xref: /openbmc/linux/mm/memcontrol.c (revision 37185b33)
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  */
23 
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/export.h>
37 #include <linux/mutex.h>
38 #include <linux/rbtree.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swapops.h>
42 #include <linux/spinlock.h>
43 #include <linux/eventfd.h>
44 #include <linux/sort.h>
45 #include <linux/fs.h>
46 #include <linux/seq_file.h>
47 #include <linux/vmalloc.h>
48 #include <linux/mm_inline.h>
49 #include <linux/page_cgroup.h>
50 #include <linux/cpu.h>
51 #include <linux/oom.h>
52 #include "internal.h"
53 #include <net/sock.h>
54 #include <net/tcp_memcontrol.h>
55 
56 #include <asm/uaccess.h>
57 
58 #include <trace/events/vmscan.h>
59 
60 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
61 #define MEM_CGROUP_RECLAIM_RETRIES	5
62 static struct mem_cgroup *root_mem_cgroup __read_mostly;
63 
64 #ifdef CONFIG_MEMCG_SWAP
65 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
66 int do_swap_account __read_mostly;
67 
68 /* for remember boot option*/
69 #ifdef CONFIG_MEMCG_SWAP_ENABLED
70 static int really_do_swap_account __initdata = 1;
71 #else
72 static int really_do_swap_account __initdata = 0;
73 #endif
74 
75 #else
76 #define do_swap_account		0
77 #endif
78 
79 
80 /*
81  * Statistics for memory cgroup.
82  */
83 enum mem_cgroup_stat_index {
84 	/*
85 	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
86 	 */
87 	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
88 	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as anon rss */
89 	MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
90 	MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
91 	MEM_CGROUP_STAT_NSTATS,
92 };
93 
94 static const char * const mem_cgroup_stat_names[] = {
95 	"cache",
96 	"rss",
97 	"mapped_file",
98 	"swap",
99 };
100 
101 enum mem_cgroup_events_index {
102 	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
103 	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
104 	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
105 	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
106 	MEM_CGROUP_EVENTS_NSTATS,
107 };
108 
109 static const char * const mem_cgroup_events_names[] = {
110 	"pgpgin",
111 	"pgpgout",
112 	"pgfault",
113 	"pgmajfault",
114 };
115 
116 /*
117  * Per memcg event counter is incremented at every pagein/pageout. With THP,
118  * it will be incremated by the number of pages. This counter is used for
119  * for trigger some periodic events. This is straightforward and better
120  * than using jiffies etc. to handle periodic memcg event.
121  */
122 enum mem_cgroup_events_target {
123 	MEM_CGROUP_TARGET_THRESH,
124 	MEM_CGROUP_TARGET_SOFTLIMIT,
125 	MEM_CGROUP_TARGET_NUMAINFO,
126 	MEM_CGROUP_NTARGETS,
127 };
128 #define THRESHOLDS_EVENTS_TARGET 128
129 #define SOFTLIMIT_EVENTS_TARGET 1024
130 #define NUMAINFO_EVENTS_TARGET	1024
131 
132 struct mem_cgroup_stat_cpu {
133 	long count[MEM_CGROUP_STAT_NSTATS];
134 	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
135 	unsigned long nr_page_events;
136 	unsigned long targets[MEM_CGROUP_NTARGETS];
137 };
138 
139 struct mem_cgroup_reclaim_iter {
140 	/* css_id of the last scanned hierarchy member */
141 	int position;
142 	/* scan generation, increased every round-trip */
143 	unsigned int generation;
144 };
145 
146 /*
147  * per-zone information in memory controller.
148  */
149 struct mem_cgroup_per_zone {
150 	struct lruvec		lruvec;
151 	unsigned long		lru_size[NR_LRU_LISTS];
152 
153 	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
154 
155 	struct rb_node		tree_node;	/* RB tree node */
156 	unsigned long long	usage_in_excess;/* Set to the value by which */
157 						/* the soft limit is exceeded*/
158 	bool			on_tree;
159 	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
160 						/* use container_of	   */
161 };
162 
163 struct mem_cgroup_per_node {
164 	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
165 };
166 
167 struct mem_cgroup_lru_info {
168 	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
169 };
170 
171 /*
172  * Cgroups above their limits are maintained in a RB-Tree, independent of
173  * their hierarchy representation
174  */
175 
176 struct mem_cgroup_tree_per_zone {
177 	struct rb_root rb_root;
178 	spinlock_t lock;
179 };
180 
181 struct mem_cgroup_tree_per_node {
182 	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
183 };
184 
185 struct mem_cgroup_tree {
186 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
187 };
188 
189 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
190 
191 struct mem_cgroup_threshold {
192 	struct eventfd_ctx *eventfd;
193 	u64 threshold;
194 };
195 
196 /* For threshold */
197 struct mem_cgroup_threshold_ary {
198 	/* An array index points to threshold just below or equal to usage. */
199 	int current_threshold;
200 	/* Size of entries[] */
201 	unsigned int size;
202 	/* Array of thresholds */
203 	struct mem_cgroup_threshold entries[0];
204 };
205 
206 struct mem_cgroup_thresholds {
207 	/* Primary thresholds array */
208 	struct mem_cgroup_threshold_ary *primary;
209 	/*
210 	 * Spare threshold array.
211 	 * This is needed to make mem_cgroup_unregister_event() "never fail".
212 	 * It must be able to store at least primary->size - 1 entries.
213 	 */
214 	struct mem_cgroup_threshold_ary *spare;
215 };
216 
217 /* for OOM */
218 struct mem_cgroup_eventfd_list {
219 	struct list_head list;
220 	struct eventfd_ctx *eventfd;
221 };
222 
223 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
224 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
225 
226 /*
227  * The memory controller data structure. The memory controller controls both
228  * page cache and RSS per cgroup. We would eventually like to provide
229  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
230  * to help the administrator determine what knobs to tune.
231  *
232  * TODO: Add a water mark for the memory controller. Reclaim will begin when
233  * we hit the water mark. May be even add a low water mark, such that
234  * no reclaim occurs from a cgroup at it's low water mark, this is
235  * a feature that will be implemented much later in the future.
236  */
237 struct mem_cgroup {
238 	struct cgroup_subsys_state css;
239 	/*
240 	 * the counter to account for memory usage
241 	 */
242 	struct res_counter res;
243 
244 	union {
245 		/*
246 		 * the counter to account for mem+swap usage.
247 		 */
248 		struct res_counter memsw;
249 
250 		/*
251 		 * rcu_freeing is used only when freeing struct mem_cgroup,
252 		 * so put it into a union to avoid wasting more memory.
253 		 * It must be disjoint from the css field.  It could be
254 		 * in a union with the res field, but res plays a much
255 		 * larger part in mem_cgroup life than memsw, and might
256 		 * be of interest, even at time of free, when debugging.
257 		 * So share rcu_head with the less interesting memsw.
258 		 */
259 		struct rcu_head rcu_freeing;
260 		/*
261 		 * We also need some space for a worker in deferred freeing.
262 		 * By the time we call it, rcu_freeing is no longer in use.
263 		 */
264 		struct work_struct work_freeing;
265 	};
266 
267 	/*
268 	 * Per cgroup active and inactive list, similar to the
269 	 * per zone LRU lists.
270 	 */
271 	struct mem_cgroup_lru_info info;
272 	int last_scanned_node;
273 #if MAX_NUMNODES > 1
274 	nodemask_t	scan_nodes;
275 	atomic_t	numainfo_events;
276 	atomic_t	numainfo_updating;
277 #endif
278 	/*
279 	 * Should the accounting and control be hierarchical, per subtree?
280 	 */
281 	bool use_hierarchy;
282 
283 	bool		oom_lock;
284 	atomic_t	under_oom;
285 
286 	atomic_t	refcnt;
287 
288 	int	swappiness;
289 	/* OOM-Killer disable */
290 	int		oom_kill_disable;
291 
292 	/* set when res.limit == memsw.limit */
293 	bool		memsw_is_minimum;
294 
295 	/* protect arrays of thresholds */
296 	struct mutex thresholds_lock;
297 
298 	/* thresholds for memory usage. RCU-protected */
299 	struct mem_cgroup_thresholds thresholds;
300 
301 	/* thresholds for mem+swap usage. RCU-protected */
302 	struct mem_cgroup_thresholds memsw_thresholds;
303 
304 	/* For oom notifier event fd */
305 	struct list_head oom_notify;
306 
307 	/*
308 	 * Should we move charges of a task when a task is moved into this
309 	 * mem_cgroup ? And what type of charges should we move ?
310 	 */
311 	unsigned long 	move_charge_at_immigrate;
312 	/*
313 	 * set > 0 if pages under this cgroup are moving to other cgroup.
314 	 */
315 	atomic_t	moving_account;
316 	/* taken only while moving_account > 0 */
317 	spinlock_t	move_lock;
318 	/*
319 	 * percpu counter.
320 	 */
321 	struct mem_cgroup_stat_cpu __percpu *stat;
322 	/*
323 	 * used when a cpu is offlined or other synchronizations
324 	 * See mem_cgroup_read_stat().
325 	 */
326 	struct mem_cgroup_stat_cpu nocpu_base;
327 	spinlock_t pcp_counter_lock;
328 
329 #ifdef CONFIG_INET
330 	struct tcp_memcontrol tcp_mem;
331 #endif
332 };
333 
334 /* Stuffs for move charges at task migration. */
335 /*
336  * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
337  * left-shifted bitmap of these types.
338  */
339 enum move_type {
340 	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
341 	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
342 	NR_MOVE_TYPE,
343 };
344 
345 /* "mc" and its members are protected by cgroup_mutex */
346 static struct move_charge_struct {
347 	spinlock_t	  lock; /* for from, to */
348 	struct mem_cgroup *from;
349 	struct mem_cgroup *to;
350 	unsigned long precharge;
351 	unsigned long moved_charge;
352 	unsigned long moved_swap;
353 	struct task_struct *moving_task;	/* a task moving charges */
354 	wait_queue_head_t waitq;		/* a waitq for other context */
355 } mc = {
356 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
357 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
358 };
359 
360 static bool move_anon(void)
361 {
362 	return test_bit(MOVE_CHARGE_TYPE_ANON,
363 					&mc.to->move_charge_at_immigrate);
364 }
365 
366 static bool move_file(void)
367 {
368 	return test_bit(MOVE_CHARGE_TYPE_FILE,
369 					&mc.to->move_charge_at_immigrate);
370 }
371 
372 /*
373  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
374  * limit reclaim to prevent infinite loops, if they ever occur.
375  */
376 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
377 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
378 
379 enum charge_type {
380 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
381 	MEM_CGROUP_CHARGE_TYPE_ANON,
382 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
383 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
384 	NR_CHARGE_TYPE,
385 };
386 
387 /* for encoding cft->private value on file */
388 #define _MEM			(0)
389 #define _MEMSWAP		(1)
390 #define _OOM_TYPE		(2)
391 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
392 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
393 #define MEMFILE_ATTR(val)	((val) & 0xffff)
394 /* Used for OOM nofiier */
395 #define OOM_CONTROL		(0)
396 
397 /*
398  * Reclaim flags for mem_cgroup_hierarchical_reclaim
399  */
400 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
401 #define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
402 #define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
403 #define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
404 
405 static void mem_cgroup_get(struct mem_cgroup *memcg);
406 static void mem_cgroup_put(struct mem_cgroup *memcg);
407 
408 static inline
409 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
410 {
411 	return container_of(s, struct mem_cgroup, css);
412 }
413 
414 /* Writing them here to avoid exposing memcg's inner layout */
415 #ifdef CONFIG_MEMCG_KMEM
416 #include <net/sock.h>
417 #include <net/ip.h>
418 
419 static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
420 void sock_update_memcg(struct sock *sk)
421 {
422 	if (mem_cgroup_sockets_enabled) {
423 		struct mem_cgroup *memcg;
424 		struct cg_proto *cg_proto;
425 
426 		BUG_ON(!sk->sk_prot->proto_cgroup);
427 
428 		/* Socket cloning can throw us here with sk_cgrp already
429 		 * filled. It won't however, necessarily happen from
430 		 * process context. So the test for root memcg given
431 		 * the current task's memcg won't help us in this case.
432 		 *
433 		 * Respecting the original socket's memcg is a better
434 		 * decision in this case.
435 		 */
436 		if (sk->sk_cgrp) {
437 			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
438 			mem_cgroup_get(sk->sk_cgrp->memcg);
439 			return;
440 		}
441 
442 		rcu_read_lock();
443 		memcg = mem_cgroup_from_task(current);
444 		cg_proto = sk->sk_prot->proto_cgroup(memcg);
445 		if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
446 			mem_cgroup_get(memcg);
447 			sk->sk_cgrp = cg_proto;
448 		}
449 		rcu_read_unlock();
450 	}
451 }
452 EXPORT_SYMBOL(sock_update_memcg);
453 
454 void sock_release_memcg(struct sock *sk)
455 {
456 	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
457 		struct mem_cgroup *memcg;
458 		WARN_ON(!sk->sk_cgrp->memcg);
459 		memcg = sk->sk_cgrp->memcg;
460 		mem_cgroup_put(memcg);
461 	}
462 }
463 
464 #ifdef CONFIG_INET
465 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
466 {
467 	if (!memcg || mem_cgroup_is_root(memcg))
468 		return NULL;
469 
470 	return &memcg->tcp_mem.cg_proto;
471 }
472 EXPORT_SYMBOL(tcp_proto_cgroup);
473 #endif /* CONFIG_INET */
474 #endif /* CONFIG_MEMCG_KMEM */
475 
476 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
477 static void disarm_sock_keys(struct mem_cgroup *memcg)
478 {
479 	if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
480 		return;
481 	static_key_slow_dec(&memcg_socket_limit_enabled);
482 }
483 #else
484 static void disarm_sock_keys(struct mem_cgroup *memcg)
485 {
486 }
487 #endif
488 
489 static void drain_all_stock_async(struct mem_cgroup *memcg);
490 
491 static struct mem_cgroup_per_zone *
492 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
493 {
494 	return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
495 }
496 
497 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
498 {
499 	return &memcg->css;
500 }
501 
502 static struct mem_cgroup_per_zone *
503 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
504 {
505 	int nid = page_to_nid(page);
506 	int zid = page_zonenum(page);
507 
508 	return mem_cgroup_zoneinfo(memcg, nid, zid);
509 }
510 
511 static struct mem_cgroup_tree_per_zone *
512 soft_limit_tree_node_zone(int nid, int zid)
513 {
514 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
515 }
516 
517 static struct mem_cgroup_tree_per_zone *
518 soft_limit_tree_from_page(struct page *page)
519 {
520 	int nid = page_to_nid(page);
521 	int zid = page_zonenum(page);
522 
523 	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
524 }
525 
526 static void
527 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
528 				struct mem_cgroup_per_zone *mz,
529 				struct mem_cgroup_tree_per_zone *mctz,
530 				unsigned long long new_usage_in_excess)
531 {
532 	struct rb_node **p = &mctz->rb_root.rb_node;
533 	struct rb_node *parent = NULL;
534 	struct mem_cgroup_per_zone *mz_node;
535 
536 	if (mz->on_tree)
537 		return;
538 
539 	mz->usage_in_excess = new_usage_in_excess;
540 	if (!mz->usage_in_excess)
541 		return;
542 	while (*p) {
543 		parent = *p;
544 		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
545 					tree_node);
546 		if (mz->usage_in_excess < mz_node->usage_in_excess)
547 			p = &(*p)->rb_left;
548 		/*
549 		 * We can't avoid mem cgroups that are over their soft
550 		 * limit by the same amount
551 		 */
552 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
553 			p = &(*p)->rb_right;
554 	}
555 	rb_link_node(&mz->tree_node, parent, p);
556 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
557 	mz->on_tree = true;
558 }
559 
560 static void
561 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
562 				struct mem_cgroup_per_zone *mz,
563 				struct mem_cgroup_tree_per_zone *mctz)
564 {
565 	if (!mz->on_tree)
566 		return;
567 	rb_erase(&mz->tree_node, &mctz->rb_root);
568 	mz->on_tree = false;
569 }
570 
571 static void
572 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
573 				struct mem_cgroup_per_zone *mz,
574 				struct mem_cgroup_tree_per_zone *mctz)
575 {
576 	spin_lock(&mctz->lock);
577 	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
578 	spin_unlock(&mctz->lock);
579 }
580 
581 
582 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
583 {
584 	unsigned long long excess;
585 	struct mem_cgroup_per_zone *mz;
586 	struct mem_cgroup_tree_per_zone *mctz;
587 	int nid = page_to_nid(page);
588 	int zid = page_zonenum(page);
589 	mctz = soft_limit_tree_from_page(page);
590 
591 	/*
592 	 * Necessary to update all ancestors when hierarchy is used.
593 	 * because their event counter is not touched.
594 	 */
595 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
596 		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
597 		excess = res_counter_soft_limit_excess(&memcg->res);
598 		/*
599 		 * We have to update the tree if mz is on RB-tree or
600 		 * mem is over its softlimit.
601 		 */
602 		if (excess || mz->on_tree) {
603 			spin_lock(&mctz->lock);
604 			/* if on-tree, remove it */
605 			if (mz->on_tree)
606 				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
607 			/*
608 			 * Insert again. mz->usage_in_excess will be updated.
609 			 * If excess is 0, no tree ops.
610 			 */
611 			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
612 			spin_unlock(&mctz->lock);
613 		}
614 	}
615 }
616 
617 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
618 {
619 	int node, zone;
620 	struct mem_cgroup_per_zone *mz;
621 	struct mem_cgroup_tree_per_zone *mctz;
622 
623 	for_each_node(node) {
624 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
625 			mz = mem_cgroup_zoneinfo(memcg, node, zone);
626 			mctz = soft_limit_tree_node_zone(node, zone);
627 			mem_cgroup_remove_exceeded(memcg, mz, mctz);
628 		}
629 	}
630 }
631 
632 static struct mem_cgroup_per_zone *
633 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
634 {
635 	struct rb_node *rightmost = NULL;
636 	struct mem_cgroup_per_zone *mz;
637 
638 retry:
639 	mz = NULL;
640 	rightmost = rb_last(&mctz->rb_root);
641 	if (!rightmost)
642 		goto done;		/* Nothing to reclaim from */
643 
644 	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
645 	/*
646 	 * Remove the node now but someone else can add it back,
647 	 * we will to add it back at the end of reclaim to its correct
648 	 * position in the tree.
649 	 */
650 	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
651 	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
652 		!css_tryget(&mz->memcg->css))
653 		goto retry;
654 done:
655 	return mz;
656 }
657 
658 static struct mem_cgroup_per_zone *
659 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
660 {
661 	struct mem_cgroup_per_zone *mz;
662 
663 	spin_lock(&mctz->lock);
664 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
665 	spin_unlock(&mctz->lock);
666 	return mz;
667 }
668 
669 /*
670  * Implementation Note: reading percpu statistics for memcg.
671  *
672  * Both of vmstat[] and percpu_counter has threshold and do periodic
673  * synchronization to implement "quick" read. There are trade-off between
674  * reading cost and precision of value. Then, we may have a chance to implement
675  * a periodic synchronizion of counter in memcg's counter.
676  *
677  * But this _read() function is used for user interface now. The user accounts
678  * memory usage by memory cgroup and he _always_ requires exact value because
679  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
680  * have to visit all online cpus and make sum. So, for now, unnecessary
681  * synchronization is not implemented. (just implemented for cpu hotplug)
682  *
683  * If there are kernel internal actions which can make use of some not-exact
684  * value, and reading all cpu value can be performance bottleneck in some
685  * common workload, threashold and synchonization as vmstat[] should be
686  * implemented.
687  */
688 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
689 				 enum mem_cgroup_stat_index idx)
690 {
691 	long val = 0;
692 	int cpu;
693 
694 	get_online_cpus();
695 	for_each_online_cpu(cpu)
696 		val += per_cpu(memcg->stat->count[idx], cpu);
697 #ifdef CONFIG_HOTPLUG_CPU
698 	spin_lock(&memcg->pcp_counter_lock);
699 	val += memcg->nocpu_base.count[idx];
700 	spin_unlock(&memcg->pcp_counter_lock);
701 #endif
702 	put_online_cpus();
703 	return val;
704 }
705 
706 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
707 					 bool charge)
708 {
709 	int val = (charge) ? 1 : -1;
710 	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
711 }
712 
713 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
714 					    enum mem_cgroup_events_index idx)
715 {
716 	unsigned long val = 0;
717 	int cpu;
718 
719 	for_each_online_cpu(cpu)
720 		val += per_cpu(memcg->stat->events[idx], cpu);
721 #ifdef CONFIG_HOTPLUG_CPU
722 	spin_lock(&memcg->pcp_counter_lock);
723 	val += memcg->nocpu_base.events[idx];
724 	spin_unlock(&memcg->pcp_counter_lock);
725 #endif
726 	return val;
727 }
728 
729 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
730 					 bool anon, int nr_pages)
731 {
732 	preempt_disable();
733 
734 	/*
735 	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
736 	 * counted as CACHE even if it's on ANON LRU.
737 	 */
738 	if (anon)
739 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
740 				nr_pages);
741 	else
742 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
743 				nr_pages);
744 
745 	/* pagein of a big page is an event. So, ignore page size */
746 	if (nr_pages > 0)
747 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
748 	else {
749 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
750 		nr_pages = -nr_pages; /* for event */
751 	}
752 
753 	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
754 
755 	preempt_enable();
756 }
757 
758 unsigned long
759 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
760 {
761 	struct mem_cgroup_per_zone *mz;
762 
763 	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
764 	return mz->lru_size[lru];
765 }
766 
767 static unsigned long
768 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
769 			unsigned int lru_mask)
770 {
771 	struct mem_cgroup_per_zone *mz;
772 	enum lru_list lru;
773 	unsigned long ret = 0;
774 
775 	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
776 
777 	for_each_lru(lru) {
778 		if (BIT(lru) & lru_mask)
779 			ret += mz->lru_size[lru];
780 	}
781 	return ret;
782 }
783 
784 static unsigned long
785 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
786 			int nid, unsigned int lru_mask)
787 {
788 	u64 total = 0;
789 	int zid;
790 
791 	for (zid = 0; zid < MAX_NR_ZONES; zid++)
792 		total += mem_cgroup_zone_nr_lru_pages(memcg,
793 						nid, zid, lru_mask);
794 
795 	return total;
796 }
797 
798 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
799 			unsigned int lru_mask)
800 {
801 	int nid;
802 	u64 total = 0;
803 
804 	for_each_node_state(nid, N_HIGH_MEMORY)
805 		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
806 	return total;
807 }
808 
809 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
810 				       enum mem_cgroup_events_target target)
811 {
812 	unsigned long val, next;
813 
814 	val = __this_cpu_read(memcg->stat->nr_page_events);
815 	next = __this_cpu_read(memcg->stat->targets[target]);
816 	/* from time_after() in jiffies.h */
817 	if ((long)next - (long)val < 0) {
818 		switch (target) {
819 		case MEM_CGROUP_TARGET_THRESH:
820 			next = val + THRESHOLDS_EVENTS_TARGET;
821 			break;
822 		case MEM_CGROUP_TARGET_SOFTLIMIT:
823 			next = val + SOFTLIMIT_EVENTS_TARGET;
824 			break;
825 		case MEM_CGROUP_TARGET_NUMAINFO:
826 			next = val + NUMAINFO_EVENTS_TARGET;
827 			break;
828 		default:
829 			break;
830 		}
831 		__this_cpu_write(memcg->stat->targets[target], next);
832 		return true;
833 	}
834 	return false;
835 }
836 
837 /*
838  * Check events in order.
839  *
840  */
841 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
842 {
843 	preempt_disable();
844 	/* threshold event is triggered in finer grain than soft limit */
845 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
846 						MEM_CGROUP_TARGET_THRESH))) {
847 		bool do_softlimit;
848 		bool do_numainfo __maybe_unused;
849 
850 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
851 						MEM_CGROUP_TARGET_SOFTLIMIT);
852 #if MAX_NUMNODES > 1
853 		do_numainfo = mem_cgroup_event_ratelimit(memcg,
854 						MEM_CGROUP_TARGET_NUMAINFO);
855 #endif
856 		preempt_enable();
857 
858 		mem_cgroup_threshold(memcg);
859 		if (unlikely(do_softlimit))
860 			mem_cgroup_update_tree(memcg, page);
861 #if MAX_NUMNODES > 1
862 		if (unlikely(do_numainfo))
863 			atomic_inc(&memcg->numainfo_events);
864 #endif
865 	} else
866 		preempt_enable();
867 }
868 
869 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
870 {
871 	return mem_cgroup_from_css(
872 		cgroup_subsys_state(cont, mem_cgroup_subsys_id));
873 }
874 
875 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
876 {
877 	/*
878 	 * mm_update_next_owner() may clear mm->owner to NULL
879 	 * if it races with swapoff, page migration, etc.
880 	 * So this can be called with p == NULL.
881 	 */
882 	if (unlikely(!p))
883 		return NULL;
884 
885 	return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id));
886 }
887 
888 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
889 {
890 	struct mem_cgroup *memcg = NULL;
891 
892 	if (!mm)
893 		return NULL;
894 	/*
895 	 * Because we have no locks, mm->owner's may be being moved to other
896 	 * cgroup. We use css_tryget() here even if this looks
897 	 * pessimistic (rather than adding locks here).
898 	 */
899 	rcu_read_lock();
900 	do {
901 		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
902 		if (unlikely(!memcg))
903 			break;
904 	} while (!css_tryget(&memcg->css));
905 	rcu_read_unlock();
906 	return memcg;
907 }
908 
909 /**
910  * mem_cgroup_iter - iterate over memory cgroup hierarchy
911  * @root: hierarchy root
912  * @prev: previously returned memcg, NULL on first invocation
913  * @reclaim: cookie for shared reclaim walks, NULL for full walks
914  *
915  * Returns references to children of the hierarchy below @root, or
916  * @root itself, or %NULL after a full round-trip.
917  *
918  * Caller must pass the return value in @prev on subsequent
919  * invocations for reference counting, or use mem_cgroup_iter_break()
920  * to cancel a hierarchy walk before the round-trip is complete.
921  *
922  * Reclaimers can specify a zone and a priority level in @reclaim to
923  * divide up the memcgs in the hierarchy among all concurrent
924  * reclaimers operating on the same zone and priority.
925  */
926 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
927 				   struct mem_cgroup *prev,
928 				   struct mem_cgroup_reclaim_cookie *reclaim)
929 {
930 	struct mem_cgroup *memcg = NULL;
931 	int id = 0;
932 
933 	if (mem_cgroup_disabled())
934 		return NULL;
935 
936 	if (!root)
937 		root = root_mem_cgroup;
938 
939 	if (prev && !reclaim)
940 		id = css_id(&prev->css);
941 
942 	if (prev && prev != root)
943 		css_put(&prev->css);
944 
945 	if (!root->use_hierarchy && root != root_mem_cgroup) {
946 		if (prev)
947 			return NULL;
948 		return root;
949 	}
950 
951 	while (!memcg) {
952 		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
953 		struct cgroup_subsys_state *css;
954 
955 		if (reclaim) {
956 			int nid = zone_to_nid(reclaim->zone);
957 			int zid = zone_idx(reclaim->zone);
958 			struct mem_cgroup_per_zone *mz;
959 
960 			mz = mem_cgroup_zoneinfo(root, nid, zid);
961 			iter = &mz->reclaim_iter[reclaim->priority];
962 			if (prev && reclaim->generation != iter->generation)
963 				return NULL;
964 			id = iter->position;
965 		}
966 
967 		rcu_read_lock();
968 		css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
969 		if (css) {
970 			if (css == &root->css || css_tryget(css))
971 				memcg = mem_cgroup_from_css(css);
972 		} else
973 			id = 0;
974 		rcu_read_unlock();
975 
976 		if (reclaim) {
977 			iter->position = id;
978 			if (!css)
979 				iter->generation++;
980 			else if (!prev && memcg)
981 				reclaim->generation = iter->generation;
982 		}
983 
984 		if (prev && !css)
985 			return NULL;
986 	}
987 	return memcg;
988 }
989 
990 /**
991  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
992  * @root: hierarchy root
993  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
994  */
995 void mem_cgroup_iter_break(struct mem_cgroup *root,
996 			   struct mem_cgroup *prev)
997 {
998 	if (!root)
999 		root = root_mem_cgroup;
1000 	if (prev && prev != root)
1001 		css_put(&prev->css);
1002 }
1003 
1004 /*
1005  * Iteration constructs for visiting all cgroups (under a tree).  If
1006  * loops are exited prematurely (break), mem_cgroup_iter_break() must
1007  * be used for reference counting.
1008  */
1009 #define for_each_mem_cgroup_tree(iter, root)		\
1010 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1011 	     iter != NULL;				\
1012 	     iter = mem_cgroup_iter(root, iter, NULL))
1013 
1014 #define for_each_mem_cgroup(iter)			\
1015 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1016 	     iter != NULL;				\
1017 	     iter = mem_cgroup_iter(NULL, iter, NULL))
1018 
1019 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
1020 {
1021 	return (memcg == root_mem_cgroup);
1022 }
1023 
1024 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1025 {
1026 	struct mem_cgroup *memcg;
1027 
1028 	if (!mm)
1029 		return;
1030 
1031 	rcu_read_lock();
1032 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1033 	if (unlikely(!memcg))
1034 		goto out;
1035 
1036 	switch (idx) {
1037 	case PGFAULT:
1038 		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1039 		break;
1040 	case PGMAJFAULT:
1041 		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1042 		break;
1043 	default:
1044 		BUG();
1045 	}
1046 out:
1047 	rcu_read_unlock();
1048 }
1049 EXPORT_SYMBOL(mem_cgroup_count_vm_event);
1050 
1051 /**
1052  * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1053  * @zone: zone of the wanted lruvec
1054  * @memcg: memcg of the wanted lruvec
1055  *
1056  * Returns the lru list vector holding pages for the given @zone and
1057  * @mem.  This can be the global zone lruvec, if the memory controller
1058  * is disabled.
1059  */
1060 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1061 				      struct mem_cgroup *memcg)
1062 {
1063 	struct mem_cgroup_per_zone *mz;
1064 
1065 	if (mem_cgroup_disabled())
1066 		return &zone->lruvec;
1067 
1068 	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1069 	return &mz->lruvec;
1070 }
1071 
1072 /*
1073  * Following LRU functions are allowed to be used without PCG_LOCK.
1074  * Operations are called by routine of global LRU independently from memcg.
1075  * What we have to take care of here is validness of pc->mem_cgroup.
1076  *
1077  * Changes to pc->mem_cgroup happens when
1078  * 1. charge
1079  * 2. moving account
1080  * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1081  * It is added to LRU before charge.
1082  * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1083  * When moving account, the page is not on LRU. It's isolated.
1084  */
1085 
1086 /**
1087  * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1088  * @page: the page
1089  * @zone: zone of the page
1090  */
1091 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1092 {
1093 	struct mem_cgroup_per_zone *mz;
1094 	struct mem_cgroup *memcg;
1095 	struct page_cgroup *pc;
1096 
1097 	if (mem_cgroup_disabled())
1098 		return &zone->lruvec;
1099 
1100 	pc = lookup_page_cgroup(page);
1101 	memcg = pc->mem_cgroup;
1102 
1103 	/*
1104 	 * Surreptitiously switch any uncharged offlist page to root:
1105 	 * an uncharged page off lru does nothing to secure
1106 	 * its former mem_cgroup from sudden removal.
1107 	 *
1108 	 * Our caller holds lru_lock, and PageCgroupUsed is updated
1109 	 * under page_cgroup lock: between them, they make all uses
1110 	 * of pc->mem_cgroup safe.
1111 	 */
1112 	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1113 		pc->mem_cgroup = memcg = root_mem_cgroup;
1114 
1115 	mz = page_cgroup_zoneinfo(memcg, page);
1116 	return &mz->lruvec;
1117 }
1118 
1119 /**
1120  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1121  * @lruvec: mem_cgroup per zone lru vector
1122  * @lru: index of lru list the page is sitting on
1123  * @nr_pages: positive when adding or negative when removing
1124  *
1125  * This function must be called when a page is added to or removed from an
1126  * lru list.
1127  */
1128 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1129 				int nr_pages)
1130 {
1131 	struct mem_cgroup_per_zone *mz;
1132 	unsigned long *lru_size;
1133 
1134 	if (mem_cgroup_disabled())
1135 		return;
1136 
1137 	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1138 	lru_size = mz->lru_size + lru;
1139 	*lru_size += nr_pages;
1140 	VM_BUG_ON((long)(*lru_size) < 0);
1141 }
1142 
1143 /*
1144  * Checks whether given mem is same or in the root_mem_cgroup's
1145  * hierarchy subtree
1146  */
1147 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1148 				  struct mem_cgroup *memcg)
1149 {
1150 	if (root_memcg == memcg)
1151 		return true;
1152 	if (!root_memcg->use_hierarchy || !memcg)
1153 		return false;
1154 	return css_is_ancestor(&memcg->css, &root_memcg->css);
1155 }
1156 
1157 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1158 				       struct mem_cgroup *memcg)
1159 {
1160 	bool ret;
1161 
1162 	rcu_read_lock();
1163 	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1164 	rcu_read_unlock();
1165 	return ret;
1166 }
1167 
1168 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1169 {
1170 	int ret;
1171 	struct mem_cgroup *curr = NULL;
1172 	struct task_struct *p;
1173 
1174 	p = find_lock_task_mm(task);
1175 	if (p) {
1176 		curr = try_get_mem_cgroup_from_mm(p->mm);
1177 		task_unlock(p);
1178 	} else {
1179 		/*
1180 		 * All threads may have already detached their mm's, but the oom
1181 		 * killer still needs to detect if they have already been oom
1182 		 * killed to prevent needlessly killing additional tasks.
1183 		 */
1184 		task_lock(task);
1185 		curr = mem_cgroup_from_task(task);
1186 		if (curr)
1187 			css_get(&curr->css);
1188 		task_unlock(task);
1189 	}
1190 	if (!curr)
1191 		return 0;
1192 	/*
1193 	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1194 	 * use_hierarchy of "curr" here make this function true if hierarchy is
1195 	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1196 	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1197 	 */
1198 	ret = mem_cgroup_same_or_subtree(memcg, curr);
1199 	css_put(&curr->css);
1200 	return ret;
1201 }
1202 
1203 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1204 {
1205 	unsigned long inactive_ratio;
1206 	unsigned long inactive;
1207 	unsigned long active;
1208 	unsigned long gb;
1209 
1210 	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1211 	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1212 
1213 	gb = (inactive + active) >> (30 - PAGE_SHIFT);
1214 	if (gb)
1215 		inactive_ratio = int_sqrt(10 * gb);
1216 	else
1217 		inactive_ratio = 1;
1218 
1219 	return inactive * inactive_ratio < active;
1220 }
1221 
1222 int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec)
1223 {
1224 	unsigned long active;
1225 	unsigned long inactive;
1226 
1227 	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_FILE);
1228 	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_FILE);
1229 
1230 	return (active > inactive);
1231 }
1232 
1233 #define mem_cgroup_from_res_counter(counter, member)	\
1234 	container_of(counter, struct mem_cgroup, member)
1235 
1236 /**
1237  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1238  * @memcg: the memory cgroup
1239  *
1240  * Returns the maximum amount of memory @mem can be charged with, in
1241  * pages.
1242  */
1243 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1244 {
1245 	unsigned long long margin;
1246 
1247 	margin = res_counter_margin(&memcg->res);
1248 	if (do_swap_account)
1249 		margin = min(margin, res_counter_margin(&memcg->memsw));
1250 	return margin >> PAGE_SHIFT;
1251 }
1252 
1253 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1254 {
1255 	struct cgroup *cgrp = memcg->css.cgroup;
1256 
1257 	/* root ? */
1258 	if (cgrp->parent == NULL)
1259 		return vm_swappiness;
1260 
1261 	return memcg->swappiness;
1262 }
1263 
1264 /*
1265  * memcg->moving_account is used for checking possibility that some thread is
1266  * calling move_account(). When a thread on CPU-A starts moving pages under
1267  * a memcg, other threads should check memcg->moving_account under
1268  * rcu_read_lock(), like this:
1269  *
1270  *         CPU-A                                    CPU-B
1271  *                                              rcu_read_lock()
1272  *         memcg->moving_account+1              if (memcg->mocing_account)
1273  *                                                   take heavy locks.
1274  *         synchronize_rcu()                    update something.
1275  *                                              rcu_read_unlock()
1276  *         start move here.
1277  */
1278 
1279 /* for quick checking without looking up memcg */
1280 atomic_t memcg_moving __read_mostly;
1281 
1282 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1283 {
1284 	atomic_inc(&memcg_moving);
1285 	atomic_inc(&memcg->moving_account);
1286 	synchronize_rcu();
1287 }
1288 
1289 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1290 {
1291 	/*
1292 	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1293 	 * We check NULL in callee rather than caller.
1294 	 */
1295 	if (memcg) {
1296 		atomic_dec(&memcg_moving);
1297 		atomic_dec(&memcg->moving_account);
1298 	}
1299 }
1300 
1301 /*
1302  * 2 routines for checking "mem" is under move_account() or not.
1303  *
1304  * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
1305  *			  is used for avoiding races in accounting.  If true,
1306  *			  pc->mem_cgroup may be overwritten.
1307  *
1308  * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1309  *			  under hierarchy of moving cgroups. This is for
1310  *			  waiting at hith-memory prressure caused by "move".
1311  */
1312 
1313 static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1314 {
1315 	VM_BUG_ON(!rcu_read_lock_held());
1316 	return atomic_read(&memcg->moving_account) > 0;
1317 }
1318 
1319 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1320 {
1321 	struct mem_cgroup *from;
1322 	struct mem_cgroup *to;
1323 	bool ret = false;
1324 	/*
1325 	 * Unlike task_move routines, we access mc.to, mc.from not under
1326 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1327 	 */
1328 	spin_lock(&mc.lock);
1329 	from = mc.from;
1330 	to = mc.to;
1331 	if (!from)
1332 		goto unlock;
1333 
1334 	ret = mem_cgroup_same_or_subtree(memcg, from)
1335 		|| mem_cgroup_same_or_subtree(memcg, to);
1336 unlock:
1337 	spin_unlock(&mc.lock);
1338 	return ret;
1339 }
1340 
1341 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1342 {
1343 	if (mc.moving_task && current != mc.moving_task) {
1344 		if (mem_cgroup_under_move(memcg)) {
1345 			DEFINE_WAIT(wait);
1346 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1347 			/* moving charge context might have finished. */
1348 			if (mc.moving_task)
1349 				schedule();
1350 			finish_wait(&mc.waitq, &wait);
1351 			return true;
1352 		}
1353 	}
1354 	return false;
1355 }
1356 
1357 /*
1358  * Take this lock when
1359  * - a code tries to modify page's memcg while it's USED.
1360  * - a code tries to modify page state accounting in a memcg.
1361  * see mem_cgroup_stolen(), too.
1362  */
1363 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1364 				  unsigned long *flags)
1365 {
1366 	spin_lock_irqsave(&memcg->move_lock, *flags);
1367 }
1368 
1369 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1370 				unsigned long *flags)
1371 {
1372 	spin_unlock_irqrestore(&memcg->move_lock, *flags);
1373 }
1374 
1375 /**
1376  * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1377  * @memcg: The memory cgroup that went over limit
1378  * @p: Task that is going to be killed
1379  *
1380  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1381  * enabled
1382  */
1383 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1384 {
1385 	struct cgroup *task_cgrp;
1386 	struct cgroup *mem_cgrp;
1387 	/*
1388 	 * Need a buffer in BSS, can't rely on allocations. The code relies
1389 	 * on the assumption that OOM is serialized for memory controller.
1390 	 * If this assumption is broken, revisit this code.
1391 	 */
1392 	static char memcg_name[PATH_MAX];
1393 	int ret;
1394 
1395 	if (!memcg || !p)
1396 		return;
1397 
1398 	rcu_read_lock();
1399 
1400 	mem_cgrp = memcg->css.cgroup;
1401 	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1402 
1403 	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1404 	if (ret < 0) {
1405 		/*
1406 		 * Unfortunately, we are unable to convert to a useful name
1407 		 * But we'll still print out the usage information
1408 		 */
1409 		rcu_read_unlock();
1410 		goto done;
1411 	}
1412 	rcu_read_unlock();
1413 
1414 	printk(KERN_INFO "Task in %s killed", memcg_name);
1415 
1416 	rcu_read_lock();
1417 	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1418 	if (ret < 0) {
1419 		rcu_read_unlock();
1420 		goto done;
1421 	}
1422 	rcu_read_unlock();
1423 
1424 	/*
1425 	 * Continues from above, so we don't need an KERN_ level
1426 	 */
1427 	printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1428 done:
1429 
1430 	printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1431 		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1432 		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1433 		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1434 	printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1435 		"failcnt %llu\n",
1436 		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1437 		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1438 		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1439 }
1440 
1441 /*
1442  * This function returns the number of memcg under hierarchy tree. Returns
1443  * 1(self count) if no children.
1444  */
1445 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1446 {
1447 	int num = 0;
1448 	struct mem_cgroup *iter;
1449 
1450 	for_each_mem_cgroup_tree(iter, memcg)
1451 		num++;
1452 	return num;
1453 }
1454 
1455 /*
1456  * Return the memory (and swap, if configured) limit for a memcg.
1457  */
1458 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1459 {
1460 	u64 limit;
1461 	u64 memsw;
1462 
1463 	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1464 	limit += total_swap_pages << PAGE_SHIFT;
1465 
1466 	memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1467 	/*
1468 	 * If memsw is finite and limits the amount of swap space available
1469 	 * to this memcg, return that limit.
1470 	 */
1471 	return min(limit, memsw);
1472 }
1473 
1474 void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1475 			      int order)
1476 {
1477 	struct mem_cgroup *iter;
1478 	unsigned long chosen_points = 0;
1479 	unsigned long totalpages;
1480 	unsigned int points = 0;
1481 	struct task_struct *chosen = NULL;
1482 
1483 	/*
1484 	 * If current has a pending SIGKILL, then automatically select it.  The
1485 	 * goal is to allow it to allocate so that it may quickly exit and free
1486 	 * its memory.
1487 	 */
1488 	if (fatal_signal_pending(current)) {
1489 		set_thread_flag(TIF_MEMDIE);
1490 		return;
1491 	}
1492 
1493 	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1494 	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1495 	for_each_mem_cgroup_tree(iter, memcg) {
1496 		struct cgroup *cgroup = iter->css.cgroup;
1497 		struct cgroup_iter it;
1498 		struct task_struct *task;
1499 
1500 		cgroup_iter_start(cgroup, &it);
1501 		while ((task = cgroup_iter_next(cgroup, &it))) {
1502 			switch (oom_scan_process_thread(task, totalpages, NULL,
1503 							false)) {
1504 			case OOM_SCAN_SELECT:
1505 				if (chosen)
1506 					put_task_struct(chosen);
1507 				chosen = task;
1508 				chosen_points = ULONG_MAX;
1509 				get_task_struct(chosen);
1510 				/* fall through */
1511 			case OOM_SCAN_CONTINUE:
1512 				continue;
1513 			case OOM_SCAN_ABORT:
1514 				cgroup_iter_end(cgroup, &it);
1515 				mem_cgroup_iter_break(memcg, iter);
1516 				if (chosen)
1517 					put_task_struct(chosen);
1518 				return;
1519 			case OOM_SCAN_OK:
1520 				break;
1521 			};
1522 			points = oom_badness(task, memcg, NULL, totalpages);
1523 			if (points > chosen_points) {
1524 				if (chosen)
1525 					put_task_struct(chosen);
1526 				chosen = task;
1527 				chosen_points = points;
1528 				get_task_struct(chosen);
1529 			}
1530 		}
1531 		cgroup_iter_end(cgroup, &it);
1532 	}
1533 
1534 	if (!chosen)
1535 		return;
1536 	points = chosen_points * 1000 / totalpages;
1537 	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1538 			 NULL, "Memory cgroup out of memory");
1539 }
1540 
1541 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1542 					gfp_t gfp_mask,
1543 					unsigned long flags)
1544 {
1545 	unsigned long total = 0;
1546 	bool noswap = false;
1547 	int loop;
1548 
1549 	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1550 		noswap = true;
1551 	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1552 		noswap = true;
1553 
1554 	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1555 		if (loop)
1556 			drain_all_stock_async(memcg);
1557 		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1558 		/*
1559 		 * Allow limit shrinkers, which are triggered directly
1560 		 * by userspace, to catch signals and stop reclaim
1561 		 * after minimal progress, regardless of the margin.
1562 		 */
1563 		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1564 			break;
1565 		if (mem_cgroup_margin(memcg))
1566 			break;
1567 		/*
1568 		 * If nothing was reclaimed after two attempts, there
1569 		 * may be no reclaimable pages in this hierarchy.
1570 		 */
1571 		if (loop && !total)
1572 			break;
1573 	}
1574 	return total;
1575 }
1576 
1577 /**
1578  * test_mem_cgroup_node_reclaimable
1579  * @memcg: the target memcg
1580  * @nid: the node ID to be checked.
1581  * @noswap : specify true here if the user wants flle only information.
1582  *
1583  * This function returns whether the specified memcg contains any
1584  * reclaimable pages on a node. Returns true if there are any reclaimable
1585  * pages in the node.
1586  */
1587 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1588 		int nid, bool noswap)
1589 {
1590 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1591 		return true;
1592 	if (noswap || !total_swap_pages)
1593 		return false;
1594 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1595 		return true;
1596 	return false;
1597 
1598 }
1599 #if MAX_NUMNODES > 1
1600 
1601 /*
1602  * Always updating the nodemask is not very good - even if we have an empty
1603  * list or the wrong list here, we can start from some node and traverse all
1604  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1605  *
1606  */
1607 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1608 {
1609 	int nid;
1610 	/*
1611 	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1612 	 * pagein/pageout changes since the last update.
1613 	 */
1614 	if (!atomic_read(&memcg->numainfo_events))
1615 		return;
1616 	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1617 		return;
1618 
1619 	/* make a nodemask where this memcg uses memory from */
1620 	memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1621 
1622 	for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1623 
1624 		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1625 			node_clear(nid, memcg->scan_nodes);
1626 	}
1627 
1628 	atomic_set(&memcg->numainfo_events, 0);
1629 	atomic_set(&memcg->numainfo_updating, 0);
1630 }
1631 
1632 /*
1633  * Selecting a node where we start reclaim from. Because what we need is just
1634  * reducing usage counter, start from anywhere is O,K. Considering
1635  * memory reclaim from current node, there are pros. and cons.
1636  *
1637  * Freeing memory from current node means freeing memory from a node which
1638  * we'll use or we've used. So, it may make LRU bad. And if several threads
1639  * hit limits, it will see a contention on a node. But freeing from remote
1640  * node means more costs for memory reclaim because of memory latency.
1641  *
1642  * Now, we use round-robin. Better algorithm is welcomed.
1643  */
1644 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1645 {
1646 	int node;
1647 
1648 	mem_cgroup_may_update_nodemask(memcg);
1649 	node = memcg->last_scanned_node;
1650 
1651 	node = next_node(node, memcg->scan_nodes);
1652 	if (node == MAX_NUMNODES)
1653 		node = first_node(memcg->scan_nodes);
1654 	/*
1655 	 * We call this when we hit limit, not when pages are added to LRU.
1656 	 * No LRU may hold pages because all pages are UNEVICTABLE or
1657 	 * memcg is too small and all pages are not on LRU. In that case,
1658 	 * we use curret node.
1659 	 */
1660 	if (unlikely(node == MAX_NUMNODES))
1661 		node = numa_node_id();
1662 
1663 	memcg->last_scanned_node = node;
1664 	return node;
1665 }
1666 
1667 /*
1668  * Check all nodes whether it contains reclaimable pages or not.
1669  * For quick scan, we make use of scan_nodes. This will allow us to skip
1670  * unused nodes. But scan_nodes is lazily updated and may not cotain
1671  * enough new information. We need to do double check.
1672  */
1673 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1674 {
1675 	int nid;
1676 
1677 	/*
1678 	 * quick check...making use of scan_node.
1679 	 * We can skip unused nodes.
1680 	 */
1681 	if (!nodes_empty(memcg->scan_nodes)) {
1682 		for (nid = first_node(memcg->scan_nodes);
1683 		     nid < MAX_NUMNODES;
1684 		     nid = next_node(nid, memcg->scan_nodes)) {
1685 
1686 			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1687 				return true;
1688 		}
1689 	}
1690 	/*
1691 	 * Check rest of nodes.
1692 	 */
1693 	for_each_node_state(nid, N_HIGH_MEMORY) {
1694 		if (node_isset(nid, memcg->scan_nodes))
1695 			continue;
1696 		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1697 			return true;
1698 	}
1699 	return false;
1700 }
1701 
1702 #else
1703 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1704 {
1705 	return 0;
1706 }
1707 
1708 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1709 {
1710 	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1711 }
1712 #endif
1713 
1714 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1715 				   struct zone *zone,
1716 				   gfp_t gfp_mask,
1717 				   unsigned long *total_scanned)
1718 {
1719 	struct mem_cgroup *victim = NULL;
1720 	int total = 0;
1721 	int loop = 0;
1722 	unsigned long excess;
1723 	unsigned long nr_scanned;
1724 	struct mem_cgroup_reclaim_cookie reclaim = {
1725 		.zone = zone,
1726 		.priority = 0,
1727 	};
1728 
1729 	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
1730 
1731 	while (1) {
1732 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1733 		if (!victim) {
1734 			loop++;
1735 			if (loop >= 2) {
1736 				/*
1737 				 * If we have not been able to reclaim
1738 				 * anything, it might because there are
1739 				 * no reclaimable pages under this hierarchy
1740 				 */
1741 				if (!total)
1742 					break;
1743 				/*
1744 				 * We want to do more targeted reclaim.
1745 				 * excess >> 2 is not to excessive so as to
1746 				 * reclaim too much, nor too less that we keep
1747 				 * coming back to reclaim from this cgroup
1748 				 */
1749 				if (total >= (excess >> 2) ||
1750 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1751 					break;
1752 			}
1753 			continue;
1754 		}
1755 		if (!mem_cgroup_reclaimable(victim, false))
1756 			continue;
1757 		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1758 						     zone, &nr_scanned);
1759 		*total_scanned += nr_scanned;
1760 		if (!res_counter_soft_limit_excess(&root_memcg->res))
1761 			break;
1762 	}
1763 	mem_cgroup_iter_break(root_memcg, victim);
1764 	return total;
1765 }
1766 
1767 /*
1768  * Check OOM-Killer is already running under our hierarchy.
1769  * If someone is running, return false.
1770  * Has to be called with memcg_oom_lock
1771  */
1772 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
1773 {
1774 	struct mem_cgroup *iter, *failed = NULL;
1775 
1776 	for_each_mem_cgroup_tree(iter, memcg) {
1777 		if (iter->oom_lock) {
1778 			/*
1779 			 * this subtree of our hierarchy is already locked
1780 			 * so we cannot give a lock.
1781 			 */
1782 			failed = iter;
1783 			mem_cgroup_iter_break(memcg, iter);
1784 			break;
1785 		} else
1786 			iter->oom_lock = true;
1787 	}
1788 
1789 	if (!failed)
1790 		return true;
1791 
1792 	/*
1793 	 * OK, we failed to lock the whole subtree so we have to clean up
1794 	 * what we set up to the failing subtree
1795 	 */
1796 	for_each_mem_cgroup_tree(iter, memcg) {
1797 		if (iter == failed) {
1798 			mem_cgroup_iter_break(memcg, iter);
1799 			break;
1800 		}
1801 		iter->oom_lock = false;
1802 	}
1803 	return false;
1804 }
1805 
1806 /*
1807  * Has to be called with memcg_oom_lock
1808  */
1809 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1810 {
1811 	struct mem_cgroup *iter;
1812 
1813 	for_each_mem_cgroup_tree(iter, memcg)
1814 		iter->oom_lock = false;
1815 	return 0;
1816 }
1817 
1818 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1819 {
1820 	struct mem_cgroup *iter;
1821 
1822 	for_each_mem_cgroup_tree(iter, memcg)
1823 		atomic_inc(&iter->under_oom);
1824 }
1825 
1826 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1827 {
1828 	struct mem_cgroup *iter;
1829 
1830 	/*
1831 	 * When a new child is created while the hierarchy is under oom,
1832 	 * mem_cgroup_oom_lock() may not be called. We have to use
1833 	 * atomic_add_unless() here.
1834 	 */
1835 	for_each_mem_cgroup_tree(iter, memcg)
1836 		atomic_add_unless(&iter->under_oom, -1, 0);
1837 }
1838 
1839 static DEFINE_SPINLOCK(memcg_oom_lock);
1840 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1841 
1842 struct oom_wait_info {
1843 	struct mem_cgroup *memcg;
1844 	wait_queue_t	wait;
1845 };
1846 
1847 static int memcg_oom_wake_function(wait_queue_t *wait,
1848 	unsigned mode, int sync, void *arg)
1849 {
1850 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1851 	struct mem_cgroup *oom_wait_memcg;
1852 	struct oom_wait_info *oom_wait_info;
1853 
1854 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1855 	oom_wait_memcg = oom_wait_info->memcg;
1856 
1857 	/*
1858 	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
1859 	 * Then we can use css_is_ancestor without taking care of RCU.
1860 	 */
1861 	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1862 		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
1863 		return 0;
1864 	return autoremove_wake_function(wait, mode, sync, arg);
1865 }
1866 
1867 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
1868 {
1869 	/* for filtering, pass "memcg" as argument. */
1870 	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1871 }
1872 
1873 static void memcg_oom_recover(struct mem_cgroup *memcg)
1874 {
1875 	if (memcg && atomic_read(&memcg->under_oom))
1876 		memcg_wakeup_oom(memcg);
1877 }
1878 
1879 /*
1880  * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1881  */
1882 static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
1883 				  int order)
1884 {
1885 	struct oom_wait_info owait;
1886 	bool locked, need_to_kill;
1887 
1888 	owait.memcg = memcg;
1889 	owait.wait.flags = 0;
1890 	owait.wait.func = memcg_oom_wake_function;
1891 	owait.wait.private = current;
1892 	INIT_LIST_HEAD(&owait.wait.task_list);
1893 	need_to_kill = true;
1894 	mem_cgroup_mark_under_oom(memcg);
1895 
1896 	/* At first, try to OOM lock hierarchy under memcg.*/
1897 	spin_lock(&memcg_oom_lock);
1898 	locked = mem_cgroup_oom_lock(memcg);
1899 	/*
1900 	 * Even if signal_pending(), we can't quit charge() loop without
1901 	 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1902 	 * under OOM is always welcomed, use TASK_KILLABLE here.
1903 	 */
1904 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1905 	if (!locked || memcg->oom_kill_disable)
1906 		need_to_kill = false;
1907 	if (locked)
1908 		mem_cgroup_oom_notify(memcg);
1909 	spin_unlock(&memcg_oom_lock);
1910 
1911 	if (need_to_kill) {
1912 		finish_wait(&memcg_oom_waitq, &owait.wait);
1913 		mem_cgroup_out_of_memory(memcg, mask, order);
1914 	} else {
1915 		schedule();
1916 		finish_wait(&memcg_oom_waitq, &owait.wait);
1917 	}
1918 	spin_lock(&memcg_oom_lock);
1919 	if (locked)
1920 		mem_cgroup_oom_unlock(memcg);
1921 	memcg_wakeup_oom(memcg);
1922 	spin_unlock(&memcg_oom_lock);
1923 
1924 	mem_cgroup_unmark_under_oom(memcg);
1925 
1926 	if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1927 		return false;
1928 	/* Give chance to dying process */
1929 	schedule_timeout_uninterruptible(1);
1930 	return true;
1931 }
1932 
1933 /*
1934  * Currently used to update mapped file statistics, but the routine can be
1935  * generalized to update other statistics as well.
1936  *
1937  * Notes: Race condition
1938  *
1939  * We usually use page_cgroup_lock() for accessing page_cgroup member but
1940  * it tends to be costly. But considering some conditions, we doesn't need
1941  * to do so _always_.
1942  *
1943  * Considering "charge", lock_page_cgroup() is not required because all
1944  * file-stat operations happen after a page is attached to radix-tree. There
1945  * are no race with "charge".
1946  *
1947  * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1948  * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1949  * if there are race with "uncharge". Statistics itself is properly handled
1950  * by flags.
1951  *
1952  * Considering "move", this is an only case we see a race. To make the race
1953  * small, we check mm->moving_account and detect there are possibility of race
1954  * If there is, we take a lock.
1955  */
1956 
1957 void __mem_cgroup_begin_update_page_stat(struct page *page,
1958 				bool *locked, unsigned long *flags)
1959 {
1960 	struct mem_cgroup *memcg;
1961 	struct page_cgroup *pc;
1962 
1963 	pc = lookup_page_cgroup(page);
1964 again:
1965 	memcg = pc->mem_cgroup;
1966 	if (unlikely(!memcg || !PageCgroupUsed(pc)))
1967 		return;
1968 	/*
1969 	 * If this memory cgroup is not under account moving, we don't
1970 	 * need to take move_lock_mem_cgroup(). Because we already hold
1971 	 * rcu_read_lock(), any calls to move_account will be delayed until
1972 	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
1973 	 */
1974 	if (!mem_cgroup_stolen(memcg))
1975 		return;
1976 
1977 	move_lock_mem_cgroup(memcg, flags);
1978 	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
1979 		move_unlock_mem_cgroup(memcg, flags);
1980 		goto again;
1981 	}
1982 	*locked = true;
1983 }
1984 
1985 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
1986 {
1987 	struct page_cgroup *pc = lookup_page_cgroup(page);
1988 
1989 	/*
1990 	 * It's guaranteed that pc->mem_cgroup never changes while
1991 	 * lock is held because a routine modifies pc->mem_cgroup
1992 	 * should take move_lock_mem_cgroup().
1993 	 */
1994 	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
1995 }
1996 
1997 void mem_cgroup_update_page_stat(struct page *page,
1998 				 enum mem_cgroup_page_stat_item idx, int val)
1999 {
2000 	struct mem_cgroup *memcg;
2001 	struct page_cgroup *pc = lookup_page_cgroup(page);
2002 	unsigned long uninitialized_var(flags);
2003 
2004 	if (mem_cgroup_disabled())
2005 		return;
2006 
2007 	memcg = pc->mem_cgroup;
2008 	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2009 		return;
2010 
2011 	switch (idx) {
2012 	case MEMCG_NR_FILE_MAPPED:
2013 		idx = MEM_CGROUP_STAT_FILE_MAPPED;
2014 		break;
2015 	default:
2016 		BUG();
2017 	}
2018 
2019 	this_cpu_add(memcg->stat->count[idx], val);
2020 }
2021 
2022 /*
2023  * size of first charge trial. "32" comes from vmscan.c's magic value.
2024  * TODO: maybe necessary to use big numbers in big irons.
2025  */
2026 #define CHARGE_BATCH	32U
2027 struct memcg_stock_pcp {
2028 	struct mem_cgroup *cached; /* this never be root cgroup */
2029 	unsigned int nr_pages;
2030 	struct work_struct work;
2031 	unsigned long flags;
2032 #define FLUSHING_CACHED_CHARGE	0
2033 };
2034 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2035 static DEFINE_MUTEX(percpu_charge_mutex);
2036 
2037 /*
2038  * Try to consume stocked charge on this cpu. If success, one page is consumed
2039  * from local stock and true is returned. If the stock is 0 or charges from a
2040  * cgroup which is not current target, returns false. This stock will be
2041  * refilled.
2042  */
2043 static bool consume_stock(struct mem_cgroup *memcg)
2044 {
2045 	struct memcg_stock_pcp *stock;
2046 	bool ret = true;
2047 
2048 	stock = &get_cpu_var(memcg_stock);
2049 	if (memcg == stock->cached && stock->nr_pages)
2050 		stock->nr_pages--;
2051 	else /* need to call res_counter_charge */
2052 		ret = false;
2053 	put_cpu_var(memcg_stock);
2054 	return ret;
2055 }
2056 
2057 /*
2058  * Returns stocks cached in percpu to res_counter and reset cached information.
2059  */
2060 static void drain_stock(struct memcg_stock_pcp *stock)
2061 {
2062 	struct mem_cgroup *old = stock->cached;
2063 
2064 	if (stock->nr_pages) {
2065 		unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2066 
2067 		res_counter_uncharge(&old->res, bytes);
2068 		if (do_swap_account)
2069 			res_counter_uncharge(&old->memsw, bytes);
2070 		stock->nr_pages = 0;
2071 	}
2072 	stock->cached = NULL;
2073 }
2074 
2075 /*
2076  * This must be called under preempt disabled or must be called by
2077  * a thread which is pinned to local cpu.
2078  */
2079 static void drain_local_stock(struct work_struct *dummy)
2080 {
2081 	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2082 	drain_stock(stock);
2083 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2084 }
2085 
2086 /*
2087  * Cache charges(val) which is from res_counter, to local per_cpu area.
2088  * This will be consumed by consume_stock() function, later.
2089  */
2090 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2091 {
2092 	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2093 
2094 	if (stock->cached != memcg) { /* reset if necessary */
2095 		drain_stock(stock);
2096 		stock->cached = memcg;
2097 	}
2098 	stock->nr_pages += nr_pages;
2099 	put_cpu_var(memcg_stock);
2100 }
2101 
2102 /*
2103  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2104  * of the hierarchy under it. sync flag says whether we should block
2105  * until the work is done.
2106  */
2107 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2108 {
2109 	int cpu, curcpu;
2110 
2111 	/* Notify other cpus that system-wide "drain" is running */
2112 	get_online_cpus();
2113 	curcpu = get_cpu();
2114 	for_each_online_cpu(cpu) {
2115 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2116 		struct mem_cgroup *memcg;
2117 
2118 		memcg = stock->cached;
2119 		if (!memcg || !stock->nr_pages)
2120 			continue;
2121 		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2122 			continue;
2123 		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2124 			if (cpu == curcpu)
2125 				drain_local_stock(&stock->work);
2126 			else
2127 				schedule_work_on(cpu, &stock->work);
2128 		}
2129 	}
2130 	put_cpu();
2131 
2132 	if (!sync)
2133 		goto out;
2134 
2135 	for_each_online_cpu(cpu) {
2136 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2137 		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2138 			flush_work(&stock->work);
2139 	}
2140 out:
2141  	put_online_cpus();
2142 }
2143 
2144 /*
2145  * Tries to drain stocked charges in other cpus. This function is asynchronous
2146  * and just put a work per cpu for draining localy on each cpu. Caller can
2147  * expects some charges will be back to res_counter later but cannot wait for
2148  * it.
2149  */
2150 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2151 {
2152 	/*
2153 	 * If someone calls draining, avoid adding more kworker runs.
2154 	 */
2155 	if (!mutex_trylock(&percpu_charge_mutex))
2156 		return;
2157 	drain_all_stock(root_memcg, false);
2158 	mutex_unlock(&percpu_charge_mutex);
2159 }
2160 
2161 /* This is a synchronous drain interface. */
2162 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2163 {
2164 	/* called when force_empty is called */
2165 	mutex_lock(&percpu_charge_mutex);
2166 	drain_all_stock(root_memcg, true);
2167 	mutex_unlock(&percpu_charge_mutex);
2168 }
2169 
2170 /*
2171  * This function drains percpu counter value from DEAD cpu and
2172  * move it to local cpu. Note that this function can be preempted.
2173  */
2174 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2175 {
2176 	int i;
2177 
2178 	spin_lock(&memcg->pcp_counter_lock);
2179 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2180 		long x = per_cpu(memcg->stat->count[i], cpu);
2181 
2182 		per_cpu(memcg->stat->count[i], cpu) = 0;
2183 		memcg->nocpu_base.count[i] += x;
2184 	}
2185 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2186 		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2187 
2188 		per_cpu(memcg->stat->events[i], cpu) = 0;
2189 		memcg->nocpu_base.events[i] += x;
2190 	}
2191 	spin_unlock(&memcg->pcp_counter_lock);
2192 }
2193 
2194 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2195 					unsigned long action,
2196 					void *hcpu)
2197 {
2198 	int cpu = (unsigned long)hcpu;
2199 	struct memcg_stock_pcp *stock;
2200 	struct mem_cgroup *iter;
2201 
2202 	if (action == CPU_ONLINE)
2203 		return NOTIFY_OK;
2204 
2205 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2206 		return NOTIFY_OK;
2207 
2208 	for_each_mem_cgroup(iter)
2209 		mem_cgroup_drain_pcp_counter(iter, cpu);
2210 
2211 	stock = &per_cpu(memcg_stock, cpu);
2212 	drain_stock(stock);
2213 	return NOTIFY_OK;
2214 }
2215 
2216 
2217 /* See __mem_cgroup_try_charge() for details */
2218 enum {
2219 	CHARGE_OK,		/* success */
2220 	CHARGE_RETRY,		/* need to retry but retry is not bad */
2221 	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
2222 	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
2223 	CHARGE_OOM_DIE,		/* the current is killed because of OOM */
2224 };
2225 
2226 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2227 				unsigned int nr_pages, bool oom_check)
2228 {
2229 	unsigned long csize = nr_pages * PAGE_SIZE;
2230 	struct mem_cgroup *mem_over_limit;
2231 	struct res_counter *fail_res;
2232 	unsigned long flags = 0;
2233 	int ret;
2234 
2235 	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2236 
2237 	if (likely(!ret)) {
2238 		if (!do_swap_account)
2239 			return CHARGE_OK;
2240 		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2241 		if (likely(!ret))
2242 			return CHARGE_OK;
2243 
2244 		res_counter_uncharge(&memcg->res, csize);
2245 		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2246 		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2247 	} else
2248 		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2249 	/*
2250 	 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2251 	 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2252 	 *
2253 	 * Never reclaim on behalf of optional batching, retry with a
2254 	 * single page instead.
2255 	 */
2256 	if (nr_pages == CHARGE_BATCH)
2257 		return CHARGE_RETRY;
2258 
2259 	if (!(gfp_mask & __GFP_WAIT))
2260 		return CHARGE_WOULDBLOCK;
2261 
2262 	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2263 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2264 		return CHARGE_RETRY;
2265 	/*
2266 	 * Even though the limit is exceeded at this point, reclaim
2267 	 * may have been able to free some pages.  Retry the charge
2268 	 * before killing the task.
2269 	 *
2270 	 * Only for regular pages, though: huge pages are rather
2271 	 * unlikely to succeed so close to the limit, and we fall back
2272 	 * to regular pages anyway in case of failure.
2273 	 */
2274 	if (nr_pages == 1 && ret)
2275 		return CHARGE_RETRY;
2276 
2277 	/*
2278 	 * At task move, charge accounts can be doubly counted. So, it's
2279 	 * better to wait until the end of task_move if something is going on.
2280 	 */
2281 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2282 		return CHARGE_RETRY;
2283 
2284 	/* If we don't need to call oom-killer at el, return immediately */
2285 	if (!oom_check)
2286 		return CHARGE_NOMEM;
2287 	/* check OOM */
2288 	if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2289 		return CHARGE_OOM_DIE;
2290 
2291 	return CHARGE_RETRY;
2292 }
2293 
2294 /*
2295  * __mem_cgroup_try_charge() does
2296  * 1. detect memcg to be charged against from passed *mm and *ptr,
2297  * 2. update res_counter
2298  * 3. call memory reclaim if necessary.
2299  *
2300  * In some special case, if the task is fatal, fatal_signal_pending() or
2301  * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2302  * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2303  * as possible without any hazards. 2: all pages should have a valid
2304  * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2305  * pointer, that is treated as a charge to root_mem_cgroup.
2306  *
2307  * So __mem_cgroup_try_charge() will return
2308  *  0       ...  on success, filling *ptr with a valid memcg pointer.
2309  *  -ENOMEM ...  charge failure because of resource limits.
2310  *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
2311  *
2312  * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2313  * the oom-killer can be invoked.
2314  */
2315 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2316 				   gfp_t gfp_mask,
2317 				   unsigned int nr_pages,
2318 				   struct mem_cgroup **ptr,
2319 				   bool oom)
2320 {
2321 	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2322 	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2323 	struct mem_cgroup *memcg = NULL;
2324 	int ret;
2325 
2326 	/*
2327 	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2328 	 * in system level. So, allow to go ahead dying process in addition to
2329 	 * MEMDIE process.
2330 	 */
2331 	if (unlikely(test_thread_flag(TIF_MEMDIE)
2332 		     || fatal_signal_pending(current)))
2333 		goto bypass;
2334 
2335 	/*
2336 	 * We always charge the cgroup the mm_struct belongs to.
2337 	 * The mm_struct's mem_cgroup changes on task migration if the
2338 	 * thread group leader migrates. It's possible that mm is not
2339 	 * set, if so charge the root memcg (happens for pagecache usage).
2340 	 */
2341 	if (!*ptr && !mm)
2342 		*ptr = root_mem_cgroup;
2343 again:
2344 	if (*ptr) { /* css should be a valid one */
2345 		memcg = *ptr;
2346 		VM_BUG_ON(css_is_removed(&memcg->css));
2347 		if (mem_cgroup_is_root(memcg))
2348 			goto done;
2349 		if (nr_pages == 1 && consume_stock(memcg))
2350 			goto done;
2351 		css_get(&memcg->css);
2352 	} else {
2353 		struct task_struct *p;
2354 
2355 		rcu_read_lock();
2356 		p = rcu_dereference(mm->owner);
2357 		/*
2358 		 * Because we don't have task_lock(), "p" can exit.
2359 		 * In that case, "memcg" can point to root or p can be NULL with
2360 		 * race with swapoff. Then, we have small risk of mis-accouning.
2361 		 * But such kind of mis-account by race always happens because
2362 		 * we don't have cgroup_mutex(). It's overkill and we allo that
2363 		 * small race, here.
2364 		 * (*) swapoff at el will charge against mm-struct not against
2365 		 * task-struct. So, mm->owner can be NULL.
2366 		 */
2367 		memcg = mem_cgroup_from_task(p);
2368 		if (!memcg)
2369 			memcg = root_mem_cgroup;
2370 		if (mem_cgroup_is_root(memcg)) {
2371 			rcu_read_unlock();
2372 			goto done;
2373 		}
2374 		if (nr_pages == 1 && consume_stock(memcg)) {
2375 			/*
2376 			 * It seems dagerous to access memcg without css_get().
2377 			 * But considering how consume_stok works, it's not
2378 			 * necessary. If consume_stock success, some charges
2379 			 * from this memcg are cached on this cpu. So, we
2380 			 * don't need to call css_get()/css_tryget() before
2381 			 * calling consume_stock().
2382 			 */
2383 			rcu_read_unlock();
2384 			goto done;
2385 		}
2386 		/* after here, we may be blocked. we need to get refcnt */
2387 		if (!css_tryget(&memcg->css)) {
2388 			rcu_read_unlock();
2389 			goto again;
2390 		}
2391 		rcu_read_unlock();
2392 	}
2393 
2394 	do {
2395 		bool oom_check;
2396 
2397 		/* If killed, bypass charge */
2398 		if (fatal_signal_pending(current)) {
2399 			css_put(&memcg->css);
2400 			goto bypass;
2401 		}
2402 
2403 		oom_check = false;
2404 		if (oom && !nr_oom_retries) {
2405 			oom_check = true;
2406 			nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2407 		}
2408 
2409 		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2410 		switch (ret) {
2411 		case CHARGE_OK:
2412 			break;
2413 		case CHARGE_RETRY: /* not in OOM situation but retry */
2414 			batch = nr_pages;
2415 			css_put(&memcg->css);
2416 			memcg = NULL;
2417 			goto again;
2418 		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2419 			css_put(&memcg->css);
2420 			goto nomem;
2421 		case CHARGE_NOMEM: /* OOM routine works */
2422 			if (!oom) {
2423 				css_put(&memcg->css);
2424 				goto nomem;
2425 			}
2426 			/* If oom, we never return -ENOMEM */
2427 			nr_oom_retries--;
2428 			break;
2429 		case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2430 			css_put(&memcg->css);
2431 			goto bypass;
2432 		}
2433 	} while (ret != CHARGE_OK);
2434 
2435 	if (batch > nr_pages)
2436 		refill_stock(memcg, batch - nr_pages);
2437 	css_put(&memcg->css);
2438 done:
2439 	*ptr = memcg;
2440 	return 0;
2441 nomem:
2442 	*ptr = NULL;
2443 	return -ENOMEM;
2444 bypass:
2445 	*ptr = root_mem_cgroup;
2446 	return -EINTR;
2447 }
2448 
2449 /*
2450  * Somemtimes we have to undo a charge we got by try_charge().
2451  * This function is for that and do uncharge, put css's refcnt.
2452  * gotten by try_charge().
2453  */
2454 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2455 				       unsigned int nr_pages)
2456 {
2457 	if (!mem_cgroup_is_root(memcg)) {
2458 		unsigned long bytes = nr_pages * PAGE_SIZE;
2459 
2460 		res_counter_uncharge(&memcg->res, bytes);
2461 		if (do_swap_account)
2462 			res_counter_uncharge(&memcg->memsw, bytes);
2463 	}
2464 }
2465 
2466 /*
2467  * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2468  * This is useful when moving usage to parent cgroup.
2469  */
2470 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2471 					unsigned int nr_pages)
2472 {
2473 	unsigned long bytes = nr_pages * PAGE_SIZE;
2474 
2475 	if (mem_cgroup_is_root(memcg))
2476 		return;
2477 
2478 	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2479 	if (do_swap_account)
2480 		res_counter_uncharge_until(&memcg->memsw,
2481 						memcg->memsw.parent, bytes);
2482 }
2483 
2484 /*
2485  * A helper function to get mem_cgroup from ID. must be called under
2486  * rcu_read_lock(). The caller must check css_is_removed() or some if
2487  * it's concern. (dropping refcnt from swap can be called against removed
2488  * memcg.)
2489  */
2490 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2491 {
2492 	struct cgroup_subsys_state *css;
2493 
2494 	/* ID 0 is unused ID */
2495 	if (!id)
2496 		return NULL;
2497 	css = css_lookup(&mem_cgroup_subsys, id);
2498 	if (!css)
2499 		return NULL;
2500 	return mem_cgroup_from_css(css);
2501 }
2502 
2503 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2504 {
2505 	struct mem_cgroup *memcg = NULL;
2506 	struct page_cgroup *pc;
2507 	unsigned short id;
2508 	swp_entry_t ent;
2509 
2510 	VM_BUG_ON(!PageLocked(page));
2511 
2512 	pc = lookup_page_cgroup(page);
2513 	lock_page_cgroup(pc);
2514 	if (PageCgroupUsed(pc)) {
2515 		memcg = pc->mem_cgroup;
2516 		if (memcg && !css_tryget(&memcg->css))
2517 			memcg = NULL;
2518 	} else if (PageSwapCache(page)) {
2519 		ent.val = page_private(page);
2520 		id = lookup_swap_cgroup_id(ent);
2521 		rcu_read_lock();
2522 		memcg = mem_cgroup_lookup(id);
2523 		if (memcg && !css_tryget(&memcg->css))
2524 			memcg = NULL;
2525 		rcu_read_unlock();
2526 	}
2527 	unlock_page_cgroup(pc);
2528 	return memcg;
2529 }
2530 
2531 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2532 				       struct page *page,
2533 				       unsigned int nr_pages,
2534 				       enum charge_type ctype,
2535 				       bool lrucare)
2536 {
2537 	struct page_cgroup *pc = lookup_page_cgroup(page);
2538 	struct zone *uninitialized_var(zone);
2539 	struct lruvec *lruvec;
2540 	bool was_on_lru = false;
2541 	bool anon;
2542 
2543 	lock_page_cgroup(pc);
2544 	VM_BUG_ON(PageCgroupUsed(pc));
2545 	/*
2546 	 * we don't need page_cgroup_lock about tail pages, becase they are not
2547 	 * accessed by any other context at this point.
2548 	 */
2549 
2550 	/*
2551 	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2552 	 * may already be on some other mem_cgroup's LRU.  Take care of it.
2553 	 */
2554 	if (lrucare) {
2555 		zone = page_zone(page);
2556 		spin_lock_irq(&zone->lru_lock);
2557 		if (PageLRU(page)) {
2558 			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2559 			ClearPageLRU(page);
2560 			del_page_from_lru_list(page, lruvec, page_lru(page));
2561 			was_on_lru = true;
2562 		}
2563 	}
2564 
2565 	pc->mem_cgroup = memcg;
2566 	/*
2567 	 * We access a page_cgroup asynchronously without lock_page_cgroup().
2568 	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2569 	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2570 	 * before USED bit, we need memory barrier here.
2571 	 * See mem_cgroup_add_lru_list(), etc.
2572  	 */
2573 	smp_wmb();
2574 	SetPageCgroupUsed(pc);
2575 
2576 	if (lrucare) {
2577 		if (was_on_lru) {
2578 			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2579 			VM_BUG_ON(PageLRU(page));
2580 			SetPageLRU(page);
2581 			add_page_to_lru_list(page, lruvec, page_lru(page));
2582 		}
2583 		spin_unlock_irq(&zone->lru_lock);
2584 	}
2585 
2586 	if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2587 		anon = true;
2588 	else
2589 		anon = false;
2590 
2591 	mem_cgroup_charge_statistics(memcg, anon, nr_pages);
2592 	unlock_page_cgroup(pc);
2593 
2594 	/*
2595 	 * "charge_statistics" updated event counter. Then, check it.
2596 	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2597 	 * if they exceeds softlimit.
2598 	 */
2599 	memcg_check_events(memcg, page);
2600 }
2601 
2602 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2603 
2604 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
2605 /*
2606  * Because tail pages are not marked as "used", set it. We're under
2607  * zone->lru_lock, 'splitting on pmd' and compound_lock.
2608  * charge/uncharge will be never happen and move_account() is done under
2609  * compound_lock(), so we don't have to take care of races.
2610  */
2611 void mem_cgroup_split_huge_fixup(struct page *head)
2612 {
2613 	struct page_cgroup *head_pc = lookup_page_cgroup(head);
2614 	struct page_cgroup *pc;
2615 	int i;
2616 
2617 	if (mem_cgroup_disabled())
2618 		return;
2619 	for (i = 1; i < HPAGE_PMD_NR; i++) {
2620 		pc = head_pc + i;
2621 		pc->mem_cgroup = head_pc->mem_cgroup;
2622 		smp_wmb();/* see __commit_charge() */
2623 		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2624 	}
2625 }
2626 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2627 
2628 /**
2629  * mem_cgroup_move_account - move account of the page
2630  * @page: the page
2631  * @nr_pages: number of regular pages (>1 for huge pages)
2632  * @pc:	page_cgroup of the page.
2633  * @from: mem_cgroup which the page is moved from.
2634  * @to:	mem_cgroup which the page is moved to. @from != @to.
2635  *
2636  * The caller must confirm following.
2637  * - page is not on LRU (isolate_page() is useful.)
2638  * - compound_lock is held when nr_pages > 1
2639  *
2640  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
2641  * from old cgroup.
2642  */
2643 static int mem_cgroup_move_account(struct page *page,
2644 				   unsigned int nr_pages,
2645 				   struct page_cgroup *pc,
2646 				   struct mem_cgroup *from,
2647 				   struct mem_cgroup *to)
2648 {
2649 	unsigned long flags;
2650 	int ret;
2651 	bool anon = PageAnon(page);
2652 
2653 	VM_BUG_ON(from == to);
2654 	VM_BUG_ON(PageLRU(page));
2655 	/*
2656 	 * The page is isolated from LRU. So, collapse function
2657 	 * will not handle this page. But page splitting can happen.
2658 	 * Do this check under compound_page_lock(). The caller should
2659 	 * hold it.
2660 	 */
2661 	ret = -EBUSY;
2662 	if (nr_pages > 1 && !PageTransHuge(page))
2663 		goto out;
2664 
2665 	lock_page_cgroup(pc);
2666 
2667 	ret = -EINVAL;
2668 	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2669 		goto unlock;
2670 
2671 	move_lock_mem_cgroup(from, &flags);
2672 
2673 	if (!anon && page_mapped(page)) {
2674 		/* Update mapped_file data for mem_cgroup */
2675 		preempt_disable();
2676 		__this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2677 		__this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2678 		preempt_enable();
2679 	}
2680 	mem_cgroup_charge_statistics(from, anon, -nr_pages);
2681 
2682 	/* caller should have done css_get */
2683 	pc->mem_cgroup = to;
2684 	mem_cgroup_charge_statistics(to, anon, nr_pages);
2685 	/*
2686 	 * We charges against "to" which may not have any tasks. Then, "to"
2687 	 * can be under rmdir(). But in current implementation, caller of
2688 	 * this function is just force_empty() and move charge, so it's
2689 	 * guaranteed that "to" is never removed. So, we don't check rmdir
2690 	 * status here.
2691 	 */
2692 	move_unlock_mem_cgroup(from, &flags);
2693 	ret = 0;
2694 unlock:
2695 	unlock_page_cgroup(pc);
2696 	/*
2697 	 * check events
2698 	 */
2699 	memcg_check_events(to, page);
2700 	memcg_check_events(from, page);
2701 out:
2702 	return ret;
2703 }
2704 
2705 /*
2706  * move charges to its parent.
2707  */
2708 
2709 static int mem_cgroup_move_parent(struct page *page,
2710 				  struct page_cgroup *pc,
2711 				  struct mem_cgroup *child)
2712 {
2713 	struct mem_cgroup *parent;
2714 	unsigned int nr_pages;
2715 	unsigned long uninitialized_var(flags);
2716 	int ret;
2717 
2718 	/* Is ROOT ? */
2719 	if (mem_cgroup_is_root(child))
2720 		return -EINVAL;
2721 
2722 	ret = -EBUSY;
2723 	if (!get_page_unless_zero(page))
2724 		goto out;
2725 	if (isolate_lru_page(page))
2726 		goto put;
2727 
2728 	nr_pages = hpage_nr_pages(page);
2729 
2730 	parent = parent_mem_cgroup(child);
2731 	/*
2732 	 * If no parent, move charges to root cgroup.
2733 	 */
2734 	if (!parent)
2735 		parent = root_mem_cgroup;
2736 
2737 	if (nr_pages > 1)
2738 		flags = compound_lock_irqsave(page);
2739 
2740 	ret = mem_cgroup_move_account(page, nr_pages,
2741 				pc, child, parent);
2742 	if (!ret)
2743 		__mem_cgroup_cancel_local_charge(child, nr_pages);
2744 
2745 	if (nr_pages > 1)
2746 		compound_unlock_irqrestore(page, flags);
2747 	putback_lru_page(page);
2748 put:
2749 	put_page(page);
2750 out:
2751 	return ret;
2752 }
2753 
2754 /*
2755  * Charge the memory controller for page usage.
2756  * Return
2757  * 0 if the charge was successful
2758  * < 0 if the cgroup is over its limit
2759  */
2760 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2761 				gfp_t gfp_mask, enum charge_type ctype)
2762 {
2763 	struct mem_cgroup *memcg = NULL;
2764 	unsigned int nr_pages = 1;
2765 	bool oom = true;
2766 	int ret;
2767 
2768 	if (PageTransHuge(page)) {
2769 		nr_pages <<= compound_order(page);
2770 		VM_BUG_ON(!PageTransHuge(page));
2771 		/*
2772 		 * Never OOM-kill a process for a huge page.  The
2773 		 * fault handler will fall back to regular pages.
2774 		 */
2775 		oom = false;
2776 	}
2777 
2778 	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2779 	if (ret == -ENOMEM)
2780 		return ret;
2781 	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
2782 	return 0;
2783 }
2784 
2785 int mem_cgroup_newpage_charge(struct page *page,
2786 			      struct mm_struct *mm, gfp_t gfp_mask)
2787 {
2788 	if (mem_cgroup_disabled())
2789 		return 0;
2790 	VM_BUG_ON(page_mapped(page));
2791 	VM_BUG_ON(page->mapping && !PageAnon(page));
2792 	VM_BUG_ON(!mm);
2793 	return mem_cgroup_charge_common(page, mm, gfp_mask,
2794 					MEM_CGROUP_CHARGE_TYPE_ANON);
2795 }
2796 
2797 /*
2798  * While swap-in, try_charge -> commit or cancel, the page is locked.
2799  * And when try_charge() successfully returns, one refcnt to memcg without
2800  * struct page_cgroup is acquired. This refcnt will be consumed by
2801  * "commit()" or removed by "cancel()"
2802  */
2803 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2804 					  struct page *page,
2805 					  gfp_t mask,
2806 					  struct mem_cgroup **memcgp)
2807 {
2808 	struct mem_cgroup *memcg;
2809 	struct page_cgroup *pc;
2810 	int ret;
2811 
2812 	pc = lookup_page_cgroup(page);
2813 	/*
2814 	 * Every swap fault against a single page tries to charge the
2815 	 * page, bail as early as possible.  shmem_unuse() encounters
2816 	 * already charged pages, too.  The USED bit is protected by
2817 	 * the page lock, which serializes swap cache removal, which
2818 	 * in turn serializes uncharging.
2819 	 */
2820 	if (PageCgroupUsed(pc))
2821 		return 0;
2822 	if (!do_swap_account)
2823 		goto charge_cur_mm;
2824 	memcg = try_get_mem_cgroup_from_page(page);
2825 	if (!memcg)
2826 		goto charge_cur_mm;
2827 	*memcgp = memcg;
2828 	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
2829 	css_put(&memcg->css);
2830 	if (ret == -EINTR)
2831 		ret = 0;
2832 	return ret;
2833 charge_cur_mm:
2834 	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
2835 	if (ret == -EINTR)
2836 		ret = 0;
2837 	return ret;
2838 }
2839 
2840 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
2841 				 gfp_t gfp_mask, struct mem_cgroup **memcgp)
2842 {
2843 	*memcgp = NULL;
2844 	if (mem_cgroup_disabled())
2845 		return 0;
2846 	/*
2847 	 * A racing thread's fault, or swapoff, may have already
2848 	 * updated the pte, and even removed page from swap cache: in
2849 	 * those cases unuse_pte()'s pte_same() test will fail; but
2850 	 * there's also a KSM case which does need to charge the page.
2851 	 */
2852 	if (!PageSwapCache(page)) {
2853 		int ret;
2854 
2855 		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
2856 		if (ret == -EINTR)
2857 			ret = 0;
2858 		return ret;
2859 	}
2860 	return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
2861 }
2862 
2863 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2864 {
2865 	if (mem_cgroup_disabled())
2866 		return;
2867 	if (!memcg)
2868 		return;
2869 	__mem_cgroup_cancel_charge(memcg, 1);
2870 }
2871 
2872 static void
2873 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
2874 					enum charge_type ctype)
2875 {
2876 	if (mem_cgroup_disabled())
2877 		return;
2878 	if (!memcg)
2879 		return;
2880 	cgroup_exclude_rmdir(&memcg->css);
2881 
2882 	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
2883 	/*
2884 	 * Now swap is on-memory. This means this page may be
2885 	 * counted both as mem and swap....double count.
2886 	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2887 	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2888 	 * may call delete_from_swap_cache() before reach here.
2889 	 */
2890 	if (do_swap_account && PageSwapCache(page)) {
2891 		swp_entry_t ent = {.val = page_private(page)};
2892 		mem_cgroup_uncharge_swap(ent);
2893 	}
2894 	/*
2895 	 * At swapin, we may charge account against cgroup which has no tasks.
2896 	 * So, rmdir()->pre_destroy() can be called while we do this charge.
2897 	 * In that case, we need to call pre_destroy() again. check it here.
2898 	 */
2899 	cgroup_release_and_wakeup_rmdir(&memcg->css);
2900 }
2901 
2902 void mem_cgroup_commit_charge_swapin(struct page *page,
2903 				     struct mem_cgroup *memcg)
2904 {
2905 	__mem_cgroup_commit_charge_swapin(page, memcg,
2906 					  MEM_CGROUP_CHARGE_TYPE_ANON);
2907 }
2908 
2909 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2910 				gfp_t gfp_mask)
2911 {
2912 	struct mem_cgroup *memcg = NULL;
2913 	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
2914 	int ret;
2915 
2916 	if (mem_cgroup_disabled())
2917 		return 0;
2918 	if (PageCompound(page))
2919 		return 0;
2920 
2921 	if (!PageSwapCache(page))
2922 		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
2923 	else { /* page is swapcache/shmem */
2924 		ret = __mem_cgroup_try_charge_swapin(mm, page,
2925 						     gfp_mask, &memcg);
2926 		if (!ret)
2927 			__mem_cgroup_commit_charge_swapin(page, memcg, type);
2928 	}
2929 	return ret;
2930 }
2931 
2932 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2933 				   unsigned int nr_pages,
2934 				   const enum charge_type ctype)
2935 {
2936 	struct memcg_batch_info *batch = NULL;
2937 	bool uncharge_memsw = true;
2938 
2939 	/* If swapout, usage of swap doesn't decrease */
2940 	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2941 		uncharge_memsw = false;
2942 
2943 	batch = &current->memcg_batch;
2944 	/*
2945 	 * In usual, we do css_get() when we remember memcg pointer.
2946 	 * But in this case, we keep res->usage until end of a series of
2947 	 * uncharges. Then, it's ok to ignore memcg's refcnt.
2948 	 */
2949 	if (!batch->memcg)
2950 		batch->memcg = memcg;
2951 	/*
2952 	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2953 	 * In those cases, all pages freed continuously can be expected to be in
2954 	 * the same cgroup and we have chance to coalesce uncharges.
2955 	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2956 	 * because we want to do uncharge as soon as possible.
2957 	 */
2958 
2959 	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2960 		goto direct_uncharge;
2961 
2962 	if (nr_pages > 1)
2963 		goto direct_uncharge;
2964 
2965 	/*
2966 	 * In typical case, batch->memcg == mem. This means we can
2967 	 * merge a series of uncharges to an uncharge of res_counter.
2968 	 * If not, we uncharge res_counter ony by one.
2969 	 */
2970 	if (batch->memcg != memcg)
2971 		goto direct_uncharge;
2972 	/* remember freed charge and uncharge it later */
2973 	batch->nr_pages++;
2974 	if (uncharge_memsw)
2975 		batch->memsw_nr_pages++;
2976 	return;
2977 direct_uncharge:
2978 	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
2979 	if (uncharge_memsw)
2980 		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
2981 	if (unlikely(batch->memcg != memcg))
2982 		memcg_oom_recover(memcg);
2983 }
2984 
2985 /*
2986  * uncharge if !page_mapped(page)
2987  */
2988 static struct mem_cgroup *
2989 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
2990 			     bool end_migration)
2991 {
2992 	struct mem_cgroup *memcg = NULL;
2993 	unsigned int nr_pages = 1;
2994 	struct page_cgroup *pc;
2995 	bool anon;
2996 
2997 	if (mem_cgroup_disabled())
2998 		return NULL;
2999 
3000 	VM_BUG_ON(PageSwapCache(page));
3001 
3002 	if (PageTransHuge(page)) {
3003 		nr_pages <<= compound_order(page);
3004 		VM_BUG_ON(!PageTransHuge(page));
3005 	}
3006 	/*
3007 	 * Check if our page_cgroup is valid
3008 	 */
3009 	pc = lookup_page_cgroup(page);
3010 	if (unlikely(!PageCgroupUsed(pc)))
3011 		return NULL;
3012 
3013 	lock_page_cgroup(pc);
3014 
3015 	memcg = pc->mem_cgroup;
3016 
3017 	if (!PageCgroupUsed(pc))
3018 		goto unlock_out;
3019 
3020 	anon = PageAnon(page);
3021 
3022 	switch (ctype) {
3023 	case MEM_CGROUP_CHARGE_TYPE_ANON:
3024 		/*
3025 		 * Generally PageAnon tells if it's the anon statistics to be
3026 		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
3027 		 * used before page reached the stage of being marked PageAnon.
3028 		 */
3029 		anon = true;
3030 		/* fallthrough */
3031 	case MEM_CGROUP_CHARGE_TYPE_DROP:
3032 		/* See mem_cgroup_prepare_migration() */
3033 		if (page_mapped(page))
3034 			goto unlock_out;
3035 		/*
3036 		 * Pages under migration may not be uncharged.  But
3037 		 * end_migration() /must/ be the one uncharging the
3038 		 * unused post-migration page and so it has to call
3039 		 * here with the migration bit still set.  See the
3040 		 * res_counter handling below.
3041 		 */
3042 		if (!end_migration && PageCgroupMigration(pc))
3043 			goto unlock_out;
3044 		break;
3045 	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
3046 		if (!PageAnon(page)) {	/* Shared memory */
3047 			if (page->mapping && !page_is_file_cache(page))
3048 				goto unlock_out;
3049 		} else if (page_mapped(page)) /* Anon */
3050 				goto unlock_out;
3051 		break;
3052 	default:
3053 		break;
3054 	}
3055 
3056 	mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
3057 
3058 	ClearPageCgroupUsed(pc);
3059 	/*
3060 	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3061 	 * freed from LRU. This is safe because uncharged page is expected not
3062 	 * to be reused (freed soon). Exception is SwapCache, it's handled by
3063 	 * special functions.
3064 	 */
3065 
3066 	unlock_page_cgroup(pc);
3067 	/*
3068 	 * even after unlock, we have memcg->res.usage here and this memcg
3069 	 * will never be freed.
3070 	 */
3071 	memcg_check_events(memcg, page);
3072 	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3073 		mem_cgroup_swap_statistics(memcg, true);
3074 		mem_cgroup_get(memcg);
3075 	}
3076 	/*
3077 	 * Migration does not charge the res_counter for the
3078 	 * replacement page, so leave it alone when phasing out the
3079 	 * page that is unused after the migration.
3080 	 */
3081 	if (!end_migration && !mem_cgroup_is_root(memcg))
3082 		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3083 
3084 	return memcg;
3085 
3086 unlock_out:
3087 	unlock_page_cgroup(pc);
3088 	return NULL;
3089 }
3090 
3091 void mem_cgroup_uncharge_page(struct page *page)
3092 {
3093 	/* early check. */
3094 	if (page_mapped(page))
3095 		return;
3096 	VM_BUG_ON(page->mapping && !PageAnon(page));
3097 	if (PageSwapCache(page))
3098 		return;
3099 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
3100 }
3101 
3102 void mem_cgroup_uncharge_cache_page(struct page *page)
3103 {
3104 	VM_BUG_ON(page_mapped(page));
3105 	VM_BUG_ON(page->mapping);
3106 	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
3107 }
3108 
3109 /*
3110  * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3111  * In that cases, pages are freed continuously and we can expect pages
3112  * are in the same memcg. All these calls itself limits the number of
3113  * pages freed at once, then uncharge_start/end() is called properly.
3114  * This may be called prural(2) times in a context,
3115  */
3116 
3117 void mem_cgroup_uncharge_start(void)
3118 {
3119 	current->memcg_batch.do_batch++;
3120 	/* We can do nest. */
3121 	if (current->memcg_batch.do_batch == 1) {
3122 		current->memcg_batch.memcg = NULL;
3123 		current->memcg_batch.nr_pages = 0;
3124 		current->memcg_batch.memsw_nr_pages = 0;
3125 	}
3126 }
3127 
3128 void mem_cgroup_uncharge_end(void)
3129 {
3130 	struct memcg_batch_info *batch = &current->memcg_batch;
3131 
3132 	if (!batch->do_batch)
3133 		return;
3134 
3135 	batch->do_batch--;
3136 	if (batch->do_batch) /* If stacked, do nothing. */
3137 		return;
3138 
3139 	if (!batch->memcg)
3140 		return;
3141 	/*
3142 	 * This "batch->memcg" is valid without any css_get/put etc...
3143 	 * bacause we hide charges behind us.
3144 	 */
3145 	if (batch->nr_pages)
3146 		res_counter_uncharge(&batch->memcg->res,
3147 				     batch->nr_pages * PAGE_SIZE);
3148 	if (batch->memsw_nr_pages)
3149 		res_counter_uncharge(&batch->memcg->memsw,
3150 				     batch->memsw_nr_pages * PAGE_SIZE);
3151 	memcg_oom_recover(batch->memcg);
3152 	/* forget this pointer (for sanity check) */
3153 	batch->memcg = NULL;
3154 }
3155 
3156 #ifdef CONFIG_SWAP
3157 /*
3158  * called after __delete_from_swap_cache() and drop "page" account.
3159  * memcg information is recorded to swap_cgroup of "ent"
3160  */
3161 void
3162 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3163 {
3164 	struct mem_cgroup *memcg;
3165 	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3166 
3167 	if (!swapout) /* this was a swap cache but the swap is unused ! */
3168 		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3169 
3170 	memcg = __mem_cgroup_uncharge_common(page, ctype, false);
3171 
3172 	/*
3173 	 * record memcg information,  if swapout && memcg != NULL,
3174 	 * mem_cgroup_get() was called in uncharge().
3175 	 */
3176 	if (do_swap_account && swapout && memcg)
3177 		swap_cgroup_record(ent, css_id(&memcg->css));
3178 }
3179 #endif
3180 
3181 #ifdef CONFIG_MEMCG_SWAP
3182 /*
3183  * called from swap_entry_free(). remove record in swap_cgroup and
3184  * uncharge "memsw" account.
3185  */
3186 void mem_cgroup_uncharge_swap(swp_entry_t ent)
3187 {
3188 	struct mem_cgroup *memcg;
3189 	unsigned short id;
3190 
3191 	if (!do_swap_account)
3192 		return;
3193 
3194 	id = swap_cgroup_record(ent, 0);
3195 	rcu_read_lock();
3196 	memcg = mem_cgroup_lookup(id);
3197 	if (memcg) {
3198 		/*
3199 		 * We uncharge this because swap is freed.
3200 		 * This memcg can be obsolete one. We avoid calling css_tryget
3201 		 */
3202 		if (!mem_cgroup_is_root(memcg))
3203 			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3204 		mem_cgroup_swap_statistics(memcg, false);
3205 		mem_cgroup_put(memcg);
3206 	}
3207 	rcu_read_unlock();
3208 }
3209 
3210 /**
3211  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3212  * @entry: swap entry to be moved
3213  * @from:  mem_cgroup which the entry is moved from
3214  * @to:  mem_cgroup which the entry is moved to
3215  *
3216  * It succeeds only when the swap_cgroup's record for this entry is the same
3217  * as the mem_cgroup's id of @from.
3218  *
3219  * Returns 0 on success, -EINVAL on failure.
3220  *
3221  * The caller must have charged to @to, IOW, called res_counter_charge() about
3222  * both res and memsw, and called css_get().
3223  */
3224 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3225 				struct mem_cgroup *from, struct mem_cgroup *to)
3226 {
3227 	unsigned short old_id, new_id;
3228 
3229 	old_id = css_id(&from->css);
3230 	new_id = css_id(&to->css);
3231 
3232 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3233 		mem_cgroup_swap_statistics(from, false);
3234 		mem_cgroup_swap_statistics(to, true);
3235 		/*
3236 		 * This function is only called from task migration context now.
3237 		 * It postpones res_counter and refcount handling till the end
3238 		 * of task migration(mem_cgroup_clear_mc()) for performance
3239 		 * improvement. But we cannot postpone mem_cgroup_get(to)
3240 		 * because if the process that has been moved to @to does
3241 		 * swap-in, the refcount of @to might be decreased to 0.
3242 		 */
3243 		mem_cgroup_get(to);
3244 		return 0;
3245 	}
3246 	return -EINVAL;
3247 }
3248 #else
3249 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3250 				struct mem_cgroup *from, struct mem_cgroup *to)
3251 {
3252 	return -EINVAL;
3253 }
3254 #endif
3255 
3256 /*
3257  * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3258  * page belongs to.
3259  */
3260 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
3261 				  struct mem_cgroup **memcgp)
3262 {
3263 	struct mem_cgroup *memcg = NULL;
3264 	struct page_cgroup *pc;
3265 	enum charge_type ctype;
3266 
3267 	*memcgp = NULL;
3268 
3269 	VM_BUG_ON(PageTransHuge(page));
3270 	if (mem_cgroup_disabled())
3271 		return;
3272 
3273 	pc = lookup_page_cgroup(page);
3274 	lock_page_cgroup(pc);
3275 	if (PageCgroupUsed(pc)) {
3276 		memcg = pc->mem_cgroup;
3277 		css_get(&memcg->css);
3278 		/*
3279 		 * At migrating an anonymous page, its mapcount goes down
3280 		 * to 0 and uncharge() will be called. But, even if it's fully
3281 		 * unmapped, migration may fail and this page has to be
3282 		 * charged again. We set MIGRATION flag here and delay uncharge
3283 		 * until end_migration() is called
3284 		 *
3285 		 * Corner Case Thinking
3286 		 * A)
3287 		 * When the old page was mapped as Anon and it's unmap-and-freed
3288 		 * while migration was ongoing.
3289 		 * If unmap finds the old page, uncharge() of it will be delayed
3290 		 * until end_migration(). If unmap finds a new page, it's
3291 		 * uncharged when it make mapcount to be 1->0. If unmap code
3292 		 * finds swap_migration_entry, the new page will not be mapped
3293 		 * and end_migration() will find it(mapcount==0).
3294 		 *
3295 		 * B)
3296 		 * When the old page was mapped but migraion fails, the kernel
3297 		 * remaps it. A charge for it is kept by MIGRATION flag even
3298 		 * if mapcount goes down to 0. We can do remap successfully
3299 		 * without charging it again.
3300 		 *
3301 		 * C)
3302 		 * The "old" page is under lock_page() until the end of
3303 		 * migration, so, the old page itself will not be swapped-out.
3304 		 * If the new page is swapped out before end_migraton, our
3305 		 * hook to usual swap-out path will catch the event.
3306 		 */
3307 		if (PageAnon(page))
3308 			SetPageCgroupMigration(pc);
3309 	}
3310 	unlock_page_cgroup(pc);
3311 	/*
3312 	 * If the page is not charged at this point,
3313 	 * we return here.
3314 	 */
3315 	if (!memcg)
3316 		return;
3317 
3318 	*memcgp = memcg;
3319 	/*
3320 	 * We charge new page before it's used/mapped. So, even if unlock_page()
3321 	 * is called before end_migration, we can catch all events on this new
3322 	 * page. In the case new page is migrated but not remapped, new page's
3323 	 * mapcount will be finally 0 and we call uncharge in end_migration().
3324 	 */
3325 	if (PageAnon(page))
3326 		ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
3327 	else
3328 		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3329 	/*
3330 	 * The page is committed to the memcg, but it's not actually
3331 	 * charged to the res_counter since we plan on replacing the
3332 	 * old one and only one page is going to be left afterwards.
3333 	 */
3334 	__mem_cgroup_commit_charge(memcg, newpage, 1, ctype, false);
3335 }
3336 
3337 /* remove redundant charge if migration failed*/
3338 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3339 	struct page *oldpage, struct page *newpage, bool migration_ok)
3340 {
3341 	struct page *used, *unused;
3342 	struct page_cgroup *pc;
3343 	bool anon;
3344 
3345 	if (!memcg)
3346 		return;
3347 	/* blocks rmdir() */
3348 	cgroup_exclude_rmdir(&memcg->css);
3349 	if (!migration_ok) {
3350 		used = oldpage;
3351 		unused = newpage;
3352 	} else {
3353 		used = newpage;
3354 		unused = oldpage;
3355 	}
3356 	anon = PageAnon(used);
3357 	__mem_cgroup_uncharge_common(unused,
3358 				     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
3359 				     : MEM_CGROUP_CHARGE_TYPE_CACHE,
3360 				     true);
3361 	css_put(&memcg->css);
3362 	/*
3363 	 * We disallowed uncharge of pages under migration because mapcount
3364 	 * of the page goes down to zero, temporarly.
3365 	 * Clear the flag and check the page should be charged.
3366 	 */
3367 	pc = lookup_page_cgroup(oldpage);
3368 	lock_page_cgroup(pc);
3369 	ClearPageCgroupMigration(pc);
3370 	unlock_page_cgroup(pc);
3371 
3372 	/*
3373 	 * If a page is a file cache, radix-tree replacement is very atomic
3374 	 * and we can skip this check. When it was an Anon page, its mapcount
3375 	 * goes down to 0. But because we added MIGRATION flage, it's not
3376 	 * uncharged yet. There are several case but page->mapcount check
3377 	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3378 	 * check. (see prepare_charge() also)
3379 	 */
3380 	if (anon)
3381 		mem_cgroup_uncharge_page(used);
3382 	/*
3383 	 * At migration, we may charge account against cgroup which has no
3384 	 * tasks.
3385 	 * So, rmdir()->pre_destroy() can be called while we do this charge.
3386 	 * In that case, we need to call pre_destroy() again. check it here.
3387 	 */
3388 	cgroup_release_and_wakeup_rmdir(&memcg->css);
3389 }
3390 
3391 /*
3392  * At replace page cache, newpage is not under any memcg but it's on
3393  * LRU. So, this function doesn't touch res_counter but handles LRU
3394  * in correct way. Both pages are locked so we cannot race with uncharge.
3395  */
3396 void mem_cgroup_replace_page_cache(struct page *oldpage,
3397 				  struct page *newpage)
3398 {
3399 	struct mem_cgroup *memcg = NULL;
3400 	struct page_cgroup *pc;
3401 	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3402 
3403 	if (mem_cgroup_disabled())
3404 		return;
3405 
3406 	pc = lookup_page_cgroup(oldpage);
3407 	/* fix accounting on old pages */
3408 	lock_page_cgroup(pc);
3409 	if (PageCgroupUsed(pc)) {
3410 		memcg = pc->mem_cgroup;
3411 		mem_cgroup_charge_statistics(memcg, false, -1);
3412 		ClearPageCgroupUsed(pc);
3413 	}
3414 	unlock_page_cgroup(pc);
3415 
3416 	/*
3417 	 * When called from shmem_replace_page(), in some cases the
3418 	 * oldpage has already been charged, and in some cases not.
3419 	 */
3420 	if (!memcg)
3421 		return;
3422 	/*
3423 	 * Even if newpage->mapping was NULL before starting replacement,
3424 	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
3425 	 * LRU while we overwrite pc->mem_cgroup.
3426 	 */
3427 	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
3428 }
3429 
3430 #ifdef CONFIG_DEBUG_VM
3431 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3432 {
3433 	struct page_cgroup *pc;
3434 
3435 	pc = lookup_page_cgroup(page);
3436 	/*
3437 	 * Can be NULL while feeding pages into the page allocator for
3438 	 * the first time, i.e. during boot or memory hotplug;
3439 	 * or when mem_cgroup_disabled().
3440 	 */
3441 	if (likely(pc) && PageCgroupUsed(pc))
3442 		return pc;
3443 	return NULL;
3444 }
3445 
3446 bool mem_cgroup_bad_page_check(struct page *page)
3447 {
3448 	if (mem_cgroup_disabled())
3449 		return false;
3450 
3451 	return lookup_page_cgroup_used(page) != NULL;
3452 }
3453 
3454 void mem_cgroup_print_bad_page(struct page *page)
3455 {
3456 	struct page_cgroup *pc;
3457 
3458 	pc = lookup_page_cgroup_used(page);
3459 	if (pc) {
3460 		printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3461 		       pc, pc->flags, pc->mem_cgroup);
3462 	}
3463 }
3464 #endif
3465 
3466 static DEFINE_MUTEX(set_limit_mutex);
3467 
3468 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3469 				unsigned long long val)
3470 {
3471 	int retry_count;
3472 	u64 memswlimit, memlimit;
3473 	int ret = 0;
3474 	int children = mem_cgroup_count_children(memcg);
3475 	u64 curusage, oldusage;
3476 	int enlarge;
3477 
3478 	/*
3479 	 * For keeping hierarchical_reclaim simple, how long we should retry
3480 	 * is depends on callers. We set our retry-count to be function
3481 	 * of # of children which we should visit in this loop.
3482 	 */
3483 	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3484 
3485 	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3486 
3487 	enlarge = 0;
3488 	while (retry_count) {
3489 		if (signal_pending(current)) {
3490 			ret = -EINTR;
3491 			break;
3492 		}
3493 		/*
3494 		 * Rather than hide all in some function, I do this in
3495 		 * open coded manner. You see what this really does.
3496 		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3497 		 */
3498 		mutex_lock(&set_limit_mutex);
3499 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3500 		if (memswlimit < val) {
3501 			ret = -EINVAL;
3502 			mutex_unlock(&set_limit_mutex);
3503 			break;
3504 		}
3505 
3506 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3507 		if (memlimit < val)
3508 			enlarge = 1;
3509 
3510 		ret = res_counter_set_limit(&memcg->res, val);
3511 		if (!ret) {
3512 			if (memswlimit == val)
3513 				memcg->memsw_is_minimum = true;
3514 			else
3515 				memcg->memsw_is_minimum = false;
3516 		}
3517 		mutex_unlock(&set_limit_mutex);
3518 
3519 		if (!ret)
3520 			break;
3521 
3522 		mem_cgroup_reclaim(memcg, GFP_KERNEL,
3523 				   MEM_CGROUP_RECLAIM_SHRINK);
3524 		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3525 		/* Usage is reduced ? */
3526   		if (curusage >= oldusage)
3527 			retry_count--;
3528 		else
3529 			oldusage = curusage;
3530 	}
3531 	if (!ret && enlarge)
3532 		memcg_oom_recover(memcg);
3533 
3534 	return ret;
3535 }
3536 
3537 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3538 					unsigned long long val)
3539 {
3540 	int retry_count;
3541 	u64 memlimit, memswlimit, oldusage, curusage;
3542 	int children = mem_cgroup_count_children(memcg);
3543 	int ret = -EBUSY;
3544 	int enlarge = 0;
3545 
3546 	/* see mem_cgroup_resize_res_limit */
3547  	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3548 	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3549 	while (retry_count) {
3550 		if (signal_pending(current)) {
3551 			ret = -EINTR;
3552 			break;
3553 		}
3554 		/*
3555 		 * Rather than hide all in some function, I do this in
3556 		 * open coded manner. You see what this really does.
3557 		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3558 		 */
3559 		mutex_lock(&set_limit_mutex);
3560 		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3561 		if (memlimit > val) {
3562 			ret = -EINVAL;
3563 			mutex_unlock(&set_limit_mutex);
3564 			break;
3565 		}
3566 		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3567 		if (memswlimit < val)
3568 			enlarge = 1;
3569 		ret = res_counter_set_limit(&memcg->memsw, val);
3570 		if (!ret) {
3571 			if (memlimit == val)
3572 				memcg->memsw_is_minimum = true;
3573 			else
3574 				memcg->memsw_is_minimum = false;
3575 		}
3576 		mutex_unlock(&set_limit_mutex);
3577 
3578 		if (!ret)
3579 			break;
3580 
3581 		mem_cgroup_reclaim(memcg, GFP_KERNEL,
3582 				   MEM_CGROUP_RECLAIM_NOSWAP |
3583 				   MEM_CGROUP_RECLAIM_SHRINK);
3584 		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3585 		/* Usage is reduced ? */
3586 		if (curusage >= oldusage)
3587 			retry_count--;
3588 		else
3589 			oldusage = curusage;
3590 	}
3591 	if (!ret && enlarge)
3592 		memcg_oom_recover(memcg);
3593 	return ret;
3594 }
3595 
3596 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3597 					    gfp_t gfp_mask,
3598 					    unsigned long *total_scanned)
3599 {
3600 	unsigned long nr_reclaimed = 0;
3601 	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3602 	unsigned long reclaimed;
3603 	int loop = 0;
3604 	struct mem_cgroup_tree_per_zone *mctz;
3605 	unsigned long long excess;
3606 	unsigned long nr_scanned;
3607 
3608 	if (order > 0)
3609 		return 0;
3610 
3611 	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3612 	/*
3613 	 * This loop can run a while, specially if mem_cgroup's continuously
3614 	 * keep exceeding their soft limit and putting the system under
3615 	 * pressure
3616 	 */
3617 	do {
3618 		if (next_mz)
3619 			mz = next_mz;
3620 		else
3621 			mz = mem_cgroup_largest_soft_limit_node(mctz);
3622 		if (!mz)
3623 			break;
3624 
3625 		nr_scanned = 0;
3626 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3627 						    gfp_mask, &nr_scanned);
3628 		nr_reclaimed += reclaimed;
3629 		*total_scanned += nr_scanned;
3630 		spin_lock(&mctz->lock);
3631 
3632 		/*
3633 		 * If we failed to reclaim anything from this memory cgroup
3634 		 * it is time to move on to the next cgroup
3635 		 */
3636 		next_mz = NULL;
3637 		if (!reclaimed) {
3638 			do {
3639 				/*
3640 				 * Loop until we find yet another one.
3641 				 *
3642 				 * By the time we get the soft_limit lock
3643 				 * again, someone might have aded the
3644 				 * group back on the RB tree. Iterate to
3645 				 * make sure we get a different mem.
3646 				 * mem_cgroup_largest_soft_limit_node returns
3647 				 * NULL if no other cgroup is present on
3648 				 * the tree
3649 				 */
3650 				next_mz =
3651 				__mem_cgroup_largest_soft_limit_node(mctz);
3652 				if (next_mz == mz)
3653 					css_put(&next_mz->memcg->css);
3654 				else /* next_mz == NULL or other memcg */
3655 					break;
3656 			} while (1);
3657 		}
3658 		__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
3659 		excess = res_counter_soft_limit_excess(&mz->memcg->res);
3660 		/*
3661 		 * One school of thought says that we should not add
3662 		 * back the node to the tree if reclaim returns 0.
3663 		 * But our reclaim could return 0, simply because due
3664 		 * to priority we are exposing a smaller subset of
3665 		 * memory to reclaim from. Consider this as a longer
3666 		 * term TODO.
3667 		 */
3668 		/* If excess == 0, no tree ops */
3669 		__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
3670 		spin_unlock(&mctz->lock);
3671 		css_put(&mz->memcg->css);
3672 		loop++;
3673 		/*
3674 		 * Could not reclaim anything and there are no more
3675 		 * mem cgroups to try or we seem to be looping without
3676 		 * reclaiming anything.
3677 		 */
3678 		if (!nr_reclaimed &&
3679 			(next_mz == NULL ||
3680 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3681 			break;
3682 	} while (!nr_reclaimed);
3683 	if (next_mz)
3684 		css_put(&next_mz->memcg->css);
3685 	return nr_reclaimed;
3686 }
3687 
3688 /*
3689  * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
3690  * reclaim the pages page themselves - it just removes the page_cgroups.
3691  * Returns true if some page_cgroups were not freed, indicating that the caller
3692  * must retry this operation.
3693  */
3694 static bool mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
3695 				int node, int zid, enum lru_list lru)
3696 {
3697 	struct mem_cgroup_per_zone *mz;
3698 	unsigned long flags, loop;
3699 	struct list_head *list;
3700 	struct page *busy;
3701 	struct zone *zone;
3702 
3703 	zone = &NODE_DATA(node)->node_zones[zid];
3704 	mz = mem_cgroup_zoneinfo(memcg, node, zid);
3705 	list = &mz->lruvec.lists[lru];
3706 
3707 	loop = mz->lru_size[lru];
3708 	/* give some margin against EBUSY etc...*/
3709 	loop += 256;
3710 	busy = NULL;
3711 	while (loop--) {
3712 		struct page_cgroup *pc;
3713 		struct page *page;
3714 
3715 		spin_lock_irqsave(&zone->lru_lock, flags);
3716 		if (list_empty(list)) {
3717 			spin_unlock_irqrestore(&zone->lru_lock, flags);
3718 			break;
3719 		}
3720 		page = list_entry(list->prev, struct page, lru);
3721 		if (busy == page) {
3722 			list_move(&page->lru, list);
3723 			busy = NULL;
3724 			spin_unlock_irqrestore(&zone->lru_lock, flags);
3725 			continue;
3726 		}
3727 		spin_unlock_irqrestore(&zone->lru_lock, flags);
3728 
3729 		pc = lookup_page_cgroup(page);
3730 
3731 		if (mem_cgroup_move_parent(page, pc, memcg)) {
3732 			/* found lock contention or "pc" is obsolete. */
3733 			busy = page;
3734 			cond_resched();
3735 		} else
3736 			busy = NULL;
3737 	}
3738 	return !list_empty(list);
3739 }
3740 
3741 /*
3742  * make mem_cgroup's charge to be 0 if there is no task.
3743  * This enables deleting this mem_cgroup.
3744  */
3745 static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3746 {
3747 	int ret;
3748 	int node, zid, shrink;
3749 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3750 	struct cgroup *cgrp = memcg->css.cgroup;
3751 
3752 	css_get(&memcg->css);
3753 
3754 	shrink = 0;
3755 	/* should free all ? */
3756 	if (free_all)
3757 		goto try_to_free;
3758 move_account:
3759 	do {
3760 		ret = -EBUSY;
3761 		if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3762 			goto out;
3763 		/* This is for making all *used* pages to be on LRU. */
3764 		lru_add_drain_all();
3765 		drain_all_stock_sync(memcg);
3766 		ret = 0;
3767 		mem_cgroup_start_move(memcg);
3768 		for_each_node_state(node, N_HIGH_MEMORY) {
3769 			for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3770 				enum lru_list lru;
3771 				for_each_lru(lru) {
3772 					ret = mem_cgroup_force_empty_list(memcg,
3773 							node, zid, lru);
3774 					if (ret)
3775 						break;
3776 				}
3777 			}
3778 			if (ret)
3779 				break;
3780 		}
3781 		mem_cgroup_end_move(memcg);
3782 		memcg_oom_recover(memcg);
3783 		cond_resched();
3784 	/* "ret" should also be checked to ensure all lists are empty. */
3785 	} while (res_counter_read_u64(&memcg->res, RES_USAGE) > 0 || ret);
3786 out:
3787 	css_put(&memcg->css);
3788 	return ret;
3789 
3790 try_to_free:
3791 	/* returns EBUSY if there is a task or if we come here twice. */
3792 	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3793 		ret = -EBUSY;
3794 		goto out;
3795 	}
3796 	/* we call try-to-free pages for make this cgroup empty */
3797 	lru_add_drain_all();
3798 	/* try to free all pages in this cgroup */
3799 	shrink = 1;
3800 	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
3801 		int progress;
3802 
3803 		if (signal_pending(current)) {
3804 			ret = -EINTR;
3805 			goto out;
3806 		}
3807 		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3808 						false);
3809 		if (!progress) {
3810 			nr_retries--;
3811 			/* maybe some writeback is necessary */
3812 			congestion_wait(BLK_RW_ASYNC, HZ/10);
3813 		}
3814 
3815 	}
3816 	lru_add_drain();
3817 	/* try move_account...there may be some *locked* pages. */
3818 	goto move_account;
3819 }
3820 
3821 static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3822 {
3823 	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3824 }
3825 
3826 
3827 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3828 {
3829 	return mem_cgroup_from_cont(cont)->use_hierarchy;
3830 }
3831 
3832 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3833 					u64 val)
3834 {
3835 	int retval = 0;
3836 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3837 	struct cgroup *parent = cont->parent;
3838 	struct mem_cgroup *parent_memcg = NULL;
3839 
3840 	if (parent)
3841 		parent_memcg = mem_cgroup_from_cont(parent);
3842 
3843 	cgroup_lock();
3844 
3845 	if (memcg->use_hierarchy == val)
3846 		goto out;
3847 
3848 	/*
3849 	 * If parent's use_hierarchy is set, we can't make any modifications
3850 	 * in the child subtrees. If it is unset, then the change can
3851 	 * occur, provided the current cgroup has no children.
3852 	 *
3853 	 * For the root cgroup, parent_mem is NULL, we allow value to be
3854 	 * set if there are no children.
3855 	 */
3856 	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3857 				(val == 1 || val == 0)) {
3858 		if (list_empty(&cont->children))
3859 			memcg->use_hierarchy = val;
3860 		else
3861 			retval = -EBUSY;
3862 	} else
3863 		retval = -EINVAL;
3864 
3865 out:
3866 	cgroup_unlock();
3867 
3868 	return retval;
3869 }
3870 
3871 
3872 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3873 					       enum mem_cgroup_stat_index idx)
3874 {
3875 	struct mem_cgroup *iter;
3876 	long val = 0;
3877 
3878 	/* Per-cpu values can be negative, use a signed accumulator */
3879 	for_each_mem_cgroup_tree(iter, memcg)
3880 		val += mem_cgroup_read_stat(iter, idx);
3881 
3882 	if (val < 0) /* race ? */
3883 		val = 0;
3884 	return val;
3885 }
3886 
3887 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3888 {
3889 	u64 val;
3890 
3891 	if (!mem_cgroup_is_root(memcg)) {
3892 		if (!swap)
3893 			return res_counter_read_u64(&memcg->res, RES_USAGE);
3894 		else
3895 			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3896 	}
3897 
3898 	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3899 	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3900 
3901 	if (swap)
3902 		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
3903 
3904 	return val << PAGE_SHIFT;
3905 }
3906 
3907 static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
3908 			       struct file *file, char __user *buf,
3909 			       size_t nbytes, loff_t *ppos)
3910 {
3911 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3912 	char str[64];
3913 	u64 val;
3914 	int type, name, len;
3915 
3916 	type = MEMFILE_TYPE(cft->private);
3917 	name = MEMFILE_ATTR(cft->private);
3918 
3919 	if (!do_swap_account && type == _MEMSWAP)
3920 		return -EOPNOTSUPP;
3921 
3922 	switch (type) {
3923 	case _MEM:
3924 		if (name == RES_USAGE)
3925 			val = mem_cgroup_usage(memcg, false);
3926 		else
3927 			val = res_counter_read_u64(&memcg->res, name);
3928 		break;
3929 	case _MEMSWAP:
3930 		if (name == RES_USAGE)
3931 			val = mem_cgroup_usage(memcg, true);
3932 		else
3933 			val = res_counter_read_u64(&memcg->memsw, name);
3934 		break;
3935 	default:
3936 		BUG();
3937 	}
3938 
3939 	len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
3940 	return simple_read_from_buffer(buf, nbytes, ppos, str, len);
3941 }
3942 /*
3943  * The user of this function is...
3944  * RES_LIMIT.
3945  */
3946 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3947 			    const char *buffer)
3948 {
3949 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3950 	int type, name;
3951 	unsigned long long val;
3952 	int ret;
3953 
3954 	type = MEMFILE_TYPE(cft->private);
3955 	name = MEMFILE_ATTR(cft->private);
3956 
3957 	if (!do_swap_account && type == _MEMSWAP)
3958 		return -EOPNOTSUPP;
3959 
3960 	switch (name) {
3961 	case RES_LIMIT:
3962 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3963 			ret = -EINVAL;
3964 			break;
3965 		}
3966 		/* This function does all necessary parse...reuse it */
3967 		ret = res_counter_memparse_write_strategy(buffer, &val);
3968 		if (ret)
3969 			break;
3970 		if (type == _MEM)
3971 			ret = mem_cgroup_resize_limit(memcg, val);
3972 		else
3973 			ret = mem_cgroup_resize_memsw_limit(memcg, val);
3974 		break;
3975 	case RES_SOFT_LIMIT:
3976 		ret = res_counter_memparse_write_strategy(buffer, &val);
3977 		if (ret)
3978 			break;
3979 		/*
3980 		 * For memsw, soft limits are hard to implement in terms
3981 		 * of semantics, for now, we support soft limits for
3982 		 * control without swap
3983 		 */
3984 		if (type == _MEM)
3985 			ret = res_counter_set_soft_limit(&memcg->res, val);
3986 		else
3987 			ret = -EINVAL;
3988 		break;
3989 	default:
3990 		ret = -EINVAL; /* should be BUG() ? */
3991 		break;
3992 	}
3993 	return ret;
3994 }
3995 
3996 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3997 		unsigned long long *mem_limit, unsigned long long *memsw_limit)
3998 {
3999 	struct cgroup *cgroup;
4000 	unsigned long long min_limit, min_memsw_limit, tmp;
4001 
4002 	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4003 	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4004 	cgroup = memcg->css.cgroup;
4005 	if (!memcg->use_hierarchy)
4006 		goto out;
4007 
4008 	while (cgroup->parent) {
4009 		cgroup = cgroup->parent;
4010 		memcg = mem_cgroup_from_cont(cgroup);
4011 		if (!memcg->use_hierarchy)
4012 			break;
4013 		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
4014 		min_limit = min(min_limit, tmp);
4015 		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4016 		min_memsw_limit = min(min_memsw_limit, tmp);
4017 	}
4018 out:
4019 	*mem_limit = min_limit;
4020 	*memsw_limit = min_memsw_limit;
4021 }
4022 
4023 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
4024 {
4025 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4026 	int type, name;
4027 
4028 	type = MEMFILE_TYPE(event);
4029 	name = MEMFILE_ATTR(event);
4030 
4031 	if (!do_swap_account && type == _MEMSWAP)
4032 		return -EOPNOTSUPP;
4033 
4034 	switch (name) {
4035 	case RES_MAX_USAGE:
4036 		if (type == _MEM)
4037 			res_counter_reset_max(&memcg->res);
4038 		else
4039 			res_counter_reset_max(&memcg->memsw);
4040 		break;
4041 	case RES_FAILCNT:
4042 		if (type == _MEM)
4043 			res_counter_reset_failcnt(&memcg->res);
4044 		else
4045 			res_counter_reset_failcnt(&memcg->memsw);
4046 		break;
4047 	}
4048 
4049 	return 0;
4050 }
4051 
4052 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
4053 					struct cftype *cft)
4054 {
4055 	return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
4056 }
4057 
4058 #ifdef CONFIG_MMU
4059 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4060 					struct cftype *cft, u64 val)
4061 {
4062 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4063 
4064 	if (val >= (1 << NR_MOVE_TYPE))
4065 		return -EINVAL;
4066 	/*
4067 	 * We check this value several times in both in can_attach() and
4068 	 * attach(), so we need cgroup lock to prevent this value from being
4069 	 * inconsistent.
4070 	 */
4071 	cgroup_lock();
4072 	memcg->move_charge_at_immigrate = val;
4073 	cgroup_unlock();
4074 
4075 	return 0;
4076 }
4077 #else
4078 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4079 					struct cftype *cft, u64 val)
4080 {
4081 	return -ENOSYS;
4082 }
4083 #endif
4084 
4085 #ifdef CONFIG_NUMA
4086 static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
4087 				      struct seq_file *m)
4088 {
4089 	int nid;
4090 	unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4091 	unsigned long node_nr;
4092 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4093 
4094 	total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
4095 	seq_printf(m, "total=%lu", total_nr);
4096 	for_each_node_state(nid, N_HIGH_MEMORY) {
4097 		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
4098 		seq_printf(m, " N%d=%lu", nid, node_nr);
4099 	}
4100 	seq_putc(m, '\n');
4101 
4102 	file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
4103 	seq_printf(m, "file=%lu", file_nr);
4104 	for_each_node_state(nid, N_HIGH_MEMORY) {
4105 		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4106 				LRU_ALL_FILE);
4107 		seq_printf(m, " N%d=%lu", nid, node_nr);
4108 	}
4109 	seq_putc(m, '\n');
4110 
4111 	anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
4112 	seq_printf(m, "anon=%lu", anon_nr);
4113 	for_each_node_state(nid, N_HIGH_MEMORY) {
4114 		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4115 				LRU_ALL_ANON);
4116 		seq_printf(m, " N%d=%lu", nid, node_nr);
4117 	}
4118 	seq_putc(m, '\n');
4119 
4120 	unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4121 	seq_printf(m, "unevictable=%lu", unevictable_nr);
4122 	for_each_node_state(nid, N_HIGH_MEMORY) {
4123 		node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4124 				BIT(LRU_UNEVICTABLE));
4125 		seq_printf(m, " N%d=%lu", nid, node_nr);
4126 	}
4127 	seq_putc(m, '\n');
4128 	return 0;
4129 }
4130 #endif /* CONFIG_NUMA */
4131 
4132 static const char * const mem_cgroup_lru_names[] = {
4133 	"inactive_anon",
4134 	"active_anon",
4135 	"inactive_file",
4136 	"active_file",
4137 	"unevictable",
4138 };
4139 
4140 static inline void mem_cgroup_lru_names_not_uptodate(void)
4141 {
4142 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
4143 }
4144 
4145 static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
4146 				 struct seq_file *m)
4147 {
4148 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4149 	struct mem_cgroup *mi;
4150 	unsigned int i;
4151 
4152 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4153 		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4154 			continue;
4155 		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
4156 			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
4157 	}
4158 
4159 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
4160 		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
4161 			   mem_cgroup_read_events(memcg, i));
4162 
4163 	for (i = 0; i < NR_LRU_LISTS; i++)
4164 		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
4165 			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
4166 
4167 	/* Hierarchical information */
4168 	{
4169 		unsigned long long limit, memsw_limit;
4170 		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
4171 		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
4172 		if (do_swap_account)
4173 			seq_printf(m, "hierarchical_memsw_limit %llu\n",
4174 				   memsw_limit);
4175 	}
4176 
4177 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4178 		long long val = 0;
4179 
4180 		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4181 			continue;
4182 		for_each_mem_cgroup_tree(mi, memcg)
4183 			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
4184 		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
4185 	}
4186 
4187 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
4188 		unsigned long long val = 0;
4189 
4190 		for_each_mem_cgroup_tree(mi, memcg)
4191 			val += mem_cgroup_read_events(mi, i);
4192 		seq_printf(m, "total_%s %llu\n",
4193 			   mem_cgroup_events_names[i], val);
4194 	}
4195 
4196 	for (i = 0; i < NR_LRU_LISTS; i++) {
4197 		unsigned long long val = 0;
4198 
4199 		for_each_mem_cgroup_tree(mi, memcg)
4200 			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
4201 		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
4202 	}
4203 
4204 #ifdef CONFIG_DEBUG_VM
4205 	{
4206 		int nid, zid;
4207 		struct mem_cgroup_per_zone *mz;
4208 		struct zone_reclaim_stat *rstat;
4209 		unsigned long recent_rotated[2] = {0, 0};
4210 		unsigned long recent_scanned[2] = {0, 0};
4211 
4212 		for_each_online_node(nid)
4213 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4214 				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
4215 				rstat = &mz->lruvec.reclaim_stat;
4216 
4217 				recent_rotated[0] += rstat->recent_rotated[0];
4218 				recent_rotated[1] += rstat->recent_rotated[1];
4219 				recent_scanned[0] += rstat->recent_scanned[0];
4220 				recent_scanned[1] += rstat->recent_scanned[1];
4221 			}
4222 		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
4223 		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
4224 		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
4225 		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
4226 	}
4227 #endif
4228 
4229 	return 0;
4230 }
4231 
4232 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4233 {
4234 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4235 
4236 	return mem_cgroup_swappiness(memcg);
4237 }
4238 
4239 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4240 				       u64 val)
4241 {
4242 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4243 	struct mem_cgroup *parent;
4244 
4245 	if (val > 100)
4246 		return -EINVAL;
4247 
4248 	if (cgrp->parent == NULL)
4249 		return -EINVAL;
4250 
4251 	parent = mem_cgroup_from_cont(cgrp->parent);
4252 
4253 	cgroup_lock();
4254 
4255 	/* If under hierarchy, only empty-root can set this value */
4256 	if ((parent->use_hierarchy) ||
4257 	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4258 		cgroup_unlock();
4259 		return -EINVAL;
4260 	}
4261 
4262 	memcg->swappiness = val;
4263 
4264 	cgroup_unlock();
4265 
4266 	return 0;
4267 }
4268 
4269 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4270 {
4271 	struct mem_cgroup_threshold_ary *t;
4272 	u64 usage;
4273 	int i;
4274 
4275 	rcu_read_lock();
4276 	if (!swap)
4277 		t = rcu_dereference(memcg->thresholds.primary);
4278 	else
4279 		t = rcu_dereference(memcg->memsw_thresholds.primary);
4280 
4281 	if (!t)
4282 		goto unlock;
4283 
4284 	usage = mem_cgroup_usage(memcg, swap);
4285 
4286 	/*
4287 	 * current_threshold points to threshold just below or equal to usage.
4288 	 * If it's not true, a threshold was crossed after last
4289 	 * call of __mem_cgroup_threshold().
4290 	 */
4291 	i = t->current_threshold;
4292 
4293 	/*
4294 	 * Iterate backward over array of thresholds starting from
4295 	 * current_threshold and check if a threshold is crossed.
4296 	 * If none of thresholds below usage is crossed, we read
4297 	 * only one element of the array here.
4298 	 */
4299 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4300 		eventfd_signal(t->entries[i].eventfd, 1);
4301 
4302 	/* i = current_threshold + 1 */
4303 	i++;
4304 
4305 	/*
4306 	 * Iterate forward over array of thresholds starting from
4307 	 * current_threshold+1 and check if a threshold is crossed.
4308 	 * If none of thresholds above usage is crossed, we read
4309 	 * only one element of the array here.
4310 	 */
4311 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4312 		eventfd_signal(t->entries[i].eventfd, 1);
4313 
4314 	/* Update current_threshold */
4315 	t->current_threshold = i - 1;
4316 unlock:
4317 	rcu_read_unlock();
4318 }
4319 
4320 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4321 {
4322 	while (memcg) {
4323 		__mem_cgroup_threshold(memcg, false);
4324 		if (do_swap_account)
4325 			__mem_cgroup_threshold(memcg, true);
4326 
4327 		memcg = parent_mem_cgroup(memcg);
4328 	}
4329 }
4330 
4331 static int compare_thresholds(const void *a, const void *b)
4332 {
4333 	const struct mem_cgroup_threshold *_a = a;
4334 	const struct mem_cgroup_threshold *_b = b;
4335 
4336 	return _a->threshold - _b->threshold;
4337 }
4338 
4339 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4340 {
4341 	struct mem_cgroup_eventfd_list *ev;
4342 
4343 	list_for_each_entry(ev, &memcg->oom_notify, list)
4344 		eventfd_signal(ev->eventfd, 1);
4345 	return 0;
4346 }
4347 
4348 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4349 {
4350 	struct mem_cgroup *iter;
4351 
4352 	for_each_mem_cgroup_tree(iter, memcg)
4353 		mem_cgroup_oom_notify_cb(iter);
4354 }
4355 
4356 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4357 	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4358 {
4359 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4360 	struct mem_cgroup_thresholds *thresholds;
4361 	struct mem_cgroup_threshold_ary *new;
4362 	int type = MEMFILE_TYPE(cft->private);
4363 	u64 threshold, usage;
4364 	int i, size, ret;
4365 
4366 	ret = res_counter_memparse_write_strategy(args, &threshold);
4367 	if (ret)
4368 		return ret;
4369 
4370 	mutex_lock(&memcg->thresholds_lock);
4371 
4372 	if (type == _MEM)
4373 		thresholds = &memcg->thresholds;
4374 	else if (type == _MEMSWAP)
4375 		thresholds = &memcg->memsw_thresholds;
4376 	else
4377 		BUG();
4378 
4379 	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4380 
4381 	/* Check if a threshold crossed before adding a new one */
4382 	if (thresholds->primary)
4383 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4384 
4385 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4386 
4387 	/* Allocate memory for new array of thresholds */
4388 	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4389 			GFP_KERNEL);
4390 	if (!new) {
4391 		ret = -ENOMEM;
4392 		goto unlock;
4393 	}
4394 	new->size = size;
4395 
4396 	/* Copy thresholds (if any) to new array */
4397 	if (thresholds->primary) {
4398 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4399 				sizeof(struct mem_cgroup_threshold));
4400 	}
4401 
4402 	/* Add new threshold */
4403 	new->entries[size - 1].eventfd = eventfd;
4404 	new->entries[size - 1].threshold = threshold;
4405 
4406 	/* Sort thresholds. Registering of new threshold isn't time-critical */
4407 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4408 			compare_thresholds, NULL);
4409 
4410 	/* Find current threshold */
4411 	new->current_threshold = -1;
4412 	for (i = 0; i < size; i++) {
4413 		if (new->entries[i].threshold <= usage) {
4414 			/*
4415 			 * new->current_threshold will not be used until
4416 			 * rcu_assign_pointer(), so it's safe to increment
4417 			 * it here.
4418 			 */
4419 			++new->current_threshold;
4420 		} else
4421 			break;
4422 	}
4423 
4424 	/* Free old spare buffer and save old primary buffer as spare */
4425 	kfree(thresholds->spare);
4426 	thresholds->spare = thresholds->primary;
4427 
4428 	rcu_assign_pointer(thresholds->primary, new);
4429 
4430 	/* To be sure that nobody uses thresholds */
4431 	synchronize_rcu();
4432 
4433 unlock:
4434 	mutex_unlock(&memcg->thresholds_lock);
4435 
4436 	return ret;
4437 }
4438 
4439 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4440 	struct cftype *cft, struct eventfd_ctx *eventfd)
4441 {
4442 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4443 	struct mem_cgroup_thresholds *thresholds;
4444 	struct mem_cgroup_threshold_ary *new;
4445 	int type = MEMFILE_TYPE(cft->private);
4446 	u64 usage;
4447 	int i, j, size;
4448 
4449 	mutex_lock(&memcg->thresholds_lock);
4450 	if (type == _MEM)
4451 		thresholds = &memcg->thresholds;
4452 	else if (type == _MEMSWAP)
4453 		thresholds = &memcg->memsw_thresholds;
4454 	else
4455 		BUG();
4456 
4457 	if (!thresholds->primary)
4458 		goto unlock;
4459 
4460 	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4461 
4462 	/* Check if a threshold crossed before removing */
4463 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4464 
4465 	/* Calculate new number of threshold */
4466 	size = 0;
4467 	for (i = 0; i < thresholds->primary->size; i++) {
4468 		if (thresholds->primary->entries[i].eventfd != eventfd)
4469 			size++;
4470 	}
4471 
4472 	new = thresholds->spare;
4473 
4474 	/* Set thresholds array to NULL if we don't have thresholds */
4475 	if (!size) {
4476 		kfree(new);
4477 		new = NULL;
4478 		goto swap_buffers;
4479 	}
4480 
4481 	new->size = size;
4482 
4483 	/* Copy thresholds and find current threshold */
4484 	new->current_threshold = -1;
4485 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4486 		if (thresholds->primary->entries[i].eventfd == eventfd)
4487 			continue;
4488 
4489 		new->entries[j] = thresholds->primary->entries[i];
4490 		if (new->entries[j].threshold <= usage) {
4491 			/*
4492 			 * new->current_threshold will not be used
4493 			 * until rcu_assign_pointer(), so it's safe to increment
4494 			 * it here.
4495 			 */
4496 			++new->current_threshold;
4497 		}
4498 		j++;
4499 	}
4500 
4501 swap_buffers:
4502 	/* Swap primary and spare array */
4503 	thresholds->spare = thresholds->primary;
4504 	/* If all events are unregistered, free the spare array */
4505 	if (!new) {
4506 		kfree(thresholds->spare);
4507 		thresholds->spare = NULL;
4508 	}
4509 
4510 	rcu_assign_pointer(thresholds->primary, new);
4511 
4512 	/* To be sure that nobody uses thresholds */
4513 	synchronize_rcu();
4514 unlock:
4515 	mutex_unlock(&memcg->thresholds_lock);
4516 }
4517 
4518 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4519 	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4520 {
4521 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4522 	struct mem_cgroup_eventfd_list *event;
4523 	int type = MEMFILE_TYPE(cft->private);
4524 
4525 	BUG_ON(type != _OOM_TYPE);
4526 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4527 	if (!event)
4528 		return -ENOMEM;
4529 
4530 	spin_lock(&memcg_oom_lock);
4531 
4532 	event->eventfd = eventfd;
4533 	list_add(&event->list, &memcg->oom_notify);
4534 
4535 	/* already in OOM ? */
4536 	if (atomic_read(&memcg->under_oom))
4537 		eventfd_signal(eventfd, 1);
4538 	spin_unlock(&memcg_oom_lock);
4539 
4540 	return 0;
4541 }
4542 
4543 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4544 	struct cftype *cft, struct eventfd_ctx *eventfd)
4545 {
4546 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4547 	struct mem_cgroup_eventfd_list *ev, *tmp;
4548 	int type = MEMFILE_TYPE(cft->private);
4549 
4550 	BUG_ON(type != _OOM_TYPE);
4551 
4552 	spin_lock(&memcg_oom_lock);
4553 
4554 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4555 		if (ev->eventfd == eventfd) {
4556 			list_del(&ev->list);
4557 			kfree(ev);
4558 		}
4559 	}
4560 
4561 	spin_unlock(&memcg_oom_lock);
4562 }
4563 
4564 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4565 	struct cftype *cft,  struct cgroup_map_cb *cb)
4566 {
4567 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4568 
4569 	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4570 
4571 	if (atomic_read(&memcg->under_oom))
4572 		cb->fill(cb, "under_oom", 1);
4573 	else
4574 		cb->fill(cb, "under_oom", 0);
4575 	return 0;
4576 }
4577 
4578 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4579 	struct cftype *cft, u64 val)
4580 {
4581 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4582 	struct mem_cgroup *parent;
4583 
4584 	/* cannot set to root cgroup and only 0 and 1 are allowed */
4585 	if (!cgrp->parent || !((val == 0) || (val == 1)))
4586 		return -EINVAL;
4587 
4588 	parent = mem_cgroup_from_cont(cgrp->parent);
4589 
4590 	cgroup_lock();
4591 	/* oom-kill-disable is a flag for subhierarchy. */
4592 	if ((parent->use_hierarchy) ||
4593 	    (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4594 		cgroup_unlock();
4595 		return -EINVAL;
4596 	}
4597 	memcg->oom_kill_disable = val;
4598 	if (!val)
4599 		memcg_oom_recover(memcg);
4600 	cgroup_unlock();
4601 	return 0;
4602 }
4603 
4604 #ifdef CONFIG_MEMCG_KMEM
4605 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4606 {
4607 	return mem_cgroup_sockets_init(memcg, ss);
4608 };
4609 
4610 static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
4611 {
4612 	mem_cgroup_sockets_destroy(memcg);
4613 }
4614 #else
4615 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4616 {
4617 	return 0;
4618 }
4619 
4620 static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
4621 {
4622 }
4623 #endif
4624 
4625 static struct cftype mem_cgroup_files[] = {
4626 	{
4627 		.name = "usage_in_bytes",
4628 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4629 		.read = mem_cgroup_read,
4630 		.register_event = mem_cgroup_usage_register_event,
4631 		.unregister_event = mem_cgroup_usage_unregister_event,
4632 	},
4633 	{
4634 		.name = "max_usage_in_bytes",
4635 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4636 		.trigger = mem_cgroup_reset,
4637 		.read = mem_cgroup_read,
4638 	},
4639 	{
4640 		.name = "limit_in_bytes",
4641 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4642 		.write_string = mem_cgroup_write,
4643 		.read = mem_cgroup_read,
4644 	},
4645 	{
4646 		.name = "soft_limit_in_bytes",
4647 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4648 		.write_string = mem_cgroup_write,
4649 		.read = mem_cgroup_read,
4650 	},
4651 	{
4652 		.name = "failcnt",
4653 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4654 		.trigger = mem_cgroup_reset,
4655 		.read = mem_cgroup_read,
4656 	},
4657 	{
4658 		.name = "stat",
4659 		.read_seq_string = memcg_stat_show,
4660 	},
4661 	{
4662 		.name = "force_empty",
4663 		.trigger = mem_cgroup_force_empty_write,
4664 	},
4665 	{
4666 		.name = "use_hierarchy",
4667 		.write_u64 = mem_cgroup_hierarchy_write,
4668 		.read_u64 = mem_cgroup_hierarchy_read,
4669 	},
4670 	{
4671 		.name = "swappiness",
4672 		.read_u64 = mem_cgroup_swappiness_read,
4673 		.write_u64 = mem_cgroup_swappiness_write,
4674 	},
4675 	{
4676 		.name = "move_charge_at_immigrate",
4677 		.read_u64 = mem_cgroup_move_charge_read,
4678 		.write_u64 = mem_cgroup_move_charge_write,
4679 	},
4680 	{
4681 		.name = "oom_control",
4682 		.read_map = mem_cgroup_oom_control_read,
4683 		.write_u64 = mem_cgroup_oom_control_write,
4684 		.register_event = mem_cgroup_oom_register_event,
4685 		.unregister_event = mem_cgroup_oom_unregister_event,
4686 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4687 	},
4688 #ifdef CONFIG_NUMA
4689 	{
4690 		.name = "numa_stat",
4691 		.read_seq_string = memcg_numa_stat_show,
4692 	},
4693 #endif
4694 #ifdef CONFIG_MEMCG_SWAP
4695 	{
4696 		.name = "memsw.usage_in_bytes",
4697 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4698 		.read = mem_cgroup_read,
4699 		.register_event = mem_cgroup_usage_register_event,
4700 		.unregister_event = mem_cgroup_usage_unregister_event,
4701 	},
4702 	{
4703 		.name = "memsw.max_usage_in_bytes",
4704 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4705 		.trigger = mem_cgroup_reset,
4706 		.read = mem_cgroup_read,
4707 	},
4708 	{
4709 		.name = "memsw.limit_in_bytes",
4710 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4711 		.write_string = mem_cgroup_write,
4712 		.read = mem_cgroup_read,
4713 	},
4714 	{
4715 		.name = "memsw.failcnt",
4716 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4717 		.trigger = mem_cgroup_reset,
4718 		.read = mem_cgroup_read,
4719 	},
4720 #endif
4721 	{ },	/* terminate */
4722 };
4723 
4724 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4725 {
4726 	struct mem_cgroup_per_node *pn;
4727 	struct mem_cgroup_per_zone *mz;
4728 	int zone, tmp = node;
4729 	/*
4730 	 * This routine is called against possible nodes.
4731 	 * But it's BUG to call kmalloc() against offline node.
4732 	 *
4733 	 * TODO: this routine can waste much memory for nodes which will
4734 	 *       never be onlined. It's better to use memory hotplug callback
4735 	 *       function.
4736 	 */
4737 	if (!node_state(node, N_NORMAL_MEMORY))
4738 		tmp = -1;
4739 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4740 	if (!pn)
4741 		return 1;
4742 
4743 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4744 		mz = &pn->zoneinfo[zone];
4745 		lruvec_init(&mz->lruvec, &NODE_DATA(node)->node_zones[zone]);
4746 		mz->usage_in_excess = 0;
4747 		mz->on_tree = false;
4748 		mz->memcg = memcg;
4749 	}
4750 	memcg->info.nodeinfo[node] = pn;
4751 	return 0;
4752 }
4753 
4754 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4755 {
4756 	kfree(memcg->info.nodeinfo[node]);
4757 }
4758 
4759 static struct mem_cgroup *mem_cgroup_alloc(void)
4760 {
4761 	struct mem_cgroup *memcg;
4762 	int size = sizeof(struct mem_cgroup);
4763 
4764 	/* Can be very big if MAX_NUMNODES is very big */
4765 	if (size < PAGE_SIZE)
4766 		memcg = kzalloc(size, GFP_KERNEL);
4767 	else
4768 		memcg = vzalloc(size);
4769 
4770 	if (!memcg)
4771 		return NULL;
4772 
4773 	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4774 	if (!memcg->stat)
4775 		goto out_free;
4776 	spin_lock_init(&memcg->pcp_counter_lock);
4777 	return memcg;
4778 
4779 out_free:
4780 	if (size < PAGE_SIZE)
4781 		kfree(memcg);
4782 	else
4783 		vfree(memcg);
4784 	return NULL;
4785 }
4786 
4787 /*
4788  * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
4789  * but in process context.  The work_freeing structure is overlaid
4790  * on the rcu_freeing structure, which itself is overlaid on memsw.
4791  */
4792 static void free_work(struct work_struct *work)
4793 {
4794 	struct mem_cgroup *memcg;
4795 	int size = sizeof(struct mem_cgroup);
4796 
4797 	memcg = container_of(work, struct mem_cgroup, work_freeing);
4798 	/*
4799 	 * We need to make sure that (at least for now), the jump label
4800 	 * destruction code runs outside of the cgroup lock. This is because
4801 	 * get_online_cpus(), which is called from the static_branch update,
4802 	 * can't be called inside the cgroup_lock. cpusets are the ones
4803 	 * enforcing this dependency, so if they ever change, we might as well.
4804 	 *
4805 	 * schedule_work() will guarantee this happens. Be careful if you need
4806 	 * to move this code around, and make sure it is outside
4807 	 * the cgroup_lock.
4808 	 */
4809 	disarm_sock_keys(memcg);
4810 	if (size < PAGE_SIZE)
4811 		kfree(memcg);
4812 	else
4813 		vfree(memcg);
4814 }
4815 
4816 static void free_rcu(struct rcu_head *rcu_head)
4817 {
4818 	struct mem_cgroup *memcg;
4819 
4820 	memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
4821 	INIT_WORK(&memcg->work_freeing, free_work);
4822 	schedule_work(&memcg->work_freeing);
4823 }
4824 
4825 /*
4826  * At destroying mem_cgroup, references from swap_cgroup can remain.
4827  * (scanning all at force_empty is too costly...)
4828  *
4829  * Instead of clearing all references at force_empty, we remember
4830  * the number of reference from swap_cgroup and free mem_cgroup when
4831  * it goes down to 0.
4832  *
4833  * Removal of cgroup itself succeeds regardless of refs from swap.
4834  */
4835 
4836 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4837 {
4838 	int node;
4839 
4840 	mem_cgroup_remove_from_trees(memcg);
4841 	free_css_id(&mem_cgroup_subsys, &memcg->css);
4842 
4843 	for_each_node(node)
4844 		free_mem_cgroup_per_zone_info(memcg, node);
4845 
4846 	free_percpu(memcg->stat);
4847 	call_rcu(&memcg->rcu_freeing, free_rcu);
4848 }
4849 
4850 static void mem_cgroup_get(struct mem_cgroup *memcg)
4851 {
4852 	atomic_inc(&memcg->refcnt);
4853 }
4854 
4855 static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4856 {
4857 	if (atomic_sub_and_test(count, &memcg->refcnt)) {
4858 		struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4859 		__mem_cgroup_free(memcg);
4860 		if (parent)
4861 			mem_cgroup_put(parent);
4862 	}
4863 }
4864 
4865 static void mem_cgroup_put(struct mem_cgroup *memcg)
4866 {
4867 	__mem_cgroup_put(memcg, 1);
4868 }
4869 
4870 /*
4871  * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4872  */
4873 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4874 {
4875 	if (!memcg->res.parent)
4876 		return NULL;
4877 	return mem_cgroup_from_res_counter(memcg->res.parent, res);
4878 }
4879 EXPORT_SYMBOL(parent_mem_cgroup);
4880 
4881 #ifdef CONFIG_MEMCG_SWAP
4882 static void __init enable_swap_cgroup(void)
4883 {
4884 	if (!mem_cgroup_disabled() && really_do_swap_account)
4885 		do_swap_account = 1;
4886 }
4887 #else
4888 static void __init enable_swap_cgroup(void)
4889 {
4890 }
4891 #endif
4892 
4893 static int mem_cgroup_soft_limit_tree_init(void)
4894 {
4895 	struct mem_cgroup_tree_per_node *rtpn;
4896 	struct mem_cgroup_tree_per_zone *rtpz;
4897 	int tmp, node, zone;
4898 
4899 	for_each_node(node) {
4900 		tmp = node;
4901 		if (!node_state(node, N_NORMAL_MEMORY))
4902 			tmp = -1;
4903 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4904 		if (!rtpn)
4905 			goto err_cleanup;
4906 
4907 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
4908 
4909 		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4910 			rtpz = &rtpn->rb_tree_per_zone[zone];
4911 			rtpz->rb_root = RB_ROOT;
4912 			spin_lock_init(&rtpz->lock);
4913 		}
4914 	}
4915 	return 0;
4916 
4917 err_cleanup:
4918 	for_each_node(node) {
4919 		if (!soft_limit_tree.rb_tree_per_node[node])
4920 			break;
4921 		kfree(soft_limit_tree.rb_tree_per_node[node]);
4922 		soft_limit_tree.rb_tree_per_node[node] = NULL;
4923 	}
4924 	return 1;
4925 
4926 }
4927 
4928 static struct cgroup_subsys_state * __ref
4929 mem_cgroup_create(struct cgroup *cont)
4930 {
4931 	struct mem_cgroup *memcg, *parent;
4932 	long error = -ENOMEM;
4933 	int node;
4934 
4935 	memcg = mem_cgroup_alloc();
4936 	if (!memcg)
4937 		return ERR_PTR(error);
4938 
4939 	for_each_node(node)
4940 		if (alloc_mem_cgroup_per_zone_info(memcg, node))
4941 			goto free_out;
4942 
4943 	/* root ? */
4944 	if (cont->parent == NULL) {
4945 		int cpu;
4946 		enable_swap_cgroup();
4947 		parent = NULL;
4948 		if (mem_cgroup_soft_limit_tree_init())
4949 			goto free_out;
4950 		root_mem_cgroup = memcg;
4951 		for_each_possible_cpu(cpu) {
4952 			struct memcg_stock_pcp *stock =
4953 						&per_cpu(memcg_stock, cpu);
4954 			INIT_WORK(&stock->work, drain_local_stock);
4955 		}
4956 		hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4957 	} else {
4958 		parent = mem_cgroup_from_cont(cont->parent);
4959 		memcg->use_hierarchy = parent->use_hierarchy;
4960 		memcg->oom_kill_disable = parent->oom_kill_disable;
4961 	}
4962 
4963 	if (parent && parent->use_hierarchy) {
4964 		res_counter_init(&memcg->res, &parent->res);
4965 		res_counter_init(&memcg->memsw, &parent->memsw);
4966 		/*
4967 		 * We increment refcnt of the parent to ensure that we can
4968 		 * safely access it on res_counter_charge/uncharge.
4969 		 * This refcnt will be decremented when freeing this
4970 		 * mem_cgroup(see mem_cgroup_put).
4971 		 */
4972 		mem_cgroup_get(parent);
4973 	} else {
4974 		res_counter_init(&memcg->res, NULL);
4975 		res_counter_init(&memcg->memsw, NULL);
4976 	}
4977 	memcg->last_scanned_node = MAX_NUMNODES;
4978 	INIT_LIST_HEAD(&memcg->oom_notify);
4979 
4980 	if (parent)
4981 		memcg->swappiness = mem_cgroup_swappiness(parent);
4982 	atomic_set(&memcg->refcnt, 1);
4983 	memcg->move_charge_at_immigrate = 0;
4984 	mutex_init(&memcg->thresholds_lock);
4985 	spin_lock_init(&memcg->move_lock);
4986 
4987 	error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
4988 	if (error) {
4989 		/*
4990 		 * We call put now because our (and parent's) refcnts
4991 		 * are already in place. mem_cgroup_put() will internally
4992 		 * call __mem_cgroup_free, so return directly
4993 		 */
4994 		mem_cgroup_put(memcg);
4995 		return ERR_PTR(error);
4996 	}
4997 	return &memcg->css;
4998 free_out:
4999 	__mem_cgroup_free(memcg);
5000 	return ERR_PTR(error);
5001 }
5002 
5003 static int mem_cgroup_pre_destroy(struct cgroup *cont)
5004 {
5005 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5006 
5007 	return mem_cgroup_force_empty(memcg, false);
5008 }
5009 
5010 static void mem_cgroup_destroy(struct cgroup *cont)
5011 {
5012 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5013 
5014 	kmem_cgroup_destroy(memcg);
5015 
5016 	mem_cgroup_put(memcg);
5017 }
5018 
5019 #ifdef CONFIG_MMU
5020 /* Handlers for move charge at task migration. */
5021 #define PRECHARGE_COUNT_AT_ONCE	256
5022 static int mem_cgroup_do_precharge(unsigned long count)
5023 {
5024 	int ret = 0;
5025 	int batch_count = PRECHARGE_COUNT_AT_ONCE;
5026 	struct mem_cgroup *memcg = mc.to;
5027 
5028 	if (mem_cgroup_is_root(memcg)) {
5029 		mc.precharge += count;
5030 		/* we don't need css_get for root */
5031 		return ret;
5032 	}
5033 	/* try to charge at once */
5034 	if (count > 1) {
5035 		struct res_counter *dummy;
5036 		/*
5037 		 * "memcg" cannot be under rmdir() because we've already checked
5038 		 * by cgroup_lock_live_cgroup() that it is not removed and we
5039 		 * are still under the same cgroup_mutex. So we can postpone
5040 		 * css_get().
5041 		 */
5042 		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5043 			goto one_by_one;
5044 		if (do_swap_account && res_counter_charge(&memcg->memsw,
5045 						PAGE_SIZE * count, &dummy)) {
5046 			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5047 			goto one_by_one;
5048 		}
5049 		mc.precharge += count;
5050 		return ret;
5051 	}
5052 one_by_one:
5053 	/* fall back to one by one charge */
5054 	while (count--) {
5055 		if (signal_pending(current)) {
5056 			ret = -EINTR;
5057 			break;
5058 		}
5059 		if (!batch_count--) {
5060 			batch_count = PRECHARGE_COUNT_AT_ONCE;
5061 			cond_resched();
5062 		}
5063 		ret = __mem_cgroup_try_charge(NULL,
5064 					GFP_KERNEL, 1, &memcg, false);
5065 		if (ret)
5066 			/* mem_cgroup_clear_mc() will do uncharge later */
5067 			return ret;
5068 		mc.precharge++;
5069 	}
5070 	return ret;
5071 }
5072 
5073 /**
5074  * get_mctgt_type - get target type of moving charge
5075  * @vma: the vma the pte to be checked belongs
5076  * @addr: the address corresponding to the pte to be checked
5077  * @ptent: the pte to be checked
5078  * @target: the pointer the target page or swap ent will be stored(can be NULL)
5079  *
5080  * Returns
5081  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5082  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5083  *     move charge. if @target is not NULL, the page is stored in target->page
5084  *     with extra refcnt got(Callers should handle it).
5085  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5086  *     target for charge migration. if @target is not NULL, the entry is stored
5087  *     in target->ent.
5088  *
5089  * Called with pte lock held.
5090  */
5091 union mc_target {
5092 	struct page	*page;
5093 	swp_entry_t	ent;
5094 };
5095 
5096 enum mc_target_type {
5097 	MC_TARGET_NONE = 0,
5098 	MC_TARGET_PAGE,
5099 	MC_TARGET_SWAP,
5100 };
5101 
5102 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5103 						unsigned long addr, pte_t ptent)
5104 {
5105 	struct page *page = vm_normal_page(vma, addr, ptent);
5106 
5107 	if (!page || !page_mapped(page))
5108 		return NULL;
5109 	if (PageAnon(page)) {
5110 		/* we don't move shared anon */
5111 		if (!move_anon())
5112 			return NULL;
5113 	} else if (!move_file())
5114 		/* we ignore mapcount for file pages */
5115 		return NULL;
5116 	if (!get_page_unless_zero(page))
5117 		return NULL;
5118 
5119 	return page;
5120 }
5121 
5122 #ifdef CONFIG_SWAP
5123 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5124 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5125 {
5126 	struct page *page = NULL;
5127 	swp_entry_t ent = pte_to_swp_entry(ptent);
5128 
5129 	if (!move_anon() || non_swap_entry(ent))
5130 		return NULL;
5131 	/*
5132 	 * Because lookup_swap_cache() updates some statistics counter,
5133 	 * we call find_get_page() with swapper_space directly.
5134 	 */
5135 	page = find_get_page(&swapper_space, ent.val);
5136 	if (do_swap_account)
5137 		entry->val = ent.val;
5138 
5139 	return page;
5140 }
5141 #else
5142 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5143 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5144 {
5145 	return NULL;
5146 }
5147 #endif
5148 
5149 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5150 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5151 {
5152 	struct page *page = NULL;
5153 	struct address_space *mapping;
5154 	pgoff_t pgoff;
5155 
5156 	if (!vma->vm_file) /* anonymous vma */
5157 		return NULL;
5158 	if (!move_file())
5159 		return NULL;
5160 
5161 	mapping = vma->vm_file->f_mapping;
5162 	if (pte_none(ptent))
5163 		pgoff = linear_page_index(vma, addr);
5164 	else /* pte_file(ptent) is true */
5165 		pgoff = pte_to_pgoff(ptent);
5166 
5167 	/* page is moved even if it's not RSS of this task(page-faulted). */
5168 	page = find_get_page(mapping, pgoff);
5169 
5170 #ifdef CONFIG_SWAP
5171 	/* shmem/tmpfs may report page out on swap: account for that too. */
5172 	if (radix_tree_exceptional_entry(page)) {
5173 		swp_entry_t swap = radix_to_swp_entry(page);
5174 		if (do_swap_account)
5175 			*entry = swap;
5176 		page = find_get_page(&swapper_space, swap.val);
5177 	}
5178 #endif
5179 	return page;
5180 }
5181 
5182 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5183 		unsigned long addr, pte_t ptent, union mc_target *target)
5184 {
5185 	struct page *page = NULL;
5186 	struct page_cgroup *pc;
5187 	enum mc_target_type ret = MC_TARGET_NONE;
5188 	swp_entry_t ent = { .val = 0 };
5189 
5190 	if (pte_present(ptent))
5191 		page = mc_handle_present_pte(vma, addr, ptent);
5192 	else if (is_swap_pte(ptent))
5193 		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5194 	else if (pte_none(ptent) || pte_file(ptent))
5195 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
5196 
5197 	if (!page && !ent.val)
5198 		return ret;
5199 	if (page) {
5200 		pc = lookup_page_cgroup(page);
5201 		/*
5202 		 * Do only loose check w/o page_cgroup lock.
5203 		 * mem_cgroup_move_account() checks the pc is valid or not under
5204 		 * the lock.
5205 		 */
5206 		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5207 			ret = MC_TARGET_PAGE;
5208 			if (target)
5209 				target->page = page;
5210 		}
5211 		if (!ret || !target)
5212 			put_page(page);
5213 	}
5214 	/* There is a swap entry and a page doesn't exist or isn't charged */
5215 	if (ent.val && !ret &&
5216 			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
5217 		ret = MC_TARGET_SWAP;
5218 		if (target)
5219 			target->ent = ent;
5220 	}
5221 	return ret;
5222 }
5223 
5224 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5225 /*
5226  * We don't consider swapping or file mapped pages because THP does not
5227  * support them for now.
5228  * Caller should make sure that pmd_trans_huge(pmd) is true.
5229  */
5230 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5231 		unsigned long addr, pmd_t pmd, union mc_target *target)
5232 {
5233 	struct page *page = NULL;
5234 	struct page_cgroup *pc;
5235 	enum mc_target_type ret = MC_TARGET_NONE;
5236 
5237 	page = pmd_page(pmd);
5238 	VM_BUG_ON(!page || !PageHead(page));
5239 	if (!move_anon())
5240 		return ret;
5241 	pc = lookup_page_cgroup(page);
5242 	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5243 		ret = MC_TARGET_PAGE;
5244 		if (target) {
5245 			get_page(page);
5246 			target->page = page;
5247 		}
5248 	}
5249 	return ret;
5250 }
5251 #else
5252 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5253 		unsigned long addr, pmd_t pmd, union mc_target *target)
5254 {
5255 	return MC_TARGET_NONE;
5256 }
5257 #endif
5258 
5259 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5260 					unsigned long addr, unsigned long end,
5261 					struct mm_walk *walk)
5262 {
5263 	struct vm_area_struct *vma = walk->private;
5264 	pte_t *pte;
5265 	spinlock_t *ptl;
5266 
5267 	if (pmd_trans_huge_lock(pmd, vma) == 1) {
5268 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5269 			mc.precharge += HPAGE_PMD_NR;
5270 		spin_unlock(&vma->vm_mm->page_table_lock);
5271 		return 0;
5272 	}
5273 
5274 	if (pmd_trans_unstable(pmd))
5275 		return 0;
5276 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5277 	for (; addr != end; pte++, addr += PAGE_SIZE)
5278 		if (get_mctgt_type(vma, addr, *pte, NULL))
5279 			mc.precharge++;	/* increment precharge temporarily */
5280 	pte_unmap_unlock(pte - 1, ptl);
5281 	cond_resched();
5282 
5283 	return 0;
5284 }
5285 
5286 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5287 {
5288 	unsigned long precharge;
5289 	struct vm_area_struct *vma;
5290 
5291 	down_read(&mm->mmap_sem);
5292 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
5293 		struct mm_walk mem_cgroup_count_precharge_walk = {
5294 			.pmd_entry = mem_cgroup_count_precharge_pte_range,
5295 			.mm = mm,
5296 			.private = vma,
5297 		};
5298 		if (is_vm_hugetlb_page(vma))
5299 			continue;
5300 		walk_page_range(vma->vm_start, vma->vm_end,
5301 					&mem_cgroup_count_precharge_walk);
5302 	}
5303 	up_read(&mm->mmap_sem);
5304 
5305 	precharge = mc.precharge;
5306 	mc.precharge = 0;
5307 
5308 	return precharge;
5309 }
5310 
5311 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5312 {
5313 	unsigned long precharge = mem_cgroup_count_precharge(mm);
5314 
5315 	VM_BUG_ON(mc.moving_task);
5316 	mc.moving_task = current;
5317 	return mem_cgroup_do_precharge(precharge);
5318 }
5319 
5320 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5321 static void __mem_cgroup_clear_mc(void)
5322 {
5323 	struct mem_cgroup *from = mc.from;
5324 	struct mem_cgroup *to = mc.to;
5325 
5326 	/* we must uncharge all the leftover precharges from mc.to */
5327 	if (mc.precharge) {
5328 		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
5329 		mc.precharge = 0;
5330 	}
5331 	/*
5332 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5333 	 * we must uncharge here.
5334 	 */
5335 	if (mc.moved_charge) {
5336 		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5337 		mc.moved_charge = 0;
5338 	}
5339 	/* we must fixup refcnts and charges */
5340 	if (mc.moved_swap) {
5341 		/* uncharge swap account from the old cgroup */
5342 		if (!mem_cgroup_is_root(mc.from))
5343 			res_counter_uncharge(&mc.from->memsw,
5344 						PAGE_SIZE * mc.moved_swap);
5345 		__mem_cgroup_put(mc.from, mc.moved_swap);
5346 
5347 		if (!mem_cgroup_is_root(mc.to)) {
5348 			/*
5349 			 * we charged both to->res and to->memsw, so we should
5350 			 * uncharge to->res.
5351 			 */
5352 			res_counter_uncharge(&mc.to->res,
5353 						PAGE_SIZE * mc.moved_swap);
5354 		}
5355 		/* we've already done mem_cgroup_get(mc.to) */
5356 		mc.moved_swap = 0;
5357 	}
5358 	memcg_oom_recover(from);
5359 	memcg_oom_recover(to);
5360 	wake_up_all(&mc.waitq);
5361 }
5362 
5363 static void mem_cgroup_clear_mc(void)
5364 {
5365 	struct mem_cgroup *from = mc.from;
5366 
5367 	/*
5368 	 * we must clear moving_task before waking up waiters at the end of
5369 	 * task migration.
5370 	 */
5371 	mc.moving_task = NULL;
5372 	__mem_cgroup_clear_mc();
5373 	spin_lock(&mc.lock);
5374 	mc.from = NULL;
5375 	mc.to = NULL;
5376 	spin_unlock(&mc.lock);
5377 	mem_cgroup_end_move(from);
5378 }
5379 
5380 static int mem_cgroup_can_attach(struct cgroup *cgroup,
5381 				 struct cgroup_taskset *tset)
5382 {
5383 	struct task_struct *p = cgroup_taskset_first(tset);
5384 	int ret = 0;
5385 	struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5386 
5387 	if (memcg->move_charge_at_immigrate) {
5388 		struct mm_struct *mm;
5389 		struct mem_cgroup *from = mem_cgroup_from_task(p);
5390 
5391 		VM_BUG_ON(from == memcg);
5392 
5393 		mm = get_task_mm(p);
5394 		if (!mm)
5395 			return 0;
5396 		/* We move charges only when we move a owner of the mm */
5397 		if (mm->owner == p) {
5398 			VM_BUG_ON(mc.from);
5399 			VM_BUG_ON(mc.to);
5400 			VM_BUG_ON(mc.precharge);
5401 			VM_BUG_ON(mc.moved_charge);
5402 			VM_BUG_ON(mc.moved_swap);
5403 			mem_cgroup_start_move(from);
5404 			spin_lock(&mc.lock);
5405 			mc.from = from;
5406 			mc.to = memcg;
5407 			spin_unlock(&mc.lock);
5408 			/* We set mc.moving_task later */
5409 
5410 			ret = mem_cgroup_precharge_mc(mm);
5411 			if (ret)
5412 				mem_cgroup_clear_mc();
5413 		}
5414 		mmput(mm);
5415 	}
5416 	return ret;
5417 }
5418 
5419 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5420 				     struct cgroup_taskset *tset)
5421 {
5422 	mem_cgroup_clear_mc();
5423 }
5424 
5425 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5426 				unsigned long addr, unsigned long end,
5427 				struct mm_walk *walk)
5428 {
5429 	int ret = 0;
5430 	struct vm_area_struct *vma = walk->private;
5431 	pte_t *pte;
5432 	spinlock_t *ptl;
5433 	enum mc_target_type target_type;
5434 	union mc_target target;
5435 	struct page *page;
5436 	struct page_cgroup *pc;
5437 
5438 	/*
5439 	 * We don't take compound_lock() here but no race with splitting thp
5440 	 * happens because:
5441 	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5442 	 *    under splitting, which means there's no concurrent thp split,
5443 	 *  - if another thread runs into split_huge_page() just after we
5444 	 *    entered this if-block, the thread must wait for page table lock
5445 	 *    to be unlocked in __split_huge_page_splitting(), where the main
5446 	 *    part of thp split is not executed yet.
5447 	 */
5448 	if (pmd_trans_huge_lock(pmd, vma) == 1) {
5449 		if (mc.precharge < HPAGE_PMD_NR) {
5450 			spin_unlock(&vma->vm_mm->page_table_lock);
5451 			return 0;
5452 		}
5453 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5454 		if (target_type == MC_TARGET_PAGE) {
5455 			page = target.page;
5456 			if (!isolate_lru_page(page)) {
5457 				pc = lookup_page_cgroup(page);
5458 				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5459 							pc, mc.from, mc.to)) {
5460 					mc.precharge -= HPAGE_PMD_NR;
5461 					mc.moved_charge += HPAGE_PMD_NR;
5462 				}
5463 				putback_lru_page(page);
5464 			}
5465 			put_page(page);
5466 		}
5467 		spin_unlock(&vma->vm_mm->page_table_lock);
5468 		return 0;
5469 	}
5470 
5471 	if (pmd_trans_unstable(pmd))
5472 		return 0;
5473 retry:
5474 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5475 	for (; addr != end; addr += PAGE_SIZE) {
5476 		pte_t ptent = *(pte++);
5477 		swp_entry_t ent;
5478 
5479 		if (!mc.precharge)
5480 			break;
5481 
5482 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5483 		case MC_TARGET_PAGE:
5484 			page = target.page;
5485 			if (isolate_lru_page(page))
5486 				goto put;
5487 			pc = lookup_page_cgroup(page);
5488 			if (!mem_cgroup_move_account(page, 1, pc,
5489 						     mc.from, mc.to)) {
5490 				mc.precharge--;
5491 				/* we uncharge from mc.from later. */
5492 				mc.moved_charge++;
5493 			}
5494 			putback_lru_page(page);
5495 put:			/* get_mctgt_type() gets the page */
5496 			put_page(page);
5497 			break;
5498 		case MC_TARGET_SWAP:
5499 			ent = target.ent;
5500 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5501 				mc.precharge--;
5502 				/* we fixup refcnts and charges later. */
5503 				mc.moved_swap++;
5504 			}
5505 			break;
5506 		default:
5507 			break;
5508 		}
5509 	}
5510 	pte_unmap_unlock(pte - 1, ptl);
5511 	cond_resched();
5512 
5513 	if (addr != end) {
5514 		/*
5515 		 * We have consumed all precharges we got in can_attach().
5516 		 * We try charge one by one, but don't do any additional
5517 		 * charges to mc.to if we have failed in charge once in attach()
5518 		 * phase.
5519 		 */
5520 		ret = mem_cgroup_do_precharge(1);
5521 		if (!ret)
5522 			goto retry;
5523 	}
5524 
5525 	return ret;
5526 }
5527 
5528 static void mem_cgroup_move_charge(struct mm_struct *mm)
5529 {
5530 	struct vm_area_struct *vma;
5531 
5532 	lru_add_drain_all();
5533 retry:
5534 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5535 		/*
5536 		 * Someone who are holding the mmap_sem might be waiting in
5537 		 * waitq. So we cancel all extra charges, wake up all waiters,
5538 		 * and retry. Because we cancel precharges, we might not be able
5539 		 * to move enough charges, but moving charge is a best-effort
5540 		 * feature anyway, so it wouldn't be a big problem.
5541 		 */
5542 		__mem_cgroup_clear_mc();
5543 		cond_resched();
5544 		goto retry;
5545 	}
5546 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
5547 		int ret;
5548 		struct mm_walk mem_cgroup_move_charge_walk = {
5549 			.pmd_entry = mem_cgroup_move_charge_pte_range,
5550 			.mm = mm,
5551 			.private = vma,
5552 		};
5553 		if (is_vm_hugetlb_page(vma))
5554 			continue;
5555 		ret = walk_page_range(vma->vm_start, vma->vm_end,
5556 						&mem_cgroup_move_charge_walk);
5557 		if (ret)
5558 			/*
5559 			 * means we have consumed all precharges and failed in
5560 			 * doing additional charge. Just abandon here.
5561 			 */
5562 			break;
5563 	}
5564 	up_read(&mm->mmap_sem);
5565 }
5566 
5567 static void mem_cgroup_move_task(struct cgroup *cont,
5568 				 struct cgroup_taskset *tset)
5569 {
5570 	struct task_struct *p = cgroup_taskset_first(tset);
5571 	struct mm_struct *mm = get_task_mm(p);
5572 
5573 	if (mm) {
5574 		if (mc.to)
5575 			mem_cgroup_move_charge(mm);
5576 		mmput(mm);
5577 	}
5578 	if (mc.to)
5579 		mem_cgroup_clear_mc();
5580 }
5581 #else	/* !CONFIG_MMU */
5582 static int mem_cgroup_can_attach(struct cgroup *cgroup,
5583 				 struct cgroup_taskset *tset)
5584 {
5585 	return 0;
5586 }
5587 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5588 				     struct cgroup_taskset *tset)
5589 {
5590 }
5591 static void mem_cgroup_move_task(struct cgroup *cont,
5592 				 struct cgroup_taskset *tset)
5593 {
5594 }
5595 #endif
5596 
5597 struct cgroup_subsys mem_cgroup_subsys = {
5598 	.name = "memory",
5599 	.subsys_id = mem_cgroup_subsys_id,
5600 	.create = mem_cgroup_create,
5601 	.pre_destroy = mem_cgroup_pre_destroy,
5602 	.destroy = mem_cgroup_destroy,
5603 	.can_attach = mem_cgroup_can_attach,
5604 	.cancel_attach = mem_cgroup_cancel_attach,
5605 	.attach = mem_cgroup_move_task,
5606 	.base_cftypes = mem_cgroup_files,
5607 	.early_init = 0,
5608 	.use_id = 1,
5609 	.__DEPRECATED_clear_css_refs = true,
5610 };
5611 
5612 #ifdef CONFIG_MEMCG_SWAP
5613 static int __init enable_swap_account(char *s)
5614 {
5615 	/* consider enabled if no parameter or 1 is given */
5616 	if (!strcmp(s, "1"))
5617 		really_do_swap_account = 1;
5618 	else if (!strcmp(s, "0"))
5619 		really_do_swap_account = 0;
5620 	return 1;
5621 }
5622 __setup("swapaccount=", enable_swap_account);
5623 
5624 #endif
5625