xref: /openbmc/linux/mm/memcontrol.c (revision 3612485b)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <xemul@openvz.org>
9  *
10  * Memory thresholds
11  * Copyright (C) 2009 Nokia Corporation
12  * Author: Kirill A. Shutemov
13  *
14  * Kernel Memory Controller
15  * Copyright (C) 2012 Parallels Inc. and Google Inc.
16  * Authors: Glauber Costa and Suleiman Souhlal
17  *
18  * Native page reclaim
19  * Charge lifetime sanitation
20  * Lockless page tracking & accounting
21  * Unified hierarchy configuration model
22  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23  */
24 
25 #include <linux/page_counter.h>
26 #include <linux/memcontrol.h>
27 #include <linux/cgroup.h>
28 #include <linux/pagewalk.h>
29 #include <linux/sched/mm.h>
30 #include <linux/shmem_fs.h>
31 #include <linux/hugetlb.h>
32 #include <linux/pagemap.h>
33 #include <linux/vm_event_item.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
50 #include <linux/fs.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/swap_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include <linux/tracehook.h>
60 #include <linux/psi.h>
61 #include <linux/seq_buf.h>
62 #include "internal.h"
63 #include <net/sock.h>
64 #include <net/ip.h>
65 #include "slab.h"
66 
67 #include <linux/uaccess.h>
68 
69 #include <trace/events/vmscan.h>
70 
71 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
72 EXPORT_SYMBOL(memory_cgrp_subsys);
73 
74 struct mem_cgroup *root_mem_cgroup __read_mostly;
75 
76 #define MEM_CGROUP_RECLAIM_RETRIES	5
77 
78 /* Socket memory accounting disabled? */
79 static bool cgroup_memory_nosocket;
80 
81 /* Kernel memory accounting disabled? */
82 static bool cgroup_memory_nokmem;
83 
84 /* Whether the swap controller is active */
85 #ifdef CONFIG_MEMCG_SWAP
86 bool cgroup_memory_noswap __read_mostly;
87 #else
88 #define cgroup_memory_noswap		1
89 #endif
90 
91 #ifdef CONFIG_CGROUP_WRITEBACK
92 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
93 #endif
94 
95 /* Whether legacy memory+swap accounting is active */
96 static bool do_memsw_account(void)
97 {
98 	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
99 }
100 
101 #define THRESHOLDS_EVENTS_TARGET 128
102 #define SOFTLIMIT_EVENTS_TARGET 1024
103 
104 /*
105  * Cgroups above their limits are maintained in a RB-Tree, independent of
106  * their hierarchy representation
107  */
108 
109 struct mem_cgroup_tree_per_node {
110 	struct rb_root rb_root;
111 	struct rb_node *rb_rightmost;
112 	spinlock_t lock;
113 };
114 
115 struct mem_cgroup_tree {
116 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
117 };
118 
119 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
120 
121 /* for OOM */
122 struct mem_cgroup_eventfd_list {
123 	struct list_head list;
124 	struct eventfd_ctx *eventfd;
125 };
126 
127 /*
128  * cgroup_event represents events which userspace want to receive.
129  */
130 struct mem_cgroup_event {
131 	/*
132 	 * memcg which the event belongs to.
133 	 */
134 	struct mem_cgroup *memcg;
135 	/*
136 	 * eventfd to signal userspace about the event.
137 	 */
138 	struct eventfd_ctx *eventfd;
139 	/*
140 	 * Each of these stored in a list by the cgroup.
141 	 */
142 	struct list_head list;
143 	/*
144 	 * register_event() callback will be used to add new userspace
145 	 * waiter for changes related to this event.  Use eventfd_signal()
146 	 * on eventfd to send notification to userspace.
147 	 */
148 	int (*register_event)(struct mem_cgroup *memcg,
149 			      struct eventfd_ctx *eventfd, const char *args);
150 	/*
151 	 * unregister_event() callback will be called when userspace closes
152 	 * the eventfd or on cgroup removing.  This callback must be set,
153 	 * if you want provide notification functionality.
154 	 */
155 	void (*unregister_event)(struct mem_cgroup *memcg,
156 				 struct eventfd_ctx *eventfd);
157 	/*
158 	 * All fields below needed to unregister event when
159 	 * userspace closes eventfd.
160 	 */
161 	poll_table pt;
162 	wait_queue_head_t *wqh;
163 	wait_queue_entry_t wait;
164 	struct work_struct remove;
165 };
166 
167 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
168 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
169 
170 /* Stuffs for move charges at task migration. */
171 /*
172  * Types of charges to be moved.
173  */
174 #define MOVE_ANON	0x1U
175 #define MOVE_FILE	0x2U
176 #define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
177 
178 /* "mc" and its members are protected by cgroup_mutex */
179 static struct move_charge_struct {
180 	spinlock_t	  lock; /* for from, to */
181 	struct mm_struct  *mm;
182 	struct mem_cgroup *from;
183 	struct mem_cgroup *to;
184 	unsigned long flags;
185 	unsigned long precharge;
186 	unsigned long moved_charge;
187 	unsigned long moved_swap;
188 	struct task_struct *moving_task;	/* a task moving charges */
189 	wait_queue_head_t waitq;		/* a waitq for other context */
190 } mc = {
191 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
192 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
193 };
194 
195 /*
196  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
197  * limit reclaim to prevent infinite loops, if they ever occur.
198  */
199 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
200 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
201 
202 enum charge_type {
203 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
204 	MEM_CGROUP_CHARGE_TYPE_ANON,
205 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
206 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
207 	NR_CHARGE_TYPE,
208 };
209 
210 /* for encoding cft->private value on file */
211 enum res_type {
212 	_MEM,
213 	_MEMSWAP,
214 	_OOM_TYPE,
215 	_KMEM,
216 	_TCP,
217 };
218 
219 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
220 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
221 #define MEMFILE_ATTR(val)	((val) & 0xffff)
222 /* Used for OOM nofiier */
223 #define OOM_CONTROL		(0)
224 
225 /*
226  * Iteration constructs for visiting all cgroups (under a tree).  If
227  * loops are exited prematurely (break), mem_cgroup_iter_break() must
228  * be used for reference counting.
229  */
230 #define for_each_mem_cgroup_tree(iter, root)		\
231 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
232 	     iter != NULL;				\
233 	     iter = mem_cgroup_iter(root, iter, NULL))
234 
235 #define for_each_mem_cgroup(iter)			\
236 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
237 	     iter != NULL;				\
238 	     iter = mem_cgroup_iter(NULL, iter, NULL))
239 
240 static inline bool should_force_charge(void)
241 {
242 	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
243 		(current->flags & PF_EXITING);
244 }
245 
246 /* Some nice accessors for the vmpressure. */
247 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
248 {
249 	if (!memcg)
250 		memcg = root_mem_cgroup;
251 	return &memcg->vmpressure;
252 }
253 
254 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
255 {
256 	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
257 }
258 
259 #ifdef CONFIG_MEMCG_KMEM
260 /*
261  * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
262  * The main reason for not using cgroup id for this:
263  *  this works better in sparse environments, where we have a lot of memcgs,
264  *  but only a few kmem-limited. Or also, if we have, for instance, 200
265  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
266  *  200 entry array for that.
267  *
268  * The current size of the caches array is stored in memcg_nr_cache_ids. It
269  * will double each time we have to increase it.
270  */
271 static DEFINE_IDA(memcg_cache_ida);
272 int memcg_nr_cache_ids;
273 
274 /* Protects memcg_nr_cache_ids */
275 static DECLARE_RWSEM(memcg_cache_ids_sem);
276 
277 void memcg_get_cache_ids(void)
278 {
279 	down_read(&memcg_cache_ids_sem);
280 }
281 
282 void memcg_put_cache_ids(void)
283 {
284 	up_read(&memcg_cache_ids_sem);
285 }
286 
287 /*
288  * MIN_SIZE is different than 1, because we would like to avoid going through
289  * the alloc/free process all the time. In a small machine, 4 kmem-limited
290  * cgroups is a reasonable guess. In the future, it could be a parameter or
291  * tunable, but that is strictly not necessary.
292  *
293  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
294  * this constant directly from cgroup, but it is understandable that this is
295  * better kept as an internal representation in cgroup.c. In any case, the
296  * cgrp_id space is not getting any smaller, and we don't have to necessarily
297  * increase ours as well if it increases.
298  */
299 #define MEMCG_CACHES_MIN_SIZE 4
300 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
301 
302 /*
303  * A lot of the calls to the cache allocation functions are expected to be
304  * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
305  * conditional to this static branch, we'll have to allow modules that does
306  * kmem_cache_alloc and the such to see this symbol as well
307  */
308 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
309 EXPORT_SYMBOL(memcg_kmem_enabled_key);
310 
311 struct workqueue_struct *memcg_kmem_cache_wq;
312 #endif
313 
314 static int memcg_shrinker_map_size;
315 static DEFINE_MUTEX(memcg_shrinker_map_mutex);
316 
317 static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
318 {
319 	kvfree(container_of(head, struct memcg_shrinker_map, rcu));
320 }
321 
322 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
323 					 int size, int old_size)
324 {
325 	struct memcg_shrinker_map *new, *old;
326 	int nid;
327 
328 	lockdep_assert_held(&memcg_shrinker_map_mutex);
329 
330 	for_each_node(nid) {
331 		old = rcu_dereference_protected(
332 			mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
333 		/* Not yet online memcg */
334 		if (!old)
335 			return 0;
336 
337 		new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
338 		if (!new)
339 			return -ENOMEM;
340 
341 		/* Set all old bits, clear all new bits */
342 		memset(new->map, (int)0xff, old_size);
343 		memset((void *)new->map + old_size, 0, size - old_size);
344 
345 		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
346 		call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
347 	}
348 
349 	return 0;
350 }
351 
352 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
353 {
354 	struct mem_cgroup_per_node *pn;
355 	struct memcg_shrinker_map *map;
356 	int nid;
357 
358 	if (mem_cgroup_is_root(memcg))
359 		return;
360 
361 	for_each_node(nid) {
362 		pn = mem_cgroup_nodeinfo(memcg, nid);
363 		map = rcu_dereference_protected(pn->shrinker_map, true);
364 		if (map)
365 			kvfree(map);
366 		rcu_assign_pointer(pn->shrinker_map, NULL);
367 	}
368 }
369 
370 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
371 {
372 	struct memcg_shrinker_map *map;
373 	int nid, size, ret = 0;
374 
375 	if (mem_cgroup_is_root(memcg))
376 		return 0;
377 
378 	mutex_lock(&memcg_shrinker_map_mutex);
379 	size = memcg_shrinker_map_size;
380 	for_each_node(nid) {
381 		map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid);
382 		if (!map) {
383 			memcg_free_shrinker_maps(memcg);
384 			ret = -ENOMEM;
385 			break;
386 		}
387 		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
388 	}
389 	mutex_unlock(&memcg_shrinker_map_mutex);
390 
391 	return ret;
392 }
393 
394 int memcg_expand_shrinker_maps(int new_id)
395 {
396 	int size, old_size, ret = 0;
397 	struct mem_cgroup *memcg;
398 
399 	size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
400 	old_size = memcg_shrinker_map_size;
401 	if (size <= old_size)
402 		return 0;
403 
404 	mutex_lock(&memcg_shrinker_map_mutex);
405 	if (!root_mem_cgroup)
406 		goto unlock;
407 
408 	for_each_mem_cgroup(memcg) {
409 		if (mem_cgroup_is_root(memcg))
410 			continue;
411 		ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
412 		if (ret) {
413 			mem_cgroup_iter_break(NULL, memcg);
414 			goto unlock;
415 		}
416 	}
417 unlock:
418 	if (!ret)
419 		memcg_shrinker_map_size = size;
420 	mutex_unlock(&memcg_shrinker_map_mutex);
421 	return ret;
422 }
423 
424 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
425 {
426 	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
427 		struct memcg_shrinker_map *map;
428 
429 		rcu_read_lock();
430 		map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
431 		/* Pairs with smp mb in shrink_slab() */
432 		smp_mb__before_atomic();
433 		set_bit(shrinker_id, map->map);
434 		rcu_read_unlock();
435 	}
436 }
437 
438 /**
439  * mem_cgroup_css_from_page - css of the memcg associated with a page
440  * @page: page of interest
441  *
442  * If memcg is bound to the default hierarchy, css of the memcg associated
443  * with @page is returned.  The returned css remains associated with @page
444  * until it is released.
445  *
446  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
447  * is returned.
448  */
449 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
450 {
451 	struct mem_cgroup *memcg;
452 
453 	memcg = page->mem_cgroup;
454 
455 	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
456 		memcg = root_mem_cgroup;
457 
458 	return &memcg->css;
459 }
460 
461 /**
462  * page_cgroup_ino - return inode number of the memcg a page is charged to
463  * @page: the page
464  *
465  * Look up the closest online ancestor of the memory cgroup @page is charged to
466  * and return its inode number or 0 if @page is not charged to any cgroup. It
467  * is safe to call this function without holding a reference to @page.
468  *
469  * Note, this function is inherently racy, because there is nothing to prevent
470  * the cgroup inode from getting torn down and potentially reallocated a moment
471  * after page_cgroup_ino() returns, so it only should be used by callers that
472  * do not care (such as procfs interfaces).
473  */
474 ino_t page_cgroup_ino(struct page *page)
475 {
476 	struct mem_cgroup *memcg;
477 	unsigned long ino = 0;
478 
479 	rcu_read_lock();
480 	if (PageSlab(page) && !PageTail(page))
481 		memcg = memcg_from_slab_page(page);
482 	else
483 		memcg = READ_ONCE(page->mem_cgroup);
484 	while (memcg && !(memcg->css.flags & CSS_ONLINE))
485 		memcg = parent_mem_cgroup(memcg);
486 	if (memcg)
487 		ino = cgroup_ino(memcg->css.cgroup);
488 	rcu_read_unlock();
489 	return ino;
490 }
491 
492 static struct mem_cgroup_per_node *
493 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
494 {
495 	int nid = page_to_nid(page);
496 
497 	return memcg->nodeinfo[nid];
498 }
499 
500 static struct mem_cgroup_tree_per_node *
501 soft_limit_tree_node(int nid)
502 {
503 	return soft_limit_tree.rb_tree_per_node[nid];
504 }
505 
506 static struct mem_cgroup_tree_per_node *
507 soft_limit_tree_from_page(struct page *page)
508 {
509 	int nid = page_to_nid(page);
510 
511 	return soft_limit_tree.rb_tree_per_node[nid];
512 }
513 
514 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
515 					 struct mem_cgroup_tree_per_node *mctz,
516 					 unsigned long new_usage_in_excess)
517 {
518 	struct rb_node **p = &mctz->rb_root.rb_node;
519 	struct rb_node *parent = NULL;
520 	struct mem_cgroup_per_node *mz_node;
521 	bool rightmost = true;
522 
523 	if (mz->on_tree)
524 		return;
525 
526 	mz->usage_in_excess = new_usage_in_excess;
527 	if (!mz->usage_in_excess)
528 		return;
529 	while (*p) {
530 		parent = *p;
531 		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
532 					tree_node);
533 		if (mz->usage_in_excess < mz_node->usage_in_excess) {
534 			p = &(*p)->rb_left;
535 			rightmost = false;
536 		}
537 
538 		/*
539 		 * We can't avoid mem cgroups that are over their soft
540 		 * limit by the same amount
541 		 */
542 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
543 			p = &(*p)->rb_right;
544 	}
545 
546 	if (rightmost)
547 		mctz->rb_rightmost = &mz->tree_node;
548 
549 	rb_link_node(&mz->tree_node, parent, p);
550 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
551 	mz->on_tree = true;
552 }
553 
554 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
555 					 struct mem_cgroup_tree_per_node *mctz)
556 {
557 	if (!mz->on_tree)
558 		return;
559 
560 	if (&mz->tree_node == mctz->rb_rightmost)
561 		mctz->rb_rightmost = rb_prev(&mz->tree_node);
562 
563 	rb_erase(&mz->tree_node, &mctz->rb_root);
564 	mz->on_tree = false;
565 }
566 
567 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
568 				       struct mem_cgroup_tree_per_node *mctz)
569 {
570 	unsigned long flags;
571 
572 	spin_lock_irqsave(&mctz->lock, flags);
573 	__mem_cgroup_remove_exceeded(mz, mctz);
574 	spin_unlock_irqrestore(&mctz->lock, flags);
575 }
576 
577 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
578 {
579 	unsigned long nr_pages = page_counter_read(&memcg->memory);
580 	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
581 	unsigned long excess = 0;
582 
583 	if (nr_pages > soft_limit)
584 		excess = nr_pages - soft_limit;
585 
586 	return excess;
587 }
588 
589 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
590 {
591 	unsigned long excess;
592 	struct mem_cgroup_per_node *mz;
593 	struct mem_cgroup_tree_per_node *mctz;
594 
595 	mctz = soft_limit_tree_from_page(page);
596 	if (!mctz)
597 		return;
598 	/*
599 	 * Necessary to update all ancestors when hierarchy is used.
600 	 * because their event counter is not touched.
601 	 */
602 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
603 		mz = mem_cgroup_page_nodeinfo(memcg, page);
604 		excess = soft_limit_excess(memcg);
605 		/*
606 		 * We have to update the tree if mz is on RB-tree or
607 		 * mem is over its softlimit.
608 		 */
609 		if (excess || mz->on_tree) {
610 			unsigned long flags;
611 
612 			spin_lock_irqsave(&mctz->lock, flags);
613 			/* if on-tree, remove it */
614 			if (mz->on_tree)
615 				__mem_cgroup_remove_exceeded(mz, mctz);
616 			/*
617 			 * Insert again. mz->usage_in_excess will be updated.
618 			 * If excess is 0, no tree ops.
619 			 */
620 			__mem_cgroup_insert_exceeded(mz, mctz, excess);
621 			spin_unlock_irqrestore(&mctz->lock, flags);
622 		}
623 	}
624 }
625 
626 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
627 {
628 	struct mem_cgroup_tree_per_node *mctz;
629 	struct mem_cgroup_per_node *mz;
630 	int nid;
631 
632 	for_each_node(nid) {
633 		mz = mem_cgroup_nodeinfo(memcg, nid);
634 		mctz = soft_limit_tree_node(nid);
635 		if (mctz)
636 			mem_cgroup_remove_exceeded(mz, mctz);
637 	}
638 }
639 
640 static struct mem_cgroup_per_node *
641 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
642 {
643 	struct mem_cgroup_per_node *mz;
644 
645 retry:
646 	mz = NULL;
647 	if (!mctz->rb_rightmost)
648 		goto done;		/* Nothing to reclaim from */
649 
650 	mz = rb_entry(mctz->rb_rightmost,
651 		      struct mem_cgroup_per_node, tree_node);
652 	/*
653 	 * Remove the node now but someone else can add it back,
654 	 * we will to add it back at the end of reclaim to its correct
655 	 * position in the tree.
656 	 */
657 	__mem_cgroup_remove_exceeded(mz, mctz);
658 	if (!soft_limit_excess(mz->memcg) ||
659 	    !css_tryget(&mz->memcg->css))
660 		goto retry;
661 done:
662 	return mz;
663 }
664 
665 static struct mem_cgroup_per_node *
666 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
667 {
668 	struct mem_cgroup_per_node *mz;
669 
670 	spin_lock_irq(&mctz->lock);
671 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
672 	spin_unlock_irq(&mctz->lock);
673 	return mz;
674 }
675 
676 /**
677  * __mod_memcg_state - update cgroup memory statistics
678  * @memcg: the memory cgroup
679  * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
680  * @val: delta to add to the counter, can be negative
681  */
682 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
683 {
684 	long x;
685 
686 	if (mem_cgroup_disabled())
687 		return;
688 
689 	x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
690 	if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
691 		struct mem_cgroup *mi;
692 
693 		/*
694 		 * Batch local counters to keep them in sync with
695 		 * the hierarchical ones.
696 		 */
697 		__this_cpu_add(memcg->vmstats_local->stat[idx], x);
698 		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
699 			atomic_long_add(x, &mi->vmstats[idx]);
700 		x = 0;
701 	}
702 	__this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
703 }
704 
705 static struct mem_cgroup_per_node *
706 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
707 {
708 	struct mem_cgroup *parent;
709 
710 	parent = parent_mem_cgroup(pn->memcg);
711 	if (!parent)
712 		return NULL;
713 	return mem_cgroup_nodeinfo(parent, nid);
714 }
715 
716 /**
717  * __mod_lruvec_state - update lruvec memory statistics
718  * @lruvec: the lruvec
719  * @idx: the stat item
720  * @val: delta to add to the counter, can be negative
721  *
722  * The lruvec is the intersection of the NUMA node and a cgroup. This
723  * function updates the all three counters that are affected by a
724  * change of state at this level: per-node, per-cgroup, per-lruvec.
725  */
726 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
727 			int val)
728 {
729 	pg_data_t *pgdat = lruvec_pgdat(lruvec);
730 	struct mem_cgroup_per_node *pn;
731 	struct mem_cgroup *memcg;
732 	long x;
733 
734 	/* Update node */
735 	__mod_node_page_state(pgdat, idx, val);
736 
737 	if (mem_cgroup_disabled())
738 		return;
739 
740 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
741 	memcg = pn->memcg;
742 
743 	/* Update memcg */
744 	__mod_memcg_state(memcg, idx, val);
745 
746 	/* Update lruvec */
747 	__this_cpu_add(pn->lruvec_stat_local->count[idx], val);
748 
749 	x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
750 	if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
751 		struct mem_cgroup_per_node *pi;
752 
753 		for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
754 			atomic_long_add(x, &pi->lruvec_stat[idx]);
755 		x = 0;
756 	}
757 	__this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
758 }
759 
760 void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
761 {
762 	pg_data_t *pgdat = page_pgdat(virt_to_page(p));
763 	struct mem_cgroup *memcg;
764 	struct lruvec *lruvec;
765 
766 	rcu_read_lock();
767 	memcg = mem_cgroup_from_obj(p);
768 
769 	/* Untracked pages have no memcg, no lruvec. Update only the node */
770 	if (!memcg || memcg == root_mem_cgroup) {
771 		__mod_node_page_state(pgdat, idx, val);
772 	} else {
773 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
774 		__mod_lruvec_state(lruvec, idx, val);
775 	}
776 	rcu_read_unlock();
777 }
778 
779 void mod_memcg_obj_state(void *p, int idx, int val)
780 {
781 	struct mem_cgroup *memcg;
782 
783 	rcu_read_lock();
784 	memcg = mem_cgroup_from_obj(p);
785 	if (memcg)
786 		mod_memcg_state(memcg, idx, val);
787 	rcu_read_unlock();
788 }
789 
790 /**
791  * __count_memcg_events - account VM events in a cgroup
792  * @memcg: the memory cgroup
793  * @idx: the event item
794  * @count: the number of events that occured
795  */
796 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
797 			  unsigned long count)
798 {
799 	unsigned long x;
800 
801 	if (mem_cgroup_disabled())
802 		return;
803 
804 	x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
805 	if (unlikely(x > MEMCG_CHARGE_BATCH)) {
806 		struct mem_cgroup *mi;
807 
808 		/*
809 		 * Batch local counters to keep them in sync with
810 		 * the hierarchical ones.
811 		 */
812 		__this_cpu_add(memcg->vmstats_local->events[idx], x);
813 		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
814 			atomic_long_add(x, &mi->vmevents[idx]);
815 		x = 0;
816 	}
817 	__this_cpu_write(memcg->vmstats_percpu->events[idx], x);
818 }
819 
820 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
821 {
822 	return atomic_long_read(&memcg->vmevents[event]);
823 }
824 
825 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
826 {
827 	long x = 0;
828 	int cpu;
829 
830 	for_each_possible_cpu(cpu)
831 		x += per_cpu(memcg->vmstats_local->events[event], cpu);
832 	return x;
833 }
834 
835 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
836 					 struct page *page,
837 					 int nr_pages)
838 {
839 	/* pagein of a big page is an event. So, ignore page size */
840 	if (nr_pages > 0)
841 		__count_memcg_events(memcg, PGPGIN, 1);
842 	else {
843 		__count_memcg_events(memcg, PGPGOUT, 1);
844 		nr_pages = -nr_pages; /* for event */
845 	}
846 
847 	__this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
848 }
849 
850 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
851 				       enum mem_cgroup_events_target target)
852 {
853 	unsigned long val, next;
854 
855 	val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
856 	next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
857 	/* from time_after() in jiffies.h */
858 	if ((long)(next - val) < 0) {
859 		switch (target) {
860 		case MEM_CGROUP_TARGET_THRESH:
861 			next = val + THRESHOLDS_EVENTS_TARGET;
862 			break;
863 		case MEM_CGROUP_TARGET_SOFTLIMIT:
864 			next = val + SOFTLIMIT_EVENTS_TARGET;
865 			break;
866 		default:
867 			break;
868 		}
869 		__this_cpu_write(memcg->vmstats_percpu->targets[target], next);
870 		return true;
871 	}
872 	return false;
873 }
874 
875 /*
876  * Check events in order.
877  *
878  */
879 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
880 {
881 	/* threshold event is triggered in finer grain than soft limit */
882 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
883 						MEM_CGROUP_TARGET_THRESH))) {
884 		bool do_softlimit;
885 
886 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
887 						MEM_CGROUP_TARGET_SOFTLIMIT);
888 		mem_cgroup_threshold(memcg);
889 		if (unlikely(do_softlimit))
890 			mem_cgroup_update_tree(memcg, page);
891 	}
892 }
893 
894 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
895 {
896 	/*
897 	 * mm_update_next_owner() may clear mm->owner to NULL
898 	 * if it races with swapoff, page migration, etc.
899 	 * So this can be called with p == NULL.
900 	 */
901 	if (unlikely(!p))
902 		return NULL;
903 
904 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
905 }
906 EXPORT_SYMBOL(mem_cgroup_from_task);
907 
908 /**
909  * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
910  * @mm: mm from which memcg should be extracted. It can be NULL.
911  *
912  * Obtain a reference on mm->memcg and returns it if successful. Otherwise
913  * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
914  * returned.
915  */
916 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
917 {
918 	struct mem_cgroup *memcg;
919 
920 	if (mem_cgroup_disabled())
921 		return NULL;
922 
923 	rcu_read_lock();
924 	do {
925 		/*
926 		 * Page cache insertions can happen withou an
927 		 * actual mm context, e.g. during disk probing
928 		 * on boot, loopback IO, acct() writes etc.
929 		 */
930 		if (unlikely(!mm))
931 			memcg = root_mem_cgroup;
932 		else {
933 			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
934 			if (unlikely(!memcg))
935 				memcg = root_mem_cgroup;
936 		}
937 	} while (!css_tryget(&memcg->css));
938 	rcu_read_unlock();
939 	return memcg;
940 }
941 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
942 
943 /**
944  * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
945  * @page: page from which memcg should be extracted.
946  *
947  * Obtain a reference on page->memcg and returns it if successful. Otherwise
948  * root_mem_cgroup is returned.
949  */
950 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
951 {
952 	struct mem_cgroup *memcg = page->mem_cgroup;
953 
954 	if (mem_cgroup_disabled())
955 		return NULL;
956 
957 	rcu_read_lock();
958 	/* Page should not get uncharged and freed memcg under us. */
959 	if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
960 		memcg = root_mem_cgroup;
961 	rcu_read_unlock();
962 	return memcg;
963 }
964 EXPORT_SYMBOL(get_mem_cgroup_from_page);
965 
966 /**
967  * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
968  */
969 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
970 {
971 	if (unlikely(current->active_memcg)) {
972 		struct mem_cgroup *memcg;
973 
974 		rcu_read_lock();
975 		/* current->active_memcg must hold a ref. */
976 		if (WARN_ON_ONCE(!css_tryget(&current->active_memcg->css)))
977 			memcg = root_mem_cgroup;
978 		else
979 			memcg = current->active_memcg;
980 		rcu_read_unlock();
981 		return memcg;
982 	}
983 	return get_mem_cgroup_from_mm(current->mm);
984 }
985 
986 /**
987  * mem_cgroup_iter - iterate over memory cgroup hierarchy
988  * @root: hierarchy root
989  * @prev: previously returned memcg, NULL on first invocation
990  * @reclaim: cookie for shared reclaim walks, NULL for full walks
991  *
992  * Returns references to children of the hierarchy below @root, or
993  * @root itself, or %NULL after a full round-trip.
994  *
995  * Caller must pass the return value in @prev on subsequent
996  * invocations for reference counting, or use mem_cgroup_iter_break()
997  * to cancel a hierarchy walk before the round-trip is complete.
998  *
999  * Reclaimers can specify a node and a priority level in @reclaim to
1000  * divide up the memcgs in the hierarchy among all concurrent
1001  * reclaimers operating on the same node and priority.
1002  */
1003 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1004 				   struct mem_cgroup *prev,
1005 				   struct mem_cgroup_reclaim_cookie *reclaim)
1006 {
1007 	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1008 	struct cgroup_subsys_state *css = NULL;
1009 	struct mem_cgroup *memcg = NULL;
1010 	struct mem_cgroup *pos = NULL;
1011 
1012 	if (mem_cgroup_disabled())
1013 		return NULL;
1014 
1015 	if (!root)
1016 		root = root_mem_cgroup;
1017 
1018 	if (prev && !reclaim)
1019 		pos = prev;
1020 
1021 	if (!root->use_hierarchy && root != root_mem_cgroup) {
1022 		if (prev)
1023 			goto out;
1024 		return root;
1025 	}
1026 
1027 	rcu_read_lock();
1028 
1029 	if (reclaim) {
1030 		struct mem_cgroup_per_node *mz;
1031 
1032 		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1033 		iter = &mz->iter;
1034 
1035 		if (prev && reclaim->generation != iter->generation)
1036 			goto out_unlock;
1037 
1038 		while (1) {
1039 			pos = READ_ONCE(iter->position);
1040 			if (!pos || css_tryget(&pos->css))
1041 				break;
1042 			/*
1043 			 * css reference reached zero, so iter->position will
1044 			 * be cleared by ->css_released. However, we should not
1045 			 * rely on this happening soon, because ->css_released
1046 			 * is called from a work queue, and by busy-waiting we
1047 			 * might block it. So we clear iter->position right
1048 			 * away.
1049 			 */
1050 			(void)cmpxchg(&iter->position, pos, NULL);
1051 		}
1052 	}
1053 
1054 	if (pos)
1055 		css = &pos->css;
1056 
1057 	for (;;) {
1058 		css = css_next_descendant_pre(css, &root->css);
1059 		if (!css) {
1060 			/*
1061 			 * Reclaimers share the hierarchy walk, and a
1062 			 * new one might jump in right at the end of
1063 			 * the hierarchy - make sure they see at least
1064 			 * one group and restart from the beginning.
1065 			 */
1066 			if (!prev)
1067 				continue;
1068 			break;
1069 		}
1070 
1071 		/*
1072 		 * Verify the css and acquire a reference.  The root
1073 		 * is provided by the caller, so we know it's alive
1074 		 * and kicking, and don't take an extra reference.
1075 		 */
1076 		memcg = mem_cgroup_from_css(css);
1077 
1078 		if (css == &root->css)
1079 			break;
1080 
1081 		if (css_tryget(css))
1082 			break;
1083 
1084 		memcg = NULL;
1085 	}
1086 
1087 	if (reclaim) {
1088 		/*
1089 		 * The position could have already been updated by a competing
1090 		 * thread, so check that the value hasn't changed since we read
1091 		 * it to avoid reclaiming from the same cgroup twice.
1092 		 */
1093 		(void)cmpxchg(&iter->position, pos, memcg);
1094 
1095 		if (pos)
1096 			css_put(&pos->css);
1097 
1098 		if (!memcg)
1099 			iter->generation++;
1100 		else if (!prev)
1101 			reclaim->generation = iter->generation;
1102 	}
1103 
1104 out_unlock:
1105 	rcu_read_unlock();
1106 out:
1107 	if (prev && prev != root)
1108 		css_put(&prev->css);
1109 
1110 	return memcg;
1111 }
1112 
1113 /**
1114  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1115  * @root: hierarchy root
1116  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1117  */
1118 void mem_cgroup_iter_break(struct mem_cgroup *root,
1119 			   struct mem_cgroup *prev)
1120 {
1121 	if (!root)
1122 		root = root_mem_cgroup;
1123 	if (prev && prev != root)
1124 		css_put(&prev->css);
1125 }
1126 
1127 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1128 					struct mem_cgroup *dead_memcg)
1129 {
1130 	struct mem_cgroup_reclaim_iter *iter;
1131 	struct mem_cgroup_per_node *mz;
1132 	int nid;
1133 
1134 	for_each_node(nid) {
1135 		mz = mem_cgroup_nodeinfo(from, nid);
1136 		iter = &mz->iter;
1137 		cmpxchg(&iter->position, dead_memcg, NULL);
1138 	}
1139 }
1140 
1141 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1142 {
1143 	struct mem_cgroup *memcg = dead_memcg;
1144 	struct mem_cgroup *last;
1145 
1146 	do {
1147 		__invalidate_reclaim_iterators(memcg, dead_memcg);
1148 		last = memcg;
1149 	} while ((memcg = parent_mem_cgroup(memcg)));
1150 
1151 	/*
1152 	 * When cgruop1 non-hierarchy mode is used,
1153 	 * parent_mem_cgroup() does not walk all the way up to the
1154 	 * cgroup root (root_mem_cgroup). So we have to handle
1155 	 * dead_memcg from cgroup root separately.
1156 	 */
1157 	if (last != root_mem_cgroup)
1158 		__invalidate_reclaim_iterators(root_mem_cgroup,
1159 						dead_memcg);
1160 }
1161 
1162 /**
1163  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1164  * @memcg: hierarchy root
1165  * @fn: function to call for each task
1166  * @arg: argument passed to @fn
1167  *
1168  * This function iterates over tasks attached to @memcg or to any of its
1169  * descendants and calls @fn for each task. If @fn returns a non-zero
1170  * value, the function breaks the iteration loop and returns the value.
1171  * Otherwise, it will iterate over all tasks and return 0.
1172  *
1173  * This function must not be called for the root memory cgroup.
1174  */
1175 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1176 			  int (*fn)(struct task_struct *, void *), void *arg)
1177 {
1178 	struct mem_cgroup *iter;
1179 	int ret = 0;
1180 
1181 	BUG_ON(memcg == root_mem_cgroup);
1182 
1183 	for_each_mem_cgroup_tree(iter, memcg) {
1184 		struct css_task_iter it;
1185 		struct task_struct *task;
1186 
1187 		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1188 		while (!ret && (task = css_task_iter_next(&it)))
1189 			ret = fn(task, arg);
1190 		css_task_iter_end(&it);
1191 		if (ret) {
1192 			mem_cgroup_iter_break(memcg, iter);
1193 			break;
1194 		}
1195 	}
1196 	return ret;
1197 }
1198 
1199 /**
1200  * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1201  * @page: the page
1202  * @pgdat: pgdat of the page
1203  *
1204  * This function relies on page->mem_cgroup being stable - see the
1205  * access rules in commit_charge().
1206  */
1207 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
1208 {
1209 	struct mem_cgroup_per_node *mz;
1210 	struct mem_cgroup *memcg;
1211 	struct lruvec *lruvec;
1212 
1213 	if (mem_cgroup_disabled()) {
1214 		lruvec = &pgdat->__lruvec;
1215 		goto out;
1216 	}
1217 
1218 	memcg = page->mem_cgroup;
1219 	/*
1220 	 * Swapcache readahead pages are added to the LRU - and
1221 	 * possibly migrated - before they are charged.
1222 	 */
1223 	if (!memcg)
1224 		memcg = root_mem_cgroup;
1225 
1226 	mz = mem_cgroup_page_nodeinfo(memcg, page);
1227 	lruvec = &mz->lruvec;
1228 out:
1229 	/*
1230 	 * Since a node can be onlined after the mem_cgroup was created,
1231 	 * we have to be prepared to initialize lruvec->zone here;
1232 	 * and if offlined then reonlined, we need to reinitialize it.
1233 	 */
1234 	if (unlikely(lruvec->pgdat != pgdat))
1235 		lruvec->pgdat = pgdat;
1236 	return lruvec;
1237 }
1238 
1239 /**
1240  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1241  * @lruvec: mem_cgroup per zone lru vector
1242  * @lru: index of lru list the page is sitting on
1243  * @zid: zone id of the accounted pages
1244  * @nr_pages: positive when adding or negative when removing
1245  *
1246  * This function must be called under lru_lock, just before a page is added
1247  * to or just after a page is removed from an lru list (that ordering being
1248  * so as to allow it to check that lru_size 0 is consistent with list_empty).
1249  */
1250 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1251 				int zid, int nr_pages)
1252 {
1253 	struct mem_cgroup_per_node *mz;
1254 	unsigned long *lru_size;
1255 	long size;
1256 
1257 	if (mem_cgroup_disabled())
1258 		return;
1259 
1260 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1261 	lru_size = &mz->lru_zone_size[zid][lru];
1262 
1263 	if (nr_pages < 0)
1264 		*lru_size += nr_pages;
1265 
1266 	size = *lru_size;
1267 	if (WARN_ONCE(size < 0,
1268 		"%s(%p, %d, %d): lru_size %ld\n",
1269 		__func__, lruvec, lru, nr_pages, size)) {
1270 		VM_BUG_ON(1);
1271 		*lru_size = 0;
1272 	}
1273 
1274 	if (nr_pages > 0)
1275 		*lru_size += nr_pages;
1276 }
1277 
1278 /**
1279  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1280  * @memcg: the memory cgroup
1281  *
1282  * Returns the maximum amount of memory @mem can be charged with, in
1283  * pages.
1284  */
1285 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1286 {
1287 	unsigned long margin = 0;
1288 	unsigned long count;
1289 	unsigned long limit;
1290 
1291 	count = page_counter_read(&memcg->memory);
1292 	limit = READ_ONCE(memcg->memory.max);
1293 	if (count < limit)
1294 		margin = limit - count;
1295 
1296 	if (do_memsw_account()) {
1297 		count = page_counter_read(&memcg->memsw);
1298 		limit = READ_ONCE(memcg->memsw.max);
1299 		if (count < limit)
1300 			margin = min(margin, limit - count);
1301 		else
1302 			margin = 0;
1303 	}
1304 
1305 	return margin;
1306 }
1307 
1308 /*
1309  * A routine for checking "mem" is under move_account() or not.
1310  *
1311  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1312  * moving cgroups. This is for waiting at high-memory pressure
1313  * caused by "move".
1314  */
1315 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1316 {
1317 	struct mem_cgroup *from;
1318 	struct mem_cgroup *to;
1319 	bool ret = false;
1320 	/*
1321 	 * Unlike task_move routines, we access mc.to, mc.from not under
1322 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1323 	 */
1324 	spin_lock(&mc.lock);
1325 	from = mc.from;
1326 	to = mc.to;
1327 	if (!from)
1328 		goto unlock;
1329 
1330 	ret = mem_cgroup_is_descendant(from, memcg) ||
1331 		mem_cgroup_is_descendant(to, memcg);
1332 unlock:
1333 	spin_unlock(&mc.lock);
1334 	return ret;
1335 }
1336 
1337 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1338 {
1339 	if (mc.moving_task && current != mc.moving_task) {
1340 		if (mem_cgroup_under_move(memcg)) {
1341 			DEFINE_WAIT(wait);
1342 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1343 			/* moving charge context might have finished. */
1344 			if (mc.moving_task)
1345 				schedule();
1346 			finish_wait(&mc.waitq, &wait);
1347 			return true;
1348 		}
1349 	}
1350 	return false;
1351 }
1352 
1353 static char *memory_stat_format(struct mem_cgroup *memcg)
1354 {
1355 	struct seq_buf s;
1356 	int i;
1357 
1358 	seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1359 	if (!s.buffer)
1360 		return NULL;
1361 
1362 	/*
1363 	 * Provide statistics on the state of the memory subsystem as
1364 	 * well as cumulative event counters that show past behavior.
1365 	 *
1366 	 * This list is ordered following a combination of these gradients:
1367 	 * 1) generic big picture -> specifics and details
1368 	 * 2) reflecting userspace activity -> reflecting kernel heuristics
1369 	 *
1370 	 * Current memory state:
1371 	 */
1372 
1373 	seq_buf_printf(&s, "anon %llu\n",
1374 		       (u64)memcg_page_state(memcg, NR_ANON_MAPPED) *
1375 		       PAGE_SIZE);
1376 	seq_buf_printf(&s, "file %llu\n",
1377 		       (u64)memcg_page_state(memcg, NR_FILE_PAGES) *
1378 		       PAGE_SIZE);
1379 	seq_buf_printf(&s, "kernel_stack %llu\n",
1380 		       (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) *
1381 		       1024);
1382 	seq_buf_printf(&s, "slab %llu\n",
1383 		       (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) +
1384 			     memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) *
1385 		       PAGE_SIZE);
1386 	seq_buf_printf(&s, "sock %llu\n",
1387 		       (u64)memcg_page_state(memcg, MEMCG_SOCK) *
1388 		       PAGE_SIZE);
1389 
1390 	seq_buf_printf(&s, "shmem %llu\n",
1391 		       (u64)memcg_page_state(memcg, NR_SHMEM) *
1392 		       PAGE_SIZE);
1393 	seq_buf_printf(&s, "file_mapped %llu\n",
1394 		       (u64)memcg_page_state(memcg, NR_FILE_MAPPED) *
1395 		       PAGE_SIZE);
1396 	seq_buf_printf(&s, "file_dirty %llu\n",
1397 		       (u64)memcg_page_state(memcg, NR_FILE_DIRTY) *
1398 		       PAGE_SIZE);
1399 	seq_buf_printf(&s, "file_writeback %llu\n",
1400 		       (u64)memcg_page_state(memcg, NR_WRITEBACK) *
1401 		       PAGE_SIZE);
1402 
1403 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1404 	seq_buf_printf(&s, "anon_thp %llu\n",
1405 		       (u64)memcg_page_state(memcg, NR_ANON_THPS) *
1406 		       HPAGE_PMD_SIZE);
1407 #endif
1408 
1409 	for (i = 0; i < NR_LRU_LISTS; i++)
1410 		seq_buf_printf(&s, "%s %llu\n", lru_list_name(i),
1411 			       (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
1412 			       PAGE_SIZE);
1413 
1414 	seq_buf_printf(&s, "slab_reclaimable %llu\n",
1415 		       (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) *
1416 		       PAGE_SIZE);
1417 	seq_buf_printf(&s, "slab_unreclaimable %llu\n",
1418 		       (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) *
1419 		       PAGE_SIZE);
1420 
1421 	/* Accumulated memory events */
1422 
1423 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1424 		       memcg_events(memcg, PGFAULT));
1425 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1426 		       memcg_events(memcg, PGMAJFAULT));
1427 
1428 	seq_buf_printf(&s, "workingset_refault %lu\n",
1429 		       memcg_page_state(memcg, WORKINGSET_REFAULT));
1430 	seq_buf_printf(&s, "workingset_activate %lu\n",
1431 		       memcg_page_state(memcg, WORKINGSET_ACTIVATE));
1432 	seq_buf_printf(&s, "workingset_restore %lu\n",
1433 		       memcg_page_state(memcg, WORKINGSET_RESTORE));
1434 	seq_buf_printf(&s, "workingset_nodereclaim %lu\n",
1435 		       memcg_page_state(memcg, WORKINGSET_NODERECLAIM));
1436 
1437 	seq_buf_printf(&s, "%s %lu\n",  vm_event_name(PGREFILL),
1438 		       memcg_events(memcg, PGREFILL));
1439 	seq_buf_printf(&s, "pgscan %lu\n",
1440 		       memcg_events(memcg, PGSCAN_KSWAPD) +
1441 		       memcg_events(memcg, PGSCAN_DIRECT));
1442 	seq_buf_printf(&s, "pgsteal %lu\n",
1443 		       memcg_events(memcg, PGSTEAL_KSWAPD) +
1444 		       memcg_events(memcg, PGSTEAL_DIRECT));
1445 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1446 		       memcg_events(memcg, PGACTIVATE));
1447 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1448 		       memcg_events(memcg, PGDEACTIVATE));
1449 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1450 		       memcg_events(memcg, PGLAZYFREE));
1451 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1452 		       memcg_events(memcg, PGLAZYFREED));
1453 
1454 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1455 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1456 		       memcg_events(memcg, THP_FAULT_ALLOC));
1457 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1458 		       memcg_events(memcg, THP_COLLAPSE_ALLOC));
1459 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1460 
1461 	/* The above should easily fit into one page */
1462 	WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1463 
1464 	return s.buffer;
1465 }
1466 
1467 #define K(x) ((x) << (PAGE_SHIFT-10))
1468 /**
1469  * mem_cgroup_print_oom_context: Print OOM information relevant to
1470  * memory controller.
1471  * @memcg: The memory cgroup that went over limit
1472  * @p: Task that is going to be killed
1473  *
1474  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1475  * enabled
1476  */
1477 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1478 {
1479 	rcu_read_lock();
1480 
1481 	if (memcg) {
1482 		pr_cont(",oom_memcg=");
1483 		pr_cont_cgroup_path(memcg->css.cgroup);
1484 	} else
1485 		pr_cont(",global_oom");
1486 	if (p) {
1487 		pr_cont(",task_memcg=");
1488 		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1489 	}
1490 	rcu_read_unlock();
1491 }
1492 
1493 /**
1494  * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1495  * memory controller.
1496  * @memcg: The memory cgroup that went over limit
1497  */
1498 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1499 {
1500 	char *buf;
1501 
1502 	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1503 		K((u64)page_counter_read(&memcg->memory)),
1504 		K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1505 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1506 		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1507 			K((u64)page_counter_read(&memcg->swap)),
1508 			K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1509 	else {
1510 		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1511 			K((u64)page_counter_read(&memcg->memsw)),
1512 			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1513 		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1514 			K((u64)page_counter_read(&memcg->kmem)),
1515 			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1516 	}
1517 
1518 	pr_info("Memory cgroup stats for ");
1519 	pr_cont_cgroup_path(memcg->css.cgroup);
1520 	pr_cont(":");
1521 	buf = memory_stat_format(memcg);
1522 	if (!buf)
1523 		return;
1524 	pr_info("%s", buf);
1525 	kfree(buf);
1526 }
1527 
1528 /*
1529  * Return the memory (and swap, if configured) limit for a memcg.
1530  */
1531 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1532 {
1533 	unsigned long max;
1534 
1535 	max = READ_ONCE(memcg->memory.max);
1536 	if (mem_cgroup_swappiness(memcg)) {
1537 		unsigned long memsw_max;
1538 		unsigned long swap_max;
1539 
1540 		memsw_max = memcg->memsw.max;
1541 		swap_max = READ_ONCE(memcg->swap.max);
1542 		swap_max = min(swap_max, (unsigned long)total_swap_pages);
1543 		max = min(max + swap_max, memsw_max);
1544 	}
1545 	return max;
1546 }
1547 
1548 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1549 {
1550 	return page_counter_read(&memcg->memory);
1551 }
1552 
1553 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1554 				     int order)
1555 {
1556 	struct oom_control oc = {
1557 		.zonelist = NULL,
1558 		.nodemask = NULL,
1559 		.memcg = memcg,
1560 		.gfp_mask = gfp_mask,
1561 		.order = order,
1562 	};
1563 	bool ret;
1564 
1565 	if (mutex_lock_killable(&oom_lock))
1566 		return true;
1567 	/*
1568 	 * A few threads which were not waiting at mutex_lock_killable() can
1569 	 * fail to bail out. Therefore, check again after holding oom_lock.
1570 	 */
1571 	ret = should_force_charge() || out_of_memory(&oc);
1572 	mutex_unlock(&oom_lock);
1573 	return ret;
1574 }
1575 
1576 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1577 				   pg_data_t *pgdat,
1578 				   gfp_t gfp_mask,
1579 				   unsigned long *total_scanned)
1580 {
1581 	struct mem_cgroup *victim = NULL;
1582 	int total = 0;
1583 	int loop = 0;
1584 	unsigned long excess;
1585 	unsigned long nr_scanned;
1586 	struct mem_cgroup_reclaim_cookie reclaim = {
1587 		.pgdat = pgdat,
1588 	};
1589 
1590 	excess = soft_limit_excess(root_memcg);
1591 
1592 	while (1) {
1593 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1594 		if (!victim) {
1595 			loop++;
1596 			if (loop >= 2) {
1597 				/*
1598 				 * If we have not been able to reclaim
1599 				 * anything, it might because there are
1600 				 * no reclaimable pages under this hierarchy
1601 				 */
1602 				if (!total)
1603 					break;
1604 				/*
1605 				 * We want to do more targeted reclaim.
1606 				 * excess >> 2 is not to excessive so as to
1607 				 * reclaim too much, nor too less that we keep
1608 				 * coming back to reclaim from this cgroup
1609 				 */
1610 				if (total >= (excess >> 2) ||
1611 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1612 					break;
1613 			}
1614 			continue;
1615 		}
1616 		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1617 					pgdat, &nr_scanned);
1618 		*total_scanned += nr_scanned;
1619 		if (!soft_limit_excess(root_memcg))
1620 			break;
1621 	}
1622 	mem_cgroup_iter_break(root_memcg, victim);
1623 	return total;
1624 }
1625 
1626 #ifdef CONFIG_LOCKDEP
1627 static struct lockdep_map memcg_oom_lock_dep_map = {
1628 	.name = "memcg_oom_lock",
1629 };
1630 #endif
1631 
1632 static DEFINE_SPINLOCK(memcg_oom_lock);
1633 
1634 /*
1635  * Check OOM-Killer is already running under our hierarchy.
1636  * If someone is running, return false.
1637  */
1638 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1639 {
1640 	struct mem_cgroup *iter, *failed = NULL;
1641 
1642 	spin_lock(&memcg_oom_lock);
1643 
1644 	for_each_mem_cgroup_tree(iter, memcg) {
1645 		if (iter->oom_lock) {
1646 			/*
1647 			 * this subtree of our hierarchy is already locked
1648 			 * so we cannot give a lock.
1649 			 */
1650 			failed = iter;
1651 			mem_cgroup_iter_break(memcg, iter);
1652 			break;
1653 		} else
1654 			iter->oom_lock = true;
1655 	}
1656 
1657 	if (failed) {
1658 		/*
1659 		 * OK, we failed to lock the whole subtree so we have
1660 		 * to clean up what we set up to the failing subtree
1661 		 */
1662 		for_each_mem_cgroup_tree(iter, memcg) {
1663 			if (iter == failed) {
1664 				mem_cgroup_iter_break(memcg, iter);
1665 				break;
1666 			}
1667 			iter->oom_lock = false;
1668 		}
1669 	} else
1670 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1671 
1672 	spin_unlock(&memcg_oom_lock);
1673 
1674 	return !failed;
1675 }
1676 
1677 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1678 {
1679 	struct mem_cgroup *iter;
1680 
1681 	spin_lock(&memcg_oom_lock);
1682 	mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1683 	for_each_mem_cgroup_tree(iter, memcg)
1684 		iter->oom_lock = false;
1685 	spin_unlock(&memcg_oom_lock);
1686 }
1687 
1688 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1689 {
1690 	struct mem_cgroup *iter;
1691 
1692 	spin_lock(&memcg_oom_lock);
1693 	for_each_mem_cgroup_tree(iter, memcg)
1694 		iter->under_oom++;
1695 	spin_unlock(&memcg_oom_lock);
1696 }
1697 
1698 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1699 {
1700 	struct mem_cgroup *iter;
1701 
1702 	/*
1703 	 * When a new child is created while the hierarchy is under oom,
1704 	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1705 	 */
1706 	spin_lock(&memcg_oom_lock);
1707 	for_each_mem_cgroup_tree(iter, memcg)
1708 		if (iter->under_oom > 0)
1709 			iter->under_oom--;
1710 	spin_unlock(&memcg_oom_lock);
1711 }
1712 
1713 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1714 
1715 struct oom_wait_info {
1716 	struct mem_cgroup *memcg;
1717 	wait_queue_entry_t	wait;
1718 };
1719 
1720 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1721 	unsigned mode, int sync, void *arg)
1722 {
1723 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1724 	struct mem_cgroup *oom_wait_memcg;
1725 	struct oom_wait_info *oom_wait_info;
1726 
1727 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1728 	oom_wait_memcg = oom_wait_info->memcg;
1729 
1730 	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1731 	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1732 		return 0;
1733 	return autoremove_wake_function(wait, mode, sync, arg);
1734 }
1735 
1736 static void memcg_oom_recover(struct mem_cgroup *memcg)
1737 {
1738 	/*
1739 	 * For the following lockless ->under_oom test, the only required
1740 	 * guarantee is that it must see the state asserted by an OOM when
1741 	 * this function is called as a result of userland actions
1742 	 * triggered by the notification of the OOM.  This is trivially
1743 	 * achieved by invoking mem_cgroup_mark_under_oom() before
1744 	 * triggering notification.
1745 	 */
1746 	if (memcg && memcg->under_oom)
1747 		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1748 }
1749 
1750 enum oom_status {
1751 	OOM_SUCCESS,
1752 	OOM_FAILED,
1753 	OOM_ASYNC,
1754 	OOM_SKIPPED
1755 };
1756 
1757 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1758 {
1759 	enum oom_status ret;
1760 	bool locked;
1761 
1762 	if (order > PAGE_ALLOC_COSTLY_ORDER)
1763 		return OOM_SKIPPED;
1764 
1765 	memcg_memory_event(memcg, MEMCG_OOM);
1766 
1767 	/*
1768 	 * We are in the middle of the charge context here, so we
1769 	 * don't want to block when potentially sitting on a callstack
1770 	 * that holds all kinds of filesystem and mm locks.
1771 	 *
1772 	 * cgroup1 allows disabling the OOM killer and waiting for outside
1773 	 * handling until the charge can succeed; remember the context and put
1774 	 * the task to sleep at the end of the page fault when all locks are
1775 	 * released.
1776 	 *
1777 	 * On the other hand, in-kernel OOM killer allows for an async victim
1778 	 * memory reclaim (oom_reaper) and that means that we are not solely
1779 	 * relying on the oom victim to make a forward progress and we can
1780 	 * invoke the oom killer here.
1781 	 *
1782 	 * Please note that mem_cgroup_out_of_memory might fail to find a
1783 	 * victim and then we have to bail out from the charge path.
1784 	 */
1785 	if (memcg->oom_kill_disable) {
1786 		if (!current->in_user_fault)
1787 			return OOM_SKIPPED;
1788 		css_get(&memcg->css);
1789 		current->memcg_in_oom = memcg;
1790 		current->memcg_oom_gfp_mask = mask;
1791 		current->memcg_oom_order = order;
1792 
1793 		return OOM_ASYNC;
1794 	}
1795 
1796 	mem_cgroup_mark_under_oom(memcg);
1797 
1798 	locked = mem_cgroup_oom_trylock(memcg);
1799 
1800 	if (locked)
1801 		mem_cgroup_oom_notify(memcg);
1802 
1803 	mem_cgroup_unmark_under_oom(memcg);
1804 	if (mem_cgroup_out_of_memory(memcg, mask, order))
1805 		ret = OOM_SUCCESS;
1806 	else
1807 		ret = OOM_FAILED;
1808 
1809 	if (locked)
1810 		mem_cgroup_oom_unlock(memcg);
1811 
1812 	return ret;
1813 }
1814 
1815 /**
1816  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1817  * @handle: actually kill/wait or just clean up the OOM state
1818  *
1819  * This has to be called at the end of a page fault if the memcg OOM
1820  * handler was enabled.
1821  *
1822  * Memcg supports userspace OOM handling where failed allocations must
1823  * sleep on a waitqueue until the userspace task resolves the
1824  * situation.  Sleeping directly in the charge context with all kinds
1825  * of locks held is not a good idea, instead we remember an OOM state
1826  * in the task and mem_cgroup_oom_synchronize() has to be called at
1827  * the end of the page fault to complete the OOM handling.
1828  *
1829  * Returns %true if an ongoing memcg OOM situation was detected and
1830  * completed, %false otherwise.
1831  */
1832 bool mem_cgroup_oom_synchronize(bool handle)
1833 {
1834 	struct mem_cgroup *memcg = current->memcg_in_oom;
1835 	struct oom_wait_info owait;
1836 	bool locked;
1837 
1838 	/* OOM is global, do not handle */
1839 	if (!memcg)
1840 		return false;
1841 
1842 	if (!handle)
1843 		goto cleanup;
1844 
1845 	owait.memcg = memcg;
1846 	owait.wait.flags = 0;
1847 	owait.wait.func = memcg_oom_wake_function;
1848 	owait.wait.private = current;
1849 	INIT_LIST_HEAD(&owait.wait.entry);
1850 
1851 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1852 	mem_cgroup_mark_under_oom(memcg);
1853 
1854 	locked = mem_cgroup_oom_trylock(memcg);
1855 
1856 	if (locked)
1857 		mem_cgroup_oom_notify(memcg);
1858 
1859 	if (locked && !memcg->oom_kill_disable) {
1860 		mem_cgroup_unmark_under_oom(memcg);
1861 		finish_wait(&memcg_oom_waitq, &owait.wait);
1862 		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1863 					 current->memcg_oom_order);
1864 	} else {
1865 		schedule();
1866 		mem_cgroup_unmark_under_oom(memcg);
1867 		finish_wait(&memcg_oom_waitq, &owait.wait);
1868 	}
1869 
1870 	if (locked) {
1871 		mem_cgroup_oom_unlock(memcg);
1872 		/*
1873 		 * There is no guarantee that an OOM-lock contender
1874 		 * sees the wakeups triggered by the OOM kill
1875 		 * uncharges.  Wake any sleepers explicitely.
1876 		 */
1877 		memcg_oom_recover(memcg);
1878 	}
1879 cleanup:
1880 	current->memcg_in_oom = NULL;
1881 	css_put(&memcg->css);
1882 	return true;
1883 }
1884 
1885 /**
1886  * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1887  * @victim: task to be killed by the OOM killer
1888  * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1889  *
1890  * Returns a pointer to a memory cgroup, which has to be cleaned up
1891  * by killing all belonging OOM-killable tasks.
1892  *
1893  * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1894  */
1895 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1896 					    struct mem_cgroup *oom_domain)
1897 {
1898 	struct mem_cgroup *oom_group = NULL;
1899 	struct mem_cgroup *memcg;
1900 
1901 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1902 		return NULL;
1903 
1904 	if (!oom_domain)
1905 		oom_domain = root_mem_cgroup;
1906 
1907 	rcu_read_lock();
1908 
1909 	memcg = mem_cgroup_from_task(victim);
1910 	if (memcg == root_mem_cgroup)
1911 		goto out;
1912 
1913 	/*
1914 	 * If the victim task has been asynchronously moved to a different
1915 	 * memory cgroup, we might end up killing tasks outside oom_domain.
1916 	 * In this case it's better to ignore memory.group.oom.
1917 	 */
1918 	if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
1919 		goto out;
1920 
1921 	/*
1922 	 * Traverse the memory cgroup hierarchy from the victim task's
1923 	 * cgroup up to the OOMing cgroup (or root) to find the
1924 	 * highest-level memory cgroup with oom.group set.
1925 	 */
1926 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1927 		if (memcg->oom_group)
1928 			oom_group = memcg;
1929 
1930 		if (memcg == oom_domain)
1931 			break;
1932 	}
1933 
1934 	if (oom_group)
1935 		css_get(&oom_group->css);
1936 out:
1937 	rcu_read_unlock();
1938 
1939 	return oom_group;
1940 }
1941 
1942 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1943 {
1944 	pr_info("Tasks in ");
1945 	pr_cont_cgroup_path(memcg->css.cgroup);
1946 	pr_cont(" are going to be killed due to memory.oom.group set\n");
1947 }
1948 
1949 /**
1950  * lock_page_memcg - lock a page->mem_cgroup binding
1951  * @page: the page
1952  *
1953  * This function protects unlocked LRU pages from being moved to
1954  * another cgroup.
1955  *
1956  * It ensures lifetime of the returned memcg. Caller is responsible
1957  * for the lifetime of the page; __unlock_page_memcg() is available
1958  * when @page might get freed inside the locked section.
1959  */
1960 struct mem_cgroup *lock_page_memcg(struct page *page)
1961 {
1962 	struct page *head = compound_head(page); /* rmap on tail pages */
1963 	struct mem_cgroup *memcg;
1964 	unsigned long flags;
1965 
1966 	/*
1967 	 * The RCU lock is held throughout the transaction.  The fast
1968 	 * path can get away without acquiring the memcg->move_lock
1969 	 * because page moving starts with an RCU grace period.
1970 	 *
1971 	 * The RCU lock also protects the memcg from being freed when
1972 	 * the page state that is going to change is the only thing
1973 	 * preventing the page itself from being freed. E.g. writeback
1974 	 * doesn't hold a page reference and relies on PG_writeback to
1975 	 * keep off truncation, migration and so forth.
1976          */
1977 	rcu_read_lock();
1978 
1979 	if (mem_cgroup_disabled())
1980 		return NULL;
1981 again:
1982 	memcg = head->mem_cgroup;
1983 	if (unlikely(!memcg))
1984 		return NULL;
1985 
1986 	if (atomic_read(&memcg->moving_account) <= 0)
1987 		return memcg;
1988 
1989 	spin_lock_irqsave(&memcg->move_lock, flags);
1990 	if (memcg != head->mem_cgroup) {
1991 		spin_unlock_irqrestore(&memcg->move_lock, flags);
1992 		goto again;
1993 	}
1994 
1995 	/*
1996 	 * When charge migration first begins, we can have locked and
1997 	 * unlocked page stat updates happening concurrently.  Track
1998 	 * the task who has the lock for unlock_page_memcg().
1999 	 */
2000 	memcg->move_lock_task = current;
2001 	memcg->move_lock_flags = flags;
2002 
2003 	return memcg;
2004 }
2005 EXPORT_SYMBOL(lock_page_memcg);
2006 
2007 /**
2008  * __unlock_page_memcg - unlock and unpin a memcg
2009  * @memcg: the memcg
2010  *
2011  * Unlock and unpin a memcg returned by lock_page_memcg().
2012  */
2013 void __unlock_page_memcg(struct mem_cgroup *memcg)
2014 {
2015 	if (memcg && memcg->move_lock_task == current) {
2016 		unsigned long flags = memcg->move_lock_flags;
2017 
2018 		memcg->move_lock_task = NULL;
2019 		memcg->move_lock_flags = 0;
2020 
2021 		spin_unlock_irqrestore(&memcg->move_lock, flags);
2022 	}
2023 
2024 	rcu_read_unlock();
2025 }
2026 
2027 /**
2028  * unlock_page_memcg - unlock a page->mem_cgroup binding
2029  * @page: the page
2030  */
2031 void unlock_page_memcg(struct page *page)
2032 {
2033 	struct page *head = compound_head(page);
2034 
2035 	__unlock_page_memcg(head->mem_cgroup);
2036 }
2037 EXPORT_SYMBOL(unlock_page_memcg);
2038 
2039 struct memcg_stock_pcp {
2040 	struct mem_cgroup *cached; /* this never be root cgroup */
2041 	unsigned int nr_pages;
2042 	struct work_struct work;
2043 	unsigned long flags;
2044 #define FLUSHING_CACHED_CHARGE	0
2045 };
2046 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2047 static DEFINE_MUTEX(percpu_charge_mutex);
2048 
2049 /**
2050  * consume_stock: Try to consume stocked charge on this cpu.
2051  * @memcg: memcg to consume from.
2052  * @nr_pages: how many pages to charge.
2053  *
2054  * The charges will only happen if @memcg matches the current cpu's memcg
2055  * stock, and at least @nr_pages are available in that stock.  Failure to
2056  * service an allocation will refill the stock.
2057  *
2058  * returns true if successful, false otherwise.
2059  */
2060 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2061 {
2062 	struct memcg_stock_pcp *stock;
2063 	unsigned long flags;
2064 	bool ret = false;
2065 
2066 	if (nr_pages > MEMCG_CHARGE_BATCH)
2067 		return ret;
2068 
2069 	local_irq_save(flags);
2070 
2071 	stock = this_cpu_ptr(&memcg_stock);
2072 	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2073 		stock->nr_pages -= nr_pages;
2074 		ret = true;
2075 	}
2076 
2077 	local_irq_restore(flags);
2078 
2079 	return ret;
2080 }
2081 
2082 /*
2083  * Returns stocks cached in percpu and reset cached information.
2084  */
2085 static void drain_stock(struct memcg_stock_pcp *stock)
2086 {
2087 	struct mem_cgroup *old = stock->cached;
2088 
2089 	if (stock->nr_pages) {
2090 		page_counter_uncharge(&old->memory, stock->nr_pages);
2091 		if (do_memsw_account())
2092 			page_counter_uncharge(&old->memsw, stock->nr_pages);
2093 		css_put_many(&old->css, stock->nr_pages);
2094 		stock->nr_pages = 0;
2095 	}
2096 	stock->cached = NULL;
2097 }
2098 
2099 static void drain_local_stock(struct work_struct *dummy)
2100 {
2101 	struct memcg_stock_pcp *stock;
2102 	unsigned long flags;
2103 
2104 	/*
2105 	 * The only protection from memory hotplug vs. drain_stock races is
2106 	 * that we always operate on local CPU stock here with IRQ disabled
2107 	 */
2108 	local_irq_save(flags);
2109 
2110 	stock = this_cpu_ptr(&memcg_stock);
2111 	drain_stock(stock);
2112 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2113 
2114 	local_irq_restore(flags);
2115 }
2116 
2117 /*
2118  * Cache charges(val) to local per_cpu area.
2119  * This will be consumed by consume_stock() function, later.
2120  */
2121 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2122 {
2123 	struct memcg_stock_pcp *stock;
2124 	unsigned long flags;
2125 
2126 	local_irq_save(flags);
2127 
2128 	stock = this_cpu_ptr(&memcg_stock);
2129 	if (stock->cached != memcg) { /* reset if necessary */
2130 		drain_stock(stock);
2131 		stock->cached = memcg;
2132 	}
2133 	stock->nr_pages += nr_pages;
2134 
2135 	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2136 		drain_stock(stock);
2137 
2138 	local_irq_restore(flags);
2139 }
2140 
2141 /*
2142  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2143  * of the hierarchy under it.
2144  */
2145 static void drain_all_stock(struct mem_cgroup *root_memcg)
2146 {
2147 	int cpu, curcpu;
2148 
2149 	/* If someone's already draining, avoid adding running more workers. */
2150 	if (!mutex_trylock(&percpu_charge_mutex))
2151 		return;
2152 	/*
2153 	 * Notify other cpus that system-wide "drain" is running
2154 	 * We do not care about races with the cpu hotplug because cpu down
2155 	 * as well as workers from this path always operate on the local
2156 	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2157 	 */
2158 	curcpu = get_cpu();
2159 	for_each_online_cpu(cpu) {
2160 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2161 		struct mem_cgroup *memcg;
2162 		bool flush = false;
2163 
2164 		rcu_read_lock();
2165 		memcg = stock->cached;
2166 		if (memcg && stock->nr_pages &&
2167 		    mem_cgroup_is_descendant(memcg, root_memcg))
2168 			flush = true;
2169 		rcu_read_unlock();
2170 
2171 		if (flush &&
2172 		    !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2173 			if (cpu == curcpu)
2174 				drain_local_stock(&stock->work);
2175 			else
2176 				schedule_work_on(cpu, &stock->work);
2177 		}
2178 	}
2179 	put_cpu();
2180 	mutex_unlock(&percpu_charge_mutex);
2181 }
2182 
2183 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2184 {
2185 	struct memcg_stock_pcp *stock;
2186 	struct mem_cgroup *memcg, *mi;
2187 
2188 	stock = &per_cpu(memcg_stock, cpu);
2189 	drain_stock(stock);
2190 
2191 	for_each_mem_cgroup(memcg) {
2192 		int i;
2193 
2194 		for (i = 0; i < MEMCG_NR_STAT; i++) {
2195 			int nid;
2196 			long x;
2197 
2198 			x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2199 			if (x)
2200 				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2201 					atomic_long_add(x, &memcg->vmstats[i]);
2202 
2203 			if (i >= NR_VM_NODE_STAT_ITEMS)
2204 				continue;
2205 
2206 			for_each_node(nid) {
2207 				struct mem_cgroup_per_node *pn;
2208 
2209 				pn = mem_cgroup_nodeinfo(memcg, nid);
2210 				x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2211 				if (x)
2212 					do {
2213 						atomic_long_add(x, &pn->lruvec_stat[i]);
2214 					} while ((pn = parent_nodeinfo(pn, nid)));
2215 			}
2216 		}
2217 
2218 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2219 			long x;
2220 
2221 			x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2222 			if (x)
2223 				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2224 					atomic_long_add(x, &memcg->vmevents[i]);
2225 		}
2226 	}
2227 
2228 	return 0;
2229 }
2230 
2231 static void reclaim_high(struct mem_cgroup *memcg,
2232 			 unsigned int nr_pages,
2233 			 gfp_t gfp_mask)
2234 {
2235 	do {
2236 		if (page_counter_read(&memcg->memory) <=
2237 		    READ_ONCE(memcg->memory.high))
2238 			continue;
2239 		memcg_memory_event(memcg, MEMCG_HIGH);
2240 		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2241 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2242 		 !mem_cgroup_is_root(memcg));
2243 }
2244 
2245 static void high_work_func(struct work_struct *work)
2246 {
2247 	struct mem_cgroup *memcg;
2248 
2249 	memcg = container_of(work, struct mem_cgroup, high_work);
2250 	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2251 }
2252 
2253 /*
2254  * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2255  * enough to still cause a significant slowdown in most cases, while still
2256  * allowing diagnostics and tracing to proceed without becoming stuck.
2257  */
2258 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2259 
2260 /*
2261  * When calculating the delay, we use these either side of the exponentiation to
2262  * maintain precision and scale to a reasonable number of jiffies (see the table
2263  * below.
2264  *
2265  * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2266  *   overage ratio to a delay.
2267  * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down down the
2268  *   proposed penalty in order to reduce to a reasonable number of jiffies, and
2269  *   to produce a reasonable delay curve.
2270  *
2271  * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2272  * reasonable delay curve compared to precision-adjusted overage, not
2273  * penalising heavily at first, but still making sure that growth beyond the
2274  * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2275  * example, with a high of 100 megabytes:
2276  *
2277  *  +-------+------------------------+
2278  *  | usage | time to allocate in ms |
2279  *  +-------+------------------------+
2280  *  | 100M  |                      0 |
2281  *  | 101M  |                      6 |
2282  *  | 102M  |                     25 |
2283  *  | 103M  |                     57 |
2284  *  | 104M  |                    102 |
2285  *  | 105M  |                    159 |
2286  *  | 106M  |                    230 |
2287  *  | 107M  |                    313 |
2288  *  | 108M  |                    409 |
2289  *  | 109M  |                    518 |
2290  *  | 110M  |                    639 |
2291  *  | 111M  |                    774 |
2292  *  | 112M  |                    921 |
2293  *  | 113M  |                   1081 |
2294  *  | 114M  |                   1254 |
2295  *  | 115M  |                   1439 |
2296  *  | 116M  |                   1638 |
2297  *  | 117M  |                   1849 |
2298  *  | 118M  |                   2000 |
2299  *  | 119M  |                   2000 |
2300  *  | 120M  |                   2000 |
2301  *  +-------+------------------------+
2302  */
2303  #define MEMCG_DELAY_PRECISION_SHIFT 20
2304  #define MEMCG_DELAY_SCALING_SHIFT 14
2305 
2306 static u64 calculate_overage(unsigned long usage, unsigned long high)
2307 {
2308 	u64 overage;
2309 
2310 	if (usage <= high)
2311 		return 0;
2312 
2313 	/*
2314 	 * Prevent division by 0 in overage calculation by acting as if
2315 	 * it was a threshold of 1 page
2316 	 */
2317 	high = max(high, 1UL);
2318 
2319 	overage = usage - high;
2320 	overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2321 	return div64_u64(overage, high);
2322 }
2323 
2324 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2325 {
2326 	u64 overage, max_overage = 0;
2327 
2328 	do {
2329 		overage = calculate_overage(page_counter_read(&memcg->memory),
2330 					    READ_ONCE(memcg->memory.high));
2331 		max_overage = max(overage, max_overage);
2332 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2333 		 !mem_cgroup_is_root(memcg));
2334 
2335 	return max_overage;
2336 }
2337 
2338 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2339 {
2340 	u64 overage, max_overage = 0;
2341 
2342 	do {
2343 		overage = calculate_overage(page_counter_read(&memcg->swap),
2344 					    READ_ONCE(memcg->swap.high));
2345 		if (overage)
2346 			memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2347 		max_overage = max(overage, max_overage);
2348 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2349 		 !mem_cgroup_is_root(memcg));
2350 
2351 	return max_overage;
2352 }
2353 
2354 /*
2355  * Get the number of jiffies that we should penalise a mischievous cgroup which
2356  * is exceeding its memory.high by checking both it and its ancestors.
2357  */
2358 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2359 					  unsigned int nr_pages,
2360 					  u64 max_overage)
2361 {
2362 	unsigned long penalty_jiffies;
2363 
2364 	if (!max_overage)
2365 		return 0;
2366 
2367 	/*
2368 	 * We use overage compared to memory.high to calculate the number of
2369 	 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2370 	 * fairly lenient on small overages, and increasingly harsh when the
2371 	 * memcg in question makes it clear that it has no intention of stopping
2372 	 * its crazy behaviour, so we exponentially increase the delay based on
2373 	 * overage amount.
2374 	 */
2375 	penalty_jiffies = max_overage * max_overage * HZ;
2376 	penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2377 	penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2378 
2379 	/*
2380 	 * Factor in the task's own contribution to the overage, such that four
2381 	 * N-sized allocations are throttled approximately the same as one
2382 	 * 4N-sized allocation.
2383 	 *
2384 	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2385 	 * larger the current charge patch is than that.
2386 	 */
2387 	return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2388 }
2389 
2390 /*
2391  * Scheduled by try_charge() to be executed from the userland return path
2392  * and reclaims memory over the high limit.
2393  */
2394 void mem_cgroup_handle_over_high(void)
2395 {
2396 	unsigned long penalty_jiffies;
2397 	unsigned long pflags;
2398 	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2399 	struct mem_cgroup *memcg;
2400 
2401 	if (likely(!nr_pages))
2402 		return;
2403 
2404 	memcg = get_mem_cgroup_from_mm(current->mm);
2405 	reclaim_high(memcg, nr_pages, GFP_KERNEL);
2406 	current->memcg_nr_pages_over_high = 0;
2407 
2408 	/*
2409 	 * memory.high is breached and reclaim is unable to keep up. Throttle
2410 	 * allocators proactively to slow down excessive growth.
2411 	 */
2412 	penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2413 					       mem_find_max_overage(memcg));
2414 
2415 	penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2416 						swap_find_max_overage(memcg));
2417 
2418 	/*
2419 	 * Clamp the max delay per usermode return so as to still keep the
2420 	 * application moving forwards and also permit diagnostics, albeit
2421 	 * extremely slowly.
2422 	 */
2423 	penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2424 
2425 	/*
2426 	 * Don't sleep if the amount of jiffies this memcg owes us is so low
2427 	 * that it's not even worth doing, in an attempt to be nice to those who
2428 	 * go only a small amount over their memory.high value and maybe haven't
2429 	 * been aggressively reclaimed enough yet.
2430 	 */
2431 	if (penalty_jiffies <= HZ / 100)
2432 		goto out;
2433 
2434 	/*
2435 	 * If we exit early, we're guaranteed to die (since
2436 	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2437 	 * need to account for any ill-begotten jiffies to pay them off later.
2438 	 */
2439 	psi_memstall_enter(&pflags);
2440 	schedule_timeout_killable(penalty_jiffies);
2441 	psi_memstall_leave(&pflags);
2442 
2443 out:
2444 	css_put(&memcg->css);
2445 }
2446 
2447 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2448 		      unsigned int nr_pages)
2449 {
2450 	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2451 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2452 	struct mem_cgroup *mem_over_limit;
2453 	struct page_counter *counter;
2454 	unsigned long nr_reclaimed;
2455 	bool may_swap = true;
2456 	bool drained = false;
2457 	enum oom_status oom_status;
2458 
2459 	if (mem_cgroup_is_root(memcg))
2460 		return 0;
2461 retry:
2462 	if (consume_stock(memcg, nr_pages))
2463 		return 0;
2464 
2465 	if (!do_memsw_account() ||
2466 	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2467 		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2468 			goto done_restock;
2469 		if (do_memsw_account())
2470 			page_counter_uncharge(&memcg->memsw, batch);
2471 		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2472 	} else {
2473 		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2474 		may_swap = false;
2475 	}
2476 
2477 	if (batch > nr_pages) {
2478 		batch = nr_pages;
2479 		goto retry;
2480 	}
2481 
2482 	/*
2483 	 * Memcg doesn't have a dedicated reserve for atomic
2484 	 * allocations. But like the global atomic pool, we need to
2485 	 * put the burden of reclaim on regular allocation requests
2486 	 * and let these go through as privileged allocations.
2487 	 */
2488 	if (gfp_mask & __GFP_ATOMIC)
2489 		goto force;
2490 
2491 	/*
2492 	 * Unlike in global OOM situations, memcg is not in a physical
2493 	 * memory shortage.  Allow dying and OOM-killed tasks to
2494 	 * bypass the last charges so that they can exit quickly and
2495 	 * free their memory.
2496 	 */
2497 	if (unlikely(should_force_charge()))
2498 		goto force;
2499 
2500 	/*
2501 	 * Prevent unbounded recursion when reclaim operations need to
2502 	 * allocate memory. This might exceed the limits temporarily,
2503 	 * but we prefer facilitating memory reclaim and getting back
2504 	 * under the limit over triggering OOM kills in these cases.
2505 	 */
2506 	if (unlikely(current->flags & PF_MEMALLOC))
2507 		goto force;
2508 
2509 	if (unlikely(task_in_memcg_oom(current)))
2510 		goto nomem;
2511 
2512 	if (!gfpflags_allow_blocking(gfp_mask))
2513 		goto nomem;
2514 
2515 	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2516 
2517 	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2518 						    gfp_mask, may_swap);
2519 
2520 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2521 		goto retry;
2522 
2523 	if (!drained) {
2524 		drain_all_stock(mem_over_limit);
2525 		drained = true;
2526 		goto retry;
2527 	}
2528 
2529 	if (gfp_mask & __GFP_NORETRY)
2530 		goto nomem;
2531 	/*
2532 	 * Even though the limit is exceeded at this point, reclaim
2533 	 * may have been able to free some pages.  Retry the charge
2534 	 * before killing the task.
2535 	 *
2536 	 * Only for regular pages, though: huge pages are rather
2537 	 * unlikely to succeed so close to the limit, and we fall back
2538 	 * to regular pages anyway in case of failure.
2539 	 */
2540 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2541 		goto retry;
2542 	/*
2543 	 * At task move, charge accounts can be doubly counted. So, it's
2544 	 * better to wait until the end of task_move if something is going on.
2545 	 */
2546 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2547 		goto retry;
2548 
2549 	if (nr_retries--)
2550 		goto retry;
2551 
2552 	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2553 		goto nomem;
2554 
2555 	if (gfp_mask & __GFP_NOFAIL)
2556 		goto force;
2557 
2558 	if (fatal_signal_pending(current))
2559 		goto force;
2560 
2561 	/*
2562 	 * keep retrying as long as the memcg oom killer is able to make
2563 	 * a forward progress or bypass the charge if the oom killer
2564 	 * couldn't make any progress.
2565 	 */
2566 	oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2567 		       get_order(nr_pages * PAGE_SIZE));
2568 	switch (oom_status) {
2569 	case OOM_SUCCESS:
2570 		nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2571 		goto retry;
2572 	case OOM_FAILED:
2573 		goto force;
2574 	default:
2575 		goto nomem;
2576 	}
2577 nomem:
2578 	if (!(gfp_mask & __GFP_NOFAIL))
2579 		return -ENOMEM;
2580 force:
2581 	/*
2582 	 * The allocation either can't fail or will lead to more memory
2583 	 * being freed very soon.  Allow memory usage go over the limit
2584 	 * temporarily by force charging it.
2585 	 */
2586 	page_counter_charge(&memcg->memory, nr_pages);
2587 	if (do_memsw_account())
2588 		page_counter_charge(&memcg->memsw, nr_pages);
2589 	css_get_many(&memcg->css, nr_pages);
2590 
2591 	return 0;
2592 
2593 done_restock:
2594 	css_get_many(&memcg->css, batch);
2595 	if (batch > nr_pages)
2596 		refill_stock(memcg, batch - nr_pages);
2597 
2598 	/*
2599 	 * If the hierarchy is above the normal consumption range, schedule
2600 	 * reclaim on returning to userland.  We can perform reclaim here
2601 	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2602 	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2603 	 * not recorded as it most likely matches current's and won't
2604 	 * change in the meantime.  As high limit is checked again before
2605 	 * reclaim, the cost of mismatch is negligible.
2606 	 */
2607 	do {
2608 		bool mem_high, swap_high;
2609 
2610 		mem_high = page_counter_read(&memcg->memory) >
2611 			READ_ONCE(memcg->memory.high);
2612 		swap_high = page_counter_read(&memcg->swap) >
2613 			READ_ONCE(memcg->swap.high);
2614 
2615 		/* Don't bother a random interrupted task */
2616 		if (in_interrupt()) {
2617 			if (mem_high) {
2618 				schedule_work(&memcg->high_work);
2619 				break;
2620 			}
2621 			continue;
2622 		}
2623 
2624 		if (mem_high || swap_high) {
2625 			/*
2626 			 * The allocating tasks in this cgroup will need to do
2627 			 * reclaim or be throttled to prevent further growth
2628 			 * of the memory or swap footprints.
2629 			 *
2630 			 * Target some best-effort fairness between the tasks,
2631 			 * and distribute reclaim work and delay penalties
2632 			 * based on how much each task is actually allocating.
2633 			 */
2634 			current->memcg_nr_pages_over_high += batch;
2635 			set_notify_resume(current);
2636 			break;
2637 		}
2638 	} while ((memcg = parent_mem_cgroup(memcg)));
2639 
2640 	return 0;
2641 }
2642 
2643 #if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
2644 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2645 {
2646 	if (mem_cgroup_is_root(memcg))
2647 		return;
2648 
2649 	page_counter_uncharge(&memcg->memory, nr_pages);
2650 	if (do_memsw_account())
2651 		page_counter_uncharge(&memcg->memsw, nr_pages);
2652 
2653 	css_put_many(&memcg->css, nr_pages);
2654 }
2655 #endif
2656 
2657 static void commit_charge(struct page *page, struct mem_cgroup *memcg)
2658 {
2659 	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2660 	/*
2661 	 * Any of the following ensures page->mem_cgroup stability:
2662 	 *
2663 	 * - the page lock
2664 	 * - LRU isolation
2665 	 * - lock_page_memcg()
2666 	 * - exclusive reference
2667 	 */
2668 	page->mem_cgroup = memcg;
2669 }
2670 
2671 #ifdef CONFIG_MEMCG_KMEM
2672 /*
2673  * Returns a pointer to the memory cgroup to which the kernel object is charged.
2674  *
2675  * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2676  * cgroup_mutex, etc.
2677  */
2678 struct mem_cgroup *mem_cgroup_from_obj(void *p)
2679 {
2680 	struct page *page;
2681 
2682 	if (mem_cgroup_disabled())
2683 		return NULL;
2684 
2685 	page = virt_to_head_page(p);
2686 
2687 	/*
2688 	 * Slab pages don't have page->mem_cgroup set because corresponding
2689 	 * kmem caches can be reparented during the lifetime. That's why
2690 	 * memcg_from_slab_page() should be used instead.
2691 	 */
2692 	if (PageSlab(page))
2693 		return memcg_from_slab_page(page);
2694 
2695 	/* All other pages use page->mem_cgroup */
2696 	return page->mem_cgroup;
2697 }
2698 
2699 static int memcg_alloc_cache_id(void)
2700 {
2701 	int id, size;
2702 	int err;
2703 
2704 	id = ida_simple_get(&memcg_cache_ida,
2705 			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2706 	if (id < 0)
2707 		return id;
2708 
2709 	if (id < memcg_nr_cache_ids)
2710 		return id;
2711 
2712 	/*
2713 	 * There's no space for the new id in memcg_caches arrays,
2714 	 * so we have to grow them.
2715 	 */
2716 	down_write(&memcg_cache_ids_sem);
2717 
2718 	size = 2 * (id + 1);
2719 	if (size < MEMCG_CACHES_MIN_SIZE)
2720 		size = MEMCG_CACHES_MIN_SIZE;
2721 	else if (size > MEMCG_CACHES_MAX_SIZE)
2722 		size = MEMCG_CACHES_MAX_SIZE;
2723 
2724 	err = memcg_update_all_caches(size);
2725 	if (!err)
2726 		err = memcg_update_all_list_lrus(size);
2727 	if (!err)
2728 		memcg_nr_cache_ids = size;
2729 
2730 	up_write(&memcg_cache_ids_sem);
2731 
2732 	if (err) {
2733 		ida_simple_remove(&memcg_cache_ida, id);
2734 		return err;
2735 	}
2736 	return id;
2737 }
2738 
2739 static void memcg_free_cache_id(int id)
2740 {
2741 	ida_simple_remove(&memcg_cache_ida, id);
2742 }
2743 
2744 struct memcg_kmem_cache_create_work {
2745 	struct mem_cgroup *memcg;
2746 	struct kmem_cache *cachep;
2747 	struct work_struct work;
2748 };
2749 
2750 static void memcg_kmem_cache_create_func(struct work_struct *w)
2751 {
2752 	struct memcg_kmem_cache_create_work *cw =
2753 		container_of(w, struct memcg_kmem_cache_create_work, work);
2754 	struct mem_cgroup *memcg = cw->memcg;
2755 	struct kmem_cache *cachep = cw->cachep;
2756 
2757 	memcg_create_kmem_cache(memcg, cachep);
2758 
2759 	css_put(&memcg->css);
2760 	kfree(cw);
2761 }
2762 
2763 /*
2764  * Enqueue the creation of a per-memcg kmem_cache.
2765  */
2766 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2767 					       struct kmem_cache *cachep)
2768 {
2769 	struct memcg_kmem_cache_create_work *cw;
2770 
2771 	if (!css_tryget_online(&memcg->css))
2772 		return;
2773 
2774 	cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
2775 	if (!cw)
2776 		return;
2777 
2778 	cw->memcg = memcg;
2779 	cw->cachep = cachep;
2780 	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2781 
2782 	queue_work(memcg_kmem_cache_wq, &cw->work);
2783 }
2784 
2785 static inline bool memcg_kmem_bypass(void)
2786 {
2787 	if (in_interrupt())
2788 		return true;
2789 
2790 	/* Allow remote memcg charging in kthread contexts. */
2791 	if ((!current->mm || (current->flags & PF_KTHREAD)) &&
2792 	     !current->active_memcg)
2793 		return true;
2794 	return false;
2795 }
2796 
2797 /**
2798  * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2799  * @cachep: the original global kmem cache
2800  *
2801  * Return the kmem_cache we're supposed to use for a slab allocation.
2802  * We try to use the current memcg's version of the cache.
2803  *
2804  * If the cache does not exist yet, if we are the first user of it, we
2805  * create it asynchronously in a workqueue and let the current allocation
2806  * go through with the original cache.
2807  *
2808  * This function takes a reference to the cache it returns to assure it
2809  * won't get destroyed while we are working with it. Once the caller is
2810  * done with it, memcg_kmem_put_cache() must be called to release the
2811  * reference.
2812  */
2813 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2814 {
2815 	struct mem_cgroup *memcg;
2816 	struct kmem_cache *memcg_cachep;
2817 	struct memcg_cache_array *arr;
2818 	int kmemcg_id;
2819 
2820 	VM_BUG_ON(!is_root_cache(cachep));
2821 
2822 	if (memcg_kmem_bypass())
2823 		return cachep;
2824 
2825 	rcu_read_lock();
2826 
2827 	if (unlikely(current->active_memcg))
2828 		memcg = current->active_memcg;
2829 	else
2830 		memcg = mem_cgroup_from_task(current);
2831 
2832 	if (!memcg || memcg == root_mem_cgroup)
2833 		goto out_unlock;
2834 
2835 	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2836 	if (kmemcg_id < 0)
2837 		goto out_unlock;
2838 
2839 	arr = rcu_dereference(cachep->memcg_params.memcg_caches);
2840 
2841 	/*
2842 	 * Make sure we will access the up-to-date value. The code updating
2843 	 * memcg_caches issues a write barrier to match the data dependency
2844 	 * barrier inside READ_ONCE() (see memcg_create_kmem_cache()).
2845 	 */
2846 	memcg_cachep = READ_ONCE(arr->entries[kmemcg_id]);
2847 
2848 	/*
2849 	 * If we are in a safe context (can wait, and not in interrupt
2850 	 * context), we could be be predictable and return right away.
2851 	 * This would guarantee that the allocation being performed
2852 	 * already belongs in the new cache.
2853 	 *
2854 	 * However, there are some clashes that can arrive from locking.
2855 	 * For instance, because we acquire the slab_mutex while doing
2856 	 * memcg_create_kmem_cache, this means no further allocation
2857 	 * could happen with the slab_mutex held. So it's better to
2858 	 * defer everything.
2859 	 *
2860 	 * If the memcg is dying or memcg_cache is about to be released,
2861 	 * don't bother creating new kmem_caches. Because memcg_cachep
2862 	 * is ZEROed as the fist step of kmem offlining, we don't need
2863 	 * percpu_ref_tryget_live() here. css_tryget_online() check in
2864 	 * memcg_schedule_kmem_cache_create() will prevent us from
2865 	 * creation of a new kmem_cache.
2866 	 */
2867 	if (unlikely(!memcg_cachep))
2868 		memcg_schedule_kmem_cache_create(memcg, cachep);
2869 	else if (percpu_ref_tryget(&memcg_cachep->memcg_params.refcnt))
2870 		cachep = memcg_cachep;
2871 out_unlock:
2872 	rcu_read_unlock();
2873 	return cachep;
2874 }
2875 
2876 /**
2877  * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2878  * @cachep: the cache returned by memcg_kmem_get_cache
2879  */
2880 void memcg_kmem_put_cache(struct kmem_cache *cachep)
2881 {
2882 	if (!is_root_cache(cachep))
2883 		percpu_ref_put(&cachep->memcg_params.refcnt);
2884 }
2885 
2886 /**
2887  * __memcg_kmem_charge: charge a number of kernel pages to a memcg
2888  * @memcg: memory cgroup to charge
2889  * @gfp: reclaim mode
2890  * @nr_pages: number of pages to charge
2891  *
2892  * Returns 0 on success, an error code on failure.
2893  */
2894 int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
2895 			unsigned int nr_pages)
2896 {
2897 	struct page_counter *counter;
2898 	int ret;
2899 
2900 	ret = try_charge(memcg, gfp, nr_pages);
2901 	if (ret)
2902 		return ret;
2903 
2904 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2905 	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2906 
2907 		/*
2908 		 * Enforce __GFP_NOFAIL allocation because callers are not
2909 		 * prepared to see failures and likely do not have any failure
2910 		 * handling code.
2911 		 */
2912 		if (gfp & __GFP_NOFAIL) {
2913 			page_counter_charge(&memcg->kmem, nr_pages);
2914 			return 0;
2915 		}
2916 		cancel_charge(memcg, nr_pages);
2917 		return -ENOMEM;
2918 	}
2919 	return 0;
2920 }
2921 
2922 /**
2923  * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg
2924  * @memcg: memcg to uncharge
2925  * @nr_pages: number of pages to uncharge
2926  */
2927 void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
2928 {
2929 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2930 		page_counter_uncharge(&memcg->kmem, nr_pages);
2931 
2932 	page_counter_uncharge(&memcg->memory, nr_pages);
2933 	if (do_memsw_account())
2934 		page_counter_uncharge(&memcg->memsw, nr_pages);
2935 }
2936 
2937 /**
2938  * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
2939  * @page: page to charge
2940  * @gfp: reclaim mode
2941  * @order: allocation order
2942  *
2943  * Returns 0 on success, an error code on failure.
2944  */
2945 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
2946 {
2947 	struct mem_cgroup *memcg;
2948 	int ret = 0;
2949 
2950 	if (memcg_kmem_bypass())
2951 		return 0;
2952 
2953 	memcg = get_mem_cgroup_from_current();
2954 	if (!mem_cgroup_is_root(memcg)) {
2955 		ret = __memcg_kmem_charge(memcg, gfp, 1 << order);
2956 		if (!ret) {
2957 			page->mem_cgroup = memcg;
2958 			__SetPageKmemcg(page);
2959 		}
2960 	}
2961 	css_put(&memcg->css);
2962 	return ret;
2963 }
2964 
2965 /**
2966  * __memcg_kmem_uncharge_page: uncharge a kmem page
2967  * @page: page to uncharge
2968  * @order: allocation order
2969  */
2970 void __memcg_kmem_uncharge_page(struct page *page, int order)
2971 {
2972 	struct mem_cgroup *memcg = page->mem_cgroup;
2973 	unsigned int nr_pages = 1 << order;
2974 
2975 	if (!memcg)
2976 		return;
2977 
2978 	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2979 	__memcg_kmem_uncharge(memcg, nr_pages);
2980 	page->mem_cgroup = NULL;
2981 
2982 	/* slab pages do not have PageKmemcg flag set */
2983 	if (PageKmemcg(page))
2984 		__ClearPageKmemcg(page);
2985 
2986 	css_put_many(&memcg->css, nr_pages);
2987 }
2988 #endif /* CONFIG_MEMCG_KMEM */
2989 
2990 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2991 
2992 /*
2993  * Because tail pages are not marked as "used", set it. We're under
2994  * pgdat->lru_lock and migration entries setup in all page mappings.
2995  */
2996 void mem_cgroup_split_huge_fixup(struct page *head)
2997 {
2998 	int i;
2999 
3000 	if (mem_cgroup_disabled())
3001 		return;
3002 
3003 	for (i = 1; i < HPAGE_PMD_NR; i++)
3004 		head[i].mem_cgroup = head->mem_cgroup;
3005 }
3006 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3007 
3008 #ifdef CONFIG_MEMCG_SWAP
3009 /**
3010  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3011  * @entry: swap entry to be moved
3012  * @from:  mem_cgroup which the entry is moved from
3013  * @to:  mem_cgroup which the entry is moved to
3014  *
3015  * It succeeds only when the swap_cgroup's record for this entry is the same
3016  * as the mem_cgroup's id of @from.
3017  *
3018  * Returns 0 on success, -EINVAL on failure.
3019  *
3020  * The caller must have charged to @to, IOW, called page_counter_charge() about
3021  * both res and memsw, and called css_get().
3022  */
3023 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3024 				struct mem_cgroup *from, struct mem_cgroup *to)
3025 {
3026 	unsigned short old_id, new_id;
3027 
3028 	old_id = mem_cgroup_id(from);
3029 	new_id = mem_cgroup_id(to);
3030 
3031 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3032 		mod_memcg_state(from, MEMCG_SWAP, -1);
3033 		mod_memcg_state(to, MEMCG_SWAP, 1);
3034 		return 0;
3035 	}
3036 	return -EINVAL;
3037 }
3038 #else
3039 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3040 				struct mem_cgroup *from, struct mem_cgroup *to)
3041 {
3042 	return -EINVAL;
3043 }
3044 #endif
3045 
3046 static DEFINE_MUTEX(memcg_max_mutex);
3047 
3048 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3049 				 unsigned long max, bool memsw)
3050 {
3051 	bool enlarge = false;
3052 	bool drained = false;
3053 	int ret;
3054 	bool limits_invariant;
3055 	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3056 
3057 	do {
3058 		if (signal_pending(current)) {
3059 			ret = -EINTR;
3060 			break;
3061 		}
3062 
3063 		mutex_lock(&memcg_max_mutex);
3064 		/*
3065 		 * Make sure that the new limit (memsw or memory limit) doesn't
3066 		 * break our basic invariant rule memory.max <= memsw.max.
3067 		 */
3068 		limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3069 					   max <= memcg->memsw.max;
3070 		if (!limits_invariant) {
3071 			mutex_unlock(&memcg_max_mutex);
3072 			ret = -EINVAL;
3073 			break;
3074 		}
3075 		if (max > counter->max)
3076 			enlarge = true;
3077 		ret = page_counter_set_max(counter, max);
3078 		mutex_unlock(&memcg_max_mutex);
3079 
3080 		if (!ret)
3081 			break;
3082 
3083 		if (!drained) {
3084 			drain_all_stock(memcg);
3085 			drained = true;
3086 			continue;
3087 		}
3088 
3089 		if (!try_to_free_mem_cgroup_pages(memcg, 1,
3090 					GFP_KERNEL, !memsw)) {
3091 			ret = -EBUSY;
3092 			break;
3093 		}
3094 	} while (true);
3095 
3096 	if (!ret && enlarge)
3097 		memcg_oom_recover(memcg);
3098 
3099 	return ret;
3100 }
3101 
3102 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3103 					    gfp_t gfp_mask,
3104 					    unsigned long *total_scanned)
3105 {
3106 	unsigned long nr_reclaimed = 0;
3107 	struct mem_cgroup_per_node *mz, *next_mz = NULL;
3108 	unsigned long reclaimed;
3109 	int loop = 0;
3110 	struct mem_cgroup_tree_per_node *mctz;
3111 	unsigned long excess;
3112 	unsigned long nr_scanned;
3113 
3114 	if (order > 0)
3115 		return 0;
3116 
3117 	mctz = soft_limit_tree_node(pgdat->node_id);
3118 
3119 	/*
3120 	 * Do not even bother to check the largest node if the root
3121 	 * is empty. Do it lockless to prevent lock bouncing. Races
3122 	 * are acceptable as soft limit is best effort anyway.
3123 	 */
3124 	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3125 		return 0;
3126 
3127 	/*
3128 	 * This loop can run a while, specially if mem_cgroup's continuously
3129 	 * keep exceeding their soft limit and putting the system under
3130 	 * pressure
3131 	 */
3132 	do {
3133 		if (next_mz)
3134 			mz = next_mz;
3135 		else
3136 			mz = mem_cgroup_largest_soft_limit_node(mctz);
3137 		if (!mz)
3138 			break;
3139 
3140 		nr_scanned = 0;
3141 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3142 						    gfp_mask, &nr_scanned);
3143 		nr_reclaimed += reclaimed;
3144 		*total_scanned += nr_scanned;
3145 		spin_lock_irq(&mctz->lock);
3146 		__mem_cgroup_remove_exceeded(mz, mctz);
3147 
3148 		/*
3149 		 * If we failed to reclaim anything from this memory cgroup
3150 		 * it is time to move on to the next cgroup
3151 		 */
3152 		next_mz = NULL;
3153 		if (!reclaimed)
3154 			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3155 
3156 		excess = soft_limit_excess(mz->memcg);
3157 		/*
3158 		 * One school of thought says that we should not add
3159 		 * back the node to the tree if reclaim returns 0.
3160 		 * But our reclaim could return 0, simply because due
3161 		 * to priority we are exposing a smaller subset of
3162 		 * memory to reclaim from. Consider this as a longer
3163 		 * term TODO.
3164 		 */
3165 		/* If excess == 0, no tree ops */
3166 		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3167 		spin_unlock_irq(&mctz->lock);
3168 		css_put(&mz->memcg->css);
3169 		loop++;
3170 		/*
3171 		 * Could not reclaim anything and there are no more
3172 		 * mem cgroups to try or we seem to be looping without
3173 		 * reclaiming anything.
3174 		 */
3175 		if (!nr_reclaimed &&
3176 			(next_mz == NULL ||
3177 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3178 			break;
3179 	} while (!nr_reclaimed);
3180 	if (next_mz)
3181 		css_put(&next_mz->memcg->css);
3182 	return nr_reclaimed;
3183 }
3184 
3185 /*
3186  * Test whether @memcg has children, dead or alive.  Note that this
3187  * function doesn't care whether @memcg has use_hierarchy enabled and
3188  * returns %true if there are child csses according to the cgroup
3189  * hierarchy.  Testing use_hierarchy is the caller's responsibility.
3190  */
3191 static inline bool memcg_has_children(struct mem_cgroup *memcg)
3192 {
3193 	bool ret;
3194 
3195 	rcu_read_lock();
3196 	ret = css_next_child(NULL, &memcg->css);
3197 	rcu_read_unlock();
3198 	return ret;
3199 }
3200 
3201 /*
3202  * Reclaims as many pages from the given memcg as possible.
3203  *
3204  * Caller is responsible for holding css reference for memcg.
3205  */
3206 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3207 {
3208 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3209 
3210 	/* we call try-to-free pages for make this cgroup empty */
3211 	lru_add_drain_all();
3212 
3213 	drain_all_stock(memcg);
3214 
3215 	/* try to free all pages in this cgroup */
3216 	while (nr_retries && page_counter_read(&memcg->memory)) {
3217 		int progress;
3218 
3219 		if (signal_pending(current))
3220 			return -EINTR;
3221 
3222 		progress = try_to_free_mem_cgroup_pages(memcg, 1,
3223 							GFP_KERNEL, true);
3224 		if (!progress) {
3225 			nr_retries--;
3226 			/* maybe some writeback is necessary */
3227 			congestion_wait(BLK_RW_ASYNC, HZ/10);
3228 		}
3229 
3230 	}
3231 
3232 	return 0;
3233 }
3234 
3235 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3236 					    char *buf, size_t nbytes,
3237 					    loff_t off)
3238 {
3239 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3240 
3241 	if (mem_cgroup_is_root(memcg))
3242 		return -EINVAL;
3243 	return mem_cgroup_force_empty(memcg) ?: nbytes;
3244 }
3245 
3246 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3247 				     struct cftype *cft)
3248 {
3249 	return mem_cgroup_from_css(css)->use_hierarchy;
3250 }
3251 
3252 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3253 				      struct cftype *cft, u64 val)
3254 {
3255 	int retval = 0;
3256 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3257 	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3258 
3259 	if (memcg->use_hierarchy == val)
3260 		return 0;
3261 
3262 	/*
3263 	 * If parent's use_hierarchy is set, we can't make any modifications
3264 	 * in the child subtrees. If it is unset, then the change can
3265 	 * occur, provided the current cgroup has no children.
3266 	 *
3267 	 * For the root cgroup, parent_mem is NULL, we allow value to be
3268 	 * set if there are no children.
3269 	 */
3270 	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3271 				(val == 1 || val == 0)) {
3272 		if (!memcg_has_children(memcg))
3273 			memcg->use_hierarchy = val;
3274 		else
3275 			retval = -EBUSY;
3276 	} else
3277 		retval = -EINVAL;
3278 
3279 	return retval;
3280 }
3281 
3282 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3283 {
3284 	unsigned long val;
3285 
3286 	if (mem_cgroup_is_root(memcg)) {
3287 		val = memcg_page_state(memcg, NR_FILE_PAGES) +
3288 			memcg_page_state(memcg, NR_ANON_MAPPED);
3289 		if (swap)
3290 			val += memcg_page_state(memcg, MEMCG_SWAP);
3291 	} else {
3292 		if (!swap)
3293 			val = page_counter_read(&memcg->memory);
3294 		else
3295 			val = page_counter_read(&memcg->memsw);
3296 	}
3297 	return val;
3298 }
3299 
3300 enum {
3301 	RES_USAGE,
3302 	RES_LIMIT,
3303 	RES_MAX_USAGE,
3304 	RES_FAILCNT,
3305 	RES_SOFT_LIMIT,
3306 };
3307 
3308 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3309 			       struct cftype *cft)
3310 {
3311 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3312 	struct page_counter *counter;
3313 
3314 	switch (MEMFILE_TYPE(cft->private)) {
3315 	case _MEM:
3316 		counter = &memcg->memory;
3317 		break;
3318 	case _MEMSWAP:
3319 		counter = &memcg->memsw;
3320 		break;
3321 	case _KMEM:
3322 		counter = &memcg->kmem;
3323 		break;
3324 	case _TCP:
3325 		counter = &memcg->tcpmem;
3326 		break;
3327 	default:
3328 		BUG();
3329 	}
3330 
3331 	switch (MEMFILE_ATTR(cft->private)) {
3332 	case RES_USAGE:
3333 		if (counter == &memcg->memory)
3334 			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3335 		if (counter == &memcg->memsw)
3336 			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3337 		return (u64)page_counter_read(counter) * PAGE_SIZE;
3338 	case RES_LIMIT:
3339 		return (u64)counter->max * PAGE_SIZE;
3340 	case RES_MAX_USAGE:
3341 		return (u64)counter->watermark * PAGE_SIZE;
3342 	case RES_FAILCNT:
3343 		return counter->failcnt;
3344 	case RES_SOFT_LIMIT:
3345 		return (u64)memcg->soft_limit * PAGE_SIZE;
3346 	default:
3347 		BUG();
3348 	}
3349 }
3350 
3351 static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
3352 {
3353 	unsigned long stat[MEMCG_NR_STAT] = {0};
3354 	struct mem_cgroup *mi;
3355 	int node, cpu, i;
3356 
3357 	for_each_online_cpu(cpu)
3358 		for (i = 0; i < MEMCG_NR_STAT; i++)
3359 			stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
3360 
3361 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3362 		for (i = 0; i < MEMCG_NR_STAT; i++)
3363 			atomic_long_add(stat[i], &mi->vmstats[i]);
3364 
3365 	for_each_node(node) {
3366 		struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3367 		struct mem_cgroup_per_node *pi;
3368 
3369 		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3370 			stat[i] = 0;
3371 
3372 		for_each_online_cpu(cpu)
3373 			for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3374 				stat[i] += per_cpu(
3375 					pn->lruvec_stat_cpu->count[i], cpu);
3376 
3377 		for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
3378 			for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3379 				atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3380 	}
3381 }
3382 
3383 static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3384 {
3385 	unsigned long events[NR_VM_EVENT_ITEMS];
3386 	struct mem_cgroup *mi;
3387 	int cpu, i;
3388 
3389 	for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3390 		events[i] = 0;
3391 
3392 	for_each_online_cpu(cpu)
3393 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3394 			events[i] += per_cpu(memcg->vmstats_percpu->events[i],
3395 					     cpu);
3396 
3397 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3398 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3399 			atomic_long_add(events[i], &mi->vmevents[i]);
3400 }
3401 
3402 #ifdef CONFIG_MEMCG_KMEM
3403 static int memcg_online_kmem(struct mem_cgroup *memcg)
3404 {
3405 	int memcg_id;
3406 
3407 	if (cgroup_memory_nokmem)
3408 		return 0;
3409 
3410 	BUG_ON(memcg->kmemcg_id >= 0);
3411 	BUG_ON(memcg->kmem_state);
3412 
3413 	memcg_id = memcg_alloc_cache_id();
3414 	if (memcg_id < 0)
3415 		return memcg_id;
3416 
3417 	static_branch_inc(&memcg_kmem_enabled_key);
3418 	/*
3419 	 * A memory cgroup is considered kmem-online as soon as it gets
3420 	 * kmemcg_id. Setting the id after enabling static branching will
3421 	 * guarantee no one starts accounting before all call sites are
3422 	 * patched.
3423 	 */
3424 	memcg->kmemcg_id = memcg_id;
3425 	memcg->kmem_state = KMEM_ONLINE;
3426 	INIT_LIST_HEAD(&memcg->kmem_caches);
3427 
3428 	return 0;
3429 }
3430 
3431 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3432 {
3433 	struct cgroup_subsys_state *css;
3434 	struct mem_cgroup *parent, *child;
3435 	int kmemcg_id;
3436 
3437 	if (memcg->kmem_state != KMEM_ONLINE)
3438 		return;
3439 	/*
3440 	 * Clear the online state before clearing memcg_caches array
3441 	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
3442 	 * guarantees that no cache will be created for this cgroup
3443 	 * after we are done (see memcg_create_kmem_cache()).
3444 	 */
3445 	memcg->kmem_state = KMEM_ALLOCATED;
3446 
3447 	parent = parent_mem_cgroup(memcg);
3448 	if (!parent)
3449 		parent = root_mem_cgroup;
3450 
3451 	/*
3452 	 * Deactivate and reparent kmem_caches.
3453 	 */
3454 	memcg_deactivate_kmem_caches(memcg, parent);
3455 
3456 	kmemcg_id = memcg->kmemcg_id;
3457 	BUG_ON(kmemcg_id < 0);
3458 
3459 	/*
3460 	 * Change kmemcg_id of this cgroup and all its descendants to the
3461 	 * parent's id, and then move all entries from this cgroup's list_lrus
3462 	 * to ones of the parent. After we have finished, all list_lrus
3463 	 * corresponding to this cgroup are guaranteed to remain empty. The
3464 	 * ordering is imposed by list_lru_node->lock taken by
3465 	 * memcg_drain_all_list_lrus().
3466 	 */
3467 	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3468 	css_for_each_descendant_pre(css, &memcg->css) {
3469 		child = mem_cgroup_from_css(css);
3470 		BUG_ON(child->kmemcg_id != kmemcg_id);
3471 		child->kmemcg_id = parent->kmemcg_id;
3472 		if (!memcg->use_hierarchy)
3473 			break;
3474 	}
3475 	rcu_read_unlock();
3476 
3477 	memcg_drain_all_list_lrus(kmemcg_id, parent);
3478 
3479 	memcg_free_cache_id(kmemcg_id);
3480 }
3481 
3482 static void memcg_free_kmem(struct mem_cgroup *memcg)
3483 {
3484 	/* css_alloc() failed, offlining didn't happen */
3485 	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3486 		memcg_offline_kmem(memcg);
3487 
3488 	if (memcg->kmem_state == KMEM_ALLOCATED) {
3489 		WARN_ON(!list_empty(&memcg->kmem_caches));
3490 		static_branch_dec(&memcg_kmem_enabled_key);
3491 	}
3492 }
3493 #else
3494 static int memcg_online_kmem(struct mem_cgroup *memcg)
3495 {
3496 	return 0;
3497 }
3498 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3499 {
3500 }
3501 static void memcg_free_kmem(struct mem_cgroup *memcg)
3502 {
3503 }
3504 #endif /* CONFIG_MEMCG_KMEM */
3505 
3506 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3507 				 unsigned long max)
3508 {
3509 	int ret;
3510 
3511 	mutex_lock(&memcg_max_mutex);
3512 	ret = page_counter_set_max(&memcg->kmem, max);
3513 	mutex_unlock(&memcg_max_mutex);
3514 	return ret;
3515 }
3516 
3517 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3518 {
3519 	int ret;
3520 
3521 	mutex_lock(&memcg_max_mutex);
3522 
3523 	ret = page_counter_set_max(&memcg->tcpmem, max);
3524 	if (ret)
3525 		goto out;
3526 
3527 	if (!memcg->tcpmem_active) {
3528 		/*
3529 		 * The active flag needs to be written after the static_key
3530 		 * update. This is what guarantees that the socket activation
3531 		 * function is the last one to run. See mem_cgroup_sk_alloc()
3532 		 * for details, and note that we don't mark any socket as
3533 		 * belonging to this memcg until that flag is up.
3534 		 *
3535 		 * We need to do this, because static_keys will span multiple
3536 		 * sites, but we can't control their order. If we mark a socket
3537 		 * as accounted, but the accounting functions are not patched in
3538 		 * yet, we'll lose accounting.
3539 		 *
3540 		 * We never race with the readers in mem_cgroup_sk_alloc(),
3541 		 * because when this value change, the code to process it is not
3542 		 * patched in yet.
3543 		 */
3544 		static_branch_inc(&memcg_sockets_enabled_key);
3545 		memcg->tcpmem_active = true;
3546 	}
3547 out:
3548 	mutex_unlock(&memcg_max_mutex);
3549 	return ret;
3550 }
3551 
3552 /*
3553  * The user of this function is...
3554  * RES_LIMIT.
3555  */
3556 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3557 				char *buf, size_t nbytes, loff_t off)
3558 {
3559 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3560 	unsigned long nr_pages;
3561 	int ret;
3562 
3563 	buf = strstrip(buf);
3564 	ret = page_counter_memparse(buf, "-1", &nr_pages);
3565 	if (ret)
3566 		return ret;
3567 
3568 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3569 	case RES_LIMIT:
3570 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3571 			ret = -EINVAL;
3572 			break;
3573 		}
3574 		switch (MEMFILE_TYPE(of_cft(of)->private)) {
3575 		case _MEM:
3576 			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3577 			break;
3578 		case _MEMSWAP:
3579 			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3580 			break;
3581 		case _KMEM:
3582 			pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3583 				     "Please report your usecase to linux-mm@kvack.org if you "
3584 				     "depend on this functionality.\n");
3585 			ret = memcg_update_kmem_max(memcg, nr_pages);
3586 			break;
3587 		case _TCP:
3588 			ret = memcg_update_tcp_max(memcg, nr_pages);
3589 			break;
3590 		}
3591 		break;
3592 	case RES_SOFT_LIMIT:
3593 		memcg->soft_limit = nr_pages;
3594 		ret = 0;
3595 		break;
3596 	}
3597 	return ret ?: nbytes;
3598 }
3599 
3600 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3601 				size_t nbytes, loff_t off)
3602 {
3603 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3604 	struct page_counter *counter;
3605 
3606 	switch (MEMFILE_TYPE(of_cft(of)->private)) {
3607 	case _MEM:
3608 		counter = &memcg->memory;
3609 		break;
3610 	case _MEMSWAP:
3611 		counter = &memcg->memsw;
3612 		break;
3613 	case _KMEM:
3614 		counter = &memcg->kmem;
3615 		break;
3616 	case _TCP:
3617 		counter = &memcg->tcpmem;
3618 		break;
3619 	default:
3620 		BUG();
3621 	}
3622 
3623 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3624 	case RES_MAX_USAGE:
3625 		page_counter_reset_watermark(counter);
3626 		break;
3627 	case RES_FAILCNT:
3628 		counter->failcnt = 0;
3629 		break;
3630 	default:
3631 		BUG();
3632 	}
3633 
3634 	return nbytes;
3635 }
3636 
3637 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3638 					struct cftype *cft)
3639 {
3640 	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3641 }
3642 
3643 #ifdef CONFIG_MMU
3644 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3645 					struct cftype *cft, u64 val)
3646 {
3647 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3648 
3649 	if (val & ~MOVE_MASK)
3650 		return -EINVAL;
3651 
3652 	/*
3653 	 * No kind of locking is needed in here, because ->can_attach() will
3654 	 * check this value once in the beginning of the process, and then carry
3655 	 * on with stale data. This means that changes to this value will only
3656 	 * affect task migrations starting after the change.
3657 	 */
3658 	memcg->move_charge_at_immigrate = val;
3659 	return 0;
3660 }
3661 #else
3662 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3663 					struct cftype *cft, u64 val)
3664 {
3665 	return -ENOSYS;
3666 }
3667 #endif
3668 
3669 #ifdef CONFIG_NUMA
3670 
3671 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3672 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3673 #define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)
3674 
3675 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3676 				int nid, unsigned int lru_mask, bool tree)
3677 {
3678 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3679 	unsigned long nr = 0;
3680 	enum lru_list lru;
3681 
3682 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
3683 
3684 	for_each_lru(lru) {
3685 		if (!(BIT(lru) & lru_mask))
3686 			continue;
3687 		if (tree)
3688 			nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3689 		else
3690 			nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3691 	}
3692 	return nr;
3693 }
3694 
3695 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3696 					     unsigned int lru_mask,
3697 					     bool tree)
3698 {
3699 	unsigned long nr = 0;
3700 	enum lru_list lru;
3701 
3702 	for_each_lru(lru) {
3703 		if (!(BIT(lru) & lru_mask))
3704 			continue;
3705 		if (tree)
3706 			nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3707 		else
3708 			nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3709 	}
3710 	return nr;
3711 }
3712 
3713 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3714 {
3715 	struct numa_stat {
3716 		const char *name;
3717 		unsigned int lru_mask;
3718 	};
3719 
3720 	static const struct numa_stat stats[] = {
3721 		{ "total", LRU_ALL },
3722 		{ "file", LRU_ALL_FILE },
3723 		{ "anon", LRU_ALL_ANON },
3724 		{ "unevictable", BIT(LRU_UNEVICTABLE) },
3725 	};
3726 	const struct numa_stat *stat;
3727 	int nid;
3728 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3729 
3730 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3731 		seq_printf(m, "%s=%lu", stat->name,
3732 			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3733 						   false));
3734 		for_each_node_state(nid, N_MEMORY)
3735 			seq_printf(m, " N%d=%lu", nid,
3736 				   mem_cgroup_node_nr_lru_pages(memcg, nid,
3737 							stat->lru_mask, false));
3738 		seq_putc(m, '\n');
3739 	}
3740 
3741 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3742 
3743 		seq_printf(m, "hierarchical_%s=%lu", stat->name,
3744 			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3745 						   true));
3746 		for_each_node_state(nid, N_MEMORY)
3747 			seq_printf(m, " N%d=%lu", nid,
3748 				   mem_cgroup_node_nr_lru_pages(memcg, nid,
3749 							stat->lru_mask, true));
3750 		seq_putc(m, '\n');
3751 	}
3752 
3753 	return 0;
3754 }
3755 #endif /* CONFIG_NUMA */
3756 
3757 static const unsigned int memcg1_stats[] = {
3758 	NR_FILE_PAGES,
3759 	NR_ANON_MAPPED,
3760 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3761 	NR_ANON_THPS,
3762 #endif
3763 	NR_SHMEM,
3764 	NR_FILE_MAPPED,
3765 	NR_FILE_DIRTY,
3766 	NR_WRITEBACK,
3767 	MEMCG_SWAP,
3768 };
3769 
3770 static const char *const memcg1_stat_names[] = {
3771 	"cache",
3772 	"rss",
3773 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3774 	"rss_huge",
3775 #endif
3776 	"shmem",
3777 	"mapped_file",
3778 	"dirty",
3779 	"writeback",
3780 	"swap",
3781 };
3782 
3783 /* Universal VM events cgroup1 shows, original sort order */
3784 static const unsigned int memcg1_events[] = {
3785 	PGPGIN,
3786 	PGPGOUT,
3787 	PGFAULT,
3788 	PGMAJFAULT,
3789 };
3790 
3791 static int memcg_stat_show(struct seq_file *m, void *v)
3792 {
3793 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3794 	unsigned long memory, memsw;
3795 	struct mem_cgroup *mi;
3796 	unsigned int i;
3797 
3798 	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3799 
3800 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3801 		unsigned long nr;
3802 
3803 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3804 			continue;
3805 		nr = memcg_page_state_local(memcg, memcg1_stats[i]);
3806 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3807 		if (memcg1_stats[i] == NR_ANON_THPS)
3808 			nr *= HPAGE_PMD_NR;
3809 #endif
3810 		seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
3811 	}
3812 
3813 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3814 		seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
3815 			   memcg_events_local(memcg, memcg1_events[i]));
3816 
3817 	for (i = 0; i < NR_LRU_LISTS; i++)
3818 		seq_printf(m, "%s %lu\n", lru_list_name(i),
3819 			   memcg_page_state_local(memcg, NR_LRU_BASE + i) *
3820 			   PAGE_SIZE);
3821 
3822 	/* Hierarchical information */
3823 	memory = memsw = PAGE_COUNTER_MAX;
3824 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3825 		memory = min(memory, READ_ONCE(mi->memory.max));
3826 		memsw = min(memsw, READ_ONCE(mi->memsw.max));
3827 	}
3828 	seq_printf(m, "hierarchical_memory_limit %llu\n",
3829 		   (u64)memory * PAGE_SIZE);
3830 	if (do_memsw_account())
3831 		seq_printf(m, "hierarchical_memsw_limit %llu\n",
3832 			   (u64)memsw * PAGE_SIZE);
3833 
3834 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3835 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3836 			continue;
3837 		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
3838 			   (u64)memcg_page_state(memcg, memcg1_stats[i]) *
3839 			   PAGE_SIZE);
3840 	}
3841 
3842 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3843 		seq_printf(m, "total_%s %llu\n",
3844 			   vm_event_name(memcg1_events[i]),
3845 			   (u64)memcg_events(memcg, memcg1_events[i]));
3846 
3847 	for (i = 0; i < NR_LRU_LISTS; i++)
3848 		seq_printf(m, "total_%s %llu\n", lru_list_name(i),
3849 			   (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
3850 			   PAGE_SIZE);
3851 
3852 #ifdef CONFIG_DEBUG_VM
3853 	{
3854 		pg_data_t *pgdat;
3855 		struct mem_cgroup_per_node *mz;
3856 		unsigned long anon_cost = 0;
3857 		unsigned long file_cost = 0;
3858 
3859 		for_each_online_pgdat(pgdat) {
3860 			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3861 
3862 			anon_cost += mz->lruvec.anon_cost;
3863 			file_cost += mz->lruvec.file_cost;
3864 		}
3865 		seq_printf(m, "anon_cost %lu\n", anon_cost);
3866 		seq_printf(m, "file_cost %lu\n", file_cost);
3867 	}
3868 #endif
3869 
3870 	return 0;
3871 }
3872 
3873 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3874 				      struct cftype *cft)
3875 {
3876 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3877 
3878 	return mem_cgroup_swappiness(memcg);
3879 }
3880 
3881 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3882 				       struct cftype *cft, u64 val)
3883 {
3884 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3885 
3886 	if (val > 100)
3887 		return -EINVAL;
3888 
3889 	if (css->parent)
3890 		memcg->swappiness = val;
3891 	else
3892 		vm_swappiness = val;
3893 
3894 	return 0;
3895 }
3896 
3897 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3898 {
3899 	struct mem_cgroup_threshold_ary *t;
3900 	unsigned long usage;
3901 	int i;
3902 
3903 	rcu_read_lock();
3904 	if (!swap)
3905 		t = rcu_dereference(memcg->thresholds.primary);
3906 	else
3907 		t = rcu_dereference(memcg->memsw_thresholds.primary);
3908 
3909 	if (!t)
3910 		goto unlock;
3911 
3912 	usage = mem_cgroup_usage(memcg, swap);
3913 
3914 	/*
3915 	 * current_threshold points to threshold just below or equal to usage.
3916 	 * If it's not true, a threshold was crossed after last
3917 	 * call of __mem_cgroup_threshold().
3918 	 */
3919 	i = t->current_threshold;
3920 
3921 	/*
3922 	 * Iterate backward over array of thresholds starting from
3923 	 * current_threshold and check if a threshold is crossed.
3924 	 * If none of thresholds below usage is crossed, we read
3925 	 * only one element of the array here.
3926 	 */
3927 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3928 		eventfd_signal(t->entries[i].eventfd, 1);
3929 
3930 	/* i = current_threshold + 1 */
3931 	i++;
3932 
3933 	/*
3934 	 * Iterate forward over array of thresholds starting from
3935 	 * current_threshold+1 and check if a threshold is crossed.
3936 	 * If none of thresholds above usage is crossed, we read
3937 	 * only one element of the array here.
3938 	 */
3939 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3940 		eventfd_signal(t->entries[i].eventfd, 1);
3941 
3942 	/* Update current_threshold */
3943 	t->current_threshold = i - 1;
3944 unlock:
3945 	rcu_read_unlock();
3946 }
3947 
3948 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3949 {
3950 	while (memcg) {
3951 		__mem_cgroup_threshold(memcg, false);
3952 		if (do_memsw_account())
3953 			__mem_cgroup_threshold(memcg, true);
3954 
3955 		memcg = parent_mem_cgroup(memcg);
3956 	}
3957 }
3958 
3959 static int compare_thresholds(const void *a, const void *b)
3960 {
3961 	const struct mem_cgroup_threshold *_a = a;
3962 	const struct mem_cgroup_threshold *_b = b;
3963 
3964 	if (_a->threshold > _b->threshold)
3965 		return 1;
3966 
3967 	if (_a->threshold < _b->threshold)
3968 		return -1;
3969 
3970 	return 0;
3971 }
3972 
3973 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3974 {
3975 	struct mem_cgroup_eventfd_list *ev;
3976 
3977 	spin_lock(&memcg_oom_lock);
3978 
3979 	list_for_each_entry(ev, &memcg->oom_notify, list)
3980 		eventfd_signal(ev->eventfd, 1);
3981 
3982 	spin_unlock(&memcg_oom_lock);
3983 	return 0;
3984 }
3985 
3986 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3987 {
3988 	struct mem_cgroup *iter;
3989 
3990 	for_each_mem_cgroup_tree(iter, memcg)
3991 		mem_cgroup_oom_notify_cb(iter);
3992 }
3993 
3994 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3995 	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3996 {
3997 	struct mem_cgroup_thresholds *thresholds;
3998 	struct mem_cgroup_threshold_ary *new;
3999 	unsigned long threshold;
4000 	unsigned long usage;
4001 	int i, size, ret;
4002 
4003 	ret = page_counter_memparse(args, "-1", &threshold);
4004 	if (ret)
4005 		return ret;
4006 
4007 	mutex_lock(&memcg->thresholds_lock);
4008 
4009 	if (type == _MEM) {
4010 		thresholds = &memcg->thresholds;
4011 		usage = mem_cgroup_usage(memcg, false);
4012 	} else if (type == _MEMSWAP) {
4013 		thresholds = &memcg->memsw_thresholds;
4014 		usage = mem_cgroup_usage(memcg, true);
4015 	} else
4016 		BUG();
4017 
4018 	/* Check if a threshold crossed before adding a new one */
4019 	if (thresholds->primary)
4020 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4021 
4022 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4023 
4024 	/* Allocate memory for new array of thresholds */
4025 	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4026 	if (!new) {
4027 		ret = -ENOMEM;
4028 		goto unlock;
4029 	}
4030 	new->size = size;
4031 
4032 	/* Copy thresholds (if any) to new array */
4033 	if (thresholds->primary) {
4034 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4035 				sizeof(struct mem_cgroup_threshold));
4036 	}
4037 
4038 	/* Add new threshold */
4039 	new->entries[size - 1].eventfd = eventfd;
4040 	new->entries[size - 1].threshold = threshold;
4041 
4042 	/* Sort thresholds. Registering of new threshold isn't time-critical */
4043 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4044 			compare_thresholds, NULL);
4045 
4046 	/* Find current threshold */
4047 	new->current_threshold = -1;
4048 	for (i = 0; i < size; i++) {
4049 		if (new->entries[i].threshold <= usage) {
4050 			/*
4051 			 * new->current_threshold will not be used until
4052 			 * rcu_assign_pointer(), so it's safe to increment
4053 			 * it here.
4054 			 */
4055 			++new->current_threshold;
4056 		} else
4057 			break;
4058 	}
4059 
4060 	/* Free old spare buffer and save old primary buffer as spare */
4061 	kfree(thresholds->spare);
4062 	thresholds->spare = thresholds->primary;
4063 
4064 	rcu_assign_pointer(thresholds->primary, new);
4065 
4066 	/* To be sure that nobody uses thresholds */
4067 	synchronize_rcu();
4068 
4069 unlock:
4070 	mutex_unlock(&memcg->thresholds_lock);
4071 
4072 	return ret;
4073 }
4074 
4075 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4076 	struct eventfd_ctx *eventfd, const char *args)
4077 {
4078 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4079 }
4080 
4081 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4082 	struct eventfd_ctx *eventfd, const char *args)
4083 {
4084 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4085 }
4086 
4087 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4088 	struct eventfd_ctx *eventfd, enum res_type type)
4089 {
4090 	struct mem_cgroup_thresholds *thresholds;
4091 	struct mem_cgroup_threshold_ary *new;
4092 	unsigned long usage;
4093 	int i, j, size, entries;
4094 
4095 	mutex_lock(&memcg->thresholds_lock);
4096 
4097 	if (type == _MEM) {
4098 		thresholds = &memcg->thresholds;
4099 		usage = mem_cgroup_usage(memcg, false);
4100 	} else if (type == _MEMSWAP) {
4101 		thresholds = &memcg->memsw_thresholds;
4102 		usage = mem_cgroup_usage(memcg, true);
4103 	} else
4104 		BUG();
4105 
4106 	if (!thresholds->primary)
4107 		goto unlock;
4108 
4109 	/* Check if a threshold crossed before removing */
4110 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4111 
4112 	/* Calculate new number of threshold */
4113 	size = entries = 0;
4114 	for (i = 0; i < thresholds->primary->size; i++) {
4115 		if (thresholds->primary->entries[i].eventfd != eventfd)
4116 			size++;
4117 		else
4118 			entries++;
4119 	}
4120 
4121 	new = thresholds->spare;
4122 
4123 	/* If no items related to eventfd have been cleared, nothing to do */
4124 	if (!entries)
4125 		goto unlock;
4126 
4127 	/* Set thresholds array to NULL if we don't have thresholds */
4128 	if (!size) {
4129 		kfree(new);
4130 		new = NULL;
4131 		goto swap_buffers;
4132 	}
4133 
4134 	new->size = size;
4135 
4136 	/* Copy thresholds and find current threshold */
4137 	new->current_threshold = -1;
4138 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4139 		if (thresholds->primary->entries[i].eventfd == eventfd)
4140 			continue;
4141 
4142 		new->entries[j] = thresholds->primary->entries[i];
4143 		if (new->entries[j].threshold <= usage) {
4144 			/*
4145 			 * new->current_threshold will not be used
4146 			 * until rcu_assign_pointer(), so it's safe to increment
4147 			 * it here.
4148 			 */
4149 			++new->current_threshold;
4150 		}
4151 		j++;
4152 	}
4153 
4154 swap_buffers:
4155 	/* Swap primary and spare array */
4156 	thresholds->spare = thresholds->primary;
4157 
4158 	rcu_assign_pointer(thresholds->primary, new);
4159 
4160 	/* To be sure that nobody uses thresholds */
4161 	synchronize_rcu();
4162 
4163 	/* If all events are unregistered, free the spare array */
4164 	if (!new) {
4165 		kfree(thresholds->spare);
4166 		thresholds->spare = NULL;
4167 	}
4168 unlock:
4169 	mutex_unlock(&memcg->thresholds_lock);
4170 }
4171 
4172 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4173 	struct eventfd_ctx *eventfd)
4174 {
4175 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4176 }
4177 
4178 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4179 	struct eventfd_ctx *eventfd)
4180 {
4181 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4182 }
4183 
4184 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4185 	struct eventfd_ctx *eventfd, const char *args)
4186 {
4187 	struct mem_cgroup_eventfd_list *event;
4188 
4189 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4190 	if (!event)
4191 		return -ENOMEM;
4192 
4193 	spin_lock(&memcg_oom_lock);
4194 
4195 	event->eventfd = eventfd;
4196 	list_add(&event->list, &memcg->oom_notify);
4197 
4198 	/* already in OOM ? */
4199 	if (memcg->under_oom)
4200 		eventfd_signal(eventfd, 1);
4201 	spin_unlock(&memcg_oom_lock);
4202 
4203 	return 0;
4204 }
4205 
4206 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4207 	struct eventfd_ctx *eventfd)
4208 {
4209 	struct mem_cgroup_eventfd_list *ev, *tmp;
4210 
4211 	spin_lock(&memcg_oom_lock);
4212 
4213 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4214 		if (ev->eventfd == eventfd) {
4215 			list_del(&ev->list);
4216 			kfree(ev);
4217 		}
4218 	}
4219 
4220 	spin_unlock(&memcg_oom_lock);
4221 }
4222 
4223 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4224 {
4225 	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4226 
4227 	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4228 	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4229 	seq_printf(sf, "oom_kill %lu\n",
4230 		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4231 	return 0;
4232 }
4233 
4234 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4235 	struct cftype *cft, u64 val)
4236 {
4237 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4238 
4239 	/* cannot set to root cgroup and only 0 and 1 are allowed */
4240 	if (!css->parent || !((val == 0) || (val == 1)))
4241 		return -EINVAL;
4242 
4243 	memcg->oom_kill_disable = val;
4244 	if (!val)
4245 		memcg_oom_recover(memcg);
4246 
4247 	return 0;
4248 }
4249 
4250 #ifdef CONFIG_CGROUP_WRITEBACK
4251 
4252 #include <trace/events/writeback.h>
4253 
4254 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4255 {
4256 	return wb_domain_init(&memcg->cgwb_domain, gfp);
4257 }
4258 
4259 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4260 {
4261 	wb_domain_exit(&memcg->cgwb_domain);
4262 }
4263 
4264 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4265 {
4266 	wb_domain_size_changed(&memcg->cgwb_domain);
4267 }
4268 
4269 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4270 {
4271 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4272 
4273 	if (!memcg->css.parent)
4274 		return NULL;
4275 
4276 	return &memcg->cgwb_domain;
4277 }
4278 
4279 /*
4280  * idx can be of type enum memcg_stat_item or node_stat_item.
4281  * Keep in sync with memcg_exact_page().
4282  */
4283 static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4284 {
4285 	long x = atomic_long_read(&memcg->vmstats[idx]);
4286 	int cpu;
4287 
4288 	for_each_online_cpu(cpu)
4289 		x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4290 	if (x < 0)
4291 		x = 0;
4292 	return x;
4293 }
4294 
4295 /**
4296  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4297  * @wb: bdi_writeback in question
4298  * @pfilepages: out parameter for number of file pages
4299  * @pheadroom: out parameter for number of allocatable pages according to memcg
4300  * @pdirty: out parameter for number of dirty pages
4301  * @pwriteback: out parameter for number of pages under writeback
4302  *
4303  * Determine the numbers of file, headroom, dirty, and writeback pages in
4304  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
4305  * is a bit more involved.
4306  *
4307  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
4308  * headroom is calculated as the lowest headroom of itself and the
4309  * ancestors.  Note that this doesn't consider the actual amount of
4310  * available memory in the system.  The caller should further cap
4311  * *@pheadroom accordingly.
4312  */
4313 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4314 			 unsigned long *pheadroom, unsigned long *pdirty,
4315 			 unsigned long *pwriteback)
4316 {
4317 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4318 	struct mem_cgroup *parent;
4319 
4320 	*pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4321 
4322 	*pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4323 	*pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4324 			memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4325 	*pheadroom = PAGE_COUNTER_MAX;
4326 
4327 	while ((parent = parent_mem_cgroup(memcg))) {
4328 		unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4329 					    READ_ONCE(memcg->memory.high));
4330 		unsigned long used = page_counter_read(&memcg->memory);
4331 
4332 		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4333 		memcg = parent;
4334 	}
4335 }
4336 
4337 /*
4338  * Foreign dirty flushing
4339  *
4340  * There's an inherent mismatch between memcg and writeback.  The former
4341  * trackes ownership per-page while the latter per-inode.  This was a
4342  * deliberate design decision because honoring per-page ownership in the
4343  * writeback path is complicated, may lead to higher CPU and IO overheads
4344  * and deemed unnecessary given that write-sharing an inode across
4345  * different cgroups isn't a common use-case.
4346  *
4347  * Combined with inode majority-writer ownership switching, this works well
4348  * enough in most cases but there are some pathological cases.  For
4349  * example, let's say there are two cgroups A and B which keep writing to
4350  * different but confined parts of the same inode.  B owns the inode and
4351  * A's memory is limited far below B's.  A's dirty ratio can rise enough to
4352  * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4353  * triggering background writeback.  A will be slowed down without a way to
4354  * make writeback of the dirty pages happen.
4355  *
4356  * Conditions like the above can lead to a cgroup getting repatedly and
4357  * severely throttled after making some progress after each
4358  * dirty_expire_interval while the underyling IO device is almost
4359  * completely idle.
4360  *
4361  * Solving this problem completely requires matching the ownership tracking
4362  * granularities between memcg and writeback in either direction.  However,
4363  * the more egregious behaviors can be avoided by simply remembering the
4364  * most recent foreign dirtying events and initiating remote flushes on
4365  * them when local writeback isn't enough to keep the memory clean enough.
4366  *
4367  * The following two functions implement such mechanism.  When a foreign
4368  * page - a page whose memcg and writeback ownerships don't match - is
4369  * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4370  * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
4371  * decides that the memcg needs to sleep due to high dirty ratio, it calls
4372  * mem_cgroup_flush_foreign() which queues writeback on the recorded
4373  * foreign bdi_writebacks which haven't expired.  Both the numbers of
4374  * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4375  * limited to MEMCG_CGWB_FRN_CNT.
4376  *
4377  * The mechanism only remembers IDs and doesn't hold any object references.
4378  * As being wrong occasionally doesn't matter, updates and accesses to the
4379  * records are lockless and racy.
4380  */
4381 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4382 					     struct bdi_writeback *wb)
4383 {
4384 	struct mem_cgroup *memcg = page->mem_cgroup;
4385 	struct memcg_cgwb_frn *frn;
4386 	u64 now = get_jiffies_64();
4387 	u64 oldest_at = now;
4388 	int oldest = -1;
4389 	int i;
4390 
4391 	trace_track_foreign_dirty(page, wb);
4392 
4393 	/*
4394 	 * Pick the slot to use.  If there is already a slot for @wb, keep
4395 	 * using it.  If not replace the oldest one which isn't being
4396 	 * written out.
4397 	 */
4398 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4399 		frn = &memcg->cgwb_frn[i];
4400 		if (frn->bdi_id == wb->bdi->id &&
4401 		    frn->memcg_id == wb->memcg_css->id)
4402 			break;
4403 		if (time_before64(frn->at, oldest_at) &&
4404 		    atomic_read(&frn->done.cnt) == 1) {
4405 			oldest = i;
4406 			oldest_at = frn->at;
4407 		}
4408 	}
4409 
4410 	if (i < MEMCG_CGWB_FRN_CNT) {
4411 		/*
4412 		 * Re-using an existing one.  Update timestamp lazily to
4413 		 * avoid making the cacheline hot.  We want them to be
4414 		 * reasonably up-to-date and significantly shorter than
4415 		 * dirty_expire_interval as that's what expires the record.
4416 		 * Use the shorter of 1s and dirty_expire_interval / 8.
4417 		 */
4418 		unsigned long update_intv =
4419 			min_t(unsigned long, HZ,
4420 			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4421 
4422 		if (time_before64(frn->at, now - update_intv))
4423 			frn->at = now;
4424 	} else if (oldest >= 0) {
4425 		/* replace the oldest free one */
4426 		frn = &memcg->cgwb_frn[oldest];
4427 		frn->bdi_id = wb->bdi->id;
4428 		frn->memcg_id = wb->memcg_css->id;
4429 		frn->at = now;
4430 	}
4431 }
4432 
4433 /* issue foreign writeback flushes for recorded foreign dirtying events */
4434 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4435 {
4436 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4437 	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4438 	u64 now = jiffies_64;
4439 	int i;
4440 
4441 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4442 		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4443 
4444 		/*
4445 		 * If the record is older than dirty_expire_interval,
4446 		 * writeback on it has already started.  No need to kick it
4447 		 * off again.  Also, don't start a new one if there's
4448 		 * already one in flight.
4449 		 */
4450 		if (time_after64(frn->at, now - intv) &&
4451 		    atomic_read(&frn->done.cnt) == 1) {
4452 			frn->at = 0;
4453 			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4454 			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4455 					       WB_REASON_FOREIGN_FLUSH,
4456 					       &frn->done);
4457 		}
4458 	}
4459 }
4460 
4461 #else	/* CONFIG_CGROUP_WRITEBACK */
4462 
4463 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4464 {
4465 	return 0;
4466 }
4467 
4468 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4469 {
4470 }
4471 
4472 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4473 {
4474 }
4475 
4476 #endif	/* CONFIG_CGROUP_WRITEBACK */
4477 
4478 /*
4479  * DO NOT USE IN NEW FILES.
4480  *
4481  * "cgroup.event_control" implementation.
4482  *
4483  * This is way over-engineered.  It tries to support fully configurable
4484  * events for each user.  Such level of flexibility is completely
4485  * unnecessary especially in the light of the planned unified hierarchy.
4486  *
4487  * Please deprecate this and replace with something simpler if at all
4488  * possible.
4489  */
4490 
4491 /*
4492  * Unregister event and free resources.
4493  *
4494  * Gets called from workqueue.
4495  */
4496 static void memcg_event_remove(struct work_struct *work)
4497 {
4498 	struct mem_cgroup_event *event =
4499 		container_of(work, struct mem_cgroup_event, remove);
4500 	struct mem_cgroup *memcg = event->memcg;
4501 
4502 	remove_wait_queue(event->wqh, &event->wait);
4503 
4504 	event->unregister_event(memcg, event->eventfd);
4505 
4506 	/* Notify userspace the event is going away. */
4507 	eventfd_signal(event->eventfd, 1);
4508 
4509 	eventfd_ctx_put(event->eventfd);
4510 	kfree(event);
4511 	css_put(&memcg->css);
4512 }
4513 
4514 /*
4515  * Gets called on EPOLLHUP on eventfd when user closes it.
4516  *
4517  * Called with wqh->lock held and interrupts disabled.
4518  */
4519 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4520 			    int sync, void *key)
4521 {
4522 	struct mem_cgroup_event *event =
4523 		container_of(wait, struct mem_cgroup_event, wait);
4524 	struct mem_cgroup *memcg = event->memcg;
4525 	__poll_t flags = key_to_poll(key);
4526 
4527 	if (flags & EPOLLHUP) {
4528 		/*
4529 		 * If the event has been detached at cgroup removal, we
4530 		 * can simply return knowing the other side will cleanup
4531 		 * for us.
4532 		 *
4533 		 * We can't race against event freeing since the other
4534 		 * side will require wqh->lock via remove_wait_queue(),
4535 		 * which we hold.
4536 		 */
4537 		spin_lock(&memcg->event_list_lock);
4538 		if (!list_empty(&event->list)) {
4539 			list_del_init(&event->list);
4540 			/*
4541 			 * We are in atomic context, but cgroup_event_remove()
4542 			 * may sleep, so we have to call it in workqueue.
4543 			 */
4544 			schedule_work(&event->remove);
4545 		}
4546 		spin_unlock(&memcg->event_list_lock);
4547 	}
4548 
4549 	return 0;
4550 }
4551 
4552 static void memcg_event_ptable_queue_proc(struct file *file,
4553 		wait_queue_head_t *wqh, poll_table *pt)
4554 {
4555 	struct mem_cgroup_event *event =
4556 		container_of(pt, struct mem_cgroup_event, pt);
4557 
4558 	event->wqh = wqh;
4559 	add_wait_queue(wqh, &event->wait);
4560 }
4561 
4562 /*
4563  * DO NOT USE IN NEW FILES.
4564  *
4565  * Parse input and register new cgroup event handler.
4566  *
4567  * Input must be in format '<event_fd> <control_fd> <args>'.
4568  * Interpretation of args is defined by control file implementation.
4569  */
4570 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4571 					 char *buf, size_t nbytes, loff_t off)
4572 {
4573 	struct cgroup_subsys_state *css = of_css(of);
4574 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4575 	struct mem_cgroup_event *event;
4576 	struct cgroup_subsys_state *cfile_css;
4577 	unsigned int efd, cfd;
4578 	struct fd efile;
4579 	struct fd cfile;
4580 	const char *name;
4581 	char *endp;
4582 	int ret;
4583 
4584 	buf = strstrip(buf);
4585 
4586 	efd = simple_strtoul(buf, &endp, 10);
4587 	if (*endp != ' ')
4588 		return -EINVAL;
4589 	buf = endp + 1;
4590 
4591 	cfd = simple_strtoul(buf, &endp, 10);
4592 	if ((*endp != ' ') && (*endp != '\0'))
4593 		return -EINVAL;
4594 	buf = endp + 1;
4595 
4596 	event = kzalloc(sizeof(*event), GFP_KERNEL);
4597 	if (!event)
4598 		return -ENOMEM;
4599 
4600 	event->memcg = memcg;
4601 	INIT_LIST_HEAD(&event->list);
4602 	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4603 	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4604 	INIT_WORK(&event->remove, memcg_event_remove);
4605 
4606 	efile = fdget(efd);
4607 	if (!efile.file) {
4608 		ret = -EBADF;
4609 		goto out_kfree;
4610 	}
4611 
4612 	event->eventfd = eventfd_ctx_fileget(efile.file);
4613 	if (IS_ERR(event->eventfd)) {
4614 		ret = PTR_ERR(event->eventfd);
4615 		goto out_put_efile;
4616 	}
4617 
4618 	cfile = fdget(cfd);
4619 	if (!cfile.file) {
4620 		ret = -EBADF;
4621 		goto out_put_eventfd;
4622 	}
4623 
4624 	/* the process need read permission on control file */
4625 	/* AV: shouldn't we check that it's been opened for read instead? */
4626 	ret = inode_permission(file_inode(cfile.file), MAY_READ);
4627 	if (ret < 0)
4628 		goto out_put_cfile;
4629 
4630 	/*
4631 	 * Determine the event callbacks and set them in @event.  This used
4632 	 * to be done via struct cftype but cgroup core no longer knows
4633 	 * about these events.  The following is crude but the whole thing
4634 	 * is for compatibility anyway.
4635 	 *
4636 	 * DO NOT ADD NEW FILES.
4637 	 */
4638 	name = cfile.file->f_path.dentry->d_name.name;
4639 
4640 	if (!strcmp(name, "memory.usage_in_bytes")) {
4641 		event->register_event = mem_cgroup_usage_register_event;
4642 		event->unregister_event = mem_cgroup_usage_unregister_event;
4643 	} else if (!strcmp(name, "memory.oom_control")) {
4644 		event->register_event = mem_cgroup_oom_register_event;
4645 		event->unregister_event = mem_cgroup_oom_unregister_event;
4646 	} else if (!strcmp(name, "memory.pressure_level")) {
4647 		event->register_event = vmpressure_register_event;
4648 		event->unregister_event = vmpressure_unregister_event;
4649 	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4650 		event->register_event = memsw_cgroup_usage_register_event;
4651 		event->unregister_event = memsw_cgroup_usage_unregister_event;
4652 	} else {
4653 		ret = -EINVAL;
4654 		goto out_put_cfile;
4655 	}
4656 
4657 	/*
4658 	 * Verify @cfile should belong to @css.  Also, remaining events are
4659 	 * automatically removed on cgroup destruction but the removal is
4660 	 * asynchronous, so take an extra ref on @css.
4661 	 */
4662 	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4663 					       &memory_cgrp_subsys);
4664 	ret = -EINVAL;
4665 	if (IS_ERR(cfile_css))
4666 		goto out_put_cfile;
4667 	if (cfile_css != css) {
4668 		css_put(cfile_css);
4669 		goto out_put_cfile;
4670 	}
4671 
4672 	ret = event->register_event(memcg, event->eventfd, buf);
4673 	if (ret)
4674 		goto out_put_css;
4675 
4676 	vfs_poll(efile.file, &event->pt);
4677 
4678 	spin_lock(&memcg->event_list_lock);
4679 	list_add(&event->list, &memcg->event_list);
4680 	spin_unlock(&memcg->event_list_lock);
4681 
4682 	fdput(cfile);
4683 	fdput(efile);
4684 
4685 	return nbytes;
4686 
4687 out_put_css:
4688 	css_put(css);
4689 out_put_cfile:
4690 	fdput(cfile);
4691 out_put_eventfd:
4692 	eventfd_ctx_put(event->eventfd);
4693 out_put_efile:
4694 	fdput(efile);
4695 out_kfree:
4696 	kfree(event);
4697 
4698 	return ret;
4699 }
4700 
4701 static struct cftype mem_cgroup_legacy_files[] = {
4702 	{
4703 		.name = "usage_in_bytes",
4704 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4705 		.read_u64 = mem_cgroup_read_u64,
4706 	},
4707 	{
4708 		.name = "max_usage_in_bytes",
4709 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4710 		.write = mem_cgroup_reset,
4711 		.read_u64 = mem_cgroup_read_u64,
4712 	},
4713 	{
4714 		.name = "limit_in_bytes",
4715 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4716 		.write = mem_cgroup_write,
4717 		.read_u64 = mem_cgroup_read_u64,
4718 	},
4719 	{
4720 		.name = "soft_limit_in_bytes",
4721 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4722 		.write = mem_cgroup_write,
4723 		.read_u64 = mem_cgroup_read_u64,
4724 	},
4725 	{
4726 		.name = "failcnt",
4727 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4728 		.write = mem_cgroup_reset,
4729 		.read_u64 = mem_cgroup_read_u64,
4730 	},
4731 	{
4732 		.name = "stat",
4733 		.seq_show = memcg_stat_show,
4734 	},
4735 	{
4736 		.name = "force_empty",
4737 		.write = mem_cgroup_force_empty_write,
4738 	},
4739 	{
4740 		.name = "use_hierarchy",
4741 		.write_u64 = mem_cgroup_hierarchy_write,
4742 		.read_u64 = mem_cgroup_hierarchy_read,
4743 	},
4744 	{
4745 		.name = "cgroup.event_control",		/* XXX: for compat */
4746 		.write = memcg_write_event_control,
4747 		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4748 	},
4749 	{
4750 		.name = "swappiness",
4751 		.read_u64 = mem_cgroup_swappiness_read,
4752 		.write_u64 = mem_cgroup_swappiness_write,
4753 	},
4754 	{
4755 		.name = "move_charge_at_immigrate",
4756 		.read_u64 = mem_cgroup_move_charge_read,
4757 		.write_u64 = mem_cgroup_move_charge_write,
4758 	},
4759 	{
4760 		.name = "oom_control",
4761 		.seq_show = mem_cgroup_oom_control_read,
4762 		.write_u64 = mem_cgroup_oom_control_write,
4763 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4764 	},
4765 	{
4766 		.name = "pressure_level",
4767 	},
4768 #ifdef CONFIG_NUMA
4769 	{
4770 		.name = "numa_stat",
4771 		.seq_show = memcg_numa_stat_show,
4772 	},
4773 #endif
4774 	{
4775 		.name = "kmem.limit_in_bytes",
4776 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4777 		.write = mem_cgroup_write,
4778 		.read_u64 = mem_cgroup_read_u64,
4779 	},
4780 	{
4781 		.name = "kmem.usage_in_bytes",
4782 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4783 		.read_u64 = mem_cgroup_read_u64,
4784 	},
4785 	{
4786 		.name = "kmem.failcnt",
4787 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4788 		.write = mem_cgroup_reset,
4789 		.read_u64 = mem_cgroup_read_u64,
4790 	},
4791 	{
4792 		.name = "kmem.max_usage_in_bytes",
4793 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4794 		.write = mem_cgroup_reset,
4795 		.read_u64 = mem_cgroup_read_u64,
4796 	},
4797 #if defined(CONFIG_MEMCG_KMEM) && \
4798 	(defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
4799 	{
4800 		.name = "kmem.slabinfo",
4801 		.seq_start = memcg_slab_start,
4802 		.seq_next = memcg_slab_next,
4803 		.seq_stop = memcg_slab_stop,
4804 		.seq_show = memcg_slab_show,
4805 	},
4806 #endif
4807 	{
4808 		.name = "kmem.tcp.limit_in_bytes",
4809 		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4810 		.write = mem_cgroup_write,
4811 		.read_u64 = mem_cgroup_read_u64,
4812 	},
4813 	{
4814 		.name = "kmem.tcp.usage_in_bytes",
4815 		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4816 		.read_u64 = mem_cgroup_read_u64,
4817 	},
4818 	{
4819 		.name = "kmem.tcp.failcnt",
4820 		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4821 		.write = mem_cgroup_reset,
4822 		.read_u64 = mem_cgroup_read_u64,
4823 	},
4824 	{
4825 		.name = "kmem.tcp.max_usage_in_bytes",
4826 		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4827 		.write = mem_cgroup_reset,
4828 		.read_u64 = mem_cgroup_read_u64,
4829 	},
4830 	{ },	/* terminate */
4831 };
4832 
4833 /*
4834  * Private memory cgroup IDR
4835  *
4836  * Swap-out records and page cache shadow entries need to store memcg
4837  * references in constrained space, so we maintain an ID space that is
4838  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4839  * memory-controlled cgroups to 64k.
4840  *
4841  * However, there usually are many references to the offline CSS after
4842  * the cgroup has been destroyed, such as page cache or reclaimable
4843  * slab objects, that don't need to hang on to the ID. We want to keep
4844  * those dead CSS from occupying IDs, or we might quickly exhaust the
4845  * relatively small ID space and prevent the creation of new cgroups
4846  * even when there are much fewer than 64k cgroups - possibly none.
4847  *
4848  * Maintain a private 16-bit ID space for memcg, and allow the ID to
4849  * be freed and recycled when it's no longer needed, which is usually
4850  * when the CSS is offlined.
4851  *
4852  * The only exception to that are records of swapped out tmpfs/shmem
4853  * pages that need to be attributed to live ancestors on swapin. But
4854  * those references are manageable from userspace.
4855  */
4856 
4857 static DEFINE_IDR(mem_cgroup_idr);
4858 
4859 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4860 {
4861 	if (memcg->id.id > 0) {
4862 		idr_remove(&mem_cgroup_idr, memcg->id.id);
4863 		memcg->id.id = 0;
4864 	}
4865 }
4866 
4867 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
4868 						  unsigned int n)
4869 {
4870 	refcount_add(n, &memcg->id.ref);
4871 }
4872 
4873 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4874 {
4875 	if (refcount_sub_and_test(n, &memcg->id.ref)) {
4876 		mem_cgroup_id_remove(memcg);
4877 
4878 		/* Memcg ID pins CSS */
4879 		css_put(&memcg->css);
4880 	}
4881 }
4882 
4883 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4884 {
4885 	mem_cgroup_id_put_many(memcg, 1);
4886 }
4887 
4888 /**
4889  * mem_cgroup_from_id - look up a memcg from a memcg id
4890  * @id: the memcg id to look up
4891  *
4892  * Caller must hold rcu_read_lock().
4893  */
4894 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4895 {
4896 	WARN_ON_ONCE(!rcu_read_lock_held());
4897 	return idr_find(&mem_cgroup_idr, id);
4898 }
4899 
4900 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4901 {
4902 	struct mem_cgroup_per_node *pn;
4903 	int tmp = node;
4904 	/*
4905 	 * This routine is called against possible nodes.
4906 	 * But it's BUG to call kmalloc() against offline node.
4907 	 *
4908 	 * TODO: this routine can waste much memory for nodes which will
4909 	 *       never be onlined. It's better to use memory hotplug callback
4910 	 *       function.
4911 	 */
4912 	if (!node_state(node, N_NORMAL_MEMORY))
4913 		tmp = -1;
4914 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4915 	if (!pn)
4916 		return 1;
4917 
4918 	pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat);
4919 	if (!pn->lruvec_stat_local) {
4920 		kfree(pn);
4921 		return 1;
4922 	}
4923 
4924 	pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
4925 	if (!pn->lruvec_stat_cpu) {
4926 		free_percpu(pn->lruvec_stat_local);
4927 		kfree(pn);
4928 		return 1;
4929 	}
4930 
4931 	lruvec_init(&pn->lruvec);
4932 	pn->usage_in_excess = 0;
4933 	pn->on_tree = false;
4934 	pn->memcg = memcg;
4935 
4936 	memcg->nodeinfo[node] = pn;
4937 	return 0;
4938 }
4939 
4940 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4941 {
4942 	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4943 
4944 	if (!pn)
4945 		return;
4946 
4947 	free_percpu(pn->lruvec_stat_cpu);
4948 	free_percpu(pn->lruvec_stat_local);
4949 	kfree(pn);
4950 }
4951 
4952 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4953 {
4954 	int node;
4955 
4956 	for_each_node(node)
4957 		free_mem_cgroup_per_node_info(memcg, node);
4958 	free_percpu(memcg->vmstats_percpu);
4959 	free_percpu(memcg->vmstats_local);
4960 	kfree(memcg);
4961 }
4962 
4963 static void mem_cgroup_free(struct mem_cgroup *memcg)
4964 {
4965 	memcg_wb_domain_exit(memcg);
4966 	/*
4967 	 * Flush percpu vmstats and vmevents to guarantee the value correctness
4968 	 * on parent's and all ancestor levels.
4969 	 */
4970 	memcg_flush_percpu_vmstats(memcg);
4971 	memcg_flush_percpu_vmevents(memcg);
4972 	__mem_cgroup_free(memcg);
4973 }
4974 
4975 static struct mem_cgroup *mem_cgroup_alloc(void)
4976 {
4977 	struct mem_cgroup *memcg;
4978 	unsigned int size;
4979 	int node;
4980 	int __maybe_unused i;
4981 	long error = -ENOMEM;
4982 
4983 	size = sizeof(struct mem_cgroup);
4984 	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4985 
4986 	memcg = kzalloc(size, GFP_KERNEL);
4987 	if (!memcg)
4988 		return ERR_PTR(error);
4989 
4990 	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4991 				 1, MEM_CGROUP_ID_MAX,
4992 				 GFP_KERNEL);
4993 	if (memcg->id.id < 0) {
4994 		error = memcg->id.id;
4995 		goto fail;
4996 	}
4997 
4998 	memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu);
4999 	if (!memcg->vmstats_local)
5000 		goto fail;
5001 
5002 	memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu);
5003 	if (!memcg->vmstats_percpu)
5004 		goto fail;
5005 
5006 	for_each_node(node)
5007 		if (alloc_mem_cgroup_per_node_info(memcg, node))
5008 			goto fail;
5009 
5010 	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5011 		goto fail;
5012 
5013 	INIT_WORK(&memcg->high_work, high_work_func);
5014 	INIT_LIST_HEAD(&memcg->oom_notify);
5015 	mutex_init(&memcg->thresholds_lock);
5016 	spin_lock_init(&memcg->move_lock);
5017 	vmpressure_init(&memcg->vmpressure);
5018 	INIT_LIST_HEAD(&memcg->event_list);
5019 	spin_lock_init(&memcg->event_list_lock);
5020 	memcg->socket_pressure = jiffies;
5021 #ifdef CONFIG_MEMCG_KMEM
5022 	memcg->kmemcg_id = -1;
5023 #endif
5024 #ifdef CONFIG_CGROUP_WRITEBACK
5025 	INIT_LIST_HEAD(&memcg->cgwb_list);
5026 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5027 		memcg->cgwb_frn[i].done =
5028 			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5029 #endif
5030 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5031 	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5032 	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5033 	memcg->deferred_split_queue.split_queue_len = 0;
5034 #endif
5035 	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5036 	return memcg;
5037 fail:
5038 	mem_cgroup_id_remove(memcg);
5039 	__mem_cgroup_free(memcg);
5040 	return ERR_PTR(error);
5041 }
5042 
5043 static struct cgroup_subsys_state * __ref
5044 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5045 {
5046 	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5047 	struct mem_cgroup *memcg;
5048 	long error = -ENOMEM;
5049 
5050 	memcg = mem_cgroup_alloc();
5051 	if (IS_ERR(memcg))
5052 		return ERR_CAST(memcg);
5053 
5054 	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5055 	memcg->soft_limit = PAGE_COUNTER_MAX;
5056 	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5057 	if (parent) {
5058 		memcg->swappiness = mem_cgroup_swappiness(parent);
5059 		memcg->oom_kill_disable = parent->oom_kill_disable;
5060 	}
5061 	if (parent && parent->use_hierarchy) {
5062 		memcg->use_hierarchy = true;
5063 		page_counter_init(&memcg->memory, &parent->memory);
5064 		page_counter_init(&memcg->swap, &parent->swap);
5065 		page_counter_init(&memcg->memsw, &parent->memsw);
5066 		page_counter_init(&memcg->kmem, &parent->kmem);
5067 		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5068 	} else {
5069 		page_counter_init(&memcg->memory, NULL);
5070 		page_counter_init(&memcg->swap, NULL);
5071 		page_counter_init(&memcg->memsw, NULL);
5072 		page_counter_init(&memcg->kmem, NULL);
5073 		page_counter_init(&memcg->tcpmem, NULL);
5074 		/*
5075 		 * Deeper hierachy with use_hierarchy == false doesn't make
5076 		 * much sense so let cgroup subsystem know about this
5077 		 * unfortunate state in our controller.
5078 		 */
5079 		if (parent != root_mem_cgroup)
5080 			memory_cgrp_subsys.broken_hierarchy = true;
5081 	}
5082 
5083 	/* The following stuff does not apply to the root */
5084 	if (!parent) {
5085 #ifdef CONFIG_MEMCG_KMEM
5086 		INIT_LIST_HEAD(&memcg->kmem_caches);
5087 #endif
5088 		root_mem_cgroup = memcg;
5089 		return &memcg->css;
5090 	}
5091 
5092 	error = memcg_online_kmem(memcg);
5093 	if (error)
5094 		goto fail;
5095 
5096 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5097 		static_branch_inc(&memcg_sockets_enabled_key);
5098 
5099 	return &memcg->css;
5100 fail:
5101 	mem_cgroup_id_remove(memcg);
5102 	mem_cgroup_free(memcg);
5103 	return ERR_PTR(error);
5104 }
5105 
5106 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5107 {
5108 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5109 
5110 	/*
5111 	 * A memcg must be visible for memcg_expand_shrinker_maps()
5112 	 * by the time the maps are allocated. So, we allocate maps
5113 	 * here, when for_each_mem_cgroup() can't skip it.
5114 	 */
5115 	if (memcg_alloc_shrinker_maps(memcg)) {
5116 		mem_cgroup_id_remove(memcg);
5117 		return -ENOMEM;
5118 	}
5119 
5120 	/* Online state pins memcg ID, memcg ID pins CSS */
5121 	refcount_set(&memcg->id.ref, 1);
5122 	css_get(css);
5123 	return 0;
5124 }
5125 
5126 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5127 {
5128 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5129 	struct mem_cgroup_event *event, *tmp;
5130 
5131 	/*
5132 	 * Unregister events and notify userspace.
5133 	 * Notify userspace about cgroup removing only after rmdir of cgroup
5134 	 * directory to avoid race between userspace and kernelspace.
5135 	 */
5136 	spin_lock(&memcg->event_list_lock);
5137 	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5138 		list_del_init(&event->list);
5139 		schedule_work(&event->remove);
5140 	}
5141 	spin_unlock(&memcg->event_list_lock);
5142 
5143 	page_counter_set_min(&memcg->memory, 0);
5144 	page_counter_set_low(&memcg->memory, 0);
5145 
5146 	memcg_offline_kmem(memcg);
5147 	wb_memcg_offline(memcg);
5148 
5149 	drain_all_stock(memcg);
5150 
5151 	mem_cgroup_id_put(memcg);
5152 }
5153 
5154 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5155 {
5156 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5157 
5158 	invalidate_reclaim_iterators(memcg);
5159 }
5160 
5161 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5162 {
5163 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5164 	int __maybe_unused i;
5165 
5166 #ifdef CONFIG_CGROUP_WRITEBACK
5167 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5168 		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5169 #endif
5170 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5171 		static_branch_dec(&memcg_sockets_enabled_key);
5172 
5173 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5174 		static_branch_dec(&memcg_sockets_enabled_key);
5175 
5176 	vmpressure_cleanup(&memcg->vmpressure);
5177 	cancel_work_sync(&memcg->high_work);
5178 	mem_cgroup_remove_from_trees(memcg);
5179 	memcg_free_shrinker_maps(memcg);
5180 	memcg_free_kmem(memcg);
5181 	mem_cgroup_free(memcg);
5182 }
5183 
5184 /**
5185  * mem_cgroup_css_reset - reset the states of a mem_cgroup
5186  * @css: the target css
5187  *
5188  * Reset the states of the mem_cgroup associated with @css.  This is
5189  * invoked when the userland requests disabling on the default hierarchy
5190  * but the memcg is pinned through dependency.  The memcg should stop
5191  * applying policies and should revert to the vanilla state as it may be
5192  * made visible again.
5193  *
5194  * The current implementation only resets the essential configurations.
5195  * This needs to be expanded to cover all the visible parts.
5196  */
5197 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5198 {
5199 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5200 
5201 	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5202 	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5203 	page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
5204 	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5205 	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5206 	page_counter_set_min(&memcg->memory, 0);
5207 	page_counter_set_low(&memcg->memory, 0);
5208 	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5209 	memcg->soft_limit = PAGE_COUNTER_MAX;
5210 	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5211 	memcg_wb_domain_size_changed(memcg);
5212 }
5213 
5214 #ifdef CONFIG_MMU
5215 /* Handlers for move charge at task migration. */
5216 static int mem_cgroup_do_precharge(unsigned long count)
5217 {
5218 	int ret;
5219 
5220 	/* Try a single bulk charge without reclaim first, kswapd may wake */
5221 	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5222 	if (!ret) {
5223 		mc.precharge += count;
5224 		return ret;
5225 	}
5226 
5227 	/* Try charges one by one with reclaim, but do not retry */
5228 	while (count--) {
5229 		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5230 		if (ret)
5231 			return ret;
5232 		mc.precharge++;
5233 		cond_resched();
5234 	}
5235 	return 0;
5236 }
5237 
5238 union mc_target {
5239 	struct page	*page;
5240 	swp_entry_t	ent;
5241 };
5242 
5243 enum mc_target_type {
5244 	MC_TARGET_NONE = 0,
5245 	MC_TARGET_PAGE,
5246 	MC_TARGET_SWAP,
5247 	MC_TARGET_DEVICE,
5248 };
5249 
5250 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5251 						unsigned long addr, pte_t ptent)
5252 {
5253 	struct page *page = vm_normal_page(vma, addr, ptent);
5254 
5255 	if (!page || !page_mapped(page))
5256 		return NULL;
5257 	if (PageAnon(page)) {
5258 		if (!(mc.flags & MOVE_ANON))
5259 			return NULL;
5260 	} else {
5261 		if (!(mc.flags & MOVE_FILE))
5262 			return NULL;
5263 	}
5264 	if (!get_page_unless_zero(page))
5265 		return NULL;
5266 
5267 	return page;
5268 }
5269 
5270 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5271 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5272 			pte_t ptent, swp_entry_t *entry)
5273 {
5274 	struct page *page = NULL;
5275 	swp_entry_t ent = pte_to_swp_entry(ptent);
5276 
5277 	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
5278 		return NULL;
5279 
5280 	/*
5281 	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5282 	 * a device and because they are not accessible by CPU they are store
5283 	 * as special swap entry in the CPU page table.
5284 	 */
5285 	if (is_device_private_entry(ent)) {
5286 		page = device_private_entry_to_page(ent);
5287 		/*
5288 		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5289 		 * a refcount of 1 when free (unlike normal page)
5290 		 */
5291 		if (!page_ref_add_unless(page, 1, 1))
5292 			return NULL;
5293 		return page;
5294 	}
5295 
5296 	/*
5297 	 * Because lookup_swap_cache() updates some statistics counter,
5298 	 * we call find_get_page() with swapper_space directly.
5299 	 */
5300 	page = find_get_page(swap_address_space(ent), swp_offset(ent));
5301 	entry->val = ent.val;
5302 
5303 	return page;
5304 }
5305 #else
5306 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5307 			pte_t ptent, swp_entry_t *entry)
5308 {
5309 	return NULL;
5310 }
5311 #endif
5312 
5313 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5314 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5315 {
5316 	struct page *page = NULL;
5317 	struct address_space *mapping;
5318 	pgoff_t pgoff;
5319 
5320 	if (!vma->vm_file) /* anonymous vma */
5321 		return NULL;
5322 	if (!(mc.flags & MOVE_FILE))
5323 		return NULL;
5324 
5325 	mapping = vma->vm_file->f_mapping;
5326 	pgoff = linear_page_index(vma, addr);
5327 
5328 	/* page is moved even if it's not RSS of this task(page-faulted). */
5329 #ifdef CONFIG_SWAP
5330 	/* shmem/tmpfs may report page out on swap: account for that too. */
5331 	if (shmem_mapping(mapping)) {
5332 		page = find_get_entry(mapping, pgoff);
5333 		if (xa_is_value(page)) {
5334 			swp_entry_t swp = radix_to_swp_entry(page);
5335 			*entry = swp;
5336 			page = find_get_page(swap_address_space(swp),
5337 					     swp_offset(swp));
5338 		}
5339 	} else
5340 		page = find_get_page(mapping, pgoff);
5341 #else
5342 	page = find_get_page(mapping, pgoff);
5343 #endif
5344 	return page;
5345 }
5346 
5347 /**
5348  * mem_cgroup_move_account - move account of the page
5349  * @page: the page
5350  * @compound: charge the page as compound or small page
5351  * @from: mem_cgroup which the page is moved from.
5352  * @to:	mem_cgroup which the page is moved to. @from != @to.
5353  *
5354  * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5355  *
5356  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5357  * from old cgroup.
5358  */
5359 static int mem_cgroup_move_account(struct page *page,
5360 				   bool compound,
5361 				   struct mem_cgroup *from,
5362 				   struct mem_cgroup *to)
5363 {
5364 	struct lruvec *from_vec, *to_vec;
5365 	struct pglist_data *pgdat;
5366 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5367 	int ret;
5368 
5369 	VM_BUG_ON(from == to);
5370 	VM_BUG_ON_PAGE(PageLRU(page), page);
5371 	VM_BUG_ON(compound && !PageTransHuge(page));
5372 
5373 	/*
5374 	 * Prevent mem_cgroup_migrate() from looking at
5375 	 * page->mem_cgroup of its source page while we change it.
5376 	 */
5377 	ret = -EBUSY;
5378 	if (!trylock_page(page))
5379 		goto out;
5380 
5381 	ret = -EINVAL;
5382 	if (page->mem_cgroup != from)
5383 		goto out_unlock;
5384 
5385 	pgdat = page_pgdat(page);
5386 	from_vec = mem_cgroup_lruvec(from, pgdat);
5387 	to_vec = mem_cgroup_lruvec(to, pgdat);
5388 
5389 	lock_page_memcg(page);
5390 
5391 	if (PageAnon(page)) {
5392 		if (page_mapped(page)) {
5393 			__mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5394 			__mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5395 			if (PageTransHuge(page)) {
5396 				__mod_lruvec_state(from_vec, NR_ANON_THPS,
5397 						   -nr_pages);
5398 				__mod_lruvec_state(to_vec, NR_ANON_THPS,
5399 						   nr_pages);
5400 			}
5401 
5402 		}
5403 	} else {
5404 		__mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5405 		__mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5406 
5407 		if (PageSwapBacked(page)) {
5408 			__mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5409 			__mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5410 		}
5411 
5412 		if (page_mapped(page)) {
5413 			__mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5414 			__mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5415 		}
5416 
5417 		if (PageDirty(page)) {
5418 			struct address_space *mapping = page_mapping(page);
5419 
5420 			if (mapping_cap_account_dirty(mapping)) {
5421 				__mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5422 						   -nr_pages);
5423 				__mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5424 						   nr_pages);
5425 			}
5426 		}
5427 	}
5428 
5429 	if (PageWriteback(page)) {
5430 		__mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5431 		__mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5432 	}
5433 
5434 	/*
5435 	 * All state has been migrated, let's switch to the new memcg.
5436 	 *
5437 	 * It is safe to change page->mem_cgroup here because the page
5438 	 * is referenced, charged, isolated, and locked: we can't race
5439 	 * with (un)charging, migration, LRU putback, or anything else
5440 	 * that would rely on a stable page->mem_cgroup.
5441 	 *
5442 	 * Note that lock_page_memcg is a memcg lock, not a page lock,
5443 	 * to save space. As soon as we switch page->mem_cgroup to a
5444 	 * new memcg that isn't locked, the above state can change
5445 	 * concurrently again. Make sure we're truly done with it.
5446 	 */
5447 	smp_mb();
5448 
5449 	page->mem_cgroup = to; 	/* caller should have done css_get */
5450 
5451 	__unlock_page_memcg(from);
5452 
5453 	ret = 0;
5454 
5455 	local_irq_disable();
5456 	mem_cgroup_charge_statistics(to, page, nr_pages);
5457 	memcg_check_events(to, page);
5458 	mem_cgroup_charge_statistics(from, page, -nr_pages);
5459 	memcg_check_events(from, page);
5460 	local_irq_enable();
5461 out_unlock:
5462 	unlock_page(page);
5463 out:
5464 	return ret;
5465 }
5466 
5467 /**
5468  * get_mctgt_type - get target type of moving charge
5469  * @vma: the vma the pte to be checked belongs
5470  * @addr: the address corresponding to the pte to be checked
5471  * @ptent: the pte to be checked
5472  * @target: the pointer the target page or swap ent will be stored(can be NULL)
5473  *
5474  * Returns
5475  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5476  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5477  *     move charge. if @target is not NULL, the page is stored in target->page
5478  *     with extra refcnt got(Callers should handle it).
5479  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5480  *     target for charge migration. if @target is not NULL, the entry is stored
5481  *     in target->ent.
5482  *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PRIVATE
5483  *     (so ZONE_DEVICE page and thus not on the lru).
5484  *     For now we such page is charge like a regular page would be as for all
5485  *     intent and purposes it is just special memory taking the place of a
5486  *     regular page.
5487  *
5488  *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5489  *
5490  * Called with pte lock held.
5491  */
5492 
5493 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5494 		unsigned long addr, pte_t ptent, union mc_target *target)
5495 {
5496 	struct page *page = NULL;
5497 	enum mc_target_type ret = MC_TARGET_NONE;
5498 	swp_entry_t ent = { .val = 0 };
5499 
5500 	if (pte_present(ptent))
5501 		page = mc_handle_present_pte(vma, addr, ptent);
5502 	else if (is_swap_pte(ptent))
5503 		page = mc_handle_swap_pte(vma, ptent, &ent);
5504 	else if (pte_none(ptent))
5505 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
5506 
5507 	if (!page && !ent.val)
5508 		return ret;
5509 	if (page) {
5510 		/*
5511 		 * Do only loose check w/o serialization.
5512 		 * mem_cgroup_move_account() checks the page is valid or
5513 		 * not under LRU exclusion.
5514 		 */
5515 		if (page->mem_cgroup == mc.from) {
5516 			ret = MC_TARGET_PAGE;
5517 			if (is_device_private_page(page))
5518 				ret = MC_TARGET_DEVICE;
5519 			if (target)
5520 				target->page = page;
5521 		}
5522 		if (!ret || !target)
5523 			put_page(page);
5524 	}
5525 	/*
5526 	 * There is a swap entry and a page doesn't exist or isn't charged.
5527 	 * But we cannot move a tail-page in a THP.
5528 	 */
5529 	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5530 	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5531 		ret = MC_TARGET_SWAP;
5532 		if (target)
5533 			target->ent = ent;
5534 	}
5535 	return ret;
5536 }
5537 
5538 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5539 /*
5540  * We don't consider PMD mapped swapping or file mapped pages because THP does
5541  * not support them for now.
5542  * Caller should make sure that pmd_trans_huge(pmd) is true.
5543  */
5544 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5545 		unsigned long addr, pmd_t pmd, union mc_target *target)
5546 {
5547 	struct page *page = NULL;
5548 	enum mc_target_type ret = MC_TARGET_NONE;
5549 
5550 	if (unlikely(is_swap_pmd(pmd))) {
5551 		VM_BUG_ON(thp_migration_supported() &&
5552 				  !is_pmd_migration_entry(pmd));
5553 		return ret;
5554 	}
5555 	page = pmd_page(pmd);
5556 	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5557 	if (!(mc.flags & MOVE_ANON))
5558 		return ret;
5559 	if (page->mem_cgroup == mc.from) {
5560 		ret = MC_TARGET_PAGE;
5561 		if (target) {
5562 			get_page(page);
5563 			target->page = page;
5564 		}
5565 	}
5566 	return ret;
5567 }
5568 #else
5569 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5570 		unsigned long addr, pmd_t pmd, union mc_target *target)
5571 {
5572 	return MC_TARGET_NONE;
5573 }
5574 #endif
5575 
5576 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5577 					unsigned long addr, unsigned long end,
5578 					struct mm_walk *walk)
5579 {
5580 	struct vm_area_struct *vma = walk->vma;
5581 	pte_t *pte;
5582 	spinlock_t *ptl;
5583 
5584 	ptl = pmd_trans_huge_lock(pmd, vma);
5585 	if (ptl) {
5586 		/*
5587 		 * Note their can not be MC_TARGET_DEVICE for now as we do not
5588 		 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5589 		 * this might change.
5590 		 */
5591 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5592 			mc.precharge += HPAGE_PMD_NR;
5593 		spin_unlock(ptl);
5594 		return 0;
5595 	}
5596 
5597 	if (pmd_trans_unstable(pmd))
5598 		return 0;
5599 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5600 	for (; addr != end; pte++, addr += PAGE_SIZE)
5601 		if (get_mctgt_type(vma, addr, *pte, NULL))
5602 			mc.precharge++;	/* increment precharge temporarily */
5603 	pte_unmap_unlock(pte - 1, ptl);
5604 	cond_resched();
5605 
5606 	return 0;
5607 }
5608 
5609 static const struct mm_walk_ops precharge_walk_ops = {
5610 	.pmd_entry	= mem_cgroup_count_precharge_pte_range,
5611 };
5612 
5613 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5614 {
5615 	unsigned long precharge;
5616 
5617 	mmap_read_lock(mm);
5618 	walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5619 	mmap_read_unlock(mm);
5620 
5621 	precharge = mc.precharge;
5622 	mc.precharge = 0;
5623 
5624 	return precharge;
5625 }
5626 
5627 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5628 {
5629 	unsigned long precharge = mem_cgroup_count_precharge(mm);
5630 
5631 	VM_BUG_ON(mc.moving_task);
5632 	mc.moving_task = current;
5633 	return mem_cgroup_do_precharge(precharge);
5634 }
5635 
5636 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5637 static void __mem_cgroup_clear_mc(void)
5638 {
5639 	struct mem_cgroup *from = mc.from;
5640 	struct mem_cgroup *to = mc.to;
5641 
5642 	/* we must uncharge all the leftover precharges from mc.to */
5643 	if (mc.precharge) {
5644 		cancel_charge(mc.to, mc.precharge);
5645 		mc.precharge = 0;
5646 	}
5647 	/*
5648 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5649 	 * we must uncharge here.
5650 	 */
5651 	if (mc.moved_charge) {
5652 		cancel_charge(mc.from, mc.moved_charge);
5653 		mc.moved_charge = 0;
5654 	}
5655 	/* we must fixup refcnts and charges */
5656 	if (mc.moved_swap) {
5657 		/* uncharge swap account from the old cgroup */
5658 		if (!mem_cgroup_is_root(mc.from))
5659 			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5660 
5661 		mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5662 
5663 		/*
5664 		 * we charged both to->memory and to->memsw, so we
5665 		 * should uncharge to->memory.
5666 		 */
5667 		if (!mem_cgroup_is_root(mc.to))
5668 			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5669 
5670 		mem_cgroup_id_get_many(mc.to, mc.moved_swap);
5671 		css_put_many(&mc.to->css, mc.moved_swap);
5672 
5673 		mc.moved_swap = 0;
5674 	}
5675 	memcg_oom_recover(from);
5676 	memcg_oom_recover(to);
5677 	wake_up_all(&mc.waitq);
5678 }
5679 
5680 static void mem_cgroup_clear_mc(void)
5681 {
5682 	struct mm_struct *mm = mc.mm;
5683 
5684 	/*
5685 	 * we must clear moving_task before waking up waiters at the end of
5686 	 * task migration.
5687 	 */
5688 	mc.moving_task = NULL;
5689 	__mem_cgroup_clear_mc();
5690 	spin_lock(&mc.lock);
5691 	mc.from = NULL;
5692 	mc.to = NULL;
5693 	mc.mm = NULL;
5694 	spin_unlock(&mc.lock);
5695 
5696 	mmput(mm);
5697 }
5698 
5699 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5700 {
5701 	struct cgroup_subsys_state *css;
5702 	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5703 	struct mem_cgroup *from;
5704 	struct task_struct *leader, *p;
5705 	struct mm_struct *mm;
5706 	unsigned long move_flags;
5707 	int ret = 0;
5708 
5709 	/* charge immigration isn't supported on the default hierarchy */
5710 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5711 		return 0;
5712 
5713 	/*
5714 	 * Multi-process migrations only happen on the default hierarchy
5715 	 * where charge immigration is not used.  Perform charge
5716 	 * immigration if @tset contains a leader and whine if there are
5717 	 * multiple.
5718 	 */
5719 	p = NULL;
5720 	cgroup_taskset_for_each_leader(leader, css, tset) {
5721 		WARN_ON_ONCE(p);
5722 		p = leader;
5723 		memcg = mem_cgroup_from_css(css);
5724 	}
5725 	if (!p)
5726 		return 0;
5727 
5728 	/*
5729 	 * We are now commited to this value whatever it is. Changes in this
5730 	 * tunable will only affect upcoming migrations, not the current one.
5731 	 * So we need to save it, and keep it going.
5732 	 */
5733 	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5734 	if (!move_flags)
5735 		return 0;
5736 
5737 	from = mem_cgroup_from_task(p);
5738 
5739 	VM_BUG_ON(from == memcg);
5740 
5741 	mm = get_task_mm(p);
5742 	if (!mm)
5743 		return 0;
5744 	/* We move charges only when we move a owner of the mm */
5745 	if (mm->owner == p) {
5746 		VM_BUG_ON(mc.from);
5747 		VM_BUG_ON(mc.to);
5748 		VM_BUG_ON(mc.precharge);
5749 		VM_BUG_ON(mc.moved_charge);
5750 		VM_BUG_ON(mc.moved_swap);
5751 
5752 		spin_lock(&mc.lock);
5753 		mc.mm = mm;
5754 		mc.from = from;
5755 		mc.to = memcg;
5756 		mc.flags = move_flags;
5757 		spin_unlock(&mc.lock);
5758 		/* We set mc.moving_task later */
5759 
5760 		ret = mem_cgroup_precharge_mc(mm);
5761 		if (ret)
5762 			mem_cgroup_clear_mc();
5763 	} else {
5764 		mmput(mm);
5765 	}
5766 	return ret;
5767 }
5768 
5769 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5770 {
5771 	if (mc.to)
5772 		mem_cgroup_clear_mc();
5773 }
5774 
5775 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5776 				unsigned long addr, unsigned long end,
5777 				struct mm_walk *walk)
5778 {
5779 	int ret = 0;
5780 	struct vm_area_struct *vma = walk->vma;
5781 	pte_t *pte;
5782 	spinlock_t *ptl;
5783 	enum mc_target_type target_type;
5784 	union mc_target target;
5785 	struct page *page;
5786 
5787 	ptl = pmd_trans_huge_lock(pmd, vma);
5788 	if (ptl) {
5789 		if (mc.precharge < HPAGE_PMD_NR) {
5790 			spin_unlock(ptl);
5791 			return 0;
5792 		}
5793 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5794 		if (target_type == MC_TARGET_PAGE) {
5795 			page = target.page;
5796 			if (!isolate_lru_page(page)) {
5797 				if (!mem_cgroup_move_account(page, true,
5798 							     mc.from, mc.to)) {
5799 					mc.precharge -= HPAGE_PMD_NR;
5800 					mc.moved_charge += HPAGE_PMD_NR;
5801 				}
5802 				putback_lru_page(page);
5803 			}
5804 			put_page(page);
5805 		} else if (target_type == MC_TARGET_DEVICE) {
5806 			page = target.page;
5807 			if (!mem_cgroup_move_account(page, true,
5808 						     mc.from, mc.to)) {
5809 				mc.precharge -= HPAGE_PMD_NR;
5810 				mc.moved_charge += HPAGE_PMD_NR;
5811 			}
5812 			put_page(page);
5813 		}
5814 		spin_unlock(ptl);
5815 		return 0;
5816 	}
5817 
5818 	if (pmd_trans_unstable(pmd))
5819 		return 0;
5820 retry:
5821 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5822 	for (; addr != end; addr += PAGE_SIZE) {
5823 		pte_t ptent = *(pte++);
5824 		bool device = false;
5825 		swp_entry_t ent;
5826 
5827 		if (!mc.precharge)
5828 			break;
5829 
5830 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5831 		case MC_TARGET_DEVICE:
5832 			device = true;
5833 			fallthrough;
5834 		case MC_TARGET_PAGE:
5835 			page = target.page;
5836 			/*
5837 			 * We can have a part of the split pmd here. Moving it
5838 			 * can be done but it would be too convoluted so simply
5839 			 * ignore such a partial THP and keep it in original
5840 			 * memcg. There should be somebody mapping the head.
5841 			 */
5842 			if (PageTransCompound(page))
5843 				goto put;
5844 			if (!device && isolate_lru_page(page))
5845 				goto put;
5846 			if (!mem_cgroup_move_account(page, false,
5847 						mc.from, mc.to)) {
5848 				mc.precharge--;
5849 				/* we uncharge from mc.from later. */
5850 				mc.moved_charge++;
5851 			}
5852 			if (!device)
5853 				putback_lru_page(page);
5854 put:			/* get_mctgt_type() gets the page */
5855 			put_page(page);
5856 			break;
5857 		case MC_TARGET_SWAP:
5858 			ent = target.ent;
5859 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5860 				mc.precharge--;
5861 				/* we fixup refcnts and charges later. */
5862 				mc.moved_swap++;
5863 			}
5864 			break;
5865 		default:
5866 			break;
5867 		}
5868 	}
5869 	pte_unmap_unlock(pte - 1, ptl);
5870 	cond_resched();
5871 
5872 	if (addr != end) {
5873 		/*
5874 		 * We have consumed all precharges we got in can_attach().
5875 		 * We try charge one by one, but don't do any additional
5876 		 * charges to mc.to if we have failed in charge once in attach()
5877 		 * phase.
5878 		 */
5879 		ret = mem_cgroup_do_precharge(1);
5880 		if (!ret)
5881 			goto retry;
5882 	}
5883 
5884 	return ret;
5885 }
5886 
5887 static const struct mm_walk_ops charge_walk_ops = {
5888 	.pmd_entry	= mem_cgroup_move_charge_pte_range,
5889 };
5890 
5891 static void mem_cgroup_move_charge(void)
5892 {
5893 	lru_add_drain_all();
5894 	/*
5895 	 * Signal lock_page_memcg() to take the memcg's move_lock
5896 	 * while we're moving its pages to another memcg. Then wait
5897 	 * for already started RCU-only updates to finish.
5898 	 */
5899 	atomic_inc(&mc.from->moving_account);
5900 	synchronize_rcu();
5901 retry:
5902 	if (unlikely(!mmap_read_trylock(mc.mm))) {
5903 		/*
5904 		 * Someone who are holding the mmap_lock might be waiting in
5905 		 * waitq. So we cancel all extra charges, wake up all waiters,
5906 		 * and retry. Because we cancel precharges, we might not be able
5907 		 * to move enough charges, but moving charge is a best-effort
5908 		 * feature anyway, so it wouldn't be a big problem.
5909 		 */
5910 		__mem_cgroup_clear_mc();
5911 		cond_resched();
5912 		goto retry;
5913 	}
5914 	/*
5915 	 * When we have consumed all precharges and failed in doing
5916 	 * additional charge, the page walk just aborts.
5917 	 */
5918 	walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
5919 			NULL);
5920 
5921 	mmap_read_unlock(mc.mm);
5922 	atomic_dec(&mc.from->moving_account);
5923 }
5924 
5925 static void mem_cgroup_move_task(void)
5926 {
5927 	if (mc.to) {
5928 		mem_cgroup_move_charge();
5929 		mem_cgroup_clear_mc();
5930 	}
5931 }
5932 #else	/* !CONFIG_MMU */
5933 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5934 {
5935 	return 0;
5936 }
5937 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5938 {
5939 }
5940 static void mem_cgroup_move_task(void)
5941 {
5942 }
5943 #endif
5944 
5945 /*
5946  * Cgroup retains root cgroups across [un]mount cycles making it necessary
5947  * to verify whether we're attached to the default hierarchy on each mount
5948  * attempt.
5949  */
5950 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5951 {
5952 	/*
5953 	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5954 	 * guarantees that @root doesn't have any children, so turning it
5955 	 * on for the root memcg is enough.
5956 	 */
5957 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5958 		root_mem_cgroup->use_hierarchy = true;
5959 	else
5960 		root_mem_cgroup->use_hierarchy = false;
5961 }
5962 
5963 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
5964 {
5965 	if (value == PAGE_COUNTER_MAX)
5966 		seq_puts(m, "max\n");
5967 	else
5968 		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
5969 
5970 	return 0;
5971 }
5972 
5973 static u64 memory_current_read(struct cgroup_subsys_state *css,
5974 			       struct cftype *cft)
5975 {
5976 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5977 
5978 	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5979 }
5980 
5981 static int memory_min_show(struct seq_file *m, void *v)
5982 {
5983 	return seq_puts_memcg_tunable(m,
5984 		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
5985 }
5986 
5987 static ssize_t memory_min_write(struct kernfs_open_file *of,
5988 				char *buf, size_t nbytes, loff_t off)
5989 {
5990 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5991 	unsigned long min;
5992 	int err;
5993 
5994 	buf = strstrip(buf);
5995 	err = page_counter_memparse(buf, "max", &min);
5996 	if (err)
5997 		return err;
5998 
5999 	page_counter_set_min(&memcg->memory, min);
6000 
6001 	return nbytes;
6002 }
6003 
6004 static int memory_low_show(struct seq_file *m, void *v)
6005 {
6006 	return seq_puts_memcg_tunable(m,
6007 		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6008 }
6009 
6010 static ssize_t memory_low_write(struct kernfs_open_file *of,
6011 				char *buf, size_t nbytes, loff_t off)
6012 {
6013 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6014 	unsigned long low;
6015 	int err;
6016 
6017 	buf = strstrip(buf);
6018 	err = page_counter_memparse(buf, "max", &low);
6019 	if (err)
6020 		return err;
6021 
6022 	page_counter_set_low(&memcg->memory, low);
6023 
6024 	return nbytes;
6025 }
6026 
6027 static int memory_high_show(struct seq_file *m, void *v)
6028 {
6029 	return seq_puts_memcg_tunable(m,
6030 		READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6031 }
6032 
6033 static ssize_t memory_high_write(struct kernfs_open_file *of,
6034 				 char *buf, size_t nbytes, loff_t off)
6035 {
6036 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6037 	unsigned int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6038 	bool drained = false;
6039 	unsigned long high;
6040 	int err;
6041 
6042 	buf = strstrip(buf);
6043 	err = page_counter_memparse(buf, "max", &high);
6044 	if (err)
6045 		return err;
6046 
6047 	page_counter_set_high(&memcg->memory, high);
6048 
6049 	for (;;) {
6050 		unsigned long nr_pages = page_counter_read(&memcg->memory);
6051 		unsigned long reclaimed;
6052 
6053 		if (nr_pages <= high)
6054 			break;
6055 
6056 		if (signal_pending(current))
6057 			break;
6058 
6059 		if (!drained) {
6060 			drain_all_stock(memcg);
6061 			drained = true;
6062 			continue;
6063 		}
6064 
6065 		reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6066 							 GFP_KERNEL, true);
6067 
6068 		if (!reclaimed && !nr_retries--)
6069 			break;
6070 	}
6071 
6072 	return nbytes;
6073 }
6074 
6075 static int memory_max_show(struct seq_file *m, void *v)
6076 {
6077 	return seq_puts_memcg_tunable(m,
6078 		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6079 }
6080 
6081 static ssize_t memory_max_write(struct kernfs_open_file *of,
6082 				char *buf, size_t nbytes, loff_t off)
6083 {
6084 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6085 	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
6086 	bool drained = false;
6087 	unsigned long max;
6088 	int err;
6089 
6090 	buf = strstrip(buf);
6091 	err = page_counter_memparse(buf, "max", &max);
6092 	if (err)
6093 		return err;
6094 
6095 	xchg(&memcg->memory.max, max);
6096 
6097 	for (;;) {
6098 		unsigned long nr_pages = page_counter_read(&memcg->memory);
6099 
6100 		if (nr_pages <= max)
6101 			break;
6102 
6103 		if (signal_pending(current))
6104 			break;
6105 
6106 		if (!drained) {
6107 			drain_all_stock(memcg);
6108 			drained = true;
6109 			continue;
6110 		}
6111 
6112 		if (nr_reclaims) {
6113 			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6114 							  GFP_KERNEL, true))
6115 				nr_reclaims--;
6116 			continue;
6117 		}
6118 
6119 		memcg_memory_event(memcg, MEMCG_OOM);
6120 		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6121 			break;
6122 	}
6123 
6124 	memcg_wb_domain_size_changed(memcg);
6125 	return nbytes;
6126 }
6127 
6128 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6129 {
6130 	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6131 	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6132 	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6133 	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6134 	seq_printf(m, "oom_kill %lu\n",
6135 		   atomic_long_read(&events[MEMCG_OOM_KILL]));
6136 }
6137 
6138 static int memory_events_show(struct seq_file *m, void *v)
6139 {
6140 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6141 
6142 	__memory_events_show(m, memcg->memory_events);
6143 	return 0;
6144 }
6145 
6146 static int memory_events_local_show(struct seq_file *m, void *v)
6147 {
6148 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6149 
6150 	__memory_events_show(m, memcg->memory_events_local);
6151 	return 0;
6152 }
6153 
6154 static int memory_stat_show(struct seq_file *m, void *v)
6155 {
6156 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6157 	char *buf;
6158 
6159 	buf = memory_stat_format(memcg);
6160 	if (!buf)
6161 		return -ENOMEM;
6162 	seq_puts(m, buf);
6163 	kfree(buf);
6164 	return 0;
6165 }
6166 
6167 static int memory_oom_group_show(struct seq_file *m, void *v)
6168 {
6169 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6170 
6171 	seq_printf(m, "%d\n", memcg->oom_group);
6172 
6173 	return 0;
6174 }
6175 
6176 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6177 				      char *buf, size_t nbytes, loff_t off)
6178 {
6179 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6180 	int ret, oom_group;
6181 
6182 	buf = strstrip(buf);
6183 	if (!buf)
6184 		return -EINVAL;
6185 
6186 	ret = kstrtoint(buf, 0, &oom_group);
6187 	if (ret)
6188 		return ret;
6189 
6190 	if (oom_group != 0 && oom_group != 1)
6191 		return -EINVAL;
6192 
6193 	memcg->oom_group = oom_group;
6194 
6195 	return nbytes;
6196 }
6197 
6198 static struct cftype memory_files[] = {
6199 	{
6200 		.name = "current",
6201 		.flags = CFTYPE_NOT_ON_ROOT,
6202 		.read_u64 = memory_current_read,
6203 	},
6204 	{
6205 		.name = "min",
6206 		.flags = CFTYPE_NOT_ON_ROOT,
6207 		.seq_show = memory_min_show,
6208 		.write = memory_min_write,
6209 	},
6210 	{
6211 		.name = "low",
6212 		.flags = CFTYPE_NOT_ON_ROOT,
6213 		.seq_show = memory_low_show,
6214 		.write = memory_low_write,
6215 	},
6216 	{
6217 		.name = "high",
6218 		.flags = CFTYPE_NOT_ON_ROOT,
6219 		.seq_show = memory_high_show,
6220 		.write = memory_high_write,
6221 	},
6222 	{
6223 		.name = "max",
6224 		.flags = CFTYPE_NOT_ON_ROOT,
6225 		.seq_show = memory_max_show,
6226 		.write = memory_max_write,
6227 	},
6228 	{
6229 		.name = "events",
6230 		.flags = CFTYPE_NOT_ON_ROOT,
6231 		.file_offset = offsetof(struct mem_cgroup, events_file),
6232 		.seq_show = memory_events_show,
6233 	},
6234 	{
6235 		.name = "events.local",
6236 		.flags = CFTYPE_NOT_ON_ROOT,
6237 		.file_offset = offsetof(struct mem_cgroup, events_local_file),
6238 		.seq_show = memory_events_local_show,
6239 	},
6240 	{
6241 		.name = "stat",
6242 		.seq_show = memory_stat_show,
6243 	},
6244 	{
6245 		.name = "oom.group",
6246 		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6247 		.seq_show = memory_oom_group_show,
6248 		.write = memory_oom_group_write,
6249 	},
6250 	{ }	/* terminate */
6251 };
6252 
6253 struct cgroup_subsys memory_cgrp_subsys = {
6254 	.css_alloc = mem_cgroup_css_alloc,
6255 	.css_online = mem_cgroup_css_online,
6256 	.css_offline = mem_cgroup_css_offline,
6257 	.css_released = mem_cgroup_css_released,
6258 	.css_free = mem_cgroup_css_free,
6259 	.css_reset = mem_cgroup_css_reset,
6260 	.can_attach = mem_cgroup_can_attach,
6261 	.cancel_attach = mem_cgroup_cancel_attach,
6262 	.post_attach = mem_cgroup_move_task,
6263 	.bind = mem_cgroup_bind,
6264 	.dfl_cftypes = memory_files,
6265 	.legacy_cftypes = mem_cgroup_legacy_files,
6266 	.early_init = 0,
6267 };
6268 
6269 /*
6270  * This function calculates an individual cgroup's effective
6271  * protection which is derived from its own memory.min/low, its
6272  * parent's and siblings' settings, as well as the actual memory
6273  * distribution in the tree.
6274  *
6275  * The following rules apply to the effective protection values:
6276  *
6277  * 1. At the first level of reclaim, effective protection is equal to
6278  *    the declared protection in memory.min and memory.low.
6279  *
6280  * 2. To enable safe delegation of the protection configuration, at
6281  *    subsequent levels the effective protection is capped to the
6282  *    parent's effective protection.
6283  *
6284  * 3. To make complex and dynamic subtrees easier to configure, the
6285  *    user is allowed to overcommit the declared protection at a given
6286  *    level. If that is the case, the parent's effective protection is
6287  *    distributed to the children in proportion to how much protection
6288  *    they have declared and how much of it they are utilizing.
6289  *
6290  *    This makes distribution proportional, but also work-conserving:
6291  *    if one cgroup claims much more protection than it uses memory,
6292  *    the unused remainder is available to its siblings.
6293  *
6294  * 4. Conversely, when the declared protection is undercommitted at a
6295  *    given level, the distribution of the larger parental protection
6296  *    budget is NOT proportional. A cgroup's protection from a sibling
6297  *    is capped to its own memory.min/low setting.
6298  *
6299  * 5. However, to allow protecting recursive subtrees from each other
6300  *    without having to declare each individual cgroup's fixed share
6301  *    of the ancestor's claim to protection, any unutilized -
6302  *    "floating" - protection from up the tree is distributed in
6303  *    proportion to each cgroup's *usage*. This makes the protection
6304  *    neutral wrt sibling cgroups and lets them compete freely over
6305  *    the shared parental protection budget, but it protects the
6306  *    subtree as a whole from neighboring subtrees.
6307  *
6308  * Note that 4. and 5. are not in conflict: 4. is about protecting
6309  * against immediate siblings whereas 5. is about protecting against
6310  * neighboring subtrees.
6311  */
6312 static unsigned long effective_protection(unsigned long usage,
6313 					  unsigned long parent_usage,
6314 					  unsigned long setting,
6315 					  unsigned long parent_effective,
6316 					  unsigned long siblings_protected)
6317 {
6318 	unsigned long protected;
6319 	unsigned long ep;
6320 
6321 	protected = min(usage, setting);
6322 	/*
6323 	 * If all cgroups at this level combined claim and use more
6324 	 * protection then what the parent affords them, distribute
6325 	 * shares in proportion to utilization.
6326 	 *
6327 	 * We are using actual utilization rather than the statically
6328 	 * claimed protection in order to be work-conserving: claimed
6329 	 * but unused protection is available to siblings that would
6330 	 * otherwise get a smaller chunk than what they claimed.
6331 	 */
6332 	if (siblings_protected > parent_effective)
6333 		return protected * parent_effective / siblings_protected;
6334 
6335 	/*
6336 	 * Ok, utilized protection of all children is within what the
6337 	 * parent affords them, so we know whatever this child claims
6338 	 * and utilizes is effectively protected.
6339 	 *
6340 	 * If there is unprotected usage beyond this value, reclaim
6341 	 * will apply pressure in proportion to that amount.
6342 	 *
6343 	 * If there is unutilized protection, the cgroup will be fully
6344 	 * shielded from reclaim, but we do return a smaller value for
6345 	 * protection than what the group could enjoy in theory. This
6346 	 * is okay. With the overcommit distribution above, effective
6347 	 * protection is always dependent on how memory is actually
6348 	 * consumed among the siblings anyway.
6349 	 */
6350 	ep = protected;
6351 
6352 	/*
6353 	 * If the children aren't claiming (all of) the protection
6354 	 * afforded to them by the parent, distribute the remainder in
6355 	 * proportion to the (unprotected) memory of each cgroup. That
6356 	 * way, cgroups that aren't explicitly prioritized wrt each
6357 	 * other compete freely over the allowance, but they are
6358 	 * collectively protected from neighboring trees.
6359 	 *
6360 	 * We're using unprotected memory for the weight so that if
6361 	 * some cgroups DO claim explicit protection, we don't protect
6362 	 * the same bytes twice.
6363 	 */
6364 	if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6365 		return ep;
6366 
6367 	if (parent_effective > siblings_protected && usage > protected) {
6368 		unsigned long unclaimed;
6369 
6370 		unclaimed = parent_effective - siblings_protected;
6371 		unclaimed *= usage - protected;
6372 		unclaimed /= parent_usage - siblings_protected;
6373 
6374 		ep += unclaimed;
6375 	}
6376 
6377 	return ep;
6378 }
6379 
6380 /**
6381  * mem_cgroup_protected - check if memory consumption is in the normal range
6382  * @root: the top ancestor of the sub-tree being checked
6383  * @memcg: the memory cgroup to check
6384  *
6385  * WARNING: This function is not stateless! It can only be used as part
6386  *          of a top-down tree iteration, not for isolated queries.
6387  *
6388  * Returns one of the following:
6389  *   MEMCG_PROT_NONE: cgroup memory is not protected
6390  *   MEMCG_PROT_LOW: cgroup memory is protected as long there is
6391  *     an unprotected supply of reclaimable memory from other cgroups.
6392  *   MEMCG_PROT_MIN: cgroup memory is protected
6393  */
6394 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
6395 						struct mem_cgroup *memcg)
6396 {
6397 	unsigned long usage, parent_usage;
6398 	struct mem_cgroup *parent;
6399 
6400 	if (mem_cgroup_disabled())
6401 		return MEMCG_PROT_NONE;
6402 
6403 	if (!root)
6404 		root = root_mem_cgroup;
6405 	if (memcg == root)
6406 		return MEMCG_PROT_NONE;
6407 
6408 	usage = page_counter_read(&memcg->memory);
6409 	if (!usage)
6410 		return MEMCG_PROT_NONE;
6411 
6412 	parent = parent_mem_cgroup(memcg);
6413 	/* No parent means a non-hierarchical mode on v1 memcg */
6414 	if (!parent)
6415 		return MEMCG_PROT_NONE;
6416 
6417 	if (parent == root) {
6418 		memcg->memory.emin = READ_ONCE(memcg->memory.min);
6419 		memcg->memory.elow = memcg->memory.low;
6420 		goto out;
6421 	}
6422 
6423 	parent_usage = page_counter_read(&parent->memory);
6424 
6425 	WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6426 			READ_ONCE(memcg->memory.min),
6427 			READ_ONCE(parent->memory.emin),
6428 			atomic_long_read(&parent->memory.children_min_usage)));
6429 
6430 	WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6431 			memcg->memory.low, READ_ONCE(parent->memory.elow),
6432 			atomic_long_read(&parent->memory.children_low_usage)));
6433 
6434 out:
6435 	if (usage <= memcg->memory.emin)
6436 		return MEMCG_PROT_MIN;
6437 	else if (usage <= memcg->memory.elow)
6438 		return MEMCG_PROT_LOW;
6439 	else
6440 		return MEMCG_PROT_NONE;
6441 }
6442 
6443 /**
6444  * mem_cgroup_charge - charge a newly allocated page to a cgroup
6445  * @page: page to charge
6446  * @mm: mm context of the victim
6447  * @gfp_mask: reclaim mode
6448  *
6449  * Try to charge @page to the memcg that @mm belongs to, reclaiming
6450  * pages according to @gfp_mask if necessary.
6451  *
6452  * Returns 0 on success. Otherwise, an error code is returned.
6453  */
6454 int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
6455 {
6456 	unsigned int nr_pages = hpage_nr_pages(page);
6457 	struct mem_cgroup *memcg = NULL;
6458 	int ret = 0;
6459 
6460 	if (mem_cgroup_disabled())
6461 		goto out;
6462 
6463 	if (PageSwapCache(page)) {
6464 		swp_entry_t ent = { .val = page_private(page), };
6465 		unsigned short id;
6466 
6467 		/*
6468 		 * Every swap fault against a single page tries to charge the
6469 		 * page, bail as early as possible.  shmem_unuse() encounters
6470 		 * already charged pages, too.  page->mem_cgroup is protected
6471 		 * by the page lock, which serializes swap cache removal, which
6472 		 * in turn serializes uncharging.
6473 		 */
6474 		VM_BUG_ON_PAGE(!PageLocked(page), page);
6475 		if (compound_head(page)->mem_cgroup)
6476 			goto out;
6477 
6478 		id = lookup_swap_cgroup_id(ent);
6479 		rcu_read_lock();
6480 		memcg = mem_cgroup_from_id(id);
6481 		if (memcg && !css_tryget_online(&memcg->css))
6482 			memcg = NULL;
6483 		rcu_read_unlock();
6484 	}
6485 
6486 	if (!memcg)
6487 		memcg = get_mem_cgroup_from_mm(mm);
6488 
6489 	ret = try_charge(memcg, gfp_mask, nr_pages);
6490 	if (ret)
6491 		goto out_put;
6492 
6493 	commit_charge(page, memcg);
6494 
6495 	local_irq_disable();
6496 	mem_cgroup_charge_statistics(memcg, page, nr_pages);
6497 	memcg_check_events(memcg, page);
6498 	local_irq_enable();
6499 
6500 	if (PageSwapCache(page)) {
6501 		swp_entry_t entry = { .val = page_private(page) };
6502 		/*
6503 		 * The swap entry might not get freed for a long time,
6504 		 * let's not wait for it.  The page already received a
6505 		 * memory+swap charge, drop the swap entry duplicate.
6506 		 */
6507 		mem_cgroup_uncharge_swap(entry, nr_pages);
6508 	}
6509 
6510 out_put:
6511 	css_put(&memcg->css);
6512 out:
6513 	return ret;
6514 }
6515 
6516 struct uncharge_gather {
6517 	struct mem_cgroup *memcg;
6518 	unsigned long nr_pages;
6519 	unsigned long pgpgout;
6520 	unsigned long nr_kmem;
6521 	struct page *dummy_page;
6522 };
6523 
6524 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6525 {
6526 	memset(ug, 0, sizeof(*ug));
6527 }
6528 
6529 static void uncharge_batch(const struct uncharge_gather *ug)
6530 {
6531 	unsigned long flags;
6532 
6533 	if (!mem_cgroup_is_root(ug->memcg)) {
6534 		page_counter_uncharge(&ug->memcg->memory, ug->nr_pages);
6535 		if (do_memsw_account())
6536 			page_counter_uncharge(&ug->memcg->memsw, ug->nr_pages);
6537 		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6538 			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6539 		memcg_oom_recover(ug->memcg);
6540 	}
6541 
6542 	local_irq_save(flags);
6543 	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6544 	__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_pages);
6545 	memcg_check_events(ug->memcg, ug->dummy_page);
6546 	local_irq_restore(flags);
6547 
6548 	if (!mem_cgroup_is_root(ug->memcg))
6549 		css_put_many(&ug->memcg->css, ug->nr_pages);
6550 }
6551 
6552 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6553 {
6554 	unsigned long nr_pages;
6555 
6556 	VM_BUG_ON_PAGE(PageLRU(page), page);
6557 
6558 	if (!page->mem_cgroup)
6559 		return;
6560 
6561 	/*
6562 	 * Nobody should be changing or seriously looking at
6563 	 * page->mem_cgroup at this point, we have fully
6564 	 * exclusive access to the page.
6565 	 */
6566 
6567 	if (ug->memcg != page->mem_cgroup) {
6568 		if (ug->memcg) {
6569 			uncharge_batch(ug);
6570 			uncharge_gather_clear(ug);
6571 		}
6572 		ug->memcg = page->mem_cgroup;
6573 	}
6574 
6575 	nr_pages = compound_nr(page);
6576 	ug->nr_pages += nr_pages;
6577 
6578 	if (!PageKmemcg(page)) {
6579 		ug->pgpgout++;
6580 	} else {
6581 		ug->nr_kmem += nr_pages;
6582 		__ClearPageKmemcg(page);
6583 	}
6584 
6585 	ug->dummy_page = page;
6586 	page->mem_cgroup = NULL;
6587 }
6588 
6589 static void uncharge_list(struct list_head *page_list)
6590 {
6591 	struct uncharge_gather ug;
6592 	struct list_head *next;
6593 
6594 	uncharge_gather_clear(&ug);
6595 
6596 	/*
6597 	 * Note that the list can be a single page->lru; hence the
6598 	 * do-while loop instead of a simple list_for_each_entry().
6599 	 */
6600 	next = page_list->next;
6601 	do {
6602 		struct page *page;
6603 
6604 		page = list_entry(next, struct page, lru);
6605 		next = page->lru.next;
6606 
6607 		uncharge_page(page, &ug);
6608 	} while (next != page_list);
6609 
6610 	if (ug.memcg)
6611 		uncharge_batch(&ug);
6612 }
6613 
6614 /**
6615  * mem_cgroup_uncharge - uncharge a page
6616  * @page: page to uncharge
6617  *
6618  * Uncharge a page previously charged with mem_cgroup_charge().
6619  */
6620 void mem_cgroup_uncharge(struct page *page)
6621 {
6622 	struct uncharge_gather ug;
6623 
6624 	if (mem_cgroup_disabled())
6625 		return;
6626 
6627 	/* Don't touch page->lru of any random page, pre-check: */
6628 	if (!page->mem_cgroup)
6629 		return;
6630 
6631 	uncharge_gather_clear(&ug);
6632 	uncharge_page(page, &ug);
6633 	uncharge_batch(&ug);
6634 }
6635 
6636 /**
6637  * mem_cgroup_uncharge_list - uncharge a list of page
6638  * @page_list: list of pages to uncharge
6639  *
6640  * Uncharge a list of pages previously charged with
6641  * mem_cgroup_charge().
6642  */
6643 void mem_cgroup_uncharge_list(struct list_head *page_list)
6644 {
6645 	if (mem_cgroup_disabled())
6646 		return;
6647 
6648 	if (!list_empty(page_list))
6649 		uncharge_list(page_list);
6650 }
6651 
6652 /**
6653  * mem_cgroup_migrate - charge a page's replacement
6654  * @oldpage: currently circulating page
6655  * @newpage: replacement page
6656  *
6657  * Charge @newpage as a replacement page for @oldpage. @oldpage will
6658  * be uncharged upon free.
6659  *
6660  * Both pages must be locked, @newpage->mapping must be set up.
6661  */
6662 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6663 {
6664 	struct mem_cgroup *memcg;
6665 	unsigned int nr_pages;
6666 	unsigned long flags;
6667 
6668 	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6669 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6670 	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6671 	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6672 		       newpage);
6673 
6674 	if (mem_cgroup_disabled())
6675 		return;
6676 
6677 	/* Page cache replacement: new page already charged? */
6678 	if (newpage->mem_cgroup)
6679 		return;
6680 
6681 	/* Swapcache readahead pages can get replaced before being charged */
6682 	memcg = oldpage->mem_cgroup;
6683 	if (!memcg)
6684 		return;
6685 
6686 	/* Force-charge the new page. The old one will be freed soon */
6687 	nr_pages = hpage_nr_pages(newpage);
6688 
6689 	page_counter_charge(&memcg->memory, nr_pages);
6690 	if (do_memsw_account())
6691 		page_counter_charge(&memcg->memsw, nr_pages);
6692 	css_get_many(&memcg->css, nr_pages);
6693 
6694 	commit_charge(newpage, memcg);
6695 
6696 	local_irq_save(flags);
6697 	mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
6698 	memcg_check_events(memcg, newpage);
6699 	local_irq_restore(flags);
6700 }
6701 
6702 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6703 EXPORT_SYMBOL(memcg_sockets_enabled_key);
6704 
6705 void mem_cgroup_sk_alloc(struct sock *sk)
6706 {
6707 	struct mem_cgroup *memcg;
6708 
6709 	if (!mem_cgroup_sockets_enabled)
6710 		return;
6711 
6712 	/* Do not associate the sock with unrelated interrupted task's memcg. */
6713 	if (in_interrupt())
6714 		return;
6715 
6716 	rcu_read_lock();
6717 	memcg = mem_cgroup_from_task(current);
6718 	if (memcg == root_mem_cgroup)
6719 		goto out;
6720 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6721 		goto out;
6722 	if (css_tryget(&memcg->css))
6723 		sk->sk_memcg = memcg;
6724 out:
6725 	rcu_read_unlock();
6726 }
6727 
6728 void mem_cgroup_sk_free(struct sock *sk)
6729 {
6730 	if (sk->sk_memcg)
6731 		css_put(&sk->sk_memcg->css);
6732 }
6733 
6734 /**
6735  * mem_cgroup_charge_skmem - charge socket memory
6736  * @memcg: memcg to charge
6737  * @nr_pages: number of pages to charge
6738  *
6739  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6740  * @memcg's configured limit, %false if the charge had to be forced.
6741  */
6742 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6743 {
6744 	gfp_t gfp_mask = GFP_KERNEL;
6745 
6746 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6747 		struct page_counter *fail;
6748 
6749 		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6750 			memcg->tcpmem_pressure = 0;
6751 			return true;
6752 		}
6753 		page_counter_charge(&memcg->tcpmem, nr_pages);
6754 		memcg->tcpmem_pressure = 1;
6755 		return false;
6756 	}
6757 
6758 	/* Don't block in the packet receive path */
6759 	if (in_softirq())
6760 		gfp_mask = GFP_NOWAIT;
6761 
6762 	mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6763 
6764 	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6765 		return true;
6766 
6767 	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
6768 	return false;
6769 }
6770 
6771 /**
6772  * mem_cgroup_uncharge_skmem - uncharge socket memory
6773  * @memcg: memcg to uncharge
6774  * @nr_pages: number of pages to uncharge
6775  */
6776 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6777 {
6778 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6779 		page_counter_uncharge(&memcg->tcpmem, nr_pages);
6780 		return;
6781 	}
6782 
6783 	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
6784 
6785 	refill_stock(memcg, nr_pages);
6786 }
6787 
6788 static int __init cgroup_memory(char *s)
6789 {
6790 	char *token;
6791 
6792 	while ((token = strsep(&s, ",")) != NULL) {
6793 		if (!*token)
6794 			continue;
6795 		if (!strcmp(token, "nosocket"))
6796 			cgroup_memory_nosocket = true;
6797 		if (!strcmp(token, "nokmem"))
6798 			cgroup_memory_nokmem = true;
6799 	}
6800 	return 0;
6801 }
6802 __setup("cgroup.memory=", cgroup_memory);
6803 
6804 /*
6805  * subsys_initcall() for memory controller.
6806  *
6807  * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6808  * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6809  * basically everything that doesn't depend on a specific mem_cgroup structure
6810  * should be initialized from here.
6811  */
6812 static int __init mem_cgroup_init(void)
6813 {
6814 	int cpu, node;
6815 
6816 #ifdef CONFIG_MEMCG_KMEM
6817 	/*
6818 	 * Kmem cache creation is mostly done with the slab_mutex held,
6819 	 * so use a workqueue with limited concurrency to avoid stalling
6820 	 * all worker threads in case lots of cgroups are created and
6821 	 * destroyed simultaneously.
6822 	 */
6823 	memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
6824 	BUG_ON(!memcg_kmem_cache_wq);
6825 #endif
6826 
6827 	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
6828 				  memcg_hotplug_cpu_dead);
6829 
6830 	for_each_possible_cpu(cpu)
6831 		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
6832 			  drain_local_stock);
6833 
6834 	for_each_node(node) {
6835 		struct mem_cgroup_tree_per_node *rtpn;
6836 
6837 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
6838 				    node_online(node) ? node : NUMA_NO_NODE);
6839 
6840 		rtpn->rb_root = RB_ROOT;
6841 		rtpn->rb_rightmost = NULL;
6842 		spin_lock_init(&rtpn->lock);
6843 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
6844 	}
6845 
6846 	return 0;
6847 }
6848 subsys_initcall(mem_cgroup_init);
6849 
6850 #ifdef CONFIG_MEMCG_SWAP
6851 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6852 {
6853 	while (!refcount_inc_not_zero(&memcg->id.ref)) {
6854 		/*
6855 		 * The root cgroup cannot be destroyed, so it's refcount must
6856 		 * always be >= 1.
6857 		 */
6858 		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
6859 			VM_BUG_ON(1);
6860 			break;
6861 		}
6862 		memcg = parent_mem_cgroup(memcg);
6863 		if (!memcg)
6864 			memcg = root_mem_cgroup;
6865 	}
6866 	return memcg;
6867 }
6868 
6869 /**
6870  * mem_cgroup_swapout - transfer a memsw charge to swap
6871  * @page: page whose memsw charge to transfer
6872  * @entry: swap entry to move the charge to
6873  *
6874  * Transfer the memsw charge of @page to @entry.
6875  */
6876 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6877 {
6878 	struct mem_cgroup *memcg, *swap_memcg;
6879 	unsigned int nr_entries;
6880 	unsigned short oldid;
6881 
6882 	VM_BUG_ON_PAGE(PageLRU(page), page);
6883 	VM_BUG_ON_PAGE(page_count(page), page);
6884 
6885 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6886 		return;
6887 
6888 	memcg = page->mem_cgroup;
6889 
6890 	/* Readahead page, never charged */
6891 	if (!memcg)
6892 		return;
6893 
6894 	/*
6895 	 * In case the memcg owning these pages has been offlined and doesn't
6896 	 * have an ID allocated to it anymore, charge the closest online
6897 	 * ancestor for the swap instead and transfer the memory+swap charge.
6898 	 */
6899 	swap_memcg = mem_cgroup_id_get_online(memcg);
6900 	nr_entries = hpage_nr_pages(page);
6901 	/* Get references for the tail pages, too */
6902 	if (nr_entries > 1)
6903 		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
6904 	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
6905 				   nr_entries);
6906 	VM_BUG_ON_PAGE(oldid, page);
6907 	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
6908 
6909 	page->mem_cgroup = NULL;
6910 
6911 	if (!mem_cgroup_is_root(memcg))
6912 		page_counter_uncharge(&memcg->memory, nr_entries);
6913 
6914 	if (!cgroup_memory_noswap && memcg != swap_memcg) {
6915 		if (!mem_cgroup_is_root(swap_memcg))
6916 			page_counter_charge(&swap_memcg->memsw, nr_entries);
6917 		page_counter_uncharge(&memcg->memsw, nr_entries);
6918 	}
6919 
6920 	/*
6921 	 * Interrupts should be disabled here because the caller holds the
6922 	 * i_pages lock which is taken with interrupts-off. It is
6923 	 * important here to have the interrupts disabled because it is the
6924 	 * only synchronisation we have for updating the per-CPU variables.
6925 	 */
6926 	VM_BUG_ON(!irqs_disabled());
6927 	mem_cgroup_charge_statistics(memcg, page, -nr_entries);
6928 	memcg_check_events(memcg, page);
6929 
6930 	if (!mem_cgroup_is_root(memcg))
6931 		css_put_many(&memcg->css, nr_entries);
6932 }
6933 
6934 /**
6935  * mem_cgroup_try_charge_swap - try charging swap space for a page
6936  * @page: page being added to swap
6937  * @entry: swap entry to charge
6938  *
6939  * Try to charge @page's memcg for the swap space at @entry.
6940  *
6941  * Returns 0 on success, -ENOMEM on failure.
6942  */
6943 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
6944 {
6945 	unsigned int nr_pages = hpage_nr_pages(page);
6946 	struct page_counter *counter;
6947 	struct mem_cgroup *memcg;
6948 	unsigned short oldid;
6949 
6950 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
6951 		return 0;
6952 
6953 	memcg = page->mem_cgroup;
6954 
6955 	/* Readahead page, never charged */
6956 	if (!memcg)
6957 		return 0;
6958 
6959 	if (!entry.val) {
6960 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6961 		return 0;
6962 	}
6963 
6964 	memcg = mem_cgroup_id_get_online(memcg);
6965 
6966 	if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
6967 	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
6968 		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
6969 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6970 		mem_cgroup_id_put(memcg);
6971 		return -ENOMEM;
6972 	}
6973 
6974 	/* Get references for the tail pages, too */
6975 	if (nr_pages > 1)
6976 		mem_cgroup_id_get_many(memcg, nr_pages - 1);
6977 	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
6978 	VM_BUG_ON_PAGE(oldid, page);
6979 	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
6980 
6981 	return 0;
6982 }
6983 
6984 /**
6985  * mem_cgroup_uncharge_swap - uncharge swap space
6986  * @entry: swap entry to uncharge
6987  * @nr_pages: the amount of swap space to uncharge
6988  */
6989 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
6990 {
6991 	struct mem_cgroup *memcg;
6992 	unsigned short id;
6993 
6994 	id = swap_cgroup_record(entry, 0, nr_pages);
6995 	rcu_read_lock();
6996 	memcg = mem_cgroup_from_id(id);
6997 	if (memcg) {
6998 		if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
6999 			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7000 				page_counter_uncharge(&memcg->swap, nr_pages);
7001 			else
7002 				page_counter_uncharge(&memcg->memsw, nr_pages);
7003 		}
7004 		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7005 		mem_cgroup_id_put_many(memcg, nr_pages);
7006 	}
7007 	rcu_read_unlock();
7008 }
7009 
7010 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7011 {
7012 	long nr_swap_pages = get_nr_swap_pages();
7013 
7014 	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7015 		return nr_swap_pages;
7016 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7017 		nr_swap_pages = min_t(long, nr_swap_pages,
7018 				      READ_ONCE(memcg->swap.max) -
7019 				      page_counter_read(&memcg->swap));
7020 	return nr_swap_pages;
7021 }
7022 
7023 bool mem_cgroup_swap_full(struct page *page)
7024 {
7025 	struct mem_cgroup *memcg;
7026 
7027 	VM_BUG_ON_PAGE(!PageLocked(page), page);
7028 
7029 	if (vm_swap_full())
7030 		return true;
7031 	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7032 		return false;
7033 
7034 	memcg = page->mem_cgroup;
7035 	if (!memcg)
7036 		return false;
7037 
7038 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7039 		unsigned long usage = page_counter_read(&memcg->swap);
7040 
7041 		if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7042 		    usage * 2 >= READ_ONCE(memcg->swap.max))
7043 			return true;
7044 	}
7045 
7046 	return false;
7047 }
7048 
7049 static int __init setup_swap_account(char *s)
7050 {
7051 	if (!strcmp(s, "1"))
7052 		cgroup_memory_noswap = 0;
7053 	else if (!strcmp(s, "0"))
7054 		cgroup_memory_noswap = 1;
7055 	return 1;
7056 }
7057 __setup("swapaccount=", setup_swap_account);
7058 
7059 static u64 swap_current_read(struct cgroup_subsys_state *css,
7060 			     struct cftype *cft)
7061 {
7062 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7063 
7064 	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7065 }
7066 
7067 static int swap_high_show(struct seq_file *m, void *v)
7068 {
7069 	return seq_puts_memcg_tunable(m,
7070 		READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7071 }
7072 
7073 static ssize_t swap_high_write(struct kernfs_open_file *of,
7074 			       char *buf, size_t nbytes, loff_t off)
7075 {
7076 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7077 	unsigned long high;
7078 	int err;
7079 
7080 	buf = strstrip(buf);
7081 	err = page_counter_memparse(buf, "max", &high);
7082 	if (err)
7083 		return err;
7084 
7085 	page_counter_set_high(&memcg->swap, high);
7086 
7087 	return nbytes;
7088 }
7089 
7090 static int swap_max_show(struct seq_file *m, void *v)
7091 {
7092 	return seq_puts_memcg_tunable(m,
7093 		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7094 }
7095 
7096 static ssize_t swap_max_write(struct kernfs_open_file *of,
7097 			      char *buf, size_t nbytes, loff_t off)
7098 {
7099 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7100 	unsigned long max;
7101 	int err;
7102 
7103 	buf = strstrip(buf);
7104 	err = page_counter_memparse(buf, "max", &max);
7105 	if (err)
7106 		return err;
7107 
7108 	xchg(&memcg->swap.max, max);
7109 
7110 	return nbytes;
7111 }
7112 
7113 static int swap_events_show(struct seq_file *m, void *v)
7114 {
7115 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7116 
7117 	seq_printf(m, "high %lu\n",
7118 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7119 	seq_printf(m, "max %lu\n",
7120 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7121 	seq_printf(m, "fail %lu\n",
7122 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7123 
7124 	return 0;
7125 }
7126 
7127 static struct cftype swap_files[] = {
7128 	{
7129 		.name = "swap.current",
7130 		.flags = CFTYPE_NOT_ON_ROOT,
7131 		.read_u64 = swap_current_read,
7132 	},
7133 	{
7134 		.name = "swap.high",
7135 		.flags = CFTYPE_NOT_ON_ROOT,
7136 		.seq_show = swap_high_show,
7137 		.write = swap_high_write,
7138 	},
7139 	{
7140 		.name = "swap.max",
7141 		.flags = CFTYPE_NOT_ON_ROOT,
7142 		.seq_show = swap_max_show,
7143 		.write = swap_max_write,
7144 	},
7145 	{
7146 		.name = "swap.events",
7147 		.flags = CFTYPE_NOT_ON_ROOT,
7148 		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
7149 		.seq_show = swap_events_show,
7150 	},
7151 	{ }	/* terminate */
7152 };
7153 
7154 static struct cftype memsw_files[] = {
7155 	{
7156 		.name = "memsw.usage_in_bytes",
7157 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7158 		.read_u64 = mem_cgroup_read_u64,
7159 	},
7160 	{
7161 		.name = "memsw.max_usage_in_bytes",
7162 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7163 		.write = mem_cgroup_reset,
7164 		.read_u64 = mem_cgroup_read_u64,
7165 	},
7166 	{
7167 		.name = "memsw.limit_in_bytes",
7168 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7169 		.write = mem_cgroup_write,
7170 		.read_u64 = mem_cgroup_read_u64,
7171 	},
7172 	{
7173 		.name = "memsw.failcnt",
7174 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7175 		.write = mem_cgroup_reset,
7176 		.read_u64 = mem_cgroup_read_u64,
7177 	},
7178 	{ },	/* terminate */
7179 };
7180 
7181 static int __init mem_cgroup_swap_init(void)
7182 {
7183 	/* No memory control -> no swap control */
7184 	if (mem_cgroup_disabled())
7185 		cgroup_memory_noswap = true;
7186 
7187 	if (cgroup_memory_noswap)
7188 		return 0;
7189 
7190 	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7191 	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7192 
7193 	return 0;
7194 }
7195 subsys_initcall(mem_cgroup_swap_init);
7196 
7197 #endif /* CONFIG_MEMCG_SWAP */
7198