 struct mem_cgroup *iter; 1180 int ret = 0; 1181 1182 BUG_ON(memcg == root_mem_cgroup); 1183 1184 for_each_mem_cgroup_tree(iter, memcg) { 1185 struct css_task_iter it; 1186 struct task_struct *task; 1187 1188 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it); 1189 while (!ret && (task = css_task_iter_next(&it))) 1190 ret = fn(task, arg); 1191 css_task_iter_end(&it); 1192 if (ret) { 1193 mem_cgroup_iter_break(memcg, iter); 1194 break; 1195 } 1196 } 1197 return ret; 1198 } 1199 1200 /** 1201 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page 1202 * @page: the page 1203 * @pgdat: pgdat of the page 1204 * 1205 * This function is only safe when following the LRU page isolation 1206 * and putback protocol: the LRU lock must be held, and the page must 1207 * either be PageLRU() or the caller must have isolated/allocated it. 1208 */ 1209 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat) 1210 { 1211 struct mem_cgroup_per_node *mz; 1212 struct mem_cgroup *memcg; 1213 struct lruvec *lruvec; 1214 1215 if (mem_cgroup_disabled()) { 1216 lruvec = &pgdat->__lruvec; 1217 goto out; 1218 } 1219 1220 memcg = page->mem_cgroup; 1221 /* 1222 * Swapcache readahead pages are added to the LRU - and 1223 * possibly migrated - before they are charged. 1224 */ 1225 if (!memcg) 1226 memcg = root_mem_cgroup; 1227 1228 mz = mem_cgroup_page_nodeinfo(memcg, page); 1229 lruvec = &mz->lruvec; 1230 out: 1231 /* 1232 * Since a node can be onlined after the mem_cgroup was created, 1233 * we have to be prepared to initialize lruvec->zone here; 1234 * and if offlined then reonlined, we need to reinitialize it. 1235 */ 1236 if (unlikely(lruvec->pgdat != pgdat)) 1237 lruvec->pgdat = pgdat; 1238 return lruvec; 1239 } 1240 1241 /** 1242 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1243 * @lruvec: mem_cgroup per zone lru vector 1244 * @lru: index of lru list the page is sitting on 1245 * @zid: zone id of the accounted pages 1246 * @nr_pages: positive when adding or negative when removing 1247 * 1248 * This function must be called under lru_lock, just before a page is added 1249 * to or just after a page is removed from an lru list (that ordering being 1250 * so as to allow it to check that lru_size 0 is consistent with list_empty). 1251 */ 1252 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1253 int zid, int nr_pages) 1254 { 1255 struct mem_cgroup_per_node *mz; 1256 unsigned long *lru_size; 1257 long size; 1258 1259 if (mem_cgroup_disabled()) 1260 return; 1261 1262 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 1263 lru_size = &mz->lru_zone_size[zid][lru]; 1264 1265 if (nr_pages < 0) 1266 *lru_size += nr_pages; 1267 1268 size = *lru_size; 1269 if (WARN_ONCE(size < 0, 1270 "%s(%p, %d, %d): lru_size %ld\n", 1271 __func__, lruvec, lru, nr_pages, size)) { 1272 VM_BUG_ON(1); 1273 *lru_size = 0; 1274 } 1275 1276 if (nr_pages > 0) 1277 *lru_size += nr_pages; 1278 } 1279 1280 /** 1281 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1282 * @memcg: the memory cgroup 1283 * 1284 * Returns the maximum amount of memory @mem can be charged with, in 1285 * pages. 1286 */ 1287 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1288 { 1289 unsigned long margin = 0; 1290 unsigned long count; 1291 unsigned long limit; 1292 1293 count = page_counter_read(&memcg->memory); 1294 limit = READ_ONCE(memcg->memory.max); 1295 if (count < limit) 1296 margin = limit - count; 1297 1298 if (do_memsw_account()) { 1299 count = page_counter_read(&memcg->memsw); 1300 limit = READ_ONCE(memcg->memsw.max); 1301 if (count <= limit) 1302 margin = min(margin, limit - count); 1303 else 1304 margin = 0; 1305 } 1306 1307 return margin; 1308 } 1309 1310 /* 1311 * A routine for checking "mem" is under move_account() or not. 1312 * 1313 * Checking a cgroup is mc.from or mc.to or under hierarchy of 1314 * moving cgroups. This is for waiting at high-memory pressure 1315 * caused by "move". 1316 */ 1317 static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 1318 { 1319 struct mem_cgroup *from; 1320 struct mem_cgroup *to; 1321 bool ret = false; 1322 /* 1323 * Unlike task_move routines, we access mc.to, mc.from not under 1324 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1325 */ 1326 spin_lock(&mc.lock); 1327 from = mc.from; 1328 to = mc.to; 1329 if (!from) 1330 goto unlock; 1331 1332 ret = mem_cgroup_is_descendant(from, memcg) || 1333 mem_cgroup_is_descendant(to, memcg); 1334 unlock: 1335 spin_unlock(&mc.lock); 1336 return ret; 1337 } 1338 1339 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) 1340 { 1341 if (mc.moving_task && current != mc.moving_task) { 1342 if (mem_cgroup_under_move(memcg)) { 1343 DEFINE_WAIT(wait); 1344 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1345 /* moving charge context might have finished. */ 1346 if (mc.moving_task) 1347 schedule(); 1348 finish_wait(&mc.waitq, &wait); 1349 return true; 1350 } 1351 } 1352 return false; 1353 } 1354 1355 static char *memory_stat_format(struct mem_cgroup *memcg) 1356 { 1357 struct seq_buf s; 1358 int i; 1359 1360 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE); 1361 if (!s.buffer) 1362 return NULL; 1363 1364 /* 1365 * Provide statistics on the state of the memory subsystem as 1366 * well as cumulative event counters that show past behavior. 1367 * 1368 * This list is ordered following a combination of these gradients: 1369 * 1) generic big picture -> specifics and details 1370 * 2) reflecting userspace activity -> reflecting kernel heuristics 1371 * 1372 * Current memory state: 1373 */ 1374 1375 seq_buf_printf(&s, "anon %llu\n", 1376 (u64)memcg_page_state(memcg, MEMCG_RSS) * 1377 PAGE_SIZE); 1378 seq_buf_printf(&s, "file %llu\n", 1379 (u64)memcg_page_state(memcg, MEMCG_CACHE) * 1380 PAGE_SIZE); 1381 seq_buf_printf(&s, "kernel_stack %llu\n", 1382 (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) * 1383 1024); 1384 seq_buf_printf(&s, "slab %llu\n", 1385 (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) + 1386 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) * 1387 PAGE_SIZE); 1388 seq_buf_printf(&s, "sock %llu\n", 1389 (u64)memcg_page_state(memcg, MEMCG_SOCK) * 1390 PAGE_SIZE); 1391 1392 seq_buf_printf(&s, "shmem %llu\n", 1393 (u64)memcg_page_state(memcg, NR_SHMEM) * 1394 PAGE_SIZE); 1395 seq_buf_printf(&s, "file_mapped %llu\n", 1396 (u64)memcg_page_state(memcg, NR_FILE_MAPPED) * 1397 PAGE_SIZE); 1398 seq_buf_printf(&s, "file_dirty %llu\n", 1399 (u64)memcg_page_state(memcg, NR_FILE_DIRTY) * 1400 PAGE_SIZE); 1401 seq_buf_printf(&s, "file_writeback %llu\n", 1402 (u64)memcg_page_state(memcg, NR_WRITEBACK) * 1403 PAGE_SIZE); 1404 1405 /* 1406 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter 1407 * with the NR_ANON_THP vm counter, but right now it's a pain in the 1408 * arse because it requires migrating the work out of rmap to a place 1409 * where the page->mem_cgroup is set up and stable. 1410 */ 1411 seq_buf_printf(&s, "anon_thp %llu\n", 1412 (u64)memcg_page_state(memcg, MEMCG_RSS_HUGE) * 1413 PAGE_SIZE); 1414 1415 for (i = 0; i < NR_LRU_LISTS; i++) 1416 seq_buf_printf(&s, "%s %llu\n", lru_list_name(i), 1417 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) * 1418 PAGE_SIZE); 1419 1420 seq_buf_printf(&s, "slab_reclaimable %llu\n", 1421 (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) * 1422 PAGE_SIZE); 1423 seq_buf_printf(&s, "slab_unreclaimable %llu\n", 1424 (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) * 1425 PAGE_SIZE); 1426 1427 /* Accumulated memory events */ 1428 1429 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT), 1430 memcg_events(memcg, PGFAULT)); 1431 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT), 1432 memcg_events(memcg, PGMAJFAULT)); 1433 1434 seq_buf_printf(&s, "workingset_refault %lu\n", 1435 memcg_page_state(memcg, WORKINGSET_REFAULT)); 1436 seq_buf_printf(&s, "workingset_activate %lu\n", 1437 memcg_page_state(memcg, WORKINGSET_ACTIVATE)); 1438 seq_buf_printf(&s, "workingset_nodereclaim %lu\n", 1439 memcg_page_state(memcg, WORKINGSET_NODERECLAIM)); 1440 1441 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL), 1442 memcg_events(memcg, PGREFILL)); 1443 seq_buf_printf(&s, "pgscan %lu\n", 1444 memcg_events(memcg, PGSCAN_KSWAPD) + 1445 memcg_events(memcg, PGSCAN_DIRECT)); 1446 seq_buf_printf(&s, "pgsteal %lu\n", 1447 memcg_events(memcg, PGSTEAL_KSWAPD) + 1448 memcg_events(memcg, PGSTEAL_DIRECT)); 1449 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE), 1450 memcg_events(memcg, PGACTIVATE)); 1451 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE), 1452 memcg_events(memcg, PGDEACTIVATE)); 1453 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE), 1454 memcg_events(memcg, PGLAZYFREE)); 1455 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED), 1456 memcg_events(memcg, PGLAZYFREED)); 1457 1458 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1459 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC), 1460 memcg_events(memcg, THP_FAULT_ALLOC)); 1461 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC), 1462 memcg_events(memcg, THP_COLLAPSE_ALLOC)); 1463 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1464 1465 /* The above should easily fit into one page */ 1466 WARN_ON_ONCE(seq_buf_has_overflowed(&s)); 1467 1468 return s.buffer; 1469 } 1470 1471 #define K(x) ((x) << (PAGE_SHIFT-10)) 1472 /** 1473 * mem_cgroup_print_oom_context: Print OOM information relevant to 1474 * memory controller. 1475 * @memcg: The memory cgroup that went over limit 1476 * @p: Task that is going to be killed 1477 * 1478 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1479 * enabled 1480 */ 1481 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1482 { 1483 rcu_read_lock(); 1484 1485 if (memcg) { 1486 pr_cont(",oom_memcg="); 1487 pr_cont_cgroup_path(memcg->css.cgroup); 1488 } else 1489 pr_cont(",global_oom"); 1490 if (p) { 1491 pr_cont(",task_memcg="); 1492 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); 1493 } 1494 rcu_read_unlock(); 1495 } 1496 1497 /** 1498 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to 1499 * memory controller. 1500 * @memcg: The memory cgroup that went over limit 1501 */ 1502 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1503 { 1504 char *buf; 1505 1506 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", 1507 K((u64)page_counter_read(&memcg->memory)), 1508 K((u64)memcg->memory.max), memcg->memory.failcnt); 1509 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1510 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n", 1511 K((u64)page_counter_read(&memcg->swap)), 1512 K((u64)memcg->swap.max), memcg->swap.failcnt); 1513 else { 1514 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", 1515 K((u64)page_counter_read(&memcg->memsw)), 1516 K((u64)memcg->memsw.max), memcg->memsw.failcnt); 1517 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", 1518 K((u64)page_counter_read(&memcg->kmem)), 1519 K((u64)memcg->kmem.max), memcg->kmem.failcnt); 1520 } 1521 1522 pr_info("Memory cgroup stats for "); 1523 pr_cont_cgroup_path(memcg->css.cgroup); 1524 pr_cont(":"); 1525 buf = memory_stat_format(memcg); 1526 if (!buf) 1527 return; 1528 pr_info("%s", buf); 1529 kfree(buf); 1530 } 1531 1532 /* 1533 * Return the memory (and swap, if configured) limit for a memcg. 1534 */ 1535 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1536 { 1537 unsigned long max; 1538 1539 max = memcg->memory.max; 1540 if (mem_cgroup_swappiness(memcg)) { 1541 unsigned long memsw_max; 1542 unsigned long swap_max; 1543 1544 memsw_max = memcg->memsw.max; 1545 swap_max = memcg->swap.max; 1546 swap_max = min(swap_max, (unsigned long)total_swap_pages); 1547 max = min(max + swap_max, memsw_max); 1548 } 1549 return max; 1550 } 1551 1552 unsigned long mem_cgroup_size(struct mem_cgroup *memcg) 1553 { 1554 return page_counter_read(&memcg->memory); 1555 } 1556 1557 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1558 int order) 1559 { 1560 struct oom_control oc = { 1561 .zonelist = NULL, 1562 .nodemask = NULL, 1563 .memcg = memcg, 1564 .gfp_mask = gfp_mask, 1565 .order = order, 1566 }; 1567 bool ret; 1568 1569 if (mutex_lock_killable(&oom_lock)) 1570 return true; 1571 /* 1572 * A few threads which were not waiting at mutex_lock_killable() can 1573 * fail to bail out. Therefore, check again after holding oom_lock. 1574 */ 1575 ret = should_force_charge() || out_of_memory(&oc); 1576 mutex_unlock(&oom_lock); 1577 return ret; 1578 } 1579 1580 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, 1581 pg_data_t *pgdat, 1582 gfp_t gfp_mask, 1583 unsigned long *total_scanned) 1584 { 1585 struct mem_cgroup *victim = NULL; 1586 int total = 0; 1587 int loop = 0; 1588 unsigned long excess; 1589 unsigned long nr_scanned; 1590 struct mem_cgroup_reclaim_cookie reclaim = { 1591 .pgdat = pgdat, 1592 }; 1593 1594 excess = soft_limit_excess(root_memcg); 1595 1596 while (1) { 1597 victim = mem_cgroup_iter(root_memcg, victim, &reclaim); 1598 if (!victim) { 1599 loop++; 1600 if (loop >= 2) { 1601 /* 1602 * If we have not been able to reclaim 1603 * anything, it might because there are 1604 * no reclaimable pages under this hierarchy 1605 */ 1606 if (!total) 1607 break; 1608 /* 1609 * We want to do more targeted reclaim. 1610 * excess >> 2 is not to excessive so as to 1611 * reclaim too much, nor too less that we keep 1612 * coming back to reclaim from this cgroup 1613 */ 1614 if (total >= (excess >> 2) || 1615 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) 1616 break; 1617 } 1618 continue; 1619 } 1620 total += mem_cgroup_shrink_node(victim, gfp_mask, false, 1621 pgdat, &nr_scanned); 1622 *total_scanned += nr_scanned; 1623 if (!soft_limit_excess(root_memcg)) 1624 break; 1625 } 1626 mem_cgroup_iter_break(root_memcg, victim); 1627 return total; 1628 } 1629 1630 #ifdef CONFIG_LOCKDEP 1631 static struct lockdep_map memcg_oom_lock_dep_map = { 1632 .name = "memcg_oom_lock", 1633 }; 1634 #endif 1635 1636 static DEFINE_SPINLOCK(memcg_oom_lock); 1637 1638 /* 1639 * Check OOM-Killer is already running under our hierarchy. 1640 * If someone is running, return false. 1641 */ 1642 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) 1643 { 1644 struct mem_cgroup *iter, *failed = NULL; 1645 1646 spin_lock(&memcg_oom_lock); 1647 1648 for_each_mem_cgroup_tree(iter, memcg) { 1649 if (iter->oom_lock) { 1650 /* 1651 * this subtree of our hierarchy is already locked 1652 * so we cannot give a lock. 1653 */ 1654 failed = iter; 1655 mem_cgroup_iter_break(memcg, iter); 1656 break; 1657 } else 1658 iter->oom_lock = true; 1659 } 1660 1661 if (failed) { 1662 /* 1663 * OK, we failed to lock the whole subtree so we have 1664 * to clean up what we set up to the failing subtree 1665 */ 1666 for_each_mem_cgroup_tree(iter, memcg) { 1667 if (iter == failed) { 1668 mem_cgroup_iter_break(memcg, iter); 1669 break; 1670 } 1671 iter->oom_lock = false; 1672 } 1673 } else 1674 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); 1675 1676 spin_unlock(&memcg_oom_lock); 1677 1678 return !failed; 1679 } 1680 1681 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 1682 { 1683 struct mem_cgroup *iter; 1684 1685 spin_lock(&memcg_oom_lock); 1686 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_); 1687 for_each_mem_cgroup_tree(iter, memcg) 1688 iter->oom_lock = false; 1689 spin_unlock(&memcg_oom_lock); 1690 } 1691 1692 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 1693 { 1694 struct mem_cgroup *iter; 1695 1696 spin_lock(&memcg_oom_lock); 1697 for_each_mem_cgroup_tree(iter, memcg) 1698 iter->under_oom++; 1699 spin_unlock(&memcg_oom_lock); 1700 } 1701 1702 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 1703 { 1704 struct mem_cgroup *iter; 1705 1706 /* 1707 * When a new child is created while the hierarchy is under oom, 1708 * mem_cgroup_oom_lock() may not be called. Watch for underflow. 1709 */ 1710 spin_lock(&memcg_oom_lock); 1711 for_each_mem_cgroup_tree(iter, memcg) 1712 if (iter->under_oom > 0) 1713 iter->under_oom--; 1714 spin_unlock(&memcg_oom_lock); 1715 } 1716 1717 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 1718 1719 struct oom_wait_info { 1720 struct mem_cgroup *memcg; 1721 wait_queue_entry_t wait; 1722 }; 1723 1724 static int memcg_oom_wake_function(wait_queue_entry_t *wait, 1725 unsigned mode, int sync, void *arg) 1726 { 1727 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; 1728 struct mem_cgroup *oom_wait_memcg; 1729 struct oom_wait_info *oom_wait_info; 1730 1731 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 1732 oom_wait_memcg = oom_wait_info->memcg; 1733 1734 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) && 1735 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg)) 1736 return 0; 1737 return autoremove_wake_function(wait, mode, sync, arg); 1738 } 1739 1740 static void memcg_oom_recover(struct mem_cgroup *memcg) 1741 { 1742 /* 1743 * For the following lockless ->under_oom test, the only required 1744 * guarantee is that it must see the state asserted by an OOM when 1745 * this function is called as a result of userland actions 1746 * triggered by the notification of the OOM. This is trivially 1747 * achieved by invoking mem_cgroup_mark_under_oom() before 1748 * triggering notification. 1749 */ 1750 if (memcg && memcg->under_oom) 1751 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 1752 } 1753 1754 enum oom_status { 1755 OOM_SUCCESS, 1756 OOM_FAILED, 1757 OOM_ASYNC, 1758 OOM_SKIPPED 1759 }; 1760 1761 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 1762 { 1763 enum oom_status ret; 1764 bool locked; 1765 1766 if (order > PAGE_ALLOC_COSTLY_ORDER) 1767 return OOM_SKIPPED; 1768 1769 memcg_memory_event(memcg, MEMCG_OOM); 1770 1771 /* 1772 * We are in the middle of the charge context here, so we 1773 * don't want to block when potentially sitting on a callstack 1774 * that holds all kinds of filesystem and mm locks. 1775 * 1776 * cgroup1 allows disabling the OOM killer and waiting for outside 1777 * handling until the charge can succeed; remember the context and put 1778 * the task to sleep at the end of the page fault when all locks are 1779 * released. 1780 * 1781 * On the other hand, in-kernel OOM killer allows for an async victim 1782 * memory reclaim (oom_reaper) and that means that we are not solely 1783 * relying on the oom victim to make a forward progress and we can 1784 * invoke the oom killer here. 1785 * 1786 * Please note that mem_cgroup_out_of_memory might fail to find a 1787 * victim and then we have to bail out from the charge path. 1788 */ 1789 if (memcg->oom_kill_disable) { 1790 if (!current->in_user_fault) 1791 return OOM_SKIPPED; 1792 css_get(&memcg->css); 1793 current->memcg_in_oom = memcg; 1794 current->memcg_oom_gfp_mask = mask; 1795 current->memcg_oom_order = order; 1796 1797 return OOM_ASYNC; 1798 } 1799 1800 mem_cgroup_mark_under_oom(memcg); 1801 1802 locked = mem_cgroup_oom_trylock(memcg); 1803 1804 if (locked) 1805 mem_cgroup_oom_notify(memcg); 1806 1807 mem_cgroup_unmark_under_oom(memcg); 1808 if (mem_cgroup_out_of_memory(memcg, mask, order)) 1809 ret = OOM_SUCCESS; 1810 else 1811 ret = OOM_FAILED; 1812 1813 if (locked) 1814 mem_cgroup_oom_unlock(memcg); 1815 1816 return ret; 1817 } 1818 1819 /** 1820 * mem_cgroup_oom_synchronize - complete memcg OOM handling 1821 * @handle: actually kill/wait or just clean up the OOM state 1822 * 1823 * This has to be called at the end of a page fault if the memcg OOM 1824 * handler was enabled. 1825 * 1826 * Memcg supports userspace OOM handling where failed allocations must 1827 * sleep on a waitqueue until the userspace task resolves the 1828 * situation. Sleeping directly in the charge context with all kinds 1829 * of locks held is not a good idea, instead we remember an OOM state 1830 * in the task and mem_cgroup_oom_synchronize() has to be called at 1831 * the end of the page fault to complete the OOM handling. 1832 * 1833 * Returns %true if an ongoing memcg OOM situation was detected and 1834 * completed, %false otherwise. 1835 */ 1836 bool mem_cgroup_oom_synchronize(bool handle) 1837 { 1838 struct mem_cgroup *memcg = current->memcg_in_oom; 1839 struct oom_wait_info owait; 1840 bool locked; 1841 1842 /* OOM is global, do not handle */ 1843 if (!memcg) 1844 return false; 1845 1846 if (!handle) 1847 goto cleanup; 1848 1849 owait.memcg = memcg; 1850 owait.wait.flags = 0; 1851 owait.wait.func = memcg_oom_wake_function; 1852 owait.wait.private = current; 1853 INIT_LIST_HEAD(&owait.wait.entry); 1854 1855 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 1856 mem_cgroup_mark_under_oom(memcg); 1857 1858 locked = mem_cgroup_oom_trylock(memcg); 1859 1860 if (locked) 1861 mem_cgroup_oom_notify(memcg); 1862 1863 if (locked && !memcg->oom_kill_disable) { 1864 mem_cgroup_unmark_under_oom(memcg); 1865 finish_wait(&memcg_oom_waitq, &owait.wait); 1866 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask, 1867 current->memcg_oom_order); 1868 } else { 1869 schedule(); 1870 mem_cgroup_unmark_under_oom(memcg); 1871 finish_wait(&memcg_oom_waitq, &owait.wait); 1872 } 1873 1874 if (locked) { 1875 mem_cgroup_oom_unlock(memcg); 1876 /* 1877 * There is no guarantee that an OOM-lock contender 1878 * sees the wakeups triggered by the OOM kill 1879 * uncharges. Wake any sleepers explicitely. 1880 */ 1881 memcg_oom_recover(memcg); 1882 } 1883 cleanup: 1884 current->memcg_in_oom = NULL; 1885 css_put(&memcg->css); 1886 return true; 1887 } 1888 1889 /** 1890 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM 1891 * @victim: task to be killed by the OOM killer 1892 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM 1893 * 1894 * Returns a pointer to a memory cgroup, which has to be cleaned up 1895 * by killing all belonging OOM-killable tasks. 1896 * 1897 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg. 1898 */ 1899 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 1900 struct mem_cgroup *oom_domain) 1901 { 1902 struct mem_cgroup *oom_group = NULL; 1903 struct mem_cgroup *memcg; 1904 1905 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1906 return NULL; 1907 1908 if (!oom_domain) 1909 oom_domain = root_mem_cgroup; 1910 1911 rcu_read_lock(); 1912 1913 memcg = mem_cgroup_from_task(victim); 1914 if (memcg == root_mem_cgroup) 1915 goto out; 1916 1917 /* 1918 * Traverse the memory cgroup hierarchy from the victim task's 1919 * cgroup up to the OOMing cgroup (or root) to find the 1920 * highest-level memory cgroup with oom.group set. 1921 */ 1922 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 1923 if (memcg->oom_group) 1924 oom_group = memcg; 1925 1926 if (memcg == oom_domain) 1927 break; 1928 } 1929 1930 if (oom_group) 1931 css_get(&oom_group->css); 1932 out: 1933 rcu_read_unlock(); 1934 1935 return oom_group; 1936 } 1937 1938 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 1939 { 1940 pr_info("Tasks in "); 1941 pr_cont_cgroup_path(memcg->css.cgroup); 1942 pr_cont(" are going to be killed due to memory.oom.group set\n"); 1943 } 1944 1945 /** 1946 * lock_page_memcg - lock a page->mem_cgroup binding 1947 * @page: the page 1948 * 1949 * This function protects unlocked LRU pages from being moved to 1950 * another cgroup. 1951 * 1952 * It ensures lifetime of the returned memcg. Caller is responsible 1953 * for the lifetime of the page; __unlock_page_memcg() is available 1954 * when @page might get freed inside the locked section. 1955 */ 1956 struct mem_cgroup *lock_page_memcg(struct page *page) 1957 { 1958 struct mem_cgroup *memcg; 1959 unsigned long flags; 1960 1961 /* 1962 * The RCU lock is held throughout the transaction. The fast 1963 * path can get away without acquiring the memcg->move_lock 1964 * because page moving starts with an RCU grace period. 1965 * 1966 * The RCU lock also protects the memcg from being freed when 1967 * the page state that is going to change is the only thing 1968 * preventing the page itself from being freed. E.g. writeback 1969 * doesn't hold a page reference and relies on PG_writeback to 1970 * keep off truncation, migration and so forth. 1971 */ 1972 rcu_read_lock(); 1973 1974 if (mem_cgroup_disabled()) 1975 return NULL; 1976 again: 1977 memcg = page->mem_cgroup; 1978 if (unlikely(!memcg)) 1979 return NULL; 1980 1981 if (atomic_read(&memcg->moving_account) <= 0) 1982 return memcg; 1983 1984 spin_lock_irqsave(&memcg->move_lock, flags); 1985 if (memcg != page->mem_cgroup) { 1986 spin_unlock_irqrestore(&memcg->move_lock, flags); 1987 goto again; 1988 } 1989 1990 /* 1991 * When charge migration first begins, we can have locked and 1992 * unlocked page stat updates happening concurrently. Track 1993 * the task who has the lock for unlock_page_memcg(). 1994 */ 1995 memcg->move_lock_task = current; 1996 memcg->move_lock_flags = flags; 1997 1998 return memcg; 1999 } 2000 EXPORT_SYMBOL(lock_page_memcg); 2001 2002 /** 2003 * __unlock_page_memcg - unlock and unpin a memcg 2004 * @memcg: the memcg 2005 * 2006 * Unlock and unpin a memcg returned by lock_page_memcg(). 2007 */ 2008 void __unlock_page_memcg(struct mem_cgroup *memcg) 2009 { 2010 if (memcg && memcg->move_lock_task == current) { 2011 unsigned long flags = memcg->move_lock_flags; 2012 2013 memcg->move_lock_task = NULL; 2014 memcg->move_lock_flags = 0; 2015 2016 spin_unlock_irqrestore(&memcg->move_lock, flags); 2017 } 2018 2019 rcu_read_unlock(); 2020 } 2021 2022 /** 2023 * unlock_page_memcg - unlock a page->mem_cgroup binding 2024 * @page: the page 2025 */ 2026 void unlock_page_memcg(struct page *page) 2027 { 2028 __unlock_page_memcg(page->mem_cgroup); 2029 } 2030 EXPORT_SYMBOL(unlock_page_memcg); 2031 2032 struct memcg_stock_pcp { 2033 struct mem_cgroup *cached; /* this never be root cgroup */ 2034 unsigned int nr_pages; 2035 struct work_struct work; 2036 unsigned long flags; 2037 #define FLUSHING_CACHED_CHARGE 0 2038 }; 2039 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); 2040 static DEFINE_MUTEX(percpu_charge_mutex); 2041 2042 /** 2043 * consume_stock: Try to consume stocked charge on this cpu. 2044 * @memcg: memcg to consume from. 2045 * @nr_pages: how many pages to charge. 2046 * 2047 * The charges will only happen if @memcg matches the current cpu's memcg 2048 * stock, and at least @nr_pages are available in that stock. Failure to 2049 * service an allocation will refill the stock. 2050 * 2051 * returns true if successful, false otherwise. 2052 */ 2053 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2054 { 2055 struct memcg_stock_pcp *stock; 2056 unsigned long flags; 2057 bool ret = false; 2058 2059 if (nr_pages > MEMCG_CHARGE_BATCH) 2060 return ret; 2061 2062 local_irq_save(flags); 2063 2064 stock = this_cpu_ptr(&memcg_stock); 2065 if (memcg == stock->cached && stock->nr_pages >= nr_pages) { 2066 stock->nr_pages -= nr_pages; 2067 ret = true; 2068 } 2069 2070 local_irq_restore(flags); 2071 2072 return ret; 2073 } 2074 2075 /* 2076 * Returns stocks cached in percpu and reset cached information. 2077 */ 2078 static void drain_stock(struct memcg_stock_pcp *stock) 2079 { 2080 struct mem_cgroup *old = stock->cached; 2081 2082 if (stock->nr_pages) { 2083 page_counter_uncharge(&old->memory, stock->nr_pages); 2084 if (do_memsw_account()) 2085 page_counter_uncharge(&old->memsw, stock->nr_pages); 2086 css_put_many(&old->css, stock->nr_pages); 2087 stock->nr_pages = 0; 2088 } 2089 stock->cached = NULL; 2090 } 2091 2092 static void drain_local_stock(struct work_struct *dummy) 2093 { 2094 struct memcg_stock_pcp *stock; 2095 unsigned long flags; 2096 2097 /* 2098 * The only protection from memory hotplug vs. drain_stock races is 2099 * that we always operate on local CPU stock here with IRQ disabled 2100 */ 2101 local_irq_save(flags); 2102 2103 stock = this_cpu_ptr(&memcg_stock); 2104 drain_stock(stock); 2105 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 2106 2107 local_irq_restore(flags); 2108 } 2109 2110 /* 2111 * Cache charges(val) to local per_cpu area. 2112 * This will be consumed by consume_stock() function, later. 2113 */ 2114 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2115 { 2116 struct memcg_stock_pcp *stock; 2117 unsigned long flags; 2118 2119 local_irq_save(flags); 2120 2121 stock = this_cpu_ptr(&memcg_stock); 2122 if (stock->cached != memcg) { /* reset if necessary */ 2123 drain_stock(stock); 2124 stock->cached = memcg; 2125 } 2126 stock->nr_pages += nr_pages; 2127 2128 if (stock->nr_pages > MEMCG_CHARGE_BATCH) 2129 drain_stock(stock); 2130 2131 local_irq_restore(flags); 2132 } 2133 2134 /* 2135 * Drains all per-CPU charge caches for given root_memcg resp. subtree 2136 * of the hierarchy under it. 2137 */ 2138 static void drain_all_stock(struct mem_cgroup *root_memcg) 2139 { 2140 int cpu, curcpu; 2141 2142 /* If someone's already draining, avoid adding running more workers. */ 2143 if (!mutex_trylock(&percpu_charge_mutex)) 2144 return; 2145 /* 2146 * Notify other cpus that system-wide "drain" is running 2147 * We do not care about races with the cpu hotplug because cpu down 2148 * as well as workers from this path always operate on the local 2149 * per-cpu data. CPU up doesn't touch memcg_stock at all. 2150 */ 2151 curcpu = get_cpu(); 2152 for_each_online_cpu(cpu) { 2153 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2154 struct mem_cgroup *memcg; 2155 bool flush = false; 2156 2157 rcu_read_lock(); 2158 memcg = stock->cached; 2159 if (memcg && stock->nr_pages && 2160 mem_cgroup_is_descendant(memcg, root_memcg)) 2161 flush = true; 2162 rcu_read_unlock(); 2163 2164 if (flush && 2165 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 2166 if (cpu == curcpu) 2167 drain_local_stock(&stock->work); 2168 else 2169 schedule_work_on(cpu, &stock->work); 2170 } 2171 } 2172 put_cpu(); 2173 mutex_unlock(&percpu_charge_mutex); 2174 } 2175 2176 static int memcg_hotplug_cpu_dead(unsigned int cpu) 2177 { 2178 struct memcg_stock_pcp *stock; 2179 struct mem_cgroup *memcg, *mi; 2180 2181 stock = &per_cpu(memcg_stock, cpu); 2182 drain_stock(stock); 2183 2184 for_each_mem_cgroup(memcg) { 2185 int i; 2186 2187 for (i = 0; i < MEMCG_NR_STAT; i++) { 2188 int nid; 2189 long x; 2190 2191 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0); 2192 if (x) 2193 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 2194 atomic_long_add(x, &memcg->vmstats[i]); 2195 2196 if (i >= NR_VM_NODE_STAT_ITEMS) 2197 continue; 2198 2199 for_each_node(nid) { 2200 struct mem_cgroup_per_node *pn; 2201 2202 pn = mem_cgroup_nodeinfo(memcg, nid); 2203 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0); 2204 if (x) 2205 do { 2206 atomic_long_add(x, &pn->lruvec_stat[i]); 2207 } while ((pn = parent_nodeinfo(pn, nid))); 2208 } 2209 } 2210 2211 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) { 2212 long x; 2213 2214 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0); 2215 if (x) 2216 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 2217 atomic_long_add(x, &memcg->vmevents[i]); 2218 } 2219 } 2220 2221 return 0; 2222 } 2223 2224 static void reclaim_high(struct mem_cgroup *memcg, 2225 unsigned int nr_pages, 2226 gfp_t gfp_mask) 2227 { 2228 do { 2229 if (page_counter_read(&memcg->memory) <= memcg->high) 2230 continue; 2231 memcg_memory_event(memcg, MEMCG_HIGH); 2232 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true); 2233 } while ((memcg = parent_mem_cgroup(memcg))); 2234 } 2235 2236 static void high_work_func(struct work_struct *work) 2237 { 2238 struct mem_cgroup *memcg; 2239 2240 memcg = container_of(work, struct mem_cgroup, high_work); 2241 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL); 2242 } 2243 2244 /* 2245 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is 2246 * enough to still cause a significant slowdown in most cases, while still 2247 * allowing diagnostics and tracing to proceed without becoming stuck. 2248 */ 2249 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ) 2250 2251 /* 2252 * When calculating the delay, we use these either side of the exponentiation to 2253 * maintain precision and scale to a reasonable number of jiffies (see the table 2254 * below. 2255 * 2256 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the 2257 * overage ratio to a delay. 2258 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down down the 2259 * proposed penalty in order to reduce to a reasonable number of jiffies, and 2260 * to produce a reasonable delay curve. 2261 * 2262 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a 2263 * reasonable delay curve compared to precision-adjusted overage, not 2264 * penalising heavily at first, but still making sure that growth beyond the 2265 * limit penalises misbehaviour cgroups by slowing them down exponentially. For 2266 * example, with a high of 100 megabytes: 2267 * 2268 * +-------+------------------------+ 2269 * | usage | time to allocate in ms | 2270 * +-------+------------------------+ 2271 * | 100M | 0 | 2272 * | 101M | 6 | 2273 * | 102M | 25 | 2274 * | 103M | 57 | 2275 * | 104M | 102 | 2276 * | 105M | 159 | 2277 * | 106M | 230 | 2278 * | 107M | 313 | 2279 * | 108M | 409 | 2280 * | 109M | 518 | 2281 * | 110M | 639 | 2282 * | 111M | 774 | 2283 * | 112M | 921 | 2284 * | 113M | 1081 | 2285 * | 114M | 1254 | 2286 * | 115M | 1439 | 2287 * | 116M | 1638 | 2288 * | 117M | 1849 | 2289 * | 118M | 2000 | 2290 * | 119M | 2000 | 2291 * | 120M | 2000 | 2292 * +-------+------------------------+ 2293 */ 2294 #define MEMCG_DELAY_PRECISION_SHIFT 20 2295 #define MEMCG_DELAY_SCALING_SHIFT 14 2296 2297 /* 2298 * Scheduled by try_charge() to be executed from the userland return path 2299 * and reclaims memory over the high limit. 2300 */ 2301 void mem_cgroup_handle_over_high(void) 2302 { 2303 unsigned long usage, high, clamped_high; 2304 unsigned long pflags; 2305 unsigned long penalty_jiffies, overage; 2306 unsigned int nr_pages = current->memcg_nr_pages_over_high; 2307 struct mem_cgroup *memcg; 2308 2309 if (likely(!nr_pages)) 2310 return; 2311 2312 memcg = get_mem_cgroup_from_mm(current->mm); 2313 reclaim_high(memcg, nr_pages, GFP_KERNEL); 2314 current->memcg_nr_pages_over_high = 0; 2315 2316 /* 2317 * memory.high is breached and reclaim is unable to keep up. Throttle 2318 * allocators proactively to slow down excessive growth. 2319 * 2320 * We use overage compared to memory.high to calculate the number of 2321 * jiffies to sleep (penalty_jiffies). Ideally this value should be 2322 * fairly lenient on small overages, and increasingly harsh when the 2323 * memcg in question makes it clear that it has no intention of stopping 2324 * its crazy behaviour, so we exponentially increase the delay based on 2325 * overage amount. 2326 */ 2327 2328 usage = page_counter_read(&memcg->memory); 2329 high = READ_ONCE(memcg->high); 2330 2331 if (usage <= high) 2332 goto out; 2333 2334 /* 2335 * Prevent division by 0 in overage calculation by acting as if it was a 2336 * threshold of 1 page 2337 */ 2338 clamped_high = max(high, 1UL); 2339 2340 overage = div_u64((u64)(usage - high) << MEMCG_DELAY_PRECISION_SHIFT, 2341 clamped_high); 2342 2343 penalty_jiffies = ((u64)overage * overage * HZ) 2344 >> (MEMCG_DELAY_PRECISION_SHIFT + MEMCG_DELAY_SCALING_SHIFT); 2345 2346 /* 2347 * Factor in the task's own contribution to the overage, such that four 2348 * N-sized allocations are throttled approximately the same as one 2349 * 4N-sized allocation. 2350 * 2351 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or 2352 * larger the current charge patch is than that. 2353 */ 2354 penalty_jiffies = penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH; 2355 2356 /* 2357 * Clamp the max delay per usermode return so as to still keep the 2358 * application moving forwards and also permit diagnostics, albeit 2359 * extremely slowly. 2360 */ 2361 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES); 2362 2363 /* 2364 * Don't sleep if the amount of jiffies this memcg owes us is so low 2365 * that it's not even worth doing, in an attempt to be nice to those who 2366 * go only a small amount over their memory.high value and maybe haven't 2367 * been aggressively reclaimed enough yet. 2368 */ 2369 if (penalty_jiffies <= HZ / 100) 2370 goto out; 2371 2372 /* 2373 * If we exit early, we're guaranteed to die (since 2374 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't 2375 * need to account for any ill-begotten jiffies to pay them off later. 2376 */ 2377 psi_memstall_enter(&pflags); 2378 schedule_timeout_killable(penalty_jiffies); 2379 psi_memstall_leave(&pflags); 2380 2381 out: 2382 css_put(&memcg->css); 2383 } 2384 2385 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 2386 unsigned int nr_pages) 2387 { 2388 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages); 2389 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 2390 struct mem_cgroup *mem_over_limit; 2391 struct page_counter *counter; 2392 unsigned long nr_reclaimed; 2393 bool may_swap = true; 2394 bool drained = false; 2395 enum oom_status oom_status; 2396 2397 if (mem_cgroup_is_root(memcg)) 2398 return 0; 2399 retry: 2400 if (consume_stock(memcg, nr_pages)) 2401 return 0; 2402 2403 if (!do_memsw_account() || 2404 page_counter_try_charge(&memcg->memsw, batch, &counter)) { 2405 if (page_counter_try_charge(&memcg->memory, batch, &counter)) 2406 goto done_restock; 2407 if (do_memsw_account()) 2408 page_counter_uncharge(&memcg->memsw, batch); 2409 mem_over_limit = mem_cgroup_from_counter(counter, memory); 2410 } else { 2411 mem_over_limit = mem_cgroup_from_counter(counter, memsw); 2412 may_swap = false; 2413 } 2414 2415 if (batch > nr_pages) { 2416 batch = nr_pages; 2417 goto retry; 2418 } 2419 2420 /* 2421 * Memcg doesn't have a dedicated reserve for atomic 2422 * allocations. But like the global atomic pool, we need to 2423 * put the burden of reclaim on regular allocation requests 2424 * and let these go through as privileged allocations. 2425 */ 2426 if (gfp_mask & __GFP_ATOMIC) 2427 goto force; 2428 2429 /* 2430 * Unlike in global OOM situations, memcg is not in a physical 2431 * memory shortage. Allow dying and OOM-killed tasks to 2432 * bypass the last charges so that they can exit quickly and 2433 * free their memory. 2434 */ 2435 if (unlikely(should_force_charge())) 2436 goto force; 2437 2438 /* 2439 * Prevent unbounded recursion when reclaim operations need to 2440 * allocate memory. This might exceed the limits temporarily, 2441 * but we prefer facilitating memory reclaim and getting back 2442 * under the limit over triggering OOM kills in these cases. 2443 */ 2444 if (unlikely(current->flags & PF_MEMALLOC)) 2445 goto force; 2446 2447 if (unlikely(task_in_memcg_oom(current))) 2448 goto nomem; 2449 2450 if (!gfpflags_allow_blocking(gfp_mask)) 2451 goto nomem; 2452 2453 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2454 2455 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, 2456 gfp_mask, may_swap); 2457 2458 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2459 goto retry; 2460 2461 if (!drained) { 2462 drain_all_stock(mem_over_limit); 2463 drained = true; 2464 goto retry; 2465 } 2466 2467 if (gfp_mask & __GFP_NORETRY) 2468 goto nomem; 2469 /* 2470 * Even though the limit is exceeded at this point, reclaim 2471 * may have been able to free some pages. Retry the charge 2472 * before killing the task. 2473 * 2474 * Only for regular pages, though: huge pages are rather 2475 * unlikely to succeed so close to the limit, and we fall back 2476 * to regular pages anyway in case of failure. 2477 */ 2478 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) 2479 goto retry; 2480 /* 2481 * At task move, charge accounts can be doubly counted. So, it's 2482 * better to wait until the end of task_move if something is going on. 2483 */ 2484 if (mem_cgroup_wait_acct_move(mem_over_limit)) 2485 goto retry; 2486 2487 if (nr_retries--) 2488 goto retry; 2489 2490 if (gfp_mask & __GFP_RETRY_MAYFAIL) 2491 goto nomem; 2492 2493 if (gfp_mask & __GFP_NOFAIL) 2494 goto force; 2495 2496 if (fatal_signal_pending(current)) 2497 goto force; 2498 2499 /* 2500 * keep retrying as long as the memcg oom killer is able to make 2501 * a forward progress or bypass the charge if the oom killer 2502 * couldn't make any progress. 2503 */ 2504 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask, 2505 get_order(nr_pages * PAGE_SIZE)); 2506 switch (oom_status) { 2507 case OOM_SUCCESS: 2508 nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 2509 goto retry; 2510 case OOM_FAILED: 2511 goto force; 2512 default: 2513 goto nomem; 2514 } 2515 nomem: 2516 if (!(gfp_mask & __GFP_NOFAIL)) 2517 return -ENOMEM; 2518 force: 2519 /* 2520 * The allocation either can't fail or will lead to more memory 2521 * being freed very soon. Allow memory usage go over the limit 2522 * temporarily by force charging it. 2523 */ 2524 page_counter_charge(&memcg->memory, nr_pages); 2525 if (do_memsw_account()) 2526 page_counter_charge(&memcg->memsw, nr_pages); 2527 css_get_many(&memcg->css, nr_pages); 2528 2529 return 0; 2530 2531 done_restock: 2532 css_get_many(&memcg->css, batch); 2533 if (batch > nr_pages) 2534 refill_stock(memcg, batch - nr_pages); 2535 2536 /* 2537 * If the hierarchy is above the normal consumption range, schedule 2538 * reclaim on returning to userland. We can perform reclaim here 2539 * if __GFP_RECLAIM but let's always punt for simplicity and so that 2540 * GFP_KERNEL can consistently be used during reclaim. @memcg is 2541 * not recorded as it most likely matches current's and won't 2542 * change in the meantime. As high limit is checked again before 2543 * reclaim, the cost of mismatch is negligible. 2544 */ 2545 do { 2546 if (page_counter_read(&memcg->memory) > memcg->high) { 2547 /* Don't bother a random interrupted task */ 2548 if (in_interrupt()) { 2549 schedule_work(&memcg->high_work); 2550 break; 2551 } 2552 current->memcg_nr_pages_over_high += batch; 2553 set_notify_resume(current); 2554 break; 2555 } 2556 } while ((memcg = parent_mem_cgroup(memcg))); 2557 2558 return 0; 2559 } 2560 2561 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages) 2562 { 2563 if (mem_cgroup_is_root(memcg)) 2564 return; 2565 2566 page_counter_uncharge(&memcg->memory, nr_pages); 2567 if (do_memsw_account()) 2568 page_counter_uncharge(&memcg->memsw, nr_pages); 2569 2570 css_put_many(&memcg->css, nr_pages); 2571 } 2572 2573 static void lock_page_lru(struct page *page, int *isolated) 2574 { 2575 pg_data_t *pgdat = page_pgdat(page); 2576 2577 spin_lock_irq(&pgdat->lru_lock); 2578 if (PageLRU(page)) { 2579 struct lruvec *lruvec; 2580 2581 lruvec = mem_cgroup_page_lruvec(page, pgdat); 2582 ClearPageLRU(page); 2583 del_page_from_lru_list(page, lruvec, page_lru(page)); 2584 *isolated = 1; 2585 } else 2586 *isolated = 0; 2587 } 2588 2589 static void unlock_page_lru(struct page *page, int isolated) 2590 { 2591 pg_data_t *pgdat = page_pgdat(page); 2592 2593 if (isolated) { 2594 struct lruvec *lruvec; 2595 2596 lruvec = mem_cgroup_page_lruvec(page, pgdat); 2597 VM_BUG_ON_PAGE(PageLRU(page), page); 2598 SetPageLRU(page); 2599 add_page_to_lru_list(page, lruvec, page_lru(page)); 2600 } 2601 spin_unlock_irq(&pgdat->lru_lock); 2602 } 2603 2604 static void commit_charge(struct page *page, struct mem_cgroup *memcg, 2605 bool lrucare) 2606 { 2607 int isolated; 2608 2609 VM_BUG_ON_PAGE(page->mem_cgroup, page); 2610 2611 /* 2612 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page 2613 * may already be on some other mem_cgroup's LRU. Take care of it. 2614 */ 2615 if (lrucare) 2616 lock_page_lru(page, &isolated); 2617 2618 /* 2619 * Nobody should be changing or seriously looking at 2620 * page->mem_cgroup at this point: 2621 * 2622 * - the page is uncharged 2623 * 2624 * - the page is off-LRU 2625 * 2626 * - an anonymous fault has exclusive page access, except for 2627 * a locked page table 2628 * 2629 * - a page cache insertion, a swapin fault, or a migration 2630 * have the page locked 2631 */ 2632 page->mem_cgroup = memcg; 2633 2634 if (lrucare) 2635 unlock_page_lru(page, isolated); 2636 } 2637 2638 #ifdef CONFIG_MEMCG_KMEM 2639 static int memcg_alloc_cache_id(void) 2640 { 2641 int id, size; 2642 int err; 2643 2644 id = ida_simple_get(&memcg_cache_ida, 2645 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL); 2646 if (id < 0) 2647 return id; 2648 2649 if (id < memcg_nr_cache_ids) 2650 return id; 2651 2652 /* 2653 * There's no space for the new id in memcg_caches arrays, 2654 * so we have to grow them. 2655 */ 2656 down_write(&memcg_cache_ids_sem); 2657 2658 size = 2 * (id + 1); 2659 if (size < MEMCG_CACHES_MIN_SIZE) 2660 size = MEMCG_CACHES_MIN_SIZE; 2661 else if (size > MEMCG_CACHES_MAX_SIZE) 2662 size = MEMCG_CACHES_MAX_SIZE; 2663 2664 err = memcg_update_all_caches(size); 2665 if (!err) 2666 err = memcg_update_all_list_lrus(size); 2667 if (!err) 2668 memcg_nr_cache_ids = size; 2669 2670 up_write(&memcg_cache_ids_sem); 2671 2672 if (err) { 2673 ida_simple_remove(&memcg_cache_ida, id); 2674 return err; 2675 } 2676 return id; 2677 } 2678 2679 static void memcg_free_cache_id(int id) 2680 { 2681 ida_simple_remove(&memcg_cache_ida, id); 2682 } 2683 2684 struct memcg_kmem_cache_create_work { 2685 struct mem_cgroup *memcg; 2686 struct kmem_cache *cachep; 2687 struct work_struct work; 2688 }; 2689 2690 static void memcg_kmem_cache_create_func(struct work_struct *w) 2691 { 2692 struct memcg_kmem_cache_create_work *cw = 2693 container_of(w, struct memcg_kmem_cache_create_work, work); 2694 struct mem_cgroup *memcg = cw->memcg; 2695 struct kmem_cache *cachep = cw->cachep; 2696 2697 memcg_create_kmem_cache(memcg, cachep); 2698 2699 css_put(&memcg->css); 2700 kfree(cw); 2701 } 2702 2703 /* 2704 * Enqueue the creation of a per-memcg kmem_cache. 2705 */ 2706 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg, 2707 struct kmem_cache *cachep) 2708 { 2709 struct memcg_kmem_cache_create_work *cw; 2710 2711 if (!css_tryget_online(&memcg->css)) 2712 return; 2713 2714 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN); 2715 if (!cw) 2716 return; 2717 2718 cw->memcg = memcg; 2719 cw->cachep = cachep; 2720 INIT_WORK(&cw->work, memcg_kmem_cache_create_func); 2721 2722 queue_work(memcg_kmem_cache_wq, &cw->work); 2723 } 2724 2725 static inline bool memcg_kmem_bypass(void) 2726 { 2727 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD)) 2728 return true; 2729 return false; 2730 } 2731 2732 /** 2733 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation 2734 * @cachep: the original global kmem cache 2735 * 2736 * Return the kmem_cache we're supposed to use for a slab allocation. 2737 * We try to use the current memcg's version of the cache. 2738 * 2739 * If the cache does not exist yet, if we are the first user of it, we 2740 * create it asynchronously in a workqueue and let the current allocation 2741 * go through with the original cache. 2742 * 2743 * This function takes a reference to the cache it returns to assure it 2744 * won't get destroyed while we are working with it. Once the caller is 2745 * done with it, memcg_kmem_put_cache() must be called to release the 2746 * reference. 2747 */ 2748 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep) 2749 { 2750 struct mem_cgroup *memcg; 2751 struct kmem_cache *memcg_cachep; 2752 struct memcg_cache_array *arr; 2753 int kmemcg_id; 2754 2755 VM_BUG_ON(!is_root_cache(cachep)); 2756 2757 if (memcg_kmem_bypass()) 2758 return cachep; 2759 2760 rcu_read_lock(); 2761 2762 if (unlikely(current->active_memcg)) 2763 memcg = current->active_memcg; 2764 else 2765 memcg = mem_cgroup_from_task(current); 2766 2767 if (!memcg || memcg == root_mem_cgroup) 2768 goto out_unlock; 2769 2770 kmemcg_id = READ_ONCE(memcg->kmemcg_id); 2771 if (kmemcg_id < 0) 2772 goto out_unlock; 2773 2774 arr = rcu_dereference(cachep->memcg_params.memcg_caches); 2775 2776 /* 2777 * Make sure we will access the up-to-date value. The code updating 2778 * memcg_caches issues a write barrier to match the data dependency 2779 * barrier inside READ_ONCE() (see memcg_create_kmem_cache()). 2780 */ 2781 memcg_cachep = READ_ONCE(arr->entries[kmemcg_id]); 2782 2783 /* 2784 * If we are in a safe context (can wait, and not in interrupt 2785 * context), we could be be predictable and return right away. 2786 * This would guarantee that the allocation being performed 2787 * already belongs in the new cache. 2788 * 2789 * However, there are some clashes that can arrive from locking. 2790 * For instance, because we acquire the slab_mutex while doing 2791 * memcg_create_kmem_cache, this means no further allocation 2792 * could happen with the slab_mutex held. So it's better to 2793 * defer everything. 2794 * 2795 * If the memcg is dying or memcg_cache is about to be released, 2796 * don't bother creating new kmem_caches. Because memcg_cachep 2797 * is ZEROed as the fist step of kmem offlining, we don't need 2798 * percpu_ref_tryget_live() here. css_tryget_online() check in 2799 * memcg_schedule_kmem_cache_create() will prevent us from 2800 * creation of a new kmem_cache. 2801 */ 2802 if (unlikely(!memcg_cachep)) 2803 memcg_schedule_kmem_cache_create(memcg, cachep); 2804 else if (percpu_ref_tryget(&memcg_cachep->memcg_params.refcnt)) 2805 cachep = memcg_cachep; 2806 out_unlock: 2807 rcu_read_unlock(); 2808 return cachep; 2809 } 2810 2811 /** 2812 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache 2813 * @cachep: the cache returned by memcg_kmem_get_cache 2814 */ 2815 void memcg_kmem_put_cache(struct kmem_cache *cachep) 2816 { 2817 if (!is_root_cache(cachep)) 2818 percpu_ref_put(&cachep->memcg_params.refcnt); 2819 } 2820 2821 /** 2822 * __memcg_kmem_charge_memcg: charge a kmem page 2823 * @page: page to charge 2824 * @gfp: reclaim mode 2825 * @order: allocation order 2826 * @memcg: memory cgroup to charge 2827 * 2828 * Returns 0 on success, an error code on failure. 2829 */ 2830 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order, 2831 struct mem_cgroup *memcg) 2832 { 2833 unsigned int nr_pages = 1 << order; 2834 struct page_counter *counter; 2835 int ret; 2836 2837 ret = try_charge(memcg, gfp, nr_pages); 2838 if (ret) 2839 return ret; 2840 2841 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && 2842 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) { 2843 2844 /* 2845 * Enforce __GFP_NOFAIL allocation because callers are not 2846 * prepared to see failures and likely do not have any failure 2847 * handling code. 2848 */ 2849 if (gfp & __GFP_NOFAIL) { 2850 page_counter_charge(&memcg->kmem, nr_pages); 2851 return 0; 2852 } 2853 cancel_charge(memcg, nr_pages); 2854 return -ENOMEM; 2855 } 2856 return 0; 2857 } 2858 2859 /** 2860 * __memcg_kmem_charge: charge a kmem page to the current memory cgroup 2861 * @page: page to charge 2862 * @gfp: reclaim mode 2863 * @order: allocation order 2864 * 2865 * Returns 0 on success, an error code on failure. 2866 */ 2867 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order) 2868 { 2869 struct mem_cgroup *memcg; 2870 int ret = 0; 2871 2872 if (memcg_kmem_bypass()) 2873 return 0; 2874 2875 memcg = get_mem_cgroup_from_current(); 2876 if (!mem_cgroup_is_root(memcg)) { 2877 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg); 2878 if (!ret) { 2879 page->mem_cgroup = memcg; 2880 __SetPageKmemcg(page); 2881 } 2882 } 2883 css_put(&memcg->css); 2884 return ret; 2885 } 2886 2887 /** 2888 * __memcg_kmem_uncharge_memcg: uncharge a kmem page 2889 * @memcg: memcg to uncharge 2890 * @nr_pages: number of pages to uncharge 2891 */ 2892 void __memcg_kmem_uncharge_memcg(struct mem_cgroup *memcg, 2893 unsigned int nr_pages) 2894 { 2895 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 2896 page_counter_uncharge(&memcg->kmem, nr_pages); 2897 2898 page_counter_uncharge(&memcg->memory, nr_pages); 2899 if (do_memsw_account()) 2900 page_counter_uncharge(&memcg->memsw, nr_pages); 2901 } 2902 /** 2903 * __memcg_kmem_uncharge: uncharge a kmem page 2904 * @page: page to uncharge 2905 * @order: allocation order 2906 */ 2907 void __memcg_kmem_uncharge(struct page *page, int order) 2908 { 2909 struct mem_cgroup *memcg = page->mem_cgroup; 2910 unsigned int nr_pages = 1 << order; 2911 2912 if (!memcg) 2913 return; 2914 2915 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page); 2916 __memcg_kmem_uncharge_memcg(memcg, nr_pages); 2917 page->mem_cgroup = NULL; 2918 2919 /* slab pages do not have PageKmemcg flag set */ 2920 if (PageKmemcg(page)) 2921 __ClearPageKmemcg(page); 2922 2923 css_put_many(&memcg->css, nr_pages); 2924 } 2925 #endif /* CONFIG_MEMCG_KMEM */ 2926 2927 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2928 2929 /* 2930 * Because tail pages are not marked as "used", set it. We're under 2931 * pgdat->lru_lock and migration entries setup in all page mappings. 2932 */ 2933 void mem_cgroup_split_huge_fixup(struct page *head) 2934 { 2935 int i; 2936 2937 if (mem_cgroup_disabled()) 2938 return; 2939 2940 for (i = 1; i < HPAGE_PMD_NR; i++) 2941 head[i].mem_cgroup = head->mem_cgroup; 2942 2943 __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR); 2944 } 2945 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 2946 2947 #ifdef CONFIG_MEMCG_SWAP 2948 /** 2949 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 2950 * @entry: swap entry to be moved 2951 * @from: mem_cgroup which the entry is moved from 2952 * @to: mem_cgroup which the entry is moved to 2953 * 2954 * It succeeds only when the swap_cgroup's record for this entry is the same 2955 * as the mem_cgroup's id of @from. 2956 * 2957 * Returns 0 on success, -EINVAL on failure. 2958 * 2959 * The caller must have charged to @to, IOW, called page_counter_charge() about 2960 * both res and memsw, and called css_get(). 2961 */ 2962 static int mem_cgroup_move_swap_account(swp_entry_t entry, 2963 struct mem_cgroup *from, struct mem_cgroup *to) 2964 { 2965 unsigned short old_id, new_id; 2966 2967 old_id = mem_cgroup_id(from); 2968 new_id = mem_cgroup_id(to); 2969 2970 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 2971 mod_memcg_state(from, MEMCG_SWAP, -1); 2972 mod_memcg_state(to, MEMCG_SWAP, 1); 2973 return 0; 2974 } 2975 return -EINVAL; 2976 } 2977 #else 2978 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 2979 struct mem_cgroup *from, struct mem_cgroup *to) 2980 { 2981 return -EINVAL; 2982 } 2983 #endif 2984 2985 static DEFINE_MUTEX(memcg_max_mutex); 2986 2987 static int mem_cgroup_resize_max(struct mem_cgroup *memcg, 2988 unsigned long max, bool memsw) 2989 { 2990 bool enlarge = false; 2991 bool drained = false; 2992 int ret; 2993 bool limits_invariant; 2994 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory; 2995 2996 do { 2997 if (signal_pending(current)) { 2998 ret = -EINTR; 2999 break; 3000 } 3001 3002 mutex_lock(&memcg_max_mutex); 3003 /* 3004 * Make sure that the new limit (memsw or memory limit) doesn't 3005 * break our basic invariant rule memory.max <= memsw.max. 3006 */ 3007 limits_invariant = memsw ? max >= memcg->memory.max : 3008 max <= memcg->memsw.max; 3009 if (!limits_invariant) { 3010 mutex_unlock(&memcg_max_mutex); 3011 ret = -EINVAL; 3012 break; 3013 } 3014 if (max > counter->max) 3015 enlarge = true; 3016 ret = page_counter_set_max(counter, max); 3017 mutex_unlock(&memcg_max_mutex); 3018 3019 if (!ret) 3020 break; 3021 3022 if (!drained) { 3023 drain_all_stock(memcg); 3024 drained = true; 3025 continue; 3026 } 3027 3028 if (!try_to_free_mem_cgroup_pages(memcg, 1, 3029 GFP_KERNEL, !memsw)) { 3030 ret = -EBUSY; 3031 break; 3032 } 3033 } while (true); 3034 3035 if (!ret && enlarge) 3036 memcg_oom_recover(memcg); 3037 3038 return ret; 3039 } 3040 3041 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 3042 gfp_t gfp_mask, 3043 unsigned long *total_scanned) 3044 { 3045 unsigned long nr_reclaimed = 0; 3046 struct mem_cgroup_per_node *mz, *next_mz = NULL; 3047 unsigned long reclaimed; 3048 int loop = 0; 3049 struct mem_cgroup_tree_per_node *mctz; 3050 unsigned long excess; 3051 unsigned long nr_scanned; 3052 3053 if (order > 0) 3054 return 0; 3055 3056 mctz = soft_limit_tree_node(pgdat->node_id); 3057 3058 /* 3059 * Do not even bother to check the largest node if the root 3060 * is empty. Do it lockless to prevent lock bouncing. Races 3061 * are acceptable as soft limit is best effort anyway. 3062 */ 3063 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root)) 3064 return 0; 3065 3066 /* 3067 * This loop can run a while, specially if mem_cgroup's continuously 3068 * keep exceeding their soft limit and putting the system under 3069 * pressure 3070 */ 3071 do { 3072 if (next_mz) 3073 mz = next_mz; 3074 else 3075 mz = mem_cgroup_largest_soft_limit_node(mctz); 3076 if (!mz) 3077 break; 3078 3079 nr_scanned = 0; 3080 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat, 3081 gfp_mask, &nr_scanned); 3082 nr_reclaimed += reclaimed; 3083 *total_scanned += nr_scanned; 3084 spin_lock_irq(&mctz->lock); 3085 __mem_cgroup_remove_exceeded(mz, mctz); 3086 3087 /* 3088 * If we failed to reclaim anything from this memory cgroup 3089 * it is time to move on to the next cgroup 3090 */ 3091 next_mz = NULL; 3092 if (!reclaimed) 3093 next_mz = __mem_cgroup_largest_soft_limit_node(mctz); 3094 3095 excess = soft_limit_excess(mz->memcg); 3096 /* 3097 * One school of thought says that we should not add 3098 * back the node to the tree if reclaim returns 0. 3099 * But our reclaim could return 0, simply because due 3100 * to priority we are exposing a smaller subset of 3101 * memory to reclaim from. Consider this as a longer 3102 * term TODO. 3103 */ 3104 /* If excess == 0, no tree ops */ 3105 __mem_cgroup_insert_exceeded(mz, mctz, excess); 3106 spin_unlock_irq(&mctz->lock); 3107 css_put(&mz->memcg->css); 3108 loop++; 3109 /* 3110 * Could not reclaim anything and there are no more 3111 * mem cgroups to try or we seem to be looping without 3112 * reclaiming anything. 3113 */ 3114 if (!nr_reclaimed && 3115 (next_mz == NULL || 3116 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 3117 break; 3118 } while (!nr_reclaimed); 3119 if (next_mz) 3120 css_put(&next_mz->memcg->css); 3121 return nr_reclaimed; 3122 } 3123 3124 /* 3125 * Test whether @memcg has children, dead or alive. Note that this 3126 * function doesn't care whether @memcg has use_hierarchy enabled and 3127 * returns %true if there are child csses according to the cgroup 3128 * hierarchy. Testing use_hierarchy is the caller's responsiblity. 3129 */ 3130 static inline bool memcg_has_children(struct mem_cgroup *memcg) 3131 { 3132 bool ret; 3133 3134 rcu_read_lock(); 3135 ret = css_next_child(NULL, &memcg->css); 3136 rcu_read_unlock(); 3137 return ret; 3138 } 3139 3140 /* 3141 * Reclaims as many pages from the given memcg as possible. 3142 * 3143 * Caller is responsible for holding css reference for memcg. 3144 */ 3145 static int mem_cgroup_force_empty(struct mem_cgroup *memcg) 3146 { 3147 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 3148 3149 /* we call try-to-free pages for make this cgroup empty */ 3150 lru_add_drain_all(); 3151 3152 drain_all_stock(memcg); 3153 3154 /* try to free all pages in this cgroup */ 3155 while (nr_retries && page_counter_read(&memcg->memory)) { 3156 int progress; 3157 3158 if (signal_pending(current)) 3159 return -EINTR; 3160 3161 progress = try_to_free_mem_cgroup_pages(memcg, 1, 3162 GFP_KERNEL, true); 3163 if (!progress) { 3164 nr_retries--; 3165 /* maybe some writeback is necessary */ 3166 congestion_wait(BLK_RW_ASYNC, HZ/10); 3167 } 3168 3169 } 3170 3171 return 0; 3172 } 3173 3174 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of, 3175 char *buf, size_t nbytes, 3176 loff_t off) 3177 { 3178 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3179 3180 if (mem_cgroup_is_root(memcg)) 3181 return -EINVAL; 3182 return mem_cgroup_force_empty(memcg) ?: nbytes; 3183 } 3184 3185 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, 3186 struct cftype *cft) 3187 { 3188 return mem_cgroup_from_css(css)->use_hierarchy; 3189 } 3190 3191 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, 3192 struct cftype *cft, u64 val) 3193 { 3194 int retval = 0; 3195 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3196 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent); 3197 3198 if (memcg->use_hierarchy == val) 3199 return 0; 3200 3201 /* 3202 * If parent's use_hierarchy is set, we can't make any modifications 3203 * in the child subtrees. If it is unset, then the change can 3204 * occur, provided the current cgroup has no children. 3205 * 3206 * For the root cgroup, parent_mem is NULL, we allow value to be 3207 * set if there are no children. 3208 */ 3209 if ((!parent_memcg || !parent_memcg->use_hierarchy) && 3210 (val == 1 || val == 0)) { 3211 if (!memcg_has_children(memcg)) 3212 memcg->use_hierarchy = val; 3213 else 3214 retval = -EBUSY; 3215 } else 3216 retval = -EINVAL; 3217 3218 return retval; 3219 } 3220 3221 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 3222 { 3223 unsigned long val; 3224 3225 if (mem_cgroup_is_root(memcg)) { 3226 val = memcg_page_state(memcg, MEMCG_CACHE) + 3227 memcg_page_state(memcg, MEMCG_RSS); 3228 if (swap) 3229 val += memcg_page_state(memcg, MEMCG_SWAP); 3230 } else { 3231 if (!swap) 3232 val = page_counter_read(&memcg->memory); 3233 else 3234 val = page_counter_read(&memcg->memsw); 3235 } 3236 return val; 3237 } 3238 3239 enum { 3240 RES_USAGE, 3241 RES_LIMIT, 3242 RES_MAX_USAGE, 3243 RES_FAILCNT, 3244 RES_SOFT_LIMIT, 3245 }; 3246 3247 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css, 3248 struct cftype *cft) 3249 { 3250 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3251 struct page_counter *counter; 3252 3253 switch (MEMFILE_TYPE(cft->private)) { 3254 case _MEM: 3255 counter = &memcg->memory; 3256 break; 3257 case _MEMSWAP: 3258 counter = &memcg->memsw; 3259 break; 3260 case _KMEM: 3261 counter = &memcg->kmem; 3262 break; 3263 case _TCP: 3264 counter = &memcg->tcpmem; 3265 break; 3266 default: 3267 BUG(); 3268 } 3269 3270 switch (MEMFILE_ATTR(cft->private)) { 3271 case RES_USAGE: 3272 if (counter == &memcg->memory) 3273 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE; 3274 if (counter == &memcg->memsw) 3275 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE; 3276 return (u64)page_counter_read(counter) * PAGE_SIZE; 3277 case RES_LIMIT: 3278 return (u64)counter->max * PAGE_SIZE; 3279 case RES_MAX_USAGE: 3280 return (u64)counter->watermark * PAGE_SIZE; 3281 case RES_FAILCNT: 3282 return counter->failcnt; 3283 case RES_SOFT_LIMIT: 3284 return (u64)memcg->soft_limit * PAGE_SIZE; 3285 default: 3286 BUG(); 3287 } 3288 } 3289 3290 static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg) 3291 { 3292 unsigned long stat[MEMCG_NR_STAT] = {0}; 3293 struct mem_cgroup *mi; 3294 int node, cpu, i; 3295 3296 for_each_online_cpu(cpu) 3297 for (i = 0; i < MEMCG_NR_STAT; i++) 3298 stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu); 3299 3300 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 3301 for (i = 0; i < MEMCG_NR_STAT; i++) 3302 atomic_long_add(stat[i], &mi->vmstats[i]); 3303 3304 for_each_node(node) { 3305 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node]; 3306 struct mem_cgroup_per_node *pi; 3307 3308 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) 3309 stat[i] = 0; 3310 3311 for_each_online_cpu(cpu) 3312 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) 3313 stat[i] += per_cpu( 3314 pn->lruvec_stat_cpu->count[i], cpu); 3315 3316 for (pi = pn; pi; pi = parent_nodeinfo(pi, node)) 3317 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) 3318 atomic_long_add(stat[i], &pi->lruvec_stat[i]); 3319 } 3320 } 3321 3322 static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg) 3323 { 3324 unsigned long events[NR_VM_EVENT_ITEMS]; 3325 struct mem_cgroup *mi; 3326 int cpu, i; 3327 3328 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) 3329 events[i] = 0; 3330 3331 for_each_online_cpu(cpu) 3332 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) 3333 events[i] += per_cpu(memcg->vmstats_percpu->events[i], 3334 cpu); 3335 3336 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 3337 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) 3338 atomic_long_add(events[i], &mi->vmevents[i]); 3339 } 3340 3341 #ifdef CONFIG_MEMCG_KMEM 3342 static int memcg_online_kmem(struct mem_cgroup *memcg) 3343 { 3344 int memcg_id; 3345 3346 if (cgroup_memory_nokmem) 3347 return 0; 3348 3349 BUG_ON(memcg->kmemcg_id >= 0); 3350 BUG_ON(memcg->kmem_state); 3351 3352 memcg_id = memcg_alloc_cache_id(); 3353 if (memcg_id < 0) 3354 return memcg_id; 3355 3356 static_branch_inc(&memcg_kmem_enabled_key); 3357 /* 3358 * A memory cgroup is considered kmem-online as soon as it gets 3359 * kmemcg_id. Setting the id after enabling static branching will 3360 * guarantee no one starts accounting before all call sites are 3361 * patched. 3362 */ 3363 memcg->kmemcg_id = memcg_id; 3364 memcg->kmem_state = KMEM_ONLINE; 3365 INIT_LIST_HEAD(&memcg->kmem_caches); 3366 3367 return 0; 3368 } 3369 3370 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3371 { 3372 struct cgroup_subsys_state *css; 3373 struct mem_cgroup *parent, *child; 3374 int kmemcg_id; 3375 3376 if (memcg->kmem_state != KMEM_ONLINE) 3377 return; 3378 /* 3379 * Clear the online state before clearing memcg_caches array 3380 * entries. The slab_mutex in memcg_deactivate_kmem_caches() 3381 * guarantees that no cache will be created for this cgroup 3382 * after we are done (see memcg_create_kmem_cache()). 3383 */ 3384 memcg->kmem_state = KMEM_ALLOCATED; 3385 3386 parent = parent_mem_cgroup(memcg); 3387 if (!parent) 3388 parent = root_mem_cgroup; 3389 3390 /* 3391 * Deactivate and reparent kmem_caches. 3392 */ 3393 memcg_deactivate_kmem_caches(memcg, parent); 3394 3395 kmemcg_id = memcg->kmemcg_id; 3396 BUG_ON(kmemcg_id < 0); 3397 3398 /* 3399 * Change kmemcg_id of this cgroup and all its descendants to the 3400 * parent's id, and then move all entries from this cgroup's list_lrus 3401 * to ones of the parent. After we have finished, all list_lrus 3402 * corresponding to this cgroup are guaranteed to remain empty. The 3403 * ordering is imposed by list_lru_node->lock taken by 3404 * memcg_drain_all_list_lrus(). 3405 */ 3406 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */ 3407 css_for_each_descendant_pre(css, &memcg->css) { 3408 child = mem_cgroup_from_css(css); 3409 BUG_ON(child->kmemcg_id != kmemcg_id); 3410 child->kmemcg_id = parent->kmemcg_id; 3411 if (!memcg->use_hierarchy) 3412 break; 3413 } 3414 rcu_read_unlock(); 3415 3416 memcg_drain_all_list_lrus(kmemcg_id, parent); 3417 3418 memcg_free_cache_id(kmemcg_id); 3419 } 3420 3421 static void memcg_free_kmem(struct mem_cgroup *memcg) 3422 { 3423 /* css_alloc() failed, offlining didn't happen */ 3424 if (unlikely(memcg->kmem_state == KMEM_ONLINE)) 3425 memcg_offline_kmem(memcg); 3426 3427 if (memcg->kmem_state == KMEM_ALLOCATED) { 3428 WARN_ON(!list_empty(&memcg->kmem_caches)); 3429 static_branch_dec(&memcg_kmem_enabled_key); 3430 } 3431 } 3432 #else 3433 static int memcg_online_kmem(struct mem_cgroup *memcg) 3434 { 3435 return 0; 3436 } 3437 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3438 { 3439 } 3440 static void memcg_free_kmem(struct mem_cgroup *memcg) 3441 { 3442 } 3443 #endif /* CONFIG_MEMCG_KMEM */ 3444 3445 static int memcg_update_kmem_max(struct mem_cgroup *memcg, 3446 unsigned long max) 3447 { 3448 int ret; 3449 3450 mutex_lock(&memcg_max_mutex); 3451 ret = page_counter_set_max(&memcg->kmem, max); 3452 mutex_unlock(&memcg_max_mutex); 3453 return ret; 3454 } 3455 3456 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max) 3457 { 3458 int ret; 3459 3460 mutex_lock(&memcg_max_mutex); 3461 3462 ret = page_counter_set_max(&memcg->tcpmem, max); 3463 if (ret) 3464 goto out; 3465 3466 if (!memcg->tcpmem_active) { 3467 /* 3468 * The active flag needs to be written after the static_key 3469 * update. This is what guarantees that the socket activation 3470 * function is the last one to run. See mem_cgroup_sk_alloc() 3471 * for details, and note that we don't mark any socket as 3472 * belonging to this memcg until that flag is up. 3473 * 3474 * We need to do this, because static_keys will span multiple 3475 * sites, but we can't control their order. If we mark a socket 3476 * as accounted, but the accounting functions are not patched in 3477 * yet, we'll lose accounting. 3478 * 3479 * We never race with the readers in mem_cgroup_sk_alloc(), 3480 * because when this value change, the code to process it is not 3481 * patched in yet. 3482 */ 3483 static_branch_inc(&memcg_sockets_enabled_key); 3484 memcg->tcpmem_active = true; 3485 } 3486 out: 3487 mutex_unlock(&memcg_max_mutex); 3488 return ret; 3489 } 3490 3491 /* 3492 * The user of this function is... 3493 * RES_LIMIT. 3494 */ 3495 static ssize_t mem_cgroup_write(struct kernfs_open_file *of, 3496 char *buf, size_t nbytes, loff_t off) 3497 { 3498 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3499 unsigned long nr_pages; 3500 int ret; 3501 3502 buf = strstrip(buf); 3503 ret = page_counter_memparse(buf, "-1", &nr_pages); 3504 if (ret) 3505 return ret; 3506 3507 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3508 case RES_LIMIT: 3509 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 3510 ret = -EINVAL; 3511 break; 3512 } 3513 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3514 case _MEM: 3515 ret = mem_cgroup_resize_max(memcg, nr_pages, false); 3516 break; 3517 case _MEMSWAP: 3518 ret = mem_cgroup_resize_max(memcg, nr_pages, true); 3519 break; 3520 case _KMEM: 3521 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. " 3522 "Please report your usecase to linux-mm@kvack.org if you " 3523 "depend on this functionality.\n"); 3524 ret = memcg_update_kmem_max(memcg, nr_pages); 3525 break; 3526 case _TCP: 3527 ret = memcg_update_tcp_max(memcg, nr_pages); 3528 break; 3529 } 3530 break; 3531 case RES_SOFT_LIMIT: 3532 memcg->soft_limit = nr_pages; 3533 ret = 0; 3534 break; 3535 } 3536 return ret ?: nbytes; 3537 } 3538 3539 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf, 3540 size_t nbytes, loff_t off) 3541 { 3542 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3543 struct page_counter *counter; 3544 3545 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3546 case _MEM: 3547 counter = &memcg->memory; 3548 break; 3549 case _MEMSWAP: 3550 counter = &memcg->memsw; 3551 break; 3552 case _KMEM: 3553 counter = &memcg->kmem; 3554 break; 3555 case _TCP: 3556 counter = &memcg->tcpmem; 3557 break; 3558 default: 3559 BUG(); 3560 } 3561 3562 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3563 case RES_MAX_USAGE: 3564 page_counter_reset_watermark(counter); 3565 break; 3566 case RES_FAILCNT: 3567 counter->failcnt = 0; 3568 break; 3569 default: 3570 BUG(); 3571 } 3572 3573 return nbytes; 3574 } 3575 3576 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, 3577 struct cftype *cft) 3578 { 3579 return mem_cgroup_from_css(css)->move_charge_at_immigrate; 3580 } 3581 3582 #ifdef CONFIG_MMU 3583 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3584 struct cftype *cft, u64 val) 3585 { 3586 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3587 3588 if (val & ~MOVE_MASK) 3589 return -EINVAL; 3590 3591 /* 3592 * No kind of locking is needed in here, because ->can_attach() will 3593 * check this value once in the beginning of the process, and then carry 3594 * on with stale data. This means that changes to this value will only 3595 * affect task migrations starting after the change. 3596 */ 3597 memcg->move_charge_at_immigrate = val; 3598 return 0; 3599 } 3600 #else 3601 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3602 struct cftype *cft, u64 val) 3603 { 3604 return -ENOSYS; 3605 } 3606 #endif 3607 3608 #ifdef CONFIG_NUMA 3609 3610 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE)) 3611 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON)) 3612 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1) 3613 3614 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 3615 int nid, unsigned int lru_mask) 3616 { 3617 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); 3618 unsigned long nr = 0; 3619 enum lru_list lru; 3620 3621 VM_BUG_ON((unsigned)nid >= nr_node_ids); 3622 3623 for_each_lru(lru) { 3624 if (!(BIT(lru) & lru_mask)) 3625 continue; 3626 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru); 3627 } 3628 return nr; 3629 } 3630 3631 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 3632 unsigned int lru_mask) 3633 { 3634 unsigned long nr = 0; 3635 enum lru_list lru; 3636 3637 for_each_lru(lru) { 3638 if (!(BIT(lru) & lru_mask)) 3639 continue; 3640 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru); 3641 } 3642 return nr; 3643 } 3644 3645 static int memcg_numa_stat_show(struct seq_file *m, void *v) 3646 { 3647 struct numa_stat { 3648 const char *name; 3649 unsigned int lru_mask; 3650 }; 3651 3652 static const struct numa_stat stats[] = { 3653 { "total", LRU_ALL }, 3654 { "file", LRU_ALL_FILE }, 3655 { "anon", LRU_ALL_ANON }, 3656 { "unevictable", BIT(LRU_UNEVICTABLE) }, 3657 }; 3658 const struct numa_stat *stat; 3659 int nid; 3660 unsigned long nr; 3661 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 3662 3663 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3664 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask); 3665 seq_printf(m, "%s=%lu", stat->name, nr); 3666 for_each_node_state(nid, N_MEMORY) { 3667 nr = mem_cgroup_node_nr_lru_pages(memcg, nid, 3668 stat->lru_mask); 3669 seq_printf(m, " N%d=%lu", nid, nr); 3670 } 3671 seq_putc(m, '\n'); 3672 } 3673 3674 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3675 struct mem_cgroup *iter; 3676 3677 nr = 0; 3678 for_each_mem_cgroup_tree(iter, memcg) 3679 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask); 3680 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr); 3681 for_each_node_state(nid, N_MEMORY) { 3682 nr = 0; 3683 for_each_mem_cgroup_tree(iter, memcg) 3684 nr += mem_cgroup_node_nr_lru_pages( 3685 iter, nid, stat->lru_mask); 3686 seq_printf(m, " N%d=%lu", nid, nr); 3687 } 3688 seq_putc(m, '\n'); 3689 } 3690 3691 return 0; 3692 } 3693 #endif /* CONFIG_NUMA */ 3694 3695 static const unsigned int memcg1_stats[] = { 3696 MEMCG_CACHE, 3697 MEMCG_RSS, 3698 MEMCG_RSS_HUGE, 3699 NR_SHMEM, 3700 NR_FILE_MAPPED, 3701 NR_FILE_DIRTY, 3702 NR_WRITEBACK, 3703 MEMCG_SWAP, 3704 }; 3705 3706 static const char *const memcg1_stat_names[] = { 3707 "cache", 3708 "rss", 3709 "rss_huge", 3710 "shmem", 3711 "mapped_file", 3712 "dirty", 3713 "writeback", 3714 "swap", 3715 }; 3716 3717 /* Universal VM events cgroup1 shows, original sort order */ 3718 static const unsigned int memcg1_events[] = { 3719 PGPGIN, 3720 PGPGOUT, 3721 PGFAULT, 3722 PGMAJFAULT, 3723 }; 3724 3725 static int memcg_stat_show(struct seq_file *m, void *v) 3726 { 3727 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 3728 unsigned long memory, memsw; 3729 struct mem_cgroup *mi; 3730 unsigned int i; 3731 3732 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats)); 3733 3734 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 3735 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 3736 continue; 3737 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], 3738 memcg_page_state_local(memcg, memcg1_stats[i]) * 3739 PAGE_SIZE); 3740 } 3741 3742 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 3743 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]), 3744 memcg_events_local(memcg, memcg1_events[i])); 3745 3746 for (i = 0; i < NR_LRU_LISTS; i++) 3747 seq_printf(m, "%s %lu\n", lru_list_name(i), 3748 memcg_page_state_local(memcg, NR_LRU_BASE + i) * 3749 PAGE_SIZE); 3750 3751 /* Hierarchical information */ 3752 memory = memsw = PAGE_COUNTER_MAX; 3753 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) { 3754 memory = min(memory, mi->memory.max); 3755 memsw = min(memsw, mi->memsw.max); 3756 } 3757 seq_printf(m, "hierarchical_memory_limit %llu\n", 3758 (u64)memory * PAGE_SIZE); 3759 if (do_memsw_account()) 3760 seq_printf(m, "hierarchical_memsw_limit %llu\n", 3761 (u64)memsw * PAGE_SIZE); 3762 3763 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 3764 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 3765 continue; 3766 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], 3767 (u64)memcg_page_state(memcg, memcg1_stats[i]) * 3768 PAGE_SIZE); 3769 } 3770 3771 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 3772 seq_printf(m, "total_%s %llu\n", 3773 vm_event_name(memcg1_events[i]), 3774 (u64)memcg_events(memcg, memcg1_events[i])); 3775 3776 for (i = 0; i < NR_LRU_LISTS; i++) 3777 seq_printf(m, "total_%s %llu\n", lru_list_name(i), 3778 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) * 3779 PAGE_SIZE); 3780 3781 #ifdef CONFIG_DEBUG_VM 3782 { 3783 pg_data_t *pgdat; 3784 struct mem_cgroup_per_node *mz; 3785 struct zone_reclaim_stat *rstat; 3786 unsigned long recent_rotated[2] = {0, 0}; 3787 unsigned long recent_scanned[2] = {0, 0}; 3788 3789 for_each_online_pgdat(pgdat) { 3790 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 3791 rstat = &mz->lruvec.reclaim_stat; 3792 3793 recent_rotated[0] += rstat->recent_rotated[0]; 3794 recent_rotated[1] += rstat->recent_rotated[1]; 3795 recent_scanned[0] += rstat->recent_scanned[0]; 3796 recent_scanned[1] += rstat->recent_scanned[1]; 3797 } 3798 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]); 3799 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]); 3800 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]); 3801 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]); 3802 } 3803 #endif 3804 3805 return 0; 3806 } 3807 3808 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, 3809 struct cftype *cft) 3810 { 3811 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3812 3813 return mem_cgroup_swappiness(memcg); 3814 } 3815 3816 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, 3817 struct cftype *cft, u64 val) 3818 { 3819 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3820 3821 if (val > 100) 3822 return -EINVAL; 3823 3824 if (css->parent) 3825 memcg->swappiness = val; 3826 else 3827 vm_swappiness = val; 3828 3829 return 0; 3830 } 3831 3832 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 3833 { 3834 struct mem_cgroup_threshold_ary *t; 3835 unsigned long usage; 3836 int i; 3837 3838 rcu_read_lock(); 3839 if (!swap) 3840 t = rcu_dereference(memcg->thresholds.primary); 3841 else 3842 t = rcu_dereference(memcg->memsw_thresholds.primary); 3843 3844 if (!t) 3845 goto unlock; 3846 3847 usage = mem_cgroup_usage(memcg, swap); 3848 3849 /* 3850 * current_threshold points to threshold just below or equal to usage. 3851 * If it's not true, a threshold was crossed after last 3852 * call of __mem_cgroup_threshold(). 3853 */ 3854 i = t->current_threshold; 3855 3856 /* 3857 * Iterate backward over array of thresholds starting from 3858 * current_threshold and check if a threshold is crossed. 3859 * If none of thresholds below usage is crossed, we read 3860 * only one element of the array here. 3861 */ 3862 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 3863 eventfd_signal(t->entries[i].eventfd, 1); 3864 3865 /* i = current_threshold + 1 */ 3866 i++; 3867 3868 /* 3869 * Iterate forward over array of thresholds starting from 3870 * current_threshold+1 and check if a threshold is crossed. 3871 * If none of thresholds above usage is crossed, we read 3872 * only one element of the array here. 3873 */ 3874 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 3875 eventfd_signal(t->entries[i].eventfd, 1); 3876 3877 /* Update current_threshold */ 3878 t->current_threshold = i - 1; 3879 unlock: 3880 rcu_read_unlock(); 3881 } 3882 3883 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 3884 { 3885 while (memcg) { 3886 __mem_cgroup_threshold(memcg, false); 3887 if (do_memsw_account()) 3888 __mem_cgroup_threshold(memcg, true); 3889 3890 memcg = parent_mem_cgroup(memcg); 3891 } 3892 } 3893 3894 static int compare_thresholds(const void *a, const void *b) 3895 { 3896 const struct mem_cgroup_threshold *_a = a; 3897 const struct mem_cgroup_threshold *_b = b; 3898 3899 if (_a->threshold > _b->threshold) 3900 return 1; 3901 3902 if (_a->threshold < _b->threshold) 3903 return -1; 3904 3905 return 0; 3906 } 3907 3908 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 3909 { 3910 struct mem_cgroup_eventfd_list *ev; 3911 3912 spin_lock(&memcg_oom_lock); 3913 3914 list_for_each_entry(ev, &memcg->oom_notify, list) 3915 eventfd_signal(ev->eventfd, 1); 3916 3917 spin_unlock(&memcg_oom_lock); 3918 return 0; 3919 } 3920 3921 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 3922 { 3923 struct mem_cgroup *iter; 3924 3925 for_each_mem_cgroup_tree(iter, memcg) 3926 mem_cgroup_oom_notify_cb(iter); 3927 } 3928 3929 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 3930 struct eventfd_ctx *eventfd, const char *args, enum res_type type) 3931 { 3932 struct mem_cgroup_thresholds *thresholds; 3933 struct mem_cgroup_threshold_ary *new; 3934 unsigned long threshold; 3935 unsigned long usage; 3936 int i, size, ret; 3937 3938 ret = page_counter_memparse(args, "-1", &threshold); 3939 if (ret) 3940 return ret; 3941 3942 mutex_lock(&memcg->thresholds_lock); 3943 3944 if (type == _MEM) { 3945 thresholds = &memcg->thresholds; 3946 usage = mem_cgroup_usage(memcg, false); 3947 } else if (type == _MEMSWAP) { 3948 thresholds = &memcg->memsw_thresholds; 3949 usage = mem_cgroup_usage(memcg, true); 3950 } else 3951 BUG(); 3952 3953 /* Check if a threshold crossed before adding a new one */ 3954 if (thresholds->primary) 3955 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 3956 3957 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 3958 3959 /* Allocate memory for new array of thresholds */ 3960 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL); 3961 if (!new) { 3962 ret = -ENOMEM; 3963 goto unlock; 3964 } 3965 new->size = size; 3966 3967 /* Copy thresholds (if any) to new array */ 3968 if (thresholds->primary) { 3969 memcpy(new->entries, thresholds->primary->entries, (size - 1) * 3970 sizeof(struct mem_cgroup_threshold)); 3971 } 3972 3973 /* Add new threshold */ 3974 new->entries[size - 1].eventfd = eventfd; 3975 new->entries[size - 1].threshold = threshold; 3976 3977 /* Sort thresholds. Registering of new threshold isn't time-critical */ 3978 sort(new->entries, size, sizeof(struct mem_cgroup_threshold), 3979 compare_thresholds, NULL); 3980 3981 /* Find current threshold */ 3982 new->current_threshold = -1; 3983 for (i = 0; i < size; i++) { 3984 if (new->entries[i].threshold <= usage) { 3985 /* 3986 * new->current_threshold will not be used until 3987 * rcu_assign_pointer(), so it's safe to increment 3988 * it here. 3989 */ 3990 ++new->current_threshold; 3991 } else 3992 break; 3993 } 3994 3995 /* Free old spare buffer and save old primary buffer as spare */ 3996 kfree(thresholds->spare); 3997 thresholds->spare = thresholds->primary; 3998 3999 rcu_assign_pointer(thresholds->primary, new); 4000 4001 /* To be sure that nobody uses thresholds */ 4002 synchronize_rcu(); 4003 4004 unlock: 4005 mutex_unlock(&memcg->thresholds_lock); 4006 4007 return ret; 4008 } 4009 4010 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 4011 struct eventfd_ctx *eventfd, const char *args) 4012 { 4013 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM); 4014 } 4015 4016 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg, 4017 struct eventfd_ctx *eventfd, const char *args) 4018 { 4019 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP); 4020 } 4021 4022 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4023 struct eventfd_ctx *eventfd, enum res_type type) 4024 { 4025 struct mem_cgroup_thresholds *thresholds; 4026 struct mem_cgroup_threshold_ary *new; 4027 unsigned long usage; 4028 int i, j, size; 4029 4030 mutex_lock(&memcg->thresholds_lock); 4031 4032 if (type == _MEM) { 4033 thresholds = &memcg->thresholds; 4034 usage = mem_cgroup_usage(memcg, false); 4035 } else if (type == _MEMSWAP) { 4036 thresholds = &memcg->memsw_thresholds; 4037 usage = mem_cgroup_usage(memcg, true); 4038 } else 4039 BUG(); 4040 4041 if (!thresholds->primary) 4042 goto unlock; 4043 4044 /* Check if a threshold crossed before removing */ 4045 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4046 4047 /* Calculate new number of threshold */ 4048 size = 0; 4049 for (i = 0; i < thresholds->primary->size; i++) { 4050 if (thresholds->primary->entries[i].eventfd != eventfd) 4051 size++; 4052 } 4053 4054 new = thresholds->spare; 4055 4056 /* Set thresholds array to NULL if we don't have thresholds */ 4057 if (!size) { 4058 kfree(new); 4059 new = NULL; 4060 goto swap_buffers; 4061 } 4062 4063 new->size = size; 4064 4065 /* Copy thresholds and find current threshold */ 4066 new->current_threshold = -1; 4067 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 4068 if (thresholds->primary->entries[i].eventfd == eventfd) 4069 continue; 4070 4071 new->entries[j] = thresholds->primary->entries[i]; 4072 if (new->entries[j].threshold <= usage) { 4073 /* 4074 * new->current_threshold will not be used 4075 * until rcu_assign_pointer(), so it's safe to increment 4076 * it here. 4077 */ 4078 ++new->current_threshold; 4079 } 4080 j++; 4081 } 4082 4083 swap_buffers: 4084 /* Swap primary and spare array */ 4085 thresholds->spare = thresholds->primary; 4086 4087 rcu_assign_pointer(thresholds->primary, new); 4088 4089 /* To be sure that nobody uses thresholds */ 4090 synchronize_rcu(); 4091 4092 /* If all events are unregistered, free the spare array */ 4093 if (!new) { 4094 kfree(thresholds->spare); 4095 thresholds->spare = NULL; 4096 } 4097 unlock: 4098 mutex_unlock(&memcg->thresholds_lock); 4099 } 4100 4101 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4102 struct eventfd_ctx *eventfd) 4103 { 4104 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM); 4105 } 4106 4107 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4108 struct eventfd_ctx *eventfd) 4109 { 4110 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP); 4111 } 4112 4113 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg, 4114 struct eventfd_ctx *eventfd, const char *args) 4115 { 4116 struct mem_cgroup_eventfd_list *event; 4117 4118 event = kmalloc(sizeof(*event), GFP_KERNEL); 4119 if (!event) 4120 return -ENOMEM; 4121 4122 spin_lock(&memcg_oom_lock); 4123 4124 event->eventfd = eventfd; 4125 list_add(&event->list, &memcg->oom_notify); 4126 4127 /* already in OOM ? */ 4128 if (memcg->under_oom) 4129 eventfd_signal(eventfd, 1); 4130 spin_unlock(&memcg_oom_lock); 4131 4132 return 0; 4133 } 4134 4135 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg, 4136 struct eventfd_ctx *eventfd) 4137 { 4138 struct mem_cgroup_eventfd_list *ev, *tmp; 4139 4140 spin_lock(&memcg_oom_lock); 4141 4142 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 4143 if (ev->eventfd == eventfd) { 4144 list_del(&ev->list); 4145 kfree(ev); 4146 } 4147 } 4148 4149 spin_unlock(&memcg_oom_lock); 4150 } 4151 4152 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v) 4153 { 4154 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf); 4155 4156 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable); 4157 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom); 4158 seq_printf(sf, "oom_kill %lu\n", 4159 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL])); 4160 return 0; 4161 } 4162 4163 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, 4164 struct cftype *cft, u64 val) 4165 { 4166 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4167 4168 /* cannot set to root cgroup and only 0 and 1 are allowed */ 4169 if (!css->parent || !((val == 0) || (val == 1))) 4170 return -EINVAL; 4171 4172 memcg->oom_kill_disable = val; 4173 if (!val) 4174 memcg_oom_recover(memcg); 4175 4176 return 0; 4177 } 4178 4179 #ifdef CONFIG_CGROUP_WRITEBACK 4180 4181 #include <trace/events/writeback.h> 4182 4183 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 4184 { 4185 return wb_domain_init(&memcg->cgwb_domain, gfp); 4186 } 4187 4188 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 4189 { 4190 wb_domain_exit(&memcg->cgwb_domain); 4191 } 4192 4193 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 4194 { 4195 wb_domain_size_changed(&memcg->cgwb_domain); 4196 } 4197 4198 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 4199 { 4200 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4201 4202 if (!memcg->css.parent) 4203 return NULL; 4204 4205 return &memcg->cgwb_domain; 4206 } 4207 4208 /* 4209 * idx can be of type enum memcg_stat_item or node_stat_item. 4210 * Keep in sync with memcg_exact_page(). 4211 */ 4212 static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx) 4213 { 4214 long x = atomic_long_read(&memcg->vmstats[idx]); 4215 int cpu; 4216 4217 for_each_online_cpu(cpu) 4218 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx]; 4219 if (x < 0) 4220 x = 0; 4221 return x; 4222 } 4223 4224 /** 4225 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg 4226 * @wb: bdi_writeback in question 4227 * @pfilepages: out parameter for number of file pages 4228 * @pheadroom: out parameter for number of allocatable pages according to memcg 4229 * @pdirty: out parameter for number of dirty pages 4230 * @pwriteback: out parameter for number of pages under writeback 4231 * 4232 * Determine the numbers of file, headroom, dirty, and writeback pages in 4233 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom 4234 * is a bit more involved. 4235 * 4236 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the 4237 * headroom is calculated as the lowest headroom of itself and the 4238 * ancestors. Note that this doesn't consider the actual amount of 4239 * available memory in the system. The caller should further cap 4240 * *@pheadroom accordingly. 4241 */ 4242 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 4243 unsigned long *pheadroom, unsigned long *pdirty, 4244 unsigned long *pwriteback) 4245 { 4246 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4247 struct mem_cgroup *parent; 4248 4249 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY); 4250 4251 /* this should eventually include NR_UNSTABLE_NFS */ 4252 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK); 4253 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) + 4254 memcg_exact_page_state(memcg, NR_ACTIVE_FILE); 4255 *pheadroom = PAGE_COUNTER_MAX; 4256 4257 while ((parent = parent_mem_cgroup(memcg))) { 4258 unsigned long ceiling = min(memcg->memory.max, memcg->high); 4259 unsigned long used = page_counter_read(&memcg->memory); 4260 4261 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); 4262 memcg = parent; 4263 } 4264 } 4265 4266 /* 4267 * Foreign dirty flushing 4268 * 4269 * There's an inherent mismatch between memcg and writeback. The former 4270 * trackes ownership per-page while the latter per-inode. This was a 4271 * deliberate design decision because honoring per-page ownership in the 4272 * writeback path is complicated, may lead to higher CPU and IO overheads 4273 * and deemed unnecessary given that write-sharing an inode across 4274 * different cgroups isn't a common use-case. 4275 * 4276 * Combined with inode majority-writer ownership switching, this works well 4277 * enough in most cases but there are some pathological cases. For 4278 * example, let's say there are two cgroups A and B which keep writing to 4279 * different but confined parts of the same inode. B owns the inode and 4280 * A's memory is limited far below B's. A's dirty ratio can rise enough to 4281 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid 4282 * triggering background writeback. A will be slowed down without a way to 4283 * make writeback of the dirty pages happen. 4284 * 4285 * Conditions like the above can lead to a cgroup getting repatedly and 4286 * severely throttled after making some progress after each 4287 * dirty_expire_interval while the underyling IO device is almost 4288 * completely idle. 4289 * 4290 * Solving this problem completely requires matching the ownership tracking 4291 * granularities between memcg and writeback in either direction. However, 4292 * the more egregious behaviors can be avoided by simply remembering the 4293 * most recent foreign dirtying events and initiating remote flushes on 4294 * them when local writeback isn't enough to keep the memory clean enough. 4295 * 4296 * The following two functions implement such mechanism. When a foreign 4297 * page - a page whose memcg and writeback ownerships don't match - is 4298 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning 4299 * bdi_writeback on the page owning memcg. When balance_dirty_pages() 4300 * decides that the memcg needs to sleep due to high dirty ratio, it calls 4301 * mem_cgroup_flush_foreign() which queues writeback on the recorded 4302 * foreign bdi_writebacks which haven't expired. Both the numbers of 4303 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are 4304 * limited to MEMCG_CGWB_FRN_CNT. 4305 * 4306 * The mechanism only remembers IDs and doesn't hold any object references. 4307 * As being wrong occasionally doesn't matter, updates and accesses to the 4308 * records are lockless and racy. 4309 */ 4310 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page, 4311 struct bdi_writeback *wb) 4312 { 4313 struct mem_cgroup *memcg = page->mem_cgroup; 4314 struct memcg_cgwb_frn *frn; 4315 u64 now = get_jiffies_64(); 4316 u64 oldest_at = now; 4317 int oldest = -1; 4318 int i; 4319 4320 trace_track_foreign_dirty(page, wb); 4321 4322 /* 4323 * Pick the slot to use. If there is already a slot for @wb, keep 4324 * using it. If not replace the oldest one which isn't being 4325 * written out. 4326 */ 4327 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 4328 frn = &memcg->cgwb_frn[i]; 4329 if (frn->bdi_id == wb->bdi->id && 4330 frn->memcg_id == wb->memcg_css->id) 4331 break; 4332 if (time_before64(frn->at, oldest_at) && 4333 atomic_read(&frn->done.cnt) == 1) { 4334 oldest = i; 4335 oldest_at = frn->at; 4336 } 4337 } 4338 4339 if (i < MEMCG_CGWB_FRN_CNT) { 4340 /* 4341 * Re-using an existing one. Update timestamp lazily to 4342 * avoid making the cacheline hot. We want them to be 4343 * reasonably up-to-date and significantly shorter than 4344 * dirty_expire_interval as that's what expires the record. 4345 * Use the shorter of 1s and dirty_expire_interval / 8. 4346 */ 4347 unsigned long update_intv = 4348 min_t(unsigned long, HZ, 4349 msecs_to_jiffies(dirty_expire_interval * 10) / 8); 4350 4351 if (time_before64(frn->at, now - update_intv)) 4352 frn->at = now; 4353 } else if (oldest >= 0) { 4354 /* replace the oldest free one */ 4355 frn = &memcg->cgwb_frn[oldest]; 4356 frn->bdi_id = wb->bdi->id; 4357 frn->memcg_id = wb->memcg_css->id; 4358 frn->at = now; 4359 } 4360 } 4361 4362 /* issue foreign writeback flushes for recorded foreign dirtying events */ 4363 void mem_cgroup_flush_foreign(struct bdi_writeback *wb) 4364 { 4365 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4366 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10); 4367 u64 now = jiffies_64; 4368 int i; 4369 4370 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 4371 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i]; 4372 4373 /* 4374 * If the record is older than dirty_expire_interval, 4375 * writeback on it has already started. No need to kick it 4376 * off again. Also, don't start a new one if there's 4377 * already one in flight. 4378 */ 4379 if (time_after64(frn->at, now - intv) && 4380 atomic_read(&frn->done.cnt) == 1) { 4381 frn->at = 0; 4382 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id); 4383 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0, 4384 WB_REASON_FOREIGN_FLUSH, 4385 &frn->done); 4386 } 4387 } 4388 } 4389 4390 #else /* CONFIG_CGROUP_WRITEBACK */ 4391 4392 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 4393 { 4394 return 0; 4395 } 4396 4397 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 4398 { 4399 } 4400 4401 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 4402 { 4403 } 4404 4405 #endif /* CONFIG_CGROUP_WRITEBACK */ 4406 4407 /* 4408 * DO NOT USE IN NEW FILES. 4409 * 4410 * "cgroup.event_control" implementation. 4411 * 4412 * This is way over-engineered. It tries to support fully configurable 4413 * events for each user. Such level of flexibility is completely 4414 * unnecessary especially in the light of the planned unified hierarchy. 4415 * 4416 * Please deprecate this and replace with something simpler if at all 4417 * possible. 4418 */ 4419 4420 /* 4421 * Unregister event and free resources. 4422 * 4423 * Gets called from workqueue. 4424 */ 4425 static void memcg_event_remove(struct work_struct *work) 4426 { 4427 struct mem_cgroup_event *event = 4428 container_of(work, struct mem_cgroup_event, remove); 4429 struct mem_cgroup *memcg = event->memcg; 4430 4431 remove_wait_queue(event->wqh, &event->wait); 4432 4433 event->unregister_event(memcg, event->eventfd); 4434 4435 /* Notify userspace the event is going away. */ 4436 eventfd_signal(event->eventfd, 1); 4437 4438 eventfd_ctx_put(event->eventfd); 4439 kfree(event); 4440 css_put(&memcg->css); 4441 } 4442 4443 /* 4444 * Gets called on EPOLLHUP on eventfd when user closes it. 4445 * 4446 * Called with wqh->lock held and interrupts disabled. 4447 */ 4448 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode, 4449 int sync, void *key) 4450 { 4451 struct mem_cgroup_event *event = 4452 container_of(wait, struct mem_cgroup_event, wait); 4453 struct mem_cgroup *memcg = event->memcg; 4454 __poll_t flags = key_to_poll(key); 4455 4456 if (flags & EPOLLHUP) { 4457 /* 4458 * If the event has been detached at cgroup removal, we 4459 * can simply return knowing the other side will cleanup 4460 * for us. 4461 * 4462 * We can't race against event freeing since the other 4463 * side will require wqh->lock via remove_wait_queue(), 4464 * which we hold. 4465 */ 4466 spin_lock(&memcg->event_list_lock); 4467 if (!list_empty(&event->list)) { 4468 list_del_init(&event->list); 4469 /* 4470 * We are in atomic context, but cgroup_event_remove() 4471 * may sleep, so we have to call it in workqueue. 4472 */ 4473 schedule_work(&event->remove); 4474 } 4475 spin_unlock(&memcg->event_list_lock); 4476 } 4477 4478 return 0; 4479 } 4480 4481 static void memcg_event_ptable_queue_proc(struct file *file, 4482 wait_queue_head_t *wqh, poll_table *pt) 4483 { 4484 struct mem_cgroup_event *event = 4485 container_of(pt, struct mem_cgroup_event, pt); 4486 4487 event->wqh = wqh; 4488 add_wait_queue(wqh, &event->wait); 4489 } 4490 4491 /* 4492 * DO NOT USE IN NEW FILES. 4493 * 4494 * Parse input and register new cgroup event handler. 4495 * 4496 * Input must be in format '<event_fd> <control_fd> <args>'. 4497 * Interpretation of args is defined by control file implementation. 4498 */ 4499 static ssize_t memcg_write_event_control(struct kernfs_open_file *of, 4500 char *buf, size_t nbytes, loff_t off) 4501 { 4502 struct cgroup_subsys_state *css = of_css(of); 4503 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4504 struct mem_cgroup_event *event; 4505 struct cgroup_subsys_state *cfile_css; 4506 unsigned int efd, cfd; 4507 struct fd efile; 4508 struct fd cfile; 4509 const char *name; 4510 char *endp; 4511 int ret; 4512 4513 buf = strstrip(buf); 4514 4515 efd = simple_strtoul(buf, &endp, 10); 4516 if (*endp != ' ') 4517 return -EINVAL; 4518 buf = endp + 1; 4519 4520 cfd = simple_strtoul(buf, &endp, 10); 4521 if ((*endp != ' ') && (*endp != '\0')) 4522 return -EINVAL; 4523 buf = endp + 1; 4524 4525 event = kzalloc(sizeof(*event), GFP_KERNEL); 4526 if (!event) 4527 return -ENOMEM; 4528 4529 event->memcg = memcg; 4530 INIT_LIST_HEAD(&event->list); 4531 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc); 4532 init_waitqueue_func_entry(&event->wait, memcg_event_wake); 4533 INIT_WORK(&event->remove, memcg_event_remove); 4534 4535 efile = fdget(efd); 4536 if (!efile.file) { 4537 ret = -EBADF; 4538 goto out_kfree; 4539 } 4540 4541 event->eventfd = eventfd_ctx_fileget(efile.file); 4542 if (IS_ERR(event->eventfd)) { 4543 ret = PTR_ERR(event->eventfd); 4544 goto out_put_efile; 4545 } 4546 4547 cfile = fdget(cfd); 4548 if (!cfile.file) { 4549 ret = -EBADF; 4550 goto out_put_eventfd; 4551 } 4552 4553 /* the process need read permission on control file */ 4554 /* AV: shouldn't we check that it's been opened for read instead? */ 4555 ret = inode_permission(file_inode(cfile.file), MAY_READ); 4556 if (ret < 0) 4557 goto out_put_cfile; 4558 4559 /* 4560 * Determine the event callbacks and set them in @event. This used 4561 * to be done via struct cftype but cgroup core no longer knows 4562 * about these events. The following is crude but the whole thing 4563 * is for compatibility anyway. 4564 * 4565 * DO NOT ADD NEW FILES. 4566 */ 4567 name = cfile.file->f_path.dentry->d_name.name; 4568 4569 if (!strcmp(name, "memory.usage_in_bytes")) { 4570 event->register_event = mem_cgroup_usage_register_event; 4571 event->unregister_event = mem_cgroup_usage_unregister_event; 4572 } else if (!strcmp(name, "memory.oom_control")) { 4573 event->register_event = mem_cgroup_oom_register_event; 4574 event->unregister_event = mem_cgroup_oom_unregister_event; 4575 } else if (!strcmp(name, "memory.pressure_level")) { 4576 event->register_event = vmpressure_register_event; 4577 event->unregister_event = vmpressure_unregister_event; 4578 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) { 4579 event->register_event = memsw_cgroup_usage_register_event; 4580 event->unregister_event = memsw_cgroup_usage_unregister_event; 4581 } else { 4582 ret = -EINVAL; 4583 goto out_put_cfile; 4584 } 4585 4586 /* 4587 * Verify @cfile should belong to @css. Also, remaining events are 4588 * automatically removed on cgroup destruction but the removal is 4589 * asynchronous, so take an extra ref on @css. 4590 */ 4591 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent, 4592 &memory_cgrp_subsys); 4593 ret = -EINVAL; 4594 if (IS_ERR(cfile_css)) 4595 goto out_put_cfile; 4596 if (cfile_css != css) { 4597 css_put(cfile_css); 4598 goto out_put_cfile; 4599 } 4600 4601 ret = event->register_event(memcg, event->eventfd, buf); 4602 if (ret) 4603 goto out_put_css; 4604 4605 vfs_poll(efile.file, &event->pt); 4606 4607 spin_lock(&memcg->event_list_lock); 4608 list_add(&event->list, &memcg->event_list); 4609 spin_unlock(&memcg->event_list_lock); 4610 4611 fdput(cfile); 4612 fdput(efile); 4613 4614 return nbytes; 4615 4616 out_put_css: 4617 css_put(css); 4618 out_put_cfile: 4619 fdput(cfile); 4620 out_put_eventfd: 4621 eventfd_ctx_put(event->eventfd); 4622 out_put_efile: 4623 fdput(efile); 4624 out_kfree: 4625 kfree(event); 4626 4627 return ret; 4628 } 4629 4630 static struct cftype mem_cgroup_legacy_files[] = { 4631 { 4632 .name = "usage_in_bytes", 4633 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 4634 .read_u64 = mem_cgroup_read_u64, 4635 }, 4636 { 4637 .name = "max_usage_in_bytes", 4638 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 4639 .write = mem_cgroup_reset, 4640 .read_u64 = mem_cgroup_read_u64, 4641 }, 4642 { 4643 .name = "limit_in_bytes", 4644 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 4645 .write = mem_cgroup_write, 4646 .read_u64 = mem_cgroup_read_u64, 4647 }, 4648 { 4649 .name = "soft_limit_in_bytes", 4650 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 4651 .write = mem_cgroup_write, 4652 .read_u64 = mem_cgroup_read_u64, 4653 }, 4654 { 4655 .name = "failcnt", 4656 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 4657 .write = mem_cgroup_reset, 4658 .read_u64 = mem_cgroup_read_u64, 4659 }, 4660 { 4661 .name = "stat", 4662 .seq_show = memcg_stat_show, 4663 }, 4664 { 4665 .name = "force_empty", 4666 .write = mem_cgroup_force_empty_write, 4667 }, 4668 { 4669 .name = "use_hierarchy", 4670 .write_u64 = mem_cgroup_hierarchy_write, 4671 .read_u64 = mem_cgroup_hierarchy_read, 4672 }, 4673 { 4674 .name = "cgroup.event_control", /* XXX: for compat */ 4675 .write = memcg_write_event_control, 4676 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE, 4677 }, 4678 { 4679 .name = "swappiness", 4680 .read_u64 = mem_cgroup_swappiness_read, 4681 .write_u64 = mem_cgroup_swappiness_write, 4682 }, 4683 { 4684 .name = "move_charge_at_immigrate", 4685 .read_u64 = mem_cgroup_move_charge_read, 4686 .write_u64 = mem_cgroup_move_charge_write, 4687 }, 4688 { 4689 .name = "oom_control", 4690 .seq_show = mem_cgroup_oom_control_read, 4691 .write_u64 = mem_cgroup_oom_control_write, 4692 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), 4693 }, 4694 { 4695 .name = "pressure_level", 4696 }, 4697 #ifdef CONFIG_NUMA 4698 { 4699 .name = "numa_stat", 4700 .seq_show = memcg_numa_stat_show, 4701 }, 4702 #endif 4703 { 4704 .name = "kmem.limit_in_bytes", 4705 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), 4706 .write = mem_cgroup_write, 4707 .read_u64 = mem_cgroup_read_u64, 4708 }, 4709 { 4710 .name = "kmem.usage_in_bytes", 4711 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), 4712 .read_u64 = mem_cgroup_read_u64, 4713 }, 4714 { 4715 .name = "kmem.failcnt", 4716 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), 4717 .write = mem_cgroup_reset, 4718 .read_u64 = mem_cgroup_read_u64, 4719 }, 4720 { 4721 .name = "kmem.max_usage_in_bytes", 4722 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), 4723 .write = mem_cgroup_reset, 4724 .read_u64 = mem_cgroup_read_u64, 4725 }, 4726 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG) 4727 { 4728 .name = "kmem.slabinfo", 4729 .seq_start = memcg_slab_start, 4730 .seq_next = memcg_slab_next, 4731 .seq_stop = memcg_slab_stop, 4732 .seq_show = memcg_slab_show, 4733 }, 4734 #endif 4735 { 4736 .name = "kmem.tcp.limit_in_bytes", 4737 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT), 4738 .write = mem_cgroup_write, 4739 .read_u64 = mem_cgroup_read_u64, 4740 }, 4741 { 4742 .name = "kmem.tcp.usage_in_bytes", 4743 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE), 4744 .read_u64 = mem_cgroup_read_u64, 4745 }, 4746 { 4747 .name = "kmem.tcp.failcnt", 4748 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT), 4749 .write = mem_cgroup_reset, 4750 .read_u64 = mem_cgroup_read_u64, 4751 }, 4752 { 4753 .name = "kmem.tcp.max_usage_in_bytes", 4754 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE), 4755 .write = mem_cgroup_reset, 4756 .read_u64 = mem_cgroup_read_u64, 4757 }, 4758 { }, /* terminate */ 4759 }; 4760 4761 /* 4762 * Private memory cgroup IDR 4763 * 4764 * Swap-out records and page cache shadow entries need to store memcg 4765 * references in constrained space, so we maintain an ID space that is 4766 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of 4767 * memory-controlled cgroups to 64k. 4768 * 4769 * However, there usually are many references to the oflline CSS after 4770 * the cgroup has been destroyed, such as page cache or reclaimable 4771 * slab objects, that don't need to hang on to the ID. We want to keep 4772 * those dead CSS from occupying IDs, or we might quickly exhaust the 4773 * relatively small ID space and prevent the creation of new cgroups 4774 * even when there are much fewer than 64k cgroups - possibly none. 4775 * 4776 * Maintain a private 16-bit ID space for memcg, and allow the ID to 4777 * be freed and recycled when it's no longer needed, which is usually 4778 * when the CSS is offlined. 4779 * 4780 * The only exception to that are records of swapped out tmpfs/shmem 4781 * pages that need to be attributed to live ancestors on swapin. But 4782 * those references are manageable from userspace. 4783 */ 4784 4785 static DEFINE_IDR(mem_cgroup_idr); 4786 4787 static void mem_cgroup_id_remove(struct mem_cgroup *memcg) 4788 { 4789 if (memcg->id.id > 0) { 4790 idr_remove(&mem_cgroup_idr, memcg->id.id); 4791 memcg->id.id = 0; 4792 } 4793 } 4794 4795 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n) 4796 { 4797 refcount_add(n, &memcg->id.ref); 4798 } 4799 4800 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n) 4801 { 4802 if (refcount_sub_and_test(n, &memcg->id.ref)) { 4803 mem_cgroup_id_remove(memcg); 4804 4805 /* Memcg ID pins CSS */ 4806 css_put(&memcg->css); 4807 } 4808 } 4809 4810 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg) 4811 { 4812 mem_cgroup_id_put_many(memcg, 1); 4813 } 4814 4815 /** 4816 * mem_cgroup_from_id - look up a memcg from a memcg id 4817 * @id: the memcg id to look up 4818 * 4819 * Caller must hold rcu_read_lock(). 4820 */ 4821 struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 4822 { 4823 WARN_ON_ONCE(!rcu_read_lock_held()); 4824 return idr_find(&mem_cgroup_idr, id); 4825 } 4826 4827 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 4828 { 4829 struct mem_cgroup_per_node *pn; 4830 int tmp = node; 4831 /* 4832 * This routine is called against possible nodes. 4833 * But it's BUG to call kmalloc() against offline node. 4834 * 4835 * TODO: this routine can waste much memory for nodes which will 4836 * never be onlined. It's better to use memory hotplug callback 4837 * function. 4838 */ 4839 if (!node_state(node, N_NORMAL_MEMORY)) 4840 tmp = -1; 4841 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); 4842 if (!pn) 4843 return 1; 4844 4845 pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat); 4846 if (!pn->lruvec_stat_local) { 4847 kfree(pn); 4848 return 1; 4849 } 4850 4851 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat); 4852 if (!pn->lruvec_stat_cpu) { 4853 free_percpu(pn->lruvec_stat_local); 4854 kfree(pn); 4855 return 1; 4856 } 4857 4858 lruvec_init(&pn->lruvec); 4859 pn->usage_in_excess = 0; 4860 pn->on_tree = false; 4861 pn->memcg = memcg; 4862 4863 memcg->nodeinfo[node] = pn; 4864 return 0; 4865 } 4866 4867 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 4868 { 4869 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node]; 4870 4871 if (!pn) 4872 return; 4873 4874 free_percpu(pn->lruvec_stat_cpu); 4875 free_percpu(pn->lruvec_stat_local); 4876 kfree(pn); 4877 } 4878 4879 static void __mem_cgroup_free(struct mem_cgroup *memcg) 4880 { 4881 int node; 4882 4883 for_each_node(node) 4884 free_mem_cgroup_per_node_info(memcg, node); 4885 free_percpu(memcg->vmstats_percpu); 4886 free_percpu(memcg->vmstats_local); 4887 kfree(memcg); 4888 } 4889 4890 static void mem_cgroup_free(struct mem_cgroup *memcg) 4891 { 4892 memcg_wb_domain_exit(memcg); 4893 /* 4894 * Flush percpu vmstats and vmevents to guarantee the value correctness 4895 * on parent's and all ancestor levels. 4896 */ 4897 memcg_flush_percpu_vmstats(memcg); 4898 memcg_flush_percpu_vmevents(memcg); 4899 __mem_cgroup_free(memcg); 4900 } 4901 4902 static struct mem_cgroup *mem_cgroup_alloc(void) 4903 { 4904 struct mem_cgroup *memcg; 4905 unsigned int size; 4906 int node; 4907 int __maybe_unused i; 4908 4909 size = sizeof(struct mem_cgroup); 4910 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *); 4911 4912 memcg = kzalloc(size, GFP_KERNEL); 4913 if (!memcg) 4914 return NULL; 4915 4916 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL, 4917 1, MEM_CGROUP_ID_MAX, 4918 GFP_KERNEL); 4919 if (memcg->id.id < 0) 4920 goto fail; 4921 4922 memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu); 4923 if (!memcg->vmstats_local) 4924 goto fail; 4925 4926 memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu); 4927 if (!memcg->vmstats_percpu) 4928 goto fail; 4929 4930 for_each_node(node) 4931 if (alloc_mem_cgroup_per_node_info(memcg, node)) 4932 goto fail; 4933 4934 if (memcg_wb_domain_init(memcg, GFP_KERNEL)) 4935 goto fail; 4936 4937 INIT_WORK(&memcg->high_work, high_work_func); 4938 INIT_LIST_HEAD(&memcg->oom_notify); 4939 mutex_init(&memcg->thresholds_lock); 4940 spin_lock_init(&memcg->move_lock); 4941 vmpressure_init(&memcg->vmpressure); 4942 INIT_LIST_HEAD(&memcg->event_list); 4943 spin_lock_init(&memcg->event_list_lock); 4944 memcg->socket_pressure = jiffies; 4945 #ifdef CONFIG_MEMCG_KMEM 4946 memcg->kmemcg_id = -1; 4947 #endif 4948 #ifdef CONFIG_CGROUP_WRITEBACK 4949 INIT_LIST_HEAD(&memcg->cgwb_list); 4950 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 4951 memcg->cgwb_frn[i].done = 4952 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq); 4953 #endif 4954 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4955 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock); 4956 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue); 4957 memcg->deferred_split_queue.split_queue_len = 0; 4958 #endif 4959 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id); 4960 return memcg; 4961 fail: 4962 mem_cgroup_id_remove(memcg); 4963 __mem_cgroup_free(memcg); 4964 return NULL; 4965 } 4966 4967 static struct cgroup_subsys_state * __ref 4968 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 4969 { 4970 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); 4971 struct mem_cgroup *memcg; 4972 long error = -ENOMEM; 4973 4974 memcg = mem_cgroup_alloc(); 4975 if (!memcg) 4976 return ERR_PTR(error); 4977 4978 memcg->high = PAGE_COUNTER_MAX; 4979 memcg->soft_limit = PAGE_COUNTER_MAX; 4980 if (parent) { 4981 memcg->swappiness = mem_cgroup_swappiness(parent); 4982 memcg->oom_kill_disable = parent->oom_kill_disable; 4983 } 4984 if (parent && parent->use_hierarchy) { 4985 memcg->use_hierarchy = true; 4986 page_counter_init(&memcg->memory, &parent->memory); 4987 page_counter_init(&memcg->swap, &parent->swap); 4988 page_counter_init(&memcg->memsw, &parent->memsw); 4989 page_counter_init(&memcg->kmem, &parent->kmem); 4990 page_counter_init(&memcg->tcpmem, &parent->tcpmem); 4991 } else { 4992 page_counter_init(&memcg->memory, NULL); 4993 page_counter_init(&memcg->swap, NULL); 4994 page_counter_init(&memcg->memsw, NULL); 4995 page_counter_init(&memcg->kmem, NULL); 4996 page_counter_init(&memcg->tcpmem, NULL); 4997 /* 4998 * Deeper hierachy with use_hierarchy == false doesn't make 4999 * much sense so let cgroup subsystem know about this 5000 * unfortunate state in our controller. 5001 */ 5002 if (parent != root_mem_cgroup) 5003 memory_cgrp_subsys.broken_hierarchy = true; 5004 } 5005 5006 /* The following stuff does not apply to the root */ 5007 if (!parent) { 5008 #ifdef CONFIG_MEMCG_KMEM 5009 INIT_LIST_HEAD(&memcg->kmem_caches); 5010 #endif 5011 root_mem_cgroup = memcg; 5012 return &memcg->css; 5013 } 5014 5015 error = memcg_online_kmem(memcg); 5016 if (error) 5017 goto fail; 5018 5019 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 5020 static_branch_inc(&memcg_sockets_enabled_key); 5021 5022 return &memcg->css; 5023 fail: 5024 mem_cgroup_id_remove(memcg); 5025 mem_cgroup_free(memcg); 5026 return ERR_PTR(-ENOMEM); 5027 } 5028 5029 static int mem_cgroup_css_online(struct cgroup_subsys_state *css) 5030 { 5031 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5032 5033 /* 5034 * A memcg must be visible for memcg_expand_shrinker_maps() 5035 * by the time the maps are allocated. So, we allocate maps 5036 * here, when for_each_mem_cgroup() can't skip it. 5037 */ 5038 if (memcg_alloc_shrinker_maps(memcg)) { 5039 mem_cgroup_id_remove(memcg); 5040 return -ENOMEM; 5041 } 5042 5043 /* Online state pins memcg ID, memcg ID pins CSS */ 5044 refcount_set(&memcg->id.ref, 1); 5045 css_get(css); 5046 return 0; 5047 } 5048 5049 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 5050 { 5051 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5052 struct mem_cgroup_event *event, *tmp; 5053 5054 /* 5055 * Unregister events and notify userspace. 5056 * Notify userspace about cgroup removing only after rmdir of cgroup 5057 * directory to avoid race between userspace and kernelspace. 5058 */ 5059 spin_lock(&memcg->event_list_lock); 5060 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) { 5061 list_del_init(&event->list); 5062 schedule_work(&event->remove); 5063 } 5064 spin_unlock(&memcg->event_list_lock); 5065 5066 page_counter_set_min(&memcg->memory, 0); 5067 page_counter_set_low(&memcg->memory, 0); 5068 5069 memcg_offline_kmem(memcg); 5070 wb_memcg_offline(memcg); 5071 5072 drain_all_stock(memcg); 5073 5074 mem_cgroup_id_put(memcg); 5075 } 5076 5077 static void mem_cgroup_css_released(struct cgroup_subsys_state *css) 5078 { 5079 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5080 5081 invalidate_reclaim_iterators(memcg); 5082 } 5083 5084 static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 5085 { 5086 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5087 int __maybe_unused i; 5088 5089 #ifdef CONFIG_CGROUP_WRITEBACK 5090 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 5091 wb_wait_for_completion(&memcg->cgwb_frn[i].done); 5092 #endif 5093 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 5094 static_branch_dec(&memcg_sockets_enabled_key); 5095 5096 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active) 5097 static_branch_dec(&memcg_sockets_enabled_key); 5098 5099 vmpressure_cleanup(&memcg->vmpressure); 5100 cancel_work_sync(&memcg->high_work); 5101 mem_cgroup_remove_from_trees(memcg); 5102 memcg_free_shrinker_maps(memcg); 5103 memcg_free_kmem(memcg); 5104 mem_cgroup_free(memcg); 5105 } 5106 5107 /** 5108 * mem_cgroup_css_reset - reset the states of a mem_cgroup 5109 * @css: the target css 5110 * 5111 * Reset the states of the mem_cgroup associated with @css. This is 5112 * invoked when the userland requests disabling on the default hierarchy 5113 * but the memcg is pinned through dependency. The memcg should stop 5114 * applying policies and should revert to the vanilla state as it may be 5115 * made visible again. 5116 * 5117 * The current implementation only resets the essential configurations. 5118 * This needs to be expanded to cover all the visible parts. 5119 */ 5120 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) 5121 { 5122 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5123 5124 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX); 5125 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX); 5126 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX); 5127 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX); 5128 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX); 5129 page_counter_set_min(&memcg->memory, 0); 5130 page_counter_set_low(&memcg->memory, 0); 5131 memcg->high = PAGE_COUNTER_MAX; 5132 memcg->soft_limit = PAGE_COUNTER_MAX; 5133 memcg_wb_domain_size_changed(memcg); 5134 } 5135 5136 #ifdef CONFIG_MMU 5137 /* Handlers for move charge at task migration. */ 5138 static int mem_cgroup_do_precharge(unsigned long count) 5139 { 5140 int ret; 5141 5142 /* Try a single bulk charge without reclaim first, kswapd may wake */ 5143 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count); 5144 if (!ret) { 5145 mc.precharge += count; 5146 return ret; 5147 } 5148 5149 /* Try charges one by one with reclaim, but do not retry */ 5150 while (count--) { 5151 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1); 5152 if (ret) 5153 return ret; 5154 mc.precharge++; 5155 cond_resched(); 5156 } 5157 return 0; 5158 } 5159 5160 union mc_target { 5161 struct page *page; 5162 swp_entry_t ent; 5163 }; 5164 5165 enum mc_target_type { 5166 MC_TARGET_NONE = 0, 5167 MC_TARGET_PAGE, 5168 MC_TARGET_SWAP, 5169 MC_TARGET_DEVICE, 5170 }; 5171 5172 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 5173 unsigned long addr, pte_t ptent) 5174 { 5175 struct page *page = vm_normal_page(vma, addr, ptent); 5176 5177 if (!page || !page_mapped(page)) 5178 return NULL; 5179 if (PageAnon(page)) { 5180 if (!(mc.flags & MOVE_ANON)) 5181 return NULL; 5182 } else { 5183 if (!(mc.flags & MOVE_FILE)) 5184 return NULL; 5185 } 5186 if (!get_page_unless_zero(page)) 5187 return NULL; 5188 5189 return page; 5190 } 5191 5192 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE) 5193 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5194 pte_t ptent, swp_entry_t *entry) 5195 { 5196 struct page *page = NULL; 5197 swp_entry_t ent = pte_to_swp_entry(ptent); 5198 5199 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent)) 5200 return NULL; 5201 5202 /* 5203 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to 5204 * a device and because they are not accessible by CPU they are store 5205 * as special swap entry in the CPU page table. 5206 */ 5207 if (is_device_private_entry(ent)) { 5208 page = device_private_entry_to_page(ent); 5209 /* 5210 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have 5211 * a refcount of 1 when free (unlike normal page) 5212 */ 5213 if (!page_ref_add_unless(page, 1, 1)) 5214 return NULL; 5215 return page; 5216 } 5217 5218 /* 5219 * Because lookup_swap_cache() updates some statistics counter, 5220 * we call find_get_page() with swapper_space directly. 5221 */ 5222 page = find_get_page(swap_address_space(ent), swp_offset(ent)); 5223 if (do_memsw_account()) 5224 entry->val = ent.val; 5225 5226 return page; 5227 } 5228 #else 5229 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5230 pte_t ptent, swp_entry_t *entry) 5231 { 5232 return NULL; 5233 } 5234 #endif 5235 5236 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 5237 unsigned long addr, pte_t ptent, swp_entry_t *entry) 5238 { 5239 struct page *page = NULL; 5240 struct address_space *mapping; 5241 pgoff_t pgoff; 5242 5243 if (!vma->vm_file) /* anonymous vma */ 5244 return NULL; 5245 if (!(mc.flags & MOVE_FILE)) 5246 return NULL; 5247 5248 mapping = vma->vm_file->f_mapping; 5249 pgoff = linear_page_index(vma, addr); 5250 5251 /* page is moved even if it's not RSS of this task(page-faulted). */ 5252 #ifdef CONFIG_SWAP 5253 /* shmem/tmpfs may report page out on swap: account for that too. */ 5254 if (shmem_mapping(mapping)) { 5255 page = find_get_entry(mapping, pgoff); 5256 if (xa_is_value(page)) { 5257 swp_entry_t swp = radix_to_swp_entry(page); 5258 if (do_memsw_account()) 5259 *entry = swp; 5260 page = find_get_page(swap_address_space(swp), 5261 swp_offset(swp)); 5262 } 5263 } else 5264 page = find_get_page(mapping, pgoff); 5265 #else 5266 page = find_get_page(mapping, pgoff); 5267 #endif 5268 return page; 5269 } 5270 5271 /** 5272 * mem_cgroup_move_account - move account of the page 5273 * @page: the page 5274 * @compound: charge the page as compound or small page 5275 * @from: mem_cgroup which the page is moved from. 5276 * @to: mem_cgroup which the page is moved to. @from != @to. 5277 * 5278 * The caller must make sure the page is not on LRU (isolate_page() is useful.) 5279 * 5280 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" 5281 * from old cgroup. 5282 */ 5283 static int mem_cgroup_move_account(struct page *page, 5284 bool compound, 5285 struct mem_cgroup *from, 5286 struct mem_cgroup *to) 5287 { 5288 struct lruvec *from_vec, *to_vec; 5289 struct pglist_data *pgdat; 5290 unsigned long flags; 5291 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 5292 int ret; 5293 bool anon; 5294 5295 VM_BUG_ON(from == to); 5296 VM_BUG_ON_PAGE(PageLRU(page), page); 5297 VM_BUG_ON(compound && !PageTransHuge(page)); 5298 5299 /* 5300 * Prevent mem_cgroup_migrate() from looking at 5301 * page->mem_cgroup of its source page while we change it. 5302 */ 5303 ret = -EBUSY; 5304 if (!trylock_page(page)) 5305 goto out; 5306 5307 ret = -EINVAL; 5308 if (page->mem_cgroup != from) 5309 goto out_unlock; 5310 5311 anon = PageAnon(page); 5312 5313 pgdat = page_pgdat(page); 5314 from_vec = mem_cgroup_lruvec(from, pgdat); 5315 to_vec = mem_cgroup_lruvec(to, pgdat); 5316 5317 spin_lock_irqsave(&from->move_lock, flags); 5318 5319 if (!anon && page_mapped(page)) { 5320 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages); 5321 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages); 5322 } 5323 5324 /* 5325 * move_lock grabbed above and caller set from->moving_account, so 5326 * mod_memcg_page_state will serialize updates to PageDirty. 5327 * So mapping should be stable for dirty pages. 5328 */ 5329 if (!anon && PageDirty(page)) { 5330 struct address_space *mapping = page_mapping(page); 5331 5332 if (mapping_cap_account_dirty(mapping)) { 5333 __mod_lruvec_state(from_vec, NR_FILE_DIRTY, -nr_pages); 5334 __mod_lruvec_state(to_vec, NR_FILE_DIRTY, nr_pages); 5335 } 5336 } 5337 5338 if (PageWriteback(page)) { 5339 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages); 5340 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages); 5341 } 5342 5343 /* 5344 * It is safe to change page->mem_cgroup here because the page 5345 * is referenced, charged, and isolated - we can't race with 5346 * uncharging, charging, migration, or LRU putback. 5347 */ 5348 5349 /* caller should have done css_get */ 5350 page->mem_cgroup = to; 5351 5352 spin_unlock_irqrestore(&from->move_lock, flags); 5353 5354 ret = 0; 5355 5356 local_irq_disable(); 5357 mem_cgroup_charge_statistics(to, page, compound, nr_pages); 5358 memcg_check_events(to, page); 5359 mem_cgroup_charge_statistics(from, page, compound, -nr_pages); 5360 memcg_check_events(from, page); 5361 local_irq_enable(); 5362 out_unlock: 5363 unlock_page(page); 5364 out: 5365 return ret; 5366 } 5367 5368 /** 5369 * get_mctgt_type - get target type of moving charge 5370 * @vma: the vma the pte to be checked belongs 5371 * @addr: the address corresponding to the pte to be checked 5372 * @ptent: the pte to be checked 5373 * @target: the pointer the target page or swap ent will be stored(can be NULL) 5374 * 5375 * Returns 5376 * 0(MC_TARGET_NONE): if the pte is not a target for move charge. 5377 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for 5378 * move charge. if @target is not NULL, the page is stored in target->page 5379 * with extra refcnt got(Callers should handle it). 5380 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a 5381 * target for charge migration. if @target is not NULL, the entry is stored 5382 * in target->ent. 5383 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE 5384 * (so ZONE_DEVICE page and thus not on the lru). 5385 * For now we such page is charge like a regular page would be as for all 5386 * intent and purposes it is just special memory taking the place of a 5387 * regular page. 5388 * 5389 * See Documentations/vm/hmm.txt and include/linux/hmm.h 5390 * 5391 * Called with pte lock held. 5392 */ 5393 5394 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, 5395 unsigned long addr, pte_t ptent, union mc_target *target) 5396 { 5397 struct page *page = NULL; 5398 enum mc_target_type ret = MC_TARGET_NONE; 5399 swp_entry_t ent = { .val = 0 }; 5400 5401 if (pte_present(ptent)) 5402 page = mc_handle_present_pte(vma, addr, ptent); 5403 else if (is_swap_pte(ptent)) 5404 page = mc_handle_swap_pte(vma, ptent, &ent); 5405 else if (pte_none(ptent)) 5406 page = mc_handle_file_pte(vma, addr, ptent, &ent); 5407 5408 if (!page && !ent.val) 5409 return ret; 5410 if (page) { 5411 /* 5412 * Do only loose check w/o serialization. 5413 * mem_cgroup_move_account() checks the page is valid or 5414 * not under LRU exclusion. 5415 */ 5416 if (page->mem_cgroup == mc.from) { 5417 ret = MC_TARGET_PAGE; 5418 if (is_device_private_page(page)) 5419 ret = MC_TARGET_DEVICE; 5420 if (target) 5421 target->page = page; 5422 } 5423 if (!ret || !target) 5424 put_page(page); 5425 } 5426 /* 5427 * There is a swap entry and a page doesn't exist or isn't charged. 5428 * But we cannot move a tail-page in a THP. 5429 */ 5430 if (ent.val && !ret && (!page || !PageTransCompound(page)) && 5431 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) { 5432 ret = MC_TARGET_SWAP; 5433 if (target) 5434 target->ent = ent; 5435 } 5436 return ret; 5437 } 5438 5439 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5440 /* 5441 * We don't consider PMD mapped swapping or file mapped pages because THP does 5442 * not support them for now. 5443 * Caller should make sure that pmd_trans_huge(pmd) is true. 5444 */ 5445 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5446 unsigned long addr, pmd_t pmd, union mc_target *target) 5447 { 5448 struct page *page = NULL; 5449 enum mc_target_type ret = MC_TARGET_NONE; 5450 5451 if (unlikely(is_swap_pmd(pmd))) { 5452 VM_BUG_ON(thp_migration_supported() && 5453 !is_pmd_migration_entry(pmd)); 5454 return ret; 5455 } 5456 page = pmd_page(pmd); 5457 VM_BUG_ON_PAGE(!page || !PageHead(page), page); 5458 if (!(mc.flags & MOVE_ANON)) 5459 return ret; 5460 if (page->mem_cgroup == mc.from) { 5461 ret = MC_TARGET_PAGE; 5462 if (target) { 5463 get_page(page); 5464 target->page = page; 5465 } 5466 } 5467 return ret; 5468 } 5469 #else 5470 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5471 unsigned long addr, pmd_t pmd, union mc_target *target) 5472 { 5473 return MC_TARGET_NONE; 5474 } 5475 #endif 5476 5477 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 5478 unsigned long addr, unsigned long end, 5479 struct mm_walk *walk) 5480 { 5481 struct vm_area_struct *vma = walk->vma; 5482 pte_t *pte; 5483 spinlock_t *ptl; 5484 5485 ptl = pmd_trans_huge_lock(pmd, vma); 5486 if (ptl) { 5487 /* 5488 * Note their can not be MC_TARGET_DEVICE for now as we do not 5489 * support transparent huge page with MEMORY_DEVICE_PRIVATE but 5490 * this might change. 5491 */ 5492 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) 5493 mc.precharge += HPAGE_PMD_NR; 5494 spin_unlock(ptl); 5495 return 0; 5496 } 5497 5498 if (pmd_trans_unstable(pmd)) 5499 return 0; 5500 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 5501 for (; addr != end; pte++, addr += PAGE_SIZE) 5502 if (get_mctgt_type(vma, addr, *pte, NULL)) 5503 mc.precharge++; /* increment precharge temporarily */ 5504 pte_unmap_unlock(pte - 1, ptl); 5505 cond_resched(); 5506 5507 return 0; 5508 } 5509 5510 static const struct mm_walk_ops precharge_walk_ops = { 5511 .pmd_entry = mem_cgroup_count_precharge_pte_range, 5512 }; 5513 5514 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 5515 { 5516 unsigned long precharge; 5517 5518 down_read(&mm->mmap_sem); 5519 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL); 5520 up_read(&mm->mmap_sem); 5521 5522 precharge = mc.precharge; 5523 mc.precharge = 0; 5524 5525 return precharge; 5526 } 5527 5528 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 5529 { 5530 unsigned long precharge = mem_cgroup_count_precharge(mm); 5531 5532 VM_BUG_ON(mc.moving_task); 5533 mc.moving_task = current; 5534 return mem_cgroup_do_precharge(precharge); 5535 } 5536 5537 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 5538 static void __mem_cgroup_clear_mc(void) 5539 { 5540 struct mem_cgroup *from = mc.from; 5541 struct mem_cgroup *to = mc.to; 5542 5543 /* we must uncharge all the leftover precharges from mc.to */ 5544 if (mc.precharge) { 5545 cancel_charge(mc.to, mc.precharge); 5546 mc.precharge = 0; 5547 } 5548 /* 5549 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 5550 * we must uncharge here. 5551 */ 5552 if (mc.moved_charge) { 5553 cancel_charge(mc.from, mc.moved_charge); 5554 mc.moved_charge = 0; 5555 } 5556 /* we must fixup refcnts and charges */ 5557 if (mc.moved_swap) { 5558 /* uncharge swap account from the old cgroup */ 5559 if (!mem_cgroup_is_root(mc.from)) 5560 page_counter_uncharge(&mc.from->memsw, mc.moved_swap); 5561 5562 mem_cgroup_id_put_many(mc.from, mc.moved_swap); 5563 5564 /* 5565 * we charged both to->memory and to->memsw, so we 5566 * should uncharge to->memory. 5567 */ 5568 if (!mem_cgroup_is_root(mc.to)) 5569 page_counter_uncharge(&mc.to->memory, mc.moved_swap); 5570 5571 mem_cgroup_id_get_many(mc.to, mc.moved_swap); 5572 css_put_many(&mc.to->css, mc.moved_swap); 5573 5574 mc.moved_swap = 0; 5575 } 5576 memcg_oom_recover(from); 5577 memcg_oom_recover(to); 5578 wake_up_all(&mc.waitq); 5579 } 5580 5581 static void mem_cgroup_clear_mc(void) 5582 { 5583 struct mm_struct *mm = mc.mm; 5584 5585 /* 5586 * we must clear moving_task before waking up waiters at the end of 5587 * task migration. 5588 */ 5589 mc.moving_task = NULL; 5590 __mem_cgroup_clear_mc(); 5591 spin_lock(&mc.lock); 5592 mc.from = NULL; 5593 mc.to = NULL; 5594 mc.mm = NULL; 5595 spin_unlock(&mc.lock); 5596 5597 mmput(mm); 5598 } 5599 5600 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 5601 { 5602 struct cgroup_subsys_state *css; 5603 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */ 5604 struct mem_cgroup *from; 5605 struct task_struct *leader, *p; 5606 struct mm_struct *mm; 5607 unsigned long move_flags; 5608 int ret = 0; 5609 5610 /* charge immigration isn't supported on the default hierarchy */ 5611 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5612 return 0; 5613 5614 /* 5615 * Multi-process migrations only happen on the default hierarchy 5616 * where charge immigration is not used. Perform charge 5617 * immigration if @tset contains a leader and whine if there are 5618 * multiple. 5619 */ 5620 p = NULL; 5621 cgroup_taskset_for_each_leader(leader, css, tset) { 5622 WARN_ON_ONCE(p); 5623 p = leader; 5624 memcg = mem_cgroup_from_css(css); 5625 } 5626 if (!p) 5627 return 0; 5628 5629 /* 5630 * We are now commited to this value whatever it is. Changes in this 5631 * tunable will only affect upcoming migrations, not the current one. 5632 * So we need to save it, and keep it going. 5633 */ 5634 move_flags = READ_ONCE(memcg->move_charge_at_immigrate); 5635 if (!move_flags) 5636 return 0; 5637 5638 from = mem_cgroup_from_task(p); 5639 5640 VM_BUG_ON(from == memcg); 5641 5642 mm = get_task_mm(p); 5643 if (!mm) 5644 return 0; 5645 /* We move charges only when we move a owner of the mm */ 5646 if (mm->owner == p) { 5647 VM_BUG_ON(mc.from); 5648 VM_BUG_ON(mc.to); 5649 VM_BUG_ON(mc.precharge); 5650 VM_BUG_ON(mc.moved_charge); 5651 VM_BUG_ON(mc.moved_swap); 5652 5653 spin_lock(&mc.lock); 5654 mc.mm = mm; 5655 mc.from = from; 5656 mc.to = memcg; 5657 mc.flags = move_flags; 5658 spin_unlock(&mc.lock); 5659 /* We set mc.moving_task later */ 5660 5661 ret = mem_cgroup_precharge_mc(mm); 5662 if (ret) 5663 mem_cgroup_clear_mc(); 5664 } else { 5665 mmput(mm); 5666 } 5667 return ret; 5668 } 5669 5670 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 5671 { 5672 if (mc.to) 5673 mem_cgroup_clear_mc(); 5674 } 5675 5676 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 5677 unsigned long addr, unsigned long end, 5678 struct mm_walk *walk) 5679 { 5680 int ret = 0; 5681 struct vm_area_struct *vma = walk->vma; 5682 pte_t *pte; 5683 spinlock_t *ptl; 5684 enum mc_target_type target_type; 5685 union mc_target target; 5686 struct page *page; 5687 5688 ptl = pmd_trans_huge_lock(pmd, vma); 5689 if (ptl) { 5690 if (mc.precharge < HPAGE_PMD_NR) { 5691 spin_unlock(ptl); 5692 return 0; 5693 } 5694 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); 5695 if (target_type == MC_TARGET_PAGE) { 5696 page = target.page; 5697 if (!isolate_lru_page(page)) { 5698 if (!mem_cgroup_move_account(page, true, 5699 mc.from, mc.to)) { 5700 mc.precharge -= HPAGE_PMD_NR; 5701 mc.moved_charge += HPAGE_PMD_NR; 5702 } 5703 putback_lru_page(page); 5704 } 5705 put_page(page); 5706 } else if (target_type == MC_TARGET_DEVICE) { 5707 page = target.page; 5708 if (!mem_cgroup_move_account(page, true, 5709 mc.from, mc.to)) { 5710 mc.precharge -= HPAGE_PMD_NR; 5711 mc.moved_charge += HPAGE_PMD_NR; 5712 } 5713 put_page(page); 5714 } 5715 spin_unlock(ptl); 5716 return 0; 5717 } 5718 5719 if (pmd_trans_unstable(pmd)) 5720 return 0; 5721 retry: 5722 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 5723 for (; addr != end; addr += PAGE_SIZE) { 5724 pte_t ptent = *(pte++); 5725 bool device = false; 5726 swp_entry_t ent; 5727 5728 if (!mc.precharge) 5729 break; 5730 5731 switch (get_mctgt_type(vma, addr, ptent, &target)) { 5732 case MC_TARGET_DEVICE: 5733 device = true; 5734 /* fall through */ 5735 case MC_TARGET_PAGE: 5736 page = target.page; 5737 /* 5738 * We can have a part of the split pmd here. Moving it 5739 * can be done but it would be too convoluted so simply 5740 * ignore such a partial THP and keep it in original 5741 * memcg. There should be somebody mapping the head. 5742 */ 5743 if (PageTransCompound(page)) 5744 goto put; 5745 if (!device && isolate_lru_page(page)) 5746 goto put; 5747 if (!mem_cgroup_move_account(page, false, 5748 mc.from, mc.to)) { 5749 mc.precharge--; 5750 /* we uncharge from mc.from later. */ 5751 mc.moved_charge++; 5752 } 5753 if (!device) 5754 putback_lru_page(page); 5755 put: /* get_mctgt_type() gets the page */ 5756 put_page(page); 5757 break; 5758 case MC_TARGET_SWAP: 5759 ent = target.ent; 5760 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { 5761 mc.precharge--; 5762 /* we fixup refcnts and charges later. */ 5763 mc.moved_swap++; 5764 } 5765 break; 5766 default: 5767 break; 5768 } 5769 } 5770 pte_unmap_unlock(pte - 1, ptl); 5771 cond_resched(); 5772 5773 if (addr != end) { 5774 /* 5775 * We have consumed all precharges we got in can_attach(). 5776 * We try charge one by one, but don't do any additional 5777 * charges to mc.to if we have failed in charge once in attach() 5778 * phase. 5779 */ 5780 ret = mem_cgroup_do_precharge(1); 5781 if (!ret) 5782 goto retry; 5783 } 5784 5785 return ret; 5786 } 5787 5788 static const struct mm_walk_ops charge_walk_ops = { 5789 .pmd_entry = mem_cgroup_move_charge_pte_range, 5790 }; 5791 5792 static void mem_cgroup_move_charge(void) 5793 { 5794 lru_add_drain_all(); 5795 /* 5796 * Signal lock_page_memcg() to take the memcg's move_lock 5797 * while we're moving its pages to another memcg. Then wait 5798 * for already started RCU-only updates to finish. 5799 */ 5800 atomic_inc(&mc.from->moving_account); 5801 synchronize_rcu(); 5802 retry: 5803 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) { 5804 /* 5805 * Someone who are holding the mmap_sem might be waiting in 5806 * waitq. So we cancel all extra charges, wake up all waiters, 5807 * and retry. Because we cancel precharges, we might not be able 5808 * to move enough charges, but moving charge is a best-effort 5809 * feature anyway, so it wouldn't be a big problem. 5810 */ 5811 __mem_cgroup_clear_mc(); 5812 cond_resched(); 5813 goto retry; 5814 } 5815 /* 5816 * When we have consumed all precharges and failed in doing 5817 * additional charge, the page walk just aborts. 5818 */ 5819 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops, 5820 NULL); 5821 5822 up_read(&mc.mm->mmap_sem); 5823 atomic_dec(&mc.from->moving_account); 5824 } 5825 5826 static void mem_cgroup_move_task(void) 5827 { 5828 if (mc.to) { 5829 mem_cgroup_move_charge(); 5830 mem_cgroup_clear_mc(); 5831 } 5832 } 5833 #else /* !CONFIG_MMU */ 5834 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 5835 { 5836 return 0; 5837 } 5838 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 5839 { 5840 } 5841 static void mem_cgroup_move_task(void) 5842 { 5843 } 5844 #endif 5845 5846 /* 5847 * Cgroup retains root cgroups across [un]mount cycles making it necessary 5848 * to verify whether we're attached to the default hierarchy on each mount 5849 * attempt. 5850 */ 5851 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css) 5852 { 5853 /* 5854 * use_hierarchy is forced on the default hierarchy. cgroup core 5855 * guarantees that @root doesn't have any children, so turning it 5856 * on for the root memcg is enough. 5857 */ 5858 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5859 root_mem_cgroup->use_hierarchy = true; 5860 else 5861 root_mem_cgroup->use_hierarchy = false; 5862 } 5863 5864 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value) 5865 { 5866 if (value == PAGE_COUNTER_MAX) 5867 seq_puts(m, "max\n"); 5868 else 5869 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE); 5870 5871 return 0; 5872 } 5873 5874 static u64 memory_current_read(struct cgroup_subsys_state *css, 5875 struct cftype *cft) 5876 { 5877 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5878 5879 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; 5880 } 5881 5882 static int memory_min_show(struct seq_file *m, void *v) 5883 { 5884 return seq_puts_memcg_tunable(m, 5885 READ_ONCE(mem_cgroup_from_seq(m)->memory.min)); 5886 } 5887 5888 static ssize_t memory_min_write(struct kernfs_open_file *of, 5889 char *buf, size_t nbytes, loff_t off) 5890 { 5891 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5892 unsigned long min; 5893 int err; 5894 5895 buf = strstrip(buf); 5896 err = page_counter_memparse(buf, "max", &min); 5897 if (err) 5898 return err; 5899 5900 page_counter_set_min(&memcg->memory, min); 5901 5902 return nbytes; 5903 } 5904 5905 static int memory_low_show(struct seq_file *m, void *v) 5906 { 5907 return seq_puts_memcg_tunable(m, 5908 READ_ONCE(mem_cgroup_from_seq(m)->memory.low)); 5909 } 5910 5911 static ssize_t memory_low_write(struct kernfs_open_file *of, 5912 char *buf, size_t nbytes, loff_t off) 5913 { 5914 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5915 unsigned long low; 5916 int err; 5917 5918 buf = strstrip(buf); 5919 err = page_counter_memparse(buf, "max", &low); 5920 if (err) 5921 return err; 5922 5923 page_counter_set_low(&memcg->memory, low); 5924 5925 return nbytes; 5926 } 5927 5928 static int memory_high_show(struct seq_file *m, void *v) 5929 { 5930 return seq_puts_memcg_tunable(m, READ_ONCE(mem_cgroup_from_seq(m)->high)); 5931 } 5932 5933 static ssize_t memory_high_write(struct kernfs_open_file *of, 5934 char *buf, size_t nbytes, loff_t off) 5935 { 5936 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5937 unsigned int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 5938 bool drained = false; 5939 unsigned long high; 5940 int err; 5941 5942 buf = strstrip(buf); 5943 err = page_counter_memparse(buf, "max", &high); 5944 if (err) 5945 return err; 5946 5947 memcg->high = high; 5948 5949 for (;;) { 5950 unsigned long nr_pages = page_counter_read(&memcg->memory); 5951 unsigned long reclaimed; 5952 5953 if (nr_pages <= high) 5954 break; 5955 5956 if (signal_pending(current)) 5957 break; 5958 5959 if (!drained) { 5960 drain_all_stock(memcg); 5961 drained = true; 5962 continue; 5963 } 5964 5965 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high, 5966 GFP_KERNEL, true); 5967 5968 if (!reclaimed && !nr_retries--) 5969 break; 5970 } 5971 5972 return nbytes; 5973 } 5974 5975 static int memory_max_show(struct seq_file *m, void *v) 5976 { 5977 return seq_puts_memcg_tunable(m, 5978 READ_ONCE(mem_cgroup_from_seq(m)->memory.max)); 5979 } 5980 5981 static ssize_t memory_max_write(struct kernfs_open_file *of, 5982 char *buf, size_t nbytes, loff_t off) 5983 { 5984 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5985 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES; 5986 bool drained = false; 5987 unsigned long max; 5988 int err; 5989 5990 buf = strstrip(buf); 5991 err = page_counter_memparse(buf, "max", &max); 5992 if (err) 5993 return err; 5994 5995 xchg(&memcg->memory.max, max); 5996 5997 for (;;) { 5998 unsigned long nr_pages = page_counter_read(&memcg->memory); 5999 6000 if (nr_pages <= max) 6001 break; 6002 6003 if (signal_pending(current)) 6004 break; 6005 6006 if (!drained) { 6007 drain_all_stock(memcg); 6008 drained = true; 6009 continue; 6010 } 6011 6012 if (nr_reclaims) { 6013 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max, 6014 GFP_KERNEL, true)) 6015 nr_reclaims--; 6016 continue; 6017 } 6018 6019 memcg_memory_event(memcg, MEMCG_OOM); 6020 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0)) 6021 break; 6022 } 6023 6024 memcg_wb_domain_size_changed(memcg); 6025 return nbytes; 6026 } 6027 6028 static void __memory_events_show(struct seq_file *m, atomic_long_t *events) 6029 { 6030 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW])); 6031 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH])); 6032 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX])); 6033 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM])); 6034 seq_printf(m, "oom_kill %lu\n", 6035 atomic_long_read(&events[MEMCG_OOM_KILL])); 6036 } 6037 6038 static int memory_events_show(struct seq_file *m, void *v) 6039 { 6040 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6041 6042 __memory_events_show(m, memcg->memory_events); 6043 return 0; 6044 } 6045 6046 static int memory_events_local_show(struct seq_file *m, void *v) 6047 { 6048 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6049 6050 __memory_events_show(m, memcg->memory_events_local); 6051 return 0; 6052 } 6053 6054 static int memory_stat_show(struct seq_file *m, void *v) 6055 { 6056 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6057 char *buf; 6058 6059 buf = memory_stat_format(memcg); 6060 if (!buf) 6061 return -ENOMEM; 6062 seq_puts(m, buf); 6063 kfree(buf); 6064 return 0; 6065 } 6066 6067 static int memory_oom_group_show(struct seq_file *m, void *v) 6068 { 6069 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6070 6071 seq_printf(m, "%d\n", memcg->oom_group); 6072 6073 return 0; 6074 } 6075 6076 static ssize_t memory_oom_group_write(struct kernfs_open_file *of, 6077 char *buf, size_t nbytes, loff_t off) 6078 { 6079 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6080 int ret, oom_group; 6081 6082 buf = strstrip(buf); 6083 if (!buf) 6084 return -EINVAL; 6085 6086 ret = kstrtoint(buf, 0, &oom_group); 6087 if (ret) 6088 return ret; 6089 6090 if (oom_group != 0 && oom_group != 1) 6091 return -EINVAL; 6092 6093 memcg->oom_group = oom_group; 6094 6095 return nbytes; 6096 } 6097 6098 static struct cftype memory_files[] = { 6099 { 6100 .name = "current", 6101 .flags = CFTYPE_NOT_ON_ROOT, 6102 .read_u64 = memory_current_read, 6103 }, 6104 { 6105 .name = "min", 6106 .flags = CFTYPE_NOT_ON_ROOT, 6107 .seq_show = memory_min_show, 6108 .write = memory_min_write, 6109 }, 6110 { 6111 .name = "low", 6112 .flags = CFTYPE_NOT_ON_ROOT, 6113 .seq_show = memory_low_show, 6114 .write = memory_low_write, 6115 }, 6116 { 6117 .name = "high", 6118 .flags = CFTYPE_NOT_ON_ROOT, 6119 .seq_show = memory_high_show, 6120 .write = memory_high_write, 6121 }, 6122 { 6123 .name = "max", 6124 .flags = CFTYPE_NOT_ON_ROOT, 6125 .seq_show = memory_max_show, 6126 .write = memory_max_write, 6127 }, 6128 { 6129 .name = "events", 6130 .flags = CFTYPE_NOT_ON_ROOT, 6131 .file_offset = offsetof(struct mem_cgroup, events_file), 6132 .seq_show = memory_events_show, 6133 }, 6134 { 6135 .name = "events.local", 6136 .flags = CFTYPE_NOT_ON_ROOT, 6137 .file_offset = offsetof(struct mem_cgroup, events_local_file), 6138 .seq_show = memory_events_local_show, 6139 }, 6140 { 6141 .name = "stat", 6142 .flags = CFTYPE_NOT_ON_ROOT, 6143 .seq_show = memory_stat_show, 6144 }, 6145 { 6146 .name = "oom.group", 6147 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE, 6148 .seq_show = memory_oom_group_show, 6149 .write = memory_oom_group_write, 6150 }, 6151 { } /* terminate */ 6152 }; 6153 6154 struct cgroup_subsys memory_cgrp_subsys = { 6155 .css_alloc = mem_cgroup_css_alloc, 6156 .css_online = mem_cgroup_css_online, 6157 .css_offline = mem_cgroup_css_offline, 6158 .css_released = mem_cgroup_css_released, 6159 .css_free = mem_cgroup_css_free, 6160 .css_reset = mem_cgroup_css_reset, 6161 .can_attach = mem_cgroup_can_attach, 6162 .cancel_attach = mem_cgroup_cancel_attach, 6163 .post_attach = mem_cgroup_move_task, 6164 .bind = mem_cgroup_bind, 6165 .dfl_cftypes = memory_files, 6166 .legacy_cftypes = mem_cgroup_legacy_files, 6167 .early_init = 0, 6168 }; 6169 6170 /** 6171 * mem_cgroup_protected - check if memory consumption is in the normal range 6172 * @root: the top ancestor of the sub-tree being checked 6173 * @memcg: the memory cgroup to check 6174 * 6175 * WARNING: This function is not stateless! It can only be used as part 6176 * of a top-down tree iteration, not for isolated queries. 6177 * 6178 * Returns one of the following: 6179 * MEMCG_PROT_NONE: cgroup memory is not protected 6180 * MEMCG_PROT_LOW: cgroup memory is protected as long there is 6181 * an unprotected supply of reclaimable memory from other cgroups. 6182 * MEMCG_PROT_MIN: cgroup memory is protected 6183 * 6184 * @root is exclusive; it is never protected when looked at directly 6185 * 6186 * To provide a proper hierarchical behavior, effective memory.min/low values 6187 * are used. Below is the description of how effective memory.low is calculated. 6188 * Effective memory.min values is calculated in the same way. 6189 * 6190 * Effective memory.low is always equal or less than the original memory.low. 6191 * If there is no memory.low overcommittment (which is always true for 6192 * top-level memory cgroups), these two values are equal. 6193 * Otherwise, it's a part of parent's effective memory.low, 6194 * calculated as a cgroup's memory.low usage divided by sum of sibling's 6195 * memory.low usages, where memory.low usage is the size of actually 6196 * protected memory. 6197 * 6198 * low_usage 6199 * elow = min( memory.low, parent->elow * ------------------ ), 6200 * siblings_low_usage 6201 * 6202 * | memory.current, if memory.current < memory.low 6203 * low_usage = | 6204 * | 0, otherwise. 6205 * 6206 * 6207 * Such definition of the effective memory.low provides the expected 6208 * hierarchical behavior: parent's memory.low value is limiting 6209 * children, unprotected memory is reclaimed first and cgroups, 6210 * which are not using their guarantee do not affect actual memory 6211 * distribution. 6212 * 6213 * For example, if there are memcgs A, A/B, A/C, A/D and A/E: 6214 * 6215 * A A/memory.low = 2G, A/memory.current = 6G 6216 * //\\ 6217 * BC DE B/memory.low = 3G B/memory.current = 2G 6218 * C/memory.low = 1G C/memory.current = 2G 6219 * D/memory.low = 0 D/memory.current = 2G 6220 * E/memory.low = 10G E/memory.current = 0 6221 * 6222 * and the memory pressure is applied, the following memory distribution 6223 * is expected (approximately): 6224 * 6225 * A/memory.current = 2G 6226 * 6227 * B/memory.current = 1.3G 6228 * C/memory.current = 0.6G 6229 * D/memory.current = 0 6230 * E/memory.current = 0 6231 * 6232 * These calculations require constant tracking of the actual low usages 6233 * (see propagate_protected_usage()), as well as recursive calculation of 6234 * effective memory.low values. But as we do call mem_cgroup_protected() 6235 * path for each memory cgroup top-down from the reclaim, 6236 * it's possible to optimize this part, and save calculated elow 6237 * for next usage. This part is intentionally racy, but it's ok, 6238 * as memory.low is a best-effort mechanism. 6239 */ 6240 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root, 6241 struct mem_cgroup *memcg) 6242 { 6243 struct mem_cgroup *parent; 6244 unsigned long emin, parent_emin; 6245 unsigned long elow, parent_elow; 6246 unsigned long usage; 6247 6248 if (mem_cgroup_disabled()) 6249 return MEMCG_PROT_NONE; 6250 6251 if (!root) 6252 root = root_mem_cgroup; 6253 if (memcg == root) 6254 return MEMCG_PROT_NONE; 6255 6256 usage = page_counter_read(&memcg->memory); 6257 if (!usage) 6258 return MEMCG_PROT_NONE; 6259 6260 emin = memcg->memory.min; 6261 elow = memcg->memory.low; 6262 6263 parent = parent_mem_cgroup(memcg); 6264 /* No parent means a non-hierarchical mode on v1 memcg */ 6265 if (!parent) 6266 return MEMCG_PROT_NONE; 6267 6268 if (parent == root) 6269 goto exit; 6270 6271 parent_emin = READ_ONCE(parent->memory.emin); 6272 emin = min(emin, parent_emin); 6273 if (emin && parent_emin) { 6274 unsigned long min_usage, siblings_min_usage; 6275 6276 min_usage = min(usage, memcg->memory.min); 6277 siblings_min_usage = atomic_long_read( 6278 &parent->memory.children_min_usage); 6279 6280 if (min_usage && siblings_min_usage) 6281 emin = min(emin, parent_emin * min_usage / 6282 siblings_min_usage); 6283 } 6284 6285 parent_elow = READ_ONCE(parent->memory.elow); 6286 elow = min(elow, parent_elow); 6287 if (elow && parent_elow) { 6288 unsigned long low_usage, siblings_low_usage; 6289 6290 low_usage = min(usage, memcg->memory.low); 6291 siblings_low_usage = atomic_long_read( 6292 &parent->memory.children_low_usage); 6293 6294 if (low_usage && siblings_low_usage) 6295 elow = min(elow, parent_elow * low_usage / 6296 siblings_low_usage); 6297 } 6298 6299 exit: 6300 memcg->memory.emin = emin; 6301 memcg->memory.elow = elow; 6302 6303 if (usage <= emin) 6304 return MEMCG_PROT_MIN; 6305 else if (usage <= elow) 6306 return MEMCG_PROT_LOW; 6307 else 6308 return MEMCG_PROT_NONE; 6309 } 6310 6311 /** 6312 * mem_cgroup_try_charge - try charging a page 6313 * @page: page to charge 6314 * @mm: mm context of the victim 6315 * @gfp_mask: reclaim mode 6316 * @memcgp: charged memcg return 6317 * @compound: charge the page as compound or small page 6318 * 6319 * Try to charge @page to the memcg that @mm belongs to, reclaiming 6320 * pages according to @gfp_mask if necessary. 6321 * 6322 * Returns 0 on success, with *@memcgp pointing to the charged memcg. 6323 * Otherwise, an error code is returned. 6324 * 6325 * After page->mapping has been set up, the caller must finalize the 6326 * charge with mem_cgroup_commit_charge(). Or abort the transaction 6327 * with mem_cgroup_cancel_charge() in case page instantiation fails. 6328 */ 6329 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, 6330 gfp_t gfp_mask, struct mem_cgroup **memcgp, 6331 bool compound) 6332 { 6333 struct mem_cgroup *memcg = NULL; 6334 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 6335 int ret = 0; 6336 6337 if (mem_cgroup_disabled()) 6338 goto out; 6339 6340 if (PageSwapCache(page)) { 6341 /* 6342 * Every swap fault against a single page tries to charge the 6343 * page, bail as early as possible. shmem_unuse() encounters 6344 * already charged pages, too. The USED bit is protected by 6345 * the page lock, which serializes swap cache removal, which 6346 * in turn serializes uncharging. 6347 */ 6348 VM_BUG_ON_PAGE(!PageLocked(page), page); 6349 if (compound_head(page)->mem_cgroup) 6350 goto out; 6351 6352 if (do_swap_account) { 6353 swp_entry_t ent = { .val = page_private(page), }; 6354 unsigned short id = lookup_swap_cgroup_id(ent); 6355 6356 rcu_read_lock(); 6357 memcg = mem_cgroup_from_id(id); 6358 if (memcg && !css_tryget_online(&memcg->css)) 6359 memcg = NULL; 6360 rcu_read_unlock(); 6361 } 6362 } 6363 6364 if (!memcg) 6365 memcg = get_mem_cgroup_from_mm(mm); 6366 6367 ret = try_charge(memcg, gfp_mask, nr_pages); 6368 6369 css_put(&memcg->css); 6370 out: 6371 *memcgp = memcg; 6372 return ret; 6373 } 6374 6375 int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm, 6376 gfp_t gfp_mask, struct mem_cgroup **memcgp, 6377 bool compound) 6378 { 6379 struct mem_cgroup *memcg; 6380 int ret; 6381 6382 ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound); 6383 memcg = *memcgp; 6384 mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask); 6385 return ret; 6386 } 6387 6388 /** 6389 * mem_cgroup_commit_charge - commit a page charge 6390 * @page: page to charge 6391 * @memcg: memcg to charge the page to 6392 * @lrucare: page might be on LRU already 6393 * @compound: charge the page as compound or small page 6394 * 6395 * Finalize a charge transaction started by mem_cgroup_try_charge(), 6396 * after page->mapping has been set up. This must happen atomically 6397 * as part of the page instantiation, i.e. under the page table lock 6398 * for anonymous pages, under the page lock for page and swap cache. 6399 * 6400 * In addition, the page must not be on the LRU during the commit, to 6401 * prevent racing with task migration. If it might be, use @lrucare. 6402 * 6403 * Use mem_cgroup_cancel_charge() to cancel the transaction instead. 6404 */ 6405 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg, 6406 bool lrucare, bool compound) 6407 { 6408 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 6409 6410 VM_BUG_ON_PAGE(!page->mapping, page); 6411 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page); 6412 6413 if (mem_cgroup_disabled()) 6414 return; 6415 /* 6416 * Swap faults will attempt to charge the same page multiple 6417 * times. But reuse_swap_page() might have removed the page 6418 * from swapcache already, so we can't check PageSwapCache(). 6419 */ 6420 if (!memcg) 6421 return; 6422 6423 commit_charge(page, memcg, lrucare); 6424 6425 local_irq_disable(); 6426 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages); 6427 memcg_check_events(memcg, page); 6428 local_irq_enable(); 6429 6430 if (do_memsw_account() && PageSwapCache(page)) { 6431 swp_entry_t entry = { .val = page_private(page) }; 6432 /* 6433 * The swap entry might not get freed for a long time, 6434 * let's not wait for it. The page already received a 6435 * memory+swap charge, drop the swap entry duplicate. 6436 */ 6437 mem_cgroup_uncharge_swap(entry, nr_pages); 6438 } 6439 } 6440 6441 /** 6442 * mem_cgroup_cancel_charge - cancel a page charge 6443 * @page: page to charge 6444 * @memcg: memcg to charge the page to 6445 * @compound: charge the page as compound or small page 6446 * 6447 * Cancel a charge transaction started by mem_cgroup_try_charge(). 6448 */ 6449 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg, 6450 bool compound) 6451 { 6452 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 6453 6454 if (mem_cgroup_disabled()) 6455 return; 6456 /* 6457 * Swap faults will attempt to charge the same page multiple 6458 * times. But reuse_swap_page() might have removed the page 6459 * from swapcache already, so we can't check PageSwapCache(). 6460 */ 6461 if (!memcg) 6462 return; 6463 6464 cancel_charge(memcg, nr_pages); 6465 } 6466 6467 struct uncharge_gather { 6468 struct mem_cgroup *memcg; 6469 unsigned long pgpgout; 6470 unsigned long nr_anon; 6471 unsigned long nr_file; 6472 unsigned long nr_kmem; 6473 unsigned long nr_huge; 6474 unsigned long nr_shmem; 6475 struct page *dummy_page; 6476 }; 6477 6478 static inline void uncharge_gather_clear(struct uncharge_gather *ug) 6479 { 6480 memset(ug, 0, sizeof(*ug)); 6481 } 6482 6483 static void uncharge_batch(const struct uncharge_gather *ug) 6484 { 6485 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem; 6486 unsigned long flags; 6487 6488 if (!mem_cgroup_is_root(ug->memcg)) { 6489 page_counter_uncharge(&ug->memcg->memory, nr_pages); 6490 if (do_memsw_account()) 6491 page_counter_uncharge(&ug->memcg->memsw, nr_pages); 6492 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem) 6493 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem); 6494 memcg_oom_recover(ug->memcg); 6495 } 6496 6497 local_irq_save(flags); 6498 __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon); 6499 __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file); 6500 __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge); 6501 __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem); 6502 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout); 6503 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, nr_pages); 6504 memcg_check_events(ug->memcg, ug->dummy_page); 6505 local_irq_restore(flags); 6506 6507 if (!mem_cgroup_is_root(ug->memcg)) 6508 css_put_many(&ug->memcg->css, nr_pages); 6509 } 6510 6511 static void uncharge_page(struct page *page, struct uncharge_gather *ug) 6512 { 6513 VM_BUG_ON_PAGE(PageLRU(page), page); 6514 VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) && 6515 !PageHWPoison(page) , page); 6516 6517 if (!page->mem_cgroup) 6518 return; 6519 6520 /* 6521 * Nobody should be changing or seriously looking at 6522 * page->mem_cgroup at this point, we have fully 6523 * exclusive access to the page. 6524 */ 6525 6526 if (ug->memcg != page->mem_cgroup) { 6527 if (ug->memcg) { 6528 uncharge_batch(ug); 6529 uncharge_gather_clear(ug); 6530 } 6531 ug->memcg = page->mem_cgroup; 6532 } 6533 6534 if (!PageKmemcg(page)) { 6535 unsigned int nr_pages = 1; 6536 6537 if (PageTransHuge(page)) { 6538 nr_pages = compound_nr(page); 6539 ug->nr_huge += nr_pages; 6540 } 6541 if (PageAnon(page)) 6542 ug->nr_anon += nr_pages; 6543 else { 6544 ug->nr_file += nr_pages; 6545 if (PageSwapBacked(page)) 6546 ug->nr_shmem += nr_pages; 6547 } 6548 ug->pgpgout++; 6549 } else { 6550 ug->nr_kmem += compound_nr(page); 6551 __ClearPageKmemcg(page); 6552 } 6553 6554 ug->dummy_page = page; 6555 page->mem_cgroup = NULL; 6556 } 6557 6558 static void uncharge_list(struct list_head *page_list) 6559 { 6560 struct uncharge_gather ug; 6561 struct list_head *next; 6562 6563 uncharge_gather_clear(&ug); 6564 6565 /* 6566 * Note that the list can be a single page->lru; hence the 6567 * do-while loop instead of a simple list_for_each_entry(). 6568 */ 6569 next = page_list->next; 6570 do { 6571 struct page *page; 6572 6573 page = list_entry(next, struct page, lru); 6574 next = page->lru.next; 6575 6576 uncharge_page(page, &ug); 6577 } while (next != page_list); 6578 6579 if (ug.memcg) 6580 uncharge_batch(&ug); 6581 } 6582 6583 /** 6584 * mem_cgroup_uncharge - uncharge a page 6585 * @page: page to uncharge 6586 * 6587 * Uncharge a page previously charged with mem_cgroup_try_charge() and 6588 * mem_cgroup_commit_charge(). 6589 */ 6590 void mem_cgroup_uncharge(struct page *page) 6591 { 6592 struct uncharge_gather ug; 6593 6594 if (mem_cgroup_disabled()) 6595 return; 6596 6597 /* Don't touch page->lru of any random page, pre-check: */ 6598 if (!page->mem_cgroup) 6599 return; 6600 6601 uncharge_gather_clear(&ug); 6602 uncharge_page(page, &ug); 6603 uncharge_batch(&ug); 6604 } 6605 6606 /** 6607 * mem_cgroup_uncharge_list - uncharge a list of page 6608 * @page_list: list of pages to uncharge 6609 * 6610 * Uncharge a list of pages previously charged with 6611 * mem_cgroup_try_charge() and mem_cgroup_commit_charge(). 6612 */ 6613 void mem_cgroup_uncharge_list(struct list_head *page_list) 6614 { 6615 if (mem_cgroup_disabled()) 6616 return; 6617 6618 if (!list_empty(page_list)) 6619 uncharge_list(page_list); 6620 } 6621 6622 /** 6623 * mem_cgroup_migrate - charge a page's replacement 6624 * @oldpage: currently circulating page 6625 * @newpage: replacement page 6626 * 6627 * Charge @newpage as a replacement page for @oldpage. @oldpage will 6628 * be uncharged upon free. 6629 * 6630 * Both pages must be locked, @newpage->mapping must be set up. 6631 */ 6632 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage) 6633 { 6634 struct mem_cgroup *memcg; 6635 unsigned int nr_pages; 6636 unsigned long flags; 6637 6638 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage); 6639 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 6640 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage); 6641 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage), 6642 newpage); 6643 6644 if (mem_cgroup_disabled()) 6645 return; 6646 6647 /* Page cache replacement: new page already charged? */ 6648 if (newpage->mem_cgroup) 6649 return; 6650 6651 /* Swapcache readahead pages can get replaced before being charged */ 6652 memcg = oldpage->mem_cgroup; 6653 if (!memcg) 6654 return; 6655 6656 /* Force-charge the new page. The old one will be freed soon */ 6657 nr_pages = hpage_nr_pages(newpage); 6658 6659 page_counter_charge(&memcg->memory, nr_pages); 6660 if (do_memsw_account()) 6661 page_counter_charge(&memcg->memsw, nr_pages); 6662 css_get_many(&memcg->css, nr_pages); 6663 6664 commit_charge(newpage, memcg, false); 6665 6666 local_irq_save(flags); 6667 mem_cgroup_charge_statistics(memcg, newpage, PageTransHuge(newpage), 6668 nr_pages); 6669 memcg_check_events(memcg, newpage); 6670 local_irq_restore(flags); 6671 } 6672 6673 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); 6674 EXPORT_SYMBOL(memcg_sockets_enabled_key); 6675 6676 void mem_cgroup_sk_alloc(struct sock *sk) 6677 { 6678 struct mem_cgroup *memcg; 6679 6680 if (!mem_cgroup_sockets_enabled) 6681 return; 6682 6683 /* 6684 * Socket cloning can throw us here with sk_memcg already 6685 * filled. It won't however, necessarily happen from 6686 * process context. So the test for root memcg given 6687 * the current task's memcg won't help us in this case. 6688 * 6689 * Respecting the original socket's memcg is a better 6690 * decision in this case. 6691 */ 6692 if (sk->sk_memcg) { 6693 css_get(&sk->sk_memcg->css); 6694 return; 6695 } 6696 6697 rcu_read_lock(); 6698 memcg = mem_cgroup_from_task(current); 6699 if (memcg == root_mem_cgroup) 6700 goto out; 6701 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active) 6702 goto out; 6703 if (css_tryget_online(&memcg->css)) 6704 sk->sk_memcg = memcg; 6705 out: 6706 rcu_read_unlock(); 6707 } 6708 6709 void mem_cgroup_sk_free(struct sock *sk) 6710 { 6711 if (sk->sk_memcg) 6712 css_put(&sk->sk_memcg->css); 6713 } 6714 6715 /** 6716 * mem_cgroup_charge_skmem - charge socket memory 6717 * @memcg: memcg to charge 6718 * @nr_pages: number of pages to charge 6719 * 6720 * Charges @nr_pages to @memcg. Returns %true if the charge fit within 6721 * @memcg's configured limit, %false if the charge had to be forced. 6722 */ 6723 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 6724 { 6725 gfp_t gfp_mask = GFP_KERNEL; 6726 6727 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 6728 struct page_counter *fail; 6729 6730 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) { 6731 memcg->tcpmem_pressure = 0; 6732 return true; 6733 } 6734 page_counter_charge(&memcg->tcpmem, nr_pages); 6735 memcg->tcpmem_pressure = 1; 6736 return false; 6737 } 6738 6739 /* Don't block in the packet receive path */ 6740 if (in_softirq()) 6741 gfp_mask = GFP_NOWAIT; 6742 6743 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages); 6744 6745 if (try_charge(memcg, gfp_mask, nr_pages) == 0) 6746 return true; 6747 6748 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages); 6749 return false; 6750 } 6751 6752 /** 6753 * mem_cgroup_uncharge_skmem - uncharge socket memory 6754 * @memcg: memcg to uncharge 6755 * @nr_pages: number of pages to uncharge 6756 */ 6757 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 6758 { 6759 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 6760 page_counter_uncharge(&memcg->tcpmem, nr_pages); 6761 return; 6762 } 6763 6764 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages); 6765 6766 refill_stock(memcg, nr_pages); 6767 } 6768 6769 static int __init cgroup_memory(char *s) 6770 { 6771 char *token; 6772 6773 while ((token = strsep(&s, ",")) != NULL) { 6774 if (!*token) 6775 continue; 6776 if (!strcmp(token, "nosocket")) 6777 cgroup_memory_nosocket = true; 6778 if (!strcmp(token, "nokmem")) 6779 cgroup_memory_nokmem = true; 6780 } 6781 return 0; 6782 } 6783 __setup("cgroup.memory=", cgroup_memory); 6784 6785 /* 6786 * subsys_initcall() for memory controller. 6787 * 6788 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this 6789 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but 6790 * basically everything that doesn't depend on a specific mem_cgroup structure 6791 * should be initialized from here. 6792 */ 6793 static int __init mem_cgroup_init(void) 6794 { 6795 int cpu, node; 6796 6797 #ifdef CONFIG_MEMCG_KMEM 6798 /* 6799 * Kmem cache creation is mostly done with the slab_mutex held, 6800 * so use a workqueue with limited concurrency to avoid stalling 6801 * all worker threads in case lots of cgroups are created and 6802 * destroyed simultaneously. 6803 */ 6804 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1); 6805 BUG_ON(!memcg_kmem_cache_wq); 6806 #endif 6807 6808 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL, 6809 memcg_hotplug_cpu_dead); 6810 6811 for_each_possible_cpu(cpu) 6812 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, 6813 drain_local_stock); 6814 6815 for_each_node(node) { 6816 struct mem_cgroup_tree_per_node *rtpn; 6817 6818 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, 6819 node_online(node) ? node : NUMA_NO_NODE); 6820 6821 rtpn->rb_root = RB_ROOT; 6822 rtpn->rb_rightmost = NULL; 6823 spin_lock_init(&rtpn->lock); 6824 soft_limit_tree.rb_tree_per_node[node] = rtpn; 6825 } 6826 6827 return 0; 6828 } 6829 subsys_initcall(mem_cgroup_init); 6830 6831 #ifdef CONFIG_MEMCG_SWAP 6832 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg) 6833 { 6834 while (!refcount_inc_not_zero(&memcg->id.ref)) { 6835 /* 6836 * The root cgroup cannot be destroyed, so it's refcount must 6837 * always be >= 1. 6838 */ 6839 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) { 6840 VM_BUG_ON(1); 6841 break; 6842 } 6843 memcg = parent_mem_cgroup(memcg); 6844 if (!memcg) 6845 memcg = root_mem_cgroup; 6846 } 6847 return memcg; 6848 } 6849 6850 /** 6851 * mem_cgroup_swapout - transfer a memsw charge to swap 6852 * @page: page whose memsw charge to transfer 6853 * @entry: swap entry to move the charge to 6854 * 6855 * Transfer the memsw charge of @page to @entry. 6856 */ 6857 void mem_cgroup_swapout(struct page *page, swp_entry_t entry) 6858 { 6859 struct mem_cgroup *memcg, *swap_memcg; 6860 unsigned int nr_entries; 6861 unsigned short oldid; 6862 6863 VM_BUG_ON_PAGE(PageLRU(page), page); 6864 VM_BUG_ON_PAGE(page_count(page), page); 6865 6866 if (!do_memsw_account()) 6867 return; 6868 6869 memcg = page->mem_cgroup; 6870 6871 /* Readahead page, never charged */ 6872 if (!memcg) 6873 return; 6874 6875 /* 6876 * In case the memcg owning these pages has been offlined and doesn't 6877 * have an ID allocated to it anymore, charge the closest online 6878 * ancestor for the swap instead and transfer the memory+swap charge. 6879 */ 6880 swap_memcg = mem_cgroup_id_get_online(memcg); 6881 nr_entries = hpage_nr_pages(page); 6882 /* Get references for the tail pages, too */ 6883 if (nr_entries > 1) 6884 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1); 6885 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg), 6886 nr_entries); 6887 VM_BUG_ON_PAGE(oldid, page); 6888 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries); 6889 6890 page->mem_cgroup = NULL; 6891 6892 if (!mem_cgroup_is_root(memcg)) 6893 page_counter_uncharge(&memcg->memory, nr_entries); 6894 6895 if (memcg != swap_memcg) { 6896 if (!mem_cgroup_is_root(swap_memcg)) 6897 page_counter_charge(&swap_memcg->memsw, nr_entries); 6898 page_counter_uncharge(&memcg->memsw, nr_entries); 6899 } 6900 6901 /* 6902 * Interrupts should be disabled here because the caller holds the 6903 * i_pages lock which is taken with interrupts-off. It is 6904 * important here to have the interrupts disabled because it is the 6905 * only synchronisation we have for updating the per-CPU variables. 6906 */ 6907 VM_BUG_ON(!irqs_disabled()); 6908 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page), 6909 -nr_entries); 6910 memcg_check_events(memcg, page); 6911 6912 if (!mem_cgroup_is_root(memcg)) 6913 css_put_many(&memcg->css, nr_entries); 6914 } 6915 6916 /** 6917 * mem_cgroup_try_charge_swap - try charging swap space for a page 6918 * @page: page being added to swap 6919 * @entry: swap entry to charge 6920 * 6921 * Try to charge @page's memcg for the swap space at @entry. 6922 * 6923 * Returns 0 on success, -ENOMEM on failure. 6924 */ 6925 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry) 6926 { 6927 unsigned int nr_pages = hpage_nr_pages(page); 6928 struct page_counter *counter; 6929 struct mem_cgroup *memcg; 6930 unsigned short oldid; 6931 6932 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account) 6933 return 0; 6934 6935 memcg = page->mem_cgroup; 6936 6937 /* Readahead page, never charged */ 6938 if (!memcg) 6939 return 0; 6940 6941 if (!entry.val) { 6942 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 6943 return 0; 6944 } 6945 6946 memcg = mem_cgroup_id_get_online(memcg); 6947 6948 if (!mem_cgroup_is_root(memcg) && 6949 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) { 6950 memcg_memory_event(memcg, MEMCG_SWAP_MAX); 6951 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 6952 mem_cgroup_id_put(memcg); 6953 return -ENOMEM; 6954 } 6955 6956 /* Get references for the tail pages, too */ 6957 if (nr_pages > 1) 6958 mem_cgroup_id_get_many(memcg, nr_pages - 1); 6959 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages); 6960 VM_BUG_ON_PAGE(oldid, page); 6961 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages); 6962 6963 return 0; 6964 } 6965 6966 /** 6967 * mem_cgroup_uncharge_swap - uncharge swap space 6968 * @entry: swap entry to uncharge 6969 * @nr_pages: the amount of swap space to uncharge 6970 */ 6971 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages) 6972 { 6973 struct mem_cgroup *memcg; 6974 unsigned short id; 6975 6976 if (!do_swap_account) 6977 return; 6978 6979 id = swap_cgroup_record(entry, 0, nr_pages); 6980 rcu_read_lock(); 6981 memcg = mem_cgroup_from_id(id); 6982 if (memcg) { 6983 if (!mem_cgroup_is_root(memcg)) { 6984 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 6985 page_counter_uncharge(&memcg->swap, nr_pages); 6986 else 6987 page_counter_uncharge(&memcg->memsw, nr_pages); 6988 } 6989 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages); 6990 mem_cgroup_id_put_many(memcg, nr_pages); 6991 } 6992 rcu_read_unlock(); 6993 } 6994 6995 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) 6996 { 6997 long nr_swap_pages = get_nr_swap_pages(); 6998 6999 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7000 return nr_swap_pages; 7001 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) 7002 nr_swap_pages = min_t(long, nr_swap_pages, 7003 READ_ONCE(memcg->swap.max) - 7004 page_counter_read(&memcg->swap)); 7005 return nr_swap_pages; 7006 } 7007 7008 bool mem_cgroup_swap_full(struct page *page) 7009 { 7010 struct mem_cgroup *memcg; 7011 7012 VM_BUG_ON_PAGE(!PageLocked(page), page); 7013 7014 if (vm_swap_full()) 7015 return true; 7016 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7017 return false; 7018 7019 memcg = page->mem_cgroup; 7020 if (!memcg) 7021 return false; 7022 7023 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) 7024 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max) 7025 return true; 7026 7027 return false; 7028 } 7029 7030 /* for remember boot option*/ 7031 #ifdef CONFIG_MEMCG_SWAP_ENABLED 7032 static int really_do_swap_account __initdata = 1; 7033 #else 7034 static int really_do_swap_account __initdata; 7035 #endif 7036 7037 static int __init enable_swap_account(char *s) 7038 { 7039 if (!strcmp(s, "1")) 7040 really_do_swap_account = 1; 7041 else if (!strcmp(s, "0")) 7042 really_do_swap_account = 0; 7043 return 1; 7044 } 7045 __setup("swapaccount=", enable_swap_account); 7046 7047 static u64 swap_current_read(struct cgroup_subsys_state *css, 7048 struct cftype *cft) 7049 { 7050 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 7051 7052 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; 7053 } 7054 7055 static int swap_max_show(struct seq_file *m, void *v) 7056 { 7057 return seq_puts_memcg_tunable(m, 7058 READ_ONCE(mem_cgroup_from_seq(m)->swap.max)); 7059 } 7060 7061 static ssize_t swap_max_write(struct kernfs_open_file *of, 7062 char *buf, size_t nbytes, loff_t off) 7063 { 7064 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 7065 unsigned long max; 7066 int err; 7067 7068 buf = strstrip(buf); 7069 err = page_counter_memparse(buf, "max", &max); 7070 if (err) 7071 return err; 7072 7073 xchg(&memcg->swap.max, max); 7074 7075 return nbytes; 7076 } 7077 7078 static int swap_events_show(struct seq_file *m, void *v) 7079 { 7080 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 7081 7082 seq_printf(m, "max %lu\n", 7083 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX])); 7084 seq_printf(m, "fail %lu\n", 7085 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL])); 7086 7087 return 0; 7088 } 7089 7090 static struct cftype swap_files[] = { 7091 { 7092 .name = "swap.current", 7093 .flags = CFTYPE_NOT_ON_ROOT, 7094 .read_u64 = swap_current_read, 7095 }, 7096 { 7097 .name = "swap.max", 7098 .flags = CFTYPE_NOT_ON_ROOT, 7099 .seq_show = swap_max_show, 7100 .write = swap_max_write, 7101 }, 7102 { 7103 .name = "swap.events", 7104 .flags = CFTYPE_NOT_ON_ROOT, 7105 .file_offset = offsetof(struct mem_cgroup, swap_events_file), 7106 .seq_show = swap_events_show, 7107 }, 7108 { } /* terminate */ 7109 }; 7110 7111 static struct cftype memsw_cgroup_files[] = { 7112 { 7113 .name = "memsw.usage_in_bytes", 7114 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 7115 .read_u64 = mem_cgroup_read_u64, 7116 }, 7117 { 7118 .name = "memsw.max_usage_in_bytes", 7119 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 7120 .write = mem_cgroup_reset, 7121 .read_u64 = mem_cgroup_read_u64, 7122 }, 7123 { 7124 .name = "memsw.limit_in_bytes", 7125 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 7126 .write = mem_cgroup_write, 7127 .read_u64 = mem_cgroup_read_u64, 7128 }, 7129 { 7130 .name = "memsw.failcnt", 7131 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 7132 .write = mem_cgroup_reset, 7133 .read_u64 = mem_cgroup_read_u64, 7134 }, 7135 { }, /* terminate */ 7136 }; 7137 7138 static int __init mem_cgroup_swap_init(void) 7139 { 7140 if (!mem_cgroup_disabled() && really_do_swap_account) { 7141 do_swap_account = 1; 7142 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, 7143 swap_files)); 7144 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, 7145 memsw_cgroup_files)); 7146 } 7147 return 0; 7148 } 7149 subsys_initcall(mem_cgroup_swap_init); 7150 7151 #endif /* CONFIG_MEMCG_SWAP */ 7152