1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* memcontrol.c - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <xemul@openvz.org> 9 * 10 * Memory thresholds 11 * Copyright (C) 2009 Nokia Corporation 12 * Author: Kirill A. Shutemov 13 * 14 * Kernel Memory Controller 15 * Copyright (C) 2012 Parallels Inc. and Google Inc. 16 * Authors: Glauber Costa and Suleiman Souhlal 17 * 18 * Native page reclaim 19 * Charge lifetime sanitation 20 * Lockless page tracking & accounting 21 * Unified hierarchy configuration model 22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner 23 */ 24 25 #include <linux/page_counter.h> 26 #include <linux/memcontrol.h> 27 #include <linux/cgroup.h> 28 #include <linux/pagewalk.h> 29 #include <linux/sched/mm.h> 30 #include <linux/shmem_fs.h> 31 #include <linux/hugetlb.h> 32 #include <linux/pagemap.h> 33 #include <linux/vm_event_item.h> 34 #include <linux/smp.h> 35 #include <linux/page-flags.h> 36 #include <linux/backing-dev.h> 37 #include <linux/bit_spinlock.h> 38 #include <linux/rcupdate.h> 39 #include <linux/limits.h> 40 #include <linux/export.h> 41 #include <linux/mutex.h> 42 #include <linux/rbtree.h> 43 #include <linux/slab.h> 44 #include <linux/swap.h> 45 #include <linux/swapops.h> 46 #include <linux/spinlock.h> 47 #include <linux/eventfd.h> 48 #include <linux/poll.h> 49 #include <linux/sort.h> 50 #include <linux/fs.h> 51 #include <linux/seq_file.h> 52 #include <linux/vmpressure.h> 53 #include <linux/mm_inline.h> 54 #include <linux/swap_cgroup.h> 55 #include <linux/cpu.h> 56 #include <linux/oom.h> 57 #include <linux/lockdep.h> 58 #include <linux/file.h> 59 #include <linux/tracehook.h> 60 #include <linux/psi.h> 61 #include <linux/seq_buf.h> 62 #include "internal.h" 63 #include <net/sock.h> 64 #include <net/ip.h> 65 #include "slab.h" 66 67 #include <linux/uaccess.h> 68 69 #include <trace/events/vmscan.h> 70 71 struct cgroup_subsys memory_cgrp_subsys __read_mostly; 72 EXPORT_SYMBOL(memory_cgrp_subsys); 73 74 struct mem_cgroup *root_mem_cgroup __read_mostly; 75 76 #define MEM_CGROUP_RECLAIM_RETRIES 5 77 78 /* Socket memory accounting disabled? */ 79 static bool cgroup_memory_nosocket; 80 81 /* Kernel memory accounting disabled? */ 82 static bool cgroup_memory_nokmem; 83 84 /* Whether the swap controller is active */ 85 #ifdef CONFIG_MEMCG_SWAP 86 int do_swap_account __read_mostly; 87 #else 88 #define do_swap_account 0 89 #endif 90 91 #ifdef CONFIG_CGROUP_WRITEBACK 92 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq); 93 #endif 94 95 /* Whether legacy memory+swap accounting is active */ 96 static bool do_memsw_account(void) 97 { 98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account; 99 } 100 101 #define THRESHOLDS_EVENTS_TARGET 128 102 #define SOFTLIMIT_EVENTS_TARGET 1024 103 104 /* 105 * Cgroups above their limits are maintained in a RB-Tree, independent of 106 * their hierarchy representation 107 */ 108 109 struct mem_cgroup_tree_per_node { 110 struct rb_root rb_root; 111 struct rb_node *rb_rightmost; 112 spinlock_t lock; 113 }; 114 115 struct mem_cgroup_tree { 116 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 117 }; 118 119 static struct mem_cgroup_tree soft_limit_tree __read_mostly; 120 121 /* for OOM */ 122 struct mem_cgroup_eventfd_list { 123 struct list_head list; 124 struct eventfd_ctx *eventfd; 125 }; 126 127 /* 128 * cgroup_event represents events which userspace want to receive. 129 */ 130 struct mem_cgroup_event { 131 /* 132 * memcg which the event belongs to. 133 */ 134 struct mem_cgroup *memcg; 135 /* 136 * eventfd to signal userspace about the event. 137 */ 138 struct eventfd_ctx *eventfd; 139 /* 140 * Each of these stored in a list by the cgroup. 141 */ 142 struct list_head list; 143 /* 144 * register_event() callback will be used to add new userspace 145 * waiter for changes related to this event. Use eventfd_signal() 146 * on eventfd to send notification to userspace. 147 */ 148 int (*register_event)(struct mem_cgroup *memcg, 149 struct eventfd_ctx *eventfd, const char *args); 150 /* 151 * unregister_event() callback will be called when userspace closes 152 * the eventfd or on cgroup removing. This callback must be set, 153 * if you want provide notification functionality. 154 */ 155 void (*unregister_event)(struct mem_cgroup *memcg, 156 struct eventfd_ctx *eventfd); 157 /* 158 * All fields below needed to unregister event when 159 * userspace closes eventfd. 160 */ 161 poll_table pt; 162 wait_queue_head_t *wqh; 163 wait_queue_entry_t wait; 164 struct work_struct remove; 165 }; 166 167 static void mem_cgroup_threshold(struct mem_cgroup *memcg); 168 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); 169 170 /* Stuffs for move charges at task migration. */ 171 /* 172 * Types of charges to be moved. 173 */ 174 #define MOVE_ANON 0x1U 175 #define MOVE_FILE 0x2U 176 #define MOVE_MASK (MOVE_ANON | MOVE_FILE) 177 178 /* "mc" and its members are protected by cgroup_mutex */ 179 static struct move_charge_struct { 180 spinlock_t lock; /* for from, to */ 181 struct mm_struct *mm; 182 struct mem_cgroup *from; 183 struct mem_cgroup *to; 184 unsigned long flags; 185 unsigned long precharge; 186 unsigned long moved_charge; 187 unsigned long moved_swap; 188 struct task_struct *moving_task; /* a task moving charges */ 189 wait_queue_head_t waitq; /* a waitq for other context */ 190 } mc = { 191 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 192 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 193 }; 194 195 /* 196 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft 197 * limit reclaim to prevent infinite loops, if they ever occur. 198 */ 199 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 200 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 201 202 enum charge_type { 203 MEM_CGROUP_CHARGE_TYPE_CACHE = 0, 204 MEM_CGROUP_CHARGE_TYPE_ANON, 205 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */ 206 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */ 207 NR_CHARGE_TYPE, 208 }; 209 210 /* for encoding cft->private value on file */ 211 enum res_type { 212 _MEM, 213 _MEMSWAP, 214 _OOM_TYPE, 215 _KMEM, 216 _TCP, 217 }; 218 219 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) 220 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) 221 #define MEMFILE_ATTR(val) ((val) & 0xffff) 222 /* Used for OOM nofiier */ 223 #define OOM_CONTROL (0) 224 225 /* 226 * Iteration constructs for visiting all cgroups (under a tree). If 227 * loops are exited prematurely (break), mem_cgroup_iter_break() must 228 * be used for reference counting. 229 */ 230 #define for_each_mem_cgroup_tree(iter, root) \ 231 for (iter = mem_cgroup_iter(root, NULL, NULL); \ 232 iter != NULL; \ 233 iter = mem_cgroup_iter(root, iter, NULL)) 234 235 #define for_each_mem_cgroup(iter) \ 236 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ 237 iter != NULL; \ 238 iter = mem_cgroup_iter(NULL, iter, NULL)) 239 240 static inline bool should_force_charge(void) 241 { 242 return tsk_is_oom_victim(current) || fatal_signal_pending(current) || 243 (current->flags & PF_EXITING); 244 } 245 246 /* Some nice accessors for the vmpressure. */ 247 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 248 { 249 if (!memcg) 250 memcg = root_mem_cgroup; 251 return &memcg->vmpressure; 252 } 253 254 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr) 255 { 256 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css; 257 } 258 259 #ifdef CONFIG_MEMCG_KMEM 260 /* 261 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches. 262 * The main reason for not using cgroup id for this: 263 * this works better in sparse environments, where we have a lot of memcgs, 264 * but only a few kmem-limited. Or also, if we have, for instance, 200 265 * memcgs, and none but the 200th is kmem-limited, we'd have to have a 266 * 200 entry array for that. 267 * 268 * The current size of the caches array is stored in memcg_nr_cache_ids. It 269 * will double each time we have to increase it. 270 */ 271 static DEFINE_IDA(memcg_cache_ida); 272 int memcg_nr_cache_ids; 273 274 /* Protects memcg_nr_cache_ids */ 275 static DECLARE_RWSEM(memcg_cache_ids_sem); 276 277 void memcg_get_cache_ids(void) 278 { 279 down_read(&memcg_cache_ids_sem); 280 } 281 282 void memcg_put_cache_ids(void) 283 { 284 up_read(&memcg_cache_ids_sem); 285 } 286 287 /* 288 * MIN_SIZE is different than 1, because we would like to avoid going through 289 * the alloc/free process all the time. In a small machine, 4 kmem-limited 290 * cgroups is a reasonable guess. In the future, it could be a parameter or 291 * tunable, but that is strictly not necessary. 292 * 293 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get 294 * this constant directly from cgroup, but it is understandable that this is 295 * better kept as an internal representation in cgroup.c. In any case, the 296 * cgrp_id space is not getting any smaller, and we don't have to necessarily 297 * increase ours as well if it increases. 298 */ 299 #define MEMCG_CACHES_MIN_SIZE 4 300 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX 301 302 /* 303 * A lot of the calls to the cache allocation functions are expected to be 304 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are 305 * conditional to this static branch, we'll have to allow modules that does 306 * kmem_cache_alloc and the such to see this symbol as well 307 */ 308 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key); 309 EXPORT_SYMBOL(memcg_kmem_enabled_key); 310 311 struct workqueue_struct *memcg_kmem_cache_wq; 312 #endif 313 314 static int memcg_shrinker_map_size; 315 static DEFINE_MUTEX(memcg_shrinker_map_mutex); 316 317 static void memcg_free_shrinker_map_rcu(struct rcu_head *head) 318 { 319 kvfree(container_of(head, struct memcg_shrinker_map, rcu)); 320 } 321 322 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg, 323 int size, int old_size) 324 { 325 struct memcg_shrinker_map *new, *old; 326 int nid; 327 328 lockdep_assert_held(&memcg_shrinker_map_mutex); 329 330 for_each_node(nid) { 331 old = rcu_dereference_protected( 332 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true); 333 /* Not yet online memcg */ 334 if (!old) 335 return 0; 336 337 new = kvmalloc(sizeof(*new) + size, GFP_KERNEL); 338 if (!new) 339 return -ENOMEM; 340 341 /* Set all old bits, clear all new bits */ 342 memset(new->map, (int)0xff, old_size); 343 memset((void *)new->map + old_size, 0, size - old_size); 344 345 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new); 346 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu); 347 } 348 349 return 0; 350 } 351 352 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) 353 { 354 struct mem_cgroup_per_node *pn; 355 struct memcg_shrinker_map *map; 356 int nid; 357 358 if (mem_cgroup_is_root(memcg)) 359 return; 360 361 for_each_node(nid) { 362 pn = mem_cgroup_nodeinfo(memcg, nid); 363 map = rcu_dereference_protected(pn->shrinker_map, true); 364 if (map) 365 kvfree(map); 366 rcu_assign_pointer(pn->shrinker_map, NULL); 367 } 368 } 369 370 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg) 371 { 372 struct memcg_shrinker_map *map; 373 int nid, size, ret = 0; 374 375 if (mem_cgroup_is_root(memcg)) 376 return 0; 377 378 mutex_lock(&memcg_shrinker_map_mutex); 379 size = memcg_shrinker_map_size; 380 for_each_node(nid) { 381 map = kvzalloc(sizeof(*map) + size, GFP_KERNEL); 382 if (!map) { 383 memcg_free_shrinker_maps(memcg); 384 ret = -ENOMEM; 385 break; 386 } 387 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map); 388 } 389 mutex_unlock(&memcg_shrinker_map_mutex); 390 391 return ret; 392 } 393 394 int memcg_expand_shrinker_maps(int new_id) 395 { 396 int size, old_size, ret = 0; 397 struct mem_cgroup *memcg; 398 399 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long); 400 old_size = memcg_shrinker_map_size; 401 if (size <= old_size) 402 return 0; 403 404 mutex_lock(&memcg_shrinker_map_mutex); 405 if (!root_mem_cgroup) 406 goto unlock; 407 408 for_each_mem_cgroup(memcg) { 409 if (mem_cgroup_is_root(memcg)) 410 continue; 411 ret = memcg_expand_one_shrinker_map(memcg, size, old_size); 412 if (ret) { 413 mem_cgroup_iter_break(NULL, memcg); 414 goto unlock; 415 } 416 } 417 unlock: 418 if (!ret) 419 memcg_shrinker_map_size = size; 420 mutex_unlock(&memcg_shrinker_map_mutex); 421 return ret; 422 } 423 424 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id) 425 { 426 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) { 427 struct memcg_shrinker_map *map; 428 429 rcu_read_lock(); 430 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map); 431 /* Pairs with smp mb in shrink_slab() */ 432 smp_mb__before_atomic(); 433 set_bit(shrinker_id, map->map); 434 rcu_read_unlock(); 435 } 436 } 437 438 /** 439 * mem_cgroup_css_from_page - css of the memcg associated with a page 440 * @page: page of interest 441 * 442 * If memcg is bound to the default hierarchy, css of the memcg associated 443 * with @page is returned. The returned css remains associated with @page 444 * until it is released. 445 * 446 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup 447 * is returned. 448 */ 449 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page) 450 { 451 struct mem_cgroup *memcg; 452 453 memcg = page->mem_cgroup; 454 455 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 456 memcg = root_mem_cgroup; 457 458 return &memcg->css; 459 } 460 461 /** 462 * page_cgroup_ino - return inode number of the memcg a page is charged to 463 * @page: the page 464 * 465 * Look up the closest online ancestor of the memory cgroup @page is charged to 466 * and return its inode number or 0 if @page is not charged to any cgroup. It 467 * is safe to call this function without holding a reference to @page. 468 * 469 * Note, this function is inherently racy, because there is nothing to prevent 470 * the cgroup inode from getting torn down and potentially reallocated a moment 471 * after page_cgroup_ino() returns, so it only should be used by callers that 472 * do not care (such as procfs interfaces). 473 */ 474 ino_t page_cgroup_ino(struct page *page) 475 { 476 struct mem_cgroup *memcg; 477 unsigned long ino = 0; 478 479 rcu_read_lock(); 480 if (PageSlab(page) && !PageTail(page)) 481 memcg = memcg_from_slab_page(page); 482 else 483 memcg = READ_ONCE(page->mem_cgroup); 484 while (memcg && !(memcg->css.flags & CSS_ONLINE)) 485 memcg = parent_mem_cgroup(memcg); 486 if (memcg) 487 ino = cgroup_ino(memcg->css.cgroup); 488 rcu_read_unlock(); 489 return ino; 490 } 491 492 static struct mem_cgroup_per_node * 493 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page) 494 { 495 int nid = page_to_nid(page); 496 497 return memcg->nodeinfo[nid]; 498 } 499 500 static struct mem_cgroup_tree_per_node * 501 soft_limit_tree_node(int nid) 502 { 503 return soft_limit_tree.rb_tree_per_node[nid]; 504 } 505 506 static struct mem_cgroup_tree_per_node * 507 soft_limit_tree_from_page(struct page *page) 508 { 509 int nid = page_to_nid(page); 510 511 return soft_limit_tree.rb_tree_per_node[nid]; 512 } 513 514 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz, 515 struct mem_cgroup_tree_per_node *mctz, 516 unsigned long new_usage_in_excess) 517 { 518 struct rb_node **p = &mctz->rb_root.rb_node; 519 struct rb_node *parent = NULL; 520 struct mem_cgroup_per_node *mz_node; 521 bool rightmost = true; 522 523 if (mz->on_tree) 524 return; 525 526 mz->usage_in_excess = new_usage_in_excess; 527 if (!mz->usage_in_excess) 528 return; 529 while (*p) { 530 parent = *p; 531 mz_node = rb_entry(parent, struct mem_cgroup_per_node, 532 tree_node); 533 if (mz->usage_in_excess < mz_node->usage_in_excess) { 534 p = &(*p)->rb_left; 535 rightmost = false; 536 } 537 538 /* 539 * We can't avoid mem cgroups that are over their soft 540 * limit by the same amount 541 */ 542 else if (mz->usage_in_excess >= mz_node->usage_in_excess) 543 p = &(*p)->rb_right; 544 } 545 546 if (rightmost) 547 mctz->rb_rightmost = &mz->tree_node; 548 549 rb_link_node(&mz->tree_node, parent, p); 550 rb_insert_color(&mz->tree_node, &mctz->rb_root); 551 mz->on_tree = true; 552 } 553 554 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 555 struct mem_cgroup_tree_per_node *mctz) 556 { 557 if (!mz->on_tree) 558 return; 559 560 if (&mz->tree_node == mctz->rb_rightmost) 561 mctz->rb_rightmost = rb_prev(&mz->tree_node); 562 563 rb_erase(&mz->tree_node, &mctz->rb_root); 564 mz->on_tree = false; 565 } 566 567 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz, 568 struct mem_cgroup_tree_per_node *mctz) 569 { 570 unsigned long flags; 571 572 spin_lock_irqsave(&mctz->lock, flags); 573 __mem_cgroup_remove_exceeded(mz, mctz); 574 spin_unlock_irqrestore(&mctz->lock, flags); 575 } 576 577 static unsigned long soft_limit_excess(struct mem_cgroup *memcg) 578 { 579 unsigned long nr_pages = page_counter_read(&memcg->memory); 580 unsigned long soft_limit = READ_ONCE(memcg->soft_limit); 581 unsigned long excess = 0; 582 583 if (nr_pages > soft_limit) 584 excess = nr_pages - soft_limit; 585 586 return excess; 587 } 588 589 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page) 590 { 591 unsigned long excess; 592 struct mem_cgroup_per_node *mz; 593 struct mem_cgroup_tree_per_node *mctz; 594 595 mctz = soft_limit_tree_from_page(page); 596 if (!mctz) 597 return; 598 /* 599 * Necessary to update all ancestors when hierarchy is used. 600 * because their event counter is not touched. 601 */ 602 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 603 mz = mem_cgroup_page_nodeinfo(memcg, page); 604 excess = soft_limit_excess(memcg); 605 /* 606 * We have to update the tree if mz is on RB-tree or 607 * mem is over its softlimit. 608 */ 609 if (excess || mz->on_tree) { 610 unsigned long flags; 611 612 spin_lock_irqsave(&mctz->lock, flags); 613 /* if on-tree, remove it */ 614 if (mz->on_tree) 615 __mem_cgroup_remove_exceeded(mz, mctz); 616 /* 617 * Insert again. mz->usage_in_excess will be updated. 618 * If excess is 0, no tree ops. 619 */ 620 __mem_cgroup_insert_exceeded(mz, mctz, excess); 621 spin_unlock_irqrestore(&mctz->lock, flags); 622 } 623 } 624 } 625 626 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) 627 { 628 struct mem_cgroup_tree_per_node *mctz; 629 struct mem_cgroup_per_node *mz; 630 int nid; 631 632 for_each_node(nid) { 633 mz = mem_cgroup_nodeinfo(memcg, nid); 634 mctz = soft_limit_tree_node(nid); 635 if (mctz) 636 mem_cgroup_remove_exceeded(mz, mctz); 637 } 638 } 639 640 static struct mem_cgroup_per_node * 641 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 642 { 643 struct mem_cgroup_per_node *mz; 644 645 retry: 646 mz = NULL; 647 if (!mctz->rb_rightmost) 648 goto done; /* Nothing to reclaim from */ 649 650 mz = rb_entry(mctz->rb_rightmost, 651 struct mem_cgroup_per_node, tree_node); 652 /* 653 * Remove the node now but someone else can add it back, 654 * we will to add it back at the end of reclaim to its correct 655 * position in the tree. 656 */ 657 __mem_cgroup_remove_exceeded(mz, mctz); 658 if (!soft_limit_excess(mz->memcg) || 659 !css_tryget_online(&mz->memcg->css)) 660 goto retry; 661 done: 662 return mz; 663 } 664 665 static struct mem_cgroup_per_node * 666 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz) 667 { 668 struct mem_cgroup_per_node *mz; 669 670 spin_lock_irq(&mctz->lock); 671 mz = __mem_cgroup_largest_soft_limit_node(mctz); 672 spin_unlock_irq(&mctz->lock); 673 return mz; 674 } 675 676 /** 677 * __mod_memcg_state - update cgroup memory statistics 678 * @memcg: the memory cgroup 679 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item 680 * @val: delta to add to the counter, can be negative 681 */ 682 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val) 683 { 684 long x; 685 686 if (mem_cgroup_disabled()) 687 return; 688 689 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]); 690 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) { 691 struct mem_cgroup *mi; 692 693 /* 694 * Batch local counters to keep them in sync with 695 * the hierarchical ones. 696 */ 697 __this_cpu_add(memcg->vmstats_local->stat[idx], x); 698 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 699 atomic_long_add(x, &mi->vmstats[idx]); 700 x = 0; 701 } 702 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x); 703 } 704 705 static struct mem_cgroup_per_node * 706 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid) 707 { 708 struct mem_cgroup *parent; 709 710 parent = parent_mem_cgroup(pn->memcg); 711 if (!parent) 712 return NULL; 713 return mem_cgroup_nodeinfo(parent, nid); 714 } 715 716 /** 717 * __mod_lruvec_state - update lruvec memory statistics 718 * @lruvec: the lruvec 719 * @idx: the stat item 720 * @val: delta to add to the counter, can be negative 721 * 722 * The lruvec is the intersection of the NUMA node and a cgroup. This 723 * function updates the all three counters that are affected by a 724 * change of state at this level: per-node, per-cgroup, per-lruvec. 725 */ 726 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 727 int val) 728 { 729 pg_data_t *pgdat = lruvec_pgdat(lruvec); 730 struct mem_cgroup_per_node *pn; 731 struct mem_cgroup *memcg; 732 long x; 733 734 /* Update node */ 735 __mod_node_page_state(pgdat, idx, val); 736 737 if (mem_cgroup_disabled()) 738 return; 739 740 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 741 memcg = pn->memcg; 742 743 /* Update memcg */ 744 __mod_memcg_state(memcg, idx, val); 745 746 /* Update lruvec */ 747 __this_cpu_add(pn->lruvec_stat_local->count[idx], val); 748 749 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]); 750 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) { 751 struct mem_cgroup_per_node *pi; 752 753 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id)) 754 atomic_long_add(x, &pi->lruvec_stat[idx]); 755 x = 0; 756 } 757 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x); 758 } 759 760 void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val) 761 { 762 struct page *page = virt_to_head_page(p); 763 pg_data_t *pgdat = page_pgdat(page); 764 struct mem_cgroup *memcg; 765 struct lruvec *lruvec; 766 767 rcu_read_lock(); 768 memcg = memcg_from_slab_page(page); 769 770 /* Untracked pages have no memcg, no lruvec. Update only the node */ 771 if (!memcg || memcg == root_mem_cgroup) { 772 __mod_node_page_state(pgdat, idx, val); 773 } else { 774 lruvec = mem_cgroup_lruvec(memcg, pgdat); 775 __mod_lruvec_state(lruvec, idx, val); 776 } 777 rcu_read_unlock(); 778 } 779 780 /** 781 * __count_memcg_events - account VM events in a cgroup 782 * @memcg: the memory cgroup 783 * @idx: the event item 784 * @count: the number of events that occured 785 */ 786 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 787 unsigned long count) 788 { 789 unsigned long x; 790 791 if (mem_cgroup_disabled()) 792 return; 793 794 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]); 795 if (unlikely(x > MEMCG_CHARGE_BATCH)) { 796 struct mem_cgroup *mi; 797 798 /* 799 * Batch local counters to keep them in sync with 800 * the hierarchical ones. 801 */ 802 __this_cpu_add(memcg->vmstats_local->events[idx], x); 803 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 804 atomic_long_add(x, &mi->vmevents[idx]); 805 x = 0; 806 } 807 __this_cpu_write(memcg->vmstats_percpu->events[idx], x); 808 } 809 810 static unsigned long memcg_events(struct mem_cgroup *memcg, int event) 811 { 812 return atomic_long_read(&memcg->vmevents[event]); 813 } 814 815 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event) 816 { 817 long x = 0; 818 int cpu; 819 820 for_each_possible_cpu(cpu) 821 x += per_cpu(memcg->vmstats_local->events[event], cpu); 822 return x; 823 } 824 825 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, 826 struct page *page, 827 bool compound, int nr_pages) 828 { 829 /* 830 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is 831 * counted as CACHE even if it's on ANON LRU. 832 */ 833 if (PageAnon(page)) 834 __mod_memcg_state(memcg, MEMCG_RSS, nr_pages); 835 else { 836 __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages); 837 if (PageSwapBacked(page)) 838 __mod_memcg_state(memcg, NR_SHMEM, nr_pages); 839 } 840 841 if (compound) { 842 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 843 __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages); 844 } 845 846 /* pagein of a big page is an event. So, ignore page size */ 847 if (nr_pages > 0) 848 __count_memcg_events(memcg, PGPGIN, 1); 849 else { 850 __count_memcg_events(memcg, PGPGOUT, 1); 851 nr_pages = -nr_pages; /* for event */ 852 } 853 854 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages); 855 } 856 857 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, 858 enum mem_cgroup_events_target target) 859 { 860 unsigned long val, next; 861 862 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events); 863 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]); 864 /* from time_after() in jiffies.h */ 865 if ((long)(next - val) < 0) { 866 switch (target) { 867 case MEM_CGROUP_TARGET_THRESH: 868 next = val + THRESHOLDS_EVENTS_TARGET; 869 break; 870 case MEM_CGROUP_TARGET_SOFTLIMIT: 871 next = val + SOFTLIMIT_EVENTS_TARGET; 872 break; 873 default: 874 break; 875 } 876 __this_cpu_write(memcg->vmstats_percpu->targets[target], next); 877 return true; 878 } 879 return false; 880 } 881 882 /* 883 * Check events in order. 884 * 885 */ 886 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) 887 { 888 /* threshold event is triggered in finer grain than soft limit */ 889 if (unlikely(mem_cgroup_event_ratelimit(memcg, 890 MEM_CGROUP_TARGET_THRESH))) { 891 bool do_softlimit; 892 893 do_softlimit = mem_cgroup_event_ratelimit(memcg, 894 MEM_CGROUP_TARGET_SOFTLIMIT); 895 mem_cgroup_threshold(memcg); 896 if (unlikely(do_softlimit)) 897 mem_cgroup_update_tree(memcg, page); 898 } 899 } 900 901 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 902 { 903 /* 904 * mm_update_next_owner() may clear mm->owner to NULL 905 * if it races with swapoff, page migration, etc. 906 * So this can be called with p == NULL. 907 */ 908 if (unlikely(!p)) 909 return NULL; 910 911 return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); 912 } 913 EXPORT_SYMBOL(mem_cgroup_from_task); 914 915 /** 916 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg. 917 * @mm: mm from which memcg should be extracted. It can be NULL. 918 * 919 * Obtain a reference on mm->memcg and returns it if successful. Otherwise 920 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is 921 * returned. 922 */ 923 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 924 { 925 struct mem_cgroup *memcg; 926 927 if (mem_cgroup_disabled()) 928 return NULL; 929 930 rcu_read_lock(); 931 do { 932 /* 933 * Page cache insertions can happen withou an 934 * actual mm context, e.g. during disk probing 935 * on boot, loopback IO, acct() writes etc. 936 */ 937 if (unlikely(!mm)) 938 memcg = root_mem_cgroup; 939 else { 940 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 941 if (unlikely(!memcg)) 942 memcg = root_mem_cgroup; 943 } 944 } while (!css_tryget(&memcg->css)); 945 rcu_read_unlock(); 946 return memcg; 947 } 948 EXPORT_SYMBOL(get_mem_cgroup_from_mm); 949 950 /** 951 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg. 952 * @page: page from which memcg should be extracted. 953 * 954 * Obtain a reference on page->memcg and returns it if successful. Otherwise 955 * root_mem_cgroup is returned. 956 */ 957 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page) 958 { 959 struct mem_cgroup *memcg = page->mem_cgroup; 960 961 if (mem_cgroup_disabled()) 962 return NULL; 963 964 rcu_read_lock(); 965 if (!memcg || !css_tryget_online(&memcg->css)) 966 memcg = root_mem_cgroup; 967 rcu_read_unlock(); 968 return memcg; 969 } 970 EXPORT_SYMBOL(get_mem_cgroup_from_page); 971 972 /** 973 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg. 974 */ 975 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void) 976 { 977 if (unlikely(current->active_memcg)) { 978 struct mem_cgroup *memcg = root_mem_cgroup; 979 980 rcu_read_lock(); 981 if (css_tryget_online(¤t->active_memcg->css)) 982 memcg = current->active_memcg; 983 rcu_read_unlock(); 984 return memcg; 985 } 986 return get_mem_cgroup_from_mm(current->mm); 987 } 988 989 /** 990 * mem_cgroup_iter - iterate over memory cgroup hierarchy 991 * @root: hierarchy root 992 * @prev: previously returned memcg, NULL on first invocation 993 * @reclaim: cookie for shared reclaim walks, NULL for full walks 994 * 995 * Returns references to children of the hierarchy below @root, or 996 * @root itself, or %NULL after a full round-trip. 997 * 998 * Caller must pass the return value in @prev on subsequent 999 * invocations for reference counting, or use mem_cgroup_iter_break() 1000 * to cancel a hierarchy walk before the round-trip is complete. 1001 * 1002 * Reclaimers can specify a node and a priority level in @reclaim to 1003 * divide up the memcgs in the hierarchy among all concurrent 1004 * reclaimers operating on the same node and priority. 1005 */ 1006 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 1007 struct mem_cgroup *prev, 1008 struct mem_cgroup_reclaim_cookie *reclaim) 1009 { 1010 struct mem_cgroup_reclaim_iter *uninitialized_var(iter); 1011 struct cgroup_subsys_state *css = NULL; 1012 struct mem_cgroup *memcg = NULL; 1013 struct mem_cgroup *pos = NULL; 1014 1015 if (mem_cgroup_disabled()) 1016 return NULL; 1017 1018 if (!root) 1019 root = root_mem_cgroup; 1020 1021 if (prev && !reclaim) 1022 pos = prev; 1023 1024 if (!root->use_hierarchy && root != root_mem_cgroup) { 1025 if (prev) 1026 goto out; 1027 return root; 1028 } 1029 1030 rcu_read_lock(); 1031 1032 if (reclaim) { 1033 struct mem_cgroup_per_node *mz; 1034 1035 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id); 1036 iter = &mz->iter; 1037 1038 if (prev && reclaim->generation != iter->generation) 1039 goto out_unlock; 1040 1041 while (1) { 1042 pos = READ_ONCE(iter->position); 1043 if (!pos || css_tryget(&pos->css)) 1044 break; 1045 /* 1046 * css reference reached zero, so iter->position will 1047 * be cleared by ->css_released. However, we should not 1048 * rely on this happening soon, because ->css_released 1049 * is called from a work queue, and by busy-waiting we 1050 * might block it. So we clear iter->position right 1051 * away. 1052 */ 1053 (void)cmpxchg(&iter->position, pos, NULL); 1054 } 1055 } 1056 1057 if (pos) 1058 css = &pos->css; 1059 1060 for (;;) { 1061 css = css_next_descendant_pre(css, &root->css); 1062 if (!css) { 1063 /* 1064 * Reclaimers share the hierarchy walk, and a 1065 * new one might jump in right at the end of 1066 * the hierarchy - make sure they see at least 1067 * one group and restart from the beginning. 1068 */ 1069 if (!prev) 1070 continue; 1071 break; 1072 } 1073 1074 /* 1075 * Verify the css and acquire a reference. The root 1076 * is provided by the caller, so we know it's alive 1077 * and kicking, and don't take an extra reference. 1078 */ 1079 memcg = mem_cgroup_from_css(css); 1080 1081 if (css == &root->css) 1082 break; 1083 1084 if (css_tryget(css)) 1085 break; 1086 1087 memcg = NULL; 1088 } 1089 1090 if (reclaim) { 1091 /* 1092 * The position could have already been updated by a competing 1093 * thread, so check that the value hasn't changed since we read 1094 * it to avoid reclaiming from the same cgroup twice. 1095 */ 1096 (void)cmpxchg(&iter->position, pos, memcg); 1097 1098 if (pos) 1099 css_put(&pos->css); 1100 1101 if (!memcg) 1102 iter->generation++; 1103 else if (!prev) 1104 reclaim->generation = iter->generation; 1105 } 1106 1107 out_unlock: 1108 rcu_read_unlock(); 1109 out: 1110 if (prev && prev != root) 1111 css_put(&prev->css); 1112 1113 return memcg; 1114 } 1115 1116 /** 1117 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 1118 * @root: hierarchy root 1119 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 1120 */ 1121 void mem_cgroup_iter_break(struct mem_cgroup *root, 1122 struct mem_cgroup *prev) 1123 { 1124 if (!root) 1125 root = root_mem_cgroup; 1126 if (prev && prev != root) 1127 css_put(&prev->css); 1128 } 1129 1130 static void __invalidate_reclaim_iterators(struct mem_cgroup *from, 1131 struct mem_cgroup *dead_memcg) 1132 { 1133 struct mem_cgroup_reclaim_iter *iter; 1134 struct mem_cgroup_per_node *mz; 1135 int nid; 1136 1137 for_each_node(nid) { 1138 mz = mem_cgroup_nodeinfo(from, nid); 1139 iter = &mz->iter; 1140 cmpxchg(&iter->position, dead_memcg, NULL); 1141 } 1142 } 1143 1144 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg) 1145 { 1146 struct mem_cgroup *memcg = dead_memcg; 1147 struct mem_cgroup *last; 1148 1149 do { 1150 __invalidate_reclaim_iterators(memcg, dead_memcg); 1151 last = memcg; 1152 } while ((memcg = parent_mem_cgroup(memcg))); 1153 1154 /* 1155 * When cgruop1 non-hierarchy mode is used, 1156 * parent_mem_cgroup() does not walk all the way up to the 1157 * cgroup root (root_mem_cgroup). So we have to handle 1158 * dead_memcg from cgroup root separately. 1159 */ 1160 if (last != root_mem_cgroup) 1161 __invalidate_reclaim_iterators(root_mem_cgroup, 1162 dead_memcg); 1163 } 1164 1165 /** 1166 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy 1167 * @memcg: hierarchy root 1168 * @fn: function to call for each task 1169 * @arg: argument passed to @fn 1170 * 1171 * This function iterates over tasks attached to @memcg or to any of its 1172 * descendants and calls @fn for each task. If @fn returns a non-zero 1173 * value, the function breaks the iteration loop and returns the value. 1174 * Otherwise, it will iterate over all tasks and return 0. 1175 * 1176 * This function must not be called for the root memory cgroup. 1177 */ 1178 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1179 int (*fn)(struct task_struct *, void *), void *arg) 1180 { 1181 struct mem_cgroup *iter; 1182 int ret = 0; 1183 1184 BUG_ON(memcg == root_mem_cgroup); 1185 1186 for_each_mem_cgroup_tree(iter, memcg) { 1187 struct css_task_iter it; 1188 struct task_struct *task; 1189 1190 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it); 1191 while (!ret && (task = css_task_iter_next(&it))) 1192 ret = fn(task, arg); 1193 css_task_iter_end(&it); 1194 if (ret) { 1195 mem_cgroup_iter_break(memcg, iter); 1196 break; 1197 } 1198 } 1199 return ret; 1200 } 1201 1202 /** 1203 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page 1204 * @page: the page 1205 * @pgdat: pgdat of the page 1206 * 1207 * This function is only safe when following the LRU page isolation 1208 * and putback protocol: the LRU lock must be held, and the page must 1209 * either be PageLRU() or the caller must have isolated/allocated it. 1210 */ 1211 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat) 1212 { 1213 struct mem_cgroup_per_node *mz; 1214 struct mem_cgroup *memcg; 1215 struct lruvec *lruvec; 1216 1217 if (mem_cgroup_disabled()) { 1218 lruvec = &pgdat->__lruvec; 1219 goto out; 1220 } 1221 1222 memcg = page->mem_cgroup; 1223 /* 1224 * Swapcache readahead pages are added to the LRU - and 1225 * possibly migrated - before they are charged. 1226 */ 1227 if (!memcg) 1228 memcg = root_mem_cgroup; 1229 1230 mz = mem_cgroup_page_nodeinfo(memcg, page); 1231 lruvec = &mz->lruvec; 1232 out: 1233 /* 1234 * Since a node can be onlined after the mem_cgroup was created, 1235 * we have to be prepared to initialize lruvec->zone here; 1236 * and if offlined then reonlined, we need to reinitialize it. 1237 */ 1238 if (unlikely(lruvec->pgdat != pgdat)) 1239 lruvec->pgdat = pgdat; 1240 return lruvec; 1241 } 1242 1243 /** 1244 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1245 * @lruvec: mem_cgroup per zone lru vector 1246 * @lru: index of lru list the page is sitting on 1247 * @zid: zone id of the accounted pages 1248 * @nr_pages: positive when adding or negative when removing 1249 * 1250 * This function must be called under lru_lock, just before a page is added 1251 * to or just after a page is removed from an lru list (that ordering being 1252 * so as to allow it to check that lru_size 0 is consistent with list_empty). 1253 */ 1254 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1255 int zid, int nr_pages) 1256 { 1257 struct mem_cgroup_per_node *mz; 1258 unsigned long *lru_size; 1259 long size; 1260 1261 if (mem_cgroup_disabled()) 1262 return; 1263 1264 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 1265 lru_size = &mz->lru_zone_size[zid][lru]; 1266 1267 if (nr_pages < 0) 1268 *lru_size += nr_pages; 1269 1270 size = *lru_size; 1271 if (WARN_ONCE(size < 0, 1272 "%s(%p, %d, %d): lru_size %ld\n", 1273 __func__, lruvec, lru, nr_pages, size)) { 1274 VM_BUG_ON(1); 1275 *lru_size = 0; 1276 } 1277 1278 if (nr_pages > 0) 1279 *lru_size += nr_pages; 1280 } 1281 1282 /** 1283 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1284 * @memcg: the memory cgroup 1285 * 1286 * Returns the maximum amount of memory @mem can be charged with, in 1287 * pages. 1288 */ 1289 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1290 { 1291 unsigned long margin = 0; 1292 unsigned long count; 1293 unsigned long limit; 1294 1295 count = page_counter_read(&memcg->memory); 1296 limit = READ_ONCE(memcg->memory.max); 1297 if (count < limit) 1298 margin = limit - count; 1299 1300 if (do_memsw_account()) { 1301 count = page_counter_read(&memcg->memsw); 1302 limit = READ_ONCE(memcg->memsw.max); 1303 if (count <= limit) 1304 margin = min(margin, limit - count); 1305 else 1306 margin = 0; 1307 } 1308 1309 return margin; 1310 } 1311 1312 /* 1313 * A routine for checking "mem" is under move_account() or not. 1314 * 1315 * Checking a cgroup is mc.from or mc.to or under hierarchy of 1316 * moving cgroups. This is for waiting at high-memory pressure 1317 * caused by "move". 1318 */ 1319 static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 1320 { 1321 struct mem_cgroup *from; 1322 struct mem_cgroup *to; 1323 bool ret = false; 1324 /* 1325 * Unlike task_move routines, we access mc.to, mc.from not under 1326 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1327 */ 1328 spin_lock(&mc.lock); 1329 from = mc.from; 1330 to = mc.to; 1331 if (!from) 1332 goto unlock; 1333 1334 ret = mem_cgroup_is_descendant(from, memcg) || 1335 mem_cgroup_is_descendant(to, memcg); 1336 unlock: 1337 spin_unlock(&mc.lock); 1338 return ret; 1339 } 1340 1341 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) 1342 { 1343 if (mc.moving_task && current != mc.moving_task) { 1344 if (mem_cgroup_under_move(memcg)) { 1345 DEFINE_WAIT(wait); 1346 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1347 /* moving charge context might have finished. */ 1348 if (mc.moving_task) 1349 schedule(); 1350 finish_wait(&mc.waitq, &wait); 1351 return true; 1352 } 1353 } 1354 return false; 1355 } 1356 1357 static char *memory_stat_format(struct mem_cgroup *memcg) 1358 { 1359 struct seq_buf s; 1360 int i; 1361 1362 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE); 1363 if (!s.buffer) 1364 return NULL; 1365 1366 /* 1367 * Provide statistics on the state of the memory subsystem as 1368 * well as cumulative event counters that show past behavior. 1369 * 1370 * This list is ordered following a combination of these gradients: 1371 * 1) generic big picture -> specifics and details 1372 * 2) reflecting userspace activity -> reflecting kernel heuristics 1373 * 1374 * Current memory state: 1375 */ 1376 1377 seq_buf_printf(&s, "anon %llu\n", 1378 (u64)memcg_page_state(memcg, MEMCG_RSS) * 1379 PAGE_SIZE); 1380 seq_buf_printf(&s, "file %llu\n", 1381 (u64)memcg_page_state(memcg, MEMCG_CACHE) * 1382 PAGE_SIZE); 1383 seq_buf_printf(&s, "kernel_stack %llu\n", 1384 (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) * 1385 1024); 1386 seq_buf_printf(&s, "slab %llu\n", 1387 (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) + 1388 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) * 1389 PAGE_SIZE); 1390 seq_buf_printf(&s, "sock %llu\n", 1391 (u64)memcg_page_state(memcg, MEMCG_SOCK) * 1392 PAGE_SIZE); 1393 1394 seq_buf_printf(&s, "shmem %llu\n", 1395 (u64)memcg_page_state(memcg, NR_SHMEM) * 1396 PAGE_SIZE); 1397 seq_buf_printf(&s, "file_mapped %llu\n", 1398 (u64)memcg_page_state(memcg, NR_FILE_MAPPED) * 1399 PAGE_SIZE); 1400 seq_buf_printf(&s, "file_dirty %llu\n", 1401 (u64)memcg_page_state(memcg, NR_FILE_DIRTY) * 1402 PAGE_SIZE); 1403 seq_buf_printf(&s, "file_writeback %llu\n", 1404 (u64)memcg_page_state(memcg, NR_WRITEBACK) * 1405 PAGE_SIZE); 1406 1407 /* 1408 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter 1409 * with the NR_ANON_THP vm counter, but right now it's a pain in the 1410 * arse because it requires migrating the work out of rmap to a place 1411 * where the page->mem_cgroup is set up and stable. 1412 */ 1413 seq_buf_printf(&s, "anon_thp %llu\n", 1414 (u64)memcg_page_state(memcg, MEMCG_RSS_HUGE) * 1415 PAGE_SIZE); 1416 1417 for (i = 0; i < NR_LRU_LISTS; i++) 1418 seq_buf_printf(&s, "%s %llu\n", lru_list_name(i), 1419 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) * 1420 PAGE_SIZE); 1421 1422 seq_buf_printf(&s, "slab_reclaimable %llu\n", 1423 (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) * 1424 PAGE_SIZE); 1425 seq_buf_printf(&s, "slab_unreclaimable %llu\n", 1426 (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) * 1427 PAGE_SIZE); 1428 1429 /* Accumulated memory events */ 1430 1431 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT), 1432 memcg_events(memcg, PGFAULT)); 1433 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT), 1434 memcg_events(memcg, PGMAJFAULT)); 1435 1436 seq_buf_printf(&s, "workingset_refault %lu\n", 1437 memcg_page_state(memcg, WORKINGSET_REFAULT)); 1438 seq_buf_printf(&s, "workingset_activate %lu\n", 1439 memcg_page_state(memcg, WORKINGSET_ACTIVATE)); 1440 seq_buf_printf(&s, "workingset_nodereclaim %lu\n", 1441 memcg_page_state(memcg, WORKINGSET_NODERECLAIM)); 1442 1443 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL), 1444 memcg_events(memcg, PGREFILL)); 1445 seq_buf_printf(&s, "pgscan %lu\n", 1446 memcg_events(memcg, PGSCAN_KSWAPD) + 1447 memcg_events(memcg, PGSCAN_DIRECT)); 1448 seq_buf_printf(&s, "pgsteal %lu\n", 1449 memcg_events(memcg, PGSTEAL_KSWAPD) + 1450 memcg_events(memcg, PGSTEAL_DIRECT)); 1451 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE), 1452 memcg_events(memcg, PGACTIVATE)); 1453 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE), 1454 memcg_events(memcg, PGDEACTIVATE)); 1455 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE), 1456 memcg_events(memcg, PGLAZYFREE)); 1457 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED), 1458 memcg_events(memcg, PGLAZYFREED)); 1459 1460 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1461 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC), 1462 memcg_events(memcg, THP_FAULT_ALLOC)); 1463 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC), 1464 memcg_events(memcg, THP_COLLAPSE_ALLOC)); 1465 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1466 1467 /* The above should easily fit into one page */ 1468 WARN_ON_ONCE(seq_buf_has_overflowed(&s)); 1469 1470 return s.buffer; 1471 } 1472 1473 #define K(x) ((x) << (PAGE_SHIFT-10)) 1474 /** 1475 * mem_cgroup_print_oom_context: Print OOM information relevant to 1476 * memory controller. 1477 * @memcg: The memory cgroup that went over limit 1478 * @p: Task that is going to be killed 1479 * 1480 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1481 * enabled 1482 */ 1483 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1484 { 1485 rcu_read_lock(); 1486 1487 if (memcg) { 1488 pr_cont(",oom_memcg="); 1489 pr_cont_cgroup_path(memcg->css.cgroup); 1490 } else 1491 pr_cont(",global_oom"); 1492 if (p) { 1493 pr_cont(",task_memcg="); 1494 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); 1495 } 1496 rcu_read_unlock(); 1497 } 1498 1499 /** 1500 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to 1501 * memory controller. 1502 * @memcg: The memory cgroup that went over limit 1503 */ 1504 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1505 { 1506 char *buf; 1507 1508 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", 1509 K((u64)page_counter_read(&memcg->memory)), 1510 K((u64)memcg->memory.max), memcg->memory.failcnt); 1511 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1512 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n", 1513 K((u64)page_counter_read(&memcg->swap)), 1514 K((u64)memcg->swap.max), memcg->swap.failcnt); 1515 else { 1516 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", 1517 K((u64)page_counter_read(&memcg->memsw)), 1518 K((u64)memcg->memsw.max), memcg->memsw.failcnt); 1519 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", 1520 K((u64)page_counter_read(&memcg->kmem)), 1521 K((u64)memcg->kmem.max), memcg->kmem.failcnt); 1522 } 1523 1524 pr_info("Memory cgroup stats for "); 1525 pr_cont_cgroup_path(memcg->css.cgroup); 1526 pr_cont(":"); 1527 buf = memory_stat_format(memcg); 1528 if (!buf) 1529 return; 1530 pr_info("%s", buf); 1531 kfree(buf); 1532 } 1533 1534 /* 1535 * Return the memory (and swap, if configured) limit for a memcg. 1536 */ 1537 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1538 { 1539 unsigned long max; 1540 1541 max = memcg->memory.max; 1542 if (mem_cgroup_swappiness(memcg)) { 1543 unsigned long memsw_max; 1544 unsigned long swap_max; 1545 1546 memsw_max = memcg->memsw.max; 1547 swap_max = memcg->swap.max; 1548 swap_max = min(swap_max, (unsigned long)total_swap_pages); 1549 max = min(max + swap_max, memsw_max); 1550 } 1551 return max; 1552 } 1553 1554 unsigned long mem_cgroup_size(struct mem_cgroup *memcg) 1555 { 1556 return page_counter_read(&memcg->memory); 1557 } 1558 1559 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1560 int order) 1561 { 1562 struct oom_control oc = { 1563 .zonelist = NULL, 1564 .nodemask = NULL, 1565 .memcg = memcg, 1566 .gfp_mask = gfp_mask, 1567 .order = order, 1568 }; 1569 bool ret; 1570 1571 if (mutex_lock_killable(&oom_lock)) 1572 return true; 1573 /* 1574 * A few threads which were not waiting at mutex_lock_killable() can 1575 * fail to bail out. Therefore, check again after holding oom_lock. 1576 */ 1577 ret = should_force_charge() || out_of_memory(&oc); 1578 mutex_unlock(&oom_lock); 1579 return ret; 1580 } 1581 1582 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, 1583 pg_data_t *pgdat, 1584 gfp_t gfp_mask, 1585 unsigned long *total_scanned) 1586 { 1587 struct mem_cgroup *victim = NULL; 1588 int total = 0; 1589 int loop = 0; 1590 unsigned long excess; 1591 unsigned long nr_scanned; 1592 struct mem_cgroup_reclaim_cookie reclaim = { 1593 .pgdat = pgdat, 1594 }; 1595 1596 excess = soft_limit_excess(root_memcg); 1597 1598 while (1) { 1599 victim = mem_cgroup_iter(root_memcg, victim, &reclaim); 1600 if (!victim) { 1601 loop++; 1602 if (loop >= 2) { 1603 /* 1604 * If we have not been able to reclaim 1605 * anything, it might because there are 1606 * no reclaimable pages under this hierarchy 1607 */ 1608 if (!total) 1609 break; 1610 /* 1611 * We want to do more targeted reclaim. 1612 * excess >> 2 is not to excessive so as to 1613 * reclaim too much, nor too less that we keep 1614 * coming back to reclaim from this cgroup 1615 */ 1616 if (total >= (excess >> 2) || 1617 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) 1618 break; 1619 } 1620 continue; 1621 } 1622 total += mem_cgroup_shrink_node(victim, gfp_mask, false, 1623 pgdat, &nr_scanned); 1624 *total_scanned += nr_scanned; 1625 if (!soft_limit_excess(root_memcg)) 1626 break; 1627 } 1628 mem_cgroup_iter_break(root_memcg, victim); 1629 return total; 1630 } 1631 1632 #ifdef CONFIG_LOCKDEP 1633 static struct lockdep_map memcg_oom_lock_dep_map = { 1634 .name = "memcg_oom_lock", 1635 }; 1636 #endif 1637 1638 static DEFINE_SPINLOCK(memcg_oom_lock); 1639 1640 /* 1641 * Check OOM-Killer is already running under our hierarchy. 1642 * If someone is running, return false. 1643 */ 1644 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) 1645 { 1646 struct mem_cgroup *iter, *failed = NULL; 1647 1648 spin_lock(&memcg_oom_lock); 1649 1650 for_each_mem_cgroup_tree(iter, memcg) { 1651 if (iter->oom_lock) { 1652 /* 1653 * this subtree of our hierarchy is already locked 1654 * so we cannot give a lock. 1655 */ 1656 failed = iter; 1657 mem_cgroup_iter_break(memcg, iter); 1658 break; 1659 } else 1660 iter->oom_lock = true; 1661 } 1662 1663 if (failed) { 1664 /* 1665 * OK, we failed to lock the whole subtree so we have 1666 * to clean up what we set up to the failing subtree 1667 */ 1668 for_each_mem_cgroup_tree(iter, memcg) { 1669 if (iter == failed) { 1670 mem_cgroup_iter_break(memcg, iter); 1671 break; 1672 } 1673 iter->oom_lock = false; 1674 } 1675 } else 1676 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); 1677 1678 spin_unlock(&memcg_oom_lock); 1679 1680 return !failed; 1681 } 1682 1683 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 1684 { 1685 struct mem_cgroup *iter; 1686 1687 spin_lock(&memcg_oom_lock); 1688 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_); 1689 for_each_mem_cgroup_tree(iter, memcg) 1690 iter->oom_lock = false; 1691 spin_unlock(&memcg_oom_lock); 1692 } 1693 1694 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 1695 { 1696 struct mem_cgroup *iter; 1697 1698 spin_lock(&memcg_oom_lock); 1699 for_each_mem_cgroup_tree(iter, memcg) 1700 iter->under_oom++; 1701 spin_unlock(&memcg_oom_lock); 1702 } 1703 1704 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 1705 { 1706 struct mem_cgroup *iter; 1707 1708 /* 1709 * When a new child is created while the hierarchy is under oom, 1710 * mem_cgroup_oom_lock() may not be called. Watch for underflow. 1711 */ 1712 spin_lock(&memcg_oom_lock); 1713 for_each_mem_cgroup_tree(iter, memcg) 1714 if (iter->under_oom > 0) 1715 iter->under_oom--; 1716 spin_unlock(&memcg_oom_lock); 1717 } 1718 1719 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 1720 1721 struct oom_wait_info { 1722 struct mem_cgroup *memcg; 1723 wait_queue_entry_t wait; 1724 }; 1725 1726 static int memcg_oom_wake_function(wait_queue_entry_t *wait, 1727 unsigned mode, int sync, void *arg) 1728 { 1729 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; 1730 struct mem_cgroup *oom_wait_memcg; 1731 struct oom_wait_info *oom_wait_info; 1732 1733 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 1734 oom_wait_memcg = oom_wait_info->memcg; 1735 1736 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) && 1737 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg)) 1738 return 0; 1739 return autoremove_wake_function(wait, mode, sync, arg); 1740 } 1741 1742 static void memcg_oom_recover(struct mem_cgroup *memcg) 1743 { 1744 /* 1745 * For the following lockless ->under_oom test, the only required 1746 * guarantee is that it must see the state asserted by an OOM when 1747 * this function is called as a result of userland actions 1748 * triggered by the notification of the OOM. This is trivially 1749 * achieved by invoking mem_cgroup_mark_under_oom() before 1750 * triggering notification. 1751 */ 1752 if (memcg && memcg->under_oom) 1753 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 1754 } 1755 1756 enum oom_status { 1757 OOM_SUCCESS, 1758 OOM_FAILED, 1759 OOM_ASYNC, 1760 OOM_SKIPPED 1761 }; 1762 1763 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 1764 { 1765 enum oom_status ret; 1766 bool locked; 1767 1768 if (order > PAGE_ALLOC_COSTLY_ORDER) 1769 return OOM_SKIPPED; 1770 1771 memcg_memory_event(memcg, MEMCG_OOM); 1772 1773 /* 1774 * We are in the middle of the charge context here, so we 1775 * don't want to block when potentially sitting on a callstack 1776 * that holds all kinds of filesystem and mm locks. 1777 * 1778 * cgroup1 allows disabling the OOM killer and waiting for outside 1779 * handling until the charge can succeed; remember the context and put 1780 * the task to sleep at the end of the page fault when all locks are 1781 * released. 1782 * 1783 * On the other hand, in-kernel OOM killer allows for an async victim 1784 * memory reclaim (oom_reaper) and that means that we are not solely 1785 * relying on the oom victim to make a forward progress and we can 1786 * invoke the oom killer here. 1787 * 1788 * Please note that mem_cgroup_out_of_memory might fail to find a 1789 * victim and then we have to bail out from the charge path. 1790 */ 1791 if (memcg->oom_kill_disable) { 1792 if (!current->in_user_fault) 1793 return OOM_SKIPPED; 1794 css_get(&memcg->css); 1795 current->memcg_in_oom = memcg; 1796 current->memcg_oom_gfp_mask = mask; 1797 current->memcg_oom_order = order; 1798 1799 return OOM_ASYNC; 1800 } 1801 1802 mem_cgroup_mark_under_oom(memcg); 1803 1804 locked = mem_cgroup_oom_trylock(memcg); 1805 1806 if (locked) 1807 mem_cgroup_oom_notify(memcg); 1808 1809 mem_cgroup_unmark_under_oom(memcg); 1810 if (mem_cgroup_out_of_memory(memcg, mask, order)) 1811 ret = OOM_SUCCESS; 1812 else 1813 ret = OOM_FAILED; 1814 1815 if (locked) 1816 mem_cgroup_oom_unlock(memcg); 1817 1818 return ret; 1819 } 1820 1821 /** 1822 * mem_cgroup_oom_synchronize - complete memcg OOM handling 1823 * @handle: actually kill/wait or just clean up the OOM state 1824 * 1825 * This has to be called at the end of a page fault if the memcg OOM 1826 * handler was enabled. 1827 * 1828 * Memcg supports userspace OOM handling where failed allocations must 1829 * sleep on a waitqueue until the userspace task resolves the 1830 * situation. Sleeping directly in the charge context with all kinds 1831 * of locks held is not a good idea, instead we remember an OOM state 1832 * in the task and mem_cgroup_oom_synchronize() has to be called at 1833 * the end of the page fault to complete the OOM handling. 1834 * 1835 * Returns %true if an ongoing memcg OOM situation was detected and 1836 * completed, %false otherwise. 1837 */ 1838 bool mem_cgroup_oom_synchronize(bool handle) 1839 { 1840 struct mem_cgroup *memcg = current->memcg_in_oom; 1841 struct oom_wait_info owait; 1842 bool locked; 1843 1844 /* OOM is global, do not handle */ 1845 if (!memcg) 1846 return false; 1847 1848 if (!handle) 1849 goto cleanup; 1850 1851 owait.memcg = memcg; 1852 owait.wait.flags = 0; 1853 owait.wait.func = memcg_oom_wake_function; 1854 owait.wait.private = current; 1855 INIT_LIST_HEAD(&owait.wait.entry); 1856 1857 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 1858 mem_cgroup_mark_under_oom(memcg); 1859 1860 locked = mem_cgroup_oom_trylock(memcg); 1861 1862 if (locked) 1863 mem_cgroup_oom_notify(memcg); 1864 1865 if (locked && !memcg->oom_kill_disable) { 1866 mem_cgroup_unmark_under_oom(memcg); 1867 finish_wait(&memcg_oom_waitq, &owait.wait); 1868 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask, 1869 current->memcg_oom_order); 1870 } else { 1871 schedule(); 1872 mem_cgroup_unmark_under_oom(memcg); 1873 finish_wait(&memcg_oom_waitq, &owait.wait); 1874 } 1875 1876 if (locked) { 1877 mem_cgroup_oom_unlock(memcg); 1878 /* 1879 * There is no guarantee that an OOM-lock contender 1880 * sees the wakeups triggered by the OOM kill 1881 * uncharges. Wake any sleepers explicitely. 1882 */ 1883 memcg_oom_recover(memcg); 1884 } 1885 cleanup: 1886 current->memcg_in_oom = NULL; 1887 css_put(&memcg->css); 1888 return true; 1889 } 1890 1891 /** 1892 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM 1893 * @victim: task to be killed by the OOM killer 1894 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM 1895 * 1896 * Returns a pointer to a memory cgroup, which has to be cleaned up 1897 * by killing all belonging OOM-killable tasks. 1898 * 1899 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg. 1900 */ 1901 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 1902 struct mem_cgroup *oom_domain) 1903 { 1904 struct mem_cgroup *oom_group = NULL; 1905 struct mem_cgroup *memcg; 1906 1907 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1908 return NULL; 1909 1910 if (!oom_domain) 1911 oom_domain = root_mem_cgroup; 1912 1913 rcu_read_lock(); 1914 1915 memcg = mem_cgroup_from_task(victim); 1916 if (memcg == root_mem_cgroup) 1917 goto out; 1918 1919 /* 1920 * Traverse the memory cgroup hierarchy from the victim task's 1921 * cgroup up to the OOMing cgroup (or root) to find the 1922 * highest-level memory cgroup with oom.group set. 1923 */ 1924 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 1925 if (memcg->oom_group) 1926 oom_group = memcg; 1927 1928 if (memcg == oom_domain) 1929 break; 1930 } 1931 1932 if (oom_group) 1933 css_get(&oom_group->css); 1934 out: 1935 rcu_read_unlock(); 1936 1937 return oom_group; 1938 } 1939 1940 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 1941 { 1942 pr_info("Tasks in "); 1943 pr_cont_cgroup_path(memcg->css.cgroup); 1944 pr_cont(" are going to be killed due to memory.oom.group set\n"); 1945 } 1946 1947 /** 1948 * lock_page_memcg - lock a page->mem_cgroup binding 1949 * @page: the page 1950 * 1951 * This function protects unlocked LRU pages from being moved to 1952 * another cgroup. 1953 * 1954 * It ensures lifetime of the returned memcg. Caller is responsible 1955 * for the lifetime of the page; __unlock_page_memcg() is available 1956 * when @page might get freed inside the locked section. 1957 */ 1958 struct mem_cgroup *lock_page_memcg(struct page *page) 1959 { 1960 struct mem_cgroup *memcg; 1961 unsigned long flags; 1962 1963 /* 1964 * The RCU lock is held throughout the transaction. The fast 1965 * path can get away without acquiring the memcg->move_lock 1966 * because page moving starts with an RCU grace period. 1967 * 1968 * The RCU lock also protects the memcg from being freed when 1969 * the page state that is going to change is the only thing 1970 * preventing the page itself from being freed. E.g. writeback 1971 * doesn't hold a page reference and relies on PG_writeback to 1972 * keep off truncation, migration and so forth. 1973 */ 1974 rcu_read_lock(); 1975 1976 if (mem_cgroup_disabled()) 1977 return NULL; 1978 again: 1979 memcg = page->mem_cgroup; 1980 if (unlikely(!memcg)) 1981 return NULL; 1982 1983 if (atomic_read(&memcg->moving_account) <= 0) 1984 return memcg; 1985 1986 spin_lock_irqsave(&memcg->move_lock, flags); 1987 if (memcg != page->mem_cgroup) { 1988 spin_unlock_irqrestore(&memcg->move_lock, flags); 1989 goto again; 1990 } 1991 1992 /* 1993 * When charge migration first begins, we can have locked and 1994 * unlocked page stat updates happening concurrently. Track 1995 * the task who has the lock for unlock_page_memcg(). 1996 */ 1997 memcg->move_lock_task = current; 1998 memcg->move_lock_flags = flags; 1999 2000 return memcg; 2001 } 2002 EXPORT_SYMBOL(lock_page_memcg); 2003 2004 /** 2005 * __unlock_page_memcg - unlock and unpin a memcg 2006 * @memcg: the memcg 2007 * 2008 * Unlock and unpin a memcg returned by lock_page_memcg(). 2009 */ 2010 void __unlock_page_memcg(struct mem_cgroup *memcg) 2011 { 2012 if (memcg && memcg->move_lock_task == current) { 2013 unsigned long flags = memcg->move_lock_flags; 2014 2015 memcg->move_lock_task = NULL; 2016 memcg->move_lock_flags = 0; 2017 2018 spin_unlock_irqrestore(&memcg->move_lock, flags); 2019 } 2020 2021 rcu_read_unlock(); 2022 } 2023 2024 /** 2025 * unlock_page_memcg - unlock a page->mem_cgroup binding 2026 * @page: the page 2027 */ 2028 void unlock_page_memcg(struct page *page) 2029 { 2030 __unlock_page_memcg(page->mem_cgroup); 2031 } 2032 EXPORT_SYMBOL(unlock_page_memcg); 2033 2034 struct memcg_stock_pcp { 2035 struct mem_cgroup *cached; /* this never be root cgroup */ 2036 unsigned int nr_pages; 2037 struct work_struct work; 2038 unsigned long flags; 2039 #define FLUSHING_CACHED_CHARGE 0 2040 }; 2041 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); 2042 static DEFINE_MUTEX(percpu_charge_mutex); 2043 2044 /** 2045 * consume_stock: Try to consume stocked charge on this cpu. 2046 * @memcg: memcg to consume from. 2047 * @nr_pages: how many pages to charge. 2048 * 2049 * The charges will only happen if @memcg matches the current cpu's memcg 2050 * stock, and at least @nr_pages are available in that stock. Failure to 2051 * service an allocation will refill the stock. 2052 * 2053 * returns true if successful, false otherwise. 2054 */ 2055 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2056 { 2057 struct memcg_stock_pcp *stock; 2058 unsigned long flags; 2059 bool ret = false; 2060 2061 if (nr_pages > MEMCG_CHARGE_BATCH) 2062 return ret; 2063 2064 local_irq_save(flags); 2065 2066 stock = this_cpu_ptr(&memcg_stock); 2067 if (memcg == stock->cached && stock->nr_pages >= nr_pages) { 2068 stock->nr_pages -= nr_pages; 2069 ret = true; 2070 } 2071 2072 local_irq_restore(flags); 2073 2074 return ret; 2075 } 2076 2077 /* 2078 * Returns stocks cached in percpu and reset cached information. 2079 */ 2080 static void drain_stock(struct memcg_stock_pcp *stock) 2081 { 2082 struct mem_cgroup *old = stock->cached; 2083 2084 if (stock->nr_pages) { 2085 page_counter_uncharge(&old->memory, stock->nr_pages); 2086 if (do_memsw_account()) 2087 page_counter_uncharge(&old->memsw, stock->nr_pages); 2088 css_put_many(&old->css, stock->nr_pages); 2089 stock->nr_pages = 0; 2090 } 2091 stock->cached = NULL; 2092 } 2093 2094 static void drain_local_stock(struct work_struct *dummy) 2095 { 2096 struct memcg_stock_pcp *stock; 2097 unsigned long flags; 2098 2099 /* 2100 * The only protection from memory hotplug vs. drain_stock races is 2101 * that we always operate on local CPU stock here with IRQ disabled 2102 */ 2103 local_irq_save(flags); 2104 2105 stock = this_cpu_ptr(&memcg_stock); 2106 drain_stock(stock); 2107 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 2108 2109 local_irq_restore(flags); 2110 } 2111 2112 /* 2113 * Cache charges(val) to local per_cpu area. 2114 * This will be consumed by consume_stock() function, later. 2115 */ 2116 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2117 { 2118 struct memcg_stock_pcp *stock; 2119 unsigned long flags; 2120 2121 local_irq_save(flags); 2122 2123 stock = this_cpu_ptr(&memcg_stock); 2124 if (stock->cached != memcg) { /* reset if necessary */ 2125 drain_stock(stock); 2126 stock->cached = memcg; 2127 } 2128 stock->nr_pages += nr_pages; 2129 2130 if (stock->nr_pages > MEMCG_CHARGE_BATCH) 2131 drain_stock(stock); 2132 2133 local_irq_restore(flags); 2134 } 2135 2136 /* 2137 * Drains all per-CPU charge caches for given root_memcg resp. subtree 2138 * of the hierarchy under it. 2139 */ 2140 static void drain_all_stock(struct mem_cgroup *root_memcg) 2141 { 2142 int cpu, curcpu; 2143 2144 /* If someone's already draining, avoid adding running more workers. */ 2145 if (!mutex_trylock(&percpu_charge_mutex)) 2146 return; 2147 /* 2148 * Notify other cpus that system-wide "drain" is running 2149 * We do not care about races with the cpu hotplug because cpu down 2150 * as well as workers from this path always operate on the local 2151 * per-cpu data. CPU up doesn't touch memcg_stock at all. 2152 */ 2153 curcpu = get_cpu(); 2154 for_each_online_cpu(cpu) { 2155 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2156 struct mem_cgroup *memcg; 2157 bool flush = false; 2158 2159 rcu_read_lock(); 2160 memcg = stock->cached; 2161 if (memcg && stock->nr_pages && 2162 mem_cgroup_is_descendant(memcg, root_memcg)) 2163 flush = true; 2164 rcu_read_unlock(); 2165 2166 if (flush && 2167 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 2168 if (cpu == curcpu) 2169 drain_local_stock(&stock->work); 2170 else 2171 schedule_work_on(cpu, &stock->work); 2172 } 2173 } 2174 put_cpu(); 2175 mutex_unlock(&percpu_charge_mutex); 2176 } 2177 2178 static int memcg_hotplug_cpu_dead(unsigned int cpu) 2179 { 2180 struct memcg_stock_pcp *stock; 2181 struct mem_cgroup *memcg, *mi; 2182 2183 stock = &per_cpu(memcg_stock, cpu); 2184 drain_stock(stock); 2185 2186 for_each_mem_cgroup(memcg) { 2187 int i; 2188 2189 for (i = 0; i < MEMCG_NR_STAT; i++) { 2190 int nid; 2191 long x; 2192 2193 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0); 2194 if (x) 2195 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 2196 atomic_long_add(x, &memcg->vmstats[i]); 2197 2198 if (i >= NR_VM_NODE_STAT_ITEMS) 2199 continue; 2200 2201 for_each_node(nid) { 2202 struct mem_cgroup_per_node *pn; 2203 2204 pn = mem_cgroup_nodeinfo(memcg, nid); 2205 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0); 2206 if (x) 2207 do { 2208 atomic_long_add(x, &pn->lruvec_stat[i]); 2209 } while ((pn = parent_nodeinfo(pn, nid))); 2210 } 2211 } 2212 2213 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) { 2214 long x; 2215 2216 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0); 2217 if (x) 2218 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 2219 atomic_long_add(x, &memcg->vmevents[i]); 2220 } 2221 } 2222 2223 return 0; 2224 } 2225 2226 static void reclaim_high(struct mem_cgroup *memcg, 2227 unsigned int nr_pages, 2228 gfp_t gfp_mask) 2229 { 2230 do { 2231 if (page_counter_read(&memcg->memory) <= memcg->high) 2232 continue; 2233 memcg_memory_event(memcg, MEMCG_HIGH); 2234 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true); 2235 } while ((memcg = parent_mem_cgroup(memcg))); 2236 } 2237 2238 static void high_work_func(struct work_struct *work) 2239 { 2240 struct mem_cgroup *memcg; 2241 2242 memcg = container_of(work, struct mem_cgroup, high_work); 2243 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL); 2244 } 2245 2246 /* 2247 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is 2248 * enough to still cause a significant slowdown in most cases, while still 2249 * allowing diagnostics and tracing to proceed without becoming stuck. 2250 */ 2251 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ) 2252 2253 /* 2254 * When calculating the delay, we use these either side of the exponentiation to 2255 * maintain precision and scale to a reasonable number of jiffies (see the table 2256 * below. 2257 * 2258 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the 2259 * overage ratio to a delay. 2260 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down down the 2261 * proposed penalty in order to reduce to a reasonable number of jiffies, and 2262 * to produce a reasonable delay curve. 2263 * 2264 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a 2265 * reasonable delay curve compared to precision-adjusted overage, not 2266 * penalising heavily at first, but still making sure that growth beyond the 2267 * limit penalises misbehaviour cgroups by slowing them down exponentially. For 2268 * example, with a high of 100 megabytes: 2269 * 2270 * +-------+------------------------+ 2271 * | usage | time to allocate in ms | 2272 * +-------+------------------------+ 2273 * | 100M | 0 | 2274 * | 101M | 6 | 2275 * | 102M | 25 | 2276 * | 103M | 57 | 2277 * | 104M | 102 | 2278 * | 105M | 159 | 2279 * | 106M | 230 | 2280 * | 107M | 313 | 2281 * | 108M | 409 | 2282 * | 109M | 518 | 2283 * | 110M | 639 | 2284 * | 111M | 774 | 2285 * | 112M | 921 | 2286 * | 113M | 1081 | 2287 * | 114M | 1254 | 2288 * | 115M | 1439 | 2289 * | 116M | 1638 | 2290 * | 117M | 1849 | 2291 * | 118M | 2000 | 2292 * | 119M | 2000 | 2293 * | 120M | 2000 | 2294 * +-------+------------------------+ 2295 */ 2296 #define MEMCG_DELAY_PRECISION_SHIFT 20 2297 #define MEMCG_DELAY_SCALING_SHIFT 14 2298 2299 /* 2300 * Get the number of jiffies that we should penalise a mischievous cgroup which 2301 * is exceeding its memory.high by checking both it and its ancestors. 2302 */ 2303 static unsigned long calculate_high_delay(struct mem_cgroup *memcg, 2304 unsigned int nr_pages) 2305 { 2306 unsigned long penalty_jiffies; 2307 u64 max_overage = 0; 2308 2309 do { 2310 unsigned long usage, high; 2311 u64 overage; 2312 2313 usage = page_counter_read(&memcg->memory); 2314 high = READ_ONCE(memcg->high); 2315 2316 /* 2317 * Prevent division by 0 in overage calculation by acting as if 2318 * it was a threshold of 1 page 2319 */ 2320 high = max(high, 1UL); 2321 2322 overage = usage - high; 2323 overage <<= MEMCG_DELAY_PRECISION_SHIFT; 2324 overage = div64_u64(overage, high); 2325 2326 if (overage > max_overage) 2327 max_overage = overage; 2328 } while ((memcg = parent_mem_cgroup(memcg)) && 2329 !mem_cgroup_is_root(memcg)); 2330 2331 if (!max_overage) 2332 return 0; 2333 2334 /* 2335 * We use overage compared to memory.high to calculate the number of 2336 * jiffies to sleep (penalty_jiffies). Ideally this value should be 2337 * fairly lenient on small overages, and increasingly harsh when the 2338 * memcg in question makes it clear that it has no intention of stopping 2339 * its crazy behaviour, so we exponentially increase the delay based on 2340 * overage amount. 2341 */ 2342 penalty_jiffies = max_overage * max_overage * HZ; 2343 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT; 2344 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT; 2345 2346 /* 2347 * Factor in the task's own contribution to the overage, such that four 2348 * N-sized allocations are throttled approximately the same as one 2349 * 4N-sized allocation. 2350 * 2351 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or 2352 * larger the current charge patch is than that. 2353 */ 2354 penalty_jiffies = penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH; 2355 2356 /* 2357 * Clamp the max delay per usermode return so as to still keep the 2358 * application moving forwards and also permit diagnostics, albeit 2359 * extremely slowly. 2360 */ 2361 return min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES); 2362 } 2363 2364 /* 2365 * Scheduled by try_charge() to be executed from the userland return path 2366 * and reclaims memory over the high limit. 2367 */ 2368 void mem_cgroup_handle_over_high(void) 2369 { 2370 unsigned long penalty_jiffies; 2371 unsigned long pflags; 2372 unsigned int nr_pages = current->memcg_nr_pages_over_high; 2373 struct mem_cgroup *memcg; 2374 2375 if (likely(!nr_pages)) 2376 return; 2377 2378 memcg = get_mem_cgroup_from_mm(current->mm); 2379 reclaim_high(memcg, nr_pages, GFP_KERNEL); 2380 current->memcg_nr_pages_over_high = 0; 2381 2382 /* 2383 * memory.high is breached and reclaim is unable to keep up. Throttle 2384 * allocators proactively to slow down excessive growth. 2385 */ 2386 penalty_jiffies = calculate_high_delay(memcg, nr_pages); 2387 2388 /* 2389 * Don't sleep if the amount of jiffies this memcg owes us is so low 2390 * that it's not even worth doing, in an attempt to be nice to those who 2391 * go only a small amount over their memory.high value and maybe haven't 2392 * been aggressively reclaimed enough yet. 2393 */ 2394 if (penalty_jiffies <= HZ / 100) 2395 goto out; 2396 2397 /* 2398 * If we exit early, we're guaranteed to die (since 2399 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't 2400 * need to account for any ill-begotten jiffies to pay them off later. 2401 */ 2402 psi_memstall_enter(&pflags); 2403 schedule_timeout_killable(penalty_jiffies); 2404 psi_memstall_leave(&pflags); 2405 2406 out: 2407 css_put(&memcg->css); 2408 } 2409 2410 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 2411 unsigned int nr_pages) 2412 { 2413 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages); 2414 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 2415 struct mem_cgroup *mem_over_limit; 2416 struct page_counter *counter; 2417 unsigned long nr_reclaimed; 2418 bool may_swap = true; 2419 bool drained = false; 2420 enum oom_status oom_status; 2421 2422 if (mem_cgroup_is_root(memcg)) 2423 return 0; 2424 retry: 2425 if (consume_stock(memcg, nr_pages)) 2426 return 0; 2427 2428 if (!do_memsw_account() || 2429 page_counter_try_charge(&memcg->memsw, batch, &counter)) { 2430 if (page_counter_try_charge(&memcg->memory, batch, &counter)) 2431 goto done_restock; 2432 if (do_memsw_account()) 2433 page_counter_uncharge(&memcg->memsw, batch); 2434 mem_over_limit = mem_cgroup_from_counter(counter, memory); 2435 } else { 2436 mem_over_limit = mem_cgroup_from_counter(counter, memsw); 2437 may_swap = false; 2438 } 2439 2440 if (batch > nr_pages) { 2441 batch = nr_pages; 2442 goto retry; 2443 } 2444 2445 /* 2446 * Memcg doesn't have a dedicated reserve for atomic 2447 * allocations. But like the global atomic pool, we need to 2448 * put the burden of reclaim on regular allocation requests 2449 * and let these go through as privileged allocations. 2450 */ 2451 if (gfp_mask & __GFP_ATOMIC) 2452 goto force; 2453 2454 /* 2455 * Unlike in global OOM situations, memcg is not in a physical 2456 * memory shortage. Allow dying and OOM-killed tasks to 2457 * bypass the last charges so that they can exit quickly and 2458 * free their memory. 2459 */ 2460 if (unlikely(should_force_charge())) 2461 goto force; 2462 2463 /* 2464 * Prevent unbounded recursion when reclaim operations need to 2465 * allocate memory. This might exceed the limits temporarily, 2466 * but we prefer facilitating memory reclaim and getting back 2467 * under the limit over triggering OOM kills in these cases. 2468 */ 2469 if (unlikely(current->flags & PF_MEMALLOC)) 2470 goto force; 2471 2472 if (unlikely(task_in_memcg_oom(current))) 2473 goto nomem; 2474 2475 if (!gfpflags_allow_blocking(gfp_mask)) 2476 goto nomem; 2477 2478 memcg_memory_event(mem_over_limit, MEMCG_MAX); 2479 2480 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, 2481 gfp_mask, may_swap); 2482 2483 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2484 goto retry; 2485 2486 if (!drained) { 2487 drain_all_stock(mem_over_limit); 2488 drained = true; 2489 goto retry; 2490 } 2491 2492 if (gfp_mask & __GFP_NORETRY) 2493 goto nomem; 2494 /* 2495 * Even though the limit is exceeded at this point, reclaim 2496 * may have been able to free some pages. Retry the charge 2497 * before killing the task. 2498 * 2499 * Only for regular pages, though: huge pages are rather 2500 * unlikely to succeed so close to the limit, and we fall back 2501 * to regular pages anyway in case of failure. 2502 */ 2503 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) 2504 goto retry; 2505 /* 2506 * At task move, charge accounts can be doubly counted. So, it's 2507 * better to wait until the end of task_move if something is going on. 2508 */ 2509 if (mem_cgroup_wait_acct_move(mem_over_limit)) 2510 goto retry; 2511 2512 if (nr_retries--) 2513 goto retry; 2514 2515 if (gfp_mask & __GFP_RETRY_MAYFAIL) 2516 goto nomem; 2517 2518 if (gfp_mask & __GFP_NOFAIL) 2519 goto force; 2520 2521 if (fatal_signal_pending(current)) 2522 goto force; 2523 2524 /* 2525 * keep retrying as long as the memcg oom killer is able to make 2526 * a forward progress or bypass the charge if the oom killer 2527 * couldn't make any progress. 2528 */ 2529 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask, 2530 get_order(nr_pages * PAGE_SIZE)); 2531 switch (oom_status) { 2532 case OOM_SUCCESS: 2533 nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 2534 goto retry; 2535 case OOM_FAILED: 2536 goto force; 2537 default: 2538 goto nomem; 2539 } 2540 nomem: 2541 if (!(gfp_mask & __GFP_NOFAIL)) 2542 return -ENOMEM; 2543 force: 2544 /* 2545 * The allocation either can't fail or will lead to more memory 2546 * being freed very soon. Allow memory usage go over the limit 2547 * temporarily by force charging it. 2548 */ 2549 page_counter_charge(&memcg->memory, nr_pages); 2550 if (do_memsw_account()) 2551 page_counter_charge(&memcg->memsw, nr_pages); 2552 css_get_many(&memcg->css, nr_pages); 2553 2554 return 0; 2555 2556 done_restock: 2557 css_get_many(&memcg->css, batch); 2558 if (batch > nr_pages) 2559 refill_stock(memcg, batch - nr_pages); 2560 2561 /* 2562 * If the hierarchy is above the normal consumption range, schedule 2563 * reclaim on returning to userland. We can perform reclaim here 2564 * if __GFP_RECLAIM but let's always punt for simplicity and so that 2565 * GFP_KERNEL can consistently be used during reclaim. @memcg is 2566 * not recorded as it most likely matches current's and won't 2567 * change in the meantime. As high limit is checked again before 2568 * reclaim, the cost of mismatch is negligible. 2569 */ 2570 do { 2571 if (page_counter_read(&memcg->memory) > memcg->high) { 2572 /* Don't bother a random interrupted task */ 2573 if (in_interrupt()) { 2574 schedule_work(&memcg->high_work); 2575 break; 2576 } 2577 current->memcg_nr_pages_over_high += batch; 2578 set_notify_resume(current); 2579 break; 2580 } 2581 } while ((memcg = parent_mem_cgroup(memcg))); 2582 2583 return 0; 2584 } 2585 2586 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages) 2587 { 2588 if (mem_cgroup_is_root(memcg)) 2589 return; 2590 2591 page_counter_uncharge(&memcg->memory, nr_pages); 2592 if (do_memsw_account()) 2593 page_counter_uncharge(&memcg->memsw, nr_pages); 2594 2595 css_put_many(&memcg->css, nr_pages); 2596 } 2597 2598 static void lock_page_lru(struct page *page, int *isolated) 2599 { 2600 pg_data_t *pgdat = page_pgdat(page); 2601 2602 spin_lock_irq(&pgdat->lru_lock); 2603 if (PageLRU(page)) { 2604 struct lruvec *lruvec; 2605 2606 lruvec = mem_cgroup_page_lruvec(page, pgdat); 2607 ClearPageLRU(page); 2608 del_page_from_lru_list(page, lruvec, page_lru(page)); 2609 *isolated = 1; 2610 } else 2611 *isolated = 0; 2612 } 2613 2614 static void unlock_page_lru(struct page *page, int isolated) 2615 { 2616 pg_data_t *pgdat = page_pgdat(page); 2617 2618 if (isolated) { 2619 struct lruvec *lruvec; 2620 2621 lruvec = mem_cgroup_page_lruvec(page, pgdat); 2622 VM_BUG_ON_PAGE(PageLRU(page), page); 2623 SetPageLRU(page); 2624 add_page_to_lru_list(page, lruvec, page_lru(page)); 2625 } 2626 spin_unlock_irq(&pgdat->lru_lock); 2627 } 2628 2629 static void commit_charge(struct page *page, struct mem_cgroup *memcg, 2630 bool lrucare) 2631 { 2632 int isolated; 2633 2634 VM_BUG_ON_PAGE(page->mem_cgroup, page); 2635 2636 /* 2637 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page 2638 * may already be on some other mem_cgroup's LRU. Take care of it. 2639 */ 2640 if (lrucare) 2641 lock_page_lru(page, &isolated); 2642 2643 /* 2644 * Nobody should be changing or seriously looking at 2645 * page->mem_cgroup at this point: 2646 * 2647 * - the page is uncharged 2648 * 2649 * - the page is off-LRU 2650 * 2651 * - an anonymous fault has exclusive page access, except for 2652 * a locked page table 2653 * 2654 * - a page cache insertion, a swapin fault, or a migration 2655 * have the page locked 2656 */ 2657 page->mem_cgroup = memcg; 2658 2659 if (lrucare) 2660 unlock_page_lru(page, isolated); 2661 } 2662 2663 #ifdef CONFIG_MEMCG_KMEM 2664 static int memcg_alloc_cache_id(void) 2665 { 2666 int id, size; 2667 int err; 2668 2669 id = ida_simple_get(&memcg_cache_ida, 2670 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL); 2671 if (id < 0) 2672 return id; 2673 2674 if (id < memcg_nr_cache_ids) 2675 return id; 2676 2677 /* 2678 * There's no space for the new id in memcg_caches arrays, 2679 * so we have to grow them. 2680 */ 2681 down_write(&memcg_cache_ids_sem); 2682 2683 size = 2 * (id + 1); 2684 if (size < MEMCG_CACHES_MIN_SIZE) 2685 size = MEMCG_CACHES_MIN_SIZE; 2686 else if (size > MEMCG_CACHES_MAX_SIZE) 2687 size = MEMCG_CACHES_MAX_SIZE; 2688 2689 err = memcg_update_all_caches(size); 2690 if (!err) 2691 err = memcg_update_all_list_lrus(size); 2692 if (!err) 2693 memcg_nr_cache_ids = size; 2694 2695 up_write(&memcg_cache_ids_sem); 2696 2697 if (err) { 2698 ida_simple_remove(&memcg_cache_ida, id); 2699 return err; 2700 } 2701 return id; 2702 } 2703 2704 static void memcg_free_cache_id(int id) 2705 { 2706 ida_simple_remove(&memcg_cache_ida, id); 2707 } 2708 2709 struct memcg_kmem_cache_create_work { 2710 struct mem_cgroup *memcg; 2711 struct kmem_cache *cachep; 2712 struct work_struct work; 2713 }; 2714 2715 static void memcg_kmem_cache_create_func(struct work_struct *w) 2716 { 2717 struct memcg_kmem_cache_create_work *cw = 2718 container_of(w, struct memcg_kmem_cache_create_work, work); 2719 struct mem_cgroup *memcg = cw->memcg; 2720 struct kmem_cache *cachep = cw->cachep; 2721 2722 memcg_create_kmem_cache(memcg, cachep); 2723 2724 css_put(&memcg->css); 2725 kfree(cw); 2726 } 2727 2728 /* 2729 * Enqueue the creation of a per-memcg kmem_cache. 2730 */ 2731 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg, 2732 struct kmem_cache *cachep) 2733 { 2734 struct memcg_kmem_cache_create_work *cw; 2735 2736 if (!css_tryget_online(&memcg->css)) 2737 return; 2738 2739 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN); 2740 if (!cw) 2741 return; 2742 2743 cw->memcg = memcg; 2744 cw->cachep = cachep; 2745 INIT_WORK(&cw->work, memcg_kmem_cache_create_func); 2746 2747 queue_work(memcg_kmem_cache_wq, &cw->work); 2748 } 2749 2750 static inline bool memcg_kmem_bypass(void) 2751 { 2752 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD)) 2753 return true; 2754 return false; 2755 } 2756 2757 /** 2758 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation 2759 * @cachep: the original global kmem cache 2760 * 2761 * Return the kmem_cache we're supposed to use for a slab allocation. 2762 * We try to use the current memcg's version of the cache. 2763 * 2764 * If the cache does not exist yet, if we are the first user of it, we 2765 * create it asynchronously in a workqueue and let the current allocation 2766 * go through with the original cache. 2767 * 2768 * This function takes a reference to the cache it returns to assure it 2769 * won't get destroyed while we are working with it. Once the caller is 2770 * done with it, memcg_kmem_put_cache() must be called to release the 2771 * reference. 2772 */ 2773 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep) 2774 { 2775 struct mem_cgroup *memcg; 2776 struct kmem_cache *memcg_cachep; 2777 struct memcg_cache_array *arr; 2778 int kmemcg_id; 2779 2780 VM_BUG_ON(!is_root_cache(cachep)); 2781 2782 if (memcg_kmem_bypass()) 2783 return cachep; 2784 2785 rcu_read_lock(); 2786 2787 if (unlikely(current->active_memcg)) 2788 memcg = current->active_memcg; 2789 else 2790 memcg = mem_cgroup_from_task(current); 2791 2792 if (!memcg || memcg == root_mem_cgroup) 2793 goto out_unlock; 2794 2795 kmemcg_id = READ_ONCE(memcg->kmemcg_id); 2796 if (kmemcg_id < 0) 2797 goto out_unlock; 2798 2799 arr = rcu_dereference(cachep->memcg_params.memcg_caches); 2800 2801 /* 2802 * Make sure we will access the up-to-date value. The code updating 2803 * memcg_caches issues a write barrier to match the data dependency 2804 * barrier inside READ_ONCE() (see memcg_create_kmem_cache()). 2805 */ 2806 memcg_cachep = READ_ONCE(arr->entries[kmemcg_id]); 2807 2808 /* 2809 * If we are in a safe context (can wait, and not in interrupt 2810 * context), we could be be predictable and return right away. 2811 * This would guarantee that the allocation being performed 2812 * already belongs in the new cache. 2813 * 2814 * However, there are some clashes that can arrive from locking. 2815 * For instance, because we acquire the slab_mutex while doing 2816 * memcg_create_kmem_cache, this means no further allocation 2817 * could happen with the slab_mutex held. So it's better to 2818 * defer everything. 2819 * 2820 * If the memcg is dying or memcg_cache is about to be released, 2821 * don't bother creating new kmem_caches. Because memcg_cachep 2822 * is ZEROed as the fist step of kmem offlining, we don't need 2823 * percpu_ref_tryget_live() here. css_tryget_online() check in 2824 * memcg_schedule_kmem_cache_create() will prevent us from 2825 * creation of a new kmem_cache. 2826 */ 2827 if (unlikely(!memcg_cachep)) 2828 memcg_schedule_kmem_cache_create(memcg, cachep); 2829 else if (percpu_ref_tryget(&memcg_cachep->memcg_params.refcnt)) 2830 cachep = memcg_cachep; 2831 out_unlock: 2832 rcu_read_unlock(); 2833 return cachep; 2834 } 2835 2836 /** 2837 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache 2838 * @cachep: the cache returned by memcg_kmem_get_cache 2839 */ 2840 void memcg_kmem_put_cache(struct kmem_cache *cachep) 2841 { 2842 if (!is_root_cache(cachep)) 2843 percpu_ref_put(&cachep->memcg_params.refcnt); 2844 } 2845 2846 /** 2847 * __memcg_kmem_charge_memcg: charge a kmem page 2848 * @page: page to charge 2849 * @gfp: reclaim mode 2850 * @order: allocation order 2851 * @memcg: memory cgroup to charge 2852 * 2853 * Returns 0 on success, an error code on failure. 2854 */ 2855 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order, 2856 struct mem_cgroup *memcg) 2857 { 2858 unsigned int nr_pages = 1 << order; 2859 struct page_counter *counter; 2860 int ret; 2861 2862 ret = try_charge(memcg, gfp, nr_pages); 2863 if (ret) 2864 return ret; 2865 2866 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && 2867 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) { 2868 2869 /* 2870 * Enforce __GFP_NOFAIL allocation because callers are not 2871 * prepared to see failures and likely do not have any failure 2872 * handling code. 2873 */ 2874 if (gfp & __GFP_NOFAIL) { 2875 page_counter_charge(&memcg->kmem, nr_pages); 2876 return 0; 2877 } 2878 cancel_charge(memcg, nr_pages); 2879 return -ENOMEM; 2880 } 2881 return 0; 2882 } 2883 2884 /** 2885 * __memcg_kmem_charge: charge a kmem page to the current memory cgroup 2886 * @page: page to charge 2887 * @gfp: reclaim mode 2888 * @order: allocation order 2889 * 2890 * Returns 0 on success, an error code on failure. 2891 */ 2892 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order) 2893 { 2894 struct mem_cgroup *memcg; 2895 int ret = 0; 2896 2897 if (memcg_kmem_bypass()) 2898 return 0; 2899 2900 memcg = get_mem_cgroup_from_current(); 2901 if (!mem_cgroup_is_root(memcg)) { 2902 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg); 2903 if (!ret) { 2904 page->mem_cgroup = memcg; 2905 __SetPageKmemcg(page); 2906 } 2907 } 2908 css_put(&memcg->css); 2909 return ret; 2910 } 2911 2912 /** 2913 * __memcg_kmem_uncharge_memcg: uncharge a kmem page 2914 * @memcg: memcg to uncharge 2915 * @nr_pages: number of pages to uncharge 2916 */ 2917 void __memcg_kmem_uncharge_memcg(struct mem_cgroup *memcg, 2918 unsigned int nr_pages) 2919 { 2920 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 2921 page_counter_uncharge(&memcg->kmem, nr_pages); 2922 2923 page_counter_uncharge(&memcg->memory, nr_pages); 2924 if (do_memsw_account()) 2925 page_counter_uncharge(&memcg->memsw, nr_pages); 2926 } 2927 /** 2928 * __memcg_kmem_uncharge: uncharge a kmem page 2929 * @page: page to uncharge 2930 * @order: allocation order 2931 */ 2932 void __memcg_kmem_uncharge(struct page *page, int order) 2933 { 2934 struct mem_cgroup *memcg = page->mem_cgroup; 2935 unsigned int nr_pages = 1 << order; 2936 2937 if (!memcg) 2938 return; 2939 2940 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page); 2941 __memcg_kmem_uncharge_memcg(memcg, nr_pages); 2942 page->mem_cgroup = NULL; 2943 2944 /* slab pages do not have PageKmemcg flag set */ 2945 if (PageKmemcg(page)) 2946 __ClearPageKmemcg(page); 2947 2948 css_put_many(&memcg->css, nr_pages); 2949 } 2950 #endif /* CONFIG_MEMCG_KMEM */ 2951 2952 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2953 2954 /* 2955 * Because tail pages are not marked as "used", set it. We're under 2956 * pgdat->lru_lock and migration entries setup in all page mappings. 2957 */ 2958 void mem_cgroup_split_huge_fixup(struct page *head) 2959 { 2960 int i; 2961 2962 if (mem_cgroup_disabled()) 2963 return; 2964 2965 for (i = 1; i < HPAGE_PMD_NR; i++) 2966 head[i].mem_cgroup = head->mem_cgroup; 2967 2968 __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR); 2969 } 2970 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 2971 2972 #ifdef CONFIG_MEMCG_SWAP 2973 /** 2974 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 2975 * @entry: swap entry to be moved 2976 * @from: mem_cgroup which the entry is moved from 2977 * @to: mem_cgroup which the entry is moved to 2978 * 2979 * It succeeds only when the swap_cgroup's record for this entry is the same 2980 * as the mem_cgroup's id of @from. 2981 * 2982 * Returns 0 on success, -EINVAL on failure. 2983 * 2984 * The caller must have charged to @to, IOW, called page_counter_charge() about 2985 * both res and memsw, and called css_get(). 2986 */ 2987 static int mem_cgroup_move_swap_account(swp_entry_t entry, 2988 struct mem_cgroup *from, struct mem_cgroup *to) 2989 { 2990 unsigned short old_id, new_id; 2991 2992 old_id = mem_cgroup_id(from); 2993 new_id = mem_cgroup_id(to); 2994 2995 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 2996 mod_memcg_state(from, MEMCG_SWAP, -1); 2997 mod_memcg_state(to, MEMCG_SWAP, 1); 2998 return 0; 2999 } 3000 return -EINVAL; 3001 } 3002 #else 3003 static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 3004 struct mem_cgroup *from, struct mem_cgroup *to) 3005 { 3006 return -EINVAL; 3007 } 3008 #endif 3009 3010 static DEFINE_MUTEX(memcg_max_mutex); 3011 3012 static int mem_cgroup_resize_max(struct mem_cgroup *memcg, 3013 unsigned long max, bool memsw) 3014 { 3015 bool enlarge = false; 3016 bool drained = false; 3017 int ret; 3018 bool limits_invariant; 3019 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory; 3020 3021 do { 3022 if (signal_pending(current)) { 3023 ret = -EINTR; 3024 break; 3025 } 3026 3027 mutex_lock(&memcg_max_mutex); 3028 /* 3029 * Make sure that the new limit (memsw or memory limit) doesn't 3030 * break our basic invariant rule memory.max <= memsw.max. 3031 */ 3032 limits_invariant = memsw ? max >= memcg->memory.max : 3033 max <= memcg->memsw.max; 3034 if (!limits_invariant) { 3035 mutex_unlock(&memcg_max_mutex); 3036 ret = -EINVAL; 3037 break; 3038 } 3039 if (max > counter->max) 3040 enlarge = true; 3041 ret = page_counter_set_max(counter, max); 3042 mutex_unlock(&memcg_max_mutex); 3043 3044 if (!ret) 3045 break; 3046 3047 if (!drained) { 3048 drain_all_stock(memcg); 3049 drained = true; 3050 continue; 3051 } 3052 3053 if (!try_to_free_mem_cgroup_pages(memcg, 1, 3054 GFP_KERNEL, !memsw)) { 3055 ret = -EBUSY; 3056 break; 3057 } 3058 } while (true); 3059 3060 if (!ret && enlarge) 3061 memcg_oom_recover(memcg); 3062 3063 return ret; 3064 } 3065 3066 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 3067 gfp_t gfp_mask, 3068 unsigned long *total_scanned) 3069 { 3070 unsigned long nr_reclaimed = 0; 3071 struct mem_cgroup_per_node *mz, *next_mz = NULL; 3072 unsigned long reclaimed; 3073 int loop = 0; 3074 struct mem_cgroup_tree_per_node *mctz; 3075 unsigned long excess; 3076 unsigned long nr_scanned; 3077 3078 if (order > 0) 3079 return 0; 3080 3081 mctz = soft_limit_tree_node(pgdat->node_id); 3082 3083 /* 3084 * Do not even bother to check the largest node if the root 3085 * is empty. Do it lockless to prevent lock bouncing. Races 3086 * are acceptable as soft limit is best effort anyway. 3087 */ 3088 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root)) 3089 return 0; 3090 3091 /* 3092 * This loop can run a while, specially if mem_cgroup's continuously 3093 * keep exceeding their soft limit and putting the system under 3094 * pressure 3095 */ 3096 do { 3097 if (next_mz) 3098 mz = next_mz; 3099 else 3100 mz = mem_cgroup_largest_soft_limit_node(mctz); 3101 if (!mz) 3102 break; 3103 3104 nr_scanned = 0; 3105 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat, 3106 gfp_mask, &nr_scanned); 3107 nr_reclaimed += reclaimed; 3108 *total_scanned += nr_scanned; 3109 spin_lock_irq(&mctz->lock); 3110 __mem_cgroup_remove_exceeded(mz, mctz); 3111 3112 /* 3113 * If we failed to reclaim anything from this memory cgroup 3114 * it is time to move on to the next cgroup 3115 */ 3116 next_mz = NULL; 3117 if (!reclaimed) 3118 next_mz = __mem_cgroup_largest_soft_limit_node(mctz); 3119 3120 excess = soft_limit_excess(mz->memcg); 3121 /* 3122 * One school of thought says that we should not add 3123 * back the node to the tree if reclaim returns 0. 3124 * But our reclaim could return 0, simply because due 3125 * to priority we are exposing a smaller subset of 3126 * memory to reclaim from. Consider this as a longer 3127 * term TODO. 3128 */ 3129 /* If excess == 0, no tree ops */ 3130 __mem_cgroup_insert_exceeded(mz, mctz, excess); 3131 spin_unlock_irq(&mctz->lock); 3132 css_put(&mz->memcg->css); 3133 loop++; 3134 /* 3135 * Could not reclaim anything and there are no more 3136 * mem cgroups to try or we seem to be looping without 3137 * reclaiming anything. 3138 */ 3139 if (!nr_reclaimed && 3140 (next_mz == NULL || 3141 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 3142 break; 3143 } while (!nr_reclaimed); 3144 if (next_mz) 3145 css_put(&next_mz->memcg->css); 3146 return nr_reclaimed; 3147 } 3148 3149 /* 3150 * Test whether @memcg has children, dead or alive. Note that this 3151 * function doesn't care whether @memcg has use_hierarchy enabled and 3152 * returns %true if there are child csses according to the cgroup 3153 * hierarchy. Testing use_hierarchy is the caller's responsiblity. 3154 */ 3155 static inline bool memcg_has_children(struct mem_cgroup *memcg) 3156 { 3157 bool ret; 3158 3159 rcu_read_lock(); 3160 ret = css_next_child(NULL, &memcg->css); 3161 rcu_read_unlock(); 3162 return ret; 3163 } 3164 3165 /* 3166 * Reclaims as many pages from the given memcg as possible. 3167 * 3168 * Caller is responsible for holding css reference for memcg. 3169 */ 3170 static int mem_cgroup_force_empty(struct mem_cgroup *memcg) 3171 { 3172 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 3173 3174 /* we call try-to-free pages for make this cgroup empty */ 3175 lru_add_drain_all(); 3176 3177 drain_all_stock(memcg); 3178 3179 /* try to free all pages in this cgroup */ 3180 while (nr_retries && page_counter_read(&memcg->memory)) { 3181 int progress; 3182 3183 if (signal_pending(current)) 3184 return -EINTR; 3185 3186 progress = try_to_free_mem_cgroup_pages(memcg, 1, 3187 GFP_KERNEL, true); 3188 if (!progress) { 3189 nr_retries--; 3190 /* maybe some writeback is necessary */ 3191 congestion_wait(BLK_RW_ASYNC, HZ/10); 3192 } 3193 3194 } 3195 3196 return 0; 3197 } 3198 3199 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of, 3200 char *buf, size_t nbytes, 3201 loff_t off) 3202 { 3203 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3204 3205 if (mem_cgroup_is_root(memcg)) 3206 return -EINVAL; 3207 return mem_cgroup_force_empty(memcg) ?: nbytes; 3208 } 3209 3210 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, 3211 struct cftype *cft) 3212 { 3213 return mem_cgroup_from_css(css)->use_hierarchy; 3214 } 3215 3216 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, 3217 struct cftype *cft, u64 val) 3218 { 3219 int retval = 0; 3220 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3221 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent); 3222 3223 if (memcg->use_hierarchy == val) 3224 return 0; 3225 3226 /* 3227 * If parent's use_hierarchy is set, we can't make any modifications 3228 * in the child subtrees. If it is unset, then the change can 3229 * occur, provided the current cgroup has no children. 3230 * 3231 * For the root cgroup, parent_mem is NULL, we allow value to be 3232 * set if there are no children. 3233 */ 3234 if ((!parent_memcg || !parent_memcg->use_hierarchy) && 3235 (val == 1 || val == 0)) { 3236 if (!memcg_has_children(memcg)) 3237 memcg->use_hierarchy = val; 3238 else 3239 retval = -EBUSY; 3240 } else 3241 retval = -EINVAL; 3242 3243 return retval; 3244 } 3245 3246 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 3247 { 3248 unsigned long val; 3249 3250 if (mem_cgroup_is_root(memcg)) { 3251 val = memcg_page_state(memcg, MEMCG_CACHE) + 3252 memcg_page_state(memcg, MEMCG_RSS); 3253 if (swap) 3254 val += memcg_page_state(memcg, MEMCG_SWAP); 3255 } else { 3256 if (!swap) 3257 val = page_counter_read(&memcg->memory); 3258 else 3259 val = page_counter_read(&memcg->memsw); 3260 } 3261 return val; 3262 } 3263 3264 enum { 3265 RES_USAGE, 3266 RES_LIMIT, 3267 RES_MAX_USAGE, 3268 RES_FAILCNT, 3269 RES_SOFT_LIMIT, 3270 }; 3271 3272 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css, 3273 struct cftype *cft) 3274 { 3275 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3276 struct page_counter *counter; 3277 3278 switch (MEMFILE_TYPE(cft->private)) { 3279 case _MEM: 3280 counter = &memcg->memory; 3281 break; 3282 case _MEMSWAP: 3283 counter = &memcg->memsw; 3284 break; 3285 case _KMEM: 3286 counter = &memcg->kmem; 3287 break; 3288 case _TCP: 3289 counter = &memcg->tcpmem; 3290 break; 3291 default: 3292 BUG(); 3293 } 3294 3295 switch (MEMFILE_ATTR(cft->private)) { 3296 case RES_USAGE: 3297 if (counter == &memcg->memory) 3298 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE; 3299 if (counter == &memcg->memsw) 3300 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE; 3301 return (u64)page_counter_read(counter) * PAGE_SIZE; 3302 case RES_LIMIT: 3303 return (u64)counter->max * PAGE_SIZE; 3304 case RES_MAX_USAGE: 3305 return (u64)counter->watermark * PAGE_SIZE; 3306 case RES_FAILCNT: 3307 return counter->failcnt; 3308 case RES_SOFT_LIMIT: 3309 return (u64)memcg->soft_limit * PAGE_SIZE; 3310 default: 3311 BUG(); 3312 } 3313 } 3314 3315 static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg) 3316 { 3317 unsigned long stat[MEMCG_NR_STAT] = {0}; 3318 struct mem_cgroup *mi; 3319 int node, cpu, i; 3320 3321 for_each_online_cpu(cpu) 3322 for (i = 0; i < MEMCG_NR_STAT; i++) 3323 stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu); 3324 3325 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 3326 for (i = 0; i < MEMCG_NR_STAT; i++) 3327 atomic_long_add(stat[i], &mi->vmstats[i]); 3328 3329 for_each_node(node) { 3330 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node]; 3331 struct mem_cgroup_per_node *pi; 3332 3333 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) 3334 stat[i] = 0; 3335 3336 for_each_online_cpu(cpu) 3337 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) 3338 stat[i] += per_cpu( 3339 pn->lruvec_stat_cpu->count[i], cpu); 3340 3341 for (pi = pn; pi; pi = parent_nodeinfo(pi, node)) 3342 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) 3343 atomic_long_add(stat[i], &pi->lruvec_stat[i]); 3344 } 3345 } 3346 3347 static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg) 3348 { 3349 unsigned long events[NR_VM_EVENT_ITEMS]; 3350 struct mem_cgroup *mi; 3351 int cpu, i; 3352 3353 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) 3354 events[i] = 0; 3355 3356 for_each_online_cpu(cpu) 3357 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) 3358 events[i] += per_cpu(memcg->vmstats_percpu->events[i], 3359 cpu); 3360 3361 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) 3362 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) 3363 atomic_long_add(events[i], &mi->vmevents[i]); 3364 } 3365 3366 #ifdef CONFIG_MEMCG_KMEM 3367 static int memcg_online_kmem(struct mem_cgroup *memcg) 3368 { 3369 int memcg_id; 3370 3371 if (cgroup_memory_nokmem) 3372 return 0; 3373 3374 BUG_ON(memcg->kmemcg_id >= 0); 3375 BUG_ON(memcg->kmem_state); 3376 3377 memcg_id = memcg_alloc_cache_id(); 3378 if (memcg_id < 0) 3379 return memcg_id; 3380 3381 static_branch_inc(&memcg_kmem_enabled_key); 3382 /* 3383 * A memory cgroup is considered kmem-online as soon as it gets 3384 * kmemcg_id. Setting the id after enabling static branching will 3385 * guarantee no one starts accounting before all call sites are 3386 * patched. 3387 */ 3388 memcg->kmemcg_id = memcg_id; 3389 memcg->kmem_state = KMEM_ONLINE; 3390 INIT_LIST_HEAD(&memcg->kmem_caches); 3391 3392 return 0; 3393 } 3394 3395 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3396 { 3397 struct cgroup_subsys_state *css; 3398 struct mem_cgroup *parent, *child; 3399 int kmemcg_id; 3400 3401 if (memcg->kmem_state != KMEM_ONLINE) 3402 return; 3403 /* 3404 * Clear the online state before clearing memcg_caches array 3405 * entries. The slab_mutex in memcg_deactivate_kmem_caches() 3406 * guarantees that no cache will be created for this cgroup 3407 * after we are done (see memcg_create_kmem_cache()). 3408 */ 3409 memcg->kmem_state = KMEM_ALLOCATED; 3410 3411 parent = parent_mem_cgroup(memcg); 3412 if (!parent) 3413 parent = root_mem_cgroup; 3414 3415 /* 3416 * Deactivate and reparent kmem_caches. 3417 */ 3418 memcg_deactivate_kmem_caches(memcg, parent); 3419 3420 kmemcg_id = memcg->kmemcg_id; 3421 BUG_ON(kmemcg_id < 0); 3422 3423 /* 3424 * Change kmemcg_id of this cgroup and all its descendants to the 3425 * parent's id, and then move all entries from this cgroup's list_lrus 3426 * to ones of the parent. After we have finished, all list_lrus 3427 * corresponding to this cgroup are guaranteed to remain empty. The 3428 * ordering is imposed by list_lru_node->lock taken by 3429 * memcg_drain_all_list_lrus(). 3430 */ 3431 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */ 3432 css_for_each_descendant_pre(css, &memcg->css) { 3433 child = mem_cgroup_from_css(css); 3434 BUG_ON(child->kmemcg_id != kmemcg_id); 3435 child->kmemcg_id = parent->kmemcg_id; 3436 if (!memcg->use_hierarchy) 3437 break; 3438 } 3439 rcu_read_unlock(); 3440 3441 memcg_drain_all_list_lrus(kmemcg_id, parent); 3442 3443 memcg_free_cache_id(kmemcg_id); 3444 } 3445 3446 static void memcg_free_kmem(struct mem_cgroup *memcg) 3447 { 3448 /* css_alloc() failed, offlining didn't happen */ 3449 if (unlikely(memcg->kmem_state == KMEM_ONLINE)) 3450 memcg_offline_kmem(memcg); 3451 3452 if (memcg->kmem_state == KMEM_ALLOCATED) { 3453 WARN_ON(!list_empty(&memcg->kmem_caches)); 3454 static_branch_dec(&memcg_kmem_enabled_key); 3455 } 3456 } 3457 #else 3458 static int memcg_online_kmem(struct mem_cgroup *memcg) 3459 { 3460 return 0; 3461 } 3462 static void memcg_offline_kmem(struct mem_cgroup *memcg) 3463 { 3464 } 3465 static void memcg_free_kmem(struct mem_cgroup *memcg) 3466 { 3467 } 3468 #endif /* CONFIG_MEMCG_KMEM */ 3469 3470 static int memcg_update_kmem_max(struct mem_cgroup *memcg, 3471 unsigned long max) 3472 { 3473 int ret; 3474 3475 mutex_lock(&memcg_max_mutex); 3476 ret = page_counter_set_max(&memcg->kmem, max); 3477 mutex_unlock(&memcg_max_mutex); 3478 return ret; 3479 } 3480 3481 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max) 3482 { 3483 int ret; 3484 3485 mutex_lock(&memcg_max_mutex); 3486 3487 ret = page_counter_set_max(&memcg->tcpmem, max); 3488 if (ret) 3489 goto out; 3490 3491 if (!memcg->tcpmem_active) { 3492 /* 3493 * The active flag needs to be written after the static_key 3494 * update. This is what guarantees that the socket activation 3495 * function is the last one to run. See mem_cgroup_sk_alloc() 3496 * for details, and note that we don't mark any socket as 3497 * belonging to this memcg until that flag is up. 3498 * 3499 * We need to do this, because static_keys will span multiple 3500 * sites, but we can't control their order. If we mark a socket 3501 * as accounted, but the accounting functions are not patched in 3502 * yet, we'll lose accounting. 3503 * 3504 * We never race with the readers in mem_cgroup_sk_alloc(), 3505 * because when this value change, the code to process it is not 3506 * patched in yet. 3507 */ 3508 static_branch_inc(&memcg_sockets_enabled_key); 3509 memcg->tcpmem_active = true; 3510 } 3511 out: 3512 mutex_unlock(&memcg_max_mutex); 3513 return ret; 3514 } 3515 3516 /* 3517 * The user of this function is... 3518 * RES_LIMIT. 3519 */ 3520 static ssize_t mem_cgroup_write(struct kernfs_open_file *of, 3521 char *buf, size_t nbytes, loff_t off) 3522 { 3523 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3524 unsigned long nr_pages; 3525 int ret; 3526 3527 buf = strstrip(buf); 3528 ret = page_counter_memparse(buf, "-1", &nr_pages); 3529 if (ret) 3530 return ret; 3531 3532 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3533 case RES_LIMIT: 3534 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 3535 ret = -EINVAL; 3536 break; 3537 } 3538 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3539 case _MEM: 3540 ret = mem_cgroup_resize_max(memcg, nr_pages, false); 3541 break; 3542 case _MEMSWAP: 3543 ret = mem_cgroup_resize_max(memcg, nr_pages, true); 3544 break; 3545 case _KMEM: 3546 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. " 3547 "Please report your usecase to linux-mm@kvack.org if you " 3548 "depend on this functionality.\n"); 3549 ret = memcg_update_kmem_max(memcg, nr_pages); 3550 break; 3551 case _TCP: 3552 ret = memcg_update_tcp_max(memcg, nr_pages); 3553 break; 3554 } 3555 break; 3556 case RES_SOFT_LIMIT: 3557 memcg->soft_limit = nr_pages; 3558 ret = 0; 3559 break; 3560 } 3561 return ret ?: nbytes; 3562 } 3563 3564 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf, 3565 size_t nbytes, loff_t off) 3566 { 3567 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 3568 struct page_counter *counter; 3569 3570 switch (MEMFILE_TYPE(of_cft(of)->private)) { 3571 case _MEM: 3572 counter = &memcg->memory; 3573 break; 3574 case _MEMSWAP: 3575 counter = &memcg->memsw; 3576 break; 3577 case _KMEM: 3578 counter = &memcg->kmem; 3579 break; 3580 case _TCP: 3581 counter = &memcg->tcpmem; 3582 break; 3583 default: 3584 BUG(); 3585 } 3586 3587 switch (MEMFILE_ATTR(of_cft(of)->private)) { 3588 case RES_MAX_USAGE: 3589 page_counter_reset_watermark(counter); 3590 break; 3591 case RES_FAILCNT: 3592 counter->failcnt = 0; 3593 break; 3594 default: 3595 BUG(); 3596 } 3597 3598 return nbytes; 3599 } 3600 3601 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, 3602 struct cftype *cft) 3603 { 3604 return mem_cgroup_from_css(css)->move_charge_at_immigrate; 3605 } 3606 3607 #ifdef CONFIG_MMU 3608 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3609 struct cftype *cft, u64 val) 3610 { 3611 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3612 3613 if (val & ~MOVE_MASK) 3614 return -EINVAL; 3615 3616 /* 3617 * No kind of locking is needed in here, because ->can_attach() will 3618 * check this value once in the beginning of the process, and then carry 3619 * on with stale data. This means that changes to this value will only 3620 * affect task migrations starting after the change. 3621 */ 3622 memcg->move_charge_at_immigrate = val; 3623 return 0; 3624 } 3625 #else 3626 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 3627 struct cftype *cft, u64 val) 3628 { 3629 return -ENOSYS; 3630 } 3631 #endif 3632 3633 #ifdef CONFIG_NUMA 3634 3635 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE)) 3636 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON)) 3637 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1) 3638 3639 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 3640 int nid, unsigned int lru_mask) 3641 { 3642 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid)); 3643 unsigned long nr = 0; 3644 enum lru_list lru; 3645 3646 VM_BUG_ON((unsigned)nid >= nr_node_ids); 3647 3648 for_each_lru(lru) { 3649 if (!(BIT(lru) & lru_mask)) 3650 continue; 3651 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru); 3652 } 3653 return nr; 3654 } 3655 3656 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 3657 unsigned int lru_mask) 3658 { 3659 unsigned long nr = 0; 3660 enum lru_list lru; 3661 3662 for_each_lru(lru) { 3663 if (!(BIT(lru) & lru_mask)) 3664 continue; 3665 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru); 3666 } 3667 return nr; 3668 } 3669 3670 static int memcg_numa_stat_show(struct seq_file *m, void *v) 3671 { 3672 struct numa_stat { 3673 const char *name; 3674 unsigned int lru_mask; 3675 }; 3676 3677 static const struct numa_stat stats[] = { 3678 { "total", LRU_ALL }, 3679 { "file", LRU_ALL_FILE }, 3680 { "anon", LRU_ALL_ANON }, 3681 { "unevictable", BIT(LRU_UNEVICTABLE) }, 3682 }; 3683 const struct numa_stat *stat; 3684 int nid; 3685 unsigned long nr; 3686 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 3687 3688 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3689 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask); 3690 seq_printf(m, "%s=%lu", stat->name, nr); 3691 for_each_node_state(nid, N_MEMORY) { 3692 nr = mem_cgroup_node_nr_lru_pages(memcg, nid, 3693 stat->lru_mask); 3694 seq_printf(m, " N%d=%lu", nid, nr); 3695 } 3696 seq_putc(m, '\n'); 3697 } 3698 3699 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 3700 struct mem_cgroup *iter; 3701 3702 nr = 0; 3703 for_each_mem_cgroup_tree(iter, memcg) 3704 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask); 3705 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr); 3706 for_each_node_state(nid, N_MEMORY) { 3707 nr = 0; 3708 for_each_mem_cgroup_tree(iter, memcg) 3709 nr += mem_cgroup_node_nr_lru_pages( 3710 iter, nid, stat->lru_mask); 3711 seq_printf(m, " N%d=%lu", nid, nr); 3712 } 3713 seq_putc(m, '\n'); 3714 } 3715 3716 return 0; 3717 } 3718 #endif /* CONFIG_NUMA */ 3719 3720 static const unsigned int memcg1_stats[] = { 3721 MEMCG_CACHE, 3722 MEMCG_RSS, 3723 MEMCG_RSS_HUGE, 3724 NR_SHMEM, 3725 NR_FILE_MAPPED, 3726 NR_FILE_DIRTY, 3727 NR_WRITEBACK, 3728 MEMCG_SWAP, 3729 }; 3730 3731 static const char *const memcg1_stat_names[] = { 3732 "cache", 3733 "rss", 3734 "rss_huge", 3735 "shmem", 3736 "mapped_file", 3737 "dirty", 3738 "writeback", 3739 "swap", 3740 }; 3741 3742 /* Universal VM events cgroup1 shows, original sort order */ 3743 static const unsigned int memcg1_events[] = { 3744 PGPGIN, 3745 PGPGOUT, 3746 PGFAULT, 3747 PGMAJFAULT, 3748 }; 3749 3750 static int memcg_stat_show(struct seq_file *m, void *v) 3751 { 3752 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 3753 unsigned long memory, memsw; 3754 struct mem_cgroup *mi; 3755 unsigned int i; 3756 3757 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats)); 3758 3759 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 3760 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 3761 continue; 3762 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], 3763 memcg_page_state_local(memcg, memcg1_stats[i]) * 3764 PAGE_SIZE); 3765 } 3766 3767 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 3768 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]), 3769 memcg_events_local(memcg, memcg1_events[i])); 3770 3771 for (i = 0; i < NR_LRU_LISTS; i++) 3772 seq_printf(m, "%s %lu\n", lru_list_name(i), 3773 memcg_page_state_local(memcg, NR_LRU_BASE + i) * 3774 PAGE_SIZE); 3775 3776 /* Hierarchical information */ 3777 memory = memsw = PAGE_COUNTER_MAX; 3778 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) { 3779 memory = min(memory, mi->memory.max); 3780 memsw = min(memsw, mi->memsw.max); 3781 } 3782 seq_printf(m, "hierarchical_memory_limit %llu\n", 3783 (u64)memory * PAGE_SIZE); 3784 if (do_memsw_account()) 3785 seq_printf(m, "hierarchical_memsw_limit %llu\n", 3786 (u64)memsw * PAGE_SIZE); 3787 3788 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) { 3789 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account()) 3790 continue; 3791 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], 3792 (u64)memcg_page_state(memcg, memcg1_stats[i]) * 3793 PAGE_SIZE); 3794 } 3795 3796 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) 3797 seq_printf(m, "total_%s %llu\n", 3798 vm_event_name(memcg1_events[i]), 3799 (u64)memcg_events(memcg, memcg1_events[i])); 3800 3801 for (i = 0; i < NR_LRU_LISTS; i++) 3802 seq_printf(m, "total_%s %llu\n", lru_list_name(i), 3803 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) * 3804 PAGE_SIZE); 3805 3806 #ifdef CONFIG_DEBUG_VM 3807 { 3808 pg_data_t *pgdat; 3809 struct mem_cgroup_per_node *mz; 3810 struct zone_reclaim_stat *rstat; 3811 unsigned long recent_rotated[2] = {0, 0}; 3812 unsigned long recent_scanned[2] = {0, 0}; 3813 3814 for_each_online_pgdat(pgdat) { 3815 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 3816 rstat = &mz->lruvec.reclaim_stat; 3817 3818 recent_rotated[0] += rstat->recent_rotated[0]; 3819 recent_rotated[1] += rstat->recent_rotated[1]; 3820 recent_scanned[0] += rstat->recent_scanned[0]; 3821 recent_scanned[1] += rstat->recent_scanned[1]; 3822 } 3823 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]); 3824 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]); 3825 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]); 3826 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]); 3827 } 3828 #endif 3829 3830 return 0; 3831 } 3832 3833 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, 3834 struct cftype *cft) 3835 { 3836 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3837 3838 return mem_cgroup_swappiness(memcg); 3839 } 3840 3841 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, 3842 struct cftype *cft, u64 val) 3843 { 3844 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 3845 3846 if (val > 100) 3847 return -EINVAL; 3848 3849 if (css->parent) 3850 memcg->swappiness = val; 3851 else 3852 vm_swappiness = val; 3853 3854 return 0; 3855 } 3856 3857 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 3858 { 3859 struct mem_cgroup_threshold_ary *t; 3860 unsigned long usage; 3861 int i; 3862 3863 rcu_read_lock(); 3864 if (!swap) 3865 t = rcu_dereference(memcg->thresholds.primary); 3866 else 3867 t = rcu_dereference(memcg->memsw_thresholds.primary); 3868 3869 if (!t) 3870 goto unlock; 3871 3872 usage = mem_cgroup_usage(memcg, swap); 3873 3874 /* 3875 * current_threshold points to threshold just below or equal to usage. 3876 * If it's not true, a threshold was crossed after last 3877 * call of __mem_cgroup_threshold(). 3878 */ 3879 i = t->current_threshold; 3880 3881 /* 3882 * Iterate backward over array of thresholds starting from 3883 * current_threshold and check if a threshold is crossed. 3884 * If none of thresholds below usage is crossed, we read 3885 * only one element of the array here. 3886 */ 3887 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 3888 eventfd_signal(t->entries[i].eventfd, 1); 3889 3890 /* i = current_threshold + 1 */ 3891 i++; 3892 3893 /* 3894 * Iterate forward over array of thresholds starting from 3895 * current_threshold+1 and check if a threshold is crossed. 3896 * If none of thresholds above usage is crossed, we read 3897 * only one element of the array here. 3898 */ 3899 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 3900 eventfd_signal(t->entries[i].eventfd, 1); 3901 3902 /* Update current_threshold */ 3903 t->current_threshold = i - 1; 3904 unlock: 3905 rcu_read_unlock(); 3906 } 3907 3908 static void mem_cgroup_threshold(struct mem_cgroup *memcg) 3909 { 3910 while (memcg) { 3911 __mem_cgroup_threshold(memcg, false); 3912 if (do_memsw_account()) 3913 __mem_cgroup_threshold(memcg, true); 3914 3915 memcg = parent_mem_cgroup(memcg); 3916 } 3917 } 3918 3919 static int compare_thresholds(const void *a, const void *b) 3920 { 3921 const struct mem_cgroup_threshold *_a = a; 3922 const struct mem_cgroup_threshold *_b = b; 3923 3924 if (_a->threshold > _b->threshold) 3925 return 1; 3926 3927 if (_a->threshold < _b->threshold) 3928 return -1; 3929 3930 return 0; 3931 } 3932 3933 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 3934 { 3935 struct mem_cgroup_eventfd_list *ev; 3936 3937 spin_lock(&memcg_oom_lock); 3938 3939 list_for_each_entry(ev, &memcg->oom_notify, list) 3940 eventfd_signal(ev->eventfd, 1); 3941 3942 spin_unlock(&memcg_oom_lock); 3943 return 0; 3944 } 3945 3946 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 3947 { 3948 struct mem_cgroup *iter; 3949 3950 for_each_mem_cgroup_tree(iter, memcg) 3951 mem_cgroup_oom_notify_cb(iter); 3952 } 3953 3954 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 3955 struct eventfd_ctx *eventfd, const char *args, enum res_type type) 3956 { 3957 struct mem_cgroup_thresholds *thresholds; 3958 struct mem_cgroup_threshold_ary *new; 3959 unsigned long threshold; 3960 unsigned long usage; 3961 int i, size, ret; 3962 3963 ret = page_counter_memparse(args, "-1", &threshold); 3964 if (ret) 3965 return ret; 3966 3967 mutex_lock(&memcg->thresholds_lock); 3968 3969 if (type == _MEM) { 3970 thresholds = &memcg->thresholds; 3971 usage = mem_cgroup_usage(memcg, false); 3972 } else if (type == _MEMSWAP) { 3973 thresholds = &memcg->memsw_thresholds; 3974 usage = mem_cgroup_usage(memcg, true); 3975 } else 3976 BUG(); 3977 3978 /* Check if a threshold crossed before adding a new one */ 3979 if (thresholds->primary) 3980 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 3981 3982 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 3983 3984 /* Allocate memory for new array of thresholds */ 3985 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL); 3986 if (!new) { 3987 ret = -ENOMEM; 3988 goto unlock; 3989 } 3990 new->size = size; 3991 3992 /* Copy thresholds (if any) to new array */ 3993 if (thresholds->primary) { 3994 memcpy(new->entries, thresholds->primary->entries, (size - 1) * 3995 sizeof(struct mem_cgroup_threshold)); 3996 } 3997 3998 /* Add new threshold */ 3999 new->entries[size - 1].eventfd = eventfd; 4000 new->entries[size - 1].threshold = threshold; 4001 4002 /* Sort thresholds. Registering of new threshold isn't time-critical */ 4003 sort(new->entries, size, sizeof(struct mem_cgroup_threshold), 4004 compare_thresholds, NULL); 4005 4006 /* Find current threshold */ 4007 new->current_threshold = -1; 4008 for (i = 0; i < size; i++) { 4009 if (new->entries[i].threshold <= usage) { 4010 /* 4011 * new->current_threshold will not be used until 4012 * rcu_assign_pointer(), so it's safe to increment 4013 * it here. 4014 */ 4015 ++new->current_threshold; 4016 } else 4017 break; 4018 } 4019 4020 /* Free old spare buffer and save old primary buffer as spare */ 4021 kfree(thresholds->spare); 4022 thresholds->spare = thresholds->primary; 4023 4024 rcu_assign_pointer(thresholds->primary, new); 4025 4026 /* To be sure that nobody uses thresholds */ 4027 synchronize_rcu(); 4028 4029 unlock: 4030 mutex_unlock(&memcg->thresholds_lock); 4031 4032 return ret; 4033 } 4034 4035 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 4036 struct eventfd_ctx *eventfd, const char *args) 4037 { 4038 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM); 4039 } 4040 4041 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg, 4042 struct eventfd_ctx *eventfd, const char *args) 4043 { 4044 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP); 4045 } 4046 4047 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4048 struct eventfd_ctx *eventfd, enum res_type type) 4049 { 4050 struct mem_cgroup_thresholds *thresholds; 4051 struct mem_cgroup_threshold_ary *new; 4052 unsigned long usage; 4053 int i, j, size, entries; 4054 4055 mutex_lock(&memcg->thresholds_lock); 4056 4057 if (type == _MEM) { 4058 thresholds = &memcg->thresholds; 4059 usage = mem_cgroup_usage(memcg, false); 4060 } else if (type == _MEMSWAP) { 4061 thresholds = &memcg->memsw_thresholds; 4062 usage = mem_cgroup_usage(memcg, true); 4063 } else 4064 BUG(); 4065 4066 if (!thresholds->primary) 4067 goto unlock; 4068 4069 /* Check if a threshold crossed before removing */ 4070 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 4071 4072 /* Calculate new number of threshold */ 4073 size = entries = 0; 4074 for (i = 0; i < thresholds->primary->size; i++) { 4075 if (thresholds->primary->entries[i].eventfd != eventfd) 4076 size++; 4077 else 4078 entries++; 4079 } 4080 4081 new = thresholds->spare; 4082 4083 /* If no items related to eventfd have been cleared, nothing to do */ 4084 if (!entries) 4085 goto unlock; 4086 4087 /* Set thresholds array to NULL if we don't have thresholds */ 4088 if (!size) { 4089 kfree(new); 4090 new = NULL; 4091 goto swap_buffers; 4092 } 4093 4094 new->size = size; 4095 4096 /* Copy thresholds and find current threshold */ 4097 new->current_threshold = -1; 4098 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 4099 if (thresholds->primary->entries[i].eventfd == eventfd) 4100 continue; 4101 4102 new->entries[j] = thresholds->primary->entries[i]; 4103 if (new->entries[j].threshold <= usage) { 4104 /* 4105 * new->current_threshold will not be used 4106 * until rcu_assign_pointer(), so it's safe to increment 4107 * it here. 4108 */ 4109 ++new->current_threshold; 4110 } 4111 j++; 4112 } 4113 4114 swap_buffers: 4115 /* Swap primary and spare array */ 4116 thresholds->spare = thresholds->primary; 4117 4118 rcu_assign_pointer(thresholds->primary, new); 4119 4120 /* To be sure that nobody uses thresholds */ 4121 synchronize_rcu(); 4122 4123 /* If all events are unregistered, free the spare array */ 4124 if (!new) { 4125 kfree(thresholds->spare); 4126 thresholds->spare = NULL; 4127 } 4128 unlock: 4129 mutex_unlock(&memcg->thresholds_lock); 4130 } 4131 4132 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4133 struct eventfd_ctx *eventfd) 4134 { 4135 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM); 4136 } 4137 4138 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 4139 struct eventfd_ctx *eventfd) 4140 { 4141 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP); 4142 } 4143 4144 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg, 4145 struct eventfd_ctx *eventfd, const char *args) 4146 { 4147 struct mem_cgroup_eventfd_list *event; 4148 4149 event = kmalloc(sizeof(*event), GFP_KERNEL); 4150 if (!event) 4151 return -ENOMEM; 4152 4153 spin_lock(&memcg_oom_lock); 4154 4155 event->eventfd = eventfd; 4156 list_add(&event->list, &memcg->oom_notify); 4157 4158 /* already in OOM ? */ 4159 if (memcg->under_oom) 4160 eventfd_signal(eventfd, 1); 4161 spin_unlock(&memcg_oom_lock); 4162 4163 return 0; 4164 } 4165 4166 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg, 4167 struct eventfd_ctx *eventfd) 4168 { 4169 struct mem_cgroup_eventfd_list *ev, *tmp; 4170 4171 spin_lock(&memcg_oom_lock); 4172 4173 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 4174 if (ev->eventfd == eventfd) { 4175 list_del(&ev->list); 4176 kfree(ev); 4177 } 4178 } 4179 4180 spin_unlock(&memcg_oom_lock); 4181 } 4182 4183 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v) 4184 { 4185 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf); 4186 4187 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable); 4188 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom); 4189 seq_printf(sf, "oom_kill %lu\n", 4190 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL])); 4191 return 0; 4192 } 4193 4194 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, 4195 struct cftype *cft, u64 val) 4196 { 4197 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4198 4199 /* cannot set to root cgroup and only 0 and 1 are allowed */ 4200 if (!css->parent || !((val == 0) || (val == 1))) 4201 return -EINVAL; 4202 4203 memcg->oom_kill_disable = val; 4204 if (!val) 4205 memcg_oom_recover(memcg); 4206 4207 return 0; 4208 } 4209 4210 #ifdef CONFIG_CGROUP_WRITEBACK 4211 4212 #include <trace/events/writeback.h> 4213 4214 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 4215 { 4216 return wb_domain_init(&memcg->cgwb_domain, gfp); 4217 } 4218 4219 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 4220 { 4221 wb_domain_exit(&memcg->cgwb_domain); 4222 } 4223 4224 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 4225 { 4226 wb_domain_size_changed(&memcg->cgwb_domain); 4227 } 4228 4229 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 4230 { 4231 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4232 4233 if (!memcg->css.parent) 4234 return NULL; 4235 4236 return &memcg->cgwb_domain; 4237 } 4238 4239 /* 4240 * idx can be of type enum memcg_stat_item or node_stat_item. 4241 * Keep in sync with memcg_exact_page(). 4242 */ 4243 static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx) 4244 { 4245 long x = atomic_long_read(&memcg->vmstats[idx]); 4246 int cpu; 4247 4248 for_each_online_cpu(cpu) 4249 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx]; 4250 if (x < 0) 4251 x = 0; 4252 return x; 4253 } 4254 4255 /** 4256 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg 4257 * @wb: bdi_writeback in question 4258 * @pfilepages: out parameter for number of file pages 4259 * @pheadroom: out parameter for number of allocatable pages according to memcg 4260 * @pdirty: out parameter for number of dirty pages 4261 * @pwriteback: out parameter for number of pages under writeback 4262 * 4263 * Determine the numbers of file, headroom, dirty, and writeback pages in 4264 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom 4265 * is a bit more involved. 4266 * 4267 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the 4268 * headroom is calculated as the lowest headroom of itself and the 4269 * ancestors. Note that this doesn't consider the actual amount of 4270 * available memory in the system. The caller should further cap 4271 * *@pheadroom accordingly. 4272 */ 4273 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 4274 unsigned long *pheadroom, unsigned long *pdirty, 4275 unsigned long *pwriteback) 4276 { 4277 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4278 struct mem_cgroup *parent; 4279 4280 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY); 4281 4282 /* this should eventually include NR_UNSTABLE_NFS */ 4283 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK); 4284 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) + 4285 memcg_exact_page_state(memcg, NR_ACTIVE_FILE); 4286 *pheadroom = PAGE_COUNTER_MAX; 4287 4288 while ((parent = parent_mem_cgroup(memcg))) { 4289 unsigned long ceiling = min(memcg->memory.max, memcg->high); 4290 unsigned long used = page_counter_read(&memcg->memory); 4291 4292 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used)); 4293 memcg = parent; 4294 } 4295 } 4296 4297 /* 4298 * Foreign dirty flushing 4299 * 4300 * There's an inherent mismatch between memcg and writeback. The former 4301 * trackes ownership per-page while the latter per-inode. This was a 4302 * deliberate design decision because honoring per-page ownership in the 4303 * writeback path is complicated, may lead to higher CPU and IO overheads 4304 * and deemed unnecessary given that write-sharing an inode across 4305 * different cgroups isn't a common use-case. 4306 * 4307 * Combined with inode majority-writer ownership switching, this works well 4308 * enough in most cases but there are some pathological cases. For 4309 * example, let's say there are two cgroups A and B which keep writing to 4310 * different but confined parts of the same inode. B owns the inode and 4311 * A's memory is limited far below B's. A's dirty ratio can rise enough to 4312 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid 4313 * triggering background writeback. A will be slowed down without a way to 4314 * make writeback of the dirty pages happen. 4315 * 4316 * Conditions like the above can lead to a cgroup getting repatedly and 4317 * severely throttled after making some progress after each 4318 * dirty_expire_interval while the underyling IO device is almost 4319 * completely idle. 4320 * 4321 * Solving this problem completely requires matching the ownership tracking 4322 * granularities between memcg and writeback in either direction. However, 4323 * the more egregious behaviors can be avoided by simply remembering the 4324 * most recent foreign dirtying events and initiating remote flushes on 4325 * them when local writeback isn't enough to keep the memory clean enough. 4326 * 4327 * The following two functions implement such mechanism. When a foreign 4328 * page - a page whose memcg and writeback ownerships don't match - is 4329 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning 4330 * bdi_writeback on the page owning memcg. When balance_dirty_pages() 4331 * decides that the memcg needs to sleep due to high dirty ratio, it calls 4332 * mem_cgroup_flush_foreign() which queues writeback on the recorded 4333 * foreign bdi_writebacks which haven't expired. Both the numbers of 4334 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are 4335 * limited to MEMCG_CGWB_FRN_CNT. 4336 * 4337 * The mechanism only remembers IDs and doesn't hold any object references. 4338 * As being wrong occasionally doesn't matter, updates and accesses to the 4339 * records are lockless and racy. 4340 */ 4341 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page, 4342 struct bdi_writeback *wb) 4343 { 4344 struct mem_cgroup *memcg = page->mem_cgroup; 4345 struct memcg_cgwb_frn *frn; 4346 u64 now = get_jiffies_64(); 4347 u64 oldest_at = now; 4348 int oldest = -1; 4349 int i; 4350 4351 trace_track_foreign_dirty(page, wb); 4352 4353 /* 4354 * Pick the slot to use. If there is already a slot for @wb, keep 4355 * using it. If not replace the oldest one which isn't being 4356 * written out. 4357 */ 4358 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 4359 frn = &memcg->cgwb_frn[i]; 4360 if (frn->bdi_id == wb->bdi->id && 4361 frn->memcg_id == wb->memcg_css->id) 4362 break; 4363 if (time_before64(frn->at, oldest_at) && 4364 atomic_read(&frn->done.cnt) == 1) { 4365 oldest = i; 4366 oldest_at = frn->at; 4367 } 4368 } 4369 4370 if (i < MEMCG_CGWB_FRN_CNT) { 4371 /* 4372 * Re-using an existing one. Update timestamp lazily to 4373 * avoid making the cacheline hot. We want them to be 4374 * reasonably up-to-date and significantly shorter than 4375 * dirty_expire_interval as that's what expires the record. 4376 * Use the shorter of 1s and dirty_expire_interval / 8. 4377 */ 4378 unsigned long update_intv = 4379 min_t(unsigned long, HZ, 4380 msecs_to_jiffies(dirty_expire_interval * 10) / 8); 4381 4382 if (time_before64(frn->at, now - update_intv)) 4383 frn->at = now; 4384 } else if (oldest >= 0) { 4385 /* replace the oldest free one */ 4386 frn = &memcg->cgwb_frn[oldest]; 4387 frn->bdi_id = wb->bdi->id; 4388 frn->memcg_id = wb->memcg_css->id; 4389 frn->at = now; 4390 } 4391 } 4392 4393 /* issue foreign writeback flushes for recorded foreign dirtying events */ 4394 void mem_cgroup_flush_foreign(struct bdi_writeback *wb) 4395 { 4396 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css); 4397 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10); 4398 u64 now = jiffies_64; 4399 int i; 4400 4401 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) { 4402 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i]; 4403 4404 /* 4405 * If the record is older than dirty_expire_interval, 4406 * writeback on it has already started. No need to kick it 4407 * off again. Also, don't start a new one if there's 4408 * already one in flight. 4409 */ 4410 if (time_after64(frn->at, now - intv) && 4411 atomic_read(&frn->done.cnt) == 1) { 4412 frn->at = 0; 4413 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id); 4414 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0, 4415 WB_REASON_FOREIGN_FLUSH, 4416 &frn->done); 4417 } 4418 } 4419 } 4420 4421 #else /* CONFIG_CGROUP_WRITEBACK */ 4422 4423 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp) 4424 { 4425 return 0; 4426 } 4427 4428 static void memcg_wb_domain_exit(struct mem_cgroup *memcg) 4429 { 4430 } 4431 4432 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg) 4433 { 4434 } 4435 4436 #endif /* CONFIG_CGROUP_WRITEBACK */ 4437 4438 /* 4439 * DO NOT USE IN NEW FILES. 4440 * 4441 * "cgroup.event_control" implementation. 4442 * 4443 * This is way over-engineered. It tries to support fully configurable 4444 * events for each user. Such level of flexibility is completely 4445 * unnecessary especially in the light of the planned unified hierarchy. 4446 * 4447 * Please deprecate this and replace with something simpler if at all 4448 * possible. 4449 */ 4450 4451 /* 4452 * Unregister event and free resources. 4453 * 4454 * Gets called from workqueue. 4455 */ 4456 static void memcg_event_remove(struct work_struct *work) 4457 { 4458 struct mem_cgroup_event *event = 4459 container_of(work, struct mem_cgroup_event, remove); 4460 struct mem_cgroup *memcg = event->memcg; 4461 4462 remove_wait_queue(event->wqh, &event->wait); 4463 4464 event->unregister_event(memcg, event->eventfd); 4465 4466 /* Notify userspace the event is going away. */ 4467 eventfd_signal(event->eventfd, 1); 4468 4469 eventfd_ctx_put(event->eventfd); 4470 kfree(event); 4471 css_put(&memcg->css); 4472 } 4473 4474 /* 4475 * Gets called on EPOLLHUP on eventfd when user closes it. 4476 * 4477 * Called with wqh->lock held and interrupts disabled. 4478 */ 4479 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode, 4480 int sync, void *key) 4481 { 4482 struct mem_cgroup_event *event = 4483 container_of(wait, struct mem_cgroup_event, wait); 4484 struct mem_cgroup *memcg = event->memcg; 4485 __poll_t flags = key_to_poll(key); 4486 4487 if (flags & EPOLLHUP) { 4488 /* 4489 * If the event has been detached at cgroup removal, we 4490 * can simply return knowing the other side will cleanup 4491 * for us. 4492 * 4493 * We can't race against event freeing since the other 4494 * side will require wqh->lock via remove_wait_queue(), 4495 * which we hold. 4496 */ 4497 spin_lock(&memcg->event_list_lock); 4498 if (!list_empty(&event->list)) { 4499 list_del_init(&event->list); 4500 /* 4501 * We are in atomic context, but cgroup_event_remove() 4502 * may sleep, so we have to call it in workqueue. 4503 */ 4504 schedule_work(&event->remove); 4505 } 4506 spin_unlock(&memcg->event_list_lock); 4507 } 4508 4509 return 0; 4510 } 4511 4512 static void memcg_event_ptable_queue_proc(struct file *file, 4513 wait_queue_head_t *wqh, poll_table *pt) 4514 { 4515 struct mem_cgroup_event *event = 4516 container_of(pt, struct mem_cgroup_event, pt); 4517 4518 event->wqh = wqh; 4519 add_wait_queue(wqh, &event->wait); 4520 } 4521 4522 /* 4523 * DO NOT USE IN NEW FILES. 4524 * 4525 * Parse input and register new cgroup event handler. 4526 * 4527 * Input must be in format '<event_fd> <control_fd> <args>'. 4528 * Interpretation of args is defined by control file implementation. 4529 */ 4530 static ssize_t memcg_write_event_control(struct kernfs_open_file *of, 4531 char *buf, size_t nbytes, loff_t off) 4532 { 4533 struct cgroup_subsys_state *css = of_css(of); 4534 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4535 struct mem_cgroup_event *event; 4536 struct cgroup_subsys_state *cfile_css; 4537 unsigned int efd, cfd; 4538 struct fd efile; 4539 struct fd cfile; 4540 const char *name; 4541 char *endp; 4542 int ret; 4543 4544 buf = strstrip(buf); 4545 4546 efd = simple_strtoul(buf, &endp, 10); 4547 if (*endp != ' ') 4548 return -EINVAL; 4549 buf = endp + 1; 4550 4551 cfd = simple_strtoul(buf, &endp, 10); 4552 if ((*endp != ' ') && (*endp != '\0')) 4553 return -EINVAL; 4554 buf = endp + 1; 4555 4556 event = kzalloc(sizeof(*event), GFP_KERNEL); 4557 if (!event) 4558 return -ENOMEM; 4559 4560 event->memcg = memcg; 4561 INIT_LIST_HEAD(&event->list); 4562 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc); 4563 init_waitqueue_func_entry(&event->wait, memcg_event_wake); 4564 INIT_WORK(&event->remove, memcg_event_remove); 4565 4566 efile = fdget(efd); 4567 if (!efile.file) { 4568 ret = -EBADF; 4569 goto out_kfree; 4570 } 4571 4572 event->eventfd = eventfd_ctx_fileget(efile.file); 4573 if (IS_ERR(event->eventfd)) { 4574 ret = PTR_ERR(event->eventfd); 4575 goto out_put_efile; 4576 } 4577 4578 cfile = fdget(cfd); 4579 if (!cfile.file) { 4580 ret = -EBADF; 4581 goto out_put_eventfd; 4582 } 4583 4584 /* the process need read permission on control file */ 4585 /* AV: shouldn't we check that it's been opened for read instead? */ 4586 ret = inode_permission(file_inode(cfile.file), MAY_READ); 4587 if (ret < 0) 4588 goto out_put_cfile; 4589 4590 /* 4591 * Determine the event callbacks and set them in @event. This used 4592 * to be done via struct cftype but cgroup core no longer knows 4593 * about these events. The following is crude but the whole thing 4594 * is for compatibility anyway. 4595 * 4596 * DO NOT ADD NEW FILES. 4597 */ 4598 name = cfile.file->f_path.dentry->d_name.name; 4599 4600 if (!strcmp(name, "memory.usage_in_bytes")) { 4601 event->register_event = mem_cgroup_usage_register_event; 4602 event->unregister_event = mem_cgroup_usage_unregister_event; 4603 } else if (!strcmp(name, "memory.oom_control")) { 4604 event->register_event = mem_cgroup_oom_register_event; 4605 event->unregister_event = mem_cgroup_oom_unregister_event; 4606 } else if (!strcmp(name, "memory.pressure_level")) { 4607 event->register_event = vmpressure_register_event; 4608 event->unregister_event = vmpressure_unregister_event; 4609 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) { 4610 event->register_event = memsw_cgroup_usage_register_event; 4611 event->unregister_event = memsw_cgroup_usage_unregister_event; 4612 } else { 4613 ret = -EINVAL; 4614 goto out_put_cfile; 4615 } 4616 4617 /* 4618 * Verify @cfile should belong to @css. Also, remaining events are 4619 * automatically removed on cgroup destruction but the removal is 4620 * asynchronous, so take an extra ref on @css. 4621 */ 4622 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent, 4623 &memory_cgrp_subsys); 4624 ret = -EINVAL; 4625 if (IS_ERR(cfile_css)) 4626 goto out_put_cfile; 4627 if (cfile_css != css) { 4628 css_put(cfile_css); 4629 goto out_put_cfile; 4630 } 4631 4632 ret = event->register_event(memcg, event->eventfd, buf); 4633 if (ret) 4634 goto out_put_css; 4635 4636 vfs_poll(efile.file, &event->pt); 4637 4638 spin_lock(&memcg->event_list_lock); 4639 list_add(&event->list, &memcg->event_list); 4640 spin_unlock(&memcg->event_list_lock); 4641 4642 fdput(cfile); 4643 fdput(efile); 4644 4645 return nbytes; 4646 4647 out_put_css: 4648 css_put(css); 4649 out_put_cfile: 4650 fdput(cfile); 4651 out_put_eventfd: 4652 eventfd_ctx_put(event->eventfd); 4653 out_put_efile: 4654 fdput(efile); 4655 out_kfree: 4656 kfree(event); 4657 4658 return ret; 4659 } 4660 4661 static struct cftype mem_cgroup_legacy_files[] = { 4662 { 4663 .name = "usage_in_bytes", 4664 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 4665 .read_u64 = mem_cgroup_read_u64, 4666 }, 4667 { 4668 .name = "max_usage_in_bytes", 4669 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 4670 .write = mem_cgroup_reset, 4671 .read_u64 = mem_cgroup_read_u64, 4672 }, 4673 { 4674 .name = "limit_in_bytes", 4675 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 4676 .write = mem_cgroup_write, 4677 .read_u64 = mem_cgroup_read_u64, 4678 }, 4679 { 4680 .name = "soft_limit_in_bytes", 4681 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 4682 .write = mem_cgroup_write, 4683 .read_u64 = mem_cgroup_read_u64, 4684 }, 4685 { 4686 .name = "failcnt", 4687 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 4688 .write = mem_cgroup_reset, 4689 .read_u64 = mem_cgroup_read_u64, 4690 }, 4691 { 4692 .name = "stat", 4693 .seq_show = memcg_stat_show, 4694 }, 4695 { 4696 .name = "force_empty", 4697 .write = mem_cgroup_force_empty_write, 4698 }, 4699 { 4700 .name = "use_hierarchy", 4701 .write_u64 = mem_cgroup_hierarchy_write, 4702 .read_u64 = mem_cgroup_hierarchy_read, 4703 }, 4704 { 4705 .name = "cgroup.event_control", /* XXX: for compat */ 4706 .write = memcg_write_event_control, 4707 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE, 4708 }, 4709 { 4710 .name = "swappiness", 4711 .read_u64 = mem_cgroup_swappiness_read, 4712 .write_u64 = mem_cgroup_swappiness_write, 4713 }, 4714 { 4715 .name = "move_charge_at_immigrate", 4716 .read_u64 = mem_cgroup_move_charge_read, 4717 .write_u64 = mem_cgroup_move_charge_write, 4718 }, 4719 { 4720 .name = "oom_control", 4721 .seq_show = mem_cgroup_oom_control_read, 4722 .write_u64 = mem_cgroup_oom_control_write, 4723 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), 4724 }, 4725 { 4726 .name = "pressure_level", 4727 }, 4728 #ifdef CONFIG_NUMA 4729 { 4730 .name = "numa_stat", 4731 .seq_show = memcg_numa_stat_show, 4732 }, 4733 #endif 4734 { 4735 .name = "kmem.limit_in_bytes", 4736 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), 4737 .write = mem_cgroup_write, 4738 .read_u64 = mem_cgroup_read_u64, 4739 }, 4740 { 4741 .name = "kmem.usage_in_bytes", 4742 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), 4743 .read_u64 = mem_cgroup_read_u64, 4744 }, 4745 { 4746 .name = "kmem.failcnt", 4747 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), 4748 .write = mem_cgroup_reset, 4749 .read_u64 = mem_cgroup_read_u64, 4750 }, 4751 { 4752 .name = "kmem.max_usage_in_bytes", 4753 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), 4754 .write = mem_cgroup_reset, 4755 .read_u64 = mem_cgroup_read_u64, 4756 }, 4757 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG) 4758 { 4759 .name = "kmem.slabinfo", 4760 .seq_start = memcg_slab_start, 4761 .seq_next = memcg_slab_next, 4762 .seq_stop = memcg_slab_stop, 4763 .seq_show = memcg_slab_show, 4764 }, 4765 #endif 4766 { 4767 .name = "kmem.tcp.limit_in_bytes", 4768 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT), 4769 .write = mem_cgroup_write, 4770 .read_u64 = mem_cgroup_read_u64, 4771 }, 4772 { 4773 .name = "kmem.tcp.usage_in_bytes", 4774 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE), 4775 .read_u64 = mem_cgroup_read_u64, 4776 }, 4777 { 4778 .name = "kmem.tcp.failcnt", 4779 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT), 4780 .write = mem_cgroup_reset, 4781 .read_u64 = mem_cgroup_read_u64, 4782 }, 4783 { 4784 .name = "kmem.tcp.max_usage_in_bytes", 4785 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE), 4786 .write = mem_cgroup_reset, 4787 .read_u64 = mem_cgroup_read_u64, 4788 }, 4789 { }, /* terminate */ 4790 }; 4791 4792 /* 4793 * Private memory cgroup IDR 4794 * 4795 * Swap-out records and page cache shadow entries need to store memcg 4796 * references in constrained space, so we maintain an ID space that is 4797 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of 4798 * memory-controlled cgroups to 64k. 4799 * 4800 * However, there usually are many references to the oflline CSS after 4801 * the cgroup has been destroyed, such as page cache or reclaimable 4802 * slab objects, that don't need to hang on to the ID. We want to keep 4803 * those dead CSS from occupying IDs, or we might quickly exhaust the 4804 * relatively small ID space and prevent the creation of new cgroups 4805 * even when there are much fewer than 64k cgroups - possibly none. 4806 * 4807 * Maintain a private 16-bit ID space for memcg, and allow the ID to 4808 * be freed and recycled when it's no longer needed, which is usually 4809 * when the CSS is offlined. 4810 * 4811 * The only exception to that are records of swapped out tmpfs/shmem 4812 * pages that need to be attributed to live ancestors on swapin. But 4813 * those references are manageable from userspace. 4814 */ 4815 4816 static DEFINE_IDR(mem_cgroup_idr); 4817 4818 static void mem_cgroup_id_remove(struct mem_cgroup *memcg) 4819 { 4820 if (memcg->id.id > 0) { 4821 idr_remove(&mem_cgroup_idr, memcg->id.id); 4822 memcg->id.id = 0; 4823 } 4824 } 4825 4826 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n) 4827 { 4828 refcount_add(n, &memcg->id.ref); 4829 } 4830 4831 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n) 4832 { 4833 if (refcount_sub_and_test(n, &memcg->id.ref)) { 4834 mem_cgroup_id_remove(memcg); 4835 4836 /* Memcg ID pins CSS */ 4837 css_put(&memcg->css); 4838 } 4839 } 4840 4841 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg) 4842 { 4843 mem_cgroup_id_put_many(memcg, 1); 4844 } 4845 4846 /** 4847 * mem_cgroup_from_id - look up a memcg from a memcg id 4848 * @id: the memcg id to look up 4849 * 4850 * Caller must hold rcu_read_lock(). 4851 */ 4852 struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 4853 { 4854 WARN_ON_ONCE(!rcu_read_lock_held()); 4855 return idr_find(&mem_cgroup_idr, id); 4856 } 4857 4858 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 4859 { 4860 struct mem_cgroup_per_node *pn; 4861 int tmp = node; 4862 /* 4863 * This routine is called against possible nodes. 4864 * But it's BUG to call kmalloc() against offline node. 4865 * 4866 * TODO: this routine can waste much memory for nodes which will 4867 * never be onlined. It's better to use memory hotplug callback 4868 * function. 4869 */ 4870 if (!node_state(node, N_NORMAL_MEMORY)) 4871 tmp = -1; 4872 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); 4873 if (!pn) 4874 return 1; 4875 4876 pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat); 4877 if (!pn->lruvec_stat_local) { 4878 kfree(pn); 4879 return 1; 4880 } 4881 4882 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat); 4883 if (!pn->lruvec_stat_cpu) { 4884 free_percpu(pn->lruvec_stat_local); 4885 kfree(pn); 4886 return 1; 4887 } 4888 4889 lruvec_init(&pn->lruvec); 4890 pn->usage_in_excess = 0; 4891 pn->on_tree = false; 4892 pn->memcg = memcg; 4893 4894 memcg->nodeinfo[node] = pn; 4895 return 0; 4896 } 4897 4898 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node) 4899 { 4900 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node]; 4901 4902 if (!pn) 4903 return; 4904 4905 free_percpu(pn->lruvec_stat_cpu); 4906 free_percpu(pn->lruvec_stat_local); 4907 kfree(pn); 4908 } 4909 4910 static void __mem_cgroup_free(struct mem_cgroup *memcg) 4911 { 4912 int node; 4913 4914 for_each_node(node) 4915 free_mem_cgroup_per_node_info(memcg, node); 4916 free_percpu(memcg->vmstats_percpu); 4917 free_percpu(memcg->vmstats_local); 4918 kfree(memcg); 4919 } 4920 4921 static void mem_cgroup_free(struct mem_cgroup *memcg) 4922 { 4923 memcg_wb_domain_exit(memcg); 4924 /* 4925 * Flush percpu vmstats and vmevents to guarantee the value correctness 4926 * on parent's and all ancestor levels. 4927 */ 4928 memcg_flush_percpu_vmstats(memcg); 4929 memcg_flush_percpu_vmevents(memcg); 4930 __mem_cgroup_free(memcg); 4931 } 4932 4933 static struct mem_cgroup *mem_cgroup_alloc(void) 4934 { 4935 struct mem_cgroup *memcg; 4936 unsigned int size; 4937 int node; 4938 int __maybe_unused i; 4939 4940 size = sizeof(struct mem_cgroup); 4941 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *); 4942 4943 memcg = kzalloc(size, GFP_KERNEL); 4944 if (!memcg) 4945 return NULL; 4946 4947 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL, 4948 1, MEM_CGROUP_ID_MAX, 4949 GFP_KERNEL); 4950 if (memcg->id.id < 0) 4951 goto fail; 4952 4953 memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu); 4954 if (!memcg->vmstats_local) 4955 goto fail; 4956 4957 memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu); 4958 if (!memcg->vmstats_percpu) 4959 goto fail; 4960 4961 for_each_node(node) 4962 if (alloc_mem_cgroup_per_node_info(memcg, node)) 4963 goto fail; 4964 4965 if (memcg_wb_domain_init(memcg, GFP_KERNEL)) 4966 goto fail; 4967 4968 INIT_WORK(&memcg->high_work, high_work_func); 4969 INIT_LIST_HEAD(&memcg->oom_notify); 4970 mutex_init(&memcg->thresholds_lock); 4971 spin_lock_init(&memcg->move_lock); 4972 vmpressure_init(&memcg->vmpressure); 4973 INIT_LIST_HEAD(&memcg->event_list); 4974 spin_lock_init(&memcg->event_list_lock); 4975 memcg->socket_pressure = jiffies; 4976 #ifdef CONFIG_MEMCG_KMEM 4977 memcg->kmemcg_id = -1; 4978 #endif 4979 #ifdef CONFIG_CGROUP_WRITEBACK 4980 INIT_LIST_HEAD(&memcg->cgwb_list); 4981 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 4982 memcg->cgwb_frn[i].done = 4983 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq); 4984 #endif 4985 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4986 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock); 4987 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue); 4988 memcg->deferred_split_queue.split_queue_len = 0; 4989 #endif 4990 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id); 4991 return memcg; 4992 fail: 4993 mem_cgroup_id_remove(memcg); 4994 __mem_cgroup_free(memcg); 4995 return NULL; 4996 } 4997 4998 static struct cgroup_subsys_state * __ref 4999 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 5000 { 5001 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css); 5002 struct mem_cgroup *memcg; 5003 long error = -ENOMEM; 5004 5005 memcg = mem_cgroup_alloc(); 5006 if (!memcg) 5007 return ERR_PTR(error); 5008 5009 memcg->high = PAGE_COUNTER_MAX; 5010 memcg->soft_limit = PAGE_COUNTER_MAX; 5011 if (parent) { 5012 memcg->swappiness = mem_cgroup_swappiness(parent); 5013 memcg->oom_kill_disable = parent->oom_kill_disable; 5014 } 5015 if (parent && parent->use_hierarchy) { 5016 memcg->use_hierarchy = true; 5017 page_counter_init(&memcg->memory, &parent->memory); 5018 page_counter_init(&memcg->swap, &parent->swap); 5019 page_counter_init(&memcg->memsw, &parent->memsw); 5020 page_counter_init(&memcg->kmem, &parent->kmem); 5021 page_counter_init(&memcg->tcpmem, &parent->tcpmem); 5022 } else { 5023 page_counter_init(&memcg->memory, NULL); 5024 page_counter_init(&memcg->swap, NULL); 5025 page_counter_init(&memcg->memsw, NULL); 5026 page_counter_init(&memcg->kmem, NULL); 5027 page_counter_init(&memcg->tcpmem, NULL); 5028 /* 5029 * Deeper hierachy with use_hierarchy == false doesn't make 5030 * much sense so let cgroup subsystem know about this 5031 * unfortunate state in our controller. 5032 */ 5033 if (parent != root_mem_cgroup) 5034 memory_cgrp_subsys.broken_hierarchy = true; 5035 } 5036 5037 /* The following stuff does not apply to the root */ 5038 if (!parent) { 5039 #ifdef CONFIG_MEMCG_KMEM 5040 INIT_LIST_HEAD(&memcg->kmem_caches); 5041 #endif 5042 root_mem_cgroup = memcg; 5043 return &memcg->css; 5044 } 5045 5046 error = memcg_online_kmem(memcg); 5047 if (error) 5048 goto fail; 5049 5050 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 5051 static_branch_inc(&memcg_sockets_enabled_key); 5052 5053 return &memcg->css; 5054 fail: 5055 mem_cgroup_id_remove(memcg); 5056 mem_cgroup_free(memcg); 5057 return ERR_PTR(-ENOMEM); 5058 } 5059 5060 static int mem_cgroup_css_online(struct cgroup_subsys_state *css) 5061 { 5062 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5063 5064 /* 5065 * A memcg must be visible for memcg_expand_shrinker_maps() 5066 * by the time the maps are allocated. So, we allocate maps 5067 * here, when for_each_mem_cgroup() can't skip it. 5068 */ 5069 if (memcg_alloc_shrinker_maps(memcg)) { 5070 mem_cgroup_id_remove(memcg); 5071 return -ENOMEM; 5072 } 5073 5074 /* Online state pins memcg ID, memcg ID pins CSS */ 5075 refcount_set(&memcg->id.ref, 1); 5076 css_get(css); 5077 return 0; 5078 } 5079 5080 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 5081 { 5082 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5083 struct mem_cgroup_event *event, *tmp; 5084 5085 /* 5086 * Unregister events and notify userspace. 5087 * Notify userspace about cgroup removing only after rmdir of cgroup 5088 * directory to avoid race between userspace and kernelspace. 5089 */ 5090 spin_lock(&memcg->event_list_lock); 5091 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) { 5092 list_del_init(&event->list); 5093 schedule_work(&event->remove); 5094 } 5095 spin_unlock(&memcg->event_list_lock); 5096 5097 page_counter_set_min(&memcg->memory, 0); 5098 page_counter_set_low(&memcg->memory, 0); 5099 5100 memcg_offline_kmem(memcg); 5101 wb_memcg_offline(memcg); 5102 5103 drain_all_stock(memcg); 5104 5105 mem_cgroup_id_put(memcg); 5106 } 5107 5108 static void mem_cgroup_css_released(struct cgroup_subsys_state *css) 5109 { 5110 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5111 5112 invalidate_reclaim_iterators(memcg); 5113 } 5114 5115 static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 5116 { 5117 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5118 int __maybe_unused i; 5119 5120 #ifdef CONFIG_CGROUP_WRITEBACK 5121 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) 5122 wb_wait_for_completion(&memcg->cgwb_frn[i].done); 5123 #endif 5124 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket) 5125 static_branch_dec(&memcg_sockets_enabled_key); 5126 5127 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active) 5128 static_branch_dec(&memcg_sockets_enabled_key); 5129 5130 vmpressure_cleanup(&memcg->vmpressure); 5131 cancel_work_sync(&memcg->high_work); 5132 mem_cgroup_remove_from_trees(memcg); 5133 memcg_free_shrinker_maps(memcg); 5134 memcg_free_kmem(memcg); 5135 mem_cgroup_free(memcg); 5136 } 5137 5138 /** 5139 * mem_cgroup_css_reset - reset the states of a mem_cgroup 5140 * @css: the target css 5141 * 5142 * Reset the states of the mem_cgroup associated with @css. This is 5143 * invoked when the userland requests disabling on the default hierarchy 5144 * but the memcg is pinned through dependency. The memcg should stop 5145 * applying policies and should revert to the vanilla state as it may be 5146 * made visible again. 5147 * 5148 * The current implementation only resets the essential configurations. 5149 * This needs to be expanded to cover all the visible parts. 5150 */ 5151 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) 5152 { 5153 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5154 5155 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX); 5156 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX); 5157 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX); 5158 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX); 5159 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX); 5160 page_counter_set_min(&memcg->memory, 0); 5161 page_counter_set_low(&memcg->memory, 0); 5162 memcg->high = PAGE_COUNTER_MAX; 5163 memcg->soft_limit = PAGE_COUNTER_MAX; 5164 memcg_wb_domain_size_changed(memcg); 5165 } 5166 5167 #ifdef CONFIG_MMU 5168 /* Handlers for move charge at task migration. */ 5169 static int mem_cgroup_do_precharge(unsigned long count) 5170 { 5171 int ret; 5172 5173 /* Try a single bulk charge without reclaim first, kswapd may wake */ 5174 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count); 5175 if (!ret) { 5176 mc.precharge += count; 5177 return ret; 5178 } 5179 5180 /* Try charges one by one with reclaim, but do not retry */ 5181 while (count--) { 5182 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1); 5183 if (ret) 5184 return ret; 5185 mc.precharge++; 5186 cond_resched(); 5187 } 5188 return 0; 5189 } 5190 5191 union mc_target { 5192 struct page *page; 5193 swp_entry_t ent; 5194 }; 5195 5196 enum mc_target_type { 5197 MC_TARGET_NONE = 0, 5198 MC_TARGET_PAGE, 5199 MC_TARGET_SWAP, 5200 MC_TARGET_DEVICE, 5201 }; 5202 5203 static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 5204 unsigned long addr, pte_t ptent) 5205 { 5206 struct page *page = vm_normal_page(vma, addr, ptent); 5207 5208 if (!page || !page_mapped(page)) 5209 return NULL; 5210 if (PageAnon(page)) { 5211 if (!(mc.flags & MOVE_ANON)) 5212 return NULL; 5213 } else { 5214 if (!(mc.flags & MOVE_FILE)) 5215 return NULL; 5216 } 5217 if (!get_page_unless_zero(page)) 5218 return NULL; 5219 5220 return page; 5221 } 5222 5223 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE) 5224 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5225 pte_t ptent, swp_entry_t *entry) 5226 { 5227 struct page *page = NULL; 5228 swp_entry_t ent = pte_to_swp_entry(ptent); 5229 5230 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent)) 5231 return NULL; 5232 5233 /* 5234 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to 5235 * a device and because they are not accessible by CPU they are store 5236 * as special swap entry in the CPU page table. 5237 */ 5238 if (is_device_private_entry(ent)) { 5239 page = device_private_entry_to_page(ent); 5240 /* 5241 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have 5242 * a refcount of 1 when free (unlike normal page) 5243 */ 5244 if (!page_ref_add_unless(page, 1, 1)) 5245 return NULL; 5246 return page; 5247 } 5248 5249 /* 5250 * Because lookup_swap_cache() updates some statistics counter, 5251 * we call find_get_page() with swapper_space directly. 5252 */ 5253 page = find_get_page(swap_address_space(ent), swp_offset(ent)); 5254 if (do_memsw_account()) 5255 entry->val = ent.val; 5256 5257 return page; 5258 } 5259 #else 5260 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 5261 pte_t ptent, swp_entry_t *entry) 5262 { 5263 return NULL; 5264 } 5265 #endif 5266 5267 static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 5268 unsigned long addr, pte_t ptent, swp_entry_t *entry) 5269 { 5270 struct page *page = NULL; 5271 struct address_space *mapping; 5272 pgoff_t pgoff; 5273 5274 if (!vma->vm_file) /* anonymous vma */ 5275 return NULL; 5276 if (!(mc.flags & MOVE_FILE)) 5277 return NULL; 5278 5279 mapping = vma->vm_file->f_mapping; 5280 pgoff = linear_page_index(vma, addr); 5281 5282 /* page is moved even if it's not RSS of this task(page-faulted). */ 5283 #ifdef CONFIG_SWAP 5284 /* shmem/tmpfs may report page out on swap: account for that too. */ 5285 if (shmem_mapping(mapping)) { 5286 page = find_get_entry(mapping, pgoff); 5287 if (xa_is_value(page)) { 5288 swp_entry_t swp = radix_to_swp_entry(page); 5289 if (do_memsw_account()) 5290 *entry = swp; 5291 page = find_get_page(swap_address_space(swp), 5292 swp_offset(swp)); 5293 } 5294 } else 5295 page = find_get_page(mapping, pgoff); 5296 #else 5297 page = find_get_page(mapping, pgoff); 5298 #endif 5299 return page; 5300 } 5301 5302 /** 5303 * mem_cgroup_move_account - move account of the page 5304 * @page: the page 5305 * @compound: charge the page as compound or small page 5306 * @from: mem_cgroup which the page is moved from. 5307 * @to: mem_cgroup which the page is moved to. @from != @to. 5308 * 5309 * The caller must make sure the page is not on LRU (isolate_page() is useful.) 5310 * 5311 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" 5312 * from old cgroup. 5313 */ 5314 static int mem_cgroup_move_account(struct page *page, 5315 bool compound, 5316 struct mem_cgroup *from, 5317 struct mem_cgroup *to) 5318 { 5319 struct lruvec *from_vec, *to_vec; 5320 struct pglist_data *pgdat; 5321 unsigned long flags; 5322 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 5323 int ret; 5324 bool anon; 5325 5326 VM_BUG_ON(from == to); 5327 VM_BUG_ON_PAGE(PageLRU(page), page); 5328 VM_BUG_ON(compound && !PageTransHuge(page)); 5329 5330 /* 5331 * Prevent mem_cgroup_migrate() from looking at 5332 * page->mem_cgroup of its source page while we change it. 5333 */ 5334 ret = -EBUSY; 5335 if (!trylock_page(page)) 5336 goto out; 5337 5338 ret = -EINVAL; 5339 if (page->mem_cgroup != from) 5340 goto out_unlock; 5341 5342 anon = PageAnon(page); 5343 5344 pgdat = page_pgdat(page); 5345 from_vec = mem_cgroup_lruvec(from, pgdat); 5346 to_vec = mem_cgroup_lruvec(to, pgdat); 5347 5348 spin_lock_irqsave(&from->move_lock, flags); 5349 5350 if (!anon && page_mapped(page)) { 5351 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages); 5352 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages); 5353 } 5354 5355 /* 5356 * move_lock grabbed above and caller set from->moving_account, so 5357 * mod_memcg_page_state will serialize updates to PageDirty. 5358 * So mapping should be stable for dirty pages. 5359 */ 5360 if (!anon && PageDirty(page)) { 5361 struct address_space *mapping = page_mapping(page); 5362 5363 if (mapping_cap_account_dirty(mapping)) { 5364 __mod_lruvec_state(from_vec, NR_FILE_DIRTY, -nr_pages); 5365 __mod_lruvec_state(to_vec, NR_FILE_DIRTY, nr_pages); 5366 } 5367 } 5368 5369 if (PageWriteback(page)) { 5370 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages); 5371 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages); 5372 } 5373 5374 /* 5375 * It is safe to change page->mem_cgroup here because the page 5376 * is referenced, charged, and isolated - we can't race with 5377 * uncharging, charging, migration, or LRU putback. 5378 */ 5379 5380 /* caller should have done css_get */ 5381 page->mem_cgroup = to; 5382 5383 spin_unlock_irqrestore(&from->move_lock, flags); 5384 5385 ret = 0; 5386 5387 local_irq_disable(); 5388 mem_cgroup_charge_statistics(to, page, compound, nr_pages); 5389 memcg_check_events(to, page); 5390 mem_cgroup_charge_statistics(from, page, compound, -nr_pages); 5391 memcg_check_events(from, page); 5392 local_irq_enable(); 5393 out_unlock: 5394 unlock_page(page); 5395 out: 5396 return ret; 5397 } 5398 5399 /** 5400 * get_mctgt_type - get target type of moving charge 5401 * @vma: the vma the pte to be checked belongs 5402 * @addr: the address corresponding to the pte to be checked 5403 * @ptent: the pte to be checked 5404 * @target: the pointer the target page or swap ent will be stored(can be NULL) 5405 * 5406 * Returns 5407 * 0(MC_TARGET_NONE): if the pte is not a target for move charge. 5408 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for 5409 * move charge. if @target is not NULL, the page is stored in target->page 5410 * with extra refcnt got(Callers should handle it). 5411 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a 5412 * target for charge migration. if @target is not NULL, the entry is stored 5413 * in target->ent. 5414 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE 5415 * (so ZONE_DEVICE page and thus not on the lru). 5416 * For now we such page is charge like a regular page would be as for all 5417 * intent and purposes it is just special memory taking the place of a 5418 * regular page. 5419 * 5420 * See Documentations/vm/hmm.txt and include/linux/hmm.h 5421 * 5422 * Called with pte lock held. 5423 */ 5424 5425 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, 5426 unsigned long addr, pte_t ptent, union mc_target *target) 5427 { 5428 struct page *page = NULL; 5429 enum mc_target_type ret = MC_TARGET_NONE; 5430 swp_entry_t ent = { .val = 0 }; 5431 5432 if (pte_present(ptent)) 5433 page = mc_handle_present_pte(vma, addr, ptent); 5434 else if (is_swap_pte(ptent)) 5435 page = mc_handle_swap_pte(vma, ptent, &ent); 5436 else if (pte_none(ptent)) 5437 page = mc_handle_file_pte(vma, addr, ptent, &ent); 5438 5439 if (!page && !ent.val) 5440 return ret; 5441 if (page) { 5442 /* 5443 * Do only loose check w/o serialization. 5444 * mem_cgroup_move_account() checks the page is valid or 5445 * not under LRU exclusion. 5446 */ 5447 if (page->mem_cgroup == mc.from) { 5448 ret = MC_TARGET_PAGE; 5449 if (is_device_private_page(page)) 5450 ret = MC_TARGET_DEVICE; 5451 if (target) 5452 target->page = page; 5453 } 5454 if (!ret || !target) 5455 put_page(page); 5456 } 5457 /* 5458 * There is a swap entry and a page doesn't exist or isn't charged. 5459 * But we cannot move a tail-page in a THP. 5460 */ 5461 if (ent.val && !ret && (!page || !PageTransCompound(page)) && 5462 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) { 5463 ret = MC_TARGET_SWAP; 5464 if (target) 5465 target->ent = ent; 5466 } 5467 return ret; 5468 } 5469 5470 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5471 /* 5472 * We don't consider PMD mapped swapping or file mapped pages because THP does 5473 * not support them for now. 5474 * Caller should make sure that pmd_trans_huge(pmd) is true. 5475 */ 5476 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5477 unsigned long addr, pmd_t pmd, union mc_target *target) 5478 { 5479 struct page *page = NULL; 5480 enum mc_target_type ret = MC_TARGET_NONE; 5481 5482 if (unlikely(is_swap_pmd(pmd))) { 5483 VM_BUG_ON(thp_migration_supported() && 5484 !is_pmd_migration_entry(pmd)); 5485 return ret; 5486 } 5487 page = pmd_page(pmd); 5488 VM_BUG_ON_PAGE(!page || !PageHead(page), page); 5489 if (!(mc.flags & MOVE_ANON)) 5490 return ret; 5491 if (page->mem_cgroup == mc.from) { 5492 ret = MC_TARGET_PAGE; 5493 if (target) { 5494 get_page(page); 5495 target->page = page; 5496 } 5497 } 5498 return ret; 5499 } 5500 #else 5501 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 5502 unsigned long addr, pmd_t pmd, union mc_target *target) 5503 { 5504 return MC_TARGET_NONE; 5505 } 5506 #endif 5507 5508 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 5509 unsigned long addr, unsigned long end, 5510 struct mm_walk *walk) 5511 { 5512 struct vm_area_struct *vma = walk->vma; 5513 pte_t *pte; 5514 spinlock_t *ptl; 5515 5516 ptl = pmd_trans_huge_lock(pmd, vma); 5517 if (ptl) { 5518 /* 5519 * Note their can not be MC_TARGET_DEVICE for now as we do not 5520 * support transparent huge page with MEMORY_DEVICE_PRIVATE but 5521 * this might change. 5522 */ 5523 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) 5524 mc.precharge += HPAGE_PMD_NR; 5525 spin_unlock(ptl); 5526 return 0; 5527 } 5528 5529 if (pmd_trans_unstable(pmd)) 5530 return 0; 5531 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 5532 for (; addr != end; pte++, addr += PAGE_SIZE) 5533 if (get_mctgt_type(vma, addr, *pte, NULL)) 5534 mc.precharge++; /* increment precharge temporarily */ 5535 pte_unmap_unlock(pte - 1, ptl); 5536 cond_resched(); 5537 5538 return 0; 5539 } 5540 5541 static const struct mm_walk_ops precharge_walk_ops = { 5542 .pmd_entry = mem_cgroup_count_precharge_pte_range, 5543 }; 5544 5545 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 5546 { 5547 unsigned long precharge; 5548 5549 down_read(&mm->mmap_sem); 5550 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL); 5551 up_read(&mm->mmap_sem); 5552 5553 precharge = mc.precharge; 5554 mc.precharge = 0; 5555 5556 return precharge; 5557 } 5558 5559 static int mem_cgroup_precharge_mc(struct mm_struct *mm) 5560 { 5561 unsigned long precharge = mem_cgroup_count_precharge(mm); 5562 5563 VM_BUG_ON(mc.moving_task); 5564 mc.moving_task = current; 5565 return mem_cgroup_do_precharge(precharge); 5566 } 5567 5568 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 5569 static void __mem_cgroup_clear_mc(void) 5570 { 5571 struct mem_cgroup *from = mc.from; 5572 struct mem_cgroup *to = mc.to; 5573 5574 /* we must uncharge all the leftover precharges from mc.to */ 5575 if (mc.precharge) { 5576 cancel_charge(mc.to, mc.precharge); 5577 mc.precharge = 0; 5578 } 5579 /* 5580 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 5581 * we must uncharge here. 5582 */ 5583 if (mc.moved_charge) { 5584 cancel_charge(mc.from, mc.moved_charge); 5585 mc.moved_charge = 0; 5586 } 5587 /* we must fixup refcnts and charges */ 5588 if (mc.moved_swap) { 5589 /* uncharge swap account from the old cgroup */ 5590 if (!mem_cgroup_is_root(mc.from)) 5591 page_counter_uncharge(&mc.from->memsw, mc.moved_swap); 5592 5593 mem_cgroup_id_put_many(mc.from, mc.moved_swap); 5594 5595 /* 5596 * we charged both to->memory and to->memsw, so we 5597 * should uncharge to->memory. 5598 */ 5599 if (!mem_cgroup_is_root(mc.to)) 5600 page_counter_uncharge(&mc.to->memory, mc.moved_swap); 5601 5602 mem_cgroup_id_get_many(mc.to, mc.moved_swap); 5603 css_put_many(&mc.to->css, mc.moved_swap); 5604 5605 mc.moved_swap = 0; 5606 } 5607 memcg_oom_recover(from); 5608 memcg_oom_recover(to); 5609 wake_up_all(&mc.waitq); 5610 } 5611 5612 static void mem_cgroup_clear_mc(void) 5613 { 5614 struct mm_struct *mm = mc.mm; 5615 5616 /* 5617 * we must clear moving_task before waking up waiters at the end of 5618 * task migration. 5619 */ 5620 mc.moving_task = NULL; 5621 __mem_cgroup_clear_mc(); 5622 spin_lock(&mc.lock); 5623 mc.from = NULL; 5624 mc.to = NULL; 5625 mc.mm = NULL; 5626 spin_unlock(&mc.lock); 5627 5628 mmput(mm); 5629 } 5630 5631 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 5632 { 5633 struct cgroup_subsys_state *css; 5634 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */ 5635 struct mem_cgroup *from; 5636 struct task_struct *leader, *p; 5637 struct mm_struct *mm; 5638 unsigned long move_flags; 5639 int ret = 0; 5640 5641 /* charge immigration isn't supported on the default hierarchy */ 5642 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5643 return 0; 5644 5645 /* 5646 * Multi-process migrations only happen on the default hierarchy 5647 * where charge immigration is not used. Perform charge 5648 * immigration if @tset contains a leader and whine if there are 5649 * multiple. 5650 */ 5651 p = NULL; 5652 cgroup_taskset_for_each_leader(leader, css, tset) { 5653 WARN_ON_ONCE(p); 5654 p = leader; 5655 memcg = mem_cgroup_from_css(css); 5656 } 5657 if (!p) 5658 return 0; 5659 5660 /* 5661 * We are now commited to this value whatever it is. Changes in this 5662 * tunable will only affect upcoming migrations, not the current one. 5663 * So we need to save it, and keep it going. 5664 */ 5665 move_flags = READ_ONCE(memcg->move_charge_at_immigrate); 5666 if (!move_flags) 5667 return 0; 5668 5669 from = mem_cgroup_from_task(p); 5670 5671 VM_BUG_ON(from == memcg); 5672 5673 mm = get_task_mm(p); 5674 if (!mm) 5675 return 0; 5676 /* We move charges only when we move a owner of the mm */ 5677 if (mm->owner == p) { 5678 VM_BUG_ON(mc.from); 5679 VM_BUG_ON(mc.to); 5680 VM_BUG_ON(mc.precharge); 5681 VM_BUG_ON(mc.moved_charge); 5682 VM_BUG_ON(mc.moved_swap); 5683 5684 spin_lock(&mc.lock); 5685 mc.mm = mm; 5686 mc.from = from; 5687 mc.to = memcg; 5688 mc.flags = move_flags; 5689 spin_unlock(&mc.lock); 5690 /* We set mc.moving_task later */ 5691 5692 ret = mem_cgroup_precharge_mc(mm); 5693 if (ret) 5694 mem_cgroup_clear_mc(); 5695 } else { 5696 mmput(mm); 5697 } 5698 return ret; 5699 } 5700 5701 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 5702 { 5703 if (mc.to) 5704 mem_cgroup_clear_mc(); 5705 } 5706 5707 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 5708 unsigned long addr, unsigned long end, 5709 struct mm_walk *walk) 5710 { 5711 int ret = 0; 5712 struct vm_area_struct *vma = walk->vma; 5713 pte_t *pte; 5714 spinlock_t *ptl; 5715 enum mc_target_type target_type; 5716 union mc_target target; 5717 struct page *page; 5718 5719 ptl = pmd_trans_huge_lock(pmd, vma); 5720 if (ptl) { 5721 if (mc.precharge < HPAGE_PMD_NR) { 5722 spin_unlock(ptl); 5723 return 0; 5724 } 5725 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); 5726 if (target_type == MC_TARGET_PAGE) { 5727 page = target.page; 5728 if (!isolate_lru_page(page)) { 5729 if (!mem_cgroup_move_account(page, true, 5730 mc.from, mc.to)) { 5731 mc.precharge -= HPAGE_PMD_NR; 5732 mc.moved_charge += HPAGE_PMD_NR; 5733 } 5734 putback_lru_page(page); 5735 } 5736 put_page(page); 5737 } else if (target_type == MC_TARGET_DEVICE) { 5738 page = target.page; 5739 if (!mem_cgroup_move_account(page, true, 5740 mc.from, mc.to)) { 5741 mc.precharge -= HPAGE_PMD_NR; 5742 mc.moved_charge += HPAGE_PMD_NR; 5743 } 5744 put_page(page); 5745 } 5746 spin_unlock(ptl); 5747 return 0; 5748 } 5749 5750 if (pmd_trans_unstable(pmd)) 5751 return 0; 5752 retry: 5753 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 5754 for (; addr != end; addr += PAGE_SIZE) { 5755 pte_t ptent = *(pte++); 5756 bool device = false; 5757 swp_entry_t ent; 5758 5759 if (!mc.precharge) 5760 break; 5761 5762 switch (get_mctgt_type(vma, addr, ptent, &target)) { 5763 case MC_TARGET_DEVICE: 5764 device = true; 5765 /* fall through */ 5766 case MC_TARGET_PAGE: 5767 page = target.page; 5768 /* 5769 * We can have a part of the split pmd here. Moving it 5770 * can be done but it would be too convoluted so simply 5771 * ignore such a partial THP and keep it in original 5772 * memcg. There should be somebody mapping the head. 5773 */ 5774 if (PageTransCompound(page)) 5775 goto put; 5776 if (!device && isolate_lru_page(page)) 5777 goto put; 5778 if (!mem_cgroup_move_account(page, false, 5779 mc.from, mc.to)) { 5780 mc.precharge--; 5781 /* we uncharge from mc.from later. */ 5782 mc.moved_charge++; 5783 } 5784 if (!device) 5785 putback_lru_page(page); 5786 put: /* get_mctgt_type() gets the page */ 5787 put_page(page); 5788 break; 5789 case MC_TARGET_SWAP: 5790 ent = target.ent; 5791 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { 5792 mc.precharge--; 5793 /* we fixup refcnts and charges later. */ 5794 mc.moved_swap++; 5795 } 5796 break; 5797 default: 5798 break; 5799 } 5800 } 5801 pte_unmap_unlock(pte - 1, ptl); 5802 cond_resched(); 5803 5804 if (addr != end) { 5805 /* 5806 * We have consumed all precharges we got in can_attach(). 5807 * We try charge one by one, but don't do any additional 5808 * charges to mc.to if we have failed in charge once in attach() 5809 * phase. 5810 */ 5811 ret = mem_cgroup_do_precharge(1); 5812 if (!ret) 5813 goto retry; 5814 } 5815 5816 return ret; 5817 } 5818 5819 static const struct mm_walk_ops charge_walk_ops = { 5820 .pmd_entry = mem_cgroup_move_charge_pte_range, 5821 }; 5822 5823 static void mem_cgroup_move_charge(void) 5824 { 5825 lru_add_drain_all(); 5826 /* 5827 * Signal lock_page_memcg() to take the memcg's move_lock 5828 * while we're moving its pages to another memcg. Then wait 5829 * for already started RCU-only updates to finish. 5830 */ 5831 atomic_inc(&mc.from->moving_account); 5832 synchronize_rcu(); 5833 retry: 5834 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) { 5835 /* 5836 * Someone who are holding the mmap_sem might be waiting in 5837 * waitq. So we cancel all extra charges, wake up all waiters, 5838 * and retry. Because we cancel precharges, we might not be able 5839 * to move enough charges, but moving charge is a best-effort 5840 * feature anyway, so it wouldn't be a big problem. 5841 */ 5842 __mem_cgroup_clear_mc(); 5843 cond_resched(); 5844 goto retry; 5845 } 5846 /* 5847 * When we have consumed all precharges and failed in doing 5848 * additional charge, the page walk just aborts. 5849 */ 5850 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops, 5851 NULL); 5852 5853 up_read(&mc.mm->mmap_sem); 5854 atomic_dec(&mc.from->moving_account); 5855 } 5856 5857 static void mem_cgroup_move_task(void) 5858 { 5859 if (mc.to) { 5860 mem_cgroup_move_charge(); 5861 mem_cgroup_clear_mc(); 5862 } 5863 } 5864 #else /* !CONFIG_MMU */ 5865 static int mem_cgroup_can_attach(struct cgroup_taskset *tset) 5866 { 5867 return 0; 5868 } 5869 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset) 5870 { 5871 } 5872 static void mem_cgroup_move_task(void) 5873 { 5874 } 5875 #endif 5876 5877 /* 5878 * Cgroup retains root cgroups across [un]mount cycles making it necessary 5879 * to verify whether we're attached to the default hierarchy on each mount 5880 * attempt. 5881 */ 5882 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css) 5883 { 5884 /* 5885 * use_hierarchy is forced on the default hierarchy. cgroup core 5886 * guarantees that @root doesn't have any children, so turning it 5887 * on for the root memcg is enough. 5888 */ 5889 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 5890 root_mem_cgroup->use_hierarchy = true; 5891 else 5892 root_mem_cgroup->use_hierarchy = false; 5893 } 5894 5895 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value) 5896 { 5897 if (value == PAGE_COUNTER_MAX) 5898 seq_puts(m, "max\n"); 5899 else 5900 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE); 5901 5902 return 0; 5903 } 5904 5905 static u64 memory_current_read(struct cgroup_subsys_state *css, 5906 struct cftype *cft) 5907 { 5908 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5909 5910 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE; 5911 } 5912 5913 static int memory_min_show(struct seq_file *m, void *v) 5914 { 5915 return seq_puts_memcg_tunable(m, 5916 READ_ONCE(mem_cgroup_from_seq(m)->memory.min)); 5917 } 5918 5919 static ssize_t memory_min_write(struct kernfs_open_file *of, 5920 char *buf, size_t nbytes, loff_t off) 5921 { 5922 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5923 unsigned long min; 5924 int err; 5925 5926 buf = strstrip(buf); 5927 err = page_counter_memparse(buf, "max", &min); 5928 if (err) 5929 return err; 5930 5931 page_counter_set_min(&memcg->memory, min); 5932 5933 return nbytes; 5934 } 5935 5936 static int memory_low_show(struct seq_file *m, void *v) 5937 { 5938 return seq_puts_memcg_tunable(m, 5939 READ_ONCE(mem_cgroup_from_seq(m)->memory.low)); 5940 } 5941 5942 static ssize_t memory_low_write(struct kernfs_open_file *of, 5943 char *buf, size_t nbytes, loff_t off) 5944 { 5945 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5946 unsigned long low; 5947 int err; 5948 5949 buf = strstrip(buf); 5950 err = page_counter_memparse(buf, "max", &low); 5951 if (err) 5952 return err; 5953 5954 page_counter_set_low(&memcg->memory, low); 5955 5956 return nbytes; 5957 } 5958 5959 static int memory_high_show(struct seq_file *m, void *v) 5960 { 5961 return seq_puts_memcg_tunable(m, READ_ONCE(mem_cgroup_from_seq(m)->high)); 5962 } 5963 5964 static ssize_t memory_high_write(struct kernfs_open_file *of, 5965 char *buf, size_t nbytes, loff_t off) 5966 { 5967 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5968 unsigned int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 5969 bool drained = false; 5970 unsigned long high; 5971 int err; 5972 5973 buf = strstrip(buf); 5974 err = page_counter_memparse(buf, "max", &high); 5975 if (err) 5976 return err; 5977 5978 memcg->high = high; 5979 5980 for (;;) { 5981 unsigned long nr_pages = page_counter_read(&memcg->memory); 5982 unsigned long reclaimed; 5983 5984 if (nr_pages <= high) 5985 break; 5986 5987 if (signal_pending(current)) 5988 break; 5989 5990 if (!drained) { 5991 drain_all_stock(memcg); 5992 drained = true; 5993 continue; 5994 } 5995 5996 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high, 5997 GFP_KERNEL, true); 5998 5999 if (!reclaimed && !nr_retries--) 6000 break; 6001 } 6002 6003 return nbytes; 6004 } 6005 6006 static int memory_max_show(struct seq_file *m, void *v) 6007 { 6008 return seq_puts_memcg_tunable(m, 6009 READ_ONCE(mem_cgroup_from_seq(m)->memory.max)); 6010 } 6011 6012 static ssize_t memory_max_write(struct kernfs_open_file *of, 6013 char *buf, size_t nbytes, loff_t off) 6014 { 6015 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6016 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES; 6017 bool drained = false; 6018 unsigned long max; 6019 int err; 6020 6021 buf = strstrip(buf); 6022 err = page_counter_memparse(buf, "max", &max); 6023 if (err) 6024 return err; 6025 6026 xchg(&memcg->memory.max, max); 6027 6028 for (;;) { 6029 unsigned long nr_pages = page_counter_read(&memcg->memory); 6030 6031 if (nr_pages <= max) 6032 break; 6033 6034 if (signal_pending(current)) 6035 break; 6036 6037 if (!drained) { 6038 drain_all_stock(memcg); 6039 drained = true; 6040 continue; 6041 } 6042 6043 if (nr_reclaims) { 6044 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max, 6045 GFP_KERNEL, true)) 6046 nr_reclaims--; 6047 continue; 6048 } 6049 6050 memcg_memory_event(memcg, MEMCG_OOM); 6051 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0)) 6052 break; 6053 } 6054 6055 memcg_wb_domain_size_changed(memcg); 6056 return nbytes; 6057 } 6058 6059 static void __memory_events_show(struct seq_file *m, atomic_long_t *events) 6060 { 6061 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW])); 6062 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH])); 6063 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX])); 6064 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM])); 6065 seq_printf(m, "oom_kill %lu\n", 6066 atomic_long_read(&events[MEMCG_OOM_KILL])); 6067 } 6068 6069 static int memory_events_show(struct seq_file *m, void *v) 6070 { 6071 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6072 6073 __memory_events_show(m, memcg->memory_events); 6074 return 0; 6075 } 6076 6077 static int memory_events_local_show(struct seq_file *m, void *v) 6078 { 6079 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6080 6081 __memory_events_show(m, memcg->memory_events_local); 6082 return 0; 6083 } 6084 6085 static int memory_stat_show(struct seq_file *m, void *v) 6086 { 6087 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6088 char *buf; 6089 6090 buf = memory_stat_format(memcg); 6091 if (!buf) 6092 return -ENOMEM; 6093 seq_puts(m, buf); 6094 kfree(buf); 6095 return 0; 6096 } 6097 6098 static int memory_oom_group_show(struct seq_file *m, void *v) 6099 { 6100 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 6101 6102 seq_printf(m, "%d\n", memcg->oom_group); 6103 6104 return 0; 6105 } 6106 6107 static ssize_t memory_oom_group_write(struct kernfs_open_file *of, 6108 char *buf, size_t nbytes, loff_t off) 6109 { 6110 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 6111 int ret, oom_group; 6112 6113 buf = strstrip(buf); 6114 if (!buf) 6115 return -EINVAL; 6116 6117 ret = kstrtoint(buf, 0, &oom_group); 6118 if (ret) 6119 return ret; 6120 6121 if (oom_group != 0 && oom_group != 1) 6122 return -EINVAL; 6123 6124 memcg->oom_group = oom_group; 6125 6126 return nbytes; 6127 } 6128 6129 static struct cftype memory_files[] = { 6130 { 6131 .name = "current", 6132 .flags = CFTYPE_NOT_ON_ROOT, 6133 .read_u64 = memory_current_read, 6134 }, 6135 { 6136 .name = "min", 6137 .flags = CFTYPE_NOT_ON_ROOT, 6138 .seq_show = memory_min_show, 6139 .write = memory_min_write, 6140 }, 6141 { 6142 .name = "low", 6143 .flags = CFTYPE_NOT_ON_ROOT, 6144 .seq_show = memory_low_show, 6145 .write = memory_low_write, 6146 }, 6147 { 6148 .name = "high", 6149 .flags = CFTYPE_NOT_ON_ROOT, 6150 .seq_show = memory_high_show, 6151 .write = memory_high_write, 6152 }, 6153 { 6154 .name = "max", 6155 .flags = CFTYPE_NOT_ON_ROOT, 6156 .seq_show = memory_max_show, 6157 .write = memory_max_write, 6158 }, 6159 { 6160 .name = "events", 6161 .flags = CFTYPE_NOT_ON_ROOT, 6162 .file_offset = offsetof(struct mem_cgroup, events_file), 6163 .seq_show = memory_events_show, 6164 }, 6165 { 6166 .name = "events.local", 6167 .flags = CFTYPE_NOT_ON_ROOT, 6168 .file_offset = offsetof(struct mem_cgroup, events_local_file), 6169 .seq_show = memory_events_local_show, 6170 }, 6171 { 6172 .name = "stat", 6173 .flags = CFTYPE_NOT_ON_ROOT, 6174 .seq_show = memory_stat_show, 6175 }, 6176 { 6177 .name = "oom.group", 6178 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE, 6179 .seq_show = memory_oom_group_show, 6180 .write = memory_oom_group_write, 6181 }, 6182 { } /* terminate */ 6183 }; 6184 6185 struct cgroup_subsys memory_cgrp_subsys = { 6186 .css_alloc = mem_cgroup_css_alloc, 6187 .css_online = mem_cgroup_css_online, 6188 .css_offline = mem_cgroup_css_offline, 6189 .css_released = mem_cgroup_css_released, 6190 .css_free = mem_cgroup_css_free, 6191 .css_reset = mem_cgroup_css_reset, 6192 .can_attach = mem_cgroup_can_attach, 6193 .cancel_attach = mem_cgroup_cancel_attach, 6194 .post_attach = mem_cgroup_move_task, 6195 .bind = mem_cgroup_bind, 6196 .dfl_cftypes = memory_files, 6197 .legacy_cftypes = mem_cgroup_legacy_files, 6198 .early_init = 0, 6199 }; 6200 6201 /** 6202 * mem_cgroup_protected - check if memory consumption is in the normal range 6203 * @root: the top ancestor of the sub-tree being checked 6204 * @memcg: the memory cgroup to check 6205 * 6206 * WARNING: This function is not stateless! It can only be used as part 6207 * of a top-down tree iteration, not for isolated queries. 6208 * 6209 * Returns one of the following: 6210 * MEMCG_PROT_NONE: cgroup memory is not protected 6211 * MEMCG_PROT_LOW: cgroup memory is protected as long there is 6212 * an unprotected supply of reclaimable memory from other cgroups. 6213 * MEMCG_PROT_MIN: cgroup memory is protected 6214 * 6215 * @root is exclusive; it is never protected when looked at directly 6216 * 6217 * To provide a proper hierarchical behavior, effective memory.min/low values 6218 * are used. Below is the description of how effective memory.low is calculated. 6219 * Effective memory.min values is calculated in the same way. 6220 * 6221 * Effective memory.low is always equal or less than the original memory.low. 6222 * If there is no memory.low overcommittment (which is always true for 6223 * top-level memory cgroups), these two values are equal. 6224 * Otherwise, it's a part of parent's effective memory.low, 6225 * calculated as a cgroup's memory.low usage divided by sum of sibling's 6226 * memory.low usages, where memory.low usage is the size of actually 6227 * protected memory. 6228 * 6229 * low_usage 6230 * elow = min( memory.low, parent->elow * ------------------ ), 6231 * siblings_low_usage 6232 * 6233 * | memory.current, if memory.current < memory.low 6234 * low_usage = | 6235 * | 0, otherwise. 6236 * 6237 * 6238 * Such definition of the effective memory.low provides the expected 6239 * hierarchical behavior: parent's memory.low value is limiting 6240 * children, unprotected memory is reclaimed first and cgroups, 6241 * which are not using their guarantee do not affect actual memory 6242 * distribution. 6243 * 6244 * For example, if there are memcgs A, A/B, A/C, A/D and A/E: 6245 * 6246 * A A/memory.low = 2G, A/memory.current = 6G 6247 * //\\ 6248 * BC DE B/memory.low = 3G B/memory.current = 2G 6249 * C/memory.low = 1G C/memory.current = 2G 6250 * D/memory.low = 0 D/memory.current = 2G 6251 * E/memory.low = 10G E/memory.current = 0 6252 * 6253 * and the memory pressure is applied, the following memory distribution 6254 * is expected (approximately): 6255 * 6256 * A/memory.current = 2G 6257 * 6258 * B/memory.current = 1.3G 6259 * C/memory.current = 0.6G 6260 * D/memory.current = 0 6261 * E/memory.current = 0 6262 * 6263 * These calculations require constant tracking of the actual low usages 6264 * (see propagate_protected_usage()), as well as recursive calculation of 6265 * effective memory.low values. But as we do call mem_cgroup_protected() 6266 * path for each memory cgroup top-down from the reclaim, 6267 * it's possible to optimize this part, and save calculated elow 6268 * for next usage. This part is intentionally racy, but it's ok, 6269 * as memory.low is a best-effort mechanism. 6270 */ 6271 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root, 6272 struct mem_cgroup *memcg) 6273 { 6274 struct mem_cgroup *parent; 6275 unsigned long emin, parent_emin; 6276 unsigned long elow, parent_elow; 6277 unsigned long usage; 6278 6279 if (mem_cgroup_disabled()) 6280 return MEMCG_PROT_NONE; 6281 6282 if (!root) 6283 root = root_mem_cgroup; 6284 if (memcg == root) 6285 return MEMCG_PROT_NONE; 6286 6287 usage = page_counter_read(&memcg->memory); 6288 if (!usage) 6289 return MEMCG_PROT_NONE; 6290 6291 emin = memcg->memory.min; 6292 elow = memcg->memory.low; 6293 6294 parent = parent_mem_cgroup(memcg); 6295 /* No parent means a non-hierarchical mode on v1 memcg */ 6296 if (!parent) 6297 return MEMCG_PROT_NONE; 6298 6299 if (parent == root) 6300 goto exit; 6301 6302 parent_emin = READ_ONCE(parent->memory.emin); 6303 emin = min(emin, parent_emin); 6304 if (emin && parent_emin) { 6305 unsigned long min_usage, siblings_min_usage; 6306 6307 min_usage = min(usage, memcg->memory.min); 6308 siblings_min_usage = atomic_long_read( 6309 &parent->memory.children_min_usage); 6310 6311 if (min_usage && siblings_min_usage) 6312 emin = min(emin, parent_emin * min_usage / 6313 siblings_min_usage); 6314 } 6315 6316 parent_elow = READ_ONCE(parent->memory.elow); 6317 elow = min(elow, parent_elow); 6318 if (elow && parent_elow) { 6319 unsigned long low_usage, siblings_low_usage; 6320 6321 low_usage = min(usage, memcg->memory.low); 6322 siblings_low_usage = atomic_long_read( 6323 &parent->memory.children_low_usage); 6324 6325 if (low_usage && siblings_low_usage) 6326 elow = min(elow, parent_elow * low_usage / 6327 siblings_low_usage); 6328 } 6329 6330 exit: 6331 memcg->memory.emin = emin; 6332 memcg->memory.elow = elow; 6333 6334 if (usage <= emin) 6335 return MEMCG_PROT_MIN; 6336 else if (usage <= elow) 6337 return MEMCG_PROT_LOW; 6338 else 6339 return MEMCG_PROT_NONE; 6340 } 6341 6342 /** 6343 * mem_cgroup_try_charge - try charging a page 6344 * @page: page to charge 6345 * @mm: mm context of the victim 6346 * @gfp_mask: reclaim mode 6347 * @memcgp: charged memcg return 6348 * @compound: charge the page as compound or small page 6349 * 6350 * Try to charge @page to the memcg that @mm belongs to, reclaiming 6351 * pages according to @gfp_mask if necessary. 6352 * 6353 * Returns 0 on success, with *@memcgp pointing to the charged memcg. 6354 * Otherwise, an error code is returned. 6355 * 6356 * After page->mapping has been set up, the caller must finalize the 6357 * charge with mem_cgroup_commit_charge(). Or abort the transaction 6358 * with mem_cgroup_cancel_charge() in case page instantiation fails. 6359 */ 6360 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, 6361 gfp_t gfp_mask, struct mem_cgroup **memcgp, 6362 bool compound) 6363 { 6364 struct mem_cgroup *memcg = NULL; 6365 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 6366 int ret = 0; 6367 6368 if (mem_cgroup_disabled()) 6369 goto out; 6370 6371 if (PageSwapCache(page)) { 6372 /* 6373 * Every swap fault against a single page tries to charge the 6374 * page, bail as early as possible. shmem_unuse() encounters 6375 * already charged pages, too. The USED bit is protected by 6376 * the page lock, which serializes swap cache removal, which 6377 * in turn serializes uncharging. 6378 */ 6379 VM_BUG_ON_PAGE(!PageLocked(page), page); 6380 if (compound_head(page)->mem_cgroup) 6381 goto out; 6382 6383 if (do_swap_account) { 6384 swp_entry_t ent = { .val = page_private(page), }; 6385 unsigned short id = lookup_swap_cgroup_id(ent); 6386 6387 rcu_read_lock(); 6388 memcg = mem_cgroup_from_id(id); 6389 if (memcg && !css_tryget_online(&memcg->css)) 6390 memcg = NULL; 6391 rcu_read_unlock(); 6392 } 6393 } 6394 6395 if (!memcg) 6396 memcg = get_mem_cgroup_from_mm(mm); 6397 6398 ret = try_charge(memcg, gfp_mask, nr_pages); 6399 6400 css_put(&memcg->css); 6401 out: 6402 *memcgp = memcg; 6403 return ret; 6404 } 6405 6406 int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm, 6407 gfp_t gfp_mask, struct mem_cgroup **memcgp, 6408 bool compound) 6409 { 6410 struct mem_cgroup *memcg; 6411 int ret; 6412 6413 ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound); 6414 memcg = *memcgp; 6415 mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask); 6416 return ret; 6417 } 6418 6419 /** 6420 * mem_cgroup_commit_charge - commit a page charge 6421 * @page: page to charge 6422 * @memcg: memcg to charge the page to 6423 * @lrucare: page might be on LRU already 6424 * @compound: charge the page as compound or small page 6425 * 6426 * Finalize a charge transaction started by mem_cgroup_try_charge(), 6427 * after page->mapping has been set up. This must happen atomically 6428 * as part of the page instantiation, i.e. under the page table lock 6429 * for anonymous pages, under the page lock for page and swap cache. 6430 * 6431 * In addition, the page must not be on the LRU during the commit, to 6432 * prevent racing with task migration. If it might be, use @lrucare. 6433 * 6434 * Use mem_cgroup_cancel_charge() to cancel the transaction instead. 6435 */ 6436 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg, 6437 bool lrucare, bool compound) 6438 { 6439 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 6440 6441 VM_BUG_ON_PAGE(!page->mapping, page); 6442 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page); 6443 6444 if (mem_cgroup_disabled()) 6445 return; 6446 /* 6447 * Swap faults will attempt to charge the same page multiple 6448 * times. But reuse_swap_page() might have removed the page 6449 * from swapcache already, so we can't check PageSwapCache(). 6450 */ 6451 if (!memcg) 6452 return; 6453 6454 commit_charge(page, memcg, lrucare); 6455 6456 local_irq_disable(); 6457 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages); 6458 memcg_check_events(memcg, page); 6459 local_irq_enable(); 6460 6461 if (do_memsw_account() && PageSwapCache(page)) { 6462 swp_entry_t entry = { .val = page_private(page) }; 6463 /* 6464 * The swap entry might not get freed for a long time, 6465 * let's not wait for it. The page already received a 6466 * memory+swap charge, drop the swap entry duplicate. 6467 */ 6468 mem_cgroup_uncharge_swap(entry, nr_pages); 6469 } 6470 } 6471 6472 /** 6473 * mem_cgroup_cancel_charge - cancel a page charge 6474 * @page: page to charge 6475 * @memcg: memcg to charge the page to 6476 * @compound: charge the page as compound or small page 6477 * 6478 * Cancel a charge transaction started by mem_cgroup_try_charge(). 6479 */ 6480 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg, 6481 bool compound) 6482 { 6483 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1; 6484 6485 if (mem_cgroup_disabled()) 6486 return; 6487 /* 6488 * Swap faults will attempt to charge the same page multiple 6489 * times. But reuse_swap_page() might have removed the page 6490 * from swapcache already, so we can't check PageSwapCache(). 6491 */ 6492 if (!memcg) 6493 return; 6494 6495 cancel_charge(memcg, nr_pages); 6496 } 6497 6498 struct uncharge_gather { 6499 struct mem_cgroup *memcg; 6500 unsigned long pgpgout; 6501 unsigned long nr_anon; 6502 unsigned long nr_file; 6503 unsigned long nr_kmem; 6504 unsigned long nr_huge; 6505 unsigned long nr_shmem; 6506 struct page *dummy_page; 6507 }; 6508 6509 static inline void uncharge_gather_clear(struct uncharge_gather *ug) 6510 { 6511 memset(ug, 0, sizeof(*ug)); 6512 } 6513 6514 static void uncharge_batch(const struct uncharge_gather *ug) 6515 { 6516 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem; 6517 unsigned long flags; 6518 6519 if (!mem_cgroup_is_root(ug->memcg)) { 6520 page_counter_uncharge(&ug->memcg->memory, nr_pages); 6521 if (do_memsw_account()) 6522 page_counter_uncharge(&ug->memcg->memsw, nr_pages); 6523 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem) 6524 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem); 6525 memcg_oom_recover(ug->memcg); 6526 } 6527 6528 local_irq_save(flags); 6529 __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon); 6530 __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file); 6531 __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge); 6532 __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem); 6533 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout); 6534 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, nr_pages); 6535 memcg_check_events(ug->memcg, ug->dummy_page); 6536 local_irq_restore(flags); 6537 6538 if (!mem_cgroup_is_root(ug->memcg)) 6539 css_put_many(&ug->memcg->css, nr_pages); 6540 } 6541 6542 static void uncharge_page(struct page *page, struct uncharge_gather *ug) 6543 { 6544 VM_BUG_ON_PAGE(PageLRU(page), page); 6545 VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) && 6546 !PageHWPoison(page) , page); 6547 6548 if (!page->mem_cgroup) 6549 return; 6550 6551 /* 6552 * Nobody should be changing or seriously looking at 6553 * page->mem_cgroup at this point, we have fully 6554 * exclusive access to the page. 6555 */ 6556 6557 if (ug->memcg != page->mem_cgroup) { 6558 if (ug->memcg) { 6559 uncharge_batch(ug); 6560 uncharge_gather_clear(ug); 6561 } 6562 ug->memcg = page->mem_cgroup; 6563 } 6564 6565 if (!PageKmemcg(page)) { 6566 unsigned int nr_pages = 1; 6567 6568 if (PageTransHuge(page)) { 6569 nr_pages = compound_nr(page); 6570 ug->nr_huge += nr_pages; 6571 } 6572 if (PageAnon(page)) 6573 ug->nr_anon += nr_pages; 6574 else { 6575 ug->nr_file += nr_pages; 6576 if (PageSwapBacked(page)) 6577 ug->nr_shmem += nr_pages; 6578 } 6579 ug->pgpgout++; 6580 } else { 6581 ug->nr_kmem += compound_nr(page); 6582 __ClearPageKmemcg(page); 6583 } 6584 6585 ug->dummy_page = page; 6586 page->mem_cgroup = NULL; 6587 } 6588 6589 static void uncharge_list(struct list_head *page_list) 6590 { 6591 struct uncharge_gather ug; 6592 struct list_head *next; 6593 6594 uncharge_gather_clear(&ug); 6595 6596 /* 6597 * Note that the list can be a single page->lru; hence the 6598 * do-while loop instead of a simple list_for_each_entry(). 6599 */ 6600 next = page_list->next; 6601 do { 6602 struct page *page; 6603 6604 page = list_entry(next, struct page, lru); 6605 next = page->lru.next; 6606 6607 uncharge_page(page, &ug); 6608 } while (next != page_list); 6609 6610 if (ug.memcg) 6611 uncharge_batch(&ug); 6612 } 6613 6614 /** 6615 * mem_cgroup_uncharge - uncharge a page 6616 * @page: page to uncharge 6617 * 6618 * Uncharge a page previously charged with mem_cgroup_try_charge() and 6619 * mem_cgroup_commit_charge(). 6620 */ 6621 void mem_cgroup_uncharge(struct page *page) 6622 { 6623 struct uncharge_gather ug; 6624 6625 if (mem_cgroup_disabled()) 6626 return; 6627 6628 /* Don't touch page->lru of any random page, pre-check: */ 6629 if (!page->mem_cgroup) 6630 return; 6631 6632 uncharge_gather_clear(&ug); 6633 uncharge_page(page, &ug); 6634 uncharge_batch(&ug); 6635 } 6636 6637 /** 6638 * mem_cgroup_uncharge_list - uncharge a list of page 6639 * @page_list: list of pages to uncharge 6640 * 6641 * Uncharge a list of pages previously charged with 6642 * mem_cgroup_try_charge() and mem_cgroup_commit_charge(). 6643 */ 6644 void mem_cgroup_uncharge_list(struct list_head *page_list) 6645 { 6646 if (mem_cgroup_disabled()) 6647 return; 6648 6649 if (!list_empty(page_list)) 6650 uncharge_list(page_list); 6651 } 6652 6653 /** 6654 * mem_cgroup_migrate - charge a page's replacement 6655 * @oldpage: currently circulating page 6656 * @newpage: replacement page 6657 * 6658 * Charge @newpage as a replacement page for @oldpage. @oldpage will 6659 * be uncharged upon free. 6660 * 6661 * Both pages must be locked, @newpage->mapping must be set up. 6662 */ 6663 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage) 6664 { 6665 struct mem_cgroup *memcg; 6666 unsigned int nr_pages; 6667 unsigned long flags; 6668 6669 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage); 6670 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); 6671 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage); 6672 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage), 6673 newpage); 6674 6675 if (mem_cgroup_disabled()) 6676 return; 6677 6678 /* Page cache replacement: new page already charged? */ 6679 if (newpage->mem_cgroup) 6680 return; 6681 6682 /* Swapcache readahead pages can get replaced before being charged */ 6683 memcg = oldpage->mem_cgroup; 6684 if (!memcg) 6685 return; 6686 6687 /* Force-charge the new page. The old one will be freed soon */ 6688 nr_pages = hpage_nr_pages(newpage); 6689 6690 page_counter_charge(&memcg->memory, nr_pages); 6691 if (do_memsw_account()) 6692 page_counter_charge(&memcg->memsw, nr_pages); 6693 css_get_many(&memcg->css, nr_pages); 6694 6695 commit_charge(newpage, memcg, false); 6696 6697 local_irq_save(flags); 6698 mem_cgroup_charge_statistics(memcg, newpage, PageTransHuge(newpage), 6699 nr_pages); 6700 memcg_check_events(memcg, newpage); 6701 local_irq_restore(flags); 6702 } 6703 6704 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key); 6705 EXPORT_SYMBOL(memcg_sockets_enabled_key); 6706 6707 void mem_cgroup_sk_alloc(struct sock *sk) 6708 { 6709 struct mem_cgroup *memcg; 6710 6711 if (!mem_cgroup_sockets_enabled) 6712 return; 6713 6714 /* Do not associate the sock with unrelated interrupted task's memcg. */ 6715 if (in_interrupt()) 6716 return; 6717 6718 rcu_read_lock(); 6719 memcg = mem_cgroup_from_task(current); 6720 if (memcg == root_mem_cgroup) 6721 goto out; 6722 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active) 6723 goto out; 6724 if (css_tryget_online(&memcg->css)) 6725 sk->sk_memcg = memcg; 6726 out: 6727 rcu_read_unlock(); 6728 } 6729 6730 void mem_cgroup_sk_free(struct sock *sk) 6731 { 6732 if (sk->sk_memcg) 6733 css_put(&sk->sk_memcg->css); 6734 } 6735 6736 /** 6737 * mem_cgroup_charge_skmem - charge socket memory 6738 * @memcg: memcg to charge 6739 * @nr_pages: number of pages to charge 6740 * 6741 * Charges @nr_pages to @memcg. Returns %true if the charge fit within 6742 * @memcg's configured limit, %false if the charge had to be forced. 6743 */ 6744 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 6745 { 6746 gfp_t gfp_mask = GFP_KERNEL; 6747 6748 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 6749 struct page_counter *fail; 6750 6751 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) { 6752 memcg->tcpmem_pressure = 0; 6753 return true; 6754 } 6755 page_counter_charge(&memcg->tcpmem, nr_pages); 6756 memcg->tcpmem_pressure = 1; 6757 return false; 6758 } 6759 6760 /* Don't block in the packet receive path */ 6761 if (in_softirq()) 6762 gfp_mask = GFP_NOWAIT; 6763 6764 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages); 6765 6766 if (try_charge(memcg, gfp_mask, nr_pages) == 0) 6767 return true; 6768 6769 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages); 6770 return false; 6771 } 6772 6773 /** 6774 * mem_cgroup_uncharge_skmem - uncharge socket memory 6775 * @memcg: memcg to uncharge 6776 * @nr_pages: number of pages to uncharge 6777 */ 6778 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages) 6779 { 6780 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) { 6781 page_counter_uncharge(&memcg->tcpmem, nr_pages); 6782 return; 6783 } 6784 6785 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages); 6786 6787 refill_stock(memcg, nr_pages); 6788 } 6789 6790 static int __init cgroup_memory(char *s) 6791 { 6792 char *token; 6793 6794 while ((token = strsep(&s, ",")) != NULL) { 6795 if (!*token) 6796 continue; 6797 if (!strcmp(token, "nosocket")) 6798 cgroup_memory_nosocket = true; 6799 if (!strcmp(token, "nokmem")) 6800 cgroup_memory_nokmem = true; 6801 } 6802 return 0; 6803 } 6804 __setup("cgroup.memory=", cgroup_memory); 6805 6806 /* 6807 * subsys_initcall() for memory controller. 6808 * 6809 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this 6810 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but 6811 * basically everything that doesn't depend on a specific mem_cgroup structure 6812 * should be initialized from here. 6813 */ 6814 static int __init mem_cgroup_init(void) 6815 { 6816 int cpu, node; 6817 6818 #ifdef CONFIG_MEMCG_KMEM 6819 /* 6820 * Kmem cache creation is mostly done with the slab_mutex held, 6821 * so use a workqueue with limited concurrency to avoid stalling 6822 * all worker threads in case lots of cgroups are created and 6823 * destroyed simultaneously. 6824 */ 6825 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1); 6826 BUG_ON(!memcg_kmem_cache_wq); 6827 #endif 6828 6829 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL, 6830 memcg_hotplug_cpu_dead); 6831 6832 for_each_possible_cpu(cpu) 6833 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work, 6834 drain_local_stock); 6835 6836 for_each_node(node) { 6837 struct mem_cgroup_tree_per_node *rtpn; 6838 6839 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, 6840 node_online(node) ? node : NUMA_NO_NODE); 6841 6842 rtpn->rb_root = RB_ROOT; 6843 rtpn->rb_rightmost = NULL; 6844 spin_lock_init(&rtpn->lock); 6845 soft_limit_tree.rb_tree_per_node[node] = rtpn; 6846 } 6847 6848 return 0; 6849 } 6850 subsys_initcall(mem_cgroup_init); 6851 6852 #ifdef CONFIG_MEMCG_SWAP 6853 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg) 6854 { 6855 while (!refcount_inc_not_zero(&memcg->id.ref)) { 6856 /* 6857 * The root cgroup cannot be destroyed, so it's refcount must 6858 * always be >= 1. 6859 */ 6860 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) { 6861 VM_BUG_ON(1); 6862 break; 6863 } 6864 memcg = parent_mem_cgroup(memcg); 6865 if (!memcg) 6866 memcg = root_mem_cgroup; 6867 } 6868 return memcg; 6869 } 6870 6871 /** 6872 * mem_cgroup_swapout - transfer a memsw charge to swap 6873 * @page: page whose memsw charge to transfer 6874 * @entry: swap entry to move the charge to 6875 * 6876 * Transfer the memsw charge of @page to @entry. 6877 */ 6878 void mem_cgroup_swapout(struct page *page, swp_entry_t entry) 6879 { 6880 struct mem_cgroup *memcg, *swap_memcg; 6881 unsigned int nr_entries; 6882 unsigned short oldid; 6883 6884 VM_BUG_ON_PAGE(PageLRU(page), page); 6885 VM_BUG_ON_PAGE(page_count(page), page); 6886 6887 if (!do_memsw_account()) 6888 return; 6889 6890 memcg = page->mem_cgroup; 6891 6892 /* Readahead page, never charged */ 6893 if (!memcg) 6894 return; 6895 6896 /* 6897 * In case the memcg owning these pages has been offlined and doesn't 6898 * have an ID allocated to it anymore, charge the closest online 6899 * ancestor for the swap instead and transfer the memory+swap charge. 6900 */ 6901 swap_memcg = mem_cgroup_id_get_online(memcg); 6902 nr_entries = hpage_nr_pages(page); 6903 /* Get references for the tail pages, too */ 6904 if (nr_entries > 1) 6905 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1); 6906 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg), 6907 nr_entries); 6908 VM_BUG_ON_PAGE(oldid, page); 6909 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries); 6910 6911 page->mem_cgroup = NULL; 6912 6913 if (!mem_cgroup_is_root(memcg)) 6914 page_counter_uncharge(&memcg->memory, nr_entries); 6915 6916 if (memcg != swap_memcg) { 6917 if (!mem_cgroup_is_root(swap_memcg)) 6918 page_counter_charge(&swap_memcg->memsw, nr_entries); 6919 page_counter_uncharge(&memcg->memsw, nr_entries); 6920 } 6921 6922 /* 6923 * Interrupts should be disabled here because the caller holds the 6924 * i_pages lock which is taken with interrupts-off. It is 6925 * important here to have the interrupts disabled because it is the 6926 * only synchronisation we have for updating the per-CPU variables. 6927 */ 6928 VM_BUG_ON(!irqs_disabled()); 6929 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page), 6930 -nr_entries); 6931 memcg_check_events(memcg, page); 6932 6933 if (!mem_cgroup_is_root(memcg)) 6934 css_put_many(&memcg->css, nr_entries); 6935 } 6936 6937 /** 6938 * mem_cgroup_try_charge_swap - try charging swap space for a page 6939 * @page: page being added to swap 6940 * @entry: swap entry to charge 6941 * 6942 * Try to charge @page's memcg for the swap space at @entry. 6943 * 6944 * Returns 0 on success, -ENOMEM on failure. 6945 */ 6946 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry) 6947 { 6948 unsigned int nr_pages = hpage_nr_pages(page); 6949 struct page_counter *counter; 6950 struct mem_cgroup *memcg; 6951 unsigned short oldid; 6952 6953 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account) 6954 return 0; 6955 6956 memcg = page->mem_cgroup; 6957 6958 /* Readahead page, never charged */ 6959 if (!memcg) 6960 return 0; 6961 6962 if (!entry.val) { 6963 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 6964 return 0; 6965 } 6966 6967 memcg = mem_cgroup_id_get_online(memcg); 6968 6969 if (!mem_cgroup_is_root(memcg) && 6970 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) { 6971 memcg_memory_event(memcg, MEMCG_SWAP_MAX); 6972 memcg_memory_event(memcg, MEMCG_SWAP_FAIL); 6973 mem_cgroup_id_put(memcg); 6974 return -ENOMEM; 6975 } 6976 6977 /* Get references for the tail pages, too */ 6978 if (nr_pages > 1) 6979 mem_cgroup_id_get_many(memcg, nr_pages - 1); 6980 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages); 6981 VM_BUG_ON_PAGE(oldid, page); 6982 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages); 6983 6984 return 0; 6985 } 6986 6987 /** 6988 * mem_cgroup_uncharge_swap - uncharge swap space 6989 * @entry: swap entry to uncharge 6990 * @nr_pages: the amount of swap space to uncharge 6991 */ 6992 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages) 6993 { 6994 struct mem_cgroup *memcg; 6995 unsigned short id; 6996 6997 if (!do_swap_account) 6998 return; 6999 7000 id = swap_cgroup_record(entry, 0, nr_pages); 7001 rcu_read_lock(); 7002 memcg = mem_cgroup_from_id(id); 7003 if (memcg) { 7004 if (!mem_cgroup_is_root(memcg)) { 7005 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7006 page_counter_uncharge(&memcg->swap, nr_pages); 7007 else 7008 page_counter_uncharge(&memcg->memsw, nr_pages); 7009 } 7010 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages); 7011 mem_cgroup_id_put_many(memcg, nr_pages); 7012 } 7013 rcu_read_unlock(); 7014 } 7015 7016 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg) 7017 { 7018 long nr_swap_pages = get_nr_swap_pages(); 7019 7020 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7021 return nr_swap_pages; 7022 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) 7023 nr_swap_pages = min_t(long, nr_swap_pages, 7024 READ_ONCE(memcg->swap.max) - 7025 page_counter_read(&memcg->swap)); 7026 return nr_swap_pages; 7027 } 7028 7029 bool mem_cgroup_swap_full(struct page *page) 7030 { 7031 struct mem_cgroup *memcg; 7032 7033 VM_BUG_ON_PAGE(!PageLocked(page), page); 7034 7035 if (vm_swap_full()) 7036 return true; 7037 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys)) 7038 return false; 7039 7040 memcg = page->mem_cgroup; 7041 if (!memcg) 7042 return false; 7043 7044 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) 7045 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max) 7046 return true; 7047 7048 return false; 7049 } 7050 7051 /* for remember boot option*/ 7052 #ifdef CONFIG_MEMCG_SWAP_ENABLED 7053 static int really_do_swap_account __initdata = 1; 7054 #else 7055 static int really_do_swap_account __initdata; 7056 #endif 7057 7058 static int __init enable_swap_account(char *s) 7059 { 7060 if (!strcmp(s, "1")) 7061 really_do_swap_account = 1; 7062 else if (!strcmp(s, "0")) 7063 really_do_swap_account = 0; 7064 return 1; 7065 } 7066 __setup("swapaccount=", enable_swap_account); 7067 7068 static u64 swap_current_read(struct cgroup_subsys_state *css, 7069 struct cftype *cft) 7070 { 7071 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 7072 7073 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE; 7074 } 7075 7076 static int swap_max_show(struct seq_file *m, void *v) 7077 { 7078 return seq_puts_memcg_tunable(m, 7079 READ_ONCE(mem_cgroup_from_seq(m)->swap.max)); 7080 } 7081 7082 static ssize_t swap_max_write(struct kernfs_open_file *of, 7083 char *buf, size_t nbytes, loff_t off) 7084 { 7085 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 7086 unsigned long max; 7087 int err; 7088 7089 buf = strstrip(buf); 7090 err = page_counter_memparse(buf, "max", &max); 7091 if (err) 7092 return err; 7093 7094 xchg(&memcg->swap.max, max); 7095 7096 return nbytes; 7097 } 7098 7099 static int swap_events_show(struct seq_file *m, void *v) 7100 { 7101 struct mem_cgroup *memcg = mem_cgroup_from_seq(m); 7102 7103 seq_printf(m, "max %lu\n", 7104 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX])); 7105 seq_printf(m, "fail %lu\n", 7106 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL])); 7107 7108 return 0; 7109 } 7110 7111 static struct cftype swap_files[] = { 7112 { 7113 .name = "swap.current", 7114 .flags = CFTYPE_NOT_ON_ROOT, 7115 .read_u64 = swap_current_read, 7116 }, 7117 { 7118 .name = "swap.max", 7119 .flags = CFTYPE_NOT_ON_ROOT, 7120 .seq_show = swap_max_show, 7121 .write = swap_max_write, 7122 }, 7123 { 7124 .name = "swap.events", 7125 .flags = CFTYPE_NOT_ON_ROOT, 7126 .file_offset = offsetof(struct mem_cgroup, swap_events_file), 7127 .seq_show = swap_events_show, 7128 }, 7129 { } /* terminate */ 7130 }; 7131 7132 static struct cftype memsw_cgroup_files[] = { 7133 { 7134 .name = "memsw.usage_in_bytes", 7135 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 7136 .read_u64 = mem_cgroup_read_u64, 7137 }, 7138 { 7139 .name = "memsw.max_usage_in_bytes", 7140 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 7141 .write = mem_cgroup_reset, 7142 .read_u64 = mem_cgroup_read_u64, 7143 }, 7144 { 7145 .name = "memsw.limit_in_bytes", 7146 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 7147 .write = mem_cgroup_write, 7148 .read_u64 = mem_cgroup_read_u64, 7149 }, 7150 { 7151 .name = "memsw.failcnt", 7152 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 7153 .write = mem_cgroup_reset, 7154 .read_u64 = mem_cgroup_read_u64, 7155 }, 7156 { }, /* terminate */ 7157 }; 7158 7159 static int __init mem_cgroup_swap_init(void) 7160 { 7161 if (!mem_cgroup_disabled() && really_do_swap_account) { 7162 do_swap_account = 1; 7163 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, 7164 swap_files)); 7165 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, 7166 memsw_cgroup_files)); 7167 } 7168 return 0; 7169 } 7170 subsys_initcall(mem_cgroup_swap_init); 7171 7172 #endif /* CONFIG_MEMCG_SWAP */ 7173