1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* memcontrol.c - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <xemul@openvz.org> 9 * 10 * Memory thresholds 11 * Copyright (C) 2009 Nokia Corporation 12 * Author: Kirill A. Shutemov 13 * 14 * Kernel Memory Controller 15 * Copyright (C) 2012 Parallels Inc. and Google Inc. 16 * Authors: Glauber Costa and Suleiman Souhlal 17 * 18 * Native page reclaim 19 * Charge lifetime sanitation 20 * Lockless page tracking & accounting 21 * Unified hierarchy configuration model 22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner 23 * 24 * Per memcg lru locking 25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi 26 */ 27 28 #include <linux/page_counter.h> 29 #include <linux/memcontrol.h> 30 #include <linux/cgroup.h> 31 #include <linux/pagewalk.h> 32 #include <linux/sched/mm.h> 33 #include <linux/shmem_fs.h> 34 #include <linux/hugetlb.h> 35 #include <linux/pagemap.h> 36 #include <linux/vm_event_item.h> 37 #include <linux/smp.h> 38 #include <linux/page-flags.h> 39 #include <linux/backing-dev.h> 40 #include <linux/bit_spinlock.h> 41 #include <linux/rcupdate.h> 42 #include <linux/limits.h> 43 #include <linux/export.h> 44 #include <linux/mutex.h> 45 #include <linux/rbtree.h> 46 #include <linux/slab.h> 47 #include <linux/swap.h> 48 #include <linux/swapops.h> 49 #include <linux/spinlock.h> 50 #include <linux/eventfd.h> 51 #include <linux/poll.h> 52 #include <linux/sort.h> 53 #include <linux/fs.h> 54 #include <linux/seq_file.h> 55 #include <linux/vmpressure.h> 56 #include <linux/memremap.h> 57 #include <linux/mm_inline.h> 58 #include <linux/swap_cgroup.h> 59 #include <linux/cpu.h> 60 #include <linux/oom.h> 61 #include <linux/lockdep.h> 62 #include <linux/file.h> 63 #include <linux/resume_user_mode.h> 64 #include <linux/psi.h> 65 #include <linux/seq_buf.h> 66 #include "internal.h" 67 #include <net/sock.h> 68 #include <net/ip.h> 69 #include "slab.h" 70 #include "swap.h" 71 72 #include <linux/uaccess.h> 73 74 #include <trace/events/vmscan.h> 75 76 struct cgroup_subsys memory_cgrp_subsys __read_mostly; 77 EXPORT_SYMBOL(memory_cgrp_subsys); 78 79 struct mem_cgroup *root_mem_cgroup __read_mostly; 80 81 /* Active memory cgroup to use from an interrupt context */ 82 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg); 83 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg); 84 85 /* Socket memory accounting disabled? */ 86 static bool cgroup_memory_nosocket __ro_after_init; 87 88 /* Kernel memory accounting disabled? */ 89 static bool cgroup_memory_nokmem __ro_after_init; 90 91 /* Whether the swap controller is active */ 92 #ifdef CONFIG_MEMCG_SWAP 93 static bool cgroup_memory_noswap __ro_after_init; 94 #else 95 #define cgroup_memory_noswap 1 96 #endif 97 98 #ifdef CONFIG_CGROUP_WRITEBACK 99 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq); 100 #endif 101 102 /* Whether legacy memory+swap accounting is active */ 103 static bool do_memsw_account(void) 104 { 105 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap; 106 } 107 108 #define THRESHOLDS_EVENTS_TARGET 128 109 #define SOFTLIMIT_EVENTS_TARGET 1024 110 111 /* 112 * Cgroups above their limits are maintained in a RB-Tree, independent of 113 * their hierarchy representation 114 */ 115 116 struct mem_cgroup_tree_per_node { 117 struct rb_root rb_root; 118 struct rb_node *rb_rightmost; 119 spinlock_t lock; 120 }; 121 122 struct mem_cgroup_tree { 123 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 124 }; 125 126 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 127 128 /* for OOM */ 129 struct mem_cgroup_eventfd_list { 130 struct list_head list; 131 struct eventfd_ctx *eventfd; 132 }; 133 134 /* 135 * cgroup_event represents events which userspace want to receive. 136 */ 137 struct mem_cgroup_event { 138 /* 139 * memcg which the event belongs to. 140 */ 141 struct mem_cgroup *memcg; 142 /* 143 * eventfd to signal userspace about the event. 144 */ 145 struct eventfd_ctx *eventfd; 146 /* 147 * Each of these stored in a list by the cgroup. 148 */ 149 struct list_head list; 150 /* 151 * register_event() callback will be used to add new userspace 152 * waiter for changes related to this event. Use eventfd_signal() 153 * on eventfd to send notification to userspace. 154 */ 155 int (*register_event)(struct mem_cgroup *memcg, 156 struct eventfd_ctx *eventfd, const char *args); 157 /* 158 * unregister_event() callback will be called when userspace closes 159 * the eventfd or on cgroup removing. This callback must be set, 160 * if you want provide notification functionality. 161 */ 162 void (*unregister_event)(struct mem_cgroup *memcg, 163 struct eventfd_ctx *eventfd); 164 /* 165 * All fields below needed to unregister event when 166 * userspace closes eventfd. 167 */ 168 poll_table pt; 169 wait_queue_head_t *wqh; 170 wait_queue_entry_t wait; 171 struct work_struct remove; 172 }; 173 174 static void mem_cgroup_threshold(struct mem_cgroup *memcg); 175 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); 176 177 /* Stuffs for move charges at task migration. */ 178 /* 179 * Types of charges to be moved. 180 */ 181 #define MOVE_ANON 0x1U 182 #define MOVE_FILE 0x2U 183 #define MOVE_MASK (MOVE_ANON | MOVE_FILE) 184 185 /* "mc" and its members are protected by cgroup_mutex */ 186 static struct move_charge_struct { 187 spinlock_t lock; /* for from, to */ 188 struct mm_struct *mm; 189 struct mem_cgroup *from; 190 struct mem_cgroup *to; 191 unsigned long flags; 192 unsigned long precharge; 193 unsigned long moved_charge; 194 unsigned long moved_swap; 195 struct task_struct *moving_task; /* a task moving charges */ 196 wait_queue_head_t waitq; /* a waitq for other context */ 197 } mc = { 198 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 199 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 200 }; 201 202 /* 203 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft 204 * limit reclaim to prevent infinite loops, if they ever occur. 205 */ 206 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 207 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 208 209 /* for encoding cft->private value on file */ 210 enum res_type { 211 _MEM, 212 _MEMSWAP, 213 _KMEM, 214 _TCP, 215 }; 216 217 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) 218 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) 219 #define MEMFILE_ATTR(val) ((val) & 0xffff) 220 221 /* 222 * Iteration constructs for visiting all cgroups (under a tree). If 223 * loops are exited prematurely (break), mem_cgroup_iter_break() must 224 * be used for reference counting. 225 */ 226 #define for_each_mem_cgroup_tree(iter, root) \ 227 for (iter = mem_cgroup_iter(root, NULL, NULL); \ 228 iter != NULL; \ 229 iter = mem_cgroup_iter(root, iter, NULL)) 230 231 #define for_each_mem_cgroup(iter) \ 232 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ 233 iter != NULL; \ 234 iter = mem_cgroup_iter(NULL, iter, NULL)) 235 236 static inline bool task_is_dying(void) 237 { 238 return tsk_is_oom_victim(current) || fatal_signal_pending(current) || 239 (current->flags & PF_EXITING); 240 } 241 242 /* Some nice accessors for the vmpressure. */ 243 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 244 { 245 if (!memcg) 246 memcg = root_mem_cgroup; 247 return &memcg->vmpressure; 248 } 249 250 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr) 251 { 252 return container_of(vmpr, struct mem_cgroup, vmpressure); 253 } 254 255 #ifdef CONFIG_MEMCG_KMEM 256 static DEFINE_SPINLOCK(objcg_lock); 257 258 bool mem_cgroup_kmem_disabled(void) 259 { 260 return cgroup_memory_nokmem; 261 } 262 263 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg, 264 unsigned int nr_pages); 265 266 static void obj_cgroup_release(struct percpu_ref *ref) 267 { 268 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt); 269 unsigned int nr_bytes; 270 unsigned int nr_pages; 271 unsigned long flags; 272 273 /* 274 * At this point all allocated objects are freed, and 275 * objcg->nr_charged_bytes can't have an arbitrary byte value. 276 * However, it can be PAGE_SIZE or (x * PAGE_SIZE). 277 * 278 * The following sequence can lead to it: 279 * 1) CPU0: objcg == stock->cached_objcg 280 * 2) CPU1: we do a small allocation (e.g. 92 bytes), 281 * PAGE_SIZE bytes are charged 282 * 3) CPU1: a process from another memcg is allocating something, 283 * the stock if flushed, 284 * objcg->nr_charged_bytes = PAGE_SIZE - 92 285 * 5) CPU0: we do release this object, 286 * 92 bytes are added to stock->nr_bytes 287 * 6) CPU0: stock is flushed, 288 * 92 bytes are added to objcg->nr_charged_bytes 289 * 290 * In the result, nr_charged_bytes == PAGE_SIZE. 291 * This page will be uncharged in obj_cgroup_release(). 292 */ 293 nr_bytes = atomic_read(&objcg->nr_charged_bytes); 294 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1)); 295 nr_pages = nr_bytes >> PAGE_SHIFT; 296 297 if (nr_pages) 298 obj_cgroup_uncharge_pages(objcg, nr_pages); 299 300 spin_lock_irqsave(&objcg_lock, flags); 301 list_del(&objcg->list); 302 spin_unlock_irqrestore(&objcg_lock, flags); 303 304 percpu_ref_exit(ref); 305 kfree_rcu(objcg, rcu); 306 } 307 308 static struct obj_cgroup *obj_cgroup_alloc(void) 309 { 310 struct obj_cgroup *objcg; 311 int ret; 312 313 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL); 314 if (!objcg) 315 return NULL; 316 317 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0, 318 GFP_KERNEL); 319 if (ret) { 320 kfree(objcg); 321 return NULL; 322 } 323 INIT_LIST_HEAD(&objcg->list); 324 return objcg; 325 } 326 327 static void memcg_reparent_objcgs(struct mem_cgroup *memcg, 328 struct mem_cgroup *parent) 329 { 330 struct obj_cgroup *objcg, *iter; 331 332 objcg = rcu_replace_pointer(memcg->objcg, NULL, true); 333 334 spin_lock_irq(&objcg_lock); 335 336 /* 1) Ready to reparent active objcg. */ 337 list_add(&objcg->list, &memcg->objcg_list); 338 /* 2) Reparent active objcg and already reparented objcgs to parent. */ 339 list_for_each_entry(iter, &memcg->objcg_list, list) 340 WRITE_ONCE(iter->memcg, parent); 341 /* 3) Move already reparented objcgs to the parent's list */ 342 list_splice(&memcg->objcg_list, &parent->objcg_list); 343 344 spin_unlock_irq(&objcg_lock); 345 346 percpu_ref_kill(&objcg->refcnt); 347 } 348 349 /* 350 * A lot of the calls to the cache allocation functions are expected to be 351 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are 352 * conditional to this static branch, we'll have to allow modules that does 353 * kmem_cache_alloc and the such to see this symbol as well 354 */ 355 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key); 356 EXPORT_SYMBOL(memcg_kmem_enabled_key); 357 #endif 358 359 /** 360 * mem_cgroup_css_from_page - css of the memcg associated with a page 361 * @page: page of interest 362 * 363 * If memcg is bound to the default hierarchy, css of the memcg associated 364 * with @page is returned. The returned css remains associated with @page 365 * until it is released. 366 * 367 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup 368 * is returned. 369 */ 370 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page) 371 { 372 struct mem_cgroup *memcg; 373 374 memcg = page_memcg(page); 375 376 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 377 memcg = root_mem_cgroup; 378 379 return &memcg->css; 380 } 381 382 /** 383 * page_cgroup_ino - return inode number of the memcg a page is charged to 384 * @page: the page 385 * 386 * Look up the closest online ancestor of the memory cgroup @page is charged to 387 * and return its inode number or 0 if @page is not charged to any cgroup. It 388 * is safe to call this function without holding a reference to @page. 389 * 390 * Note, this function is inherently racy, because there is nothing to prevent 391 * the cgroup inode from getting torn down and potentially reallocated a moment 392 * after page_cgroup_ino() returns, so it only should be used by callers that 393 * do not care (such as procfs interfaces). 394 */ 395 ino_t page_cgroup_ino(struct page *page) 396 { 397 struct mem_cgroup *memcg; 398 unsigned long ino = 0; 399 400 rcu_read_lock(); 401 memcg = page_memcg_check(page); 402 403 while (memcg && !(memcg->css.flags & CSS_ONLINE)) 404 memcg = parent_mem_cgroup(memcg); 405 if (memcg) 406 ino = cgroup_ino(memcg->css.cgroup); 407 rcu_read_unlock(); 408 return ino; 409 } 410 411 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz, 412 struct mem_cgroup_tree_per_node *mctz, 413 unsigned long new_usage_in_excess) 414 { 415 struct rb_node **p = &mctz->rb_root.rb_node; 416 struct rb_node *parent = NULL; 417 struct mem_cgroup_per_node *mz_node; 418 bool rightmost = true; 419 420 if (mz->on_tree) 421 return; 422 423 mz->usage_in_excess = new_usage_in_excess; 424 if (!mz->usage_in_excess) 425 return; 426 while (*p) { 427 parent = *p; 428 mz_node = rb_entry(parent, struct mem_cgroup_per_node, 429 tree_node); 430 if (mz->usage_in_excess < mz_node->usage_in_excess) { 431 p = &(*p)->rb_left; 432 rightmost = false; 433 } else { 434 p = &(*p)->rb_right; 435 } 436 } 437 438 if (rightmost) 439 mctz->rb_rightmost = &mz->tree_node; 440 441 rb_link_node(&mz->tree_node, parent, p); 442 rb_insert_color(&mz->tree_node, &mctz->rb_root); 443 mz->on_tree = true; 444 } 445 446 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 447 struct mem_cgroup_tree_per_node *mctz) 448 { 449 if (!mz->on_tree) 450 return; 451 452 if (&mz->tree_node == mctz->rb_rightmost) 453 mctz->rb_rightmost = rb_prev(&mz->tree_node); 454 455 rb_erase(&mz->tree_node, &mctz->rb_root); 456 mz->on_tree = false; 457 } 458 459 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 460 struct mem_cgroup_tree_per_node *mctz) 461 { 462 unsigned long flags; 463 464 spin_lock_irqsave(&mctz->lock, flags); 465 __mem_cgroup_remove_exceeded(mz, mctz); 466 spin_unlock_irqrestore(&mctz->lock, flags); 467 } 468 469 static unsigned long soft_limit_excess(struct mem_cgroup *memcg) 470 { 471 unsigned long nr_pages = page_counter_read(&memcg->memory); 472 unsigned long soft_limit = READ_ONCE(memcg->soft_limit); 473 unsigned long excess = 0; 474 475 if (nr_pages > soft_limit) 476 excess = nr_pages - soft_limit; 477 478 return excess; 479 } 480 481 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid) 482 { 483 unsigned long excess; 484 struct mem_cgroup_per_node *mz; 485 struct mem_cgroup_tree_per_node *mctz; 486 487 mctz = soft_limit_tree.rb_tree_per_node[nid]; 488 if (!mctz) 489 return; 490 /* 491 * Necessary to update all ancestors when hierarchy is used. 492 * because their event counter is not touched. 493 */ 494 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 495 mz = memcg->nodeinfo[nid]; 496 excess = soft_limit_excess(memcg); 497 /* 498 * We have to update the tree if mz is on RB-tree or 499 * mem is over its softlimit. 500 */ 501 if (excess || mz->on_tree) { 502 unsigned long flags; 503 504 spin_lock_irqsave(&mctz->lock, flags); 505 /* if on-tree, remove it */ 506 if (mz->on_tree) 507 __mem_cgroup_remove_exceeded(mz, mctz); 508 /* 509 * Insert again. mz->usage_in_excess will be updated. 510 * If excess is 0, no tree ops. 511 */ 512 __mem_cgroup_insert_exceeded(mz, mctz, excess); 513 spin_unlock_irqrestore(&mctz->lock, flags); 514 } 515 } 516 } 517 518 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) 519 { 520 struct mem_cgroup_tree_per_node *mctz; 521 struct mem_cgroup_per_node *mz; 522 int nid; 523 524 for_each_node(nid) { 525 mz = memcg->nodeinfo[nid]; 526 mctz = soft_limit_tree.rb_tree_per_node[nid]; 527 if (mctz) 528 mem_cgroup_remove_exceeded(mz, mctz); 529 } 530 } 531 532 static struct mem_cgroup_per_node * 533 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 534 { 535 struct mem_cgroup_per_node *mz; 536 537 retry: 538 mz = NULL; 539 if (!mctz->rb_rightmost) 540 goto done; /* Nothing to reclaim from */ 541 542 mz = rb_entry(mctz->rb_rightmost, 543 struct mem_cgroup_per_node, tree_node); 544 /* 545 * Remove the node now but someone else can add it back, 546 * we will to add it back at the end of reclaim to its correct 547 * position in the tree. 548 */ 549 __mem_cgroup_remove_exceeded(mz, mctz); 550 if (!soft_limit_excess(mz->memcg) || 551 !css_tryget(&mz->memcg->css)) 552 goto retry; 553 done: 554 return mz; 555 } 556 557 static struct mem_cgroup_per_node * 558 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 559 { 560 struct mem_cgroup_per_node *mz; 561 562 spin_lock_irq(&mctz->lock); 563 mz = __mem_cgroup_largest_soft_limit_node(mctz); 564 spin_unlock_irq(&mctz->lock); 565 return mz; 566 } 567 568 /* 569 * memcg and lruvec stats flushing 570 * 571 * Many codepaths leading to stats update or read are performance sensitive and 572 * adding stats flushing in such codepaths is not desirable. So, to optimize the 573 * flushing the kernel does: 574 * 575 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let 576 * rstat update tree grow unbounded. 577 * 578 * 2) Flush the stats synchronously on reader side only when there are more than 579 * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization 580 * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but 581 * only for 2 seconds due to (1). 582 */ 583 static void flush_memcg_stats_dwork(struct work_struct *w); 584 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork); 585 static DEFINE_SPINLOCK(stats_flush_lock); 586 static DEFINE_PER_CPU(unsigned int, stats_updates); 587 static atomic_t stats_flush_threshold = ATOMIC_INIT(0); 588 static u64 flush_next_time; 589 590 #define FLUSH_TIME (2UL*HZ) 591 592 /* 593 * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can 594 * not rely on this as part of an acquired spinlock_t lock. These functions are 595 * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion 596 * is sufficient. 597 */ 598 static void memcg_stats_lock(void) 599 { 600 #ifdef CONFIG_PREEMPT_RT 601 preempt_disable(); 602 #else 603 VM_BUG_ON(!irqs_disabled()); 604 #endif 605 } 606 607 static void __memcg_stats_lock(void) 608 { 609 #ifdef CONFIG_PREEMPT_RT 610 preempt_disable(); 611 #endif 612 } 613 614 static void memcg_stats_unlock(void) 615 { 616 #ifdef CONFIG_PREEMPT_RT 617 preempt_enable(); 618 #endif 619 } 620 621 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val) 622 { 623 unsigned int x; 624 625 cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id()); 626 627 x = __this_cpu_add_return(stats_updates, abs(val)); 628 if (x > MEMCG_CHARGE_BATCH) { 629 atomic_add(x / MEMCG_CHARGE_BATCH, &stats_flush_threshold); 630 __this_cpu_write(stats_updates, 0); 631 } 632 } 633 634 static void __mem_cgroup_flush_stats(void) 635 { 636 unsigned long flag; 637 638 if (!spin_trylock_irqsave(&stats_flush_lock, flag)) 639 return; 640 641 flush_next_time = jiffies_64 + 2*FLUSH_TIME; 642 cgroup_rstat_flush_irqsafe(root_mem_cgroup->css.cgroup); 643 atomic_set(&stats_flush_threshold, 0); 644 spin_unlock_irqrestore(&stats_flush_lock, flag); 645 } 646 647 void mem_cgroup_flush_stats(void) 648 { 649 if (atomic_read(&stats_flush_threshold) > num_online_cpus()) 650 __mem_cgroup_flush_stats(); 651 } 652 653 void mem_cgroup_flush_stats_delayed(void) 654 { 655 if (time_after64(jiffies_64, flush_next_time)) 656 mem_cgroup_flush_stats(); 657 } 658 659 static void flush_memcg_stats_dwork(struct work_struct *w) 660 { 661 __mem_cgroup_flush_stats(); 662 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME); 663 } 664 665 /** 666 * __mod_memcg_state - update cgroup memory statistics 667 * @memcg: the memory cgroup 668 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item 669 * @val: delta to add to the counter, can be negative 670 */ 671 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val) 672 { 673 if (mem_cgroup_disabled()) 674 return; 675 676 __this_cpu_add(memcg->vmstats_percpu->state[idx], val); 677 memcg_rstat_updated(memcg, val); 678 } 679 680 /* idx can be of type enum memcg_stat_item or node_stat_item. */ 681 static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx) 682 { 683 long x = 0; 684 int cpu; 685 686 for_each_possible_cpu(cpu) 687 x += per_cpu(memcg->vmstats_percpu->state[idx], cpu); 688 #ifdef CONFIG_SMP 689 if (x < 0) 690 x = 0; 691 #endif 692 return x; 693 } 694 695 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 696 int val) 697 { 698 struct mem_cgroup_per_node *pn; 699 struct mem_cgroup *memcg; 700 701 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 702 memcg = pn->memcg; 703 704 /* 705 * The caller from rmap relay on disabled preemption becase they never 706 * update their counter from in-interrupt context. For these two 707 * counters we check that the update is never performed from an 708 * interrupt context while other caller need to have disabled interrupt. 709 */ 710 __memcg_stats_lock(); 711 if (IS_ENABLED(CONFIG_DEBUG_VM) && !IS_ENABLED(CONFIG_PREEMPT_RT)) { 712 switch (idx) { 713 case NR_ANON_MAPPED: 714 case NR_FILE_MAPPED: 715 case NR_ANON_THPS: 716 case NR_SHMEM_PMDMAPPED: 717 case NR_FILE_PMDMAPPED: 718 WARN_ON_ONCE(!in_task()); 719 break; 720 default: 721 WARN_ON_ONCE(!irqs_disabled()); 722 } 723 } 724 725 /* Update memcg */ 726 __this_cpu_add(memcg->vmstats_percpu->state[idx], val); 727 728 /* Update lruvec */ 729 __this_cpu_add(pn->lruvec_stats_percpu->state[idx], val); 730 731 memcg_rstat_updated(memcg, val); 732 memcg_stats_unlock(); 733 } 734 735 /** 736 * __mod_lruvec_state - update lruvec memory statistics 737 * @lruvec: the lruvec 738 * @idx: the stat item 739 * @val: delta to add to the counter, can be negative 740 * 741 * The lruvec is the intersection of the NUMA node and a cgroup. This 742 * function updates the all three counters that are affected by a 743 * change of state at this level: per-node, per-cgroup, per-lruvec. 744 */ 745 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 746 int val) 747 { 748 /* Update node */ 749 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 750 751 /* Update memcg and lruvec */ 752 if (!mem_cgroup_disabled()) 753 __mod_memcg_lruvec_state(lruvec, idx, val); 754 } 755 756 void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx, 757 int val) 758 { 759 struct page *head = compound_head(page); /* rmap on tail pages */ 760 struct mem_cgroup *memcg; 761 pg_data_t *pgdat = page_pgdat(page); 762 struct lruvec *lruvec; 763 764 rcu_read_lock(); 765 memcg = page_memcg(head); 766 /* Untracked pages have no memcg, no lruvec. Update only the node */ 767 if (!memcg) { 768 rcu_read_unlock(); 769 __mod_node_page_state(pgdat, idx, val); 770 return; 771 } 772 773 lruvec = mem_cgroup_lruvec(memcg, pgdat); 774 __mod_lruvec_state(lruvec, idx, val); 775 rcu_read_unlock(); 776 } 777 EXPORT_SYMBOL(__mod_lruvec_page_state); 778 779 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val) 780 { 781 pg_data_t *pgdat = page_pgdat(virt_to_page(p)); 782 struct mem_cgroup *memcg; 783 struct lruvec *lruvec; 784 785 rcu_read_lock(); 786 memcg = mem_cgroup_from_obj(p); 787 788 /* 789 * Untracked pages have no memcg, no lruvec. Update only the 790 * node. If we reparent the slab objects to the root memcg, 791 * when we free the slab object, we need to update the per-memcg 792 * vmstats to keep it correct for the root memcg. 793 */ 794 if (!memcg) { 795 __mod_node_page_state(pgdat, idx, val); 796 } else { 797 lruvec = mem_cgroup_lruvec(memcg, pgdat); 798 __mod_lruvec_state(lruvec, idx, val); 799 } 800 rcu_read_unlock(); 801 } 802 803 /** 804 * __count_memcg_events - account VM events in a cgroup 805 * @memcg: the memory cgroup 806 * @idx: the event item 807 * @count: the number of events that occurred 808 */ 809 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 810 unsigned long count) 811 { 812 if (mem_cgroup_disabled()) 813 return; 814 815 memcg_stats_lock(); 816 __this_cpu_add(memcg->vmstats_percpu->events[idx], count); 817 memcg_rstat_updated(memcg, count); 818 memcg_stats_unlock(); 819 } 820 821 static unsigned long memcg_events(struct mem_cgroup *memcg, int event) 822 { 823 return READ_ONCE(memcg->vmstats.events[event]); 824 } 825 826 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event) 827 { 828 long x = 0; 829 int cpu; 830 831 for_each_possible_cpu(cpu) 832 x += per_cpu(memcg->vmstats_percpu->events[event], cpu); 833 return x; 834 } 835 836 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, 837 int nr_pages) 838 { 839 /* pagein of a big page is an event. So, ignore page size */ 840 if (nr_pages > 0) 841 __count_memcg_events(memcg, PGPGIN, 1); 842 else { 843 __count_memcg_events(memcg, PGPGOUT, 1); 844 nr_pages = -nr_pages; /* for event */ 845 } 846 847 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages); 848 } 849 850 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, 851 enum mem_cgroup_events_target target) 852 { 853 unsigned long val, next; 854 855 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events); 856 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]); 857 /* from time_after() in jiffies.h */ 858 if ((long)(next - val) < 0) { 859 switch (target) { 860 case MEM_CGROUP_TARGET_THRESH: 861 next = val + THRESHOLDS_EVENTS_TARGET; 862 break; 863 case MEM_CGROUP_TARGET_SOFTLIMIT: 864 next = val + SOFTLIMIT_EVENTS_TARGET; 865 break; 866 default: 867 break; 868 } 869 __this_cpu_write(memcg->vmstats_percpu->targets[target], next); 870 return true; 871 } 872 return false; 873 } 874 875 /* 876 * Check events in order. 877 * 878 */ 879 static void memcg_check_events(struct mem_cgroup *memcg, int nid) 880 { 881 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 882 return; 883 884 /* threshold event is triggered in finer grain than soft limit */ 885 if (unlikely(mem_cgroup_event_ratelimit(memcg, 886 MEM_CGROUP_TARGET_THRESH))) { 887 bool do_softlimit; 888 889 do_softlimit = mem_cgroup_event_ratelimit(memcg, 890 MEM_CGROUP_TARGET_SOFTLIMIT); 891 mem_cgroup_threshold(memcg); 892 if (unlikely(do_softlimit)) 893 mem_cgroup_update_tree(memcg, nid); 894 } 895 } 896 897 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 898 { 899 /* 900 * mm_update_next_owner() may clear mm->owner to NULL 901 * if it races with swapoff, page migration, etc. 902 * So this can be called with p == NULL. 903 */ 904 if (unlikely(!p)) 905 return NULL; 906 907 return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); 908 } 909 EXPORT_SYMBOL(mem_cgroup_from_task); 910 911 static __always_inline struct mem_cgroup *active_memcg(void) 912 { 913 if (!in_task()) 914 return this_cpu_read(int_active_memcg); 915 else 916 return current->active_memcg; 917 } 918 919 /** 920 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg. 921 * @mm: mm from which memcg should be extracted. It can be NULL. 922 * 923 * Obtain a reference on mm->memcg and returns it if successful. If mm 924 * is NULL, then the memcg is chosen as follows: 925 * 1) The active memcg, if set. 926 * 2) current->mm->memcg, if available 927 * 3) root memcg 928 * If mem_cgroup is disabled, NULL is returned. 929 */ 930 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 931 { 932 struct mem_cgroup *memcg; 933 934 if (mem_cgroup_disabled()) 935 return NULL; 936 937 /* 938 * Page cache insertions can happen without an 939 * actual mm context, e.g. during disk probing 940 * on boot, loopback IO, acct() writes etc. 941 * 942 * No need to css_get on root memcg as the reference 943 * counting is disabled on the root level in the 944 * cgroup core. See CSS_NO_REF. 945 */ 946 if (unlikely(!mm)) { 947 memcg = active_memcg(); 948 if (unlikely(memcg)) { 949 /* remote memcg must hold a ref */ 950 css_get(&memcg->css); 951 return memcg; 952 } 953 mm = current->mm; 954 if (unlikely(!mm)) 955 return root_mem_cgroup; 956 } 957 958 rcu_read_lock(); 959 do { 960 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 961 if (unlikely(!memcg)) 962 memcg = root_mem_cgroup; 963 } while (!css_tryget(&memcg->css)); 964 rcu_read_unlock(); 965 return memcg; 966 } 967 EXPORT_SYMBOL(get_mem_cgroup_from_mm); 968 969 static __always_inline bool memcg_kmem_bypass(void) 970 { 971 /* Allow remote memcg charging from any context. */ 972 if (unlikely(active_memcg())) 973 return false; 974 975 /* Memcg to charge can't be determined. */ 976 if (!in_task() || !current->mm || (current->flags & PF_KTHREAD)) 977 return true; 978 979 return false; 980 } 981 982 /** 983 * mem_cgroup_iter - iterate over memory cgroup hierarchy 984 * @root: hierarchy root 985 * @prev: previously returned memcg, NULL on first invocation 986 * @reclaim: cookie for shared reclaim walks, NULL for full walks 987 * 988 * Returns references to children of the hierarchy below @root, or 989 * @root itself, or %NULL after a full round-trip. 990 * 991 * Caller must pass the return value in @prev on subsequent 992 * invocations for reference counting, or use mem_cgroup_iter_break() 993 * to cancel a hierarchy walk before the round-trip is complete. 994 * 995 * Reclaimers can specify a node in @reclaim to divide up the memcgs 996 * in the hierarchy among all concurrent reclaimers operating on the 997 * same node. 998 */ 999 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 1000 struct mem_cgroup *prev, 1001 struct mem_cgroup_reclaim_cookie *reclaim) 1002 { 1003 struct mem_cgroup_reclaim_iter *iter; 1004 struct cgroup_subsys_state *css = NULL; 1005 struct mem_cgroup *memcg = NULL; 1006 struct mem_cgroup *pos = NULL; 1007 1008 if (mem_cgroup_disabled()) 1009 return NULL; 1010 1011 if (!root) 1012 root = root_mem_cgroup; 1013 1014 rcu_read_lock(); 1015 1016 if (reclaim) { 1017 struct mem_cgroup_per_node *mz; 1018 1019 mz = root->nodeinfo[reclaim->pgdat->node_id]; 1020 iter = &mz->iter; 1021 1022 /* 1023 * On start, join the current reclaim iteration cycle. 1024 * Exit when a concurrent walker completes it. 1025 */ 1026 if (!prev) 1027 reclaim->generation = iter->generation; 1028 else if (reclaim->generation != iter->generation) 1029 goto out_unlock; 1030 1031 while (1) { 1032 pos = READ_ONCE(iter->position); 1033 if (!pos || css_tryget(&pos->css)) 1034 break; 1035 /* 1036 * css reference reached zero, so iter->position will 1037 * be cleared by ->css_released. However, we should not 1038 * rely on this happening soon, because ->css_released 1039 * is called from a work queue, and by busy-waiting we 1040 * might block it. So we clear iter->position right 1041 * away. 1042 */ 1043 (void)cmpxchg(&iter->position, pos, NULL); 1044 } 1045 } else if (prev) { 1046 pos = prev; 1047 } 1048 1049 if (pos) 1050 css = &pos->css; 1051 1052 for (;;) { 1053 css = css_next_descendant_pre(css, &root->css); 1054 if (!css) { 1055 /* 1056 * Reclaimers share the hierarchy walk, and a 1057 * new one might jump in right at the end of 1058 * the hierarchy - make sure they see at least 1059 * one group and restart from the beginning. 1060 */ 1061 if (!prev) 1062 continue; 1063 break; 1064 } 1065 1066 /* 1067 * Verify the css and acquire a reference. The root 1068 * is provided by the caller, so we know it's alive 1069 * and kicking, and don't take an extra reference. 1070 */ 1071 if (css == &root->css || css_tryget(css)) { 1072 memcg = mem_cgroup_from_css(css); 1073 break; 1074 } 1075 } 1076 1077 if (reclaim) { 1078 /* 1079 * The position could have already been updated by a competing 1080 * thread, so check that the value hasn't changed since we read 1081 * it to avoid reclaiming from the same cgroup twice. 1082 */ 1083 (void)cmpxchg(&iter->position, pos, memcg); 1084 1085 if (pos) 1086 css_put(&pos->css); 1087 1088 if (!memcg) 1089 iter->generation++; 1090 } 1091 1092 out_unlock: 1093 rcu_read_unlock(); 1094 if (prev && prev != root) 1095 css_put(&prev->css); 1096 1097 return memcg; 1098 } 1099 1100 /** 1101 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 1102 * @root: hierarchy root 1103 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 1104 */ 1105 void mem_cgroup_iter_break(struct mem_cgroup *root, 1106 struct mem_cgroup *prev) 1107 { 1108 if (!root) 1109 root = root_mem_cgroup; 1110 if (prev && prev != root) 1111 css_put(&prev->css); 1112 } 1113 1114 static void __invalidate_reclaim_iterators(struct mem_cgroup *from, 1115 struct mem_cgroup *dead_memcg) 1116 { 1117 struct mem_cgroup_reclaim_iter *iter; 1118 struct mem_cgroup_per_node *mz; 1119 int nid; 1120 1121 for_each_node(nid) { 1122 mz = from->nodeinfo[nid]; 1123 iter = &mz->iter; 1124 cmpxchg(&iter->position, dead_memcg, NULL); 1125 } 1126 } 1127 1128 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) 1129 { 1130 struct mem_cgroup *memcg = dead_memcg; 1131 struct mem_cgroup *last; 1132 1133 do { 1134 __invalidate_reclaim_iterators(memcg, dead_memcg); 1135 last = memcg; 1136 } while ((memcg = parent_mem_cgroup(memcg))); 1137 1138 /* 1139 * When cgruop1 non-hierarchy mode is used, 1140 * parent_mem_cgroup() does not walk all the way up to the 1141 * cgroup root (root_mem_cgroup). So we have to handle 1142 * dead_memcg from cgroup root separately. 1143 */ 1144 if (last != root_mem_cgroup) 1145 __invalidate_reclaim_iterators(root_mem_cgroup, 1146 dead_memcg); 1147 } 1148 1149 /** 1150 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy 1151 * @memcg: hierarchy root 1152 * @fn: function to call for each task 1153 * @arg: argument passed to @fn 1154 * 1155 * This function iterates over tasks attached to @memcg or to any of its 1156 * descendants and calls @fn for each task. If @fn returns a non-zero 1157 * value, the function breaks the iteration loop and returns the value. 1158 * Otherwise, it will iterate over all tasks and return 0. 1159 * 1160 * This function must not be called for the root memory cgroup. 1161 */ 1162 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1163 int (*fn)(struct task_struct *, void *), void *arg) 1164 { 1165 struct mem_cgroup *iter; 1166 int ret = 0; 1167 1168 BUG_ON(memcg == root_mem_cgroup); 1169 1170 for_each_mem_cgroup_tree(iter, memcg) { 1171 struct css_task_iter it; 1172 struct task_struct *task; 1173 1174 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it); 1175 while (!ret && (task = css_task_iter_next(&it))) 1176 ret = fn(task, arg); 1177 css_task_iter_end(&it); 1178 if (ret) { 1179 mem_cgroup_iter_break(memcg, iter); 1180 break; 1181 } 1182 } 1183 return ret; 1184 } 1185 1186 #ifdef CONFIG_DEBUG_VM 1187 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio) 1188 { 1189 struct mem_cgroup *memcg; 1190 1191 if (mem_cgroup_disabled()) 1192 return; 1193 1194 memcg = folio_memcg(folio); 1195 1196 if (!memcg) 1197 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != root_mem_cgroup, folio); 1198 else 1199 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio); 1200 } 1201 #endif 1202 1203 /** 1204 * folio_lruvec_lock - Lock the lruvec for a folio. 1205 * @folio: Pointer to the folio. 1206 * 1207 * These functions are safe to use under any of the following conditions: 1208 * - folio locked 1209 * - folio_test_lru false 1210 * - folio_memcg_lock() 1211 * - folio frozen (refcount of 0) 1212 * 1213 * Return: The lruvec this folio is on with its lock held. 1214 */ 1215 struct lruvec *folio_lruvec_lock(struct folio *folio) 1216 { 1217 struct lruvec *lruvec = folio_lruvec(folio); 1218 1219 spin_lock(&lruvec->lru_lock); 1220 lruvec_memcg_debug(lruvec, folio); 1221 1222 return lruvec; 1223 } 1224 1225 /** 1226 * folio_lruvec_lock_irq - Lock the lruvec for a folio. 1227 * @folio: Pointer to the folio. 1228 * 1229 * These functions are safe to use under any of the following conditions: 1230 * - folio locked 1231 * - folio_test_lru false 1232 * - folio_memcg_lock() 1233 * - folio frozen (refcount of 0) 1234 * 1235 * Return: The lruvec this folio is on with its lock held and interrupts 1236 * disabled. 1237 */ 1238 struct lruvec *folio_lruvec_lock_irq(struct folio *folio) 1239 { 1240 struct lruvec *lruvec = folio_lruvec(folio); 1241 1242 spin_lock_irq(&lruvec->lru_lock); 1243 lruvec_memcg_debug(lruvec, folio); 1244 1245 return lruvec; 1246 } 1247 1248 /** 1249 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio. 1250 * @folio: Pointer to the folio. 1251 * @flags: Pointer to irqsave flags. 1252 * 1253 * These functions are safe to use under any of the following conditions: 1254 * - folio locked 1255 * - folio_test_lru false 1256 * - folio_memcg_lock() 1257 * - folio frozen (refcount of 0) 1258 * 1259 * Return: The lruvec this folio is on with its lock held and interrupts 1260 * disabled. 1261 */ 1262 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio, 1263 unsigned long *flags) 1264 { 1265 struct lruvec *lruvec = folio_lruvec(folio); 1266 1267 spin_lock_irqsave(&lruvec->lru_lock, *flags); 1268 lruvec_memcg_debug(lruvec, folio); 1269 1270 return lruvec; 1271 } 1272 1273 /** 1274 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1275 * @lruvec: mem_cgroup per zone lru vector 1276 * @lru: index of lru list the page is sitting on 1277 * @zid: zone id of the accounted pages 1278 * @nr_pages: positive when adding or negative when removing 1279 * 1280 * This function must be called under lru_lock, just before a page is added 1281 * to or just after a page is removed from an lru list. 1282 */ 1283 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1284 int zid, int nr_pages) 1285 { 1286 struct mem_cgroup_per_node *mz; 1287 unsigned long *lru_size; 1288 long size; 1289 1290 if (mem_cgroup_disabled()) 1291 return; 1292 1293 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 1294 lru_size = &mz->lru_zone_size[zid][lru]; 1295 1296 if (nr_pages < 0) 1297 *lru_size += nr_pages; 1298 1299 size = *lru_size; 1300 if (WARN_ONCE(size < 0, 1301 "%s(%p, %d, %d): lru_size %ld\n", 1302 __func__, lruvec, lru, nr_pages, size)) { 1303 VM_BUG_ON(1); 1304 *lru_size = 0; 1305 } 1306 1307 if (nr_pages > 0) 1308 *lru_size += nr_pages; 1309 } 1310 1311 /** 1312 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1313 * @memcg: the memory cgroup 1314 * 1315 * Returns the maximum amount of memory @mem can be charged with, in 1316 * pages. 1317 */ 1318 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1319 { 1320 unsigned long margin = 0; 1321 unsigned long count; 1322 unsigned long limit; 1323 1324 count = page_counter_read(&memcg->memory); 1325 limit = READ_ONCE(memcg->memory.max); 1326 if (count < limit) 1327 margin = limit - count; 1328 1329 if (do_memsw_account()) { 1330 count = page_counter_read(&memcg->memsw); 1331 limit = READ_ONCE(memcg->memsw.max); 1332 if (count < limit) 1333 margin = min(margin, limit - count); 1334 else 1335 margin = 0; 1336 } 1337 1338 return margin; 1339 } 1340 1341 /* 1342 * A routine for checking "mem" is under move_account() or not. 1343 * 1344 * Checking a cgroup is mc.from or mc.to or under hierarchy of 1345 * moving cgroups. This is for waiting at high-memory pressure 1346 * caused by "move". 1347 */ 1348 static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 1349 { 1350 struct mem_cgroup *from; 1351 struct mem_cgroup *to; 1352 bool ret = false; 1353 /* 1354 * Unlike task_move routines, we access mc.to, mc.from not under 1355 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1356 */ 1357 spin_lock(&mc.lock); 1358 from = mc.from; 1359 to = mc.to; 1360 if (!from) 1361 goto unlock; 1362 1363 ret = mem_cgroup_is_descendant(from, memcg) || 1364 mem_cgroup_is_descendant(to, memcg); 1365 unlock: 1366 spin_unlock(&mc.lock); 1367 return ret; 1368 } 1369 1370 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) 1371 { 1372 if (mc.moving_task && current != mc.moving_task) { 1373 if (mem_cgroup_under_move(memcg)) { 1374 DEFINE_WAIT(wait); 1375 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1376 /* moving charge context might have finished. */ 1377 if (mc.moving_task) 1378 schedule(); 1379 finish_wait(&mc.waitq, &wait); 1380 return true; 1381 } 1382 } 1383 return false; 1384 } 1385 1386 struct memory_stat { 1387 const char *name; 1388 unsigned int idx; 1389 }; 1390 1391 static const struct memory_stat memory_stats[] = { 1392 { "anon", NR_ANON_MAPPED }, 1393 { "file", NR_FILE_PAGES }, 1394 { "kernel", MEMCG_KMEM }, 1395 { "kernel_stack", NR_KERNEL_STACK_KB }, 1396 { "pagetables", NR_PAGETABLE }, 1397 { "percpu", MEMCG_PERCPU_B }, 1398 { "sock", MEMCG_SOCK }, 1399 { "vmalloc", MEMCG_VMALLOC }, 1400 { "shmem", NR_SHMEM }, 1401 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 1402 { "zswap", MEMCG_ZSWAP_B }, 1403 { "zswapped", MEMCG_ZSWAPPED }, 1404 #endif 1405 { "file_mapped", NR_FILE_MAPPED }, 1406 { "file_dirty", NR_FILE_DIRTY }, 1407 { "file_writeback", NR_WRITEBACK }, 1408 #ifdef CONFIG_SWAP 1409 { "swapcached", NR_SWAPCACHE }, 1410 #endif 1411 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1412 { "anon_thp", NR_ANON_THPS }, 1413 { "file_thp", NR_FILE_THPS }, 1414 { "shmem_thp", NR_SHMEM_THPS }, 1415 #endif 1416 { "inactive_anon", NR_INACTIVE_ANON }, 1417 { "active_anon", NR_ACTIVE_ANON }, 1418 { "inactive_file", NR_INACTIVE_FILE }, 1419 { "active_file", NR_ACTIVE_FILE }, 1420 { "unevictable", NR_UNEVICTABLE }, 1421 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B }, 1422 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B }, 1423 1424 /* The memory events */ 1425 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON }, 1426 { "workingset_refault_file", WORKINGSET_REFAULT_FILE }, 1427 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON }, 1428 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE }, 1429 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON }, 1430 { "workingset_restore_file", WORKINGSET_RESTORE_FILE }, 1431 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM }, 1432 }; 1433 1434 /* Translate stat items to the correct unit for memory.stat output */ 1435 static int memcg_page_state_unit(int item) 1436 { 1437 switch (item) { 1438 case MEMCG_PERCPU_B: 1439 case MEMCG_ZSWAP_B: 1440 case NR_SLAB_RECLAIMABLE_B: 1441 case NR_SLAB_UNRECLAIMABLE_B: 1442 case WORKINGSET_REFAULT_ANON: 1443 case WORKINGSET_REFAULT_FILE: 1444 case WORKINGSET_ACTIVATE_ANON: 1445 case WORKINGSET_ACTIVATE_FILE: 1446 case WORKINGSET_RESTORE_ANON: 1447 case WORKINGSET_RESTORE_FILE: 1448 case WORKINGSET_NODERECLAIM: 1449 return 1; 1450 case NR_KERNEL_STACK_KB: 1451 return SZ_1K; 1452 default: 1453 return PAGE_SIZE; 1454 } 1455 } 1456 1457 static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg, 1458 int item) 1459 { 1460 return memcg_page_state(memcg, item) * memcg_page_state_unit(item); 1461 } 1462 1463 static char *memory_stat_format(struct mem_cgroup *memcg) 1464 { 1465 struct seq_buf s; 1466 int i; 1467 1468 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE); 1469 if (!s.buffer) 1470 return NULL; 1471 1472 /* 1473 * Provide statistics on the state of the memory subsystem as 1474 * well as cumulative event counters that show past behavior. 1475 * 1476 * This list is ordered following a combination of these gradients: 1477 * 1) generic big picture -> specifics and details 1478 * 2) reflecting userspace activity -> reflecting kernel heuristics 1479 * 1480 * Current memory state: 1481 */ 1482 mem_cgroup_flush_stats(); 1483 1484 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 1485 u64 size; 1486 1487 size = memcg_page_state_output(memcg, memory_stats[i].idx); 1488 seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size); 1489 1490 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) { 1491 size += memcg_page_state_output(memcg, 1492 NR_SLAB_RECLAIMABLE_B); 1493 seq_buf_printf(&s, "slab %llu\n", size); 1494 } 1495 } 1496 1497 /* Accumulated memory events */ 1498 1499 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT), 1500 memcg_events(memcg, PGFAULT)); 1501 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT), 1502 memcg_events(memcg, PGMAJFAULT)); 1503 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL), 1504 memcg_events(memcg, PGREFILL)); 1505 seq_buf_printf(&s, "pgscan %lu\n", 1506 memcg_events(memcg, PGSCAN_KSWAPD) + 1507 memcg_events(memcg, PGSCAN_DIRECT)); 1508 seq_buf_printf(&s, "pgsteal %lu\n", 1509 memcg_events(memcg, PGSTEAL_KSWAPD) + 1510 memcg_events(memcg, PGSTEAL_DIRECT)); 1511 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE), 1512 memcg_events(memcg, PGACTIVATE)); 1513 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE), 1514 memcg_events(memcg, PGDEACTIVATE)); 1515 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE), 1516 memcg_events(memcg, PGLAZYFREE)); 1517 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED), 1518 memcg_events(memcg, PGLAZYFREED)); 1519 1520 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 1521 seq_buf_printf(&s, "%s %lu\n", vm_event_name(ZSWPIN), 1522 memcg_events(memcg, ZSWPIN)); 1523 seq_buf_printf(&s, "%s %lu\n", vm_event_name(ZSWPOUT), 1524 memcg_events(memcg, ZSWPOUT)); 1525 #endif 1526 1527 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1528 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC), 1529 memcg_events(memcg, THP_FAULT_ALLOC)); 1530 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC), 1531 memcg_events(memcg, THP_COLLAPSE_ALLOC)); 1532 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1533 1534 /* The above should easily fit into one page */ 1535 WARN_ON_ONCE(seq_buf_has_overflowed(&s)); 1536 1537 return s.buffer; 1538 } 1539 1540 #define K(x) ((x) << (PAGE_SHIFT-10)) 1541 /** 1542 * mem_cgroup_print_oom_context: Print OOM information relevant to 1543 * memory controller. 1544 * @memcg: The memory cgroup that went over limit 1545 * @p: Task that is going to be killed 1546 * 1547 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1548 * enabled 1549 */ 1550 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1551 { 1552 rcu_read_lock(); 1553 1554 if (memcg) { 1555 pr_cont(",oom_memcg="); 1556 pr_cont_cgroup_path(memcg->css.cgroup); 1557 } else 1558 pr_cont(",global_oom"); 1559 if (p) { 1560 pr_cont(",task_memcg="); 1561 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); 1562 } 1563 rcu_read_unlock(); 1564 } 1565 1566 /** 1567 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to 1568 * memory controller. 1569 * @memcg: The memory cgroup that went over limit 1570 */ 1571 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1572 { 1573 char *buf; 1574 1575 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", 1576 K((u64)page_counter_read(&memcg->memory)), 1577 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt); 1578 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1579 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n", 1580 K((u64)page_counter_read(&memcg->swap)), 1581 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt); 1582 else { 1583 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", 1584 K((u64)page_counter_read(&memcg->memsw)), 1585 K((u64)memcg->memsw.max), memcg->memsw.failcnt); 1586 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", 1587 K((u64)page_counter_read(&memcg->kmem)), 1588 K((u64)memcg->kmem.max), memcg->kmem.failcnt); 1589 } 1590 1591 pr_info("Memory cgroup stats for "); 1592 pr_cont_cgroup_path(memcg->css.cgroup); 1593 pr_cont(":"); 1594 buf = memory_stat_format(memcg); 1595 if (!buf) 1596 return; 1597 pr_info("%s", buf); 1598 kfree(buf); 1599 } 1600 1601 /* 1602 * Return the memory (and swap, if configured) limit for a memcg. 1603 */ 1604 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1605 { 1606 unsigned long max = READ_ONCE(memcg->memory.max); 1607 1608 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 1609 if (mem_cgroup_swappiness(memcg)) 1610 max += min(READ_ONCE(memcg->swap.max), 1611 (unsigned long)total_swap_pages); 1612 } else { /* v1 */ 1613 if (mem_cgroup_swappiness(memcg)) { 1614 /* Calculate swap excess capacity from memsw limit */ 1615 unsigned long swap = READ_ONCE(memcg->memsw.max) - max; 1616 1617 max += min(swap, (unsigned long)total_swap_pages); 1618 } 1619 } 1620 return max; 1621 } 1622 1623 unsigned long mem_cgroup_size(struct mem_cgroup *memcg) 1624 { 1625 return page_counter_read(&memcg->memory); 1626 } 1627 1628 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1629 int order) 1630 { 1631 struct oom_control oc = { 1632 .zonelist = NULL, 1633 .nodemask = NULL, 1634 .memcg = memcg, 1635 .gfp_mask = gfp_mask, 1636 .order = order, 1637 }; 1638 bool ret = true; 1639 1640 if (mutex_lock_killable(&oom_lock)) 1641 return true; 1642 1643 if (mem_cgroup_margin(memcg) >= (1 << order)) 1644 goto unlock; 1645 1646 /* 1647 * A few threads which were not waiting at mutex_lock_killable() can 1648 * fail to bail out. Therefore, check again after holding oom_lock. 1649 */ 1650 ret = task_is_dying() || out_of_memory(&oc); 1651 1652 unlock: 1653 mutex_unlock(&oom_lock); 1654 return ret; 1655 } 1656 1657 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, 1658 pg_data_t *pgdat, 1659 gfp_t gfp_mask, 1660 unsigned long *total_scanned) 1661 { 1662 struct mem_cgroup *victim = NULL; 1663 int total = 0; 1664 int loop = 0; 1665 unsigned long excess; 1666 unsigned long nr_scanned; 1667 struct mem_cgroup_reclaim_cookie reclaim = { 1668 .pgdat = pgdat, 1669 }; 1670 1671 excess = soft_limit_excess(root_memcg); 1672 1673 while (1) { 1674 victim = mem_cgroup_iter(root_memcg, victim, &reclaim); 1675 if (!victim) { 1676 loop++; 1677 if (loop >= 2) { 1678 /* 1679 * If we have not been able to reclaim 1680 * anything, it might because there are 1681 * no reclaimable pages under this hierarchy 1682 */ 1683 if (!total) 1684 break; 1685 /* 1686 * We want to do more targeted reclaim. 1687 * excess >> 2 is not to excessive so as to 1688 * reclaim too much, nor too less that we keep 1689 * coming back to reclaim from this cgroup 1690 */ 1691 if (total >= (excess >> 2) || 1692 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) 1693 break; 1694 } 1695 continue; 1696 } 1697 total += mem_cgroup_shrink_node(victim, gfp_mask, false, 1698 pgdat, &nr_scanned); 1699 *total_scanned += nr_scanned; 1700 if (!soft_limit_excess(root_memcg)) 1701 break; 1702 } 1703 mem_cgroup_iter_break(root_memcg, victim); 1704 return total; 1705 } 1706 1707 #ifdef CONFIG_LOCKDEP 1708 static struct lockdep_map memcg_oom_lock_dep_map = { 1709 .name = "memcg_oom_lock", 1710 }; 1711 #endif 1712 1713 static DEFINE_SPINLOCK(memcg_oom_lock); 1714 1715 /* 1716 * Check OOM-Killer is already running under our hierarchy. 1717 * If someone is running, return false. 1718 */ 1719 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) 1720 { 1721 struct mem_cgroup *iter, *failed = NULL; 1722 1723 spin_lock(&memcg_oom_lock); 1724 1725 for_each_mem_cgroup_tree(iter, memcg) { 1726 if (iter->oom_lock) { 1727 /* 1728 * this subtree of our hierarchy is already locked 1729 * so we cannot give a lock. 1730 */ 1731 failed = iter; 1732 mem_cgroup_iter_break(memcg, iter); 1733 break; 1734 } else 1735 iter->oom_lock = true; 1736 } 1737 1738 if (failed) { 1739 /* 1740 * OK, we failed to lock the whole subtree so we have 1741 * to clean up what we set up to the failing subtree 1742 */ 1743 for_each_mem_cgroup_tree(iter, memcg) { 1744 if (iter == failed) { 1745 mem_cgroup_iter_break(memcg, iter); 1746 break; 1747 } 1748 iter->oom_lock = false; 1749 } 1750 } else 1751 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); 1752 1753 spin_unlock(&memcg_oom_lock); 1754 1755 return !failed; 1756 } 1757 1758 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 1759 { 1760 struct mem_cgroup *iter; 1761 1762 spin_lock(&memcg_oom_lock); 1763 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_); 1764 for_each_mem_cgroup_tree(iter, memcg) 1765 iter->oom_lock = false; 1766 spin_unlock(&memcg_oom_lock); 1767 } 1768 1769 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 1770 { 1771 struct mem_cgroup *iter; 1772 1773 spin_lock(&memcg_oom_lock); 1774 for_each_mem_cgroup_tree(iter, memcg) 1775 iter->under_oom++; 1776 spin_unlock(&memcg_oom_lock); 1777 } 1778 1779 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 1780 { 1781 struct mem_cgroup *iter; 1782 1783 /* 1784 * Be careful about under_oom underflows because a child memcg 1785 * could have been added after mem_cgroup_mark_under_oom. 1786 */ 1787 spin_lock(&memcg_oom_lock); 1788 for_each_mem_cgroup_tree(iter, memcg) 1789 if (iter->under_oom > 0) 1790 iter->under_oom--; 1791 spin_unlock(&memcg_oom_lock); 1792 } 1793 1794 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 1795 1796 struct oom_wait_info { 1797 struct mem_cgroup *memcg; 1798 wait_queue_entry_t wait; 1799 }; 1800 1801 static int memcg_oom_wake_function(wait_queue_entry_t *wait, 1802 unsigned mode, int sync, void *arg) 1803 { 1804 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; 1805 struct mem_cgroup *oom_wait_memcg; 1806 struct oom_wait_info *oom_wait_info; 1807 1808 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 1809 oom_wait_memcg = oom_wait_info->memcg; 1810 1811 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) && 1812 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg)) 1813 return 0; 1814 return autoremove_wake_function(wait, mode, sync, arg); 1815 } 1816 1817 static void memcg_oom_recover(struct mem_cgroup *memcg) 1818 { 1819 /* 1820 * For the following lockless ->under_oom test, the only required 1821 * guarantee is that it must see the state asserted by an OOM when 1822 * this function is called as a result of userland actions 1823 * triggered by the notification of the OOM. This is trivially 1824 * achieved by invoking mem_cgroup_mark_under_oom() before 1825 * triggering notification. 1826 */ 1827 if (memcg && memcg->under_oom) 1828 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 1829 } 1830 1831 /* 1832 * Returns true if successfully killed one or more processes. Though in some 1833 * corner cases it can return true even without killing any process. 1834 */ 1835 static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 1836 { 1837 bool locked, ret; 1838 1839 if (order > PAGE_ALLOC_COSTLY_ORDER) 1840 return false; 1841 1842 memcg_memory_event(memcg, MEMCG_OOM); 1843 1844 /* 1845 * We are in the middle of the charge context here, so we 1846 * don't want to block when potentially sitting on a callstack 1847 * that holds all kinds of filesystem and mm locks. 1848 * 1849 * cgroup1 allows disabling the OOM killer and waiting for outside 1850 * handling until the charge can succeed; remember the context and put 1851 * the task to sleep at the end of the page fault when all locks are 1852 * released. 1853 * 1854 * On the other hand, in-kernel OOM killer allows for an async victim 1855 * memory reclaim (oom_reaper) and that means that we are not solely 1856 * relying on the oom victim to make a forward progress and we can 1857 * invoke the oom killer here. 1858 * 1859 * Please note that mem_cgroup_out_of_memory might fail to find a 1860 * victim and then we have to bail out from the charge path. 1861 */ 1862 if (memcg->oom_kill_disable) { 1863 if (current->in_user_fault) { 1864 css_get(&memcg->css); 1865 current->memcg_in_oom = memcg; 1866 current->memcg_oom_gfp_mask = mask; 1867 current->memcg_oom_order = order; 1868 } 1869 return false; 1870 } 1871 1872 mem_cgroup_mark_under_oom(memcg); 1873 1874 locked = mem_cgroup_oom_trylock(memcg); 1875 1876 if (locked) 1877 mem_cgroup_oom_notify(memcg); 1878 1879 mem_cgroup_unmark_under_oom(memcg); 1880 ret = mem_cgroup_out_of_memory(memcg, mask, order); 1881 1882 if (locked) 1883 mem_cgroup_oom_unlock(memcg); 1884 1885 return ret; 1886 } 1887 1888 /** 1889 * mem_cgroup_oom_synchronize - complete memcg OOM handling 1890 * @handle: actually kill/wait or just clean up the OOM state 1891 * 1892 * This has to be called at the end of a page fault if the memcg OOM 1893 * handler was enabled. 1894 * 1895 * Memcg supports userspace OOM handling where failed allocations must 1896 * sleep on a waitqueue until the userspace task resolves the 1897 * situation. Sleeping directly in the charge context with all kinds 1898 * of locks held is not a good idea, instead we remember an OOM state 1899 * in the task and mem_cgroup_oom_synchronize() has to be called at 1900 * the end of the page fault to complete the OOM handling. 1901 * 1902 * Returns %true if an ongoing memcg OOM situation was detected and 1903 * completed, %false otherwise. 1904 */ 1905 bool mem_cgroup_oom_synchronize(bool handle) 1906 { 1907 struct mem_cgroup *memcg = current->memcg_in_oom; 1908 struct oom_wait_info owait; 1909 bool locked; 1910 1911 /* OOM is global, do not handle */ 1912 if (!memcg) 1913 return false; 1914 1915 if (!handle) 1916 goto cleanup; 1917 1918 owait.memcg = memcg; 1919 owait.wait.flags = 0; 1920 owait.wait.func = memcg_oom_wake_function; 1921 owait.wait.private = current; 1922 INIT_LIST_HEAD(&owait.wait.entry); 1923 1924 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 1925 mem_cgroup_mark_under_oom(memcg); 1926 1927 locked = mem_cgroup_oom_trylock(memcg); 1928 1929 if (locked) 1930 mem_cgroup_oom_notify(memcg); 1931 1932 if (locked && !memcg->oom_kill_disable) { 1933 mem_cgroup_unmark_under_oom(memcg); 1934 finish_wait(&memcg_oom_waitq, &owait.wait); 1935 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask, 1936 current->memcg_oom_order); 1937 } else { 1938 schedule(); 1939 mem_cgroup_unmark_under_oom(memcg); 1940 finish_wait(&memcg_oom_waitq, &owait.wait); 1941 } 1942 1943 if (locked) { 1944 mem_cgroup_oom_unlock(memcg); 1945 /* 1946 * There is no guarantee that an OOM-lock contender 1947 * sees the wakeups triggered by the OOM kill 1948 * uncharges. Wake any sleepers explicitly. 1949 */ 1950 memcg_oom_recover(memcg); 1951 } 1952 cleanup: 1953 current->memcg_in_oom = NULL; 1954 css_put(&memcg->css); 1955 return true; 1956 } 1957 1958 /** 1959 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM 1960 * @victim: task to be killed by the OOM killer 1961 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM 1962 * 1963 * Returns a pointer to a memory cgroup, which has to be cleaned up 1964 * by killing all belonging OOM-killable tasks. 1965 * 1966 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg. 1967 */ 1968 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 1969 struct mem_cgroup *oom_domain) 1970 { 1971 struct mem_cgroup *oom_group = NULL; 1972 struct mem_cgroup *memcg; 1973 1974 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1975 return NULL; 1976 1977 if (!oom_domain) 1978 oom_domain = root_mem_cgroup; 1979 1980 rcu_read_lock(); 1981 1982 memcg = mem_cgroup_from_task(victim); 1983 if (memcg == root_mem_cgroup) 1984 goto out; 1985 1986 /* 1987 * If the victim task has been asynchronously moved to a different 1988 * memory cgroup, we might end up killing tasks outside oom_domain. 1989 * In this case it's better to ignore memory.group.oom. 1990 */ 1991 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain))) 1992 goto out; 1993 1994 /* 1995 * Traverse the memory cgroup hierarchy from the victim task's 1996 * cgroup up to the OOMing cgroup (or root) to find the 1997 * highest-level memory cgroup with oom.group set. 1998 */ 1999 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 2000 if (memcg->oom_group) 2001 oom_group = memcg; 2002 2003 if (memcg == oom_domain) 2004 break; 2005 } 2006 2007 if (oom_group) 2008 css_get(&oom_group->css); 2009 out: 2010 rcu_read_unlock(); 2011 2012 return oom_group; 2013 } 2014 2015 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 2016 { 2017 pr_info("Tasks in "); 2018 pr_cont_cgroup_path(memcg->css.cgroup); 2019 pr_cont(" are going to be killed due to memory.oom.group set\n"); 2020 } 2021 2022 /** 2023 * folio_memcg_lock - Bind a folio to its memcg. 2024 * @folio: The folio. 2025 * 2026 * This function prevents unlocked LRU folios from being moved to 2027 * another cgroup. 2028 * 2029 * It ensures lifetime of the bound memcg. The caller is responsible 2030 * for the lifetime of the folio. 2031 */ 2032 void folio_memcg_lock(struct folio *folio) 2033 { 2034 struct mem_cgroup *memcg; 2035 unsigned long flags; 2036 2037 /* 2038 * The RCU lock is held throughout the transaction. The fast 2039 * path can get away without acquiring the memcg->move_lock 2040 * because page moving starts with an RCU grace period. 2041 */ 2042 rcu_read_lock(); 2043 2044 if (mem_cgroup_disabled()) 2045 return; 2046 again: 2047 memcg = folio_memcg(folio); 2048 if (unlikely(!memcg)) 2049 return; 2050 2051 #ifdef CONFIG_PROVE_LOCKING 2052 local_irq_save(flags); 2053 might_lock(&memcg->move_lock); 2054 local_irq_restore(flags); 2055 #endif 2056 2057 if (atomic_read(&memcg->moving_account) <= 0) 2058 return; 2059 2060 spin_lock_irqsave(&memcg->move_lock, flags); 2061 if (memcg != folio_memcg(folio)) { 2062 spin_unlock_irqrestore(&memcg->move_lock, flags); 2063 goto again; 2064 } 2065 2066 /* 2067 * When charge migration first begins, we can have multiple 2068 * critical sections holding the fast-path RCU lock and one 2069 * holding the slowpath move_lock. Track the task who has the 2070 * move_lock for unlock_page_memcg(). 2071 */ 2072 memcg->move_lock_task = current; 2073 memcg->move_lock_flags = flags; 2074 } 2075 2076 void lock_page_memcg(struct page *page) 2077 { 2078 folio_memcg_lock(page_folio(page)); 2079 } 2080 2081 static void __folio_memcg_unlock(struct mem_cgroup *memcg) 2082 { 2083 if (memcg && memcg->move_lock_task == current) { 2084 unsigned long flags = memcg->move_lock_flags; 2085 2086 memcg->move_lock_task = NULL; 2087 memcg->move_lock_flags = 0; 2088 2089 spin_unlock_irqrestore(&memcg->move_lock, flags); 2090 } 2091 2092 rcu_read_unlock(); 2093 } 2094 2095 /** 2096 * folio_memcg_unlock - Release the binding between a folio and its memcg. 2097 * @folio: The folio. 2098 * 2099 * This releases the binding created by folio_memcg_lock(). This does 2100 * not change the accounting of this folio to its memcg, but it does 2101 * permit others to change it. 2102 */ 2103 void folio_memcg_unlock(struct folio *folio) 2104 { 2105 __folio_memcg_unlock(folio_memcg(folio)); 2106 } 2107 2108 void unlock_page_memcg(struct page *page) 2109 { 2110 folio_memcg_unlock(page_folio(page)); 2111 } 2112 2113 struct memcg_stock_pcp { 2114 local_lock_t stock_lock; 2115 struct mem_cgroup *cached; /* this never be root cgroup */ 2116 unsigned int nr_pages; 2117 2118 #ifdef CONFIG_MEMCG_KMEM 2119 struct obj_cgroup *cached_objcg; 2120 struct pglist_data *cached_pgdat; 2121 unsigned int nr_bytes; 2122 int nr_slab_reclaimable_b; 2123 int nr_slab_unreclaimable_b; 2124 #endif 2125 2126 struct work_struct work; 2127 unsigned long flags; 2128 #define FLUSHING_CACHED_CHARGE 0 2129 }; 2130 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = { 2131 .stock_lock = INIT_LOCAL_LOCK(stock_lock), 2132 }; 2133 static DEFINE_MUTEX(percpu_charge_mutex); 2134 2135 #ifdef CONFIG_MEMCG_KMEM 2136 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock); 2137 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 2138 struct mem_cgroup *root_memcg); 2139 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages); 2140 2141 #else 2142 static inline struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock) 2143 { 2144 return NULL; 2145 } 2146 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 2147 struct mem_cgroup *root_memcg) 2148 { 2149 return false; 2150 } 2151 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages) 2152 { 2153 } 2154 #endif 2155 2156 /** 2157 * consume_stock: Try to consume stocked charge on this cpu. 2158 * @memcg: memcg to consume from. 2159 * @nr_pages: how many pages to charge. 2160 * 2161 * The charges will only happen if @memcg matches the current cpu's memcg 2162 * stock, and at least @nr_pages are available in that stock. Failure to 2163 * service an allocation will refill the stock. 2164 * 2165 * returns true if successful, false otherwise. 2166 */ 2167 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2168 { 2169 struct memcg_stock_pcp *stock; 2170 unsigned long flags; 2171 bool ret = false; 2172 2173 if (nr_pages > MEMCG_CHARGE_BATCH) 2174 return ret; 2175 2176 local_lock_irqsave(&memcg_stock.stock_lock, flags); 2177 2178 stock = this_cpu_ptr(&memcg_stock); 2179 if (memcg == stock->cached && stock->nr_pages >= nr_pages) { 2180 stock->nr_pages -= nr_pages; 2181 ret = true; 2182 } 2183 2184 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 2185 2186 return ret; 2187 } 2188 2189 /* 2190 * Returns stocks cached in percpu and reset cached information. 2191 */ 2192 static void drain_stock(struct memcg_stock_pcp *stock) 2193 { 2194 struct mem_cgroup *old = stock->cached; 2195 2196 if (!old) 2197 return; 2198 2199 if (stock->nr_pages) { 2200 page_counter_uncharge(&old->memory, stock->nr_pages); 2201 if (do_memsw_account()) 2202 page_counter_uncharge(&old->memsw, stock->nr_pages); 2203 stock->nr_pages = 0; 2204 } 2205 2206 css_put(&old->css); 2207 stock->cached = NULL; 2208 } 2209 2210 static void drain_local_stock(struct work_struct *dummy) 2211 { 2212 struct memcg_stock_pcp *stock; 2213 struct obj_cgroup *old = NULL; 2214 unsigned long flags; 2215 2216 /* 2217 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs. 2218 * drain_stock races is that we always operate on local CPU stock 2219 * here with IRQ disabled 2220 */ 2221 local_lock_irqsave(&memcg_stock.stock_lock, flags); 2222 2223 stock = this_cpu_ptr(&memcg_stock); 2224 old = drain_obj_stock(stock); 2225 drain_stock(stock); 2226 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 2227 2228 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 2229 if (old) 2230 obj_cgroup_put(old); 2231 } 2232 2233 /* 2234 * Cache charges(val) to local per_cpu area. 2235 * This will be consumed by consume_stock() function, later. 2236 */ 2237 static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2238 { 2239 struct memcg_stock_pcp *stock; 2240 2241 stock = this_cpu_ptr(&memcg_stock); 2242 if (stock->cached != memcg) { /* reset if necessary */ 2243 drain_stock(stock); 2244 css_get(&memcg->css); 2245 stock->cached = memcg; 2246 } 2247 stock->nr_pages += nr_pages; 2248 2249 if (stock->nr_pages > MEMCG_CHARGE_BATCH) 2250 drain_stock(stock); 2251 } 2252 2253 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2254 { 2255 unsigned long flags; 2256 2257 local_lock_irqsave(&memcg_stock.stock_lock, flags); 2258 __refill_stock(memcg, nr_pages); 2259 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 2260 } 2261 2262 /* 2263 * Drains all per-CPU charge caches for given root_memcg resp. subtree 2264 * of the hierarchy under it. 2265 */ 2266 static void drain_all_stock(struct mem_cgroup *root_memcg) 2267 { 2268 int cpu, curcpu; 2269 2270 /* If someone's already draining, avoid adding running more workers. */ 2271 if (!mutex_trylock(&percpu_charge_mutex)) 2272 return; 2273 /* 2274 * Notify other cpus that system-wide "drain" is running 2275 * We do not care about races with the cpu hotplug because cpu down 2276 * as well as workers from this path always operate on the local 2277 * per-cpu data. CPU up doesn't touch memcg_stock at all. 2278 */ 2279 migrate_disable(); 2280 curcpu = smp_processor_id(); 2281 for_each_online_cpu(cpu) { 2282 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2283 struct mem_cgroup *memcg; 2284 bool flush = false; 2285 2286 rcu_read_lock(); 2287 memcg = stock->cached; 2288 if (memcg && stock->nr_pages && 2289 mem_cgroup_is_descendant(memcg, root_memcg)) 2290 flush = true; 2291 else if (obj_stock_flush_required(stock, root_memcg)) 2292 flush = true; 2293 rcu_read_unlock(); 2294 2295 if (flush && 2296 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 2297 if (cpu == curcpu) 2298 drain_local_stock(&stock->work); 2299 else 2300 schedule_work_on(cpu, &stock->work); 2301 } 2302 } 2303 migrate_enable(); 2304 mutex_unlock(&percpu_charge_mutex); 2305 } 2306 2307 static int memcg_hotplug_cpu_dead(unsigned int cpu) 2308 { 2309 struct memcg_stock_pcp *stock; 2310 2311 stock = &per_cpu(memcg_stock, cpu); 2312 drain_stock(stock); 2313 2314 return 0; 2315 } 2316 2317 static unsigned long reclaim_high(struct mem_cgroup *memcg, 2318 unsigned int nr_pages, 2319 gfp_t gfp_mask) 2320 { 2321 unsigned long nr_reclaimed = 0; 2322 2323 do { 2324 unsigned long pflags; 2325 2326 if (page_counter_read(&memcg->memory) <= 2327 READ_ONCE(memcg->memory.high)) 2328 continue; 2329 2330 memcg_memory_event(memcg, MEMCG_HIGH); 2331 2332 psi_memstall_enter(&pflags); 2333 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages, 2334 gfp_mask, true); 2335 psi_memstall_leave(&pflags); 2336 } while ((memcg = parent_mem_cgroup(memcg)) && 2337 !mem_cgroup_is_root(memcg)); 2338 2339 return nr_reclaimed; 2340 } 2341 2342 static void high_work_func(struct work_struct *work) 2343 { 2344 struct mem_cgroup *memcg; 2345 2346 memcg = container_of(work, struct mem_cgroup, high_work); 2347 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL); 2348 } 2349 2350 /* 2351 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is 2352 * enough to still cause a significant slowdown in most cases, while still 2353 * allowing diagnostics and tracing to proceed without becoming stuck. 2354 */ 2355 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ) 2356 2357 /* 2358 * When calculating the delay, we use these either side of the exponentiation to 2359 * maintain precision and scale to a reasonable number of jiffies (see the table 2360 * below. 2361 * 2362 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the 2363 * overage ratio to a delay. 2364 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the 2365 * proposed penalty in order to reduce to a reasonable number of jiffies, and 2366 * to produce a reasonable delay curve. 2367 * 2368 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a 2369 * reasonable delay curve compared to precision-adjusted overage, not 2370 * penalising heavily at first, but still making sure that growth beyond the 2371 * limit penalises misbehaviour cgroups by slowing them down exponentially. For 2372 * example, with a high of 100 megabytes: 2373 * 2374 * +-------+------------------------+ 2375 * | usage | time to allocate in ms | 2376 * +-------+------------------------+ 2377 * | 100M | 0 | 2378 * | 101M | 6 | 2379 * | 102M | 25 | 2380 * | 103M | 57 | 2381 * | 104M | 102 | 2382 * | 105M | 159 | 2383 * | 106M | 230 | 2384 * | 107M | 313 | 2385 * | 108M | 409 | 2386 * | 109M | 518 | 2387 * | 110M | 639 | 2388 * | 111M | 774 | 2389 * | 112M | 921 | 2390 * | 113M | 1081 | 2391 * | 114M | 1254 | 2392 * | 115M | 1439 | 2393 * | 116M | 1638 | 2394 * | 117M | 1849 | 2395 * | 118M | 2000 | 2396 * | 119M | 2000 | 2397 * | 120M | 2000 | 2398 * +-------+------------------------+ 2399 */ 2400 #define MEMCG_DELAY_PRECISION_SHIFT 20 2401 #define MEMCG_DELAY_SCALING_SHIFT 14 2402 2403 static u64 calculate_overage(unsigned long usage, unsigned long high) 2404 { 2405 u64 overage; 2406 2407 if (usage <= high) 2408 return 0; 2409 2410 /* 2411 * Prevent division by 0 in overage calculation by acting as if 2412 * it was a threshold of 1 page 2413 */ 2414 high = max(high, 1UL); 2415 2416 overage = usage - high; 2417 overage <<= MEMCG_DELAY_PRECISION_SHIFT; 2418 return div64_u64(overage, high); 2419 } 2420 2421 static u64 mem_find_max_overage(struct mem_cgroup *memcg) 2422 { 2423 u64 overage, max_overage = 0; 2424 2425 do { 2426 overage = calculate_overage(page_counter_read(&memcg->memory), 2427 READ_ONCE(memcg->memory.high)); 2428 max_overage = max(overage, max_overage); 2429 } while ((memcg = parent_mem_cgroup(memcg)) && 2430 !mem_cgroup_is_root(memcg)); 2431 2432 return max_overage; 2433 } 2434 2435 static u64 swap_find_max_overage(struct mem_cgroup *memcg) 2436 { 2437 u64 overage, max_overage = 0; 2438 2439 do { 2440 overage = calculate_overage(page_counter_read(&memcg->swap), 2441 READ_ONCE(memcg->swap.high)); 2442 if (overage) 2443 memcg_memory_event(memcg, MEMCG_SWAP_HIGH); 2444 max_overage = max(overage, max_overage); 2445 } while ((memcg = parent_mem_cgroup(memcg)) && 2446 !mem_cgroup_is_root(memcg)); 2447 2448 return max_overage; 2449 } 2450 2451 /* 2452 * Get the number of jiffies that we should penalise a mischievous cgroup which 2453 * is exceeding its memory.high by checking both it and its ancestors. 2454 */ 2455 static unsigned long calculate_high_delay(struct mem_cgroup *memcg, 2456 unsigned int nr_pages, 2457 u64 max_overage) 2458 { 2459 unsigned long penalty_jiffies; 2460 2461 if (!max_overage) 2462 return 0; 2463 2464 /* 2465 * We use overage compared to memory.high to calculate the number of 2466 * jiffies to sleep (penalty_jiffies). Ideally this value should be 2467 * fairly lenient on small overages, and increasingly harsh when the 2468 * memcg in question makes it clear that it has no intention of stopping 2469 * its crazy behaviour, so we exponentially increase the delay based on 2470 * overage amount. 2471 */ 2472 penalty_jiffies = max_overage * max_overage * HZ; 2473 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT; 2474 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT; 2475 2476 /* 2477 * Factor in the task's own contribution to the overage, such that four 2478 * N-sized allocations are throttled approximately the same as one 2479 * 4N-sized allocation. 2480 * 2481 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or 2482 * larger the current charge patch is than that. 2483 */ 2484 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH; 2485 } 2486 2487 /* 2488 * Scheduled by try_charge() to be executed from the userland return path 2489 * and reclaims memory over the high limit. 2490 */ 2491 void mem_cgroup_handle_over_high(void) 2492 { 2493 unsigned long penalty_jiffies; 2494 unsigned long pflags; 2495 unsigned long nr_reclaimed; 2496 unsigned int nr_pages = current->memcg_nr_pages_over_high; 2497 int nr_retries = MAX_RECLAIM_RETRIES; 2498 struct mem_cgroup *memcg; 2499 bool in_retry = false; 2500 2501 if (likely(!nr_pages)) 2502 return; 2503 2504 memcg = get_mem_cgroup_from_mm(current->mm); 2505 current->memcg_nr_pages_over_high = 0; 2506 2507 retry_reclaim: 2508 /* 2509 * The allocating task should reclaim at least the batch size, but for 2510 * subsequent retries we only want to do what's necessary to prevent oom 2511 * or breaching resource isolation. 2512 * 2513 * This is distinct from memory.max or page allocator behaviour because 2514 * memory.high is currently batched, whereas memory.max and the page 2515 * allocator run every time an allocation is made. 2516 */ 2517 nr_reclaimed = reclaim_high(memcg, 2518 in_retry ? SWAP_CLUSTER_MAX : nr_pages, 2519 GFP_KERNEL); 2520 2521 /* 2522 * memory.high is breached and reclaim is unable to keep up. Throttle 2523 * allocators proactively to slow down excessive growth. 2524 */ 2525 penalty_jiffies = calculate_high_delay(memcg, nr_pages, 2526 mem_find_max_overage(memcg)); 2527 2528 penalty_jiffies += calculate_high_delay(memcg, nr_pages, 2529 swap_find_max_overage(memcg)); 2530 2531 /* 2532 * Clamp the max delay per usermode return so as to still keep the 2533 * application moving forwards and also permit diagnostics, albeit 2534 * extremely slowly. 2535 */ 2536 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES); 2537 2538 /* 2539 * Don't sleep if the amount of jiffies this memcg owes us is so low 2540 * that it's not even worth doing, in an attempt to be nice to those who 2541 * go only a small amount over their memory.high value and maybe haven't 2542 * been aggressively reclaimed enough yet. 2543 */ 2544 if (penalty_jiffies <= HZ / 100) 2545 goto out; 2546 2547 /* 2548 * If reclaim is making forward progress but we're still over 2549 * memory.high, we want to encourage that rather than doing allocator 2550 * throttling. 2551 */ 2552 if (nr_reclaimed || nr_retries--) { 2553 in_retry = true; 2554 goto retry_reclaim; 2555 } 2556 2557 /* 2558 * If we exit early, we're guaranteed to die (since 2559 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't 2560 * need to account for any ill-begotten jiffies to pay them off later. 2561 */ 2562 psi_memstall_enter(&pflags); 2563 schedule_timeout_killable(penalty_jiffies); 2564 psi_memstall_leave(&pflags); 2565 2566 out: 2567 css_put(&memcg->css); 2568 } 2569 2570 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask, 2571 unsigned int nr_pages) 2572 { 2573 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages); 2574 int nr_retries = MAX_RECLAIM_RETRIES; 2575 struct mem_cgroup *mem_over_limit; 2576 struct page_counter *counter; 2577 unsigned long nr_reclaimed; 2578 bool passed_oom = false; 2579 bool may_swap = true; 2580 bool drained = false; 2581 unsigned long pflags; 2582 2583 retry: 2584 if (consume_stock(memcg, nr_pages)) 2585 return 0; 2586 2587 if (!do_memsw_account() || 2588 page_counter_try_charge(&memcg->memsw, batch, &counter)) { 2589 if (page_counter_try_charge(&memcg->memory, batch, &counter)) 2590 goto done_restock; 2591 if (do_memsw_account()) 2592 page_counter_uncharge(&memcg->memsw, batch); 2593 mem_over_limit = mem_cgroup_from_counter(counter, memory); 2594 } else { 2595 mem_over_limit = mem_cgroup_from_counter(counter, memsw); 2596 may_swap = false; 2597 } 2598 2599 if (batch > nr_pages) { 2600 batch = nr_pages; 2601 goto retry; 2602 } 2603 2604 /* 2605 * Prevent unbounded recursion when reclaim operations need to 2606 * allocate memory. This might exceed the limits temporarily, 2607 * but we prefer facilitating memory reclaim and getting back 2608 * under the limit over triggering OOM kills in these cases. 2609 */ 2610 if (unlikely(current->flags & PF_MEMALLOC)) 2611 goto force; 2612 2613 if (unlikely(task_in_memcg_oom(current))) 2614 goto nomem; 2615 2616 if (!gfpflags_allow_blocking(gfp_mask)) 2617 goto nomem; 2618 2619 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2620 2621 psi_memstall_enter(&pflags); 2622 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, 2623 gfp_mask, may_swap); 2624 psi_memstall_leave(&pflags); 2625 2626 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2627 goto retry; 2628 2629 if (!drained) { 2630 drain_all_stock(mem_over_limit); 2631 drained = true; 2632 goto retry; 2633 } 2634 2635 if (gfp_mask & __GFP_NORETRY) 2636 goto nomem; 2637 /* 2638 * Even though the limit is exceeded at this point, reclaim 2639 * may have been able to free some pages. Retry the charge 2640 * before killing the task. 2641 * 2642 * Only for regular pages, though: huge pages are rather 2643 * unlikely to succeed so close to the limit, and we fall back 2644 * to regular pages anyway in case of failure. 2645 */ 2646 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) 2647 goto retry; 2648 /* 2649 * At task move, charge accounts can be doubly counted. So, it's 2650 * better to wait until the end of task_move if something is going on. 2651 */ 2652 if (mem_cgroup_wait_acct_move(mem_over_limit)) 2653 goto retry; 2654 2655 if (nr_retries--) 2656 goto retry; 2657 2658 if (gfp_mask & __GFP_RETRY_MAYFAIL) 2659 goto nomem; 2660 2661 /* Avoid endless loop for tasks bypassed by the oom killer */ 2662 if (passed_oom && task_is_dying()) 2663 goto nomem; 2664 2665 /* 2666 * keep retrying as long as the memcg oom killer is able to make 2667 * a forward progress or bypass the charge if the oom killer 2668 * couldn't make any progress. 2669 */ 2670 if (mem_cgroup_oom(mem_over_limit, gfp_mask, 2671 get_order(nr_pages * PAGE_SIZE))) { 2672 passed_oom = true; 2673 nr_retries = MAX_RECLAIM_RETRIES; 2674 goto retry; 2675 } 2676 nomem: 2677 /* 2678 * Memcg doesn't have a dedicated reserve for atomic 2679 * allocations. But like the global atomic pool, we need to 2680 * put the burden of reclaim on regular allocation requests 2681 * and let these go through as privileged allocations. 2682 */ 2683 if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH))) 2684 return -ENOMEM; 2685 force: 2686 /* 2687 * The allocation either can't fail or will lead to more memory 2688 * being freed very soon. Allow memory usage go over the limit 2689 * temporarily by force charging it. 2690 */ 2691 page_counter_charge(&memcg->memory, nr_pages); 2692 if (do_memsw_account()) 2693 page_counter_charge(&memcg->memsw, nr_pages); 2694 2695 return 0; 2696 2697 done_restock: 2698 if (batch > nr_pages) 2699 refill_stock(memcg, batch - nr_pages); 2700 2701 /* 2702 * If the hierarchy is above the normal consumption range, schedule 2703 * reclaim on returning to userland. We can perform reclaim here 2704 * if __GFP_RECLAIM but let's always punt for simplicity and so that 2705 * GFP_KERNEL can consistently be used during reclaim. @memcg is 2706 * not recorded as it most likely matches current's and won't 2707 * change in the meantime. As high limit is checked again before 2708 * reclaim, the cost of mismatch is negligible. 2709 */ 2710 do { 2711 bool mem_high, swap_high; 2712 2713 mem_high = page_counter_read(&memcg->memory) > 2714 READ_ONCE(memcg->memory.high); 2715 swap_high = page_counter_read(&memcg->swap) > 2716 READ_ONCE(memcg->swap.high); 2717 2718 /* Don't bother a random interrupted task */ 2719 if (!in_task()) { 2720 if (mem_high) { 2721 schedule_work(&memcg->high_work); 2722 break; 2723 } 2724 continue; 2725 } 2726 2727 if (mem_high || swap_high) { 2728 /* 2729 * The allocating tasks in this cgroup will need to do 2730 * reclaim or be throttled to prevent further growth 2731 * of the memory or swap footprints. 2732 * 2733 * Target some best-effort fairness between the tasks, 2734 * and distribute reclaim work and delay penalties 2735 * based on how much each task is actually allocating. 2736 */ 2737 current->memcg_nr_pages_over_high += batch; 2738 set_notify_resume(current); 2739 break; 2740 } 2741 } while ((memcg = parent_mem_cgroup(memcg))); 2742 2743 if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH && 2744 !(current->flags & PF_MEMALLOC) && 2745 gfpflags_allow_blocking(gfp_mask)) { 2746 mem_cgroup_handle_over_high(); 2747 } 2748 return 0; 2749 } 2750 2751 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 2752 unsigned int nr_pages) 2753 { 2754 if (mem_cgroup_is_root(memcg)) 2755 return 0; 2756 2757 return try_charge_memcg(memcg, gfp_mask, nr_pages); 2758 } 2759 2760 static inline void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages) 2761 { 2762 if (mem_cgroup_is_root(memcg)) 2763 return; 2764 2765 page_counter_uncharge(&memcg->memory, nr_pages); 2766 if (do_memsw_account()) 2767 page_counter_uncharge(&memcg->memsw, nr_pages); 2768 } 2769 2770 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg) 2771 { 2772 VM_BUG_ON_FOLIO(folio_memcg(folio), folio); 2773 /* 2774 * Any of the following ensures page's memcg stability: 2775 * 2776 * - the page lock 2777 * - LRU isolation 2778 * - lock_page_memcg() 2779 * - exclusive reference 2780 */ 2781 folio->memcg_data = (unsigned long)memcg; 2782 } 2783 2784 #ifdef CONFIG_MEMCG_KMEM 2785 /* 2786 * The allocated objcg pointers array is not accounted directly. 2787 * Moreover, it should not come from DMA buffer and is not readily 2788 * reclaimable. So those GFP bits should be masked off. 2789 */ 2790 #define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT) 2791 2792 /* 2793 * mod_objcg_mlstate() may be called with irq enabled, so 2794 * mod_memcg_lruvec_state() should be used. 2795 */ 2796 static inline void mod_objcg_mlstate(struct obj_cgroup *objcg, 2797 struct pglist_data *pgdat, 2798 enum node_stat_item idx, int nr) 2799 { 2800 struct mem_cgroup *memcg; 2801 struct lruvec *lruvec; 2802 2803 rcu_read_lock(); 2804 memcg = obj_cgroup_memcg(objcg); 2805 lruvec = mem_cgroup_lruvec(memcg, pgdat); 2806 mod_memcg_lruvec_state(lruvec, idx, nr); 2807 rcu_read_unlock(); 2808 } 2809 2810 int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s, 2811 gfp_t gfp, bool new_slab) 2812 { 2813 unsigned int objects = objs_per_slab(s, slab); 2814 unsigned long memcg_data; 2815 void *vec; 2816 2817 gfp &= ~OBJCGS_CLEAR_MASK; 2818 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp, 2819 slab_nid(slab)); 2820 if (!vec) 2821 return -ENOMEM; 2822 2823 memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS; 2824 if (new_slab) { 2825 /* 2826 * If the slab is brand new and nobody can yet access its 2827 * memcg_data, no synchronization is required and memcg_data can 2828 * be simply assigned. 2829 */ 2830 slab->memcg_data = memcg_data; 2831 } else if (cmpxchg(&slab->memcg_data, 0, memcg_data)) { 2832 /* 2833 * If the slab is already in use, somebody can allocate and 2834 * assign obj_cgroups in parallel. In this case the existing 2835 * objcg vector should be reused. 2836 */ 2837 kfree(vec); 2838 return 0; 2839 } 2840 2841 kmemleak_not_leak(vec); 2842 return 0; 2843 } 2844 2845 /* 2846 * Returns a pointer to the memory cgroup to which the kernel object is charged. 2847 * 2848 * A passed kernel object can be a slab object or a generic kernel page, so 2849 * different mechanisms for getting the memory cgroup pointer should be used. 2850 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller 2851 * can not know for sure how the kernel object is implemented. 2852 * mem_cgroup_from_obj() can be safely used in such cases. 2853 * 2854 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(), 2855 * cgroup_mutex, etc. 2856 */ 2857 struct mem_cgroup *mem_cgroup_from_obj(void *p) 2858 { 2859 struct folio *folio; 2860 2861 if (mem_cgroup_disabled()) 2862 return NULL; 2863 2864 folio = virt_to_folio(p); 2865 2866 /* 2867 * Slab objects are accounted individually, not per-page. 2868 * Memcg membership data for each individual object is saved in 2869 * slab->memcg_data. 2870 */ 2871 if (folio_test_slab(folio)) { 2872 struct obj_cgroup **objcgs; 2873 struct slab *slab; 2874 unsigned int off; 2875 2876 slab = folio_slab(folio); 2877 objcgs = slab_objcgs(slab); 2878 if (!objcgs) 2879 return NULL; 2880 2881 off = obj_to_index(slab->slab_cache, slab, p); 2882 if (objcgs[off]) 2883 return obj_cgroup_memcg(objcgs[off]); 2884 2885 return NULL; 2886 } 2887 2888 /* 2889 * page_memcg_check() is used here, because in theory we can encounter 2890 * a folio where the slab flag has been cleared already, but 2891 * slab->memcg_data has not been freed yet 2892 * page_memcg_check(page) will guarantee that a proper memory 2893 * cgroup pointer or NULL will be returned. 2894 */ 2895 return page_memcg_check(folio_page(folio, 0)); 2896 } 2897 2898 static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg) 2899 { 2900 struct obj_cgroup *objcg = NULL; 2901 2902 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) { 2903 objcg = rcu_dereference(memcg->objcg); 2904 if (objcg && obj_cgroup_tryget(objcg)) 2905 break; 2906 objcg = NULL; 2907 } 2908 return objcg; 2909 } 2910 2911 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void) 2912 { 2913 struct obj_cgroup *objcg = NULL; 2914 struct mem_cgroup *memcg; 2915 2916 if (memcg_kmem_bypass()) 2917 return NULL; 2918 2919 rcu_read_lock(); 2920 if (unlikely(active_memcg())) 2921 memcg = active_memcg(); 2922 else 2923 memcg = mem_cgroup_from_task(current); 2924 objcg = __get_obj_cgroup_from_memcg(memcg); 2925 rcu_read_unlock(); 2926 return objcg; 2927 } 2928 2929 struct obj_cgroup *get_obj_cgroup_from_page(struct page *page) 2930 { 2931 struct obj_cgroup *objcg; 2932 2933 if (!memcg_kmem_enabled() || memcg_kmem_bypass()) 2934 return NULL; 2935 2936 if (PageMemcgKmem(page)) { 2937 objcg = __folio_objcg(page_folio(page)); 2938 obj_cgroup_get(objcg); 2939 } else { 2940 struct mem_cgroup *memcg; 2941 2942 rcu_read_lock(); 2943 memcg = __folio_memcg(page_folio(page)); 2944 if (memcg) 2945 objcg = __get_obj_cgroup_from_memcg(memcg); 2946 else 2947 objcg = NULL; 2948 rcu_read_unlock(); 2949 } 2950 return objcg; 2951 } 2952 2953 static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages) 2954 { 2955 mod_memcg_state(memcg, MEMCG_KMEM, nr_pages); 2956 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 2957 if (nr_pages > 0) 2958 page_counter_charge(&memcg->kmem, nr_pages); 2959 else 2960 page_counter_uncharge(&memcg->kmem, -nr_pages); 2961 } 2962 } 2963 2964 2965 /* 2966 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg 2967 * @objcg: object cgroup to uncharge 2968 * @nr_pages: number of pages to uncharge 2969 */ 2970 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg, 2971 unsigned int nr_pages) 2972 { 2973 struct mem_cgroup *memcg; 2974 2975 memcg = get_mem_cgroup_from_objcg(objcg); 2976 2977 memcg_account_kmem(memcg, -nr_pages); 2978 refill_stock(memcg, nr_pages); 2979 2980 css_put(&memcg->css); 2981 } 2982 2983 /* 2984 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg 2985 * @objcg: object cgroup to charge 2986 * @gfp: reclaim mode 2987 * @nr_pages: number of pages to charge 2988 * 2989 * Returns 0 on success, an error code on failure. 2990 */ 2991 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp, 2992 unsigned int nr_pages) 2993 { 2994 struct mem_cgroup *memcg; 2995 int ret; 2996 2997 memcg = get_mem_cgroup_from_objcg(objcg); 2998 2999 ret = try_charge_memcg(memcg, gfp, nr_pages); 3000 if (ret) 3001 goto out; 3002 3003 memcg_account_kmem(memcg, nr_pages); 3004 out: 3005 css_put(&memcg->css); 3006 3007 return ret; 3008 } 3009 3010 /** 3011 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup 3012 * @page: page to charge 3013 * @gfp: reclaim mode 3014 * @order: allocation order 3015 * 3016 * Returns 0 on success, an error code on failure. 3017 */ 3018 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order) 3019 { 3020 struct obj_cgroup *objcg; 3021 int ret = 0; 3022 3023 objcg = get_obj_cgroup_from_current(); 3024 if (objcg) { 3025 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order); 3026 if (!ret) { 3027 page->memcg_data = (unsigned long)objcg | 3028 MEMCG_DATA_KMEM; 3029 return 0; 3030 } 3031 obj_cgroup_put(objcg); 3032 } 3033 return ret; 3034 } 3035 3036 /** 3037 * __memcg_kmem_uncharge_page: uncharge a kmem page 3038 * @page: page to uncharge 3039 * @order: allocation order 3040 */ 3041 void __memcg_kmem_uncharge_page(struct page *page, int order) 3042 { 3043 struct folio *folio = page_folio(page); 3044 struct obj_cgroup *objcg; 3045 unsigned int nr_pages = 1 << order; 3046 3047 if (!folio_memcg_kmem(folio)) 3048 return; 3049 3050 objcg = __folio_objcg(folio); 3051 obj_cgroup_uncharge_pages(objcg, nr_pages); 3052 folio->memcg_data = 0; 3053 obj_cgroup_put(objcg); 3054 } 3055 3056 void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat, 3057 enum node_stat_item idx, int nr) 3058 { 3059 struct memcg_stock_pcp *stock; 3060 struct obj_cgroup *old = NULL; 3061 unsigned long flags; 3062 int *bytes; 3063 3064 local_lock_irqsave(&memcg_stock.stock_lock, flags); 3065 stock = this_cpu_ptr(&memcg_stock); 3066 3067 /* 3068 * Save vmstat data in stock and skip vmstat array update unless 3069 * accumulating over a page of vmstat data or when pgdat or idx 3070 * changes. 3071 */ 3072 if (stock->cached_objcg != objcg) { 3073 old = drain_obj_stock(stock); 3074 obj_cgroup_get(objcg); 3075 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes) 3076 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0; 3077 stock->cached_objcg = objcg; 3078 stock->cached_pgdat = pgdat; 3079 } else if (stock->cached_pgdat != pgdat) { 3080 /* Flush the existing cached vmstat data */ 3081 struct pglist_data *oldpg = stock->cached_pgdat; 3082 3083 if (stock->nr_slab_reclaimable_b) { 3084 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B, 3085 stock->nr_slab_reclaimable_b); 3086 stock->nr_slab_reclaimable_b = 0; 3087 } 3088 if (stock->nr_slab_unreclaimable_b) { 3089 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B, 3090 stock->nr_slab_unreclaimable_b); 3091 stock->nr_slab_unreclaimable_b = 0; 3092 } 3093 stock->cached_pgdat = pgdat; 3094 } 3095 3096 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b 3097 : &stock->nr_slab_unreclaimable_b; 3098 /* 3099 * Even for large object >= PAGE_SIZE, the vmstat data will still be 3100 * cached locally at least once before pushing it out. 3101 */ 3102 if (!*bytes) { 3103 *bytes = nr; 3104 nr = 0; 3105 } else { 3106 *bytes += nr; 3107 if (abs(*bytes) > PAGE_SIZE) { 3108 nr = *bytes; 3109 *bytes = 0; 3110 } else { 3111 nr = 0; 3112 } 3113 } 3114 if (nr) 3115 mod_objcg_mlstate(objcg, pgdat, idx, nr); 3116 3117 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 3118 if (old) 3119 obj_cgroup_put(old); 3120 } 3121 3122 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes) 3123 { 3124 struct memcg_stock_pcp *stock; 3125 unsigned long flags; 3126 bool ret = false; 3127 3128 local_lock_irqsave(&memcg_stock.stock_lock, flags); 3129 3130 stock = this_cpu_ptr(&memcg_stock); 3131 if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) { 3132 stock->nr_bytes -= nr_bytes; 3133 ret = true; 3134 } 3135 3136 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 3137 3138 return ret; 3139 } 3140 3141 static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock) 3142 { 3143 struct obj_cgroup *old = stock->cached_objcg; 3144 3145 if (!old) 3146 return NULL; 3147 3148 if (stock->nr_bytes) { 3149 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT; 3150 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1); 3151 3152 if (nr_pages) { 3153 struct mem_cgroup *memcg; 3154 3155 memcg = get_mem_cgroup_from_objcg(old); 3156 3157 memcg_account_kmem(memcg, -nr_pages); 3158 __refill_stock(memcg, nr_pages); 3159 3160 css_put(&memcg->css); 3161 } 3162 3163 /* 3164 * The leftover is flushed to the centralized per-memcg value. 3165 * On the next attempt to refill obj stock it will be moved 3166 * to a per-cpu stock (probably, on an other CPU), see 3167 * refill_obj_stock(). 3168 * 3169 * How often it's flushed is a trade-off between the memory 3170 * limit enforcement accuracy and potential CPU contention, 3171 * so it might be changed in the future. 3172 */ 3173 atomic_add(nr_bytes, &old->nr_charged_bytes); 3174 stock->nr_bytes = 0; 3175 } 3176 3177 /* 3178 * Flush the vmstat data in current stock 3179 */ 3180 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) { 3181 if (stock->nr_slab_reclaimable_b) { 3182 mod_objcg_mlstate(old, stock->cached_pgdat, 3183 NR_SLAB_RECLAIMABLE_B, 3184 stock->nr_slab_reclaimable_b); 3185 stock->nr_slab_reclaimable_b = 0; 3186 } 3187 if (stock->nr_slab_unreclaimable_b) { 3188 mod_objcg_mlstate(old, stock->cached_pgdat, 3189 NR_SLAB_UNRECLAIMABLE_B, 3190 stock->nr_slab_unreclaimable_b); 3191 stock->nr_slab_unreclaimable_b = 0; 3192 } 3193 stock->cached_pgdat = NULL; 3194 } 3195 3196 stock->cached_objcg = NULL; 3197 /* 3198 * The `old' objects needs to be released by the caller via 3199 * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock. 3200 */ 3201 return old; 3202 } 3203 3204 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock, 3205 struct mem_cgroup *root_memcg) 3206 { 3207 struct mem_cgroup *memcg; 3208 3209 if (stock->cached_objcg) { 3210 memcg = obj_cgroup_memcg(stock->cached_objcg); 3211 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg)) 3212 return true; 3213 } 3214 3215 return false; 3216 } 3217 3218 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes, 3219 bool allow_uncharge) 3220 { 3221 struct memcg_stock_pcp *stock; 3222 struct obj_cgroup *old = NULL; 3223 unsigned long flags; 3224 unsigned int nr_pages = 0; 3225 3226 local_lock_irqsave(&memcg_stock.stock_lock, flags); 3227 3228 stock = this_cpu_ptr(&memcg_stock); 3229 if (stock->cached_objcg != objcg) { /* reset if necessary */ 3230 old = drain_obj_stock(stock); 3231 obj_cgroup_get(objcg); 3232 stock->cached_objcg = objcg; 3233 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes) 3234 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0; 3235 allow_uncharge = true; /* Allow uncharge when objcg changes */ 3236 } 3237 stock->nr_bytes += nr_bytes; 3238 3239 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) { 3240 nr_pages = stock->nr_bytes >> PAGE_SHIFT; 3241 stock->nr_bytes &= (PAGE_SIZE - 1); 3242 } 3243 3244 local_unlock_irqrestore(&memcg_stock.stock_lock, flags); 3245 if (old) 3246 obj_cgroup_put(old); 3247 3248 if (nr_pages) 3249 obj_cgroup_uncharge_pages(objcg, nr_pages); 3250 } 3251 3252 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size) 3253 { 3254 unsigned int nr_pages, nr_bytes; 3255 int ret; 3256 3257 if (consume_obj_stock(objcg, size)) 3258 return 0; 3259 3260 /* 3261 * In theory, objcg->nr_charged_bytes can have enough 3262 * pre-charged bytes to satisfy the allocation. However, 3263 * flushing objcg->nr_charged_bytes requires two atomic 3264 * operations, and objcg->nr_charged_bytes can't be big. 3265 * The shared objcg->nr_charged_bytes can also become a 3266 * performance bottleneck if all tasks of the same memcg are 3267 * trying to update it. So it's better to ignore it and try 3268 * grab some new pages. The stock's nr_bytes will be flushed to 3269 * objcg->nr_charged_bytes later on when objcg changes. 3270 * 3271 * The stock's nr_bytes may contain enough pre-charged bytes 3272 * to allow one less page from being charged, but we can't rely 3273 * on the pre-charged bytes not being changed outside of 3274 * consume_obj_stock() or refill_obj_stock(). So ignore those 3275 * pre-charged bytes as well when charging pages. To avoid a 3276 * page uncharge right after a page charge, we set the 3277 * allow_uncharge flag to false when calling refill_obj_stock() 3278 * to temporarily allow the pre-charged bytes to exceed the page 3279 * size limit. The maximum reachable value of the pre-charged 3280 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data 3281 * race. 3282 */ 3283 nr_pages = size >> PAGE_SHIFT; 3284 nr_bytes = size & (PAGE_SIZE - 1); 3285 3286 if (nr_bytes) 3287 nr_pages += 1; 3288 3289 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages); 3290 if (!ret && nr_bytes) 3291 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false); 3292 3293 return ret; 3294 } 3295 3296 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size) 3297 { 3298 refill_obj_stock(objcg, size, true); 3299 } 3300 3301 #endif /* CONFIG_MEMCG_KMEM */ 3302 3303 /* 3304 * Because page_memcg(head) is not set on tails, set it now. 3305 */ 3306 void split_page_memcg(struct page *head, unsigned int nr) 3307 { 3308 struct folio *folio = page_folio(head); 3309 struct mem_cgroup *memcg = folio_memcg(folio); 3310 int i; 3311 3312 if (mem_cgroup_disabled() || !memcg) 3313 return; 3314 3315 for (i = 1; i < nr; i++) 3316 folio_page(folio, i)->memcg_data = folio->memcg_data; 3317 3318 if (folio_memcg_kmem(folio)) 3319 obj_cgroup_get_many(__folio_objcg(folio), nr - 1); 3320 else 3321 css_get_many(&memcg->css, nr - 1); 3322 } 3323 3324 #ifdef CONFIG_MEMCG_SWAP 3325 /** 3326 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 3327 * @entry: swap entry to be moved 3328 * @from: mem_cgroup which the entry is moved from 3329 * @to: mem_cgroup which the entry is moved to 3330 * 3331 * It succeeds only when the swap_cgroup's record for this entry is the same 3332 * as the mem_cgroup's id of @from. 3333 * 3334 * Returns 0 on success, -EINVAL on failure. 3335 * 3336 * The caller must have charged to @to, IOW, called page_counter_charge() about 3337 * both res and memsw, and called css_get(). 3338 */ 3339 static int mem_cgroup_move_swap_account(swp_entry_t entry, 3340 struct mem_cgroup *from, struct mem_cgroup *to) 3341 { 3342 unsigned short old_id, new_id; 3343 3344 old_id = mem_cgroup_id(from); 3345 new_id = mem_cgroup_id(to); 3346 3347 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 3348 mod_memcg_state(from, MEMCG_SWAP, -1); 3349 mod_memcg_state(to, MEMCG_SWAP, 1); 3350 return 0; 3351 } 3352 return -EINVAL; 3353 } 3354 #else 3355 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 3356 struct mem_cgroup *from, struct mem_cgroup *to) 3357 { 3358 return -EINVAL; 3359 } 3360 #endif 3361 3362 static DEFINE_MUTEX(memcg_max_mutex); 3363 3364 static int mem_cgroup_resize_max(struct mem_cgroup *memcg, 3365 unsigned long max, bool memsw) 3366 { 3367 bool enlarge = false; 3368 bool drained = false; 3369 int ret; 3370 bool limits_invariant; 3371 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory; 3372 3373 do { 3374 if (signal_pending(current)) { 3375 ret = -EINTR; 3376 break; 3377 } 3378 3379 mutex_lock(&memcg_max_mutex); 3380 /* 3381 * Make sure that the new limit (memsw or memory limit) doesn't 3382 * break our basic invariant rule memory.max <= memsw.max. 3383 */ 3384 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) : 3385 max <= memcg->memsw.max; 3386 if (!limits_invariant) { 3387 mutex_unlock(&memcg_max_mutex); 3388 ret = -EINVAL; 3389 break; 3390 } 3391 if (max > counter->max) 3392 enlarge = true; 3393 ret = page_counter_set_max(counter, max); 3394 mutex_unlock(&memcg_max_mutex); 3395 3396 if (!ret) 3397 break; 3398 3399 if (!drained) { 3400 drain_all_stock(memcg); 3401 drained = true; 3402 continue; 3403 } 3404 3405 if (!try_to_free_mem_cgroup_pages(memcg, 1, 3406 GFP_KERNEL, !memsw)) { 3407 ret = -EBUSY; 3408 break; 3409 } 3410 } while (true); 3411 3412 if (!ret && enlarge) 3413 memcg_oom_recover(memcg); 3414 3415 return ret; 3416 } 3417 3418 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 3419 gfp_t gfp_mask, 3420 unsigned long *total_scanned) 3421 { 3422 unsigned long nr_reclaimed = 0; 3423 struct mem_cgroup_per_node *mz, *next_mz = NULL; 3424 unsigned long reclaimed; 3425 int loop = 0; 3426 struct mem_cgroup_tree_per_node *mctz; 3427 unsigned long excess; 3428 3429 if (order > 0) 3430 return 0; 3431 3432 mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id]; 3433 3434 /* 3435 * Do not even bother to check the largest node if the root 3436 * is empty. Do it lockless to prevent lock bouncing. Races 3437 * are acceptable as soft limit is best effort anyway. 3438 */ 3439 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root)) 3440 return 0; 3441 3442 /* 3443 * This loop can run a while, specially if mem_cgroup's continuously 3444 * keep exceeding their soft limit and putting the system under 3445 * pressure 3446 */ 3447 do { 3448 if (next_mz) 3449 mz = next_mz; 3450 else 3451 mz = mem_cgroup_largest_soft_limit_node(mctz); 3452 if (!mz) 3453 break; 3454 3455 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat, 3456 gfp_mask, total_scanned); 3457 nr_reclaimed += reclaimed; 3458 spin_lock_irq(&mctz->lock); 3459 3460 /* 3461 * If we failed to reclaim anything from this memory cgroup 3462 * it is time to move on to the next cgroup 3463 */ 3464 next_mz = NULL; 3465 if (!reclaimed) 3466 next_mz = __mem_cgroup_largest_soft_limit_node(mctz); 3467 3468 excess = soft_limit_excess(mz->memcg); 3469 /* 3470 * One school of thought says that we should not add 3471 * back the node to the tree if reclaim returns 0. 3472 * But our reclaim could return 0, simply because due 3473 * to priority we are exposing a smaller subset of 3474 * memory to reclaim from. Consider this as a longer 3475 * term TODO. 3476 */ 3477 /* If excess == 0, no tree ops */ 3478 __mem_cgroup_insert_exceeded(mz, mctz, excess); 3479 spin_unlock_irq(&mctz->lock); 3480 css_put(&mz->memcg->css); 3481 loop++; 3482 /* 3483 * Could not reclaim anything and there are no more 3484 * mem cgroups to try or we seem to be looping without 3485 * reclaiming anything. 3486 */ 3487 if (!nr_reclaimed && 3488 (next_mz == NULL || 3489 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 3490 break; 3491 } while (!nr_reclaimed); 3492 if (next_mz) 3493 css_put(&next_mz->memcg->css); 3494 return nr_reclaimed; 3495 } 3496 3497 /* 3498 * Reclaims as many pages from the given memcg as possible. 3499 * 3500 * Caller is responsible for holding css reference for memcg. 3501 */ 3502 static int mem_cgroup_force_empty(struct mem_cgroup *memcg) 3503 { 3504 int nr_retries = MAX_RECLAIM_RETRIES; 3505 3506 /* we call try-to-free pages for make this cgroup empty */ 3507 lru_add_drain_all(); 3508 3509 drain_all_stock(memcg); 3510 3511 /* try to free all pages in this cgroup */ 3512 while (nr_retries && page_counter_read(&memcg->memory)) { 3513 if (signal_pending(current)) 3514 return -EINTR; 3515 3516 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true)) 3517 nr_retries--; 3518 } 3519 3520 return 0; 3521 } 3522 3523 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of, 3524 char *buf, size_t nbytes, 3525 loff_t off) 3526 { 3527 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3528 3529 if (mem_cgroup_is_root(memcg)) 3530 return -EINVAL; 3531 return mem_cgroup_force_empty(memcg) ?: nbytes; 3532 } 3533 3534 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, 3535 struct cftype *cft) 3536 { 3537 return 1; 3538 } 3539 3540 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, 3541 struct cftype *cft, u64 val) 3542 { 3543 if (val == 1) 3544 return 0; 3545 3546 pr_warn_once("Non-hierarchical mode is deprecated. " 3547 "Please report your usecase to linux-mm@kvack.org if you " 3548 "depend on this functionality.\n"); 3549 3550 return -EINVAL; 3551 } 3552 3553 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 3554 { 3555 unsigned long val; 3556 3557 if (mem_cgroup_is_root(memcg)) { 3558 mem_cgroup_flush_stats(); 3559 val = memcg_page_state(memcg, NR_FILE_PAGES) + 3560 memcg_page_state(memcg, NR_ANON_MAPPED); 3561 if (swap) 3562 val += memcg_page_state(memcg, MEMCG_SWAP); 3563 } else { 3564 if (!swap) 3565 val = page_counter_read(&memcg->memory); 3566 else 3567 val = page_counter_read(&memcg->memsw); 3568 } 3569 return val; 3570 } 3571 3572 enum { 3573 RES_USAGE, 3574 RES_LIMIT, 3575 RES_MAX_USAGE, 3576 RES_FAILCNT, 3577 RES_SOFT_LIMIT, 3578 }; 3579 3580 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css, 3581 struct cftype *cft) 3582 { 3583 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3584 struct page_counter *counter; 3585 3586 switch (MEMFILE_TYPE(cft->private)) { 3587 case _MEM: 3588 counter = &memcg->memory; 3589 break; 3590 case _MEMSWAP: 3591 counter = &memcg->memsw; 3592 break; 3593 case _KMEM: 3594 counter = &memcg->kmem; 3595 break; 3596 case _TCP: 3597 counter = &memcg->tcpmem; 3598 break; 3599 default: 3600 BUG(); 3601 } 3602 3603 switch (MEMFILE_ATTR(cft->private)) { 3604 case RES_USAGE: 3605 if (counter == &memcg->memory) 3606 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE; 3607 if (counter == &memcg->memsw) 3608 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE; 3609 return (u64)page_counter_read(counter) * PAGE_SIZE; 3610 case RES_LIMIT: 3611 return (u64)counter->max * PAGE_SIZE; 3612 case RES_MAX_USAGE: 3613 return (u64)counter->watermark * PAGE_SIZE; 3614 case RES_FAILCNT: 3615 return counter->failcnt; 3616 case RES_SOFT_LIMIT: 3617 return (u64)memcg->soft_limit * PAGE_SIZE; 3618 default: 3619 BUG(); 3620 } 3621 } 3622 3623 #ifdef CONFIG_MEMCG_KMEM 3624 static int memcg_online_kmem(struct mem_cgroup *memcg) 3625 { 3626 struct obj_cgroup *objcg; 3627 3628 if (cgroup_memory_nokmem) 3629 return 0; 3630 3631 if (unlikely(mem_cgroup_is_root(memcg))) 3632 return 0; 3633 3634 objcg = obj_cgroup_alloc(); 3635 if (!objcg) 3636 return -ENOMEM; 3637 3638 objcg->memcg = memcg; 3639 rcu_assign_pointer(memcg->objcg, objcg); 3640 3641 static_branch_enable(&memcg_kmem_enabled_key); 3642 3643 memcg->kmemcg_id = memcg->id.id; 3644 3645 return 0; 3646 } 3647 3648 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3649 { 3650 struct mem_cgroup *parent; 3651 3652 if (cgroup_memory_nokmem) 3653 return; 3654 3655 if (unlikely(mem_cgroup_is_root(memcg))) 3656 return; 3657 3658 parent = parent_mem_cgroup(memcg); 3659 if (!parent) 3660 parent = root_mem_cgroup; 3661 3662 memcg_reparent_objcgs(memcg, parent); 3663 3664 /* 3665 * After we have finished memcg_reparent_objcgs(), all list_lrus 3666 * corresponding to this cgroup are guaranteed to remain empty. 3667 * The ordering is imposed by list_lru_node->lock taken by 3668 * memcg_reparent_list_lrus(). 3669 */ 3670 memcg_reparent_list_lrus(memcg, parent); 3671 } 3672 #else 3673 static int memcg_online_kmem(struct mem_cgroup *memcg) 3674 { 3675 return 0; 3676 } 3677 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3678 { 3679 } 3680 #endif /* CONFIG_MEMCG_KMEM */ 3681 3682 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max) 3683 { 3684 int ret; 3685 3686 mutex_lock(&memcg_max_mutex); 3687 3688 ret = page_counter_set_max(&memcg->tcpmem, max); 3689 if (ret) 3690 goto out; 3691 3692 if (!memcg->tcpmem_active) { 3693 /* 3694 * The active flag needs to be written after the static_key 3695 * update. This is what guarantees that the socket activation 3696 * function is the last one to run. See mem_cgroup_sk_alloc() 3697 * for details, and note that we don't mark any socket as 3698 * belonging to this memcg until that flag is up. 3699 * 3700 * We need to do this, because static_keys will span multiple 3701 * sites, but we can't control their order. If we mark a socket 3702 * as accounted, but the accounting functions are not patched in 3703 * yet, we'll lose accounting. 3704 * 3705 * We never race with the readers in mem_cgroup_sk_alloc(), 3706 * because when this value change, the code to process it is not 3707 * patched in yet. 3708 */ 3709 static_branch_inc(&memcg_sockets_enabled_key); 3710 memcg->tcpmem_active = true; 3711 } 3712 out: 3713 mutex_unlock(&memcg_max_mutex); 3714 return ret; 3715 } 3716 3717 /* 3718 * The user of this function is... 3719 * RES_LIMIT. 3720 */ 3721 static ssize_t mem_cgroup_write(struct kernfs_open_file *of, 3722 char *buf, size_t nbytes, loff_t off) 3723 { 3724 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3725 unsigned long nr_pages; 3726 int ret; 3727 3728 buf = strstrip(buf); 3729 ret = page_counter_memparse(buf, "-1", &nr_pages); 3730 if (ret) 3731 return ret; 3732 3733 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3734 case RES_LIMIT: 3735 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 3736 ret = -EINVAL; 3737 break; 3738 } 3739 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3740 case _MEM: 3741 ret = mem_cgroup_resize_max(memcg, nr_pages, false); 3742 break; 3743 case _MEMSWAP: 3744 ret = mem_cgroup_resize_max(memcg, nr_pages, true); 3745 break; 3746 case _KMEM: 3747 /* kmem.limit_in_bytes is deprecated. */ 3748 ret = -EOPNOTSUPP; 3749 break; 3750 case _TCP: 3751 ret = memcg_update_tcp_max(memcg, nr_pages); 3752 break; 3753 } 3754 break; 3755 case RES_SOFT_LIMIT: 3756 if (IS_ENABLED(CONFIG_PREEMPT_RT)) { 3757 ret = -EOPNOTSUPP; 3758 } else { 3759 memcg->soft_limit = nr_pages; 3760 ret = 0; 3761 } 3762 break; 3763 } 3764 return ret ?: nbytes; 3765 } 3766 3767 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf, 3768 size_t nbytes, loff_t off) 3769 { 3770 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3771 struct page_counter *counter; 3772 3773 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3774 case _MEM: 3775 counter = &memcg->memory; 3776 break; 3777 case _MEMSWAP: 3778 counter = &memcg->memsw; 3779 break; 3780 case _KMEM: 3781 counter = &memcg->kmem; 3782 break; 3783 case _TCP: 3784 counter = &memcg->tcpmem; 3785 break; 3786 default: 3787 BUG(); 3788 } 3789 3790 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3791 case RES_MAX_USAGE: 3792 page_counter_reset_watermark(counter); 3793 break; 3794 case RES_FAILCNT: 3795 counter->failcnt = 0; 3796 break; 3797 default: 3798 BUG(); 3799 } 3800 3801 return nbytes; 3802 } 3803 3804 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, 3805 struct cftype *cft) 3806 { 3807 return mem_cgroup_from_css(css)->move_charge_at_immigrate; 3808 } 3809 3810 #ifdef CONFIG_MMU 3811 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3812 struct cftype *cft, u64 val) 3813 { 3814 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3815 3816 if (val & ~MOVE_MASK) 3817 return -EINVAL; 3818 3819 /* 3820 * No kind of locking is needed in here, because ->can_attach() will 3821 * check this value once in the beginning of the process, and then carry 3822 * on with stale data. This means that changes to this value will only 3823 * affect task migrations starting after the change. 3824 */ 3825 memcg->move_charge_at_immigrate = val; 3826 return 0; 3827 } 3828 #else 3829 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3830 struct cftype *cft, u64 val) 3831 { 3832 return -ENOSYS; 3833 } 3834 #endif 3835 3836 #ifdef CONFIG_NUMA 3837 3838 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE)) 3839 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON)) 3840 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1) 3841 3842 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 3843 int nid, unsigned int lru_mask, bool tree) 3844 { 3845 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); 3846 unsigned long nr = 0; 3847 enum lru_list lru; 3848 3849 VM_BUG_ON((unsigned)nid >= nr_node_ids); 3850 3851 for_each_lru(lru) { 3852 if (!(BIT(lru) & lru_mask)) 3853 continue; 3854 if (tree) 3855 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru); 3856 else 3857 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru); 3858 } 3859 return nr; 3860 } 3861 3862 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 3863 unsigned int lru_mask, 3864 bool tree) 3865 { 3866 unsigned long nr = 0; 3867 enum lru_list lru; 3868 3869 for_each_lru(lru) { 3870 if (!(BIT(lru) & lru_mask)) 3871 continue; 3872 if (tree) 3873 nr += memcg_page_state(memcg, NR_LRU_BASE + lru); 3874 else 3875 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru); 3876 } 3877 return nr; 3878 } 3879 3880 static int memcg_numa_stat_show(struct seq_file *m, void *v) 3881 { 3882 struct numa_stat { 3883 const char *name; 3884 unsigned int lru_mask; 3885 }; 3886 3887 static const struct numa_stat stats[] = { 3888 { "total", LRU_ALL }, 3889 { "file", LRU_ALL_FILE }, 3890 { "anon", LRU_ALL_ANON }, 3891 { "unevictable", BIT(LRU_UNEVICTABLE) }, 3892 }; 3893 const struct numa_stat *stat; 3894 int nid; 3895 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 3896 3897 mem_cgroup_flush_stats(); 3898 3899 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3900 seq_printf(m, "%s=%lu", stat->name, 3901 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask, 3902 false)); 3903 for_each_node_state(nid, N_MEMORY) 3904 seq_printf(m, " N%d=%lu", nid, 3905 mem_cgroup_node_nr_lru_pages(memcg, nid, 3906 stat->lru_mask, false)); 3907 seq_putc(m, '\n'); 3908 } 3909 3910 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3911 3912 seq_printf(m, "hierarchical_%s=%lu", stat->name, 3913 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask, 3914 true)); 3915 for_each_node_state(nid, N_MEMORY) 3916 seq_printf(m, " N%d=%lu", nid, 3917 mem_cgroup_node_nr_lru_pages(memcg, nid, 3918 stat->lru_mask, true)); 3919 seq_putc(m, '\n'); 3920 } 3921 3922 return 0; 3923 } 3924 #endif /* CONFIG_NUMA */ 3925 3926 static const unsigned int memcg1_stats[] = { 3927 NR_FILE_PAGES, 3928 NR_ANON_MAPPED, 3929 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3930 NR_ANON_THPS, 3931 #endif 3932 NR_SHMEM, 3933 NR_FILE_MAPPED, 3934 NR_FILE_DIRTY, 3935 NR_WRITEBACK, 3936 MEMCG_SWAP, 3937 }; 3938 3939 static const char *const memcg1_stat_names[] = { 3940 "cache", 3941 "rss", 3942 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3943 "rss_huge", 3944 #endif 3945 "shmem", 3946 "mapped_file", 3947 "dirty", 3948 "writeback", 3949 "swap", 3950 }; 3951 3952 /* Universal VM events cgroup1 shows, original sort order */ 3953 static const unsigned int memcg1_events[] = { 3954 PGPGIN, 3955 PGPGOUT, 3956 PGFAULT, 3957 PGMAJFAULT, 3958 }; 3959 3960 static int memcg_stat_show(struct seq_file *m, void *v) 3961 { 3962 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 3963 unsigned long memory, memsw; 3964 struct mem_cgroup *mi; 3965 unsigned int i; 3966 3967 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats)); 3968 3969 mem_cgroup_flush_stats(); 3970 3971 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 3972 unsigned long nr; 3973 3974 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 3975 continue; 3976 nr = memcg_page_state_local(memcg, memcg1_stats[i]); 3977 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE); 3978 } 3979 3980 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 3981 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]), 3982 memcg_events_local(memcg, memcg1_events[i])); 3983 3984 for (i = 0; i < NR_LRU_LISTS; i++) 3985 seq_printf(m, "%s %lu\n", lru_list_name(i), 3986 memcg_page_state_local(memcg, NR_LRU_BASE + i) * 3987 PAGE_SIZE); 3988 3989 /* Hierarchical information */ 3990 memory = memsw = PAGE_COUNTER_MAX; 3991 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) { 3992 memory = min(memory, READ_ONCE(mi->memory.max)); 3993 memsw = min(memsw, READ_ONCE(mi->memsw.max)); 3994 } 3995 seq_printf(m, "hierarchical_memory_limit %llu\n", 3996 (u64)memory * PAGE_SIZE); 3997 if (do_memsw_account()) 3998 seq_printf(m, "hierarchical_memsw_limit %llu\n", 3999 (u64)memsw * PAGE_SIZE); 4000 4001 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 4002 unsigned long nr; 4003 4004 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 4005 continue; 4006 nr = memcg_page_state(memcg, memcg1_stats[i]); 4007 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], 4008 (u64)nr * PAGE_SIZE); 4009 } 4010 4011 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 4012 seq_printf(m, "total_%s %llu\n", 4013 vm_event_name(memcg1_events[i]), 4014 (u64)memcg_events(memcg, memcg1_events[i])); 4015 4016 for (i = 0; i < NR_LRU_LISTS; i++) 4017 seq_printf(m, "total_%s %llu\n", lru_list_name(i), 4018 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) * 4019 PAGE_SIZE); 4020 4021 #ifdef CONFIG_DEBUG_VM 4022 { 4023 pg_data_t *pgdat; 4024 struct mem_cgroup_per_node *mz; 4025 unsigned long anon_cost = 0; 4026 unsigned long file_cost = 0; 4027 4028 for_each_online_pgdat(pgdat) { 4029 mz = memcg->nodeinfo[pgdat->node_id]; 4030 4031 anon_cost += mz->lruvec.anon_cost; 4032 file_cost += mz->lruvec.file_cost; 4033 } 4034 seq_printf(m, "anon_cost %lu\n", anon_cost); 4035 seq_printf(m, "file_cost %lu\n", file_cost); 4036 } 4037 #endif 4038 4039 return 0; 4040 } 4041 4042 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, 4043 struct cftype *cft) 4044 { 4045 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4046 4047 return mem_cgroup_swappiness(memcg); 4048 } 4049 4050 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, 4051 struct cftype *cft, u64 val) 4052 { 4053 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4054 4055 if (val > 200) 4056 return -EINVAL; 4057 4058 if (!mem_cgroup_is_root(memcg)) 4059 memcg->swappiness = val; 4060 else 4061 vm_swappiness = val; 4062 4063 return 0; 4064 } 4065 4066 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 4067 { 4068 struct mem_cgroup_threshold_ary *t; 4069 unsigned long usage; 4070 int i; 4071 4072 rcu_read_lock(); 4073 if (!swap) 4074 t = rcu_dereference(memcg->thresholds.primary); 4075 else 4076 t = rcu_dereference(memcg->memsw_thresholds.primary); 4077 4078 if (!t) 4079 goto unlock; 4080 4081 usage = mem_cgroup_usage(memcg, swap); 4082 4083 /* 4084 * current_threshold points to threshold just below or equal to usage. 4085 * If it's not true, a threshold was crossed after last 4086 * call of __mem_cgroup_threshold(). 4087 */ 4088 i = t->current_threshold; 4089 4090 /* 4091 * Iterate backward over array of thresholds starting from 4092 * current_threshold and check if a threshold is crossed. 4093 * If none of thresholds below usage is crossed, we read 4094 * only one element of the array here. 4095 */ 4096 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 4097 eventfd_signal(t->entries[i].eventfd, 1); 4098 4099 /* i = current_threshold + 1 */ 4100 i++; 4101 4102 /* 4103 * Iterate forward over array of thresholds starting from 4104 * current_threshold+1 and check if a threshold is crossed. 4105 * If none of thresholds above usage is crossed, we read 4106 * only one element of the array here. 4107 */ 4108 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 4109 eventfd_signal(t->entries[i].eventfd, 1); 4110 4111 /* Update current_threshold */ 4112 t->current_threshold = i - 1; 4113 unlock: 4114 rcu_read_unlock(); 4115 } 4116 4117 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 4118 { 4119 while (memcg) { 4120 __mem_cgroup_threshold(memcg, false); 4121 if (do_memsw_account()) 4122 __mem_cgroup_threshold(memcg, true); 4123 4124 memcg = parent_mem_cgroup(memcg); 4125 } 4126 } 4127 4128 static int compare_thresholds(const void *a, const void *b) 4129 { 4130 const struct mem_cgroup_threshold *_a = a; 4131 const struct mem_cgroup_threshold *_b = b; 4132 4133 if (_a->threshold > _b->threshold) 4134 return 1; 4135 4136 if (_a->threshold < _b->threshold) 4137 return -1; 4138 4139 return 0; 4140 } 4141 4142 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 4143 { 4144 struct mem_cgroup_eventfd_list *ev; 4145 4146 spin_lock(&memcg_oom_lock); 4147 4148 list_for_each_entry(ev, &memcg->oom_notify, list) 4149 eventfd_signal(ev->eventfd, 1); 4150 4151 spin_unlock(&memcg_oom_lock); 4152 return 0; 4153 } 4154 4155 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 4156 { 4157 struct mem_cgroup *iter; 4158 4159 for_each_mem_cgroup_tree(iter, memcg) 4160 mem_cgroup_oom_notify_cb(iter); 4161 } 4162 4163 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 4164 struct eventfd_ctx *eventfd, const char *args, enum res_type type) 4165 { 4166 struct mem_cgroup_thresholds *thresholds; 4167 struct mem_cgroup_threshold_ary *new; 4168 unsigned long threshold; 4169 unsigned long usage; 4170 int i, size, ret; 4171 4172 ret = page_counter_memparse(args, "-1", &threshold); 4173 if (ret) 4174 return ret; 4175 4176 mutex_lock(&memcg->thresholds_lock); 4177 4178 if (type == _MEM) { 4179 thresholds = &memcg->thresholds; 4180 usage = mem_cgroup_usage(memcg, false); 4181 } else if (type == _MEMSWAP) { 4182 thresholds = &memcg->memsw_thresholds; 4183 usage = mem_cgroup_usage(memcg, true); 4184 } else 4185 BUG(); 4186 4187 /* Check if a threshold crossed before adding a new one */ 4188 if (thresholds->primary) 4189 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4190 4191 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 4192 4193 /* Allocate memory for new array of thresholds */ 4194 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL); 4195 if (!new) { 4196 ret = -ENOMEM; 4197 goto unlock; 4198 } 4199 new->size = size; 4200 4201 /* Copy thresholds (if any) to new array */ 4202 if (thresholds->primary) 4203 memcpy(new->entries, thresholds->primary->entries, 4204 flex_array_size(new, entries, size - 1)); 4205 4206 /* Add new threshold */ 4207 new->entries[size - 1].eventfd = eventfd; 4208 new->entries[size - 1].threshold = threshold; 4209 4210 /* Sort thresholds. Registering of new threshold isn't time-critical */ 4211 sort(new->entries, size, sizeof(*new->entries), 4212 compare_thresholds, NULL); 4213 4214 /* Find current threshold */ 4215 new->current_threshold = -1; 4216 for (i = 0; i < size; i++) { 4217 if (new->entries[i].threshold <= usage) { 4218 /* 4219 * new->current_threshold will not be used until 4220 * rcu_assign_pointer(), so it's safe to increment 4221 * it here. 4222 */ 4223 ++new->current_threshold; 4224 } else 4225 break; 4226 } 4227 4228 /* Free old spare buffer and save old primary buffer as spare */ 4229 kfree(thresholds->spare); 4230 thresholds->spare = thresholds->primary; 4231 4232 rcu_assign_pointer(thresholds->primary, new); 4233 4234 /* To be sure that nobody uses thresholds */ 4235 synchronize_rcu(); 4236 4237 unlock: 4238 mutex_unlock(&memcg->thresholds_lock); 4239 4240 return ret; 4241 } 4242 4243 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 4244 struct eventfd_ctx *eventfd, const char *args) 4245 { 4246 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM); 4247 } 4248 4249 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg, 4250 struct eventfd_ctx *eventfd, const char *args) 4251 { 4252 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP); 4253 } 4254 4255 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4256 struct eventfd_ctx *eventfd, enum res_type type) 4257 { 4258 struct mem_cgroup_thresholds *thresholds; 4259 struct mem_cgroup_threshold_ary *new; 4260 unsigned long usage; 4261 int i, j, size, entries; 4262 4263 mutex_lock(&memcg->thresholds_lock); 4264 4265 if (type == _MEM) { 4266 thresholds = &memcg->thresholds; 4267 usage = mem_cgroup_usage(memcg, false); 4268 } else if (type == _MEMSWAP) { 4269 thresholds = &memcg->memsw_thresholds; 4270 usage = mem_cgroup_usage(memcg, true); 4271 } else 4272 BUG(); 4273 4274 if (!thresholds->primary) 4275 goto unlock; 4276 4277 /* Check if a threshold crossed before removing */ 4278 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4279 4280 /* Calculate new number of threshold */ 4281 size = entries = 0; 4282 for (i = 0; i < thresholds->primary->size; i++) { 4283 if (thresholds->primary->entries[i].eventfd != eventfd) 4284 size++; 4285 else 4286 entries++; 4287 } 4288 4289 new = thresholds->spare; 4290 4291 /* If no items related to eventfd have been cleared, nothing to do */ 4292 if (!entries) 4293 goto unlock; 4294 4295 /* Set thresholds array to NULL if we don't have thresholds */ 4296 if (!size) { 4297 kfree(new); 4298 new = NULL; 4299 goto swap_buffers; 4300 } 4301 4302 new->size = size; 4303 4304 /* Copy thresholds and find current threshold */ 4305 new->current_threshold = -1; 4306 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 4307 if (thresholds->primary->entries[i].eventfd == eventfd) 4308 continue; 4309 4310 new->entries[j] = thresholds->primary->entries[i]; 4311 if (new->entries[j].threshold <= usage) { 4312 /* 4313 * new->current_threshold will not be used 4314 * until rcu_assign_pointer(), so it's safe to increment 4315 * it here. 4316 */ 4317 ++new->current_threshold; 4318 } 4319 j++; 4320 } 4321 4322 swap_buffers: 4323 /* Swap primary and spare array */ 4324 thresholds->spare = thresholds->primary; 4325 4326 rcu_assign_pointer(thresholds->primary, new); 4327 4328 /* To be sure that nobody uses thresholds */ 4329 synchronize_rcu(); 4330 4331 /* If all events are unregistered, free the spare array */ 4332 if (!new) { 4333 kfree(thresholds->spare); 4334 thresholds->spare = NULL; 4335 } 4336 unlock: 4337 mutex_unlock(&memcg->thresholds_lock); 4338 } 4339 4340 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4341 struct eventfd_ctx *eventfd) 4342 { 4343 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM); 4344 } 4345 4346 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4347 struct eventfd_ctx *eventfd) 4348 { 4349 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP); 4350 } 4351 4352 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg, 4353 struct eventfd_ctx *eventfd, const char *args) 4354 { 4355 struct mem_cgroup_eventfd_list *event; 4356 4357 event = kmalloc(sizeof(*event), GFP_KERNEL); 4358 if (!event) 4359 return -ENOMEM; 4360 4361 spin_lock(&memcg_oom_lock); 4362 4363 event->eventfd = eventfd; 4364 list_add(&event->list, &memcg->oom_notify); 4365 4366 /* already in OOM ? */ 4367 if (memcg->under_oom) 4368 eventfd_signal(eventfd, 1); 4369 spin_unlock(&memcg_oom_lock); 4370 4371 return 0; 4372 } 4373 4374 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg, 4375 struct eventfd_ctx *eventfd) 4376 { 4377 struct mem_cgroup_eventfd_list *ev, *tmp; 4378 4379 spin_lock(&memcg_oom_lock); 4380 4381 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 4382 if (ev->eventfd == eventfd) { 4383 list_del(&ev->list); 4384 kfree(ev); 4385 } 4386 } 4387 4388 spin_unlock(&memcg_oom_lock); 4389 } 4390 4391 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v) 4392 { 4393 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf); 4394 4395 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable); 4396 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom); 4397 seq_printf(sf, "oom_kill %lu\n", 4398 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL])); 4399 return 0; 4400 } 4401 4402 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, 4403 struct cftype *cft, u64 val) 4404 { 4405 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4406 4407 /* cannot set to root cgroup and only 0 and 1 are allowed */ 4408 if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1))) 4409 return -EINVAL; 4410 4411 memcg->oom_kill_disable = val; 4412 if (!val) 4413 memcg_oom_recover(memcg); 4414 4415 return 0; 4416 } 4417 4418 #ifdef CONFIG_CGROUP_WRITEBACK 4419 4420 #include <trace/events/writeback.h> 4421 4422 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 4423 { 4424 return wb_domain_init(&memcg->cgwb_domain, gfp); 4425 } 4426 4427 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 4428 { 4429 wb_domain_exit(&memcg->cgwb_domain); 4430 } 4431 4432 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 4433 { 4434 wb_domain_size_changed(&memcg->cgwb_domain); 4435 } 4436 4437 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 4438 { 4439 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4440 4441 if (!memcg->css.parent) 4442 return NULL; 4443 4444 return &memcg->cgwb_domain; 4445 } 4446 4447 /** 4448 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg 4449 * @wb: bdi_writeback in question 4450 * @pfilepages: out parameter for number of file pages 4451 * @pheadroom: out parameter for number of allocatable pages according to memcg 4452 * @pdirty: out parameter for number of dirty pages 4453 * @pwriteback: out parameter for number of pages under writeback 4454 * 4455 * Determine the numbers of file, headroom, dirty, and writeback pages in 4456 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom 4457 * is a bit more involved. 4458 * 4459 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the 4460 * headroom is calculated as the lowest headroom of itself and the 4461 * ancestors. Note that this doesn't consider the actual amount of 4462 * available memory in the system. The caller should further cap 4463 * *@pheadroom accordingly. 4464 */ 4465 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 4466 unsigned long *pheadroom, unsigned long *pdirty, 4467 unsigned long *pwriteback) 4468 { 4469 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4470 struct mem_cgroup *parent; 4471 4472 mem_cgroup_flush_stats(); 4473 4474 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY); 4475 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK); 4476 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) + 4477 memcg_page_state(memcg, NR_ACTIVE_FILE); 4478 4479 *pheadroom = PAGE_COUNTER_MAX; 4480 while ((parent = parent_mem_cgroup(memcg))) { 4481 unsigned long ceiling = min(READ_ONCE(memcg->memory.max), 4482 READ_ONCE(memcg->memory.high)); 4483 unsigned long used = page_counter_read(&memcg->memory); 4484 4485 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); 4486 memcg = parent; 4487 } 4488 } 4489 4490 /* 4491 * Foreign dirty flushing 4492 * 4493 * There's an inherent mismatch between memcg and writeback. The former 4494 * tracks ownership per-page while the latter per-inode. This was a 4495 * deliberate design decision because honoring per-page ownership in the 4496 * writeback path is complicated, may lead to higher CPU and IO overheads 4497 * and deemed unnecessary given that write-sharing an inode across 4498 * different cgroups isn't a common use-case. 4499 * 4500 * Combined with inode majority-writer ownership switching, this works well 4501 * enough in most cases but there are some pathological cases. For 4502 * example, let's say there are two cgroups A and B which keep writing to 4503 * different but confined parts of the same inode. B owns the inode and 4504 * A's memory is limited far below B's. A's dirty ratio can rise enough to 4505 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid 4506 * triggering background writeback. A will be slowed down without a way to 4507 * make writeback of the dirty pages happen. 4508 * 4509 * Conditions like the above can lead to a cgroup getting repeatedly and 4510 * severely throttled after making some progress after each 4511 * dirty_expire_interval while the underlying IO device is almost 4512 * completely idle. 4513 * 4514 * Solving this problem completely requires matching the ownership tracking 4515 * granularities between memcg and writeback in either direction. However, 4516 * the more egregious behaviors can be avoided by simply remembering the 4517 * most recent foreign dirtying events and initiating remote flushes on 4518 * them when local writeback isn't enough to keep the memory clean enough. 4519 * 4520 * The following two functions implement such mechanism. When a foreign 4521 * page - a page whose memcg and writeback ownerships don't match - is 4522 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning 4523 * bdi_writeback on the page owning memcg. When balance_dirty_pages() 4524 * decides that the memcg needs to sleep due to high dirty ratio, it calls 4525 * mem_cgroup_flush_foreign() which queues writeback on the recorded 4526 * foreign bdi_writebacks which haven't expired. Both the numbers of 4527 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are 4528 * limited to MEMCG_CGWB_FRN_CNT. 4529 * 4530 * The mechanism only remembers IDs and doesn't hold any object references. 4531 * As being wrong occasionally doesn't matter, updates and accesses to the 4532 * records are lockless and racy. 4533 */ 4534 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio, 4535 struct bdi_writeback *wb) 4536 { 4537 struct mem_cgroup *memcg = folio_memcg(folio); 4538 struct memcg_cgwb_frn *frn; 4539 u64 now = get_jiffies_64(); 4540 u64 oldest_at = now; 4541 int oldest = -1; 4542 int i; 4543 4544 trace_track_foreign_dirty(folio, wb); 4545 4546 /* 4547 * Pick the slot to use. If there is already a slot for @wb, keep 4548 * using it. If not replace the oldest one which isn't being 4549 * written out. 4550 */ 4551 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 4552 frn = &memcg->cgwb_frn[i]; 4553 if (frn->bdi_id == wb->bdi->id && 4554 frn->memcg_id == wb->memcg_css->id) 4555 break; 4556 if (time_before64(frn->at, oldest_at) && 4557 atomic_read(&frn->done.cnt) == 1) { 4558 oldest = i; 4559 oldest_at = frn->at; 4560 } 4561 } 4562 4563 if (i < MEMCG_CGWB_FRN_CNT) { 4564 /* 4565 * Re-using an existing one. Update timestamp lazily to 4566 * avoid making the cacheline hot. We want them to be 4567 * reasonably up-to-date and significantly shorter than 4568 * dirty_expire_interval as that's what expires the record. 4569 * Use the shorter of 1s and dirty_expire_interval / 8. 4570 */ 4571 unsigned long update_intv = 4572 min_t(unsigned long, HZ, 4573 msecs_to_jiffies(dirty_expire_interval * 10) / 8); 4574 4575 if (time_before64(frn->at, now - update_intv)) 4576 frn->at = now; 4577 } else if (oldest >= 0) { 4578 /* replace the oldest free one */ 4579 frn = &memcg->cgwb_frn[oldest]; 4580 frn->bdi_id = wb->bdi->id; 4581 frn->memcg_id = wb->memcg_css->id; 4582 frn->at = now; 4583 } 4584 } 4585 4586 /* issue foreign writeback flushes for recorded foreign dirtying events */ 4587 void mem_cgroup_flush_foreign(struct bdi_writeback *wb) 4588 { 4589 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4590 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10); 4591 u64 now = jiffies_64; 4592 int i; 4593 4594 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 4595 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i]; 4596 4597 /* 4598 * If the record is older than dirty_expire_interval, 4599 * writeback on it has already started. No need to kick it 4600 * off again. Also, don't start a new one if there's 4601 * already one in flight. 4602 */ 4603 if (time_after64(frn->at, now - intv) && 4604 atomic_read(&frn->done.cnt) == 1) { 4605 frn->at = 0; 4606 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id); 4607 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 4608 WB_REASON_FOREIGN_FLUSH, 4609 &frn->done); 4610 } 4611 } 4612 } 4613 4614 #else /* CONFIG_CGROUP_WRITEBACK */ 4615 4616 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 4617 { 4618 return 0; 4619 } 4620 4621 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 4622 { 4623 } 4624 4625 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 4626 { 4627 } 4628 4629 #endif /* CONFIG_CGROUP_WRITEBACK */ 4630 4631 /* 4632 * DO NOT USE IN NEW FILES. 4633 * 4634 * "cgroup.event_control" implementation. 4635 * 4636 * This is way over-engineered. It tries to support fully configurable 4637 * events for each user. Such level of flexibility is completely 4638 * unnecessary especially in the light of the planned unified hierarchy. 4639 * 4640 * Please deprecate this and replace with something simpler if at all 4641 * possible. 4642 */ 4643 4644 /* 4645 * Unregister event and free resources. 4646 * 4647 * Gets called from workqueue. 4648 */ 4649 static void memcg_event_remove(struct work_struct *work) 4650 { 4651 struct mem_cgroup_event *event = 4652 container_of(work, struct mem_cgroup_event, remove); 4653 struct mem_cgroup *memcg = event->memcg; 4654 4655 remove_wait_queue(event->wqh, &event->wait); 4656 4657 event->unregister_event(memcg, event->eventfd); 4658 4659 /* Notify userspace the event is going away. */ 4660 eventfd_signal(event->eventfd, 1); 4661 4662 eventfd_ctx_put(event->eventfd); 4663 kfree(event); 4664 css_put(&memcg->css); 4665 } 4666 4667 /* 4668 * Gets called on EPOLLHUP on eventfd when user closes it. 4669 * 4670 * Called with wqh->lock held and interrupts disabled. 4671 */ 4672 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode, 4673 int sync, void *key) 4674 { 4675 struct mem_cgroup_event *event = 4676 container_of(wait, struct mem_cgroup_event, wait); 4677 struct mem_cgroup *memcg = event->memcg; 4678 __poll_t flags = key_to_poll(key); 4679 4680 if (flags & EPOLLHUP) { 4681 /* 4682 * If the event has been detached at cgroup removal, we 4683 * can simply return knowing the other side will cleanup 4684 * for us. 4685 * 4686 * We can't race against event freeing since the other 4687 * side will require wqh->lock via remove_wait_queue(), 4688 * which we hold. 4689 */ 4690 spin_lock(&memcg->event_list_lock); 4691 if (!list_empty(&event->list)) { 4692 list_del_init(&event->list); 4693 /* 4694 * We are in atomic context, but cgroup_event_remove() 4695 * may sleep, so we have to call it in workqueue. 4696 */ 4697 schedule_work(&event->remove); 4698 } 4699 spin_unlock(&memcg->event_list_lock); 4700 } 4701 4702 return 0; 4703 } 4704 4705 static void memcg_event_ptable_queue_proc(struct file *file, 4706 wait_queue_head_t *wqh, poll_table *pt) 4707 { 4708 struct mem_cgroup_event *event = 4709 container_of(pt, struct mem_cgroup_event, pt); 4710 4711 event->wqh = wqh; 4712 add_wait_queue(wqh, &event->wait); 4713 } 4714 4715 /* 4716 * DO NOT USE IN NEW FILES. 4717 * 4718 * Parse input and register new cgroup event handler. 4719 * 4720 * Input must be in format '<event_fd> <control_fd> <args>'. 4721 * Interpretation of args is defined by control file implementation. 4722 */ 4723 static ssize_t memcg_write_event_control(struct kernfs_open_file *of, 4724 char *buf, size_t nbytes, loff_t off) 4725 { 4726 struct cgroup_subsys_state *css = of_css(of); 4727 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4728 struct mem_cgroup_event *event; 4729 struct cgroup_subsys_state *cfile_css; 4730 unsigned int efd, cfd; 4731 struct fd efile; 4732 struct fd cfile; 4733 const char *name; 4734 char *endp; 4735 int ret; 4736 4737 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 4738 return -EOPNOTSUPP; 4739 4740 buf = strstrip(buf); 4741 4742 efd = simple_strtoul(buf, &endp, 10); 4743 if (*endp != ' ') 4744 return -EINVAL; 4745 buf = endp + 1; 4746 4747 cfd = simple_strtoul(buf, &endp, 10); 4748 if ((*endp != ' ') && (*endp != '\0')) 4749 return -EINVAL; 4750 buf = endp + 1; 4751 4752 event = kzalloc(sizeof(*event), GFP_KERNEL); 4753 if (!event) 4754 return -ENOMEM; 4755 4756 event->memcg = memcg; 4757 INIT_LIST_HEAD(&event->list); 4758 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc); 4759 init_waitqueue_func_entry(&event->wait, memcg_event_wake); 4760 INIT_WORK(&event->remove, memcg_event_remove); 4761 4762 efile = fdget(efd); 4763 if (!efile.file) { 4764 ret = -EBADF; 4765 goto out_kfree; 4766 } 4767 4768 event->eventfd = eventfd_ctx_fileget(efile.file); 4769 if (IS_ERR(event->eventfd)) { 4770 ret = PTR_ERR(event->eventfd); 4771 goto out_put_efile; 4772 } 4773 4774 cfile = fdget(cfd); 4775 if (!cfile.file) { 4776 ret = -EBADF; 4777 goto out_put_eventfd; 4778 } 4779 4780 /* the process need read permission on control file */ 4781 /* AV: shouldn't we check that it's been opened for read instead? */ 4782 ret = file_permission(cfile.file, MAY_READ); 4783 if (ret < 0) 4784 goto out_put_cfile; 4785 4786 /* 4787 * Determine the event callbacks and set them in @event. This used 4788 * to be done via struct cftype but cgroup core no longer knows 4789 * about these events. The following is crude but the whole thing 4790 * is for compatibility anyway. 4791 * 4792 * DO NOT ADD NEW FILES. 4793 */ 4794 name = cfile.file->f_path.dentry->d_name.name; 4795 4796 if (!strcmp(name, "memory.usage_in_bytes")) { 4797 event->register_event = mem_cgroup_usage_register_event; 4798 event->unregister_event = mem_cgroup_usage_unregister_event; 4799 } else if (!strcmp(name, "memory.oom_control")) { 4800 event->register_event = mem_cgroup_oom_register_event; 4801 event->unregister_event = mem_cgroup_oom_unregister_event; 4802 } else if (!strcmp(name, "memory.pressure_level")) { 4803 event->register_event = vmpressure_register_event; 4804 event->unregister_event = vmpressure_unregister_event; 4805 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) { 4806 event->register_event = memsw_cgroup_usage_register_event; 4807 event->unregister_event = memsw_cgroup_usage_unregister_event; 4808 } else { 4809 ret = -EINVAL; 4810 goto out_put_cfile; 4811 } 4812 4813 /* 4814 * Verify @cfile should belong to @css. Also, remaining events are 4815 * automatically removed on cgroup destruction but the removal is 4816 * asynchronous, so take an extra ref on @css. 4817 */ 4818 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent, 4819 &memory_cgrp_subsys); 4820 ret = -EINVAL; 4821 if (IS_ERR(cfile_css)) 4822 goto out_put_cfile; 4823 if (cfile_css != css) { 4824 css_put(cfile_css); 4825 goto out_put_cfile; 4826 } 4827 4828 ret = event->register_event(memcg, event->eventfd, buf); 4829 if (ret) 4830 goto out_put_css; 4831 4832 vfs_poll(efile.file, &event->pt); 4833 4834 spin_lock_irq(&memcg->event_list_lock); 4835 list_add(&event->list, &memcg->event_list); 4836 spin_unlock_irq(&memcg->event_list_lock); 4837 4838 fdput(cfile); 4839 fdput(efile); 4840 4841 return nbytes; 4842 4843 out_put_css: 4844 css_put(css); 4845 out_put_cfile: 4846 fdput(cfile); 4847 out_put_eventfd: 4848 eventfd_ctx_put(event->eventfd); 4849 out_put_efile: 4850 fdput(efile); 4851 out_kfree: 4852 kfree(event); 4853 4854 return ret; 4855 } 4856 4857 #if defined(CONFIG_MEMCG_KMEM) && (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)) 4858 static int mem_cgroup_slab_show(struct seq_file *m, void *p) 4859 { 4860 /* 4861 * Deprecated. 4862 * Please, take a look at tools/cgroup/slabinfo.py . 4863 */ 4864 return 0; 4865 } 4866 #endif 4867 4868 static struct cftype mem_cgroup_legacy_files[] = { 4869 { 4870 .name = "usage_in_bytes", 4871 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 4872 .read_u64 = mem_cgroup_read_u64, 4873 }, 4874 { 4875 .name = "max_usage_in_bytes", 4876 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 4877 .write = mem_cgroup_reset, 4878 .read_u64 = mem_cgroup_read_u64, 4879 }, 4880 { 4881 .name = "limit_in_bytes", 4882 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 4883 .write = mem_cgroup_write, 4884 .read_u64 = mem_cgroup_read_u64, 4885 }, 4886 { 4887 .name = "soft_limit_in_bytes", 4888 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 4889 .write = mem_cgroup_write, 4890 .read_u64 = mem_cgroup_read_u64, 4891 }, 4892 { 4893 .name = "failcnt", 4894 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 4895 .write = mem_cgroup_reset, 4896 .read_u64 = mem_cgroup_read_u64, 4897 }, 4898 { 4899 .name = "stat", 4900 .seq_show = memcg_stat_show, 4901 }, 4902 { 4903 .name = "force_empty", 4904 .write = mem_cgroup_force_empty_write, 4905 }, 4906 { 4907 .name = "use_hierarchy", 4908 .write_u64 = mem_cgroup_hierarchy_write, 4909 .read_u64 = mem_cgroup_hierarchy_read, 4910 }, 4911 { 4912 .name = "cgroup.event_control", /* XXX: for compat */ 4913 .write = memcg_write_event_control, 4914 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE, 4915 }, 4916 { 4917 .name = "swappiness", 4918 .read_u64 = mem_cgroup_swappiness_read, 4919 .write_u64 = mem_cgroup_swappiness_write, 4920 }, 4921 { 4922 .name = "move_charge_at_immigrate", 4923 .read_u64 = mem_cgroup_move_charge_read, 4924 .write_u64 = mem_cgroup_move_charge_write, 4925 }, 4926 { 4927 .name = "oom_control", 4928 .seq_show = mem_cgroup_oom_control_read, 4929 .write_u64 = mem_cgroup_oom_control_write, 4930 }, 4931 { 4932 .name = "pressure_level", 4933 }, 4934 #ifdef CONFIG_NUMA 4935 { 4936 .name = "numa_stat", 4937 .seq_show = memcg_numa_stat_show, 4938 }, 4939 #endif 4940 { 4941 .name = "kmem.limit_in_bytes", 4942 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), 4943 .write = mem_cgroup_write, 4944 .read_u64 = mem_cgroup_read_u64, 4945 }, 4946 { 4947 .name = "kmem.usage_in_bytes", 4948 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), 4949 .read_u64 = mem_cgroup_read_u64, 4950 }, 4951 { 4952 .name = "kmem.failcnt", 4953 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), 4954 .write = mem_cgroup_reset, 4955 .read_u64 = mem_cgroup_read_u64, 4956 }, 4957 { 4958 .name = "kmem.max_usage_in_bytes", 4959 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), 4960 .write = mem_cgroup_reset, 4961 .read_u64 = mem_cgroup_read_u64, 4962 }, 4963 #if defined(CONFIG_MEMCG_KMEM) && \ 4964 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)) 4965 { 4966 .name = "kmem.slabinfo", 4967 .seq_show = mem_cgroup_slab_show, 4968 }, 4969 #endif 4970 { 4971 .name = "kmem.tcp.limit_in_bytes", 4972 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT), 4973 .write = mem_cgroup_write, 4974 .read_u64 = mem_cgroup_read_u64, 4975 }, 4976 { 4977 .name = "kmem.tcp.usage_in_bytes", 4978 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE), 4979 .read_u64 = mem_cgroup_read_u64, 4980 }, 4981 { 4982 .name = "kmem.tcp.failcnt", 4983 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT), 4984 .write = mem_cgroup_reset, 4985 .read_u64 = mem_cgroup_read_u64, 4986 }, 4987 { 4988 .name = "kmem.tcp.max_usage_in_bytes", 4989 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE), 4990 .write = mem_cgroup_reset, 4991 .read_u64 = mem_cgroup_read_u64, 4992 }, 4993 { }, /* terminate */ 4994 }; 4995 4996 /* 4997 * Private memory cgroup IDR 4998 * 4999 * Swap-out records and page cache shadow entries need to store memcg 5000 * references in constrained space, so we maintain an ID space that is 5001 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of 5002 * memory-controlled cgroups to 64k. 5003 * 5004 * However, there usually are many references to the offline CSS after 5005 * the cgroup has been destroyed, such as page cache or reclaimable 5006 * slab objects, that don't need to hang on to the ID. We want to keep 5007 * those dead CSS from occupying IDs, or we might quickly exhaust the 5008 * relatively small ID space and prevent the creation of new cgroups 5009 * even when there are much fewer than 64k cgroups - possibly none. 5010 * 5011 * Maintain a private 16-bit ID space for memcg, and allow the ID to 5012 * be freed and recycled when it's no longer needed, which is usually 5013 * when the CSS is offlined. 5014 * 5015 * The only exception to that are records of swapped out tmpfs/shmem 5016 * pages that need to be attributed to live ancestors on swapin. But 5017 * those references are manageable from userspace. 5018 */ 5019 5020 static DEFINE_IDR(mem_cgroup_idr); 5021 5022 static void mem_cgroup_id_remove(struct mem_cgroup *memcg) 5023 { 5024 if (memcg->id.id > 0) { 5025 idr_remove(&mem_cgroup_idr, memcg->id.id); 5026 memcg->id.id = 0; 5027 } 5028 } 5029 5030 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg, 5031 unsigned int n) 5032 { 5033 refcount_add(n, &memcg->id.ref); 5034 } 5035 5036 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n) 5037 { 5038 if (refcount_sub_and_test(n, &memcg->id.ref)) { 5039 mem_cgroup_id_remove(memcg); 5040 5041 /* Memcg ID pins CSS */ 5042 css_put(&memcg->css); 5043 } 5044 } 5045 5046 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg) 5047 { 5048 mem_cgroup_id_put_many(memcg, 1); 5049 } 5050 5051 /** 5052 * mem_cgroup_from_id - look up a memcg from a memcg id 5053 * @id: the memcg id to look up 5054 * 5055 * Caller must hold rcu_read_lock(). 5056 */ 5057 struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 5058 { 5059 WARN_ON_ONCE(!rcu_read_lock_held()); 5060 return idr_find(&mem_cgroup_idr, id); 5061 } 5062 5063 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 5064 { 5065 struct mem_cgroup_per_node *pn; 5066 5067 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node); 5068 if (!pn) 5069 return 1; 5070 5071 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu, 5072 GFP_KERNEL_ACCOUNT); 5073 if (!pn->lruvec_stats_percpu) { 5074 kfree(pn); 5075 return 1; 5076 } 5077 5078 lruvec_init(&pn->lruvec); 5079 pn->memcg = memcg; 5080 5081 memcg->nodeinfo[node] = pn; 5082 return 0; 5083 } 5084 5085 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 5086 { 5087 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node]; 5088 5089 if (!pn) 5090 return; 5091 5092 free_percpu(pn->lruvec_stats_percpu); 5093 kfree(pn); 5094 } 5095 5096 static void __mem_cgroup_free(struct mem_cgroup *memcg) 5097 { 5098 int node; 5099 5100 for_each_node(node) 5101 free_mem_cgroup_per_node_info(memcg, node); 5102 free_percpu(memcg->vmstats_percpu); 5103 kfree(memcg); 5104 } 5105 5106 static void mem_cgroup_free(struct mem_cgroup *memcg) 5107 { 5108 memcg_wb_domain_exit(memcg); 5109 __mem_cgroup_free(memcg); 5110 } 5111 5112 static struct mem_cgroup *mem_cgroup_alloc(void) 5113 { 5114 struct mem_cgroup *memcg; 5115 int node; 5116 int __maybe_unused i; 5117 long error = -ENOMEM; 5118 5119 memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL); 5120 if (!memcg) 5121 return ERR_PTR(error); 5122 5123 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL, 5124 1, MEM_CGROUP_ID_MAX + 1, GFP_KERNEL); 5125 if (memcg->id.id < 0) { 5126 error = memcg->id.id; 5127 goto fail; 5128 } 5129 5130 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu, 5131 GFP_KERNEL_ACCOUNT); 5132 if (!memcg->vmstats_percpu) 5133 goto fail; 5134 5135 for_each_node(node) 5136 if (alloc_mem_cgroup_per_node_info(memcg, node)) 5137 goto fail; 5138 5139 if (memcg_wb_domain_init(memcg, GFP_KERNEL)) 5140 goto fail; 5141 5142 INIT_WORK(&memcg->high_work, high_work_func); 5143 INIT_LIST_HEAD(&memcg->oom_notify); 5144 mutex_init(&memcg->thresholds_lock); 5145 spin_lock_init(&memcg->move_lock); 5146 vmpressure_init(&memcg->vmpressure); 5147 INIT_LIST_HEAD(&memcg->event_list); 5148 spin_lock_init(&memcg->event_list_lock); 5149 memcg->socket_pressure = jiffies; 5150 #ifdef CONFIG_MEMCG_KMEM 5151 memcg->kmemcg_id = -1; 5152 INIT_LIST_HEAD(&memcg->objcg_list); 5153 #endif 5154 #ifdef CONFIG_CGROUP_WRITEBACK 5155 INIT_LIST_HEAD(&memcg->cgwb_list); 5156 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 5157 memcg->cgwb_frn[i].done = 5158 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq); 5159 #endif 5160 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5161 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock); 5162 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue); 5163 memcg->deferred_split_queue.split_queue_len = 0; 5164 #endif 5165 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id); 5166 return memcg; 5167 fail: 5168 mem_cgroup_id_remove(memcg); 5169 __mem_cgroup_free(memcg); 5170 return ERR_PTR(error); 5171 } 5172 5173 static struct cgroup_subsys_state * __ref 5174 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 5175 { 5176 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); 5177 struct mem_cgroup *memcg, *old_memcg; 5178 5179 old_memcg = set_active_memcg(parent); 5180 memcg = mem_cgroup_alloc(); 5181 set_active_memcg(old_memcg); 5182 if (IS_ERR(memcg)) 5183 return ERR_CAST(memcg); 5184 5185 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 5186 memcg->soft_limit = PAGE_COUNTER_MAX; 5187 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 5188 memcg->zswap_max = PAGE_COUNTER_MAX; 5189 #endif 5190 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 5191 if (parent) { 5192 memcg->swappiness = mem_cgroup_swappiness(parent); 5193 memcg->oom_kill_disable = parent->oom_kill_disable; 5194 5195 page_counter_init(&memcg->memory, &parent->memory); 5196 page_counter_init(&memcg->swap, &parent->swap); 5197 page_counter_init(&memcg->kmem, &parent->kmem); 5198 page_counter_init(&memcg->tcpmem, &parent->tcpmem); 5199 } else { 5200 page_counter_init(&memcg->memory, NULL); 5201 page_counter_init(&memcg->swap, NULL); 5202 page_counter_init(&memcg->kmem, NULL); 5203 page_counter_init(&memcg->tcpmem, NULL); 5204 5205 root_mem_cgroup = memcg; 5206 return &memcg->css; 5207 } 5208 5209 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 5210 static_branch_inc(&memcg_sockets_enabled_key); 5211 5212 return &memcg->css; 5213 } 5214 5215 static int mem_cgroup_css_online(struct cgroup_subsys_state *css) 5216 { 5217 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5218 5219 if (memcg_online_kmem(memcg)) 5220 goto remove_id; 5221 5222 /* 5223 * A memcg must be visible for expand_shrinker_info() 5224 * by the time the maps are allocated. So, we allocate maps 5225 * here, when for_each_mem_cgroup() can't skip it. 5226 */ 5227 if (alloc_shrinker_info(memcg)) 5228 goto offline_kmem; 5229 5230 /* Online state pins memcg ID, memcg ID pins CSS */ 5231 refcount_set(&memcg->id.ref, 1); 5232 css_get(css); 5233 5234 if (unlikely(mem_cgroup_is_root(memcg))) 5235 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, 5236 2UL*HZ); 5237 return 0; 5238 offline_kmem: 5239 memcg_offline_kmem(memcg); 5240 remove_id: 5241 mem_cgroup_id_remove(memcg); 5242 return -ENOMEM; 5243 } 5244 5245 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 5246 { 5247 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5248 struct mem_cgroup_event *event, *tmp; 5249 5250 /* 5251 * Unregister events and notify userspace. 5252 * Notify userspace about cgroup removing only after rmdir of cgroup 5253 * directory to avoid race between userspace and kernelspace. 5254 */ 5255 spin_lock_irq(&memcg->event_list_lock); 5256 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) { 5257 list_del_init(&event->list); 5258 schedule_work(&event->remove); 5259 } 5260 spin_unlock_irq(&memcg->event_list_lock); 5261 5262 page_counter_set_min(&memcg->memory, 0); 5263 page_counter_set_low(&memcg->memory, 0); 5264 5265 memcg_offline_kmem(memcg); 5266 reparent_shrinker_deferred(memcg); 5267 wb_memcg_offline(memcg); 5268 5269 drain_all_stock(memcg); 5270 5271 mem_cgroup_id_put(memcg); 5272 } 5273 5274 static void mem_cgroup_css_released(struct cgroup_subsys_state *css) 5275 { 5276 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5277 5278 invalidate_reclaim_iterators(memcg); 5279 } 5280 5281 static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 5282 { 5283 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5284 int __maybe_unused i; 5285 5286 #ifdef CONFIG_CGROUP_WRITEBACK 5287 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 5288 wb_wait_for_completion(&memcg->cgwb_frn[i].done); 5289 #endif 5290 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 5291 static_branch_dec(&memcg_sockets_enabled_key); 5292 5293 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active) 5294 static_branch_dec(&memcg_sockets_enabled_key); 5295 5296 vmpressure_cleanup(&memcg->vmpressure); 5297 cancel_work_sync(&memcg->high_work); 5298 mem_cgroup_remove_from_trees(memcg); 5299 free_shrinker_info(memcg); 5300 mem_cgroup_free(memcg); 5301 } 5302 5303 /** 5304 * mem_cgroup_css_reset - reset the states of a mem_cgroup 5305 * @css: the target css 5306 * 5307 * Reset the states of the mem_cgroup associated with @css. This is 5308 * invoked when the userland requests disabling on the default hierarchy 5309 * but the memcg is pinned through dependency. The memcg should stop 5310 * applying policies and should revert to the vanilla state as it may be 5311 * made visible again. 5312 * 5313 * The current implementation only resets the essential configurations. 5314 * This needs to be expanded to cover all the visible parts. 5315 */ 5316 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) 5317 { 5318 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5319 5320 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX); 5321 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX); 5322 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX); 5323 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX); 5324 page_counter_set_min(&memcg->memory, 0); 5325 page_counter_set_low(&memcg->memory, 0); 5326 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX); 5327 memcg->soft_limit = PAGE_COUNTER_MAX; 5328 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX); 5329 memcg_wb_domain_size_changed(memcg); 5330 } 5331 5332 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu) 5333 { 5334 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5335 struct mem_cgroup *parent = parent_mem_cgroup(memcg); 5336 struct memcg_vmstats_percpu *statc; 5337 long delta, v; 5338 int i, nid; 5339 5340 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu); 5341 5342 for (i = 0; i < MEMCG_NR_STAT; i++) { 5343 /* 5344 * Collect the aggregated propagation counts of groups 5345 * below us. We're in a per-cpu loop here and this is 5346 * a global counter, so the first cycle will get them. 5347 */ 5348 delta = memcg->vmstats.state_pending[i]; 5349 if (delta) 5350 memcg->vmstats.state_pending[i] = 0; 5351 5352 /* Add CPU changes on this level since the last flush */ 5353 v = READ_ONCE(statc->state[i]); 5354 if (v != statc->state_prev[i]) { 5355 delta += v - statc->state_prev[i]; 5356 statc->state_prev[i] = v; 5357 } 5358 5359 if (!delta) 5360 continue; 5361 5362 /* Aggregate counts on this level and propagate upwards */ 5363 memcg->vmstats.state[i] += delta; 5364 if (parent) 5365 parent->vmstats.state_pending[i] += delta; 5366 } 5367 5368 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) { 5369 delta = memcg->vmstats.events_pending[i]; 5370 if (delta) 5371 memcg->vmstats.events_pending[i] = 0; 5372 5373 v = READ_ONCE(statc->events[i]); 5374 if (v != statc->events_prev[i]) { 5375 delta += v - statc->events_prev[i]; 5376 statc->events_prev[i] = v; 5377 } 5378 5379 if (!delta) 5380 continue; 5381 5382 memcg->vmstats.events[i] += delta; 5383 if (parent) 5384 parent->vmstats.events_pending[i] += delta; 5385 } 5386 5387 for_each_node_state(nid, N_MEMORY) { 5388 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid]; 5389 struct mem_cgroup_per_node *ppn = NULL; 5390 struct lruvec_stats_percpu *lstatc; 5391 5392 if (parent) 5393 ppn = parent->nodeinfo[nid]; 5394 5395 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu); 5396 5397 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) { 5398 delta = pn->lruvec_stats.state_pending[i]; 5399 if (delta) 5400 pn->lruvec_stats.state_pending[i] = 0; 5401 5402 v = READ_ONCE(lstatc->state[i]); 5403 if (v != lstatc->state_prev[i]) { 5404 delta += v - lstatc->state_prev[i]; 5405 lstatc->state_prev[i] = v; 5406 } 5407 5408 if (!delta) 5409 continue; 5410 5411 pn->lruvec_stats.state[i] += delta; 5412 if (ppn) 5413 ppn->lruvec_stats.state_pending[i] += delta; 5414 } 5415 } 5416 } 5417 5418 #ifdef CONFIG_MMU 5419 /* Handlers for move charge at task migration. */ 5420 static int mem_cgroup_do_precharge(unsigned long count) 5421 { 5422 int ret; 5423 5424 /* Try a single bulk charge without reclaim first, kswapd may wake */ 5425 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count); 5426 if (!ret) { 5427 mc.precharge += count; 5428 return ret; 5429 } 5430 5431 /* Try charges one by one with reclaim, but do not retry */ 5432 while (count--) { 5433 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1); 5434 if (ret) 5435 return ret; 5436 mc.precharge++; 5437 cond_resched(); 5438 } 5439 return 0; 5440 } 5441 5442 union mc_target { 5443 struct page *page; 5444 swp_entry_t ent; 5445 }; 5446 5447 enum mc_target_type { 5448 MC_TARGET_NONE = 0, 5449 MC_TARGET_PAGE, 5450 MC_TARGET_SWAP, 5451 MC_TARGET_DEVICE, 5452 }; 5453 5454 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 5455 unsigned long addr, pte_t ptent) 5456 { 5457 struct page *page = vm_normal_page(vma, addr, ptent); 5458 5459 if (!page || !page_mapped(page)) 5460 return NULL; 5461 if (PageAnon(page)) { 5462 if (!(mc.flags & MOVE_ANON)) 5463 return NULL; 5464 } else { 5465 if (!(mc.flags & MOVE_FILE)) 5466 return NULL; 5467 } 5468 if (!get_page_unless_zero(page)) 5469 return NULL; 5470 5471 return page; 5472 } 5473 5474 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE) 5475 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5476 pte_t ptent, swp_entry_t *entry) 5477 { 5478 struct page *page = NULL; 5479 swp_entry_t ent = pte_to_swp_entry(ptent); 5480 5481 if (!(mc.flags & MOVE_ANON)) 5482 return NULL; 5483 5484 /* 5485 * Handle device private pages that are not accessible by the CPU, but 5486 * stored as special swap entries in the page table. 5487 */ 5488 if (is_device_private_entry(ent)) { 5489 page = pfn_swap_entry_to_page(ent); 5490 if (!get_page_unless_zero(page)) 5491 return NULL; 5492 return page; 5493 } 5494 5495 if (non_swap_entry(ent)) 5496 return NULL; 5497 5498 /* 5499 * Because lookup_swap_cache() updates some statistics counter, 5500 * we call find_get_page() with swapper_space directly. 5501 */ 5502 page = find_get_page(swap_address_space(ent), swp_offset(ent)); 5503 entry->val = ent.val; 5504 5505 return page; 5506 } 5507 #else 5508 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5509 pte_t ptent, swp_entry_t *entry) 5510 { 5511 return NULL; 5512 } 5513 #endif 5514 5515 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 5516 unsigned long addr, pte_t ptent) 5517 { 5518 if (!vma->vm_file) /* anonymous vma */ 5519 return NULL; 5520 if (!(mc.flags & MOVE_FILE)) 5521 return NULL; 5522 5523 /* page is moved even if it's not RSS of this task(page-faulted). */ 5524 /* shmem/tmpfs may report page out on swap: account for that too. */ 5525 return find_get_incore_page(vma->vm_file->f_mapping, 5526 linear_page_index(vma, addr)); 5527 } 5528 5529 /** 5530 * mem_cgroup_move_account - move account of the page 5531 * @page: the page 5532 * @compound: charge the page as compound or small page 5533 * @from: mem_cgroup which the page is moved from. 5534 * @to: mem_cgroup which the page is moved to. @from != @to. 5535 * 5536 * The caller must make sure the page is not on LRU (isolate_page() is useful.) 5537 * 5538 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" 5539 * from old cgroup. 5540 */ 5541 static int mem_cgroup_move_account(struct page *page, 5542 bool compound, 5543 struct mem_cgroup *from, 5544 struct mem_cgroup *to) 5545 { 5546 struct folio *folio = page_folio(page); 5547 struct lruvec *from_vec, *to_vec; 5548 struct pglist_data *pgdat; 5549 unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1; 5550 int nid, ret; 5551 5552 VM_BUG_ON(from == to); 5553 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 5554 VM_BUG_ON(compound && !folio_test_large(folio)); 5555 5556 /* 5557 * Prevent mem_cgroup_migrate() from looking at 5558 * page's memory cgroup of its source page while we change it. 5559 */ 5560 ret = -EBUSY; 5561 if (!folio_trylock(folio)) 5562 goto out; 5563 5564 ret = -EINVAL; 5565 if (folio_memcg(folio) != from) 5566 goto out_unlock; 5567 5568 pgdat = folio_pgdat(folio); 5569 from_vec = mem_cgroup_lruvec(from, pgdat); 5570 to_vec = mem_cgroup_lruvec(to, pgdat); 5571 5572 folio_memcg_lock(folio); 5573 5574 if (folio_test_anon(folio)) { 5575 if (folio_mapped(folio)) { 5576 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages); 5577 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages); 5578 if (folio_test_transhuge(folio)) { 5579 __mod_lruvec_state(from_vec, NR_ANON_THPS, 5580 -nr_pages); 5581 __mod_lruvec_state(to_vec, NR_ANON_THPS, 5582 nr_pages); 5583 } 5584 } 5585 } else { 5586 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages); 5587 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages); 5588 5589 if (folio_test_swapbacked(folio)) { 5590 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages); 5591 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages); 5592 } 5593 5594 if (folio_mapped(folio)) { 5595 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages); 5596 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages); 5597 } 5598 5599 if (folio_test_dirty(folio)) { 5600 struct address_space *mapping = folio_mapping(folio); 5601 5602 if (mapping_can_writeback(mapping)) { 5603 __mod_lruvec_state(from_vec, NR_FILE_DIRTY, 5604 -nr_pages); 5605 __mod_lruvec_state(to_vec, NR_FILE_DIRTY, 5606 nr_pages); 5607 } 5608 } 5609 } 5610 5611 if (folio_test_writeback(folio)) { 5612 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages); 5613 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages); 5614 } 5615 5616 /* 5617 * All state has been migrated, let's switch to the new memcg. 5618 * 5619 * It is safe to change page's memcg here because the page 5620 * is referenced, charged, isolated, and locked: we can't race 5621 * with (un)charging, migration, LRU putback, or anything else 5622 * that would rely on a stable page's memory cgroup. 5623 * 5624 * Note that lock_page_memcg is a memcg lock, not a page lock, 5625 * to save space. As soon as we switch page's memory cgroup to a 5626 * new memcg that isn't locked, the above state can change 5627 * concurrently again. Make sure we're truly done with it. 5628 */ 5629 smp_mb(); 5630 5631 css_get(&to->css); 5632 css_put(&from->css); 5633 5634 folio->memcg_data = (unsigned long)to; 5635 5636 __folio_memcg_unlock(from); 5637 5638 ret = 0; 5639 nid = folio_nid(folio); 5640 5641 local_irq_disable(); 5642 mem_cgroup_charge_statistics(to, nr_pages); 5643 memcg_check_events(to, nid); 5644 mem_cgroup_charge_statistics(from, -nr_pages); 5645 memcg_check_events(from, nid); 5646 local_irq_enable(); 5647 out_unlock: 5648 folio_unlock(folio); 5649 out: 5650 return ret; 5651 } 5652 5653 /** 5654 * get_mctgt_type - get target type of moving charge 5655 * @vma: the vma the pte to be checked belongs 5656 * @addr: the address corresponding to the pte to be checked 5657 * @ptent: the pte to be checked 5658 * @target: the pointer the target page or swap ent will be stored(can be NULL) 5659 * 5660 * Returns 5661 * 0(MC_TARGET_NONE): if the pte is not a target for move charge. 5662 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for 5663 * move charge. if @target is not NULL, the page is stored in target->page 5664 * with extra refcnt got(Callers should handle it). 5665 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a 5666 * target for charge migration. if @target is not NULL, the entry is stored 5667 * in target->ent. 5668 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE 5669 * (so ZONE_DEVICE page and thus not on the lru). 5670 * For now we such page is charge like a regular page would be as for all 5671 * intent and purposes it is just special memory taking the place of a 5672 * regular page. 5673 * 5674 * See Documentations/vm/hmm.txt and include/linux/hmm.h 5675 * 5676 * Called with pte lock held. 5677 */ 5678 5679 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, 5680 unsigned long addr, pte_t ptent, union mc_target *target) 5681 { 5682 struct page *page = NULL; 5683 enum mc_target_type ret = MC_TARGET_NONE; 5684 swp_entry_t ent = { .val = 0 }; 5685 5686 if (pte_present(ptent)) 5687 page = mc_handle_present_pte(vma, addr, ptent); 5688 else if (pte_none_mostly(ptent)) 5689 /* 5690 * PTE markers should be treated as a none pte here, separated 5691 * from other swap handling below. 5692 */ 5693 page = mc_handle_file_pte(vma, addr, ptent); 5694 else if (is_swap_pte(ptent)) 5695 page = mc_handle_swap_pte(vma, ptent, &ent); 5696 5697 if (!page && !ent.val) 5698 return ret; 5699 if (page) { 5700 /* 5701 * Do only loose check w/o serialization. 5702 * mem_cgroup_move_account() checks the page is valid or 5703 * not under LRU exclusion. 5704 */ 5705 if (page_memcg(page) == mc.from) { 5706 ret = MC_TARGET_PAGE; 5707 if (is_device_private_page(page)) 5708 ret = MC_TARGET_DEVICE; 5709 if (target) 5710 target->page = page; 5711 } 5712 if (!ret || !target) 5713 put_page(page); 5714 } 5715 /* 5716 * There is a swap entry and a page doesn't exist or isn't charged. 5717 * But we cannot move a tail-page in a THP. 5718 */ 5719 if (ent.val && !ret && (!page || !PageTransCompound(page)) && 5720 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) { 5721 ret = MC_TARGET_SWAP; 5722 if (target) 5723 target->ent = ent; 5724 } 5725 return ret; 5726 } 5727 5728 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5729 /* 5730 * We don't consider PMD mapped swapping or file mapped pages because THP does 5731 * not support them for now. 5732 * Caller should make sure that pmd_trans_huge(pmd) is true. 5733 */ 5734 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5735 unsigned long addr, pmd_t pmd, union mc_target *target) 5736 { 5737 struct page *page = NULL; 5738 enum mc_target_type ret = MC_TARGET_NONE; 5739 5740 if (unlikely(is_swap_pmd(pmd))) { 5741 VM_BUG_ON(thp_migration_supported() && 5742 !is_pmd_migration_entry(pmd)); 5743 return ret; 5744 } 5745 page = pmd_page(pmd); 5746 VM_BUG_ON_PAGE(!page || !PageHead(page), page); 5747 if (!(mc.flags & MOVE_ANON)) 5748 return ret; 5749 if (page_memcg(page) == mc.from) { 5750 ret = MC_TARGET_PAGE; 5751 if (target) { 5752 get_page(page); 5753 target->page = page; 5754 } 5755 } 5756 return ret; 5757 } 5758 #else 5759 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5760 unsigned long addr, pmd_t pmd, union mc_target *target) 5761 { 5762 return MC_TARGET_NONE; 5763 } 5764 #endif 5765 5766 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 5767 unsigned long addr, unsigned long end, 5768 struct mm_walk *walk) 5769 { 5770 struct vm_area_struct *vma = walk->vma; 5771 pte_t *pte; 5772 spinlock_t *ptl; 5773 5774 ptl = pmd_trans_huge_lock(pmd, vma); 5775 if (ptl) { 5776 /* 5777 * Note their can not be MC_TARGET_DEVICE for now as we do not 5778 * support transparent huge page with MEMORY_DEVICE_PRIVATE but 5779 * this might change. 5780 */ 5781 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) 5782 mc.precharge += HPAGE_PMD_NR; 5783 spin_unlock(ptl); 5784 return 0; 5785 } 5786 5787 if (pmd_trans_unstable(pmd)) 5788 return 0; 5789 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 5790 for (; addr != end; pte++, addr += PAGE_SIZE) 5791 if (get_mctgt_type(vma, addr, *pte, NULL)) 5792 mc.precharge++; /* increment precharge temporarily */ 5793 pte_unmap_unlock(pte - 1, ptl); 5794 cond_resched(); 5795 5796 return 0; 5797 } 5798 5799 static const struct mm_walk_ops precharge_walk_ops = { 5800 .pmd_entry = mem_cgroup_count_precharge_pte_range, 5801 }; 5802 5803 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 5804 { 5805 unsigned long precharge; 5806 5807 mmap_read_lock(mm); 5808 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL); 5809 mmap_read_unlock(mm); 5810 5811 precharge = mc.precharge; 5812 mc.precharge = 0; 5813 5814 return precharge; 5815 } 5816 5817 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 5818 { 5819 unsigned long precharge = mem_cgroup_count_precharge(mm); 5820 5821 VM_BUG_ON(mc.moving_task); 5822 mc.moving_task = current; 5823 return mem_cgroup_do_precharge(precharge); 5824 } 5825 5826 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 5827 static void __mem_cgroup_clear_mc(void) 5828 { 5829 struct mem_cgroup *from = mc.from; 5830 struct mem_cgroup *to = mc.to; 5831 5832 /* we must uncharge all the leftover precharges from mc.to */ 5833 if (mc.precharge) { 5834 cancel_charge(mc.to, mc.precharge); 5835 mc.precharge = 0; 5836 } 5837 /* 5838 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 5839 * we must uncharge here. 5840 */ 5841 if (mc.moved_charge) { 5842 cancel_charge(mc.from, mc.moved_charge); 5843 mc.moved_charge = 0; 5844 } 5845 /* we must fixup refcnts and charges */ 5846 if (mc.moved_swap) { 5847 /* uncharge swap account from the old cgroup */ 5848 if (!mem_cgroup_is_root(mc.from)) 5849 page_counter_uncharge(&mc.from->memsw, mc.moved_swap); 5850 5851 mem_cgroup_id_put_many(mc.from, mc.moved_swap); 5852 5853 /* 5854 * we charged both to->memory and to->memsw, so we 5855 * should uncharge to->memory. 5856 */ 5857 if (!mem_cgroup_is_root(mc.to)) 5858 page_counter_uncharge(&mc.to->memory, mc.moved_swap); 5859 5860 mc.moved_swap = 0; 5861 } 5862 memcg_oom_recover(from); 5863 memcg_oom_recover(to); 5864 wake_up_all(&mc.waitq); 5865 } 5866 5867 static void mem_cgroup_clear_mc(void) 5868 { 5869 struct mm_struct *mm = mc.mm; 5870 5871 /* 5872 * we must clear moving_task before waking up waiters at the end of 5873 * task migration. 5874 */ 5875 mc.moving_task = NULL; 5876 __mem_cgroup_clear_mc(); 5877 spin_lock(&mc.lock); 5878 mc.from = NULL; 5879 mc.to = NULL; 5880 mc.mm = NULL; 5881 spin_unlock(&mc.lock); 5882 5883 mmput(mm); 5884 } 5885 5886 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 5887 { 5888 struct cgroup_subsys_state *css; 5889 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */ 5890 struct mem_cgroup *from; 5891 struct task_struct *leader, *p; 5892 struct mm_struct *mm; 5893 unsigned long move_flags; 5894 int ret = 0; 5895 5896 /* charge immigration isn't supported on the default hierarchy */ 5897 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5898 return 0; 5899 5900 /* 5901 * Multi-process migrations only happen on the default hierarchy 5902 * where charge immigration is not used. Perform charge 5903 * immigration if @tset contains a leader and whine if there are 5904 * multiple. 5905 */ 5906 p = NULL; 5907 cgroup_taskset_for_each_leader(leader, css, tset) { 5908 WARN_ON_ONCE(p); 5909 p = leader; 5910 memcg = mem_cgroup_from_css(css); 5911 } 5912 if (!p) 5913 return 0; 5914 5915 /* 5916 * We are now committed to this value whatever it is. Changes in this 5917 * tunable will only affect upcoming migrations, not the current one. 5918 * So we need to save it, and keep it going. 5919 */ 5920 move_flags = READ_ONCE(memcg->move_charge_at_immigrate); 5921 if (!move_flags) 5922 return 0; 5923 5924 from = mem_cgroup_from_task(p); 5925 5926 VM_BUG_ON(from == memcg); 5927 5928 mm = get_task_mm(p); 5929 if (!mm) 5930 return 0; 5931 /* We move charges only when we move a owner of the mm */ 5932 if (mm->owner == p) { 5933 VM_BUG_ON(mc.from); 5934 VM_BUG_ON(mc.to); 5935 VM_BUG_ON(mc.precharge); 5936 VM_BUG_ON(mc.moved_charge); 5937 VM_BUG_ON(mc.moved_swap); 5938 5939 spin_lock(&mc.lock); 5940 mc.mm = mm; 5941 mc.from = from; 5942 mc.to = memcg; 5943 mc.flags = move_flags; 5944 spin_unlock(&mc.lock); 5945 /* We set mc.moving_task later */ 5946 5947 ret = mem_cgroup_precharge_mc(mm); 5948 if (ret) 5949 mem_cgroup_clear_mc(); 5950 } else { 5951 mmput(mm); 5952 } 5953 return ret; 5954 } 5955 5956 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 5957 { 5958 if (mc.to) 5959 mem_cgroup_clear_mc(); 5960 } 5961 5962 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 5963 unsigned long addr, unsigned long end, 5964 struct mm_walk *walk) 5965 { 5966 int ret = 0; 5967 struct vm_area_struct *vma = walk->vma; 5968 pte_t *pte; 5969 spinlock_t *ptl; 5970 enum mc_target_type target_type; 5971 union mc_target target; 5972 struct page *page; 5973 5974 ptl = pmd_trans_huge_lock(pmd, vma); 5975 if (ptl) { 5976 if (mc.precharge < HPAGE_PMD_NR) { 5977 spin_unlock(ptl); 5978 return 0; 5979 } 5980 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); 5981 if (target_type == MC_TARGET_PAGE) { 5982 page = target.page; 5983 if (!isolate_lru_page(page)) { 5984 if (!mem_cgroup_move_account(page, true, 5985 mc.from, mc.to)) { 5986 mc.precharge -= HPAGE_PMD_NR; 5987 mc.moved_charge += HPAGE_PMD_NR; 5988 } 5989 putback_lru_page(page); 5990 } 5991 put_page(page); 5992 } else if (target_type == MC_TARGET_DEVICE) { 5993 page = target.page; 5994 if (!mem_cgroup_move_account(page, true, 5995 mc.from, mc.to)) { 5996 mc.precharge -= HPAGE_PMD_NR; 5997 mc.moved_charge += HPAGE_PMD_NR; 5998 } 5999 put_page(page); 6000 } 6001 spin_unlock(ptl); 6002 return 0; 6003 } 6004 6005 if (pmd_trans_unstable(pmd)) 6006 return 0; 6007 retry: 6008 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 6009 for (; addr != end; addr += PAGE_SIZE) { 6010 pte_t ptent = *(pte++); 6011 bool device = false; 6012 swp_entry_t ent; 6013 6014 if (!mc.precharge) 6015 break; 6016 6017 switch (get_mctgt_type(vma, addr, ptent, &target)) { 6018 case MC_TARGET_DEVICE: 6019 device = true; 6020 fallthrough; 6021 case MC_TARGET_PAGE: 6022 page = target.page; 6023 /* 6024 * We can have a part of the split pmd here. Moving it 6025 * can be done but it would be too convoluted so simply 6026 * ignore such a partial THP and keep it in original 6027 * memcg. There should be somebody mapping the head. 6028 */ 6029 if (PageTransCompound(page)) 6030 goto put; 6031 if (!device && isolate_lru_page(page)) 6032 goto put; 6033 if (!mem_cgroup_move_account(page, false, 6034 mc.from, mc.to)) { 6035 mc.precharge--; 6036 /* we uncharge from mc.from later. */ 6037 mc.moved_charge++; 6038 } 6039 if (!device) 6040 putback_lru_page(page); 6041 put: /* get_mctgt_type() gets the page */ 6042 put_page(page); 6043 break; 6044 case MC_TARGET_SWAP: 6045 ent = target.ent; 6046 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { 6047 mc.precharge--; 6048 mem_cgroup_id_get_many(mc.to, 1); 6049 /* we fixup other refcnts and charges later. */ 6050 mc.moved_swap++; 6051 } 6052 break; 6053 default: 6054 break; 6055 } 6056 } 6057 pte_unmap_unlock(pte - 1, ptl); 6058 cond_resched(); 6059 6060 if (addr != end) { 6061 /* 6062 * We have consumed all precharges we got in can_attach(). 6063 * We try charge one by one, but don't do any additional 6064 * charges to mc.to if we have failed in charge once in attach() 6065 * phase. 6066 */ 6067 ret = mem_cgroup_do_precharge(1); 6068 if (!ret) 6069 goto retry; 6070 } 6071 6072 return ret; 6073 } 6074 6075 static const struct mm_walk_ops charge_walk_ops = { 6076 .pmd_entry = mem_cgroup_move_charge_pte_range, 6077 }; 6078 6079 static void mem_cgroup_move_charge(void) 6080 { 6081 lru_add_drain_all(); 6082 /* 6083 * Signal lock_page_memcg() to take the memcg's move_lock 6084 * while we're moving its pages to another memcg. Then wait 6085 * for already started RCU-only updates to finish. 6086 */ 6087 atomic_inc(&mc.from->moving_account); 6088 synchronize_rcu(); 6089 retry: 6090 if (unlikely(!mmap_read_trylock(mc.mm))) { 6091 /* 6092 * Someone who are holding the mmap_lock might be waiting in 6093 * waitq. So we cancel all extra charges, wake up all waiters, 6094 * and retry. Because we cancel precharges, we might not be able 6095 * to move enough charges, but moving charge is a best-effort 6096 * feature anyway, so it wouldn't be a big problem. 6097 */ 6098 __mem_cgroup_clear_mc(); 6099 cond_resched(); 6100 goto retry; 6101 } 6102 /* 6103 * When we have consumed all precharges and failed in doing 6104 * additional charge, the page walk just aborts. 6105 */ 6106 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops, 6107 NULL); 6108 6109 mmap_read_unlock(mc.mm); 6110 atomic_dec(&mc.from->moving_account); 6111 } 6112 6113 static void mem_cgroup_move_task(void) 6114 { 6115 if (mc.to) { 6116 mem_cgroup_move_charge(); 6117 mem_cgroup_clear_mc(); 6118 } 6119 } 6120 #else /* !CONFIG_MMU */ 6121 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 6122 { 6123 return 0; 6124 } 6125 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 6126 { 6127 } 6128 static void mem_cgroup_move_task(void) 6129 { 6130 } 6131 #endif 6132 6133 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value) 6134 { 6135 if (value == PAGE_COUNTER_MAX) 6136 seq_puts(m, "max\n"); 6137 else 6138 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE); 6139 6140 return 0; 6141 } 6142 6143 static u64 memory_current_read(struct cgroup_subsys_state *css, 6144 struct cftype *cft) 6145 { 6146 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6147 6148 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; 6149 } 6150 6151 static u64 memory_peak_read(struct cgroup_subsys_state *css, 6152 struct cftype *cft) 6153 { 6154 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6155 6156 return (u64)memcg->memory.watermark * PAGE_SIZE; 6157 } 6158 6159 static int memory_min_show(struct seq_file *m, void *v) 6160 { 6161 return seq_puts_memcg_tunable(m, 6162 READ_ONCE(mem_cgroup_from_seq(m)->memory.min)); 6163 } 6164 6165 static ssize_t memory_min_write(struct kernfs_open_file *of, 6166 char *buf, size_t nbytes, loff_t off) 6167 { 6168 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6169 unsigned long min; 6170 int err; 6171 6172 buf = strstrip(buf); 6173 err = page_counter_memparse(buf, "max", &min); 6174 if (err) 6175 return err; 6176 6177 page_counter_set_min(&memcg->memory, min); 6178 6179 return nbytes; 6180 } 6181 6182 static int memory_low_show(struct seq_file *m, void *v) 6183 { 6184 return seq_puts_memcg_tunable(m, 6185 READ_ONCE(mem_cgroup_from_seq(m)->memory.low)); 6186 } 6187 6188 static ssize_t memory_low_write(struct kernfs_open_file *of, 6189 char *buf, size_t nbytes, loff_t off) 6190 { 6191 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6192 unsigned long low; 6193 int err; 6194 6195 buf = strstrip(buf); 6196 err = page_counter_memparse(buf, "max", &low); 6197 if (err) 6198 return err; 6199 6200 page_counter_set_low(&memcg->memory, low); 6201 6202 return nbytes; 6203 } 6204 6205 static int memory_high_show(struct seq_file *m, void *v) 6206 { 6207 return seq_puts_memcg_tunable(m, 6208 READ_ONCE(mem_cgroup_from_seq(m)->memory.high)); 6209 } 6210 6211 static ssize_t memory_high_write(struct kernfs_open_file *of, 6212 char *buf, size_t nbytes, loff_t off) 6213 { 6214 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6215 unsigned int nr_retries = MAX_RECLAIM_RETRIES; 6216 bool drained = false; 6217 unsigned long high; 6218 int err; 6219 6220 buf = strstrip(buf); 6221 err = page_counter_memparse(buf, "max", &high); 6222 if (err) 6223 return err; 6224 6225 page_counter_set_high(&memcg->memory, high); 6226 6227 for (;;) { 6228 unsigned long nr_pages = page_counter_read(&memcg->memory); 6229 unsigned long reclaimed; 6230 6231 if (nr_pages <= high) 6232 break; 6233 6234 if (signal_pending(current)) 6235 break; 6236 6237 if (!drained) { 6238 drain_all_stock(memcg); 6239 drained = true; 6240 continue; 6241 } 6242 6243 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high, 6244 GFP_KERNEL, true); 6245 6246 if (!reclaimed && !nr_retries--) 6247 break; 6248 } 6249 6250 memcg_wb_domain_size_changed(memcg); 6251 return nbytes; 6252 } 6253 6254 static int memory_max_show(struct seq_file *m, void *v) 6255 { 6256 return seq_puts_memcg_tunable(m, 6257 READ_ONCE(mem_cgroup_from_seq(m)->memory.max)); 6258 } 6259 6260 static ssize_t memory_max_write(struct kernfs_open_file *of, 6261 char *buf, size_t nbytes, loff_t off) 6262 { 6263 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6264 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES; 6265 bool drained = false; 6266 unsigned long max; 6267 int err; 6268 6269 buf = strstrip(buf); 6270 err = page_counter_memparse(buf, "max", &max); 6271 if (err) 6272 return err; 6273 6274 xchg(&memcg->memory.max, max); 6275 6276 for (;;) { 6277 unsigned long nr_pages = page_counter_read(&memcg->memory); 6278 6279 if (nr_pages <= max) 6280 break; 6281 6282 if (signal_pending(current)) 6283 break; 6284 6285 if (!drained) { 6286 drain_all_stock(memcg); 6287 drained = true; 6288 continue; 6289 } 6290 6291 if (nr_reclaims) { 6292 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max, 6293 GFP_KERNEL, true)) 6294 nr_reclaims--; 6295 continue; 6296 } 6297 6298 memcg_memory_event(memcg, MEMCG_OOM); 6299 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0)) 6300 break; 6301 } 6302 6303 memcg_wb_domain_size_changed(memcg); 6304 return nbytes; 6305 } 6306 6307 static void __memory_events_show(struct seq_file *m, atomic_long_t *events) 6308 { 6309 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW])); 6310 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH])); 6311 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX])); 6312 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM])); 6313 seq_printf(m, "oom_kill %lu\n", 6314 atomic_long_read(&events[MEMCG_OOM_KILL])); 6315 seq_printf(m, "oom_group_kill %lu\n", 6316 atomic_long_read(&events[MEMCG_OOM_GROUP_KILL])); 6317 } 6318 6319 static int memory_events_show(struct seq_file *m, void *v) 6320 { 6321 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6322 6323 __memory_events_show(m, memcg->memory_events); 6324 return 0; 6325 } 6326 6327 static int memory_events_local_show(struct seq_file *m, void *v) 6328 { 6329 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6330 6331 __memory_events_show(m, memcg->memory_events_local); 6332 return 0; 6333 } 6334 6335 static int memory_stat_show(struct seq_file *m, void *v) 6336 { 6337 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6338 char *buf; 6339 6340 buf = memory_stat_format(memcg); 6341 if (!buf) 6342 return -ENOMEM; 6343 seq_puts(m, buf); 6344 kfree(buf); 6345 return 0; 6346 } 6347 6348 #ifdef CONFIG_NUMA 6349 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec, 6350 int item) 6351 { 6352 return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item); 6353 } 6354 6355 static int memory_numa_stat_show(struct seq_file *m, void *v) 6356 { 6357 int i; 6358 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6359 6360 mem_cgroup_flush_stats(); 6361 6362 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) { 6363 int nid; 6364 6365 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS) 6366 continue; 6367 6368 seq_printf(m, "%s", memory_stats[i].name); 6369 for_each_node_state(nid, N_MEMORY) { 6370 u64 size; 6371 struct lruvec *lruvec; 6372 6373 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); 6374 size = lruvec_page_state_output(lruvec, 6375 memory_stats[i].idx); 6376 seq_printf(m, " N%d=%llu", nid, size); 6377 } 6378 seq_putc(m, '\n'); 6379 } 6380 6381 return 0; 6382 } 6383 #endif 6384 6385 static int memory_oom_group_show(struct seq_file *m, void *v) 6386 { 6387 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6388 6389 seq_printf(m, "%d\n", memcg->oom_group); 6390 6391 return 0; 6392 } 6393 6394 static ssize_t memory_oom_group_write(struct kernfs_open_file *of, 6395 char *buf, size_t nbytes, loff_t off) 6396 { 6397 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6398 int ret, oom_group; 6399 6400 buf = strstrip(buf); 6401 if (!buf) 6402 return -EINVAL; 6403 6404 ret = kstrtoint(buf, 0, &oom_group); 6405 if (ret) 6406 return ret; 6407 6408 if (oom_group != 0 && oom_group != 1) 6409 return -EINVAL; 6410 6411 memcg->oom_group = oom_group; 6412 6413 return nbytes; 6414 } 6415 6416 static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf, 6417 size_t nbytes, loff_t off) 6418 { 6419 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6420 unsigned int nr_retries = MAX_RECLAIM_RETRIES; 6421 unsigned long nr_to_reclaim, nr_reclaimed = 0; 6422 int err; 6423 6424 buf = strstrip(buf); 6425 err = page_counter_memparse(buf, "", &nr_to_reclaim); 6426 if (err) 6427 return err; 6428 6429 while (nr_reclaimed < nr_to_reclaim) { 6430 unsigned long reclaimed; 6431 6432 if (signal_pending(current)) 6433 return -EINTR; 6434 6435 /* 6436 * This is the final attempt, drain percpu lru caches in the 6437 * hope of introducing more evictable pages for 6438 * try_to_free_mem_cgroup_pages(). 6439 */ 6440 if (!nr_retries) 6441 lru_add_drain_all(); 6442 6443 reclaimed = try_to_free_mem_cgroup_pages(memcg, 6444 nr_to_reclaim - nr_reclaimed, 6445 GFP_KERNEL, true); 6446 6447 if (!reclaimed && !nr_retries--) 6448 return -EAGAIN; 6449 6450 nr_reclaimed += reclaimed; 6451 } 6452 6453 return nbytes; 6454 } 6455 6456 static struct cftype memory_files[] = { 6457 { 6458 .name = "current", 6459 .flags = CFTYPE_NOT_ON_ROOT, 6460 .read_u64 = memory_current_read, 6461 }, 6462 { 6463 .name = "peak", 6464 .flags = CFTYPE_NOT_ON_ROOT, 6465 .read_u64 = memory_peak_read, 6466 }, 6467 { 6468 .name = "min", 6469 .flags = CFTYPE_NOT_ON_ROOT, 6470 .seq_show = memory_min_show, 6471 .write = memory_min_write, 6472 }, 6473 { 6474 .name = "low", 6475 .flags = CFTYPE_NOT_ON_ROOT, 6476 .seq_show = memory_low_show, 6477 .write = memory_low_write, 6478 }, 6479 { 6480 .name = "high", 6481 .flags = CFTYPE_NOT_ON_ROOT, 6482 .seq_show = memory_high_show, 6483 .write = memory_high_write, 6484 }, 6485 { 6486 .name = "max", 6487 .flags = CFTYPE_NOT_ON_ROOT, 6488 .seq_show = memory_max_show, 6489 .write = memory_max_write, 6490 }, 6491 { 6492 .name = "events", 6493 .flags = CFTYPE_NOT_ON_ROOT, 6494 .file_offset = offsetof(struct mem_cgroup, events_file), 6495 .seq_show = memory_events_show, 6496 }, 6497 { 6498 .name = "events.local", 6499 .flags = CFTYPE_NOT_ON_ROOT, 6500 .file_offset = offsetof(struct mem_cgroup, events_local_file), 6501 .seq_show = memory_events_local_show, 6502 }, 6503 { 6504 .name = "stat", 6505 .seq_show = memory_stat_show, 6506 }, 6507 #ifdef CONFIG_NUMA 6508 { 6509 .name = "numa_stat", 6510 .seq_show = memory_numa_stat_show, 6511 }, 6512 #endif 6513 { 6514 .name = "oom.group", 6515 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE, 6516 .seq_show = memory_oom_group_show, 6517 .write = memory_oom_group_write, 6518 }, 6519 { 6520 .name = "reclaim", 6521 .flags = CFTYPE_NS_DELEGATABLE, 6522 .write = memory_reclaim, 6523 }, 6524 { } /* terminate */ 6525 }; 6526 6527 struct cgroup_subsys memory_cgrp_subsys = { 6528 .css_alloc = mem_cgroup_css_alloc, 6529 .css_online = mem_cgroup_css_online, 6530 .css_offline = mem_cgroup_css_offline, 6531 .css_released = mem_cgroup_css_released, 6532 .css_free = mem_cgroup_css_free, 6533 .css_reset = mem_cgroup_css_reset, 6534 .css_rstat_flush = mem_cgroup_css_rstat_flush, 6535 .can_attach = mem_cgroup_can_attach, 6536 .cancel_attach = mem_cgroup_cancel_attach, 6537 .post_attach = mem_cgroup_move_task, 6538 .dfl_cftypes = memory_files, 6539 .legacy_cftypes = mem_cgroup_legacy_files, 6540 .early_init = 0, 6541 }; 6542 6543 /* 6544 * This function calculates an individual cgroup's effective 6545 * protection which is derived from its own memory.min/low, its 6546 * parent's and siblings' settings, as well as the actual memory 6547 * distribution in the tree. 6548 * 6549 * The following rules apply to the effective protection values: 6550 * 6551 * 1. At the first level of reclaim, effective protection is equal to 6552 * the declared protection in memory.min and memory.low. 6553 * 6554 * 2. To enable safe delegation of the protection configuration, at 6555 * subsequent levels the effective protection is capped to the 6556 * parent's effective protection. 6557 * 6558 * 3. To make complex and dynamic subtrees easier to configure, the 6559 * user is allowed to overcommit the declared protection at a given 6560 * level. If that is the case, the parent's effective protection is 6561 * distributed to the children in proportion to how much protection 6562 * they have declared and how much of it they are utilizing. 6563 * 6564 * This makes distribution proportional, but also work-conserving: 6565 * if one cgroup claims much more protection than it uses memory, 6566 * the unused remainder is available to its siblings. 6567 * 6568 * 4. Conversely, when the declared protection is undercommitted at a 6569 * given level, the distribution of the larger parental protection 6570 * budget is NOT proportional. A cgroup's protection from a sibling 6571 * is capped to its own memory.min/low setting. 6572 * 6573 * 5. However, to allow protecting recursive subtrees from each other 6574 * without having to declare each individual cgroup's fixed share 6575 * of the ancestor's claim to protection, any unutilized - 6576 * "floating" - protection from up the tree is distributed in 6577 * proportion to each cgroup's *usage*. This makes the protection 6578 * neutral wrt sibling cgroups and lets them compete freely over 6579 * the shared parental protection budget, but it protects the 6580 * subtree as a whole from neighboring subtrees. 6581 * 6582 * Note that 4. and 5. are not in conflict: 4. is about protecting 6583 * against immediate siblings whereas 5. is about protecting against 6584 * neighboring subtrees. 6585 */ 6586 static unsigned long effective_protection(unsigned long usage, 6587 unsigned long parent_usage, 6588 unsigned long setting, 6589 unsigned long parent_effective, 6590 unsigned long siblings_protected) 6591 { 6592 unsigned long protected; 6593 unsigned long ep; 6594 6595 protected = min(usage, setting); 6596 /* 6597 * If all cgroups at this level combined claim and use more 6598 * protection then what the parent affords them, distribute 6599 * shares in proportion to utilization. 6600 * 6601 * We are using actual utilization rather than the statically 6602 * claimed protection in order to be work-conserving: claimed 6603 * but unused protection is available to siblings that would 6604 * otherwise get a smaller chunk than what they claimed. 6605 */ 6606 if (siblings_protected > parent_effective) 6607 return protected * parent_effective / siblings_protected; 6608 6609 /* 6610 * Ok, utilized protection of all children is within what the 6611 * parent affords them, so we know whatever this child claims 6612 * and utilizes is effectively protected. 6613 * 6614 * If there is unprotected usage beyond this value, reclaim 6615 * will apply pressure in proportion to that amount. 6616 * 6617 * If there is unutilized protection, the cgroup will be fully 6618 * shielded from reclaim, but we do return a smaller value for 6619 * protection than what the group could enjoy in theory. This 6620 * is okay. With the overcommit distribution above, effective 6621 * protection is always dependent on how memory is actually 6622 * consumed among the siblings anyway. 6623 */ 6624 ep = protected; 6625 6626 /* 6627 * If the children aren't claiming (all of) the protection 6628 * afforded to them by the parent, distribute the remainder in 6629 * proportion to the (unprotected) memory of each cgroup. That 6630 * way, cgroups that aren't explicitly prioritized wrt each 6631 * other compete freely over the allowance, but they are 6632 * collectively protected from neighboring trees. 6633 * 6634 * We're using unprotected memory for the weight so that if 6635 * some cgroups DO claim explicit protection, we don't protect 6636 * the same bytes twice. 6637 * 6638 * Check both usage and parent_usage against the respective 6639 * protected values. One should imply the other, but they 6640 * aren't read atomically - make sure the division is sane. 6641 */ 6642 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)) 6643 return ep; 6644 if (parent_effective > siblings_protected && 6645 parent_usage > siblings_protected && 6646 usage > protected) { 6647 unsigned long unclaimed; 6648 6649 unclaimed = parent_effective - siblings_protected; 6650 unclaimed *= usage - protected; 6651 unclaimed /= parent_usage - siblings_protected; 6652 6653 ep += unclaimed; 6654 } 6655 6656 return ep; 6657 } 6658 6659 /** 6660 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range 6661 * @root: the top ancestor of the sub-tree being checked 6662 * @memcg: the memory cgroup to check 6663 * 6664 * WARNING: This function is not stateless! It can only be used as part 6665 * of a top-down tree iteration, not for isolated queries. 6666 */ 6667 void mem_cgroup_calculate_protection(struct mem_cgroup *root, 6668 struct mem_cgroup *memcg) 6669 { 6670 unsigned long usage, parent_usage; 6671 struct mem_cgroup *parent; 6672 6673 if (mem_cgroup_disabled()) 6674 return; 6675 6676 if (!root) 6677 root = root_mem_cgroup; 6678 6679 /* 6680 * Effective values of the reclaim targets are ignored so they 6681 * can be stale. Have a look at mem_cgroup_protection for more 6682 * details. 6683 * TODO: calculation should be more robust so that we do not need 6684 * that special casing. 6685 */ 6686 if (memcg == root) 6687 return; 6688 6689 usage = page_counter_read(&memcg->memory); 6690 if (!usage) 6691 return; 6692 6693 parent = parent_mem_cgroup(memcg); 6694 6695 if (parent == root) { 6696 memcg->memory.emin = READ_ONCE(memcg->memory.min); 6697 memcg->memory.elow = READ_ONCE(memcg->memory.low); 6698 return; 6699 } 6700 6701 parent_usage = page_counter_read(&parent->memory); 6702 6703 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage, 6704 READ_ONCE(memcg->memory.min), 6705 READ_ONCE(parent->memory.emin), 6706 atomic_long_read(&parent->memory.children_min_usage))); 6707 6708 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage, 6709 READ_ONCE(memcg->memory.low), 6710 READ_ONCE(parent->memory.elow), 6711 atomic_long_read(&parent->memory.children_low_usage))); 6712 } 6713 6714 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg, 6715 gfp_t gfp) 6716 { 6717 long nr_pages = folio_nr_pages(folio); 6718 int ret; 6719 6720 ret = try_charge(memcg, gfp, nr_pages); 6721 if (ret) 6722 goto out; 6723 6724 css_get(&memcg->css); 6725 commit_charge(folio, memcg); 6726 6727 local_irq_disable(); 6728 mem_cgroup_charge_statistics(memcg, nr_pages); 6729 memcg_check_events(memcg, folio_nid(folio)); 6730 local_irq_enable(); 6731 out: 6732 return ret; 6733 } 6734 6735 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp) 6736 { 6737 struct mem_cgroup *memcg; 6738 int ret; 6739 6740 memcg = get_mem_cgroup_from_mm(mm); 6741 ret = charge_memcg(folio, memcg, gfp); 6742 css_put(&memcg->css); 6743 6744 return ret; 6745 } 6746 6747 /** 6748 * mem_cgroup_swapin_charge_page - charge a newly allocated page for swapin 6749 * @page: page to charge 6750 * @mm: mm context of the victim 6751 * @gfp: reclaim mode 6752 * @entry: swap entry for which the page is allocated 6753 * 6754 * This function charges a page allocated for swapin. Please call this before 6755 * adding the page to the swapcache. 6756 * 6757 * Returns 0 on success. Otherwise, an error code is returned. 6758 */ 6759 int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm, 6760 gfp_t gfp, swp_entry_t entry) 6761 { 6762 struct folio *folio = page_folio(page); 6763 struct mem_cgroup *memcg; 6764 unsigned short id; 6765 int ret; 6766 6767 if (mem_cgroup_disabled()) 6768 return 0; 6769 6770 id = lookup_swap_cgroup_id(entry); 6771 rcu_read_lock(); 6772 memcg = mem_cgroup_from_id(id); 6773 if (!memcg || !css_tryget_online(&memcg->css)) 6774 memcg = get_mem_cgroup_from_mm(mm); 6775 rcu_read_unlock(); 6776 6777 ret = charge_memcg(folio, memcg, gfp); 6778 6779 css_put(&memcg->css); 6780 return ret; 6781 } 6782 6783 /* 6784 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot 6785 * @entry: swap entry for which the page is charged 6786 * 6787 * Call this function after successfully adding the charged page to swapcache. 6788 * 6789 * Note: This function assumes the page for which swap slot is being uncharged 6790 * is order 0 page. 6791 */ 6792 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry) 6793 { 6794 /* 6795 * Cgroup1's unified memory+swap counter has been charged with the 6796 * new swapcache page, finish the transfer by uncharging the swap 6797 * slot. The swap slot would also get uncharged when it dies, but 6798 * it can stick around indefinitely and we'd count the page twice 6799 * the entire time. 6800 * 6801 * Cgroup2 has separate resource counters for memory and swap, 6802 * so this is a non-issue here. Memory and swap charge lifetimes 6803 * correspond 1:1 to page and swap slot lifetimes: we charge the 6804 * page to memory here, and uncharge swap when the slot is freed. 6805 */ 6806 if (!mem_cgroup_disabled() && do_memsw_account()) { 6807 /* 6808 * The swap entry might not get freed for a long time, 6809 * let's not wait for it. The page already received a 6810 * memory+swap charge, drop the swap entry duplicate. 6811 */ 6812 mem_cgroup_uncharge_swap(entry, 1); 6813 } 6814 } 6815 6816 struct uncharge_gather { 6817 struct mem_cgroup *memcg; 6818 unsigned long nr_memory; 6819 unsigned long pgpgout; 6820 unsigned long nr_kmem; 6821 int nid; 6822 }; 6823 6824 static inline void uncharge_gather_clear(struct uncharge_gather *ug) 6825 { 6826 memset(ug, 0, sizeof(*ug)); 6827 } 6828 6829 static void uncharge_batch(const struct uncharge_gather *ug) 6830 { 6831 unsigned long flags; 6832 6833 if (ug->nr_memory) { 6834 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory); 6835 if (do_memsw_account()) 6836 page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory); 6837 if (ug->nr_kmem) 6838 memcg_account_kmem(ug->memcg, -ug->nr_kmem); 6839 memcg_oom_recover(ug->memcg); 6840 } 6841 6842 local_irq_save(flags); 6843 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout); 6844 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory); 6845 memcg_check_events(ug->memcg, ug->nid); 6846 local_irq_restore(flags); 6847 6848 /* drop reference from uncharge_folio */ 6849 css_put(&ug->memcg->css); 6850 } 6851 6852 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug) 6853 { 6854 long nr_pages; 6855 struct mem_cgroup *memcg; 6856 struct obj_cgroup *objcg; 6857 6858 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 6859 6860 /* 6861 * Nobody should be changing or seriously looking at 6862 * folio memcg or objcg at this point, we have fully 6863 * exclusive access to the folio. 6864 */ 6865 if (folio_memcg_kmem(folio)) { 6866 objcg = __folio_objcg(folio); 6867 /* 6868 * This get matches the put at the end of the function and 6869 * kmem pages do not hold memcg references anymore. 6870 */ 6871 memcg = get_mem_cgroup_from_objcg(objcg); 6872 } else { 6873 memcg = __folio_memcg(folio); 6874 } 6875 6876 if (!memcg) 6877 return; 6878 6879 if (ug->memcg != memcg) { 6880 if (ug->memcg) { 6881 uncharge_batch(ug); 6882 uncharge_gather_clear(ug); 6883 } 6884 ug->memcg = memcg; 6885 ug->nid = folio_nid(folio); 6886 6887 /* pairs with css_put in uncharge_batch */ 6888 css_get(&memcg->css); 6889 } 6890 6891 nr_pages = folio_nr_pages(folio); 6892 6893 if (folio_memcg_kmem(folio)) { 6894 ug->nr_memory += nr_pages; 6895 ug->nr_kmem += nr_pages; 6896 6897 folio->memcg_data = 0; 6898 obj_cgroup_put(objcg); 6899 } else { 6900 /* LRU pages aren't accounted at the root level */ 6901 if (!mem_cgroup_is_root(memcg)) 6902 ug->nr_memory += nr_pages; 6903 ug->pgpgout++; 6904 6905 folio->memcg_data = 0; 6906 } 6907 6908 css_put(&memcg->css); 6909 } 6910 6911 void __mem_cgroup_uncharge(struct folio *folio) 6912 { 6913 struct uncharge_gather ug; 6914 6915 /* Don't touch folio->lru of any random page, pre-check: */ 6916 if (!folio_memcg(folio)) 6917 return; 6918 6919 uncharge_gather_clear(&ug); 6920 uncharge_folio(folio, &ug); 6921 uncharge_batch(&ug); 6922 } 6923 6924 /** 6925 * __mem_cgroup_uncharge_list - uncharge a list of page 6926 * @page_list: list of pages to uncharge 6927 * 6928 * Uncharge a list of pages previously charged with 6929 * __mem_cgroup_charge(). 6930 */ 6931 void __mem_cgroup_uncharge_list(struct list_head *page_list) 6932 { 6933 struct uncharge_gather ug; 6934 struct folio *folio; 6935 6936 uncharge_gather_clear(&ug); 6937 list_for_each_entry(folio, page_list, lru) 6938 uncharge_folio(folio, &ug); 6939 if (ug.memcg) 6940 uncharge_batch(&ug); 6941 } 6942 6943 /** 6944 * mem_cgroup_migrate - Charge a folio's replacement. 6945 * @old: Currently circulating folio. 6946 * @new: Replacement folio. 6947 * 6948 * Charge @new as a replacement folio for @old. @old will 6949 * be uncharged upon free. 6950 * 6951 * Both folios must be locked, @new->mapping must be set up. 6952 */ 6953 void mem_cgroup_migrate(struct folio *old, struct folio *new) 6954 { 6955 struct mem_cgroup *memcg; 6956 long nr_pages = folio_nr_pages(new); 6957 unsigned long flags; 6958 6959 VM_BUG_ON_FOLIO(!folio_test_locked(old), old); 6960 VM_BUG_ON_FOLIO(!folio_test_locked(new), new); 6961 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new); 6962 VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new); 6963 6964 if (mem_cgroup_disabled()) 6965 return; 6966 6967 /* Page cache replacement: new folio already charged? */ 6968 if (folio_memcg(new)) 6969 return; 6970 6971 memcg = folio_memcg(old); 6972 VM_WARN_ON_ONCE_FOLIO(!memcg, old); 6973 if (!memcg) 6974 return; 6975 6976 /* Force-charge the new page. The old one will be freed soon */ 6977 if (!mem_cgroup_is_root(memcg)) { 6978 page_counter_charge(&memcg->memory, nr_pages); 6979 if (do_memsw_account()) 6980 page_counter_charge(&memcg->memsw, nr_pages); 6981 } 6982 6983 css_get(&memcg->css); 6984 commit_charge(new, memcg); 6985 6986 local_irq_save(flags); 6987 mem_cgroup_charge_statistics(memcg, nr_pages); 6988 memcg_check_events(memcg, folio_nid(new)); 6989 local_irq_restore(flags); 6990 } 6991 6992 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); 6993 EXPORT_SYMBOL(memcg_sockets_enabled_key); 6994 6995 void mem_cgroup_sk_alloc(struct sock *sk) 6996 { 6997 struct mem_cgroup *memcg; 6998 6999 if (!mem_cgroup_sockets_enabled) 7000 return; 7001 7002 /* Do not associate the sock with unrelated interrupted task's memcg. */ 7003 if (!in_task()) 7004 return; 7005 7006 rcu_read_lock(); 7007 memcg = mem_cgroup_from_task(current); 7008 if (memcg == root_mem_cgroup) 7009 goto out; 7010 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active) 7011 goto out; 7012 if (css_tryget(&memcg->css)) 7013 sk->sk_memcg = memcg; 7014 out: 7015 rcu_read_unlock(); 7016 } 7017 7018 void mem_cgroup_sk_free(struct sock *sk) 7019 { 7020 if (sk->sk_memcg) 7021 css_put(&sk->sk_memcg->css); 7022 } 7023 7024 /** 7025 * mem_cgroup_charge_skmem - charge socket memory 7026 * @memcg: memcg to charge 7027 * @nr_pages: number of pages to charge 7028 * @gfp_mask: reclaim mode 7029 * 7030 * Charges @nr_pages to @memcg. Returns %true if the charge fit within 7031 * @memcg's configured limit, %false if it doesn't. 7032 */ 7033 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages, 7034 gfp_t gfp_mask) 7035 { 7036 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 7037 struct page_counter *fail; 7038 7039 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) { 7040 memcg->tcpmem_pressure = 0; 7041 return true; 7042 } 7043 memcg->tcpmem_pressure = 1; 7044 if (gfp_mask & __GFP_NOFAIL) { 7045 page_counter_charge(&memcg->tcpmem, nr_pages); 7046 return true; 7047 } 7048 return false; 7049 } 7050 7051 if (try_charge(memcg, gfp_mask, nr_pages) == 0) { 7052 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages); 7053 return true; 7054 } 7055 7056 return false; 7057 } 7058 7059 /** 7060 * mem_cgroup_uncharge_skmem - uncharge socket memory 7061 * @memcg: memcg to uncharge 7062 * @nr_pages: number of pages to uncharge 7063 */ 7064 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 7065 { 7066 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 7067 page_counter_uncharge(&memcg->tcpmem, nr_pages); 7068 return; 7069 } 7070 7071 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages); 7072 7073 refill_stock(memcg, nr_pages); 7074 } 7075 7076 static int __init cgroup_memory(char *s) 7077 { 7078 char *token; 7079 7080 while ((token = strsep(&s, ",")) != NULL) { 7081 if (!*token) 7082 continue; 7083 if (!strcmp(token, "nosocket")) 7084 cgroup_memory_nosocket = true; 7085 if (!strcmp(token, "nokmem")) 7086 cgroup_memory_nokmem = true; 7087 } 7088 return 1; 7089 } 7090 __setup("cgroup.memory=", cgroup_memory); 7091 7092 /* 7093 * subsys_initcall() for memory controller. 7094 * 7095 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this 7096 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but 7097 * basically everything that doesn't depend on a specific mem_cgroup structure 7098 * should be initialized from here. 7099 */ 7100 static int __init mem_cgroup_init(void) 7101 { 7102 int cpu, node; 7103 7104 /* 7105 * Currently s32 type (can refer to struct batched_lruvec_stat) is 7106 * used for per-memcg-per-cpu caching of per-node statistics. In order 7107 * to work fine, we should make sure that the overfill threshold can't 7108 * exceed S32_MAX / PAGE_SIZE. 7109 */ 7110 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE); 7111 7112 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL, 7113 memcg_hotplug_cpu_dead); 7114 7115 for_each_possible_cpu(cpu) 7116 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, 7117 drain_local_stock); 7118 7119 for_each_node(node) { 7120 struct mem_cgroup_tree_per_node *rtpn; 7121 7122 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, 7123 node_online(node) ? node : NUMA_NO_NODE); 7124 7125 rtpn->rb_root = RB_ROOT; 7126 rtpn->rb_rightmost = NULL; 7127 spin_lock_init(&rtpn->lock); 7128 soft_limit_tree.rb_tree_per_node[node] = rtpn; 7129 } 7130 7131 return 0; 7132 } 7133 subsys_initcall(mem_cgroup_init); 7134 7135 #ifdef CONFIG_MEMCG_SWAP 7136 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg) 7137 { 7138 while (!refcount_inc_not_zero(&memcg->id.ref)) { 7139 /* 7140 * The root cgroup cannot be destroyed, so it's refcount must 7141 * always be >= 1. 7142 */ 7143 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) { 7144 VM_BUG_ON(1); 7145 break; 7146 } 7147 memcg = parent_mem_cgroup(memcg); 7148 if (!memcg) 7149 memcg = root_mem_cgroup; 7150 } 7151 return memcg; 7152 } 7153 7154 /** 7155 * mem_cgroup_swapout - transfer a memsw charge to swap 7156 * @folio: folio whose memsw charge to transfer 7157 * @entry: swap entry to move the charge to 7158 * 7159 * Transfer the memsw charge of @folio to @entry. 7160 */ 7161 void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry) 7162 { 7163 struct mem_cgroup *memcg, *swap_memcg; 7164 unsigned int nr_entries; 7165 unsigned short oldid; 7166 7167 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 7168 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio); 7169 7170 if (mem_cgroup_disabled()) 7171 return; 7172 7173 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7174 return; 7175 7176 memcg = folio_memcg(folio); 7177 7178 VM_WARN_ON_ONCE_FOLIO(!memcg, folio); 7179 if (!memcg) 7180 return; 7181 7182 /* 7183 * In case the memcg owning these pages has been offlined and doesn't 7184 * have an ID allocated to it anymore, charge the closest online 7185 * ancestor for the swap instead and transfer the memory+swap charge. 7186 */ 7187 swap_memcg = mem_cgroup_id_get_online(memcg); 7188 nr_entries = folio_nr_pages(folio); 7189 /* Get references for the tail pages, too */ 7190 if (nr_entries > 1) 7191 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1); 7192 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg), 7193 nr_entries); 7194 VM_BUG_ON_FOLIO(oldid, folio); 7195 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries); 7196 7197 folio->memcg_data = 0; 7198 7199 if (!mem_cgroup_is_root(memcg)) 7200 page_counter_uncharge(&memcg->memory, nr_entries); 7201 7202 if (!cgroup_memory_noswap && memcg != swap_memcg) { 7203 if (!mem_cgroup_is_root(swap_memcg)) 7204 page_counter_charge(&swap_memcg->memsw, nr_entries); 7205 page_counter_uncharge(&memcg->memsw, nr_entries); 7206 } 7207 7208 /* 7209 * Interrupts should be disabled here because the caller holds the 7210 * i_pages lock which is taken with interrupts-off. It is 7211 * important here to have the interrupts disabled because it is the 7212 * only synchronisation we have for updating the per-CPU variables. 7213 */ 7214 memcg_stats_lock(); 7215 mem_cgroup_charge_statistics(memcg, -nr_entries); 7216 memcg_stats_unlock(); 7217 memcg_check_events(memcg, folio_nid(folio)); 7218 7219 css_put(&memcg->css); 7220 } 7221 7222 /** 7223 * __mem_cgroup_try_charge_swap - try charging swap space for a folio 7224 * @folio: folio being added to swap 7225 * @entry: swap entry to charge 7226 * 7227 * Try to charge @folio's memcg for the swap space at @entry. 7228 * 7229 * Returns 0 on success, -ENOMEM on failure. 7230 */ 7231 int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry) 7232 { 7233 unsigned int nr_pages = folio_nr_pages(folio); 7234 struct page_counter *counter; 7235 struct mem_cgroup *memcg; 7236 unsigned short oldid; 7237 7238 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7239 return 0; 7240 7241 memcg = folio_memcg(folio); 7242 7243 VM_WARN_ON_ONCE_FOLIO(!memcg, folio); 7244 if (!memcg) 7245 return 0; 7246 7247 if (!entry.val) { 7248 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 7249 return 0; 7250 } 7251 7252 memcg = mem_cgroup_id_get_online(memcg); 7253 7254 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) && 7255 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) { 7256 memcg_memory_event(memcg, MEMCG_SWAP_MAX); 7257 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 7258 mem_cgroup_id_put(memcg); 7259 return -ENOMEM; 7260 } 7261 7262 /* Get references for the tail pages, too */ 7263 if (nr_pages > 1) 7264 mem_cgroup_id_get_many(memcg, nr_pages - 1); 7265 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages); 7266 VM_BUG_ON_FOLIO(oldid, folio); 7267 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages); 7268 7269 return 0; 7270 } 7271 7272 /** 7273 * __mem_cgroup_uncharge_swap - uncharge swap space 7274 * @entry: swap entry to uncharge 7275 * @nr_pages: the amount of swap space to uncharge 7276 */ 7277 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages) 7278 { 7279 struct mem_cgroup *memcg; 7280 unsigned short id; 7281 7282 id = swap_cgroup_record(entry, 0, nr_pages); 7283 rcu_read_lock(); 7284 memcg = mem_cgroup_from_id(id); 7285 if (memcg) { 7286 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) { 7287 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7288 page_counter_uncharge(&memcg->swap, nr_pages); 7289 else 7290 page_counter_uncharge(&memcg->memsw, nr_pages); 7291 } 7292 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages); 7293 mem_cgroup_id_put_many(memcg, nr_pages); 7294 } 7295 rcu_read_unlock(); 7296 } 7297 7298 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) 7299 { 7300 long nr_swap_pages = get_nr_swap_pages(); 7301 7302 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7303 return nr_swap_pages; 7304 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) 7305 nr_swap_pages = min_t(long, nr_swap_pages, 7306 READ_ONCE(memcg->swap.max) - 7307 page_counter_read(&memcg->swap)); 7308 return nr_swap_pages; 7309 } 7310 7311 bool mem_cgroup_swap_full(struct page *page) 7312 { 7313 struct mem_cgroup *memcg; 7314 7315 VM_BUG_ON_PAGE(!PageLocked(page), page); 7316 7317 if (vm_swap_full()) 7318 return true; 7319 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7320 return false; 7321 7322 memcg = page_memcg(page); 7323 if (!memcg) 7324 return false; 7325 7326 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) { 7327 unsigned long usage = page_counter_read(&memcg->swap); 7328 7329 if (usage * 2 >= READ_ONCE(memcg->swap.high) || 7330 usage * 2 >= READ_ONCE(memcg->swap.max)) 7331 return true; 7332 } 7333 7334 return false; 7335 } 7336 7337 static int __init setup_swap_account(char *s) 7338 { 7339 if (!strcmp(s, "1")) 7340 cgroup_memory_noswap = false; 7341 else if (!strcmp(s, "0")) 7342 cgroup_memory_noswap = true; 7343 return 1; 7344 } 7345 __setup("swapaccount=", setup_swap_account); 7346 7347 static u64 swap_current_read(struct cgroup_subsys_state *css, 7348 struct cftype *cft) 7349 { 7350 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 7351 7352 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; 7353 } 7354 7355 static int swap_high_show(struct seq_file *m, void *v) 7356 { 7357 return seq_puts_memcg_tunable(m, 7358 READ_ONCE(mem_cgroup_from_seq(m)->swap.high)); 7359 } 7360 7361 static ssize_t swap_high_write(struct kernfs_open_file *of, 7362 char *buf, size_t nbytes, loff_t off) 7363 { 7364 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 7365 unsigned long high; 7366 int err; 7367 7368 buf = strstrip(buf); 7369 err = page_counter_memparse(buf, "max", &high); 7370 if (err) 7371 return err; 7372 7373 page_counter_set_high(&memcg->swap, high); 7374 7375 return nbytes; 7376 } 7377 7378 static int swap_max_show(struct seq_file *m, void *v) 7379 { 7380 return seq_puts_memcg_tunable(m, 7381 READ_ONCE(mem_cgroup_from_seq(m)->swap.max)); 7382 } 7383 7384 static ssize_t swap_max_write(struct kernfs_open_file *of, 7385 char *buf, size_t nbytes, loff_t off) 7386 { 7387 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 7388 unsigned long max; 7389 int err; 7390 7391 buf = strstrip(buf); 7392 err = page_counter_memparse(buf, "max", &max); 7393 if (err) 7394 return err; 7395 7396 xchg(&memcg->swap.max, max); 7397 7398 return nbytes; 7399 } 7400 7401 static int swap_events_show(struct seq_file *m, void *v) 7402 { 7403 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 7404 7405 seq_printf(m, "high %lu\n", 7406 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH])); 7407 seq_printf(m, "max %lu\n", 7408 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX])); 7409 seq_printf(m, "fail %lu\n", 7410 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL])); 7411 7412 return 0; 7413 } 7414 7415 static struct cftype swap_files[] = { 7416 { 7417 .name = "swap.current", 7418 .flags = CFTYPE_NOT_ON_ROOT, 7419 .read_u64 = swap_current_read, 7420 }, 7421 { 7422 .name = "swap.high", 7423 .flags = CFTYPE_NOT_ON_ROOT, 7424 .seq_show = swap_high_show, 7425 .write = swap_high_write, 7426 }, 7427 { 7428 .name = "swap.max", 7429 .flags = CFTYPE_NOT_ON_ROOT, 7430 .seq_show = swap_max_show, 7431 .write = swap_max_write, 7432 }, 7433 { 7434 .name = "swap.events", 7435 .flags = CFTYPE_NOT_ON_ROOT, 7436 .file_offset = offsetof(struct mem_cgroup, swap_events_file), 7437 .seq_show = swap_events_show, 7438 }, 7439 { } /* terminate */ 7440 }; 7441 7442 static struct cftype memsw_files[] = { 7443 { 7444 .name = "memsw.usage_in_bytes", 7445 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 7446 .read_u64 = mem_cgroup_read_u64, 7447 }, 7448 { 7449 .name = "memsw.max_usage_in_bytes", 7450 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 7451 .write = mem_cgroup_reset, 7452 .read_u64 = mem_cgroup_read_u64, 7453 }, 7454 { 7455 .name = "memsw.limit_in_bytes", 7456 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 7457 .write = mem_cgroup_write, 7458 .read_u64 = mem_cgroup_read_u64, 7459 }, 7460 { 7461 .name = "memsw.failcnt", 7462 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 7463 .write = mem_cgroup_reset, 7464 .read_u64 = mem_cgroup_read_u64, 7465 }, 7466 { }, /* terminate */ 7467 }; 7468 7469 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 7470 /** 7471 * obj_cgroup_may_zswap - check if this cgroup can zswap 7472 * @objcg: the object cgroup 7473 * 7474 * Check if the hierarchical zswap limit has been reached. 7475 * 7476 * This doesn't check for specific headroom, and it is not atomic 7477 * either. But with zswap, the size of the allocation is only known 7478 * once compression has occured, and this optimistic pre-check avoids 7479 * spending cycles on compression when there is already no room left 7480 * or zswap is disabled altogether somewhere in the hierarchy. 7481 */ 7482 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg) 7483 { 7484 struct mem_cgroup *memcg, *original_memcg; 7485 bool ret = true; 7486 7487 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7488 return true; 7489 7490 original_memcg = get_mem_cgroup_from_objcg(objcg); 7491 for (memcg = original_memcg; memcg != root_mem_cgroup; 7492 memcg = parent_mem_cgroup(memcg)) { 7493 unsigned long max = READ_ONCE(memcg->zswap_max); 7494 unsigned long pages; 7495 7496 if (max == PAGE_COUNTER_MAX) 7497 continue; 7498 if (max == 0) { 7499 ret = false; 7500 break; 7501 } 7502 7503 cgroup_rstat_flush(memcg->css.cgroup); 7504 pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE; 7505 if (pages < max) 7506 continue; 7507 ret = false; 7508 break; 7509 } 7510 mem_cgroup_put(original_memcg); 7511 return ret; 7512 } 7513 7514 /** 7515 * obj_cgroup_charge_zswap - charge compression backend memory 7516 * @objcg: the object cgroup 7517 * @size: size of compressed object 7518 * 7519 * This forces the charge after obj_cgroup_may_swap() allowed 7520 * compression and storage in zwap for this cgroup to go ahead. 7521 */ 7522 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size) 7523 { 7524 struct mem_cgroup *memcg; 7525 7526 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7527 return; 7528 7529 VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC)); 7530 7531 /* PF_MEMALLOC context, charging must succeed */ 7532 if (obj_cgroup_charge(objcg, GFP_KERNEL, size)) 7533 VM_WARN_ON_ONCE(1); 7534 7535 rcu_read_lock(); 7536 memcg = obj_cgroup_memcg(objcg); 7537 mod_memcg_state(memcg, MEMCG_ZSWAP_B, size); 7538 mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1); 7539 rcu_read_unlock(); 7540 } 7541 7542 /** 7543 * obj_cgroup_uncharge_zswap - uncharge compression backend memory 7544 * @objcg: the object cgroup 7545 * @size: size of compressed object 7546 * 7547 * Uncharges zswap memory on page in. 7548 */ 7549 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size) 7550 { 7551 struct mem_cgroup *memcg; 7552 7553 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7554 return; 7555 7556 obj_cgroup_uncharge(objcg, size); 7557 7558 rcu_read_lock(); 7559 memcg = obj_cgroup_memcg(objcg); 7560 mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size); 7561 mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1); 7562 rcu_read_unlock(); 7563 } 7564 7565 static u64 zswap_current_read(struct cgroup_subsys_state *css, 7566 struct cftype *cft) 7567 { 7568 cgroup_rstat_flush(css->cgroup); 7569 return memcg_page_state(mem_cgroup_from_css(css), MEMCG_ZSWAP_B); 7570 } 7571 7572 static int zswap_max_show(struct seq_file *m, void *v) 7573 { 7574 return seq_puts_memcg_tunable(m, 7575 READ_ONCE(mem_cgroup_from_seq(m)->zswap_max)); 7576 } 7577 7578 static ssize_t zswap_max_write(struct kernfs_open_file *of, 7579 char *buf, size_t nbytes, loff_t off) 7580 { 7581 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 7582 unsigned long max; 7583 int err; 7584 7585 buf = strstrip(buf); 7586 err = page_counter_memparse(buf, "max", &max); 7587 if (err) 7588 return err; 7589 7590 xchg(&memcg->zswap_max, max); 7591 7592 return nbytes; 7593 } 7594 7595 static struct cftype zswap_files[] = { 7596 { 7597 .name = "zswap.current", 7598 .flags = CFTYPE_NOT_ON_ROOT, 7599 .read_u64 = zswap_current_read, 7600 }, 7601 { 7602 .name = "zswap.max", 7603 .flags = CFTYPE_NOT_ON_ROOT, 7604 .seq_show = zswap_max_show, 7605 .write = zswap_max_write, 7606 }, 7607 { } /* terminate */ 7608 }; 7609 #endif /* CONFIG_MEMCG_KMEM && CONFIG_ZSWAP */ 7610 7611 /* 7612 * If mem_cgroup_swap_init() is implemented as a subsys_initcall() 7613 * instead of a core_initcall(), this could mean cgroup_memory_noswap still 7614 * remains set to false even when memcg is disabled via "cgroup_disable=memory" 7615 * boot parameter. This may result in premature OOPS inside 7616 * mem_cgroup_get_nr_swap_pages() function in corner cases. 7617 */ 7618 static int __init mem_cgroup_swap_init(void) 7619 { 7620 /* No memory control -> no swap control */ 7621 if (mem_cgroup_disabled()) 7622 cgroup_memory_noswap = true; 7623 7624 if (cgroup_memory_noswap) 7625 return 0; 7626 7627 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files)); 7628 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files)); 7629 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 7630 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files)); 7631 #endif 7632 return 0; 7633 } 7634 core_initcall(mem_cgroup_swap_init); 7635 7636 #endif /* CONFIG_MEMCG_SWAP */ 7637