xref: /openbmc/linux/mm/memcontrol.c (revision 2c935bc5)
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * Kernel Memory Controller
14  * Copyright (C) 2012 Parallels Inc. and Google Inc.
15  * Authors: Glauber Costa and Suleiman Souhlal
16  *
17  * Native page reclaim
18  * Charge lifetime sanitation
19  * Lockless page tracking & accounting
20  * Unified hierarchy configuration model
21  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22  *
23  * This program is free software; you can redistribute it and/or modify
24  * it under the terms of the GNU General Public License as published by
25  * the Free Software Foundation; either version 2 of the License, or
26  * (at your option) any later version.
27  *
28  * This program is distributed in the hope that it will be useful,
29  * but WITHOUT ANY WARRANTY; without even the implied warranty of
30  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
31  * GNU General Public License for more details.
32  */
33 
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/hugetlb.h>
39 #include <linux/pagemap.h>
40 #include <linux/smp.h>
41 #include <linux/page-flags.h>
42 #include <linux/backing-dev.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/limits.h>
46 #include <linux/export.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/spinlock.h>
53 #include <linux/eventfd.h>
54 #include <linux/poll.h>
55 #include <linux/sort.h>
56 #include <linux/fs.h>
57 #include <linux/seq_file.h>
58 #include <linux/vmpressure.h>
59 #include <linux/mm_inline.h>
60 #include <linux/swap_cgroup.h>
61 #include <linux/cpu.h>
62 #include <linux/oom.h>
63 #include <linux/lockdep.h>
64 #include <linux/file.h>
65 #include <linux/tracehook.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include "slab.h"
70 
71 #include <linux/uaccess.h>
72 
73 #include <trace/events/vmscan.h>
74 
75 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76 EXPORT_SYMBOL(memory_cgrp_subsys);
77 
78 struct mem_cgroup *root_mem_cgroup __read_mostly;
79 
80 #define MEM_CGROUP_RECLAIM_RETRIES	5
81 
82 /* Socket memory accounting disabled? */
83 static bool cgroup_memory_nosocket;
84 
85 /* Kernel memory accounting disabled? */
86 static bool cgroup_memory_nokmem;
87 
88 /* Whether the swap controller is active */
89 #ifdef CONFIG_MEMCG_SWAP
90 int do_swap_account __read_mostly;
91 #else
92 #define do_swap_account		0
93 #endif
94 
95 /* Whether legacy memory+swap accounting is active */
96 static bool do_memsw_account(void)
97 {
98 	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99 }
100 
101 static const char * const mem_cgroup_stat_names[] = {
102 	"cache",
103 	"rss",
104 	"rss_huge",
105 	"mapped_file",
106 	"dirty",
107 	"writeback",
108 	"swap",
109 };
110 
111 static const char * const mem_cgroup_events_names[] = {
112 	"pgpgin",
113 	"pgpgout",
114 	"pgfault",
115 	"pgmajfault",
116 };
117 
118 static const char * const mem_cgroup_lru_names[] = {
119 	"inactive_anon",
120 	"active_anon",
121 	"inactive_file",
122 	"active_file",
123 	"unevictable",
124 };
125 
126 #define THRESHOLDS_EVENTS_TARGET 128
127 #define SOFTLIMIT_EVENTS_TARGET 1024
128 #define NUMAINFO_EVENTS_TARGET	1024
129 
130 /*
131  * Cgroups above their limits are maintained in a RB-Tree, independent of
132  * their hierarchy representation
133  */
134 
135 struct mem_cgroup_tree_per_node {
136 	struct rb_root rb_root;
137 	spinlock_t lock;
138 };
139 
140 struct mem_cgroup_tree {
141 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
142 };
143 
144 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
145 
146 /* for OOM */
147 struct mem_cgroup_eventfd_list {
148 	struct list_head list;
149 	struct eventfd_ctx *eventfd;
150 };
151 
152 /*
153  * cgroup_event represents events which userspace want to receive.
154  */
155 struct mem_cgroup_event {
156 	/*
157 	 * memcg which the event belongs to.
158 	 */
159 	struct mem_cgroup *memcg;
160 	/*
161 	 * eventfd to signal userspace about the event.
162 	 */
163 	struct eventfd_ctx *eventfd;
164 	/*
165 	 * Each of these stored in a list by the cgroup.
166 	 */
167 	struct list_head list;
168 	/*
169 	 * register_event() callback will be used to add new userspace
170 	 * waiter for changes related to this event.  Use eventfd_signal()
171 	 * on eventfd to send notification to userspace.
172 	 */
173 	int (*register_event)(struct mem_cgroup *memcg,
174 			      struct eventfd_ctx *eventfd, const char *args);
175 	/*
176 	 * unregister_event() callback will be called when userspace closes
177 	 * the eventfd or on cgroup removing.  This callback must be set,
178 	 * if you want provide notification functionality.
179 	 */
180 	void (*unregister_event)(struct mem_cgroup *memcg,
181 				 struct eventfd_ctx *eventfd);
182 	/*
183 	 * All fields below needed to unregister event when
184 	 * userspace closes eventfd.
185 	 */
186 	poll_table pt;
187 	wait_queue_head_t *wqh;
188 	wait_queue_t wait;
189 	struct work_struct remove;
190 };
191 
192 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
193 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
194 
195 /* Stuffs for move charges at task migration. */
196 /*
197  * Types of charges to be moved.
198  */
199 #define MOVE_ANON	0x1U
200 #define MOVE_FILE	0x2U
201 #define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
202 
203 /* "mc" and its members are protected by cgroup_mutex */
204 static struct move_charge_struct {
205 	spinlock_t	  lock; /* for from, to */
206 	struct mm_struct  *mm;
207 	struct mem_cgroup *from;
208 	struct mem_cgroup *to;
209 	unsigned long flags;
210 	unsigned long precharge;
211 	unsigned long moved_charge;
212 	unsigned long moved_swap;
213 	struct task_struct *moving_task;	/* a task moving charges */
214 	wait_queue_head_t waitq;		/* a waitq for other context */
215 } mc = {
216 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
217 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
218 };
219 
220 /*
221  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
222  * limit reclaim to prevent infinite loops, if they ever occur.
223  */
224 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
225 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
226 
227 enum charge_type {
228 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
229 	MEM_CGROUP_CHARGE_TYPE_ANON,
230 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
231 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
232 	NR_CHARGE_TYPE,
233 };
234 
235 /* for encoding cft->private value on file */
236 enum res_type {
237 	_MEM,
238 	_MEMSWAP,
239 	_OOM_TYPE,
240 	_KMEM,
241 	_TCP,
242 };
243 
244 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
245 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
246 #define MEMFILE_ATTR(val)	((val) & 0xffff)
247 /* Used for OOM nofiier */
248 #define OOM_CONTROL		(0)
249 
250 /* Some nice accessors for the vmpressure. */
251 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
252 {
253 	if (!memcg)
254 		memcg = root_mem_cgroup;
255 	return &memcg->vmpressure;
256 }
257 
258 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
259 {
260 	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
261 }
262 
263 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
264 {
265 	return (memcg == root_mem_cgroup);
266 }
267 
268 #ifndef CONFIG_SLOB
269 /*
270  * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
271  * The main reason for not using cgroup id for this:
272  *  this works better in sparse environments, where we have a lot of memcgs,
273  *  but only a few kmem-limited. Or also, if we have, for instance, 200
274  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
275  *  200 entry array for that.
276  *
277  * The current size of the caches array is stored in memcg_nr_cache_ids. It
278  * will double each time we have to increase it.
279  */
280 static DEFINE_IDA(memcg_cache_ida);
281 int memcg_nr_cache_ids;
282 
283 /* Protects memcg_nr_cache_ids */
284 static DECLARE_RWSEM(memcg_cache_ids_sem);
285 
286 void memcg_get_cache_ids(void)
287 {
288 	down_read(&memcg_cache_ids_sem);
289 }
290 
291 void memcg_put_cache_ids(void)
292 {
293 	up_read(&memcg_cache_ids_sem);
294 }
295 
296 /*
297  * MIN_SIZE is different than 1, because we would like to avoid going through
298  * the alloc/free process all the time. In a small machine, 4 kmem-limited
299  * cgroups is a reasonable guess. In the future, it could be a parameter or
300  * tunable, but that is strictly not necessary.
301  *
302  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
303  * this constant directly from cgroup, but it is understandable that this is
304  * better kept as an internal representation in cgroup.c. In any case, the
305  * cgrp_id space is not getting any smaller, and we don't have to necessarily
306  * increase ours as well if it increases.
307  */
308 #define MEMCG_CACHES_MIN_SIZE 4
309 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
310 
311 /*
312  * A lot of the calls to the cache allocation functions are expected to be
313  * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
314  * conditional to this static branch, we'll have to allow modules that does
315  * kmem_cache_alloc and the such to see this symbol as well
316  */
317 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
318 EXPORT_SYMBOL(memcg_kmem_enabled_key);
319 
320 #endif /* !CONFIG_SLOB */
321 
322 /**
323  * mem_cgroup_css_from_page - css of the memcg associated with a page
324  * @page: page of interest
325  *
326  * If memcg is bound to the default hierarchy, css of the memcg associated
327  * with @page is returned.  The returned css remains associated with @page
328  * until it is released.
329  *
330  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
331  * is returned.
332  */
333 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
334 {
335 	struct mem_cgroup *memcg;
336 
337 	memcg = page->mem_cgroup;
338 
339 	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
340 		memcg = root_mem_cgroup;
341 
342 	return &memcg->css;
343 }
344 
345 /**
346  * page_cgroup_ino - return inode number of the memcg a page is charged to
347  * @page: the page
348  *
349  * Look up the closest online ancestor of the memory cgroup @page is charged to
350  * and return its inode number or 0 if @page is not charged to any cgroup. It
351  * is safe to call this function without holding a reference to @page.
352  *
353  * Note, this function is inherently racy, because there is nothing to prevent
354  * the cgroup inode from getting torn down and potentially reallocated a moment
355  * after page_cgroup_ino() returns, so it only should be used by callers that
356  * do not care (such as procfs interfaces).
357  */
358 ino_t page_cgroup_ino(struct page *page)
359 {
360 	struct mem_cgroup *memcg;
361 	unsigned long ino = 0;
362 
363 	rcu_read_lock();
364 	memcg = READ_ONCE(page->mem_cgroup);
365 	while (memcg && !(memcg->css.flags & CSS_ONLINE))
366 		memcg = parent_mem_cgroup(memcg);
367 	if (memcg)
368 		ino = cgroup_ino(memcg->css.cgroup);
369 	rcu_read_unlock();
370 	return ino;
371 }
372 
373 static struct mem_cgroup_per_node *
374 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
375 {
376 	int nid = page_to_nid(page);
377 
378 	return memcg->nodeinfo[nid];
379 }
380 
381 static struct mem_cgroup_tree_per_node *
382 soft_limit_tree_node(int nid)
383 {
384 	return soft_limit_tree.rb_tree_per_node[nid];
385 }
386 
387 static struct mem_cgroup_tree_per_node *
388 soft_limit_tree_from_page(struct page *page)
389 {
390 	int nid = page_to_nid(page);
391 
392 	return soft_limit_tree.rb_tree_per_node[nid];
393 }
394 
395 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
396 					 struct mem_cgroup_tree_per_node *mctz,
397 					 unsigned long new_usage_in_excess)
398 {
399 	struct rb_node **p = &mctz->rb_root.rb_node;
400 	struct rb_node *parent = NULL;
401 	struct mem_cgroup_per_node *mz_node;
402 
403 	if (mz->on_tree)
404 		return;
405 
406 	mz->usage_in_excess = new_usage_in_excess;
407 	if (!mz->usage_in_excess)
408 		return;
409 	while (*p) {
410 		parent = *p;
411 		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
412 					tree_node);
413 		if (mz->usage_in_excess < mz_node->usage_in_excess)
414 			p = &(*p)->rb_left;
415 		/*
416 		 * We can't avoid mem cgroups that are over their soft
417 		 * limit by the same amount
418 		 */
419 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
420 			p = &(*p)->rb_right;
421 	}
422 	rb_link_node(&mz->tree_node, parent, p);
423 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
424 	mz->on_tree = true;
425 }
426 
427 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
428 					 struct mem_cgroup_tree_per_node *mctz)
429 {
430 	if (!mz->on_tree)
431 		return;
432 	rb_erase(&mz->tree_node, &mctz->rb_root);
433 	mz->on_tree = false;
434 }
435 
436 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
437 				       struct mem_cgroup_tree_per_node *mctz)
438 {
439 	unsigned long flags;
440 
441 	spin_lock_irqsave(&mctz->lock, flags);
442 	__mem_cgroup_remove_exceeded(mz, mctz);
443 	spin_unlock_irqrestore(&mctz->lock, flags);
444 }
445 
446 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
447 {
448 	unsigned long nr_pages = page_counter_read(&memcg->memory);
449 	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
450 	unsigned long excess = 0;
451 
452 	if (nr_pages > soft_limit)
453 		excess = nr_pages - soft_limit;
454 
455 	return excess;
456 }
457 
458 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
459 {
460 	unsigned long excess;
461 	struct mem_cgroup_per_node *mz;
462 	struct mem_cgroup_tree_per_node *mctz;
463 
464 	mctz = soft_limit_tree_from_page(page);
465 	/*
466 	 * Necessary to update all ancestors when hierarchy is used.
467 	 * because their event counter is not touched.
468 	 */
469 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
470 		mz = mem_cgroup_page_nodeinfo(memcg, page);
471 		excess = soft_limit_excess(memcg);
472 		/*
473 		 * We have to update the tree if mz is on RB-tree or
474 		 * mem is over its softlimit.
475 		 */
476 		if (excess || mz->on_tree) {
477 			unsigned long flags;
478 
479 			spin_lock_irqsave(&mctz->lock, flags);
480 			/* if on-tree, remove it */
481 			if (mz->on_tree)
482 				__mem_cgroup_remove_exceeded(mz, mctz);
483 			/*
484 			 * Insert again. mz->usage_in_excess will be updated.
485 			 * If excess is 0, no tree ops.
486 			 */
487 			__mem_cgroup_insert_exceeded(mz, mctz, excess);
488 			spin_unlock_irqrestore(&mctz->lock, flags);
489 		}
490 	}
491 }
492 
493 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
494 {
495 	struct mem_cgroup_tree_per_node *mctz;
496 	struct mem_cgroup_per_node *mz;
497 	int nid;
498 
499 	for_each_node(nid) {
500 		mz = mem_cgroup_nodeinfo(memcg, nid);
501 		mctz = soft_limit_tree_node(nid);
502 		mem_cgroup_remove_exceeded(mz, mctz);
503 	}
504 }
505 
506 static struct mem_cgroup_per_node *
507 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
508 {
509 	struct rb_node *rightmost = NULL;
510 	struct mem_cgroup_per_node *mz;
511 
512 retry:
513 	mz = NULL;
514 	rightmost = rb_last(&mctz->rb_root);
515 	if (!rightmost)
516 		goto done;		/* Nothing to reclaim from */
517 
518 	mz = rb_entry(rightmost, struct mem_cgroup_per_node, tree_node);
519 	/*
520 	 * Remove the node now but someone else can add it back,
521 	 * we will to add it back at the end of reclaim to its correct
522 	 * position in the tree.
523 	 */
524 	__mem_cgroup_remove_exceeded(mz, mctz);
525 	if (!soft_limit_excess(mz->memcg) ||
526 	    !css_tryget_online(&mz->memcg->css))
527 		goto retry;
528 done:
529 	return mz;
530 }
531 
532 static struct mem_cgroup_per_node *
533 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
534 {
535 	struct mem_cgroup_per_node *mz;
536 
537 	spin_lock_irq(&mctz->lock);
538 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
539 	spin_unlock_irq(&mctz->lock);
540 	return mz;
541 }
542 
543 /*
544  * Return page count for single (non recursive) @memcg.
545  *
546  * Implementation Note: reading percpu statistics for memcg.
547  *
548  * Both of vmstat[] and percpu_counter has threshold and do periodic
549  * synchronization to implement "quick" read. There are trade-off between
550  * reading cost and precision of value. Then, we may have a chance to implement
551  * a periodic synchronization of counter in memcg's counter.
552  *
553  * But this _read() function is used for user interface now. The user accounts
554  * memory usage by memory cgroup and he _always_ requires exact value because
555  * he accounts memory. Even if we provide quick-and-fuzzy read, we always
556  * have to visit all online cpus and make sum. So, for now, unnecessary
557  * synchronization is not implemented. (just implemented for cpu hotplug)
558  *
559  * If there are kernel internal actions which can make use of some not-exact
560  * value, and reading all cpu value can be performance bottleneck in some
561  * common workload, threshold and synchronization as vmstat[] should be
562  * implemented.
563  */
564 static unsigned long
565 mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
566 {
567 	long val = 0;
568 	int cpu;
569 
570 	/* Per-cpu values can be negative, use a signed accumulator */
571 	for_each_possible_cpu(cpu)
572 		val += per_cpu(memcg->stat->count[idx], cpu);
573 	/*
574 	 * Summing races with updates, so val may be negative.  Avoid exposing
575 	 * transient negative values.
576 	 */
577 	if (val < 0)
578 		val = 0;
579 	return val;
580 }
581 
582 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
583 					    enum mem_cgroup_events_index idx)
584 {
585 	unsigned long val = 0;
586 	int cpu;
587 
588 	for_each_possible_cpu(cpu)
589 		val += per_cpu(memcg->stat->events[idx], cpu);
590 	return val;
591 }
592 
593 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
594 					 struct page *page,
595 					 bool compound, int nr_pages)
596 {
597 	/*
598 	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
599 	 * counted as CACHE even if it's on ANON LRU.
600 	 */
601 	if (PageAnon(page))
602 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
603 				nr_pages);
604 	else
605 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
606 				nr_pages);
607 
608 	if (compound) {
609 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
610 		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
611 				nr_pages);
612 	}
613 
614 	/* pagein of a big page is an event. So, ignore page size */
615 	if (nr_pages > 0)
616 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
617 	else {
618 		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
619 		nr_pages = -nr_pages; /* for event */
620 	}
621 
622 	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
623 }
624 
625 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
626 					   int nid, unsigned int lru_mask)
627 {
628 	struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
629 	unsigned long nr = 0;
630 	enum lru_list lru;
631 
632 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
633 
634 	for_each_lru(lru) {
635 		if (!(BIT(lru) & lru_mask))
636 			continue;
637 		nr += mem_cgroup_get_lru_size(lruvec, lru);
638 	}
639 	return nr;
640 }
641 
642 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
643 			unsigned int lru_mask)
644 {
645 	unsigned long nr = 0;
646 	int nid;
647 
648 	for_each_node_state(nid, N_MEMORY)
649 		nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
650 	return nr;
651 }
652 
653 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
654 				       enum mem_cgroup_events_target target)
655 {
656 	unsigned long val, next;
657 
658 	val = __this_cpu_read(memcg->stat->nr_page_events);
659 	next = __this_cpu_read(memcg->stat->targets[target]);
660 	/* from time_after() in jiffies.h */
661 	if ((long)next - (long)val < 0) {
662 		switch (target) {
663 		case MEM_CGROUP_TARGET_THRESH:
664 			next = val + THRESHOLDS_EVENTS_TARGET;
665 			break;
666 		case MEM_CGROUP_TARGET_SOFTLIMIT:
667 			next = val + SOFTLIMIT_EVENTS_TARGET;
668 			break;
669 		case MEM_CGROUP_TARGET_NUMAINFO:
670 			next = val + NUMAINFO_EVENTS_TARGET;
671 			break;
672 		default:
673 			break;
674 		}
675 		__this_cpu_write(memcg->stat->targets[target], next);
676 		return true;
677 	}
678 	return false;
679 }
680 
681 /*
682  * Check events in order.
683  *
684  */
685 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
686 {
687 	/* threshold event is triggered in finer grain than soft limit */
688 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
689 						MEM_CGROUP_TARGET_THRESH))) {
690 		bool do_softlimit;
691 		bool do_numainfo __maybe_unused;
692 
693 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
694 						MEM_CGROUP_TARGET_SOFTLIMIT);
695 #if MAX_NUMNODES > 1
696 		do_numainfo = mem_cgroup_event_ratelimit(memcg,
697 						MEM_CGROUP_TARGET_NUMAINFO);
698 #endif
699 		mem_cgroup_threshold(memcg);
700 		if (unlikely(do_softlimit))
701 			mem_cgroup_update_tree(memcg, page);
702 #if MAX_NUMNODES > 1
703 		if (unlikely(do_numainfo))
704 			atomic_inc(&memcg->numainfo_events);
705 #endif
706 	}
707 }
708 
709 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
710 {
711 	/*
712 	 * mm_update_next_owner() may clear mm->owner to NULL
713 	 * if it races with swapoff, page migration, etc.
714 	 * So this can be called with p == NULL.
715 	 */
716 	if (unlikely(!p))
717 		return NULL;
718 
719 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
720 }
721 EXPORT_SYMBOL(mem_cgroup_from_task);
722 
723 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
724 {
725 	struct mem_cgroup *memcg = NULL;
726 
727 	rcu_read_lock();
728 	do {
729 		/*
730 		 * Page cache insertions can happen withou an
731 		 * actual mm context, e.g. during disk probing
732 		 * on boot, loopback IO, acct() writes etc.
733 		 */
734 		if (unlikely(!mm))
735 			memcg = root_mem_cgroup;
736 		else {
737 			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
738 			if (unlikely(!memcg))
739 				memcg = root_mem_cgroup;
740 		}
741 	} while (!css_tryget_online(&memcg->css));
742 	rcu_read_unlock();
743 	return memcg;
744 }
745 
746 /**
747  * mem_cgroup_iter - iterate over memory cgroup hierarchy
748  * @root: hierarchy root
749  * @prev: previously returned memcg, NULL on first invocation
750  * @reclaim: cookie for shared reclaim walks, NULL for full walks
751  *
752  * Returns references to children of the hierarchy below @root, or
753  * @root itself, or %NULL after a full round-trip.
754  *
755  * Caller must pass the return value in @prev on subsequent
756  * invocations for reference counting, or use mem_cgroup_iter_break()
757  * to cancel a hierarchy walk before the round-trip is complete.
758  *
759  * Reclaimers can specify a zone and a priority level in @reclaim to
760  * divide up the memcgs in the hierarchy among all concurrent
761  * reclaimers operating on the same zone and priority.
762  */
763 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
764 				   struct mem_cgroup *prev,
765 				   struct mem_cgroup_reclaim_cookie *reclaim)
766 {
767 	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
768 	struct cgroup_subsys_state *css = NULL;
769 	struct mem_cgroup *memcg = NULL;
770 	struct mem_cgroup *pos = NULL;
771 
772 	if (mem_cgroup_disabled())
773 		return NULL;
774 
775 	if (!root)
776 		root = root_mem_cgroup;
777 
778 	if (prev && !reclaim)
779 		pos = prev;
780 
781 	if (!root->use_hierarchy && root != root_mem_cgroup) {
782 		if (prev)
783 			goto out;
784 		return root;
785 	}
786 
787 	rcu_read_lock();
788 
789 	if (reclaim) {
790 		struct mem_cgroup_per_node *mz;
791 
792 		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
793 		iter = &mz->iter[reclaim->priority];
794 
795 		if (prev && reclaim->generation != iter->generation)
796 			goto out_unlock;
797 
798 		while (1) {
799 			pos = READ_ONCE(iter->position);
800 			if (!pos || css_tryget(&pos->css))
801 				break;
802 			/*
803 			 * css reference reached zero, so iter->position will
804 			 * be cleared by ->css_released. However, we should not
805 			 * rely on this happening soon, because ->css_released
806 			 * is called from a work queue, and by busy-waiting we
807 			 * might block it. So we clear iter->position right
808 			 * away.
809 			 */
810 			(void)cmpxchg(&iter->position, pos, NULL);
811 		}
812 	}
813 
814 	if (pos)
815 		css = &pos->css;
816 
817 	for (;;) {
818 		css = css_next_descendant_pre(css, &root->css);
819 		if (!css) {
820 			/*
821 			 * Reclaimers share the hierarchy walk, and a
822 			 * new one might jump in right at the end of
823 			 * the hierarchy - make sure they see at least
824 			 * one group and restart from the beginning.
825 			 */
826 			if (!prev)
827 				continue;
828 			break;
829 		}
830 
831 		/*
832 		 * Verify the css and acquire a reference.  The root
833 		 * is provided by the caller, so we know it's alive
834 		 * and kicking, and don't take an extra reference.
835 		 */
836 		memcg = mem_cgroup_from_css(css);
837 
838 		if (css == &root->css)
839 			break;
840 
841 		if (css_tryget(css))
842 			break;
843 
844 		memcg = NULL;
845 	}
846 
847 	if (reclaim) {
848 		/*
849 		 * The position could have already been updated by a competing
850 		 * thread, so check that the value hasn't changed since we read
851 		 * it to avoid reclaiming from the same cgroup twice.
852 		 */
853 		(void)cmpxchg(&iter->position, pos, memcg);
854 
855 		if (pos)
856 			css_put(&pos->css);
857 
858 		if (!memcg)
859 			iter->generation++;
860 		else if (!prev)
861 			reclaim->generation = iter->generation;
862 	}
863 
864 out_unlock:
865 	rcu_read_unlock();
866 out:
867 	if (prev && prev != root)
868 		css_put(&prev->css);
869 
870 	return memcg;
871 }
872 
873 /**
874  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
875  * @root: hierarchy root
876  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
877  */
878 void mem_cgroup_iter_break(struct mem_cgroup *root,
879 			   struct mem_cgroup *prev)
880 {
881 	if (!root)
882 		root = root_mem_cgroup;
883 	if (prev && prev != root)
884 		css_put(&prev->css);
885 }
886 
887 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
888 {
889 	struct mem_cgroup *memcg = dead_memcg;
890 	struct mem_cgroup_reclaim_iter *iter;
891 	struct mem_cgroup_per_node *mz;
892 	int nid;
893 	int i;
894 
895 	while ((memcg = parent_mem_cgroup(memcg))) {
896 		for_each_node(nid) {
897 			mz = mem_cgroup_nodeinfo(memcg, nid);
898 			for (i = 0; i <= DEF_PRIORITY; i++) {
899 				iter = &mz->iter[i];
900 				cmpxchg(&iter->position,
901 					dead_memcg, NULL);
902 			}
903 		}
904 	}
905 }
906 
907 /*
908  * Iteration constructs for visiting all cgroups (under a tree).  If
909  * loops are exited prematurely (break), mem_cgroup_iter_break() must
910  * be used for reference counting.
911  */
912 #define for_each_mem_cgroup_tree(iter, root)		\
913 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
914 	     iter != NULL;				\
915 	     iter = mem_cgroup_iter(root, iter, NULL))
916 
917 #define for_each_mem_cgroup(iter)			\
918 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
919 	     iter != NULL;				\
920 	     iter = mem_cgroup_iter(NULL, iter, NULL))
921 
922 /**
923  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
924  * @memcg: hierarchy root
925  * @fn: function to call for each task
926  * @arg: argument passed to @fn
927  *
928  * This function iterates over tasks attached to @memcg or to any of its
929  * descendants and calls @fn for each task. If @fn returns a non-zero
930  * value, the function breaks the iteration loop and returns the value.
931  * Otherwise, it will iterate over all tasks and return 0.
932  *
933  * This function must not be called for the root memory cgroup.
934  */
935 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
936 			  int (*fn)(struct task_struct *, void *), void *arg)
937 {
938 	struct mem_cgroup *iter;
939 	int ret = 0;
940 
941 	BUG_ON(memcg == root_mem_cgroup);
942 
943 	for_each_mem_cgroup_tree(iter, memcg) {
944 		struct css_task_iter it;
945 		struct task_struct *task;
946 
947 		css_task_iter_start(&iter->css, &it);
948 		while (!ret && (task = css_task_iter_next(&it)))
949 			ret = fn(task, arg);
950 		css_task_iter_end(&it);
951 		if (ret) {
952 			mem_cgroup_iter_break(memcg, iter);
953 			break;
954 		}
955 	}
956 	return ret;
957 }
958 
959 /**
960  * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
961  * @page: the page
962  * @zone: zone of the page
963  *
964  * This function is only safe when following the LRU page isolation
965  * and putback protocol: the LRU lock must be held, and the page must
966  * either be PageLRU() or the caller must have isolated/allocated it.
967  */
968 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
969 {
970 	struct mem_cgroup_per_node *mz;
971 	struct mem_cgroup *memcg;
972 	struct lruvec *lruvec;
973 
974 	if (mem_cgroup_disabled()) {
975 		lruvec = &pgdat->lruvec;
976 		goto out;
977 	}
978 
979 	memcg = page->mem_cgroup;
980 	/*
981 	 * Swapcache readahead pages are added to the LRU - and
982 	 * possibly migrated - before they are charged.
983 	 */
984 	if (!memcg)
985 		memcg = root_mem_cgroup;
986 
987 	mz = mem_cgroup_page_nodeinfo(memcg, page);
988 	lruvec = &mz->lruvec;
989 out:
990 	/*
991 	 * Since a node can be onlined after the mem_cgroup was created,
992 	 * we have to be prepared to initialize lruvec->zone here;
993 	 * and if offlined then reonlined, we need to reinitialize it.
994 	 */
995 	if (unlikely(lruvec->pgdat != pgdat))
996 		lruvec->pgdat = pgdat;
997 	return lruvec;
998 }
999 
1000 /**
1001  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1002  * @lruvec: mem_cgroup per zone lru vector
1003  * @lru: index of lru list the page is sitting on
1004  * @zid: zone id of the accounted pages
1005  * @nr_pages: positive when adding or negative when removing
1006  *
1007  * This function must be called under lru_lock, just before a page is added
1008  * to or just after a page is removed from an lru list (that ordering being
1009  * so as to allow it to check that lru_size 0 is consistent with list_empty).
1010  */
1011 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1012 				int zid, int nr_pages)
1013 {
1014 	struct mem_cgroup_per_node *mz;
1015 	unsigned long *lru_size;
1016 	long size;
1017 
1018 	if (mem_cgroup_disabled())
1019 		return;
1020 
1021 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1022 	lru_size = &mz->lru_zone_size[zid][lru];
1023 
1024 	if (nr_pages < 0)
1025 		*lru_size += nr_pages;
1026 
1027 	size = *lru_size;
1028 	if (WARN_ONCE(size < 0,
1029 		"%s(%p, %d, %d): lru_size %ld\n",
1030 		__func__, lruvec, lru, nr_pages, size)) {
1031 		VM_BUG_ON(1);
1032 		*lru_size = 0;
1033 	}
1034 
1035 	if (nr_pages > 0)
1036 		*lru_size += nr_pages;
1037 }
1038 
1039 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1040 {
1041 	struct mem_cgroup *task_memcg;
1042 	struct task_struct *p;
1043 	bool ret;
1044 
1045 	p = find_lock_task_mm(task);
1046 	if (p) {
1047 		task_memcg = get_mem_cgroup_from_mm(p->mm);
1048 		task_unlock(p);
1049 	} else {
1050 		/*
1051 		 * All threads may have already detached their mm's, but the oom
1052 		 * killer still needs to detect if they have already been oom
1053 		 * killed to prevent needlessly killing additional tasks.
1054 		 */
1055 		rcu_read_lock();
1056 		task_memcg = mem_cgroup_from_task(task);
1057 		css_get(&task_memcg->css);
1058 		rcu_read_unlock();
1059 	}
1060 	ret = mem_cgroup_is_descendant(task_memcg, memcg);
1061 	css_put(&task_memcg->css);
1062 	return ret;
1063 }
1064 
1065 /**
1066  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1067  * @memcg: the memory cgroup
1068  *
1069  * Returns the maximum amount of memory @mem can be charged with, in
1070  * pages.
1071  */
1072 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1073 {
1074 	unsigned long margin = 0;
1075 	unsigned long count;
1076 	unsigned long limit;
1077 
1078 	count = page_counter_read(&memcg->memory);
1079 	limit = READ_ONCE(memcg->memory.limit);
1080 	if (count < limit)
1081 		margin = limit - count;
1082 
1083 	if (do_memsw_account()) {
1084 		count = page_counter_read(&memcg->memsw);
1085 		limit = READ_ONCE(memcg->memsw.limit);
1086 		if (count <= limit)
1087 			margin = min(margin, limit - count);
1088 		else
1089 			margin = 0;
1090 	}
1091 
1092 	return margin;
1093 }
1094 
1095 /*
1096  * A routine for checking "mem" is under move_account() or not.
1097  *
1098  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1099  * moving cgroups. This is for waiting at high-memory pressure
1100  * caused by "move".
1101  */
1102 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1103 {
1104 	struct mem_cgroup *from;
1105 	struct mem_cgroup *to;
1106 	bool ret = false;
1107 	/*
1108 	 * Unlike task_move routines, we access mc.to, mc.from not under
1109 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1110 	 */
1111 	spin_lock(&mc.lock);
1112 	from = mc.from;
1113 	to = mc.to;
1114 	if (!from)
1115 		goto unlock;
1116 
1117 	ret = mem_cgroup_is_descendant(from, memcg) ||
1118 		mem_cgroup_is_descendant(to, memcg);
1119 unlock:
1120 	spin_unlock(&mc.lock);
1121 	return ret;
1122 }
1123 
1124 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1125 {
1126 	if (mc.moving_task && current != mc.moving_task) {
1127 		if (mem_cgroup_under_move(memcg)) {
1128 			DEFINE_WAIT(wait);
1129 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1130 			/* moving charge context might have finished. */
1131 			if (mc.moving_task)
1132 				schedule();
1133 			finish_wait(&mc.waitq, &wait);
1134 			return true;
1135 		}
1136 	}
1137 	return false;
1138 }
1139 
1140 #define K(x) ((x) << (PAGE_SHIFT-10))
1141 /**
1142  * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1143  * @memcg: The memory cgroup that went over limit
1144  * @p: Task that is going to be killed
1145  *
1146  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1147  * enabled
1148  */
1149 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1150 {
1151 	struct mem_cgroup *iter;
1152 	unsigned int i;
1153 
1154 	rcu_read_lock();
1155 
1156 	if (p) {
1157 		pr_info("Task in ");
1158 		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1159 		pr_cont(" killed as a result of limit of ");
1160 	} else {
1161 		pr_info("Memory limit reached of cgroup ");
1162 	}
1163 
1164 	pr_cont_cgroup_path(memcg->css.cgroup);
1165 	pr_cont("\n");
1166 
1167 	rcu_read_unlock();
1168 
1169 	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1170 		K((u64)page_counter_read(&memcg->memory)),
1171 		K((u64)memcg->memory.limit), memcg->memory.failcnt);
1172 	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1173 		K((u64)page_counter_read(&memcg->memsw)),
1174 		K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1175 	pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1176 		K((u64)page_counter_read(&memcg->kmem)),
1177 		K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1178 
1179 	for_each_mem_cgroup_tree(iter, memcg) {
1180 		pr_info("Memory cgroup stats for ");
1181 		pr_cont_cgroup_path(iter->css.cgroup);
1182 		pr_cont(":");
1183 
1184 		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1185 			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1186 				continue;
1187 			pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1188 				K(mem_cgroup_read_stat(iter, i)));
1189 		}
1190 
1191 		for (i = 0; i < NR_LRU_LISTS; i++)
1192 			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1193 				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1194 
1195 		pr_cont("\n");
1196 	}
1197 }
1198 
1199 /*
1200  * This function returns the number of memcg under hierarchy tree. Returns
1201  * 1(self count) if no children.
1202  */
1203 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1204 {
1205 	int num = 0;
1206 	struct mem_cgroup *iter;
1207 
1208 	for_each_mem_cgroup_tree(iter, memcg)
1209 		num++;
1210 	return num;
1211 }
1212 
1213 /*
1214  * Return the memory (and swap, if configured) limit for a memcg.
1215  */
1216 unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1217 {
1218 	unsigned long limit;
1219 
1220 	limit = memcg->memory.limit;
1221 	if (mem_cgroup_swappiness(memcg)) {
1222 		unsigned long memsw_limit;
1223 		unsigned long swap_limit;
1224 
1225 		memsw_limit = memcg->memsw.limit;
1226 		swap_limit = memcg->swap.limit;
1227 		swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1228 		limit = min(limit + swap_limit, memsw_limit);
1229 	}
1230 	return limit;
1231 }
1232 
1233 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1234 				     int order)
1235 {
1236 	struct oom_control oc = {
1237 		.zonelist = NULL,
1238 		.nodemask = NULL,
1239 		.memcg = memcg,
1240 		.gfp_mask = gfp_mask,
1241 		.order = order,
1242 	};
1243 	bool ret;
1244 
1245 	mutex_lock(&oom_lock);
1246 	ret = out_of_memory(&oc);
1247 	mutex_unlock(&oom_lock);
1248 	return ret;
1249 }
1250 
1251 #if MAX_NUMNODES > 1
1252 
1253 /**
1254  * test_mem_cgroup_node_reclaimable
1255  * @memcg: the target memcg
1256  * @nid: the node ID to be checked.
1257  * @noswap : specify true here if the user wants flle only information.
1258  *
1259  * This function returns whether the specified memcg contains any
1260  * reclaimable pages on a node. Returns true if there are any reclaimable
1261  * pages in the node.
1262  */
1263 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1264 		int nid, bool noswap)
1265 {
1266 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1267 		return true;
1268 	if (noswap || !total_swap_pages)
1269 		return false;
1270 	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1271 		return true;
1272 	return false;
1273 
1274 }
1275 
1276 /*
1277  * Always updating the nodemask is not very good - even if we have an empty
1278  * list or the wrong list here, we can start from some node and traverse all
1279  * nodes based on the zonelist. So update the list loosely once per 10 secs.
1280  *
1281  */
1282 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1283 {
1284 	int nid;
1285 	/*
1286 	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1287 	 * pagein/pageout changes since the last update.
1288 	 */
1289 	if (!atomic_read(&memcg->numainfo_events))
1290 		return;
1291 	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1292 		return;
1293 
1294 	/* make a nodemask where this memcg uses memory from */
1295 	memcg->scan_nodes = node_states[N_MEMORY];
1296 
1297 	for_each_node_mask(nid, node_states[N_MEMORY]) {
1298 
1299 		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1300 			node_clear(nid, memcg->scan_nodes);
1301 	}
1302 
1303 	atomic_set(&memcg->numainfo_events, 0);
1304 	atomic_set(&memcg->numainfo_updating, 0);
1305 }
1306 
1307 /*
1308  * Selecting a node where we start reclaim from. Because what we need is just
1309  * reducing usage counter, start from anywhere is O,K. Considering
1310  * memory reclaim from current node, there are pros. and cons.
1311  *
1312  * Freeing memory from current node means freeing memory from a node which
1313  * we'll use or we've used. So, it may make LRU bad. And if several threads
1314  * hit limits, it will see a contention on a node. But freeing from remote
1315  * node means more costs for memory reclaim because of memory latency.
1316  *
1317  * Now, we use round-robin. Better algorithm is welcomed.
1318  */
1319 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1320 {
1321 	int node;
1322 
1323 	mem_cgroup_may_update_nodemask(memcg);
1324 	node = memcg->last_scanned_node;
1325 
1326 	node = next_node_in(node, memcg->scan_nodes);
1327 	/*
1328 	 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1329 	 * last time it really checked all the LRUs due to rate limiting.
1330 	 * Fallback to the current node in that case for simplicity.
1331 	 */
1332 	if (unlikely(node == MAX_NUMNODES))
1333 		node = numa_node_id();
1334 
1335 	memcg->last_scanned_node = node;
1336 	return node;
1337 }
1338 #else
1339 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1340 {
1341 	return 0;
1342 }
1343 #endif
1344 
1345 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1346 				   pg_data_t *pgdat,
1347 				   gfp_t gfp_mask,
1348 				   unsigned long *total_scanned)
1349 {
1350 	struct mem_cgroup *victim = NULL;
1351 	int total = 0;
1352 	int loop = 0;
1353 	unsigned long excess;
1354 	unsigned long nr_scanned;
1355 	struct mem_cgroup_reclaim_cookie reclaim = {
1356 		.pgdat = pgdat,
1357 		.priority = 0,
1358 	};
1359 
1360 	excess = soft_limit_excess(root_memcg);
1361 
1362 	while (1) {
1363 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1364 		if (!victim) {
1365 			loop++;
1366 			if (loop >= 2) {
1367 				/*
1368 				 * If we have not been able to reclaim
1369 				 * anything, it might because there are
1370 				 * no reclaimable pages under this hierarchy
1371 				 */
1372 				if (!total)
1373 					break;
1374 				/*
1375 				 * We want to do more targeted reclaim.
1376 				 * excess >> 2 is not to excessive so as to
1377 				 * reclaim too much, nor too less that we keep
1378 				 * coming back to reclaim from this cgroup
1379 				 */
1380 				if (total >= (excess >> 2) ||
1381 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1382 					break;
1383 			}
1384 			continue;
1385 		}
1386 		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1387 					pgdat, &nr_scanned);
1388 		*total_scanned += nr_scanned;
1389 		if (!soft_limit_excess(root_memcg))
1390 			break;
1391 	}
1392 	mem_cgroup_iter_break(root_memcg, victim);
1393 	return total;
1394 }
1395 
1396 #ifdef CONFIG_LOCKDEP
1397 static struct lockdep_map memcg_oom_lock_dep_map = {
1398 	.name = "memcg_oom_lock",
1399 };
1400 #endif
1401 
1402 static DEFINE_SPINLOCK(memcg_oom_lock);
1403 
1404 /*
1405  * Check OOM-Killer is already running under our hierarchy.
1406  * If someone is running, return false.
1407  */
1408 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1409 {
1410 	struct mem_cgroup *iter, *failed = NULL;
1411 
1412 	spin_lock(&memcg_oom_lock);
1413 
1414 	for_each_mem_cgroup_tree(iter, memcg) {
1415 		if (iter->oom_lock) {
1416 			/*
1417 			 * this subtree of our hierarchy is already locked
1418 			 * so we cannot give a lock.
1419 			 */
1420 			failed = iter;
1421 			mem_cgroup_iter_break(memcg, iter);
1422 			break;
1423 		} else
1424 			iter->oom_lock = true;
1425 	}
1426 
1427 	if (failed) {
1428 		/*
1429 		 * OK, we failed to lock the whole subtree so we have
1430 		 * to clean up what we set up to the failing subtree
1431 		 */
1432 		for_each_mem_cgroup_tree(iter, memcg) {
1433 			if (iter == failed) {
1434 				mem_cgroup_iter_break(memcg, iter);
1435 				break;
1436 			}
1437 			iter->oom_lock = false;
1438 		}
1439 	} else
1440 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1441 
1442 	spin_unlock(&memcg_oom_lock);
1443 
1444 	return !failed;
1445 }
1446 
1447 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1448 {
1449 	struct mem_cgroup *iter;
1450 
1451 	spin_lock(&memcg_oom_lock);
1452 	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1453 	for_each_mem_cgroup_tree(iter, memcg)
1454 		iter->oom_lock = false;
1455 	spin_unlock(&memcg_oom_lock);
1456 }
1457 
1458 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1459 {
1460 	struct mem_cgroup *iter;
1461 
1462 	spin_lock(&memcg_oom_lock);
1463 	for_each_mem_cgroup_tree(iter, memcg)
1464 		iter->under_oom++;
1465 	spin_unlock(&memcg_oom_lock);
1466 }
1467 
1468 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1469 {
1470 	struct mem_cgroup *iter;
1471 
1472 	/*
1473 	 * When a new child is created while the hierarchy is under oom,
1474 	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1475 	 */
1476 	spin_lock(&memcg_oom_lock);
1477 	for_each_mem_cgroup_tree(iter, memcg)
1478 		if (iter->under_oom > 0)
1479 			iter->under_oom--;
1480 	spin_unlock(&memcg_oom_lock);
1481 }
1482 
1483 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1484 
1485 struct oom_wait_info {
1486 	struct mem_cgroup *memcg;
1487 	wait_queue_t	wait;
1488 };
1489 
1490 static int memcg_oom_wake_function(wait_queue_t *wait,
1491 	unsigned mode, int sync, void *arg)
1492 {
1493 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1494 	struct mem_cgroup *oom_wait_memcg;
1495 	struct oom_wait_info *oom_wait_info;
1496 
1497 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1498 	oom_wait_memcg = oom_wait_info->memcg;
1499 
1500 	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1501 	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1502 		return 0;
1503 	return autoremove_wake_function(wait, mode, sync, arg);
1504 }
1505 
1506 static void memcg_oom_recover(struct mem_cgroup *memcg)
1507 {
1508 	/*
1509 	 * For the following lockless ->under_oom test, the only required
1510 	 * guarantee is that it must see the state asserted by an OOM when
1511 	 * this function is called as a result of userland actions
1512 	 * triggered by the notification of the OOM.  This is trivially
1513 	 * achieved by invoking mem_cgroup_mark_under_oom() before
1514 	 * triggering notification.
1515 	 */
1516 	if (memcg && memcg->under_oom)
1517 		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1518 }
1519 
1520 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1521 {
1522 	if (!current->memcg_may_oom)
1523 		return;
1524 	/*
1525 	 * We are in the middle of the charge context here, so we
1526 	 * don't want to block when potentially sitting on a callstack
1527 	 * that holds all kinds of filesystem and mm locks.
1528 	 *
1529 	 * Also, the caller may handle a failed allocation gracefully
1530 	 * (like optional page cache readahead) and so an OOM killer
1531 	 * invocation might not even be necessary.
1532 	 *
1533 	 * That's why we don't do anything here except remember the
1534 	 * OOM context and then deal with it at the end of the page
1535 	 * fault when the stack is unwound, the locks are released,
1536 	 * and when we know whether the fault was overall successful.
1537 	 */
1538 	css_get(&memcg->css);
1539 	current->memcg_in_oom = memcg;
1540 	current->memcg_oom_gfp_mask = mask;
1541 	current->memcg_oom_order = order;
1542 }
1543 
1544 /**
1545  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1546  * @handle: actually kill/wait or just clean up the OOM state
1547  *
1548  * This has to be called at the end of a page fault if the memcg OOM
1549  * handler was enabled.
1550  *
1551  * Memcg supports userspace OOM handling where failed allocations must
1552  * sleep on a waitqueue until the userspace task resolves the
1553  * situation.  Sleeping directly in the charge context with all kinds
1554  * of locks held is not a good idea, instead we remember an OOM state
1555  * in the task and mem_cgroup_oom_synchronize() has to be called at
1556  * the end of the page fault to complete the OOM handling.
1557  *
1558  * Returns %true if an ongoing memcg OOM situation was detected and
1559  * completed, %false otherwise.
1560  */
1561 bool mem_cgroup_oom_synchronize(bool handle)
1562 {
1563 	struct mem_cgroup *memcg = current->memcg_in_oom;
1564 	struct oom_wait_info owait;
1565 	bool locked;
1566 
1567 	/* OOM is global, do not handle */
1568 	if (!memcg)
1569 		return false;
1570 
1571 	if (!handle)
1572 		goto cleanup;
1573 
1574 	owait.memcg = memcg;
1575 	owait.wait.flags = 0;
1576 	owait.wait.func = memcg_oom_wake_function;
1577 	owait.wait.private = current;
1578 	INIT_LIST_HEAD(&owait.wait.task_list);
1579 
1580 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1581 	mem_cgroup_mark_under_oom(memcg);
1582 
1583 	locked = mem_cgroup_oom_trylock(memcg);
1584 
1585 	if (locked)
1586 		mem_cgroup_oom_notify(memcg);
1587 
1588 	if (locked && !memcg->oom_kill_disable) {
1589 		mem_cgroup_unmark_under_oom(memcg);
1590 		finish_wait(&memcg_oom_waitq, &owait.wait);
1591 		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1592 					 current->memcg_oom_order);
1593 	} else {
1594 		schedule();
1595 		mem_cgroup_unmark_under_oom(memcg);
1596 		finish_wait(&memcg_oom_waitq, &owait.wait);
1597 	}
1598 
1599 	if (locked) {
1600 		mem_cgroup_oom_unlock(memcg);
1601 		/*
1602 		 * There is no guarantee that an OOM-lock contender
1603 		 * sees the wakeups triggered by the OOM kill
1604 		 * uncharges.  Wake any sleepers explicitely.
1605 		 */
1606 		memcg_oom_recover(memcg);
1607 	}
1608 cleanup:
1609 	current->memcg_in_oom = NULL;
1610 	css_put(&memcg->css);
1611 	return true;
1612 }
1613 
1614 /**
1615  * lock_page_memcg - lock a page->mem_cgroup binding
1616  * @page: the page
1617  *
1618  * This function protects unlocked LRU pages from being moved to
1619  * another cgroup and stabilizes their page->mem_cgroup binding.
1620  */
1621 void lock_page_memcg(struct page *page)
1622 {
1623 	struct mem_cgroup *memcg;
1624 	unsigned long flags;
1625 
1626 	/*
1627 	 * The RCU lock is held throughout the transaction.  The fast
1628 	 * path can get away without acquiring the memcg->move_lock
1629 	 * because page moving starts with an RCU grace period.
1630 	 */
1631 	rcu_read_lock();
1632 
1633 	if (mem_cgroup_disabled())
1634 		return;
1635 again:
1636 	memcg = page->mem_cgroup;
1637 	if (unlikely(!memcg))
1638 		return;
1639 
1640 	if (atomic_read(&memcg->moving_account) <= 0)
1641 		return;
1642 
1643 	spin_lock_irqsave(&memcg->move_lock, flags);
1644 	if (memcg != page->mem_cgroup) {
1645 		spin_unlock_irqrestore(&memcg->move_lock, flags);
1646 		goto again;
1647 	}
1648 
1649 	/*
1650 	 * When charge migration first begins, we can have locked and
1651 	 * unlocked page stat updates happening concurrently.  Track
1652 	 * the task who has the lock for unlock_page_memcg().
1653 	 */
1654 	memcg->move_lock_task = current;
1655 	memcg->move_lock_flags = flags;
1656 
1657 	return;
1658 }
1659 EXPORT_SYMBOL(lock_page_memcg);
1660 
1661 /**
1662  * unlock_page_memcg - unlock a page->mem_cgroup binding
1663  * @page: the page
1664  */
1665 void unlock_page_memcg(struct page *page)
1666 {
1667 	struct mem_cgroup *memcg = page->mem_cgroup;
1668 
1669 	if (memcg && memcg->move_lock_task == current) {
1670 		unsigned long flags = memcg->move_lock_flags;
1671 
1672 		memcg->move_lock_task = NULL;
1673 		memcg->move_lock_flags = 0;
1674 
1675 		spin_unlock_irqrestore(&memcg->move_lock, flags);
1676 	}
1677 
1678 	rcu_read_unlock();
1679 }
1680 EXPORT_SYMBOL(unlock_page_memcg);
1681 
1682 /*
1683  * size of first charge trial. "32" comes from vmscan.c's magic value.
1684  * TODO: maybe necessary to use big numbers in big irons.
1685  */
1686 #define CHARGE_BATCH	32U
1687 struct memcg_stock_pcp {
1688 	struct mem_cgroup *cached; /* this never be root cgroup */
1689 	unsigned int nr_pages;
1690 	struct work_struct work;
1691 	unsigned long flags;
1692 #define FLUSHING_CACHED_CHARGE	0
1693 };
1694 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1695 static DEFINE_MUTEX(percpu_charge_mutex);
1696 
1697 /**
1698  * consume_stock: Try to consume stocked charge on this cpu.
1699  * @memcg: memcg to consume from.
1700  * @nr_pages: how many pages to charge.
1701  *
1702  * The charges will only happen if @memcg matches the current cpu's memcg
1703  * stock, and at least @nr_pages are available in that stock.  Failure to
1704  * service an allocation will refill the stock.
1705  *
1706  * returns true if successful, false otherwise.
1707  */
1708 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1709 {
1710 	struct memcg_stock_pcp *stock;
1711 	unsigned long flags;
1712 	bool ret = false;
1713 
1714 	if (nr_pages > CHARGE_BATCH)
1715 		return ret;
1716 
1717 	local_irq_save(flags);
1718 
1719 	stock = this_cpu_ptr(&memcg_stock);
1720 	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1721 		stock->nr_pages -= nr_pages;
1722 		ret = true;
1723 	}
1724 
1725 	local_irq_restore(flags);
1726 
1727 	return ret;
1728 }
1729 
1730 /*
1731  * Returns stocks cached in percpu and reset cached information.
1732  */
1733 static void drain_stock(struct memcg_stock_pcp *stock)
1734 {
1735 	struct mem_cgroup *old = stock->cached;
1736 
1737 	if (stock->nr_pages) {
1738 		page_counter_uncharge(&old->memory, stock->nr_pages);
1739 		if (do_memsw_account())
1740 			page_counter_uncharge(&old->memsw, stock->nr_pages);
1741 		css_put_many(&old->css, stock->nr_pages);
1742 		stock->nr_pages = 0;
1743 	}
1744 	stock->cached = NULL;
1745 }
1746 
1747 static void drain_local_stock(struct work_struct *dummy)
1748 {
1749 	struct memcg_stock_pcp *stock;
1750 	unsigned long flags;
1751 
1752 	local_irq_save(flags);
1753 
1754 	stock = this_cpu_ptr(&memcg_stock);
1755 	drain_stock(stock);
1756 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1757 
1758 	local_irq_restore(flags);
1759 }
1760 
1761 /*
1762  * Cache charges(val) to local per_cpu area.
1763  * This will be consumed by consume_stock() function, later.
1764  */
1765 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1766 {
1767 	struct memcg_stock_pcp *stock;
1768 	unsigned long flags;
1769 
1770 	local_irq_save(flags);
1771 
1772 	stock = this_cpu_ptr(&memcg_stock);
1773 	if (stock->cached != memcg) { /* reset if necessary */
1774 		drain_stock(stock);
1775 		stock->cached = memcg;
1776 	}
1777 	stock->nr_pages += nr_pages;
1778 
1779 	local_irq_restore(flags);
1780 }
1781 
1782 /*
1783  * Drains all per-CPU charge caches for given root_memcg resp. subtree
1784  * of the hierarchy under it.
1785  */
1786 static void drain_all_stock(struct mem_cgroup *root_memcg)
1787 {
1788 	int cpu, curcpu;
1789 
1790 	/* If someone's already draining, avoid adding running more workers. */
1791 	if (!mutex_trylock(&percpu_charge_mutex))
1792 		return;
1793 	/* Notify other cpus that system-wide "drain" is running */
1794 	get_online_cpus();
1795 	curcpu = get_cpu();
1796 	for_each_online_cpu(cpu) {
1797 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1798 		struct mem_cgroup *memcg;
1799 
1800 		memcg = stock->cached;
1801 		if (!memcg || !stock->nr_pages)
1802 			continue;
1803 		if (!mem_cgroup_is_descendant(memcg, root_memcg))
1804 			continue;
1805 		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1806 			if (cpu == curcpu)
1807 				drain_local_stock(&stock->work);
1808 			else
1809 				schedule_work_on(cpu, &stock->work);
1810 		}
1811 	}
1812 	put_cpu();
1813 	put_online_cpus();
1814 	mutex_unlock(&percpu_charge_mutex);
1815 }
1816 
1817 static int memcg_hotplug_cpu_dead(unsigned int cpu)
1818 {
1819 	struct memcg_stock_pcp *stock;
1820 
1821 	stock = &per_cpu(memcg_stock, cpu);
1822 	drain_stock(stock);
1823 	return 0;
1824 }
1825 
1826 static void reclaim_high(struct mem_cgroup *memcg,
1827 			 unsigned int nr_pages,
1828 			 gfp_t gfp_mask)
1829 {
1830 	do {
1831 		if (page_counter_read(&memcg->memory) <= memcg->high)
1832 			continue;
1833 		mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1834 		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1835 	} while ((memcg = parent_mem_cgroup(memcg)));
1836 }
1837 
1838 static void high_work_func(struct work_struct *work)
1839 {
1840 	struct mem_cgroup *memcg;
1841 
1842 	memcg = container_of(work, struct mem_cgroup, high_work);
1843 	reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1844 }
1845 
1846 /*
1847  * Scheduled by try_charge() to be executed from the userland return path
1848  * and reclaims memory over the high limit.
1849  */
1850 void mem_cgroup_handle_over_high(void)
1851 {
1852 	unsigned int nr_pages = current->memcg_nr_pages_over_high;
1853 	struct mem_cgroup *memcg;
1854 
1855 	if (likely(!nr_pages))
1856 		return;
1857 
1858 	memcg = get_mem_cgroup_from_mm(current->mm);
1859 	reclaim_high(memcg, nr_pages, GFP_KERNEL);
1860 	css_put(&memcg->css);
1861 	current->memcg_nr_pages_over_high = 0;
1862 }
1863 
1864 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1865 		      unsigned int nr_pages)
1866 {
1867 	unsigned int batch = max(CHARGE_BATCH, nr_pages);
1868 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1869 	struct mem_cgroup *mem_over_limit;
1870 	struct page_counter *counter;
1871 	unsigned long nr_reclaimed;
1872 	bool may_swap = true;
1873 	bool drained = false;
1874 
1875 	if (mem_cgroup_is_root(memcg))
1876 		return 0;
1877 retry:
1878 	if (consume_stock(memcg, nr_pages))
1879 		return 0;
1880 
1881 	if (!do_memsw_account() ||
1882 	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1883 		if (page_counter_try_charge(&memcg->memory, batch, &counter))
1884 			goto done_restock;
1885 		if (do_memsw_account())
1886 			page_counter_uncharge(&memcg->memsw, batch);
1887 		mem_over_limit = mem_cgroup_from_counter(counter, memory);
1888 	} else {
1889 		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1890 		may_swap = false;
1891 	}
1892 
1893 	if (batch > nr_pages) {
1894 		batch = nr_pages;
1895 		goto retry;
1896 	}
1897 
1898 	/*
1899 	 * Unlike in global OOM situations, memcg is not in a physical
1900 	 * memory shortage.  Allow dying and OOM-killed tasks to
1901 	 * bypass the last charges so that they can exit quickly and
1902 	 * free their memory.
1903 	 */
1904 	if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1905 		     fatal_signal_pending(current) ||
1906 		     current->flags & PF_EXITING))
1907 		goto force;
1908 
1909 	/*
1910 	 * Prevent unbounded recursion when reclaim operations need to
1911 	 * allocate memory. This might exceed the limits temporarily,
1912 	 * but we prefer facilitating memory reclaim and getting back
1913 	 * under the limit over triggering OOM kills in these cases.
1914 	 */
1915 	if (unlikely(current->flags & PF_MEMALLOC))
1916 		goto force;
1917 
1918 	if (unlikely(task_in_memcg_oom(current)))
1919 		goto nomem;
1920 
1921 	if (!gfpflags_allow_blocking(gfp_mask))
1922 		goto nomem;
1923 
1924 	mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
1925 
1926 	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1927 						    gfp_mask, may_swap);
1928 
1929 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1930 		goto retry;
1931 
1932 	if (!drained) {
1933 		drain_all_stock(mem_over_limit);
1934 		drained = true;
1935 		goto retry;
1936 	}
1937 
1938 	if (gfp_mask & __GFP_NORETRY)
1939 		goto nomem;
1940 	/*
1941 	 * Even though the limit is exceeded at this point, reclaim
1942 	 * may have been able to free some pages.  Retry the charge
1943 	 * before killing the task.
1944 	 *
1945 	 * Only for regular pages, though: huge pages are rather
1946 	 * unlikely to succeed so close to the limit, and we fall back
1947 	 * to regular pages anyway in case of failure.
1948 	 */
1949 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
1950 		goto retry;
1951 	/*
1952 	 * At task move, charge accounts can be doubly counted. So, it's
1953 	 * better to wait until the end of task_move if something is going on.
1954 	 */
1955 	if (mem_cgroup_wait_acct_move(mem_over_limit))
1956 		goto retry;
1957 
1958 	if (nr_retries--)
1959 		goto retry;
1960 
1961 	if (gfp_mask & __GFP_NOFAIL)
1962 		goto force;
1963 
1964 	if (fatal_signal_pending(current))
1965 		goto force;
1966 
1967 	mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
1968 
1969 	mem_cgroup_oom(mem_over_limit, gfp_mask,
1970 		       get_order(nr_pages * PAGE_SIZE));
1971 nomem:
1972 	if (!(gfp_mask & __GFP_NOFAIL))
1973 		return -ENOMEM;
1974 force:
1975 	/*
1976 	 * The allocation either can't fail or will lead to more memory
1977 	 * being freed very soon.  Allow memory usage go over the limit
1978 	 * temporarily by force charging it.
1979 	 */
1980 	page_counter_charge(&memcg->memory, nr_pages);
1981 	if (do_memsw_account())
1982 		page_counter_charge(&memcg->memsw, nr_pages);
1983 	css_get_many(&memcg->css, nr_pages);
1984 
1985 	return 0;
1986 
1987 done_restock:
1988 	css_get_many(&memcg->css, batch);
1989 	if (batch > nr_pages)
1990 		refill_stock(memcg, batch - nr_pages);
1991 
1992 	/*
1993 	 * If the hierarchy is above the normal consumption range, schedule
1994 	 * reclaim on returning to userland.  We can perform reclaim here
1995 	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
1996 	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
1997 	 * not recorded as it most likely matches current's and won't
1998 	 * change in the meantime.  As high limit is checked again before
1999 	 * reclaim, the cost of mismatch is negligible.
2000 	 */
2001 	do {
2002 		if (page_counter_read(&memcg->memory) > memcg->high) {
2003 			/* Don't bother a random interrupted task */
2004 			if (in_interrupt()) {
2005 				schedule_work(&memcg->high_work);
2006 				break;
2007 			}
2008 			current->memcg_nr_pages_over_high += batch;
2009 			set_notify_resume(current);
2010 			break;
2011 		}
2012 	} while ((memcg = parent_mem_cgroup(memcg)));
2013 
2014 	return 0;
2015 }
2016 
2017 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2018 {
2019 	if (mem_cgroup_is_root(memcg))
2020 		return;
2021 
2022 	page_counter_uncharge(&memcg->memory, nr_pages);
2023 	if (do_memsw_account())
2024 		page_counter_uncharge(&memcg->memsw, nr_pages);
2025 
2026 	css_put_many(&memcg->css, nr_pages);
2027 }
2028 
2029 static void lock_page_lru(struct page *page, int *isolated)
2030 {
2031 	struct zone *zone = page_zone(page);
2032 
2033 	spin_lock_irq(zone_lru_lock(zone));
2034 	if (PageLRU(page)) {
2035 		struct lruvec *lruvec;
2036 
2037 		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2038 		ClearPageLRU(page);
2039 		del_page_from_lru_list(page, lruvec, page_lru(page));
2040 		*isolated = 1;
2041 	} else
2042 		*isolated = 0;
2043 }
2044 
2045 static void unlock_page_lru(struct page *page, int isolated)
2046 {
2047 	struct zone *zone = page_zone(page);
2048 
2049 	if (isolated) {
2050 		struct lruvec *lruvec;
2051 
2052 		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2053 		VM_BUG_ON_PAGE(PageLRU(page), page);
2054 		SetPageLRU(page);
2055 		add_page_to_lru_list(page, lruvec, page_lru(page));
2056 	}
2057 	spin_unlock_irq(zone_lru_lock(zone));
2058 }
2059 
2060 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2061 			  bool lrucare)
2062 {
2063 	int isolated;
2064 
2065 	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2066 
2067 	/*
2068 	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2069 	 * may already be on some other mem_cgroup's LRU.  Take care of it.
2070 	 */
2071 	if (lrucare)
2072 		lock_page_lru(page, &isolated);
2073 
2074 	/*
2075 	 * Nobody should be changing or seriously looking at
2076 	 * page->mem_cgroup at this point:
2077 	 *
2078 	 * - the page is uncharged
2079 	 *
2080 	 * - the page is off-LRU
2081 	 *
2082 	 * - an anonymous fault has exclusive page access, except for
2083 	 *   a locked page table
2084 	 *
2085 	 * - a page cache insertion, a swapin fault, or a migration
2086 	 *   have the page locked
2087 	 */
2088 	page->mem_cgroup = memcg;
2089 
2090 	if (lrucare)
2091 		unlock_page_lru(page, isolated);
2092 }
2093 
2094 #ifndef CONFIG_SLOB
2095 static int memcg_alloc_cache_id(void)
2096 {
2097 	int id, size;
2098 	int err;
2099 
2100 	id = ida_simple_get(&memcg_cache_ida,
2101 			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2102 	if (id < 0)
2103 		return id;
2104 
2105 	if (id < memcg_nr_cache_ids)
2106 		return id;
2107 
2108 	/*
2109 	 * There's no space for the new id in memcg_caches arrays,
2110 	 * so we have to grow them.
2111 	 */
2112 	down_write(&memcg_cache_ids_sem);
2113 
2114 	size = 2 * (id + 1);
2115 	if (size < MEMCG_CACHES_MIN_SIZE)
2116 		size = MEMCG_CACHES_MIN_SIZE;
2117 	else if (size > MEMCG_CACHES_MAX_SIZE)
2118 		size = MEMCG_CACHES_MAX_SIZE;
2119 
2120 	err = memcg_update_all_caches(size);
2121 	if (!err)
2122 		err = memcg_update_all_list_lrus(size);
2123 	if (!err)
2124 		memcg_nr_cache_ids = size;
2125 
2126 	up_write(&memcg_cache_ids_sem);
2127 
2128 	if (err) {
2129 		ida_simple_remove(&memcg_cache_ida, id);
2130 		return err;
2131 	}
2132 	return id;
2133 }
2134 
2135 static void memcg_free_cache_id(int id)
2136 {
2137 	ida_simple_remove(&memcg_cache_ida, id);
2138 }
2139 
2140 struct memcg_kmem_cache_create_work {
2141 	struct mem_cgroup *memcg;
2142 	struct kmem_cache *cachep;
2143 	struct work_struct work;
2144 };
2145 
2146 static struct workqueue_struct *memcg_kmem_cache_create_wq;
2147 
2148 static void memcg_kmem_cache_create_func(struct work_struct *w)
2149 {
2150 	struct memcg_kmem_cache_create_work *cw =
2151 		container_of(w, struct memcg_kmem_cache_create_work, work);
2152 	struct mem_cgroup *memcg = cw->memcg;
2153 	struct kmem_cache *cachep = cw->cachep;
2154 
2155 	memcg_create_kmem_cache(memcg, cachep);
2156 
2157 	css_put(&memcg->css);
2158 	kfree(cw);
2159 }
2160 
2161 /*
2162  * Enqueue the creation of a per-memcg kmem_cache.
2163  */
2164 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2165 					       struct kmem_cache *cachep)
2166 {
2167 	struct memcg_kmem_cache_create_work *cw;
2168 
2169 	cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2170 	if (!cw)
2171 		return;
2172 
2173 	css_get(&memcg->css);
2174 
2175 	cw->memcg = memcg;
2176 	cw->cachep = cachep;
2177 	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2178 
2179 	queue_work(memcg_kmem_cache_create_wq, &cw->work);
2180 }
2181 
2182 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2183 					     struct kmem_cache *cachep)
2184 {
2185 	/*
2186 	 * We need to stop accounting when we kmalloc, because if the
2187 	 * corresponding kmalloc cache is not yet created, the first allocation
2188 	 * in __memcg_schedule_kmem_cache_create will recurse.
2189 	 *
2190 	 * However, it is better to enclose the whole function. Depending on
2191 	 * the debugging options enabled, INIT_WORK(), for instance, can
2192 	 * trigger an allocation. This too, will make us recurse. Because at
2193 	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2194 	 * the safest choice is to do it like this, wrapping the whole function.
2195 	 */
2196 	current->memcg_kmem_skip_account = 1;
2197 	__memcg_schedule_kmem_cache_create(memcg, cachep);
2198 	current->memcg_kmem_skip_account = 0;
2199 }
2200 
2201 static inline bool memcg_kmem_bypass(void)
2202 {
2203 	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2204 		return true;
2205 	return false;
2206 }
2207 
2208 /**
2209  * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2210  * @cachep: the original global kmem cache
2211  *
2212  * Return the kmem_cache we're supposed to use for a slab allocation.
2213  * We try to use the current memcg's version of the cache.
2214  *
2215  * If the cache does not exist yet, if we are the first user of it, we
2216  * create it asynchronously in a workqueue and let the current allocation
2217  * go through with the original cache.
2218  *
2219  * This function takes a reference to the cache it returns to assure it
2220  * won't get destroyed while we are working with it. Once the caller is
2221  * done with it, memcg_kmem_put_cache() must be called to release the
2222  * reference.
2223  */
2224 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2225 {
2226 	struct mem_cgroup *memcg;
2227 	struct kmem_cache *memcg_cachep;
2228 	int kmemcg_id;
2229 
2230 	VM_BUG_ON(!is_root_cache(cachep));
2231 
2232 	if (memcg_kmem_bypass())
2233 		return cachep;
2234 
2235 	if (current->memcg_kmem_skip_account)
2236 		return cachep;
2237 
2238 	memcg = get_mem_cgroup_from_mm(current->mm);
2239 	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2240 	if (kmemcg_id < 0)
2241 		goto out;
2242 
2243 	memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2244 	if (likely(memcg_cachep))
2245 		return memcg_cachep;
2246 
2247 	/*
2248 	 * If we are in a safe context (can wait, and not in interrupt
2249 	 * context), we could be be predictable and return right away.
2250 	 * This would guarantee that the allocation being performed
2251 	 * already belongs in the new cache.
2252 	 *
2253 	 * However, there are some clashes that can arrive from locking.
2254 	 * For instance, because we acquire the slab_mutex while doing
2255 	 * memcg_create_kmem_cache, this means no further allocation
2256 	 * could happen with the slab_mutex held. So it's better to
2257 	 * defer everything.
2258 	 */
2259 	memcg_schedule_kmem_cache_create(memcg, cachep);
2260 out:
2261 	css_put(&memcg->css);
2262 	return cachep;
2263 }
2264 
2265 /**
2266  * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2267  * @cachep: the cache returned by memcg_kmem_get_cache
2268  */
2269 void memcg_kmem_put_cache(struct kmem_cache *cachep)
2270 {
2271 	if (!is_root_cache(cachep))
2272 		css_put(&cachep->memcg_params.memcg->css);
2273 }
2274 
2275 /**
2276  * memcg_kmem_charge: charge a kmem page
2277  * @page: page to charge
2278  * @gfp: reclaim mode
2279  * @order: allocation order
2280  * @memcg: memory cgroup to charge
2281  *
2282  * Returns 0 on success, an error code on failure.
2283  */
2284 int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2285 			    struct mem_cgroup *memcg)
2286 {
2287 	unsigned int nr_pages = 1 << order;
2288 	struct page_counter *counter;
2289 	int ret;
2290 
2291 	ret = try_charge(memcg, gfp, nr_pages);
2292 	if (ret)
2293 		return ret;
2294 
2295 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2296 	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2297 		cancel_charge(memcg, nr_pages);
2298 		return -ENOMEM;
2299 	}
2300 
2301 	page->mem_cgroup = memcg;
2302 
2303 	return 0;
2304 }
2305 
2306 /**
2307  * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2308  * @page: page to charge
2309  * @gfp: reclaim mode
2310  * @order: allocation order
2311  *
2312  * Returns 0 on success, an error code on failure.
2313  */
2314 int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2315 {
2316 	struct mem_cgroup *memcg;
2317 	int ret = 0;
2318 
2319 	if (memcg_kmem_bypass())
2320 		return 0;
2321 
2322 	memcg = get_mem_cgroup_from_mm(current->mm);
2323 	if (!mem_cgroup_is_root(memcg)) {
2324 		ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
2325 		if (!ret)
2326 			__SetPageKmemcg(page);
2327 	}
2328 	css_put(&memcg->css);
2329 	return ret;
2330 }
2331 /**
2332  * memcg_kmem_uncharge: uncharge a kmem page
2333  * @page: page to uncharge
2334  * @order: allocation order
2335  */
2336 void memcg_kmem_uncharge(struct page *page, int order)
2337 {
2338 	struct mem_cgroup *memcg = page->mem_cgroup;
2339 	unsigned int nr_pages = 1 << order;
2340 
2341 	if (!memcg)
2342 		return;
2343 
2344 	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2345 
2346 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2347 		page_counter_uncharge(&memcg->kmem, nr_pages);
2348 
2349 	page_counter_uncharge(&memcg->memory, nr_pages);
2350 	if (do_memsw_account())
2351 		page_counter_uncharge(&memcg->memsw, nr_pages);
2352 
2353 	page->mem_cgroup = NULL;
2354 
2355 	/* slab pages do not have PageKmemcg flag set */
2356 	if (PageKmemcg(page))
2357 		__ClearPageKmemcg(page);
2358 
2359 	css_put_many(&memcg->css, nr_pages);
2360 }
2361 #endif /* !CONFIG_SLOB */
2362 
2363 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2364 
2365 /*
2366  * Because tail pages are not marked as "used", set it. We're under
2367  * zone_lru_lock and migration entries setup in all page mappings.
2368  */
2369 void mem_cgroup_split_huge_fixup(struct page *head)
2370 {
2371 	int i;
2372 
2373 	if (mem_cgroup_disabled())
2374 		return;
2375 
2376 	for (i = 1; i < HPAGE_PMD_NR; i++)
2377 		head[i].mem_cgroup = head->mem_cgroup;
2378 
2379 	__this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2380 		       HPAGE_PMD_NR);
2381 }
2382 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2383 
2384 #ifdef CONFIG_MEMCG_SWAP
2385 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2386 					 bool charge)
2387 {
2388 	int val = (charge) ? 1 : -1;
2389 	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2390 }
2391 
2392 /**
2393  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2394  * @entry: swap entry to be moved
2395  * @from:  mem_cgroup which the entry is moved from
2396  * @to:  mem_cgroup which the entry is moved to
2397  *
2398  * It succeeds only when the swap_cgroup's record for this entry is the same
2399  * as the mem_cgroup's id of @from.
2400  *
2401  * Returns 0 on success, -EINVAL on failure.
2402  *
2403  * The caller must have charged to @to, IOW, called page_counter_charge() about
2404  * both res and memsw, and called css_get().
2405  */
2406 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2407 				struct mem_cgroup *from, struct mem_cgroup *to)
2408 {
2409 	unsigned short old_id, new_id;
2410 
2411 	old_id = mem_cgroup_id(from);
2412 	new_id = mem_cgroup_id(to);
2413 
2414 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2415 		mem_cgroup_swap_statistics(from, false);
2416 		mem_cgroup_swap_statistics(to, true);
2417 		return 0;
2418 	}
2419 	return -EINVAL;
2420 }
2421 #else
2422 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2423 				struct mem_cgroup *from, struct mem_cgroup *to)
2424 {
2425 	return -EINVAL;
2426 }
2427 #endif
2428 
2429 static DEFINE_MUTEX(memcg_limit_mutex);
2430 
2431 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2432 				   unsigned long limit)
2433 {
2434 	unsigned long curusage;
2435 	unsigned long oldusage;
2436 	bool enlarge = false;
2437 	int retry_count;
2438 	int ret;
2439 
2440 	/*
2441 	 * For keeping hierarchical_reclaim simple, how long we should retry
2442 	 * is depends on callers. We set our retry-count to be function
2443 	 * of # of children which we should visit in this loop.
2444 	 */
2445 	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2446 		      mem_cgroup_count_children(memcg);
2447 
2448 	oldusage = page_counter_read(&memcg->memory);
2449 
2450 	do {
2451 		if (signal_pending(current)) {
2452 			ret = -EINTR;
2453 			break;
2454 		}
2455 
2456 		mutex_lock(&memcg_limit_mutex);
2457 		if (limit > memcg->memsw.limit) {
2458 			mutex_unlock(&memcg_limit_mutex);
2459 			ret = -EINVAL;
2460 			break;
2461 		}
2462 		if (limit > memcg->memory.limit)
2463 			enlarge = true;
2464 		ret = page_counter_limit(&memcg->memory, limit);
2465 		mutex_unlock(&memcg_limit_mutex);
2466 
2467 		if (!ret)
2468 			break;
2469 
2470 		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2471 
2472 		curusage = page_counter_read(&memcg->memory);
2473 		/* Usage is reduced ? */
2474 		if (curusage >= oldusage)
2475 			retry_count--;
2476 		else
2477 			oldusage = curusage;
2478 	} while (retry_count);
2479 
2480 	if (!ret && enlarge)
2481 		memcg_oom_recover(memcg);
2482 
2483 	return ret;
2484 }
2485 
2486 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2487 					 unsigned long limit)
2488 {
2489 	unsigned long curusage;
2490 	unsigned long oldusage;
2491 	bool enlarge = false;
2492 	int retry_count;
2493 	int ret;
2494 
2495 	/* see mem_cgroup_resize_res_limit */
2496 	retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2497 		      mem_cgroup_count_children(memcg);
2498 
2499 	oldusage = page_counter_read(&memcg->memsw);
2500 
2501 	do {
2502 		if (signal_pending(current)) {
2503 			ret = -EINTR;
2504 			break;
2505 		}
2506 
2507 		mutex_lock(&memcg_limit_mutex);
2508 		if (limit < memcg->memory.limit) {
2509 			mutex_unlock(&memcg_limit_mutex);
2510 			ret = -EINVAL;
2511 			break;
2512 		}
2513 		if (limit > memcg->memsw.limit)
2514 			enlarge = true;
2515 		ret = page_counter_limit(&memcg->memsw, limit);
2516 		mutex_unlock(&memcg_limit_mutex);
2517 
2518 		if (!ret)
2519 			break;
2520 
2521 		try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2522 
2523 		curusage = page_counter_read(&memcg->memsw);
2524 		/* Usage is reduced ? */
2525 		if (curusage >= oldusage)
2526 			retry_count--;
2527 		else
2528 			oldusage = curusage;
2529 	} while (retry_count);
2530 
2531 	if (!ret && enlarge)
2532 		memcg_oom_recover(memcg);
2533 
2534 	return ret;
2535 }
2536 
2537 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2538 					    gfp_t gfp_mask,
2539 					    unsigned long *total_scanned)
2540 {
2541 	unsigned long nr_reclaimed = 0;
2542 	struct mem_cgroup_per_node *mz, *next_mz = NULL;
2543 	unsigned long reclaimed;
2544 	int loop = 0;
2545 	struct mem_cgroup_tree_per_node *mctz;
2546 	unsigned long excess;
2547 	unsigned long nr_scanned;
2548 
2549 	if (order > 0)
2550 		return 0;
2551 
2552 	mctz = soft_limit_tree_node(pgdat->node_id);
2553 
2554 	/*
2555 	 * Do not even bother to check the largest node if the root
2556 	 * is empty. Do it lockless to prevent lock bouncing. Races
2557 	 * are acceptable as soft limit is best effort anyway.
2558 	 */
2559 	if (RB_EMPTY_ROOT(&mctz->rb_root))
2560 		return 0;
2561 
2562 	/*
2563 	 * This loop can run a while, specially if mem_cgroup's continuously
2564 	 * keep exceeding their soft limit and putting the system under
2565 	 * pressure
2566 	 */
2567 	do {
2568 		if (next_mz)
2569 			mz = next_mz;
2570 		else
2571 			mz = mem_cgroup_largest_soft_limit_node(mctz);
2572 		if (!mz)
2573 			break;
2574 
2575 		nr_scanned = 0;
2576 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
2577 						    gfp_mask, &nr_scanned);
2578 		nr_reclaimed += reclaimed;
2579 		*total_scanned += nr_scanned;
2580 		spin_lock_irq(&mctz->lock);
2581 		__mem_cgroup_remove_exceeded(mz, mctz);
2582 
2583 		/*
2584 		 * If we failed to reclaim anything from this memory cgroup
2585 		 * it is time to move on to the next cgroup
2586 		 */
2587 		next_mz = NULL;
2588 		if (!reclaimed)
2589 			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2590 
2591 		excess = soft_limit_excess(mz->memcg);
2592 		/*
2593 		 * One school of thought says that we should not add
2594 		 * back the node to the tree if reclaim returns 0.
2595 		 * But our reclaim could return 0, simply because due
2596 		 * to priority we are exposing a smaller subset of
2597 		 * memory to reclaim from. Consider this as a longer
2598 		 * term TODO.
2599 		 */
2600 		/* If excess == 0, no tree ops */
2601 		__mem_cgroup_insert_exceeded(mz, mctz, excess);
2602 		spin_unlock_irq(&mctz->lock);
2603 		css_put(&mz->memcg->css);
2604 		loop++;
2605 		/*
2606 		 * Could not reclaim anything and there are no more
2607 		 * mem cgroups to try or we seem to be looping without
2608 		 * reclaiming anything.
2609 		 */
2610 		if (!nr_reclaimed &&
2611 			(next_mz == NULL ||
2612 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2613 			break;
2614 	} while (!nr_reclaimed);
2615 	if (next_mz)
2616 		css_put(&next_mz->memcg->css);
2617 	return nr_reclaimed;
2618 }
2619 
2620 /*
2621  * Test whether @memcg has children, dead or alive.  Note that this
2622  * function doesn't care whether @memcg has use_hierarchy enabled and
2623  * returns %true if there are child csses according to the cgroup
2624  * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
2625  */
2626 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2627 {
2628 	bool ret;
2629 
2630 	rcu_read_lock();
2631 	ret = css_next_child(NULL, &memcg->css);
2632 	rcu_read_unlock();
2633 	return ret;
2634 }
2635 
2636 /*
2637  * Reclaims as many pages from the given memcg as possible.
2638  *
2639  * Caller is responsible for holding css reference for memcg.
2640  */
2641 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2642 {
2643 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2644 
2645 	/* we call try-to-free pages for make this cgroup empty */
2646 	lru_add_drain_all();
2647 	/* try to free all pages in this cgroup */
2648 	while (nr_retries && page_counter_read(&memcg->memory)) {
2649 		int progress;
2650 
2651 		if (signal_pending(current))
2652 			return -EINTR;
2653 
2654 		progress = try_to_free_mem_cgroup_pages(memcg, 1,
2655 							GFP_KERNEL, true);
2656 		if (!progress) {
2657 			nr_retries--;
2658 			/* maybe some writeback is necessary */
2659 			congestion_wait(BLK_RW_ASYNC, HZ/10);
2660 		}
2661 
2662 	}
2663 
2664 	return 0;
2665 }
2666 
2667 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2668 					    char *buf, size_t nbytes,
2669 					    loff_t off)
2670 {
2671 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2672 
2673 	if (mem_cgroup_is_root(memcg))
2674 		return -EINVAL;
2675 	return mem_cgroup_force_empty(memcg) ?: nbytes;
2676 }
2677 
2678 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2679 				     struct cftype *cft)
2680 {
2681 	return mem_cgroup_from_css(css)->use_hierarchy;
2682 }
2683 
2684 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2685 				      struct cftype *cft, u64 val)
2686 {
2687 	int retval = 0;
2688 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2689 	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2690 
2691 	if (memcg->use_hierarchy == val)
2692 		return 0;
2693 
2694 	/*
2695 	 * If parent's use_hierarchy is set, we can't make any modifications
2696 	 * in the child subtrees. If it is unset, then the change can
2697 	 * occur, provided the current cgroup has no children.
2698 	 *
2699 	 * For the root cgroup, parent_mem is NULL, we allow value to be
2700 	 * set if there are no children.
2701 	 */
2702 	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2703 				(val == 1 || val == 0)) {
2704 		if (!memcg_has_children(memcg))
2705 			memcg->use_hierarchy = val;
2706 		else
2707 			retval = -EBUSY;
2708 	} else
2709 		retval = -EINVAL;
2710 
2711 	return retval;
2712 }
2713 
2714 static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2715 {
2716 	struct mem_cgroup *iter;
2717 	int i;
2718 
2719 	memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2720 
2721 	for_each_mem_cgroup_tree(iter, memcg) {
2722 		for (i = 0; i < MEMCG_NR_STAT; i++)
2723 			stat[i] += mem_cgroup_read_stat(iter, i);
2724 	}
2725 }
2726 
2727 static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2728 {
2729 	struct mem_cgroup *iter;
2730 	int i;
2731 
2732 	memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2733 
2734 	for_each_mem_cgroup_tree(iter, memcg) {
2735 		for (i = 0; i < MEMCG_NR_EVENTS; i++)
2736 			events[i] += mem_cgroup_read_events(iter, i);
2737 	}
2738 }
2739 
2740 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2741 {
2742 	unsigned long val = 0;
2743 
2744 	if (mem_cgroup_is_root(memcg)) {
2745 		struct mem_cgroup *iter;
2746 
2747 		for_each_mem_cgroup_tree(iter, memcg) {
2748 			val += mem_cgroup_read_stat(iter,
2749 					MEM_CGROUP_STAT_CACHE);
2750 			val += mem_cgroup_read_stat(iter,
2751 					MEM_CGROUP_STAT_RSS);
2752 			if (swap)
2753 				val += mem_cgroup_read_stat(iter,
2754 						MEM_CGROUP_STAT_SWAP);
2755 		}
2756 	} else {
2757 		if (!swap)
2758 			val = page_counter_read(&memcg->memory);
2759 		else
2760 			val = page_counter_read(&memcg->memsw);
2761 	}
2762 	return val;
2763 }
2764 
2765 enum {
2766 	RES_USAGE,
2767 	RES_LIMIT,
2768 	RES_MAX_USAGE,
2769 	RES_FAILCNT,
2770 	RES_SOFT_LIMIT,
2771 };
2772 
2773 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2774 			       struct cftype *cft)
2775 {
2776 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2777 	struct page_counter *counter;
2778 
2779 	switch (MEMFILE_TYPE(cft->private)) {
2780 	case _MEM:
2781 		counter = &memcg->memory;
2782 		break;
2783 	case _MEMSWAP:
2784 		counter = &memcg->memsw;
2785 		break;
2786 	case _KMEM:
2787 		counter = &memcg->kmem;
2788 		break;
2789 	case _TCP:
2790 		counter = &memcg->tcpmem;
2791 		break;
2792 	default:
2793 		BUG();
2794 	}
2795 
2796 	switch (MEMFILE_ATTR(cft->private)) {
2797 	case RES_USAGE:
2798 		if (counter == &memcg->memory)
2799 			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2800 		if (counter == &memcg->memsw)
2801 			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2802 		return (u64)page_counter_read(counter) * PAGE_SIZE;
2803 	case RES_LIMIT:
2804 		return (u64)counter->limit * PAGE_SIZE;
2805 	case RES_MAX_USAGE:
2806 		return (u64)counter->watermark * PAGE_SIZE;
2807 	case RES_FAILCNT:
2808 		return counter->failcnt;
2809 	case RES_SOFT_LIMIT:
2810 		return (u64)memcg->soft_limit * PAGE_SIZE;
2811 	default:
2812 		BUG();
2813 	}
2814 }
2815 
2816 #ifndef CONFIG_SLOB
2817 static int memcg_online_kmem(struct mem_cgroup *memcg)
2818 {
2819 	int memcg_id;
2820 
2821 	if (cgroup_memory_nokmem)
2822 		return 0;
2823 
2824 	BUG_ON(memcg->kmemcg_id >= 0);
2825 	BUG_ON(memcg->kmem_state);
2826 
2827 	memcg_id = memcg_alloc_cache_id();
2828 	if (memcg_id < 0)
2829 		return memcg_id;
2830 
2831 	static_branch_inc(&memcg_kmem_enabled_key);
2832 	/*
2833 	 * A memory cgroup is considered kmem-online as soon as it gets
2834 	 * kmemcg_id. Setting the id after enabling static branching will
2835 	 * guarantee no one starts accounting before all call sites are
2836 	 * patched.
2837 	 */
2838 	memcg->kmemcg_id = memcg_id;
2839 	memcg->kmem_state = KMEM_ONLINE;
2840 
2841 	return 0;
2842 }
2843 
2844 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2845 {
2846 	struct cgroup_subsys_state *css;
2847 	struct mem_cgroup *parent, *child;
2848 	int kmemcg_id;
2849 
2850 	if (memcg->kmem_state != KMEM_ONLINE)
2851 		return;
2852 	/*
2853 	 * Clear the online state before clearing memcg_caches array
2854 	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2855 	 * guarantees that no cache will be created for this cgroup
2856 	 * after we are done (see memcg_create_kmem_cache()).
2857 	 */
2858 	memcg->kmem_state = KMEM_ALLOCATED;
2859 
2860 	memcg_deactivate_kmem_caches(memcg);
2861 
2862 	kmemcg_id = memcg->kmemcg_id;
2863 	BUG_ON(kmemcg_id < 0);
2864 
2865 	parent = parent_mem_cgroup(memcg);
2866 	if (!parent)
2867 		parent = root_mem_cgroup;
2868 
2869 	/*
2870 	 * Change kmemcg_id of this cgroup and all its descendants to the
2871 	 * parent's id, and then move all entries from this cgroup's list_lrus
2872 	 * to ones of the parent. After we have finished, all list_lrus
2873 	 * corresponding to this cgroup are guaranteed to remain empty. The
2874 	 * ordering is imposed by list_lru_node->lock taken by
2875 	 * memcg_drain_all_list_lrus().
2876 	 */
2877 	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
2878 	css_for_each_descendant_pre(css, &memcg->css) {
2879 		child = mem_cgroup_from_css(css);
2880 		BUG_ON(child->kmemcg_id != kmemcg_id);
2881 		child->kmemcg_id = parent->kmemcg_id;
2882 		if (!memcg->use_hierarchy)
2883 			break;
2884 	}
2885 	rcu_read_unlock();
2886 
2887 	memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2888 
2889 	memcg_free_cache_id(kmemcg_id);
2890 }
2891 
2892 static void memcg_free_kmem(struct mem_cgroup *memcg)
2893 {
2894 	/* css_alloc() failed, offlining didn't happen */
2895 	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2896 		memcg_offline_kmem(memcg);
2897 
2898 	if (memcg->kmem_state == KMEM_ALLOCATED) {
2899 		memcg_destroy_kmem_caches(memcg);
2900 		static_branch_dec(&memcg_kmem_enabled_key);
2901 		WARN_ON(page_counter_read(&memcg->kmem));
2902 	}
2903 }
2904 #else
2905 static int memcg_online_kmem(struct mem_cgroup *memcg)
2906 {
2907 	return 0;
2908 }
2909 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2910 {
2911 }
2912 static void memcg_free_kmem(struct mem_cgroup *memcg)
2913 {
2914 }
2915 #endif /* !CONFIG_SLOB */
2916 
2917 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2918 				   unsigned long limit)
2919 {
2920 	int ret;
2921 
2922 	mutex_lock(&memcg_limit_mutex);
2923 	ret = page_counter_limit(&memcg->kmem, limit);
2924 	mutex_unlock(&memcg_limit_mutex);
2925 	return ret;
2926 }
2927 
2928 static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2929 {
2930 	int ret;
2931 
2932 	mutex_lock(&memcg_limit_mutex);
2933 
2934 	ret = page_counter_limit(&memcg->tcpmem, limit);
2935 	if (ret)
2936 		goto out;
2937 
2938 	if (!memcg->tcpmem_active) {
2939 		/*
2940 		 * The active flag needs to be written after the static_key
2941 		 * update. This is what guarantees that the socket activation
2942 		 * function is the last one to run. See mem_cgroup_sk_alloc()
2943 		 * for details, and note that we don't mark any socket as
2944 		 * belonging to this memcg until that flag is up.
2945 		 *
2946 		 * We need to do this, because static_keys will span multiple
2947 		 * sites, but we can't control their order. If we mark a socket
2948 		 * as accounted, but the accounting functions are not patched in
2949 		 * yet, we'll lose accounting.
2950 		 *
2951 		 * We never race with the readers in mem_cgroup_sk_alloc(),
2952 		 * because when this value change, the code to process it is not
2953 		 * patched in yet.
2954 		 */
2955 		static_branch_inc(&memcg_sockets_enabled_key);
2956 		memcg->tcpmem_active = true;
2957 	}
2958 out:
2959 	mutex_unlock(&memcg_limit_mutex);
2960 	return ret;
2961 }
2962 
2963 /*
2964  * The user of this function is...
2965  * RES_LIMIT.
2966  */
2967 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2968 				char *buf, size_t nbytes, loff_t off)
2969 {
2970 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2971 	unsigned long nr_pages;
2972 	int ret;
2973 
2974 	buf = strstrip(buf);
2975 	ret = page_counter_memparse(buf, "-1", &nr_pages);
2976 	if (ret)
2977 		return ret;
2978 
2979 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
2980 	case RES_LIMIT:
2981 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2982 			ret = -EINVAL;
2983 			break;
2984 		}
2985 		switch (MEMFILE_TYPE(of_cft(of)->private)) {
2986 		case _MEM:
2987 			ret = mem_cgroup_resize_limit(memcg, nr_pages);
2988 			break;
2989 		case _MEMSWAP:
2990 			ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
2991 			break;
2992 		case _KMEM:
2993 			ret = memcg_update_kmem_limit(memcg, nr_pages);
2994 			break;
2995 		case _TCP:
2996 			ret = memcg_update_tcp_limit(memcg, nr_pages);
2997 			break;
2998 		}
2999 		break;
3000 	case RES_SOFT_LIMIT:
3001 		memcg->soft_limit = nr_pages;
3002 		ret = 0;
3003 		break;
3004 	}
3005 	return ret ?: nbytes;
3006 }
3007 
3008 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3009 				size_t nbytes, loff_t off)
3010 {
3011 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3012 	struct page_counter *counter;
3013 
3014 	switch (MEMFILE_TYPE(of_cft(of)->private)) {
3015 	case _MEM:
3016 		counter = &memcg->memory;
3017 		break;
3018 	case _MEMSWAP:
3019 		counter = &memcg->memsw;
3020 		break;
3021 	case _KMEM:
3022 		counter = &memcg->kmem;
3023 		break;
3024 	case _TCP:
3025 		counter = &memcg->tcpmem;
3026 		break;
3027 	default:
3028 		BUG();
3029 	}
3030 
3031 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3032 	case RES_MAX_USAGE:
3033 		page_counter_reset_watermark(counter);
3034 		break;
3035 	case RES_FAILCNT:
3036 		counter->failcnt = 0;
3037 		break;
3038 	default:
3039 		BUG();
3040 	}
3041 
3042 	return nbytes;
3043 }
3044 
3045 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3046 					struct cftype *cft)
3047 {
3048 	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3049 }
3050 
3051 #ifdef CONFIG_MMU
3052 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3053 					struct cftype *cft, u64 val)
3054 {
3055 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3056 
3057 	if (val & ~MOVE_MASK)
3058 		return -EINVAL;
3059 
3060 	/*
3061 	 * No kind of locking is needed in here, because ->can_attach() will
3062 	 * check this value once in the beginning of the process, and then carry
3063 	 * on with stale data. This means that changes to this value will only
3064 	 * affect task migrations starting after the change.
3065 	 */
3066 	memcg->move_charge_at_immigrate = val;
3067 	return 0;
3068 }
3069 #else
3070 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3071 					struct cftype *cft, u64 val)
3072 {
3073 	return -ENOSYS;
3074 }
3075 #endif
3076 
3077 #ifdef CONFIG_NUMA
3078 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3079 {
3080 	struct numa_stat {
3081 		const char *name;
3082 		unsigned int lru_mask;
3083 	};
3084 
3085 	static const struct numa_stat stats[] = {
3086 		{ "total", LRU_ALL },
3087 		{ "file", LRU_ALL_FILE },
3088 		{ "anon", LRU_ALL_ANON },
3089 		{ "unevictable", BIT(LRU_UNEVICTABLE) },
3090 	};
3091 	const struct numa_stat *stat;
3092 	int nid;
3093 	unsigned long nr;
3094 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3095 
3096 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3097 		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3098 		seq_printf(m, "%s=%lu", stat->name, nr);
3099 		for_each_node_state(nid, N_MEMORY) {
3100 			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3101 							  stat->lru_mask);
3102 			seq_printf(m, " N%d=%lu", nid, nr);
3103 		}
3104 		seq_putc(m, '\n');
3105 	}
3106 
3107 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3108 		struct mem_cgroup *iter;
3109 
3110 		nr = 0;
3111 		for_each_mem_cgroup_tree(iter, memcg)
3112 			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3113 		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3114 		for_each_node_state(nid, N_MEMORY) {
3115 			nr = 0;
3116 			for_each_mem_cgroup_tree(iter, memcg)
3117 				nr += mem_cgroup_node_nr_lru_pages(
3118 					iter, nid, stat->lru_mask);
3119 			seq_printf(m, " N%d=%lu", nid, nr);
3120 		}
3121 		seq_putc(m, '\n');
3122 	}
3123 
3124 	return 0;
3125 }
3126 #endif /* CONFIG_NUMA */
3127 
3128 static int memcg_stat_show(struct seq_file *m, void *v)
3129 {
3130 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3131 	unsigned long memory, memsw;
3132 	struct mem_cgroup *mi;
3133 	unsigned int i;
3134 
3135 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3136 		     MEM_CGROUP_STAT_NSTATS);
3137 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3138 		     MEM_CGROUP_EVENTS_NSTATS);
3139 	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3140 
3141 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3142 		if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3143 			continue;
3144 		seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3145 			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3146 	}
3147 
3148 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3149 		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3150 			   mem_cgroup_read_events(memcg, i));
3151 
3152 	for (i = 0; i < NR_LRU_LISTS; i++)
3153 		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3154 			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3155 
3156 	/* Hierarchical information */
3157 	memory = memsw = PAGE_COUNTER_MAX;
3158 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3159 		memory = min(memory, mi->memory.limit);
3160 		memsw = min(memsw, mi->memsw.limit);
3161 	}
3162 	seq_printf(m, "hierarchical_memory_limit %llu\n",
3163 		   (u64)memory * PAGE_SIZE);
3164 	if (do_memsw_account())
3165 		seq_printf(m, "hierarchical_memsw_limit %llu\n",
3166 			   (u64)memsw * PAGE_SIZE);
3167 
3168 	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3169 		unsigned long long val = 0;
3170 
3171 		if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3172 			continue;
3173 		for_each_mem_cgroup_tree(mi, memcg)
3174 			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3175 		seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3176 	}
3177 
3178 	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3179 		unsigned long long val = 0;
3180 
3181 		for_each_mem_cgroup_tree(mi, memcg)
3182 			val += mem_cgroup_read_events(mi, i);
3183 		seq_printf(m, "total_%s %llu\n",
3184 			   mem_cgroup_events_names[i], val);
3185 	}
3186 
3187 	for (i = 0; i < NR_LRU_LISTS; i++) {
3188 		unsigned long long val = 0;
3189 
3190 		for_each_mem_cgroup_tree(mi, memcg)
3191 			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3192 		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3193 	}
3194 
3195 #ifdef CONFIG_DEBUG_VM
3196 	{
3197 		pg_data_t *pgdat;
3198 		struct mem_cgroup_per_node *mz;
3199 		struct zone_reclaim_stat *rstat;
3200 		unsigned long recent_rotated[2] = {0, 0};
3201 		unsigned long recent_scanned[2] = {0, 0};
3202 
3203 		for_each_online_pgdat(pgdat) {
3204 			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3205 			rstat = &mz->lruvec.reclaim_stat;
3206 
3207 			recent_rotated[0] += rstat->recent_rotated[0];
3208 			recent_rotated[1] += rstat->recent_rotated[1];
3209 			recent_scanned[0] += rstat->recent_scanned[0];
3210 			recent_scanned[1] += rstat->recent_scanned[1];
3211 		}
3212 		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3213 		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3214 		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3215 		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3216 	}
3217 #endif
3218 
3219 	return 0;
3220 }
3221 
3222 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3223 				      struct cftype *cft)
3224 {
3225 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3226 
3227 	return mem_cgroup_swappiness(memcg);
3228 }
3229 
3230 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3231 				       struct cftype *cft, u64 val)
3232 {
3233 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3234 
3235 	if (val > 100)
3236 		return -EINVAL;
3237 
3238 	if (css->parent)
3239 		memcg->swappiness = val;
3240 	else
3241 		vm_swappiness = val;
3242 
3243 	return 0;
3244 }
3245 
3246 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3247 {
3248 	struct mem_cgroup_threshold_ary *t;
3249 	unsigned long usage;
3250 	int i;
3251 
3252 	rcu_read_lock();
3253 	if (!swap)
3254 		t = rcu_dereference(memcg->thresholds.primary);
3255 	else
3256 		t = rcu_dereference(memcg->memsw_thresholds.primary);
3257 
3258 	if (!t)
3259 		goto unlock;
3260 
3261 	usage = mem_cgroup_usage(memcg, swap);
3262 
3263 	/*
3264 	 * current_threshold points to threshold just below or equal to usage.
3265 	 * If it's not true, a threshold was crossed after last
3266 	 * call of __mem_cgroup_threshold().
3267 	 */
3268 	i = t->current_threshold;
3269 
3270 	/*
3271 	 * Iterate backward over array of thresholds starting from
3272 	 * current_threshold and check if a threshold is crossed.
3273 	 * If none of thresholds below usage is crossed, we read
3274 	 * only one element of the array here.
3275 	 */
3276 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3277 		eventfd_signal(t->entries[i].eventfd, 1);
3278 
3279 	/* i = current_threshold + 1 */
3280 	i++;
3281 
3282 	/*
3283 	 * Iterate forward over array of thresholds starting from
3284 	 * current_threshold+1 and check if a threshold is crossed.
3285 	 * If none of thresholds above usage is crossed, we read
3286 	 * only one element of the array here.
3287 	 */
3288 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3289 		eventfd_signal(t->entries[i].eventfd, 1);
3290 
3291 	/* Update current_threshold */
3292 	t->current_threshold = i - 1;
3293 unlock:
3294 	rcu_read_unlock();
3295 }
3296 
3297 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3298 {
3299 	while (memcg) {
3300 		__mem_cgroup_threshold(memcg, false);
3301 		if (do_memsw_account())
3302 			__mem_cgroup_threshold(memcg, true);
3303 
3304 		memcg = parent_mem_cgroup(memcg);
3305 	}
3306 }
3307 
3308 static int compare_thresholds(const void *a, const void *b)
3309 {
3310 	const struct mem_cgroup_threshold *_a = a;
3311 	const struct mem_cgroup_threshold *_b = b;
3312 
3313 	if (_a->threshold > _b->threshold)
3314 		return 1;
3315 
3316 	if (_a->threshold < _b->threshold)
3317 		return -1;
3318 
3319 	return 0;
3320 }
3321 
3322 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3323 {
3324 	struct mem_cgroup_eventfd_list *ev;
3325 
3326 	spin_lock(&memcg_oom_lock);
3327 
3328 	list_for_each_entry(ev, &memcg->oom_notify, list)
3329 		eventfd_signal(ev->eventfd, 1);
3330 
3331 	spin_unlock(&memcg_oom_lock);
3332 	return 0;
3333 }
3334 
3335 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3336 {
3337 	struct mem_cgroup *iter;
3338 
3339 	for_each_mem_cgroup_tree(iter, memcg)
3340 		mem_cgroup_oom_notify_cb(iter);
3341 }
3342 
3343 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3344 	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3345 {
3346 	struct mem_cgroup_thresholds *thresholds;
3347 	struct mem_cgroup_threshold_ary *new;
3348 	unsigned long threshold;
3349 	unsigned long usage;
3350 	int i, size, ret;
3351 
3352 	ret = page_counter_memparse(args, "-1", &threshold);
3353 	if (ret)
3354 		return ret;
3355 
3356 	mutex_lock(&memcg->thresholds_lock);
3357 
3358 	if (type == _MEM) {
3359 		thresholds = &memcg->thresholds;
3360 		usage = mem_cgroup_usage(memcg, false);
3361 	} else if (type == _MEMSWAP) {
3362 		thresholds = &memcg->memsw_thresholds;
3363 		usage = mem_cgroup_usage(memcg, true);
3364 	} else
3365 		BUG();
3366 
3367 	/* Check if a threshold crossed before adding a new one */
3368 	if (thresholds->primary)
3369 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3370 
3371 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3372 
3373 	/* Allocate memory for new array of thresholds */
3374 	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3375 			GFP_KERNEL);
3376 	if (!new) {
3377 		ret = -ENOMEM;
3378 		goto unlock;
3379 	}
3380 	new->size = size;
3381 
3382 	/* Copy thresholds (if any) to new array */
3383 	if (thresholds->primary) {
3384 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3385 				sizeof(struct mem_cgroup_threshold));
3386 	}
3387 
3388 	/* Add new threshold */
3389 	new->entries[size - 1].eventfd = eventfd;
3390 	new->entries[size - 1].threshold = threshold;
3391 
3392 	/* Sort thresholds. Registering of new threshold isn't time-critical */
3393 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3394 			compare_thresholds, NULL);
3395 
3396 	/* Find current threshold */
3397 	new->current_threshold = -1;
3398 	for (i = 0; i < size; i++) {
3399 		if (new->entries[i].threshold <= usage) {
3400 			/*
3401 			 * new->current_threshold will not be used until
3402 			 * rcu_assign_pointer(), so it's safe to increment
3403 			 * it here.
3404 			 */
3405 			++new->current_threshold;
3406 		} else
3407 			break;
3408 	}
3409 
3410 	/* Free old spare buffer and save old primary buffer as spare */
3411 	kfree(thresholds->spare);
3412 	thresholds->spare = thresholds->primary;
3413 
3414 	rcu_assign_pointer(thresholds->primary, new);
3415 
3416 	/* To be sure that nobody uses thresholds */
3417 	synchronize_rcu();
3418 
3419 unlock:
3420 	mutex_unlock(&memcg->thresholds_lock);
3421 
3422 	return ret;
3423 }
3424 
3425 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3426 	struct eventfd_ctx *eventfd, const char *args)
3427 {
3428 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3429 }
3430 
3431 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3432 	struct eventfd_ctx *eventfd, const char *args)
3433 {
3434 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3435 }
3436 
3437 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3438 	struct eventfd_ctx *eventfd, enum res_type type)
3439 {
3440 	struct mem_cgroup_thresholds *thresholds;
3441 	struct mem_cgroup_threshold_ary *new;
3442 	unsigned long usage;
3443 	int i, j, size;
3444 
3445 	mutex_lock(&memcg->thresholds_lock);
3446 
3447 	if (type == _MEM) {
3448 		thresholds = &memcg->thresholds;
3449 		usage = mem_cgroup_usage(memcg, false);
3450 	} else if (type == _MEMSWAP) {
3451 		thresholds = &memcg->memsw_thresholds;
3452 		usage = mem_cgroup_usage(memcg, true);
3453 	} else
3454 		BUG();
3455 
3456 	if (!thresholds->primary)
3457 		goto unlock;
3458 
3459 	/* Check if a threshold crossed before removing */
3460 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3461 
3462 	/* Calculate new number of threshold */
3463 	size = 0;
3464 	for (i = 0; i < thresholds->primary->size; i++) {
3465 		if (thresholds->primary->entries[i].eventfd != eventfd)
3466 			size++;
3467 	}
3468 
3469 	new = thresholds->spare;
3470 
3471 	/* Set thresholds array to NULL if we don't have thresholds */
3472 	if (!size) {
3473 		kfree(new);
3474 		new = NULL;
3475 		goto swap_buffers;
3476 	}
3477 
3478 	new->size = size;
3479 
3480 	/* Copy thresholds and find current threshold */
3481 	new->current_threshold = -1;
3482 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3483 		if (thresholds->primary->entries[i].eventfd == eventfd)
3484 			continue;
3485 
3486 		new->entries[j] = thresholds->primary->entries[i];
3487 		if (new->entries[j].threshold <= usage) {
3488 			/*
3489 			 * new->current_threshold will not be used
3490 			 * until rcu_assign_pointer(), so it's safe to increment
3491 			 * it here.
3492 			 */
3493 			++new->current_threshold;
3494 		}
3495 		j++;
3496 	}
3497 
3498 swap_buffers:
3499 	/* Swap primary and spare array */
3500 	thresholds->spare = thresholds->primary;
3501 
3502 	rcu_assign_pointer(thresholds->primary, new);
3503 
3504 	/* To be sure that nobody uses thresholds */
3505 	synchronize_rcu();
3506 
3507 	/* If all events are unregistered, free the spare array */
3508 	if (!new) {
3509 		kfree(thresholds->spare);
3510 		thresholds->spare = NULL;
3511 	}
3512 unlock:
3513 	mutex_unlock(&memcg->thresholds_lock);
3514 }
3515 
3516 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3517 	struct eventfd_ctx *eventfd)
3518 {
3519 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3520 }
3521 
3522 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3523 	struct eventfd_ctx *eventfd)
3524 {
3525 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3526 }
3527 
3528 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3529 	struct eventfd_ctx *eventfd, const char *args)
3530 {
3531 	struct mem_cgroup_eventfd_list *event;
3532 
3533 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
3534 	if (!event)
3535 		return -ENOMEM;
3536 
3537 	spin_lock(&memcg_oom_lock);
3538 
3539 	event->eventfd = eventfd;
3540 	list_add(&event->list, &memcg->oom_notify);
3541 
3542 	/* already in OOM ? */
3543 	if (memcg->under_oom)
3544 		eventfd_signal(eventfd, 1);
3545 	spin_unlock(&memcg_oom_lock);
3546 
3547 	return 0;
3548 }
3549 
3550 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3551 	struct eventfd_ctx *eventfd)
3552 {
3553 	struct mem_cgroup_eventfd_list *ev, *tmp;
3554 
3555 	spin_lock(&memcg_oom_lock);
3556 
3557 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3558 		if (ev->eventfd == eventfd) {
3559 			list_del(&ev->list);
3560 			kfree(ev);
3561 		}
3562 	}
3563 
3564 	spin_unlock(&memcg_oom_lock);
3565 }
3566 
3567 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3568 {
3569 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3570 
3571 	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3572 	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3573 	return 0;
3574 }
3575 
3576 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3577 	struct cftype *cft, u64 val)
3578 {
3579 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3580 
3581 	/* cannot set to root cgroup and only 0 and 1 are allowed */
3582 	if (!css->parent || !((val == 0) || (val == 1)))
3583 		return -EINVAL;
3584 
3585 	memcg->oom_kill_disable = val;
3586 	if (!val)
3587 		memcg_oom_recover(memcg);
3588 
3589 	return 0;
3590 }
3591 
3592 #ifdef CONFIG_CGROUP_WRITEBACK
3593 
3594 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3595 {
3596 	return &memcg->cgwb_list;
3597 }
3598 
3599 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3600 {
3601 	return wb_domain_init(&memcg->cgwb_domain, gfp);
3602 }
3603 
3604 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3605 {
3606 	wb_domain_exit(&memcg->cgwb_domain);
3607 }
3608 
3609 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3610 {
3611 	wb_domain_size_changed(&memcg->cgwb_domain);
3612 }
3613 
3614 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3615 {
3616 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3617 
3618 	if (!memcg->css.parent)
3619 		return NULL;
3620 
3621 	return &memcg->cgwb_domain;
3622 }
3623 
3624 /**
3625  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3626  * @wb: bdi_writeback in question
3627  * @pfilepages: out parameter for number of file pages
3628  * @pheadroom: out parameter for number of allocatable pages according to memcg
3629  * @pdirty: out parameter for number of dirty pages
3630  * @pwriteback: out parameter for number of pages under writeback
3631  *
3632  * Determine the numbers of file, headroom, dirty, and writeback pages in
3633  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
3634  * is a bit more involved.
3635  *
3636  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
3637  * headroom is calculated as the lowest headroom of itself and the
3638  * ancestors.  Note that this doesn't consider the actual amount of
3639  * available memory in the system.  The caller should further cap
3640  * *@pheadroom accordingly.
3641  */
3642 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3643 			 unsigned long *pheadroom, unsigned long *pdirty,
3644 			 unsigned long *pwriteback)
3645 {
3646 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3647 	struct mem_cgroup *parent;
3648 
3649 	*pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3650 
3651 	/* this should eventually include NR_UNSTABLE_NFS */
3652 	*pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3653 	*pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3654 						     (1 << LRU_ACTIVE_FILE));
3655 	*pheadroom = PAGE_COUNTER_MAX;
3656 
3657 	while ((parent = parent_mem_cgroup(memcg))) {
3658 		unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3659 		unsigned long used = page_counter_read(&memcg->memory);
3660 
3661 		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3662 		memcg = parent;
3663 	}
3664 }
3665 
3666 #else	/* CONFIG_CGROUP_WRITEBACK */
3667 
3668 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3669 {
3670 	return 0;
3671 }
3672 
3673 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3674 {
3675 }
3676 
3677 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3678 {
3679 }
3680 
3681 #endif	/* CONFIG_CGROUP_WRITEBACK */
3682 
3683 /*
3684  * DO NOT USE IN NEW FILES.
3685  *
3686  * "cgroup.event_control" implementation.
3687  *
3688  * This is way over-engineered.  It tries to support fully configurable
3689  * events for each user.  Such level of flexibility is completely
3690  * unnecessary especially in the light of the planned unified hierarchy.
3691  *
3692  * Please deprecate this and replace with something simpler if at all
3693  * possible.
3694  */
3695 
3696 /*
3697  * Unregister event and free resources.
3698  *
3699  * Gets called from workqueue.
3700  */
3701 static void memcg_event_remove(struct work_struct *work)
3702 {
3703 	struct mem_cgroup_event *event =
3704 		container_of(work, struct mem_cgroup_event, remove);
3705 	struct mem_cgroup *memcg = event->memcg;
3706 
3707 	remove_wait_queue(event->wqh, &event->wait);
3708 
3709 	event->unregister_event(memcg, event->eventfd);
3710 
3711 	/* Notify userspace the event is going away. */
3712 	eventfd_signal(event->eventfd, 1);
3713 
3714 	eventfd_ctx_put(event->eventfd);
3715 	kfree(event);
3716 	css_put(&memcg->css);
3717 }
3718 
3719 /*
3720  * Gets called on POLLHUP on eventfd when user closes it.
3721  *
3722  * Called with wqh->lock held and interrupts disabled.
3723  */
3724 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3725 			    int sync, void *key)
3726 {
3727 	struct mem_cgroup_event *event =
3728 		container_of(wait, struct mem_cgroup_event, wait);
3729 	struct mem_cgroup *memcg = event->memcg;
3730 	unsigned long flags = (unsigned long)key;
3731 
3732 	if (flags & POLLHUP) {
3733 		/*
3734 		 * If the event has been detached at cgroup removal, we
3735 		 * can simply return knowing the other side will cleanup
3736 		 * for us.
3737 		 *
3738 		 * We can't race against event freeing since the other
3739 		 * side will require wqh->lock via remove_wait_queue(),
3740 		 * which we hold.
3741 		 */
3742 		spin_lock(&memcg->event_list_lock);
3743 		if (!list_empty(&event->list)) {
3744 			list_del_init(&event->list);
3745 			/*
3746 			 * We are in atomic context, but cgroup_event_remove()
3747 			 * may sleep, so we have to call it in workqueue.
3748 			 */
3749 			schedule_work(&event->remove);
3750 		}
3751 		spin_unlock(&memcg->event_list_lock);
3752 	}
3753 
3754 	return 0;
3755 }
3756 
3757 static void memcg_event_ptable_queue_proc(struct file *file,
3758 		wait_queue_head_t *wqh, poll_table *pt)
3759 {
3760 	struct mem_cgroup_event *event =
3761 		container_of(pt, struct mem_cgroup_event, pt);
3762 
3763 	event->wqh = wqh;
3764 	add_wait_queue(wqh, &event->wait);
3765 }
3766 
3767 /*
3768  * DO NOT USE IN NEW FILES.
3769  *
3770  * Parse input and register new cgroup event handler.
3771  *
3772  * Input must be in format '<event_fd> <control_fd> <args>'.
3773  * Interpretation of args is defined by control file implementation.
3774  */
3775 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3776 					 char *buf, size_t nbytes, loff_t off)
3777 {
3778 	struct cgroup_subsys_state *css = of_css(of);
3779 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3780 	struct mem_cgroup_event *event;
3781 	struct cgroup_subsys_state *cfile_css;
3782 	unsigned int efd, cfd;
3783 	struct fd efile;
3784 	struct fd cfile;
3785 	const char *name;
3786 	char *endp;
3787 	int ret;
3788 
3789 	buf = strstrip(buf);
3790 
3791 	efd = simple_strtoul(buf, &endp, 10);
3792 	if (*endp != ' ')
3793 		return -EINVAL;
3794 	buf = endp + 1;
3795 
3796 	cfd = simple_strtoul(buf, &endp, 10);
3797 	if ((*endp != ' ') && (*endp != '\0'))
3798 		return -EINVAL;
3799 	buf = endp + 1;
3800 
3801 	event = kzalloc(sizeof(*event), GFP_KERNEL);
3802 	if (!event)
3803 		return -ENOMEM;
3804 
3805 	event->memcg = memcg;
3806 	INIT_LIST_HEAD(&event->list);
3807 	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3808 	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3809 	INIT_WORK(&event->remove, memcg_event_remove);
3810 
3811 	efile = fdget(efd);
3812 	if (!efile.file) {
3813 		ret = -EBADF;
3814 		goto out_kfree;
3815 	}
3816 
3817 	event->eventfd = eventfd_ctx_fileget(efile.file);
3818 	if (IS_ERR(event->eventfd)) {
3819 		ret = PTR_ERR(event->eventfd);
3820 		goto out_put_efile;
3821 	}
3822 
3823 	cfile = fdget(cfd);
3824 	if (!cfile.file) {
3825 		ret = -EBADF;
3826 		goto out_put_eventfd;
3827 	}
3828 
3829 	/* the process need read permission on control file */
3830 	/* AV: shouldn't we check that it's been opened for read instead? */
3831 	ret = inode_permission(file_inode(cfile.file), MAY_READ);
3832 	if (ret < 0)
3833 		goto out_put_cfile;
3834 
3835 	/*
3836 	 * Determine the event callbacks and set them in @event.  This used
3837 	 * to be done via struct cftype but cgroup core no longer knows
3838 	 * about these events.  The following is crude but the whole thing
3839 	 * is for compatibility anyway.
3840 	 *
3841 	 * DO NOT ADD NEW FILES.
3842 	 */
3843 	name = cfile.file->f_path.dentry->d_name.name;
3844 
3845 	if (!strcmp(name, "memory.usage_in_bytes")) {
3846 		event->register_event = mem_cgroup_usage_register_event;
3847 		event->unregister_event = mem_cgroup_usage_unregister_event;
3848 	} else if (!strcmp(name, "memory.oom_control")) {
3849 		event->register_event = mem_cgroup_oom_register_event;
3850 		event->unregister_event = mem_cgroup_oom_unregister_event;
3851 	} else if (!strcmp(name, "memory.pressure_level")) {
3852 		event->register_event = vmpressure_register_event;
3853 		event->unregister_event = vmpressure_unregister_event;
3854 	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3855 		event->register_event = memsw_cgroup_usage_register_event;
3856 		event->unregister_event = memsw_cgroup_usage_unregister_event;
3857 	} else {
3858 		ret = -EINVAL;
3859 		goto out_put_cfile;
3860 	}
3861 
3862 	/*
3863 	 * Verify @cfile should belong to @css.  Also, remaining events are
3864 	 * automatically removed on cgroup destruction but the removal is
3865 	 * asynchronous, so take an extra ref on @css.
3866 	 */
3867 	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3868 					       &memory_cgrp_subsys);
3869 	ret = -EINVAL;
3870 	if (IS_ERR(cfile_css))
3871 		goto out_put_cfile;
3872 	if (cfile_css != css) {
3873 		css_put(cfile_css);
3874 		goto out_put_cfile;
3875 	}
3876 
3877 	ret = event->register_event(memcg, event->eventfd, buf);
3878 	if (ret)
3879 		goto out_put_css;
3880 
3881 	efile.file->f_op->poll(efile.file, &event->pt);
3882 
3883 	spin_lock(&memcg->event_list_lock);
3884 	list_add(&event->list, &memcg->event_list);
3885 	spin_unlock(&memcg->event_list_lock);
3886 
3887 	fdput(cfile);
3888 	fdput(efile);
3889 
3890 	return nbytes;
3891 
3892 out_put_css:
3893 	css_put(css);
3894 out_put_cfile:
3895 	fdput(cfile);
3896 out_put_eventfd:
3897 	eventfd_ctx_put(event->eventfd);
3898 out_put_efile:
3899 	fdput(efile);
3900 out_kfree:
3901 	kfree(event);
3902 
3903 	return ret;
3904 }
3905 
3906 static struct cftype mem_cgroup_legacy_files[] = {
3907 	{
3908 		.name = "usage_in_bytes",
3909 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3910 		.read_u64 = mem_cgroup_read_u64,
3911 	},
3912 	{
3913 		.name = "max_usage_in_bytes",
3914 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3915 		.write = mem_cgroup_reset,
3916 		.read_u64 = mem_cgroup_read_u64,
3917 	},
3918 	{
3919 		.name = "limit_in_bytes",
3920 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3921 		.write = mem_cgroup_write,
3922 		.read_u64 = mem_cgroup_read_u64,
3923 	},
3924 	{
3925 		.name = "soft_limit_in_bytes",
3926 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3927 		.write = mem_cgroup_write,
3928 		.read_u64 = mem_cgroup_read_u64,
3929 	},
3930 	{
3931 		.name = "failcnt",
3932 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3933 		.write = mem_cgroup_reset,
3934 		.read_u64 = mem_cgroup_read_u64,
3935 	},
3936 	{
3937 		.name = "stat",
3938 		.seq_show = memcg_stat_show,
3939 	},
3940 	{
3941 		.name = "force_empty",
3942 		.write = mem_cgroup_force_empty_write,
3943 	},
3944 	{
3945 		.name = "use_hierarchy",
3946 		.write_u64 = mem_cgroup_hierarchy_write,
3947 		.read_u64 = mem_cgroup_hierarchy_read,
3948 	},
3949 	{
3950 		.name = "cgroup.event_control",		/* XXX: for compat */
3951 		.write = memcg_write_event_control,
3952 		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3953 	},
3954 	{
3955 		.name = "swappiness",
3956 		.read_u64 = mem_cgroup_swappiness_read,
3957 		.write_u64 = mem_cgroup_swappiness_write,
3958 	},
3959 	{
3960 		.name = "move_charge_at_immigrate",
3961 		.read_u64 = mem_cgroup_move_charge_read,
3962 		.write_u64 = mem_cgroup_move_charge_write,
3963 	},
3964 	{
3965 		.name = "oom_control",
3966 		.seq_show = mem_cgroup_oom_control_read,
3967 		.write_u64 = mem_cgroup_oom_control_write,
3968 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3969 	},
3970 	{
3971 		.name = "pressure_level",
3972 	},
3973 #ifdef CONFIG_NUMA
3974 	{
3975 		.name = "numa_stat",
3976 		.seq_show = memcg_numa_stat_show,
3977 	},
3978 #endif
3979 	{
3980 		.name = "kmem.limit_in_bytes",
3981 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
3982 		.write = mem_cgroup_write,
3983 		.read_u64 = mem_cgroup_read_u64,
3984 	},
3985 	{
3986 		.name = "kmem.usage_in_bytes",
3987 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
3988 		.read_u64 = mem_cgroup_read_u64,
3989 	},
3990 	{
3991 		.name = "kmem.failcnt",
3992 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
3993 		.write = mem_cgroup_reset,
3994 		.read_u64 = mem_cgroup_read_u64,
3995 	},
3996 	{
3997 		.name = "kmem.max_usage_in_bytes",
3998 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
3999 		.write = mem_cgroup_reset,
4000 		.read_u64 = mem_cgroup_read_u64,
4001 	},
4002 #ifdef CONFIG_SLABINFO
4003 	{
4004 		.name = "kmem.slabinfo",
4005 		.seq_start = slab_start,
4006 		.seq_next = slab_next,
4007 		.seq_stop = slab_stop,
4008 		.seq_show = memcg_slab_show,
4009 	},
4010 #endif
4011 	{
4012 		.name = "kmem.tcp.limit_in_bytes",
4013 		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4014 		.write = mem_cgroup_write,
4015 		.read_u64 = mem_cgroup_read_u64,
4016 	},
4017 	{
4018 		.name = "kmem.tcp.usage_in_bytes",
4019 		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4020 		.read_u64 = mem_cgroup_read_u64,
4021 	},
4022 	{
4023 		.name = "kmem.tcp.failcnt",
4024 		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4025 		.write = mem_cgroup_reset,
4026 		.read_u64 = mem_cgroup_read_u64,
4027 	},
4028 	{
4029 		.name = "kmem.tcp.max_usage_in_bytes",
4030 		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4031 		.write = mem_cgroup_reset,
4032 		.read_u64 = mem_cgroup_read_u64,
4033 	},
4034 	{ },	/* terminate */
4035 };
4036 
4037 /*
4038  * Private memory cgroup IDR
4039  *
4040  * Swap-out records and page cache shadow entries need to store memcg
4041  * references in constrained space, so we maintain an ID space that is
4042  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4043  * memory-controlled cgroups to 64k.
4044  *
4045  * However, there usually are many references to the oflline CSS after
4046  * the cgroup has been destroyed, such as page cache or reclaimable
4047  * slab objects, that don't need to hang on to the ID. We want to keep
4048  * those dead CSS from occupying IDs, or we might quickly exhaust the
4049  * relatively small ID space and prevent the creation of new cgroups
4050  * even when there are much fewer than 64k cgroups - possibly none.
4051  *
4052  * Maintain a private 16-bit ID space for memcg, and allow the ID to
4053  * be freed and recycled when it's no longer needed, which is usually
4054  * when the CSS is offlined.
4055  *
4056  * The only exception to that are records of swapped out tmpfs/shmem
4057  * pages that need to be attributed to live ancestors on swapin. But
4058  * those references are manageable from userspace.
4059  */
4060 
4061 static DEFINE_IDR(mem_cgroup_idr);
4062 
4063 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4064 {
4065 	VM_BUG_ON(atomic_read(&memcg->id.ref) <= 0);
4066 	atomic_add(n, &memcg->id.ref);
4067 }
4068 
4069 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4070 {
4071 	VM_BUG_ON(atomic_read(&memcg->id.ref) < n);
4072 	if (atomic_sub_and_test(n, &memcg->id.ref)) {
4073 		idr_remove(&mem_cgroup_idr, memcg->id.id);
4074 		memcg->id.id = 0;
4075 
4076 		/* Memcg ID pins CSS */
4077 		css_put(&memcg->css);
4078 	}
4079 }
4080 
4081 static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4082 {
4083 	mem_cgroup_id_get_many(memcg, 1);
4084 }
4085 
4086 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4087 {
4088 	mem_cgroup_id_put_many(memcg, 1);
4089 }
4090 
4091 /**
4092  * mem_cgroup_from_id - look up a memcg from a memcg id
4093  * @id: the memcg id to look up
4094  *
4095  * Caller must hold rcu_read_lock().
4096  */
4097 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4098 {
4099 	WARN_ON_ONCE(!rcu_read_lock_held());
4100 	return idr_find(&mem_cgroup_idr, id);
4101 }
4102 
4103 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4104 {
4105 	struct mem_cgroup_per_node *pn;
4106 	int tmp = node;
4107 	/*
4108 	 * This routine is called against possible nodes.
4109 	 * But it's BUG to call kmalloc() against offline node.
4110 	 *
4111 	 * TODO: this routine can waste much memory for nodes which will
4112 	 *       never be onlined. It's better to use memory hotplug callback
4113 	 *       function.
4114 	 */
4115 	if (!node_state(node, N_NORMAL_MEMORY))
4116 		tmp = -1;
4117 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4118 	if (!pn)
4119 		return 1;
4120 
4121 	lruvec_init(&pn->lruvec);
4122 	pn->usage_in_excess = 0;
4123 	pn->on_tree = false;
4124 	pn->memcg = memcg;
4125 
4126 	memcg->nodeinfo[node] = pn;
4127 	return 0;
4128 }
4129 
4130 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4131 {
4132 	kfree(memcg->nodeinfo[node]);
4133 }
4134 
4135 static void mem_cgroup_free(struct mem_cgroup *memcg)
4136 {
4137 	int node;
4138 
4139 	memcg_wb_domain_exit(memcg);
4140 	for_each_node(node)
4141 		free_mem_cgroup_per_node_info(memcg, node);
4142 	free_percpu(memcg->stat);
4143 	kfree(memcg);
4144 }
4145 
4146 static struct mem_cgroup *mem_cgroup_alloc(void)
4147 {
4148 	struct mem_cgroup *memcg;
4149 	size_t size;
4150 	int node;
4151 
4152 	size = sizeof(struct mem_cgroup);
4153 	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4154 
4155 	memcg = kzalloc(size, GFP_KERNEL);
4156 	if (!memcg)
4157 		return NULL;
4158 
4159 	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4160 				 1, MEM_CGROUP_ID_MAX,
4161 				 GFP_KERNEL);
4162 	if (memcg->id.id < 0)
4163 		goto fail;
4164 
4165 	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4166 	if (!memcg->stat)
4167 		goto fail;
4168 
4169 	for_each_node(node)
4170 		if (alloc_mem_cgroup_per_node_info(memcg, node))
4171 			goto fail;
4172 
4173 	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4174 		goto fail;
4175 
4176 	INIT_WORK(&memcg->high_work, high_work_func);
4177 	memcg->last_scanned_node = MAX_NUMNODES;
4178 	INIT_LIST_HEAD(&memcg->oom_notify);
4179 	mutex_init(&memcg->thresholds_lock);
4180 	spin_lock_init(&memcg->move_lock);
4181 	vmpressure_init(&memcg->vmpressure);
4182 	INIT_LIST_HEAD(&memcg->event_list);
4183 	spin_lock_init(&memcg->event_list_lock);
4184 	memcg->socket_pressure = jiffies;
4185 #ifndef CONFIG_SLOB
4186 	memcg->kmemcg_id = -1;
4187 #endif
4188 #ifdef CONFIG_CGROUP_WRITEBACK
4189 	INIT_LIST_HEAD(&memcg->cgwb_list);
4190 #endif
4191 	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4192 	return memcg;
4193 fail:
4194 	if (memcg->id.id > 0)
4195 		idr_remove(&mem_cgroup_idr, memcg->id.id);
4196 	mem_cgroup_free(memcg);
4197 	return NULL;
4198 }
4199 
4200 static struct cgroup_subsys_state * __ref
4201 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4202 {
4203 	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4204 	struct mem_cgroup *memcg;
4205 	long error = -ENOMEM;
4206 
4207 	memcg = mem_cgroup_alloc();
4208 	if (!memcg)
4209 		return ERR_PTR(error);
4210 
4211 	memcg->high = PAGE_COUNTER_MAX;
4212 	memcg->soft_limit = PAGE_COUNTER_MAX;
4213 	if (parent) {
4214 		memcg->swappiness = mem_cgroup_swappiness(parent);
4215 		memcg->oom_kill_disable = parent->oom_kill_disable;
4216 	}
4217 	if (parent && parent->use_hierarchy) {
4218 		memcg->use_hierarchy = true;
4219 		page_counter_init(&memcg->memory, &parent->memory);
4220 		page_counter_init(&memcg->swap, &parent->swap);
4221 		page_counter_init(&memcg->memsw, &parent->memsw);
4222 		page_counter_init(&memcg->kmem, &parent->kmem);
4223 		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4224 	} else {
4225 		page_counter_init(&memcg->memory, NULL);
4226 		page_counter_init(&memcg->swap, NULL);
4227 		page_counter_init(&memcg->memsw, NULL);
4228 		page_counter_init(&memcg->kmem, NULL);
4229 		page_counter_init(&memcg->tcpmem, NULL);
4230 		/*
4231 		 * Deeper hierachy with use_hierarchy == false doesn't make
4232 		 * much sense so let cgroup subsystem know about this
4233 		 * unfortunate state in our controller.
4234 		 */
4235 		if (parent != root_mem_cgroup)
4236 			memory_cgrp_subsys.broken_hierarchy = true;
4237 	}
4238 
4239 	/* The following stuff does not apply to the root */
4240 	if (!parent) {
4241 		root_mem_cgroup = memcg;
4242 		return &memcg->css;
4243 	}
4244 
4245 	error = memcg_online_kmem(memcg);
4246 	if (error)
4247 		goto fail;
4248 
4249 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4250 		static_branch_inc(&memcg_sockets_enabled_key);
4251 
4252 	return &memcg->css;
4253 fail:
4254 	mem_cgroup_free(memcg);
4255 	return ERR_PTR(-ENOMEM);
4256 }
4257 
4258 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4259 {
4260 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4261 
4262 	/* Online state pins memcg ID, memcg ID pins CSS */
4263 	atomic_set(&memcg->id.ref, 1);
4264 	css_get(css);
4265 	return 0;
4266 }
4267 
4268 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4269 {
4270 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4271 	struct mem_cgroup_event *event, *tmp;
4272 
4273 	/*
4274 	 * Unregister events and notify userspace.
4275 	 * Notify userspace about cgroup removing only after rmdir of cgroup
4276 	 * directory to avoid race between userspace and kernelspace.
4277 	 */
4278 	spin_lock(&memcg->event_list_lock);
4279 	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4280 		list_del_init(&event->list);
4281 		schedule_work(&event->remove);
4282 	}
4283 	spin_unlock(&memcg->event_list_lock);
4284 
4285 	memcg_offline_kmem(memcg);
4286 	wb_memcg_offline(memcg);
4287 
4288 	mem_cgroup_id_put(memcg);
4289 }
4290 
4291 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4292 {
4293 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4294 
4295 	invalidate_reclaim_iterators(memcg);
4296 }
4297 
4298 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4299 {
4300 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4301 
4302 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4303 		static_branch_dec(&memcg_sockets_enabled_key);
4304 
4305 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4306 		static_branch_dec(&memcg_sockets_enabled_key);
4307 
4308 	vmpressure_cleanup(&memcg->vmpressure);
4309 	cancel_work_sync(&memcg->high_work);
4310 	mem_cgroup_remove_from_trees(memcg);
4311 	memcg_free_kmem(memcg);
4312 	mem_cgroup_free(memcg);
4313 }
4314 
4315 /**
4316  * mem_cgroup_css_reset - reset the states of a mem_cgroup
4317  * @css: the target css
4318  *
4319  * Reset the states of the mem_cgroup associated with @css.  This is
4320  * invoked when the userland requests disabling on the default hierarchy
4321  * but the memcg is pinned through dependency.  The memcg should stop
4322  * applying policies and should revert to the vanilla state as it may be
4323  * made visible again.
4324  *
4325  * The current implementation only resets the essential configurations.
4326  * This needs to be expanded to cover all the visible parts.
4327  */
4328 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4329 {
4330 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4331 
4332 	page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4333 	page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4334 	page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4335 	page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4336 	page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4337 	memcg->low = 0;
4338 	memcg->high = PAGE_COUNTER_MAX;
4339 	memcg->soft_limit = PAGE_COUNTER_MAX;
4340 	memcg_wb_domain_size_changed(memcg);
4341 }
4342 
4343 #ifdef CONFIG_MMU
4344 /* Handlers for move charge at task migration. */
4345 static int mem_cgroup_do_precharge(unsigned long count)
4346 {
4347 	int ret;
4348 
4349 	/* Try a single bulk charge without reclaim first, kswapd may wake */
4350 	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4351 	if (!ret) {
4352 		mc.precharge += count;
4353 		return ret;
4354 	}
4355 
4356 	/* Try charges one by one with reclaim */
4357 	while (count--) {
4358 		ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4359 		if (ret)
4360 			return ret;
4361 		mc.precharge++;
4362 		cond_resched();
4363 	}
4364 	return 0;
4365 }
4366 
4367 union mc_target {
4368 	struct page	*page;
4369 	swp_entry_t	ent;
4370 };
4371 
4372 enum mc_target_type {
4373 	MC_TARGET_NONE = 0,
4374 	MC_TARGET_PAGE,
4375 	MC_TARGET_SWAP,
4376 };
4377 
4378 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4379 						unsigned long addr, pte_t ptent)
4380 {
4381 	struct page *page = vm_normal_page(vma, addr, ptent);
4382 
4383 	if (!page || !page_mapped(page))
4384 		return NULL;
4385 	if (PageAnon(page)) {
4386 		if (!(mc.flags & MOVE_ANON))
4387 			return NULL;
4388 	} else {
4389 		if (!(mc.flags & MOVE_FILE))
4390 			return NULL;
4391 	}
4392 	if (!get_page_unless_zero(page))
4393 		return NULL;
4394 
4395 	return page;
4396 }
4397 
4398 #ifdef CONFIG_SWAP
4399 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4400 			pte_t ptent, swp_entry_t *entry)
4401 {
4402 	struct page *page = NULL;
4403 	swp_entry_t ent = pte_to_swp_entry(ptent);
4404 
4405 	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4406 		return NULL;
4407 	/*
4408 	 * Because lookup_swap_cache() updates some statistics counter,
4409 	 * we call find_get_page() with swapper_space directly.
4410 	 */
4411 	page = find_get_page(swap_address_space(ent), swp_offset(ent));
4412 	if (do_memsw_account())
4413 		entry->val = ent.val;
4414 
4415 	return page;
4416 }
4417 #else
4418 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4419 			pte_t ptent, swp_entry_t *entry)
4420 {
4421 	return NULL;
4422 }
4423 #endif
4424 
4425 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4426 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
4427 {
4428 	struct page *page = NULL;
4429 	struct address_space *mapping;
4430 	pgoff_t pgoff;
4431 
4432 	if (!vma->vm_file) /* anonymous vma */
4433 		return NULL;
4434 	if (!(mc.flags & MOVE_FILE))
4435 		return NULL;
4436 
4437 	mapping = vma->vm_file->f_mapping;
4438 	pgoff = linear_page_index(vma, addr);
4439 
4440 	/* page is moved even if it's not RSS of this task(page-faulted). */
4441 #ifdef CONFIG_SWAP
4442 	/* shmem/tmpfs may report page out on swap: account for that too. */
4443 	if (shmem_mapping(mapping)) {
4444 		page = find_get_entry(mapping, pgoff);
4445 		if (radix_tree_exceptional_entry(page)) {
4446 			swp_entry_t swp = radix_to_swp_entry(page);
4447 			if (do_memsw_account())
4448 				*entry = swp;
4449 			page = find_get_page(swap_address_space(swp),
4450 					     swp_offset(swp));
4451 		}
4452 	} else
4453 		page = find_get_page(mapping, pgoff);
4454 #else
4455 	page = find_get_page(mapping, pgoff);
4456 #endif
4457 	return page;
4458 }
4459 
4460 /**
4461  * mem_cgroup_move_account - move account of the page
4462  * @page: the page
4463  * @compound: charge the page as compound or small page
4464  * @from: mem_cgroup which the page is moved from.
4465  * @to:	mem_cgroup which the page is moved to. @from != @to.
4466  *
4467  * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4468  *
4469  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4470  * from old cgroup.
4471  */
4472 static int mem_cgroup_move_account(struct page *page,
4473 				   bool compound,
4474 				   struct mem_cgroup *from,
4475 				   struct mem_cgroup *to)
4476 {
4477 	unsigned long flags;
4478 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4479 	int ret;
4480 	bool anon;
4481 
4482 	VM_BUG_ON(from == to);
4483 	VM_BUG_ON_PAGE(PageLRU(page), page);
4484 	VM_BUG_ON(compound && !PageTransHuge(page));
4485 
4486 	/*
4487 	 * Prevent mem_cgroup_migrate() from looking at
4488 	 * page->mem_cgroup of its source page while we change it.
4489 	 */
4490 	ret = -EBUSY;
4491 	if (!trylock_page(page))
4492 		goto out;
4493 
4494 	ret = -EINVAL;
4495 	if (page->mem_cgroup != from)
4496 		goto out_unlock;
4497 
4498 	anon = PageAnon(page);
4499 
4500 	spin_lock_irqsave(&from->move_lock, flags);
4501 
4502 	if (!anon && page_mapped(page)) {
4503 		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4504 			       nr_pages);
4505 		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4506 			       nr_pages);
4507 	}
4508 
4509 	/*
4510 	 * move_lock grabbed above and caller set from->moving_account, so
4511 	 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4512 	 * So mapping should be stable for dirty pages.
4513 	 */
4514 	if (!anon && PageDirty(page)) {
4515 		struct address_space *mapping = page_mapping(page);
4516 
4517 		if (mapping_cap_account_dirty(mapping)) {
4518 			__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4519 				       nr_pages);
4520 			__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4521 				       nr_pages);
4522 		}
4523 	}
4524 
4525 	if (PageWriteback(page)) {
4526 		__this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4527 			       nr_pages);
4528 		__this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4529 			       nr_pages);
4530 	}
4531 
4532 	/*
4533 	 * It is safe to change page->mem_cgroup here because the page
4534 	 * is referenced, charged, and isolated - we can't race with
4535 	 * uncharging, charging, migration, or LRU putback.
4536 	 */
4537 
4538 	/* caller should have done css_get */
4539 	page->mem_cgroup = to;
4540 	spin_unlock_irqrestore(&from->move_lock, flags);
4541 
4542 	ret = 0;
4543 
4544 	local_irq_disable();
4545 	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4546 	memcg_check_events(to, page);
4547 	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4548 	memcg_check_events(from, page);
4549 	local_irq_enable();
4550 out_unlock:
4551 	unlock_page(page);
4552 out:
4553 	return ret;
4554 }
4555 
4556 /**
4557  * get_mctgt_type - get target type of moving charge
4558  * @vma: the vma the pte to be checked belongs
4559  * @addr: the address corresponding to the pte to be checked
4560  * @ptent: the pte to be checked
4561  * @target: the pointer the target page or swap ent will be stored(can be NULL)
4562  *
4563  * Returns
4564  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
4565  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4566  *     move charge. if @target is not NULL, the page is stored in target->page
4567  *     with extra refcnt got(Callers should handle it).
4568  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4569  *     target for charge migration. if @target is not NULL, the entry is stored
4570  *     in target->ent.
4571  *
4572  * Called with pte lock held.
4573  */
4574 
4575 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4576 		unsigned long addr, pte_t ptent, union mc_target *target)
4577 {
4578 	struct page *page = NULL;
4579 	enum mc_target_type ret = MC_TARGET_NONE;
4580 	swp_entry_t ent = { .val = 0 };
4581 
4582 	if (pte_present(ptent))
4583 		page = mc_handle_present_pte(vma, addr, ptent);
4584 	else if (is_swap_pte(ptent))
4585 		page = mc_handle_swap_pte(vma, ptent, &ent);
4586 	else if (pte_none(ptent))
4587 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
4588 
4589 	if (!page && !ent.val)
4590 		return ret;
4591 	if (page) {
4592 		/*
4593 		 * Do only loose check w/o serialization.
4594 		 * mem_cgroup_move_account() checks the page is valid or
4595 		 * not under LRU exclusion.
4596 		 */
4597 		if (page->mem_cgroup == mc.from) {
4598 			ret = MC_TARGET_PAGE;
4599 			if (target)
4600 				target->page = page;
4601 		}
4602 		if (!ret || !target)
4603 			put_page(page);
4604 	}
4605 	/* There is a swap entry and a page doesn't exist or isn't charged */
4606 	if (ent.val && !ret &&
4607 	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4608 		ret = MC_TARGET_SWAP;
4609 		if (target)
4610 			target->ent = ent;
4611 	}
4612 	return ret;
4613 }
4614 
4615 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4616 /*
4617  * We don't consider swapping or file mapped pages because THP does not
4618  * support them for now.
4619  * Caller should make sure that pmd_trans_huge(pmd) is true.
4620  */
4621 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4622 		unsigned long addr, pmd_t pmd, union mc_target *target)
4623 {
4624 	struct page *page = NULL;
4625 	enum mc_target_type ret = MC_TARGET_NONE;
4626 
4627 	page = pmd_page(pmd);
4628 	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4629 	if (!(mc.flags & MOVE_ANON))
4630 		return ret;
4631 	if (page->mem_cgroup == mc.from) {
4632 		ret = MC_TARGET_PAGE;
4633 		if (target) {
4634 			get_page(page);
4635 			target->page = page;
4636 		}
4637 	}
4638 	return ret;
4639 }
4640 #else
4641 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4642 		unsigned long addr, pmd_t pmd, union mc_target *target)
4643 {
4644 	return MC_TARGET_NONE;
4645 }
4646 #endif
4647 
4648 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4649 					unsigned long addr, unsigned long end,
4650 					struct mm_walk *walk)
4651 {
4652 	struct vm_area_struct *vma = walk->vma;
4653 	pte_t *pte;
4654 	spinlock_t *ptl;
4655 
4656 	ptl = pmd_trans_huge_lock(pmd, vma);
4657 	if (ptl) {
4658 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4659 			mc.precharge += HPAGE_PMD_NR;
4660 		spin_unlock(ptl);
4661 		return 0;
4662 	}
4663 
4664 	if (pmd_trans_unstable(pmd))
4665 		return 0;
4666 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4667 	for (; addr != end; pte++, addr += PAGE_SIZE)
4668 		if (get_mctgt_type(vma, addr, *pte, NULL))
4669 			mc.precharge++;	/* increment precharge temporarily */
4670 	pte_unmap_unlock(pte - 1, ptl);
4671 	cond_resched();
4672 
4673 	return 0;
4674 }
4675 
4676 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4677 {
4678 	unsigned long precharge;
4679 
4680 	struct mm_walk mem_cgroup_count_precharge_walk = {
4681 		.pmd_entry = mem_cgroup_count_precharge_pte_range,
4682 		.mm = mm,
4683 	};
4684 	down_read(&mm->mmap_sem);
4685 	walk_page_range(0, mm->highest_vm_end,
4686 			&mem_cgroup_count_precharge_walk);
4687 	up_read(&mm->mmap_sem);
4688 
4689 	precharge = mc.precharge;
4690 	mc.precharge = 0;
4691 
4692 	return precharge;
4693 }
4694 
4695 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4696 {
4697 	unsigned long precharge = mem_cgroup_count_precharge(mm);
4698 
4699 	VM_BUG_ON(mc.moving_task);
4700 	mc.moving_task = current;
4701 	return mem_cgroup_do_precharge(precharge);
4702 }
4703 
4704 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4705 static void __mem_cgroup_clear_mc(void)
4706 {
4707 	struct mem_cgroup *from = mc.from;
4708 	struct mem_cgroup *to = mc.to;
4709 
4710 	/* we must uncharge all the leftover precharges from mc.to */
4711 	if (mc.precharge) {
4712 		cancel_charge(mc.to, mc.precharge);
4713 		mc.precharge = 0;
4714 	}
4715 	/*
4716 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4717 	 * we must uncharge here.
4718 	 */
4719 	if (mc.moved_charge) {
4720 		cancel_charge(mc.from, mc.moved_charge);
4721 		mc.moved_charge = 0;
4722 	}
4723 	/* we must fixup refcnts and charges */
4724 	if (mc.moved_swap) {
4725 		/* uncharge swap account from the old cgroup */
4726 		if (!mem_cgroup_is_root(mc.from))
4727 			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4728 
4729 		mem_cgroup_id_put_many(mc.from, mc.moved_swap);
4730 
4731 		/*
4732 		 * we charged both to->memory and to->memsw, so we
4733 		 * should uncharge to->memory.
4734 		 */
4735 		if (!mem_cgroup_is_root(mc.to))
4736 			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4737 
4738 		mem_cgroup_id_get_many(mc.to, mc.moved_swap);
4739 		css_put_many(&mc.to->css, mc.moved_swap);
4740 
4741 		mc.moved_swap = 0;
4742 	}
4743 	memcg_oom_recover(from);
4744 	memcg_oom_recover(to);
4745 	wake_up_all(&mc.waitq);
4746 }
4747 
4748 static void mem_cgroup_clear_mc(void)
4749 {
4750 	struct mm_struct *mm = mc.mm;
4751 
4752 	/*
4753 	 * we must clear moving_task before waking up waiters at the end of
4754 	 * task migration.
4755 	 */
4756 	mc.moving_task = NULL;
4757 	__mem_cgroup_clear_mc();
4758 	spin_lock(&mc.lock);
4759 	mc.from = NULL;
4760 	mc.to = NULL;
4761 	mc.mm = NULL;
4762 	spin_unlock(&mc.lock);
4763 
4764 	mmput(mm);
4765 }
4766 
4767 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4768 {
4769 	struct cgroup_subsys_state *css;
4770 	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4771 	struct mem_cgroup *from;
4772 	struct task_struct *leader, *p;
4773 	struct mm_struct *mm;
4774 	unsigned long move_flags;
4775 	int ret = 0;
4776 
4777 	/* charge immigration isn't supported on the default hierarchy */
4778 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4779 		return 0;
4780 
4781 	/*
4782 	 * Multi-process migrations only happen on the default hierarchy
4783 	 * where charge immigration is not used.  Perform charge
4784 	 * immigration if @tset contains a leader and whine if there are
4785 	 * multiple.
4786 	 */
4787 	p = NULL;
4788 	cgroup_taskset_for_each_leader(leader, css, tset) {
4789 		WARN_ON_ONCE(p);
4790 		p = leader;
4791 		memcg = mem_cgroup_from_css(css);
4792 	}
4793 	if (!p)
4794 		return 0;
4795 
4796 	/*
4797 	 * We are now commited to this value whatever it is. Changes in this
4798 	 * tunable will only affect upcoming migrations, not the current one.
4799 	 * So we need to save it, and keep it going.
4800 	 */
4801 	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4802 	if (!move_flags)
4803 		return 0;
4804 
4805 	from = mem_cgroup_from_task(p);
4806 
4807 	VM_BUG_ON(from == memcg);
4808 
4809 	mm = get_task_mm(p);
4810 	if (!mm)
4811 		return 0;
4812 	/* We move charges only when we move a owner of the mm */
4813 	if (mm->owner == p) {
4814 		VM_BUG_ON(mc.from);
4815 		VM_BUG_ON(mc.to);
4816 		VM_BUG_ON(mc.precharge);
4817 		VM_BUG_ON(mc.moved_charge);
4818 		VM_BUG_ON(mc.moved_swap);
4819 
4820 		spin_lock(&mc.lock);
4821 		mc.mm = mm;
4822 		mc.from = from;
4823 		mc.to = memcg;
4824 		mc.flags = move_flags;
4825 		spin_unlock(&mc.lock);
4826 		/* We set mc.moving_task later */
4827 
4828 		ret = mem_cgroup_precharge_mc(mm);
4829 		if (ret)
4830 			mem_cgroup_clear_mc();
4831 	} else {
4832 		mmput(mm);
4833 	}
4834 	return ret;
4835 }
4836 
4837 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4838 {
4839 	if (mc.to)
4840 		mem_cgroup_clear_mc();
4841 }
4842 
4843 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4844 				unsigned long addr, unsigned long end,
4845 				struct mm_walk *walk)
4846 {
4847 	int ret = 0;
4848 	struct vm_area_struct *vma = walk->vma;
4849 	pte_t *pte;
4850 	spinlock_t *ptl;
4851 	enum mc_target_type target_type;
4852 	union mc_target target;
4853 	struct page *page;
4854 
4855 	ptl = pmd_trans_huge_lock(pmd, vma);
4856 	if (ptl) {
4857 		if (mc.precharge < HPAGE_PMD_NR) {
4858 			spin_unlock(ptl);
4859 			return 0;
4860 		}
4861 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4862 		if (target_type == MC_TARGET_PAGE) {
4863 			page = target.page;
4864 			if (!isolate_lru_page(page)) {
4865 				if (!mem_cgroup_move_account(page, true,
4866 							     mc.from, mc.to)) {
4867 					mc.precharge -= HPAGE_PMD_NR;
4868 					mc.moved_charge += HPAGE_PMD_NR;
4869 				}
4870 				putback_lru_page(page);
4871 			}
4872 			put_page(page);
4873 		}
4874 		spin_unlock(ptl);
4875 		return 0;
4876 	}
4877 
4878 	if (pmd_trans_unstable(pmd))
4879 		return 0;
4880 retry:
4881 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4882 	for (; addr != end; addr += PAGE_SIZE) {
4883 		pte_t ptent = *(pte++);
4884 		swp_entry_t ent;
4885 
4886 		if (!mc.precharge)
4887 			break;
4888 
4889 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
4890 		case MC_TARGET_PAGE:
4891 			page = target.page;
4892 			/*
4893 			 * We can have a part of the split pmd here. Moving it
4894 			 * can be done but it would be too convoluted so simply
4895 			 * ignore such a partial THP and keep it in original
4896 			 * memcg. There should be somebody mapping the head.
4897 			 */
4898 			if (PageTransCompound(page))
4899 				goto put;
4900 			if (isolate_lru_page(page))
4901 				goto put;
4902 			if (!mem_cgroup_move_account(page, false,
4903 						mc.from, mc.to)) {
4904 				mc.precharge--;
4905 				/* we uncharge from mc.from later. */
4906 				mc.moved_charge++;
4907 			}
4908 			putback_lru_page(page);
4909 put:			/* get_mctgt_type() gets the page */
4910 			put_page(page);
4911 			break;
4912 		case MC_TARGET_SWAP:
4913 			ent = target.ent;
4914 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4915 				mc.precharge--;
4916 				/* we fixup refcnts and charges later. */
4917 				mc.moved_swap++;
4918 			}
4919 			break;
4920 		default:
4921 			break;
4922 		}
4923 	}
4924 	pte_unmap_unlock(pte - 1, ptl);
4925 	cond_resched();
4926 
4927 	if (addr != end) {
4928 		/*
4929 		 * We have consumed all precharges we got in can_attach().
4930 		 * We try charge one by one, but don't do any additional
4931 		 * charges to mc.to if we have failed in charge once in attach()
4932 		 * phase.
4933 		 */
4934 		ret = mem_cgroup_do_precharge(1);
4935 		if (!ret)
4936 			goto retry;
4937 	}
4938 
4939 	return ret;
4940 }
4941 
4942 static void mem_cgroup_move_charge(void)
4943 {
4944 	struct mm_walk mem_cgroup_move_charge_walk = {
4945 		.pmd_entry = mem_cgroup_move_charge_pte_range,
4946 		.mm = mc.mm,
4947 	};
4948 
4949 	lru_add_drain_all();
4950 	/*
4951 	 * Signal lock_page_memcg() to take the memcg's move_lock
4952 	 * while we're moving its pages to another memcg. Then wait
4953 	 * for already started RCU-only updates to finish.
4954 	 */
4955 	atomic_inc(&mc.from->moving_account);
4956 	synchronize_rcu();
4957 retry:
4958 	if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
4959 		/*
4960 		 * Someone who are holding the mmap_sem might be waiting in
4961 		 * waitq. So we cancel all extra charges, wake up all waiters,
4962 		 * and retry. Because we cancel precharges, we might not be able
4963 		 * to move enough charges, but moving charge is a best-effort
4964 		 * feature anyway, so it wouldn't be a big problem.
4965 		 */
4966 		__mem_cgroup_clear_mc();
4967 		cond_resched();
4968 		goto retry;
4969 	}
4970 	/*
4971 	 * When we have consumed all precharges and failed in doing
4972 	 * additional charge, the page walk just aborts.
4973 	 */
4974 	walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
4975 
4976 	up_read(&mc.mm->mmap_sem);
4977 	atomic_dec(&mc.from->moving_account);
4978 }
4979 
4980 static void mem_cgroup_move_task(void)
4981 {
4982 	if (mc.to) {
4983 		mem_cgroup_move_charge();
4984 		mem_cgroup_clear_mc();
4985 	}
4986 }
4987 #else	/* !CONFIG_MMU */
4988 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4989 {
4990 	return 0;
4991 }
4992 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4993 {
4994 }
4995 static void mem_cgroup_move_task(void)
4996 {
4997 }
4998 #endif
4999 
5000 /*
5001  * Cgroup retains root cgroups across [un]mount cycles making it necessary
5002  * to verify whether we're attached to the default hierarchy on each mount
5003  * attempt.
5004  */
5005 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5006 {
5007 	/*
5008 	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5009 	 * guarantees that @root doesn't have any children, so turning it
5010 	 * on for the root memcg is enough.
5011 	 */
5012 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5013 		root_mem_cgroup->use_hierarchy = true;
5014 	else
5015 		root_mem_cgroup->use_hierarchy = false;
5016 }
5017 
5018 static u64 memory_current_read(struct cgroup_subsys_state *css,
5019 			       struct cftype *cft)
5020 {
5021 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5022 
5023 	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5024 }
5025 
5026 static int memory_low_show(struct seq_file *m, void *v)
5027 {
5028 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5029 	unsigned long low = READ_ONCE(memcg->low);
5030 
5031 	if (low == PAGE_COUNTER_MAX)
5032 		seq_puts(m, "max\n");
5033 	else
5034 		seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5035 
5036 	return 0;
5037 }
5038 
5039 static ssize_t memory_low_write(struct kernfs_open_file *of,
5040 				char *buf, size_t nbytes, loff_t off)
5041 {
5042 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5043 	unsigned long low;
5044 	int err;
5045 
5046 	buf = strstrip(buf);
5047 	err = page_counter_memparse(buf, "max", &low);
5048 	if (err)
5049 		return err;
5050 
5051 	memcg->low = low;
5052 
5053 	return nbytes;
5054 }
5055 
5056 static int memory_high_show(struct seq_file *m, void *v)
5057 {
5058 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5059 	unsigned long high = READ_ONCE(memcg->high);
5060 
5061 	if (high == PAGE_COUNTER_MAX)
5062 		seq_puts(m, "max\n");
5063 	else
5064 		seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5065 
5066 	return 0;
5067 }
5068 
5069 static ssize_t memory_high_write(struct kernfs_open_file *of,
5070 				 char *buf, size_t nbytes, loff_t off)
5071 {
5072 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5073 	unsigned long nr_pages;
5074 	unsigned long high;
5075 	int err;
5076 
5077 	buf = strstrip(buf);
5078 	err = page_counter_memparse(buf, "max", &high);
5079 	if (err)
5080 		return err;
5081 
5082 	memcg->high = high;
5083 
5084 	nr_pages = page_counter_read(&memcg->memory);
5085 	if (nr_pages > high)
5086 		try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5087 					     GFP_KERNEL, true);
5088 
5089 	memcg_wb_domain_size_changed(memcg);
5090 	return nbytes;
5091 }
5092 
5093 static int memory_max_show(struct seq_file *m, void *v)
5094 {
5095 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5096 	unsigned long max = READ_ONCE(memcg->memory.limit);
5097 
5098 	if (max == PAGE_COUNTER_MAX)
5099 		seq_puts(m, "max\n");
5100 	else
5101 		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5102 
5103 	return 0;
5104 }
5105 
5106 static ssize_t memory_max_write(struct kernfs_open_file *of,
5107 				char *buf, size_t nbytes, loff_t off)
5108 {
5109 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5110 	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5111 	bool drained = false;
5112 	unsigned long max;
5113 	int err;
5114 
5115 	buf = strstrip(buf);
5116 	err = page_counter_memparse(buf, "max", &max);
5117 	if (err)
5118 		return err;
5119 
5120 	xchg(&memcg->memory.limit, max);
5121 
5122 	for (;;) {
5123 		unsigned long nr_pages = page_counter_read(&memcg->memory);
5124 
5125 		if (nr_pages <= max)
5126 			break;
5127 
5128 		if (signal_pending(current)) {
5129 			err = -EINTR;
5130 			break;
5131 		}
5132 
5133 		if (!drained) {
5134 			drain_all_stock(memcg);
5135 			drained = true;
5136 			continue;
5137 		}
5138 
5139 		if (nr_reclaims) {
5140 			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5141 							  GFP_KERNEL, true))
5142 				nr_reclaims--;
5143 			continue;
5144 		}
5145 
5146 		mem_cgroup_events(memcg, MEMCG_OOM, 1);
5147 		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5148 			break;
5149 	}
5150 
5151 	memcg_wb_domain_size_changed(memcg);
5152 	return nbytes;
5153 }
5154 
5155 static int memory_events_show(struct seq_file *m, void *v)
5156 {
5157 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5158 
5159 	seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5160 	seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5161 	seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5162 	seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5163 
5164 	return 0;
5165 }
5166 
5167 static int memory_stat_show(struct seq_file *m, void *v)
5168 {
5169 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5170 	unsigned long stat[MEMCG_NR_STAT];
5171 	unsigned long events[MEMCG_NR_EVENTS];
5172 	int i;
5173 
5174 	/*
5175 	 * Provide statistics on the state of the memory subsystem as
5176 	 * well as cumulative event counters that show past behavior.
5177 	 *
5178 	 * This list is ordered following a combination of these gradients:
5179 	 * 1) generic big picture -> specifics and details
5180 	 * 2) reflecting userspace activity -> reflecting kernel heuristics
5181 	 *
5182 	 * Current memory state:
5183 	 */
5184 
5185 	tree_stat(memcg, stat);
5186 	tree_events(memcg, events);
5187 
5188 	seq_printf(m, "anon %llu\n",
5189 		   (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
5190 	seq_printf(m, "file %llu\n",
5191 		   (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
5192 	seq_printf(m, "kernel_stack %llu\n",
5193 		   (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024);
5194 	seq_printf(m, "slab %llu\n",
5195 		   (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
5196 			 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5197 	seq_printf(m, "sock %llu\n",
5198 		   (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5199 
5200 	seq_printf(m, "file_mapped %llu\n",
5201 		   (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
5202 	seq_printf(m, "file_dirty %llu\n",
5203 		   (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
5204 	seq_printf(m, "file_writeback %llu\n",
5205 		   (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
5206 
5207 	for (i = 0; i < NR_LRU_LISTS; i++) {
5208 		struct mem_cgroup *mi;
5209 		unsigned long val = 0;
5210 
5211 		for_each_mem_cgroup_tree(mi, memcg)
5212 			val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5213 		seq_printf(m, "%s %llu\n",
5214 			   mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5215 	}
5216 
5217 	seq_printf(m, "slab_reclaimable %llu\n",
5218 		   (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
5219 	seq_printf(m, "slab_unreclaimable %llu\n",
5220 		   (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5221 
5222 	/* Accumulated memory events */
5223 
5224 	seq_printf(m, "pgfault %lu\n",
5225 		   events[MEM_CGROUP_EVENTS_PGFAULT]);
5226 	seq_printf(m, "pgmajfault %lu\n",
5227 		   events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
5228 
5229 	return 0;
5230 }
5231 
5232 static struct cftype memory_files[] = {
5233 	{
5234 		.name = "current",
5235 		.flags = CFTYPE_NOT_ON_ROOT,
5236 		.read_u64 = memory_current_read,
5237 	},
5238 	{
5239 		.name = "low",
5240 		.flags = CFTYPE_NOT_ON_ROOT,
5241 		.seq_show = memory_low_show,
5242 		.write = memory_low_write,
5243 	},
5244 	{
5245 		.name = "high",
5246 		.flags = CFTYPE_NOT_ON_ROOT,
5247 		.seq_show = memory_high_show,
5248 		.write = memory_high_write,
5249 	},
5250 	{
5251 		.name = "max",
5252 		.flags = CFTYPE_NOT_ON_ROOT,
5253 		.seq_show = memory_max_show,
5254 		.write = memory_max_write,
5255 	},
5256 	{
5257 		.name = "events",
5258 		.flags = CFTYPE_NOT_ON_ROOT,
5259 		.file_offset = offsetof(struct mem_cgroup, events_file),
5260 		.seq_show = memory_events_show,
5261 	},
5262 	{
5263 		.name = "stat",
5264 		.flags = CFTYPE_NOT_ON_ROOT,
5265 		.seq_show = memory_stat_show,
5266 	},
5267 	{ }	/* terminate */
5268 };
5269 
5270 struct cgroup_subsys memory_cgrp_subsys = {
5271 	.css_alloc = mem_cgroup_css_alloc,
5272 	.css_online = mem_cgroup_css_online,
5273 	.css_offline = mem_cgroup_css_offline,
5274 	.css_released = mem_cgroup_css_released,
5275 	.css_free = mem_cgroup_css_free,
5276 	.css_reset = mem_cgroup_css_reset,
5277 	.can_attach = mem_cgroup_can_attach,
5278 	.cancel_attach = mem_cgroup_cancel_attach,
5279 	.post_attach = mem_cgroup_move_task,
5280 	.bind = mem_cgroup_bind,
5281 	.dfl_cftypes = memory_files,
5282 	.legacy_cftypes = mem_cgroup_legacy_files,
5283 	.early_init = 0,
5284 };
5285 
5286 /**
5287  * mem_cgroup_low - check if memory consumption is below the normal range
5288  * @root: the highest ancestor to consider
5289  * @memcg: the memory cgroup to check
5290  *
5291  * Returns %true if memory consumption of @memcg, and that of all
5292  * configurable ancestors up to @root, is below the normal range.
5293  */
5294 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5295 {
5296 	if (mem_cgroup_disabled())
5297 		return false;
5298 
5299 	/*
5300 	 * The toplevel group doesn't have a configurable range, so
5301 	 * it's never low when looked at directly, and it is not
5302 	 * considered an ancestor when assessing the hierarchy.
5303 	 */
5304 
5305 	if (memcg == root_mem_cgroup)
5306 		return false;
5307 
5308 	if (page_counter_read(&memcg->memory) >= memcg->low)
5309 		return false;
5310 
5311 	while (memcg != root) {
5312 		memcg = parent_mem_cgroup(memcg);
5313 
5314 		if (memcg == root_mem_cgroup)
5315 			break;
5316 
5317 		if (page_counter_read(&memcg->memory) >= memcg->low)
5318 			return false;
5319 	}
5320 	return true;
5321 }
5322 
5323 /**
5324  * mem_cgroup_try_charge - try charging a page
5325  * @page: page to charge
5326  * @mm: mm context of the victim
5327  * @gfp_mask: reclaim mode
5328  * @memcgp: charged memcg return
5329  * @compound: charge the page as compound or small page
5330  *
5331  * Try to charge @page to the memcg that @mm belongs to, reclaiming
5332  * pages according to @gfp_mask if necessary.
5333  *
5334  * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5335  * Otherwise, an error code is returned.
5336  *
5337  * After page->mapping has been set up, the caller must finalize the
5338  * charge with mem_cgroup_commit_charge().  Or abort the transaction
5339  * with mem_cgroup_cancel_charge() in case page instantiation fails.
5340  */
5341 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5342 			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
5343 			  bool compound)
5344 {
5345 	struct mem_cgroup *memcg = NULL;
5346 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5347 	int ret = 0;
5348 
5349 	if (mem_cgroup_disabled())
5350 		goto out;
5351 
5352 	if (PageSwapCache(page)) {
5353 		/*
5354 		 * Every swap fault against a single page tries to charge the
5355 		 * page, bail as early as possible.  shmem_unuse() encounters
5356 		 * already charged pages, too.  The USED bit is protected by
5357 		 * the page lock, which serializes swap cache removal, which
5358 		 * in turn serializes uncharging.
5359 		 */
5360 		VM_BUG_ON_PAGE(!PageLocked(page), page);
5361 		if (page->mem_cgroup)
5362 			goto out;
5363 
5364 		if (do_swap_account) {
5365 			swp_entry_t ent = { .val = page_private(page), };
5366 			unsigned short id = lookup_swap_cgroup_id(ent);
5367 
5368 			rcu_read_lock();
5369 			memcg = mem_cgroup_from_id(id);
5370 			if (memcg && !css_tryget_online(&memcg->css))
5371 				memcg = NULL;
5372 			rcu_read_unlock();
5373 		}
5374 	}
5375 
5376 	if (!memcg)
5377 		memcg = get_mem_cgroup_from_mm(mm);
5378 
5379 	ret = try_charge(memcg, gfp_mask, nr_pages);
5380 
5381 	css_put(&memcg->css);
5382 out:
5383 	*memcgp = memcg;
5384 	return ret;
5385 }
5386 
5387 /**
5388  * mem_cgroup_commit_charge - commit a page charge
5389  * @page: page to charge
5390  * @memcg: memcg to charge the page to
5391  * @lrucare: page might be on LRU already
5392  * @compound: charge the page as compound or small page
5393  *
5394  * Finalize a charge transaction started by mem_cgroup_try_charge(),
5395  * after page->mapping has been set up.  This must happen atomically
5396  * as part of the page instantiation, i.e. under the page table lock
5397  * for anonymous pages, under the page lock for page and swap cache.
5398  *
5399  * In addition, the page must not be on the LRU during the commit, to
5400  * prevent racing with task migration.  If it might be, use @lrucare.
5401  *
5402  * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5403  */
5404 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5405 			      bool lrucare, bool compound)
5406 {
5407 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5408 
5409 	VM_BUG_ON_PAGE(!page->mapping, page);
5410 	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5411 
5412 	if (mem_cgroup_disabled())
5413 		return;
5414 	/*
5415 	 * Swap faults will attempt to charge the same page multiple
5416 	 * times.  But reuse_swap_page() might have removed the page
5417 	 * from swapcache already, so we can't check PageSwapCache().
5418 	 */
5419 	if (!memcg)
5420 		return;
5421 
5422 	commit_charge(page, memcg, lrucare);
5423 
5424 	local_irq_disable();
5425 	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5426 	memcg_check_events(memcg, page);
5427 	local_irq_enable();
5428 
5429 	if (do_memsw_account() && PageSwapCache(page)) {
5430 		swp_entry_t entry = { .val = page_private(page) };
5431 		/*
5432 		 * The swap entry might not get freed for a long time,
5433 		 * let's not wait for it.  The page already received a
5434 		 * memory+swap charge, drop the swap entry duplicate.
5435 		 */
5436 		mem_cgroup_uncharge_swap(entry);
5437 	}
5438 }
5439 
5440 /**
5441  * mem_cgroup_cancel_charge - cancel a page charge
5442  * @page: page to charge
5443  * @memcg: memcg to charge the page to
5444  * @compound: charge the page as compound or small page
5445  *
5446  * Cancel a charge transaction started by mem_cgroup_try_charge().
5447  */
5448 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5449 		bool compound)
5450 {
5451 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5452 
5453 	if (mem_cgroup_disabled())
5454 		return;
5455 	/*
5456 	 * Swap faults will attempt to charge the same page multiple
5457 	 * times.  But reuse_swap_page() might have removed the page
5458 	 * from swapcache already, so we can't check PageSwapCache().
5459 	 */
5460 	if (!memcg)
5461 		return;
5462 
5463 	cancel_charge(memcg, nr_pages);
5464 }
5465 
5466 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5467 			   unsigned long nr_anon, unsigned long nr_file,
5468 			   unsigned long nr_huge, unsigned long nr_kmem,
5469 			   struct page *dummy_page)
5470 {
5471 	unsigned long nr_pages = nr_anon + nr_file + nr_kmem;
5472 	unsigned long flags;
5473 
5474 	if (!mem_cgroup_is_root(memcg)) {
5475 		page_counter_uncharge(&memcg->memory, nr_pages);
5476 		if (do_memsw_account())
5477 			page_counter_uncharge(&memcg->memsw, nr_pages);
5478 		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && nr_kmem)
5479 			page_counter_uncharge(&memcg->kmem, nr_kmem);
5480 		memcg_oom_recover(memcg);
5481 	}
5482 
5483 	local_irq_save(flags);
5484 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5485 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5486 	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5487 	__this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5488 	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5489 	memcg_check_events(memcg, dummy_page);
5490 	local_irq_restore(flags);
5491 
5492 	if (!mem_cgroup_is_root(memcg))
5493 		css_put_many(&memcg->css, nr_pages);
5494 }
5495 
5496 static void uncharge_list(struct list_head *page_list)
5497 {
5498 	struct mem_cgroup *memcg = NULL;
5499 	unsigned long nr_anon = 0;
5500 	unsigned long nr_file = 0;
5501 	unsigned long nr_huge = 0;
5502 	unsigned long nr_kmem = 0;
5503 	unsigned long pgpgout = 0;
5504 	struct list_head *next;
5505 	struct page *page;
5506 
5507 	/*
5508 	 * Note that the list can be a single page->lru; hence the
5509 	 * do-while loop instead of a simple list_for_each_entry().
5510 	 */
5511 	next = page_list->next;
5512 	do {
5513 		page = list_entry(next, struct page, lru);
5514 		next = page->lru.next;
5515 
5516 		VM_BUG_ON_PAGE(PageLRU(page), page);
5517 		VM_BUG_ON_PAGE(page_count(page), page);
5518 
5519 		if (!page->mem_cgroup)
5520 			continue;
5521 
5522 		/*
5523 		 * Nobody should be changing or seriously looking at
5524 		 * page->mem_cgroup at this point, we have fully
5525 		 * exclusive access to the page.
5526 		 */
5527 
5528 		if (memcg != page->mem_cgroup) {
5529 			if (memcg) {
5530 				uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5531 					       nr_huge, nr_kmem, page);
5532 				pgpgout = nr_anon = nr_file =
5533 					nr_huge = nr_kmem = 0;
5534 			}
5535 			memcg = page->mem_cgroup;
5536 		}
5537 
5538 		if (!PageKmemcg(page)) {
5539 			unsigned int nr_pages = 1;
5540 
5541 			if (PageTransHuge(page)) {
5542 				nr_pages <<= compound_order(page);
5543 				nr_huge += nr_pages;
5544 			}
5545 			if (PageAnon(page))
5546 				nr_anon += nr_pages;
5547 			else
5548 				nr_file += nr_pages;
5549 			pgpgout++;
5550 		} else {
5551 			nr_kmem += 1 << compound_order(page);
5552 			__ClearPageKmemcg(page);
5553 		}
5554 
5555 		page->mem_cgroup = NULL;
5556 	} while (next != page_list);
5557 
5558 	if (memcg)
5559 		uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5560 			       nr_huge, nr_kmem, page);
5561 }
5562 
5563 /**
5564  * mem_cgroup_uncharge - uncharge a page
5565  * @page: page to uncharge
5566  *
5567  * Uncharge a page previously charged with mem_cgroup_try_charge() and
5568  * mem_cgroup_commit_charge().
5569  */
5570 void mem_cgroup_uncharge(struct page *page)
5571 {
5572 	if (mem_cgroup_disabled())
5573 		return;
5574 
5575 	/* Don't touch page->lru of any random page, pre-check: */
5576 	if (!page->mem_cgroup)
5577 		return;
5578 
5579 	INIT_LIST_HEAD(&page->lru);
5580 	uncharge_list(&page->lru);
5581 }
5582 
5583 /**
5584  * mem_cgroup_uncharge_list - uncharge a list of page
5585  * @page_list: list of pages to uncharge
5586  *
5587  * Uncharge a list of pages previously charged with
5588  * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5589  */
5590 void mem_cgroup_uncharge_list(struct list_head *page_list)
5591 {
5592 	if (mem_cgroup_disabled())
5593 		return;
5594 
5595 	if (!list_empty(page_list))
5596 		uncharge_list(page_list);
5597 }
5598 
5599 /**
5600  * mem_cgroup_migrate - charge a page's replacement
5601  * @oldpage: currently circulating page
5602  * @newpage: replacement page
5603  *
5604  * Charge @newpage as a replacement page for @oldpage. @oldpage will
5605  * be uncharged upon free.
5606  *
5607  * Both pages must be locked, @newpage->mapping must be set up.
5608  */
5609 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5610 {
5611 	struct mem_cgroup *memcg;
5612 	unsigned int nr_pages;
5613 	bool compound;
5614 	unsigned long flags;
5615 
5616 	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5617 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5618 	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5619 	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5620 		       newpage);
5621 
5622 	if (mem_cgroup_disabled())
5623 		return;
5624 
5625 	/* Page cache replacement: new page already charged? */
5626 	if (newpage->mem_cgroup)
5627 		return;
5628 
5629 	/* Swapcache readahead pages can get replaced before being charged */
5630 	memcg = oldpage->mem_cgroup;
5631 	if (!memcg)
5632 		return;
5633 
5634 	/* Force-charge the new page. The old one will be freed soon */
5635 	compound = PageTransHuge(newpage);
5636 	nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5637 
5638 	page_counter_charge(&memcg->memory, nr_pages);
5639 	if (do_memsw_account())
5640 		page_counter_charge(&memcg->memsw, nr_pages);
5641 	css_get_many(&memcg->css, nr_pages);
5642 
5643 	commit_charge(newpage, memcg, false);
5644 
5645 	local_irq_save(flags);
5646 	mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5647 	memcg_check_events(memcg, newpage);
5648 	local_irq_restore(flags);
5649 }
5650 
5651 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5652 EXPORT_SYMBOL(memcg_sockets_enabled_key);
5653 
5654 void mem_cgroup_sk_alloc(struct sock *sk)
5655 {
5656 	struct mem_cgroup *memcg;
5657 
5658 	if (!mem_cgroup_sockets_enabled)
5659 		return;
5660 
5661 	/*
5662 	 * Socket cloning can throw us here with sk_memcg already
5663 	 * filled. It won't however, necessarily happen from
5664 	 * process context. So the test for root memcg given
5665 	 * the current task's memcg won't help us in this case.
5666 	 *
5667 	 * Respecting the original socket's memcg is a better
5668 	 * decision in this case.
5669 	 */
5670 	if (sk->sk_memcg) {
5671 		BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5672 		css_get(&sk->sk_memcg->css);
5673 		return;
5674 	}
5675 
5676 	rcu_read_lock();
5677 	memcg = mem_cgroup_from_task(current);
5678 	if (memcg == root_mem_cgroup)
5679 		goto out;
5680 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5681 		goto out;
5682 	if (css_tryget_online(&memcg->css))
5683 		sk->sk_memcg = memcg;
5684 out:
5685 	rcu_read_unlock();
5686 }
5687 
5688 void mem_cgroup_sk_free(struct sock *sk)
5689 {
5690 	if (sk->sk_memcg)
5691 		css_put(&sk->sk_memcg->css);
5692 }
5693 
5694 /**
5695  * mem_cgroup_charge_skmem - charge socket memory
5696  * @memcg: memcg to charge
5697  * @nr_pages: number of pages to charge
5698  *
5699  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5700  * @memcg's configured limit, %false if the charge had to be forced.
5701  */
5702 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5703 {
5704 	gfp_t gfp_mask = GFP_KERNEL;
5705 
5706 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5707 		struct page_counter *fail;
5708 
5709 		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5710 			memcg->tcpmem_pressure = 0;
5711 			return true;
5712 		}
5713 		page_counter_charge(&memcg->tcpmem, nr_pages);
5714 		memcg->tcpmem_pressure = 1;
5715 		return false;
5716 	}
5717 
5718 	/* Don't block in the packet receive path */
5719 	if (in_softirq())
5720 		gfp_mask = GFP_NOWAIT;
5721 
5722 	this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5723 
5724 	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5725 		return true;
5726 
5727 	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5728 	return false;
5729 }
5730 
5731 /**
5732  * mem_cgroup_uncharge_skmem - uncharge socket memory
5733  * @memcg - memcg to uncharge
5734  * @nr_pages - number of pages to uncharge
5735  */
5736 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5737 {
5738 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5739 		page_counter_uncharge(&memcg->tcpmem, nr_pages);
5740 		return;
5741 	}
5742 
5743 	this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5744 
5745 	page_counter_uncharge(&memcg->memory, nr_pages);
5746 	css_put_many(&memcg->css, nr_pages);
5747 }
5748 
5749 static int __init cgroup_memory(char *s)
5750 {
5751 	char *token;
5752 
5753 	while ((token = strsep(&s, ",")) != NULL) {
5754 		if (!*token)
5755 			continue;
5756 		if (!strcmp(token, "nosocket"))
5757 			cgroup_memory_nosocket = true;
5758 		if (!strcmp(token, "nokmem"))
5759 			cgroup_memory_nokmem = true;
5760 	}
5761 	return 0;
5762 }
5763 __setup("cgroup.memory=", cgroup_memory);
5764 
5765 /*
5766  * subsys_initcall() for memory controller.
5767  *
5768  * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
5769  * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
5770  * basically everything that doesn't depend on a specific mem_cgroup structure
5771  * should be initialized from here.
5772  */
5773 static int __init mem_cgroup_init(void)
5774 {
5775 	int cpu, node;
5776 
5777 #ifndef CONFIG_SLOB
5778 	/*
5779 	 * Kmem cache creation is mostly done with the slab_mutex held,
5780 	 * so use a special workqueue to avoid stalling all worker
5781 	 * threads in case lots of cgroups are created simultaneously.
5782 	 */
5783 	memcg_kmem_cache_create_wq =
5784 		alloc_ordered_workqueue("memcg_kmem_cache_create", 0);
5785 	BUG_ON(!memcg_kmem_cache_create_wq);
5786 #endif
5787 
5788 	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
5789 				  memcg_hotplug_cpu_dead);
5790 
5791 	for_each_possible_cpu(cpu)
5792 		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5793 			  drain_local_stock);
5794 
5795 	for_each_node(node) {
5796 		struct mem_cgroup_tree_per_node *rtpn;
5797 
5798 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5799 				    node_online(node) ? node : NUMA_NO_NODE);
5800 
5801 		rtpn->rb_root = RB_ROOT;
5802 		spin_lock_init(&rtpn->lock);
5803 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
5804 	}
5805 
5806 	return 0;
5807 }
5808 subsys_initcall(mem_cgroup_init);
5809 
5810 #ifdef CONFIG_MEMCG_SWAP
5811 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
5812 {
5813 	while (!atomic_inc_not_zero(&memcg->id.ref)) {
5814 		/*
5815 		 * The root cgroup cannot be destroyed, so it's refcount must
5816 		 * always be >= 1.
5817 		 */
5818 		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
5819 			VM_BUG_ON(1);
5820 			break;
5821 		}
5822 		memcg = parent_mem_cgroup(memcg);
5823 		if (!memcg)
5824 			memcg = root_mem_cgroup;
5825 	}
5826 	return memcg;
5827 }
5828 
5829 /**
5830  * mem_cgroup_swapout - transfer a memsw charge to swap
5831  * @page: page whose memsw charge to transfer
5832  * @entry: swap entry to move the charge to
5833  *
5834  * Transfer the memsw charge of @page to @entry.
5835  */
5836 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5837 {
5838 	struct mem_cgroup *memcg, *swap_memcg;
5839 	unsigned short oldid;
5840 
5841 	VM_BUG_ON_PAGE(PageLRU(page), page);
5842 	VM_BUG_ON_PAGE(page_count(page), page);
5843 
5844 	if (!do_memsw_account())
5845 		return;
5846 
5847 	memcg = page->mem_cgroup;
5848 
5849 	/* Readahead page, never charged */
5850 	if (!memcg)
5851 		return;
5852 
5853 	/*
5854 	 * In case the memcg owning these pages has been offlined and doesn't
5855 	 * have an ID allocated to it anymore, charge the closest online
5856 	 * ancestor for the swap instead and transfer the memory+swap charge.
5857 	 */
5858 	swap_memcg = mem_cgroup_id_get_online(memcg);
5859 	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg));
5860 	VM_BUG_ON_PAGE(oldid, page);
5861 	mem_cgroup_swap_statistics(swap_memcg, true);
5862 
5863 	page->mem_cgroup = NULL;
5864 
5865 	if (!mem_cgroup_is_root(memcg))
5866 		page_counter_uncharge(&memcg->memory, 1);
5867 
5868 	if (memcg != swap_memcg) {
5869 		if (!mem_cgroup_is_root(swap_memcg))
5870 			page_counter_charge(&swap_memcg->memsw, 1);
5871 		page_counter_uncharge(&memcg->memsw, 1);
5872 	}
5873 
5874 	/*
5875 	 * Interrupts should be disabled here because the caller holds the
5876 	 * mapping->tree_lock lock which is taken with interrupts-off. It is
5877 	 * important here to have the interrupts disabled because it is the
5878 	 * only synchronisation we have for udpating the per-CPU variables.
5879 	 */
5880 	VM_BUG_ON(!irqs_disabled());
5881 	mem_cgroup_charge_statistics(memcg, page, false, -1);
5882 	memcg_check_events(memcg, page);
5883 
5884 	if (!mem_cgroup_is_root(memcg))
5885 		css_put(&memcg->css);
5886 }
5887 
5888 /*
5889  * mem_cgroup_try_charge_swap - try charging a swap entry
5890  * @page: page being added to swap
5891  * @entry: swap entry to charge
5892  *
5893  * Try to charge @entry to the memcg that @page belongs to.
5894  *
5895  * Returns 0 on success, -ENOMEM on failure.
5896  */
5897 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5898 {
5899 	struct mem_cgroup *memcg;
5900 	struct page_counter *counter;
5901 	unsigned short oldid;
5902 
5903 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5904 		return 0;
5905 
5906 	memcg = page->mem_cgroup;
5907 
5908 	/* Readahead page, never charged */
5909 	if (!memcg)
5910 		return 0;
5911 
5912 	memcg = mem_cgroup_id_get_online(memcg);
5913 
5914 	if (!mem_cgroup_is_root(memcg) &&
5915 	    !page_counter_try_charge(&memcg->swap, 1, &counter)) {
5916 		mem_cgroup_id_put(memcg);
5917 		return -ENOMEM;
5918 	}
5919 
5920 	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5921 	VM_BUG_ON_PAGE(oldid, page);
5922 	mem_cgroup_swap_statistics(memcg, true);
5923 
5924 	return 0;
5925 }
5926 
5927 /**
5928  * mem_cgroup_uncharge_swap - uncharge a swap entry
5929  * @entry: swap entry to uncharge
5930  *
5931  * Drop the swap charge associated with @entry.
5932  */
5933 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5934 {
5935 	struct mem_cgroup *memcg;
5936 	unsigned short id;
5937 
5938 	if (!do_swap_account)
5939 		return;
5940 
5941 	id = swap_cgroup_record(entry, 0);
5942 	rcu_read_lock();
5943 	memcg = mem_cgroup_from_id(id);
5944 	if (memcg) {
5945 		if (!mem_cgroup_is_root(memcg)) {
5946 			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5947 				page_counter_uncharge(&memcg->swap, 1);
5948 			else
5949 				page_counter_uncharge(&memcg->memsw, 1);
5950 		}
5951 		mem_cgroup_swap_statistics(memcg, false);
5952 		mem_cgroup_id_put(memcg);
5953 	}
5954 	rcu_read_unlock();
5955 }
5956 
5957 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5958 {
5959 	long nr_swap_pages = get_nr_swap_pages();
5960 
5961 	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5962 		return nr_swap_pages;
5963 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5964 		nr_swap_pages = min_t(long, nr_swap_pages,
5965 				      READ_ONCE(memcg->swap.limit) -
5966 				      page_counter_read(&memcg->swap));
5967 	return nr_swap_pages;
5968 }
5969 
5970 bool mem_cgroup_swap_full(struct page *page)
5971 {
5972 	struct mem_cgroup *memcg;
5973 
5974 	VM_BUG_ON_PAGE(!PageLocked(page), page);
5975 
5976 	if (vm_swap_full())
5977 		return true;
5978 	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5979 		return false;
5980 
5981 	memcg = page->mem_cgroup;
5982 	if (!memcg)
5983 		return false;
5984 
5985 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5986 		if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
5987 			return true;
5988 
5989 	return false;
5990 }
5991 
5992 /* for remember boot option*/
5993 #ifdef CONFIG_MEMCG_SWAP_ENABLED
5994 static int really_do_swap_account __initdata = 1;
5995 #else
5996 static int really_do_swap_account __initdata;
5997 #endif
5998 
5999 static int __init enable_swap_account(char *s)
6000 {
6001 	if (!strcmp(s, "1"))
6002 		really_do_swap_account = 1;
6003 	else if (!strcmp(s, "0"))
6004 		really_do_swap_account = 0;
6005 	return 1;
6006 }
6007 __setup("swapaccount=", enable_swap_account);
6008 
6009 static u64 swap_current_read(struct cgroup_subsys_state *css,
6010 			     struct cftype *cft)
6011 {
6012 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6013 
6014 	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6015 }
6016 
6017 static int swap_max_show(struct seq_file *m, void *v)
6018 {
6019 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
6020 	unsigned long max = READ_ONCE(memcg->swap.limit);
6021 
6022 	if (max == PAGE_COUNTER_MAX)
6023 		seq_puts(m, "max\n");
6024 	else
6025 		seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
6026 
6027 	return 0;
6028 }
6029 
6030 static ssize_t swap_max_write(struct kernfs_open_file *of,
6031 			      char *buf, size_t nbytes, loff_t off)
6032 {
6033 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6034 	unsigned long max;
6035 	int err;
6036 
6037 	buf = strstrip(buf);
6038 	err = page_counter_memparse(buf, "max", &max);
6039 	if (err)
6040 		return err;
6041 
6042 	mutex_lock(&memcg_limit_mutex);
6043 	err = page_counter_limit(&memcg->swap, max);
6044 	mutex_unlock(&memcg_limit_mutex);
6045 	if (err)
6046 		return err;
6047 
6048 	return nbytes;
6049 }
6050 
6051 static struct cftype swap_files[] = {
6052 	{
6053 		.name = "swap.current",
6054 		.flags = CFTYPE_NOT_ON_ROOT,
6055 		.read_u64 = swap_current_read,
6056 	},
6057 	{
6058 		.name = "swap.max",
6059 		.flags = CFTYPE_NOT_ON_ROOT,
6060 		.seq_show = swap_max_show,
6061 		.write = swap_max_write,
6062 	},
6063 	{ }	/* terminate */
6064 };
6065 
6066 static struct cftype memsw_cgroup_files[] = {
6067 	{
6068 		.name = "memsw.usage_in_bytes",
6069 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6070 		.read_u64 = mem_cgroup_read_u64,
6071 	},
6072 	{
6073 		.name = "memsw.max_usage_in_bytes",
6074 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6075 		.write = mem_cgroup_reset,
6076 		.read_u64 = mem_cgroup_read_u64,
6077 	},
6078 	{
6079 		.name = "memsw.limit_in_bytes",
6080 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6081 		.write = mem_cgroup_write,
6082 		.read_u64 = mem_cgroup_read_u64,
6083 	},
6084 	{
6085 		.name = "memsw.failcnt",
6086 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6087 		.write = mem_cgroup_reset,
6088 		.read_u64 = mem_cgroup_read_u64,
6089 	},
6090 	{ },	/* terminate */
6091 };
6092 
6093 static int __init mem_cgroup_swap_init(void)
6094 {
6095 	if (!mem_cgroup_disabled() && really_do_swap_account) {
6096 		do_swap_account = 1;
6097 		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6098 					       swap_files));
6099 		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6100 						  memsw_cgroup_files));
6101 	}
6102 	return 0;
6103 }
6104 subsys_initcall(mem_cgroup_swap_init);
6105 
6106 #endif /* CONFIG_MEMCG_SWAP */
6107