xref: /openbmc/linux/mm/memcontrol.c (revision 2985bed6)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <xemul@openvz.org>
9  *
10  * Memory thresholds
11  * Copyright (C) 2009 Nokia Corporation
12  * Author: Kirill A. Shutemov
13  *
14  * Kernel Memory Controller
15  * Copyright (C) 2012 Parallels Inc. and Google Inc.
16  * Authors: Glauber Costa and Suleiman Souhlal
17  *
18  * Native page reclaim
19  * Charge lifetime sanitation
20  * Lockless page tracking & accounting
21  * Unified hierarchy configuration model
22  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23  */
24 
25 #include <linux/page_counter.h>
26 #include <linux/memcontrol.h>
27 #include <linux/cgroup.h>
28 #include <linux/pagewalk.h>
29 #include <linux/sched/mm.h>
30 #include <linux/shmem_fs.h>
31 #include <linux/hugetlb.h>
32 #include <linux/pagemap.h>
33 #include <linux/vm_event_item.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
50 #include <linux/fs.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/swap_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include <linux/tracehook.h>
60 #include <linux/psi.h>
61 #include <linux/seq_buf.h>
62 #include "internal.h"
63 #include <net/sock.h>
64 #include <net/ip.h>
65 #include "slab.h"
66 
67 #include <linux/uaccess.h>
68 
69 #include <trace/events/vmscan.h>
70 
71 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
72 EXPORT_SYMBOL(memory_cgrp_subsys);
73 
74 struct mem_cgroup *root_mem_cgroup __read_mostly;
75 
76 #define MEM_CGROUP_RECLAIM_RETRIES	5
77 
78 /* Socket memory accounting disabled? */
79 static bool cgroup_memory_nosocket;
80 
81 /* Kernel memory accounting disabled? */
82 static bool cgroup_memory_nokmem;
83 
84 /* Whether the swap controller is active */
85 #ifdef CONFIG_MEMCG_SWAP
86 int do_swap_account __read_mostly;
87 #else
88 #define do_swap_account		0
89 #endif
90 
91 #ifdef CONFIG_CGROUP_WRITEBACK
92 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
93 #endif
94 
95 /* Whether legacy memory+swap accounting is active */
96 static bool do_memsw_account(void)
97 {
98 	return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99 }
100 
101 #define THRESHOLDS_EVENTS_TARGET 128
102 #define SOFTLIMIT_EVENTS_TARGET 1024
103 
104 /*
105  * Cgroups above their limits are maintained in a RB-Tree, independent of
106  * their hierarchy representation
107  */
108 
109 struct mem_cgroup_tree_per_node {
110 	struct rb_root rb_root;
111 	struct rb_node *rb_rightmost;
112 	spinlock_t lock;
113 };
114 
115 struct mem_cgroup_tree {
116 	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
117 };
118 
119 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
120 
121 /* for OOM */
122 struct mem_cgroup_eventfd_list {
123 	struct list_head list;
124 	struct eventfd_ctx *eventfd;
125 };
126 
127 /*
128  * cgroup_event represents events which userspace want to receive.
129  */
130 struct mem_cgroup_event {
131 	/*
132 	 * memcg which the event belongs to.
133 	 */
134 	struct mem_cgroup *memcg;
135 	/*
136 	 * eventfd to signal userspace about the event.
137 	 */
138 	struct eventfd_ctx *eventfd;
139 	/*
140 	 * Each of these stored in a list by the cgroup.
141 	 */
142 	struct list_head list;
143 	/*
144 	 * register_event() callback will be used to add new userspace
145 	 * waiter for changes related to this event.  Use eventfd_signal()
146 	 * on eventfd to send notification to userspace.
147 	 */
148 	int (*register_event)(struct mem_cgroup *memcg,
149 			      struct eventfd_ctx *eventfd, const char *args);
150 	/*
151 	 * unregister_event() callback will be called when userspace closes
152 	 * the eventfd or on cgroup removing.  This callback must be set,
153 	 * if you want provide notification functionality.
154 	 */
155 	void (*unregister_event)(struct mem_cgroup *memcg,
156 				 struct eventfd_ctx *eventfd);
157 	/*
158 	 * All fields below needed to unregister event when
159 	 * userspace closes eventfd.
160 	 */
161 	poll_table pt;
162 	wait_queue_head_t *wqh;
163 	wait_queue_entry_t wait;
164 	struct work_struct remove;
165 };
166 
167 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
168 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
169 
170 /* Stuffs for move charges at task migration. */
171 /*
172  * Types of charges to be moved.
173  */
174 #define MOVE_ANON	0x1U
175 #define MOVE_FILE	0x2U
176 #define MOVE_MASK	(MOVE_ANON | MOVE_FILE)
177 
178 /* "mc" and its members are protected by cgroup_mutex */
179 static struct move_charge_struct {
180 	spinlock_t	  lock; /* for from, to */
181 	struct mm_struct  *mm;
182 	struct mem_cgroup *from;
183 	struct mem_cgroup *to;
184 	unsigned long flags;
185 	unsigned long precharge;
186 	unsigned long moved_charge;
187 	unsigned long moved_swap;
188 	struct task_struct *moving_task;	/* a task moving charges */
189 	wait_queue_head_t waitq;		/* a waitq for other context */
190 } mc = {
191 	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
192 	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
193 };
194 
195 /*
196  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
197  * limit reclaim to prevent infinite loops, if they ever occur.
198  */
199 #define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
200 #define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
201 
202 enum charge_type {
203 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
204 	MEM_CGROUP_CHARGE_TYPE_ANON,
205 	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
206 	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
207 	NR_CHARGE_TYPE,
208 };
209 
210 /* for encoding cft->private value on file */
211 enum res_type {
212 	_MEM,
213 	_MEMSWAP,
214 	_OOM_TYPE,
215 	_KMEM,
216 	_TCP,
217 };
218 
219 #define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
220 #define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
221 #define MEMFILE_ATTR(val)	((val) & 0xffff)
222 /* Used for OOM nofiier */
223 #define OOM_CONTROL		(0)
224 
225 /*
226  * Iteration constructs for visiting all cgroups (under a tree).  If
227  * loops are exited prematurely (break), mem_cgroup_iter_break() must
228  * be used for reference counting.
229  */
230 #define for_each_mem_cgroup_tree(iter, root)		\
231 	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
232 	     iter != NULL;				\
233 	     iter = mem_cgroup_iter(root, iter, NULL))
234 
235 #define for_each_mem_cgroup(iter)			\
236 	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
237 	     iter != NULL;				\
238 	     iter = mem_cgroup_iter(NULL, iter, NULL))
239 
240 static inline bool should_force_charge(void)
241 {
242 	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
243 		(current->flags & PF_EXITING);
244 }
245 
246 /* Some nice accessors for the vmpressure. */
247 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
248 {
249 	if (!memcg)
250 		memcg = root_mem_cgroup;
251 	return &memcg->vmpressure;
252 }
253 
254 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
255 {
256 	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
257 }
258 
259 #ifdef CONFIG_MEMCG_KMEM
260 /*
261  * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
262  * The main reason for not using cgroup id for this:
263  *  this works better in sparse environments, where we have a lot of memcgs,
264  *  but only a few kmem-limited. Or also, if we have, for instance, 200
265  *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
266  *  200 entry array for that.
267  *
268  * The current size of the caches array is stored in memcg_nr_cache_ids. It
269  * will double each time we have to increase it.
270  */
271 static DEFINE_IDA(memcg_cache_ida);
272 int memcg_nr_cache_ids;
273 
274 /* Protects memcg_nr_cache_ids */
275 static DECLARE_RWSEM(memcg_cache_ids_sem);
276 
277 void memcg_get_cache_ids(void)
278 {
279 	down_read(&memcg_cache_ids_sem);
280 }
281 
282 void memcg_put_cache_ids(void)
283 {
284 	up_read(&memcg_cache_ids_sem);
285 }
286 
287 /*
288  * MIN_SIZE is different than 1, because we would like to avoid going through
289  * the alloc/free process all the time. In a small machine, 4 kmem-limited
290  * cgroups is a reasonable guess. In the future, it could be a parameter or
291  * tunable, but that is strictly not necessary.
292  *
293  * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
294  * this constant directly from cgroup, but it is understandable that this is
295  * better kept as an internal representation in cgroup.c. In any case, the
296  * cgrp_id space is not getting any smaller, and we don't have to necessarily
297  * increase ours as well if it increases.
298  */
299 #define MEMCG_CACHES_MIN_SIZE 4
300 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
301 
302 /*
303  * A lot of the calls to the cache allocation functions are expected to be
304  * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
305  * conditional to this static branch, we'll have to allow modules that does
306  * kmem_cache_alloc and the such to see this symbol as well
307  */
308 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
309 EXPORT_SYMBOL(memcg_kmem_enabled_key);
310 
311 struct workqueue_struct *memcg_kmem_cache_wq;
312 #endif
313 
314 static int memcg_shrinker_map_size;
315 static DEFINE_MUTEX(memcg_shrinker_map_mutex);
316 
317 static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
318 {
319 	kvfree(container_of(head, struct memcg_shrinker_map, rcu));
320 }
321 
322 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
323 					 int size, int old_size)
324 {
325 	struct memcg_shrinker_map *new, *old;
326 	int nid;
327 
328 	lockdep_assert_held(&memcg_shrinker_map_mutex);
329 
330 	for_each_node(nid) {
331 		old = rcu_dereference_protected(
332 			mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
333 		/* Not yet online memcg */
334 		if (!old)
335 			return 0;
336 
337 		new = kvmalloc(sizeof(*new) + size, GFP_KERNEL);
338 		if (!new)
339 			return -ENOMEM;
340 
341 		/* Set all old bits, clear all new bits */
342 		memset(new->map, (int)0xff, old_size);
343 		memset((void *)new->map + old_size, 0, size - old_size);
344 
345 		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
346 		call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
347 	}
348 
349 	return 0;
350 }
351 
352 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
353 {
354 	struct mem_cgroup_per_node *pn;
355 	struct memcg_shrinker_map *map;
356 	int nid;
357 
358 	if (mem_cgroup_is_root(memcg))
359 		return;
360 
361 	for_each_node(nid) {
362 		pn = mem_cgroup_nodeinfo(memcg, nid);
363 		map = rcu_dereference_protected(pn->shrinker_map, true);
364 		if (map)
365 			kvfree(map);
366 		rcu_assign_pointer(pn->shrinker_map, NULL);
367 	}
368 }
369 
370 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
371 {
372 	struct memcg_shrinker_map *map;
373 	int nid, size, ret = 0;
374 
375 	if (mem_cgroup_is_root(memcg))
376 		return 0;
377 
378 	mutex_lock(&memcg_shrinker_map_mutex);
379 	size = memcg_shrinker_map_size;
380 	for_each_node(nid) {
381 		map = kvzalloc(sizeof(*map) + size, GFP_KERNEL);
382 		if (!map) {
383 			memcg_free_shrinker_maps(memcg);
384 			ret = -ENOMEM;
385 			break;
386 		}
387 		rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
388 	}
389 	mutex_unlock(&memcg_shrinker_map_mutex);
390 
391 	return ret;
392 }
393 
394 int memcg_expand_shrinker_maps(int new_id)
395 {
396 	int size, old_size, ret = 0;
397 	struct mem_cgroup *memcg;
398 
399 	size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
400 	old_size = memcg_shrinker_map_size;
401 	if (size <= old_size)
402 		return 0;
403 
404 	mutex_lock(&memcg_shrinker_map_mutex);
405 	if (!root_mem_cgroup)
406 		goto unlock;
407 
408 	for_each_mem_cgroup(memcg) {
409 		if (mem_cgroup_is_root(memcg))
410 			continue;
411 		ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
412 		if (ret) {
413 			mem_cgroup_iter_break(NULL, memcg);
414 			goto unlock;
415 		}
416 	}
417 unlock:
418 	if (!ret)
419 		memcg_shrinker_map_size = size;
420 	mutex_unlock(&memcg_shrinker_map_mutex);
421 	return ret;
422 }
423 
424 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
425 {
426 	if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
427 		struct memcg_shrinker_map *map;
428 
429 		rcu_read_lock();
430 		map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
431 		/* Pairs with smp mb in shrink_slab() */
432 		smp_mb__before_atomic();
433 		set_bit(shrinker_id, map->map);
434 		rcu_read_unlock();
435 	}
436 }
437 
438 /**
439  * mem_cgroup_css_from_page - css of the memcg associated with a page
440  * @page: page of interest
441  *
442  * If memcg is bound to the default hierarchy, css of the memcg associated
443  * with @page is returned.  The returned css remains associated with @page
444  * until it is released.
445  *
446  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
447  * is returned.
448  */
449 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
450 {
451 	struct mem_cgroup *memcg;
452 
453 	memcg = page->mem_cgroup;
454 
455 	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
456 		memcg = root_mem_cgroup;
457 
458 	return &memcg->css;
459 }
460 
461 /**
462  * page_cgroup_ino - return inode number of the memcg a page is charged to
463  * @page: the page
464  *
465  * Look up the closest online ancestor of the memory cgroup @page is charged to
466  * and return its inode number or 0 if @page is not charged to any cgroup. It
467  * is safe to call this function without holding a reference to @page.
468  *
469  * Note, this function is inherently racy, because there is nothing to prevent
470  * the cgroup inode from getting torn down and potentially reallocated a moment
471  * after page_cgroup_ino() returns, so it only should be used by callers that
472  * do not care (such as procfs interfaces).
473  */
474 ino_t page_cgroup_ino(struct page *page)
475 {
476 	struct mem_cgroup *memcg;
477 	unsigned long ino = 0;
478 
479 	rcu_read_lock();
480 	if (PageSlab(page) && !PageTail(page))
481 		memcg = memcg_from_slab_page(page);
482 	else
483 		memcg = READ_ONCE(page->mem_cgroup);
484 	while (memcg && !(memcg->css.flags & CSS_ONLINE))
485 		memcg = parent_mem_cgroup(memcg);
486 	if (memcg)
487 		ino = cgroup_ino(memcg->css.cgroup);
488 	rcu_read_unlock();
489 	return ino;
490 }
491 
492 static struct mem_cgroup_per_node *
493 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
494 {
495 	int nid = page_to_nid(page);
496 
497 	return memcg->nodeinfo[nid];
498 }
499 
500 static struct mem_cgroup_tree_per_node *
501 soft_limit_tree_node(int nid)
502 {
503 	return soft_limit_tree.rb_tree_per_node[nid];
504 }
505 
506 static struct mem_cgroup_tree_per_node *
507 soft_limit_tree_from_page(struct page *page)
508 {
509 	int nid = page_to_nid(page);
510 
511 	return soft_limit_tree.rb_tree_per_node[nid];
512 }
513 
514 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
515 					 struct mem_cgroup_tree_per_node *mctz,
516 					 unsigned long new_usage_in_excess)
517 {
518 	struct rb_node **p = &mctz->rb_root.rb_node;
519 	struct rb_node *parent = NULL;
520 	struct mem_cgroup_per_node *mz_node;
521 	bool rightmost = true;
522 
523 	if (mz->on_tree)
524 		return;
525 
526 	mz->usage_in_excess = new_usage_in_excess;
527 	if (!mz->usage_in_excess)
528 		return;
529 	while (*p) {
530 		parent = *p;
531 		mz_node = rb_entry(parent, struct mem_cgroup_per_node,
532 					tree_node);
533 		if (mz->usage_in_excess < mz_node->usage_in_excess) {
534 			p = &(*p)->rb_left;
535 			rightmost = false;
536 		}
537 
538 		/*
539 		 * We can't avoid mem cgroups that are over their soft
540 		 * limit by the same amount
541 		 */
542 		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
543 			p = &(*p)->rb_right;
544 	}
545 
546 	if (rightmost)
547 		mctz->rb_rightmost = &mz->tree_node;
548 
549 	rb_link_node(&mz->tree_node, parent, p);
550 	rb_insert_color(&mz->tree_node, &mctz->rb_root);
551 	mz->on_tree = true;
552 }
553 
554 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
555 					 struct mem_cgroup_tree_per_node *mctz)
556 {
557 	if (!mz->on_tree)
558 		return;
559 
560 	if (&mz->tree_node == mctz->rb_rightmost)
561 		mctz->rb_rightmost = rb_prev(&mz->tree_node);
562 
563 	rb_erase(&mz->tree_node, &mctz->rb_root);
564 	mz->on_tree = false;
565 }
566 
567 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
568 				       struct mem_cgroup_tree_per_node *mctz)
569 {
570 	unsigned long flags;
571 
572 	spin_lock_irqsave(&mctz->lock, flags);
573 	__mem_cgroup_remove_exceeded(mz, mctz);
574 	spin_unlock_irqrestore(&mctz->lock, flags);
575 }
576 
577 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
578 {
579 	unsigned long nr_pages = page_counter_read(&memcg->memory);
580 	unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
581 	unsigned long excess = 0;
582 
583 	if (nr_pages > soft_limit)
584 		excess = nr_pages - soft_limit;
585 
586 	return excess;
587 }
588 
589 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
590 {
591 	unsigned long excess;
592 	struct mem_cgroup_per_node *mz;
593 	struct mem_cgroup_tree_per_node *mctz;
594 
595 	mctz = soft_limit_tree_from_page(page);
596 	if (!mctz)
597 		return;
598 	/*
599 	 * Necessary to update all ancestors when hierarchy is used.
600 	 * because their event counter is not touched.
601 	 */
602 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
603 		mz = mem_cgroup_page_nodeinfo(memcg, page);
604 		excess = soft_limit_excess(memcg);
605 		/*
606 		 * We have to update the tree if mz is on RB-tree or
607 		 * mem is over its softlimit.
608 		 */
609 		if (excess || mz->on_tree) {
610 			unsigned long flags;
611 
612 			spin_lock_irqsave(&mctz->lock, flags);
613 			/* if on-tree, remove it */
614 			if (mz->on_tree)
615 				__mem_cgroup_remove_exceeded(mz, mctz);
616 			/*
617 			 * Insert again. mz->usage_in_excess will be updated.
618 			 * If excess is 0, no tree ops.
619 			 */
620 			__mem_cgroup_insert_exceeded(mz, mctz, excess);
621 			spin_unlock_irqrestore(&mctz->lock, flags);
622 		}
623 	}
624 }
625 
626 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
627 {
628 	struct mem_cgroup_tree_per_node *mctz;
629 	struct mem_cgroup_per_node *mz;
630 	int nid;
631 
632 	for_each_node(nid) {
633 		mz = mem_cgroup_nodeinfo(memcg, nid);
634 		mctz = soft_limit_tree_node(nid);
635 		if (mctz)
636 			mem_cgroup_remove_exceeded(mz, mctz);
637 	}
638 }
639 
640 static struct mem_cgroup_per_node *
641 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
642 {
643 	struct mem_cgroup_per_node *mz;
644 
645 retry:
646 	mz = NULL;
647 	if (!mctz->rb_rightmost)
648 		goto done;		/* Nothing to reclaim from */
649 
650 	mz = rb_entry(mctz->rb_rightmost,
651 		      struct mem_cgroup_per_node, tree_node);
652 	/*
653 	 * Remove the node now but someone else can add it back,
654 	 * we will to add it back at the end of reclaim to its correct
655 	 * position in the tree.
656 	 */
657 	__mem_cgroup_remove_exceeded(mz, mctz);
658 	if (!soft_limit_excess(mz->memcg) ||
659 	    !css_tryget_online(&mz->memcg->css))
660 		goto retry;
661 done:
662 	return mz;
663 }
664 
665 static struct mem_cgroup_per_node *
666 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
667 {
668 	struct mem_cgroup_per_node *mz;
669 
670 	spin_lock_irq(&mctz->lock);
671 	mz = __mem_cgroup_largest_soft_limit_node(mctz);
672 	spin_unlock_irq(&mctz->lock);
673 	return mz;
674 }
675 
676 /**
677  * __mod_memcg_state - update cgroup memory statistics
678  * @memcg: the memory cgroup
679  * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
680  * @val: delta to add to the counter, can be negative
681  */
682 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
683 {
684 	long x;
685 
686 	if (mem_cgroup_disabled())
687 		return;
688 
689 	x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
690 	if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
691 		struct mem_cgroup *mi;
692 
693 		/*
694 		 * Batch local counters to keep them in sync with
695 		 * the hierarchical ones.
696 		 */
697 		__this_cpu_add(memcg->vmstats_local->stat[idx], x);
698 		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
699 			atomic_long_add(x, &mi->vmstats[idx]);
700 		x = 0;
701 	}
702 	__this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
703 }
704 
705 static struct mem_cgroup_per_node *
706 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
707 {
708 	struct mem_cgroup *parent;
709 
710 	parent = parent_mem_cgroup(pn->memcg);
711 	if (!parent)
712 		return NULL;
713 	return mem_cgroup_nodeinfo(parent, nid);
714 }
715 
716 /**
717  * __mod_lruvec_state - update lruvec memory statistics
718  * @lruvec: the lruvec
719  * @idx: the stat item
720  * @val: delta to add to the counter, can be negative
721  *
722  * The lruvec is the intersection of the NUMA node and a cgroup. This
723  * function updates the all three counters that are affected by a
724  * change of state at this level: per-node, per-cgroup, per-lruvec.
725  */
726 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
727 			int val)
728 {
729 	pg_data_t *pgdat = lruvec_pgdat(lruvec);
730 	struct mem_cgroup_per_node *pn;
731 	struct mem_cgroup *memcg;
732 	long x;
733 
734 	/* Update node */
735 	__mod_node_page_state(pgdat, idx, val);
736 
737 	if (mem_cgroup_disabled())
738 		return;
739 
740 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
741 	memcg = pn->memcg;
742 
743 	/* Update memcg */
744 	__mod_memcg_state(memcg, idx, val);
745 
746 	/* Update lruvec */
747 	__this_cpu_add(pn->lruvec_stat_local->count[idx], val);
748 
749 	x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
750 	if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
751 		struct mem_cgroup_per_node *pi;
752 
753 		for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
754 			atomic_long_add(x, &pi->lruvec_stat[idx]);
755 		x = 0;
756 	}
757 	__this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
758 }
759 
760 void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
761 {
762 	struct page *page = virt_to_head_page(p);
763 	pg_data_t *pgdat = page_pgdat(page);
764 	struct mem_cgroup *memcg;
765 	struct lruvec *lruvec;
766 
767 	rcu_read_lock();
768 	memcg = memcg_from_slab_page(page);
769 
770 	/* Untracked pages have no memcg, no lruvec. Update only the node */
771 	if (!memcg || memcg == root_mem_cgroup) {
772 		__mod_node_page_state(pgdat, idx, val);
773 	} else {
774 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
775 		__mod_lruvec_state(lruvec, idx, val);
776 	}
777 	rcu_read_unlock();
778 }
779 
780 /**
781  * __count_memcg_events - account VM events in a cgroup
782  * @memcg: the memory cgroup
783  * @idx: the event item
784  * @count: the number of events that occured
785  */
786 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
787 			  unsigned long count)
788 {
789 	unsigned long x;
790 
791 	if (mem_cgroup_disabled())
792 		return;
793 
794 	x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
795 	if (unlikely(x > MEMCG_CHARGE_BATCH)) {
796 		struct mem_cgroup *mi;
797 
798 		/*
799 		 * Batch local counters to keep them in sync with
800 		 * the hierarchical ones.
801 		 */
802 		__this_cpu_add(memcg->vmstats_local->events[idx], x);
803 		for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
804 			atomic_long_add(x, &mi->vmevents[idx]);
805 		x = 0;
806 	}
807 	__this_cpu_write(memcg->vmstats_percpu->events[idx], x);
808 }
809 
810 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
811 {
812 	return atomic_long_read(&memcg->vmevents[event]);
813 }
814 
815 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
816 {
817 	long x = 0;
818 	int cpu;
819 
820 	for_each_possible_cpu(cpu)
821 		x += per_cpu(memcg->vmstats_local->events[event], cpu);
822 	return x;
823 }
824 
825 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
826 					 struct page *page,
827 					 bool compound, int nr_pages)
828 {
829 	/*
830 	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
831 	 * counted as CACHE even if it's on ANON LRU.
832 	 */
833 	if (PageAnon(page))
834 		__mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
835 	else {
836 		__mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
837 		if (PageSwapBacked(page))
838 			__mod_memcg_state(memcg, NR_SHMEM, nr_pages);
839 	}
840 
841 	if (compound) {
842 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
843 		__mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
844 	}
845 
846 	/* pagein of a big page is an event. So, ignore page size */
847 	if (nr_pages > 0)
848 		__count_memcg_events(memcg, PGPGIN, 1);
849 	else {
850 		__count_memcg_events(memcg, PGPGOUT, 1);
851 		nr_pages = -nr_pages; /* for event */
852 	}
853 
854 	__this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
855 }
856 
857 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
858 				       enum mem_cgroup_events_target target)
859 {
860 	unsigned long val, next;
861 
862 	val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
863 	next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
864 	/* from time_after() in jiffies.h */
865 	if ((long)(next - val) < 0) {
866 		switch (target) {
867 		case MEM_CGROUP_TARGET_THRESH:
868 			next = val + THRESHOLDS_EVENTS_TARGET;
869 			break;
870 		case MEM_CGROUP_TARGET_SOFTLIMIT:
871 			next = val + SOFTLIMIT_EVENTS_TARGET;
872 			break;
873 		default:
874 			break;
875 		}
876 		__this_cpu_write(memcg->vmstats_percpu->targets[target], next);
877 		return true;
878 	}
879 	return false;
880 }
881 
882 /*
883  * Check events in order.
884  *
885  */
886 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
887 {
888 	/* threshold event is triggered in finer grain than soft limit */
889 	if (unlikely(mem_cgroup_event_ratelimit(memcg,
890 						MEM_CGROUP_TARGET_THRESH))) {
891 		bool do_softlimit;
892 
893 		do_softlimit = mem_cgroup_event_ratelimit(memcg,
894 						MEM_CGROUP_TARGET_SOFTLIMIT);
895 		mem_cgroup_threshold(memcg);
896 		if (unlikely(do_softlimit))
897 			mem_cgroup_update_tree(memcg, page);
898 	}
899 }
900 
901 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
902 {
903 	/*
904 	 * mm_update_next_owner() may clear mm->owner to NULL
905 	 * if it races with swapoff, page migration, etc.
906 	 * So this can be called with p == NULL.
907 	 */
908 	if (unlikely(!p))
909 		return NULL;
910 
911 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
912 }
913 EXPORT_SYMBOL(mem_cgroup_from_task);
914 
915 /**
916  * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
917  * @mm: mm from which memcg should be extracted. It can be NULL.
918  *
919  * Obtain a reference on mm->memcg and returns it if successful. Otherwise
920  * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
921  * returned.
922  */
923 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
924 {
925 	struct mem_cgroup *memcg;
926 
927 	if (mem_cgroup_disabled())
928 		return NULL;
929 
930 	rcu_read_lock();
931 	do {
932 		/*
933 		 * Page cache insertions can happen withou an
934 		 * actual mm context, e.g. during disk probing
935 		 * on boot, loopback IO, acct() writes etc.
936 		 */
937 		if (unlikely(!mm))
938 			memcg = root_mem_cgroup;
939 		else {
940 			memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
941 			if (unlikely(!memcg))
942 				memcg = root_mem_cgroup;
943 		}
944 	} while (!css_tryget(&memcg->css));
945 	rcu_read_unlock();
946 	return memcg;
947 }
948 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
949 
950 /**
951  * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
952  * @page: page from which memcg should be extracted.
953  *
954  * Obtain a reference on page->memcg and returns it if successful. Otherwise
955  * root_mem_cgroup is returned.
956  */
957 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
958 {
959 	struct mem_cgroup *memcg = page->mem_cgroup;
960 
961 	if (mem_cgroup_disabled())
962 		return NULL;
963 
964 	rcu_read_lock();
965 	if (!memcg || !css_tryget_online(&memcg->css))
966 		memcg = root_mem_cgroup;
967 	rcu_read_unlock();
968 	return memcg;
969 }
970 EXPORT_SYMBOL(get_mem_cgroup_from_page);
971 
972 /**
973  * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
974  */
975 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
976 {
977 	if (unlikely(current->active_memcg)) {
978 		struct mem_cgroup *memcg = root_mem_cgroup;
979 
980 		rcu_read_lock();
981 		if (css_tryget_online(&current->active_memcg->css))
982 			memcg = current->active_memcg;
983 		rcu_read_unlock();
984 		return memcg;
985 	}
986 	return get_mem_cgroup_from_mm(current->mm);
987 }
988 
989 /**
990  * mem_cgroup_iter - iterate over memory cgroup hierarchy
991  * @root: hierarchy root
992  * @prev: previously returned memcg, NULL on first invocation
993  * @reclaim: cookie for shared reclaim walks, NULL for full walks
994  *
995  * Returns references to children of the hierarchy below @root, or
996  * @root itself, or %NULL after a full round-trip.
997  *
998  * Caller must pass the return value in @prev on subsequent
999  * invocations for reference counting, or use mem_cgroup_iter_break()
1000  * to cancel a hierarchy walk before the round-trip is complete.
1001  *
1002  * Reclaimers can specify a node and a priority level in @reclaim to
1003  * divide up the memcgs in the hierarchy among all concurrent
1004  * reclaimers operating on the same node and priority.
1005  */
1006 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1007 				   struct mem_cgroup *prev,
1008 				   struct mem_cgroup_reclaim_cookie *reclaim)
1009 {
1010 	struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1011 	struct cgroup_subsys_state *css = NULL;
1012 	struct mem_cgroup *memcg = NULL;
1013 	struct mem_cgroup *pos = NULL;
1014 
1015 	if (mem_cgroup_disabled())
1016 		return NULL;
1017 
1018 	if (!root)
1019 		root = root_mem_cgroup;
1020 
1021 	if (prev && !reclaim)
1022 		pos = prev;
1023 
1024 	if (!root->use_hierarchy && root != root_mem_cgroup) {
1025 		if (prev)
1026 			goto out;
1027 		return root;
1028 	}
1029 
1030 	rcu_read_lock();
1031 
1032 	if (reclaim) {
1033 		struct mem_cgroup_per_node *mz;
1034 
1035 		mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1036 		iter = &mz->iter;
1037 
1038 		if (prev && reclaim->generation != iter->generation)
1039 			goto out_unlock;
1040 
1041 		while (1) {
1042 			pos = READ_ONCE(iter->position);
1043 			if (!pos || css_tryget(&pos->css))
1044 				break;
1045 			/*
1046 			 * css reference reached zero, so iter->position will
1047 			 * be cleared by ->css_released. However, we should not
1048 			 * rely on this happening soon, because ->css_released
1049 			 * is called from a work queue, and by busy-waiting we
1050 			 * might block it. So we clear iter->position right
1051 			 * away.
1052 			 */
1053 			(void)cmpxchg(&iter->position, pos, NULL);
1054 		}
1055 	}
1056 
1057 	if (pos)
1058 		css = &pos->css;
1059 
1060 	for (;;) {
1061 		css = css_next_descendant_pre(css, &root->css);
1062 		if (!css) {
1063 			/*
1064 			 * Reclaimers share the hierarchy walk, and a
1065 			 * new one might jump in right at the end of
1066 			 * the hierarchy - make sure they see at least
1067 			 * one group and restart from the beginning.
1068 			 */
1069 			if (!prev)
1070 				continue;
1071 			break;
1072 		}
1073 
1074 		/*
1075 		 * Verify the css and acquire a reference.  The root
1076 		 * is provided by the caller, so we know it's alive
1077 		 * and kicking, and don't take an extra reference.
1078 		 */
1079 		memcg = mem_cgroup_from_css(css);
1080 
1081 		if (css == &root->css)
1082 			break;
1083 
1084 		if (css_tryget(css))
1085 			break;
1086 
1087 		memcg = NULL;
1088 	}
1089 
1090 	if (reclaim) {
1091 		/*
1092 		 * The position could have already been updated by a competing
1093 		 * thread, so check that the value hasn't changed since we read
1094 		 * it to avoid reclaiming from the same cgroup twice.
1095 		 */
1096 		(void)cmpxchg(&iter->position, pos, memcg);
1097 
1098 		if (pos)
1099 			css_put(&pos->css);
1100 
1101 		if (!memcg)
1102 			iter->generation++;
1103 		else if (!prev)
1104 			reclaim->generation = iter->generation;
1105 	}
1106 
1107 out_unlock:
1108 	rcu_read_unlock();
1109 out:
1110 	if (prev && prev != root)
1111 		css_put(&prev->css);
1112 
1113 	return memcg;
1114 }
1115 
1116 /**
1117  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1118  * @root: hierarchy root
1119  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1120  */
1121 void mem_cgroup_iter_break(struct mem_cgroup *root,
1122 			   struct mem_cgroup *prev)
1123 {
1124 	if (!root)
1125 		root = root_mem_cgroup;
1126 	if (prev && prev != root)
1127 		css_put(&prev->css);
1128 }
1129 
1130 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1131 					struct mem_cgroup *dead_memcg)
1132 {
1133 	struct mem_cgroup_reclaim_iter *iter;
1134 	struct mem_cgroup_per_node *mz;
1135 	int nid;
1136 
1137 	for_each_node(nid) {
1138 		mz = mem_cgroup_nodeinfo(from, nid);
1139 		iter = &mz->iter;
1140 		cmpxchg(&iter->position, dead_memcg, NULL);
1141 	}
1142 }
1143 
1144 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1145 {
1146 	struct mem_cgroup *memcg = dead_memcg;
1147 	struct mem_cgroup *last;
1148 
1149 	do {
1150 		__invalidate_reclaim_iterators(memcg, dead_memcg);
1151 		last = memcg;
1152 	} while ((memcg = parent_mem_cgroup(memcg)));
1153 
1154 	/*
1155 	 * When cgruop1 non-hierarchy mode is used,
1156 	 * parent_mem_cgroup() does not walk all the way up to the
1157 	 * cgroup root (root_mem_cgroup). So we have to handle
1158 	 * dead_memcg from cgroup root separately.
1159 	 */
1160 	if (last != root_mem_cgroup)
1161 		__invalidate_reclaim_iterators(root_mem_cgroup,
1162 						dead_memcg);
1163 }
1164 
1165 /**
1166  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1167  * @memcg: hierarchy root
1168  * @fn: function to call for each task
1169  * @arg: argument passed to @fn
1170  *
1171  * This function iterates over tasks attached to @memcg or to any of its
1172  * descendants and calls @fn for each task. If @fn returns a non-zero
1173  * value, the function breaks the iteration loop and returns the value.
1174  * Otherwise, it will iterate over all tasks and return 0.
1175  *
1176  * This function must not be called for the root memory cgroup.
1177  */
1178 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1179 			  int (*fn)(struct task_struct *, void *), void *arg)
1180 {
1181 	struct mem_cgroup *iter;
1182 	int ret = 0;
1183 
1184 	BUG_ON(memcg == root_mem_cgroup);
1185 
1186 	for_each_mem_cgroup_tree(iter, memcg) {
1187 		struct css_task_iter it;
1188 		struct task_struct *task;
1189 
1190 		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1191 		while (!ret && (task = css_task_iter_next(&it)))
1192 			ret = fn(task, arg);
1193 		css_task_iter_end(&it);
1194 		if (ret) {
1195 			mem_cgroup_iter_break(memcg, iter);
1196 			break;
1197 		}
1198 	}
1199 	return ret;
1200 }
1201 
1202 /**
1203  * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1204  * @page: the page
1205  * @pgdat: pgdat of the page
1206  *
1207  * This function is only safe when following the LRU page isolation
1208  * and putback protocol: the LRU lock must be held, and the page must
1209  * either be PageLRU() or the caller must have isolated/allocated it.
1210  */
1211 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
1212 {
1213 	struct mem_cgroup_per_node *mz;
1214 	struct mem_cgroup *memcg;
1215 	struct lruvec *lruvec;
1216 
1217 	if (mem_cgroup_disabled()) {
1218 		lruvec = &pgdat->__lruvec;
1219 		goto out;
1220 	}
1221 
1222 	memcg = page->mem_cgroup;
1223 	/*
1224 	 * Swapcache readahead pages are added to the LRU - and
1225 	 * possibly migrated - before they are charged.
1226 	 */
1227 	if (!memcg)
1228 		memcg = root_mem_cgroup;
1229 
1230 	mz = mem_cgroup_page_nodeinfo(memcg, page);
1231 	lruvec = &mz->lruvec;
1232 out:
1233 	/*
1234 	 * Since a node can be onlined after the mem_cgroup was created,
1235 	 * we have to be prepared to initialize lruvec->zone here;
1236 	 * and if offlined then reonlined, we need to reinitialize it.
1237 	 */
1238 	if (unlikely(lruvec->pgdat != pgdat))
1239 		lruvec->pgdat = pgdat;
1240 	return lruvec;
1241 }
1242 
1243 /**
1244  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1245  * @lruvec: mem_cgroup per zone lru vector
1246  * @lru: index of lru list the page is sitting on
1247  * @zid: zone id of the accounted pages
1248  * @nr_pages: positive when adding or negative when removing
1249  *
1250  * This function must be called under lru_lock, just before a page is added
1251  * to or just after a page is removed from an lru list (that ordering being
1252  * so as to allow it to check that lru_size 0 is consistent with list_empty).
1253  */
1254 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1255 				int zid, int nr_pages)
1256 {
1257 	struct mem_cgroup_per_node *mz;
1258 	unsigned long *lru_size;
1259 	long size;
1260 
1261 	if (mem_cgroup_disabled())
1262 		return;
1263 
1264 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1265 	lru_size = &mz->lru_zone_size[zid][lru];
1266 
1267 	if (nr_pages < 0)
1268 		*lru_size += nr_pages;
1269 
1270 	size = *lru_size;
1271 	if (WARN_ONCE(size < 0,
1272 		"%s(%p, %d, %d): lru_size %ld\n",
1273 		__func__, lruvec, lru, nr_pages, size)) {
1274 		VM_BUG_ON(1);
1275 		*lru_size = 0;
1276 	}
1277 
1278 	if (nr_pages > 0)
1279 		*lru_size += nr_pages;
1280 }
1281 
1282 /**
1283  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1284  * @memcg: the memory cgroup
1285  *
1286  * Returns the maximum amount of memory @mem can be charged with, in
1287  * pages.
1288  */
1289 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1290 {
1291 	unsigned long margin = 0;
1292 	unsigned long count;
1293 	unsigned long limit;
1294 
1295 	count = page_counter_read(&memcg->memory);
1296 	limit = READ_ONCE(memcg->memory.max);
1297 	if (count < limit)
1298 		margin = limit - count;
1299 
1300 	if (do_memsw_account()) {
1301 		count = page_counter_read(&memcg->memsw);
1302 		limit = READ_ONCE(memcg->memsw.max);
1303 		if (count <= limit)
1304 			margin = min(margin, limit - count);
1305 		else
1306 			margin = 0;
1307 	}
1308 
1309 	return margin;
1310 }
1311 
1312 /*
1313  * A routine for checking "mem" is under move_account() or not.
1314  *
1315  * Checking a cgroup is mc.from or mc.to or under hierarchy of
1316  * moving cgroups. This is for waiting at high-memory pressure
1317  * caused by "move".
1318  */
1319 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1320 {
1321 	struct mem_cgroup *from;
1322 	struct mem_cgroup *to;
1323 	bool ret = false;
1324 	/*
1325 	 * Unlike task_move routines, we access mc.to, mc.from not under
1326 	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1327 	 */
1328 	spin_lock(&mc.lock);
1329 	from = mc.from;
1330 	to = mc.to;
1331 	if (!from)
1332 		goto unlock;
1333 
1334 	ret = mem_cgroup_is_descendant(from, memcg) ||
1335 		mem_cgroup_is_descendant(to, memcg);
1336 unlock:
1337 	spin_unlock(&mc.lock);
1338 	return ret;
1339 }
1340 
1341 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1342 {
1343 	if (mc.moving_task && current != mc.moving_task) {
1344 		if (mem_cgroup_under_move(memcg)) {
1345 			DEFINE_WAIT(wait);
1346 			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1347 			/* moving charge context might have finished. */
1348 			if (mc.moving_task)
1349 				schedule();
1350 			finish_wait(&mc.waitq, &wait);
1351 			return true;
1352 		}
1353 	}
1354 	return false;
1355 }
1356 
1357 static char *memory_stat_format(struct mem_cgroup *memcg)
1358 {
1359 	struct seq_buf s;
1360 	int i;
1361 
1362 	seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1363 	if (!s.buffer)
1364 		return NULL;
1365 
1366 	/*
1367 	 * Provide statistics on the state of the memory subsystem as
1368 	 * well as cumulative event counters that show past behavior.
1369 	 *
1370 	 * This list is ordered following a combination of these gradients:
1371 	 * 1) generic big picture -> specifics and details
1372 	 * 2) reflecting userspace activity -> reflecting kernel heuristics
1373 	 *
1374 	 * Current memory state:
1375 	 */
1376 
1377 	seq_buf_printf(&s, "anon %llu\n",
1378 		       (u64)memcg_page_state(memcg, MEMCG_RSS) *
1379 		       PAGE_SIZE);
1380 	seq_buf_printf(&s, "file %llu\n",
1381 		       (u64)memcg_page_state(memcg, MEMCG_CACHE) *
1382 		       PAGE_SIZE);
1383 	seq_buf_printf(&s, "kernel_stack %llu\n",
1384 		       (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) *
1385 		       1024);
1386 	seq_buf_printf(&s, "slab %llu\n",
1387 		       (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) +
1388 			     memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) *
1389 		       PAGE_SIZE);
1390 	seq_buf_printf(&s, "sock %llu\n",
1391 		       (u64)memcg_page_state(memcg, MEMCG_SOCK) *
1392 		       PAGE_SIZE);
1393 
1394 	seq_buf_printf(&s, "shmem %llu\n",
1395 		       (u64)memcg_page_state(memcg, NR_SHMEM) *
1396 		       PAGE_SIZE);
1397 	seq_buf_printf(&s, "file_mapped %llu\n",
1398 		       (u64)memcg_page_state(memcg, NR_FILE_MAPPED) *
1399 		       PAGE_SIZE);
1400 	seq_buf_printf(&s, "file_dirty %llu\n",
1401 		       (u64)memcg_page_state(memcg, NR_FILE_DIRTY) *
1402 		       PAGE_SIZE);
1403 	seq_buf_printf(&s, "file_writeback %llu\n",
1404 		       (u64)memcg_page_state(memcg, NR_WRITEBACK) *
1405 		       PAGE_SIZE);
1406 
1407 	/*
1408 	 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter
1409 	 * with the NR_ANON_THP vm counter, but right now it's a pain in the
1410 	 * arse because it requires migrating the work out of rmap to a place
1411 	 * where the page->mem_cgroup is set up and stable.
1412 	 */
1413 	seq_buf_printf(&s, "anon_thp %llu\n",
1414 		       (u64)memcg_page_state(memcg, MEMCG_RSS_HUGE) *
1415 		       PAGE_SIZE);
1416 
1417 	for (i = 0; i < NR_LRU_LISTS; i++)
1418 		seq_buf_printf(&s, "%s %llu\n", lru_list_name(i),
1419 			       (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
1420 			       PAGE_SIZE);
1421 
1422 	seq_buf_printf(&s, "slab_reclaimable %llu\n",
1423 		       (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) *
1424 		       PAGE_SIZE);
1425 	seq_buf_printf(&s, "slab_unreclaimable %llu\n",
1426 		       (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) *
1427 		       PAGE_SIZE);
1428 
1429 	/* Accumulated memory events */
1430 
1431 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1432 		       memcg_events(memcg, PGFAULT));
1433 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1434 		       memcg_events(memcg, PGMAJFAULT));
1435 
1436 	seq_buf_printf(&s, "workingset_refault %lu\n",
1437 		       memcg_page_state(memcg, WORKINGSET_REFAULT));
1438 	seq_buf_printf(&s, "workingset_activate %lu\n",
1439 		       memcg_page_state(memcg, WORKINGSET_ACTIVATE));
1440 	seq_buf_printf(&s, "workingset_nodereclaim %lu\n",
1441 		       memcg_page_state(memcg, WORKINGSET_NODERECLAIM));
1442 
1443 	seq_buf_printf(&s, "%s %lu\n",  vm_event_name(PGREFILL),
1444 		       memcg_events(memcg, PGREFILL));
1445 	seq_buf_printf(&s, "pgscan %lu\n",
1446 		       memcg_events(memcg, PGSCAN_KSWAPD) +
1447 		       memcg_events(memcg, PGSCAN_DIRECT));
1448 	seq_buf_printf(&s, "pgsteal %lu\n",
1449 		       memcg_events(memcg, PGSTEAL_KSWAPD) +
1450 		       memcg_events(memcg, PGSTEAL_DIRECT));
1451 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1452 		       memcg_events(memcg, PGACTIVATE));
1453 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1454 		       memcg_events(memcg, PGDEACTIVATE));
1455 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1456 		       memcg_events(memcg, PGLAZYFREE));
1457 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1458 		       memcg_events(memcg, PGLAZYFREED));
1459 
1460 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1461 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1462 		       memcg_events(memcg, THP_FAULT_ALLOC));
1463 	seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1464 		       memcg_events(memcg, THP_COLLAPSE_ALLOC));
1465 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1466 
1467 	/* The above should easily fit into one page */
1468 	WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1469 
1470 	return s.buffer;
1471 }
1472 
1473 #define K(x) ((x) << (PAGE_SHIFT-10))
1474 /**
1475  * mem_cgroup_print_oom_context: Print OOM information relevant to
1476  * memory controller.
1477  * @memcg: The memory cgroup that went over limit
1478  * @p: Task that is going to be killed
1479  *
1480  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1481  * enabled
1482  */
1483 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1484 {
1485 	rcu_read_lock();
1486 
1487 	if (memcg) {
1488 		pr_cont(",oom_memcg=");
1489 		pr_cont_cgroup_path(memcg->css.cgroup);
1490 	} else
1491 		pr_cont(",global_oom");
1492 	if (p) {
1493 		pr_cont(",task_memcg=");
1494 		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1495 	}
1496 	rcu_read_unlock();
1497 }
1498 
1499 /**
1500  * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1501  * memory controller.
1502  * @memcg: The memory cgroup that went over limit
1503  */
1504 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1505 {
1506 	char *buf;
1507 
1508 	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1509 		K((u64)page_counter_read(&memcg->memory)),
1510 		K((u64)memcg->memory.max), memcg->memory.failcnt);
1511 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1512 		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1513 			K((u64)page_counter_read(&memcg->swap)),
1514 			K((u64)memcg->swap.max), memcg->swap.failcnt);
1515 	else {
1516 		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1517 			K((u64)page_counter_read(&memcg->memsw)),
1518 			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1519 		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1520 			K((u64)page_counter_read(&memcg->kmem)),
1521 			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1522 	}
1523 
1524 	pr_info("Memory cgroup stats for ");
1525 	pr_cont_cgroup_path(memcg->css.cgroup);
1526 	pr_cont(":");
1527 	buf = memory_stat_format(memcg);
1528 	if (!buf)
1529 		return;
1530 	pr_info("%s", buf);
1531 	kfree(buf);
1532 }
1533 
1534 /*
1535  * Return the memory (and swap, if configured) limit for a memcg.
1536  */
1537 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1538 {
1539 	unsigned long max;
1540 
1541 	max = memcg->memory.max;
1542 	if (mem_cgroup_swappiness(memcg)) {
1543 		unsigned long memsw_max;
1544 		unsigned long swap_max;
1545 
1546 		memsw_max = memcg->memsw.max;
1547 		swap_max = memcg->swap.max;
1548 		swap_max = min(swap_max, (unsigned long)total_swap_pages);
1549 		max = min(max + swap_max, memsw_max);
1550 	}
1551 	return max;
1552 }
1553 
1554 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1555 {
1556 	return page_counter_read(&memcg->memory);
1557 }
1558 
1559 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1560 				     int order)
1561 {
1562 	struct oom_control oc = {
1563 		.zonelist = NULL,
1564 		.nodemask = NULL,
1565 		.memcg = memcg,
1566 		.gfp_mask = gfp_mask,
1567 		.order = order,
1568 	};
1569 	bool ret;
1570 
1571 	if (mutex_lock_killable(&oom_lock))
1572 		return true;
1573 	/*
1574 	 * A few threads which were not waiting at mutex_lock_killable() can
1575 	 * fail to bail out. Therefore, check again after holding oom_lock.
1576 	 */
1577 	ret = should_force_charge() || out_of_memory(&oc);
1578 	mutex_unlock(&oom_lock);
1579 	return ret;
1580 }
1581 
1582 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1583 				   pg_data_t *pgdat,
1584 				   gfp_t gfp_mask,
1585 				   unsigned long *total_scanned)
1586 {
1587 	struct mem_cgroup *victim = NULL;
1588 	int total = 0;
1589 	int loop = 0;
1590 	unsigned long excess;
1591 	unsigned long nr_scanned;
1592 	struct mem_cgroup_reclaim_cookie reclaim = {
1593 		.pgdat = pgdat,
1594 	};
1595 
1596 	excess = soft_limit_excess(root_memcg);
1597 
1598 	while (1) {
1599 		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1600 		if (!victim) {
1601 			loop++;
1602 			if (loop >= 2) {
1603 				/*
1604 				 * If we have not been able to reclaim
1605 				 * anything, it might because there are
1606 				 * no reclaimable pages under this hierarchy
1607 				 */
1608 				if (!total)
1609 					break;
1610 				/*
1611 				 * We want to do more targeted reclaim.
1612 				 * excess >> 2 is not to excessive so as to
1613 				 * reclaim too much, nor too less that we keep
1614 				 * coming back to reclaim from this cgroup
1615 				 */
1616 				if (total >= (excess >> 2) ||
1617 					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1618 					break;
1619 			}
1620 			continue;
1621 		}
1622 		total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1623 					pgdat, &nr_scanned);
1624 		*total_scanned += nr_scanned;
1625 		if (!soft_limit_excess(root_memcg))
1626 			break;
1627 	}
1628 	mem_cgroup_iter_break(root_memcg, victim);
1629 	return total;
1630 }
1631 
1632 #ifdef CONFIG_LOCKDEP
1633 static struct lockdep_map memcg_oom_lock_dep_map = {
1634 	.name = "memcg_oom_lock",
1635 };
1636 #endif
1637 
1638 static DEFINE_SPINLOCK(memcg_oom_lock);
1639 
1640 /*
1641  * Check OOM-Killer is already running under our hierarchy.
1642  * If someone is running, return false.
1643  */
1644 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1645 {
1646 	struct mem_cgroup *iter, *failed = NULL;
1647 
1648 	spin_lock(&memcg_oom_lock);
1649 
1650 	for_each_mem_cgroup_tree(iter, memcg) {
1651 		if (iter->oom_lock) {
1652 			/*
1653 			 * this subtree of our hierarchy is already locked
1654 			 * so we cannot give a lock.
1655 			 */
1656 			failed = iter;
1657 			mem_cgroup_iter_break(memcg, iter);
1658 			break;
1659 		} else
1660 			iter->oom_lock = true;
1661 	}
1662 
1663 	if (failed) {
1664 		/*
1665 		 * OK, we failed to lock the whole subtree so we have
1666 		 * to clean up what we set up to the failing subtree
1667 		 */
1668 		for_each_mem_cgroup_tree(iter, memcg) {
1669 			if (iter == failed) {
1670 				mem_cgroup_iter_break(memcg, iter);
1671 				break;
1672 			}
1673 			iter->oom_lock = false;
1674 		}
1675 	} else
1676 		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1677 
1678 	spin_unlock(&memcg_oom_lock);
1679 
1680 	return !failed;
1681 }
1682 
1683 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1684 {
1685 	struct mem_cgroup *iter;
1686 
1687 	spin_lock(&memcg_oom_lock);
1688 	mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1689 	for_each_mem_cgroup_tree(iter, memcg)
1690 		iter->oom_lock = false;
1691 	spin_unlock(&memcg_oom_lock);
1692 }
1693 
1694 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1695 {
1696 	struct mem_cgroup *iter;
1697 
1698 	spin_lock(&memcg_oom_lock);
1699 	for_each_mem_cgroup_tree(iter, memcg)
1700 		iter->under_oom++;
1701 	spin_unlock(&memcg_oom_lock);
1702 }
1703 
1704 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1705 {
1706 	struct mem_cgroup *iter;
1707 
1708 	/*
1709 	 * When a new child is created while the hierarchy is under oom,
1710 	 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1711 	 */
1712 	spin_lock(&memcg_oom_lock);
1713 	for_each_mem_cgroup_tree(iter, memcg)
1714 		if (iter->under_oom > 0)
1715 			iter->under_oom--;
1716 	spin_unlock(&memcg_oom_lock);
1717 }
1718 
1719 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1720 
1721 struct oom_wait_info {
1722 	struct mem_cgroup *memcg;
1723 	wait_queue_entry_t	wait;
1724 };
1725 
1726 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1727 	unsigned mode, int sync, void *arg)
1728 {
1729 	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1730 	struct mem_cgroup *oom_wait_memcg;
1731 	struct oom_wait_info *oom_wait_info;
1732 
1733 	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1734 	oom_wait_memcg = oom_wait_info->memcg;
1735 
1736 	if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1737 	    !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1738 		return 0;
1739 	return autoremove_wake_function(wait, mode, sync, arg);
1740 }
1741 
1742 static void memcg_oom_recover(struct mem_cgroup *memcg)
1743 {
1744 	/*
1745 	 * For the following lockless ->under_oom test, the only required
1746 	 * guarantee is that it must see the state asserted by an OOM when
1747 	 * this function is called as a result of userland actions
1748 	 * triggered by the notification of the OOM.  This is trivially
1749 	 * achieved by invoking mem_cgroup_mark_under_oom() before
1750 	 * triggering notification.
1751 	 */
1752 	if (memcg && memcg->under_oom)
1753 		__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1754 }
1755 
1756 enum oom_status {
1757 	OOM_SUCCESS,
1758 	OOM_FAILED,
1759 	OOM_ASYNC,
1760 	OOM_SKIPPED
1761 };
1762 
1763 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1764 {
1765 	enum oom_status ret;
1766 	bool locked;
1767 
1768 	if (order > PAGE_ALLOC_COSTLY_ORDER)
1769 		return OOM_SKIPPED;
1770 
1771 	memcg_memory_event(memcg, MEMCG_OOM);
1772 
1773 	/*
1774 	 * We are in the middle of the charge context here, so we
1775 	 * don't want to block when potentially sitting on a callstack
1776 	 * that holds all kinds of filesystem and mm locks.
1777 	 *
1778 	 * cgroup1 allows disabling the OOM killer and waiting for outside
1779 	 * handling until the charge can succeed; remember the context and put
1780 	 * the task to sleep at the end of the page fault when all locks are
1781 	 * released.
1782 	 *
1783 	 * On the other hand, in-kernel OOM killer allows for an async victim
1784 	 * memory reclaim (oom_reaper) and that means that we are not solely
1785 	 * relying on the oom victim to make a forward progress and we can
1786 	 * invoke the oom killer here.
1787 	 *
1788 	 * Please note that mem_cgroup_out_of_memory might fail to find a
1789 	 * victim and then we have to bail out from the charge path.
1790 	 */
1791 	if (memcg->oom_kill_disable) {
1792 		if (!current->in_user_fault)
1793 			return OOM_SKIPPED;
1794 		css_get(&memcg->css);
1795 		current->memcg_in_oom = memcg;
1796 		current->memcg_oom_gfp_mask = mask;
1797 		current->memcg_oom_order = order;
1798 
1799 		return OOM_ASYNC;
1800 	}
1801 
1802 	mem_cgroup_mark_under_oom(memcg);
1803 
1804 	locked = mem_cgroup_oom_trylock(memcg);
1805 
1806 	if (locked)
1807 		mem_cgroup_oom_notify(memcg);
1808 
1809 	mem_cgroup_unmark_under_oom(memcg);
1810 	if (mem_cgroup_out_of_memory(memcg, mask, order))
1811 		ret = OOM_SUCCESS;
1812 	else
1813 		ret = OOM_FAILED;
1814 
1815 	if (locked)
1816 		mem_cgroup_oom_unlock(memcg);
1817 
1818 	return ret;
1819 }
1820 
1821 /**
1822  * mem_cgroup_oom_synchronize - complete memcg OOM handling
1823  * @handle: actually kill/wait or just clean up the OOM state
1824  *
1825  * This has to be called at the end of a page fault if the memcg OOM
1826  * handler was enabled.
1827  *
1828  * Memcg supports userspace OOM handling where failed allocations must
1829  * sleep on a waitqueue until the userspace task resolves the
1830  * situation.  Sleeping directly in the charge context with all kinds
1831  * of locks held is not a good idea, instead we remember an OOM state
1832  * in the task and mem_cgroup_oom_synchronize() has to be called at
1833  * the end of the page fault to complete the OOM handling.
1834  *
1835  * Returns %true if an ongoing memcg OOM situation was detected and
1836  * completed, %false otherwise.
1837  */
1838 bool mem_cgroup_oom_synchronize(bool handle)
1839 {
1840 	struct mem_cgroup *memcg = current->memcg_in_oom;
1841 	struct oom_wait_info owait;
1842 	bool locked;
1843 
1844 	/* OOM is global, do not handle */
1845 	if (!memcg)
1846 		return false;
1847 
1848 	if (!handle)
1849 		goto cleanup;
1850 
1851 	owait.memcg = memcg;
1852 	owait.wait.flags = 0;
1853 	owait.wait.func = memcg_oom_wake_function;
1854 	owait.wait.private = current;
1855 	INIT_LIST_HEAD(&owait.wait.entry);
1856 
1857 	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1858 	mem_cgroup_mark_under_oom(memcg);
1859 
1860 	locked = mem_cgroup_oom_trylock(memcg);
1861 
1862 	if (locked)
1863 		mem_cgroup_oom_notify(memcg);
1864 
1865 	if (locked && !memcg->oom_kill_disable) {
1866 		mem_cgroup_unmark_under_oom(memcg);
1867 		finish_wait(&memcg_oom_waitq, &owait.wait);
1868 		mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1869 					 current->memcg_oom_order);
1870 	} else {
1871 		schedule();
1872 		mem_cgroup_unmark_under_oom(memcg);
1873 		finish_wait(&memcg_oom_waitq, &owait.wait);
1874 	}
1875 
1876 	if (locked) {
1877 		mem_cgroup_oom_unlock(memcg);
1878 		/*
1879 		 * There is no guarantee that an OOM-lock contender
1880 		 * sees the wakeups triggered by the OOM kill
1881 		 * uncharges.  Wake any sleepers explicitely.
1882 		 */
1883 		memcg_oom_recover(memcg);
1884 	}
1885 cleanup:
1886 	current->memcg_in_oom = NULL;
1887 	css_put(&memcg->css);
1888 	return true;
1889 }
1890 
1891 /**
1892  * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1893  * @victim: task to be killed by the OOM killer
1894  * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1895  *
1896  * Returns a pointer to a memory cgroup, which has to be cleaned up
1897  * by killing all belonging OOM-killable tasks.
1898  *
1899  * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1900  */
1901 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1902 					    struct mem_cgroup *oom_domain)
1903 {
1904 	struct mem_cgroup *oom_group = NULL;
1905 	struct mem_cgroup *memcg;
1906 
1907 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1908 		return NULL;
1909 
1910 	if (!oom_domain)
1911 		oom_domain = root_mem_cgroup;
1912 
1913 	rcu_read_lock();
1914 
1915 	memcg = mem_cgroup_from_task(victim);
1916 	if (memcg == root_mem_cgroup)
1917 		goto out;
1918 
1919 	/*
1920 	 * Traverse the memory cgroup hierarchy from the victim task's
1921 	 * cgroup up to the OOMing cgroup (or root) to find the
1922 	 * highest-level memory cgroup with oom.group set.
1923 	 */
1924 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1925 		if (memcg->oom_group)
1926 			oom_group = memcg;
1927 
1928 		if (memcg == oom_domain)
1929 			break;
1930 	}
1931 
1932 	if (oom_group)
1933 		css_get(&oom_group->css);
1934 out:
1935 	rcu_read_unlock();
1936 
1937 	return oom_group;
1938 }
1939 
1940 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1941 {
1942 	pr_info("Tasks in ");
1943 	pr_cont_cgroup_path(memcg->css.cgroup);
1944 	pr_cont(" are going to be killed due to memory.oom.group set\n");
1945 }
1946 
1947 /**
1948  * lock_page_memcg - lock a page->mem_cgroup binding
1949  * @page: the page
1950  *
1951  * This function protects unlocked LRU pages from being moved to
1952  * another cgroup.
1953  *
1954  * It ensures lifetime of the returned memcg. Caller is responsible
1955  * for the lifetime of the page; __unlock_page_memcg() is available
1956  * when @page might get freed inside the locked section.
1957  */
1958 struct mem_cgroup *lock_page_memcg(struct page *page)
1959 {
1960 	struct mem_cgroup *memcg;
1961 	unsigned long flags;
1962 
1963 	/*
1964 	 * The RCU lock is held throughout the transaction.  The fast
1965 	 * path can get away without acquiring the memcg->move_lock
1966 	 * because page moving starts with an RCU grace period.
1967 	 *
1968 	 * The RCU lock also protects the memcg from being freed when
1969 	 * the page state that is going to change is the only thing
1970 	 * preventing the page itself from being freed. E.g. writeback
1971 	 * doesn't hold a page reference and relies on PG_writeback to
1972 	 * keep off truncation, migration and so forth.
1973          */
1974 	rcu_read_lock();
1975 
1976 	if (mem_cgroup_disabled())
1977 		return NULL;
1978 again:
1979 	memcg = page->mem_cgroup;
1980 	if (unlikely(!memcg))
1981 		return NULL;
1982 
1983 	if (atomic_read(&memcg->moving_account) <= 0)
1984 		return memcg;
1985 
1986 	spin_lock_irqsave(&memcg->move_lock, flags);
1987 	if (memcg != page->mem_cgroup) {
1988 		spin_unlock_irqrestore(&memcg->move_lock, flags);
1989 		goto again;
1990 	}
1991 
1992 	/*
1993 	 * When charge migration first begins, we can have locked and
1994 	 * unlocked page stat updates happening concurrently.  Track
1995 	 * the task who has the lock for unlock_page_memcg().
1996 	 */
1997 	memcg->move_lock_task = current;
1998 	memcg->move_lock_flags = flags;
1999 
2000 	return memcg;
2001 }
2002 EXPORT_SYMBOL(lock_page_memcg);
2003 
2004 /**
2005  * __unlock_page_memcg - unlock and unpin a memcg
2006  * @memcg: the memcg
2007  *
2008  * Unlock and unpin a memcg returned by lock_page_memcg().
2009  */
2010 void __unlock_page_memcg(struct mem_cgroup *memcg)
2011 {
2012 	if (memcg && memcg->move_lock_task == current) {
2013 		unsigned long flags = memcg->move_lock_flags;
2014 
2015 		memcg->move_lock_task = NULL;
2016 		memcg->move_lock_flags = 0;
2017 
2018 		spin_unlock_irqrestore(&memcg->move_lock, flags);
2019 	}
2020 
2021 	rcu_read_unlock();
2022 }
2023 
2024 /**
2025  * unlock_page_memcg - unlock a page->mem_cgroup binding
2026  * @page: the page
2027  */
2028 void unlock_page_memcg(struct page *page)
2029 {
2030 	__unlock_page_memcg(page->mem_cgroup);
2031 }
2032 EXPORT_SYMBOL(unlock_page_memcg);
2033 
2034 struct memcg_stock_pcp {
2035 	struct mem_cgroup *cached; /* this never be root cgroup */
2036 	unsigned int nr_pages;
2037 	struct work_struct work;
2038 	unsigned long flags;
2039 #define FLUSHING_CACHED_CHARGE	0
2040 };
2041 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2042 static DEFINE_MUTEX(percpu_charge_mutex);
2043 
2044 /**
2045  * consume_stock: Try to consume stocked charge on this cpu.
2046  * @memcg: memcg to consume from.
2047  * @nr_pages: how many pages to charge.
2048  *
2049  * The charges will only happen if @memcg matches the current cpu's memcg
2050  * stock, and at least @nr_pages are available in that stock.  Failure to
2051  * service an allocation will refill the stock.
2052  *
2053  * returns true if successful, false otherwise.
2054  */
2055 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2056 {
2057 	struct memcg_stock_pcp *stock;
2058 	unsigned long flags;
2059 	bool ret = false;
2060 
2061 	if (nr_pages > MEMCG_CHARGE_BATCH)
2062 		return ret;
2063 
2064 	local_irq_save(flags);
2065 
2066 	stock = this_cpu_ptr(&memcg_stock);
2067 	if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2068 		stock->nr_pages -= nr_pages;
2069 		ret = true;
2070 	}
2071 
2072 	local_irq_restore(flags);
2073 
2074 	return ret;
2075 }
2076 
2077 /*
2078  * Returns stocks cached in percpu and reset cached information.
2079  */
2080 static void drain_stock(struct memcg_stock_pcp *stock)
2081 {
2082 	struct mem_cgroup *old = stock->cached;
2083 
2084 	if (stock->nr_pages) {
2085 		page_counter_uncharge(&old->memory, stock->nr_pages);
2086 		if (do_memsw_account())
2087 			page_counter_uncharge(&old->memsw, stock->nr_pages);
2088 		css_put_many(&old->css, stock->nr_pages);
2089 		stock->nr_pages = 0;
2090 	}
2091 	stock->cached = NULL;
2092 }
2093 
2094 static void drain_local_stock(struct work_struct *dummy)
2095 {
2096 	struct memcg_stock_pcp *stock;
2097 	unsigned long flags;
2098 
2099 	/*
2100 	 * The only protection from memory hotplug vs. drain_stock races is
2101 	 * that we always operate on local CPU stock here with IRQ disabled
2102 	 */
2103 	local_irq_save(flags);
2104 
2105 	stock = this_cpu_ptr(&memcg_stock);
2106 	drain_stock(stock);
2107 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2108 
2109 	local_irq_restore(flags);
2110 }
2111 
2112 /*
2113  * Cache charges(val) to local per_cpu area.
2114  * This will be consumed by consume_stock() function, later.
2115  */
2116 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2117 {
2118 	struct memcg_stock_pcp *stock;
2119 	unsigned long flags;
2120 
2121 	local_irq_save(flags);
2122 
2123 	stock = this_cpu_ptr(&memcg_stock);
2124 	if (stock->cached != memcg) { /* reset if necessary */
2125 		drain_stock(stock);
2126 		stock->cached = memcg;
2127 	}
2128 	stock->nr_pages += nr_pages;
2129 
2130 	if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2131 		drain_stock(stock);
2132 
2133 	local_irq_restore(flags);
2134 }
2135 
2136 /*
2137  * Drains all per-CPU charge caches for given root_memcg resp. subtree
2138  * of the hierarchy under it.
2139  */
2140 static void drain_all_stock(struct mem_cgroup *root_memcg)
2141 {
2142 	int cpu, curcpu;
2143 
2144 	/* If someone's already draining, avoid adding running more workers. */
2145 	if (!mutex_trylock(&percpu_charge_mutex))
2146 		return;
2147 	/*
2148 	 * Notify other cpus that system-wide "drain" is running
2149 	 * We do not care about races with the cpu hotplug because cpu down
2150 	 * as well as workers from this path always operate on the local
2151 	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2152 	 */
2153 	curcpu = get_cpu();
2154 	for_each_online_cpu(cpu) {
2155 		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2156 		struct mem_cgroup *memcg;
2157 		bool flush = false;
2158 
2159 		rcu_read_lock();
2160 		memcg = stock->cached;
2161 		if (memcg && stock->nr_pages &&
2162 		    mem_cgroup_is_descendant(memcg, root_memcg))
2163 			flush = true;
2164 		rcu_read_unlock();
2165 
2166 		if (flush &&
2167 		    !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2168 			if (cpu == curcpu)
2169 				drain_local_stock(&stock->work);
2170 			else
2171 				schedule_work_on(cpu, &stock->work);
2172 		}
2173 	}
2174 	put_cpu();
2175 	mutex_unlock(&percpu_charge_mutex);
2176 }
2177 
2178 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2179 {
2180 	struct memcg_stock_pcp *stock;
2181 	struct mem_cgroup *memcg, *mi;
2182 
2183 	stock = &per_cpu(memcg_stock, cpu);
2184 	drain_stock(stock);
2185 
2186 	for_each_mem_cgroup(memcg) {
2187 		int i;
2188 
2189 		for (i = 0; i < MEMCG_NR_STAT; i++) {
2190 			int nid;
2191 			long x;
2192 
2193 			x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2194 			if (x)
2195 				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2196 					atomic_long_add(x, &memcg->vmstats[i]);
2197 
2198 			if (i >= NR_VM_NODE_STAT_ITEMS)
2199 				continue;
2200 
2201 			for_each_node(nid) {
2202 				struct mem_cgroup_per_node *pn;
2203 
2204 				pn = mem_cgroup_nodeinfo(memcg, nid);
2205 				x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2206 				if (x)
2207 					do {
2208 						atomic_long_add(x, &pn->lruvec_stat[i]);
2209 					} while ((pn = parent_nodeinfo(pn, nid)));
2210 			}
2211 		}
2212 
2213 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2214 			long x;
2215 
2216 			x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2217 			if (x)
2218 				for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2219 					atomic_long_add(x, &memcg->vmevents[i]);
2220 		}
2221 	}
2222 
2223 	return 0;
2224 }
2225 
2226 static void reclaim_high(struct mem_cgroup *memcg,
2227 			 unsigned int nr_pages,
2228 			 gfp_t gfp_mask)
2229 {
2230 	do {
2231 		if (page_counter_read(&memcg->memory) <= memcg->high)
2232 			continue;
2233 		memcg_memory_event(memcg, MEMCG_HIGH);
2234 		try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2235 	} while ((memcg = parent_mem_cgroup(memcg)));
2236 }
2237 
2238 static void high_work_func(struct work_struct *work)
2239 {
2240 	struct mem_cgroup *memcg;
2241 
2242 	memcg = container_of(work, struct mem_cgroup, high_work);
2243 	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2244 }
2245 
2246 /*
2247  * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2248  * enough to still cause a significant slowdown in most cases, while still
2249  * allowing diagnostics and tracing to proceed without becoming stuck.
2250  */
2251 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2252 
2253 /*
2254  * When calculating the delay, we use these either side of the exponentiation to
2255  * maintain precision and scale to a reasonable number of jiffies (see the table
2256  * below.
2257  *
2258  * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2259  *   overage ratio to a delay.
2260  * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down down the
2261  *   proposed penalty in order to reduce to a reasonable number of jiffies, and
2262  *   to produce a reasonable delay curve.
2263  *
2264  * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2265  * reasonable delay curve compared to precision-adjusted overage, not
2266  * penalising heavily at first, but still making sure that growth beyond the
2267  * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2268  * example, with a high of 100 megabytes:
2269  *
2270  *  +-------+------------------------+
2271  *  | usage | time to allocate in ms |
2272  *  +-------+------------------------+
2273  *  | 100M  |                      0 |
2274  *  | 101M  |                      6 |
2275  *  | 102M  |                     25 |
2276  *  | 103M  |                     57 |
2277  *  | 104M  |                    102 |
2278  *  | 105M  |                    159 |
2279  *  | 106M  |                    230 |
2280  *  | 107M  |                    313 |
2281  *  | 108M  |                    409 |
2282  *  | 109M  |                    518 |
2283  *  | 110M  |                    639 |
2284  *  | 111M  |                    774 |
2285  *  | 112M  |                    921 |
2286  *  | 113M  |                   1081 |
2287  *  | 114M  |                   1254 |
2288  *  | 115M  |                   1439 |
2289  *  | 116M  |                   1638 |
2290  *  | 117M  |                   1849 |
2291  *  | 118M  |                   2000 |
2292  *  | 119M  |                   2000 |
2293  *  | 120M  |                   2000 |
2294  *  +-------+------------------------+
2295  */
2296  #define MEMCG_DELAY_PRECISION_SHIFT 20
2297  #define MEMCG_DELAY_SCALING_SHIFT 14
2298 
2299 /*
2300  * Get the number of jiffies that we should penalise a mischievous cgroup which
2301  * is exceeding its memory.high by checking both it and its ancestors.
2302  */
2303 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2304 					  unsigned int nr_pages)
2305 {
2306 	unsigned long penalty_jiffies;
2307 	u64 max_overage = 0;
2308 
2309 	do {
2310 		unsigned long usage, high;
2311 		u64 overage;
2312 
2313 		usage = page_counter_read(&memcg->memory);
2314 		high = READ_ONCE(memcg->high);
2315 
2316 		/*
2317 		 * Prevent division by 0 in overage calculation by acting as if
2318 		 * it was a threshold of 1 page
2319 		 */
2320 		high = max(high, 1UL);
2321 
2322 		overage = usage - high;
2323 		overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2324 		overage = div64_u64(overage, high);
2325 
2326 		if (overage > max_overage)
2327 			max_overage = overage;
2328 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2329 		 !mem_cgroup_is_root(memcg));
2330 
2331 	if (!max_overage)
2332 		return 0;
2333 
2334 	/*
2335 	 * We use overage compared to memory.high to calculate the number of
2336 	 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2337 	 * fairly lenient on small overages, and increasingly harsh when the
2338 	 * memcg in question makes it clear that it has no intention of stopping
2339 	 * its crazy behaviour, so we exponentially increase the delay based on
2340 	 * overage amount.
2341 	 */
2342 	penalty_jiffies = max_overage * max_overage * HZ;
2343 	penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2344 	penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2345 
2346 	/*
2347 	 * Factor in the task's own contribution to the overage, such that four
2348 	 * N-sized allocations are throttled approximately the same as one
2349 	 * 4N-sized allocation.
2350 	 *
2351 	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2352 	 * larger the current charge patch is than that.
2353 	 */
2354 	penalty_jiffies = penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2355 
2356 	/*
2357 	 * Clamp the max delay per usermode return so as to still keep the
2358 	 * application moving forwards and also permit diagnostics, albeit
2359 	 * extremely slowly.
2360 	 */
2361 	return min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2362 }
2363 
2364 /*
2365  * Scheduled by try_charge() to be executed from the userland return path
2366  * and reclaims memory over the high limit.
2367  */
2368 void mem_cgroup_handle_over_high(void)
2369 {
2370 	unsigned long penalty_jiffies;
2371 	unsigned long pflags;
2372 	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2373 	struct mem_cgroup *memcg;
2374 
2375 	if (likely(!nr_pages))
2376 		return;
2377 
2378 	memcg = get_mem_cgroup_from_mm(current->mm);
2379 	reclaim_high(memcg, nr_pages, GFP_KERNEL);
2380 	current->memcg_nr_pages_over_high = 0;
2381 
2382 	/*
2383 	 * memory.high is breached and reclaim is unable to keep up. Throttle
2384 	 * allocators proactively to slow down excessive growth.
2385 	 */
2386 	penalty_jiffies = calculate_high_delay(memcg, nr_pages);
2387 
2388 	/*
2389 	 * Don't sleep if the amount of jiffies this memcg owes us is so low
2390 	 * that it's not even worth doing, in an attempt to be nice to those who
2391 	 * go only a small amount over their memory.high value and maybe haven't
2392 	 * been aggressively reclaimed enough yet.
2393 	 */
2394 	if (penalty_jiffies <= HZ / 100)
2395 		goto out;
2396 
2397 	/*
2398 	 * If we exit early, we're guaranteed to die (since
2399 	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2400 	 * need to account for any ill-begotten jiffies to pay them off later.
2401 	 */
2402 	psi_memstall_enter(&pflags);
2403 	schedule_timeout_killable(penalty_jiffies);
2404 	psi_memstall_leave(&pflags);
2405 
2406 out:
2407 	css_put(&memcg->css);
2408 }
2409 
2410 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2411 		      unsigned int nr_pages)
2412 {
2413 	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2414 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2415 	struct mem_cgroup *mem_over_limit;
2416 	struct page_counter *counter;
2417 	unsigned long nr_reclaimed;
2418 	bool may_swap = true;
2419 	bool drained = false;
2420 	enum oom_status oom_status;
2421 
2422 	if (mem_cgroup_is_root(memcg))
2423 		return 0;
2424 retry:
2425 	if (consume_stock(memcg, nr_pages))
2426 		return 0;
2427 
2428 	if (!do_memsw_account() ||
2429 	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2430 		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2431 			goto done_restock;
2432 		if (do_memsw_account())
2433 			page_counter_uncharge(&memcg->memsw, batch);
2434 		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2435 	} else {
2436 		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2437 		may_swap = false;
2438 	}
2439 
2440 	if (batch > nr_pages) {
2441 		batch = nr_pages;
2442 		goto retry;
2443 	}
2444 
2445 	/*
2446 	 * Memcg doesn't have a dedicated reserve for atomic
2447 	 * allocations. But like the global atomic pool, we need to
2448 	 * put the burden of reclaim on regular allocation requests
2449 	 * and let these go through as privileged allocations.
2450 	 */
2451 	if (gfp_mask & __GFP_ATOMIC)
2452 		goto force;
2453 
2454 	/*
2455 	 * Unlike in global OOM situations, memcg is not in a physical
2456 	 * memory shortage.  Allow dying and OOM-killed tasks to
2457 	 * bypass the last charges so that they can exit quickly and
2458 	 * free their memory.
2459 	 */
2460 	if (unlikely(should_force_charge()))
2461 		goto force;
2462 
2463 	/*
2464 	 * Prevent unbounded recursion when reclaim operations need to
2465 	 * allocate memory. This might exceed the limits temporarily,
2466 	 * but we prefer facilitating memory reclaim and getting back
2467 	 * under the limit over triggering OOM kills in these cases.
2468 	 */
2469 	if (unlikely(current->flags & PF_MEMALLOC))
2470 		goto force;
2471 
2472 	if (unlikely(task_in_memcg_oom(current)))
2473 		goto nomem;
2474 
2475 	if (!gfpflags_allow_blocking(gfp_mask))
2476 		goto nomem;
2477 
2478 	memcg_memory_event(mem_over_limit, MEMCG_MAX);
2479 
2480 	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2481 						    gfp_mask, may_swap);
2482 
2483 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2484 		goto retry;
2485 
2486 	if (!drained) {
2487 		drain_all_stock(mem_over_limit);
2488 		drained = true;
2489 		goto retry;
2490 	}
2491 
2492 	if (gfp_mask & __GFP_NORETRY)
2493 		goto nomem;
2494 	/*
2495 	 * Even though the limit is exceeded at this point, reclaim
2496 	 * may have been able to free some pages.  Retry the charge
2497 	 * before killing the task.
2498 	 *
2499 	 * Only for regular pages, though: huge pages are rather
2500 	 * unlikely to succeed so close to the limit, and we fall back
2501 	 * to regular pages anyway in case of failure.
2502 	 */
2503 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2504 		goto retry;
2505 	/*
2506 	 * At task move, charge accounts can be doubly counted. So, it's
2507 	 * better to wait until the end of task_move if something is going on.
2508 	 */
2509 	if (mem_cgroup_wait_acct_move(mem_over_limit))
2510 		goto retry;
2511 
2512 	if (nr_retries--)
2513 		goto retry;
2514 
2515 	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2516 		goto nomem;
2517 
2518 	if (gfp_mask & __GFP_NOFAIL)
2519 		goto force;
2520 
2521 	if (fatal_signal_pending(current))
2522 		goto force;
2523 
2524 	/*
2525 	 * keep retrying as long as the memcg oom killer is able to make
2526 	 * a forward progress or bypass the charge if the oom killer
2527 	 * couldn't make any progress.
2528 	 */
2529 	oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2530 		       get_order(nr_pages * PAGE_SIZE));
2531 	switch (oom_status) {
2532 	case OOM_SUCCESS:
2533 		nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2534 		goto retry;
2535 	case OOM_FAILED:
2536 		goto force;
2537 	default:
2538 		goto nomem;
2539 	}
2540 nomem:
2541 	if (!(gfp_mask & __GFP_NOFAIL))
2542 		return -ENOMEM;
2543 force:
2544 	/*
2545 	 * The allocation either can't fail or will lead to more memory
2546 	 * being freed very soon.  Allow memory usage go over the limit
2547 	 * temporarily by force charging it.
2548 	 */
2549 	page_counter_charge(&memcg->memory, nr_pages);
2550 	if (do_memsw_account())
2551 		page_counter_charge(&memcg->memsw, nr_pages);
2552 	css_get_many(&memcg->css, nr_pages);
2553 
2554 	return 0;
2555 
2556 done_restock:
2557 	css_get_many(&memcg->css, batch);
2558 	if (batch > nr_pages)
2559 		refill_stock(memcg, batch - nr_pages);
2560 
2561 	/*
2562 	 * If the hierarchy is above the normal consumption range, schedule
2563 	 * reclaim on returning to userland.  We can perform reclaim here
2564 	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2565 	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2566 	 * not recorded as it most likely matches current's and won't
2567 	 * change in the meantime.  As high limit is checked again before
2568 	 * reclaim, the cost of mismatch is negligible.
2569 	 */
2570 	do {
2571 		if (page_counter_read(&memcg->memory) > memcg->high) {
2572 			/* Don't bother a random interrupted task */
2573 			if (in_interrupt()) {
2574 				schedule_work(&memcg->high_work);
2575 				break;
2576 			}
2577 			current->memcg_nr_pages_over_high += batch;
2578 			set_notify_resume(current);
2579 			break;
2580 		}
2581 	} while ((memcg = parent_mem_cgroup(memcg)));
2582 
2583 	return 0;
2584 }
2585 
2586 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2587 {
2588 	if (mem_cgroup_is_root(memcg))
2589 		return;
2590 
2591 	page_counter_uncharge(&memcg->memory, nr_pages);
2592 	if (do_memsw_account())
2593 		page_counter_uncharge(&memcg->memsw, nr_pages);
2594 
2595 	css_put_many(&memcg->css, nr_pages);
2596 }
2597 
2598 static void lock_page_lru(struct page *page, int *isolated)
2599 {
2600 	pg_data_t *pgdat = page_pgdat(page);
2601 
2602 	spin_lock_irq(&pgdat->lru_lock);
2603 	if (PageLRU(page)) {
2604 		struct lruvec *lruvec;
2605 
2606 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
2607 		ClearPageLRU(page);
2608 		del_page_from_lru_list(page, lruvec, page_lru(page));
2609 		*isolated = 1;
2610 	} else
2611 		*isolated = 0;
2612 }
2613 
2614 static void unlock_page_lru(struct page *page, int isolated)
2615 {
2616 	pg_data_t *pgdat = page_pgdat(page);
2617 
2618 	if (isolated) {
2619 		struct lruvec *lruvec;
2620 
2621 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
2622 		VM_BUG_ON_PAGE(PageLRU(page), page);
2623 		SetPageLRU(page);
2624 		add_page_to_lru_list(page, lruvec, page_lru(page));
2625 	}
2626 	spin_unlock_irq(&pgdat->lru_lock);
2627 }
2628 
2629 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2630 			  bool lrucare)
2631 {
2632 	int isolated;
2633 
2634 	VM_BUG_ON_PAGE(page->mem_cgroup, page);
2635 
2636 	/*
2637 	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2638 	 * may already be on some other mem_cgroup's LRU.  Take care of it.
2639 	 */
2640 	if (lrucare)
2641 		lock_page_lru(page, &isolated);
2642 
2643 	/*
2644 	 * Nobody should be changing or seriously looking at
2645 	 * page->mem_cgroup at this point:
2646 	 *
2647 	 * - the page is uncharged
2648 	 *
2649 	 * - the page is off-LRU
2650 	 *
2651 	 * - an anonymous fault has exclusive page access, except for
2652 	 *   a locked page table
2653 	 *
2654 	 * - a page cache insertion, a swapin fault, or a migration
2655 	 *   have the page locked
2656 	 */
2657 	page->mem_cgroup = memcg;
2658 
2659 	if (lrucare)
2660 		unlock_page_lru(page, isolated);
2661 }
2662 
2663 #ifdef CONFIG_MEMCG_KMEM
2664 static int memcg_alloc_cache_id(void)
2665 {
2666 	int id, size;
2667 	int err;
2668 
2669 	id = ida_simple_get(&memcg_cache_ida,
2670 			    0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2671 	if (id < 0)
2672 		return id;
2673 
2674 	if (id < memcg_nr_cache_ids)
2675 		return id;
2676 
2677 	/*
2678 	 * There's no space for the new id in memcg_caches arrays,
2679 	 * so we have to grow them.
2680 	 */
2681 	down_write(&memcg_cache_ids_sem);
2682 
2683 	size = 2 * (id + 1);
2684 	if (size < MEMCG_CACHES_MIN_SIZE)
2685 		size = MEMCG_CACHES_MIN_SIZE;
2686 	else if (size > MEMCG_CACHES_MAX_SIZE)
2687 		size = MEMCG_CACHES_MAX_SIZE;
2688 
2689 	err = memcg_update_all_caches(size);
2690 	if (!err)
2691 		err = memcg_update_all_list_lrus(size);
2692 	if (!err)
2693 		memcg_nr_cache_ids = size;
2694 
2695 	up_write(&memcg_cache_ids_sem);
2696 
2697 	if (err) {
2698 		ida_simple_remove(&memcg_cache_ida, id);
2699 		return err;
2700 	}
2701 	return id;
2702 }
2703 
2704 static void memcg_free_cache_id(int id)
2705 {
2706 	ida_simple_remove(&memcg_cache_ida, id);
2707 }
2708 
2709 struct memcg_kmem_cache_create_work {
2710 	struct mem_cgroup *memcg;
2711 	struct kmem_cache *cachep;
2712 	struct work_struct work;
2713 };
2714 
2715 static void memcg_kmem_cache_create_func(struct work_struct *w)
2716 {
2717 	struct memcg_kmem_cache_create_work *cw =
2718 		container_of(w, struct memcg_kmem_cache_create_work, work);
2719 	struct mem_cgroup *memcg = cw->memcg;
2720 	struct kmem_cache *cachep = cw->cachep;
2721 
2722 	memcg_create_kmem_cache(memcg, cachep);
2723 
2724 	css_put(&memcg->css);
2725 	kfree(cw);
2726 }
2727 
2728 /*
2729  * Enqueue the creation of a per-memcg kmem_cache.
2730  */
2731 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2732 					       struct kmem_cache *cachep)
2733 {
2734 	struct memcg_kmem_cache_create_work *cw;
2735 
2736 	if (!css_tryget_online(&memcg->css))
2737 		return;
2738 
2739 	cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
2740 	if (!cw)
2741 		return;
2742 
2743 	cw->memcg = memcg;
2744 	cw->cachep = cachep;
2745 	INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2746 
2747 	queue_work(memcg_kmem_cache_wq, &cw->work);
2748 }
2749 
2750 static inline bool memcg_kmem_bypass(void)
2751 {
2752 	if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2753 		return true;
2754 	return false;
2755 }
2756 
2757 /**
2758  * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2759  * @cachep: the original global kmem cache
2760  *
2761  * Return the kmem_cache we're supposed to use for a slab allocation.
2762  * We try to use the current memcg's version of the cache.
2763  *
2764  * If the cache does not exist yet, if we are the first user of it, we
2765  * create it asynchronously in a workqueue and let the current allocation
2766  * go through with the original cache.
2767  *
2768  * This function takes a reference to the cache it returns to assure it
2769  * won't get destroyed while we are working with it. Once the caller is
2770  * done with it, memcg_kmem_put_cache() must be called to release the
2771  * reference.
2772  */
2773 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2774 {
2775 	struct mem_cgroup *memcg;
2776 	struct kmem_cache *memcg_cachep;
2777 	struct memcg_cache_array *arr;
2778 	int kmemcg_id;
2779 
2780 	VM_BUG_ON(!is_root_cache(cachep));
2781 
2782 	if (memcg_kmem_bypass())
2783 		return cachep;
2784 
2785 	rcu_read_lock();
2786 
2787 	if (unlikely(current->active_memcg))
2788 		memcg = current->active_memcg;
2789 	else
2790 		memcg = mem_cgroup_from_task(current);
2791 
2792 	if (!memcg || memcg == root_mem_cgroup)
2793 		goto out_unlock;
2794 
2795 	kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2796 	if (kmemcg_id < 0)
2797 		goto out_unlock;
2798 
2799 	arr = rcu_dereference(cachep->memcg_params.memcg_caches);
2800 
2801 	/*
2802 	 * Make sure we will access the up-to-date value. The code updating
2803 	 * memcg_caches issues a write barrier to match the data dependency
2804 	 * barrier inside READ_ONCE() (see memcg_create_kmem_cache()).
2805 	 */
2806 	memcg_cachep = READ_ONCE(arr->entries[kmemcg_id]);
2807 
2808 	/*
2809 	 * If we are in a safe context (can wait, and not in interrupt
2810 	 * context), we could be be predictable and return right away.
2811 	 * This would guarantee that the allocation being performed
2812 	 * already belongs in the new cache.
2813 	 *
2814 	 * However, there are some clashes that can arrive from locking.
2815 	 * For instance, because we acquire the slab_mutex while doing
2816 	 * memcg_create_kmem_cache, this means no further allocation
2817 	 * could happen with the slab_mutex held. So it's better to
2818 	 * defer everything.
2819 	 *
2820 	 * If the memcg is dying or memcg_cache is about to be released,
2821 	 * don't bother creating new kmem_caches. Because memcg_cachep
2822 	 * is ZEROed as the fist step of kmem offlining, we don't need
2823 	 * percpu_ref_tryget_live() here. css_tryget_online() check in
2824 	 * memcg_schedule_kmem_cache_create() will prevent us from
2825 	 * creation of a new kmem_cache.
2826 	 */
2827 	if (unlikely(!memcg_cachep))
2828 		memcg_schedule_kmem_cache_create(memcg, cachep);
2829 	else if (percpu_ref_tryget(&memcg_cachep->memcg_params.refcnt))
2830 		cachep = memcg_cachep;
2831 out_unlock:
2832 	rcu_read_unlock();
2833 	return cachep;
2834 }
2835 
2836 /**
2837  * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2838  * @cachep: the cache returned by memcg_kmem_get_cache
2839  */
2840 void memcg_kmem_put_cache(struct kmem_cache *cachep)
2841 {
2842 	if (!is_root_cache(cachep))
2843 		percpu_ref_put(&cachep->memcg_params.refcnt);
2844 }
2845 
2846 /**
2847  * __memcg_kmem_charge_memcg: charge a kmem page
2848  * @page: page to charge
2849  * @gfp: reclaim mode
2850  * @order: allocation order
2851  * @memcg: memory cgroup to charge
2852  *
2853  * Returns 0 on success, an error code on failure.
2854  */
2855 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2856 			    struct mem_cgroup *memcg)
2857 {
2858 	unsigned int nr_pages = 1 << order;
2859 	struct page_counter *counter;
2860 	int ret;
2861 
2862 	ret = try_charge(memcg, gfp, nr_pages);
2863 	if (ret)
2864 		return ret;
2865 
2866 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2867 	    !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2868 
2869 		/*
2870 		 * Enforce __GFP_NOFAIL allocation because callers are not
2871 		 * prepared to see failures and likely do not have any failure
2872 		 * handling code.
2873 		 */
2874 		if (gfp & __GFP_NOFAIL) {
2875 			page_counter_charge(&memcg->kmem, nr_pages);
2876 			return 0;
2877 		}
2878 		cancel_charge(memcg, nr_pages);
2879 		return -ENOMEM;
2880 	}
2881 	return 0;
2882 }
2883 
2884 /**
2885  * __memcg_kmem_charge: charge a kmem page to the current memory cgroup
2886  * @page: page to charge
2887  * @gfp: reclaim mode
2888  * @order: allocation order
2889  *
2890  * Returns 0 on success, an error code on failure.
2891  */
2892 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2893 {
2894 	struct mem_cgroup *memcg;
2895 	int ret = 0;
2896 
2897 	if (memcg_kmem_bypass())
2898 		return 0;
2899 
2900 	memcg = get_mem_cgroup_from_current();
2901 	if (!mem_cgroup_is_root(memcg)) {
2902 		ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2903 		if (!ret) {
2904 			page->mem_cgroup = memcg;
2905 			__SetPageKmemcg(page);
2906 		}
2907 	}
2908 	css_put(&memcg->css);
2909 	return ret;
2910 }
2911 
2912 /**
2913  * __memcg_kmem_uncharge_memcg: uncharge a kmem page
2914  * @memcg: memcg to uncharge
2915  * @nr_pages: number of pages to uncharge
2916  */
2917 void __memcg_kmem_uncharge_memcg(struct mem_cgroup *memcg,
2918 				 unsigned int nr_pages)
2919 {
2920 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2921 		page_counter_uncharge(&memcg->kmem, nr_pages);
2922 
2923 	page_counter_uncharge(&memcg->memory, nr_pages);
2924 	if (do_memsw_account())
2925 		page_counter_uncharge(&memcg->memsw, nr_pages);
2926 }
2927 /**
2928  * __memcg_kmem_uncharge: uncharge a kmem page
2929  * @page: page to uncharge
2930  * @order: allocation order
2931  */
2932 void __memcg_kmem_uncharge(struct page *page, int order)
2933 {
2934 	struct mem_cgroup *memcg = page->mem_cgroup;
2935 	unsigned int nr_pages = 1 << order;
2936 
2937 	if (!memcg)
2938 		return;
2939 
2940 	VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2941 	__memcg_kmem_uncharge_memcg(memcg, nr_pages);
2942 	page->mem_cgroup = NULL;
2943 
2944 	/* slab pages do not have PageKmemcg flag set */
2945 	if (PageKmemcg(page))
2946 		__ClearPageKmemcg(page);
2947 
2948 	css_put_many(&memcg->css, nr_pages);
2949 }
2950 #endif /* CONFIG_MEMCG_KMEM */
2951 
2952 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2953 
2954 /*
2955  * Because tail pages are not marked as "used", set it. We're under
2956  * pgdat->lru_lock and migration entries setup in all page mappings.
2957  */
2958 void mem_cgroup_split_huge_fixup(struct page *head)
2959 {
2960 	int i;
2961 
2962 	if (mem_cgroup_disabled())
2963 		return;
2964 
2965 	for (i = 1; i < HPAGE_PMD_NR; i++)
2966 		head[i].mem_cgroup = head->mem_cgroup;
2967 
2968 	__mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
2969 }
2970 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2971 
2972 #ifdef CONFIG_MEMCG_SWAP
2973 /**
2974  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2975  * @entry: swap entry to be moved
2976  * @from:  mem_cgroup which the entry is moved from
2977  * @to:  mem_cgroup which the entry is moved to
2978  *
2979  * It succeeds only when the swap_cgroup's record for this entry is the same
2980  * as the mem_cgroup's id of @from.
2981  *
2982  * Returns 0 on success, -EINVAL on failure.
2983  *
2984  * The caller must have charged to @to, IOW, called page_counter_charge() about
2985  * both res and memsw, and called css_get().
2986  */
2987 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2988 				struct mem_cgroup *from, struct mem_cgroup *to)
2989 {
2990 	unsigned short old_id, new_id;
2991 
2992 	old_id = mem_cgroup_id(from);
2993 	new_id = mem_cgroup_id(to);
2994 
2995 	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2996 		mod_memcg_state(from, MEMCG_SWAP, -1);
2997 		mod_memcg_state(to, MEMCG_SWAP, 1);
2998 		return 0;
2999 	}
3000 	return -EINVAL;
3001 }
3002 #else
3003 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3004 				struct mem_cgroup *from, struct mem_cgroup *to)
3005 {
3006 	return -EINVAL;
3007 }
3008 #endif
3009 
3010 static DEFINE_MUTEX(memcg_max_mutex);
3011 
3012 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3013 				 unsigned long max, bool memsw)
3014 {
3015 	bool enlarge = false;
3016 	bool drained = false;
3017 	int ret;
3018 	bool limits_invariant;
3019 	struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3020 
3021 	do {
3022 		if (signal_pending(current)) {
3023 			ret = -EINTR;
3024 			break;
3025 		}
3026 
3027 		mutex_lock(&memcg_max_mutex);
3028 		/*
3029 		 * Make sure that the new limit (memsw or memory limit) doesn't
3030 		 * break our basic invariant rule memory.max <= memsw.max.
3031 		 */
3032 		limits_invariant = memsw ? max >= memcg->memory.max :
3033 					   max <= memcg->memsw.max;
3034 		if (!limits_invariant) {
3035 			mutex_unlock(&memcg_max_mutex);
3036 			ret = -EINVAL;
3037 			break;
3038 		}
3039 		if (max > counter->max)
3040 			enlarge = true;
3041 		ret = page_counter_set_max(counter, max);
3042 		mutex_unlock(&memcg_max_mutex);
3043 
3044 		if (!ret)
3045 			break;
3046 
3047 		if (!drained) {
3048 			drain_all_stock(memcg);
3049 			drained = true;
3050 			continue;
3051 		}
3052 
3053 		if (!try_to_free_mem_cgroup_pages(memcg, 1,
3054 					GFP_KERNEL, !memsw)) {
3055 			ret = -EBUSY;
3056 			break;
3057 		}
3058 	} while (true);
3059 
3060 	if (!ret && enlarge)
3061 		memcg_oom_recover(memcg);
3062 
3063 	return ret;
3064 }
3065 
3066 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3067 					    gfp_t gfp_mask,
3068 					    unsigned long *total_scanned)
3069 {
3070 	unsigned long nr_reclaimed = 0;
3071 	struct mem_cgroup_per_node *mz, *next_mz = NULL;
3072 	unsigned long reclaimed;
3073 	int loop = 0;
3074 	struct mem_cgroup_tree_per_node *mctz;
3075 	unsigned long excess;
3076 	unsigned long nr_scanned;
3077 
3078 	if (order > 0)
3079 		return 0;
3080 
3081 	mctz = soft_limit_tree_node(pgdat->node_id);
3082 
3083 	/*
3084 	 * Do not even bother to check the largest node if the root
3085 	 * is empty. Do it lockless to prevent lock bouncing. Races
3086 	 * are acceptable as soft limit is best effort anyway.
3087 	 */
3088 	if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3089 		return 0;
3090 
3091 	/*
3092 	 * This loop can run a while, specially if mem_cgroup's continuously
3093 	 * keep exceeding their soft limit and putting the system under
3094 	 * pressure
3095 	 */
3096 	do {
3097 		if (next_mz)
3098 			mz = next_mz;
3099 		else
3100 			mz = mem_cgroup_largest_soft_limit_node(mctz);
3101 		if (!mz)
3102 			break;
3103 
3104 		nr_scanned = 0;
3105 		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3106 						    gfp_mask, &nr_scanned);
3107 		nr_reclaimed += reclaimed;
3108 		*total_scanned += nr_scanned;
3109 		spin_lock_irq(&mctz->lock);
3110 		__mem_cgroup_remove_exceeded(mz, mctz);
3111 
3112 		/*
3113 		 * If we failed to reclaim anything from this memory cgroup
3114 		 * it is time to move on to the next cgroup
3115 		 */
3116 		next_mz = NULL;
3117 		if (!reclaimed)
3118 			next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3119 
3120 		excess = soft_limit_excess(mz->memcg);
3121 		/*
3122 		 * One school of thought says that we should not add
3123 		 * back the node to the tree if reclaim returns 0.
3124 		 * But our reclaim could return 0, simply because due
3125 		 * to priority we are exposing a smaller subset of
3126 		 * memory to reclaim from. Consider this as a longer
3127 		 * term TODO.
3128 		 */
3129 		/* If excess == 0, no tree ops */
3130 		__mem_cgroup_insert_exceeded(mz, mctz, excess);
3131 		spin_unlock_irq(&mctz->lock);
3132 		css_put(&mz->memcg->css);
3133 		loop++;
3134 		/*
3135 		 * Could not reclaim anything and there are no more
3136 		 * mem cgroups to try or we seem to be looping without
3137 		 * reclaiming anything.
3138 		 */
3139 		if (!nr_reclaimed &&
3140 			(next_mz == NULL ||
3141 			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3142 			break;
3143 	} while (!nr_reclaimed);
3144 	if (next_mz)
3145 		css_put(&next_mz->memcg->css);
3146 	return nr_reclaimed;
3147 }
3148 
3149 /*
3150  * Test whether @memcg has children, dead or alive.  Note that this
3151  * function doesn't care whether @memcg has use_hierarchy enabled and
3152  * returns %true if there are child csses according to the cgroup
3153  * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
3154  */
3155 static inline bool memcg_has_children(struct mem_cgroup *memcg)
3156 {
3157 	bool ret;
3158 
3159 	rcu_read_lock();
3160 	ret = css_next_child(NULL, &memcg->css);
3161 	rcu_read_unlock();
3162 	return ret;
3163 }
3164 
3165 /*
3166  * Reclaims as many pages from the given memcg as possible.
3167  *
3168  * Caller is responsible for holding css reference for memcg.
3169  */
3170 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3171 {
3172 	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3173 
3174 	/* we call try-to-free pages for make this cgroup empty */
3175 	lru_add_drain_all();
3176 
3177 	drain_all_stock(memcg);
3178 
3179 	/* try to free all pages in this cgroup */
3180 	while (nr_retries && page_counter_read(&memcg->memory)) {
3181 		int progress;
3182 
3183 		if (signal_pending(current))
3184 			return -EINTR;
3185 
3186 		progress = try_to_free_mem_cgroup_pages(memcg, 1,
3187 							GFP_KERNEL, true);
3188 		if (!progress) {
3189 			nr_retries--;
3190 			/* maybe some writeback is necessary */
3191 			congestion_wait(BLK_RW_ASYNC, HZ/10);
3192 		}
3193 
3194 	}
3195 
3196 	return 0;
3197 }
3198 
3199 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3200 					    char *buf, size_t nbytes,
3201 					    loff_t off)
3202 {
3203 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3204 
3205 	if (mem_cgroup_is_root(memcg))
3206 		return -EINVAL;
3207 	return mem_cgroup_force_empty(memcg) ?: nbytes;
3208 }
3209 
3210 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3211 				     struct cftype *cft)
3212 {
3213 	return mem_cgroup_from_css(css)->use_hierarchy;
3214 }
3215 
3216 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3217 				      struct cftype *cft, u64 val)
3218 {
3219 	int retval = 0;
3220 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3221 	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3222 
3223 	if (memcg->use_hierarchy == val)
3224 		return 0;
3225 
3226 	/*
3227 	 * If parent's use_hierarchy is set, we can't make any modifications
3228 	 * in the child subtrees. If it is unset, then the change can
3229 	 * occur, provided the current cgroup has no children.
3230 	 *
3231 	 * For the root cgroup, parent_mem is NULL, we allow value to be
3232 	 * set if there are no children.
3233 	 */
3234 	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3235 				(val == 1 || val == 0)) {
3236 		if (!memcg_has_children(memcg))
3237 			memcg->use_hierarchy = val;
3238 		else
3239 			retval = -EBUSY;
3240 	} else
3241 		retval = -EINVAL;
3242 
3243 	return retval;
3244 }
3245 
3246 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3247 {
3248 	unsigned long val;
3249 
3250 	if (mem_cgroup_is_root(memcg)) {
3251 		val = memcg_page_state(memcg, MEMCG_CACHE) +
3252 			memcg_page_state(memcg, MEMCG_RSS);
3253 		if (swap)
3254 			val += memcg_page_state(memcg, MEMCG_SWAP);
3255 	} else {
3256 		if (!swap)
3257 			val = page_counter_read(&memcg->memory);
3258 		else
3259 			val = page_counter_read(&memcg->memsw);
3260 	}
3261 	return val;
3262 }
3263 
3264 enum {
3265 	RES_USAGE,
3266 	RES_LIMIT,
3267 	RES_MAX_USAGE,
3268 	RES_FAILCNT,
3269 	RES_SOFT_LIMIT,
3270 };
3271 
3272 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3273 			       struct cftype *cft)
3274 {
3275 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3276 	struct page_counter *counter;
3277 
3278 	switch (MEMFILE_TYPE(cft->private)) {
3279 	case _MEM:
3280 		counter = &memcg->memory;
3281 		break;
3282 	case _MEMSWAP:
3283 		counter = &memcg->memsw;
3284 		break;
3285 	case _KMEM:
3286 		counter = &memcg->kmem;
3287 		break;
3288 	case _TCP:
3289 		counter = &memcg->tcpmem;
3290 		break;
3291 	default:
3292 		BUG();
3293 	}
3294 
3295 	switch (MEMFILE_ATTR(cft->private)) {
3296 	case RES_USAGE:
3297 		if (counter == &memcg->memory)
3298 			return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3299 		if (counter == &memcg->memsw)
3300 			return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3301 		return (u64)page_counter_read(counter) * PAGE_SIZE;
3302 	case RES_LIMIT:
3303 		return (u64)counter->max * PAGE_SIZE;
3304 	case RES_MAX_USAGE:
3305 		return (u64)counter->watermark * PAGE_SIZE;
3306 	case RES_FAILCNT:
3307 		return counter->failcnt;
3308 	case RES_SOFT_LIMIT:
3309 		return (u64)memcg->soft_limit * PAGE_SIZE;
3310 	default:
3311 		BUG();
3312 	}
3313 }
3314 
3315 static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
3316 {
3317 	unsigned long stat[MEMCG_NR_STAT] = {0};
3318 	struct mem_cgroup *mi;
3319 	int node, cpu, i;
3320 
3321 	for_each_online_cpu(cpu)
3322 		for (i = 0; i < MEMCG_NR_STAT; i++)
3323 			stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
3324 
3325 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3326 		for (i = 0; i < MEMCG_NR_STAT; i++)
3327 			atomic_long_add(stat[i], &mi->vmstats[i]);
3328 
3329 	for_each_node(node) {
3330 		struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3331 		struct mem_cgroup_per_node *pi;
3332 
3333 		for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3334 			stat[i] = 0;
3335 
3336 		for_each_online_cpu(cpu)
3337 			for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3338 				stat[i] += per_cpu(
3339 					pn->lruvec_stat_cpu->count[i], cpu);
3340 
3341 		for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
3342 			for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3343 				atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3344 	}
3345 }
3346 
3347 static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3348 {
3349 	unsigned long events[NR_VM_EVENT_ITEMS];
3350 	struct mem_cgroup *mi;
3351 	int cpu, i;
3352 
3353 	for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3354 		events[i] = 0;
3355 
3356 	for_each_online_cpu(cpu)
3357 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3358 			events[i] += per_cpu(memcg->vmstats_percpu->events[i],
3359 					     cpu);
3360 
3361 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3362 		for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3363 			atomic_long_add(events[i], &mi->vmevents[i]);
3364 }
3365 
3366 #ifdef CONFIG_MEMCG_KMEM
3367 static int memcg_online_kmem(struct mem_cgroup *memcg)
3368 {
3369 	int memcg_id;
3370 
3371 	if (cgroup_memory_nokmem)
3372 		return 0;
3373 
3374 	BUG_ON(memcg->kmemcg_id >= 0);
3375 	BUG_ON(memcg->kmem_state);
3376 
3377 	memcg_id = memcg_alloc_cache_id();
3378 	if (memcg_id < 0)
3379 		return memcg_id;
3380 
3381 	static_branch_inc(&memcg_kmem_enabled_key);
3382 	/*
3383 	 * A memory cgroup is considered kmem-online as soon as it gets
3384 	 * kmemcg_id. Setting the id after enabling static branching will
3385 	 * guarantee no one starts accounting before all call sites are
3386 	 * patched.
3387 	 */
3388 	memcg->kmemcg_id = memcg_id;
3389 	memcg->kmem_state = KMEM_ONLINE;
3390 	INIT_LIST_HEAD(&memcg->kmem_caches);
3391 
3392 	return 0;
3393 }
3394 
3395 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3396 {
3397 	struct cgroup_subsys_state *css;
3398 	struct mem_cgroup *parent, *child;
3399 	int kmemcg_id;
3400 
3401 	if (memcg->kmem_state != KMEM_ONLINE)
3402 		return;
3403 	/*
3404 	 * Clear the online state before clearing memcg_caches array
3405 	 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
3406 	 * guarantees that no cache will be created for this cgroup
3407 	 * after we are done (see memcg_create_kmem_cache()).
3408 	 */
3409 	memcg->kmem_state = KMEM_ALLOCATED;
3410 
3411 	parent = parent_mem_cgroup(memcg);
3412 	if (!parent)
3413 		parent = root_mem_cgroup;
3414 
3415 	/*
3416 	 * Deactivate and reparent kmem_caches.
3417 	 */
3418 	memcg_deactivate_kmem_caches(memcg, parent);
3419 
3420 	kmemcg_id = memcg->kmemcg_id;
3421 	BUG_ON(kmemcg_id < 0);
3422 
3423 	/*
3424 	 * Change kmemcg_id of this cgroup and all its descendants to the
3425 	 * parent's id, and then move all entries from this cgroup's list_lrus
3426 	 * to ones of the parent. After we have finished, all list_lrus
3427 	 * corresponding to this cgroup are guaranteed to remain empty. The
3428 	 * ordering is imposed by list_lru_node->lock taken by
3429 	 * memcg_drain_all_list_lrus().
3430 	 */
3431 	rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3432 	css_for_each_descendant_pre(css, &memcg->css) {
3433 		child = mem_cgroup_from_css(css);
3434 		BUG_ON(child->kmemcg_id != kmemcg_id);
3435 		child->kmemcg_id = parent->kmemcg_id;
3436 		if (!memcg->use_hierarchy)
3437 			break;
3438 	}
3439 	rcu_read_unlock();
3440 
3441 	memcg_drain_all_list_lrus(kmemcg_id, parent);
3442 
3443 	memcg_free_cache_id(kmemcg_id);
3444 }
3445 
3446 static void memcg_free_kmem(struct mem_cgroup *memcg)
3447 {
3448 	/* css_alloc() failed, offlining didn't happen */
3449 	if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3450 		memcg_offline_kmem(memcg);
3451 
3452 	if (memcg->kmem_state == KMEM_ALLOCATED) {
3453 		WARN_ON(!list_empty(&memcg->kmem_caches));
3454 		static_branch_dec(&memcg_kmem_enabled_key);
3455 	}
3456 }
3457 #else
3458 static int memcg_online_kmem(struct mem_cgroup *memcg)
3459 {
3460 	return 0;
3461 }
3462 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3463 {
3464 }
3465 static void memcg_free_kmem(struct mem_cgroup *memcg)
3466 {
3467 }
3468 #endif /* CONFIG_MEMCG_KMEM */
3469 
3470 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3471 				 unsigned long max)
3472 {
3473 	int ret;
3474 
3475 	mutex_lock(&memcg_max_mutex);
3476 	ret = page_counter_set_max(&memcg->kmem, max);
3477 	mutex_unlock(&memcg_max_mutex);
3478 	return ret;
3479 }
3480 
3481 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3482 {
3483 	int ret;
3484 
3485 	mutex_lock(&memcg_max_mutex);
3486 
3487 	ret = page_counter_set_max(&memcg->tcpmem, max);
3488 	if (ret)
3489 		goto out;
3490 
3491 	if (!memcg->tcpmem_active) {
3492 		/*
3493 		 * The active flag needs to be written after the static_key
3494 		 * update. This is what guarantees that the socket activation
3495 		 * function is the last one to run. See mem_cgroup_sk_alloc()
3496 		 * for details, and note that we don't mark any socket as
3497 		 * belonging to this memcg until that flag is up.
3498 		 *
3499 		 * We need to do this, because static_keys will span multiple
3500 		 * sites, but we can't control their order. If we mark a socket
3501 		 * as accounted, but the accounting functions are not patched in
3502 		 * yet, we'll lose accounting.
3503 		 *
3504 		 * We never race with the readers in mem_cgroup_sk_alloc(),
3505 		 * because when this value change, the code to process it is not
3506 		 * patched in yet.
3507 		 */
3508 		static_branch_inc(&memcg_sockets_enabled_key);
3509 		memcg->tcpmem_active = true;
3510 	}
3511 out:
3512 	mutex_unlock(&memcg_max_mutex);
3513 	return ret;
3514 }
3515 
3516 /*
3517  * The user of this function is...
3518  * RES_LIMIT.
3519  */
3520 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3521 				char *buf, size_t nbytes, loff_t off)
3522 {
3523 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3524 	unsigned long nr_pages;
3525 	int ret;
3526 
3527 	buf = strstrip(buf);
3528 	ret = page_counter_memparse(buf, "-1", &nr_pages);
3529 	if (ret)
3530 		return ret;
3531 
3532 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3533 	case RES_LIMIT:
3534 		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3535 			ret = -EINVAL;
3536 			break;
3537 		}
3538 		switch (MEMFILE_TYPE(of_cft(of)->private)) {
3539 		case _MEM:
3540 			ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3541 			break;
3542 		case _MEMSWAP:
3543 			ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3544 			break;
3545 		case _KMEM:
3546 			pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3547 				     "Please report your usecase to linux-mm@kvack.org if you "
3548 				     "depend on this functionality.\n");
3549 			ret = memcg_update_kmem_max(memcg, nr_pages);
3550 			break;
3551 		case _TCP:
3552 			ret = memcg_update_tcp_max(memcg, nr_pages);
3553 			break;
3554 		}
3555 		break;
3556 	case RES_SOFT_LIMIT:
3557 		memcg->soft_limit = nr_pages;
3558 		ret = 0;
3559 		break;
3560 	}
3561 	return ret ?: nbytes;
3562 }
3563 
3564 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3565 				size_t nbytes, loff_t off)
3566 {
3567 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3568 	struct page_counter *counter;
3569 
3570 	switch (MEMFILE_TYPE(of_cft(of)->private)) {
3571 	case _MEM:
3572 		counter = &memcg->memory;
3573 		break;
3574 	case _MEMSWAP:
3575 		counter = &memcg->memsw;
3576 		break;
3577 	case _KMEM:
3578 		counter = &memcg->kmem;
3579 		break;
3580 	case _TCP:
3581 		counter = &memcg->tcpmem;
3582 		break;
3583 	default:
3584 		BUG();
3585 	}
3586 
3587 	switch (MEMFILE_ATTR(of_cft(of)->private)) {
3588 	case RES_MAX_USAGE:
3589 		page_counter_reset_watermark(counter);
3590 		break;
3591 	case RES_FAILCNT:
3592 		counter->failcnt = 0;
3593 		break;
3594 	default:
3595 		BUG();
3596 	}
3597 
3598 	return nbytes;
3599 }
3600 
3601 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3602 					struct cftype *cft)
3603 {
3604 	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3605 }
3606 
3607 #ifdef CONFIG_MMU
3608 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3609 					struct cftype *cft, u64 val)
3610 {
3611 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3612 
3613 	if (val & ~MOVE_MASK)
3614 		return -EINVAL;
3615 
3616 	/*
3617 	 * No kind of locking is needed in here, because ->can_attach() will
3618 	 * check this value once in the beginning of the process, and then carry
3619 	 * on with stale data. This means that changes to this value will only
3620 	 * affect task migrations starting after the change.
3621 	 */
3622 	memcg->move_charge_at_immigrate = val;
3623 	return 0;
3624 }
3625 #else
3626 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3627 					struct cftype *cft, u64 val)
3628 {
3629 	return -ENOSYS;
3630 }
3631 #endif
3632 
3633 #ifdef CONFIG_NUMA
3634 
3635 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3636 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3637 #define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)
3638 
3639 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3640 					   int nid, unsigned int lru_mask)
3641 {
3642 	struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3643 	unsigned long nr = 0;
3644 	enum lru_list lru;
3645 
3646 	VM_BUG_ON((unsigned)nid >= nr_node_ids);
3647 
3648 	for_each_lru(lru) {
3649 		if (!(BIT(lru) & lru_mask))
3650 			continue;
3651 		nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3652 	}
3653 	return nr;
3654 }
3655 
3656 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3657 					     unsigned int lru_mask)
3658 {
3659 	unsigned long nr = 0;
3660 	enum lru_list lru;
3661 
3662 	for_each_lru(lru) {
3663 		if (!(BIT(lru) & lru_mask))
3664 			continue;
3665 		nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3666 	}
3667 	return nr;
3668 }
3669 
3670 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3671 {
3672 	struct numa_stat {
3673 		const char *name;
3674 		unsigned int lru_mask;
3675 	};
3676 
3677 	static const struct numa_stat stats[] = {
3678 		{ "total", LRU_ALL },
3679 		{ "file", LRU_ALL_FILE },
3680 		{ "anon", LRU_ALL_ANON },
3681 		{ "unevictable", BIT(LRU_UNEVICTABLE) },
3682 	};
3683 	const struct numa_stat *stat;
3684 	int nid;
3685 	unsigned long nr;
3686 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3687 
3688 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3689 		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3690 		seq_printf(m, "%s=%lu", stat->name, nr);
3691 		for_each_node_state(nid, N_MEMORY) {
3692 			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3693 							  stat->lru_mask);
3694 			seq_printf(m, " N%d=%lu", nid, nr);
3695 		}
3696 		seq_putc(m, '\n');
3697 	}
3698 
3699 	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3700 		struct mem_cgroup *iter;
3701 
3702 		nr = 0;
3703 		for_each_mem_cgroup_tree(iter, memcg)
3704 			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3705 		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3706 		for_each_node_state(nid, N_MEMORY) {
3707 			nr = 0;
3708 			for_each_mem_cgroup_tree(iter, memcg)
3709 				nr += mem_cgroup_node_nr_lru_pages(
3710 					iter, nid, stat->lru_mask);
3711 			seq_printf(m, " N%d=%lu", nid, nr);
3712 		}
3713 		seq_putc(m, '\n');
3714 	}
3715 
3716 	return 0;
3717 }
3718 #endif /* CONFIG_NUMA */
3719 
3720 static const unsigned int memcg1_stats[] = {
3721 	MEMCG_CACHE,
3722 	MEMCG_RSS,
3723 	MEMCG_RSS_HUGE,
3724 	NR_SHMEM,
3725 	NR_FILE_MAPPED,
3726 	NR_FILE_DIRTY,
3727 	NR_WRITEBACK,
3728 	MEMCG_SWAP,
3729 };
3730 
3731 static const char *const memcg1_stat_names[] = {
3732 	"cache",
3733 	"rss",
3734 	"rss_huge",
3735 	"shmem",
3736 	"mapped_file",
3737 	"dirty",
3738 	"writeback",
3739 	"swap",
3740 };
3741 
3742 /* Universal VM events cgroup1 shows, original sort order */
3743 static const unsigned int memcg1_events[] = {
3744 	PGPGIN,
3745 	PGPGOUT,
3746 	PGFAULT,
3747 	PGMAJFAULT,
3748 };
3749 
3750 static int memcg_stat_show(struct seq_file *m, void *v)
3751 {
3752 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3753 	unsigned long memory, memsw;
3754 	struct mem_cgroup *mi;
3755 	unsigned int i;
3756 
3757 	BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3758 
3759 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3760 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3761 			continue;
3762 		seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3763 			   memcg_page_state_local(memcg, memcg1_stats[i]) *
3764 			   PAGE_SIZE);
3765 	}
3766 
3767 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3768 		seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
3769 			   memcg_events_local(memcg, memcg1_events[i]));
3770 
3771 	for (i = 0; i < NR_LRU_LISTS; i++)
3772 		seq_printf(m, "%s %lu\n", lru_list_name(i),
3773 			   memcg_page_state_local(memcg, NR_LRU_BASE + i) *
3774 			   PAGE_SIZE);
3775 
3776 	/* Hierarchical information */
3777 	memory = memsw = PAGE_COUNTER_MAX;
3778 	for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3779 		memory = min(memory, mi->memory.max);
3780 		memsw = min(memsw, mi->memsw.max);
3781 	}
3782 	seq_printf(m, "hierarchical_memory_limit %llu\n",
3783 		   (u64)memory * PAGE_SIZE);
3784 	if (do_memsw_account())
3785 		seq_printf(m, "hierarchical_memsw_limit %llu\n",
3786 			   (u64)memsw * PAGE_SIZE);
3787 
3788 	for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3789 		if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3790 			continue;
3791 		seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
3792 			   (u64)memcg_page_state(memcg, memcg1_stats[i]) *
3793 			   PAGE_SIZE);
3794 	}
3795 
3796 	for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3797 		seq_printf(m, "total_%s %llu\n",
3798 			   vm_event_name(memcg1_events[i]),
3799 			   (u64)memcg_events(memcg, memcg1_events[i]));
3800 
3801 	for (i = 0; i < NR_LRU_LISTS; i++)
3802 		seq_printf(m, "total_%s %llu\n", lru_list_name(i),
3803 			   (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
3804 			   PAGE_SIZE);
3805 
3806 #ifdef CONFIG_DEBUG_VM
3807 	{
3808 		pg_data_t *pgdat;
3809 		struct mem_cgroup_per_node *mz;
3810 		struct zone_reclaim_stat *rstat;
3811 		unsigned long recent_rotated[2] = {0, 0};
3812 		unsigned long recent_scanned[2] = {0, 0};
3813 
3814 		for_each_online_pgdat(pgdat) {
3815 			mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3816 			rstat = &mz->lruvec.reclaim_stat;
3817 
3818 			recent_rotated[0] += rstat->recent_rotated[0];
3819 			recent_rotated[1] += rstat->recent_rotated[1];
3820 			recent_scanned[0] += rstat->recent_scanned[0];
3821 			recent_scanned[1] += rstat->recent_scanned[1];
3822 		}
3823 		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3824 		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3825 		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3826 		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3827 	}
3828 #endif
3829 
3830 	return 0;
3831 }
3832 
3833 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3834 				      struct cftype *cft)
3835 {
3836 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3837 
3838 	return mem_cgroup_swappiness(memcg);
3839 }
3840 
3841 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3842 				       struct cftype *cft, u64 val)
3843 {
3844 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3845 
3846 	if (val > 100)
3847 		return -EINVAL;
3848 
3849 	if (css->parent)
3850 		memcg->swappiness = val;
3851 	else
3852 		vm_swappiness = val;
3853 
3854 	return 0;
3855 }
3856 
3857 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3858 {
3859 	struct mem_cgroup_threshold_ary *t;
3860 	unsigned long usage;
3861 	int i;
3862 
3863 	rcu_read_lock();
3864 	if (!swap)
3865 		t = rcu_dereference(memcg->thresholds.primary);
3866 	else
3867 		t = rcu_dereference(memcg->memsw_thresholds.primary);
3868 
3869 	if (!t)
3870 		goto unlock;
3871 
3872 	usage = mem_cgroup_usage(memcg, swap);
3873 
3874 	/*
3875 	 * current_threshold points to threshold just below or equal to usage.
3876 	 * If it's not true, a threshold was crossed after last
3877 	 * call of __mem_cgroup_threshold().
3878 	 */
3879 	i = t->current_threshold;
3880 
3881 	/*
3882 	 * Iterate backward over array of thresholds starting from
3883 	 * current_threshold and check if a threshold is crossed.
3884 	 * If none of thresholds below usage is crossed, we read
3885 	 * only one element of the array here.
3886 	 */
3887 	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3888 		eventfd_signal(t->entries[i].eventfd, 1);
3889 
3890 	/* i = current_threshold + 1 */
3891 	i++;
3892 
3893 	/*
3894 	 * Iterate forward over array of thresholds starting from
3895 	 * current_threshold+1 and check if a threshold is crossed.
3896 	 * If none of thresholds above usage is crossed, we read
3897 	 * only one element of the array here.
3898 	 */
3899 	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3900 		eventfd_signal(t->entries[i].eventfd, 1);
3901 
3902 	/* Update current_threshold */
3903 	t->current_threshold = i - 1;
3904 unlock:
3905 	rcu_read_unlock();
3906 }
3907 
3908 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3909 {
3910 	while (memcg) {
3911 		__mem_cgroup_threshold(memcg, false);
3912 		if (do_memsw_account())
3913 			__mem_cgroup_threshold(memcg, true);
3914 
3915 		memcg = parent_mem_cgroup(memcg);
3916 	}
3917 }
3918 
3919 static int compare_thresholds(const void *a, const void *b)
3920 {
3921 	const struct mem_cgroup_threshold *_a = a;
3922 	const struct mem_cgroup_threshold *_b = b;
3923 
3924 	if (_a->threshold > _b->threshold)
3925 		return 1;
3926 
3927 	if (_a->threshold < _b->threshold)
3928 		return -1;
3929 
3930 	return 0;
3931 }
3932 
3933 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3934 {
3935 	struct mem_cgroup_eventfd_list *ev;
3936 
3937 	spin_lock(&memcg_oom_lock);
3938 
3939 	list_for_each_entry(ev, &memcg->oom_notify, list)
3940 		eventfd_signal(ev->eventfd, 1);
3941 
3942 	spin_unlock(&memcg_oom_lock);
3943 	return 0;
3944 }
3945 
3946 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3947 {
3948 	struct mem_cgroup *iter;
3949 
3950 	for_each_mem_cgroup_tree(iter, memcg)
3951 		mem_cgroup_oom_notify_cb(iter);
3952 }
3953 
3954 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3955 	struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3956 {
3957 	struct mem_cgroup_thresholds *thresholds;
3958 	struct mem_cgroup_threshold_ary *new;
3959 	unsigned long threshold;
3960 	unsigned long usage;
3961 	int i, size, ret;
3962 
3963 	ret = page_counter_memparse(args, "-1", &threshold);
3964 	if (ret)
3965 		return ret;
3966 
3967 	mutex_lock(&memcg->thresholds_lock);
3968 
3969 	if (type == _MEM) {
3970 		thresholds = &memcg->thresholds;
3971 		usage = mem_cgroup_usage(memcg, false);
3972 	} else if (type == _MEMSWAP) {
3973 		thresholds = &memcg->memsw_thresholds;
3974 		usage = mem_cgroup_usage(memcg, true);
3975 	} else
3976 		BUG();
3977 
3978 	/* Check if a threshold crossed before adding a new one */
3979 	if (thresholds->primary)
3980 		__mem_cgroup_threshold(memcg, type == _MEMSWAP);
3981 
3982 	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3983 
3984 	/* Allocate memory for new array of thresholds */
3985 	new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
3986 	if (!new) {
3987 		ret = -ENOMEM;
3988 		goto unlock;
3989 	}
3990 	new->size = size;
3991 
3992 	/* Copy thresholds (if any) to new array */
3993 	if (thresholds->primary) {
3994 		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3995 				sizeof(struct mem_cgroup_threshold));
3996 	}
3997 
3998 	/* Add new threshold */
3999 	new->entries[size - 1].eventfd = eventfd;
4000 	new->entries[size - 1].threshold = threshold;
4001 
4002 	/* Sort thresholds. Registering of new threshold isn't time-critical */
4003 	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4004 			compare_thresholds, NULL);
4005 
4006 	/* Find current threshold */
4007 	new->current_threshold = -1;
4008 	for (i = 0; i < size; i++) {
4009 		if (new->entries[i].threshold <= usage) {
4010 			/*
4011 			 * new->current_threshold will not be used until
4012 			 * rcu_assign_pointer(), so it's safe to increment
4013 			 * it here.
4014 			 */
4015 			++new->current_threshold;
4016 		} else
4017 			break;
4018 	}
4019 
4020 	/* Free old spare buffer and save old primary buffer as spare */
4021 	kfree(thresholds->spare);
4022 	thresholds->spare = thresholds->primary;
4023 
4024 	rcu_assign_pointer(thresholds->primary, new);
4025 
4026 	/* To be sure that nobody uses thresholds */
4027 	synchronize_rcu();
4028 
4029 unlock:
4030 	mutex_unlock(&memcg->thresholds_lock);
4031 
4032 	return ret;
4033 }
4034 
4035 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4036 	struct eventfd_ctx *eventfd, const char *args)
4037 {
4038 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4039 }
4040 
4041 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4042 	struct eventfd_ctx *eventfd, const char *args)
4043 {
4044 	return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4045 }
4046 
4047 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4048 	struct eventfd_ctx *eventfd, enum res_type type)
4049 {
4050 	struct mem_cgroup_thresholds *thresholds;
4051 	struct mem_cgroup_threshold_ary *new;
4052 	unsigned long usage;
4053 	int i, j, size, entries;
4054 
4055 	mutex_lock(&memcg->thresholds_lock);
4056 
4057 	if (type == _MEM) {
4058 		thresholds = &memcg->thresholds;
4059 		usage = mem_cgroup_usage(memcg, false);
4060 	} else if (type == _MEMSWAP) {
4061 		thresholds = &memcg->memsw_thresholds;
4062 		usage = mem_cgroup_usage(memcg, true);
4063 	} else
4064 		BUG();
4065 
4066 	if (!thresholds->primary)
4067 		goto unlock;
4068 
4069 	/* Check if a threshold crossed before removing */
4070 	__mem_cgroup_threshold(memcg, type == _MEMSWAP);
4071 
4072 	/* Calculate new number of threshold */
4073 	size = entries = 0;
4074 	for (i = 0; i < thresholds->primary->size; i++) {
4075 		if (thresholds->primary->entries[i].eventfd != eventfd)
4076 			size++;
4077 		else
4078 			entries++;
4079 	}
4080 
4081 	new = thresholds->spare;
4082 
4083 	/* If no items related to eventfd have been cleared, nothing to do */
4084 	if (!entries)
4085 		goto unlock;
4086 
4087 	/* Set thresholds array to NULL if we don't have thresholds */
4088 	if (!size) {
4089 		kfree(new);
4090 		new = NULL;
4091 		goto swap_buffers;
4092 	}
4093 
4094 	new->size = size;
4095 
4096 	/* Copy thresholds and find current threshold */
4097 	new->current_threshold = -1;
4098 	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4099 		if (thresholds->primary->entries[i].eventfd == eventfd)
4100 			continue;
4101 
4102 		new->entries[j] = thresholds->primary->entries[i];
4103 		if (new->entries[j].threshold <= usage) {
4104 			/*
4105 			 * new->current_threshold will not be used
4106 			 * until rcu_assign_pointer(), so it's safe to increment
4107 			 * it here.
4108 			 */
4109 			++new->current_threshold;
4110 		}
4111 		j++;
4112 	}
4113 
4114 swap_buffers:
4115 	/* Swap primary and spare array */
4116 	thresholds->spare = thresholds->primary;
4117 
4118 	rcu_assign_pointer(thresholds->primary, new);
4119 
4120 	/* To be sure that nobody uses thresholds */
4121 	synchronize_rcu();
4122 
4123 	/* If all events are unregistered, free the spare array */
4124 	if (!new) {
4125 		kfree(thresholds->spare);
4126 		thresholds->spare = NULL;
4127 	}
4128 unlock:
4129 	mutex_unlock(&memcg->thresholds_lock);
4130 }
4131 
4132 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4133 	struct eventfd_ctx *eventfd)
4134 {
4135 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4136 }
4137 
4138 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4139 	struct eventfd_ctx *eventfd)
4140 {
4141 	return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4142 }
4143 
4144 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4145 	struct eventfd_ctx *eventfd, const char *args)
4146 {
4147 	struct mem_cgroup_eventfd_list *event;
4148 
4149 	event = kmalloc(sizeof(*event),	GFP_KERNEL);
4150 	if (!event)
4151 		return -ENOMEM;
4152 
4153 	spin_lock(&memcg_oom_lock);
4154 
4155 	event->eventfd = eventfd;
4156 	list_add(&event->list, &memcg->oom_notify);
4157 
4158 	/* already in OOM ? */
4159 	if (memcg->under_oom)
4160 		eventfd_signal(eventfd, 1);
4161 	spin_unlock(&memcg_oom_lock);
4162 
4163 	return 0;
4164 }
4165 
4166 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4167 	struct eventfd_ctx *eventfd)
4168 {
4169 	struct mem_cgroup_eventfd_list *ev, *tmp;
4170 
4171 	spin_lock(&memcg_oom_lock);
4172 
4173 	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4174 		if (ev->eventfd == eventfd) {
4175 			list_del(&ev->list);
4176 			kfree(ev);
4177 		}
4178 	}
4179 
4180 	spin_unlock(&memcg_oom_lock);
4181 }
4182 
4183 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4184 {
4185 	struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4186 
4187 	seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4188 	seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4189 	seq_printf(sf, "oom_kill %lu\n",
4190 		   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4191 	return 0;
4192 }
4193 
4194 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4195 	struct cftype *cft, u64 val)
4196 {
4197 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4198 
4199 	/* cannot set to root cgroup and only 0 and 1 are allowed */
4200 	if (!css->parent || !((val == 0) || (val == 1)))
4201 		return -EINVAL;
4202 
4203 	memcg->oom_kill_disable = val;
4204 	if (!val)
4205 		memcg_oom_recover(memcg);
4206 
4207 	return 0;
4208 }
4209 
4210 #ifdef CONFIG_CGROUP_WRITEBACK
4211 
4212 #include <trace/events/writeback.h>
4213 
4214 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4215 {
4216 	return wb_domain_init(&memcg->cgwb_domain, gfp);
4217 }
4218 
4219 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4220 {
4221 	wb_domain_exit(&memcg->cgwb_domain);
4222 }
4223 
4224 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4225 {
4226 	wb_domain_size_changed(&memcg->cgwb_domain);
4227 }
4228 
4229 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4230 {
4231 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4232 
4233 	if (!memcg->css.parent)
4234 		return NULL;
4235 
4236 	return &memcg->cgwb_domain;
4237 }
4238 
4239 /*
4240  * idx can be of type enum memcg_stat_item or node_stat_item.
4241  * Keep in sync with memcg_exact_page().
4242  */
4243 static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4244 {
4245 	long x = atomic_long_read(&memcg->vmstats[idx]);
4246 	int cpu;
4247 
4248 	for_each_online_cpu(cpu)
4249 		x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4250 	if (x < 0)
4251 		x = 0;
4252 	return x;
4253 }
4254 
4255 /**
4256  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4257  * @wb: bdi_writeback in question
4258  * @pfilepages: out parameter for number of file pages
4259  * @pheadroom: out parameter for number of allocatable pages according to memcg
4260  * @pdirty: out parameter for number of dirty pages
4261  * @pwriteback: out parameter for number of pages under writeback
4262  *
4263  * Determine the numbers of file, headroom, dirty, and writeback pages in
4264  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
4265  * is a bit more involved.
4266  *
4267  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
4268  * headroom is calculated as the lowest headroom of itself and the
4269  * ancestors.  Note that this doesn't consider the actual amount of
4270  * available memory in the system.  The caller should further cap
4271  * *@pheadroom accordingly.
4272  */
4273 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4274 			 unsigned long *pheadroom, unsigned long *pdirty,
4275 			 unsigned long *pwriteback)
4276 {
4277 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4278 	struct mem_cgroup *parent;
4279 
4280 	*pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4281 
4282 	/* this should eventually include NR_UNSTABLE_NFS */
4283 	*pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4284 	*pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4285 			memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4286 	*pheadroom = PAGE_COUNTER_MAX;
4287 
4288 	while ((parent = parent_mem_cgroup(memcg))) {
4289 		unsigned long ceiling = min(memcg->memory.max, memcg->high);
4290 		unsigned long used = page_counter_read(&memcg->memory);
4291 
4292 		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4293 		memcg = parent;
4294 	}
4295 }
4296 
4297 /*
4298  * Foreign dirty flushing
4299  *
4300  * There's an inherent mismatch between memcg and writeback.  The former
4301  * trackes ownership per-page while the latter per-inode.  This was a
4302  * deliberate design decision because honoring per-page ownership in the
4303  * writeback path is complicated, may lead to higher CPU and IO overheads
4304  * and deemed unnecessary given that write-sharing an inode across
4305  * different cgroups isn't a common use-case.
4306  *
4307  * Combined with inode majority-writer ownership switching, this works well
4308  * enough in most cases but there are some pathological cases.  For
4309  * example, let's say there are two cgroups A and B which keep writing to
4310  * different but confined parts of the same inode.  B owns the inode and
4311  * A's memory is limited far below B's.  A's dirty ratio can rise enough to
4312  * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4313  * triggering background writeback.  A will be slowed down without a way to
4314  * make writeback of the dirty pages happen.
4315  *
4316  * Conditions like the above can lead to a cgroup getting repatedly and
4317  * severely throttled after making some progress after each
4318  * dirty_expire_interval while the underyling IO device is almost
4319  * completely idle.
4320  *
4321  * Solving this problem completely requires matching the ownership tracking
4322  * granularities between memcg and writeback in either direction.  However,
4323  * the more egregious behaviors can be avoided by simply remembering the
4324  * most recent foreign dirtying events and initiating remote flushes on
4325  * them when local writeback isn't enough to keep the memory clean enough.
4326  *
4327  * The following two functions implement such mechanism.  When a foreign
4328  * page - a page whose memcg and writeback ownerships don't match - is
4329  * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4330  * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
4331  * decides that the memcg needs to sleep due to high dirty ratio, it calls
4332  * mem_cgroup_flush_foreign() which queues writeback on the recorded
4333  * foreign bdi_writebacks which haven't expired.  Both the numbers of
4334  * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4335  * limited to MEMCG_CGWB_FRN_CNT.
4336  *
4337  * The mechanism only remembers IDs and doesn't hold any object references.
4338  * As being wrong occasionally doesn't matter, updates and accesses to the
4339  * records are lockless and racy.
4340  */
4341 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4342 					     struct bdi_writeback *wb)
4343 {
4344 	struct mem_cgroup *memcg = page->mem_cgroup;
4345 	struct memcg_cgwb_frn *frn;
4346 	u64 now = get_jiffies_64();
4347 	u64 oldest_at = now;
4348 	int oldest = -1;
4349 	int i;
4350 
4351 	trace_track_foreign_dirty(page, wb);
4352 
4353 	/*
4354 	 * Pick the slot to use.  If there is already a slot for @wb, keep
4355 	 * using it.  If not replace the oldest one which isn't being
4356 	 * written out.
4357 	 */
4358 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4359 		frn = &memcg->cgwb_frn[i];
4360 		if (frn->bdi_id == wb->bdi->id &&
4361 		    frn->memcg_id == wb->memcg_css->id)
4362 			break;
4363 		if (time_before64(frn->at, oldest_at) &&
4364 		    atomic_read(&frn->done.cnt) == 1) {
4365 			oldest = i;
4366 			oldest_at = frn->at;
4367 		}
4368 	}
4369 
4370 	if (i < MEMCG_CGWB_FRN_CNT) {
4371 		/*
4372 		 * Re-using an existing one.  Update timestamp lazily to
4373 		 * avoid making the cacheline hot.  We want them to be
4374 		 * reasonably up-to-date and significantly shorter than
4375 		 * dirty_expire_interval as that's what expires the record.
4376 		 * Use the shorter of 1s and dirty_expire_interval / 8.
4377 		 */
4378 		unsigned long update_intv =
4379 			min_t(unsigned long, HZ,
4380 			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4381 
4382 		if (time_before64(frn->at, now - update_intv))
4383 			frn->at = now;
4384 	} else if (oldest >= 0) {
4385 		/* replace the oldest free one */
4386 		frn = &memcg->cgwb_frn[oldest];
4387 		frn->bdi_id = wb->bdi->id;
4388 		frn->memcg_id = wb->memcg_css->id;
4389 		frn->at = now;
4390 	}
4391 }
4392 
4393 /* issue foreign writeback flushes for recorded foreign dirtying events */
4394 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4395 {
4396 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4397 	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4398 	u64 now = jiffies_64;
4399 	int i;
4400 
4401 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4402 		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4403 
4404 		/*
4405 		 * If the record is older than dirty_expire_interval,
4406 		 * writeback on it has already started.  No need to kick it
4407 		 * off again.  Also, don't start a new one if there's
4408 		 * already one in flight.
4409 		 */
4410 		if (time_after64(frn->at, now - intv) &&
4411 		    atomic_read(&frn->done.cnt) == 1) {
4412 			frn->at = 0;
4413 			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4414 			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4415 					       WB_REASON_FOREIGN_FLUSH,
4416 					       &frn->done);
4417 		}
4418 	}
4419 }
4420 
4421 #else	/* CONFIG_CGROUP_WRITEBACK */
4422 
4423 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4424 {
4425 	return 0;
4426 }
4427 
4428 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4429 {
4430 }
4431 
4432 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4433 {
4434 }
4435 
4436 #endif	/* CONFIG_CGROUP_WRITEBACK */
4437 
4438 /*
4439  * DO NOT USE IN NEW FILES.
4440  *
4441  * "cgroup.event_control" implementation.
4442  *
4443  * This is way over-engineered.  It tries to support fully configurable
4444  * events for each user.  Such level of flexibility is completely
4445  * unnecessary especially in the light of the planned unified hierarchy.
4446  *
4447  * Please deprecate this and replace with something simpler if at all
4448  * possible.
4449  */
4450 
4451 /*
4452  * Unregister event and free resources.
4453  *
4454  * Gets called from workqueue.
4455  */
4456 static void memcg_event_remove(struct work_struct *work)
4457 {
4458 	struct mem_cgroup_event *event =
4459 		container_of(work, struct mem_cgroup_event, remove);
4460 	struct mem_cgroup *memcg = event->memcg;
4461 
4462 	remove_wait_queue(event->wqh, &event->wait);
4463 
4464 	event->unregister_event(memcg, event->eventfd);
4465 
4466 	/* Notify userspace the event is going away. */
4467 	eventfd_signal(event->eventfd, 1);
4468 
4469 	eventfd_ctx_put(event->eventfd);
4470 	kfree(event);
4471 	css_put(&memcg->css);
4472 }
4473 
4474 /*
4475  * Gets called on EPOLLHUP on eventfd when user closes it.
4476  *
4477  * Called with wqh->lock held and interrupts disabled.
4478  */
4479 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4480 			    int sync, void *key)
4481 {
4482 	struct mem_cgroup_event *event =
4483 		container_of(wait, struct mem_cgroup_event, wait);
4484 	struct mem_cgroup *memcg = event->memcg;
4485 	__poll_t flags = key_to_poll(key);
4486 
4487 	if (flags & EPOLLHUP) {
4488 		/*
4489 		 * If the event has been detached at cgroup removal, we
4490 		 * can simply return knowing the other side will cleanup
4491 		 * for us.
4492 		 *
4493 		 * We can't race against event freeing since the other
4494 		 * side will require wqh->lock via remove_wait_queue(),
4495 		 * which we hold.
4496 		 */
4497 		spin_lock(&memcg->event_list_lock);
4498 		if (!list_empty(&event->list)) {
4499 			list_del_init(&event->list);
4500 			/*
4501 			 * We are in atomic context, but cgroup_event_remove()
4502 			 * may sleep, so we have to call it in workqueue.
4503 			 */
4504 			schedule_work(&event->remove);
4505 		}
4506 		spin_unlock(&memcg->event_list_lock);
4507 	}
4508 
4509 	return 0;
4510 }
4511 
4512 static void memcg_event_ptable_queue_proc(struct file *file,
4513 		wait_queue_head_t *wqh, poll_table *pt)
4514 {
4515 	struct mem_cgroup_event *event =
4516 		container_of(pt, struct mem_cgroup_event, pt);
4517 
4518 	event->wqh = wqh;
4519 	add_wait_queue(wqh, &event->wait);
4520 }
4521 
4522 /*
4523  * DO NOT USE IN NEW FILES.
4524  *
4525  * Parse input and register new cgroup event handler.
4526  *
4527  * Input must be in format '<event_fd> <control_fd> <args>'.
4528  * Interpretation of args is defined by control file implementation.
4529  */
4530 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4531 					 char *buf, size_t nbytes, loff_t off)
4532 {
4533 	struct cgroup_subsys_state *css = of_css(of);
4534 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4535 	struct mem_cgroup_event *event;
4536 	struct cgroup_subsys_state *cfile_css;
4537 	unsigned int efd, cfd;
4538 	struct fd efile;
4539 	struct fd cfile;
4540 	const char *name;
4541 	char *endp;
4542 	int ret;
4543 
4544 	buf = strstrip(buf);
4545 
4546 	efd = simple_strtoul(buf, &endp, 10);
4547 	if (*endp != ' ')
4548 		return -EINVAL;
4549 	buf = endp + 1;
4550 
4551 	cfd = simple_strtoul(buf, &endp, 10);
4552 	if ((*endp != ' ') && (*endp != '\0'))
4553 		return -EINVAL;
4554 	buf = endp + 1;
4555 
4556 	event = kzalloc(sizeof(*event), GFP_KERNEL);
4557 	if (!event)
4558 		return -ENOMEM;
4559 
4560 	event->memcg = memcg;
4561 	INIT_LIST_HEAD(&event->list);
4562 	init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4563 	init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4564 	INIT_WORK(&event->remove, memcg_event_remove);
4565 
4566 	efile = fdget(efd);
4567 	if (!efile.file) {
4568 		ret = -EBADF;
4569 		goto out_kfree;
4570 	}
4571 
4572 	event->eventfd = eventfd_ctx_fileget(efile.file);
4573 	if (IS_ERR(event->eventfd)) {
4574 		ret = PTR_ERR(event->eventfd);
4575 		goto out_put_efile;
4576 	}
4577 
4578 	cfile = fdget(cfd);
4579 	if (!cfile.file) {
4580 		ret = -EBADF;
4581 		goto out_put_eventfd;
4582 	}
4583 
4584 	/* the process need read permission on control file */
4585 	/* AV: shouldn't we check that it's been opened for read instead? */
4586 	ret = inode_permission(file_inode(cfile.file), MAY_READ);
4587 	if (ret < 0)
4588 		goto out_put_cfile;
4589 
4590 	/*
4591 	 * Determine the event callbacks and set them in @event.  This used
4592 	 * to be done via struct cftype but cgroup core no longer knows
4593 	 * about these events.  The following is crude but the whole thing
4594 	 * is for compatibility anyway.
4595 	 *
4596 	 * DO NOT ADD NEW FILES.
4597 	 */
4598 	name = cfile.file->f_path.dentry->d_name.name;
4599 
4600 	if (!strcmp(name, "memory.usage_in_bytes")) {
4601 		event->register_event = mem_cgroup_usage_register_event;
4602 		event->unregister_event = mem_cgroup_usage_unregister_event;
4603 	} else if (!strcmp(name, "memory.oom_control")) {
4604 		event->register_event = mem_cgroup_oom_register_event;
4605 		event->unregister_event = mem_cgroup_oom_unregister_event;
4606 	} else if (!strcmp(name, "memory.pressure_level")) {
4607 		event->register_event = vmpressure_register_event;
4608 		event->unregister_event = vmpressure_unregister_event;
4609 	} else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4610 		event->register_event = memsw_cgroup_usage_register_event;
4611 		event->unregister_event = memsw_cgroup_usage_unregister_event;
4612 	} else {
4613 		ret = -EINVAL;
4614 		goto out_put_cfile;
4615 	}
4616 
4617 	/*
4618 	 * Verify @cfile should belong to @css.  Also, remaining events are
4619 	 * automatically removed on cgroup destruction but the removal is
4620 	 * asynchronous, so take an extra ref on @css.
4621 	 */
4622 	cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4623 					       &memory_cgrp_subsys);
4624 	ret = -EINVAL;
4625 	if (IS_ERR(cfile_css))
4626 		goto out_put_cfile;
4627 	if (cfile_css != css) {
4628 		css_put(cfile_css);
4629 		goto out_put_cfile;
4630 	}
4631 
4632 	ret = event->register_event(memcg, event->eventfd, buf);
4633 	if (ret)
4634 		goto out_put_css;
4635 
4636 	vfs_poll(efile.file, &event->pt);
4637 
4638 	spin_lock(&memcg->event_list_lock);
4639 	list_add(&event->list, &memcg->event_list);
4640 	spin_unlock(&memcg->event_list_lock);
4641 
4642 	fdput(cfile);
4643 	fdput(efile);
4644 
4645 	return nbytes;
4646 
4647 out_put_css:
4648 	css_put(css);
4649 out_put_cfile:
4650 	fdput(cfile);
4651 out_put_eventfd:
4652 	eventfd_ctx_put(event->eventfd);
4653 out_put_efile:
4654 	fdput(efile);
4655 out_kfree:
4656 	kfree(event);
4657 
4658 	return ret;
4659 }
4660 
4661 static struct cftype mem_cgroup_legacy_files[] = {
4662 	{
4663 		.name = "usage_in_bytes",
4664 		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4665 		.read_u64 = mem_cgroup_read_u64,
4666 	},
4667 	{
4668 		.name = "max_usage_in_bytes",
4669 		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4670 		.write = mem_cgroup_reset,
4671 		.read_u64 = mem_cgroup_read_u64,
4672 	},
4673 	{
4674 		.name = "limit_in_bytes",
4675 		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4676 		.write = mem_cgroup_write,
4677 		.read_u64 = mem_cgroup_read_u64,
4678 	},
4679 	{
4680 		.name = "soft_limit_in_bytes",
4681 		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4682 		.write = mem_cgroup_write,
4683 		.read_u64 = mem_cgroup_read_u64,
4684 	},
4685 	{
4686 		.name = "failcnt",
4687 		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4688 		.write = mem_cgroup_reset,
4689 		.read_u64 = mem_cgroup_read_u64,
4690 	},
4691 	{
4692 		.name = "stat",
4693 		.seq_show = memcg_stat_show,
4694 	},
4695 	{
4696 		.name = "force_empty",
4697 		.write = mem_cgroup_force_empty_write,
4698 	},
4699 	{
4700 		.name = "use_hierarchy",
4701 		.write_u64 = mem_cgroup_hierarchy_write,
4702 		.read_u64 = mem_cgroup_hierarchy_read,
4703 	},
4704 	{
4705 		.name = "cgroup.event_control",		/* XXX: for compat */
4706 		.write = memcg_write_event_control,
4707 		.flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4708 	},
4709 	{
4710 		.name = "swappiness",
4711 		.read_u64 = mem_cgroup_swappiness_read,
4712 		.write_u64 = mem_cgroup_swappiness_write,
4713 	},
4714 	{
4715 		.name = "move_charge_at_immigrate",
4716 		.read_u64 = mem_cgroup_move_charge_read,
4717 		.write_u64 = mem_cgroup_move_charge_write,
4718 	},
4719 	{
4720 		.name = "oom_control",
4721 		.seq_show = mem_cgroup_oom_control_read,
4722 		.write_u64 = mem_cgroup_oom_control_write,
4723 		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4724 	},
4725 	{
4726 		.name = "pressure_level",
4727 	},
4728 #ifdef CONFIG_NUMA
4729 	{
4730 		.name = "numa_stat",
4731 		.seq_show = memcg_numa_stat_show,
4732 	},
4733 #endif
4734 	{
4735 		.name = "kmem.limit_in_bytes",
4736 		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4737 		.write = mem_cgroup_write,
4738 		.read_u64 = mem_cgroup_read_u64,
4739 	},
4740 	{
4741 		.name = "kmem.usage_in_bytes",
4742 		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4743 		.read_u64 = mem_cgroup_read_u64,
4744 	},
4745 	{
4746 		.name = "kmem.failcnt",
4747 		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4748 		.write = mem_cgroup_reset,
4749 		.read_u64 = mem_cgroup_read_u64,
4750 	},
4751 	{
4752 		.name = "kmem.max_usage_in_bytes",
4753 		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4754 		.write = mem_cgroup_reset,
4755 		.read_u64 = mem_cgroup_read_u64,
4756 	},
4757 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
4758 	{
4759 		.name = "kmem.slabinfo",
4760 		.seq_start = memcg_slab_start,
4761 		.seq_next = memcg_slab_next,
4762 		.seq_stop = memcg_slab_stop,
4763 		.seq_show = memcg_slab_show,
4764 	},
4765 #endif
4766 	{
4767 		.name = "kmem.tcp.limit_in_bytes",
4768 		.private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4769 		.write = mem_cgroup_write,
4770 		.read_u64 = mem_cgroup_read_u64,
4771 	},
4772 	{
4773 		.name = "kmem.tcp.usage_in_bytes",
4774 		.private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4775 		.read_u64 = mem_cgroup_read_u64,
4776 	},
4777 	{
4778 		.name = "kmem.tcp.failcnt",
4779 		.private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4780 		.write = mem_cgroup_reset,
4781 		.read_u64 = mem_cgroup_read_u64,
4782 	},
4783 	{
4784 		.name = "kmem.tcp.max_usage_in_bytes",
4785 		.private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4786 		.write = mem_cgroup_reset,
4787 		.read_u64 = mem_cgroup_read_u64,
4788 	},
4789 	{ },	/* terminate */
4790 };
4791 
4792 /*
4793  * Private memory cgroup IDR
4794  *
4795  * Swap-out records and page cache shadow entries need to store memcg
4796  * references in constrained space, so we maintain an ID space that is
4797  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4798  * memory-controlled cgroups to 64k.
4799  *
4800  * However, there usually are many references to the oflline CSS after
4801  * the cgroup has been destroyed, such as page cache or reclaimable
4802  * slab objects, that don't need to hang on to the ID. We want to keep
4803  * those dead CSS from occupying IDs, or we might quickly exhaust the
4804  * relatively small ID space and prevent the creation of new cgroups
4805  * even when there are much fewer than 64k cgroups - possibly none.
4806  *
4807  * Maintain a private 16-bit ID space for memcg, and allow the ID to
4808  * be freed and recycled when it's no longer needed, which is usually
4809  * when the CSS is offlined.
4810  *
4811  * The only exception to that are records of swapped out tmpfs/shmem
4812  * pages that need to be attributed to live ancestors on swapin. But
4813  * those references are manageable from userspace.
4814  */
4815 
4816 static DEFINE_IDR(mem_cgroup_idr);
4817 
4818 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4819 {
4820 	if (memcg->id.id > 0) {
4821 		idr_remove(&mem_cgroup_idr, memcg->id.id);
4822 		memcg->id.id = 0;
4823 	}
4824 }
4825 
4826 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4827 {
4828 	refcount_add(n, &memcg->id.ref);
4829 }
4830 
4831 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4832 {
4833 	if (refcount_sub_and_test(n, &memcg->id.ref)) {
4834 		mem_cgroup_id_remove(memcg);
4835 
4836 		/* Memcg ID pins CSS */
4837 		css_put(&memcg->css);
4838 	}
4839 }
4840 
4841 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4842 {
4843 	mem_cgroup_id_put_many(memcg, 1);
4844 }
4845 
4846 /**
4847  * mem_cgroup_from_id - look up a memcg from a memcg id
4848  * @id: the memcg id to look up
4849  *
4850  * Caller must hold rcu_read_lock().
4851  */
4852 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4853 {
4854 	WARN_ON_ONCE(!rcu_read_lock_held());
4855 	return idr_find(&mem_cgroup_idr, id);
4856 }
4857 
4858 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4859 {
4860 	struct mem_cgroup_per_node *pn;
4861 	int tmp = node;
4862 	/*
4863 	 * This routine is called against possible nodes.
4864 	 * But it's BUG to call kmalloc() against offline node.
4865 	 *
4866 	 * TODO: this routine can waste much memory for nodes which will
4867 	 *       never be onlined. It's better to use memory hotplug callback
4868 	 *       function.
4869 	 */
4870 	if (!node_state(node, N_NORMAL_MEMORY))
4871 		tmp = -1;
4872 	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4873 	if (!pn)
4874 		return 1;
4875 
4876 	pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat);
4877 	if (!pn->lruvec_stat_local) {
4878 		kfree(pn);
4879 		return 1;
4880 	}
4881 
4882 	pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
4883 	if (!pn->lruvec_stat_cpu) {
4884 		free_percpu(pn->lruvec_stat_local);
4885 		kfree(pn);
4886 		return 1;
4887 	}
4888 
4889 	lruvec_init(&pn->lruvec);
4890 	pn->usage_in_excess = 0;
4891 	pn->on_tree = false;
4892 	pn->memcg = memcg;
4893 
4894 	memcg->nodeinfo[node] = pn;
4895 	return 0;
4896 }
4897 
4898 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4899 {
4900 	struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4901 
4902 	if (!pn)
4903 		return;
4904 
4905 	free_percpu(pn->lruvec_stat_cpu);
4906 	free_percpu(pn->lruvec_stat_local);
4907 	kfree(pn);
4908 }
4909 
4910 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4911 {
4912 	int node;
4913 
4914 	for_each_node(node)
4915 		free_mem_cgroup_per_node_info(memcg, node);
4916 	free_percpu(memcg->vmstats_percpu);
4917 	free_percpu(memcg->vmstats_local);
4918 	kfree(memcg);
4919 }
4920 
4921 static void mem_cgroup_free(struct mem_cgroup *memcg)
4922 {
4923 	memcg_wb_domain_exit(memcg);
4924 	/*
4925 	 * Flush percpu vmstats and vmevents to guarantee the value correctness
4926 	 * on parent's and all ancestor levels.
4927 	 */
4928 	memcg_flush_percpu_vmstats(memcg);
4929 	memcg_flush_percpu_vmevents(memcg);
4930 	__mem_cgroup_free(memcg);
4931 }
4932 
4933 static struct mem_cgroup *mem_cgroup_alloc(void)
4934 {
4935 	struct mem_cgroup *memcg;
4936 	unsigned int size;
4937 	int node;
4938 	int __maybe_unused i;
4939 
4940 	size = sizeof(struct mem_cgroup);
4941 	size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4942 
4943 	memcg = kzalloc(size, GFP_KERNEL);
4944 	if (!memcg)
4945 		return NULL;
4946 
4947 	memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4948 				 1, MEM_CGROUP_ID_MAX,
4949 				 GFP_KERNEL);
4950 	if (memcg->id.id < 0)
4951 		goto fail;
4952 
4953 	memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu);
4954 	if (!memcg->vmstats_local)
4955 		goto fail;
4956 
4957 	memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu);
4958 	if (!memcg->vmstats_percpu)
4959 		goto fail;
4960 
4961 	for_each_node(node)
4962 		if (alloc_mem_cgroup_per_node_info(memcg, node))
4963 			goto fail;
4964 
4965 	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4966 		goto fail;
4967 
4968 	INIT_WORK(&memcg->high_work, high_work_func);
4969 	INIT_LIST_HEAD(&memcg->oom_notify);
4970 	mutex_init(&memcg->thresholds_lock);
4971 	spin_lock_init(&memcg->move_lock);
4972 	vmpressure_init(&memcg->vmpressure);
4973 	INIT_LIST_HEAD(&memcg->event_list);
4974 	spin_lock_init(&memcg->event_list_lock);
4975 	memcg->socket_pressure = jiffies;
4976 #ifdef CONFIG_MEMCG_KMEM
4977 	memcg->kmemcg_id = -1;
4978 #endif
4979 #ifdef CONFIG_CGROUP_WRITEBACK
4980 	INIT_LIST_HEAD(&memcg->cgwb_list);
4981 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
4982 		memcg->cgwb_frn[i].done =
4983 			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
4984 #endif
4985 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4986 	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
4987 	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
4988 	memcg->deferred_split_queue.split_queue_len = 0;
4989 #endif
4990 	idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4991 	return memcg;
4992 fail:
4993 	mem_cgroup_id_remove(memcg);
4994 	__mem_cgroup_free(memcg);
4995 	return NULL;
4996 }
4997 
4998 static struct cgroup_subsys_state * __ref
4999 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5000 {
5001 	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5002 	struct mem_cgroup *memcg;
5003 	long error = -ENOMEM;
5004 
5005 	memcg = mem_cgroup_alloc();
5006 	if (!memcg)
5007 		return ERR_PTR(error);
5008 
5009 	memcg->high = PAGE_COUNTER_MAX;
5010 	memcg->soft_limit = PAGE_COUNTER_MAX;
5011 	if (parent) {
5012 		memcg->swappiness = mem_cgroup_swappiness(parent);
5013 		memcg->oom_kill_disable = parent->oom_kill_disable;
5014 	}
5015 	if (parent && parent->use_hierarchy) {
5016 		memcg->use_hierarchy = true;
5017 		page_counter_init(&memcg->memory, &parent->memory);
5018 		page_counter_init(&memcg->swap, &parent->swap);
5019 		page_counter_init(&memcg->memsw, &parent->memsw);
5020 		page_counter_init(&memcg->kmem, &parent->kmem);
5021 		page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5022 	} else {
5023 		page_counter_init(&memcg->memory, NULL);
5024 		page_counter_init(&memcg->swap, NULL);
5025 		page_counter_init(&memcg->memsw, NULL);
5026 		page_counter_init(&memcg->kmem, NULL);
5027 		page_counter_init(&memcg->tcpmem, NULL);
5028 		/*
5029 		 * Deeper hierachy with use_hierarchy == false doesn't make
5030 		 * much sense so let cgroup subsystem know about this
5031 		 * unfortunate state in our controller.
5032 		 */
5033 		if (parent != root_mem_cgroup)
5034 			memory_cgrp_subsys.broken_hierarchy = true;
5035 	}
5036 
5037 	/* The following stuff does not apply to the root */
5038 	if (!parent) {
5039 #ifdef CONFIG_MEMCG_KMEM
5040 		INIT_LIST_HEAD(&memcg->kmem_caches);
5041 #endif
5042 		root_mem_cgroup = memcg;
5043 		return &memcg->css;
5044 	}
5045 
5046 	error = memcg_online_kmem(memcg);
5047 	if (error)
5048 		goto fail;
5049 
5050 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5051 		static_branch_inc(&memcg_sockets_enabled_key);
5052 
5053 	return &memcg->css;
5054 fail:
5055 	mem_cgroup_id_remove(memcg);
5056 	mem_cgroup_free(memcg);
5057 	return ERR_PTR(-ENOMEM);
5058 }
5059 
5060 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5061 {
5062 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5063 
5064 	/*
5065 	 * A memcg must be visible for memcg_expand_shrinker_maps()
5066 	 * by the time the maps are allocated. So, we allocate maps
5067 	 * here, when for_each_mem_cgroup() can't skip it.
5068 	 */
5069 	if (memcg_alloc_shrinker_maps(memcg)) {
5070 		mem_cgroup_id_remove(memcg);
5071 		return -ENOMEM;
5072 	}
5073 
5074 	/* Online state pins memcg ID, memcg ID pins CSS */
5075 	refcount_set(&memcg->id.ref, 1);
5076 	css_get(css);
5077 	return 0;
5078 }
5079 
5080 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5081 {
5082 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5083 	struct mem_cgroup_event *event, *tmp;
5084 
5085 	/*
5086 	 * Unregister events and notify userspace.
5087 	 * Notify userspace about cgroup removing only after rmdir of cgroup
5088 	 * directory to avoid race between userspace and kernelspace.
5089 	 */
5090 	spin_lock(&memcg->event_list_lock);
5091 	list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5092 		list_del_init(&event->list);
5093 		schedule_work(&event->remove);
5094 	}
5095 	spin_unlock(&memcg->event_list_lock);
5096 
5097 	page_counter_set_min(&memcg->memory, 0);
5098 	page_counter_set_low(&memcg->memory, 0);
5099 
5100 	memcg_offline_kmem(memcg);
5101 	wb_memcg_offline(memcg);
5102 
5103 	drain_all_stock(memcg);
5104 
5105 	mem_cgroup_id_put(memcg);
5106 }
5107 
5108 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5109 {
5110 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5111 
5112 	invalidate_reclaim_iterators(memcg);
5113 }
5114 
5115 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5116 {
5117 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5118 	int __maybe_unused i;
5119 
5120 #ifdef CONFIG_CGROUP_WRITEBACK
5121 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5122 		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5123 #endif
5124 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5125 		static_branch_dec(&memcg_sockets_enabled_key);
5126 
5127 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5128 		static_branch_dec(&memcg_sockets_enabled_key);
5129 
5130 	vmpressure_cleanup(&memcg->vmpressure);
5131 	cancel_work_sync(&memcg->high_work);
5132 	mem_cgroup_remove_from_trees(memcg);
5133 	memcg_free_shrinker_maps(memcg);
5134 	memcg_free_kmem(memcg);
5135 	mem_cgroup_free(memcg);
5136 }
5137 
5138 /**
5139  * mem_cgroup_css_reset - reset the states of a mem_cgroup
5140  * @css: the target css
5141  *
5142  * Reset the states of the mem_cgroup associated with @css.  This is
5143  * invoked when the userland requests disabling on the default hierarchy
5144  * but the memcg is pinned through dependency.  The memcg should stop
5145  * applying policies and should revert to the vanilla state as it may be
5146  * made visible again.
5147  *
5148  * The current implementation only resets the essential configurations.
5149  * This needs to be expanded to cover all the visible parts.
5150  */
5151 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5152 {
5153 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5154 
5155 	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5156 	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5157 	page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
5158 	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5159 	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5160 	page_counter_set_min(&memcg->memory, 0);
5161 	page_counter_set_low(&memcg->memory, 0);
5162 	memcg->high = PAGE_COUNTER_MAX;
5163 	memcg->soft_limit = PAGE_COUNTER_MAX;
5164 	memcg_wb_domain_size_changed(memcg);
5165 }
5166 
5167 #ifdef CONFIG_MMU
5168 /* Handlers for move charge at task migration. */
5169 static int mem_cgroup_do_precharge(unsigned long count)
5170 {
5171 	int ret;
5172 
5173 	/* Try a single bulk charge without reclaim first, kswapd may wake */
5174 	ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5175 	if (!ret) {
5176 		mc.precharge += count;
5177 		return ret;
5178 	}
5179 
5180 	/* Try charges one by one with reclaim, but do not retry */
5181 	while (count--) {
5182 		ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5183 		if (ret)
5184 			return ret;
5185 		mc.precharge++;
5186 		cond_resched();
5187 	}
5188 	return 0;
5189 }
5190 
5191 union mc_target {
5192 	struct page	*page;
5193 	swp_entry_t	ent;
5194 };
5195 
5196 enum mc_target_type {
5197 	MC_TARGET_NONE = 0,
5198 	MC_TARGET_PAGE,
5199 	MC_TARGET_SWAP,
5200 	MC_TARGET_DEVICE,
5201 };
5202 
5203 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5204 						unsigned long addr, pte_t ptent)
5205 {
5206 	struct page *page = vm_normal_page(vma, addr, ptent);
5207 
5208 	if (!page || !page_mapped(page))
5209 		return NULL;
5210 	if (PageAnon(page)) {
5211 		if (!(mc.flags & MOVE_ANON))
5212 			return NULL;
5213 	} else {
5214 		if (!(mc.flags & MOVE_FILE))
5215 			return NULL;
5216 	}
5217 	if (!get_page_unless_zero(page))
5218 		return NULL;
5219 
5220 	return page;
5221 }
5222 
5223 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5224 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5225 			pte_t ptent, swp_entry_t *entry)
5226 {
5227 	struct page *page = NULL;
5228 	swp_entry_t ent = pte_to_swp_entry(ptent);
5229 
5230 	if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
5231 		return NULL;
5232 
5233 	/*
5234 	 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5235 	 * a device and because they are not accessible by CPU they are store
5236 	 * as special swap entry in the CPU page table.
5237 	 */
5238 	if (is_device_private_entry(ent)) {
5239 		page = device_private_entry_to_page(ent);
5240 		/*
5241 		 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5242 		 * a refcount of 1 when free (unlike normal page)
5243 		 */
5244 		if (!page_ref_add_unless(page, 1, 1))
5245 			return NULL;
5246 		return page;
5247 	}
5248 
5249 	/*
5250 	 * Because lookup_swap_cache() updates some statistics counter,
5251 	 * we call find_get_page() with swapper_space directly.
5252 	 */
5253 	page = find_get_page(swap_address_space(ent), swp_offset(ent));
5254 	if (do_memsw_account())
5255 		entry->val = ent.val;
5256 
5257 	return page;
5258 }
5259 #else
5260 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5261 			pte_t ptent, swp_entry_t *entry)
5262 {
5263 	return NULL;
5264 }
5265 #endif
5266 
5267 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5268 			unsigned long addr, pte_t ptent, swp_entry_t *entry)
5269 {
5270 	struct page *page = NULL;
5271 	struct address_space *mapping;
5272 	pgoff_t pgoff;
5273 
5274 	if (!vma->vm_file) /* anonymous vma */
5275 		return NULL;
5276 	if (!(mc.flags & MOVE_FILE))
5277 		return NULL;
5278 
5279 	mapping = vma->vm_file->f_mapping;
5280 	pgoff = linear_page_index(vma, addr);
5281 
5282 	/* page is moved even if it's not RSS of this task(page-faulted). */
5283 #ifdef CONFIG_SWAP
5284 	/* shmem/tmpfs may report page out on swap: account for that too. */
5285 	if (shmem_mapping(mapping)) {
5286 		page = find_get_entry(mapping, pgoff);
5287 		if (xa_is_value(page)) {
5288 			swp_entry_t swp = radix_to_swp_entry(page);
5289 			if (do_memsw_account())
5290 				*entry = swp;
5291 			page = find_get_page(swap_address_space(swp),
5292 					     swp_offset(swp));
5293 		}
5294 	} else
5295 		page = find_get_page(mapping, pgoff);
5296 #else
5297 	page = find_get_page(mapping, pgoff);
5298 #endif
5299 	return page;
5300 }
5301 
5302 /**
5303  * mem_cgroup_move_account - move account of the page
5304  * @page: the page
5305  * @compound: charge the page as compound or small page
5306  * @from: mem_cgroup which the page is moved from.
5307  * @to:	mem_cgroup which the page is moved to. @from != @to.
5308  *
5309  * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5310  *
5311  * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5312  * from old cgroup.
5313  */
5314 static int mem_cgroup_move_account(struct page *page,
5315 				   bool compound,
5316 				   struct mem_cgroup *from,
5317 				   struct mem_cgroup *to)
5318 {
5319 	struct lruvec *from_vec, *to_vec;
5320 	struct pglist_data *pgdat;
5321 	unsigned long flags;
5322 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5323 	int ret;
5324 	bool anon;
5325 
5326 	VM_BUG_ON(from == to);
5327 	VM_BUG_ON_PAGE(PageLRU(page), page);
5328 	VM_BUG_ON(compound && !PageTransHuge(page));
5329 
5330 	/*
5331 	 * Prevent mem_cgroup_migrate() from looking at
5332 	 * page->mem_cgroup of its source page while we change it.
5333 	 */
5334 	ret = -EBUSY;
5335 	if (!trylock_page(page))
5336 		goto out;
5337 
5338 	ret = -EINVAL;
5339 	if (page->mem_cgroup != from)
5340 		goto out_unlock;
5341 
5342 	anon = PageAnon(page);
5343 
5344 	pgdat = page_pgdat(page);
5345 	from_vec = mem_cgroup_lruvec(from, pgdat);
5346 	to_vec = mem_cgroup_lruvec(to, pgdat);
5347 
5348 	spin_lock_irqsave(&from->move_lock, flags);
5349 
5350 	if (!anon && page_mapped(page)) {
5351 		__mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5352 		__mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5353 	}
5354 
5355 	/*
5356 	 * move_lock grabbed above and caller set from->moving_account, so
5357 	 * mod_memcg_page_state will serialize updates to PageDirty.
5358 	 * So mapping should be stable for dirty pages.
5359 	 */
5360 	if (!anon && PageDirty(page)) {
5361 		struct address_space *mapping = page_mapping(page);
5362 
5363 		if (mapping_cap_account_dirty(mapping)) {
5364 			__mod_lruvec_state(from_vec, NR_FILE_DIRTY, -nr_pages);
5365 			__mod_lruvec_state(to_vec, NR_FILE_DIRTY, nr_pages);
5366 		}
5367 	}
5368 
5369 	if (PageWriteback(page)) {
5370 		__mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5371 		__mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5372 	}
5373 
5374 	/*
5375 	 * It is safe to change page->mem_cgroup here because the page
5376 	 * is referenced, charged, and isolated - we can't race with
5377 	 * uncharging, charging, migration, or LRU putback.
5378 	 */
5379 
5380 	/* caller should have done css_get */
5381 	page->mem_cgroup = to;
5382 
5383 	spin_unlock_irqrestore(&from->move_lock, flags);
5384 
5385 	ret = 0;
5386 
5387 	local_irq_disable();
5388 	mem_cgroup_charge_statistics(to, page, compound, nr_pages);
5389 	memcg_check_events(to, page);
5390 	mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
5391 	memcg_check_events(from, page);
5392 	local_irq_enable();
5393 out_unlock:
5394 	unlock_page(page);
5395 out:
5396 	return ret;
5397 }
5398 
5399 /**
5400  * get_mctgt_type - get target type of moving charge
5401  * @vma: the vma the pte to be checked belongs
5402  * @addr: the address corresponding to the pte to be checked
5403  * @ptent: the pte to be checked
5404  * @target: the pointer the target page or swap ent will be stored(can be NULL)
5405  *
5406  * Returns
5407  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5408  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5409  *     move charge. if @target is not NULL, the page is stored in target->page
5410  *     with extra refcnt got(Callers should handle it).
5411  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5412  *     target for charge migration. if @target is not NULL, the entry is stored
5413  *     in target->ent.
5414  *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PRIVATE
5415  *     (so ZONE_DEVICE page and thus not on the lru).
5416  *     For now we such page is charge like a regular page would be as for all
5417  *     intent and purposes it is just special memory taking the place of a
5418  *     regular page.
5419  *
5420  *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5421  *
5422  * Called with pte lock held.
5423  */
5424 
5425 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5426 		unsigned long addr, pte_t ptent, union mc_target *target)
5427 {
5428 	struct page *page = NULL;
5429 	enum mc_target_type ret = MC_TARGET_NONE;
5430 	swp_entry_t ent = { .val = 0 };
5431 
5432 	if (pte_present(ptent))
5433 		page = mc_handle_present_pte(vma, addr, ptent);
5434 	else if (is_swap_pte(ptent))
5435 		page = mc_handle_swap_pte(vma, ptent, &ent);
5436 	else if (pte_none(ptent))
5437 		page = mc_handle_file_pte(vma, addr, ptent, &ent);
5438 
5439 	if (!page && !ent.val)
5440 		return ret;
5441 	if (page) {
5442 		/*
5443 		 * Do only loose check w/o serialization.
5444 		 * mem_cgroup_move_account() checks the page is valid or
5445 		 * not under LRU exclusion.
5446 		 */
5447 		if (page->mem_cgroup == mc.from) {
5448 			ret = MC_TARGET_PAGE;
5449 			if (is_device_private_page(page))
5450 				ret = MC_TARGET_DEVICE;
5451 			if (target)
5452 				target->page = page;
5453 		}
5454 		if (!ret || !target)
5455 			put_page(page);
5456 	}
5457 	/*
5458 	 * There is a swap entry and a page doesn't exist or isn't charged.
5459 	 * But we cannot move a tail-page in a THP.
5460 	 */
5461 	if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5462 	    mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5463 		ret = MC_TARGET_SWAP;
5464 		if (target)
5465 			target->ent = ent;
5466 	}
5467 	return ret;
5468 }
5469 
5470 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5471 /*
5472  * We don't consider PMD mapped swapping or file mapped pages because THP does
5473  * not support them for now.
5474  * Caller should make sure that pmd_trans_huge(pmd) is true.
5475  */
5476 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5477 		unsigned long addr, pmd_t pmd, union mc_target *target)
5478 {
5479 	struct page *page = NULL;
5480 	enum mc_target_type ret = MC_TARGET_NONE;
5481 
5482 	if (unlikely(is_swap_pmd(pmd))) {
5483 		VM_BUG_ON(thp_migration_supported() &&
5484 				  !is_pmd_migration_entry(pmd));
5485 		return ret;
5486 	}
5487 	page = pmd_page(pmd);
5488 	VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5489 	if (!(mc.flags & MOVE_ANON))
5490 		return ret;
5491 	if (page->mem_cgroup == mc.from) {
5492 		ret = MC_TARGET_PAGE;
5493 		if (target) {
5494 			get_page(page);
5495 			target->page = page;
5496 		}
5497 	}
5498 	return ret;
5499 }
5500 #else
5501 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5502 		unsigned long addr, pmd_t pmd, union mc_target *target)
5503 {
5504 	return MC_TARGET_NONE;
5505 }
5506 #endif
5507 
5508 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5509 					unsigned long addr, unsigned long end,
5510 					struct mm_walk *walk)
5511 {
5512 	struct vm_area_struct *vma = walk->vma;
5513 	pte_t *pte;
5514 	spinlock_t *ptl;
5515 
5516 	ptl = pmd_trans_huge_lock(pmd, vma);
5517 	if (ptl) {
5518 		/*
5519 		 * Note their can not be MC_TARGET_DEVICE for now as we do not
5520 		 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5521 		 * this might change.
5522 		 */
5523 		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5524 			mc.precharge += HPAGE_PMD_NR;
5525 		spin_unlock(ptl);
5526 		return 0;
5527 	}
5528 
5529 	if (pmd_trans_unstable(pmd))
5530 		return 0;
5531 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5532 	for (; addr != end; pte++, addr += PAGE_SIZE)
5533 		if (get_mctgt_type(vma, addr, *pte, NULL))
5534 			mc.precharge++;	/* increment precharge temporarily */
5535 	pte_unmap_unlock(pte - 1, ptl);
5536 	cond_resched();
5537 
5538 	return 0;
5539 }
5540 
5541 static const struct mm_walk_ops precharge_walk_ops = {
5542 	.pmd_entry	= mem_cgroup_count_precharge_pte_range,
5543 };
5544 
5545 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5546 {
5547 	unsigned long precharge;
5548 
5549 	down_read(&mm->mmap_sem);
5550 	walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5551 	up_read(&mm->mmap_sem);
5552 
5553 	precharge = mc.precharge;
5554 	mc.precharge = 0;
5555 
5556 	return precharge;
5557 }
5558 
5559 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5560 {
5561 	unsigned long precharge = mem_cgroup_count_precharge(mm);
5562 
5563 	VM_BUG_ON(mc.moving_task);
5564 	mc.moving_task = current;
5565 	return mem_cgroup_do_precharge(precharge);
5566 }
5567 
5568 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5569 static void __mem_cgroup_clear_mc(void)
5570 {
5571 	struct mem_cgroup *from = mc.from;
5572 	struct mem_cgroup *to = mc.to;
5573 
5574 	/* we must uncharge all the leftover precharges from mc.to */
5575 	if (mc.precharge) {
5576 		cancel_charge(mc.to, mc.precharge);
5577 		mc.precharge = 0;
5578 	}
5579 	/*
5580 	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5581 	 * we must uncharge here.
5582 	 */
5583 	if (mc.moved_charge) {
5584 		cancel_charge(mc.from, mc.moved_charge);
5585 		mc.moved_charge = 0;
5586 	}
5587 	/* we must fixup refcnts and charges */
5588 	if (mc.moved_swap) {
5589 		/* uncharge swap account from the old cgroup */
5590 		if (!mem_cgroup_is_root(mc.from))
5591 			page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5592 
5593 		mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5594 
5595 		/*
5596 		 * we charged both to->memory and to->memsw, so we
5597 		 * should uncharge to->memory.
5598 		 */
5599 		if (!mem_cgroup_is_root(mc.to))
5600 			page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5601 
5602 		mem_cgroup_id_get_many(mc.to, mc.moved_swap);
5603 		css_put_many(&mc.to->css, mc.moved_swap);
5604 
5605 		mc.moved_swap = 0;
5606 	}
5607 	memcg_oom_recover(from);
5608 	memcg_oom_recover(to);
5609 	wake_up_all(&mc.waitq);
5610 }
5611 
5612 static void mem_cgroup_clear_mc(void)
5613 {
5614 	struct mm_struct *mm = mc.mm;
5615 
5616 	/*
5617 	 * we must clear moving_task before waking up waiters at the end of
5618 	 * task migration.
5619 	 */
5620 	mc.moving_task = NULL;
5621 	__mem_cgroup_clear_mc();
5622 	spin_lock(&mc.lock);
5623 	mc.from = NULL;
5624 	mc.to = NULL;
5625 	mc.mm = NULL;
5626 	spin_unlock(&mc.lock);
5627 
5628 	mmput(mm);
5629 }
5630 
5631 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5632 {
5633 	struct cgroup_subsys_state *css;
5634 	struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5635 	struct mem_cgroup *from;
5636 	struct task_struct *leader, *p;
5637 	struct mm_struct *mm;
5638 	unsigned long move_flags;
5639 	int ret = 0;
5640 
5641 	/* charge immigration isn't supported on the default hierarchy */
5642 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5643 		return 0;
5644 
5645 	/*
5646 	 * Multi-process migrations only happen on the default hierarchy
5647 	 * where charge immigration is not used.  Perform charge
5648 	 * immigration if @tset contains a leader and whine if there are
5649 	 * multiple.
5650 	 */
5651 	p = NULL;
5652 	cgroup_taskset_for_each_leader(leader, css, tset) {
5653 		WARN_ON_ONCE(p);
5654 		p = leader;
5655 		memcg = mem_cgroup_from_css(css);
5656 	}
5657 	if (!p)
5658 		return 0;
5659 
5660 	/*
5661 	 * We are now commited to this value whatever it is. Changes in this
5662 	 * tunable will only affect upcoming migrations, not the current one.
5663 	 * So we need to save it, and keep it going.
5664 	 */
5665 	move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5666 	if (!move_flags)
5667 		return 0;
5668 
5669 	from = mem_cgroup_from_task(p);
5670 
5671 	VM_BUG_ON(from == memcg);
5672 
5673 	mm = get_task_mm(p);
5674 	if (!mm)
5675 		return 0;
5676 	/* We move charges only when we move a owner of the mm */
5677 	if (mm->owner == p) {
5678 		VM_BUG_ON(mc.from);
5679 		VM_BUG_ON(mc.to);
5680 		VM_BUG_ON(mc.precharge);
5681 		VM_BUG_ON(mc.moved_charge);
5682 		VM_BUG_ON(mc.moved_swap);
5683 
5684 		spin_lock(&mc.lock);
5685 		mc.mm = mm;
5686 		mc.from = from;
5687 		mc.to = memcg;
5688 		mc.flags = move_flags;
5689 		spin_unlock(&mc.lock);
5690 		/* We set mc.moving_task later */
5691 
5692 		ret = mem_cgroup_precharge_mc(mm);
5693 		if (ret)
5694 			mem_cgroup_clear_mc();
5695 	} else {
5696 		mmput(mm);
5697 	}
5698 	return ret;
5699 }
5700 
5701 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5702 {
5703 	if (mc.to)
5704 		mem_cgroup_clear_mc();
5705 }
5706 
5707 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5708 				unsigned long addr, unsigned long end,
5709 				struct mm_walk *walk)
5710 {
5711 	int ret = 0;
5712 	struct vm_area_struct *vma = walk->vma;
5713 	pte_t *pte;
5714 	spinlock_t *ptl;
5715 	enum mc_target_type target_type;
5716 	union mc_target target;
5717 	struct page *page;
5718 
5719 	ptl = pmd_trans_huge_lock(pmd, vma);
5720 	if (ptl) {
5721 		if (mc.precharge < HPAGE_PMD_NR) {
5722 			spin_unlock(ptl);
5723 			return 0;
5724 		}
5725 		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5726 		if (target_type == MC_TARGET_PAGE) {
5727 			page = target.page;
5728 			if (!isolate_lru_page(page)) {
5729 				if (!mem_cgroup_move_account(page, true,
5730 							     mc.from, mc.to)) {
5731 					mc.precharge -= HPAGE_PMD_NR;
5732 					mc.moved_charge += HPAGE_PMD_NR;
5733 				}
5734 				putback_lru_page(page);
5735 			}
5736 			put_page(page);
5737 		} else if (target_type == MC_TARGET_DEVICE) {
5738 			page = target.page;
5739 			if (!mem_cgroup_move_account(page, true,
5740 						     mc.from, mc.to)) {
5741 				mc.precharge -= HPAGE_PMD_NR;
5742 				mc.moved_charge += HPAGE_PMD_NR;
5743 			}
5744 			put_page(page);
5745 		}
5746 		spin_unlock(ptl);
5747 		return 0;
5748 	}
5749 
5750 	if (pmd_trans_unstable(pmd))
5751 		return 0;
5752 retry:
5753 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5754 	for (; addr != end; addr += PAGE_SIZE) {
5755 		pte_t ptent = *(pte++);
5756 		bool device = false;
5757 		swp_entry_t ent;
5758 
5759 		if (!mc.precharge)
5760 			break;
5761 
5762 		switch (get_mctgt_type(vma, addr, ptent, &target)) {
5763 		case MC_TARGET_DEVICE:
5764 			device = true;
5765 			/* fall through */
5766 		case MC_TARGET_PAGE:
5767 			page = target.page;
5768 			/*
5769 			 * We can have a part of the split pmd here. Moving it
5770 			 * can be done but it would be too convoluted so simply
5771 			 * ignore such a partial THP and keep it in original
5772 			 * memcg. There should be somebody mapping the head.
5773 			 */
5774 			if (PageTransCompound(page))
5775 				goto put;
5776 			if (!device && isolate_lru_page(page))
5777 				goto put;
5778 			if (!mem_cgroup_move_account(page, false,
5779 						mc.from, mc.to)) {
5780 				mc.precharge--;
5781 				/* we uncharge from mc.from later. */
5782 				mc.moved_charge++;
5783 			}
5784 			if (!device)
5785 				putback_lru_page(page);
5786 put:			/* get_mctgt_type() gets the page */
5787 			put_page(page);
5788 			break;
5789 		case MC_TARGET_SWAP:
5790 			ent = target.ent;
5791 			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5792 				mc.precharge--;
5793 				/* we fixup refcnts and charges later. */
5794 				mc.moved_swap++;
5795 			}
5796 			break;
5797 		default:
5798 			break;
5799 		}
5800 	}
5801 	pte_unmap_unlock(pte - 1, ptl);
5802 	cond_resched();
5803 
5804 	if (addr != end) {
5805 		/*
5806 		 * We have consumed all precharges we got in can_attach().
5807 		 * We try charge one by one, but don't do any additional
5808 		 * charges to mc.to if we have failed in charge once in attach()
5809 		 * phase.
5810 		 */
5811 		ret = mem_cgroup_do_precharge(1);
5812 		if (!ret)
5813 			goto retry;
5814 	}
5815 
5816 	return ret;
5817 }
5818 
5819 static const struct mm_walk_ops charge_walk_ops = {
5820 	.pmd_entry	= mem_cgroup_move_charge_pte_range,
5821 };
5822 
5823 static void mem_cgroup_move_charge(void)
5824 {
5825 	lru_add_drain_all();
5826 	/*
5827 	 * Signal lock_page_memcg() to take the memcg's move_lock
5828 	 * while we're moving its pages to another memcg. Then wait
5829 	 * for already started RCU-only updates to finish.
5830 	 */
5831 	atomic_inc(&mc.from->moving_account);
5832 	synchronize_rcu();
5833 retry:
5834 	if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
5835 		/*
5836 		 * Someone who are holding the mmap_sem might be waiting in
5837 		 * waitq. So we cancel all extra charges, wake up all waiters,
5838 		 * and retry. Because we cancel precharges, we might not be able
5839 		 * to move enough charges, but moving charge is a best-effort
5840 		 * feature anyway, so it wouldn't be a big problem.
5841 		 */
5842 		__mem_cgroup_clear_mc();
5843 		cond_resched();
5844 		goto retry;
5845 	}
5846 	/*
5847 	 * When we have consumed all precharges and failed in doing
5848 	 * additional charge, the page walk just aborts.
5849 	 */
5850 	walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
5851 			NULL);
5852 
5853 	up_read(&mc.mm->mmap_sem);
5854 	atomic_dec(&mc.from->moving_account);
5855 }
5856 
5857 static void mem_cgroup_move_task(void)
5858 {
5859 	if (mc.to) {
5860 		mem_cgroup_move_charge();
5861 		mem_cgroup_clear_mc();
5862 	}
5863 }
5864 #else	/* !CONFIG_MMU */
5865 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5866 {
5867 	return 0;
5868 }
5869 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5870 {
5871 }
5872 static void mem_cgroup_move_task(void)
5873 {
5874 }
5875 #endif
5876 
5877 /*
5878  * Cgroup retains root cgroups across [un]mount cycles making it necessary
5879  * to verify whether we're attached to the default hierarchy on each mount
5880  * attempt.
5881  */
5882 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5883 {
5884 	/*
5885 	 * use_hierarchy is forced on the default hierarchy.  cgroup core
5886 	 * guarantees that @root doesn't have any children, so turning it
5887 	 * on for the root memcg is enough.
5888 	 */
5889 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5890 		root_mem_cgroup->use_hierarchy = true;
5891 	else
5892 		root_mem_cgroup->use_hierarchy = false;
5893 }
5894 
5895 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
5896 {
5897 	if (value == PAGE_COUNTER_MAX)
5898 		seq_puts(m, "max\n");
5899 	else
5900 		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
5901 
5902 	return 0;
5903 }
5904 
5905 static u64 memory_current_read(struct cgroup_subsys_state *css,
5906 			       struct cftype *cft)
5907 {
5908 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5909 
5910 	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5911 }
5912 
5913 static int memory_min_show(struct seq_file *m, void *v)
5914 {
5915 	return seq_puts_memcg_tunable(m,
5916 		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
5917 }
5918 
5919 static ssize_t memory_min_write(struct kernfs_open_file *of,
5920 				char *buf, size_t nbytes, loff_t off)
5921 {
5922 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5923 	unsigned long min;
5924 	int err;
5925 
5926 	buf = strstrip(buf);
5927 	err = page_counter_memparse(buf, "max", &min);
5928 	if (err)
5929 		return err;
5930 
5931 	page_counter_set_min(&memcg->memory, min);
5932 
5933 	return nbytes;
5934 }
5935 
5936 static int memory_low_show(struct seq_file *m, void *v)
5937 {
5938 	return seq_puts_memcg_tunable(m,
5939 		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
5940 }
5941 
5942 static ssize_t memory_low_write(struct kernfs_open_file *of,
5943 				char *buf, size_t nbytes, loff_t off)
5944 {
5945 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5946 	unsigned long low;
5947 	int err;
5948 
5949 	buf = strstrip(buf);
5950 	err = page_counter_memparse(buf, "max", &low);
5951 	if (err)
5952 		return err;
5953 
5954 	page_counter_set_low(&memcg->memory, low);
5955 
5956 	return nbytes;
5957 }
5958 
5959 static int memory_high_show(struct seq_file *m, void *v)
5960 {
5961 	return seq_puts_memcg_tunable(m, READ_ONCE(mem_cgroup_from_seq(m)->high));
5962 }
5963 
5964 static ssize_t memory_high_write(struct kernfs_open_file *of,
5965 				 char *buf, size_t nbytes, loff_t off)
5966 {
5967 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5968 	unsigned int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
5969 	bool drained = false;
5970 	unsigned long high;
5971 	int err;
5972 
5973 	buf = strstrip(buf);
5974 	err = page_counter_memparse(buf, "max", &high);
5975 	if (err)
5976 		return err;
5977 
5978 	memcg->high = high;
5979 
5980 	for (;;) {
5981 		unsigned long nr_pages = page_counter_read(&memcg->memory);
5982 		unsigned long reclaimed;
5983 
5984 		if (nr_pages <= high)
5985 			break;
5986 
5987 		if (signal_pending(current))
5988 			break;
5989 
5990 		if (!drained) {
5991 			drain_all_stock(memcg);
5992 			drained = true;
5993 			continue;
5994 		}
5995 
5996 		reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5997 							 GFP_KERNEL, true);
5998 
5999 		if (!reclaimed && !nr_retries--)
6000 			break;
6001 	}
6002 
6003 	return nbytes;
6004 }
6005 
6006 static int memory_max_show(struct seq_file *m, void *v)
6007 {
6008 	return seq_puts_memcg_tunable(m,
6009 		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6010 }
6011 
6012 static ssize_t memory_max_write(struct kernfs_open_file *of,
6013 				char *buf, size_t nbytes, loff_t off)
6014 {
6015 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6016 	unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
6017 	bool drained = false;
6018 	unsigned long max;
6019 	int err;
6020 
6021 	buf = strstrip(buf);
6022 	err = page_counter_memparse(buf, "max", &max);
6023 	if (err)
6024 		return err;
6025 
6026 	xchg(&memcg->memory.max, max);
6027 
6028 	for (;;) {
6029 		unsigned long nr_pages = page_counter_read(&memcg->memory);
6030 
6031 		if (nr_pages <= max)
6032 			break;
6033 
6034 		if (signal_pending(current))
6035 			break;
6036 
6037 		if (!drained) {
6038 			drain_all_stock(memcg);
6039 			drained = true;
6040 			continue;
6041 		}
6042 
6043 		if (nr_reclaims) {
6044 			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6045 							  GFP_KERNEL, true))
6046 				nr_reclaims--;
6047 			continue;
6048 		}
6049 
6050 		memcg_memory_event(memcg, MEMCG_OOM);
6051 		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6052 			break;
6053 	}
6054 
6055 	memcg_wb_domain_size_changed(memcg);
6056 	return nbytes;
6057 }
6058 
6059 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6060 {
6061 	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6062 	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6063 	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6064 	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6065 	seq_printf(m, "oom_kill %lu\n",
6066 		   atomic_long_read(&events[MEMCG_OOM_KILL]));
6067 }
6068 
6069 static int memory_events_show(struct seq_file *m, void *v)
6070 {
6071 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6072 
6073 	__memory_events_show(m, memcg->memory_events);
6074 	return 0;
6075 }
6076 
6077 static int memory_events_local_show(struct seq_file *m, void *v)
6078 {
6079 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6080 
6081 	__memory_events_show(m, memcg->memory_events_local);
6082 	return 0;
6083 }
6084 
6085 static int memory_stat_show(struct seq_file *m, void *v)
6086 {
6087 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6088 	char *buf;
6089 
6090 	buf = memory_stat_format(memcg);
6091 	if (!buf)
6092 		return -ENOMEM;
6093 	seq_puts(m, buf);
6094 	kfree(buf);
6095 	return 0;
6096 }
6097 
6098 static int memory_oom_group_show(struct seq_file *m, void *v)
6099 {
6100 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6101 
6102 	seq_printf(m, "%d\n", memcg->oom_group);
6103 
6104 	return 0;
6105 }
6106 
6107 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6108 				      char *buf, size_t nbytes, loff_t off)
6109 {
6110 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6111 	int ret, oom_group;
6112 
6113 	buf = strstrip(buf);
6114 	if (!buf)
6115 		return -EINVAL;
6116 
6117 	ret = kstrtoint(buf, 0, &oom_group);
6118 	if (ret)
6119 		return ret;
6120 
6121 	if (oom_group != 0 && oom_group != 1)
6122 		return -EINVAL;
6123 
6124 	memcg->oom_group = oom_group;
6125 
6126 	return nbytes;
6127 }
6128 
6129 static struct cftype memory_files[] = {
6130 	{
6131 		.name = "current",
6132 		.flags = CFTYPE_NOT_ON_ROOT,
6133 		.read_u64 = memory_current_read,
6134 	},
6135 	{
6136 		.name = "min",
6137 		.flags = CFTYPE_NOT_ON_ROOT,
6138 		.seq_show = memory_min_show,
6139 		.write = memory_min_write,
6140 	},
6141 	{
6142 		.name = "low",
6143 		.flags = CFTYPE_NOT_ON_ROOT,
6144 		.seq_show = memory_low_show,
6145 		.write = memory_low_write,
6146 	},
6147 	{
6148 		.name = "high",
6149 		.flags = CFTYPE_NOT_ON_ROOT,
6150 		.seq_show = memory_high_show,
6151 		.write = memory_high_write,
6152 	},
6153 	{
6154 		.name = "max",
6155 		.flags = CFTYPE_NOT_ON_ROOT,
6156 		.seq_show = memory_max_show,
6157 		.write = memory_max_write,
6158 	},
6159 	{
6160 		.name = "events",
6161 		.flags = CFTYPE_NOT_ON_ROOT,
6162 		.file_offset = offsetof(struct mem_cgroup, events_file),
6163 		.seq_show = memory_events_show,
6164 	},
6165 	{
6166 		.name = "events.local",
6167 		.flags = CFTYPE_NOT_ON_ROOT,
6168 		.file_offset = offsetof(struct mem_cgroup, events_local_file),
6169 		.seq_show = memory_events_local_show,
6170 	},
6171 	{
6172 		.name = "stat",
6173 		.flags = CFTYPE_NOT_ON_ROOT,
6174 		.seq_show = memory_stat_show,
6175 	},
6176 	{
6177 		.name = "oom.group",
6178 		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6179 		.seq_show = memory_oom_group_show,
6180 		.write = memory_oom_group_write,
6181 	},
6182 	{ }	/* terminate */
6183 };
6184 
6185 struct cgroup_subsys memory_cgrp_subsys = {
6186 	.css_alloc = mem_cgroup_css_alloc,
6187 	.css_online = mem_cgroup_css_online,
6188 	.css_offline = mem_cgroup_css_offline,
6189 	.css_released = mem_cgroup_css_released,
6190 	.css_free = mem_cgroup_css_free,
6191 	.css_reset = mem_cgroup_css_reset,
6192 	.can_attach = mem_cgroup_can_attach,
6193 	.cancel_attach = mem_cgroup_cancel_attach,
6194 	.post_attach = mem_cgroup_move_task,
6195 	.bind = mem_cgroup_bind,
6196 	.dfl_cftypes = memory_files,
6197 	.legacy_cftypes = mem_cgroup_legacy_files,
6198 	.early_init = 0,
6199 };
6200 
6201 /**
6202  * mem_cgroup_protected - check if memory consumption is in the normal range
6203  * @root: the top ancestor of the sub-tree being checked
6204  * @memcg: the memory cgroup to check
6205  *
6206  * WARNING: This function is not stateless! It can only be used as part
6207  *          of a top-down tree iteration, not for isolated queries.
6208  *
6209  * Returns one of the following:
6210  *   MEMCG_PROT_NONE: cgroup memory is not protected
6211  *   MEMCG_PROT_LOW: cgroup memory is protected as long there is
6212  *     an unprotected supply of reclaimable memory from other cgroups.
6213  *   MEMCG_PROT_MIN: cgroup memory is protected
6214  *
6215  * @root is exclusive; it is never protected when looked at directly
6216  *
6217  * To provide a proper hierarchical behavior, effective memory.min/low values
6218  * are used. Below is the description of how effective memory.low is calculated.
6219  * Effective memory.min values is calculated in the same way.
6220  *
6221  * Effective memory.low is always equal or less than the original memory.low.
6222  * If there is no memory.low overcommittment (which is always true for
6223  * top-level memory cgroups), these two values are equal.
6224  * Otherwise, it's a part of parent's effective memory.low,
6225  * calculated as a cgroup's memory.low usage divided by sum of sibling's
6226  * memory.low usages, where memory.low usage is the size of actually
6227  * protected memory.
6228  *
6229  *                                             low_usage
6230  * elow = min( memory.low, parent->elow * ------------------ ),
6231  *                                        siblings_low_usage
6232  *
6233  *             | memory.current, if memory.current < memory.low
6234  * low_usage = |
6235  *	       | 0, otherwise.
6236  *
6237  *
6238  * Such definition of the effective memory.low provides the expected
6239  * hierarchical behavior: parent's memory.low value is limiting
6240  * children, unprotected memory is reclaimed first and cgroups,
6241  * which are not using their guarantee do not affect actual memory
6242  * distribution.
6243  *
6244  * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
6245  *
6246  *     A      A/memory.low = 2G, A/memory.current = 6G
6247  *    //\\
6248  *   BC  DE   B/memory.low = 3G  B/memory.current = 2G
6249  *            C/memory.low = 1G  C/memory.current = 2G
6250  *            D/memory.low = 0   D/memory.current = 2G
6251  *            E/memory.low = 10G E/memory.current = 0
6252  *
6253  * and the memory pressure is applied, the following memory distribution
6254  * is expected (approximately):
6255  *
6256  *     A/memory.current = 2G
6257  *
6258  *     B/memory.current = 1.3G
6259  *     C/memory.current = 0.6G
6260  *     D/memory.current = 0
6261  *     E/memory.current = 0
6262  *
6263  * These calculations require constant tracking of the actual low usages
6264  * (see propagate_protected_usage()), as well as recursive calculation of
6265  * effective memory.low values. But as we do call mem_cgroup_protected()
6266  * path for each memory cgroup top-down from the reclaim,
6267  * it's possible to optimize this part, and save calculated elow
6268  * for next usage. This part is intentionally racy, but it's ok,
6269  * as memory.low is a best-effort mechanism.
6270  */
6271 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
6272 						struct mem_cgroup *memcg)
6273 {
6274 	struct mem_cgroup *parent;
6275 	unsigned long emin, parent_emin;
6276 	unsigned long elow, parent_elow;
6277 	unsigned long usage;
6278 
6279 	if (mem_cgroup_disabled())
6280 		return MEMCG_PROT_NONE;
6281 
6282 	if (!root)
6283 		root = root_mem_cgroup;
6284 	if (memcg == root)
6285 		return MEMCG_PROT_NONE;
6286 
6287 	usage = page_counter_read(&memcg->memory);
6288 	if (!usage)
6289 		return MEMCG_PROT_NONE;
6290 
6291 	emin = memcg->memory.min;
6292 	elow = memcg->memory.low;
6293 
6294 	parent = parent_mem_cgroup(memcg);
6295 	/* No parent means a non-hierarchical mode on v1 memcg */
6296 	if (!parent)
6297 		return MEMCG_PROT_NONE;
6298 
6299 	if (parent == root)
6300 		goto exit;
6301 
6302 	parent_emin = READ_ONCE(parent->memory.emin);
6303 	emin = min(emin, parent_emin);
6304 	if (emin && parent_emin) {
6305 		unsigned long min_usage, siblings_min_usage;
6306 
6307 		min_usage = min(usage, memcg->memory.min);
6308 		siblings_min_usage = atomic_long_read(
6309 			&parent->memory.children_min_usage);
6310 
6311 		if (min_usage && siblings_min_usage)
6312 			emin = min(emin, parent_emin * min_usage /
6313 				   siblings_min_usage);
6314 	}
6315 
6316 	parent_elow = READ_ONCE(parent->memory.elow);
6317 	elow = min(elow, parent_elow);
6318 	if (elow && parent_elow) {
6319 		unsigned long low_usage, siblings_low_usage;
6320 
6321 		low_usage = min(usage, memcg->memory.low);
6322 		siblings_low_usage = atomic_long_read(
6323 			&parent->memory.children_low_usage);
6324 
6325 		if (low_usage && siblings_low_usage)
6326 			elow = min(elow, parent_elow * low_usage /
6327 				   siblings_low_usage);
6328 	}
6329 
6330 exit:
6331 	memcg->memory.emin = emin;
6332 	memcg->memory.elow = elow;
6333 
6334 	if (usage <= emin)
6335 		return MEMCG_PROT_MIN;
6336 	else if (usage <= elow)
6337 		return MEMCG_PROT_LOW;
6338 	else
6339 		return MEMCG_PROT_NONE;
6340 }
6341 
6342 /**
6343  * mem_cgroup_try_charge - try charging a page
6344  * @page: page to charge
6345  * @mm: mm context of the victim
6346  * @gfp_mask: reclaim mode
6347  * @memcgp: charged memcg return
6348  * @compound: charge the page as compound or small page
6349  *
6350  * Try to charge @page to the memcg that @mm belongs to, reclaiming
6351  * pages according to @gfp_mask if necessary.
6352  *
6353  * Returns 0 on success, with *@memcgp pointing to the charged memcg.
6354  * Otherwise, an error code is returned.
6355  *
6356  * After page->mapping has been set up, the caller must finalize the
6357  * charge with mem_cgroup_commit_charge().  Or abort the transaction
6358  * with mem_cgroup_cancel_charge() in case page instantiation fails.
6359  */
6360 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
6361 			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
6362 			  bool compound)
6363 {
6364 	struct mem_cgroup *memcg = NULL;
6365 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6366 	int ret = 0;
6367 
6368 	if (mem_cgroup_disabled())
6369 		goto out;
6370 
6371 	if (PageSwapCache(page)) {
6372 		/*
6373 		 * Every swap fault against a single page tries to charge the
6374 		 * page, bail as early as possible.  shmem_unuse() encounters
6375 		 * already charged pages, too.  The USED bit is protected by
6376 		 * the page lock, which serializes swap cache removal, which
6377 		 * in turn serializes uncharging.
6378 		 */
6379 		VM_BUG_ON_PAGE(!PageLocked(page), page);
6380 		if (compound_head(page)->mem_cgroup)
6381 			goto out;
6382 
6383 		if (do_swap_account) {
6384 			swp_entry_t ent = { .val = page_private(page), };
6385 			unsigned short id = lookup_swap_cgroup_id(ent);
6386 
6387 			rcu_read_lock();
6388 			memcg = mem_cgroup_from_id(id);
6389 			if (memcg && !css_tryget_online(&memcg->css))
6390 				memcg = NULL;
6391 			rcu_read_unlock();
6392 		}
6393 	}
6394 
6395 	if (!memcg)
6396 		memcg = get_mem_cgroup_from_mm(mm);
6397 
6398 	ret = try_charge(memcg, gfp_mask, nr_pages);
6399 
6400 	css_put(&memcg->css);
6401 out:
6402 	*memcgp = memcg;
6403 	return ret;
6404 }
6405 
6406 int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
6407 			  gfp_t gfp_mask, struct mem_cgroup **memcgp,
6408 			  bool compound)
6409 {
6410 	struct mem_cgroup *memcg;
6411 	int ret;
6412 
6413 	ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
6414 	memcg = *memcgp;
6415 	mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
6416 	return ret;
6417 }
6418 
6419 /**
6420  * mem_cgroup_commit_charge - commit a page charge
6421  * @page: page to charge
6422  * @memcg: memcg to charge the page to
6423  * @lrucare: page might be on LRU already
6424  * @compound: charge the page as compound or small page
6425  *
6426  * Finalize a charge transaction started by mem_cgroup_try_charge(),
6427  * after page->mapping has been set up.  This must happen atomically
6428  * as part of the page instantiation, i.e. under the page table lock
6429  * for anonymous pages, under the page lock for page and swap cache.
6430  *
6431  * In addition, the page must not be on the LRU during the commit, to
6432  * prevent racing with task migration.  If it might be, use @lrucare.
6433  *
6434  * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
6435  */
6436 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
6437 			      bool lrucare, bool compound)
6438 {
6439 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6440 
6441 	VM_BUG_ON_PAGE(!page->mapping, page);
6442 	VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
6443 
6444 	if (mem_cgroup_disabled())
6445 		return;
6446 	/*
6447 	 * Swap faults will attempt to charge the same page multiple
6448 	 * times.  But reuse_swap_page() might have removed the page
6449 	 * from swapcache already, so we can't check PageSwapCache().
6450 	 */
6451 	if (!memcg)
6452 		return;
6453 
6454 	commit_charge(page, memcg, lrucare);
6455 
6456 	local_irq_disable();
6457 	mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6458 	memcg_check_events(memcg, page);
6459 	local_irq_enable();
6460 
6461 	if (do_memsw_account() && PageSwapCache(page)) {
6462 		swp_entry_t entry = { .val = page_private(page) };
6463 		/*
6464 		 * The swap entry might not get freed for a long time,
6465 		 * let's not wait for it.  The page already received a
6466 		 * memory+swap charge, drop the swap entry duplicate.
6467 		 */
6468 		mem_cgroup_uncharge_swap(entry, nr_pages);
6469 	}
6470 }
6471 
6472 /**
6473  * mem_cgroup_cancel_charge - cancel a page charge
6474  * @page: page to charge
6475  * @memcg: memcg to charge the page to
6476  * @compound: charge the page as compound or small page
6477  *
6478  * Cancel a charge transaction started by mem_cgroup_try_charge().
6479  */
6480 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
6481 		bool compound)
6482 {
6483 	unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6484 
6485 	if (mem_cgroup_disabled())
6486 		return;
6487 	/*
6488 	 * Swap faults will attempt to charge the same page multiple
6489 	 * times.  But reuse_swap_page() might have removed the page
6490 	 * from swapcache already, so we can't check PageSwapCache().
6491 	 */
6492 	if (!memcg)
6493 		return;
6494 
6495 	cancel_charge(memcg, nr_pages);
6496 }
6497 
6498 struct uncharge_gather {
6499 	struct mem_cgroup *memcg;
6500 	unsigned long pgpgout;
6501 	unsigned long nr_anon;
6502 	unsigned long nr_file;
6503 	unsigned long nr_kmem;
6504 	unsigned long nr_huge;
6505 	unsigned long nr_shmem;
6506 	struct page *dummy_page;
6507 };
6508 
6509 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6510 {
6511 	memset(ug, 0, sizeof(*ug));
6512 }
6513 
6514 static void uncharge_batch(const struct uncharge_gather *ug)
6515 {
6516 	unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
6517 	unsigned long flags;
6518 
6519 	if (!mem_cgroup_is_root(ug->memcg)) {
6520 		page_counter_uncharge(&ug->memcg->memory, nr_pages);
6521 		if (do_memsw_account())
6522 			page_counter_uncharge(&ug->memcg->memsw, nr_pages);
6523 		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6524 			page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6525 		memcg_oom_recover(ug->memcg);
6526 	}
6527 
6528 	local_irq_save(flags);
6529 	__mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
6530 	__mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
6531 	__mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
6532 	__mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
6533 	__count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6534 	__this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, nr_pages);
6535 	memcg_check_events(ug->memcg, ug->dummy_page);
6536 	local_irq_restore(flags);
6537 
6538 	if (!mem_cgroup_is_root(ug->memcg))
6539 		css_put_many(&ug->memcg->css, nr_pages);
6540 }
6541 
6542 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6543 {
6544 	VM_BUG_ON_PAGE(PageLRU(page), page);
6545 	VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
6546 			!PageHWPoison(page) , page);
6547 
6548 	if (!page->mem_cgroup)
6549 		return;
6550 
6551 	/*
6552 	 * Nobody should be changing or seriously looking at
6553 	 * page->mem_cgroup at this point, we have fully
6554 	 * exclusive access to the page.
6555 	 */
6556 
6557 	if (ug->memcg != page->mem_cgroup) {
6558 		if (ug->memcg) {
6559 			uncharge_batch(ug);
6560 			uncharge_gather_clear(ug);
6561 		}
6562 		ug->memcg = page->mem_cgroup;
6563 	}
6564 
6565 	if (!PageKmemcg(page)) {
6566 		unsigned int nr_pages = 1;
6567 
6568 		if (PageTransHuge(page)) {
6569 			nr_pages = compound_nr(page);
6570 			ug->nr_huge += nr_pages;
6571 		}
6572 		if (PageAnon(page))
6573 			ug->nr_anon += nr_pages;
6574 		else {
6575 			ug->nr_file += nr_pages;
6576 			if (PageSwapBacked(page))
6577 				ug->nr_shmem += nr_pages;
6578 		}
6579 		ug->pgpgout++;
6580 	} else {
6581 		ug->nr_kmem += compound_nr(page);
6582 		__ClearPageKmemcg(page);
6583 	}
6584 
6585 	ug->dummy_page = page;
6586 	page->mem_cgroup = NULL;
6587 }
6588 
6589 static void uncharge_list(struct list_head *page_list)
6590 {
6591 	struct uncharge_gather ug;
6592 	struct list_head *next;
6593 
6594 	uncharge_gather_clear(&ug);
6595 
6596 	/*
6597 	 * Note that the list can be a single page->lru; hence the
6598 	 * do-while loop instead of a simple list_for_each_entry().
6599 	 */
6600 	next = page_list->next;
6601 	do {
6602 		struct page *page;
6603 
6604 		page = list_entry(next, struct page, lru);
6605 		next = page->lru.next;
6606 
6607 		uncharge_page(page, &ug);
6608 	} while (next != page_list);
6609 
6610 	if (ug.memcg)
6611 		uncharge_batch(&ug);
6612 }
6613 
6614 /**
6615  * mem_cgroup_uncharge - uncharge a page
6616  * @page: page to uncharge
6617  *
6618  * Uncharge a page previously charged with mem_cgroup_try_charge() and
6619  * mem_cgroup_commit_charge().
6620  */
6621 void mem_cgroup_uncharge(struct page *page)
6622 {
6623 	struct uncharge_gather ug;
6624 
6625 	if (mem_cgroup_disabled())
6626 		return;
6627 
6628 	/* Don't touch page->lru of any random page, pre-check: */
6629 	if (!page->mem_cgroup)
6630 		return;
6631 
6632 	uncharge_gather_clear(&ug);
6633 	uncharge_page(page, &ug);
6634 	uncharge_batch(&ug);
6635 }
6636 
6637 /**
6638  * mem_cgroup_uncharge_list - uncharge a list of page
6639  * @page_list: list of pages to uncharge
6640  *
6641  * Uncharge a list of pages previously charged with
6642  * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6643  */
6644 void mem_cgroup_uncharge_list(struct list_head *page_list)
6645 {
6646 	if (mem_cgroup_disabled())
6647 		return;
6648 
6649 	if (!list_empty(page_list))
6650 		uncharge_list(page_list);
6651 }
6652 
6653 /**
6654  * mem_cgroup_migrate - charge a page's replacement
6655  * @oldpage: currently circulating page
6656  * @newpage: replacement page
6657  *
6658  * Charge @newpage as a replacement page for @oldpage. @oldpage will
6659  * be uncharged upon free.
6660  *
6661  * Both pages must be locked, @newpage->mapping must be set up.
6662  */
6663 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6664 {
6665 	struct mem_cgroup *memcg;
6666 	unsigned int nr_pages;
6667 	unsigned long flags;
6668 
6669 	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6670 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6671 	VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6672 	VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6673 		       newpage);
6674 
6675 	if (mem_cgroup_disabled())
6676 		return;
6677 
6678 	/* Page cache replacement: new page already charged? */
6679 	if (newpage->mem_cgroup)
6680 		return;
6681 
6682 	/* Swapcache readahead pages can get replaced before being charged */
6683 	memcg = oldpage->mem_cgroup;
6684 	if (!memcg)
6685 		return;
6686 
6687 	/* Force-charge the new page. The old one will be freed soon */
6688 	nr_pages = hpage_nr_pages(newpage);
6689 
6690 	page_counter_charge(&memcg->memory, nr_pages);
6691 	if (do_memsw_account())
6692 		page_counter_charge(&memcg->memsw, nr_pages);
6693 	css_get_many(&memcg->css, nr_pages);
6694 
6695 	commit_charge(newpage, memcg, false);
6696 
6697 	local_irq_save(flags);
6698 	mem_cgroup_charge_statistics(memcg, newpage, PageTransHuge(newpage),
6699 			nr_pages);
6700 	memcg_check_events(memcg, newpage);
6701 	local_irq_restore(flags);
6702 }
6703 
6704 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6705 EXPORT_SYMBOL(memcg_sockets_enabled_key);
6706 
6707 void mem_cgroup_sk_alloc(struct sock *sk)
6708 {
6709 	struct mem_cgroup *memcg;
6710 
6711 	if (!mem_cgroup_sockets_enabled)
6712 		return;
6713 
6714 	/* Do not associate the sock with unrelated interrupted task's memcg. */
6715 	if (in_interrupt())
6716 		return;
6717 
6718 	rcu_read_lock();
6719 	memcg = mem_cgroup_from_task(current);
6720 	if (memcg == root_mem_cgroup)
6721 		goto out;
6722 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6723 		goto out;
6724 	if (css_tryget_online(&memcg->css))
6725 		sk->sk_memcg = memcg;
6726 out:
6727 	rcu_read_unlock();
6728 }
6729 
6730 void mem_cgroup_sk_free(struct sock *sk)
6731 {
6732 	if (sk->sk_memcg)
6733 		css_put(&sk->sk_memcg->css);
6734 }
6735 
6736 /**
6737  * mem_cgroup_charge_skmem - charge socket memory
6738  * @memcg: memcg to charge
6739  * @nr_pages: number of pages to charge
6740  *
6741  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6742  * @memcg's configured limit, %false if the charge had to be forced.
6743  */
6744 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6745 {
6746 	gfp_t gfp_mask = GFP_KERNEL;
6747 
6748 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6749 		struct page_counter *fail;
6750 
6751 		if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6752 			memcg->tcpmem_pressure = 0;
6753 			return true;
6754 		}
6755 		page_counter_charge(&memcg->tcpmem, nr_pages);
6756 		memcg->tcpmem_pressure = 1;
6757 		return false;
6758 	}
6759 
6760 	/* Don't block in the packet receive path */
6761 	if (in_softirq())
6762 		gfp_mask = GFP_NOWAIT;
6763 
6764 	mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6765 
6766 	if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6767 		return true;
6768 
6769 	try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
6770 	return false;
6771 }
6772 
6773 /**
6774  * mem_cgroup_uncharge_skmem - uncharge socket memory
6775  * @memcg: memcg to uncharge
6776  * @nr_pages: number of pages to uncharge
6777  */
6778 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6779 {
6780 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6781 		page_counter_uncharge(&memcg->tcpmem, nr_pages);
6782 		return;
6783 	}
6784 
6785 	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
6786 
6787 	refill_stock(memcg, nr_pages);
6788 }
6789 
6790 static int __init cgroup_memory(char *s)
6791 {
6792 	char *token;
6793 
6794 	while ((token = strsep(&s, ",")) != NULL) {
6795 		if (!*token)
6796 			continue;
6797 		if (!strcmp(token, "nosocket"))
6798 			cgroup_memory_nosocket = true;
6799 		if (!strcmp(token, "nokmem"))
6800 			cgroup_memory_nokmem = true;
6801 	}
6802 	return 0;
6803 }
6804 __setup("cgroup.memory=", cgroup_memory);
6805 
6806 /*
6807  * subsys_initcall() for memory controller.
6808  *
6809  * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6810  * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6811  * basically everything that doesn't depend on a specific mem_cgroup structure
6812  * should be initialized from here.
6813  */
6814 static int __init mem_cgroup_init(void)
6815 {
6816 	int cpu, node;
6817 
6818 #ifdef CONFIG_MEMCG_KMEM
6819 	/*
6820 	 * Kmem cache creation is mostly done with the slab_mutex held,
6821 	 * so use a workqueue with limited concurrency to avoid stalling
6822 	 * all worker threads in case lots of cgroups are created and
6823 	 * destroyed simultaneously.
6824 	 */
6825 	memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
6826 	BUG_ON(!memcg_kmem_cache_wq);
6827 #endif
6828 
6829 	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
6830 				  memcg_hotplug_cpu_dead);
6831 
6832 	for_each_possible_cpu(cpu)
6833 		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
6834 			  drain_local_stock);
6835 
6836 	for_each_node(node) {
6837 		struct mem_cgroup_tree_per_node *rtpn;
6838 
6839 		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
6840 				    node_online(node) ? node : NUMA_NO_NODE);
6841 
6842 		rtpn->rb_root = RB_ROOT;
6843 		rtpn->rb_rightmost = NULL;
6844 		spin_lock_init(&rtpn->lock);
6845 		soft_limit_tree.rb_tree_per_node[node] = rtpn;
6846 	}
6847 
6848 	return 0;
6849 }
6850 subsys_initcall(mem_cgroup_init);
6851 
6852 #ifdef CONFIG_MEMCG_SWAP
6853 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6854 {
6855 	while (!refcount_inc_not_zero(&memcg->id.ref)) {
6856 		/*
6857 		 * The root cgroup cannot be destroyed, so it's refcount must
6858 		 * always be >= 1.
6859 		 */
6860 		if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
6861 			VM_BUG_ON(1);
6862 			break;
6863 		}
6864 		memcg = parent_mem_cgroup(memcg);
6865 		if (!memcg)
6866 			memcg = root_mem_cgroup;
6867 	}
6868 	return memcg;
6869 }
6870 
6871 /**
6872  * mem_cgroup_swapout - transfer a memsw charge to swap
6873  * @page: page whose memsw charge to transfer
6874  * @entry: swap entry to move the charge to
6875  *
6876  * Transfer the memsw charge of @page to @entry.
6877  */
6878 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6879 {
6880 	struct mem_cgroup *memcg, *swap_memcg;
6881 	unsigned int nr_entries;
6882 	unsigned short oldid;
6883 
6884 	VM_BUG_ON_PAGE(PageLRU(page), page);
6885 	VM_BUG_ON_PAGE(page_count(page), page);
6886 
6887 	if (!do_memsw_account())
6888 		return;
6889 
6890 	memcg = page->mem_cgroup;
6891 
6892 	/* Readahead page, never charged */
6893 	if (!memcg)
6894 		return;
6895 
6896 	/*
6897 	 * In case the memcg owning these pages has been offlined and doesn't
6898 	 * have an ID allocated to it anymore, charge the closest online
6899 	 * ancestor for the swap instead and transfer the memory+swap charge.
6900 	 */
6901 	swap_memcg = mem_cgroup_id_get_online(memcg);
6902 	nr_entries = hpage_nr_pages(page);
6903 	/* Get references for the tail pages, too */
6904 	if (nr_entries > 1)
6905 		mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
6906 	oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
6907 				   nr_entries);
6908 	VM_BUG_ON_PAGE(oldid, page);
6909 	mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
6910 
6911 	page->mem_cgroup = NULL;
6912 
6913 	if (!mem_cgroup_is_root(memcg))
6914 		page_counter_uncharge(&memcg->memory, nr_entries);
6915 
6916 	if (memcg != swap_memcg) {
6917 		if (!mem_cgroup_is_root(swap_memcg))
6918 			page_counter_charge(&swap_memcg->memsw, nr_entries);
6919 		page_counter_uncharge(&memcg->memsw, nr_entries);
6920 	}
6921 
6922 	/*
6923 	 * Interrupts should be disabled here because the caller holds the
6924 	 * i_pages lock which is taken with interrupts-off. It is
6925 	 * important here to have the interrupts disabled because it is the
6926 	 * only synchronisation we have for updating the per-CPU variables.
6927 	 */
6928 	VM_BUG_ON(!irqs_disabled());
6929 	mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
6930 				     -nr_entries);
6931 	memcg_check_events(memcg, page);
6932 
6933 	if (!mem_cgroup_is_root(memcg))
6934 		css_put_many(&memcg->css, nr_entries);
6935 }
6936 
6937 /**
6938  * mem_cgroup_try_charge_swap - try charging swap space for a page
6939  * @page: page being added to swap
6940  * @entry: swap entry to charge
6941  *
6942  * Try to charge @page's memcg for the swap space at @entry.
6943  *
6944  * Returns 0 on success, -ENOMEM on failure.
6945  */
6946 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
6947 {
6948 	unsigned int nr_pages = hpage_nr_pages(page);
6949 	struct page_counter *counter;
6950 	struct mem_cgroup *memcg;
6951 	unsigned short oldid;
6952 
6953 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
6954 		return 0;
6955 
6956 	memcg = page->mem_cgroup;
6957 
6958 	/* Readahead page, never charged */
6959 	if (!memcg)
6960 		return 0;
6961 
6962 	if (!entry.val) {
6963 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6964 		return 0;
6965 	}
6966 
6967 	memcg = mem_cgroup_id_get_online(memcg);
6968 
6969 	if (!mem_cgroup_is_root(memcg) &&
6970 	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
6971 		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
6972 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6973 		mem_cgroup_id_put(memcg);
6974 		return -ENOMEM;
6975 	}
6976 
6977 	/* Get references for the tail pages, too */
6978 	if (nr_pages > 1)
6979 		mem_cgroup_id_get_many(memcg, nr_pages - 1);
6980 	oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
6981 	VM_BUG_ON_PAGE(oldid, page);
6982 	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
6983 
6984 	return 0;
6985 }
6986 
6987 /**
6988  * mem_cgroup_uncharge_swap - uncharge swap space
6989  * @entry: swap entry to uncharge
6990  * @nr_pages: the amount of swap space to uncharge
6991  */
6992 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
6993 {
6994 	struct mem_cgroup *memcg;
6995 	unsigned short id;
6996 
6997 	if (!do_swap_account)
6998 		return;
6999 
7000 	id = swap_cgroup_record(entry, 0, nr_pages);
7001 	rcu_read_lock();
7002 	memcg = mem_cgroup_from_id(id);
7003 	if (memcg) {
7004 		if (!mem_cgroup_is_root(memcg)) {
7005 			if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7006 				page_counter_uncharge(&memcg->swap, nr_pages);
7007 			else
7008 				page_counter_uncharge(&memcg->memsw, nr_pages);
7009 		}
7010 		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7011 		mem_cgroup_id_put_many(memcg, nr_pages);
7012 	}
7013 	rcu_read_unlock();
7014 }
7015 
7016 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7017 {
7018 	long nr_swap_pages = get_nr_swap_pages();
7019 
7020 	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7021 		return nr_swap_pages;
7022 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7023 		nr_swap_pages = min_t(long, nr_swap_pages,
7024 				      READ_ONCE(memcg->swap.max) -
7025 				      page_counter_read(&memcg->swap));
7026 	return nr_swap_pages;
7027 }
7028 
7029 bool mem_cgroup_swap_full(struct page *page)
7030 {
7031 	struct mem_cgroup *memcg;
7032 
7033 	VM_BUG_ON_PAGE(!PageLocked(page), page);
7034 
7035 	if (vm_swap_full())
7036 		return true;
7037 	if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7038 		return false;
7039 
7040 	memcg = page->mem_cgroup;
7041 	if (!memcg)
7042 		return false;
7043 
7044 	for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7045 		if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
7046 			return true;
7047 
7048 	return false;
7049 }
7050 
7051 /* for remember boot option*/
7052 #ifdef CONFIG_MEMCG_SWAP_ENABLED
7053 static int really_do_swap_account __initdata = 1;
7054 #else
7055 static int really_do_swap_account __initdata;
7056 #endif
7057 
7058 static int __init enable_swap_account(char *s)
7059 {
7060 	if (!strcmp(s, "1"))
7061 		really_do_swap_account = 1;
7062 	else if (!strcmp(s, "0"))
7063 		really_do_swap_account = 0;
7064 	return 1;
7065 }
7066 __setup("swapaccount=", enable_swap_account);
7067 
7068 static u64 swap_current_read(struct cgroup_subsys_state *css,
7069 			     struct cftype *cft)
7070 {
7071 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7072 
7073 	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7074 }
7075 
7076 static int swap_max_show(struct seq_file *m, void *v)
7077 {
7078 	return seq_puts_memcg_tunable(m,
7079 		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7080 }
7081 
7082 static ssize_t swap_max_write(struct kernfs_open_file *of,
7083 			      char *buf, size_t nbytes, loff_t off)
7084 {
7085 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7086 	unsigned long max;
7087 	int err;
7088 
7089 	buf = strstrip(buf);
7090 	err = page_counter_memparse(buf, "max", &max);
7091 	if (err)
7092 		return err;
7093 
7094 	xchg(&memcg->swap.max, max);
7095 
7096 	return nbytes;
7097 }
7098 
7099 static int swap_events_show(struct seq_file *m, void *v)
7100 {
7101 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7102 
7103 	seq_printf(m, "max %lu\n",
7104 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7105 	seq_printf(m, "fail %lu\n",
7106 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7107 
7108 	return 0;
7109 }
7110 
7111 static struct cftype swap_files[] = {
7112 	{
7113 		.name = "swap.current",
7114 		.flags = CFTYPE_NOT_ON_ROOT,
7115 		.read_u64 = swap_current_read,
7116 	},
7117 	{
7118 		.name = "swap.max",
7119 		.flags = CFTYPE_NOT_ON_ROOT,
7120 		.seq_show = swap_max_show,
7121 		.write = swap_max_write,
7122 	},
7123 	{
7124 		.name = "swap.events",
7125 		.flags = CFTYPE_NOT_ON_ROOT,
7126 		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
7127 		.seq_show = swap_events_show,
7128 	},
7129 	{ }	/* terminate */
7130 };
7131 
7132 static struct cftype memsw_cgroup_files[] = {
7133 	{
7134 		.name = "memsw.usage_in_bytes",
7135 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7136 		.read_u64 = mem_cgroup_read_u64,
7137 	},
7138 	{
7139 		.name = "memsw.max_usage_in_bytes",
7140 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7141 		.write = mem_cgroup_reset,
7142 		.read_u64 = mem_cgroup_read_u64,
7143 	},
7144 	{
7145 		.name = "memsw.limit_in_bytes",
7146 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7147 		.write = mem_cgroup_write,
7148 		.read_u64 = mem_cgroup_read_u64,
7149 	},
7150 	{
7151 		.name = "memsw.failcnt",
7152 		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7153 		.write = mem_cgroup_reset,
7154 		.read_u64 = mem_cgroup_read_u64,
7155 	},
7156 	{ },	/* terminate */
7157 };
7158 
7159 static int __init mem_cgroup_swap_init(void)
7160 {
7161 	if (!mem_cgroup_disabled() && really_do_swap_account) {
7162 		do_swap_account = 1;
7163 		WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
7164 					       swap_files));
7165 		WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
7166 						  memsw_cgroup_files));
7167 	}
7168 	return 0;
7169 }
7170 subsys_initcall(mem_cgroup_swap_init);
7171 
7172 #endif /* CONFIG_MEMCG_SWAP */
7173