xref: /openbmc/linux/mm/memcontrol.c (revision 2d1f649c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <xemul@openvz.org>
9  *
10  * Memory thresholds
11  * Copyright (C) 2009 Nokia Corporation
12  * Author: Kirill A. Shutemov
13  *
14  * Kernel Memory Controller
15  * Copyright (C) 2012 Parallels Inc. and Google Inc.
16  * Authors: Glauber Costa and Suleiman Souhlal
17  *
18  * Native page reclaim
19  * Charge lifetime sanitation
20  * Lockless page tracking & accounting
21  * Unified hierarchy configuration model
22  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23  *
24  * Per memcg lru locking
25  * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26  */
27 
28 #include <linux/page_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/pagewalk.h>
32 #include <linux/sched/mm.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/hugetlb.h>
35 #include <linux/pagemap.h>
36 #include <linux/vm_event_item.h>
37 #include <linux/smp.h>
38 #include <linux/page-flags.h>
39 #include <linux/backing-dev.h>
40 #include <linux/bit_spinlock.h>
41 #include <linux/rcupdate.h>
42 #include <linux/limits.h>
43 #include <linux/export.h>
44 #include <linux/mutex.h>
45 #include <linux/rbtree.h>
46 #include <linux/slab.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/spinlock.h>
50 #include <linux/eventfd.h>
51 #include <linux/poll.h>
52 #include <linux/sort.h>
53 #include <linux/fs.h>
54 #include <linux/seq_file.h>
55 #include <linux/vmpressure.h>
56 #include <linux/memremap.h>
57 #include <linux/mm_inline.h>
58 #include <linux/swap_cgroup.h>
59 #include <linux/cpu.h>
60 #include <linux/oom.h>
61 #include <linux/lockdep.h>
62 #include <linux/file.h>
63 #include <linux/resume_user_mode.h>
64 #include <linux/psi.h>
65 #include <linux/seq_buf.h>
66 #include <linux/sched/isolation.h>
67 #include "internal.h"
68 #include <net/sock.h>
69 #include <net/ip.h>
70 #include "slab.h"
71 #include "swap.h"
72 
73 #include <linux/uaccess.h>
74 
75 #include <trace/events/vmscan.h>
76 
77 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
78 EXPORT_SYMBOL(memory_cgrp_subsys);
79 
80 struct mem_cgroup *root_mem_cgroup __read_mostly;
81 
82 /* Active memory cgroup to use from an interrupt context */
83 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
84 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
85 
86 /* Socket memory accounting disabled? */
87 static bool cgroup_memory_nosocket __ro_after_init;
88 
89 /* Kernel memory accounting disabled? */
90 static bool cgroup_memory_nokmem __ro_after_init;
91 
92 /* BPF memory accounting disabled? */
93 static bool cgroup_memory_nobpf __ro_after_init;
94 
95 #ifdef CONFIG_CGROUP_WRITEBACK
96 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
97 #endif
98 
99 /* Whether legacy memory+swap accounting is active */
100 static bool do_memsw_account(void)
101 {
102 	return !cgroup_subsys_on_dfl(memory_cgrp_subsys);
103 }
104 
105 #define THRESHOLDS_EVENTS_TARGET 128
106 #define SOFTLIMIT_EVENTS_TARGET 1024
107 
108 /*
109  * Cgroups above their limits are maintained in a RB-Tree, independent of
110  * their hierarchy representation
111  */
112 
113 struct mem_cgroup_tree_per_node {
114 	struct rb_root rb_root;
115 	struct rb_node *rb_rightmost;
116 	spinlock_t lock;
117 };
118 
119 struct mem_cgroup_tree {
120 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
121 };
122 
123 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
124 
125 /* for OOM */
126 struct mem_cgroup_eventfd_list {
127 	struct list_head list;
128 	struct eventfd_ctx *eventfd;
129 };
130 
131 /*
132  * cgroup_event represents events which userspace want to receive.
133  */
134 struct mem_cgroup_event {
135 	/*
136 	 * memcg which the event belongs to.
137 	 */
138 	struct mem_cgroup *memcg;
139 	/*
140 	 * eventfd to signal userspace about the event.
141 	 */
142 	struct eventfd_ctx *eventfd;
143 	/*
144 	 * Each of these stored in a list by the cgroup.
145 	 */
146 	struct list_head list;
147 	/*
148 	 * register_event() callback will be used to add new userspace
149 	 * waiter for changes related to this event.  Use eventfd_signal()
150 	 * on eventfd to send notification to userspace.
151 	 */
152 	int (*register_event)(struct mem_cgroup *memcg,
153 			      struct eventfd_ctx *eventfd, const char *args);
154 	/*
155 	 * unregister_event() callback will be called when userspace closes
156 	 * the eventfd or on cgroup removing.  This callback must be set,
157 	 * if you want provide notification functionality.
158 	 */
159 	void (*unregister_event)(struct mem_cgroup *memcg,
160 				 struct eventfd_ctx *eventfd);
161 	/*
162 	 * All fields below needed to unregister event when
163 	 * userspace closes eventfd.
164 	 */
165 	poll_table pt;
166 	wait_queue_head_t *wqh;
167 	wait_queue_entry_t wait;
168 	struct work_struct remove;
169 };
170 
171 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
172 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
173 
174 /* Stuffs for move charges at task migration. */
175 /*
176  * Types of charges to be moved.
177  */
178 #define MOVE_ANON	0x1U
179 #define MOVE_FILE	0x2U
180 #define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
181 
182 /* "mc" and its members are protected by cgroup_mutex */
183 static struct move_charge_struct {
184 	spinlock_t	  lock; /* for from, to */
185 	struct mm_struct  *mm;
186 	struct mem_cgroup *from;
187 	struct mem_cgroup *to;
188 	unsigned long flags;
189 	unsigned long precharge;
190 	unsigned long moved_charge;
191 	unsigned long moved_swap;
192 	struct task_struct *moving_task;	/* a task moving charges */
193 	wait_queue_head_t waitq;		/* a waitq for other context */
194 } mc = {
195 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
196 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
197 };
198 
199 /*
200  * Maximum loops in mem_cgroup_soft_reclaim(), used for soft
201  * limit reclaim to prevent infinite loops, if they ever occur.
202  */
203 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
204 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
205 
206 /* for encoding cft->private value on file */
207 enum res_type {
208 	_MEM,
209 	_MEMSWAP,
210 	_KMEM,
211 	_TCP,
212 };
213 
214 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
215 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
216 #define MEMFILE_ATTR(val)	((val) & 0xffff)
217 
218 /*
219  * Iteration constructs for visiting all cgroups (under a tree).  If
220  * loops are exited prematurely (break), mem_cgroup_iter_break() must
221  * be used for reference counting.
222  */
223 #define for_each_mem_cgroup_tree(iter, root)		\
224 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
225 	     iter != NULL;				\
226 	     iter = mem_cgroup_iter(root, iter, NULL))
227 
228 #define for_each_mem_cgroup(iter)			\
229 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
230 	     iter != NULL;				\
231 	     iter = mem_cgroup_iter(NULL, iter, NULL))
232 
233 static inline bool task_is_dying(void)
234 {
235 	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
236 		(current->flags & PF_EXITING);
237 }
238 
239 /* Some nice accessors for the vmpressure. */
240 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
241 {
242 	if (!memcg)
243 		memcg = root_mem_cgroup;
244 	return &memcg->vmpressure;
245 }
246 
247 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
248 {
249 	return container_of(vmpr, struct mem_cgroup, vmpressure);
250 }
251 
252 #ifdef CONFIG_MEMCG_KMEM
253 static DEFINE_SPINLOCK(objcg_lock);
254 
255 bool mem_cgroup_kmem_disabled(void)
256 {
257 	return cgroup_memory_nokmem;
258 }
259 
260 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
261 				      unsigned int nr_pages);
262 
263 static void obj_cgroup_release(struct percpu_ref *ref)
264 {
265 	struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
266 	unsigned int nr_bytes;
267 	unsigned int nr_pages;
268 	unsigned long flags;
269 
270 	/*
271 	 * At this point all allocated objects are freed, and
272 	 * objcg->nr_charged_bytes can't have an arbitrary byte value.
273 	 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
274 	 *
275 	 * The following sequence can lead to it:
276 	 * 1) CPU0: objcg == stock->cached_objcg
277 	 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
278 	 *          PAGE_SIZE bytes are charged
279 	 * 3) CPU1: a process from another memcg is allocating something,
280 	 *          the stock if flushed,
281 	 *          objcg->nr_charged_bytes = PAGE_SIZE - 92
282 	 * 5) CPU0: we do release this object,
283 	 *          92 bytes are added to stock->nr_bytes
284 	 * 6) CPU0: stock is flushed,
285 	 *          92 bytes are added to objcg->nr_charged_bytes
286 	 *
287 	 * In the result, nr_charged_bytes == PAGE_SIZE.
288 	 * This page will be uncharged in obj_cgroup_release().
289 	 */
290 	nr_bytes = atomic_read(&objcg->nr_charged_bytes);
291 	WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
292 	nr_pages = nr_bytes >> PAGE_SHIFT;
293 
294 	if (nr_pages)
295 		obj_cgroup_uncharge_pages(objcg, nr_pages);
296 
297 	spin_lock_irqsave(&objcg_lock, flags);
298 	list_del(&objcg->list);
299 	spin_unlock_irqrestore(&objcg_lock, flags);
300 
301 	percpu_ref_exit(ref);
302 	kfree_rcu(objcg, rcu);
303 }
304 
305 static struct obj_cgroup *obj_cgroup_alloc(void)
306 {
307 	struct obj_cgroup *objcg;
308 	int ret;
309 
310 	objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
311 	if (!objcg)
312 		return NULL;
313 
314 	ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
315 			      GFP_KERNEL);
316 	if (ret) {
317 		kfree(objcg);
318 		return NULL;
319 	}
320 	INIT_LIST_HEAD(&objcg->list);
321 	return objcg;
322 }
323 
324 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
325 				  struct mem_cgroup *parent)
326 {
327 	struct obj_cgroup *objcg, *iter;
328 
329 	objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
330 
331 	spin_lock_irq(&objcg_lock);
332 
333 	/* 1) Ready to reparent active objcg. */
334 	list_add(&objcg->list, &memcg->objcg_list);
335 	/* 2) Reparent active objcg and already reparented objcgs to parent. */
336 	list_for_each_entry(iter, &memcg->objcg_list, list)
337 		WRITE_ONCE(iter->memcg, parent);
338 	/* 3) Move already reparented objcgs to the parent's list */
339 	list_splice(&memcg->objcg_list, &parent->objcg_list);
340 
341 	spin_unlock_irq(&objcg_lock);
342 
343 	percpu_ref_kill(&objcg->refcnt);
344 }
345 
346 /*
347  * A lot of the calls to the cache allocation functions are expected to be
348  * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
349  * conditional to this static branch, we'll have to allow modules that does
350  * kmem_cache_alloc and the such to see this symbol as well
351  */
352 DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key);
353 EXPORT_SYMBOL(memcg_kmem_online_key);
354 
355 DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key);
356 EXPORT_SYMBOL(memcg_bpf_enabled_key);
357 #endif
358 
359 /**
360  * mem_cgroup_css_from_folio - css of the memcg associated with a folio
361  * @folio: folio of interest
362  *
363  * If memcg is bound to the default hierarchy, css of the memcg associated
364  * with @folio is returned.  The returned css remains associated with @folio
365  * until it is released.
366  *
367  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
368  * is returned.
369  */
370 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio)
371 {
372 	struct mem_cgroup *memcg = folio_memcg(folio);
373 
374 	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
375 		memcg = root_mem_cgroup;
376 
377 	return &memcg->css;
378 }
379 
380 /**
381  * page_cgroup_ino - return inode number of the memcg a page is charged to
382  * @page: the page
383  *
384  * Look up the closest online ancestor of the memory cgroup @page is charged to
385  * and return its inode number or 0 if @page is not charged to any cgroup. It
386  * is safe to call this function without holding a reference to @page.
387  *
388  * Note, this function is inherently racy, because there is nothing to prevent
389  * the cgroup inode from getting torn down and potentially reallocated a moment
390  * after page_cgroup_ino() returns, so it only should be used by callers that
391  * do not care (such as procfs interfaces).
392  */
393 ino_t page_cgroup_ino(struct page *page)
394 {
395 	struct mem_cgroup *memcg;
396 	unsigned long ino = 0;
397 
398 	rcu_read_lock();
399 	/* page_folio() is racy here, but the entire function is racy anyway */
400 	memcg = folio_memcg_check(page_folio(page));
401 
402 	while (memcg && !(memcg->css.flags & CSS_ONLINE))
403 		memcg = parent_mem_cgroup(memcg);
404 	if (memcg)
405 		ino = cgroup_ino(memcg->css.cgroup);
406 	rcu_read_unlock();
407 	return ino;
408 }
409 
410 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
411 					 struct mem_cgroup_tree_per_node *mctz,
412 					 unsigned long new_usage_in_excess)
413 {
414 	struct rb_node **p = &mctz->rb_root.rb_node;
415 	struct rb_node *parent = NULL;
416 	struct mem_cgroup_per_node *mz_node;
417 	bool rightmost = true;
418 
419 	if (mz->on_tree)
420 		return;
421 
422 	mz->usage_in_excess = new_usage_in_excess;
423 	if (!mz->usage_in_excess)
424 		return;
425 	while (*p) {
426 		parent = *p;
427 		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
428 					tree_node);
429 		if (mz->usage_in_excess < mz_node->usage_in_excess) {
430 			p = &(*p)->rb_left;
431 			rightmost = false;
432 		} else {
433 			p = &(*p)->rb_right;
434 		}
435 	}
436 
437 	if (rightmost)
438 		mctz->rb_rightmost = &mz->tree_node;
439 
440 	rb_link_node(&mz->tree_node, parent, p);
441 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
442 	mz->on_tree = true;
443 }
444 
445 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
446 					 struct mem_cgroup_tree_per_node *mctz)
447 {
448 	if (!mz->on_tree)
449 		return;
450 
451 	if (&mz->tree_node == mctz->rb_rightmost)
452 		mctz->rb_rightmost = rb_prev(&mz->tree_node);
453 
454 	rb_erase(&mz->tree_node, &mctz->rb_root);
455 	mz->on_tree = false;
456 }
457 
458 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
459 				       struct mem_cgroup_tree_per_node *mctz)
460 {
461 	unsigned long flags;
462 
463 	spin_lock_irqsave(&mctz->lock, flags);
464 	__mem_cgroup_remove_exceeded(mz, mctz);
465 	spin_unlock_irqrestore(&mctz->lock, flags);
466 }
467 
468 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
469 {
470 	unsigned long nr_pages = page_counter_read(&memcg->memory);
471 	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
472 	unsigned long excess = 0;
473 
474 	if (nr_pages > soft_limit)
475 		excess = nr_pages - soft_limit;
476 
477 	return excess;
478 }
479 
480 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid)
481 {
482 	unsigned long excess;
483 	struct mem_cgroup_per_node *mz;
484 	struct mem_cgroup_tree_per_node *mctz;
485 
486 	if (lru_gen_enabled()) {
487 		if (soft_limit_excess(memcg))
488 			lru_gen_soft_reclaim(memcg, nid);
489 		return;
490 	}
491 
492 	mctz = soft_limit_tree.rb_tree_per_node[nid];
493 	if (!mctz)
494 		return;
495 	/*
496 	 * Necessary to update all ancestors when hierarchy is used.
497 	 * because their event counter is not touched.
498 	 */
499 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
500 		mz = memcg->nodeinfo[nid];
501 		excess = soft_limit_excess(memcg);
502 		/*
503 		 * We have to update the tree if mz is on RB-tree or
504 		 * mem is over its softlimit.
505 		 */
506 		if (excess || mz->on_tree) {
507 			unsigned long flags;
508 
509 			spin_lock_irqsave(&mctz->lock, flags);
510 			/* if on-tree, remove it */
511 			if (mz->on_tree)
512 				__mem_cgroup_remove_exceeded(mz, mctz);
513 			/*
514 			 * Insert again. mz->usage_in_excess will be updated.
515 			 * If excess is 0, no tree ops.
516 			 */
517 			__mem_cgroup_insert_exceeded(mz, mctz, excess);
518 			spin_unlock_irqrestore(&mctz->lock, flags);
519 		}
520 	}
521 }
522 
523 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
524 {
525 	struct mem_cgroup_tree_per_node *mctz;
526 	struct mem_cgroup_per_node *mz;
527 	int nid;
528 
529 	for_each_node(nid) {
530 		mz = memcg->nodeinfo[nid];
531 		mctz = soft_limit_tree.rb_tree_per_node[nid];
532 		if (mctz)
533 			mem_cgroup_remove_exceeded(mz, mctz);
534 	}
535 }
536 
537 static struct mem_cgroup_per_node *
538 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
539 {
540 	struct mem_cgroup_per_node *mz;
541 
542 retry:
543 	mz = NULL;
544 	if (!mctz->rb_rightmost)
545 		goto done;		/* Nothing to reclaim from */
546 
547 	mz = rb_entry(mctz->rb_rightmost,
548 		      struct mem_cgroup_per_node, tree_node);
549 	/*
550 	 * Remove the node now but someone else can add it back,
551 	 * we will to add it back at the end of reclaim to its correct
552 	 * position in the tree.
553 	 */
554 	__mem_cgroup_remove_exceeded(mz, mctz);
555 	if (!soft_limit_excess(mz->memcg) ||
556 	    !css_tryget(&mz->memcg->css))
557 		goto retry;
558 done:
559 	return mz;
560 }
561 
562 static struct mem_cgroup_per_node *
563 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
564 {
565 	struct mem_cgroup_per_node *mz;
566 
567 	spin_lock_irq(&mctz->lock);
568 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
569 	spin_unlock_irq(&mctz->lock);
570 	return mz;
571 }
572 
573 /*
574  * memcg and lruvec stats flushing
575  *
576  * Many codepaths leading to stats update or read are performance sensitive and
577  * adding stats flushing in such codepaths is not desirable. So, to optimize the
578  * flushing the kernel does:
579  *
580  * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
581  *    rstat update tree grow unbounded.
582  *
583  * 2) Flush the stats synchronously on reader side only when there are more than
584  *    (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
585  *    will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
586  *    only for 2 seconds due to (1).
587  */
588 static void flush_memcg_stats_dwork(struct work_struct *w);
589 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
590 static DEFINE_PER_CPU(unsigned int, stats_updates);
591 static atomic_t stats_flush_ongoing = ATOMIC_INIT(0);
592 static atomic_t stats_flush_threshold = ATOMIC_INIT(0);
593 static u64 flush_next_time;
594 
595 #define FLUSH_TIME (2UL*HZ)
596 
597 /*
598  * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can
599  * not rely on this as part of an acquired spinlock_t lock. These functions are
600  * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion
601  * is sufficient.
602  */
603 static void memcg_stats_lock(void)
604 {
605 	preempt_disable_nested();
606 	VM_WARN_ON_IRQS_ENABLED();
607 }
608 
609 static void __memcg_stats_lock(void)
610 {
611 	preempt_disable_nested();
612 }
613 
614 static void memcg_stats_unlock(void)
615 {
616 	preempt_enable_nested();
617 }
618 
619 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val)
620 {
621 	unsigned int x;
622 
623 	if (!val)
624 		return;
625 
626 	cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
627 
628 	x = __this_cpu_add_return(stats_updates, abs(val));
629 	if (x > MEMCG_CHARGE_BATCH) {
630 		/*
631 		 * If stats_flush_threshold exceeds the threshold
632 		 * (>num_online_cpus()), cgroup stats update will be triggered
633 		 * in __mem_cgroup_flush_stats(). Increasing this var further
634 		 * is redundant and simply adds overhead in atomic update.
635 		 */
636 		if (atomic_read(&stats_flush_threshold) <= num_online_cpus())
637 			atomic_add(x / MEMCG_CHARGE_BATCH, &stats_flush_threshold);
638 		__this_cpu_write(stats_updates, 0);
639 	}
640 }
641 
642 static void do_flush_stats(void)
643 {
644 	/*
645 	 * We always flush the entire tree, so concurrent flushers can just
646 	 * skip. This avoids a thundering herd problem on the rstat global lock
647 	 * from memcg flushers (e.g. reclaim, refault, etc).
648 	 */
649 	if (atomic_read(&stats_flush_ongoing) ||
650 	    atomic_xchg(&stats_flush_ongoing, 1))
651 		return;
652 
653 	WRITE_ONCE(flush_next_time, jiffies_64 + 2*FLUSH_TIME);
654 
655 	cgroup_rstat_flush(root_mem_cgroup->css.cgroup);
656 
657 	atomic_set(&stats_flush_threshold, 0);
658 	atomic_set(&stats_flush_ongoing, 0);
659 }
660 
661 void mem_cgroup_flush_stats(void)
662 {
663 	if (atomic_read(&stats_flush_threshold) > num_online_cpus())
664 		do_flush_stats();
665 }
666 
667 void mem_cgroup_flush_stats_ratelimited(void)
668 {
669 	if (time_after64(jiffies_64, READ_ONCE(flush_next_time)))
670 		mem_cgroup_flush_stats();
671 }
672 
673 static void flush_memcg_stats_dwork(struct work_struct *w)
674 {
675 	/*
676 	 * Always flush here so that flushing in latency-sensitive paths is
677 	 * as cheap as possible.
678 	 */
679 	do_flush_stats();
680 	queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME);
681 }
682 
683 /* Subset of vm_event_item to report for memcg event stats */
684 static const unsigned int memcg_vm_event_stat[] = {
685 	PGPGIN,
686 	PGPGOUT,
687 	PGSCAN_KSWAPD,
688 	PGSCAN_DIRECT,
689 	PGSCAN_KHUGEPAGED,
690 	PGSTEAL_KSWAPD,
691 	PGSTEAL_DIRECT,
692 	PGSTEAL_KHUGEPAGED,
693 	PGFAULT,
694 	PGMAJFAULT,
695 	PGREFILL,
696 	PGACTIVATE,
697 	PGDEACTIVATE,
698 	PGLAZYFREE,
699 	PGLAZYFREED,
700 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
701 	ZSWPIN,
702 	ZSWPOUT,
703 #endif
704 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
705 	THP_FAULT_ALLOC,
706 	THP_COLLAPSE_ALLOC,
707 #endif
708 };
709 
710 #define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat)
711 static int mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly;
712 
713 static void init_memcg_events(void)
714 {
715 	int i;
716 
717 	for (i = 0; i < NR_MEMCG_EVENTS; ++i)
718 		mem_cgroup_events_index[memcg_vm_event_stat[i]] = i + 1;
719 }
720 
721 static inline int memcg_events_index(enum vm_event_item idx)
722 {
723 	return mem_cgroup_events_index[idx] - 1;
724 }
725 
726 struct memcg_vmstats_percpu {
727 	/* Local (CPU and cgroup) page state & events */
728 	long			state[MEMCG_NR_STAT];
729 	unsigned long		events[NR_MEMCG_EVENTS];
730 
731 	/* Delta calculation for lockless upward propagation */
732 	long			state_prev[MEMCG_NR_STAT];
733 	unsigned long		events_prev[NR_MEMCG_EVENTS];
734 
735 	/* Cgroup1: threshold notifications & softlimit tree updates */
736 	unsigned long		nr_page_events;
737 	unsigned long		targets[MEM_CGROUP_NTARGETS];
738 };
739 
740 struct memcg_vmstats {
741 	/* Aggregated (CPU and subtree) page state & events */
742 	long			state[MEMCG_NR_STAT];
743 	unsigned long		events[NR_MEMCG_EVENTS];
744 
745 	/* Pending child counts during tree propagation */
746 	long			state_pending[MEMCG_NR_STAT];
747 	unsigned long		events_pending[NR_MEMCG_EVENTS];
748 };
749 
750 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
751 {
752 	long x = READ_ONCE(memcg->vmstats->state[idx]);
753 #ifdef CONFIG_SMP
754 	if (x < 0)
755 		x = 0;
756 #endif
757 	return x;
758 }
759 
760 /**
761  * __mod_memcg_state - update cgroup memory statistics
762  * @memcg: the memory cgroup
763  * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
764  * @val: delta to add to the counter, can be negative
765  */
766 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
767 {
768 	if (mem_cgroup_disabled())
769 		return;
770 
771 	__this_cpu_add(memcg->vmstats_percpu->state[idx], val);
772 	memcg_rstat_updated(memcg, val);
773 }
774 
775 /* idx can be of type enum memcg_stat_item or node_stat_item. */
776 static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
777 {
778 	long x = 0;
779 	int cpu;
780 
781 	for_each_possible_cpu(cpu)
782 		x += per_cpu(memcg->vmstats_percpu->state[idx], cpu);
783 #ifdef CONFIG_SMP
784 	if (x < 0)
785 		x = 0;
786 #endif
787 	return x;
788 }
789 
790 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
791 			      int val)
792 {
793 	struct mem_cgroup_per_node *pn;
794 	struct mem_cgroup *memcg;
795 
796 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
797 	memcg = pn->memcg;
798 
799 	/*
800 	 * The caller from rmap relay on disabled preemption becase they never
801 	 * update their counter from in-interrupt context. For these two
802 	 * counters we check that the update is never performed from an
803 	 * interrupt context while other caller need to have disabled interrupt.
804 	 */
805 	__memcg_stats_lock();
806 	if (IS_ENABLED(CONFIG_DEBUG_VM)) {
807 		switch (idx) {
808 		case NR_ANON_MAPPED:
809 		case NR_FILE_MAPPED:
810 		case NR_ANON_THPS:
811 		case NR_SHMEM_PMDMAPPED:
812 		case NR_FILE_PMDMAPPED:
813 			WARN_ON_ONCE(!in_task());
814 			break;
815 		default:
816 			VM_WARN_ON_IRQS_ENABLED();
817 		}
818 	}
819 
820 	/* Update memcg */
821 	__this_cpu_add(memcg->vmstats_percpu->state[idx], val);
822 
823 	/* Update lruvec */
824 	__this_cpu_add(pn->lruvec_stats_percpu->state[idx], val);
825 
826 	memcg_rstat_updated(memcg, val);
827 	memcg_stats_unlock();
828 }
829 
830 /**
831  * __mod_lruvec_state - update lruvec memory statistics
832  * @lruvec: the lruvec
833  * @idx: the stat item
834  * @val: delta to add to the counter, can be negative
835  *
836  * The lruvec is the intersection of the NUMA node and a cgroup. This
837  * function updates the all three counters that are affected by a
838  * change of state at this level: per-node, per-cgroup, per-lruvec.
839  */
840 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
841 			int val)
842 {
843 	/* Update node */
844 	__mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
845 
846 	/* Update memcg and lruvec */
847 	if (!mem_cgroup_disabled())
848 		__mod_memcg_lruvec_state(lruvec, idx, val);
849 }
850 
851 void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
852 			     int val)
853 {
854 	struct page *head = compound_head(page); /* rmap on tail pages */
855 	struct mem_cgroup *memcg;
856 	pg_data_t *pgdat = page_pgdat(page);
857 	struct lruvec *lruvec;
858 
859 	rcu_read_lock();
860 	memcg = page_memcg(head);
861 	/* Untracked pages have no memcg, no lruvec. Update only the node */
862 	if (!memcg) {
863 		rcu_read_unlock();
864 		__mod_node_page_state(pgdat, idx, val);
865 		return;
866 	}
867 
868 	lruvec = mem_cgroup_lruvec(memcg, pgdat);
869 	__mod_lruvec_state(lruvec, idx, val);
870 	rcu_read_unlock();
871 }
872 EXPORT_SYMBOL(__mod_lruvec_page_state);
873 
874 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
875 {
876 	pg_data_t *pgdat = page_pgdat(virt_to_page(p));
877 	struct mem_cgroup *memcg;
878 	struct lruvec *lruvec;
879 
880 	rcu_read_lock();
881 	memcg = mem_cgroup_from_slab_obj(p);
882 
883 	/*
884 	 * Untracked pages have no memcg, no lruvec. Update only the
885 	 * node. If we reparent the slab objects to the root memcg,
886 	 * when we free the slab object, we need to update the per-memcg
887 	 * vmstats to keep it correct for the root memcg.
888 	 */
889 	if (!memcg) {
890 		__mod_node_page_state(pgdat, idx, val);
891 	} else {
892 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
893 		__mod_lruvec_state(lruvec, idx, val);
894 	}
895 	rcu_read_unlock();
896 }
897 
898 /**
899  * __count_memcg_events - account VM events in a cgroup
900  * @memcg: the memory cgroup
901  * @idx: the event item
902  * @count: the number of events that occurred
903  */
904 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
905 			  unsigned long count)
906 {
907 	int index = memcg_events_index(idx);
908 
909 	if (mem_cgroup_disabled() || index < 0)
910 		return;
911 
912 	memcg_stats_lock();
913 	__this_cpu_add(memcg->vmstats_percpu->events[index], count);
914 	memcg_rstat_updated(memcg, count);
915 	memcg_stats_unlock();
916 }
917 
918 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
919 {
920 	int index = memcg_events_index(event);
921 
922 	if (index < 0)
923 		return 0;
924 	return READ_ONCE(memcg->vmstats->events[index]);
925 }
926 
927 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
928 {
929 	long x = 0;
930 	int cpu;
931 	int index = memcg_events_index(event);
932 
933 	if (index < 0)
934 		return 0;
935 
936 	for_each_possible_cpu(cpu)
937 		x += per_cpu(memcg->vmstats_percpu->events[index], cpu);
938 	return x;
939 }
940 
941 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
942 					 int nr_pages)
943 {
944 	/* pagein of a big page is an event. So, ignore page size */
945 	if (nr_pages > 0)
946 		__count_memcg_events(memcg, PGPGIN, 1);
947 	else {
948 		__count_memcg_events(memcg, PGPGOUT, 1);
949 		nr_pages = -nr_pages; /* for event */
950 	}
951 
952 	__this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
953 }
954 
955 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
956 				       enum mem_cgroup_events_target target)
957 {
958 	unsigned long val, next;
959 
960 	val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
961 	next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
962 	/* from time_after() in jiffies.h */
963 	if ((long)(next - val) < 0) {
964 		switch (target) {
965 		case MEM_CGROUP_TARGET_THRESH:
966 			next = val + THRESHOLDS_EVENTS_TARGET;
967 			break;
968 		case MEM_CGROUP_TARGET_SOFTLIMIT:
969 			next = val + SOFTLIMIT_EVENTS_TARGET;
970 			break;
971 		default:
972 			break;
973 		}
974 		__this_cpu_write(memcg->vmstats_percpu->targets[target], next);
975 		return true;
976 	}
977 	return false;
978 }
979 
980 /*
981  * Check events in order.
982  *
983  */
984 static void memcg_check_events(struct mem_cgroup *memcg, int nid)
985 {
986 	if (IS_ENABLED(CONFIG_PREEMPT_RT))
987 		return;
988 
989 	/* threshold event is triggered in finer grain than soft limit */
990 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
991 						MEM_CGROUP_TARGET_THRESH))) {
992 		bool do_softlimit;
993 
994 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
995 						MEM_CGROUP_TARGET_SOFTLIMIT);
996 		mem_cgroup_threshold(memcg);
997 		if (unlikely(do_softlimit))
998 			mem_cgroup_update_tree(memcg, nid);
999 	}
1000 }
1001 
1002 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1003 {
1004 	/*
1005 	 * mm_update_next_owner() may clear mm->owner to NULL
1006 	 * if it races with swapoff, page migration, etc.
1007 	 * So this can be called with p == NULL.
1008 	 */
1009 	if (unlikely(!p))
1010 		return NULL;
1011 
1012 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1013 }
1014 EXPORT_SYMBOL(mem_cgroup_from_task);
1015 
1016 static __always_inline struct mem_cgroup *active_memcg(void)
1017 {
1018 	if (!in_task())
1019 		return this_cpu_read(int_active_memcg);
1020 	else
1021 		return current->active_memcg;
1022 }
1023 
1024 /**
1025  * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1026  * @mm: mm from which memcg should be extracted. It can be NULL.
1027  *
1028  * Obtain a reference on mm->memcg and returns it if successful. If mm
1029  * is NULL, then the memcg is chosen as follows:
1030  * 1) The active memcg, if set.
1031  * 2) current->mm->memcg, if available
1032  * 3) root memcg
1033  * If mem_cgroup is disabled, NULL is returned.
1034  */
1035 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1036 {
1037 	struct mem_cgroup *memcg;
1038 
1039 	if (mem_cgroup_disabled())
1040 		return NULL;
1041 
1042 	/*
1043 	 * Page cache insertions can happen without an
1044 	 * actual mm context, e.g. during disk probing
1045 	 * on boot, loopback IO, acct() writes etc.
1046 	 *
1047 	 * No need to css_get on root memcg as the reference
1048 	 * counting is disabled on the root level in the
1049 	 * cgroup core. See CSS_NO_REF.
1050 	 */
1051 	if (unlikely(!mm)) {
1052 		memcg = active_memcg();
1053 		if (unlikely(memcg)) {
1054 			/* remote memcg must hold a ref */
1055 			css_get(&memcg->css);
1056 			return memcg;
1057 		}
1058 		mm = current->mm;
1059 		if (unlikely(!mm))
1060 			return root_mem_cgroup;
1061 	}
1062 
1063 	rcu_read_lock();
1064 	do {
1065 		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1066 		if (unlikely(!memcg))
1067 			memcg = root_mem_cgroup;
1068 	} while (!css_tryget(&memcg->css));
1069 	rcu_read_unlock();
1070 	return memcg;
1071 }
1072 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1073 
1074 static __always_inline bool memcg_kmem_bypass(void)
1075 {
1076 	/* Allow remote memcg charging from any context. */
1077 	if (unlikely(active_memcg()))
1078 		return false;
1079 
1080 	/* Memcg to charge can't be determined. */
1081 	if (!in_task() || !current->mm || (current->flags & PF_KTHREAD))
1082 		return true;
1083 
1084 	return false;
1085 }
1086 
1087 /**
1088  * mem_cgroup_iter - iterate over memory cgroup hierarchy
1089  * @root: hierarchy root
1090  * @prev: previously returned memcg, NULL on first invocation
1091  * @reclaim: cookie for shared reclaim walks, NULL for full walks
1092  *
1093  * Returns references to children of the hierarchy below @root, or
1094  * @root itself, or %NULL after a full round-trip.
1095  *
1096  * Caller must pass the return value in @prev on subsequent
1097  * invocations for reference counting, or use mem_cgroup_iter_break()
1098  * to cancel a hierarchy walk before the round-trip is complete.
1099  *
1100  * Reclaimers can specify a node in @reclaim to divide up the memcgs
1101  * in the hierarchy among all concurrent reclaimers operating on the
1102  * same node.
1103  */
1104 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1105 				   struct mem_cgroup *prev,
1106 				   struct mem_cgroup_reclaim_cookie *reclaim)
1107 {
1108 	struct mem_cgroup_reclaim_iter *iter;
1109 	struct cgroup_subsys_state *css = NULL;
1110 	struct mem_cgroup *memcg = NULL;
1111 	struct mem_cgroup *pos = NULL;
1112 
1113 	if (mem_cgroup_disabled())
1114 		return NULL;
1115 
1116 	if (!root)
1117 		root = root_mem_cgroup;
1118 
1119 	rcu_read_lock();
1120 
1121 	if (reclaim) {
1122 		struct mem_cgroup_per_node *mz;
1123 
1124 		mz = root->nodeinfo[reclaim->pgdat->node_id];
1125 		iter = &mz->iter;
1126 
1127 		/*
1128 		 * On start, join the current reclaim iteration cycle.
1129 		 * Exit when a concurrent walker completes it.
1130 		 */
1131 		if (!prev)
1132 			reclaim->generation = iter->generation;
1133 		else if (reclaim->generation != iter->generation)
1134 			goto out_unlock;
1135 
1136 		while (1) {
1137 			pos = READ_ONCE(iter->position);
1138 			if (!pos || css_tryget(&pos->css))
1139 				break;
1140 			/*
1141 			 * css reference reached zero, so iter->position will
1142 			 * be cleared by ->css_released. However, we should not
1143 			 * rely on this happening soon, because ->css_released
1144 			 * is called from a work queue, and by busy-waiting we
1145 			 * might block it. So we clear iter->position right
1146 			 * away.
1147 			 */
1148 			(void)cmpxchg(&iter->position, pos, NULL);
1149 		}
1150 	} else if (prev) {
1151 		pos = prev;
1152 	}
1153 
1154 	if (pos)
1155 		css = &pos->css;
1156 
1157 	for (;;) {
1158 		css = css_next_descendant_pre(css, &root->css);
1159 		if (!css) {
1160 			/*
1161 			 * Reclaimers share the hierarchy walk, and a
1162 			 * new one might jump in right at the end of
1163 			 * the hierarchy - make sure they see at least
1164 			 * one group and restart from the beginning.
1165 			 */
1166 			if (!prev)
1167 				continue;
1168 			break;
1169 		}
1170 
1171 		/*
1172 		 * Verify the css and acquire a reference.  The root
1173 		 * is provided by the caller, so we know it's alive
1174 		 * and kicking, and don't take an extra reference.
1175 		 */
1176 		if (css == &root->css || css_tryget(css)) {
1177 			memcg = mem_cgroup_from_css(css);
1178 			break;
1179 		}
1180 	}
1181 
1182 	if (reclaim) {
1183 		/*
1184 		 * The position could have already been updated by a competing
1185 		 * thread, so check that the value hasn't changed since we read
1186 		 * it to avoid reclaiming from the same cgroup twice.
1187 		 */
1188 		(void)cmpxchg(&iter->position, pos, memcg);
1189 
1190 		if (pos)
1191 			css_put(&pos->css);
1192 
1193 		if (!memcg)
1194 			iter->generation++;
1195 	}
1196 
1197 out_unlock:
1198 	rcu_read_unlock();
1199 	if (prev && prev != root)
1200 		css_put(&prev->css);
1201 
1202 	return memcg;
1203 }
1204 
1205 /**
1206  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1207  * @root: hierarchy root
1208  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1209  */
1210 void mem_cgroup_iter_break(struct mem_cgroup *root,
1211 			   struct mem_cgroup *prev)
1212 {
1213 	if (!root)
1214 		root = root_mem_cgroup;
1215 	if (prev && prev != root)
1216 		css_put(&prev->css);
1217 }
1218 
1219 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1220 					struct mem_cgroup *dead_memcg)
1221 {
1222 	struct mem_cgroup_reclaim_iter *iter;
1223 	struct mem_cgroup_per_node *mz;
1224 	int nid;
1225 
1226 	for_each_node(nid) {
1227 		mz = from->nodeinfo[nid];
1228 		iter = &mz->iter;
1229 		cmpxchg(&iter->position, dead_memcg, NULL);
1230 	}
1231 }
1232 
1233 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1234 {
1235 	struct mem_cgroup *memcg = dead_memcg;
1236 	struct mem_cgroup *last;
1237 
1238 	do {
1239 		__invalidate_reclaim_iterators(memcg, dead_memcg);
1240 		last = memcg;
1241 	} while ((memcg = parent_mem_cgroup(memcg)));
1242 
1243 	/*
1244 	 * When cgroup1 non-hierarchy mode is used,
1245 	 * parent_mem_cgroup() does not walk all the way up to the
1246 	 * cgroup root (root_mem_cgroup). So we have to handle
1247 	 * dead_memcg from cgroup root separately.
1248 	 */
1249 	if (!mem_cgroup_is_root(last))
1250 		__invalidate_reclaim_iterators(root_mem_cgroup,
1251 						dead_memcg);
1252 }
1253 
1254 /**
1255  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1256  * @memcg: hierarchy root
1257  * @fn: function to call for each task
1258  * @arg: argument passed to @fn
1259  *
1260  * This function iterates over tasks attached to @memcg or to any of its
1261  * descendants and calls @fn for each task. If @fn returns a non-zero
1262  * value, the function breaks the iteration loop. Otherwise, it will iterate
1263  * over all tasks and return 0.
1264  *
1265  * This function must not be called for the root memory cgroup.
1266  */
1267 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1268 			   int (*fn)(struct task_struct *, void *), void *arg)
1269 {
1270 	struct mem_cgroup *iter;
1271 	int ret = 0;
1272 
1273 	BUG_ON(mem_cgroup_is_root(memcg));
1274 
1275 	for_each_mem_cgroup_tree(iter, memcg) {
1276 		struct css_task_iter it;
1277 		struct task_struct *task;
1278 
1279 		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1280 		while (!ret && (task = css_task_iter_next(&it)))
1281 			ret = fn(task, arg);
1282 		css_task_iter_end(&it);
1283 		if (ret) {
1284 			mem_cgroup_iter_break(memcg, iter);
1285 			break;
1286 		}
1287 	}
1288 }
1289 
1290 #ifdef CONFIG_DEBUG_VM
1291 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1292 {
1293 	struct mem_cgroup *memcg;
1294 
1295 	if (mem_cgroup_disabled())
1296 		return;
1297 
1298 	memcg = folio_memcg(folio);
1299 
1300 	if (!memcg)
1301 		VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio);
1302 	else
1303 		VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
1304 }
1305 #endif
1306 
1307 /**
1308  * folio_lruvec_lock - Lock the lruvec for a folio.
1309  * @folio: Pointer to the folio.
1310  *
1311  * These functions are safe to use under any of the following conditions:
1312  * - folio locked
1313  * - folio_test_lru false
1314  * - folio_memcg_lock()
1315  * - folio frozen (refcount of 0)
1316  *
1317  * Return: The lruvec this folio is on with its lock held.
1318  */
1319 struct lruvec *folio_lruvec_lock(struct folio *folio)
1320 {
1321 	struct lruvec *lruvec = folio_lruvec(folio);
1322 
1323 	spin_lock(&lruvec->lru_lock);
1324 	lruvec_memcg_debug(lruvec, folio);
1325 
1326 	return lruvec;
1327 }
1328 
1329 /**
1330  * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1331  * @folio: Pointer to the folio.
1332  *
1333  * These functions are safe to use under any of the following conditions:
1334  * - folio locked
1335  * - folio_test_lru false
1336  * - folio_memcg_lock()
1337  * - folio frozen (refcount of 0)
1338  *
1339  * Return: The lruvec this folio is on with its lock held and interrupts
1340  * disabled.
1341  */
1342 struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1343 {
1344 	struct lruvec *lruvec = folio_lruvec(folio);
1345 
1346 	spin_lock_irq(&lruvec->lru_lock);
1347 	lruvec_memcg_debug(lruvec, folio);
1348 
1349 	return lruvec;
1350 }
1351 
1352 /**
1353  * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1354  * @folio: Pointer to the folio.
1355  * @flags: Pointer to irqsave flags.
1356  *
1357  * These functions are safe to use under any of the following conditions:
1358  * - folio locked
1359  * - folio_test_lru false
1360  * - folio_memcg_lock()
1361  * - folio frozen (refcount of 0)
1362  *
1363  * Return: The lruvec this folio is on with its lock held and interrupts
1364  * disabled.
1365  */
1366 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1367 		unsigned long *flags)
1368 {
1369 	struct lruvec *lruvec = folio_lruvec(folio);
1370 
1371 	spin_lock_irqsave(&lruvec->lru_lock, *flags);
1372 	lruvec_memcg_debug(lruvec, folio);
1373 
1374 	return lruvec;
1375 }
1376 
1377 /**
1378  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1379  * @lruvec: mem_cgroup per zone lru vector
1380  * @lru: index of lru list the page is sitting on
1381  * @zid: zone id of the accounted pages
1382  * @nr_pages: positive when adding or negative when removing
1383  *
1384  * This function must be called under lru_lock, just before a page is added
1385  * to or just after a page is removed from an lru list.
1386  */
1387 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1388 				int zid, int nr_pages)
1389 {
1390 	struct mem_cgroup_per_node *mz;
1391 	unsigned long *lru_size;
1392 	long size;
1393 
1394 	if (mem_cgroup_disabled())
1395 		return;
1396 
1397 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1398 	lru_size = &mz->lru_zone_size[zid][lru];
1399 
1400 	if (nr_pages < 0)
1401 		*lru_size += nr_pages;
1402 
1403 	size = *lru_size;
1404 	if (WARN_ONCE(size < 0,
1405 		"%s(%p, %d, %d): lru_size %ld\n",
1406 		__func__, lruvec, lru, nr_pages, size)) {
1407 		VM_BUG_ON(1);
1408 		*lru_size = 0;
1409 	}
1410 
1411 	if (nr_pages > 0)
1412 		*lru_size += nr_pages;
1413 }
1414 
1415 /**
1416  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1417  * @memcg: the memory cgroup
1418  *
1419  * Returns the maximum amount of memory @mem can be charged with, in
1420  * pages.
1421  */
1422 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1423 {
1424 	unsigned long margin = 0;
1425 	unsigned long count;
1426 	unsigned long limit;
1427 
1428 	count = page_counter_read(&memcg->memory);
1429 	limit = READ_ONCE(memcg->memory.max);
1430 	if (count < limit)
1431 		margin = limit - count;
1432 
1433 	if (do_memsw_account()) {
1434 		count = page_counter_read(&memcg->memsw);
1435 		limit = READ_ONCE(memcg->memsw.max);
1436 		if (count < limit)
1437 			margin = min(margin, limit - count);
1438 		else
1439 			margin = 0;
1440 	}
1441 
1442 	return margin;
1443 }
1444 
1445 /*
1446  * A routine for checking "mem" is under move_account() or not.
1447  *
1448  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1449  * moving cgroups. This is for waiting at high-memory pressure
1450  * caused by "move".
1451  */
1452 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1453 {
1454 	struct mem_cgroup *from;
1455 	struct mem_cgroup *to;
1456 	bool ret = false;
1457 	/*
1458 	 * Unlike task_move routines, we access mc.to, mc.from not under
1459 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1460 	 */
1461 	spin_lock(&mc.lock);
1462 	from = mc.from;
1463 	to = mc.to;
1464 	if (!from)
1465 		goto unlock;
1466 
1467 	ret = mem_cgroup_is_descendant(from, memcg) ||
1468 		mem_cgroup_is_descendant(to, memcg);
1469 unlock:
1470 	spin_unlock(&mc.lock);
1471 	return ret;
1472 }
1473 
1474 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1475 {
1476 	if (mc.moving_task && current != mc.moving_task) {
1477 		if (mem_cgroup_under_move(memcg)) {
1478 			DEFINE_WAIT(wait);
1479 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1480 			/* moving charge context might have finished. */
1481 			if (mc.moving_task)
1482 				schedule();
1483 			finish_wait(&mc.waitq, &wait);
1484 			return true;
1485 		}
1486 	}
1487 	return false;
1488 }
1489 
1490 struct memory_stat {
1491 	const char *name;
1492 	unsigned int idx;
1493 };
1494 
1495 static const struct memory_stat memory_stats[] = {
1496 	{ "anon",			NR_ANON_MAPPED			},
1497 	{ "file",			NR_FILE_PAGES			},
1498 	{ "kernel",			MEMCG_KMEM			},
1499 	{ "kernel_stack",		NR_KERNEL_STACK_KB		},
1500 	{ "pagetables",			NR_PAGETABLE			},
1501 	{ "sec_pagetables",		NR_SECONDARY_PAGETABLE		},
1502 	{ "percpu",			MEMCG_PERCPU_B			},
1503 	{ "sock",			MEMCG_SOCK			},
1504 	{ "vmalloc",			MEMCG_VMALLOC			},
1505 	{ "shmem",			NR_SHMEM			},
1506 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1507 	{ "zswap",			MEMCG_ZSWAP_B			},
1508 	{ "zswapped",			MEMCG_ZSWAPPED			},
1509 #endif
1510 	{ "file_mapped",		NR_FILE_MAPPED			},
1511 	{ "file_dirty",			NR_FILE_DIRTY			},
1512 	{ "file_writeback",		NR_WRITEBACK			},
1513 #ifdef CONFIG_SWAP
1514 	{ "swapcached",			NR_SWAPCACHE			},
1515 #endif
1516 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1517 	{ "anon_thp",			NR_ANON_THPS			},
1518 	{ "file_thp",			NR_FILE_THPS			},
1519 	{ "shmem_thp",			NR_SHMEM_THPS			},
1520 #endif
1521 	{ "inactive_anon",		NR_INACTIVE_ANON		},
1522 	{ "active_anon",		NR_ACTIVE_ANON			},
1523 	{ "inactive_file",		NR_INACTIVE_FILE		},
1524 	{ "active_file",		NR_ACTIVE_FILE			},
1525 	{ "unevictable",		NR_UNEVICTABLE			},
1526 	{ "slab_reclaimable",		NR_SLAB_RECLAIMABLE_B		},
1527 	{ "slab_unreclaimable",		NR_SLAB_UNRECLAIMABLE_B		},
1528 
1529 	/* The memory events */
1530 	{ "workingset_refault_anon",	WORKINGSET_REFAULT_ANON		},
1531 	{ "workingset_refault_file",	WORKINGSET_REFAULT_FILE		},
1532 	{ "workingset_activate_anon",	WORKINGSET_ACTIVATE_ANON	},
1533 	{ "workingset_activate_file",	WORKINGSET_ACTIVATE_FILE	},
1534 	{ "workingset_restore_anon",	WORKINGSET_RESTORE_ANON		},
1535 	{ "workingset_restore_file",	WORKINGSET_RESTORE_FILE		},
1536 	{ "workingset_nodereclaim",	WORKINGSET_NODERECLAIM		},
1537 };
1538 
1539 /* Translate stat items to the correct unit for memory.stat output */
1540 static int memcg_page_state_unit(int item)
1541 {
1542 	switch (item) {
1543 	case MEMCG_PERCPU_B:
1544 	case MEMCG_ZSWAP_B:
1545 	case NR_SLAB_RECLAIMABLE_B:
1546 	case NR_SLAB_UNRECLAIMABLE_B:
1547 	case WORKINGSET_REFAULT_ANON:
1548 	case WORKINGSET_REFAULT_FILE:
1549 	case WORKINGSET_ACTIVATE_ANON:
1550 	case WORKINGSET_ACTIVATE_FILE:
1551 	case WORKINGSET_RESTORE_ANON:
1552 	case WORKINGSET_RESTORE_FILE:
1553 	case WORKINGSET_NODERECLAIM:
1554 		return 1;
1555 	case NR_KERNEL_STACK_KB:
1556 		return SZ_1K;
1557 	default:
1558 		return PAGE_SIZE;
1559 	}
1560 }
1561 
1562 static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1563 						    int item)
1564 {
1565 	return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1566 }
1567 
1568 static void memcg_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1569 {
1570 	int i;
1571 
1572 	/*
1573 	 * Provide statistics on the state of the memory subsystem as
1574 	 * well as cumulative event counters that show past behavior.
1575 	 *
1576 	 * This list is ordered following a combination of these gradients:
1577 	 * 1) generic big picture -> specifics and details
1578 	 * 2) reflecting userspace activity -> reflecting kernel heuristics
1579 	 *
1580 	 * Current memory state:
1581 	 */
1582 	mem_cgroup_flush_stats();
1583 
1584 	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1585 		u64 size;
1586 
1587 		size = memcg_page_state_output(memcg, memory_stats[i].idx);
1588 		seq_buf_printf(s, "%s %llu\n", memory_stats[i].name, size);
1589 
1590 		if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1591 			size += memcg_page_state_output(memcg,
1592 							NR_SLAB_RECLAIMABLE_B);
1593 			seq_buf_printf(s, "slab %llu\n", size);
1594 		}
1595 	}
1596 
1597 	/* Accumulated memory events */
1598 	seq_buf_printf(s, "pgscan %lu\n",
1599 		       memcg_events(memcg, PGSCAN_KSWAPD) +
1600 		       memcg_events(memcg, PGSCAN_DIRECT) +
1601 		       memcg_events(memcg, PGSCAN_KHUGEPAGED));
1602 	seq_buf_printf(s, "pgsteal %lu\n",
1603 		       memcg_events(memcg, PGSTEAL_KSWAPD) +
1604 		       memcg_events(memcg, PGSTEAL_DIRECT) +
1605 		       memcg_events(memcg, PGSTEAL_KHUGEPAGED));
1606 
1607 	for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) {
1608 		if (memcg_vm_event_stat[i] == PGPGIN ||
1609 		    memcg_vm_event_stat[i] == PGPGOUT)
1610 			continue;
1611 
1612 		seq_buf_printf(s, "%s %lu\n",
1613 			       vm_event_name(memcg_vm_event_stat[i]),
1614 			       memcg_events(memcg, memcg_vm_event_stat[i]));
1615 	}
1616 
1617 	/* The above should easily fit into one page */
1618 	WARN_ON_ONCE(seq_buf_has_overflowed(s));
1619 }
1620 
1621 static void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s);
1622 
1623 static void memory_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1624 {
1625 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1626 		memcg_stat_format(memcg, s);
1627 	else
1628 		memcg1_stat_format(memcg, s);
1629 	WARN_ON_ONCE(seq_buf_has_overflowed(s));
1630 }
1631 
1632 /**
1633  * mem_cgroup_print_oom_context: Print OOM information relevant to
1634  * memory controller.
1635  * @memcg: The memory cgroup that went over limit
1636  * @p: Task that is going to be killed
1637  *
1638  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1639  * enabled
1640  */
1641 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1642 {
1643 	rcu_read_lock();
1644 
1645 	if (memcg) {
1646 		pr_cont(",oom_memcg=");
1647 		pr_cont_cgroup_path(memcg->css.cgroup);
1648 	} else
1649 		pr_cont(",global_oom");
1650 	if (p) {
1651 		pr_cont(",task_memcg=");
1652 		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1653 	}
1654 	rcu_read_unlock();
1655 }
1656 
1657 /**
1658  * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1659  * memory controller.
1660  * @memcg: The memory cgroup that went over limit
1661  */
1662 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1663 {
1664 	/* Use static buffer, for the caller is holding oom_lock. */
1665 	static char buf[PAGE_SIZE];
1666 	struct seq_buf s;
1667 
1668 	lockdep_assert_held(&oom_lock);
1669 
1670 	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1671 		K((u64)page_counter_read(&memcg->memory)),
1672 		K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1673 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1674 		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1675 			K((u64)page_counter_read(&memcg->swap)),
1676 			K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1677 	else {
1678 		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1679 			K((u64)page_counter_read(&memcg->memsw)),
1680 			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1681 		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1682 			K((u64)page_counter_read(&memcg->kmem)),
1683 			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1684 	}
1685 
1686 	pr_info("Memory cgroup stats for ");
1687 	pr_cont_cgroup_path(memcg->css.cgroup);
1688 	pr_cont(":");
1689 	seq_buf_init(&s, buf, sizeof(buf));
1690 	memory_stat_format(memcg, &s);
1691 	seq_buf_do_printk(&s, KERN_INFO);
1692 }
1693 
1694 /*
1695  * Return the memory (and swap, if configured) limit for a memcg.
1696  */
1697 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1698 {
1699 	unsigned long max = READ_ONCE(memcg->memory.max);
1700 
1701 	if (do_memsw_account()) {
1702 		if (mem_cgroup_swappiness(memcg)) {
1703 			/* Calculate swap excess capacity from memsw limit */
1704 			unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1705 
1706 			max += min(swap, (unsigned long)total_swap_pages);
1707 		}
1708 	} else {
1709 		if (mem_cgroup_swappiness(memcg))
1710 			max += min(READ_ONCE(memcg->swap.max),
1711 				   (unsigned long)total_swap_pages);
1712 	}
1713 	return max;
1714 }
1715 
1716 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1717 {
1718 	return page_counter_read(&memcg->memory);
1719 }
1720 
1721 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1722 				     int order)
1723 {
1724 	struct oom_control oc = {
1725 		.zonelist = NULL,
1726 		.nodemask = NULL,
1727 		.memcg = memcg,
1728 		.gfp_mask = gfp_mask,
1729 		.order = order,
1730 	};
1731 	bool ret = true;
1732 
1733 	if (mutex_lock_killable(&oom_lock))
1734 		return true;
1735 
1736 	if (mem_cgroup_margin(memcg) >= (1 << order))
1737 		goto unlock;
1738 
1739 	/*
1740 	 * A few threads which were not waiting at mutex_lock_killable() can
1741 	 * fail to bail out. Therefore, check again after holding oom_lock.
1742 	 */
1743 	ret = task_is_dying() || out_of_memory(&oc);
1744 
1745 unlock:
1746 	mutex_unlock(&oom_lock);
1747 	return ret;
1748 }
1749 
1750 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1751 				   pg_data_t *pgdat,
1752 				   gfp_t gfp_mask,
1753 				   unsigned long *total_scanned)
1754 {
1755 	struct mem_cgroup *victim = NULL;
1756 	int total = 0;
1757 	int loop = 0;
1758 	unsigned long excess;
1759 	unsigned long nr_scanned;
1760 	struct mem_cgroup_reclaim_cookie reclaim = {
1761 		.pgdat = pgdat,
1762 	};
1763 
1764 	excess = soft_limit_excess(root_memcg);
1765 
1766 	while (1) {
1767 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1768 		if (!victim) {
1769 			loop++;
1770 			if (loop >= 2) {
1771 				/*
1772 				 * If we have not been able to reclaim
1773 				 * anything, it might because there are
1774 				 * no reclaimable pages under this hierarchy
1775 				 */
1776 				if (!total)
1777 					break;
1778 				/*
1779 				 * We want to do more targeted reclaim.
1780 				 * excess >> 2 is not to excessive so as to
1781 				 * reclaim too much, nor too less that we keep
1782 				 * coming back to reclaim from this cgroup
1783 				 */
1784 				if (total >= (excess >> 2) ||
1785 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1786 					break;
1787 			}
1788 			continue;
1789 		}
1790 		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1791 					pgdat, &nr_scanned);
1792 		*total_scanned += nr_scanned;
1793 		if (!soft_limit_excess(root_memcg))
1794 			break;
1795 	}
1796 	mem_cgroup_iter_break(root_memcg, victim);
1797 	return total;
1798 }
1799 
1800 #ifdef CONFIG_LOCKDEP
1801 static struct lockdep_map memcg_oom_lock_dep_map = {
1802 	.name = "memcg_oom_lock",
1803 };
1804 #endif
1805 
1806 static DEFINE_SPINLOCK(memcg_oom_lock);
1807 
1808 /*
1809  * Check OOM-Killer is already running under our hierarchy.
1810  * If someone is running, return false.
1811  */
1812 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1813 {
1814 	struct mem_cgroup *iter, *failed = NULL;
1815 
1816 	spin_lock(&memcg_oom_lock);
1817 
1818 	for_each_mem_cgroup_tree(iter, memcg) {
1819 		if (iter->oom_lock) {
1820 			/*
1821 			 * this subtree of our hierarchy is already locked
1822 			 * so we cannot give a lock.
1823 			 */
1824 			failed = iter;
1825 			mem_cgroup_iter_break(memcg, iter);
1826 			break;
1827 		} else
1828 			iter->oom_lock = true;
1829 	}
1830 
1831 	if (failed) {
1832 		/*
1833 		 * OK, we failed to lock the whole subtree so we have
1834 		 * to clean up what we set up to the failing subtree
1835 		 */
1836 		for_each_mem_cgroup_tree(iter, memcg) {
1837 			if (iter == failed) {
1838 				mem_cgroup_iter_break(memcg, iter);
1839 				break;
1840 			}
1841 			iter->oom_lock = false;
1842 		}
1843 	} else
1844 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1845 
1846 	spin_unlock(&memcg_oom_lock);
1847 
1848 	return !failed;
1849 }
1850 
1851 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1852 {
1853 	struct mem_cgroup *iter;
1854 
1855 	spin_lock(&memcg_oom_lock);
1856 	mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1857 	for_each_mem_cgroup_tree(iter, memcg)
1858 		iter->oom_lock = false;
1859 	spin_unlock(&memcg_oom_lock);
1860 }
1861 
1862 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1863 {
1864 	struct mem_cgroup *iter;
1865 
1866 	spin_lock(&memcg_oom_lock);
1867 	for_each_mem_cgroup_tree(iter, memcg)
1868 		iter->under_oom++;
1869 	spin_unlock(&memcg_oom_lock);
1870 }
1871 
1872 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1873 {
1874 	struct mem_cgroup *iter;
1875 
1876 	/*
1877 	 * Be careful about under_oom underflows because a child memcg
1878 	 * could have been added after mem_cgroup_mark_under_oom.
1879 	 */
1880 	spin_lock(&memcg_oom_lock);
1881 	for_each_mem_cgroup_tree(iter, memcg)
1882 		if (iter->under_oom > 0)
1883 			iter->under_oom--;
1884 	spin_unlock(&memcg_oom_lock);
1885 }
1886 
1887 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1888 
1889 struct oom_wait_info {
1890 	struct mem_cgroup *memcg;
1891 	wait_queue_entry_t	wait;
1892 };
1893 
1894 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1895 	unsigned mode, int sync, void *arg)
1896 {
1897 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1898 	struct mem_cgroup *oom_wait_memcg;
1899 	struct oom_wait_info *oom_wait_info;
1900 
1901 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1902 	oom_wait_memcg = oom_wait_info->memcg;
1903 
1904 	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1905 	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1906 		return 0;
1907 	return autoremove_wake_function(wait, mode, sync, arg);
1908 }
1909 
1910 static void memcg_oom_recover(struct mem_cgroup *memcg)
1911 {
1912 	/*
1913 	 * For the following lockless ->under_oom test, the only required
1914 	 * guarantee is that it must see the state asserted by an OOM when
1915 	 * this function is called as a result of userland actions
1916 	 * triggered by the notification of the OOM.  This is trivially
1917 	 * achieved by invoking mem_cgroup_mark_under_oom() before
1918 	 * triggering notification.
1919 	 */
1920 	if (memcg && memcg->under_oom)
1921 		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1922 }
1923 
1924 /*
1925  * Returns true if successfully killed one or more processes. Though in some
1926  * corner cases it can return true even without killing any process.
1927  */
1928 static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1929 {
1930 	bool locked, ret;
1931 
1932 	if (order > PAGE_ALLOC_COSTLY_ORDER)
1933 		return false;
1934 
1935 	memcg_memory_event(memcg, MEMCG_OOM);
1936 
1937 	/*
1938 	 * We are in the middle of the charge context here, so we
1939 	 * don't want to block when potentially sitting on a callstack
1940 	 * that holds all kinds of filesystem and mm locks.
1941 	 *
1942 	 * cgroup1 allows disabling the OOM killer and waiting for outside
1943 	 * handling until the charge can succeed; remember the context and put
1944 	 * the task to sleep at the end of the page fault when all locks are
1945 	 * released.
1946 	 *
1947 	 * On the other hand, in-kernel OOM killer allows for an async victim
1948 	 * memory reclaim (oom_reaper) and that means that we are not solely
1949 	 * relying on the oom victim to make a forward progress and we can
1950 	 * invoke the oom killer here.
1951 	 *
1952 	 * Please note that mem_cgroup_out_of_memory might fail to find a
1953 	 * victim and then we have to bail out from the charge path.
1954 	 */
1955 	if (READ_ONCE(memcg->oom_kill_disable)) {
1956 		if (current->in_user_fault) {
1957 			css_get(&memcg->css);
1958 			current->memcg_in_oom = memcg;
1959 			current->memcg_oom_gfp_mask = mask;
1960 			current->memcg_oom_order = order;
1961 		}
1962 		return false;
1963 	}
1964 
1965 	mem_cgroup_mark_under_oom(memcg);
1966 
1967 	locked = mem_cgroup_oom_trylock(memcg);
1968 
1969 	if (locked)
1970 		mem_cgroup_oom_notify(memcg);
1971 
1972 	mem_cgroup_unmark_under_oom(memcg);
1973 	ret = mem_cgroup_out_of_memory(memcg, mask, order);
1974 
1975 	if (locked)
1976 		mem_cgroup_oom_unlock(memcg);
1977 
1978 	return ret;
1979 }
1980 
1981 /**
1982  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1983  * @handle: actually kill/wait or just clean up the OOM state
1984  *
1985  * This has to be called at the end of a page fault if the memcg OOM
1986  * handler was enabled.
1987  *
1988  * Memcg supports userspace OOM handling where failed allocations must
1989  * sleep on a waitqueue until the userspace task resolves the
1990  * situation.  Sleeping directly in the charge context with all kinds
1991  * of locks held is not a good idea, instead we remember an OOM state
1992  * in the task and mem_cgroup_oom_synchronize() has to be called at
1993  * the end of the page fault to complete the OOM handling.
1994  *
1995  * Returns %true if an ongoing memcg OOM situation was detected and
1996  * completed, %false otherwise.
1997  */
1998 bool mem_cgroup_oom_synchronize(bool handle)
1999 {
2000 	struct mem_cgroup *memcg = current->memcg_in_oom;
2001 	struct oom_wait_info owait;
2002 	bool locked;
2003 
2004 	/* OOM is global, do not handle */
2005 	if (!memcg)
2006 		return false;
2007 
2008 	if (!handle)
2009 		goto cleanup;
2010 
2011 	owait.memcg = memcg;
2012 	owait.wait.flags = 0;
2013 	owait.wait.func = memcg_oom_wake_function;
2014 	owait.wait.private = current;
2015 	INIT_LIST_HEAD(&owait.wait.entry);
2016 
2017 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2018 	mem_cgroup_mark_under_oom(memcg);
2019 
2020 	locked = mem_cgroup_oom_trylock(memcg);
2021 
2022 	if (locked)
2023 		mem_cgroup_oom_notify(memcg);
2024 
2025 	schedule();
2026 	mem_cgroup_unmark_under_oom(memcg);
2027 	finish_wait(&memcg_oom_waitq, &owait.wait);
2028 
2029 	if (locked)
2030 		mem_cgroup_oom_unlock(memcg);
2031 cleanup:
2032 	current->memcg_in_oom = NULL;
2033 	css_put(&memcg->css);
2034 	return true;
2035 }
2036 
2037 /**
2038  * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2039  * @victim: task to be killed by the OOM killer
2040  * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2041  *
2042  * Returns a pointer to a memory cgroup, which has to be cleaned up
2043  * by killing all belonging OOM-killable tasks.
2044  *
2045  * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2046  */
2047 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2048 					    struct mem_cgroup *oom_domain)
2049 {
2050 	struct mem_cgroup *oom_group = NULL;
2051 	struct mem_cgroup *memcg;
2052 
2053 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2054 		return NULL;
2055 
2056 	if (!oom_domain)
2057 		oom_domain = root_mem_cgroup;
2058 
2059 	rcu_read_lock();
2060 
2061 	memcg = mem_cgroup_from_task(victim);
2062 	if (mem_cgroup_is_root(memcg))
2063 		goto out;
2064 
2065 	/*
2066 	 * If the victim task has been asynchronously moved to a different
2067 	 * memory cgroup, we might end up killing tasks outside oom_domain.
2068 	 * In this case it's better to ignore memory.group.oom.
2069 	 */
2070 	if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2071 		goto out;
2072 
2073 	/*
2074 	 * Traverse the memory cgroup hierarchy from the victim task's
2075 	 * cgroup up to the OOMing cgroup (or root) to find the
2076 	 * highest-level memory cgroup with oom.group set.
2077 	 */
2078 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2079 		if (READ_ONCE(memcg->oom_group))
2080 			oom_group = memcg;
2081 
2082 		if (memcg == oom_domain)
2083 			break;
2084 	}
2085 
2086 	if (oom_group)
2087 		css_get(&oom_group->css);
2088 out:
2089 	rcu_read_unlock();
2090 
2091 	return oom_group;
2092 }
2093 
2094 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2095 {
2096 	pr_info("Tasks in ");
2097 	pr_cont_cgroup_path(memcg->css.cgroup);
2098 	pr_cont(" are going to be killed due to memory.oom.group set\n");
2099 }
2100 
2101 /**
2102  * folio_memcg_lock - Bind a folio to its memcg.
2103  * @folio: The folio.
2104  *
2105  * This function prevents unlocked LRU folios from being moved to
2106  * another cgroup.
2107  *
2108  * It ensures lifetime of the bound memcg.  The caller is responsible
2109  * for the lifetime of the folio.
2110  */
2111 void folio_memcg_lock(struct folio *folio)
2112 {
2113 	struct mem_cgroup *memcg;
2114 	unsigned long flags;
2115 
2116 	/*
2117 	 * The RCU lock is held throughout the transaction.  The fast
2118 	 * path can get away without acquiring the memcg->move_lock
2119 	 * because page moving starts with an RCU grace period.
2120          */
2121 	rcu_read_lock();
2122 
2123 	if (mem_cgroup_disabled())
2124 		return;
2125 again:
2126 	memcg = folio_memcg(folio);
2127 	if (unlikely(!memcg))
2128 		return;
2129 
2130 #ifdef CONFIG_PROVE_LOCKING
2131 	local_irq_save(flags);
2132 	might_lock(&memcg->move_lock);
2133 	local_irq_restore(flags);
2134 #endif
2135 
2136 	if (atomic_read(&memcg->moving_account) <= 0)
2137 		return;
2138 
2139 	spin_lock_irqsave(&memcg->move_lock, flags);
2140 	if (memcg != folio_memcg(folio)) {
2141 		spin_unlock_irqrestore(&memcg->move_lock, flags);
2142 		goto again;
2143 	}
2144 
2145 	/*
2146 	 * When charge migration first begins, we can have multiple
2147 	 * critical sections holding the fast-path RCU lock and one
2148 	 * holding the slowpath move_lock. Track the task who has the
2149 	 * move_lock for folio_memcg_unlock().
2150 	 */
2151 	memcg->move_lock_task = current;
2152 	memcg->move_lock_flags = flags;
2153 }
2154 
2155 static void __folio_memcg_unlock(struct mem_cgroup *memcg)
2156 {
2157 	if (memcg && memcg->move_lock_task == current) {
2158 		unsigned long flags = memcg->move_lock_flags;
2159 
2160 		memcg->move_lock_task = NULL;
2161 		memcg->move_lock_flags = 0;
2162 
2163 		spin_unlock_irqrestore(&memcg->move_lock, flags);
2164 	}
2165 
2166 	rcu_read_unlock();
2167 }
2168 
2169 /**
2170  * folio_memcg_unlock - Release the binding between a folio and its memcg.
2171  * @folio: The folio.
2172  *
2173  * This releases the binding created by folio_memcg_lock().  This does
2174  * not change the accounting of this folio to its memcg, but it does
2175  * permit others to change it.
2176  */
2177 void folio_memcg_unlock(struct folio *folio)
2178 {
2179 	__folio_memcg_unlock(folio_memcg(folio));
2180 }
2181 
2182 struct memcg_stock_pcp {
2183 	local_lock_t stock_lock;
2184 	struct mem_cgroup *cached; /* this never be root cgroup */
2185 	unsigned int nr_pages;
2186 
2187 #ifdef CONFIG_MEMCG_KMEM
2188 	struct obj_cgroup *cached_objcg;
2189 	struct pglist_data *cached_pgdat;
2190 	unsigned int nr_bytes;
2191 	int nr_slab_reclaimable_b;
2192 	int nr_slab_unreclaimable_b;
2193 #endif
2194 
2195 	struct work_struct work;
2196 	unsigned long flags;
2197 #define FLUSHING_CACHED_CHARGE	0
2198 };
2199 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = {
2200 	.stock_lock = INIT_LOCAL_LOCK(stock_lock),
2201 };
2202 static DEFINE_MUTEX(percpu_charge_mutex);
2203 
2204 #ifdef CONFIG_MEMCG_KMEM
2205 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock);
2206 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2207 				     struct mem_cgroup *root_memcg);
2208 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages);
2209 
2210 #else
2211 static inline struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
2212 {
2213 	return NULL;
2214 }
2215 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2216 				     struct mem_cgroup *root_memcg)
2217 {
2218 	return false;
2219 }
2220 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
2221 {
2222 }
2223 #endif
2224 
2225 /**
2226  * consume_stock: Try to consume stocked charge on this cpu.
2227  * @memcg: memcg to consume from.
2228  * @nr_pages: how many pages to charge.
2229  *
2230  * The charges will only happen if @memcg matches the current cpu's memcg
2231  * stock, and at least @nr_pages are available in that stock.  Failure to
2232  * service an allocation will refill the stock.
2233  *
2234  * returns true if successful, false otherwise.
2235  */
2236 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2237 {
2238 	struct memcg_stock_pcp *stock;
2239 	unsigned long flags;
2240 	bool ret = false;
2241 
2242 	if (nr_pages > MEMCG_CHARGE_BATCH)
2243 		return ret;
2244 
2245 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
2246 
2247 	stock = this_cpu_ptr(&memcg_stock);
2248 	if (memcg == READ_ONCE(stock->cached) && stock->nr_pages >= nr_pages) {
2249 		stock->nr_pages -= nr_pages;
2250 		ret = true;
2251 	}
2252 
2253 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2254 
2255 	return ret;
2256 }
2257 
2258 /*
2259  * Returns stocks cached in percpu and reset cached information.
2260  */
2261 static void drain_stock(struct memcg_stock_pcp *stock)
2262 {
2263 	struct mem_cgroup *old = READ_ONCE(stock->cached);
2264 
2265 	if (!old)
2266 		return;
2267 
2268 	if (stock->nr_pages) {
2269 		page_counter_uncharge(&old->memory, stock->nr_pages);
2270 		if (do_memsw_account())
2271 			page_counter_uncharge(&old->memsw, stock->nr_pages);
2272 		stock->nr_pages = 0;
2273 	}
2274 
2275 	css_put(&old->css);
2276 	WRITE_ONCE(stock->cached, NULL);
2277 }
2278 
2279 static void drain_local_stock(struct work_struct *dummy)
2280 {
2281 	struct memcg_stock_pcp *stock;
2282 	struct obj_cgroup *old = NULL;
2283 	unsigned long flags;
2284 
2285 	/*
2286 	 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
2287 	 * drain_stock races is that we always operate on local CPU stock
2288 	 * here with IRQ disabled
2289 	 */
2290 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
2291 
2292 	stock = this_cpu_ptr(&memcg_stock);
2293 	old = drain_obj_stock(stock);
2294 	drain_stock(stock);
2295 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2296 
2297 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2298 	if (old)
2299 		obj_cgroup_put(old);
2300 }
2301 
2302 /*
2303  * Cache charges(val) to local per_cpu area.
2304  * This will be consumed by consume_stock() function, later.
2305  */
2306 static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2307 {
2308 	struct memcg_stock_pcp *stock;
2309 
2310 	stock = this_cpu_ptr(&memcg_stock);
2311 	if (READ_ONCE(stock->cached) != memcg) { /* reset if necessary */
2312 		drain_stock(stock);
2313 		css_get(&memcg->css);
2314 		WRITE_ONCE(stock->cached, memcg);
2315 	}
2316 	stock->nr_pages += nr_pages;
2317 
2318 	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2319 		drain_stock(stock);
2320 }
2321 
2322 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2323 {
2324 	unsigned long flags;
2325 
2326 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
2327 	__refill_stock(memcg, nr_pages);
2328 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2329 }
2330 
2331 /*
2332  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2333  * of the hierarchy under it.
2334  */
2335 static void drain_all_stock(struct mem_cgroup *root_memcg)
2336 {
2337 	int cpu, curcpu;
2338 
2339 	/* If someone's already draining, avoid adding running more workers. */
2340 	if (!mutex_trylock(&percpu_charge_mutex))
2341 		return;
2342 	/*
2343 	 * Notify other cpus that system-wide "drain" is running
2344 	 * We do not care about races with the cpu hotplug because cpu down
2345 	 * as well as workers from this path always operate on the local
2346 	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2347 	 */
2348 	migrate_disable();
2349 	curcpu = smp_processor_id();
2350 	for_each_online_cpu(cpu) {
2351 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2352 		struct mem_cgroup *memcg;
2353 		bool flush = false;
2354 
2355 		rcu_read_lock();
2356 		memcg = READ_ONCE(stock->cached);
2357 		if (memcg && stock->nr_pages &&
2358 		    mem_cgroup_is_descendant(memcg, root_memcg))
2359 			flush = true;
2360 		else if (obj_stock_flush_required(stock, root_memcg))
2361 			flush = true;
2362 		rcu_read_unlock();
2363 
2364 		if (flush &&
2365 		    !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2366 			if (cpu == curcpu)
2367 				drain_local_stock(&stock->work);
2368 			else if (!cpu_is_isolated(cpu))
2369 				schedule_work_on(cpu, &stock->work);
2370 		}
2371 	}
2372 	migrate_enable();
2373 	mutex_unlock(&percpu_charge_mutex);
2374 }
2375 
2376 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2377 {
2378 	struct memcg_stock_pcp *stock;
2379 
2380 	stock = &per_cpu(memcg_stock, cpu);
2381 	drain_stock(stock);
2382 
2383 	return 0;
2384 }
2385 
2386 static unsigned long reclaim_high(struct mem_cgroup *memcg,
2387 				  unsigned int nr_pages,
2388 				  gfp_t gfp_mask)
2389 {
2390 	unsigned long nr_reclaimed = 0;
2391 
2392 	do {
2393 		unsigned long pflags;
2394 
2395 		if (page_counter_read(&memcg->memory) <=
2396 		    READ_ONCE(memcg->memory.high))
2397 			continue;
2398 
2399 		memcg_memory_event(memcg, MEMCG_HIGH);
2400 
2401 		psi_memstall_enter(&pflags);
2402 		nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2403 							gfp_mask,
2404 							MEMCG_RECLAIM_MAY_SWAP);
2405 		psi_memstall_leave(&pflags);
2406 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2407 		 !mem_cgroup_is_root(memcg));
2408 
2409 	return nr_reclaimed;
2410 }
2411 
2412 static void high_work_func(struct work_struct *work)
2413 {
2414 	struct mem_cgroup *memcg;
2415 
2416 	memcg = container_of(work, struct mem_cgroup, high_work);
2417 	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2418 }
2419 
2420 /*
2421  * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2422  * enough to still cause a significant slowdown in most cases, while still
2423  * allowing diagnostics and tracing to proceed without becoming stuck.
2424  */
2425 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2426 
2427 /*
2428  * When calculating the delay, we use these either side of the exponentiation to
2429  * maintain precision and scale to a reasonable number of jiffies (see the table
2430  * below.
2431  *
2432  * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2433  *   overage ratio to a delay.
2434  * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2435  *   proposed penalty in order to reduce to a reasonable number of jiffies, and
2436  *   to produce a reasonable delay curve.
2437  *
2438  * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2439  * reasonable delay curve compared to precision-adjusted overage, not
2440  * penalising heavily at first, but still making sure that growth beyond the
2441  * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2442  * example, with a high of 100 megabytes:
2443  *
2444  *  +-------+------------------------+
2445  *  | usage | time to allocate in ms |
2446  *  +-------+------------------------+
2447  *  | 100M  |                      0 |
2448  *  | 101M  |                      6 |
2449  *  | 102M  |                     25 |
2450  *  | 103M  |                     57 |
2451  *  | 104M  |                    102 |
2452  *  | 105M  |                    159 |
2453  *  | 106M  |                    230 |
2454  *  | 107M  |                    313 |
2455  *  | 108M  |                    409 |
2456  *  | 109M  |                    518 |
2457  *  | 110M  |                    639 |
2458  *  | 111M  |                    774 |
2459  *  | 112M  |                    921 |
2460  *  | 113M  |                   1081 |
2461  *  | 114M  |                   1254 |
2462  *  | 115M  |                   1439 |
2463  *  | 116M  |                   1638 |
2464  *  | 117M  |                   1849 |
2465  *  | 118M  |                   2000 |
2466  *  | 119M  |                   2000 |
2467  *  | 120M  |                   2000 |
2468  *  +-------+------------------------+
2469  */
2470  #define MEMCG_DELAY_PRECISION_SHIFT 20
2471  #define MEMCG_DELAY_SCALING_SHIFT 14
2472 
2473 static u64 calculate_overage(unsigned long usage, unsigned long high)
2474 {
2475 	u64 overage;
2476 
2477 	if (usage <= high)
2478 		return 0;
2479 
2480 	/*
2481 	 * Prevent division by 0 in overage calculation by acting as if
2482 	 * it was a threshold of 1 page
2483 	 */
2484 	high = max(high, 1UL);
2485 
2486 	overage = usage - high;
2487 	overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2488 	return div64_u64(overage, high);
2489 }
2490 
2491 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2492 {
2493 	u64 overage, max_overage = 0;
2494 
2495 	do {
2496 		overage = calculate_overage(page_counter_read(&memcg->memory),
2497 					    READ_ONCE(memcg->memory.high));
2498 		max_overage = max(overage, max_overage);
2499 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2500 		 !mem_cgroup_is_root(memcg));
2501 
2502 	return max_overage;
2503 }
2504 
2505 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2506 {
2507 	u64 overage, max_overage = 0;
2508 
2509 	do {
2510 		overage = calculate_overage(page_counter_read(&memcg->swap),
2511 					    READ_ONCE(memcg->swap.high));
2512 		if (overage)
2513 			memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2514 		max_overage = max(overage, max_overage);
2515 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2516 		 !mem_cgroup_is_root(memcg));
2517 
2518 	return max_overage;
2519 }
2520 
2521 /*
2522  * Get the number of jiffies that we should penalise a mischievous cgroup which
2523  * is exceeding its memory.high by checking both it and its ancestors.
2524  */
2525 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2526 					  unsigned int nr_pages,
2527 					  u64 max_overage)
2528 {
2529 	unsigned long penalty_jiffies;
2530 
2531 	if (!max_overage)
2532 		return 0;
2533 
2534 	/*
2535 	 * We use overage compared to memory.high to calculate the number of
2536 	 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2537 	 * fairly lenient on small overages, and increasingly harsh when the
2538 	 * memcg in question makes it clear that it has no intention of stopping
2539 	 * its crazy behaviour, so we exponentially increase the delay based on
2540 	 * overage amount.
2541 	 */
2542 	penalty_jiffies = max_overage * max_overage * HZ;
2543 	penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2544 	penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2545 
2546 	/*
2547 	 * Factor in the task's own contribution to the overage, such that four
2548 	 * N-sized allocations are throttled approximately the same as one
2549 	 * 4N-sized allocation.
2550 	 *
2551 	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2552 	 * larger the current charge patch is than that.
2553 	 */
2554 	return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2555 }
2556 
2557 /*
2558  * Scheduled by try_charge() to be executed from the userland return path
2559  * and reclaims memory over the high limit.
2560  */
2561 void mem_cgroup_handle_over_high(void)
2562 {
2563 	unsigned long penalty_jiffies;
2564 	unsigned long pflags;
2565 	unsigned long nr_reclaimed;
2566 	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2567 	int nr_retries = MAX_RECLAIM_RETRIES;
2568 	struct mem_cgroup *memcg;
2569 	bool in_retry = false;
2570 
2571 	if (likely(!nr_pages))
2572 		return;
2573 
2574 	memcg = get_mem_cgroup_from_mm(current->mm);
2575 	current->memcg_nr_pages_over_high = 0;
2576 
2577 retry_reclaim:
2578 	/*
2579 	 * The allocating task should reclaim at least the batch size, but for
2580 	 * subsequent retries we only want to do what's necessary to prevent oom
2581 	 * or breaching resource isolation.
2582 	 *
2583 	 * This is distinct from memory.max or page allocator behaviour because
2584 	 * memory.high is currently batched, whereas memory.max and the page
2585 	 * allocator run every time an allocation is made.
2586 	 */
2587 	nr_reclaimed = reclaim_high(memcg,
2588 				    in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2589 				    GFP_KERNEL);
2590 
2591 	/*
2592 	 * memory.high is breached and reclaim is unable to keep up. Throttle
2593 	 * allocators proactively to slow down excessive growth.
2594 	 */
2595 	penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2596 					       mem_find_max_overage(memcg));
2597 
2598 	penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2599 						swap_find_max_overage(memcg));
2600 
2601 	/*
2602 	 * Clamp the max delay per usermode return so as to still keep the
2603 	 * application moving forwards and also permit diagnostics, albeit
2604 	 * extremely slowly.
2605 	 */
2606 	penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2607 
2608 	/*
2609 	 * Don't sleep if the amount of jiffies this memcg owes us is so low
2610 	 * that it's not even worth doing, in an attempt to be nice to those who
2611 	 * go only a small amount over their memory.high value and maybe haven't
2612 	 * been aggressively reclaimed enough yet.
2613 	 */
2614 	if (penalty_jiffies <= HZ / 100)
2615 		goto out;
2616 
2617 	/*
2618 	 * If reclaim is making forward progress but we're still over
2619 	 * memory.high, we want to encourage that rather than doing allocator
2620 	 * throttling.
2621 	 */
2622 	if (nr_reclaimed || nr_retries--) {
2623 		in_retry = true;
2624 		goto retry_reclaim;
2625 	}
2626 
2627 	/*
2628 	 * If we exit early, we're guaranteed to die (since
2629 	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2630 	 * need to account for any ill-begotten jiffies to pay them off later.
2631 	 */
2632 	psi_memstall_enter(&pflags);
2633 	schedule_timeout_killable(penalty_jiffies);
2634 	psi_memstall_leave(&pflags);
2635 
2636 out:
2637 	css_put(&memcg->css);
2638 }
2639 
2640 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2641 			unsigned int nr_pages)
2642 {
2643 	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2644 	int nr_retries = MAX_RECLAIM_RETRIES;
2645 	struct mem_cgroup *mem_over_limit;
2646 	struct page_counter *counter;
2647 	unsigned long nr_reclaimed;
2648 	bool passed_oom = false;
2649 	unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP;
2650 	bool drained = false;
2651 	bool raised_max_event = false;
2652 	unsigned long pflags;
2653 
2654 retry:
2655 	if (consume_stock(memcg, nr_pages))
2656 		return 0;
2657 
2658 	if (!do_memsw_account() ||
2659 	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2660 		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2661 			goto done_restock;
2662 		if (do_memsw_account())
2663 			page_counter_uncharge(&memcg->memsw, batch);
2664 		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2665 	} else {
2666 		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2667 		reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP;
2668 	}
2669 
2670 	if (batch > nr_pages) {
2671 		batch = nr_pages;
2672 		goto retry;
2673 	}
2674 
2675 	/*
2676 	 * Prevent unbounded recursion when reclaim operations need to
2677 	 * allocate memory. This might exceed the limits temporarily,
2678 	 * but we prefer facilitating memory reclaim and getting back
2679 	 * under the limit over triggering OOM kills in these cases.
2680 	 */
2681 	if (unlikely(current->flags & PF_MEMALLOC))
2682 		goto force;
2683 
2684 	if (unlikely(task_in_memcg_oom(current)))
2685 		goto nomem;
2686 
2687 	if (!gfpflags_allow_blocking(gfp_mask))
2688 		goto nomem;
2689 
2690 	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2691 	raised_max_event = true;
2692 
2693 	psi_memstall_enter(&pflags);
2694 	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2695 						    gfp_mask, reclaim_options);
2696 	psi_memstall_leave(&pflags);
2697 
2698 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2699 		goto retry;
2700 
2701 	if (!drained) {
2702 		drain_all_stock(mem_over_limit);
2703 		drained = true;
2704 		goto retry;
2705 	}
2706 
2707 	if (gfp_mask & __GFP_NORETRY)
2708 		goto nomem;
2709 	/*
2710 	 * Even though the limit is exceeded at this point, reclaim
2711 	 * may have been able to free some pages.  Retry the charge
2712 	 * before killing the task.
2713 	 *
2714 	 * Only for regular pages, though: huge pages are rather
2715 	 * unlikely to succeed so close to the limit, and we fall back
2716 	 * to regular pages anyway in case of failure.
2717 	 */
2718 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2719 		goto retry;
2720 	/*
2721 	 * At task move, charge accounts can be doubly counted. So, it's
2722 	 * better to wait until the end of task_move if something is going on.
2723 	 */
2724 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2725 		goto retry;
2726 
2727 	if (nr_retries--)
2728 		goto retry;
2729 
2730 	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2731 		goto nomem;
2732 
2733 	/* Avoid endless loop for tasks bypassed by the oom killer */
2734 	if (passed_oom && task_is_dying())
2735 		goto nomem;
2736 
2737 	/*
2738 	 * keep retrying as long as the memcg oom killer is able to make
2739 	 * a forward progress or bypass the charge if the oom killer
2740 	 * couldn't make any progress.
2741 	 */
2742 	if (mem_cgroup_oom(mem_over_limit, gfp_mask,
2743 			   get_order(nr_pages * PAGE_SIZE))) {
2744 		passed_oom = true;
2745 		nr_retries = MAX_RECLAIM_RETRIES;
2746 		goto retry;
2747 	}
2748 nomem:
2749 	/*
2750 	 * Memcg doesn't have a dedicated reserve for atomic
2751 	 * allocations. But like the global atomic pool, we need to
2752 	 * put the burden of reclaim on regular allocation requests
2753 	 * and let these go through as privileged allocations.
2754 	 */
2755 	if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH)))
2756 		return -ENOMEM;
2757 force:
2758 	/*
2759 	 * If the allocation has to be enforced, don't forget to raise
2760 	 * a MEMCG_MAX event.
2761 	 */
2762 	if (!raised_max_event)
2763 		memcg_memory_event(mem_over_limit, MEMCG_MAX);
2764 
2765 	/*
2766 	 * The allocation either can't fail or will lead to more memory
2767 	 * being freed very soon.  Allow memory usage go over the limit
2768 	 * temporarily by force charging it.
2769 	 */
2770 	page_counter_charge(&memcg->memory, nr_pages);
2771 	if (do_memsw_account())
2772 		page_counter_charge(&memcg->memsw, nr_pages);
2773 
2774 	return 0;
2775 
2776 done_restock:
2777 	if (batch > nr_pages)
2778 		refill_stock(memcg, batch - nr_pages);
2779 
2780 	/*
2781 	 * If the hierarchy is above the normal consumption range, schedule
2782 	 * reclaim on returning to userland.  We can perform reclaim here
2783 	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2784 	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2785 	 * not recorded as it most likely matches current's and won't
2786 	 * change in the meantime.  As high limit is checked again before
2787 	 * reclaim, the cost of mismatch is negligible.
2788 	 */
2789 	do {
2790 		bool mem_high, swap_high;
2791 
2792 		mem_high = page_counter_read(&memcg->memory) >
2793 			READ_ONCE(memcg->memory.high);
2794 		swap_high = page_counter_read(&memcg->swap) >
2795 			READ_ONCE(memcg->swap.high);
2796 
2797 		/* Don't bother a random interrupted task */
2798 		if (!in_task()) {
2799 			if (mem_high) {
2800 				schedule_work(&memcg->high_work);
2801 				break;
2802 			}
2803 			continue;
2804 		}
2805 
2806 		if (mem_high || swap_high) {
2807 			/*
2808 			 * The allocating tasks in this cgroup will need to do
2809 			 * reclaim or be throttled to prevent further growth
2810 			 * of the memory or swap footprints.
2811 			 *
2812 			 * Target some best-effort fairness between the tasks,
2813 			 * and distribute reclaim work and delay penalties
2814 			 * based on how much each task is actually allocating.
2815 			 */
2816 			current->memcg_nr_pages_over_high += batch;
2817 			set_notify_resume(current);
2818 			break;
2819 		}
2820 	} while ((memcg = parent_mem_cgroup(memcg)));
2821 
2822 	if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
2823 	    !(current->flags & PF_MEMALLOC) &&
2824 	    gfpflags_allow_blocking(gfp_mask)) {
2825 		mem_cgroup_handle_over_high();
2826 	}
2827 	return 0;
2828 }
2829 
2830 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2831 			     unsigned int nr_pages)
2832 {
2833 	if (mem_cgroup_is_root(memcg))
2834 		return 0;
2835 
2836 	return try_charge_memcg(memcg, gfp_mask, nr_pages);
2837 }
2838 
2839 static inline void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2840 {
2841 	if (mem_cgroup_is_root(memcg))
2842 		return;
2843 
2844 	page_counter_uncharge(&memcg->memory, nr_pages);
2845 	if (do_memsw_account())
2846 		page_counter_uncharge(&memcg->memsw, nr_pages);
2847 }
2848 
2849 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2850 {
2851 	VM_BUG_ON_FOLIO(folio_memcg(folio), folio);
2852 	/*
2853 	 * Any of the following ensures page's memcg stability:
2854 	 *
2855 	 * - the page lock
2856 	 * - LRU isolation
2857 	 * - folio_memcg_lock()
2858 	 * - exclusive reference
2859 	 * - mem_cgroup_trylock_pages()
2860 	 */
2861 	folio->memcg_data = (unsigned long)memcg;
2862 }
2863 
2864 #ifdef CONFIG_MEMCG_KMEM
2865 /*
2866  * The allocated objcg pointers array is not accounted directly.
2867  * Moreover, it should not come from DMA buffer and is not readily
2868  * reclaimable. So those GFP bits should be masked off.
2869  */
2870 #define OBJCGS_CLEAR_MASK	(__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT)
2871 
2872 /*
2873  * mod_objcg_mlstate() may be called with irq enabled, so
2874  * mod_memcg_lruvec_state() should be used.
2875  */
2876 static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
2877 				     struct pglist_data *pgdat,
2878 				     enum node_stat_item idx, int nr)
2879 {
2880 	struct mem_cgroup *memcg;
2881 	struct lruvec *lruvec;
2882 
2883 	rcu_read_lock();
2884 	memcg = obj_cgroup_memcg(objcg);
2885 	lruvec = mem_cgroup_lruvec(memcg, pgdat);
2886 	mod_memcg_lruvec_state(lruvec, idx, nr);
2887 	rcu_read_unlock();
2888 }
2889 
2890 int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s,
2891 				 gfp_t gfp, bool new_slab)
2892 {
2893 	unsigned int objects = objs_per_slab(s, slab);
2894 	unsigned long memcg_data;
2895 	void *vec;
2896 
2897 	gfp &= ~OBJCGS_CLEAR_MASK;
2898 	vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2899 			   slab_nid(slab));
2900 	if (!vec)
2901 		return -ENOMEM;
2902 
2903 	memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
2904 	if (new_slab) {
2905 		/*
2906 		 * If the slab is brand new and nobody can yet access its
2907 		 * memcg_data, no synchronization is required and memcg_data can
2908 		 * be simply assigned.
2909 		 */
2910 		slab->memcg_data = memcg_data;
2911 	} else if (cmpxchg(&slab->memcg_data, 0, memcg_data)) {
2912 		/*
2913 		 * If the slab is already in use, somebody can allocate and
2914 		 * assign obj_cgroups in parallel. In this case the existing
2915 		 * objcg vector should be reused.
2916 		 */
2917 		kfree(vec);
2918 		return 0;
2919 	}
2920 
2921 	kmemleak_not_leak(vec);
2922 	return 0;
2923 }
2924 
2925 static __always_inline
2926 struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p)
2927 {
2928 	/*
2929 	 * Slab objects are accounted individually, not per-page.
2930 	 * Memcg membership data for each individual object is saved in
2931 	 * slab->memcg_data.
2932 	 */
2933 	if (folio_test_slab(folio)) {
2934 		struct obj_cgroup **objcgs;
2935 		struct slab *slab;
2936 		unsigned int off;
2937 
2938 		slab = folio_slab(folio);
2939 		objcgs = slab_objcgs(slab);
2940 		if (!objcgs)
2941 			return NULL;
2942 
2943 		off = obj_to_index(slab->slab_cache, slab, p);
2944 		if (objcgs[off])
2945 			return obj_cgroup_memcg(objcgs[off]);
2946 
2947 		return NULL;
2948 	}
2949 
2950 	/*
2951 	 * folio_memcg_check() is used here, because in theory we can encounter
2952 	 * a folio where the slab flag has been cleared already, but
2953 	 * slab->memcg_data has not been freed yet
2954 	 * folio_memcg_check() will guarantee that a proper memory
2955 	 * cgroup pointer or NULL will be returned.
2956 	 */
2957 	return folio_memcg_check(folio);
2958 }
2959 
2960 /*
2961  * Returns a pointer to the memory cgroup to which the kernel object is charged.
2962  *
2963  * A passed kernel object can be a slab object, vmalloc object or a generic
2964  * kernel page, so different mechanisms for getting the memory cgroup pointer
2965  * should be used.
2966  *
2967  * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2968  * can not know for sure how the kernel object is implemented.
2969  * mem_cgroup_from_obj() can be safely used in such cases.
2970  *
2971  * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2972  * cgroup_mutex, etc.
2973  */
2974 struct mem_cgroup *mem_cgroup_from_obj(void *p)
2975 {
2976 	struct folio *folio;
2977 
2978 	if (mem_cgroup_disabled())
2979 		return NULL;
2980 
2981 	if (unlikely(is_vmalloc_addr(p)))
2982 		folio = page_folio(vmalloc_to_page(p));
2983 	else
2984 		folio = virt_to_folio(p);
2985 
2986 	return mem_cgroup_from_obj_folio(folio, p);
2987 }
2988 
2989 /*
2990  * Returns a pointer to the memory cgroup to which the kernel object is charged.
2991  * Similar to mem_cgroup_from_obj(), but faster and not suitable for objects,
2992  * allocated using vmalloc().
2993  *
2994  * A passed kernel object must be a slab object or a generic kernel page.
2995  *
2996  * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2997  * cgroup_mutex, etc.
2998  */
2999 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
3000 {
3001 	if (mem_cgroup_disabled())
3002 		return NULL;
3003 
3004 	return mem_cgroup_from_obj_folio(virt_to_folio(p), p);
3005 }
3006 
3007 static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg)
3008 {
3009 	struct obj_cgroup *objcg = NULL;
3010 
3011 	for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
3012 		objcg = rcu_dereference(memcg->objcg);
3013 		if (objcg && obj_cgroup_tryget(objcg))
3014 			break;
3015 		objcg = NULL;
3016 	}
3017 	return objcg;
3018 }
3019 
3020 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
3021 {
3022 	struct obj_cgroup *objcg = NULL;
3023 	struct mem_cgroup *memcg;
3024 
3025 	if (memcg_kmem_bypass())
3026 		return NULL;
3027 
3028 	rcu_read_lock();
3029 	if (unlikely(active_memcg()))
3030 		memcg = active_memcg();
3031 	else
3032 		memcg = mem_cgroup_from_task(current);
3033 	objcg = __get_obj_cgroup_from_memcg(memcg);
3034 	rcu_read_unlock();
3035 	return objcg;
3036 }
3037 
3038 struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio)
3039 {
3040 	struct obj_cgroup *objcg;
3041 
3042 	if (!memcg_kmem_online())
3043 		return NULL;
3044 
3045 	if (folio_memcg_kmem(folio)) {
3046 		objcg = __folio_objcg(folio);
3047 		obj_cgroup_get(objcg);
3048 	} else {
3049 		struct mem_cgroup *memcg;
3050 
3051 		rcu_read_lock();
3052 		memcg = __folio_memcg(folio);
3053 		if (memcg)
3054 			objcg = __get_obj_cgroup_from_memcg(memcg);
3055 		else
3056 			objcg = NULL;
3057 		rcu_read_unlock();
3058 	}
3059 	return objcg;
3060 }
3061 
3062 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
3063 {
3064 	mod_memcg_state(memcg, MEMCG_KMEM, nr_pages);
3065 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
3066 		if (nr_pages > 0)
3067 			page_counter_charge(&memcg->kmem, nr_pages);
3068 		else
3069 			page_counter_uncharge(&memcg->kmem, -nr_pages);
3070 	}
3071 }
3072 
3073 
3074 /*
3075  * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
3076  * @objcg: object cgroup to uncharge
3077  * @nr_pages: number of pages to uncharge
3078  */
3079 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
3080 				      unsigned int nr_pages)
3081 {
3082 	struct mem_cgroup *memcg;
3083 
3084 	memcg = get_mem_cgroup_from_objcg(objcg);
3085 
3086 	memcg_account_kmem(memcg, -nr_pages);
3087 	refill_stock(memcg, nr_pages);
3088 
3089 	css_put(&memcg->css);
3090 }
3091 
3092 /*
3093  * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
3094  * @objcg: object cgroup to charge
3095  * @gfp: reclaim mode
3096  * @nr_pages: number of pages to charge
3097  *
3098  * Returns 0 on success, an error code on failure.
3099  */
3100 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
3101 				   unsigned int nr_pages)
3102 {
3103 	struct mem_cgroup *memcg;
3104 	int ret;
3105 
3106 	memcg = get_mem_cgroup_from_objcg(objcg);
3107 
3108 	ret = try_charge_memcg(memcg, gfp, nr_pages);
3109 	if (ret)
3110 		goto out;
3111 
3112 	memcg_account_kmem(memcg, nr_pages);
3113 out:
3114 	css_put(&memcg->css);
3115 
3116 	return ret;
3117 }
3118 
3119 /**
3120  * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3121  * @page: page to charge
3122  * @gfp: reclaim mode
3123  * @order: allocation order
3124  *
3125  * Returns 0 on success, an error code on failure.
3126  */
3127 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3128 {
3129 	struct obj_cgroup *objcg;
3130 	int ret = 0;
3131 
3132 	objcg = get_obj_cgroup_from_current();
3133 	if (objcg) {
3134 		ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
3135 		if (!ret) {
3136 			page->memcg_data = (unsigned long)objcg |
3137 				MEMCG_DATA_KMEM;
3138 			return 0;
3139 		}
3140 		obj_cgroup_put(objcg);
3141 	}
3142 	return ret;
3143 }
3144 
3145 /**
3146  * __memcg_kmem_uncharge_page: uncharge a kmem page
3147  * @page: page to uncharge
3148  * @order: allocation order
3149  */
3150 void __memcg_kmem_uncharge_page(struct page *page, int order)
3151 {
3152 	struct folio *folio = page_folio(page);
3153 	struct obj_cgroup *objcg;
3154 	unsigned int nr_pages = 1 << order;
3155 
3156 	if (!folio_memcg_kmem(folio))
3157 		return;
3158 
3159 	objcg = __folio_objcg(folio);
3160 	obj_cgroup_uncharge_pages(objcg, nr_pages);
3161 	folio->memcg_data = 0;
3162 	obj_cgroup_put(objcg);
3163 }
3164 
3165 void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3166 		     enum node_stat_item idx, int nr)
3167 {
3168 	struct memcg_stock_pcp *stock;
3169 	struct obj_cgroup *old = NULL;
3170 	unsigned long flags;
3171 	int *bytes;
3172 
3173 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
3174 	stock = this_cpu_ptr(&memcg_stock);
3175 
3176 	/*
3177 	 * Save vmstat data in stock and skip vmstat array update unless
3178 	 * accumulating over a page of vmstat data or when pgdat or idx
3179 	 * changes.
3180 	 */
3181 	if (READ_ONCE(stock->cached_objcg) != objcg) {
3182 		old = drain_obj_stock(stock);
3183 		obj_cgroup_get(objcg);
3184 		stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3185 				? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3186 		WRITE_ONCE(stock->cached_objcg, objcg);
3187 		stock->cached_pgdat = pgdat;
3188 	} else if (stock->cached_pgdat != pgdat) {
3189 		/* Flush the existing cached vmstat data */
3190 		struct pglist_data *oldpg = stock->cached_pgdat;
3191 
3192 		if (stock->nr_slab_reclaimable_b) {
3193 			mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
3194 					  stock->nr_slab_reclaimable_b);
3195 			stock->nr_slab_reclaimable_b = 0;
3196 		}
3197 		if (stock->nr_slab_unreclaimable_b) {
3198 			mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
3199 					  stock->nr_slab_unreclaimable_b);
3200 			stock->nr_slab_unreclaimable_b = 0;
3201 		}
3202 		stock->cached_pgdat = pgdat;
3203 	}
3204 
3205 	bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3206 					       : &stock->nr_slab_unreclaimable_b;
3207 	/*
3208 	 * Even for large object >= PAGE_SIZE, the vmstat data will still be
3209 	 * cached locally at least once before pushing it out.
3210 	 */
3211 	if (!*bytes) {
3212 		*bytes = nr;
3213 		nr = 0;
3214 	} else {
3215 		*bytes += nr;
3216 		if (abs(*bytes) > PAGE_SIZE) {
3217 			nr = *bytes;
3218 			*bytes = 0;
3219 		} else {
3220 			nr = 0;
3221 		}
3222 	}
3223 	if (nr)
3224 		mod_objcg_mlstate(objcg, pgdat, idx, nr);
3225 
3226 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3227 	if (old)
3228 		obj_cgroup_put(old);
3229 }
3230 
3231 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3232 {
3233 	struct memcg_stock_pcp *stock;
3234 	unsigned long flags;
3235 	bool ret = false;
3236 
3237 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
3238 
3239 	stock = this_cpu_ptr(&memcg_stock);
3240 	if (objcg == READ_ONCE(stock->cached_objcg) && stock->nr_bytes >= nr_bytes) {
3241 		stock->nr_bytes -= nr_bytes;
3242 		ret = true;
3243 	}
3244 
3245 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3246 
3247 	return ret;
3248 }
3249 
3250 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
3251 {
3252 	struct obj_cgroup *old = READ_ONCE(stock->cached_objcg);
3253 
3254 	if (!old)
3255 		return NULL;
3256 
3257 	if (stock->nr_bytes) {
3258 		unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3259 		unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3260 
3261 		if (nr_pages) {
3262 			struct mem_cgroup *memcg;
3263 
3264 			memcg = get_mem_cgroup_from_objcg(old);
3265 
3266 			memcg_account_kmem(memcg, -nr_pages);
3267 			__refill_stock(memcg, nr_pages);
3268 
3269 			css_put(&memcg->css);
3270 		}
3271 
3272 		/*
3273 		 * The leftover is flushed to the centralized per-memcg value.
3274 		 * On the next attempt to refill obj stock it will be moved
3275 		 * to a per-cpu stock (probably, on an other CPU), see
3276 		 * refill_obj_stock().
3277 		 *
3278 		 * How often it's flushed is a trade-off between the memory
3279 		 * limit enforcement accuracy and potential CPU contention,
3280 		 * so it might be changed in the future.
3281 		 */
3282 		atomic_add(nr_bytes, &old->nr_charged_bytes);
3283 		stock->nr_bytes = 0;
3284 	}
3285 
3286 	/*
3287 	 * Flush the vmstat data in current stock
3288 	 */
3289 	if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3290 		if (stock->nr_slab_reclaimable_b) {
3291 			mod_objcg_mlstate(old, stock->cached_pgdat,
3292 					  NR_SLAB_RECLAIMABLE_B,
3293 					  stock->nr_slab_reclaimable_b);
3294 			stock->nr_slab_reclaimable_b = 0;
3295 		}
3296 		if (stock->nr_slab_unreclaimable_b) {
3297 			mod_objcg_mlstate(old, stock->cached_pgdat,
3298 					  NR_SLAB_UNRECLAIMABLE_B,
3299 					  stock->nr_slab_unreclaimable_b);
3300 			stock->nr_slab_unreclaimable_b = 0;
3301 		}
3302 		stock->cached_pgdat = NULL;
3303 	}
3304 
3305 	WRITE_ONCE(stock->cached_objcg, NULL);
3306 	/*
3307 	 * The `old' objects needs to be released by the caller via
3308 	 * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock.
3309 	 */
3310 	return old;
3311 }
3312 
3313 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3314 				     struct mem_cgroup *root_memcg)
3315 {
3316 	struct obj_cgroup *objcg = READ_ONCE(stock->cached_objcg);
3317 	struct mem_cgroup *memcg;
3318 
3319 	if (objcg) {
3320 		memcg = obj_cgroup_memcg(objcg);
3321 		if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3322 			return true;
3323 	}
3324 
3325 	return false;
3326 }
3327 
3328 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3329 			     bool allow_uncharge)
3330 {
3331 	struct memcg_stock_pcp *stock;
3332 	struct obj_cgroup *old = NULL;
3333 	unsigned long flags;
3334 	unsigned int nr_pages = 0;
3335 
3336 	local_lock_irqsave(&memcg_stock.stock_lock, flags);
3337 
3338 	stock = this_cpu_ptr(&memcg_stock);
3339 	if (READ_ONCE(stock->cached_objcg) != objcg) { /* reset if necessary */
3340 		old = drain_obj_stock(stock);
3341 		obj_cgroup_get(objcg);
3342 		WRITE_ONCE(stock->cached_objcg, objcg);
3343 		stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3344 				? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3345 		allow_uncharge = true;	/* Allow uncharge when objcg changes */
3346 	}
3347 	stock->nr_bytes += nr_bytes;
3348 
3349 	if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3350 		nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3351 		stock->nr_bytes &= (PAGE_SIZE - 1);
3352 	}
3353 
3354 	local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3355 	if (old)
3356 		obj_cgroup_put(old);
3357 
3358 	if (nr_pages)
3359 		obj_cgroup_uncharge_pages(objcg, nr_pages);
3360 }
3361 
3362 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3363 {
3364 	unsigned int nr_pages, nr_bytes;
3365 	int ret;
3366 
3367 	if (consume_obj_stock(objcg, size))
3368 		return 0;
3369 
3370 	/*
3371 	 * In theory, objcg->nr_charged_bytes can have enough
3372 	 * pre-charged bytes to satisfy the allocation. However,
3373 	 * flushing objcg->nr_charged_bytes requires two atomic
3374 	 * operations, and objcg->nr_charged_bytes can't be big.
3375 	 * The shared objcg->nr_charged_bytes can also become a
3376 	 * performance bottleneck if all tasks of the same memcg are
3377 	 * trying to update it. So it's better to ignore it and try
3378 	 * grab some new pages. The stock's nr_bytes will be flushed to
3379 	 * objcg->nr_charged_bytes later on when objcg changes.
3380 	 *
3381 	 * The stock's nr_bytes may contain enough pre-charged bytes
3382 	 * to allow one less page from being charged, but we can't rely
3383 	 * on the pre-charged bytes not being changed outside of
3384 	 * consume_obj_stock() or refill_obj_stock(). So ignore those
3385 	 * pre-charged bytes as well when charging pages. To avoid a
3386 	 * page uncharge right after a page charge, we set the
3387 	 * allow_uncharge flag to false when calling refill_obj_stock()
3388 	 * to temporarily allow the pre-charged bytes to exceed the page
3389 	 * size limit. The maximum reachable value of the pre-charged
3390 	 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3391 	 * race.
3392 	 */
3393 	nr_pages = size >> PAGE_SHIFT;
3394 	nr_bytes = size & (PAGE_SIZE - 1);
3395 
3396 	if (nr_bytes)
3397 		nr_pages += 1;
3398 
3399 	ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3400 	if (!ret && nr_bytes)
3401 		refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
3402 
3403 	return ret;
3404 }
3405 
3406 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3407 {
3408 	refill_obj_stock(objcg, size, true);
3409 }
3410 
3411 #endif /* CONFIG_MEMCG_KMEM */
3412 
3413 /*
3414  * Because page_memcg(head) is not set on tails, set it now.
3415  */
3416 void split_page_memcg(struct page *head, unsigned int nr)
3417 {
3418 	struct folio *folio = page_folio(head);
3419 	struct mem_cgroup *memcg = folio_memcg(folio);
3420 	int i;
3421 
3422 	if (mem_cgroup_disabled() || !memcg)
3423 		return;
3424 
3425 	for (i = 1; i < nr; i++)
3426 		folio_page(folio, i)->memcg_data = folio->memcg_data;
3427 
3428 	if (folio_memcg_kmem(folio))
3429 		obj_cgroup_get_many(__folio_objcg(folio), nr - 1);
3430 	else
3431 		css_get_many(&memcg->css, nr - 1);
3432 }
3433 
3434 #ifdef CONFIG_SWAP
3435 /**
3436  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3437  * @entry: swap entry to be moved
3438  * @from:  mem_cgroup which the entry is moved from
3439  * @to:  mem_cgroup which the entry is moved to
3440  *
3441  * It succeeds only when the swap_cgroup's record for this entry is the same
3442  * as the mem_cgroup's id of @from.
3443  *
3444  * Returns 0 on success, -EINVAL on failure.
3445  *
3446  * The caller must have charged to @to, IOW, called page_counter_charge() about
3447  * both res and memsw, and called css_get().
3448  */
3449 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3450 				struct mem_cgroup *from, struct mem_cgroup *to)
3451 {
3452 	unsigned short old_id, new_id;
3453 
3454 	old_id = mem_cgroup_id(from);
3455 	new_id = mem_cgroup_id(to);
3456 
3457 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3458 		mod_memcg_state(from, MEMCG_SWAP, -1);
3459 		mod_memcg_state(to, MEMCG_SWAP, 1);
3460 		return 0;
3461 	}
3462 	return -EINVAL;
3463 }
3464 #else
3465 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3466 				struct mem_cgroup *from, struct mem_cgroup *to)
3467 {
3468 	return -EINVAL;
3469 }
3470 #endif
3471 
3472 static DEFINE_MUTEX(memcg_max_mutex);
3473 
3474 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3475 				 unsigned long max, bool memsw)
3476 {
3477 	bool enlarge = false;
3478 	bool drained = false;
3479 	int ret;
3480 	bool limits_invariant;
3481 	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3482 
3483 	do {
3484 		if (signal_pending(current)) {
3485 			ret = -EINTR;
3486 			break;
3487 		}
3488 
3489 		mutex_lock(&memcg_max_mutex);
3490 		/*
3491 		 * Make sure that the new limit (memsw or memory limit) doesn't
3492 		 * break our basic invariant rule memory.max <= memsw.max.
3493 		 */
3494 		limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3495 					   max <= memcg->memsw.max;
3496 		if (!limits_invariant) {
3497 			mutex_unlock(&memcg_max_mutex);
3498 			ret = -EINVAL;
3499 			break;
3500 		}
3501 		if (max > counter->max)
3502 			enlarge = true;
3503 		ret = page_counter_set_max(counter, max);
3504 		mutex_unlock(&memcg_max_mutex);
3505 
3506 		if (!ret)
3507 			break;
3508 
3509 		if (!drained) {
3510 			drain_all_stock(memcg);
3511 			drained = true;
3512 			continue;
3513 		}
3514 
3515 		if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
3516 					memsw ? 0 : MEMCG_RECLAIM_MAY_SWAP)) {
3517 			ret = -EBUSY;
3518 			break;
3519 		}
3520 	} while (true);
3521 
3522 	if (!ret && enlarge)
3523 		memcg_oom_recover(memcg);
3524 
3525 	return ret;
3526 }
3527 
3528 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3529 					    gfp_t gfp_mask,
3530 					    unsigned long *total_scanned)
3531 {
3532 	unsigned long nr_reclaimed = 0;
3533 	struct mem_cgroup_per_node *mz, *next_mz = NULL;
3534 	unsigned long reclaimed;
3535 	int loop = 0;
3536 	struct mem_cgroup_tree_per_node *mctz;
3537 	unsigned long excess;
3538 
3539 	if (lru_gen_enabled())
3540 		return 0;
3541 
3542 	if (order > 0)
3543 		return 0;
3544 
3545 	mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];
3546 
3547 	/*
3548 	 * Do not even bother to check the largest node if the root
3549 	 * is empty. Do it lockless to prevent lock bouncing. Races
3550 	 * are acceptable as soft limit is best effort anyway.
3551 	 */
3552 	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3553 		return 0;
3554 
3555 	/*
3556 	 * This loop can run a while, specially if mem_cgroup's continuously
3557 	 * keep exceeding their soft limit and putting the system under
3558 	 * pressure
3559 	 */
3560 	do {
3561 		if (next_mz)
3562 			mz = next_mz;
3563 		else
3564 			mz = mem_cgroup_largest_soft_limit_node(mctz);
3565 		if (!mz)
3566 			break;
3567 
3568 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3569 						    gfp_mask, total_scanned);
3570 		nr_reclaimed += reclaimed;
3571 		spin_lock_irq(&mctz->lock);
3572 
3573 		/*
3574 		 * If we failed to reclaim anything from this memory cgroup
3575 		 * it is time to move on to the next cgroup
3576 		 */
3577 		next_mz = NULL;
3578 		if (!reclaimed)
3579 			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3580 
3581 		excess = soft_limit_excess(mz->memcg);
3582 		/*
3583 		 * One school of thought says that we should not add
3584 		 * back the node to the tree if reclaim returns 0.
3585 		 * But our reclaim could return 0, simply because due
3586 		 * to priority we are exposing a smaller subset of
3587 		 * memory to reclaim from. Consider this as a longer
3588 		 * term TODO.
3589 		 */
3590 		/* If excess == 0, no tree ops */
3591 		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3592 		spin_unlock_irq(&mctz->lock);
3593 		css_put(&mz->memcg->css);
3594 		loop++;
3595 		/*
3596 		 * Could not reclaim anything and there are no more
3597 		 * mem cgroups to try or we seem to be looping without
3598 		 * reclaiming anything.
3599 		 */
3600 		if (!nr_reclaimed &&
3601 			(next_mz == NULL ||
3602 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3603 			break;
3604 	} while (!nr_reclaimed);
3605 	if (next_mz)
3606 		css_put(&next_mz->memcg->css);
3607 	return nr_reclaimed;
3608 }
3609 
3610 /*
3611  * Reclaims as many pages from the given memcg as possible.
3612  *
3613  * Caller is responsible for holding css reference for memcg.
3614  */
3615 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3616 {
3617 	int nr_retries = MAX_RECLAIM_RETRIES;
3618 
3619 	/* we call try-to-free pages for make this cgroup empty */
3620 	lru_add_drain_all();
3621 
3622 	drain_all_stock(memcg);
3623 
3624 	/* try to free all pages in this cgroup */
3625 	while (nr_retries && page_counter_read(&memcg->memory)) {
3626 		if (signal_pending(current))
3627 			return -EINTR;
3628 
3629 		if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
3630 						  MEMCG_RECLAIM_MAY_SWAP))
3631 			nr_retries--;
3632 	}
3633 
3634 	return 0;
3635 }
3636 
3637 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3638 					    char *buf, size_t nbytes,
3639 					    loff_t off)
3640 {
3641 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3642 
3643 	if (mem_cgroup_is_root(memcg))
3644 		return -EINVAL;
3645 	return mem_cgroup_force_empty(memcg) ?: nbytes;
3646 }
3647 
3648 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3649 				     struct cftype *cft)
3650 {
3651 	return 1;
3652 }
3653 
3654 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3655 				      struct cftype *cft, u64 val)
3656 {
3657 	if (val == 1)
3658 		return 0;
3659 
3660 	pr_warn_once("Non-hierarchical mode is deprecated. "
3661 		     "Please report your usecase to linux-mm@kvack.org if you "
3662 		     "depend on this functionality.\n");
3663 
3664 	return -EINVAL;
3665 }
3666 
3667 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3668 {
3669 	unsigned long val;
3670 
3671 	if (mem_cgroup_is_root(memcg)) {
3672 		/*
3673 		 * Approximate root's usage from global state. This isn't
3674 		 * perfect, but the root usage was always an approximation.
3675 		 */
3676 		val = global_node_page_state(NR_FILE_PAGES) +
3677 			global_node_page_state(NR_ANON_MAPPED);
3678 		if (swap)
3679 			val += total_swap_pages - get_nr_swap_pages();
3680 	} else {
3681 		if (!swap)
3682 			val = page_counter_read(&memcg->memory);
3683 		else
3684 			val = page_counter_read(&memcg->memsw);
3685 	}
3686 	return val;
3687 }
3688 
3689 enum {
3690 	RES_USAGE,
3691 	RES_LIMIT,
3692 	RES_MAX_USAGE,
3693 	RES_FAILCNT,
3694 	RES_SOFT_LIMIT,
3695 };
3696 
3697 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3698 			       struct cftype *cft)
3699 {
3700 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3701 	struct page_counter *counter;
3702 
3703 	switch (MEMFILE_TYPE(cft->private)) {
3704 	case _MEM:
3705 		counter = &memcg->memory;
3706 		break;
3707 	case _MEMSWAP:
3708 		counter = &memcg->memsw;
3709 		break;
3710 	case _KMEM:
3711 		counter = &memcg->kmem;
3712 		break;
3713 	case _TCP:
3714 		counter = &memcg->tcpmem;
3715 		break;
3716 	default:
3717 		BUG();
3718 	}
3719 
3720 	switch (MEMFILE_ATTR(cft->private)) {
3721 	case RES_USAGE:
3722 		if (counter == &memcg->memory)
3723 			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3724 		if (counter == &memcg->memsw)
3725 			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3726 		return (u64)page_counter_read(counter) * PAGE_SIZE;
3727 	case RES_LIMIT:
3728 		return (u64)counter->max * PAGE_SIZE;
3729 	case RES_MAX_USAGE:
3730 		return (u64)counter->watermark * PAGE_SIZE;
3731 	case RES_FAILCNT:
3732 		return counter->failcnt;
3733 	case RES_SOFT_LIMIT:
3734 		return (u64)READ_ONCE(memcg->soft_limit) * PAGE_SIZE;
3735 	default:
3736 		BUG();
3737 	}
3738 }
3739 
3740 /*
3741  * This function doesn't do anything useful. Its only job is to provide a read
3742  * handler for a file so that cgroup_file_mode() will add read permissions.
3743  */
3744 static int mem_cgroup_dummy_seq_show(__always_unused struct seq_file *m,
3745 				     __always_unused void *v)
3746 {
3747 	return -EINVAL;
3748 }
3749 
3750 #ifdef CONFIG_MEMCG_KMEM
3751 static int memcg_online_kmem(struct mem_cgroup *memcg)
3752 {
3753 	struct obj_cgroup *objcg;
3754 
3755 	if (mem_cgroup_kmem_disabled())
3756 		return 0;
3757 
3758 	if (unlikely(mem_cgroup_is_root(memcg)))
3759 		return 0;
3760 
3761 	objcg = obj_cgroup_alloc();
3762 	if (!objcg)
3763 		return -ENOMEM;
3764 
3765 	objcg->memcg = memcg;
3766 	rcu_assign_pointer(memcg->objcg, objcg);
3767 
3768 	static_branch_enable(&memcg_kmem_online_key);
3769 
3770 	memcg->kmemcg_id = memcg->id.id;
3771 
3772 	return 0;
3773 }
3774 
3775 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3776 {
3777 	struct mem_cgroup *parent;
3778 
3779 	if (mem_cgroup_kmem_disabled())
3780 		return;
3781 
3782 	if (unlikely(mem_cgroup_is_root(memcg)))
3783 		return;
3784 
3785 	parent = parent_mem_cgroup(memcg);
3786 	if (!parent)
3787 		parent = root_mem_cgroup;
3788 
3789 	memcg_reparent_objcgs(memcg, parent);
3790 
3791 	/*
3792 	 * After we have finished memcg_reparent_objcgs(), all list_lrus
3793 	 * corresponding to this cgroup are guaranteed to remain empty.
3794 	 * The ordering is imposed by list_lru_node->lock taken by
3795 	 * memcg_reparent_list_lrus().
3796 	 */
3797 	memcg_reparent_list_lrus(memcg, parent);
3798 }
3799 #else
3800 static int memcg_online_kmem(struct mem_cgroup *memcg)
3801 {
3802 	return 0;
3803 }
3804 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3805 {
3806 }
3807 #endif /* CONFIG_MEMCG_KMEM */
3808 
3809 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3810 {
3811 	int ret;
3812 
3813 	mutex_lock(&memcg_max_mutex);
3814 
3815 	ret = page_counter_set_max(&memcg->tcpmem, max);
3816 	if (ret)
3817 		goto out;
3818 
3819 	if (!memcg->tcpmem_active) {
3820 		/*
3821 		 * The active flag needs to be written after the static_key
3822 		 * update. This is what guarantees that the socket activation
3823 		 * function is the last one to run. See mem_cgroup_sk_alloc()
3824 		 * for details, and note that we don't mark any socket as
3825 		 * belonging to this memcg until that flag is up.
3826 		 *
3827 		 * We need to do this, because static_keys will span multiple
3828 		 * sites, but we can't control their order. If we mark a socket
3829 		 * as accounted, but the accounting functions are not patched in
3830 		 * yet, we'll lose accounting.
3831 		 *
3832 		 * We never race with the readers in mem_cgroup_sk_alloc(),
3833 		 * because when this value change, the code to process it is not
3834 		 * patched in yet.
3835 		 */
3836 		static_branch_inc(&memcg_sockets_enabled_key);
3837 		memcg->tcpmem_active = true;
3838 	}
3839 out:
3840 	mutex_unlock(&memcg_max_mutex);
3841 	return ret;
3842 }
3843 
3844 /*
3845  * The user of this function is...
3846  * RES_LIMIT.
3847  */
3848 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3849 				char *buf, size_t nbytes, loff_t off)
3850 {
3851 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3852 	unsigned long nr_pages;
3853 	int ret;
3854 
3855 	buf = strstrip(buf);
3856 	ret = page_counter_memparse(buf, "-1", &nr_pages);
3857 	if (ret)
3858 		return ret;
3859 
3860 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3861 	case RES_LIMIT:
3862 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3863 			ret = -EINVAL;
3864 			break;
3865 		}
3866 		switch (MEMFILE_TYPE(of_cft(of)->private)) {
3867 		case _MEM:
3868 			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3869 			break;
3870 		case _MEMSWAP:
3871 			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3872 			break;
3873 		case _TCP:
3874 			ret = memcg_update_tcp_max(memcg, nr_pages);
3875 			break;
3876 		}
3877 		break;
3878 	case RES_SOFT_LIMIT:
3879 		if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
3880 			ret = -EOPNOTSUPP;
3881 		} else {
3882 			WRITE_ONCE(memcg->soft_limit, nr_pages);
3883 			ret = 0;
3884 		}
3885 		break;
3886 	}
3887 	return ret ?: nbytes;
3888 }
3889 
3890 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3891 				size_t nbytes, loff_t off)
3892 {
3893 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3894 	struct page_counter *counter;
3895 
3896 	switch (MEMFILE_TYPE(of_cft(of)->private)) {
3897 	case _MEM:
3898 		counter = &memcg->memory;
3899 		break;
3900 	case _MEMSWAP:
3901 		counter = &memcg->memsw;
3902 		break;
3903 	case _KMEM:
3904 		counter = &memcg->kmem;
3905 		break;
3906 	case _TCP:
3907 		counter = &memcg->tcpmem;
3908 		break;
3909 	default:
3910 		BUG();
3911 	}
3912 
3913 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3914 	case RES_MAX_USAGE:
3915 		page_counter_reset_watermark(counter);
3916 		break;
3917 	case RES_FAILCNT:
3918 		counter->failcnt = 0;
3919 		break;
3920 	default:
3921 		BUG();
3922 	}
3923 
3924 	return nbytes;
3925 }
3926 
3927 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3928 					struct cftype *cft)
3929 {
3930 	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3931 }
3932 
3933 #ifdef CONFIG_MMU
3934 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3935 					struct cftype *cft, u64 val)
3936 {
3937 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3938 
3939 	pr_warn_once("Cgroup memory moving (move_charge_at_immigrate) is deprecated. "
3940 		     "Please report your usecase to linux-mm@kvack.org if you "
3941 		     "depend on this functionality.\n");
3942 
3943 	if (val & ~MOVE_MASK)
3944 		return -EINVAL;
3945 
3946 	/*
3947 	 * No kind of locking is needed in here, because ->can_attach() will
3948 	 * check this value once in the beginning of the process, and then carry
3949 	 * on with stale data. This means that changes to this value will only
3950 	 * affect task migrations starting after the change.
3951 	 */
3952 	memcg->move_charge_at_immigrate = val;
3953 	return 0;
3954 }
3955 #else
3956 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3957 					struct cftype *cft, u64 val)
3958 {
3959 	return -ENOSYS;
3960 }
3961 #endif
3962 
3963 #ifdef CONFIG_NUMA
3964 
3965 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3966 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3967 #define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)
3968 
3969 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3970 				int nid, unsigned int lru_mask, bool tree)
3971 {
3972 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3973 	unsigned long nr = 0;
3974 	enum lru_list lru;
3975 
3976 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
3977 
3978 	for_each_lru(lru) {
3979 		if (!(BIT(lru) & lru_mask))
3980 			continue;
3981 		if (tree)
3982 			nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3983 		else
3984 			nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3985 	}
3986 	return nr;
3987 }
3988 
3989 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3990 					     unsigned int lru_mask,
3991 					     bool tree)
3992 {
3993 	unsigned long nr = 0;
3994 	enum lru_list lru;
3995 
3996 	for_each_lru(lru) {
3997 		if (!(BIT(lru) & lru_mask))
3998 			continue;
3999 		if (tree)
4000 			nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
4001 		else
4002 			nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
4003 	}
4004 	return nr;
4005 }
4006 
4007 static int memcg_numa_stat_show(struct seq_file *m, void *v)
4008 {
4009 	struct numa_stat {
4010 		const char *name;
4011 		unsigned int lru_mask;
4012 	};
4013 
4014 	static const struct numa_stat stats[] = {
4015 		{ "total", LRU_ALL },
4016 		{ "file", LRU_ALL_FILE },
4017 		{ "anon", LRU_ALL_ANON },
4018 		{ "unevictable", BIT(LRU_UNEVICTABLE) },
4019 	};
4020 	const struct numa_stat *stat;
4021 	int nid;
4022 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4023 
4024 	mem_cgroup_flush_stats();
4025 
4026 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4027 		seq_printf(m, "%s=%lu", stat->name,
4028 			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4029 						   false));
4030 		for_each_node_state(nid, N_MEMORY)
4031 			seq_printf(m, " N%d=%lu", nid,
4032 				   mem_cgroup_node_nr_lru_pages(memcg, nid,
4033 							stat->lru_mask, false));
4034 		seq_putc(m, '\n');
4035 	}
4036 
4037 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4038 
4039 		seq_printf(m, "hierarchical_%s=%lu", stat->name,
4040 			   mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4041 						   true));
4042 		for_each_node_state(nid, N_MEMORY)
4043 			seq_printf(m, " N%d=%lu", nid,
4044 				   mem_cgroup_node_nr_lru_pages(memcg, nid,
4045 							stat->lru_mask, true));
4046 		seq_putc(m, '\n');
4047 	}
4048 
4049 	return 0;
4050 }
4051 #endif /* CONFIG_NUMA */
4052 
4053 static const unsigned int memcg1_stats[] = {
4054 	NR_FILE_PAGES,
4055 	NR_ANON_MAPPED,
4056 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4057 	NR_ANON_THPS,
4058 #endif
4059 	NR_SHMEM,
4060 	NR_FILE_MAPPED,
4061 	NR_FILE_DIRTY,
4062 	NR_WRITEBACK,
4063 	WORKINGSET_REFAULT_ANON,
4064 	WORKINGSET_REFAULT_FILE,
4065 	MEMCG_SWAP,
4066 };
4067 
4068 static const char *const memcg1_stat_names[] = {
4069 	"cache",
4070 	"rss",
4071 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4072 	"rss_huge",
4073 #endif
4074 	"shmem",
4075 	"mapped_file",
4076 	"dirty",
4077 	"writeback",
4078 	"workingset_refault_anon",
4079 	"workingset_refault_file",
4080 	"swap",
4081 };
4082 
4083 /* Universal VM events cgroup1 shows, original sort order */
4084 static const unsigned int memcg1_events[] = {
4085 	PGPGIN,
4086 	PGPGOUT,
4087 	PGFAULT,
4088 	PGMAJFAULT,
4089 };
4090 
4091 static void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
4092 {
4093 	unsigned long memory, memsw;
4094 	struct mem_cgroup *mi;
4095 	unsigned int i;
4096 
4097 	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4098 
4099 	mem_cgroup_flush_stats();
4100 
4101 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4102 		unsigned long nr;
4103 
4104 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4105 			continue;
4106 		nr = memcg_page_state_local(memcg, memcg1_stats[i]);
4107 		seq_buf_printf(s, "%s %lu\n", memcg1_stat_names[i],
4108 			   nr * memcg_page_state_unit(memcg1_stats[i]));
4109 	}
4110 
4111 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4112 		seq_buf_printf(s, "%s %lu\n", vm_event_name(memcg1_events[i]),
4113 			       memcg_events_local(memcg, memcg1_events[i]));
4114 
4115 	for (i = 0; i < NR_LRU_LISTS; i++)
4116 		seq_buf_printf(s, "%s %lu\n", lru_list_name(i),
4117 			       memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4118 			       PAGE_SIZE);
4119 
4120 	/* Hierarchical information */
4121 	memory = memsw = PAGE_COUNTER_MAX;
4122 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4123 		memory = min(memory, READ_ONCE(mi->memory.max));
4124 		memsw = min(memsw, READ_ONCE(mi->memsw.max));
4125 	}
4126 	seq_buf_printf(s, "hierarchical_memory_limit %llu\n",
4127 		       (u64)memory * PAGE_SIZE);
4128 	if (do_memsw_account())
4129 		seq_buf_printf(s, "hierarchical_memsw_limit %llu\n",
4130 			       (u64)memsw * PAGE_SIZE);
4131 
4132 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4133 		unsigned long nr;
4134 
4135 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4136 			continue;
4137 		nr = memcg_page_state(memcg, memcg1_stats[i]);
4138 		seq_buf_printf(s, "total_%s %llu\n", memcg1_stat_names[i],
4139 			   (u64)nr * memcg_page_state_unit(memcg1_stats[i]));
4140 	}
4141 
4142 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4143 		seq_buf_printf(s, "total_%s %llu\n",
4144 			       vm_event_name(memcg1_events[i]),
4145 			       (u64)memcg_events(memcg, memcg1_events[i]));
4146 
4147 	for (i = 0; i < NR_LRU_LISTS; i++)
4148 		seq_buf_printf(s, "total_%s %llu\n", lru_list_name(i),
4149 			       (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4150 			       PAGE_SIZE);
4151 
4152 #ifdef CONFIG_DEBUG_VM
4153 	{
4154 		pg_data_t *pgdat;
4155 		struct mem_cgroup_per_node *mz;
4156 		unsigned long anon_cost = 0;
4157 		unsigned long file_cost = 0;
4158 
4159 		for_each_online_pgdat(pgdat) {
4160 			mz = memcg->nodeinfo[pgdat->node_id];
4161 
4162 			anon_cost += mz->lruvec.anon_cost;
4163 			file_cost += mz->lruvec.file_cost;
4164 		}
4165 		seq_buf_printf(s, "anon_cost %lu\n", anon_cost);
4166 		seq_buf_printf(s, "file_cost %lu\n", file_cost);
4167 	}
4168 #endif
4169 }
4170 
4171 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4172 				      struct cftype *cft)
4173 {
4174 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4175 
4176 	return mem_cgroup_swappiness(memcg);
4177 }
4178 
4179 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4180 				       struct cftype *cft, u64 val)
4181 {
4182 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4183 
4184 	if (val > 200)
4185 		return -EINVAL;
4186 
4187 	if (!mem_cgroup_is_root(memcg))
4188 		WRITE_ONCE(memcg->swappiness, val);
4189 	else
4190 		WRITE_ONCE(vm_swappiness, val);
4191 
4192 	return 0;
4193 }
4194 
4195 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4196 {
4197 	struct mem_cgroup_threshold_ary *t;
4198 	unsigned long usage;
4199 	int i;
4200 
4201 	rcu_read_lock();
4202 	if (!swap)
4203 		t = rcu_dereference(memcg->thresholds.primary);
4204 	else
4205 		t = rcu_dereference(memcg->memsw_thresholds.primary);
4206 
4207 	if (!t)
4208 		goto unlock;
4209 
4210 	usage = mem_cgroup_usage(memcg, swap);
4211 
4212 	/*
4213 	 * current_threshold points to threshold just below or equal to usage.
4214 	 * If it's not true, a threshold was crossed after last
4215 	 * call of __mem_cgroup_threshold().
4216 	 */
4217 	i = t->current_threshold;
4218 
4219 	/*
4220 	 * Iterate backward over array of thresholds starting from
4221 	 * current_threshold and check if a threshold is crossed.
4222 	 * If none of thresholds below usage is crossed, we read
4223 	 * only one element of the array here.
4224 	 */
4225 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4226 		eventfd_signal(t->entries[i].eventfd, 1);
4227 
4228 	/* i = current_threshold + 1 */
4229 	i++;
4230 
4231 	/*
4232 	 * Iterate forward over array of thresholds starting from
4233 	 * current_threshold+1 and check if a threshold is crossed.
4234 	 * If none of thresholds above usage is crossed, we read
4235 	 * only one element of the array here.
4236 	 */
4237 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4238 		eventfd_signal(t->entries[i].eventfd, 1);
4239 
4240 	/* Update current_threshold */
4241 	t->current_threshold = i - 1;
4242 unlock:
4243 	rcu_read_unlock();
4244 }
4245 
4246 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4247 {
4248 	while (memcg) {
4249 		__mem_cgroup_threshold(memcg, false);
4250 		if (do_memsw_account())
4251 			__mem_cgroup_threshold(memcg, true);
4252 
4253 		memcg = parent_mem_cgroup(memcg);
4254 	}
4255 }
4256 
4257 static int compare_thresholds(const void *a, const void *b)
4258 {
4259 	const struct mem_cgroup_threshold *_a = a;
4260 	const struct mem_cgroup_threshold *_b = b;
4261 
4262 	if (_a->threshold > _b->threshold)
4263 		return 1;
4264 
4265 	if (_a->threshold < _b->threshold)
4266 		return -1;
4267 
4268 	return 0;
4269 }
4270 
4271 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4272 {
4273 	struct mem_cgroup_eventfd_list *ev;
4274 
4275 	spin_lock(&memcg_oom_lock);
4276 
4277 	list_for_each_entry(ev, &memcg->oom_notify, list)
4278 		eventfd_signal(ev->eventfd, 1);
4279 
4280 	spin_unlock(&memcg_oom_lock);
4281 	return 0;
4282 }
4283 
4284 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4285 {
4286 	struct mem_cgroup *iter;
4287 
4288 	for_each_mem_cgroup_tree(iter, memcg)
4289 		mem_cgroup_oom_notify_cb(iter);
4290 }
4291 
4292 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4293 	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4294 {
4295 	struct mem_cgroup_thresholds *thresholds;
4296 	struct mem_cgroup_threshold_ary *new;
4297 	unsigned long threshold;
4298 	unsigned long usage;
4299 	int i, size, ret;
4300 
4301 	ret = page_counter_memparse(args, "-1", &threshold);
4302 	if (ret)
4303 		return ret;
4304 
4305 	mutex_lock(&memcg->thresholds_lock);
4306 
4307 	if (type == _MEM) {
4308 		thresholds = &memcg->thresholds;
4309 		usage = mem_cgroup_usage(memcg, false);
4310 	} else if (type == _MEMSWAP) {
4311 		thresholds = &memcg->memsw_thresholds;
4312 		usage = mem_cgroup_usage(memcg, true);
4313 	} else
4314 		BUG();
4315 
4316 	/* Check if a threshold crossed before adding a new one */
4317 	if (thresholds->primary)
4318 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4319 
4320 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4321 
4322 	/* Allocate memory for new array of thresholds */
4323 	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4324 	if (!new) {
4325 		ret = -ENOMEM;
4326 		goto unlock;
4327 	}
4328 	new->size = size;
4329 
4330 	/* Copy thresholds (if any) to new array */
4331 	if (thresholds->primary)
4332 		memcpy(new->entries, thresholds->primary->entries,
4333 		       flex_array_size(new, entries, size - 1));
4334 
4335 	/* Add new threshold */
4336 	new->entries[size - 1].eventfd = eventfd;
4337 	new->entries[size - 1].threshold = threshold;
4338 
4339 	/* Sort thresholds. Registering of new threshold isn't time-critical */
4340 	sort(new->entries, size, sizeof(*new->entries),
4341 			compare_thresholds, NULL);
4342 
4343 	/* Find current threshold */
4344 	new->current_threshold = -1;
4345 	for (i = 0; i < size; i++) {
4346 		if (new->entries[i].threshold <= usage) {
4347 			/*
4348 			 * new->current_threshold will not be used until
4349 			 * rcu_assign_pointer(), so it's safe to increment
4350 			 * it here.
4351 			 */
4352 			++new->current_threshold;
4353 		} else
4354 			break;
4355 	}
4356 
4357 	/* Free old spare buffer and save old primary buffer as spare */
4358 	kfree(thresholds->spare);
4359 	thresholds->spare = thresholds->primary;
4360 
4361 	rcu_assign_pointer(thresholds->primary, new);
4362 
4363 	/* To be sure that nobody uses thresholds */
4364 	synchronize_rcu();
4365 
4366 unlock:
4367 	mutex_unlock(&memcg->thresholds_lock);
4368 
4369 	return ret;
4370 }
4371 
4372 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4373 	struct eventfd_ctx *eventfd, const char *args)
4374 {
4375 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4376 }
4377 
4378 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4379 	struct eventfd_ctx *eventfd, const char *args)
4380 {
4381 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4382 }
4383 
4384 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4385 	struct eventfd_ctx *eventfd, enum res_type type)
4386 {
4387 	struct mem_cgroup_thresholds *thresholds;
4388 	struct mem_cgroup_threshold_ary *new;
4389 	unsigned long usage;
4390 	int i, j, size, entries;
4391 
4392 	mutex_lock(&memcg->thresholds_lock);
4393 
4394 	if (type == _MEM) {
4395 		thresholds = &memcg->thresholds;
4396 		usage = mem_cgroup_usage(memcg, false);
4397 	} else if (type == _MEMSWAP) {
4398 		thresholds = &memcg->memsw_thresholds;
4399 		usage = mem_cgroup_usage(memcg, true);
4400 	} else
4401 		BUG();
4402 
4403 	if (!thresholds->primary)
4404 		goto unlock;
4405 
4406 	/* Check if a threshold crossed before removing */
4407 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4408 
4409 	/* Calculate new number of threshold */
4410 	size = entries = 0;
4411 	for (i = 0; i < thresholds->primary->size; i++) {
4412 		if (thresholds->primary->entries[i].eventfd != eventfd)
4413 			size++;
4414 		else
4415 			entries++;
4416 	}
4417 
4418 	new = thresholds->spare;
4419 
4420 	/* If no items related to eventfd have been cleared, nothing to do */
4421 	if (!entries)
4422 		goto unlock;
4423 
4424 	/* Set thresholds array to NULL if we don't have thresholds */
4425 	if (!size) {
4426 		kfree(new);
4427 		new = NULL;
4428 		goto swap_buffers;
4429 	}
4430 
4431 	new->size = size;
4432 
4433 	/* Copy thresholds and find current threshold */
4434 	new->current_threshold = -1;
4435 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4436 		if (thresholds->primary->entries[i].eventfd == eventfd)
4437 			continue;
4438 
4439 		new->entries[j] = thresholds->primary->entries[i];
4440 		if (new->entries[j].threshold <= usage) {
4441 			/*
4442 			 * new->current_threshold will not be used
4443 			 * until rcu_assign_pointer(), so it's safe to increment
4444 			 * it here.
4445 			 */
4446 			++new->current_threshold;
4447 		}
4448 		j++;
4449 	}
4450 
4451 swap_buffers:
4452 	/* Swap primary and spare array */
4453 	thresholds->spare = thresholds->primary;
4454 
4455 	rcu_assign_pointer(thresholds->primary, new);
4456 
4457 	/* To be sure that nobody uses thresholds */
4458 	synchronize_rcu();
4459 
4460 	/* If all events are unregistered, free the spare array */
4461 	if (!new) {
4462 		kfree(thresholds->spare);
4463 		thresholds->spare = NULL;
4464 	}
4465 unlock:
4466 	mutex_unlock(&memcg->thresholds_lock);
4467 }
4468 
4469 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4470 	struct eventfd_ctx *eventfd)
4471 {
4472 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4473 }
4474 
4475 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4476 	struct eventfd_ctx *eventfd)
4477 {
4478 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4479 }
4480 
4481 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4482 	struct eventfd_ctx *eventfd, const char *args)
4483 {
4484 	struct mem_cgroup_eventfd_list *event;
4485 
4486 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4487 	if (!event)
4488 		return -ENOMEM;
4489 
4490 	spin_lock(&memcg_oom_lock);
4491 
4492 	event->eventfd = eventfd;
4493 	list_add(&event->list, &memcg->oom_notify);
4494 
4495 	/* already in OOM ? */
4496 	if (memcg->under_oom)
4497 		eventfd_signal(eventfd, 1);
4498 	spin_unlock(&memcg_oom_lock);
4499 
4500 	return 0;
4501 }
4502 
4503 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4504 	struct eventfd_ctx *eventfd)
4505 {
4506 	struct mem_cgroup_eventfd_list *ev, *tmp;
4507 
4508 	spin_lock(&memcg_oom_lock);
4509 
4510 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4511 		if (ev->eventfd == eventfd) {
4512 			list_del(&ev->list);
4513 			kfree(ev);
4514 		}
4515 	}
4516 
4517 	spin_unlock(&memcg_oom_lock);
4518 }
4519 
4520 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4521 {
4522 	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4523 
4524 	seq_printf(sf, "oom_kill_disable %d\n", READ_ONCE(memcg->oom_kill_disable));
4525 	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4526 	seq_printf(sf, "oom_kill %lu\n",
4527 		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4528 	return 0;
4529 }
4530 
4531 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4532 	struct cftype *cft, u64 val)
4533 {
4534 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4535 
4536 	/* cannot set to root cgroup and only 0 and 1 are allowed */
4537 	if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
4538 		return -EINVAL;
4539 
4540 	WRITE_ONCE(memcg->oom_kill_disable, val);
4541 	if (!val)
4542 		memcg_oom_recover(memcg);
4543 
4544 	return 0;
4545 }
4546 
4547 #ifdef CONFIG_CGROUP_WRITEBACK
4548 
4549 #include <trace/events/writeback.h>
4550 
4551 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4552 {
4553 	return wb_domain_init(&memcg->cgwb_domain, gfp);
4554 }
4555 
4556 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4557 {
4558 	wb_domain_exit(&memcg->cgwb_domain);
4559 }
4560 
4561 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4562 {
4563 	wb_domain_size_changed(&memcg->cgwb_domain);
4564 }
4565 
4566 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4567 {
4568 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4569 
4570 	if (!memcg->css.parent)
4571 		return NULL;
4572 
4573 	return &memcg->cgwb_domain;
4574 }
4575 
4576 /**
4577  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4578  * @wb: bdi_writeback in question
4579  * @pfilepages: out parameter for number of file pages
4580  * @pheadroom: out parameter for number of allocatable pages according to memcg
4581  * @pdirty: out parameter for number of dirty pages
4582  * @pwriteback: out parameter for number of pages under writeback
4583  *
4584  * Determine the numbers of file, headroom, dirty, and writeback pages in
4585  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
4586  * is a bit more involved.
4587  *
4588  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
4589  * headroom is calculated as the lowest headroom of itself and the
4590  * ancestors.  Note that this doesn't consider the actual amount of
4591  * available memory in the system.  The caller should further cap
4592  * *@pheadroom accordingly.
4593  */
4594 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4595 			 unsigned long *pheadroom, unsigned long *pdirty,
4596 			 unsigned long *pwriteback)
4597 {
4598 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4599 	struct mem_cgroup *parent;
4600 
4601 	mem_cgroup_flush_stats();
4602 
4603 	*pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4604 	*pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4605 	*pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4606 			memcg_page_state(memcg, NR_ACTIVE_FILE);
4607 
4608 	*pheadroom = PAGE_COUNTER_MAX;
4609 	while ((parent = parent_mem_cgroup(memcg))) {
4610 		unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4611 					    READ_ONCE(memcg->memory.high));
4612 		unsigned long used = page_counter_read(&memcg->memory);
4613 
4614 		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4615 		memcg = parent;
4616 	}
4617 }
4618 
4619 /*
4620  * Foreign dirty flushing
4621  *
4622  * There's an inherent mismatch between memcg and writeback.  The former
4623  * tracks ownership per-page while the latter per-inode.  This was a
4624  * deliberate design decision because honoring per-page ownership in the
4625  * writeback path is complicated, may lead to higher CPU and IO overheads
4626  * and deemed unnecessary given that write-sharing an inode across
4627  * different cgroups isn't a common use-case.
4628  *
4629  * Combined with inode majority-writer ownership switching, this works well
4630  * enough in most cases but there are some pathological cases.  For
4631  * example, let's say there are two cgroups A and B which keep writing to
4632  * different but confined parts of the same inode.  B owns the inode and
4633  * A's memory is limited far below B's.  A's dirty ratio can rise enough to
4634  * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4635  * triggering background writeback.  A will be slowed down without a way to
4636  * make writeback of the dirty pages happen.
4637  *
4638  * Conditions like the above can lead to a cgroup getting repeatedly and
4639  * severely throttled after making some progress after each
4640  * dirty_expire_interval while the underlying IO device is almost
4641  * completely idle.
4642  *
4643  * Solving this problem completely requires matching the ownership tracking
4644  * granularities between memcg and writeback in either direction.  However,
4645  * the more egregious behaviors can be avoided by simply remembering the
4646  * most recent foreign dirtying events and initiating remote flushes on
4647  * them when local writeback isn't enough to keep the memory clean enough.
4648  *
4649  * The following two functions implement such mechanism.  When a foreign
4650  * page - a page whose memcg and writeback ownerships don't match - is
4651  * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4652  * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
4653  * decides that the memcg needs to sleep due to high dirty ratio, it calls
4654  * mem_cgroup_flush_foreign() which queues writeback on the recorded
4655  * foreign bdi_writebacks which haven't expired.  Both the numbers of
4656  * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4657  * limited to MEMCG_CGWB_FRN_CNT.
4658  *
4659  * The mechanism only remembers IDs and doesn't hold any object references.
4660  * As being wrong occasionally doesn't matter, updates and accesses to the
4661  * records are lockless and racy.
4662  */
4663 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
4664 					     struct bdi_writeback *wb)
4665 {
4666 	struct mem_cgroup *memcg = folio_memcg(folio);
4667 	struct memcg_cgwb_frn *frn;
4668 	u64 now = get_jiffies_64();
4669 	u64 oldest_at = now;
4670 	int oldest = -1;
4671 	int i;
4672 
4673 	trace_track_foreign_dirty(folio, wb);
4674 
4675 	/*
4676 	 * Pick the slot to use.  If there is already a slot for @wb, keep
4677 	 * using it.  If not replace the oldest one which isn't being
4678 	 * written out.
4679 	 */
4680 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4681 		frn = &memcg->cgwb_frn[i];
4682 		if (frn->bdi_id == wb->bdi->id &&
4683 		    frn->memcg_id == wb->memcg_css->id)
4684 			break;
4685 		if (time_before64(frn->at, oldest_at) &&
4686 		    atomic_read(&frn->done.cnt) == 1) {
4687 			oldest = i;
4688 			oldest_at = frn->at;
4689 		}
4690 	}
4691 
4692 	if (i < MEMCG_CGWB_FRN_CNT) {
4693 		/*
4694 		 * Re-using an existing one.  Update timestamp lazily to
4695 		 * avoid making the cacheline hot.  We want them to be
4696 		 * reasonably up-to-date and significantly shorter than
4697 		 * dirty_expire_interval as that's what expires the record.
4698 		 * Use the shorter of 1s and dirty_expire_interval / 8.
4699 		 */
4700 		unsigned long update_intv =
4701 			min_t(unsigned long, HZ,
4702 			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4703 
4704 		if (time_before64(frn->at, now - update_intv))
4705 			frn->at = now;
4706 	} else if (oldest >= 0) {
4707 		/* replace the oldest free one */
4708 		frn = &memcg->cgwb_frn[oldest];
4709 		frn->bdi_id = wb->bdi->id;
4710 		frn->memcg_id = wb->memcg_css->id;
4711 		frn->at = now;
4712 	}
4713 }
4714 
4715 /* issue foreign writeback flushes for recorded foreign dirtying events */
4716 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4717 {
4718 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4719 	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4720 	u64 now = jiffies_64;
4721 	int i;
4722 
4723 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4724 		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4725 
4726 		/*
4727 		 * If the record is older than dirty_expire_interval,
4728 		 * writeback on it has already started.  No need to kick it
4729 		 * off again.  Also, don't start a new one if there's
4730 		 * already one in flight.
4731 		 */
4732 		if (time_after64(frn->at, now - intv) &&
4733 		    atomic_read(&frn->done.cnt) == 1) {
4734 			frn->at = 0;
4735 			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4736 			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
4737 					       WB_REASON_FOREIGN_FLUSH,
4738 					       &frn->done);
4739 		}
4740 	}
4741 }
4742 
4743 #else	/* CONFIG_CGROUP_WRITEBACK */
4744 
4745 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4746 {
4747 	return 0;
4748 }
4749 
4750 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4751 {
4752 }
4753 
4754 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4755 {
4756 }
4757 
4758 #endif	/* CONFIG_CGROUP_WRITEBACK */
4759 
4760 /*
4761  * DO NOT USE IN NEW FILES.
4762  *
4763  * "cgroup.event_control" implementation.
4764  *
4765  * This is way over-engineered.  It tries to support fully configurable
4766  * events for each user.  Such level of flexibility is completely
4767  * unnecessary especially in the light of the planned unified hierarchy.
4768  *
4769  * Please deprecate this and replace with something simpler if at all
4770  * possible.
4771  */
4772 
4773 /*
4774  * Unregister event and free resources.
4775  *
4776  * Gets called from workqueue.
4777  */
4778 static void memcg_event_remove(struct work_struct *work)
4779 {
4780 	struct mem_cgroup_event *event =
4781 		container_of(work, struct mem_cgroup_event, remove);
4782 	struct mem_cgroup *memcg = event->memcg;
4783 
4784 	remove_wait_queue(event->wqh, &event->wait);
4785 
4786 	event->unregister_event(memcg, event->eventfd);
4787 
4788 	/* Notify userspace the event is going away. */
4789 	eventfd_signal(event->eventfd, 1);
4790 
4791 	eventfd_ctx_put(event->eventfd);
4792 	kfree(event);
4793 	css_put(&memcg->css);
4794 }
4795 
4796 /*
4797  * Gets called on EPOLLHUP on eventfd when user closes it.
4798  *
4799  * Called with wqh->lock held and interrupts disabled.
4800  */
4801 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4802 			    int sync, void *key)
4803 {
4804 	struct mem_cgroup_event *event =
4805 		container_of(wait, struct mem_cgroup_event, wait);
4806 	struct mem_cgroup *memcg = event->memcg;
4807 	__poll_t flags = key_to_poll(key);
4808 
4809 	if (flags & EPOLLHUP) {
4810 		/*
4811 		 * If the event has been detached at cgroup removal, we
4812 		 * can simply return knowing the other side will cleanup
4813 		 * for us.
4814 		 *
4815 		 * We can't race against event freeing since the other
4816 		 * side will require wqh->lock via remove_wait_queue(),
4817 		 * which we hold.
4818 		 */
4819 		spin_lock(&memcg->event_list_lock);
4820 		if (!list_empty(&event->list)) {
4821 			list_del_init(&event->list);
4822 			/*
4823 			 * We are in atomic context, but cgroup_event_remove()
4824 			 * may sleep, so we have to call it in workqueue.
4825 			 */
4826 			schedule_work(&event->remove);
4827 		}
4828 		spin_unlock(&memcg->event_list_lock);
4829 	}
4830 
4831 	return 0;
4832 }
4833 
4834 static void memcg_event_ptable_queue_proc(struct file *file,
4835 		wait_queue_head_t *wqh, poll_table *pt)
4836 {
4837 	struct mem_cgroup_event *event =
4838 		container_of(pt, struct mem_cgroup_event, pt);
4839 
4840 	event->wqh = wqh;
4841 	add_wait_queue(wqh, &event->wait);
4842 }
4843 
4844 /*
4845  * DO NOT USE IN NEW FILES.
4846  *
4847  * Parse input and register new cgroup event handler.
4848  *
4849  * Input must be in format '<event_fd> <control_fd> <args>'.
4850  * Interpretation of args is defined by control file implementation.
4851  */
4852 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4853 					 char *buf, size_t nbytes, loff_t off)
4854 {
4855 	struct cgroup_subsys_state *css = of_css(of);
4856 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4857 	struct mem_cgroup_event *event;
4858 	struct cgroup_subsys_state *cfile_css;
4859 	unsigned int efd, cfd;
4860 	struct fd efile;
4861 	struct fd cfile;
4862 	struct dentry *cdentry;
4863 	const char *name;
4864 	char *endp;
4865 	int ret;
4866 
4867 	if (IS_ENABLED(CONFIG_PREEMPT_RT))
4868 		return -EOPNOTSUPP;
4869 
4870 	buf = strstrip(buf);
4871 
4872 	efd = simple_strtoul(buf, &endp, 10);
4873 	if (*endp != ' ')
4874 		return -EINVAL;
4875 	buf = endp + 1;
4876 
4877 	cfd = simple_strtoul(buf, &endp, 10);
4878 	if ((*endp != ' ') && (*endp != '\0'))
4879 		return -EINVAL;
4880 	buf = endp + 1;
4881 
4882 	event = kzalloc(sizeof(*event), GFP_KERNEL);
4883 	if (!event)
4884 		return -ENOMEM;
4885 
4886 	event->memcg = memcg;
4887 	INIT_LIST_HEAD(&event->list);
4888 	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4889 	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4890 	INIT_WORK(&event->remove, memcg_event_remove);
4891 
4892 	efile = fdget(efd);
4893 	if (!efile.file) {
4894 		ret = -EBADF;
4895 		goto out_kfree;
4896 	}
4897 
4898 	event->eventfd = eventfd_ctx_fileget(efile.file);
4899 	if (IS_ERR(event->eventfd)) {
4900 		ret = PTR_ERR(event->eventfd);
4901 		goto out_put_efile;
4902 	}
4903 
4904 	cfile = fdget(cfd);
4905 	if (!cfile.file) {
4906 		ret = -EBADF;
4907 		goto out_put_eventfd;
4908 	}
4909 
4910 	/* the process need read permission on control file */
4911 	/* AV: shouldn't we check that it's been opened for read instead? */
4912 	ret = file_permission(cfile.file, MAY_READ);
4913 	if (ret < 0)
4914 		goto out_put_cfile;
4915 
4916 	/*
4917 	 * The control file must be a regular cgroup1 file. As a regular cgroup
4918 	 * file can't be renamed, it's safe to access its name afterwards.
4919 	 */
4920 	cdentry = cfile.file->f_path.dentry;
4921 	if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(cdentry)) {
4922 		ret = -EINVAL;
4923 		goto out_put_cfile;
4924 	}
4925 
4926 	/*
4927 	 * Determine the event callbacks and set them in @event.  This used
4928 	 * to be done via struct cftype but cgroup core no longer knows
4929 	 * about these events.  The following is crude but the whole thing
4930 	 * is for compatibility anyway.
4931 	 *
4932 	 * DO NOT ADD NEW FILES.
4933 	 */
4934 	name = cdentry->d_name.name;
4935 
4936 	if (!strcmp(name, "memory.usage_in_bytes")) {
4937 		event->register_event = mem_cgroup_usage_register_event;
4938 		event->unregister_event = mem_cgroup_usage_unregister_event;
4939 	} else if (!strcmp(name, "memory.oom_control")) {
4940 		event->register_event = mem_cgroup_oom_register_event;
4941 		event->unregister_event = mem_cgroup_oom_unregister_event;
4942 	} else if (!strcmp(name, "memory.pressure_level")) {
4943 		event->register_event = vmpressure_register_event;
4944 		event->unregister_event = vmpressure_unregister_event;
4945 	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4946 		event->register_event = memsw_cgroup_usage_register_event;
4947 		event->unregister_event = memsw_cgroup_usage_unregister_event;
4948 	} else {
4949 		ret = -EINVAL;
4950 		goto out_put_cfile;
4951 	}
4952 
4953 	/*
4954 	 * Verify @cfile should belong to @css.  Also, remaining events are
4955 	 * automatically removed on cgroup destruction but the removal is
4956 	 * asynchronous, so take an extra ref on @css.
4957 	 */
4958 	cfile_css = css_tryget_online_from_dir(cdentry->d_parent,
4959 					       &memory_cgrp_subsys);
4960 	ret = -EINVAL;
4961 	if (IS_ERR(cfile_css))
4962 		goto out_put_cfile;
4963 	if (cfile_css != css) {
4964 		css_put(cfile_css);
4965 		goto out_put_cfile;
4966 	}
4967 
4968 	ret = event->register_event(memcg, event->eventfd, buf);
4969 	if (ret)
4970 		goto out_put_css;
4971 
4972 	vfs_poll(efile.file, &event->pt);
4973 
4974 	spin_lock_irq(&memcg->event_list_lock);
4975 	list_add(&event->list, &memcg->event_list);
4976 	spin_unlock_irq(&memcg->event_list_lock);
4977 
4978 	fdput(cfile);
4979 	fdput(efile);
4980 
4981 	return nbytes;
4982 
4983 out_put_css:
4984 	css_put(css);
4985 out_put_cfile:
4986 	fdput(cfile);
4987 out_put_eventfd:
4988 	eventfd_ctx_put(event->eventfd);
4989 out_put_efile:
4990 	fdput(efile);
4991 out_kfree:
4992 	kfree(event);
4993 
4994 	return ret;
4995 }
4996 
4997 #if defined(CONFIG_MEMCG_KMEM) && (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
4998 static int mem_cgroup_slab_show(struct seq_file *m, void *p)
4999 {
5000 	/*
5001 	 * Deprecated.
5002 	 * Please, take a look at tools/cgroup/memcg_slabinfo.py .
5003 	 */
5004 	return 0;
5005 }
5006 #endif
5007 
5008 static int memory_stat_show(struct seq_file *m, void *v);
5009 
5010 static struct cftype mem_cgroup_legacy_files[] = {
5011 	{
5012 		.name = "usage_in_bytes",
5013 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5014 		.read_u64 = mem_cgroup_read_u64,
5015 	},
5016 	{
5017 		.name = "max_usage_in_bytes",
5018 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5019 		.write = mem_cgroup_reset,
5020 		.read_u64 = mem_cgroup_read_u64,
5021 	},
5022 	{
5023 		.name = "limit_in_bytes",
5024 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5025 		.write = mem_cgroup_write,
5026 		.read_u64 = mem_cgroup_read_u64,
5027 	},
5028 	{
5029 		.name = "soft_limit_in_bytes",
5030 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5031 		.write = mem_cgroup_write,
5032 		.read_u64 = mem_cgroup_read_u64,
5033 	},
5034 	{
5035 		.name = "failcnt",
5036 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5037 		.write = mem_cgroup_reset,
5038 		.read_u64 = mem_cgroup_read_u64,
5039 	},
5040 	{
5041 		.name = "stat",
5042 		.seq_show = memory_stat_show,
5043 	},
5044 	{
5045 		.name = "force_empty",
5046 		.write = mem_cgroup_force_empty_write,
5047 	},
5048 	{
5049 		.name = "use_hierarchy",
5050 		.write_u64 = mem_cgroup_hierarchy_write,
5051 		.read_u64 = mem_cgroup_hierarchy_read,
5052 	},
5053 	{
5054 		.name = "cgroup.event_control",		/* XXX: for compat */
5055 		.write = memcg_write_event_control,
5056 		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
5057 	},
5058 	{
5059 		.name = "swappiness",
5060 		.read_u64 = mem_cgroup_swappiness_read,
5061 		.write_u64 = mem_cgroup_swappiness_write,
5062 	},
5063 	{
5064 		.name = "move_charge_at_immigrate",
5065 		.read_u64 = mem_cgroup_move_charge_read,
5066 		.write_u64 = mem_cgroup_move_charge_write,
5067 	},
5068 	{
5069 		.name = "oom_control",
5070 		.seq_show = mem_cgroup_oom_control_read,
5071 		.write_u64 = mem_cgroup_oom_control_write,
5072 	},
5073 	{
5074 		.name = "pressure_level",
5075 		.seq_show = mem_cgroup_dummy_seq_show,
5076 	},
5077 #ifdef CONFIG_NUMA
5078 	{
5079 		.name = "numa_stat",
5080 		.seq_show = memcg_numa_stat_show,
5081 	},
5082 #endif
5083 	{
5084 		.name = "kmem.usage_in_bytes",
5085 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5086 		.read_u64 = mem_cgroup_read_u64,
5087 	},
5088 	{
5089 		.name = "kmem.failcnt",
5090 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5091 		.write = mem_cgroup_reset,
5092 		.read_u64 = mem_cgroup_read_u64,
5093 	},
5094 	{
5095 		.name = "kmem.max_usage_in_bytes",
5096 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5097 		.write = mem_cgroup_reset,
5098 		.read_u64 = mem_cgroup_read_u64,
5099 	},
5100 #if defined(CONFIG_MEMCG_KMEM) && \
5101 	(defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5102 	{
5103 		.name = "kmem.slabinfo",
5104 		.seq_show = mem_cgroup_slab_show,
5105 	},
5106 #endif
5107 	{
5108 		.name = "kmem.tcp.limit_in_bytes",
5109 		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5110 		.write = mem_cgroup_write,
5111 		.read_u64 = mem_cgroup_read_u64,
5112 	},
5113 	{
5114 		.name = "kmem.tcp.usage_in_bytes",
5115 		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5116 		.read_u64 = mem_cgroup_read_u64,
5117 	},
5118 	{
5119 		.name = "kmem.tcp.failcnt",
5120 		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5121 		.write = mem_cgroup_reset,
5122 		.read_u64 = mem_cgroup_read_u64,
5123 	},
5124 	{
5125 		.name = "kmem.tcp.max_usage_in_bytes",
5126 		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5127 		.write = mem_cgroup_reset,
5128 		.read_u64 = mem_cgroup_read_u64,
5129 	},
5130 	{ },	/* terminate */
5131 };
5132 
5133 /*
5134  * Private memory cgroup IDR
5135  *
5136  * Swap-out records and page cache shadow entries need to store memcg
5137  * references in constrained space, so we maintain an ID space that is
5138  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5139  * memory-controlled cgroups to 64k.
5140  *
5141  * However, there usually are many references to the offline CSS after
5142  * the cgroup has been destroyed, such as page cache or reclaimable
5143  * slab objects, that don't need to hang on to the ID. We want to keep
5144  * those dead CSS from occupying IDs, or we might quickly exhaust the
5145  * relatively small ID space and prevent the creation of new cgroups
5146  * even when there are much fewer than 64k cgroups - possibly none.
5147  *
5148  * Maintain a private 16-bit ID space for memcg, and allow the ID to
5149  * be freed and recycled when it's no longer needed, which is usually
5150  * when the CSS is offlined.
5151  *
5152  * The only exception to that are records of swapped out tmpfs/shmem
5153  * pages that need to be attributed to live ancestors on swapin. But
5154  * those references are manageable from userspace.
5155  */
5156 
5157 #define MEM_CGROUP_ID_MAX	((1UL << MEM_CGROUP_ID_SHIFT) - 1)
5158 static DEFINE_IDR(mem_cgroup_idr);
5159 
5160 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5161 {
5162 	if (memcg->id.id > 0) {
5163 		idr_remove(&mem_cgroup_idr, memcg->id.id);
5164 		memcg->id.id = 0;
5165 	}
5166 }
5167 
5168 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5169 						  unsigned int n)
5170 {
5171 	refcount_add(n, &memcg->id.ref);
5172 }
5173 
5174 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5175 {
5176 	if (refcount_sub_and_test(n, &memcg->id.ref)) {
5177 		mem_cgroup_id_remove(memcg);
5178 
5179 		/* Memcg ID pins CSS */
5180 		css_put(&memcg->css);
5181 	}
5182 }
5183 
5184 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5185 {
5186 	mem_cgroup_id_put_many(memcg, 1);
5187 }
5188 
5189 /**
5190  * mem_cgroup_from_id - look up a memcg from a memcg id
5191  * @id: the memcg id to look up
5192  *
5193  * Caller must hold rcu_read_lock().
5194  */
5195 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5196 {
5197 	WARN_ON_ONCE(!rcu_read_lock_held());
5198 	return idr_find(&mem_cgroup_idr, id);
5199 }
5200 
5201 #ifdef CONFIG_SHRINKER_DEBUG
5202 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
5203 {
5204 	struct cgroup *cgrp;
5205 	struct cgroup_subsys_state *css;
5206 	struct mem_cgroup *memcg;
5207 
5208 	cgrp = cgroup_get_from_id(ino);
5209 	if (IS_ERR(cgrp))
5210 		return ERR_CAST(cgrp);
5211 
5212 	css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys);
5213 	if (css)
5214 		memcg = container_of(css, struct mem_cgroup, css);
5215 	else
5216 		memcg = ERR_PTR(-ENOENT);
5217 
5218 	cgroup_put(cgrp);
5219 
5220 	return memcg;
5221 }
5222 #endif
5223 
5224 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5225 {
5226 	struct mem_cgroup_per_node *pn;
5227 
5228 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node);
5229 	if (!pn)
5230 		return 1;
5231 
5232 	pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
5233 						   GFP_KERNEL_ACCOUNT);
5234 	if (!pn->lruvec_stats_percpu) {
5235 		kfree(pn);
5236 		return 1;
5237 	}
5238 
5239 	lruvec_init(&pn->lruvec);
5240 	pn->memcg = memcg;
5241 
5242 	memcg->nodeinfo[node] = pn;
5243 	return 0;
5244 }
5245 
5246 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5247 {
5248 	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5249 
5250 	if (!pn)
5251 		return;
5252 
5253 	free_percpu(pn->lruvec_stats_percpu);
5254 	kfree(pn);
5255 }
5256 
5257 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5258 {
5259 	int node;
5260 
5261 	for_each_node(node)
5262 		free_mem_cgroup_per_node_info(memcg, node);
5263 	kfree(memcg->vmstats);
5264 	free_percpu(memcg->vmstats_percpu);
5265 	kfree(memcg);
5266 }
5267 
5268 static void mem_cgroup_free(struct mem_cgroup *memcg)
5269 {
5270 	lru_gen_exit_memcg(memcg);
5271 	memcg_wb_domain_exit(memcg);
5272 	__mem_cgroup_free(memcg);
5273 }
5274 
5275 static struct mem_cgroup *mem_cgroup_alloc(void)
5276 {
5277 	struct mem_cgroup *memcg;
5278 	int node;
5279 	int __maybe_unused i;
5280 	long error = -ENOMEM;
5281 
5282 	memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL);
5283 	if (!memcg)
5284 		return ERR_PTR(error);
5285 
5286 	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5287 				 1, MEM_CGROUP_ID_MAX + 1, GFP_KERNEL);
5288 	if (memcg->id.id < 0) {
5289 		error = memcg->id.id;
5290 		goto fail;
5291 	}
5292 
5293 	memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats), GFP_KERNEL);
5294 	if (!memcg->vmstats)
5295 		goto fail;
5296 
5297 	memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5298 						 GFP_KERNEL_ACCOUNT);
5299 	if (!memcg->vmstats_percpu)
5300 		goto fail;
5301 
5302 	for_each_node(node)
5303 		if (alloc_mem_cgroup_per_node_info(memcg, node))
5304 			goto fail;
5305 
5306 	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5307 		goto fail;
5308 
5309 	INIT_WORK(&memcg->high_work, high_work_func);
5310 	INIT_LIST_HEAD(&memcg->oom_notify);
5311 	mutex_init(&memcg->thresholds_lock);
5312 	spin_lock_init(&memcg->move_lock);
5313 	vmpressure_init(&memcg->vmpressure);
5314 	INIT_LIST_HEAD(&memcg->event_list);
5315 	spin_lock_init(&memcg->event_list_lock);
5316 	memcg->socket_pressure = jiffies;
5317 #ifdef CONFIG_MEMCG_KMEM
5318 	memcg->kmemcg_id = -1;
5319 	INIT_LIST_HEAD(&memcg->objcg_list);
5320 #endif
5321 #ifdef CONFIG_CGROUP_WRITEBACK
5322 	INIT_LIST_HEAD(&memcg->cgwb_list);
5323 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5324 		memcg->cgwb_frn[i].done =
5325 			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5326 #endif
5327 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5328 	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5329 	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5330 	memcg->deferred_split_queue.split_queue_len = 0;
5331 #endif
5332 	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5333 	lru_gen_init_memcg(memcg);
5334 	return memcg;
5335 fail:
5336 	mem_cgroup_id_remove(memcg);
5337 	__mem_cgroup_free(memcg);
5338 	return ERR_PTR(error);
5339 }
5340 
5341 static struct cgroup_subsys_state * __ref
5342 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5343 {
5344 	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5345 	struct mem_cgroup *memcg, *old_memcg;
5346 
5347 	old_memcg = set_active_memcg(parent);
5348 	memcg = mem_cgroup_alloc();
5349 	set_active_memcg(old_memcg);
5350 	if (IS_ERR(memcg))
5351 		return ERR_CAST(memcg);
5352 
5353 	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5354 	WRITE_ONCE(memcg->soft_limit, PAGE_COUNTER_MAX);
5355 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
5356 	memcg->zswap_max = PAGE_COUNTER_MAX;
5357 #endif
5358 	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5359 	if (parent) {
5360 		WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent));
5361 		WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable));
5362 
5363 		page_counter_init(&memcg->memory, &parent->memory);
5364 		page_counter_init(&memcg->swap, &parent->swap);
5365 		page_counter_init(&memcg->kmem, &parent->kmem);
5366 		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5367 	} else {
5368 		init_memcg_events();
5369 		page_counter_init(&memcg->memory, NULL);
5370 		page_counter_init(&memcg->swap, NULL);
5371 		page_counter_init(&memcg->kmem, NULL);
5372 		page_counter_init(&memcg->tcpmem, NULL);
5373 
5374 		root_mem_cgroup = memcg;
5375 		return &memcg->css;
5376 	}
5377 
5378 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5379 		static_branch_inc(&memcg_sockets_enabled_key);
5380 
5381 #if defined(CONFIG_MEMCG_KMEM)
5382 	if (!cgroup_memory_nobpf)
5383 		static_branch_inc(&memcg_bpf_enabled_key);
5384 #endif
5385 
5386 	return &memcg->css;
5387 }
5388 
5389 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5390 {
5391 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5392 
5393 	if (memcg_online_kmem(memcg))
5394 		goto remove_id;
5395 
5396 	/*
5397 	 * A memcg must be visible for expand_shrinker_info()
5398 	 * by the time the maps are allocated. So, we allocate maps
5399 	 * here, when for_each_mem_cgroup() can't skip it.
5400 	 */
5401 	if (alloc_shrinker_info(memcg))
5402 		goto offline_kmem;
5403 
5404 	/* Online state pins memcg ID, memcg ID pins CSS */
5405 	refcount_set(&memcg->id.ref, 1);
5406 	css_get(css);
5407 
5408 	if (unlikely(mem_cgroup_is_root(memcg)))
5409 		queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
5410 				   FLUSH_TIME);
5411 	lru_gen_online_memcg(memcg);
5412 	return 0;
5413 offline_kmem:
5414 	memcg_offline_kmem(memcg);
5415 remove_id:
5416 	mem_cgroup_id_remove(memcg);
5417 	return -ENOMEM;
5418 }
5419 
5420 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5421 {
5422 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5423 	struct mem_cgroup_event *event, *tmp;
5424 
5425 	/*
5426 	 * Unregister events and notify userspace.
5427 	 * Notify userspace about cgroup removing only after rmdir of cgroup
5428 	 * directory to avoid race between userspace and kernelspace.
5429 	 */
5430 	spin_lock_irq(&memcg->event_list_lock);
5431 	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5432 		list_del_init(&event->list);
5433 		schedule_work(&event->remove);
5434 	}
5435 	spin_unlock_irq(&memcg->event_list_lock);
5436 
5437 	page_counter_set_min(&memcg->memory, 0);
5438 	page_counter_set_low(&memcg->memory, 0);
5439 
5440 	memcg_offline_kmem(memcg);
5441 	reparent_shrinker_deferred(memcg);
5442 	wb_memcg_offline(memcg);
5443 	lru_gen_offline_memcg(memcg);
5444 
5445 	drain_all_stock(memcg);
5446 
5447 	mem_cgroup_id_put(memcg);
5448 }
5449 
5450 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5451 {
5452 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5453 
5454 	invalidate_reclaim_iterators(memcg);
5455 	lru_gen_release_memcg(memcg);
5456 }
5457 
5458 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5459 {
5460 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5461 	int __maybe_unused i;
5462 
5463 #ifdef CONFIG_CGROUP_WRITEBACK
5464 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5465 		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5466 #endif
5467 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5468 		static_branch_dec(&memcg_sockets_enabled_key);
5469 
5470 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5471 		static_branch_dec(&memcg_sockets_enabled_key);
5472 
5473 #if defined(CONFIG_MEMCG_KMEM)
5474 	if (!cgroup_memory_nobpf)
5475 		static_branch_dec(&memcg_bpf_enabled_key);
5476 #endif
5477 
5478 	vmpressure_cleanup(&memcg->vmpressure);
5479 	cancel_work_sync(&memcg->high_work);
5480 	mem_cgroup_remove_from_trees(memcg);
5481 	free_shrinker_info(memcg);
5482 	mem_cgroup_free(memcg);
5483 }
5484 
5485 /**
5486  * mem_cgroup_css_reset - reset the states of a mem_cgroup
5487  * @css: the target css
5488  *
5489  * Reset the states of the mem_cgroup associated with @css.  This is
5490  * invoked when the userland requests disabling on the default hierarchy
5491  * but the memcg is pinned through dependency.  The memcg should stop
5492  * applying policies and should revert to the vanilla state as it may be
5493  * made visible again.
5494  *
5495  * The current implementation only resets the essential configurations.
5496  * This needs to be expanded to cover all the visible parts.
5497  */
5498 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5499 {
5500 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5501 
5502 	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5503 	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5504 	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5505 	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5506 	page_counter_set_min(&memcg->memory, 0);
5507 	page_counter_set_low(&memcg->memory, 0);
5508 	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5509 	WRITE_ONCE(memcg->soft_limit, PAGE_COUNTER_MAX);
5510 	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5511 	memcg_wb_domain_size_changed(memcg);
5512 }
5513 
5514 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5515 {
5516 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5517 	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5518 	struct memcg_vmstats_percpu *statc;
5519 	long delta, v;
5520 	int i, nid;
5521 
5522 	statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5523 
5524 	for (i = 0; i < MEMCG_NR_STAT; i++) {
5525 		/*
5526 		 * Collect the aggregated propagation counts of groups
5527 		 * below us. We're in a per-cpu loop here and this is
5528 		 * a global counter, so the first cycle will get them.
5529 		 */
5530 		delta = memcg->vmstats->state_pending[i];
5531 		if (delta)
5532 			memcg->vmstats->state_pending[i] = 0;
5533 
5534 		/* Add CPU changes on this level since the last flush */
5535 		v = READ_ONCE(statc->state[i]);
5536 		if (v != statc->state_prev[i]) {
5537 			delta += v - statc->state_prev[i];
5538 			statc->state_prev[i] = v;
5539 		}
5540 
5541 		if (!delta)
5542 			continue;
5543 
5544 		/* Aggregate counts on this level and propagate upwards */
5545 		memcg->vmstats->state[i] += delta;
5546 		if (parent)
5547 			parent->vmstats->state_pending[i] += delta;
5548 	}
5549 
5550 	for (i = 0; i < NR_MEMCG_EVENTS; i++) {
5551 		delta = memcg->vmstats->events_pending[i];
5552 		if (delta)
5553 			memcg->vmstats->events_pending[i] = 0;
5554 
5555 		v = READ_ONCE(statc->events[i]);
5556 		if (v != statc->events_prev[i]) {
5557 			delta += v - statc->events_prev[i];
5558 			statc->events_prev[i] = v;
5559 		}
5560 
5561 		if (!delta)
5562 			continue;
5563 
5564 		memcg->vmstats->events[i] += delta;
5565 		if (parent)
5566 			parent->vmstats->events_pending[i] += delta;
5567 	}
5568 
5569 	for_each_node_state(nid, N_MEMORY) {
5570 		struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
5571 		struct mem_cgroup_per_node *ppn = NULL;
5572 		struct lruvec_stats_percpu *lstatc;
5573 
5574 		if (parent)
5575 			ppn = parent->nodeinfo[nid];
5576 
5577 		lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
5578 
5579 		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
5580 			delta = pn->lruvec_stats.state_pending[i];
5581 			if (delta)
5582 				pn->lruvec_stats.state_pending[i] = 0;
5583 
5584 			v = READ_ONCE(lstatc->state[i]);
5585 			if (v != lstatc->state_prev[i]) {
5586 				delta += v - lstatc->state_prev[i];
5587 				lstatc->state_prev[i] = v;
5588 			}
5589 
5590 			if (!delta)
5591 				continue;
5592 
5593 			pn->lruvec_stats.state[i] += delta;
5594 			if (ppn)
5595 				ppn->lruvec_stats.state_pending[i] += delta;
5596 		}
5597 	}
5598 }
5599 
5600 #ifdef CONFIG_MMU
5601 /* Handlers for move charge at task migration. */
5602 static int mem_cgroup_do_precharge(unsigned long count)
5603 {
5604 	int ret;
5605 
5606 	/* Try a single bulk charge without reclaim first, kswapd may wake */
5607 	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5608 	if (!ret) {
5609 		mc.precharge += count;
5610 		return ret;
5611 	}
5612 
5613 	/* Try charges one by one with reclaim, but do not retry */
5614 	while (count--) {
5615 		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5616 		if (ret)
5617 			return ret;
5618 		mc.precharge++;
5619 		cond_resched();
5620 	}
5621 	return 0;
5622 }
5623 
5624 union mc_target {
5625 	struct page	*page;
5626 	swp_entry_t	ent;
5627 };
5628 
5629 enum mc_target_type {
5630 	MC_TARGET_NONE = 0,
5631 	MC_TARGET_PAGE,
5632 	MC_TARGET_SWAP,
5633 	MC_TARGET_DEVICE,
5634 };
5635 
5636 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5637 						unsigned long addr, pte_t ptent)
5638 {
5639 	struct page *page = vm_normal_page(vma, addr, ptent);
5640 
5641 	if (!page)
5642 		return NULL;
5643 	if (PageAnon(page)) {
5644 		if (!(mc.flags & MOVE_ANON))
5645 			return NULL;
5646 	} else {
5647 		if (!(mc.flags & MOVE_FILE))
5648 			return NULL;
5649 	}
5650 	get_page(page);
5651 
5652 	return page;
5653 }
5654 
5655 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5656 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5657 			pte_t ptent, swp_entry_t *entry)
5658 {
5659 	struct page *page = NULL;
5660 	swp_entry_t ent = pte_to_swp_entry(ptent);
5661 
5662 	if (!(mc.flags & MOVE_ANON))
5663 		return NULL;
5664 
5665 	/*
5666 	 * Handle device private pages that are not accessible by the CPU, but
5667 	 * stored as special swap entries in the page table.
5668 	 */
5669 	if (is_device_private_entry(ent)) {
5670 		page = pfn_swap_entry_to_page(ent);
5671 		if (!get_page_unless_zero(page))
5672 			return NULL;
5673 		return page;
5674 	}
5675 
5676 	if (non_swap_entry(ent))
5677 		return NULL;
5678 
5679 	/*
5680 	 * Because swap_cache_get_folio() updates some statistics counter,
5681 	 * we call find_get_page() with swapper_space directly.
5682 	 */
5683 	page = find_get_page(swap_address_space(ent), swp_offset(ent));
5684 	entry->val = ent.val;
5685 
5686 	return page;
5687 }
5688 #else
5689 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5690 			pte_t ptent, swp_entry_t *entry)
5691 {
5692 	return NULL;
5693 }
5694 #endif
5695 
5696 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5697 			unsigned long addr, pte_t ptent)
5698 {
5699 	unsigned long index;
5700 	struct folio *folio;
5701 
5702 	if (!vma->vm_file) /* anonymous vma */
5703 		return NULL;
5704 	if (!(mc.flags & MOVE_FILE))
5705 		return NULL;
5706 
5707 	/* folio is moved even if it's not RSS of this task(page-faulted). */
5708 	/* shmem/tmpfs may report page out on swap: account for that too. */
5709 	index = linear_page_index(vma, addr);
5710 	folio = filemap_get_incore_folio(vma->vm_file->f_mapping, index);
5711 	if (IS_ERR(folio))
5712 		return NULL;
5713 	return folio_file_page(folio, index);
5714 }
5715 
5716 /**
5717  * mem_cgroup_move_account - move account of the page
5718  * @page: the page
5719  * @compound: charge the page as compound or small page
5720  * @from: mem_cgroup which the page is moved from.
5721  * @to:	mem_cgroup which the page is moved to. @from != @to.
5722  *
5723  * The page must be locked and not on the LRU.
5724  *
5725  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5726  * from old cgroup.
5727  */
5728 static int mem_cgroup_move_account(struct page *page,
5729 				   bool compound,
5730 				   struct mem_cgroup *from,
5731 				   struct mem_cgroup *to)
5732 {
5733 	struct folio *folio = page_folio(page);
5734 	struct lruvec *from_vec, *to_vec;
5735 	struct pglist_data *pgdat;
5736 	unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1;
5737 	int nid, ret;
5738 
5739 	VM_BUG_ON(from == to);
5740 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
5741 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
5742 	VM_BUG_ON(compound && !folio_test_large(folio));
5743 
5744 	ret = -EINVAL;
5745 	if (folio_memcg(folio) != from)
5746 		goto out;
5747 
5748 	pgdat = folio_pgdat(folio);
5749 	from_vec = mem_cgroup_lruvec(from, pgdat);
5750 	to_vec = mem_cgroup_lruvec(to, pgdat);
5751 
5752 	folio_memcg_lock(folio);
5753 
5754 	if (folio_test_anon(folio)) {
5755 		if (folio_mapped(folio)) {
5756 			__mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5757 			__mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5758 			if (folio_test_transhuge(folio)) {
5759 				__mod_lruvec_state(from_vec, NR_ANON_THPS,
5760 						   -nr_pages);
5761 				__mod_lruvec_state(to_vec, NR_ANON_THPS,
5762 						   nr_pages);
5763 			}
5764 		}
5765 	} else {
5766 		__mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5767 		__mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5768 
5769 		if (folio_test_swapbacked(folio)) {
5770 			__mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5771 			__mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5772 		}
5773 
5774 		if (folio_mapped(folio)) {
5775 			__mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5776 			__mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5777 		}
5778 
5779 		if (folio_test_dirty(folio)) {
5780 			struct address_space *mapping = folio_mapping(folio);
5781 
5782 			if (mapping_can_writeback(mapping)) {
5783 				__mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5784 						   -nr_pages);
5785 				__mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5786 						   nr_pages);
5787 			}
5788 		}
5789 	}
5790 
5791 #ifdef CONFIG_SWAP
5792 	if (folio_test_swapcache(folio)) {
5793 		__mod_lruvec_state(from_vec, NR_SWAPCACHE, -nr_pages);
5794 		__mod_lruvec_state(to_vec, NR_SWAPCACHE, nr_pages);
5795 	}
5796 #endif
5797 	if (folio_test_writeback(folio)) {
5798 		__mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5799 		__mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5800 	}
5801 
5802 	/*
5803 	 * All state has been migrated, let's switch to the new memcg.
5804 	 *
5805 	 * It is safe to change page's memcg here because the page
5806 	 * is referenced, charged, isolated, and locked: we can't race
5807 	 * with (un)charging, migration, LRU putback, or anything else
5808 	 * that would rely on a stable page's memory cgroup.
5809 	 *
5810 	 * Note that folio_memcg_lock is a memcg lock, not a page lock,
5811 	 * to save space. As soon as we switch page's memory cgroup to a
5812 	 * new memcg that isn't locked, the above state can change
5813 	 * concurrently again. Make sure we're truly done with it.
5814 	 */
5815 	smp_mb();
5816 
5817 	css_get(&to->css);
5818 	css_put(&from->css);
5819 
5820 	folio->memcg_data = (unsigned long)to;
5821 
5822 	__folio_memcg_unlock(from);
5823 
5824 	ret = 0;
5825 	nid = folio_nid(folio);
5826 
5827 	local_irq_disable();
5828 	mem_cgroup_charge_statistics(to, nr_pages);
5829 	memcg_check_events(to, nid);
5830 	mem_cgroup_charge_statistics(from, -nr_pages);
5831 	memcg_check_events(from, nid);
5832 	local_irq_enable();
5833 out:
5834 	return ret;
5835 }
5836 
5837 /**
5838  * get_mctgt_type - get target type of moving charge
5839  * @vma: the vma the pte to be checked belongs
5840  * @addr: the address corresponding to the pte to be checked
5841  * @ptent: the pte to be checked
5842  * @target: the pointer the target page or swap ent will be stored(can be NULL)
5843  *
5844  * Returns
5845  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5846  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5847  *     move charge. if @target is not NULL, the page is stored in target->page
5848  *     with extra refcnt got(Callers should handle it).
5849  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5850  *     target for charge migration. if @target is not NULL, the entry is stored
5851  *     in target->ent.
5852  *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is device memory and
5853  *   thus not on the lru.
5854  *     For now we such page is charge like a regular page would be as for all
5855  *     intent and purposes it is just special memory taking the place of a
5856  *     regular page.
5857  *
5858  *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5859  *
5860  * Called with pte lock held.
5861  */
5862 
5863 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5864 		unsigned long addr, pte_t ptent, union mc_target *target)
5865 {
5866 	struct page *page = NULL;
5867 	enum mc_target_type ret = MC_TARGET_NONE;
5868 	swp_entry_t ent = { .val = 0 };
5869 
5870 	if (pte_present(ptent))
5871 		page = mc_handle_present_pte(vma, addr, ptent);
5872 	else if (pte_none_mostly(ptent))
5873 		/*
5874 		 * PTE markers should be treated as a none pte here, separated
5875 		 * from other swap handling below.
5876 		 */
5877 		page = mc_handle_file_pte(vma, addr, ptent);
5878 	else if (is_swap_pte(ptent))
5879 		page = mc_handle_swap_pte(vma, ptent, &ent);
5880 
5881 	if (target && page) {
5882 		if (!trylock_page(page)) {
5883 			put_page(page);
5884 			return ret;
5885 		}
5886 		/*
5887 		 * page_mapped() must be stable during the move. This
5888 		 * pte is locked, so if it's present, the page cannot
5889 		 * become unmapped. If it isn't, we have only partial
5890 		 * control over the mapped state: the page lock will
5891 		 * prevent new faults against pagecache and swapcache,
5892 		 * so an unmapped page cannot become mapped. However,
5893 		 * if the page is already mapped elsewhere, it can
5894 		 * unmap, and there is nothing we can do about it.
5895 		 * Alas, skip moving the page in this case.
5896 		 */
5897 		if (!pte_present(ptent) && page_mapped(page)) {
5898 			unlock_page(page);
5899 			put_page(page);
5900 			return ret;
5901 		}
5902 	}
5903 
5904 	if (!page && !ent.val)
5905 		return ret;
5906 	if (page) {
5907 		/*
5908 		 * Do only loose check w/o serialization.
5909 		 * mem_cgroup_move_account() checks the page is valid or
5910 		 * not under LRU exclusion.
5911 		 */
5912 		if (page_memcg(page) == mc.from) {
5913 			ret = MC_TARGET_PAGE;
5914 			if (is_device_private_page(page) ||
5915 			    is_device_coherent_page(page))
5916 				ret = MC_TARGET_DEVICE;
5917 			if (target)
5918 				target->page = page;
5919 		}
5920 		if (!ret || !target) {
5921 			if (target)
5922 				unlock_page(page);
5923 			put_page(page);
5924 		}
5925 	}
5926 	/*
5927 	 * There is a swap entry and a page doesn't exist or isn't charged.
5928 	 * But we cannot move a tail-page in a THP.
5929 	 */
5930 	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5931 	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5932 		ret = MC_TARGET_SWAP;
5933 		if (target)
5934 			target->ent = ent;
5935 	}
5936 	return ret;
5937 }
5938 
5939 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5940 /*
5941  * We don't consider PMD mapped swapping or file mapped pages because THP does
5942  * not support them for now.
5943  * Caller should make sure that pmd_trans_huge(pmd) is true.
5944  */
5945 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5946 		unsigned long addr, pmd_t pmd, union mc_target *target)
5947 {
5948 	struct page *page = NULL;
5949 	enum mc_target_type ret = MC_TARGET_NONE;
5950 
5951 	if (unlikely(is_swap_pmd(pmd))) {
5952 		VM_BUG_ON(thp_migration_supported() &&
5953 				  !is_pmd_migration_entry(pmd));
5954 		return ret;
5955 	}
5956 	page = pmd_page(pmd);
5957 	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5958 	if (!(mc.flags & MOVE_ANON))
5959 		return ret;
5960 	if (page_memcg(page) == mc.from) {
5961 		ret = MC_TARGET_PAGE;
5962 		if (target) {
5963 			get_page(page);
5964 			if (!trylock_page(page)) {
5965 				put_page(page);
5966 				return MC_TARGET_NONE;
5967 			}
5968 			target->page = page;
5969 		}
5970 	}
5971 	return ret;
5972 }
5973 #else
5974 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5975 		unsigned long addr, pmd_t pmd, union mc_target *target)
5976 {
5977 	return MC_TARGET_NONE;
5978 }
5979 #endif
5980 
5981 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5982 					unsigned long addr, unsigned long end,
5983 					struct mm_walk *walk)
5984 {
5985 	struct vm_area_struct *vma = walk->vma;
5986 	pte_t *pte;
5987 	spinlock_t *ptl;
5988 
5989 	ptl = pmd_trans_huge_lock(pmd, vma);
5990 	if (ptl) {
5991 		/*
5992 		 * Note their can not be MC_TARGET_DEVICE for now as we do not
5993 		 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5994 		 * this might change.
5995 		 */
5996 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5997 			mc.precharge += HPAGE_PMD_NR;
5998 		spin_unlock(ptl);
5999 		return 0;
6000 	}
6001 
6002 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6003 	if (!pte)
6004 		return 0;
6005 	for (; addr != end; pte++, addr += PAGE_SIZE)
6006 		if (get_mctgt_type(vma, addr, ptep_get(pte), NULL))
6007 			mc.precharge++;	/* increment precharge temporarily */
6008 	pte_unmap_unlock(pte - 1, ptl);
6009 	cond_resched();
6010 
6011 	return 0;
6012 }
6013 
6014 static const struct mm_walk_ops precharge_walk_ops = {
6015 	.pmd_entry	= mem_cgroup_count_precharge_pte_range,
6016 };
6017 
6018 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6019 {
6020 	unsigned long precharge;
6021 
6022 	mmap_read_lock(mm);
6023 	walk_page_range(mm, 0, ULONG_MAX, &precharge_walk_ops, NULL);
6024 	mmap_read_unlock(mm);
6025 
6026 	precharge = mc.precharge;
6027 	mc.precharge = 0;
6028 
6029 	return precharge;
6030 }
6031 
6032 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6033 {
6034 	unsigned long precharge = mem_cgroup_count_precharge(mm);
6035 
6036 	VM_BUG_ON(mc.moving_task);
6037 	mc.moving_task = current;
6038 	return mem_cgroup_do_precharge(precharge);
6039 }
6040 
6041 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6042 static void __mem_cgroup_clear_mc(void)
6043 {
6044 	struct mem_cgroup *from = mc.from;
6045 	struct mem_cgroup *to = mc.to;
6046 
6047 	/* we must uncharge all the leftover precharges from mc.to */
6048 	if (mc.precharge) {
6049 		cancel_charge(mc.to, mc.precharge);
6050 		mc.precharge = 0;
6051 	}
6052 	/*
6053 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6054 	 * we must uncharge here.
6055 	 */
6056 	if (mc.moved_charge) {
6057 		cancel_charge(mc.from, mc.moved_charge);
6058 		mc.moved_charge = 0;
6059 	}
6060 	/* we must fixup refcnts and charges */
6061 	if (mc.moved_swap) {
6062 		/* uncharge swap account from the old cgroup */
6063 		if (!mem_cgroup_is_root(mc.from))
6064 			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
6065 
6066 		mem_cgroup_id_put_many(mc.from, mc.moved_swap);
6067 
6068 		/*
6069 		 * we charged both to->memory and to->memsw, so we
6070 		 * should uncharge to->memory.
6071 		 */
6072 		if (!mem_cgroup_is_root(mc.to))
6073 			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
6074 
6075 		mc.moved_swap = 0;
6076 	}
6077 	memcg_oom_recover(from);
6078 	memcg_oom_recover(to);
6079 	wake_up_all(&mc.waitq);
6080 }
6081 
6082 static void mem_cgroup_clear_mc(void)
6083 {
6084 	struct mm_struct *mm = mc.mm;
6085 
6086 	/*
6087 	 * we must clear moving_task before waking up waiters at the end of
6088 	 * task migration.
6089 	 */
6090 	mc.moving_task = NULL;
6091 	__mem_cgroup_clear_mc();
6092 	spin_lock(&mc.lock);
6093 	mc.from = NULL;
6094 	mc.to = NULL;
6095 	mc.mm = NULL;
6096 	spin_unlock(&mc.lock);
6097 
6098 	mmput(mm);
6099 }
6100 
6101 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6102 {
6103 	struct cgroup_subsys_state *css;
6104 	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
6105 	struct mem_cgroup *from;
6106 	struct task_struct *leader, *p;
6107 	struct mm_struct *mm;
6108 	unsigned long move_flags;
6109 	int ret = 0;
6110 
6111 	/* charge immigration isn't supported on the default hierarchy */
6112 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6113 		return 0;
6114 
6115 	/*
6116 	 * Multi-process migrations only happen on the default hierarchy
6117 	 * where charge immigration is not used.  Perform charge
6118 	 * immigration if @tset contains a leader and whine if there are
6119 	 * multiple.
6120 	 */
6121 	p = NULL;
6122 	cgroup_taskset_for_each_leader(leader, css, tset) {
6123 		WARN_ON_ONCE(p);
6124 		p = leader;
6125 		memcg = mem_cgroup_from_css(css);
6126 	}
6127 	if (!p)
6128 		return 0;
6129 
6130 	/*
6131 	 * We are now committed to this value whatever it is. Changes in this
6132 	 * tunable will only affect upcoming migrations, not the current one.
6133 	 * So we need to save it, and keep it going.
6134 	 */
6135 	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
6136 	if (!move_flags)
6137 		return 0;
6138 
6139 	from = mem_cgroup_from_task(p);
6140 
6141 	VM_BUG_ON(from == memcg);
6142 
6143 	mm = get_task_mm(p);
6144 	if (!mm)
6145 		return 0;
6146 	/* We move charges only when we move a owner of the mm */
6147 	if (mm->owner == p) {
6148 		VM_BUG_ON(mc.from);
6149 		VM_BUG_ON(mc.to);
6150 		VM_BUG_ON(mc.precharge);
6151 		VM_BUG_ON(mc.moved_charge);
6152 		VM_BUG_ON(mc.moved_swap);
6153 
6154 		spin_lock(&mc.lock);
6155 		mc.mm = mm;
6156 		mc.from = from;
6157 		mc.to = memcg;
6158 		mc.flags = move_flags;
6159 		spin_unlock(&mc.lock);
6160 		/* We set mc.moving_task later */
6161 
6162 		ret = mem_cgroup_precharge_mc(mm);
6163 		if (ret)
6164 			mem_cgroup_clear_mc();
6165 	} else {
6166 		mmput(mm);
6167 	}
6168 	return ret;
6169 }
6170 
6171 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6172 {
6173 	if (mc.to)
6174 		mem_cgroup_clear_mc();
6175 }
6176 
6177 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6178 				unsigned long addr, unsigned long end,
6179 				struct mm_walk *walk)
6180 {
6181 	int ret = 0;
6182 	struct vm_area_struct *vma = walk->vma;
6183 	pte_t *pte;
6184 	spinlock_t *ptl;
6185 	enum mc_target_type target_type;
6186 	union mc_target target;
6187 	struct page *page;
6188 
6189 	ptl = pmd_trans_huge_lock(pmd, vma);
6190 	if (ptl) {
6191 		if (mc.precharge < HPAGE_PMD_NR) {
6192 			spin_unlock(ptl);
6193 			return 0;
6194 		}
6195 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6196 		if (target_type == MC_TARGET_PAGE) {
6197 			page = target.page;
6198 			if (isolate_lru_page(page)) {
6199 				if (!mem_cgroup_move_account(page, true,
6200 							     mc.from, mc.to)) {
6201 					mc.precharge -= HPAGE_PMD_NR;
6202 					mc.moved_charge += HPAGE_PMD_NR;
6203 				}
6204 				putback_lru_page(page);
6205 			}
6206 			unlock_page(page);
6207 			put_page(page);
6208 		} else if (target_type == MC_TARGET_DEVICE) {
6209 			page = target.page;
6210 			if (!mem_cgroup_move_account(page, true,
6211 						     mc.from, mc.to)) {
6212 				mc.precharge -= HPAGE_PMD_NR;
6213 				mc.moved_charge += HPAGE_PMD_NR;
6214 			}
6215 			unlock_page(page);
6216 			put_page(page);
6217 		}
6218 		spin_unlock(ptl);
6219 		return 0;
6220 	}
6221 
6222 retry:
6223 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6224 	if (!pte)
6225 		return 0;
6226 	for (; addr != end; addr += PAGE_SIZE) {
6227 		pte_t ptent = ptep_get(pte++);
6228 		bool device = false;
6229 		swp_entry_t ent;
6230 
6231 		if (!mc.precharge)
6232 			break;
6233 
6234 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6235 		case MC_TARGET_DEVICE:
6236 			device = true;
6237 			fallthrough;
6238 		case MC_TARGET_PAGE:
6239 			page = target.page;
6240 			/*
6241 			 * We can have a part of the split pmd here. Moving it
6242 			 * can be done but it would be too convoluted so simply
6243 			 * ignore such a partial THP and keep it in original
6244 			 * memcg. There should be somebody mapping the head.
6245 			 */
6246 			if (PageTransCompound(page))
6247 				goto put;
6248 			if (!device && !isolate_lru_page(page))
6249 				goto put;
6250 			if (!mem_cgroup_move_account(page, false,
6251 						mc.from, mc.to)) {
6252 				mc.precharge--;
6253 				/* we uncharge from mc.from later. */
6254 				mc.moved_charge++;
6255 			}
6256 			if (!device)
6257 				putback_lru_page(page);
6258 put:			/* get_mctgt_type() gets & locks the page */
6259 			unlock_page(page);
6260 			put_page(page);
6261 			break;
6262 		case MC_TARGET_SWAP:
6263 			ent = target.ent;
6264 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6265 				mc.precharge--;
6266 				mem_cgroup_id_get_many(mc.to, 1);
6267 				/* we fixup other refcnts and charges later. */
6268 				mc.moved_swap++;
6269 			}
6270 			break;
6271 		default:
6272 			break;
6273 		}
6274 	}
6275 	pte_unmap_unlock(pte - 1, ptl);
6276 	cond_resched();
6277 
6278 	if (addr != end) {
6279 		/*
6280 		 * We have consumed all precharges we got in can_attach().
6281 		 * We try charge one by one, but don't do any additional
6282 		 * charges to mc.to if we have failed in charge once in attach()
6283 		 * phase.
6284 		 */
6285 		ret = mem_cgroup_do_precharge(1);
6286 		if (!ret)
6287 			goto retry;
6288 	}
6289 
6290 	return ret;
6291 }
6292 
6293 static const struct mm_walk_ops charge_walk_ops = {
6294 	.pmd_entry	= mem_cgroup_move_charge_pte_range,
6295 };
6296 
6297 static void mem_cgroup_move_charge(void)
6298 {
6299 	lru_add_drain_all();
6300 	/*
6301 	 * Signal folio_memcg_lock() to take the memcg's move_lock
6302 	 * while we're moving its pages to another memcg. Then wait
6303 	 * for already started RCU-only updates to finish.
6304 	 */
6305 	atomic_inc(&mc.from->moving_account);
6306 	synchronize_rcu();
6307 retry:
6308 	if (unlikely(!mmap_read_trylock(mc.mm))) {
6309 		/*
6310 		 * Someone who are holding the mmap_lock might be waiting in
6311 		 * waitq. So we cancel all extra charges, wake up all waiters,
6312 		 * and retry. Because we cancel precharges, we might not be able
6313 		 * to move enough charges, but moving charge is a best-effort
6314 		 * feature anyway, so it wouldn't be a big problem.
6315 		 */
6316 		__mem_cgroup_clear_mc();
6317 		cond_resched();
6318 		goto retry;
6319 	}
6320 	/*
6321 	 * When we have consumed all precharges and failed in doing
6322 	 * additional charge, the page walk just aborts.
6323 	 */
6324 	walk_page_range(mc.mm, 0, ULONG_MAX, &charge_walk_ops, NULL);
6325 	mmap_read_unlock(mc.mm);
6326 	atomic_dec(&mc.from->moving_account);
6327 }
6328 
6329 static void mem_cgroup_move_task(void)
6330 {
6331 	if (mc.to) {
6332 		mem_cgroup_move_charge();
6333 		mem_cgroup_clear_mc();
6334 	}
6335 }
6336 #else	/* !CONFIG_MMU */
6337 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6338 {
6339 	return 0;
6340 }
6341 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6342 {
6343 }
6344 static void mem_cgroup_move_task(void)
6345 {
6346 }
6347 #endif
6348 
6349 #ifdef CONFIG_LRU_GEN
6350 static void mem_cgroup_attach(struct cgroup_taskset *tset)
6351 {
6352 	struct task_struct *task;
6353 	struct cgroup_subsys_state *css;
6354 
6355 	/* find the first leader if there is any */
6356 	cgroup_taskset_for_each_leader(task, css, tset)
6357 		break;
6358 
6359 	if (!task)
6360 		return;
6361 
6362 	task_lock(task);
6363 	if (task->mm && READ_ONCE(task->mm->owner) == task)
6364 		lru_gen_migrate_mm(task->mm);
6365 	task_unlock(task);
6366 }
6367 #else
6368 static void mem_cgroup_attach(struct cgroup_taskset *tset)
6369 {
6370 }
6371 #endif /* CONFIG_LRU_GEN */
6372 
6373 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6374 {
6375 	if (value == PAGE_COUNTER_MAX)
6376 		seq_puts(m, "max\n");
6377 	else
6378 		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6379 
6380 	return 0;
6381 }
6382 
6383 static u64 memory_current_read(struct cgroup_subsys_state *css,
6384 			       struct cftype *cft)
6385 {
6386 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6387 
6388 	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6389 }
6390 
6391 static u64 memory_peak_read(struct cgroup_subsys_state *css,
6392 			    struct cftype *cft)
6393 {
6394 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6395 
6396 	return (u64)memcg->memory.watermark * PAGE_SIZE;
6397 }
6398 
6399 static int memory_min_show(struct seq_file *m, void *v)
6400 {
6401 	return seq_puts_memcg_tunable(m,
6402 		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6403 }
6404 
6405 static ssize_t memory_min_write(struct kernfs_open_file *of,
6406 				char *buf, size_t nbytes, loff_t off)
6407 {
6408 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6409 	unsigned long min;
6410 	int err;
6411 
6412 	buf = strstrip(buf);
6413 	err = page_counter_memparse(buf, "max", &min);
6414 	if (err)
6415 		return err;
6416 
6417 	page_counter_set_min(&memcg->memory, min);
6418 
6419 	return nbytes;
6420 }
6421 
6422 static int memory_low_show(struct seq_file *m, void *v)
6423 {
6424 	return seq_puts_memcg_tunable(m,
6425 		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6426 }
6427 
6428 static ssize_t memory_low_write(struct kernfs_open_file *of,
6429 				char *buf, size_t nbytes, loff_t off)
6430 {
6431 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6432 	unsigned long low;
6433 	int err;
6434 
6435 	buf = strstrip(buf);
6436 	err = page_counter_memparse(buf, "max", &low);
6437 	if (err)
6438 		return err;
6439 
6440 	page_counter_set_low(&memcg->memory, low);
6441 
6442 	return nbytes;
6443 }
6444 
6445 static int memory_high_show(struct seq_file *m, void *v)
6446 {
6447 	return seq_puts_memcg_tunable(m,
6448 		READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6449 }
6450 
6451 static ssize_t memory_high_write(struct kernfs_open_file *of,
6452 				 char *buf, size_t nbytes, loff_t off)
6453 {
6454 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6455 	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6456 	bool drained = false;
6457 	unsigned long high;
6458 	int err;
6459 
6460 	buf = strstrip(buf);
6461 	err = page_counter_memparse(buf, "max", &high);
6462 	if (err)
6463 		return err;
6464 
6465 	page_counter_set_high(&memcg->memory, high);
6466 
6467 	for (;;) {
6468 		unsigned long nr_pages = page_counter_read(&memcg->memory);
6469 		unsigned long reclaimed;
6470 
6471 		if (nr_pages <= high)
6472 			break;
6473 
6474 		if (signal_pending(current))
6475 			break;
6476 
6477 		if (!drained) {
6478 			drain_all_stock(memcg);
6479 			drained = true;
6480 			continue;
6481 		}
6482 
6483 		reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6484 					GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP);
6485 
6486 		if (!reclaimed && !nr_retries--)
6487 			break;
6488 	}
6489 
6490 	memcg_wb_domain_size_changed(memcg);
6491 	return nbytes;
6492 }
6493 
6494 static int memory_max_show(struct seq_file *m, void *v)
6495 {
6496 	return seq_puts_memcg_tunable(m,
6497 		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6498 }
6499 
6500 static ssize_t memory_max_write(struct kernfs_open_file *of,
6501 				char *buf, size_t nbytes, loff_t off)
6502 {
6503 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6504 	unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6505 	bool drained = false;
6506 	unsigned long max;
6507 	int err;
6508 
6509 	buf = strstrip(buf);
6510 	err = page_counter_memparse(buf, "max", &max);
6511 	if (err)
6512 		return err;
6513 
6514 	xchg(&memcg->memory.max, max);
6515 
6516 	for (;;) {
6517 		unsigned long nr_pages = page_counter_read(&memcg->memory);
6518 
6519 		if (nr_pages <= max)
6520 			break;
6521 
6522 		if (signal_pending(current))
6523 			break;
6524 
6525 		if (!drained) {
6526 			drain_all_stock(memcg);
6527 			drained = true;
6528 			continue;
6529 		}
6530 
6531 		if (nr_reclaims) {
6532 			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6533 					GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP))
6534 				nr_reclaims--;
6535 			continue;
6536 		}
6537 
6538 		memcg_memory_event(memcg, MEMCG_OOM);
6539 		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6540 			break;
6541 	}
6542 
6543 	memcg_wb_domain_size_changed(memcg);
6544 	return nbytes;
6545 }
6546 
6547 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6548 {
6549 	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6550 	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6551 	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6552 	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6553 	seq_printf(m, "oom_kill %lu\n",
6554 		   atomic_long_read(&events[MEMCG_OOM_KILL]));
6555 	seq_printf(m, "oom_group_kill %lu\n",
6556 		   atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
6557 }
6558 
6559 static int memory_events_show(struct seq_file *m, void *v)
6560 {
6561 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6562 
6563 	__memory_events_show(m, memcg->memory_events);
6564 	return 0;
6565 }
6566 
6567 static int memory_events_local_show(struct seq_file *m, void *v)
6568 {
6569 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6570 
6571 	__memory_events_show(m, memcg->memory_events_local);
6572 	return 0;
6573 }
6574 
6575 static int memory_stat_show(struct seq_file *m, void *v)
6576 {
6577 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6578 	char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
6579 	struct seq_buf s;
6580 
6581 	if (!buf)
6582 		return -ENOMEM;
6583 	seq_buf_init(&s, buf, PAGE_SIZE);
6584 	memory_stat_format(memcg, &s);
6585 	seq_puts(m, buf);
6586 	kfree(buf);
6587 	return 0;
6588 }
6589 
6590 #ifdef CONFIG_NUMA
6591 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6592 						     int item)
6593 {
6594 	return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6595 }
6596 
6597 static int memory_numa_stat_show(struct seq_file *m, void *v)
6598 {
6599 	int i;
6600 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6601 
6602 	mem_cgroup_flush_stats();
6603 
6604 	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6605 		int nid;
6606 
6607 		if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6608 			continue;
6609 
6610 		seq_printf(m, "%s", memory_stats[i].name);
6611 		for_each_node_state(nid, N_MEMORY) {
6612 			u64 size;
6613 			struct lruvec *lruvec;
6614 
6615 			lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6616 			size = lruvec_page_state_output(lruvec,
6617 							memory_stats[i].idx);
6618 			seq_printf(m, " N%d=%llu", nid, size);
6619 		}
6620 		seq_putc(m, '\n');
6621 	}
6622 
6623 	return 0;
6624 }
6625 #endif
6626 
6627 static int memory_oom_group_show(struct seq_file *m, void *v)
6628 {
6629 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6630 
6631 	seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group));
6632 
6633 	return 0;
6634 }
6635 
6636 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6637 				      char *buf, size_t nbytes, loff_t off)
6638 {
6639 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6640 	int ret, oom_group;
6641 
6642 	buf = strstrip(buf);
6643 	if (!buf)
6644 		return -EINVAL;
6645 
6646 	ret = kstrtoint(buf, 0, &oom_group);
6647 	if (ret)
6648 		return ret;
6649 
6650 	if (oom_group != 0 && oom_group != 1)
6651 		return -EINVAL;
6652 
6653 	WRITE_ONCE(memcg->oom_group, oom_group);
6654 
6655 	return nbytes;
6656 }
6657 
6658 static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf,
6659 			      size_t nbytes, loff_t off)
6660 {
6661 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6662 	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6663 	unsigned long nr_to_reclaim, nr_reclaimed = 0;
6664 	unsigned int reclaim_options;
6665 	int err;
6666 
6667 	buf = strstrip(buf);
6668 	err = page_counter_memparse(buf, "", &nr_to_reclaim);
6669 	if (err)
6670 		return err;
6671 
6672 	reclaim_options	= MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE;
6673 	while (nr_reclaimed < nr_to_reclaim) {
6674 		unsigned long reclaimed;
6675 
6676 		if (signal_pending(current))
6677 			return -EINTR;
6678 
6679 		/*
6680 		 * This is the final attempt, drain percpu lru caches in the
6681 		 * hope of introducing more evictable pages for
6682 		 * try_to_free_mem_cgroup_pages().
6683 		 */
6684 		if (!nr_retries)
6685 			lru_add_drain_all();
6686 
6687 		reclaimed = try_to_free_mem_cgroup_pages(memcg,
6688 					min(nr_to_reclaim - nr_reclaimed, SWAP_CLUSTER_MAX),
6689 					GFP_KERNEL, reclaim_options);
6690 
6691 		if (!reclaimed && !nr_retries--)
6692 			return -EAGAIN;
6693 
6694 		nr_reclaimed += reclaimed;
6695 	}
6696 
6697 	return nbytes;
6698 }
6699 
6700 static struct cftype memory_files[] = {
6701 	{
6702 		.name = "current",
6703 		.flags = CFTYPE_NOT_ON_ROOT,
6704 		.read_u64 = memory_current_read,
6705 	},
6706 	{
6707 		.name = "peak",
6708 		.flags = CFTYPE_NOT_ON_ROOT,
6709 		.read_u64 = memory_peak_read,
6710 	},
6711 	{
6712 		.name = "min",
6713 		.flags = CFTYPE_NOT_ON_ROOT,
6714 		.seq_show = memory_min_show,
6715 		.write = memory_min_write,
6716 	},
6717 	{
6718 		.name = "low",
6719 		.flags = CFTYPE_NOT_ON_ROOT,
6720 		.seq_show = memory_low_show,
6721 		.write = memory_low_write,
6722 	},
6723 	{
6724 		.name = "high",
6725 		.flags = CFTYPE_NOT_ON_ROOT,
6726 		.seq_show = memory_high_show,
6727 		.write = memory_high_write,
6728 	},
6729 	{
6730 		.name = "max",
6731 		.flags = CFTYPE_NOT_ON_ROOT,
6732 		.seq_show = memory_max_show,
6733 		.write = memory_max_write,
6734 	},
6735 	{
6736 		.name = "events",
6737 		.flags = CFTYPE_NOT_ON_ROOT,
6738 		.file_offset = offsetof(struct mem_cgroup, events_file),
6739 		.seq_show = memory_events_show,
6740 	},
6741 	{
6742 		.name = "events.local",
6743 		.flags = CFTYPE_NOT_ON_ROOT,
6744 		.file_offset = offsetof(struct mem_cgroup, events_local_file),
6745 		.seq_show = memory_events_local_show,
6746 	},
6747 	{
6748 		.name = "stat",
6749 		.seq_show = memory_stat_show,
6750 	},
6751 #ifdef CONFIG_NUMA
6752 	{
6753 		.name = "numa_stat",
6754 		.seq_show = memory_numa_stat_show,
6755 	},
6756 #endif
6757 	{
6758 		.name = "oom.group",
6759 		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6760 		.seq_show = memory_oom_group_show,
6761 		.write = memory_oom_group_write,
6762 	},
6763 	{
6764 		.name = "reclaim",
6765 		.flags = CFTYPE_NS_DELEGATABLE,
6766 		.write = memory_reclaim,
6767 	},
6768 	{ }	/* terminate */
6769 };
6770 
6771 struct cgroup_subsys memory_cgrp_subsys = {
6772 	.css_alloc = mem_cgroup_css_alloc,
6773 	.css_online = mem_cgroup_css_online,
6774 	.css_offline = mem_cgroup_css_offline,
6775 	.css_released = mem_cgroup_css_released,
6776 	.css_free = mem_cgroup_css_free,
6777 	.css_reset = mem_cgroup_css_reset,
6778 	.css_rstat_flush = mem_cgroup_css_rstat_flush,
6779 	.can_attach = mem_cgroup_can_attach,
6780 	.attach = mem_cgroup_attach,
6781 	.cancel_attach = mem_cgroup_cancel_attach,
6782 	.post_attach = mem_cgroup_move_task,
6783 	.dfl_cftypes = memory_files,
6784 	.legacy_cftypes = mem_cgroup_legacy_files,
6785 	.early_init = 0,
6786 };
6787 
6788 /*
6789  * This function calculates an individual cgroup's effective
6790  * protection which is derived from its own memory.min/low, its
6791  * parent's and siblings' settings, as well as the actual memory
6792  * distribution in the tree.
6793  *
6794  * The following rules apply to the effective protection values:
6795  *
6796  * 1. At the first level of reclaim, effective protection is equal to
6797  *    the declared protection in memory.min and memory.low.
6798  *
6799  * 2. To enable safe delegation of the protection configuration, at
6800  *    subsequent levels the effective protection is capped to the
6801  *    parent's effective protection.
6802  *
6803  * 3. To make complex and dynamic subtrees easier to configure, the
6804  *    user is allowed to overcommit the declared protection at a given
6805  *    level. If that is the case, the parent's effective protection is
6806  *    distributed to the children in proportion to how much protection
6807  *    they have declared and how much of it they are utilizing.
6808  *
6809  *    This makes distribution proportional, but also work-conserving:
6810  *    if one cgroup claims much more protection than it uses memory,
6811  *    the unused remainder is available to its siblings.
6812  *
6813  * 4. Conversely, when the declared protection is undercommitted at a
6814  *    given level, the distribution of the larger parental protection
6815  *    budget is NOT proportional. A cgroup's protection from a sibling
6816  *    is capped to its own memory.min/low setting.
6817  *
6818  * 5. However, to allow protecting recursive subtrees from each other
6819  *    without having to declare each individual cgroup's fixed share
6820  *    of the ancestor's claim to protection, any unutilized -
6821  *    "floating" - protection from up the tree is distributed in
6822  *    proportion to each cgroup's *usage*. This makes the protection
6823  *    neutral wrt sibling cgroups and lets them compete freely over
6824  *    the shared parental protection budget, but it protects the
6825  *    subtree as a whole from neighboring subtrees.
6826  *
6827  * Note that 4. and 5. are not in conflict: 4. is about protecting
6828  * against immediate siblings whereas 5. is about protecting against
6829  * neighboring subtrees.
6830  */
6831 static unsigned long effective_protection(unsigned long usage,
6832 					  unsigned long parent_usage,
6833 					  unsigned long setting,
6834 					  unsigned long parent_effective,
6835 					  unsigned long siblings_protected)
6836 {
6837 	unsigned long protected;
6838 	unsigned long ep;
6839 
6840 	protected = min(usage, setting);
6841 	/*
6842 	 * If all cgroups at this level combined claim and use more
6843 	 * protection than what the parent affords them, distribute
6844 	 * shares in proportion to utilization.
6845 	 *
6846 	 * We are using actual utilization rather than the statically
6847 	 * claimed protection in order to be work-conserving: claimed
6848 	 * but unused protection is available to siblings that would
6849 	 * otherwise get a smaller chunk than what they claimed.
6850 	 */
6851 	if (siblings_protected > parent_effective)
6852 		return protected * parent_effective / siblings_protected;
6853 
6854 	/*
6855 	 * Ok, utilized protection of all children is within what the
6856 	 * parent affords them, so we know whatever this child claims
6857 	 * and utilizes is effectively protected.
6858 	 *
6859 	 * If there is unprotected usage beyond this value, reclaim
6860 	 * will apply pressure in proportion to that amount.
6861 	 *
6862 	 * If there is unutilized protection, the cgroup will be fully
6863 	 * shielded from reclaim, but we do return a smaller value for
6864 	 * protection than what the group could enjoy in theory. This
6865 	 * is okay. With the overcommit distribution above, effective
6866 	 * protection is always dependent on how memory is actually
6867 	 * consumed among the siblings anyway.
6868 	 */
6869 	ep = protected;
6870 
6871 	/*
6872 	 * If the children aren't claiming (all of) the protection
6873 	 * afforded to them by the parent, distribute the remainder in
6874 	 * proportion to the (unprotected) memory of each cgroup. That
6875 	 * way, cgroups that aren't explicitly prioritized wrt each
6876 	 * other compete freely over the allowance, but they are
6877 	 * collectively protected from neighboring trees.
6878 	 *
6879 	 * We're using unprotected memory for the weight so that if
6880 	 * some cgroups DO claim explicit protection, we don't protect
6881 	 * the same bytes twice.
6882 	 *
6883 	 * Check both usage and parent_usage against the respective
6884 	 * protected values. One should imply the other, but they
6885 	 * aren't read atomically - make sure the division is sane.
6886 	 */
6887 	if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6888 		return ep;
6889 	if (parent_effective > siblings_protected &&
6890 	    parent_usage > siblings_protected &&
6891 	    usage > protected) {
6892 		unsigned long unclaimed;
6893 
6894 		unclaimed = parent_effective - siblings_protected;
6895 		unclaimed *= usage - protected;
6896 		unclaimed /= parent_usage - siblings_protected;
6897 
6898 		ep += unclaimed;
6899 	}
6900 
6901 	return ep;
6902 }
6903 
6904 /**
6905  * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
6906  * @root: the top ancestor of the sub-tree being checked
6907  * @memcg: the memory cgroup to check
6908  *
6909  * WARNING: This function is not stateless! It can only be used as part
6910  *          of a top-down tree iteration, not for isolated queries.
6911  */
6912 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6913 				     struct mem_cgroup *memcg)
6914 {
6915 	unsigned long usage, parent_usage;
6916 	struct mem_cgroup *parent;
6917 
6918 	if (mem_cgroup_disabled())
6919 		return;
6920 
6921 	if (!root)
6922 		root = root_mem_cgroup;
6923 
6924 	/*
6925 	 * Effective values of the reclaim targets are ignored so they
6926 	 * can be stale. Have a look at mem_cgroup_protection for more
6927 	 * details.
6928 	 * TODO: calculation should be more robust so that we do not need
6929 	 * that special casing.
6930 	 */
6931 	if (memcg == root)
6932 		return;
6933 
6934 	usage = page_counter_read(&memcg->memory);
6935 	if (!usage)
6936 		return;
6937 
6938 	parent = parent_mem_cgroup(memcg);
6939 
6940 	if (parent == root) {
6941 		memcg->memory.emin = READ_ONCE(memcg->memory.min);
6942 		memcg->memory.elow = READ_ONCE(memcg->memory.low);
6943 		return;
6944 	}
6945 
6946 	parent_usage = page_counter_read(&parent->memory);
6947 
6948 	WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6949 			READ_ONCE(memcg->memory.min),
6950 			READ_ONCE(parent->memory.emin),
6951 			atomic_long_read(&parent->memory.children_min_usage)));
6952 
6953 	WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6954 			READ_ONCE(memcg->memory.low),
6955 			READ_ONCE(parent->memory.elow),
6956 			atomic_long_read(&parent->memory.children_low_usage)));
6957 }
6958 
6959 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
6960 			gfp_t gfp)
6961 {
6962 	long nr_pages = folio_nr_pages(folio);
6963 	int ret;
6964 
6965 	ret = try_charge(memcg, gfp, nr_pages);
6966 	if (ret)
6967 		goto out;
6968 
6969 	css_get(&memcg->css);
6970 	commit_charge(folio, memcg);
6971 
6972 	local_irq_disable();
6973 	mem_cgroup_charge_statistics(memcg, nr_pages);
6974 	memcg_check_events(memcg, folio_nid(folio));
6975 	local_irq_enable();
6976 out:
6977 	return ret;
6978 }
6979 
6980 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
6981 {
6982 	struct mem_cgroup *memcg;
6983 	int ret;
6984 
6985 	memcg = get_mem_cgroup_from_mm(mm);
6986 	ret = charge_memcg(folio, memcg, gfp);
6987 	css_put(&memcg->css);
6988 
6989 	return ret;
6990 }
6991 
6992 /**
6993  * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin.
6994  * @folio: folio to charge.
6995  * @mm: mm context of the victim
6996  * @gfp: reclaim mode
6997  * @entry: swap entry for which the folio is allocated
6998  *
6999  * This function charges a folio allocated for swapin. Please call this before
7000  * adding the folio to the swapcache.
7001  *
7002  * Returns 0 on success. Otherwise, an error code is returned.
7003  */
7004 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
7005 				  gfp_t gfp, swp_entry_t entry)
7006 {
7007 	struct mem_cgroup *memcg;
7008 	unsigned short id;
7009 	int ret;
7010 
7011 	if (mem_cgroup_disabled())
7012 		return 0;
7013 
7014 	id = lookup_swap_cgroup_id(entry);
7015 	rcu_read_lock();
7016 	memcg = mem_cgroup_from_id(id);
7017 	if (!memcg || !css_tryget_online(&memcg->css))
7018 		memcg = get_mem_cgroup_from_mm(mm);
7019 	rcu_read_unlock();
7020 
7021 	ret = charge_memcg(folio, memcg, gfp);
7022 
7023 	css_put(&memcg->css);
7024 	return ret;
7025 }
7026 
7027 /*
7028  * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
7029  * @entry: swap entry for which the page is charged
7030  *
7031  * Call this function after successfully adding the charged page to swapcache.
7032  *
7033  * Note: This function assumes the page for which swap slot is being uncharged
7034  * is order 0 page.
7035  */
7036 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
7037 {
7038 	/*
7039 	 * Cgroup1's unified memory+swap counter has been charged with the
7040 	 * new swapcache page, finish the transfer by uncharging the swap
7041 	 * slot. The swap slot would also get uncharged when it dies, but
7042 	 * it can stick around indefinitely and we'd count the page twice
7043 	 * the entire time.
7044 	 *
7045 	 * Cgroup2 has separate resource counters for memory and swap,
7046 	 * so this is a non-issue here. Memory and swap charge lifetimes
7047 	 * correspond 1:1 to page and swap slot lifetimes: we charge the
7048 	 * page to memory here, and uncharge swap when the slot is freed.
7049 	 */
7050 	if (!mem_cgroup_disabled() && do_memsw_account()) {
7051 		/*
7052 		 * The swap entry might not get freed for a long time,
7053 		 * let's not wait for it.  The page already received a
7054 		 * memory+swap charge, drop the swap entry duplicate.
7055 		 */
7056 		mem_cgroup_uncharge_swap(entry, 1);
7057 	}
7058 }
7059 
7060 struct uncharge_gather {
7061 	struct mem_cgroup *memcg;
7062 	unsigned long nr_memory;
7063 	unsigned long pgpgout;
7064 	unsigned long nr_kmem;
7065 	int nid;
7066 };
7067 
7068 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
7069 {
7070 	memset(ug, 0, sizeof(*ug));
7071 }
7072 
7073 static void uncharge_batch(const struct uncharge_gather *ug)
7074 {
7075 	unsigned long flags;
7076 
7077 	if (ug->nr_memory) {
7078 		page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
7079 		if (do_memsw_account())
7080 			page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
7081 		if (ug->nr_kmem)
7082 			memcg_account_kmem(ug->memcg, -ug->nr_kmem);
7083 		memcg_oom_recover(ug->memcg);
7084 	}
7085 
7086 	local_irq_save(flags);
7087 	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
7088 	__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
7089 	memcg_check_events(ug->memcg, ug->nid);
7090 	local_irq_restore(flags);
7091 
7092 	/* drop reference from uncharge_folio */
7093 	css_put(&ug->memcg->css);
7094 }
7095 
7096 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
7097 {
7098 	long nr_pages;
7099 	struct mem_cgroup *memcg;
7100 	struct obj_cgroup *objcg;
7101 
7102 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7103 
7104 	/*
7105 	 * Nobody should be changing or seriously looking at
7106 	 * folio memcg or objcg at this point, we have fully
7107 	 * exclusive access to the folio.
7108 	 */
7109 	if (folio_memcg_kmem(folio)) {
7110 		objcg = __folio_objcg(folio);
7111 		/*
7112 		 * This get matches the put at the end of the function and
7113 		 * kmem pages do not hold memcg references anymore.
7114 		 */
7115 		memcg = get_mem_cgroup_from_objcg(objcg);
7116 	} else {
7117 		memcg = __folio_memcg(folio);
7118 	}
7119 
7120 	if (!memcg)
7121 		return;
7122 
7123 	if (ug->memcg != memcg) {
7124 		if (ug->memcg) {
7125 			uncharge_batch(ug);
7126 			uncharge_gather_clear(ug);
7127 		}
7128 		ug->memcg = memcg;
7129 		ug->nid = folio_nid(folio);
7130 
7131 		/* pairs with css_put in uncharge_batch */
7132 		css_get(&memcg->css);
7133 	}
7134 
7135 	nr_pages = folio_nr_pages(folio);
7136 
7137 	if (folio_memcg_kmem(folio)) {
7138 		ug->nr_memory += nr_pages;
7139 		ug->nr_kmem += nr_pages;
7140 
7141 		folio->memcg_data = 0;
7142 		obj_cgroup_put(objcg);
7143 	} else {
7144 		/* LRU pages aren't accounted at the root level */
7145 		if (!mem_cgroup_is_root(memcg))
7146 			ug->nr_memory += nr_pages;
7147 		ug->pgpgout++;
7148 
7149 		folio->memcg_data = 0;
7150 	}
7151 
7152 	css_put(&memcg->css);
7153 }
7154 
7155 void __mem_cgroup_uncharge(struct folio *folio)
7156 {
7157 	struct uncharge_gather ug;
7158 
7159 	/* Don't touch folio->lru of any random page, pre-check: */
7160 	if (!folio_memcg(folio))
7161 		return;
7162 
7163 	uncharge_gather_clear(&ug);
7164 	uncharge_folio(folio, &ug);
7165 	uncharge_batch(&ug);
7166 }
7167 
7168 /**
7169  * __mem_cgroup_uncharge_list - uncharge a list of page
7170  * @page_list: list of pages to uncharge
7171  *
7172  * Uncharge a list of pages previously charged with
7173  * __mem_cgroup_charge().
7174  */
7175 void __mem_cgroup_uncharge_list(struct list_head *page_list)
7176 {
7177 	struct uncharge_gather ug;
7178 	struct folio *folio;
7179 
7180 	uncharge_gather_clear(&ug);
7181 	list_for_each_entry(folio, page_list, lru)
7182 		uncharge_folio(folio, &ug);
7183 	if (ug.memcg)
7184 		uncharge_batch(&ug);
7185 }
7186 
7187 /**
7188  * mem_cgroup_migrate - Charge a folio's replacement.
7189  * @old: Currently circulating folio.
7190  * @new: Replacement folio.
7191  *
7192  * Charge @new as a replacement folio for @old. @old will
7193  * be uncharged upon free.
7194  *
7195  * Both folios must be locked, @new->mapping must be set up.
7196  */
7197 void mem_cgroup_migrate(struct folio *old, struct folio *new)
7198 {
7199 	struct mem_cgroup *memcg;
7200 	long nr_pages = folio_nr_pages(new);
7201 	unsigned long flags;
7202 
7203 	VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
7204 	VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
7205 	VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
7206 	VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
7207 
7208 	if (mem_cgroup_disabled())
7209 		return;
7210 
7211 	/* Page cache replacement: new folio already charged? */
7212 	if (folio_memcg(new))
7213 		return;
7214 
7215 	memcg = folio_memcg(old);
7216 	VM_WARN_ON_ONCE_FOLIO(!memcg, old);
7217 	if (!memcg)
7218 		return;
7219 
7220 	/* Force-charge the new page. The old one will be freed soon */
7221 	if (!mem_cgroup_is_root(memcg)) {
7222 		page_counter_charge(&memcg->memory, nr_pages);
7223 		if (do_memsw_account())
7224 			page_counter_charge(&memcg->memsw, nr_pages);
7225 	}
7226 
7227 	css_get(&memcg->css);
7228 	commit_charge(new, memcg);
7229 
7230 	local_irq_save(flags);
7231 	mem_cgroup_charge_statistics(memcg, nr_pages);
7232 	memcg_check_events(memcg, folio_nid(new));
7233 	local_irq_restore(flags);
7234 }
7235 
7236 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
7237 EXPORT_SYMBOL(memcg_sockets_enabled_key);
7238 
7239 void mem_cgroup_sk_alloc(struct sock *sk)
7240 {
7241 	struct mem_cgroup *memcg;
7242 
7243 	if (!mem_cgroup_sockets_enabled)
7244 		return;
7245 
7246 	/* Do not associate the sock with unrelated interrupted task's memcg. */
7247 	if (!in_task())
7248 		return;
7249 
7250 	rcu_read_lock();
7251 	memcg = mem_cgroup_from_task(current);
7252 	if (mem_cgroup_is_root(memcg))
7253 		goto out;
7254 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
7255 		goto out;
7256 	if (css_tryget(&memcg->css))
7257 		sk->sk_memcg = memcg;
7258 out:
7259 	rcu_read_unlock();
7260 }
7261 
7262 void mem_cgroup_sk_free(struct sock *sk)
7263 {
7264 	if (sk->sk_memcg)
7265 		css_put(&sk->sk_memcg->css);
7266 }
7267 
7268 /**
7269  * mem_cgroup_charge_skmem - charge socket memory
7270  * @memcg: memcg to charge
7271  * @nr_pages: number of pages to charge
7272  * @gfp_mask: reclaim mode
7273  *
7274  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7275  * @memcg's configured limit, %false if it doesn't.
7276  */
7277 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
7278 			     gfp_t gfp_mask)
7279 {
7280 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7281 		struct page_counter *fail;
7282 
7283 		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7284 			memcg->tcpmem_pressure = 0;
7285 			return true;
7286 		}
7287 		memcg->tcpmem_pressure = 1;
7288 		if (gfp_mask & __GFP_NOFAIL) {
7289 			page_counter_charge(&memcg->tcpmem, nr_pages);
7290 			return true;
7291 		}
7292 		return false;
7293 	}
7294 
7295 	if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
7296 		mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7297 		return true;
7298 	}
7299 
7300 	return false;
7301 }
7302 
7303 /**
7304  * mem_cgroup_uncharge_skmem - uncharge socket memory
7305  * @memcg: memcg to uncharge
7306  * @nr_pages: number of pages to uncharge
7307  */
7308 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7309 {
7310 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7311 		page_counter_uncharge(&memcg->tcpmem, nr_pages);
7312 		return;
7313 	}
7314 
7315 	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7316 
7317 	refill_stock(memcg, nr_pages);
7318 }
7319 
7320 static int __init cgroup_memory(char *s)
7321 {
7322 	char *token;
7323 
7324 	while ((token = strsep(&s, ",")) != NULL) {
7325 		if (!*token)
7326 			continue;
7327 		if (!strcmp(token, "nosocket"))
7328 			cgroup_memory_nosocket = true;
7329 		if (!strcmp(token, "nokmem"))
7330 			cgroup_memory_nokmem = true;
7331 		if (!strcmp(token, "nobpf"))
7332 			cgroup_memory_nobpf = true;
7333 	}
7334 	return 1;
7335 }
7336 __setup("cgroup.memory=", cgroup_memory);
7337 
7338 /*
7339  * subsys_initcall() for memory controller.
7340  *
7341  * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7342  * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7343  * basically everything that doesn't depend on a specific mem_cgroup structure
7344  * should be initialized from here.
7345  */
7346 static int __init mem_cgroup_init(void)
7347 {
7348 	int cpu, node;
7349 
7350 	/*
7351 	 * Currently s32 type (can refer to struct batched_lruvec_stat) is
7352 	 * used for per-memcg-per-cpu caching of per-node statistics. In order
7353 	 * to work fine, we should make sure that the overfill threshold can't
7354 	 * exceed S32_MAX / PAGE_SIZE.
7355 	 */
7356 	BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7357 
7358 	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7359 				  memcg_hotplug_cpu_dead);
7360 
7361 	for_each_possible_cpu(cpu)
7362 		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7363 			  drain_local_stock);
7364 
7365 	for_each_node(node) {
7366 		struct mem_cgroup_tree_per_node *rtpn;
7367 
7368 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, node);
7369 
7370 		rtpn->rb_root = RB_ROOT;
7371 		rtpn->rb_rightmost = NULL;
7372 		spin_lock_init(&rtpn->lock);
7373 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
7374 	}
7375 
7376 	return 0;
7377 }
7378 subsys_initcall(mem_cgroup_init);
7379 
7380 #ifdef CONFIG_SWAP
7381 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7382 {
7383 	while (!refcount_inc_not_zero(&memcg->id.ref)) {
7384 		/*
7385 		 * The root cgroup cannot be destroyed, so it's refcount must
7386 		 * always be >= 1.
7387 		 */
7388 		if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) {
7389 			VM_BUG_ON(1);
7390 			break;
7391 		}
7392 		memcg = parent_mem_cgroup(memcg);
7393 		if (!memcg)
7394 			memcg = root_mem_cgroup;
7395 	}
7396 	return memcg;
7397 }
7398 
7399 /**
7400  * mem_cgroup_swapout - transfer a memsw charge to swap
7401  * @folio: folio whose memsw charge to transfer
7402  * @entry: swap entry to move the charge to
7403  *
7404  * Transfer the memsw charge of @folio to @entry.
7405  */
7406 void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry)
7407 {
7408 	struct mem_cgroup *memcg, *swap_memcg;
7409 	unsigned int nr_entries;
7410 	unsigned short oldid;
7411 
7412 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7413 	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
7414 
7415 	if (mem_cgroup_disabled())
7416 		return;
7417 
7418 	if (!do_memsw_account())
7419 		return;
7420 
7421 	memcg = folio_memcg(folio);
7422 
7423 	VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7424 	if (!memcg)
7425 		return;
7426 
7427 	/*
7428 	 * In case the memcg owning these pages has been offlined and doesn't
7429 	 * have an ID allocated to it anymore, charge the closest online
7430 	 * ancestor for the swap instead and transfer the memory+swap charge.
7431 	 */
7432 	swap_memcg = mem_cgroup_id_get_online(memcg);
7433 	nr_entries = folio_nr_pages(folio);
7434 	/* Get references for the tail pages, too */
7435 	if (nr_entries > 1)
7436 		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7437 	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7438 				   nr_entries);
7439 	VM_BUG_ON_FOLIO(oldid, folio);
7440 	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7441 
7442 	folio->memcg_data = 0;
7443 
7444 	if (!mem_cgroup_is_root(memcg))
7445 		page_counter_uncharge(&memcg->memory, nr_entries);
7446 
7447 	if (memcg != swap_memcg) {
7448 		if (!mem_cgroup_is_root(swap_memcg))
7449 			page_counter_charge(&swap_memcg->memsw, nr_entries);
7450 		page_counter_uncharge(&memcg->memsw, nr_entries);
7451 	}
7452 
7453 	/*
7454 	 * Interrupts should be disabled here because the caller holds the
7455 	 * i_pages lock which is taken with interrupts-off. It is
7456 	 * important here to have the interrupts disabled because it is the
7457 	 * only synchronisation we have for updating the per-CPU variables.
7458 	 */
7459 	memcg_stats_lock();
7460 	mem_cgroup_charge_statistics(memcg, -nr_entries);
7461 	memcg_stats_unlock();
7462 	memcg_check_events(memcg, folio_nid(folio));
7463 
7464 	css_put(&memcg->css);
7465 }
7466 
7467 /**
7468  * __mem_cgroup_try_charge_swap - try charging swap space for a folio
7469  * @folio: folio being added to swap
7470  * @entry: swap entry to charge
7471  *
7472  * Try to charge @folio's memcg for the swap space at @entry.
7473  *
7474  * Returns 0 on success, -ENOMEM on failure.
7475  */
7476 int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry)
7477 {
7478 	unsigned int nr_pages = folio_nr_pages(folio);
7479 	struct page_counter *counter;
7480 	struct mem_cgroup *memcg;
7481 	unsigned short oldid;
7482 
7483 	if (do_memsw_account())
7484 		return 0;
7485 
7486 	memcg = folio_memcg(folio);
7487 
7488 	VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7489 	if (!memcg)
7490 		return 0;
7491 
7492 	if (!entry.val) {
7493 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7494 		return 0;
7495 	}
7496 
7497 	memcg = mem_cgroup_id_get_online(memcg);
7498 
7499 	if (!mem_cgroup_is_root(memcg) &&
7500 	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7501 		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7502 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7503 		mem_cgroup_id_put(memcg);
7504 		return -ENOMEM;
7505 	}
7506 
7507 	/* Get references for the tail pages, too */
7508 	if (nr_pages > 1)
7509 		mem_cgroup_id_get_many(memcg, nr_pages - 1);
7510 	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7511 	VM_BUG_ON_FOLIO(oldid, folio);
7512 	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7513 
7514 	return 0;
7515 }
7516 
7517 /**
7518  * __mem_cgroup_uncharge_swap - uncharge swap space
7519  * @entry: swap entry to uncharge
7520  * @nr_pages: the amount of swap space to uncharge
7521  */
7522 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7523 {
7524 	struct mem_cgroup *memcg;
7525 	unsigned short id;
7526 
7527 	if (mem_cgroup_disabled())
7528 		return;
7529 
7530 	id = swap_cgroup_record(entry, 0, nr_pages);
7531 	rcu_read_lock();
7532 	memcg = mem_cgroup_from_id(id);
7533 	if (memcg) {
7534 		if (!mem_cgroup_is_root(memcg)) {
7535 			if (do_memsw_account())
7536 				page_counter_uncharge(&memcg->memsw, nr_pages);
7537 			else
7538 				page_counter_uncharge(&memcg->swap, nr_pages);
7539 		}
7540 		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7541 		mem_cgroup_id_put_many(memcg, nr_pages);
7542 	}
7543 	rcu_read_unlock();
7544 }
7545 
7546 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7547 {
7548 	long nr_swap_pages = get_nr_swap_pages();
7549 
7550 	if (mem_cgroup_disabled() || do_memsw_account())
7551 		return nr_swap_pages;
7552 	for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg))
7553 		nr_swap_pages = min_t(long, nr_swap_pages,
7554 				      READ_ONCE(memcg->swap.max) -
7555 				      page_counter_read(&memcg->swap));
7556 	return nr_swap_pages;
7557 }
7558 
7559 bool mem_cgroup_swap_full(struct folio *folio)
7560 {
7561 	struct mem_cgroup *memcg;
7562 
7563 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
7564 
7565 	if (vm_swap_full())
7566 		return true;
7567 	if (do_memsw_account())
7568 		return false;
7569 
7570 	memcg = folio_memcg(folio);
7571 	if (!memcg)
7572 		return false;
7573 
7574 	for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
7575 		unsigned long usage = page_counter_read(&memcg->swap);
7576 
7577 		if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7578 		    usage * 2 >= READ_ONCE(memcg->swap.max))
7579 			return true;
7580 	}
7581 
7582 	return false;
7583 }
7584 
7585 static int __init setup_swap_account(char *s)
7586 {
7587 	pr_warn_once("The swapaccount= commandline option is deprecated. "
7588 		     "Please report your usecase to linux-mm@kvack.org if you "
7589 		     "depend on this functionality.\n");
7590 	return 1;
7591 }
7592 __setup("swapaccount=", setup_swap_account);
7593 
7594 static u64 swap_current_read(struct cgroup_subsys_state *css,
7595 			     struct cftype *cft)
7596 {
7597 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7598 
7599 	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7600 }
7601 
7602 static u64 swap_peak_read(struct cgroup_subsys_state *css,
7603 			  struct cftype *cft)
7604 {
7605 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7606 
7607 	return (u64)memcg->swap.watermark * PAGE_SIZE;
7608 }
7609 
7610 static int swap_high_show(struct seq_file *m, void *v)
7611 {
7612 	return seq_puts_memcg_tunable(m,
7613 		READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7614 }
7615 
7616 static ssize_t swap_high_write(struct kernfs_open_file *of,
7617 			       char *buf, size_t nbytes, loff_t off)
7618 {
7619 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7620 	unsigned long high;
7621 	int err;
7622 
7623 	buf = strstrip(buf);
7624 	err = page_counter_memparse(buf, "max", &high);
7625 	if (err)
7626 		return err;
7627 
7628 	page_counter_set_high(&memcg->swap, high);
7629 
7630 	return nbytes;
7631 }
7632 
7633 static int swap_max_show(struct seq_file *m, void *v)
7634 {
7635 	return seq_puts_memcg_tunable(m,
7636 		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7637 }
7638 
7639 static ssize_t swap_max_write(struct kernfs_open_file *of,
7640 			      char *buf, size_t nbytes, loff_t off)
7641 {
7642 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7643 	unsigned long max;
7644 	int err;
7645 
7646 	buf = strstrip(buf);
7647 	err = page_counter_memparse(buf, "max", &max);
7648 	if (err)
7649 		return err;
7650 
7651 	xchg(&memcg->swap.max, max);
7652 
7653 	return nbytes;
7654 }
7655 
7656 static int swap_events_show(struct seq_file *m, void *v)
7657 {
7658 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7659 
7660 	seq_printf(m, "high %lu\n",
7661 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7662 	seq_printf(m, "max %lu\n",
7663 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7664 	seq_printf(m, "fail %lu\n",
7665 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7666 
7667 	return 0;
7668 }
7669 
7670 static struct cftype swap_files[] = {
7671 	{
7672 		.name = "swap.current",
7673 		.flags = CFTYPE_NOT_ON_ROOT,
7674 		.read_u64 = swap_current_read,
7675 	},
7676 	{
7677 		.name = "swap.high",
7678 		.flags = CFTYPE_NOT_ON_ROOT,
7679 		.seq_show = swap_high_show,
7680 		.write = swap_high_write,
7681 	},
7682 	{
7683 		.name = "swap.max",
7684 		.flags = CFTYPE_NOT_ON_ROOT,
7685 		.seq_show = swap_max_show,
7686 		.write = swap_max_write,
7687 	},
7688 	{
7689 		.name = "swap.peak",
7690 		.flags = CFTYPE_NOT_ON_ROOT,
7691 		.read_u64 = swap_peak_read,
7692 	},
7693 	{
7694 		.name = "swap.events",
7695 		.flags = CFTYPE_NOT_ON_ROOT,
7696 		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
7697 		.seq_show = swap_events_show,
7698 	},
7699 	{ }	/* terminate */
7700 };
7701 
7702 static struct cftype memsw_files[] = {
7703 	{
7704 		.name = "memsw.usage_in_bytes",
7705 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7706 		.read_u64 = mem_cgroup_read_u64,
7707 	},
7708 	{
7709 		.name = "memsw.max_usage_in_bytes",
7710 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7711 		.write = mem_cgroup_reset,
7712 		.read_u64 = mem_cgroup_read_u64,
7713 	},
7714 	{
7715 		.name = "memsw.limit_in_bytes",
7716 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7717 		.write = mem_cgroup_write,
7718 		.read_u64 = mem_cgroup_read_u64,
7719 	},
7720 	{
7721 		.name = "memsw.failcnt",
7722 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7723 		.write = mem_cgroup_reset,
7724 		.read_u64 = mem_cgroup_read_u64,
7725 	},
7726 	{ },	/* terminate */
7727 };
7728 
7729 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
7730 /**
7731  * obj_cgroup_may_zswap - check if this cgroup can zswap
7732  * @objcg: the object cgroup
7733  *
7734  * Check if the hierarchical zswap limit has been reached.
7735  *
7736  * This doesn't check for specific headroom, and it is not atomic
7737  * either. But with zswap, the size of the allocation is only known
7738  * once compression has occured, and this optimistic pre-check avoids
7739  * spending cycles on compression when there is already no room left
7740  * or zswap is disabled altogether somewhere in the hierarchy.
7741  */
7742 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
7743 {
7744 	struct mem_cgroup *memcg, *original_memcg;
7745 	bool ret = true;
7746 
7747 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7748 		return true;
7749 
7750 	original_memcg = get_mem_cgroup_from_objcg(objcg);
7751 	for (memcg = original_memcg; !mem_cgroup_is_root(memcg);
7752 	     memcg = parent_mem_cgroup(memcg)) {
7753 		unsigned long max = READ_ONCE(memcg->zswap_max);
7754 		unsigned long pages;
7755 
7756 		if (max == PAGE_COUNTER_MAX)
7757 			continue;
7758 		if (max == 0) {
7759 			ret = false;
7760 			break;
7761 		}
7762 
7763 		cgroup_rstat_flush(memcg->css.cgroup);
7764 		pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE;
7765 		if (pages < max)
7766 			continue;
7767 		ret = false;
7768 		break;
7769 	}
7770 	mem_cgroup_put(original_memcg);
7771 	return ret;
7772 }
7773 
7774 /**
7775  * obj_cgroup_charge_zswap - charge compression backend memory
7776  * @objcg: the object cgroup
7777  * @size: size of compressed object
7778  *
7779  * This forces the charge after obj_cgroup_may_zswap() allowed
7780  * compression and storage in zwap for this cgroup to go ahead.
7781  */
7782 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size)
7783 {
7784 	struct mem_cgroup *memcg;
7785 
7786 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7787 		return;
7788 
7789 	VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC));
7790 
7791 	/* PF_MEMALLOC context, charging must succeed */
7792 	if (obj_cgroup_charge(objcg, GFP_KERNEL, size))
7793 		VM_WARN_ON_ONCE(1);
7794 
7795 	rcu_read_lock();
7796 	memcg = obj_cgroup_memcg(objcg);
7797 	mod_memcg_state(memcg, MEMCG_ZSWAP_B, size);
7798 	mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1);
7799 	rcu_read_unlock();
7800 }
7801 
7802 /**
7803  * obj_cgroup_uncharge_zswap - uncharge compression backend memory
7804  * @objcg: the object cgroup
7805  * @size: size of compressed object
7806  *
7807  * Uncharges zswap memory on page in.
7808  */
7809 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size)
7810 {
7811 	struct mem_cgroup *memcg;
7812 
7813 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7814 		return;
7815 
7816 	obj_cgroup_uncharge(objcg, size);
7817 
7818 	rcu_read_lock();
7819 	memcg = obj_cgroup_memcg(objcg);
7820 	mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size);
7821 	mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1);
7822 	rcu_read_unlock();
7823 }
7824 
7825 static u64 zswap_current_read(struct cgroup_subsys_state *css,
7826 			      struct cftype *cft)
7827 {
7828 	cgroup_rstat_flush(css->cgroup);
7829 	return memcg_page_state(mem_cgroup_from_css(css), MEMCG_ZSWAP_B);
7830 }
7831 
7832 static int zswap_max_show(struct seq_file *m, void *v)
7833 {
7834 	return seq_puts_memcg_tunable(m,
7835 		READ_ONCE(mem_cgroup_from_seq(m)->zswap_max));
7836 }
7837 
7838 static ssize_t zswap_max_write(struct kernfs_open_file *of,
7839 			       char *buf, size_t nbytes, loff_t off)
7840 {
7841 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7842 	unsigned long max;
7843 	int err;
7844 
7845 	buf = strstrip(buf);
7846 	err = page_counter_memparse(buf, "max", &max);
7847 	if (err)
7848 		return err;
7849 
7850 	xchg(&memcg->zswap_max, max);
7851 
7852 	return nbytes;
7853 }
7854 
7855 static struct cftype zswap_files[] = {
7856 	{
7857 		.name = "zswap.current",
7858 		.flags = CFTYPE_NOT_ON_ROOT,
7859 		.read_u64 = zswap_current_read,
7860 	},
7861 	{
7862 		.name = "zswap.max",
7863 		.flags = CFTYPE_NOT_ON_ROOT,
7864 		.seq_show = zswap_max_show,
7865 		.write = zswap_max_write,
7866 	},
7867 	{ }	/* terminate */
7868 };
7869 #endif /* CONFIG_MEMCG_KMEM && CONFIG_ZSWAP */
7870 
7871 static int __init mem_cgroup_swap_init(void)
7872 {
7873 	if (mem_cgroup_disabled())
7874 		return 0;
7875 
7876 	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7877 	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7878 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
7879 	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files));
7880 #endif
7881 	return 0;
7882 }
7883 subsys_initcall(mem_cgroup_swap_init);
7884 
7885 #endif /* CONFIG_SWAP */
7886