xref: /openbmc/linux/mm/memcontrol.c (revision 31368ce8)
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * Kernel Memory Controller
14  * Copyright (C) 2012 Parallels Inc. and Google Inc.
15  * Authors: Glauber Costa and Suleiman Souhlal
16  *
17  * Native page reclaim
18  * Charge lifetime sanitation
19  * Lockless page tracking & accounting
20  * Unified hierarchy configuration model
21  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22  *
23  * This program is free software; you can redistribute it and/or modify
24  * it under the terms of the GNU General Public License as published by
25  * the Free Software Foundation; either version 2 of the License, or
26  * (at your option) any later version.
27  *
28  * This program is distributed in the hope that it will be useful,
29  * but WITHOUT ANY WARRANTY; without even the implied warranty of
30  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
31  * GNU General Public License for more details.
32  */
33 
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/sched/mm.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/hugetlb.h>
41 #include <linux/pagemap.h>
42 #include <linux/smp.h>
43 #include <linux/page-flags.h>
44 #include <linux/backing-dev.h>
45 #include <linux/bit_spinlock.h>
46 #include <linux/rcupdate.h>
47 #include <linux/limits.h>
48 #include <linux/export.h>
49 #include <linux/mutex.h>
50 #include <linux/rbtree.h>
51 #include <linux/slab.h>
52 #include <linux/swap.h>
53 #include <linux/swapops.h>
54 #include <linux/spinlock.h>
55 #include <linux/eventfd.h>
56 #include <linux/poll.h>
57 #include <linux/sort.h>
58 #include <linux/fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/vmpressure.h>
61 #include <linux/mm_inline.h>
62 #include <linux/swap_cgroup.h>
63 #include <linux/cpu.h>
64 #include <linux/oom.h>
65 #include <linux/lockdep.h>
66 #include <linux/file.h>
67 #include <linux/tracehook.h>
68 #include "internal.h"
69 #include <net/sock.h>
70 #include <net/ip.h>
71 #include "slab.h"
72 
73 #include <linux/uaccess.h>
74 
75 #include <trace/events/vmscan.h>
76 
77 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
78 EXPORT_SYMBOL(memory_cgrp_subsys);
79 
80 struct mem_cgroup *root_mem_cgroup __read_mostly;
81 
82 #define MEM_CGROUP_RECLAIM_RETRIES	5
83 
84 /* Socket memory accounting disabled? */
85 static bool cgroup_memory_nosocket;
86 
87 /* Kernel memory accounting disabled? */
88 static bool cgroup_memory_nokmem;
89 
90 /* Whether the swap controller is active */
91 #ifdef CONFIG_MEMCG_SWAP
92 int do_swap_account __read_mostly;
93 #else
94 #define do_swap_account		0
95 #endif
96 
97 /* Whether legacy memory+swap accounting is active */
98 static bool do_memsw_account(void)
99 {
100 	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
101 }
102 
103 static const char *const mem_cgroup_lru_names[] = {
104 	"inactive_anon",
105 	"active_anon",
106 	"inactive_file",
107 	"active_file",
108 	"unevictable",
109 };
110 
111 #define THRESHOLDS_EVENTS_TARGET 128
112 #define SOFTLIMIT_EVENTS_TARGET 1024
113 #define NUMAINFO_EVENTS_TARGET	1024
114 
115 /*
116  * Cgroups above their limits are maintained in a RB-Tree, independent of
117  * their hierarchy representation
118  */
119 
120 struct mem_cgroup_tree_per_node {
121 	struct rb_root rb_root;
122 	spinlock_t lock;
123 };
124 
125 struct mem_cgroup_tree {
126 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
127 };
128 
129 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
130 
131 /* for OOM */
132 struct mem_cgroup_eventfd_list {
133 	struct list_head list;
134 	struct eventfd_ctx *eventfd;
135 };
136 
137 /*
138  * cgroup_event represents events which userspace want to receive.
139  */
140 struct mem_cgroup_event {
141 	/*
142 	 * memcg which the event belongs to.
143 	 */
144 	struct mem_cgroup *memcg;
145 	/*
146 	 * eventfd to signal userspace about the event.
147 	 */
148 	struct eventfd_ctx *eventfd;
149 	/*
150 	 * Each of these stored in a list by the cgroup.
151 	 */
152 	struct list_head list;
153 	/*
154 	 * register_event() callback will be used to add new userspace
155 	 * waiter for changes related to this event.  Use eventfd_signal()
156 	 * on eventfd to send notification to userspace.
157 	 */
158 	int (*register_event)(struct mem_cgroup *memcg,
159 			      struct eventfd_ctx *eventfd, const char *args);
160 	/*
161 	 * unregister_event() callback will be called when userspace closes
162 	 * the eventfd or on cgroup removing.  This callback must be set,
163 	 * if you want provide notification functionality.
164 	 */
165 	void (*unregister_event)(struct mem_cgroup *memcg,
166 				 struct eventfd_ctx *eventfd);
167 	/*
168 	 * All fields below needed to unregister event when
169 	 * userspace closes eventfd.
170 	 */
171 	poll_table pt;
172 	wait_queue_head_t *wqh;
173 	wait_queue_entry_t wait;
174 	struct work_struct remove;
175 };
176 
177 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
178 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
179 
180 /* Stuffs for move charges at task migration. */
181 /*
182  * Types of charges to be moved.
183  */
184 #define MOVE_ANON	0x1U
185 #define MOVE_FILE	0x2U
186 #define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
187 
188 /* "mc" and its members are protected by cgroup_mutex */
189 static struct move_charge_struct {
190 	spinlock_t	  lock; /* for from, to */
191 	struct mm_struct  *mm;
192 	struct mem_cgroup *from;
193 	struct mem_cgroup *to;
194 	unsigned long flags;
195 	unsigned long precharge;
196 	unsigned long moved_charge;
197 	unsigned long moved_swap;
198 	struct task_struct *moving_task;	/* a task moving charges */
199 	wait_queue_head_t waitq;		/* a waitq for other context */
200 } mc = {
201 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
202 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
203 };
204 
205 /*
206  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
207  * limit reclaim to prevent infinite loops, if they ever occur.
208  */
209 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
210 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
211 
212 enum charge_type {
213 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
214 	MEM_CGROUP_CHARGE_TYPE_ANON,
215 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
216 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
217 	NR_CHARGE_TYPE,
218 };
219 
220 /* for encoding cft->private value on file */
221 enum res_type {
222 	_MEM,
223 	_MEMSWAP,
224 	_OOM_TYPE,
225 	_KMEM,
226 	_TCP,
227 };
228 
229 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
230 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
231 #define MEMFILE_ATTR(val)	((val) & 0xffff)
232 /* Used for OOM nofiier */
233 #define OOM_CONTROL		(0)
234 
235 /* Some nice accessors for the vmpressure. */
236 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
237 {
238 	if (!memcg)
239 		memcg = root_mem_cgroup;
240 	return &memcg->vmpressure;
241 }
242 
243 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
244 {
245 	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
246 }
247 
248 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
249 {
250 	return (memcg == root_mem_cgroup);
251 }
252 
253 #ifndef CONFIG_SLOB
254 /*
255  * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
256  * The main reason for not using cgroup id for this:
257  *  this works better in sparse environments, where we have a lot of memcgs,
258  *  but only a few kmem-limited. Or also, if we have, for instance, 200
259  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
260  *  200 entry array for that.
261  *
262  * The current size of the caches array is stored in memcg_nr_cache_ids. It
263  * will double each time we have to increase it.
264  */
265 static DEFINE_IDA(memcg_cache_ida);
266 int memcg_nr_cache_ids;
267 
268 /* Protects memcg_nr_cache_ids */
269 static DECLARE_RWSEM(memcg_cache_ids_sem);
270 
271 void memcg_get_cache_ids(void)
272 {
273 	down_read(&memcg_cache_ids_sem);
274 }
275 
276 void memcg_put_cache_ids(void)
277 {
278 	up_read(&memcg_cache_ids_sem);
279 }
280 
281 /*
282  * MIN_SIZE is different than 1, because we would like to avoid going through
283  * the alloc/free process all the time. In a small machine, 4 kmem-limited
284  * cgroups is a reasonable guess. In the future, it could be a parameter or
285  * tunable, but that is strictly not necessary.
286  *
287  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
288  * this constant directly from cgroup, but it is understandable that this is
289  * better kept as an internal representation in cgroup.c. In any case, the
290  * cgrp_id space is not getting any smaller, and we don't have to necessarily
291  * increase ours as well if it increases.
292  */
293 #define MEMCG_CACHES_MIN_SIZE 4
294 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
295 
296 /*
297  * A lot of the calls to the cache allocation functions are expected to be
298  * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
299  * conditional to this static branch, we'll have to allow modules that does
300  * kmem_cache_alloc and the such to see this symbol as well
301  */
302 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
303 EXPORT_SYMBOL(memcg_kmem_enabled_key);
304 
305 struct workqueue_struct *memcg_kmem_cache_wq;
306 
307 #endif /* !CONFIG_SLOB */
308 
309 /**
310  * mem_cgroup_css_from_page - css of the memcg associated with a page
311  * @page: page of interest
312  *
313  * If memcg is bound to the default hierarchy, css of the memcg associated
314  * with @page is returned.  The returned css remains associated with @page
315  * until it is released.
316  *
317  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
318  * is returned.
319  */
320 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
321 {
322 	struct mem_cgroup *memcg;
323 
324 	memcg = page->mem_cgroup;
325 
326 	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
327 		memcg = root_mem_cgroup;
328 
329 	return &memcg->css;
330 }
331 
332 /**
333  * page_cgroup_ino - return inode number of the memcg a page is charged to
334  * @page: the page
335  *
336  * Look up the closest online ancestor of the memory cgroup @page is charged to
337  * and return its inode number or 0 if @page is not charged to any cgroup. It
338  * is safe to call this function without holding a reference to @page.
339  *
340  * Note, this function is inherently racy, because there is nothing to prevent
341  * the cgroup inode from getting torn down and potentially reallocated a moment
342  * after page_cgroup_ino() returns, so it only should be used by callers that
343  * do not care (such as procfs interfaces).
344  */
345 ino_t page_cgroup_ino(struct page *page)
346 {
347 	struct mem_cgroup *memcg;
348 	unsigned long ino = 0;
349 
350 	rcu_read_lock();
351 	memcg = READ_ONCE(page->mem_cgroup);
352 	while (memcg && !(memcg->css.flags & CSS_ONLINE))
353 		memcg = parent_mem_cgroup(memcg);
354 	if (memcg)
355 		ino = cgroup_ino(memcg->css.cgroup);
356 	rcu_read_unlock();
357 	return ino;
358 }
359 
360 static struct mem_cgroup_per_node *
361 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
362 {
363 	int nid = page_to_nid(page);
364 
365 	return memcg->nodeinfo[nid];
366 }
367 
368 static struct mem_cgroup_tree_per_node *
369 soft_limit_tree_node(int nid)
370 {
371 	return soft_limit_tree.rb_tree_per_node[nid];
372 }
373 
374 static struct mem_cgroup_tree_per_node *
375 soft_limit_tree_from_page(struct page *page)
376 {
377 	int nid = page_to_nid(page);
378 
379 	return soft_limit_tree.rb_tree_per_node[nid];
380 }
381 
382 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
383 					 struct mem_cgroup_tree_per_node *mctz,
384 					 unsigned long new_usage_in_excess)
385 {
386 	struct rb_node **p = &mctz->rb_root.rb_node;
387 	struct rb_node *parent = NULL;
388 	struct mem_cgroup_per_node *mz_node;
389 
390 	if (mz->on_tree)
391 		return;
392 
393 	mz->usage_in_excess = new_usage_in_excess;
394 	if (!mz->usage_in_excess)
395 		return;
396 	while (*p) {
397 		parent = *p;
398 		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
399 					tree_node);
400 		if (mz->usage_in_excess < mz_node->usage_in_excess)
401 			p = &(*p)->rb_left;
402 		/*
403 		 * We can't avoid mem cgroups that are over their soft
404 		 * limit by the same amount
405 		 */
406 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
407 			p = &(*p)->rb_right;
408 	}
409 	rb_link_node(&mz->tree_node, parent, p);
410 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
411 	mz->on_tree = true;
412 }
413 
414 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
415 					 struct mem_cgroup_tree_per_node *mctz)
416 {
417 	if (!mz->on_tree)
418 		return;
419 	rb_erase(&mz->tree_node, &mctz->rb_root);
420 	mz->on_tree = false;
421 }
422 
423 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
424 				       struct mem_cgroup_tree_per_node *mctz)
425 {
426 	unsigned long flags;
427 
428 	spin_lock_irqsave(&mctz->lock, flags);
429 	__mem_cgroup_remove_exceeded(mz, mctz);
430 	spin_unlock_irqrestore(&mctz->lock, flags);
431 }
432 
433 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
434 {
435 	unsigned long nr_pages = page_counter_read(&memcg->memory);
436 	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
437 	unsigned long excess = 0;
438 
439 	if (nr_pages > soft_limit)
440 		excess = nr_pages - soft_limit;
441 
442 	return excess;
443 }
444 
445 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
446 {
447 	unsigned long excess;
448 	struct mem_cgroup_per_node *mz;
449 	struct mem_cgroup_tree_per_node *mctz;
450 
451 	mctz = soft_limit_tree_from_page(page);
452 	if (!mctz)
453 		return;
454 	/*
455 	 * Necessary to update all ancestors when hierarchy is used.
456 	 * because their event counter is not touched.
457 	 */
458 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
459 		mz = mem_cgroup_page_nodeinfo(memcg, page);
460 		excess = soft_limit_excess(memcg);
461 		/*
462 		 * We have to update the tree if mz is on RB-tree or
463 		 * mem is over its softlimit.
464 		 */
465 		if (excess || mz->on_tree) {
466 			unsigned long flags;
467 
468 			spin_lock_irqsave(&mctz->lock, flags);
469 			/* if on-tree, remove it */
470 			if (mz->on_tree)
471 				__mem_cgroup_remove_exceeded(mz, mctz);
472 			/*
473 			 * Insert again. mz->usage_in_excess will be updated.
474 			 * If excess is 0, no tree ops.
475 			 */
476 			__mem_cgroup_insert_exceeded(mz, mctz, excess);
477 			spin_unlock_irqrestore(&mctz->lock, flags);
478 		}
479 	}
480 }
481 
482 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
483 {
484 	struct mem_cgroup_tree_per_node *mctz;
485 	struct mem_cgroup_per_node *mz;
486 	int nid;
487 
488 	for_each_node(nid) {
489 		mz = mem_cgroup_nodeinfo(memcg, nid);
490 		mctz = soft_limit_tree_node(nid);
491 		if (mctz)
492 			mem_cgroup_remove_exceeded(mz, mctz);
493 	}
494 }
495 
496 static struct mem_cgroup_per_node *
497 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
498 {
499 	struct rb_node *rightmost = NULL;
500 	struct mem_cgroup_per_node *mz;
501 
502 retry:
503 	mz = NULL;
504 	rightmost = rb_last(&mctz->rb_root);
505 	if (!rightmost)
506 		goto done;		/* Nothing to reclaim from */
507 
508 	mz = rb_entry(rightmost, struct mem_cgroup_per_node, tree_node);
509 	/*
510 	 * Remove the node now but someone else can add it back,
511 	 * we will to add it back at the end of reclaim to its correct
512 	 * position in the tree.
513 	 */
514 	__mem_cgroup_remove_exceeded(mz, mctz);
515 	if (!soft_limit_excess(mz->memcg) ||
516 	    !css_tryget_online(&mz->memcg->css))
517 		goto retry;
518 done:
519 	return mz;
520 }
521 
522 static struct mem_cgroup_per_node *
523 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
524 {
525 	struct mem_cgroup_per_node *mz;
526 
527 	spin_lock_irq(&mctz->lock);
528 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
529 	spin_unlock_irq(&mctz->lock);
530 	return mz;
531 }
532 
533 /*
534  * Return page count for single (non recursive) @memcg.
535  *
536  * Implementation Note: reading percpu statistics for memcg.
537  *
538  * Both of vmstat[] and percpu_counter has threshold and do periodic
539  * synchronization to implement "quick" read. There are trade-off between
540  * reading cost and precision of value. Then, we may have a chance to implement
541  * a periodic synchronization of counter in memcg's counter.
542  *
543  * But this _read() function is used for user interface now. The user accounts
544  * memory usage by memory cgroup and he _always_ requires exact value because
545  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
546  * have to visit all online cpus and make sum. So, for now, unnecessary
547  * synchronization is not implemented. (just implemented for cpu hotplug)
548  *
549  * If there are kernel internal actions which can make use of some not-exact
550  * value, and reading all cpu value can be performance bottleneck in some
551  * common workload, threshold and synchronization as vmstat[] should be
552  * implemented.
553  */
554 
555 static unsigned long memcg_sum_events(struct mem_cgroup *memcg,
556 				      enum memcg_event_item event)
557 {
558 	unsigned long val = 0;
559 	int cpu;
560 
561 	for_each_possible_cpu(cpu)
562 		val += per_cpu(memcg->stat->events[event], cpu);
563 	return val;
564 }
565 
566 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
567 					 struct page *page,
568 					 bool compound, int nr_pages)
569 {
570 	/*
571 	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
572 	 * counted as CACHE even if it's on ANON LRU.
573 	 */
574 	if (PageAnon(page))
575 		__this_cpu_add(memcg->stat->count[MEMCG_RSS], nr_pages);
576 	else {
577 		__this_cpu_add(memcg->stat->count[MEMCG_CACHE], nr_pages);
578 		if (PageSwapBacked(page))
579 			__this_cpu_add(memcg->stat->count[NR_SHMEM], nr_pages);
580 	}
581 
582 	if (compound) {
583 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
584 		__this_cpu_add(memcg->stat->count[MEMCG_RSS_HUGE], nr_pages);
585 	}
586 
587 	/* pagein of a big page is an event. So, ignore page size */
588 	if (nr_pages > 0)
589 		__this_cpu_inc(memcg->stat->events[PGPGIN]);
590 	else {
591 		__this_cpu_inc(memcg->stat->events[PGPGOUT]);
592 		nr_pages = -nr_pages; /* for event */
593 	}
594 
595 	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
596 }
597 
598 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
599 					   int nid, unsigned int lru_mask)
600 {
601 	struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
602 	unsigned long nr = 0;
603 	enum lru_list lru;
604 
605 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
606 
607 	for_each_lru(lru) {
608 		if (!(BIT(lru) & lru_mask))
609 			continue;
610 		nr += mem_cgroup_get_lru_size(lruvec, lru);
611 	}
612 	return nr;
613 }
614 
615 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
616 			unsigned int lru_mask)
617 {
618 	unsigned long nr = 0;
619 	int nid;
620 
621 	for_each_node_state(nid, N_MEMORY)
622 		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
623 	return nr;
624 }
625 
626 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
627 				       enum mem_cgroup_events_target target)
628 {
629 	unsigned long val, next;
630 
631 	val = __this_cpu_read(memcg->stat->nr_page_events);
632 	next = __this_cpu_read(memcg->stat->targets[target]);
633 	/* from time_after() in jiffies.h */
634 	if ((long)(next - val) < 0) {
635 		switch (target) {
636 		case MEM_CGROUP_TARGET_THRESH:
637 			next = val + THRESHOLDS_EVENTS_TARGET;
638 			break;
639 		case MEM_CGROUP_TARGET_SOFTLIMIT:
640 			next = val + SOFTLIMIT_EVENTS_TARGET;
641 			break;
642 		case MEM_CGROUP_TARGET_NUMAINFO:
643 			next = val + NUMAINFO_EVENTS_TARGET;
644 			break;
645 		default:
646 			break;
647 		}
648 		__this_cpu_write(memcg->stat->targets[target], next);
649 		return true;
650 	}
651 	return false;
652 }
653 
654 /*
655  * Check events in order.
656  *
657  */
658 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
659 {
660 	/* threshold event is triggered in finer grain than soft limit */
661 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
662 						MEM_CGROUP_TARGET_THRESH))) {
663 		bool do_softlimit;
664 		bool do_numainfo __maybe_unused;
665 
666 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
667 						MEM_CGROUP_TARGET_SOFTLIMIT);
668 #if MAX_NUMNODES > 1
669 		do_numainfo = mem_cgroup_event_ratelimit(memcg,
670 						MEM_CGROUP_TARGET_NUMAINFO);
671 #endif
672 		mem_cgroup_threshold(memcg);
673 		if (unlikely(do_softlimit))
674 			mem_cgroup_update_tree(memcg, page);
675 #if MAX_NUMNODES > 1
676 		if (unlikely(do_numainfo))
677 			atomic_inc(&memcg->numainfo_events);
678 #endif
679 	}
680 }
681 
682 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
683 {
684 	/*
685 	 * mm_update_next_owner() may clear mm->owner to NULL
686 	 * if it races with swapoff, page migration, etc.
687 	 * So this can be called with p == NULL.
688 	 */
689 	if (unlikely(!p))
690 		return NULL;
691 
692 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
693 }
694 EXPORT_SYMBOL(mem_cgroup_from_task);
695 
696 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
697 {
698 	struct mem_cgroup *memcg = NULL;
699 
700 	rcu_read_lock();
701 	do {
702 		/*
703 		 * Page cache insertions can happen withou an
704 		 * actual mm context, e.g. during disk probing
705 		 * on boot, loopback IO, acct() writes etc.
706 		 */
707 		if (unlikely(!mm))
708 			memcg = root_mem_cgroup;
709 		else {
710 			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
711 			if (unlikely(!memcg))
712 				memcg = root_mem_cgroup;
713 		}
714 	} while (!css_tryget_online(&memcg->css));
715 	rcu_read_unlock();
716 	return memcg;
717 }
718 
719 /**
720  * mem_cgroup_iter - iterate over memory cgroup hierarchy
721  * @root: hierarchy root
722  * @prev: previously returned memcg, NULL on first invocation
723  * @reclaim: cookie for shared reclaim walks, NULL for full walks
724  *
725  * Returns references to children of the hierarchy below @root, or
726  * @root itself, or %NULL after a full round-trip.
727  *
728  * Caller must pass the return value in @prev on subsequent
729  * invocations for reference counting, or use mem_cgroup_iter_break()
730  * to cancel a hierarchy walk before the round-trip is complete.
731  *
732  * Reclaimers can specify a zone and a priority level in @reclaim to
733  * divide up the memcgs in the hierarchy among all concurrent
734  * reclaimers operating on the same zone and priority.
735  */
736 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
737 				   struct mem_cgroup *prev,
738 				   struct mem_cgroup_reclaim_cookie *reclaim)
739 {
740 	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
741 	struct cgroup_subsys_state *css = NULL;
742 	struct mem_cgroup *memcg = NULL;
743 	struct mem_cgroup *pos = NULL;
744 
745 	if (mem_cgroup_disabled())
746 		return NULL;
747 
748 	if (!root)
749 		root = root_mem_cgroup;
750 
751 	if (prev && !reclaim)
752 		pos = prev;
753 
754 	if (!root->use_hierarchy && root != root_mem_cgroup) {
755 		if (prev)
756 			goto out;
757 		return root;
758 	}
759 
760 	rcu_read_lock();
761 
762 	if (reclaim) {
763 		struct mem_cgroup_per_node *mz;
764 
765 		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
766 		iter = &mz->iter[reclaim->priority];
767 
768 		if (prev && reclaim->generation != iter->generation)
769 			goto out_unlock;
770 
771 		while (1) {
772 			pos = READ_ONCE(iter->position);
773 			if (!pos || css_tryget(&pos->css))
774 				break;
775 			/*
776 			 * css reference reached zero, so iter->position will
777 			 * be cleared by ->css_released. However, we should not
778 			 * rely on this happening soon, because ->css_released
779 			 * is called from a work queue, and by busy-waiting we
780 			 * might block it. So we clear iter->position right
781 			 * away.
782 			 */
783 			(void)cmpxchg(&iter->position, pos, NULL);
784 		}
785 	}
786 
787 	if (pos)
788 		css = &pos->css;
789 
790 	for (;;) {
791 		css = css_next_descendant_pre(css, &root->css);
792 		if (!css) {
793 			/*
794 			 * Reclaimers share the hierarchy walk, and a
795 			 * new one might jump in right at the end of
796 			 * the hierarchy - make sure they see at least
797 			 * one group and restart from the beginning.
798 			 */
799 			if (!prev)
800 				continue;
801 			break;
802 		}
803 
804 		/*
805 		 * Verify the css and acquire a reference.  The root
806 		 * is provided by the caller, so we know it's alive
807 		 * and kicking, and don't take an extra reference.
808 		 */
809 		memcg = mem_cgroup_from_css(css);
810 
811 		if (css == &root->css)
812 			break;
813 
814 		if (css_tryget(css))
815 			break;
816 
817 		memcg = NULL;
818 	}
819 
820 	if (reclaim) {
821 		/*
822 		 * The position could have already been updated by a competing
823 		 * thread, so check that the value hasn't changed since we read
824 		 * it to avoid reclaiming from the same cgroup twice.
825 		 */
826 		(void)cmpxchg(&iter->position, pos, memcg);
827 
828 		if (pos)
829 			css_put(&pos->css);
830 
831 		if (!memcg)
832 			iter->generation++;
833 		else if (!prev)
834 			reclaim->generation = iter->generation;
835 	}
836 
837 out_unlock:
838 	rcu_read_unlock();
839 out:
840 	if (prev && prev != root)
841 		css_put(&prev->css);
842 
843 	return memcg;
844 }
845 
846 /**
847  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
848  * @root: hierarchy root
849  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
850  */
851 void mem_cgroup_iter_break(struct mem_cgroup *root,
852 			   struct mem_cgroup *prev)
853 {
854 	if (!root)
855 		root = root_mem_cgroup;
856 	if (prev && prev != root)
857 		css_put(&prev->css);
858 }
859 
860 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
861 {
862 	struct mem_cgroup *memcg = dead_memcg;
863 	struct mem_cgroup_reclaim_iter *iter;
864 	struct mem_cgroup_per_node *mz;
865 	int nid;
866 	int i;
867 
868 	while ((memcg = parent_mem_cgroup(memcg))) {
869 		for_each_node(nid) {
870 			mz = mem_cgroup_nodeinfo(memcg, nid);
871 			for (i = 0; i <= DEF_PRIORITY; i++) {
872 				iter = &mz->iter[i];
873 				cmpxchg(&iter->position,
874 					dead_memcg, NULL);
875 			}
876 		}
877 	}
878 }
879 
880 /*
881  * Iteration constructs for visiting all cgroups (under a tree).  If
882  * loops are exited prematurely (break), mem_cgroup_iter_break() must
883  * be used for reference counting.
884  */
885 #define for_each_mem_cgroup_tree(iter, root)		\
886 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
887 	     iter != NULL;				\
888 	     iter = mem_cgroup_iter(root, iter, NULL))
889 
890 #define for_each_mem_cgroup(iter)			\
891 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
892 	     iter != NULL;				\
893 	     iter = mem_cgroup_iter(NULL, iter, NULL))
894 
895 /**
896  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
897  * @memcg: hierarchy root
898  * @fn: function to call for each task
899  * @arg: argument passed to @fn
900  *
901  * This function iterates over tasks attached to @memcg or to any of its
902  * descendants and calls @fn for each task. If @fn returns a non-zero
903  * value, the function breaks the iteration loop and returns the value.
904  * Otherwise, it will iterate over all tasks and return 0.
905  *
906  * This function must not be called for the root memory cgroup.
907  */
908 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
909 			  int (*fn)(struct task_struct *, void *), void *arg)
910 {
911 	struct mem_cgroup *iter;
912 	int ret = 0;
913 
914 	BUG_ON(memcg == root_mem_cgroup);
915 
916 	for_each_mem_cgroup_tree(iter, memcg) {
917 		struct css_task_iter it;
918 		struct task_struct *task;
919 
920 		css_task_iter_start(&iter->css, &it);
921 		while (!ret && (task = css_task_iter_next(&it)))
922 			ret = fn(task, arg);
923 		css_task_iter_end(&it);
924 		if (ret) {
925 			mem_cgroup_iter_break(memcg, iter);
926 			break;
927 		}
928 	}
929 	return ret;
930 }
931 
932 /**
933  * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
934  * @page: the page
935  * @zone: zone of the page
936  *
937  * This function is only safe when following the LRU page isolation
938  * and putback protocol: the LRU lock must be held, and the page must
939  * either be PageLRU() or the caller must have isolated/allocated it.
940  */
941 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
942 {
943 	struct mem_cgroup_per_node *mz;
944 	struct mem_cgroup *memcg;
945 	struct lruvec *lruvec;
946 
947 	if (mem_cgroup_disabled()) {
948 		lruvec = &pgdat->lruvec;
949 		goto out;
950 	}
951 
952 	memcg = page->mem_cgroup;
953 	/*
954 	 * Swapcache readahead pages are added to the LRU - and
955 	 * possibly migrated - before they are charged.
956 	 */
957 	if (!memcg)
958 		memcg = root_mem_cgroup;
959 
960 	mz = mem_cgroup_page_nodeinfo(memcg, page);
961 	lruvec = &mz->lruvec;
962 out:
963 	/*
964 	 * Since a node can be onlined after the mem_cgroup was created,
965 	 * we have to be prepared to initialize lruvec->zone here;
966 	 * and if offlined then reonlined, we need to reinitialize it.
967 	 */
968 	if (unlikely(lruvec->pgdat != pgdat))
969 		lruvec->pgdat = pgdat;
970 	return lruvec;
971 }
972 
973 /**
974  * mem_cgroup_update_lru_size - account for adding or removing an lru page
975  * @lruvec: mem_cgroup per zone lru vector
976  * @lru: index of lru list the page is sitting on
977  * @zid: zone id of the accounted pages
978  * @nr_pages: positive when adding or negative when removing
979  *
980  * This function must be called under lru_lock, just before a page is added
981  * to or just after a page is removed from an lru list (that ordering being
982  * so as to allow it to check that lru_size 0 is consistent with list_empty).
983  */
984 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
985 				int zid, int nr_pages)
986 {
987 	struct mem_cgroup_per_node *mz;
988 	unsigned long *lru_size;
989 	long size;
990 
991 	if (mem_cgroup_disabled())
992 		return;
993 
994 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
995 	lru_size = &mz->lru_zone_size[zid][lru];
996 
997 	if (nr_pages < 0)
998 		*lru_size += nr_pages;
999 
1000 	size = *lru_size;
1001 	if (WARN_ONCE(size < 0,
1002 		"%s(%p, %d, %d): lru_size %ld\n",
1003 		__func__, lruvec, lru, nr_pages, size)) {
1004 		VM_BUG_ON(1);
1005 		*lru_size = 0;
1006 	}
1007 
1008 	if (nr_pages > 0)
1009 		*lru_size += nr_pages;
1010 }
1011 
1012 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1013 {
1014 	struct mem_cgroup *task_memcg;
1015 	struct task_struct *p;
1016 	bool ret;
1017 
1018 	p = find_lock_task_mm(task);
1019 	if (p) {
1020 		task_memcg = get_mem_cgroup_from_mm(p->mm);
1021 		task_unlock(p);
1022 	} else {
1023 		/*
1024 		 * All threads may have already detached their mm's, but the oom
1025 		 * killer still needs to detect if they have already been oom
1026 		 * killed to prevent needlessly killing additional tasks.
1027 		 */
1028 		rcu_read_lock();
1029 		task_memcg = mem_cgroup_from_task(task);
1030 		css_get(&task_memcg->css);
1031 		rcu_read_unlock();
1032 	}
1033 	ret = mem_cgroup_is_descendant(task_memcg, memcg);
1034 	css_put(&task_memcg->css);
1035 	return ret;
1036 }
1037 
1038 /**
1039  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1040  * @memcg: the memory cgroup
1041  *
1042  * Returns the maximum amount of memory @mem can be charged with, in
1043  * pages.
1044  */
1045 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1046 {
1047 	unsigned long margin = 0;
1048 	unsigned long count;
1049 	unsigned long limit;
1050 
1051 	count = page_counter_read(&memcg->memory);
1052 	limit = READ_ONCE(memcg->memory.limit);
1053 	if (count < limit)
1054 		margin = limit - count;
1055 
1056 	if (do_memsw_account()) {
1057 		count = page_counter_read(&memcg->memsw);
1058 		limit = READ_ONCE(memcg->memsw.limit);
1059 		if (count <= limit)
1060 			margin = min(margin, limit - count);
1061 		else
1062 			margin = 0;
1063 	}
1064 
1065 	return margin;
1066 }
1067 
1068 /*
1069  * A routine for checking "mem" is under move_account() or not.
1070  *
1071  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1072  * moving cgroups. This is for waiting at high-memory pressure
1073  * caused by "move".
1074  */
1075 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1076 {
1077 	struct mem_cgroup *from;
1078 	struct mem_cgroup *to;
1079 	bool ret = false;
1080 	/*
1081 	 * Unlike task_move routines, we access mc.to, mc.from not under
1082 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1083 	 */
1084 	spin_lock(&mc.lock);
1085 	from = mc.from;
1086 	to = mc.to;
1087 	if (!from)
1088 		goto unlock;
1089 
1090 	ret = mem_cgroup_is_descendant(from, memcg) ||
1091 		mem_cgroup_is_descendant(to, memcg);
1092 unlock:
1093 	spin_unlock(&mc.lock);
1094 	return ret;
1095 }
1096 
1097 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1098 {
1099 	if (mc.moving_task && current != mc.moving_task) {
1100 		if (mem_cgroup_under_move(memcg)) {
1101 			DEFINE_WAIT(wait);
1102 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1103 			/* moving charge context might have finished. */
1104 			if (mc.moving_task)
1105 				schedule();
1106 			finish_wait(&mc.waitq, &wait);
1107 			return true;
1108 		}
1109 	}
1110 	return false;
1111 }
1112 
1113 unsigned int memcg1_stats[] = {
1114 	MEMCG_CACHE,
1115 	MEMCG_RSS,
1116 	MEMCG_RSS_HUGE,
1117 	NR_SHMEM,
1118 	NR_FILE_MAPPED,
1119 	NR_FILE_DIRTY,
1120 	NR_WRITEBACK,
1121 	MEMCG_SWAP,
1122 };
1123 
1124 static const char *const memcg1_stat_names[] = {
1125 	"cache",
1126 	"rss",
1127 	"rss_huge",
1128 	"shmem",
1129 	"mapped_file",
1130 	"dirty",
1131 	"writeback",
1132 	"swap",
1133 };
1134 
1135 #define K(x) ((x) << (PAGE_SHIFT-10))
1136 /**
1137  * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1138  * @memcg: The memory cgroup that went over limit
1139  * @p: Task that is going to be killed
1140  *
1141  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1142  * enabled
1143  */
1144 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1145 {
1146 	struct mem_cgroup *iter;
1147 	unsigned int i;
1148 
1149 	rcu_read_lock();
1150 
1151 	if (p) {
1152 		pr_info("Task in ");
1153 		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1154 		pr_cont(" killed as a result of limit of ");
1155 	} else {
1156 		pr_info("Memory limit reached of cgroup ");
1157 	}
1158 
1159 	pr_cont_cgroup_path(memcg->css.cgroup);
1160 	pr_cont("\n");
1161 
1162 	rcu_read_unlock();
1163 
1164 	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1165 		K((u64)page_counter_read(&memcg->memory)),
1166 		K((u64)memcg->memory.limit), memcg->memory.failcnt);
1167 	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1168 		K((u64)page_counter_read(&memcg->memsw)),
1169 		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1170 	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1171 		K((u64)page_counter_read(&memcg->kmem)),
1172 		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1173 
1174 	for_each_mem_cgroup_tree(iter, memcg) {
1175 		pr_info("Memory cgroup stats for ");
1176 		pr_cont_cgroup_path(iter->css.cgroup);
1177 		pr_cont(":");
1178 
1179 		for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
1180 			if (memcg1_stats[i] == MEMCG_SWAP && !do_swap_account)
1181 				continue;
1182 			pr_cont(" %s:%luKB", memcg1_stat_names[i],
1183 				K(memcg_page_state(iter, memcg1_stats[i])));
1184 		}
1185 
1186 		for (i = 0; i < NR_LRU_LISTS; i++)
1187 			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1188 				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1189 
1190 		pr_cont("\n");
1191 	}
1192 }
1193 
1194 /*
1195  * This function returns the number of memcg under hierarchy tree. Returns
1196  * 1(self count) if no children.
1197  */
1198 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1199 {
1200 	int num = 0;
1201 	struct mem_cgroup *iter;
1202 
1203 	for_each_mem_cgroup_tree(iter, memcg)
1204 		num++;
1205 	return num;
1206 }
1207 
1208 /*
1209  * Return the memory (and swap, if configured) limit for a memcg.
1210  */
1211 unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1212 {
1213 	unsigned long limit;
1214 
1215 	limit = memcg->memory.limit;
1216 	if (mem_cgroup_swappiness(memcg)) {
1217 		unsigned long memsw_limit;
1218 		unsigned long swap_limit;
1219 
1220 		memsw_limit = memcg->memsw.limit;
1221 		swap_limit = memcg->swap.limit;
1222 		swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1223 		limit = min(limit + swap_limit, memsw_limit);
1224 	}
1225 	return limit;
1226 }
1227 
1228 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1229 				     int order)
1230 {
1231 	struct oom_control oc = {
1232 		.zonelist = NULL,
1233 		.nodemask = NULL,
1234 		.memcg = memcg,
1235 		.gfp_mask = gfp_mask,
1236 		.order = order,
1237 	};
1238 	bool ret;
1239 
1240 	mutex_lock(&oom_lock);
1241 	ret = out_of_memory(&oc);
1242 	mutex_unlock(&oom_lock);
1243 	return ret;
1244 }
1245 
1246 #if MAX_NUMNODES > 1
1247 
1248 /**
1249  * test_mem_cgroup_node_reclaimable
1250  * @memcg: the target memcg
1251  * @nid: the node ID to be checked.
1252  * @noswap : specify true here if the user wants flle only information.
1253  *
1254  * This function returns whether the specified memcg contains any
1255  * reclaimable pages on a node. Returns true if there are any reclaimable
1256  * pages in the node.
1257  */
1258 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1259 		int nid, bool noswap)
1260 {
1261 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1262 		return true;
1263 	if (noswap || !total_swap_pages)
1264 		return false;
1265 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1266 		return true;
1267 	return false;
1268 
1269 }
1270 
1271 /*
1272  * Always updating the nodemask is not very good - even if we have an empty
1273  * list or the wrong list here, we can start from some node and traverse all
1274  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1275  *
1276  */
1277 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1278 {
1279 	int nid;
1280 	/*
1281 	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1282 	 * pagein/pageout changes since the last update.
1283 	 */
1284 	if (!atomic_read(&memcg->numainfo_events))
1285 		return;
1286 	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1287 		return;
1288 
1289 	/* make a nodemask where this memcg uses memory from */
1290 	memcg->scan_nodes = node_states[N_MEMORY];
1291 
1292 	for_each_node_mask(nid, node_states[N_MEMORY]) {
1293 
1294 		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1295 			node_clear(nid, memcg->scan_nodes);
1296 	}
1297 
1298 	atomic_set(&memcg->numainfo_events, 0);
1299 	atomic_set(&memcg->numainfo_updating, 0);
1300 }
1301 
1302 /*
1303  * Selecting a node where we start reclaim from. Because what we need is just
1304  * reducing usage counter, start from anywhere is O,K. Considering
1305  * memory reclaim from current node, there are pros. and cons.
1306  *
1307  * Freeing memory from current node means freeing memory from a node which
1308  * we'll use or we've used. So, it may make LRU bad. And if several threads
1309  * hit limits, it will see a contention on a node. But freeing from remote
1310  * node means more costs for memory reclaim because of memory latency.
1311  *
1312  * Now, we use round-robin. Better algorithm is welcomed.
1313  */
1314 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1315 {
1316 	int node;
1317 
1318 	mem_cgroup_may_update_nodemask(memcg);
1319 	node = memcg->last_scanned_node;
1320 
1321 	node = next_node_in(node, memcg->scan_nodes);
1322 	/*
1323 	 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1324 	 * last time it really checked all the LRUs due to rate limiting.
1325 	 * Fallback to the current node in that case for simplicity.
1326 	 */
1327 	if (unlikely(node == MAX_NUMNODES))
1328 		node = numa_node_id();
1329 
1330 	memcg->last_scanned_node = node;
1331 	return node;
1332 }
1333 #else
1334 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1335 {
1336 	return 0;
1337 }
1338 #endif
1339 
1340 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1341 				   pg_data_t *pgdat,
1342 				   gfp_t gfp_mask,
1343 				   unsigned long *total_scanned)
1344 {
1345 	struct mem_cgroup *victim = NULL;
1346 	int total = 0;
1347 	int loop = 0;
1348 	unsigned long excess;
1349 	unsigned long nr_scanned;
1350 	struct mem_cgroup_reclaim_cookie reclaim = {
1351 		.pgdat = pgdat,
1352 		.priority = 0,
1353 	};
1354 
1355 	excess = soft_limit_excess(root_memcg);
1356 
1357 	while (1) {
1358 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1359 		if (!victim) {
1360 			loop++;
1361 			if (loop >= 2) {
1362 				/*
1363 				 * If we have not been able to reclaim
1364 				 * anything, it might because there are
1365 				 * no reclaimable pages under this hierarchy
1366 				 */
1367 				if (!total)
1368 					break;
1369 				/*
1370 				 * We want to do more targeted reclaim.
1371 				 * excess >> 2 is not to excessive so as to
1372 				 * reclaim too much, nor too less that we keep
1373 				 * coming back to reclaim from this cgroup
1374 				 */
1375 				if (total >= (excess >> 2) ||
1376 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1377 					break;
1378 			}
1379 			continue;
1380 		}
1381 		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1382 					pgdat, &nr_scanned);
1383 		*total_scanned += nr_scanned;
1384 		if (!soft_limit_excess(root_memcg))
1385 			break;
1386 	}
1387 	mem_cgroup_iter_break(root_memcg, victim);
1388 	return total;
1389 }
1390 
1391 #ifdef CONFIG_LOCKDEP
1392 static struct lockdep_map memcg_oom_lock_dep_map = {
1393 	.name = "memcg_oom_lock",
1394 };
1395 #endif
1396 
1397 static DEFINE_SPINLOCK(memcg_oom_lock);
1398 
1399 /*
1400  * Check OOM-Killer is already running under our hierarchy.
1401  * If someone is running, return false.
1402  */
1403 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1404 {
1405 	struct mem_cgroup *iter, *failed = NULL;
1406 
1407 	spin_lock(&memcg_oom_lock);
1408 
1409 	for_each_mem_cgroup_tree(iter, memcg) {
1410 		if (iter->oom_lock) {
1411 			/*
1412 			 * this subtree of our hierarchy is already locked
1413 			 * so we cannot give a lock.
1414 			 */
1415 			failed = iter;
1416 			mem_cgroup_iter_break(memcg, iter);
1417 			break;
1418 		} else
1419 			iter->oom_lock = true;
1420 	}
1421 
1422 	if (failed) {
1423 		/*
1424 		 * OK, we failed to lock the whole subtree so we have
1425 		 * to clean up what we set up to the failing subtree
1426 		 */
1427 		for_each_mem_cgroup_tree(iter, memcg) {
1428 			if (iter == failed) {
1429 				mem_cgroup_iter_break(memcg, iter);
1430 				break;
1431 			}
1432 			iter->oom_lock = false;
1433 		}
1434 	} else
1435 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1436 
1437 	spin_unlock(&memcg_oom_lock);
1438 
1439 	return !failed;
1440 }
1441 
1442 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1443 {
1444 	struct mem_cgroup *iter;
1445 
1446 	spin_lock(&memcg_oom_lock);
1447 	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1448 	for_each_mem_cgroup_tree(iter, memcg)
1449 		iter->oom_lock = false;
1450 	spin_unlock(&memcg_oom_lock);
1451 }
1452 
1453 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1454 {
1455 	struct mem_cgroup *iter;
1456 
1457 	spin_lock(&memcg_oom_lock);
1458 	for_each_mem_cgroup_tree(iter, memcg)
1459 		iter->under_oom++;
1460 	spin_unlock(&memcg_oom_lock);
1461 }
1462 
1463 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1464 {
1465 	struct mem_cgroup *iter;
1466 
1467 	/*
1468 	 * When a new child is created while the hierarchy is under oom,
1469 	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1470 	 */
1471 	spin_lock(&memcg_oom_lock);
1472 	for_each_mem_cgroup_tree(iter, memcg)
1473 		if (iter->under_oom > 0)
1474 			iter->under_oom--;
1475 	spin_unlock(&memcg_oom_lock);
1476 }
1477 
1478 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1479 
1480 struct oom_wait_info {
1481 	struct mem_cgroup *memcg;
1482 	wait_queue_entry_t	wait;
1483 };
1484 
1485 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1486 	unsigned mode, int sync, void *arg)
1487 {
1488 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1489 	struct mem_cgroup *oom_wait_memcg;
1490 	struct oom_wait_info *oom_wait_info;
1491 
1492 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1493 	oom_wait_memcg = oom_wait_info->memcg;
1494 
1495 	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1496 	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1497 		return 0;
1498 	return autoremove_wake_function(wait, mode, sync, arg);
1499 }
1500 
1501 static void memcg_oom_recover(struct mem_cgroup *memcg)
1502 {
1503 	/*
1504 	 * For the following lockless ->under_oom test, the only required
1505 	 * guarantee is that it must see the state asserted by an OOM when
1506 	 * this function is called as a result of userland actions
1507 	 * triggered by the notification of the OOM.  This is trivially
1508 	 * achieved by invoking mem_cgroup_mark_under_oom() before
1509 	 * triggering notification.
1510 	 */
1511 	if (memcg && memcg->under_oom)
1512 		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1513 }
1514 
1515 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1516 {
1517 	if (!current->memcg_may_oom)
1518 		return;
1519 	/*
1520 	 * We are in the middle of the charge context here, so we
1521 	 * don't want to block when potentially sitting on a callstack
1522 	 * that holds all kinds of filesystem and mm locks.
1523 	 *
1524 	 * Also, the caller may handle a failed allocation gracefully
1525 	 * (like optional page cache readahead) and so an OOM killer
1526 	 * invocation might not even be necessary.
1527 	 *
1528 	 * That's why we don't do anything here except remember the
1529 	 * OOM context and then deal with it at the end of the page
1530 	 * fault when the stack is unwound, the locks are released,
1531 	 * and when we know whether the fault was overall successful.
1532 	 */
1533 	css_get(&memcg->css);
1534 	current->memcg_in_oom = memcg;
1535 	current->memcg_oom_gfp_mask = mask;
1536 	current->memcg_oom_order = order;
1537 }
1538 
1539 /**
1540  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1541  * @handle: actually kill/wait or just clean up the OOM state
1542  *
1543  * This has to be called at the end of a page fault if the memcg OOM
1544  * handler was enabled.
1545  *
1546  * Memcg supports userspace OOM handling where failed allocations must
1547  * sleep on a waitqueue until the userspace task resolves the
1548  * situation.  Sleeping directly in the charge context with all kinds
1549  * of locks held is not a good idea, instead we remember an OOM state
1550  * in the task and mem_cgroup_oom_synchronize() has to be called at
1551  * the end of the page fault to complete the OOM handling.
1552  *
1553  * Returns %true if an ongoing memcg OOM situation was detected and
1554  * completed, %false otherwise.
1555  */
1556 bool mem_cgroup_oom_synchronize(bool handle)
1557 {
1558 	struct mem_cgroup *memcg = current->memcg_in_oom;
1559 	struct oom_wait_info owait;
1560 	bool locked;
1561 
1562 	/* OOM is global, do not handle */
1563 	if (!memcg)
1564 		return false;
1565 
1566 	if (!handle)
1567 		goto cleanup;
1568 
1569 	owait.memcg = memcg;
1570 	owait.wait.flags = 0;
1571 	owait.wait.func = memcg_oom_wake_function;
1572 	owait.wait.private = current;
1573 	INIT_LIST_HEAD(&owait.wait.entry);
1574 
1575 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1576 	mem_cgroup_mark_under_oom(memcg);
1577 
1578 	locked = mem_cgroup_oom_trylock(memcg);
1579 
1580 	if (locked)
1581 		mem_cgroup_oom_notify(memcg);
1582 
1583 	if (locked && !memcg->oom_kill_disable) {
1584 		mem_cgroup_unmark_under_oom(memcg);
1585 		finish_wait(&memcg_oom_waitq, &owait.wait);
1586 		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1587 					 current->memcg_oom_order);
1588 	} else {
1589 		schedule();
1590 		mem_cgroup_unmark_under_oom(memcg);
1591 		finish_wait(&memcg_oom_waitq, &owait.wait);
1592 	}
1593 
1594 	if (locked) {
1595 		mem_cgroup_oom_unlock(memcg);
1596 		/*
1597 		 * There is no guarantee that an OOM-lock contender
1598 		 * sees the wakeups triggered by the OOM kill
1599 		 * uncharges.  Wake any sleepers explicitely.
1600 		 */
1601 		memcg_oom_recover(memcg);
1602 	}
1603 cleanup:
1604 	current->memcg_in_oom = NULL;
1605 	css_put(&memcg->css);
1606 	return true;
1607 }
1608 
1609 /**
1610  * lock_page_memcg - lock a page->mem_cgroup binding
1611  * @page: the page
1612  *
1613  * This function protects unlocked LRU pages from being moved to
1614  * another cgroup and stabilizes their page->mem_cgroup binding.
1615  */
1616 void lock_page_memcg(struct page *page)
1617 {
1618 	struct mem_cgroup *memcg;
1619 	unsigned long flags;
1620 
1621 	/*
1622 	 * The RCU lock is held throughout the transaction.  The fast
1623 	 * path can get away without acquiring the memcg->move_lock
1624 	 * because page moving starts with an RCU grace period.
1625 	 */
1626 	rcu_read_lock();
1627 
1628 	if (mem_cgroup_disabled())
1629 		return;
1630 again:
1631 	memcg = page->mem_cgroup;
1632 	if (unlikely(!memcg))
1633 		return;
1634 
1635 	if (atomic_read(&memcg->moving_account) <= 0)
1636 		return;
1637 
1638 	spin_lock_irqsave(&memcg->move_lock, flags);
1639 	if (memcg != page->mem_cgroup) {
1640 		spin_unlock_irqrestore(&memcg->move_lock, flags);
1641 		goto again;
1642 	}
1643 
1644 	/*
1645 	 * When charge migration first begins, we can have locked and
1646 	 * unlocked page stat updates happening concurrently.  Track
1647 	 * the task who has the lock for unlock_page_memcg().
1648 	 */
1649 	memcg->move_lock_task = current;
1650 	memcg->move_lock_flags = flags;
1651 
1652 	return;
1653 }
1654 EXPORT_SYMBOL(lock_page_memcg);
1655 
1656 /**
1657  * unlock_page_memcg - unlock a page->mem_cgroup binding
1658  * @page: the page
1659  */
1660 void unlock_page_memcg(struct page *page)
1661 {
1662 	struct mem_cgroup *memcg = page->mem_cgroup;
1663 
1664 	if (memcg && memcg->move_lock_task == current) {
1665 		unsigned long flags = memcg->move_lock_flags;
1666 
1667 		memcg->move_lock_task = NULL;
1668 		memcg->move_lock_flags = 0;
1669 
1670 		spin_unlock_irqrestore(&memcg->move_lock, flags);
1671 	}
1672 
1673 	rcu_read_unlock();
1674 }
1675 EXPORT_SYMBOL(unlock_page_memcg);
1676 
1677 /*
1678  * size of first charge trial. "32" comes from vmscan.c's magic value.
1679  * TODO: maybe necessary to use big numbers in big irons.
1680  */
1681 #define CHARGE_BATCH	32U
1682 struct memcg_stock_pcp {
1683 	struct mem_cgroup *cached; /* this never be root cgroup */
1684 	unsigned int nr_pages;
1685 	struct work_struct work;
1686 	unsigned long flags;
1687 #define FLUSHING_CACHED_CHARGE	0
1688 };
1689 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1690 static DEFINE_MUTEX(percpu_charge_mutex);
1691 
1692 /**
1693  * consume_stock: Try to consume stocked charge on this cpu.
1694  * @memcg: memcg to consume from.
1695  * @nr_pages: how many pages to charge.
1696  *
1697  * The charges will only happen if @memcg matches the current cpu's memcg
1698  * stock, and at least @nr_pages are available in that stock.  Failure to
1699  * service an allocation will refill the stock.
1700  *
1701  * returns true if successful, false otherwise.
1702  */
1703 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1704 {
1705 	struct memcg_stock_pcp *stock;
1706 	unsigned long flags;
1707 	bool ret = false;
1708 
1709 	if (nr_pages > CHARGE_BATCH)
1710 		return ret;
1711 
1712 	local_irq_save(flags);
1713 
1714 	stock = this_cpu_ptr(&memcg_stock);
1715 	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1716 		stock->nr_pages -= nr_pages;
1717 		ret = true;
1718 	}
1719 
1720 	local_irq_restore(flags);
1721 
1722 	return ret;
1723 }
1724 
1725 /*
1726  * Returns stocks cached in percpu and reset cached information.
1727  */
1728 static void drain_stock(struct memcg_stock_pcp *stock)
1729 {
1730 	struct mem_cgroup *old = stock->cached;
1731 
1732 	if (stock->nr_pages) {
1733 		page_counter_uncharge(&old->memory, stock->nr_pages);
1734 		if (do_memsw_account())
1735 			page_counter_uncharge(&old->memsw, stock->nr_pages);
1736 		css_put_many(&old->css, stock->nr_pages);
1737 		stock->nr_pages = 0;
1738 	}
1739 	stock->cached = NULL;
1740 }
1741 
1742 static void drain_local_stock(struct work_struct *dummy)
1743 {
1744 	struct memcg_stock_pcp *stock;
1745 	unsigned long flags;
1746 
1747 	local_irq_save(flags);
1748 
1749 	stock = this_cpu_ptr(&memcg_stock);
1750 	drain_stock(stock);
1751 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1752 
1753 	local_irq_restore(flags);
1754 }
1755 
1756 /*
1757  * Cache charges(val) to local per_cpu area.
1758  * This will be consumed by consume_stock() function, later.
1759  */
1760 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1761 {
1762 	struct memcg_stock_pcp *stock;
1763 	unsigned long flags;
1764 
1765 	local_irq_save(flags);
1766 
1767 	stock = this_cpu_ptr(&memcg_stock);
1768 	if (stock->cached != memcg) { /* reset if necessary */
1769 		drain_stock(stock);
1770 		stock->cached = memcg;
1771 	}
1772 	stock->nr_pages += nr_pages;
1773 
1774 	local_irq_restore(flags);
1775 }
1776 
1777 /*
1778  * Drains all per-CPU charge caches for given root_memcg resp. subtree
1779  * of the hierarchy under it.
1780  */
1781 static void drain_all_stock(struct mem_cgroup *root_memcg)
1782 {
1783 	int cpu, curcpu;
1784 
1785 	/* If someone's already draining, avoid adding running more workers. */
1786 	if (!mutex_trylock(&percpu_charge_mutex))
1787 		return;
1788 	/* Notify other cpus that system-wide "drain" is running */
1789 	get_online_cpus();
1790 	curcpu = get_cpu();
1791 	for_each_online_cpu(cpu) {
1792 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1793 		struct mem_cgroup *memcg;
1794 
1795 		memcg = stock->cached;
1796 		if (!memcg || !stock->nr_pages)
1797 			continue;
1798 		if (!mem_cgroup_is_descendant(memcg, root_memcg))
1799 			continue;
1800 		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1801 			if (cpu == curcpu)
1802 				drain_local_stock(&stock->work);
1803 			else
1804 				schedule_work_on(cpu, &stock->work);
1805 		}
1806 	}
1807 	put_cpu();
1808 	put_online_cpus();
1809 	mutex_unlock(&percpu_charge_mutex);
1810 }
1811 
1812 static int memcg_hotplug_cpu_dead(unsigned int cpu)
1813 {
1814 	struct memcg_stock_pcp *stock;
1815 
1816 	stock = &per_cpu(memcg_stock, cpu);
1817 	drain_stock(stock);
1818 	return 0;
1819 }
1820 
1821 static void reclaim_high(struct mem_cgroup *memcg,
1822 			 unsigned int nr_pages,
1823 			 gfp_t gfp_mask)
1824 {
1825 	do {
1826 		if (page_counter_read(&memcg->memory) <= memcg->high)
1827 			continue;
1828 		mem_cgroup_event(memcg, MEMCG_HIGH);
1829 		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1830 	} while ((memcg = parent_mem_cgroup(memcg)));
1831 }
1832 
1833 static void high_work_func(struct work_struct *work)
1834 {
1835 	struct mem_cgroup *memcg;
1836 
1837 	memcg = container_of(work, struct mem_cgroup, high_work);
1838 	reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1839 }
1840 
1841 /*
1842  * Scheduled by try_charge() to be executed from the userland return path
1843  * and reclaims memory over the high limit.
1844  */
1845 void mem_cgroup_handle_over_high(void)
1846 {
1847 	unsigned int nr_pages = current->memcg_nr_pages_over_high;
1848 	struct mem_cgroup *memcg;
1849 
1850 	if (likely(!nr_pages))
1851 		return;
1852 
1853 	memcg = get_mem_cgroup_from_mm(current->mm);
1854 	reclaim_high(memcg, nr_pages, GFP_KERNEL);
1855 	css_put(&memcg->css);
1856 	current->memcg_nr_pages_over_high = 0;
1857 }
1858 
1859 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1860 		      unsigned int nr_pages)
1861 {
1862 	unsigned int batch = max(CHARGE_BATCH, nr_pages);
1863 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1864 	struct mem_cgroup *mem_over_limit;
1865 	struct page_counter *counter;
1866 	unsigned long nr_reclaimed;
1867 	bool may_swap = true;
1868 	bool drained = false;
1869 
1870 	if (mem_cgroup_is_root(memcg))
1871 		return 0;
1872 retry:
1873 	if (consume_stock(memcg, nr_pages))
1874 		return 0;
1875 
1876 	if (!do_memsw_account() ||
1877 	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1878 		if (page_counter_try_charge(&memcg->memory, batch, &counter))
1879 			goto done_restock;
1880 		if (do_memsw_account())
1881 			page_counter_uncharge(&memcg->memsw, batch);
1882 		mem_over_limit = mem_cgroup_from_counter(counter, memory);
1883 	} else {
1884 		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1885 		may_swap = false;
1886 	}
1887 
1888 	if (batch > nr_pages) {
1889 		batch = nr_pages;
1890 		goto retry;
1891 	}
1892 
1893 	/*
1894 	 * Unlike in global OOM situations, memcg is not in a physical
1895 	 * memory shortage.  Allow dying and OOM-killed tasks to
1896 	 * bypass the last charges so that they can exit quickly and
1897 	 * free their memory.
1898 	 */
1899 	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1900 		     fatal_signal_pending(current) ||
1901 		     current->flags & PF_EXITING))
1902 		goto force;
1903 
1904 	/*
1905 	 * Prevent unbounded recursion when reclaim operations need to
1906 	 * allocate memory. This might exceed the limits temporarily,
1907 	 * but we prefer facilitating memory reclaim and getting back
1908 	 * under the limit over triggering OOM kills in these cases.
1909 	 */
1910 	if (unlikely(current->flags & PF_MEMALLOC))
1911 		goto force;
1912 
1913 	if (unlikely(task_in_memcg_oom(current)))
1914 		goto nomem;
1915 
1916 	if (!gfpflags_allow_blocking(gfp_mask))
1917 		goto nomem;
1918 
1919 	mem_cgroup_event(mem_over_limit, MEMCG_MAX);
1920 
1921 	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1922 						    gfp_mask, may_swap);
1923 
1924 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1925 		goto retry;
1926 
1927 	if (!drained) {
1928 		drain_all_stock(mem_over_limit);
1929 		drained = true;
1930 		goto retry;
1931 	}
1932 
1933 	if (gfp_mask & __GFP_NORETRY)
1934 		goto nomem;
1935 	/*
1936 	 * Even though the limit is exceeded at this point, reclaim
1937 	 * may have been able to free some pages.  Retry the charge
1938 	 * before killing the task.
1939 	 *
1940 	 * Only for regular pages, though: huge pages are rather
1941 	 * unlikely to succeed so close to the limit, and we fall back
1942 	 * to regular pages anyway in case of failure.
1943 	 */
1944 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
1945 		goto retry;
1946 	/*
1947 	 * At task move, charge accounts can be doubly counted. So, it's
1948 	 * better to wait until the end of task_move if something is going on.
1949 	 */
1950 	if (mem_cgroup_wait_acct_move(mem_over_limit))
1951 		goto retry;
1952 
1953 	if (nr_retries--)
1954 		goto retry;
1955 
1956 	if (gfp_mask & __GFP_NOFAIL)
1957 		goto force;
1958 
1959 	if (fatal_signal_pending(current))
1960 		goto force;
1961 
1962 	mem_cgroup_event(mem_over_limit, MEMCG_OOM);
1963 
1964 	mem_cgroup_oom(mem_over_limit, gfp_mask,
1965 		       get_order(nr_pages * PAGE_SIZE));
1966 nomem:
1967 	if (!(gfp_mask & __GFP_NOFAIL))
1968 		return -ENOMEM;
1969 force:
1970 	/*
1971 	 * The allocation either can't fail or will lead to more memory
1972 	 * being freed very soon.  Allow memory usage go over the limit
1973 	 * temporarily by force charging it.
1974 	 */
1975 	page_counter_charge(&memcg->memory, nr_pages);
1976 	if (do_memsw_account())
1977 		page_counter_charge(&memcg->memsw, nr_pages);
1978 	css_get_many(&memcg->css, nr_pages);
1979 
1980 	return 0;
1981 
1982 done_restock:
1983 	css_get_many(&memcg->css, batch);
1984 	if (batch > nr_pages)
1985 		refill_stock(memcg, batch - nr_pages);
1986 
1987 	/*
1988 	 * If the hierarchy is above the normal consumption range, schedule
1989 	 * reclaim on returning to userland.  We can perform reclaim here
1990 	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
1991 	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
1992 	 * not recorded as it most likely matches current's and won't
1993 	 * change in the meantime.  As high limit is checked again before
1994 	 * reclaim, the cost of mismatch is negligible.
1995 	 */
1996 	do {
1997 		if (page_counter_read(&memcg->memory) > memcg->high) {
1998 			/* Don't bother a random interrupted task */
1999 			if (in_interrupt()) {
2000 				schedule_work(&memcg->high_work);
2001 				break;
2002 			}
2003 			current->memcg_nr_pages_over_high += batch;
2004 			set_notify_resume(current);
2005 			break;
2006 		}
2007 	} while ((memcg = parent_mem_cgroup(memcg)));
2008 
2009 	return 0;
2010 }
2011 
2012 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2013 {
2014 	if (mem_cgroup_is_root(memcg))
2015 		return;
2016 
2017 	page_counter_uncharge(&memcg->memory, nr_pages);
2018 	if (do_memsw_account())
2019 		page_counter_uncharge(&memcg->memsw, nr_pages);
2020 
2021 	css_put_many(&memcg->css, nr_pages);
2022 }
2023 
2024 static void lock_page_lru(struct page *page, int *isolated)
2025 {
2026 	struct zone *zone = page_zone(page);
2027 
2028 	spin_lock_irq(zone_lru_lock(zone));
2029 	if (PageLRU(page)) {
2030 		struct lruvec *lruvec;
2031 
2032 		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2033 		ClearPageLRU(page);
2034 		del_page_from_lru_list(page, lruvec, page_lru(page));
2035 		*isolated = 1;
2036 	} else
2037 		*isolated = 0;
2038 }
2039 
2040 static void unlock_page_lru(struct page *page, int isolated)
2041 {
2042 	struct zone *zone = page_zone(page);
2043 
2044 	if (isolated) {
2045 		struct lruvec *lruvec;
2046 
2047 		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2048 		VM_BUG_ON_PAGE(PageLRU(page), page);
2049 		SetPageLRU(page);
2050 		add_page_to_lru_list(page, lruvec, page_lru(page));
2051 	}
2052 	spin_unlock_irq(zone_lru_lock(zone));
2053 }
2054 
2055 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2056 			  bool lrucare)
2057 {
2058 	int isolated;
2059 
2060 	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2061 
2062 	/*
2063 	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2064 	 * may already be on some other mem_cgroup's LRU.  Take care of it.
2065 	 */
2066 	if (lrucare)
2067 		lock_page_lru(page, &isolated);
2068 
2069 	/*
2070 	 * Nobody should be changing or seriously looking at
2071 	 * page->mem_cgroup at this point:
2072 	 *
2073 	 * - the page is uncharged
2074 	 *
2075 	 * - the page is off-LRU
2076 	 *
2077 	 * - an anonymous fault has exclusive page access, except for
2078 	 *   a locked page table
2079 	 *
2080 	 * - a page cache insertion, a swapin fault, or a migration
2081 	 *   have the page locked
2082 	 */
2083 	page->mem_cgroup = memcg;
2084 
2085 	if (lrucare)
2086 		unlock_page_lru(page, isolated);
2087 }
2088 
2089 #ifndef CONFIG_SLOB
2090 static int memcg_alloc_cache_id(void)
2091 {
2092 	int id, size;
2093 	int err;
2094 
2095 	id = ida_simple_get(&memcg_cache_ida,
2096 			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2097 	if (id < 0)
2098 		return id;
2099 
2100 	if (id < memcg_nr_cache_ids)
2101 		return id;
2102 
2103 	/*
2104 	 * There's no space for the new id in memcg_caches arrays,
2105 	 * so we have to grow them.
2106 	 */
2107 	down_write(&memcg_cache_ids_sem);
2108 
2109 	size = 2 * (id + 1);
2110 	if (size < MEMCG_CACHES_MIN_SIZE)
2111 		size = MEMCG_CACHES_MIN_SIZE;
2112 	else if (size > MEMCG_CACHES_MAX_SIZE)
2113 		size = MEMCG_CACHES_MAX_SIZE;
2114 
2115 	err = memcg_update_all_caches(size);
2116 	if (!err)
2117 		err = memcg_update_all_list_lrus(size);
2118 	if (!err)
2119 		memcg_nr_cache_ids = size;
2120 
2121 	up_write(&memcg_cache_ids_sem);
2122 
2123 	if (err) {
2124 		ida_simple_remove(&memcg_cache_ida, id);
2125 		return err;
2126 	}
2127 	return id;
2128 }
2129 
2130 static void memcg_free_cache_id(int id)
2131 {
2132 	ida_simple_remove(&memcg_cache_ida, id);
2133 }
2134 
2135 struct memcg_kmem_cache_create_work {
2136 	struct mem_cgroup *memcg;
2137 	struct kmem_cache *cachep;
2138 	struct work_struct work;
2139 };
2140 
2141 static void memcg_kmem_cache_create_func(struct work_struct *w)
2142 {
2143 	struct memcg_kmem_cache_create_work *cw =
2144 		container_of(w, struct memcg_kmem_cache_create_work, work);
2145 	struct mem_cgroup *memcg = cw->memcg;
2146 	struct kmem_cache *cachep = cw->cachep;
2147 
2148 	memcg_create_kmem_cache(memcg, cachep);
2149 
2150 	css_put(&memcg->css);
2151 	kfree(cw);
2152 }
2153 
2154 /*
2155  * Enqueue the creation of a per-memcg kmem_cache.
2156  */
2157 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2158 					       struct kmem_cache *cachep)
2159 {
2160 	struct memcg_kmem_cache_create_work *cw;
2161 
2162 	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2163 	if (!cw)
2164 		return;
2165 
2166 	css_get(&memcg->css);
2167 
2168 	cw->memcg = memcg;
2169 	cw->cachep = cachep;
2170 	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2171 
2172 	queue_work(memcg_kmem_cache_wq, &cw->work);
2173 }
2174 
2175 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2176 					     struct kmem_cache *cachep)
2177 {
2178 	/*
2179 	 * We need to stop accounting when we kmalloc, because if the
2180 	 * corresponding kmalloc cache is not yet created, the first allocation
2181 	 * in __memcg_schedule_kmem_cache_create will recurse.
2182 	 *
2183 	 * However, it is better to enclose the whole function. Depending on
2184 	 * the debugging options enabled, INIT_WORK(), for instance, can
2185 	 * trigger an allocation. This too, will make us recurse. Because at
2186 	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2187 	 * the safest choice is to do it like this, wrapping the whole function.
2188 	 */
2189 	current->memcg_kmem_skip_account = 1;
2190 	__memcg_schedule_kmem_cache_create(memcg, cachep);
2191 	current->memcg_kmem_skip_account = 0;
2192 }
2193 
2194 static inline bool memcg_kmem_bypass(void)
2195 {
2196 	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2197 		return true;
2198 	return false;
2199 }
2200 
2201 /**
2202  * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2203  * @cachep: the original global kmem cache
2204  *
2205  * Return the kmem_cache we're supposed to use for a slab allocation.
2206  * We try to use the current memcg's version of the cache.
2207  *
2208  * If the cache does not exist yet, if we are the first user of it, we
2209  * create it asynchronously in a workqueue and let the current allocation
2210  * go through with the original cache.
2211  *
2212  * This function takes a reference to the cache it returns to assure it
2213  * won't get destroyed while we are working with it. Once the caller is
2214  * done with it, memcg_kmem_put_cache() must be called to release the
2215  * reference.
2216  */
2217 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2218 {
2219 	struct mem_cgroup *memcg;
2220 	struct kmem_cache *memcg_cachep;
2221 	int kmemcg_id;
2222 
2223 	VM_BUG_ON(!is_root_cache(cachep));
2224 
2225 	if (memcg_kmem_bypass())
2226 		return cachep;
2227 
2228 	if (current->memcg_kmem_skip_account)
2229 		return cachep;
2230 
2231 	memcg = get_mem_cgroup_from_mm(current->mm);
2232 	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2233 	if (kmemcg_id < 0)
2234 		goto out;
2235 
2236 	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2237 	if (likely(memcg_cachep))
2238 		return memcg_cachep;
2239 
2240 	/*
2241 	 * If we are in a safe context (can wait, and not in interrupt
2242 	 * context), we could be be predictable and return right away.
2243 	 * This would guarantee that the allocation being performed
2244 	 * already belongs in the new cache.
2245 	 *
2246 	 * However, there are some clashes that can arrive from locking.
2247 	 * For instance, because we acquire the slab_mutex while doing
2248 	 * memcg_create_kmem_cache, this means no further allocation
2249 	 * could happen with the slab_mutex held. So it's better to
2250 	 * defer everything.
2251 	 */
2252 	memcg_schedule_kmem_cache_create(memcg, cachep);
2253 out:
2254 	css_put(&memcg->css);
2255 	return cachep;
2256 }
2257 
2258 /**
2259  * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2260  * @cachep: the cache returned by memcg_kmem_get_cache
2261  */
2262 void memcg_kmem_put_cache(struct kmem_cache *cachep)
2263 {
2264 	if (!is_root_cache(cachep))
2265 		css_put(&cachep->memcg_params.memcg->css);
2266 }
2267 
2268 /**
2269  * memcg_kmem_charge: charge a kmem page
2270  * @page: page to charge
2271  * @gfp: reclaim mode
2272  * @order: allocation order
2273  * @memcg: memory cgroup to charge
2274  *
2275  * Returns 0 on success, an error code on failure.
2276  */
2277 int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2278 			    struct mem_cgroup *memcg)
2279 {
2280 	unsigned int nr_pages = 1 << order;
2281 	struct page_counter *counter;
2282 	int ret;
2283 
2284 	ret = try_charge(memcg, gfp, nr_pages);
2285 	if (ret)
2286 		return ret;
2287 
2288 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2289 	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2290 		cancel_charge(memcg, nr_pages);
2291 		return -ENOMEM;
2292 	}
2293 
2294 	page->mem_cgroup = memcg;
2295 
2296 	return 0;
2297 }
2298 
2299 /**
2300  * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2301  * @page: page to charge
2302  * @gfp: reclaim mode
2303  * @order: allocation order
2304  *
2305  * Returns 0 on success, an error code on failure.
2306  */
2307 int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2308 {
2309 	struct mem_cgroup *memcg;
2310 	int ret = 0;
2311 
2312 	if (memcg_kmem_bypass())
2313 		return 0;
2314 
2315 	memcg = get_mem_cgroup_from_mm(current->mm);
2316 	if (!mem_cgroup_is_root(memcg)) {
2317 		ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
2318 		if (!ret)
2319 			__SetPageKmemcg(page);
2320 	}
2321 	css_put(&memcg->css);
2322 	return ret;
2323 }
2324 /**
2325  * memcg_kmem_uncharge: uncharge a kmem page
2326  * @page: page to uncharge
2327  * @order: allocation order
2328  */
2329 void memcg_kmem_uncharge(struct page *page, int order)
2330 {
2331 	struct mem_cgroup *memcg = page->mem_cgroup;
2332 	unsigned int nr_pages = 1 << order;
2333 
2334 	if (!memcg)
2335 		return;
2336 
2337 	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2338 
2339 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2340 		page_counter_uncharge(&memcg->kmem, nr_pages);
2341 
2342 	page_counter_uncharge(&memcg->memory, nr_pages);
2343 	if (do_memsw_account())
2344 		page_counter_uncharge(&memcg->memsw, nr_pages);
2345 
2346 	page->mem_cgroup = NULL;
2347 
2348 	/* slab pages do not have PageKmemcg flag set */
2349 	if (PageKmemcg(page))
2350 		__ClearPageKmemcg(page);
2351 
2352 	css_put_many(&memcg->css, nr_pages);
2353 }
2354 #endif /* !CONFIG_SLOB */
2355 
2356 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2357 
2358 /*
2359  * Because tail pages are not marked as "used", set it. We're under
2360  * zone_lru_lock and migration entries setup in all page mappings.
2361  */
2362 void mem_cgroup_split_huge_fixup(struct page *head)
2363 {
2364 	int i;
2365 
2366 	if (mem_cgroup_disabled())
2367 		return;
2368 
2369 	for (i = 1; i < HPAGE_PMD_NR; i++)
2370 		head[i].mem_cgroup = head->mem_cgroup;
2371 
2372 	__this_cpu_sub(head->mem_cgroup->stat->count[MEMCG_RSS_HUGE],
2373 		       HPAGE_PMD_NR);
2374 }
2375 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2376 
2377 #ifdef CONFIG_MEMCG_SWAP
2378 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2379 				       int nr_entries)
2380 {
2381 	this_cpu_add(memcg->stat->count[MEMCG_SWAP], nr_entries);
2382 }
2383 
2384 /**
2385  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2386  * @entry: swap entry to be moved
2387  * @from:  mem_cgroup which the entry is moved from
2388  * @to:  mem_cgroup which the entry is moved to
2389  *
2390  * It succeeds only when the swap_cgroup's record for this entry is the same
2391  * as the mem_cgroup's id of @from.
2392  *
2393  * Returns 0 on success, -EINVAL on failure.
2394  *
2395  * The caller must have charged to @to, IOW, called page_counter_charge() about
2396  * both res and memsw, and called css_get().
2397  */
2398 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2399 				struct mem_cgroup *from, struct mem_cgroup *to)
2400 {
2401 	unsigned short old_id, new_id;
2402 
2403 	old_id = mem_cgroup_id(from);
2404 	new_id = mem_cgroup_id(to);
2405 
2406 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2407 		mem_cgroup_swap_statistics(from, -1);
2408 		mem_cgroup_swap_statistics(to, 1);
2409 		return 0;
2410 	}
2411 	return -EINVAL;
2412 }
2413 #else
2414 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2415 				struct mem_cgroup *from, struct mem_cgroup *to)
2416 {
2417 	return -EINVAL;
2418 }
2419 #endif
2420 
2421 static DEFINE_MUTEX(memcg_limit_mutex);
2422 
2423 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2424 				   unsigned long limit)
2425 {
2426 	unsigned long curusage;
2427 	unsigned long oldusage;
2428 	bool enlarge = false;
2429 	int retry_count;
2430 	int ret;
2431 
2432 	/*
2433 	 * For keeping hierarchical_reclaim simple, how long we should retry
2434 	 * is depends on callers. We set our retry-count to be function
2435 	 * of # of children which we should visit in this loop.
2436 	 */
2437 	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2438 		      mem_cgroup_count_children(memcg);
2439 
2440 	oldusage = page_counter_read(&memcg->memory);
2441 
2442 	do {
2443 		if (signal_pending(current)) {
2444 			ret = -EINTR;
2445 			break;
2446 		}
2447 
2448 		mutex_lock(&memcg_limit_mutex);
2449 		if (limit > memcg->memsw.limit) {
2450 			mutex_unlock(&memcg_limit_mutex);
2451 			ret = -EINVAL;
2452 			break;
2453 		}
2454 		if (limit > memcg->memory.limit)
2455 			enlarge = true;
2456 		ret = page_counter_limit(&memcg->memory, limit);
2457 		mutex_unlock(&memcg_limit_mutex);
2458 
2459 		if (!ret)
2460 			break;
2461 
2462 		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2463 
2464 		curusage = page_counter_read(&memcg->memory);
2465 		/* Usage is reduced ? */
2466 		if (curusage >= oldusage)
2467 			retry_count--;
2468 		else
2469 			oldusage = curusage;
2470 	} while (retry_count);
2471 
2472 	if (!ret && enlarge)
2473 		memcg_oom_recover(memcg);
2474 
2475 	return ret;
2476 }
2477 
2478 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2479 					 unsigned long limit)
2480 {
2481 	unsigned long curusage;
2482 	unsigned long oldusage;
2483 	bool enlarge = false;
2484 	int retry_count;
2485 	int ret;
2486 
2487 	/* see mem_cgroup_resize_res_limit */
2488 	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2489 		      mem_cgroup_count_children(memcg);
2490 
2491 	oldusage = page_counter_read(&memcg->memsw);
2492 
2493 	do {
2494 		if (signal_pending(current)) {
2495 			ret = -EINTR;
2496 			break;
2497 		}
2498 
2499 		mutex_lock(&memcg_limit_mutex);
2500 		if (limit < memcg->memory.limit) {
2501 			mutex_unlock(&memcg_limit_mutex);
2502 			ret = -EINVAL;
2503 			break;
2504 		}
2505 		if (limit > memcg->memsw.limit)
2506 			enlarge = true;
2507 		ret = page_counter_limit(&memcg->memsw, limit);
2508 		mutex_unlock(&memcg_limit_mutex);
2509 
2510 		if (!ret)
2511 			break;
2512 
2513 		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2514 
2515 		curusage = page_counter_read(&memcg->memsw);
2516 		/* Usage is reduced ? */
2517 		if (curusage >= oldusage)
2518 			retry_count--;
2519 		else
2520 			oldusage = curusage;
2521 	} while (retry_count);
2522 
2523 	if (!ret && enlarge)
2524 		memcg_oom_recover(memcg);
2525 
2526 	return ret;
2527 }
2528 
2529 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2530 					    gfp_t gfp_mask,
2531 					    unsigned long *total_scanned)
2532 {
2533 	unsigned long nr_reclaimed = 0;
2534 	struct mem_cgroup_per_node *mz, *next_mz = NULL;
2535 	unsigned long reclaimed;
2536 	int loop = 0;
2537 	struct mem_cgroup_tree_per_node *mctz;
2538 	unsigned long excess;
2539 	unsigned long nr_scanned;
2540 
2541 	if (order > 0)
2542 		return 0;
2543 
2544 	mctz = soft_limit_tree_node(pgdat->node_id);
2545 
2546 	/*
2547 	 * Do not even bother to check the largest node if the root
2548 	 * is empty. Do it lockless to prevent lock bouncing. Races
2549 	 * are acceptable as soft limit is best effort anyway.
2550 	 */
2551 	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
2552 		return 0;
2553 
2554 	/*
2555 	 * This loop can run a while, specially if mem_cgroup's continuously
2556 	 * keep exceeding their soft limit and putting the system under
2557 	 * pressure
2558 	 */
2559 	do {
2560 		if (next_mz)
2561 			mz = next_mz;
2562 		else
2563 			mz = mem_cgroup_largest_soft_limit_node(mctz);
2564 		if (!mz)
2565 			break;
2566 
2567 		nr_scanned = 0;
2568 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
2569 						    gfp_mask, &nr_scanned);
2570 		nr_reclaimed += reclaimed;
2571 		*total_scanned += nr_scanned;
2572 		spin_lock_irq(&mctz->lock);
2573 		__mem_cgroup_remove_exceeded(mz, mctz);
2574 
2575 		/*
2576 		 * If we failed to reclaim anything from this memory cgroup
2577 		 * it is time to move on to the next cgroup
2578 		 */
2579 		next_mz = NULL;
2580 		if (!reclaimed)
2581 			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2582 
2583 		excess = soft_limit_excess(mz->memcg);
2584 		/*
2585 		 * One school of thought says that we should not add
2586 		 * back the node to the tree if reclaim returns 0.
2587 		 * But our reclaim could return 0, simply because due
2588 		 * to priority we are exposing a smaller subset of
2589 		 * memory to reclaim from. Consider this as a longer
2590 		 * term TODO.
2591 		 */
2592 		/* If excess == 0, no tree ops */
2593 		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2594 		spin_unlock_irq(&mctz->lock);
2595 		css_put(&mz->memcg->css);
2596 		loop++;
2597 		/*
2598 		 * Could not reclaim anything and there are no more
2599 		 * mem cgroups to try or we seem to be looping without
2600 		 * reclaiming anything.
2601 		 */
2602 		if (!nr_reclaimed &&
2603 			(next_mz == NULL ||
2604 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2605 			break;
2606 	} while (!nr_reclaimed);
2607 	if (next_mz)
2608 		css_put(&next_mz->memcg->css);
2609 	return nr_reclaimed;
2610 }
2611 
2612 /*
2613  * Test whether @memcg has children, dead or alive.  Note that this
2614  * function doesn't care whether @memcg has use_hierarchy enabled and
2615  * returns %true if there are child csses according to the cgroup
2616  * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
2617  */
2618 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2619 {
2620 	bool ret;
2621 
2622 	rcu_read_lock();
2623 	ret = css_next_child(NULL, &memcg->css);
2624 	rcu_read_unlock();
2625 	return ret;
2626 }
2627 
2628 /*
2629  * Reclaims as many pages from the given memcg as possible.
2630  *
2631  * Caller is responsible for holding css reference for memcg.
2632  */
2633 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2634 {
2635 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2636 
2637 	/* we call try-to-free pages for make this cgroup empty */
2638 	lru_add_drain_all();
2639 	/* try to free all pages in this cgroup */
2640 	while (nr_retries && page_counter_read(&memcg->memory)) {
2641 		int progress;
2642 
2643 		if (signal_pending(current))
2644 			return -EINTR;
2645 
2646 		progress = try_to_free_mem_cgroup_pages(memcg, 1,
2647 							GFP_KERNEL, true);
2648 		if (!progress) {
2649 			nr_retries--;
2650 			/* maybe some writeback is necessary */
2651 			congestion_wait(BLK_RW_ASYNC, HZ/10);
2652 		}
2653 
2654 	}
2655 
2656 	return 0;
2657 }
2658 
2659 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2660 					    char *buf, size_t nbytes,
2661 					    loff_t off)
2662 {
2663 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2664 
2665 	if (mem_cgroup_is_root(memcg))
2666 		return -EINVAL;
2667 	return mem_cgroup_force_empty(memcg) ?: nbytes;
2668 }
2669 
2670 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2671 				     struct cftype *cft)
2672 {
2673 	return mem_cgroup_from_css(css)->use_hierarchy;
2674 }
2675 
2676 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2677 				      struct cftype *cft, u64 val)
2678 {
2679 	int retval = 0;
2680 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2681 	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2682 
2683 	if (memcg->use_hierarchy == val)
2684 		return 0;
2685 
2686 	/*
2687 	 * If parent's use_hierarchy is set, we can't make any modifications
2688 	 * in the child subtrees. If it is unset, then the change can
2689 	 * occur, provided the current cgroup has no children.
2690 	 *
2691 	 * For the root cgroup, parent_mem is NULL, we allow value to be
2692 	 * set if there are no children.
2693 	 */
2694 	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2695 				(val == 1 || val == 0)) {
2696 		if (!memcg_has_children(memcg))
2697 			memcg->use_hierarchy = val;
2698 		else
2699 			retval = -EBUSY;
2700 	} else
2701 		retval = -EINVAL;
2702 
2703 	return retval;
2704 }
2705 
2706 static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2707 {
2708 	struct mem_cgroup *iter;
2709 	int i;
2710 
2711 	memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2712 
2713 	for_each_mem_cgroup_tree(iter, memcg) {
2714 		for (i = 0; i < MEMCG_NR_STAT; i++)
2715 			stat[i] += memcg_page_state(iter, i);
2716 	}
2717 }
2718 
2719 static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2720 {
2721 	struct mem_cgroup *iter;
2722 	int i;
2723 
2724 	memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2725 
2726 	for_each_mem_cgroup_tree(iter, memcg) {
2727 		for (i = 0; i < MEMCG_NR_EVENTS; i++)
2728 			events[i] += memcg_sum_events(iter, i);
2729 	}
2730 }
2731 
2732 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2733 {
2734 	unsigned long val = 0;
2735 
2736 	if (mem_cgroup_is_root(memcg)) {
2737 		struct mem_cgroup *iter;
2738 
2739 		for_each_mem_cgroup_tree(iter, memcg) {
2740 			val += memcg_page_state(iter, MEMCG_CACHE);
2741 			val += memcg_page_state(iter, MEMCG_RSS);
2742 			if (swap)
2743 				val += memcg_page_state(iter, MEMCG_SWAP);
2744 		}
2745 	} else {
2746 		if (!swap)
2747 			val = page_counter_read(&memcg->memory);
2748 		else
2749 			val = page_counter_read(&memcg->memsw);
2750 	}
2751 	return val;
2752 }
2753 
2754 enum {
2755 	RES_USAGE,
2756 	RES_LIMIT,
2757 	RES_MAX_USAGE,
2758 	RES_FAILCNT,
2759 	RES_SOFT_LIMIT,
2760 };
2761 
2762 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2763 			       struct cftype *cft)
2764 {
2765 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2766 	struct page_counter *counter;
2767 
2768 	switch (MEMFILE_TYPE(cft->private)) {
2769 	case _MEM:
2770 		counter = &memcg->memory;
2771 		break;
2772 	case _MEMSWAP:
2773 		counter = &memcg->memsw;
2774 		break;
2775 	case _KMEM:
2776 		counter = &memcg->kmem;
2777 		break;
2778 	case _TCP:
2779 		counter = &memcg->tcpmem;
2780 		break;
2781 	default:
2782 		BUG();
2783 	}
2784 
2785 	switch (MEMFILE_ATTR(cft->private)) {
2786 	case RES_USAGE:
2787 		if (counter == &memcg->memory)
2788 			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2789 		if (counter == &memcg->memsw)
2790 			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2791 		return (u64)page_counter_read(counter) * PAGE_SIZE;
2792 	case RES_LIMIT:
2793 		return (u64)counter->limit * PAGE_SIZE;
2794 	case RES_MAX_USAGE:
2795 		return (u64)counter->watermark * PAGE_SIZE;
2796 	case RES_FAILCNT:
2797 		return counter->failcnt;
2798 	case RES_SOFT_LIMIT:
2799 		return (u64)memcg->soft_limit * PAGE_SIZE;
2800 	default:
2801 		BUG();
2802 	}
2803 }
2804 
2805 #ifndef CONFIG_SLOB
2806 static int memcg_online_kmem(struct mem_cgroup *memcg)
2807 {
2808 	int memcg_id;
2809 
2810 	if (cgroup_memory_nokmem)
2811 		return 0;
2812 
2813 	BUG_ON(memcg->kmemcg_id >= 0);
2814 	BUG_ON(memcg->kmem_state);
2815 
2816 	memcg_id = memcg_alloc_cache_id();
2817 	if (memcg_id < 0)
2818 		return memcg_id;
2819 
2820 	static_branch_inc(&memcg_kmem_enabled_key);
2821 	/*
2822 	 * A memory cgroup is considered kmem-online as soon as it gets
2823 	 * kmemcg_id. Setting the id after enabling static branching will
2824 	 * guarantee no one starts accounting before all call sites are
2825 	 * patched.
2826 	 */
2827 	memcg->kmemcg_id = memcg_id;
2828 	memcg->kmem_state = KMEM_ONLINE;
2829 	INIT_LIST_HEAD(&memcg->kmem_caches);
2830 
2831 	return 0;
2832 }
2833 
2834 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2835 {
2836 	struct cgroup_subsys_state *css;
2837 	struct mem_cgroup *parent, *child;
2838 	int kmemcg_id;
2839 
2840 	if (memcg->kmem_state != KMEM_ONLINE)
2841 		return;
2842 	/*
2843 	 * Clear the online state before clearing memcg_caches array
2844 	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2845 	 * guarantees that no cache will be created for this cgroup
2846 	 * after we are done (see memcg_create_kmem_cache()).
2847 	 */
2848 	memcg->kmem_state = KMEM_ALLOCATED;
2849 
2850 	memcg_deactivate_kmem_caches(memcg);
2851 
2852 	kmemcg_id = memcg->kmemcg_id;
2853 	BUG_ON(kmemcg_id < 0);
2854 
2855 	parent = parent_mem_cgroup(memcg);
2856 	if (!parent)
2857 		parent = root_mem_cgroup;
2858 
2859 	/*
2860 	 * Change kmemcg_id of this cgroup and all its descendants to the
2861 	 * parent's id, and then move all entries from this cgroup's list_lrus
2862 	 * to ones of the parent. After we have finished, all list_lrus
2863 	 * corresponding to this cgroup are guaranteed to remain empty. The
2864 	 * ordering is imposed by list_lru_node->lock taken by
2865 	 * memcg_drain_all_list_lrus().
2866 	 */
2867 	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
2868 	css_for_each_descendant_pre(css, &memcg->css) {
2869 		child = mem_cgroup_from_css(css);
2870 		BUG_ON(child->kmemcg_id != kmemcg_id);
2871 		child->kmemcg_id = parent->kmemcg_id;
2872 		if (!memcg->use_hierarchy)
2873 			break;
2874 	}
2875 	rcu_read_unlock();
2876 
2877 	memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2878 
2879 	memcg_free_cache_id(kmemcg_id);
2880 }
2881 
2882 static void memcg_free_kmem(struct mem_cgroup *memcg)
2883 {
2884 	/* css_alloc() failed, offlining didn't happen */
2885 	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2886 		memcg_offline_kmem(memcg);
2887 
2888 	if (memcg->kmem_state == KMEM_ALLOCATED) {
2889 		memcg_destroy_kmem_caches(memcg);
2890 		static_branch_dec(&memcg_kmem_enabled_key);
2891 		WARN_ON(page_counter_read(&memcg->kmem));
2892 	}
2893 }
2894 #else
2895 static int memcg_online_kmem(struct mem_cgroup *memcg)
2896 {
2897 	return 0;
2898 }
2899 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2900 {
2901 }
2902 static void memcg_free_kmem(struct mem_cgroup *memcg)
2903 {
2904 }
2905 #endif /* !CONFIG_SLOB */
2906 
2907 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2908 				   unsigned long limit)
2909 {
2910 	int ret;
2911 
2912 	mutex_lock(&memcg_limit_mutex);
2913 	ret = page_counter_limit(&memcg->kmem, limit);
2914 	mutex_unlock(&memcg_limit_mutex);
2915 	return ret;
2916 }
2917 
2918 static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2919 {
2920 	int ret;
2921 
2922 	mutex_lock(&memcg_limit_mutex);
2923 
2924 	ret = page_counter_limit(&memcg->tcpmem, limit);
2925 	if (ret)
2926 		goto out;
2927 
2928 	if (!memcg->tcpmem_active) {
2929 		/*
2930 		 * The active flag needs to be written after the static_key
2931 		 * update. This is what guarantees that the socket activation
2932 		 * function is the last one to run. See mem_cgroup_sk_alloc()
2933 		 * for details, and note that we don't mark any socket as
2934 		 * belonging to this memcg until that flag is up.
2935 		 *
2936 		 * We need to do this, because static_keys will span multiple
2937 		 * sites, but we can't control their order. If we mark a socket
2938 		 * as accounted, but the accounting functions are not patched in
2939 		 * yet, we'll lose accounting.
2940 		 *
2941 		 * We never race with the readers in mem_cgroup_sk_alloc(),
2942 		 * because when this value change, the code to process it is not
2943 		 * patched in yet.
2944 		 */
2945 		static_branch_inc(&memcg_sockets_enabled_key);
2946 		memcg->tcpmem_active = true;
2947 	}
2948 out:
2949 	mutex_unlock(&memcg_limit_mutex);
2950 	return ret;
2951 }
2952 
2953 /*
2954  * The user of this function is...
2955  * RES_LIMIT.
2956  */
2957 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2958 				char *buf, size_t nbytes, loff_t off)
2959 {
2960 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2961 	unsigned long nr_pages;
2962 	int ret;
2963 
2964 	buf = strstrip(buf);
2965 	ret = page_counter_memparse(buf, "-1", &nr_pages);
2966 	if (ret)
2967 		return ret;
2968 
2969 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
2970 	case RES_LIMIT:
2971 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2972 			ret = -EINVAL;
2973 			break;
2974 		}
2975 		switch (MEMFILE_TYPE(of_cft(of)->private)) {
2976 		case _MEM:
2977 			ret = mem_cgroup_resize_limit(memcg, nr_pages);
2978 			break;
2979 		case _MEMSWAP:
2980 			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
2981 			break;
2982 		case _KMEM:
2983 			ret = memcg_update_kmem_limit(memcg, nr_pages);
2984 			break;
2985 		case _TCP:
2986 			ret = memcg_update_tcp_limit(memcg, nr_pages);
2987 			break;
2988 		}
2989 		break;
2990 	case RES_SOFT_LIMIT:
2991 		memcg->soft_limit = nr_pages;
2992 		ret = 0;
2993 		break;
2994 	}
2995 	return ret ?: nbytes;
2996 }
2997 
2998 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
2999 				size_t nbytes, loff_t off)
3000 {
3001 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3002 	struct page_counter *counter;
3003 
3004 	switch (MEMFILE_TYPE(of_cft(of)->private)) {
3005 	case _MEM:
3006 		counter = &memcg->memory;
3007 		break;
3008 	case _MEMSWAP:
3009 		counter = &memcg->memsw;
3010 		break;
3011 	case _KMEM:
3012 		counter = &memcg->kmem;
3013 		break;
3014 	case _TCP:
3015 		counter = &memcg->tcpmem;
3016 		break;
3017 	default:
3018 		BUG();
3019 	}
3020 
3021 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3022 	case RES_MAX_USAGE:
3023 		page_counter_reset_watermark(counter);
3024 		break;
3025 	case RES_FAILCNT:
3026 		counter->failcnt = 0;
3027 		break;
3028 	default:
3029 		BUG();
3030 	}
3031 
3032 	return nbytes;
3033 }
3034 
3035 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3036 					struct cftype *cft)
3037 {
3038 	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3039 }
3040 
3041 #ifdef CONFIG_MMU
3042 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3043 					struct cftype *cft, u64 val)
3044 {
3045 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3046 
3047 	if (val & ~MOVE_MASK)
3048 		return -EINVAL;
3049 
3050 	/*
3051 	 * No kind of locking is needed in here, because ->can_attach() will
3052 	 * check this value once in the beginning of the process, and then carry
3053 	 * on with stale data. This means that changes to this value will only
3054 	 * affect task migrations starting after the change.
3055 	 */
3056 	memcg->move_charge_at_immigrate = val;
3057 	return 0;
3058 }
3059 #else
3060 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3061 					struct cftype *cft, u64 val)
3062 {
3063 	return -ENOSYS;
3064 }
3065 #endif
3066 
3067 #ifdef CONFIG_NUMA
3068 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3069 {
3070 	struct numa_stat {
3071 		const char *name;
3072 		unsigned int lru_mask;
3073 	};
3074 
3075 	static const struct numa_stat stats[] = {
3076 		{ "total", LRU_ALL },
3077 		{ "file", LRU_ALL_FILE },
3078 		{ "anon", LRU_ALL_ANON },
3079 		{ "unevictable", BIT(LRU_UNEVICTABLE) },
3080 	};
3081 	const struct numa_stat *stat;
3082 	int nid;
3083 	unsigned long nr;
3084 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3085 
3086 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3087 		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3088 		seq_printf(m, "%s=%lu", stat->name, nr);
3089 		for_each_node_state(nid, N_MEMORY) {
3090 			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3091 							  stat->lru_mask);
3092 			seq_printf(m, " N%d=%lu", nid, nr);
3093 		}
3094 		seq_putc(m, '\n');
3095 	}
3096 
3097 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3098 		struct mem_cgroup *iter;
3099 
3100 		nr = 0;
3101 		for_each_mem_cgroup_tree(iter, memcg)
3102 			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3103 		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3104 		for_each_node_state(nid, N_MEMORY) {
3105 			nr = 0;
3106 			for_each_mem_cgroup_tree(iter, memcg)
3107 				nr += mem_cgroup_node_nr_lru_pages(
3108 					iter, nid, stat->lru_mask);
3109 			seq_printf(m, " N%d=%lu", nid, nr);
3110 		}
3111 		seq_putc(m, '\n');
3112 	}
3113 
3114 	return 0;
3115 }
3116 #endif /* CONFIG_NUMA */
3117 
3118 /* Universal VM events cgroup1 shows, original sort order */
3119 unsigned int memcg1_events[] = {
3120 	PGPGIN,
3121 	PGPGOUT,
3122 	PGFAULT,
3123 	PGMAJFAULT,
3124 };
3125 
3126 static const char *const memcg1_event_names[] = {
3127 	"pgpgin",
3128 	"pgpgout",
3129 	"pgfault",
3130 	"pgmajfault",
3131 };
3132 
3133 static int memcg_stat_show(struct seq_file *m, void *v)
3134 {
3135 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3136 	unsigned long memory, memsw;
3137 	struct mem_cgroup *mi;
3138 	unsigned int i;
3139 
3140 	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3141 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3142 
3143 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3144 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3145 			continue;
3146 		seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3147 			   memcg_page_state(memcg, memcg1_stats[i]) *
3148 			   PAGE_SIZE);
3149 	}
3150 
3151 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3152 		seq_printf(m, "%s %lu\n", memcg1_event_names[i],
3153 			   memcg_sum_events(memcg, memcg1_events[i]));
3154 
3155 	for (i = 0; i < NR_LRU_LISTS; i++)
3156 		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3157 			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3158 
3159 	/* Hierarchical information */
3160 	memory = memsw = PAGE_COUNTER_MAX;
3161 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3162 		memory = min(memory, mi->memory.limit);
3163 		memsw = min(memsw, mi->memsw.limit);
3164 	}
3165 	seq_printf(m, "hierarchical_memory_limit %llu\n",
3166 		   (u64)memory * PAGE_SIZE);
3167 	if (do_memsw_account())
3168 		seq_printf(m, "hierarchical_memsw_limit %llu\n",
3169 			   (u64)memsw * PAGE_SIZE);
3170 
3171 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3172 		unsigned long long val = 0;
3173 
3174 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3175 			continue;
3176 		for_each_mem_cgroup_tree(mi, memcg)
3177 			val += memcg_page_state(mi, memcg1_stats[i]) *
3178 			PAGE_SIZE;
3179 		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], val);
3180 	}
3181 
3182 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) {
3183 		unsigned long long val = 0;
3184 
3185 		for_each_mem_cgroup_tree(mi, memcg)
3186 			val += memcg_sum_events(mi, memcg1_events[i]);
3187 		seq_printf(m, "total_%s %llu\n", memcg1_event_names[i], val);
3188 	}
3189 
3190 	for (i = 0; i < NR_LRU_LISTS; i++) {
3191 		unsigned long long val = 0;
3192 
3193 		for_each_mem_cgroup_tree(mi, memcg)
3194 			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3195 		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3196 	}
3197 
3198 #ifdef CONFIG_DEBUG_VM
3199 	{
3200 		pg_data_t *pgdat;
3201 		struct mem_cgroup_per_node *mz;
3202 		struct zone_reclaim_stat *rstat;
3203 		unsigned long recent_rotated[2] = {0, 0};
3204 		unsigned long recent_scanned[2] = {0, 0};
3205 
3206 		for_each_online_pgdat(pgdat) {
3207 			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3208 			rstat = &mz->lruvec.reclaim_stat;
3209 
3210 			recent_rotated[0] += rstat->recent_rotated[0];
3211 			recent_rotated[1] += rstat->recent_rotated[1];
3212 			recent_scanned[0] += rstat->recent_scanned[0];
3213 			recent_scanned[1] += rstat->recent_scanned[1];
3214 		}
3215 		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3216 		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3217 		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3218 		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3219 	}
3220 #endif
3221 
3222 	return 0;
3223 }
3224 
3225 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3226 				      struct cftype *cft)
3227 {
3228 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3229 
3230 	return mem_cgroup_swappiness(memcg);
3231 }
3232 
3233 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3234 				       struct cftype *cft, u64 val)
3235 {
3236 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3237 
3238 	if (val > 100)
3239 		return -EINVAL;
3240 
3241 	if (css->parent)
3242 		memcg->swappiness = val;
3243 	else
3244 		vm_swappiness = val;
3245 
3246 	return 0;
3247 }
3248 
3249 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3250 {
3251 	struct mem_cgroup_threshold_ary *t;
3252 	unsigned long usage;
3253 	int i;
3254 
3255 	rcu_read_lock();
3256 	if (!swap)
3257 		t = rcu_dereference(memcg->thresholds.primary);
3258 	else
3259 		t = rcu_dereference(memcg->memsw_thresholds.primary);
3260 
3261 	if (!t)
3262 		goto unlock;
3263 
3264 	usage = mem_cgroup_usage(memcg, swap);
3265 
3266 	/*
3267 	 * current_threshold points to threshold just below or equal to usage.
3268 	 * If it's not true, a threshold was crossed after last
3269 	 * call of __mem_cgroup_threshold().
3270 	 */
3271 	i = t->current_threshold;
3272 
3273 	/*
3274 	 * Iterate backward over array of thresholds starting from
3275 	 * current_threshold and check if a threshold is crossed.
3276 	 * If none of thresholds below usage is crossed, we read
3277 	 * only one element of the array here.
3278 	 */
3279 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3280 		eventfd_signal(t->entries[i].eventfd, 1);
3281 
3282 	/* i = current_threshold + 1 */
3283 	i++;
3284 
3285 	/*
3286 	 * Iterate forward over array of thresholds starting from
3287 	 * current_threshold+1 and check if a threshold is crossed.
3288 	 * If none of thresholds above usage is crossed, we read
3289 	 * only one element of the array here.
3290 	 */
3291 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3292 		eventfd_signal(t->entries[i].eventfd, 1);
3293 
3294 	/* Update current_threshold */
3295 	t->current_threshold = i - 1;
3296 unlock:
3297 	rcu_read_unlock();
3298 }
3299 
3300 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3301 {
3302 	while (memcg) {
3303 		__mem_cgroup_threshold(memcg, false);
3304 		if (do_memsw_account())
3305 			__mem_cgroup_threshold(memcg, true);
3306 
3307 		memcg = parent_mem_cgroup(memcg);
3308 	}
3309 }
3310 
3311 static int compare_thresholds(const void *a, const void *b)
3312 {
3313 	const struct mem_cgroup_threshold *_a = a;
3314 	const struct mem_cgroup_threshold *_b = b;
3315 
3316 	if (_a->threshold > _b->threshold)
3317 		return 1;
3318 
3319 	if (_a->threshold < _b->threshold)
3320 		return -1;
3321 
3322 	return 0;
3323 }
3324 
3325 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3326 {
3327 	struct mem_cgroup_eventfd_list *ev;
3328 
3329 	spin_lock(&memcg_oom_lock);
3330 
3331 	list_for_each_entry(ev, &memcg->oom_notify, list)
3332 		eventfd_signal(ev->eventfd, 1);
3333 
3334 	spin_unlock(&memcg_oom_lock);
3335 	return 0;
3336 }
3337 
3338 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3339 {
3340 	struct mem_cgroup *iter;
3341 
3342 	for_each_mem_cgroup_tree(iter, memcg)
3343 		mem_cgroup_oom_notify_cb(iter);
3344 }
3345 
3346 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3347 	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3348 {
3349 	struct mem_cgroup_thresholds *thresholds;
3350 	struct mem_cgroup_threshold_ary *new;
3351 	unsigned long threshold;
3352 	unsigned long usage;
3353 	int i, size, ret;
3354 
3355 	ret = page_counter_memparse(args, "-1", &threshold);
3356 	if (ret)
3357 		return ret;
3358 
3359 	mutex_lock(&memcg->thresholds_lock);
3360 
3361 	if (type == _MEM) {
3362 		thresholds = &memcg->thresholds;
3363 		usage = mem_cgroup_usage(memcg, false);
3364 	} else if (type == _MEMSWAP) {
3365 		thresholds = &memcg->memsw_thresholds;
3366 		usage = mem_cgroup_usage(memcg, true);
3367 	} else
3368 		BUG();
3369 
3370 	/* Check if a threshold crossed before adding a new one */
3371 	if (thresholds->primary)
3372 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3373 
3374 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3375 
3376 	/* Allocate memory for new array of thresholds */
3377 	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3378 			GFP_KERNEL);
3379 	if (!new) {
3380 		ret = -ENOMEM;
3381 		goto unlock;
3382 	}
3383 	new->size = size;
3384 
3385 	/* Copy thresholds (if any) to new array */
3386 	if (thresholds->primary) {
3387 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3388 				sizeof(struct mem_cgroup_threshold));
3389 	}
3390 
3391 	/* Add new threshold */
3392 	new->entries[size - 1].eventfd = eventfd;
3393 	new->entries[size - 1].threshold = threshold;
3394 
3395 	/* Sort thresholds. Registering of new threshold isn't time-critical */
3396 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3397 			compare_thresholds, NULL);
3398 
3399 	/* Find current threshold */
3400 	new->current_threshold = -1;
3401 	for (i = 0; i < size; i++) {
3402 		if (new->entries[i].threshold <= usage) {
3403 			/*
3404 			 * new->current_threshold will not be used until
3405 			 * rcu_assign_pointer(), so it's safe to increment
3406 			 * it here.
3407 			 */
3408 			++new->current_threshold;
3409 		} else
3410 			break;
3411 	}
3412 
3413 	/* Free old spare buffer and save old primary buffer as spare */
3414 	kfree(thresholds->spare);
3415 	thresholds->spare = thresholds->primary;
3416 
3417 	rcu_assign_pointer(thresholds->primary, new);
3418 
3419 	/* To be sure that nobody uses thresholds */
3420 	synchronize_rcu();
3421 
3422 unlock:
3423 	mutex_unlock(&memcg->thresholds_lock);
3424 
3425 	return ret;
3426 }
3427 
3428 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3429 	struct eventfd_ctx *eventfd, const char *args)
3430 {
3431 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3432 }
3433 
3434 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3435 	struct eventfd_ctx *eventfd, const char *args)
3436 {
3437 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3438 }
3439 
3440 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3441 	struct eventfd_ctx *eventfd, enum res_type type)
3442 {
3443 	struct mem_cgroup_thresholds *thresholds;
3444 	struct mem_cgroup_threshold_ary *new;
3445 	unsigned long usage;
3446 	int i, j, size;
3447 
3448 	mutex_lock(&memcg->thresholds_lock);
3449 
3450 	if (type == _MEM) {
3451 		thresholds = &memcg->thresholds;
3452 		usage = mem_cgroup_usage(memcg, false);
3453 	} else if (type == _MEMSWAP) {
3454 		thresholds = &memcg->memsw_thresholds;
3455 		usage = mem_cgroup_usage(memcg, true);
3456 	} else
3457 		BUG();
3458 
3459 	if (!thresholds->primary)
3460 		goto unlock;
3461 
3462 	/* Check if a threshold crossed before removing */
3463 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3464 
3465 	/* Calculate new number of threshold */
3466 	size = 0;
3467 	for (i = 0; i < thresholds->primary->size; i++) {
3468 		if (thresholds->primary->entries[i].eventfd != eventfd)
3469 			size++;
3470 	}
3471 
3472 	new = thresholds->spare;
3473 
3474 	/* Set thresholds array to NULL if we don't have thresholds */
3475 	if (!size) {
3476 		kfree(new);
3477 		new = NULL;
3478 		goto swap_buffers;
3479 	}
3480 
3481 	new->size = size;
3482 
3483 	/* Copy thresholds and find current threshold */
3484 	new->current_threshold = -1;
3485 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3486 		if (thresholds->primary->entries[i].eventfd == eventfd)
3487 			continue;
3488 
3489 		new->entries[j] = thresholds->primary->entries[i];
3490 		if (new->entries[j].threshold <= usage) {
3491 			/*
3492 			 * new->current_threshold will not be used
3493 			 * until rcu_assign_pointer(), so it's safe to increment
3494 			 * it here.
3495 			 */
3496 			++new->current_threshold;
3497 		}
3498 		j++;
3499 	}
3500 
3501 swap_buffers:
3502 	/* Swap primary and spare array */
3503 	thresholds->spare = thresholds->primary;
3504 
3505 	rcu_assign_pointer(thresholds->primary, new);
3506 
3507 	/* To be sure that nobody uses thresholds */
3508 	synchronize_rcu();
3509 
3510 	/* If all events are unregistered, free the spare array */
3511 	if (!new) {
3512 		kfree(thresholds->spare);
3513 		thresholds->spare = NULL;
3514 	}
3515 unlock:
3516 	mutex_unlock(&memcg->thresholds_lock);
3517 }
3518 
3519 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3520 	struct eventfd_ctx *eventfd)
3521 {
3522 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3523 }
3524 
3525 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3526 	struct eventfd_ctx *eventfd)
3527 {
3528 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3529 }
3530 
3531 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3532 	struct eventfd_ctx *eventfd, const char *args)
3533 {
3534 	struct mem_cgroup_eventfd_list *event;
3535 
3536 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
3537 	if (!event)
3538 		return -ENOMEM;
3539 
3540 	spin_lock(&memcg_oom_lock);
3541 
3542 	event->eventfd = eventfd;
3543 	list_add(&event->list, &memcg->oom_notify);
3544 
3545 	/* already in OOM ? */
3546 	if (memcg->under_oom)
3547 		eventfd_signal(eventfd, 1);
3548 	spin_unlock(&memcg_oom_lock);
3549 
3550 	return 0;
3551 }
3552 
3553 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3554 	struct eventfd_ctx *eventfd)
3555 {
3556 	struct mem_cgroup_eventfd_list *ev, *tmp;
3557 
3558 	spin_lock(&memcg_oom_lock);
3559 
3560 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3561 		if (ev->eventfd == eventfd) {
3562 			list_del(&ev->list);
3563 			kfree(ev);
3564 		}
3565 	}
3566 
3567 	spin_unlock(&memcg_oom_lock);
3568 }
3569 
3570 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3571 {
3572 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3573 
3574 	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3575 	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3576 	seq_printf(sf, "oom_kill %lu\n", memcg_sum_events(memcg, OOM_KILL));
3577 	return 0;
3578 }
3579 
3580 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3581 	struct cftype *cft, u64 val)
3582 {
3583 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3584 
3585 	/* cannot set to root cgroup and only 0 and 1 are allowed */
3586 	if (!css->parent || !((val == 0) || (val == 1)))
3587 		return -EINVAL;
3588 
3589 	memcg->oom_kill_disable = val;
3590 	if (!val)
3591 		memcg_oom_recover(memcg);
3592 
3593 	return 0;
3594 }
3595 
3596 #ifdef CONFIG_CGROUP_WRITEBACK
3597 
3598 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3599 {
3600 	return &memcg->cgwb_list;
3601 }
3602 
3603 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3604 {
3605 	return wb_domain_init(&memcg->cgwb_domain, gfp);
3606 }
3607 
3608 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3609 {
3610 	wb_domain_exit(&memcg->cgwb_domain);
3611 }
3612 
3613 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3614 {
3615 	wb_domain_size_changed(&memcg->cgwb_domain);
3616 }
3617 
3618 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3619 {
3620 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3621 
3622 	if (!memcg->css.parent)
3623 		return NULL;
3624 
3625 	return &memcg->cgwb_domain;
3626 }
3627 
3628 /**
3629  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3630  * @wb: bdi_writeback in question
3631  * @pfilepages: out parameter for number of file pages
3632  * @pheadroom: out parameter for number of allocatable pages according to memcg
3633  * @pdirty: out parameter for number of dirty pages
3634  * @pwriteback: out parameter for number of pages under writeback
3635  *
3636  * Determine the numbers of file, headroom, dirty, and writeback pages in
3637  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
3638  * is a bit more involved.
3639  *
3640  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
3641  * headroom is calculated as the lowest headroom of itself and the
3642  * ancestors.  Note that this doesn't consider the actual amount of
3643  * available memory in the system.  The caller should further cap
3644  * *@pheadroom accordingly.
3645  */
3646 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3647 			 unsigned long *pheadroom, unsigned long *pdirty,
3648 			 unsigned long *pwriteback)
3649 {
3650 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3651 	struct mem_cgroup *parent;
3652 
3653 	*pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
3654 
3655 	/* this should eventually include NR_UNSTABLE_NFS */
3656 	*pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
3657 	*pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3658 						     (1 << LRU_ACTIVE_FILE));
3659 	*pheadroom = PAGE_COUNTER_MAX;
3660 
3661 	while ((parent = parent_mem_cgroup(memcg))) {
3662 		unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3663 		unsigned long used = page_counter_read(&memcg->memory);
3664 
3665 		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3666 		memcg = parent;
3667 	}
3668 }
3669 
3670 #else	/* CONFIG_CGROUP_WRITEBACK */
3671 
3672 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3673 {
3674 	return 0;
3675 }
3676 
3677 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3678 {
3679 }
3680 
3681 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3682 {
3683 }
3684 
3685 #endif	/* CONFIG_CGROUP_WRITEBACK */
3686 
3687 /*
3688  * DO NOT USE IN NEW FILES.
3689  *
3690  * "cgroup.event_control" implementation.
3691  *
3692  * This is way over-engineered.  It tries to support fully configurable
3693  * events for each user.  Such level of flexibility is completely
3694  * unnecessary especially in the light of the planned unified hierarchy.
3695  *
3696  * Please deprecate this and replace with something simpler if at all
3697  * possible.
3698  */
3699 
3700 /*
3701  * Unregister event and free resources.
3702  *
3703  * Gets called from workqueue.
3704  */
3705 static void memcg_event_remove(struct work_struct *work)
3706 {
3707 	struct mem_cgroup_event *event =
3708 		container_of(work, struct mem_cgroup_event, remove);
3709 	struct mem_cgroup *memcg = event->memcg;
3710 
3711 	remove_wait_queue(event->wqh, &event->wait);
3712 
3713 	event->unregister_event(memcg, event->eventfd);
3714 
3715 	/* Notify userspace the event is going away. */
3716 	eventfd_signal(event->eventfd, 1);
3717 
3718 	eventfd_ctx_put(event->eventfd);
3719 	kfree(event);
3720 	css_put(&memcg->css);
3721 }
3722 
3723 /*
3724  * Gets called on POLLHUP on eventfd when user closes it.
3725  *
3726  * Called with wqh->lock held and interrupts disabled.
3727  */
3728 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3729 			    int sync, void *key)
3730 {
3731 	struct mem_cgroup_event *event =
3732 		container_of(wait, struct mem_cgroup_event, wait);
3733 	struct mem_cgroup *memcg = event->memcg;
3734 	unsigned long flags = (unsigned long)key;
3735 
3736 	if (flags & POLLHUP) {
3737 		/*
3738 		 * If the event has been detached at cgroup removal, we
3739 		 * can simply return knowing the other side will cleanup
3740 		 * for us.
3741 		 *
3742 		 * We can't race against event freeing since the other
3743 		 * side will require wqh->lock via remove_wait_queue(),
3744 		 * which we hold.
3745 		 */
3746 		spin_lock(&memcg->event_list_lock);
3747 		if (!list_empty(&event->list)) {
3748 			list_del_init(&event->list);
3749 			/*
3750 			 * We are in atomic context, but cgroup_event_remove()
3751 			 * may sleep, so we have to call it in workqueue.
3752 			 */
3753 			schedule_work(&event->remove);
3754 		}
3755 		spin_unlock(&memcg->event_list_lock);
3756 	}
3757 
3758 	return 0;
3759 }
3760 
3761 static void memcg_event_ptable_queue_proc(struct file *file,
3762 		wait_queue_head_t *wqh, poll_table *pt)
3763 {
3764 	struct mem_cgroup_event *event =
3765 		container_of(pt, struct mem_cgroup_event, pt);
3766 
3767 	event->wqh = wqh;
3768 	add_wait_queue(wqh, &event->wait);
3769 }
3770 
3771 /*
3772  * DO NOT USE IN NEW FILES.
3773  *
3774  * Parse input and register new cgroup event handler.
3775  *
3776  * Input must be in format '<event_fd> <control_fd> <args>'.
3777  * Interpretation of args is defined by control file implementation.
3778  */
3779 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3780 					 char *buf, size_t nbytes, loff_t off)
3781 {
3782 	struct cgroup_subsys_state *css = of_css(of);
3783 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3784 	struct mem_cgroup_event *event;
3785 	struct cgroup_subsys_state *cfile_css;
3786 	unsigned int efd, cfd;
3787 	struct fd efile;
3788 	struct fd cfile;
3789 	const char *name;
3790 	char *endp;
3791 	int ret;
3792 
3793 	buf = strstrip(buf);
3794 
3795 	efd = simple_strtoul(buf, &endp, 10);
3796 	if (*endp != ' ')
3797 		return -EINVAL;
3798 	buf = endp + 1;
3799 
3800 	cfd = simple_strtoul(buf, &endp, 10);
3801 	if ((*endp != ' ') && (*endp != '\0'))
3802 		return -EINVAL;
3803 	buf = endp + 1;
3804 
3805 	event = kzalloc(sizeof(*event), GFP_KERNEL);
3806 	if (!event)
3807 		return -ENOMEM;
3808 
3809 	event->memcg = memcg;
3810 	INIT_LIST_HEAD(&event->list);
3811 	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3812 	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3813 	INIT_WORK(&event->remove, memcg_event_remove);
3814 
3815 	efile = fdget(efd);
3816 	if (!efile.file) {
3817 		ret = -EBADF;
3818 		goto out_kfree;
3819 	}
3820 
3821 	event->eventfd = eventfd_ctx_fileget(efile.file);
3822 	if (IS_ERR(event->eventfd)) {
3823 		ret = PTR_ERR(event->eventfd);
3824 		goto out_put_efile;
3825 	}
3826 
3827 	cfile = fdget(cfd);
3828 	if (!cfile.file) {
3829 		ret = -EBADF;
3830 		goto out_put_eventfd;
3831 	}
3832 
3833 	/* the process need read permission on control file */
3834 	/* AV: shouldn't we check that it's been opened for read instead? */
3835 	ret = inode_permission(file_inode(cfile.file), MAY_READ);
3836 	if (ret < 0)
3837 		goto out_put_cfile;
3838 
3839 	/*
3840 	 * Determine the event callbacks and set them in @event.  This used
3841 	 * to be done via struct cftype but cgroup core no longer knows
3842 	 * about these events.  The following is crude but the whole thing
3843 	 * is for compatibility anyway.
3844 	 *
3845 	 * DO NOT ADD NEW FILES.
3846 	 */
3847 	name = cfile.file->f_path.dentry->d_name.name;
3848 
3849 	if (!strcmp(name, "memory.usage_in_bytes")) {
3850 		event->register_event = mem_cgroup_usage_register_event;
3851 		event->unregister_event = mem_cgroup_usage_unregister_event;
3852 	} else if (!strcmp(name, "memory.oom_control")) {
3853 		event->register_event = mem_cgroup_oom_register_event;
3854 		event->unregister_event = mem_cgroup_oom_unregister_event;
3855 	} else if (!strcmp(name, "memory.pressure_level")) {
3856 		event->register_event = vmpressure_register_event;
3857 		event->unregister_event = vmpressure_unregister_event;
3858 	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3859 		event->register_event = memsw_cgroup_usage_register_event;
3860 		event->unregister_event = memsw_cgroup_usage_unregister_event;
3861 	} else {
3862 		ret = -EINVAL;
3863 		goto out_put_cfile;
3864 	}
3865 
3866 	/*
3867 	 * Verify @cfile should belong to @css.  Also, remaining events are
3868 	 * automatically removed on cgroup destruction but the removal is
3869 	 * asynchronous, so take an extra ref on @css.
3870 	 */
3871 	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3872 					       &memory_cgrp_subsys);
3873 	ret = -EINVAL;
3874 	if (IS_ERR(cfile_css))
3875 		goto out_put_cfile;
3876 	if (cfile_css != css) {
3877 		css_put(cfile_css);
3878 		goto out_put_cfile;
3879 	}
3880 
3881 	ret = event->register_event(memcg, event->eventfd, buf);
3882 	if (ret)
3883 		goto out_put_css;
3884 
3885 	efile.file->f_op->poll(efile.file, &event->pt);
3886 
3887 	spin_lock(&memcg->event_list_lock);
3888 	list_add(&event->list, &memcg->event_list);
3889 	spin_unlock(&memcg->event_list_lock);
3890 
3891 	fdput(cfile);
3892 	fdput(efile);
3893 
3894 	return nbytes;
3895 
3896 out_put_css:
3897 	css_put(css);
3898 out_put_cfile:
3899 	fdput(cfile);
3900 out_put_eventfd:
3901 	eventfd_ctx_put(event->eventfd);
3902 out_put_efile:
3903 	fdput(efile);
3904 out_kfree:
3905 	kfree(event);
3906 
3907 	return ret;
3908 }
3909 
3910 static struct cftype mem_cgroup_legacy_files[] = {
3911 	{
3912 		.name = "usage_in_bytes",
3913 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3914 		.read_u64 = mem_cgroup_read_u64,
3915 	},
3916 	{
3917 		.name = "max_usage_in_bytes",
3918 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3919 		.write = mem_cgroup_reset,
3920 		.read_u64 = mem_cgroup_read_u64,
3921 	},
3922 	{
3923 		.name = "limit_in_bytes",
3924 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3925 		.write = mem_cgroup_write,
3926 		.read_u64 = mem_cgroup_read_u64,
3927 	},
3928 	{
3929 		.name = "soft_limit_in_bytes",
3930 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3931 		.write = mem_cgroup_write,
3932 		.read_u64 = mem_cgroup_read_u64,
3933 	},
3934 	{
3935 		.name = "failcnt",
3936 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3937 		.write = mem_cgroup_reset,
3938 		.read_u64 = mem_cgroup_read_u64,
3939 	},
3940 	{
3941 		.name = "stat",
3942 		.seq_show = memcg_stat_show,
3943 	},
3944 	{
3945 		.name = "force_empty",
3946 		.write = mem_cgroup_force_empty_write,
3947 	},
3948 	{
3949 		.name = "use_hierarchy",
3950 		.write_u64 = mem_cgroup_hierarchy_write,
3951 		.read_u64 = mem_cgroup_hierarchy_read,
3952 	},
3953 	{
3954 		.name = "cgroup.event_control",		/* XXX: for compat */
3955 		.write = memcg_write_event_control,
3956 		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3957 	},
3958 	{
3959 		.name = "swappiness",
3960 		.read_u64 = mem_cgroup_swappiness_read,
3961 		.write_u64 = mem_cgroup_swappiness_write,
3962 	},
3963 	{
3964 		.name = "move_charge_at_immigrate",
3965 		.read_u64 = mem_cgroup_move_charge_read,
3966 		.write_u64 = mem_cgroup_move_charge_write,
3967 	},
3968 	{
3969 		.name = "oom_control",
3970 		.seq_show = mem_cgroup_oom_control_read,
3971 		.write_u64 = mem_cgroup_oom_control_write,
3972 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3973 	},
3974 	{
3975 		.name = "pressure_level",
3976 	},
3977 #ifdef CONFIG_NUMA
3978 	{
3979 		.name = "numa_stat",
3980 		.seq_show = memcg_numa_stat_show,
3981 	},
3982 #endif
3983 	{
3984 		.name = "kmem.limit_in_bytes",
3985 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
3986 		.write = mem_cgroup_write,
3987 		.read_u64 = mem_cgroup_read_u64,
3988 	},
3989 	{
3990 		.name = "kmem.usage_in_bytes",
3991 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
3992 		.read_u64 = mem_cgroup_read_u64,
3993 	},
3994 	{
3995 		.name = "kmem.failcnt",
3996 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
3997 		.write = mem_cgroup_reset,
3998 		.read_u64 = mem_cgroup_read_u64,
3999 	},
4000 	{
4001 		.name = "kmem.max_usage_in_bytes",
4002 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4003 		.write = mem_cgroup_reset,
4004 		.read_u64 = mem_cgroup_read_u64,
4005 	},
4006 #ifdef CONFIG_SLABINFO
4007 	{
4008 		.name = "kmem.slabinfo",
4009 		.seq_start = memcg_slab_start,
4010 		.seq_next = memcg_slab_next,
4011 		.seq_stop = memcg_slab_stop,
4012 		.seq_show = memcg_slab_show,
4013 	},
4014 #endif
4015 	{
4016 		.name = "kmem.tcp.limit_in_bytes",
4017 		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4018 		.write = mem_cgroup_write,
4019 		.read_u64 = mem_cgroup_read_u64,
4020 	},
4021 	{
4022 		.name = "kmem.tcp.usage_in_bytes",
4023 		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4024 		.read_u64 = mem_cgroup_read_u64,
4025 	},
4026 	{
4027 		.name = "kmem.tcp.failcnt",
4028 		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4029 		.write = mem_cgroup_reset,
4030 		.read_u64 = mem_cgroup_read_u64,
4031 	},
4032 	{
4033 		.name = "kmem.tcp.max_usage_in_bytes",
4034 		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4035 		.write = mem_cgroup_reset,
4036 		.read_u64 = mem_cgroup_read_u64,
4037 	},
4038 	{ },	/* terminate */
4039 };
4040 
4041 /*
4042  * Private memory cgroup IDR
4043  *
4044  * Swap-out records and page cache shadow entries need to store memcg
4045  * references in constrained space, so we maintain an ID space that is
4046  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4047  * memory-controlled cgroups to 64k.
4048  *
4049  * However, there usually are many references to the oflline CSS after
4050  * the cgroup has been destroyed, such as page cache or reclaimable
4051  * slab objects, that don't need to hang on to the ID. We want to keep
4052  * those dead CSS from occupying IDs, or we might quickly exhaust the
4053  * relatively small ID space and prevent the creation of new cgroups
4054  * even when there are much fewer than 64k cgroups - possibly none.
4055  *
4056  * Maintain a private 16-bit ID space for memcg, and allow the ID to
4057  * be freed and recycled when it's no longer needed, which is usually
4058  * when the CSS is offlined.
4059  *
4060  * The only exception to that are records of swapped out tmpfs/shmem
4061  * pages that need to be attributed to live ancestors on swapin. But
4062  * those references are manageable from userspace.
4063  */
4064 
4065 static DEFINE_IDR(mem_cgroup_idr);
4066 
4067 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4068 {
4069 	VM_BUG_ON(atomic_read(&memcg->id.ref) <= 0);
4070 	atomic_add(n, &memcg->id.ref);
4071 }
4072 
4073 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4074 {
4075 	VM_BUG_ON(atomic_read(&memcg->id.ref) < n);
4076 	if (atomic_sub_and_test(n, &memcg->id.ref)) {
4077 		idr_remove(&mem_cgroup_idr, memcg->id.id);
4078 		memcg->id.id = 0;
4079 
4080 		/* Memcg ID pins CSS */
4081 		css_put(&memcg->css);
4082 	}
4083 }
4084 
4085 static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4086 {
4087 	mem_cgroup_id_get_many(memcg, 1);
4088 }
4089 
4090 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4091 {
4092 	mem_cgroup_id_put_many(memcg, 1);
4093 }
4094 
4095 /**
4096  * mem_cgroup_from_id - look up a memcg from a memcg id
4097  * @id: the memcg id to look up
4098  *
4099  * Caller must hold rcu_read_lock().
4100  */
4101 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4102 {
4103 	WARN_ON_ONCE(!rcu_read_lock_held());
4104 	return idr_find(&mem_cgroup_idr, id);
4105 }
4106 
4107 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4108 {
4109 	struct mem_cgroup_per_node *pn;
4110 	int tmp = node;
4111 	/*
4112 	 * This routine is called against possible nodes.
4113 	 * But it's BUG to call kmalloc() against offline node.
4114 	 *
4115 	 * TODO: this routine can waste much memory for nodes which will
4116 	 *       never be onlined. It's better to use memory hotplug callback
4117 	 *       function.
4118 	 */
4119 	if (!node_state(node, N_NORMAL_MEMORY))
4120 		tmp = -1;
4121 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4122 	if (!pn)
4123 		return 1;
4124 
4125 	pn->lruvec_stat = alloc_percpu(struct lruvec_stat);
4126 	if (!pn->lruvec_stat) {
4127 		kfree(pn);
4128 		return 1;
4129 	}
4130 
4131 	lruvec_init(&pn->lruvec);
4132 	pn->usage_in_excess = 0;
4133 	pn->on_tree = false;
4134 	pn->memcg = memcg;
4135 
4136 	memcg->nodeinfo[node] = pn;
4137 	return 0;
4138 }
4139 
4140 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4141 {
4142 	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4143 
4144 	free_percpu(pn->lruvec_stat);
4145 	kfree(pn);
4146 }
4147 
4148 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4149 {
4150 	int node;
4151 
4152 	for_each_node(node)
4153 		free_mem_cgroup_per_node_info(memcg, node);
4154 	free_percpu(memcg->stat);
4155 	kfree(memcg);
4156 }
4157 
4158 static void mem_cgroup_free(struct mem_cgroup *memcg)
4159 {
4160 	memcg_wb_domain_exit(memcg);
4161 	__mem_cgroup_free(memcg);
4162 }
4163 
4164 static struct mem_cgroup *mem_cgroup_alloc(void)
4165 {
4166 	struct mem_cgroup *memcg;
4167 	size_t size;
4168 	int node;
4169 
4170 	size = sizeof(struct mem_cgroup);
4171 	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4172 
4173 	memcg = kzalloc(size, GFP_KERNEL);
4174 	if (!memcg)
4175 		return NULL;
4176 
4177 	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4178 				 1, MEM_CGROUP_ID_MAX,
4179 				 GFP_KERNEL);
4180 	if (memcg->id.id < 0)
4181 		goto fail;
4182 
4183 	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4184 	if (!memcg->stat)
4185 		goto fail;
4186 
4187 	for_each_node(node)
4188 		if (alloc_mem_cgroup_per_node_info(memcg, node))
4189 			goto fail;
4190 
4191 	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4192 		goto fail;
4193 
4194 	INIT_WORK(&memcg->high_work, high_work_func);
4195 	memcg->last_scanned_node = MAX_NUMNODES;
4196 	INIT_LIST_HEAD(&memcg->oom_notify);
4197 	mutex_init(&memcg->thresholds_lock);
4198 	spin_lock_init(&memcg->move_lock);
4199 	vmpressure_init(&memcg->vmpressure);
4200 	INIT_LIST_HEAD(&memcg->event_list);
4201 	spin_lock_init(&memcg->event_list_lock);
4202 	memcg->socket_pressure = jiffies;
4203 #ifndef CONFIG_SLOB
4204 	memcg->kmemcg_id = -1;
4205 #endif
4206 #ifdef CONFIG_CGROUP_WRITEBACK
4207 	INIT_LIST_HEAD(&memcg->cgwb_list);
4208 #endif
4209 	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4210 	return memcg;
4211 fail:
4212 	if (memcg->id.id > 0)
4213 		idr_remove(&mem_cgroup_idr, memcg->id.id);
4214 	__mem_cgroup_free(memcg);
4215 	return NULL;
4216 }
4217 
4218 static struct cgroup_subsys_state * __ref
4219 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4220 {
4221 	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4222 	struct mem_cgroup *memcg;
4223 	long error = -ENOMEM;
4224 
4225 	memcg = mem_cgroup_alloc();
4226 	if (!memcg)
4227 		return ERR_PTR(error);
4228 
4229 	memcg->high = PAGE_COUNTER_MAX;
4230 	memcg->soft_limit = PAGE_COUNTER_MAX;
4231 	if (parent) {
4232 		memcg->swappiness = mem_cgroup_swappiness(parent);
4233 		memcg->oom_kill_disable = parent->oom_kill_disable;
4234 	}
4235 	if (parent && parent->use_hierarchy) {
4236 		memcg->use_hierarchy = true;
4237 		page_counter_init(&memcg->memory, &parent->memory);
4238 		page_counter_init(&memcg->swap, &parent->swap);
4239 		page_counter_init(&memcg->memsw, &parent->memsw);
4240 		page_counter_init(&memcg->kmem, &parent->kmem);
4241 		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4242 	} else {
4243 		page_counter_init(&memcg->memory, NULL);
4244 		page_counter_init(&memcg->swap, NULL);
4245 		page_counter_init(&memcg->memsw, NULL);
4246 		page_counter_init(&memcg->kmem, NULL);
4247 		page_counter_init(&memcg->tcpmem, NULL);
4248 		/*
4249 		 * Deeper hierachy with use_hierarchy == false doesn't make
4250 		 * much sense so let cgroup subsystem know about this
4251 		 * unfortunate state in our controller.
4252 		 */
4253 		if (parent != root_mem_cgroup)
4254 			memory_cgrp_subsys.broken_hierarchy = true;
4255 	}
4256 
4257 	/* The following stuff does not apply to the root */
4258 	if (!parent) {
4259 		root_mem_cgroup = memcg;
4260 		return &memcg->css;
4261 	}
4262 
4263 	error = memcg_online_kmem(memcg);
4264 	if (error)
4265 		goto fail;
4266 
4267 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4268 		static_branch_inc(&memcg_sockets_enabled_key);
4269 
4270 	return &memcg->css;
4271 fail:
4272 	mem_cgroup_free(memcg);
4273 	return ERR_PTR(-ENOMEM);
4274 }
4275 
4276 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4277 {
4278 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4279 
4280 	/* Online state pins memcg ID, memcg ID pins CSS */
4281 	atomic_set(&memcg->id.ref, 1);
4282 	css_get(css);
4283 	return 0;
4284 }
4285 
4286 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4287 {
4288 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4289 	struct mem_cgroup_event *event, *tmp;
4290 
4291 	/*
4292 	 * Unregister events and notify userspace.
4293 	 * Notify userspace about cgroup removing only after rmdir of cgroup
4294 	 * directory to avoid race between userspace and kernelspace.
4295 	 */
4296 	spin_lock(&memcg->event_list_lock);
4297 	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4298 		list_del_init(&event->list);
4299 		schedule_work(&event->remove);
4300 	}
4301 	spin_unlock(&memcg->event_list_lock);
4302 
4303 	memcg_offline_kmem(memcg);
4304 	wb_memcg_offline(memcg);
4305 
4306 	mem_cgroup_id_put(memcg);
4307 }
4308 
4309 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4310 {
4311 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4312 
4313 	invalidate_reclaim_iterators(memcg);
4314 }
4315 
4316 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4317 {
4318 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4319 
4320 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4321 		static_branch_dec(&memcg_sockets_enabled_key);
4322 
4323 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4324 		static_branch_dec(&memcg_sockets_enabled_key);
4325 
4326 	vmpressure_cleanup(&memcg->vmpressure);
4327 	cancel_work_sync(&memcg->high_work);
4328 	mem_cgroup_remove_from_trees(memcg);
4329 	memcg_free_kmem(memcg);
4330 	mem_cgroup_free(memcg);
4331 }
4332 
4333 /**
4334  * mem_cgroup_css_reset - reset the states of a mem_cgroup
4335  * @css: the target css
4336  *
4337  * Reset the states of the mem_cgroup associated with @css.  This is
4338  * invoked when the userland requests disabling on the default hierarchy
4339  * but the memcg is pinned through dependency.  The memcg should stop
4340  * applying policies and should revert to the vanilla state as it may be
4341  * made visible again.
4342  *
4343  * The current implementation only resets the essential configurations.
4344  * This needs to be expanded to cover all the visible parts.
4345  */
4346 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4347 {
4348 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4349 
4350 	page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4351 	page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4352 	page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4353 	page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4354 	page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4355 	memcg->low = 0;
4356 	memcg->high = PAGE_COUNTER_MAX;
4357 	memcg->soft_limit = PAGE_COUNTER_MAX;
4358 	memcg_wb_domain_size_changed(memcg);
4359 }
4360 
4361 #ifdef CONFIG_MMU
4362 /* Handlers for move charge at task migration. */
4363 static int mem_cgroup_do_precharge(unsigned long count)
4364 {
4365 	int ret;
4366 
4367 	/* Try a single bulk charge without reclaim first, kswapd may wake */
4368 	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4369 	if (!ret) {
4370 		mc.precharge += count;
4371 		return ret;
4372 	}
4373 
4374 	/* Try charges one by one with reclaim, but do not retry */
4375 	while (count--) {
4376 		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
4377 		if (ret)
4378 			return ret;
4379 		mc.precharge++;
4380 		cond_resched();
4381 	}
4382 	return 0;
4383 }
4384 
4385 union mc_target {
4386 	struct page	*page;
4387 	swp_entry_t	ent;
4388 };
4389 
4390 enum mc_target_type {
4391 	MC_TARGET_NONE = 0,
4392 	MC_TARGET_PAGE,
4393 	MC_TARGET_SWAP,
4394 };
4395 
4396 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4397 						unsigned long addr, pte_t ptent)
4398 {
4399 	struct page *page = vm_normal_page(vma, addr, ptent);
4400 
4401 	if (!page || !page_mapped(page))
4402 		return NULL;
4403 	if (PageAnon(page)) {
4404 		if (!(mc.flags & MOVE_ANON))
4405 			return NULL;
4406 	} else {
4407 		if (!(mc.flags & MOVE_FILE))
4408 			return NULL;
4409 	}
4410 	if (!get_page_unless_zero(page))
4411 		return NULL;
4412 
4413 	return page;
4414 }
4415 
4416 #ifdef CONFIG_SWAP
4417 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4418 			pte_t ptent, swp_entry_t *entry)
4419 {
4420 	struct page *page = NULL;
4421 	swp_entry_t ent = pte_to_swp_entry(ptent);
4422 
4423 	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4424 		return NULL;
4425 	/*
4426 	 * Because lookup_swap_cache() updates some statistics counter,
4427 	 * we call find_get_page() with swapper_space directly.
4428 	 */
4429 	page = find_get_page(swap_address_space(ent), swp_offset(ent));
4430 	if (do_memsw_account())
4431 		entry->val = ent.val;
4432 
4433 	return page;
4434 }
4435 #else
4436 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4437 			pte_t ptent, swp_entry_t *entry)
4438 {
4439 	return NULL;
4440 }
4441 #endif
4442 
4443 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4444 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4445 {
4446 	struct page *page = NULL;
4447 	struct address_space *mapping;
4448 	pgoff_t pgoff;
4449 
4450 	if (!vma->vm_file) /* anonymous vma */
4451 		return NULL;
4452 	if (!(mc.flags & MOVE_FILE))
4453 		return NULL;
4454 
4455 	mapping = vma->vm_file->f_mapping;
4456 	pgoff = linear_page_index(vma, addr);
4457 
4458 	/* page is moved even if it's not RSS of this task(page-faulted). */
4459 #ifdef CONFIG_SWAP
4460 	/* shmem/tmpfs may report page out on swap: account for that too. */
4461 	if (shmem_mapping(mapping)) {
4462 		page = find_get_entry(mapping, pgoff);
4463 		if (radix_tree_exceptional_entry(page)) {
4464 			swp_entry_t swp = radix_to_swp_entry(page);
4465 			if (do_memsw_account())
4466 				*entry = swp;
4467 			page = find_get_page(swap_address_space(swp),
4468 					     swp_offset(swp));
4469 		}
4470 	} else
4471 		page = find_get_page(mapping, pgoff);
4472 #else
4473 	page = find_get_page(mapping, pgoff);
4474 #endif
4475 	return page;
4476 }
4477 
4478 /**
4479  * mem_cgroup_move_account - move account of the page
4480  * @page: the page
4481  * @compound: charge the page as compound or small page
4482  * @from: mem_cgroup which the page is moved from.
4483  * @to:	mem_cgroup which the page is moved to. @from != @to.
4484  *
4485  * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4486  *
4487  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4488  * from old cgroup.
4489  */
4490 static int mem_cgroup_move_account(struct page *page,
4491 				   bool compound,
4492 				   struct mem_cgroup *from,
4493 				   struct mem_cgroup *to)
4494 {
4495 	unsigned long flags;
4496 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4497 	int ret;
4498 	bool anon;
4499 
4500 	VM_BUG_ON(from == to);
4501 	VM_BUG_ON_PAGE(PageLRU(page), page);
4502 	VM_BUG_ON(compound && !PageTransHuge(page));
4503 
4504 	/*
4505 	 * Prevent mem_cgroup_migrate() from looking at
4506 	 * page->mem_cgroup of its source page while we change it.
4507 	 */
4508 	ret = -EBUSY;
4509 	if (!trylock_page(page))
4510 		goto out;
4511 
4512 	ret = -EINVAL;
4513 	if (page->mem_cgroup != from)
4514 		goto out_unlock;
4515 
4516 	anon = PageAnon(page);
4517 
4518 	spin_lock_irqsave(&from->move_lock, flags);
4519 
4520 	if (!anon && page_mapped(page)) {
4521 		__this_cpu_sub(from->stat->count[NR_FILE_MAPPED], nr_pages);
4522 		__this_cpu_add(to->stat->count[NR_FILE_MAPPED], nr_pages);
4523 	}
4524 
4525 	/*
4526 	 * move_lock grabbed above and caller set from->moving_account, so
4527 	 * mod_memcg_page_state will serialize updates to PageDirty.
4528 	 * So mapping should be stable for dirty pages.
4529 	 */
4530 	if (!anon && PageDirty(page)) {
4531 		struct address_space *mapping = page_mapping(page);
4532 
4533 		if (mapping_cap_account_dirty(mapping)) {
4534 			__this_cpu_sub(from->stat->count[NR_FILE_DIRTY],
4535 				       nr_pages);
4536 			__this_cpu_add(to->stat->count[NR_FILE_DIRTY],
4537 				       nr_pages);
4538 		}
4539 	}
4540 
4541 	if (PageWriteback(page)) {
4542 		__this_cpu_sub(from->stat->count[NR_WRITEBACK], nr_pages);
4543 		__this_cpu_add(to->stat->count[NR_WRITEBACK], nr_pages);
4544 	}
4545 
4546 	/*
4547 	 * It is safe to change page->mem_cgroup here because the page
4548 	 * is referenced, charged, and isolated - we can't race with
4549 	 * uncharging, charging, migration, or LRU putback.
4550 	 */
4551 
4552 	/* caller should have done css_get */
4553 	page->mem_cgroup = to;
4554 	spin_unlock_irqrestore(&from->move_lock, flags);
4555 
4556 	ret = 0;
4557 
4558 	local_irq_disable();
4559 	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4560 	memcg_check_events(to, page);
4561 	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4562 	memcg_check_events(from, page);
4563 	local_irq_enable();
4564 out_unlock:
4565 	unlock_page(page);
4566 out:
4567 	return ret;
4568 }
4569 
4570 /**
4571  * get_mctgt_type - get target type of moving charge
4572  * @vma: the vma the pte to be checked belongs
4573  * @addr: the address corresponding to the pte to be checked
4574  * @ptent: the pte to be checked
4575  * @target: the pointer the target page or swap ent will be stored(can be NULL)
4576  *
4577  * Returns
4578  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
4579  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4580  *     move charge. if @target is not NULL, the page is stored in target->page
4581  *     with extra refcnt got(Callers should handle it).
4582  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4583  *     target for charge migration. if @target is not NULL, the entry is stored
4584  *     in target->ent.
4585  *
4586  * Called with pte lock held.
4587  */
4588 
4589 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4590 		unsigned long addr, pte_t ptent, union mc_target *target)
4591 {
4592 	struct page *page = NULL;
4593 	enum mc_target_type ret = MC_TARGET_NONE;
4594 	swp_entry_t ent = { .val = 0 };
4595 
4596 	if (pte_present(ptent))
4597 		page = mc_handle_present_pte(vma, addr, ptent);
4598 	else if (is_swap_pte(ptent))
4599 		page = mc_handle_swap_pte(vma, ptent, &ent);
4600 	else if (pte_none(ptent))
4601 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
4602 
4603 	if (!page && !ent.val)
4604 		return ret;
4605 	if (page) {
4606 		/*
4607 		 * Do only loose check w/o serialization.
4608 		 * mem_cgroup_move_account() checks the page is valid or
4609 		 * not under LRU exclusion.
4610 		 */
4611 		if (page->mem_cgroup == mc.from) {
4612 			ret = MC_TARGET_PAGE;
4613 			if (target)
4614 				target->page = page;
4615 		}
4616 		if (!ret || !target)
4617 			put_page(page);
4618 	}
4619 	/* There is a swap entry and a page doesn't exist or isn't charged */
4620 	if (ent.val && !ret &&
4621 	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4622 		ret = MC_TARGET_SWAP;
4623 		if (target)
4624 			target->ent = ent;
4625 	}
4626 	return ret;
4627 }
4628 
4629 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4630 /*
4631  * We don't consider swapping or file mapped pages because THP does not
4632  * support them for now.
4633  * Caller should make sure that pmd_trans_huge(pmd) is true.
4634  */
4635 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4636 		unsigned long addr, pmd_t pmd, union mc_target *target)
4637 {
4638 	struct page *page = NULL;
4639 	enum mc_target_type ret = MC_TARGET_NONE;
4640 
4641 	page = pmd_page(pmd);
4642 	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4643 	if (!(mc.flags & MOVE_ANON))
4644 		return ret;
4645 	if (page->mem_cgroup == mc.from) {
4646 		ret = MC_TARGET_PAGE;
4647 		if (target) {
4648 			get_page(page);
4649 			target->page = page;
4650 		}
4651 	}
4652 	return ret;
4653 }
4654 #else
4655 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4656 		unsigned long addr, pmd_t pmd, union mc_target *target)
4657 {
4658 	return MC_TARGET_NONE;
4659 }
4660 #endif
4661 
4662 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4663 					unsigned long addr, unsigned long end,
4664 					struct mm_walk *walk)
4665 {
4666 	struct vm_area_struct *vma = walk->vma;
4667 	pte_t *pte;
4668 	spinlock_t *ptl;
4669 
4670 	ptl = pmd_trans_huge_lock(pmd, vma);
4671 	if (ptl) {
4672 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4673 			mc.precharge += HPAGE_PMD_NR;
4674 		spin_unlock(ptl);
4675 		return 0;
4676 	}
4677 
4678 	if (pmd_trans_unstable(pmd))
4679 		return 0;
4680 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4681 	for (; addr != end; pte++, addr += PAGE_SIZE)
4682 		if (get_mctgt_type(vma, addr, *pte, NULL))
4683 			mc.precharge++;	/* increment precharge temporarily */
4684 	pte_unmap_unlock(pte - 1, ptl);
4685 	cond_resched();
4686 
4687 	return 0;
4688 }
4689 
4690 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4691 {
4692 	unsigned long precharge;
4693 
4694 	struct mm_walk mem_cgroup_count_precharge_walk = {
4695 		.pmd_entry = mem_cgroup_count_precharge_pte_range,
4696 		.mm = mm,
4697 	};
4698 	down_read(&mm->mmap_sem);
4699 	walk_page_range(0, mm->highest_vm_end,
4700 			&mem_cgroup_count_precharge_walk);
4701 	up_read(&mm->mmap_sem);
4702 
4703 	precharge = mc.precharge;
4704 	mc.precharge = 0;
4705 
4706 	return precharge;
4707 }
4708 
4709 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4710 {
4711 	unsigned long precharge = mem_cgroup_count_precharge(mm);
4712 
4713 	VM_BUG_ON(mc.moving_task);
4714 	mc.moving_task = current;
4715 	return mem_cgroup_do_precharge(precharge);
4716 }
4717 
4718 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4719 static void __mem_cgroup_clear_mc(void)
4720 {
4721 	struct mem_cgroup *from = mc.from;
4722 	struct mem_cgroup *to = mc.to;
4723 
4724 	/* we must uncharge all the leftover precharges from mc.to */
4725 	if (mc.precharge) {
4726 		cancel_charge(mc.to, mc.precharge);
4727 		mc.precharge = 0;
4728 	}
4729 	/*
4730 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4731 	 * we must uncharge here.
4732 	 */
4733 	if (mc.moved_charge) {
4734 		cancel_charge(mc.from, mc.moved_charge);
4735 		mc.moved_charge = 0;
4736 	}
4737 	/* we must fixup refcnts and charges */
4738 	if (mc.moved_swap) {
4739 		/* uncharge swap account from the old cgroup */
4740 		if (!mem_cgroup_is_root(mc.from))
4741 			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4742 
4743 		mem_cgroup_id_put_many(mc.from, mc.moved_swap);
4744 
4745 		/*
4746 		 * we charged both to->memory and to->memsw, so we
4747 		 * should uncharge to->memory.
4748 		 */
4749 		if (!mem_cgroup_is_root(mc.to))
4750 			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4751 
4752 		mem_cgroup_id_get_many(mc.to, mc.moved_swap);
4753 		css_put_many(&mc.to->css, mc.moved_swap);
4754 
4755 		mc.moved_swap = 0;
4756 	}
4757 	memcg_oom_recover(from);
4758 	memcg_oom_recover(to);
4759 	wake_up_all(&mc.waitq);
4760 }
4761 
4762 static void mem_cgroup_clear_mc(void)
4763 {
4764 	struct mm_struct *mm = mc.mm;
4765 
4766 	/*
4767 	 * we must clear moving_task before waking up waiters at the end of
4768 	 * task migration.
4769 	 */
4770 	mc.moving_task = NULL;
4771 	__mem_cgroup_clear_mc();
4772 	spin_lock(&mc.lock);
4773 	mc.from = NULL;
4774 	mc.to = NULL;
4775 	mc.mm = NULL;
4776 	spin_unlock(&mc.lock);
4777 
4778 	mmput(mm);
4779 }
4780 
4781 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4782 {
4783 	struct cgroup_subsys_state *css;
4784 	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4785 	struct mem_cgroup *from;
4786 	struct task_struct *leader, *p;
4787 	struct mm_struct *mm;
4788 	unsigned long move_flags;
4789 	int ret = 0;
4790 
4791 	/* charge immigration isn't supported on the default hierarchy */
4792 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4793 		return 0;
4794 
4795 	/*
4796 	 * Multi-process migrations only happen on the default hierarchy
4797 	 * where charge immigration is not used.  Perform charge
4798 	 * immigration if @tset contains a leader and whine if there are
4799 	 * multiple.
4800 	 */
4801 	p = NULL;
4802 	cgroup_taskset_for_each_leader(leader, css, tset) {
4803 		WARN_ON_ONCE(p);
4804 		p = leader;
4805 		memcg = mem_cgroup_from_css(css);
4806 	}
4807 	if (!p)
4808 		return 0;
4809 
4810 	/*
4811 	 * We are now commited to this value whatever it is. Changes in this
4812 	 * tunable will only affect upcoming migrations, not the current one.
4813 	 * So we need to save it, and keep it going.
4814 	 */
4815 	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4816 	if (!move_flags)
4817 		return 0;
4818 
4819 	from = mem_cgroup_from_task(p);
4820 
4821 	VM_BUG_ON(from == memcg);
4822 
4823 	mm = get_task_mm(p);
4824 	if (!mm)
4825 		return 0;
4826 	/* We move charges only when we move a owner of the mm */
4827 	if (mm->owner == p) {
4828 		VM_BUG_ON(mc.from);
4829 		VM_BUG_ON(mc.to);
4830 		VM_BUG_ON(mc.precharge);
4831 		VM_BUG_ON(mc.moved_charge);
4832 		VM_BUG_ON(mc.moved_swap);
4833 
4834 		spin_lock(&mc.lock);
4835 		mc.mm = mm;
4836 		mc.from = from;
4837 		mc.to = memcg;
4838 		mc.flags = move_flags;
4839 		spin_unlock(&mc.lock);
4840 		/* We set mc.moving_task later */
4841 
4842 		ret = mem_cgroup_precharge_mc(mm);
4843 		if (ret)
4844 			mem_cgroup_clear_mc();
4845 	} else {
4846 		mmput(mm);
4847 	}
4848 	return ret;
4849 }
4850 
4851 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4852 {
4853 	if (mc.to)
4854 		mem_cgroup_clear_mc();
4855 }
4856 
4857 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4858 				unsigned long addr, unsigned long end,
4859 				struct mm_walk *walk)
4860 {
4861 	int ret = 0;
4862 	struct vm_area_struct *vma = walk->vma;
4863 	pte_t *pte;
4864 	spinlock_t *ptl;
4865 	enum mc_target_type target_type;
4866 	union mc_target target;
4867 	struct page *page;
4868 
4869 	ptl = pmd_trans_huge_lock(pmd, vma);
4870 	if (ptl) {
4871 		if (mc.precharge < HPAGE_PMD_NR) {
4872 			spin_unlock(ptl);
4873 			return 0;
4874 		}
4875 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4876 		if (target_type == MC_TARGET_PAGE) {
4877 			page = target.page;
4878 			if (!isolate_lru_page(page)) {
4879 				if (!mem_cgroup_move_account(page, true,
4880 							     mc.from, mc.to)) {
4881 					mc.precharge -= HPAGE_PMD_NR;
4882 					mc.moved_charge += HPAGE_PMD_NR;
4883 				}
4884 				putback_lru_page(page);
4885 			}
4886 			put_page(page);
4887 		}
4888 		spin_unlock(ptl);
4889 		return 0;
4890 	}
4891 
4892 	if (pmd_trans_unstable(pmd))
4893 		return 0;
4894 retry:
4895 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4896 	for (; addr != end; addr += PAGE_SIZE) {
4897 		pte_t ptent = *(pte++);
4898 		swp_entry_t ent;
4899 
4900 		if (!mc.precharge)
4901 			break;
4902 
4903 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
4904 		case MC_TARGET_PAGE:
4905 			page = target.page;
4906 			/*
4907 			 * We can have a part of the split pmd here. Moving it
4908 			 * can be done but it would be too convoluted so simply
4909 			 * ignore such a partial THP and keep it in original
4910 			 * memcg. There should be somebody mapping the head.
4911 			 */
4912 			if (PageTransCompound(page))
4913 				goto put;
4914 			if (isolate_lru_page(page))
4915 				goto put;
4916 			if (!mem_cgroup_move_account(page, false,
4917 						mc.from, mc.to)) {
4918 				mc.precharge--;
4919 				/* we uncharge from mc.from later. */
4920 				mc.moved_charge++;
4921 			}
4922 			putback_lru_page(page);
4923 put:			/* get_mctgt_type() gets the page */
4924 			put_page(page);
4925 			break;
4926 		case MC_TARGET_SWAP:
4927 			ent = target.ent;
4928 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4929 				mc.precharge--;
4930 				/* we fixup refcnts and charges later. */
4931 				mc.moved_swap++;
4932 			}
4933 			break;
4934 		default:
4935 			break;
4936 		}
4937 	}
4938 	pte_unmap_unlock(pte - 1, ptl);
4939 	cond_resched();
4940 
4941 	if (addr != end) {
4942 		/*
4943 		 * We have consumed all precharges we got in can_attach().
4944 		 * We try charge one by one, but don't do any additional
4945 		 * charges to mc.to if we have failed in charge once in attach()
4946 		 * phase.
4947 		 */
4948 		ret = mem_cgroup_do_precharge(1);
4949 		if (!ret)
4950 			goto retry;
4951 	}
4952 
4953 	return ret;
4954 }
4955 
4956 static void mem_cgroup_move_charge(void)
4957 {
4958 	struct mm_walk mem_cgroup_move_charge_walk = {
4959 		.pmd_entry = mem_cgroup_move_charge_pte_range,
4960 		.mm = mc.mm,
4961 	};
4962 
4963 	lru_add_drain_all();
4964 	/*
4965 	 * Signal lock_page_memcg() to take the memcg's move_lock
4966 	 * while we're moving its pages to another memcg. Then wait
4967 	 * for already started RCU-only updates to finish.
4968 	 */
4969 	atomic_inc(&mc.from->moving_account);
4970 	synchronize_rcu();
4971 retry:
4972 	if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
4973 		/*
4974 		 * Someone who are holding the mmap_sem might be waiting in
4975 		 * waitq. So we cancel all extra charges, wake up all waiters,
4976 		 * and retry. Because we cancel precharges, we might not be able
4977 		 * to move enough charges, but moving charge is a best-effort
4978 		 * feature anyway, so it wouldn't be a big problem.
4979 		 */
4980 		__mem_cgroup_clear_mc();
4981 		cond_resched();
4982 		goto retry;
4983 	}
4984 	/*
4985 	 * When we have consumed all precharges and failed in doing
4986 	 * additional charge, the page walk just aborts.
4987 	 */
4988 	walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
4989 
4990 	up_read(&mc.mm->mmap_sem);
4991 	atomic_dec(&mc.from->moving_account);
4992 }
4993 
4994 static void mem_cgroup_move_task(void)
4995 {
4996 	if (mc.to) {
4997 		mem_cgroup_move_charge();
4998 		mem_cgroup_clear_mc();
4999 	}
5000 }
5001 #else	/* !CONFIG_MMU */
5002 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5003 {
5004 	return 0;
5005 }
5006 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5007 {
5008 }
5009 static void mem_cgroup_move_task(void)
5010 {
5011 }
5012 #endif
5013 
5014 /*
5015  * Cgroup retains root cgroups across [un]mount cycles making it necessary
5016  * to verify whether we're attached to the default hierarchy on each mount
5017  * attempt.
5018  */
5019 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5020 {
5021 	/*
5022 	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5023 	 * guarantees that @root doesn't have any children, so turning it
5024 	 * on for the root memcg is enough.
5025 	 */
5026 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5027 		root_mem_cgroup->use_hierarchy = true;
5028 	else
5029 		root_mem_cgroup->use_hierarchy = false;
5030 }
5031 
5032 static u64 memory_current_read(struct cgroup_subsys_state *css,
5033 			       struct cftype *cft)
5034 {
5035 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5036 
5037 	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5038 }
5039 
5040 static int memory_low_show(struct seq_file *m, void *v)
5041 {
5042 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5043 	unsigned long low = READ_ONCE(memcg->low);
5044 
5045 	if (low == PAGE_COUNTER_MAX)
5046 		seq_puts(m, "max\n");
5047 	else
5048 		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5049 
5050 	return 0;
5051 }
5052 
5053 static ssize_t memory_low_write(struct kernfs_open_file *of,
5054 				char *buf, size_t nbytes, loff_t off)
5055 {
5056 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5057 	unsigned long low;
5058 	int err;
5059 
5060 	buf = strstrip(buf);
5061 	err = page_counter_memparse(buf, "max", &low);
5062 	if (err)
5063 		return err;
5064 
5065 	memcg->low = low;
5066 
5067 	return nbytes;
5068 }
5069 
5070 static int memory_high_show(struct seq_file *m, void *v)
5071 {
5072 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5073 	unsigned long high = READ_ONCE(memcg->high);
5074 
5075 	if (high == PAGE_COUNTER_MAX)
5076 		seq_puts(m, "max\n");
5077 	else
5078 		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5079 
5080 	return 0;
5081 }
5082 
5083 static ssize_t memory_high_write(struct kernfs_open_file *of,
5084 				 char *buf, size_t nbytes, loff_t off)
5085 {
5086 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5087 	unsigned long nr_pages;
5088 	unsigned long high;
5089 	int err;
5090 
5091 	buf = strstrip(buf);
5092 	err = page_counter_memparse(buf, "max", &high);
5093 	if (err)
5094 		return err;
5095 
5096 	memcg->high = high;
5097 
5098 	nr_pages = page_counter_read(&memcg->memory);
5099 	if (nr_pages > high)
5100 		try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5101 					     GFP_KERNEL, true);
5102 
5103 	memcg_wb_domain_size_changed(memcg);
5104 	return nbytes;
5105 }
5106 
5107 static int memory_max_show(struct seq_file *m, void *v)
5108 {
5109 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5110 	unsigned long max = READ_ONCE(memcg->memory.limit);
5111 
5112 	if (max == PAGE_COUNTER_MAX)
5113 		seq_puts(m, "max\n");
5114 	else
5115 		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5116 
5117 	return 0;
5118 }
5119 
5120 static ssize_t memory_max_write(struct kernfs_open_file *of,
5121 				char *buf, size_t nbytes, loff_t off)
5122 {
5123 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5124 	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5125 	bool drained = false;
5126 	unsigned long max;
5127 	int err;
5128 
5129 	buf = strstrip(buf);
5130 	err = page_counter_memparse(buf, "max", &max);
5131 	if (err)
5132 		return err;
5133 
5134 	xchg(&memcg->memory.limit, max);
5135 
5136 	for (;;) {
5137 		unsigned long nr_pages = page_counter_read(&memcg->memory);
5138 
5139 		if (nr_pages <= max)
5140 			break;
5141 
5142 		if (signal_pending(current)) {
5143 			err = -EINTR;
5144 			break;
5145 		}
5146 
5147 		if (!drained) {
5148 			drain_all_stock(memcg);
5149 			drained = true;
5150 			continue;
5151 		}
5152 
5153 		if (nr_reclaims) {
5154 			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5155 							  GFP_KERNEL, true))
5156 				nr_reclaims--;
5157 			continue;
5158 		}
5159 
5160 		mem_cgroup_event(memcg, MEMCG_OOM);
5161 		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5162 			break;
5163 	}
5164 
5165 	memcg_wb_domain_size_changed(memcg);
5166 	return nbytes;
5167 }
5168 
5169 static int memory_events_show(struct seq_file *m, void *v)
5170 {
5171 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5172 
5173 	seq_printf(m, "low %lu\n", memcg_sum_events(memcg, MEMCG_LOW));
5174 	seq_printf(m, "high %lu\n", memcg_sum_events(memcg, MEMCG_HIGH));
5175 	seq_printf(m, "max %lu\n", memcg_sum_events(memcg, MEMCG_MAX));
5176 	seq_printf(m, "oom %lu\n", memcg_sum_events(memcg, MEMCG_OOM));
5177 	seq_printf(m, "oom_kill %lu\n", memcg_sum_events(memcg, OOM_KILL));
5178 
5179 	return 0;
5180 }
5181 
5182 static int memory_stat_show(struct seq_file *m, void *v)
5183 {
5184 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5185 	unsigned long stat[MEMCG_NR_STAT];
5186 	unsigned long events[MEMCG_NR_EVENTS];
5187 	int i;
5188 
5189 	/*
5190 	 * Provide statistics on the state of the memory subsystem as
5191 	 * well as cumulative event counters that show past behavior.
5192 	 *
5193 	 * This list is ordered following a combination of these gradients:
5194 	 * 1) generic big picture -> specifics and details
5195 	 * 2) reflecting userspace activity -> reflecting kernel heuristics
5196 	 *
5197 	 * Current memory state:
5198 	 */
5199 
5200 	tree_stat(memcg, stat);
5201 	tree_events(memcg, events);
5202 
5203 	seq_printf(m, "anon %llu\n",
5204 		   (u64)stat[MEMCG_RSS] * PAGE_SIZE);
5205 	seq_printf(m, "file %llu\n",
5206 		   (u64)stat[MEMCG_CACHE] * PAGE_SIZE);
5207 	seq_printf(m, "kernel_stack %llu\n",
5208 		   (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024);
5209 	seq_printf(m, "slab %llu\n",
5210 		   (u64)(stat[NR_SLAB_RECLAIMABLE] +
5211 			 stat[NR_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5212 	seq_printf(m, "sock %llu\n",
5213 		   (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5214 
5215 	seq_printf(m, "shmem %llu\n",
5216 		   (u64)stat[NR_SHMEM] * PAGE_SIZE);
5217 	seq_printf(m, "file_mapped %llu\n",
5218 		   (u64)stat[NR_FILE_MAPPED] * PAGE_SIZE);
5219 	seq_printf(m, "file_dirty %llu\n",
5220 		   (u64)stat[NR_FILE_DIRTY] * PAGE_SIZE);
5221 	seq_printf(m, "file_writeback %llu\n",
5222 		   (u64)stat[NR_WRITEBACK] * PAGE_SIZE);
5223 
5224 	for (i = 0; i < NR_LRU_LISTS; i++) {
5225 		struct mem_cgroup *mi;
5226 		unsigned long val = 0;
5227 
5228 		for_each_mem_cgroup_tree(mi, memcg)
5229 			val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5230 		seq_printf(m, "%s %llu\n",
5231 			   mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5232 	}
5233 
5234 	seq_printf(m, "slab_reclaimable %llu\n",
5235 		   (u64)stat[NR_SLAB_RECLAIMABLE] * PAGE_SIZE);
5236 	seq_printf(m, "slab_unreclaimable %llu\n",
5237 		   (u64)stat[NR_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5238 
5239 	/* Accumulated memory events */
5240 
5241 	seq_printf(m, "pgfault %lu\n", events[PGFAULT]);
5242 	seq_printf(m, "pgmajfault %lu\n", events[PGMAJFAULT]);
5243 
5244 	seq_printf(m, "pgrefill %lu\n", events[PGREFILL]);
5245 	seq_printf(m, "pgscan %lu\n", events[PGSCAN_KSWAPD] +
5246 		   events[PGSCAN_DIRECT]);
5247 	seq_printf(m, "pgsteal %lu\n", events[PGSTEAL_KSWAPD] +
5248 		   events[PGSTEAL_DIRECT]);
5249 	seq_printf(m, "pgactivate %lu\n", events[PGACTIVATE]);
5250 	seq_printf(m, "pgdeactivate %lu\n", events[PGDEACTIVATE]);
5251 	seq_printf(m, "pglazyfree %lu\n", events[PGLAZYFREE]);
5252 	seq_printf(m, "pglazyfreed %lu\n", events[PGLAZYFREED]);
5253 
5254 	seq_printf(m, "workingset_refault %lu\n",
5255 		   stat[WORKINGSET_REFAULT]);
5256 	seq_printf(m, "workingset_activate %lu\n",
5257 		   stat[WORKINGSET_ACTIVATE]);
5258 	seq_printf(m, "workingset_nodereclaim %lu\n",
5259 		   stat[WORKINGSET_NODERECLAIM]);
5260 
5261 	return 0;
5262 }
5263 
5264 static struct cftype memory_files[] = {
5265 	{
5266 		.name = "current",
5267 		.flags = CFTYPE_NOT_ON_ROOT,
5268 		.read_u64 = memory_current_read,
5269 	},
5270 	{
5271 		.name = "low",
5272 		.flags = CFTYPE_NOT_ON_ROOT,
5273 		.seq_show = memory_low_show,
5274 		.write = memory_low_write,
5275 	},
5276 	{
5277 		.name = "high",
5278 		.flags = CFTYPE_NOT_ON_ROOT,
5279 		.seq_show = memory_high_show,
5280 		.write = memory_high_write,
5281 	},
5282 	{
5283 		.name = "max",
5284 		.flags = CFTYPE_NOT_ON_ROOT,
5285 		.seq_show = memory_max_show,
5286 		.write = memory_max_write,
5287 	},
5288 	{
5289 		.name = "events",
5290 		.flags = CFTYPE_NOT_ON_ROOT,
5291 		.file_offset = offsetof(struct mem_cgroup, events_file),
5292 		.seq_show = memory_events_show,
5293 	},
5294 	{
5295 		.name = "stat",
5296 		.flags = CFTYPE_NOT_ON_ROOT,
5297 		.seq_show = memory_stat_show,
5298 	},
5299 	{ }	/* terminate */
5300 };
5301 
5302 struct cgroup_subsys memory_cgrp_subsys = {
5303 	.css_alloc = mem_cgroup_css_alloc,
5304 	.css_online = mem_cgroup_css_online,
5305 	.css_offline = mem_cgroup_css_offline,
5306 	.css_released = mem_cgroup_css_released,
5307 	.css_free = mem_cgroup_css_free,
5308 	.css_reset = mem_cgroup_css_reset,
5309 	.can_attach = mem_cgroup_can_attach,
5310 	.cancel_attach = mem_cgroup_cancel_attach,
5311 	.post_attach = mem_cgroup_move_task,
5312 	.bind = mem_cgroup_bind,
5313 	.dfl_cftypes = memory_files,
5314 	.legacy_cftypes = mem_cgroup_legacy_files,
5315 	.early_init = 0,
5316 };
5317 
5318 /**
5319  * mem_cgroup_low - check if memory consumption is below the normal range
5320  * @root: the top ancestor of the sub-tree being checked
5321  * @memcg: the memory cgroup to check
5322  *
5323  * Returns %true if memory consumption of @memcg, and that of all
5324  * ancestors up to (but not including) @root, is below the normal range.
5325  *
5326  * @root is exclusive; it is never low when looked at directly and isn't
5327  * checked when traversing the hierarchy.
5328  *
5329  * Excluding @root enables using memory.low to prioritize memory usage
5330  * between cgroups within a subtree of the hierarchy that is limited by
5331  * memory.high or memory.max.
5332  *
5333  * For example, given cgroup A with children B and C:
5334  *
5335  *    A
5336  *   / \
5337  *  B   C
5338  *
5339  * and
5340  *
5341  *  1. A/memory.current > A/memory.high
5342  *  2. A/B/memory.current < A/B/memory.low
5343  *  3. A/C/memory.current >= A/C/memory.low
5344  *
5345  * As 'A' is high, i.e. triggers reclaim from 'A', and 'B' is low, we
5346  * should reclaim from 'C' until 'A' is no longer high or until we can
5347  * no longer reclaim from 'C'.  If 'A', i.e. @root, isn't excluded by
5348  * mem_cgroup_low when reclaming from 'A', then 'B' won't be considered
5349  * low and we will reclaim indiscriminately from both 'B' and 'C'.
5350  */
5351 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5352 {
5353 	if (mem_cgroup_disabled())
5354 		return false;
5355 
5356 	if (!root)
5357 		root = root_mem_cgroup;
5358 	if (memcg == root)
5359 		return false;
5360 
5361 	for (; memcg != root; memcg = parent_mem_cgroup(memcg)) {
5362 		if (page_counter_read(&memcg->memory) >= memcg->low)
5363 			return false;
5364 	}
5365 
5366 	return true;
5367 }
5368 
5369 /**
5370  * mem_cgroup_try_charge - try charging a page
5371  * @page: page to charge
5372  * @mm: mm context of the victim
5373  * @gfp_mask: reclaim mode
5374  * @memcgp: charged memcg return
5375  * @compound: charge the page as compound or small page
5376  *
5377  * Try to charge @page to the memcg that @mm belongs to, reclaiming
5378  * pages according to @gfp_mask if necessary.
5379  *
5380  * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5381  * Otherwise, an error code is returned.
5382  *
5383  * After page->mapping has been set up, the caller must finalize the
5384  * charge with mem_cgroup_commit_charge().  Or abort the transaction
5385  * with mem_cgroup_cancel_charge() in case page instantiation fails.
5386  */
5387 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5388 			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
5389 			  bool compound)
5390 {
5391 	struct mem_cgroup *memcg = NULL;
5392 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5393 	int ret = 0;
5394 
5395 	if (mem_cgroup_disabled())
5396 		goto out;
5397 
5398 	if (PageSwapCache(page)) {
5399 		/*
5400 		 * Every swap fault against a single page tries to charge the
5401 		 * page, bail as early as possible.  shmem_unuse() encounters
5402 		 * already charged pages, too.  The USED bit is protected by
5403 		 * the page lock, which serializes swap cache removal, which
5404 		 * in turn serializes uncharging.
5405 		 */
5406 		VM_BUG_ON_PAGE(!PageLocked(page), page);
5407 		if (page->mem_cgroup)
5408 			goto out;
5409 
5410 		if (do_swap_account) {
5411 			swp_entry_t ent = { .val = page_private(page), };
5412 			unsigned short id = lookup_swap_cgroup_id(ent);
5413 
5414 			rcu_read_lock();
5415 			memcg = mem_cgroup_from_id(id);
5416 			if (memcg && !css_tryget_online(&memcg->css))
5417 				memcg = NULL;
5418 			rcu_read_unlock();
5419 		}
5420 	}
5421 
5422 	if (!memcg)
5423 		memcg = get_mem_cgroup_from_mm(mm);
5424 
5425 	ret = try_charge(memcg, gfp_mask, nr_pages);
5426 
5427 	css_put(&memcg->css);
5428 out:
5429 	*memcgp = memcg;
5430 	return ret;
5431 }
5432 
5433 /**
5434  * mem_cgroup_commit_charge - commit a page charge
5435  * @page: page to charge
5436  * @memcg: memcg to charge the page to
5437  * @lrucare: page might be on LRU already
5438  * @compound: charge the page as compound or small page
5439  *
5440  * Finalize a charge transaction started by mem_cgroup_try_charge(),
5441  * after page->mapping has been set up.  This must happen atomically
5442  * as part of the page instantiation, i.e. under the page table lock
5443  * for anonymous pages, under the page lock for page and swap cache.
5444  *
5445  * In addition, the page must not be on the LRU during the commit, to
5446  * prevent racing with task migration.  If it might be, use @lrucare.
5447  *
5448  * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5449  */
5450 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5451 			      bool lrucare, bool compound)
5452 {
5453 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5454 
5455 	VM_BUG_ON_PAGE(!page->mapping, page);
5456 	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5457 
5458 	if (mem_cgroup_disabled())
5459 		return;
5460 	/*
5461 	 * Swap faults will attempt to charge the same page multiple
5462 	 * times.  But reuse_swap_page() might have removed the page
5463 	 * from swapcache already, so we can't check PageSwapCache().
5464 	 */
5465 	if (!memcg)
5466 		return;
5467 
5468 	commit_charge(page, memcg, lrucare);
5469 
5470 	local_irq_disable();
5471 	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5472 	memcg_check_events(memcg, page);
5473 	local_irq_enable();
5474 
5475 	if (do_memsw_account() && PageSwapCache(page)) {
5476 		swp_entry_t entry = { .val = page_private(page) };
5477 		/*
5478 		 * The swap entry might not get freed for a long time,
5479 		 * let's not wait for it.  The page already received a
5480 		 * memory+swap charge, drop the swap entry duplicate.
5481 		 */
5482 		mem_cgroup_uncharge_swap(entry, nr_pages);
5483 	}
5484 }
5485 
5486 /**
5487  * mem_cgroup_cancel_charge - cancel a page charge
5488  * @page: page to charge
5489  * @memcg: memcg to charge the page to
5490  * @compound: charge the page as compound or small page
5491  *
5492  * Cancel a charge transaction started by mem_cgroup_try_charge().
5493  */
5494 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5495 		bool compound)
5496 {
5497 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5498 
5499 	if (mem_cgroup_disabled())
5500 		return;
5501 	/*
5502 	 * Swap faults will attempt to charge the same page multiple
5503 	 * times.  But reuse_swap_page() might have removed the page
5504 	 * from swapcache already, so we can't check PageSwapCache().
5505 	 */
5506 	if (!memcg)
5507 		return;
5508 
5509 	cancel_charge(memcg, nr_pages);
5510 }
5511 
5512 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5513 			   unsigned long nr_anon, unsigned long nr_file,
5514 			   unsigned long nr_kmem, unsigned long nr_huge,
5515 			   unsigned long nr_shmem, struct page *dummy_page)
5516 {
5517 	unsigned long nr_pages = nr_anon + nr_file + nr_kmem;
5518 	unsigned long flags;
5519 
5520 	if (!mem_cgroup_is_root(memcg)) {
5521 		page_counter_uncharge(&memcg->memory, nr_pages);
5522 		if (do_memsw_account())
5523 			page_counter_uncharge(&memcg->memsw, nr_pages);
5524 		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && nr_kmem)
5525 			page_counter_uncharge(&memcg->kmem, nr_kmem);
5526 		memcg_oom_recover(memcg);
5527 	}
5528 
5529 	local_irq_save(flags);
5530 	__this_cpu_sub(memcg->stat->count[MEMCG_RSS], nr_anon);
5531 	__this_cpu_sub(memcg->stat->count[MEMCG_CACHE], nr_file);
5532 	__this_cpu_sub(memcg->stat->count[MEMCG_RSS_HUGE], nr_huge);
5533 	__this_cpu_sub(memcg->stat->count[NR_SHMEM], nr_shmem);
5534 	__this_cpu_add(memcg->stat->events[PGPGOUT], pgpgout);
5535 	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5536 	memcg_check_events(memcg, dummy_page);
5537 	local_irq_restore(flags);
5538 
5539 	if (!mem_cgroup_is_root(memcg))
5540 		css_put_many(&memcg->css, nr_pages);
5541 }
5542 
5543 static void uncharge_list(struct list_head *page_list)
5544 {
5545 	struct mem_cgroup *memcg = NULL;
5546 	unsigned long nr_shmem = 0;
5547 	unsigned long nr_anon = 0;
5548 	unsigned long nr_file = 0;
5549 	unsigned long nr_huge = 0;
5550 	unsigned long nr_kmem = 0;
5551 	unsigned long pgpgout = 0;
5552 	struct list_head *next;
5553 	struct page *page;
5554 
5555 	/*
5556 	 * Note that the list can be a single page->lru; hence the
5557 	 * do-while loop instead of a simple list_for_each_entry().
5558 	 */
5559 	next = page_list->next;
5560 	do {
5561 		page = list_entry(next, struct page, lru);
5562 		next = page->lru.next;
5563 
5564 		VM_BUG_ON_PAGE(PageLRU(page), page);
5565 		VM_BUG_ON_PAGE(!PageHWPoison(page) && page_count(page), page);
5566 
5567 		if (!page->mem_cgroup)
5568 			continue;
5569 
5570 		/*
5571 		 * Nobody should be changing or seriously looking at
5572 		 * page->mem_cgroup at this point, we have fully
5573 		 * exclusive access to the page.
5574 		 */
5575 
5576 		if (memcg != page->mem_cgroup) {
5577 			if (memcg) {
5578 				uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5579 					       nr_kmem, nr_huge, nr_shmem, page);
5580 				pgpgout = nr_anon = nr_file = nr_kmem = 0;
5581 				nr_huge = nr_shmem = 0;
5582 			}
5583 			memcg = page->mem_cgroup;
5584 		}
5585 
5586 		if (!PageKmemcg(page)) {
5587 			unsigned int nr_pages = 1;
5588 
5589 			if (PageTransHuge(page)) {
5590 				nr_pages <<= compound_order(page);
5591 				nr_huge += nr_pages;
5592 			}
5593 			if (PageAnon(page))
5594 				nr_anon += nr_pages;
5595 			else {
5596 				nr_file += nr_pages;
5597 				if (PageSwapBacked(page))
5598 					nr_shmem += nr_pages;
5599 			}
5600 			pgpgout++;
5601 		} else {
5602 			nr_kmem += 1 << compound_order(page);
5603 			__ClearPageKmemcg(page);
5604 		}
5605 
5606 		page->mem_cgroup = NULL;
5607 	} while (next != page_list);
5608 
5609 	if (memcg)
5610 		uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5611 			       nr_kmem, nr_huge, nr_shmem, page);
5612 }
5613 
5614 /**
5615  * mem_cgroup_uncharge - uncharge a page
5616  * @page: page to uncharge
5617  *
5618  * Uncharge a page previously charged with mem_cgroup_try_charge() and
5619  * mem_cgroup_commit_charge().
5620  */
5621 void mem_cgroup_uncharge(struct page *page)
5622 {
5623 	if (mem_cgroup_disabled())
5624 		return;
5625 
5626 	/* Don't touch page->lru of any random page, pre-check: */
5627 	if (!page->mem_cgroup)
5628 		return;
5629 
5630 	INIT_LIST_HEAD(&page->lru);
5631 	uncharge_list(&page->lru);
5632 }
5633 
5634 /**
5635  * mem_cgroup_uncharge_list - uncharge a list of page
5636  * @page_list: list of pages to uncharge
5637  *
5638  * Uncharge a list of pages previously charged with
5639  * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5640  */
5641 void mem_cgroup_uncharge_list(struct list_head *page_list)
5642 {
5643 	if (mem_cgroup_disabled())
5644 		return;
5645 
5646 	if (!list_empty(page_list))
5647 		uncharge_list(page_list);
5648 }
5649 
5650 /**
5651  * mem_cgroup_migrate - charge a page's replacement
5652  * @oldpage: currently circulating page
5653  * @newpage: replacement page
5654  *
5655  * Charge @newpage as a replacement page for @oldpage. @oldpage will
5656  * be uncharged upon free.
5657  *
5658  * Both pages must be locked, @newpage->mapping must be set up.
5659  */
5660 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5661 {
5662 	struct mem_cgroup *memcg;
5663 	unsigned int nr_pages;
5664 	bool compound;
5665 	unsigned long flags;
5666 
5667 	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5668 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5669 	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5670 	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5671 		       newpage);
5672 
5673 	if (mem_cgroup_disabled())
5674 		return;
5675 
5676 	/* Page cache replacement: new page already charged? */
5677 	if (newpage->mem_cgroup)
5678 		return;
5679 
5680 	/* Swapcache readahead pages can get replaced before being charged */
5681 	memcg = oldpage->mem_cgroup;
5682 	if (!memcg)
5683 		return;
5684 
5685 	/* Force-charge the new page. The old one will be freed soon */
5686 	compound = PageTransHuge(newpage);
5687 	nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5688 
5689 	page_counter_charge(&memcg->memory, nr_pages);
5690 	if (do_memsw_account())
5691 		page_counter_charge(&memcg->memsw, nr_pages);
5692 	css_get_many(&memcg->css, nr_pages);
5693 
5694 	commit_charge(newpage, memcg, false);
5695 
5696 	local_irq_save(flags);
5697 	mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5698 	memcg_check_events(memcg, newpage);
5699 	local_irq_restore(flags);
5700 }
5701 
5702 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5703 EXPORT_SYMBOL(memcg_sockets_enabled_key);
5704 
5705 void mem_cgroup_sk_alloc(struct sock *sk)
5706 {
5707 	struct mem_cgroup *memcg;
5708 
5709 	if (!mem_cgroup_sockets_enabled)
5710 		return;
5711 
5712 	/*
5713 	 * Socket cloning can throw us here with sk_memcg already
5714 	 * filled. It won't however, necessarily happen from
5715 	 * process context. So the test for root memcg given
5716 	 * the current task's memcg won't help us in this case.
5717 	 *
5718 	 * Respecting the original socket's memcg is a better
5719 	 * decision in this case.
5720 	 */
5721 	if (sk->sk_memcg) {
5722 		BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5723 		css_get(&sk->sk_memcg->css);
5724 		return;
5725 	}
5726 
5727 	rcu_read_lock();
5728 	memcg = mem_cgroup_from_task(current);
5729 	if (memcg == root_mem_cgroup)
5730 		goto out;
5731 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5732 		goto out;
5733 	if (css_tryget_online(&memcg->css))
5734 		sk->sk_memcg = memcg;
5735 out:
5736 	rcu_read_unlock();
5737 }
5738 
5739 void mem_cgroup_sk_free(struct sock *sk)
5740 {
5741 	if (sk->sk_memcg)
5742 		css_put(&sk->sk_memcg->css);
5743 }
5744 
5745 /**
5746  * mem_cgroup_charge_skmem - charge socket memory
5747  * @memcg: memcg to charge
5748  * @nr_pages: number of pages to charge
5749  *
5750  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5751  * @memcg's configured limit, %false if the charge had to be forced.
5752  */
5753 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5754 {
5755 	gfp_t gfp_mask = GFP_KERNEL;
5756 
5757 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5758 		struct page_counter *fail;
5759 
5760 		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5761 			memcg->tcpmem_pressure = 0;
5762 			return true;
5763 		}
5764 		page_counter_charge(&memcg->tcpmem, nr_pages);
5765 		memcg->tcpmem_pressure = 1;
5766 		return false;
5767 	}
5768 
5769 	/* Don't block in the packet receive path */
5770 	if (in_softirq())
5771 		gfp_mask = GFP_NOWAIT;
5772 
5773 	this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5774 
5775 	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5776 		return true;
5777 
5778 	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5779 	return false;
5780 }
5781 
5782 /**
5783  * mem_cgroup_uncharge_skmem - uncharge socket memory
5784  * @memcg - memcg to uncharge
5785  * @nr_pages - number of pages to uncharge
5786  */
5787 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5788 {
5789 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5790 		page_counter_uncharge(&memcg->tcpmem, nr_pages);
5791 		return;
5792 	}
5793 
5794 	this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5795 
5796 	page_counter_uncharge(&memcg->memory, nr_pages);
5797 	css_put_many(&memcg->css, nr_pages);
5798 }
5799 
5800 static int __init cgroup_memory(char *s)
5801 {
5802 	char *token;
5803 
5804 	while ((token = strsep(&s, ",")) != NULL) {
5805 		if (!*token)
5806 			continue;
5807 		if (!strcmp(token, "nosocket"))
5808 			cgroup_memory_nosocket = true;
5809 		if (!strcmp(token, "nokmem"))
5810 			cgroup_memory_nokmem = true;
5811 	}
5812 	return 0;
5813 }
5814 __setup("cgroup.memory=", cgroup_memory);
5815 
5816 /*
5817  * subsys_initcall() for memory controller.
5818  *
5819  * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
5820  * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
5821  * basically everything that doesn't depend on a specific mem_cgroup structure
5822  * should be initialized from here.
5823  */
5824 static int __init mem_cgroup_init(void)
5825 {
5826 	int cpu, node;
5827 
5828 #ifndef CONFIG_SLOB
5829 	/*
5830 	 * Kmem cache creation is mostly done with the slab_mutex held,
5831 	 * so use a workqueue with limited concurrency to avoid stalling
5832 	 * all worker threads in case lots of cgroups are created and
5833 	 * destroyed simultaneously.
5834 	 */
5835 	memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
5836 	BUG_ON(!memcg_kmem_cache_wq);
5837 #endif
5838 
5839 	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
5840 				  memcg_hotplug_cpu_dead);
5841 
5842 	for_each_possible_cpu(cpu)
5843 		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5844 			  drain_local_stock);
5845 
5846 	for_each_node(node) {
5847 		struct mem_cgroup_tree_per_node *rtpn;
5848 
5849 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5850 				    node_online(node) ? node : NUMA_NO_NODE);
5851 
5852 		rtpn->rb_root = RB_ROOT;
5853 		spin_lock_init(&rtpn->lock);
5854 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
5855 	}
5856 
5857 	return 0;
5858 }
5859 subsys_initcall(mem_cgroup_init);
5860 
5861 #ifdef CONFIG_MEMCG_SWAP
5862 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
5863 {
5864 	while (!atomic_inc_not_zero(&memcg->id.ref)) {
5865 		/*
5866 		 * The root cgroup cannot be destroyed, so it's refcount must
5867 		 * always be >= 1.
5868 		 */
5869 		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
5870 			VM_BUG_ON(1);
5871 			break;
5872 		}
5873 		memcg = parent_mem_cgroup(memcg);
5874 		if (!memcg)
5875 			memcg = root_mem_cgroup;
5876 	}
5877 	return memcg;
5878 }
5879 
5880 /**
5881  * mem_cgroup_swapout - transfer a memsw charge to swap
5882  * @page: page whose memsw charge to transfer
5883  * @entry: swap entry to move the charge to
5884  *
5885  * Transfer the memsw charge of @page to @entry.
5886  */
5887 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5888 {
5889 	struct mem_cgroup *memcg, *swap_memcg;
5890 	unsigned short oldid;
5891 
5892 	VM_BUG_ON_PAGE(PageLRU(page), page);
5893 	VM_BUG_ON_PAGE(page_count(page), page);
5894 
5895 	if (!do_memsw_account())
5896 		return;
5897 
5898 	memcg = page->mem_cgroup;
5899 
5900 	/* Readahead page, never charged */
5901 	if (!memcg)
5902 		return;
5903 
5904 	/*
5905 	 * In case the memcg owning these pages has been offlined and doesn't
5906 	 * have an ID allocated to it anymore, charge the closest online
5907 	 * ancestor for the swap instead and transfer the memory+swap charge.
5908 	 */
5909 	swap_memcg = mem_cgroup_id_get_online(memcg);
5910 	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg), 1);
5911 	VM_BUG_ON_PAGE(oldid, page);
5912 	mem_cgroup_swap_statistics(swap_memcg, 1);
5913 
5914 	page->mem_cgroup = NULL;
5915 
5916 	if (!mem_cgroup_is_root(memcg))
5917 		page_counter_uncharge(&memcg->memory, 1);
5918 
5919 	if (memcg != swap_memcg) {
5920 		if (!mem_cgroup_is_root(swap_memcg))
5921 			page_counter_charge(&swap_memcg->memsw, 1);
5922 		page_counter_uncharge(&memcg->memsw, 1);
5923 	}
5924 
5925 	/*
5926 	 * Interrupts should be disabled here because the caller holds the
5927 	 * mapping->tree_lock lock which is taken with interrupts-off. It is
5928 	 * important here to have the interrupts disabled because it is the
5929 	 * only synchronisation we have for udpating the per-CPU variables.
5930 	 */
5931 	VM_BUG_ON(!irqs_disabled());
5932 	mem_cgroup_charge_statistics(memcg, page, false, -1);
5933 	memcg_check_events(memcg, page);
5934 
5935 	if (!mem_cgroup_is_root(memcg))
5936 		css_put(&memcg->css);
5937 }
5938 
5939 /**
5940  * mem_cgroup_try_charge_swap - try charging swap space for a page
5941  * @page: page being added to swap
5942  * @entry: swap entry to charge
5943  *
5944  * Try to charge @page's memcg for the swap space at @entry.
5945  *
5946  * Returns 0 on success, -ENOMEM on failure.
5947  */
5948 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5949 {
5950 	unsigned int nr_pages = hpage_nr_pages(page);
5951 	struct page_counter *counter;
5952 	struct mem_cgroup *memcg;
5953 	unsigned short oldid;
5954 
5955 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5956 		return 0;
5957 
5958 	memcg = page->mem_cgroup;
5959 
5960 	/* Readahead page, never charged */
5961 	if (!memcg)
5962 		return 0;
5963 
5964 	memcg = mem_cgroup_id_get_online(memcg);
5965 
5966 	if (!mem_cgroup_is_root(memcg) &&
5967 	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
5968 		mem_cgroup_id_put(memcg);
5969 		return -ENOMEM;
5970 	}
5971 
5972 	/* Get references for the tail pages, too */
5973 	if (nr_pages > 1)
5974 		mem_cgroup_id_get_many(memcg, nr_pages - 1);
5975 	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
5976 	VM_BUG_ON_PAGE(oldid, page);
5977 	mem_cgroup_swap_statistics(memcg, nr_pages);
5978 
5979 	return 0;
5980 }
5981 
5982 /**
5983  * mem_cgroup_uncharge_swap - uncharge swap space
5984  * @entry: swap entry to uncharge
5985  * @nr_pages: the amount of swap space to uncharge
5986  */
5987 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
5988 {
5989 	struct mem_cgroup *memcg;
5990 	unsigned short id;
5991 
5992 	if (!do_swap_account)
5993 		return;
5994 
5995 	id = swap_cgroup_record(entry, 0, nr_pages);
5996 	rcu_read_lock();
5997 	memcg = mem_cgroup_from_id(id);
5998 	if (memcg) {
5999 		if (!mem_cgroup_is_root(memcg)) {
6000 			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6001 				page_counter_uncharge(&memcg->swap, nr_pages);
6002 			else
6003 				page_counter_uncharge(&memcg->memsw, nr_pages);
6004 		}
6005 		mem_cgroup_swap_statistics(memcg, -nr_pages);
6006 		mem_cgroup_id_put_many(memcg, nr_pages);
6007 	}
6008 	rcu_read_unlock();
6009 }
6010 
6011 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
6012 {
6013 	long nr_swap_pages = get_nr_swap_pages();
6014 
6015 	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6016 		return nr_swap_pages;
6017 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6018 		nr_swap_pages = min_t(long, nr_swap_pages,
6019 				      READ_ONCE(memcg->swap.limit) -
6020 				      page_counter_read(&memcg->swap));
6021 	return nr_swap_pages;
6022 }
6023 
6024 bool mem_cgroup_swap_full(struct page *page)
6025 {
6026 	struct mem_cgroup *memcg;
6027 
6028 	VM_BUG_ON_PAGE(!PageLocked(page), page);
6029 
6030 	if (vm_swap_full())
6031 		return true;
6032 	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6033 		return false;
6034 
6035 	memcg = page->mem_cgroup;
6036 	if (!memcg)
6037 		return false;
6038 
6039 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6040 		if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
6041 			return true;
6042 
6043 	return false;
6044 }
6045 
6046 /* for remember boot option*/
6047 #ifdef CONFIG_MEMCG_SWAP_ENABLED
6048 static int really_do_swap_account __initdata = 1;
6049 #else
6050 static int really_do_swap_account __initdata;
6051 #endif
6052 
6053 static int __init enable_swap_account(char *s)
6054 {
6055 	if (!strcmp(s, "1"))
6056 		really_do_swap_account = 1;
6057 	else if (!strcmp(s, "0"))
6058 		really_do_swap_account = 0;
6059 	return 1;
6060 }
6061 __setup("swapaccount=", enable_swap_account);
6062 
6063 static u64 swap_current_read(struct cgroup_subsys_state *css,
6064 			     struct cftype *cft)
6065 {
6066 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6067 
6068 	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6069 }
6070 
6071 static int swap_max_show(struct seq_file *m, void *v)
6072 {
6073 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
6074 	unsigned long max = READ_ONCE(memcg->swap.limit);
6075 
6076 	if (max == PAGE_COUNTER_MAX)
6077 		seq_puts(m, "max\n");
6078 	else
6079 		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
6080 
6081 	return 0;
6082 }
6083 
6084 static ssize_t swap_max_write(struct kernfs_open_file *of,
6085 			      char *buf, size_t nbytes, loff_t off)
6086 {
6087 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6088 	unsigned long max;
6089 	int err;
6090 
6091 	buf = strstrip(buf);
6092 	err = page_counter_memparse(buf, "max", &max);
6093 	if (err)
6094 		return err;
6095 
6096 	mutex_lock(&memcg_limit_mutex);
6097 	err = page_counter_limit(&memcg->swap, max);
6098 	mutex_unlock(&memcg_limit_mutex);
6099 	if (err)
6100 		return err;
6101 
6102 	return nbytes;
6103 }
6104 
6105 static struct cftype swap_files[] = {
6106 	{
6107 		.name = "swap.current",
6108 		.flags = CFTYPE_NOT_ON_ROOT,
6109 		.read_u64 = swap_current_read,
6110 	},
6111 	{
6112 		.name = "swap.max",
6113 		.flags = CFTYPE_NOT_ON_ROOT,
6114 		.seq_show = swap_max_show,
6115 		.write = swap_max_write,
6116 	},
6117 	{ }	/* terminate */
6118 };
6119 
6120 static struct cftype memsw_cgroup_files[] = {
6121 	{
6122 		.name = "memsw.usage_in_bytes",
6123 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6124 		.read_u64 = mem_cgroup_read_u64,
6125 	},
6126 	{
6127 		.name = "memsw.max_usage_in_bytes",
6128 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6129 		.write = mem_cgroup_reset,
6130 		.read_u64 = mem_cgroup_read_u64,
6131 	},
6132 	{
6133 		.name = "memsw.limit_in_bytes",
6134 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6135 		.write = mem_cgroup_write,
6136 		.read_u64 = mem_cgroup_read_u64,
6137 	},
6138 	{
6139 		.name = "memsw.failcnt",
6140 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6141 		.write = mem_cgroup_reset,
6142 		.read_u64 = mem_cgroup_read_u64,
6143 	},
6144 	{ },	/* terminate */
6145 };
6146 
6147 static int __init mem_cgroup_swap_init(void)
6148 {
6149 	if (!mem_cgroup_disabled() && really_do_swap_account) {
6150 		do_swap_account = 1;
6151 		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6152 					       swap_files));
6153 		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6154 						  memsw_cgroup_files));
6155 	}
6156 	return 0;
6157 }
6158 subsys_initcall(mem_cgroup_swap_init);
6159 
6160 #endif /* CONFIG_MEMCG_SWAP */
6161