1 /* memcontrol.c - Memory Controller 2 * 3 * Copyright IBM Corporation, 2007 4 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 5 * 6 * Copyright 2007 OpenVZ SWsoft Inc 7 * Author: Pavel Emelianov <xemul@openvz.org> 8 * 9 * Memory thresholds 10 * Copyright (C) 2009 Nokia Corporation 11 * Author: Kirill A. Shutemov 12 * 13 * This program is free software; you can redistribute it and/or modify 14 * it under the terms of the GNU General Public License as published by 15 * the Free Software Foundation; either version 2 of the License, or 16 * (at your option) any later version. 17 * 18 * This program is distributed in the hope that it will be useful, 19 * but WITHOUT ANY WARRANTY; without even the implied warranty of 20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 21 * GNU General Public License for more details. 22 */ 23 24 #include <linux/res_counter.h> 25 #include <linux/memcontrol.h> 26 #include <linux/cgroup.h> 27 #include <linux/mm.h> 28 #include <linux/hugetlb.h> 29 #include <linux/pagemap.h> 30 #include <linux/smp.h> 31 #include <linux/page-flags.h> 32 #include <linux/backing-dev.h> 33 #include <linux/bit_spinlock.h> 34 #include <linux/rcupdate.h> 35 #include <linux/limits.h> 36 #include <linux/export.h> 37 #include <linux/mutex.h> 38 #include <linux/rbtree.h> 39 #include <linux/slab.h> 40 #include <linux/swap.h> 41 #include <linux/swapops.h> 42 #include <linux/spinlock.h> 43 #include <linux/eventfd.h> 44 #include <linux/sort.h> 45 #include <linux/fs.h> 46 #include <linux/seq_file.h> 47 #include <linux/vmalloc.h> 48 #include <linux/mm_inline.h> 49 #include <linux/page_cgroup.h> 50 #include <linux/cpu.h> 51 #include <linux/oom.h> 52 #include "internal.h" 53 #include <net/sock.h> 54 #include <net/tcp_memcontrol.h> 55 56 #include <asm/uaccess.h> 57 58 #include <trace/events/vmscan.h> 59 60 struct cgroup_subsys mem_cgroup_subsys __read_mostly; 61 #define MEM_CGROUP_RECLAIM_RETRIES 5 62 static struct mem_cgroup *root_mem_cgroup __read_mostly; 63 64 #ifdef CONFIG_MEMCG_SWAP 65 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */ 66 int do_swap_account __read_mostly; 67 68 /* for remember boot option*/ 69 #ifdef CONFIG_MEMCG_SWAP_ENABLED 70 static int really_do_swap_account __initdata = 1; 71 #else 72 static int really_do_swap_account __initdata = 0; 73 #endif 74 75 #else 76 #define do_swap_account 0 77 #endif 78 79 80 /* 81 * Statistics for memory cgroup. 82 */ 83 enum mem_cgroup_stat_index { 84 /* 85 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss. 86 */ 87 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */ 88 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */ 89 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */ 90 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */ 91 MEM_CGROUP_STAT_NSTATS, 92 }; 93 94 static const char * const mem_cgroup_stat_names[] = { 95 "cache", 96 "rss", 97 "mapped_file", 98 "swap", 99 }; 100 101 enum mem_cgroup_events_index { 102 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */ 103 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */ 104 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */ 105 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */ 106 MEM_CGROUP_EVENTS_NSTATS, 107 }; 108 109 static const char * const mem_cgroup_events_names[] = { 110 "pgpgin", 111 "pgpgout", 112 "pgfault", 113 "pgmajfault", 114 }; 115 116 /* 117 * Per memcg event counter is incremented at every pagein/pageout. With THP, 118 * it will be incremated by the number of pages. This counter is used for 119 * for trigger some periodic events. This is straightforward and better 120 * than using jiffies etc. to handle periodic memcg event. 121 */ 122 enum mem_cgroup_events_target { 123 MEM_CGROUP_TARGET_THRESH, 124 MEM_CGROUP_TARGET_SOFTLIMIT, 125 MEM_CGROUP_TARGET_NUMAINFO, 126 MEM_CGROUP_NTARGETS, 127 }; 128 #define THRESHOLDS_EVENTS_TARGET 128 129 #define SOFTLIMIT_EVENTS_TARGET 1024 130 #define NUMAINFO_EVENTS_TARGET 1024 131 132 struct mem_cgroup_stat_cpu { 133 long count[MEM_CGROUP_STAT_NSTATS]; 134 unsigned long events[MEM_CGROUP_EVENTS_NSTATS]; 135 unsigned long nr_page_events; 136 unsigned long targets[MEM_CGROUP_NTARGETS]; 137 }; 138 139 struct mem_cgroup_reclaim_iter { 140 /* css_id of the last scanned hierarchy member */ 141 int position; 142 /* scan generation, increased every round-trip */ 143 unsigned int generation; 144 }; 145 146 /* 147 * per-zone information in memory controller. 148 */ 149 struct mem_cgroup_per_zone { 150 struct lruvec lruvec; 151 unsigned long lru_size[NR_LRU_LISTS]; 152 153 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1]; 154 155 struct rb_node tree_node; /* RB tree node */ 156 unsigned long long usage_in_excess;/* Set to the value by which */ 157 /* the soft limit is exceeded*/ 158 bool on_tree; 159 struct mem_cgroup *memcg; /* Back pointer, we cannot */ 160 /* use container_of */ 161 }; 162 163 struct mem_cgroup_per_node { 164 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES]; 165 }; 166 167 struct mem_cgroup_lru_info { 168 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES]; 169 }; 170 171 /* 172 * Cgroups above their limits are maintained in a RB-Tree, independent of 173 * their hierarchy representation 174 */ 175 176 struct mem_cgroup_tree_per_zone { 177 struct rb_root rb_root; 178 spinlock_t lock; 179 }; 180 181 struct mem_cgroup_tree_per_node { 182 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES]; 183 }; 184 185 struct mem_cgroup_tree { 186 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 187 }; 188 189 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 190 191 struct mem_cgroup_threshold { 192 struct eventfd_ctx *eventfd; 193 u64 threshold; 194 }; 195 196 /* For threshold */ 197 struct mem_cgroup_threshold_ary { 198 /* An array index points to threshold just below or equal to usage. */ 199 int current_threshold; 200 /* Size of entries[] */ 201 unsigned int size; 202 /* Array of thresholds */ 203 struct mem_cgroup_threshold entries[0]; 204 }; 205 206 struct mem_cgroup_thresholds { 207 /* Primary thresholds array */ 208 struct mem_cgroup_threshold_ary *primary; 209 /* 210 * Spare threshold array. 211 * This is needed to make mem_cgroup_unregister_event() "never fail". 212 * It must be able to store at least primary->size - 1 entries. 213 */ 214 struct mem_cgroup_threshold_ary *spare; 215 }; 216 217 /* for OOM */ 218 struct mem_cgroup_eventfd_list { 219 struct list_head list; 220 struct eventfd_ctx *eventfd; 221 }; 222 223 static void mem_cgroup_threshold(struct mem_cgroup *memcg); 224 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); 225 226 /* 227 * The memory controller data structure. The memory controller controls both 228 * page cache and RSS per cgroup. We would eventually like to provide 229 * statistics based on the statistics developed by Rik Van Riel for clock-pro, 230 * to help the administrator determine what knobs to tune. 231 * 232 * TODO: Add a water mark for the memory controller. Reclaim will begin when 233 * we hit the water mark. May be even add a low water mark, such that 234 * no reclaim occurs from a cgroup at it's low water mark, this is 235 * a feature that will be implemented much later in the future. 236 */ 237 struct mem_cgroup { 238 struct cgroup_subsys_state css; 239 /* 240 * the counter to account for memory usage 241 */ 242 struct res_counter res; 243 244 union { 245 /* 246 * the counter to account for mem+swap usage. 247 */ 248 struct res_counter memsw; 249 250 /* 251 * rcu_freeing is used only when freeing struct mem_cgroup, 252 * so put it into a union to avoid wasting more memory. 253 * It must be disjoint from the css field. It could be 254 * in a union with the res field, but res plays a much 255 * larger part in mem_cgroup life than memsw, and might 256 * be of interest, even at time of free, when debugging. 257 * So share rcu_head with the less interesting memsw. 258 */ 259 struct rcu_head rcu_freeing; 260 /* 261 * We also need some space for a worker in deferred freeing. 262 * By the time we call it, rcu_freeing is no longer in use. 263 */ 264 struct work_struct work_freeing; 265 }; 266 267 /* 268 * Per cgroup active and inactive list, similar to the 269 * per zone LRU lists. 270 */ 271 struct mem_cgroup_lru_info info; 272 int last_scanned_node; 273 #if MAX_NUMNODES > 1 274 nodemask_t scan_nodes; 275 atomic_t numainfo_events; 276 atomic_t numainfo_updating; 277 #endif 278 /* 279 * Should the accounting and control be hierarchical, per subtree? 280 */ 281 bool use_hierarchy; 282 283 bool oom_lock; 284 atomic_t under_oom; 285 286 atomic_t refcnt; 287 288 int swappiness; 289 /* OOM-Killer disable */ 290 int oom_kill_disable; 291 292 /* set when res.limit == memsw.limit */ 293 bool memsw_is_minimum; 294 295 /* protect arrays of thresholds */ 296 struct mutex thresholds_lock; 297 298 /* thresholds for memory usage. RCU-protected */ 299 struct mem_cgroup_thresholds thresholds; 300 301 /* thresholds for mem+swap usage. RCU-protected */ 302 struct mem_cgroup_thresholds memsw_thresholds; 303 304 /* For oom notifier event fd */ 305 struct list_head oom_notify; 306 307 /* 308 * Should we move charges of a task when a task is moved into this 309 * mem_cgroup ? And what type of charges should we move ? 310 */ 311 unsigned long move_charge_at_immigrate; 312 /* 313 * set > 0 if pages under this cgroup are moving to other cgroup. 314 */ 315 atomic_t moving_account; 316 /* taken only while moving_account > 0 */ 317 spinlock_t move_lock; 318 /* 319 * percpu counter. 320 */ 321 struct mem_cgroup_stat_cpu __percpu *stat; 322 /* 323 * used when a cpu is offlined or other synchronizations 324 * See mem_cgroup_read_stat(). 325 */ 326 struct mem_cgroup_stat_cpu nocpu_base; 327 spinlock_t pcp_counter_lock; 328 329 #ifdef CONFIG_INET 330 struct tcp_memcontrol tcp_mem; 331 #endif 332 }; 333 334 /* Stuffs for move charges at task migration. */ 335 /* 336 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a 337 * left-shifted bitmap of these types. 338 */ 339 enum move_type { 340 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */ 341 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */ 342 NR_MOVE_TYPE, 343 }; 344 345 /* "mc" and its members are protected by cgroup_mutex */ 346 static struct move_charge_struct { 347 spinlock_t lock; /* for from, to */ 348 struct mem_cgroup *from; 349 struct mem_cgroup *to; 350 unsigned long precharge; 351 unsigned long moved_charge; 352 unsigned long moved_swap; 353 struct task_struct *moving_task; /* a task moving charges */ 354 wait_queue_head_t waitq; /* a waitq for other context */ 355 } mc = { 356 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 357 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 358 }; 359 360 static bool move_anon(void) 361 { 362 return test_bit(MOVE_CHARGE_TYPE_ANON, 363 &mc.to->move_charge_at_immigrate); 364 } 365 366 static bool move_file(void) 367 { 368 return test_bit(MOVE_CHARGE_TYPE_FILE, 369 &mc.to->move_charge_at_immigrate); 370 } 371 372 /* 373 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft 374 * limit reclaim to prevent infinite loops, if they ever occur. 375 */ 376 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 377 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 378 379 enum charge_type { 380 MEM_CGROUP_CHARGE_TYPE_CACHE = 0, 381 MEM_CGROUP_CHARGE_TYPE_ANON, 382 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */ 383 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */ 384 NR_CHARGE_TYPE, 385 }; 386 387 /* for encoding cft->private value on file */ 388 #define _MEM (0) 389 #define _MEMSWAP (1) 390 #define _OOM_TYPE (2) 391 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) 392 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) 393 #define MEMFILE_ATTR(val) ((val) & 0xffff) 394 /* Used for OOM nofiier */ 395 #define OOM_CONTROL (0) 396 397 /* 398 * Reclaim flags for mem_cgroup_hierarchical_reclaim 399 */ 400 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0 401 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT) 402 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1 403 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT) 404 405 static void mem_cgroup_get(struct mem_cgroup *memcg); 406 static void mem_cgroup_put(struct mem_cgroup *memcg); 407 408 static inline 409 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s) 410 { 411 return container_of(s, struct mem_cgroup, css); 412 } 413 414 /* Writing them here to avoid exposing memcg's inner layout */ 415 #ifdef CONFIG_MEMCG_KMEM 416 #include <net/sock.h> 417 #include <net/ip.h> 418 419 static bool mem_cgroup_is_root(struct mem_cgroup *memcg); 420 void sock_update_memcg(struct sock *sk) 421 { 422 if (mem_cgroup_sockets_enabled) { 423 struct mem_cgroup *memcg; 424 struct cg_proto *cg_proto; 425 426 BUG_ON(!sk->sk_prot->proto_cgroup); 427 428 /* Socket cloning can throw us here with sk_cgrp already 429 * filled. It won't however, necessarily happen from 430 * process context. So the test for root memcg given 431 * the current task's memcg won't help us in this case. 432 * 433 * Respecting the original socket's memcg is a better 434 * decision in this case. 435 */ 436 if (sk->sk_cgrp) { 437 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg)); 438 mem_cgroup_get(sk->sk_cgrp->memcg); 439 return; 440 } 441 442 rcu_read_lock(); 443 memcg = mem_cgroup_from_task(current); 444 cg_proto = sk->sk_prot->proto_cgroup(memcg); 445 if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) { 446 mem_cgroup_get(memcg); 447 sk->sk_cgrp = cg_proto; 448 } 449 rcu_read_unlock(); 450 } 451 } 452 EXPORT_SYMBOL(sock_update_memcg); 453 454 void sock_release_memcg(struct sock *sk) 455 { 456 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 457 struct mem_cgroup *memcg; 458 WARN_ON(!sk->sk_cgrp->memcg); 459 memcg = sk->sk_cgrp->memcg; 460 mem_cgroup_put(memcg); 461 } 462 } 463 464 #ifdef CONFIG_INET 465 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg) 466 { 467 if (!memcg || mem_cgroup_is_root(memcg)) 468 return NULL; 469 470 return &memcg->tcp_mem.cg_proto; 471 } 472 EXPORT_SYMBOL(tcp_proto_cgroup); 473 #endif /* CONFIG_INET */ 474 #endif /* CONFIG_MEMCG_KMEM */ 475 476 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM) 477 static void disarm_sock_keys(struct mem_cgroup *memcg) 478 { 479 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto)) 480 return; 481 static_key_slow_dec(&memcg_socket_limit_enabled); 482 } 483 #else 484 static void disarm_sock_keys(struct mem_cgroup *memcg) 485 { 486 } 487 #endif 488 489 static void drain_all_stock_async(struct mem_cgroup *memcg); 490 491 static struct mem_cgroup_per_zone * 492 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid) 493 { 494 return &memcg->info.nodeinfo[nid]->zoneinfo[zid]; 495 } 496 497 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg) 498 { 499 return &memcg->css; 500 } 501 502 static struct mem_cgroup_per_zone * 503 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page) 504 { 505 int nid = page_to_nid(page); 506 int zid = page_zonenum(page); 507 508 return mem_cgroup_zoneinfo(memcg, nid, zid); 509 } 510 511 static struct mem_cgroup_tree_per_zone * 512 soft_limit_tree_node_zone(int nid, int zid) 513 { 514 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; 515 } 516 517 static struct mem_cgroup_tree_per_zone * 518 soft_limit_tree_from_page(struct page *page) 519 { 520 int nid = page_to_nid(page); 521 int zid = page_zonenum(page); 522 523 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; 524 } 525 526 static void 527 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg, 528 struct mem_cgroup_per_zone *mz, 529 struct mem_cgroup_tree_per_zone *mctz, 530 unsigned long long new_usage_in_excess) 531 { 532 struct rb_node **p = &mctz->rb_root.rb_node; 533 struct rb_node *parent = NULL; 534 struct mem_cgroup_per_zone *mz_node; 535 536 if (mz->on_tree) 537 return; 538 539 mz->usage_in_excess = new_usage_in_excess; 540 if (!mz->usage_in_excess) 541 return; 542 while (*p) { 543 parent = *p; 544 mz_node = rb_entry(parent, struct mem_cgroup_per_zone, 545 tree_node); 546 if (mz->usage_in_excess < mz_node->usage_in_excess) 547 p = &(*p)->rb_left; 548 /* 549 * We can't avoid mem cgroups that are over their soft 550 * limit by the same amount 551 */ 552 else if (mz->usage_in_excess >= mz_node->usage_in_excess) 553 p = &(*p)->rb_right; 554 } 555 rb_link_node(&mz->tree_node, parent, p); 556 rb_insert_color(&mz->tree_node, &mctz->rb_root); 557 mz->on_tree = true; 558 } 559 560 static void 561 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg, 562 struct mem_cgroup_per_zone *mz, 563 struct mem_cgroup_tree_per_zone *mctz) 564 { 565 if (!mz->on_tree) 566 return; 567 rb_erase(&mz->tree_node, &mctz->rb_root); 568 mz->on_tree = false; 569 } 570 571 static void 572 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg, 573 struct mem_cgroup_per_zone *mz, 574 struct mem_cgroup_tree_per_zone *mctz) 575 { 576 spin_lock(&mctz->lock); 577 __mem_cgroup_remove_exceeded(memcg, mz, mctz); 578 spin_unlock(&mctz->lock); 579 } 580 581 582 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page) 583 { 584 unsigned long long excess; 585 struct mem_cgroup_per_zone *mz; 586 struct mem_cgroup_tree_per_zone *mctz; 587 int nid = page_to_nid(page); 588 int zid = page_zonenum(page); 589 mctz = soft_limit_tree_from_page(page); 590 591 /* 592 * Necessary to update all ancestors when hierarchy is used. 593 * because their event counter is not touched. 594 */ 595 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 596 mz = mem_cgroup_zoneinfo(memcg, nid, zid); 597 excess = res_counter_soft_limit_excess(&memcg->res); 598 /* 599 * We have to update the tree if mz is on RB-tree or 600 * mem is over its softlimit. 601 */ 602 if (excess || mz->on_tree) { 603 spin_lock(&mctz->lock); 604 /* if on-tree, remove it */ 605 if (mz->on_tree) 606 __mem_cgroup_remove_exceeded(memcg, mz, mctz); 607 /* 608 * Insert again. mz->usage_in_excess will be updated. 609 * If excess is 0, no tree ops. 610 */ 611 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess); 612 spin_unlock(&mctz->lock); 613 } 614 } 615 } 616 617 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) 618 { 619 int node, zone; 620 struct mem_cgroup_per_zone *mz; 621 struct mem_cgroup_tree_per_zone *mctz; 622 623 for_each_node(node) { 624 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 625 mz = mem_cgroup_zoneinfo(memcg, node, zone); 626 mctz = soft_limit_tree_node_zone(node, zone); 627 mem_cgroup_remove_exceeded(memcg, mz, mctz); 628 } 629 } 630 } 631 632 static struct mem_cgroup_per_zone * 633 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) 634 { 635 struct rb_node *rightmost = NULL; 636 struct mem_cgroup_per_zone *mz; 637 638 retry: 639 mz = NULL; 640 rightmost = rb_last(&mctz->rb_root); 641 if (!rightmost) 642 goto done; /* Nothing to reclaim from */ 643 644 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node); 645 /* 646 * Remove the node now but someone else can add it back, 647 * we will to add it back at the end of reclaim to its correct 648 * position in the tree. 649 */ 650 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz); 651 if (!res_counter_soft_limit_excess(&mz->memcg->res) || 652 !css_tryget(&mz->memcg->css)) 653 goto retry; 654 done: 655 return mz; 656 } 657 658 static struct mem_cgroup_per_zone * 659 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) 660 { 661 struct mem_cgroup_per_zone *mz; 662 663 spin_lock(&mctz->lock); 664 mz = __mem_cgroup_largest_soft_limit_node(mctz); 665 spin_unlock(&mctz->lock); 666 return mz; 667 } 668 669 /* 670 * Implementation Note: reading percpu statistics for memcg. 671 * 672 * Both of vmstat[] and percpu_counter has threshold and do periodic 673 * synchronization to implement "quick" read. There are trade-off between 674 * reading cost and precision of value. Then, we may have a chance to implement 675 * a periodic synchronizion of counter in memcg's counter. 676 * 677 * But this _read() function is used for user interface now. The user accounts 678 * memory usage by memory cgroup and he _always_ requires exact value because 679 * he accounts memory. Even if we provide quick-and-fuzzy read, we always 680 * have to visit all online cpus and make sum. So, for now, unnecessary 681 * synchronization is not implemented. (just implemented for cpu hotplug) 682 * 683 * If there are kernel internal actions which can make use of some not-exact 684 * value, and reading all cpu value can be performance bottleneck in some 685 * common workload, threashold and synchonization as vmstat[] should be 686 * implemented. 687 */ 688 static long mem_cgroup_read_stat(struct mem_cgroup *memcg, 689 enum mem_cgroup_stat_index idx) 690 { 691 long val = 0; 692 int cpu; 693 694 get_online_cpus(); 695 for_each_online_cpu(cpu) 696 val += per_cpu(memcg->stat->count[idx], cpu); 697 #ifdef CONFIG_HOTPLUG_CPU 698 spin_lock(&memcg->pcp_counter_lock); 699 val += memcg->nocpu_base.count[idx]; 700 spin_unlock(&memcg->pcp_counter_lock); 701 #endif 702 put_online_cpus(); 703 return val; 704 } 705 706 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg, 707 bool charge) 708 { 709 int val = (charge) ? 1 : -1; 710 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val); 711 } 712 713 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg, 714 enum mem_cgroup_events_index idx) 715 { 716 unsigned long val = 0; 717 int cpu; 718 719 for_each_online_cpu(cpu) 720 val += per_cpu(memcg->stat->events[idx], cpu); 721 #ifdef CONFIG_HOTPLUG_CPU 722 spin_lock(&memcg->pcp_counter_lock); 723 val += memcg->nocpu_base.events[idx]; 724 spin_unlock(&memcg->pcp_counter_lock); 725 #endif 726 return val; 727 } 728 729 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, 730 bool anon, int nr_pages) 731 { 732 preempt_disable(); 733 734 /* 735 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is 736 * counted as CACHE even if it's on ANON LRU. 737 */ 738 if (anon) 739 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS], 740 nr_pages); 741 else 742 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE], 743 nr_pages); 744 745 /* pagein of a big page is an event. So, ignore page size */ 746 if (nr_pages > 0) 747 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]); 748 else { 749 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]); 750 nr_pages = -nr_pages; /* for event */ 751 } 752 753 __this_cpu_add(memcg->stat->nr_page_events, nr_pages); 754 755 preempt_enable(); 756 } 757 758 unsigned long 759 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru) 760 { 761 struct mem_cgroup_per_zone *mz; 762 763 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec); 764 return mz->lru_size[lru]; 765 } 766 767 static unsigned long 768 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid, 769 unsigned int lru_mask) 770 { 771 struct mem_cgroup_per_zone *mz; 772 enum lru_list lru; 773 unsigned long ret = 0; 774 775 mz = mem_cgroup_zoneinfo(memcg, nid, zid); 776 777 for_each_lru(lru) { 778 if (BIT(lru) & lru_mask) 779 ret += mz->lru_size[lru]; 780 } 781 return ret; 782 } 783 784 static unsigned long 785 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 786 int nid, unsigned int lru_mask) 787 { 788 u64 total = 0; 789 int zid; 790 791 for (zid = 0; zid < MAX_NR_ZONES; zid++) 792 total += mem_cgroup_zone_nr_lru_pages(memcg, 793 nid, zid, lru_mask); 794 795 return total; 796 } 797 798 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 799 unsigned int lru_mask) 800 { 801 int nid; 802 u64 total = 0; 803 804 for_each_node_state(nid, N_HIGH_MEMORY) 805 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask); 806 return total; 807 } 808 809 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, 810 enum mem_cgroup_events_target target) 811 { 812 unsigned long val, next; 813 814 val = __this_cpu_read(memcg->stat->nr_page_events); 815 next = __this_cpu_read(memcg->stat->targets[target]); 816 /* from time_after() in jiffies.h */ 817 if ((long)next - (long)val < 0) { 818 switch (target) { 819 case MEM_CGROUP_TARGET_THRESH: 820 next = val + THRESHOLDS_EVENTS_TARGET; 821 break; 822 case MEM_CGROUP_TARGET_SOFTLIMIT: 823 next = val + SOFTLIMIT_EVENTS_TARGET; 824 break; 825 case MEM_CGROUP_TARGET_NUMAINFO: 826 next = val + NUMAINFO_EVENTS_TARGET; 827 break; 828 default: 829 break; 830 } 831 __this_cpu_write(memcg->stat->targets[target], next); 832 return true; 833 } 834 return false; 835 } 836 837 /* 838 * Check events in order. 839 * 840 */ 841 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) 842 { 843 preempt_disable(); 844 /* threshold event is triggered in finer grain than soft limit */ 845 if (unlikely(mem_cgroup_event_ratelimit(memcg, 846 MEM_CGROUP_TARGET_THRESH))) { 847 bool do_softlimit; 848 bool do_numainfo __maybe_unused; 849 850 do_softlimit = mem_cgroup_event_ratelimit(memcg, 851 MEM_CGROUP_TARGET_SOFTLIMIT); 852 #if MAX_NUMNODES > 1 853 do_numainfo = mem_cgroup_event_ratelimit(memcg, 854 MEM_CGROUP_TARGET_NUMAINFO); 855 #endif 856 preempt_enable(); 857 858 mem_cgroup_threshold(memcg); 859 if (unlikely(do_softlimit)) 860 mem_cgroup_update_tree(memcg, page); 861 #if MAX_NUMNODES > 1 862 if (unlikely(do_numainfo)) 863 atomic_inc(&memcg->numainfo_events); 864 #endif 865 } else 866 preempt_enable(); 867 } 868 869 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont) 870 { 871 return mem_cgroup_from_css( 872 cgroup_subsys_state(cont, mem_cgroup_subsys_id)); 873 } 874 875 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 876 { 877 /* 878 * mm_update_next_owner() may clear mm->owner to NULL 879 * if it races with swapoff, page migration, etc. 880 * So this can be called with p == NULL. 881 */ 882 if (unlikely(!p)) 883 return NULL; 884 885 return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id)); 886 } 887 888 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm) 889 { 890 struct mem_cgroup *memcg = NULL; 891 892 if (!mm) 893 return NULL; 894 /* 895 * Because we have no locks, mm->owner's may be being moved to other 896 * cgroup. We use css_tryget() here even if this looks 897 * pessimistic (rather than adding locks here). 898 */ 899 rcu_read_lock(); 900 do { 901 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 902 if (unlikely(!memcg)) 903 break; 904 } while (!css_tryget(&memcg->css)); 905 rcu_read_unlock(); 906 return memcg; 907 } 908 909 /** 910 * mem_cgroup_iter - iterate over memory cgroup hierarchy 911 * @root: hierarchy root 912 * @prev: previously returned memcg, NULL on first invocation 913 * @reclaim: cookie for shared reclaim walks, NULL for full walks 914 * 915 * Returns references to children of the hierarchy below @root, or 916 * @root itself, or %NULL after a full round-trip. 917 * 918 * Caller must pass the return value in @prev on subsequent 919 * invocations for reference counting, or use mem_cgroup_iter_break() 920 * to cancel a hierarchy walk before the round-trip is complete. 921 * 922 * Reclaimers can specify a zone and a priority level in @reclaim to 923 * divide up the memcgs in the hierarchy among all concurrent 924 * reclaimers operating on the same zone and priority. 925 */ 926 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 927 struct mem_cgroup *prev, 928 struct mem_cgroup_reclaim_cookie *reclaim) 929 { 930 struct mem_cgroup *memcg = NULL; 931 int id = 0; 932 933 if (mem_cgroup_disabled()) 934 return NULL; 935 936 if (!root) 937 root = root_mem_cgroup; 938 939 if (prev && !reclaim) 940 id = css_id(&prev->css); 941 942 if (prev && prev != root) 943 css_put(&prev->css); 944 945 if (!root->use_hierarchy && root != root_mem_cgroup) { 946 if (prev) 947 return NULL; 948 return root; 949 } 950 951 while (!memcg) { 952 struct mem_cgroup_reclaim_iter *uninitialized_var(iter); 953 struct cgroup_subsys_state *css; 954 955 if (reclaim) { 956 int nid = zone_to_nid(reclaim->zone); 957 int zid = zone_idx(reclaim->zone); 958 struct mem_cgroup_per_zone *mz; 959 960 mz = mem_cgroup_zoneinfo(root, nid, zid); 961 iter = &mz->reclaim_iter[reclaim->priority]; 962 if (prev && reclaim->generation != iter->generation) 963 return NULL; 964 id = iter->position; 965 } 966 967 rcu_read_lock(); 968 css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id); 969 if (css) { 970 if (css == &root->css || css_tryget(css)) 971 memcg = mem_cgroup_from_css(css); 972 } else 973 id = 0; 974 rcu_read_unlock(); 975 976 if (reclaim) { 977 iter->position = id; 978 if (!css) 979 iter->generation++; 980 else if (!prev && memcg) 981 reclaim->generation = iter->generation; 982 } 983 984 if (prev && !css) 985 return NULL; 986 } 987 return memcg; 988 } 989 990 /** 991 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 992 * @root: hierarchy root 993 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 994 */ 995 void mem_cgroup_iter_break(struct mem_cgroup *root, 996 struct mem_cgroup *prev) 997 { 998 if (!root) 999 root = root_mem_cgroup; 1000 if (prev && prev != root) 1001 css_put(&prev->css); 1002 } 1003 1004 /* 1005 * Iteration constructs for visiting all cgroups (under a tree). If 1006 * loops are exited prematurely (break), mem_cgroup_iter_break() must 1007 * be used for reference counting. 1008 */ 1009 #define for_each_mem_cgroup_tree(iter, root) \ 1010 for (iter = mem_cgroup_iter(root, NULL, NULL); \ 1011 iter != NULL; \ 1012 iter = mem_cgroup_iter(root, iter, NULL)) 1013 1014 #define for_each_mem_cgroup(iter) \ 1015 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ 1016 iter != NULL; \ 1017 iter = mem_cgroup_iter(NULL, iter, NULL)) 1018 1019 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 1020 { 1021 return (memcg == root_mem_cgroup); 1022 } 1023 1024 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx) 1025 { 1026 struct mem_cgroup *memcg; 1027 1028 if (!mm) 1029 return; 1030 1031 rcu_read_lock(); 1032 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1033 if (unlikely(!memcg)) 1034 goto out; 1035 1036 switch (idx) { 1037 case PGFAULT: 1038 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]); 1039 break; 1040 case PGMAJFAULT: 1041 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]); 1042 break; 1043 default: 1044 BUG(); 1045 } 1046 out: 1047 rcu_read_unlock(); 1048 } 1049 EXPORT_SYMBOL(mem_cgroup_count_vm_event); 1050 1051 /** 1052 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg 1053 * @zone: zone of the wanted lruvec 1054 * @memcg: memcg of the wanted lruvec 1055 * 1056 * Returns the lru list vector holding pages for the given @zone and 1057 * @mem. This can be the global zone lruvec, if the memory controller 1058 * is disabled. 1059 */ 1060 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone, 1061 struct mem_cgroup *memcg) 1062 { 1063 struct mem_cgroup_per_zone *mz; 1064 1065 if (mem_cgroup_disabled()) 1066 return &zone->lruvec; 1067 1068 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone)); 1069 return &mz->lruvec; 1070 } 1071 1072 /* 1073 * Following LRU functions are allowed to be used without PCG_LOCK. 1074 * Operations are called by routine of global LRU independently from memcg. 1075 * What we have to take care of here is validness of pc->mem_cgroup. 1076 * 1077 * Changes to pc->mem_cgroup happens when 1078 * 1. charge 1079 * 2. moving account 1080 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache. 1081 * It is added to LRU before charge. 1082 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU. 1083 * When moving account, the page is not on LRU. It's isolated. 1084 */ 1085 1086 /** 1087 * mem_cgroup_page_lruvec - return lruvec for adding an lru page 1088 * @page: the page 1089 * @zone: zone of the page 1090 */ 1091 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone) 1092 { 1093 struct mem_cgroup_per_zone *mz; 1094 struct mem_cgroup *memcg; 1095 struct page_cgroup *pc; 1096 1097 if (mem_cgroup_disabled()) 1098 return &zone->lruvec; 1099 1100 pc = lookup_page_cgroup(page); 1101 memcg = pc->mem_cgroup; 1102 1103 /* 1104 * Surreptitiously switch any uncharged offlist page to root: 1105 * an uncharged page off lru does nothing to secure 1106 * its former mem_cgroup from sudden removal. 1107 * 1108 * Our caller holds lru_lock, and PageCgroupUsed is updated 1109 * under page_cgroup lock: between them, they make all uses 1110 * of pc->mem_cgroup safe. 1111 */ 1112 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup) 1113 pc->mem_cgroup = memcg = root_mem_cgroup; 1114 1115 mz = page_cgroup_zoneinfo(memcg, page); 1116 return &mz->lruvec; 1117 } 1118 1119 /** 1120 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1121 * @lruvec: mem_cgroup per zone lru vector 1122 * @lru: index of lru list the page is sitting on 1123 * @nr_pages: positive when adding or negative when removing 1124 * 1125 * This function must be called when a page is added to or removed from an 1126 * lru list. 1127 */ 1128 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1129 int nr_pages) 1130 { 1131 struct mem_cgroup_per_zone *mz; 1132 unsigned long *lru_size; 1133 1134 if (mem_cgroup_disabled()) 1135 return; 1136 1137 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec); 1138 lru_size = mz->lru_size + lru; 1139 *lru_size += nr_pages; 1140 VM_BUG_ON((long)(*lru_size) < 0); 1141 } 1142 1143 /* 1144 * Checks whether given mem is same or in the root_mem_cgroup's 1145 * hierarchy subtree 1146 */ 1147 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg, 1148 struct mem_cgroup *memcg) 1149 { 1150 if (root_memcg == memcg) 1151 return true; 1152 if (!root_memcg->use_hierarchy || !memcg) 1153 return false; 1154 return css_is_ancestor(&memcg->css, &root_memcg->css); 1155 } 1156 1157 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg, 1158 struct mem_cgroup *memcg) 1159 { 1160 bool ret; 1161 1162 rcu_read_lock(); 1163 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg); 1164 rcu_read_unlock(); 1165 return ret; 1166 } 1167 1168 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg) 1169 { 1170 int ret; 1171 struct mem_cgroup *curr = NULL; 1172 struct task_struct *p; 1173 1174 p = find_lock_task_mm(task); 1175 if (p) { 1176 curr = try_get_mem_cgroup_from_mm(p->mm); 1177 task_unlock(p); 1178 } else { 1179 /* 1180 * All threads may have already detached their mm's, but the oom 1181 * killer still needs to detect if they have already been oom 1182 * killed to prevent needlessly killing additional tasks. 1183 */ 1184 task_lock(task); 1185 curr = mem_cgroup_from_task(task); 1186 if (curr) 1187 css_get(&curr->css); 1188 task_unlock(task); 1189 } 1190 if (!curr) 1191 return 0; 1192 /* 1193 * We should check use_hierarchy of "memcg" not "curr". Because checking 1194 * use_hierarchy of "curr" here make this function true if hierarchy is 1195 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup* 1196 * hierarchy(even if use_hierarchy is disabled in "memcg"). 1197 */ 1198 ret = mem_cgroup_same_or_subtree(memcg, curr); 1199 css_put(&curr->css); 1200 return ret; 1201 } 1202 1203 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec) 1204 { 1205 unsigned long inactive_ratio; 1206 unsigned long inactive; 1207 unsigned long active; 1208 unsigned long gb; 1209 1210 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON); 1211 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON); 1212 1213 gb = (inactive + active) >> (30 - PAGE_SHIFT); 1214 if (gb) 1215 inactive_ratio = int_sqrt(10 * gb); 1216 else 1217 inactive_ratio = 1; 1218 1219 return inactive * inactive_ratio < active; 1220 } 1221 1222 int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec) 1223 { 1224 unsigned long active; 1225 unsigned long inactive; 1226 1227 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_FILE); 1228 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_FILE); 1229 1230 return (active > inactive); 1231 } 1232 1233 #define mem_cgroup_from_res_counter(counter, member) \ 1234 container_of(counter, struct mem_cgroup, member) 1235 1236 /** 1237 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1238 * @memcg: the memory cgroup 1239 * 1240 * Returns the maximum amount of memory @mem can be charged with, in 1241 * pages. 1242 */ 1243 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1244 { 1245 unsigned long long margin; 1246 1247 margin = res_counter_margin(&memcg->res); 1248 if (do_swap_account) 1249 margin = min(margin, res_counter_margin(&memcg->memsw)); 1250 return margin >> PAGE_SHIFT; 1251 } 1252 1253 int mem_cgroup_swappiness(struct mem_cgroup *memcg) 1254 { 1255 struct cgroup *cgrp = memcg->css.cgroup; 1256 1257 /* root ? */ 1258 if (cgrp->parent == NULL) 1259 return vm_swappiness; 1260 1261 return memcg->swappiness; 1262 } 1263 1264 /* 1265 * memcg->moving_account is used for checking possibility that some thread is 1266 * calling move_account(). When a thread on CPU-A starts moving pages under 1267 * a memcg, other threads should check memcg->moving_account under 1268 * rcu_read_lock(), like this: 1269 * 1270 * CPU-A CPU-B 1271 * rcu_read_lock() 1272 * memcg->moving_account+1 if (memcg->mocing_account) 1273 * take heavy locks. 1274 * synchronize_rcu() update something. 1275 * rcu_read_unlock() 1276 * start move here. 1277 */ 1278 1279 /* for quick checking without looking up memcg */ 1280 atomic_t memcg_moving __read_mostly; 1281 1282 static void mem_cgroup_start_move(struct mem_cgroup *memcg) 1283 { 1284 atomic_inc(&memcg_moving); 1285 atomic_inc(&memcg->moving_account); 1286 synchronize_rcu(); 1287 } 1288 1289 static void mem_cgroup_end_move(struct mem_cgroup *memcg) 1290 { 1291 /* 1292 * Now, mem_cgroup_clear_mc() may call this function with NULL. 1293 * We check NULL in callee rather than caller. 1294 */ 1295 if (memcg) { 1296 atomic_dec(&memcg_moving); 1297 atomic_dec(&memcg->moving_account); 1298 } 1299 } 1300 1301 /* 1302 * 2 routines for checking "mem" is under move_account() or not. 1303 * 1304 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This 1305 * is used for avoiding races in accounting. If true, 1306 * pc->mem_cgroup may be overwritten. 1307 * 1308 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or 1309 * under hierarchy of moving cgroups. This is for 1310 * waiting at hith-memory prressure caused by "move". 1311 */ 1312 1313 static bool mem_cgroup_stolen(struct mem_cgroup *memcg) 1314 { 1315 VM_BUG_ON(!rcu_read_lock_held()); 1316 return atomic_read(&memcg->moving_account) > 0; 1317 } 1318 1319 static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 1320 { 1321 struct mem_cgroup *from; 1322 struct mem_cgroup *to; 1323 bool ret = false; 1324 /* 1325 * Unlike task_move routines, we access mc.to, mc.from not under 1326 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1327 */ 1328 spin_lock(&mc.lock); 1329 from = mc.from; 1330 to = mc.to; 1331 if (!from) 1332 goto unlock; 1333 1334 ret = mem_cgroup_same_or_subtree(memcg, from) 1335 || mem_cgroup_same_or_subtree(memcg, to); 1336 unlock: 1337 spin_unlock(&mc.lock); 1338 return ret; 1339 } 1340 1341 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) 1342 { 1343 if (mc.moving_task && current != mc.moving_task) { 1344 if (mem_cgroup_under_move(memcg)) { 1345 DEFINE_WAIT(wait); 1346 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1347 /* moving charge context might have finished. */ 1348 if (mc.moving_task) 1349 schedule(); 1350 finish_wait(&mc.waitq, &wait); 1351 return true; 1352 } 1353 } 1354 return false; 1355 } 1356 1357 /* 1358 * Take this lock when 1359 * - a code tries to modify page's memcg while it's USED. 1360 * - a code tries to modify page state accounting in a memcg. 1361 * see mem_cgroup_stolen(), too. 1362 */ 1363 static void move_lock_mem_cgroup(struct mem_cgroup *memcg, 1364 unsigned long *flags) 1365 { 1366 spin_lock_irqsave(&memcg->move_lock, *flags); 1367 } 1368 1369 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg, 1370 unsigned long *flags) 1371 { 1372 spin_unlock_irqrestore(&memcg->move_lock, *flags); 1373 } 1374 1375 /** 1376 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode. 1377 * @memcg: The memory cgroup that went over limit 1378 * @p: Task that is going to be killed 1379 * 1380 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1381 * enabled 1382 */ 1383 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) 1384 { 1385 struct cgroup *task_cgrp; 1386 struct cgroup *mem_cgrp; 1387 /* 1388 * Need a buffer in BSS, can't rely on allocations. The code relies 1389 * on the assumption that OOM is serialized for memory controller. 1390 * If this assumption is broken, revisit this code. 1391 */ 1392 static char memcg_name[PATH_MAX]; 1393 int ret; 1394 1395 if (!memcg || !p) 1396 return; 1397 1398 rcu_read_lock(); 1399 1400 mem_cgrp = memcg->css.cgroup; 1401 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id); 1402 1403 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX); 1404 if (ret < 0) { 1405 /* 1406 * Unfortunately, we are unable to convert to a useful name 1407 * But we'll still print out the usage information 1408 */ 1409 rcu_read_unlock(); 1410 goto done; 1411 } 1412 rcu_read_unlock(); 1413 1414 printk(KERN_INFO "Task in %s killed", memcg_name); 1415 1416 rcu_read_lock(); 1417 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX); 1418 if (ret < 0) { 1419 rcu_read_unlock(); 1420 goto done; 1421 } 1422 rcu_read_unlock(); 1423 1424 /* 1425 * Continues from above, so we don't need an KERN_ level 1426 */ 1427 printk(KERN_CONT " as a result of limit of %s\n", memcg_name); 1428 done: 1429 1430 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n", 1431 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10, 1432 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10, 1433 res_counter_read_u64(&memcg->res, RES_FAILCNT)); 1434 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, " 1435 "failcnt %llu\n", 1436 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10, 1437 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10, 1438 res_counter_read_u64(&memcg->memsw, RES_FAILCNT)); 1439 } 1440 1441 /* 1442 * This function returns the number of memcg under hierarchy tree. Returns 1443 * 1(self count) if no children. 1444 */ 1445 static int mem_cgroup_count_children(struct mem_cgroup *memcg) 1446 { 1447 int num = 0; 1448 struct mem_cgroup *iter; 1449 1450 for_each_mem_cgroup_tree(iter, memcg) 1451 num++; 1452 return num; 1453 } 1454 1455 /* 1456 * Return the memory (and swap, if configured) limit for a memcg. 1457 */ 1458 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg) 1459 { 1460 u64 limit; 1461 u64 memsw; 1462 1463 limit = res_counter_read_u64(&memcg->res, RES_LIMIT); 1464 limit += total_swap_pages << PAGE_SHIFT; 1465 1466 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 1467 /* 1468 * If memsw is finite and limits the amount of swap space available 1469 * to this memcg, return that limit. 1470 */ 1471 return min(limit, memsw); 1472 } 1473 1474 void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1475 int order) 1476 { 1477 struct mem_cgroup *iter; 1478 unsigned long chosen_points = 0; 1479 unsigned long totalpages; 1480 unsigned int points = 0; 1481 struct task_struct *chosen = NULL; 1482 1483 /* 1484 * If current has a pending SIGKILL, then automatically select it. The 1485 * goal is to allow it to allocate so that it may quickly exit and free 1486 * its memory. 1487 */ 1488 if (fatal_signal_pending(current)) { 1489 set_thread_flag(TIF_MEMDIE); 1490 return; 1491 } 1492 1493 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL); 1494 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1; 1495 for_each_mem_cgroup_tree(iter, memcg) { 1496 struct cgroup *cgroup = iter->css.cgroup; 1497 struct cgroup_iter it; 1498 struct task_struct *task; 1499 1500 cgroup_iter_start(cgroup, &it); 1501 while ((task = cgroup_iter_next(cgroup, &it))) { 1502 switch (oom_scan_process_thread(task, totalpages, NULL, 1503 false)) { 1504 case OOM_SCAN_SELECT: 1505 if (chosen) 1506 put_task_struct(chosen); 1507 chosen = task; 1508 chosen_points = ULONG_MAX; 1509 get_task_struct(chosen); 1510 /* fall through */ 1511 case OOM_SCAN_CONTINUE: 1512 continue; 1513 case OOM_SCAN_ABORT: 1514 cgroup_iter_end(cgroup, &it); 1515 mem_cgroup_iter_break(memcg, iter); 1516 if (chosen) 1517 put_task_struct(chosen); 1518 return; 1519 case OOM_SCAN_OK: 1520 break; 1521 }; 1522 points = oom_badness(task, memcg, NULL, totalpages); 1523 if (points > chosen_points) { 1524 if (chosen) 1525 put_task_struct(chosen); 1526 chosen = task; 1527 chosen_points = points; 1528 get_task_struct(chosen); 1529 } 1530 } 1531 cgroup_iter_end(cgroup, &it); 1532 } 1533 1534 if (!chosen) 1535 return; 1536 points = chosen_points * 1000 / totalpages; 1537 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg, 1538 NULL, "Memory cgroup out of memory"); 1539 } 1540 1541 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg, 1542 gfp_t gfp_mask, 1543 unsigned long flags) 1544 { 1545 unsigned long total = 0; 1546 bool noswap = false; 1547 int loop; 1548 1549 if (flags & MEM_CGROUP_RECLAIM_NOSWAP) 1550 noswap = true; 1551 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum) 1552 noswap = true; 1553 1554 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) { 1555 if (loop) 1556 drain_all_stock_async(memcg); 1557 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap); 1558 /* 1559 * Allow limit shrinkers, which are triggered directly 1560 * by userspace, to catch signals and stop reclaim 1561 * after minimal progress, regardless of the margin. 1562 */ 1563 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK)) 1564 break; 1565 if (mem_cgroup_margin(memcg)) 1566 break; 1567 /* 1568 * If nothing was reclaimed after two attempts, there 1569 * may be no reclaimable pages in this hierarchy. 1570 */ 1571 if (loop && !total) 1572 break; 1573 } 1574 return total; 1575 } 1576 1577 /** 1578 * test_mem_cgroup_node_reclaimable 1579 * @memcg: the target memcg 1580 * @nid: the node ID to be checked. 1581 * @noswap : specify true here if the user wants flle only information. 1582 * 1583 * This function returns whether the specified memcg contains any 1584 * reclaimable pages on a node. Returns true if there are any reclaimable 1585 * pages in the node. 1586 */ 1587 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg, 1588 int nid, bool noswap) 1589 { 1590 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE)) 1591 return true; 1592 if (noswap || !total_swap_pages) 1593 return false; 1594 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON)) 1595 return true; 1596 return false; 1597 1598 } 1599 #if MAX_NUMNODES > 1 1600 1601 /* 1602 * Always updating the nodemask is not very good - even if we have an empty 1603 * list or the wrong list here, we can start from some node and traverse all 1604 * nodes based on the zonelist. So update the list loosely once per 10 secs. 1605 * 1606 */ 1607 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg) 1608 { 1609 int nid; 1610 /* 1611 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET 1612 * pagein/pageout changes since the last update. 1613 */ 1614 if (!atomic_read(&memcg->numainfo_events)) 1615 return; 1616 if (atomic_inc_return(&memcg->numainfo_updating) > 1) 1617 return; 1618 1619 /* make a nodemask where this memcg uses memory from */ 1620 memcg->scan_nodes = node_states[N_HIGH_MEMORY]; 1621 1622 for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) { 1623 1624 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false)) 1625 node_clear(nid, memcg->scan_nodes); 1626 } 1627 1628 atomic_set(&memcg->numainfo_events, 0); 1629 atomic_set(&memcg->numainfo_updating, 0); 1630 } 1631 1632 /* 1633 * Selecting a node where we start reclaim from. Because what we need is just 1634 * reducing usage counter, start from anywhere is O,K. Considering 1635 * memory reclaim from current node, there are pros. and cons. 1636 * 1637 * Freeing memory from current node means freeing memory from a node which 1638 * we'll use or we've used. So, it may make LRU bad. And if several threads 1639 * hit limits, it will see a contention on a node. But freeing from remote 1640 * node means more costs for memory reclaim because of memory latency. 1641 * 1642 * Now, we use round-robin. Better algorithm is welcomed. 1643 */ 1644 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1645 { 1646 int node; 1647 1648 mem_cgroup_may_update_nodemask(memcg); 1649 node = memcg->last_scanned_node; 1650 1651 node = next_node(node, memcg->scan_nodes); 1652 if (node == MAX_NUMNODES) 1653 node = first_node(memcg->scan_nodes); 1654 /* 1655 * We call this when we hit limit, not when pages are added to LRU. 1656 * No LRU may hold pages because all pages are UNEVICTABLE or 1657 * memcg is too small and all pages are not on LRU. In that case, 1658 * we use curret node. 1659 */ 1660 if (unlikely(node == MAX_NUMNODES)) 1661 node = numa_node_id(); 1662 1663 memcg->last_scanned_node = node; 1664 return node; 1665 } 1666 1667 /* 1668 * Check all nodes whether it contains reclaimable pages or not. 1669 * For quick scan, we make use of scan_nodes. This will allow us to skip 1670 * unused nodes. But scan_nodes is lazily updated and may not cotain 1671 * enough new information. We need to do double check. 1672 */ 1673 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap) 1674 { 1675 int nid; 1676 1677 /* 1678 * quick check...making use of scan_node. 1679 * We can skip unused nodes. 1680 */ 1681 if (!nodes_empty(memcg->scan_nodes)) { 1682 for (nid = first_node(memcg->scan_nodes); 1683 nid < MAX_NUMNODES; 1684 nid = next_node(nid, memcg->scan_nodes)) { 1685 1686 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap)) 1687 return true; 1688 } 1689 } 1690 /* 1691 * Check rest of nodes. 1692 */ 1693 for_each_node_state(nid, N_HIGH_MEMORY) { 1694 if (node_isset(nid, memcg->scan_nodes)) 1695 continue; 1696 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap)) 1697 return true; 1698 } 1699 return false; 1700 } 1701 1702 #else 1703 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1704 { 1705 return 0; 1706 } 1707 1708 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap) 1709 { 1710 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap); 1711 } 1712 #endif 1713 1714 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, 1715 struct zone *zone, 1716 gfp_t gfp_mask, 1717 unsigned long *total_scanned) 1718 { 1719 struct mem_cgroup *victim = NULL; 1720 int total = 0; 1721 int loop = 0; 1722 unsigned long excess; 1723 unsigned long nr_scanned; 1724 struct mem_cgroup_reclaim_cookie reclaim = { 1725 .zone = zone, 1726 .priority = 0, 1727 }; 1728 1729 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT; 1730 1731 while (1) { 1732 victim = mem_cgroup_iter(root_memcg, victim, &reclaim); 1733 if (!victim) { 1734 loop++; 1735 if (loop >= 2) { 1736 /* 1737 * If we have not been able to reclaim 1738 * anything, it might because there are 1739 * no reclaimable pages under this hierarchy 1740 */ 1741 if (!total) 1742 break; 1743 /* 1744 * We want to do more targeted reclaim. 1745 * excess >> 2 is not to excessive so as to 1746 * reclaim too much, nor too less that we keep 1747 * coming back to reclaim from this cgroup 1748 */ 1749 if (total >= (excess >> 2) || 1750 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) 1751 break; 1752 } 1753 continue; 1754 } 1755 if (!mem_cgroup_reclaimable(victim, false)) 1756 continue; 1757 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false, 1758 zone, &nr_scanned); 1759 *total_scanned += nr_scanned; 1760 if (!res_counter_soft_limit_excess(&root_memcg->res)) 1761 break; 1762 } 1763 mem_cgroup_iter_break(root_memcg, victim); 1764 return total; 1765 } 1766 1767 /* 1768 * Check OOM-Killer is already running under our hierarchy. 1769 * If someone is running, return false. 1770 * Has to be called with memcg_oom_lock 1771 */ 1772 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg) 1773 { 1774 struct mem_cgroup *iter, *failed = NULL; 1775 1776 for_each_mem_cgroup_tree(iter, memcg) { 1777 if (iter->oom_lock) { 1778 /* 1779 * this subtree of our hierarchy is already locked 1780 * so we cannot give a lock. 1781 */ 1782 failed = iter; 1783 mem_cgroup_iter_break(memcg, iter); 1784 break; 1785 } else 1786 iter->oom_lock = true; 1787 } 1788 1789 if (!failed) 1790 return true; 1791 1792 /* 1793 * OK, we failed to lock the whole subtree so we have to clean up 1794 * what we set up to the failing subtree 1795 */ 1796 for_each_mem_cgroup_tree(iter, memcg) { 1797 if (iter == failed) { 1798 mem_cgroup_iter_break(memcg, iter); 1799 break; 1800 } 1801 iter->oom_lock = false; 1802 } 1803 return false; 1804 } 1805 1806 /* 1807 * Has to be called with memcg_oom_lock 1808 */ 1809 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 1810 { 1811 struct mem_cgroup *iter; 1812 1813 for_each_mem_cgroup_tree(iter, memcg) 1814 iter->oom_lock = false; 1815 return 0; 1816 } 1817 1818 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 1819 { 1820 struct mem_cgroup *iter; 1821 1822 for_each_mem_cgroup_tree(iter, memcg) 1823 atomic_inc(&iter->under_oom); 1824 } 1825 1826 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 1827 { 1828 struct mem_cgroup *iter; 1829 1830 /* 1831 * When a new child is created while the hierarchy is under oom, 1832 * mem_cgroup_oom_lock() may not be called. We have to use 1833 * atomic_add_unless() here. 1834 */ 1835 for_each_mem_cgroup_tree(iter, memcg) 1836 atomic_add_unless(&iter->under_oom, -1, 0); 1837 } 1838 1839 static DEFINE_SPINLOCK(memcg_oom_lock); 1840 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 1841 1842 struct oom_wait_info { 1843 struct mem_cgroup *memcg; 1844 wait_queue_t wait; 1845 }; 1846 1847 static int memcg_oom_wake_function(wait_queue_t *wait, 1848 unsigned mode, int sync, void *arg) 1849 { 1850 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; 1851 struct mem_cgroup *oom_wait_memcg; 1852 struct oom_wait_info *oom_wait_info; 1853 1854 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 1855 oom_wait_memcg = oom_wait_info->memcg; 1856 1857 /* 1858 * Both of oom_wait_info->memcg and wake_memcg are stable under us. 1859 * Then we can use css_is_ancestor without taking care of RCU. 1860 */ 1861 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg) 1862 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg)) 1863 return 0; 1864 return autoremove_wake_function(wait, mode, sync, arg); 1865 } 1866 1867 static void memcg_wakeup_oom(struct mem_cgroup *memcg) 1868 { 1869 /* for filtering, pass "memcg" as argument. */ 1870 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 1871 } 1872 1873 static void memcg_oom_recover(struct mem_cgroup *memcg) 1874 { 1875 if (memcg && atomic_read(&memcg->under_oom)) 1876 memcg_wakeup_oom(memcg); 1877 } 1878 1879 /* 1880 * try to call OOM killer. returns false if we should exit memory-reclaim loop. 1881 */ 1882 static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask, 1883 int order) 1884 { 1885 struct oom_wait_info owait; 1886 bool locked, need_to_kill; 1887 1888 owait.memcg = memcg; 1889 owait.wait.flags = 0; 1890 owait.wait.func = memcg_oom_wake_function; 1891 owait.wait.private = current; 1892 INIT_LIST_HEAD(&owait.wait.task_list); 1893 need_to_kill = true; 1894 mem_cgroup_mark_under_oom(memcg); 1895 1896 /* At first, try to OOM lock hierarchy under memcg.*/ 1897 spin_lock(&memcg_oom_lock); 1898 locked = mem_cgroup_oom_lock(memcg); 1899 /* 1900 * Even if signal_pending(), we can't quit charge() loop without 1901 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL 1902 * under OOM is always welcomed, use TASK_KILLABLE here. 1903 */ 1904 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 1905 if (!locked || memcg->oom_kill_disable) 1906 need_to_kill = false; 1907 if (locked) 1908 mem_cgroup_oom_notify(memcg); 1909 spin_unlock(&memcg_oom_lock); 1910 1911 if (need_to_kill) { 1912 finish_wait(&memcg_oom_waitq, &owait.wait); 1913 mem_cgroup_out_of_memory(memcg, mask, order); 1914 } else { 1915 schedule(); 1916 finish_wait(&memcg_oom_waitq, &owait.wait); 1917 } 1918 spin_lock(&memcg_oom_lock); 1919 if (locked) 1920 mem_cgroup_oom_unlock(memcg); 1921 memcg_wakeup_oom(memcg); 1922 spin_unlock(&memcg_oom_lock); 1923 1924 mem_cgroup_unmark_under_oom(memcg); 1925 1926 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current)) 1927 return false; 1928 /* Give chance to dying process */ 1929 schedule_timeout_uninterruptible(1); 1930 return true; 1931 } 1932 1933 /* 1934 * Currently used to update mapped file statistics, but the routine can be 1935 * generalized to update other statistics as well. 1936 * 1937 * Notes: Race condition 1938 * 1939 * We usually use page_cgroup_lock() for accessing page_cgroup member but 1940 * it tends to be costly. But considering some conditions, we doesn't need 1941 * to do so _always_. 1942 * 1943 * Considering "charge", lock_page_cgroup() is not required because all 1944 * file-stat operations happen after a page is attached to radix-tree. There 1945 * are no race with "charge". 1946 * 1947 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup 1948 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even 1949 * if there are race with "uncharge". Statistics itself is properly handled 1950 * by flags. 1951 * 1952 * Considering "move", this is an only case we see a race. To make the race 1953 * small, we check mm->moving_account and detect there are possibility of race 1954 * If there is, we take a lock. 1955 */ 1956 1957 void __mem_cgroup_begin_update_page_stat(struct page *page, 1958 bool *locked, unsigned long *flags) 1959 { 1960 struct mem_cgroup *memcg; 1961 struct page_cgroup *pc; 1962 1963 pc = lookup_page_cgroup(page); 1964 again: 1965 memcg = pc->mem_cgroup; 1966 if (unlikely(!memcg || !PageCgroupUsed(pc))) 1967 return; 1968 /* 1969 * If this memory cgroup is not under account moving, we don't 1970 * need to take move_lock_mem_cgroup(). Because we already hold 1971 * rcu_read_lock(), any calls to move_account will be delayed until 1972 * rcu_read_unlock() if mem_cgroup_stolen() == true. 1973 */ 1974 if (!mem_cgroup_stolen(memcg)) 1975 return; 1976 1977 move_lock_mem_cgroup(memcg, flags); 1978 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) { 1979 move_unlock_mem_cgroup(memcg, flags); 1980 goto again; 1981 } 1982 *locked = true; 1983 } 1984 1985 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags) 1986 { 1987 struct page_cgroup *pc = lookup_page_cgroup(page); 1988 1989 /* 1990 * It's guaranteed that pc->mem_cgroup never changes while 1991 * lock is held because a routine modifies pc->mem_cgroup 1992 * should take move_lock_mem_cgroup(). 1993 */ 1994 move_unlock_mem_cgroup(pc->mem_cgroup, flags); 1995 } 1996 1997 void mem_cgroup_update_page_stat(struct page *page, 1998 enum mem_cgroup_page_stat_item idx, int val) 1999 { 2000 struct mem_cgroup *memcg; 2001 struct page_cgroup *pc = lookup_page_cgroup(page); 2002 unsigned long uninitialized_var(flags); 2003 2004 if (mem_cgroup_disabled()) 2005 return; 2006 2007 memcg = pc->mem_cgroup; 2008 if (unlikely(!memcg || !PageCgroupUsed(pc))) 2009 return; 2010 2011 switch (idx) { 2012 case MEMCG_NR_FILE_MAPPED: 2013 idx = MEM_CGROUP_STAT_FILE_MAPPED; 2014 break; 2015 default: 2016 BUG(); 2017 } 2018 2019 this_cpu_add(memcg->stat->count[idx], val); 2020 } 2021 2022 /* 2023 * size of first charge trial. "32" comes from vmscan.c's magic value. 2024 * TODO: maybe necessary to use big numbers in big irons. 2025 */ 2026 #define CHARGE_BATCH 32U 2027 struct memcg_stock_pcp { 2028 struct mem_cgroup *cached; /* this never be root cgroup */ 2029 unsigned int nr_pages; 2030 struct work_struct work; 2031 unsigned long flags; 2032 #define FLUSHING_CACHED_CHARGE 0 2033 }; 2034 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); 2035 static DEFINE_MUTEX(percpu_charge_mutex); 2036 2037 /* 2038 * Try to consume stocked charge on this cpu. If success, one page is consumed 2039 * from local stock and true is returned. If the stock is 0 or charges from a 2040 * cgroup which is not current target, returns false. This stock will be 2041 * refilled. 2042 */ 2043 static bool consume_stock(struct mem_cgroup *memcg) 2044 { 2045 struct memcg_stock_pcp *stock; 2046 bool ret = true; 2047 2048 stock = &get_cpu_var(memcg_stock); 2049 if (memcg == stock->cached && stock->nr_pages) 2050 stock->nr_pages--; 2051 else /* need to call res_counter_charge */ 2052 ret = false; 2053 put_cpu_var(memcg_stock); 2054 return ret; 2055 } 2056 2057 /* 2058 * Returns stocks cached in percpu to res_counter and reset cached information. 2059 */ 2060 static void drain_stock(struct memcg_stock_pcp *stock) 2061 { 2062 struct mem_cgroup *old = stock->cached; 2063 2064 if (stock->nr_pages) { 2065 unsigned long bytes = stock->nr_pages * PAGE_SIZE; 2066 2067 res_counter_uncharge(&old->res, bytes); 2068 if (do_swap_account) 2069 res_counter_uncharge(&old->memsw, bytes); 2070 stock->nr_pages = 0; 2071 } 2072 stock->cached = NULL; 2073 } 2074 2075 /* 2076 * This must be called under preempt disabled or must be called by 2077 * a thread which is pinned to local cpu. 2078 */ 2079 static void drain_local_stock(struct work_struct *dummy) 2080 { 2081 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock); 2082 drain_stock(stock); 2083 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 2084 } 2085 2086 /* 2087 * Cache charges(val) which is from res_counter, to local per_cpu area. 2088 * This will be consumed by consume_stock() function, later. 2089 */ 2090 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2091 { 2092 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock); 2093 2094 if (stock->cached != memcg) { /* reset if necessary */ 2095 drain_stock(stock); 2096 stock->cached = memcg; 2097 } 2098 stock->nr_pages += nr_pages; 2099 put_cpu_var(memcg_stock); 2100 } 2101 2102 /* 2103 * Drains all per-CPU charge caches for given root_memcg resp. subtree 2104 * of the hierarchy under it. sync flag says whether we should block 2105 * until the work is done. 2106 */ 2107 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync) 2108 { 2109 int cpu, curcpu; 2110 2111 /* Notify other cpus that system-wide "drain" is running */ 2112 get_online_cpus(); 2113 curcpu = get_cpu(); 2114 for_each_online_cpu(cpu) { 2115 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2116 struct mem_cgroup *memcg; 2117 2118 memcg = stock->cached; 2119 if (!memcg || !stock->nr_pages) 2120 continue; 2121 if (!mem_cgroup_same_or_subtree(root_memcg, memcg)) 2122 continue; 2123 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 2124 if (cpu == curcpu) 2125 drain_local_stock(&stock->work); 2126 else 2127 schedule_work_on(cpu, &stock->work); 2128 } 2129 } 2130 put_cpu(); 2131 2132 if (!sync) 2133 goto out; 2134 2135 for_each_online_cpu(cpu) { 2136 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2137 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) 2138 flush_work(&stock->work); 2139 } 2140 out: 2141 put_online_cpus(); 2142 } 2143 2144 /* 2145 * Tries to drain stocked charges in other cpus. This function is asynchronous 2146 * and just put a work per cpu for draining localy on each cpu. Caller can 2147 * expects some charges will be back to res_counter later but cannot wait for 2148 * it. 2149 */ 2150 static void drain_all_stock_async(struct mem_cgroup *root_memcg) 2151 { 2152 /* 2153 * If someone calls draining, avoid adding more kworker runs. 2154 */ 2155 if (!mutex_trylock(&percpu_charge_mutex)) 2156 return; 2157 drain_all_stock(root_memcg, false); 2158 mutex_unlock(&percpu_charge_mutex); 2159 } 2160 2161 /* This is a synchronous drain interface. */ 2162 static void drain_all_stock_sync(struct mem_cgroup *root_memcg) 2163 { 2164 /* called when force_empty is called */ 2165 mutex_lock(&percpu_charge_mutex); 2166 drain_all_stock(root_memcg, true); 2167 mutex_unlock(&percpu_charge_mutex); 2168 } 2169 2170 /* 2171 * This function drains percpu counter value from DEAD cpu and 2172 * move it to local cpu. Note that this function can be preempted. 2173 */ 2174 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu) 2175 { 2176 int i; 2177 2178 spin_lock(&memcg->pcp_counter_lock); 2179 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 2180 long x = per_cpu(memcg->stat->count[i], cpu); 2181 2182 per_cpu(memcg->stat->count[i], cpu) = 0; 2183 memcg->nocpu_base.count[i] += x; 2184 } 2185 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) { 2186 unsigned long x = per_cpu(memcg->stat->events[i], cpu); 2187 2188 per_cpu(memcg->stat->events[i], cpu) = 0; 2189 memcg->nocpu_base.events[i] += x; 2190 } 2191 spin_unlock(&memcg->pcp_counter_lock); 2192 } 2193 2194 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb, 2195 unsigned long action, 2196 void *hcpu) 2197 { 2198 int cpu = (unsigned long)hcpu; 2199 struct memcg_stock_pcp *stock; 2200 struct mem_cgroup *iter; 2201 2202 if (action == CPU_ONLINE) 2203 return NOTIFY_OK; 2204 2205 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 2206 return NOTIFY_OK; 2207 2208 for_each_mem_cgroup(iter) 2209 mem_cgroup_drain_pcp_counter(iter, cpu); 2210 2211 stock = &per_cpu(memcg_stock, cpu); 2212 drain_stock(stock); 2213 return NOTIFY_OK; 2214 } 2215 2216 2217 /* See __mem_cgroup_try_charge() for details */ 2218 enum { 2219 CHARGE_OK, /* success */ 2220 CHARGE_RETRY, /* need to retry but retry is not bad */ 2221 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */ 2222 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */ 2223 CHARGE_OOM_DIE, /* the current is killed because of OOM */ 2224 }; 2225 2226 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 2227 unsigned int nr_pages, bool oom_check) 2228 { 2229 unsigned long csize = nr_pages * PAGE_SIZE; 2230 struct mem_cgroup *mem_over_limit; 2231 struct res_counter *fail_res; 2232 unsigned long flags = 0; 2233 int ret; 2234 2235 ret = res_counter_charge(&memcg->res, csize, &fail_res); 2236 2237 if (likely(!ret)) { 2238 if (!do_swap_account) 2239 return CHARGE_OK; 2240 ret = res_counter_charge(&memcg->memsw, csize, &fail_res); 2241 if (likely(!ret)) 2242 return CHARGE_OK; 2243 2244 res_counter_uncharge(&memcg->res, csize); 2245 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw); 2246 flags |= MEM_CGROUP_RECLAIM_NOSWAP; 2247 } else 2248 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res); 2249 /* 2250 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch 2251 * of regular pages (CHARGE_BATCH), or a single regular page (1). 2252 * 2253 * Never reclaim on behalf of optional batching, retry with a 2254 * single page instead. 2255 */ 2256 if (nr_pages == CHARGE_BATCH) 2257 return CHARGE_RETRY; 2258 2259 if (!(gfp_mask & __GFP_WAIT)) 2260 return CHARGE_WOULDBLOCK; 2261 2262 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags); 2263 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2264 return CHARGE_RETRY; 2265 /* 2266 * Even though the limit is exceeded at this point, reclaim 2267 * may have been able to free some pages. Retry the charge 2268 * before killing the task. 2269 * 2270 * Only for regular pages, though: huge pages are rather 2271 * unlikely to succeed so close to the limit, and we fall back 2272 * to regular pages anyway in case of failure. 2273 */ 2274 if (nr_pages == 1 && ret) 2275 return CHARGE_RETRY; 2276 2277 /* 2278 * At task move, charge accounts can be doubly counted. So, it's 2279 * better to wait until the end of task_move if something is going on. 2280 */ 2281 if (mem_cgroup_wait_acct_move(mem_over_limit)) 2282 return CHARGE_RETRY; 2283 2284 /* If we don't need to call oom-killer at el, return immediately */ 2285 if (!oom_check) 2286 return CHARGE_NOMEM; 2287 /* check OOM */ 2288 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize))) 2289 return CHARGE_OOM_DIE; 2290 2291 return CHARGE_RETRY; 2292 } 2293 2294 /* 2295 * __mem_cgroup_try_charge() does 2296 * 1. detect memcg to be charged against from passed *mm and *ptr, 2297 * 2. update res_counter 2298 * 3. call memory reclaim if necessary. 2299 * 2300 * In some special case, if the task is fatal, fatal_signal_pending() or 2301 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup 2302 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon 2303 * as possible without any hazards. 2: all pages should have a valid 2304 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg 2305 * pointer, that is treated as a charge to root_mem_cgroup. 2306 * 2307 * So __mem_cgroup_try_charge() will return 2308 * 0 ... on success, filling *ptr with a valid memcg pointer. 2309 * -ENOMEM ... charge failure because of resource limits. 2310 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup. 2311 * 2312 * Unlike the exported interface, an "oom" parameter is added. if oom==true, 2313 * the oom-killer can be invoked. 2314 */ 2315 static int __mem_cgroup_try_charge(struct mm_struct *mm, 2316 gfp_t gfp_mask, 2317 unsigned int nr_pages, 2318 struct mem_cgroup **ptr, 2319 bool oom) 2320 { 2321 unsigned int batch = max(CHARGE_BATCH, nr_pages); 2322 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES; 2323 struct mem_cgroup *memcg = NULL; 2324 int ret; 2325 2326 /* 2327 * Unlike gloval-vm's OOM-kill, we're not in memory shortage 2328 * in system level. So, allow to go ahead dying process in addition to 2329 * MEMDIE process. 2330 */ 2331 if (unlikely(test_thread_flag(TIF_MEMDIE) 2332 || fatal_signal_pending(current))) 2333 goto bypass; 2334 2335 /* 2336 * We always charge the cgroup the mm_struct belongs to. 2337 * The mm_struct's mem_cgroup changes on task migration if the 2338 * thread group leader migrates. It's possible that mm is not 2339 * set, if so charge the root memcg (happens for pagecache usage). 2340 */ 2341 if (!*ptr && !mm) 2342 *ptr = root_mem_cgroup; 2343 again: 2344 if (*ptr) { /* css should be a valid one */ 2345 memcg = *ptr; 2346 VM_BUG_ON(css_is_removed(&memcg->css)); 2347 if (mem_cgroup_is_root(memcg)) 2348 goto done; 2349 if (nr_pages == 1 && consume_stock(memcg)) 2350 goto done; 2351 css_get(&memcg->css); 2352 } else { 2353 struct task_struct *p; 2354 2355 rcu_read_lock(); 2356 p = rcu_dereference(mm->owner); 2357 /* 2358 * Because we don't have task_lock(), "p" can exit. 2359 * In that case, "memcg" can point to root or p can be NULL with 2360 * race with swapoff. Then, we have small risk of mis-accouning. 2361 * But such kind of mis-account by race always happens because 2362 * we don't have cgroup_mutex(). It's overkill and we allo that 2363 * small race, here. 2364 * (*) swapoff at el will charge against mm-struct not against 2365 * task-struct. So, mm->owner can be NULL. 2366 */ 2367 memcg = mem_cgroup_from_task(p); 2368 if (!memcg) 2369 memcg = root_mem_cgroup; 2370 if (mem_cgroup_is_root(memcg)) { 2371 rcu_read_unlock(); 2372 goto done; 2373 } 2374 if (nr_pages == 1 && consume_stock(memcg)) { 2375 /* 2376 * It seems dagerous to access memcg without css_get(). 2377 * But considering how consume_stok works, it's not 2378 * necessary. If consume_stock success, some charges 2379 * from this memcg are cached on this cpu. So, we 2380 * don't need to call css_get()/css_tryget() before 2381 * calling consume_stock(). 2382 */ 2383 rcu_read_unlock(); 2384 goto done; 2385 } 2386 /* after here, we may be blocked. we need to get refcnt */ 2387 if (!css_tryget(&memcg->css)) { 2388 rcu_read_unlock(); 2389 goto again; 2390 } 2391 rcu_read_unlock(); 2392 } 2393 2394 do { 2395 bool oom_check; 2396 2397 /* If killed, bypass charge */ 2398 if (fatal_signal_pending(current)) { 2399 css_put(&memcg->css); 2400 goto bypass; 2401 } 2402 2403 oom_check = false; 2404 if (oom && !nr_oom_retries) { 2405 oom_check = true; 2406 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES; 2407 } 2408 2409 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check); 2410 switch (ret) { 2411 case CHARGE_OK: 2412 break; 2413 case CHARGE_RETRY: /* not in OOM situation but retry */ 2414 batch = nr_pages; 2415 css_put(&memcg->css); 2416 memcg = NULL; 2417 goto again; 2418 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */ 2419 css_put(&memcg->css); 2420 goto nomem; 2421 case CHARGE_NOMEM: /* OOM routine works */ 2422 if (!oom) { 2423 css_put(&memcg->css); 2424 goto nomem; 2425 } 2426 /* If oom, we never return -ENOMEM */ 2427 nr_oom_retries--; 2428 break; 2429 case CHARGE_OOM_DIE: /* Killed by OOM Killer */ 2430 css_put(&memcg->css); 2431 goto bypass; 2432 } 2433 } while (ret != CHARGE_OK); 2434 2435 if (batch > nr_pages) 2436 refill_stock(memcg, batch - nr_pages); 2437 css_put(&memcg->css); 2438 done: 2439 *ptr = memcg; 2440 return 0; 2441 nomem: 2442 *ptr = NULL; 2443 return -ENOMEM; 2444 bypass: 2445 *ptr = root_mem_cgroup; 2446 return -EINTR; 2447 } 2448 2449 /* 2450 * Somemtimes we have to undo a charge we got by try_charge(). 2451 * This function is for that and do uncharge, put css's refcnt. 2452 * gotten by try_charge(). 2453 */ 2454 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg, 2455 unsigned int nr_pages) 2456 { 2457 if (!mem_cgroup_is_root(memcg)) { 2458 unsigned long bytes = nr_pages * PAGE_SIZE; 2459 2460 res_counter_uncharge(&memcg->res, bytes); 2461 if (do_swap_account) 2462 res_counter_uncharge(&memcg->memsw, bytes); 2463 } 2464 } 2465 2466 /* 2467 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup. 2468 * This is useful when moving usage to parent cgroup. 2469 */ 2470 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg, 2471 unsigned int nr_pages) 2472 { 2473 unsigned long bytes = nr_pages * PAGE_SIZE; 2474 2475 if (mem_cgroup_is_root(memcg)) 2476 return; 2477 2478 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes); 2479 if (do_swap_account) 2480 res_counter_uncharge_until(&memcg->memsw, 2481 memcg->memsw.parent, bytes); 2482 } 2483 2484 /* 2485 * A helper function to get mem_cgroup from ID. must be called under 2486 * rcu_read_lock(). The caller must check css_is_removed() or some if 2487 * it's concern. (dropping refcnt from swap can be called against removed 2488 * memcg.) 2489 */ 2490 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id) 2491 { 2492 struct cgroup_subsys_state *css; 2493 2494 /* ID 0 is unused ID */ 2495 if (!id) 2496 return NULL; 2497 css = css_lookup(&mem_cgroup_subsys, id); 2498 if (!css) 2499 return NULL; 2500 return mem_cgroup_from_css(css); 2501 } 2502 2503 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page) 2504 { 2505 struct mem_cgroup *memcg = NULL; 2506 struct page_cgroup *pc; 2507 unsigned short id; 2508 swp_entry_t ent; 2509 2510 VM_BUG_ON(!PageLocked(page)); 2511 2512 pc = lookup_page_cgroup(page); 2513 lock_page_cgroup(pc); 2514 if (PageCgroupUsed(pc)) { 2515 memcg = pc->mem_cgroup; 2516 if (memcg && !css_tryget(&memcg->css)) 2517 memcg = NULL; 2518 } else if (PageSwapCache(page)) { 2519 ent.val = page_private(page); 2520 id = lookup_swap_cgroup_id(ent); 2521 rcu_read_lock(); 2522 memcg = mem_cgroup_lookup(id); 2523 if (memcg && !css_tryget(&memcg->css)) 2524 memcg = NULL; 2525 rcu_read_unlock(); 2526 } 2527 unlock_page_cgroup(pc); 2528 return memcg; 2529 } 2530 2531 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg, 2532 struct page *page, 2533 unsigned int nr_pages, 2534 enum charge_type ctype, 2535 bool lrucare) 2536 { 2537 struct page_cgroup *pc = lookup_page_cgroup(page); 2538 struct zone *uninitialized_var(zone); 2539 struct lruvec *lruvec; 2540 bool was_on_lru = false; 2541 bool anon; 2542 2543 lock_page_cgroup(pc); 2544 VM_BUG_ON(PageCgroupUsed(pc)); 2545 /* 2546 * we don't need page_cgroup_lock about tail pages, becase they are not 2547 * accessed by any other context at this point. 2548 */ 2549 2550 /* 2551 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page 2552 * may already be on some other mem_cgroup's LRU. Take care of it. 2553 */ 2554 if (lrucare) { 2555 zone = page_zone(page); 2556 spin_lock_irq(&zone->lru_lock); 2557 if (PageLRU(page)) { 2558 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup); 2559 ClearPageLRU(page); 2560 del_page_from_lru_list(page, lruvec, page_lru(page)); 2561 was_on_lru = true; 2562 } 2563 } 2564 2565 pc->mem_cgroup = memcg; 2566 /* 2567 * We access a page_cgroup asynchronously without lock_page_cgroup(). 2568 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup 2569 * is accessed after testing USED bit. To make pc->mem_cgroup visible 2570 * before USED bit, we need memory barrier here. 2571 * See mem_cgroup_add_lru_list(), etc. 2572 */ 2573 smp_wmb(); 2574 SetPageCgroupUsed(pc); 2575 2576 if (lrucare) { 2577 if (was_on_lru) { 2578 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup); 2579 VM_BUG_ON(PageLRU(page)); 2580 SetPageLRU(page); 2581 add_page_to_lru_list(page, lruvec, page_lru(page)); 2582 } 2583 spin_unlock_irq(&zone->lru_lock); 2584 } 2585 2586 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON) 2587 anon = true; 2588 else 2589 anon = false; 2590 2591 mem_cgroup_charge_statistics(memcg, anon, nr_pages); 2592 unlock_page_cgroup(pc); 2593 2594 /* 2595 * "charge_statistics" updated event counter. Then, check it. 2596 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree. 2597 * if they exceeds softlimit. 2598 */ 2599 memcg_check_events(memcg, page); 2600 } 2601 2602 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2603 2604 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION) 2605 /* 2606 * Because tail pages are not marked as "used", set it. We're under 2607 * zone->lru_lock, 'splitting on pmd' and compound_lock. 2608 * charge/uncharge will be never happen and move_account() is done under 2609 * compound_lock(), so we don't have to take care of races. 2610 */ 2611 void mem_cgroup_split_huge_fixup(struct page *head) 2612 { 2613 struct page_cgroup *head_pc = lookup_page_cgroup(head); 2614 struct page_cgroup *pc; 2615 int i; 2616 2617 if (mem_cgroup_disabled()) 2618 return; 2619 for (i = 1; i < HPAGE_PMD_NR; i++) { 2620 pc = head_pc + i; 2621 pc->mem_cgroup = head_pc->mem_cgroup; 2622 smp_wmb();/* see __commit_charge() */ 2623 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT; 2624 } 2625 } 2626 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 2627 2628 /** 2629 * mem_cgroup_move_account - move account of the page 2630 * @page: the page 2631 * @nr_pages: number of regular pages (>1 for huge pages) 2632 * @pc: page_cgroup of the page. 2633 * @from: mem_cgroup which the page is moved from. 2634 * @to: mem_cgroup which the page is moved to. @from != @to. 2635 * 2636 * The caller must confirm following. 2637 * - page is not on LRU (isolate_page() is useful.) 2638 * - compound_lock is held when nr_pages > 1 2639 * 2640 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" 2641 * from old cgroup. 2642 */ 2643 static int mem_cgroup_move_account(struct page *page, 2644 unsigned int nr_pages, 2645 struct page_cgroup *pc, 2646 struct mem_cgroup *from, 2647 struct mem_cgroup *to) 2648 { 2649 unsigned long flags; 2650 int ret; 2651 bool anon = PageAnon(page); 2652 2653 VM_BUG_ON(from == to); 2654 VM_BUG_ON(PageLRU(page)); 2655 /* 2656 * The page is isolated from LRU. So, collapse function 2657 * will not handle this page. But page splitting can happen. 2658 * Do this check under compound_page_lock(). The caller should 2659 * hold it. 2660 */ 2661 ret = -EBUSY; 2662 if (nr_pages > 1 && !PageTransHuge(page)) 2663 goto out; 2664 2665 lock_page_cgroup(pc); 2666 2667 ret = -EINVAL; 2668 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from) 2669 goto unlock; 2670 2671 move_lock_mem_cgroup(from, &flags); 2672 2673 if (!anon && page_mapped(page)) { 2674 /* Update mapped_file data for mem_cgroup */ 2675 preempt_disable(); 2676 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]); 2677 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]); 2678 preempt_enable(); 2679 } 2680 mem_cgroup_charge_statistics(from, anon, -nr_pages); 2681 2682 /* caller should have done css_get */ 2683 pc->mem_cgroup = to; 2684 mem_cgroup_charge_statistics(to, anon, nr_pages); 2685 /* 2686 * We charges against "to" which may not have any tasks. Then, "to" 2687 * can be under rmdir(). But in current implementation, caller of 2688 * this function is just force_empty() and move charge, so it's 2689 * guaranteed that "to" is never removed. So, we don't check rmdir 2690 * status here. 2691 */ 2692 move_unlock_mem_cgroup(from, &flags); 2693 ret = 0; 2694 unlock: 2695 unlock_page_cgroup(pc); 2696 /* 2697 * check events 2698 */ 2699 memcg_check_events(to, page); 2700 memcg_check_events(from, page); 2701 out: 2702 return ret; 2703 } 2704 2705 /* 2706 * move charges to its parent. 2707 */ 2708 2709 static int mem_cgroup_move_parent(struct page *page, 2710 struct page_cgroup *pc, 2711 struct mem_cgroup *child) 2712 { 2713 struct mem_cgroup *parent; 2714 unsigned int nr_pages; 2715 unsigned long uninitialized_var(flags); 2716 int ret; 2717 2718 /* Is ROOT ? */ 2719 if (mem_cgroup_is_root(child)) 2720 return -EINVAL; 2721 2722 ret = -EBUSY; 2723 if (!get_page_unless_zero(page)) 2724 goto out; 2725 if (isolate_lru_page(page)) 2726 goto put; 2727 2728 nr_pages = hpage_nr_pages(page); 2729 2730 parent = parent_mem_cgroup(child); 2731 /* 2732 * If no parent, move charges to root cgroup. 2733 */ 2734 if (!parent) 2735 parent = root_mem_cgroup; 2736 2737 if (nr_pages > 1) 2738 flags = compound_lock_irqsave(page); 2739 2740 ret = mem_cgroup_move_account(page, nr_pages, 2741 pc, child, parent); 2742 if (!ret) 2743 __mem_cgroup_cancel_local_charge(child, nr_pages); 2744 2745 if (nr_pages > 1) 2746 compound_unlock_irqrestore(page, flags); 2747 putback_lru_page(page); 2748 put: 2749 put_page(page); 2750 out: 2751 return ret; 2752 } 2753 2754 /* 2755 * Charge the memory controller for page usage. 2756 * Return 2757 * 0 if the charge was successful 2758 * < 0 if the cgroup is over its limit 2759 */ 2760 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm, 2761 gfp_t gfp_mask, enum charge_type ctype) 2762 { 2763 struct mem_cgroup *memcg = NULL; 2764 unsigned int nr_pages = 1; 2765 bool oom = true; 2766 int ret; 2767 2768 if (PageTransHuge(page)) { 2769 nr_pages <<= compound_order(page); 2770 VM_BUG_ON(!PageTransHuge(page)); 2771 /* 2772 * Never OOM-kill a process for a huge page. The 2773 * fault handler will fall back to regular pages. 2774 */ 2775 oom = false; 2776 } 2777 2778 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom); 2779 if (ret == -ENOMEM) 2780 return ret; 2781 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false); 2782 return 0; 2783 } 2784 2785 int mem_cgroup_newpage_charge(struct page *page, 2786 struct mm_struct *mm, gfp_t gfp_mask) 2787 { 2788 if (mem_cgroup_disabled()) 2789 return 0; 2790 VM_BUG_ON(page_mapped(page)); 2791 VM_BUG_ON(page->mapping && !PageAnon(page)); 2792 VM_BUG_ON(!mm); 2793 return mem_cgroup_charge_common(page, mm, gfp_mask, 2794 MEM_CGROUP_CHARGE_TYPE_ANON); 2795 } 2796 2797 /* 2798 * While swap-in, try_charge -> commit or cancel, the page is locked. 2799 * And when try_charge() successfully returns, one refcnt to memcg without 2800 * struct page_cgroup is acquired. This refcnt will be consumed by 2801 * "commit()" or removed by "cancel()" 2802 */ 2803 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm, 2804 struct page *page, 2805 gfp_t mask, 2806 struct mem_cgroup **memcgp) 2807 { 2808 struct mem_cgroup *memcg; 2809 struct page_cgroup *pc; 2810 int ret; 2811 2812 pc = lookup_page_cgroup(page); 2813 /* 2814 * Every swap fault against a single page tries to charge the 2815 * page, bail as early as possible. shmem_unuse() encounters 2816 * already charged pages, too. The USED bit is protected by 2817 * the page lock, which serializes swap cache removal, which 2818 * in turn serializes uncharging. 2819 */ 2820 if (PageCgroupUsed(pc)) 2821 return 0; 2822 if (!do_swap_account) 2823 goto charge_cur_mm; 2824 memcg = try_get_mem_cgroup_from_page(page); 2825 if (!memcg) 2826 goto charge_cur_mm; 2827 *memcgp = memcg; 2828 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true); 2829 css_put(&memcg->css); 2830 if (ret == -EINTR) 2831 ret = 0; 2832 return ret; 2833 charge_cur_mm: 2834 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true); 2835 if (ret == -EINTR) 2836 ret = 0; 2837 return ret; 2838 } 2839 2840 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page, 2841 gfp_t gfp_mask, struct mem_cgroup **memcgp) 2842 { 2843 *memcgp = NULL; 2844 if (mem_cgroup_disabled()) 2845 return 0; 2846 /* 2847 * A racing thread's fault, or swapoff, may have already 2848 * updated the pte, and even removed page from swap cache: in 2849 * those cases unuse_pte()'s pte_same() test will fail; but 2850 * there's also a KSM case which does need to charge the page. 2851 */ 2852 if (!PageSwapCache(page)) { 2853 int ret; 2854 2855 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true); 2856 if (ret == -EINTR) 2857 ret = 0; 2858 return ret; 2859 } 2860 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp); 2861 } 2862 2863 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg) 2864 { 2865 if (mem_cgroup_disabled()) 2866 return; 2867 if (!memcg) 2868 return; 2869 __mem_cgroup_cancel_charge(memcg, 1); 2870 } 2871 2872 static void 2873 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg, 2874 enum charge_type ctype) 2875 { 2876 if (mem_cgroup_disabled()) 2877 return; 2878 if (!memcg) 2879 return; 2880 cgroup_exclude_rmdir(&memcg->css); 2881 2882 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true); 2883 /* 2884 * Now swap is on-memory. This means this page may be 2885 * counted both as mem and swap....double count. 2886 * Fix it by uncharging from memsw. Basically, this SwapCache is stable 2887 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page() 2888 * may call delete_from_swap_cache() before reach here. 2889 */ 2890 if (do_swap_account && PageSwapCache(page)) { 2891 swp_entry_t ent = {.val = page_private(page)}; 2892 mem_cgroup_uncharge_swap(ent); 2893 } 2894 /* 2895 * At swapin, we may charge account against cgroup which has no tasks. 2896 * So, rmdir()->pre_destroy() can be called while we do this charge. 2897 * In that case, we need to call pre_destroy() again. check it here. 2898 */ 2899 cgroup_release_and_wakeup_rmdir(&memcg->css); 2900 } 2901 2902 void mem_cgroup_commit_charge_swapin(struct page *page, 2903 struct mem_cgroup *memcg) 2904 { 2905 __mem_cgroup_commit_charge_swapin(page, memcg, 2906 MEM_CGROUP_CHARGE_TYPE_ANON); 2907 } 2908 2909 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm, 2910 gfp_t gfp_mask) 2911 { 2912 struct mem_cgroup *memcg = NULL; 2913 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE; 2914 int ret; 2915 2916 if (mem_cgroup_disabled()) 2917 return 0; 2918 if (PageCompound(page)) 2919 return 0; 2920 2921 if (!PageSwapCache(page)) 2922 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type); 2923 else { /* page is swapcache/shmem */ 2924 ret = __mem_cgroup_try_charge_swapin(mm, page, 2925 gfp_mask, &memcg); 2926 if (!ret) 2927 __mem_cgroup_commit_charge_swapin(page, memcg, type); 2928 } 2929 return ret; 2930 } 2931 2932 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg, 2933 unsigned int nr_pages, 2934 const enum charge_type ctype) 2935 { 2936 struct memcg_batch_info *batch = NULL; 2937 bool uncharge_memsw = true; 2938 2939 /* If swapout, usage of swap doesn't decrease */ 2940 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) 2941 uncharge_memsw = false; 2942 2943 batch = ¤t->memcg_batch; 2944 /* 2945 * In usual, we do css_get() when we remember memcg pointer. 2946 * But in this case, we keep res->usage until end of a series of 2947 * uncharges. Then, it's ok to ignore memcg's refcnt. 2948 */ 2949 if (!batch->memcg) 2950 batch->memcg = memcg; 2951 /* 2952 * do_batch > 0 when unmapping pages or inode invalidate/truncate. 2953 * In those cases, all pages freed continuously can be expected to be in 2954 * the same cgroup and we have chance to coalesce uncharges. 2955 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE) 2956 * because we want to do uncharge as soon as possible. 2957 */ 2958 2959 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE)) 2960 goto direct_uncharge; 2961 2962 if (nr_pages > 1) 2963 goto direct_uncharge; 2964 2965 /* 2966 * In typical case, batch->memcg == mem. This means we can 2967 * merge a series of uncharges to an uncharge of res_counter. 2968 * If not, we uncharge res_counter ony by one. 2969 */ 2970 if (batch->memcg != memcg) 2971 goto direct_uncharge; 2972 /* remember freed charge and uncharge it later */ 2973 batch->nr_pages++; 2974 if (uncharge_memsw) 2975 batch->memsw_nr_pages++; 2976 return; 2977 direct_uncharge: 2978 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE); 2979 if (uncharge_memsw) 2980 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE); 2981 if (unlikely(batch->memcg != memcg)) 2982 memcg_oom_recover(memcg); 2983 } 2984 2985 /* 2986 * uncharge if !page_mapped(page) 2987 */ 2988 static struct mem_cgroup * 2989 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype, 2990 bool end_migration) 2991 { 2992 struct mem_cgroup *memcg = NULL; 2993 unsigned int nr_pages = 1; 2994 struct page_cgroup *pc; 2995 bool anon; 2996 2997 if (mem_cgroup_disabled()) 2998 return NULL; 2999 3000 VM_BUG_ON(PageSwapCache(page)); 3001 3002 if (PageTransHuge(page)) { 3003 nr_pages <<= compound_order(page); 3004 VM_BUG_ON(!PageTransHuge(page)); 3005 } 3006 /* 3007 * Check if our page_cgroup is valid 3008 */ 3009 pc = lookup_page_cgroup(page); 3010 if (unlikely(!PageCgroupUsed(pc))) 3011 return NULL; 3012 3013 lock_page_cgroup(pc); 3014 3015 memcg = pc->mem_cgroup; 3016 3017 if (!PageCgroupUsed(pc)) 3018 goto unlock_out; 3019 3020 anon = PageAnon(page); 3021 3022 switch (ctype) { 3023 case MEM_CGROUP_CHARGE_TYPE_ANON: 3024 /* 3025 * Generally PageAnon tells if it's the anon statistics to be 3026 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is 3027 * used before page reached the stage of being marked PageAnon. 3028 */ 3029 anon = true; 3030 /* fallthrough */ 3031 case MEM_CGROUP_CHARGE_TYPE_DROP: 3032 /* See mem_cgroup_prepare_migration() */ 3033 if (page_mapped(page)) 3034 goto unlock_out; 3035 /* 3036 * Pages under migration may not be uncharged. But 3037 * end_migration() /must/ be the one uncharging the 3038 * unused post-migration page and so it has to call 3039 * here with the migration bit still set. See the 3040 * res_counter handling below. 3041 */ 3042 if (!end_migration && PageCgroupMigration(pc)) 3043 goto unlock_out; 3044 break; 3045 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT: 3046 if (!PageAnon(page)) { /* Shared memory */ 3047 if (page->mapping && !page_is_file_cache(page)) 3048 goto unlock_out; 3049 } else if (page_mapped(page)) /* Anon */ 3050 goto unlock_out; 3051 break; 3052 default: 3053 break; 3054 } 3055 3056 mem_cgroup_charge_statistics(memcg, anon, -nr_pages); 3057 3058 ClearPageCgroupUsed(pc); 3059 /* 3060 * pc->mem_cgroup is not cleared here. It will be accessed when it's 3061 * freed from LRU. This is safe because uncharged page is expected not 3062 * to be reused (freed soon). Exception is SwapCache, it's handled by 3063 * special functions. 3064 */ 3065 3066 unlock_page_cgroup(pc); 3067 /* 3068 * even after unlock, we have memcg->res.usage here and this memcg 3069 * will never be freed. 3070 */ 3071 memcg_check_events(memcg, page); 3072 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) { 3073 mem_cgroup_swap_statistics(memcg, true); 3074 mem_cgroup_get(memcg); 3075 } 3076 /* 3077 * Migration does not charge the res_counter for the 3078 * replacement page, so leave it alone when phasing out the 3079 * page that is unused after the migration. 3080 */ 3081 if (!end_migration && !mem_cgroup_is_root(memcg)) 3082 mem_cgroup_do_uncharge(memcg, nr_pages, ctype); 3083 3084 return memcg; 3085 3086 unlock_out: 3087 unlock_page_cgroup(pc); 3088 return NULL; 3089 } 3090 3091 void mem_cgroup_uncharge_page(struct page *page) 3092 { 3093 /* early check. */ 3094 if (page_mapped(page)) 3095 return; 3096 VM_BUG_ON(page->mapping && !PageAnon(page)); 3097 if (PageSwapCache(page)) 3098 return; 3099 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false); 3100 } 3101 3102 void mem_cgroup_uncharge_cache_page(struct page *page) 3103 { 3104 VM_BUG_ON(page_mapped(page)); 3105 VM_BUG_ON(page->mapping); 3106 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false); 3107 } 3108 3109 /* 3110 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate. 3111 * In that cases, pages are freed continuously and we can expect pages 3112 * are in the same memcg. All these calls itself limits the number of 3113 * pages freed at once, then uncharge_start/end() is called properly. 3114 * This may be called prural(2) times in a context, 3115 */ 3116 3117 void mem_cgroup_uncharge_start(void) 3118 { 3119 current->memcg_batch.do_batch++; 3120 /* We can do nest. */ 3121 if (current->memcg_batch.do_batch == 1) { 3122 current->memcg_batch.memcg = NULL; 3123 current->memcg_batch.nr_pages = 0; 3124 current->memcg_batch.memsw_nr_pages = 0; 3125 } 3126 } 3127 3128 void mem_cgroup_uncharge_end(void) 3129 { 3130 struct memcg_batch_info *batch = ¤t->memcg_batch; 3131 3132 if (!batch->do_batch) 3133 return; 3134 3135 batch->do_batch--; 3136 if (batch->do_batch) /* If stacked, do nothing. */ 3137 return; 3138 3139 if (!batch->memcg) 3140 return; 3141 /* 3142 * This "batch->memcg" is valid without any css_get/put etc... 3143 * bacause we hide charges behind us. 3144 */ 3145 if (batch->nr_pages) 3146 res_counter_uncharge(&batch->memcg->res, 3147 batch->nr_pages * PAGE_SIZE); 3148 if (batch->memsw_nr_pages) 3149 res_counter_uncharge(&batch->memcg->memsw, 3150 batch->memsw_nr_pages * PAGE_SIZE); 3151 memcg_oom_recover(batch->memcg); 3152 /* forget this pointer (for sanity check) */ 3153 batch->memcg = NULL; 3154 } 3155 3156 #ifdef CONFIG_SWAP 3157 /* 3158 * called after __delete_from_swap_cache() and drop "page" account. 3159 * memcg information is recorded to swap_cgroup of "ent" 3160 */ 3161 void 3162 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout) 3163 { 3164 struct mem_cgroup *memcg; 3165 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT; 3166 3167 if (!swapout) /* this was a swap cache but the swap is unused ! */ 3168 ctype = MEM_CGROUP_CHARGE_TYPE_DROP; 3169 3170 memcg = __mem_cgroup_uncharge_common(page, ctype, false); 3171 3172 /* 3173 * record memcg information, if swapout && memcg != NULL, 3174 * mem_cgroup_get() was called in uncharge(). 3175 */ 3176 if (do_swap_account && swapout && memcg) 3177 swap_cgroup_record(ent, css_id(&memcg->css)); 3178 } 3179 #endif 3180 3181 #ifdef CONFIG_MEMCG_SWAP 3182 /* 3183 * called from swap_entry_free(). remove record in swap_cgroup and 3184 * uncharge "memsw" account. 3185 */ 3186 void mem_cgroup_uncharge_swap(swp_entry_t ent) 3187 { 3188 struct mem_cgroup *memcg; 3189 unsigned short id; 3190 3191 if (!do_swap_account) 3192 return; 3193 3194 id = swap_cgroup_record(ent, 0); 3195 rcu_read_lock(); 3196 memcg = mem_cgroup_lookup(id); 3197 if (memcg) { 3198 /* 3199 * We uncharge this because swap is freed. 3200 * This memcg can be obsolete one. We avoid calling css_tryget 3201 */ 3202 if (!mem_cgroup_is_root(memcg)) 3203 res_counter_uncharge(&memcg->memsw, PAGE_SIZE); 3204 mem_cgroup_swap_statistics(memcg, false); 3205 mem_cgroup_put(memcg); 3206 } 3207 rcu_read_unlock(); 3208 } 3209 3210 /** 3211 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 3212 * @entry: swap entry to be moved 3213 * @from: mem_cgroup which the entry is moved from 3214 * @to: mem_cgroup which the entry is moved to 3215 * 3216 * It succeeds only when the swap_cgroup's record for this entry is the same 3217 * as the mem_cgroup's id of @from. 3218 * 3219 * Returns 0 on success, -EINVAL on failure. 3220 * 3221 * The caller must have charged to @to, IOW, called res_counter_charge() about 3222 * both res and memsw, and called css_get(). 3223 */ 3224 static int mem_cgroup_move_swap_account(swp_entry_t entry, 3225 struct mem_cgroup *from, struct mem_cgroup *to) 3226 { 3227 unsigned short old_id, new_id; 3228 3229 old_id = css_id(&from->css); 3230 new_id = css_id(&to->css); 3231 3232 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 3233 mem_cgroup_swap_statistics(from, false); 3234 mem_cgroup_swap_statistics(to, true); 3235 /* 3236 * This function is only called from task migration context now. 3237 * It postpones res_counter and refcount handling till the end 3238 * of task migration(mem_cgroup_clear_mc()) for performance 3239 * improvement. But we cannot postpone mem_cgroup_get(to) 3240 * because if the process that has been moved to @to does 3241 * swap-in, the refcount of @to might be decreased to 0. 3242 */ 3243 mem_cgroup_get(to); 3244 return 0; 3245 } 3246 return -EINVAL; 3247 } 3248 #else 3249 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 3250 struct mem_cgroup *from, struct mem_cgroup *to) 3251 { 3252 return -EINVAL; 3253 } 3254 #endif 3255 3256 /* 3257 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old 3258 * page belongs to. 3259 */ 3260 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage, 3261 struct mem_cgroup **memcgp) 3262 { 3263 struct mem_cgroup *memcg = NULL; 3264 struct page_cgroup *pc; 3265 enum charge_type ctype; 3266 3267 *memcgp = NULL; 3268 3269 VM_BUG_ON(PageTransHuge(page)); 3270 if (mem_cgroup_disabled()) 3271 return; 3272 3273 pc = lookup_page_cgroup(page); 3274 lock_page_cgroup(pc); 3275 if (PageCgroupUsed(pc)) { 3276 memcg = pc->mem_cgroup; 3277 css_get(&memcg->css); 3278 /* 3279 * At migrating an anonymous page, its mapcount goes down 3280 * to 0 and uncharge() will be called. But, even if it's fully 3281 * unmapped, migration may fail and this page has to be 3282 * charged again. We set MIGRATION flag here and delay uncharge 3283 * until end_migration() is called 3284 * 3285 * Corner Case Thinking 3286 * A) 3287 * When the old page was mapped as Anon and it's unmap-and-freed 3288 * while migration was ongoing. 3289 * If unmap finds the old page, uncharge() of it will be delayed 3290 * until end_migration(). If unmap finds a new page, it's 3291 * uncharged when it make mapcount to be 1->0. If unmap code 3292 * finds swap_migration_entry, the new page will not be mapped 3293 * and end_migration() will find it(mapcount==0). 3294 * 3295 * B) 3296 * When the old page was mapped but migraion fails, the kernel 3297 * remaps it. A charge for it is kept by MIGRATION flag even 3298 * if mapcount goes down to 0. We can do remap successfully 3299 * without charging it again. 3300 * 3301 * C) 3302 * The "old" page is under lock_page() until the end of 3303 * migration, so, the old page itself will not be swapped-out. 3304 * If the new page is swapped out before end_migraton, our 3305 * hook to usual swap-out path will catch the event. 3306 */ 3307 if (PageAnon(page)) 3308 SetPageCgroupMigration(pc); 3309 } 3310 unlock_page_cgroup(pc); 3311 /* 3312 * If the page is not charged at this point, 3313 * we return here. 3314 */ 3315 if (!memcg) 3316 return; 3317 3318 *memcgp = memcg; 3319 /* 3320 * We charge new page before it's used/mapped. So, even if unlock_page() 3321 * is called before end_migration, we can catch all events on this new 3322 * page. In the case new page is migrated but not remapped, new page's 3323 * mapcount will be finally 0 and we call uncharge in end_migration(). 3324 */ 3325 if (PageAnon(page)) 3326 ctype = MEM_CGROUP_CHARGE_TYPE_ANON; 3327 else 3328 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE; 3329 /* 3330 * The page is committed to the memcg, but it's not actually 3331 * charged to the res_counter since we plan on replacing the 3332 * old one and only one page is going to be left afterwards. 3333 */ 3334 __mem_cgroup_commit_charge(memcg, newpage, 1, ctype, false); 3335 } 3336 3337 /* remove redundant charge if migration failed*/ 3338 void mem_cgroup_end_migration(struct mem_cgroup *memcg, 3339 struct page *oldpage, struct page *newpage, bool migration_ok) 3340 { 3341 struct page *used, *unused; 3342 struct page_cgroup *pc; 3343 bool anon; 3344 3345 if (!memcg) 3346 return; 3347 /* blocks rmdir() */ 3348 cgroup_exclude_rmdir(&memcg->css); 3349 if (!migration_ok) { 3350 used = oldpage; 3351 unused = newpage; 3352 } else { 3353 used = newpage; 3354 unused = oldpage; 3355 } 3356 anon = PageAnon(used); 3357 __mem_cgroup_uncharge_common(unused, 3358 anon ? MEM_CGROUP_CHARGE_TYPE_ANON 3359 : MEM_CGROUP_CHARGE_TYPE_CACHE, 3360 true); 3361 css_put(&memcg->css); 3362 /* 3363 * We disallowed uncharge of pages under migration because mapcount 3364 * of the page goes down to zero, temporarly. 3365 * Clear the flag and check the page should be charged. 3366 */ 3367 pc = lookup_page_cgroup(oldpage); 3368 lock_page_cgroup(pc); 3369 ClearPageCgroupMigration(pc); 3370 unlock_page_cgroup(pc); 3371 3372 /* 3373 * If a page is a file cache, radix-tree replacement is very atomic 3374 * and we can skip this check. When it was an Anon page, its mapcount 3375 * goes down to 0. But because we added MIGRATION flage, it's not 3376 * uncharged yet. There are several case but page->mapcount check 3377 * and USED bit check in mem_cgroup_uncharge_page() will do enough 3378 * check. (see prepare_charge() also) 3379 */ 3380 if (anon) 3381 mem_cgroup_uncharge_page(used); 3382 /* 3383 * At migration, we may charge account against cgroup which has no 3384 * tasks. 3385 * So, rmdir()->pre_destroy() can be called while we do this charge. 3386 * In that case, we need to call pre_destroy() again. check it here. 3387 */ 3388 cgroup_release_and_wakeup_rmdir(&memcg->css); 3389 } 3390 3391 /* 3392 * At replace page cache, newpage is not under any memcg but it's on 3393 * LRU. So, this function doesn't touch res_counter but handles LRU 3394 * in correct way. Both pages are locked so we cannot race with uncharge. 3395 */ 3396 void mem_cgroup_replace_page_cache(struct page *oldpage, 3397 struct page *newpage) 3398 { 3399 struct mem_cgroup *memcg = NULL; 3400 struct page_cgroup *pc; 3401 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE; 3402 3403 if (mem_cgroup_disabled()) 3404 return; 3405 3406 pc = lookup_page_cgroup(oldpage); 3407 /* fix accounting on old pages */ 3408 lock_page_cgroup(pc); 3409 if (PageCgroupUsed(pc)) { 3410 memcg = pc->mem_cgroup; 3411 mem_cgroup_charge_statistics(memcg, false, -1); 3412 ClearPageCgroupUsed(pc); 3413 } 3414 unlock_page_cgroup(pc); 3415 3416 /* 3417 * When called from shmem_replace_page(), in some cases the 3418 * oldpage has already been charged, and in some cases not. 3419 */ 3420 if (!memcg) 3421 return; 3422 /* 3423 * Even if newpage->mapping was NULL before starting replacement, 3424 * the newpage may be on LRU(or pagevec for LRU) already. We lock 3425 * LRU while we overwrite pc->mem_cgroup. 3426 */ 3427 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true); 3428 } 3429 3430 #ifdef CONFIG_DEBUG_VM 3431 static struct page_cgroup *lookup_page_cgroup_used(struct page *page) 3432 { 3433 struct page_cgroup *pc; 3434 3435 pc = lookup_page_cgroup(page); 3436 /* 3437 * Can be NULL while feeding pages into the page allocator for 3438 * the first time, i.e. during boot or memory hotplug; 3439 * or when mem_cgroup_disabled(). 3440 */ 3441 if (likely(pc) && PageCgroupUsed(pc)) 3442 return pc; 3443 return NULL; 3444 } 3445 3446 bool mem_cgroup_bad_page_check(struct page *page) 3447 { 3448 if (mem_cgroup_disabled()) 3449 return false; 3450 3451 return lookup_page_cgroup_used(page) != NULL; 3452 } 3453 3454 void mem_cgroup_print_bad_page(struct page *page) 3455 { 3456 struct page_cgroup *pc; 3457 3458 pc = lookup_page_cgroup_used(page); 3459 if (pc) { 3460 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n", 3461 pc, pc->flags, pc->mem_cgroup); 3462 } 3463 } 3464 #endif 3465 3466 static DEFINE_MUTEX(set_limit_mutex); 3467 3468 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg, 3469 unsigned long long val) 3470 { 3471 int retry_count; 3472 u64 memswlimit, memlimit; 3473 int ret = 0; 3474 int children = mem_cgroup_count_children(memcg); 3475 u64 curusage, oldusage; 3476 int enlarge; 3477 3478 /* 3479 * For keeping hierarchical_reclaim simple, how long we should retry 3480 * is depends on callers. We set our retry-count to be function 3481 * of # of children which we should visit in this loop. 3482 */ 3483 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children; 3484 3485 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE); 3486 3487 enlarge = 0; 3488 while (retry_count) { 3489 if (signal_pending(current)) { 3490 ret = -EINTR; 3491 break; 3492 } 3493 /* 3494 * Rather than hide all in some function, I do this in 3495 * open coded manner. You see what this really does. 3496 * We have to guarantee memcg->res.limit <= memcg->memsw.limit. 3497 */ 3498 mutex_lock(&set_limit_mutex); 3499 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 3500 if (memswlimit < val) { 3501 ret = -EINVAL; 3502 mutex_unlock(&set_limit_mutex); 3503 break; 3504 } 3505 3506 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT); 3507 if (memlimit < val) 3508 enlarge = 1; 3509 3510 ret = res_counter_set_limit(&memcg->res, val); 3511 if (!ret) { 3512 if (memswlimit == val) 3513 memcg->memsw_is_minimum = true; 3514 else 3515 memcg->memsw_is_minimum = false; 3516 } 3517 mutex_unlock(&set_limit_mutex); 3518 3519 if (!ret) 3520 break; 3521 3522 mem_cgroup_reclaim(memcg, GFP_KERNEL, 3523 MEM_CGROUP_RECLAIM_SHRINK); 3524 curusage = res_counter_read_u64(&memcg->res, RES_USAGE); 3525 /* Usage is reduced ? */ 3526 if (curusage >= oldusage) 3527 retry_count--; 3528 else 3529 oldusage = curusage; 3530 } 3531 if (!ret && enlarge) 3532 memcg_oom_recover(memcg); 3533 3534 return ret; 3535 } 3536 3537 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg, 3538 unsigned long long val) 3539 { 3540 int retry_count; 3541 u64 memlimit, memswlimit, oldusage, curusage; 3542 int children = mem_cgroup_count_children(memcg); 3543 int ret = -EBUSY; 3544 int enlarge = 0; 3545 3546 /* see mem_cgroup_resize_res_limit */ 3547 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES; 3548 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); 3549 while (retry_count) { 3550 if (signal_pending(current)) { 3551 ret = -EINTR; 3552 break; 3553 } 3554 /* 3555 * Rather than hide all in some function, I do this in 3556 * open coded manner. You see what this really does. 3557 * We have to guarantee memcg->res.limit <= memcg->memsw.limit. 3558 */ 3559 mutex_lock(&set_limit_mutex); 3560 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT); 3561 if (memlimit > val) { 3562 ret = -EINVAL; 3563 mutex_unlock(&set_limit_mutex); 3564 break; 3565 } 3566 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 3567 if (memswlimit < val) 3568 enlarge = 1; 3569 ret = res_counter_set_limit(&memcg->memsw, val); 3570 if (!ret) { 3571 if (memlimit == val) 3572 memcg->memsw_is_minimum = true; 3573 else 3574 memcg->memsw_is_minimum = false; 3575 } 3576 mutex_unlock(&set_limit_mutex); 3577 3578 if (!ret) 3579 break; 3580 3581 mem_cgroup_reclaim(memcg, GFP_KERNEL, 3582 MEM_CGROUP_RECLAIM_NOSWAP | 3583 MEM_CGROUP_RECLAIM_SHRINK); 3584 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); 3585 /* Usage is reduced ? */ 3586 if (curusage >= oldusage) 3587 retry_count--; 3588 else 3589 oldusage = curusage; 3590 } 3591 if (!ret && enlarge) 3592 memcg_oom_recover(memcg); 3593 return ret; 3594 } 3595 3596 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, 3597 gfp_t gfp_mask, 3598 unsigned long *total_scanned) 3599 { 3600 unsigned long nr_reclaimed = 0; 3601 struct mem_cgroup_per_zone *mz, *next_mz = NULL; 3602 unsigned long reclaimed; 3603 int loop = 0; 3604 struct mem_cgroup_tree_per_zone *mctz; 3605 unsigned long long excess; 3606 unsigned long nr_scanned; 3607 3608 if (order > 0) 3609 return 0; 3610 3611 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone)); 3612 /* 3613 * This loop can run a while, specially if mem_cgroup's continuously 3614 * keep exceeding their soft limit and putting the system under 3615 * pressure 3616 */ 3617 do { 3618 if (next_mz) 3619 mz = next_mz; 3620 else 3621 mz = mem_cgroup_largest_soft_limit_node(mctz); 3622 if (!mz) 3623 break; 3624 3625 nr_scanned = 0; 3626 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone, 3627 gfp_mask, &nr_scanned); 3628 nr_reclaimed += reclaimed; 3629 *total_scanned += nr_scanned; 3630 spin_lock(&mctz->lock); 3631 3632 /* 3633 * If we failed to reclaim anything from this memory cgroup 3634 * it is time to move on to the next cgroup 3635 */ 3636 next_mz = NULL; 3637 if (!reclaimed) { 3638 do { 3639 /* 3640 * Loop until we find yet another one. 3641 * 3642 * By the time we get the soft_limit lock 3643 * again, someone might have aded the 3644 * group back on the RB tree. Iterate to 3645 * make sure we get a different mem. 3646 * mem_cgroup_largest_soft_limit_node returns 3647 * NULL if no other cgroup is present on 3648 * the tree 3649 */ 3650 next_mz = 3651 __mem_cgroup_largest_soft_limit_node(mctz); 3652 if (next_mz == mz) 3653 css_put(&next_mz->memcg->css); 3654 else /* next_mz == NULL or other memcg */ 3655 break; 3656 } while (1); 3657 } 3658 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz); 3659 excess = res_counter_soft_limit_excess(&mz->memcg->res); 3660 /* 3661 * One school of thought says that we should not add 3662 * back the node to the tree if reclaim returns 0. 3663 * But our reclaim could return 0, simply because due 3664 * to priority we are exposing a smaller subset of 3665 * memory to reclaim from. Consider this as a longer 3666 * term TODO. 3667 */ 3668 /* If excess == 0, no tree ops */ 3669 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess); 3670 spin_unlock(&mctz->lock); 3671 css_put(&mz->memcg->css); 3672 loop++; 3673 /* 3674 * Could not reclaim anything and there are no more 3675 * mem cgroups to try or we seem to be looping without 3676 * reclaiming anything. 3677 */ 3678 if (!nr_reclaimed && 3679 (next_mz == NULL || 3680 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 3681 break; 3682 } while (!nr_reclaimed); 3683 if (next_mz) 3684 css_put(&next_mz->memcg->css); 3685 return nr_reclaimed; 3686 } 3687 3688 /* 3689 * Traverse a specified page_cgroup list and try to drop them all. This doesn't 3690 * reclaim the pages page themselves - it just removes the page_cgroups. 3691 * Returns true if some page_cgroups were not freed, indicating that the caller 3692 * must retry this operation. 3693 */ 3694 static bool mem_cgroup_force_empty_list(struct mem_cgroup *memcg, 3695 int node, int zid, enum lru_list lru) 3696 { 3697 struct mem_cgroup_per_zone *mz; 3698 unsigned long flags, loop; 3699 struct list_head *list; 3700 struct page *busy; 3701 struct zone *zone; 3702 3703 zone = &NODE_DATA(node)->node_zones[zid]; 3704 mz = mem_cgroup_zoneinfo(memcg, node, zid); 3705 list = &mz->lruvec.lists[lru]; 3706 3707 loop = mz->lru_size[lru]; 3708 /* give some margin against EBUSY etc...*/ 3709 loop += 256; 3710 busy = NULL; 3711 while (loop--) { 3712 struct page_cgroup *pc; 3713 struct page *page; 3714 3715 spin_lock_irqsave(&zone->lru_lock, flags); 3716 if (list_empty(list)) { 3717 spin_unlock_irqrestore(&zone->lru_lock, flags); 3718 break; 3719 } 3720 page = list_entry(list->prev, struct page, lru); 3721 if (busy == page) { 3722 list_move(&page->lru, list); 3723 busy = NULL; 3724 spin_unlock_irqrestore(&zone->lru_lock, flags); 3725 continue; 3726 } 3727 spin_unlock_irqrestore(&zone->lru_lock, flags); 3728 3729 pc = lookup_page_cgroup(page); 3730 3731 if (mem_cgroup_move_parent(page, pc, memcg)) { 3732 /* found lock contention or "pc" is obsolete. */ 3733 busy = page; 3734 cond_resched(); 3735 } else 3736 busy = NULL; 3737 } 3738 return !list_empty(list); 3739 } 3740 3741 /* 3742 * make mem_cgroup's charge to be 0 if there is no task. 3743 * This enables deleting this mem_cgroup. 3744 */ 3745 static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all) 3746 { 3747 int ret; 3748 int node, zid, shrink; 3749 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 3750 struct cgroup *cgrp = memcg->css.cgroup; 3751 3752 css_get(&memcg->css); 3753 3754 shrink = 0; 3755 /* should free all ? */ 3756 if (free_all) 3757 goto try_to_free; 3758 move_account: 3759 do { 3760 ret = -EBUSY; 3761 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children)) 3762 goto out; 3763 /* This is for making all *used* pages to be on LRU. */ 3764 lru_add_drain_all(); 3765 drain_all_stock_sync(memcg); 3766 ret = 0; 3767 mem_cgroup_start_move(memcg); 3768 for_each_node_state(node, N_HIGH_MEMORY) { 3769 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) { 3770 enum lru_list lru; 3771 for_each_lru(lru) { 3772 ret = mem_cgroup_force_empty_list(memcg, 3773 node, zid, lru); 3774 if (ret) 3775 break; 3776 } 3777 } 3778 if (ret) 3779 break; 3780 } 3781 mem_cgroup_end_move(memcg); 3782 memcg_oom_recover(memcg); 3783 cond_resched(); 3784 /* "ret" should also be checked to ensure all lists are empty. */ 3785 } while (res_counter_read_u64(&memcg->res, RES_USAGE) > 0 || ret); 3786 out: 3787 css_put(&memcg->css); 3788 return ret; 3789 3790 try_to_free: 3791 /* returns EBUSY if there is a task or if we come here twice. */ 3792 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) { 3793 ret = -EBUSY; 3794 goto out; 3795 } 3796 /* we call try-to-free pages for make this cgroup empty */ 3797 lru_add_drain_all(); 3798 /* try to free all pages in this cgroup */ 3799 shrink = 1; 3800 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) { 3801 int progress; 3802 3803 if (signal_pending(current)) { 3804 ret = -EINTR; 3805 goto out; 3806 } 3807 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL, 3808 false); 3809 if (!progress) { 3810 nr_retries--; 3811 /* maybe some writeback is necessary */ 3812 congestion_wait(BLK_RW_ASYNC, HZ/10); 3813 } 3814 3815 } 3816 lru_add_drain(); 3817 /* try move_account...there may be some *locked* pages. */ 3818 goto move_account; 3819 } 3820 3821 static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event) 3822 { 3823 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true); 3824 } 3825 3826 3827 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft) 3828 { 3829 return mem_cgroup_from_cont(cont)->use_hierarchy; 3830 } 3831 3832 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft, 3833 u64 val) 3834 { 3835 int retval = 0; 3836 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 3837 struct cgroup *parent = cont->parent; 3838 struct mem_cgroup *parent_memcg = NULL; 3839 3840 if (parent) 3841 parent_memcg = mem_cgroup_from_cont(parent); 3842 3843 cgroup_lock(); 3844 3845 if (memcg->use_hierarchy == val) 3846 goto out; 3847 3848 /* 3849 * If parent's use_hierarchy is set, we can't make any modifications 3850 * in the child subtrees. If it is unset, then the change can 3851 * occur, provided the current cgroup has no children. 3852 * 3853 * For the root cgroup, parent_mem is NULL, we allow value to be 3854 * set if there are no children. 3855 */ 3856 if ((!parent_memcg || !parent_memcg->use_hierarchy) && 3857 (val == 1 || val == 0)) { 3858 if (list_empty(&cont->children)) 3859 memcg->use_hierarchy = val; 3860 else 3861 retval = -EBUSY; 3862 } else 3863 retval = -EINVAL; 3864 3865 out: 3866 cgroup_unlock(); 3867 3868 return retval; 3869 } 3870 3871 3872 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg, 3873 enum mem_cgroup_stat_index idx) 3874 { 3875 struct mem_cgroup *iter; 3876 long val = 0; 3877 3878 /* Per-cpu values can be negative, use a signed accumulator */ 3879 for_each_mem_cgroup_tree(iter, memcg) 3880 val += mem_cgroup_read_stat(iter, idx); 3881 3882 if (val < 0) /* race ? */ 3883 val = 0; 3884 return val; 3885 } 3886 3887 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 3888 { 3889 u64 val; 3890 3891 if (!mem_cgroup_is_root(memcg)) { 3892 if (!swap) 3893 return res_counter_read_u64(&memcg->res, RES_USAGE); 3894 else 3895 return res_counter_read_u64(&memcg->memsw, RES_USAGE); 3896 } 3897 3898 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE); 3899 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS); 3900 3901 if (swap) 3902 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP); 3903 3904 return val << PAGE_SHIFT; 3905 } 3906 3907 static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft, 3908 struct file *file, char __user *buf, 3909 size_t nbytes, loff_t *ppos) 3910 { 3911 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 3912 char str[64]; 3913 u64 val; 3914 int type, name, len; 3915 3916 type = MEMFILE_TYPE(cft->private); 3917 name = MEMFILE_ATTR(cft->private); 3918 3919 if (!do_swap_account && type == _MEMSWAP) 3920 return -EOPNOTSUPP; 3921 3922 switch (type) { 3923 case _MEM: 3924 if (name == RES_USAGE) 3925 val = mem_cgroup_usage(memcg, false); 3926 else 3927 val = res_counter_read_u64(&memcg->res, name); 3928 break; 3929 case _MEMSWAP: 3930 if (name == RES_USAGE) 3931 val = mem_cgroup_usage(memcg, true); 3932 else 3933 val = res_counter_read_u64(&memcg->memsw, name); 3934 break; 3935 default: 3936 BUG(); 3937 } 3938 3939 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val); 3940 return simple_read_from_buffer(buf, nbytes, ppos, str, len); 3941 } 3942 /* 3943 * The user of this function is... 3944 * RES_LIMIT. 3945 */ 3946 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft, 3947 const char *buffer) 3948 { 3949 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 3950 int type, name; 3951 unsigned long long val; 3952 int ret; 3953 3954 type = MEMFILE_TYPE(cft->private); 3955 name = MEMFILE_ATTR(cft->private); 3956 3957 if (!do_swap_account && type == _MEMSWAP) 3958 return -EOPNOTSUPP; 3959 3960 switch (name) { 3961 case RES_LIMIT: 3962 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 3963 ret = -EINVAL; 3964 break; 3965 } 3966 /* This function does all necessary parse...reuse it */ 3967 ret = res_counter_memparse_write_strategy(buffer, &val); 3968 if (ret) 3969 break; 3970 if (type == _MEM) 3971 ret = mem_cgroup_resize_limit(memcg, val); 3972 else 3973 ret = mem_cgroup_resize_memsw_limit(memcg, val); 3974 break; 3975 case RES_SOFT_LIMIT: 3976 ret = res_counter_memparse_write_strategy(buffer, &val); 3977 if (ret) 3978 break; 3979 /* 3980 * For memsw, soft limits are hard to implement in terms 3981 * of semantics, for now, we support soft limits for 3982 * control without swap 3983 */ 3984 if (type == _MEM) 3985 ret = res_counter_set_soft_limit(&memcg->res, val); 3986 else 3987 ret = -EINVAL; 3988 break; 3989 default: 3990 ret = -EINVAL; /* should be BUG() ? */ 3991 break; 3992 } 3993 return ret; 3994 } 3995 3996 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg, 3997 unsigned long long *mem_limit, unsigned long long *memsw_limit) 3998 { 3999 struct cgroup *cgroup; 4000 unsigned long long min_limit, min_memsw_limit, tmp; 4001 4002 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT); 4003 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 4004 cgroup = memcg->css.cgroup; 4005 if (!memcg->use_hierarchy) 4006 goto out; 4007 4008 while (cgroup->parent) { 4009 cgroup = cgroup->parent; 4010 memcg = mem_cgroup_from_cont(cgroup); 4011 if (!memcg->use_hierarchy) 4012 break; 4013 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT); 4014 min_limit = min(min_limit, tmp); 4015 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 4016 min_memsw_limit = min(min_memsw_limit, tmp); 4017 } 4018 out: 4019 *mem_limit = min_limit; 4020 *memsw_limit = min_memsw_limit; 4021 } 4022 4023 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event) 4024 { 4025 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 4026 int type, name; 4027 4028 type = MEMFILE_TYPE(event); 4029 name = MEMFILE_ATTR(event); 4030 4031 if (!do_swap_account && type == _MEMSWAP) 4032 return -EOPNOTSUPP; 4033 4034 switch (name) { 4035 case RES_MAX_USAGE: 4036 if (type == _MEM) 4037 res_counter_reset_max(&memcg->res); 4038 else 4039 res_counter_reset_max(&memcg->memsw); 4040 break; 4041 case RES_FAILCNT: 4042 if (type == _MEM) 4043 res_counter_reset_failcnt(&memcg->res); 4044 else 4045 res_counter_reset_failcnt(&memcg->memsw); 4046 break; 4047 } 4048 4049 return 0; 4050 } 4051 4052 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp, 4053 struct cftype *cft) 4054 { 4055 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate; 4056 } 4057 4058 #ifdef CONFIG_MMU 4059 static int mem_cgroup_move_charge_write(struct cgroup *cgrp, 4060 struct cftype *cft, u64 val) 4061 { 4062 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 4063 4064 if (val >= (1 << NR_MOVE_TYPE)) 4065 return -EINVAL; 4066 /* 4067 * We check this value several times in both in can_attach() and 4068 * attach(), so we need cgroup lock to prevent this value from being 4069 * inconsistent. 4070 */ 4071 cgroup_lock(); 4072 memcg->move_charge_at_immigrate = val; 4073 cgroup_unlock(); 4074 4075 return 0; 4076 } 4077 #else 4078 static int mem_cgroup_move_charge_write(struct cgroup *cgrp, 4079 struct cftype *cft, u64 val) 4080 { 4081 return -ENOSYS; 4082 } 4083 #endif 4084 4085 #ifdef CONFIG_NUMA 4086 static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft, 4087 struct seq_file *m) 4088 { 4089 int nid; 4090 unsigned long total_nr, file_nr, anon_nr, unevictable_nr; 4091 unsigned long node_nr; 4092 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 4093 4094 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL); 4095 seq_printf(m, "total=%lu", total_nr); 4096 for_each_node_state(nid, N_HIGH_MEMORY) { 4097 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL); 4098 seq_printf(m, " N%d=%lu", nid, node_nr); 4099 } 4100 seq_putc(m, '\n'); 4101 4102 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE); 4103 seq_printf(m, "file=%lu", file_nr); 4104 for_each_node_state(nid, N_HIGH_MEMORY) { 4105 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, 4106 LRU_ALL_FILE); 4107 seq_printf(m, " N%d=%lu", nid, node_nr); 4108 } 4109 seq_putc(m, '\n'); 4110 4111 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON); 4112 seq_printf(m, "anon=%lu", anon_nr); 4113 for_each_node_state(nid, N_HIGH_MEMORY) { 4114 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, 4115 LRU_ALL_ANON); 4116 seq_printf(m, " N%d=%lu", nid, node_nr); 4117 } 4118 seq_putc(m, '\n'); 4119 4120 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE)); 4121 seq_printf(m, "unevictable=%lu", unevictable_nr); 4122 for_each_node_state(nid, N_HIGH_MEMORY) { 4123 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, 4124 BIT(LRU_UNEVICTABLE)); 4125 seq_printf(m, " N%d=%lu", nid, node_nr); 4126 } 4127 seq_putc(m, '\n'); 4128 return 0; 4129 } 4130 #endif /* CONFIG_NUMA */ 4131 4132 static const char * const mem_cgroup_lru_names[] = { 4133 "inactive_anon", 4134 "active_anon", 4135 "inactive_file", 4136 "active_file", 4137 "unevictable", 4138 }; 4139 4140 static inline void mem_cgroup_lru_names_not_uptodate(void) 4141 { 4142 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS); 4143 } 4144 4145 static int memcg_stat_show(struct cgroup *cont, struct cftype *cft, 4146 struct seq_file *m) 4147 { 4148 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 4149 struct mem_cgroup *mi; 4150 unsigned int i; 4151 4152 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 4153 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) 4154 continue; 4155 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i], 4156 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE); 4157 } 4158 4159 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) 4160 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i], 4161 mem_cgroup_read_events(memcg, i)); 4162 4163 for (i = 0; i < NR_LRU_LISTS; i++) 4164 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i], 4165 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE); 4166 4167 /* Hierarchical information */ 4168 { 4169 unsigned long long limit, memsw_limit; 4170 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit); 4171 seq_printf(m, "hierarchical_memory_limit %llu\n", limit); 4172 if (do_swap_account) 4173 seq_printf(m, "hierarchical_memsw_limit %llu\n", 4174 memsw_limit); 4175 } 4176 4177 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 4178 long long val = 0; 4179 4180 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) 4181 continue; 4182 for_each_mem_cgroup_tree(mi, memcg) 4183 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE; 4184 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val); 4185 } 4186 4187 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) { 4188 unsigned long long val = 0; 4189 4190 for_each_mem_cgroup_tree(mi, memcg) 4191 val += mem_cgroup_read_events(mi, i); 4192 seq_printf(m, "total_%s %llu\n", 4193 mem_cgroup_events_names[i], val); 4194 } 4195 4196 for (i = 0; i < NR_LRU_LISTS; i++) { 4197 unsigned long long val = 0; 4198 4199 for_each_mem_cgroup_tree(mi, memcg) 4200 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE; 4201 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val); 4202 } 4203 4204 #ifdef CONFIG_DEBUG_VM 4205 { 4206 int nid, zid; 4207 struct mem_cgroup_per_zone *mz; 4208 struct zone_reclaim_stat *rstat; 4209 unsigned long recent_rotated[2] = {0, 0}; 4210 unsigned long recent_scanned[2] = {0, 0}; 4211 4212 for_each_online_node(nid) 4213 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 4214 mz = mem_cgroup_zoneinfo(memcg, nid, zid); 4215 rstat = &mz->lruvec.reclaim_stat; 4216 4217 recent_rotated[0] += rstat->recent_rotated[0]; 4218 recent_rotated[1] += rstat->recent_rotated[1]; 4219 recent_scanned[0] += rstat->recent_scanned[0]; 4220 recent_scanned[1] += rstat->recent_scanned[1]; 4221 } 4222 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]); 4223 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]); 4224 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]); 4225 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]); 4226 } 4227 #endif 4228 4229 return 0; 4230 } 4231 4232 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft) 4233 { 4234 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 4235 4236 return mem_cgroup_swappiness(memcg); 4237 } 4238 4239 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft, 4240 u64 val) 4241 { 4242 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 4243 struct mem_cgroup *parent; 4244 4245 if (val > 100) 4246 return -EINVAL; 4247 4248 if (cgrp->parent == NULL) 4249 return -EINVAL; 4250 4251 parent = mem_cgroup_from_cont(cgrp->parent); 4252 4253 cgroup_lock(); 4254 4255 /* If under hierarchy, only empty-root can set this value */ 4256 if ((parent->use_hierarchy) || 4257 (memcg->use_hierarchy && !list_empty(&cgrp->children))) { 4258 cgroup_unlock(); 4259 return -EINVAL; 4260 } 4261 4262 memcg->swappiness = val; 4263 4264 cgroup_unlock(); 4265 4266 return 0; 4267 } 4268 4269 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 4270 { 4271 struct mem_cgroup_threshold_ary *t; 4272 u64 usage; 4273 int i; 4274 4275 rcu_read_lock(); 4276 if (!swap) 4277 t = rcu_dereference(memcg->thresholds.primary); 4278 else 4279 t = rcu_dereference(memcg->memsw_thresholds.primary); 4280 4281 if (!t) 4282 goto unlock; 4283 4284 usage = mem_cgroup_usage(memcg, swap); 4285 4286 /* 4287 * current_threshold points to threshold just below or equal to usage. 4288 * If it's not true, a threshold was crossed after last 4289 * call of __mem_cgroup_threshold(). 4290 */ 4291 i = t->current_threshold; 4292 4293 /* 4294 * Iterate backward over array of thresholds starting from 4295 * current_threshold and check if a threshold is crossed. 4296 * If none of thresholds below usage is crossed, we read 4297 * only one element of the array here. 4298 */ 4299 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 4300 eventfd_signal(t->entries[i].eventfd, 1); 4301 4302 /* i = current_threshold + 1 */ 4303 i++; 4304 4305 /* 4306 * Iterate forward over array of thresholds starting from 4307 * current_threshold+1 and check if a threshold is crossed. 4308 * If none of thresholds above usage is crossed, we read 4309 * only one element of the array here. 4310 */ 4311 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 4312 eventfd_signal(t->entries[i].eventfd, 1); 4313 4314 /* Update current_threshold */ 4315 t->current_threshold = i - 1; 4316 unlock: 4317 rcu_read_unlock(); 4318 } 4319 4320 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 4321 { 4322 while (memcg) { 4323 __mem_cgroup_threshold(memcg, false); 4324 if (do_swap_account) 4325 __mem_cgroup_threshold(memcg, true); 4326 4327 memcg = parent_mem_cgroup(memcg); 4328 } 4329 } 4330 4331 static int compare_thresholds(const void *a, const void *b) 4332 { 4333 const struct mem_cgroup_threshold *_a = a; 4334 const struct mem_cgroup_threshold *_b = b; 4335 4336 return _a->threshold - _b->threshold; 4337 } 4338 4339 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 4340 { 4341 struct mem_cgroup_eventfd_list *ev; 4342 4343 list_for_each_entry(ev, &memcg->oom_notify, list) 4344 eventfd_signal(ev->eventfd, 1); 4345 return 0; 4346 } 4347 4348 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 4349 { 4350 struct mem_cgroup *iter; 4351 4352 for_each_mem_cgroup_tree(iter, memcg) 4353 mem_cgroup_oom_notify_cb(iter); 4354 } 4355 4356 static int mem_cgroup_usage_register_event(struct cgroup *cgrp, 4357 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args) 4358 { 4359 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 4360 struct mem_cgroup_thresholds *thresholds; 4361 struct mem_cgroup_threshold_ary *new; 4362 int type = MEMFILE_TYPE(cft->private); 4363 u64 threshold, usage; 4364 int i, size, ret; 4365 4366 ret = res_counter_memparse_write_strategy(args, &threshold); 4367 if (ret) 4368 return ret; 4369 4370 mutex_lock(&memcg->thresholds_lock); 4371 4372 if (type == _MEM) 4373 thresholds = &memcg->thresholds; 4374 else if (type == _MEMSWAP) 4375 thresholds = &memcg->memsw_thresholds; 4376 else 4377 BUG(); 4378 4379 usage = mem_cgroup_usage(memcg, type == _MEMSWAP); 4380 4381 /* Check if a threshold crossed before adding a new one */ 4382 if (thresholds->primary) 4383 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4384 4385 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 4386 4387 /* Allocate memory for new array of thresholds */ 4388 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold), 4389 GFP_KERNEL); 4390 if (!new) { 4391 ret = -ENOMEM; 4392 goto unlock; 4393 } 4394 new->size = size; 4395 4396 /* Copy thresholds (if any) to new array */ 4397 if (thresholds->primary) { 4398 memcpy(new->entries, thresholds->primary->entries, (size - 1) * 4399 sizeof(struct mem_cgroup_threshold)); 4400 } 4401 4402 /* Add new threshold */ 4403 new->entries[size - 1].eventfd = eventfd; 4404 new->entries[size - 1].threshold = threshold; 4405 4406 /* Sort thresholds. Registering of new threshold isn't time-critical */ 4407 sort(new->entries, size, sizeof(struct mem_cgroup_threshold), 4408 compare_thresholds, NULL); 4409 4410 /* Find current threshold */ 4411 new->current_threshold = -1; 4412 for (i = 0; i < size; i++) { 4413 if (new->entries[i].threshold <= usage) { 4414 /* 4415 * new->current_threshold will not be used until 4416 * rcu_assign_pointer(), so it's safe to increment 4417 * it here. 4418 */ 4419 ++new->current_threshold; 4420 } else 4421 break; 4422 } 4423 4424 /* Free old spare buffer and save old primary buffer as spare */ 4425 kfree(thresholds->spare); 4426 thresholds->spare = thresholds->primary; 4427 4428 rcu_assign_pointer(thresholds->primary, new); 4429 4430 /* To be sure that nobody uses thresholds */ 4431 synchronize_rcu(); 4432 4433 unlock: 4434 mutex_unlock(&memcg->thresholds_lock); 4435 4436 return ret; 4437 } 4438 4439 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp, 4440 struct cftype *cft, struct eventfd_ctx *eventfd) 4441 { 4442 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 4443 struct mem_cgroup_thresholds *thresholds; 4444 struct mem_cgroup_threshold_ary *new; 4445 int type = MEMFILE_TYPE(cft->private); 4446 u64 usage; 4447 int i, j, size; 4448 4449 mutex_lock(&memcg->thresholds_lock); 4450 if (type == _MEM) 4451 thresholds = &memcg->thresholds; 4452 else if (type == _MEMSWAP) 4453 thresholds = &memcg->memsw_thresholds; 4454 else 4455 BUG(); 4456 4457 if (!thresholds->primary) 4458 goto unlock; 4459 4460 usage = mem_cgroup_usage(memcg, type == _MEMSWAP); 4461 4462 /* Check if a threshold crossed before removing */ 4463 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4464 4465 /* Calculate new number of threshold */ 4466 size = 0; 4467 for (i = 0; i < thresholds->primary->size; i++) { 4468 if (thresholds->primary->entries[i].eventfd != eventfd) 4469 size++; 4470 } 4471 4472 new = thresholds->spare; 4473 4474 /* Set thresholds array to NULL if we don't have thresholds */ 4475 if (!size) { 4476 kfree(new); 4477 new = NULL; 4478 goto swap_buffers; 4479 } 4480 4481 new->size = size; 4482 4483 /* Copy thresholds and find current threshold */ 4484 new->current_threshold = -1; 4485 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 4486 if (thresholds->primary->entries[i].eventfd == eventfd) 4487 continue; 4488 4489 new->entries[j] = thresholds->primary->entries[i]; 4490 if (new->entries[j].threshold <= usage) { 4491 /* 4492 * new->current_threshold will not be used 4493 * until rcu_assign_pointer(), so it's safe to increment 4494 * it here. 4495 */ 4496 ++new->current_threshold; 4497 } 4498 j++; 4499 } 4500 4501 swap_buffers: 4502 /* Swap primary and spare array */ 4503 thresholds->spare = thresholds->primary; 4504 /* If all events are unregistered, free the spare array */ 4505 if (!new) { 4506 kfree(thresholds->spare); 4507 thresholds->spare = NULL; 4508 } 4509 4510 rcu_assign_pointer(thresholds->primary, new); 4511 4512 /* To be sure that nobody uses thresholds */ 4513 synchronize_rcu(); 4514 unlock: 4515 mutex_unlock(&memcg->thresholds_lock); 4516 } 4517 4518 static int mem_cgroup_oom_register_event(struct cgroup *cgrp, 4519 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args) 4520 { 4521 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 4522 struct mem_cgroup_eventfd_list *event; 4523 int type = MEMFILE_TYPE(cft->private); 4524 4525 BUG_ON(type != _OOM_TYPE); 4526 event = kmalloc(sizeof(*event), GFP_KERNEL); 4527 if (!event) 4528 return -ENOMEM; 4529 4530 spin_lock(&memcg_oom_lock); 4531 4532 event->eventfd = eventfd; 4533 list_add(&event->list, &memcg->oom_notify); 4534 4535 /* already in OOM ? */ 4536 if (atomic_read(&memcg->under_oom)) 4537 eventfd_signal(eventfd, 1); 4538 spin_unlock(&memcg_oom_lock); 4539 4540 return 0; 4541 } 4542 4543 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp, 4544 struct cftype *cft, struct eventfd_ctx *eventfd) 4545 { 4546 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 4547 struct mem_cgroup_eventfd_list *ev, *tmp; 4548 int type = MEMFILE_TYPE(cft->private); 4549 4550 BUG_ON(type != _OOM_TYPE); 4551 4552 spin_lock(&memcg_oom_lock); 4553 4554 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 4555 if (ev->eventfd == eventfd) { 4556 list_del(&ev->list); 4557 kfree(ev); 4558 } 4559 } 4560 4561 spin_unlock(&memcg_oom_lock); 4562 } 4563 4564 static int mem_cgroup_oom_control_read(struct cgroup *cgrp, 4565 struct cftype *cft, struct cgroup_map_cb *cb) 4566 { 4567 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 4568 4569 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable); 4570 4571 if (atomic_read(&memcg->under_oom)) 4572 cb->fill(cb, "under_oom", 1); 4573 else 4574 cb->fill(cb, "under_oom", 0); 4575 return 0; 4576 } 4577 4578 static int mem_cgroup_oom_control_write(struct cgroup *cgrp, 4579 struct cftype *cft, u64 val) 4580 { 4581 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); 4582 struct mem_cgroup *parent; 4583 4584 /* cannot set to root cgroup and only 0 and 1 are allowed */ 4585 if (!cgrp->parent || !((val == 0) || (val == 1))) 4586 return -EINVAL; 4587 4588 parent = mem_cgroup_from_cont(cgrp->parent); 4589 4590 cgroup_lock(); 4591 /* oom-kill-disable is a flag for subhierarchy. */ 4592 if ((parent->use_hierarchy) || 4593 (memcg->use_hierarchy && !list_empty(&cgrp->children))) { 4594 cgroup_unlock(); 4595 return -EINVAL; 4596 } 4597 memcg->oom_kill_disable = val; 4598 if (!val) 4599 memcg_oom_recover(memcg); 4600 cgroup_unlock(); 4601 return 0; 4602 } 4603 4604 #ifdef CONFIG_MEMCG_KMEM 4605 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss) 4606 { 4607 return mem_cgroup_sockets_init(memcg, ss); 4608 }; 4609 4610 static void kmem_cgroup_destroy(struct mem_cgroup *memcg) 4611 { 4612 mem_cgroup_sockets_destroy(memcg); 4613 } 4614 #else 4615 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss) 4616 { 4617 return 0; 4618 } 4619 4620 static void kmem_cgroup_destroy(struct mem_cgroup *memcg) 4621 { 4622 } 4623 #endif 4624 4625 static struct cftype mem_cgroup_files[] = { 4626 { 4627 .name = "usage_in_bytes", 4628 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 4629 .read = mem_cgroup_read, 4630 .register_event = mem_cgroup_usage_register_event, 4631 .unregister_event = mem_cgroup_usage_unregister_event, 4632 }, 4633 { 4634 .name = "max_usage_in_bytes", 4635 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 4636 .trigger = mem_cgroup_reset, 4637 .read = mem_cgroup_read, 4638 }, 4639 { 4640 .name = "limit_in_bytes", 4641 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 4642 .write_string = mem_cgroup_write, 4643 .read = mem_cgroup_read, 4644 }, 4645 { 4646 .name = "soft_limit_in_bytes", 4647 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 4648 .write_string = mem_cgroup_write, 4649 .read = mem_cgroup_read, 4650 }, 4651 { 4652 .name = "failcnt", 4653 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 4654 .trigger = mem_cgroup_reset, 4655 .read = mem_cgroup_read, 4656 }, 4657 { 4658 .name = "stat", 4659 .read_seq_string = memcg_stat_show, 4660 }, 4661 { 4662 .name = "force_empty", 4663 .trigger = mem_cgroup_force_empty_write, 4664 }, 4665 { 4666 .name = "use_hierarchy", 4667 .write_u64 = mem_cgroup_hierarchy_write, 4668 .read_u64 = mem_cgroup_hierarchy_read, 4669 }, 4670 { 4671 .name = "swappiness", 4672 .read_u64 = mem_cgroup_swappiness_read, 4673 .write_u64 = mem_cgroup_swappiness_write, 4674 }, 4675 { 4676 .name = "move_charge_at_immigrate", 4677 .read_u64 = mem_cgroup_move_charge_read, 4678 .write_u64 = mem_cgroup_move_charge_write, 4679 }, 4680 { 4681 .name = "oom_control", 4682 .read_map = mem_cgroup_oom_control_read, 4683 .write_u64 = mem_cgroup_oom_control_write, 4684 .register_event = mem_cgroup_oom_register_event, 4685 .unregister_event = mem_cgroup_oom_unregister_event, 4686 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), 4687 }, 4688 #ifdef CONFIG_NUMA 4689 { 4690 .name = "numa_stat", 4691 .read_seq_string = memcg_numa_stat_show, 4692 }, 4693 #endif 4694 #ifdef CONFIG_MEMCG_SWAP 4695 { 4696 .name = "memsw.usage_in_bytes", 4697 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 4698 .read = mem_cgroup_read, 4699 .register_event = mem_cgroup_usage_register_event, 4700 .unregister_event = mem_cgroup_usage_unregister_event, 4701 }, 4702 { 4703 .name = "memsw.max_usage_in_bytes", 4704 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 4705 .trigger = mem_cgroup_reset, 4706 .read = mem_cgroup_read, 4707 }, 4708 { 4709 .name = "memsw.limit_in_bytes", 4710 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 4711 .write_string = mem_cgroup_write, 4712 .read = mem_cgroup_read, 4713 }, 4714 { 4715 .name = "memsw.failcnt", 4716 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 4717 .trigger = mem_cgroup_reset, 4718 .read = mem_cgroup_read, 4719 }, 4720 #endif 4721 { }, /* terminate */ 4722 }; 4723 4724 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) 4725 { 4726 struct mem_cgroup_per_node *pn; 4727 struct mem_cgroup_per_zone *mz; 4728 int zone, tmp = node; 4729 /* 4730 * This routine is called against possible nodes. 4731 * But it's BUG to call kmalloc() against offline node. 4732 * 4733 * TODO: this routine can waste much memory for nodes which will 4734 * never be onlined. It's better to use memory hotplug callback 4735 * function. 4736 */ 4737 if (!node_state(node, N_NORMAL_MEMORY)) 4738 tmp = -1; 4739 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); 4740 if (!pn) 4741 return 1; 4742 4743 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 4744 mz = &pn->zoneinfo[zone]; 4745 lruvec_init(&mz->lruvec, &NODE_DATA(node)->node_zones[zone]); 4746 mz->usage_in_excess = 0; 4747 mz->on_tree = false; 4748 mz->memcg = memcg; 4749 } 4750 memcg->info.nodeinfo[node] = pn; 4751 return 0; 4752 } 4753 4754 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) 4755 { 4756 kfree(memcg->info.nodeinfo[node]); 4757 } 4758 4759 static struct mem_cgroup *mem_cgroup_alloc(void) 4760 { 4761 struct mem_cgroup *memcg; 4762 int size = sizeof(struct mem_cgroup); 4763 4764 /* Can be very big if MAX_NUMNODES is very big */ 4765 if (size < PAGE_SIZE) 4766 memcg = kzalloc(size, GFP_KERNEL); 4767 else 4768 memcg = vzalloc(size); 4769 4770 if (!memcg) 4771 return NULL; 4772 4773 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu); 4774 if (!memcg->stat) 4775 goto out_free; 4776 spin_lock_init(&memcg->pcp_counter_lock); 4777 return memcg; 4778 4779 out_free: 4780 if (size < PAGE_SIZE) 4781 kfree(memcg); 4782 else 4783 vfree(memcg); 4784 return NULL; 4785 } 4786 4787 /* 4788 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU, 4789 * but in process context. The work_freeing structure is overlaid 4790 * on the rcu_freeing structure, which itself is overlaid on memsw. 4791 */ 4792 static void free_work(struct work_struct *work) 4793 { 4794 struct mem_cgroup *memcg; 4795 int size = sizeof(struct mem_cgroup); 4796 4797 memcg = container_of(work, struct mem_cgroup, work_freeing); 4798 /* 4799 * We need to make sure that (at least for now), the jump label 4800 * destruction code runs outside of the cgroup lock. This is because 4801 * get_online_cpus(), which is called from the static_branch update, 4802 * can't be called inside the cgroup_lock. cpusets are the ones 4803 * enforcing this dependency, so if they ever change, we might as well. 4804 * 4805 * schedule_work() will guarantee this happens. Be careful if you need 4806 * to move this code around, and make sure it is outside 4807 * the cgroup_lock. 4808 */ 4809 disarm_sock_keys(memcg); 4810 if (size < PAGE_SIZE) 4811 kfree(memcg); 4812 else 4813 vfree(memcg); 4814 } 4815 4816 static void free_rcu(struct rcu_head *rcu_head) 4817 { 4818 struct mem_cgroup *memcg; 4819 4820 memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing); 4821 INIT_WORK(&memcg->work_freeing, free_work); 4822 schedule_work(&memcg->work_freeing); 4823 } 4824 4825 /* 4826 * At destroying mem_cgroup, references from swap_cgroup can remain. 4827 * (scanning all at force_empty is too costly...) 4828 * 4829 * Instead of clearing all references at force_empty, we remember 4830 * the number of reference from swap_cgroup and free mem_cgroup when 4831 * it goes down to 0. 4832 * 4833 * Removal of cgroup itself succeeds regardless of refs from swap. 4834 */ 4835 4836 static void __mem_cgroup_free(struct mem_cgroup *memcg) 4837 { 4838 int node; 4839 4840 mem_cgroup_remove_from_trees(memcg); 4841 free_css_id(&mem_cgroup_subsys, &memcg->css); 4842 4843 for_each_node(node) 4844 free_mem_cgroup_per_zone_info(memcg, node); 4845 4846 free_percpu(memcg->stat); 4847 call_rcu(&memcg->rcu_freeing, free_rcu); 4848 } 4849 4850 static void mem_cgroup_get(struct mem_cgroup *memcg) 4851 { 4852 atomic_inc(&memcg->refcnt); 4853 } 4854 4855 static void __mem_cgroup_put(struct mem_cgroup *memcg, int count) 4856 { 4857 if (atomic_sub_and_test(count, &memcg->refcnt)) { 4858 struct mem_cgroup *parent = parent_mem_cgroup(memcg); 4859 __mem_cgroup_free(memcg); 4860 if (parent) 4861 mem_cgroup_put(parent); 4862 } 4863 } 4864 4865 static void mem_cgroup_put(struct mem_cgroup *memcg) 4866 { 4867 __mem_cgroup_put(memcg, 1); 4868 } 4869 4870 /* 4871 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled. 4872 */ 4873 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 4874 { 4875 if (!memcg->res.parent) 4876 return NULL; 4877 return mem_cgroup_from_res_counter(memcg->res.parent, res); 4878 } 4879 EXPORT_SYMBOL(parent_mem_cgroup); 4880 4881 #ifdef CONFIG_MEMCG_SWAP 4882 static void __init enable_swap_cgroup(void) 4883 { 4884 if (!mem_cgroup_disabled() && really_do_swap_account) 4885 do_swap_account = 1; 4886 } 4887 #else 4888 static void __init enable_swap_cgroup(void) 4889 { 4890 } 4891 #endif 4892 4893 static int mem_cgroup_soft_limit_tree_init(void) 4894 { 4895 struct mem_cgroup_tree_per_node *rtpn; 4896 struct mem_cgroup_tree_per_zone *rtpz; 4897 int tmp, node, zone; 4898 4899 for_each_node(node) { 4900 tmp = node; 4901 if (!node_state(node, N_NORMAL_MEMORY)) 4902 tmp = -1; 4903 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp); 4904 if (!rtpn) 4905 goto err_cleanup; 4906 4907 soft_limit_tree.rb_tree_per_node[node] = rtpn; 4908 4909 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 4910 rtpz = &rtpn->rb_tree_per_zone[zone]; 4911 rtpz->rb_root = RB_ROOT; 4912 spin_lock_init(&rtpz->lock); 4913 } 4914 } 4915 return 0; 4916 4917 err_cleanup: 4918 for_each_node(node) { 4919 if (!soft_limit_tree.rb_tree_per_node[node]) 4920 break; 4921 kfree(soft_limit_tree.rb_tree_per_node[node]); 4922 soft_limit_tree.rb_tree_per_node[node] = NULL; 4923 } 4924 return 1; 4925 4926 } 4927 4928 static struct cgroup_subsys_state * __ref 4929 mem_cgroup_create(struct cgroup *cont) 4930 { 4931 struct mem_cgroup *memcg, *parent; 4932 long error = -ENOMEM; 4933 int node; 4934 4935 memcg = mem_cgroup_alloc(); 4936 if (!memcg) 4937 return ERR_PTR(error); 4938 4939 for_each_node(node) 4940 if (alloc_mem_cgroup_per_zone_info(memcg, node)) 4941 goto free_out; 4942 4943 /* root ? */ 4944 if (cont->parent == NULL) { 4945 int cpu; 4946 enable_swap_cgroup(); 4947 parent = NULL; 4948 if (mem_cgroup_soft_limit_tree_init()) 4949 goto free_out; 4950 root_mem_cgroup = memcg; 4951 for_each_possible_cpu(cpu) { 4952 struct memcg_stock_pcp *stock = 4953 &per_cpu(memcg_stock, cpu); 4954 INIT_WORK(&stock->work, drain_local_stock); 4955 } 4956 hotcpu_notifier(memcg_cpu_hotplug_callback, 0); 4957 } else { 4958 parent = mem_cgroup_from_cont(cont->parent); 4959 memcg->use_hierarchy = parent->use_hierarchy; 4960 memcg->oom_kill_disable = parent->oom_kill_disable; 4961 } 4962 4963 if (parent && parent->use_hierarchy) { 4964 res_counter_init(&memcg->res, &parent->res); 4965 res_counter_init(&memcg->memsw, &parent->memsw); 4966 /* 4967 * We increment refcnt of the parent to ensure that we can 4968 * safely access it on res_counter_charge/uncharge. 4969 * This refcnt will be decremented when freeing this 4970 * mem_cgroup(see mem_cgroup_put). 4971 */ 4972 mem_cgroup_get(parent); 4973 } else { 4974 res_counter_init(&memcg->res, NULL); 4975 res_counter_init(&memcg->memsw, NULL); 4976 } 4977 memcg->last_scanned_node = MAX_NUMNODES; 4978 INIT_LIST_HEAD(&memcg->oom_notify); 4979 4980 if (parent) 4981 memcg->swappiness = mem_cgroup_swappiness(parent); 4982 atomic_set(&memcg->refcnt, 1); 4983 memcg->move_charge_at_immigrate = 0; 4984 mutex_init(&memcg->thresholds_lock); 4985 spin_lock_init(&memcg->move_lock); 4986 4987 error = memcg_init_kmem(memcg, &mem_cgroup_subsys); 4988 if (error) { 4989 /* 4990 * We call put now because our (and parent's) refcnts 4991 * are already in place. mem_cgroup_put() will internally 4992 * call __mem_cgroup_free, so return directly 4993 */ 4994 mem_cgroup_put(memcg); 4995 return ERR_PTR(error); 4996 } 4997 return &memcg->css; 4998 free_out: 4999 __mem_cgroup_free(memcg); 5000 return ERR_PTR(error); 5001 } 5002 5003 static int mem_cgroup_pre_destroy(struct cgroup *cont) 5004 { 5005 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 5006 5007 return mem_cgroup_force_empty(memcg, false); 5008 } 5009 5010 static void mem_cgroup_destroy(struct cgroup *cont) 5011 { 5012 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); 5013 5014 kmem_cgroup_destroy(memcg); 5015 5016 mem_cgroup_put(memcg); 5017 } 5018 5019 #ifdef CONFIG_MMU 5020 /* Handlers for move charge at task migration. */ 5021 #define PRECHARGE_COUNT_AT_ONCE 256 5022 static int mem_cgroup_do_precharge(unsigned long count) 5023 { 5024 int ret = 0; 5025 int batch_count = PRECHARGE_COUNT_AT_ONCE; 5026 struct mem_cgroup *memcg = mc.to; 5027 5028 if (mem_cgroup_is_root(memcg)) { 5029 mc.precharge += count; 5030 /* we don't need css_get for root */ 5031 return ret; 5032 } 5033 /* try to charge at once */ 5034 if (count > 1) { 5035 struct res_counter *dummy; 5036 /* 5037 * "memcg" cannot be under rmdir() because we've already checked 5038 * by cgroup_lock_live_cgroup() that it is not removed and we 5039 * are still under the same cgroup_mutex. So we can postpone 5040 * css_get(). 5041 */ 5042 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy)) 5043 goto one_by_one; 5044 if (do_swap_account && res_counter_charge(&memcg->memsw, 5045 PAGE_SIZE * count, &dummy)) { 5046 res_counter_uncharge(&memcg->res, PAGE_SIZE * count); 5047 goto one_by_one; 5048 } 5049 mc.precharge += count; 5050 return ret; 5051 } 5052 one_by_one: 5053 /* fall back to one by one charge */ 5054 while (count--) { 5055 if (signal_pending(current)) { 5056 ret = -EINTR; 5057 break; 5058 } 5059 if (!batch_count--) { 5060 batch_count = PRECHARGE_COUNT_AT_ONCE; 5061 cond_resched(); 5062 } 5063 ret = __mem_cgroup_try_charge(NULL, 5064 GFP_KERNEL, 1, &memcg, false); 5065 if (ret) 5066 /* mem_cgroup_clear_mc() will do uncharge later */ 5067 return ret; 5068 mc.precharge++; 5069 } 5070 return ret; 5071 } 5072 5073 /** 5074 * get_mctgt_type - get target type of moving charge 5075 * @vma: the vma the pte to be checked belongs 5076 * @addr: the address corresponding to the pte to be checked 5077 * @ptent: the pte to be checked 5078 * @target: the pointer the target page or swap ent will be stored(can be NULL) 5079 * 5080 * Returns 5081 * 0(MC_TARGET_NONE): if the pte is not a target for move charge. 5082 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for 5083 * move charge. if @target is not NULL, the page is stored in target->page 5084 * with extra refcnt got(Callers should handle it). 5085 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a 5086 * target for charge migration. if @target is not NULL, the entry is stored 5087 * in target->ent. 5088 * 5089 * Called with pte lock held. 5090 */ 5091 union mc_target { 5092 struct page *page; 5093 swp_entry_t ent; 5094 }; 5095 5096 enum mc_target_type { 5097 MC_TARGET_NONE = 0, 5098 MC_TARGET_PAGE, 5099 MC_TARGET_SWAP, 5100 }; 5101 5102 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 5103 unsigned long addr, pte_t ptent) 5104 { 5105 struct page *page = vm_normal_page(vma, addr, ptent); 5106 5107 if (!page || !page_mapped(page)) 5108 return NULL; 5109 if (PageAnon(page)) { 5110 /* we don't move shared anon */ 5111 if (!move_anon()) 5112 return NULL; 5113 } else if (!move_file()) 5114 /* we ignore mapcount for file pages */ 5115 return NULL; 5116 if (!get_page_unless_zero(page)) 5117 return NULL; 5118 5119 return page; 5120 } 5121 5122 #ifdef CONFIG_SWAP 5123 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5124 unsigned long addr, pte_t ptent, swp_entry_t *entry) 5125 { 5126 struct page *page = NULL; 5127 swp_entry_t ent = pte_to_swp_entry(ptent); 5128 5129 if (!move_anon() || non_swap_entry(ent)) 5130 return NULL; 5131 /* 5132 * Because lookup_swap_cache() updates some statistics counter, 5133 * we call find_get_page() with swapper_space directly. 5134 */ 5135 page = find_get_page(&swapper_space, ent.val); 5136 if (do_swap_account) 5137 entry->val = ent.val; 5138 5139 return page; 5140 } 5141 #else 5142 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5143 unsigned long addr, pte_t ptent, swp_entry_t *entry) 5144 { 5145 return NULL; 5146 } 5147 #endif 5148 5149 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 5150 unsigned long addr, pte_t ptent, swp_entry_t *entry) 5151 { 5152 struct page *page = NULL; 5153 struct address_space *mapping; 5154 pgoff_t pgoff; 5155 5156 if (!vma->vm_file) /* anonymous vma */ 5157 return NULL; 5158 if (!move_file()) 5159 return NULL; 5160 5161 mapping = vma->vm_file->f_mapping; 5162 if (pte_none(ptent)) 5163 pgoff = linear_page_index(vma, addr); 5164 else /* pte_file(ptent) is true */ 5165 pgoff = pte_to_pgoff(ptent); 5166 5167 /* page is moved even if it's not RSS of this task(page-faulted). */ 5168 page = find_get_page(mapping, pgoff); 5169 5170 #ifdef CONFIG_SWAP 5171 /* shmem/tmpfs may report page out on swap: account for that too. */ 5172 if (radix_tree_exceptional_entry(page)) { 5173 swp_entry_t swap = radix_to_swp_entry(page); 5174 if (do_swap_account) 5175 *entry = swap; 5176 page = find_get_page(&swapper_space, swap.val); 5177 } 5178 #endif 5179 return page; 5180 } 5181 5182 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, 5183 unsigned long addr, pte_t ptent, union mc_target *target) 5184 { 5185 struct page *page = NULL; 5186 struct page_cgroup *pc; 5187 enum mc_target_type ret = MC_TARGET_NONE; 5188 swp_entry_t ent = { .val = 0 }; 5189 5190 if (pte_present(ptent)) 5191 page = mc_handle_present_pte(vma, addr, ptent); 5192 else if (is_swap_pte(ptent)) 5193 page = mc_handle_swap_pte(vma, addr, ptent, &ent); 5194 else if (pte_none(ptent) || pte_file(ptent)) 5195 page = mc_handle_file_pte(vma, addr, ptent, &ent); 5196 5197 if (!page && !ent.val) 5198 return ret; 5199 if (page) { 5200 pc = lookup_page_cgroup(page); 5201 /* 5202 * Do only loose check w/o page_cgroup lock. 5203 * mem_cgroup_move_account() checks the pc is valid or not under 5204 * the lock. 5205 */ 5206 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) { 5207 ret = MC_TARGET_PAGE; 5208 if (target) 5209 target->page = page; 5210 } 5211 if (!ret || !target) 5212 put_page(page); 5213 } 5214 /* There is a swap entry and a page doesn't exist or isn't charged */ 5215 if (ent.val && !ret && 5216 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) { 5217 ret = MC_TARGET_SWAP; 5218 if (target) 5219 target->ent = ent; 5220 } 5221 return ret; 5222 } 5223 5224 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5225 /* 5226 * We don't consider swapping or file mapped pages because THP does not 5227 * support them for now. 5228 * Caller should make sure that pmd_trans_huge(pmd) is true. 5229 */ 5230 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5231 unsigned long addr, pmd_t pmd, union mc_target *target) 5232 { 5233 struct page *page = NULL; 5234 struct page_cgroup *pc; 5235 enum mc_target_type ret = MC_TARGET_NONE; 5236 5237 page = pmd_page(pmd); 5238 VM_BUG_ON(!page || !PageHead(page)); 5239 if (!move_anon()) 5240 return ret; 5241 pc = lookup_page_cgroup(page); 5242 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) { 5243 ret = MC_TARGET_PAGE; 5244 if (target) { 5245 get_page(page); 5246 target->page = page; 5247 } 5248 } 5249 return ret; 5250 } 5251 #else 5252 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5253 unsigned long addr, pmd_t pmd, union mc_target *target) 5254 { 5255 return MC_TARGET_NONE; 5256 } 5257 #endif 5258 5259 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 5260 unsigned long addr, unsigned long end, 5261 struct mm_walk *walk) 5262 { 5263 struct vm_area_struct *vma = walk->private; 5264 pte_t *pte; 5265 spinlock_t *ptl; 5266 5267 if (pmd_trans_huge_lock(pmd, vma) == 1) { 5268 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) 5269 mc.precharge += HPAGE_PMD_NR; 5270 spin_unlock(&vma->vm_mm->page_table_lock); 5271 return 0; 5272 } 5273 5274 if (pmd_trans_unstable(pmd)) 5275 return 0; 5276 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 5277 for (; addr != end; pte++, addr += PAGE_SIZE) 5278 if (get_mctgt_type(vma, addr, *pte, NULL)) 5279 mc.precharge++; /* increment precharge temporarily */ 5280 pte_unmap_unlock(pte - 1, ptl); 5281 cond_resched(); 5282 5283 return 0; 5284 } 5285 5286 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 5287 { 5288 unsigned long precharge; 5289 struct vm_area_struct *vma; 5290 5291 down_read(&mm->mmap_sem); 5292 for (vma = mm->mmap; vma; vma = vma->vm_next) { 5293 struct mm_walk mem_cgroup_count_precharge_walk = { 5294 .pmd_entry = mem_cgroup_count_precharge_pte_range, 5295 .mm = mm, 5296 .private = vma, 5297 }; 5298 if (is_vm_hugetlb_page(vma)) 5299 continue; 5300 walk_page_range(vma->vm_start, vma->vm_end, 5301 &mem_cgroup_count_precharge_walk); 5302 } 5303 up_read(&mm->mmap_sem); 5304 5305 precharge = mc.precharge; 5306 mc.precharge = 0; 5307 5308 return precharge; 5309 } 5310 5311 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 5312 { 5313 unsigned long precharge = mem_cgroup_count_precharge(mm); 5314 5315 VM_BUG_ON(mc.moving_task); 5316 mc.moving_task = current; 5317 return mem_cgroup_do_precharge(precharge); 5318 } 5319 5320 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 5321 static void __mem_cgroup_clear_mc(void) 5322 { 5323 struct mem_cgroup *from = mc.from; 5324 struct mem_cgroup *to = mc.to; 5325 5326 /* we must uncharge all the leftover precharges from mc.to */ 5327 if (mc.precharge) { 5328 __mem_cgroup_cancel_charge(mc.to, mc.precharge); 5329 mc.precharge = 0; 5330 } 5331 /* 5332 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 5333 * we must uncharge here. 5334 */ 5335 if (mc.moved_charge) { 5336 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge); 5337 mc.moved_charge = 0; 5338 } 5339 /* we must fixup refcnts and charges */ 5340 if (mc.moved_swap) { 5341 /* uncharge swap account from the old cgroup */ 5342 if (!mem_cgroup_is_root(mc.from)) 5343 res_counter_uncharge(&mc.from->memsw, 5344 PAGE_SIZE * mc.moved_swap); 5345 __mem_cgroup_put(mc.from, mc.moved_swap); 5346 5347 if (!mem_cgroup_is_root(mc.to)) { 5348 /* 5349 * we charged both to->res and to->memsw, so we should 5350 * uncharge to->res. 5351 */ 5352 res_counter_uncharge(&mc.to->res, 5353 PAGE_SIZE * mc.moved_swap); 5354 } 5355 /* we've already done mem_cgroup_get(mc.to) */ 5356 mc.moved_swap = 0; 5357 } 5358 memcg_oom_recover(from); 5359 memcg_oom_recover(to); 5360 wake_up_all(&mc.waitq); 5361 } 5362 5363 static void mem_cgroup_clear_mc(void) 5364 { 5365 struct mem_cgroup *from = mc.from; 5366 5367 /* 5368 * we must clear moving_task before waking up waiters at the end of 5369 * task migration. 5370 */ 5371 mc.moving_task = NULL; 5372 __mem_cgroup_clear_mc(); 5373 spin_lock(&mc.lock); 5374 mc.from = NULL; 5375 mc.to = NULL; 5376 spin_unlock(&mc.lock); 5377 mem_cgroup_end_move(from); 5378 } 5379 5380 static int mem_cgroup_can_attach(struct cgroup *cgroup, 5381 struct cgroup_taskset *tset) 5382 { 5383 struct task_struct *p = cgroup_taskset_first(tset); 5384 int ret = 0; 5385 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup); 5386 5387 if (memcg->move_charge_at_immigrate) { 5388 struct mm_struct *mm; 5389 struct mem_cgroup *from = mem_cgroup_from_task(p); 5390 5391 VM_BUG_ON(from == memcg); 5392 5393 mm = get_task_mm(p); 5394 if (!mm) 5395 return 0; 5396 /* We move charges only when we move a owner of the mm */ 5397 if (mm->owner == p) { 5398 VM_BUG_ON(mc.from); 5399 VM_BUG_ON(mc.to); 5400 VM_BUG_ON(mc.precharge); 5401 VM_BUG_ON(mc.moved_charge); 5402 VM_BUG_ON(mc.moved_swap); 5403 mem_cgroup_start_move(from); 5404 spin_lock(&mc.lock); 5405 mc.from = from; 5406 mc.to = memcg; 5407 spin_unlock(&mc.lock); 5408 /* We set mc.moving_task later */ 5409 5410 ret = mem_cgroup_precharge_mc(mm); 5411 if (ret) 5412 mem_cgroup_clear_mc(); 5413 } 5414 mmput(mm); 5415 } 5416 return ret; 5417 } 5418 5419 static void mem_cgroup_cancel_attach(struct cgroup *cgroup, 5420 struct cgroup_taskset *tset) 5421 { 5422 mem_cgroup_clear_mc(); 5423 } 5424 5425 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 5426 unsigned long addr, unsigned long end, 5427 struct mm_walk *walk) 5428 { 5429 int ret = 0; 5430 struct vm_area_struct *vma = walk->private; 5431 pte_t *pte; 5432 spinlock_t *ptl; 5433 enum mc_target_type target_type; 5434 union mc_target target; 5435 struct page *page; 5436 struct page_cgroup *pc; 5437 5438 /* 5439 * We don't take compound_lock() here but no race with splitting thp 5440 * happens because: 5441 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not 5442 * under splitting, which means there's no concurrent thp split, 5443 * - if another thread runs into split_huge_page() just after we 5444 * entered this if-block, the thread must wait for page table lock 5445 * to be unlocked in __split_huge_page_splitting(), where the main 5446 * part of thp split is not executed yet. 5447 */ 5448 if (pmd_trans_huge_lock(pmd, vma) == 1) { 5449 if (mc.precharge < HPAGE_PMD_NR) { 5450 spin_unlock(&vma->vm_mm->page_table_lock); 5451 return 0; 5452 } 5453 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); 5454 if (target_type == MC_TARGET_PAGE) { 5455 page = target.page; 5456 if (!isolate_lru_page(page)) { 5457 pc = lookup_page_cgroup(page); 5458 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR, 5459 pc, mc.from, mc.to)) { 5460 mc.precharge -= HPAGE_PMD_NR; 5461 mc.moved_charge += HPAGE_PMD_NR; 5462 } 5463 putback_lru_page(page); 5464 } 5465 put_page(page); 5466 } 5467 spin_unlock(&vma->vm_mm->page_table_lock); 5468 return 0; 5469 } 5470 5471 if (pmd_trans_unstable(pmd)) 5472 return 0; 5473 retry: 5474 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 5475 for (; addr != end; addr += PAGE_SIZE) { 5476 pte_t ptent = *(pte++); 5477 swp_entry_t ent; 5478 5479 if (!mc.precharge) 5480 break; 5481 5482 switch (get_mctgt_type(vma, addr, ptent, &target)) { 5483 case MC_TARGET_PAGE: 5484 page = target.page; 5485 if (isolate_lru_page(page)) 5486 goto put; 5487 pc = lookup_page_cgroup(page); 5488 if (!mem_cgroup_move_account(page, 1, pc, 5489 mc.from, mc.to)) { 5490 mc.precharge--; 5491 /* we uncharge from mc.from later. */ 5492 mc.moved_charge++; 5493 } 5494 putback_lru_page(page); 5495 put: /* get_mctgt_type() gets the page */ 5496 put_page(page); 5497 break; 5498 case MC_TARGET_SWAP: 5499 ent = target.ent; 5500 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { 5501 mc.precharge--; 5502 /* we fixup refcnts and charges later. */ 5503 mc.moved_swap++; 5504 } 5505 break; 5506 default: 5507 break; 5508 } 5509 } 5510 pte_unmap_unlock(pte - 1, ptl); 5511 cond_resched(); 5512 5513 if (addr != end) { 5514 /* 5515 * We have consumed all precharges we got in can_attach(). 5516 * We try charge one by one, but don't do any additional 5517 * charges to mc.to if we have failed in charge once in attach() 5518 * phase. 5519 */ 5520 ret = mem_cgroup_do_precharge(1); 5521 if (!ret) 5522 goto retry; 5523 } 5524 5525 return ret; 5526 } 5527 5528 static void mem_cgroup_move_charge(struct mm_struct *mm) 5529 { 5530 struct vm_area_struct *vma; 5531 5532 lru_add_drain_all(); 5533 retry: 5534 if (unlikely(!down_read_trylock(&mm->mmap_sem))) { 5535 /* 5536 * Someone who are holding the mmap_sem might be waiting in 5537 * waitq. So we cancel all extra charges, wake up all waiters, 5538 * and retry. Because we cancel precharges, we might not be able 5539 * to move enough charges, but moving charge is a best-effort 5540 * feature anyway, so it wouldn't be a big problem. 5541 */ 5542 __mem_cgroup_clear_mc(); 5543 cond_resched(); 5544 goto retry; 5545 } 5546 for (vma = mm->mmap; vma; vma = vma->vm_next) { 5547 int ret; 5548 struct mm_walk mem_cgroup_move_charge_walk = { 5549 .pmd_entry = mem_cgroup_move_charge_pte_range, 5550 .mm = mm, 5551 .private = vma, 5552 }; 5553 if (is_vm_hugetlb_page(vma)) 5554 continue; 5555 ret = walk_page_range(vma->vm_start, vma->vm_end, 5556 &mem_cgroup_move_charge_walk); 5557 if (ret) 5558 /* 5559 * means we have consumed all precharges and failed in 5560 * doing additional charge. Just abandon here. 5561 */ 5562 break; 5563 } 5564 up_read(&mm->mmap_sem); 5565 } 5566 5567 static void mem_cgroup_move_task(struct cgroup *cont, 5568 struct cgroup_taskset *tset) 5569 { 5570 struct task_struct *p = cgroup_taskset_first(tset); 5571 struct mm_struct *mm = get_task_mm(p); 5572 5573 if (mm) { 5574 if (mc.to) 5575 mem_cgroup_move_charge(mm); 5576 mmput(mm); 5577 } 5578 if (mc.to) 5579 mem_cgroup_clear_mc(); 5580 } 5581 #else /* !CONFIG_MMU */ 5582 static int mem_cgroup_can_attach(struct cgroup *cgroup, 5583 struct cgroup_taskset *tset) 5584 { 5585 return 0; 5586 } 5587 static void mem_cgroup_cancel_attach(struct cgroup *cgroup, 5588 struct cgroup_taskset *tset) 5589 { 5590 } 5591 static void mem_cgroup_move_task(struct cgroup *cont, 5592 struct cgroup_taskset *tset) 5593 { 5594 } 5595 #endif 5596 5597 struct cgroup_subsys mem_cgroup_subsys = { 5598 .name = "memory", 5599 .subsys_id = mem_cgroup_subsys_id, 5600 .create = mem_cgroup_create, 5601 .pre_destroy = mem_cgroup_pre_destroy, 5602 .destroy = mem_cgroup_destroy, 5603 .can_attach = mem_cgroup_can_attach, 5604 .cancel_attach = mem_cgroup_cancel_attach, 5605 .attach = mem_cgroup_move_task, 5606 .base_cftypes = mem_cgroup_files, 5607 .early_init = 0, 5608 .use_id = 1, 5609 .__DEPRECATED_clear_css_refs = true, 5610 }; 5611 5612 #ifdef CONFIG_MEMCG_SWAP 5613 static int __init enable_swap_account(char *s) 5614 { 5615 /* consider enabled if no parameter or 1 is given */ 5616 if (!strcmp(s, "1")) 5617 really_do_swap_account = 1; 5618 else if (!strcmp(s, "0")) 5619 really_do_swap_account = 0; 5620 return 1; 5621 } 5622 __setup("swapaccount=", enable_swap_account); 5623 5624 #endif 5625