1 /* memcontrol.c - Memory Controller 2 * 3 * Copyright IBM Corporation, 2007 4 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 5 * 6 * Copyright 2007 OpenVZ SWsoft Inc 7 * Author: Pavel Emelianov <xemul@openvz.org> 8 * 9 * Memory thresholds 10 * Copyright (C) 2009 Nokia Corporation 11 * Author: Kirill A. Shutemov 12 * 13 * Kernel Memory Controller 14 * Copyright (C) 2012 Parallels Inc. and Google Inc. 15 * Authors: Glauber Costa and Suleiman Souhlal 16 * 17 * Native page reclaim 18 * Charge lifetime sanitation 19 * Lockless page tracking & accounting 20 * Unified hierarchy configuration model 21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner 22 * 23 * This program is free software; you can redistribute it and/or modify 24 * it under the terms of the GNU General Public License as published by 25 * the Free Software Foundation; either version 2 of the License, or 26 * (at your option) any later version. 27 * 28 * This program is distributed in the hope that it will be useful, 29 * but WITHOUT ANY WARRANTY; without even the implied warranty of 30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 31 * GNU General Public License for more details. 32 */ 33 34 #include <linux/page_counter.h> 35 #include <linux/memcontrol.h> 36 #include <linux/cgroup.h> 37 #include <linux/mm.h> 38 #include <linux/sched/mm.h> 39 #include <linux/shmem_fs.h> 40 #include <linux/hugetlb.h> 41 #include <linux/pagemap.h> 42 #include <linux/vm_event_item.h> 43 #include <linux/smp.h> 44 #include <linux/page-flags.h> 45 #include <linux/backing-dev.h> 46 #include <linux/bit_spinlock.h> 47 #include <linux/rcupdate.h> 48 #include <linux/limits.h> 49 #include <linux/export.h> 50 #include <linux/mutex.h> 51 #include <linux/rbtree.h> 52 #include <linux/slab.h> 53 #include <linux/swap.h> 54 #include <linux/swapops.h> 55 #include <linux/spinlock.h> 56 #include <linux/eventfd.h> 57 #include <linux/poll.h> 58 #include <linux/sort.h> 59 #include <linux/fs.h> 60 #include <linux/seq_file.h> 61 #include <linux/vmpressure.h> 62 #include <linux/mm_inline.h> 63 #include <linux/swap_cgroup.h> 64 #include <linux/cpu.h> 65 #include <linux/oom.h> 66 #include <linux/lockdep.h> 67 #include <linux/file.h> 68 #include <linux/tracehook.h> 69 #include "internal.h" 70 #include <net/sock.h> 71 #include <net/ip.h> 72 #include "slab.h" 73 74 #include <linux/uaccess.h> 75 76 #include <trace/events/vmscan.h> 77 78 struct cgroup_subsys memory_cgrp_subsys __read_mostly; 79 EXPORT_SYMBOL(memory_cgrp_subsys); 80 81 struct mem_cgroup *root_mem_cgroup __read_mostly; 82 83 #define MEM_CGROUP_RECLAIM_RETRIES 5 84 85 /* Socket memory accounting disabled? */ 86 static bool cgroup_memory_nosocket; 87 88 /* Kernel memory accounting disabled? */ 89 static bool cgroup_memory_nokmem; 90 91 /* Whether the swap controller is active */ 92 #ifdef CONFIG_MEMCG_SWAP 93 int do_swap_account __read_mostly; 94 #else 95 #define do_swap_account 0 96 #endif 97 98 /* Whether legacy memory+swap accounting is active */ 99 static bool do_memsw_account(void) 100 { 101 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account; 102 } 103 104 static const char *const mem_cgroup_lru_names[] = { 105 "inactive_anon", 106 "active_anon", 107 "inactive_file", 108 "active_file", 109 "unevictable", 110 }; 111 112 #define THRESHOLDS_EVENTS_TARGET 128 113 #define SOFTLIMIT_EVENTS_TARGET 1024 114 #define NUMAINFO_EVENTS_TARGET 1024 115 116 /* 117 * Cgroups above their limits are maintained in a RB-Tree, independent of 118 * their hierarchy representation 119 */ 120 121 struct mem_cgroup_tree_per_node { 122 struct rb_root rb_root; 123 struct rb_node *rb_rightmost; 124 spinlock_t lock; 125 }; 126 127 struct mem_cgroup_tree { 128 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 129 }; 130 131 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 132 133 /* for OOM */ 134 struct mem_cgroup_eventfd_list { 135 struct list_head list; 136 struct eventfd_ctx *eventfd; 137 }; 138 139 /* 140 * cgroup_event represents events which userspace want to receive. 141 */ 142 struct mem_cgroup_event { 143 /* 144 * memcg which the event belongs to. 145 */ 146 struct mem_cgroup *memcg; 147 /* 148 * eventfd to signal userspace about the event. 149 */ 150 struct eventfd_ctx *eventfd; 151 /* 152 * Each of these stored in a list by the cgroup. 153 */ 154 struct list_head list; 155 /* 156 * register_event() callback will be used to add new userspace 157 * waiter for changes related to this event. Use eventfd_signal() 158 * on eventfd to send notification to userspace. 159 */ 160 int (*register_event)(struct mem_cgroup *memcg, 161 struct eventfd_ctx *eventfd, const char *args); 162 /* 163 * unregister_event() callback will be called when userspace closes 164 * the eventfd or on cgroup removing. This callback must be set, 165 * if you want provide notification functionality. 166 */ 167 void (*unregister_event)(struct mem_cgroup *memcg, 168 struct eventfd_ctx *eventfd); 169 /* 170 * All fields below needed to unregister event when 171 * userspace closes eventfd. 172 */ 173 poll_table pt; 174 wait_queue_head_t *wqh; 175 wait_queue_entry_t wait; 176 struct work_struct remove; 177 }; 178 179 static void mem_cgroup_threshold(struct mem_cgroup *memcg); 180 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); 181 182 /* Stuffs for move charges at task migration. */ 183 /* 184 * Types of charges to be moved. 185 */ 186 #define MOVE_ANON 0x1U 187 #define MOVE_FILE 0x2U 188 #define MOVE_MASK (MOVE_ANON | MOVE_FILE) 189 190 /* "mc" and its members are protected by cgroup_mutex */ 191 static struct move_charge_struct { 192 spinlock_t lock; /* for from, to */ 193 struct mm_struct *mm; 194 struct mem_cgroup *from; 195 struct mem_cgroup *to; 196 unsigned long flags; 197 unsigned long precharge; 198 unsigned long moved_charge; 199 unsigned long moved_swap; 200 struct task_struct *moving_task; /* a task moving charges */ 201 wait_queue_head_t waitq; /* a waitq for other context */ 202 } mc = { 203 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 204 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 205 }; 206 207 /* 208 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft 209 * limit reclaim to prevent infinite loops, if they ever occur. 210 */ 211 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 212 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 213 214 enum charge_type { 215 MEM_CGROUP_CHARGE_TYPE_CACHE = 0, 216 MEM_CGROUP_CHARGE_TYPE_ANON, 217 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */ 218 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */ 219 NR_CHARGE_TYPE, 220 }; 221 222 /* for encoding cft->private value on file */ 223 enum res_type { 224 _MEM, 225 _MEMSWAP, 226 _OOM_TYPE, 227 _KMEM, 228 _TCP, 229 }; 230 231 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) 232 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) 233 #define MEMFILE_ATTR(val) ((val) & 0xffff) 234 /* Used for OOM nofiier */ 235 #define OOM_CONTROL (0) 236 237 /* 238 * Iteration constructs for visiting all cgroups (under a tree). If 239 * loops are exited prematurely (break), mem_cgroup_iter_break() must 240 * be used for reference counting. 241 */ 242 #define for_each_mem_cgroup_tree(iter, root) \ 243 for (iter = mem_cgroup_iter(root, NULL, NULL); \ 244 iter != NULL; \ 245 iter = mem_cgroup_iter(root, iter, NULL)) 246 247 #define for_each_mem_cgroup(iter) \ 248 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ 249 iter != NULL; \ 250 iter = mem_cgroup_iter(NULL, iter, NULL)) 251 252 static inline bool should_force_charge(void) 253 { 254 return tsk_is_oom_victim(current) || fatal_signal_pending(current) || 255 (current->flags & PF_EXITING); 256 } 257 258 /* Some nice accessors for the vmpressure. */ 259 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 260 { 261 if (!memcg) 262 memcg = root_mem_cgroup; 263 return &memcg->vmpressure; 264 } 265 266 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr) 267 { 268 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css; 269 } 270 271 #ifdef CONFIG_MEMCG_KMEM 272 /* 273 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches. 274 * The main reason for not using cgroup id for this: 275 * this works better in sparse environments, where we have a lot of memcgs, 276 * but only a few kmem-limited. Or also, if we have, for instance, 200 277 * memcgs, and none but the 200th is kmem-limited, we'd have to have a 278 * 200 entry array for that. 279 * 280 * The current size of the caches array is stored in memcg_nr_cache_ids. It 281 * will double each time we have to increase it. 282 */ 283 static DEFINE_IDA(memcg_cache_ida); 284 int memcg_nr_cache_ids; 285 286 /* Protects memcg_nr_cache_ids */ 287 static DECLARE_RWSEM(memcg_cache_ids_sem); 288 289 void memcg_get_cache_ids(void) 290 { 291 down_read(&memcg_cache_ids_sem); 292 } 293 294 void memcg_put_cache_ids(void) 295 { 296 up_read(&memcg_cache_ids_sem); 297 } 298 299 /* 300 * MIN_SIZE is different than 1, because we would like to avoid going through 301 * the alloc/free process all the time. In a small machine, 4 kmem-limited 302 * cgroups is a reasonable guess. In the future, it could be a parameter or 303 * tunable, but that is strictly not necessary. 304 * 305 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get 306 * this constant directly from cgroup, but it is understandable that this is 307 * better kept as an internal representation in cgroup.c. In any case, the 308 * cgrp_id space is not getting any smaller, and we don't have to necessarily 309 * increase ours as well if it increases. 310 */ 311 #define MEMCG_CACHES_MIN_SIZE 4 312 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX 313 314 /* 315 * A lot of the calls to the cache allocation functions are expected to be 316 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are 317 * conditional to this static branch, we'll have to allow modules that does 318 * kmem_cache_alloc and the such to see this symbol as well 319 */ 320 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key); 321 EXPORT_SYMBOL(memcg_kmem_enabled_key); 322 323 struct workqueue_struct *memcg_kmem_cache_wq; 324 325 static int memcg_shrinker_map_size; 326 static DEFINE_MUTEX(memcg_shrinker_map_mutex); 327 328 static void memcg_free_shrinker_map_rcu(struct rcu_head *head) 329 { 330 kvfree(container_of(head, struct memcg_shrinker_map, rcu)); 331 } 332 333 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg, 334 int size, int old_size) 335 { 336 struct memcg_shrinker_map *new, *old; 337 int nid; 338 339 lockdep_assert_held(&memcg_shrinker_map_mutex); 340 341 for_each_node(nid) { 342 old = rcu_dereference_protected( 343 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true); 344 /* Not yet online memcg */ 345 if (!old) 346 return 0; 347 348 new = kvmalloc(sizeof(*new) + size, GFP_KERNEL); 349 if (!new) 350 return -ENOMEM; 351 352 /* Set all old bits, clear all new bits */ 353 memset(new->map, (int)0xff, old_size); 354 memset((void *)new->map + old_size, 0, size - old_size); 355 356 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new); 357 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu); 358 } 359 360 return 0; 361 } 362 363 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) 364 { 365 struct mem_cgroup_per_node *pn; 366 struct memcg_shrinker_map *map; 367 int nid; 368 369 if (mem_cgroup_is_root(memcg)) 370 return; 371 372 for_each_node(nid) { 373 pn = mem_cgroup_nodeinfo(memcg, nid); 374 map = rcu_dereference_protected(pn->shrinker_map, true); 375 if (map) 376 kvfree(map); 377 rcu_assign_pointer(pn->shrinker_map, NULL); 378 } 379 } 380 381 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg) 382 { 383 struct memcg_shrinker_map *map; 384 int nid, size, ret = 0; 385 386 if (mem_cgroup_is_root(memcg)) 387 return 0; 388 389 mutex_lock(&memcg_shrinker_map_mutex); 390 size = memcg_shrinker_map_size; 391 for_each_node(nid) { 392 map = kvzalloc(sizeof(*map) + size, GFP_KERNEL); 393 if (!map) { 394 memcg_free_shrinker_maps(memcg); 395 ret = -ENOMEM; 396 break; 397 } 398 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map); 399 } 400 mutex_unlock(&memcg_shrinker_map_mutex); 401 402 return ret; 403 } 404 405 int memcg_expand_shrinker_maps(int new_id) 406 { 407 int size, old_size, ret = 0; 408 struct mem_cgroup *memcg; 409 410 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long); 411 old_size = memcg_shrinker_map_size; 412 if (size <= old_size) 413 return 0; 414 415 mutex_lock(&memcg_shrinker_map_mutex); 416 if (!root_mem_cgroup) 417 goto unlock; 418 419 for_each_mem_cgroup(memcg) { 420 if (mem_cgroup_is_root(memcg)) 421 continue; 422 ret = memcg_expand_one_shrinker_map(memcg, size, old_size); 423 if (ret) 424 goto unlock; 425 } 426 unlock: 427 if (!ret) 428 memcg_shrinker_map_size = size; 429 mutex_unlock(&memcg_shrinker_map_mutex); 430 return ret; 431 } 432 433 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id) 434 { 435 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) { 436 struct memcg_shrinker_map *map; 437 438 rcu_read_lock(); 439 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map); 440 /* Pairs with smp mb in shrink_slab() */ 441 smp_mb__before_atomic(); 442 set_bit(shrinker_id, map->map); 443 rcu_read_unlock(); 444 } 445 } 446 447 #else /* CONFIG_MEMCG_KMEM */ 448 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg) 449 { 450 return 0; 451 } 452 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) { } 453 #endif /* CONFIG_MEMCG_KMEM */ 454 455 /** 456 * mem_cgroup_css_from_page - css of the memcg associated with a page 457 * @page: page of interest 458 * 459 * If memcg is bound to the default hierarchy, css of the memcg associated 460 * with @page is returned. The returned css remains associated with @page 461 * until it is released. 462 * 463 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup 464 * is returned. 465 */ 466 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page) 467 { 468 struct mem_cgroup *memcg; 469 470 memcg = page->mem_cgroup; 471 472 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 473 memcg = root_mem_cgroup; 474 475 return &memcg->css; 476 } 477 478 /** 479 * page_cgroup_ino - return inode number of the memcg a page is charged to 480 * @page: the page 481 * 482 * Look up the closest online ancestor of the memory cgroup @page is charged to 483 * and return its inode number or 0 if @page is not charged to any cgroup. It 484 * is safe to call this function without holding a reference to @page. 485 * 486 * Note, this function is inherently racy, because there is nothing to prevent 487 * the cgroup inode from getting torn down and potentially reallocated a moment 488 * after page_cgroup_ino() returns, so it only should be used by callers that 489 * do not care (such as procfs interfaces). 490 */ 491 ino_t page_cgroup_ino(struct page *page) 492 { 493 struct mem_cgroup *memcg; 494 unsigned long ino = 0; 495 496 rcu_read_lock(); 497 memcg = READ_ONCE(page->mem_cgroup); 498 while (memcg && !(memcg->css.flags & CSS_ONLINE)) 499 memcg = parent_mem_cgroup(memcg); 500 if (memcg) 501 ino = cgroup_ino(memcg->css.cgroup); 502 rcu_read_unlock(); 503 return ino; 504 } 505 506 static struct mem_cgroup_per_node * 507 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page) 508 { 509 int nid = page_to_nid(page); 510 511 return memcg->nodeinfo[nid]; 512 } 513 514 static struct mem_cgroup_tree_per_node * 515 soft_limit_tree_node(int nid) 516 { 517 return soft_limit_tree.rb_tree_per_node[nid]; 518 } 519 520 static struct mem_cgroup_tree_per_node * 521 soft_limit_tree_from_page(struct page *page) 522 { 523 int nid = page_to_nid(page); 524 525 return soft_limit_tree.rb_tree_per_node[nid]; 526 } 527 528 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz, 529 struct mem_cgroup_tree_per_node *mctz, 530 unsigned long new_usage_in_excess) 531 { 532 struct rb_node **p = &mctz->rb_root.rb_node; 533 struct rb_node *parent = NULL; 534 struct mem_cgroup_per_node *mz_node; 535 bool rightmost = true; 536 537 if (mz->on_tree) 538 return; 539 540 mz->usage_in_excess = new_usage_in_excess; 541 if (!mz->usage_in_excess) 542 return; 543 while (*p) { 544 parent = *p; 545 mz_node = rb_entry(parent, struct mem_cgroup_per_node, 546 tree_node); 547 if (mz->usage_in_excess < mz_node->usage_in_excess) { 548 p = &(*p)->rb_left; 549 rightmost = false; 550 } 551 552 /* 553 * We can't avoid mem cgroups that are over their soft 554 * limit by the same amount 555 */ 556 else if (mz->usage_in_excess >= mz_node->usage_in_excess) 557 p = &(*p)->rb_right; 558 } 559 560 if (rightmost) 561 mctz->rb_rightmost = &mz->tree_node; 562 563 rb_link_node(&mz->tree_node, parent, p); 564 rb_insert_color(&mz->tree_node, &mctz->rb_root); 565 mz->on_tree = true; 566 } 567 568 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 569 struct mem_cgroup_tree_per_node *mctz) 570 { 571 if (!mz->on_tree) 572 return; 573 574 if (&mz->tree_node == mctz->rb_rightmost) 575 mctz->rb_rightmost = rb_prev(&mz->tree_node); 576 577 rb_erase(&mz->tree_node, &mctz->rb_root); 578 mz->on_tree = false; 579 } 580 581 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 582 struct mem_cgroup_tree_per_node *mctz) 583 { 584 unsigned long flags; 585 586 spin_lock_irqsave(&mctz->lock, flags); 587 __mem_cgroup_remove_exceeded(mz, mctz); 588 spin_unlock_irqrestore(&mctz->lock, flags); 589 } 590 591 static unsigned long soft_limit_excess(struct mem_cgroup *memcg) 592 { 593 unsigned long nr_pages = page_counter_read(&memcg->memory); 594 unsigned long soft_limit = READ_ONCE(memcg->soft_limit); 595 unsigned long excess = 0; 596 597 if (nr_pages > soft_limit) 598 excess = nr_pages - soft_limit; 599 600 return excess; 601 } 602 603 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page) 604 { 605 unsigned long excess; 606 struct mem_cgroup_per_node *mz; 607 struct mem_cgroup_tree_per_node *mctz; 608 609 mctz = soft_limit_tree_from_page(page); 610 if (!mctz) 611 return; 612 /* 613 * Necessary to update all ancestors when hierarchy is used. 614 * because their event counter is not touched. 615 */ 616 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 617 mz = mem_cgroup_page_nodeinfo(memcg, page); 618 excess = soft_limit_excess(memcg); 619 /* 620 * We have to update the tree if mz is on RB-tree or 621 * mem is over its softlimit. 622 */ 623 if (excess || mz->on_tree) { 624 unsigned long flags; 625 626 spin_lock_irqsave(&mctz->lock, flags); 627 /* if on-tree, remove it */ 628 if (mz->on_tree) 629 __mem_cgroup_remove_exceeded(mz, mctz); 630 /* 631 * Insert again. mz->usage_in_excess will be updated. 632 * If excess is 0, no tree ops. 633 */ 634 __mem_cgroup_insert_exceeded(mz, mctz, excess); 635 spin_unlock_irqrestore(&mctz->lock, flags); 636 } 637 } 638 } 639 640 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) 641 { 642 struct mem_cgroup_tree_per_node *mctz; 643 struct mem_cgroup_per_node *mz; 644 int nid; 645 646 for_each_node(nid) { 647 mz = mem_cgroup_nodeinfo(memcg, nid); 648 mctz = soft_limit_tree_node(nid); 649 if (mctz) 650 mem_cgroup_remove_exceeded(mz, mctz); 651 } 652 } 653 654 static struct mem_cgroup_per_node * 655 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 656 { 657 struct mem_cgroup_per_node *mz; 658 659 retry: 660 mz = NULL; 661 if (!mctz->rb_rightmost) 662 goto done; /* Nothing to reclaim from */ 663 664 mz = rb_entry(mctz->rb_rightmost, 665 struct mem_cgroup_per_node, tree_node); 666 /* 667 * Remove the node now but someone else can add it back, 668 * we will to add it back at the end of reclaim to its correct 669 * position in the tree. 670 */ 671 __mem_cgroup_remove_exceeded(mz, mctz); 672 if (!soft_limit_excess(mz->memcg) || 673 !css_tryget_online(&mz->memcg->css)) 674 goto retry; 675 done: 676 return mz; 677 } 678 679 static struct mem_cgroup_per_node * 680 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 681 { 682 struct mem_cgroup_per_node *mz; 683 684 spin_lock_irq(&mctz->lock); 685 mz = __mem_cgroup_largest_soft_limit_node(mctz); 686 spin_unlock_irq(&mctz->lock); 687 return mz; 688 } 689 690 static unsigned long memcg_sum_events(struct mem_cgroup *memcg, 691 int event) 692 { 693 return atomic_long_read(&memcg->events[event]); 694 } 695 696 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, 697 struct page *page, 698 bool compound, int nr_pages) 699 { 700 /* 701 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is 702 * counted as CACHE even if it's on ANON LRU. 703 */ 704 if (PageAnon(page)) 705 __mod_memcg_state(memcg, MEMCG_RSS, nr_pages); 706 else { 707 __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages); 708 if (PageSwapBacked(page)) 709 __mod_memcg_state(memcg, NR_SHMEM, nr_pages); 710 } 711 712 if (compound) { 713 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 714 __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages); 715 } 716 717 /* pagein of a big page is an event. So, ignore page size */ 718 if (nr_pages > 0) 719 __count_memcg_events(memcg, PGPGIN, 1); 720 else { 721 __count_memcg_events(memcg, PGPGOUT, 1); 722 nr_pages = -nr_pages; /* for event */ 723 } 724 725 __this_cpu_add(memcg->stat_cpu->nr_page_events, nr_pages); 726 } 727 728 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, 729 enum mem_cgroup_events_target target) 730 { 731 unsigned long val, next; 732 733 val = __this_cpu_read(memcg->stat_cpu->nr_page_events); 734 next = __this_cpu_read(memcg->stat_cpu->targets[target]); 735 /* from time_after() in jiffies.h */ 736 if ((long)(next - val) < 0) { 737 switch (target) { 738 case MEM_CGROUP_TARGET_THRESH: 739 next = val + THRESHOLDS_EVENTS_TARGET; 740 break; 741 case MEM_CGROUP_TARGET_SOFTLIMIT: 742 next = val + SOFTLIMIT_EVENTS_TARGET; 743 break; 744 case MEM_CGROUP_TARGET_NUMAINFO: 745 next = val + NUMAINFO_EVENTS_TARGET; 746 break; 747 default: 748 break; 749 } 750 __this_cpu_write(memcg->stat_cpu->targets[target], next); 751 return true; 752 } 753 return false; 754 } 755 756 /* 757 * Check events in order. 758 * 759 */ 760 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) 761 { 762 /* threshold event is triggered in finer grain than soft limit */ 763 if (unlikely(mem_cgroup_event_ratelimit(memcg, 764 MEM_CGROUP_TARGET_THRESH))) { 765 bool do_softlimit; 766 bool do_numainfo __maybe_unused; 767 768 do_softlimit = mem_cgroup_event_ratelimit(memcg, 769 MEM_CGROUP_TARGET_SOFTLIMIT); 770 #if MAX_NUMNODES > 1 771 do_numainfo = mem_cgroup_event_ratelimit(memcg, 772 MEM_CGROUP_TARGET_NUMAINFO); 773 #endif 774 mem_cgroup_threshold(memcg); 775 if (unlikely(do_softlimit)) 776 mem_cgroup_update_tree(memcg, page); 777 #if MAX_NUMNODES > 1 778 if (unlikely(do_numainfo)) 779 atomic_inc(&memcg->numainfo_events); 780 #endif 781 } 782 } 783 784 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 785 { 786 /* 787 * mm_update_next_owner() may clear mm->owner to NULL 788 * if it races with swapoff, page migration, etc. 789 * So this can be called with p == NULL. 790 */ 791 if (unlikely(!p)) 792 return NULL; 793 794 return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); 795 } 796 EXPORT_SYMBOL(mem_cgroup_from_task); 797 798 /** 799 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg. 800 * @mm: mm from which memcg should be extracted. It can be NULL. 801 * 802 * Obtain a reference on mm->memcg and returns it if successful. Otherwise 803 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is 804 * returned. 805 */ 806 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 807 { 808 struct mem_cgroup *memcg; 809 810 if (mem_cgroup_disabled()) 811 return NULL; 812 813 rcu_read_lock(); 814 do { 815 /* 816 * Page cache insertions can happen withou an 817 * actual mm context, e.g. during disk probing 818 * on boot, loopback IO, acct() writes etc. 819 */ 820 if (unlikely(!mm)) 821 memcg = root_mem_cgroup; 822 else { 823 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 824 if (unlikely(!memcg)) 825 memcg = root_mem_cgroup; 826 } 827 } while (!css_tryget_online(&memcg->css)); 828 rcu_read_unlock(); 829 return memcg; 830 } 831 EXPORT_SYMBOL(get_mem_cgroup_from_mm); 832 833 /** 834 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg. 835 * @page: page from which memcg should be extracted. 836 * 837 * Obtain a reference on page->memcg and returns it if successful. Otherwise 838 * root_mem_cgroup is returned. 839 */ 840 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page) 841 { 842 struct mem_cgroup *memcg = page->mem_cgroup; 843 844 if (mem_cgroup_disabled()) 845 return NULL; 846 847 rcu_read_lock(); 848 if (!memcg || !css_tryget_online(&memcg->css)) 849 memcg = root_mem_cgroup; 850 rcu_read_unlock(); 851 return memcg; 852 } 853 EXPORT_SYMBOL(get_mem_cgroup_from_page); 854 855 /** 856 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg. 857 */ 858 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void) 859 { 860 if (unlikely(current->active_memcg)) { 861 struct mem_cgroup *memcg = root_mem_cgroup; 862 863 rcu_read_lock(); 864 if (css_tryget_online(¤t->active_memcg->css)) 865 memcg = current->active_memcg; 866 rcu_read_unlock(); 867 return memcg; 868 } 869 return get_mem_cgroup_from_mm(current->mm); 870 } 871 872 /** 873 * mem_cgroup_iter - iterate over memory cgroup hierarchy 874 * @root: hierarchy root 875 * @prev: previously returned memcg, NULL on first invocation 876 * @reclaim: cookie for shared reclaim walks, NULL for full walks 877 * 878 * Returns references to children of the hierarchy below @root, or 879 * @root itself, or %NULL after a full round-trip. 880 * 881 * Caller must pass the return value in @prev on subsequent 882 * invocations for reference counting, or use mem_cgroup_iter_break() 883 * to cancel a hierarchy walk before the round-trip is complete. 884 * 885 * Reclaimers can specify a node and a priority level in @reclaim to 886 * divide up the memcgs in the hierarchy among all concurrent 887 * reclaimers operating on the same node and priority. 888 */ 889 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 890 struct mem_cgroup *prev, 891 struct mem_cgroup_reclaim_cookie *reclaim) 892 { 893 struct mem_cgroup_reclaim_iter *uninitialized_var(iter); 894 struct cgroup_subsys_state *css = NULL; 895 struct mem_cgroup *memcg = NULL; 896 struct mem_cgroup *pos = NULL; 897 898 if (mem_cgroup_disabled()) 899 return NULL; 900 901 if (!root) 902 root = root_mem_cgroup; 903 904 if (prev && !reclaim) 905 pos = prev; 906 907 if (!root->use_hierarchy && root != root_mem_cgroup) { 908 if (prev) 909 goto out; 910 return root; 911 } 912 913 rcu_read_lock(); 914 915 if (reclaim) { 916 struct mem_cgroup_per_node *mz; 917 918 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id); 919 iter = &mz->iter[reclaim->priority]; 920 921 if (prev && reclaim->generation != iter->generation) 922 goto out_unlock; 923 924 while (1) { 925 pos = READ_ONCE(iter->position); 926 if (!pos || css_tryget(&pos->css)) 927 break; 928 /* 929 * css reference reached zero, so iter->position will 930 * be cleared by ->css_released. However, we should not 931 * rely on this happening soon, because ->css_released 932 * is called from a work queue, and by busy-waiting we 933 * might block it. So we clear iter->position right 934 * away. 935 */ 936 (void)cmpxchg(&iter->position, pos, NULL); 937 } 938 } 939 940 if (pos) 941 css = &pos->css; 942 943 for (;;) { 944 css = css_next_descendant_pre(css, &root->css); 945 if (!css) { 946 /* 947 * Reclaimers share the hierarchy walk, and a 948 * new one might jump in right at the end of 949 * the hierarchy - make sure they see at least 950 * one group and restart from the beginning. 951 */ 952 if (!prev) 953 continue; 954 break; 955 } 956 957 /* 958 * Verify the css and acquire a reference. The root 959 * is provided by the caller, so we know it's alive 960 * and kicking, and don't take an extra reference. 961 */ 962 memcg = mem_cgroup_from_css(css); 963 964 if (css == &root->css) 965 break; 966 967 if (css_tryget(css)) 968 break; 969 970 memcg = NULL; 971 } 972 973 if (reclaim) { 974 /* 975 * The position could have already been updated by a competing 976 * thread, so check that the value hasn't changed since we read 977 * it to avoid reclaiming from the same cgroup twice. 978 */ 979 (void)cmpxchg(&iter->position, pos, memcg); 980 981 if (pos) 982 css_put(&pos->css); 983 984 if (!memcg) 985 iter->generation++; 986 else if (!prev) 987 reclaim->generation = iter->generation; 988 } 989 990 out_unlock: 991 rcu_read_unlock(); 992 out: 993 if (prev && prev != root) 994 css_put(&prev->css); 995 996 return memcg; 997 } 998 999 /** 1000 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 1001 * @root: hierarchy root 1002 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 1003 */ 1004 void mem_cgroup_iter_break(struct mem_cgroup *root, 1005 struct mem_cgroup *prev) 1006 { 1007 if (!root) 1008 root = root_mem_cgroup; 1009 if (prev && prev != root) 1010 css_put(&prev->css); 1011 } 1012 1013 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) 1014 { 1015 struct mem_cgroup *memcg = dead_memcg; 1016 struct mem_cgroup_reclaim_iter *iter; 1017 struct mem_cgroup_per_node *mz; 1018 int nid; 1019 int i; 1020 1021 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 1022 for_each_node(nid) { 1023 mz = mem_cgroup_nodeinfo(memcg, nid); 1024 for (i = 0; i <= DEF_PRIORITY; i++) { 1025 iter = &mz->iter[i]; 1026 cmpxchg(&iter->position, 1027 dead_memcg, NULL); 1028 } 1029 } 1030 } 1031 } 1032 1033 /** 1034 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy 1035 * @memcg: hierarchy root 1036 * @fn: function to call for each task 1037 * @arg: argument passed to @fn 1038 * 1039 * This function iterates over tasks attached to @memcg or to any of its 1040 * descendants and calls @fn for each task. If @fn returns a non-zero 1041 * value, the function breaks the iteration loop and returns the value. 1042 * Otherwise, it will iterate over all tasks and return 0. 1043 * 1044 * This function must not be called for the root memory cgroup. 1045 */ 1046 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1047 int (*fn)(struct task_struct *, void *), void *arg) 1048 { 1049 struct mem_cgroup *iter; 1050 int ret = 0; 1051 1052 BUG_ON(memcg == root_mem_cgroup); 1053 1054 for_each_mem_cgroup_tree(iter, memcg) { 1055 struct css_task_iter it; 1056 struct task_struct *task; 1057 1058 css_task_iter_start(&iter->css, 0, &it); 1059 while (!ret && (task = css_task_iter_next(&it))) 1060 ret = fn(task, arg); 1061 css_task_iter_end(&it); 1062 if (ret) { 1063 mem_cgroup_iter_break(memcg, iter); 1064 break; 1065 } 1066 } 1067 return ret; 1068 } 1069 1070 /** 1071 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page 1072 * @page: the page 1073 * @pgdat: pgdat of the page 1074 * 1075 * This function is only safe when following the LRU page isolation 1076 * and putback protocol: the LRU lock must be held, and the page must 1077 * either be PageLRU() or the caller must have isolated/allocated it. 1078 */ 1079 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat) 1080 { 1081 struct mem_cgroup_per_node *mz; 1082 struct mem_cgroup *memcg; 1083 struct lruvec *lruvec; 1084 1085 if (mem_cgroup_disabled()) { 1086 lruvec = &pgdat->lruvec; 1087 goto out; 1088 } 1089 1090 memcg = page->mem_cgroup; 1091 /* 1092 * Swapcache readahead pages are added to the LRU - and 1093 * possibly migrated - before they are charged. 1094 */ 1095 if (!memcg) 1096 memcg = root_mem_cgroup; 1097 1098 mz = mem_cgroup_page_nodeinfo(memcg, page); 1099 lruvec = &mz->lruvec; 1100 out: 1101 /* 1102 * Since a node can be onlined after the mem_cgroup was created, 1103 * we have to be prepared to initialize lruvec->zone here; 1104 * and if offlined then reonlined, we need to reinitialize it. 1105 */ 1106 if (unlikely(lruvec->pgdat != pgdat)) 1107 lruvec->pgdat = pgdat; 1108 return lruvec; 1109 } 1110 1111 /** 1112 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1113 * @lruvec: mem_cgroup per zone lru vector 1114 * @lru: index of lru list the page is sitting on 1115 * @zid: zone id of the accounted pages 1116 * @nr_pages: positive when adding or negative when removing 1117 * 1118 * This function must be called under lru_lock, just before a page is added 1119 * to or just after a page is removed from an lru list (that ordering being 1120 * so as to allow it to check that lru_size 0 is consistent with list_empty). 1121 */ 1122 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1123 int zid, int nr_pages) 1124 { 1125 struct mem_cgroup_per_node *mz; 1126 unsigned long *lru_size; 1127 long size; 1128 1129 if (mem_cgroup_disabled()) 1130 return; 1131 1132 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 1133 lru_size = &mz->lru_zone_size[zid][lru]; 1134 1135 if (nr_pages < 0) 1136 *lru_size += nr_pages; 1137 1138 size = *lru_size; 1139 if (WARN_ONCE(size < 0, 1140 "%s(%p, %d, %d): lru_size %ld\n", 1141 __func__, lruvec, lru, nr_pages, size)) { 1142 VM_BUG_ON(1); 1143 *lru_size = 0; 1144 } 1145 1146 if (nr_pages > 0) 1147 *lru_size += nr_pages; 1148 } 1149 1150 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg) 1151 { 1152 struct mem_cgroup *task_memcg; 1153 struct task_struct *p; 1154 bool ret; 1155 1156 p = find_lock_task_mm(task); 1157 if (p) { 1158 task_memcg = get_mem_cgroup_from_mm(p->mm); 1159 task_unlock(p); 1160 } else { 1161 /* 1162 * All threads may have already detached their mm's, but the oom 1163 * killer still needs to detect if they have already been oom 1164 * killed to prevent needlessly killing additional tasks. 1165 */ 1166 rcu_read_lock(); 1167 task_memcg = mem_cgroup_from_task(task); 1168 css_get(&task_memcg->css); 1169 rcu_read_unlock(); 1170 } 1171 ret = mem_cgroup_is_descendant(task_memcg, memcg); 1172 css_put(&task_memcg->css); 1173 return ret; 1174 } 1175 1176 /** 1177 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1178 * @memcg: the memory cgroup 1179 * 1180 * Returns the maximum amount of memory @mem can be charged with, in 1181 * pages. 1182 */ 1183 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1184 { 1185 unsigned long margin = 0; 1186 unsigned long count; 1187 unsigned long limit; 1188 1189 count = page_counter_read(&memcg->memory); 1190 limit = READ_ONCE(memcg->memory.max); 1191 if (count < limit) 1192 margin = limit - count; 1193 1194 if (do_memsw_account()) { 1195 count = page_counter_read(&memcg->memsw); 1196 limit = READ_ONCE(memcg->memsw.max); 1197 if (count <= limit) 1198 margin = min(margin, limit - count); 1199 else 1200 margin = 0; 1201 } 1202 1203 return margin; 1204 } 1205 1206 /* 1207 * A routine for checking "mem" is under move_account() or not. 1208 * 1209 * Checking a cgroup is mc.from or mc.to or under hierarchy of 1210 * moving cgroups. This is for waiting at high-memory pressure 1211 * caused by "move". 1212 */ 1213 static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 1214 { 1215 struct mem_cgroup *from; 1216 struct mem_cgroup *to; 1217 bool ret = false; 1218 /* 1219 * Unlike task_move routines, we access mc.to, mc.from not under 1220 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1221 */ 1222 spin_lock(&mc.lock); 1223 from = mc.from; 1224 to = mc.to; 1225 if (!from) 1226 goto unlock; 1227 1228 ret = mem_cgroup_is_descendant(from, memcg) || 1229 mem_cgroup_is_descendant(to, memcg); 1230 unlock: 1231 spin_unlock(&mc.lock); 1232 return ret; 1233 } 1234 1235 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) 1236 { 1237 if (mc.moving_task && current != mc.moving_task) { 1238 if (mem_cgroup_under_move(memcg)) { 1239 DEFINE_WAIT(wait); 1240 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1241 /* moving charge context might have finished. */ 1242 if (mc.moving_task) 1243 schedule(); 1244 finish_wait(&mc.waitq, &wait); 1245 return true; 1246 } 1247 } 1248 return false; 1249 } 1250 1251 static const unsigned int memcg1_stats[] = { 1252 MEMCG_CACHE, 1253 MEMCG_RSS, 1254 MEMCG_RSS_HUGE, 1255 NR_SHMEM, 1256 NR_FILE_MAPPED, 1257 NR_FILE_DIRTY, 1258 NR_WRITEBACK, 1259 MEMCG_SWAP, 1260 }; 1261 1262 static const char *const memcg1_stat_names[] = { 1263 "cache", 1264 "rss", 1265 "rss_huge", 1266 "shmem", 1267 "mapped_file", 1268 "dirty", 1269 "writeback", 1270 "swap", 1271 }; 1272 1273 #define K(x) ((x) << (PAGE_SHIFT-10)) 1274 /** 1275 * mem_cgroup_print_oom_context: Print OOM information relevant to 1276 * memory controller. 1277 * @memcg: The memory cgroup that went over limit 1278 * @p: Task that is going to be killed 1279 * 1280 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1281 * enabled 1282 */ 1283 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1284 { 1285 rcu_read_lock(); 1286 1287 if (memcg) { 1288 pr_cont(",oom_memcg="); 1289 pr_cont_cgroup_path(memcg->css.cgroup); 1290 } else 1291 pr_cont(",global_oom"); 1292 if (p) { 1293 pr_cont(",task_memcg="); 1294 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); 1295 } 1296 rcu_read_unlock(); 1297 } 1298 1299 /** 1300 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to 1301 * memory controller. 1302 * @memcg: The memory cgroup that went over limit 1303 */ 1304 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1305 { 1306 struct mem_cgroup *iter; 1307 unsigned int i; 1308 1309 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", 1310 K((u64)page_counter_read(&memcg->memory)), 1311 K((u64)memcg->memory.max), memcg->memory.failcnt); 1312 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", 1313 K((u64)page_counter_read(&memcg->memsw)), 1314 K((u64)memcg->memsw.max), memcg->memsw.failcnt); 1315 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", 1316 K((u64)page_counter_read(&memcg->kmem)), 1317 K((u64)memcg->kmem.max), memcg->kmem.failcnt); 1318 1319 for_each_mem_cgroup_tree(iter, memcg) { 1320 pr_info("Memory cgroup stats for "); 1321 pr_cont_cgroup_path(iter->css.cgroup); 1322 pr_cont(":"); 1323 1324 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 1325 if (memcg1_stats[i] == MEMCG_SWAP && !do_swap_account) 1326 continue; 1327 pr_cont(" %s:%luKB", memcg1_stat_names[i], 1328 K(memcg_page_state(iter, memcg1_stats[i]))); 1329 } 1330 1331 for (i = 0; i < NR_LRU_LISTS; i++) 1332 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i], 1333 K(memcg_page_state(iter, NR_LRU_BASE + i))); 1334 1335 pr_cont("\n"); 1336 } 1337 } 1338 1339 /* 1340 * Return the memory (and swap, if configured) limit for a memcg. 1341 */ 1342 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1343 { 1344 unsigned long max; 1345 1346 max = memcg->memory.max; 1347 if (mem_cgroup_swappiness(memcg)) { 1348 unsigned long memsw_max; 1349 unsigned long swap_max; 1350 1351 memsw_max = memcg->memsw.max; 1352 swap_max = memcg->swap.max; 1353 swap_max = min(swap_max, (unsigned long)total_swap_pages); 1354 max = min(max + swap_max, memsw_max); 1355 } 1356 return max; 1357 } 1358 1359 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1360 int order) 1361 { 1362 struct oom_control oc = { 1363 .zonelist = NULL, 1364 .nodemask = NULL, 1365 .memcg = memcg, 1366 .gfp_mask = gfp_mask, 1367 .order = order, 1368 }; 1369 bool ret; 1370 1371 if (mutex_lock_killable(&oom_lock)) 1372 return true; 1373 /* 1374 * A few threads which were not waiting at mutex_lock_killable() can 1375 * fail to bail out. Therefore, check again after holding oom_lock. 1376 */ 1377 ret = should_force_charge() || out_of_memory(&oc); 1378 mutex_unlock(&oom_lock); 1379 return ret; 1380 } 1381 1382 #if MAX_NUMNODES > 1 1383 1384 /** 1385 * test_mem_cgroup_node_reclaimable 1386 * @memcg: the target memcg 1387 * @nid: the node ID to be checked. 1388 * @noswap : specify true here if the user wants flle only information. 1389 * 1390 * This function returns whether the specified memcg contains any 1391 * reclaimable pages on a node. Returns true if there are any reclaimable 1392 * pages in the node. 1393 */ 1394 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg, 1395 int nid, bool noswap) 1396 { 1397 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg); 1398 1399 if (lruvec_page_state(lruvec, NR_INACTIVE_FILE) || 1400 lruvec_page_state(lruvec, NR_ACTIVE_FILE)) 1401 return true; 1402 if (noswap || !total_swap_pages) 1403 return false; 1404 if (lruvec_page_state(lruvec, NR_INACTIVE_ANON) || 1405 lruvec_page_state(lruvec, NR_ACTIVE_ANON)) 1406 return true; 1407 return false; 1408 1409 } 1410 1411 /* 1412 * Always updating the nodemask is not very good - even if we have an empty 1413 * list or the wrong list here, we can start from some node and traverse all 1414 * nodes based on the zonelist. So update the list loosely once per 10 secs. 1415 * 1416 */ 1417 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg) 1418 { 1419 int nid; 1420 /* 1421 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET 1422 * pagein/pageout changes since the last update. 1423 */ 1424 if (!atomic_read(&memcg->numainfo_events)) 1425 return; 1426 if (atomic_inc_return(&memcg->numainfo_updating) > 1) 1427 return; 1428 1429 /* make a nodemask where this memcg uses memory from */ 1430 memcg->scan_nodes = node_states[N_MEMORY]; 1431 1432 for_each_node_mask(nid, node_states[N_MEMORY]) { 1433 1434 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false)) 1435 node_clear(nid, memcg->scan_nodes); 1436 } 1437 1438 atomic_set(&memcg->numainfo_events, 0); 1439 atomic_set(&memcg->numainfo_updating, 0); 1440 } 1441 1442 /* 1443 * Selecting a node where we start reclaim from. Because what we need is just 1444 * reducing usage counter, start from anywhere is O,K. Considering 1445 * memory reclaim from current node, there are pros. and cons. 1446 * 1447 * Freeing memory from current node means freeing memory from a node which 1448 * we'll use or we've used. So, it may make LRU bad. And if several threads 1449 * hit limits, it will see a contention on a node. But freeing from remote 1450 * node means more costs for memory reclaim because of memory latency. 1451 * 1452 * Now, we use round-robin. Better algorithm is welcomed. 1453 */ 1454 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1455 { 1456 int node; 1457 1458 mem_cgroup_may_update_nodemask(memcg); 1459 node = memcg->last_scanned_node; 1460 1461 node = next_node_in(node, memcg->scan_nodes); 1462 /* 1463 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages 1464 * last time it really checked all the LRUs due to rate limiting. 1465 * Fallback to the current node in that case for simplicity. 1466 */ 1467 if (unlikely(node == MAX_NUMNODES)) 1468 node = numa_node_id(); 1469 1470 memcg->last_scanned_node = node; 1471 return node; 1472 } 1473 #else 1474 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1475 { 1476 return 0; 1477 } 1478 #endif 1479 1480 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, 1481 pg_data_t *pgdat, 1482 gfp_t gfp_mask, 1483 unsigned long *total_scanned) 1484 { 1485 struct mem_cgroup *victim = NULL; 1486 int total = 0; 1487 int loop = 0; 1488 unsigned long excess; 1489 unsigned long nr_scanned; 1490 struct mem_cgroup_reclaim_cookie reclaim = { 1491 .pgdat = pgdat, 1492 .priority = 0, 1493 }; 1494 1495 excess = soft_limit_excess(root_memcg); 1496 1497 while (1) { 1498 victim = mem_cgroup_iter(root_memcg, victim, &reclaim); 1499 if (!victim) { 1500 loop++; 1501 if (loop >= 2) { 1502 /* 1503 * If we have not been able to reclaim 1504 * anything, it might because there are 1505 * no reclaimable pages under this hierarchy 1506 */ 1507 if (!total) 1508 break; 1509 /* 1510 * We want to do more targeted reclaim. 1511 * excess >> 2 is not to excessive so as to 1512 * reclaim too much, nor too less that we keep 1513 * coming back to reclaim from this cgroup 1514 */ 1515 if (total >= (excess >> 2) || 1516 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) 1517 break; 1518 } 1519 continue; 1520 } 1521 total += mem_cgroup_shrink_node(victim, gfp_mask, false, 1522 pgdat, &nr_scanned); 1523 *total_scanned += nr_scanned; 1524 if (!soft_limit_excess(root_memcg)) 1525 break; 1526 } 1527 mem_cgroup_iter_break(root_memcg, victim); 1528 return total; 1529 } 1530 1531 #ifdef CONFIG_LOCKDEP 1532 static struct lockdep_map memcg_oom_lock_dep_map = { 1533 .name = "memcg_oom_lock", 1534 }; 1535 #endif 1536 1537 static DEFINE_SPINLOCK(memcg_oom_lock); 1538 1539 /* 1540 * Check OOM-Killer is already running under our hierarchy. 1541 * If someone is running, return false. 1542 */ 1543 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) 1544 { 1545 struct mem_cgroup *iter, *failed = NULL; 1546 1547 spin_lock(&memcg_oom_lock); 1548 1549 for_each_mem_cgroup_tree(iter, memcg) { 1550 if (iter->oom_lock) { 1551 /* 1552 * this subtree of our hierarchy is already locked 1553 * so we cannot give a lock. 1554 */ 1555 failed = iter; 1556 mem_cgroup_iter_break(memcg, iter); 1557 break; 1558 } else 1559 iter->oom_lock = true; 1560 } 1561 1562 if (failed) { 1563 /* 1564 * OK, we failed to lock the whole subtree so we have 1565 * to clean up what we set up to the failing subtree 1566 */ 1567 for_each_mem_cgroup_tree(iter, memcg) { 1568 if (iter == failed) { 1569 mem_cgroup_iter_break(memcg, iter); 1570 break; 1571 } 1572 iter->oom_lock = false; 1573 } 1574 } else 1575 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); 1576 1577 spin_unlock(&memcg_oom_lock); 1578 1579 return !failed; 1580 } 1581 1582 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 1583 { 1584 struct mem_cgroup *iter; 1585 1586 spin_lock(&memcg_oom_lock); 1587 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_); 1588 for_each_mem_cgroup_tree(iter, memcg) 1589 iter->oom_lock = false; 1590 spin_unlock(&memcg_oom_lock); 1591 } 1592 1593 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 1594 { 1595 struct mem_cgroup *iter; 1596 1597 spin_lock(&memcg_oom_lock); 1598 for_each_mem_cgroup_tree(iter, memcg) 1599 iter->under_oom++; 1600 spin_unlock(&memcg_oom_lock); 1601 } 1602 1603 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 1604 { 1605 struct mem_cgroup *iter; 1606 1607 /* 1608 * When a new child is created while the hierarchy is under oom, 1609 * mem_cgroup_oom_lock() may not be called. Watch for underflow. 1610 */ 1611 spin_lock(&memcg_oom_lock); 1612 for_each_mem_cgroup_tree(iter, memcg) 1613 if (iter->under_oom > 0) 1614 iter->under_oom--; 1615 spin_unlock(&memcg_oom_lock); 1616 } 1617 1618 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 1619 1620 struct oom_wait_info { 1621 struct mem_cgroup *memcg; 1622 wait_queue_entry_t wait; 1623 }; 1624 1625 static int memcg_oom_wake_function(wait_queue_entry_t *wait, 1626 unsigned mode, int sync, void *arg) 1627 { 1628 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; 1629 struct mem_cgroup *oom_wait_memcg; 1630 struct oom_wait_info *oom_wait_info; 1631 1632 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 1633 oom_wait_memcg = oom_wait_info->memcg; 1634 1635 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) && 1636 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg)) 1637 return 0; 1638 return autoremove_wake_function(wait, mode, sync, arg); 1639 } 1640 1641 static void memcg_oom_recover(struct mem_cgroup *memcg) 1642 { 1643 /* 1644 * For the following lockless ->under_oom test, the only required 1645 * guarantee is that it must see the state asserted by an OOM when 1646 * this function is called as a result of userland actions 1647 * triggered by the notification of the OOM. This is trivially 1648 * achieved by invoking mem_cgroup_mark_under_oom() before 1649 * triggering notification. 1650 */ 1651 if (memcg && memcg->under_oom) 1652 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 1653 } 1654 1655 enum oom_status { 1656 OOM_SUCCESS, 1657 OOM_FAILED, 1658 OOM_ASYNC, 1659 OOM_SKIPPED 1660 }; 1661 1662 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 1663 { 1664 enum oom_status ret; 1665 bool locked; 1666 1667 if (order > PAGE_ALLOC_COSTLY_ORDER) 1668 return OOM_SKIPPED; 1669 1670 memcg_memory_event(memcg, MEMCG_OOM); 1671 1672 /* 1673 * We are in the middle of the charge context here, so we 1674 * don't want to block when potentially sitting on a callstack 1675 * that holds all kinds of filesystem and mm locks. 1676 * 1677 * cgroup1 allows disabling the OOM killer and waiting for outside 1678 * handling until the charge can succeed; remember the context and put 1679 * the task to sleep at the end of the page fault when all locks are 1680 * released. 1681 * 1682 * On the other hand, in-kernel OOM killer allows for an async victim 1683 * memory reclaim (oom_reaper) and that means that we are not solely 1684 * relying on the oom victim to make a forward progress and we can 1685 * invoke the oom killer here. 1686 * 1687 * Please note that mem_cgroup_out_of_memory might fail to find a 1688 * victim and then we have to bail out from the charge path. 1689 */ 1690 if (memcg->oom_kill_disable) { 1691 if (!current->in_user_fault) 1692 return OOM_SKIPPED; 1693 css_get(&memcg->css); 1694 current->memcg_in_oom = memcg; 1695 current->memcg_oom_gfp_mask = mask; 1696 current->memcg_oom_order = order; 1697 1698 return OOM_ASYNC; 1699 } 1700 1701 mem_cgroup_mark_under_oom(memcg); 1702 1703 locked = mem_cgroup_oom_trylock(memcg); 1704 1705 if (locked) 1706 mem_cgroup_oom_notify(memcg); 1707 1708 mem_cgroup_unmark_under_oom(memcg); 1709 if (mem_cgroup_out_of_memory(memcg, mask, order)) 1710 ret = OOM_SUCCESS; 1711 else 1712 ret = OOM_FAILED; 1713 1714 if (locked) 1715 mem_cgroup_oom_unlock(memcg); 1716 1717 return ret; 1718 } 1719 1720 /** 1721 * mem_cgroup_oom_synchronize - complete memcg OOM handling 1722 * @handle: actually kill/wait or just clean up the OOM state 1723 * 1724 * This has to be called at the end of a page fault if the memcg OOM 1725 * handler was enabled. 1726 * 1727 * Memcg supports userspace OOM handling where failed allocations must 1728 * sleep on a waitqueue until the userspace task resolves the 1729 * situation. Sleeping directly in the charge context with all kinds 1730 * of locks held is not a good idea, instead we remember an OOM state 1731 * in the task and mem_cgroup_oom_synchronize() has to be called at 1732 * the end of the page fault to complete the OOM handling. 1733 * 1734 * Returns %true if an ongoing memcg OOM situation was detected and 1735 * completed, %false otherwise. 1736 */ 1737 bool mem_cgroup_oom_synchronize(bool handle) 1738 { 1739 struct mem_cgroup *memcg = current->memcg_in_oom; 1740 struct oom_wait_info owait; 1741 bool locked; 1742 1743 /* OOM is global, do not handle */ 1744 if (!memcg) 1745 return false; 1746 1747 if (!handle) 1748 goto cleanup; 1749 1750 owait.memcg = memcg; 1751 owait.wait.flags = 0; 1752 owait.wait.func = memcg_oom_wake_function; 1753 owait.wait.private = current; 1754 INIT_LIST_HEAD(&owait.wait.entry); 1755 1756 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 1757 mem_cgroup_mark_under_oom(memcg); 1758 1759 locked = mem_cgroup_oom_trylock(memcg); 1760 1761 if (locked) 1762 mem_cgroup_oom_notify(memcg); 1763 1764 if (locked && !memcg->oom_kill_disable) { 1765 mem_cgroup_unmark_under_oom(memcg); 1766 finish_wait(&memcg_oom_waitq, &owait.wait); 1767 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask, 1768 current->memcg_oom_order); 1769 } else { 1770 schedule(); 1771 mem_cgroup_unmark_under_oom(memcg); 1772 finish_wait(&memcg_oom_waitq, &owait.wait); 1773 } 1774 1775 if (locked) { 1776 mem_cgroup_oom_unlock(memcg); 1777 /* 1778 * There is no guarantee that an OOM-lock contender 1779 * sees the wakeups triggered by the OOM kill 1780 * uncharges. Wake any sleepers explicitely. 1781 */ 1782 memcg_oom_recover(memcg); 1783 } 1784 cleanup: 1785 current->memcg_in_oom = NULL; 1786 css_put(&memcg->css); 1787 return true; 1788 } 1789 1790 /** 1791 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM 1792 * @victim: task to be killed by the OOM killer 1793 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM 1794 * 1795 * Returns a pointer to a memory cgroup, which has to be cleaned up 1796 * by killing all belonging OOM-killable tasks. 1797 * 1798 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg. 1799 */ 1800 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 1801 struct mem_cgroup *oom_domain) 1802 { 1803 struct mem_cgroup *oom_group = NULL; 1804 struct mem_cgroup *memcg; 1805 1806 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1807 return NULL; 1808 1809 if (!oom_domain) 1810 oom_domain = root_mem_cgroup; 1811 1812 rcu_read_lock(); 1813 1814 memcg = mem_cgroup_from_task(victim); 1815 if (memcg == root_mem_cgroup) 1816 goto out; 1817 1818 /* 1819 * Traverse the memory cgroup hierarchy from the victim task's 1820 * cgroup up to the OOMing cgroup (or root) to find the 1821 * highest-level memory cgroup with oom.group set. 1822 */ 1823 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 1824 if (memcg->oom_group) 1825 oom_group = memcg; 1826 1827 if (memcg == oom_domain) 1828 break; 1829 } 1830 1831 if (oom_group) 1832 css_get(&oom_group->css); 1833 out: 1834 rcu_read_unlock(); 1835 1836 return oom_group; 1837 } 1838 1839 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 1840 { 1841 pr_info("Tasks in "); 1842 pr_cont_cgroup_path(memcg->css.cgroup); 1843 pr_cont(" are going to be killed due to memory.oom.group set\n"); 1844 } 1845 1846 /** 1847 * lock_page_memcg - lock a page->mem_cgroup binding 1848 * @page: the page 1849 * 1850 * This function protects unlocked LRU pages from being moved to 1851 * another cgroup. 1852 * 1853 * It ensures lifetime of the returned memcg. Caller is responsible 1854 * for the lifetime of the page; __unlock_page_memcg() is available 1855 * when @page might get freed inside the locked section. 1856 */ 1857 struct mem_cgroup *lock_page_memcg(struct page *page) 1858 { 1859 struct mem_cgroup *memcg; 1860 unsigned long flags; 1861 1862 /* 1863 * The RCU lock is held throughout the transaction. The fast 1864 * path can get away without acquiring the memcg->move_lock 1865 * because page moving starts with an RCU grace period. 1866 * 1867 * The RCU lock also protects the memcg from being freed when 1868 * the page state that is going to change is the only thing 1869 * preventing the page itself from being freed. E.g. writeback 1870 * doesn't hold a page reference and relies on PG_writeback to 1871 * keep off truncation, migration and so forth. 1872 */ 1873 rcu_read_lock(); 1874 1875 if (mem_cgroup_disabled()) 1876 return NULL; 1877 again: 1878 memcg = page->mem_cgroup; 1879 if (unlikely(!memcg)) 1880 return NULL; 1881 1882 if (atomic_read(&memcg->moving_account) <= 0) 1883 return memcg; 1884 1885 spin_lock_irqsave(&memcg->move_lock, flags); 1886 if (memcg != page->mem_cgroup) { 1887 spin_unlock_irqrestore(&memcg->move_lock, flags); 1888 goto again; 1889 } 1890 1891 /* 1892 * When charge migration first begins, we can have locked and 1893 * unlocked page stat updates happening concurrently. Track 1894 * the task who has the lock for unlock_page_memcg(). 1895 */ 1896 memcg->move_lock_task = current; 1897 memcg->move_lock_flags = flags; 1898 1899 return memcg; 1900 } 1901 EXPORT_SYMBOL(lock_page_memcg); 1902 1903 /** 1904 * __unlock_page_memcg - unlock and unpin a memcg 1905 * @memcg: the memcg 1906 * 1907 * Unlock and unpin a memcg returned by lock_page_memcg(). 1908 */ 1909 void __unlock_page_memcg(struct mem_cgroup *memcg) 1910 { 1911 if (memcg && memcg->move_lock_task == current) { 1912 unsigned long flags = memcg->move_lock_flags; 1913 1914 memcg->move_lock_task = NULL; 1915 memcg->move_lock_flags = 0; 1916 1917 spin_unlock_irqrestore(&memcg->move_lock, flags); 1918 } 1919 1920 rcu_read_unlock(); 1921 } 1922 1923 /** 1924 * unlock_page_memcg - unlock a page->mem_cgroup binding 1925 * @page: the page 1926 */ 1927 void unlock_page_memcg(struct page *page) 1928 { 1929 __unlock_page_memcg(page->mem_cgroup); 1930 } 1931 EXPORT_SYMBOL(unlock_page_memcg); 1932 1933 struct memcg_stock_pcp { 1934 struct mem_cgroup *cached; /* this never be root cgroup */ 1935 unsigned int nr_pages; 1936 struct work_struct work; 1937 unsigned long flags; 1938 #define FLUSHING_CACHED_CHARGE 0 1939 }; 1940 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); 1941 static DEFINE_MUTEX(percpu_charge_mutex); 1942 1943 /** 1944 * consume_stock: Try to consume stocked charge on this cpu. 1945 * @memcg: memcg to consume from. 1946 * @nr_pages: how many pages to charge. 1947 * 1948 * The charges will only happen if @memcg matches the current cpu's memcg 1949 * stock, and at least @nr_pages are available in that stock. Failure to 1950 * service an allocation will refill the stock. 1951 * 1952 * returns true if successful, false otherwise. 1953 */ 1954 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 1955 { 1956 struct memcg_stock_pcp *stock; 1957 unsigned long flags; 1958 bool ret = false; 1959 1960 if (nr_pages > MEMCG_CHARGE_BATCH) 1961 return ret; 1962 1963 local_irq_save(flags); 1964 1965 stock = this_cpu_ptr(&memcg_stock); 1966 if (memcg == stock->cached && stock->nr_pages >= nr_pages) { 1967 stock->nr_pages -= nr_pages; 1968 ret = true; 1969 } 1970 1971 local_irq_restore(flags); 1972 1973 return ret; 1974 } 1975 1976 /* 1977 * Returns stocks cached in percpu and reset cached information. 1978 */ 1979 static void drain_stock(struct memcg_stock_pcp *stock) 1980 { 1981 struct mem_cgroup *old = stock->cached; 1982 1983 if (stock->nr_pages) { 1984 page_counter_uncharge(&old->memory, stock->nr_pages); 1985 if (do_memsw_account()) 1986 page_counter_uncharge(&old->memsw, stock->nr_pages); 1987 css_put_many(&old->css, stock->nr_pages); 1988 stock->nr_pages = 0; 1989 } 1990 stock->cached = NULL; 1991 } 1992 1993 static void drain_local_stock(struct work_struct *dummy) 1994 { 1995 struct memcg_stock_pcp *stock; 1996 unsigned long flags; 1997 1998 /* 1999 * The only protection from memory hotplug vs. drain_stock races is 2000 * that we always operate on local CPU stock here with IRQ disabled 2001 */ 2002 local_irq_save(flags); 2003 2004 stock = this_cpu_ptr(&memcg_stock); 2005 drain_stock(stock); 2006 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 2007 2008 local_irq_restore(flags); 2009 } 2010 2011 /* 2012 * Cache charges(val) to local per_cpu area. 2013 * This will be consumed by consume_stock() function, later. 2014 */ 2015 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2016 { 2017 struct memcg_stock_pcp *stock; 2018 unsigned long flags; 2019 2020 local_irq_save(flags); 2021 2022 stock = this_cpu_ptr(&memcg_stock); 2023 if (stock->cached != memcg) { /* reset if necessary */ 2024 drain_stock(stock); 2025 stock->cached = memcg; 2026 } 2027 stock->nr_pages += nr_pages; 2028 2029 if (stock->nr_pages > MEMCG_CHARGE_BATCH) 2030 drain_stock(stock); 2031 2032 local_irq_restore(flags); 2033 } 2034 2035 /* 2036 * Drains all per-CPU charge caches for given root_memcg resp. subtree 2037 * of the hierarchy under it. 2038 */ 2039 static void drain_all_stock(struct mem_cgroup *root_memcg) 2040 { 2041 int cpu, curcpu; 2042 2043 /* If someone's already draining, avoid adding running more workers. */ 2044 if (!mutex_trylock(&percpu_charge_mutex)) 2045 return; 2046 /* 2047 * Notify other cpus that system-wide "drain" is running 2048 * We do not care about races with the cpu hotplug because cpu down 2049 * as well as workers from this path always operate on the local 2050 * per-cpu data. CPU up doesn't touch memcg_stock at all. 2051 */ 2052 curcpu = get_cpu(); 2053 for_each_online_cpu(cpu) { 2054 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2055 struct mem_cgroup *memcg; 2056 2057 memcg = stock->cached; 2058 if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css)) 2059 continue; 2060 if (!mem_cgroup_is_descendant(memcg, root_memcg)) { 2061 css_put(&memcg->css); 2062 continue; 2063 } 2064 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 2065 if (cpu == curcpu) 2066 drain_local_stock(&stock->work); 2067 else 2068 schedule_work_on(cpu, &stock->work); 2069 } 2070 css_put(&memcg->css); 2071 } 2072 put_cpu(); 2073 mutex_unlock(&percpu_charge_mutex); 2074 } 2075 2076 static int memcg_hotplug_cpu_dead(unsigned int cpu) 2077 { 2078 struct memcg_stock_pcp *stock; 2079 struct mem_cgroup *memcg; 2080 2081 stock = &per_cpu(memcg_stock, cpu); 2082 drain_stock(stock); 2083 2084 for_each_mem_cgroup(memcg) { 2085 int i; 2086 2087 for (i = 0; i < MEMCG_NR_STAT; i++) { 2088 int nid; 2089 long x; 2090 2091 x = this_cpu_xchg(memcg->stat_cpu->count[i], 0); 2092 if (x) 2093 atomic_long_add(x, &memcg->stat[i]); 2094 2095 if (i >= NR_VM_NODE_STAT_ITEMS) 2096 continue; 2097 2098 for_each_node(nid) { 2099 struct mem_cgroup_per_node *pn; 2100 2101 pn = mem_cgroup_nodeinfo(memcg, nid); 2102 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0); 2103 if (x) 2104 atomic_long_add(x, &pn->lruvec_stat[i]); 2105 } 2106 } 2107 2108 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) { 2109 long x; 2110 2111 x = this_cpu_xchg(memcg->stat_cpu->events[i], 0); 2112 if (x) 2113 atomic_long_add(x, &memcg->events[i]); 2114 } 2115 } 2116 2117 return 0; 2118 } 2119 2120 static void reclaim_high(struct mem_cgroup *memcg, 2121 unsigned int nr_pages, 2122 gfp_t gfp_mask) 2123 { 2124 do { 2125 if (page_counter_read(&memcg->memory) <= memcg->high) 2126 continue; 2127 memcg_memory_event(memcg, MEMCG_HIGH); 2128 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true); 2129 } while ((memcg = parent_mem_cgroup(memcg))); 2130 } 2131 2132 static void high_work_func(struct work_struct *work) 2133 { 2134 struct mem_cgroup *memcg; 2135 2136 memcg = container_of(work, struct mem_cgroup, high_work); 2137 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL); 2138 } 2139 2140 /* 2141 * Scheduled by try_charge() to be executed from the userland return path 2142 * and reclaims memory over the high limit. 2143 */ 2144 void mem_cgroup_handle_over_high(void) 2145 { 2146 unsigned int nr_pages = current->memcg_nr_pages_over_high; 2147 struct mem_cgroup *memcg; 2148 2149 if (likely(!nr_pages)) 2150 return; 2151 2152 memcg = get_mem_cgroup_from_mm(current->mm); 2153 reclaim_high(memcg, nr_pages, GFP_KERNEL); 2154 css_put(&memcg->css); 2155 current->memcg_nr_pages_over_high = 0; 2156 } 2157 2158 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 2159 unsigned int nr_pages) 2160 { 2161 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages); 2162 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 2163 struct mem_cgroup *mem_over_limit; 2164 struct page_counter *counter; 2165 unsigned long nr_reclaimed; 2166 bool may_swap = true; 2167 bool drained = false; 2168 bool oomed = false; 2169 enum oom_status oom_status; 2170 2171 if (mem_cgroup_is_root(memcg)) 2172 return 0; 2173 retry: 2174 if (consume_stock(memcg, nr_pages)) 2175 return 0; 2176 2177 if (!do_memsw_account() || 2178 page_counter_try_charge(&memcg->memsw, batch, &counter)) { 2179 if (page_counter_try_charge(&memcg->memory, batch, &counter)) 2180 goto done_restock; 2181 if (do_memsw_account()) 2182 page_counter_uncharge(&memcg->memsw, batch); 2183 mem_over_limit = mem_cgroup_from_counter(counter, memory); 2184 } else { 2185 mem_over_limit = mem_cgroup_from_counter(counter, memsw); 2186 may_swap = false; 2187 } 2188 2189 if (batch > nr_pages) { 2190 batch = nr_pages; 2191 goto retry; 2192 } 2193 2194 /* 2195 * Unlike in global OOM situations, memcg is not in a physical 2196 * memory shortage. Allow dying and OOM-killed tasks to 2197 * bypass the last charges so that they can exit quickly and 2198 * free their memory. 2199 */ 2200 if (unlikely(should_force_charge())) 2201 goto force; 2202 2203 /* 2204 * Prevent unbounded recursion when reclaim operations need to 2205 * allocate memory. This might exceed the limits temporarily, 2206 * but we prefer facilitating memory reclaim and getting back 2207 * under the limit over triggering OOM kills in these cases. 2208 */ 2209 if (unlikely(current->flags & PF_MEMALLOC)) 2210 goto force; 2211 2212 if (unlikely(task_in_memcg_oom(current))) 2213 goto nomem; 2214 2215 if (!gfpflags_allow_blocking(gfp_mask)) 2216 goto nomem; 2217 2218 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2219 2220 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, 2221 gfp_mask, may_swap); 2222 2223 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2224 goto retry; 2225 2226 if (!drained) { 2227 drain_all_stock(mem_over_limit); 2228 drained = true; 2229 goto retry; 2230 } 2231 2232 if (gfp_mask & __GFP_NORETRY) 2233 goto nomem; 2234 /* 2235 * Even though the limit is exceeded at this point, reclaim 2236 * may have been able to free some pages. Retry the charge 2237 * before killing the task. 2238 * 2239 * Only for regular pages, though: huge pages are rather 2240 * unlikely to succeed so close to the limit, and we fall back 2241 * to regular pages anyway in case of failure. 2242 */ 2243 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) 2244 goto retry; 2245 /* 2246 * At task move, charge accounts can be doubly counted. So, it's 2247 * better to wait until the end of task_move if something is going on. 2248 */ 2249 if (mem_cgroup_wait_acct_move(mem_over_limit)) 2250 goto retry; 2251 2252 if (nr_retries--) 2253 goto retry; 2254 2255 if (gfp_mask & __GFP_RETRY_MAYFAIL && oomed) 2256 goto nomem; 2257 2258 if (gfp_mask & __GFP_NOFAIL) 2259 goto force; 2260 2261 if (fatal_signal_pending(current)) 2262 goto force; 2263 2264 /* 2265 * keep retrying as long as the memcg oom killer is able to make 2266 * a forward progress or bypass the charge if the oom killer 2267 * couldn't make any progress. 2268 */ 2269 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask, 2270 get_order(nr_pages * PAGE_SIZE)); 2271 switch (oom_status) { 2272 case OOM_SUCCESS: 2273 nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 2274 oomed = true; 2275 goto retry; 2276 case OOM_FAILED: 2277 goto force; 2278 default: 2279 goto nomem; 2280 } 2281 nomem: 2282 if (!(gfp_mask & __GFP_NOFAIL)) 2283 return -ENOMEM; 2284 force: 2285 /* 2286 * The allocation either can't fail or will lead to more memory 2287 * being freed very soon. Allow memory usage go over the limit 2288 * temporarily by force charging it. 2289 */ 2290 page_counter_charge(&memcg->memory, nr_pages); 2291 if (do_memsw_account()) 2292 page_counter_charge(&memcg->memsw, nr_pages); 2293 css_get_many(&memcg->css, nr_pages); 2294 2295 return 0; 2296 2297 done_restock: 2298 css_get_many(&memcg->css, batch); 2299 if (batch > nr_pages) 2300 refill_stock(memcg, batch - nr_pages); 2301 2302 /* 2303 * If the hierarchy is above the normal consumption range, schedule 2304 * reclaim on returning to userland. We can perform reclaim here 2305 * if __GFP_RECLAIM but let's always punt for simplicity and so that 2306 * GFP_KERNEL can consistently be used during reclaim. @memcg is 2307 * not recorded as it most likely matches current's and won't 2308 * change in the meantime. As high limit is checked again before 2309 * reclaim, the cost of mismatch is negligible. 2310 */ 2311 do { 2312 if (page_counter_read(&memcg->memory) > memcg->high) { 2313 /* Don't bother a random interrupted task */ 2314 if (in_interrupt()) { 2315 schedule_work(&memcg->high_work); 2316 break; 2317 } 2318 current->memcg_nr_pages_over_high += batch; 2319 set_notify_resume(current); 2320 break; 2321 } 2322 } while ((memcg = parent_mem_cgroup(memcg))); 2323 2324 return 0; 2325 } 2326 2327 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages) 2328 { 2329 if (mem_cgroup_is_root(memcg)) 2330 return; 2331 2332 page_counter_uncharge(&memcg->memory, nr_pages); 2333 if (do_memsw_account()) 2334 page_counter_uncharge(&memcg->memsw, nr_pages); 2335 2336 css_put_many(&memcg->css, nr_pages); 2337 } 2338 2339 static void lock_page_lru(struct page *page, int *isolated) 2340 { 2341 pg_data_t *pgdat = page_pgdat(page); 2342 2343 spin_lock_irq(&pgdat->lru_lock); 2344 if (PageLRU(page)) { 2345 struct lruvec *lruvec; 2346 2347 lruvec = mem_cgroup_page_lruvec(page, pgdat); 2348 ClearPageLRU(page); 2349 del_page_from_lru_list(page, lruvec, page_lru(page)); 2350 *isolated = 1; 2351 } else 2352 *isolated = 0; 2353 } 2354 2355 static void unlock_page_lru(struct page *page, int isolated) 2356 { 2357 pg_data_t *pgdat = page_pgdat(page); 2358 2359 if (isolated) { 2360 struct lruvec *lruvec; 2361 2362 lruvec = mem_cgroup_page_lruvec(page, pgdat); 2363 VM_BUG_ON_PAGE(PageLRU(page), page); 2364 SetPageLRU(page); 2365 add_page_to_lru_list(page, lruvec, page_lru(page)); 2366 } 2367 spin_unlock_irq(&pgdat->lru_lock); 2368 } 2369 2370 static void commit_charge(struct page *page, struct mem_cgroup *memcg, 2371 bool lrucare) 2372 { 2373 int isolated; 2374 2375 VM_BUG_ON_PAGE(page->mem_cgroup, page); 2376 2377 /* 2378 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page 2379 * may already be on some other mem_cgroup's LRU. Take care of it. 2380 */ 2381 if (lrucare) 2382 lock_page_lru(page, &isolated); 2383 2384 /* 2385 * Nobody should be changing or seriously looking at 2386 * page->mem_cgroup at this point: 2387 * 2388 * - the page is uncharged 2389 * 2390 * - the page is off-LRU 2391 * 2392 * - an anonymous fault has exclusive page access, except for 2393 * a locked page table 2394 * 2395 * - a page cache insertion, a swapin fault, or a migration 2396 * have the page locked 2397 */ 2398 page->mem_cgroup = memcg; 2399 2400 if (lrucare) 2401 unlock_page_lru(page, isolated); 2402 } 2403 2404 #ifdef CONFIG_MEMCG_KMEM 2405 static int memcg_alloc_cache_id(void) 2406 { 2407 int id, size; 2408 int err; 2409 2410 id = ida_simple_get(&memcg_cache_ida, 2411 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL); 2412 if (id < 0) 2413 return id; 2414 2415 if (id < memcg_nr_cache_ids) 2416 return id; 2417 2418 /* 2419 * There's no space for the new id in memcg_caches arrays, 2420 * so we have to grow them. 2421 */ 2422 down_write(&memcg_cache_ids_sem); 2423 2424 size = 2 * (id + 1); 2425 if (size < MEMCG_CACHES_MIN_SIZE) 2426 size = MEMCG_CACHES_MIN_SIZE; 2427 else if (size > MEMCG_CACHES_MAX_SIZE) 2428 size = MEMCG_CACHES_MAX_SIZE; 2429 2430 err = memcg_update_all_caches(size); 2431 if (!err) 2432 err = memcg_update_all_list_lrus(size); 2433 if (!err) 2434 memcg_nr_cache_ids = size; 2435 2436 up_write(&memcg_cache_ids_sem); 2437 2438 if (err) { 2439 ida_simple_remove(&memcg_cache_ida, id); 2440 return err; 2441 } 2442 return id; 2443 } 2444 2445 static void memcg_free_cache_id(int id) 2446 { 2447 ida_simple_remove(&memcg_cache_ida, id); 2448 } 2449 2450 struct memcg_kmem_cache_create_work { 2451 struct mem_cgroup *memcg; 2452 struct kmem_cache *cachep; 2453 struct work_struct work; 2454 }; 2455 2456 static void memcg_kmem_cache_create_func(struct work_struct *w) 2457 { 2458 struct memcg_kmem_cache_create_work *cw = 2459 container_of(w, struct memcg_kmem_cache_create_work, work); 2460 struct mem_cgroup *memcg = cw->memcg; 2461 struct kmem_cache *cachep = cw->cachep; 2462 2463 memcg_create_kmem_cache(memcg, cachep); 2464 2465 css_put(&memcg->css); 2466 kfree(cw); 2467 } 2468 2469 /* 2470 * Enqueue the creation of a per-memcg kmem_cache. 2471 */ 2472 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg, 2473 struct kmem_cache *cachep) 2474 { 2475 struct memcg_kmem_cache_create_work *cw; 2476 2477 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN); 2478 if (!cw) 2479 return; 2480 2481 css_get(&memcg->css); 2482 2483 cw->memcg = memcg; 2484 cw->cachep = cachep; 2485 INIT_WORK(&cw->work, memcg_kmem_cache_create_func); 2486 2487 queue_work(memcg_kmem_cache_wq, &cw->work); 2488 } 2489 2490 static inline bool memcg_kmem_bypass(void) 2491 { 2492 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD)) 2493 return true; 2494 return false; 2495 } 2496 2497 /** 2498 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation 2499 * @cachep: the original global kmem cache 2500 * 2501 * Return the kmem_cache we're supposed to use for a slab allocation. 2502 * We try to use the current memcg's version of the cache. 2503 * 2504 * If the cache does not exist yet, if we are the first user of it, we 2505 * create it asynchronously in a workqueue and let the current allocation 2506 * go through with the original cache. 2507 * 2508 * This function takes a reference to the cache it returns to assure it 2509 * won't get destroyed while we are working with it. Once the caller is 2510 * done with it, memcg_kmem_put_cache() must be called to release the 2511 * reference. 2512 */ 2513 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep) 2514 { 2515 struct mem_cgroup *memcg; 2516 struct kmem_cache *memcg_cachep; 2517 int kmemcg_id; 2518 2519 VM_BUG_ON(!is_root_cache(cachep)); 2520 2521 if (memcg_kmem_bypass()) 2522 return cachep; 2523 2524 memcg = get_mem_cgroup_from_current(); 2525 kmemcg_id = READ_ONCE(memcg->kmemcg_id); 2526 if (kmemcg_id < 0) 2527 goto out; 2528 2529 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id); 2530 if (likely(memcg_cachep)) 2531 return memcg_cachep; 2532 2533 /* 2534 * If we are in a safe context (can wait, and not in interrupt 2535 * context), we could be be predictable and return right away. 2536 * This would guarantee that the allocation being performed 2537 * already belongs in the new cache. 2538 * 2539 * However, there are some clashes that can arrive from locking. 2540 * For instance, because we acquire the slab_mutex while doing 2541 * memcg_create_kmem_cache, this means no further allocation 2542 * could happen with the slab_mutex held. So it's better to 2543 * defer everything. 2544 */ 2545 memcg_schedule_kmem_cache_create(memcg, cachep); 2546 out: 2547 css_put(&memcg->css); 2548 return cachep; 2549 } 2550 2551 /** 2552 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache 2553 * @cachep: the cache returned by memcg_kmem_get_cache 2554 */ 2555 void memcg_kmem_put_cache(struct kmem_cache *cachep) 2556 { 2557 if (!is_root_cache(cachep)) 2558 css_put(&cachep->memcg_params.memcg->css); 2559 } 2560 2561 /** 2562 * __memcg_kmem_charge_memcg: charge a kmem page 2563 * @page: page to charge 2564 * @gfp: reclaim mode 2565 * @order: allocation order 2566 * @memcg: memory cgroup to charge 2567 * 2568 * Returns 0 on success, an error code on failure. 2569 */ 2570 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order, 2571 struct mem_cgroup *memcg) 2572 { 2573 unsigned int nr_pages = 1 << order; 2574 struct page_counter *counter; 2575 int ret; 2576 2577 ret = try_charge(memcg, gfp, nr_pages); 2578 if (ret) 2579 return ret; 2580 2581 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && 2582 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) { 2583 cancel_charge(memcg, nr_pages); 2584 return -ENOMEM; 2585 } 2586 2587 page->mem_cgroup = memcg; 2588 2589 return 0; 2590 } 2591 2592 /** 2593 * __memcg_kmem_charge: charge a kmem page to the current memory cgroup 2594 * @page: page to charge 2595 * @gfp: reclaim mode 2596 * @order: allocation order 2597 * 2598 * Returns 0 on success, an error code on failure. 2599 */ 2600 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order) 2601 { 2602 struct mem_cgroup *memcg; 2603 int ret = 0; 2604 2605 if (memcg_kmem_bypass()) 2606 return 0; 2607 2608 memcg = get_mem_cgroup_from_current(); 2609 if (!mem_cgroup_is_root(memcg)) { 2610 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg); 2611 if (!ret) 2612 __SetPageKmemcg(page); 2613 } 2614 css_put(&memcg->css); 2615 return ret; 2616 } 2617 /** 2618 * __memcg_kmem_uncharge: uncharge a kmem page 2619 * @page: page to uncharge 2620 * @order: allocation order 2621 */ 2622 void __memcg_kmem_uncharge(struct page *page, int order) 2623 { 2624 struct mem_cgroup *memcg = page->mem_cgroup; 2625 unsigned int nr_pages = 1 << order; 2626 2627 if (!memcg) 2628 return; 2629 2630 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page); 2631 2632 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 2633 page_counter_uncharge(&memcg->kmem, nr_pages); 2634 2635 page_counter_uncharge(&memcg->memory, nr_pages); 2636 if (do_memsw_account()) 2637 page_counter_uncharge(&memcg->memsw, nr_pages); 2638 2639 page->mem_cgroup = NULL; 2640 2641 /* slab pages do not have PageKmemcg flag set */ 2642 if (PageKmemcg(page)) 2643 __ClearPageKmemcg(page); 2644 2645 css_put_many(&memcg->css, nr_pages); 2646 } 2647 #endif /* CONFIG_MEMCG_KMEM */ 2648 2649 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2650 2651 /* 2652 * Because tail pages are not marked as "used", set it. We're under 2653 * pgdat->lru_lock and migration entries setup in all page mappings. 2654 */ 2655 void mem_cgroup_split_huge_fixup(struct page *head) 2656 { 2657 int i; 2658 2659 if (mem_cgroup_disabled()) 2660 return; 2661 2662 for (i = 1; i < HPAGE_PMD_NR; i++) 2663 head[i].mem_cgroup = head->mem_cgroup; 2664 2665 __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR); 2666 } 2667 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 2668 2669 #ifdef CONFIG_MEMCG_SWAP 2670 /** 2671 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 2672 * @entry: swap entry to be moved 2673 * @from: mem_cgroup which the entry is moved from 2674 * @to: mem_cgroup which the entry is moved to 2675 * 2676 * It succeeds only when the swap_cgroup's record for this entry is the same 2677 * as the mem_cgroup's id of @from. 2678 * 2679 * Returns 0 on success, -EINVAL on failure. 2680 * 2681 * The caller must have charged to @to, IOW, called page_counter_charge() about 2682 * both res and memsw, and called css_get(). 2683 */ 2684 static int mem_cgroup_move_swap_account(swp_entry_t entry, 2685 struct mem_cgroup *from, struct mem_cgroup *to) 2686 { 2687 unsigned short old_id, new_id; 2688 2689 old_id = mem_cgroup_id(from); 2690 new_id = mem_cgroup_id(to); 2691 2692 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 2693 mod_memcg_state(from, MEMCG_SWAP, -1); 2694 mod_memcg_state(to, MEMCG_SWAP, 1); 2695 return 0; 2696 } 2697 return -EINVAL; 2698 } 2699 #else 2700 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 2701 struct mem_cgroup *from, struct mem_cgroup *to) 2702 { 2703 return -EINVAL; 2704 } 2705 #endif 2706 2707 static DEFINE_MUTEX(memcg_max_mutex); 2708 2709 static int mem_cgroup_resize_max(struct mem_cgroup *memcg, 2710 unsigned long max, bool memsw) 2711 { 2712 bool enlarge = false; 2713 bool drained = false; 2714 int ret; 2715 bool limits_invariant; 2716 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory; 2717 2718 do { 2719 if (signal_pending(current)) { 2720 ret = -EINTR; 2721 break; 2722 } 2723 2724 mutex_lock(&memcg_max_mutex); 2725 /* 2726 * Make sure that the new limit (memsw or memory limit) doesn't 2727 * break our basic invariant rule memory.max <= memsw.max. 2728 */ 2729 limits_invariant = memsw ? max >= memcg->memory.max : 2730 max <= memcg->memsw.max; 2731 if (!limits_invariant) { 2732 mutex_unlock(&memcg_max_mutex); 2733 ret = -EINVAL; 2734 break; 2735 } 2736 if (max > counter->max) 2737 enlarge = true; 2738 ret = page_counter_set_max(counter, max); 2739 mutex_unlock(&memcg_max_mutex); 2740 2741 if (!ret) 2742 break; 2743 2744 if (!drained) { 2745 drain_all_stock(memcg); 2746 drained = true; 2747 continue; 2748 } 2749 2750 if (!try_to_free_mem_cgroup_pages(memcg, 1, 2751 GFP_KERNEL, !memsw)) { 2752 ret = -EBUSY; 2753 break; 2754 } 2755 } while (true); 2756 2757 if (!ret && enlarge) 2758 memcg_oom_recover(memcg); 2759 2760 return ret; 2761 } 2762 2763 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 2764 gfp_t gfp_mask, 2765 unsigned long *total_scanned) 2766 { 2767 unsigned long nr_reclaimed = 0; 2768 struct mem_cgroup_per_node *mz, *next_mz = NULL; 2769 unsigned long reclaimed; 2770 int loop = 0; 2771 struct mem_cgroup_tree_per_node *mctz; 2772 unsigned long excess; 2773 unsigned long nr_scanned; 2774 2775 if (order > 0) 2776 return 0; 2777 2778 mctz = soft_limit_tree_node(pgdat->node_id); 2779 2780 /* 2781 * Do not even bother to check the largest node if the root 2782 * is empty. Do it lockless to prevent lock bouncing. Races 2783 * are acceptable as soft limit is best effort anyway. 2784 */ 2785 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root)) 2786 return 0; 2787 2788 /* 2789 * This loop can run a while, specially if mem_cgroup's continuously 2790 * keep exceeding their soft limit and putting the system under 2791 * pressure 2792 */ 2793 do { 2794 if (next_mz) 2795 mz = next_mz; 2796 else 2797 mz = mem_cgroup_largest_soft_limit_node(mctz); 2798 if (!mz) 2799 break; 2800 2801 nr_scanned = 0; 2802 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat, 2803 gfp_mask, &nr_scanned); 2804 nr_reclaimed += reclaimed; 2805 *total_scanned += nr_scanned; 2806 spin_lock_irq(&mctz->lock); 2807 __mem_cgroup_remove_exceeded(mz, mctz); 2808 2809 /* 2810 * If we failed to reclaim anything from this memory cgroup 2811 * it is time to move on to the next cgroup 2812 */ 2813 next_mz = NULL; 2814 if (!reclaimed) 2815 next_mz = __mem_cgroup_largest_soft_limit_node(mctz); 2816 2817 excess = soft_limit_excess(mz->memcg); 2818 /* 2819 * One school of thought says that we should not add 2820 * back the node to the tree if reclaim returns 0. 2821 * But our reclaim could return 0, simply because due 2822 * to priority we are exposing a smaller subset of 2823 * memory to reclaim from. Consider this as a longer 2824 * term TODO. 2825 */ 2826 /* If excess == 0, no tree ops */ 2827 __mem_cgroup_insert_exceeded(mz, mctz, excess); 2828 spin_unlock_irq(&mctz->lock); 2829 css_put(&mz->memcg->css); 2830 loop++; 2831 /* 2832 * Could not reclaim anything and there are no more 2833 * mem cgroups to try or we seem to be looping without 2834 * reclaiming anything. 2835 */ 2836 if (!nr_reclaimed && 2837 (next_mz == NULL || 2838 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 2839 break; 2840 } while (!nr_reclaimed); 2841 if (next_mz) 2842 css_put(&next_mz->memcg->css); 2843 return nr_reclaimed; 2844 } 2845 2846 /* 2847 * Test whether @memcg has children, dead or alive. Note that this 2848 * function doesn't care whether @memcg has use_hierarchy enabled and 2849 * returns %true if there are child csses according to the cgroup 2850 * hierarchy. Testing use_hierarchy is the caller's responsiblity. 2851 */ 2852 static inline bool memcg_has_children(struct mem_cgroup *memcg) 2853 { 2854 bool ret; 2855 2856 rcu_read_lock(); 2857 ret = css_next_child(NULL, &memcg->css); 2858 rcu_read_unlock(); 2859 return ret; 2860 } 2861 2862 /* 2863 * Reclaims as many pages from the given memcg as possible. 2864 * 2865 * Caller is responsible for holding css reference for memcg. 2866 */ 2867 static int mem_cgroup_force_empty(struct mem_cgroup *memcg) 2868 { 2869 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 2870 2871 /* we call try-to-free pages for make this cgroup empty */ 2872 lru_add_drain_all(); 2873 2874 drain_all_stock(memcg); 2875 2876 /* try to free all pages in this cgroup */ 2877 while (nr_retries && page_counter_read(&memcg->memory)) { 2878 int progress; 2879 2880 if (signal_pending(current)) 2881 return -EINTR; 2882 2883 progress = try_to_free_mem_cgroup_pages(memcg, 1, 2884 GFP_KERNEL, true); 2885 if (!progress) { 2886 nr_retries--; 2887 /* maybe some writeback is necessary */ 2888 congestion_wait(BLK_RW_ASYNC, HZ/10); 2889 } 2890 2891 } 2892 2893 return 0; 2894 } 2895 2896 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of, 2897 char *buf, size_t nbytes, 2898 loff_t off) 2899 { 2900 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 2901 2902 if (mem_cgroup_is_root(memcg)) 2903 return -EINVAL; 2904 return mem_cgroup_force_empty(memcg) ?: nbytes; 2905 } 2906 2907 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, 2908 struct cftype *cft) 2909 { 2910 return mem_cgroup_from_css(css)->use_hierarchy; 2911 } 2912 2913 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, 2914 struct cftype *cft, u64 val) 2915 { 2916 int retval = 0; 2917 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 2918 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent); 2919 2920 if (memcg->use_hierarchy == val) 2921 return 0; 2922 2923 /* 2924 * If parent's use_hierarchy is set, we can't make any modifications 2925 * in the child subtrees. If it is unset, then the change can 2926 * occur, provided the current cgroup has no children. 2927 * 2928 * For the root cgroup, parent_mem is NULL, we allow value to be 2929 * set if there are no children. 2930 */ 2931 if ((!parent_memcg || !parent_memcg->use_hierarchy) && 2932 (val == 1 || val == 0)) { 2933 if (!memcg_has_children(memcg)) 2934 memcg->use_hierarchy = val; 2935 else 2936 retval = -EBUSY; 2937 } else 2938 retval = -EINVAL; 2939 2940 return retval; 2941 } 2942 2943 struct accumulated_stats { 2944 unsigned long stat[MEMCG_NR_STAT]; 2945 unsigned long events[NR_VM_EVENT_ITEMS]; 2946 unsigned long lru_pages[NR_LRU_LISTS]; 2947 const unsigned int *stats_array; 2948 const unsigned int *events_array; 2949 int stats_size; 2950 int events_size; 2951 }; 2952 2953 static void accumulate_memcg_tree(struct mem_cgroup *memcg, 2954 struct accumulated_stats *acc) 2955 { 2956 struct mem_cgroup *mi; 2957 int i; 2958 2959 for_each_mem_cgroup_tree(mi, memcg) { 2960 for (i = 0; i < acc->stats_size; i++) 2961 acc->stat[i] += memcg_page_state(mi, 2962 acc->stats_array ? acc->stats_array[i] : i); 2963 2964 for (i = 0; i < acc->events_size; i++) 2965 acc->events[i] += memcg_sum_events(mi, 2966 acc->events_array ? acc->events_array[i] : i); 2967 2968 for (i = 0; i < NR_LRU_LISTS; i++) 2969 acc->lru_pages[i] += memcg_page_state(mi, 2970 NR_LRU_BASE + i); 2971 } 2972 } 2973 2974 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 2975 { 2976 unsigned long val = 0; 2977 2978 if (mem_cgroup_is_root(memcg)) { 2979 struct mem_cgroup *iter; 2980 2981 for_each_mem_cgroup_tree(iter, memcg) { 2982 val += memcg_page_state(iter, MEMCG_CACHE); 2983 val += memcg_page_state(iter, MEMCG_RSS); 2984 if (swap) 2985 val += memcg_page_state(iter, MEMCG_SWAP); 2986 } 2987 } else { 2988 if (!swap) 2989 val = page_counter_read(&memcg->memory); 2990 else 2991 val = page_counter_read(&memcg->memsw); 2992 } 2993 return val; 2994 } 2995 2996 enum { 2997 RES_USAGE, 2998 RES_LIMIT, 2999 RES_MAX_USAGE, 3000 RES_FAILCNT, 3001 RES_SOFT_LIMIT, 3002 }; 3003 3004 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css, 3005 struct cftype *cft) 3006 { 3007 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3008 struct page_counter *counter; 3009 3010 switch (MEMFILE_TYPE(cft->private)) { 3011 case _MEM: 3012 counter = &memcg->memory; 3013 break; 3014 case _MEMSWAP: 3015 counter = &memcg->memsw; 3016 break; 3017 case _KMEM: 3018 counter = &memcg->kmem; 3019 break; 3020 case _TCP: 3021 counter = &memcg->tcpmem; 3022 break; 3023 default: 3024 BUG(); 3025 } 3026 3027 switch (MEMFILE_ATTR(cft->private)) { 3028 case RES_USAGE: 3029 if (counter == &memcg->memory) 3030 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE; 3031 if (counter == &memcg->memsw) 3032 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE; 3033 return (u64)page_counter_read(counter) * PAGE_SIZE; 3034 case RES_LIMIT: 3035 return (u64)counter->max * PAGE_SIZE; 3036 case RES_MAX_USAGE: 3037 return (u64)counter->watermark * PAGE_SIZE; 3038 case RES_FAILCNT: 3039 return counter->failcnt; 3040 case RES_SOFT_LIMIT: 3041 return (u64)memcg->soft_limit * PAGE_SIZE; 3042 default: 3043 BUG(); 3044 } 3045 } 3046 3047 #ifdef CONFIG_MEMCG_KMEM 3048 static int memcg_online_kmem(struct mem_cgroup *memcg) 3049 { 3050 int memcg_id; 3051 3052 if (cgroup_memory_nokmem) 3053 return 0; 3054 3055 BUG_ON(memcg->kmemcg_id >= 0); 3056 BUG_ON(memcg->kmem_state); 3057 3058 memcg_id = memcg_alloc_cache_id(); 3059 if (memcg_id < 0) 3060 return memcg_id; 3061 3062 static_branch_inc(&memcg_kmem_enabled_key); 3063 /* 3064 * A memory cgroup is considered kmem-online as soon as it gets 3065 * kmemcg_id. Setting the id after enabling static branching will 3066 * guarantee no one starts accounting before all call sites are 3067 * patched. 3068 */ 3069 memcg->kmemcg_id = memcg_id; 3070 memcg->kmem_state = KMEM_ONLINE; 3071 INIT_LIST_HEAD(&memcg->kmem_caches); 3072 3073 return 0; 3074 } 3075 3076 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3077 { 3078 struct cgroup_subsys_state *css; 3079 struct mem_cgroup *parent, *child; 3080 int kmemcg_id; 3081 3082 if (memcg->kmem_state != KMEM_ONLINE) 3083 return; 3084 /* 3085 * Clear the online state before clearing memcg_caches array 3086 * entries. The slab_mutex in memcg_deactivate_kmem_caches() 3087 * guarantees that no cache will be created for this cgroup 3088 * after we are done (see memcg_create_kmem_cache()). 3089 */ 3090 memcg->kmem_state = KMEM_ALLOCATED; 3091 3092 memcg_deactivate_kmem_caches(memcg); 3093 3094 kmemcg_id = memcg->kmemcg_id; 3095 BUG_ON(kmemcg_id < 0); 3096 3097 parent = parent_mem_cgroup(memcg); 3098 if (!parent) 3099 parent = root_mem_cgroup; 3100 3101 /* 3102 * Change kmemcg_id of this cgroup and all its descendants to the 3103 * parent's id, and then move all entries from this cgroup's list_lrus 3104 * to ones of the parent. After we have finished, all list_lrus 3105 * corresponding to this cgroup are guaranteed to remain empty. The 3106 * ordering is imposed by list_lru_node->lock taken by 3107 * memcg_drain_all_list_lrus(). 3108 */ 3109 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */ 3110 css_for_each_descendant_pre(css, &memcg->css) { 3111 child = mem_cgroup_from_css(css); 3112 BUG_ON(child->kmemcg_id != kmemcg_id); 3113 child->kmemcg_id = parent->kmemcg_id; 3114 if (!memcg->use_hierarchy) 3115 break; 3116 } 3117 rcu_read_unlock(); 3118 3119 memcg_drain_all_list_lrus(kmemcg_id, parent); 3120 3121 memcg_free_cache_id(kmemcg_id); 3122 } 3123 3124 static void memcg_free_kmem(struct mem_cgroup *memcg) 3125 { 3126 /* css_alloc() failed, offlining didn't happen */ 3127 if (unlikely(memcg->kmem_state == KMEM_ONLINE)) 3128 memcg_offline_kmem(memcg); 3129 3130 if (memcg->kmem_state == KMEM_ALLOCATED) { 3131 memcg_destroy_kmem_caches(memcg); 3132 static_branch_dec(&memcg_kmem_enabled_key); 3133 WARN_ON(page_counter_read(&memcg->kmem)); 3134 } 3135 } 3136 #else 3137 static int memcg_online_kmem(struct mem_cgroup *memcg) 3138 { 3139 return 0; 3140 } 3141 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3142 { 3143 } 3144 static void memcg_free_kmem(struct mem_cgroup *memcg) 3145 { 3146 } 3147 #endif /* CONFIG_MEMCG_KMEM */ 3148 3149 static int memcg_update_kmem_max(struct mem_cgroup *memcg, 3150 unsigned long max) 3151 { 3152 int ret; 3153 3154 mutex_lock(&memcg_max_mutex); 3155 ret = page_counter_set_max(&memcg->kmem, max); 3156 mutex_unlock(&memcg_max_mutex); 3157 return ret; 3158 } 3159 3160 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max) 3161 { 3162 int ret; 3163 3164 mutex_lock(&memcg_max_mutex); 3165 3166 ret = page_counter_set_max(&memcg->tcpmem, max); 3167 if (ret) 3168 goto out; 3169 3170 if (!memcg->tcpmem_active) { 3171 /* 3172 * The active flag needs to be written after the static_key 3173 * update. This is what guarantees that the socket activation 3174 * function is the last one to run. See mem_cgroup_sk_alloc() 3175 * for details, and note that we don't mark any socket as 3176 * belonging to this memcg until that flag is up. 3177 * 3178 * We need to do this, because static_keys will span multiple 3179 * sites, but we can't control their order. If we mark a socket 3180 * as accounted, but the accounting functions are not patched in 3181 * yet, we'll lose accounting. 3182 * 3183 * We never race with the readers in mem_cgroup_sk_alloc(), 3184 * because when this value change, the code to process it is not 3185 * patched in yet. 3186 */ 3187 static_branch_inc(&memcg_sockets_enabled_key); 3188 memcg->tcpmem_active = true; 3189 } 3190 out: 3191 mutex_unlock(&memcg_max_mutex); 3192 return ret; 3193 } 3194 3195 /* 3196 * The user of this function is... 3197 * RES_LIMIT. 3198 */ 3199 static ssize_t mem_cgroup_write(struct kernfs_open_file *of, 3200 char *buf, size_t nbytes, loff_t off) 3201 { 3202 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3203 unsigned long nr_pages; 3204 int ret; 3205 3206 buf = strstrip(buf); 3207 ret = page_counter_memparse(buf, "-1", &nr_pages); 3208 if (ret) 3209 return ret; 3210 3211 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3212 case RES_LIMIT: 3213 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 3214 ret = -EINVAL; 3215 break; 3216 } 3217 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3218 case _MEM: 3219 ret = mem_cgroup_resize_max(memcg, nr_pages, false); 3220 break; 3221 case _MEMSWAP: 3222 ret = mem_cgroup_resize_max(memcg, nr_pages, true); 3223 break; 3224 case _KMEM: 3225 ret = memcg_update_kmem_max(memcg, nr_pages); 3226 break; 3227 case _TCP: 3228 ret = memcg_update_tcp_max(memcg, nr_pages); 3229 break; 3230 } 3231 break; 3232 case RES_SOFT_LIMIT: 3233 memcg->soft_limit = nr_pages; 3234 ret = 0; 3235 break; 3236 } 3237 return ret ?: nbytes; 3238 } 3239 3240 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf, 3241 size_t nbytes, loff_t off) 3242 { 3243 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3244 struct page_counter *counter; 3245 3246 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3247 case _MEM: 3248 counter = &memcg->memory; 3249 break; 3250 case _MEMSWAP: 3251 counter = &memcg->memsw; 3252 break; 3253 case _KMEM: 3254 counter = &memcg->kmem; 3255 break; 3256 case _TCP: 3257 counter = &memcg->tcpmem; 3258 break; 3259 default: 3260 BUG(); 3261 } 3262 3263 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3264 case RES_MAX_USAGE: 3265 page_counter_reset_watermark(counter); 3266 break; 3267 case RES_FAILCNT: 3268 counter->failcnt = 0; 3269 break; 3270 default: 3271 BUG(); 3272 } 3273 3274 return nbytes; 3275 } 3276 3277 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, 3278 struct cftype *cft) 3279 { 3280 return mem_cgroup_from_css(css)->move_charge_at_immigrate; 3281 } 3282 3283 #ifdef CONFIG_MMU 3284 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3285 struct cftype *cft, u64 val) 3286 { 3287 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3288 3289 if (val & ~MOVE_MASK) 3290 return -EINVAL; 3291 3292 /* 3293 * No kind of locking is needed in here, because ->can_attach() will 3294 * check this value once in the beginning of the process, and then carry 3295 * on with stale data. This means that changes to this value will only 3296 * affect task migrations starting after the change. 3297 */ 3298 memcg->move_charge_at_immigrate = val; 3299 return 0; 3300 } 3301 #else 3302 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3303 struct cftype *cft, u64 val) 3304 { 3305 return -ENOSYS; 3306 } 3307 #endif 3308 3309 #ifdef CONFIG_NUMA 3310 3311 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE)) 3312 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON)) 3313 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1) 3314 3315 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 3316 int nid, unsigned int lru_mask) 3317 { 3318 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg); 3319 unsigned long nr = 0; 3320 enum lru_list lru; 3321 3322 VM_BUG_ON((unsigned)nid >= nr_node_ids); 3323 3324 for_each_lru(lru) { 3325 if (!(BIT(lru) & lru_mask)) 3326 continue; 3327 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru); 3328 } 3329 return nr; 3330 } 3331 3332 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 3333 unsigned int lru_mask) 3334 { 3335 unsigned long nr = 0; 3336 enum lru_list lru; 3337 3338 for_each_lru(lru) { 3339 if (!(BIT(lru) & lru_mask)) 3340 continue; 3341 nr += memcg_page_state(memcg, NR_LRU_BASE + lru); 3342 } 3343 return nr; 3344 } 3345 3346 static int memcg_numa_stat_show(struct seq_file *m, void *v) 3347 { 3348 struct numa_stat { 3349 const char *name; 3350 unsigned int lru_mask; 3351 }; 3352 3353 static const struct numa_stat stats[] = { 3354 { "total", LRU_ALL }, 3355 { "file", LRU_ALL_FILE }, 3356 { "anon", LRU_ALL_ANON }, 3357 { "unevictable", BIT(LRU_UNEVICTABLE) }, 3358 }; 3359 const struct numa_stat *stat; 3360 int nid; 3361 unsigned long nr; 3362 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 3363 3364 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3365 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask); 3366 seq_printf(m, "%s=%lu", stat->name, nr); 3367 for_each_node_state(nid, N_MEMORY) { 3368 nr = mem_cgroup_node_nr_lru_pages(memcg, nid, 3369 stat->lru_mask); 3370 seq_printf(m, " N%d=%lu", nid, nr); 3371 } 3372 seq_putc(m, '\n'); 3373 } 3374 3375 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3376 struct mem_cgroup *iter; 3377 3378 nr = 0; 3379 for_each_mem_cgroup_tree(iter, memcg) 3380 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask); 3381 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr); 3382 for_each_node_state(nid, N_MEMORY) { 3383 nr = 0; 3384 for_each_mem_cgroup_tree(iter, memcg) 3385 nr += mem_cgroup_node_nr_lru_pages( 3386 iter, nid, stat->lru_mask); 3387 seq_printf(m, " N%d=%lu", nid, nr); 3388 } 3389 seq_putc(m, '\n'); 3390 } 3391 3392 return 0; 3393 } 3394 #endif /* CONFIG_NUMA */ 3395 3396 /* Universal VM events cgroup1 shows, original sort order */ 3397 static const unsigned int memcg1_events[] = { 3398 PGPGIN, 3399 PGPGOUT, 3400 PGFAULT, 3401 PGMAJFAULT, 3402 }; 3403 3404 static const char *const memcg1_event_names[] = { 3405 "pgpgin", 3406 "pgpgout", 3407 "pgfault", 3408 "pgmajfault", 3409 }; 3410 3411 static int memcg_stat_show(struct seq_file *m, void *v) 3412 { 3413 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 3414 unsigned long memory, memsw; 3415 struct mem_cgroup *mi; 3416 unsigned int i; 3417 struct accumulated_stats acc; 3418 3419 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats)); 3420 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS); 3421 3422 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 3423 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 3424 continue; 3425 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], 3426 memcg_page_state(memcg, memcg1_stats[i]) * 3427 PAGE_SIZE); 3428 } 3429 3430 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 3431 seq_printf(m, "%s %lu\n", memcg1_event_names[i], 3432 memcg_sum_events(memcg, memcg1_events[i])); 3433 3434 for (i = 0; i < NR_LRU_LISTS; i++) 3435 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i], 3436 memcg_page_state(memcg, NR_LRU_BASE + i) * 3437 PAGE_SIZE); 3438 3439 /* Hierarchical information */ 3440 memory = memsw = PAGE_COUNTER_MAX; 3441 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) { 3442 memory = min(memory, mi->memory.max); 3443 memsw = min(memsw, mi->memsw.max); 3444 } 3445 seq_printf(m, "hierarchical_memory_limit %llu\n", 3446 (u64)memory * PAGE_SIZE); 3447 if (do_memsw_account()) 3448 seq_printf(m, "hierarchical_memsw_limit %llu\n", 3449 (u64)memsw * PAGE_SIZE); 3450 3451 memset(&acc, 0, sizeof(acc)); 3452 acc.stats_size = ARRAY_SIZE(memcg1_stats); 3453 acc.stats_array = memcg1_stats; 3454 acc.events_size = ARRAY_SIZE(memcg1_events); 3455 acc.events_array = memcg1_events; 3456 accumulate_memcg_tree(memcg, &acc); 3457 3458 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 3459 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 3460 continue; 3461 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], 3462 (u64)acc.stat[i] * PAGE_SIZE); 3463 } 3464 3465 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 3466 seq_printf(m, "total_%s %llu\n", memcg1_event_names[i], 3467 (u64)acc.events[i]); 3468 3469 for (i = 0; i < NR_LRU_LISTS; i++) 3470 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], 3471 (u64)acc.lru_pages[i] * PAGE_SIZE); 3472 3473 #ifdef CONFIG_DEBUG_VM 3474 { 3475 pg_data_t *pgdat; 3476 struct mem_cgroup_per_node *mz; 3477 struct zone_reclaim_stat *rstat; 3478 unsigned long recent_rotated[2] = {0, 0}; 3479 unsigned long recent_scanned[2] = {0, 0}; 3480 3481 for_each_online_pgdat(pgdat) { 3482 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 3483 rstat = &mz->lruvec.reclaim_stat; 3484 3485 recent_rotated[0] += rstat->recent_rotated[0]; 3486 recent_rotated[1] += rstat->recent_rotated[1]; 3487 recent_scanned[0] += rstat->recent_scanned[0]; 3488 recent_scanned[1] += rstat->recent_scanned[1]; 3489 } 3490 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]); 3491 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]); 3492 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]); 3493 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]); 3494 } 3495 #endif 3496 3497 return 0; 3498 } 3499 3500 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, 3501 struct cftype *cft) 3502 { 3503 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3504 3505 return mem_cgroup_swappiness(memcg); 3506 } 3507 3508 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, 3509 struct cftype *cft, u64 val) 3510 { 3511 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3512 3513 if (val > 100) 3514 return -EINVAL; 3515 3516 if (css->parent) 3517 memcg->swappiness = val; 3518 else 3519 vm_swappiness = val; 3520 3521 return 0; 3522 } 3523 3524 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 3525 { 3526 struct mem_cgroup_threshold_ary *t; 3527 unsigned long usage; 3528 int i; 3529 3530 rcu_read_lock(); 3531 if (!swap) 3532 t = rcu_dereference(memcg->thresholds.primary); 3533 else 3534 t = rcu_dereference(memcg->memsw_thresholds.primary); 3535 3536 if (!t) 3537 goto unlock; 3538 3539 usage = mem_cgroup_usage(memcg, swap); 3540 3541 /* 3542 * current_threshold points to threshold just below or equal to usage. 3543 * If it's not true, a threshold was crossed after last 3544 * call of __mem_cgroup_threshold(). 3545 */ 3546 i = t->current_threshold; 3547 3548 /* 3549 * Iterate backward over array of thresholds starting from 3550 * current_threshold and check if a threshold is crossed. 3551 * If none of thresholds below usage is crossed, we read 3552 * only one element of the array here. 3553 */ 3554 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 3555 eventfd_signal(t->entries[i].eventfd, 1); 3556 3557 /* i = current_threshold + 1 */ 3558 i++; 3559 3560 /* 3561 * Iterate forward over array of thresholds starting from 3562 * current_threshold+1 and check if a threshold is crossed. 3563 * If none of thresholds above usage is crossed, we read 3564 * only one element of the array here. 3565 */ 3566 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 3567 eventfd_signal(t->entries[i].eventfd, 1); 3568 3569 /* Update current_threshold */ 3570 t->current_threshold = i - 1; 3571 unlock: 3572 rcu_read_unlock(); 3573 } 3574 3575 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 3576 { 3577 while (memcg) { 3578 __mem_cgroup_threshold(memcg, false); 3579 if (do_memsw_account()) 3580 __mem_cgroup_threshold(memcg, true); 3581 3582 memcg = parent_mem_cgroup(memcg); 3583 } 3584 } 3585 3586 static int compare_thresholds(const void *a, const void *b) 3587 { 3588 const struct mem_cgroup_threshold *_a = a; 3589 const struct mem_cgroup_threshold *_b = b; 3590 3591 if (_a->threshold > _b->threshold) 3592 return 1; 3593 3594 if (_a->threshold < _b->threshold) 3595 return -1; 3596 3597 return 0; 3598 } 3599 3600 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 3601 { 3602 struct mem_cgroup_eventfd_list *ev; 3603 3604 spin_lock(&memcg_oom_lock); 3605 3606 list_for_each_entry(ev, &memcg->oom_notify, list) 3607 eventfd_signal(ev->eventfd, 1); 3608 3609 spin_unlock(&memcg_oom_lock); 3610 return 0; 3611 } 3612 3613 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 3614 { 3615 struct mem_cgroup *iter; 3616 3617 for_each_mem_cgroup_tree(iter, memcg) 3618 mem_cgroup_oom_notify_cb(iter); 3619 } 3620 3621 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 3622 struct eventfd_ctx *eventfd, const char *args, enum res_type type) 3623 { 3624 struct mem_cgroup_thresholds *thresholds; 3625 struct mem_cgroup_threshold_ary *new; 3626 unsigned long threshold; 3627 unsigned long usage; 3628 int i, size, ret; 3629 3630 ret = page_counter_memparse(args, "-1", &threshold); 3631 if (ret) 3632 return ret; 3633 3634 mutex_lock(&memcg->thresholds_lock); 3635 3636 if (type == _MEM) { 3637 thresholds = &memcg->thresholds; 3638 usage = mem_cgroup_usage(memcg, false); 3639 } else if (type == _MEMSWAP) { 3640 thresholds = &memcg->memsw_thresholds; 3641 usage = mem_cgroup_usage(memcg, true); 3642 } else 3643 BUG(); 3644 3645 /* Check if a threshold crossed before adding a new one */ 3646 if (thresholds->primary) 3647 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 3648 3649 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 3650 3651 /* Allocate memory for new array of thresholds */ 3652 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL); 3653 if (!new) { 3654 ret = -ENOMEM; 3655 goto unlock; 3656 } 3657 new->size = size; 3658 3659 /* Copy thresholds (if any) to new array */ 3660 if (thresholds->primary) { 3661 memcpy(new->entries, thresholds->primary->entries, (size - 1) * 3662 sizeof(struct mem_cgroup_threshold)); 3663 } 3664 3665 /* Add new threshold */ 3666 new->entries[size - 1].eventfd = eventfd; 3667 new->entries[size - 1].threshold = threshold; 3668 3669 /* Sort thresholds. Registering of new threshold isn't time-critical */ 3670 sort(new->entries, size, sizeof(struct mem_cgroup_threshold), 3671 compare_thresholds, NULL); 3672 3673 /* Find current threshold */ 3674 new->current_threshold = -1; 3675 for (i = 0; i < size; i++) { 3676 if (new->entries[i].threshold <= usage) { 3677 /* 3678 * new->current_threshold will not be used until 3679 * rcu_assign_pointer(), so it's safe to increment 3680 * it here. 3681 */ 3682 ++new->current_threshold; 3683 } else 3684 break; 3685 } 3686 3687 /* Free old spare buffer and save old primary buffer as spare */ 3688 kfree(thresholds->spare); 3689 thresholds->spare = thresholds->primary; 3690 3691 rcu_assign_pointer(thresholds->primary, new); 3692 3693 /* To be sure that nobody uses thresholds */ 3694 synchronize_rcu(); 3695 3696 unlock: 3697 mutex_unlock(&memcg->thresholds_lock); 3698 3699 return ret; 3700 } 3701 3702 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 3703 struct eventfd_ctx *eventfd, const char *args) 3704 { 3705 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM); 3706 } 3707 3708 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg, 3709 struct eventfd_ctx *eventfd, const char *args) 3710 { 3711 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP); 3712 } 3713 3714 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 3715 struct eventfd_ctx *eventfd, enum res_type type) 3716 { 3717 struct mem_cgroup_thresholds *thresholds; 3718 struct mem_cgroup_threshold_ary *new; 3719 unsigned long usage; 3720 int i, j, size; 3721 3722 mutex_lock(&memcg->thresholds_lock); 3723 3724 if (type == _MEM) { 3725 thresholds = &memcg->thresholds; 3726 usage = mem_cgroup_usage(memcg, false); 3727 } else if (type == _MEMSWAP) { 3728 thresholds = &memcg->memsw_thresholds; 3729 usage = mem_cgroup_usage(memcg, true); 3730 } else 3731 BUG(); 3732 3733 if (!thresholds->primary) 3734 goto unlock; 3735 3736 /* Check if a threshold crossed before removing */ 3737 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 3738 3739 /* Calculate new number of threshold */ 3740 size = 0; 3741 for (i = 0; i < thresholds->primary->size; i++) { 3742 if (thresholds->primary->entries[i].eventfd != eventfd) 3743 size++; 3744 } 3745 3746 new = thresholds->spare; 3747 3748 /* Set thresholds array to NULL if we don't have thresholds */ 3749 if (!size) { 3750 kfree(new); 3751 new = NULL; 3752 goto swap_buffers; 3753 } 3754 3755 new->size = size; 3756 3757 /* Copy thresholds and find current threshold */ 3758 new->current_threshold = -1; 3759 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 3760 if (thresholds->primary->entries[i].eventfd == eventfd) 3761 continue; 3762 3763 new->entries[j] = thresholds->primary->entries[i]; 3764 if (new->entries[j].threshold <= usage) { 3765 /* 3766 * new->current_threshold will not be used 3767 * until rcu_assign_pointer(), so it's safe to increment 3768 * it here. 3769 */ 3770 ++new->current_threshold; 3771 } 3772 j++; 3773 } 3774 3775 swap_buffers: 3776 /* Swap primary and spare array */ 3777 thresholds->spare = thresholds->primary; 3778 3779 rcu_assign_pointer(thresholds->primary, new); 3780 3781 /* To be sure that nobody uses thresholds */ 3782 synchronize_rcu(); 3783 3784 /* If all events are unregistered, free the spare array */ 3785 if (!new) { 3786 kfree(thresholds->spare); 3787 thresholds->spare = NULL; 3788 } 3789 unlock: 3790 mutex_unlock(&memcg->thresholds_lock); 3791 } 3792 3793 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 3794 struct eventfd_ctx *eventfd) 3795 { 3796 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM); 3797 } 3798 3799 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 3800 struct eventfd_ctx *eventfd) 3801 { 3802 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP); 3803 } 3804 3805 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg, 3806 struct eventfd_ctx *eventfd, const char *args) 3807 { 3808 struct mem_cgroup_eventfd_list *event; 3809 3810 event = kmalloc(sizeof(*event), GFP_KERNEL); 3811 if (!event) 3812 return -ENOMEM; 3813 3814 spin_lock(&memcg_oom_lock); 3815 3816 event->eventfd = eventfd; 3817 list_add(&event->list, &memcg->oom_notify); 3818 3819 /* already in OOM ? */ 3820 if (memcg->under_oom) 3821 eventfd_signal(eventfd, 1); 3822 spin_unlock(&memcg_oom_lock); 3823 3824 return 0; 3825 } 3826 3827 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg, 3828 struct eventfd_ctx *eventfd) 3829 { 3830 struct mem_cgroup_eventfd_list *ev, *tmp; 3831 3832 spin_lock(&memcg_oom_lock); 3833 3834 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 3835 if (ev->eventfd == eventfd) { 3836 list_del(&ev->list); 3837 kfree(ev); 3838 } 3839 } 3840 3841 spin_unlock(&memcg_oom_lock); 3842 } 3843 3844 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v) 3845 { 3846 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf); 3847 3848 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable); 3849 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom); 3850 seq_printf(sf, "oom_kill %lu\n", 3851 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL])); 3852 return 0; 3853 } 3854 3855 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, 3856 struct cftype *cft, u64 val) 3857 { 3858 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3859 3860 /* cannot set to root cgroup and only 0 and 1 are allowed */ 3861 if (!css->parent || !((val == 0) || (val == 1))) 3862 return -EINVAL; 3863 3864 memcg->oom_kill_disable = val; 3865 if (!val) 3866 memcg_oom_recover(memcg); 3867 3868 return 0; 3869 } 3870 3871 #ifdef CONFIG_CGROUP_WRITEBACK 3872 3873 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 3874 { 3875 return wb_domain_init(&memcg->cgwb_domain, gfp); 3876 } 3877 3878 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 3879 { 3880 wb_domain_exit(&memcg->cgwb_domain); 3881 } 3882 3883 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 3884 { 3885 wb_domain_size_changed(&memcg->cgwb_domain); 3886 } 3887 3888 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 3889 { 3890 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3891 3892 if (!memcg->css.parent) 3893 return NULL; 3894 3895 return &memcg->cgwb_domain; 3896 } 3897 3898 /* 3899 * idx can be of type enum memcg_stat_item or node_stat_item. 3900 * Keep in sync with memcg_exact_page(). 3901 */ 3902 static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx) 3903 { 3904 long x = atomic_long_read(&memcg->stat[idx]); 3905 int cpu; 3906 3907 for_each_online_cpu(cpu) 3908 x += per_cpu_ptr(memcg->stat_cpu, cpu)->count[idx]; 3909 if (x < 0) 3910 x = 0; 3911 return x; 3912 } 3913 3914 /** 3915 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg 3916 * @wb: bdi_writeback in question 3917 * @pfilepages: out parameter for number of file pages 3918 * @pheadroom: out parameter for number of allocatable pages according to memcg 3919 * @pdirty: out parameter for number of dirty pages 3920 * @pwriteback: out parameter for number of pages under writeback 3921 * 3922 * Determine the numbers of file, headroom, dirty, and writeback pages in 3923 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom 3924 * is a bit more involved. 3925 * 3926 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the 3927 * headroom is calculated as the lowest headroom of itself and the 3928 * ancestors. Note that this doesn't consider the actual amount of 3929 * available memory in the system. The caller should further cap 3930 * *@pheadroom accordingly. 3931 */ 3932 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 3933 unsigned long *pheadroom, unsigned long *pdirty, 3934 unsigned long *pwriteback) 3935 { 3936 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 3937 struct mem_cgroup *parent; 3938 3939 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY); 3940 3941 /* this should eventually include NR_UNSTABLE_NFS */ 3942 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK); 3943 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) + 3944 memcg_exact_page_state(memcg, NR_ACTIVE_FILE); 3945 *pheadroom = PAGE_COUNTER_MAX; 3946 3947 while ((parent = parent_mem_cgroup(memcg))) { 3948 unsigned long ceiling = min(memcg->memory.max, memcg->high); 3949 unsigned long used = page_counter_read(&memcg->memory); 3950 3951 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); 3952 memcg = parent; 3953 } 3954 } 3955 3956 #else /* CONFIG_CGROUP_WRITEBACK */ 3957 3958 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 3959 { 3960 return 0; 3961 } 3962 3963 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 3964 { 3965 } 3966 3967 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 3968 { 3969 } 3970 3971 #endif /* CONFIG_CGROUP_WRITEBACK */ 3972 3973 /* 3974 * DO NOT USE IN NEW FILES. 3975 * 3976 * "cgroup.event_control" implementation. 3977 * 3978 * This is way over-engineered. It tries to support fully configurable 3979 * events for each user. Such level of flexibility is completely 3980 * unnecessary especially in the light of the planned unified hierarchy. 3981 * 3982 * Please deprecate this and replace with something simpler if at all 3983 * possible. 3984 */ 3985 3986 /* 3987 * Unregister event and free resources. 3988 * 3989 * Gets called from workqueue. 3990 */ 3991 static void memcg_event_remove(struct work_struct *work) 3992 { 3993 struct mem_cgroup_event *event = 3994 container_of(work, struct mem_cgroup_event, remove); 3995 struct mem_cgroup *memcg = event->memcg; 3996 3997 remove_wait_queue(event->wqh, &event->wait); 3998 3999 event->unregister_event(memcg, event->eventfd); 4000 4001 /* Notify userspace the event is going away. */ 4002 eventfd_signal(event->eventfd, 1); 4003 4004 eventfd_ctx_put(event->eventfd); 4005 kfree(event); 4006 css_put(&memcg->css); 4007 } 4008 4009 /* 4010 * Gets called on EPOLLHUP on eventfd when user closes it. 4011 * 4012 * Called with wqh->lock held and interrupts disabled. 4013 */ 4014 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode, 4015 int sync, void *key) 4016 { 4017 struct mem_cgroup_event *event = 4018 container_of(wait, struct mem_cgroup_event, wait); 4019 struct mem_cgroup *memcg = event->memcg; 4020 __poll_t flags = key_to_poll(key); 4021 4022 if (flags & EPOLLHUP) { 4023 /* 4024 * If the event has been detached at cgroup removal, we 4025 * can simply return knowing the other side will cleanup 4026 * for us. 4027 * 4028 * We can't race against event freeing since the other 4029 * side will require wqh->lock via remove_wait_queue(), 4030 * which we hold. 4031 */ 4032 spin_lock(&memcg->event_list_lock); 4033 if (!list_empty(&event->list)) { 4034 list_del_init(&event->list); 4035 /* 4036 * We are in atomic context, but cgroup_event_remove() 4037 * may sleep, so we have to call it in workqueue. 4038 */ 4039 schedule_work(&event->remove); 4040 } 4041 spin_unlock(&memcg->event_list_lock); 4042 } 4043 4044 return 0; 4045 } 4046 4047 static void memcg_event_ptable_queue_proc(struct file *file, 4048 wait_queue_head_t *wqh, poll_table *pt) 4049 { 4050 struct mem_cgroup_event *event = 4051 container_of(pt, struct mem_cgroup_event, pt); 4052 4053 event->wqh = wqh; 4054 add_wait_queue(wqh, &event->wait); 4055 } 4056 4057 /* 4058 * DO NOT USE IN NEW FILES. 4059 * 4060 * Parse input and register new cgroup event handler. 4061 * 4062 * Input must be in format '<event_fd> <control_fd> <args>'. 4063 * Interpretation of args is defined by control file implementation. 4064 */ 4065 static ssize_t memcg_write_event_control(struct kernfs_open_file *of, 4066 char *buf, size_t nbytes, loff_t off) 4067 { 4068 struct cgroup_subsys_state *css = of_css(of); 4069 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4070 struct mem_cgroup_event *event; 4071 struct cgroup_subsys_state *cfile_css; 4072 unsigned int efd, cfd; 4073 struct fd efile; 4074 struct fd cfile; 4075 const char *name; 4076 char *endp; 4077 int ret; 4078 4079 buf = strstrip(buf); 4080 4081 efd = simple_strtoul(buf, &endp, 10); 4082 if (*endp != ' ') 4083 return -EINVAL; 4084 buf = endp + 1; 4085 4086 cfd = simple_strtoul(buf, &endp, 10); 4087 if ((*endp != ' ') && (*endp != '\0')) 4088 return -EINVAL; 4089 buf = endp + 1; 4090 4091 event = kzalloc(sizeof(*event), GFP_KERNEL); 4092 if (!event) 4093 return -ENOMEM; 4094 4095 event->memcg = memcg; 4096 INIT_LIST_HEAD(&event->list); 4097 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc); 4098 init_waitqueue_func_entry(&event->wait, memcg_event_wake); 4099 INIT_WORK(&event->remove, memcg_event_remove); 4100 4101 efile = fdget(efd); 4102 if (!efile.file) { 4103 ret = -EBADF; 4104 goto out_kfree; 4105 } 4106 4107 event->eventfd = eventfd_ctx_fileget(efile.file); 4108 if (IS_ERR(event->eventfd)) { 4109 ret = PTR_ERR(event->eventfd); 4110 goto out_put_efile; 4111 } 4112 4113 cfile = fdget(cfd); 4114 if (!cfile.file) { 4115 ret = -EBADF; 4116 goto out_put_eventfd; 4117 } 4118 4119 /* the process need read permission on control file */ 4120 /* AV: shouldn't we check that it's been opened for read instead? */ 4121 ret = inode_permission(file_inode(cfile.file), MAY_READ); 4122 if (ret < 0) 4123 goto out_put_cfile; 4124 4125 /* 4126 * Determine the event callbacks and set them in @event. This used 4127 * to be done via struct cftype but cgroup core no longer knows 4128 * about these events. The following is crude but the whole thing 4129 * is for compatibility anyway. 4130 * 4131 * DO NOT ADD NEW FILES. 4132 */ 4133 name = cfile.file->f_path.dentry->d_name.name; 4134 4135 if (!strcmp(name, "memory.usage_in_bytes")) { 4136 event->register_event = mem_cgroup_usage_register_event; 4137 event->unregister_event = mem_cgroup_usage_unregister_event; 4138 } else if (!strcmp(name, "memory.oom_control")) { 4139 event->register_event = mem_cgroup_oom_register_event; 4140 event->unregister_event = mem_cgroup_oom_unregister_event; 4141 } else if (!strcmp(name, "memory.pressure_level")) { 4142 event->register_event = vmpressure_register_event; 4143 event->unregister_event = vmpressure_unregister_event; 4144 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) { 4145 event->register_event = memsw_cgroup_usage_register_event; 4146 event->unregister_event = memsw_cgroup_usage_unregister_event; 4147 } else { 4148 ret = -EINVAL; 4149 goto out_put_cfile; 4150 } 4151 4152 /* 4153 * Verify @cfile should belong to @css. Also, remaining events are 4154 * automatically removed on cgroup destruction but the removal is 4155 * asynchronous, so take an extra ref on @css. 4156 */ 4157 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent, 4158 &memory_cgrp_subsys); 4159 ret = -EINVAL; 4160 if (IS_ERR(cfile_css)) 4161 goto out_put_cfile; 4162 if (cfile_css != css) { 4163 css_put(cfile_css); 4164 goto out_put_cfile; 4165 } 4166 4167 ret = event->register_event(memcg, event->eventfd, buf); 4168 if (ret) 4169 goto out_put_css; 4170 4171 vfs_poll(efile.file, &event->pt); 4172 4173 spin_lock(&memcg->event_list_lock); 4174 list_add(&event->list, &memcg->event_list); 4175 spin_unlock(&memcg->event_list_lock); 4176 4177 fdput(cfile); 4178 fdput(efile); 4179 4180 return nbytes; 4181 4182 out_put_css: 4183 css_put(css); 4184 out_put_cfile: 4185 fdput(cfile); 4186 out_put_eventfd: 4187 eventfd_ctx_put(event->eventfd); 4188 out_put_efile: 4189 fdput(efile); 4190 out_kfree: 4191 kfree(event); 4192 4193 return ret; 4194 } 4195 4196 static struct cftype mem_cgroup_legacy_files[] = { 4197 { 4198 .name = "usage_in_bytes", 4199 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 4200 .read_u64 = mem_cgroup_read_u64, 4201 }, 4202 { 4203 .name = "max_usage_in_bytes", 4204 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 4205 .write = mem_cgroup_reset, 4206 .read_u64 = mem_cgroup_read_u64, 4207 }, 4208 { 4209 .name = "limit_in_bytes", 4210 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 4211 .write = mem_cgroup_write, 4212 .read_u64 = mem_cgroup_read_u64, 4213 }, 4214 { 4215 .name = "soft_limit_in_bytes", 4216 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 4217 .write = mem_cgroup_write, 4218 .read_u64 = mem_cgroup_read_u64, 4219 }, 4220 { 4221 .name = "failcnt", 4222 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 4223 .write = mem_cgroup_reset, 4224 .read_u64 = mem_cgroup_read_u64, 4225 }, 4226 { 4227 .name = "stat", 4228 .seq_show = memcg_stat_show, 4229 }, 4230 { 4231 .name = "force_empty", 4232 .write = mem_cgroup_force_empty_write, 4233 }, 4234 { 4235 .name = "use_hierarchy", 4236 .write_u64 = mem_cgroup_hierarchy_write, 4237 .read_u64 = mem_cgroup_hierarchy_read, 4238 }, 4239 { 4240 .name = "cgroup.event_control", /* XXX: for compat */ 4241 .write = memcg_write_event_control, 4242 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE, 4243 }, 4244 { 4245 .name = "swappiness", 4246 .read_u64 = mem_cgroup_swappiness_read, 4247 .write_u64 = mem_cgroup_swappiness_write, 4248 }, 4249 { 4250 .name = "move_charge_at_immigrate", 4251 .read_u64 = mem_cgroup_move_charge_read, 4252 .write_u64 = mem_cgroup_move_charge_write, 4253 }, 4254 { 4255 .name = "oom_control", 4256 .seq_show = mem_cgroup_oom_control_read, 4257 .write_u64 = mem_cgroup_oom_control_write, 4258 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), 4259 }, 4260 { 4261 .name = "pressure_level", 4262 }, 4263 #ifdef CONFIG_NUMA 4264 { 4265 .name = "numa_stat", 4266 .seq_show = memcg_numa_stat_show, 4267 }, 4268 #endif 4269 { 4270 .name = "kmem.limit_in_bytes", 4271 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), 4272 .write = mem_cgroup_write, 4273 .read_u64 = mem_cgroup_read_u64, 4274 }, 4275 { 4276 .name = "kmem.usage_in_bytes", 4277 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), 4278 .read_u64 = mem_cgroup_read_u64, 4279 }, 4280 { 4281 .name = "kmem.failcnt", 4282 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), 4283 .write = mem_cgroup_reset, 4284 .read_u64 = mem_cgroup_read_u64, 4285 }, 4286 { 4287 .name = "kmem.max_usage_in_bytes", 4288 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), 4289 .write = mem_cgroup_reset, 4290 .read_u64 = mem_cgroup_read_u64, 4291 }, 4292 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG) 4293 { 4294 .name = "kmem.slabinfo", 4295 .seq_start = memcg_slab_start, 4296 .seq_next = memcg_slab_next, 4297 .seq_stop = memcg_slab_stop, 4298 .seq_show = memcg_slab_show, 4299 }, 4300 #endif 4301 { 4302 .name = "kmem.tcp.limit_in_bytes", 4303 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT), 4304 .write = mem_cgroup_write, 4305 .read_u64 = mem_cgroup_read_u64, 4306 }, 4307 { 4308 .name = "kmem.tcp.usage_in_bytes", 4309 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE), 4310 .read_u64 = mem_cgroup_read_u64, 4311 }, 4312 { 4313 .name = "kmem.tcp.failcnt", 4314 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT), 4315 .write = mem_cgroup_reset, 4316 .read_u64 = mem_cgroup_read_u64, 4317 }, 4318 { 4319 .name = "kmem.tcp.max_usage_in_bytes", 4320 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE), 4321 .write = mem_cgroup_reset, 4322 .read_u64 = mem_cgroup_read_u64, 4323 }, 4324 { }, /* terminate */ 4325 }; 4326 4327 /* 4328 * Private memory cgroup IDR 4329 * 4330 * Swap-out records and page cache shadow entries need to store memcg 4331 * references in constrained space, so we maintain an ID space that is 4332 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of 4333 * memory-controlled cgroups to 64k. 4334 * 4335 * However, there usually are many references to the oflline CSS after 4336 * the cgroup has been destroyed, such as page cache or reclaimable 4337 * slab objects, that don't need to hang on to the ID. We want to keep 4338 * those dead CSS from occupying IDs, or we might quickly exhaust the 4339 * relatively small ID space and prevent the creation of new cgroups 4340 * even when there are much fewer than 64k cgroups - possibly none. 4341 * 4342 * Maintain a private 16-bit ID space for memcg, and allow the ID to 4343 * be freed and recycled when it's no longer needed, which is usually 4344 * when the CSS is offlined. 4345 * 4346 * The only exception to that are records of swapped out tmpfs/shmem 4347 * pages that need to be attributed to live ancestors on swapin. But 4348 * those references are manageable from userspace. 4349 */ 4350 4351 static DEFINE_IDR(mem_cgroup_idr); 4352 4353 static void mem_cgroup_id_remove(struct mem_cgroup *memcg) 4354 { 4355 if (memcg->id.id > 0) { 4356 idr_remove(&mem_cgroup_idr, memcg->id.id); 4357 memcg->id.id = 0; 4358 } 4359 } 4360 4361 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n) 4362 { 4363 refcount_add(n, &memcg->id.ref); 4364 } 4365 4366 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n) 4367 { 4368 if (refcount_sub_and_test(n, &memcg->id.ref)) { 4369 mem_cgroup_id_remove(memcg); 4370 4371 /* Memcg ID pins CSS */ 4372 css_put(&memcg->css); 4373 } 4374 } 4375 4376 static inline void mem_cgroup_id_get(struct mem_cgroup *memcg) 4377 { 4378 mem_cgroup_id_get_many(memcg, 1); 4379 } 4380 4381 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg) 4382 { 4383 mem_cgroup_id_put_many(memcg, 1); 4384 } 4385 4386 /** 4387 * mem_cgroup_from_id - look up a memcg from a memcg id 4388 * @id: the memcg id to look up 4389 * 4390 * Caller must hold rcu_read_lock(). 4391 */ 4392 struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 4393 { 4394 WARN_ON_ONCE(!rcu_read_lock_held()); 4395 return idr_find(&mem_cgroup_idr, id); 4396 } 4397 4398 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 4399 { 4400 struct mem_cgroup_per_node *pn; 4401 int tmp = node; 4402 /* 4403 * This routine is called against possible nodes. 4404 * But it's BUG to call kmalloc() against offline node. 4405 * 4406 * TODO: this routine can waste much memory for nodes which will 4407 * never be onlined. It's better to use memory hotplug callback 4408 * function. 4409 */ 4410 if (!node_state(node, N_NORMAL_MEMORY)) 4411 tmp = -1; 4412 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); 4413 if (!pn) 4414 return 1; 4415 4416 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat); 4417 if (!pn->lruvec_stat_cpu) { 4418 kfree(pn); 4419 return 1; 4420 } 4421 4422 lruvec_init(&pn->lruvec); 4423 pn->usage_in_excess = 0; 4424 pn->on_tree = false; 4425 pn->memcg = memcg; 4426 4427 memcg->nodeinfo[node] = pn; 4428 return 0; 4429 } 4430 4431 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 4432 { 4433 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node]; 4434 4435 if (!pn) 4436 return; 4437 4438 free_percpu(pn->lruvec_stat_cpu); 4439 kfree(pn); 4440 } 4441 4442 static void __mem_cgroup_free(struct mem_cgroup *memcg) 4443 { 4444 int node; 4445 4446 for_each_node(node) 4447 free_mem_cgroup_per_node_info(memcg, node); 4448 free_percpu(memcg->stat_cpu); 4449 kfree(memcg); 4450 } 4451 4452 static void mem_cgroup_free(struct mem_cgroup *memcg) 4453 { 4454 memcg_wb_domain_exit(memcg); 4455 __mem_cgroup_free(memcg); 4456 } 4457 4458 static struct mem_cgroup *mem_cgroup_alloc(void) 4459 { 4460 struct mem_cgroup *memcg; 4461 unsigned int size; 4462 int node; 4463 4464 size = sizeof(struct mem_cgroup); 4465 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *); 4466 4467 memcg = kzalloc(size, GFP_KERNEL); 4468 if (!memcg) 4469 return NULL; 4470 4471 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL, 4472 1, MEM_CGROUP_ID_MAX, 4473 GFP_KERNEL); 4474 if (memcg->id.id < 0) 4475 goto fail; 4476 4477 memcg->stat_cpu = alloc_percpu(struct mem_cgroup_stat_cpu); 4478 if (!memcg->stat_cpu) 4479 goto fail; 4480 4481 for_each_node(node) 4482 if (alloc_mem_cgroup_per_node_info(memcg, node)) 4483 goto fail; 4484 4485 if (memcg_wb_domain_init(memcg, GFP_KERNEL)) 4486 goto fail; 4487 4488 INIT_WORK(&memcg->high_work, high_work_func); 4489 memcg->last_scanned_node = MAX_NUMNODES; 4490 INIT_LIST_HEAD(&memcg->oom_notify); 4491 mutex_init(&memcg->thresholds_lock); 4492 spin_lock_init(&memcg->move_lock); 4493 vmpressure_init(&memcg->vmpressure); 4494 INIT_LIST_HEAD(&memcg->event_list); 4495 spin_lock_init(&memcg->event_list_lock); 4496 memcg->socket_pressure = jiffies; 4497 #ifdef CONFIG_MEMCG_KMEM 4498 memcg->kmemcg_id = -1; 4499 #endif 4500 #ifdef CONFIG_CGROUP_WRITEBACK 4501 INIT_LIST_HEAD(&memcg->cgwb_list); 4502 #endif 4503 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id); 4504 return memcg; 4505 fail: 4506 mem_cgroup_id_remove(memcg); 4507 __mem_cgroup_free(memcg); 4508 return NULL; 4509 } 4510 4511 static struct cgroup_subsys_state * __ref 4512 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 4513 { 4514 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); 4515 struct mem_cgroup *memcg; 4516 long error = -ENOMEM; 4517 4518 memcg = mem_cgroup_alloc(); 4519 if (!memcg) 4520 return ERR_PTR(error); 4521 4522 memcg->high = PAGE_COUNTER_MAX; 4523 memcg->soft_limit = PAGE_COUNTER_MAX; 4524 if (parent) { 4525 memcg->swappiness = mem_cgroup_swappiness(parent); 4526 memcg->oom_kill_disable = parent->oom_kill_disable; 4527 } 4528 if (parent && parent->use_hierarchy) { 4529 memcg->use_hierarchy = true; 4530 page_counter_init(&memcg->memory, &parent->memory); 4531 page_counter_init(&memcg->swap, &parent->swap); 4532 page_counter_init(&memcg->memsw, &parent->memsw); 4533 page_counter_init(&memcg->kmem, &parent->kmem); 4534 page_counter_init(&memcg->tcpmem, &parent->tcpmem); 4535 } else { 4536 page_counter_init(&memcg->memory, NULL); 4537 page_counter_init(&memcg->swap, NULL); 4538 page_counter_init(&memcg->memsw, NULL); 4539 page_counter_init(&memcg->kmem, NULL); 4540 page_counter_init(&memcg->tcpmem, NULL); 4541 /* 4542 * Deeper hierachy with use_hierarchy == false doesn't make 4543 * much sense so let cgroup subsystem know about this 4544 * unfortunate state in our controller. 4545 */ 4546 if (parent != root_mem_cgroup) 4547 memory_cgrp_subsys.broken_hierarchy = true; 4548 } 4549 4550 /* The following stuff does not apply to the root */ 4551 if (!parent) { 4552 root_mem_cgroup = memcg; 4553 return &memcg->css; 4554 } 4555 4556 error = memcg_online_kmem(memcg); 4557 if (error) 4558 goto fail; 4559 4560 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 4561 static_branch_inc(&memcg_sockets_enabled_key); 4562 4563 return &memcg->css; 4564 fail: 4565 mem_cgroup_id_remove(memcg); 4566 mem_cgroup_free(memcg); 4567 return ERR_PTR(-ENOMEM); 4568 } 4569 4570 static int mem_cgroup_css_online(struct cgroup_subsys_state *css) 4571 { 4572 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4573 4574 /* 4575 * A memcg must be visible for memcg_expand_shrinker_maps() 4576 * by the time the maps are allocated. So, we allocate maps 4577 * here, when for_each_mem_cgroup() can't skip it. 4578 */ 4579 if (memcg_alloc_shrinker_maps(memcg)) { 4580 mem_cgroup_id_remove(memcg); 4581 return -ENOMEM; 4582 } 4583 4584 /* Online state pins memcg ID, memcg ID pins CSS */ 4585 refcount_set(&memcg->id.ref, 1); 4586 css_get(css); 4587 return 0; 4588 } 4589 4590 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 4591 { 4592 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4593 struct mem_cgroup_event *event, *tmp; 4594 4595 /* 4596 * Unregister events and notify userspace. 4597 * Notify userspace about cgroup removing only after rmdir of cgroup 4598 * directory to avoid race between userspace and kernelspace. 4599 */ 4600 spin_lock(&memcg->event_list_lock); 4601 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) { 4602 list_del_init(&event->list); 4603 schedule_work(&event->remove); 4604 } 4605 spin_unlock(&memcg->event_list_lock); 4606 4607 page_counter_set_min(&memcg->memory, 0); 4608 page_counter_set_low(&memcg->memory, 0); 4609 4610 memcg_offline_kmem(memcg); 4611 wb_memcg_offline(memcg); 4612 4613 drain_all_stock(memcg); 4614 4615 mem_cgroup_id_put(memcg); 4616 } 4617 4618 static void mem_cgroup_css_released(struct cgroup_subsys_state *css) 4619 { 4620 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4621 4622 invalidate_reclaim_iterators(memcg); 4623 } 4624 4625 static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 4626 { 4627 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4628 4629 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 4630 static_branch_dec(&memcg_sockets_enabled_key); 4631 4632 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active) 4633 static_branch_dec(&memcg_sockets_enabled_key); 4634 4635 vmpressure_cleanup(&memcg->vmpressure); 4636 cancel_work_sync(&memcg->high_work); 4637 mem_cgroup_remove_from_trees(memcg); 4638 memcg_free_shrinker_maps(memcg); 4639 memcg_free_kmem(memcg); 4640 mem_cgroup_free(memcg); 4641 } 4642 4643 /** 4644 * mem_cgroup_css_reset - reset the states of a mem_cgroup 4645 * @css: the target css 4646 * 4647 * Reset the states of the mem_cgroup associated with @css. This is 4648 * invoked when the userland requests disabling on the default hierarchy 4649 * but the memcg is pinned through dependency. The memcg should stop 4650 * applying policies and should revert to the vanilla state as it may be 4651 * made visible again. 4652 * 4653 * The current implementation only resets the essential configurations. 4654 * This needs to be expanded to cover all the visible parts. 4655 */ 4656 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) 4657 { 4658 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4659 4660 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX); 4661 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX); 4662 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX); 4663 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX); 4664 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX); 4665 page_counter_set_min(&memcg->memory, 0); 4666 page_counter_set_low(&memcg->memory, 0); 4667 memcg->high = PAGE_COUNTER_MAX; 4668 memcg->soft_limit = PAGE_COUNTER_MAX; 4669 memcg_wb_domain_size_changed(memcg); 4670 } 4671 4672 #ifdef CONFIG_MMU 4673 /* Handlers for move charge at task migration. */ 4674 static int mem_cgroup_do_precharge(unsigned long count) 4675 { 4676 int ret; 4677 4678 /* Try a single bulk charge without reclaim first, kswapd may wake */ 4679 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count); 4680 if (!ret) { 4681 mc.precharge += count; 4682 return ret; 4683 } 4684 4685 /* Try charges one by one with reclaim, but do not retry */ 4686 while (count--) { 4687 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1); 4688 if (ret) 4689 return ret; 4690 mc.precharge++; 4691 cond_resched(); 4692 } 4693 return 0; 4694 } 4695 4696 union mc_target { 4697 struct page *page; 4698 swp_entry_t ent; 4699 }; 4700 4701 enum mc_target_type { 4702 MC_TARGET_NONE = 0, 4703 MC_TARGET_PAGE, 4704 MC_TARGET_SWAP, 4705 MC_TARGET_DEVICE, 4706 }; 4707 4708 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 4709 unsigned long addr, pte_t ptent) 4710 { 4711 struct page *page = _vm_normal_page(vma, addr, ptent, true); 4712 4713 if (!page || !page_mapped(page)) 4714 return NULL; 4715 if (PageAnon(page)) { 4716 if (!(mc.flags & MOVE_ANON)) 4717 return NULL; 4718 } else { 4719 if (!(mc.flags & MOVE_FILE)) 4720 return NULL; 4721 } 4722 if (!get_page_unless_zero(page)) 4723 return NULL; 4724 4725 return page; 4726 } 4727 4728 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE) 4729 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 4730 pte_t ptent, swp_entry_t *entry) 4731 { 4732 struct page *page = NULL; 4733 swp_entry_t ent = pte_to_swp_entry(ptent); 4734 4735 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent)) 4736 return NULL; 4737 4738 /* 4739 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to 4740 * a device and because they are not accessible by CPU they are store 4741 * as special swap entry in the CPU page table. 4742 */ 4743 if (is_device_private_entry(ent)) { 4744 page = device_private_entry_to_page(ent); 4745 /* 4746 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have 4747 * a refcount of 1 when free (unlike normal page) 4748 */ 4749 if (!page_ref_add_unless(page, 1, 1)) 4750 return NULL; 4751 return page; 4752 } 4753 4754 /* 4755 * Because lookup_swap_cache() updates some statistics counter, 4756 * we call find_get_page() with swapper_space directly. 4757 */ 4758 page = find_get_page(swap_address_space(ent), swp_offset(ent)); 4759 if (do_memsw_account()) 4760 entry->val = ent.val; 4761 4762 return page; 4763 } 4764 #else 4765 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 4766 pte_t ptent, swp_entry_t *entry) 4767 { 4768 return NULL; 4769 } 4770 #endif 4771 4772 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 4773 unsigned long addr, pte_t ptent, swp_entry_t *entry) 4774 { 4775 struct page *page = NULL; 4776 struct address_space *mapping; 4777 pgoff_t pgoff; 4778 4779 if (!vma->vm_file) /* anonymous vma */ 4780 return NULL; 4781 if (!(mc.flags & MOVE_FILE)) 4782 return NULL; 4783 4784 mapping = vma->vm_file->f_mapping; 4785 pgoff = linear_page_index(vma, addr); 4786 4787 /* page is moved even if it's not RSS of this task(page-faulted). */ 4788 #ifdef CONFIG_SWAP 4789 /* shmem/tmpfs may report page out on swap: account for that too. */ 4790 if (shmem_mapping(mapping)) { 4791 page = find_get_entry(mapping, pgoff); 4792 if (xa_is_value(page)) { 4793 swp_entry_t swp = radix_to_swp_entry(page); 4794 if (do_memsw_account()) 4795 *entry = swp; 4796 page = find_get_page(swap_address_space(swp), 4797 swp_offset(swp)); 4798 } 4799 } else 4800 page = find_get_page(mapping, pgoff); 4801 #else 4802 page = find_get_page(mapping, pgoff); 4803 #endif 4804 return page; 4805 } 4806 4807 /** 4808 * mem_cgroup_move_account - move account of the page 4809 * @page: the page 4810 * @compound: charge the page as compound or small page 4811 * @from: mem_cgroup which the page is moved from. 4812 * @to: mem_cgroup which the page is moved to. @from != @to. 4813 * 4814 * The caller must make sure the page is not on LRU (isolate_page() is useful.) 4815 * 4816 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" 4817 * from old cgroup. 4818 */ 4819 static int mem_cgroup_move_account(struct page *page, 4820 bool compound, 4821 struct mem_cgroup *from, 4822 struct mem_cgroup *to) 4823 { 4824 unsigned long flags; 4825 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 4826 int ret; 4827 bool anon; 4828 4829 VM_BUG_ON(from == to); 4830 VM_BUG_ON_PAGE(PageLRU(page), page); 4831 VM_BUG_ON(compound && !PageTransHuge(page)); 4832 4833 /* 4834 * Prevent mem_cgroup_migrate() from looking at 4835 * page->mem_cgroup of its source page while we change it. 4836 */ 4837 ret = -EBUSY; 4838 if (!trylock_page(page)) 4839 goto out; 4840 4841 ret = -EINVAL; 4842 if (page->mem_cgroup != from) 4843 goto out_unlock; 4844 4845 anon = PageAnon(page); 4846 4847 spin_lock_irqsave(&from->move_lock, flags); 4848 4849 if (!anon && page_mapped(page)) { 4850 __mod_memcg_state(from, NR_FILE_MAPPED, -nr_pages); 4851 __mod_memcg_state(to, NR_FILE_MAPPED, nr_pages); 4852 } 4853 4854 /* 4855 * move_lock grabbed above and caller set from->moving_account, so 4856 * mod_memcg_page_state will serialize updates to PageDirty. 4857 * So mapping should be stable for dirty pages. 4858 */ 4859 if (!anon && PageDirty(page)) { 4860 struct address_space *mapping = page_mapping(page); 4861 4862 if (mapping_cap_account_dirty(mapping)) { 4863 __mod_memcg_state(from, NR_FILE_DIRTY, -nr_pages); 4864 __mod_memcg_state(to, NR_FILE_DIRTY, nr_pages); 4865 } 4866 } 4867 4868 if (PageWriteback(page)) { 4869 __mod_memcg_state(from, NR_WRITEBACK, -nr_pages); 4870 __mod_memcg_state(to, NR_WRITEBACK, nr_pages); 4871 } 4872 4873 /* 4874 * It is safe to change page->mem_cgroup here because the page 4875 * is referenced, charged, and isolated - we can't race with 4876 * uncharging, charging, migration, or LRU putback. 4877 */ 4878 4879 /* caller should have done css_get */ 4880 page->mem_cgroup = to; 4881 spin_unlock_irqrestore(&from->move_lock, flags); 4882 4883 ret = 0; 4884 4885 local_irq_disable(); 4886 mem_cgroup_charge_statistics(to, page, compound, nr_pages); 4887 memcg_check_events(to, page); 4888 mem_cgroup_charge_statistics(from, page, compound, -nr_pages); 4889 memcg_check_events(from, page); 4890 local_irq_enable(); 4891 out_unlock: 4892 unlock_page(page); 4893 out: 4894 return ret; 4895 } 4896 4897 /** 4898 * get_mctgt_type - get target type of moving charge 4899 * @vma: the vma the pte to be checked belongs 4900 * @addr: the address corresponding to the pte to be checked 4901 * @ptent: the pte to be checked 4902 * @target: the pointer the target page or swap ent will be stored(can be NULL) 4903 * 4904 * Returns 4905 * 0(MC_TARGET_NONE): if the pte is not a target for move charge. 4906 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for 4907 * move charge. if @target is not NULL, the page is stored in target->page 4908 * with extra refcnt got(Callers should handle it). 4909 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a 4910 * target for charge migration. if @target is not NULL, the entry is stored 4911 * in target->ent. 4912 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PUBLIC 4913 * or MEMORY_DEVICE_PRIVATE (so ZONE_DEVICE page and thus not on the lru). 4914 * For now we such page is charge like a regular page would be as for all 4915 * intent and purposes it is just special memory taking the place of a 4916 * regular page. 4917 * 4918 * See Documentations/vm/hmm.txt and include/linux/hmm.h 4919 * 4920 * Called with pte lock held. 4921 */ 4922 4923 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, 4924 unsigned long addr, pte_t ptent, union mc_target *target) 4925 { 4926 struct page *page = NULL; 4927 enum mc_target_type ret = MC_TARGET_NONE; 4928 swp_entry_t ent = { .val = 0 }; 4929 4930 if (pte_present(ptent)) 4931 page = mc_handle_present_pte(vma, addr, ptent); 4932 else if (is_swap_pte(ptent)) 4933 page = mc_handle_swap_pte(vma, ptent, &ent); 4934 else if (pte_none(ptent)) 4935 page = mc_handle_file_pte(vma, addr, ptent, &ent); 4936 4937 if (!page && !ent.val) 4938 return ret; 4939 if (page) { 4940 /* 4941 * Do only loose check w/o serialization. 4942 * mem_cgroup_move_account() checks the page is valid or 4943 * not under LRU exclusion. 4944 */ 4945 if (page->mem_cgroup == mc.from) { 4946 ret = MC_TARGET_PAGE; 4947 if (is_device_private_page(page) || 4948 is_device_public_page(page)) 4949 ret = MC_TARGET_DEVICE; 4950 if (target) 4951 target->page = page; 4952 } 4953 if (!ret || !target) 4954 put_page(page); 4955 } 4956 /* 4957 * There is a swap entry and a page doesn't exist or isn't charged. 4958 * But we cannot move a tail-page in a THP. 4959 */ 4960 if (ent.val && !ret && (!page || !PageTransCompound(page)) && 4961 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) { 4962 ret = MC_TARGET_SWAP; 4963 if (target) 4964 target->ent = ent; 4965 } 4966 return ret; 4967 } 4968 4969 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4970 /* 4971 * We don't consider PMD mapped swapping or file mapped pages because THP does 4972 * not support them for now. 4973 * Caller should make sure that pmd_trans_huge(pmd) is true. 4974 */ 4975 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 4976 unsigned long addr, pmd_t pmd, union mc_target *target) 4977 { 4978 struct page *page = NULL; 4979 enum mc_target_type ret = MC_TARGET_NONE; 4980 4981 if (unlikely(is_swap_pmd(pmd))) { 4982 VM_BUG_ON(thp_migration_supported() && 4983 !is_pmd_migration_entry(pmd)); 4984 return ret; 4985 } 4986 page = pmd_page(pmd); 4987 VM_BUG_ON_PAGE(!page || !PageHead(page), page); 4988 if (!(mc.flags & MOVE_ANON)) 4989 return ret; 4990 if (page->mem_cgroup == mc.from) { 4991 ret = MC_TARGET_PAGE; 4992 if (target) { 4993 get_page(page); 4994 target->page = page; 4995 } 4996 } 4997 return ret; 4998 } 4999 #else 5000 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5001 unsigned long addr, pmd_t pmd, union mc_target *target) 5002 { 5003 return MC_TARGET_NONE; 5004 } 5005 #endif 5006 5007 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 5008 unsigned long addr, unsigned long end, 5009 struct mm_walk *walk) 5010 { 5011 struct vm_area_struct *vma = walk->vma; 5012 pte_t *pte; 5013 spinlock_t *ptl; 5014 5015 ptl = pmd_trans_huge_lock(pmd, vma); 5016 if (ptl) { 5017 /* 5018 * Note their can not be MC_TARGET_DEVICE for now as we do not 5019 * support transparent huge page with MEMORY_DEVICE_PUBLIC or 5020 * MEMORY_DEVICE_PRIVATE but this might change. 5021 */ 5022 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) 5023 mc.precharge += HPAGE_PMD_NR; 5024 spin_unlock(ptl); 5025 return 0; 5026 } 5027 5028 if (pmd_trans_unstable(pmd)) 5029 return 0; 5030 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 5031 for (; addr != end; pte++, addr += PAGE_SIZE) 5032 if (get_mctgt_type(vma, addr, *pte, NULL)) 5033 mc.precharge++; /* increment precharge temporarily */ 5034 pte_unmap_unlock(pte - 1, ptl); 5035 cond_resched(); 5036 5037 return 0; 5038 } 5039 5040 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 5041 { 5042 unsigned long precharge; 5043 5044 struct mm_walk mem_cgroup_count_precharge_walk = { 5045 .pmd_entry = mem_cgroup_count_precharge_pte_range, 5046 .mm = mm, 5047 }; 5048 down_read(&mm->mmap_sem); 5049 walk_page_range(0, mm->highest_vm_end, 5050 &mem_cgroup_count_precharge_walk); 5051 up_read(&mm->mmap_sem); 5052 5053 precharge = mc.precharge; 5054 mc.precharge = 0; 5055 5056 return precharge; 5057 } 5058 5059 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 5060 { 5061 unsigned long precharge = mem_cgroup_count_precharge(mm); 5062 5063 VM_BUG_ON(mc.moving_task); 5064 mc.moving_task = current; 5065 return mem_cgroup_do_precharge(precharge); 5066 } 5067 5068 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 5069 static void __mem_cgroup_clear_mc(void) 5070 { 5071 struct mem_cgroup *from = mc.from; 5072 struct mem_cgroup *to = mc.to; 5073 5074 /* we must uncharge all the leftover precharges from mc.to */ 5075 if (mc.precharge) { 5076 cancel_charge(mc.to, mc.precharge); 5077 mc.precharge = 0; 5078 } 5079 /* 5080 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 5081 * we must uncharge here. 5082 */ 5083 if (mc.moved_charge) { 5084 cancel_charge(mc.from, mc.moved_charge); 5085 mc.moved_charge = 0; 5086 } 5087 /* we must fixup refcnts and charges */ 5088 if (mc.moved_swap) { 5089 /* uncharge swap account from the old cgroup */ 5090 if (!mem_cgroup_is_root(mc.from)) 5091 page_counter_uncharge(&mc.from->memsw, mc.moved_swap); 5092 5093 mem_cgroup_id_put_many(mc.from, mc.moved_swap); 5094 5095 /* 5096 * we charged both to->memory and to->memsw, so we 5097 * should uncharge to->memory. 5098 */ 5099 if (!mem_cgroup_is_root(mc.to)) 5100 page_counter_uncharge(&mc.to->memory, mc.moved_swap); 5101 5102 mem_cgroup_id_get_many(mc.to, mc.moved_swap); 5103 css_put_many(&mc.to->css, mc.moved_swap); 5104 5105 mc.moved_swap = 0; 5106 } 5107 memcg_oom_recover(from); 5108 memcg_oom_recover(to); 5109 wake_up_all(&mc.waitq); 5110 } 5111 5112 static void mem_cgroup_clear_mc(void) 5113 { 5114 struct mm_struct *mm = mc.mm; 5115 5116 /* 5117 * we must clear moving_task before waking up waiters at the end of 5118 * task migration. 5119 */ 5120 mc.moving_task = NULL; 5121 __mem_cgroup_clear_mc(); 5122 spin_lock(&mc.lock); 5123 mc.from = NULL; 5124 mc.to = NULL; 5125 mc.mm = NULL; 5126 spin_unlock(&mc.lock); 5127 5128 mmput(mm); 5129 } 5130 5131 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 5132 { 5133 struct cgroup_subsys_state *css; 5134 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */ 5135 struct mem_cgroup *from; 5136 struct task_struct *leader, *p; 5137 struct mm_struct *mm; 5138 unsigned long move_flags; 5139 int ret = 0; 5140 5141 /* charge immigration isn't supported on the default hierarchy */ 5142 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5143 return 0; 5144 5145 /* 5146 * Multi-process migrations only happen on the default hierarchy 5147 * where charge immigration is not used. Perform charge 5148 * immigration if @tset contains a leader and whine if there are 5149 * multiple. 5150 */ 5151 p = NULL; 5152 cgroup_taskset_for_each_leader(leader, css, tset) { 5153 WARN_ON_ONCE(p); 5154 p = leader; 5155 memcg = mem_cgroup_from_css(css); 5156 } 5157 if (!p) 5158 return 0; 5159 5160 /* 5161 * We are now commited to this value whatever it is. Changes in this 5162 * tunable will only affect upcoming migrations, not the current one. 5163 * So we need to save it, and keep it going. 5164 */ 5165 move_flags = READ_ONCE(memcg->move_charge_at_immigrate); 5166 if (!move_flags) 5167 return 0; 5168 5169 from = mem_cgroup_from_task(p); 5170 5171 VM_BUG_ON(from == memcg); 5172 5173 mm = get_task_mm(p); 5174 if (!mm) 5175 return 0; 5176 /* We move charges only when we move a owner of the mm */ 5177 if (mm->owner == p) { 5178 VM_BUG_ON(mc.from); 5179 VM_BUG_ON(mc.to); 5180 VM_BUG_ON(mc.precharge); 5181 VM_BUG_ON(mc.moved_charge); 5182 VM_BUG_ON(mc.moved_swap); 5183 5184 spin_lock(&mc.lock); 5185 mc.mm = mm; 5186 mc.from = from; 5187 mc.to = memcg; 5188 mc.flags = move_flags; 5189 spin_unlock(&mc.lock); 5190 /* We set mc.moving_task later */ 5191 5192 ret = mem_cgroup_precharge_mc(mm); 5193 if (ret) 5194 mem_cgroup_clear_mc(); 5195 } else { 5196 mmput(mm); 5197 } 5198 return ret; 5199 } 5200 5201 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 5202 { 5203 if (mc.to) 5204 mem_cgroup_clear_mc(); 5205 } 5206 5207 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 5208 unsigned long addr, unsigned long end, 5209 struct mm_walk *walk) 5210 { 5211 int ret = 0; 5212 struct vm_area_struct *vma = walk->vma; 5213 pte_t *pte; 5214 spinlock_t *ptl; 5215 enum mc_target_type target_type; 5216 union mc_target target; 5217 struct page *page; 5218 5219 ptl = pmd_trans_huge_lock(pmd, vma); 5220 if (ptl) { 5221 if (mc.precharge < HPAGE_PMD_NR) { 5222 spin_unlock(ptl); 5223 return 0; 5224 } 5225 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); 5226 if (target_type == MC_TARGET_PAGE) { 5227 page = target.page; 5228 if (!isolate_lru_page(page)) { 5229 if (!mem_cgroup_move_account(page, true, 5230 mc.from, mc.to)) { 5231 mc.precharge -= HPAGE_PMD_NR; 5232 mc.moved_charge += HPAGE_PMD_NR; 5233 } 5234 putback_lru_page(page); 5235 } 5236 put_page(page); 5237 } else if (target_type == MC_TARGET_DEVICE) { 5238 page = target.page; 5239 if (!mem_cgroup_move_account(page, true, 5240 mc.from, mc.to)) { 5241 mc.precharge -= HPAGE_PMD_NR; 5242 mc.moved_charge += HPAGE_PMD_NR; 5243 } 5244 put_page(page); 5245 } 5246 spin_unlock(ptl); 5247 return 0; 5248 } 5249 5250 if (pmd_trans_unstable(pmd)) 5251 return 0; 5252 retry: 5253 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 5254 for (; addr != end; addr += PAGE_SIZE) { 5255 pte_t ptent = *(pte++); 5256 bool device = false; 5257 swp_entry_t ent; 5258 5259 if (!mc.precharge) 5260 break; 5261 5262 switch (get_mctgt_type(vma, addr, ptent, &target)) { 5263 case MC_TARGET_DEVICE: 5264 device = true; 5265 /* fall through */ 5266 case MC_TARGET_PAGE: 5267 page = target.page; 5268 /* 5269 * We can have a part of the split pmd here. Moving it 5270 * can be done but it would be too convoluted so simply 5271 * ignore such a partial THP and keep it in original 5272 * memcg. There should be somebody mapping the head. 5273 */ 5274 if (PageTransCompound(page)) 5275 goto put; 5276 if (!device && isolate_lru_page(page)) 5277 goto put; 5278 if (!mem_cgroup_move_account(page, false, 5279 mc.from, mc.to)) { 5280 mc.precharge--; 5281 /* we uncharge from mc.from later. */ 5282 mc.moved_charge++; 5283 } 5284 if (!device) 5285 putback_lru_page(page); 5286 put: /* get_mctgt_type() gets the page */ 5287 put_page(page); 5288 break; 5289 case MC_TARGET_SWAP: 5290 ent = target.ent; 5291 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { 5292 mc.precharge--; 5293 /* we fixup refcnts and charges later. */ 5294 mc.moved_swap++; 5295 } 5296 break; 5297 default: 5298 break; 5299 } 5300 } 5301 pte_unmap_unlock(pte - 1, ptl); 5302 cond_resched(); 5303 5304 if (addr != end) { 5305 /* 5306 * We have consumed all precharges we got in can_attach(). 5307 * We try charge one by one, but don't do any additional 5308 * charges to mc.to if we have failed in charge once in attach() 5309 * phase. 5310 */ 5311 ret = mem_cgroup_do_precharge(1); 5312 if (!ret) 5313 goto retry; 5314 } 5315 5316 return ret; 5317 } 5318 5319 static void mem_cgroup_move_charge(void) 5320 { 5321 struct mm_walk mem_cgroup_move_charge_walk = { 5322 .pmd_entry = mem_cgroup_move_charge_pte_range, 5323 .mm = mc.mm, 5324 }; 5325 5326 lru_add_drain_all(); 5327 /* 5328 * Signal lock_page_memcg() to take the memcg's move_lock 5329 * while we're moving its pages to another memcg. Then wait 5330 * for already started RCU-only updates to finish. 5331 */ 5332 atomic_inc(&mc.from->moving_account); 5333 synchronize_rcu(); 5334 retry: 5335 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) { 5336 /* 5337 * Someone who are holding the mmap_sem might be waiting in 5338 * waitq. So we cancel all extra charges, wake up all waiters, 5339 * and retry. Because we cancel precharges, we might not be able 5340 * to move enough charges, but moving charge is a best-effort 5341 * feature anyway, so it wouldn't be a big problem. 5342 */ 5343 __mem_cgroup_clear_mc(); 5344 cond_resched(); 5345 goto retry; 5346 } 5347 /* 5348 * When we have consumed all precharges and failed in doing 5349 * additional charge, the page walk just aborts. 5350 */ 5351 walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk); 5352 5353 up_read(&mc.mm->mmap_sem); 5354 atomic_dec(&mc.from->moving_account); 5355 } 5356 5357 static void mem_cgroup_move_task(void) 5358 { 5359 if (mc.to) { 5360 mem_cgroup_move_charge(); 5361 mem_cgroup_clear_mc(); 5362 } 5363 } 5364 #else /* !CONFIG_MMU */ 5365 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 5366 { 5367 return 0; 5368 } 5369 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 5370 { 5371 } 5372 static void mem_cgroup_move_task(void) 5373 { 5374 } 5375 #endif 5376 5377 /* 5378 * Cgroup retains root cgroups across [un]mount cycles making it necessary 5379 * to verify whether we're attached to the default hierarchy on each mount 5380 * attempt. 5381 */ 5382 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css) 5383 { 5384 /* 5385 * use_hierarchy is forced on the default hierarchy. cgroup core 5386 * guarantees that @root doesn't have any children, so turning it 5387 * on for the root memcg is enough. 5388 */ 5389 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5390 root_mem_cgroup->use_hierarchy = true; 5391 else 5392 root_mem_cgroup->use_hierarchy = false; 5393 } 5394 5395 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value) 5396 { 5397 if (value == PAGE_COUNTER_MAX) 5398 seq_puts(m, "max\n"); 5399 else 5400 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE); 5401 5402 return 0; 5403 } 5404 5405 static u64 memory_current_read(struct cgroup_subsys_state *css, 5406 struct cftype *cft) 5407 { 5408 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5409 5410 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; 5411 } 5412 5413 static int memory_min_show(struct seq_file *m, void *v) 5414 { 5415 return seq_puts_memcg_tunable(m, 5416 READ_ONCE(mem_cgroup_from_seq(m)->memory.min)); 5417 } 5418 5419 static ssize_t memory_min_write(struct kernfs_open_file *of, 5420 char *buf, size_t nbytes, loff_t off) 5421 { 5422 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5423 unsigned long min; 5424 int err; 5425 5426 buf = strstrip(buf); 5427 err = page_counter_memparse(buf, "max", &min); 5428 if (err) 5429 return err; 5430 5431 page_counter_set_min(&memcg->memory, min); 5432 5433 return nbytes; 5434 } 5435 5436 static int memory_low_show(struct seq_file *m, void *v) 5437 { 5438 return seq_puts_memcg_tunable(m, 5439 READ_ONCE(mem_cgroup_from_seq(m)->memory.low)); 5440 } 5441 5442 static ssize_t memory_low_write(struct kernfs_open_file *of, 5443 char *buf, size_t nbytes, loff_t off) 5444 { 5445 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5446 unsigned long low; 5447 int err; 5448 5449 buf = strstrip(buf); 5450 err = page_counter_memparse(buf, "max", &low); 5451 if (err) 5452 return err; 5453 5454 page_counter_set_low(&memcg->memory, low); 5455 5456 return nbytes; 5457 } 5458 5459 static int memory_high_show(struct seq_file *m, void *v) 5460 { 5461 return seq_puts_memcg_tunable(m, READ_ONCE(mem_cgroup_from_seq(m)->high)); 5462 } 5463 5464 static ssize_t memory_high_write(struct kernfs_open_file *of, 5465 char *buf, size_t nbytes, loff_t off) 5466 { 5467 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5468 unsigned long nr_pages; 5469 unsigned long high; 5470 int err; 5471 5472 buf = strstrip(buf); 5473 err = page_counter_memparse(buf, "max", &high); 5474 if (err) 5475 return err; 5476 5477 memcg->high = high; 5478 5479 nr_pages = page_counter_read(&memcg->memory); 5480 if (nr_pages > high) 5481 try_to_free_mem_cgroup_pages(memcg, nr_pages - high, 5482 GFP_KERNEL, true); 5483 5484 memcg_wb_domain_size_changed(memcg); 5485 return nbytes; 5486 } 5487 5488 static int memory_max_show(struct seq_file *m, void *v) 5489 { 5490 return seq_puts_memcg_tunable(m, 5491 READ_ONCE(mem_cgroup_from_seq(m)->memory.max)); 5492 } 5493 5494 static ssize_t memory_max_write(struct kernfs_open_file *of, 5495 char *buf, size_t nbytes, loff_t off) 5496 { 5497 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5498 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES; 5499 bool drained = false; 5500 unsigned long max; 5501 int err; 5502 5503 buf = strstrip(buf); 5504 err = page_counter_memparse(buf, "max", &max); 5505 if (err) 5506 return err; 5507 5508 xchg(&memcg->memory.max, max); 5509 5510 for (;;) { 5511 unsigned long nr_pages = page_counter_read(&memcg->memory); 5512 5513 if (nr_pages <= max) 5514 break; 5515 5516 if (signal_pending(current)) { 5517 err = -EINTR; 5518 break; 5519 } 5520 5521 if (!drained) { 5522 drain_all_stock(memcg); 5523 drained = true; 5524 continue; 5525 } 5526 5527 if (nr_reclaims) { 5528 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max, 5529 GFP_KERNEL, true)) 5530 nr_reclaims--; 5531 continue; 5532 } 5533 5534 memcg_memory_event(memcg, MEMCG_OOM); 5535 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0)) 5536 break; 5537 } 5538 5539 memcg_wb_domain_size_changed(memcg); 5540 return nbytes; 5541 } 5542 5543 static int memory_events_show(struct seq_file *m, void *v) 5544 { 5545 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 5546 5547 seq_printf(m, "low %lu\n", 5548 atomic_long_read(&memcg->memory_events[MEMCG_LOW])); 5549 seq_printf(m, "high %lu\n", 5550 atomic_long_read(&memcg->memory_events[MEMCG_HIGH])); 5551 seq_printf(m, "max %lu\n", 5552 atomic_long_read(&memcg->memory_events[MEMCG_MAX])); 5553 seq_printf(m, "oom %lu\n", 5554 atomic_long_read(&memcg->memory_events[MEMCG_OOM])); 5555 seq_printf(m, "oom_kill %lu\n", 5556 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL])); 5557 5558 return 0; 5559 } 5560 5561 static int memory_stat_show(struct seq_file *m, void *v) 5562 { 5563 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 5564 struct accumulated_stats acc; 5565 int i; 5566 5567 /* 5568 * Provide statistics on the state of the memory subsystem as 5569 * well as cumulative event counters that show past behavior. 5570 * 5571 * This list is ordered following a combination of these gradients: 5572 * 1) generic big picture -> specifics and details 5573 * 2) reflecting userspace activity -> reflecting kernel heuristics 5574 * 5575 * Current memory state: 5576 */ 5577 5578 memset(&acc, 0, sizeof(acc)); 5579 acc.stats_size = MEMCG_NR_STAT; 5580 acc.events_size = NR_VM_EVENT_ITEMS; 5581 accumulate_memcg_tree(memcg, &acc); 5582 5583 seq_printf(m, "anon %llu\n", 5584 (u64)acc.stat[MEMCG_RSS] * PAGE_SIZE); 5585 seq_printf(m, "file %llu\n", 5586 (u64)acc.stat[MEMCG_CACHE] * PAGE_SIZE); 5587 seq_printf(m, "kernel_stack %llu\n", 5588 (u64)acc.stat[MEMCG_KERNEL_STACK_KB] * 1024); 5589 seq_printf(m, "slab %llu\n", 5590 (u64)(acc.stat[NR_SLAB_RECLAIMABLE] + 5591 acc.stat[NR_SLAB_UNRECLAIMABLE]) * PAGE_SIZE); 5592 seq_printf(m, "sock %llu\n", 5593 (u64)acc.stat[MEMCG_SOCK] * PAGE_SIZE); 5594 5595 seq_printf(m, "shmem %llu\n", 5596 (u64)acc.stat[NR_SHMEM] * PAGE_SIZE); 5597 seq_printf(m, "file_mapped %llu\n", 5598 (u64)acc.stat[NR_FILE_MAPPED] * PAGE_SIZE); 5599 seq_printf(m, "file_dirty %llu\n", 5600 (u64)acc.stat[NR_FILE_DIRTY] * PAGE_SIZE); 5601 seq_printf(m, "file_writeback %llu\n", 5602 (u64)acc.stat[NR_WRITEBACK] * PAGE_SIZE); 5603 5604 /* 5605 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter 5606 * with the NR_ANON_THP vm counter, but right now it's a pain in the 5607 * arse because it requires migrating the work out of rmap to a place 5608 * where the page->mem_cgroup is set up and stable. 5609 */ 5610 seq_printf(m, "anon_thp %llu\n", 5611 (u64)acc.stat[MEMCG_RSS_HUGE] * PAGE_SIZE); 5612 5613 for (i = 0; i < NR_LRU_LISTS; i++) 5614 seq_printf(m, "%s %llu\n", mem_cgroup_lru_names[i], 5615 (u64)acc.lru_pages[i] * PAGE_SIZE); 5616 5617 seq_printf(m, "slab_reclaimable %llu\n", 5618 (u64)acc.stat[NR_SLAB_RECLAIMABLE] * PAGE_SIZE); 5619 seq_printf(m, "slab_unreclaimable %llu\n", 5620 (u64)acc.stat[NR_SLAB_UNRECLAIMABLE] * PAGE_SIZE); 5621 5622 /* Accumulated memory events */ 5623 5624 seq_printf(m, "pgfault %lu\n", acc.events[PGFAULT]); 5625 seq_printf(m, "pgmajfault %lu\n", acc.events[PGMAJFAULT]); 5626 5627 seq_printf(m, "workingset_refault %lu\n", 5628 acc.stat[WORKINGSET_REFAULT]); 5629 seq_printf(m, "workingset_activate %lu\n", 5630 acc.stat[WORKINGSET_ACTIVATE]); 5631 seq_printf(m, "workingset_nodereclaim %lu\n", 5632 acc.stat[WORKINGSET_NODERECLAIM]); 5633 5634 seq_printf(m, "pgrefill %lu\n", acc.events[PGREFILL]); 5635 seq_printf(m, "pgscan %lu\n", acc.events[PGSCAN_KSWAPD] + 5636 acc.events[PGSCAN_DIRECT]); 5637 seq_printf(m, "pgsteal %lu\n", acc.events[PGSTEAL_KSWAPD] + 5638 acc.events[PGSTEAL_DIRECT]); 5639 seq_printf(m, "pgactivate %lu\n", acc.events[PGACTIVATE]); 5640 seq_printf(m, "pgdeactivate %lu\n", acc.events[PGDEACTIVATE]); 5641 seq_printf(m, "pglazyfree %lu\n", acc.events[PGLAZYFREE]); 5642 seq_printf(m, "pglazyfreed %lu\n", acc.events[PGLAZYFREED]); 5643 5644 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5645 seq_printf(m, "thp_fault_alloc %lu\n", acc.events[THP_FAULT_ALLOC]); 5646 seq_printf(m, "thp_collapse_alloc %lu\n", 5647 acc.events[THP_COLLAPSE_ALLOC]); 5648 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 5649 5650 return 0; 5651 } 5652 5653 static int memory_oom_group_show(struct seq_file *m, void *v) 5654 { 5655 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 5656 5657 seq_printf(m, "%d\n", memcg->oom_group); 5658 5659 return 0; 5660 } 5661 5662 static ssize_t memory_oom_group_write(struct kernfs_open_file *of, 5663 char *buf, size_t nbytes, loff_t off) 5664 { 5665 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5666 int ret, oom_group; 5667 5668 buf = strstrip(buf); 5669 if (!buf) 5670 return -EINVAL; 5671 5672 ret = kstrtoint(buf, 0, &oom_group); 5673 if (ret) 5674 return ret; 5675 5676 if (oom_group != 0 && oom_group != 1) 5677 return -EINVAL; 5678 5679 memcg->oom_group = oom_group; 5680 5681 return nbytes; 5682 } 5683 5684 static struct cftype memory_files[] = { 5685 { 5686 .name = "current", 5687 .flags = CFTYPE_NOT_ON_ROOT, 5688 .read_u64 = memory_current_read, 5689 }, 5690 { 5691 .name = "min", 5692 .flags = CFTYPE_NOT_ON_ROOT, 5693 .seq_show = memory_min_show, 5694 .write = memory_min_write, 5695 }, 5696 { 5697 .name = "low", 5698 .flags = CFTYPE_NOT_ON_ROOT, 5699 .seq_show = memory_low_show, 5700 .write = memory_low_write, 5701 }, 5702 { 5703 .name = "high", 5704 .flags = CFTYPE_NOT_ON_ROOT, 5705 .seq_show = memory_high_show, 5706 .write = memory_high_write, 5707 }, 5708 { 5709 .name = "max", 5710 .flags = CFTYPE_NOT_ON_ROOT, 5711 .seq_show = memory_max_show, 5712 .write = memory_max_write, 5713 }, 5714 { 5715 .name = "events", 5716 .flags = CFTYPE_NOT_ON_ROOT, 5717 .file_offset = offsetof(struct mem_cgroup, events_file), 5718 .seq_show = memory_events_show, 5719 }, 5720 { 5721 .name = "stat", 5722 .flags = CFTYPE_NOT_ON_ROOT, 5723 .seq_show = memory_stat_show, 5724 }, 5725 { 5726 .name = "oom.group", 5727 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE, 5728 .seq_show = memory_oom_group_show, 5729 .write = memory_oom_group_write, 5730 }, 5731 { } /* terminate */ 5732 }; 5733 5734 struct cgroup_subsys memory_cgrp_subsys = { 5735 .css_alloc = mem_cgroup_css_alloc, 5736 .css_online = mem_cgroup_css_online, 5737 .css_offline = mem_cgroup_css_offline, 5738 .css_released = mem_cgroup_css_released, 5739 .css_free = mem_cgroup_css_free, 5740 .css_reset = mem_cgroup_css_reset, 5741 .can_attach = mem_cgroup_can_attach, 5742 .cancel_attach = mem_cgroup_cancel_attach, 5743 .post_attach = mem_cgroup_move_task, 5744 .bind = mem_cgroup_bind, 5745 .dfl_cftypes = memory_files, 5746 .legacy_cftypes = mem_cgroup_legacy_files, 5747 .early_init = 0, 5748 }; 5749 5750 /** 5751 * mem_cgroup_protected - check if memory consumption is in the normal range 5752 * @root: the top ancestor of the sub-tree being checked 5753 * @memcg: the memory cgroup to check 5754 * 5755 * WARNING: This function is not stateless! It can only be used as part 5756 * of a top-down tree iteration, not for isolated queries. 5757 * 5758 * Returns one of the following: 5759 * MEMCG_PROT_NONE: cgroup memory is not protected 5760 * MEMCG_PROT_LOW: cgroup memory is protected as long there is 5761 * an unprotected supply of reclaimable memory from other cgroups. 5762 * MEMCG_PROT_MIN: cgroup memory is protected 5763 * 5764 * @root is exclusive; it is never protected when looked at directly 5765 * 5766 * To provide a proper hierarchical behavior, effective memory.min/low values 5767 * are used. Below is the description of how effective memory.low is calculated. 5768 * Effective memory.min values is calculated in the same way. 5769 * 5770 * Effective memory.low is always equal or less than the original memory.low. 5771 * If there is no memory.low overcommittment (which is always true for 5772 * top-level memory cgroups), these two values are equal. 5773 * Otherwise, it's a part of parent's effective memory.low, 5774 * calculated as a cgroup's memory.low usage divided by sum of sibling's 5775 * memory.low usages, where memory.low usage is the size of actually 5776 * protected memory. 5777 * 5778 * low_usage 5779 * elow = min( memory.low, parent->elow * ------------------ ), 5780 * siblings_low_usage 5781 * 5782 * | memory.current, if memory.current < memory.low 5783 * low_usage = | 5784 * | 0, otherwise. 5785 * 5786 * 5787 * Such definition of the effective memory.low provides the expected 5788 * hierarchical behavior: parent's memory.low value is limiting 5789 * children, unprotected memory is reclaimed first and cgroups, 5790 * which are not using their guarantee do not affect actual memory 5791 * distribution. 5792 * 5793 * For example, if there are memcgs A, A/B, A/C, A/D and A/E: 5794 * 5795 * A A/memory.low = 2G, A/memory.current = 6G 5796 * //\\ 5797 * BC DE B/memory.low = 3G B/memory.current = 2G 5798 * C/memory.low = 1G C/memory.current = 2G 5799 * D/memory.low = 0 D/memory.current = 2G 5800 * E/memory.low = 10G E/memory.current = 0 5801 * 5802 * and the memory pressure is applied, the following memory distribution 5803 * is expected (approximately): 5804 * 5805 * A/memory.current = 2G 5806 * 5807 * B/memory.current = 1.3G 5808 * C/memory.current = 0.6G 5809 * D/memory.current = 0 5810 * E/memory.current = 0 5811 * 5812 * These calculations require constant tracking of the actual low usages 5813 * (see propagate_protected_usage()), as well as recursive calculation of 5814 * effective memory.low values. But as we do call mem_cgroup_protected() 5815 * path for each memory cgroup top-down from the reclaim, 5816 * it's possible to optimize this part, and save calculated elow 5817 * for next usage. This part is intentionally racy, but it's ok, 5818 * as memory.low is a best-effort mechanism. 5819 */ 5820 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root, 5821 struct mem_cgroup *memcg) 5822 { 5823 struct mem_cgroup *parent; 5824 unsigned long emin, parent_emin; 5825 unsigned long elow, parent_elow; 5826 unsigned long usage; 5827 5828 if (mem_cgroup_disabled()) 5829 return MEMCG_PROT_NONE; 5830 5831 if (!root) 5832 root = root_mem_cgroup; 5833 if (memcg == root) 5834 return MEMCG_PROT_NONE; 5835 5836 usage = page_counter_read(&memcg->memory); 5837 if (!usage) 5838 return MEMCG_PROT_NONE; 5839 5840 emin = memcg->memory.min; 5841 elow = memcg->memory.low; 5842 5843 parent = parent_mem_cgroup(memcg); 5844 /* No parent means a non-hierarchical mode on v1 memcg */ 5845 if (!parent) 5846 return MEMCG_PROT_NONE; 5847 5848 if (parent == root) 5849 goto exit; 5850 5851 parent_emin = READ_ONCE(parent->memory.emin); 5852 emin = min(emin, parent_emin); 5853 if (emin && parent_emin) { 5854 unsigned long min_usage, siblings_min_usage; 5855 5856 min_usage = min(usage, memcg->memory.min); 5857 siblings_min_usage = atomic_long_read( 5858 &parent->memory.children_min_usage); 5859 5860 if (min_usage && siblings_min_usage) 5861 emin = min(emin, parent_emin * min_usage / 5862 siblings_min_usage); 5863 } 5864 5865 parent_elow = READ_ONCE(parent->memory.elow); 5866 elow = min(elow, parent_elow); 5867 if (elow && parent_elow) { 5868 unsigned long low_usage, siblings_low_usage; 5869 5870 low_usage = min(usage, memcg->memory.low); 5871 siblings_low_usage = atomic_long_read( 5872 &parent->memory.children_low_usage); 5873 5874 if (low_usage && siblings_low_usage) 5875 elow = min(elow, parent_elow * low_usage / 5876 siblings_low_usage); 5877 } 5878 5879 exit: 5880 memcg->memory.emin = emin; 5881 memcg->memory.elow = elow; 5882 5883 if (usage <= emin) 5884 return MEMCG_PROT_MIN; 5885 else if (usage <= elow) 5886 return MEMCG_PROT_LOW; 5887 else 5888 return MEMCG_PROT_NONE; 5889 } 5890 5891 /** 5892 * mem_cgroup_try_charge - try charging a page 5893 * @page: page to charge 5894 * @mm: mm context of the victim 5895 * @gfp_mask: reclaim mode 5896 * @memcgp: charged memcg return 5897 * @compound: charge the page as compound or small page 5898 * 5899 * Try to charge @page to the memcg that @mm belongs to, reclaiming 5900 * pages according to @gfp_mask if necessary. 5901 * 5902 * Returns 0 on success, with *@memcgp pointing to the charged memcg. 5903 * Otherwise, an error code is returned. 5904 * 5905 * After page->mapping has been set up, the caller must finalize the 5906 * charge with mem_cgroup_commit_charge(). Or abort the transaction 5907 * with mem_cgroup_cancel_charge() in case page instantiation fails. 5908 */ 5909 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, 5910 gfp_t gfp_mask, struct mem_cgroup **memcgp, 5911 bool compound) 5912 { 5913 struct mem_cgroup *memcg = NULL; 5914 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 5915 int ret = 0; 5916 5917 if (mem_cgroup_disabled()) 5918 goto out; 5919 5920 if (PageSwapCache(page)) { 5921 /* 5922 * Every swap fault against a single page tries to charge the 5923 * page, bail as early as possible. shmem_unuse() encounters 5924 * already charged pages, too. The USED bit is protected by 5925 * the page lock, which serializes swap cache removal, which 5926 * in turn serializes uncharging. 5927 */ 5928 VM_BUG_ON_PAGE(!PageLocked(page), page); 5929 if (compound_head(page)->mem_cgroup) 5930 goto out; 5931 5932 if (do_swap_account) { 5933 swp_entry_t ent = { .val = page_private(page), }; 5934 unsigned short id = lookup_swap_cgroup_id(ent); 5935 5936 rcu_read_lock(); 5937 memcg = mem_cgroup_from_id(id); 5938 if (memcg && !css_tryget_online(&memcg->css)) 5939 memcg = NULL; 5940 rcu_read_unlock(); 5941 } 5942 } 5943 5944 if (!memcg) 5945 memcg = get_mem_cgroup_from_mm(mm); 5946 5947 ret = try_charge(memcg, gfp_mask, nr_pages); 5948 5949 css_put(&memcg->css); 5950 out: 5951 *memcgp = memcg; 5952 return ret; 5953 } 5954 5955 int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm, 5956 gfp_t gfp_mask, struct mem_cgroup **memcgp, 5957 bool compound) 5958 { 5959 struct mem_cgroup *memcg; 5960 int ret; 5961 5962 ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound); 5963 memcg = *memcgp; 5964 mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask); 5965 return ret; 5966 } 5967 5968 /** 5969 * mem_cgroup_commit_charge - commit a page charge 5970 * @page: page to charge 5971 * @memcg: memcg to charge the page to 5972 * @lrucare: page might be on LRU already 5973 * @compound: charge the page as compound or small page 5974 * 5975 * Finalize a charge transaction started by mem_cgroup_try_charge(), 5976 * after page->mapping has been set up. This must happen atomically 5977 * as part of the page instantiation, i.e. under the page table lock 5978 * for anonymous pages, under the page lock for page and swap cache. 5979 * 5980 * In addition, the page must not be on the LRU during the commit, to 5981 * prevent racing with task migration. If it might be, use @lrucare. 5982 * 5983 * Use mem_cgroup_cancel_charge() to cancel the transaction instead. 5984 */ 5985 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg, 5986 bool lrucare, bool compound) 5987 { 5988 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 5989 5990 VM_BUG_ON_PAGE(!page->mapping, page); 5991 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page); 5992 5993 if (mem_cgroup_disabled()) 5994 return; 5995 /* 5996 * Swap faults will attempt to charge the same page multiple 5997 * times. But reuse_swap_page() might have removed the page 5998 * from swapcache already, so we can't check PageSwapCache(). 5999 */ 6000 if (!memcg) 6001 return; 6002 6003 commit_charge(page, memcg, lrucare); 6004 6005 local_irq_disable(); 6006 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages); 6007 memcg_check_events(memcg, page); 6008 local_irq_enable(); 6009 6010 if (do_memsw_account() && PageSwapCache(page)) { 6011 swp_entry_t entry = { .val = page_private(page) }; 6012 /* 6013 * The swap entry might not get freed for a long time, 6014 * let's not wait for it. The page already received a 6015 * memory+swap charge, drop the swap entry duplicate. 6016 */ 6017 mem_cgroup_uncharge_swap(entry, nr_pages); 6018 } 6019 } 6020 6021 /** 6022 * mem_cgroup_cancel_charge - cancel a page charge 6023 * @page: page to charge 6024 * @memcg: memcg to charge the page to 6025 * @compound: charge the page as compound or small page 6026 * 6027 * Cancel a charge transaction started by mem_cgroup_try_charge(). 6028 */ 6029 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg, 6030 bool compound) 6031 { 6032 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 6033 6034 if (mem_cgroup_disabled()) 6035 return; 6036 /* 6037 * Swap faults will attempt to charge the same page multiple 6038 * times. But reuse_swap_page() might have removed the page 6039 * from swapcache already, so we can't check PageSwapCache(). 6040 */ 6041 if (!memcg) 6042 return; 6043 6044 cancel_charge(memcg, nr_pages); 6045 } 6046 6047 struct uncharge_gather { 6048 struct mem_cgroup *memcg; 6049 unsigned long pgpgout; 6050 unsigned long nr_anon; 6051 unsigned long nr_file; 6052 unsigned long nr_kmem; 6053 unsigned long nr_huge; 6054 unsigned long nr_shmem; 6055 struct page *dummy_page; 6056 }; 6057 6058 static inline void uncharge_gather_clear(struct uncharge_gather *ug) 6059 { 6060 memset(ug, 0, sizeof(*ug)); 6061 } 6062 6063 static void uncharge_batch(const struct uncharge_gather *ug) 6064 { 6065 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem; 6066 unsigned long flags; 6067 6068 if (!mem_cgroup_is_root(ug->memcg)) { 6069 page_counter_uncharge(&ug->memcg->memory, nr_pages); 6070 if (do_memsw_account()) 6071 page_counter_uncharge(&ug->memcg->memsw, nr_pages); 6072 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem) 6073 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem); 6074 memcg_oom_recover(ug->memcg); 6075 } 6076 6077 local_irq_save(flags); 6078 __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon); 6079 __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file); 6080 __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge); 6081 __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem); 6082 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout); 6083 __this_cpu_add(ug->memcg->stat_cpu->nr_page_events, nr_pages); 6084 memcg_check_events(ug->memcg, ug->dummy_page); 6085 local_irq_restore(flags); 6086 6087 if (!mem_cgroup_is_root(ug->memcg)) 6088 css_put_many(&ug->memcg->css, nr_pages); 6089 } 6090 6091 static void uncharge_page(struct page *page, struct uncharge_gather *ug) 6092 { 6093 VM_BUG_ON_PAGE(PageLRU(page), page); 6094 VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) && 6095 !PageHWPoison(page) , page); 6096 6097 if (!page->mem_cgroup) 6098 return; 6099 6100 /* 6101 * Nobody should be changing or seriously looking at 6102 * page->mem_cgroup at this point, we have fully 6103 * exclusive access to the page. 6104 */ 6105 6106 if (ug->memcg != page->mem_cgroup) { 6107 if (ug->memcg) { 6108 uncharge_batch(ug); 6109 uncharge_gather_clear(ug); 6110 } 6111 ug->memcg = page->mem_cgroup; 6112 } 6113 6114 if (!PageKmemcg(page)) { 6115 unsigned int nr_pages = 1; 6116 6117 if (PageTransHuge(page)) { 6118 nr_pages <<= compound_order(page); 6119 ug->nr_huge += nr_pages; 6120 } 6121 if (PageAnon(page)) 6122 ug->nr_anon += nr_pages; 6123 else { 6124 ug->nr_file += nr_pages; 6125 if (PageSwapBacked(page)) 6126 ug->nr_shmem += nr_pages; 6127 } 6128 ug->pgpgout++; 6129 } else { 6130 ug->nr_kmem += 1 << compound_order(page); 6131 __ClearPageKmemcg(page); 6132 } 6133 6134 ug->dummy_page = page; 6135 page->mem_cgroup = NULL; 6136 } 6137 6138 static void uncharge_list(struct list_head *page_list) 6139 { 6140 struct uncharge_gather ug; 6141 struct list_head *next; 6142 6143 uncharge_gather_clear(&ug); 6144 6145 /* 6146 * Note that the list can be a single page->lru; hence the 6147 * do-while loop instead of a simple list_for_each_entry(). 6148 */ 6149 next = page_list->next; 6150 do { 6151 struct page *page; 6152 6153 page = list_entry(next, struct page, lru); 6154 next = page->lru.next; 6155 6156 uncharge_page(page, &ug); 6157 } while (next != page_list); 6158 6159 if (ug.memcg) 6160 uncharge_batch(&ug); 6161 } 6162 6163 /** 6164 * mem_cgroup_uncharge - uncharge a page 6165 * @page: page to uncharge 6166 * 6167 * Uncharge a page previously charged with mem_cgroup_try_charge() and 6168 * mem_cgroup_commit_charge(). 6169 */ 6170 void mem_cgroup_uncharge(struct page *page) 6171 { 6172 struct uncharge_gather ug; 6173 6174 if (mem_cgroup_disabled()) 6175 return; 6176 6177 /* Don't touch page->lru of any random page, pre-check: */ 6178 if (!page->mem_cgroup) 6179 return; 6180 6181 uncharge_gather_clear(&ug); 6182 uncharge_page(page, &ug); 6183 uncharge_batch(&ug); 6184 } 6185 6186 /** 6187 * mem_cgroup_uncharge_list - uncharge a list of page 6188 * @page_list: list of pages to uncharge 6189 * 6190 * Uncharge a list of pages previously charged with 6191 * mem_cgroup_try_charge() and mem_cgroup_commit_charge(). 6192 */ 6193 void mem_cgroup_uncharge_list(struct list_head *page_list) 6194 { 6195 if (mem_cgroup_disabled()) 6196 return; 6197 6198 if (!list_empty(page_list)) 6199 uncharge_list(page_list); 6200 } 6201 6202 /** 6203 * mem_cgroup_migrate - charge a page's replacement 6204 * @oldpage: currently circulating page 6205 * @newpage: replacement page 6206 * 6207 * Charge @newpage as a replacement page for @oldpage. @oldpage will 6208 * be uncharged upon free. 6209 * 6210 * Both pages must be locked, @newpage->mapping must be set up. 6211 */ 6212 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage) 6213 { 6214 struct mem_cgroup *memcg; 6215 unsigned int nr_pages; 6216 bool compound; 6217 unsigned long flags; 6218 6219 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage); 6220 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 6221 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage); 6222 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage), 6223 newpage); 6224 6225 if (mem_cgroup_disabled()) 6226 return; 6227 6228 /* Page cache replacement: new page already charged? */ 6229 if (newpage->mem_cgroup) 6230 return; 6231 6232 /* Swapcache readahead pages can get replaced before being charged */ 6233 memcg = oldpage->mem_cgroup; 6234 if (!memcg) 6235 return; 6236 6237 /* Force-charge the new page. The old one will be freed soon */ 6238 compound = PageTransHuge(newpage); 6239 nr_pages = compound ? hpage_nr_pages(newpage) : 1; 6240 6241 page_counter_charge(&memcg->memory, nr_pages); 6242 if (do_memsw_account()) 6243 page_counter_charge(&memcg->memsw, nr_pages); 6244 css_get_many(&memcg->css, nr_pages); 6245 6246 commit_charge(newpage, memcg, false); 6247 6248 local_irq_save(flags); 6249 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages); 6250 memcg_check_events(memcg, newpage); 6251 local_irq_restore(flags); 6252 } 6253 6254 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); 6255 EXPORT_SYMBOL(memcg_sockets_enabled_key); 6256 6257 void mem_cgroup_sk_alloc(struct sock *sk) 6258 { 6259 struct mem_cgroup *memcg; 6260 6261 if (!mem_cgroup_sockets_enabled) 6262 return; 6263 6264 /* 6265 * Socket cloning can throw us here with sk_memcg already 6266 * filled. It won't however, necessarily happen from 6267 * process context. So the test for root memcg given 6268 * the current task's memcg won't help us in this case. 6269 * 6270 * Respecting the original socket's memcg is a better 6271 * decision in this case. 6272 */ 6273 if (sk->sk_memcg) { 6274 css_get(&sk->sk_memcg->css); 6275 return; 6276 } 6277 6278 rcu_read_lock(); 6279 memcg = mem_cgroup_from_task(current); 6280 if (memcg == root_mem_cgroup) 6281 goto out; 6282 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active) 6283 goto out; 6284 if (css_tryget_online(&memcg->css)) 6285 sk->sk_memcg = memcg; 6286 out: 6287 rcu_read_unlock(); 6288 } 6289 6290 void mem_cgroup_sk_free(struct sock *sk) 6291 { 6292 if (sk->sk_memcg) 6293 css_put(&sk->sk_memcg->css); 6294 } 6295 6296 /** 6297 * mem_cgroup_charge_skmem - charge socket memory 6298 * @memcg: memcg to charge 6299 * @nr_pages: number of pages to charge 6300 * 6301 * Charges @nr_pages to @memcg. Returns %true if the charge fit within 6302 * @memcg's configured limit, %false if the charge had to be forced. 6303 */ 6304 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 6305 { 6306 gfp_t gfp_mask = GFP_KERNEL; 6307 6308 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 6309 struct page_counter *fail; 6310 6311 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) { 6312 memcg->tcpmem_pressure = 0; 6313 return true; 6314 } 6315 page_counter_charge(&memcg->tcpmem, nr_pages); 6316 memcg->tcpmem_pressure = 1; 6317 return false; 6318 } 6319 6320 /* Don't block in the packet receive path */ 6321 if (in_softirq()) 6322 gfp_mask = GFP_NOWAIT; 6323 6324 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages); 6325 6326 if (try_charge(memcg, gfp_mask, nr_pages) == 0) 6327 return true; 6328 6329 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages); 6330 return false; 6331 } 6332 6333 /** 6334 * mem_cgroup_uncharge_skmem - uncharge socket memory 6335 * @memcg: memcg to uncharge 6336 * @nr_pages: number of pages to uncharge 6337 */ 6338 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 6339 { 6340 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 6341 page_counter_uncharge(&memcg->tcpmem, nr_pages); 6342 return; 6343 } 6344 6345 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages); 6346 6347 refill_stock(memcg, nr_pages); 6348 } 6349 6350 static int __init cgroup_memory(char *s) 6351 { 6352 char *token; 6353 6354 while ((token = strsep(&s, ",")) != NULL) { 6355 if (!*token) 6356 continue; 6357 if (!strcmp(token, "nosocket")) 6358 cgroup_memory_nosocket = true; 6359 if (!strcmp(token, "nokmem")) 6360 cgroup_memory_nokmem = true; 6361 } 6362 return 0; 6363 } 6364 __setup("cgroup.memory=", cgroup_memory); 6365 6366 /* 6367 * subsys_initcall() for memory controller. 6368 * 6369 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this 6370 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but 6371 * basically everything that doesn't depend on a specific mem_cgroup structure 6372 * should be initialized from here. 6373 */ 6374 static int __init mem_cgroup_init(void) 6375 { 6376 int cpu, node; 6377 6378 #ifdef CONFIG_MEMCG_KMEM 6379 /* 6380 * Kmem cache creation is mostly done with the slab_mutex held, 6381 * so use a workqueue with limited concurrency to avoid stalling 6382 * all worker threads in case lots of cgroups are created and 6383 * destroyed simultaneously. 6384 */ 6385 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1); 6386 BUG_ON(!memcg_kmem_cache_wq); 6387 #endif 6388 6389 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL, 6390 memcg_hotplug_cpu_dead); 6391 6392 for_each_possible_cpu(cpu) 6393 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, 6394 drain_local_stock); 6395 6396 for_each_node(node) { 6397 struct mem_cgroup_tree_per_node *rtpn; 6398 6399 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, 6400 node_online(node) ? node : NUMA_NO_NODE); 6401 6402 rtpn->rb_root = RB_ROOT; 6403 rtpn->rb_rightmost = NULL; 6404 spin_lock_init(&rtpn->lock); 6405 soft_limit_tree.rb_tree_per_node[node] = rtpn; 6406 } 6407 6408 return 0; 6409 } 6410 subsys_initcall(mem_cgroup_init); 6411 6412 #ifdef CONFIG_MEMCG_SWAP 6413 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg) 6414 { 6415 while (!refcount_inc_not_zero(&memcg->id.ref)) { 6416 /* 6417 * The root cgroup cannot be destroyed, so it's refcount must 6418 * always be >= 1. 6419 */ 6420 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) { 6421 VM_BUG_ON(1); 6422 break; 6423 } 6424 memcg = parent_mem_cgroup(memcg); 6425 if (!memcg) 6426 memcg = root_mem_cgroup; 6427 } 6428 return memcg; 6429 } 6430 6431 /** 6432 * mem_cgroup_swapout - transfer a memsw charge to swap 6433 * @page: page whose memsw charge to transfer 6434 * @entry: swap entry to move the charge to 6435 * 6436 * Transfer the memsw charge of @page to @entry. 6437 */ 6438 void mem_cgroup_swapout(struct page *page, swp_entry_t entry) 6439 { 6440 struct mem_cgroup *memcg, *swap_memcg; 6441 unsigned int nr_entries; 6442 unsigned short oldid; 6443 6444 VM_BUG_ON_PAGE(PageLRU(page), page); 6445 VM_BUG_ON_PAGE(page_count(page), page); 6446 6447 if (!do_memsw_account()) 6448 return; 6449 6450 memcg = page->mem_cgroup; 6451 6452 /* Readahead page, never charged */ 6453 if (!memcg) 6454 return; 6455 6456 /* 6457 * In case the memcg owning these pages has been offlined and doesn't 6458 * have an ID allocated to it anymore, charge the closest online 6459 * ancestor for the swap instead and transfer the memory+swap charge. 6460 */ 6461 swap_memcg = mem_cgroup_id_get_online(memcg); 6462 nr_entries = hpage_nr_pages(page); 6463 /* Get references for the tail pages, too */ 6464 if (nr_entries > 1) 6465 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1); 6466 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg), 6467 nr_entries); 6468 VM_BUG_ON_PAGE(oldid, page); 6469 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries); 6470 6471 page->mem_cgroup = NULL; 6472 6473 if (!mem_cgroup_is_root(memcg)) 6474 page_counter_uncharge(&memcg->memory, nr_entries); 6475 6476 if (memcg != swap_memcg) { 6477 if (!mem_cgroup_is_root(swap_memcg)) 6478 page_counter_charge(&swap_memcg->memsw, nr_entries); 6479 page_counter_uncharge(&memcg->memsw, nr_entries); 6480 } 6481 6482 /* 6483 * Interrupts should be disabled here because the caller holds the 6484 * i_pages lock which is taken with interrupts-off. It is 6485 * important here to have the interrupts disabled because it is the 6486 * only synchronisation we have for updating the per-CPU variables. 6487 */ 6488 VM_BUG_ON(!irqs_disabled()); 6489 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page), 6490 -nr_entries); 6491 memcg_check_events(memcg, page); 6492 6493 if (!mem_cgroup_is_root(memcg)) 6494 css_put_many(&memcg->css, nr_entries); 6495 } 6496 6497 /** 6498 * mem_cgroup_try_charge_swap - try charging swap space for a page 6499 * @page: page being added to swap 6500 * @entry: swap entry to charge 6501 * 6502 * Try to charge @page's memcg for the swap space at @entry. 6503 * 6504 * Returns 0 on success, -ENOMEM on failure. 6505 */ 6506 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry) 6507 { 6508 unsigned int nr_pages = hpage_nr_pages(page); 6509 struct page_counter *counter; 6510 struct mem_cgroup *memcg; 6511 unsigned short oldid; 6512 6513 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account) 6514 return 0; 6515 6516 memcg = page->mem_cgroup; 6517 6518 /* Readahead page, never charged */ 6519 if (!memcg) 6520 return 0; 6521 6522 if (!entry.val) { 6523 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 6524 return 0; 6525 } 6526 6527 memcg = mem_cgroup_id_get_online(memcg); 6528 6529 if (!mem_cgroup_is_root(memcg) && 6530 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) { 6531 memcg_memory_event(memcg, MEMCG_SWAP_MAX); 6532 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 6533 mem_cgroup_id_put(memcg); 6534 return -ENOMEM; 6535 } 6536 6537 /* Get references for the tail pages, too */ 6538 if (nr_pages > 1) 6539 mem_cgroup_id_get_many(memcg, nr_pages - 1); 6540 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages); 6541 VM_BUG_ON_PAGE(oldid, page); 6542 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages); 6543 6544 return 0; 6545 } 6546 6547 /** 6548 * mem_cgroup_uncharge_swap - uncharge swap space 6549 * @entry: swap entry to uncharge 6550 * @nr_pages: the amount of swap space to uncharge 6551 */ 6552 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages) 6553 { 6554 struct mem_cgroup *memcg; 6555 unsigned short id; 6556 6557 if (!do_swap_account) 6558 return; 6559 6560 id = swap_cgroup_record(entry, 0, nr_pages); 6561 rcu_read_lock(); 6562 memcg = mem_cgroup_from_id(id); 6563 if (memcg) { 6564 if (!mem_cgroup_is_root(memcg)) { 6565 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 6566 page_counter_uncharge(&memcg->swap, nr_pages); 6567 else 6568 page_counter_uncharge(&memcg->memsw, nr_pages); 6569 } 6570 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages); 6571 mem_cgroup_id_put_many(memcg, nr_pages); 6572 } 6573 rcu_read_unlock(); 6574 } 6575 6576 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) 6577 { 6578 long nr_swap_pages = get_nr_swap_pages(); 6579 6580 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 6581 return nr_swap_pages; 6582 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) 6583 nr_swap_pages = min_t(long, nr_swap_pages, 6584 READ_ONCE(memcg->swap.max) - 6585 page_counter_read(&memcg->swap)); 6586 return nr_swap_pages; 6587 } 6588 6589 bool mem_cgroup_swap_full(struct page *page) 6590 { 6591 struct mem_cgroup *memcg; 6592 6593 VM_BUG_ON_PAGE(!PageLocked(page), page); 6594 6595 if (vm_swap_full()) 6596 return true; 6597 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 6598 return false; 6599 6600 memcg = page->mem_cgroup; 6601 if (!memcg) 6602 return false; 6603 6604 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) 6605 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max) 6606 return true; 6607 6608 return false; 6609 } 6610 6611 /* for remember boot option*/ 6612 #ifdef CONFIG_MEMCG_SWAP_ENABLED 6613 static int really_do_swap_account __initdata = 1; 6614 #else 6615 static int really_do_swap_account __initdata; 6616 #endif 6617 6618 static int __init enable_swap_account(char *s) 6619 { 6620 if (!strcmp(s, "1")) 6621 really_do_swap_account = 1; 6622 else if (!strcmp(s, "0")) 6623 really_do_swap_account = 0; 6624 return 1; 6625 } 6626 __setup("swapaccount=", enable_swap_account); 6627 6628 static u64 swap_current_read(struct cgroup_subsys_state *css, 6629 struct cftype *cft) 6630 { 6631 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6632 6633 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; 6634 } 6635 6636 static int swap_max_show(struct seq_file *m, void *v) 6637 { 6638 return seq_puts_memcg_tunable(m, 6639 READ_ONCE(mem_cgroup_from_seq(m)->swap.max)); 6640 } 6641 6642 static ssize_t swap_max_write(struct kernfs_open_file *of, 6643 char *buf, size_t nbytes, loff_t off) 6644 { 6645 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6646 unsigned long max; 6647 int err; 6648 6649 buf = strstrip(buf); 6650 err = page_counter_memparse(buf, "max", &max); 6651 if (err) 6652 return err; 6653 6654 xchg(&memcg->swap.max, max); 6655 6656 return nbytes; 6657 } 6658 6659 static int swap_events_show(struct seq_file *m, void *v) 6660 { 6661 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6662 6663 seq_printf(m, "max %lu\n", 6664 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX])); 6665 seq_printf(m, "fail %lu\n", 6666 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL])); 6667 6668 return 0; 6669 } 6670 6671 static struct cftype swap_files[] = { 6672 { 6673 .name = "swap.current", 6674 .flags = CFTYPE_NOT_ON_ROOT, 6675 .read_u64 = swap_current_read, 6676 }, 6677 { 6678 .name = "swap.max", 6679 .flags = CFTYPE_NOT_ON_ROOT, 6680 .seq_show = swap_max_show, 6681 .write = swap_max_write, 6682 }, 6683 { 6684 .name = "swap.events", 6685 .flags = CFTYPE_NOT_ON_ROOT, 6686 .file_offset = offsetof(struct mem_cgroup, swap_events_file), 6687 .seq_show = swap_events_show, 6688 }, 6689 { } /* terminate */ 6690 }; 6691 6692 static struct cftype memsw_cgroup_files[] = { 6693 { 6694 .name = "memsw.usage_in_bytes", 6695 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 6696 .read_u64 = mem_cgroup_read_u64, 6697 }, 6698 { 6699 .name = "memsw.max_usage_in_bytes", 6700 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 6701 .write = mem_cgroup_reset, 6702 .read_u64 = mem_cgroup_read_u64, 6703 }, 6704 { 6705 .name = "memsw.limit_in_bytes", 6706 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 6707 .write = mem_cgroup_write, 6708 .read_u64 = mem_cgroup_read_u64, 6709 }, 6710 { 6711 .name = "memsw.failcnt", 6712 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 6713 .write = mem_cgroup_reset, 6714 .read_u64 = mem_cgroup_read_u64, 6715 }, 6716 { }, /* terminate */ 6717 }; 6718 6719 static int __init mem_cgroup_swap_init(void) 6720 { 6721 if (!mem_cgroup_disabled() && really_do_swap_account) { 6722 do_swap_account = 1; 6723 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, 6724 swap_files)); 6725 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, 6726 memsw_cgroup_files)); 6727 } 6728 return 0; 6729 } 6730 subsys_initcall(mem_cgroup_swap_init); 6731 6732 #endif /* CONFIG_MEMCG_SWAP */ 6733