xref: /openbmc/linux/mm/memcontrol.c (revision 33fb626b)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <xemul@openvz.org>
9  *
10  * Memory thresholds
11  * Copyright (C) 2009 Nokia Corporation
12  * Author: Kirill A. Shutemov
13  *
14  * Kernel Memory Controller
15  * Copyright (C) 2012 Parallels Inc. and Google Inc.
16  * Authors: Glauber Costa and Suleiman Souhlal
17  *
18  * Native page reclaim
19  * Charge lifetime sanitation
20  * Lockless page tracking & accounting
21  * Unified hierarchy configuration model
22  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23  *
24  * Per memcg lru locking
25  * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26  */
27 
28 #include <linux/page_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/pagewalk.h>
32 #include <linux/sched/mm.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/hugetlb.h>
35 #include <linux/pagemap.h>
36 #include <linux/vm_event_item.h>
37 #include <linux/smp.h>
38 #include <linux/page-flags.h>
39 #include <linux/backing-dev.h>
40 #include <linux/bit_spinlock.h>
41 #include <linux/rcupdate.h>
42 #include <linux/limits.h>
43 #include <linux/export.h>
44 #include <linux/mutex.h>
45 #include <linux/rbtree.h>
46 #include <linux/slab.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/spinlock.h>
50 #include <linux/eventfd.h>
51 #include <linux/poll.h>
52 #include <linux/sort.h>
53 #include <linux/fs.h>
54 #include <linux/seq_file.h>
55 #include <linux/vmpressure.h>
56 #include <linux/mm_inline.h>
57 #include <linux/swap_cgroup.h>
58 #include <linux/cpu.h>
59 #include <linux/oom.h>
60 #include <linux/lockdep.h>
61 #include <linux/file.h>
62 #include <linux/tracehook.h>
63 #include <linux/psi.h>
64 #include <linux/seq_buf.h>
65 #include "internal.h"
66 #include <net/sock.h>
67 #include <net/ip.h>
68 #include "slab.h"
69 
70 #include <linux/uaccess.h>
71 
72 #include <trace/events/vmscan.h>
73 
74 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
75 EXPORT_SYMBOL(memory_cgrp_subsys);
76 
77 struct mem_cgroup *root_mem_cgroup __read_mostly;
78 
79 /* Active memory cgroup to use from an interrupt context */
80 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
81 
82 /* Socket memory accounting disabled? */
83 static bool cgroup_memory_nosocket;
84 
85 /* Kernel memory accounting disabled? */
86 static bool cgroup_memory_nokmem;
87 
88 /* Whether the swap controller is active */
89 #ifdef CONFIG_MEMCG_SWAP
90 bool cgroup_memory_noswap __read_mostly;
91 #else
92 #define cgroup_memory_noswap		1
93 #endif
94 
95 #ifdef CONFIG_CGROUP_WRITEBACK
96 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
97 #endif
98 
99 /* Whether legacy memory+swap accounting is active */
100 static bool do_memsw_account(void)
101 {
102 	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
103 }
104 
105 #define THRESHOLDS_EVENTS_TARGET 128
106 #define SOFTLIMIT_EVENTS_TARGET 1024
107 
108 /*
109  * Cgroups above their limits are maintained in a RB-Tree, independent of
110  * their hierarchy representation
111  */
112 
113 struct mem_cgroup_tree_per_node {
114 	struct rb_root rb_root;
115 	struct rb_node *rb_rightmost;
116 	spinlock_t lock;
117 };
118 
119 struct mem_cgroup_tree {
120 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
121 };
122 
123 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
124 
125 /* for OOM */
126 struct mem_cgroup_eventfd_list {
127 	struct list_head list;
128 	struct eventfd_ctx *eventfd;
129 };
130 
131 /*
132  * cgroup_event represents events which userspace want to receive.
133  */
134 struct mem_cgroup_event {
135 	/*
136 	 * memcg which the event belongs to.
137 	 */
138 	struct mem_cgroup *memcg;
139 	/*
140 	 * eventfd to signal userspace about the event.
141 	 */
142 	struct eventfd_ctx *eventfd;
143 	/*
144 	 * Each of these stored in a list by the cgroup.
145 	 */
146 	struct list_head list;
147 	/*
148 	 * register_event() callback will be used to add new userspace
149 	 * waiter for changes related to this event.  Use eventfd_signal()
150 	 * on eventfd to send notification to userspace.
151 	 */
152 	int (*register_event)(struct mem_cgroup *memcg,
153 			      struct eventfd_ctx *eventfd, const char *args);
154 	/*
155 	 * unregister_event() callback will be called when userspace closes
156 	 * the eventfd or on cgroup removing.  This callback must be set,
157 	 * if you want provide notification functionality.
158 	 */
159 	void (*unregister_event)(struct mem_cgroup *memcg,
160 				 struct eventfd_ctx *eventfd);
161 	/*
162 	 * All fields below needed to unregister event when
163 	 * userspace closes eventfd.
164 	 */
165 	poll_table pt;
166 	wait_queue_head_t *wqh;
167 	wait_queue_entry_t wait;
168 	struct work_struct remove;
169 };
170 
171 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
172 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
173 
174 /* Stuffs for move charges at task migration. */
175 /*
176  * Types of charges to be moved.
177  */
178 #define MOVE_ANON	0x1U
179 #define MOVE_FILE	0x2U
180 #define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
181 
182 /* "mc" and its members are protected by cgroup_mutex */
183 static struct move_charge_struct {
184 	spinlock_t	  lock; /* for from, to */
185 	struct mm_struct  *mm;
186 	struct mem_cgroup *from;
187 	struct mem_cgroup *to;
188 	unsigned long flags;
189 	unsigned long precharge;
190 	unsigned long moved_charge;
191 	unsigned long moved_swap;
192 	struct task_struct *moving_task;	/* a task moving charges */
193 	wait_queue_head_t waitq;		/* a waitq for other context */
194 } mc = {
195 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
196 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
197 };
198 
199 /*
200  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
201  * limit reclaim to prevent infinite loops, if they ever occur.
202  */
203 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
204 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
205 
206 /* for encoding cft->private value on file */
207 enum res_type {
208 	_MEM,
209 	_MEMSWAP,
210 	_OOM_TYPE,
211 	_KMEM,
212 	_TCP,
213 };
214 
215 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
216 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
217 #define MEMFILE_ATTR(val)	((val) & 0xffff)
218 /* Used for OOM nofiier */
219 #define OOM_CONTROL		(0)
220 
221 /*
222  * Iteration constructs for visiting all cgroups (under a tree).  If
223  * loops are exited prematurely (break), mem_cgroup_iter_break() must
224  * be used for reference counting.
225  */
226 #define for_each_mem_cgroup_tree(iter, root)		\
227 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
228 	     iter != NULL;				\
229 	     iter = mem_cgroup_iter(root, iter, NULL))
230 
231 #define for_each_mem_cgroup(iter)			\
232 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
233 	     iter != NULL;				\
234 	     iter = mem_cgroup_iter(NULL, iter, NULL))
235 
236 static inline bool should_force_charge(void)
237 {
238 	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
239 		(current->flags & PF_EXITING);
240 }
241 
242 /* Some nice accessors for the vmpressure. */
243 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
244 {
245 	if (!memcg)
246 		memcg = root_mem_cgroup;
247 	return &memcg->vmpressure;
248 }
249 
250 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
251 {
252 	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
253 }
254 
255 #ifdef CONFIG_MEMCG_KMEM
256 extern spinlock_t css_set_lock;
257 
258 static void obj_cgroup_release(struct percpu_ref *ref)
259 {
260 	struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
261 	struct mem_cgroup *memcg;
262 	unsigned int nr_bytes;
263 	unsigned int nr_pages;
264 	unsigned long flags;
265 
266 	/*
267 	 * At this point all allocated objects are freed, and
268 	 * objcg->nr_charged_bytes can't have an arbitrary byte value.
269 	 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
270 	 *
271 	 * The following sequence can lead to it:
272 	 * 1) CPU0: objcg == stock->cached_objcg
273 	 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
274 	 *          PAGE_SIZE bytes are charged
275 	 * 3) CPU1: a process from another memcg is allocating something,
276 	 *          the stock if flushed,
277 	 *          objcg->nr_charged_bytes = PAGE_SIZE - 92
278 	 * 5) CPU0: we do release this object,
279 	 *          92 bytes are added to stock->nr_bytes
280 	 * 6) CPU0: stock is flushed,
281 	 *          92 bytes are added to objcg->nr_charged_bytes
282 	 *
283 	 * In the result, nr_charged_bytes == PAGE_SIZE.
284 	 * This page will be uncharged in obj_cgroup_release().
285 	 */
286 	nr_bytes = atomic_read(&objcg->nr_charged_bytes);
287 	WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
288 	nr_pages = nr_bytes >> PAGE_SHIFT;
289 
290 	spin_lock_irqsave(&css_set_lock, flags);
291 	memcg = obj_cgroup_memcg(objcg);
292 	if (nr_pages)
293 		__memcg_kmem_uncharge(memcg, nr_pages);
294 	list_del(&objcg->list);
295 	mem_cgroup_put(memcg);
296 	spin_unlock_irqrestore(&css_set_lock, flags);
297 
298 	percpu_ref_exit(ref);
299 	kfree_rcu(objcg, rcu);
300 }
301 
302 static struct obj_cgroup *obj_cgroup_alloc(void)
303 {
304 	struct obj_cgroup *objcg;
305 	int ret;
306 
307 	objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
308 	if (!objcg)
309 		return NULL;
310 
311 	ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
312 			      GFP_KERNEL);
313 	if (ret) {
314 		kfree(objcg);
315 		return NULL;
316 	}
317 	INIT_LIST_HEAD(&objcg->list);
318 	return objcg;
319 }
320 
321 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
322 				  struct mem_cgroup *parent)
323 {
324 	struct obj_cgroup *objcg, *iter;
325 
326 	objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
327 
328 	spin_lock_irq(&css_set_lock);
329 
330 	/* Move active objcg to the parent's list */
331 	xchg(&objcg->memcg, parent);
332 	css_get(&parent->css);
333 	list_add(&objcg->list, &parent->objcg_list);
334 
335 	/* Move already reparented objcgs to the parent's list */
336 	list_for_each_entry(iter, &memcg->objcg_list, list) {
337 		css_get(&parent->css);
338 		xchg(&iter->memcg, parent);
339 		css_put(&memcg->css);
340 	}
341 	list_splice(&memcg->objcg_list, &parent->objcg_list);
342 
343 	spin_unlock_irq(&css_set_lock);
344 
345 	percpu_ref_kill(&objcg->refcnt);
346 }
347 
348 /*
349  * This will be used as a shrinker list's index.
350  * The main reason for not using cgroup id for this:
351  *  this works better in sparse environments, where we have a lot of memcgs,
352  *  but only a few kmem-limited. Or also, if we have, for instance, 200
353  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
354  *  200 entry array for that.
355  *
356  * The current size of the caches array is stored in memcg_nr_cache_ids. It
357  * will double each time we have to increase it.
358  */
359 static DEFINE_IDA(memcg_cache_ida);
360 int memcg_nr_cache_ids;
361 
362 /* Protects memcg_nr_cache_ids */
363 static DECLARE_RWSEM(memcg_cache_ids_sem);
364 
365 void memcg_get_cache_ids(void)
366 {
367 	down_read(&memcg_cache_ids_sem);
368 }
369 
370 void memcg_put_cache_ids(void)
371 {
372 	up_read(&memcg_cache_ids_sem);
373 }
374 
375 /*
376  * MIN_SIZE is different than 1, because we would like to avoid going through
377  * the alloc/free process all the time. In a small machine, 4 kmem-limited
378  * cgroups is a reasonable guess. In the future, it could be a parameter or
379  * tunable, but that is strictly not necessary.
380  *
381  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
382  * this constant directly from cgroup, but it is understandable that this is
383  * better kept as an internal representation in cgroup.c. In any case, the
384  * cgrp_id space is not getting any smaller, and we don't have to necessarily
385  * increase ours as well if it increases.
386  */
387 #define MEMCG_CACHES_MIN_SIZE 4
388 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
389 
390 /*
391  * A lot of the calls to the cache allocation functions are expected to be
392  * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
393  * conditional to this static branch, we'll have to allow modules that does
394  * kmem_cache_alloc and the such to see this symbol as well
395  */
396 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
397 EXPORT_SYMBOL(memcg_kmem_enabled_key);
398 #endif
399 
400 static int memcg_shrinker_map_size;
401 static DEFINE_MUTEX(memcg_shrinker_map_mutex);
402 
403 static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
404 {
405 	kvfree(container_of(head, struct memcg_shrinker_map, rcu));
406 }
407 
408 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
409 					 int size, int old_size)
410 {
411 	struct memcg_shrinker_map *new, *old;
412 	int nid;
413 
414 	lockdep_assert_held(&memcg_shrinker_map_mutex);
415 
416 	for_each_node(nid) {
417 		old = rcu_dereference_protected(
418 			mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
419 		/* Not yet online memcg */
420 		if (!old)
421 			return 0;
422 
423 		new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
424 		if (!new)
425 			return -ENOMEM;
426 
427 		/* Set all old bits, clear all new bits */
428 		memset(new->map, (int)0xff, old_size);
429 		memset((void *)new->map + old_size, 0, size - old_size);
430 
431 		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
432 		call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
433 	}
434 
435 	return 0;
436 }
437 
438 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
439 {
440 	struct mem_cgroup_per_node *pn;
441 	struct memcg_shrinker_map *map;
442 	int nid;
443 
444 	if (mem_cgroup_is_root(memcg))
445 		return;
446 
447 	for_each_node(nid) {
448 		pn = mem_cgroup_nodeinfo(memcg, nid);
449 		map = rcu_dereference_protected(pn->shrinker_map, true);
450 		if (map)
451 			kvfree(map);
452 		rcu_assign_pointer(pn->shrinker_map, NULL);
453 	}
454 }
455 
456 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
457 {
458 	struct memcg_shrinker_map *map;
459 	int nid, size, ret = 0;
460 
461 	if (mem_cgroup_is_root(memcg))
462 		return 0;
463 
464 	mutex_lock(&memcg_shrinker_map_mutex);
465 	size = memcg_shrinker_map_size;
466 	for_each_node(nid) {
467 		map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid);
468 		if (!map) {
469 			memcg_free_shrinker_maps(memcg);
470 			ret = -ENOMEM;
471 			break;
472 		}
473 		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
474 	}
475 	mutex_unlock(&memcg_shrinker_map_mutex);
476 
477 	return ret;
478 }
479 
480 int memcg_expand_shrinker_maps(int new_id)
481 {
482 	int size, old_size, ret = 0;
483 	struct mem_cgroup *memcg;
484 
485 	size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
486 	old_size = memcg_shrinker_map_size;
487 	if (size <= old_size)
488 		return 0;
489 
490 	mutex_lock(&memcg_shrinker_map_mutex);
491 	if (!root_mem_cgroup)
492 		goto unlock;
493 
494 	for_each_mem_cgroup(memcg) {
495 		if (mem_cgroup_is_root(memcg))
496 			continue;
497 		ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
498 		if (ret) {
499 			mem_cgroup_iter_break(NULL, memcg);
500 			goto unlock;
501 		}
502 	}
503 unlock:
504 	if (!ret)
505 		memcg_shrinker_map_size = size;
506 	mutex_unlock(&memcg_shrinker_map_mutex);
507 	return ret;
508 }
509 
510 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
511 {
512 	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
513 		struct memcg_shrinker_map *map;
514 
515 		rcu_read_lock();
516 		map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
517 		/* Pairs with smp mb in shrink_slab() */
518 		smp_mb__before_atomic();
519 		set_bit(shrinker_id, map->map);
520 		rcu_read_unlock();
521 	}
522 }
523 
524 /**
525  * mem_cgroup_css_from_page - css of the memcg associated with a page
526  * @page: page of interest
527  *
528  * If memcg is bound to the default hierarchy, css of the memcg associated
529  * with @page is returned.  The returned css remains associated with @page
530  * until it is released.
531  *
532  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
533  * is returned.
534  */
535 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
536 {
537 	struct mem_cgroup *memcg;
538 
539 	memcg = page_memcg(page);
540 
541 	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
542 		memcg = root_mem_cgroup;
543 
544 	return &memcg->css;
545 }
546 
547 /**
548  * page_cgroup_ino - return inode number of the memcg a page is charged to
549  * @page: the page
550  *
551  * Look up the closest online ancestor of the memory cgroup @page is charged to
552  * and return its inode number or 0 if @page is not charged to any cgroup. It
553  * is safe to call this function without holding a reference to @page.
554  *
555  * Note, this function is inherently racy, because there is nothing to prevent
556  * the cgroup inode from getting torn down and potentially reallocated a moment
557  * after page_cgroup_ino() returns, so it only should be used by callers that
558  * do not care (such as procfs interfaces).
559  */
560 ino_t page_cgroup_ino(struct page *page)
561 {
562 	struct mem_cgroup *memcg;
563 	unsigned long ino = 0;
564 
565 	rcu_read_lock();
566 	memcg = page_memcg_check(page);
567 
568 	while (memcg && !(memcg->css.flags & CSS_ONLINE))
569 		memcg = parent_mem_cgroup(memcg);
570 	if (memcg)
571 		ino = cgroup_ino(memcg->css.cgroup);
572 	rcu_read_unlock();
573 	return ino;
574 }
575 
576 static struct mem_cgroup_per_node *
577 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
578 {
579 	int nid = page_to_nid(page);
580 
581 	return memcg->nodeinfo[nid];
582 }
583 
584 static struct mem_cgroup_tree_per_node *
585 soft_limit_tree_node(int nid)
586 {
587 	return soft_limit_tree.rb_tree_per_node[nid];
588 }
589 
590 static struct mem_cgroup_tree_per_node *
591 soft_limit_tree_from_page(struct page *page)
592 {
593 	int nid = page_to_nid(page);
594 
595 	return soft_limit_tree.rb_tree_per_node[nid];
596 }
597 
598 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
599 					 struct mem_cgroup_tree_per_node *mctz,
600 					 unsigned long new_usage_in_excess)
601 {
602 	struct rb_node **p = &mctz->rb_root.rb_node;
603 	struct rb_node *parent = NULL;
604 	struct mem_cgroup_per_node *mz_node;
605 	bool rightmost = true;
606 
607 	if (mz->on_tree)
608 		return;
609 
610 	mz->usage_in_excess = new_usage_in_excess;
611 	if (!mz->usage_in_excess)
612 		return;
613 	while (*p) {
614 		parent = *p;
615 		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
616 					tree_node);
617 		if (mz->usage_in_excess < mz_node->usage_in_excess) {
618 			p = &(*p)->rb_left;
619 			rightmost = false;
620 		} else {
621 			p = &(*p)->rb_right;
622 		}
623 	}
624 
625 	if (rightmost)
626 		mctz->rb_rightmost = &mz->tree_node;
627 
628 	rb_link_node(&mz->tree_node, parent, p);
629 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
630 	mz->on_tree = true;
631 }
632 
633 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
634 					 struct mem_cgroup_tree_per_node *mctz)
635 {
636 	if (!mz->on_tree)
637 		return;
638 
639 	if (&mz->tree_node == mctz->rb_rightmost)
640 		mctz->rb_rightmost = rb_prev(&mz->tree_node);
641 
642 	rb_erase(&mz->tree_node, &mctz->rb_root);
643 	mz->on_tree = false;
644 }
645 
646 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
647 				       struct mem_cgroup_tree_per_node *mctz)
648 {
649 	unsigned long flags;
650 
651 	spin_lock_irqsave(&mctz->lock, flags);
652 	__mem_cgroup_remove_exceeded(mz, mctz);
653 	spin_unlock_irqrestore(&mctz->lock, flags);
654 }
655 
656 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
657 {
658 	unsigned long nr_pages = page_counter_read(&memcg->memory);
659 	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
660 	unsigned long excess = 0;
661 
662 	if (nr_pages > soft_limit)
663 		excess = nr_pages - soft_limit;
664 
665 	return excess;
666 }
667 
668 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
669 {
670 	unsigned long excess;
671 	struct mem_cgroup_per_node *mz;
672 	struct mem_cgroup_tree_per_node *mctz;
673 
674 	mctz = soft_limit_tree_from_page(page);
675 	if (!mctz)
676 		return;
677 	/*
678 	 * Necessary to update all ancestors when hierarchy is used.
679 	 * because their event counter is not touched.
680 	 */
681 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
682 		mz = mem_cgroup_page_nodeinfo(memcg, page);
683 		excess = soft_limit_excess(memcg);
684 		/*
685 		 * We have to update the tree if mz is on RB-tree or
686 		 * mem is over its softlimit.
687 		 */
688 		if (excess || mz->on_tree) {
689 			unsigned long flags;
690 
691 			spin_lock_irqsave(&mctz->lock, flags);
692 			/* if on-tree, remove it */
693 			if (mz->on_tree)
694 				__mem_cgroup_remove_exceeded(mz, mctz);
695 			/*
696 			 * Insert again. mz->usage_in_excess will be updated.
697 			 * If excess is 0, no tree ops.
698 			 */
699 			__mem_cgroup_insert_exceeded(mz, mctz, excess);
700 			spin_unlock_irqrestore(&mctz->lock, flags);
701 		}
702 	}
703 }
704 
705 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
706 {
707 	struct mem_cgroup_tree_per_node *mctz;
708 	struct mem_cgroup_per_node *mz;
709 	int nid;
710 
711 	for_each_node(nid) {
712 		mz = mem_cgroup_nodeinfo(memcg, nid);
713 		mctz = soft_limit_tree_node(nid);
714 		if (mctz)
715 			mem_cgroup_remove_exceeded(mz, mctz);
716 	}
717 }
718 
719 static struct mem_cgroup_per_node *
720 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
721 {
722 	struct mem_cgroup_per_node *mz;
723 
724 retry:
725 	mz = NULL;
726 	if (!mctz->rb_rightmost)
727 		goto done;		/* Nothing to reclaim from */
728 
729 	mz = rb_entry(mctz->rb_rightmost,
730 		      struct mem_cgroup_per_node, tree_node);
731 	/*
732 	 * Remove the node now but someone else can add it back,
733 	 * we will to add it back at the end of reclaim to its correct
734 	 * position in the tree.
735 	 */
736 	__mem_cgroup_remove_exceeded(mz, mctz);
737 	if (!soft_limit_excess(mz->memcg) ||
738 	    !css_tryget(&mz->memcg->css))
739 		goto retry;
740 done:
741 	return mz;
742 }
743 
744 static struct mem_cgroup_per_node *
745 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
746 {
747 	struct mem_cgroup_per_node *mz;
748 
749 	spin_lock_irq(&mctz->lock);
750 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
751 	spin_unlock_irq(&mctz->lock);
752 	return mz;
753 }
754 
755 /**
756  * __mod_memcg_state - update cgroup memory statistics
757  * @memcg: the memory cgroup
758  * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
759  * @val: delta to add to the counter, can be negative
760  */
761 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
762 {
763 	long x, threshold = MEMCG_CHARGE_BATCH;
764 
765 	if (mem_cgroup_disabled())
766 		return;
767 
768 	if (memcg_stat_item_in_bytes(idx))
769 		threshold <<= PAGE_SHIFT;
770 
771 	x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
772 	if (unlikely(abs(x) > threshold)) {
773 		struct mem_cgroup *mi;
774 
775 		/*
776 		 * Batch local counters to keep them in sync with
777 		 * the hierarchical ones.
778 		 */
779 		__this_cpu_add(memcg->vmstats_local->stat[idx], x);
780 		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
781 			atomic_long_add(x, &mi->vmstats[idx]);
782 		x = 0;
783 	}
784 	__this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
785 }
786 
787 static struct mem_cgroup_per_node *
788 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
789 {
790 	struct mem_cgroup *parent;
791 
792 	parent = parent_mem_cgroup(pn->memcg);
793 	if (!parent)
794 		return NULL;
795 	return mem_cgroup_nodeinfo(parent, nid);
796 }
797 
798 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
799 			      int val)
800 {
801 	struct mem_cgroup_per_node *pn;
802 	struct mem_cgroup *memcg;
803 	long x, threshold = MEMCG_CHARGE_BATCH;
804 
805 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
806 	memcg = pn->memcg;
807 
808 	/* Update memcg */
809 	__mod_memcg_state(memcg, idx, val);
810 
811 	/* Update lruvec */
812 	__this_cpu_add(pn->lruvec_stat_local->count[idx], val);
813 
814 	if (vmstat_item_in_bytes(idx))
815 		threshold <<= PAGE_SHIFT;
816 
817 	x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
818 	if (unlikely(abs(x) > threshold)) {
819 		pg_data_t *pgdat = lruvec_pgdat(lruvec);
820 		struct mem_cgroup_per_node *pi;
821 
822 		for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
823 			atomic_long_add(x, &pi->lruvec_stat[idx]);
824 		x = 0;
825 	}
826 	__this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
827 }
828 
829 /**
830  * __mod_lruvec_state - update lruvec memory statistics
831  * @lruvec: the lruvec
832  * @idx: the stat item
833  * @val: delta to add to the counter, can be negative
834  *
835  * The lruvec is the intersection of the NUMA node and a cgroup. This
836  * function updates the all three counters that are affected by a
837  * change of state at this level: per-node, per-cgroup, per-lruvec.
838  */
839 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
840 			int val)
841 {
842 	/* Update node */
843 	__mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
844 
845 	/* Update memcg and lruvec */
846 	if (!mem_cgroup_disabled())
847 		__mod_memcg_lruvec_state(lruvec, idx, val);
848 }
849 
850 void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
851 			     int val)
852 {
853 	struct page *head = compound_head(page); /* rmap on tail pages */
854 	struct mem_cgroup *memcg = page_memcg(head);
855 	pg_data_t *pgdat = page_pgdat(page);
856 	struct lruvec *lruvec;
857 
858 	/* Untracked pages have no memcg, no lruvec. Update only the node */
859 	if (!memcg) {
860 		__mod_node_page_state(pgdat, idx, val);
861 		return;
862 	}
863 
864 	lruvec = mem_cgroup_lruvec(memcg, pgdat);
865 	__mod_lruvec_state(lruvec, idx, val);
866 }
867 EXPORT_SYMBOL(__mod_lruvec_page_state);
868 
869 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
870 {
871 	pg_data_t *pgdat = page_pgdat(virt_to_page(p));
872 	struct mem_cgroup *memcg;
873 	struct lruvec *lruvec;
874 
875 	rcu_read_lock();
876 	memcg = mem_cgroup_from_obj(p);
877 
878 	/*
879 	 * Untracked pages have no memcg, no lruvec. Update only the
880 	 * node. If we reparent the slab objects to the root memcg,
881 	 * when we free the slab object, we need to update the per-memcg
882 	 * vmstats to keep it correct for the root memcg.
883 	 */
884 	if (!memcg) {
885 		__mod_node_page_state(pgdat, idx, val);
886 	} else {
887 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
888 		__mod_lruvec_state(lruvec, idx, val);
889 	}
890 	rcu_read_unlock();
891 }
892 
893 /**
894  * __count_memcg_events - account VM events in a cgroup
895  * @memcg: the memory cgroup
896  * @idx: the event item
897  * @count: the number of events that occured
898  */
899 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
900 			  unsigned long count)
901 {
902 	unsigned long x;
903 
904 	if (mem_cgroup_disabled())
905 		return;
906 
907 	x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
908 	if (unlikely(x > MEMCG_CHARGE_BATCH)) {
909 		struct mem_cgroup *mi;
910 
911 		/*
912 		 * Batch local counters to keep them in sync with
913 		 * the hierarchical ones.
914 		 */
915 		__this_cpu_add(memcg->vmstats_local->events[idx], x);
916 		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
917 			atomic_long_add(x, &mi->vmevents[idx]);
918 		x = 0;
919 	}
920 	__this_cpu_write(memcg->vmstats_percpu->events[idx], x);
921 }
922 
923 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
924 {
925 	return atomic_long_read(&memcg->vmevents[event]);
926 }
927 
928 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
929 {
930 	long x = 0;
931 	int cpu;
932 
933 	for_each_possible_cpu(cpu)
934 		x += per_cpu(memcg->vmstats_local->events[event], cpu);
935 	return x;
936 }
937 
938 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
939 					 struct page *page,
940 					 int nr_pages)
941 {
942 	/* pagein of a big page is an event. So, ignore page size */
943 	if (nr_pages > 0)
944 		__count_memcg_events(memcg, PGPGIN, 1);
945 	else {
946 		__count_memcg_events(memcg, PGPGOUT, 1);
947 		nr_pages = -nr_pages; /* for event */
948 	}
949 
950 	__this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
951 }
952 
953 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
954 				       enum mem_cgroup_events_target target)
955 {
956 	unsigned long val, next;
957 
958 	val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
959 	next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
960 	/* from time_after() in jiffies.h */
961 	if ((long)(next - val) < 0) {
962 		switch (target) {
963 		case MEM_CGROUP_TARGET_THRESH:
964 			next = val + THRESHOLDS_EVENTS_TARGET;
965 			break;
966 		case MEM_CGROUP_TARGET_SOFTLIMIT:
967 			next = val + SOFTLIMIT_EVENTS_TARGET;
968 			break;
969 		default:
970 			break;
971 		}
972 		__this_cpu_write(memcg->vmstats_percpu->targets[target], next);
973 		return true;
974 	}
975 	return false;
976 }
977 
978 /*
979  * Check events in order.
980  *
981  */
982 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
983 {
984 	/* threshold event is triggered in finer grain than soft limit */
985 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
986 						MEM_CGROUP_TARGET_THRESH))) {
987 		bool do_softlimit;
988 
989 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
990 						MEM_CGROUP_TARGET_SOFTLIMIT);
991 		mem_cgroup_threshold(memcg);
992 		if (unlikely(do_softlimit))
993 			mem_cgroup_update_tree(memcg, page);
994 	}
995 }
996 
997 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
998 {
999 	/*
1000 	 * mm_update_next_owner() may clear mm->owner to NULL
1001 	 * if it races with swapoff, page migration, etc.
1002 	 * So this can be called with p == NULL.
1003 	 */
1004 	if (unlikely(!p))
1005 		return NULL;
1006 
1007 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1008 }
1009 EXPORT_SYMBOL(mem_cgroup_from_task);
1010 
1011 /**
1012  * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1013  * @mm: mm from which memcg should be extracted. It can be NULL.
1014  *
1015  * Obtain a reference on mm->memcg and returns it if successful. Otherwise
1016  * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
1017  * returned.
1018  */
1019 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1020 {
1021 	struct mem_cgroup *memcg;
1022 
1023 	if (mem_cgroup_disabled())
1024 		return NULL;
1025 
1026 	rcu_read_lock();
1027 	do {
1028 		/*
1029 		 * Page cache insertions can happen withou an
1030 		 * actual mm context, e.g. during disk probing
1031 		 * on boot, loopback IO, acct() writes etc.
1032 		 */
1033 		if (unlikely(!mm))
1034 			memcg = root_mem_cgroup;
1035 		else {
1036 			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1037 			if (unlikely(!memcg))
1038 				memcg = root_mem_cgroup;
1039 		}
1040 	} while (!css_tryget(&memcg->css));
1041 	rcu_read_unlock();
1042 	return memcg;
1043 }
1044 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1045 
1046 /**
1047  * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
1048  * @page: page from which memcg should be extracted.
1049  *
1050  * Obtain a reference on page->memcg and returns it if successful. Otherwise
1051  * root_mem_cgroup is returned.
1052  */
1053 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
1054 {
1055 	struct mem_cgroup *memcg = page_memcg(page);
1056 
1057 	if (mem_cgroup_disabled())
1058 		return NULL;
1059 
1060 	rcu_read_lock();
1061 	/* Page should not get uncharged and freed memcg under us. */
1062 	if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
1063 		memcg = root_mem_cgroup;
1064 	rcu_read_unlock();
1065 	return memcg;
1066 }
1067 EXPORT_SYMBOL(get_mem_cgroup_from_page);
1068 
1069 static __always_inline struct mem_cgroup *active_memcg(void)
1070 {
1071 	if (in_interrupt())
1072 		return this_cpu_read(int_active_memcg);
1073 	else
1074 		return current->active_memcg;
1075 }
1076 
1077 static __always_inline struct mem_cgroup *get_active_memcg(void)
1078 {
1079 	struct mem_cgroup *memcg;
1080 
1081 	rcu_read_lock();
1082 	memcg = active_memcg();
1083 	if (memcg) {
1084 		/* current->active_memcg must hold a ref. */
1085 		if (WARN_ON_ONCE(!css_tryget(&memcg->css)))
1086 			memcg = root_mem_cgroup;
1087 		else
1088 			memcg = current->active_memcg;
1089 	}
1090 	rcu_read_unlock();
1091 
1092 	return memcg;
1093 }
1094 
1095 static __always_inline bool memcg_kmem_bypass(void)
1096 {
1097 	/* Allow remote memcg charging from any context. */
1098 	if (unlikely(active_memcg()))
1099 		return false;
1100 
1101 	/* Memcg to charge can't be determined. */
1102 	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
1103 		return true;
1104 
1105 	return false;
1106 }
1107 
1108 /**
1109  * If active memcg is set, do not fallback to current->mm->memcg.
1110  */
1111 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
1112 {
1113 	if (memcg_kmem_bypass())
1114 		return NULL;
1115 
1116 	if (unlikely(active_memcg()))
1117 		return get_active_memcg();
1118 
1119 	return get_mem_cgroup_from_mm(current->mm);
1120 }
1121 
1122 /**
1123  * mem_cgroup_iter - iterate over memory cgroup hierarchy
1124  * @root: hierarchy root
1125  * @prev: previously returned memcg, NULL on first invocation
1126  * @reclaim: cookie for shared reclaim walks, NULL for full walks
1127  *
1128  * Returns references to children of the hierarchy below @root, or
1129  * @root itself, or %NULL after a full round-trip.
1130  *
1131  * Caller must pass the return value in @prev on subsequent
1132  * invocations for reference counting, or use mem_cgroup_iter_break()
1133  * to cancel a hierarchy walk before the round-trip is complete.
1134  *
1135  * Reclaimers can specify a node in @reclaim to divide up the memcgs
1136  * in the hierarchy among all concurrent reclaimers operating on the
1137  * same node.
1138  */
1139 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1140 				   struct mem_cgroup *prev,
1141 				   struct mem_cgroup_reclaim_cookie *reclaim)
1142 {
1143 	struct mem_cgroup_reclaim_iter *iter;
1144 	struct cgroup_subsys_state *css = NULL;
1145 	struct mem_cgroup *memcg = NULL;
1146 	struct mem_cgroup *pos = NULL;
1147 
1148 	if (mem_cgroup_disabled())
1149 		return NULL;
1150 
1151 	if (!root)
1152 		root = root_mem_cgroup;
1153 
1154 	if (prev && !reclaim)
1155 		pos = prev;
1156 
1157 	rcu_read_lock();
1158 
1159 	if (reclaim) {
1160 		struct mem_cgroup_per_node *mz;
1161 
1162 		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1163 		iter = &mz->iter;
1164 
1165 		if (prev && reclaim->generation != iter->generation)
1166 			goto out_unlock;
1167 
1168 		while (1) {
1169 			pos = READ_ONCE(iter->position);
1170 			if (!pos || css_tryget(&pos->css))
1171 				break;
1172 			/*
1173 			 * css reference reached zero, so iter->position will
1174 			 * be cleared by ->css_released. However, we should not
1175 			 * rely on this happening soon, because ->css_released
1176 			 * is called from a work queue, and by busy-waiting we
1177 			 * might block it. So we clear iter->position right
1178 			 * away.
1179 			 */
1180 			(void)cmpxchg(&iter->position, pos, NULL);
1181 		}
1182 	}
1183 
1184 	if (pos)
1185 		css = &pos->css;
1186 
1187 	for (;;) {
1188 		css = css_next_descendant_pre(css, &root->css);
1189 		if (!css) {
1190 			/*
1191 			 * Reclaimers share the hierarchy walk, and a
1192 			 * new one might jump in right at the end of
1193 			 * the hierarchy - make sure they see at least
1194 			 * one group and restart from the beginning.
1195 			 */
1196 			if (!prev)
1197 				continue;
1198 			break;
1199 		}
1200 
1201 		/*
1202 		 * Verify the css and acquire a reference.  The root
1203 		 * is provided by the caller, so we know it's alive
1204 		 * and kicking, and don't take an extra reference.
1205 		 */
1206 		memcg = mem_cgroup_from_css(css);
1207 
1208 		if (css == &root->css)
1209 			break;
1210 
1211 		if (css_tryget(css))
1212 			break;
1213 
1214 		memcg = NULL;
1215 	}
1216 
1217 	if (reclaim) {
1218 		/*
1219 		 * The position could have already been updated by a competing
1220 		 * thread, so check that the value hasn't changed since we read
1221 		 * it to avoid reclaiming from the same cgroup twice.
1222 		 */
1223 		(void)cmpxchg(&iter->position, pos, memcg);
1224 
1225 		if (pos)
1226 			css_put(&pos->css);
1227 
1228 		if (!memcg)
1229 			iter->generation++;
1230 		else if (!prev)
1231 			reclaim->generation = iter->generation;
1232 	}
1233 
1234 out_unlock:
1235 	rcu_read_unlock();
1236 	if (prev && prev != root)
1237 		css_put(&prev->css);
1238 
1239 	return memcg;
1240 }
1241 
1242 /**
1243  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1244  * @root: hierarchy root
1245  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1246  */
1247 void mem_cgroup_iter_break(struct mem_cgroup *root,
1248 			   struct mem_cgroup *prev)
1249 {
1250 	if (!root)
1251 		root = root_mem_cgroup;
1252 	if (prev && prev != root)
1253 		css_put(&prev->css);
1254 }
1255 
1256 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1257 					struct mem_cgroup *dead_memcg)
1258 {
1259 	struct mem_cgroup_reclaim_iter *iter;
1260 	struct mem_cgroup_per_node *mz;
1261 	int nid;
1262 
1263 	for_each_node(nid) {
1264 		mz = mem_cgroup_nodeinfo(from, nid);
1265 		iter = &mz->iter;
1266 		cmpxchg(&iter->position, dead_memcg, NULL);
1267 	}
1268 }
1269 
1270 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1271 {
1272 	struct mem_cgroup *memcg = dead_memcg;
1273 	struct mem_cgroup *last;
1274 
1275 	do {
1276 		__invalidate_reclaim_iterators(memcg, dead_memcg);
1277 		last = memcg;
1278 	} while ((memcg = parent_mem_cgroup(memcg)));
1279 
1280 	/*
1281 	 * When cgruop1 non-hierarchy mode is used,
1282 	 * parent_mem_cgroup() does not walk all the way up to the
1283 	 * cgroup root (root_mem_cgroup). So we have to handle
1284 	 * dead_memcg from cgroup root separately.
1285 	 */
1286 	if (last != root_mem_cgroup)
1287 		__invalidate_reclaim_iterators(root_mem_cgroup,
1288 						dead_memcg);
1289 }
1290 
1291 /**
1292  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1293  * @memcg: hierarchy root
1294  * @fn: function to call for each task
1295  * @arg: argument passed to @fn
1296  *
1297  * This function iterates over tasks attached to @memcg or to any of its
1298  * descendants and calls @fn for each task. If @fn returns a non-zero
1299  * value, the function breaks the iteration loop and returns the value.
1300  * Otherwise, it will iterate over all tasks and return 0.
1301  *
1302  * This function must not be called for the root memory cgroup.
1303  */
1304 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1305 			  int (*fn)(struct task_struct *, void *), void *arg)
1306 {
1307 	struct mem_cgroup *iter;
1308 	int ret = 0;
1309 
1310 	BUG_ON(memcg == root_mem_cgroup);
1311 
1312 	for_each_mem_cgroup_tree(iter, memcg) {
1313 		struct css_task_iter it;
1314 		struct task_struct *task;
1315 
1316 		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1317 		while (!ret && (task = css_task_iter_next(&it)))
1318 			ret = fn(task, arg);
1319 		css_task_iter_end(&it);
1320 		if (ret) {
1321 			mem_cgroup_iter_break(memcg, iter);
1322 			break;
1323 		}
1324 	}
1325 	return ret;
1326 }
1327 
1328 #ifdef CONFIG_DEBUG_VM
1329 void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page)
1330 {
1331 	struct mem_cgroup *memcg;
1332 
1333 	if (mem_cgroup_disabled())
1334 		return;
1335 
1336 	memcg = page_memcg(page);
1337 
1338 	if (!memcg)
1339 		VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != root_mem_cgroup, page);
1340 	else
1341 		VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != memcg, page);
1342 }
1343 #endif
1344 
1345 /**
1346  * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1347  * @page: the page
1348  * @pgdat: pgdat of the page
1349  *
1350  * This function relies on page's memcg being stable - see the
1351  * access rules in commit_charge().
1352  */
1353 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
1354 {
1355 	struct mem_cgroup_per_node *mz;
1356 	struct mem_cgroup *memcg;
1357 	struct lruvec *lruvec;
1358 
1359 	if (mem_cgroup_disabled()) {
1360 		lruvec = &pgdat->__lruvec;
1361 		goto out;
1362 	}
1363 
1364 	memcg = page_memcg(page);
1365 	/*
1366 	 * Swapcache readahead pages are added to the LRU - and
1367 	 * possibly migrated - before they are charged.
1368 	 */
1369 	if (!memcg)
1370 		memcg = root_mem_cgroup;
1371 
1372 	mz = mem_cgroup_page_nodeinfo(memcg, page);
1373 	lruvec = &mz->lruvec;
1374 out:
1375 	/*
1376 	 * Since a node can be onlined after the mem_cgroup was created,
1377 	 * we have to be prepared to initialize lruvec->zone here;
1378 	 * and if offlined then reonlined, we need to reinitialize it.
1379 	 */
1380 	if (unlikely(lruvec->pgdat != pgdat))
1381 		lruvec->pgdat = pgdat;
1382 	return lruvec;
1383 }
1384 
1385 /**
1386  * lock_page_lruvec - lock and return lruvec for a given page.
1387  * @page: the page
1388  *
1389  * This series functions should be used in either conditions:
1390  * PageLRU is cleared or unset
1391  * or page->_refcount is zero
1392  * or page is locked.
1393  */
1394 struct lruvec *lock_page_lruvec(struct page *page)
1395 {
1396 	struct lruvec *lruvec;
1397 	struct pglist_data *pgdat = page_pgdat(page);
1398 
1399 	rcu_read_lock();
1400 	lruvec = mem_cgroup_page_lruvec(page, pgdat);
1401 	spin_lock(&lruvec->lru_lock);
1402 	rcu_read_unlock();
1403 
1404 	lruvec_memcg_debug(lruvec, page);
1405 
1406 	return lruvec;
1407 }
1408 
1409 struct lruvec *lock_page_lruvec_irq(struct page *page)
1410 {
1411 	struct lruvec *lruvec;
1412 	struct pglist_data *pgdat = page_pgdat(page);
1413 
1414 	rcu_read_lock();
1415 	lruvec = mem_cgroup_page_lruvec(page, pgdat);
1416 	spin_lock_irq(&lruvec->lru_lock);
1417 	rcu_read_unlock();
1418 
1419 	lruvec_memcg_debug(lruvec, page);
1420 
1421 	return lruvec;
1422 }
1423 
1424 struct lruvec *lock_page_lruvec_irqsave(struct page *page, unsigned long *flags)
1425 {
1426 	struct lruvec *lruvec;
1427 	struct pglist_data *pgdat = page_pgdat(page);
1428 
1429 	rcu_read_lock();
1430 	lruvec = mem_cgroup_page_lruvec(page, pgdat);
1431 	spin_lock_irqsave(&lruvec->lru_lock, *flags);
1432 	rcu_read_unlock();
1433 
1434 	lruvec_memcg_debug(lruvec, page);
1435 
1436 	return lruvec;
1437 }
1438 
1439 /**
1440  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1441  * @lruvec: mem_cgroup per zone lru vector
1442  * @lru: index of lru list the page is sitting on
1443  * @zid: zone id of the accounted pages
1444  * @nr_pages: positive when adding or negative when removing
1445  *
1446  * This function must be called under lru_lock, just before a page is added
1447  * to or just after a page is removed from an lru list (that ordering being
1448  * so as to allow it to check that lru_size 0 is consistent with list_empty).
1449  */
1450 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1451 				int zid, int nr_pages)
1452 {
1453 	struct mem_cgroup_per_node *mz;
1454 	unsigned long *lru_size;
1455 	long size;
1456 
1457 	if (mem_cgroup_disabled())
1458 		return;
1459 
1460 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1461 	lru_size = &mz->lru_zone_size[zid][lru];
1462 
1463 	if (nr_pages < 0)
1464 		*lru_size += nr_pages;
1465 
1466 	size = *lru_size;
1467 	if (WARN_ONCE(size < 0,
1468 		"%s(%p, %d, %d): lru_size %ld\n",
1469 		__func__, lruvec, lru, nr_pages, size)) {
1470 		VM_BUG_ON(1);
1471 		*lru_size = 0;
1472 	}
1473 
1474 	if (nr_pages > 0)
1475 		*lru_size += nr_pages;
1476 }
1477 
1478 /**
1479  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1480  * @memcg: the memory cgroup
1481  *
1482  * Returns the maximum amount of memory @mem can be charged with, in
1483  * pages.
1484  */
1485 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1486 {
1487 	unsigned long margin = 0;
1488 	unsigned long count;
1489 	unsigned long limit;
1490 
1491 	count = page_counter_read(&memcg->memory);
1492 	limit = READ_ONCE(memcg->memory.max);
1493 	if (count < limit)
1494 		margin = limit - count;
1495 
1496 	if (do_memsw_account()) {
1497 		count = page_counter_read(&memcg->memsw);
1498 		limit = READ_ONCE(memcg->memsw.max);
1499 		if (count < limit)
1500 			margin = min(margin, limit - count);
1501 		else
1502 			margin = 0;
1503 	}
1504 
1505 	return margin;
1506 }
1507 
1508 /*
1509  * A routine for checking "mem" is under move_account() or not.
1510  *
1511  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1512  * moving cgroups. This is for waiting at high-memory pressure
1513  * caused by "move".
1514  */
1515 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1516 {
1517 	struct mem_cgroup *from;
1518 	struct mem_cgroup *to;
1519 	bool ret = false;
1520 	/*
1521 	 * Unlike task_move routines, we access mc.to, mc.from not under
1522 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1523 	 */
1524 	spin_lock(&mc.lock);
1525 	from = mc.from;
1526 	to = mc.to;
1527 	if (!from)
1528 		goto unlock;
1529 
1530 	ret = mem_cgroup_is_descendant(from, memcg) ||
1531 		mem_cgroup_is_descendant(to, memcg);
1532 unlock:
1533 	spin_unlock(&mc.lock);
1534 	return ret;
1535 }
1536 
1537 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1538 {
1539 	if (mc.moving_task && current != mc.moving_task) {
1540 		if (mem_cgroup_under_move(memcg)) {
1541 			DEFINE_WAIT(wait);
1542 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1543 			/* moving charge context might have finished. */
1544 			if (mc.moving_task)
1545 				schedule();
1546 			finish_wait(&mc.waitq, &wait);
1547 			return true;
1548 		}
1549 	}
1550 	return false;
1551 }
1552 
1553 struct memory_stat {
1554 	const char *name;
1555 	unsigned int ratio;
1556 	unsigned int idx;
1557 };
1558 
1559 static struct memory_stat memory_stats[] = {
1560 	{ "anon", PAGE_SIZE, NR_ANON_MAPPED },
1561 	{ "file", PAGE_SIZE, NR_FILE_PAGES },
1562 	{ "kernel_stack", 1024, NR_KERNEL_STACK_KB },
1563 	{ "pagetables", PAGE_SIZE, NR_PAGETABLE },
1564 	{ "percpu", 1, MEMCG_PERCPU_B },
1565 	{ "sock", PAGE_SIZE, MEMCG_SOCK },
1566 	{ "shmem", PAGE_SIZE, NR_SHMEM },
1567 	{ "file_mapped", PAGE_SIZE, NR_FILE_MAPPED },
1568 	{ "file_dirty", PAGE_SIZE, NR_FILE_DIRTY },
1569 	{ "file_writeback", PAGE_SIZE, NR_WRITEBACK },
1570 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1571 	/*
1572 	 * The ratio will be initialized in memory_stats_init(). Because
1573 	 * on some architectures, the macro of HPAGE_PMD_SIZE is not
1574 	 * constant(e.g. powerpc).
1575 	 */
1576 	{ "anon_thp", 0, NR_ANON_THPS },
1577 	{ "file_thp", 0, NR_FILE_THPS },
1578 	{ "shmem_thp", 0, NR_SHMEM_THPS },
1579 #endif
1580 	{ "inactive_anon", PAGE_SIZE, NR_INACTIVE_ANON },
1581 	{ "active_anon", PAGE_SIZE, NR_ACTIVE_ANON },
1582 	{ "inactive_file", PAGE_SIZE, NR_INACTIVE_FILE },
1583 	{ "active_file", PAGE_SIZE, NR_ACTIVE_FILE },
1584 	{ "unevictable", PAGE_SIZE, NR_UNEVICTABLE },
1585 
1586 	/*
1587 	 * Note: The slab_reclaimable and slab_unreclaimable must be
1588 	 * together and slab_reclaimable must be in front.
1589 	 */
1590 	{ "slab_reclaimable", 1, NR_SLAB_RECLAIMABLE_B },
1591 	{ "slab_unreclaimable", 1, NR_SLAB_UNRECLAIMABLE_B },
1592 
1593 	/* The memory events */
1594 	{ "workingset_refault_anon", 1, WORKINGSET_REFAULT_ANON },
1595 	{ "workingset_refault_file", 1, WORKINGSET_REFAULT_FILE },
1596 	{ "workingset_activate_anon", 1, WORKINGSET_ACTIVATE_ANON },
1597 	{ "workingset_activate_file", 1, WORKINGSET_ACTIVATE_FILE },
1598 	{ "workingset_restore_anon", 1, WORKINGSET_RESTORE_ANON },
1599 	{ "workingset_restore_file", 1, WORKINGSET_RESTORE_FILE },
1600 	{ "workingset_nodereclaim", 1, WORKINGSET_NODERECLAIM },
1601 };
1602 
1603 static int __init memory_stats_init(void)
1604 {
1605 	int i;
1606 
1607 	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1608 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1609 		if (memory_stats[i].idx == NR_ANON_THPS ||
1610 		    memory_stats[i].idx == NR_FILE_THPS ||
1611 		    memory_stats[i].idx == NR_SHMEM_THPS)
1612 			memory_stats[i].ratio = HPAGE_PMD_SIZE;
1613 #endif
1614 		VM_BUG_ON(!memory_stats[i].ratio);
1615 		VM_BUG_ON(memory_stats[i].idx >= MEMCG_NR_STAT);
1616 	}
1617 
1618 	return 0;
1619 }
1620 pure_initcall(memory_stats_init);
1621 
1622 static char *memory_stat_format(struct mem_cgroup *memcg)
1623 {
1624 	struct seq_buf s;
1625 	int i;
1626 
1627 	seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1628 	if (!s.buffer)
1629 		return NULL;
1630 
1631 	/*
1632 	 * Provide statistics on the state of the memory subsystem as
1633 	 * well as cumulative event counters that show past behavior.
1634 	 *
1635 	 * This list is ordered following a combination of these gradients:
1636 	 * 1) generic big picture -> specifics and details
1637 	 * 2) reflecting userspace activity -> reflecting kernel heuristics
1638 	 *
1639 	 * Current memory state:
1640 	 */
1641 
1642 	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1643 		u64 size;
1644 
1645 		size = memcg_page_state(memcg, memory_stats[i].idx);
1646 		size *= memory_stats[i].ratio;
1647 		seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
1648 
1649 		if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1650 			size = memcg_page_state(memcg, NR_SLAB_RECLAIMABLE_B) +
1651 			       memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE_B);
1652 			seq_buf_printf(&s, "slab %llu\n", size);
1653 		}
1654 	}
1655 
1656 	/* Accumulated memory events */
1657 
1658 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1659 		       memcg_events(memcg, PGFAULT));
1660 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1661 		       memcg_events(memcg, PGMAJFAULT));
1662 	seq_buf_printf(&s, "%s %lu\n",  vm_event_name(PGREFILL),
1663 		       memcg_events(memcg, PGREFILL));
1664 	seq_buf_printf(&s, "pgscan %lu\n",
1665 		       memcg_events(memcg, PGSCAN_KSWAPD) +
1666 		       memcg_events(memcg, PGSCAN_DIRECT));
1667 	seq_buf_printf(&s, "pgsteal %lu\n",
1668 		       memcg_events(memcg, PGSTEAL_KSWAPD) +
1669 		       memcg_events(memcg, PGSTEAL_DIRECT));
1670 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1671 		       memcg_events(memcg, PGACTIVATE));
1672 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1673 		       memcg_events(memcg, PGDEACTIVATE));
1674 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1675 		       memcg_events(memcg, PGLAZYFREE));
1676 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1677 		       memcg_events(memcg, PGLAZYFREED));
1678 
1679 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1680 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1681 		       memcg_events(memcg, THP_FAULT_ALLOC));
1682 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1683 		       memcg_events(memcg, THP_COLLAPSE_ALLOC));
1684 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1685 
1686 	/* The above should easily fit into one page */
1687 	WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1688 
1689 	return s.buffer;
1690 }
1691 
1692 #define K(x) ((x) << (PAGE_SHIFT-10))
1693 /**
1694  * mem_cgroup_print_oom_context: Print OOM information relevant to
1695  * memory controller.
1696  * @memcg: The memory cgroup that went over limit
1697  * @p: Task that is going to be killed
1698  *
1699  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1700  * enabled
1701  */
1702 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1703 {
1704 	rcu_read_lock();
1705 
1706 	if (memcg) {
1707 		pr_cont(",oom_memcg=");
1708 		pr_cont_cgroup_path(memcg->css.cgroup);
1709 	} else
1710 		pr_cont(",global_oom");
1711 	if (p) {
1712 		pr_cont(",task_memcg=");
1713 		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1714 	}
1715 	rcu_read_unlock();
1716 }
1717 
1718 /**
1719  * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1720  * memory controller.
1721  * @memcg: The memory cgroup that went over limit
1722  */
1723 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1724 {
1725 	char *buf;
1726 
1727 	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1728 		K((u64)page_counter_read(&memcg->memory)),
1729 		K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1730 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1731 		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1732 			K((u64)page_counter_read(&memcg->swap)),
1733 			K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1734 	else {
1735 		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1736 			K((u64)page_counter_read(&memcg->memsw)),
1737 			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1738 		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1739 			K((u64)page_counter_read(&memcg->kmem)),
1740 			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1741 	}
1742 
1743 	pr_info("Memory cgroup stats for ");
1744 	pr_cont_cgroup_path(memcg->css.cgroup);
1745 	pr_cont(":");
1746 	buf = memory_stat_format(memcg);
1747 	if (!buf)
1748 		return;
1749 	pr_info("%s", buf);
1750 	kfree(buf);
1751 }
1752 
1753 /*
1754  * Return the memory (and swap, if configured) limit for a memcg.
1755  */
1756 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1757 {
1758 	unsigned long max = READ_ONCE(memcg->memory.max);
1759 
1760 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
1761 		if (mem_cgroup_swappiness(memcg))
1762 			max += min(READ_ONCE(memcg->swap.max),
1763 				   (unsigned long)total_swap_pages);
1764 	} else { /* v1 */
1765 		if (mem_cgroup_swappiness(memcg)) {
1766 			/* Calculate swap excess capacity from memsw limit */
1767 			unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1768 
1769 			max += min(swap, (unsigned long)total_swap_pages);
1770 		}
1771 	}
1772 	return max;
1773 }
1774 
1775 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1776 {
1777 	return page_counter_read(&memcg->memory);
1778 }
1779 
1780 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1781 				     int order)
1782 {
1783 	struct oom_control oc = {
1784 		.zonelist = NULL,
1785 		.nodemask = NULL,
1786 		.memcg = memcg,
1787 		.gfp_mask = gfp_mask,
1788 		.order = order,
1789 	};
1790 	bool ret = true;
1791 
1792 	if (mutex_lock_killable(&oom_lock))
1793 		return true;
1794 
1795 	if (mem_cgroup_margin(memcg) >= (1 << order))
1796 		goto unlock;
1797 
1798 	/*
1799 	 * A few threads which were not waiting at mutex_lock_killable() can
1800 	 * fail to bail out. Therefore, check again after holding oom_lock.
1801 	 */
1802 	ret = should_force_charge() || out_of_memory(&oc);
1803 
1804 unlock:
1805 	mutex_unlock(&oom_lock);
1806 	return ret;
1807 }
1808 
1809 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1810 				   pg_data_t *pgdat,
1811 				   gfp_t gfp_mask,
1812 				   unsigned long *total_scanned)
1813 {
1814 	struct mem_cgroup *victim = NULL;
1815 	int total = 0;
1816 	int loop = 0;
1817 	unsigned long excess;
1818 	unsigned long nr_scanned;
1819 	struct mem_cgroup_reclaim_cookie reclaim = {
1820 		.pgdat = pgdat,
1821 	};
1822 
1823 	excess = soft_limit_excess(root_memcg);
1824 
1825 	while (1) {
1826 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1827 		if (!victim) {
1828 			loop++;
1829 			if (loop >= 2) {
1830 				/*
1831 				 * If we have not been able to reclaim
1832 				 * anything, it might because there are
1833 				 * no reclaimable pages under this hierarchy
1834 				 */
1835 				if (!total)
1836 					break;
1837 				/*
1838 				 * We want to do more targeted reclaim.
1839 				 * excess >> 2 is not to excessive so as to
1840 				 * reclaim too much, nor too less that we keep
1841 				 * coming back to reclaim from this cgroup
1842 				 */
1843 				if (total >= (excess >> 2) ||
1844 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1845 					break;
1846 			}
1847 			continue;
1848 		}
1849 		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1850 					pgdat, &nr_scanned);
1851 		*total_scanned += nr_scanned;
1852 		if (!soft_limit_excess(root_memcg))
1853 			break;
1854 	}
1855 	mem_cgroup_iter_break(root_memcg, victim);
1856 	return total;
1857 }
1858 
1859 #ifdef CONFIG_LOCKDEP
1860 static struct lockdep_map memcg_oom_lock_dep_map = {
1861 	.name = "memcg_oom_lock",
1862 };
1863 #endif
1864 
1865 static DEFINE_SPINLOCK(memcg_oom_lock);
1866 
1867 /*
1868  * Check OOM-Killer is already running under our hierarchy.
1869  * If someone is running, return false.
1870  */
1871 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1872 {
1873 	struct mem_cgroup *iter, *failed = NULL;
1874 
1875 	spin_lock(&memcg_oom_lock);
1876 
1877 	for_each_mem_cgroup_tree(iter, memcg) {
1878 		if (iter->oom_lock) {
1879 			/*
1880 			 * this subtree of our hierarchy is already locked
1881 			 * so we cannot give a lock.
1882 			 */
1883 			failed = iter;
1884 			mem_cgroup_iter_break(memcg, iter);
1885 			break;
1886 		} else
1887 			iter->oom_lock = true;
1888 	}
1889 
1890 	if (failed) {
1891 		/*
1892 		 * OK, we failed to lock the whole subtree so we have
1893 		 * to clean up what we set up to the failing subtree
1894 		 */
1895 		for_each_mem_cgroup_tree(iter, memcg) {
1896 			if (iter == failed) {
1897 				mem_cgroup_iter_break(memcg, iter);
1898 				break;
1899 			}
1900 			iter->oom_lock = false;
1901 		}
1902 	} else
1903 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1904 
1905 	spin_unlock(&memcg_oom_lock);
1906 
1907 	return !failed;
1908 }
1909 
1910 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1911 {
1912 	struct mem_cgroup *iter;
1913 
1914 	spin_lock(&memcg_oom_lock);
1915 	mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1916 	for_each_mem_cgroup_tree(iter, memcg)
1917 		iter->oom_lock = false;
1918 	spin_unlock(&memcg_oom_lock);
1919 }
1920 
1921 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1922 {
1923 	struct mem_cgroup *iter;
1924 
1925 	spin_lock(&memcg_oom_lock);
1926 	for_each_mem_cgroup_tree(iter, memcg)
1927 		iter->under_oom++;
1928 	spin_unlock(&memcg_oom_lock);
1929 }
1930 
1931 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1932 {
1933 	struct mem_cgroup *iter;
1934 
1935 	/*
1936 	 * Be careful about under_oom underflows becase a child memcg
1937 	 * could have been added after mem_cgroup_mark_under_oom.
1938 	 */
1939 	spin_lock(&memcg_oom_lock);
1940 	for_each_mem_cgroup_tree(iter, memcg)
1941 		if (iter->under_oom > 0)
1942 			iter->under_oom--;
1943 	spin_unlock(&memcg_oom_lock);
1944 }
1945 
1946 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1947 
1948 struct oom_wait_info {
1949 	struct mem_cgroup *memcg;
1950 	wait_queue_entry_t	wait;
1951 };
1952 
1953 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1954 	unsigned mode, int sync, void *arg)
1955 {
1956 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1957 	struct mem_cgroup *oom_wait_memcg;
1958 	struct oom_wait_info *oom_wait_info;
1959 
1960 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1961 	oom_wait_memcg = oom_wait_info->memcg;
1962 
1963 	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1964 	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1965 		return 0;
1966 	return autoremove_wake_function(wait, mode, sync, arg);
1967 }
1968 
1969 static void memcg_oom_recover(struct mem_cgroup *memcg)
1970 {
1971 	/*
1972 	 * For the following lockless ->under_oom test, the only required
1973 	 * guarantee is that it must see the state asserted by an OOM when
1974 	 * this function is called as a result of userland actions
1975 	 * triggered by the notification of the OOM.  This is trivially
1976 	 * achieved by invoking mem_cgroup_mark_under_oom() before
1977 	 * triggering notification.
1978 	 */
1979 	if (memcg && memcg->under_oom)
1980 		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1981 }
1982 
1983 enum oom_status {
1984 	OOM_SUCCESS,
1985 	OOM_FAILED,
1986 	OOM_ASYNC,
1987 	OOM_SKIPPED
1988 };
1989 
1990 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1991 {
1992 	enum oom_status ret;
1993 	bool locked;
1994 
1995 	if (order > PAGE_ALLOC_COSTLY_ORDER)
1996 		return OOM_SKIPPED;
1997 
1998 	memcg_memory_event(memcg, MEMCG_OOM);
1999 
2000 	/*
2001 	 * We are in the middle of the charge context here, so we
2002 	 * don't want to block when potentially sitting on a callstack
2003 	 * that holds all kinds of filesystem and mm locks.
2004 	 *
2005 	 * cgroup1 allows disabling the OOM killer and waiting for outside
2006 	 * handling until the charge can succeed; remember the context and put
2007 	 * the task to sleep at the end of the page fault when all locks are
2008 	 * released.
2009 	 *
2010 	 * On the other hand, in-kernel OOM killer allows for an async victim
2011 	 * memory reclaim (oom_reaper) and that means that we are not solely
2012 	 * relying on the oom victim to make a forward progress and we can
2013 	 * invoke the oom killer here.
2014 	 *
2015 	 * Please note that mem_cgroup_out_of_memory might fail to find a
2016 	 * victim and then we have to bail out from the charge path.
2017 	 */
2018 	if (memcg->oom_kill_disable) {
2019 		if (!current->in_user_fault)
2020 			return OOM_SKIPPED;
2021 		css_get(&memcg->css);
2022 		current->memcg_in_oom = memcg;
2023 		current->memcg_oom_gfp_mask = mask;
2024 		current->memcg_oom_order = order;
2025 
2026 		return OOM_ASYNC;
2027 	}
2028 
2029 	mem_cgroup_mark_under_oom(memcg);
2030 
2031 	locked = mem_cgroup_oom_trylock(memcg);
2032 
2033 	if (locked)
2034 		mem_cgroup_oom_notify(memcg);
2035 
2036 	mem_cgroup_unmark_under_oom(memcg);
2037 	if (mem_cgroup_out_of_memory(memcg, mask, order))
2038 		ret = OOM_SUCCESS;
2039 	else
2040 		ret = OOM_FAILED;
2041 
2042 	if (locked)
2043 		mem_cgroup_oom_unlock(memcg);
2044 
2045 	return ret;
2046 }
2047 
2048 /**
2049  * mem_cgroup_oom_synchronize - complete memcg OOM handling
2050  * @handle: actually kill/wait or just clean up the OOM state
2051  *
2052  * This has to be called at the end of a page fault if the memcg OOM
2053  * handler was enabled.
2054  *
2055  * Memcg supports userspace OOM handling where failed allocations must
2056  * sleep on a waitqueue until the userspace task resolves the
2057  * situation.  Sleeping directly in the charge context with all kinds
2058  * of locks held is not a good idea, instead we remember an OOM state
2059  * in the task and mem_cgroup_oom_synchronize() has to be called at
2060  * the end of the page fault to complete the OOM handling.
2061  *
2062  * Returns %true if an ongoing memcg OOM situation was detected and
2063  * completed, %false otherwise.
2064  */
2065 bool mem_cgroup_oom_synchronize(bool handle)
2066 {
2067 	struct mem_cgroup *memcg = current->memcg_in_oom;
2068 	struct oom_wait_info owait;
2069 	bool locked;
2070 
2071 	/* OOM is global, do not handle */
2072 	if (!memcg)
2073 		return false;
2074 
2075 	if (!handle)
2076 		goto cleanup;
2077 
2078 	owait.memcg = memcg;
2079 	owait.wait.flags = 0;
2080 	owait.wait.func = memcg_oom_wake_function;
2081 	owait.wait.private = current;
2082 	INIT_LIST_HEAD(&owait.wait.entry);
2083 
2084 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2085 	mem_cgroup_mark_under_oom(memcg);
2086 
2087 	locked = mem_cgroup_oom_trylock(memcg);
2088 
2089 	if (locked)
2090 		mem_cgroup_oom_notify(memcg);
2091 
2092 	if (locked && !memcg->oom_kill_disable) {
2093 		mem_cgroup_unmark_under_oom(memcg);
2094 		finish_wait(&memcg_oom_waitq, &owait.wait);
2095 		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
2096 					 current->memcg_oom_order);
2097 	} else {
2098 		schedule();
2099 		mem_cgroup_unmark_under_oom(memcg);
2100 		finish_wait(&memcg_oom_waitq, &owait.wait);
2101 	}
2102 
2103 	if (locked) {
2104 		mem_cgroup_oom_unlock(memcg);
2105 		/*
2106 		 * There is no guarantee that an OOM-lock contender
2107 		 * sees the wakeups triggered by the OOM kill
2108 		 * uncharges.  Wake any sleepers explicitely.
2109 		 */
2110 		memcg_oom_recover(memcg);
2111 	}
2112 cleanup:
2113 	current->memcg_in_oom = NULL;
2114 	css_put(&memcg->css);
2115 	return true;
2116 }
2117 
2118 /**
2119  * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2120  * @victim: task to be killed by the OOM killer
2121  * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2122  *
2123  * Returns a pointer to a memory cgroup, which has to be cleaned up
2124  * by killing all belonging OOM-killable tasks.
2125  *
2126  * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2127  */
2128 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2129 					    struct mem_cgroup *oom_domain)
2130 {
2131 	struct mem_cgroup *oom_group = NULL;
2132 	struct mem_cgroup *memcg;
2133 
2134 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2135 		return NULL;
2136 
2137 	if (!oom_domain)
2138 		oom_domain = root_mem_cgroup;
2139 
2140 	rcu_read_lock();
2141 
2142 	memcg = mem_cgroup_from_task(victim);
2143 	if (memcg == root_mem_cgroup)
2144 		goto out;
2145 
2146 	/*
2147 	 * If the victim task has been asynchronously moved to a different
2148 	 * memory cgroup, we might end up killing tasks outside oom_domain.
2149 	 * In this case it's better to ignore memory.group.oom.
2150 	 */
2151 	if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2152 		goto out;
2153 
2154 	/*
2155 	 * Traverse the memory cgroup hierarchy from the victim task's
2156 	 * cgroup up to the OOMing cgroup (or root) to find the
2157 	 * highest-level memory cgroup with oom.group set.
2158 	 */
2159 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2160 		if (memcg->oom_group)
2161 			oom_group = memcg;
2162 
2163 		if (memcg == oom_domain)
2164 			break;
2165 	}
2166 
2167 	if (oom_group)
2168 		css_get(&oom_group->css);
2169 out:
2170 	rcu_read_unlock();
2171 
2172 	return oom_group;
2173 }
2174 
2175 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2176 {
2177 	pr_info("Tasks in ");
2178 	pr_cont_cgroup_path(memcg->css.cgroup);
2179 	pr_cont(" are going to be killed due to memory.oom.group set\n");
2180 }
2181 
2182 /**
2183  * lock_page_memcg - lock a page and memcg binding
2184  * @page: the page
2185  *
2186  * This function protects unlocked LRU pages from being moved to
2187  * another cgroup.
2188  *
2189  * It ensures lifetime of the returned memcg. Caller is responsible
2190  * for the lifetime of the page; __unlock_page_memcg() is available
2191  * when @page might get freed inside the locked section.
2192  */
2193 struct mem_cgroup *lock_page_memcg(struct page *page)
2194 {
2195 	struct page *head = compound_head(page); /* rmap on tail pages */
2196 	struct mem_cgroup *memcg;
2197 	unsigned long flags;
2198 
2199 	/*
2200 	 * The RCU lock is held throughout the transaction.  The fast
2201 	 * path can get away without acquiring the memcg->move_lock
2202 	 * because page moving starts with an RCU grace period.
2203 	 *
2204 	 * The RCU lock also protects the memcg from being freed when
2205 	 * the page state that is going to change is the only thing
2206 	 * preventing the page itself from being freed. E.g. writeback
2207 	 * doesn't hold a page reference and relies on PG_writeback to
2208 	 * keep off truncation, migration and so forth.
2209          */
2210 	rcu_read_lock();
2211 
2212 	if (mem_cgroup_disabled())
2213 		return NULL;
2214 again:
2215 	memcg = page_memcg(head);
2216 	if (unlikely(!memcg))
2217 		return NULL;
2218 
2219 #ifdef CONFIG_PROVE_LOCKING
2220 	local_irq_save(flags);
2221 	might_lock(&memcg->move_lock);
2222 	local_irq_restore(flags);
2223 #endif
2224 
2225 	if (atomic_read(&memcg->moving_account) <= 0)
2226 		return memcg;
2227 
2228 	spin_lock_irqsave(&memcg->move_lock, flags);
2229 	if (memcg != page_memcg(head)) {
2230 		spin_unlock_irqrestore(&memcg->move_lock, flags);
2231 		goto again;
2232 	}
2233 
2234 	/*
2235 	 * When charge migration first begins, we can have locked and
2236 	 * unlocked page stat updates happening concurrently.  Track
2237 	 * the task who has the lock for unlock_page_memcg().
2238 	 */
2239 	memcg->move_lock_task = current;
2240 	memcg->move_lock_flags = flags;
2241 
2242 	return memcg;
2243 }
2244 EXPORT_SYMBOL(lock_page_memcg);
2245 
2246 /**
2247  * __unlock_page_memcg - unlock and unpin a memcg
2248  * @memcg: the memcg
2249  *
2250  * Unlock and unpin a memcg returned by lock_page_memcg().
2251  */
2252 void __unlock_page_memcg(struct mem_cgroup *memcg)
2253 {
2254 	if (memcg && memcg->move_lock_task == current) {
2255 		unsigned long flags = memcg->move_lock_flags;
2256 
2257 		memcg->move_lock_task = NULL;
2258 		memcg->move_lock_flags = 0;
2259 
2260 		spin_unlock_irqrestore(&memcg->move_lock, flags);
2261 	}
2262 
2263 	rcu_read_unlock();
2264 }
2265 
2266 /**
2267  * unlock_page_memcg - unlock a page and memcg binding
2268  * @page: the page
2269  */
2270 void unlock_page_memcg(struct page *page)
2271 {
2272 	struct page *head = compound_head(page);
2273 
2274 	__unlock_page_memcg(page_memcg(head));
2275 }
2276 EXPORT_SYMBOL(unlock_page_memcg);
2277 
2278 struct memcg_stock_pcp {
2279 	struct mem_cgroup *cached; /* this never be root cgroup */
2280 	unsigned int nr_pages;
2281 
2282 #ifdef CONFIG_MEMCG_KMEM
2283 	struct obj_cgroup *cached_objcg;
2284 	unsigned int nr_bytes;
2285 #endif
2286 
2287 	struct work_struct work;
2288 	unsigned long flags;
2289 #define FLUSHING_CACHED_CHARGE	0
2290 };
2291 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2292 static DEFINE_MUTEX(percpu_charge_mutex);
2293 
2294 #ifdef CONFIG_MEMCG_KMEM
2295 static void drain_obj_stock(struct memcg_stock_pcp *stock);
2296 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2297 				     struct mem_cgroup *root_memcg);
2298 
2299 #else
2300 static inline void drain_obj_stock(struct memcg_stock_pcp *stock)
2301 {
2302 }
2303 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2304 				     struct mem_cgroup *root_memcg)
2305 {
2306 	return false;
2307 }
2308 #endif
2309 
2310 /**
2311  * consume_stock: Try to consume stocked charge on this cpu.
2312  * @memcg: memcg to consume from.
2313  * @nr_pages: how many pages to charge.
2314  *
2315  * The charges will only happen if @memcg matches the current cpu's memcg
2316  * stock, and at least @nr_pages are available in that stock.  Failure to
2317  * service an allocation will refill the stock.
2318  *
2319  * returns true if successful, false otherwise.
2320  */
2321 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2322 {
2323 	struct memcg_stock_pcp *stock;
2324 	unsigned long flags;
2325 	bool ret = false;
2326 
2327 	if (nr_pages > MEMCG_CHARGE_BATCH)
2328 		return ret;
2329 
2330 	local_irq_save(flags);
2331 
2332 	stock = this_cpu_ptr(&memcg_stock);
2333 	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2334 		stock->nr_pages -= nr_pages;
2335 		ret = true;
2336 	}
2337 
2338 	local_irq_restore(flags);
2339 
2340 	return ret;
2341 }
2342 
2343 /*
2344  * Returns stocks cached in percpu and reset cached information.
2345  */
2346 static void drain_stock(struct memcg_stock_pcp *stock)
2347 {
2348 	struct mem_cgroup *old = stock->cached;
2349 
2350 	if (!old)
2351 		return;
2352 
2353 	if (stock->nr_pages) {
2354 		page_counter_uncharge(&old->memory, stock->nr_pages);
2355 		if (do_memsw_account())
2356 			page_counter_uncharge(&old->memsw, stock->nr_pages);
2357 		stock->nr_pages = 0;
2358 	}
2359 
2360 	css_put(&old->css);
2361 	stock->cached = NULL;
2362 }
2363 
2364 static void drain_local_stock(struct work_struct *dummy)
2365 {
2366 	struct memcg_stock_pcp *stock;
2367 	unsigned long flags;
2368 
2369 	/*
2370 	 * The only protection from memory hotplug vs. drain_stock races is
2371 	 * that we always operate on local CPU stock here with IRQ disabled
2372 	 */
2373 	local_irq_save(flags);
2374 
2375 	stock = this_cpu_ptr(&memcg_stock);
2376 	drain_obj_stock(stock);
2377 	drain_stock(stock);
2378 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2379 
2380 	local_irq_restore(flags);
2381 }
2382 
2383 /*
2384  * Cache charges(val) to local per_cpu area.
2385  * This will be consumed by consume_stock() function, later.
2386  */
2387 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2388 {
2389 	struct memcg_stock_pcp *stock;
2390 	unsigned long flags;
2391 
2392 	local_irq_save(flags);
2393 
2394 	stock = this_cpu_ptr(&memcg_stock);
2395 	if (stock->cached != memcg) { /* reset if necessary */
2396 		drain_stock(stock);
2397 		css_get(&memcg->css);
2398 		stock->cached = memcg;
2399 	}
2400 	stock->nr_pages += nr_pages;
2401 
2402 	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2403 		drain_stock(stock);
2404 
2405 	local_irq_restore(flags);
2406 }
2407 
2408 /*
2409  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2410  * of the hierarchy under it.
2411  */
2412 static void drain_all_stock(struct mem_cgroup *root_memcg)
2413 {
2414 	int cpu, curcpu;
2415 
2416 	/* If someone's already draining, avoid adding running more workers. */
2417 	if (!mutex_trylock(&percpu_charge_mutex))
2418 		return;
2419 	/*
2420 	 * Notify other cpus that system-wide "drain" is running
2421 	 * We do not care about races with the cpu hotplug because cpu down
2422 	 * as well as workers from this path always operate on the local
2423 	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2424 	 */
2425 	curcpu = get_cpu();
2426 	for_each_online_cpu(cpu) {
2427 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2428 		struct mem_cgroup *memcg;
2429 		bool flush = false;
2430 
2431 		rcu_read_lock();
2432 		memcg = stock->cached;
2433 		if (memcg && stock->nr_pages &&
2434 		    mem_cgroup_is_descendant(memcg, root_memcg))
2435 			flush = true;
2436 		if (obj_stock_flush_required(stock, root_memcg))
2437 			flush = true;
2438 		rcu_read_unlock();
2439 
2440 		if (flush &&
2441 		    !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2442 			if (cpu == curcpu)
2443 				drain_local_stock(&stock->work);
2444 			else
2445 				schedule_work_on(cpu, &stock->work);
2446 		}
2447 	}
2448 	put_cpu();
2449 	mutex_unlock(&percpu_charge_mutex);
2450 }
2451 
2452 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2453 {
2454 	struct memcg_stock_pcp *stock;
2455 	struct mem_cgroup *memcg, *mi;
2456 
2457 	stock = &per_cpu(memcg_stock, cpu);
2458 	drain_stock(stock);
2459 
2460 	for_each_mem_cgroup(memcg) {
2461 		int i;
2462 
2463 		for (i = 0; i < MEMCG_NR_STAT; i++) {
2464 			int nid;
2465 			long x;
2466 
2467 			x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2468 			if (x)
2469 				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2470 					atomic_long_add(x, &memcg->vmstats[i]);
2471 
2472 			if (i >= NR_VM_NODE_STAT_ITEMS)
2473 				continue;
2474 
2475 			for_each_node(nid) {
2476 				struct mem_cgroup_per_node *pn;
2477 
2478 				pn = mem_cgroup_nodeinfo(memcg, nid);
2479 				x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2480 				if (x)
2481 					do {
2482 						atomic_long_add(x, &pn->lruvec_stat[i]);
2483 					} while ((pn = parent_nodeinfo(pn, nid)));
2484 			}
2485 		}
2486 
2487 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2488 			long x;
2489 
2490 			x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2491 			if (x)
2492 				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2493 					atomic_long_add(x, &memcg->vmevents[i]);
2494 		}
2495 	}
2496 
2497 	return 0;
2498 }
2499 
2500 static unsigned long reclaim_high(struct mem_cgroup *memcg,
2501 				  unsigned int nr_pages,
2502 				  gfp_t gfp_mask)
2503 {
2504 	unsigned long nr_reclaimed = 0;
2505 
2506 	do {
2507 		unsigned long pflags;
2508 
2509 		if (page_counter_read(&memcg->memory) <=
2510 		    READ_ONCE(memcg->memory.high))
2511 			continue;
2512 
2513 		memcg_memory_event(memcg, MEMCG_HIGH);
2514 
2515 		psi_memstall_enter(&pflags);
2516 		nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2517 							     gfp_mask, true);
2518 		psi_memstall_leave(&pflags);
2519 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2520 		 !mem_cgroup_is_root(memcg));
2521 
2522 	return nr_reclaimed;
2523 }
2524 
2525 static void high_work_func(struct work_struct *work)
2526 {
2527 	struct mem_cgroup *memcg;
2528 
2529 	memcg = container_of(work, struct mem_cgroup, high_work);
2530 	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2531 }
2532 
2533 /*
2534  * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2535  * enough to still cause a significant slowdown in most cases, while still
2536  * allowing diagnostics and tracing to proceed without becoming stuck.
2537  */
2538 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2539 
2540 /*
2541  * When calculating the delay, we use these either side of the exponentiation to
2542  * maintain precision and scale to a reasonable number of jiffies (see the table
2543  * below.
2544  *
2545  * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2546  *   overage ratio to a delay.
2547  * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2548  *   proposed penalty in order to reduce to a reasonable number of jiffies, and
2549  *   to produce a reasonable delay curve.
2550  *
2551  * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2552  * reasonable delay curve compared to precision-adjusted overage, not
2553  * penalising heavily at first, but still making sure that growth beyond the
2554  * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2555  * example, with a high of 100 megabytes:
2556  *
2557  *  +-------+------------------------+
2558  *  | usage | time to allocate in ms |
2559  *  +-------+------------------------+
2560  *  | 100M  |                      0 |
2561  *  | 101M  |                      6 |
2562  *  | 102M  |                     25 |
2563  *  | 103M  |                     57 |
2564  *  | 104M  |                    102 |
2565  *  | 105M  |                    159 |
2566  *  | 106M  |                    230 |
2567  *  | 107M  |                    313 |
2568  *  | 108M  |                    409 |
2569  *  | 109M  |                    518 |
2570  *  | 110M  |                    639 |
2571  *  | 111M  |                    774 |
2572  *  | 112M  |                    921 |
2573  *  | 113M  |                   1081 |
2574  *  | 114M  |                   1254 |
2575  *  | 115M  |                   1439 |
2576  *  | 116M  |                   1638 |
2577  *  | 117M  |                   1849 |
2578  *  | 118M  |                   2000 |
2579  *  | 119M  |                   2000 |
2580  *  | 120M  |                   2000 |
2581  *  +-------+------------------------+
2582  */
2583  #define MEMCG_DELAY_PRECISION_SHIFT 20
2584  #define MEMCG_DELAY_SCALING_SHIFT 14
2585 
2586 static u64 calculate_overage(unsigned long usage, unsigned long high)
2587 {
2588 	u64 overage;
2589 
2590 	if (usage <= high)
2591 		return 0;
2592 
2593 	/*
2594 	 * Prevent division by 0 in overage calculation by acting as if
2595 	 * it was a threshold of 1 page
2596 	 */
2597 	high = max(high, 1UL);
2598 
2599 	overage = usage - high;
2600 	overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2601 	return div64_u64(overage, high);
2602 }
2603 
2604 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2605 {
2606 	u64 overage, max_overage = 0;
2607 
2608 	do {
2609 		overage = calculate_overage(page_counter_read(&memcg->memory),
2610 					    READ_ONCE(memcg->memory.high));
2611 		max_overage = max(overage, max_overage);
2612 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2613 		 !mem_cgroup_is_root(memcg));
2614 
2615 	return max_overage;
2616 }
2617 
2618 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2619 {
2620 	u64 overage, max_overage = 0;
2621 
2622 	do {
2623 		overage = calculate_overage(page_counter_read(&memcg->swap),
2624 					    READ_ONCE(memcg->swap.high));
2625 		if (overage)
2626 			memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2627 		max_overage = max(overage, max_overage);
2628 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2629 		 !mem_cgroup_is_root(memcg));
2630 
2631 	return max_overage;
2632 }
2633 
2634 /*
2635  * Get the number of jiffies that we should penalise a mischievous cgroup which
2636  * is exceeding its memory.high by checking both it and its ancestors.
2637  */
2638 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2639 					  unsigned int nr_pages,
2640 					  u64 max_overage)
2641 {
2642 	unsigned long penalty_jiffies;
2643 
2644 	if (!max_overage)
2645 		return 0;
2646 
2647 	/*
2648 	 * We use overage compared to memory.high to calculate the number of
2649 	 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2650 	 * fairly lenient on small overages, and increasingly harsh when the
2651 	 * memcg in question makes it clear that it has no intention of stopping
2652 	 * its crazy behaviour, so we exponentially increase the delay based on
2653 	 * overage amount.
2654 	 */
2655 	penalty_jiffies = max_overage * max_overage * HZ;
2656 	penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2657 	penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2658 
2659 	/*
2660 	 * Factor in the task's own contribution to the overage, such that four
2661 	 * N-sized allocations are throttled approximately the same as one
2662 	 * 4N-sized allocation.
2663 	 *
2664 	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2665 	 * larger the current charge patch is than that.
2666 	 */
2667 	return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2668 }
2669 
2670 /*
2671  * Scheduled by try_charge() to be executed from the userland return path
2672  * and reclaims memory over the high limit.
2673  */
2674 void mem_cgroup_handle_over_high(void)
2675 {
2676 	unsigned long penalty_jiffies;
2677 	unsigned long pflags;
2678 	unsigned long nr_reclaimed;
2679 	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2680 	int nr_retries = MAX_RECLAIM_RETRIES;
2681 	struct mem_cgroup *memcg;
2682 	bool in_retry = false;
2683 
2684 	if (likely(!nr_pages))
2685 		return;
2686 
2687 	memcg = get_mem_cgroup_from_mm(current->mm);
2688 	current->memcg_nr_pages_over_high = 0;
2689 
2690 retry_reclaim:
2691 	/*
2692 	 * The allocating task should reclaim at least the batch size, but for
2693 	 * subsequent retries we only want to do what's necessary to prevent oom
2694 	 * or breaching resource isolation.
2695 	 *
2696 	 * This is distinct from memory.max or page allocator behaviour because
2697 	 * memory.high is currently batched, whereas memory.max and the page
2698 	 * allocator run every time an allocation is made.
2699 	 */
2700 	nr_reclaimed = reclaim_high(memcg,
2701 				    in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2702 				    GFP_KERNEL);
2703 
2704 	/*
2705 	 * memory.high is breached and reclaim is unable to keep up. Throttle
2706 	 * allocators proactively to slow down excessive growth.
2707 	 */
2708 	penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2709 					       mem_find_max_overage(memcg));
2710 
2711 	penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2712 						swap_find_max_overage(memcg));
2713 
2714 	/*
2715 	 * Clamp the max delay per usermode return so as to still keep the
2716 	 * application moving forwards and also permit diagnostics, albeit
2717 	 * extremely slowly.
2718 	 */
2719 	penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2720 
2721 	/*
2722 	 * Don't sleep if the amount of jiffies this memcg owes us is so low
2723 	 * that it's not even worth doing, in an attempt to be nice to those who
2724 	 * go only a small amount over their memory.high value and maybe haven't
2725 	 * been aggressively reclaimed enough yet.
2726 	 */
2727 	if (penalty_jiffies <= HZ / 100)
2728 		goto out;
2729 
2730 	/*
2731 	 * If reclaim is making forward progress but we're still over
2732 	 * memory.high, we want to encourage that rather than doing allocator
2733 	 * throttling.
2734 	 */
2735 	if (nr_reclaimed || nr_retries--) {
2736 		in_retry = true;
2737 		goto retry_reclaim;
2738 	}
2739 
2740 	/*
2741 	 * If we exit early, we're guaranteed to die (since
2742 	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2743 	 * need to account for any ill-begotten jiffies to pay them off later.
2744 	 */
2745 	psi_memstall_enter(&pflags);
2746 	schedule_timeout_killable(penalty_jiffies);
2747 	psi_memstall_leave(&pflags);
2748 
2749 out:
2750 	css_put(&memcg->css);
2751 }
2752 
2753 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2754 		      unsigned int nr_pages)
2755 {
2756 	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2757 	int nr_retries = MAX_RECLAIM_RETRIES;
2758 	struct mem_cgroup *mem_over_limit;
2759 	struct page_counter *counter;
2760 	enum oom_status oom_status;
2761 	unsigned long nr_reclaimed;
2762 	bool may_swap = true;
2763 	bool drained = false;
2764 	unsigned long pflags;
2765 
2766 	if (mem_cgroup_is_root(memcg))
2767 		return 0;
2768 retry:
2769 	if (consume_stock(memcg, nr_pages))
2770 		return 0;
2771 
2772 	if (!do_memsw_account() ||
2773 	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2774 		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2775 			goto done_restock;
2776 		if (do_memsw_account())
2777 			page_counter_uncharge(&memcg->memsw, batch);
2778 		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2779 	} else {
2780 		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2781 		may_swap = false;
2782 	}
2783 
2784 	if (batch > nr_pages) {
2785 		batch = nr_pages;
2786 		goto retry;
2787 	}
2788 
2789 	/*
2790 	 * Memcg doesn't have a dedicated reserve for atomic
2791 	 * allocations. But like the global atomic pool, we need to
2792 	 * put the burden of reclaim on regular allocation requests
2793 	 * and let these go through as privileged allocations.
2794 	 */
2795 	if (gfp_mask & __GFP_ATOMIC)
2796 		goto force;
2797 
2798 	/*
2799 	 * Unlike in global OOM situations, memcg is not in a physical
2800 	 * memory shortage.  Allow dying and OOM-killed tasks to
2801 	 * bypass the last charges so that they can exit quickly and
2802 	 * free their memory.
2803 	 */
2804 	if (unlikely(should_force_charge()))
2805 		goto force;
2806 
2807 	/*
2808 	 * Prevent unbounded recursion when reclaim operations need to
2809 	 * allocate memory. This might exceed the limits temporarily,
2810 	 * but we prefer facilitating memory reclaim and getting back
2811 	 * under the limit over triggering OOM kills in these cases.
2812 	 */
2813 	if (unlikely(current->flags & PF_MEMALLOC))
2814 		goto force;
2815 
2816 	if (unlikely(task_in_memcg_oom(current)))
2817 		goto nomem;
2818 
2819 	if (!gfpflags_allow_blocking(gfp_mask))
2820 		goto nomem;
2821 
2822 	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2823 
2824 	psi_memstall_enter(&pflags);
2825 	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2826 						    gfp_mask, may_swap);
2827 	psi_memstall_leave(&pflags);
2828 
2829 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2830 		goto retry;
2831 
2832 	if (!drained) {
2833 		drain_all_stock(mem_over_limit);
2834 		drained = true;
2835 		goto retry;
2836 	}
2837 
2838 	if (gfp_mask & __GFP_NORETRY)
2839 		goto nomem;
2840 	/*
2841 	 * Even though the limit is exceeded at this point, reclaim
2842 	 * may have been able to free some pages.  Retry the charge
2843 	 * before killing the task.
2844 	 *
2845 	 * Only for regular pages, though: huge pages are rather
2846 	 * unlikely to succeed so close to the limit, and we fall back
2847 	 * to regular pages anyway in case of failure.
2848 	 */
2849 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2850 		goto retry;
2851 	/*
2852 	 * At task move, charge accounts can be doubly counted. So, it's
2853 	 * better to wait until the end of task_move if something is going on.
2854 	 */
2855 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2856 		goto retry;
2857 
2858 	if (nr_retries--)
2859 		goto retry;
2860 
2861 	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2862 		goto nomem;
2863 
2864 	if (gfp_mask & __GFP_NOFAIL)
2865 		goto force;
2866 
2867 	if (fatal_signal_pending(current))
2868 		goto force;
2869 
2870 	/*
2871 	 * keep retrying as long as the memcg oom killer is able to make
2872 	 * a forward progress or bypass the charge if the oom killer
2873 	 * couldn't make any progress.
2874 	 */
2875 	oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2876 		       get_order(nr_pages * PAGE_SIZE));
2877 	switch (oom_status) {
2878 	case OOM_SUCCESS:
2879 		nr_retries = MAX_RECLAIM_RETRIES;
2880 		goto retry;
2881 	case OOM_FAILED:
2882 		goto force;
2883 	default:
2884 		goto nomem;
2885 	}
2886 nomem:
2887 	if (!(gfp_mask & __GFP_NOFAIL))
2888 		return -ENOMEM;
2889 force:
2890 	/*
2891 	 * The allocation either can't fail or will lead to more memory
2892 	 * being freed very soon.  Allow memory usage go over the limit
2893 	 * temporarily by force charging it.
2894 	 */
2895 	page_counter_charge(&memcg->memory, nr_pages);
2896 	if (do_memsw_account())
2897 		page_counter_charge(&memcg->memsw, nr_pages);
2898 
2899 	return 0;
2900 
2901 done_restock:
2902 	if (batch > nr_pages)
2903 		refill_stock(memcg, batch - nr_pages);
2904 
2905 	/*
2906 	 * If the hierarchy is above the normal consumption range, schedule
2907 	 * reclaim on returning to userland.  We can perform reclaim here
2908 	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2909 	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2910 	 * not recorded as it most likely matches current's and won't
2911 	 * change in the meantime.  As high limit is checked again before
2912 	 * reclaim, the cost of mismatch is negligible.
2913 	 */
2914 	do {
2915 		bool mem_high, swap_high;
2916 
2917 		mem_high = page_counter_read(&memcg->memory) >
2918 			READ_ONCE(memcg->memory.high);
2919 		swap_high = page_counter_read(&memcg->swap) >
2920 			READ_ONCE(memcg->swap.high);
2921 
2922 		/* Don't bother a random interrupted task */
2923 		if (in_interrupt()) {
2924 			if (mem_high) {
2925 				schedule_work(&memcg->high_work);
2926 				break;
2927 			}
2928 			continue;
2929 		}
2930 
2931 		if (mem_high || swap_high) {
2932 			/*
2933 			 * The allocating tasks in this cgroup will need to do
2934 			 * reclaim or be throttled to prevent further growth
2935 			 * of the memory or swap footprints.
2936 			 *
2937 			 * Target some best-effort fairness between the tasks,
2938 			 * and distribute reclaim work and delay penalties
2939 			 * based on how much each task is actually allocating.
2940 			 */
2941 			current->memcg_nr_pages_over_high += batch;
2942 			set_notify_resume(current);
2943 			break;
2944 		}
2945 	} while ((memcg = parent_mem_cgroup(memcg)));
2946 
2947 	return 0;
2948 }
2949 
2950 #if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
2951 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2952 {
2953 	if (mem_cgroup_is_root(memcg))
2954 		return;
2955 
2956 	page_counter_uncharge(&memcg->memory, nr_pages);
2957 	if (do_memsw_account())
2958 		page_counter_uncharge(&memcg->memsw, nr_pages);
2959 }
2960 #endif
2961 
2962 static void commit_charge(struct page *page, struct mem_cgroup *memcg)
2963 {
2964 	VM_BUG_ON_PAGE(page_memcg(page), page);
2965 	/*
2966 	 * Any of the following ensures page's memcg stability:
2967 	 *
2968 	 * - the page lock
2969 	 * - LRU isolation
2970 	 * - lock_page_memcg()
2971 	 * - exclusive reference
2972 	 */
2973 	page->memcg_data = (unsigned long)memcg;
2974 }
2975 
2976 #ifdef CONFIG_MEMCG_KMEM
2977 int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
2978 				 gfp_t gfp)
2979 {
2980 	unsigned int objects = objs_per_slab_page(s, page);
2981 	void *vec;
2982 
2983 	vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2984 			   page_to_nid(page));
2985 	if (!vec)
2986 		return -ENOMEM;
2987 
2988 	if (!set_page_objcgs(page, vec))
2989 		kfree(vec);
2990 	else
2991 		kmemleak_not_leak(vec);
2992 
2993 	return 0;
2994 }
2995 
2996 /*
2997  * Returns a pointer to the memory cgroup to which the kernel object is charged.
2998  *
2999  * A passed kernel object can be a slab object or a generic kernel page, so
3000  * different mechanisms for getting the memory cgroup pointer should be used.
3001  * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
3002  * can not know for sure how the kernel object is implemented.
3003  * mem_cgroup_from_obj() can be safely used in such cases.
3004  *
3005  * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
3006  * cgroup_mutex, etc.
3007  */
3008 struct mem_cgroup *mem_cgroup_from_obj(void *p)
3009 {
3010 	struct page *page;
3011 
3012 	if (mem_cgroup_disabled())
3013 		return NULL;
3014 
3015 	page = virt_to_head_page(p);
3016 
3017 	/*
3018 	 * Slab objects are accounted individually, not per-page.
3019 	 * Memcg membership data for each individual object is saved in
3020 	 * the page->obj_cgroups.
3021 	 */
3022 	if (page_objcgs_check(page)) {
3023 		struct obj_cgroup *objcg;
3024 		unsigned int off;
3025 
3026 		off = obj_to_index(page->slab_cache, page, p);
3027 		objcg = page_objcgs(page)[off];
3028 		if (objcg)
3029 			return obj_cgroup_memcg(objcg);
3030 
3031 		return NULL;
3032 	}
3033 
3034 	/*
3035 	 * page_memcg_check() is used here, because page_has_obj_cgroups()
3036 	 * check above could fail because the object cgroups vector wasn't set
3037 	 * at that moment, but it can be set concurrently.
3038 	 * page_memcg_check(page) will guarantee that a proper memory
3039 	 * cgroup pointer or NULL will be returned.
3040 	 */
3041 	return page_memcg_check(page);
3042 }
3043 
3044 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
3045 {
3046 	struct obj_cgroup *objcg = NULL;
3047 	struct mem_cgroup *memcg;
3048 
3049 	if (memcg_kmem_bypass())
3050 		return NULL;
3051 
3052 	rcu_read_lock();
3053 	if (unlikely(active_memcg()))
3054 		memcg = active_memcg();
3055 	else
3056 		memcg = mem_cgroup_from_task(current);
3057 
3058 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
3059 		objcg = rcu_dereference(memcg->objcg);
3060 		if (objcg && obj_cgroup_tryget(objcg))
3061 			break;
3062 		objcg = NULL;
3063 	}
3064 	rcu_read_unlock();
3065 
3066 	return objcg;
3067 }
3068 
3069 static int memcg_alloc_cache_id(void)
3070 {
3071 	int id, size;
3072 	int err;
3073 
3074 	id = ida_simple_get(&memcg_cache_ida,
3075 			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
3076 	if (id < 0)
3077 		return id;
3078 
3079 	if (id < memcg_nr_cache_ids)
3080 		return id;
3081 
3082 	/*
3083 	 * There's no space for the new id in memcg_caches arrays,
3084 	 * so we have to grow them.
3085 	 */
3086 	down_write(&memcg_cache_ids_sem);
3087 
3088 	size = 2 * (id + 1);
3089 	if (size < MEMCG_CACHES_MIN_SIZE)
3090 		size = MEMCG_CACHES_MIN_SIZE;
3091 	else if (size > MEMCG_CACHES_MAX_SIZE)
3092 		size = MEMCG_CACHES_MAX_SIZE;
3093 
3094 	err = memcg_update_all_list_lrus(size);
3095 	if (!err)
3096 		memcg_nr_cache_ids = size;
3097 
3098 	up_write(&memcg_cache_ids_sem);
3099 
3100 	if (err) {
3101 		ida_simple_remove(&memcg_cache_ida, id);
3102 		return err;
3103 	}
3104 	return id;
3105 }
3106 
3107 static void memcg_free_cache_id(int id)
3108 {
3109 	ida_simple_remove(&memcg_cache_ida, id);
3110 }
3111 
3112 /**
3113  * __memcg_kmem_charge: charge a number of kernel pages to a memcg
3114  * @memcg: memory cgroup to charge
3115  * @gfp: reclaim mode
3116  * @nr_pages: number of pages to charge
3117  *
3118  * Returns 0 on success, an error code on failure.
3119  */
3120 int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
3121 			unsigned int nr_pages)
3122 {
3123 	struct page_counter *counter;
3124 	int ret;
3125 
3126 	ret = try_charge(memcg, gfp, nr_pages);
3127 	if (ret)
3128 		return ret;
3129 
3130 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
3131 	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
3132 
3133 		/*
3134 		 * Enforce __GFP_NOFAIL allocation because callers are not
3135 		 * prepared to see failures and likely do not have any failure
3136 		 * handling code.
3137 		 */
3138 		if (gfp & __GFP_NOFAIL) {
3139 			page_counter_charge(&memcg->kmem, nr_pages);
3140 			return 0;
3141 		}
3142 		cancel_charge(memcg, nr_pages);
3143 		return -ENOMEM;
3144 	}
3145 	return 0;
3146 }
3147 
3148 /**
3149  * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg
3150  * @memcg: memcg to uncharge
3151  * @nr_pages: number of pages to uncharge
3152  */
3153 void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
3154 {
3155 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
3156 		page_counter_uncharge(&memcg->kmem, nr_pages);
3157 
3158 	page_counter_uncharge(&memcg->memory, nr_pages);
3159 	if (do_memsw_account())
3160 		page_counter_uncharge(&memcg->memsw, nr_pages);
3161 }
3162 
3163 /**
3164  * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3165  * @page: page to charge
3166  * @gfp: reclaim mode
3167  * @order: allocation order
3168  *
3169  * Returns 0 on success, an error code on failure.
3170  */
3171 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3172 {
3173 	struct mem_cgroup *memcg;
3174 	int ret = 0;
3175 
3176 	memcg = get_mem_cgroup_from_current();
3177 	if (memcg && !mem_cgroup_is_root(memcg)) {
3178 		ret = __memcg_kmem_charge(memcg, gfp, 1 << order);
3179 		if (!ret) {
3180 			page->memcg_data = (unsigned long)memcg |
3181 				MEMCG_DATA_KMEM;
3182 			return 0;
3183 		}
3184 		css_put(&memcg->css);
3185 	}
3186 	return ret;
3187 }
3188 
3189 /**
3190  * __memcg_kmem_uncharge_page: uncharge a kmem page
3191  * @page: page to uncharge
3192  * @order: allocation order
3193  */
3194 void __memcg_kmem_uncharge_page(struct page *page, int order)
3195 {
3196 	struct mem_cgroup *memcg = page_memcg(page);
3197 	unsigned int nr_pages = 1 << order;
3198 
3199 	if (!memcg)
3200 		return;
3201 
3202 	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3203 	__memcg_kmem_uncharge(memcg, nr_pages);
3204 	page->memcg_data = 0;
3205 	css_put(&memcg->css);
3206 }
3207 
3208 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3209 {
3210 	struct memcg_stock_pcp *stock;
3211 	unsigned long flags;
3212 	bool ret = false;
3213 
3214 	local_irq_save(flags);
3215 
3216 	stock = this_cpu_ptr(&memcg_stock);
3217 	if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3218 		stock->nr_bytes -= nr_bytes;
3219 		ret = true;
3220 	}
3221 
3222 	local_irq_restore(flags);
3223 
3224 	return ret;
3225 }
3226 
3227 static void drain_obj_stock(struct memcg_stock_pcp *stock)
3228 {
3229 	struct obj_cgroup *old = stock->cached_objcg;
3230 
3231 	if (!old)
3232 		return;
3233 
3234 	if (stock->nr_bytes) {
3235 		unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3236 		unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3237 
3238 		if (nr_pages) {
3239 			rcu_read_lock();
3240 			__memcg_kmem_uncharge(obj_cgroup_memcg(old), nr_pages);
3241 			rcu_read_unlock();
3242 		}
3243 
3244 		/*
3245 		 * The leftover is flushed to the centralized per-memcg value.
3246 		 * On the next attempt to refill obj stock it will be moved
3247 		 * to a per-cpu stock (probably, on an other CPU), see
3248 		 * refill_obj_stock().
3249 		 *
3250 		 * How often it's flushed is a trade-off between the memory
3251 		 * limit enforcement accuracy and potential CPU contention,
3252 		 * so it might be changed in the future.
3253 		 */
3254 		atomic_add(nr_bytes, &old->nr_charged_bytes);
3255 		stock->nr_bytes = 0;
3256 	}
3257 
3258 	obj_cgroup_put(old);
3259 	stock->cached_objcg = NULL;
3260 }
3261 
3262 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3263 				     struct mem_cgroup *root_memcg)
3264 {
3265 	struct mem_cgroup *memcg;
3266 
3267 	if (stock->cached_objcg) {
3268 		memcg = obj_cgroup_memcg(stock->cached_objcg);
3269 		if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3270 			return true;
3271 	}
3272 
3273 	return false;
3274 }
3275 
3276 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3277 {
3278 	struct memcg_stock_pcp *stock;
3279 	unsigned long flags;
3280 
3281 	local_irq_save(flags);
3282 
3283 	stock = this_cpu_ptr(&memcg_stock);
3284 	if (stock->cached_objcg != objcg) { /* reset if necessary */
3285 		drain_obj_stock(stock);
3286 		obj_cgroup_get(objcg);
3287 		stock->cached_objcg = objcg;
3288 		stock->nr_bytes = atomic_xchg(&objcg->nr_charged_bytes, 0);
3289 	}
3290 	stock->nr_bytes += nr_bytes;
3291 
3292 	if (stock->nr_bytes > PAGE_SIZE)
3293 		drain_obj_stock(stock);
3294 
3295 	local_irq_restore(flags);
3296 }
3297 
3298 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3299 {
3300 	struct mem_cgroup *memcg;
3301 	unsigned int nr_pages, nr_bytes;
3302 	int ret;
3303 
3304 	if (consume_obj_stock(objcg, size))
3305 		return 0;
3306 
3307 	/*
3308 	 * In theory, memcg->nr_charged_bytes can have enough
3309 	 * pre-charged bytes to satisfy the allocation. However,
3310 	 * flushing memcg->nr_charged_bytes requires two atomic
3311 	 * operations, and memcg->nr_charged_bytes can't be big,
3312 	 * so it's better to ignore it and try grab some new pages.
3313 	 * memcg->nr_charged_bytes will be flushed in
3314 	 * refill_obj_stock(), called from this function or
3315 	 * independently later.
3316 	 */
3317 	rcu_read_lock();
3318 retry:
3319 	memcg = obj_cgroup_memcg(objcg);
3320 	if (unlikely(!css_tryget(&memcg->css)))
3321 		goto retry;
3322 	rcu_read_unlock();
3323 
3324 	nr_pages = size >> PAGE_SHIFT;
3325 	nr_bytes = size & (PAGE_SIZE - 1);
3326 
3327 	if (nr_bytes)
3328 		nr_pages += 1;
3329 
3330 	ret = __memcg_kmem_charge(memcg, gfp, nr_pages);
3331 	if (!ret && nr_bytes)
3332 		refill_obj_stock(objcg, PAGE_SIZE - nr_bytes);
3333 
3334 	css_put(&memcg->css);
3335 	return ret;
3336 }
3337 
3338 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3339 {
3340 	refill_obj_stock(objcg, size);
3341 }
3342 
3343 #endif /* CONFIG_MEMCG_KMEM */
3344 
3345 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3346 /*
3347  * Because page_memcg(head) is not set on compound tails, set it now.
3348  */
3349 void mem_cgroup_split_huge_fixup(struct page *head)
3350 {
3351 	struct mem_cgroup *memcg = page_memcg(head);
3352 	int i;
3353 
3354 	if (mem_cgroup_disabled())
3355 		return;
3356 
3357 	for (i = 1; i < HPAGE_PMD_NR; i++) {
3358 		css_get(&memcg->css);
3359 		head[i].memcg_data = (unsigned long)memcg;
3360 	}
3361 }
3362 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3363 
3364 #ifdef CONFIG_MEMCG_SWAP
3365 /**
3366  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3367  * @entry: swap entry to be moved
3368  * @from:  mem_cgroup which the entry is moved from
3369  * @to:  mem_cgroup which the entry is moved to
3370  *
3371  * It succeeds only when the swap_cgroup's record for this entry is the same
3372  * as the mem_cgroup's id of @from.
3373  *
3374  * Returns 0 on success, -EINVAL on failure.
3375  *
3376  * The caller must have charged to @to, IOW, called page_counter_charge() about
3377  * both res and memsw, and called css_get().
3378  */
3379 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3380 				struct mem_cgroup *from, struct mem_cgroup *to)
3381 {
3382 	unsigned short old_id, new_id;
3383 
3384 	old_id = mem_cgroup_id(from);
3385 	new_id = mem_cgroup_id(to);
3386 
3387 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3388 		mod_memcg_state(from, MEMCG_SWAP, -1);
3389 		mod_memcg_state(to, MEMCG_SWAP, 1);
3390 		return 0;
3391 	}
3392 	return -EINVAL;
3393 }
3394 #else
3395 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3396 				struct mem_cgroup *from, struct mem_cgroup *to)
3397 {
3398 	return -EINVAL;
3399 }
3400 #endif
3401 
3402 static DEFINE_MUTEX(memcg_max_mutex);
3403 
3404 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3405 				 unsigned long max, bool memsw)
3406 {
3407 	bool enlarge = false;
3408 	bool drained = false;
3409 	int ret;
3410 	bool limits_invariant;
3411 	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3412 
3413 	do {
3414 		if (signal_pending(current)) {
3415 			ret = -EINTR;
3416 			break;
3417 		}
3418 
3419 		mutex_lock(&memcg_max_mutex);
3420 		/*
3421 		 * Make sure that the new limit (memsw or memory limit) doesn't
3422 		 * break our basic invariant rule memory.max <= memsw.max.
3423 		 */
3424 		limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3425 					   max <= memcg->memsw.max;
3426 		if (!limits_invariant) {
3427 			mutex_unlock(&memcg_max_mutex);
3428 			ret = -EINVAL;
3429 			break;
3430 		}
3431 		if (max > counter->max)
3432 			enlarge = true;
3433 		ret = page_counter_set_max(counter, max);
3434 		mutex_unlock(&memcg_max_mutex);
3435 
3436 		if (!ret)
3437 			break;
3438 
3439 		if (!drained) {
3440 			drain_all_stock(memcg);
3441 			drained = true;
3442 			continue;
3443 		}
3444 
3445 		if (!try_to_free_mem_cgroup_pages(memcg, 1,
3446 					GFP_KERNEL, !memsw)) {
3447 			ret = -EBUSY;
3448 			break;
3449 		}
3450 	} while (true);
3451 
3452 	if (!ret && enlarge)
3453 		memcg_oom_recover(memcg);
3454 
3455 	return ret;
3456 }
3457 
3458 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3459 					    gfp_t gfp_mask,
3460 					    unsigned long *total_scanned)
3461 {
3462 	unsigned long nr_reclaimed = 0;
3463 	struct mem_cgroup_per_node *mz, *next_mz = NULL;
3464 	unsigned long reclaimed;
3465 	int loop = 0;
3466 	struct mem_cgroup_tree_per_node *mctz;
3467 	unsigned long excess;
3468 	unsigned long nr_scanned;
3469 
3470 	if (order > 0)
3471 		return 0;
3472 
3473 	mctz = soft_limit_tree_node(pgdat->node_id);
3474 
3475 	/*
3476 	 * Do not even bother to check the largest node if the root
3477 	 * is empty. Do it lockless to prevent lock bouncing. Races
3478 	 * are acceptable as soft limit is best effort anyway.
3479 	 */
3480 	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3481 		return 0;
3482 
3483 	/*
3484 	 * This loop can run a while, specially if mem_cgroup's continuously
3485 	 * keep exceeding their soft limit and putting the system under
3486 	 * pressure
3487 	 */
3488 	do {
3489 		if (next_mz)
3490 			mz = next_mz;
3491 		else
3492 			mz = mem_cgroup_largest_soft_limit_node(mctz);
3493 		if (!mz)
3494 			break;
3495 
3496 		nr_scanned = 0;
3497 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3498 						    gfp_mask, &nr_scanned);
3499 		nr_reclaimed += reclaimed;
3500 		*total_scanned += nr_scanned;
3501 		spin_lock_irq(&mctz->lock);
3502 		__mem_cgroup_remove_exceeded(mz, mctz);
3503 
3504 		/*
3505 		 * If we failed to reclaim anything from this memory cgroup
3506 		 * it is time to move on to the next cgroup
3507 		 */
3508 		next_mz = NULL;
3509 		if (!reclaimed)
3510 			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3511 
3512 		excess = soft_limit_excess(mz->memcg);
3513 		/*
3514 		 * One school of thought says that we should not add
3515 		 * back the node to the tree if reclaim returns 0.
3516 		 * But our reclaim could return 0, simply because due
3517 		 * to priority we are exposing a smaller subset of
3518 		 * memory to reclaim from. Consider this as a longer
3519 		 * term TODO.
3520 		 */
3521 		/* If excess == 0, no tree ops */
3522 		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3523 		spin_unlock_irq(&mctz->lock);
3524 		css_put(&mz->memcg->css);
3525 		loop++;
3526 		/*
3527 		 * Could not reclaim anything and there are no more
3528 		 * mem cgroups to try or we seem to be looping without
3529 		 * reclaiming anything.
3530 		 */
3531 		if (!nr_reclaimed &&
3532 			(next_mz == NULL ||
3533 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3534 			break;
3535 	} while (!nr_reclaimed);
3536 	if (next_mz)
3537 		css_put(&next_mz->memcg->css);
3538 	return nr_reclaimed;
3539 }
3540 
3541 /*
3542  * Reclaims as many pages from the given memcg as possible.
3543  *
3544  * Caller is responsible for holding css reference for memcg.
3545  */
3546 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3547 {
3548 	int nr_retries = MAX_RECLAIM_RETRIES;
3549 
3550 	/* we call try-to-free pages for make this cgroup empty */
3551 	lru_add_drain_all();
3552 
3553 	drain_all_stock(memcg);
3554 
3555 	/* try to free all pages in this cgroup */
3556 	while (nr_retries && page_counter_read(&memcg->memory)) {
3557 		int progress;
3558 
3559 		if (signal_pending(current))
3560 			return -EINTR;
3561 
3562 		progress = try_to_free_mem_cgroup_pages(memcg, 1,
3563 							GFP_KERNEL, true);
3564 		if (!progress) {
3565 			nr_retries--;
3566 			/* maybe some writeback is necessary */
3567 			congestion_wait(BLK_RW_ASYNC, HZ/10);
3568 		}
3569 
3570 	}
3571 
3572 	return 0;
3573 }
3574 
3575 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3576 					    char *buf, size_t nbytes,
3577 					    loff_t off)
3578 {
3579 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3580 
3581 	if (mem_cgroup_is_root(memcg))
3582 		return -EINVAL;
3583 	return mem_cgroup_force_empty(memcg) ?: nbytes;
3584 }
3585 
3586 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3587 				     struct cftype *cft)
3588 {
3589 	return 1;
3590 }
3591 
3592 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3593 				      struct cftype *cft, u64 val)
3594 {
3595 	if (val == 1)
3596 		return 0;
3597 
3598 	pr_warn_once("Non-hierarchical mode is deprecated. "
3599 		     "Please report your usecase to linux-mm@kvack.org if you "
3600 		     "depend on this functionality.\n");
3601 
3602 	return -EINVAL;
3603 }
3604 
3605 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3606 {
3607 	unsigned long val;
3608 
3609 	if (mem_cgroup_is_root(memcg)) {
3610 		val = memcg_page_state(memcg, NR_FILE_PAGES) +
3611 			memcg_page_state(memcg, NR_ANON_MAPPED);
3612 		if (swap)
3613 			val += memcg_page_state(memcg, MEMCG_SWAP);
3614 	} else {
3615 		if (!swap)
3616 			val = page_counter_read(&memcg->memory);
3617 		else
3618 			val = page_counter_read(&memcg->memsw);
3619 	}
3620 	return val;
3621 }
3622 
3623 enum {
3624 	RES_USAGE,
3625 	RES_LIMIT,
3626 	RES_MAX_USAGE,
3627 	RES_FAILCNT,
3628 	RES_SOFT_LIMIT,
3629 };
3630 
3631 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3632 			       struct cftype *cft)
3633 {
3634 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3635 	struct page_counter *counter;
3636 
3637 	switch (MEMFILE_TYPE(cft->private)) {
3638 	case _MEM:
3639 		counter = &memcg->memory;
3640 		break;
3641 	case _MEMSWAP:
3642 		counter = &memcg->memsw;
3643 		break;
3644 	case _KMEM:
3645 		counter = &memcg->kmem;
3646 		break;
3647 	case _TCP:
3648 		counter = &memcg->tcpmem;
3649 		break;
3650 	default:
3651 		BUG();
3652 	}
3653 
3654 	switch (MEMFILE_ATTR(cft->private)) {
3655 	case RES_USAGE:
3656 		if (counter == &memcg->memory)
3657 			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3658 		if (counter == &memcg->memsw)
3659 			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3660 		return (u64)page_counter_read(counter) * PAGE_SIZE;
3661 	case RES_LIMIT:
3662 		return (u64)counter->max * PAGE_SIZE;
3663 	case RES_MAX_USAGE:
3664 		return (u64)counter->watermark * PAGE_SIZE;
3665 	case RES_FAILCNT:
3666 		return counter->failcnt;
3667 	case RES_SOFT_LIMIT:
3668 		return (u64)memcg->soft_limit * PAGE_SIZE;
3669 	default:
3670 		BUG();
3671 	}
3672 }
3673 
3674 static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
3675 {
3676 	unsigned long stat[MEMCG_NR_STAT] = {0};
3677 	struct mem_cgroup *mi;
3678 	int node, cpu, i;
3679 
3680 	for_each_online_cpu(cpu)
3681 		for (i = 0; i < MEMCG_NR_STAT; i++)
3682 			stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
3683 
3684 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3685 		for (i = 0; i < MEMCG_NR_STAT; i++)
3686 			atomic_long_add(stat[i], &mi->vmstats[i]);
3687 
3688 	for_each_node(node) {
3689 		struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3690 		struct mem_cgroup_per_node *pi;
3691 
3692 		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3693 			stat[i] = 0;
3694 
3695 		for_each_online_cpu(cpu)
3696 			for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3697 				stat[i] += per_cpu(
3698 					pn->lruvec_stat_cpu->count[i], cpu);
3699 
3700 		for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
3701 			for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3702 				atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3703 	}
3704 }
3705 
3706 static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3707 {
3708 	unsigned long events[NR_VM_EVENT_ITEMS];
3709 	struct mem_cgroup *mi;
3710 	int cpu, i;
3711 
3712 	for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3713 		events[i] = 0;
3714 
3715 	for_each_online_cpu(cpu)
3716 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3717 			events[i] += per_cpu(memcg->vmstats_percpu->events[i],
3718 					     cpu);
3719 
3720 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3721 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3722 			atomic_long_add(events[i], &mi->vmevents[i]);
3723 }
3724 
3725 #ifdef CONFIG_MEMCG_KMEM
3726 static int memcg_online_kmem(struct mem_cgroup *memcg)
3727 {
3728 	struct obj_cgroup *objcg;
3729 	int memcg_id;
3730 
3731 	if (cgroup_memory_nokmem)
3732 		return 0;
3733 
3734 	BUG_ON(memcg->kmemcg_id >= 0);
3735 	BUG_ON(memcg->kmem_state);
3736 
3737 	memcg_id = memcg_alloc_cache_id();
3738 	if (memcg_id < 0)
3739 		return memcg_id;
3740 
3741 	objcg = obj_cgroup_alloc();
3742 	if (!objcg) {
3743 		memcg_free_cache_id(memcg_id);
3744 		return -ENOMEM;
3745 	}
3746 	objcg->memcg = memcg;
3747 	rcu_assign_pointer(memcg->objcg, objcg);
3748 
3749 	static_branch_enable(&memcg_kmem_enabled_key);
3750 
3751 	memcg->kmemcg_id = memcg_id;
3752 	memcg->kmem_state = KMEM_ONLINE;
3753 
3754 	return 0;
3755 }
3756 
3757 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3758 {
3759 	struct cgroup_subsys_state *css;
3760 	struct mem_cgroup *parent, *child;
3761 	int kmemcg_id;
3762 
3763 	if (memcg->kmem_state != KMEM_ONLINE)
3764 		return;
3765 
3766 	memcg->kmem_state = KMEM_ALLOCATED;
3767 
3768 	parent = parent_mem_cgroup(memcg);
3769 	if (!parent)
3770 		parent = root_mem_cgroup;
3771 
3772 	memcg_reparent_objcgs(memcg, parent);
3773 
3774 	kmemcg_id = memcg->kmemcg_id;
3775 	BUG_ON(kmemcg_id < 0);
3776 
3777 	/*
3778 	 * Change kmemcg_id of this cgroup and all its descendants to the
3779 	 * parent's id, and then move all entries from this cgroup's list_lrus
3780 	 * to ones of the parent. After we have finished, all list_lrus
3781 	 * corresponding to this cgroup are guaranteed to remain empty. The
3782 	 * ordering is imposed by list_lru_node->lock taken by
3783 	 * memcg_drain_all_list_lrus().
3784 	 */
3785 	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3786 	css_for_each_descendant_pre(css, &memcg->css) {
3787 		child = mem_cgroup_from_css(css);
3788 		BUG_ON(child->kmemcg_id != kmemcg_id);
3789 		child->kmemcg_id = parent->kmemcg_id;
3790 	}
3791 	rcu_read_unlock();
3792 
3793 	memcg_drain_all_list_lrus(kmemcg_id, parent);
3794 
3795 	memcg_free_cache_id(kmemcg_id);
3796 }
3797 
3798 static void memcg_free_kmem(struct mem_cgroup *memcg)
3799 {
3800 	/* css_alloc() failed, offlining didn't happen */
3801 	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3802 		memcg_offline_kmem(memcg);
3803 }
3804 #else
3805 static int memcg_online_kmem(struct mem_cgroup *memcg)
3806 {
3807 	return 0;
3808 }
3809 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3810 {
3811 }
3812 static void memcg_free_kmem(struct mem_cgroup *memcg)
3813 {
3814 }
3815 #endif /* CONFIG_MEMCG_KMEM */
3816 
3817 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3818 				 unsigned long max)
3819 {
3820 	int ret;
3821 
3822 	mutex_lock(&memcg_max_mutex);
3823 	ret = page_counter_set_max(&memcg->kmem, max);
3824 	mutex_unlock(&memcg_max_mutex);
3825 	return ret;
3826 }
3827 
3828 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3829 {
3830 	int ret;
3831 
3832 	mutex_lock(&memcg_max_mutex);
3833 
3834 	ret = page_counter_set_max(&memcg->tcpmem, max);
3835 	if (ret)
3836 		goto out;
3837 
3838 	if (!memcg->tcpmem_active) {
3839 		/*
3840 		 * The active flag needs to be written after the static_key
3841 		 * update. This is what guarantees that the socket activation
3842 		 * function is the last one to run. See mem_cgroup_sk_alloc()
3843 		 * for details, and note that we don't mark any socket as
3844 		 * belonging to this memcg until that flag is up.
3845 		 *
3846 		 * We need to do this, because static_keys will span multiple
3847 		 * sites, but we can't control their order. If we mark a socket
3848 		 * as accounted, but the accounting functions are not patched in
3849 		 * yet, we'll lose accounting.
3850 		 *
3851 		 * We never race with the readers in mem_cgroup_sk_alloc(),
3852 		 * because when this value change, the code to process it is not
3853 		 * patched in yet.
3854 		 */
3855 		static_branch_inc(&memcg_sockets_enabled_key);
3856 		memcg->tcpmem_active = true;
3857 	}
3858 out:
3859 	mutex_unlock(&memcg_max_mutex);
3860 	return ret;
3861 }
3862 
3863 /*
3864  * The user of this function is...
3865  * RES_LIMIT.
3866  */
3867 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3868 				char *buf, size_t nbytes, loff_t off)
3869 {
3870 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3871 	unsigned long nr_pages;
3872 	int ret;
3873 
3874 	buf = strstrip(buf);
3875 	ret = page_counter_memparse(buf, "-1", &nr_pages);
3876 	if (ret)
3877 		return ret;
3878 
3879 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3880 	case RES_LIMIT:
3881 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3882 			ret = -EINVAL;
3883 			break;
3884 		}
3885 		switch (MEMFILE_TYPE(of_cft(of)->private)) {
3886 		case _MEM:
3887 			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3888 			break;
3889 		case _MEMSWAP:
3890 			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3891 			break;
3892 		case _KMEM:
3893 			pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3894 				     "Please report your usecase to linux-mm@kvack.org if you "
3895 				     "depend on this functionality.\n");
3896 			ret = memcg_update_kmem_max(memcg, nr_pages);
3897 			break;
3898 		case _TCP:
3899 			ret = memcg_update_tcp_max(memcg, nr_pages);
3900 			break;
3901 		}
3902 		break;
3903 	case RES_SOFT_LIMIT:
3904 		memcg->soft_limit = nr_pages;
3905 		ret = 0;
3906 		break;
3907 	}
3908 	return ret ?: nbytes;
3909 }
3910 
3911 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3912 				size_t nbytes, loff_t off)
3913 {
3914 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3915 	struct page_counter *counter;
3916 
3917 	switch (MEMFILE_TYPE(of_cft(of)->private)) {
3918 	case _MEM:
3919 		counter = &memcg->memory;
3920 		break;
3921 	case _MEMSWAP:
3922 		counter = &memcg->memsw;
3923 		break;
3924 	case _KMEM:
3925 		counter = &memcg->kmem;
3926 		break;
3927 	case _TCP:
3928 		counter = &memcg->tcpmem;
3929 		break;
3930 	default:
3931 		BUG();
3932 	}
3933 
3934 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3935 	case RES_MAX_USAGE:
3936 		page_counter_reset_watermark(counter);
3937 		break;
3938 	case RES_FAILCNT:
3939 		counter->failcnt = 0;
3940 		break;
3941 	default:
3942 		BUG();
3943 	}
3944 
3945 	return nbytes;
3946 }
3947 
3948 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3949 					struct cftype *cft)
3950 {
3951 	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3952 }
3953 
3954 #ifdef CONFIG_MMU
3955 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3956 					struct cftype *cft, u64 val)
3957 {
3958 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3959 
3960 	if (val & ~MOVE_MASK)
3961 		return -EINVAL;
3962 
3963 	/*
3964 	 * No kind of locking is needed in here, because ->can_attach() will
3965 	 * check this value once in the beginning of the process, and then carry
3966 	 * on with stale data. This means that changes to this value will only
3967 	 * affect task migrations starting after the change.
3968 	 */
3969 	memcg->move_charge_at_immigrate = val;
3970 	return 0;
3971 }
3972 #else
3973 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3974 					struct cftype *cft, u64 val)
3975 {
3976 	return -ENOSYS;
3977 }
3978 #endif
3979 
3980 #ifdef CONFIG_NUMA
3981 
3982 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3983 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3984 #define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)
3985 
3986 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3987 				int nid, unsigned int lru_mask, bool tree)
3988 {
3989 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3990 	unsigned long nr = 0;
3991 	enum lru_list lru;
3992 
3993 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
3994 
3995 	for_each_lru(lru) {
3996 		if (!(BIT(lru) & lru_mask))
3997 			continue;
3998 		if (tree)
3999 			nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
4000 		else
4001 			nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
4002 	}
4003 	return nr;
4004 }
4005 
4006 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
4007 					     unsigned int lru_mask,
4008 					     bool tree)
4009 {
4010 	unsigned long nr = 0;
4011 	enum lru_list lru;
4012 
4013 	for_each_lru(lru) {
4014 		if (!(BIT(lru) & lru_mask))
4015 			continue;
4016 		if (tree)
4017 			nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
4018 		else
4019 			nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
4020 	}
4021 	return nr;
4022 }
4023 
4024 static int memcg_numa_stat_show(struct seq_file *m, void *v)
4025 {
4026 	struct numa_stat {
4027 		const char *name;
4028 		unsigned int lru_mask;
4029 	};
4030 
4031 	static const struct numa_stat stats[] = {
4032 		{ "total", LRU_ALL },
4033 		{ "file", LRU_ALL_FILE },
4034 		{ "anon", LRU_ALL_ANON },
4035 		{ "unevictable", BIT(LRU_UNEVICTABLE) },
4036 	};
4037 	const struct numa_stat *stat;
4038 	int nid;
4039 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4040 
4041 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4042 		seq_printf(m, "%s=%lu", stat->name,
4043 			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4044 						   false));
4045 		for_each_node_state(nid, N_MEMORY)
4046 			seq_printf(m, " N%d=%lu", nid,
4047 				   mem_cgroup_node_nr_lru_pages(memcg, nid,
4048 							stat->lru_mask, false));
4049 		seq_putc(m, '\n');
4050 	}
4051 
4052 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4053 
4054 		seq_printf(m, "hierarchical_%s=%lu", stat->name,
4055 			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4056 						   true));
4057 		for_each_node_state(nid, N_MEMORY)
4058 			seq_printf(m, " N%d=%lu", nid,
4059 				   mem_cgroup_node_nr_lru_pages(memcg, nid,
4060 							stat->lru_mask, true));
4061 		seq_putc(m, '\n');
4062 	}
4063 
4064 	return 0;
4065 }
4066 #endif /* CONFIG_NUMA */
4067 
4068 static const unsigned int memcg1_stats[] = {
4069 	NR_FILE_PAGES,
4070 	NR_ANON_MAPPED,
4071 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4072 	NR_ANON_THPS,
4073 #endif
4074 	NR_SHMEM,
4075 	NR_FILE_MAPPED,
4076 	NR_FILE_DIRTY,
4077 	NR_WRITEBACK,
4078 	MEMCG_SWAP,
4079 };
4080 
4081 static const char *const memcg1_stat_names[] = {
4082 	"cache",
4083 	"rss",
4084 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4085 	"rss_huge",
4086 #endif
4087 	"shmem",
4088 	"mapped_file",
4089 	"dirty",
4090 	"writeback",
4091 	"swap",
4092 };
4093 
4094 /* Universal VM events cgroup1 shows, original sort order */
4095 static const unsigned int memcg1_events[] = {
4096 	PGPGIN,
4097 	PGPGOUT,
4098 	PGFAULT,
4099 	PGMAJFAULT,
4100 };
4101 
4102 static int memcg_stat_show(struct seq_file *m, void *v)
4103 {
4104 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4105 	unsigned long memory, memsw;
4106 	struct mem_cgroup *mi;
4107 	unsigned int i;
4108 
4109 	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4110 
4111 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4112 		unsigned long nr;
4113 
4114 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4115 			continue;
4116 		nr = memcg_page_state_local(memcg, memcg1_stats[i]);
4117 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4118 		if (memcg1_stats[i] == NR_ANON_THPS)
4119 			nr *= HPAGE_PMD_NR;
4120 #endif
4121 		seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
4122 	}
4123 
4124 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4125 		seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
4126 			   memcg_events_local(memcg, memcg1_events[i]));
4127 
4128 	for (i = 0; i < NR_LRU_LISTS; i++)
4129 		seq_printf(m, "%s %lu\n", lru_list_name(i),
4130 			   memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4131 			   PAGE_SIZE);
4132 
4133 	/* Hierarchical information */
4134 	memory = memsw = PAGE_COUNTER_MAX;
4135 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4136 		memory = min(memory, READ_ONCE(mi->memory.max));
4137 		memsw = min(memsw, READ_ONCE(mi->memsw.max));
4138 	}
4139 	seq_printf(m, "hierarchical_memory_limit %llu\n",
4140 		   (u64)memory * PAGE_SIZE);
4141 	if (do_memsw_account())
4142 		seq_printf(m, "hierarchical_memsw_limit %llu\n",
4143 			   (u64)memsw * PAGE_SIZE);
4144 
4145 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4146 		unsigned long nr;
4147 
4148 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4149 			continue;
4150 		nr = memcg_page_state(memcg, memcg1_stats[i]);
4151 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4152 		if (memcg1_stats[i] == NR_ANON_THPS)
4153 			nr *= HPAGE_PMD_NR;
4154 #endif
4155 		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4156 						(u64)nr * PAGE_SIZE);
4157 	}
4158 
4159 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4160 		seq_printf(m, "total_%s %llu\n",
4161 			   vm_event_name(memcg1_events[i]),
4162 			   (u64)memcg_events(memcg, memcg1_events[i]));
4163 
4164 	for (i = 0; i < NR_LRU_LISTS; i++)
4165 		seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4166 			   (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4167 			   PAGE_SIZE);
4168 
4169 #ifdef CONFIG_DEBUG_VM
4170 	{
4171 		pg_data_t *pgdat;
4172 		struct mem_cgroup_per_node *mz;
4173 		unsigned long anon_cost = 0;
4174 		unsigned long file_cost = 0;
4175 
4176 		for_each_online_pgdat(pgdat) {
4177 			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
4178 
4179 			anon_cost += mz->lruvec.anon_cost;
4180 			file_cost += mz->lruvec.file_cost;
4181 		}
4182 		seq_printf(m, "anon_cost %lu\n", anon_cost);
4183 		seq_printf(m, "file_cost %lu\n", file_cost);
4184 	}
4185 #endif
4186 
4187 	return 0;
4188 }
4189 
4190 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4191 				      struct cftype *cft)
4192 {
4193 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4194 
4195 	return mem_cgroup_swappiness(memcg);
4196 }
4197 
4198 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4199 				       struct cftype *cft, u64 val)
4200 {
4201 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4202 
4203 	if (val > 100)
4204 		return -EINVAL;
4205 
4206 	if (css->parent)
4207 		memcg->swappiness = val;
4208 	else
4209 		vm_swappiness = val;
4210 
4211 	return 0;
4212 }
4213 
4214 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4215 {
4216 	struct mem_cgroup_threshold_ary *t;
4217 	unsigned long usage;
4218 	int i;
4219 
4220 	rcu_read_lock();
4221 	if (!swap)
4222 		t = rcu_dereference(memcg->thresholds.primary);
4223 	else
4224 		t = rcu_dereference(memcg->memsw_thresholds.primary);
4225 
4226 	if (!t)
4227 		goto unlock;
4228 
4229 	usage = mem_cgroup_usage(memcg, swap);
4230 
4231 	/*
4232 	 * current_threshold points to threshold just below or equal to usage.
4233 	 * If it's not true, a threshold was crossed after last
4234 	 * call of __mem_cgroup_threshold().
4235 	 */
4236 	i = t->current_threshold;
4237 
4238 	/*
4239 	 * Iterate backward over array of thresholds starting from
4240 	 * current_threshold and check if a threshold is crossed.
4241 	 * If none of thresholds below usage is crossed, we read
4242 	 * only one element of the array here.
4243 	 */
4244 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4245 		eventfd_signal(t->entries[i].eventfd, 1);
4246 
4247 	/* i = current_threshold + 1 */
4248 	i++;
4249 
4250 	/*
4251 	 * Iterate forward over array of thresholds starting from
4252 	 * current_threshold+1 and check if a threshold is crossed.
4253 	 * If none of thresholds above usage is crossed, we read
4254 	 * only one element of the array here.
4255 	 */
4256 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4257 		eventfd_signal(t->entries[i].eventfd, 1);
4258 
4259 	/* Update current_threshold */
4260 	t->current_threshold = i - 1;
4261 unlock:
4262 	rcu_read_unlock();
4263 }
4264 
4265 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4266 {
4267 	while (memcg) {
4268 		__mem_cgroup_threshold(memcg, false);
4269 		if (do_memsw_account())
4270 			__mem_cgroup_threshold(memcg, true);
4271 
4272 		memcg = parent_mem_cgroup(memcg);
4273 	}
4274 }
4275 
4276 static int compare_thresholds(const void *a, const void *b)
4277 {
4278 	const struct mem_cgroup_threshold *_a = a;
4279 	const struct mem_cgroup_threshold *_b = b;
4280 
4281 	if (_a->threshold > _b->threshold)
4282 		return 1;
4283 
4284 	if (_a->threshold < _b->threshold)
4285 		return -1;
4286 
4287 	return 0;
4288 }
4289 
4290 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4291 {
4292 	struct mem_cgroup_eventfd_list *ev;
4293 
4294 	spin_lock(&memcg_oom_lock);
4295 
4296 	list_for_each_entry(ev, &memcg->oom_notify, list)
4297 		eventfd_signal(ev->eventfd, 1);
4298 
4299 	spin_unlock(&memcg_oom_lock);
4300 	return 0;
4301 }
4302 
4303 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4304 {
4305 	struct mem_cgroup *iter;
4306 
4307 	for_each_mem_cgroup_tree(iter, memcg)
4308 		mem_cgroup_oom_notify_cb(iter);
4309 }
4310 
4311 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4312 	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4313 {
4314 	struct mem_cgroup_thresholds *thresholds;
4315 	struct mem_cgroup_threshold_ary *new;
4316 	unsigned long threshold;
4317 	unsigned long usage;
4318 	int i, size, ret;
4319 
4320 	ret = page_counter_memparse(args, "-1", &threshold);
4321 	if (ret)
4322 		return ret;
4323 
4324 	mutex_lock(&memcg->thresholds_lock);
4325 
4326 	if (type == _MEM) {
4327 		thresholds = &memcg->thresholds;
4328 		usage = mem_cgroup_usage(memcg, false);
4329 	} else if (type == _MEMSWAP) {
4330 		thresholds = &memcg->memsw_thresholds;
4331 		usage = mem_cgroup_usage(memcg, true);
4332 	} else
4333 		BUG();
4334 
4335 	/* Check if a threshold crossed before adding a new one */
4336 	if (thresholds->primary)
4337 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4338 
4339 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4340 
4341 	/* Allocate memory for new array of thresholds */
4342 	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4343 	if (!new) {
4344 		ret = -ENOMEM;
4345 		goto unlock;
4346 	}
4347 	new->size = size;
4348 
4349 	/* Copy thresholds (if any) to new array */
4350 	if (thresholds->primary)
4351 		memcpy(new->entries, thresholds->primary->entries,
4352 		       flex_array_size(new, entries, size - 1));
4353 
4354 	/* Add new threshold */
4355 	new->entries[size - 1].eventfd = eventfd;
4356 	new->entries[size - 1].threshold = threshold;
4357 
4358 	/* Sort thresholds. Registering of new threshold isn't time-critical */
4359 	sort(new->entries, size, sizeof(*new->entries),
4360 			compare_thresholds, NULL);
4361 
4362 	/* Find current threshold */
4363 	new->current_threshold = -1;
4364 	for (i = 0; i < size; i++) {
4365 		if (new->entries[i].threshold <= usage) {
4366 			/*
4367 			 * new->current_threshold will not be used until
4368 			 * rcu_assign_pointer(), so it's safe to increment
4369 			 * it here.
4370 			 */
4371 			++new->current_threshold;
4372 		} else
4373 			break;
4374 	}
4375 
4376 	/* Free old spare buffer and save old primary buffer as spare */
4377 	kfree(thresholds->spare);
4378 	thresholds->spare = thresholds->primary;
4379 
4380 	rcu_assign_pointer(thresholds->primary, new);
4381 
4382 	/* To be sure that nobody uses thresholds */
4383 	synchronize_rcu();
4384 
4385 unlock:
4386 	mutex_unlock(&memcg->thresholds_lock);
4387 
4388 	return ret;
4389 }
4390 
4391 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4392 	struct eventfd_ctx *eventfd, const char *args)
4393 {
4394 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4395 }
4396 
4397 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4398 	struct eventfd_ctx *eventfd, const char *args)
4399 {
4400 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4401 }
4402 
4403 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4404 	struct eventfd_ctx *eventfd, enum res_type type)
4405 {
4406 	struct mem_cgroup_thresholds *thresholds;
4407 	struct mem_cgroup_threshold_ary *new;
4408 	unsigned long usage;
4409 	int i, j, size, entries;
4410 
4411 	mutex_lock(&memcg->thresholds_lock);
4412 
4413 	if (type == _MEM) {
4414 		thresholds = &memcg->thresholds;
4415 		usage = mem_cgroup_usage(memcg, false);
4416 	} else if (type == _MEMSWAP) {
4417 		thresholds = &memcg->memsw_thresholds;
4418 		usage = mem_cgroup_usage(memcg, true);
4419 	} else
4420 		BUG();
4421 
4422 	if (!thresholds->primary)
4423 		goto unlock;
4424 
4425 	/* Check if a threshold crossed before removing */
4426 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4427 
4428 	/* Calculate new number of threshold */
4429 	size = entries = 0;
4430 	for (i = 0; i < thresholds->primary->size; i++) {
4431 		if (thresholds->primary->entries[i].eventfd != eventfd)
4432 			size++;
4433 		else
4434 			entries++;
4435 	}
4436 
4437 	new = thresholds->spare;
4438 
4439 	/* If no items related to eventfd have been cleared, nothing to do */
4440 	if (!entries)
4441 		goto unlock;
4442 
4443 	/* Set thresholds array to NULL if we don't have thresholds */
4444 	if (!size) {
4445 		kfree(new);
4446 		new = NULL;
4447 		goto swap_buffers;
4448 	}
4449 
4450 	new->size = size;
4451 
4452 	/* Copy thresholds and find current threshold */
4453 	new->current_threshold = -1;
4454 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4455 		if (thresholds->primary->entries[i].eventfd == eventfd)
4456 			continue;
4457 
4458 		new->entries[j] = thresholds->primary->entries[i];
4459 		if (new->entries[j].threshold <= usage) {
4460 			/*
4461 			 * new->current_threshold will not be used
4462 			 * until rcu_assign_pointer(), so it's safe to increment
4463 			 * it here.
4464 			 */
4465 			++new->current_threshold;
4466 		}
4467 		j++;
4468 	}
4469 
4470 swap_buffers:
4471 	/* Swap primary and spare array */
4472 	thresholds->spare = thresholds->primary;
4473 
4474 	rcu_assign_pointer(thresholds->primary, new);
4475 
4476 	/* To be sure that nobody uses thresholds */
4477 	synchronize_rcu();
4478 
4479 	/* If all events are unregistered, free the spare array */
4480 	if (!new) {
4481 		kfree(thresholds->spare);
4482 		thresholds->spare = NULL;
4483 	}
4484 unlock:
4485 	mutex_unlock(&memcg->thresholds_lock);
4486 }
4487 
4488 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4489 	struct eventfd_ctx *eventfd)
4490 {
4491 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4492 }
4493 
4494 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4495 	struct eventfd_ctx *eventfd)
4496 {
4497 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4498 }
4499 
4500 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4501 	struct eventfd_ctx *eventfd, const char *args)
4502 {
4503 	struct mem_cgroup_eventfd_list *event;
4504 
4505 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4506 	if (!event)
4507 		return -ENOMEM;
4508 
4509 	spin_lock(&memcg_oom_lock);
4510 
4511 	event->eventfd = eventfd;
4512 	list_add(&event->list, &memcg->oom_notify);
4513 
4514 	/* already in OOM ? */
4515 	if (memcg->under_oom)
4516 		eventfd_signal(eventfd, 1);
4517 	spin_unlock(&memcg_oom_lock);
4518 
4519 	return 0;
4520 }
4521 
4522 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4523 	struct eventfd_ctx *eventfd)
4524 {
4525 	struct mem_cgroup_eventfd_list *ev, *tmp;
4526 
4527 	spin_lock(&memcg_oom_lock);
4528 
4529 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4530 		if (ev->eventfd == eventfd) {
4531 			list_del(&ev->list);
4532 			kfree(ev);
4533 		}
4534 	}
4535 
4536 	spin_unlock(&memcg_oom_lock);
4537 }
4538 
4539 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4540 {
4541 	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4542 
4543 	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4544 	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4545 	seq_printf(sf, "oom_kill %lu\n",
4546 		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4547 	return 0;
4548 }
4549 
4550 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4551 	struct cftype *cft, u64 val)
4552 {
4553 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4554 
4555 	/* cannot set to root cgroup and only 0 and 1 are allowed */
4556 	if (!css->parent || !((val == 0) || (val == 1)))
4557 		return -EINVAL;
4558 
4559 	memcg->oom_kill_disable = val;
4560 	if (!val)
4561 		memcg_oom_recover(memcg);
4562 
4563 	return 0;
4564 }
4565 
4566 #ifdef CONFIG_CGROUP_WRITEBACK
4567 
4568 #include <trace/events/writeback.h>
4569 
4570 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4571 {
4572 	return wb_domain_init(&memcg->cgwb_domain, gfp);
4573 }
4574 
4575 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4576 {
4577 	wb_domain_exit(&memcg->cgwb_domain);
4578 }
4579 
4580 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4581 {
4582 	wb_domain_size_changed(&memcg->cgwb_domain);
4583 }
4584 
4585 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4586 {
4587 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4588 
4589 	if (!memcg->css.parent)
4590 		return NULL;
4591 
4592 	return &memcg->cgwb_domain;
4593 }
4594 
4595 /*
4596  * idx can be of type enum memcg_stat_item or node_stat_item.
4597  * Keep in sync with memcg_exact_page().
4598  */
4599 static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4600 {
4601 	long x = atomic_long_read(&memcg->vmstats[idx]);
4602 	int cpu;
4603 
4604 	for_each_online_cpu(cpu)
4605 		x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4606 	if (x < 0)
4607 		x = 0;
4608 	return x;
4609 }
4610 
4611 /**
4612  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4613  * @wb: bdi_writeback in question
4614  * @pfilepages: out parameter for number of file pages
4615  * @pheadroom: out parameter for number of allocatable pages according to memcg
4616  * @pdirty: out parameter for number of dirty pages
4617  * @pwriteback: out parameter for number of pages under writeback
4618  *
4619  * Determine the numbers of file, headroom, dirty, and writeback pages in
4620  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
4621  * is a bit more involved.
4622  *
4623  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
4624  * headroom is calculated as the lowest headroom of itself and the
4625  * ancestors.  Note that this doesn't consider the actual amount of
4626  * available memory in the system.  The caller should further cap
4627  * *@pheadroom accordingly.
4628  */
4629 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4630 			 unsigned long *pheadroom, unsigned long *pdirty,
4631 			 unsigned long *pwriteback)
4632 {
4633 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4634 	struct mem_cgroup *parent;
4635 
4636 	*pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4637 
4638 	*pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4639 	*pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4640 			memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4641 	*pheadroom = PAGE_COUNTER_MAX;
4642 
4643 	while ((parent = parent_mem_cgroup(memcg))) {
4644 		unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4645 					    READ_ONCE(memcg->memory.high));
4646 		unsigned long used = page_counter_read(&memcg->memory);
4647 
4648 		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4649 		memcg = parent;
4650 	}
4651 }
4652 
4653 /*
4654  * Foreign dirty flushing
4655  *
4656  * There's an inherent mismatch between memcg and writeback.  The former
4657  * trackes ownership per-page while the latter per-inode.  This was a
4658  * deliberate design decision because honoring per-page ownership in the
4659  * writeback path is complicated, may lead to higher CPU and IO overheads
4660  * and deemed unnecessary given that write-sharing an inode across
4661  * different cgroups isn't a common use-case.
4662  *
4663  * Combined with inode majority-writer ownership switching, this works well
4664  * enough in most cases but there are some pathological cases.  For
4665  * example, let's say there are two cgroups A and B which keep writing to
4666  * different but confined parts of the same inode.  B owns the inode and
4667  * A's memory is limited far below B's.  A's dirty ratio can rise enough to
4668  * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4669  * triggering background writeback.  A will be slowed down without a way to
4670  * make writeback of the dirty pages happen.
4671  *
4672  * Conditions like the above can lead to a cgroup getting repatedly and
4673  * severely throttled after making some progress after each
4674  * dirty_expire_interval while the underyling IO device is almost
4675  * completely idle.
4676  *
4677  * Solving this problem completely requires matching the ownership tracking
4678  * granularities between memcg and writeback in either direction.  However,
4679  * the more egregious behaviors can be avoided by simply remembering the
4680  * most recent foreign dirtying events and initiating remote flushes on
4681  * them when local writeback isn't enough to keep the memory clean enough.
4682  *
4683  * The following two functions implement such mechanism.  When a foreign
4684  * page - a page whose memcg and writeback ownerships don't match - is
4685  * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4686  * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
4687  * decides that the memcg needs to sleep due to high dirty ratio, it calls
4688  * mem_cgroup_flush_foreign() which queues writeback on the recorded
4689  * foreign bdi_writebacks which haven't expired.  Both the numbers of
4690  * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4691  * limited to MEMCG_CGWB_FRN_CNT.
4692  *
4693  * The mechanism only remembers IDs and doesn't hold any object references.
4694  * As being wrong occasionally doesn't matter, updates and accesses to the
4695  * records are lockless and racy.
4696  */
4697 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4698 					     struct bdi_writeback *wb)
4699 {
4700 	struct mem_cgroup *memcg = page_memcg(page);
4701 	struct memcg_cgwb_frn *frn;
4702 	u64 now = get_jiffies_64();
4703 	u64 oldest_at = now;
4704 	int oldest = -1;
4705 	int i;
4706 
4707 	trace_track_foreign_dirty(page, wb);
4708 
4709 	/*
4710 	 * Pick the slot to use.  If there is already a slot for @wb, keep
4711 	 * using it.  If not replace the oldest one which isn't being
4712 	 * written out.
4713 	 */
4714 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4715 		frn = &memcg->cgwb_frn[i];
4716 		if (frn->bdi_id == wb->bdi->id &&
4717 		    frn->memcg_id == wb->memcg_css->id)
4718 			break;
4719 		if (time_before64(frn->at, oldest_at) &&
4720 		    atomic_read(&frn->done.cnt) == 1) {
4721 			oldest = i;
4722 			oldest_at = frn->at;
4723 		}
4724 	}
4725 
4726 	if (i < MEMCG_CGWB_FRN_CNT) {
4727 		/*
4728 		 * Re-using an existing one.  Update timestamp lazily to
4729 		 * avoid making the cacheline hot.  We want them to be
4730 		 * reasonably up-to-date and significantly shorter than
4731 		 * dirty_expire_interval as that's what expires the record.
4732 		 * Use the shorter of 1s and dirty_expire_interval / 8.
4733 		 */
4734 		unsigned long update_intv =
4735 			min_t(unsigned long, HZ,
4736 			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4737 
4738 		if (time_before64(frn->at, now - update_intv))
4739 			frn->at = now;
4740 	} else if (oldest >= 0) {
4741 		/* replace the oldest free one */
4742 		frn = &memcg->cgwb_frn[oldest];
4743 		frn->bdi_id = wb->bdi->id;
4744 		frn->memcg_id = wb->memcg_css->id;
4745 		frn->at = now;
4746 	}
4747 }
4748 
4749 /* issue foreign writeback flushes for recorded foreign dirtying events */
4750 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4751 {
4752 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4753 	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4754 	u64 now = jiffies_64;
4755 	int i;
4756 
4757 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4758 		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4759 
4760 		/*
4761 		 * If the record is older than dirty_expire_interval,
4762 		 * writeback on it has already started.  No need to kick it
4763 		 * off again.  Also, don't start a new one if there's
4764 		 * already one in flight.
4765 		 */
4766 		if (time_after64(frn->at, now - intv) &&
4767 		    atomic_read(&frn->done.cnt) == 1) {
4768 			frn->at = 0;
4769 			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4770 			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4771 					       WB_REASON_FOREIGN_FLUSH,
4772 					       &frn->done);
4773 		}
4774 	}
4775 }
4776 
4777 #else	/* CONFIG_CGROUP_WRITEBACK */
4778 
4779 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4780 {
4781 	return 0;
4782 }
4783 
4784 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4785 {
4786 }
4787 
4788 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4789 {
4790 }
4791 
4792 #endif	/* CONFIG_CGROUP_WRITEBACK */
4793 
4794 /*
4795  * DO NOT USE IN NEW FILES.
4796  *
4797  * "cgroup.event_control" implementation.
4798  *
4799  * This is way over-engineered.  It tries to support fully configurable
4800  * events for each user.  Such level of flexibility is completely
4801  * unnecessary especially in the light of the planned unified hierarchy.
4802  *
4803  * Please deprecate this and replace with something simpler if at all
4804  * possible.
4805  */
4806 
4807 /*
4808  * Unregister event and free resources.
4809  *
4810  * Gets called from workqueue.
4811  */
4812 static void memcg_event_remove(struct work_struct *work)
4813 {
4814 	struct mem_cgroup_event *event =
4815 		container_of(work, struct mem_cgroup_event, remove);
4816 	struct mem_cgroup *memcg = event->memcg;
4817 
4818 	remove_wait_queue(event->wqh, &event->wait);
4819 
4820 	event->unregister_event(memcg, event->eventfd);
4821 
4822 	/* Notify userspace the event is going away. */
4823 	eventfd_signal(event->eventfd, 1);
4824 
4825 	eventfd_ctx_put(event->eventfd);
4826 	kfree(event);
4827 	css_put(&memcg->css);
4828 }
4829 
4830 /*
4831  * Gets called on EPOLLHUP on eventfd when user closes it.
4832  *
4833  * Called with wqh->lock held and interrupts disabled.
4834  */
4835 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4836 			    int sync, void *key)
4837 {
4838 	struct mem_cgroup_event *event =
4839 		container_of(wait, struct mem_cgroup_event, wait);
4840 	struct mem_cgroup *memcg = event->memcg;
4841 	__poll_t flags = key_to_poll(key);
4842 
4843 	if (flags & EPOLLHUP) {
4844 		/*
4845 		 * If the event has been detached at cgroup removal, we
4846 		 * can simply return knowing the other side will cleanup
4847 		 * for us.
4848 		 *
4849 		 * We can't race against event freeing since the other
4850 		 * side will require wqh->lock via remove_wait_queue(),
4851 		 * which we hold.
4852 		 */
4853 		spin_lock(&memcg->event_list_lock);
4854 		if (!list_empty(&event->list)) {
4855 			list_del_init(&event->list);
4856 			/*
4857 			 * We are in atomic context, but cgroup_event_remove()
4858 			 * may sleep, so we have to call it in workqueue.
4859 			 */
4860 			schedule_work(&event->remove);
4861 		}
4862 		spin_unlock(&memcg->event_list_lock);
4863 	}
4864 
4865 	return 0;
4866 }
4867 
4868 static void memcg_event_ptable_queue_proc(struct file *file,
4869 		wait_queue_head_t *wqh, poll_table *pt)
4870 {
4871 	struct mem_cgroup_event *event =
4872 		container_of(pt, struct mem_cgroup_event, pt);
4873 
4874 	event->wqh = wqh;
4875 	add_wait_queue(wqh, &event->wait);
4876 }
4877 
4878 /*
4879  * DO NOT USE IN NEW FILES.
4880  *
4881  * Parse input and register new cgroup event handler.
4882  *
4883  * Input must be in format '<event_fd> <control_fd> <args>'.
4884  * Interpretation of args is defined by control file implementation.
4885  */
4886 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4887 					 char *buf, size_t nbytes, loff_t off)
4888 {
4889 	struct cgroup_subsys_state *css = of_css(of);
4890 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4891 	struct mem_cgroup_event *event;
4892 	struct cgroup_subsys_state *cfile_css;
4893 	unsigned int efd, cfd;
4894 	struct fd efile;
4895 	struct fd cfile;
4896 	const char *name;
4897 	char *endp;
4898 	int ret;
4899 
4900 	buf = strstrip(buf);
4901 
4902 	efd = simple_strtoul(buf, &endp, 10);
4903 	if (*endp != ' ')
4904 		return -EINVAL;
4905 	buf = endp + 1;
4906 
4907 	cfd = simple_strtoul(buf, &endp, 10);
4908 	if ((*endp != ' ') && (*endp != '\0'))
4909 		return -EINVAL;
4910 	buf = endp + 1;
4911 
4912 	event = kzalloc(sizeof(*event), GFP_KERNEL);
4913 	if (!event)
4914 		return -ENOMEM;
4915 
4916 	event->memcg = memcg;
4917 	INIT_LIST_HEAD(&event->list);
4918 	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4919 	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4920 	INIT_WORK(&event->remove, memcg_event_remove);
4921 
4922 	efile = fdget(efd);
4923 	if (!efile.file) {
4924 		ret = -EBADF;
4925 		goto out_kfree;
4926 	}
4927 
4928 	event->eventfd = eventfd_ctx_fileget(efile.file);
4929 	if (IS_ERR(event->eventfd)) {
4930 		ret = PTR_ERR(event->eventfd);
4931 		goto out_put_efile;
4932 	}
4933 
4934 	cfile = fdget(cfd);
4935 	if (!cfile.file) {
4936 		ret = -EBADF;
4937 		goto out_put_eventfd;
4938 	}
4939 
4940 	/* the process need read permission on control file */
4941 	/* AV: shouldn't we check that it's been opened for read instead? */
4942 	ret = inode_permission(file_inode(cfile.file), MAY_READ);
4943 	if (ret < 0)
4944 		goto out_put_cfile;
4945 
4946 	/*
4947 	 * Determine the event callbacks and set them in @event.  This used
4948 	 * to be done via struct cftype but cgroup core no longer knows
4949 	 * about these events.  The following is crude but the whole thing
4950 	 * is for compatibility anyway.
4951 	 *
4952 	 * DO NOT ADD NEW FILES.
4953 	 */
4954 	name = cfile.file->f_path.dentry->d_name.name;
4955 
4956 	if (!strcmp(name, "memory.usage_in_bytes")) {
4957 		event->register_event = mem_cgroup_usage_register_event;
4958 		event->unregister_event = mem_cgroup_usage_unregister_event;
4959 	} else if (!strcmp(name, "memory.oom_control")) {
4960 		event->register_event = mem_cgroup_oom_register_event;
4961 		event->unregister_event = mem_cgroup_oom_unregister_event;
4962 	} else if (!strcmp(name, "memory.pressure_level")) {
4963 		event->register_event = vmpressure_register_event;
4964 		event->unregister_event = vmpressure_unregister_event;
4965 	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4966 		event->register_event = memsw_cgroup_usage_register_event;
4967 		event->unregister_event = memsw_cgroup_usage_unregister_event;
4968 	} else {
4969 		ret = -EINVAL;
4970 		goto out_put_cfile;
4971 	}
4972 
4973 	/*
4974 	 * Verify @cfile should belong to @css.  Also, remaining events are
4975 	 * automatically removed on cgroup destruction but the removal is
4976 	 * asynchronous, so take an extra ref on @css.
4977 	 */
4978 	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4979 					       &memory_cgrp_subsys);
4980 	ret = -EINVAL;
4981 	if (IS_ERR(cfile_css))
4982 		goto out_put_cfile;
4983 	if (cfile_css != css) {
4984 		css_put(cfile_css);
4985 		goto out_put_cfile;
4986 	}
4987 
4988 	ret = event->register_event(memcg, event->eventfd, buf);
4989 	if (ret)
4990 		goto out_put_css;
4991 
4992 	vfs_poll(efile.file, &event->pt);
4993 
4994 	spin_lock(&memcg->event_list_lock);
4995 	list_add(&event->list, &memcg->event_list);
4996 	spin_unlock(&memcg->event_list_lock);
4997 
4998 	fdput(cfile);
4999 	fdput(efile);
5000 
5001 	return nbytes;
5002 
5003 out_put_css:
5004 	css_put(css);
5005 out_put_cfile:
5006 	fdput(cfile);
5007 out_put_eventfd:
5008 	eventfd_ctx_put(event->eventfd);
5009 out_put_efile:
5010 	fdput(efile);
5011 out_kfree:
5012 	kfree(event);
5013 
5014 	return ret;
5015 }
5016 
5017 static struct cftype mem_cgroup_legacy_files[] = {
5018 	{
5019 		.name = "usage_in_bytes",
5020 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5021 		.read_u64 = mem_cgroup_read_u64,
5022 	},
5023 	{
5024 		.name = "max_usage_in_bytes",
5025 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5026 		.write = mem_cgroup_reset,
5027 		.read_u64 = mem_cgroup_read_u64,
5028 	},
5029 	{
5030 		.name = "limit_in_bytes",
5031 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5032 		.write = mem_cgroup_write,
5033 		.read_u64 = mem_cgroup_read_u64,
5034 	},
5035 	{
5036 		.name = "soft_limit_in_bytes",
5037 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5038 		.write = mem_cgroup_write,
5039 		.read_u64 = mem_cgroup_read_u64,
5040 	},
5041 	{
5042 		.name = "failcnt",
5043 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5044 		.write = mem_cgroup_reset,
5045 		.read_u64 = mem_cgroup_read_u64,
5046 	},
5047 	{
5048 		.name = "stat",
5049 		.seq_show = memcg_stat_show,
5050 	},
5051 	{
5052 		.name = "force_empty",
5053 		.write = mem_cgroup_force_empty_write,
5054 	},
5055 	{
5056 		.name = "use_hierarchy",
5057 		.write_u64 = mem_cgroup_hierarchy_write,
5058 		.read_u64 = mem_cgroup_hierarchy_read,
5059 	},
5060 	{
5061 		.name = "cgroup.event_control",		/* XXX: for compat */
5062 		.write = memcg_write_event_control,
5063 		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
5064 	},
5065 	{
5066 		.name = "swappiness",
5067 		.read_u64 = mem_cgroup_swappiness_read,
5068 		.write_u64 = mem_cgroup_swappiness_write,
5069 	},
5070 	{
5071 		.name = "move_charge_at_immigrate",
5072 		.read_u64 = mem_cgroup_move_charge_read,
5073 		.write_u64 = mem_cgroup_move_charge_write,
5074 	},
5075 	{
5076 		.name = "oom_control",
5077 		.seq_show = mem_cgroup_oom_control_read,
5078 		.write_u64 = mem_cgroup_oom_control_write,
5079 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5080 	},
5081 	{
5082 		.name = "pressure_level",
5083 	},
5084 #ifdef CONFIG_NUMA
5085 	{
5086 		.name = "numa_stat",
5087 		.seq_show = memcg_numa_stat_show,
5088 	},
5089 #endif
5090 	{
5091 		.name = "kmem.limit_in_bytes",
5092 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5093 		.write = mem_cgroup_write,
5094 		.read_u64 = mem_cgroup_read_u64,
5095 	},
5096 	{
5097 		.name = "kmem.usage_in_bytes",
5098 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5099 		.read_u64 = mem_cgroup_read_u64,
5100 	},
5101 	{
5102 		.name = "kmem.failcnt",
5103 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5104 		.write = mem_cgroup_reset,
5105 		.read_u64 = mem_cgroup_read_u64,
5106 	},
5107 	{
5108 		.name = "kmem.max_usage_in_bytes",
5109 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5110 		.write = mem_cgroup_reset,
5111 		.read_u64 = mem_cgroup_read_u64,
5112 	},
5113 #if defined(CONFIG_MEMCG_KMEM) && \
5114 	(defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5115 	{
5116 		.name = "kmem.slabinfo",
5117 		.seq_show = memcg_slab_show,
5118 	},
5119 #endif
5120 	{
5121 		.name = "kmem.tcp.limit_in_bytes",
5122 		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5123 		.write = mem_cgroup_write,
5124 		.read_u64 = mem_cgroup_read_u64,
5125 	},
5126 	{
5127 		.name = "kmem.tcp.usage_in_bytes",
5128 		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5129 		.read_u64 = mem_cgroup_read_u64,
5130 	},
5131 	{
5132 		.name = "kmem.tcp.failcnt",
5133 		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5134 		.write = mem_cgroup_reset,
5135 		.read_u64 = mem_cgroup_read_u64,
5136 	},
5137 	{
5138 		.name = "kmem.tcp.max_usage_in_bytes",
5139 		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5140 		.write = mem_cgroup_reset,
5141 		.read_u64 = mem_cgroup_read_u64,
5142 	},
5143 	{ },	/* terminate */
5144 };
5145 
5146 /*
5147  * Private memory cgroup IDR
5148  *
5149  * Swap-out records and page cache shadow entries need to store memcg
5150  * references in constrained space, so we maintain an ID space that is
5151  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5152  * memory-controlled cgroups to 64k.
5153  *
5154  * However, there usually are many references to the offline CSS after
5155  * the cgroup has been destroyed, such as page cache or reclaimable
5156  * slab objects, that don't need to hang on to the ID. We want to keep
5157  * those dead CSS from occupying IDs, or we might quickly exhaust the
5158  * relatively small ID space and prevent the creation of new cgroups
5159  * even when there are much fewer than 64k cgroups - possibly none.
5160  *
5161  * Maintain a private 16-bit ID space for memcg, and allow the ID to
5162  * be freed and recycled when it's no longer needed, which is usually
5163  * when the CSS is offlined.
5164  *
5165  * The only exception to that are records of swapped out tmpfs/shmem
5166  * pages that need to be attributed to live ancestors on swapin. But
5167  * those references are manageable from userspace.
5168  */
5169 
5170 static DEFINE_IDR(mem_cgroup_idr);
5171 
5172 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5173 {
5174 	if (memcg->id.id > 0) {
5175 		idr_remove(&mem_cgroup_idr, memcg->id.id);
5176 		memcg->id.id = 0;
5177 	}
5178 }
5179 
5180 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5181 						  unsigned int n)
5182 {
5183 	refcount_add(n, &memcg->id.ref);
5184 }
5185 
5186 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5187 {
5188 	if (refcount_sub_and_test(n, &memcg->id.ref)) {
5189 		mem_cgroup_id_remove(memcg);
5190 
5191 		/* Memcg ID pins CSS */
5192 		css_put(&memcg->css);
5193 	}
5194 }
5195 
5196 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5197 {
5198 	mem_cgroup_id_put_many(memcg, 1);
5199 }
5200 
5201 /**
5202  * mem_cgroup_from_id - look up a memcg from a memcg id
5203  * @id: the memcg id to look up
5204  *
5205  * Caller must hold rcu_read_lock().
5206  */
5207 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5208 {
5209 	WARN_ON_ONCE(!rcu_read_lock_held());
5210 	return idr_find(&mem_cgroup_idr, id);
5211 }
5212 
5213 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5214 {
5215 	struct mem_cgroup_per_node *pn;
5216 	int tmp = node;
5217 	/*
5218 	 * This routine is called against possible nodes.
5219 	 * But it's BUG to call kmalloc() against offline node.
5220 	 *
5221 	 * TODO: this routine can waste much memory for nodes which will
5222 	 *       never be onlined. It's better to use memory hotplug callback
5223 	 *       function.
5224 	 */
5225 	if (!node_state(node, N_NORMAL_MEMORY))
5226 		tmp = -1;
5227 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5228 	if (!pn)
5229 		return 1;
5230 
5231 	pn->lruvec_stat_local = alloc_percpu_gfp(struct lruvec_stat,
5232 						 GFP_KERNEL_ACCOUNT);
5233 	if (!pn->lruvec_stat_local) {
5234 		kfree(pn);
5235 		return 1;
5236 	}
5237 
5238 	pn->lruvec_stat_cpu = alloc_percpu_gfp(struct lruvec_stat,
5239 					       GFP_KERNEL_ACCOUNT);
5240 	if (!pn->lruvec_stat_cpu) {
5241 		free_percpu(pn->lruvec_stat_local);
5242 		kfree(pn);
5243 		return 1;
5244 	}
5245 
5246 	lruvec_init(&pn->lruvec);
5247 	pn->usage_in_excess = 0;
5248 	pn->on_tree = false;
5249 	pn->memcg = memcg;
5250 
5251 	memcg->nodeinfo[node] = pn;
5252 	return 0;
5253 }
5254 
5255 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5256 {
5257 	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5258 
5259 	if (!pn)
5260 		return;
5261 
5262 	free_percpu(pn->lruvec_stat_cpu);
5263 	free_percpu(pn->lruvec_stat_local);
5264 	kfree(pn);
5265 }
5266 
5267 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5268 {
5269 	int node;
5270 
5271 	for_each_node(node)
5272 		free_mem_cgroup_per_node_info(memcg, node);
5273 	free_percpu(memcg->vmstats_percpu);
5274 	free_percpu(memcg->vmstats_local);
5275 	kfree(memcg);
5276 }
5277 
5278 static void mem_cgroup_free(struct mem_cgroup *memcg)
5279 {
5280 	memcg_wb_domain_exit(memcg);
5281 	/*
5282 	 * Flush percpu vmstats and vmevents to guarantee the value correctness
5283 	 * on parent's and all ancestor levels.
5284 	 */
5285 	memcg_flush_percpu_vmstats(memcg);
5286 	memcg_flush_percpu_vmevents(memcg);
5287 	__mem_cgroup_free(memcg);
5288 }
5289 
5290 static struct mem_cgroup *mem_cgroup_alloc(void)
5291 {
5292 	struct mem_cgroup *memcg;
5293 	unsigned int size;
5294 	int node;
5295 	int __maybe_unused i;
5296 	long error = -ENOMEM;
5297 
5298 	size = sizeof(struct mem_cgroup);
5299 	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5300 
5301 	memcg = kzalloc(size, GFP_KERNEL);
5302 	if (!memcg)
5303 		return ERR_PTR(error);
5304 
5305 	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5306 				 1, MEM_CGROUP_ID_MAX,
5307 				 GFP_KERNEL);
5308 	if (memcg->id.id < 0) {
5309 		error = memcg->id.id;
5310 		goto fail;
5311 	}
5312 
5313 	memcg->vmstats_local = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5314 						GFP_KERNEL_ACCOUNT);
5315 	if (!memcg->vmstats_local)
5316 		goto fail;
5317 
5318 	memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5319 						 GFP_KERNEL_ACCOUNT);
5320 	if (!memcg->vmstats_percpu)
5321 		goto fail;
5322 
5323 	for_each_node(node)
5324 		if (alloc_mem_cgroup_per_node_info(memcg, node))
5325 			goto fail;
5326 
5327 	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5328 		goto fail;
5329 
5330 	INIT_WORK(&memcg->high_work, high_work_func);
5331 	INIT_LIST_HEAD(&memcg->oom_notify);
5332 	mutex_init(&memcg->thresholds_lock);
5333 	spin_lock_init(&memcg->move_lock);
5334 	vmpressure_init(&memcg->vmpressure);
5335 	INIT_LIST_HEAD(&memcg->event_list);
5336 	spin_lock_init(&memcg->event_list_lock);
5337 	memcg->socket_pressure = jiffies;
5338 #ifdef CONFIG_MEMCG_KMEM
5339 	memcg->kmemcg_id = -1;
5340 	INIT_LIST_HEAD(&memcg->objcg_list);
5341 #endif
5342 #ifdef CONFIG_CGROUP_WRITEBACK
5343 	INIT_LIST_HEAD(&memcg->cgwb_list);
5344 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5345 		memcg->cgwb_frn[i].done =
5346 			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5347 #endif
5348 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5349 	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5350 	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5351 	memcg->deferred_split_queue.split_queue_len = 0;
5352 #endif
5353 	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5354 	return memcg;
5355 fail:
5356 	mem_cgroup_id_remove(memcg);
5357 	__mem_cgroup_free(memcg);
5358 	return ERR_PTR(error);
5359 }
5360 
5361 static struct cgroup_subsys_state * __ref
5362 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5363 {
5364 	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5365 	struct mem_cgroup *memcg, *old_memcg;
5366 	long error = -ENOMEM;
5367 
5368 	old_memcg = set_active_memcg(parent);
5369 	memcg = mem_cgroup_alloc();
5370 	set_active_memcg(old_memcg);
5371 	if (IS_ERR(memcg))
5372 		return ERR_CAST(memcg);
5373 
5374 	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5375 	memcg->soft_limit = PAGE_COUNTER_MAX;
5376 	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5377 	if (parent) {
5378 		memcg->swappiness = mem_cgroup_swappiness(parent);
5379 		memcg->oom_kill_disable = parent->oom_kill_disable;
5380 
5381 		page_counter_init(&memcg->memory, &parent->memory);
5382 		page_counter_init(&memcg->swap, &parent->swap);
5383 		page_counter_init(&memcg->kmem, &parent->kmem);
5384 		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5385 	} else {
5386 		page_counter_init(&memcg->memory, NULL);
5387 		page_counter_init(&memcg->swap, NULL);
5388 		page_counter_init(&memcg->kmem, NULL);
5389 		page_counter_init(&memcg->tcpmem, NULL);
5390 
5391 		root_mem_cgroup = memcg;
5392 		return &memcg->css;
5393 	}
5394 
5395 	/* The following stuff does not apply to the root */
5396 	error = memcg_online_kmem(memcg);
5397 	if (error)
5398 		goto fail;
5399 
5400 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5401 		static_branch_inc(&memcg_sockets_enabled_key);
5402 
5403 	return &memcg->css;
5404 fail:
5405 	mem_cgroup_id_remove(memcg);
5406 	mem_cgroup_free(memcg);
5407 	return ERR_PTR(error);
5408 }
5409 
5410 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5411 {
5412 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5413 
5414 	/*
5415 	 * A memcg must be visible for memcg_expand_shrinker_maps()
5416 	 * by the time the maps are allocated. So, we allocate maps
5417 	 * here, when for_each_mem_cgroup() can't skip it.
5418 	 */
5419 	if (memcg_alloc_shrinker_maps(memcg)) {
5420 		mem_cgroup_id_remove(memcg);
5421 		return -ENOMEM;
5422 	}
5423 
5424 	/* Online state pins memcg ID, memcg ID pins CSS */
5425 	refcount_set(&memcg->id.ref, 1);
5426 	css_get(css);
5427 	return 0;
5428 }
5429 
5430 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5431 {
5432 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5433 	struct mem_cgroup_event *event, *tmp;
5434 
5435 	/*
5436 	 * Unregister events and notify userspace.
5437 	 * Notify userspace about cgroup removing only after rmdir of cgroup
5438 	 * directory to avoid race between userspace and kernelspace.
5439 	 */
5440 	spin_lock(&memcg->event_list_lock);
5441 	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5442 		list_del_init(&event->list);
5443 		schedule_work(&event->remove);
5444 	}
5445 	spin_unlock(&memcg->event_list_lock);
5446 
5447 	page_counter_set_min(&memcg->memory, 0);
5448 	page_counter_set_low(&memcg->memory, 0);
5449 
5450 	memcg_offline_kmem(memcg);
5451 	wb_memcg_offline(memcg);
5452 
5453 	drain_all_stock(memcg);
5454 
5455 	mem_cgroup_id_put(memcg);
5456 }
5457 
5458 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5459 {
5460 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5461 
5462 	invalidate_reclaim_iterators(memcg);
5463 }
5464 
5465 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5466 {
5467 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5468 	int __maybe_unused i;
5469 
5470 #ifdef CONFIG_CGROUP_WRITEBACK
5471 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5472 		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5473 #endif
5474 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5475 		static_branch_dec(&memcg_sockets_enabled_key);
5476 
5477 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5478 		static_branch_dec(&memcg_sockets_enabled_key);
5479 
5480 	vmpressure_cleanup(&memcg->vmpressure);
5481 	cancel_work_sync(&memcg->high_work);
5482 	mem_cgroup_remove_from_trees(memcg);
5483 	memcg_free_shrinker_maps(memcg);
5484 	memcg_free_kmem(memcg);
5485 	mem_cgroup_free(memcg);
5486 }
5487 
5488 /**
5489  * mem_cgroup_css_reset - reset the states of a mem_cgroup
5490  * @css: the target css
5491  *
5492  * Reset the states of the mem_cgroup associated with @css.  This is
5493  * invoked when the userland requests disabling on the default hierarchy
5494  * but the memcg is pinned through dependency.  The memcg should stop
5495  * applying policies and should revert to the vanilla state as it may be
5496  * made visible again.
5497  *
5498  * The current implementation only resets the essential configurations.
5499  * This needs to be expanded to cover all the visible parts.
5500  */
5501 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5502 {
5503 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5504 
5505 	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5506 	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5507 	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5508 	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5509 	page_counter_set_min(&memcg->memory, 0);
5510 	page_counter_set_low(&memcg->memory, 0);
5511 	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5512 	memcg->soft_limit = PAGE_COUNTER_MAX;
5513 	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5514 	memcg_wb_domain_size_changed(memcg);
5515 }
5516 
5517 #ifdef CONFIG_MMU
5518 /* Handlers for move charge at task migration. */
5519 static int mem_cgroup_do_precharge(unsigned long count)
5520 {
5521 	int ret;
5522 
5523 	/* Try a single bulk charge without reclaim first, kswapd may wake */
5524 	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5525 	if (!ret) {
5526 		mc.precharge += count;
5527 		return ret;
5528 	}
5529 
5530 	/* Try charges one by one with reclaim, but do not retry */
5531 	while (count--) {
5532 		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5533 		if (ret)
5534 			return ret;
5535 		mc.precharge++;
5536 		cond_resched();
5537 	}
5538 	return 0;
5539 }
5540 
5541 union mc_target {
5542 	struct page	*page;
5543 	swp_entry_t	ent;
5544 };
5545 
5546 enum mc_target_type {
5547 	MC_TARGET_NONE = 0,
5548 	MC_TARGET_PAGE,
5549 	MC_TARGET_SWAP,
5550 	MC_TARGET_DEVICE,
5551 };
5552 
5553 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5554 						unsigned long addr, pte_t ptent)
5555 {
5556 	struct page *page = vm_normal_page(vma, addr, ptent);
5557 
5558 	if (!page || !page_mapped(page))
5559 		return NULL;
5560 	if (PageAnon(page)) {
5561 		if (!(mc.flags & MOVE_ANON))
5562 			return NULL;
5563 	} else {
5564 		if (!(mc.flags & MOVE_FILE))
5565 			return NULL;
5566 	}
5567 	if (!get_page_unless_zero(page))
5568 		return NULL;
5569 
5570 	return page;
5571 }
5572 
5573 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5574 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5575 			pte_t ptent, swp_entry_t *entry)
5576 {
5577 	struct page *page = NULL;
5578 	swp_entry_t ent = pte_to_swp_entry(ptent);
5579 
5580 	if (!(mc.flags & MOVE_ANON))
5581 		return NULL;
5582 
5583 	/*
5584 	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5585 	 * a device and because they are not accessible by CPU they are store
5586 	 * as special swap entry in the CPU page table.
5587 	 */
5588 	if (is_device_private_entry(ent)) {
5589 		page = device_private_entry_to_page(ent);
5590 		/*
5591 		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5592 		 * a refcount of 1 when free (unlike normal page)
5593 		 */
5594 		if (!page_ref_add_unless(page, 1, 1))
5595 			return NULL;
5596 		return page;
5597 	}
5598 
5599 	if (non_swap_entry(ent))
5600 		return NULL;
5601 
5602 	/*
5603 	 * Because lookup_swap_cache() updates some statistics counter,
5604 	 * we call find_get_page() with swapper_space directly.
5605 	 */
5606 	page = find_get_page(swap_address_space(ent), swp_offset(ent));
5607 	entry->val = ent.val;
5608 
5609 	return page;
5610 }
5611 #else
5612 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5613 			pte_t ptent, swp_entry_t *entry)
5614 {
5615 	return NULL;
5616 }
5617 #endif
5618 
5619 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5620 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5621 {
5622 	if (!vma->vm_file) /* anonymous vma */
5623 		return NULL;
5624 	if (!(mc.flags & MOVE_FILE))
5625 		return NULL;
5626 
5627 	/* page is moved even if it's not RSS of this task(page-faulted). */
5628 	/* shmem/tmpfs may report page out on swap: account for that too. */
5629 	return find_get_incore_page(vma->vm_file->f_mapping,
5630 			linear_page_index(vma, addr));
5631 }
5632 
5633 /**
5634  * mem_cgroup_move_account - move account of the page
5635  * @page: the page
5636  * @compound: charge the page as compound or small page
5637  * @from: mem_cgroup which the page is moved from.
5638  * @to:	mem_cgroup which the page is moved to. @from != @to.
5639  *
5640  * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5641  *
5642  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5643  * from old cgroup.
5644  */
5645 static int mem_cgroup_move_account(struct page *page,
5646 				   bool compound,
5647 				   struct mem_cgroup *from,
5648 				   struct mem_cgroup *to)
5649 {
5650 	struct lruvec *from_vec, *to_vec;
5651 	struct pglist_data *pgdat;
5652 	unsigned int nr_pages = compound ? thp_nr_pages(page) : 1;
5653 	int ret;
5654 
5655 	VM_BUG_ON(from == to);
5656 	VM_BUG_ON_PAGE(PageLRU(page), page);
5657 	VM_BUG_ON(compound && !PageTransHuge(page));
5658 
5659 	/*
5660 	 * Prevent mem_cgroup_migrate() from looking at
5661 	 * page's memory cgroup of its source page while we change it.
5662 	 */
5663 	ret = -EBUSY;
5664 	if (!trylock_page(page))
5665 		goto out;
5666 
5667 	ret = -EINVAL;
5668 	if (page_memcg(page) != from)
5669 		goto out_unlock;
5670 
5671 	pgdat = page_pgdat(page);
5672 	from_vec = mem_cgroup_lruvec(from, pgdat);
5673 	to_vec = mem_cgroup_lruvec(to, pgdat);
5674 
5675 	lock_page_memcg(page);
5676 
5677 	if (PageAnon(page)) {
5678 		if (page_mapped(page)) {
5679 			__mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5680 			__mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5681 			if (PageTransHuge(page)) {
5682 				__mod_lruvec_state(from_vec, NR_ANON_THPS,
5683 						   -nr_pages);
5684 				__mod_lruvec_state(to_vec, NR_ANON_THPS,
5685 						   nr_pages);
5686 			}
5687 
5688 		}
5689 	} else {
5690 		__mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5691 		__mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5692 
5693 		if (PageSwapBacked(page)) {
5694 			__mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5695 			__mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5696 		}
5697 
5698 		if (page_mapped(page)) {
5699 			__mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5700 			__mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5701 		}
5702 
5703 		if (PageDirty(page)) {
5704 			struct address_space *mapping = page_mapping(page);
5705 
5706 			if (mapping_can_writeback(mapping)) {
5707 				__mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5708 						   -nr_pages);
5709 				__mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5710 						   nr_pages);
5711 			}
5712 		}
5713 	}
5714 
5715 	if (PageWriteback(page)) {
5716 		__mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5717 		__mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5718 	}
5719 
5720 	/*
5721 	 * All state has been migrated, let's switch to the new memcg.
5722 	 *
5723 	 * It is safe to change page's memcg here because the page
5724 	 * is referenced, charged, isolated, and locked: we can't race
5725 	 * with (un)charging, migration, LRU putback, or anything else
5726 	 * that would rely on a stable page's memory cgroup.
5727 	 *
5728 	 * Note that lock_page_memcg is a memcg lock, not a page lock,
5729 	 * to save space. As soon as we switch page's memory cgroup to a
5730 	 * new memcg that isn't locked, the above state can change
5731 	 * concurrently again. Make sure we're truly done with it.
5732 	 */
5733 	smp_mb();
5734 
5735 	css_get(&to->css);
5736 	css_put(&from->css);
5737 
5738 	page->memcg_data = (unsigned long)to;
5739 
5740 	__unlock_page_memcg(from);
5741 
5742 	ret = 0;
5743 
5744 	local_irq_disable();
5745 	mem_cgroup_charge_statistics(to, page, nr_pages);
5746 	memcg_check_events(to, page);
5747 	mem_cgroup_charge_statistics(from, page, -nr_pages);
5748 	memcg_check_events(from, page);
5749 	local_irq_enable();
5750 out_unlock:
5751 	unlock_page(page);
5752 out:
5753 	return ret;
5754 }
5755 
5756 /**
5757  * get_mctgt_type - get target type of moving charge
5758  * @vma: the vma the pte to be checked belongs
5759  * @addr: the address corresponding to the pte to be checked
5760  * @ptent: the pte to be checked
5761  * @target: the pointer the target page or swap ent will be stored(can be NULL)
5762  *
5763  * Returns
5764  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5765  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5766  *     move charge. if @target is not NULL, the page is stored in target->page
5767  *     with extra refcnt got(Callers should handle it).
5768  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5769  *     target for charge migration. if @target is not NULL, the entry is stored
5770  *     in target->ent.
5771  *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PRIVATE
5772  *     (so ZONE_DEVICE page and thus not on the lru).
5773  *     For now we such page is charge like a regular page would be as for all
5774  *     intent and purposes it is just special memory taking the place of a
5775  *     regular page.
5776  *
5777  *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5778  *
5779  * Called with pte lock held.
5780  */
5781 
5782 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5783 		unsigned long addr, pte_t ptent, union mc_target *target)
5784 {
5785 	struct page *page = NULL;
5786 	enum mc_target_type ret = MC_TARGET_NONE;
5787 	swp_entry_t ent = { .val = 0 };
5788 
5789 	if (pte_present(ptent))
5790 		page = mc_handle_present_pte(vma, addr, ptent);
5791 	else if (is_swap_pte(ptent))
5792 		page = mc_handle_swap_pte(vma, ptent, &ent);
5793 	else if (pte_none(ptent))
5794 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
5795 
5796 	if (!page && !ent.val)
5797 		return ret;
5798 	if (page) {
5799 		/*
5800 		 * Do only loose check w/o serialization.
5801 		 * mem_cgroup_move_account() checks the page is valid or
5802 		 * not under LRU exclusion.
5803 		 */
5804 		if (page_memcg(page) == mc.from) {
5805 			ret = MC_TARGET_PAGE;
5806 			if (is_device_private_page(page))
5807 				ret = MC_TARGET_DEVICE;
5808 			if (target)
5809 				target->page = page;
5810 		}
5811 		if (!ret || !target)
5812 			put_page(page);
5813 	}
5814 	/*
5815 	 * There is a swap entry and a page doesn't exist or isn't charged.
5816 	 * But we cannot move a tail-page in a THP.
5817 	 */
5818 	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5819 	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5820 		ret = MC_TARGET_SWAP;
5821 		if (target)
5822 			target->ent = ent;
5823 	}
5824 	return ret;
5825 }
5826 
5827 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5828 /*
5829  * We don't consider PMD mapped swapping or file mapped pages because THP does
5830  * not support them for now.
5831  * Caller should make sure that pmd_trans_huge(pmd) is true.
5832  */
5833 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5834 		unsigned long addr, pmd_t pmd, union mc_target *target)
5835 {
5836 	struct page *page = NULL;
5837 	enum mc_target_type ret = MC_TARGET_NONE;
5838 
5839 	if (unlikely(is_swap_pmd(pmd))) {
5840 		VM_BUG_ON(thp_migration_supported() &&
5841 				  !is_pmd_migration_entry(pmd));
5842 		return ret;
5843 	}
5844 	page = pmd_page(pmd);
5845 	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5846 	if (!(mc.flags & MOVE_ANON))
5847 		return ret;
5848 	if (page_memcg(page) == mc.from) {
5849 		ret = MC_TARGET_PAGE;
5850 		if (target) {
5851 			get_page(page);
5852 			target->page = page;
5853 		}
5854 	}
5855 	return ret;
5856 }
5857 #else
5858 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5859 		unsigned long addr, pmd_t pmd, union mc_target *target)
5860 {
5861 	return MC_TARGET_NONE;
5862 }
5863 #endif
5864 
5865 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5866 					unsigned long addr, unsigned long end,
5867 					struct mm_walk *walk)
5868 {
5869 	struct vm_area_struct *vma = walk->vma;
5870 	pte_t *pte;
5871 	spinlock_t *ptl;
5872 
5873 	ptl = pmd_trans_huge_lock(pmd, vma);
5874 	if (ptl) {
5875 		/*
5876 		 * Note their can not be MC_TARGET_DEVICE for now as we do not
5877 		 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5878 		 * this might change.
5879 		 */
5880 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5881 			mc.precharge += HPAGE_PMD_NR;
5882 		spin_unlock(ptl);
5883 		return 0;
5884 	}
5885 
5886 	if (pmd_trans_unstable(pmd))
5887 		return 0;
5888 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5889 	for (; addr != end; pte++, addr += PAGE_SIZE)
5890 		if (get_mctgt_type(vma, addr, *pte, NULL))
5891 			mc.precharge++;	/* increment precharge temporarily */
5892 	pte_unmap_unlock(pte - 1, ptl);
5893 	cond_resched();
5894 
5895 	return 0;
5896 }
5897 
5898 static const struct mm_walk_ops precharge_walk_ops = {
5899 	.pmd_entry	= mem_cgroup_count_precharge_pte_range,
5900 };
5901 
5902 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5903 {
5904 	unsigned long precharge;
5905 
5906 	mmap_read_lock(mm);
5907 	walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5908 	mmap_read_unlock(mm);
5909 
5910 	precharge = mc.precharge;
5911 	mc.precharge = 0;
5912 
5913 	return precharge;
5914 }
5915 
5916 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5917 {
5918 	unsigned long precharge = mem_cgroup_count_precharge(mm);
5919 
5920 	VM_BUG_ON(mc.moving_task);
5921 	mc.moving_task = current;
5922 	return mem_cgroup_do_precharge(precharge);
5923 }
5924 
5925 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5926 static void __mem_cgroup_clear_mc(void)
5927 {
5928 	struct mem_cgroup *from = mc.from;
5929 	struct mem_cgroup *to = mc.to;
5930 
5931 	/* we must uncharge all the leftover precharges from mc.to */
5932 	if (mc.precharge) {
5933 		cancel_charge(mc.to, mc.precharge);
5934 		mc.precharge = 0;
5935 	}
5936 	/*
5937 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5938 	 * we must uncharge here.
5939 	 */
5940 	if (mc.moved_charge) {
5941 		cancel_charge(mc.from, mc.moved_charge);
5942 		mc.moved_charge = 0;
5943 	}
5944 	/* we must fixup refcnts and charges */
5945 	if (mc.moved_swap) {
5946 		/* uncharge swap account from the old cgroup */
5947 		if (!mem_cgroup_is_root(mc.from))
5948 			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5949 
5950 		mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5951 
5952 		/*
5953 		 * we charged both to->memory and to->memsw, so we
5954 		 * should uncharge to->memory.
5955 		 */
5956 		if (!mem_cgroup_is_root(mc.to))
5957 			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5958 
5959 		mc.moved_swap = 0;
5960 	}
5961 	memcg_oom_recover(from);
5962 	memcg_oom_recover(to);
5963 	wake_up_all(&mc.waitq);
5964 }
5965 
5966 static void mem_cgroup_clear_mc(void)
5967 {
5968 	struct mm_struct *mm = mc.mm;
5969 
5970 	/*
5971 	 * we must clear moving_task before waking up waiters at the end of
5972 	 * task migration.
5973 	 */
5974 	mc.moving_task = NULL;
5975 	__mem_cgroup_clear_mc();
5976 	spin_lock(&mc.lock);
5977 	mc.from = NULL;
5978 	mc.to = NULL;
5979 	mc.mm = NULL;
5980 	spin_unlock(&mc.lock);
5981 
5982 	mmput(mm);
5983 }
5984 
5985 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5986 {
5987 	struct cgroup_subsys_state *css;
5988 	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5989 	struct mem_cgroup *from;
5990 	struct task_struct *leader, *p;
5991 	struct mm_struct *mm;
5992 	unsigned long move_flags;
5993 	int ret = 0;
5994 
5995 	/* charge immigration isn't supported on the default hierarchy */
5996 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5997 		return 0;
5998 
5999 	/*
6000 	 * Multi-process migrations only happen on the default hierarchy
6001 	 * where charge immigration is not used.  Perform charge
6002 	 * immigration if @tset contains a leader and whine if there are
6003 	 * multiple.
6004 	 */
6005 	p = NULL;
6006 	cgroup_taskset_for_each_leader(leader, css, tset) {
6007 		WARN_ON_ONCE(p);
6008 		p = leader;
6009 		memcg = mem_cgroup_from_css(css);
6010 	}
6011 	if (!p)
6012 		return 0;
6013 
6014 	/*
6015 	 * We are now commited to this value whatever it is. Changes in this
6016 	 * tunable will only affect upcoming migrations, not the current one.
6017 	 * So we need to save it, and keep it going.
6018 	 */
6019 	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
6020 	if (!move_flags)
6021 		return 0;
6022 
6023 	from = mem_cgroup_from_task(p);
6024 
6025 	VM_BUG_ON(from == memcg);
6026 
6027 	mm = get_task_mm(p);
6028 	if (!mm)
6029 		return 0;
6030 	/* We move charges only when we move a owner of the mm */
6031 	if (mm->owner == p) {
6032 		VM_BUG_ON(mc.from);
6033 		VM_BUG_ON(mc.to);
6034 		VM_BUG_ON(mc.precharge);
6035 		VM_BUG_ON(mc.moved_charge);
6036 		VM_BUG_ON(mc.moved_swap);
6037 
6038 		spin_lock(&mc.lock);
6039 		mc.mm = mm;
6040 		mc.from = from;
6041 		mc.to = memcg;
6042 		mc.flags = move_flags;
6043 		spin_unlock(&mc.lock);
6044 		/* We set mc.moving_task later */
6045 
6046 		ret = mem_cgroup_precharge_mc(mm);
6047 		if (ret)
6048 			mem_cgroup_clear_mc();
6049 	} else {
6050 		mmput(mm);
6051 	}
6052 	return ret;
6053 }
6054 
6055 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6056 {
6057 	if (mc.to)
6058 		mem_cgroup_clear_mc();
6059 }
6060 
6061 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6062 				unsigned long addr, unsigned long end,
6063 				struct mm_walk *walk)
6064 {
6065 	int ret = 0;
6066 	struct vm_area_struct *vma = walk->vma;
6067 	pte_t *pte;
6068 	spinlock_t *ptl;
6069 	enum mc_target_type target_type;
6070 	union mc_target target;
6071 	struct page *page;
6072 
6073 	ptl = pmd_trans_huge_lock(pmd, vma);
6074 	if (ptl) {
6075 		if (mc.precharge < HPAGE_PMD_NR) {
6076 			spin_unlock(ptl);
6077 			return 0;
6078 		}
6079 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6080 		if (target_type == MC_TARGET_PAGE) {
6081 			page = target.page;
6082 			if (!isolate_lru_page(page)) {
6083 				if (!mem_cgroup_move_account(page, true,
6084 							     mc.from, mc.to)) {
6085 					mc.precharge -= HPAGE_PMD_NR;
6086 					mc.moved_charge += HPAGE_PMD_NR;
6087 				}
6088 				putback_lru_page(page);
6089 			}
6090 			put_page(page);
6091 		} else if (target_type == MC_TARGET_DEVICE) {
6092 			page = target.page;
6093 			if (!mem_cgroup_move_account(page, true,
6094 						     mc.from, mc.to)) {
6095 				mc.precharge -= HPAGE_PMD_NR;
6096 				mc.moved_charge += HPAGE_PMD_NR;
6097 			}
6098 			put_page(page);
6099 		}
6100 		spin_unlock(ptl);
6101 		return 0;
6102 	}
6103 
6104 	if (pmd_trans_unstable(pmd))
6105 		return 0;
6106 retry:
6107 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6108 	for (; addr != end; addr += PAGE_SIZE) {
6109 		pte_t ptent = *(pte++);
6110 		bool device = false;
6111 		swp_entry_t ent;
6112 
6113 		if (!mc.precharge)
6114 			break;
6115 
6116 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6117 		case MC_TARGET_DEVICE:
6118 			device = true;
6119 			fallthrough;
6120 		case MC_TARGET_PAGE:
6121 			page = target.page;
6122 			/*
6123 			 * We can have a part of the split pmd here. Moving it
6124 			 * can be done but it would be too convoluted so simply
6125 			 * ignore such a partial THP and keep it in original
6126 			 * memcg. There should be somebody mapping the head.
6127 			 */
6128 			if (PageTransCompound(page))
6129 				goto put;
6130 			if (!device && isolate_lru_page(page))
6131 				goto put;
6132 			if (!mem_cgroup_move_account(page, false,
6133 						mc.from, mc.to)) {
6134 				mc.precharge--;
6135 				/* we uncharge from mc.from later. */
6136 				mc.moved_charge++;
6137 			}
6138 			if (!device)
6139 				putback_lru_page(page);
6140 put:			/* get_mctgt_type() gets the page */
6141 			put_page(page);
6142 			break;
6143 		case MC_TARGET_SWAP:
6144 			ent = target.ent;
6145 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6146 				mc.precharge--;
6147 				mem_cgroup_id_get_many(mc.to, 1);
6148 				/* we fixup other refcnts and charges later. */
6149 				mc.moved_swap++;
6150 			}
6151 			break;
6152 		default:
6153 			break;
6154 		}
6155 	}
6156 	pte_unmap_unlock(pte - 1, ptl);
6157 	cond_resched();
6158 
6159 	if (addr != end) {
6160 		/*
6161 		 * We have consumed all precharges we got in can_attach().
6162 		 * We try charge one by one, but don't do any additional
6163 		 * charges to mc.to if we have failed in charge once in attach()
6164 		 * phase.
6165 		 */
6166 		ret = mem_cgroup_do_precharge(1);
6167 		if (!ret)
6168 			goto retry;
6169 	}
6170 
6171 	return ret;
6172 }
6173 
6174 static const struct mm_walk_ops charge_walk_ops = {
6175 	.pmd_entry	= mem_cgroup_move_charge_pte_range,
6176 };
6177 
6178 static void mem_cgroup_move_charge(void)
6179 {
6180 	lru_add_drain_all();
6181 	/*
6182 	 * Signal lock_page_memcg() to take the memcg's move_lock
6183 	 * while we're moving its pages to another memcg. Then wait
6184 	 * for already started RCU-only updates to finish.
6185 	 */
6186 	atomic_inc(&mc.from->moving_account);
6187 	synchronize_rcu();
6188 retry:
6189 	if (unlikely(!mmap_read_trylock(mc.mm))) {
6190 		/*
6191 		 * Someone who are holding the mmap_lock might be waiting in
6192 		 * waitq. So we cancel all extra charges, wake up all waiters,
6193 		 * and retry. Because we cancel precharges, we might not be able
6194 		 * to move enough charges, but moving charge is a best-effort
6195 		 * feature anyway, so it wouldn't be a big problem.
6196 		 */
6197 		__mem_cgroup_clear_mc();
6198 		cond_resched();
6199 		goto retry;
6200 	}
6201 	/*
6202 	 * When we have consumed all precharges and failed in doing
6203 	 * additional charge, the page walk just aborts.
6204 	 */
6205 	walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6206 			NULL);
6207 
6208 	mmap_read_unlock(mc.mm);
6209 	atomic_dec(&mc.from->moving_account);
6210 }
6211 
6212 static void mem_cgroup_move_task(void)
6213 {
6214 	if (mc.to) {
6215 		mem_cgroup_move_charge();
6216 		mem_cgroup_clear_mc();
6217 	}
6218 }
6219 #else	/* !CONFIG_MMU */
6220 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6221 {
6222 	return 0;
6223 }
6224 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6225 {
6226 }
6227 static void mem_cgroup_move_task(void)
6228 {
6229 }
6230 #endif
6231 
6232 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6233 {
6234 	if (value == PAGE_COUNTER_MAX)
6235 		seq_puts(m, "max\n");
6236 	else
6237 		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6238 
6239 	return 0;
6240 }
6241 
6242 static u64 memory_current_read(struct cgroup_subsys_state *css,
6243 			       struct cftype *cft)
6244 {
6245 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6246 
6247 	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6248 }
6249 
6250 static int memory_min_show(struct seq_file *m, void *v)
6251 {
6252 	return seq_puts_memcg_tunable(m,
6253 		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6254 }
6255 
6256 static ssize_t memory_min_write(struct kernfs_open_file *of,
6257 				char *buf, size_t nbytes, loff_t off)
6258 {
6259 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6260 	unsigned long min;
6261 	int err;
6262 
6263 	buf = strstrip(buf);
6264 	err = page_counter_memparse(buf, "max", &min);
6265 	if (err)
6266 		return err;
6267 
6268 	page_counter_set_min(&memcg->memory, min);
6269 
6270 	return nbytes;
6271 }
6272 
6273 static int memory_low_show(struct seq_file *m, void *v)
6274 {
6275 	return seq_puts_memcg_tunable(m,
6276 		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6277 }
6278 
6279 static ssize_t memory_low_write(struct kernfs_open_file *of,
6280 				char *buf, size_t nbytes, loff_t off)
6281 {
6282 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6283 	unsigned long low;
6284 	int err;
6285 
6286 	buf = strstrip(buf);
6287 	err = page_counter_memparse(buf, "max", &low);
6288 	if (err)
6289 		return err;
6290 
6291 	page_counter_set_low(&memcg->memory, low);
6292 
6293 	return nbytes;
6294 }
6295 
6296 static int memory_high_show(struct seq_file *m, void *v)
6297 {
6298 	return seq_puts_memcg_tunable(m,
6299 		READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6300 }
6301 
6302 static ssize_t memory_high_write(struct kernfs_open_file *of,
6303 				 char *buf, size_t nbytes, loff_t off)
6304 {
6305 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6306 	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6307 	bool drained = false;
6308 	unsigned long high;
6309 	int err;
6310 
6311 	buf = strstrip(buf);
6312 	err = page_counter_memparse(buf, "max", &high);
6313 	if (err)
6314 		return err;
6315 
6316 	for (;;) {
6317 		unsigned long nr_pages = page_counter_read(&memcg->memory);
6318 		unsigned long reclaimed;
6319 
6320 		if (nr_pages <= high)
6321 			break;
6322 
6323 		if (signal_pending(current))
6324 			break;
6325 
6326 		if (!drained) {
6327 			drain_all_stock(memcg);
6328 			drained = true;
6329 			continue;
6330 		}
6331 
6332 		reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6333 							 GFP_KERNEL, true);
6334 
6335 		if (!reclaimed && !nr_retries--)
6336 			break;
6337 	}
6338 
6339 	page_counter_set_high(&memcg->memory, high);
6340 
6341 	memcg_wb_domain_size_changed(memcg);
6342 
6343 	return nbytes;
6344 }
6345 
6346 static int memory_max_show(struct seq_file *m, void *v)
6347 {
6348 	return seq_puts_memcg_tunable(m,
6349 		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6350 }
6351 
6352 static ssize_t memory_max_write(struct kernfs_open_file *of,
6353 				char *buf, size_t nbytes, loff_t off)
6354 {
6355 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6356 	unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6357 	bool drained = false;
6358 	unsigned long max;
6359 	int err;
6360 
6361 	buf = strstrip(buf);
6362 	err = page_counter_memparse(buf, "max", &max);
6363 	if (err)
6364 		return err;
6365 
6366 	xchg(&memcg->memory.max, max);
6367 
6368 	for (;;) {
6369 		unsigned long nr_pages = page_counter_read(&memcg->memory);
6370 
6371 		if (nr_pages <= max)
6372 			break;
6373 
6374 		if (signal_pending(current))
6375 			break;
6376 
6377 		if (!drained) {
6378 			drain_all_stock(memcg);
6379 			drained = true;
6380 			continue;
6381 		}
6382 
6383 		if (nr_reclaims) {
6384 			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6385 							  GFP_KERNEL, true))
6386 				nr_reclaims--;
6387 			continue;
6388 		}
6389 
6390 		memcg_memory_event(memcg, MEMCG_OOM);
6391 		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6392 			break;
6393 	}
6394 
6395 	memcg_wb_domain_size_changed(memcg);
6396 	return nbytes;
6397 }
6398 
6399 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6400 {
6401 	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6402 	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6403 	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6404 	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6405 	seq_printf(m, "oom_kill %lu\n",
6406 		   atomic_long_read(&events[MEMCG_OOM_KILL]));
6407 }
6408 
6409 static int memory_events_show(struct seq_file *m, void *v)
6410 {
6411 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6412 
6413 	__memory_events_show(m, memcg->memory_events);
6414 	return 0;
6415 }
6416 
6417 static int memory_events_local_show(struct seq_file *m, void *v)
6418 {
6419 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6420 
6421 	__memory_events_show(m, memcg->memory_events_local);
6422 	return 0;
6423 }
6424 
6425 static int memory_stat_show(struct seq_file *m, void *v)
6426 {
6427 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6428 	char *buf;
6429 
6430 	buf = memory_stat_format(memcg);
6431 	if (!buf)
6432 		return -ENOMEM;
6433 	seq_puts(m, buf);
6434 	kfree(buf);
6435 	return 0;
6436 }
6437 
6438 #ifdef CONFIG_NUMA
6439 static int memory_numa_stat_show(struct seq_file *m, void *v)
6440 {
6441 	int i;
6442 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6443 
6444 	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6445 		int nid;
6446 
6447 		if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6448 			continue;
6449 
6450 		seq_printf(m, "%s", memory_stats[i].name);
6451 		for_each_node_state(nid, N_MEMORY) {
6452 			u64 size;
6453 			struct lruvec *lruvec;
6454 
6455 			lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6456 			size = lruvec_page_state(lruvec, memory_stats[i].idx);
6457 			size *= memory_stats[i].ratio;
6458 			seq_printf(m, " N%d=%llu", nid, size);
6459 		}
6460 		seq_putc(m, '\n');
6461 	}
6462 
6463 	return 0;
6464 }
6465 #endif
6466 
6467 static int memory_oom_group_show(struct seq_file *m, void *v)
6468 {
6469 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6470 
6471 	seq_printf(m, "%d\n", memcg->oom_group);
6472 
6473 	return 0;
6474 }
6475 
6476 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6477 				      char *buf, size_t nbytes, loff_t off)
6478 {
6479 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6480 	int ret, oom_group;
6481 
6482 	buf = strstrip(buf);
6483 	if (!buf)
6484 		return -EINVAL;
6485 
6486 	ret = kstrtoint(buf, 0, &oom_group);
6487 	if (ret)
6488 		return ret;
6489 
6490 	if (oom_group != 0 && oom_group != 1)
6491 		return -EINVAL;
6492 
6493 	memcg->oom_group = oom_group;
6494 
6495 	return nbytes;
6496 }
6497 
6498 static struct cftype memory_files[] = {
6499 	{
6500 		.name = "current",
6501 		.flags = CFTYPE_NOT_ON_ROOT,
6502 		.read_u64 = memory_current_read,
6503 	},
6504 	{
6505 		.name = "min",
6506 		.flags = CFTYPE_NOT_ON_ROOT,
6507 		.seq_show = memory_min_show,
6508 		.write = memory_min_write,
6509 	},
6510 	{
6511 		.name = "low",
6512 		.flags = CFTYPE_NOT_ON_ROOT,
6513 		.seq_show = memory_low_show,
6514 		.write = memory_low_write,
6515 	},
6516 	{
6517 		.name = "high",
6518 		.flags = CFTYPE_NOT_ON_ROOT,
6519 		.seq_show = memory_high_show,
6520 		.write = memory_high_write,
6521 	},
6522 	{
6523 		.name = "max",
6524 		.flags = CFTYPE_NOT_ON_ROOT,
6525 		.seq_show = memory_max_show,
6526 		.write = memory_max_write,
6527 	},
6528 	{
6529 		.name = "events",
6530 		.flags = CFTYPE_NOT_ON_ROOT,
6531 		.file_offset = offsetof(struct mem_cgroup, events_file),
6532 		.seq_show = memory_events_show,
6533 	},
6534 	{
6535 		.name = "events.local",
6536 		.flags = CFTYPE_NOT_ON_ROOT,
6537 		.file_offset = offsetof(struct mem_cgroup, events_local_file),
6538 		.seq_show = memory_events_local_show,
6539 	},
6540 	{
6541 		.name = "stat",
6542 		.seq_show = memory_stat_show,
6543 	},
6544 #ifdef CONFIG_NUMA
6545 	{
6546 		.name = "numa_stat",
6547 		.seq_show = memory_numa_stat_show,
6548 	},
6549 #endif
6550 	{
6551 		.name = "oom.group",
6552 		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6553 		.seq_show = memory_oom_group_show,
6554 		.write = memory_oom_group_write,
6555 	},
6556 	{ }	/* terminate */
6557 };
6558 
6559 struct cgroup_subsys memory_cgrp_subsys = {
6560 	.css_alloc = mem_cgroup_css_alloc,
6561 	.css_online = mem_cgroup_css_online,
6562 	.css_offline = mem_cgroup_css_offline,
6563 	.css_released = mem_cgroup_css_released,
6564 	.css_free = mem_cgroup_css_free,
6565 	.css_reset = mem_cgroup_css_reset,
6566 	.can_attach = mem_cgroup_can_attach,
6567 	.cancel_attach = mem_cgroup_cancel_attach,
6568 	.post_attach = mem_cgroup_move_task,
6569 	.dfl_cftypes = memory_files,
6570 	.legacy_cftypes = mem_cgroup_legacy_files,
6571 	.early_init = 0,
6572 };
6573 
6574 /*
6575  * This function calculates an individual cgroup's effective
6576  * protection which is derived from its own memory.min/low, its
6577  * parent's and siblings' settings, as well as the actual memory
6578  * distribution in the tree.
6579  *
6580  * The following rules apply to the effective protection values:
6581  *
6582  * 1. At the first level of reclaim, effective protection is equal to
6583  *    the declared protection in memory.min and memory.low.
6584  *
6585  * 2. To enable safe delegation of the protection configuration, at
6586  *    subsequent levels the effective protection is capped to the
6587  *    parent's effective protection.
6588  *
6589  * 3. To make complex and dynamic subtrees easier to configure, the
6590  *    user is allowed to overcommit the declared protection at a given
6591  *    level. If that is the case, the parent's effective protection is
6592  *    distributed to the children in proportion to how much protection
6593  *    they have declared and how much of it they are utilizing.
6594  *
6595  *    This makes distribution proportional, but also work-conserving:
6596  *    if one cgroup claims much more protection than it uses memory,
6597  *    the unused remainder is available to its siblings.
6598  *
6599  * 4. Conversely, when the declared protection is undercommitted at a
6600  *    given level, the distribution of the larger parental protection
6601  *    budget is NOT proportional. A cgroup's protection from a sibling
6602  *    is capped to its own memory.min/low setting.
6603  *
6604  * 5. However, to allow protecting recursive subtrees from each other
6605  *    without having to declare each individual cgroup's fixed share
6606  *    of the ancestor's claim to protection, any unutilized -
6607  *    "floating" - protection from up the tree is distributed in
6608  *    proportion to each cgroup's *usage*. This makes the protection
6609  *    neutral wrt sibling cgroups and lets them compete freely over
6610  *    the shared parental protection budget, but it protects the
6611  *    subtree as a whole from neighboring subtrees.
6612  *
6613  * Note that 4. and 5. are not in conflict: 4. is about protecting
6614  * against immediate siblings whereas 5. is about protecting against
6615  * neighboring subtrees.
6616  */
6617 static unsigned long effective_protection(unsigned long usage,
6618 					  unsigned long parent_usage,
6619 					  unsigned long setting,
6620 					  unsigned long parent_effective,
6621 					  unsigned long siblings_protected)
6622 {
6623 	unsigned long protected;
6624 	unsigned long ep;
6625 
6626 	protected = min(usage, setting);
6627 	/*
6628 	 * If all cgroups at this level combined claim and use more
6629 	 * protection then what the parent affords them, distribute
6630 	 * shares in proportion to utilization.
6631 	 *
6632 	 * We are using actual utilization rather than the statically
6633 	 * claimed protection in order to be work-conserving: claimed
6634 	 * but unused protection is available to siblings that would
6635 	 * otherwise get a smaller chunk than what they claimed.
6636 	 */
6637 	if (siblings_protected > parent_effective)
6638 		return protected * parent_effective / siblings_protected;
6639 
6640 	/*
6641 	 * Ok, utilized protection of all children is within what the
6642 	 * parent affords them, so we know whatever this child claims
6643 	 * and utilizes is effectively protected.
6644 	 *
6645 	 * If there is unprotected usage beyond this value, reclaim
6646 	 * will apply pressure in proportion to that amount.
6647 	 *
6648 	 * If there is unutilized protection, the cgroup will be fully
6649 	 * shielded from reclaim, but we do return a smaller value for
6650 	 * protection than what the group could enjoy in theory. This
6651 	 * is okay. With the overcommit distribution above, effective
6652 	 * protection is always dependent on how memory is actually
6653 	 * consumed among the siblings anyway.
6654 	 */
6655 	ep = protected;
6656 
6657 	/*
6658 	 * If the children aren't claiming (all of) the protection
6659 	 * afforded to them by the parent, distribute the remainder in
6660 	 * proportion to the (unprotected) memory of each cgroup. That
6661 	 * way, cgroups that aren't explicitly prioritized wrt each
6662 	 * other compete freely over the allowance, but they are
6663 	 * collectively protected from neighboring trees.
6664 	 *
6665 	 * We're using unprotected memory for the weight so that if
6666 	 * some cgroups DO claim explicit protection, we don't protect
6667 	 * the same bytes twice.
6668 	 *
6669 	 * Check both usage and parent_usage against the respective
6670 	 * protected values. One should imply the other, but they
6671 	 * aren't read atomically - make sure the division is sane.
6672 	 */
6673 	if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6674 		return ep;
6675 	if (parent_effective > siblings_protected &&
6676 	    parent_usage > siblings_protected &&
6677 	    usage > protected) {
6678 		unsigned long unclaimed;
6679 
6680 		unclaimed = parent_effective - siblings_protected;
6681 		unclaimed *= usage - protected;
6682 		unclaimed /= parent_usage - siblings_protected;
6683 
6684 		ep += unclaimed;
6685 	}
6686 
6687 	return ep;
6688 }
6689 
6690 /**
6691  * mem_cgroup_protected - check if memory consumption is in the normal range
6692  * @root: the top ancestor of the sub-tree being checked
6693  * @memcg: the memory cgroup to check
6694  *
6695  * WARNING: This function is not stateless! It can only be used as part
6696  *          of a top-down tree iteration, not for isolated queries.
6697  */
6698 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6699 				     struct mem_cgroup *memcg)
6700 {
6701 	unsigned long usage, parent_usage;
6702 	struct mem_cgroup *parent;
6703 
6704 	if (mem_cgroup_disabled())
6705 		return;
6706 
6707 	if (!root)
6708 		root = root_mem_cgroup;
6709 
6710 	/*
6711 	 * Effective values of the reclaim targets are ignored so they
6712 	 * can be stale. Have a look at mem_cgroup_protection for more
6713 	 * details.
6714 	 * TODO: calculation should be more robust so that we do not need
6715 	 * that special casing.
6716 	 */
6717 	if (memcg == root)
6718 		return;
6719 
6720 	usage = page_counter_read(&memcg->memory);
6721 	if (!usage)
6722 		return;
6723 
6724 	parent = parent_mem_cgroup(memcg);
6725 	/* No parent means a non-hierarchical mode on v1 memcg */
6726 	if (!parent)
6727 		return;
6728 
6729 	if (parent == root) {
6730 		memcg->memory.emin = READ_ONCE(memcg->memory.min);
6731 		memcg->memory.elow = READ_ONCE(memcg->memory.low);
6732 		return;
6733 	}
6734 
6735 	parent_usage = page_counter_read(&parent->memory);
6736 
6737 	WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6738 			READ_ONCE(memcg->memory.min),
6739 			READ_ONCE(parent->memory.emin),
6740 			atomic_long_read(&parent->memory.children_min_usage)));
6741 
6742 	WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6743 			READ_ONCE(memcg->memory.low),
6744 			READ_ONCE(parent->memory.elow),
6745 			atomic_long_read(&parent->memory.children_low_usage)));
6746 }
6747 
6748 /**
6749  * mem_cgroup_charge - charge a newly allocated page to a cgroup
6750  * @page: page to charge
6751  * @mm: mm context of the victim
6752  * @gfp_mask: reclaim mode
6753  *
6754  * Try to charge @page to the memcg that @mm belongs to, reclaiming
6755  * pages according to @gfp_mask if necessary.
6756  *
6757  * Returns 0 on success. Otherwise, an error code is returned.
6758  */
6759 int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
6760 {
6761 	unsigned int nr_pages = thp_nr_pages(page);
6762 	struct mem_cgroup *memcg = NULL;
6763 	int ret = 0;
6764 
6765 	if (mem_cgroup_disabled())
6766 		goto out;
6767 
6768 	if (PageSwapCache(page)) {
6769 		swp_entry_t ent = { .val = page_private(page), };
6770 		unsigned short id;
6771 
6772 		/*
6773 		 * Every swap fault against a single page tries to charge the
6774 		 * page, bail as early as possible.  shmem_unuse() encounters
6775 		 * already charged pages, too.  page and memcg binding is
6776 		 * protected by the page lock, which serializes swap cache
6777 		 * removal, which in turn serializes uncharging.
6778 		 */
6779 		VM_BUG_ON_PAGE(!PageLocked(page), page);
6780 		if (page_memcg(compound_head(page)))
6781 			goto out;
6782 
6783 		id = lookup_swap_cgroup_id(ent);
6784 		rcu_read_lock();
6785 		memcg = mem_cgroup_from_id(id);
6786 		if (memcg && !css_tryget_online(&memcg->css))
6787 			memcg = NULL;
6788 		rcu_read_unlock();
6789 	}
6790 
6791 	if (!memcg)
6792 		memcg = get_mem_cgroup_from_mm(mm);
6793 
6794 	ret = try_charge(memcg, gfp_mask, nr_pages);
6795 	if (ret)
6796 		goto out_put;
6797 
6798 	css_get(&memcg->css);
6799 	commit_charge(page, memcg);
6800 
6801 	local_irq_disable();
6802 	mem_cgroup_charge_statistics(memcg, page, nr_pages);
6803 	memcg_check_events(memcg, page);
6804 	local_irq_enable();
6805 
6806 	if (PageSwapCache(page)) {
6807 		swp_entry_t entry = { .val = page_private(page) };
6808 		/*
6809 		 * The swap entry might not get freed for a long time,
6810 		 * let's not wait for it.  The page already received a
6811 		 * memory+swap charge, drop the swap entry duplicate.
6812 		 */
6813 		mem_cgroup_uncharge_swap(entry, nr_pages);
6814 	}
6815 
6816 out_put:
6817 	css_put(&memcg->css);
6818 out:
6819 	return ret;
6820 }
6821 
6822 struct uncharge_gather {
6823 	struct mem_cgroup *memcg;
6824 	unsigned long nr_pages;
6825 	unsigned long pgpgout;
6826 	unsigned long nr_kmem;
6827 	struct page *dummy_page;
6828 };
6829 
6830 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6831 {
6832 	memset(ug, 0, sizeof(*ug));
6833 }
6834 
6835 static void uncharge_batch(const struct uncharge_gather *ug)
6836 {
6837 	unsigned long flags;
6838 
6839 	if (!mem_cgroup_is_root(ug->memcg)) {
6840 		page_counter_uncharge(&ug->memcg->memory, ug->nr_pages);
6841 		if (do_memsw_account())
6842 			page_counter_uncharge(&ug->memcg->memsw, ug->nr_pages);
6843 		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6844 			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6845 		memcg_oom_recover(ug->memcg);
6846 	}
6847 
6848 	local_irq_save(flags);
6849 	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6850 	__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_pages);
6851 	memcg_check_events(ug->memcg, ug->dummy_page);
6852 	local_irq_restore(flags);
6853 
6854 	/* drop reference from uncharge_page */
6855 	css_put(&ug->memcg->css);
6856 }
6857 
6858 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6859 {
6860 	unsigned long nr_pages;
6861 
6862 	VM_BUG_ON_PAGE(PageLRU(page), page);
6863 
6864 	if (!page_memcg(page))
6865 		return;
6866 
6867 	/*
6868 	 * Nobody should be changing or seriously looking at
6869 	 * page_memcg(page) at this point, we have fully
6870 	 * exclusive access to the page.
6871 	 */
6872 
6873 	if (ug->memcg != page_memcg(page)) {
6874 		if (ug->memcg) {
6875 			uncharge_batch(ug);
6876 			uncharge_gather_clear(ug);
6877 		}
6878 		ug->memcg = page_memcg(page);
6879 
6880 		/* pairs with css_put in uncharge_batch */
6881 		css_get(&ug->memcg->css);
6882 	}
6883 
6884 	nr_pages = compound_nr(page);
6885 	ug->nr_pages += nr_pages;
6886 
6887 	if (PageMemcgKmem(page))
6888 		ug->nr_kmem += nr_pages;
6889 	else
6890 		ug->pgpgout++;
6891 
6892 	ug->dummy_page = page;
6893 	page->memcg_data = 0;
6894 	css_put(&ug->memcg->css);
6895 }
6896 
6897 static void uncharge_list(struct list_head *page_list)
6898 {
6899 	struct uncharge_gather ug;
6900 	struct list_head *next;
6901 
6902 	uncharge_gather_clear(&ug);
6903 
6904 	/*
6905 	 * Note that the list can be a single page->lru; hence the
6906 	 * do-while loop instead of a simple list_for_each_entry().
6907 	 */
6908 	next = page_list->next;
6909 	do {
6910 		struct page *page;
6911 
6912 		page = list_entry(next, struct page, lru);
6913 		next = page->lru.next;
6914 
6915 		uncharge_page(page, &ug);
6916 	} while (next != page_list);
6917 
6918 	if (ug.memcg)
6919 		uncharge_batch(&ug);
6920 }
6921 
6922 /**
6923  * mem_cgroup_uncharge - uncharge a page
6924  * @page: page to uncharge
6925  *
6926  * Uncharge a page previously charged with mem_cgroup_charge().
6927  */
6928 void mem_cgroup_uncharge(struct page *page)
6929 {
6930 	struct uncharge_gather ug;
6931 
6932 	if (mem_cgroup_disabled())
6933 		return;
6934 
6935 	/* Don't touch page->lru of any random page, pre-check: */
6936 	if (!page_memcg(page))
6937 		return;
6938 
6939 	uncharge_gather_clear(&ug);
6940 	uncharge_page(page, &ug);
6941 	uncharge_batch(&ug);
6942 }
6943 
6944 /**
6945  * mem_cgroup_uncharge_list - uncharge a list of page
6946  * @page_list: list of pages to uncharge
6947  *
6948  * Uncharge a list of pages previously charged with
6949  * mem_cgroup_charge().
6950  */
6951 void mem_cgroup_uncharge_list(struct list_head *page_list)
6952 {
6953 	if (mem_cgroup_disabled())
6954 		return;
6955 
6956 	if (!list_empty(page_list))
6957 		uncharge_list(page_list);
6958 }
6959 
6960 /**
6961  * mem_cgroup_migrate - charge a page's replacement
6962  * @oldpage: currently circulating page
6963  * @newpage: replacement page
6964  *
6965  * Charge @newpage as a replacement page for @oldpage. @oldpage will
6966  * be uncharged upon free.
6967  *
6968  * Both pages must be locked, @newpage->mapping must be set up.
6969  */
6970 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6971 {
6972 	struct mem_cgroup *memcg;
6973 	unsigned int nr_pages;
6974 	unsigned long flags;
6975 
6976 	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6977 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6978 	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6979 	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6980 		       newpage);
6981 
6982 	if (mem_cgroup_disabled())
6983 		return;
6984 
6985 	/* Page cache replacement: new page already charged? */
6986 	if (page_memcg(newpage))
6987 		return;
6988 
6989 	memcg = page_memcg(oldpage);
6990 	if (!memcg)
6991 		return;
6992 
6993 	/* Force-charge the new page. The old one will be freed soon */
6994 	nr_pages = thp_nr_pages(newpage);
6995 
6996 	page_counter_charge(&memcg->memory, nr_pages);
6997 	if (do_memsw_account())
6998 		page_counter_charge(&memcg->memsw, nr_pages);
6999 
7000 	css_get(&memcg->css);
7001 	commit_charge(newpage, memcg);
7002 
7003 	local_irq_save(flags);
7004 	mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
7005 	memcg_check_events(memcg, newpage);
7006 	local_irq_restore(flags);
7007 }
7008 
7009 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
7010 EXPORT_SYMBOL(memcg_sockets_enabled_key);
7011 
7012 void mem_cgroup_sk_alloc(struct sock *sk)
7013 {
7014 	struct mem_cgroup *memcg;
7015 
7016 	if (!mem_cgroup_sockets_enabled)
7017 		return;
7018 
7019 	/* Do not associate the sock with unrelated interrupted task's memcg. */
7020 	if (in_interrupt())
7021 		return;
7022 
7023 	rcu_read_lock();
7024 	memcg = mem_cgroup_from_task(current);
7025 	if (memcg == root_mem_cgroup)
7026 		goto out;
7027 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
7028 		goto out;
7029 	if (css_tryget(&memcg->css))
7030 		sk->sk_memcg = memcg;
7031 out:
7032 	rcu_read_unlock();
7033 }
7034 
7035 void mem_cgroup_sk_free(struct sock *sk)
7036 {
7037 	if (sk->sk_memcg)
7038 		css_put(&sk->sk_memcg->css);
7039 }
7040 
7041 /**
7042  * mem_cgroup_charge_skmem - charge socket memory
7043  * @memcg: memcg to charge
7044  * @nr_pages: number of pages to charge
7045  *
7046  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7047  * @memcg's configured limit, %false if the charge had to be forced.
7048  */
7049 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7050 {
7051 	gfp_t gfp_mask = GFP_KERNEL;
7052 
7053 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7054 		struct page_counter *fail;
7055 
7056 		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7057 			memcg->tcpmem_pressure = 0;
7058 			return true;
7059 		}
7060 		page_counter_charge(&memcg->tcpmem, nr_pages);
7061 		memcg->tcpmem_pressure = 1;
7062 		return false;
7063 	}
7064 
7065 	/* Don't block in the packet receive path */
7066 	if (in_softirq())
7067 		gfp_mask = GFP_NOWAIT;
7068 
7069 	mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7070 
7071 	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
7072 		return true;
7073 
7074 	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
7075 	return false;
7076 }
7077 
7078 /**
7079  * mem_cgroup_uncharge_skmem - uncharge socket memory
7080  * @memcg: memcg to uncharge
7081  * @nr_pages: number of pages to uncharge
7082  */
7083 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7084 {
7085 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7086 		page_counter_uncharge(&memcg->tcpmem, nr_pages);
7087 		return;
7088 	}
7089 
7090 	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7091 
7092 	refill_stock(memcg, nr_pages);
7093 }
7094 
7095 static int __init cgroup_memory(char *s)
7096 {
7097 	char *token;
7098 
7099 	while ((token = strsep(&s, ",")) != NULL) {
7100 		if (!*token)
7101 			continue;
7102 		if (!strcmp(token, "nosocket"))
7103 			cgroup_memory_nosocket = true;
7104 		if (!strcmp(token, "nokmem"))
7105 			cgroup_memory_nokmem = true;
7106 	}
7107 	return 0;
7108 }
7109 __setup("cgroup.memory=", cgroup_memory);
7110 
7111 /*
7112  * subsys_initcall() for memory controller.
7113  *
7114  * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7115  * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7116  * basically everything that doesn't depend on a specific mem_cgroup structure
7117  * should be initialized from here.
7118  */
7119 static int __init mem_cgroup_init(void)
7120 {
7121 	int cpu, node;
7122 
7123 	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7124 				  memcg_hotplug_cpu_dead);
7125 
7126 	for_each_possible_cpu(cpu)
7127 		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7128 			  drain_local_stock);
7129 
7130 	for_each_node(node) {
7131 		struct mem_cgroup_tree_per_node *rtpn;
7132 
7133 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7134 				    node_online(node) ? node : NUMA_NO_NODE);
7135 
7136 		rtpn->rb_root = RB_ROOT;
7137 		rtpn->rb_rightmost = NULL;
7138 		spin_lock_init(&rtpn->lock);
7139 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
7140 	}
7141 
7142 	return 0;
7143 }
7144 subsys_initcall(mem_cgroup_init);
7145 
7146 #ifdef CONFIG_MEMCG_SWAP
7147 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7148 {
7149 	while (!refcount_inc_not_zero(&memcg->id.ref)) {
7150 		/*
7151 		 * The root cgroup cannot be destroyed, so it's refcount must
7152 		 * always be >= 1.
7153 		 */
7154 		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7155 			VM_BUG_ON(1);
7156 			break;
7157 		}
7158 		memcg = parent_mem_cgroup(memcg);
7159 		if (!memcg)
7160 			memcg = root_mem_cgroup;
7161 	}
7162 	return memcg;
7163 }
7164 
7165 /**
7166  * mem_cgroup_swapout - transfer a memsw charge to swap
7167  * @page: page whose memsw charge to transfer
7168  * @entry: swap entry to move the charge to
7169  *
7170  * Transfer the memsw charge of @page to @entry.
7171  */
7172 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
7173 {
7174 	struct mem_cgroup *memcg, *swap_memcg;
7175 	unsigned int nr_entries;
7176 	unsigned short oldid;
7177 
7178 	VM_BUG_ON_PAGE(PageLRU(page), page);
7179 	VM_BUG_ON_PAGE(page_count(page), page);
7180 
7181 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7182 		return;
7183 
7184 	memcg = page_memcg(page);
7185 
7186 	/* Readahead page, never charged */
7187 	if (!memcg)
7188 		return;
7189 
7190 	/*
7191 	 * In case the memcg owning these pages has been offlined and doesn't
7192 	 * have an ID allocated to it anymore, charge the closest online
7193 	 * ancestor for the swap instead and transfer the memory+swap charge.
7194 	 */
7195 	swap_memcg = mem_cgroup_id_get_online(memcg);
7196 	nr_entries = thp_nr_pages(page);
7197 	/* Get references for the tail pages, too */
7198 	if (nr_entries > 1)
7199 		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7200 	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7201 				   nr_entries);
7202 	VM_BUG_ON_PAGE(oldid, page);
7203 	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7204 
7205 	page->memcg_data = 0;
7206 
7207 	if (!mem_cgroup_is_root(memcg))
7208 		page_counter_uncharge(&memcg->memory, nr_entries);
7209 
7210 	if (!cgroup_memory_noswap && memcg != swap_memcg) {
7211 		if (!mem_cgroup_is_root(swap_memcg))
7212 			page_counter_charge(&swap_memcg->memsw, nr_entries);
7213 		page_counter_uncharge(&memcg->memsw, nr_entries);
7214 	}
7215 
7216 	/*
7217 	 * Interrupts should be disabled here because the caller holds the
7218 	 * i_pages lock which is taken with interrupts-off. It is
7219 	 * important here to have the interrupts disabled because it is the
7220 	 * only synchronisation we have for updating the per-CPU variables.
7221 	 */
7222 	VM_BUG_ON(!irqs_disabled());
7223 	mem_cgroup_charge_statistics(memcg, page, -nr_entries);
7224 	memcg_check_events(memcg, page);
7225 
7226 	css_put(&memcg->css);
7227 }
7228 
7229 /**
7230  * mem_cgroup_try_charge_swap - try charging swap space for a page
7231  * @page: page being added to swap
7232  * @entry: swap entry to charge
7233  *
7234  * Try to charge @page's memcg for the swap space at @entry.
7235  *
7236  * Returns 0 on success, -ENOMEM on failure.
7237  */
7238 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7239 {
7240 	unsigned int nr_pages = thp_nr_pages(page);
7241 	struct page_counter *counter;
7242 	struct mem_cgroup *memcg;
7243 	unsigned short oldid;
7244 
7245 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7246 		return 0;
7247 
7248 	memcg = page_memcg(page);
7249 
7250 	/* Readahead page, never charged */
7251 	if (!memcg)
7252 		return 0;
7253 
7254 	if (!entry.val) {
7255 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7256 		return 0;
7257 	}
7258 
7259 	memcg = mem_cgroup_id_get_online(memcg);
7260 
7261 	if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7262 	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7263 		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7264 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7265 		mem_cgroup_id_put(memcg);
7266 		return -ENOMEM;
7267 	}
7268 
7269 	/* Get references for the tail pages, too */
7270 	if (nr_pages > 1)
7271 		mem_cgroup_id_get_many(memcg, nr_pages - 1);
7272 	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7273 	VM_BUG_ON_PAGE(oldid, page);
7274 	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7275 
7276 	return 0;
7277 }
7278 
7279 /**
7280  * mem_cgroup_uncharge_swap - uncharge swap space
7281  * @entry: swap entry to uncharge
7282  * @nr_pages: the amount of swap space to uncharge
7283  */
7284 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7285 {
7286 	struct mem_cgroup *memcg;
7287 	unsigned short id;
7288 
7289 	id = swap_cgroup_record(entry, 0, nr_pages);
7290 	rcu_read_lock();
7291 	memcg = mem_cgroup_from_id(id);
7292 	if (memcg) {
7293 		if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7294 			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7295 				page_counter_uncharge(&memcg->swap, nr_pages);
7296 			else
7297 				page_counter_uncharge(&memcg->memsw, nr_pages);
7298 		}
7299 		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7300 		mem_cgroup_id_put_many(memcg, nr_pages);
7301 	}
7302 	rcu_read_unlock();
7303 }
7304 
7305 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7306 {
7307 	long nr_swap_pages = get_nr_swap_pages();
7308 
7309 	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7310 		return nr_swap_pages;
7311 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7312 		nr_swap_pages = min_t(long, nr_swap_pages,
7313 				      READ_ONCE(memcg->swap.max) -
7314 				      page_counter_read(&memcg->swap));
7315 	return nr_swap_pages;
7316 }
7317 
7318 bool mem_cgroup_swap_full(struct page *page)
7319 {
7320 	struct mem_cgroup *memcg;
7321 
7322 	VM_BUG_ON_PAGE(!PageLocked(page), page);
7323 
7324 	if (vm_swap_full())
7325 		return true;
7326 	if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7327 		return false;
7328 
7329 	memcg = page_memcg(page);
7330 	if (!memcg)
7331 		return false;
7332 
7333 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7334 		unsigned long usage = page_counter_read(&memcg->swap);
7335 
7336 		if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7337 		    usage * 2 >= READ_ONCE(memcg->swap.max))
7338 			return true;
7339 	}
7340 
7341 	return false;
7342 }
7343 
7344 static int __init setup_swap_account(char *s)
7345 {
7346 	if (!strcmp(s, "1"))
7347 		cgroup_memory_noswap = false;
7348 	else if (!strcmp(s, "0"))
7349 		cgroup_memory_noswap = true;
7350 	return 1;
7351 }
7352 __setup("swapaccount=", setup_swap_account);
7353 
7354 static u64 swap_current_read(struct cgroup_subsys_state *css,
7355 			     struct cftype *cft)
7356 {
7357 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7358 
7359 	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7360 }
7361 
7362 static int swap_high_show(struct seq_file *m, void *v)
7363 {
7364 	return seq_puts_memcg_tunable(m,
7365 		READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7366 }
7367 
7368 static ssize_t swap_high_write(struct kernfs_open_file *of,
7369 			       char *buf, size_t nbytes, loff_t off)
7370 {
7371 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7372 	unsigned long high;
7373 	int err;
7374 
7375 	buf = strstrip(buf);
7376 	err = page_counter_memparse(buf, "max", &high);
7377 	if (err)
7378 		return err;
7379 
7380 	page_counter_set_high(&memcg->swap, high);
7381 
7382 	return nbytes;
7383 }
7384 
7385 static int swap_max_show(struct seq_file *m, void *v)
7386 {
7387 	return seq_puts_memcg_tunable(m,
7388 		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7389 }
7390 
7391 static ssize_t swap_max_write(struct kernfs_open_file *of,
7392 			      char *buf, size_t nbytes, loff_t off)
7393 {
7394 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7395 	unsigned long max;
7396 	int err;
7397 
7398 	buf = strstrip(buf);
7399 	err = page_counter_memparse(buf, "max", &max);
7400 	if (err)
7401 		return err;
7402 
7403 	xchg(&memcg->swap.max, max);
7404 
7405 	return nbytes;
7406 }
7407 
7408 static int swap_events_show(struct seq_file *m, void *v)
7409 {
7410 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7411 
7412 	seq_printf(m, "high %lu\n",
7413 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7414 	seq_printf(m, "max %lu\n",
7415 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7416 	seq_printf(m, "fail %lu\n",
7417 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7418 
7419 	return 0;
7420 }
7421 
7422 static struct cftype swap_files[] = {
7423 	{
7424 		.name = "swap.current",
7425 		.flags = CFTYPE_NOT_ON_ROOT,
7426 		.read_u64 = swap_current_read,
7427 	},
7428 	{
7429 		.name = "swap.high",
7430 		.flags = CFTYPE_NOT_ON_ROOT,
7431 		.seq_show = swap_high_show,
7432 		.write = swap_high_write,
7433 	},
7434 	{
7435 		.name = "swap.max",
7436 		.flags = CFTYPE_NOT_ON_ROOT,
7437 		.seq_show = swap_max_show,
7438 		.write = swap_max_write,
7439 	},
7440 	{
7441 		.name = "swap.events",
7442 		.flags = CFTYPE_NOT_ON_ROOT,
7443 		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
7444 		.seq_show = swap_events_show,
7445 	},
7446 	{ }	/* terminate */
7447 };
7448 
7449 static struct cftype memsw_files[] = {
7450 	{
7451 		.name = "memsw.usage_in_bytes",
7452 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7453 		.read_u64 = mem_cgroup_read_u64,
7454 	},
7455 	{
7456 		.name = "memsw.max_usage_in_bytes",
7457 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7458 		.write = mem_cgroup_reset,
7459 		.read_u64 = mem_cgroup_read_u64,
7460 	},
7461 	{
7462 		.name = "memsw.limit_in_bytes",
7463 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7464 		.write = mem_cgroup_write,
7465 		.read_u64 = mem_cgroup_read_u64,
7466 	},
7467 	{
7468 		.name = "memsw.failcnt",
7469 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7470 		.write = mem_cgroup_reset,
7471 		.read_u64 = mem_cgroup_read_u64,
7472 	},
7473 	{ },	/* terminate */
7474 };
7475 
7476 /*
7477  * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7478  * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7479  * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7480  * boot parameter. This may result in premature OOPS inside
7481  * mem_cgroup_get_nr_swap_pages() function in corner cases.
7482  */
7483 static int __init mem_cgroup_swap_init(void)
7484 {
7485 	/* No memory control -> no swap control */
7486 	if (mem_cgroup_disabled())
7487 		cgroup_memory_noswap = true;
7488 
7489 	if (cgroup_memory_noswap)
7490 		return 0;
7491 
7492 	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7493 	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7494 
7495 	return 0;
7496 }
7497 core_initcall(mem_cgroup_swap_init);
7498 
7499 #endif /* CONFIG_MEMCG_SWAP */
7500